12 ビット、インピーダンス・コンバータ、1 MSPS、 ネットワーク・アナライザ AD5933 の評価

特長

AD5933のフル機能評価用ボード ボード制御とデータ解析用に周波数掃引機能を持つグラフィック・ ユーザー・インターフェース・ソフトウェアを採用 多種多様な電源接続に対応 内蔵マイクロコントローラからのシリアル「²C ローディングによる スタンドアロン機能 内部 RC 発振器や内蔵 16 MHz 水晶発振器などの選択可能なシステ ム・クロック・オブション

ANALOG

アプリケーション

電気化学的解析 インピーダンス分光法 複素インピーダンス測定 腐食監視/保護機器 バイオメディカル/車載センサー 近接センシング

概要

このユーザー・ガイドは、EVAL-AD5933EBZ 評価用ボード、お よびこのデバイスとのインターフェース用に開発されたアプリ ケーション・ソフトウェアについて説明します。AD5933 は、周 波数ジェネレータと 1 MSPS の 12 ビット A/D コンバータ (ADC) を内蔵した、高精度のインピーダンス・コンバータ・システムで す。周波数ジェネレータでは、既知の周波数で外部の複素イン ピーダンスを励起することができます。内蔵 ADC はインピーダ ンスからの応答信号をサンプリングし、内蔵 DSP エンジンは各 励起周波数で DFT 処理します。AD5933 は、13 ビット分解能の 内部温度センサーも備えています。この製品は 2.7 V~5.5 V 電源 で動作します。その他の内蔵部品には、ADR423(デバイス上の 独立したアナログ部/デジタル部に安定した電圧を供給する 3.0 V リファレンス)と、ADP3303(AD5933 にインターフェースす るオンボード・USB コントローラへ電源を供給する超高精度レ ギュレータ)があります。コンピュータの USB ポートから回路 全体に電源供給するオプションがあります。

この評価用ボードは、必要に応じて、AD5933 へのシステム・ク ロックとして機能する高性能にトリミングされた16 MHzの表面 実装水晶発振器も搭載します。評価用ボードの周囲にあるさまざ まなリンク・オプションを表1に示します。AD5933 へのインター フェースには、AD5933 との通信に必要な I²C 信号を生成する USB マイクロコントローラを利用します。USB マイクロコント ローラへのインターフェースには、PCから実行する Visual Basic[®] グラフィック・ユーザー・インターフェースを利用します。 AD5933 の完全な仕様は、アナログ・デバイセズ社から提供され る AD5933 のデータシートに記載されていますので、評価用ボー ドを使用するときは、このユーザー・ガイドとともに参照してく ださい。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に 関して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、 アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様 は、予告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。 ※日本語版資料は REVISION が古い場合があります。最新の内容については、英語版をご参照ください。 ©2012 Analog Devices, Inc. All rights reserved.

アナログ・デバイセズ株式会社

本 社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 03 (5402) 8200 大阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 電話 06 (6350) 6868

目次

特長1
アプリケーション1
概要1
評価用ボードのブロック図1
改訂履歴2
評価用ボードのハードウェア3
端子ブロック機能3
はじめに4
セットアップ・シーケンスの要約4
ソフトウェアのインストール4
USB ケーブルの接続5
接続の検証と評価用ボードのパワーアップ

改訂履歴

2/12—Revision 0: Initial Version

周波	波数掃引の実行	6
イン	ンストールについてよくある2つの質問	
インほ	ピーダンス掃引のソース・コード	
評伯	価用ボードのソース・コード抜粋	
ゲー	イン係数計算	17
温周	度測定	17
イン	ンピーダンス測定のヒント	
評価ズ	ボードの回路図とアートワーク	
オーダ	ダー情報	
部目	品表	
関連	連リンク	

評価用ボードのハードウェア

端子ブロック機能

表 1. 接続機能

Link No.	Default Location	Function
LK1	Out	Option to remove external conditioning
LK2	Out	Option to remove external conditioning
LK3	In	On-board, 16 MHz crystal connection, connects to Y2
LK4	Out	SMB connected external clock
LK5	In	Connects 5 V from USB to ADP3303
LK6	А	AVDD and DVDD power supply connector

はじめに

セットアップ・シーケンスの要約

この評価用ボードのインストール説明は、米国英語版の Windows XP[®]オペレーティング・システム用に作られたものです。PC の 地域設定と言語設定は、Control Panel 内の Regional and Language ディレクトリ (Start/Control Panel/Regional and Language/Formats) で変更することができます。インストール 作業は下記のステップで構成されています。さらに詳細をそれに 続く各セクションで説明します。

- 評価用ボードに付属の CD を使って AD5933 グラフィカル・ ユーザー・インタフェース・ソフトウェアをインストールし ます。評価用ソフトウェアを正しくインストールし終わるま では、AD5933 評価用ボードの USB ケーブルをコンピュー タの USB ハブに接続しないでください。詳細については 「ソフトウェアのインストール」の項を参照してください。
- 評価用キットに付属の USB ケーブルを使用してコンピュー タの USB ポートを評価用ボードに接続し、評価用ソフト ウェアを正しくインストールしてから、USB ハードウェ ア・インストール・ウィザードを実行します(現在のオペレー ティング・システムの設定によっては、ハードウェア・イン ストールは自動的に行われることがあります)。詳細につい ては「USB ケーブルの接続」の項を参照してください。
- 評価用ボードの全体にわたって適切な接続が行われていることを確認します。評価用ソフトウェア・プログラムを開いて実行する前に、評価用ボードを適切にパワーアップします。
 詳細については「接続の検証と評価用ボードのパワーアップ」の項を参照してください。
- 評価用ボード・ソフトウェアのフロント・パネルを設定して、 必要な掃引機能を実行します。詳細については「周波数掃引 の実行」の項を参照してください。

ソフトウェアのインストール

以下の手順に従って、評価用ボード・ソフトウェアをインストー ルします。

- 1. 評価用ボードの CD を PC の CD ドライブに挿入し、Start/My Computer をクリックします。
- CD が CD ドライブに挿入された後、CD ソフトウェアのイ ンストールが自動的に行われることがあります。しかし、 これは現在のオペレーティング・システムの設定に依存し ます。ソフトウェアのインストールが自動的に始まらない 場合、AD5933 Installation/Setup.exe から Setup.exe をダブル クリックして、インストール・ウィザードを通じてソフト ウェアを PC にインストールします(図2と図3を参照)。

図2. 評価用ソフトウェア CD の内容

図 3. インストール・ウィザード

 評価用ボードのソフトウェアをデフォルトのデスティネーション・フォルダ・パス C:\Program Files\Analog Devices\ AD5933\AD5933 Evaluation Software Rev 1.0 Setup にインス トールします(図4を参照)。

AD5933 Evaluation Software Rev 1.0 Setup	
Choose Destination Location Select folder where Setup will install files.	
Setup will install AD5933 Evaluation Software Rev 1.0 in the following folder.	L
To install to this folder, click Next. To install to a different folder, click Browse and select another folder.	
Destination Folder C:\\AD5933 Evaluation Software Rev 1.0 InstallShield	-
< <u>Back</u> <u>Next</u> Cancel	

図 4. デフォルトのデスティネーション・フォルダ

Analog Devices ディレクトリを選択します(図5を参照)。
 Analog Devices フォルダがまだ作成されていない場合は、新たに Analog Devices フォルダを作成し、このフォルダにプログラム・アイコンを追加します。

AD5933 Evaluation Software Rev 1.0 Setup	
Select Program Folder Please select a program folder.	4
Setup will add program icons to the Program Folder listed below. You may type a new folde name, or select one from the existing folders list. Click Next to continue. Program Folders: [AD5522 Exattraction Software Back 17]	r
Existing Folders: Accessories Administrative Tools Games Microsoft Office Tools Network Associates Noton Ghost 2003	
Startup WinZip InstallShield	
<u> < ₿</u> ack <u>N</u> ext > Canc	el

図 5. Analog Devices ディレクトリを選択

- ソフトウェアをインストールした後、CD ドライブから CD を取り外します。この段階で、コンピュータのリブートを要 求されることがあります。
- 6. Start/All Programs/Analog Devices/AD5933/ AD5933 に移動 します(図6を参照)。

	Accessories	•					
60	Analog Devices	Þ	m AD5040_60_61_62_63	۲			
6	Dell Accessories	•	m AD9830	۲			
6	Deneba	•	m AD9832	۲			
6	DesignLab Eval 8	•	EEPROM Programmer	۲			
6	Games	•	m AD9831	۲			
6	GMS	•	🛅 AD773x	۲			
6	Intel Network Adapters	•	🖬 AD5933	١	AD5933		1-007
	InterVideo WinDVD	•	m AD9833	۰	Documentation	•	1044

ファームウェア・コードを評価用ボードにうまくダウン ロードできないため、次のメッセージが表示されます (図7を参照)。ファームウェア・コードは、評価用ソフト ウェアの動作に必要であり、インターフェース・ソフトウェ ア・プログラムが開かれるたびに、評価用ボードの USB マ イクロコントローラ・メモリにダウンロードされる必要が あります。この段階では、コンピュータと AD5933 評価用 ボードの間に USB 接続がないため、このエラー・メッセー ジが出力されますが、このエラー・メッセージは想定され たものです。Cancel をクリックします。

図7. 想定されるエラー・メッセージ

USB ケーブルの接続

以下の手順に従って、USB ケーブルを接続します。

 USB ケーブルを PC の USB ハブに差し込み、USB ケーブル の反対側を AD5933 評価用ボードの USB ソケットに接続し ます(図 32 の J1 を参照)。ホスト・コンピュータ上に USB デバイスが検出され、新しいハードウェアが見つかったとい うメッセージが表示されることがあります(図 8 を参照)。

図 8. ホスト・コンピュータによって検出された USB デバイス

次に、Found New Hardware Wizard が現れます(図9を参照)。このウィザードは、AD5933 評価用キット向けの適切なドライバ・ファイルを検索し、オペレーティング・システムのレジストリにインストールします。Install the software automatically (Recommended)を選択し、Next >をクリックして続行します(図9を参照)。

Welcome to the Found New Hardware Wizard This wizard helps you install software for: AD5933 Evaluation Kit
If your hardware came with an installation CD or floppy disk, insert it now. What do you want the wizard to do?
Install the software automatically (Recommended)
 Install from a list or specific location (Advanced)

図 9. ハードウェア・インストール・ウィザード

 図 10に示すように、Windows オペレーティング・システム の標準的な警告メッセージが表示されます。これは、 Windows[®]オペレーティング・システムに今回インストール しようしている新しいハードウェア(AD5933 評価用キッ ト)が、Windows XP との互換性を検証するWindows ロゴ・ テストに合格していないことを示します。この警告が表示さ れるのは、このインストールが評価用のセットアップであり、 実働環境での使用を目的としたものではないからです。 Continue Anyway をクリックし、次に Finish をクリックしま す。

~	
	The software you are installing for this hardware:
	AD5933 Evaluation Kit
	has not passed Windows Logo testing to verify its compatibility with Windows XP. (Tell me why this testing is important.)
	Continuing your installation of this software may impair or destabilize the correct operation of your system
	either immediately or in the future. Microsoft strongly recommends that you stop this installation now and contact the hardware vendor for software that has passed Windows Logo testing.

図 10. 想定される警告メッセージ

ハードウェアが正しくインストールされると、図 11 に示すメッ セージが表示されます。

図 11. ハードウェアのインストールに成功

接続の検証と評価用ボードのパワーアップ

評価用ボードに必要な接続がすべて行われ(表1を参照)、端子 ブロックに適切な電源接続と電源値設定が行われていることを 確認した上で、評価用ボードに電源を投入します。電源端子ブ ロックについては、評価用ボードの回路図(図32を参照)に概 要を示します。なお、USBコネクタは、AD5933にインターフェー スする Cypress USBコントローラ・チップに電力を供給するだけ です。必要に応じて、各端子ブロックへの専用の外部電圧源を提 供することができます。関連するすべての電源接続とリンクが行 われていることを確認してから、評価用ソフトウェアを実行しま す。最適な性能を得るには、安定した外部リファレンス電源から ボード上の電源端子ブロックを介して3つの電源信号(AvDDI、 AvDD2、DvDD)を供給します。

周波数掃引の実行

ここでは、30 kHz~30.2 kHz の周波数範囲で VOUT ピンと VIN ピンの間に接続された 200 k Ω の抵抗性インピーダンスの両端で 線形周波数掃引を行うためのシーケンスの概要を説明します。評 価用ボードのデフォルト・ソフトウェア設定を図 12 に示します。 (なお、AD5933 の VIN ピンと VOUT ピンの間に 200 k Ω 抵抗を接 続する必要があります)。表1 に示したデフォルトの接続位置を 確認してから、次にお進みください。

ソフトウェアを開くには、Start > Programs > Analog Devices > AD5933 に移動し、AD5933 Evaluation Software をクリックします。

図 12 は、正しく立ち上がり、実行されているグラフィック・ユー ザー・インターフェース・プログラムを示します。また、200 k Ω の抵抗性インピーダンス(注: $R_{FB} = 200 k\Omega$)に対する周波数掃 引インピーダンス・プロファイルを表示するインターフェース・ パネルの様子も示されています。

200 k Ω インピーダンス ($R_{\rm FB}$ = 200 k Ω)の両端で代表的な掃引を セットアップするには、以下の手順に従います。

- Sweep Parameters セクションで、Start Frequency (Hz)に 30000 (Hz) を設定します(図 12 の 1 を参照)。開始周波 数の精度は 24 ビットです。
- Sweep Parameters セクションで、Delta Frequency (Hz)に

2(Hz)を設定します(図12の1を参照)。周波数ステップ・サイズの精度も24ビットです。

- Sweep Parameters セクションで、Number Increments (9 Bit) に 200 を設定して(図 12 の 1 を参照)、掃引に沿ったインク リメント数に 200 を設定します。デバイスが掃引できるイン クリメントの最大数は 511 であり、この値は 9 ビットでレジ スタに保存されます。
- Number of Settling Time Cycles に 15 を設定します(図 12 の 1 を参照)。

なお、共振インピーダンスなどの高 Q 構造にまたがって掃 引するときは、被試験インピーダンスがセトリングしてから、 プログラムされた掃引での連続した周波数間でインクリメ ントされるように、セトリング時間サイクル・レジスタの内 容が十分であることを確認する必要があります。それには、 Number of Settling Time Cycles 値を増やします。

内部ダイレクト・デジタル・シンセサイザ (DDS) コアの 出力で周波数インクリメントが行われた時間と、ADC がこ の新しい周波数で応答信号をサンプリングする時間との遅 延は、セトリング時間サイクル数レジスタ (レジスタ 0x8A と 0x8B) の内容によって決まります。詳しくは AD5933 の データシートを参照してください。たとえば、Number of Settling Time Cycles ボックスに 15 がプログラムされ、次の 出力周波数が 32 kHz である場合、DDS コアが 32 kHz 信号の 出力を開始する時間と、ADC が応答信号をサンプリングす る時間との遅延は、15 × (1/32 kHz) ≈ 468.7 µs です。ボード にプログラムできるセトリング時間サイクル遅延の最大数 は 511 サイクルです。この値は、9 ビット値としてレジスタ に保存され、さらに 2 倍または 4 倍することもできます。

図 12. AD5933 評価用ソフトウェアのフロント・パネル(200 kΩ 抵抗のインピーダンス・プロファイルを表示)

- システム・クロックとして外部クロックを選択します。
 System Clock セクションで External clock を選択します
 (図 12 の 2 を参照)。
- AD5933の6番ピン (VOUT)のOutput Excitation 電圧範囲 にRange1:2vp-pを設定します(図12の2を参照)。通常、 2Vp-p、1Vp-p、0.4Vp-p、0.2Vp-pという4つの出力レン ジを使用できます。
- PGA Control セクションで受信段での ADC の PGA ゲイン (×1または×5) に×1を設定します(図 12 の 2を参照)。
- Calibration Impedance パネルを参照してください(図 12 の 2を参照)。測定を行う前に、AD5933の校正を行います。そ れには、AD5933の VIN ピンと VOUT ピンの間に既知の(す なわち、正確に測定された)校正インピーダンスを接続しま す。校正インピーダンスの構成(たとえば、R1 と C1 が直列、 R1 と C1 が並列)の選択は、使用するアプリケーションに合 わせます。その場合、測定された校正インピーダンスの各値 は、選択された各部品のテキスト・ボックスに正しく入力さ れていることを確認してください(図 12 の 2を参照)。この 例では、Calibration Impedance セクションで Resistor only R1 が選択されました。すなわち、周波数の全域で 200 kΩ抵 抗性インピーダンスのインピーダンスを測定します。また、 この例では Resistor value R1 に 200E3(Ω)を設定します。
- I²C インターフェースから、あらかじめ選択した掃引パラメータを AD5933 の対応する内蔵レジスタにプログラムするには、Program Device Registers をクリックします(図 12の3を参照)。
- セトリング時間サイクルにプログラムされた値は、掃引用に さらに2倍または4倍することができます。DDS Settling Time Cycles セクションで、×1 (Default)を選択します。
- 周波数掃引パラメータとゲイン設定をプログラムしたところで、次のステップは、ゲイン係数の計算によって AD5933システムを校正します。
 - システム校正時に一度計算されるシステム校正ゲイン係数 の詳細については、AD5933のデータシートを参照してくだ さい。これ以降、有効なインピーダンス測定を行う前に、 AD5933のゲイン係数を特定のインピーダンス範囲で正し く校正する必要があります(詳細については AD5933のデー タシートを参照)。

 以降の掃引用にゲイン係数を自動計算するには、Calculate Gain Factor をクリックします。評価用ソフトウェアは、 単一のミッドポイント周波数ゲイン係数またはマルチポイント周波数ゲイン係数(すなわち、プログラムされた掃引に おけるポイントごとのゲイン係数)を評価します(図12の 4を参照)。ミッドポイント・ゲイン係数は、プログラムさ れた掃引のミッドポイントで決定され、マルチポイント・ゲ イン係数はプログラムされた周波数掃引の各ポイントで決 定されます。

ミッドポイント・ゲイン係数またはマルチポイント・ゲイン 係数が計算されるとき、図13.に示すように、評価用ボード・ ソフトウェアのフロント・パネルにメッセージが現れます。 評価用ソフトウェアに返されたゲイン係数は、その後、被試 験インピーダンスの両端での掃引に使用されます。

AD5933 Beta Version REV1.0	
The mid-point gain factor has been calculated.	
ОК	
and the second sec	
AD5933 Beta Version REV1.0 🔀	
AD5933 Beta Version REV1.0 X Multipoint gain factors complete	

図 13. ミッドポイント計算またはマルチポイント・ ゲイン係数計算の確認

プログラムされた掃引パラメータのゲイン係数がシステム・インターフェース・ソフトウェアによって計算され、その結果が Calculated Gain Factor ボックスに示されます。

システムが校正された(すなわち、ゲイン係数が計算された) 後でいずれかのシステム・ゲイン設定が変更された場合(た とえば、出力励起範囲や PGA ゲインの変更)、正確なイン ピーダンス結果を測定するには、ゲイン係数の再計算が必要 です。ソフトウェアで計算されたゲイン係数は、AD5933の RAMにはプログラムされておらず、評価用ソフトウェア・ プログラムが起動して動作している間のみ有効です。ソフト ウェア・プログラムが閉じられている間、ゲイン係数が評価 用ソフトウェアに保持されることはありません。

掃引を開始するには、Start Sweep をクリックします(図 12 の5を参照)。評価用ソフトウェアによる掃引が完了し次第、 被試験インピーダンスに関してインピーダンス対周波数の プロット、および位相対周波数のプロットが自動的に返さ れます(図 12を参照)。掃引の進捗状況は、図 14に示すよ うに、プログレス・バーによって示されます。

評価用ボード・ユーザー・ガイド

- 内蔵温度センサーを読み取るには、評価用ボード・ソフト ウェアのフロント・パネルのInternal Temperature セクショ ンで Measure をクリックします。これによって、デバイス の13 ビット温度が返されます。温度センサーの詳細につい ては、AD5933 のデータシートを参照してください。
- 掃引の DFT から周波数掃引データ(すなわち、周波数、インピーダンス位相、実数、虚数、振幅データ)をダウンロードするには、Download Impedance Data をクリックします(図 12 の 5 を参照)。一般的なダイアログ・フロント・パネルは、図 15 のように表示されます。保存したいディレクトリのファイル名を選択し、Save をクリックします(図 15 を参照)。これによって、掃引データは、選択したディレクトリ内のカンマ区切り変数(.CSV)ファイルに保存されます。

図 15. 掃引データの保存

このファイルの内容は、Notepad または Microsoft Excel を用 いてデータを加工することができます。各ファイルには、 一列のデータが含まれます。ダウンロードされたデータのフ ォーマットを図 16 に示します。

S 1	Aicrosoft Ex	kcel - Impe	edance & P	hase Data.	csv		
1	<u>E</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> nse	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u> a	ata <u>W</u> indov	w <u>H</u> elp A	do <u>b</u> e PDF
: 🗅	📁 🖬 🕻		💁 🍄 🛍	X 🖬 I	🔁 - 🔓	Ż↓ Z↓ Ш	100% -
	1 1 1 1 2) 🔁 🏹	II 🔊 🔊	j 🗄 (2)	₩9 Reply wit	h <u>C</u> hanges	End Review.
	12 🐔 🖕		51 註 俳	R.			
	A1	•	∱ Frequer	ncy			
	A	В	С	D	E	F	G
1	Frequency	Impedance	Phase	Real	Imaginary	Magnitude	
2	30000	199980.7	-7.88E-02	-3726	8990	9731.556	
3	30002	200064.5	-7.52E-02	-3725	8986	9727.478	
4	30004	200029.8	-6.66E-02	-3727	8987	9729.167	
5	30006	200056.7	-6.98E-02	-3726	8986	9727.861	
6	30008	200067.8	-6.21E-02	-3727	8985	9727.32	
7	30010	199995.1	-5.80E-02	-3729	8988	9730.857	
8	30012	200037.7	-7.20E-02	-3726	8987	9728.784	

図 16. 掃引データを Excel で開く

各データ・エントリは、1つの測定(周波数)ポイントに対応します。したがって、インクリメント数の値が511ポイントとしてプログラムされた場合、このアレイは、開始周波数で始まり、次式で求められる終了周波数値で終わる512個のデータ・ポイントを持つ1列のデータを含んでいます。

Start Frequency + (Number of Increments \times Delta Frequency)

掃引が完了した後、評価用ソフトウェアのフロント・パネル には、インピーダンス・プロファイルと位相プロファイルの 周波数特性が表示されます。Absolute Impedance |Z|と Impedance Phase Øを切り替えるには、個々のタブをクリッ クします。プログラムされた周波数範囲で被解析インピー ダンス (Z_{UNKNOWN}) がどう変動するかを示すには、Absolute Impedance |Z|をクリックします。被解析ネットワークで位相 がどう変動するかを示すには、Impedance Phase Øをクリッ クします (図 17 を参照)。 AD5933によって測定される位相は、信号パス全体から生じる位相を反映したものです。すなわち、出力アンプ、受信電流/電圧(I-V)アンプ、ローパス・フィルタによって生じる位相と、VOUTとVIN(AD5933の6番ピンと5番ピン)の間に接続された被解析インピーダンス(Z₀)による位相です。抵抗を使用してシステムの位相を校正してから、その後のインピーダンス(Z₀)位相測定を計算します。システム位相を正しく校正するには、評価用ソフトウェアの抵抗を使用してください(詳しくは「インピーダンス測定のヒント」 セクションを参照)。

図 17. AD5933 評価用ソフトウェアのフロント・パネルの位相タブ(200 kΩ抵抗の位相(0°)を表示)

インストールについてよくある2つの質問

Q:ハードウェアが PC に正しくインストールされたことを確認 するには、どうしたらいいでしょうか?

A:ハードウェアが PC に正しくインストールされたことを確認 するには、以下のステップに従ってください。

- 1. **My Computer** を右クリックし、**Properties** を左クリックします。
- Hardware タブに移動し、Device Manager をクリックしま す(図 18 を参照)。

Seneral	Computer Name	Hardware	Advanced	Remote	
criticital	comparer Hame		/ availood	Tiomoto	
	In adverse Minned				
Add F		IAP-	1 h . l	a la lla barrada cara se	
	The Add Hard	ware wizard	i neips you in	stall naroware.	
	*				
			Add	Hardware Wiza	rd)
Devic	e Manager				
(Second	The Device M	lanagar ligta	all the bardu	are devices insta	lad
1	on your compu	Iter. Use the	Device Man	ager to change t	the
properties of any device.					
	properties or a	ny device.			
	properties or a	ny device.		Doution Manager	-
	Driver	ny device. Signing		Device Manager	\supset
Lindu	Driver :	ny device. Signing		Device Manager	\supset
Hardw	Driver :	Signing		Device Manager	\supset
Hardw	Driver	illes provide	a way for you	Device Manager I to set up and st	ore
Hardw	Vare Profiles Hardware profiles	Signing iles provide vare configu	a way for you rations.	Device Manager	ore
Hardw	Driver : Driver : vare Profiles Hardware prof different hardw	Signing iles provide vare configu	a way for you rations.	Device Manager I to set up and st	ore
Hardw	Driver : Driver : vare Profiles Hardware prof different hardw	iles provide vare configu	a way for you rations.	Device Manager I to set up and st Hardware Profiles	ore
Hardw	Driver : Driver : vare Profiles Hardware prof different hardw	iles provide vare configu	a way for you rations.	Device Manager I to set up and st Hardware Profiles	ore
Hardv	Driver : Driver : vare Profiles Hardware prof different hardw	iles provide vare configu	a way for you rations.	Device Manager I to set up and st Hardware Profiles	ore
Hardv	Driver : Driver : vare Profiles Hardware prof different hardw	iles provide vare configu	a way for you rations.	Device Manager I to set up and st Hardware Profiles Cancel	ore

図 18. システムのプロパティ

3. Universal Serial Bus controllers までスクロールし、ルー ト・ディレクトリを展開します(図 19 を参照)。AD5933 ハードウェアが正しくインストールされていると、評価用 ボードをコンピュータに接続している USB ケーブルが差し 込まれるたびに、Universal Serial Bus controllers 内の項目が リフレッシュされます。

図 19は、AD5933 評価用ボードが正しくインストールされ、 評価用ボードと USB ケーブルがコンピュータに正しく接続 されている状態を示します。USB ケーブルが評価用ボード から抜かれるとルート・ディレクトリがリフレッシュされ、 AD5933 評価用キット・アイコンはメイン・ルートから取り 除かれます。

Q:インストール時に、ボードが初めて差し込まれると、図 20 に示すメッセージが表示されます。Finish をクリックすると、 図 21 に示すメッセージが表示されます。どうしたらいいです か?

Cannot Install this Hardware
The hardware was not installed because the wizard cannot find the necessary software.
When this computer connects to the Internet, Windows Update will search for the right software and notify you if it becomes available.
 Click Back if you have installation media such as a CD-ROM, or if you know the location of the software.
Click Finish to go to Help and Support Center for further help installing this hardware.
Don't prompt me again to install this software.

図 20. ハードウェア・インストール時のエラー

図 21. Found New Hardware 問題

A:評価用ソフトウェアが正しくインストールされているとすれ ば(ボードを初めて差し込む前に、ソフトウェアを正しくインス トールします)、このメッセージは、単に AD5933 のデバイス・ ドライバが正しいレジストリにインストールされておらず、イン ストール・ウィザードによってうまく検索できなかったことを示 しています。

以下の手順に従って、デバイス・ドライバを再インストールしま す。

- 1. **My Computer** を右クリックし、**Properties** を左クリックし ます。
- Hardware タブに移動し、Device Manager を選択し、Other devices を展開します(図 22 を参照)。コンピュータは、こ の USB デバイス (AD5933 評価用ボード)を認識していま せん。
- 3. USB Device を右クリックし、Uninstall Driver を選択しま す。
- 4. 評価用ボードを抜き、およそ 30 秒待ってから、再び差し込 みます。
- もう一度、インストール・ウィザードに従って操作します。
 図 19 に示す、展開されたルート・ディレクトリが正しいインストールされた状態を示しています。同じエラー・メッセージが再び現れた場合は、デバイス・ドライバをアンインストールし、ソフトウェアをアンインストールします。有効なドライバ・ファイルの詳細については、アナログ・デバイ

セズのアプリケーション・サポート (http://www.analog.com/jp) にお問い合わせください。

図 23. 正しくインストールされたハードウェア

UG-364

0441

インピーダンス掃引のソース・コード PROGRAM FREQUENCY SWEEP PARAMETERS INTO RELEVANT REGISTERS START FREQUENCY REGISTER (2) NUMBER OF INCREMENTS REGISTER (3) FREQUENCY INCREMENT REGISTER PLACE THE AD5933 INTO STANDBY MODE. RESET: BY ISSUING A RESET COMMAND TO THE CONTROL REGISTER, THE DEVICE IS PLACED IN STANDBY MODE. PROGRAM THE INITIALIZE WITH START FREQUENCY COMMAND TO THE CONTROL REGISTER. AFTER A SUFFICIENT AMOUNT OF SETTLING TIME HAS ELAPSED, PROGRAM THE START FREQUENCY SWEEP COMMAND IN THE CONTROL REGISTER POLL THE STATUS REGISTER TO CHECK IF THE DFT CONVERSION IS COMPLETE. ٠N PROGRAM THE INCREMENT FREQUENCY OR READ VALUES FROM THE REAL AND THE REPEAT FREQUENCY COMMAND TO THE IMAGINARY DATA REGISTER. CONTROL REGISTER. POLL THE STATUS REGISTER TO CHECK IF FREQUENCY SWEEP IS COMPLETE. 0441-025 PROGRAM THE AD5933 INTO POWER-DOWN MODE.

図 24. 掃引フローの概要

ここでは、AD5933の周波数掃引のセットアップに必要な評価用 ボードのコード構造の概要を説明します。掃引フローの概要を 図 24に示します。このフロー図の各セクションは、Visual Basic のコード抜粋を使って説明されています。ファームウェア・ コード (cコード)は、AD5933に接続された USB マイクロコン トローラにダウンロードされ、ローレベル I²C 信号制御(すなわ ち、読出しと書込みのメーカー・リクエスト)を実行します。

「評価用ボードのソース・コード抜粋」セクションに示すコード 抜粋は、30kHzから始まる単一周波数掃引(10Hzの周波数ステッ プ、150ポイントの掃引)のプログラム方法を示します。このコー ドでは、16MHzのクロック信号はAD5933の8番ピン(MCLK)に 接続されると想定します。被試験インピーダンスの範囲は90 k Ω ~110 k Ω です。ゲイン係数は、周波数掃引のミッドポイント(すなわち、30.750 kHz)で計算されます。校正は、VOUTとVINの間に100 k Ω 抵抗を接続して行われます。帰還抵抗 = 100 k Ω 。

図24での最初のステップは、周波数掃引の定義に必要な3つの掃 引パラメータ(すなわち、開始周波数、インクリメント数、周波 数インクリメント)をプログラムすることです。詳細については、 AD5933のデータシートを参照してください。

評価用ボードのソース・コード抜粋

```
۰<u>____</u>
                                              _____
'Code developed using visual basic® 6.
'Datatype
           range
'Byte
           0-255
          -1.797e308 to - 4.94e-324 and 4.94e-324 to 1.7976e308
'Double
'Integer
          -32,768 to 32767
          -2,147,483,648 to 2,147,483,647
'Long
'Variant'...when storing numbers same range as double. When storing strings same range as string.
`----- Variable Declarations ------
Dim ReadbackStatusRegister As Long 'stores the contents of the status register.
Dim RealData As Double
                                  'used to store the 16 bit 2s complement real data.
Dim RealDataUpper As Long
                                  'used to store the upper byte of the real data.
Dim RealDataLower As Long
                                  'used to store the lower byte of the real data.
                                  'used to store the 16 bit 2s complement real data.
Dim ImagineryData As Double
                                  'used to store the upper byte of the imaginary data.
Dim ImagineryDataLower As Long
Dim ImagineryDataUpper As Long
                                  'used to store the lower byte of the imaginary data.
Dim Magnitude As Double
                                  'used to store the sqrt (real^2+imaginary^2).
Dim Impedance As Double
                                  'used to store the calculated impedance.
Dim MaxMagnitude As Double
                                  'used to store the max impedance for the y axis plot.
Dim MinMagnitude As Double
                                  'used to store the min impedance for the y axis plot.
Dim sweep_phase As Double
                                  'used to temporarily store the phase of each sweep point.
Dim Frequency As Double
                                  'used to temporarily store the current sweep frequency.
Dim Increment As Long
                                  'used as a temporary counter
Dim i As Integer
                                  'used as a temporary counter in (max/min) mag, phase loop
                                  'used in the stripx profile
Dim xy As Variant
Dim varray As Variant
                                 'either a single mid point calibration or an array of calibration points
Dim Gainfactor as double
Dim TempStartFrequency
                        As Double
Dim StartFrequencybyte0
                         As Long
Dim StartFrequencybyte2
                        As Long
Dim StartFrequencybyte1A
                        As Long
Dim StartFrequencybyte1B
                        As Long
Dim DDSRefClockFrequency
                        As Double
Dim NumberIncrementsbyte0 As Long
Dim NumberIncrementsbytel As Long
Dim FrequencyIncrementbyt0 As Long
Dim FrequencyIncrementbyt1 As Long
Dim FrequencyIncrementbyt2 As Long
Dim SettlingTimebyte0
                        As Long
Dim SettlingTimebyte1
                        As Long
 ----- I^2C read/write definitions-----
'used in the main sweep routine to read and write to AD5933. This is the vendor request routines in the firmware
Private Sub WritetToPart(RegisterAddress As Long, RegisterData As Long)
PortWrite &HD, RegisterAddress, RegisterData
'parameters = device address register address register data
End Sub
Public Function PortWrite(DeviceAddress As Long, AddrPtr As Long, DataOut As Long) As Integer
PortWrite = VendorRequest(VRSMBus, DeviceAddress, CLng(256 * DataOut + AddrPtr), VRWRITE, 0, 0)
End Function
Public Function PortRead(DeviceAddress As Long, AddrPtr As Long) As Integer
PortRead = VendorRequest(VRSMBus, DeviceAddress, AddrPtr, VRREAD, 1, DataBuffer(0))
PortRead = DataBuffer(0)
End Function
`----- PHASE CONVERSION FUNCTION DEFINITION -----
'This function accepts the real and imaginary data(R, I) at each measurement sweep point and converts it to a
degree
          _____
Public Function phase_sweep (ByVal img As Double, ByVal real As Double) As Double
Dim theta As Double
 Dim pi As Double
 pi = 3.141592654
  If ((real > 0) And (img > 0)) Then
    theta = Atn(img / real)
                                      ' theta = arctan (imaginary part/real part)
    phase2 = (theta * 180) / pi
                                           'convert from radians to degrees
```

評価用ボード・ユーザー・ガイド

ElseIf ((real > 0) And (img < 0)) Then theta = Atn(img / real) phase2 = ((theta * 180) / pi) +360 '4th quadrant theta = minus angle ElseIf ((real < 0) And (img < 0)) Then theta = -pi + Atn(img / real) '3rd quadrant theta img/real is positive phase2 = (theta * 180) / pi ElseIf ((real < 0) And (img > 0)) Then theta = pi + Atn(img / real) '2nd quadrant img/real is neg phase2 = (theta * 180) / pi End If End Function -----_____ Private Sub Sweep () the main sweep routine 'This routine coordinates a frequency sweep using a mid point gain factor (see datasheet). 'The gain factor at the mid-point is determined from the real and imaginary contents returned at this mid 'point frequency and the calibration impedance. 'The bits of the status register are polled to determine when valid data is available and when the sweep is `complete. ·-----IndexArray = 0 'initialize counter variable. Increment = NumberIncrements + 1 'number of increments in the sweep. Frequency = StartFrequency 'the sweep starts from here. `----- PROGRAM 30K Hz to the START FREQUENCY register ------DDSRefClockFrequency = 16E6 'Assuming a 16M Hz clock connected to MCLK StartFrequency = 30E3`frequency sweep starts at 30K \mbox{Hz} TempStartFrequency = (StartFrequency / (DDSRefClockFrequency / 4)) * 2^27 'dial up code for the DDS TempStartFrequency = Int(TempStartFrequency) '30K Hz = 0F5C28 hex '40 DECIMAL = 28 HEX StartFrequencybyte0 = 40 '92 DECIMAL = 5C HEX StartFrequencybyte1 = 92 StartFrequencybyte2 = 15 '15 DECIMAL = OF HEX 'Write in data to Start frequency register WritetToPart &H84, StartFrequencybyte0 '84 hex lsb WritetToPart &H83, StartFrequencybyte1 '83 hex '82 hex WritetToPart &H82, StartFrequencybyte2 ----- PROGRAM the NUMBER OF INCREMENTS register -----'The sweep is going to have 150 points 150 DECIMAL = 96 hex 'Write in data to ... WritetToPart &H89, 96 `lsb ``msb 'Write in data to Number Increments register ----- PROGRAM the FREQUENCY INCREMENT register -----'The sweep is going to have a frequency increment of 10Hz between successive points in the sweep DDSRefClockFrequency = 16E6 'Assuming a 16M Hz clock connected to MCLK 'frequency increment of 10Hz FrequencyIncrements = 10TempStartFrequency = (FrequencyIncrements / (DDSRefClockFrequency / 4)) * 2^27 'dial up code for the DDS TempStartFrequency = Int(TempStartFrequency) '10 Hz = 335 decimal = 00014F hex '335 decimal = 14f hex FrequencyIncrementbyt0 = 4FFrequencyIncrementbyt1 = 01FrequencyIncrementbyt2 = 00'Write in data to frequency increment register WritetToPart &H87, FrequencyIncrementbyt0 '87 hex lsb WritetToPart &H86, FrequencyIncrementbyt1 '86 hex WritetToPart &H85, FrequencyIncrementbyt2 '85 hex msb `----- PROGRAM the SETTLING TIME CYCLES register -----'The DDS is going to output 15 cycles of the output excitation voltage before the ADC will start sampling 'the response signal. The settling time cycle multiplier is set to x1

評価用ボード <mark>・</mark>ユーザー・ガイド

UG-364

SettlingTimebyte0 = OF '15 cycles (decimal) = OF hex SettlingTimebyte1 = 00 '00 = X1 WritetToPart &H8B, SettlingTimebyte0 WritetToPart &H8A, SettlingTimebyte1 `----- PLACE AD5933 IN STANDBYMODE ------Standby mode command = B0 hex WritetToPart &H80, &HB0 '----- Program the system clock and output excitation range and PGA setting-------'Enable external Oscillator WritetToControlRegister2 &H81, &H8 `Set the output excitation range to be 2vp-p and the PGA setting to = x1 WritetToControlRegister2 &H80, &H1 `----- ----- Initialize impedance under test with start frequency ------'Initialize Sensor with Start Frequency WritetToControlRegister &H80, &H10 msDelay 2 'this is a user determined delay dependent upon the network under analysis (2ms delay) `----- Start the frequency sweep -----'Start Frequency Sweep WritetToControlRegister &H80, &H20 'Enter Frequency Sweep Loop ReadbackStatusRegister = PortRead(&HD, &H8F) ReadbackStatusRegister = ReadbackStatusRegister And &H4 ' mask off bit D2 (i.e. is the sweep complete) Do While ((ReadbackStatusRegister <> 4) And (Increment <> 0)) 'check to see if current sweep point complete ReadbackStatusRegister = PortRead(&HD, &H8F) ReadbackStatusRegister = ReadbackStatusRegister And &H2 'mask off bit D1 (valid real and imaginary data available) _____ If (ReadbackStatusRegister = 2) Then ' this sweep point has returned valid data so we can proceed with sweep Else Do 'if valid data has not been returned then we need to pole stat reg until such time as valid data 'has been returned 'i.e. if point is not complete then Repeat sweep point and pole status reg until valid data returned WritetToControlRegister &H80, &H40 'repeat sweep point Do ReadbackStatusRegister = PortRead(&HD, &H8F) ReadbackStatusRegister = ReadbackStatusRegister And &H2 ' mask off bit D1- Wait until dft complete Loop While (ReadbackStatusRegister <> 2) Loop Until (ReadbackStatusRegister = 2) End If _____ RealDataUpper = PortRead(&HD, &H94) RealDataLower = PortRead(&HD, &H95) RealData = RealDataLower + (RealDataUpper * 256) 'The Real data is stored in a 16 bit 2's complement format. 'In order to use this data it must be converted from 2's complement to decimal format If RealData <= &H7FFF Then $\,$ ' h7fff 32767 ' Positive Else ' Negative RealData = RealData And &H7FFF RealData = RealData - 65536 End If ImagineryDataUpper = PortRead(&HD, &H96)

ImagineryDataLower = PortRead(&HD, &H97) ImagineryData = ImagineryDataLower + (ImagineryDataUpper * 256) 'The imaginary data is stored in a 16 bit 2's complement format. 'In order to use this data it must be converted from 2's complement to decimal format If ImagineryData <= &H7FFF Then ' Positive Data. Else ' Negative ImagineryData = ImagineryData And &H7FFF ImagineryData = ImagineryData - 65536 End If ---Calculate the Impedance and Phase of the data at this frequency sweep point -----Magnitude = ((RealData ^ 2) + (ImagineryData ^ 2)) ^ 0.5 'the next section calculates the phase of the dft real and imaginary components `phase_sweep calculates the phase of the sweep data. sweep_phase = (phase_sweep(ImagineryData, RealData) - calibration_phase_mid_point) GainFactor = xx `this is determined at calibration. See gain factor section and Datasheet. Impedance = 1 / (Magnitude * GainFactor) ' Write Data to each global array. MagnitudeArray(IndexArray) = Impedance PhaseArray(IndexArray) = sweep_phase ImagineryDataArray(IndexArray) = ImagineryData code(IndexArray) = Magnitude RealDataArray(IndexArray) = RealData Increment = Increment - 1 ' increment was set to number of increments of sweep at the start FrequencyPoints(IndexArray) = Frequency Frequency = Frequency + FrequencyIncrements ' holds the current value of the sweep freq IndexArray = IndexArray + 1 ----- Check to see if sweep complete ------ReadbackStatusRegister = PortRead (&HD, &H8F) ReadbackStatusRegister = ReadbackStatusRegister And &H4 ' mask off bit D2 'Increment to next frequency point Frequency WritetToControlRegister &H80, &H30 Loop `----- END OF SWEEP: Place device into POWERDOWN mode-----'Enter Powerdown Mode, Set Bits D15, D13 in Control Register. WritetToPart &H80, &HA0 END SUB _____ 'The programmed sweep is now complete and the impedance and phase data is available to read in the two 'arrays MagnitudeArray() = Impedance and PhaseArray() = phase. sweepErrorMsg: MsgBox "Error completing sweep check values"

End Sub

'The programmed sweep is now complete and the impedance and phase data is available to read in the two 'arrays MagnitudeArray() = Impedance and PhaseArray() = phase.

UG-364

ゲイン係数計算

インピーダンス掃引用の「評価用ボードのソース・コード抜粋」 セクションに示されたコードは、シングル・ポイントのゲイン係 数計算に基づいています。この計算が実行されるのは、システム 校正がミッドポイント掃引周波数であり、VOUT と VIN の間に 既知のインピーダンスが接続されたときです。ゲイン係数の計算 には、30.750 kHz の周波数を持つ 2 V p-pのサイン波で校正イン ピーダンスを励起します。PGA 設定は×1 です。校正は、VOUT と VIN の間に 100 kΩ抵抗を接続して行われます。帰還抵抗は 100 kΩ です。校正周波数における実数部と虚数部の大きさは、次式 によって与えられます。

 $O cipkwfg = \sqrt{T^2 \# K^2}$

ここで、 Rは実数成分です。 Iは校正コードの虚数成分です。

温度測定用のコード例

ゲイン係数は次式によって与えられます。

詳細については、AD5933のデータシートを参照してください。

温度測定

温度センサーの詳細については、AD5933のデータシートを参照 してください。温度センサーのデータは、14 ビットの2の補数 フォーマットで保存されます。変換式は AD5933のデータシート で与えられます。

Private Sub MeasureTemperature() ' The Digital temperature Result is stored over two registers as a 14 bit twos complement number. ' 92H <D15-D8> and 93H<D7 to D0>. Dim TemperatureUpper As Long. Dim TemperatureLower As Long 'Write xH90 to the control register to take temperature reading. WritetToPart &H80, &H90 msDelay 5 'nominal delay ReadbackStatusRegister = PortRead(&HD, &H8F) ReadbackStatusRegister = ReadbackStatusRegister And &H1 'if a valid temperature conversion is complete, ignore this. If ReadbackStatusRegister <> 1 Then 'loop to wait for temperature measurement to complete. Do ReadbackStatusRegister = PortRead(&HD, &H8F) ReadbackStatusRegister = ReadbackStatusRegister And &H1 Loop Until (ReadbackStatusRegister = 1) Form1.Label10.Caption = "Current Device Temperature" MsgBox "Device Temperature Measurement Complete"

End If

' The Digital temperature Result is stored over two registers as a 14 bit twos complement number. ' 92H <D15-D8> and 93H<D7 to D0>. TemperatureUpper = PortRead(&HD, &H92) TemperatureLower = PortRead(&HD, &H93) Temperature = TemperatureLower + (TemperatureUpper * 256) If Temperature <= &H1FFF Then ' msb =0. ' Positive Temperature. Label8.Caption = (Temperature / 32#) Else

' Negative Temperature.

```
Label8.Caption = (Temperature - 16384) / 32#
End If
're-assign variables used.
TemperatureUpper = 0
TemperatureLower = 0
Temperature = 0
End Sub
```

インピーダンス測定のヒント

ここでは、特定の条件下でインピーダンス・プロファイルを測定 するために、AD5933の使用に関するいくつかの問題解決手法の 概要を説明します。

AD5933の校正

校正項(すなわち、ゲイン係数。詳しくは AD5933 のデータシー トを参照)を計算するとき、受信段はその直線領域で動作するこ とが大切です。それには、システム・ゲイン設定を注意深く選択 することが必要です。システム・ゲイン設定には、以下の項目が 含まれます。

- 出力励起電圧範囲
- 電流/電圧ゲイン設定抵抗
- PGA ゲイン

図 25 に示すシステムによるゲインは、次式で与えられます。

Output Excitation Voltage Range × <u>I ckp" Livkpi Takaqt</u> ×

WPMPQYP

PGA Gain

たとえば、次のようなシステム校正設定を想定します。

- VDD = 3.3 V
- ゲイン設定抵抗=200 kΩ
- $Z_{\text{UNKNOWN}} = 200 \text{ k}\Omega$
- PGA 設定=×1
- Range 1 = 2 V p-p

ADC入力に供給されるピーク to ピーク電圧は 2 V p-p です。しか し、プログラマブル・ゲイン・アンプの設定ゲインに×5 が選択 された場合、電圧は ADC を飽和させるため、計算された校正項 (すなわち、ゲイン係数) は不正確です。 最大の応答信号が ADC に供給されたとき、対象となるインピー ダンス範囲の全域で信号が常に ADC の直線範囲内に収まるよう、 ゲイン係数を計算します(ADC のリファレンス範囲は AVDD 電 源です)。

システム・ゲイン設定を行います(図 25 を参照)。すなわち、 出力励起電圧範囲(Range 1、Range 2、Range 3、または Range 4) および対象となる未知のインピーダンス範囲に基づく *IV* アン プ・ゲイン設定抵抗、さらに ADC の前段にあるプログラマブル・ ゲイン・アンプの設定(×1または×5)を行います。

校正インピーダンスには、未知のインピーダンスの上下限の中央 値を選択します。したがって、システムを正しく校正するには、 インピーダンスの上下限を知る必要があります。次に、I/V ゲイ ン設定抵抗には校正インピーダンスと等しい値を選択します。こ れによって、I/V アンプの受信側にはユニティ・ゲイン状態が得 られます。

たとえば、次のように想定します。

- 未知のテスト・インピーダンス上下限: 180 kΩ ≤ Z_{UNKNOWN} ≤ 220 kΩ
- 対象となる周波数範囲: 30 kHz~32 kHz
- システム校正ゲイン設定を次に示します。
- VDD = 3.3 V
- ゲイン設定抵抗 (RFB) = 200 kΩ
- $Z_{CALIBRATION} = 200 \text{ k}\Omega$
- PGA 設定=×1
- 校正周波数 = 31 kHz (ミッドポイント周波数)

31 kHz のミッドポイント周波数で計算されたゲイン係数を使用 して、180 kΩ~220 kΩ 領域の任意のインピーダンスを計算する ことができます。未知のインピーダンス範囲が大きい場合、また は周波数掃引が大きい場合は、インピーダンス結果に悪影響を与 えます。いずれかの校正システム・ゲイン設定が変更された場合、 AD5933 を再校正し、ゲイン係数を再計算します(詳しくは AD5933 のデータシートを参照)。

低い励起周波数の測定

AD5933 の柔軟な内部 DDS コアと D/A コンバータ (DAC) を組 み合わせて、インピーダンス (Z_{UNKNOWN})の測定に用いられる励 起信号を生成します。DDS コアの 27 ビット位相アキュムレータ によって、1Hz 未満 (0.1Hz 域)の周波数分解能が可能になりま す。位相アキュムレータの出力は、読出し専用メモリ (ROM) の入力に接続されます。位相アキュムレータのデジタル出力は、 ROM 内の個々のメモリ位置のアドレス指定に用いられます。 ROM のデジタル・コンテンツは、1 サイクルのサイン波励磁波 形の振幅サンプルです。ROM ルックアップ・テーブル内の各ア ドレスの内容は、VOUT ピンで使用されるアナログ励磁波形を生 成する DAC の入力に渡されます。DDS コア (すなわち、位相ア キュムレータと ROM ルックアップ) と DAC は、すべて 1 つの システム・クロックを基準にしています。位相アキュムレータは、 単にシステム・クロック・デバイダとして機能します。

AD5933の DDS エンジンのシステム・クロックは、次のいずれかの方法によって提供されます。

- 外部クロック・ピン、すなわち MCLK(8番ピン)から、高 精度で安定したクロック(水晶発振器)を接続することがで きます。
- あるいは、AD5933は、16.776 MHz(typ)の周波数を持つ内 部クロック発振器を使用することも可能です。

所望のシステム・クロックを選択するには、コントロール・レジ スタのビット D3 (アドレス 0x81、AD5933 のデータシートを参 照)をプログラムします。

内部 ADC も、応答信号をデジタル化するためにシステム・クロッ クを使用します。ADC は、1回の変換に 16 クロック周期を必要 とします。したがって、16.776 MHz の最大システム・クロック 周波数では、ADCは、1.0485 MHz の周波数(すなわち、≈1.04 MSPS のスループット・レート)で応答信号をサンプリングすることが できます。ADC は、1024 個のサンプルを変換し、そのデジタル 結果を処理のために MAC コアに渡します。AD5933 の MAC コ アは、1024 ポイントの DFT を実行して、ADC 入力での応答信号 のピークを判定します。DFT は、優れた DC 除去機能、誤差の平 均化、位相情報など、通常のピーク検出メカニズムに比べて多く の利点を備えています。

AD5933ADCのスループット・レートは、システム・クロックに 応じて変化します。したがって、低い ADC スループット・レー ト(すなわち、サンプリング周波数)を得るには、システム・ク ロックを下げます。

通常の DFT は、連続する周期的な入力データ・サンプルを想定 して元の連続信号のスペクトル成分を判定します。AD5933 では、 これらのサンプルは、ユーザー定義の信号周波数範囲で、明らか に12 ビット ADC から提供されます。 通常の DFT では、一連のテスト・フェーザ周波数と入力信号を 相関させて、基本波信号周波数とその高調波を判定します。テス ト・フェーザの周波数は、次式で与えられる基本周波数の整数倍 です。

Test Phasor Frequency = (f_S/N)

ここで、

fsは、ADCのサンプリング周波数です。 Nは、取得されたサンプル数(1024)です。

この相関は、整数倍基本波の各周波数で演算されます。テスト・フェーザと入力サンプル・セットとの結果として得られる相関が ゼロ以外の場合、この周波数に信号エネルギーが存在します。エ ネルギーが存在しない場合は、そのテスト周波数にエネルギーは ありません。

AD5933 によって実行される DFT は、シングル・ポイント DFT と呼ばれます。これは、MAC コアでの解析や相関周波数が電流 出力励起周波数と常に同じ周波数であることを意味します。した がって、AD5933 のシステム・クロックが 16.776 MHz であると き、ADC のサンプル・レートは 1.04 MHz です。DSP コアは、シ ングル・ポイント DFT の実行に 1024 個のサンプルを必要としま す。したがって、DFT の分解能は 1.04 MHz/1024 ポイント≈1 kHz です。この計算は、MCLK に 16 MHz のシステム・クロック周波 数が印加されていることを前提にしています。AD5933 が≈1 kHz を下回る励起周波数を検査しようとする場合、スペクトル・リー クによって生じる誤差が大きくなり、誤ったインピーダンス読取 りにつながります。

図 26 に示すように、入力信号が 1024 ポイントのサンプル間隔に わたってちょうど整数個のサイクルを持たない場合、図 27 に示 すように、ある周期の最後から次までスムーズにつなげることが できません。図 27 に示すような周期的な入力信号を想定した場 合、DFT による不連続性の結果としてリークが生じます。

図 27. 励磁周期全体にまたがらないサンプル・セット

AD5933 が≈1 kHz を下回る周波数でインピーダンス (ZUNKNOWN)を解析するには、システム・クロックをスケー リングして、ADC のサンプル・レートを下げ、シングル・ポイ ントDFTに必要な1024個のサンプルが電流励起周波数の整数個 の周期をカバーしていなければなりません。

AD5933 と 16 MHz 水晶発振器を使用して 1 kHz~10 kHz 範囲の 周波数を解析するには、外部クロック・デバイダを用いてシステ ム・クロックをスケーリングします。そうすることによって、 ADC のサンプリング周波数は 1 MHz 未満の値に下がりますが (f_{SAMPLING} = MCLK/16)、これにより、1024 個のサンプル・セッ トが被解析応答信号をカバーすることができます。システム・ク ロックをスケーリングする場合には、掃引の最大帯域幅を下げる 必要があります。

低クロック周波数の解析には、AD5933に接続されたシステム・ クロックのスケーリングが役立ちます。このようなスケーリング によって、インピーダンスの下限が得られます(表 2 を参照)。 ただしその際、励起周波数には上限があります。

表 2. 経験に基づく周波数下限 対 MCLK

AD5933 Lower Frequency ¹	Clock Frequency Applied to MCLK Pin ²
100 kHz to 5 kHz	16 MHz
5 kHz to 1 kHz	4 MHz
5 kHz to 300 Hz	2 MHz
300 Hz to 200 Hz	1 MHz
200 Hz to 100 Hz	250 kHz
100 Hz to 30 Hz	100 kHz
30 Hz to 20 Hz	50 kHz
20 Hz to 10 Hz	25 kHz

¹ 周波数掃引下限の確定には、分周されたクロック信号を AD5933 の MCLK ピンに印加し、公称インピーダンス ($Z_{CALIBRATION}$: たとえば 200 kΩ 抵抗) を プログラムされた開始周波数から 500 Hz にわたる直線掃引によって校正お よび再測定します (IV ゲイン抵抗設定 = $Z_{CALIBRATION}$: たとえば 200 kΩ, PGA =×1、 Δ周波数=5 Hz、ポイント数=100)。周波数下限は、DFT が(したがっ て、インピーダンス 対 周波数の結果も)劣化し、測定されたインピーダン スの想定値 ($Z_{CALIBRATION}$: たとえば 200 kΩ) から乖離しはじめる周波数とし て確定されます。

² MCLK ピンに印加された TTL クロック・レベル、 $V_{IH} = 2 V$ 、 $V_{IL} = 0.8 V_{\circ}$

ー例として、すでに確定された3 kHz 信号を正しく解析するため に、AD5933の外部クロック・ピンに4 MHz のスケーリングされ たクロック周波数を印加する必要があるとします。印加されたシ ステム・クロック(外部または内部発振器)は、4 分周されてか ら基準クロックとして DDS にルーティングされます。システ ム・クロックは分周なしで ADC に直接接続されるため、ADC サ ンプリング・クロックは DDS コアの4倍の速度で動作しています。 したがって、4 MHz のシステム・クロックでは、DDS 基準クロッ クは 1/4×4 MHz = 1 MHz、ADC クロックでは MHz です。AD5933 の DDS には、27 ビットの位相アキュムレータがあります。しか し、3 つの最上位ビット (MSB) は、内部的にロジック 0 に接続 されています。したがって、3 つの MSB にゼロを設定すると、最 大の DDS 出力周波数は 1/32×1 MHz = 31.25 kHz です。 4 MHz という低いシステム・クロックを使用して、3 kHz の信号 を正確に測定することは可能です。しかし、ADC の変換クロッ ク速度が遅いために、AD5933 がインピーダンスを返すための時 間が長くなること、および励磁上限が 31.25 kHz に制限されると いう、2 つの大きなトレードオフが生じます。

高い励起周波数の測定

AD5933は、1 kHz~100 kHz の周波数範囲内で 0.5% (typ) のシ ステム精度が仕様となります (AD5933 システムは被試験イン ピーダンス範囲に対して正しく校正されていると想定)。周波数 下限は、AD5933 の外部クロック・ピン (MCLK) に接続される システム・クロック周波数の値によって決まります。この下限を 下げるには、システム・クロックのスケーリングを行います(「低 い励起周波数の測定」セクションを参照)。システムの周波数上 限は、内部アンプの帯域幅が有限であることに加えて、ローパ ス・フィルタのポール位置 (たとえば、200 kHz と 300 kHz)の 影響 (AD5933 の受信側で DFT 出力を損なうノイズ信号をロール オフするために使用されます) によるものです。したがって、 AD5933 は、図 28 に示すものと同様に有限な周波数応答を持ちま す。

図 28. AD5933 の代表的なシステム帯域幅

掃引スパンが大きい場合、AD5933 を使用して 100 kHz を超える 周波数を解析すると、インピーダンス・プロファイルに誤差が生 じます。これは、100 kHz を超えると、システムの周波数応答が 制限され、ロールオフの影響が増加するためです。100 kHz を上 回る周波数で掃引している場合は、掃引範囲をできるだけ小さ くする(たとえば、120 kHz~122 kHz)ことが大切です。校正周 波数によるインピーダンス誤差は、周波数範囲が狭い場合には、 ほぼ直線的です。この線形誤差を取り除くには、エンドポイント /マルチポイント校正を実行します(エンドポイント校正の詳細 については、AD5933のデータシートの「2 ポイント・ キャリブレーション」の項を参照)。

インピーダンスの両端での位相測定

AD5933は、独立した実数成分と虚数成分から構成される複素出 カコードを返します。各掃引測定の後、実数成分はレジスタ 0x94 とレジスタ 0x95 に保存され、虚数成分はレジスタ 0x96 と レジスタ 0x97 に保存されます。これらは、被試験イン ピーダンスの抵抗成分とリアクタンス成分にではなく、DFTの実 数成分と虚数成分に対応します。

たとえば、直列 RC 回路を解析するとき、レジスタ 0x94 とレジ スタ 0x95 に保存されている実数値と、レジスタ 0x96 とレジスタ 0x97 に保存されている虚数値が、それぞれ抵抗と容量リアクタ ンスに対応するというのは、よくある誤解であり、正確ではあり ません。インピーダンスの大きさ(|Z|) を算定するには、次式を 用いて DFT の実数成分と虚数成分の大きさを計算します。

 $O\,ci\,pkwfg = \sqrt{T^2 \# K^2}$

各測定の後、これに校正項を乗算し(AD5933のデータシートの ゲイン係数計算を参照)、その積の逆数をとります。したがって、 インピーダンスの大きさは次式で与えられます。

 $Korgfcpeg = \frac{1}{I ckp''Heevqt \times O cipkwfg}$

ここで、ゲイン係数は次式で与えられます。

$$I ckp Hewar = \left(\frac{Cfo \, kwcpeg}{Eqfg}\right) = \frac{\left(\frac{1}{Ko \, rgf \, cpeg}\right)}{O \, ci \, pkwfg}$$

有効な測定を行うには、その前に、既知のインピーダンス範囲に 対して AD5933 システムの校正を行い、ゲイン係数を求める必要 があります。したがって、対象となる掃引周波数範囲に対して複 素インピーダンス (Z_{UNKNOWN})のインピーダンス限度を知る必要 があります。AD5933の入力と出力の間に既知のインピーダンス を接続し、結果として得られるコードの大きさを測定してゲイン 係数を求めます。AD5933 のシステム・ゲイン設定を選択するこ とで、励起信号を内蔵 ADC の直線領域に置く必要があります(詳 しくは AD5933 のデータシートを参照)。

AD5933 は実数成分と虚数成分から構成される複素出力コードを 返します。これにより、AD5933 の信号パスを通過する応答信号 の位相を計算することができます。位相は、Phase (rads) = $Tan^{-1}(I/R)$ によって与えられます。

前式によって測定された位相は、DDS 出力信号が AD5933 の送/ 受信側の内部アンプ、ローパス・フィルタ、AD5933 の VOUT ピ ンと VIN ピンの間に接続されたインピーダンスを通過するとき に生じる位相シフトを考慮しています。 AD5933 の対象となるパラメータは、インピーダンスの大きさ (|Z_{UNKNOWN}|) とインピーダンスの位相(ZØ)です。ZØの測定は ツーステップのプロセスです。最初のステップには、AD5933の システム位相の計算が伴います。AD5933のシステム位相を計算 するには、AD5933の VOUT ピンと VIN ピンの間に抵抗を接続 し、掃引での各測定ポイントの後で前式を用いて位相を計算しま す。VOUT ピンと VIN ピンの間に抵抗を接続することによって、 AD5933の信号パスに新たな位相の進みや遅れは生じません。結 果として得られる位相は、すべて AD5933の内部ポールによるも の、すなわちシステム位相に他なりません。

抵抗を使用してシステム位相が校正されたら、未知のインピーダ ンスの位相を計算するには、AD5933のVIN端子とVOUT端子 の間に未知のインピーダンスを挿入し、前式を用いて新しい位相 (インピーダンスに起因する位相を含む)を再計算します。未知 のインピーダンスの位相(ZØ)は、次式によって与えられます。

$Z\emptyset = (\Phi unknown - \nabla system)$

ここで、

 ∇ system は、VIN と VOUT の間に校正抵抗を接続したシステム の位相です。

Φunknownは、VINとVOUTの間に未知のインピーダンスを接続したシステムの位相です。

ZØは、インピーダンスに起因する位相(すなわち、インピーダ ンス位相)です。

なお、AD5933の VOUT ピンと VIN ピンの間に抵抗が接続され ているとき、同じ実数成分と虚数成分の値を使用してゲイン係数 を計算し、システム位相を校正することが可能です。

たとえば、コンデンサのインピーダンス位相(**ZØ**)を測定します。

励起信号電流は、コンデンサの両端での励起信号電圧より-90° だけ進んでいます。したがって、測定を行う前に、抵抗によって 測定されたシステム位相応答と、容量性インピーダンスによって 測定されたシステム位相応答との間には、およそ-90°の位相差が 見られると想定されます。

すでに概要を述べたように、容量性インピーダンス(ZØ)の位 相角を求めるには、システム位相応答(∇ system)を求め、VOUT と VINの間に接続されたコンデンサによって計算された位相 (Φ unknown)から減算する必要があります。

図 29 は、220 k Ω の校正抵抗 (\mathbf{R}_{FB} = 220 k Ω 、PGA = ×1)を使用 して計算された AD5933 のシステム位相応答と、10 pFの容量性 インピーダンスによる反復位相測定を示します。

図 29. システム位相応答 対 容量位相

コンデンサの位相応答と、抵抗を使用したシステム位相応答との 位相差(すなわち、ZØ)は、コンデンサのインピーダンス位相 (ZØ)であり、図 30に示されます。

図 30. コンデンサの位相応答

なお、図 29 のプロットに用いられた位相式は、ラジアン単位の 位相角を返す逆正接関数を使用しているため、ラジアンから度へ の変換が必要になります。 さらに、実数値と虚数値を用いたアークタンジェント(逆正接関 数)によって各測定ポイントでの位相を求める場合には注意が必 要です。逆正接関数が正しい標準の位相角を返すのは、実数値と 虚数値の符号がともに正のとき、つまり、座標が第1象限にある ときだけです。標準の角度は、正の実数 x 軸から反時計回りに測 られる角度です。実数成分の符号が正で、虚数成分の符号が負で ある場合、つまり、データが第2象限にある場合、逆正接式は負 の角度を返すため、正しい標準の角度を計算するには、さらに 180°を加算する必要があります。同様に、実数成分と虚数成分の 両方が負のとき、つまり、座標が第3象限にあるとき、逆正接式 は正の角度を返すため、正しい標準の位相を返すには、角度に 180°を加算する必要があります。最後に、実数成分が正で虚数成 分が負のとき、つまり、データが第4象限にあるとき、逆正接式 は負の角度を返すため、正しい位相角を計算するには角度に360° を加算する必要があります。

したがって、正しい標準の位相角は、実数成分と虚数成分の符号 に依存します。これを表3にまとめます。

表 3. 位相角度

Real	Imaginary	Quadrant	Phase Angle (Degrees)
Positive	Positive	First	$\mathrm{Tan}^{-1}(I/R)\times\frac{180}{\pi}$
Positive	Negative	Second	$180 + \left(\mathrm{Tan}^{-1}(I/R) \times \frac{180}{\pi}\right)$
Negative	Negative	Third	$180 + \left(\mathrm{Tan}^{-1}(I/R) \times \frac{180}{\pi} \right)$
Positive	Negative	Fourth	$360 + \left(\mathrm{Tan}^{-1}(I/R) \times \frac{180}{\pi}\right)$

インピーダンスの大きさ (|Z|) とインピーダンスの位相角 (ZØ、 ラジアン単位) が正しく計算されたら、以下の式を用いてイン ピーダンスの大きさを実数と虚数のインピーダンス軸にベクト ル射影することによって、インピーダンス (Z_{UNKNOWN}) の実数 (抵 抗) 成分と虚数 (リアクタンス) 成分の大きさを求めることがで きます。

実数成分は次式で与えられます。

 $|Z_{REAL}| = |Z| \times \cos(Z\emptyset)$

虚数成分は次式で与えられます。

 $|Z_{IMAG}| = |Z| \times \sin(Z\emptyset)$

評価ボードの回路図とアートワーク

10441-035

評価用ボード・ユーザー・ガイド

オーダー情報

部品表

表 4.			
Name	Part Description	Manufacturer	Part Number
C1 to $C3^1$	Capacitor, MR04, place holder	Not applicable	Not applicable
Z^1	Capacitor, MR04, place holder, insert 2-wire wrap pins	Analog Devices issue	73017015
C5	10 µF tantalum capacitor, 10 V	AVX Corporation	TAJB106K016R
C7	47 nF capacitor, 50 V, through hole, 10%, R1/8 W	Multicomp	MCRR50473X7RK0050
C9, C11, C22, C25, C31, C32, C25	10 µF ceramic capacitor, X5R, 0805	Yageo Corporation	CC0805KKX5R6BB106
C14	2.2 µF ceramic capacitor, 6.3 V, X5R, 0603, SMD	Yageo Corporation	CC0603KRX5R5BB225
C6, C8, C10, C12, C13, C15 to C21, C23, C24, C26, C27, C30, C33, C34, C36	0.1 µF ceramic capacitor, 50 V, X7R, 10%, 0603, SMD	AVX Corporation	06035C104KAT2A
C28, C29	22 pF ceramic capacitor, 50 V, 5%, 0603, NPO, SMD	Yageo Corporation	CC0603JRNPO9BN220
CLK1	SMB socket	Tyco Electronics Corporation	1-1337482-0
D4	Green LED, 0805	Avago Technologies	HSMG-C170
GL1	Copper short ground link	Not applicable	Not applicable
J1	USB Mini-B connector	Molex	56579-0576
J2	2-pin terminal block (5 mm pitch), CON\POWER	Camden Electronics	CTB5000/2
LK1 to LK6	Jumper block, 2 pins, 0.1" spacing, SIP-2P	Harwin	M20-9990246
R1, R2, R7 to R8	49.9 kΩ, SMD resistor, 1%, 0603	Multicomp	MC 0.063W 0603 1% 49K9
CAL^1	Place holder, insert 2-wire wrap pins, R1/8 W	Analog Devices issue	73017015
R4	20 kΩ, SMD resistor (0.1%), 0603	Panasonic	ERA3AEB203V
R5	20 kΩ, SMD resistor (0.1%), 0603	Multicomp	MC 0.063W 0603 1% 20K
R6 ¹	Through hole resistor, 1/8 W	Not applicable	Not applicable
R10	1 kΩ, 0805, SMD resistor	Multicomp	MC 0.1W 0805 1% 1K
R11, R12	100 kΩ, 1%, 0603, SMD resistor	Multicomp	MC 0.063W 0603 1% 100K
R13	0 Ω, 1%, 0603, SMD resistor	Multicomp	MC 0.063W 0603 0R
R14	10 kΩ, 1%, 0603, SMD resistor	Multicomp	MC 0.063W 0603 1% 10K
R15, R16	2.2 kΩ, 1%, 0603 SMD resistor	Multicomp	MC 0.063W 0603 1% 2K2
T1 to T8	Black test point	Vero Technologies	20-2137
U1	Precision, low noise, CMOS, rail-to-rail, input/output operational amplifiers	Analog Devices	AD8606ARZ
U2	1 MSPS, 12-bit impedance converter network analyzer	Analog Devices	AD5933BRSZ
U3	USB microcontroller, LFCSP-56	Cypress Semiconductor	CY7C68013-56LFC
U4	I ² C serial EEPROM, 64k, 2.5 V, 8-SOIC Microchip Technologies 24LC64-I/SN		24LC64-I/SN
U5, U6	High accuracy anyCAP [®] 200 mA low dropout linear regulator	Analog Devices	ADP3303ARZ-3.3
Y1	24 MHz SMD crystal, XTAL-CM309S	AEL Crystals	X24M000000S244
Y2	3.3 V, 16 MHz clock oscillator	AEL Crystals	AEL4303

¹ インストールしないでください。

関連リンク

リソース	説明
AD5933	12 ビット、インピーダンス・コンバータ、1MSPS、ネットワーク・アナライザ
AD9834	DDS、全機能内蔵、2.3V~5.5V、75MHz、20mW 消費電力
ADF4001	PLL (200MHz) 、クロック生成用
ADuC7020	高精度アナログ・マイクロコントローラ、12 ビット・アナログ I/O、ARM7TDMI® MCU
ADCMP601	コンパレータ、超高速、6 ピン SC70 パッケージ、レール to レール、2.5~5.5V、単電源、TTL/CMOS 出力
ADP3303	リニア・レギュレータ、200mA の低ドロップアウト、高精度、anyCAP®
AD8606	オペアンプ、高精度、ローノイズ、CMOS、レール to レールの入力/出力

UG-364

ESD に関する注意

ESD(静電放電)の影響を受けやすいデバイスです。電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術 である ESD 保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を 防止するため、ESD に対する適切な予防措置を講じることをお勧めします。

法的条項

アナログ・デバイセズの標準販売条項が適用される評価用ボードの購入の場合を除き、ここで説明する評価用ボード (すべてのツール、部品ドキュメント、サポート資料、"評価用 ボード"も含む)を使用することにより、以下に定める条項("本契約")にお客様は合意するものです。お客様は、本契約を読んで合意するまでは評価用ボードを使用しないものと します。お客様が評価用ボードを使用した場合は、本契約に合意したものと見なすものとします。本契約は、"お客様"と One Technology Way, Norwood, MA 02062, USA に本社を置く Analog Devices, Inc.("ADI")との間で締結されるものです。本契約条項に従い、ADIは、無償、限定的、一身専属、一時的、非独占的、サプライセンス不能、移転不能な、評価用 ボードを評価目的でのみ使用するライセンスをお客様に許諾します。お客様は、評価用ボードが上記目的に限定して提供されたこと、さらに他の目的に評価用ボードを使用しない ことを理解し、合意するものです。さらに、許諾されるライセンスには次の追加制限事項が適用されるものとします。すなわち、お客様は(i)評価用ボードを賃借、賃貸、展示、販 売、移転、譲渡、サブライセンス、または頒布しないものとし、さらに (ii) 評価用ボードへのアクセスを第三者に許可しないものとします。ここで言う "第三者" には、ADI、お 客様、その従業員、関連会社、および社内コンサルタント以外のあらゆる組織が含まれます。この評価用ボードはお客様に販売するものではありません。評価用ボードの所有権な どの、本契約にて明示的に許諾されていないすべての権利は、ADI が留保します。本契約と評価用ボードはすべて、ADI の機密および専有情報と見なされるものとします。お客様 は、この評価用ボードの如何なる部分も、如何なる理由でも他者に開示または移転しないものとします。評価用ボード使用の中止または本契約の終了の際、お客様は評価用ボード を速やかに ADI へ返却することに合意するものです。追加制限事項。お客様は、評価用ボード上のチップの逆アセンブル、逆コンパイル、またはリバース・エンジニアリングは行 わないものとします。お客様は、ハンダ処理または評価用ボードの構成材料に影響を与えるその他の行為に限らず、評価用ボードに発生したすべての損傷や修正または改変を ADI へ 通知するものとします。評価用ボードに対する修正は、RoHS 規制に限らずすべての該当する法律に従うものとします。終了。ADIは、お客様に書面通知を行うことで、何時でも本 契約を終了することができるものとします。お客様は、評価用ボードをその時点に ADI に返却することに合意するものです。責任の制限。ここに提供する評価用ボードは「現状有 姿」条件にて提供されるものであり、ADIはそれに関する如何なる種類の保証または表明も行いません。特にADIは、明示か黙示かを問わず、評価用ボードにあらゆる表明、推奨 または保証(商品性、権原、特定目的適合性または知的財産権非侵害の黙示の保証を含みますがこれらに限定されません)を排除します。如何なる場合でも、ADIおよびそのライ センサーは、利益の喪失、遅延コスト、労賃、またはのれん価値の喪失など(これらには限定されません)、評価用ボードのお客様による所有または使用から発生する、偶発的損害、 特別損害、間接損害、または派生的損害については、責任を負うものではありません。すべての原因から発生する ADI の損害賠償責任の負担額は、総額で 100 米国ドル (\$100.00)に 限定されるものとします。輸出。お客様は、この評価用ボードを他国に直接的または間接的に輸出しないことに同意し、輸出に関する該当するすべての米国連邦法と規制に従うこ とに同意するものとします。準拠法。本契約は、マサチューセッツ州の実体法に従い解釈されるものとします(法律の抵触に関する規則は排除します)。本契約に関するすべての訴訟 マサチューセッツ州サフォーク郡を管轄とする州法廷または連邦法廷で審理するものとし、お客様は当該法廷の人的管轄権と裁判地に従うものとします。本契約には、国際物 品売買契約に関する国連条約は適用しないものとし、同条約はここに明確に排除されるものです。

©2012 Analog Devices, Inc. All rights reserved. 商標および登録商標は、それぞれの所有者の財産です。