

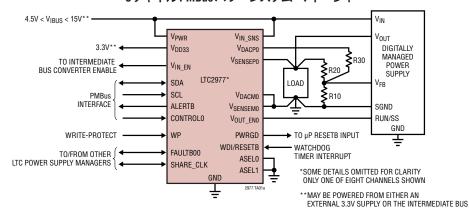
GY 正確な出力電圧測定を 特長とする8チャネルPMBusパワー システム・マネージャ

特長

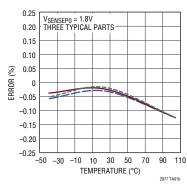
- 8つの電源のシーケンス制御、調整、マージニング、 および監視
- フォルトの管理、遠隔測定値のモニタ、 およびフォルト・ログの作成
- PMBus 準拠のコマンド・セット
- LTpowerPlay™ GUIでサポート
- 電源のマージニングまたは調整の精度:0.25%
- チャネルごとの高速 OV/UV スーパーバイザ
- 複数のデバイスにまたがるシーケンシングと フォルト管理の連携
- 内蔵のEEPROMへの自動フォルト・ログ機能
- ソフトウェア追加不要の自律動作
- 内部温度スーパーバイザと入力電圧スーパーバイザ
- 8つの出力電圧、入力電圧、内部ダイ温度の正確なモニタ
- I^2 C/SMBus シリアル・インタフェース
- 3.3V または4.5V ~ 15V の電源で動作可能
- プログラム可能なウォッチドッグ・タイマ
- 100% ピン互換でLTC2978/LTC2978A にアップグレード
- 9mm×9mmの64ピンQFNパッケージで供給

アプリケーション

- コンピュータおよびネットワーク・サーバ
- 産業用テスト装置および測定装置
- 高信頼性システム
- 医療用画像処理
- ビデオ


概要

LTC®2977は、8チャネルのパワーシステム・マネージャで、シー ケンス制御、調整(サーボ制御)、監視、フォルトの管理、遠隔 測定の実行、およびフォルト・ログの作成を行うために使用し ます。PMBusコマンドは、電源シーケンシング、高精度のポイ ントオブロード電圧調整およびマージニングをサポートしてい ます。D/Aコンバータは、独自のソフト接続アルゴリズムを使用 して、電源の障害を最小限に抑えます。監視機能には、8つの 電源出力チャネルと1つの電源入力チャネルの過電圧および 低電圧制限しきい値、ならびに温度の上限値と下限値が含ま れています。プログラム可能なフォルト応答により電源をディス エーブルできますが、フォルトが検出された後に再試行を任 意で選択可能です。電源をディスエーブルするフォルトが発生 すると、フォルト状態と関連の遠隔測定データをブラック・ボッ クスEEPROMに保存する機能を自動的に起動できます。内蔵 の16ビットA/Dコンバータは、8つの出力電圧、1つの入力電 圧、ダイ温度をモニタします。さらに、電流検出抵抗両端の電 圧を測定するように奇数チャネルを設定できます。プログラム 可能なウォッチドッグ・タイマは、マイクロプロセッサの動作が 膠着状態であるかどうかをモニタし、必要に応じてマイクロプ ロセッサをリセットします。1線式バスは、リニアテクノロジーの 複数のパワーシステム・マネージメント・デバイスにわたって電 源を同期します。環境設定 EEPROM により、ソフトウェアを追 加せずに自律動作がサポートされます。


▲7、LT、LTC、LTM、PolyPhase、Linear Technology および Linear のロゴはリニアテクノロジー社の登録商標です。LTpowerPlay はリニアテクノロジー社の商標です。その他すべての商標の所有権は、それぞれの所有者に帰属します。7382303、7420359、7940091 をはじめとする米国特許によって保護されています。

標準的応用例

8 チャネル PMBus パワーシステム・マネージャ

A/Dコンバータの標準的な 全未調整誤差と温度

2977fa

1

LTC2977

目次

符長	
アプリケーション	1
標準的応用例	1
概要	1
絶対最大定格	4
発注情報	
ピン配置	4
電気的特性	5
PMBusのタイミング図	9
標準的性能特性	
ピン機能	13
ブロック図	
動作	16
動作の概要	16
EEPROM	
リセット	
 書き込み保護(WP)ピン	
その他の動作	
クロックの共有	
PMBusシリアル・デジタル・インタフェース	
PMBus	
デバイスのアドレス	
コマンドの処理	
PMBusコマンドの概要	
まとめの表	
データ形式	
PMBusコマンドの説明	
アドレス指定および書き込み保護	
PAGE	
WRITE_PROTECT	
MFR_PAGE_FF_MASK	
MFR I2C BASE ADDRESS	
MFR COMMAND PLUS, MFR DATA PLUSO,	
MFR DATA PLUS1, MFR STATUS PLUS0,	
およびMFR_STATUS_PLUS1	30
コマンド・プラスおよびMfr data plus0を	
	31
Mfr data plus0を使用したピーク操作	
Mfr_data_plus0を使用したポーク操作	
OPERATION、MODE、およびEEPROMコマンド	
OPERATION	
ON_OFF_CONFIG	34
CLEAR_FAULTS	
STORE_USER_ALL & RESTORE_USER_ALL	
CAPABILITY	

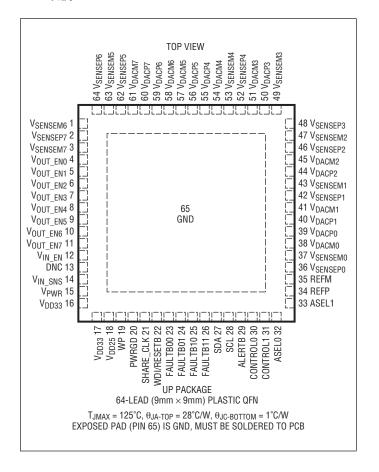
VOUT_MODE	35
出力電圧関連のコマンド	36
VOUT_COMMAND、VOUT_MAX、VOUT_MARGIN_	
HIGH、VOUT_MARGIN_LOW、VOUT_OV_FAULT_LIMIT、	
VOUT_OV_WARN_LIMIT、VOUT_UV_WARN_LIMIT、	
VOUT_UV_FAULT_LIMIT、POWER_GOOD_ON	
およびPOWER_GOOD_OFF	36
入力電圧関連のコマンド	36
VIN_ON、VIN_OFF、VIN_OV_FAULT_LIMIT、	
VIN_OV_WARN_LIMIT、VIN_UV_WARN_LIMIT、	
およびVIN_UV_FAULT_LIMIT	36
温度関連のコマンド	37
OT_FAULT_LIMIT、OT_WARN_LIMIT、	
UT_WARN_LIMIT、およびUT_FAULT_LIMIT	37
タイマ・リミット	37
TON_DELAY、TON_RISE、	
TON_MAX_FAULT_LIMIT、およびTOFF_DELAY	37
高速スーパーバイザによって測定される	
電圧のフォルト応答	38
VOUT_OV_FAULT_RESPONSEと	
VOUT_UV_FAULT_RESPONSE	
ADCによって測定された値に対するフォルト応答	39
OT_FAULT_RESPONSE、UT_FAULT_RESPONSE、	
VIN_OV_FAULT_RESPONSE、	
およびVIN_UV_FAULT_RESPONSE	
タイマ・フォルト応答	
TON_MAX_FAULT_RESPONSE	
ステータス・コマンドSTATUS BYTE:	
_	
STATUS_WORD:STATUS VOUT	
STATUS_INPUT	
STATUS_TEMPERATURE	
STATUS_CML	
STATUS_MFR_SPECIFIC	
ADCモニタ・コマンド	
READ VIN	
READ_VOUT	
READ_TEMPERATURE_1	
PMBUS_REVISION	
メーカ固有のコマンド	
MFR_CONFIG_LTC2977	
トラッキング電源のオンとオフ	
トラッキングの実装	
MFR_CONFIG_ALL_LTC2977	
MFR_FAULTBz0_PROPAGATE、	
MFR_FAULTBz1_PR0PAGATE	50

目次

MFR_PWRGD_EN	51
MFR_FAULTB00_RESPONSE、MFR_FAULTB01_	
RESPONSE、MFR_FAULTB10_RESPONSE、	
およびMFR_FAULTB11_RESPONSE	52
MFR_VINEN_OV_FAULT_RESPONSE	
MFR_VINEN_UV_FAULT_RESPONSE	
MFR_RETRY_COUNT	
MFR_RETRY_DELAY	
MFR RESTART DELAY	
MFR_VOUT_PEAK	
MFR VIN PEAK	
MFR TEMPERATURE PEAK	
MFR DAC	
MFR_POWERGOOD_ASSERTION_DELAY	
MFR_PADS	
MFR_SPECIAL_ID	
MFR SPECIAL LOT	
MFR_SPECIAL_LOT MFR VOUT DISCHARGE THRESHOLD	
MFR_COMMON	00
USER_DATA_00、USER_DATA_01、USER_DATA_02、	
USER_DATA_03、USER_DATA_04、	00
MFR_LTC_RESERVED_1、MFR_LTC_RESERVED_2	
MFR_VOUT_MIN	
MFR_VIN_MIN	
MFR_TEMPERATURE_MIN	
MFR_STATUS_2	
MFR_TELEMETRY	
ウォッチドッグの動作	64
MFR_WATCHDOG_T_FIRSTと	
MFR_WATCHDOG_T	
ユーザのEEPROM領域の一括プログラミング	
MFR_EE_UNLOCK	
MFR_EE_ERASE	66
MFR_EE_DATA	
デバイスがビジーな場合の応答	67
MFR_EEの消去および書き込みのプログラム時間	
フォルト・ログの動作	
MFR_FAULT_LOG_STORE	67
MFR_FAULT_LOG_RESTORE	67
MFR_FAULT_LOG_CLEAR	68
MFR_FAULT_LOG_STATUS	68
MFR_FAULT_LOG	69
プリケーション情報	
既要	
 LTC2977への電力供給	
コマンド・レジスタの値の設定	
シーケンス、サーボ、マージン、再起動動作	
コマンドによるデバイスのオンまたはオフ	

オン・シーケンス	77
オン状態の動作	77
サーボ・モード	77
DACモード	
マージニング	
オフ・シーケンス	
V _{OUT} のオフしきい値電圧	
MFR_RESTART_DELAYコマンドと	
CONTROLnピンによる自動再起動	78
フォルト管理	78
出力電圧の過電圧フォルトおよび低電圧フォルト	78
出力電圧の過電圧警告および低電圧警告	79
V _{IN FN} 出力の設定	79
 マルチチャネルのフォルト管理	81
複数のLTC2977間の相互接続	81
アプリケーション回路	
外付け帰還抵抗を使用したDC/DCコンバータの	
トリミングとマージニング	82
外付け帰還抵抗を使用したDC/DCコンバータでの	
4ステップの抵抗選択手順	83
TRIMピンを使用したDC/DCコンバータの	
トリミングとマージニング	84
TRIMピンを使用したDC/DCコンバータの	
2ステップでの抵抗値とDACフルスケール電圧の	
選択手順	84
電流測定	84
検出抵抗を使用した電流測定	85
インダクタのDCRを使用した電流測定	85
単相の設計例	85
マルチフェーズ電流の測定	85
マルチフェーズの設計例	86
アンチエイリアシング・フィルタに関する検討事項	86
負電圧の検出	87
USB - I ² C/SMBus/PMBus間コントローラDC1613から	
システム内のLTC2977への接続	87
設計のチェックリスト	89
LTpowerPlay:パワーシステム・マネージャ用の	
対話式GUI	89
PCBの組み立てとレイアウトに関する提案	
バイパス・コンデンサの配置	
露出パッド・ステンシルの設計	
PC基板レイアウト	
未使用のADC検出入力	
パッケージ	
改訂履歴	
標準的応用例	
関連製品	94

詳細: www.linear-tech.co.jp/LTC2977


絶対最大定格 (Note 1、2)

電源電圧:	
V _{PWR} - GND 間	0.3V ∼ 15V
V _{DD33} - GND 間	
V _{DD25} - GND 間	
デジタル入力電圧/出力電圧:	
ALERTB、SDA、SCL、CONTROLO、	
CONTROL1	0.3V ~ 5.5V
PWRGD、SHARE_CLK、	
WDI/RESETB、WP	$-0.3V \sim V_{DD33} + 0.3V$
FAULTBOO、FAULTBO1、FAULTB10、	
FAULTB11	$-0.3V \sim V_{DD33} + 0.3V$
ASEL0、ASEL1	
アナログ電圧:	
REFP	0.3V~1.35V
REFM - GND 間	0.3V ~ 0.3V
V _{IN_SNS} - GND 間	0.3V ∼ 15V
V _{SENSEP[7:0]} - GND 間	0.3V∼6V
V _{SENSEM[7:0]} - GND 間	
V _{OUT_EN[3:0]} 、V _{IN_EN} - GND 間	
V _{OUT_EN[7:4]} - GND 間	
V _{DACP[7:0]} - GND 間	
V _{DACM[7:0]} - GND 間	
動作接合部温度範囲:	
LTC2977C	0°C ~ 70°C
LTC2977I	

* 105℃を超える温度でのEEPROMの接合部温度に対する詳細なディレーティングについては「動作」のセクションを参照してください。

保存温度範囲.......__65°C ~ 150°C 最大接合部温度......125°C

ピン配置

発注情報

無鉛仕上げ	テープアンドリール	製品マーキング*	パッケージ	接合部温度範囲
LTC2977CUP#PBF	LTC2977CUP#TRPBF	LTC2977UP	64-Lead (9mm×9mm) Plastic QFN	0°C to 70°C
LTC2977IUP#PBF	LTC2977IUP#TRPBF	LTC2977UP	64-Lead (9mm×9mm) Plastic QFN	-40°C to 105°C

さらに広い動作温度範囲で規定されるデバイスについては、弊社または弊社代理店にお問い合わせください。

無鉛仕上げの製品マーキングの詳細については、http://www.linear-tech.co.jp/leadfree/をご覧ください。 テープアンドリールの仕様の詳細については、http://www.linear-tech.co.jp/lapeandree/をご覧ください。

LINEAR TECHNOLOGY

^{*}温度グレードは出荷時のコンテナのラベルで識別されます。非標準の鉛仕上げの製品の詳細については、弊社または弊社代理店にお問い合わせください。

電気的特性 ●は全動作温度範囲での規格値を意味する。それ以外はT_J = 25°Cでの値。注記がない限り、V_{PWR} = V_{IN_SNS} = 12V、V_{DD33}、V_{DD25}、REFP ピンと REFM ピンはフロート状態。C_{VDD33} = 100nF、C_{VDD25} = 100nF、C_{REF} = 100nF。

SYMBOL	PARAMETER CONDITIONS				TYP	MAX	UNITS
電源特性							
V _{PWR}	V _{PWR} Supply Input Operating Range		•	4.5		15	V
I _{PWR}	V _{PWR} Supply Current	4.5V ≤ V _{PWR} ≤ 15V, V _{DD33} Floating	•		10	13	mA
I _{VDD33}	V _{DD33} Supply Current	$3.13V \le V_{DD33} \le 3.47V, V_{PWR} = V_{DD33}$	•		10	13	mA
V _{UVLO_VDD33}	V _{DD33} Undervoltage Lockout	V _{DD33} Ramping Up, V _{PWR} = V _{DD33}	•	2.35	2.55	2.8	V
	V _{DD33} Undervoltage Lockout Hysteresis				120		mV
V _{DD33}	Supply Input Operating Range	V _{PWR} = V _{DD33}	•	3.13		3.47	V
	Regulator Output Voltage	$4.5V \le V_{PWR} \le 15V$	•	3.13	3.26	3.47	V
	Regulator Output Short-Circuit Current	V _{PWR} = 4.5V, V _{DD33} = 0V	•	75	90	140	mA
V _{DD25}	Regulator Output Voltage	$3.13V \le V_{DD33} \le 3.47V$	•	2.35	2.5	2.6	V
	Regulator Output Short-Circuit Current	V _{PWR} = V _{DD33} = 3.47V, V _{DD25} = 0V	•	30	55	80	mA
t _{INIT}	Initialization Time	Time from V _{IN} Applied Until the TON_DELAY Timer Starts			30		ms
電圧リファレ	ンス特性						
V_{REF}	Output Voltage	$V_{REF} = V_{REFP} - V_{REFM}$, $0 < I_{REFP} < 100 \mu A$			1.232		V
	Temperature Coefficient				3		ppm/°C
	Hysteresis	(Note 3)			100		ppm
ADC(A/Dコン	バータ)の特性						
V _{IN_ADC} Voltage Sense Input Range	Voltage Sense Input Range	Differential Voltage: VIN_ADC = (VSENSEPn - VSENSEMn)	•	0		6	V
		Single-Ended Voltage: V _{SENSEM} n	•	-0.1		0.1	V
	Current Sense Input Range (Odd Num-	Single-Ended Voltage: V _{SENSEP} n, V _{SENSEM} n	•	-0.1		6	V
	bered Channels Only)	Differential Voltage: V _{IN_ADC}	•	-170		170	mV
N_ADC	Voltage Sense Resolution Uses L16 Format	OV ≤ V _{IN_ADC} ≤ 6V			122		μV/LSB
	Current Sense Resolution (Odd Numbered Channels Only)	$\begin{array}{l} 0\text{mV} \leq V_{\text{IN_ADC}} < 16\text{mV (Note 11)} \\ 16\text{mV} \leq V_{\text{IN_ADC}} < 32\text{mV} \\ 32\text{mV} \leq V_{\text{IN_ADC}} < 63.9\text{mV} \\ 63.9\text{mV} \leq V_{\text{IN_ADC}} < 127.9\text{mV} \\ 127.9\text{mV} \leq V_{\text{IN_ADC}} \end{array}$			15.625 31.25 62.5 125 250		μV/LSB μV/LSB μV/LSB μV/LSB μV/LSB
TUE_ADC_ VOLT_SNS	Total Unadjusted Error	Voltage Sense Mode V _{IN_ADC} ≥ 1V	•			±0.25	% of Reading
		Voltage Sense Mode $0 \le V_{IN_ADC} \le 1V$	•			±2.5	mV
TUE_ADC_ CURR_SNS Total Unadjusted Error	Total Unadjusted Error	Current Sense Mode, Odd Numbered Channels Only, $20mV \le V_{IN_ADC} \le 170mV$	•			±0.7	% of Reading
		Current Sense Mode, Odd Numbered Channels Only, $V_{IN_ADC} \le 20mV$	•			140	μV
V _{OS_ADC}	Offset Error	Current Sense Mode, Odd Numbered Chan- nels Only	•			±35	μV
tconv_adc	Conversion Time	Voltage Sense Mode (Note 4)			6.15		ms
		Current Sense Mode (Note 4)			24.6		ms
		Temperature Input (Note 4)			24.6		ms
tupdate_adc	Maximum Update Time	Odd Numbered Channels in Current Sense Mode (Note 4)			160		ms

電気的特性 ●は全動作温度範囲での規格値を意味する。それ以外はT_J = 25°Cでの値。注記がない限り、V_{PWR} = V_{IN_SNS} = 12V、 V_{DD33}、V_{DD25}、REFPピンと REFM ピンはフロート状態。C_{VDD33} = 100nF、C_{VDD25} = 100nF、C_{REF} = 100nF。

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
C _{IN_ADC}	Input Sampling Capacitance				1		pF
f _{IN_ADC}	Input Sampling Frequency				62.5		kHz
I _{IN_ADC}	Input Leakage Current	$V_{IN_ADC} = 0V$, $0V \le V_{COMMONMODE} \le 6V$, C rent Sense Mode	ur-			±0.5	μА
	Differential Input Current	V _{IN_ADC} = 0.17V, Current Sense Mode	•		80	250	nA
		V _{IN_ADC} = 6V, Voltage Sense Mode	•		10	15	μА
DAC の出力特	性						
N_V _{DACP}	Resolution				10		Bits
V _{FS_VDACP}	Full-Scale Output Voltage (Program- mable)	DAC Code = 0x3FF Buffer Gain Setting_ DAC Polarity = 1 Buffer Gain Setting_		1.32 2.53	1.38 2.65	1.44 2.77	V
INL_V _{DACP}	Integral Nonlinearity	(Note 5)	•			±2	LSB
DNL_V _{DACP}	Differential Nonlinearity	(Note 5)	•			±2.4	LSB
Vos_vdacp	Offset Voltage	(Note 5)	•			±10	mV
V_{DACP}	Load Regulation (V _{DACPn} – V _{DACMn})	$V_{DACPn} = 2.65V$, I_{VDACPn} Sourcing = 2mA			100		ppm/mA
		$V_{DACPn} = 0.1V$, I_{VDACPn} Sinking = 2mA			100		ppm/mA
	PSRR (V _{DACPn} – V _{DACMn})	DC: $3.13V \le V_{DD33} \le 3.47V$, $V_{PWR} = V_{DD33}$	3		60		dB
		100mV Step in 20ns with 50pF Load			40		dB
	DC CMRR (V _{DACPn} – V _{DACMn})	$-0.1V \le V_{DACMn} \le 0.1V$			60		dB
	Leakage Current	V_{DACPn} Hi-Z, $0V \le V_{DACPn} \le 6V$	•			±100	nA
	Short-Circuit Current Low	V _{DACPn} Shorted to GND	•	-10		-4	mA
	Short-Circuit Current High	V _{DACPn} Shorted to V _{DD33}	•	4		10	mA
Cout	Output Capacitance	VDACPn Hi-Z			10		pF
ts_vdacp	DAC Output Update Rate	Fast Servo Mode			250		μs
電圧スーパー	-バイザ特性						
V _{IN_VS}	Input Voltage Range (Programmable)	$V_{IN_VS} = (V_{SENSEPn} - Low Resolution Move V_{SENSEMn})$		0		6 3.8	V
		Single-Ended Voltage: V _{SENSEMn}	•	-0.1		0.1	V
N_VS	Voltage Sensing Resolution	0V to 3.8V Range: High Resolution Mode			4		mV/LSB
		0V to 6V Range: Low Resolution Mode			8		mV/LSB
TUE_VS	Total Unadjusted Error	$2V \le V_{IN_VS} \le 6V$, Low Resolution Mode	•			±1.25	%
		$1.5V < V_{IN_VS} \le 3.8V$, High Resolution Mo	de			±1.0	%
		$0.8V \le V_{IN_VS} \le 1.5V$, High Resolution Mo	de •			±1.5	%
ts_vs	Update Rate				12.21		μs
V _{IN_SNS} 入力物	特性						
V _{VIN_SNS}	V _{IN_SNS} Input Voltage Range		•	0		15	V
R _{VIN_SNS}	V _{IN_SNS} Input Resistance		•	70	90	110	kΩ
TUE _{VIN_SNS}	VIN_ON, VIN_OFF Threshold Total	$3V \le V_{VIN_SNS} \le 8V$	•			±2.0	%
	Unadjusted Error	Vvin_sns > 8V	•			±1.0	%
	READ_VIN Total Unadjusted Error	$3V \le V_{VIN_SNS} \le 8V$	•			±1.5	%
		V _{VIN_SNS} > 8V	•			±1.0	%

LINEAD TECHNOLOGY

電気的特性 ●は全動作温度範囲での規格値を意味する。それ以外はT_J = 25°Cでの値。注記がない限り、V_{PWR} = V_{IN_SNS} = 12V、 V_{DD33}、V_{DD25}、REFPピンと REFM ピンはフロート状態。C_{VDD33} = 100nF、C_{VDD25} = 100nF、C_{REF} = 100nF。

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DACソフト接	続コンパレータ特性						
V _{OS_CMP}	Offset Voltage	$V_{DACPn} = 0.2V$	•		±1	±18	mV
		$V_{DACPn} = 1.3V$	•		±2	±26	m۷
		V _{DACPn} = 2.65V	•		±3	±52	m۷
温度センサ特	性						
TUE_TS	Total Unadjusted Error				±1		°C
V _{OUT} イネーフ	ブル出力(V _{OUT_EN} [3:0])特性						
V _V OUT_EN <i>n</i>	Output High Voltage (Note 10)	$I_{VOUT_ENn} = -5\mu A$, $V_{DD33} = 3.3V$	•	10	12.5	14.7	V
I _{VOUT_ENn}	Output Sourcing Current	V _{VOUT_ENn} Pull-Up Enabled, V _{VOUT_ENn} = 1V	•	- 5	-6	-8	μΑ
	Output Sinking Current	Strong Pull-Down Enabled, V _{VOUT_ENn} = 0.4V	•	3	5	8	mA
		Weak Pull-Down Enabled, V _{VOUT_ENn} = 0.4V	•	33	50	60	μА
	Output Leakage Current	Internal Pull-Up Disabled, $0V \le V_{VOUT_ENn} \le 15V$	•			±1	μА
V _{OUT} イネーフ	ブル出力(V _{OUT_EN} [7:4])特性						
IVOUT_ENn	Output Sinking Current	Strong Pull-Down Enabled, Vout_ENn = 0.1V	•	3	6	9	mA
	Output Leakage Current	$0V \le V_{VOUT_ENn} \le 6V$	•			±1	μА
V _{IN} イネーブル	ル出力(V _{IN_EN})特性						
V _{VIN_EN}	Output High Voltage	$I_{VIN_EN} = -5\mu A$, $V_{DD33} = 3.3V$	•	10	12.5	14.7	V
I _{VIN_EN}	Output Sourcing Current	V _{IN_EN} Pull-Up Enabled, V _{VIN_EN} = 1V	•	-5	-6	-8	μΑ
	Output Sinking Current	V _{VIN_EN} = 0.4V	•	3	5	8	mA
	Leakage Current	Internal Pull-Up Disabled, 0V ≤ V _{VIN_EN} ≤ 15V	•			±1	μА
EEPROM 特性	Ė						
Endurance	(Notes 6, 9)	0°C < T _J < 85°C During EEPROM Write Operations	•	10,000			Cycles
Retention	(Notes 6, 9)	T _J < 105°C	•	20			Years
tmass_write	Mass Write Operation Time (Note 7)	STORE_USER_ALL, 0°C < T _J < 85°C During EEPROM Write Operations	•		440	4100	ms
デジタル入力	SCL、SDA、CONTROLO、CONTROL1、WDI/F	RESETB、FAULTBOO、FAULTBO1、FAULTB10、FA	ULTB	11、WP			
V _{IH}	High Level Input Voltage		•	2.1			V
V _{IL}	Low Level Input Voltage		•			1.5	V
V _{HYST}	Input Hysteresis				20		m۷
I _{LEAK}	Input Leakage Current	$0V \le V_{PIN} \le 5.5V$, SDA, SCL, CONTROL _n Pins Only	•			±2	μА
		$0V \le V_{PIN} \le V_{DD33} + 0.3V$, FAULTB _{Zn} , WDI/RESETB, WP Pins Only	•			±2	μΑ
t _{SP}	Pulse Width of Spike Suppressed	FAULTB _{zn} , CONTROL _n Pins Only			10		μя
		SDA, SCL Pins Only			98		ns
tfault_min	Minimum Low Pulse Width for Externally Generated Faults			110			ms
tresetb	Pulse Width to Assert Reset	V _{WDI/RESETB} ≤ 1.5V	•	300			μs
t _{WDI}	Pulse Width to Reset Watchdog Timer	V _{WDI/RESETB} ≤ 1.5V	•	0.3		200	μѕ
							2977fa

7

電気的特性 ●は全動作温度範囲での規格値を意味する。それ以外はT_J = 25°Cでの値。注記がない限り、V_{PWR} = V_{IN_SNS} = 12V、 V_{DD33}、V_{DD25}、REFPピンと REFM ピンはフロート状態。C_{VDD33} = 100nF、C_{VDD25} = 100nF、C_{REF} = 100nF。

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
f _{WDI}	Watchdog Interrupt Input Frequency		•			1	MHz
CIN	Digital Input Capacitance				10		pF
デジタル入力	SHARE_CLK						
V _{IH}	High Level Input Voltage		•	1.6			V
V _{IL}	Low Level Input Voltage		•			0.8	V
fshare_clk_in	Input Frequency Operating Range		•	90		110	kHz
t _{LOW}	Assertion Low Time	V _{SHARE_CLK} < 0.8V	•	0.825		1.1	μs
trise	Rise Time	VSHARE_CLK < 0.8V to VSHARE_CLK > 1.6V	•			450	ns
I _{LEAK}	Input Leakage Current	0V ≤ V _{SHARE_CLK} ≤ V _{DD33} + 0.3V	•			±1	μА
CIN	Input Capacitance				10		pF
デジタル出力	SDA、ALERTB、PWRGD、SHARE_CLK、FAU	LTB00、FAULTB01、FAULTB10、FAULTB11	•				
V _{0L}	Digital Output Low Voltage	I _{SINK} = 3mA	•			0.4	V
fshare_clk_out	Output Frequency Operating Range	5.49kΩ Pull-Up to V _{DD33}	•	90	100	110	kHz
デジタル入力	ASELO, ASEL1		,				
V _{IH}	Input High Threshold Voltage		•	V _{DD33} – 0.5			V
V _{IL}	Input Low Threshold Voltage		•			0.5	V
I _{IH,IL}	High, Low Input Current	ASEL[1:0] = 0, V _{DD33}	•			±95	μА
I _{IH, Z}	Hi-Z Input Current		•			±24	μА
CIN	Input Capacitance				10		pF
シリアル・バス	くのタイミング特性		•				
f _{SCL}	Serial Clock Frequency (Note 8)		•	10		400	kHz
t _{LOW}	Serial Clock Low Period (Note 8)		•	1.3			μs
thigh	Serial Clock High Period (Note 8)		•	0.6			μs
t _{BUF}	Bus Free Time Between Stop and Start (Note 8)		•	1.3			μs
t _{HD,STA}	Start Condition Hold Time (Note 8)		•	600			ns
t _{SU,STA}	Start Condition Setup Time (Note 8)		•	600			ns
t _{SU,STO}	Stop Condition Setup Time (Note 8)		•	600			ns
t _{HD,DAT}	Data Hold Time (LTC2977 Receiving Data) (Note 8)		•	0			ns
	Data Hold Time (LTC2977 Transmitting Data) (Note 8)		•	300		900	ns
t _{SU,DAT}	Data Setup Time (Note 8)		•	100			ns
t _{SP}	Pulse Width of Spike Suppressed (Note 8)				98		ns
t _{TIMEOUT_BUS}	Time Allowed to Complete any PMBus Command After Which Time SDA Will Be Released and Command Terminated	Longer Timeout = 0 Longer Timeout = 1	•		25 200	35 280	ms ms
 その他のデジ	タル・タイミング特性			,			

LINEAR

電気的特性

Note 1: 絶対最大定格に記載された値を超えるストレスはデバイスに永続的損傷を与える可能性がある。長期にわたって絶対最大定格に曝すと、デバイスの信頼性と寿命に悪影響を与える恐れがある。

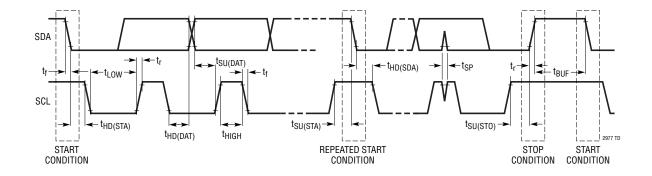
Note 2: デバイスのピンに流れ込む電流はすべて正。デバイスのピンから流れ出す電流はすべて負。注記がない限り、すべての電圧はグランドを基準にしている。VDD33 ピンのみから電力供給される場合は、VPWRと VDD33 ピンを接続する。

Note 3: 出力電圧のヒステリシスは、デバイスがそれまでに置かれていた温度が高いか低いかによってパッケージ内部の応力が異なるために生じる。出力電圧は常に25°Cで測定されるが、デバイスは次の測定前に105°Cまたは-40°Cの温度環境に置かれる。ヒステリシスは、温度変化の二乗にほぼ比例する。

Note 4: 任意のチャネルでの A/D 変換の各回間の時間 (A/D コンパータの待ち時間) は、次のようにして求められる。36.9ms + (6.15ms • 低分解能モードで構成された A/D コンパータ・チャネルの数) + (24.6ms • 高分解能モードで構成された A/D コンパータ・チャネルの数)

Note 5: 非直線性は、最大オフセット仕様以上の最初のコードからフルスケールのコードである1023までで定義される。

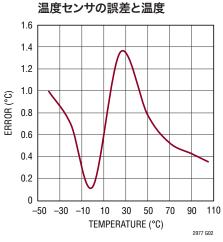
Note 6: EEPROMの書き換え耐性および保持時間は、設計、特性評価および統計的プロセス 制御との相関で保証されている。保持時間の最小規格値は、EEPROMの書き換え回数が書き 換え耐性規格の最小値より少ないデバイスに適用される。 Note 7: 一括書き込み操作の実行中、LTC2977はMFR_COMMON以外のPMBusコマンドにアクノリッジを返さない。これにはSTORE_USER_ALLコマンドやMFR_FAULT_LOG_STOREコマンド、またはフォルトによってオフするチャネルによって開始されるフォルト・ログの保管が含まれる。

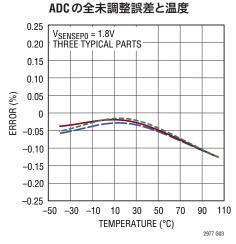

Note 8: SCL と SDA の最大容量性負荷、 C_B は 400 pF。 データとクロックの立ち上がり時間 (t_f) と立ち下がり時間 (t_f) は次のとおり: $(20+0.1 \cdot C_B)$ $(ns) < t_f < 300 ns$ $C_B = 1$ 本のバスラインの容量 (pF)。 SCL と SDA の外部プルアップ電圧、 V_{10} は $3.13 V_{10} < 5.5 V_{10}$ 。

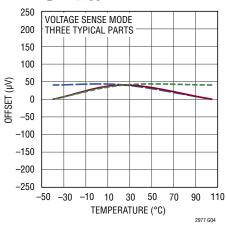
Note 9: EEPROM の書き換え耐性および保持時間は T」 > 105℃では低下する。

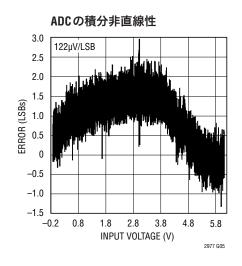
Note 10:出力イネーブル・ピンにはVDD33ピンから電荷が注入される。

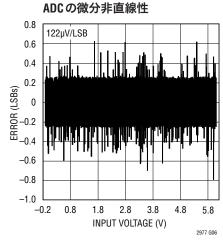
Note 11: 電流の検出分解能はL11フォーマットと返される値の mV 単位で決定される。たとえば、フルスケールの値である170mV の返すL11値は0xF2A8 = $680 \cdot 2^{-2}$ = 170。これがL11 の仮数部をオーバーフローすることなくこの値を表現できる最小の範囲で、この範囲での LLSB の分解能は 2^{-2} mV = 250 μ V となる。これより順次低くなる範囲は、LSB の大きさを1段階ごとに半分にして分解能を向上する。

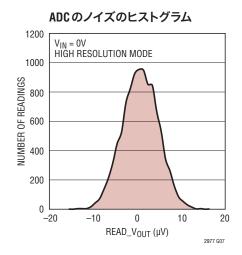

PMBus のタイミング図

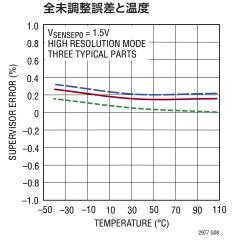


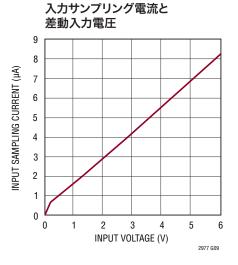

標準的性能特性

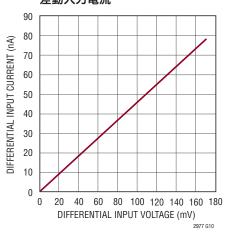




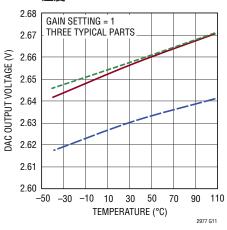



ADCのゼロ・コード中心オフセット 電圧と温度 250 VOLTAGE SENSE MODE 200 THREE TYPICAL PARTS 150

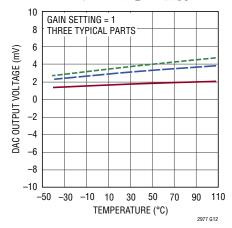


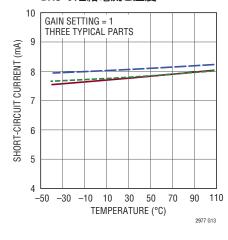


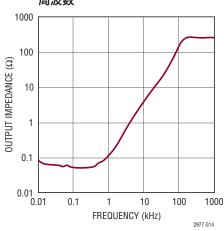
電圧スーパーバイザの

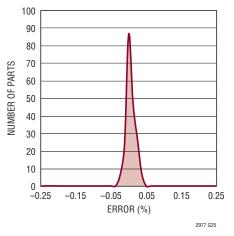


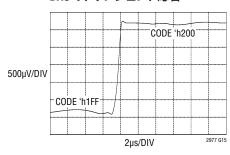
標準的性能特性

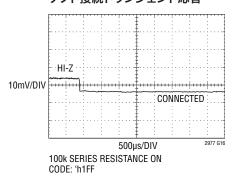

ADCの高分解能モードでの 差動入力電流

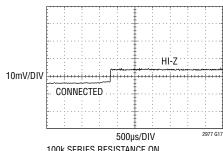

DACのフルスケール出力電圧と 温度


DACのオフセット電圧と温度

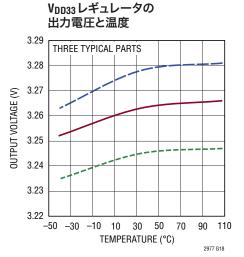

DACの短絡電流と温度

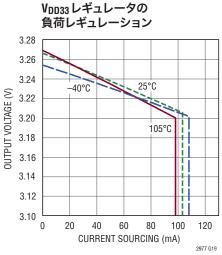

DACの出力インピーダンスと 周波数

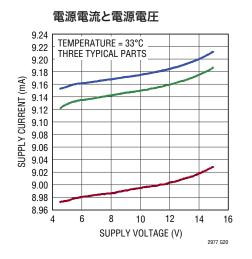

閉ループ・サーボ制御の精度

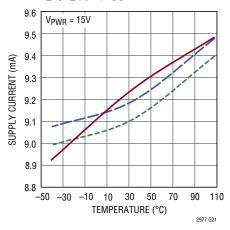

DACの1LSBのコード変化に対する DACのトランジェント応答

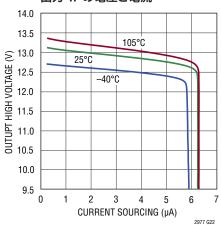
高インピーダンス状態から オン状態に遷移するときのDACの ソフト接続トランジェント応答


オン状態から高インピーダンス 状態に遷移するときのDACの ソフト接続トランジェント応答

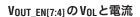


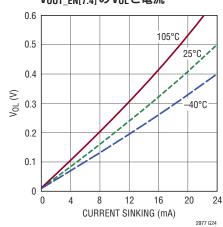

100k SERIES RESISTANCE ON CODE: 'h1FF


標準的性能特性




電源電流と温度

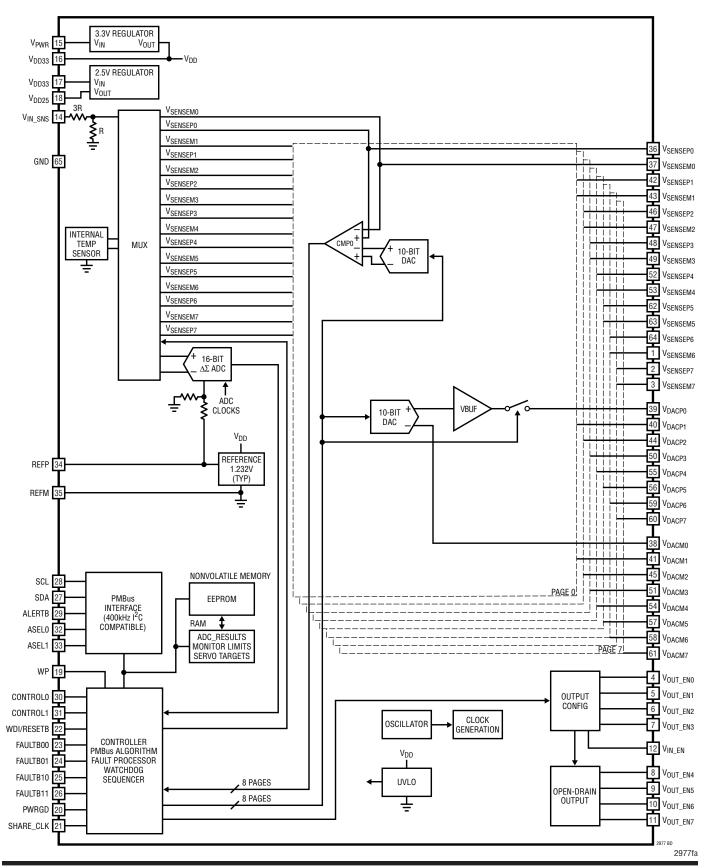



V_{OUT_EN[3:0]} および V_{IN_EN} の 出力"H"の電圧と電流

V_{OUT_EN[3:0]}およびV_{IN_EN}の 出力V_{OL}と電流

ピン機能

ピン名称	ピン番号	ピンの種類	説明
V _{SENSEM6}	1*	In	DC/DC Converter Differential (-) Output Voltage-6 Sensing Pin
V _{SENSEP7}	2*	In	DC/DC Converter Differential (+) Output Voltage or Current-7 Sensing Pin
V _{SENSEM7}	3*	In	DC/DC Converter Differential (-) Output Voltage or Current-7 Sensing Pin
V _{OUT_ENO}	4	Out	DC/DC Converter Enable-0 Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA
V _{OUT_EN1}	5	Out	DC/DC Converter Enable-1 Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA
V _{OUT_EN2}	6	Out	DC/DC Converter Enable-2 Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA
V _{OUT_EN3}	7	Out	DC/DC Converter Enable-3 Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA
V _{OUT_EN4}	8	Out	DC/DC Converter Open-Drain Pull-Down Output-4
V _{OUT_EN5}	9	Out	DC/DC Converter Open-Drain Pull-Down Output-5
V _{OUT_EN6}	10	Out	DC/DC Converter Open-Drain Pull-Down Output-6
V _{OUT_EN7}	11	Out	DC/DC Converter Open-Drain Pull-Down Output-7
VIN_EN	12	Out	DC/DC Converter V _{IN} ENABLE Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA
DNC	13	Do Not Connect	Do Not Connect to This Pin
V _{IN_SNS}	14	In	V _{IN} SENSE Input.This Voltage is Compared Against the V _{IN} On and Off Voltage Thresholds in Order to Determine When to Enable and Disable, Respectively, the Downstream DC/DC Converters.
V _{PWR}	15	In	V_{PWR} Serves as the Unregulated Power Supply Input to the Chip (4.5V to 15V). If a 4.5V to 15V Supply Voltage is Unavailable, Short V_{PWR} to V_{DD33} and Power the Chip Directly from a 3.3V Supply. Bypass to GND with 0.1 μ F Capacitor.
V _{DD33}	16	In/Out	If Shorted to V_{PWR} , it Serves as 3.13V to 3.47V Supply Input Pin.Otherwise, it is a 3.3V Internally Regulated Voltage Output (Use 0.1 μ F Decoupling Capacitor to GND).
V _{DD33}	17	In	Input for Internal 2.5V Sub-Regulator.Short This Pin to Pin 16.
V _{DD25}	18	In/Out	2.5V Internally Regulated Voltage Output.Bypass to GND with a 0.1µF Capacitor.
WP	19	In	Digital Input.Write-Protect Input Pin, Active High.
PWRGD	20	Out	Power Good Open-Drain Output.Indicates When Outputs are Power Good.Can be Used as System Power-On Reset.
SHARE_CLK	21	In/Out	Bidirectional Clock Sharing Pin.Connect a 5.49k Pull-Up Resistor to V _{DD33} .
WDI/RESETB	22	In	Watchdog Timer Interrupt and Chip Reset Input.Connect a 10k Pull-Up Resistor to V _{DD33} .Rising Edge Resets Watchdog Counter.Holding This Pin Low for More Than t _{RESETB} Resets the Chip.
FAULTB00	23	In/Out	Open-Drain Output and Digital Input.Active Low Bidirectional Fault Indicator-00.Connect a 10k Pull-Up Resistor to V _{DD33} .
FAULTB01	24	In/Out	Open-Drain Output and Digital Input.Active Low Bidirectional Fault Indicator-01.Connect a 10k Pull-Up Resistor to V _{DD33} .
FAULTB10	25	In/Out	Open-Drain Output and Digital Input.Active Low Bidirectional Fault Indicator-10.Connect a 10k Pull-Up Resistor to V _{DD33} .
FAULTB11	26	In/Out	Open-Drain Output and Digital Input.Active Low Bidirectional Fault Indicator-11.Connect a 10k Pull-Up Resistor to V _{DD33} .
SDA	27	In/Out	PMBus Bidirectional Serial Data Pin
SCL	28	In	PMBus Serial Clock Input Pin (400kHz Maximum)
ALERTB	29	Out	Open-Drain Output.Generates an Interrupt Request in a Fault/Warning Situation.
CONTROL0	30	In	Control Pin O Input
CONTROL1	31	In	Control Pin 1 Input
ASEL0	32	In	Ternary Address Select Pin O Input.Connect to V _{DD33} , GND or Float to Encode 1 of 3 Logic States.
ASEL1	33	In	Ternary Address Select Pin 1 Input.Connect to V _{DD33} , GND or Float to Encode 1 of 3 Logic States.
REFP	34	Out	Reference Voltage Output.Needs 0.1µF Decoupling Capacitor to REFM.
REFM	35	Out	Reference Return Pin.Needs 0.1µF Decoupling Capacitor to REFP.
V _{SENSEP0}	36*	In	DC/DC Converter Differential (+) Output Voltage-0 Sensing Pin
V _{SENSEM0}	37*	In	DC/DC Converter Differential (-) Output Voltage-0 Sensing Pin
V _{DACM0}	38	Out	DACO Return.Connect to Channel O DC/DC Converter's GND Sense or Return to GND.
V _{DACP0}	39	Out	DACO Output
V _{DACP1}	40	Out	DAC1 Output



ピン機能

ピン名称	ピン番号	ピンの種類	説明
V _{DACM1}	41	Out	DAC1 Return.Connect to Channel 1 DC/DC Converter's GND Sense or Return to GND.
VSENSEP1	42*	In	DC/DC Converter Differential (+) Output Voltage or Current-1 Sensing Pins
V _{SENSEM1}	43*	In	DC/DC Converter Differential (-) Output Voltage or Current-1 Sensing Pins
V _{DACP2}	44	Out	DAC2 Output
V _{DACM2}	45	Out	DAC2 Return.Connect to Channel 2 DC/DC Converter's GND Sense or Return to GND.
VSENSEP2	46*	In	DC/DC Converter Differential (+) Output Voltage-2 Sensing Pin
VSENSEM2	47*	In	DC/DC Converter Differential (-) Output Voltage-2 Sensing Pin
V _{SENSEP3}	48*	In	DC/DC Converter Differential (+) Output Voltage or Current-3 Sensing Pins
V _{SENSEM3}	49*	In	DC/DC Converter Differential (-) Output Voltage or Current-3 Sensing Pins
V _{DACP3}	50	Out	DAC3 Output
V _{DACM3}	51	Out	DAC3 Return.Connect to Channel 3 DC/DC Converter's GND Sense or Return to GND.
VSENSEP4	52*	In	DC/DC Converter Differential (+) Output Voltage-4 Sensing Pin
VSENSEM4	53*	In	DC/DC Converter Differential (-) Output Voltage-4 Sensing Pin
V _{DACM4}	54	Out	DAC4 Return.Connect to Channel 4 DC/DC Converter's GND Sense or Return to GND.
V _{DACP4}	55	Out	DAC4 Output
V _{DACP5}	56	Out	DAC5 Output
√DACM5	57	Out	DAC5 Return.Connect to Channel 5 DC/DC Converter's GND Sense or Return to GND.
√DACM6	58	Out	DAC6 Return.Connect to Channel 6 DC/DC Converter's GND Sense or Return to GND.
/ _{DACP6}	59	Out	DAC6 Output
V _{DACP7}	60	Out	DAC7 Output
V _{DACM7}	61	Out	DAC7 Return.Connect to Channel 7 DC/DC Converter's GND Sense or Return to GND.
VSENSEP5	62*	In	DC/DC Converter Differential (+) Output Voltage or Current-5 Sensing Pins
VSENSEM5	63*	In	DC/DC Converter Differential (-) Output Voltage or Current-5 Sensing Pins
VSENSEP6	64*	In	DC/DC Converter Differential (+) Output Voltage-6 Sensing Pin
GND	65	Ground	Exposed Pad, Must be Soldered to PCB

GND65GroundExposed Pad, Must be Soldered to PCB*未使用のVSENSEPn ピン、VSENSEMn ピン、VDACMn ピンはGND に接続する必要があります。

ブロック図

動作の概要

LTC2977は、PMBus準拠のプログラム可能なパワーシステム・コントローラ、モニタ、シーケンサ、および電圧スーパーバイザであり、以下の動作を行うことができます。

- PMBus 互換のプログラミング・コマンドを受け取る。
- DC/DCコンバータの入力電圧および出力電圧/電流を PMBusインタフェースを介して測定する。
- 調整ピンで出力電圧を設定するDC/DCコンバータや、外部抵抗での帰還回路網を使用して出力電圧を設定するDC/DCコンバータの出力を制御する。
- PMBusのプログラミング入力ピンと制御入力ピンを介して DC/DCコンバータの起動シーケンスを制御する。時間ベースのシーケンス制御とトラッキングのシーケンス制御が両方ともサポートされている。
- 閉ループのサーボ動作モードでは、DC/DCコンバータの 出力電圧をPMBusのプログラミングにより(通常 0.02% 刻 みで)トリミングする。
- DC/DCコンバータの出力電圧をPMBusでプログラムされた制限値にマージニングする。
- マージンDACに直接アクセスすることにより、マニュアル 動作モードではDC/DCコンバータの出力電圧のトリミング やマージニングを行うことができる。
- DC/DCコンバータの出力電圧、入力電圧、LTC2977のダイ温度がPMBusでプログラムされた制限値に比べて過大か過小かを監視して、該当するフォルトや警告を生成する。
- 動作を無期限に継続、プログラム可能なデグリッチ時間 の経過後にラッチオフ、直ちにラッチオフ、TOFF_DELAY 後にシーケンス制御を解除のいずれかによってフォルト状態に応答する。再試行モードを使用して、ラッチオフ状態から自動的に回復することができる。イネーブルされている場合は、再試行の数(0から6または無限大)はすべてのページについて同じで、MFR_RETRY_COUNTでプログラムされる。
- オプションで、DC/DCコンバータの出力電圧が初期マージンまたは公称目標値に達したら、トリミングを停止する。目標値がVoutの警告制限値から外れた場合、必要に応じてサーボ制御を再開できる。

- PMBusのプログラミングにより、コマンド・レジスタの内容をCRC付きでEEPROMに格納する。
- PMBus でプログラミングするか、起動時に V_{DD33} が印加されたときに EEPROM の内容を復元する。
- PMBus インタフェースおよびパワーグッド出力によって DC/DC コンバータの出力電圧の状態を通知する。
- サポートされているPMBusフォルトと警告に応答して ALERTBピンをアサートすることにより、割り込み要求を生成する。
- FAULTBz0ピンとFAULTBz1ピンに接続されているすべて のDC/DCコンバータに対してシステム全体にわたるフォルト応答を調整する。
- SHARE_CLKピンを使用して複数のデバイスのシーケンス 遅延やシャットダウンを同期させる。
- ソフトウェアおよびハードウェアによるコマンド・レジスタへの書き込みを禁止する。
- 出力電圧のOVフォルトおよびUVフォルトに応答して、監視対象DC/DCコンバータの入力電圧をディスエーブルする。
- フォルトによるオフ状態に応答して、遠隔測定データおよび ステータス・データをEEPROMに記録する。
- プログラム可能なウォッチドッグ・タイマを使用して外部マイクロコントローラの動作が膠着状態かどうかを監視し、必要に応じてマイクロコントローラをリセットする。
- 電源のオン/オフ・サイクル後、プログラム可能な時間 (MFR_RESTART_DELAY) か経過し、出力がプログラム可能なしきい値電圧(MFR_VOUT_DISCHARGE_THRESHOLD)より低くなるまで、DC/DCコンバータがオン状態に再移行しないようにする。
- 入力電圧、出力電圧、および温度の測定最小値と測定最大値を記録する。
- RAM領 域(MFR_EE_UNLOCK、MFR_EE_ERASE、MFR_EE_DATA)を変更することなく、ユーザのEEPROM データに直接アクセスする。社内での一括プログラミングを容易にする。

LINEAR TECHNOLOGY

EEPROM

LTC2977は、構成設定とフォルト・ログの情報を格納する EEPROM(不揮発性メモリ)を内蔵しています。EEPROMの持 続時間、保持時間、一括書き込み動作時間は全動作接合部 温度範囲で規定されています。「電気的特性」と「絶対最大定 格」のセクションを参照してください。

 $T_J = 105$ °Cより高い温度での非破壊動作は可能ですが、電気的特性は保証されておらず、EEPROMの特性は低下します。

105°Cより高い温度でEEPROMを動作させると、保持特性の低下が生じる可能性があります。フォルト・ログ機能は、高温で発生する場合があるシステム問題のデバッグに役立ちますが、この機能による書き込み先はEEPROMのフォルト・ログ領域だけです。これらのレジスタへの不定期の書き込みが105°Cを超えて行われると、フォルト・ログのデータ保持特性がわずかに低下することがあります。

 T_J が 85° Cを超える場合は、 $STORE_USER_ALL$ または一括 プログラミングを使用して、EEPROMに書き込まないことを推 奨します。

105°Cを超える温度でのEEPROMの保持特性の低下は、次式を使って無次元の加速係数を計算することにより、近似することができます。

$$AF = e^{\left[\left(\frac{Ea}{k}\right) \cdot \left(\frac{1}{T_{USE} + 273} - \frac{1}{T_{STRESS} + 273}\right)\right]}$$

ここで、

AF=加速係数

Ea = 活性化エネルギー= 1.4eV

 $k = 8.625 \times 10^{-5} \text{ eV/°K}$

Tuse = 105℃の規定接合部温度

T_{STRFSS} = 実際の接合部温度(℃)

例:接合部温度125℃で10時間動作させた場合の保持特性への影響を計算します。

T_{STRESS} = 125°C

 $T_{USE} = 105^{\circ}C$

AF = 8.65

105°Cでの等価動作時間=86.5時間。

したがって、125°Cの接合部温度で10時間動作させた結果、EEPROMの全保持時間は86.5時間減少しました。ただし、最大接合部温度105°CでのEEPROMの全保持時間定格175,200時間に比べると、オーバーストレスの影響は無視できます。

リセット

WDI/RESETBピンを"L"に保つ時間をt_{RESETB}より長くすると、LTC2977はパワーオン・リセット状態に移行します。パワーオン・リセット状態の間、デバイスはI²Cバス上では通信しません。WDI/RESETBピンでの後続の立ち上がりエッジの後、LTC2977はそのパワーオン・シーケンスを、EEPROMに格納されているユーザ設定に従って実行します。10kの抵抗を使用して、WDI/RESETBをVDD33に接続します。WDI/RESETBピンには256µsのデグリッチ・フィルタが内蔵されているので、このピンにフィルタ容量を追加するのは推奨されません。

書き込み保護(WP)ピン

WPピンを使用すると、LTC2977の構成レジスタへの書き込みを禁止できます。WPピンはアクティブ"H"で、アサートされた場合はレベル2の保護を実現します。WRITE_PROTECT、PAGE、MFR_EE_UNLOCK、STORE_USER_ALL、OPERATION、MFR_PAGE_FF_MASK、CLEAR_FAULTSコマンド以外のすべての書き込みはディスエーブルされます。WPピンとWRITE_PROTECTコマンドの間の最も制限された設定は無効になります。たとえば、WP=1とWRITE_PROTECT=0x80の場合は、WRITE_PROTECTコマンドの方が制限されているので無効になります。

その他の動作

クロックの共有

複数のLTC PMBus デバイスのオープンドレインの SHARE_ CLK 入力/出力をプルアップ抵抗にワイヤード OR 接続することにより、1つのアプリケーションで複数のデバイスのクロック

17

を同期させることができます。この場合には最速のクロックが 優先されてすべてのLTC2977を同期させます。

SHARE_CLKはオン、オフのV_{IN}への依存性を複数のデバイスにわたって同期することに使用することもできます。このためには、MFR_CONFIG_ALL_LTC2977レジスタのMfr_config_all_vin_share_enableビットをセットします。このように設定された場合、入力電圧が不十分なためにデバイスがオフになっているとデバイスはSHARE_CLKを"L"に保ち、そのSHARE_CLKが"L"になっていることを検出するとすぐに、短いデグリッチ期間の後、デバイスはすべてのチャネルをディスエーブルします。SHARE_CLKピンの電圧が上昇可能になると、デバイスはソフトスタート・シーケンスを開始することで応答します。この場合には最も遅いVIN_ON検出が優先されてその他のデバイスをそのソフトスタート・シーケンスに同期させます。

PMBus シリアル・デジタル・インタフェース

LTC2977は、標準のPMBusシリアル・バス・インタフェースを使用してホスト(マスタ)と通信します。バス信号相互のタイミング関係をPMBusタイミング図に示します。バスを使用しない場合、2本のバスライン(SDAとSCL)は"H"にする必要があります。これらのラインには外付けのプルアップ抵抗または電流源が必要です。

LTC2977はスレーブ・デバイスです。マスタは以下のフォーマットを使用してLTC2977と通信することができます。

- マスタ・トランスミッタ、スレーブ・レシーバ
- マスタ・レシーバ、スレーブ・トランスミッタ

以下のSMBusプロトコルがサポートされています。

- バイト書き込み、ワード書き込み、バイト送信
- バイト読み出し、ワード読み出し、ブロック読み出し
- アラート応答アドレス

前述のSMBusプロトコルを図1~12に示します。すべてのトランザクションがPEC (パリティ・エラー・チェック)とGCP (グループ・コマンド・プロトコル)に対応しています。ブロック読み出しは、戻り値のデータとして255バイトをサポートします。したがって、Mfr_config_all_longer_pmbus_timeout 設定を使用してPMBus タイムアウトを延長することができます。

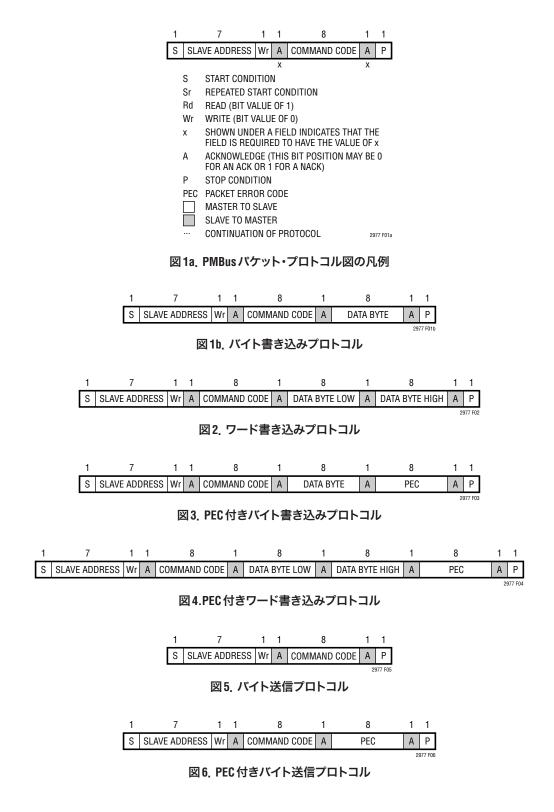
LTC2977は、STORE_USER_ALL、RESTORE_USER_ALL、MFR_CONFIG_LTC2977をまだ処理中か、フォルト・ログ・データがEEPROMに書き込まれている場合、MFR_COMMON以外のPMBusコマンドに対してはアクノリッジを返しません。この状況では、Status_word_busyがセットされます。

PMBus

PMBus は電力変換デバイスとの通信方法を定義する業界標準です。PMBus は業界標準のSMBusシリアル・インタフェースとPMBus コマンド言語で構成されています。

PMBus 2線インタフェースはSMBusの拡張版です。SMBusは、 I^2 Cを基盤として構築され、両者の間にはタイミング、DCパラメータ、プロトコルにいくつかのわずかな差異が存在します。SMBusプロトコルはバスのハングを防ぐタイムアウトと、データの完全性を保証するオプションのパケット・エラー・チェック(PEC)を備えているので、SMBusプロトコルはシンプルな I^2 Cのバイト・コマンドより堅牢です。通常、 I^2 C通信用に構成できるマスタ・デバイスは、ハードウェアまたはファームウェアにわずかな変更を加えるか、まったく変更することなくPMBus通信に使用できます。

PMBusで適用されたSMBusに対する軽微な拡張や例外については、『PMBus Specification Part 1 Revision 1.1』の第5節「Transport」を参照してください。これは、次で閲覧することができます。


www.pmbus.org

SMBus $\& I^2C$ の 相 違点については、『System Management Bus (SMBus) Specification Version 2.0』の付録 B「Differences Between SMBus and I^2C 」を参照してください。これは、次で閲覧することができます。

www.smbus.org

 I^2 Cコントローラを使用してPMBusデバイスと通信する場合は、コントローラが停止命令を出すことなく1バイトのデータを書き込むことができることが重要です。こうすると、コントローラは開始コマンドのバイト書き込みと I^2 Cによる読み出しを連結することによって、PMBus 読み出しコマンドを繰り返し開始することを適切に設定できます。

LINEAR TECHNOLOGY

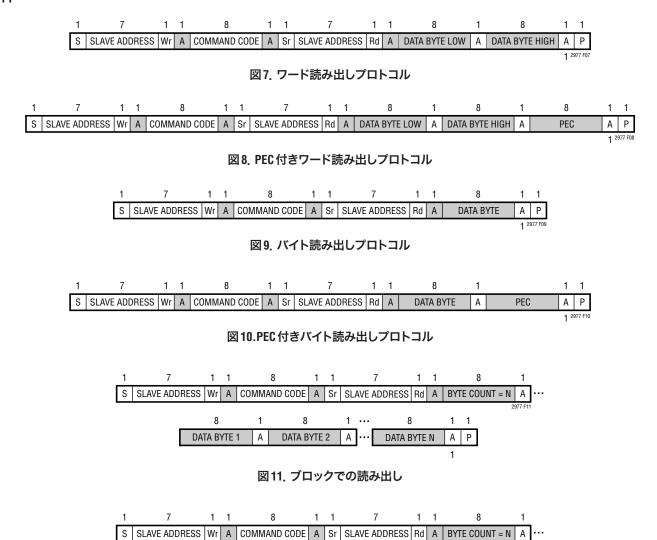


図12. PEC付きのブロックでの読み出し

DATA BYTE 1 A DATA BYTE 2 A ··· DATA BYTE N A

デバイスのアドレス

LTC2977の I^2 C/SMBusアドレスはベースアドレス+Nと等しく、Nは0~8までの数です。NはASEL0とASEL1ピンを V_{DD33} 、GND、またはFLOATにセットすることで設定できます。表1を参照してください。1つのベースアドレスと9つのNの値を使用すると、9つのLTC2977を互いに接続して72の出力を制御できます。ベースアドレスはMFR_I2C_BASE_ADDRESSレジスタに格納されています。ベースアドレスにはどのような値

でも書き込めますが、一般的に希望のアドレス範囲が既存のアドレスと重ならない限り変更するべきではありません。I²C/SMBusデバイスやグローバル・アドレスなどのI²C/SMBusマルチプレクサやバスバッファとアドレス範囲が重なり合わないようにしてください。こうしておけば十分な安心感が得られます。

LTC2977はASELピンとMFR_I2C_BASE_ADDRESSレジスタの状態に関係なく、グローバル・アドレスとSMBus Alert Responseアドレスに常に応答します。

表1, LTC2977のデバイス・アドレス参照表

アドレスの説明	デバイス・アドレス スの説明 (16進)		デバイス・アドレス・ビット(2進)								アドレス・ピン	
	7ビット	8ビット	6	5	4	3	2	1	0	R/W	ASEL1	ASEL0
Alert Response	0C	19	0	0	0	1	1	0	0	1	Х	Χ
グローバル	5B	В6	1	0	1	1	0	1	1	0	Х	Χ
N = 0	5C*	В8	1	0	1	1	1	0	0	0	L	L
N = 1	5D	BA	1	0	1	1	1	0	1	0	L	NC
N = 2	5E	ВС	1	0	1	1	1	1	0	0	L	Н
N = 3	5F	BE	1	0	1	1	1	1	1	0	NC	L
N = 4	60	C0	1	1	0	0	0	0	0	0	NC	NC
N = 5	61	C2	1	1	0	0	0	0	1	0	NC	Н
N = 6	62	C4	1	1	0	0	0	1	0	0	Н	L
N = 7	63	C6	1	1	0	0	0	1	1	0	Н	NC
N = 8	64	C8	1	1	0	0	1	0	0	0	Н	Н

H=V_{DD33}に接続、NC=接続なし=開放またはフロート、L=GNDに接続、X=ドントケア

^{*}MFR_I2C_BASE_ADDRESS = 7 ビット5C(製造時のデフォルト値)

コマンドの処理

LTC2977は、専用の処理ブロックを使用して、すべてのコマンドに対して迅速に応答できるようにしています。数少ない例外として、コマンド処理中に次に続くコマンドにNACKを出すことはあります。次の表にこの点をまとめて示します。MFR_COMMONは、デバイスがビジー状態でも必ず読み込まれる特殊なコマンドです。この方法により、ホストはLTC2977が処理中かどうかを判定できます。

EEPROM 関連のコマンド

コマンド	標準遅延時間*	注釈
STORE_USER_ALL	t _{MASS_WRITE}	「電気的特性」の表を参照。LTC2977は、レジスタの内容をEEPROMに転送中はどのようなコマンドも受け付けない。このコマンド・バイトにはNACKが返される。MFR_COMMONは常に読み取りが可能。
RESTORE_USER_ALL	30ms	LTC2977は、EEPROMのデータをコマンド・レジスタに転送中はどのようなコマンドも受け付けない。 このコマンド・バイトにはNACKが返される。MFR_COMMONは常に読み取りが可能。
MFR_FAULT_LOG_CLEAR	175ms	LTC2977は、フォルト・ログのEEPROM領域を初期化中はどのようなコマンドも受け付けない。 このコマンド・バイトにはNACKが返される。MFR_COMMONは常に読み取りが可能。
MFR_FAULT_LOG_STORE	20ms	LTC2977は、フォルト・ログのRAMバッファをEEPROM領域に転送中はどのようなコマンドも受け付けない。このコマンド・バイトにはNACKが返される。MFR_COMMONは常に読み取りが可能。
内部フォルト・ログ	20ms	内部フォルトログ・イベントは、フォルトに応答してフォルト・ログの内容を EEPROM にアップロードする 1回限りのイベント。内部フォルト・ログ機能はディスエーブル可能。この EEPROM への書き込み中に 受け取ったコマンドに対して NACK が返される。 MFR_COMMON は常に読み取りが可能。
MFR_FAULT_LOG_ RESTORE	2ms	LTC2977は、EEPROMのデータをフォルト・ログ RAM バッファに転送中はどのようなコマンドも受け付けない。このコマンド・バイトには NACK が返される。MFR_COMMON は常に読み取りが可能。

^{*}標準遅延時間は、コマンドの停止から次のコマンドの開始までの時間を測定。

コマンド	標準遅延時間 [*]	注釈
MFR_CONFIG_LTC2977		LTC2977は、このコマンドの処理中はどのようなコマンドも受け付けない。このコマンド・バイトにはNACKが返される。MFR_COMMONは常に読み取りが可能。

^{*}標準遅延時間は、コマンドの停止から次のコマンドの開始までの時間を測定。

PMBusのタイミングに関するその他の注意事項

コマンド	注釈
CLEAR_FAULTS	LTC2977はこのコマンドの処理中もコマンドを受け付けるが、関連するステータス・フラグは最長500μsの間クリアされない。

LINEAR

まとめの表

コマンド名	コマンド・	説明	タイプ	ページ 指定	データ 形式	単位	EEPROM	デフォルト 値	参照 ページ
PAGE	0x00	ページングをサポートする任意のコマンド に対して現在選択されているチャネル またはページ。	R/W Byte	N	Reg			0x00	28
OPERATION	0x01	動作モードの制御。オン/オフ、 上方マージンおよび下方マージン。	R/W Byte	Y	Reg		Υ	0x00	33
ON_OFF_CONFIG	0x02	CONTROL ピンおよび PMBus のオン/オフ・コマンドの設定。	R/W Byte	Y	Reg		Y	0x1E	34
CLEAR_FAULTS	0x03	セットされている全フォルト・ビットをクリア。	Send Byte	Υ				NA	34
WRITE_PROTECT	0x10	偶発的な変更に対してデバイスが 提供する保護のレベル。	R/W Byte	N	Reg		Y	0x00	28
STORE_USER_ALL	0x15	動作メモリ全体をEEPROMに格納。	Send Byte	N				NA	35
RESTORE_USER_ALL	0x16	動作メモリ全体をEEPROMから復元。	Send Byte	N				NA	35
CAPABILITY	0x19	デバイスがサポートするPMBusオプション 通信プロトコルの要約。	R Byte	N	Reg			0xB0	35
VOUT_MODE	0x20	出力電圧データのフォーマットおよび 仮数のべき数。(2 ⁻¹³)	R Byte	Y	Reg			0x13	35
VOUT_COMMAND	0x21	サーボ・ターゲット。DC/DCコンバータ 出力電圧の公称設定値。	R/W Word	Y	L16	V	Y	1.0 0x2000	36
VOUT_MAX	0x24	他のいかなるコマンドにも関係なく、 デバイスが指示できる出力電圧の上限。	R/W Word	Y	L16	V	Y	4.0 0x8000	36
VOUT_MARGIN_HIGH	0x25	DC/DCコンバータ出力電圧の 上方マージンの設定。	R/W Word	Y	L16	V	Υ	1.05 0x219A	36
VOUT_MARGIN_LOW	0x26	DC/DCコンバータ出力電圧の 下方マージンの設定。	R/W Word	Y	L16	V	Υ	0.95 0x1E66	36
VIN_ON	0x35	この電圧より高くすると電力変換を イネーブルできる入力電圧(V _{IN_SNS})。	R/W Word	N	L11	V	Y	10.0 0xD280	36
VIN_OFF	0x36	この電圧より低くすると電力変換をディスエーブルできる入力電圧(V _{IN_SNS})。 すべてのV _{OUT_EN} ピンは直ちにオフになる。	R/W Word	N	L11	V	Y	9.0 0xD240	36
VOUT_OV_FAULT_LIMIT	0x40	出力過電圧フォルトのリミット。	R/W Word	Υ	L16	V	Y	1.1 0x2333	36
VOUT_OV_FAULT_ RESPONSE	0x41	出力の過電圧フォルトが検出されたとき のデバイスの動作。	R/W Byte	Y	Reg		Υ	0x80	38
VOUT_OV_WARN_LIMIT	0x42	出力過電圧の警告リミット。	R/W Word	Y	L16	V	Y	1.075 0x2266	36
VOUT_UV_WARN_LIMIT	0x43	出力低電圧の警告リミット。	R/W Word	Y	L16	V	Υ	0.925 0x1D9A	36
VOUT_UV_FAULT_LIMIT	0x44	出力低電圧フォルトのリミット。 TON_MAX_FAULTの条件を満たすかどうかとデバイスがオンしているかどうかを調べるために使用するリミット。	R/W Word	Υ	L16	V	Y	0.9 0x1CCD	36
VOUT_UV_FAULT_ RESPONSE	0x45	出力の低電圧フォルトが検出されたとき のデバイスの動作。	R/W Byte	Y	Reg		Y	0x7F	38
OT_FAULT_LIMIT	0x4F	過熱フォルトのリミット。	R/W Word	N	L11	°C	Y	105.0 0xEB48	37
OT_FAULT_RESPONSE	0x50	過熱フォルトが検出されたときの デバイスの動作。	R/W Byte	N	Reg		Υ	0xB8	39

まとめの表

コマンド名	コマンド・	説明	タイプ	ページ 指定	データ 形式	単位	EEPROM	デフォルト 値	参照ページ
OT_WARN_LIMIT	0x51	過熱警告のリミット。	R/W Word	N	L11	°C	Υ	70.0 0xEA30	37
UT_WARN_LIMIT	0x52	低温警告のリミット。	R/W Word	N	L11	°C	Y	0 0x8000	37
UT_FAULT_LIMIT	0x53	低温フォルトのリミット。	R/W Word	N	L11	°C	Y	-40.0 0xE580	37
UT_FAULT_RESPONSE	0x54	低温フォルトが検出されたときの デバイスの動作。	R/W Byte	N	Reg		Y	0xB8	39
VIN_OV_FAULT_LIMIT	0x55	V _{IN_SNS} ピンで測定した 入力過電圧フォルトのリミット。	R/W Word	N	L11	V	Y	15.0 0xD3C0	36
VIN_OV_FAULT_ RESPONSE	0x56	入力の過電圧フォルトが検出されたとき のデバイスの動作。	R/W Byte	N	Reg		Υ	0x80	39
VIN_OV_WARN_LIMIT	0x57	V _{IN SNS} ピンで測定した入力過電圧警告の リミット。	R/W Word	N	L11	V	Y	14.0 0xD380	36
VIN_UV_WARN_LIMIT	0x58	V _{IN SNS} ピンで測定した入力低電圧警告の リミット。	R/W Word	N	L11	V	Y	0 0x8000	36
VIN_UV_FAULT_LIMIT	0x59	V _{IN_SNS} ピンで測定した入力低電圧 フォルトのリミット。	R/W Word	N	L11	V	Y	0 0x8000	36
VIN_UV_FAULT_ RESPONSE	0x5A	入力の低電圧フォルトが検出されたとき のデバイスの動作。	R/W Byte	N	Reg		Y	0x00	39
POWER_GOOD_ON	0x5E	パワーグッドをアサートする 出力電圧の下限。	R/W Word	Υ	L16	V	Y	0.96 0x1EB8	36
POWER_GOOD_OFF	0x5F	パワーグッドをデアサートする 出力電圧の上限。	R/W Word	Υ	L16	V	Υ	0.94 0x1E14	36
TON_DELAY	0x60	CONTROLピンおよび/またはOPERATION コマンド= ONからV _{OUT_EN} ピン= ONまで の時間	R/W Word	Y	L11	ms	Y	1.0 0xBA00	37
TON_RISE	0x61	V _{OUT_ENn} ピンが"H"になってから、LTC2977が必要に応じて内蔵のDACをソフト接続して出力電圧を目的の値までサーボ制御し始めるまでの時間。	R/W Word	Υ	L11	ms	Y	10.0 0xD280	37
TON_MAX_FAULT_LIMIT	0x62	V _{OUT_EN} = ONのアサートからTON_MAX_ FAULT状態が発生するまで低電圧状態が 許容される時間の最大値。	R/W Word	Y	L11	ms	Y	15.0 0xD3C0	37
TON_MAX_FAULT_ RESPONSE	0x63	TON_MAX_FAULTイベントが 検出されたときのデバイスの動作。	R/W Byte	Y	Reg		Y	0xB8	40
TOFF_DELAY	0x64	CONTROL ピンおよび/または OPERATION コマンド= OFFから V _{OUT_EN} ピン= OFF までの時間	R/W Word	Y	L11	ms	Y	1.0 0xBA00	37
STATUS_BYTE	0x78	デバイスのフォルト状態の1バイトの要約。	R Byte	Υ	Reg			NA	41
STATUS_WORD	0x79	デバイスのフォルト状態の2バイトの要約。	R Word	Υ	Reg			NA	41
STATUS_VOUT	0x7A	出力電圧のフォルトおよび警告の状態。	R Byte	Υ	Reg			NA	42
STATUS_INPUT	0x7C	VIN_SNSピンで測定された入力電圧のフォルトおよび警告の状態。	R Byte	N	Reg			NA	42
STATUS_TEMPERATURE	0x7D	READ_TEMERATURE_1 の温度フォルト および警告の状態。	R Byte	N	Reg			NA	42

まとめの表

コマンド名	コマンド・	説明	タイプ	ページ 指定	データ 形式	単位	EEPROM	デフォルト 値	参照 ページ
STATUS_CML	0x7E	通信およびメモリのフォルトおよび警告の 状態。	R Byte	N	Reg			NA	43
STATUS_MFR_SPECIFIC	0x80	メーカ固有のフォルトおよび状態の情報。	R Byte	Υ	Reg			NA	43
READ_VIN	0x88	VIN_SNSピンで測定された入力電圧。	R Word	N	L11	V		NA	44
READ_VOUT	0x8B	DC/DCコンバータの出力電圧。	R Word	Υ	L16	V		NA	44
READ_TEMPERATURE_1	0x8D	内部接合部温度。	R Word	N	L11	°C		NA	44
PMBUS_REVISION	0x98	デバイスがサポートする PMBus の リビジョン。現在のリビジョンは1.1。	R Byte	N	Reg			0x11	44
USER_DATA_00	0xB0	メーカがLTpowerPlay™用に確保。	R/W Word	N	Reg		Υ	NA	60
USER_DATA_01	0xB1	メーカがLTpowerPlay用に確保。	R/W Word	Υ	Reg		Υ	NA	60
USER_DATA_02	0xB2	OEMが確保。	R/W Word	N	Reg		Υ	NA	60
USER_DATA_03	0xB3	スクラッチパッドの場所。	R/W Word	Υ	Reg		Υ	0x00	60
USER_DATA_04	0xB4	スクラッチパッドの場所。	R/W Word	N	Reg		Υ	0x00	60
MFR_LTC_RESERVED_1	0xB5	メーカが確保。	R/W Word	Υ	Reg		Υ	NA	60
MFR_STATUS_2	0xB7	メーカ固有のフォルトおよび状態の 追加情報。	R Word	Υ	Reg			NA	62
MFR_LTC_RESERVED_2	0xBC	メーカが確保。	R/W Word	Υ	Reg			NA	60
MFR_EE_UNLOCK	0xBD	MFR_EE_ERASE コマンドとMFR_EE_DATA コマンドによるアクセスのために、 ユーザの EEPROM のロックを解除する。	R/W Byte	N	Reg			NA	65
MFR_EE_ERASE	0xBE	MFR_EE_DATAによる一括プログラミングのために、ユーザのEEPROMを初期化する。	R/W Byte	N	Reg			NA	66
MFR_EE_DATA	0xBF	PMBus ワードの順次読み出しまたは 書き込みによって EEPROM との間で 伝送されるデータ。一括プログラミングを サポートする。	R/W Word	N	Reg			NA	66
MFR_COMMAND_PLUS	0xC0	ブロック読み出しとその他のデータに 対する代替アクセス。すべてのホストに 対するコマンド。	R/W Word	N	Reg			NA	30
MFR_DATA_PLUS0	0xC1	ブロック読み出しとその他のデータに 対する代替アクセス。代替ホスト0に 対するデータ。	R/W Word	N	Reg			NA	30
MFR_DATA_PLUS1	0xC2	ブロック読み出しとその他のデータに 対する代替アクセス。代替ホスト1に 対するデータ。	R/W Word	N	Reg			NA	30
MFR_TELEMETRY	0xCF	すべての出力チャネルの遠隔測定データ。	R Block	N	Reg			NA	63
MFR_CONFIG_LTC2977	0xD0	チャネル固有の構成ビット。	R/W Word	Υ	Reg		Υ	0x0080	45
MFR_CONFIG_ALL_ LTC2977	0xD1	すべてのページに共通の構成ビット。	R/W Word	N	Reg		Υ	0x1C7B	49
MFR_FAULTBz0_ PROPAGATE	0xD2	フォルトのためオフ状態になったチャネル をFAULTB00ピンおよびFAULTB10ピンに 反映するかどうかを決める設定。	R/W Byte	Y	Reg		Y	0x00	50
MFR_FAULTBz1_ PROPAGATE	0xD3	フォルトのためオフ状態になったチャネル をFAULTB01ピンおよびFAULTB11ピンに 反映するかどうかを決めるメーカ設定。	R/W Byte	Y	Reg		Y	0x00	50
MFR_PWRGD_EN	0xD4	PWRGD および WDI/RESETB の状態を PWRGD ピンにマッピングするための設定。	R/W Word	N	Reg		Y	0x0000	51

クム

詳細: www.linear-tech.co.jp/LTC2977

まとめの表

コマンド名	コマンド・	説明	タイプ	ページ 指定	データ 形式	単位	EEPROM	デフォルト 値	参照ページ
MFR_FAULTB00_ RESPONSE	0xD5	FAULTB00ピンが"L"にアサートされたときのデバイスの動作。	R/W Byte	N	Reg		Y	0x00	52
MFR_FAULTB01_ RESPONSE	0xD6	FAULTB01ピンが"L"にアサートされたときのデバイスの動作。	R/W Byte	N	Reg		Y	0x00	52
MFR_FAULTB10_ RESPONSE	0xD7	FAULTB10ピンが"L"にアサートされたときのデバイスの動作。	R/W Byte	N	Reg		Y	0x00	52
MFR_FAULTB11_ RESPONSE	0xD8	FAULTB11ピンが"L"にアサートされたときのデバイスの動作。	R/W Byte	N	Reg		Y	0x00	52
MFR_VINEN_OV_FAULT_ RESPONSE	0xD9	VOUT_OV_FAULTに対するV _{IN_EN} ピンの 動作	R/W Byte	N	Reg		Y	0x00	53
MFR_VINEN_UV_FAULT_ RESPONSE	0xDA	VOUT_UV_FAULTに対するV _{IN_EN} ピンの 動作	R/W Byte	N	Reg		Y	0x00	54
MFR_RETRY_DELAY	0xDB	フォルト再試行モードでの再試行間隔。	R/W Word	N	L11	ms	Υ	200.0 0xF320	55
MFR_RESTART_DELAY	0xDC	CONTROL の実際のアクティブ・エッジから CONTROL の仮想のアクティブ・エッジまで の遅延	R/W Word	N	L11	ms	Y	400.0 0xFB20	55
MFR_VOUT_PEAK	0xDD	READ_VOUTの最大測定値。	R Word	Υ	L16	V		NA	56
MFR_VIN_PEAK	0xDE	READ_VINの最大測定値。	R Word	N	L11	V		NA	56
MFR_TEMPERATURE_ PEAK	0xDF	READ_TEMPERATURE_1の最大測定値。	R Word	N	L11	°C		NA	56
MFR_DAC	0xE0	10ビット DAC のコードを含むメーカの レジスタ。	R/W Word	Y	Reg			0x0000	57
MFR_POWERGOOD_ ASSERTION_DELAY	0xE1	パワーグッド出力のアサート遅延。	R/W Word	N	L11	ms	Y	100.0 0xEB20	57
MFR_WATCHDOG_T_ FIRST	0xE2	ウォッチドッグ・タイマの最初の 時間間隔。	R/W Word	N	L11	ms	Y	0 0x8000	64
MFR_WATCHDOG_T	0xE3	ウォッチドッグ・タイマの時間間隔。	R/W Word	N	L11	ms	Y	0 0x8000	64
MFR_PAGE_FF_MASK	0xE4	グローバル・ページ・コマンドにどの チャネルが応答するかを定義する設定 (PAGE = 0xFF)。	R/W Byte	N	Reg		Y	0xFF	29
MFR_PADS	0xE5	選択されたデジタル I/O パッドの現在のステート。	R Word	N	Reg			N/A	58
MFR_I2C_BASE_ADDRESS	0xE6	I ² C/SMBusアドレス・バイトのベース値。	R/W Byte	N	Reg		Υ	0x5C	29
MFR_SPECIAL_ID	0xE7	LTC2977を識別するメーカのコード。	R Word	N	Reg		Υ	0x0130	59
MFR_SPECIAL_LOT	0xE8	製造時にプログラムされ、EEPROM に格納されたユーザ設定を識別するお客様によって異なるコード。デフォルト値は弊社にお問い合わせください。	R Byte	Υ	Reg		Y		59
MFR_VOUT_DISCHARGE_ THRESHOLD	0xE9	VOUT_COMMAND に掛け合わせて V _{OUT} がしきい値電圧からどれだけ離れているかを決定する係数。	R/W Word	Υ	L11		Y	2.0 0xC200	59
MFR_FAULT_LOG_STORE	0xEA	RAMからEEPROMへのフォルト・ログの 伝送を命令する。この命令によって、 デバイスはチャネルがフォルトによって	Send Byte	N				NA	67

まとめの表

コマンド名	コマンド・	説明	タイプ	ページ 指定	データ 形式	単位	EEPROM	デフォルト 値	参照 ページ
MFR_FAULT_LOG_ RESTORE	0xEB	以前 EEPROM に格納されていたフォルト・ログを RAM に戻すよう命令する。	Send Byte	N				NA	67
MFR_FAULT_LOG_CLEAR	0xEC	フォルト・ログのために確保された EEPROMのブロックを初期化し、以前の フォルト・ログのロックをクリアする。	Send Byte	N				NA	68
MFR_FAULT_LOG_STATUS	0xED	フォルト・ログの状態。	R Byte	N	Reg		Υ	NA	68
MFR_FAULT_LOG	0xEE	フォルト・ログのデータ・バイト。この順次 取得データを使用して完全なフォルト・ ログをアセンブルする。256バイト: 0xFFの 後に255バイトのフォルト・ログ・データ。	R Block	N	Reg		Y	NA	69
MFR_COMMON	0xEF	複数のLTCチップに共通するメーカ・ ステータス・ビット。	R Byte	N	Reg			NA	60
MFR_RETRY_COUNT	0xF7	再試行をイネーブルする、フォルトで オフになったすべての条件の再試行数。	R/W Byte	N	Reg		Y	0x07	55
MFR_VOUT_MIN	0xFB	READ_VOUTの最小測定値。	R Word	Υ	L16	V		NA	61
MFR_VIN_MIN	0xFC	READ_VINの最小測定値。	R Word	N	L11	V		NA	61
MFR_TEMPERATURE_MIN	0xFD	READ_TEMPERATURE_1の最小測定値。	R Word	N	L11	°C		NA	61

データ形式

1 110	10	
L11	Linear_5s_11s	PMBus のデータ・フィールド b[15:0] 値= Y • 2 ^N ここで、N = b[15:11] は5 ビットの 2 の補数の整数、Y = b[10:0] は 11 ビットの 2 の補数の整数 例: READ_VIN = 10V b[15:0] = 0xD280 = 1101_0010_1000_0000bでは、値= 640 • 2^{-6} = 10 PMBus 仕様の第 2 部、パラグラフ 7.1 参照。
L16	Linear_16u	PMBus のデータ・フィールド b[15:0] 値= Y・ 2^N
Reg	Register	PMBusのデータ・フィールド b[15:0] または b[7:0] ビット・フィールドの意味は PMBus コマンド・レジスタの説明で詳細に規定されている。

アドレス指定および書き込み保護

PAGE

LTC2977には、管理できるDC/DCコンバータの8つのチャネルに対応する8つのページがあります。DC/DCコンバータの各チャネルは、まず該当のページを設定することによって一意的にプログラムできます。

PAGE = 0xFF と設定すると、グローバル・ページ・プログラミング対応の PMBus コマンドをすべてのページに同時に書き込むことができます。 PAGE = 0xFF 対応のコマンドは CLEAR_FAULTS、 OPERATION、 ON_OFF_CONFIG だけです。 その他のオプションについては、 MFR_PAGE_FF_MASKを参照してください。 PAGE = 0xFFでページ化されたどの PMBus レジスタを読み出しても、予測不能なデータが返されて CMLフォルトが発生します。 PAGE = 0xFF 非対応のページを PAGE = 0xFF で書き込んでも無視され、 CMLフォルトが発生します。

PAGEのデータの内容

ビット	シンボル	目的
b[7:0]	Page	ページ操作。 0x00: すべての PMBus コマンドがチャネル/ページ 0をアドレス指定する。 0x01: すべての PMBus コマンドがチャネル/ページ 1をアドレス指定する。 • •
		• 0x07: すべての PMBus コマンドがチャネル/ページ 7をアドレス指定する。 0xXX: 規定されていない値はすべて予備。 0xF: このモードをサポートするコマンドに対する PMBus 書き込み/送信を1回行うと、MFR_PAGE_FF_MASKがイネーブルされた状態で、すべてのチャネル/ページに同時にアドレス指定される。

WRITE_PROTECT

WRITE_PROTECT コマンドは、LTC2977のコマンド・レジスタが誤ってプログラムされないよう保護します。サポートされるすべてのコマンドはWRITE_PROTECTの設定にかかわらずそのパラメータを読み込み、またEEPROMの内容もWRITE_PROTECTの設定にかかわらず読み込むことができます。

書き込み保護には次の2つのレベルがあります。

- レベル1: 書き込み保護のレベル自体の他は何も変更できません。値はすべてのページから読み込むことができます。この設定は EEPROM に格納可能です。
- レベル2:保護のレベル、チャネルのオン/オフ状態、フォルトのクリアの他は何も変更できません。値はすべてのページから読み込むことができます。この設定はEEPROMに格納可能です。

WRITE_PROTECT のデータの内容

ビット	シンボル	動作
b[7:0]	Write_protect[7:0]	1000_0000b:レベル1保護 - WRITE_PROTECT、PAGE、MFR_EE_UNLOCK、STORE_USER_ALL コマンド以外のすべての書き込みはディスエーブルされる。
		0100_0000b: レベル2 保護 – WRITE_PROTECT、PAGE, MFR_EE_UNLOCK、STORE_USER_ALL、OPERATION、MFR_PAGE_FF_MASK、CLEAR_FAULTS コマンド以外のすべての書き込みはディスエーブルされる。 0000_0000b: すべてのコマンドへの書き込みをイネーブルする。
		xxxx_xxxxb: その他すべての値は予備。

LINEAR TECHNOLOGY

MFR_PAGE_FF_MASK

MFR_PAGE_FF_MASK コマンドは、グローバル・ページ・コマンド (PAGE = 0xFF) が使用されている場合の応答チャネルの選択に使用します。

MFR_PAGE_FF_MASKのデータの内容

ビット	シンボル	動作
b[7]	Mfr_page_ff_mask_chan7	グローバル・ページ・コマンド (PAGE = 0xFF) アクセスに対するチャネル7のマスキング
		0=グローバル・ページ・コマンド・アクセスを無視
		1=グローバル・ページ・コマンド・アクセスに完全に応答
b[6]	Mfr_page_ff_mask_chan6	グローバル・ページ・コマンド(PAGE = 0xFF)アクセスに対するチャネル6のマスキング
		0=グローバル・ページ・コマンド・アクセスを無視
		1=グローバル・ページ・コマンド・アクセスに完全に応答
b[5]	Mfr_page_ff_mask_chan5	グローバル・ページ・コマンド (PAGE = 0xFF) アクセスに対するチャネル5のマスキング
		0=グローバル・ページ・コマンド・アクセスを無視
		1=グローバル・ページ・コマンド・アクセスに完全に応答
b[4]	Mfr_page_ff_mask_chan4	グローバル・ページ・コマンド (PAGE = 0xFF) アクセスに対するチャネル4のマスキング
		0=グローバル・ページ・コマンド・アクセスを無視
		1=グローバル・ページ・コマンド・アクセスに完全に応答
b[3]	Mfr_page_ff_mask_chan3	グローバル・ページ・コマンド (PAGE = 0xFF)アクセスに対するチャネル3のマスキング
		0=グローバル・ページ・コマンド・アクセスを無視
		1=グローバル・ページ・コマンド・アクセスに完全に応答
b[2]	Mfr_page_ff_mask_chan2	グローバル・ページ・コマンド (PAGE = 0xFF) アクセスに対するチャネル2のマスキング
		0=グローバル・ページ・コマンド・アクセスを無視
		1=グローバル・ページ・コマンド・アクセスに完全に応答
b[1]	Mfr_page_ff_mask_chan1	グローバル・ページ・コマンド (PAGE = 0xFF) アクセスに対するチャネル1のマスキング
		0=グローバル・ページ・コマンド・アクセスを無視
		1=グローバル・ページ・コマンド・アクセスに完全に応答
b[0]	Mfr_page_ff_mask_chan0	グローバル・ページ・コマンド(PAGE = 0xFF)アクセスに対するチャネル0のマスキング
		0=グローバル・ページ・コマンド・アクセスを無視
		1=グローバル・ページ・コマンド・アクセスに完全に応答

MFR_I2C_BASE_ADDRESS

MFR_I2C_BASE_ADDRESS コマンドは、 I^2 C/SMBus アドレス・バイトのベース値を決定します。このベース・アドレスに $0\sim9$ のオフセットを加えることで I^2 C/SMBus アドレスが作成されます。このデバイスはデバイス・アドレスに応答します。

MFR_I2C_BASE_ADDRESSのデータの内容

ビット	シンボル	動作
b[7]	予備	読み出し専用、常に0を返す。
b[6:0]	i2c_base_address	この7ビットの値は7ビットの1 ² C/SMBusアドレスのベース値を決定する。「動作」セクションの「デバイス・アドレス」を参照。

2977fa

29

MFR_COMMAND_PLUS、MFR_DATA_PLUSO、MFR_DATA_PLUS1、MFR_STATUS_PLUSO、およびMFR_STATUS_PLUS1

コマンド・プラス操作では、一連のワード・コマンドを使用して以下をサポートします。

- 標準的な順次ワード読み出しを使用してブロック・データを読み出す代替方法。
- 最大2つの追加ホストにより、PMBusワード・プロトコルを使用して内部レジスタを読み出すことができるピーク操作(各ホストには固有のページあり)。
- 最大2つの追加ホストにより、PMBusワード・プロトコルを使用して内部レジスタに書き込むことができるポーク操作(各ホストには固有のページあり)。
- ピーク、ポーク、およびコマンド・プラスによるブロック読み出しは、通常のPMBusアクセスまたはPAGEで設定したページ値に 妨害を与えることはない。これにより、最大3つのホストのマルチマスタ・サポートが可能。

MFR_COMMAND_PLUSのデータの内容

ビット	シンボル	動作
b[15]	Mfr_command_plus_ reserved	予備。常に0を返す。
b[14]	Mfr_command_plus_id	コマンド・プラスのホストID
		0:Mfr_command_plus ポインタおよびページはキャッシュに格納され、すべての Mfr_data_plus0 アクセスに対して使用される。
		1:Mfr_command_plus ポインタおよびページはキャッシュに格納され、すべての Mfr_data_plus1アクセスに対して使用される。
b[13:9]	Mfr_command_plus_page	Mfr_data_plus0 または Mfr_data_plus1 を介してピーク処理またはポーク処理を行うときに使用するページ。使用できる値は 0 ~ 7。このページの値は、このレジスタが書き込まれるときに、 Mfr_command_plus_id の値に基づいて Mfr_data_plus0 および Mfr_data_plus1 のキャッシュに別個に格納される。
b[8:0]	Mfr_command_plus_pointer	Mfr_data_plus0または Mfr_data_plus1 によってアクセスされる内部メモリの位置。 Mfr_data_plus0ポインタと Mfr_data_plus1ポインタは別個のキャッシュに格納される。 正しい値は「PMBusコマンドの概要」の表の「コマンド・コード」 列に示す。 その他の値はすべて予備。 ただし、32ページの「ポーク操作のイネーブルおよびディスエーブル」 に示す特殊なポーク・イネーブル/ディスエーブル値と、 Mfr_status_plus0および Mfr_status_plus1 について以下に示すコマンド値を除く。

MFR_DATA_PLUSO および MFR_DATA_PLUS1 のデータの内容

ビット	シンボル	動作
b[15:0]	Mfr_data_plus0 Mfr_data_plus1	このレジスタからの読み出しでは、最後に一致する Mfr_command_plus の書き込みで参照されたデータが返される。より具体的には、host 0 update Mfr_data_plus0 による Mfr_command_plus への書き込みと、host1 update Mfr_data_plus1 による Mfr_command_plus への書き込み。pointer = MFR_FAULT_LOG の間の複数回の順次読み出しによってブロック読み出しバッファの全内容が返される。バッファの終わりを超えてブロック読み出しを行うと、ゼロが返される。
		32ページの「Mfr_data_plus0を使用したポーク操作」に説明されているポーク操作手順に従った場合、このレジスタへの書き込みにより、最後に一致するMfr_command_plus_pointerが参照した場所にデータが転送される。

LINEAR TECHNOLOGY

MFR_STATUS_PLUSOおよびMFR_STATUS_PLUS1のデータの内容

ビット	シンボル	動作	
b[7:2]	予備		
b[1]	Mfr_status_plus_block_ peek_failed0 Mfr_status_plus_block_ peek_failed1	ホストを照合するための最新のブロック・ピークのステータス。 0:最後のブロック・ピークは中断されなかった。 1:途中で発生した EEPROM へのフォルト・ログの書き込み、MFR_FAULT_LOG_STORE コマンド、または MFR_FAULT_LOG の標準的な PMBus ブロック読み出しが原因で、最後のブロック・ピークは中断された中途介入操作は必ず最後まで完了する。	
b[0]	Mfr_status_plus_poke_ failed0 Mfr_status_plus_poke_ failed1	ホストを照合するための最新のポークのステータス。 0:最後のポーク操作は失敗しなかった。 1:後述の「ポーク操作のイネーブルおよびディスエーブル」で説明するように、ポークがイネーブルされていなかったので最後のポーク操作は失敗した。	

MFR_STATUS_PLUSO はコマンド位置 0x2C にあり、MFR_STATUS_PLUS1 はコマンド位置 0x2D にある。これらは予備の PMBus コマンド位置に対応する。これら2つのステータス・レジスタはコマンド・プラスのピーク操作を介してのみ読み出すことができる。

コマンド・プラスおよび Mfr_data_plus0を使用したフォルト・ログの読み出し

Mfr_command_plus_pointer = 0xEEをMfr_command_plus_page = 0およびMfr_command_plus_id = 0と組み合わせて書き込みます。

Mfr_data_plus0からデータを読み出します。各読み出しにより、MFR_FAULT_LOGコマンドの次のデータ・ワードが返されます。

- 最初のワード読み出しはByte count[15:0] = 0x00FFです。
- 次の一連のワード読み出しは、2バイトを1ワードにパックしたプリアンブルです。詳細については「フォルト・ログ」のセクションを参照してください。
- 次の一連のワード読み出しは、1ワード当たり2バイトの循環ループ・データです。詳細については「フォルト・ログ」のセクションを参照してください。
- 余計な読み出しを行うと、ゼロが返されます。
- PMBusのワード・コマンドとバイト・コマンドを交互に配置すると、進行中のコマンド・プラス・ブロック読み出しを妨げません。
- MFR FAULT LOGのPMBusブロック読み出しを交互に配置すると、このコマンドは中断されます。

ステータスをチェックして、先ほど読み出したデータがすべて有効であったことを確認します。

- Mfr_command_plus_pointer = 0x2CをMfr_command_plus_page = 0およびMfr_command_plus_id = 0と組み合わせて書き 込みます。
- Mfr_data_plus0からデータを読み出して、Mfr_status_plus_block_peek_failed0 = 0 であることを確認します。

2977fa

31

Mfr_data_plus0を使用したピーク操作

内部のワードおよびバイトはコマンド・プラスを使用して読み出すことができます。

Mfr_command_plus_pointer = CMD_CODEをMfr_command_plus_page = page およびMfr_command_plus_id = 0と組み合わせて書き込みます。

CMD_CODEは「PMBus コマンドの概要」の表に示します。

Mfr_data_plus0からデータを読み出します。データはワード読み出しを使用して常に読み出されます。上位バイトが0にセットされたバイト・データが返されます。

ポーク操作のイネーブルおよびディスエーブル

Mfr_data_plus0に対するポーク操作は、Mfr_command_plus = 0x0BF6を書き込むことによってイネーブルされます。

 Mfr_data_plus0 に対するポーク操作は、 $Mfr_command_plus = 0x01F6$ を書き込むことによってディスエーブルされます。

Mfr_data_plus1に対するポーク操作は、Mfr_command_plus = 0x4BF6を書き込むことによってイネーブルされます。

Mfr_data_plus1 に対するポーク操作は、Mfr_command_plus = 0x41F6を書き込むことによってディスエーブルされます。

Mfr_data_plus0を使用したポーク操作

内部のワードおよびバイトはコマンド・プラスを使用して書き込むことができます。

Mfr_data_plus0へのポーク・アクセスをイネーブルします。これを実行するのは、起動後またはWDIリセット後1回のみにする必要があります。

Mfr_command_plus_pointer = CMD_CODEをMfr_command_plus_page = page およびMfr_command_plus_id = 0 と組み合わせて書き込みます。

CMD_CODEは「PMBusコマンドの概要」の表に示します。

新しいデータ値をMfr_data_plus0に書き込みます。

必要に応じて、ステータスをチェックしてデータが希望どおりに書き込まれていることを確認します。

- Mfr_command_plus_pointer = 0x2CをMfr_command_plus_page = 0およびMfr_command_plus_id = 0と組み合わせて書き 込みます。
- Mfr_data_plus0からデータを読み出して、Mfr_status_plus_poke_failed0 = 0であることを確認します。

Mfr_data_plus1を使用したコマンド・プラス操作

Mfr_command_plus_idの値を1に置き換えることにより、以前の操作にはMfr_data_plus1を使用してすべてアクセスできます。ポーク操作はMfr_data_plus1に対してイネーブルする必要があります。

LINEAR

OPERATION、MODE、および EEPROM コマンド

OPERATION

OPERATION コマンドは、CONTROLn ピンおよび ON_OFF_CONFIG と連携して、デバイスをオン/オフするのに使用されます。このコマンド・レジスタはグローバル・ページ・コマンド (PAGE = 0xFF) に応答します。データ・バイトの内容と機能を以下の表に示します。最小待ち時間 t_{OFF_MIN} は、デバイスをいったんオフしてからオンに戻すために使用される OPERATION コマンド間で測定する必要があります。

OPERATIONのデータの内容(On_off_config_use_pmbus = 1)

シンボル	動作	Operation_control[1:0]	Operation_margin[1:0]	Operation_fault[1:0]	予備(読み出し専用)
ビット		b[7:6]	b[5:4]	b[3:2]	b[1:0]
	即座にオフ	00	XX	XX	00
	ターンオン	10	00	XX	00
	下方マージン(フォルトと警告を無 視)	10	01	01	00
	下方マージン	10	01	10	00
	上方マージン(フォルトと警告を無 視)	10	10	01	00
	上方マージン	10	10	10	00
機能	シーケンス・オフと公称値までの マージン	01	00	XX	00
	シーケンス・オフと下方マージン (フォルトと警告を無視)	01	01	01	00
	シーケンス・オフと下方マージン	01	01	10	00
	シーケンス・オフと上方マージン (フォルトと警告を無視)	01	10	01	00
	シーケンス・オフと上方マージン	01	10	10	00
	予備		残りすべての	組み合わせ	1

OPERATIONのデータの内容(On_off_config_use_pmbus = 0)

シンボル	動作	Operation_control[1:0]	Operation_margin[1:0]	Operation_fault[1:0]	予備(読み出し専用)
ビット		b[7:6]	b[5:4]	b[3:2]	b[1:0]
	公称値で出力	00、01、または10	00	XX	00
	下方マージン(フォルトと警告を無 視)	00、01、または10	01	01	00
機能	下方マージン	00、01、または10	01	10	00
1成 日と	上方マージン(フォルトと警告を無 視)	00、01、または10	10	01	00
	上方マージン	00、01、または10	10	10	00
	予備		残りすべての	組み合わせ	

29111a

33

ON OFF CONFIG

ON_OFF_CONFIG コマンドは、次の表に示すように、LTC2977をオン/オフする(起動時の動作も含む)のに必要な PMBus コマンドと、CONTROL $_n$ ピンの入力との組み合わせを設定します。このコマンド・レジスタはグローバル・ページ・コマンド (PAGE = 0xFF) に応答します。デバイスの初期化が終った後、別のコンパレータが VIN_SNS をモニタします。出力電源シーケンシングが開始されるには、VIN_ONのしきい値を超える必要があります。 V_{IN} が最初に印加された後、TON_DELAY タイマを初期化して始動するのに、デバイスは通常 t_{INIT} の時間が必要です。電圧と電流の読み出しにはさらに t_{UPDATE_ADC} 待つことが必要な場合があります。最小待ち時間 t_{OFF_MIN} は、デバイスをいったんオフしてからオンに戻すために使用される CONTROL ピンの切り替えを対象に測定する必要があります。

ON OFF CONFIG のデータの内容

ビット	シンボル	動作
b[7:5]	予備	ドントケア。常に0を返す。
b[4]	On_off_config_controlled_on	デフォルトの自律起動動作を制御する。
		0 : デバイスは CONTROL _n ピンまたは OPERATION の値に関係なく起動する。デバイスは常にシーケンス制御によって起動する。シーケンス制御なしでデバイスを起動するには、 $TON_DELAY = 0$ と設定する。
		1: CONTROL $_n$ ピンによる命令、またはシリアル・バス上でのOPERATIONコマンドによる命令がない限り、デバイスは起動しない。On_off_config[3:2] = 00である場合、デバイスは決して起動しない。
b[3]	On_off_config_use_pmbus	シリアル・バスから受信したコマンドに対するデバイスの応答方法を制御する。
		0:デバイスはOperation_control[1:0]ビットを無視する。
		1:デバイスは Operation_control[1:0] に応答する。 On_off_config_use_control によっては、デバイスを起動するために CONTROLn ピンをアサートすることが必要な場合がある。
b[2]	On_off_config_use_control	CONTROLnピンに対するデバイスの応答を制御する。
		0:デバイスはCONTROLnピンを無視する。
		1:デバイスは、デバイスを起動するためにCONTROLnピンをアサートする必要がある。On_off_config_use_pmbusによっては、OPERATIONコマンドでデバイスの起動を指示することも必要な場合がある。
b[1]	予備	サポートされていない。常に1を返す。
b[0]	On_off_config_control_fast_off	デバイスにオフを指示するときの CONTROLn ピンのターンオフ動作
		0:プログラムされたTOFF_DELAYを使用する。
		1:出力をオフし、できるだけ迅速にエネルギーの伝達を停止する。つまり、VOUT_ENnを直ちに"L"にする。 デバイスは出力電圧の立ち下がり時間を短縮するため、電流を流し込まない。

CLEAR_FAULTS

CLEAR_FAULTS コマンドは、セットされているすべてのステータス・ビットをクリアするために使われます。このコマンドは、すべての非ページ化ステータス・レジスタ内、および現在のPAGE 設定によって選択されたページ化ステータス・レジスタ内のすべてのフォルト・ビットと警告ビットをクリアします。同時に、デバイスは自己のALERTBへの寄与を無効に(クリア、解放)します。

フォルト状態でラッチオフしているデバイスがCLEAR_FAULTSコマンドによって再起動することはありません。詳細については「ラッチされたフォルトのクリア」のセクションを参照してください。

フォルト・ステータスをクリアした後もフォルト状態が存在する場合は、フォルト・ステータス・ビットが再びセットされ、ホストは通常の方法で通知を受けます。

注記:このコマンドはグローバル・ページ・コマンド(PAGE = 0xFF)に応答します。

LINEAD TECHNOLOGY

STORE USER ALL & RESTORE USER ALL

STORE_USER_ALLコマンド、RESTORE_USER_ALLコマンドは、ユーザのEEPROM領域にアクセスします。コマンドは、いったんユーザのEEPROMに格納されると、リストア・コマンドを明示的に使用することによって、または電源投入後デバイスがパワーオン・リセットから復帰することによって復元されます。これらのコマンドのどちらかが処理されている間、デバイスはビジー状態であることを示します。67ページの「デバイスがビジー状態の場合の応答」を参照してください。

STORE USER ALL.このコマンドを出すと、動作メモリ内のすべてのコマンドは対応するEEPROMメモリの場所に格納されます。

RESTORE_USER_ALL.このコマンドを出すと、EEPROMメモリからすべてのコマンドが復元されます。デバイスがイネーブルされている間はこのコマンドを実行しないことを推奨します。EEPROMの内容を動作メモリに転送しているときはすべてのモニタが一時的に停止され、EEPROMからの中間値は最初に動作メモリに格納されていた値とは互換性がない可能性があるからです。

CAPABILITY

CAPABILITYコマンドは、ホスト・システムがLTC2977のいくつかの主要機能を判別する手段を提供します。この1バイトのコマンドは読み出し専用です。

CAPABILITYのデータの内容

ビット	シンボル	動作
b[7]	Capability_pec	1にハードコードされており、パケット・エラー・チェック (PEC) がサポートされていることを示す。Mfr_config_all_pec_en ビットを読み出すと、PEC が現在必要かどうかが示される。
b[6:5]	Capability_scl_max	01bにハードコードされており、サポートされている最大のバス速度は400kHzであることが示される。
b[4]	Capability_smb_alert	1にハードコードされており、このデバイスにはALERTBピンがあることとSMBusアラート応答プロトコルをサポートしていることが示される。
b[3:0]	予備	常に0を返す。

VOUT MODE

このコマンドは読み出し専用で、L16データ形式ですべてのコマンドのモードと指数を指定します。27ページの「データ形式」の表を参照してください。

VOUT MODEのデータの内容

ビット	シンボル	動作
b[7:5]	Vout_mode_type	リニア・モードをレポートする。000bに固定配線されている。
b[4:0]	Vout_mode_parameter	リニア・モードの指数。5ビットの2の補数の整数。0x13(十進数の-13)に固定配線されている。

2977fa

35

出力電圧関連のコマンド

VOUT_COMMAND、VOUT_MAX、VOUT_MARGIN_HIGH、VOUT_MARGIN_LOW、VOUT_OV_FAULT_LIMIT、VOUT_OV_WARN_LIMIT、VOUT_UV_FAULT_LIMIT、POWER_GOOD_ON およびPOWER_GOOD_OFF

これらのコマンドは同じ形式を使用し、チャネルの出力電圧のリミットについてさまざまなサーボ制御、マージニング、および監視を行います。奇数チャネルを構成して電流を測定する場合、OV_WARN_LIMIT、UV_WARN_LIMIT、OV_FAULT_LIMIT、およびUV_FAULT_LIMIT コマンドはサポートされません。

データの内容

ビット	シンボル	動作
b[15:0]	Vout_command[15:0]、	これらのコマンドは出力電圧に関連している。データはL16形式を使用する。
	Vout_max[15:0]	単位:V
	Vout_margin_high[15:0]、	
	Vout_margin_low[15:0]、	
	Vout_ov_fault_limit[15:0]、	
	Vout_ov_warn_limit[15:0]、	
	Vout_uv_warn_limit[15:0]、	
	Vout_uv_fault_limit[15:0]、	
	Power_good_on[15:0]、	
	Power_good_off[15:0]	

入力電圧関連のコマンド

VIN_ON、VIN_OFF、VIN_OV_FAULT_LIMIT、VIN_OV_WARN_LIMIT、VIN_UV_WARN_LIMIT、およびVIN_UV_FAULT_LIMIT これらのコマンドは同じ形式を使用し、入力電圧 V_{IN SNS} のリミットを監視する機能を提供します。

データの内容

ビット	シンボル	動作
b[15:0]	Vin_on[15:0]、	これらのコマンドは入力電圧に関連している。データはL11形式を使用する。
	Vin_off[15:0]、	単位:V
	Vin_ov_fault_limit[15:0]、	
	Vin_ov_warn_limit[15:0]、	
	Vin_uv_warn_limit[15:0]、	
	Vin_uv_fault_limit[15:0]	

LINEAR

温度関連のコマンド

OT_FAULT_LIMIT、OT_WARN_LIMIT、UT_WARN_LIMIT、およびUT_FAULT_LIMIT

これらのコマンドは温度のリミットを監視する機能を提供します。

データの内容

ビット	シンボル	動作
b[15:0]	Ot_fault_limit[15:0]、	データはL11形式を使用する。
	Ot_warn_limit[15:0]、	単位∶°C
	Ut_warn_limit[15:0]、	
	Ut_fault_limit[15:0]	

タイマ・リミット

TON DELAY、TON RISE、TON MAX FAULT LIMIT、およびTOFF DELAY

これらのコマンドは同じフォーマットを共有し、シーケンス制御と、タイマ・フォルトおよび警告の遅延(単位:ms)を与えます。

TON_DELAY は、オン・シーケンス開始後、その V_{OUT_EN} ピンが DC/DC コンバータをイネーブルするまでチャネルが待機する時間 (単位:ミリ秒)を設定します。この遅延は SHARE_CLK のみを使用してカウントされます。

TON_RISE は、 $Mfr_config_dac_mode = 00b$ の場合、電源がイネーブルされてからLTC2977のDAC がソフト接続して出力電圧を必要なレベルにサーボ制御するまでに経過する時間(単位:ms)を設定します。この遅延は、 $SHARE_CLK$ が使用可能であれば $SHARE_CLK$ を使用してカウントされ、それ以外の場合には内部発振器が使用されます。

TON_MAX_FAULT_LIMIT は、LTC2977によって制御される電源が、VOUT_UV_FAULT_LIMITに達することなく出力の起動を試みることのできる最長の時間です。出力がTON_MAX_FAULT_LIMITに達する前にVOUT_UV_FAULT_LIMITに達した場合、LTC2977は VOUT_UV_FAULT_LIMITしきい値をアンマスクします。出力が出ない場合は、TON_MAX_FAULTが宣言されます。(値がゼロの場合、これは電源がその出力電圧を上げようと試みる時間に制限のないことを意味します。)この遅延は、SHARE CLKが使用可能であればSHARE CLKを使用してカウントされ、それ以外の場合には内部発振器が使用されます。

TOFF_DELAY は、CONTROLnピンあるいはOPERATIONコマンドがデアサートされてから、そのチャネルがディスエーブル(ソフトオフ)されるまでの経過時間です。この遅延は、SHARE_CLKが使用可能であればSHARE_CLKを使用してカウントされ、それ以外の場合には内部発振器が使用されます。

TON_DELAY および TOFF_DELAY は内部で13.1 秒に制限されており、655msより短い場合は10μsごとに丸められ、655msより長い場合は200μsごとに丸められています。TON_RISEおよびTON_MAX_FAULT_LIMIT は内部で655ms に制限されており、10μsごとに丸められています。これらのコマンドからの読み出し値は常に最後に書き込まれた値を返し、内部の制限値は反映しません。

データの内容

ビット	シンボル	動作
b[15:0]	Ton_delay[15:0]、	データはL11形式を使用する。
	Ton_rise[15:0]、	単位:ms
	Ton_max_fault[15:0]、	
	Toff_delay[15:0]	

2977fa

高速スーパーバイザによって測定される電圧のフォルト応答

VOUT OV FAULT RESPONSE & VOUT UV FAULT RESPONSE

ここで記述するフォルト応答は、高速スーパーバイザによって測定される電圧に対するものです。これらの電圧は短時間で測定されるので、デグリッチ時間を必要とすることがあります。これらのコマンドで示される応答に加えて、LTC2977には以下の応答もあります。

- STATUS BYTEの該当ビットをセットする。
- STATUS_WORDの該当ビットをセットする。
- 対応するSTATUS_VOUTレジスタの該当ビットをセットする。
- ALERTBピンを"L"にすることによりホストに通知する。

注記:高分解能 ADC の測定値(電流測定値)向けに構成された奇数チャネルは、OV/UV フォルトまたは警告には応答しません。

データの内容

ビット	シンボル	動作
b[7:6]	Vout_ov_fault_response_action、 Vout_uv_fault_response_action	応答動作: 00b:デバイスは中断せずに動作を続ける。
vout_uv_tuuit_response_uetion		01b: デバイスはビット [2:0] によってts_vs 刻みで指定された遅延時間の間動作を継続する。(「電気的特性」の表、「電圧スーパーバイザ特性」のセクションを参照。) 遅延時間終了後でもまだフォルトがある場合、デバイスはすぐにシャットダウンするか、またはTOFF_DELAYの後でシーケンス・オフする (Mfr_config_chan_mode 参照)。シャットダウン後、デバイスはビット [5:3] の再試行設定に従って応答する。
		1Xb: デバイスは直ちにシャットダウンするか、TOFF_DELAYの後でシーケンス・オフする (Mfr_config_chan_mode 参照)。シャットダウン後、デバイスはビット [5:3] の再試行設定に従って応答する。
b[5:3]	Vout_ov_fault_response_retry、	応答再試行動作:
	Vout_uv_fault_response_retry	000b:再試行設定の値が0の場合、デバイスは再起動しようとしないことを意味する。フォルトがクリアされるまで出力はディスエーブルされたままになる。
		001b-111b:PMBus デバイスは、(CONTROL ピンまたは OPERATION コマンドまたはその両方で) オフになるように命令されるか、バイアス電源が取り外されるか、または別のフォルト状態が原因でデバイスがシャットダウンされるまで、グローバルの Mfr_retry_count[2:0] によって指定される回数だけ再起動を試みる。
b[2:0]	Vout_ov_fault_response_delay、 Vout_uv_fault_response_delay	このサンプル数により、フォルトが最初に検出されて以降デバイスがフォルトを無視する時間が決まる。 この遅延は高速フォルトのデグリッチに使用する。 000b: デバイスは直ちにオフする。
		001b-111b: デバイスは、ts_vs (標準 12.2μs) のサンプリング周期での b[2:0] サンプル後にオフする。

詳細: www.linear-tech.co.jp/LTC2977

ADCによって測定された値に対するフォルト応答

OT_FAULT_RESPONSE、UT_FAULT_RESPONSE、VIN_OV_FAULT_RESPONSE、およびVIN_UV_FAULT_RESPONSE

ここで記述するフォルト応答は、ADCによって測定された値に対する応答です。これらの値は長時間にわたって測定されるので、デグリッチは行われません。これらのコマンドで示される応答に加えて、LTC2977には以下の応答もあります。

- STATUS BYTEの該当ビットをセットする。
- STATUS WORDの該当ビットをセットする。
- 対応するSTATUS_VINまたはSTATUS_TEMPERATUREレジスタ内の該当するビットをセットする。
- ALERTBピンを"L"にすることによりホストに通知する。

データの内容

	Y TIPE		
ビット	シンボル	動作	
b[7:6]	Ot_fault_response_action、	応答動作:	
	Ut_fault_response_action,	00b:デバイスは中断せずに動作を続ける。	
	Vin_ov_fault_response_action、	01b~11b: デバイスは直ちにシャットダウンするか、TOFF_DELAYの後でシーケンス・オフする	
	Vin_uv_fault_response_action	(Mfr_config_chan_mode 参照)。シャットダウン後、デバイスはビット [5:3] の再試行設定に従って応答する。	
b[5:3]	Ot_fault_response_retry、	応答再試行動作:	
	Ut_fault_response_retry、	000b:再試行設定の値が0の場合、デバイスは再起動しようとしないことを意味する。フォルトがクリアされる	
	Vin_ov_fault_response_retry,	まで出力はディスエーブルされたままになる。	
	Vin_uv_fault_response_retry	001b-111b:PMBus デバイスは、(CONTROLn ピンまたは OPERATION コマンドまたはその両方で) オフになるように命令されるか、バイアス電源が取り外されるか、または別のフォルト状態が原因でデバイスがシャットダウンされるまで、グローバルの Mfr_retry_count[2:0] によって指定される回数だけ再起動を試みる。	
b[2:0]	Ot_fault_response_delay、	000bにハードコードされている。デグリッチによる遅延がフォルトの検出にこれ以上適用されることはない。	
	Ut_fault_response_delay、		
	Vin_ov_fault_response_delay、		
	Vin_uv_fault_response_delay		

2977fa

タイマ・フォルト応答

TON MAX FAULT RESPONSE

このコマンドはTON_MAX_FAULTに対するLTC2977の応答を定義します。このコマンドを使用して、起動時の出力短絡から保護できます。起動後の出力短絡から保護するにはVOUT UV FAULT RESPONSEを使用してください。

デバイスは、この設定に加えて以下の応答を示します。

- STATUS BYTEのHIGH BYTEビットをセットする。
- STATUS_WORDのVOUTビットをセットする。
- STATUS_VOUTレジスタのTON_MAX_FAULTビットをセットする。
- ALERTBピンをアサートしてホストに通知する。

TON MAX FAULT RESPONSEのデータの内容

ビット	シンボル	動作			
b[7:6]	Ton_max_fault_response_action	応答動作:			
		00b: デバイスは中断せずに動作を続ける。			
	01b-11b: デバイスは直ちにシャットダウンするか、TOFF_DELAY の後でシーケンス・オフする (Mfr_config_chan_mode 参照)。シャットダウン後、デバイスはビット [5:3] の再試行設定に行				
b[5:3]	Ton_max_fault_response_retry	応答再試行動作:			
		000b: 再試行設定の値が0の場合、デバイスは再起動しようとしないことを意味する。フォルトがクリアされるまで出力はディスエーブルされたままになる。			
		001b-111b:PMBusデバイスは、(CONTROLn ピンまたは OPERATION コマンドまたはその両方で)オフになるように命令されるか、バイアス電源が取り外されるか、または別のフォルト状態が原因でデバイスがシャットダウンされるまで、グローバルの Mfr_retry_count[2:0]によって指定される回数だけ再起動を試みる。			
b[2:0]	Ton_max_fault_response_delay	000b にハードコードされている。デグリッチによる遅延がフォルトの検出にこれ以上適用されることはない。			

ラッチされたフォルトのクリア

フォルトによってチャネルがシャットダウンすると、オフ状態がラッチされます。これはラッチされたフォルト状態と呼ばれます。ラッチされたフォルトは、CONTROLピンのオン/オフを切り替えるか、OPERATIONコマンドまたはON_OFF_CONFIGコマンドを使用するか、またはV_{IN_SNS}ピンのバイアス電圧を除去してから再度印加することによってリセットします。フォルト状態および警告状態が生じると、ALERTBピンは必ず"L"にアサートされ、ステータス・レジスタの対応するビットがセットされます。CLEAR_FAULTSコマンドは、ステータス・レジスタの内容をリセットしてALERTB出力をデアサートしますが、フォルトによるオフ状態をクリアすることはなく、チャネルをオンに戻すこともできません。

LINEAR

ステータス・コマンド

STATUS BYTE:

以下の表に示すように、STATUS_BYTEコマンドは、発生した最も重要なフォルトや警告の要約を返します。STATUS_BYTEはSTATUS WORDのサブセットで、同じ情報をコピーします。

STATUS_BYTEのデータの内容

ビット	シンボル	動作
b[7]	Status_byte_busy	Status_word_busyと同じ
b[6]	Status_byte_off	Status_word_offと同じ
b[5]	Status_byte_vout_ov	Status_word_vout_ovと同じ
b[4]	Status_byte_iout_oc	Status_word_iout_ocと同じ
b[3]	Status_byte_vin_uv	Status_word_vin_uvと同じ
b[2]	Status_byte_temp	Status_word_tempと同じ
b[1]	Status_byte_cml	Status_word_cmlと同じ
b[0]	Status_byte_high_byte	Status_word_high_byteと同じ

STATUS_WORD:

STATUS_WORD コマンドは、デバイスのフォルト状態を要約した、2バイトの情報を返します。ホストはこれらのバイトの情報に基づいて適切で詳細なステータス・レジスタを読み出すことにより、さらに情報を得ることができます。

STATUS_WORD コマンドの下位バイトはSTATUS_BYTE コマンドと同じレジスタです。

STATUS_WORD のデータの内容

ビット	シンボル	動作		
b[15]	Status_word_vout	出力電圧フォルトまたは警告が生じている。STATUS_VOUTを参照。		
b[14]	Status_word_iout	ポートされていない。常に0を返す。		
b[13]	Status_word_input	入力電圧フォルトまたは警告が生じている。STATUS_INPUTを参照。		
b[12]	Status_word_mfr	メーカに固有のフォルトが生じている。STATUS_MFR_SPECIFICおよびMFR_STATUS_2を参照。		
b[11]	Status_word_power_not_good	PWRGDピンがイネーブルされている場合、無効になる。パワーグッド状態ではない。		
b[10]	Status_word_fans	サポートされていない。常に0を返す。		
b[9]	Status_word_other	ナポートされていない。常に0を返す。		
b[8]	Status_word_unknown	サポートされていない。常に0を返す。		
b[7]	Status_word_busy	PMBus コマンドを受信したときにデバイスがビジー状態。「動作」の「コマンドの処理」を参照。		
b[6]	Status_word_off	このビットは、単にイネーブルされていない場合も含めて理由の如何にかかわらず、デバイスが出力に電力を供給していないときにアサートされる。デバイスが出力に電力を供給できる場合、オフ・ビットはクリアされる。		
b[5]	Status_word_vout_ov	出力過電圧フォルトが生じている。		
b[4]	Status_word_iout_oc	サポートされていない。常に0を返す。		
b[3]	Status_word_vin_uv	VINの低電圧フォルトが生じている。		
b[2]	Status_word_temp	温度フォルトまたは警告が生じている。STATUS_TEMPERATURE参照。		
b[1]	Status_word_cml	通信、メモリ、または論理フォルトが生じている。STATUS_CML参照。		
b[0]	Status_word_high_byte	b[7:1] に記載されていないフォルト/警告が生じている。		

2977fa

STATUS_VOUT

以下の表に示すように、STATUS_VOUTコマンドは、発生した出力電圧フォルトや警告の要約を返します。

STATUS_VOUTのデータの内容

ビット	シンボル	動作			
b[7]	Status_vout_ov_fault	過電圧フォルト。			
b[6]	Status_vout_ov_warn	過電圧警告。			
b[5]	Status_vout_uv_warn	氏電圧警告。			
b[4]	Status_vout_uv_fault	電圧フォルト。			
b[3]	Status_vout_max_fault	OUT_MAXフォルト。VOUT_MAXコマンドで許容される値より高い値に出力電圧を設定しようとした。			
b[2]	Status_vout_ton_max_fault	TON_MAX_FAULTシーケンス・フォルト。			
b[1]	Status_vout_toff_max_warn	サポートされていない。常に0を返す。			
b[0]	Status_vout_tracking_error	サポートされていない。常に0を返す。			

STATUS_INPUT

以下の表に示すように、STATUS_INPUTコマンドは、発生した $V_{\rm IN}$ フォルトや警告の要約を返します。

STATUS_INPUT のデータの内容

ビット	シンボル	動作
b[7]	Status_input_ov_fault	V _{IN} の過電圧フォルト
b[6]	Status_input_ov_warn	V _{IN} の過電圧警告
b[5]	Status_input_uv_warn	V _{IN} の低電圧警告
b[4]	Status_input_uv_fault	V _{IN} の低電圧フォルト
b[3]	Status_input_off	入力電圧が不十分なためにデバイスはオフ状態。
b[2]	I _{IN} の過電流フォルト	サポートされていない。常に0を返す。
b[1]	I _{IN} の過電流警告	サポートされていない。常に0を返す。
b[0]	PINの過電力警告	サポートされていない。常に0を返す。

STATUS_TEMPERATURE

以下の表に示すように、STATUS_TEMPERATUREコマンドは、発生した温度フォルトや警告の要約を返します。

STATUS_TEMPERATUREのデータの内容

ビット	シンボル	動作
b[7]	Status_temperature_ot_fault	過熱フォルト。
b[6]	Status_temperature_ot_warn	過熱警告。
b[5]	Status_temperature_ut_warn	低温警告。
b[4]	Status_temperature_ut_fault	低温フォルト。
b[3:0]	予備	予備。常に0を返す。

LINEAD TECHNOLOGY

STATUS_CML

以下の表に示すように、STATUS_CMLコマンドは、通信、メモリ、およびロジックの発生したフォルトや警告の要約を返します。

STATUS_CMLのデータの内容

ビット	シンボル	動作			
b[7]	Status_cml_cmd_fault	ポートされていないか不正なコマンド・フォルトが発生した。			
b[6]	Status_cml_data_fault	サポートされていないか不正なデータを受け取った。			
b[5]	Status_cml_pec_fault	フォルトが発生した。注記:LTC2977では、PEC検査は常にアクティブ。STOPの前に受け取った余分なバイトは、 分なバイトが合致する PEC バイトでない限り Status_cml_pec_fault をセットする。			
b[4]	Status_cml_memory_fault	EPROMでフォルトが発生した。			
b[3]	Status_cml_processor_fault	ナポートされていない、常に0を返す。			
b[2]	予備	予備、常に0を返す。			
b[1]	Status_cml_pmbus_fault	この表に記載された以外の通信フォルトが発生した。これは不正に形成された I^2 C/SMBus コマンドをまとめて扱うカテゴリです (例: START の直後に受け取った read = 1 のアドレス・バイト)。			
b[0]	Status_cml_unknown_fault	サポートされていない、常に0を返す。			

STATUS_MFR_SPECIFIC

STATUS_MFR_SPECIFIC コマンドはメーカ固有のステータス・フラグを返します。CHANNEL = All が明示されたビットはページ化されません。STICKY = Yes が明示されたビットは、CLEAR_FAULTS が送出されるか、ユーザが該当チャネルに指示するまで設定が維持されます。ALERT = Yes が明示されたビットは、セットされるとALERTB ピンを"L"にします。OFF = Yes が明示されたビットは、イベントを他の場所で構成してチャネルをオフにできることを示します。メーカ固有のステータスに関するその他のビットについては、62ページのMFR_STATUS_2を参照してください。

STATUS_MFR_SPECIFICのデータの内容

ビット	シンボル	動作	CHANNEL	STICKY	ALERT	0FF
b[7]	Status_mfr_discharge	オン状態へ移行しようとしているときにV _{OUT} の放電フォルトが発生した	現行ページ	Yes	Yes	Yes
b[6]	Status_mfr_fault1_in	このチャネルはFAULTBz1ピンが"L"にアサートされている間に オンになろうとしたか、CONTROLnピンの切り替え動作、 OPERATIONコマンドのON/OFFサイクル、またはCLEAR_FAULTS コマンドの送出以降にFAULTBz1ピンが"L"にアサートされるのに 応答して、このチャネルは少なくとも1回シャットダウンした。	現行ページ	Yes	Yes	Yes
b[5]	Status_mfr_fault0_in	このチャネルはFAULTBz0ピンが"L"にアサートされている間に オンになろうとしたか、CONTROLnピンの切り替え動作、 OPERATIONコマンドのON/OFFサイクル、またはCLEAR_FAULTS コマンドの送出以降にFAULTBz0ピンが"L"にアサートされるのに 応答して、このチャネルは少なくとも1回シャットダウンした。	現行ページ	Yes	Yes	Yes
b[4]	Status_mfr_servo_target_reached	サーボの目標値に到達した。	現行ページ	No	No	No
b[3]	Status_mfr_dac_connected	DAC が接続され、V _{DACP} ピンをドライブしている。	現行ページ	No	No	No
b[2]	Status_mfr_dac_saturated	DACの値が最大または最小のとき前のサーボ動作が終了した。	現行ページ	Yes	No	No
b[1]	Status_mfr_vinen_faulted_off	V _{OUT} フォルトが原因でV _{IN_EN} がデアサートされた。	All	No	No	No
b[0]	Status_mfr_watchdog_fault	ウォッチドッグ・フォルトが発生した。	All	Yes	Yes	No

詳細: www.linear-tech.co.jp/LTC2977

ADC モニタ・コマンド

READ VIN

このコマンドは、V_{IN SNS}ピンで測定した電圧のADCによる最新の測定値を返します。

READ_VINのデータの内容

ビット	シンボル	動作
b[15:0]	Read_vin[15:0]	データはL11形式を使用する。
		単位:V

READ_VOUT

このコマンドは、チャネルの出力電圧のADCによる最新の測定値を返します。奇数チャネルを設定して電流を測定する場合、データの内容に使用するのはL11形式で単位はmVです。

READ_VOUTのデータの内容

ビット シン	ゲボル	動作
b[15:0] Read	- ' '	データはL16形式を使用する。 単位:V

READ_VOUTのデータの内容—奇数チャネルを設定して電流を測定する場合(Mfr_config_adc_hires = 1)

ビット	シンボル	動作
b[15:0]	Read_vout[15:0]	データはL11形式を使用する。
		単位:mV

READ_TEMPERATURE_1

このコマンドは、LTC2977の内部温度センサによって測定される接合部温度(単位:°C)のADCによる最新の測定値を返します。

READ_TEMPERATURE_1のデータの内容

ビット	シンボル	動作
b[15:0]	Read_temperature_1 [15:0]	データはL11形式を使用する。
		単位:°C

PMBUS_REVISION

PMBUS_REVISIONコマンド・レジスタは読み出し専用で、LTC2977がPMBus標準規格1.1版に準拠していることを通知します。

PMBUS_REVISIONのデータの内容

ビット	シンボル	動作
b[7:0]	PMBus_rev	PMBus標準規格改訂版への準拠性を通知する。1.1版では0x11に固定。

LINEAR TECHNOLOGY

メーカ固有のコマンド

MFR_CONFIG_LTC2977

このコマンドは、さまざまなメーカ固有の動作パラメータをチャネルごとに設定するために使用します。

MFR_CONFIG_LTC2977のデータの内容

ビット	シンボル	動作
b[15:14]	Mfr_config_chan_mode	チャネル固有のシーケンシング・モードを選択する。 00 = チャネルは PMBus 遅延シーケンシングを使用し、フォルト発生時には直ちにオフになる。 01 = チャネルは PMBus 遅延シーケンシングを使用し、フォルト発生時にはシーケンス制御でオフになる。 1x = チャネルはトラッキング対象電源システムのスレーブである。
b[13:12]	予備	ドントケア。常に0を返す。
b[11]	Mfr_config_fast_servo_off	出力電圧のマージニング中やトリミング中にはファースト・サーボをディスエーブルする。 0: ファースト・サーボがイネーブルされている。 1: ファースト・サーボがディスエーブルされている。
b[10]	Mfr_config_supervisor_resolution	スーパーバイザの分解能を以下のように選択する。 0:高分解能=4mV/LSB、Vvsensepn - Vvsensemn の範囲は0V~3.8V。 1:低分解能=8mV/LSB、Vvsensepn - Vvsensemn の範囲は0V~6.0V。
b[9]	Mfr_config_adc_hires	奇数チャネルのADC分解能を選択する。通常は電流を測定するために使用される。偶数チャネルの場合は無視される(偶数チャネルでは常に低分解能を使用する)。 0:低分解能=122μV/LSB 1:高分解能=15.6μV/LSB
b[8]	Mfr_config_controln_sel	このチャネルのアクティブ制御ピン入力(CONTROLOまたはCONTROL1)を選択する。 0:CONTROLOピンを選択する。 1:CONTROL1ピンを選択する。
b[7]	Mfr_config_servo_continuous	V _{OUT} が新しいマージンまたは公称目標値に到達後、デバイスが継続して出力電圧のサーボ制御を行うかどうかを選択する。Mfr_config_dac_mode = 00bの場合にのみ適用する。 0:初期目標値到達後はV _{OUT} を継続的にサーボ制御しない。 1:V _{OUT} を目標値まで継続的にサーボ制御する。
b[6]	Mfr_config_servo_on_warn	警告機能に基づいて再度サーボ制御する。Mfr_config_dac_mode = 00b および Mfr_config_servo_continuous = 0 の場合にのみ適用する。 0:V _{OUT} 警告しきい値に到達するか、超えた場合、デバイスが再度サーボ制御できないようにする。 1:V _{OUT} ≥ V(Vout_ov_warn_limit)またはV _{OUT} ≤ V(Vout_uv_warn_limit)である場合、デバイスがV _{OUT} を 公称目標値に再度サーボ制御できるようにする。
b[5:4]	Mfr_config_dac_mode	チャネルがオン状態でTON_RISEの期限が切れているときにDACをどのように使用するかを決定する。00:(必要に応じて)ソフト接続し、目標値にサーボ制御する。01:DACは接続されない。10:MFR_DACコマンドからの値を使用してDACは直ちに接続される。これがリセット後またはRESTORE_USER_ALL実行後の設定である場合、MFR_DACは未定義となり、目的の値を書き込む必要がある。11:DACはソフト接続される。ソフト接続が完了すると、MFR_DACを書き込むことができる。
b[3]	Mfr_config_vo_en_wpu_en	Vout_ENピンに電荷が注入され、電流制限プルアップ回路がイネーブルする。 0:弱いプルアップ回路をディスエーブルする。チャネルがオンのときにVout_ENピンのドライバが3ステートになっている。 1:チャネルがオンのときにVout_ENピンに弱い電流制限プルアップ回路を使用する。 チャネル4~7では、このビットはその値に関係なく0として扱われる。
b[2]	Mfr_config_vo_en_wpd_en	V _{OUT_EN} ピンの電流制限プルダウン回路をイネーブルする。 0:チャネルが何らかの理由でオフの場合、高速Nチャネル・デバイスを使用してV _{OUT_EN} ピンをプルダウンする。 1:CONTROL ₁ ピンまたはOPERATIONコマンドあるいはその両方によるソフトストップのためにチャネルが オフになっている場合は、弱い電流制限プルダウン回路を使用してV _{OUT_EN} ピンを放電する。 チャネルがフォルトのためにオフになっている場合は、V _{OUT_EN} ピンの高速プルダウン回路を使用する。 チャネル4~7では、このビットはその値に関係なく0として扱われる。

2977fa

MFR CONFIG LTC2977のデータの内容

ビット	シンボル	動作
b[1]	Mfr_config_dac_gain	DAC バッファの利得。 0: DAC バッファの利得として dac_gain_0 を選択する(フルスケール 1.38V)。 1: DAC バッファの利得として dac_gain_1 を選択する(フルスケール 2.65V)。
b[0]	Mfr_config_dac_pol	DAC 出力の極性。 0: DC/DC コンバータの負の(反転)調整入力をエンコードする。 1: DC/DC コンバータの正の(非反転)調整入力をエンコードする。

トラッキング電源のオンとオフ

LTC2977は、トラッキング・ピンを備えてトラッキング用に設定されたトラッキング電源に対応しています。トラッキング電源では、第2の帰還端子(TRACK)を使用して出力電圧を外部のマスタ電圧に合わせて調整できます。通常、外部電圧はシステム中で最も高い電圧の電源で発生され、これがスレーブ・トラック・ピンに供給されます(図13a参照)。マスタ電源をトラックする電源はマスタ電源が起動する前にイネーブルされる必要があり、マスタ電源がオフになった後にディスエーブルされる必要があります。マスタがオフの場合にスレーブ電源をイネーブルにするには、スーパーバイザがスレーブをモニタして低電圧検出をディスエーブルする必要があります。トラッキングするように設定されたすべてのチャネルは、いずれかのチャネルのフォルト、または1つ以上のチャネルを停止する可能性があるそれ以外のすべての状態に応答して、互いにトラッキングを停止する必要があります。あるスレーブ・チャネルをそのRUNピンでディスエーブルするのが早すぎると、そのチャネルが乱れた順序でシャットダウンする事態が発生する可能性があります(図13d参照)。

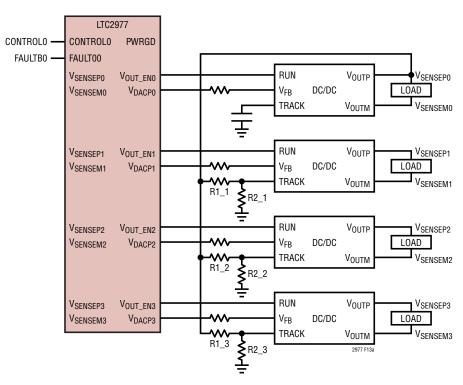


図13a. トラッキング・ピンを備えた電源を制御、監視、モニタするように設定されたLTC2977

LINEAR

LTC2977の重要な特長は、マスタ電源のオン/オフをトラックするように設定されたDC/DCコンバータの制御、モニタ、および監視ができることです。

LTC2977は以下のトラッキング機能に対応しています。

- スレーブ・チャネルが稼働または停止をトラッキングしている場合、間違った低電圧イベントを発生せずにチャネルをオンおよびオフにトラッキングさせる。
- スレーブまたはマスタからのフォルトに応答してすべてのチャネルを停止状態にトラッキングさせる。
- VIN_SNSがVIN_OFFより低くなったか、共有クロックが"L"に保持されたか、またはRESTORE_USER_ALLが送出されたときに、すべてのチャネルを停止状態にトラッキングさせる。
- トラッキング・グループの一部である選択されたチャネルを再設定して、トラッキング・グループを稼働状態にトラッキングした 後に稼働シーケンス制御を行うか、またはトラッキング・グループを停止状態にトラッキングする前に停止シーケンス制御を行 う機能。

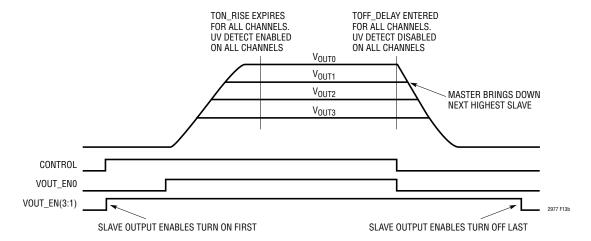


図13b. すべての電源電圧の稼働と停止をトラッキングする制御ピン

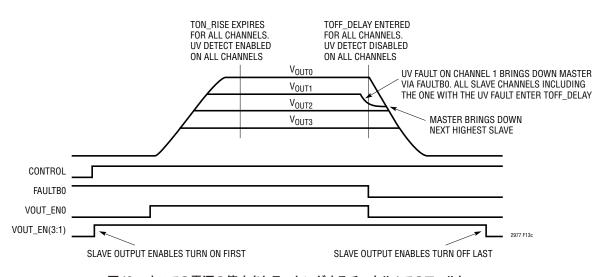


図13c. すべての電源の停止をトラッキングするチャネル1でのフォルト

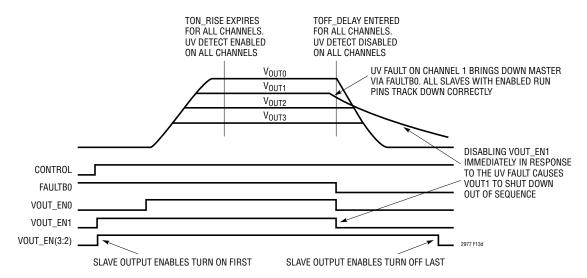


図13d. フォルトが発生しているチャネルでフォルトに対する応答が不適切に設定されると、トラッキングが中断する

トラッキングの実装

LTC2977はTon_delay、Ton_rise、Toff_delay、Mfr_config_chan_modeの協調的なプログラミングにより、トラッキングをサポートします。マスタ・チャネルはすべてのスレーブ・チャネルがオンになった後にオンになり、またすべてのスレーブ・チャネルがオフになる前にオフになるように設定する必要があります。マスタの前にイネーブルされたスレーブは、トラッキング・ピンがこれらのスレーブがオンになるのを許容するまでオフのままになります。スレーブは、そのRUNピンがまだアサートされていてもトラッキング・ピン経由でオフになります。Ton_riseは、Vout_ENピンの立ち上がりではなく、TRACKピンの立ち上がりを基準にして終了するように、スレーブ上で長くする必要があります。

Mfr config chan mode = 1Xbのとき、該当チャネルには以下の動作が再設定されます。

- フォルト、VIN_OFF、SHARE_CLK "L"、またはRESTORE_USER_ALLにより停止シーケンス制御を行う。
- TOFF_DELAYの時間中は低電圧が無視される。TON_RISEとTON_MAX_FAULTの時間中は、これらの構成ビットの設定内容にかかわらず常に低電圧が無視される。

以下の例では、LTC2977を1つのマスタ・チャネルと3つのスレーブ・チャネルで構成したものを示します。

マスタ・チャネル0

TON_DELAY = Ton_delay_master

TON RISE = Ton rise master

TOFF_DELAY = Toff_delay_master

Mfr config chan mode = 00

スレーブ・チャネルn

TON DELAY = Ton delay slave

TON RISE = Ton delay master + Ton rise slave

LINEAD

TOFF_DELAY = Toff_delay_master + Toff_delay_slave

Mfr_config_chan_mode = 10b

ここで、

Ton_delay_master – Ton_delay_slave > RUNからTRACKまでのセットアップ時間

Toff_delay_slave > マスタ電源が立ち下がる時間。

制御ピンの切り替えに対するこのシステムの応答を図13bに示します。

スレーブ・チャネルの低電圧フォルトに対するこのシステムの応答を図13cに示します。

MFR_CONFIG_ALL_LTC2977

このコマンドは、デバイスのすべてのチャネルに共通のパラメータを設定するために使用します。これらはすべてのPAGE設定から設定や見直しができます。

MFR_CONFIG_ALL_LTC2977のデータの内容

ビット	シンボル	動作
b[15-13]	予備	ドントケア。常に0を返す
b[12]	Mfr_config_all_en_short_cycle_fault	短周期のフォルト検出をイネーブルする。詳細については、62ページのMfr_status_2_short_cycle_faultを参照。
		0:直前のOFFが完了する前にONを送出してもフォルトは発生しない。
		1:直前のOFFが完了する前にONを送出するとフォルトが発生する。
b[11]	Mfr_config_all_pwrgd_off_uses_uv	すべてのチャネルに対してPWRGDデアサート・ソースを選択する。
		$0:PWRGD$ は、 V_{OUT} が $POWER_GOOD_OFF$ 以下であることに基づいてデアサートされる。このオプションは ADC を使用する。 応答時間はおよそ $100ms \sim 200ms$ 。
		1: PWRGD は、V _{OUT} が VOUT_UV_LIMIT以下であることに基づいてデアサートされる。このオプションは高速スーパーバイザを使用する。 応答時間は約12μs
b[10]	Mfr_config_all_fast_fault_log	フォルト・ログ・メモリをEEPROMに転送する前に完了するADC測定値の数を制御する。
		0:低速。フォルト・ログをEEPROMに転送する前に、すべてのADC遠隔測定値を更新する。
		1:高速。遠隔測定値は、フォルト検出後24ms以内にフォルト・ログからEEPROMに転送される。
b[9:8]	予備	ドントケア。常に0を返す
b[7]	Mfr_config_all_fault_log_enable	フォルトに応答してEEPROMへのフォルト・ログをイネーブルする。
		0:EEPROMへのフォルト・ログをディスエーブルする
		1:EEPROMへのフォルト・ログをイネーブルする
b[6]	Mfr_config_all_vin_on_clr_faults_en	V _{IN} をVIN_ONより高い電圧にして、ラッチされたすべてのフォルトをクリアする
		0:VIN_ONによるフォルトのクリア機能をディスエーブルする
		1:VIN_ONによるフォルトのクリア機能をイネーブルする
b[5]	Mfr_config_all_control1_pol	CONTROL1ピンのアクティブ極性を選択する。
		0:アクティブ"L"(ピンを"L"にしてデバイスを起動)
		1:アクティブ"H"(ピンを"H"にしてデバイスを起動)
b[4]	Mfr_config_all_control0_pol	CONTROLOピンのアクティブ極性を選択する。
		0:アクティブ"L"(ピンを"L"にしてデバイスを起動) 1:アクティブ"H"(ピンを"H"にしてデバイスを起動)
P101	Mfr config all vin chara anable	
b[3]	Mfr_config_all_vin_share_enable	V _{IN} がVIN_ONより高くなっていないとき、またはVIN_OFFよりも低くなったときにこのデバイスが SHARE_CLKピンを"L"に保てるようにする。これがイネーブルされると、このデバイスは"L"に保たれている SHARE_CLKに応答してすべてのチャネルをオフにする。 0:SHARE_CLKの禁止をディスエーブルする
		1:SHARE_CLKの禁止をイネーブルする

2977fa

MFR_CONFIG_ALL_LTC2977のデータの内容

ビット	シンボル	動作
b[2]	Mfr_config_all_pec_en	PMBus のパケット・エラー・チェックのイネーブル。
		0:PECは受け付けられるが必須ではない
		1:PEC は必須
b[1]	Mfr_config_all_longer_pmbus_timeout	PMBusタイムアウト間隔を8倍にする。フォルト・ログを推奨される。
		0:PMBusタイムアウトは8倍にならない
		1:PMBusタイムアウトが8倍になる
b[0]	Mfr_config_all_vinen_wpu_dis	V _{IN_EN} ピンに電荷が注入され、電流制限プルアップ回路はディスエーブルされる。
		$0:V_{IN_EN}$ を強制的にオフにするフォルトがない限り、起動後は V_{IN_EN} の弱い電流制限プルアップ回路を使用する。
		1:弱いプルアップ回路をディスエーブルする。 $V_{\text{IN_EN}}$ を強制的にオフにするフォルトがない限り、 $V_{\text{IN_EN}}$ のドライバは起動後 3 ステートになる。

MFR_FAULTBz0_PROPAGATE、MFR_FAULTBz1_PROPAGATE

これらのメーカ固有のコマンドは、フォルトによってオフしているチャネルをイネーブルし、その状態を該当するフォルト・ピンに伝えます。ページ0~3のフォルトによるオフ状態は、FAULTB00ピンおよびFAULTB01ピンにのみ伝達できます。これはゾーン0と呼ばれます。ページ4~7のフォルトによるオフ状態は、FAULTB10ピンおよびFAULTB11ピンにのみ伝達できます。これはゾーン1と呼ばれます。コマンド名にあるz指示子は、このコマンドがページによって異なるゾーンに作用することを示すために使用されます。図20を参照してください。

フォルト・ピンを"L"にしても、MFR_FAULTBzn_RESPONSEが0にセットされているチャネルには効果がないので注意してください。チャネルは中断せずに動作を続けます。このフォルトに対する応答は、LTpowerPlayではIgnore (0x0)と呼ばれます。

MFR_FAULTBz0_PROPAGATEのデータの内容

ビット	シンボル	動作
b[7:1]	予備	ドントケア。常に0を返す。
b[0]	Mfr_faultbz0_propagate	フォルトの伝達をイネーブルする。 ページ 0 ~ 3、ゾーン 0 の場合 0: チャネルのフォルトによるオフ状態は FAULTB00 を "L"にアサートしない。 1: チャネルのフォルトによるオフ状態は FAULTB00 を "L"にアサートする。 ページ 4 ~ 7、ゾーン 1 の場合 0: チャネルのフォルトによるオフ状態は FAULTB10 を "L"にアサートしない。 1: チャネルのフォルトによるオフ状態は FAULTB10 を "L"にアサートする。

MFR_FAULTBz1_PROPAGATEのデータの内容

ビット	シンボル	動作
b[7:1]	予備	ドントケア。常に0を返す。
b[0]	Mfr_faultbz1_propagate	フォルトの伝達をイネーブルする。
		ページ0~3、ゾーン0の場合 0:チャネルのフォルトによるオフ状態はFAULTB01を"L"にアサートしない。 1:チャネルのフォルトによるオフ状態はFAULTB01を"L"にアサートする。 ページ4~7、ゾーン1の場合 0:チャネルのフォルトによるオフ状態はFAULTB11を"L"にアサートしない。 1:チャネルのフォルトによるオフ状態はFAULTB11を"L"にアサートする。

2977fa

LINEAD

MFR_PWRGD_EN

このコマンド・レジスタにより、ウォッチドッグとチャネルのパワーグッド・ステータスのPWRGDピンへのマッピングが制御されます。ADCが高分解能モードの奇数チャネルは、パワーグッドには影響しません。

MFR PWRGD_ENのデータの内容

ビット	シンボル	動作
b[15:9]	予備	読み出し専用、常に0を返す。
b[8]	Mfr_pwrgd_en_wdog	ウォッチドッグ
		1=ウォッチドッグ・タイマの有効期限内ステータスと、同様にイネーブルされたチャネルのPWRGDステータスとの 論理積演算が行われ、PWRGDピンがいつアサートされるかが決定される。
		0=ウォッチドッグ・タイマはPWRGDピンに影響しない。
b[7]	Mfr_pwrgd_en_chan7	チャネル7
		1=このチャネルのPWRGDステータスと、同様にイネーブルされたチャネルのPWRGDステータスとの論理積演算が行われ、PWRGDピンがいつアサートされるかが決定される。
		0=このチャネルのPWRGDステータスはPWRGDピンには影響しない。
b[6]	Mfr_pwrgd_en_chan6	チャネル6
		1=このチャネルのPWRGDステータスと、同様にイネーブルされたチャネルのPWRGDステータスとの論理積演算が 行われ、PWRGDピンがいつアサートされるかが決定される。
		0=このチャネルのPWRGDステータスはPWRGDピンには影響しない。
b[5]	Mfr_pwrgd_en_chan5	チャネル5
		1=このチャネルのPWRGDステータスと、同様にイネーブルされたチャネルのPWRGDステータスとの論理積演算が 行われ、PWRGDピンがいつアサートされるかが決定される。
		0=このチャネルのPWRGDステータスはPWRGDピンには影響しない。
b[4]	Mfr_pwrgd_en_chan4	チャネル4
		1=このチャネルのPWRGDステータスと、同様にイネーブルされたチャネルのPWRGDステータスとの論理積演算が行われ、PWRGDピンがいつアサートされるかが決定される。
		0=このチャネルのPWRGDステータスはPWRGDピンには影響しない。
b[3]	Mfr_pwrgd_en_chan3	チャネル3
		1=このチャネルのPWRGDステータスと、同様にイネーブルされたチャネルのPWRGDステータスとの論理積演算が行われ、PWRGDピンがいつアサートされるかが決定される。
		0=このチャネルのPWRGDステータスはPWRGDピンには影響しない。
b[2]	Mfr_pwrgd_en_chan2	チャネル2
		1=このチャネルのPWRGDステータスと、同様にイネーブルされたチャネルのPWRGDステータスとの論理積演算が行われ、PWRGDピンがいつアサートされるかが決定される。
		0=このチャネルのPWRGDステータスはPWRGDピンには影響しない。
b[1]	Mfr_pwrgd_en_chan1	チャネル1
		1=このチャネルのPWRGDステータスと、同様にイネーブルされたチャネルのPWRGDステータスとの論理積演算が行われ、PWRGDピンがいつアサートされるかが決定される。
		0=このチャネルのPWRGDステータスはPWRGDピンには影響しない。
b[0]	Mfr_pwrgd_en_chan0	チャネル0
		1=このチャネルのPWRGDステータスと、同様にイネーブルされたチャネルのPWRGDステータスとの論理積演算が行われ、PWRGDピンがいつアサートされるかが決定される。
		0=このチャネルのPWRGDステータスはPWRGDピンには影響しない。

2977fa

MFR_FAULTB00_RESPONSE、MFR_FAULTB01_RESPONSE、MFR_FAULTB10_RESPONSE、およびMFR_FAULTB11_RESPONSE

これらのメーカ固有のコマンドは同じフォーマットを共有し、FAULTBピンのアサートへの応答を指定します。フォルト・ゾーン0では、FAULTB00ピンがアサートされたときにチャネル0~3がオフするかどうかがMFR_FAULTB00_RESPONSEによって決まり、FAULTB01ピンがアサートされたときにチャネル0~3がオフするかどうかがMFR_FAULTB01_RESPONSEによって決まります。フォルト・ゾーン1では、FAULTB10ピンがアサートされたときにチャネル4~7がオフするかどうかがMFR_FAULTB10_RESPONSEによって決まり、FAULTB11ピンがアサートされたときにチャネル4~7がオフするかどうかがMFR_FAULTB11_RESPONSEによって決まります。FAULTBピンに応答してチャネルがオフすると、ALERTBピンは"L"にアサートされ、該当のビットがSTATUS_MFR_SPECIFICレジスタにセットされます。図での説明は、「図20. チャネルのフォルト管理のブロック図」の左側にあるスイッチを参照してください。

データの内容--フォルト・ゾーン0の応答コマンド

ビット	シンボル	動作
b[7:4]	予備	読み出し専用、常に0を返す。
b[3]	Mfr_faultb00_response_chan3、 Mfr_faultb01_response_chan3	チャネル3の応答。 0:チャネルは中断せずに動作を続ける。 1:対応するFAULTBznピンが10μs 経過後もアサートされている場合、チャネルはシャットダウンする。その後に FAULTBznピンがデアサートすると、このチャネルはTON_DELAYおよびTON_RISEの設定に従って再びオンになる。
b[2]	Mfr_faultb00_response_chan2、 Mfr_faultb01_response_chan2	チャネル2の応答。 0:チャネルは中断せずに動作を続ける。 1:対応する FAULTBzη ピンが 10μs 経過後もアサートされている場合、チャネルはシャットダウンする。その後に FAULTBzηピンがデアサートすると、このチャネルはTON_DELAYおよびTON_RISEの設定に従って再びオンになる。
b[1]	Mfr_faultb00_response_chan1、 Mfr_faultb01_response_chan1	チャネル1の応答。 0:チャネルは中断せずに動作を続ける。 1:対応する FAULTBzn ピンが 10μs 経過後もアサートされている場合、チャネルはシャットダウンする。その後に FAULTBznピンがデアサートすると、このチャネルはTON_DELAYおよびTON_RISEの設定に従って再びオンになる。
b[0]	Mfr_faultb00_response_chan0、 Mfr_faultb01_response_chan0	チャネル0の応答。 0:チャネルは中断せずに動作を続ける。 1:対応する FAULTBzn ピンが 10μs 経過後もアサートされている場合、チャネルはシャットダウンする。その後に FAULTBzn ピンがデアサートすると、このチャネルはTON_DELAYおよびTON_RISEの設定に従って再びオンになる。

データの内容--フォルト・ゾーン1の応答コマンド

ビット	シンボル	動作
b[7:4]	予備	読み出し専用、常に0を返す。
b[3]	Mfr_faultb10_response_chan7、 Mfr_faultb11_response_chan7	チャネル7の応答。 0:チャネルは中断せずに動作を続ける。 1:対応するFAULTBznピンが10μs 経過後もアサートされている場合、チャネルはシャットダウンする。その後に FAULTBznピンがデアサートすると、このチャネルはTON_DELAYおよびTON_RISEの設定に従って再びオンになる。
b[2]	Mfr_faultb10_response_chan6、 Mfr_faultb11_response_chan6	チャネル6の応答。 0:チャネルは中断せずに動作を続ける。 1:対応するFAULTBznピンが10μs 経過後もアサートされている場合、チャネルはシャットダウンする。その後に FAULTBznピンがデアサートすると、このチャネルはTON_DELAYおよびTON_RISEの設定に従って再びオンになる。
b[1]	Mfr_faultb10_response_chan5、 Mfr_faultb11_response_chan5	チャネル5の応答。 0:チャネルは中断せずに動作を続ける。 1:対応するFAULTBznピンが10μs 経過後もアサートされている場合、チャネルはシャットダウンする。その後に FAULTBznピンがデアサートすると、このチャネルはTON_DELAYおよびTON_RISEの設定に従って再びオンになる。
b[0]	Mfr_faultb10_response_chan4、 Mfr_faultb11_response_chan4	チャネル4の応答。 0:チャネルは中断せずに動作を続ける。 1:対応する FAULTBzη ピンが 10μs 経過後もアサートされている場合、チャネルはシャットダウンする。その後に FAULTBzηピンがデアサートすると、このチャネルはTON_DELAYおよびTON_RISEの設定に従って再びオンになる。

2977fa

52

詳細: www.linear-tech.co.jp/LTC2977

MFR_VINEN_OV_FAULT_RESPONSE

特定のチャネルでの V_{OUT} の過電圧フォルトによって V_{IN_EN} ピンが"L"になるかどうかがこのコマンド・レジスタによって決まります。

MFR_VINEN_OV_FAULT_RESPONSEのデータの内容

ビット	シンボル	動作
b[7]	Mfr_vinen_ov_fault_response_chan7	チャネル7のVOUT_OV_FAULTに対する応答。
b[6]	Mfr_vinen_ov_fault_response_chan6	チャネル 6 の $VOUT_OV_FAULT$ に対する応答。 $1 = $ 高速プルダウンによって V_{IN_EN} をディスエーブルする("L"にする)。 $0 = V_{IN_EN}$ をディスエーブルしない。
b[5]	Mfr_vinen_ov_fault_response_chan5	チャネル5のVOUT_OV_FAULTに対する応答。 $1 = \widehat{a} = \mathbb{E}^{2}$ $1 = \widehat{b} = \mathbb{E}^{2}$ $1 = \widehat{b} = \mathbb{E}^{2}$ $0 = V_{\text{IN}_\text{EN}}$ $0 = V_{\text{IN}_\text{EN}}$ $0 = V_{\text{IN}_\text{EN}}$ $0 = V_{\text{IN}_\text{EN}}$ $0 = V_{\text{IN}}$
b[4]	Mfr_vinen_ov_fault_response_chan4	チャネル4のVOUT_OV_FAULTに対する応答。 $1 = \widehat{\text{a.s.}} \mathcal{I} = \widehat{\text{b.s.}} $
b[3]	Mfr_vinen_ov_fault_response_chan3	チャネル3のVOUT_OV_FAULTに対する応答。
b[2]	Mfr_vinen_ov_fault_response_chan2	チャネル2のVOUT_OV_FAULTに対する応答。
b[1]	Mfr_vinen_ov_fault_response_chan1	チャネル1のVOUT_OV_FAULTに対する応答。 $1 = \hat{\beta} = $
b[0]	Mfr_vinen_ov_fault_response_chan0	チャネル0のVOUT_OV_FAULTに対する応答。 $1 = $ 高速プルダウンによって V_{IN_EN} をディスエーブルする("L"にする)。 $0 = V_{IN_EN}$ をディスエーブルしない。

MFR_VINEN_UV_FAULT_RESPONSE

特定のチャネルでの V_{OUT} の低電圧フォルトによって V_{IN_EN} ピンが"L"になるかどうかがこのコマンド・レジスタによって決まります。

MFR_VINEN_UV_FAULT_RESPONSEのデータの内容

ビット	シンボル	動作
b[7]	Mfr_vinen_uv_fault_response_chan7	チャネル 7 の $VOUT_UV_FAULT$ に対する応答。
b[6]	Mfr_vinen_uv_fault_response_chan6	チャネル 6 の $VOUT_UV_FAULT$ に対する応答。
b[5]	Mfr_vinen_uv_fault_response_chan5	チャネル 5 の $VOUT_UV_FAULT$ に対する応答。
b[4]	Mfr_vinen_uv_fault_response_chan4	チャネル4のVOUT_UV_FAULTに対する応答。 $1 = \overline{\text{a.s.}} $ $1 = \overline{\text{a.s.}} $ $1 = \overline{\text{a.s.}} $ $0 = V_{\text{IN_EN}} $ をディスエーブルしない。
b[3]	Mfr_vinen_uv_fault_response_chan3	チャネル 3 の $VOUT_UV_FAULT$ に対する応答。
b[2]	Mfr_vinen_uv_fault_response_chan2	チャネル2のVOUT_UV_FAULTに対する応答。 $1 = \overline{\text{a.s.}} \mathcal{I} = \overline{\text{b.s.}} \mathcal{I} = \overline{\text{c.s.}} \mathcal{I} = \overline{\textc.s.} \mathcal{I} = \text$
b[1]	Mfr_vinen_uv_fault_response_chan1	チャネル1のVOUT_UV_FAULTに対する応答。 $1 = \hat{a} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} $
b[0]	Mfr_vinen_uv_fault_response_chan0	チャネル0のVOUT_UV_FAULTに対する応答。 $1 = $ 高速プルダウンによって V_{IN_EN} をディスエーブルする("L"にする)。 $0 = V_{IN_EN}$ をディスエーブルしない。

MFR RETRY COUNT

MFR_RETRY_COUNT は、再試行数を設定するグローバル・コマンドで、フォルト応答再試行フィールドをゼロ以外の値に設定することにより、いずれかのチャネルがフォルトでオフになったときに行う再試行数を設定します。

同じチャネルに再試行フォルトが複数あるか、繰り返し起こる場合、再試行の総数はMFR_RETRY_COUNTに等しくなります。 チャネルがフォルトによってオフになることが6秒間発生しなかった場合、その再試行カウンタはクリアされます。チャネルの CONTROLピンをオフしてからオンに切り替えるか、OPERATIONのオフ・コマンドを出してからオン・コマンドを出すと、再試行カウントは同期的にクリアされます。MFR RETRY COUNTに書き込むと、すべてのチャネルの再試行カウントはクリアされます。

MFR_RETRY_COUNTのデータの内容

ビット	シンボル	動作
b[7:3]	予備	常にゼロを返す。
b[2:0]	_ ,_ , ,	0:再試行なし:1-6:再試行の数。7:再試行数無制限。

MFR RETRY DELAY

このコマンドは、LTC2977がフォルト状態に応答して再試行モードになっているときの再試行間隔を決定します。このコマンドからの読み出し値は常に最後に書き込まれた値を返し、内部の制限値は反映しません。

MFR_RETRY_DELAYのデータの内容

ビット	シンボル	動作
b[15:0]		データはL11形式を使用する。 この遅延はSHARE_CLKのみを使用してカウントされる。 遅延は200μs ごとに丸められる。
		単位:ms、最大遅延時間は13.1秒。

MFR RESTART DELAY

このコマンドは、CONTROLピンで開始される再起動の最小オフ時間を設定します。CONTROLピンを10µs以上オフに切り替えてから、オンにすると、依存するすべてのチャネルがディスエーブルされてMfr_restart_delayの時間だけオフになり、その後順番にオンに戻ります。CONTROLnピンの遷移のうちオフ時間がMfr_restart_delayを超えるものは、このコマンドの影響を受けません。この機能は値をすべてゼロにするとディスエーブルされます。このコマンドからの読み出し値は常に最後に書き込まれた値を返し、内部の制限値は反映しません。

MFR RESTART DELAYのデータの内容

ビット	シンボル	動作	
b[15:0]		データはL11形式を使用する。	
		この遅延はSHARE_CLKのみを使用してカウントされる。	
		遅延は200μsごとに丸められる。	
		単位:ms、最大遅延時間は13.1秒。	

2977fa

MFR_VOUT_PEAK

このコマンドは、チャネルの出力電圧のADCによる最大の測定値を返します。このコマンドは、電流を測定するよう設定されている奇数チャネルではサポートされません。このレジスタは、LTC2977がパワーオン・リセットから戻るか、またはCLEAR_FAULTSコマンドが実行されると、0xF800(0.0)にリセットされます。

MFR_VOUT_PEAKのデータの内容

ビット	シンボル	動作	
b[15:0]	Mfr_vout_peak[15:0]	データはL16形式を使用する。	
		単位:V	

MFR VIN PEAK

このコマンドは、入力電圧のADCによる最大の測定値を返します。このレジスタは、LTC2977がパワーオン・リセットから戻るか、またはCLEAR_FAULTS コマンドが実行されると、 $0x7C00(-2^{25})$ にリセットされます。

MFR_VIN_PEAKのデータの内容

ビット	シンボル	動作	
b[15:0]	Mfr_vin_peak[15:0]	データはL11形式を使用する。	
		単位:V	

MFR_TEMPERATURE_PEAK

このコマンドは、LTC2977の内部温度センサによって測定される接合部温度(単位: $^{\circ}$ C)のADCによる最大の測定値を返します。このレジスタは、LTC2977がパワーオン・リセットから戻るか、またはCLEAR_FAULTSコマンドが実行されると、 $0x7C00(-2^{25})$ にリセットされます。

MFR_TEMPERATURE_PEAKのデータの内容

ビット	シンボル	動作
b[15:0]	Mfr_temperature_peak[15:0]	データはL11形式を使用する。
		単位:℃。

MFR DAC

このコマンド・レジスタを使用すると、10ビットDACを直接プログラムできます。DACに手動で書き込むには、チャネルをオン状態にして、 TON_RISE の経過後で、 $MFR_CONFIG_LTC2977$ b[5:4] = 10bまたは11bにする必要があります。 $MFR_CONFIG_LTC2977$ b[5:4] = 10bを書き込むと、DACは $Mfr_dac_direct_val$ の値とハード接続するよう命令されます。b[5:4] = 11bを書き込むと、DACはソフト接続するよう命令されます。いったんDACがソフト接続すると、 $Mfr_dac_direct_val$ は、電源を乱すことなくDACに接続できる値を返します。 $MFR_CONFIG_LTC2977$ b[5:4] = 00bまたは01bの場合、 MFR_DAC の書き込み内容は無視されます。

MFR DACのデータの内容

ビット	シンボル	動作
b[15:10]	予備	読み出し専用、常に0を返す。
b[9:0]	Mfr_dac_direct_val	DAC のコード値。

MFR POWERGOOD ASSERTION DELAY

このコマンド・レジスタを使用すると、内部パワーグッド信号が有効になってからパワーグッド出力がアサートされるまでの遅延をプログラムすることができます。この遅延は、SHARE_CLKが使用可能であればSHARE_CLKを使用してカウントされ、それ以外の場合には内部発振器が使用されます。この遅延は内部で13.1秒に制限されており、200µsごとに丸められています。このコマンドからの読み出し値は常に最後に書き込まれた値を返し、内部の制限値は反映しません。

パワーグッドのデアサート遅延としきい値ソースはMfr_config_all_pwrgd_off_uses_uvで制御されます。パワーグッドの高速デアサートが必要なシステムでは、Mfr_config_all_pwrgd_off_uses_uv = 1 とセットしてください。これはVOUT_UV_FAULT_LIMITと高速コンパレータを用いてPWRGDピンをデアサートします。パワーグッドに別のオフしきい値を必要とするシステムでは、Mfr_config_all_pwrgd_off_uses_uv = 0 とセットしてください。これはより低速のADCポーリング・ループとPOWER_GOOD_OFFを使用してPWRGDピンをデアサートします。

MFR POWERGOOD ASSERTION DELAYのデータの内容

ビット	シンボル	動作
b[15:0]	Mfr_powergood_assertion_delay	データはL11 形式を使用する。
		この遅延は、SHARE_CLKが使用可能であればSHARE_CLKを使用してカウントされ、それ以外の場合には内部発振器が使用される。
		遅延は200µsごとに丸められる。
		単位:ms、最大遅延時間は13.1秒。

2977fa

MFR_PADS

MFR_PADS コマンドは、低周波数のデジタル・パッド(ピン)への読み出し専用アクセスを実行します。ビット[9:0]に示された入力値は、デグリッチ処理ロジック実行前の値です。

MFR_PADSのデータの内容

ビット	シンボル	動作
b[15]	Mfr_pads_pwrgd_drive	0=PWRGDパッドはこのデバイスによって"L"に駆動される
		1 = PWRGDパッドはこのデバイスによって"L"に駆動されない
b[14]	Mfr_pads_alertb_drive	0 = ALERTBパッドはこのデバイスによって"L"に駆動される
		1 = ALERTBパッドはこのデバイスによって"L"に駆動されない
b[13:10]	Mfr_pads_faultb_drive[3:0]	以下に示すように、FAULTB00パッドにはビット [3] が使用され、FAULTB01パッドにはビット [2] が使用され、FAULTB10パッドにはビット [1] が使用され、FAULTB11パッドにはビット [0] が使用される。
		0 = FAULTBznパッドはこのデバイスによって"L"に駆動される
		1 = FAULTBznパッドはこのデバイスによって"L"に駆動されない
b[9:8]	Mfr_pads_asel1[1:0]	11: ASEL1 入力パッドでロジック"H"が検出された
		10: ASEL1 入力パッドはフロート状態
		01:予備
		00: ASEL1 入力パッドでロジック"L"が検出された
b[7:6]	Mfr_pads_asel0[1:0]	11: ASELO 入力パッドでロジック"H"が検出された
		10:ASELO入力パッドはフロート状態
		01:予備
		00: ASELO 入力パッドでロジック"L"が検出された
b[5]	Mfr_pads_control1	1:CONTROL1パッドでロジック"H"が検出された
		0:CONTROL1パッドでロジック"L"が検出された
b[4]	Mfr_pads_control0	1:CONTROLOパッドでロジック"H"が検出された
		0:CONTROLOパッドでロジック"L"が検出された
b[3:0]	Mfr_pads_faultb[3:0]	以下に示すように、FAULTB00パッドにはビット[3]が使用され、FAULTB01パッドにはビット[2]が使用され、FAULTB10パッドにはビット[1]が使用され、FAULTB11パッドにはビット[0]が使用される。
		1:FAULTBznパッドでロジック"H"が検出された
		0:FAULTBznパッドでロジック"L"が検出された

詳細: www.linear-tech.co.jp/LTC2977

LINEAR

MFR SPECIAL ID

このレジスタにはLTC2977のメーカIDが格納されています。

MFR SPECIAL IDのデータの内容

ビット	シンボル	動作
b[15:0]	Mfr_special_id	読み出し専用、常に0x0130を返す。

MFR SPECIAL LOT

これらのページ化レジスタには、製造時にプログラムされたユーザ設定を識別する情報が格納されています。製造時にプログラムされるユーザ設定および特殊なロット番号については、弊社または弊社代理店にお問い合わせください。

MFR SPECIAL LOTのデータの内容

ビット	シンボル	動作
b[7:0]		リニアテクノロジーのデフォルトの特殊ロット番号が格納されています。製造時にプログラムされるユーザ設定および 特殊なロット番号については、弊社または弊社代理店にお問い合わせください。

MFR_VOUT_DISCHARGE_THRESHOLD

このレジスタには、関連付けられた出力のオフしきい値電圧を決定するためにVOUT_COMMANDに掛ける係数が格納されています。チャネルがオン状態への移行/再移行を指示される前に、出力電圧がMFR_VOUT_DISCHARGE_THRESHOLD・VOUT_COMMANDより低くならない場合は、STATUS_MFR_SPECIFICレジスタのStatus_mfr_dischargeビットがセットされ、ALERTBピンは"L"にアサートされます。さらに、出力がオフしきい値電圧より低くなるまでチャネルはオン状態に移行しません。これを1.0よりも大きな値にセットすると、DISCHARGE_THRESHOLDの検査が実質的にディスエーブルされ、チャネルはその電圧がまったく低下していない場合でもオンに戻ることができます。

特定の出力が放電できなかった場合でも、その他のチャネルは双方向のFAULTBznピンを使用してオフに保っておくことができます(MFR_FAULTBzn_RESPONSEレジスタとMFR_FAULTBzn_PROPAGATEレジスタ参照)。

MFR_VOUT_DISCHARGE_THRESHOLD のデータの内容

ビット	シンボル	動作
b[15:0]		データはL11形式を使用する。
	threshold	単位:無次元、このレジスタには係数が格納される。

2977fa

MFR COMMON

このコマンドは、アラート・ピン(ALERTB)、共有クロック・ピン(SHARE_CLK)、書き込み保護ピン(WP)、およびデバイスのビジー状態のステータス情報を返します。

これは、デバイスがEEPROMや他のコマンドの処理でビジー状態である場合でも読み出すことができる唯一のコマンドです。このコマンドをホストによってポーリングすることで、デバイスがいつPMBusコマンドを処理できるかを調べることができます。ビジー状態のデバイスは、そのアドレスに対して常にアクノリッジを返しますが、直ちには処理できないコマンドを受け取ったときはコマンド・バイトに対してNACKを返し、Status_byte_busyとStatus_word_busyをセットします。

MFR COMMONのデータの内容

ビット	シンボル	動作
b[7]	Mfr_common_alertb	アラート・ステータスを返す。
		1:ALERTBは"H"にデアサートされる。
		0:ALERTBは"L"にアサートされる。
b[6]	Mfr_common_busyb	デバイスがビジー・ステータスを返す。
		1:デバイスはPMBusコマンドを処理できる状態にある。
		0:デバイスはビジー状態なので、PMBusコマンドに対してNACKを返す。
b[5:2]	予備	読み出し専用、常に1を返す。
b[1]	Mfr_common_share_clk	共有クロック・ピンのステータスを返す。
		1:共有クロック・ピンは"L"に保たれている。
		0:共有クロック・ピンはアクティブ
b[0]	Mfr_common_write_protect	書き込み保護ピンのステータスを返す
		1:書き込み保護ピンは"H"
		0:書き込み保護ピンは"L"

USER_DATA_00、USER_DATA_01、USER_DATA_02、USER_DATA_03、USER_DATA_04、MFR_LTC_RESERVED_1、MFR_LTC_RESERVED_2

これらのレジスタはユーザのスクラッチパッドと、その他のメーカのために取っておかれる場所として提供されている。

USER_DATA_00、USER_DATA_01、MFR_LTC_RESERVED_1、およびMFR_LTC_RESERVED_2は、すべてメーカ用の予備です。こうした用途には、メーカのトレーサビリティ情報やLTpowerPlay機能などがあり、後者はユーザのEEPROMを設定するためのCRCの計算や記憶のような機能です。

USER_DATA_02はOEM用の予備です。これらの2バイトはOEMのトレーサビリティ情報またはリビジョン情報用として使用される場合があります。

USER_DATA_03およびUSER_DATA_04は、ユーザのスクラッチパッド用として使用できます。これらの18バイト(1つの非ページ化ワード+8つのページ化ワード)は、シリアル番号、基板モデル番号、組み立て場所、組み立て日などのトレーサビリティ情報またはリビジョン情報用として使用される場合があります。

ユーザとOEMのすべてのスクラッチパッド・レジスタは、STORE_USER_ALLコマンドを使用してEEPROMに格納でき、RESTORE USER ALLコマンドを使用してEEPROMから呼び出すことができます。

LINEAR

MFR_VOUT_MIN

このコマンドは、チャネルの出力電圧のADCによる最小の測定値を返します。このレジスタは、LTC2977がパワーオン・リセットから戻るか、またはCLEAR_FAULTSコマンドが実行されると、0xFFFF (7.999)にリセットされます。奇数チャネルを設定して電流を測定する場合、このコマンドはサポートされません。低電圧検出がディスエーブルされている場合、たとえば下方マージン (フォルトおよび警告を無視)がイネーブルされている場合、更新はディスエーブルされます。

MFR_VOUT_MINのデータの内容

ビット	シンボル	動作
b[15:0]	Mfr_vout_min	データはL16形式を使用する。
		単位:V

MFR_VIN_MIN

このコマンドは、入力電圧のADCによる最小の測定値を返します。このレジスタは、LTC2977がパワーオン・リセットから戻るか、またはCLEAR_FAULTS コマンドが実行されると、0x7BFF(約 2^{25})にリセットされます。入力電圧が不十分なためデバイスがオフになっている場合、更新はディスエーブルされます。

MFR VIN MINのデータの内容

ビット	シンボル	動作
b[15:0]	Mfr_vin_min	データはL11形式を使用する。
		単位:V。

MFR TEMPERATURE MIN

このコマンドは、LTC2977の内部温度センサによって測定される接合部温度(単位: $^{\circ}$ C)のADCによる最小の測定値を返します。このレジスタは、LTC2977がパワーオン・リセットから戻るか、またはCLEAR_FAULTSコマンドが実行されると、0x7BFF(約 2^{25})にリセットされます。

MFR_TEMPERATURE_MINのデータの内容

ビット	シンボル	動作
b[15:0]	Mfr_temperature_min	データはL11形式を使用する。
		単位∶℃

2977fa

MFR STATUS 2

このコマンドは、メーカ固有のフォルトおよび状態に関する追加情報を返します。Sticky = Yesが明示されたビットは、該当するイベントによってセットされ、ユーザがCLEAR_FAULTSコマンドを出すかチャネルをオンに戻すまでクリアされません。ALERT = Yesが明示されたビットは、セットされるとALERTBピンを"L"にアサートします。Channel = Allが明示されたビットはページ化されません。

MFR STATUS 2のデータの内容

ビット	シンボル	動作	STICKY	ALERT	CHANNEL
b[15:3]	予備	読み出し専用、常に0を返す。			
b[2]	Mfr_status_2_short_cycle_fault	1:このチャネルは、シーケンス・オフを終了する前にユーザによってオンを指示されていた。	Yes	Yes	現行 ページ
		0:このチャネルには短い周期のフォルトは発生していない。			
b[1]	Mfr_status_2_vinen_drive	1:VIN_ENパッドはこのデバイスによって"L"に駆動される。 0:VIN_ENパッドはこのデバイスによって"L"に駆動されない。	No	No	All
F[0]	Mfw status O via several off	_	Vaa	N.a.	TE
b[0]	Mfr_status_2_vin_caused_off	1:VIN_SNSがVIN_OFFしきい値より低くなったのでこのチャネルはオフした。 0:VIN_SNSによってこのチャネルがオフになることはない。	Yes	No	現行 ページ

短周期のフォルト検出を使用して、ユーザがOFFコマンドを出した直後にONコマンドを出したときにオン・シーケンス動作が順不同にならないようにします。早い段階でONコマンドを受け取ったとき、一部のチャネルが依然OFF遅延を終了中の場合、これらのチャネルがオンに戻るのに長時間を要することがあります。このフォルトはシーケンス中のすべてのチャネルに伝えて、クリーンなオン・シーケンスを確保する必要があります。チャネルは短周期のフォルトを検出すると、Mfr_status_2_short_cycle_fault、Status_word_mfr、Status_word_high_byteをセットしてALERTBを"L"にします。また、このチャネルはフォルトによってオフになり、ユーザがOFF-THEN-ONシーケンスを出すか、デバイスをリセットするまでオフ状態のままになります。短周期のフォルトでは、フォルト再試行はサポートされていません。

Mfr_status_2_vinen_driveは、このデバイスのVIN_ENパッド・ドライバの現在のステータスを示します。これはCLEAR_FAULTS コマンドには影響されず、これがセットされたとき、これ以外のステータス・ビットは影響を受けません。

Mfr_status_2_vin_caused_off は、VIN_SNS が VIN_OFF しきい値より低くなったのでこのチャネルがオフしたことを示します。 Status_word_mfr と Status_word_high_byte は同時にセットされますが、ALERTB はアサートされません。その後 VIN_SNS が VIN_ON より高くなり、このチャネルがオンに戻ると Mfr_status_2_vin_caused_off はアサートされたままになり、Mfr_config_all_vin on clr faults en の値に関係なくトランジェントが記録されます。

LINEAR

MFR_TELEMETRY

この読み出し専用コマンドでは、49バイトのブロック読み出し1回ですべての出力チャネルの遠隔測定データを効率的にポーリングできます。

MFR_TELEMETRY データ・ブロックの内容

データ	バイト*
Status_word0[7:0]	0
Status_word0[15:8]	1
Status_vout0	2
Status_mfr0	3
Read_vout0[7:0]	4
Read_vout0[15:8]	5
Status_word1[7:0]	6
Status_word1[15:8]	7
Status_vout1	8
Status_mfr1	9
Read_vout1[7:0]	10
Read_vout1[15:8]	11
Status_word2[7:0]	12
Status_word2[15:8]	13
Status_vout2	14
Status_mfr2	15
Read_vout2[7:0]	16
Read_vout2[15:8]	17
Status_word3[7:0]	18
Status_word3[15:8]	19
Status_vout3	20
Status_mfr3	21

Read_vout3[7:0]	22
Read_vout3[15:8]	23
Status_word4[7:0]	24
Status_word4[15:8]	25
Status_vout4	26
Status_mfr4	27
Read_vout4[7:0]	28
Read_vout4[15:8]	29
Status_word5[7:0]	30
Status_word5[15:8]	31
Status_vout5	32
Status_mfr5	33
Read_vout5[7:0]	34
Read_vout5[15:8]	35
Status_word6[7:0]	36
Status_word6[15:8]	37
Status_vout6	38
Status_mfr6	39
Read_vout6[7:0]	40
Read_vout6[15:8]	41
Status_word7[7:0]	42
Status_word7[15:8]	43
Status_vout7	44
Status_mfr7	45
Read_vout7[7:0]	46
Read_vout7[15:8]	47
予備	48
*注記・DMRucデータのバイト粉けりで	けたく1から始まります Status

^{*}注記: PMBusデータのバイト数は0ではなく1から始まります。Status_word0[7:0] は BYTE COUNT = 0x31の実行後に返される最初のバイトです。 ブロック読み出しプロトコルを参照してください。

ウォッチドッグの動作

MFR_WATCHDOG_Tレジスタにゼロ以外を書き込むと、ウォッチドッグ・タイマはリセットされます。WDI/RESETBピンの"L" から"H"への遷移によってもウォッチドッグ・タイマはリセットされます。タイマの期限が切れると、ALERTBがアサートされ、PWRGD出力が必要に応じてデアサートされた後、MFR_PWRGD_ASSERTION_DELAY ms 経過後に再度アサートされます。 MFR_WATCH_DOG_TまたはMFR_WATCHDOG_T_FIRSTレジスタに0を書き込むとタイマはディスエーブルされます。

MFR_WATCHDOG_T_FIRST & MFR_WATCHDOG_T

MFR_WATCHDOG_T_FIRSTレジスタを使用すると、PWRGDピンのアサートに続く最初のウォッチドッグ・タイマ間隔をプログラムすることができます。このとき、PWRGD信号はウォッチドッグ・タイマのステータスを反映することを前提としています。PWRGDのアサートがウォッチドッグ・タイマのステータスによって調整されない場合、MFR_WATCHDOG_T_FIRST はタイマがイネーブルされた後の最初のタイミング間隔に適用されます。MFR_WATCHDOG_T_FIRST レジスタに 0ms の値を書き込むと、ウォッチドッグ・タイマはディスエーブルされます。

MFR_WATCHDOG_Tレジスタを使用すると、MFR_WATCHDOG_T_FIRSTのタイミング間隔に続くウォッチドッグ・タイマ間隔をプログラムすることができます。MFR_WATCHDOG_Tレジスタに0msの値を書き込むと、ウォッチドッグ・タイマはディスエーブルされます。MFR_WATCHDOG_Tレジスタにゼロ以外を書き込むと、ウォッチドッグ・タイマはリセットされます。

両方のコマンドからの読み出し値は常に最後に書き込まれた値を返し、内部の制限値は反映しません。

MFR WATCHDOG T PORとMFR WATCHDOG Tのデータの内容

ビット	シンボル	動作
b[15:0]	Mfr_watchdog_t_first	データはL11形式を使用する。
	Mfr_watchdog_t	これらのタイマは内部クロック上で動作する。Mfr_watchdog_tタイマは、SHARE_CLKが動作している場合、SHARE_CLKと一致する。
		遅延時間はMfr_watchdog_tの場合は10μs ごとに、Mfr_watchdog_t_first の場合は1ms ごとに丸められる。 Mfr_watchdog_tレジスタまたはMfr_watchdog_t_first レジスタの値として Y の代わりにゼロを書き込むと、 ウォッチドッグ・タイマはディスエーブルされる。
		単位:ms、タイムアウトの最大値はMfr_watchdog_tの場合は0.6秒で、Mfr_watchdog_t_firstの場合は65秒。

LINEAR

ユーザの EEPROM 領域の一括プログラミング

MFR_EE_UNLOCK、MFR_EE_ERASE、MFR_EE_DATAの各コマンドは、サードパーティのEEPROMプログラミング会社やエンドユーザに対して、PMBusコマンド間の順序依存性や遅延に関係なくLTC2977を簡単にプログラムする方法を提供します。すべてのデータ伝送はEEPROMとの間で直接行われ、現在デバイスを設定している揮発性RAM領域には影響を与えません。

最初のステップはマスタとするリファレンス・デバイスを希望の設定でプログラムすることです。次にMFR_EE_UNLOCKとMFR_EE_DATAを使用して、ユーザのEEPROM領域にあるすべてのデータを順次ワードとして読み出します。この情報はマスタ・プログラミングHEXファイルに格納されます。その後のデバイスは、MFR_EE_UNLOCK、MFR_EE_ERASE、MFR_EE_DATAを使用して、マスタ・デバイスと一致するようにクローンが作成され、マスタHEXファイルからデータを伝送することができます。これらのコマンドは、RAM領域に格納されたデバイスの設定には関係なく直接EEPROMに作用します。EEPROMへのアクセス中は、デバイスは後述のようにビジー状態を示します。

簡単なプログラミング器具をサポートするため、一括プログラミング機能はPMBus ワード・コマンドとPMBus バイト・コマンドのみを使用します。MFR_EE_UNLOCKは適切なアクセス・モードを設定し、内部のアドレス・ポインタをリセットして、各操作後にアドレス・ポインタが増加させられる一連のワード・コマンドがブロック読み込みや書き込みとして動作できるようにします。PECの使用はオプションで、これはMFR_EE_UNLOCK操作で設定されます。

MFR EE_UNLOCK

MFR_EE_UNLOCKコマンドは、通常動作時にEEPROMに誤ってアクセスすることを防ぎ、一括初期化、順次書き込みまたは読み出しに必要なEEPROM一括プログラミング・モードを設定します。MFR_EE_UNLOCKは書き込み保護によって提供される保護機能を補います。必要な動作のためにデバイスをアンロックすると、内部のアドレス・ポインタがリセットされ、一連のMFR_EE_DATA読み出しまたは書き込みによって、ブロック読み出しやブロック書き込みと同様にデータを順次転送できるようになります。MFR_EE_UNLOCKコマンドは、希望のエラー保護レベルに応じてPECモードをクリアまたは設定できます。MFR_EE_UNLOCKシーケンスは、2バイトの書き込みコマンドを使用した2つのアンロック・コードの書き込みで構成されています。次の表に使用できるシーケンスを示します。サポートされていないシーケンスを書き込むとデバイスはロックされます。MFR_EE_UNLOCKを読み出すと、最後に書き込まれたバイト(デバイスがロックされている場合はゼロ)が返されます。

MFR EE UNLOCKのデータの内容

ビット	シンボル	動作
b[7:0]	Mfr_ee_unlock[7:0]	PECが可能なMfr_ee_eraseおよびMfr_ee_dataの読み出しまたは書き込み操作のためにユーザEEPROM領域をアンロックするには: 0x2bを書き込み、次いで0xd4を書き込む。
PECを必要とするMfr_ee_eraseおよびMfr_ee_d 0x2bを書き込み、次いで0xd5を書き込む。		PECを必要とするMfr_ee_eraseおよびMfr_ee_dataの読み出しまたは書き込み操作のためにユーザEEPROM領域をアンロックするには: 0x2bを書き込み、次いで0xd5を書き込む。
		PECが可能なMfr_ee_dataの読み出し専用操作のためにユーザおよびメーカのEEPROM領域をアンロックするには: 0x2bを書き込み、次いで0x91、次いで0xe4を書き込む。
		PECを必要とするMfr_ee_dataの読み出し専用操作のためにユーザおよびメーカのEEPROM領域をアンロックするには: 0x2bを書き込み、次いで0x91、次いで0xe5を書き込む。

MFR EE ERASE

MFR_EE_ERASE コマンドはユーザの EEPROM 領域の内容をすべて消去し、この領域を設定して新しいプログラム・データを受け付けられるようにします。0x2B 以外の値を書き込むとデバイスはロックされます。読み出しは最後に書き込まれた値を返します。

MFR EE ERASEのデータの内容

ビット	シンボル	動作
b[7:0]	Mfr_ee_erase[7:0]	ユーザのEEPROM 領域を消去し、新しいデータを受け付けるように設定する方法:
		1)適切なMfr_ee_unlockシーケンスを使用し、PECありまたはPECなしでMfr_ee_eraseコマンド用に設定する。
		2) 0x2B をMfr_ee_erase に書き込む。
		このデバイスは、以下に詳述する仕組みにより、EEPROMの消去でビジー状態であることを示す。

MFR EE DATA

MFR_EE_DATA コマンドを使用すると、RAM領域に影響を与えずにEEPROMとの間でデータを直接転送できます。

ユーザEEPROM領域を読み出すには、適切なMfr_ee_unlockコマンドを出し、EEPROMの内容が完全に読み出されるまでMfr_ee_data読み出しを行います。それ以上の読み出しを行うとデバイスがロックされ、ゼロが返されます。最初の読み出しでは、16ビットのEEPROMパッキング・リビジョンIDが返され、これはROMに格納されます。2回目の読み出しでは、利用できる16ビット・ワードの数が返されます。これはすべてのメモリ位置にアクセスする読み出しまたは書き込みの数です。それ以降の読み出しでは、最下位アドレスから始まるEEPROMのデータが返されます。

ユーザEEPROM領域に書き込むには、適切なMfr_ee_unlockコマンドとMfr_ee_eraseコマンドを出し、次いでEEPROMが満杯になるまでMfr_ee_dataワードを書き込み続けます。それ以上の書き込みを行うとデバイスがロックします。最初の書き込みは、最下位アドレスに対して実行されます。

Mfr_ee_data 読み出しと書き込みは一緒に使用できません。

MFR_EE_DATAのデータの内容

ビット	シンボル	動作	
b[7:0]	Mfr_ee_data[7:0]	ユーザの領域を読み出す方法	
		1)適切なMfr_ee_unlockシーケンスを使用し、PECありまたはPECなしでMfr_ee_dataコマンド用に設定する。	
		2) Mfr_ee_data[0] = PackingId (MFR に固有のID) を読み込む。	
		3) Mfr_ee_data[1] = NumberOfUserWords (利用できる16ビットワードの総数) を読み出す。	
		4) Mfr_ee_data[2] から Mfr_ee_data[NumberOfUserWords+1] まで(ユーザ EEPROM のデータの内容) を読み出す。	
		ユーザの領域に書き込む方法	
1)MFR_EE_ERASEコマンドで説明した手順を使用してユーザ・メモリを初期化する。		1)MFR_EE_ERASEコマンドで説明した手順を使用してユーザ・メモリを初期化する。	
2)適切なMfr_ee_unlockシーケンスを使用し、PECありまたはPECなしでMfr_ee_dataコマンド用に設定す			
		3) Mfr_ee_data[0] から Mfr_ee_data[NumberOfUserWords-1] まで(書き込む予定のユーザ EEPROM データの内容) を書き込む。	
		このデバイスは、以下に詳述する仕組みにより、EEPROMの消去でビジー状態であることを示す。	

LINEAR TECHNOLOGY

デバイスがビジーな場合の応答

このデバイスは、以下の仕組みにより、EEPROMへのアクセスでビジー状態であることを示します。

- 1) MFR_COMMONレジスタのMfr_common_busybをクリアします。このバイトは常に読み出しが可能で、デバイスがビジー状態の場合でもバイト読み出し要求に対してNACKを返しません。
- 2) MFR COMMON以外のコマンドに対してNACKを返します。

MFR EEの消去および書き込みのプログラム時間

ワードあたりのプログラム時間は標準で0.17ms なので、 I^2 C/SMBus での書き込み間隔を0.17ms より長くして、書き込みが完了したことを保証することが必要です。 Mfr_ee_erase コマンドには約400ms かかります。ハンドシェーキングに MFR_e COMMONを使用することを推奨します。

フォルト・ログの動作

フォルト・ログの概念図を図14に示します。フォルト・ログはLTC2977にブラックボックス機能を与えます。通常動作中、ステータス・レジスタの内容、出力電圧の測定値、温度の測定値、ならびにこれらのピーク値と最小値は、継続的に更新されるRAMのバッファに格納されます。この動作は帯形記録計と類似していると考えられます。フォルトが発生すると、その内容は不揮発性記憶装置としてのEEPROMに書き込まれます。その後EEPROMのフォルト・ログはロックされます。デバイスの電源を切ってもこのフォルト・ログはまた後で読み出すことができます。

MFR_FAULT_LOG_STORE

このコマンドを使用すると、RAMバッファからEEPROMへデータを転送することができます。

MFR_FAULT_LOG_RESTORE

このコマンドを使用すると、EEPROMからRAMバッファへフォルト・ログ・データのコピーを転送することができます。復元後、MFR FAULT LOG 読み出しまたはMFR FAULT LOG CLEARが正常終了するまでRAMバッファはロックされます。

2977fa

MFR_FAULT_LOG_CLEAR

このコマンドを使用すると、フォルト・ログの予備として確保されたEEPROMブロックが初期化されます。EEPROMに以前から格納されていたフォルト・ログはこの操作によって消去され、フォルト・ログ用RAMからEEPROMへのログ記録がイネーブルされます。

MFR FAULT LOG STATUS

読み出し専用。このレジスタはフォルト・ログ・イベントの管理に使用されます。

MFR_FAULT_LOG_STORE コマンドまたはフォルトによってオフしたイベントによってRAMからEEPROMへのフォルト・ログの 転送が開始されると、Mfr_fault_log_status_eepromがセットされます。このビットはMFR_FAULT_LOG_CLEAR コマンドによっ てクリアされます。

MFR_FAULT_LOG_RESTOREの後にはMfr_fault_log_status_ramがセットされ、RAMのデータがEEPROMから復元されたことと、MFR_FAULT_LOGコマンドを使用した読み出しがまだ行われていないことが示されます。このビットは、MFR_FAULT_LOGコマンドを正常に実行するか、MFR_FAULT_LOG_CLEARコマンドを正常に実行すればクリアされます。

MFR_FAULT_LOG_STATUSのデータの内容

ビット	シンボル	動作
b[1]	Mfr_fault_log_status_ram	フォルト・ログ RAM のステータス:
		0:フォルト・ログ RAM は更新可能。
		1:フォルト・ログ RAM は、次回の MFR_FAULT_LOG 読み出しまでロックされる。
b[0]	Mfr_fault_log_status_eeprom	フォルト・ログ EEPROMのステータス:
		0:フォルト・ログRAMからEEPROMへの転送はイネーブルされている。
		1:フォルト・ログRAMからEEPROMへの転送は禁止されている。

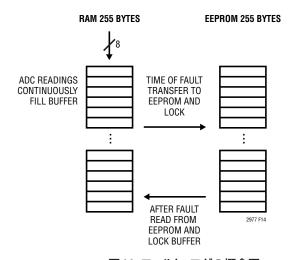


図14. フォルト・ログの概念図

MFR FAULT LOG

読み出し専用。この2040ビット(255バイト)のデータ・ブロックには、RAMバッファのフォルト・ログのコピーが入っています。 RAMバッファはMfr_fault_log_status_ramがクリアされている限り、各A/D変換後、継続的に更新されます。

Mfr_config_all_fault_log_enable = 1 およびMfr_fault_log_status_eeprom = 0 の場合は、LTC2977のフォルトによってチャネルが ラッチオフするか、またはMFR_FAULT_LOG_STORE コマンドを受け取ると、RAM バッファのデータは必ず EEPROM に転送されます。この転送は、Mfr_config_all_fast_fault_log がクリアされると、ADC がすべてのチャネルの READ 値を更新するまで遅延されます。それ以外の場合は 24ms 以内に転送されます。このオプションの遅延を使用することにより、高速のスーパーバイザが検出したフォルトが EEPROM への転送を開始した場合に、ADC がモニタする、更新の遅い値がすべて確実に更新されるようにすることができます。

RAM バッファのデータが EEPROM に転送されると、Mfr_fault_log_status_eeprom は"H"にセットされ、LTC2977がリセットされるか LTC2977の電源を切断しても、MFR_FAULT_LOG_CLEAR を受け取るまではクリアされません。Status_mfr_discharge のイベントの結果としてフォルト・ログ EEPROM の転送が開始されることはありません。

MFR_FAULT_LOGの読み出し中、データは以下の表に定義されているように返されます。フォルト・ログのデータは2つの部分に分かれています。最初の部分はプリアンブルと呼ばれ、Position_lastポインタ、時間情報、ピーク値、および最小値が入っています。2番目の部分には遠隔測定データの時系列的記録が入っており、適切に解釈するにはPosition_lastが必要です。フォルト・ログには約0.5秒相当の遠隔測定データが格納されています。ブロック読み出し中にタイムアウトが発生しないように、Mfr_config_all_longer_pmbus_timeoutは1にセットすることを推奨します。

29111a

表2.データ・ブロックの内容

データ	バイト*	説明
Position_last[7:0]	0	フォルトが発生したときの フォルト・ログ・ポインタの位置
Cyclic_data_valid_count[7:0]	1	巡回データの有効なバイト数。 OxFFはすべての巡回データが 有効であることを示す。
SharedTime[7:0]	2	フォルト発生時の41 ビット
SharedTime[15:8]	3	共有クロック・カウンタの値。 カウンタのLSBは200µs刻み。
SharedTime[23:16]	4	このカウンタは、起動時または
SharedTime[31:24]	5	LTC2977のリセット後にクリア
SharedTime[39:32]	6	される
SharedTime[40]	7	
Mfr_vout_peak0[7:0]	8	
Mfr_vout_peak0[15:8]	9	
Mfr_vout_min0[7:0]	10	
Mfr_vout_min0[15:8]	11	
Mfr_vout_peak1[7:0]	12	
Mfr_vout_peak1[15:8]	13	
Mfr_vout_min1[7:0]	14	
Mfr_vout_min1[15:8]	15	
Mfr_vin_peak[7:0]	16	
Mfr_vin_peak[15:8]	17	
Mfr_vin_min[7:0]	18	
Mfr_vin_min[15:8]	19	
Mfr_vout_peak2[7:0]	20	
Mfr_vout_peak2[15:8]	21	
Mfr_vout_min2[7:0]	22	
Mfr_vout_min2[15:8]	23	
Mfr_vout_peak3[7:0]	24	
Mfr_vout_peak3[15:8]	25	
Mfr_vout_min3[7:0]	26	
Mfr_vout_min3[15:8]	27	
Mfr_temp_peak[7:0]	28	
Mfr_temp_peak[15:8]	29	
Mfr_ temp_min[7:0]	30	
Mfr_ temp_min[15:8]	31	
Mfr_vout_peak4[7:0]	32	
Mfr_vout_peak4[15:8]	33	
Mfr_vout_min4[7:0]	34	
Mfr_vout_min4[15:8]	35	
Mfr_vout_peak5[7:0]	36	
Mfr_vout_peak5[15:8]	37	
Mfr_vout_min5[7:0]	38	
1VIII_VUUL_11111113[7.U]	00	

表2.データ・ブロックの内容

4(L) / / / / / / / / / / / / / / / / / / /	~ I J II	
データ	バイト*	説明
Mfr_vout_peak6[7:0]	40	
Mfr_vout_peak6[15:8]	41	
Mfr_vout_min6[7:0]	42	
Mfr_vout_min6[15:8]	43	
Mfr_vout_peak7[7:0]	44	
Mfr_vout_peak7[15:8]	45	
Mfr_vout_min7[7:0]	46	
Mfr_vout_min7[15:8]	47	
Status_vout0	48	
Status_mfr0	49	
Mfr_status_2_0[7:0]	50	保管されない予備ビット[15:8]
Status_vout1	51	
Status_mfr1	52	
Mfr_status_2_1[7:0]	53	
Status_vout2	54	
Status_mfr2	55	
Mfr_status_2_2[7:0]	56	
Status_vout3	57	
Status_mfr3	58	
Mfr_status_2_3[7:0]	59	
Status_vout4	60	
Status_mfr4	61	
Mfr_status_2_4[7:0]	62	
Status_vout5	63	
Status_mfr5	64	
Mfr_status_2_5[7:0]	65	
Status_vout6	66	
Status_mfr6	67	
Mfr_status_2_6[7:0]	68	
Status_vout7	69	
Status_mfr7	70	
Mfr_status_2_7[7:0]	71	
		プリアンブル用の72バイト
Fault_log [Position_last]	72	巡回データの開始
Fault_log	73	
Fault_log	237	最後の有効バイト
 予備	238-254	

巡回データのループの数: (238-72)/46 = 3.6

LINEAR TECHNOLOGY

^{*}注記: PMBus データのバイト数は0ではなく1から始まります。Position_last は、BYTE COUNT = 0xFFの後に返される最初のバイトです。ブロック読み出しプロトコルを参照してください。

前の表のバイト72~237に返されたデータは、Position_last と次の表を用いて解釈されます。バイト72を識別するためのキーは、次の表でPOSITION = Position_last に対応するDATA を見つけることです。それに続くバイトは、POSITIONの値を減らして識別できます。例:Position_last = 11である場合、ブロック読み出しのバイト位置72に返される最初のデータはRead_vin[15:8]であり、その後にRead_vin[7:0]と1ページのMfr_status_2が続きます。表3を参照してください。

表3. 巡回ループの解釈

POSITION	DATA
0	Read_vout0[7:0]
1	Read_vout0[15:8]
2	Status_vout0
3	Status_mfr0
4	Mfr_status_2_0[7:0]
5	Read_vout1[7:0]
6	Read_vout1[15:8]
7	Status_vout1
8	Status_mfr1
9	Mfr_status_2_1[7:0]
10	Read_vin[7:0]
11	Read_vin[15:8]
12	Status_vin
13	Read_vout2[7:0]
14	Read_vout2[15:8]
15	Status_vout2
16	Status_mfr2
17	Mfr_status_2_2[7:0]
18	Read_vout3[7:0]
19	Read_vout3[15:8]
20	Status_vout3
21	Status_mfr3
22	Mfr_status_2_3[7:0]
23	Read_temperature_1[7:0]
24	Read_temperature_1[15:8]
25	Status_temp
26	Read_vout4[7:0]
27	Read_vout4[15:8]
28	Status_vout4
29	Status_mfr4
30	Mfr_status_2_4[7:0]
31	Read_vout5[7:0]
32	Read_vout5[15:8]
33	Status_vout5

表3. 巡回ループの解釈

POSITION	DATA
34	Status_mfr5
35	Mfr_status_2_5[7:0]
36	Read_vout6[7:0]
37	Read_vout6[15:8]
38	Status_vout6
39	Status_mfr6
40	Mfr_status_2_6[7:0]
41	Read_vout7[7:0]
42	Read_vout7[15:8]
43	Status_vout7
44	Status_mfr7
45	Mfr_status_2_7[7:0]
	合計バイト=46

この動作の周期的な性質を理解するために、次の表ではフォルト・ログの読み出しサンプルを完全に解読します。

MFR_FAULT_LOG データ・ブロックの内容

プリアンブル情報

パイト数			T T T T T T T T T T T T T T T T T T T	
1			データ	説明
Count[7:0] = 160 最後の6パイトは無効 最後の6パイトは無効 フォルト発生時 3	0	00	Position_last[7:0] = 11	したときの フォルト・ログ・
3 03 SharedTime[15:8] の41ビット共有クロック・カウンタの値。 4 04 SharedTime[23:16] カウンタの値。 5 05 SharedTime[31:24] は200µs刻み。 6 06 SharedTime[40] 8 08 Mfr_vout_peak0[7:0] 9 09 Mfr_vout_peak0[15:8] 10 0A Mfr_vout_min0[7:0] 11 0B Mfr_vout_min0[15:8] 12 0C Mfr_vout_peak1[7:0] 13 0D Mfr_vout_peak1[15:8] 14 0E Mfr_vout_min1[7:0]	1	01		最後の6バイト
3 03 Snared Time [15:8] 有クロック・ 4 04 Shared Time [23:16] カウンタの値。 5 05 Shared Time [31:24] は200µs刻み。 6 06 Shared Time [40]	2	02	SharedTime[7:0]	
4 04 SharedTime[23:16] カウンタの値。 5 05 SharedTime[31:24] おウンタのLSB は 200µs刻み。 6 06 SharedTime[39:32] 7 07 SharedTime[40] 8 08 Mfr_vout_peak0[7:0] 9 09 Mfr_vout_peak0[15:8] 10 0A Mfr_vout_min0[7:0] 11 0B Mfr_vout_min0[15:8] 12 0C Mfr_vout_peak1[7:0] 13 0D Mfr_vout_min1[7:0]	3	03	SharedTime[15:8]	
SharedTime[31:24] は200µs刻み。	4	04	SharedTime[23:16]	カウンタの値。
6 06 SharedTime[39:32] 7 07 SharedTime[40] 8 08 Mfr_vout_peak0[7:0] 9 09 Mfr_vout_peak0[15:8] 10 0A Mfr_vout_min0[7:0] 11 0B Mfr_vout_min0[15:8] 12 0C Mfr_vout_peak1[7:0] 13 0D Mfr_vout_min1[7:0] 14 0E Mfr_vout_min1[7:0]	5	05	SharedTime[31:24]	
8 08 Mfr_vout_peak0[7:0] 9 09 Mfr_vout_peak0[15:8] 10 0A Mfr_vout_min0[7:0] 11 0B Mfr_vout_min0[15:8] 12 0C Mfr_vout_peak1[7:0] 13 0D Mfr_vout_peak1[15:8] 14 0E Mfr_vout_min1[7:0]	6	06	SharedTime[39:32]	16.200μο 2307 δ
9 09 Mfr_vout_peak0[15:8] 10 0A Mfr_vout_min0[7:0] 11 0B Mfr_vout_min0[15:8] 12 0C Mfr_vout_peak1[7:0] 13 0D Mfr_vout_peak1[15:8] 14 0E Mfr_vout_min1[7:0]	7	07	SharedTime[40]	
10	8	08	Mfr_vout_peak0[7:0]	
11 0B Mfr_vout_min0[15:8] 12 0C Mfr_vout_peak1[7:0] 13 0D Mfr_vout_peak1[15:8] 14 0E Mfr_vout_min1[7:0]	9	09	Mfr_vout_peak0[15:8]	
12	10	0A	Mfr_vout_min0[7:0]	
13	11	0B	Mfr_vout_min0[15:8]	
14 0E Mfr_vout_min1[7:0]	12	0C	Mfr_vout_peak1[7:0]	
	13	0D	Mfr_vout_peak1[15:8]	
15 OF Mfr_vout_min1[15:8]	14	0E	Mfr_vout_min1[7:0]	
	15	0F	Mfr_vout_min1[15:8]	

バイト数 (10進数)	バイト数 (16 進数)	データ	説明
16	10	Mfr_vin_peak[7:0]	
17	11	Mfr_vin_peak[15:8]	
18	12	Mfr_vin_min[7:0]	
19	13	Mfr_vin_min[15:8]	
20	14	Mfr_vout_peak2[7:0]	
21	15	Mfr_vout_peak2[15:8]	
22	16	Mfr_vout_min2[7:0]	
23	17	Mfr_vout_min2[15:8]	
24	18	Mfr_vout_peak3[7:0]	
25	19	Mfr_vout_peak3[15:8]	
26	1A	Mfr_vout_min3[7:0]	
27	1B	Mfr_vout_min3[15:8]	
28	1C	Mfr_temp_peak[7:0]	
29	1D	Mfr_temp_peak[15:8]	
30	1E	Mfr_temp_min[7:0]	
31	1F	Mfr_temp_min[15:8]	
32	20	Mfr_vout_peak4[7:0]	
33	21	Mfr_vout_peak4[15:8]	
34	22	Mfr_vout_min4[7:0]	
35	23	Mfr_vout_min4[15:8]	
36	24	Mfr_vout_peak5[7:0]	
37	25	Mfr_vout_peak5[15:8]	
38	26	Mfr_vout_min5[7:0]	
39	27	Mfr_vout_min5[15:8]	
40	28	Mfr_vout_peak6[7:0]	
41	29	Mfr_vout_peak6[15:8]	
42	2A	Mfr_vout_min6[7:0]	
43	2B	Mfr_vout_min6[15:8]	
44	2C	Mfr_vout_peak7[7:0]	
45	2D	Mfr_vout_peak7[15:8]	
46	2E	Mfr_vout_min7[7:0]	
47	2F	Mfr_vout_min7[15:8]	
48	30	Status_vout0	
49	31	Status_mfr0	
50	32	Mfr_status_2_0[7:0]	
51	33	Status_vout1	

バイト数 (10進数)	バイト数 (16進数)	データ	説明
52	34	Status_mfr1	
53	35	Mfr_status_2_1[7:0]	
54	36	Status_vout2	
55	37	Status_mfr2	
56	38	Mfr_status_2_2[7:0]	
57	39	Status_vout3	
58	3A	Status_mfr3	
59	3B	Mfr_status_2_3[7:0]	
60	3C	Status_vout4	
61	3D	Status_mfr4	
62	3E	Mfr_status_2_4[7:0]	
63	3F	Status_vout5	
64	40	Status_mfr5	
65	41	Mfr_status_2_5[7:0]	
66	42	Status_vout6	
67	43	Status_mfr6	
68	44	Mfr_status_2_6[7:0]	
69	45	Status_vout7	
70	46	Status_mfr7	
71	47	Mfr_status_2_7[7:0]	プリアンブル 終わり

巡回データ・ループ

バイト数 (10進数)	バイト数 (16進数)	ループの バイト数 (10進数)	データ・ループO	ループあたり 46バイト
72	48	11	Read_vin[15:8]	Position_last
73	49	10	Read_vin[7:0]	
74	4A	9	Mfr_status_2_1[7:0]	
75	4B	8	Status_mfr1	
76	4C	7	Status_vout1	
77	4D	6	Read_vout1[15:8]	
78	4E	5	Read_vout1[7:0]	
79	4F	4	Mfr_status_2_0[7:0]	
80	50	3	Status_mfr0	
81	51	2	Status_vout0	
82	52	1	Read_vout0[15:8]	
83	53	0	Read_vout0[7:0]	

PMBusコマンドの説明

バイト数 (10進数)	バイト数 (16進数)	ループの バイト数 (10進数)	ループあた データ・ループ1 46バイト	
84	54	45	Mfr_status_2_7[7:0]	
85	55	44	Status_mfr7	
86	56	43	Status_vout7	
87	57	42	Read_vout7[15:8]	
88	58	41	Read_vout7[7:0]	
89	59	40	Mfr_status_2_6[7:0]	
90	5A	39	Status_mfr6	
91	5B	38	Status_vout6	
92	5C	37	Read_vout6[15:8]	
93	5D	36	Read_vout6[7:0]	
94	5E	35	Mfr_status_2_5[7:0]	
95	5F	34	Status_mfr5	
96	60	33	Status_vout5	
97	61	32	Read_vout5[15:8]	
98	62	31	Read_vout5[7:0]	
99	63	30	Mfr_status_2_4[7:0]	
100	64	29	Status_mfr4	
101	65	28	Status_vout4	
102	66	27	Read_vout4[15:8]	
103	67	26	Read_vout4[7:0]	
104	68	25	Status_temp	
105	69	24	Read_ temperature_1[15:8]	
106	6A	23	Read_ temperature_1[7:0]	
107	6B	22	Mfr_status_2_3[7:0]	
108	6C	21	Status_mfr3	
109	6D	20	Status_vout3	
110	6E	19	Read_vout3[15:8]	
111	6F	18	Read_vout3[7:0]	
112	70	17	Mfr_status_2_2[7:0]	
113	71	16	Status_mfr2	
114	72	15	Status_vout2	
115	73	14	Read_vout2[15:8]	
116	74	13	Read_vout2[7:0]	
117	75	12	Status_vin	
118	76	11	Read_vin[15:8]	

バイト数 (10進数)	バイト数 (16進数)	ループの バイト数 (10進数)	データ・ループ1	ループあたり 46バイト
119	77	10	Read_vin[7:0]	
120	78	9	Mfr_status_2_1[7:0]	
121	79	8	Status_mfr1	
122	7A	7	Status_vout1	
123	7B	6	Read_vout1[15:8]	
124	7C	5	Read_vout1[7:0]	
125	7D	4	Mfr_status_2_0[7:0]	
126	7E	3	Status_mfr0	
127	7F	2	Status_vout0	
128	80	1	Read_vout0[15:8]	
129	81	0	Read_vout0[7:0]	

バイト数 (10 進数)	バイト数 (16進数)	ループの バイト数 (10 進数)	データ・ループ2	ループあたり 46バイト
130	82	45	Mfr_status_2_7[7:0]	
131	83	44	Status_mfr7	
132	84	43	Status_vout7	
133	85	42	Read_vout7[15:8]	
134	86	41	Read_vout7[7:0]	
135	87	40	Mfr_status_2_6[7:0]	
136	88	39	Status_mfr6	
137	89	38	Status_vout6	
138	8A	37	Read_vout6[15:8]	
139	8B	36	Read_vout6[7:0]	
140	8C	35	Mfr_status_2_5[7:0]	
141	8D	34	Status_mfr5	
142	8E	33	Status_vout5	
143	8F	32	Read_vout5[15:8]	
144	90	31	Read_vout5[7:0]	
145	91	30	Mfr_status_2_4[7:0]	
146	92	29	Status_mfr4	
147	93	28	Status_vout4	
148	94	27	Read_vout4[15:8]	
149	95	26	Read_vout4[7:0]	
150	96	25	Status_temp	

PMBusコマンドの説明

バイト数 (10進数)	バイト数 (16進数)	ループの バイト数 (10進数)	データ・ループ2	ループあたり 46バイト
151	97	24	Read_ temperature_1[15:8]	
152	98	23	Read_ temperature_1[7:0]	
153	99	22	Mfr_status_2_3[7:0]	
154	9A	21	Status_mfr3	
155	9B	20	Status_vout3	
156	9C	19	Read_vout3[15:8]	
157	9D	18	Read_vout3[7:0]	
158	9E	17	Mfr_status_2_2[7:0]	
159	9F	16	Status_mfr2	
160	A0	15	Status_vout2	
161	A1	14	Read_vout2[15:8]	
162	A2	13	Read_vout2[7:0]	
163	A3	12	Status_vin	
164	A4	11	Read_vin[15:8]	
165	A5	10	Read_vin[7:0]	
166	A6	9	Mfr_status_2_1[7:0]	
167	A7	8	Status_mfr1	
168	A8	7	Status_vout1	
169	A9	6	Read_vout1[15:8]	
170	AA	5	Read_vout1[7:0]	
171	AB	4	Mfr_status_2_0[7:0]	
172	AC	3	Status_mfr0	
173	AD	2	Status_vout0	
174	AE	1	Read_vout0[15:8]	
175	AF	0	Read_vout0[7:0]	

バイト数 (10進数)	バイト数 (16進数)	ループの バイト数 (10 進数)	データ・ループ3	ループあたり 46バイト
176	В0	45	Mfr_status_2_7[7:0]	
177	B1	44	Status_mfr7	
178	B2	43	Status_vout7	
179	В3	42	Read_vout7[15:8]	
180	B4	41	Read_vout7[7:0]	
181	B5	40	Mfr_status_2_6[7:0]	

バイト数 (10進数)	バイト数 (16進数)	ループの バイト数 (10進数)	データ・ループ3	ループあたり 46バイト
182	B6	39	Status_mfr6	
183	B7	38	Status_vout6	
184	B8	37	Read_vout6[15:8]	
185	B9	36	Read_vout6[7:0]	
186	BA	35	Mfr_status_2_5[7:0]	
187	BB	34	Status_mfr5	
188	BC	33	Status_vout5	
189	BD	32	Read_vout5[15:8]	
190	BE	31	Read_vout5[7:0]	
191	BF	30	Mfr_status_2_4[7:0]	
192	CO	29	Status_mfr4	
193	C1	28	Status_vout4	
194	C2	27	Read_vout4[15:8]	
195	C3	26	Read_vout4[7:0]	
196	C4	25	Status_temp	
197	C5	24	Read_ temperature_1[15:8]	
198	C6	23	Read_ temperature_1[7:0]	
199	C7	22	Mfr_status_2_3[7:0]	
200	C8	21	Status_mfr3	
201	C9	20	Status_vout3	
202	CA	19	Read_vout3[15:8]	
203	СВ	18	Read_vout3[7:0]	
204	CC	17	Mfr_status_2_2[7:0]	
205	CD	16	Status_mfr2	
206	CE	15	Status_vout2	
207	CF	14	Read_vout2[15:8]	
208	D0	13	Read_vout2[7:0]	
209	D1	12	Status_vin	
210	D2	11	Read_vin[15:8]	
211	D3	10	Read_vin[7:0]	
212	D4	9	Mfr_status_2_1[7:0]	
213	D5	8	Status_mfr1	
214	D6	7	Status_vout1	
215	D7	6	Read_vout1[15:8]	
216	D8	5	Read_vout1[7:0]	

PMBusコマンドの説明

バイト数 (10進数)	バイト数 (16進数)	ループの バイト数 (10進数)	データ・ループ3	ループあたり 46バイト
217	D9	4	Mfr_status_2_0[7:0]	
218	DA	3	Status_mfr0	
219	DB	2	Status_vout0	
220	DC	1	Read_vout0[15:8]	
221	DD	0	Read_vout0[7:0]	

バイト数 (10進数)	バイト数 (16進数)	ループの バイト数 (10進数)	データ・ループ4	ループあたり 46バイト
222	DE	45	Mfr_status_2_7[7:0]	
223	DF	44	Status_mfr7	
224	E0	43	Status_vout7	
225	E1	42	Read_vout7[15:8]	
226	E2	41	Read_vout7[7:0]	
227	E3	40	Mfr_status_2_6[7:0]	
228	E4	39	Status_mfr6	
229	E5	38	Status_vout6	
230	E6	37	Read_vout6[15:8]	
231	E7	36	Read_vout6[7:0]	
232	E8	35	Mfr_status_2_5[7:0]	無効なデータ
233	E9	34	Status_mfr5	無効なデータ
234	EA	33	Status_vout5	無効なデータ
235	EB	32	Read_vout5[15:8]	無効なデータ
236	EC	31	Read_vout5[7:0]	無効なデータ
237	ED	30	Mfr_status_2_4[7:0]	無効なデータ

	予備バイト					
238	EE	0x00	バイトEE - FE は 0x00 を返すが 読み出す必要 あり			
239	EF	0x00				
240	F0	0x00				
241	F1	0x00				
242	F2	0x00				
243	F3	0x00				
244	F4	0x00				
245	F5	0x00				
246	F6	0x00				
247	F7	0x00				
248	F8	0x00				
249	F9	0x00				
250	FA	0x00				
251	FB	0x00				
252	FC	0x00				
253	FD	0x00				
254	FE	0x00				
			1つのブロック 読み出し コマンドを使用 して、0x00から 0xFEまで合計 255バイトを 読み出す			

概要

LTC2977は、8つのDC/DCコンバータについて、シーケンシング、マージニング、トリミング、出力電圧の過電圧/低電圧状態の監視、フォルト管理、および電圧の読み出しが可能なパワー・マネージメントICです。入力電圧およびLTC2977の接合部温度の読み出しも可能です。奇数チャネルを構成して検出抵抗の電圧を読み出し、これらのチャネルの電流を測定することができます。リニアテクノロジーのパワーシステム・マネージャは、共通のSHARE_CLKピン、FAULTBピン、CONTROLピンを使用して複数のデバイス間で動作を調整できます。LTC2977では、PMBus 準拠のインタフェースとコマンド・セットが使用されます。

LTC2977への電力供給

LTC2977には、2つの方法で電力を供給できます。第1の方法では、 $4.5V \sim 15V$ の電圧を V_{PWR} ピンに印加することが必要です。図 15を参照してください。内部のリニア・レギュレータが V_{PWR} を 3.3V に変換し、これでLTC2977のすべての内部回路を駆動します。

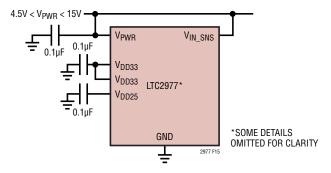


図15. 中間バスからLTC2977への直接の電力供給

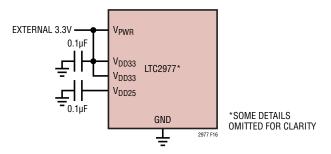


図16. 外部3.3V電源からLTC2977への電力供給

もう1つの方法として、 $3.13V \sim 3.47V$ の電圧を使用する外部の3.3V 電源を直接 V_{DD33} ピン(ピン16とピン17) に印加することができます。 V_{PWR} は V_{DD33} ピンに接続してください。図 16を参照してください。この第2の方法でもすべての機能が使用できます。 $V_{OUT_EN[3:0]}$ ピンにはより高い電圧が必要であり、 V_{SENSE} ピンのバイアスには V_{DD33} から電荷が注入されます。

コマンド・レジスタの値の設定

ここで説明するコマンド・レジスタの設定値は参考用であり、ソフトウェア開発環境でのレジスタを理解することが目的です。 実際には、LTCのUSB - I²C/SMBus/PMBus間コントローラ (DC1613)と直感的なメニュー形式オブジェクトを使用した ソフトウェアGUIにより、LTC2977を単独動作用に完全に設 定することができます。

シーケンス、サーボ、マージン、再起動動作

コマンドによるデバイスのオンまたはオフ

特定のチャネルをオン/オフする方法は、3つの制御パラメータによって決まります。それは、CONTROLピン、OPERATIONコマンド、および $V_{\rm IN_SNS}$ ピンで測定した入力電圧の値($V_{\rm IN}$)です。デバイスをイネーブルしてCONTROLピンまたはOPERATIONコマンドに応答するため、すべての状況で $V_{\rm IN}$ は $V_{\rm IN_ON}$ を超える必要があります。 $V_{\rm IN}$ が $V_{\rm IN_OFF}$ より低くなると、すべてのチャネルが $T_{\rm OFF_DELAY}$ 経過後直ちにオフになるか、シーケンス・オフとなります($M_{\rm fr_config_chan_mode}$ を参照)。 $ON_{\rm OFF_CONFIG}$ コマンドについての詳細な説明はデータシートの「動作」のセクションを参照してください。

標準的なオン/オフ設定の例を以下にいくつか示します。

- 1. DC/DC コンバータは、 V_{IN} が VIN_{L} ON を超えたらいつでも オンするように設定できます。
- 2. DC/DCコンバータは、OPERATIONコマンドを受け取った ときのみオンするように設定できます。
- 3. DC/DCコンバータは、CONTROLピンを介してのみオンするように設定できます。
- 4. DC/DCコンバータは、OPERATIONコマンドを受け取り、 かつCONTROLピンがアサートされたときのみオンするよ うに設定できます。

LINEAD TECHNOLOGY

オン・シーケンス

TON_DELAYコマンドは、オン・シーケンス開始後、そのVout_enピンがDC/DCコンバータをイネーブルするまでチャネルが待機する時間を設定します。DC/DCコンバータがイネーブルされると、TON_RISEの値は、デバイスがDACをソフト接続してDC/DCコンバータ出力をVOUT_COMMANDの値にサーボ制御する時間を決定します。TON_MAX_FAULT_LIMITの値は、デバイスが低電圧状態の有無を確認する時間を決定します。TON_MAX_FAULTが発生した場合は、DC/DCコンバータをディスエーブルし、双方向のFAULTBピンを使用してフォルトを他のチャネルに伝えるように該当チャネルを設定できます。過電圧フォルトは、デバイスが起動したら必ずVOUT_OV_FAULT_LIMITに照らして検査されますが、リセット状態時や、過電圧状態を無視している間のマージニングでは検査されないことに注意してください。CONTROLピンを使用した標準的なオン・シーケンスを図17に示します。

オン状態の動作

チャネルがオン状態に達していると、OPERATIONコマンドを使用してDC/DCコンバータの出力を上方マージン、下方マージンに設定するか、またはVOUT_COMMANDで示される公称出力電圧に戻すように指示することができます。また、チャネルがDC/DCコンバータの出力をVOUT_COMMAND電圧に連続的に調整するように設定するか、またはチャネルのVDACPn出力を高インピーダンスにして、DC/DCコンバータの出力電圧がその公称電圧(VDCn(NOM))に達するようにすることもできます。出力電圧のサーボ制御の設定方法の詳細については、MFR_CONFIG_LTC2977コマンドを参照してください。

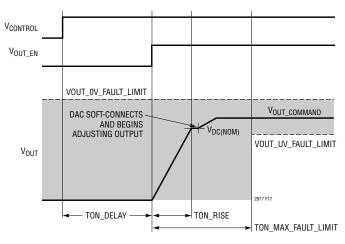


図17. CONTROL ピンを使用した標準的なオン・シーケンス

サーボ・モード

デジタル・サーボ・ループはADC、DAC、内部のプロセッサで構成されており、これはいくつかの有用なモードで動作するよう設定できます。サーボの目標値は目的の出力電圧です。

連続/非連続調整モード: MFR_CONFIG_LTC2977 b[7]。連続調整モードでは、サーボはVOUTの測定値を取得するたびにDACを閉ループ式に更新します。更新レートは、サーボ制御信号がADCのマルチプレクサをたどる所要時間で決まりますが、これがtupdate_Adcより長いことはありません。「電気的特性」の表のNote 4を参照してください。非連続調整モードでは、サーボはADCが目的の出力電圧を測定するまでDACを駆動し、その時点でDACの更新を停止します。

連続/非連続調整モードの一部として、高速サーボ・モードを使用して、マージン・コマンドやオン・イベントなどの大規模な出力遷移を高速化することができます。使用するには、Mfr_config_fast_servo_off = 0をセットします。高速サーボ・モードをイネーブルすると、目標電圧の変更や新規のソフト接続によって高速サーボが起動します。DACは新しい目標値に近づくまで周期ts_vdacpごとに1LSB増加します。目標値に達すると、オーバーシュートを防ぐため低速サーボ・モードに入ります。

警告モードでの非連続サーボ: MFR_CONFIG_LTC2977 b[7] = 0、b[6] = 1。非連続モードでは、出力がドリフトして過電圧または低電圧の警告リミットを超える場合、LTC2977 は出力を再調整(再サーボ制御)します。

DACモード

V_{DAC}n ピンを駆動する DAC は、いくつかの有用なモードで動作できます。 MFR_CONFIG_LTC2977 を参照してください。

- ソフト接続。リニアテクノロジーが特許を持つソフト接続機能を採用することにより、DAC出力は接続前にDC/DCコンバータの帰還ノードの電圧の1LSB以内まで駆動され、出力にトランジェントが発生するのを防ぎます。このモードは出力電圧をサーボ制御するときに使用されます。起動時に、LTC2977はTON_RISEが期限切れになるまで待機してからDACに接続します。これが最も標準的な動作モードです。
- 切断。DAC出力は高インピーダンスになります。

- ソフト接続によるDACマニュアル・モード。非サーボ・モード。 DACは帰還ノードにソフト接続します。ソフト接続では、 DACコードが帰還ノードの電圧に合致するように駆動されます。接続後、DACはDACコードをMFR_DACレジスタに書き込むことによって起動します。
- ハード接続によるDACマニュアル・モード。非サーボ・モード。 DACはMFR_DACの現在の値を使用して帰還ノードに ハード接続します。接続後、DACはDACコードをMFR_ DACレジスタに書き込むことによって起動します。

マージニング

LTC2977は、DAC出力と帰還ノードまたは調整ピンの間に接続された外付け抵抗に強制的に電圧を加えることにより、DC/DCコンバータ出力のマージニングおよびトリミングを行います。マージニングのプリセット・リミットはVOUT_MARGIN_HIGH/LOWレジスタに格納されています。マージニングは、適切なビットをOPERATIONレジスタに書き込むことで作動します。

マージニングにはDACが接続されていることが必要です。 DACが接続されていないときのマージニングの要求は無視されます。

オフ・シーケンス

オフ・シーケンスは、CONTROL ピンまたは OPERATION コマンドを使用して開始します。 TOFF_DELAY の値は、オフ・シーケンスの最初から、各チャネルの VOUT_EN ピンが"L"になり、その結果 DC/DC コンバータがディスエーブルされるまでに経過する時間を決定します。

Voutのオフしきい値電圧

MFR_VOUT_DISCHARGE_THRESHOLDコマンド・レジスタを使用すると、出力電圧のオフしきい値を指定することができます。出力電圧がこのしきい値より低い電圧にならないと、チャネルはオン状態へ移行または再移行できません。オフしきい値電圧は、MFR_VOUT_DISCHARGE_THRESHOLDとVOUT_COMMANDを掛けることで指定します。出力電圧がそのオフしきい値より低くならないうちにオン状態に移行しようとすると、チャネルはオフのままになり、該当のビットはSTATUS_MFR_SPECIFICレジスタにセットされ、ALERTBピンは"L"にアサートされます。出力電圧がそのオフしきい値より低い電圧になると、チャネルはオン状態に移行できます。

MFR_RESTART_DELAY コマンドと CONTROLn ピンによる 自動再起動

自動再起動シーケンスを開始するには、CONTROLピンを10μsより長くオフ状態にした後でそれを解除します。自動再起動では、MFR_RESTART_DELAYの期間、特定のCONTROLピンにマップされているすべてのVOUT_ENピンをディスエーブルし、その後すべてのDC/DCコンバータをそれぞれのTON_DELAYに従って起動します。(図18を参照)。VOUT_ENnピンは、MFR_CONFIG_LTC2977コマンドにより、いずれかのCONTROLピンにマップされています。この機能により、リセットしようとしているホストは、回復後、よく制御された方法で電源を再起動できます。

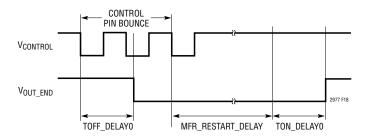


図18. 自動再起動によるオフ・シーケンス

フォルト管理

出力電圧の過電圧フォルトおよび低電圧フォルト

高速電圧スーパーバイザのOV (過電圧)フォルトしきい値 およびUV(低電圧)フォルトしきい値は、それぞれVOUT OV_FAULT_LIMITコマンドおよびVOUT UV FAULT LIMITコマンドを使用して設定します。VOUT OV FAULT RESPONSEコマンドおよびVOUT UV FAULT RESPONSE コマンドにより、OV/UVフォルトに対する応答が決定されます。 フォルトの応答では、DC/DCコンバータを直ちにディスエーブ ルする、待機し一定期間フォルト状態が持続しているか確認 してからDC/DCコンバータをディスエーブルする、またはフォ ルトが発生してもDC/DCコンバータの動作を継続させるなど が可能です。DC/DCコンバータがディスエーブルされている 場合、LTC2977は再試行1~6回、制限回数なしで継続的 に再試行、またはラッチオフを設定できます。再試行間隔は MFR_RETRY_DELAY コマンドを使用して指定します。 ラッチ されたフォルトをリセットするには、CONTROLピンを切り替 えるか、OPERATIONコマンドを使用するか、またはVIN SNS ピンへのバイアス電圧の印加をいったん解除してから再度印 加します。フォルト状態および警告状態が生じると、ALERTB

ピンは必ず"L"にアサートされ、ステータス・レジスタの対応 するビットがセットされます。CLEAR_FAULTSコマンドはス テータス・レジスタの内容をリセットして、ALERTB出力をデ アサートします。

出力電圧の過電圧警告および低電圧警告

OVとUVの警告しきい値電圧は、LTC2977のADCによって処理されます。これらのしきい値は、それぞれVOUT_OV_WARN_LIMITコマンドおよびVOUT_UV_WARN_LIMITコマンドによって設定されます。警告が発生すると、ステータス・レジスタの対応するビットがセットされ、ALERTB出力は"L"にアサートされます。警告が原因でVOUT_EN出力ピンによるDC/DCコンバータのディスエーブルが行われることはありません。

VIN EN出力の設定

出力のOVフォルトまたはUVフォルトが発生した場合は、 V_{IN_EN} 出力を使用して中間バス電圧をディスエーブルすることができます。 $MFR_VINEN_OV_FAULT_RESPONSE$ レジスタおよび $MFR_VINEN_UV_FAULT_RESPONSE$ レジスタを使用し、 $VOUT_OV/UV$ のフォルト状態に応答して V_{IN_EN}

ピンを"L"にアサートするように設定します。LTC2977が、フォルトによるオフ状態の後でオン状態に再移行するように指示されると、 $V_{\rm IN}$ E $_{\rm N}$ 出力は"L"への引き下げを停止します。

 V_{IN_EN} 出力では、電荷の注入による 5μ Aプルアップ電流 (12Vまで)も利用できます。詳細については「PMBUSコマンドの説明」セクションのMFR_CONFIG_ALL_LTC2977レジスタの説明を参照してください。

DC/DC コンバータの負荷を上側ゲート回路の不動作などの致命的なフォルトから保護するために、 V_{IN_EN} 出力を使用して中間バスの SCR クローバを起動するアプリケーション回路を図 19に示します。不動作状態の上側ゲートは過電圧フォルトを引き起こすので、その結果としてLTC2977の V_{IN_EN} が"L"になり、このためLTC4210ホットスワップ・コントローラの ON入力がデアサートされて、DC/DC コンバータ入力に電力を供給するスイッチ Q1 が開放状態になります。さらに、 V_{IN_EN} が"L"になると、2N2907 (PNPトランジスタ)を介して MCR12DC (SCR デバイス)が強制的にオンになるので、DC/DC コンバータの V_{IN} 入力の電圧が急激に低下して、不動作状態の上側ゲートがこのコンバータによって電力を供給される部品を損傷しないようにします。LTC2977の V_{PWR} 入力はスイッチ Q1を迂回しているので、前述した一連の動作を通じてLTC2977には電力が十分に供給されます。

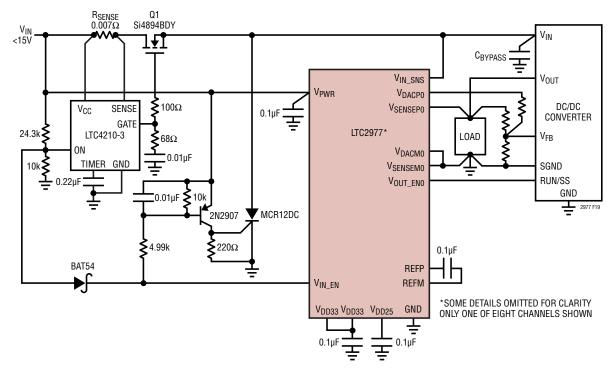


図19. 中間バス上でのクローバ保護機能を備えたLTC2977のアプリケーション回路

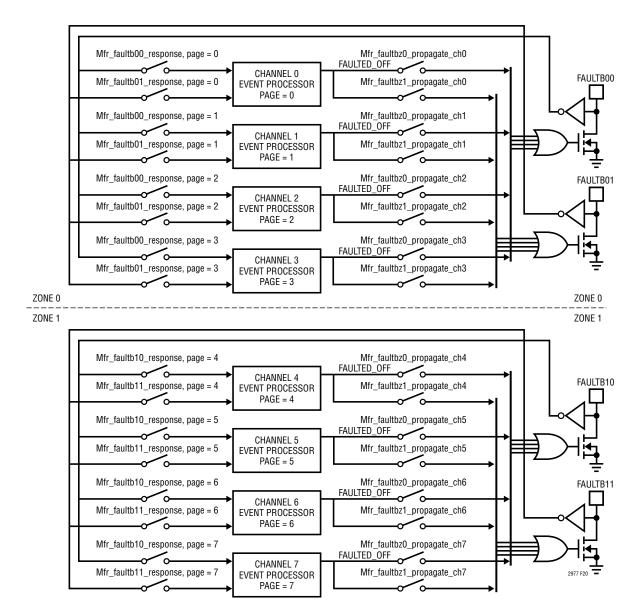


図20. チャネルのフォルト管理のブロック図

マルチチャネルのフォルト管理

マルチチャネルのフォルト管理は、双方向のFAULTBznピンを使用して処理します。「z」は0または1のフォルト・ゾーンを示します。LTC2977には2つのフォルト・ゾーンがあります。各ゾーンには4チャネルが入っています。チャネルとFAULTBznピンの間の接続を図20に示します。

- MFR_FAULTBz0_PROPAGATEコマンドは、特定のチャネル(PAGE)からのフォルトによるオフ状態をそのチャネルのゾーン内のいずれかのFAULTBzn出力に反映できるようにするプログラム可能なスイッチのように動作します。MFR_FAULTBzn_RESPONSEコマンドは、1つのゾーン内でのFAULTBznピンのあらゆる組み合わせに応答して、任意のチャネルをシャットダウンできる、各チャネルの入力にある同様のスイッチを制御します。"L"になるFAULTBznピンに応答するチャネルは、そのFAULTBznピンがフォルト発生チャネルによって解放されると、新しい起動シーケンスを試行します。
- 複数のフォルト・ゾーンにまたがる依存関係を確立するには、フォルト・ピン(たとえばFAULTB01~FAULTB10)を互いに結線します。どのチャネルが他のどのチャネルに依存してもかまいません。いずれかのチャネルがフォルトによってオフしたのに応答してすべてのチャネルをディスエーブルするには、すべてのFAULTBznピンを互いに短絡し、すべてのチャネルについてMFR_FAULTBzn_PROPAGATE = 0x01およびMFR_FAULTBzn_RESPONSE = 0x0Fをセットします。

• また、 10μ s のデグリッチ遅延後にオフ・シーケンスを開始するために、外部のドライバにより FAULTBzn ピンを"L"にアサートすることもできます。

複数のLTC2977間の相互接続

複数のLTC2977のピンを標準的な配列で相互接続する方法を図21に示します。

- VIN_SNSへのすべての配線は、VINを検出する箇所に星形結線してください。こうしておくと、LTC2977をVINに基づいて起動し、CONTROLラインとOPERATIONコマンドを無視するようにON_OFF_CONFIGが設定されている場合のタイミング誤差が最小になります。タイミングの違いに敏感な複数デバイスのアプリケーションでは、VIN_ONしきい値およびVIN_OFFしきい値に応答してSHARE_CLKがオン/オフ・シーケンスを同期させることができるように、MFR_CONFIG_ALL_LTC2977レジスタのVin_share_enable ビットを"H"に設定することを推奨します。
- V_{IN_EN}の全配線を互いに接続しておくと、選択したフォルトが配列内のどのDC/DCコンバータの出力で発生しても共通の入力スイッチを遮断できるようになります。
- ALERTBは、通常はさまざまなPMBusコンバータ内の1つの配線です。LTC2977は、フォルトと警告の豊富な組み合わせをALERTBピンに伝えることができます。

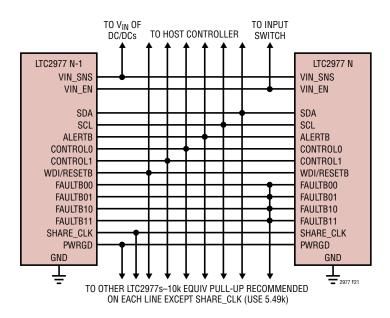


図21. 複数のLTC2977間の標準的な接続

- WDI/RESETBを使用して、LTC2977をパワーオン・リセット状態にすることができます。この状態に移行するには、少なくともtresetrnの間WDI/RESETBを"L"にしてください。
- FAULTBznピンへの配線を互いに接続してフォルトへの依存関係を構築することができます。いずれかのFAULTBznピンでのフォルトによってそれ以外をすべて"L"にする構成を図21に示します。この構成は、いずれかのチャネルが起動しなかった場合に起動シーケンスを中断することが要求される配列で役立ちます(図22参照)。
- PWRGDは、MFR_PWRGD_ENコマンドによってPWRGD にマップされた出力のステータスを反映します。図20では すべてのPWRGDピンが相互接続されていますが、どの組 み合わせを使用してもかまいません。

アプリケーション回路

外付け帰還抵抗を使用したDC/DCコンバータのトリミングとマージニング

外付けの帰還回路網を使用して電源のトリミング/マージニングを行う標準的なアプリケーション回路を図23に示します。 VSENSEPOおよびVSENSEMOの差動入力によって負荷電圧が直接検出され、閉ループのサーボ・アルゴリズムによってVDACPOピンとVDACMOピンの間に補正電圧が生成されます。負荷に起因する接地誤差の影響を最小限に抑えるため、VDACMOはポイントオブロードのGNDにケルビン接続されています。 VDACPO出力は抵抗R30を介してDC/DCコンバータの帰還ノードに接続されています。この構成ではMfr_config_dac_polを0にセットしてください。

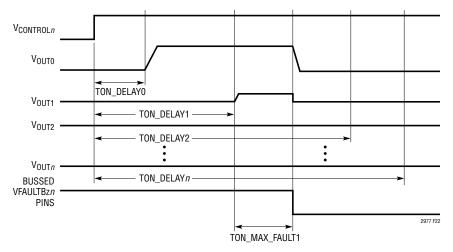


図22 チャネル1の短絡により中断されたオン・シーケンス

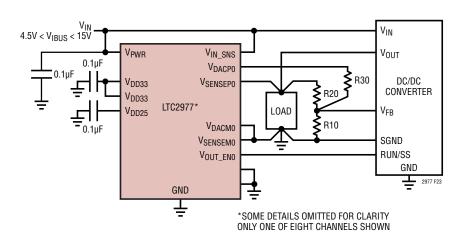


図23. 外付け帰還抵抗を使用したDC/DCコンバータのアプリケーション回路

LINEAR TECHNOLOGY

外付け帰還抵抗を使用したDC/DCコンバータでの4ステップの抵抗選択手順

図23に示すアプリケーション回路での抵抗値の計算では、次の4ステップの手順に従ってください。

1. 帰還抵抗R20の値とDC/DCコンバータの公称出力電圧 $V_{DC(NOM)}$ を仮定し、R10の値を求めます。

LTC2977の V_{DACP0} ピンが高インピーダンス状態の場合、 $V_{DC (NOM)}$ はDC/DCコンバータの出力電圧になります。R10は、R20、 $V_{DC (NOM)}$ 、ループがレギュレーション状態のときの帰還ノードの電圧 (V_{FB}) 、および帰還ノードの入力電流 (I_{FB}) の関数です。

$$R10 = \frac{R20 \cdot V_{FB}}{V_{DC(NOM)} - I_{FB} \cdot R20 - V_{FB}}$$
(1)

2. 必要とする最大のDC/DCコンバータ出力電圧 $V_{DC\,(MAX)}$ を与えるR30の値を求めます。

V_{DACP0}が0Vのとき、DC/DCコンバータの出力は最大電圧になります。

$$R30 \le \frac{R20 \cdot V_{FB}}{V_{DC(MAX)} - V_{DC(NOM)}}$$
 (2)

3. 必要とする最小の DC/DC コンバータ出力電圧 $V_{DC \, (MIN)}$ を与える V_{DACP0} の最小値を求めます。

DACには、1.38Vおよび2.65Vの2つのフルスケール設定値があります。適切なフルスケール設定値を選択するため、必要な $V_{DACPO(F/S)}$ 出力電圧の最小値を次のように計算します。

$$V_{DACPO(F/S)} > \left(V_{DC(NOM)} - V_{DC(MIN)}\right) \bullet \frac{R30}{R20} + V_{FB}$$
 (3)

4. DC/DC コンバータ出力電圧の最小値、公称値、最大値と、 その結果得られるマージニング分解能を再度計算します。

$$V_{DC(NOM)} = V_{FB} \bullet \left(1 + \frac{R20}{R10}\right) + I_{FB} \bullet R20$$
 (4)

$$V_{DC(MIN)} = V_{DC(NOM)} - \frac{R20}{R30} \bullet \left(V_{DACPO(F/S)} - V_{FB} \right)$$
 (5)

$$V_{DC(MAX)} = V_{DC(NOM)} + \frac{R20}{R30} \bullet V_{FB}$$
 (6)

$$V_{RES} = \frac{\frac{R20}{R30} \cdot V_{DACPO(F/S)}}{1024} V/DAC LSB$$
 (7)

TRIM ピンを使用した DC/DC コンバータのトリミングと マージニング

TRIMピンを使用してDC/DCコンバータの出力電圧のトリミ ング/マージニングを行う標準的な応用回路を図24に示し ます。LTC2977のVDACPOピンはR30を介してTRIMピンに 接続されており、VDACMOピンはコンバータのポイントオブ ロード・グランドに接続されています。この構成では、MFR CONFIG LTC2977のDAC極性ビットMfr config dac polを 1にセットしてください。

TRIM ピンを備えた DC/DC コンバータでは、通常、TRIM ピン とV_{SENSEP}ピンまたはV_{SENSEM}ピンの間に外付け抵抗を接 続することによって上方マージンまたは下方マージンが設定 されます。これらの抵抗とDC/DCコンバータの出力電圧の変 化Δ%との関係は、一般に以下のように表されます。

$$R_{TRIM_DOWN} = \frac{R_{TRIM} \cdot 50}{\Delta_{DOWN}\%} - R_{TRIM}$$
 (8)

 $R_{TRIM\ UP} =$

$$R_{TRIM} \bullet \left[\frac{V_{DC} \bullet (100 + \Delta_{UP}\%)}{2 \bullet V_{REF} \bullet \Delta_{UP}\%} - \left(\frac{50}{\Delta_{UP}\%} \right) - 1 \right]$$
 (9)

ここで、RTRIM はTRIM ピン内部を見た場合の抵抗値、VREF はTRIMピンの開放出力電圧、VDCはDC/DCコンバータの 公称出力電圧です。Δ_{UP}%およびΔ_{DOWN}%は、それぞれ上方 マージニング、下方マージニングをした場合のコンバータの出 力電圧の変化率をパーセンテージで表したものです。

TRIM ピンを使用した DC/DC コンバータの2ステップでの抵 抗値とDACフルスケール電圧の選択手順

次の2ステップの手順に従って、R30の抵抗値と、必要なフル スケールのDAC電圧を計算します(図24参照)。

1.R30の値を求めます。

$$R30 \le R_{TRIM} \cdot \left(\frac{50 - \Delta_{DOWN} \%}{\Delta_{DOWN} \%} \right)$$
 (10)

2.V_{DACP0}について必要な最大出力電圧を計算します。

$$V_{DACP0} \ge \left(1 + \frac{\Delta_{UP}\%}{\Delta_{DOWN}\%}\right) \bullet V_{REF}$$
 (11)

注記:すべてのDC/DCコンバータがこれらの調整式に従うわ けではありません。特に、新しいコンバータほど従わない可能 性が高くなります。リニアテクノロジーのフィールド・アプリケー ション・エンジニアにお問い合わせください。

電流測定

奇数のADCチャネルを使用して、電源電流を測定することが できます。ADCを高分解能モードに設定して、電流測定用に 構成し、感度を向上させます。このモードではOVまたはUV のフォルトも警告も通知されませんが、11ビットの符号付き 仮数と5ビットの符号付き指数のL11データ形式を使用して READ VOUTコマンドから遠隔測定が可能です。 高分解能 モードをイネーブルするには、MFR CONFIG LTC2977ビッ | b[9] = 1 even = 1

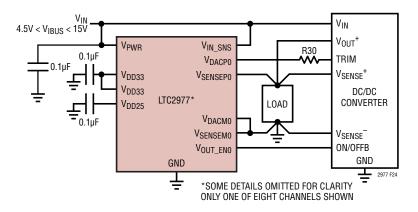


図24. TRIM ピンを使用した DC/DC コンバータのアプリケーション回路

"L"にアサートされるので、DC/DCコンバータを制御する目的には使用できません。VDACP出力ピンも使用できません。

検出抵抗を使用した電流測定

検出抵抗を使用した電流測定回路を図25に示します。平衡フィルタにより、DC/DCコンバータの出力から同相ノイズと差動ノイズの両方が除去されます。このフィルタは、DC/DCコンバータのインダクタと直列にして、検出抵抗の両端に直接取り付けます。電流検出入力は、グランドを基準にして6V未満に制限する必要があります。 R_{CM} と C_{CM} は、フィルタのコーナー周波数がDC/DCコンバータのスイッチング周波数の10分の1未満になるように選択してください。こうすれば、電圧リップルとフィルタによる遅延との間でうまく折り合いをつけた電流検出波形が得られます。電流検出入力の内部抵抗による利得誤差を最小限に抑えるため、 R_{CM} の値として $1k\Omega$ を推奨します。

インダクタの DCR を使用した電流測定

DCRによる電流検出を必要とするアプリケーションの回路を図26に示します。電流検出入力に現れるリップル電圧を最小限に抑えるため、これらのアプリケーションでは2次のRCフィ

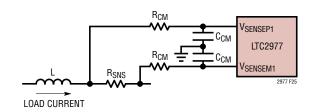


図25. 検出抵抗の電流検出回路

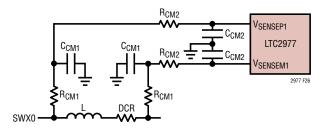


図26. インダクタDCRによる電流検出回路

ルタが必要です。電流検出入力の内部抵抗による利得誤差を最小限に抑えるため、 R_{CM1} と R_{CM2} の値として $1k\Omega$ を推奨します。 C_{CM1} はDCR とインダクタンスによって形成されるゼロを相殺するために、 C_{CM1} = $L/(DCR \cdot R_{CM1})$ が成り立つように選択する必要があります。 C_{CM2} は、第2段のコーナー周波数がDC/DC コンバータのスイッチング周波数の10分の1未満になるように選択してください。また、フィルタの第1段での負荷が大きくならないように、 C_{CM2} の値は C_{CM1} の値よりはるかに小さくする必要があります。

単相の設計例

DCRでの電流検出アプリケーションの設計例として、 $L=2.2\mu H$ 、 $DCR=10m\Omega$ 、 $F_{SW}=500kHz$ を仮定します。

 $R_{CM1} = 1k\Omega$ として C_{CM1} の値を求めると、次のようになります。

$$C_{CM1} \ge \frac{2.2\mu H}{10m\Omega \cdot 1k\Omega} = 220nF$$

 $R_{CM2} = 1k\Omega$ とします。 $F_{SW}/10 = 50kHz$ で第2のポールを得るには、次のようになります。

$$C_{CM2} \cong \frac{1}{2\pi \cdot 50 \text{kHz} \cdot 1 \text{kO}} = 3.18 \text{nF}$$

 C_{CM2} = 3.3nFとします。 C_{CM2} は C_{CM1} よりもはるかに小さいので、第2段フィルタの負荷が、整合した第1段に及ぼす影響は大きくはありません。この結果、電流検出波形のフィルタを介した遅延時定数は約3 μ sになります。

マルチフェーズ電流の測定

複数の位相を持つ電流検出アプリケーションでは、RC平均化を使用できます。DCR電流検出を使用した3相システムに対するこのアプローチの例を図27に示します。電流検出波形は、RCM2とCCM2からなるフィルタの第2段に入力される前に合成されて平均化されます。3つの位相に対応する3つのRCM1抵抗は並列に接続されているので、RCM1の値は位相の数と掛け合わせる必要があります。また、DCRは実質的には並列なので、IOUT_CAL_GAINの値はインダクタのDCRを位相の数で割った値に等しくなることにも注意してください。最も正確な結果を得るため、各インダクタのDC側から加算ノードまでのPCBトレース抵抗のバランスを維持するようにマルチフェーズ・インダクタのレイアウトには注意が必要です。

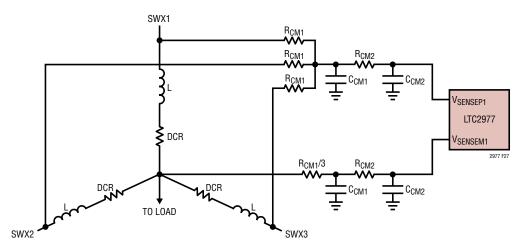


図27. マルチフェーズ DCR による電流検出回路

マルチフェーズの設計例

インダクタンスと DCR の値を前の設計例と同じにして、 C_{CM1} を 220nF のままにする場合、3 相 DC/DC コンバータの R_{CM1} の値は $3k\Omega$ となります。同様に、 $IOUT_CAL_GAIN$ の値は DCR/3 = $3.33m\Omega$ となります。

アンチエイリアシング・フィルタに関する検討事項

ノイズの多い環境では、LTC2977のADCの入力にアンチエイリアシング・フィルタが必要です。ほとんどの場合は、図28に示すRC回路が適切です。R40 = R50 \leq 200 Ω に保ってADC 利得誤差を最小限に抑え、OV/UVスーパーバイザの応答時間が長くなりすぎないようにコンデンサC10およびC20の値を選択します。たとえば、 $\tau \cong 10\mu s$ (R = 100Ω 、C = $0.10\mu F$)とします。

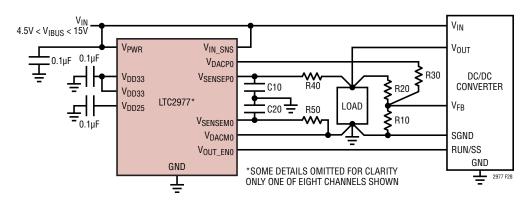


図28. VSENSE ラインのアンチエイリアシング・フィルタ

LINEAR

負電圧の検出

LTC2977が負電源(V_{EE})を検出する回路を図29に示します。R1/R2の抵抗分割器が負の電源電圧をLTC2977のVSENSEM1入力に変換する一方で、VSENSEP1入力は標準の出力電圧が1.23VのREFPピンに接続されています。負の電源電圧がそのPOWER_GOOD_ONしきい値に達したときに電圧検出入力に約0.5Vが現れるように分圧器を構成して、VSENSEMnピンから流れ出る電流が約1 μ Aと最小限に抑えられるようにします。 $POWER_GOOD_ON$ レジスタの値と、それに対応する負の電源電圧値との関係は次式で表すことができます。

$$V_{EE} = V_{REFP} - (READ_VOUT) \bullet \left(\frac{R2}{R1} + 1\right) - 1\mu A \bullet R2$$

Where READ_VOUT returns V_{SENSEP} - V_{SENSEM}

USB - I²C/SMBus/PMBus 間コントローラ DC1613 からシステム内の LTC2977 への接続

USB - I²C/SMBus/PMBus間コントローラDC1613は、プログラミング、遠隔測定、およびシステムのデバッグを行うために、ユーザの基板に実装されたLTC2977とのインタフェースをとることができます。コントローラは、LTpowerPlayソフトウェアと連携させて使用すると、電源システム全体の強力なデバッグ

手段を提供します。遠隔測定、フォルト状態レジスタ、およびフォルト・ログを使用して、短時間で故障を診断することができます。最終設定を短時間で生成し、LTC2977のEEPROMに格納することができます。

システム電源が存在するか否かに関係なく、 I^2 C/SMBus/PMBus コントローラDC1613を介して、1つ以上のLTC2977に対する給電、プログラミングおよび通信を行うアプリケーション回路図を図 30 と図 31 に示します。

図 30 は、LTC2977 がシステムの中間バスから V_{PWR} ピンを介して電力を供給されているときに使用する推奨回路図を示します。

図31は、LTC2977がシステムの3.3V電源からそのV_{DD33}ピンとV_{PWR}ピンを介して電力を供給されているときに使用する推奨回路図を示します。LTC4412理想OR接続回路を使用すると、コントローラとシステムのいずれか一方がLTC2977に電力を供給できます。

コントローラの電流ソース能力は制限されているので、OR接続された3.3V電源からの電力供給先は、LTC2977、LTC2977に付随するプルアップ抵抗、 I^2 C/SMBusのプルアップ抵抗に限定してください。さらに、 I^2 C/SMBusバス接続をLTC2977と共有するデバイスでは、SDA/SCLピンとその V_{DD} ノードの間にボディ・ダイオードが形成されないようにしてください。これは、システム電源が存在しないときバス通信に干渉するからです。

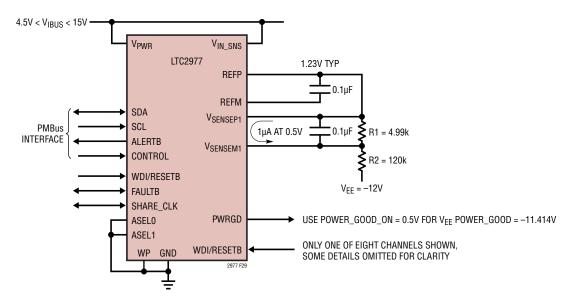


図29. 負電圧の検出

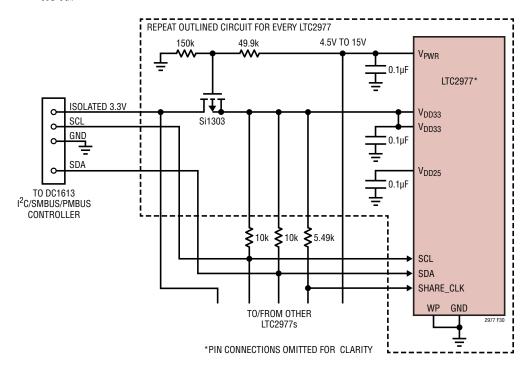
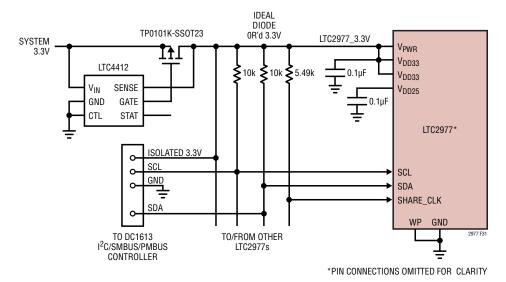



図30. V_{PWR}を使用する場合の DC1613 コントローラの接続

NOTE: DC1613 CONTROLLER I^2C CONNECTIONS ARE OPTO-ISOLATED ISOLATED 3.3V FROM CONTROLLER CAN BE BACK DRIVEN AND WILL ONLY DRAW < $10\mu A$ ISOLATED 3.3V CURRENT LIMIT = 100mA

図31. LTC2977 に3.3V から電力が直接供給されている場合の DC1613 コントローラの接続

LINEAR

DC1613コントローラの I^2 C/SMBus接続はPCのUSBポートから光絶縁されています。コントローラからの3.3V電源とLTC2977の V_{DD33} ピンは並列にすることができます。これは、これらの電圧を発生するリニアテクノロジーのLDOを逆駆動して、流れる電流を 10μ A未満にすることができるからです。コントローラの3.3Vの電流制限は100mAです。

設計のチェックリスト

I²C

- LTC2977 は一意のアドレスになるように構成する必要があります。
- アドレス選択ピン(ASELn)は3レベルのピンです。表1を参照してください。
- アドレスを調べて、バス上の他のデバイスおよびグローバル・ アドレスと衝突しないかどうか確認してください。

出力イネーブル

- すべてのV_{OUT_ENn}ピンに適切なプルアップ抵抗を使用してください。
- V_{OUT_ENn}ピンの絶対最大定格に違反していないことを確認してください。

VINの検出

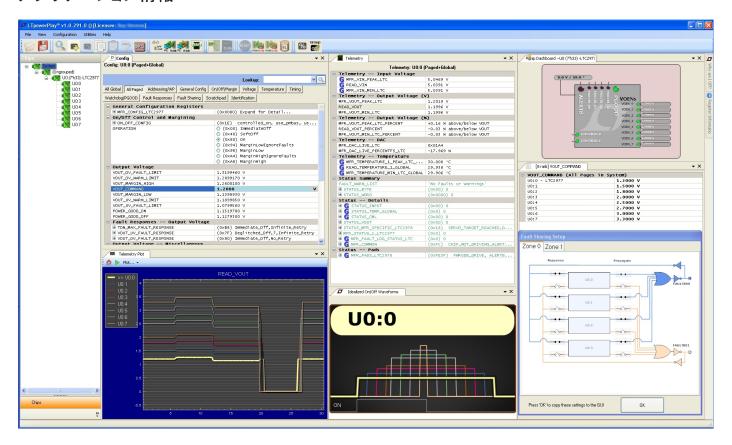
■ V_{IN}を検出するのに抵抗分割器を外付けする必要はありません。V_{IN_SNS}には較正済みの抵抗分割器が既に内蔵されています。

ロジック信号

- デ ジタル・ピン(SCL、SDA、ALERTB、FAULTBzn、CONTROLn、SHARE_CLK、WDI、ASELn、PWRGD)の絶対最大定格に違反していないことを確認してください。
- システム内のすべてのSHARE_CLKピンを互いに短絡し、 5.49kの抵抗で3.3Vにプルアップしてください。

■ CONTROLnピンはフロート状態のままにしないでください。 10kの抵抗で3.3Vにプルアップしてください。

フロート入力


■ V_{SENSEPn} ピン、V_{SENSEMn} ピン、および DACMn ピンの未使 用ピンはすべて GND に接続してください。

LTpowerPlay: パワーシステム・マネージャ用の対話式 GUI

LTpowerPlayはWindowsベースの強力な開発環境で、8チャ ネルPMBusパワーシステム・マネージャLTC2977を含む、リ ニアテクノロジーのEEPROM装備のパワーシステム・マネー ジャICをサポートしています。このソフトウェアは、さまざまな 作業を幅広く支援します。デモ基板システムに接続することに より、LTpowerPlayを使用してリニアテクノロジーのICを評価 することができます。LTpowerPlayは、保存しておいて後で再 ロードできる複数のデバイス構成ファイルを作成するために、 (ハードウェアが存在しない)オフライン・モードでも使用で きます。LTpowerPlayは過去に例のない診断機能とデバッグ 機能を提供します。これは基板開発時の貴重な診断ツールに なっており、システム内でのパワー・マネージメント体系のプロ グラムや調整、あるいは電源レール開発時の電源に関する問 題の診断を行う目的で使用します。LTpowerPlay はリニアテク ノロジーのUSB - I²C/SMBus/PMBus 間コントローラDC1613 を利用して、デモ基板セットDC2028、ソケット付きプログラミ ング基板 DC1508、お客様のターゲット・システムなど、多くの 潜在的ターゲットの1つと通信します。このソフトウェアは自動 更新機能も備えており、ソフトウェアのデバイス・ドライバ一式 と資料が最新の状態に維持されます。LTpowerPlayでは、豊 富なコンテキスト・ヘルプといくつかのチュートリアル・デモを 利用することができます。詳細情報は次のサイトで提供されて います。

www.linear.com/ltpowerplay

PCBの組み立てとレイアウトに関する提案

バイパス・コンデンサの配置

LTC2977 は V_{DD33} ピンとGNDの間、 V_{DD25} ピンとGNDの間、およびREFPピンとREFMピンの間にそれぞれ 0.1μ Fのバイパス・コンデンサが必要です。デバイスが V_{PWR} 入力から電力を供給されている場合は、このピンも 0.1μ FのコンデンサでGNDにバイパスしてください。効果を上げるため、これらはX5RやX7Rなどの高品質セラミック誘電体を使ったコンデンサである必要があり、できるだけデバイスに近づけて配置します。

露出パッド・ステンシルの設計

LTC2977のパッケージは熱的にも電気的にも高効率です。これが可能になるのはパッケージの背面側に露出ダイ・アタッチ・パッドがあるからで、このパッドはPCBまたはマザーボードの基板に半田付けする必要があります。露出パッドの接続間部分は、できるだけ隙間のない状態にしておくことをお勧めします。隙間を完全になくすことは困難ですが、露出パッド・ステンシルの設計は重要です。推奨のスクリーン印刷パターンを図32に示します。推奨するステンシルの設計により、リフロー時に半田ペーストのガス抜きを行うとともに半田仕上げ厚を一定にすることができます。IPC7525Aを参照してください。

LINEAR

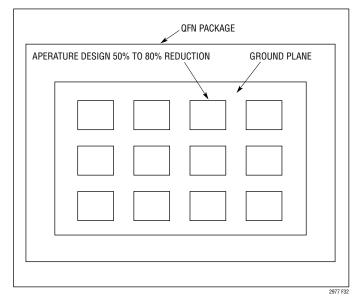


図32. ダイアタッチ・パッドの推奨スクリーン・パターン

PC基板レイアウト

PC 基板に対する機械的応力や半田付けに起因する応力により、LTC2977のリファレンス電圧と電圧ドリフトがシフトすることがあります。これらの応力に起因するシフトを低減するシンプルな方法は、デバイスをPC 基板の短辺付近または隅に配置することです。基板の辺は応力境界、つまり基板のたわみが最小になる領域として機能します。

未使用のADC検出入力

未使用のADC検出入力(VsensepnまたはVsensemn)は、すべてGNDに接続してください。着脱可能なカードに入力を接続するシステムで、状況によっては入力がフロート状態のままになる場合があるシステムでは、100kの抵抗を使用して入力をGNDに接続します。図33に示すように、100kの抵抗はフィルタ部品の前段に配置して、フィルタが負荷にならないようにしてください。

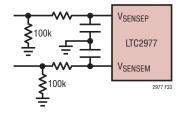
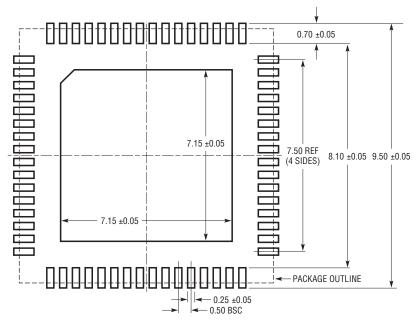
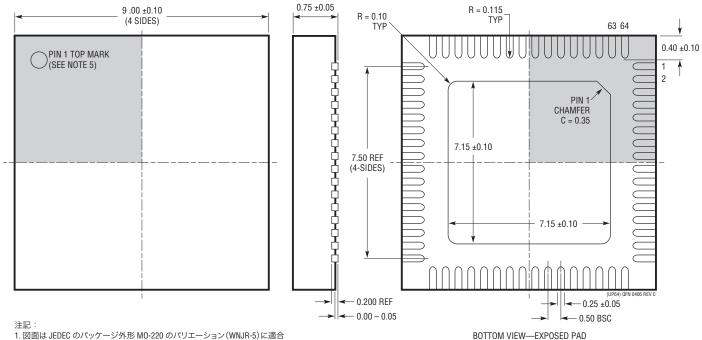


図33. 使用しない入力のGNDへの接続



パッケージ


最新のパッケージ図面については、http://www.linear-tech.co.jp/designtools/packaging/ を参照してください。

UP Package 64-Lead Plastic QFN (9mm × 9mm)

(Reference LTC DWG # 05-08-1705 Rev C)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

- 1. 図面は JEDEC のパッケージ外形 MO-220 のバリエーション (WNJR-5) に適合
- 2. 全ての寸法はミリメートル 3. パッケージ底面の露出パットの寸法にはモールドのパリを含まない。 モールドのパリは(もしあれば)各サイドで 0.20mm を超えないこと
- 4. 露出パッドは半田メッキとする
- 5. 網掛けの部分はパッケージの上面と底面のピン1の位置の参考に過ぎない
- 6. 図は実寸とは異なる

改訂履歴

REV	日付	概要	ページ番号
Α	9/13	ADC Total Unadjusted Error(TUE)仕様のVoltage Sense Modeの電圧範囲を>1.8Vから>1Vに改善。	5
		Current Sense Mode のためのADC TUE仕様を追加。	5
		前ADC仕様のINL、DNL、Voltage Sense Offset Error、Gain ErrorをTUEに統合。	5
		V _{OS_CMP} Offset Voltageの仕様を更新。	7
		V _{VOUT_ENn} Output High Voltage 仕様: 最小値を11.6Vから10Vに変更。	7
		標準的性能特性のグラフ追加:「閉ループ・サーボ制御の精度」	11

標準的応用例

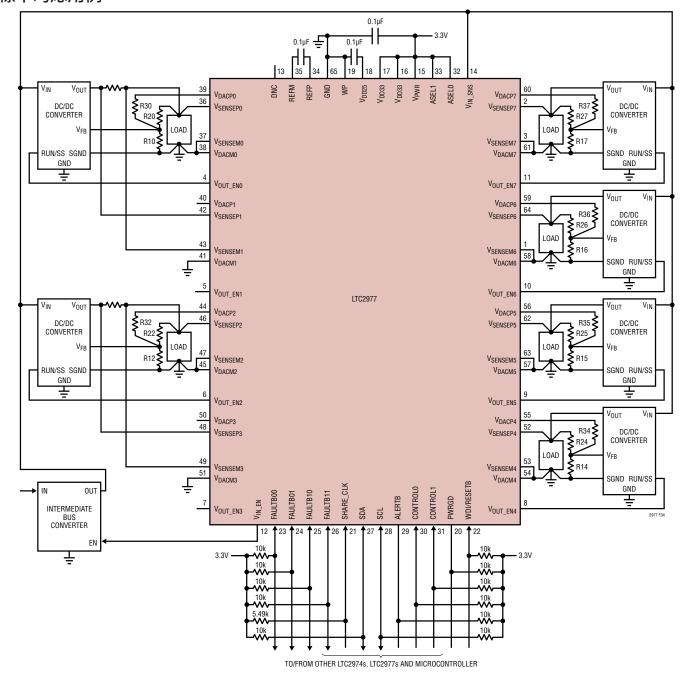


図34. 3.3Vのデバイス電源を使用したLTC2977アプリケーション回路

関連製品

製品番号	説明	注釈
LTC2970	デュアルI ² C電源モニタおよびマージニング・ コントローラ	5V~15V、全未調整誤差が0.5%の14ビットADC、8ビットDAC、 温度センサ
LTC2974	4チャネルPMBusパワーシステム・マネージャ	全未調整誤差が0.25%の16ビットADC、電圧/電流/温度モニタおよび監視
LTC3880	デュアル出力 PolyPhase 降圧 DC/DC コントローラ	全未調整誤差が0.5%の16ビットADC、電圧/電流/温度モニタおよび監視
LTC3883	シングル出力PolyPhase 降圧DC/DCコントローラ	全未調整誤差が0.5%の16ビットADC、電圧/電流/温度モニタおよび監視