Overview

Design Resources

Design & Integration Files

• Schematic
• Bill of Materials
• Assembly Drawing
• PADs Layout Files
• Gerber Files Download Design Files 1.01 M

Evaluation Hardware

Part Numbers with "Z" indicate RoHS Compliance. Boards checked are needed to evaluate this circuit

  • EVAL-CN0359-EB1Z ($120.00) Fully Automatic High Performance Conductivity Measurement System
Check Inventory & Purchase

Features & Benefits

  • Automatic Conductivity Measurement System
  • Self Contained
  • Microprocessor Controlled
  • Temperature Compensated

Circuit Function & Benefits

The circuit shown in Figure 1 is a completely self-contained, microprocessor controlled, highly accurate conductivity measurement system ideal for measuring the ionic content of liquids, water quality analysis, industrial quality control, and chemical analysis.


A carefully selected combination of precision signal conditioning components yields an accuracy of better than 0.3% over a conductivity range of 0.1 μS to 10 S (10 MΩ to 0.1 Ω) with no calibration requirements.


Automatic detection is provided for either 100 Ω or 1000 Ω platinum (Pt) resistance temperature devices (RTDs), allowing the conductivity measurement to be referenced to room temperature.


The system accommodates 2- or 4-wire conductivity cells, and 2-, 3-, or 4-wire RTDs for added accuracy and flexibility.


The circuit generates a precise ac excitation voltage with minimum dc offset to avoid a damaging polarization voltage on the conductivity electrodes. The amplitude and frequency of the ac excitation is user-programmable.


An innovative synchronous sampling technique converts the peak-to-peak amplitude of the excitation voltage and current to a dc value for accuracy and ease in processing using the dual, 24-bit Σ-Δ ADC contained within the precision analog microcontroller.


The intuitive user interface is an LCD display and an encoder push button. The circuit can communicate with a PC using an RS-485 interface if desired, and operates on a single 4 V to 7 V supply.


Figure 1. High Performance Conductivity Measurement System (Simplified Schematic: All Connections and Decoupling Not Shown)

Circuit Description

The excitation square wave for the conductivity cell is generated by switching the ADG1419 between the +VEXC and −VEXC voltages using the PWM output of the ADuCM360 microcontroller. It is important that the square wave has a precise 50% duty cycle and a very low dc offset. Even small dc offsets can damage the cell over a period of time.


The +VEXC and −VEXC voltages are generated by the ADA4077-2 op amps (U9A and U9B), and their amplitudes are controlled by the DAC output of the ADuCM360, as shown in
Figure 2.


Figure 2. Excitation Voltage Sources

The ADA4077-2 has a typical offset voltage of 15 μV (A grade), a 0.4 nA bias current, a 0.1 nA offset current, and an output current of up to ±10 mA, with a dropout voltage of less than 1.2 V. The U9A op amp has a closed-loop gain of 8.33 and converts the ADuCM360 internal DAC output (0 V to 1.2 V) to the +VEXC voltage of 0 V to 10 V. The U9B op amp inverts the +VEXC and generates the −VEXC voltage. R22 is chosen such that R22 = R24||R27 to achieve first-order bias current cancellation. The error due to the 15 μV offset voltage of U9A is approximately (2 × 15 μV) ÷ 10 V = 3 ppm. The primary error introduced by the inverting stage is therefore the error in the resistor matching between R24 and R27.


The ADG1419 is a 2.1 Ω, on-resistance SPDT analog switch with an on-resistance flatness of 50 mΩ over a ±10 V range, making it ideal for generating a symmetrical square wave from the ±VEXC voltages. The symmetry error introduced by the ADG1419 is typically 50 mΩ ÷1 kΩ = 50 ppm. Resistor R23 limits the maximum current through the sensor to 10 V/1 kΩ = 10 mA.


The voltage applied to the cell, V1, is measured with the AD8253 instrumentation amplifier (U15). The positive input to U15 is buffered by the ADA4000-1 (U14). The ADA4000-1 is chosen because of its low bias current of 5 pA to minimize the error in measuring low currents associated with low conductivities. The negative input of the AD8253 does not require buffering.


The offset voltages of U14 and U15 are removed by the synchronous sampling stage and do not affect the measurement accuracy.


U15 and U18 are AD8253 10 MHz, 20 V/μs, programmable gain (G = 1, 10, 100, 1000) instrumentation amplifiers with gain error of less than 0.04%. The AD8253 has a slew rate of 20 V/μs and a settling time of 1.8 μs to 0.001% for G = 1000. Its common-mode rejection is typically 120 dB.


The U19 (ADA4627-1) stage is a precision current to voltage converter that converts the current through the sensor to a voltage. The ADA4627-1 has an offset voltage of 120 μV (typical, A grade), a bias current of 1 pA (typical), a slew rate of 40 V/μs, and a 550 ns settling time to 0.01%. The low bias current and offset voltage make it ideal for this stage. The symmetry error produced by the 120 μV offset error is only 120 μV/10 V = 12 ppm.


The U22A and U22B (AD8542) buffers supply the 1.65 V reference to the U18 and U15 instrumentation amplifiers, respectively.


The following is a description of the remainder of the signal path in the voltage channel (U17A, U17B, U10, U13, U12A, and U12B). The operation of the current channel (U17C, U17D, U16, U21, U20A, and U20B) is identical.


The ADuCM360 generates the PWM0 square wave switching signal for the ADG1419 switch as well as PWM1 and PWM2 synchronizing signals for the synchronous sampling stages. The cell voltage and the three timing waveforms are shown in Figure 3.


Figure 3. Cell Voltage and Track-and-Hold Timing Signals

The output of the AD8253 in amp (U15) drives two parallel track-and-hold circuits composed of ADG1211 switches (U17A/U17B), series resistors (R34/R36), hold capacitors (C50/C73), and unity-gain buffers (U10/U13).


The ADG1211 is a low charge injection, quad SPST analog switch, operating on a ±15 V power supply with up to ±10 V input signals. The maximum charge injection due to switching is 4 pC, which produces a voltage error of only 4 pC ÷ 4.7 μF = 0.9 μV.


The PWM1 signal causes the U10 track-and-hold buffer to track the negative cycle of the sensor voltage and then hold it until the next track cycle. The output of the U10 track-and-hold buffer is therefore a dc level corresponding to the negative amplitude of the sensor voltage square wave.


Similarly, the PWM2 signal causes the U13 track-and-hold buffer to track the positive cycle of the sensor voltage and then hold it until the next track cycle. The output of the U13 track-and-hold buffer is therefore a dc level corresponding to the positive amplitude of the sensor voltage square wave.


The bias current of the track-and-hold buffers (ADA4638-1) is 45 pA typical, and the leakage current of the ADG1211 switch is 20 pA typical. Therefore, the worst-case leakage current on the 4.7 μF hold capacitors is 65 pA. For a 100 Hz excitation frequency, the period is 10 ms. The drop voltage over one-half the period (5 ms) due to the 65 pA leakage current is (65 pA × 5 ms) ÷ 4.7 μF = 0.07 μV.


The offset voltage of the ADA4638-1 zero-drift amplifier is only 0.5 μV typical and contributes negligible error.

The final stages in the signal chain before the ADC are the ADA4528-2 inverting attenuators (U12A and U12B) that have a gain of −0.16 and a common-mode output voltage of +1.65 V. The ADA4528-2 has an offset voltage of 0.3 μV typical and therefore contributes negligible error.


The attenuator stage reduces the ±10 V maximum signal to ±1.6 V with a common-mode voltage of +1.65 V. This range is compatible with the input range of the ADuCM360 ADC input, which is 0 V to 3.3 V (1.65 V ± 1.65 V) for an AVDD supply of 3.3 V.


The attenuator stages also provide noise filtering and have a −3 dB frequency of approximately 198 kHz.


The differential output of the voltage channel, VOUT1, is applied to the AIN2 and AIN3 inputs of the ADuCM360. The differential output of the current channel, VOUT2, is applied to the AIN0 and AIN1 inputs of the ADuCM360.


cn0359_image1


Equation 7 shows that the conductivity measurement depends on G1, G2, and R47, and the ratio of VOUT2 to VOUT1.  Therefore, a precision reference is not required for the ADCs within the ADuCM360. 


The AD8253 gain error (G1 and G2) is 0.04% maximum, and R47 is chosen to be a 0.1% tolerance resistor. 


From this point, the resistors in the VOUT1 and VOUT2 signal chain determine the overall system accuracy. 


The software sets the gain of each AD8253 as follows:

  • If the ADC code is over 93.2% of full scale, the gain of the AD8253 is reduced by a factor of 10 on the next sample. 
  • If the ADC code is less than 9.13% of full scale, the gain of the AD8253 is increased by a factor of 10 on the next sample.


System Accuracy Measurements

The following four resistors affect the accuracy in the VOUT1 voltage channel: R19, R20, R29, and R31.

The following five resistors affect the accuracy in the VOUT2 current channel: R47, R37, R38, R48, and R52.


Assuming that all nine resistors are 0.1% tolerance, and including the 0.04% gain error of the AD8253, a worst-case error analysis yields approximately 0.6%. The analysis is included in the CN-0359 Design Support Package.


In practice, the resistors are more likely to combine in an RSS manner, and the RSS error due to the resistor tolerances in the positive or negative signal chain is √5 × 0.1% = 0.22%.


Accuracy measurements were taken using precision resistors from 1 Ω to 1 MΩ (1 S to 1 μS) to simulate the conductivity cell. Figure 4 shows the results, and the maximum error is less than 0.1%.



Figure 4. System Error (%) vs. Conductivity of 1 μS to 1 S



RTD Measurement

Conductivity measuring system accuracy is only as good as its temperature compensation. Because common solution temperature coefficients vary in the order of 1%/°C to 3%/°C or more, measuring instruments with adjustable temperature compensation must be used. Solution temperature coefficients are somewhat nonlinear and usually vary with the actual conductivity, as well. Therefore, calibration at the actual measuring temperature yields the best accuracy.


The ADuCM360 contains two matched, software configurable, excitation current sources. They are individually configurable to provide a current output of 10 μA to 1 mA, and matching is better than 0.5%. The current sources allow the ADuCM360 to easily perform 2-wire, 3-wire, or 4-wire measurements for either Pt100 or Pt1000 RTDs. The software also automatically detects if the RTD is Pt100 or Pt1000 during the setup procedure.


The following discussion shows simplified schematics of how the different RTD configurations operate. All mode switching is accomplished in the software, and there is no need to change the external jumper settings.


Figure 5 shows the configuration for 4-wire RTDs.



Figure 5. Configuration for 4 Wire RTD Connection


The parasitic resistance in each of the leads to the remote RTD is shown as RP. The excitation current (IEXC) passes through a precision 1.5 kΩ resistor and the RTD. The on-chip ADC measures the voltage across the resistor (V7 − V8).


It is important that the R13 resistor and the IEXC excitation current value be chosen such that the ADuCM360 maximum input voltage at AIN7 does not exceed AVDD − 1.1 V; otherwise, the IEXC current source does not function properly. The RTD voltage is accurately measured using the two sense leads that connect to AIN6 and AIN5. The input impedance is approximately 2 MΩ (unbuffered mode, PGA gain = 1), and the current flowing through the sense lead resistance produces minimum error. The ADC then measures the RTD voltage (V6 − V5).


The RTD resistance is then calculated as


cn0359_image2


The measurement is ratiometric and does not depend on an accurate external reference voltage, only the tolerance of the 1.5 kΩ resistor. In addition, the 4-wire configuration eliminates the error associated with the lead resistances.


The ADuCM360 has a buffered or unbuffered input option. If the internal buffer is activated, the input voltage must be greater than 100 mV. The 1 kΩ/36 Ω resistor divider provides a 115 mV bias voltage to the RTD that allows buffered operation. In the unbuffered mode, Terminal 4 of J3 can be grounded and connected to a grounded shield for noise reduction.


The 3-wire connection is another popular RTD configuration that eliminates lead resistance errors, as shown in Figure 6.



Figure 6. Configuration for 3-Wire RTD Connection


The second matched IEXC current source (AIN5/IEXC) develops a voltage across the lead resistance in series with Terminal 3 that cancels the voltage dropped across the lead resistance in series with Terminal 1. The measured V8 − V5 voltage is therefore free of lead resistance error.


Figure 7 shows the 2-wire RTD configuration where there is no compensation for lead resistance.



Figure 7. Configuration for 2-Wire RTD Connection


The 2-wire configuration is the lowest cost circuit and is suitable for less critical applications, short RTD connections, and higher resistance RTDs such as Pt1000.



Conductivity Theory


The resistivity, ρ, of a material or liquid is defined as the resistance of a cube of the material with perfectly conductive contacts on opposite faces. The resistance, R, for other shapes can be calculated by


cn0359_image3

where:
L is the distance between the contacts.
A is the area of the contacts.


Resistivity is measured in units of Ω cm. A 1 Ω cm material has a resistance of 1 Ω when contacted on opposite faces of a 1 cm × 1 cm × 1 cm cube.


Conductance is the reciprocal of resistance, and conductivity is the reciprocal of resistivity. The unit of measurement of conductance is Siemens (S), and the unit of measurement of conductivity is S/cm, mS/cm, or μS/cm.


All aqueous solutions conduct electricity to some degree. Adding electrolytes such as salts, acids, or bases to pure water increases the conductivity (and decreases resistivity).


For the purposes of this circuit note, Y is the general symbol for conductivity measured in S/cm, mS/cm, or μS/cm. However, in many cases, the distance term is dropped for convenience, and the conductivity is simply expressed as S, mS, or μS.


A conductivity system measures conductivity by means of electronics connected to a sensor called a conductivity cell immersed in a solution, as shown in Figure 8.



Figure 8. Interface Between Conductivity Cell and EVAL-CN0359-EB1Z


The electronic circuitry impresses an alternating voltage on the sensor and measures the size of the resulting current, which is related to the conductivity. Because conductivity has a large temperature coefficient (up to 4%/°C), an integral temperature sensor is incorporated into the circuitry to adjust the reading to a standard temperature, usually 25°C (77°F). When measuring solutions, the temperature coefficient of the conductivity of the water itself must be considered. To compensate accurately for the temperature, a second temperature sensor and compensation network must be used.


The contacting-type sensor typically consists of two electrodes that are insulated from one another. The electrodes, typically Type 316 stainless steel, titanium palladium alloy, or graphite, are specifically sized and spaced to provide a known cell constant. Theoretically, a cell constant of 1.0/cm describes two electrodes, each sized 1 cm2 in area, and spaced 1 cm apart. Cell constants must be matched to the measurement system for a given range of operation. For instance, if a sensor with a cell constant of 1.0/cm is used in pure water with a conductivity of 1 μS/cm, the cell has a resistance of 1 MΩ. Conversely, the same cell in seawater has a resistance of 30 Ω. Because the resistance ratio is so large, it is difficult for ordinary instruments to accurately measure such extremes with only one cell constant.


When measuring the 1 μS/cm solution, the cell is configured with large area electrodes spaced a small distance apart. For example, a cell with a cell constant of 0.01/cm results in a measured cell resistance of approximately 10,000 Ω rather than 1 MΩ. It is easier to accurately measure 10,000 Ω than 1 MΩ; therefore, the measuring instrument can operate over the same range of cell resistance for both ultrapure water and high conductivity seawater by using cells with different cell constants.


The cell constant, K, is defined as the ratio of the distance between the electrodes, L, to the area of the electrodes, A:


cn0359_image4


There are two types of conductivity cells: those with two electrodes, and those with four electrodes, as shown in Figure 9. The electrodes are often referred to as poles.



Figure 9. 2-Pole and 4-Pole Conductivity Cells


The 2-pole sensor is more suitable for low conductivity measurements, such as purified water, and various biological and pharmaceutical liquids. The 4-pole sensor is more suitable the high conductivity measurements, such as waste water and seawater analysis.


The cell constants for 2-pole cells range from approximately 0.1/cm to 1/cm, and the cell constants for 4-pole cells range from 1/cm to 10/cm.


The 4-pole cell eliminates the errors introduced by polarization of the electrodes and field effects that can interfere with the measurement.


The actual configuration of the electrodes can be that of parallel rings, coaxial conductors, or others, rather than the simple parallel plates shown in Figure 8.


Regardless of the type of cell, it is important not to apply a dc voltage to any electrode, because ions in the liquid will accumulate on the electrode surface, thereby causing polarization, measurement errors, and damage to the electrode.


Take special care with sensors that have shields, as in the case of coaxial sensors. The shield must be connected to the same potential as the metal container holding the liquid. If the container is grounded, the shield must be connected to Pin 5 of J5, the circuit board ground.


The final precaution is not to exceed the rated excitation voltage or current for the cell. The CN-0359 circuit allows programmable excitation voltages from 100 mV to 10 V, and the R23 (1 kΩ) series resistor limits the maximum cell current to 10 mA.



Power Supply Circuits


To simplify system requirements, all the required voltages (±15 V and +3.3 V) are generated from a single 4 V to 7 V supply, as shown in Figure 10.


The ADP2300 buck regulator generates the 3.3 V supply for the board. The design is based on the downloadable ADP230x Buck Regulator Design Tool.


The ADP1613 boost regulator generates a regulated +15 V supply and an unregulated −15 V supply. The −15 V supply is generated with a charge pump. The design is based on the ADP161x Boost Regulator Design Tool.


Details regarding the selection and design of power supplies are available at www.analog.com/ADIsimPower.


Use proper layout and grounding techniques to prevent the switching regulator noise from coupling into the analog circuits. See the Linear Circuit Design Handbook, the Data Conversion Handbook, the MT-031 Tutorial, and the MT-101 Tutorial for further details.


Figure 10. Power Supply Circuits

Figure 11 shows the LCD backlight driver circuit.



Figure 11. LCD Backlight Drivers


Each half of the AD8592 op amp acts as a 60 mA current source to supply the LCD backlight currents. The AD8592 can source and sink up to 250 mA, and the 100 nF capacitor ensures a soft startup.



Software Operation and User Interface


The EVAL-CN0359-EB1Z comes preloaded with the code required to make the conductivity measurements. Complete system hardware and software operation can be found in the CN0359 User Guide: http:/www.analog.com/CN0359-UserGuide.


The CN-0359 user interface is intuitive and easy to use. All user inputs are from a dual function push button/rotary encoder knob. The encoder knob can be turned clockwise or counterclockwise (no mechanical stop), and can also be used as a push button.


Figure 12 is a photo of the EVAL-CN0359-EB1Z board that shows the LCD display and the position of the encoder knob.



Figure 12. Photo of EVAL-CN0359-EB1Z Board Showing Home Screen in Measurement Mode


After connecting, the conductivity cell and the RTD the board are powered up. The LCD screen appears as shown in Figure 12.


Push the encoder knob to enter the setting menu, and then input the EXC Voltage, EXC Frequency, TEMP Coefficient, and Cell Constant, as shown in Figure 13.



Figure 13. LCD Display Screens


Rotating the knob moves the cursor up and down through the various parameters.


Set the cursor to EXC Voltage and push the knob until it clicks. Position the cursor over the first digit in the number to be set by rotating the knob. Push the button, and the cursor blinks. Change the number by rotating the knob, and push the knob when the desired number is reached. After setting all the digits in the number, position the cursor on Save and push the button to save the setting.


Continue the process and set the EXC Frequency, TEMP Coefficient, and Cell Constant.


After setting all the constants, select RETURN TO HOME and push the knob. The system is now ready to make measurements.


If numbers are entered that are outside the allowable range, the buzzer sounds.


If the conductivity cell is incorrectly connected, the screen displays Sensor Incorrect.


If the RTD is incorrectly connected, the screen displays RTD Incorrect use 25°C. The system can still make measurements without the RTD connected, but uses 25°C as the compensation temperature.

Common Variations

The system shown in the CN-0359 uses the ADuCM360 precision analog microcontroller for a highly integrated conductivity measurement.


If the user desires a discrete ADC, the AD7794 24-bit, Σ-Δ ADC is a good choice.

Circuit Evaluation & Test

This circuit uses the EVAL-CN0359-EB1Z circuit board, an external power supply, conductivity cell, and an RTD.



Equipment Needed


The following equipment is needed:


  • The EVAL-CN0359-EB1Z circuit board
  • A 6 V power supply or wall wart (EVAL-CFTL-6V-PWRZ)
  • A conductivity cell
  • Pt100 or Pt1000 2-wire, 3-wire, or 4-wire RTD (if the RTD is not connected, the conductivity measurement is referenced to 25°C)


Setup


Take the following steps to set up the circuit for evaluation:

  1. Connect the conductivity cell as follows:
    a. 4-wire cell: connect an outside current electrode to J5 Pin 1 and the closest inner voltage electrode to J5 Pin 2. Connect the second outside current electrode to J5 Pin 4 and the closest inner voltage electrode to Pin 3.
    b. 2-wire cell: connect one electrode to J5 Pin 1 and Pin 2 and connect the second electrode to J5 Pin 2 and Pin 4.
    c. If the conductivity cell has a shield, connect it to J5 Pin 5.
  2. Connect the RTD as follows (if used):
    a. 4-wire RTD (see Figure 5): connect the positive current excitation wire to J3 Pin 1 and the positive voltage sense wire to J3 Pin 2. Connect the negative current excitation wire to J3 Pin 4 and the negative voltage sense wire to J3 Pin 2.
    b. 3-wire RTD (see Figure 6): connect the positive current excitation wire to J3 Pin 1. Connect the negative current excitation wire to J3 Pin 4. Connect the negative voltage sense wire to J3 Pin 2.
    c. 2-wire RTD (see Figure 7): connect one RTD wire to J3 Pin 1 and the other wire to J3 Pin 4.
    d. If the RTD wires are shielded, connect the shield to J5 Pin 5.
  3. Connect the 6 V power supply (EVAL-CFTL-6V-PWRZ) to J1 of the EVAL-CN0359-EB1Z circuit board.
  4. Turn on the power by connecting the EVAL-CFTL-6V-PWRZ, and then push the button on the EVAL-CN0359-EB1Z circuit board.
  5. Follow the procedure previously described in the Software Operation and User Interface section and enter the following parameters: EXC Voltage, EXC Frequency, TEMP Coefficient, and Cell Constant.
  6. Return to the main screen and wait for the ADuCM360 to flush the buffers and display the conductivity and the temperature. If the screen shows an error and the buzzer beeps more than 20 times, check the sensor connections.


Connectivity for Prototype Development


The EVAL-CN0359-EB1Z is designed to be powered with the EVAL-CFTL-6V-PWRZ 6 V power supply. The EVAL-CN0359-EB1Z requires only the power supply and the external conductivity cell and RTD for operation.


The EVAL-CN0359-EB1Z also has an RS-485 connector, J2, that allows an external PC to interface with the board. Connector J4 is a JTAG interface for programming and debugging the ADuCM360.



Figure 14 is a typical PC connection diagram showing an RS-485 to RS-232 adapter.

Sample Products

Samples

Product

Description

Available Product
Models to Sample

AD8253 10 MHz, G = 1, 10, 100, 1000 iCMOS® Programmable Gain Instrumentation Amplifier

AD8253ARMZ

ADA4627-1 36 V, 19 MHz, Low Noise, Low Bias Current, JFET Op Amp

ADA4627-1ACPZ-R7

ADA4627-1ARZ

ADA4000-1 Single, Low Cost, Precision JFET Input Operational Amplifier

ADA4000-1ARZ

ADA4000-1AUJZ-R7

ADA4638-1 30V Auto-zero, Rail-to-Rail Output Precision Amplifier

ADA4638-1ACPZ-R7

ADA4638-1ARZ

ADA4528-2 Precision, Ultralow Noise, RRIO, Zero-Drift Dual Op Amp

ADA4528-2ACPZ-R7

ADA4528-2ARMZ

ADA4528-2TCPZ-EP

ADA4077-2

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Dual Amplifier

ADA4077-2ARMZ

ADA4077-2ARZ

ADA4077-2TRMZ-EP

ADUCM360 Low power precision analog microcontroller, ARM cortex M3 with dual sigma-delta ADCs

ADUCM360BCPZ128

AD8542 General-Purpose CMOS Dual Rail-to-Rail Amplifier

AD8542ARMZ

ADP2300 1.2 A, 20 V, 700 kHz Nonsynchronous Step-down Switching Regulator

ADP2300AUJZ-R7

ADP1613 650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converter with 2.0 A Current Limit

ADP1613ARMZ-R7

ADG1211 Low Capacitance, Low Charge Injection ±15 V/+12 V iCMOS Quad SPST Switches

ADG1211YCPZ-500RL7

ADG1211YRUZ

ADG1419 2.1 Ω On Resistance, ±15 V/+12 V/±5 V, iCMOS SPDT Switch

ADG1419BCPZ-REEL7

ADM3483 3.3 V, Low Power, RS-485/RS-422 Transceiver (Half Duplex, 250 kbps, Slew Rate Limited, DE/RE)

ADM3483ARZ

ADuCM362 Low Power, Precision Analog Microcontroller with Dual Sigma-Delta ADCs, ARM Cortex-M3

ADUCM362BCPZ128

ADUCM362BCPZ128RL7

ADUCM362BCPZ256

ADUCM362BCPZ256RL7

ADuCM363 Low Power, Precision Analog Microcontroller with Single Sigma-Delta ADC, ARM Cortex-M3

ADUCM363BCPZ128

ADUCM363BCPZ256

Buy functionality exists in desktop site
Evaluation Boards Pricing displayed is based on 1-piece.
Up to two boards can be purchased through Analog.com. To order more than two, please purchase through one of our listed distributors.
Pricing displayed is based on 1-piece. The USA list pricing shown is for budgetary use only, shown in United States dollars (FOB USA per unit), and is subject to change. International prices may vary due to local duties, taxes, fees and exchange rates.