ステッピング・モーター
searchIcon
banner background image

ステッピング・モーター

低速時や停止時に高トルクを確保するために広く用いられるステッパ・モータは、高精度の位置情報取得が必要な場合に選択されるデバイスです。ステッパ・モータの特性を利点に変えるADI Trinamicの業界最先端技術と組み合わせられたこれらのモータは、一回転当たり最大51,200のマイクロステップを用いて、デジタル情報を完全に物理運動に変換します。

低速時や停止時に高トルクを確保するために広く用いられるステッパ・モータは、高精度の位置情報取得が必要な場合に選択されるデバイスです。ステッパ・モータの特性を利点に変えるADI Trinamicの業界最先端技術と組み合わせられたこれらのモータは、一回転当たり最大51,200のマイクロステップを用いて、デジタル情報を完全に物理運動に変換します。

Microstepping for Smooth and Precise Movements

Stepper motors typically use a permanently magnetized rotor and motor coils as a stator. By sending an electrical current through the motor coils, an electromagnetic field is created that forces the magnetic rotor into the desired position. A typical hybrid stepper has 50 magnetic pol pairs that allow the motor to approach 200 full steps, meaning 200 positions per full 360° revolution. However, smaller steps like half steps or microsteps can be generated using additional current states. This increases the accuracy, torque, and efficiency of the motor while reducing step loss, vibrations, and noise.

campaign-image
campaign-image

Microstepping for Smooth and Precise Movements

Stepper motors typically use a permanently magnetized rotor and motor coils as a stator. By sending an electrical current through the motor coils, an electromagnetic field is created that forces the magnetic rotor into the desired position. A typical hybrid stepper has 50 magnetic pol pairs that allow the motor to approach 200 full steps, meaning 200 positions per full 360° revolution. However, smaller steps like half steps or microsteps can be generated using additional current states. This increases the accuracy, torque, and efficiency of the motor while reducing step loss, vibrations, and noise.