Alternative Parts
Overview
Features and Benefits
- Converts an ac voltage waveform to a dc voltage and then converts to the true rms, average rectified, or absolute value 200 mV rms full-scale input range (larger inputs with input attenuator)
- High input impedance: 1012 Ω
- Low input bias current: 25 pA maximum
- High accuracy: ±0.3 mV ± 0.3% of reading
- RMS conversion with signal crest factors up to 5
- Wide power supply range: +2.8 V, −3.2 V to ±16.5 V
- Low power: 200 μA maximum supply current
- Buffered voltage output
- No external trims needed for specified accuracy
- Related device: the AD737 features a power-down control with standby current of only 25 μA; the dc output voltage is negative and the output impedance is 8 kΩ
Product Details
The AD736 is a low power, precision, monolithic true rms-to-dc converter. It is laser trimmed to provide a maximum error of ±0.3 mV ± 0.3% of reading with sine wave inputs. Furthermore, it maintains high accuracy while measuring a wide range of input waveforms, including variable duty-cycle pulses and triac (phase)-controlled sine waves. The low cost and small size of this converter make it suitable for upgrading the performance of non-rms precision rectifiers in many applications. Compared to these circuits, the AD736 offers higher accuracy at an equal or lower cost.
The AD736 can compute the rms value of both ac and dc input voltages. It can also be operated as an ac-coupled device by adding one external capacitor. In this mode, the AD736 can resolve input signal levels of 100 μV rms or less, despite variations in temperature or supply voltage. High accuracy is also maintained for input waveforms with crest factors of 1 to 3. In addition, crest factors as high as 5 can be measured (introducing only 2.5% additional error) at the 200 mV full-scale input level.
The AD736 has its own output buffer amplifier, thereby pro-viding a great deal of design flexibility. Requiring only 200 μA of power supply current, the AD736 is optimized for use in portable multimeters and other battery-powered applications.
The AD736 allows the choice of two signal input terminals: a high impedance FET input (1012 Ω) that directly interfaces with High-Z input attenuators and a low impedance input (8 kΩ) that allows the measurement of 300 mV input levels while operating from the minimum power supply voltage of +2.8 V, −3.2 V. The two inputs can be used either single ended or differentially.
The AD736 has a 1% reading error bandwidth that exceeds 10 kHz for the input amplitudes from 20 mV rms to 200 mV rms while consuming only 1 mW.
The AD736 is available in four performance grades. The AD736J and AD736K grades are rated over the 0°C to +70°C and −20°C to +85°C commercial temperature ranges. The AD736A and AD736B grades are rated over the −40°C to +85°C industrial temperature range. The AD736 is available in three low cost, 8-lead packages: PDIP, SOIC, and CERDIP.
PRODUCT HIGHLIGHTS
- The AD736 is capable of computing the average rectified value, absolute value, or true rms value of various input signals.
- Only one external component, an averaging capacitor, is required for the AD736 to perform true rms measurement.
- The low power consumption of 1 mW makes the AD736 suitable for many battery-powered applications.
- A high input impedance of 1012 Ω eliminates the need for an external buffer when interfacing with input attenuators.
- A low impedance input is available for those applications that require an input signal up to 300 mV rms operating from low power supply voltages.
Product Categories
Product Lifecycle
Production
At least one model within this product family is in production and available for purchase. The product is appropriate for new designs but newer alternatives may exist.
Evaluation Kits (1)
Documentation & Resources
-
Don’t be Mean - be Root Mean Square!2/1/2010
-
VFB or CFB that is the question!1/1/2010
Tools & Simulations
SPICE Models
Design Resources
ADI has always placed the highest emphasis on delivering products that meet the maximum levels of quality and reliability. We achieve this by incorporating quality and reliability checks in every scope of product and process design, and in the manufacturing process as well. "Zero defects" for shipped products is always our goal.View our quality and reliability program and certifications for more information.
PCN-PDN Information
Select a model from the dropdown below to subscribe to PCN/PDN notifications and view past notifications as well.
Support & Discussions
AD736 Discussions
Sample & Buy
Ordering FAQs
See our Ordering FAQs for answers to questions about online orders, payment options and more.
Buy Now Pricing
(**) Displayed Buy Now Price and Price Range is based on small quantity orders.
List Pricing
(*)The 1Ku list pricing shown is for BUDGETARY USE ONLY, shown in United States dollars (FOB USA per unit for the stated volume), and is subject to change. International prices may differ due to local duties, taxes, fees and exchange rates. For volume-specific price or delivery quotes, please contact your local Analog Devices, Inc. authorized distributor. Pricing displayed for Evaluation Boards and Kits is based on 1-piece pricing.
Lead Times
Please see the latest communication from our CCO regarding lead times.
Sampling
Selecting the Sample button above will redirect to the third-party ADI Sample Site. The part selected will carry over to your cart on this site once logged in. Please create a new account there if you have never used the site before. Contact SampleSupport@analog.com with any questions regarding this Sample Site.
Evaluation Boards
Pricing displayed is based on 1-piece.
Up to two boards can be purchased through Analog.com. To order more than two, please purchase through one of our listed distributors.
Pricing displayed is based on 1-piece. The USA list pricing shown is for budgetary use only, shown in United States dollars (FOB USA per unit), and is subject to change. International prices may vary due to local duties, taxes, fees and exchange rates.