CN0147: 利用低噪声LDO调节器ADP150为ADF4350 PLL和VCO供电,以降低相位噪声

精确设计,严谨验证,即取即用。了解更多

概览

电路笔记PDF, 11/2010 (pdf, 420 kB)
下载英文版PDF, 11/2010 (pdf,  260kB)
优势和特点
  • 工作频率范围:140 MHz至4.4 GHz
  • 超低噪声调节器可实现最佳系统相位噪声性能
此电路中所用产品
    应用: 
  • 通信
  • 雷达
  • 通信
  • 资产跟踪
  • 扫描设备
设计资源
设计和集成文件
  • 原理图
  • 物料清单
  • 装配图
Download Design Files (2 kB)
设备驱动
Software, such as C code and/or FPGA code, used to communicate with a component's digital interface.
FPGA HDL

电路功能与优势

本电路利用低噪声、低压差(LDO)线性调节器为宽带集成PLL和VCO供电。宽带压控振荡器(VCO)可能对电源噪声较为敏感,因此,为实现最佳性能,建议使用超低噪声调节器。

图1所示电路使用完全集成的小数N分频PLL和VCO ADF4350,它可产生137.5 MHz至4400 MHz范围内的频率。ADF4350采用超低噪声3.3 V ADP150调节器供电,以实现最佳LO相位噪声性能。

图1. 调节器ADP150与ADF4350相连(原理示意图,未显示所有连接和去耦)

ADP150 LDO的积分均方根噪声较低,仅为9 μV(10 Hz至100 kHz),有助于尽可能降低VCO相位噪声并减少VCO推压的影响(等效于电源抑制)。

图2是评估板的照片,它利用ADP150 LDO为ADF4350供电。ADP150代表业界噪声最低、封装最小、成本最低的LDO,采用4引脚、0.8 mm x 0.8 mm、0.4 mm间距WLCSP封装或方便的5引脚TSOT封装。因此,在设计中加入ADP150对系统成本和电路板面积的影响极小,但却能显著改善相位噪声性能。

图2. 采用低噪声调节器ADP150的评估板EVAL-ADF4350EB1Z B版

电路描述

ADF4350是一款宽带PLL和VCO,包括三个独立的多频段VCO。每个VCO大约覆盖700 MHz的范围(VCO之间有一些重叠)较低频率由输出分频器产生。

VCO推压的测量方法是将一个稳定的直流调谐电压施加于ADF4350 VTUNE引脚,然后改变电源电压,测量频率变化。推压系数(P)等于频率变化量除以电压变化量,如表1所示。

表1:ADF4350 VCO推压

VCO频率(MHz) VTune (V) VCO推压(MHz/V)
2200 2.5 0.73
3300 2.5 1.79
4400 2.5 5.99

在PLL系统中,如果VCO推压较高,则意味着电源噪声会降低VCO的相位噪声性能;如果VCO推压较低,则电源噪声不会显著降低相位噪声性能。然而,对于高VCO推压,高噪声电源会对相位噪声性能产生较大的影响。

实验显示,推压在4.4 GHz VCO输出频率时达到最大,因此我们比较了在该频率时采用不同调节器的VCO性能。ADF4350的A版评估板使用 ADP3334LDO调节器。此调节器的积分均方根噪声为27 μV(从10 Hz积分到100 kHz)。相比之下,EVAL-ADF4350EB1Z B版所用的ADP150只有9 μV。为了测量电源噪声的影响,借助一个窄PLL环路带宽(10 kHz)对VCO相位噪声进行更深入的探究。图3为该设置的示意图。

图3. ADF4350测量设置

欲了解关于输出噪声密度与频率关系的更详细分析,请参考ADP3334和ADP150的数据手册。

图4显示,ADP3334调节器的噪声谱密度在100 kHz偏移时为25 nV/√Hz。ADP150则为100 nV/√Hz(图5)。

图4. ADP3334输出噪声谱

电源噪声引起相位噪声性能下降的计算公式如下:

equation

其中,L(LDO)是在频率偏移fm时调节器对VCO相位噪声的噪声贡献(dBc/Hz);P为VCO推压系数(Hz/V);Sfm为给定频率偏移下的噪声谱密度(V/√Hz);fm为测量噪声谱密度所对应的频率偏移(Hz)。

图5. ADP150输出噪声谱

然后,电源的噪声贡献与VCO的噪声贡献(其本身利用极低噪声电源进行测量)以RSS方式求和,得出采用给定调节器时VCO输出端的总噪声。

这些噪声以RSS方式求和,得出期望的VCO相位噪声:

equation

本例选择100 kHz的噪声谱密度偏移,并使用6 MHz/V的推压系数,带理想电源的VCO噪声取值−110 dBc/Hz。

表2. VCO噪声的计算和测量

ADP3334 ADP150
调节器的噪声贡献
(nV/√Hz)
150 25
调节器的噪声贡献
(dBc/Hz)
-104 -119.5
VCO输出端的总计算噪声
(dBc/Hz)
-103 -109.5
100 kHz偏移时VCO噪声测量结果
(dBc/Hz)
-102.6 -108.5

图6. 在4.4 GHz、采用ADP3334调节器时ADF4350的相位噪声

通过专用信号源分析仪(例如Rohde & Schwarz FSUP)来比较VCO相位噪声。在100 kHz偏移时,ADP3334的测量结果为−102.6 dBc/Hz(图6);而采用相同配置时,ADP150的测量结果为−108.5 dBc/Hz(图7)。积分相位噪声也从1.95°降为1.4°均方根值。测量结果与计算结果具有非常好的相关性,清楚表明了利用ADP150为ADF4350供电的优势。

图7. 在4.4 GHz、采用ADP150调节器时ADF4350的相位噪声

常见变化

如果需要,可以增加调节器,以便在电源之间实现更好的隔离。此外,也可以利用一个ADF150调节器为ADF4350整个器件供电。不过此时应当小心,确保不要超过单个ADP150调节器的最大额定电流。如果选择ADF4350的最低输出功率设置,这种配置是可行的。

此电路中所用产品:

产品 描述 可提供样片的产品型号
ADF4350 集成VCO的宽带频率合成器 ADF4350BCPZ
ADP150 超低噪声、150 mA CMOS线性调节器 ADP150ACBZ-2.75R7 ADP150ACBZ-3.0-R7 ADP150AUJZ-1.8-R7 ADP150ACBZ-1.8-R7 ADP150ACBZ-2.85R7 ADP150AUJZ-2.65-R7 ADP150AUJZ-2.8-R7 ADP150AUJZ-3.0-R7 ADP150ACBZ-2.5-R7 ADP150AUJZ-3.3-R7 ADP150ACBZ-2.8-R7 ADP150AUJZ-2.5-R7 ADP150ACBZ-3.3-R7 ADP150ACBZ-2.6-R7
沪ICP备09046653号
评价这款电路 X
content here.
content here.

评价这款电路

关闭