アプリケーション・ノート

狭帯域幅 (15 kSPS以下) Σ-Δ ADCの選択

著者：Mary McCarthy

はじめに
アナログ・デバイセズは、狭帯域で高分解能の Σ-Δ ADCを広範囲に提供しています。これらのデバイスは、ADCの他に、電流源、マルチプレクサ、PGA、アナログ入力バッファを内蔵しています。このアプリケーション・ノートでは、ADCを使ういくつかのアプリケーションについて説明し、さらに各アプリケーションに最適なADCについても説明します。

ビット数
16ビット: AD7705, AD7706, AD7707, AD7708, AD7709, AD7715, AD7788, AD7790, AD7792, AD7795, AD7796, AD7798
24ビット: AD7710, AD7711, AD7711A, AD7712, AD7713, AD7714, AD7718, AD7719, AD7730, AD7730L, AD7731, AD7732, AD7734, AD7738, AD7739, AD7782, AD7790, AD7791, AD7792, AD7793, AD7794, AD7795, AD7796, AD7797, AD7799

マルチチャンネル・アプリケーション
高スループット: AD7731, AD7734, AD7738, AD7739
低スループット: AD7708/AD7718, AD7714, AD7794/AD7795

温度測定
サーマル・ダイオード・アプリケーションと RTD アプリケーションの場合は、電流源が必要です。
熱電対: AD7714, AD7719, AD7792/AD7793, AD7794/AD7795
サーマル・ダイオード: AD7709
RTD: AD7711, AD7719, AD7783, AD7792/AD7793, AD7794/AD7795

圧力測定
条件:比例動作向けの低レベルの変動アナログ入力と高レベルの変動リファレンス入力が必要です。オプション機能としては、温度補償に使用できる補助ADCなどがあります。
AD7710, AD7714, AD7719, AD7730, AD7798/AD7799

重量測定
条件:比例動作向けの低レベルの変動アナログ入力と高レベルの変動リファレンス入力が必要です。オプション機能としては、温度補償に使用できる補助ADC、高速ステップ、AC励起、リファレンス検出回路、フィルタの高い帯域外除去比などがあります。
AD7714, AD7719, AD7730, AD7730L, AD7796/AD7797, AD7798/AD7799

低消費電力
AD7705/AD7706, AD7714, AD7715, AD7719, AD7778, AD7788/AD7789, AD7790, AD7791, AD7792/AD7793, AD7794/AD7795, AD7796/AD7797, AD7798/AD7799

高アナログ入力電圧(±10 V)
AD7707, AD7712, AD7732, AD7734

レールtoレールのバッファ内蔵
AD7708/AD7718, AD7709, AD7719, AD7782, AD7783, AD7787, AD7790, AD7791

バイポーラ入力(±2.5 V)
AD7710, AD7711, AD7712

ピン設定可能
AD7782, AD7783
<table>
<thead>
<tr>
<th>Part No.</th>
<th>Bits</th>
<th>p-p Resolution @ Max Range (Bits)</th>
<th>p-p Resolution @ Data Rate (Hz)</th>
<th>AIN Channels</th>
<th>On-Chip PGA</th>
<th>On-Chip AIN Buffer</th>
<th>On-Chip Current Source</th>
<th>AVDD/ DVDD (V)</th>
<th>Power Supply Current (mA)</th>
<th>Price ($/1k)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD7701</td>
<td>16</td>
<td>16</td>
<td>4000</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>15.70</td>
<td>10 Hz bandwidth</td>
</tr>
<tr>
<td>AD7703</td>
<td>20</td>
<td>17</td>
<td>4000</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>13.26</td>
<td>10 Hz bandwidth</td>
</tr>
<tr>
<td>AD7705</td>
<td>16</td>
<td>16</td>
<td>60</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.3</td>
<td>4.12</td>
<td></td>
</tr>
<tr>
<td>AD7706</td>
<td>16</td>
<td>16</td>
<td>60</td>
<td>3</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.3</td>
<td>4.12</td>
<td></td>
</tr>
<tr>
<td>AD7707</td>
<td>16</td>
<td>16</td>
<td>60</td>
<td>3</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.28</td>
<td>4.46</td>
<td></td>
</tr>
<tr>
<td>AD7708</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>1.28</td>
<td>3.98</td>
<td></td>
</tr>
<tr>
<td>AD7709</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>4</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>1.25</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>AD7710</td>
<td>24</td>
<td>17.5</td>
<td>60</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>14.45</td>
<td></td>
</tr>
<tr>
<td>AD7711</td>
<td>24</td>
<td>17.5</td>
<td>60</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>15.30</td>
<td>Two current sources</td>
</tr>
<tr>
<td>AD7711A</td>
<td>24</td>
<td>17.5</td>
<td>60</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>15.30</td>
<td>One current source</td>
</tr>
<tr>
<td>AD7712</td>
<td>24</td>
<td>17.5</td>
<td>60</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>13.20</td>
<td></td>
</tr>
<tr>
<td>AD7713</td>
<td>24</td>
<td>17.5</td>
<td>60</td>
<td>3</td>
<td>Y</td>
<td></td>
<td></td>
<td>5</td>
<td>0.7</td>
<td>16.15</td>
<td></td>
</tr>
<tr>
<td>AD7714</td>
<td>24</td>
<td>17.5</td>
<td>60</td>
<td>5</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.35</td>
<td>8.28</td>
<td></td>
</tr>
<tr>
<td>AD7715</td>
<td>16</td>
<td>16</td>
<td>60</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.35</td>
<td>5.65</td>
<td></td>
</tr>
<tr>
<td>AD7718</td>
<td>24</td>
<td>18.5</td>
<td>20</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>1.28</td>
<td>5.24</td>
<td></td>
</tr>
<tr>
<td>AD7719</td>
<td>24</td>
<td>18.5</td>
<td>20</td>
<td>5</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>1.5</td>
<td>8.76</td>
<td>Dual ADC</td>
</tr>
<tr>
<td>AD7730</td>
<td>24</td>
<td>17</td>
<td>200</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>AVDD: 5</td>
<td>13</td>
<td>11.60</td>
<td>Weigh scale</td>
</tr>
<tr>
<td>AD7730L</td>
<td>24</td>
<td>17</td>
<td>200</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>AVDD: 5</td>
<td>13</td>
<td>9.55</td>
<td>Weigh scale</td>
</tr>
<tr>
<td>AD7731</td>
<td>24</td>
<td>17</td>
<td>800</td>
<td>5</td>
<td>Y</td>
<td></td>
<td></td>
<td>AVDD: 5</td>
<td>13.5</td>
<td>9.86</td>
<td></td>
</tr>
<tr>
<td>AD7732</td>
<td>24</td>
<td>16</td>
<td>2000</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>AVDD: 5</td>
<td>18</td>
<td>8.50</td>
<td>Fast channel switching</td>
</tr>
<tr>
<td>AD7734</td>
<td>24</td>
<td>16</td>
<td>2000</td>
<td>4</td>
<td>Y</td>
<td></td>
<td></td>
<td>AVDD: 5</td>
<td>18</td>
<td>8.50</td>
<td>Fast channel switching</td>
</tr>
<tr>
<td>AD7738</td>
<td>24</td>
<td>16</td>
<td>8500</td>
<td>8</td>
<td>Y</td>
<td></td>
<td></td>
<td>AVDD: 5</td>
<td>18</td>
<td>7.77</td>
<td>Fast channel switching</td>
</tr>
<tr>
<td>AD7739</td>
<td>24</td>
<td>16</td>
<td>4000</td>
<td>8</td>
<td>Y</td>
<td></td>
<td></td>
<td>AVDD: 5</td>
<td>14</td>
<td>7.65</td>
<td>Fast channel switching</td>
</tr>
<tr>
<td>AD7782</td>
<td>24</td>
<td>18.5</td>
<td>20</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>1.3</td>
<td>4.25</td>
<td>Read-only</td>
</tr>
<tr>
<td>AD7783</td>
<td>24</td>
<td>18.5</td>
<td>20</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>1.3</td>
<td>4.25</td>
<td>Read-only</td>
</tr>
<tr>
<td>AD7787</td>
<td>24</td>
<td>19</td>
<td>16.6</td>
<td>2</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.13</td>
<td>3.80</td>
<td>Low power</td>
</tr>
<tr>
<td>AD7788</td>
<td>16</td>
<td>16</td>
<td>16.6</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.065</td>
<td>1.99</td>
<td>Low power</td>
</tr>
<tr>
<td>AD7789</td>
<td>24</td>
<td>19</td>
<td>16.6</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.065</td>
<td>2.95</td>
<td>Low power</td>
</tr>
<tr>
<td>AD7790</td>
<td>16</td>
<td>16</td>
<td>16.6</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.13</td>
<td>2.96</td>
<td>Low power</td>
</tr>
<tr>
<td>AD7791</td>
<td>24</td>
<td>19</td>
<td>16.6</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.13</td>
<td>3.83</td>
<td>Low power</td>
</tr>
<tr>
<td>AD7792</td>
<td>16</td>
<td>16</td>
<td>16.6</td>
<td>3</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.40</td>
<td>3.99</td>
<td>On-chip reference</td>
</tr>
<tr>
<td>AD7793</td>
<td>24</td>
<td>19</td>
<td>16.6</td>
<td>3</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.40</td>
<td>5.10</td>
<td>On-chip reference</td>
</tr>
<tr>
<td>AD7794</td>
<td>24</td>
<td>19</td>
<td>16.6</td>
<td>6</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.40</td>
<td>4.80</td>
<td>High channel count</td>
</tr>
<tr>
<td>AD7795</td>
<td>16</td>
<td>16</td>
<td>16.6</td>
<td>6</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.40</td>
<td>4.40</td>
<td>High channel count</td>
</tr>
<tr>
<td>AD7796</td>
<td>16</td>
<td>15.5</td>
<td>16.6</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.25</td>
<td>2.75</td>
<td>Weigh scale</td>
</tr>
<tr>
<td>AD7797</td>
<td>24</td>
<td>15.5</td>
<td>16.6</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.25</td>
<td>3.35</td>
<td>Weigh scale</td>
</tr>
<tr>
<td>AD7798</td>
<td>16</td>
<td>16</td>
<td>16.6</td>
<td>3</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.30</td>
<td>3.80</td>
<td>Weigh scale/ pressure</td>
</tr>
<tr>
<td>AD7799</td>
<td>24</td>
<td>19</td>
<td>16.6</td>
<td>3</td>
<td>Y</td>
<td></td>
<td></td>
<td>3/5</td>
<td>0.38</td>
<td>4.35</td>
<td>Weigh scale/ pressure</td>
</tr>
</tbody>
</table>

©2006 Analog Devices, Inc. All rights reserved. 商標および登録商標は各社の所有に属します。