Analog Dialogue: A forum for the exchange of circuits, systems, and software for real-world signal processing.
Home     Analog Devices     Feedback     Subscribe     Archives     简体中文     日本語
Advanced Search


Video Tutorials -- Available on-demand

Designing Wideband Front-ends for GSPS Converters - As high-speed A/D converter technology improves, so does the need to resolve very high intermediate frequencies (IF) accurately at high-speeds. This poses two challenges: the converter design itself, and the front-end design that couples the signal content to the converter. This webcast will define wideband passive networks and highlight important specifications for choosing a transformer or balun.

Digital Filter Design for Integrated RF Transceivers - This webcast introduces how MATLAB from MathWorks can be used for complicated filter design in wireless SDR systems and components. We will create a model of the Analog Devices AD9361 and AD9364 RF transceivers, as integrated on the AD-FMCOMMS2-EBZ and AD-FMCOMMS4-EBZ SDR development platforms. We will use that model to design a filter for the internal FIR filters using the generated coefficients in an example system design.

An Overview of Spectroscopy Instrumentation Techniques, Applications and Signal Chains - Spectroscopy techniques form the basis for almost all light-based measurements in laboratory and analytical instrumentation. This webcast will start with the basics, show the theory of operation, and describe some typical spectroscopy signal chains. Next, we'll explain the challenges of the primary photodiode path and finish with a discussion of the auxiliary measurements that need to be considered in the component selection and end system design.

Integrated Software-Defined Radio on Zynq®-7000 All Programmable SoC -- This course introduces wireless communication system design on the new Avnet Zynq®-7000 All Programmable SoC/AD9361 Software-Defined Radio Evaluation Kit featuring Analog Devices AD9361 single-chip RF agile transceiver. An IEEE 802.11 receiver example will demonstrate system-level simulation using MATLAB® and Simulink® modeling and code generation tools from MathWorks. Using the Xilinx Vivado® Design Suite, the system will be implemented for production showing the receiver detecting 802.11 beacon frames in a stand-alone system running UBUNTU desktop Linux on Xilinx Zynq AP SoC. Presentations will alternate with instructor-led demos to illustrate coding techniques within MathWorks and Xilinx development tools for high-speed digital signal processing.

Partitioning and Design for Precision Data Acquisition Systems -- Acquired analog signals can be manipulated and processed by either the analog or digital portions of a system, for example, through filtering, multiplexing, and gain control. The analog portions of a system can typically provide reasonably simple processing at fairly low cost, power, and overhead. Digital processing can provide far greater analysis power and can alter the nature of the analysis without changing hardware.

Model-Based Design For Motor Control Development -- This webcast gives an introduction to model-based design (MBD) and discusses how this design approach can speed up time-to-market and increase product quality. Topics covered will include SW tools, workflow, advanced testing and deployment of code to embedded targets; followed by a working example of how MBD can be used for motor control algorithm design, verification, and implementation.

Addressing System Integration Challenges with Isolated Industrial Interfaces -- Interfaces in industrial and instrumentation applications require isolation due to their harsh operating environments. The necessary isolation can be achieved with a digital isolator or an optocoupler. Integration of that isolation into the signal chain poses several challenges at the system level, including set-up, debug, and software related pitfalls.

Galvanic Isolation for Power Supply Applications -- This seminar discusses isolation and isolation technologies in terms of signal transmission methods and isolation materials, including optocouplers and digital isolators. Ii covers isolation usage, including current sensing, gate driver, and communication functions in ac-to-dc, motor control, hybrid electrical vehicles, PV, and other power supply applications.

Solving Isolation Challenges on Your Design -- This webinar reviews designs that require isolation to protect personnel and equipment from harsh electrical and mechanical environments. It discusses interface power requirements and approaches for achieving design objectives, and addresses performance tradeoffs and applicable safety certifications for interface components.

Industrial Process Control: Communication Solutions -- This webcast provides an overview of industrial communications and trends, focusing on the most common connection between the process controller and the field instrument/actuator, the 4-mA to 20-mA loop, and on HART communication. A few solutions for the process controller and the field instrument sides of the communication will be discussed.

Got my data over the isolation barrier! Now how do I get power to run it? -- “What do you mean I have to isolate this thing?” If you have ever thought your design was done, only to find out you need to isolate data in addition to getting power to the isolated circuits, then this webcast is for you. In this session, we will discuss the pros and cons of the various methods of accomplishing this task while saving important board space, design time, and cost.

What is a "Wide Dynamic Range" Microphone and why does it matter to my design? -- MEMS microphones with the capability to capture very high sound pressure acoustic waves (loud noises) with high fidelity hold the potential to improve user experience in audio capture and to make acoustic detection viable for a range of applications that might have previously been unsuitable for such methods. We'll discuss design considerations for these microphones and applications that might benefit from such high performance.

...more Webinars


Copyright 1995- Analog Devices, Inc. All rights reserved.