Designed, Built, Tested
Board pictured here has been fully assembled and tested.


Design Resources

Design & Integration Files

  • Schematic
Download Design Files 50.9 K


The MAXREFDES9007 is a reference design that showcases the DS28E36 and demonstrates how to implement a simple 1-Wire® master using only a microcontroller’s GPIO pins. The reference design provides a GPIO-based 1-Wire library designed for an Arm® Cortex® M4 microcontroller, such as the MAX32660, with example programs that run the main 1-Wire sequences and calculate how much time it takes for each to run. This design also provides the amount of memory required to store such programs.


Features & Benefits

  • ECC-256 Compute Engine
  • FIPS 186 ECDSA P256 Signature and Verification
  • ECDH Key Exchange with Authentication Prevents Man-in-the-Middle Attacks
  • ECDSA Authenticated R/W of Configurable Memory
  • SHA-256 Compute Engine
  • FIPS 180 MAC for Secure Download/Boot Operations
  • FIPS 198 HMAC for Bidirectional Authentication and Optional GPIO Control
  • Two GPIO Pins with Optional Authentication Control
  • Open-Drain, 4mA/0.4V
  • Optional SHA-256 or ECDSA Authenticated On/Off and State Read
  • Optional Set On/Off After Multiblock Hash for Secure Boot/Download
  • RNG with NIST SP 800-90B Compliant Entropy Source with Function to Read Out
  • Optional Chip-Generated Pr/Pu Key Pairs for ECC Operations
  • 17-Bit One-Time Settable, Nonvolatile Decrement-Only Counter with Authenticated Read
  • 8Kbits of EEPROM for User Data, Keys, and Certificates
  • Unique and Unalterable Factory Programmed 64-Bit Identification Number (ROM ID)
  • Optional Input Data Component to Crypto and Key Operations
  • Single-Contact 1-Wire Interface Communication with Host at 11.7kbps and 62.5kbps
  • Operating Range: 3.3V ±10%, -40°C to +85°C
  • 6-Pin TDFN-EP Package (3mm x 3mm)
  • Accessory and Peripheral Secure Authentication
  • IoT Node Crypto-Protection
  • Secure Boot or Download of Firmware and/or System Parameters
  • Secure Storage of Cryptographic Keys for a Host Controller


  • IoT Node Crypto-Protection
  • Accessory and Peripheral Secure Authentication
  • Secure Storage of Cryptographic Keys for a Host Controller
  • Secure Boot or Download of Firmware and/or System Parameters

Support & Training

Search our knowledge base for answers to your technical questions. Our dedicated team of Applications Engineers are also available to answer your technical questions.

Sample Products