Reduce the Chances of Human Error: Part 2, Super Amps and Filters for Analog Interface

2011-03-08

Read other articles in this series.

Figure 1

   

摘要

A common view holds that digital circuits just work naturally, but analog circuits are hard to implement. There is truth to that old belief—analog interface is an expert subject that requires training. It is, moreover, always better to avoid an issue than to try to solve it later. This is precisely why we should take advantage of some basic concepts that experienced analog engineers perform as a reflex. This application note provides some basic reminders and concepts about amplifiers and filters for you to consider during a design.

Introduction

As children we learned to share and in that process we learned about portions. Many parents taught this to children by having one child cut the pie or cake and then letting another child pick the piece first. We can be sure that great care was used to make the pieces all the same size.

We are reminded of a good lesson in life, "It's the ratio that counts." We use ratios in everyday life when we compare distances between different routes or the taste of two foods. (Yes, mom's cooking was better, or maybe we were too young to know any difference?).

Moving from children, pies, and cakes to analog engineering design, we realize that ratios—the relative amount, proportion, percentage, share, part, and fraction—are all important measurements in analog design. When we ignore these ratios and relationships, we introduce human error into what must be a precise process. This application note shares some analog concepts about amplifiers and filters that will help reduce the chances of "human" error and improve the analog design.

Considerations for Signal to Noise (SNR)

Crosstalk and signal to noise (SNR) are expressed as ratios, a proportion of good to bad. How does one improve the SNR of a signal? If a particular circuit contributes considerable noise, we have two basic options: first, reduce the noise somehow, or second, increase the amplitude of the good signal before it goes through the stage. Figure 1 illustrates the concept.

Figure 1. Power-supply noise is added to the signal.

Figure 1. Power-supply noise is added to the signal.

In application note 4992, "Reduce the Chances of Human Error: Part 1, Power and Ground," we concentrated on power noise, ground, and layout. In this companion article we examine how to control noise in the signal path. We discuss the characteristics of the signal and noise as we proceed through the various circuit stages.

Is the major noise source harmonics of a switching power supply? If the power-supply noise is 50kHz and higher and if our wanted signal is 1kHz, then filtering may be feasible. If we will be going into an ADC next, the anti-aliasing filter may help.

Reducing Noise

What possibilities does an experienced circuit designer evaluate? The simplest fix is to amplify the signal before the noise is added. Yes, straightforward enough, but unfortunately this solution most often cannot be used because the incoming signal already has noise present. So now we get creative and consider how to separate the signal from noise? Can we use highpass, lowpass, or bandpass filters? Can we discriminate on the basis of amplitude, limiting, noise blanking, or coring? Can we use preemphasis before the noise is introduced and deemphasis after to increase SNR? Can we discriminate on the basis of time, i.e., sample at a minimum noise level or interference time? Can we time average, or if the signal is repetitive, can we sum cycles or average in two, three, or more dimensions?

Turning from component functions, think about the system as a whole. What are the system goals? How will the system be used? How will the human senses interact with the information provided by the system? In short, consider all the information that we can muster.

The above set of questions reflects considerable design experience and knowledge. This is precisely why smart companies hire experienced engineers and mentor the new engineers to build a solid design team.

We can use an example to illustrate the thinking and development process. The first observation finds that the system has a high-gain operational amplifier at its input. The op amp feeds an analog-to-digital converter (ADC). Occasionally a large noise pulse appears on the signal and this causes the op amp to saturate. The op amp recovery time might be as long as milliseconds or seconds. How will we approach the issue? Since every case will be different, we will just ask questions and point out possible solutions.

First, gather data to try to understand what is happening. Can we fix the source? No. So we decide that the noise spike is unavoidable. What do we know about its risetime amplitude and duration? If the spike is very fast and narrow and our wanted signal is relatively slow, can we separate them by filtering? Can we detect the spike and open a series switch to blank out the spike from the main path? Could we add a pair of diodes like an electrostatic discharge (ESD) structure to clip any signal that goes above VCC or below ground? Can we learn from application note 4344, "Rail Splitter, from Abraham Lincoln to Virtual Ground?" In Figure 2 of that application note we create a voltage between VCC and ground at the average signal level of the wanted signal. If the series resistor was replaced with a pair of back-to-back diodes (Figure 2), the signal spike would be limited to the voltage ±0.6V for silicon diodes (red dashed lines) and ~±0.3V for Schottky diodes (green dashed lines). The reverse recovery time for silicon diodes can be between one hundreds and several hundreds of nanoseconds. Schottky diodes have a switching time of ~100ps for the small signal diodes but, because of their operating physics, do not have a reverse recovery time. The diodes can also be placed in the op amp feedback loop to reduce gain during the spike. Figure 3 shows the effect of limiting.

Figure 2. Replacing a series resistor with a pair of back-to-back diodes.

Figure 2. Replacing a series resistor with a pair of back-to-back diodes.

Figure 3. Diode limiter effect, ±0.3V Schottky, ±0.6V silicon.

Figure 3. Diode limiter effect, ±0.3V Schottky, ±0.6V silicon.

Figure 3 may help relieve op amp saturation and recovery time, but is it enough? We could add circuits to blank out the noise pulse as in Figure 4.

Figure 4. Noise pulse blanking.

Figure 4. Noise pulse blanking.

The block diagram of the blanking circuit is Figure 5.

Figure 5. Noise-blanking block diagram.

Figure 5. Noise-blanking block diagram.

From the basic concept of blanking in Figure 5, more elegance can be added. The input buffer may not be needed if the source is low impedance. R1 and R2 set a DC value as shown in application note 4344, "Rail Splitter, from Abraham Lincoln to Virtual Ground," mentioned above. Alternatively, the input signal could be AC coupled to this same voltage or the input signal could be averaged over the long term to produce this voltage. The main signal path is from the input buffer through a RC delay, the mux, buffer, and lowpass filter to the ADC. The MAX11203 ADC has four general-purpose input or output (GPIO) ports controlled by the SPI interface. The GPIO is set so that the AIN1of the MAX313 multiplexor is on and AIN2 is off. We highpass or differentiate the noise pulse. The dual or window comparator output will be active while the noise pulse exceeds 0.3V in either the positive or negative direction. The XOR gated inverts the logic to the mux, thereby turning off the main path and switching on the DC voltage. The RC delay also delays the main path long enough for the comparator path to change state. If the RC delay degrades the signal bandwidth too much, an LC delay line can be substituted.

The input buffer of Figure 5 could use a MAX4209 instrument amplifier which has incredibly low offset drift despite its high gain. Application note 4179, "Autozero Noise Filtering Improves Instrumentation Amplifier Output," explains why.

The filter just before the ADC in Figure 5 can control signal bandwidth to meet Nyquist anti-aliasing, reduce noise, or soften the residual blanking glitch. The following application notes will provide advice and ideas:

Application note 4617, "ADC Input Translator," uses resistor-dividers to scale the differential inputs and a stable voltage reference to offset the inputs. This circuit design enables an ADC with a 0V to 5V input range (e.g., the MAX1402) to accept inputs in the range +10.5V to -10.5V.

Calibration ideas using digital-to-analog converters (DACs) and potentiometers are covered in application notes 4494, "Methods for Calibrating Gain Error in Data-Converter Systems," and 818, "Digital Adjustment of DC-DC Converter Output Voltage in Portable Applications." The digital-output voltage-adjustment methods are performed with DAC, a trim pot (digital potentiometer), and PWM output of a microprocessor. Application note 4704, "Introduction to Electronic Calibration and Methods for Correcting Manufacturing Tolerances in Industrial Equipment Designs," includes a discussion of the DS4303 infinite sample-and-hold to capture a DC Voltage. Other application notes about digital pots include:

Analog I/O, interface circuits and digital-port signal protection ideas are discussed in the following application notes:

Maxim has watchdog circuits which ensure that microprocessor-controlled devices react in a known manner if the processor loses control. The following application notes offer ideas for using watchdogs: 4558, "Simple Latching Watchdog Timer," and 4229, "Comparison of Internal and External Watchdog Timers."

Microprocessor-controlled system clocks typically are of two types: system clocks controlling computing functions in orderly ways, and real time clocks (RTCs) or clocks that relate to human time concepts. Computer clocks operate like soldiers marching in cadence. This can result in interference products that may not meet regulatory requirements. Clock-generator spread-spectrum techniques to reduce this interference are discussed in these notes: 2863, "The Effects of Adjusting the DS1086L's Dither Span and Dither Frequency on EMC Measurements," and 3512, "Automotive Applications for Silicon Spread-Spectrum Oscillators." RTC ideas are found at "Reduce the Chances of Human Error: Part 1, Power and Ground".

Conclusion

Noise and interference control is different in every circuit and system. Thankfully, the laws of physics prevail and engineers must work hard to silence noise. This discussion has tried to help designers anticipate noise and interference issues before the design starts and during the design. After the product is in production, the options for correction are severely limited.



添加至 myAnalog

将文章添加到 myAnalog 的资源部分、现有项目或新项目。

创建新项目

关联至此文章

产品

MAX4506
量产

故障保护、高电压信号线路保护器

MAX3226
量产

1µA电源电流、1Mbps、3.0V至5.5V、RS-232收发器,提供AutoShutdown Plus

MAX1490E
推荐新设计使用

±15kV ESD保护、隔离型、RS-485/RS-422数据接口

MAX274

四阶及八阶、连续时间方式有源滤波器

MAX275

四阶及八阶、连续时间方式有源滤波器

MAX4568 量产

±15kV ESD保护、低电压、SPDT/SPST、CMOS模拟开关

MAX4640 过期

±15kV ESD保护、低电压、四路、SPST、CMOS模拟开关

MAX4630 量产

±15kV ESD保护、低电压、四路、SPST、CMOS模拟开关

MAX321 量产

高精度、双电源、SPST、模拟CMOS开关

MAX4575 量产

±15kV ESD保护、低电压、双路、SPST、CMOS模拟开关

MAX4551 量产

±15kV ESD保护、四路、低电压、SPST模拟开关

MAX4558 量产

±15kV ESD保护、低电压、CMOS模拟多路复用器开关

DS1086 量产

扩频EconOscillator

DS1087L 量产

3.3V扩频EconOscillator

DS1086L 量产

3.3V扩频EconOscillator

DS1085 量产

EconOscillator频率合成器

DS1089L 量产

3.3V中心扩频EconOscillator™

MAX7375 量产

3引脚硅振荡器

DS1094L 量产

多相扩频EconOscillator

DS1090 量产

低频、扩频EconOscillator

MAX4167 量产

高输出驱动、精密的低功耗、单电源、满摆幅输入/输出运算放大器,带有关断

MAX516 量产

四路、由DAC编程设置的、CMOS比较器

MAX4209 量产

超低失调/漂移、高精度仪表放大器,提供REF缓冲器

MAX4238 量产

超低失调/漂移、低噪声、高精度、SOT23封装放大器

MAX4232 量产

高输出驱动、10MHz、10V/µs、满摆幅输入/输出运算放大器,带有关断,SC70封装

MAX5898 不推荐用于新设计

16位、500Msps、插值与调制、双路DAC,交叉LVDS输入

MAX5874 量产

14位、200Msps、高动态性能、双路DAC,CMOS输入

MAX5384 量产

低成本、低功耗、8位DAC,带有3线串行接口,SOT23封装

DS1851 不推荐用于新设计

双路、温控、非易失数/模转换器

MAX5116 量产

非易失、四路、8位DAC,带有2线串行接口

MAX5105 量产

非易失、四路、8位DAC

MAX5893 最后购买期限

12位、500Msps、插值与调制、双路DAC,CMOS输入

MAX5877 量产

14位、250Msps、高动态性能、双路DAC,LVDS输入

MAX5363 量产

低成本、低功耗、6位DAC,带有3线串行接口,SOT23封装

MAX5115

非易失、四路、8位DAC,带有2线串行接口

MAX5547

双路、10位、电流输出DAC

MAX5876 推荐新设计使用

12位、250Msps、高动态性能、双路DAC,LVDS输入

MAX5550 量产

双路、10位、可编程、可提供30mA高输出电流的DAC

MAX5364

低成本、低功耗、6位DAC,带有3线串行接口,SOT23封装

MAX5895 最后购买期限

16位、500Msps、插值与调制、双路DAC,CMOS输入

MAX5381 量产

低成本、低功耗、8位DAC,带有2线串行接口,SOT23封装

MAX5106 量产

非易失、四路、8位DAC

MAX5774 量产

32路、14位、电压输出DAC,串行接口

MAX5878 量产

16位、250Msps、高动态性能、双路DAC,LVDS输入

MAX5894 过期

14位、500Msps、插值与调制、双路DAC,CMOS输入

MAX5380 量产

低成本、低功耗、8位DAC,带有2线串行接口,SOT23封装

MAX5109

非易失、双路、8位DAC,带有2线串行接口

MAX5383 量产

低成本、低功耗、8位DAC,带有3线串行接口,SOT23封装

MAX5873 量产

12位、200Msps、高动态性能、双路DAC,CMOS输入

MAX5355 量产

10位、电压输出DAC,8引脚µMAX封装

MAX5875 量产

16位、200Msps、高动态性能、双路DAC,CMOS输入

MAX5361 量产

低成本、低功耗、6位DAC,带有2线串行接口,SOT23封装

MAX1215

1.8V、12位、250Msps ADC,用于宽带系统

MAX1214

1.8V、12位、210Msps ADC,用于宽带系统

MAX1402 量产

+5V、18位、低功耗、多通道、过采样(Σ-Δ) ADC

MAX12555 量产

14位、95Msps、3.3V ADC

MAX12528

双路、80Msps、12位、IF/基带ADC

MAX12558

双路、80Msps、14位、IF/基带ADC

MAX12557 量产

双路、65Msps、14位、IF/基带ADC

MAX1213

1.8V、12位、170Msps ADC,用于宽带系统

MAX19586 过期

高动态范围、16位、80Msps ADC,具有-82dBFS的噪声底

MAX12553 过期

14位、65Msps、3.3V ADC

MAX1067 量产

多通道、14位、200ksps模数转换器

MAX12527 量产

双路、65Msps、12位、IF/基带ADC

MAX5481 量产

10位、非易失、线性变化数字电位器

MAX5457 量产

立体声音量调节电位器,带有按钮接口

MAX5460 量产

32抽头FleaPoT™、2线数字电位器

DS3906 量产

三路、非易失、小步长调节可变电阻与存储器

MAX5422 量产

256抽头、非易失、SPI接口数字电位器

MAX5456 量产

立体声音量调节电位器,带有按钮接口

DS1848 不推荐用于新设计

双路、温控、非易失可变电阻和存储器

MAX5429 量产

32抽头、一次性编程、线性变化数字电位器

MAX5400 量产

256抽头SOT-PoT、低漂移数字电位器,SOT23封装

MAX5491 量产

精密匹配的电阻分压器,SOT23封装

MAX5463 量产

32抽头FleaPoT™、2线数字电位器

MAX5437 量产

±15V、128抽头、低漂移数字电位器

MAX5160 量产

低功耗数字电位器

MAX5477 量产

双路、256抽头、非易失、I²C接口、数字电位器

DS3930 量产

六进制非易失电位器,带有输入/输出和存储器

MAX5402 量产

256抽头、µPoT™、低漂移数字电位器

MAX5490 量产

100kΩ精密匹配的电阻分压器,SOT23封装

MAX5466 量产

32抽头FleaPoT™、2线数字电位器

DS1804 量产

非易失调节电位器

DS3502 量产

高压、NV I²C电位器

MAX5401 量产

256抽头SOT-PoT、低漂移数字电位器,SOT23封装

MAX5439 量产

±15V、128抽头、低漂移数字电位器

DS3904 量产

三路、128抽头、非易失、数控可变电阻/开关

DS1847 不推荐用于新设计

双路、温控、非易失可变电阻

MAX5428 量产

32抽头、一次性编程、线性变化数字电位器

MAX5492 量产

10kΩ精密匹配的电阻分压器,SOT23封装

DS3903 量产

三路、128抽头、非易失数字电位器

MAX5427 量产

32抽头、一次性编程、线性变化数字电位器

MAX7412 量产

五阶、低通、椭圆函数、开关电容滤波器

MAX7401 量产

八阶、低通、贝塞尔、开关电容滤波器

MAX7415 量产

五阶、低通、椭圆函数、开关电容滤波器

MAX7404 量产

八阶、低通、椭圆函数、开关电容滤波器

MAX7414 量产

五阶、低通、开关电容滤波器

MAX7403 量产

八阶、低通、椭圆函数、开关电容滤波器

MAX7420 量产

五阶、低通、开关电容滤波器

MAX7405 量产

八阶、低通、贝塞尔、开关电容滤波器

MAX7419 量产

五阶、低通、开关电容滤波器

MAX7421 量产

五阶、低通、开关电容滤波器

MAX7411 量产

五阶、低通、椭圆函数、开关电容滤波器

MAX7408 量产

五阶、低通、椭圆函数、开关电容滤波器

MAX7400 量产

八阶、低通、椭圆函数、开关电容滤波器

MAX7418 量产

五阶、低通、开关电容滤波器

MAX7410 量产

五阶、低通、开关电容滤波器

MAX7407 量产

八阶、低通、椭圆函数、开关电容滤波器

MAX7491 量产

双路、通用开关电容滤波器

MAX7413 量产

五阶、低通、开关电容滤波器

MAX7490 量产

双路、通用开关电容滤波器

MAX6241 量产

低噪声、高精度+2.5V/+4.096V/+5V电压基准

MAX6350 量产

1ppm/°C、低噪声、+2.5V/+4.096V/+5V电压基准

MAX674 量产

+10V精密电压基准

MAX6173 量产

高精度电压基准,带有温度传感器

MAX6160 量产

SOT23封装、低成本、低压差、三端电压基准

MAX6325 量产

1ppm/°C、低噪声、+2.5V/+4.096V/+5V电压基准

MAX6175 量产

高精度电压基准,带有温度传感器

MAX6143 量产

高精度电压基准,带有温度传感器

MAX6341 量产

1ppm/°C、低噪声、+2.5V/+4.096V/+5V电压基准

MAX6174 量产

高精度电压基准,带有温度传感器

MAX6220 量产

低噪声、高精度+2.5V/+4.096V/+5V电压基准

REF02 不推荐用于新设计

+5V、+10V精密电压基准

MAX675 量产

高精度、5V电压基准,取代MAX673

MAX6250 量产

低噪声、高精度+2.5V/+4.096V/+5V电压基准

MAX6177 量产

高精度电压基准,带有温度传感器

REF01 不推荐用于新设计

+5V、+10V精密电压基准

MAX6176 量产

高精度电压基准,带有温度传感器

MAX6225 量产

低噪声、高精度+2.5V/+4.096V/+5V电压基准

DS4303 量产

可编程电压基准

MAX1553 量产

高效率、40V、升压型变换器,用于2至10个白光LED驱动

MAX6752 量产

微处理器复位电路,提供电容可调的复位/看门狗超时周期

MAX6749 量产

微处理器复位电路,提供电容可调的复位/看门狗超时周期

MAX253 量产

1W原边变压器H桥驱动器,用于隔离电源

DS1267

±5V、双路、数字电位器芯片

MAX9206 量产

10位总线LVDS解串器

MAX9205 量产

10位、总线LVDS串行器

MAX9208 量产

10位总线LVDS解串器

MAX9207

10位、总线LVDS串行器

MAX483E 量产

±15kV ESD保护、限摆率、低功耗、RS-485/RS-422收发器

MAX487E 量产

±15kV ESD保护、限摆率、低功耗、RS-485/RS-422收发器

MAX3485 量产

3.3V供电、10Mbps、限摆率、真RS-485/RS-422收发器

MAX3244E 量产

±15kV ESD保护、1µA、1Mbps、3.0V至5.5V、RS-232收发器,提供AutoShutdown Plus

MAX3228

+2.5V至+5.5V、RS-232收发器,UCSP封装

MAX488 量产

低功耗、限摆率、RS-485/RS-422收发器

MAX3083 量产

失效保护、高速(10Mbps)、限摆率、RS-485/RS-422收发器

MAX3313E 量产

±15kV ESD保护、460kbps、1µA、RS-232兼容收发器,µMAX封装

MAX3388E 量产

2.5V、±15kV ESD保护、RS-232收发器,用于PDA和蜂窝电话

MAX3443E 量产

±15kV ESD保护、±60V故障保护、10Mbps、失效保护型RS-485/J1708收发器

MAX491E 量产

±15kV ESD保护、限摆率、低功耗、RS-485/RS-422收发器

MAX3483E 量产

3.3V供电、±15kV ESD保护、12Mbps、限摆率、真RS-485/RS-422收发器

MAX3490 量产

3.3V供电、10Mbps、限摆率、真RS-485/RS-422收发器

MAX3088 量产

失效保护、高速(10Mbps)、限摆率、RS-485/RS-422收发器

MAX3225E 推荐新设计使用

±15kV ESD保护、1µA、1Mbps、3.0V至5.5V、RS-232收发器,提供AutoShutdown Plus

MAX485E 量产

±15kV ESD保护、限摆率、低功耗、RS-485/RS-422收发器

MAX1480E 推荐新设计使用

±15kV ESD保护、隔离型、RS-485/RS-422数据接口

MAX3311E 量产

±15kV ESD保护、460kbps、1µA、RS-232兼容收发器,µMAX封装

MAX3080 量产

失效保护、高速(10Mbps)、限摆率、RS-485/RS-422收发器

MAX3190E

±15kV ESD保护、460kbps、RS-232发送器,SOT23-6封装

MAX3245E 量产

±15kV ESD保护、1µA、1Mbps、3.0V至5.5V、RS-232收发器,提供AutoShutdown Plus

MAX1488E 量产

±15kV ESD保护、四路、低功耗RS-232线驱动器

MAX3188

1Mbps、1µA RS-232发送器,SOT23-6封装

MAX3387E 量产

3V、±15kV ESD保护、AutoShutdown Plus RS-232收发器,用于PDA和蜂窝电话

MAX3223E 量产

±15kV ESD保护、1µA、3.0V至5.5V、250kbps RS-232收发器,带有AutoShutdown

产品分类

最新视频 21

Subtitle
了解更多
添加至 myAnalog

将文章添加到 myAnalog 的资源部分、现有项目或新项目。

创建新项目