æŠèŠ
ãã®é£èŒã§ã¯ãaIãå©çšããã·ã¹ãã ã«ãããæ©æ¢°åŠç¿ïŒãã·ã³ã»ã©ãŒãã³ã°ïŒã®éèŠæ§ã«ã€ããŠèª¬æããŠããŸããäž»ãªããŒããšããŠããã¿ãŒã³èªèã察象ç©ã®åé¡ã«äœ¿çšãããç³ã¿èŸŒã¿ãã¥ãŒã©ã«ã»ãããã¯ãŒã¯ïŒCNNïŒConvolutional Neural NetworkïŒã®ç¹æ§ãã¢ããªã±ãŒã·ã§ã³ã«çŠç¹ãçµã£ãŠããŸããååã®èšäºãæ©æ¢°åŠç¿ãšã¯äœãïŒ ãPart 1ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ã»ãããã¯ãŒã¯ã®åºæ¬ãã§ã¯ããã€ã¯ãã³ã³ãããŒã©ã«ãããåŸæ¥ã®ç·åœ¢ããã°ã©ãã³ã°ãšCNNã®éãïŒåªäœæ§ã«ã€ããŠèª¬æããŸããããŸããCIFar ãšåŒã°ããCNNã«ã€ããŠã®è§£èª¬ãè¡ããŸãããããã䜿çšããã°ãç«ãå®¶ãèªè»¢è»ãªã©ãç»åã«å«ãŸãã察象ç©ã®åé¡ãè¡ã£ãããåçŽãªé³å£°ã®ãã¿ãŒã³èªèã宿œãããããããšãã§ããŸããä»åïŒPart 2ïŒã¯ãããããã¢ããªã±ãŒã·ã§ã³ãå®çŸããããã®CNNã®ãã¬ãŒãã³ã°æ¹æ³ã«ã€ããŠè§£èª¬ããŸãã
CNNã®ãã¬ãŒãã³ã°ã®ããã»ã¹
Part 1ã§åãäžããCIFARãããã¯ãŒã¯ã¯ããã¥ãŒãã³ããæãæ§ã ãªå±€ã§æ§æãããŠããŸããå³1ã®äŸã§ã¯ã32ãã¯ã»ã«Ã32ãã¯ã»ã«ã®ç»åããŒã¿ããããã¯ãŒã¯ã®åå±€ã§åŠçããŠãããŸããCNNã«ãããæåã®ã¹ãããã¯ãèå¥ã®å¯Ÿè±¡ãšãªãç©ã«åºæã®ç¹åŸŽãæ§é ãæ€åºããããšã§ãããã®æ€åºã«ã¯ãã£ã«ã¿è¡åã䜿çšãããŸããèšèšè ãCIFARãªã©ã®ãã¥ãŒã©ã«ã»ãããã¯ãŒã¯ã®ã¢ãã«ãæ§ç¯ããæç¹ã§ã¯ããã£ã«ã¿è¡åã®è©³çްã¯ãŸã 決ãŸã£ãŠããŸãããã€ãŸãããã®æ®µéã®ãããã¯ãŒã¯ã§ã¯ããã¿ãŒã³ã察象ç©ãæ€åºããããšã¯ã§ããªããšããããšã§ãã
å¿ èŠãªåŠçãå®çŸããããã«ã¯ãè¡åã®ãã¹ãŠã®ãã©ã¡ãŒã¿ãšèŠçŽ ãæ±ºå®ããŸãããã®äžã§ã察象ç©ãæ€åºãã粟床ãæå€§åããããæå€±é¢æ°ãæå°åãããããå¿ èŠããããŸãããã®ããã»ã¹ã¯ããã¥ãŒã©ã«ã»ãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ãšåŒã°ããŠããŸããPart 1ã§ç޹ä»ããäžè¬çãªã¢ããªã±ãŒã·ã§ã³ã§ã¯ãéçºãšãã¹ãã®æ®µéãéããŠãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ã1å宿œããŠããŸãããããã«ããããããã¯ãŒã¯ã¯äœ¿çšå¯èœãªç¶æ ã«ãªã£ãŠããããã以äžãã©ã¡ãŒã¿ã調æŽããå¿ èŠã¯ãããŸããã§ãããã·ã¹ãã ãæ¢ã«ææ¡æžã¿ã®å¯Ÿè±¡ç©ã®åé¡ãè¡ãããã«ã¯ããã以äžã®ãã¬ãŒãã³ã°ã¯å¿ èŠãªããšããããšã§ãããã¬ãŒãã³ã°ãå¿ èŠã«ãªãã®ã¯ãã·ã¹ãã ã«ãšã£ãŠå šãæ°ããªå¯Ÿè±¡ç©ãåé¡ããå¿ èŠãããå Žåã ãã§ãã
ãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ã宿œããéã«ã¯ããã®ããã®ããŒã¿ãå¿ èŠã«ãªããŸãããŸãããã¬ãŒãã³ã°ã宿œããåŸã«ã¯ãåæ§ã®ããŒã¿ã»ã»ããã䜿çšããŠãããã¯ãŒã¯ã®ç²ŸåºŠããã¹ãããªããã°ãªããŸãããäŸãã°ãCIFAR-10ã®ããŒã¿ã»ã»ããã«ã¯ã10ã®ã¯ã©ã¹ïŒé£è¡æ©ãèªåè»ãé³¥ãç«ã鹿ãç¬ãã«ãšã«ã銬ãè¹ããã©ãã¯ïŒã«å¯Ÿå¿ããç»åã®ããŒã¿ãå«ãŸããŠããŸããCNNã®ãã¬ãŒãã³ã°ã宿œããéã«ã¯ãäºåã«ãããã®ç»åã«ååãä»ããå¿ èŠããããŸããããã¯ãAIãããŒã¹ãšããã¢ããªã±ãŒã·ã§ã³ãéçºããéãæãç ©éãªäœæ¥ã ãšèšãããããããŸãããæ¬çš¿ã§ã¯ã誀差éäŒææ³ïŒbackpropagationïŒããã¯ãããã²ãŒã·ã§ã³ïŒã®åçã«åºã¥ããã¬ãŒãã³ã°ã®ããã»ã¹ã«ã€ããŠèª¬æããŸãããããã¯ãŒã¯ã«å€æ°ã®ç»åãèªã¿åãããã®ã§ããããã®éã«ã¯ç®æšå€ãåæã«äžããŸããæ¬çš¿ã®äŸã§ã¯ã察象ç©ã®ã¯ã©ã¹ã«å¯Ÿå¿ããå€ãç®æšå€ãšããŠäžããããšã«ããŸãããã®ããã«ããããšã§ãç»åãèªã¿åããããã³ã«ã察象ç©ã®ã¯ã©ã¹ã«å¯Ÿå¿ããç®æšå€ãšå®éã®å€ïŒå®æž¬å€ïŒãäžèŽããããã«ãã£ã«ã¿è¡åãæé©åãããŸãããã®ããã»ã¹ãå®äºãããããããã¯ãŒã¯ã¯ããã¬ãŒãã³ã°äžã«èªã¿åã£ãããã§ã¯ãªãç»åã«å«ãŸãã察象ç©ãæ€åºã§ããããã«ãªããŸãã
ãã¬ãŒãã³ã°ã®éäžè¶³
ãã¥ãŒã©ã«ã»ãããã¯ãŒã¯ã®ã¢ãã«ãæ§ç¯ããéã«ã¯ããã®è€éããã©ã®çšåºŠã«èšå®ãã¹ããªã®ããšããçåãçããããšããããããŸããã€ãŸããå±€ã®æ°ããã£ã«ã¿è¡åã®å€§ããã¯ãäœãæ ¹æ ã«ããŠæ±ºããã°ããã®ããããããªããšããããšã§ãããã®çåã«çããã®ã¯å®¹æã§ã¯ãªãããã¬ãŒãã³ã°ã®éäžè¶³ãšããæŠå¿µã«ã€ããŠèããªããã°ãªããŸãããã€ãŸãããããã¯ãŒã¯ã®éåŠç¿ãšåŠç¿äžè¶³ã«ã€ããŠèæ ®ããããšãéèŠã«ãªããŸããéåŠç¿ã¯ããã©ã¡ãŒã¿ãå€ãããŠã¢ãã«ãé床ã«è€éã«ãªã£ãçµæãšããŠçããŸããããã«ã€ããŠã¯ããã¬ãŒãã³ã°çšã®ããŒã¿ã®æå€±ãšãã¹ãçšã®ããŒã¿ã®æå€±ãæ¯èŒããäœæ¥ã宿œãããšããã§ããããããã«ããããã¬ãŒãã³ã°çšã®ããŒã¿ã«å¯Ÿããäºæž¬ã¢ãã«ã®é©å床ãäœãããã®ããé«ãããã®ããšãã倿ãè¡ããããã«ãªããŸããäŸãã°ããã¬ãŒãã³ã°äžã®æå€±ã¯å°ãªãã®ã«ããããã¯ãŒã¯ã«èªã¿åãããããšããªããã¹ãçšã®ããŒã¿ã䜿çšãããšæå€±ãé床ã«å¢å€§ãããšããŸãããã®å Žåããããã¯ãŒã¯ã¯ãã¿ãŒã³èªèã®åŠçãäžè¬åã§ããŠããããã§ã¯ãªãããã¬ãŒãã³ã°çšã®ããŒã¿ãèšæ¶ããŠããç¶æ ã«ãããšããããšã匷ã瀺åãããŸãããã®ãããªç¶æ ã¯ãäž»ã«ãããã¯ãŒã¯ããã©ã¡ãŒã¿ã®èšæ¶åãæã¡ãããŠããããç³ã¿èŸŒã¿å±€ãå€ãããå Žåã«çºçããŸãã察åŠçãšããŠã¯ããããã¯ãŒã¯ã®ãµã€ãºãå°ãããããšããããšãå¿ èŠã«ãªããŸãã
æå€±é¢æ°ãšãã¬ãŒãã³ã°çšã®ã¢ã«ãŽãªãºã
ãããã¯ãŒã¯ã«ãããåŠç¿ã¯2ã€ã®ã¹ãããã§å®æœããŸãïŒå³2ïŒã1ã€ç®ã®ã¹ãããã§ã¯ããããã¯ãŒã¯ã«ç»åãèªã¿åãããŸãããããšããããã®ç»åããã¥ãŒãã³ã®ãããã¯ãŒã¯ã§åŠçãããåºåãã¯ãã«ãçæãããŸããåºåãã¯ãã«ã®æå€§å€ã¯ãæ€åºãã察象ç©ã®ã¯ã©ã¹ïŒç¬ãç«ãªã©ïŒã衚ããŸãããã¬ãŒãã³ã°ã®æ®µéã§ã¯ãå¿ ãããæ£ããçµæãåŸãããå¿ èŠã¯ãããŸããããã®ã¹ããããé äŒæïŒãã£ãŒããã©ã¯ãŒãïŒFeedforwardïŒãšåŒã³ãŸãã
åºåã§çããç®æšå€ãšå®æž¬å€ã®å·®ãæå€±ãšåŒã³ãŸããã€ãŸããæå€±ïŒœ = ïŒ»ç®æšå€ïŒœ - ïŒ»å®æž¬å€ïŒœã§ãããŸãããã®æå€±ã衚ã颿°ãæå€±é¢æ°ã§ããæå€±é¢æ°ã«ã¯ããããã¯ãŒã¯ã®ãã¹ãŠã®èŠçŽ ãšãã©ã¡ãŒã¿ãå«ãŸããŠããŸãããã¥ãŒã©ã«ã»ãããã¯ãŒã¯ã®åŠç¿ããã»ã¹ã§ã¯ãæå€±é¢æ°ãæå°ã«ãªãããã«ãããã®ãã©ã¡ãŒã¿ã®å€ã決ããããšãç®æšã«ãªããŸãããã®æå°åã®åŠçã¯ãåºåã§çããåå·®ãããããã¯ãŒã¯ã®ãã¹ãŠã®æ§æèŠçŽ ãéããŠãããã¯ãŒã¯ã®éå§å±€ãŸã§éæ¹åã«éãããã»ã¹ã«ãã£ãŠéæããããšãã§ããŸãããã®åŠçã¯ãéäŒæ¬æ³ïŒããã¯ãããã²ãŒã·ã§ã³ïŒBackpropagationïŒãšåŒã°ããŠããŸãã
ãã¬ãŒãã³ã°ã®ããã»ã¹ã§ã¯ããã£ã«ã¿è¡åã®ãã©ã¡ãŒã¿ãã¹ããããã€ã¹ãããã§æ±ºå®ããŠãããŸãããã®ããã«ããããšã§1ã€ã®ã«ãŒããåºæ¥äžãããŸããé äŒæãšéäŒæããæãããã»ã¹ã¯ãæå€±ã®å€ããããããæ±ºããããå€ãäžåããŸã§ç¹°ãè¿ãããŸãã
æé©åã®ã¢ã«ãŽãªãºã ãåŸé ãåŸé éäžæ³
å³3ã¯ããã¬ãŒãã³ã°ã®ããã»ã¹ã«ã€ããŠèª¬æããããã®ãã®ã§ããããã¯ã2ã€ã®ãã©ã¡ãŒã¿XãšYã ãã§æ§æãããæå€±é¢æ°ã衚ããŠããŸããZè»žã¯æå€±ã«å¯Ÿå¿ããŠããŸãããã®é¢æ°ã¯èª¬æã®ããã«çšæãããã®ã§ãããå ·äœçãªæå³ã¯æã£ãŠããŸããããã®3次å ã®ãããããèŠããšããã®é¢æ°ã«ã¯å šäœçãªæå°å€ïŒå€§åçæå°å€ïŒã«å ããŠå±æçãªæå°å€ïŒå±æçæå°å€ïŒãååšããããšãããããŸãã
éã¿ãšãã€ã¢ã¹ã¯ãæ°å€ãæé©åããããã®æ°å€ãã®ã¢ã«ãŽãªãºã ã䜿çšããããšã§æ±ºå®ããããšãã§ããŸããæãç°¡åãªã¢ã«ãŽãªãºã ã¯åŸé éäžæ³ïŒGradient Descent MethodïŒã§ããåŸé éäžæ³ã¯ã次ã®ãããªèãæ¹ã«åºã¥ããŠããŸããããªãã¡ãã©ã³ãã ã«éžæããæå€±é¢æ°äžã®åºçºç¹ãããåŸé ã䜿çšããã¹ããããã€ã¹ãããã®ããã»ã¹ã«ãã£ãŠå€§åçæå°å€ã«è³ãçµè·¯ãèŠã€ãåºããšãããã®ã§ããããã§ããåŸé ãšã¯ãæ°åŠæŒç®åãšããŠãããç©çéã®å€åéã衚ããã®ã§ããããã¯ãæå€±é¢æ°ã®åç¹ã«ãããŠãã¯ãã«ãäžããŸãããã®ãã¯ãã«ã¯åŸé ãã¯ãã«ãšåŒã°ããŠããã颿°å€ã®å€åãæå€§ã«ãªãæ¹åã衚ããŸãããŸãããã®ãã¯ãã«ã®å€§ããã¯å€åéã«å¯Ÿå¿ããŠããŸããå³3ã®é¢æ°ã«ãããŠãåŸé ãã¯ãã«ã¯å³äžã®ã©ããã®ç¹ïŒèµ€ãç¢å°ïŒã«ãããŠæå°å€ã®æ¹åãæã瀺ããŠããŸãã衚é¢ãå¹³åŠã§ããããšããããã¯ãã«ã®å€ïŒå€§ããïŒã¯å°ãããªããŸãããã®ç¶æ³ã¯ãé ãã«ããããŒã¯ã®è¿ãã§ã¯ç°ãªã£ããã®ã«ãªããŸããå³3ã®äŸã§ã¯ããã¯ãã«ïŒç·ã®ç¢å°ïŒã¯æ¥åŸé ã§äžã®æ¹åãæã瀺ããŠããŸãããŸããèµ·äŒã倧ããããšããå€ã倧ãããªããŸãã
åŸé éäžæ³ã«ãããŠãéäžãæãæ¥åŸé ã®è°·ã«è³ãçµè·¯ã¯ãä»»æã«éžãã ç¹ããåºçºããŠå埩çã«æ±ããããšãã§ããŸããã€ãŸããæé©åã®ã¢ã«ãŽãªãºã ã«ãã£ãŠåºçºç¹ã®åŸé ãèšç®ããæãæ¥éäžããæ¹åãžå°ãåé²ãããšãã£ãå ·åã§ãããã®äžéç¹ã§åŸé ãåèšç®ããŠãè°·ãžã®çµè·¯ãåŒãç¶ãé²ã¿ãŸãããã®ããã«ããããšã§ãåºçºç¹ããè°·ã®äžã®ç¹ãŸã§ã®çµè·¯ã圢æãããŸããããã§åé¡ã«ãªãã®ã¯ãåºçºç¹ã¯ãããããå®ããããŠããããã§ã¯ãªããã©ã³ãã ã«éžæããªããã°ãªããªããšããç¹ã§ããæ³šææ·±ãæ¹ã§ããã°ãå³3ã®2次å ãããã®å Žåã颿°ããããã®å·ŠåŽã®ã©ããã«åºçºç¹ã眮ãããšãèããã§ããããããããã°ãïŒäŸãã°éè²ã®ïŒçµè·¯ã®çµç¹ã¯ç¢ºå®ã«å€§åçæå°å€ã«ãªããŸããä»ã®2ã€ã®çµè·¯ïŒé»è²ãšãªã¬ã³ãžè²ïŒã¯ã¯ããã«é·ããªããããŸãã¯çµç¹ã屿çæå°å€ã«ãªã£ãŠããŸããŸããå®çšçãªæé©åã®ã¢ã«ãŽãªãºã ã§ã¯ã2ã€ã®ãã©ã¡ãŒã¿ã ãã§ãªããäœåäžãã®ãã©ã¡ãŒã¿ãæé©åããå¿ èŠããããŸãããã®ãããåºçºç¹ãæ£ããéžæã§ãããåŠãã¯å¶ç¶ã«ãããªããšããããšã«ããã«æ°ã¥ããŸãããã®ææ³ã¯ãå®éã«ã¯åœ¹ã«ç«ããªãããã«æãããããããããŸããããªããªããéžæããåºçºç¹ã«ãã£ãŠã¯ãçµè·¯ïŒã€ãŸããã¬ãŒãã³ã°ã®æéïŒãéåžžã«é·ããªã£ãŠããŸãããã§ãããŸããç®æšç¹ã倧åçæå°å€ã«ãªããªãå¯èœæ§ããããŸãããã®å Žåããããã¯ãŒã¯ã®ç²ŸåºŠãäœäžããŠããŸããŸãã
æé©åã«åããŠã¯ãäžèšã®2ã€ã®åé¡ã解決ããããã«ãé廿°å¹Žéã«ããã£ãŠæ°å€ãã®ã¢ã«ãŽãªãºã ãéçºãããŸãããåŸé éäžæ³ã«ä»£ããææ³ã®äŸãšããŠã¯ã確çåŸé éäžæ³ãã¢ãŒã¡ã³ã¿ã æ³ãAdaGradãRMSPropãAdamãªã©ãæããããŸããåã¢ã«ãŽãªãºã ã«ã¯ããããé·æãšçæããããŸãããããã£ãŠãå®éã«ã©ã®ã¢ã«ãŽãªãºã ã䜿çšããã®ãã¯ããããã¯ãŒã¯ã®éçºè ãæ±ºå®ããããšã«ãªããŸãã
ãã¬ãŒãã³ã°çšã®ããŒã¿
å è¿°ããããã«ããã¬ãŒãã³ã°ã®ããã»ã¹ã§ã¯ãèªåè»ãè¹ãšãã£ãæ£ããã¯ã©ã¹ã®æ å ±ãä»å ããç»åããããã¯ãŒã¯ã«èªã¿åãããŸããæ¬çš¿ã®äŸã§ã¯ãäžè¬çã«äœ¿ãããŠããCIFAR-10ã®ããŒã¿ã»ã»ããã䜿çšããŸããããã¡ãããå®éã®ã¢ããªã±ãŒã·ã§ã³ã§ã¯ãç«ãç¬ãèªåè»ãªã©ã察象ã«ãªããšã¯éããŸãããAIã«ãã£ãŠèªèãã¹ããã®ã¯ããããšã¯ç°ãªãå¯èœæ§ããããŸããäŸãã°ã補é å·¥çšã§ããžã®åè³ªãæ€åºããã¢ããªã±ãŒã·ã§ã³ãéçºããå¿ èŠããã£ããšããŸãããã®å Žåããããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ã¯ããžã®è¯åãšäžè¯åã®ããŒã¿ã䜿çšããŠå®æœããªããã°ãªããŸããããã®ãããªããŒã¿ã»ã»ããã®äœæã«ã¯ãéåžžã«å€ãã®æéãšæéããããå¯èœæ§ããããŸããå€ãã®å Žåããã®ã¹ãããã¯AIãããŒã¹ãšããã¢ããªã±ãŒã·ã§ã³ã®éçºã«ãããŠæãã³ã¹ãã®ãããäœæ¥ã«ãªãã§ããããããŒã¿ã»ã»ãããçšæã§ãããããããããã¬ãŒãã³ã°çšã®ããŒã¿ãšãã¹ãçšã®ããŒã¿ã«åããŸãããã¬ãŒãã³ã°çšã®ããŒã¿ã¯ãå è¿°ãããããªåœ¢ã§äœ¿çšããŸããäžæ¹ããã¹ãçšã®ããŒã¿ã¯ãéçºããã»ã¹ã®æåŸã«ããã¬ãŒãã³ã°æžã¿ã®ãããã¯ãŒã¯ã®æ©èœã確èªããããã«äœ¿çšããŸãã
ãŸãšã
ååã¯ãCNNã®åºæ¬ãèšèšãæ©èœã«ã€ããŠè©³ãã説æããŸãããä»å説æããå 容ãèžãŸããã°ãæ©èœãå®çŸããããã«å¿ èŠãªéã¿ãšãã€ã¢ã¹ã決å®ããããšãå¯èœã«ãªããŸãããã®çµæãæ¬çš¿ã§äŸã«ãšã£ããããã¯ãŒã¯ã¯é©åã«åäœãããšæ³å®ã§ããŸããæ¬¡åïŒPart 3ïŒã¯ããã®ãã¥ãŒã©ã«ã»ãããã¯ãŒã¯ãããŒããŠã§ã¢ã«ãã£ãŠå®çŸããç«ãèªèãããã¹ãã宿œããäŸã瀺ããŸãããã®ããŒããŠã§ã¢ãšããŠã¯ãã¢ããã°ã»ããã€ã»ãºãéçºãããMAX78000ãã䜿çšããäºå®ã§ããå補åã¯ãããŒããŠã§ã¢ã»ããŒã¹ã®CNNçšã¢ã¯ã»ã©ã¬ãŒã¿ãæèŒããAIå°çšã®ãã€ã¯ãã³ã³ãããŒã©ã§ãã