Video Connectivity
ADI offers a broad portfolio of automotive qualified video connectivity products covering many applications including camera connectivity, display connectivity and consumer device connectivity. These products support interface technologies such as HDMI, MIPI-CSI, APIX, OLDI and C2B.
Car Camera Bus (C2B) is an innovative new camera link technology from ADI enabling HD video over Unshielded Twisted Pair (UTP) cables and unshielded connectors. This enables an easy upgrade path from SD to HD cameras without changing the existing cable and connector infrastructure.
C2B enables reduced system cost and weight along with increased robustness and flexibility by providing sideband communication over the same UTP cable.
Automotive Camera Connectivity using C2B Technology
In this webcast we will discuss automotive camera connectivity. We will cover OEM pain points, key requirements and different technology solutions. We will also introduce Analog Devices Car Camera Bus (C2B). C2B is a new automotive camera link technology that enables HD video over existing cable and connector infrastructure, and it provides an easy upgrade path from NTSC.
Featured Products
ADV7382

Complete technical specifications are available for the C2B transmitters and receivers. Contact c2b_web_support@analog.com to complete the nondisclosure agreement (NDA) required to receive additional product information.
ADV7383

ADV7992

General
- C2B transmits video and bidirectional control data over low cost, un-shielded differential pair cable
- −40°C to +105°C temperature grade
- 32-lead and 40-lead LFCSP packages
- AEC-Q100 qualified for automotive applications
Applications
- Automotive camera modules
- Automotive camera ECUs
- Automotive infotainment head units
ADV7613

The ADV7613 is a high quality, low power, single-input HDMI to LVDS display bridge. It incorporates an HDMI capable receiver that supports up to 1080p, 60 Hz.
The HDMI port has dedicated 5 V detect and hot plug assert pins. The HDMI receiver also includes an integrated equalizer that ensures the robust operation of the interface with long cables.
The ADV7613 has an audio output port for the audio data extracted from the HDMI stream. HDMI audio formats include super audio CD (SACD) via Direct Stream Digital® (DSD) and HBR. The HDMI receiver has an advanced mute controller that prevents audible extraneous noise in the audio output.
The ADV7613 contains a component processor (CP) that processes the video signals from the HDMI receiver. It provides features such as contrast, brightness and saturation adjustments, STDI detection block, free run, and synchronization alignment controls.
The LVDS encoder can package data into 6-bit or 8-bit non-dc balanced OpenLDI mapping or 8-bit VESA mapping. The ADV7613 can output 24-bit OpenLDI data via dual-channel LVDS transmitters, up to a maximum resolution of 1080p, 60 Hz received at the input. The maximum output clock supported by a single LVDS output port is 92 MHz.
The ADV7613 is offered in an automotive grade and a consumer grade. The operating temperature range is −40°C to +85°C.
Fabricated in an advanced CMOS process, the ADV7613 is provided in a 9 mm × 9 mm, 100-ball CSP_BGA, RoHS-compliant package.
Applications
- Projectors
- Automotive infotainment headunits
- Automotive infotainment displays
- Digital signage
Applications
ADV7282A

The ADV7282A has the same pinout as and is software compatible with the ADV7282. The mobile industry processor interface (MIPI®) model of the ADV7282A (ADV7282A-M) has the same pinout as and is software compatible with the ADV7282-M.
All features, functionality, and specifications are shared by the ADV7282A and the ADV7282A-M, unless otherwise noted.
The ADV7282A is a versatile one-chip, multiformat video decoder that automatically detects standard analog baseband video signals and converts them into YCrCb 4:2:2 component video data streams.
The analog input of the ADV7282A features an input mux (4-channel on ADV7282A, 6-channel on ADV7282A-M), a single 10-bit analog-to-digital converter (ADC) and an on-chip differential to single-ended converter to accommodate the direct connection of differential, pseudo differential, or single-ended CVBS without the need for external amplifier circuitry.
The standard definition processor (SDP) in the ADV7282A automatically detects PAL, NTSC and SECAM standards in the form of composite, S-Video (Y/C) and component. The analog video is converted into a 4:2:2 component video data stream that is output either via an 8-bit ITU-R BT.656 standard-compatible interface (ADV7282A) or via a MIPI CSI-2 Tx (hereafter referred to as MIPI Tx) interface (ADV7282A-M). The ADV7282A also feature a deinterlacer for interlaced to progressive (I2P) conversion.
The ADV7282A offers short to battery (STB) diagnostic sense inputs and general-purpose outputs.
The ADV7282A is provided in a space-saving LFCSP surface-mount, RoHS compliant package. The ADV7282A is rated over the −40°C to +105°C temperature range, making it ideal for automotive applications.
The ADV7282A must be configured in accordance with the I2C writes provided in the evaluation board script files.
Applications
- Advanced driver assistance
- Automotive infotainment
- DVRs for video security
- Media players
Applications
Signal Chains
(7)
Interactive Signal Chains

Reference Designs
CN0328

The circuit shown in Figure 1 combines the AD5755-1 (quad channel voltage and current output DAC with dynamic power control) and the AD5700-1 HART modem, to give a completely isolated multiplexed HART®1 analog output solution. Power can be provided either from the transformer isolated power circuit provided on the board (±13 V and +5.2 V outputs, dependent on the load current) or from external power supplies connected to terminal blocks. This circuit is suitable for use in programmable logic controllers (PLCs) and distributed control system (DCS) modules that require multiple HART-compatible 4 mA to 20 mA current outputs, along with unipolar or bipolar voltage outputs. External transient protection circuitry is also included, which is important for applications located in harsh industrial environments.
The AD5755-1 DAC is software configurable and allows the user to easily program the required output ranges and dc-to-dc converter settings used for dynamic power control. It allows access to all of the internal control registers, including the slew rate control register, which is important for applications using HART communication.
The AD5700-1 is the lowest power and smallest footprint HART-compliant IC modem in the industry. It operates as a HART frequency shift keying (FSK) half-duplex modem and integrates all of the necessary signal detection, modulating, demodulating, and signal generation functions. It contains a 0.5% precision internal oscillator, thus reducing board space requirements and cost. The AD5700-1 uses a standard UART interface.
Digital isolation is provided using the quad and dual channel ADuM3481/ADuM3210 digital isolator components based on Analog Devices, Inc., iCoupler® technology. The use of iCoupler technology reduces the need for the additional external compo-nents often required in solutions based on optoisolators. An external transformer is used to transfer power across the isolation barrier.
The ADG759 provides multiplexing capability, enabling HART communication, across the four analog output channels. The ADG759 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. When disabled, all channels are switched off. Bypass links are included to provide the flexibility to bypass the multiplexer.
1 HART is a registered trademark of the HART Communication Foundation.


Applicable Parts
AD5755-1
Quad Channel, 16-Bit, Serial Input, 4 mA to 20 mA and Voltage Output DAC, Dynamic Power Control, HART Connectivity
AD5700-1
Low Power HART Modem with Precision Internal Oscillator
ADCMP356
Comparator & 0.6 V Reference in 4-SC70 w/ Push-Pull Active-High Output
ADG759
CMOS Low Voltage, 3 ohms 4-Channel Multiplexer
ADP1621
Constant-Frequency, Current-Mode Step-Up DC-to-DC Controller
ADR02
Ultracompact, Precision 5.0 V Voltage Reference
Applications
CN0197

Lithium ion (Li-Ion) battery stacks contain a large number of individual cells that must be monitored correctly in order to enhance the battery efficiency and prolong the battery life. The 6-channel AD7280A devices in the circuit shown in Figure 1 act as the primary monitor providing accurate measurement data to the Battery Management Controller (BMC).
The AD7280A contains an internal ±3 ppm reference that allows a cell voltage measurement accuracy of ±1.6 mV. The ADC resolution is 12 bits and allows conversion of up to 48 cells within 7 μs.
The AD7280A, which resides on the high voltage side of the Battery Management System (BMS) has a daisy-chain interface, which allows up to eight AD7280A’s to be stacked together and allows for 48 Li-Ion cell voltages to be monitored. Adjacent AD7280A's in the stack can communicate directly, passing data up and down the stack without the need for isolation. The AD7280A master device on the bottom of the stack uses the SPI interface to communicate with the BMC, and it is only at this point that high voltage galvanic isolation is required in order to protect the low-voltage side of the BMS. The ADuM1201 digital isolator and the ADuM5401 isolator with integrated dc-to-dc converter combine to provide the required six channels of isolation in a compact and cost effective solution.

Applicable Parts
Applications
CN0232

The circuit shown in Figure 1 uses the ADF4350 synthesizer with an integrated VCO and an external PLL to minimize spurious outputs by isolating the PLL synthesizer circuitry from the VCO circuit.
Devices with integrated PLLs and VCOs may have feed through from the digital PLL circuitry to the VCO, leading to higher spurious levels due to the close proximity of the PLL circuitry to the VCO.
The circuit shown in Figure 1 uses the ADF4350, a fully integrated fractional-N PLL and VCO that can generate frequencies from 137.5 MHz to 4400 MHz, together with the ADF4153 PLL.
In addition to improvements in spurious performance, another possible advantage of using an external PLL is the possibility of increased frequency resolution. For example, if the ADF4157 PLL is selected in place of the ADF4153, the frequency resolution of the PLL can be as fine as 0.7 Hz.

Applicable Parts
Applications
CN0302

The PLL circuit shown in Figure 1 uses a 13 GHz Fractional-N synthesizer, wideband active loop filter and VCO, and has a phase settling time of less than 5 μs to within 5° for a 200 MHz frequency jump.
The performance is achieved using an active loop filter with 2.4 MHz bandwidth. This wide bandwidth loop filter is achievable because of the ADF4159 phase-frequency detector (PFD) maximum frequency of 110 MHz; and the AD8065 op amp high gain-bandwidth product of 145 MHz.
The AD8065 op amp used in the active filter can operate on a 24 V supply voltage that allows control of most wideband VCOs having tuning voltages from 0 V to 18 V.

Applicable Parts
Applications
CN0217

The AD5933 and AD5934 are high precision impedance converter system solutions that combine an on-chipprogrammable frequency generator with a 12-bit, 1 MSPS (AD5933) or 250 kSPS (AD5934) analog-to-digital converter (ADC). The tunable frequency generator allows an external complex impedance to be excited with a known frequency.
The circuit shown in Figure 1 yields accurate impedance measurements extending from the low ohm range to several hundred kΩ and also optimizes the overall accuracy of the AD5933/AD5934.

Applicable Parts
Applications
CN0281

This circuit uses the ADuC7060 or the ADuC7061 precision analog microcontroller in an accurate thermocouple temperature monitoring application. The ADuC7060/ ADuC7061 integrate dual 24-bit sigma-delta (Σ-Δ) analog-to-digital converters (ADCs), dual programmable current sources, a 14-bit digital-to-analog converter (DAC), and a 1.2 V internal reference, as well as an ARM7 core, 32 kB flash, 4 kB SRAM, and various digital peripherals such as UART, timers, serial peripheral interface (SPI), and I2C interfaces.
In the circuit, the ADuC7060/ ADuC7061 are connected to a thermocouple and a 100 Ω platinum resistance temperature detector (RTD). The RTD is used for cold junction compensation. As an extra option, the ADT7311 digital temperature sensor can be used to measure the cold junction temperature instead of the RTD.
In the source code, an ADC sampling rate of 4 Hz was chosen. When the ADC input programmable gain amplifier (PGA) is configured for a gain of 32, the noise-free code resolution of the ADuC7060/ ADuC7061 is greater than 18 bits.
The single edge nibble transmission (SENT) interface to the host is implemented by using a timer to control a digital output pin. This digital output pin is then level shifted externally to 5 V using an external NPN transistor. An EMC filter is provided on the SENT output circuit as recommended in Section 6.3.1 of the SENT protocol (SAE J2716 Standard). The data is measured as falling edge to falling edge, and the duration of each pulse is related to the number of system clock ticks. The system clock rate is determined by measuring the SYNC pulse. The SYNC pulse is transmitted at the start of every packet. More details are provided in the SENT Interface section.

Applicable Parts
AD8628
Zero-Drift, Single-Supply, RRIO Op Amp
ADUC7060
Low-Power, Precision Analog Microcontroller, Dual Σ-Δ ADCs, Flash/EE, ARM7TDMI
ADUC7061
Low-Power, Precision Analog Microcontroller, Dual Σ-Δ ADCs, Flash/EE, ARM7TDMI
ADT7311
Automotive, ±0.5°C Accurate, 16-Bit Digital SPI Temperature Sensor
ADP7102
20 V, 300 mA, Low Noise, CMOS LDO
Applications
CN0235

Lithium ion (Li-Ion) battery stacks contain a large number of individual cells that must be monitored correctly in order to enhance the battery efficiency, prolong the battery life, and ensure safety. The 6-channel AD7280A devices in the circuit shown in Figure 1 act as the primary monitor providing accurate voltage measurement data to the System Demonstration Platform (SDP-B) evaluation board, and the 6-channel AD8280 devices act as the secondary monitor and protection system. Both devices can operate from a single wide supply range of 8 V to 30 V and operate over the industrial temperature range of −40°C to +105°C.
The AD7280A contains an internal ±3 ppm reference that allows a cell voltage measurement accuracy of ±1.6 mV. The ADC resolution is 12 bits and allows conversion of up to 48 cells within 7 μs.
The AD7280A has cell balancing interface outputs designed to control external FET transistors to allow discharging of individual cells and forcing all the cells in the stack to have identical voltages.
The AD8280 functions independently of the primary monitor and provides alarm functions indicating out of tolerance conditions. It contains its own reference and LDO, both of which are powered completely from the battery cell stack. The reference, in conjunction with external resistor dividers, is used to establish trip points for the over/undervoltages. Each cell channel contains programmable deglitching (D/G) circuitry to avoid alarming from transient input levels.
The AD7280A and AD8280, which reside on the high voltage side of the battery management system (BMS) have a daisychain interface, which allows up to eight AD7280A’s and eight AD8280’s to be stacked together and allows for 48 Li-Ion cell voltages to be monitored. Adjacent AD7280A's and AD8280’s in the stack can communicate directly, passing data up and down the stack without the need for isolation.
The master devices on the bottom of the stack use the SPI interface and GPIOs to communicate with the SDP-B evaluation board, and it is only at this point that high voltage galvanic isolation is required to protect the low voltage side of the SDP-B board. The ADuM1400, ADuM1401 digital isolator, and the ADuM5404 isolator with integrated dc-to-dc converter combine to provide the required eleven channels of isolation in a compact and cost effective solution. The ADuM5404 also provides isolated 5 V to the VDRIVE input of the lower AD7280A and the VDD2 supply voltage for the ADuM1400 and ADuM1401 isolators.

Applicable Parts
Applications
CN0295

The circuit shown in Figure 1 is a flexible current transmitter that converts the differential voltage output from a pressure sensor to a 4 mA-to-20 mA current output.
The circuit is optimized for a wide variety of bridge-based voltage or current driven pressure sensors, utilizes only five active devices, and has a total unadjusted error of less than 1%. The power supply voltage can range from 7 V to 36 V depending on the component and sensor driver configuration.
The input of the circuit is protected for ESD and voltages beyond the supply rail, making it ideal for industrial applications.

Applicable Parts
Applications
CN0314

The circuit shown in Figure 1 is a configurable 4 mA-to-20 mA loop-powered transmitter based on an industry-leading micropower instrumentation amplifier. Total unadjusted error is less than 1%. It can be configured with a single switch as either a transmitter (Figure 1) that converts a differential input voltage into a current output, or as a receiver (Figure 5) that converts a 4 mA-to-20 mA current input to a voltage output.

The design is optimized for precision, low noise and low power industrial process control applications. The circuit can accept 0 V to 5V or 0 V to 10 V input range as a transmitter. As a receiver it can provide 0.2 V to 2.3 V or 0.2 V to 4.8 V output range compatible with ADCs using 2.5 V or 5 V references. The supply voltage can range from 12 V to 36 V as a transmitter and 7 V to 36 V as a receiver.
Since the circuit is configurable, a single hardware design can be used as a backup for both transmitter and receiver at the same time, minimizing customer inventory requirements.
Applicable Parts
Applications
Building Technology
- Building Control and Automation
CN0234

The circuit shown in Figure 1 is a single-supply, low power battery operated, portable gas detector using an electrochemical sensor. The Alphasense CO-AX Carbon Monoxide sensor is used in the example.
Electrochemical sensors offer several advantages for instruments that detect or measure the concentration of many toxic gases. Most sensors are gas specific and have usable resolutions under one part per million (ppm) of gas concentration. They operate with very small amounts of current, making them well-suited for portable, battery powered instruments.
The circuit shown in Figure 1 uses the ADA4505-2, dual micro-power amplifier, which has a maximum input bias current of 2 pA at room temperature and consumes only 10 μA per amplifier. In addition, the ADR291 precision, low noise, micropower reference consumes only 12 μA and establishes the 2.5 V common-mode pseudo-ground reference voltage.

The ADP2503 high efficiency, buck-boost regulator allows single- supply operation from two AAA batteries and consumes only 38 μA when operating in power-save mode.
Total power consumption for the circuit shown in Figure 1 (excluding the AD7798 ADC) is approximately 110 μA under normal conditions (no gas detected) and 460 μA under worst- case conditions (2000 ppm CO detected). The AD7798 consumes approximately 180 μA when operational (G = 1, buffered mode) and only 1 μA in the power-save mode.
Because of the circuit’s extremely low power consumption, two AAA batteries can be a suitable power source. When connected to an ADC and a microcontroller, or a microcontroller with a built-in ADC, battery life can be from over six months to over one year.
Applicable Parts
Applications
CN0289

The circuit shown in Figure 1 is a robust and flexible loop-powered current transmitter that converts the differential voltage output from a pressure sensor to a 4 mA-to-20 mA current output.
The design is optimized for a wide variety of bridge based voltage or current driven pressure sensors, utilizes only four active devices, and has a total unadjusted error of less than 1%. The loop supply voltage can range from 12 V to 36 V.
The input of the circuit is protected for ESD and voltages beyond the supply rail, making it ideal for industrial applications.

Applicable Parts
Applications
CN0264

The circuit in Figure 1 shows a digital-to-analog video converter paired with a low cost, low power, fully integrated reconstruction video filter with output short-to-battery (STB) protection, ideal for CVBS video transmission in harsh infotainment environments such as automotive applications. Although many video encoders (video DACs), such as the ADV7391, can drive a video load directly, it is often beneficial to use a video driver at the output of a video encoder for power savings, filtering, line driving, and overvoltage circuit protection. The main purpose of a video driver, typically configured as an active filter (also known as a reconstruction filter), is twofold: it blocks the higher frequency components (above the Nyquist frequency) that were introduced into the video signal as part of the sampling process, and it provides gain to drive the external 75 Ω cable to the video display.
Designers of infotainment and other video systems, such as rearview cameras and rear-seat entertainment systems, are likely to use this circuit to transmit video for the reasons previously stated. However, a third pressing design issue centers on the robustness. The ADA4432-1 and ADA4433-1 provide analog video designers with integrated ICs that offer crucial overvoltage protection, hardened ESD tolerance, along with excellent video specification, low power consumption, and wire diagnostic features.
The ADA4432-1 and ADA4433-1 are fully integrated, single-ended and differential video reconstruction filters, respectively. They combine overvoltage protection (STB protection) up to 18 V on the outputs, with low power consumption and a wire diagnostic capability. Wire diagnostics are provided by way of a logic output that is activated when a fault condition is present. The ADA4432-1 and ADA4433-1 feature a high-order filter with a −3 dB cutoff frequency of 10 MHz and 45 dB of rejection at 27 MHz.The combination of STB protection and robust ESD tolerance allows the ADA4432-1 and ADA4433-1 to provide superior protection in the hostile environments.
The ADV7391, and ADA4432-1 are fully automotive qualified, which makes both products ideal for infotainment and visionbased safety systems for automotive applications. The ADV7391, ADA4432-1, and the ADA4433-1 are available in a very small LFCSP package ideal for small footprint applications.

Applicable Parts
Applications
Latest Resources
-
Technical Articles Page
Automotive Camera Link Technology Challenges and Solutions
-
Technical Articles Page
A2B and Ethernet in Automotive Applications: What, When, and How