当反激式转换器达到极限

电气隔离电源被广泛用于各种应用。其原因有很多。在有些电路中,出于安全考虑,必须实施电气隔离。在其他电路中,则使用功能性隔离来拦截信号受到的干扰。

电气隔离电源设计一般采用反激式转换器。这些调节器的设计非常简单。图1所示为这类调节器的典型设计,其中采用了一个 ADP1071 反激式控制器。之所以能看出这是一个反激式转换器,是因为它的点和变压器并不匹配。其中采用了原边电源开关(Q1)。此外,也需要采用副边整流器电路。这可以采用肖特基二极管来实现,但为了获得更高效率,一般会使用一个有源开关(图1中为Q2)。对应的ADP1071控制器负责控制这些开关,并为反馈路径FB提供电气隔离。

图 1. 典型的反激式稳压器(反激式转换器),功率最高可达约 60 W 。

虽然反激式转换器极为常用,但这种拓扑存在实用局限性。图1中的变压器T1并未作为典型的变压器使用。当Q1处于开启状态时,不会有电流流经T1的次级绕组。初级电流的电能几乎全部存储在变压器线圈中。降压转换器在扼流圈(电感)中存储电能,反激式转换器采用与之类似的方式在变压器中存储电能。当Q1处于闭合状态时,T1的次级会形成电流,为输出电容COUT 和输出提供电能。这种概念很容易实现,但在更高功率下概念本身存在局限。变压器T1被用作储能元件。所以,该变压器也能称为耦合电感(扼流圈)。这就要求变压器存储所需的电能。电源的电能等级越高,需要的变压器体积越大,成本越高。在大部分应用中,功率上限约为60 W。

如果需要使用电气隔离电源来获取更高功率,那么正向转换器是一个不错的选择。概念如图2所示。在这里,变压器真正用作典型变压器。当电流流过初级的Q1时,次级也会形成电流。所以,变压器无需具备储能作用。事实上,反过来也是成立的。必须确保变压器始终在Q1闭合期间放电,以免它在几个周期后意外达到饱和。

图 2. 反激式控制器(正向转换器),功率最高可达约 200 W 。

如果是实现相同功率,正向转换器所需的变压器体积比反激式转换器所需的体积小。所以,即使在功率等级低于60 W时,正向转换器也非常实用。但存在一个缺点,即必须避免变压器线圈在每个周期无意地存储电能,这应由图2中开关Q4和电容C C 的有源箝位布线实现。此外,正向转换器一般要求在输出端采用额外的电感L1。但是,如此之后,在同等功率水平下,输出电压的纹波会比使用反激式转换器时低。

电源管理IC(例如来自ADI的ADP1074)提供了一个非常紧凑的正向转换器设计解决方案。当需要高于约60 W的功率水平时,通常会使用这种结构。低于60 W时,根据电路的复杂性和可实现的效率,采用正向转换器也是比采用反激式转换器更好的选择。为了更简单地确定使用哪种拓扑,建议使用免费电路模拟器LTspice模拟仿真。图3所示为在LTspice模拟环境下,ADP1074正向转换器电路的模拟仿真原理图。

图 3. LTspice® 中模拟的采用 ADP1074 的电路示例。

作者

Frederik Dostal

Frederik Dostal

Frederik Dostal曾就读于德国埃尔兰根-纽伦堡大学微电子学专业。他于2001年开始工作,涉足电源管理业务,曾担任多种应用工程师职位,并在亚利桑那州凤凰城工作了4年,负责开关模式电源。他于2009年加入ADI公司,现担任位于德国慕尼黑的ADI公司的电源管理现场应用工程师。