Overview
Features and Benefits
- Wide Bandwidth: 15 MHz
- Low Offset Voltage: 325 µV max
- Low Noise: 9.5 nV/√Hz @ 1 kHz
- Single-Supply Operation: +2.7 V to +12 V
- Rail-to-Rail Output Swing
- Low TCVOS: 1 µV/°C typ
- High Slew Rate: 13 V/µs
- No Phase Inversion
- Unity Gain Stable
Product Details
The OP162 (single), OP262 (dual), and OP462 (quad) rail-to-rail 15 MHz amplifiers feature the extra speed new designs require, with the benefits of precision and low power operation. With their incredibly low offset voltage of 45 µV (typical) and low noise, they are perfectly suited for precision filter applications and instrumentation. The low supply current of 500 µA (typical) is critical for portable or densely packed designs. In addition, the rail-to-rail output swing provides greater dynamic range and control than standard video amplifiers.
These products operate from single supplies as low as 2.7 V to dual supplies of ±6 V. The fast settling times and wide output swings recommend them for buffers to sampling A/D converters. The output drive of 30 mA (sink and source) is needed for many audio and display applications; more output current can be supplied for limited durations. The OPx62 family is specified over the extended industrial temperature range (–40°C to +125°C). The single OP162 amplifiers are available in 8-lead SOIC package. The dual OP262 amplifiers are available in 8 lead SOIC and TSSOP packages. The quad OP462 amplifiers are available in 14-lead, narrow-body SOIC and TSSOP packages.
Product Lifecycle
Production
At least one model within this product family is in production and available for purchase. The product is appropriate for new designs but newer alternatives may exist.
Documentation
Tools & Simulations
SPICE Models
Design Tools
Use the Analog Filter Wizard to design low-pass, high-pass, or band-pass filters with actual op amps in minutes. As you progress through the design process, you can observe the characteristics of your filter design from ideal specifications to real world circuit behavior. Quickly evaluate the tradeoffs in op amp specifications - including gain-bandwidth, noise, and supply current – to determine the best filter design for your requirements.
Use Photodiode Wizard to design a transimpedance amplifier circuit to interface with a photodiode. Select a photodiode from the library included in the tool, or enter custom photodiode specifications. Quickly observe tradeoffs between Bandwidth, Peaking (Q), and ENOB/SNR. Modify circuit parameters, and immediately see results in plots for pulse response, frequency response, and noise gain.
Design Resources
ADI has always placed the highest emphasis on delivering products that meet the maximum levels of quality and reliability. We achieve this by incorporating quality and reliability checks in every scope of product and process design, and in the manufacturing process as well. "Zero defects" for shipped products is always our goal.
PCN-PDN Information
Support & Discussions
Sample & Buy
The USA list pricing shown is for BUDGETARY USE ONLY, shown in United States dollars (FOB USA per unit for the stated volume), and is subject to change. International prices may differ due to local duties, taxes, fees and exchange rates. For volume-specific price or delivery quotes, please contact your local Analog Devices, Inc. sales office or authorized distributor. Pricing displayed for Evaluation Boards and Kits is based on 1-piece pricing.