Mixed-Signal Front End (MxFE) Products

Highly Configurable Wideband RF-Sampling Transceivers

The first-gen mixed-signal front end (MxFE) products, with RF data converters, provide today’s system designers working in communication infrastructure, instrumentation, and aerospace and defense with a scalable software-designed radio solution supporting channel bandwidth as high as 2.4 GHz and direct sampling/synthesis up to 7.5 GHz. This solves several complex challenges including increasing bandwidth demands and signal chain complexity as system operation moves from the RF to the mmWave spectrum domain and as bandwidth demands move from megahertz to gigahertz.

To learn more, check out our press release and the AD9081/AD9082 product pages.

Existing MxFE Portfolio: Simple, Scalable, Efficient

The MxFE platform of products tackles challenges with direct RF sampling and very wide channel bandwidth, all software defined, for a simple, scalable, efficient, and future-proof solution.

Download the block diagram

Detailed block diagram of the AD9081

Block diagram of the AD9081

The green block: Highlights the on-chip DSP including a programmable FIR filter and course/fine decimation filters on the receive path and course/fine interpolation filters on the transmit path.

The orange block: Shows the AD9081 offering four ADC channels at 4 GSPS and four DAC channels at 12 GSPS.

MxFE Key Features and Benefits

Integration of RF-Sampling Converters and DSP Blocks

MxFE integrates multiple GSPS ADCs and DACs combined with on-chip DSP to allow for a simpler RF front end and smaller FPGA reducing overall system size, complexity, weight, power, and cost.

Wide Bandwidth and High Dynamic Range

With an analog input bandwidth of 7.5 GHz, instantaneous bandwidth up to 4.8 GHz, and a spurious-free dynamic range of −70 dBc, MxFE offers true ultra-wide bandwidth performance.

Complete Software-Defined Radio Solution

MxFE is a highly configurable software-defined radio platform capable of supporting multiple product development programs through a common HW/SW platform, reducing time to market and future-proofing your designs.

Featured Products

Digital Simulation Models

Get a jump start on your development with Analog Devices digital simulation models. From DSP performance to frequency planning to optimizing your RF front-end signal chain, these simulation models will shorten your development time and accelerate your time to revenue.

MATLAB Model

Develop a draft frequency plan by modeling the performance of the on-chip DSP, harmonics, and external filtering needs.

Download the MATLAB model

MATLAB model support

IBIS/AMI Model

The IBIS Algorithmic Modeling Interface (IBIS-AMI) is a modeling standard for SERDES PHYs that enables fast, accurate, statistically significant simulation of multigigabit serial links.

Get the AMI model

Download the IBIS model

Thermal Models

A Delphi model that accurately predicts the temperature of the package at a few critical points: junction, case, and leads.

Download the compact thermal models

S-Parameter Model

Scattering (S) parameters are used to model the matching networks for the ADC inputs, DAC outputs, and clock interface inputs to the MxFE. This helps users optimize their RF front-end signal chains to suit the frequency range of interest.

Download the S-Parameters

Product Evaluation

Analog Devices evaluation kits provide all of the hardware and software required to easily evaluate the incredible configurability and performance of the MxFE.

Simplified block diagram of the AD9081

Unboxing and Evaluation Setup

Watch the unboxing video

ADI engineer Umesh Jayamohan with demo setup

Installing the Fan Sink on MxFE Evaluation Boards

Watch the video to learn how

MxFE Evaluation Platform Demonstration Video Series

In this series, watch step-by-step tutorials on how to evaluate MxFE using ACE, DPG Lite, and Analog Devices' APIs. The first video walks through how to initialize the hardware using ACE or DPG Lite. In video two, a use case example is shown using ACE. The final two videos in the series show a use case example and creating a custom use case with Analog Devices' APIs.

Watch the video series

MxFE Evaluation Platform Demonstration Series

Hardware Requirements

To evaluate MxFE, you will need an MxFE evaluation board (part specific) and either the ADS8-V3EBZ or ADS9-V2EBZ FPGA controller board. These boards easily connect via FMC and can be brought up quickly and simply with our API/ACE software toolset.

MxFE Evaluation Boards

FPGA Controller Boards

Software Requirements

Prototyping

Analog Devices and our Alliances members provide MxFE reference designs to enable rapid evaluation and system-level prototyping to significantly shorten your time to revenue.

Analog Devices Reference Designs

Alliance Members Reference Designs

Featured Technical Articles

Graph of 16 simultaneous receive I/Q data captures

Considering GSPS ADCs in RF Systems

Next-generation radio platforms are moving to a direct RF sampling architecture. This can significantly reduce the size, weight, and power (SWaP) of the radio, but it can introduce additional challenges.

Learn more about direct RF sampling

Performance heat map of wideband digital receiver

SFDR Considerations in Multi-Octave Wideband Digital Receivers

Over the coming years, high sample rate analog-to-digital converter (ADC) and digital-to-analog converter (DAC) technology will usher in a wideband digital receiver architectural evolution.

Read the technical article

Close up photo of the Quad-MxFE platform

Using Multichip Synchronization in Integrated Wideband DACs and ADCs

The integration of multiple DSP blocks, wideband DACs, and wideband ADCs within a single monolithic chip is now enabling the offload of power-hungry FPGA resources.

See new capabilities