

最新版英語データシートはこちら データシート

ADRV9002

日本語参考資料

特長

- ▶ 2 × 2高集積トランシーバー
- ▶ 周波数範囲: 30MHz~6000MHz
- ▶ トランスミッタおよびレシーバーの帯域幅:12kHz~40MHz
- ▶ 2 つの完全統合型フラクショナル N 方式 RF シンセサイザ
- ▶ LVDS および CMOS 同期シリアル・データ・ インターフェース・オプション
- ▶ 低消費電力モニタおよびスリープ・モード
- ▶ マルチチップ同期機能
- 高速周波数ホッピング
- 動的なデータ・レートとサンプリング・レートを実現する 動的なプロファイル切り替え
- ▶ 狭帯域波形および広帯域波形に対応する完全統合型 DPD
- ▶ 4 線式 SPI を介して全機能をプログラム可能
- ▶ 12mm × 12mm、196 ボール CSP_BGA

アプリケーション

- ▶ 基幹系通信
- ▶ 超短波(VHF)、極超短波(UHF)、6GHZまでのセルラ式 通信
- 時分割複信(TDD)および周波数分割複信(FDD)
 アプリケーション

概要

ADRV9002 は高度に集積化された RF トランシーバーで、デュア ルチャンネル・トランスミッタ、デュアルチャンネル・レシー バー、集積化されたシンセサイザ、デジタル信号処理機能を備 えています。

ADRV9002 は、性能と消費電力の関係をシステムで最適化する よう設計された、高性能で直線性が高い、高ダイナミック・レ ンジのトランシーバーです。このデバイスは構成設定が可能で、 要求の厳しい、低消費電力でバッテリ駆動の携帯機器に最適で す。ADRV9002 は、30MHz~6000MHz で動作し、UHF、VHF、 産業、科学、医療用 (ISM) バンド、狭帯域のセルラ周波数帯 (kHz) および最大 40MHz の広帯域動作に対応します。 ADRV9002 は、TDD と FDD 両方の動作に対応しています。 デュアル狭帯域/広帯域 RF トランシーバー

トランシーバーは、最高水準のノイズ指数と直線性を持つ直接 変換信号パスで構成されています。レシーバーとトランスミッ タを一体化した各サブシステムは、DCオフセット補正回路、直 交誤差補正回路(QEC)、プログラマブル・デジタル・フィル タを内蔵しているため、デジタル・ベースバンドではこれらの 機能が不要です。また、補助 A/D コンバータ(ADC)、補助 D/A コンバータ(DAC)、汎用入出力(GPIO)などのいくつか の補助機能を内蔵しているため、モニタリングや制御などの追 加機能も利用できます。

完全統合型フェーズ・ロック・ループ(PLL)により、トラン スミッタ、レシーバー、クロックの各セクションに対して高性 能で低消費電力のフラクショナル N 周波数合成が可能です。注 意深い設計とレイアウト技術により、民生用高性能無線アプリ ケーションに必要な絶縁が実現されます。

電圧制御発振器(VCO)とループ・フィルタのすべての構成要素が内蔵されており、外付け部品数が最小限に抑えられています。局部発振器(LO)には、高速ロック・モードを含む柔軟な設定オプションがあります。

トランシーバーには、低消費電力のスリープ・モードとモニ タ・モードがあり、通信を監視しながらも電力を節約し、ポー タブル機器のバッテリ寿命を延ばすことができます。

完全統合型の低消費電力デジタル・プリディストーション (DPD)は、狭帯域信号と広帯域信号の両方に最適化されてお り、これにより、高効率パワー・アンプの直線化が可能になり ます。

ADRV9002 のコアは、1.0V、1.3V、1.8V のレギュレータから直 接給電でき、標準的な 4 線式シリアル・ポートを介して制御さ れます。その他の電源を使用すれば、適切なデジタル・インタ ーフェース・レベルを提供すると共に、このレシーバー、トラ ンスミッタ、補助コンバータの性能を最適化できます。

高データ・レート・インターフェースと低データ・レート・イ ンターフェースへの対応は、構成設定可能な CMOS または低電 圧差動伝送(LVDS)のシリアル同期インターフェース(SSI) を使用して行います。

ADRV9002 は、12mm × 12mm、196 ボールのチップ・スケー ル・パッケージ・ボール・グリッド・アレイ (CSP_BGA) を採 用しています。

Rev. 0

DOCUMENT FEEDBACK

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって生じる第三者の 特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するもの でもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、それぞれの所有者の財産です。 ※日本語版資料は REVISION が古い場合があります。最新の内容については、英語版をご参照ください。

目次

1
1
1
3
4
4
6
12
13
15
15
17
20
20
20
20
20
21

代表的な性能特性	26
広帯域	26
狭带域	58
位相ノイズ	82
動作原理	84
トランスミッタ	84
レシーバー	85
DPD	86
クロック入力	86
シンセサイザ	86
SPI	87
GPIO ピン	87
補助コンバータ	87
JTAG バウンダリ・スキャン	88
アプリケーション情報	89
電源シーケンス	89
デジタル・データ・インターフェース	89
外形寸法	92
オーダー・ガイド	92

改訂履歴

4/2021—Revision 0: Initial Version

機能ブロック図

データシート

電気的特性は、動作周囲温度範囲、VDDA_1P0=1.0V、VDDA_1P3=1.3V、VDDA_1P8=1.8V、VDD_1P0=1.0V、VDD_1P8=1.8V でのものです。

トランスミッタ仕様

表 1. トランスミッタ(Tx1 および Tx2)

CENTER FREQUENCY306000MHzTRANSMITTER SYNTHESIS BANDWIDTH0.01240MHzゼロ IF モード、詳細については DPD のセクションを 参照してください。BANDWIDTH FLATNESS0.1dB10MHz の帯域幅スパン、デジタル補償を含むDEVIATION FROM LINEAR PHASE1Degrees40MHz の帯域幅
TRANSMITTER SYNTHESIS BANDWIDTH0.01240MHzゼロ IF モード、詳細については DPD のセクションを 参照してください。BANDWIDTH FLATNESS0.1dB10MHz の帯域幅スパン、デジタル補償を含むDEVIATION FROM LINEAR PHASE1Degrees40MHz の帯域幅POWER CONTROL RANGE000
BANDWIDTH 参照してください。 BANDWIDTH FLATNESS 0.1 dB 10MHz の帯域幅スパン、デジタル補償を含む DEVIATION FROM LINEAR PHASE 1 Degrees 40MHz の帯域幅 POWER CONTROL RANGE 0 0 0
BANDWIDTH FLATNESS 0.1 dB 10MHz の帯域幅スパン、デジタル補償を含む DEVIATION FROM LINEAR PHASE 1 Degrees 40MHz の帯域幅 POWER CONTROL RANGE 40MHz の帯域幅 40MHz の帯域幅
DEVIATION FROM LINEAR PHASE 1 Degrees 40MHzの帯域幅 POWER CONTROL RANGE 4000000000000000000000000000000000000
POWER CONTROL RANGE
I O WER CONTROL MITCH
In-Phase (I) and Quadrature (Q) Mode 42 dB
Direct Modulation Mode 12 dB
POWER CONTROL RESOLUTION
I and Q Mode 0.05 dB
Direct Modulation Mode 0.5 dB
IN BAND NOISE FLOOR -154 dBFS ¹ /Hz 0dB の減衰、0dB~20dB の減衰設定で1dB の減衰ごと に帯域内ノイズが1dB 低下
OUT OF BAND NOISE FLOOR -156 dBFS/Hz 0dBの減衰、3×帯域幅/2のオフセット
Tx1 TO Tx2 ISOLATION
30 MHz 98 dB
470 MHz 97 dB
900 MHz 93 dB
2400 MHz 93 dB
3500 MHz 79 dB
5800 MHz 70 dB
IMAGE REJECTION WITH
INITIALIZATION CALIBRATION ONLY
Wideband最大 20dB のトランスミッタ減衰、40MHz の帯域幅、
0dBのオブザベーション・レシーバー減衰、18MHzの
連続波2信号入力、QEC3トラッキング・キャリブレー
50 MHz 55 dBc
4/0 MHz 63 dBc
900 MHz 59 dBc
2400 MHz 60 dBc
3500 MHZ 57 dBc
Narrow-Band 最大 20dB のトランスミッタ演表、25kHz の帯域幅、 AD のオブザジュシューション はらい ジョン は声 2 1111-0
OdB のオフリペーション・レンーハー (M表、2.1 KHZ の) 連結波 2 信号 わカー OEC トラッキング・キャリブレー
連続版 旧々ハバ、QEC ドノワイマク・イヤリアレ ションけディスエーブル
30 MHz 61 dBc
470 MHz 68 dBc
900 MHz 65 dBc
2400 MHz 60 dBc
3500 MHz 50 dBc
5800 MHz 50 dBc

表 1. トランスミッタ(Tx1 および Tx2)

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
IMAGE REJECTION WITH						
INITIALIZATION CALIBRATION AND						
TRACKING CALIBRATION						
Wideband						0dBのトランスミッタ減衰、40MHzの帯域幅、
						-0.2dBFS、18MHzの連続波 ² 信号人力、50Ωの負荷、
						OdB のオノサペーション・レシーハー減衰、QEC はア カティブ
50 MHz			57		dDa	
470 MHz			57		dBe	
900 MHz			63		dBc	
2400 MHz			60		dBc	
3500 MHz			61		dBc	
5800 MHz			57		dBc	
CONTINUOUS WAVE FULL-SCALE						-0.2dBFS、18MHzの連続波 ² 信号入力、50Ωの負荷、
OUTPUT POWER						0dB のトランスミッタ減衰
30 MHz			7.3			
470 MHz			7.3			
900 MHz			7.6			
2400 MHz			7.4			
3500 MHz			7.8			
5800 MHz			7.2			
OUTPUT IMPEDANCE	Zout		50		Ω	差動、詳細については ADRV9001 システム開発ユー
MAXIMUM OUTPUT LOAD VOLTACE				2		り・ ルイトを参照 済切れたトリブレーションた確保士なためには見上は
STANDING WAVE RATIO (VSWR)				3		適切なイヤリクレーションを確保するためには取入値 を使用
OUTPUT RETURN LOSS						マレパー
SOTI OF REPORT LOSS						のリターン損失
30 MHz			17		dB	
470 MHz			18		dB	
900 MHz			17		dB	
2400 MHz			23		dB	
3500 MHz			13		dB	
5800 MHz			10		dB	
OUTPUT THIRD-ORDER INTERCEPT						0dBのトランスミッタ減衰、40MHzの帯域幅、
POINT						17MHz および 18MHz の連続波 ² 信号入力、デジタ
						ル・バックオフ=IIdBFS/トーン、テバイス出力でキ
Widehand	OID3					
50 MHz	OIF 5 _{WB}		31		dBm	
470 MHz			31		dBm	
900 MHz			30		dBm	
2400 MHz			28		dBm	
3500 MHz			29		dBm	
5800 MHz			27		dBm	
Narrow-Band	OIP3 _{NB}					0dBのトランスミッタ減衰、25kHzの帯域幅、2.1kHz
						および 3.1kHz の連続波 ² 信号入力、デジタル・バック
						オフ=5dBFS/トーン、デバイス出力でキャリブレーシ
30 MHz			30		dBm	→ <i>×</i>
470 MHz			31		dBm	
900 MHz			30		dBm	
2400 MHz			28		dBm	
3500 MHz			27		dBm	
5800 MHz			25		dBm	

表 1. トランス <u>ミッタ(Tx1 および Tx2</u>)

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
CARRIER LEAKAGE WITH						
INITIALIZATION CALIBRATION						
ONLY						
Wideband						LO リーク・トラッキング・キャリブレーションが無
						効、0dB のトランスミッタ減衰、減衰に伴い dB 単位
						でスケーリング、入力トーン・バックオフ=6dBFS
50 MHz			-68		dBm	
470 MHz			-65		dBm	
900 MHz			-67		dBm	
2400 MHz			-68		dBm	
3500 MHz			-62		dBm	
5800 MHz			-56		dBm	
Narrow-Band						
30 MHz			-70		dBm	
470 MHz			-72		dBm	
900 MHz			-74		dBm	
2400 MHz			-71		dBm	
3500 MHz			-71		dBm	
5800 MHz			-58		dBm	

¹ dBFS は、所定の RF 減衰設定での連続波出力信号に対する、実際の出力信号と可能な最大出力レベルの比です。 ² 連続波は、単一周波数の信号です。

³直交誤差補正(QEC)は、対象とする信号の直交イメージを最小限に抑えるシステムです。

レシーバー仕様

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
CENTER FREQUENCY		30		6000	MHz	
MAXIMUM GAIN						
Wideband						高性能レシーバーADC、0dB 減衰、5.6MHz ベースバ ンド周波数
50 MHz			21			
470 MHz			22			
900 MHz			22			
2400 MHz			22			
3500 MHz			21			
5800 MHz			21			
Narrow-Band						高性能レシーバーADC、0dB 減衰、2.1kHz ベースバン ド周波数
30 MHz			21		dB	
470 MHz			22		dB	
900 MHz			22		dB	
2400 MHz			22		dB	
3500 MHz			21		dB	
5800 MHz			21		dB	
ATTENUATION RANGE FROM MAXIMUM GAIN			34		dB	
Attenuation Accuracy						
Gain Sten			0.5		dB	 減壹ステップ・0dB~30dB
Guin Step			1.0		4D	100次ハノラフ · Vub ~ 30ub
		l	1.0		uВ	

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
Gain Step Error			0.1		dB	減衰ステップ:0dB~30dB、LO:30MHz~3GHz
			0.2		dB	減衰ステップ:0dB~30dB、LO:3GHz~6GHz
			0.1		dB	減衰ステップ:30dB~34dB
FREQUENCY RESPONSE						
Peak-to-Peak Gain Deviation			1		dB	40MHz帯域幅、デジタル補償を含む
Peak-to-Peak Gain Deviation			0.2		dB	任意の 10MHz スパン、デジタル補償を含む
RECEIVER BANDWIDTH		0.012		40	MHz	ゼロIFモード、アナログ・ローパス・フィルタ
						(LPF)帯域幅は最小5MHz、プログラマブルFIR (有限インパルス応答)フィルタ帯域幅は全範囲で構 成設定可能
RECEIVER ALIAS BAND REJECTION		80			dB	この性能はデジタル・フィルタにより実現
CONTINUOUS WAVE FULL-SCALE INPUT POWER ¹	FSIP		-11.4		dBm	この連続波信号レベルは、ADC 出力に 0dBFS をもた らす最大ゲインでの入力電力に対応。このレベルは減 衰に伴い dB 単位で増加。-2dBFS 以上のバックオフ
						が必要
INPUT IMPEDANCE			100		Ω	差動、詳細については ADRV9001 システム開発ユー ザ・ガイドを参照
INPUT PORT RETURN LOSS						バランをボード上に配置して測定したシングルエンド のリターン損失
30 MHz			20		dB	
470 MHz			21		dB	
900 MHz			20		dB	
2400 MHz			22		dB	
3500 MHz			9		dB	
5800 MHz			10		dB	
NOISE FIGURE	NF _{WB}					
Wideband						
50 MHz			11.6		dB	
470 MHz			10.6		dB	高性能レシーバーADC、被験デバイス(DUT)のレ
						シーパー・ホートで 0dB の 減 表、 統 合 帝 域 幅 : 8MHz ~9MHz
900 MHz			10.5		dB	
2400 MHz			11.4		dB	
3500 MHz			12.5		dB	
5800 MHz			12.6		dB	
NOISE FIGURE						
Wideband						
50 MHz			13.1		dB	
470 MHz			11.9		dB	ロー・パワー・レシーバーADC、DUT のレシーバ
						 ー・ポートで 0dB の減衰、統合帯域幅:8MHz~ 9MHz
900 MHz			12.0		dB	
2400 MHz			12.6		dB	
3500 MHz			13.6		dB	
5800 MHz			13.9		dB	
NOISE FIGURE						
Narrow-Band	NF _{NB}					
30 MHz			13.8		dB	
470 MHz			11.8		dB	高性能レシーバーADC、被験デバイス(DUT)のレ
						シーバー・ボートで 0dB の减衰、統合帯域幅:4kHz ~8kHz、18dB のインターフェース・ゲイン、中間周 波数(IF) = 490kHz
900 MHz			11.8		dB	
2400 MHz			12.3		dB	
3500 MHz			14.2		dB	
5800 MHz			15.1		dB	

NOISE FIGURE Informer Informer Information Information <thinfor< th=""> Information Inf</thinfor<>
Narrow-Band 30 MHz Image: Second seco
30 MHz 16.7 dB ロー・パワー・レシーパーADC、DUTのレシーパ 470 MHz 14.8 dB ロー・パワー・レシーパーADC、DUTのレシーパ 900 MHz 15.1 dB 2400 MHz 15.6 dB 3500 MHz 17.0 dB SECOND-ORDER INPUT 17.5 dB INTERMODULATION INTERCEPT POINT 112w8 a Wideband IIP2w8 A a 50 MHz 112w8 a a 50 MHz 112w8 a a 50 MHz 112w8 a a 50 MHz 79 dBm a 470 MHz 81 dBm a 900 MHz 73 dBm a 50 MHz 60 dBm a 900 MHz 85 dBm a 3500 MHz 60 dBm a 900 MHz 85 dBm a 900 MHz 85 dBm a 900 MHz 60 dBm<
470 MHz 14.8 dB ロー・パワー・レシーパーADC、DUT のレシーパ ー・ボートで 0dB の減衰、統合帯域幅:4kH2~ 8kHz, 18dB のインターフェース・ゲイン、IF = 490kHz 900 MHz 15.1 dB 3500 MHz 15.6 dB 3500 MHz 17.0 dB SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT 17.5 dB Wideband IIP2wB IIP2wB 高性能レシーパーADC、0dB のレシーバー減衰、トラ ンスインビーダンス・アンプ(TIA)の 1dB カットオ フ周波数(f _{4m}) = 20MHz、17MHz および 18MHz の 2 つの連続波 トーン、LO = 50MHz の場合の トーン出力 電力 : -11.6dBFS/トーン、その他の LO の トーン出力 電力 : -16.1dBFS/トーン 50 MHz 79 dBm 470 MHz 81 dBm 900 MHz 85 dBm 50 MHz 73 dBm 50 MHz 60 dBm 50 MHz 160 dBm 900 MHz 85 dBm 900 MHz 85 dBm 900 MHz 60 dBm
900 MHz 15.1 dB 3400 MHz 15.6 dB 3500 MHz 17.5 dB SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT 17.5 dB wideband IIP2wn IIP2wn attribute 50 MHz 11.6 dB m attribute attribute 50 MHz 17.5 dB attribute second 17.5 attribute attribute second 182 17.5 attribute second 182 17.5 attribute second 182 17.5 attribute attribute second 182 182 200 attribute attri
900 MHz 15.1 dB 2400 MHz 15.6 dB 3500 MHz 15.6 dB S800 MHz 17.0 dB SBCOND-ORDER INPUT 17.5 dB INTERMODULATION INTERCEPT 0IA 17.5 dB SBCOND-ORDER INPUT IIP2wB IIP2wB IIP2wB IIP2wB S0 MHz 17.5 dB IIP2wB IIP2wB S0 MHz 17.9 dB IIP2wB IIP2wB S0 MHz 17.9 dBm IIP2wB IIP2wB S0 MHz 79 dBm IIP2wB IIP2wB S0 MHz 79 dBm IIP2wB IIP2wB S0 MHz 73 dBm IIP2wB IIP2wB S0 MHz 60 dBm IIP2wB IIP2wB S0 MHz 60 IBm IIP2wB IIP2wB S0 MHz 100 IIIP2wB IIP2wB IIP2wB
900 MHz 15.1 dB 490kHz 2400 MHz 15.6 dB 3500 MHz 17.0 dB 5800 MHz 17.5 dB 17.5 dB 17.5 dB SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT IIP2wB IIP2wB 高性能レシーパーADC、0dB のレシーパー減衰、トラ ンスインピーダンス・アンプ (TIA) の1dB カットオ フ周波数 (f _{1dB}) = 20MHz, 17MHz および18MHz の 2 つの連続数 トーン、LO = 50MHz の場合のトーン出力 電力: -11.6dBFS/トーン、その他の LO のトーン出力 電力: -8.1dBFS/トーン 50 MHz 79 dBm 470 MHz 81 dBm 900 MHz 85 dBm 2400 MHz 60 dBm 3500 MHz 60 dBm 900 MHz 85 dBm 900 MHz 85 dBm 900 MHz 60 dBm 3500 MHz 60 dBm 900 MHz 90 90 Bm 4500 MHz 73 dBm 90 900 MHz 60 dBm 90 900 MHz 60 dBm 90 900 MHz 60 dBm <td< td=""></td<>
900 MHz 15.1 dB 2400 MHz 15.6 dB 3500 MHz 17.0 dB SECOND-ORDER INPUT 17.5 dB INTERMODULATION INTERCEPT IIP2wB if the input is the inpu
2400 MHz 15.6 dB 3500 MHz 17.0 dB 5800 MHz 17.5 dB SECOND-ORDER INPUT INTERMODULATION INTERCEPT adt & adt & box POINT Wideband IIP2wB adt & adt & box SO MHz IIP2wB adt & adt & box adt & box 50 MHz 79 dBm adt & box adt & box 50 MHz 79 dBm adt & box adt & box 50 MHz 79 dBm adt & box adt & box 50 MHz 79 dBm adt & box adt & box 470 MHz 81 dBm adt & box adt & box 900 MHz 85 dBm adt & box adt & box 2400 MHz 73 dBm adt & box adt & box 3500 MHz 60 dBm adt & box adt & box SECOND-ORDER INPUT fileband fileband fileband adt & box SECOND-ORDER INPUT fileband fileband fileband adt & box SECOND-ORDER INPUT fileband fileband <
3500 MHz 17.0 dB 5800 MHz 17.5 dB SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT IIP2wB 高性能レシーバーADC、0dB のレシーバー減衰、トラ ンスインピーダンス・アンプ (TIA) の 1dB カットオ フ周波数 (f _{tab}) = 20MHz、17MHz および 18MHz の 2 つの連続波 トーン、LO = 50MHz の場合のトーン出力 電力: -11.6dBFS/トーン、その他の LO のトーン出力 電力: -8.1dBFS/トーン 50 MHz 79 dBm 470 MHz 81 dBm 900 MHz 85 dBm 2400 MHz 73 dBm 5800 MHz 60 dBm 5800 MHz 60 dBm 5800 MHz 60 dBm SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT IIP2wB ロー・パワー・レシーバーADC、0dB のレシーバー減 衰、TIA の f _{tab} =20MHz、17MHz および 18MHz の 2 つの連続波 トーン、LO = 50MHz の場合の トーン出力
5800 MHz17.5dBSECOND-ORDER INPUT INTERMODULATION INTERCEPT POINTIIP2wBIIP2wB高性能レシーバーADC、0dB のレシーバー減衰、トラ ンスインビーダンス・アンプ (TIA) の 1dB カットオ フ周波数 (f _{tdb}) = 20MHz、17MHz および 18MHz の 2 つの連続波 トーン、LO = 50MHz の場合の トーン出力 電力: -11.6dBFS/トーン、その他の LO の トーン出力 電力: -8.1dBFS/トーン50 MHz79dBm 470 MHz470 MHz81dBm 85900 MHz85dBm3500 MHz60dBm3500 MHz60dBm900 MHz60dBm2400 MHz60dBm580 MHz10000900 MHz73dBm2400 MHz60dBm580 MHz60dBm580 MHz60dBm580 MHz60dBm580 MHz00dBm580 MHz00dBm580 MHz60dBm580 MHz00dBm580 MHz00dBm580 MHz00dBm580 MHz00dBm580 MHz60dBm580 MH
SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT Wideband IIP2 _{WB} IIP2
INTERMODULATION INTERCEPT POINT Wideband IIP2 _{WB} IIP2
POINT IIP2wB IIP2wB 高性能レシーバーADC、0dBのレシーバー減衰、トランスインピーダンス・アンプ(TIA)の1dBカットオフ周波数(fidB) = 20MHz、17MHzおよび18MHzの2 つの連続波トーン、LO = 50MHzの場合のトーン出力電力: -11.6dBFS/トーン、その他のLOのトーン出力 電力: -11.6dBFS/トーン、その他のLOのトーン出力 電力: -8.1dBFS/トーン 50 MHz 79 dBm 470 MHz 81 dBm 900 MHz 85 dBm 2400 MHz 73 dBm 3500 MHz 60 dBm 3500 MHz 60 dBm second-order 73 bBm wideband IIP2wB ロー・パワー・レシーバーADC、0dBのレシーバー減 衰、TIAの fidd=20MHz、17MHzおよび18MHzの2 つの連続波トーン、LO = 50MHzの場合のトーン出力
WidebandIIP2wBIIP2wB高性能レシーバーADC、0dB のレシーバー減衰、トラ ンスインピーダンス・アンプ (TIA) の 1dB カットオ フ周波数 (f_{idB}) = 20MHz、17MHz および 18MHz の 2 つの連続波トーン、LO = 50MHz の場合のトーン出力 電力: -11.6dBFS/トーン、その他の LO のトーン出力 電力: -8.1dBFS/トーン50 MHz79dBm 470 MHz900 MHz81dBm 4852400 MHz73dBm 603500 MHz60dBm5800 MHz70707800 MHz70707800 MHz70707800 MHz70707800 MHz70707800 MHz70<
S0 MHz 79 dBm 470 MHz 79 dBm 900 MHz 81 dBm 900 MHz 85 dBm 2400 MHz 73 dBm 500 MHz 60 dBm 900 MHz 85 dBm 2400 MHz 60 dBm 500 MHz 85 dBm 900 MHz 85 dBm 2400 MHz 60 dBm 500 MHz 73 dBm 100 multiple 85 multiple 100 multiple 85 multiple 2400 MHz 85 multiple 100 multiple 85 multiple 100 multiple 60 multiple 100 multiple 100 multiple 100 multiple 100 multiple 100 multiple 100 multiple 100 multiple 100 multiple 100 multiple 100 multiple 100 multiple 1
S0 MHz 79 dBm 470 MHz 79 dBm 470 MHz 81 dBm 900 MHz 85 dBm 2400 MHz 73 dBm 3500 MHz 60 dBm SECOND-ORDER INPUT 60 dBm INTERMODULATION INTERCEPT 60 dBm POINT IIP2 _{WB} ロー・パワー・レシーバーADC、0dB のレシーバー減 衰、TIA の f _{idB} = 20MHz, 17MHz および 18MHz の 2 つの連続波 トーン、LO = 50MHz の場合の トーン出力
50 MHz 79 dBm 470 MHz 81 dBm 900 MHz 85 dBm 2400 MHz 85 dBm 3500 MHz 60 dBm SECOND-ORDER INPUT 60 dBm SECOND-ORDER INPUT 60 dBm INTERMODULATION INTERCEPT 60 dBm Videband IIP2 _{WB} ロー・パワー・レシーバーADC、0dB のレシーバー減
50 MHz 79 dBm 470 MHz 81 dBm 900 MHz 85 dBm 2400 MHz 73 dBm 3500 MHz 60 dBm SECOND-ORDER INPUT 60 dBm SECOND-ORDER INPUT 60 dBm INTERMODULATION INTERCEPT 60 dBm Videband IIP2 _{WB} ロー・パワー・レシーバーADC、0dB のレシーバー減 衰、TIA の f _{1dB} = 20MHz、17MHz および 18MHz の 2 つの連続波 トーン、LO = 50MHz の場合の トーン出力
50 MHz 79 dBm 470 MHz 81 dBm 900 MHz 85 dBm 2400 MHz 73 dBm 3500 MHz 60 dBm 5800 MHz 60 dBm 100 LATION INTERCEPT 100 100 Videband IIP2 _{WB} IIP2 _{WB} IIP2 _{WB}
30 MHZ 10 MHZ 10 MHZ 470 MHz 81 dBm 900 MHz 85 dBm 2400 MHz 73 dBm 3500 MHz 60 dBm 5800 MHz 60 dBm SECOND-ORDER INPUT 60 dBm INTERMODULATION INTERCEPT 60 dBm Wideband IIP2 _{WB} IIP2 _{WB} IIP2 _{WB}
470 MHZ 61 dBm 900 MHz 85 dBm 2400 MHz 73 dBm 3500 MHz 60 dBm 5800 MHz 60 dBm 5800 MHz 60 dBm SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT 60 dBm Wideband IIP2 _{WB} IIP2 _{WB} IIP2 _{WB}
900 MHZ 63 GBM 2400 MHz 73 dBm 3500 MHz 60 dBm 5800 MHz 60 dBm 5800 MHz 60 dBm SECOND-ORDER INPUT 60 dBm INTERMODULATION INTERCEPT 60 dBm POINT IIP2 _{WB} IIP2 _{WB} IIP2 _{WB}
2400 MHz131313133500 MHz60dBm5800 MHz60dBmSECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT WidebandIIP2 _{WB} IIP2 _{WB} IIP2 _{WB} IIP2 _{WB} IIP2 _{WB}
5300 MHZ 60 dBm 5800 MHz 60 dBm SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT IIP2 _{WB} ロー・パワー・レシーバーADC、0dBのレシーバー減 衰、TIAのf _{1dB} =20MHz、17MHzおよび18MHzの2 つの連続波トーン、LO=50MHzの場合のトーン出力
Stor MHZ OO dBm SECOND-ORDER INPUT INTERMODULATION INTERCEPT POINT Wideband IIP2 _{WB} IIP2 _{WB} IIP2 _{WB}
INTERMODULATION INTERCEPT POINT Wideband IIP2 _{WB} IIP2 _{WB} IIP2 _{WB} IIP2 _{WB} ロー・パワー・レシーバーADC、0dBのレシーバー減 衰、TIAのf _{1dB} =20MHz、17MHzおよび18MHzの2 つの連続波トーン、LO=50MHzの場合のトーン出力
POINT IIP2 _{WB} IIP2 _{WB} ロー・パワー・レシーバーADC、0dBのレシーバー減 衰、TIAのf _{1dB} =20MHz、17MHzおよび18MHzの2 つの連続波トーン、LO=50MHzの場合のトーン出力
Wideband IIP2 _{WB} ロー・パワー・レシーバーADC、0dBのレシーバー減 衰、TIAのf _{1dB} =20MHz、17MHzおよび18MHzの2 つの連続波トーン、LO=50MHzの場合のトーン出力
衰、TIA の f _{1dB} = 20MHz、17MHz および 18MHz の 2 つの連続波トーン、LO = 50MHz の場合のトーン出力
つの連続波トーン、LO=50MHzの場合のトーン出力
電力:-11.6dBFS/トーン、その他の LO のトーン出力
電力:-8.1dBFS/トーン
50 MHz 70 dBm
470 MHz 74 dBm
900 MHz 72 dBm
2400 MHz 65 dBm
3500 MHz 59 dBm
5800 MHz 60 dBm
THIRD-ORDER INPUT
Wideband IIP3 真性能しジーバーADC 0dBのしジーバー演奏 TIA
m = 20 MHz 17 MHz お上び 18 MHz の 2 つの連続
波トーン、LO=50MHzの場合のトーン出力電力:
ー11.6dBFS/トーン、その他のLOのトーン出力電力:
-8.1 dBFS/ \vdash $-\checkmark$
50 MHz 22 dBm
470 MHz 26 dBm
900 MHz 27 dBm
2 V V 2/ VD/II
2400 MHz 28 dBm
2400 MHz 28 dBm 3500 MHz 26 dBm

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
THIRD-ORDER INPUT						
INTERMODULATION INTERCEPT						
POINT, DIFFERENCE PRODUCT						
Wideband	$IIP3_{WB}$					ロー・パワー・レシーバーADC、0dBのレシーバー減
						衰、TIAの f_{1dB} =20MHz、17MHzおよび18MHzの2
						つの連続波トーン、LO=50MHzの場合のトーン出力
						電力:-11.6dBFS/トーン、その他のLOのトーン出力
						電力:-8.1dBFS/トーン
50 MHz			21		dBm	
470 MHz			22		dBm	
900 MHz			22		dBm	
2400 MHz			21		dBm	
3500 MHz			23		dBm	
5800 MHz			20		dBm	
THIRD-ORDER HARMONIC						
DISTORTION	UD2					
Wideband	HD3 _{WB}					高性能レンーバーADC、Rx 人刀ホートでの最大ゲイ
						ン $rev 5.0 \text{MHZ}$ に わり $\delta = 200 \text{Bm}$ の 人 力 電 力 の 連 紀 波
50 MH			0.4		ID	下一之、 IIA \bigcirc I _{1dB} = 20MHZ、 I0.8MHZ C \bigcirc HD3 惧
50 MHZ			-84		dBc	
470 MHz			-/4		dBc	
900 MHZ			-82		dBc	
2400 MHZ			-92		dBc	
5500 MHZ			-93		dBc	
3800 MHZ Namou Dand	11D2		-89		aBc	
Narrow-Dand	ΠD3 _{NB}					局性能レンーハーADC、 KX 人力ホート CO 取入 D イ ン時の 2 11-11-12 たわける 20-4 Dm の λ カパローの連結
						ン HO 2.1KHZ にわりる-20dBinの人力パターの単統 波 トーン TIAの fr = 2 MHz 6 3 μ Hz での HD3 積
20 MHz			-102		dDa	
470 MHz			-102		dPo	
470 MHz			-97		dPo	
2400 MHz			-70		dPo	
2500 MHz			-80		dBe	
5800 MHz			-72		dBc	
THIRD-ORDER HARMONIC			12		ube	
DISTORTION						
Wideband	HD3 _{WB}					ロー・パワー・レシーバーADC、最大ゲイン時の
						5.6MHzにおける-20dBmの入力電力の連続波トー
						ン、TIAの f_{1dB} = 20MHz、16.8MHz でのHD3積
50 MHz			-90		dBc	
470 MHz			-71		dBc	
900 MHz			-79		dBc	
2400 MHz			-81		dBc	
3500 MHz			-82		dBc	
5800 MHz			-84		dBc	
Narrow-Band	$HD3_{NB}$					ロー・パワー・レシーバーADC、最大ゲイン時の
						2.1kHz における-20dBm の入力パワーの連続波トー
						ン、TIAの f_{1dB} = 2MHz、6.3kHz でのHD3積
30 MHz			-108		dBc	
470 MHz			-95		dBc	
900 MHz			-89		dBc	
2400 MHz			-81		dBc	
3500 MHz			-80		dBc	
5800 MHz			-71		dBc	

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
SECOND-ORDER HARMONIC						
DISTORTION						
Wideband	$HD2_{WB}$					高性能レシーバーADC、Rx入力ポートでの最大ゲイ
						ン時の 5.6MHz における-20dBm の入力パワーの運続
						波トーン、IIAの $f_{1dB} = 20$ MHz、II.2MHz でのHD2
50 MHz			01		dD a	「貝
30 MHz			-91		dDo	
900 MHz			-93		dBc	
2400 MHz			-89		dBc	
3500 MHz			-83		dBc	
5800 MHz			-82		dBc	
Narrow-Band	HD2 _{NP}		02		ab.	高性能レシーバーADC。Rx入力ポートでの最大ゲイ
	IID ZINB					ン時の 2.1kHz における-20dBm の入力パワーの連続
						波トーン、TIAの f_{IdB} = 2MHz、4.2kHz でのHD2積
30 MHz			-102		dBc	
470 MHz			-96		dBc	
900 MHz			-90		dBc	
2400 MHz			-79		dBc	
3500 MHz			-80		dBc	
5800 MHz			-71		dBc	
SECOND-ORDER HARMONIC						
DISTORTION						
Wideband	$HD2_{WB}$					ロー・パワー・レシーバーADC、最大ゲイン時の
						5.6MHzにおける-20dBmの入力パワーの連続波トー
					TD.	ン、TIAの f_{1dB} =20MHz、11.2MHzでのHD2 積
50 MHz			-92		dBc	
470 MHz			-92		dBc	
900 MHz			-91		dBc	
2400 MHz			-89		dBc	
5500 MHz			-84 -70		dDo	
Janow Pand	UD2		-/9		ивс	\mathbf{p}_{-}
Nanow-Band	11D2 _{NB}					2 = 1 + 7 + 9 = 0 = 0 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 +
						ン、TIAの f _{tdB} = 2MHz、4.2kHz での HD2 積
30 MHz			-109		dBc	
470 MHz			-94		dBc	
900 MHz			-90		dBc	
2400 MHz			-81		dBc	
3500 MHz			-80		dBc	
5800 MHz			-70		dBc	
IMAGE REJECTION WITH						
INITIALIZATION CALIBRATION AND						
HARDWARE TRACKING ONLY						
Wideband						高性能レシーバーADC、ソフトウェア QEC はディス
						エーブル、40MHz レシーバー帯域幅、最大レシーバ
						ー・クイン指数、5.6MHz における-20dBm の人力パ ローの連続波トーン
50 MII-			0.4		JD -	ソーの理航波トーン
JU MHZ 470 MHz			84 83		dBc	
900 MHz			80 80		dBa	
2400 MHz			0∠ 81		dBc	
3500 MHz			82		dBc	
5500 WIIIZ			02		abe	l

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
5800 MHz			78		dBc	
IMAGE REJECTION WITH						
INITIALIZATION CALIBRATION AND						
HARDWARE TRACKING ONLY						
Wideband						ロー・パワー・レシーバーADC、ソフトウェア QEC
						はディスエーブル、40MHzのレシーバー帯域幅、最
						大レシーバー・ゲイン指数、5.6MHzにおける -20dBmの入力電力の連続波トーン
50 MHz			87		dBc	
470 MHz			90		dBc	
900 MHz			86		dBc	
2400 MHz			84		dBc	
3500 MHz			82		dBc	
5800 MHz			75		dBc	
RECEIVER INPUT LO LEAKAGE AT						リークは最初の12dBでは減衰に伴いdB単位で減少
MAXIMUM GAIN						
50 MHz			-66		dBm	
470 MHz			-66		dBm	
900 MHz			-66		dBm	
2400 MHz			-66		dBm	
3500 MHz			-62		dBm	
5800 MHz			-60		dBm	
SIGNAL ISOLATION						
Tx1 to Rx1A or Rx1B Signal Isolation						Tx と Rx のポート間の絶縁、絶縁は Rx ゲインに伴い
and Tx2 to Rx2A or Rx2B Signal						dB 単位で変化
Isolation						
30 MHz			100		dB	
470 MHz			85		dB	
900 MHz			78		dB	
2400 MHz			77		dB	
3500 MHz			62		dB	
5800 MHz			64		dB	
Tx1 to Rx2A or Rx2B Isolation and Tx2						Tx と Rx のポート間の絶縁、絶縁は Rx ゲインに伴い
to Rx1A or Rx2B Signal Isolation						dB 単位で変化
30 MHz			120		dB	
470 MHz			110		dB	
900 MHz			100		dB	
2400 MHz			90		dB	
3500 MHz			74		dB	
5800 MHz			81		dB	
Rx1A or Rx1B to Rx2A or Rx2B Signal						
Isolation						
30 MHz			106		dB	
470 MHz			103		dB	
900 MHz			98		dB	
2400 MHz			92		dB	
3500 MHz			83		dB	
5800 MHz			71		dB	
Rx1A to Rx1B and Rx2A to Rx2B Signal						
Isolation						
30 MHz			99		dB	

表 2. レシーバー(Rx1A、Rx1B、Rx2A、Rx2B)

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
470 MHz			97		dB	
900 MHz			90		dB	
2400 MHz			86		dB	
3500 MHz			84		dB	
5800 MHz			70		dB	

¹ 連続時間型 Σ-Δ ADC の性質により、入力信号電力の制限はデジタル出力では 0dBFS に一致しません。パイプライン ADC のハード・クリッピング特性と は異なり、これらのコンバータは、入力が最大レベルに近づくとソフト・オーバーロードの動作を示します。

内部 LO、外部 LO、デバイス・クロック

表 3.						
パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
LO						
Frequency Step			4.5		Hz	38.4 MHz の DEV_CLK については、DEV_CLK/2 ²³ - 15 の式 を用いて計算
Reference Spurs			-80		dBc	LO < 1GHz、PLL 带域幅 = 300kHz
LO WITH HIGH PERFORMANCE MODE						
Integrated Phase Noise						100Hz~50MHz を積分
30 MHz LO			0.008		°rms	PLL 帯域幅 = 300kHz
470 MHz LO			0.04		°rms	PLL 帯域幅 = 300kHz
900 MHz LO			0.08		°rms	PLL 帯域幅 = 300kHz
2400 MHz LO			0.22		°rms	PLL 帯域幅 = 300kHz
3500 MHz LO			0.27		°rms	PLL 帯域幅 = 300kHz
5800 MHz LO			0.6		°rms	PLL 帯域幅 = 300kHz
Phase Noise						DEV_CLK = 38.4MHz、代表的な性能
30 MHz LO			See Figu	re 292	°rms	PLL 帯域幅 = 300kHz
470 MHz LO			See Figu	re 293	°rms	PLL 帯域幅 = 300kHz
900 MHz LO			See Figu	re 294	°rms	PLL 帯域幅 = 300kHz
2400 MHz LO			See Figu	re 295	°rms	PLL 帯域幅 = 300kHz
3500 MHz LO			See Figu	re 296	°rms	PLL 帯域幅 = 300kHz
5800 MHz LO			See Figu	re 297	°rms	PLL 帯域幅 = 300kHz
LO PHASE SYNCHRONIZATION						
Initial Phase Synchronization Accuracy			3		Degrees	
EXTERNAL LO INPUT						
Input Frequency						入力周波数はLO周波数(f _{L0})の必要周波数の2倍以上であることが必要、500MHz~1GHzのLO範囲では1逓倍器が使用可能
	f _{EXTLO}	60		12000	MHz	
Input Signal Power		-6	0	+6	dBm	ソースで 50Ω 整合
Input Signal Differential Phase Balance				20	Degrees	適切な直交誤差補正を確保するには 20°を超えないこと
Input Signal Differential Amplitude Balance				1	dB	
Input Signal Duty Cycle				2.5	%	
Input Impedance				100	Ω	差動、詳細については ADRV9001 システム開発ユーザ・ガ イドを参照

X 0:						
パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
REFERENCE CLOCK (DEV_CLK_IN						
SIGNAL)						
Differential mode						
Frequency Range		10		1000	MHz	
Signal Level		0.2		1	V p-p	AC カップリング。最適なスプリアス性能を実現して仕様規 定された PLL 性能パラメータの要求を満たすために、1V p-p (2V p-p 差動)の入力クロックを使用。
Single-Ended Mode						
Frequency Range		10		80	MHz	
Signal Level		0.2		1	V p-p	AC カップリング。最適なスプリアス性能を実現して仕様規 定された PLL 性能パラメータの要求を満たすために、1V p-p の入力クロックを使用。
REFERENCE CLOCK (XTAL)						
Frequency Range		20		80	MHz	
CLOCK OUTPUT (DEV_CLK_OUT SIGNAL)						
Frequency Range		10		80	MHz	

デジタル・インターフェースおよび補助コンバータ

表 4.

パラメータ	Min	Тур	Max	Unit	テスト条件/コメント
AUXILIARY ADC CONVERTERS					
Resolution		10		Bits	
Input Voltage					
Minimum		0.05		V	
Maximum		0.95		V	
AUXILIARY DAC CONVERTERS					
Resolution		12		Bits	
Output Voltage					
Minimum		0.05		V	
Maximum		VDDA_1P81 -		V	
Drive Conshility		0.05		mΛ	
DICITAL SPECIFICATIONS (CMOS SSI		10		IIIA	
SIGNALS)					
Logia Inputa					
Input Voltage					
High Level	VDIGIO 1P8 ×		VDIGIO 1P8 +	v	
Tigli Level	0.65		0.18	v	
Low Level	-0.30		VDIGIO_1P8 × 0.35	V	
Logic Outputs					
Output Voltage					
High Level	VDIGIO_1P8 - 0.45			V	
Low Level			0.45	V	
Drive Capability		10		mA	

表	4.
-	

パラメータ	Min	Тур	Max	Unit	テスト条件/コメント
DIGITAL SPECIFICATIONS (DIGITAL					
GPIO SIGNALS)					
Logic Inputs					
Input Voltage					
High Level	VDIGIO_1P8 × 0.65		VDIGIO_1P8 + 0.18	V	
Low Level	-0.30		VDIGIO_1P8 × 0.35	V	
Logic Outputs					
Output Voltage					
High Level	VDIGIO_1P8 - 0.45			V	
Low Level			0.45	v	
Drive Capability		10		mA	
DATAPORT SPECIFICATIONS (LVDS					
SSI, MCS+ and MCS-)					
Logic Inputs					
Input Voltage Range	825		1675	mV	ペアの各差動入力
Input Differential Voltage	-100		+100	mV	
Threshold					
Receiver Differential Input Impedance		100		Ω	内部終端をイネーブル
Logic Outputs					
Output Voltage					
High Level			1390	mV	
Low Level	1000		1590	mV	
Differential	1000	300		mV	
Offset		1200		mV	
		1200	17	mA	ドライバけガラウンドに毎級「庙田可能な
			1,	nn t	内部終端はなし、オフチップの100Ω終端 が必要
Output Current			41	mA	ドライバけ一緒に毎終
Clock Signal Duty Cycle	45	50	55	%	500MHz
Output Rise and Fall Time	15	0 371	55	ns	300mW n-n 振幅
DIGITAL SPECIFICATIONS (ANALOG		0.071		110	
GPIO SIGNALS)					
Logic Inputs					
Logic Inputs					
Input Voltage					
High Level	VDDA_1P8 \times 0.65		VDDA_1P8 + 0.18	V	
Low Level	-0.30		VDDA_1P8 \times 0.35	V	
Logic Outputs					
Output Voltage					
High Level	VDDA_1P8 - 0.45			V	
Low Level			0.45	V	
Drive Capability		10		mA	

¹ VDDA_1P8 は、VCONV_1P8、VAGPIO_1P8、VANA2_1P8、VANA1_1P8 を含むすべての 1.8V アナログ電源を指します。

電源仕様

表 5.

Parameter	Min	Тур	Max	Unit
SUPPLY CHARACTERISTICS				
VDDA_1P0 ¹ Analog Supplies	0.975	1.0	1.025	V
VDD_1P0 ² Digital Supply	0.95	1.0	1.05	V
VDDA_1P3 ³ Analog Supplies	1.267	1.3	1.33	V
VDDA_1P8 Analog Supplies	1.71	1.8	1.89	V
VDD_1P8 ⁴ Digital Supply	1.71	1.8	1.89	V

¹ VDDA_1P0 は、内部低ドロップアウト(LDO)レギュレータをバイパスして動作するすべての1.0Vアナログ電源を指します。内部LDOレギュレータを バイパスできるパワー・ドメインには VRFLO2_1P0、VRFLO1_1P0、VRX2LO_1P3、VRX1LO_1P3、VTX2LO_1P3、VCONV_1P3、VTX1LO_1P3 などがあ ります。

² VDD_1P0は、VDIG_1P0を含むすべての 1.0V デジタル電源を指します。

³ VDDA_1P3 は、VRFVC02_1P3、VRFVC01_1P3、VANA2_1P3、VANA1_1P3、VRX2L0_1P3、VCLKSYN_1P3、VRFSYN2_1P3、VRFSYN1_1P3、

VAUXSYN_1P3、VRX1LO_1P3、VTX2LO_1P3、VCLKVCO_1P3、VAUXVCO_1P3、VTX1LO_1P3、VCONV_1P3を含むすべての1.3Vアナログ電源を指し ます。

⁴ VDD_1P8 は、VDIGIO_1P8 を含むすべての 1.8V デジタル電源を指します。

消費電流の推定値(代表値)

表 6~表 11 では、VDDA_1P0 1.0V 外部パワー・ドメインは使用していません。以下に記載のすべてのモードにおいて、ADRV9002 は、オ ンチップの 1.0V アナログ・パワー・ドメインを生成するために内部 LDO レギュレータを使用して動作しています。

スリープ・モード

表 6. デジタル・モバイル無線(DMR)CMOS SSI

		_				
ADRV9002 Mode Conditions	VDDA_1P0 Analog Supplies	VDD_1P0 Digital Supply	VDDA_1P3 Analog Supplies	VDDA_1P8 Analog Supplies	VDD_1P8 Digital Supply	Total Average Power (W)
Receiver, Transmitter, Clock PLL, and LDO Regulator Powered Down, Internal Microprocessor Active, CMOS SSI Interface Off, DEV_CLK_OUT Off, and Auxiliary DACs Off	Not used	18.9	8.2	9.7	1.3	0.049
Receiver, Transmitter, Clock PLL, LDO Regulator, and Internal Microprocessor Powered Down, CMOS SSI Interface Off, DEV_CLK_OUT Off, and Auxiliary DACs Off	Not used	2.3	6.9	9.7	1.3	0.031

表 7. ロングターム・エボリューション(LTE)デュアル・トランスミッタおよびデュアル・レシーバーLVDS SSI

			Supply (mA)			
	VDDA_1P0 Analog	VDD_1P0 Digital	VDDA_1P3 Analog	VDDA_1P8 Analog	VDD_1P8 Digital	Total Average
ADRV9002 Mode Conditions	Supplies	Supply	Supplies	Supplies	Supply	Power (W)
Receiver, Transmitter, Clock PLL, and LDO Regulator Powered Down,	Not used	24.6	12.4	11.3	1.3	0.066
Internal Microprocessor Active, LVDS SSI Interface Off, DEV_CLK_OUT Off, and Auxiliary DACs Off						
Receiver, Transmitter, Clock PLL, LDO Regulator, and Internal	Not used	2.3	10.3	10.6	1.3	0.037
Microprocessor Powered Down, LVDS SSI Interface Off, DEV_CLK_OUT						
Off, and Auxiliary DACs Off						

TDD の動作

表 8. DMR、4 個の外部 LO、LO = 470MHz、低消費電力モード・クロック PLL、プロセッサ・クロック分周器 = 4、CMOS SSI

	VDDA_1P0	VDD_1P0	VDDA_1P3	VDDA_1P8	VDD_1P8	
	Analog	Digital	Analog	Analog	Digital	Total Average
ADRV9002 Mode Conditions	Supplies	Supply	Supplies	Supplies	Supply	Power (W)
1 × Receiver Low Power ADC, Low IF, 12.5 kHz Receiver Bandwidth, 24 kSPS Data Rate, Receiver QEC Enabled, QEC Engine Active, and Transmitter Powered Down	Not used	92	171	26	3	0.367
1 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave 12.5 kHz Transmitter Bandwidth, 96 kSPS Data Rate, Direct Modulation (DM) Mode, Transmitter QEC Disabled, QEC Engine Inactive, and Receiver Powered Down	Not used	62	257	100	3	0.582
1 × Transmitter RF Attenuation = 6 dB, Full-Scale Continuous Wave 12.5 kHz Transmitter Bandwidth, 96 kSPS Data Rate, DM Mode, Transmitter QEC Disabled, QEC Engine Inactive, and Receiver Powered Down	Not used	62	257	58	3	0.506

<u>表 9. LTE40、2 トランスミッタ 2 レシーバー(2T2R)、LO = 2.5GHz、高性能クロック PLL、LVDS SSI</u>

			Supply (mA)			
	VDDA_1P0	VDD_1P0	VDDA_1P3	VDDA_1P8	VDD_1P8	
ADRV9002 Mode Conditions	Analog Supplies	Digital Supply	Analog Supplies	Analog Supplies	Digital Supply	Total Average Power (W)
2 × Receiver Low Power ADC Low Rate, 40 MHz Receiver Bandwidth, 61.44 MSPS Data Rate, Receiver QEC Enabled, QEC Engine Active, and Transmitter in Primed State	Not used	446	546	64	53	1.366
2 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 MSPS Data Rate, Transmitter QEC Disabled, QEC Engine Inactive, and Receiver in Primed State	Not used	225	701	276	52	1.727
2 × Transmitter RF Attenuation = 10 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 MSPS Data Rate, Transmitter QEC Disabled, QEC Engine Inactive, and Receiver in Primed State	Not used	225	701	120	52	1.446
2 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 MSPS Data Rate, Transmitter QEC Disabled, QEC Engine Active, Receiver in Primed State, Transmitter QEC Tracking Always On, Observation Receiver Continuously On, and Transmitter Tracking Duty Cycled (Practical Scenario)	Not used	397	1136	296	52	2.500
2 × Transmitter RF Attenuation = 10 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 MSPS Data Rate, Transmitter QEC Enabled, QEC Engine Active, Receiver in Primed State, Transmitter QEC Tracking Always On, Observation Receiver Continuously On, and Transmitter Tracking Duty Cycled (Practical Scenario)	Not used	395	1126	144	52	2.212

表 10. LTE40、1 トランスミッタ 1 レシーバー(1T1R)、LO = 2.5GHz、高性能クロック PLL、LVDS SSI

		Supply (mA)						
	VDDA_1P0	VDD_1P0	VDDA_1P3	VDDA_1P8	VDD_1P8			
	Analog	Digital	Analog	Analog	Digital	Total Average		
ADRV9002 Mode Conditions	Supplies	Supply	Supplies	Supplies	Supply	Power (W)		
1 × Receiver Low Power ADC Low Rate, 40 MHz Receiver Bandwidth, 61.44 MSPS Data Rate, Receiver QEC Enabled, QEC Engine Active, and Transmitter in Primed State	Not used	258	406	39	28	0.906		

表 10. LTE40、1 トランスミッタ 1 レシーバー(1T1R)、LO = 2.5GHz、高性能クロック PLL、LVDS SSI

ADRV9002 Mode Conditions	VDDA_1P0 Analog Supplies	VDD_1P0 Digital Supply	VDDA_1P3 Analog Supplies	VDDA_1P8 Analog Supplies	VDD_1P8 Digital Supply	Total Average Power (W)
1 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 MSPS Data Rate, Transmitter QEC Disabled, QEC Engine Inactive, and Receiver in Primed State	Not used	140	486	143	28	1.080
1 × Transmitter RF Attenuation = 10 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 MSPS Data Rate, Transmitter QEC Disabled, QEC Engine Inactive, and Receiver in Primed State	Not used	141	486	66	28	0.942
1 × Transmitter RF Attenuation = 0 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 MSPS Data Rate, Transmitter QEC Enabled, QEC Engine Active, Receiver in Primed State, Transmitter QEC Tracking Always On, Observation Receiver Continuously On, and Transmitter Tracking is Duty Cycled (Practical Scenario)	Not used	232	754	156	28	1.543
1 × Transmitter RF Attenuation = 10 dB, Full-Scale Continuous Wave 40 MHz Transmitter Bandwidth, 61.44 MSPS Data Rate, Transmitter QEC Enabled, QEC Engine Active, Receiver in Primed State, Transmitter QEC Tracking Always On, Observation Receiver Continuously On, and Transmitter Tracking is Duty Cycled (Practical Scenario)	Not used	231	755	79	28	1.405

FDD の動作

送信チャンネルはイネーブル、40MHzのトランスミッタ帯域幅、61.44MSPSのデータ・レート、トランスミッタの内部 LO = 2.4GHz、送 信 QEC はディスエーブル、QEC エンジンは停止、LVDS SSI。受信チャンネルはイネーブル、40MHz のレシーバー帯域幅、61.44MSPS の データ・レート、レシーバーの内部 LO = 2.5GHz、高性能クロック PLL、高性能レシーバーの ADC は低レート、受信 QEC はディスエー ブル、QEC エンジンは動作。低消費電力 ADC を使用すると、レシーバー・チャンネルあたり約 110mW だけ消費電力が減少します。補助 DAC または補助 ADC はイネーブルされていません。

表 11. FDD モード

	Supply (mA)							
	VDDA_1P0	VDD_1P0	VDDA_1P3	VDDA_1P8	VDD_1P8			
	Analog	Digital	Analog	Analog	Digital	Total Average		
ADRV9002 Mode Conditions	Supplies	Supply	Supplies	Supplies	Supply	Power (W)		
$1 \times \text{Receiver}, 1 \times \text{Transmitter RF}$	Not used	298	835	179	28	1.756		
Attenuation = 0 dB, Full-Scale Continuous								
Wave								
$1 \times \text{Receiver}, 1 \times \text{Transmitter}$	Not used	298	835	103	28	1.619		
RF Attenuation = 10 dB, Full-Scale								
Continuous Wave								
$2 \times \text{Receiver}, 2 \times \text{Transmitter RF}$	Not used	507	1234	344	53	2.826		
Attenuation = 0 dB, Full-Scale Continuous								
Wave								
$2 \times \text{Receiver}, 2 \times \text{Transmitter}$	Not used	507	1234	190	53	2.549		
RF Attenuation = 10 dB, Full-Scale								
Continuous Wave								

タイミング仕様

表 12.					
パラメータ	Min	Тур	Max	Unit	テスト条件/コメント
SERIAL PERIPHERAL INTERFACE (SPI) TIMING					
tCP	28			ns	SPI_CLK 周期、3 線モード
	22			ns	SPI_CLK 周期、4 線モード
tCP	10			ns	SPI_CLK パルス幅
tCP	3			ns	SPI_EN セットアップから最初の SPI_CLK 立上が
					りエッジまで

データシート

仕様

パラメータ	Min	Тур	Max	Unit	テスト条件/コメント
tHC	0			ns	最後の SPI_CLK 立下がりエッジから SPI_EN ホー ルドまで
tS	2			ns	SPI_DIO データ入力のセットアップから SPI_CLK まで
tH	0			ns	SPI DIO データ入力のホールドから SPI CLK まで
tCO	3		15	ns	
	3		10	ns	SPI_CLK 立下がりエッジから出力データまでの遅 延(4線モード)
tHZM	tH		tCO	ns	ベースバンド・プロセッサが最終アドレス・ビッ トを駆動した後のバス・ターンアラウンド時間
tHZS	0		tCO	ns	ADRV9002 が最終アドレス・ビットを駆動した後 のバス・ターンアラウンド時間(図2には図示せ ず)
DIGITAL TIMING ¹					
TX1_ENABLE or TX2_ENABLE Pulse Width	10			μs	
RX1_ENABLE or RX2_ENABLE Pulse Width	10			μs	
TX1_ENABLE or TX2_ENABLE Valid Data		2		μs	
RX1_ENABLE or RX2_ENABLE Valid Data		2		μs	
DIGITAL DATA TIMING (LVDS SSI)					ゼロのオンチップ・レーン・スキューとレーンご とに使用可能な±300psの調整可能遅延
TXx_DCLK_IN±, RXx_DCLK_OUT± and TXx_DCLK_OUT± Clock Period	2			ns	500MHz
TXx_DCLK_IN±, RXx_DCLK_OUT± and TXx_DCLK_OUT± Pulse Width	1			ns	
Transmitter Data					
TXx_IDATA_IN± or TXx_QDATA_IN or TXx_STROBE_IN± Setup to TXx_DCLK_IN±	0.25			ns	
TXx_IDATA_IN± or TXx_QDATA_IN± or TXx_STROBE_IN± Hold to TXx_DCLK_IN±	0.55			ns	
Receiver Data					
RXx_DCLK_OUT± to RXx_IDATA_OUT± or RXx_QDATA_OUT± or RXx_STROBE_OUT± Delay			0.2	ns	DC カップリング
DIGITAL DATA TIMING (CMOS-SSI)					
TXx_DCLK_IN±, RXx_DCLK_OUT± and TXx_DCLK_OUT± Clock Period	12.5			ns	80MHz
TXx_DCLK_IN±, RXx_DCLK_OUT± and TXx_DCLK_OUT± Pulse Width	6.25			ns	
Transmitter Data					
TXx_DATA_IN± or TXx_STROBE_IN± Setup to TXx_DCLK_IN±	2			ns	
$TXx_DATA_IN\pm$ or $TXx_STROBE_IN\pm$ Hold to $TXx_DCLK_IN\pm$	2			ns	
Receiver Data					
RXx_DCLK_OUT± to RXx_DATA_OUT± or RXx_STROBE_OUT± Delay			4.5	ns	DC カップリング
MULTICHIP SYNCHRONIZATION (MCS) TIMING					
LVDS Setup			0.62	ns	
LVDS Hold			0	ns	
CMOS Setup			1	ns	
CMOS Hold			3	ns	

¹TX1_ENABLE、TX2_ENABLE、RX1_ENABLE、RX2_ENABLEは、チャンネルのイネーブル/ディスエーブル信号です。

データシート

絶対最大定格

表 13.

Parameter	Rating
VDDA_1P0 to VSSA	-0.2 V to +1.2 V
VDDA_1P3 to VSSA	-0.2 V to +1.5 V
VDDA_1P8 to VSSA	-0.3 V to +2.2 V
VDD_1P0 to VSSD	-0.2 V to +1.2 V
Input Current to Any Pin Except Supplies	±10 mA
Maximum Input Power into RF Ports	See Table 14 for limits vs. survival time
Junction Temperature Range	-40°C to +110°C
Storage Temperature Range	-65°C to +150°C

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この規定はストレス定 格のみを指定するものであり、この仕様の動作のセクションに 記載する規定値以上でのデバイス動作を定めたものではありま せん。デバイスを長時間にわたり絶対最大定格状態に置くと、 デバイスの信頼性に影響を与えることがあります。

表 14. RF ポートへの最大入力電力と寿命の関係

	Life	time
RF Port Input Power, Continuous Wave Signal (dBm)	30 dB of Attenuation from Maximum Gain	0 dB of Attenuation from Maximum Gain
7	>10 years	>10 years
10	>10 years	20000 hours
20	>10 years	14 hours
23	>10 years	110 minutes
25	>7 years	60 minutes

リフロー・プロファイル

ADRV9002 のリフロー・プロファイルは、鉛フリー・デバイス に関する JEDEC JESD20 の基準に従っています。最大リフロー 温度は 260℃です。

熱抵抗

熱性能は、プリント回路基板 (PCB) の設計と動作環境に直接 関連しています。PCB の熱設計には、細心の注意を払う必要が あります。

(特に指定のない限り)表 15 に仕様規定されている熱抵抗値は、 JEDEC 仕様に基づいて計算されており、JESD51-12 に従って使 用します。放熱強化技術 (PCB、ヒートシンク、空気流など) を使用すると、熱抵抗が改善されます。

θ_{JA}は最も厳しい条件、すなわち、回路基板に表面実装パッケージをハンダ付けした状態で仕様規定されています。

θ_{IC_TOP} はジャンクションとパッケージ・ケース上部との間の熱 抵抗です。

表 15. 熱抵抗值 ^{1,2}

Package Type	Package Type θ _{JA} (°C/W)	θ _{JC_TOP} (°C/W)	θ _{JB} (°C/W)	Ψ _{JC} (°C/W)	Ψ _{JB} (°C/W)
BC-196-13	18.21	0.04	3.96	0.02	3.63

¹試験では、100µmの熱界面材料(TIM)を使用しています。TIMは 3.6W/mKと仮定しています。

² 放熱強化技術 (PCB、ヒート・シンク、空気の流れなど)を使用し、 熱抵抗を改善しています。

静電放電(ESD)定格

ESDに関する以下の情報は、ESDに敏感なデバイスを ESD 保護 がなされた環境で取り扱う場合にのみ適用できます。

ANSI/ESDA/JEDEC JS-001 準拠の人体モデル(HBM)。

ANSI/ESDA/JEDEC JS-002 準拠の帯電デバイス・モデル (CDM)。

ADRV9002 の ESD 定格

表 16. ADRV9002、196 ボール CSP_BGA

ESD Model	Withstand Threshold (V)	Class
HBM	2000	2
CDM	350	C1
CDM (Excluding	500	C2A
AUXADC_2)		

<u>ESD</u>に関する注意

ESD(静電放電)の影響を受けやすいデバイスです。

電荷を帯びたデバイスや回路ボードは、検知されない まま放電することがあります。本製品は当社独自の特 許技術である ESD 保護回路を内蔵してはいますが、デ バイスが高エネルギーの静電放電を被った場合、損傷 を生じる可能性があります。したがって、性能劣化や 機能低下を防止するため、ESD に対する適切な予防措 置を講じることをお勧めします。

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	VSSA	VSSA	EXT_LO2+	EXT_LO2-	VRFVC02_ 1P3	VRFLO2_ 1P0	MODEA	RBIAS	VRFLO1_ 1P0	VRFVC01_ 1P3	EXT_LO1-	EXT_LO1+	VSSA	VSSA
в	RX2A-	VSSA	VSSA	VSSA	VSSA	VRFVCO2_ 1P0	AUXADC_2	AUXADC_1	VRFVCO1_ 1P0	VSSA	VSSA	VSSA	VSSA	RX1A-
с	RX2A+	VSSA	RX2B+	RX2B-	VSSA	VANA2_ 1P0	VANA2_ 1P3	VANA1_ 1P3	VANA1_ 1P0	VSSA	RX1B-	RX1B+	VSSA	RX1A+
D	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	MCS+	MCS-	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
E	VRX2LO_ 1P0	VRX2LO_ 1P3	AGPIO_2	VRFSYN2_ 1P3	VCLKSYN_ 1P3	VSSA	DEV_CLK_ IN+	DEV_CLK_ IN-	VSSA	VAUXSYN_ 1P3	VRFSYN1_ 1P3	AGPIO_0	VRX1LO_ 1P3	VRX1LO_ 1P0
F	VSSA	VSSA	VSSA	AGPIO_4	AGPIO_3	VSSA	VSSA	VSSA	VSSA	AGPIO_1	AGPIO_10	VSSA	VSSA	VSSA
G	TX2+	VSSA	VTX2LO_ 1P3	AGPIO_5	VCLKVCO_ 1P3	AGPIO_6	VCONV_ 1P8	VAGPIO_ 1P8	AGPIO_8	VAUXVCO _1P3	AGPIO_11	VTX1LO_ 1P3	VSSA	TX1+
н	TX2-	VANA2_ 1P8	VTX2LO_ 1P0	AUXADC_3	VCLKVCO_ 1P0	AGPIO_7	VCONV_ 1P0	VCONV_ 1P3	AGPIO_9	VAUXVCO _1P0	AUXADC_0	VTX1LO_ 1P0	VANA1_ 1P8	TX1–
J	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
к	SPI_CLK	SPI_DIO	RX2_EN	VSSA/TES TCK+	VSSA/TES TCK-	DGPIO_0	DGPIO_1	DGPIO_2	DGPIO_3	DGPIO_4	DGPIO_5	RX1_EN	RESETB	GP_INT
L	SPI_EN	SPI_DO	TX2_EN	DGPIO_6	DGPIO_7	DGPIO_8	VDIG_1P0	VDIG_1P0	DGPIO_9	DGPIO_10	DGPIO_11	TX1_EN	MODE	DEV_CLK_ OUT
м	RX2_IDAT A_OUT-	RX2_IDAT A_OUT+	RX2_DCLK _OUT-	RX2_DCLK _OUT+	DGPIO_15/ TX2_DCLK _OUT+	DGPIO_14/ TX2_DCLK _OUT-	VDIGIO_ 1P8	VDIG_0P9	DGPIO_12/ TX1_DCLK _OUT-	DGPIO_13/ TX1_DCLK _OUT+	RX1_DCLK _OUT+	RX1_DCLK _OUT-	RX1_IDAT A_OUT+	RX1_IDAT A_OUT-
N	RX2_ STROBE_ OUT-	RX2_ STROBE_ OUT+	RX2_ QDATA_ OUT-	RX2_ QDATA_ OUT+	TX2_DCLK _IN+	TX2_DCLK _IN-	VSSD	VSSD	TX1_DCLK _IN-	TX1_DCLK _IN+	RX1_ QDATA_ OUT+	RX1_ QDATA_ OUT-	RX1_ STROBE_ OUT+	RX1_ STROBE_ OUT-
Ρ	VSSD	TX2_ STROBE_ IN+	TX2_ STROBE_ IN-	TX2_ QDATA_ IN-	TX2_ QDATA_ IN+	TX2_ IDATA_ IN+	TX2_ IDATA_ IN-	TX1_ IDATA_ IN-	TX1_ IDATA_ IN+	TX1_ QDATA_ IN+	TX1_ QDATA_ IN-	TX1_ STROBE_ IN-	TX1_ STROBE_ IN+	VSSD

 RF PORTS
 POWER 1.8V
 DIGITAL GPIO

 ANALOG GND
 POWER 1.3V
 ANALOG GPIO

 DIGITAL GND
 POWER 1.0V
 MULTIFUNCTION GPIO

SPI, ENABLES, RESET, MODE, DEV_CLK_OUT

SYNCHRONOUS SERIAL INTERFACE PORT
AUX ADC

図 3. ピン配置

表 17. ピン機能の説明

ピン番号	タイプ	記号	説明
A1, A2, A13, A14, B2 to B5, B10 to B13, C2, C5, C10, C13, D1 to D6, D9 to D14, E6, E9, F1 to F3, F6 to F9, F12 to F14, G2, G13, J1 to J14	Input	VSSA	アナログ・グラウンド (Vssa) 。
A3, A4	Input	EXT_LO2+, EXT_LO2-	差動外部 LO 入力1(LO1)。外部 LO1 に EXT_LO2+および EXT_LO2-を使用する場合は、入力周波 数を必要キャリア周波数の2倍以上とする必要があります。500MHz~1GHzのLO範囲では、1倍の 逓倍器が使用できます。使用しない場合、EXT_LO2+および EXT_LO2-は VSSA に接続します。
A5	Input	VRFVCO2_1P3	RF 外部 LO 入力 2 (LO2) の VCO と LO 生成回路用の 1.3V 内部 LDO レギュレータ入力電源。 VRFVCO2_1P3 は電源ノイズに敏感です。
A6	Input and Output	VRFLO2_1P0	RF LO2 生成回路用の 1.0V 内部電源ノード。VRFVCO2_1P3 入力で動作する内部 LDO レギュレータ を使用する場合は、VRFLO2_1P0 を VRFVCO2_1P0 に接続し、4.7μF のコンデンサでバイパスしま す。VRFVCO2_1P3 で動作する内部 LDO レギュレータを使用しない場合は、1.0V 電源を VRFLO2_1P0 に接続します。
Α7	Input	MODEA	MODEA を使用すると、プート・アップ・オプションを DEV_CLK_IN±入力および DEV_CLK_OUT 出力に設定できます。DEV_CLK_IN±ビンで差動クロック・レシーバーをイネーブルするには、 MODEA を VSSA に接続します。DEV_CLK_IN+でシングルエンド・クロック、または、 DEV_CLK_IN±ピンの両方で水晶発振器を使用する場合は、MODEA をどの VSSA よりも高い電圧に 接続します。

003

ピン番号	タイプ	記号	説明
A8	Input	RBIAS	バイアス抵抗の接続。RBIASは、外付けの1%抵抗に基づいて内部電流を生成します。RBIASと VSSA (アナログ・グラウンド)の間に、4.99kΩの抵抗を接続してください。
A9	Input and Outputt	VRFLO1_1P0	RF LO1 生成回路用の 1.0V 内部電源ノード。VRFVCO1_IP3 入力で動作する内部 LDO レギュレータ を使用する場合は、VRFLO1_IP0 を VRFVCO1_IP0 に接続し、4.7μF のコンデンサでバイパスしま す。VRFVCO1_IP3 で動作する内部 LDO レギュレータを使用しない場合は、1.0V 電源を VRFLO1_IP0 に接続します。
A10	Input	VRFVCO1_1P3	RF LO1の VCOと LO 生成回路用の 1.3V 内部 LDO 入力電源。VRFVCO1_1P3 は電源ノイズに敏感です。
A11, A12	Input	EXT_LO1-, EXT_LO1+	差動外部 LO 入力 2。外部 LO2 に EXT_LO1+および EXT_LO1-を使用する場合は、入力周波数を必要 キャリア周波数の 2 倍以上とする必要があります。500MHz~1GHz の LO 範囲では、1 倍の逓倍器が 使用できます。使用しない場合、EXT_LO1+および EXT_LO1-は VSSA に接続します。
B1, C1	Input	RX2A-, RX2A+	Rx2の差動入力 A。使用しない場合、RX2A-および RX2A+は VSSA に接続します。
B6	Output	VRFVCO2_1P0	RF LO2 の VCO 回路用 1.0V 内部電源ノード。VRFVCO2_1P3 入力で動作する内部 LDO レギュレータ を使用する場合は、この VRFVCO2_1P0 を VRFLO2_1P0 に接続し、4.7μF のコンデンサでパイパスし ます。
B7	Input	AUXADC_2	補助 ADC 入力マルチプレクサへの入力 2。使用しない場合、AUXADC_2 は接続しないでください。
B8	Input	AUXADC_1	補助 ADC 入力マルチプレクサへの入力 1。使用しない場合、AUXADC_1 は接続しないでください。
B9	Output	VRFVCO1_1P0	RF LO1の VCO 回路用 1.0V 内部電源ノード。VRFVCO1_1P3 入力で動作する内部 LDO レギュレータ を使用する場合は、VRFVCO1_1P0を VRFLO1_1P0 に接続し、4.7μF のコンデンサでバイパスしま す。
B14, C14	Input	RX1A-, RX1A+	Rx1の差動入力 A。使用しない場合、RX1A−および RX1A+は VSSA に接続します。
C3, C4	Input	RX2B+, RX2B-	Rx2の差動入力 B。使用しない場合、RX2B+および RX2B-は VSSA に接続します。
C6	Input and Output	VANA2_1P0	TX2 および RX2 のベースバンド回路、TIA、トランスミッタのトランスコンダクタンス (GM) ベー スバンド・フィルタ、補助 DAC、補助 ADC 用の 1.0V 内部電源ノード。通常動作では、VANA2_1P0 には何も接続しません。
C7	Input	VANA2_1P3	Tx2 および Rx2 のベースバンド回路、TIA、トランスミッタ GM、ベースバンド・フィルタ、補助 DAC、補助 ADC 用の 1.3V 内部 LDO 入力電源。VANA2_IP3 は電源ノイズに敏感です。
C8	Input	VANA1_1P3	Txl および Rxl のベースバンド回路、TIA、トランスミッタ GM、ベースバンド・フィルタ用の 1.3V 内部 LDO 入力電源。VANA1_IP3 は電源ノイズに敏感です。
C9	Input and Output	VANA1_1P0	TX1 および RX1 のベースバンド回路、TIA、トランスミッタ GM、ベースバンド・フィルタ用の 1.0V 内部電源ノード。通常動作では、VANA1_1P0 には何も接続しません。
C11, C12	Input	RX1B-, RX1B+	Rx1の差動入力 B。使用しない場合、RX1B-および RX1B+は VSSA に接続します。
D7, D8	Input	MCS+, MCS-	マルチチップ同期リファレンス入力。使用しない場合、MCS+および MCS-は VSSA に接続します。
El	Output	VRX2LO_1P0	Rx2 LO のパッファおよびミキサー用 1.0V 内部電源ノード。VRX2LO_1PO は電源ノイズに敏感で す。4.7μF のコンデンサを使用して VRX2LO_1PO をバイバスします。
E2	Input	VRX2LO_1P3	Rx2 LO のバッファおよびミキサー用 1.3V 内部 LDO 入力電源。内部 LDO レギュレータを使用しない 場合は、1.0V 電源を VRX2LO_1P3 に接続します。VRX2LO_1P3 は電源ノイズに敏感です。
E3, E12, F4, F5, F10, F11, G4, G6, G9, G11, H6, H9	Input and Output	AGPIO_xx	VAGPIO_1P8の1.8V 電源を基準とする GPIO 信号。ボールの位置と AGPIO_xx 信号名の対応につい ては表 18 を参照してください。一部の AGPIO_xx ピンは補助 DAC 出力としても機能します。 AGPIO_xx ピンと補助 DAC 信号の間のマッピングについては、表 18 を参照してください。使用しな い場合、AGPIO_xx ピンは接続しないでください。
E4	Input	VRFSYN2_1P3	RF LO2 のシンセサイザ用 1.3V 電源。VRFSYN2_1P3 は電源ノイズに敏感です。
E5	Input	VCLKSYN_1P3	クロック・シンセサイザ用 1.3V 電源。VCLKSYN_1P3 は電源ノイズに敏感です。
E7, E8	Input	DEV_CLK_IN+, DEV_CLK_IN-	デバイス・クロックの入力。DEV_CLK_IN±は、差動動作、シングルエンド動作、または外部水晶発 振器に接続した動作が可能です。シングルエンド・モードの場合、クロック信号はDEV_CLK_IN+ピ ンに印加し、DEV_CLK_IN-ピンには何も接続しないでください。
E10	Input	VAUXSYN_1P3	補助シンセサイザ用 1.3V 電源。VAUXSYN_1P3 は電源ノイズに敏感です。
E11	Input	VRFSYN1_1P3	RF LO1 のシンセサイザ用 1.3V 電源モニタ。VRFSYN1_1P3 は電源ノイズに敏感です。
E13	Input	VRX1LO_1P3	Rx1 LO のパッファおよびミキサー用 1.3V 内部 LDO 入力電源。内部 LDO レギュレータを使用しない 場合は、1.0V 電源を VRX1LO_1P3 に接続します。VRX1LO_1P3 は電源ノイズに敏感です。
E14	Output	VRX1LO_1P0	Rx1 LO のパッファおよびミキサー用 1.0V 内部電源ノード。VRX1LO_1P0 は電源ノイズに敏感で す。4.7μF のコンデンサを使用して VRX1LO_1P0 をバイバスします。
G1, H1	Output	TX2+, TX2-	トランスミッタ・チャンネル2の差動出力。使用しない場合、TX2+およびTX2-は接続しないでください。

ピン番号	タイプ	記号	説明
G3	Input	VTX2LO_1P3	Tx2 LOのパッファ、アップコンパータ、LO 遅延用 1.3V 電源。内部 LDO を使用しない場合は、1.0V 電源を VTX2LO 1P3 に接続します。VTX2LO 1P3 は電源ノイズに敏感です。
G5	Input	VCLKVCO_1P3	クロック LO の VCO と LO 生成回路用の 1.3V 内部 LDO 入力電源。VCLKVCO_1P3 は電源ノイズに 敏感です。
G7	Input	VCONV_1P8	Tx1とTx2のDACおよびRx1とRx2のADC用1.8V電源。
G8	Input	VAGPIO_1P8	補助 DAC、補助 ADC、AGPIO 信号用 1.8V 電源。
G10	Input	VAUXVCO_1P3	補助 LO の VCO と LO 生成回路用の 1.3V 内部 LDO 入力電源。VAUXVCO_1P3 は電源ノイズに敏感 です。
G12	Input	VTX1LO_1P3	Tx1 LOのパッファ、アップコンバータ、LO 遅延用 1.3V 内部 LDO 入力電源。内部 LDO レギュレー タを使用しない場合は、1.0V 電源を VTX1LO_IP3 に接続します。VTX1LO_IP3 は電源ノイズに敏感 です。
G14, H14	Output	TX1+, TX1-	トランスミッタ・チャンネル 1 の差動出力。使用しない場合、TX1+および TX1-は接続しないでくだ さい。
H2	Input	VANA2_1P8	Rx2 ミキサー、Rx2 TIA、Tx2 LPF、内部リファレンス用 1.8V 電源。
Н3	Output	VTX2LO_1P0	Tx2 LO のバッファ、アップコンバータ、LO 遅延用 1.0V 内部電源ノード。通常動作では、 VTX2LO_1P0 には何も接続しません。
H4	Input	AUXADC_3	補助 ADC 入力マルチプレクサへの入力 3。使用しない場合、AUXADC_3 は接続しないでください。
Н5	Output	VCLKVCO_1P0	クロック LO の VCO と LO 生成回路用 1.0V 内部電源ノード。4.7μF のコンデンサを使用して VCLKVCO_1P0 をバイパスします。
H7	Output	VCONV_1P0	レシーバーADC およびトランスミッタ DAC 用 1.0V 内部電源ノード。4.7µF のコンデンサを使用して VCONV_1P0 をバイパスします。
Н8	Input	VCONV_1P3	レシーバーADC およびトランスミッタ DAC 用 1.3V 内部 LDO 入力電源。内部 LDO レギュレータを 使用しない場合は、1.0V 電源を VCONV_IP3 に接続します。VCONV_IP3 は電源ノイズに敏感で す。
H10	Output	VAUXVCO_1P0	補助 LO の VCO と LO 生成回路用 1.0V 内部電源ノード。4.7μF のコンデンサを使用して VAUXVCO_IPO をバイバスします。
H11	Input	AUXADC_0	補助 ADC 入力マルチプレクサへの入力 0。使用しない場合、AUXADC_0 は接続しないでください。
H12	Output	VTX1LO_1P0	Tx1 LO のパッファ、アップコンバータ、LO 遅延用 1.0V 内部電源。通常動作では、VTX1LO_1P0 に は何も接続しません。
H13	Input	VANA1_1P8	Rx1 ミキサー、Rx1 TIA、Tx1 LPF、水晶発振器、DEV_CLK 回路、内部リファレンス用 1.8V 電源。
K1	Input	SPI_CLK	シリアル・データ・バスのクロック入力。
K2	Input and Output	SPI_DIO	4線式モードのシリアル・データ入力または3線式モードの入出力。
K3	Input	RX2_EN	Rx2のイネーブル入力。使用しない場合、RX2_EN は接続しないでください。
K4	Input	VSSA/TESTCK+	通常動作には VSSA/TESTCK+を VSSA に接続します。
K5	Input	VSSA/TESTCK-	通常動作には VSSA/TESTCK-を VSSA に接続します。
K6 to K11, L4 to L6, L9 to L11	Input and Output	DGPIO_xx	デジタル GPIO。VDIGIO_1P8は DGPIO_xx に 1.8V を供給します。ピン位置と DGPIO_xx 信号名の対応については、表 18 を参照してください。使用しない場合、DGPIO_xx は接続しないでください。
K12	Input	RX1_EN	Rxl のイネーブル入力。使用しない場合、RX1_EN は接続しないでください。
K13	Input	RESETB	アクティブ・ロー・チップ・リセット。
K14	Output	GP_INT	汎用デジタル割込み出力信号。使用しない場合、GP_INTは接続しないでください。
LI	Input	SPI_EN	アクティブ・ローのシリアル・データ・バスのチップ・セレクト。
L2	Output	SPI_DO	シリアル・データ出力。SPI 3 線式モードで使用しない場合、SPI_DO は接続しないでください。
L3	Input	TX2_EN	トランスミッタ・チャンネル 2 のイネーブル入力。使用しない場合、TX2_EN は接続しないでください。
L7, L8	Input	VDIG_1P0	1.0V デジタル・コア。ピン L7 とピン L8 は結合してください。VDIG_1P0 ピンを別の電源ドメイン に接続するには、幅の広いパターンを使用します。リザーバ・コンデンサをチップの近くに配置して ください。
L12	Input	TX1_EN	トランスミッタ・チャンネル 1 のイネーブル入力。使用しない場合、TX1_EN は接続しないでください。
L13	Input	MODE	ジョイント・テスト・アクション・グループ(JTAG)バウンダリ・スキャン・ピン。詳細について は、表 19 を参照してください。使用しない場合、MODEを VSSA に接続します。
L14	Output	DEV_CLK_OUT	シングルエンド・デバイスのクロック出力。DEV_CLK_OUTは、DEV_CLK信号またはそれを分周 したものをベースバンド IC に供給します。使用しない場合、DEV_CLK_OUT は接続しないでくださ い。

	L / -2		5¥ nn
 	タイプ	記号	記明
M1	Output	RX2_IDATA_OUT-	LVDS SSI モードでは、RX2_IDATA_OUT-は、Rx2 の負側 I サンブル・データ出力または Rx2 の負側 I および Q サンプル・データ出力です。CMOS SSI モードでは、RX2_IDATA_OUT-は、Rx2 のデータ 出力 0 または Rx2 の I および Q サンプル・データ出力です。使用しない場合、RX2_IDATA_OUT-は 接続しないでください。
M2	Output	RX2_IDATA_OUT+	LVDS SSIモードでは、RX2_IDATA_OUT+は、差動ペアの正側 Rx2 I サンプル・データ出力または差 動ペアの正側 Rx2 I および Q サンプル・データ出力です。CMOS SSIモードでは、 RX2_IDATA_OUT+は Rx2 のデータ出力 1 です。使用しない場合、RX2_IDATA_OUT+は接続しない でください。
M3	Output	RX2_DCLK_OUT-	LVDS SSIモードでは、RX2_DCLK_OUT-は Rx2の負側データ・クロック出力です。CMOS SSIモードでは、RX2_DCLK_OUT-は使用しません。使用しない場合、RX2_DCLK_OUT-は接続しないでください。
M4	Output	RX2_DCLK_OUT+	LVDS SSIモードでは、RX2_DCLK_OUT+は Rx2の正側データ・クロック出力です。CMOS SSIモー ドでは、RX2_DCLK_OUT+は Rx2のデータ・クロック出力です。使用しない場合、 RX2_DCLK_OUT+は接続しないでください。
M5	Input and Output	DGPIO_15/TX2_ DCLK_OUT+	 デジタル GPIO 15。VDIGIO_1P8 は、DGPIO_15/TX2_DCLK_OUT+に 1.8V を供給します。 DGPIO_15/TX2_DCLK_OUT+のもう 1 つの機能は、LVDS SSI モードでリファレンス・クロック出力の正側を Tx2 のデータ・ポートに供給することです。使用しない場合、 DGPIO_15/TX2_DCLK_OUT+は接続しないでください。
M6	Input and Output	DGPIO_14/TX2_ DCLK_OUT-	デジタル GPIO 14。VDIGIO_1P8 は、DGPIO_14/TX2_DCLK_OUT-に 1.8V を供給します。 DGPIO_14/TX2_DCLK_OUT-のもう 1 つの機能は、LVDS SSI モードでリファレンス・クロック出力 の負側を Tx2 のデータ・ポートに供給することです。使用しない場合、 DGPIO_14/TX2_DCLK_OUT-は接続しないでください。
M7	Input	VDIGIO_1P8	データ・ポート・インターフェース(CMOS SSIおよび LVDS SSIモード)、SPI 信号、制御入出力 信号、DGPIO インターフェース用 1.8V 電源入力。
M8	Output	VDIG_0P9	デジタル回路用 1.0V 内部電源ノード。4.7μF のコンデンサを使用して VDIG_0P9 をバイパスします。
М9	Input and Output	DGPIO_12/TX1_ DCLK_OUT-	デジタル GPIO 12。VDIGIO_1P8 は、DGPIO_12/TX1_DCLK_OUT-に 1.8V を供給します。 DGPIO_12/TX1_DCLK_OUT-のもう 1 つの機能は、LVDS SSI モードで負側リファレンス・クロック 出力を Tx1 データ・ポートに供給することです。使用しない場合、DGPIO_12/TX1_DCLK_OUT-は 接続しないでください。
M10	Input and Output	DGPIO_13/TX1 DCLK_OUT+	デジタル GPIO 13。VDIGIO_1P8 は、DGPIO_13/TX1_DCLK_OUT+に 1.8V を供給します。 DGPIO_13/TX1_DCLK_OUT+のもう 1 つの機能は、LVDS SSI モードで正側リファレンス・クロック 出力を Tx1 データ・ポートに供給することです。使用しない場合、DGPIO_13/TX1_DCLK_OUT+は 接続しないでください。
M11	Output	RX1_DCLK_OUT+	LVDS SSIモードでは、RX1_DCLK_OUT+は Rx1の正側データ・クロック出力です。CMOS SSIモー ドでは、RX1_DCLK_OUT+は Rx1のデータ・クロック出力です。使用しない場合、 RX1_DCLK_OUT+は接続しないでください。
M12	Output	RX1_DCLK_OUT-	LVDS SSIモードでは、RX1_DCLK_OUT-は RX1の負側データ・クロック出力です。CMOS SSIモー ドでは、RX1_DCLK_OUT-は使用しません。使用しない場合、RX1_DCLK_OUT-は接続しないでく ださい。
M13	Output	RX1_IDATA_OUT+	LVDS SSIモードでは、RX1_IDATA_OUT+は、Rx1の正側 I サンプル・データ出力または Rx1の正側 I および Q サンプル・データ出力です。CMOS SSIモードでは、RX1_IDATA_OUT+は Rx1のデータ 出力 1 です。
M14	Output	RX1_IDATA_OUT-	LVDS SSIモードでは、RX1_IDATA_OUT-は、Rx1の負側 I サンプル・データ出力または Rx1の負側 I および Q サンプル・データ出力です。CMOS SSIモードでは、RX1_IDATA_OUT-は、Rx1のデータ 出力 0 または Rx1の I および Q サンプル・データ出力です。
N1	Output	RX2_STROBE_OUT-	LVDS SSIモードでは、RX2_STROBE_OUT-は Rx2の負側ストローブ出力です。CMOS SSIモードでは、RX2_STROBE_OUT-は使用しません。使用しない場合、RX2_STROBE_OUT-は接続しないでください。
N2	Output	RX2_STROBE_OUT+	LVDS SSIモードでは、RX2_STROBE_OUT+は Rx2の正側ストローブ出力です。CMOS SSIモードでは、RX2_STROBE_OUT+は Rx2のストローブ出力です。使用しない場合、RX2_STROBE_OUT+は接続しないでください。
N3	Output	RX2_QDATA_OUT-	LVDS SSIモードでは、RX2_QDATA_OUT-は Rx2 の正側 Q サンプル・データ出力です。CMOS SSI モードでは、RX2_QDATA_OUT-は Rx2 のデータ出力 2 です。使用しない場合、 RX2_QDATA_OUT-は接続しないでください。
N4	Output	RX2_QDATA_OUT+	LVDS SSIモードでは、RX2_QDATA_OUT+は Rx2 の正側 Q サンプル・データ出力です。CMOS SSI モードでは、RX2_QDATA_OUT+は Rx2 のデータ出力 3 です。使用しない場合、 RX2_QDATA_OUT+は接続しないでください。
N5	Input	TX2_DCLK_IN+	LVDS SSIモードでは、TX2_DCLK_IN+はTx2の正側データ・クロック入力です。CMOS SSIモード では、TX2_DCLK_IN+はTx2のデータ・クロック入力です。使用しない場合、TX2_DCLK_IN+は接 続しないでください。
N6	Input	TX2_DCLK_IN-	LVDS SSIモードでは、TX2_DCLK_IN-はTx2の負側データ・クロック入力です。CMOS SSIモード では、TX2_DCLK_IN-は使用しません。使用しない場合、TX2_DCLK_IN-は接続しないでくださ い。
N7, N8, P1, P14	Input	VSSD	デジタル電源電圧 (V _{SSD})。
N9	Input	TX1_DCLK_IN-	LVDS SSIモードでは、TX1_DCLK_IN-は Tx1の負側データ・クロック入力です。CMOS SSIモードでは、TX1_DCLK_IN-は使用しません。使用しない場合、TX1_DCLK_IN-は接続しないでください。
N10	Input	TX1_DCLK_IN+	LVDS SSIモードでは、TX1_DCLK_IN+はTx1の正側データ・クロック入力です。CMOS SSIモード では、TX1_DCLK_IN+はTx1のデータ・クロック入力です。使用しない場合、TX1_DCLK_IN+は接 続しないでください。
N11	Output	RX1_QDATA_OUT+	LVDS SSIモードでは、RX1_QDATA_OUT+は Rx1 の正側 Q サンプル・データ出力です。CMOS SSI モードでは、RX1_QDATA_OUT+は Rx1 のデータ出力 3 です。使用しない場合、 RX1_QDATA_OUT+は接続しないでください。

ピン番号	タイプ	記号	説明
N12	Output	RX1_QDATA_OUT-	LVDS SSIモードでは、RX1_QDATA_OUT-は Rx1の正側 Q サンブル・データ出力です。CMOS SSI モードでは、RX1_QDATA_OUT-は Rx1のデータ出力 2 です。使用しない場合、 RX1_QDATA_OUT-は接続しないでください。
N13	Output	RX1_STROBE_OUT+	LVDS SSIモードでは、RX1_STROBE_OUT+は Rx1の正側ストローブ出力です。CMOS SSIモードでは、RX1_STROBE_OUT+は Rx1のストローブ出力です。使用しない場合、RX1_STROBE_OUT+は接続しないでください。
N14	Output	RX1_STROBE_OUT-	LVDS SSIモードでは、RX1_STROBE_OUT-は Rx1 の負側ストローブ出力です。CMOS SSIモードでは、RX1_STROBE_OUT-は使用しません。使用しない場合、RX1_STROBE_OUT-は接続しないでください。
P2	Input	TX2_STROBE_IN+	LVDS SSIモードでは、TX2_STROBE_IN+は Tx2 の正側ストロープ入力です。CMOS SSIモードでは、TX2_STROBE_IN+は Tx2 のストロープ入力です。使用しない場合、TX2_STROBE_IN+は接続しないでください。
P3	Input and Output	TX2_STROBE_IN-	LVDS SSIモードでは、TX2_STROBE_IN-は Tx2 の負側ストロープ入力です。CMOS SSIモードでは、TX2_STROBE_IN-は Tx2 のリファレンス・データ・クロック出力です。使用しない場合、TX2_STROBE_IN-は接続しないでください。
P4	Input	TX2_QDATA_IN-	LVDS SSIモードでは、TX2_QDATA_IN-は Tx2 の負側 Q サンプル・データ入力です。CMOS SSIモ ードでは、TX2_QDATA_IN-は Tx2 のデータ入力 2 です。使用しない場合、TX2_QDATA_IN-は接続 しないでください。
Ρ5	Input	TX2_QDATA_IN+	LVDS SSIモードでは、TX2_QDATA_IN+は Tx2の正側 Q サンプル・データ入力です。CMOS SSIモ ードでは、TX2_QDATA_IN+は Tx2のデータ入力 3 です。使用しない場合、TX2_QDATA_IN+は接続 しないでください。
Р6	Input	TX2_IDATA_IN+	LVDS SSIモードでは、TX2_IDATA_IN+は、正側の Tx2 I サンプル・データ出力または正側の Tx2 I および Q サンプル・データ出力です。CMOS SSIモードでは、TX2_IDATA_IN+は Tx2 のデータ入力 1 です。使用しない場合、TX2_IDATA_IN+は接続しないでください。
Ρ7	Input	TX2_IDATA_IN-	LVDS SSIモードでは、TX2_IDATA_IN-は、Tx2 の負側 I サンプル・データ出力または Tx2 の負側 I および Q サンプル・データ出力です。CMOS SSIモードでは、TX2_IDATA_IN-は、Tx2 のデータ入力 0 または Tx2 の I および Q サンプル・データ入力です。使用しない場合、TX2_IDATA_IN-は接続しないでください。
P8	Input	TX1_IDATA_IN-	LVDS SSIモードでは、TX1_IDATA_IN-は、負側のTx1Iサンプル・データ出力または負側のTx1I およびQサンプル・データ出力です。CMOS SSIモードでは、TX1_IDATA_IN-は、Tx1のデータ入 力0またはTx1のIおよびQサンプル・データ入力です。使用しない場合、TX1_IDATA_IN-は接続 しないでください。
P9	Input	TX1_IDATA_IN+	LVDS SSIモードでは、TX1_IDATA_IN+は、正側の Tx1 I サンプル・データ出力または正側の Tx1 I および Q サンプル・データ出力です。CMOS SSIモードでは、TX1_IDATA_IN+は Tx1 のデータ入力 1 です。使用しない場合、TX1_IDATA_IN+は接続しないでください。
P10	Input	TX1_QDATA_IN+	LVDS SSIモードでは、TX1_QDATA_IN+は Tx1の正側 Q サンプル・データ入力です。CMOS SSIモ ードでは、TX1_QDATA_IN+は Tx1のデータ入力 3 です。使用しない場合、TX1_QDATA_IN+は接続 しないでください。
P11	Input	TX1_QDATA_IN-	LVDS SSIモードでは、TX1_QDATA_IN-はTx1の負側 Q サンプル・データ入力です。CMOS SSIモ ードでは、TX1_QDATA_IN-はTx1のデータ入力 2 です。使用しない場合、TX1_QDATA_IN-は接続 しないでください。
P12	Input and Output	TX1_STROBE_IN-	LVDS SSIモードでは、TX1_STROBE_IN-はTx1の負側ストローブ入力です。CMOS SSIモードでは、TX1_STROBE_IN-はTx1のリファレンス・データ・クロック出力です。使用しない場合、TX1_STROBE_IN-は接続しないでください。
P13	Input	TX1_STROBE_IN+	LVDS SSIモードでは、TX1_STROBE_IN+はTx1の正側ストローブ入力です。CMOS SSIモードでは、TX1_STROBE_IN+はTx1のストローブ入力です。使用しない場合、TX1_STROBE_IN+は接続しないでください。

ADRV9002は、12kHz~40MHzの信号帯域幅をサポートしています。1MHzの帯域幅が、狭帯域プロファイルと広帯域プロファイルを区別する境界です。信号帯域幅が1MHz未満の場合は、狭帯域プロファイルとみなされます。そうでない場合、広帯域プロファイルとみなされます。そうでない場合、広帯域プロファイルとみなされます。

広帯域

デバイス構成プロファイル:レシーバー=40MHzの帯域幅、I/Q レート=61.44MHz、トランスミッタ=40MHzの帯域幅、I/Q レート= 61.44MHz、デバイス・クロック=38.4MHz、すべての測定で内部 LO を使用。測定は公称電源電圧で行われています。特に指定のない限 り、すべての RF 仕様は測定に基づくもので、これには PCB とマッチング回路の損失が含まれています。仕様はデバイスの全寿命にわた って適用されます。

50MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべての LO 周波数は 50MHz に設定されています。

図 4. レシーバーの絶対ゲイン(複素数)とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能、 P_{OUT} = -9.6dBFS

図 6. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図8. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 9. レシーバーのノイズ指数と LO 周波数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 10. レシーバーのイメージ除去と LO 周波数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能、 初期化キャリブレーションおよびハードウェア・トラッキング・ キャリブレーションのみ

図 11. レシーバーのイメージ除去とLO 周波数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力、 初期化キャリブレーションおよびハードウェア・トラッキング・ キャリブレーションのみ

図 12. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 13. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 14. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 15. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 16. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 17. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 18. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 19. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 20. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 21. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 22.1 レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 23. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 24. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 25. レシーバーおよびトランスミッタのリターン損失と周波数 の関係(LO = 30MHz~3GHz)

データシート

図 26. トランスミッタの絶対電力とトランスミッタ減衰コードの 関係、ベースバンド周波数 = 18MHz、バックオフ = 0.2dBFS

図 27. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 28. トランスミッタのイメージ除去とベースバンド周波数の 関係、トラッキング・キャリブレーション・オンと トラッキング・キャリブレーション・オフの比較、 トランスミッタ減衰コード=0

図 29. トランスミッタのイメージ除去とベースバンド周波数の 関係、トラッキング・キャリブレーション・オンと トラッキング・キャリブレーション・オフの比較、 トランスミッタ減衰コード = 20

図 30. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 31. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 32. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 33. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 34. トランスミッタの 2 次相互変調歪み(IMD2) と ベースバンド周波数の関係、トランスミッタ減衰コード = 0、 F1 = ベースバンド周波数、F2 = ベースバンド周波数 + 1MHz

図 35. トランスミッタの 3 次相互変調歪み(IMD3) と ベースバンド周波数の関係、トランスミッタ減衰コード = 0、 F1 = ベースバンド周波数、F2 = ベースバンド周波数 + 1MHz

図 36. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 5.6MHz、 トランスミッタ・チャンネル = Ch1

470MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべてのLO周波数は470MHzに設定されています。

図 39. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 40. レシーバーの 2 次高調波歪みとゲイン指数の関係、ベース バンド周波数 = 5.6MHz、ADC = 高性能

図 41. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 42. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 43. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 44. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 45. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 46. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 47. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 48. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

データシート

図 49. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 50. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 51. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 52. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 53. トランスミッタの絶対電力とトランスミッタ減衰コードの 関係、ベースバンド周波数 = 18MHz、バックオフ = 0.2dBFS

図 54. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 56. トランスミッタのイメージ除去とベースバンド周波数の 関係、トラッキング・キャリブレーション・オンと トラッキング・キャリブレーション・オフの比較、 トランスミッタ減衰コード = 20

図 57. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 58. ランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 59. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 60. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 61. トランスミッタの IMD2 とベースバンド周波数の関係、 トランスミッタ減衰コード = 0、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz

図 62. トランスミッタの IMD3 とベースバンド周波数の関係、 トランスミッタ減衰コード = 0、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz

図 63. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 5.6MHz、 トランスミッタ・チャンネル = Ch1
900MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべての LO 周波数は 900MHz に設定されています。

図 64. レシーバーの絶対ゲイン(複素数)とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能、 P_{OUT} = -9.6dBFS

図 65. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 66. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 67. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 68. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 69. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 70. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 71. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 72. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 73. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 74. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 75. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 76. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 77. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 78. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 79. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 80. トランスミッタの絶対電力とトランスミッタ減衰コードの 関係、ベースバンド周波数 = 18MHz、バックオフ = 0.2dBFS

図 81. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 83. トランスミッタのイメージ除去とベースバンド周波数の 関係、トラッキング・キャリブレーション・オンと トラッキング・キャリブレーション・オフの比較、 トランスミッタ減衰コード = 20

図 84. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 85. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 86. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 87. ランスミッタの LO リーク電力と減衰コードの関係、 ベースバンド周波数 = 18MHz、バックオフ = 6dBFS、 初期化キャリブレーションのみ

図 88. トランスミッタの IMD2 とベースバンド周波数の関係、 トランスミッタ減衰コード = 0、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz

図 89. トランスミッタの IMD3 とベースバンド周波数の関係、 トランスミッタ減衰コード = 0、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz

図 90. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 5.6MHz、 トランスミッタ・チャンネル = Ch1

2400MHz LO

特に指定のない限り、すべての LO 周波数は 2400MHz に設定されています。

図 92. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 93. レシーハーのアイ ス指数とケイ フ指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 94. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 95. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 96. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 97. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 98. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 99. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 100. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 101. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 102. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 103. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 104. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 105. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 106. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 107. トランスミッタの絶対電力とトランスミッタ減衰コードの関係、ベースバンド周波数 = 18MHz、バックオフ = 0.2dBFS

図 108. トランスミッタの減衰デルタ(誤差)と トランスミッタ減衰コードの関係、 ベースバンド周波数 = 18MHz、バックオフ = 0.2dBFS

図 110. トランスミッタのイメージ除去とベースバンド周波数の 関係、トラッキング・キャリブレーション・オンと トラッキング・キャリブレーション・オフの比較、 トランスミッタ減衰コード = 20

図 111. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 112. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 113. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 114. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 115. トランスミッタの IMD2 とベースバンド周波数の関係、 トランスミッタ減衰コード = 0、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz

図 116. トランスミッタの IMD3 とベースバンド周波数の関係、 トランスミッタ減衰コード = 0、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz

図 117. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 5.6MHz、 トランスミッタ・チャンネル = Ch1

3500MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべてのLO周波数は3500MHzに設定されています。

図 119. レシーバーの絶対ゲイン(複素数)とLO 周波数の 関係、ベースバンド周波数 = 5.6MHz、ADC = 高性能、 POUT = -9.6dBFS

図 120. レジーハーのアイス指数とゲイン指数の関係 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 121. レシーバーのノイズ指数とLO 周波数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 122. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 123. レシーバーのノイズ指数とLO 周波数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

データシート

図 124. レシーバーのイメージ除去と LO 周波数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能、 初期化キャリブレーションおよびハードウェア・トラッキング・ キャリブレーションのみ

図 125. レシーバーのイメージ除去とLO 周波数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力、 初期化キャリブレーションおよびハードウェア・トラッキング・ キャリブレーションのみ

図 126. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 127. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 128. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 129. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 130. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 131. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 132. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 133. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 134. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 135. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 136. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 137. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 138. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 139. レシーバーおよびトランスミッタのリターン損失と 周波数の関係(LO = 3GHz~6GHz)

図 140. トランスミッタの絶対電力とトランスミッタ減衰コードの関係、ベースバンド周波数 = 18MHz、バックオフ = 0.2dBFS

図 141. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

データシート

代表的な性能特性

図 142. トランスミッタのイメージ除去とベースバンド周波数の 関係、トラッキング・キャリブレーション・オンと トラッキング・キャリブレーション・オフの比較、 トランスミッタ減衰コード=0

図 143. トランスミッタのイメージ除去とベースバンド周波数の 関係、トラッキング・キャリブレーション・オンと トラッキング・キャリブレーション・オフの比較、 トランスミッタ減衰コード = 20

図 144. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 145. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 146. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 147. ランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 148. トランスミッタの IMD2 とベースバンド周波数の関係、 トランスミッタ減衰コード = 0、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz

図 149. トランスミッタの IMD3 とベースバンド周波数の関係、 トランスミッタ減衰コード=0、F1=ベースバンド周波数、 F2=ベースバンド周波数+1MHz

図 150. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 5.6MHz、 トランスミッタ・チャンネル = Ch1

5800MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべてのLO周波数は5800MHzに設定されています。

図 152. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 153. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 154. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 155. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 156 レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 157. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 158. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 159. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 160. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 低消費電力

図 161. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 162. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 5.6MHz、ADC = 高性能

図 163. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 164. レシーバーの入力 IP3 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 165. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 高性能、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 166. レシーバーの入力 IP2 とベースバンド周波数の関係、 ADC = 低消費電力、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz、ゲイン指数 = 255

図 167. トランスミッタの絶対電力とトランスミッタ減衰コードの関係、ベースバンド周波数 = 18MHz、バックオフ = 0.2dBFS

図 168. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 169. トランスミッタのイメージ除去とベースバンド周波数の 関係、トラッキング・キャリブレーション・オンと トラッキング・キャリブレーション・オフの比較、 トランスミッタ減衰コード=0

図 170. トランスミッタのイメージ除去とベースバンド周波数の 関係、トラッキング・キャリブレーション・オンと トラッキング・キャリブレーション・オフの比較、 トランスミッタ減衰コード = 20

図 171. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 172. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 173. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 0.2dBFS

図 174. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 18MHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 175. トランスミッタの IMD2 とベースバンド周波数の関係、 トランスミッタ減衰コード = 0、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz

図 176. トランスミッタの IMD3 とベースバンド周波数の関係、 トランスミッタ減衰コード = 0、F1 = ベースバンド周波数、 F2 = ベースバンド周波数 + 1MHz

図 177. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 5.6MHz、 トランスミッタ・チャンネル = Ch1

狭帯域

デバイス構成プロファイル:レシーバー=25kHz帯域幅、レシーバーIF=490kHz、I/Qレート=144kHz、トランスミッタ=25kHz帯域 幅、I/Qレート=144kHz、デバイス・クロック=38.4MHz、すべての測定で内部LOを使用。測定は公称電源電圧で行われています。特に 指定のない限り、すべてのRF仕様は測定に基づくもので、これにはPCBとマッチング回路の損失が含まれています。仕様はデバイスの 全寿命にわたって適用されます。

30MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべての LO 周波数は 30MHz に設定しています。

図 179. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 181. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 182. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 183. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 184. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 185. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 186. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 187. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

データシート

図 188. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 189. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 190. トランスミッタの絶対電力とトランスミッタ減衰コードの関係、ベースバンド周波数 = 2.1kHz、バックオフ = 0.2dBFS

図 191. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 192. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 193. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 194. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 195. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 196. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 2.1kHz、 トランスミッタ・チャンネル = Ch1

470MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべてのLO周波数は470MHzに設定されています。

図 198. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 199. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力 354

図 200. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 201. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 202. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 203. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 204. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 205. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 206. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 207. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 208. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 209. トランスミッタの絶対電力とトランスミッタ減衰コードの関係、ベースバンド周波数 = 2.1kHz、バックオフ = 0.2dBFS

図 210. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 211. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 212. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 213. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 214. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 215. ランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 2.1kHz、 トランスミッタ・チャンネル = Ch1

900MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべての LO 周波数は 900MHz に設定されています。

図 218. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 219. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 220. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 221. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

データシート

図 222. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 223. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 224. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 225. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 226. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 227. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 228. トランスミッタの絶対電力とトランスミッタ減衰コードの関係、ベースバンド周波数 = 2.1kHz、バックオフ = 0.2dBFS

図 229. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 230. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 231. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 232. トランスミッタの HD2 とトランスミッタ減衰コードの 関係、ベースバンド周波数 = 2.1kHz、バックオフ = 0.2dBFS

図 233. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 234. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 2.1kHz、 トランスミッタ・チャンネル = Ch1

2400MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべてのLO周波数は2400MHzに設定されています。

図 238. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 239. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 240. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 241. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 242. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 243. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 244. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 245. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 246. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

データシート

図 247. トランスミッタの絶対電力とトランスミッタ減衰コードの関係、ベースバンド周波数 = 2.1kHz、バックオフ = 0.2dBFS

図 248. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 249. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 250. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 251. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 252. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 253. ランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 2.1kHz、 トランスミッタ・チャンネル = Ch1

3500MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべてのLO周波数は3500MHzに設定されています。

図 256. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 257. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 258. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 259. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 261. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 262. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 263. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 264. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 265. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

データシート

図 266. トランスミッタの絶対電力とトランスミッタ減衰コードの関係、ベースバンド周波数 = 2.1kHz、バックオフ = 0.2dBFS

図 267. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 268. トランスミッタのイメージ除去とトランスミッタ減衰コ ードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 269. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 270. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 271. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 272. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 2.1kHz、 トランスミッタ・チャンネル = Ch1

5800MHz LO

温度設定はダイ温度を表します。特に指定のない限り、すべてのLO周波数は5800MHzに設定されています。

図 275. レシーバーのノイズ指数とゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 276. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 277. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 278. レシーバーの 2 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 279. レシーバーの 2 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 280. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

図 281. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 高性能

図 282. レシーバーの 3 次高調波歪みとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 低消費電力

図 283. レシーバーの 3 次高調波歪みとベースバンド周波数の 関係、ゲイン指数 = 255、ADC = 低消費電力

図 284. レシーバーの DC オフセットとゲイン指数の関係、 ベースバンド周波数 = 2.1kHz、ADC = 高性能

データシート

図 285. トランスミッタの絶対電力とトランスミッタ減衰コードの関係、ベースバンド周波数 = 2.1kHz、バックオフ = 0.2dBFS

図 286. トランスミッタの減衰デルタ(誤差)とトランスミッタ 減衰コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 287. トランスミッタのイメージ除去とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS、初期化キャリブレーションのみ

図 288. トランスミッタの 3 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 289. トランスミッタの 2 次高調波歪みとトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 0.2dBFS

図 290. トランスミッタの LO リーク電力とトランスミッタ減衰 コードの関係、ベースバンド周波数 = 2.1kHz、 バックオフ = 6dBFS、初期化キャリブレーションのみ

図 291. トランスミッタの NSD と LO からの周波数オフセットの 関係、ベースバンド周波数 = 2.1kHz、 トランスミッタ・チャンネル = Ch1

位相ノイズ

PLL 帯域幅 = 300kHz。DEV_CLK = 38.4MHz。IQ モードでの狭帯域プロファイルまたは広帯域プロファイル。リファレンス・クロックには、高性能、低ノイズの Wenzel タイプの発振器を使用しています。

データシート

ADRV9002

動作原理

ADRV9002 は高集積の RF トランシーバーで、幅広いアプリケー ションに合わせて構成することができます。このデバイスは送 信機能と受信機能を1つのデバイスで提供するために必要な RF ブロック、ミックスドシグナル・ブロック、およびデジタル・ ブロックをすべて内蔵しています。プログラマビリティに優れ ているため、2つのレシーバー・チャンネルと2つのトランスミ ッタ・チャンネルを、モバイル無線規格やセルラ規格を満たす TDD システムや FDD システムで使用できます。

ADRV9002 には、LVDS および CMOS 同期シリアル・インター フェース (CSSI) を含むシリアル・インターフェース・リンク があります。レシーバー・チャンネルとトランスミッタ・チャ ンネルはどちらも、フィールド・プログラマブル・ゲート・ア レイ (FPGA) やその他の集積化ベースバンド・ソリューション に対し、ピン本数が少なく信頼性の高いインターフェースを提 供します。

ADRV9002 は、DC オフセット、LO リーク、QEC に対し、内蔵 のマイクロコントローラ・コアを使用して自己キャリブレーシ ョンを実行できるため、様々な温度や入力信号条件の下で高い 性能レベルを維持できます。ファームウェアがデバイスに付属 しているため、ユーザがかかわることなくすべてのキャリブレ ーションをスケジュール化できます。

トランスミッタ

ADRV9002 はダイレクト・コンバージョン・トランスミッタ・ アーキテクチャを採用しています。このアーキテクチャは、ダ イレクト・コンバージョン・システムを実装するために必要な すべてのデジタル処理、ミックスド・シグナル、PLL、RF ブロ ックを提供する、2 つの個別に制御される同じ形式のチャンネ ルで構成されています。トランスミッタのデータ・パスの概要 については、図 298 を参照してください。

ADRV9002 では、完全にプログラマブルな 128 タップの FIR (有限インパルス応答) もオプションで使用できます。FIR 出力は、 DAC に達する前に一連のインターポレーション・フィルタに送られます。これらのフィルタでは、追加のフィルタリングとデ ータ・レート・インターポレーションが行われます。各 DAC の サンプル・レートは調整可能で、直線性はフルスケールまで維持されます。

DAC 出力は、バースバンドのアナログ信号を生成します。I 信 号と Q 信号にはまず、サンプリング・アーチファクトを除去す るためのフィルタがかけられ、その後にアップコンバージョ ン・ミキサーへ送られます。ミキサー段では、I 信号と Q 信号が 再び結合され、キャリア周波数に変調されて出力段に送られま す。各トランスミッタ・チェーンは、設計者が S/N 比 (SNR) を最適化する際の助けとなるように、高分解能の広い減衰調整 範囲を備えています。

レシーバー

図 299 に、ADRV9002 レシーバーの簡略化したブロック図を示 します。これは、完全統合型のダイレクト・コンバージョン、 低 IF レシーバー・シグナル・チェーンです。レシーバー・サブ システムには、ゲイン制御のための抵抗性入力ネットワークと それに続く電流モード・パッシブ・ミキサーがあります。ミキ サーの出力電流は、トランスインピーダンス・アンプによって 電圧に変換され、その後デジタル化されます。また、高性能Σ-Δ ADC と低消費電力 ADC の、2 組の ADC があります。必要な フィルタリングとデシメーションを行うデジタル・ベースバン ドが、これらの ADC の後に続きます。

1 つのリファレンス設計で異なるバンドに適応できるよう、各 レシーバーには2つの RF 入力があります。ミキサーのアーキテ クチャは、直線的で、本質的に広帯域幅です。そのため、イン ピーダンス・マッチングが容易です。レシーバー入力の差動入 力インピーダンスは、100Ωです。

ゲイン制御を行うために、プログラムされたゲイン指数マップ が実装されています。このゲイン・マップは、様々なレシーバ ー・ブロック内に減衰を配分し、各パワー・レベルで最適な性 能を実現します。ゲインの範囲は 34dB です。自動および手動の どちらのゲイン制御モードでも、追加のサポートが利用できま す。

レシーバーの LPF は、アンチエイリアス・フィルタリングを行 い帯域外ブロッカの機能を向上するよう設定できます。 ADRV9002 は、広帯域アーキテクチャのトランシーバーで、 ADC の高ダイナミック・レンジを基に、信号と干渉を同時に受 信します。レシーバーの LPF によって提供されるフィルタリン グにより、ADC のエイリアス・イメージは減衰されます。レシ ーバーの LPF 特性は平坦で、クロースイン・ブロッカの除去を 目的とするものではありません。ベースバンド・フィルタは 5MHz~50MHz のベースバンド帯域幅をサポートしています。 レシーバーには 2 つの ADC ペアがあります。1 つのペアは高性 能 Σ - Δ ADC からなり、干渉許容度が最大です。もう一方のペ アは、消費電力が極めて低いADC で構成されています。ADCペ アを追加すると、消費電力と性能の間で兼ね合いを取ることが できます。

ADC 出力は、一連のデシメーション・フィルタと、追加的なデ シメーションが設定された完全にプログラマブルな 128 タップ の FIR フィルタによって、更にコンディショニングすることが できます。各デジタル・フィルタ・ブロックのサンプル・レー トは、それぞれのデシメーション係数の変更に合わせて自動調 整され、必要な出力データ・レートを生成します。

低位相ノイズが要求される規格に対しては、ADRV9002 は低 IF モードで動作できます。ADRV9002 は、IF ダウンコンバージョ ン・スキームと同様に、キャリアから信号オフセットを受け取 ります。アナログ・レシーバー・パスに続くデジタル NCO とミ キサーは、IF 信号をベースバンドにダウンコンバージョンでき ます。信号をベースバンドにダウンコンバージョンすることで、 データ・バスのサンプル・レートを下げることができます。 ADRV9002 には、ハイサイドやローサイドのインジェクション について、いかなる前提もありません。

モニタ・モード

ADRV9002 レシーバー・シグナル・チェーンは、デューティ・ サイクル検出およびスリープの方法で、無線チャンネルの信号 レベルをモニタするように設定できます。モニタ・モードを使 用すると、デジタル・ベースバンド・プロセッサは、 ADRV9002 が信号を検出するまでパワーダウンできます。モニ タ・モードにより、システム全体の電力の節約ができます。検 出およびスリープ・モードのタイミングは完全にプログラマブ ルです。あるいは、ADRV9002 はモニタ・モードの間、ベース バンド・プロセッサで完全に制御することも可能です。

図 299. レシーバー・アーキテクチャ

DPD

ADRV9002 には、完全に統合化された DPD 機能があり、パワ ー・アンプの応答の非直線性を補償するためにデジタル波形を 変形できます。これによって、トランスミッタ・システムのパ ワー・アンプの出力を直線化できます。内部 DPD ブロックは、 狭帯域信号および広帯域信号の両方に対し最適化されています。 DPD のアクチュエータと係数計算エンジンは、どちらも内蔵さ れています。この機能は、レシーバー・チャンネルを使用して パワー・アンプの出力をモニタし、出力を直線化するために適 切なプリディストーションを計算します。組み込まれた DPD は、 システムがパワー・アンプを飽和に近い状態で駆動できるよう にして、直線性を維持しながら、より高い効率のパワー・アン プを実現することを可能にします。

オブザベーション・レシーバーとしてのレシーバー

つのレシーバーのみを使用する FDD タイプのアプリケーション、または、トランスミッタ・タイム・スロットの間の TDD タイプのアプリケーションでは、使用されていないレシーバー入力をトランスミッタのオブザベーション(監視)を行うために使用できます。オブザベーション・レシーバーはメインのレシーバーと同様に動作します。

オブザベーション・レシーバー・チャンネルを使用する目的は、 次のとおりです。

- ▶ トランスミッタ・チャンネルをモニタし、トランスミッタの 局部発振器リーク(LOL)補正とトランスミッタ QEC を実行 する。
- ▶ パワー・アンプ出力後の信号レベルをモニタする。このデー タは、完全統合型低消費電力 DPD ブロックによって使用す ることができます。統合化された DPD は、狭帯域信号と広 帯域信号の両方に最適化されており、高効率パワー・アンプ の直線化が可能になります。
- ▶ 外部ベースバンド・プロセッサでの更なるデータ処理のため に、パワー・アンプ出力後の信号レベルをモニタする。

オブザベーション・レシーバー・パスが DPD 動作のために使用 されている場合は、DPD がサポートできるトランスミッタ信号 の最大帯域幅には制限があります。例えば、DPD オブザベーシ ョン係数が 5 倍の場合、トランスミッタ信号の帯域幅は、DPD オブザベーション帯域幅の 1/5 に制限されます。ADRV9002 の内 部 DPD ブロックを使用する場合、内部 DPD の最大オブザベー ション帯域幅が 100MHz であるため、内部 DPD がサポートでき る最大トランスミッタ帯域幅は 20MHz となります。外部 DPDを 使用する場合は、最大 DPD オブザベーション帯域幅はトランス ミッタとオブザベーション・レシーバーの RF 帯域幅によって制 限されます。40MHz がデジタル・データ・ポートとベースバン ド・プロセッサ間で送受信可能な最大 RF 帯域幅です。つまり、 ADRV9002 に外付けされた DPD がサポートできる最大トランス ミッタ帯域幅は、8MHz となります。

クロック入力

リファレンス・クロック入力は低周波数クロックを提供し、こ こからすべての ADRV9002 クロックが抽出されます。 ADRV9002 には複数のリファレンス入力クロック・オプション があります。このデバイスのリファレンス入力クロック・ピン は、DEV_CLK_IN±というピン名になっています。 最高性能を発揮するために、リファレンス・クロックは、外部 ソースまたは外部水晶発振器から差動方式で駆動します。差動 入力クロックが提供される場合、クロック信号は10MHz~1GHz に限定された入力範囲で AC カップリングする必要があります。 ADRV9002では、クロック源として外部の水晶発振器(XTAL) を使用することもできます、対応する水晶発振器の周波数範囲 は 20MHz~80MHz です。外部水晶発振器の接続は DC カップリ ングする必要があります。

差動クロックが使用できない場合、シングルエンド、ACカップ リングの 1V p-p(最大) CMOS 信号を DEV_CLK_IN+ピンに入 力し、DEV_CLK_IN-ピンは接続しないままにします。このモ ードでの最大クロック周波数は 80MHzに制限されます。

シンセサイザ

ADRV9002 には 2 つの異なる PLL パスがあります。すなわち、 高周波数 RF パスのための RF PLL と、データ・コンバータのデ ジタルおよびサンプリング・クロックのためのベースバンド PLL です。

RF PLL

レシーバー・データ・パス用に1つの専用 PLL を備え、トラン スミッタ・データ・パス用に1つの専用 PLL を備えるのではな く、デバイスに2つの RF PLL があり、どちらの PLL もレシーバ ー、トランスミッタ、または両方のパスのソースとなることが できる、あるいはいずれのソースにもならない、という点で、 ADRV9002 の PLL 構造は独特です。この柔軟性により、 ADRV9002 は多用途性が必要とされる様々なアプリケーション に適合できます。

RF PLL は、内部 LO 信号と外部 LO 信号のどちらでも使用でき ます。内部 LO は、6.5GHz~13GHz の周波数範囲で調整可能な オンチップ VCO によって生成されます。VCO の出力は、API コ マンドによってプログラム可能なフラクショナル N PLL を介し て、外部リファレンス・クロックにフェーズ・ロックされます。 VCO の出力は、同相および直交位相の LO 信号を 30MHz~6GHz の周波数範囲で生成するよう、周波数分周器を組み合わせるこ とで調整されます。

または、外部 LO 信号を ADRV9002 の外部 LO 入力に加えて、 RF パス用に直交する LO 信号を生成することもできます。外部 LO パスを選択する場合は、入力周波数範囲は 60MHz~12GHz となります。

PLL シンセサイザは、完全に統合された VCO およびループ・フィルタを含むフラクショナル N 設計です。TDD モードでは、LO の分配パスおよびレシーバーとトランシーバーのパスは、レシーバーおよびトランシーバーのフレームに応じてオン/オフします。FDD モードでは、トランスミッタ PLL とレシーバーPLL は同時に動作できます。これらの PLL には外付け部品は不要です。RF LO 生成回路は、性能と消費電力の兼ね合いを取ることができます。

図 300. RF LO

ADRV9002 は、周波数滞留時間と遷移時間が主な相違点となっ ている様々な形態の高速周波数ホッピング(FFH)に対応しま す。RF PLL の位相ノイズと QEC および LOL アルゴリズム性能 は、減少する周波数遷移時間の関数として低下します。FFH モ ードは、パワーアップ時にプリロードされているか、ユーザに よって ADRV9002 にストリーミングされているホッピング周波 数をサポートします。FFH モードでの周波数間のホッピングは、 GPIO ピンを切り替えるか API コマンドを実行することでトリガ できます。

ベースバンド PLL

ADRV9002 には、ベースバンド PLL シンセサイザがあり、ベー スバンドとデータ・ポートに関連する全てのクロックを生成し ます。高性能ベースバンド PLL と低消費電力ベースバンド PLL 用の 2 つのオプションがあります。高性能ベースバンド PLL は、 クロック生成に関して柔軟性が高いため、より広い範囲のサン プル・レートに対応できます。低消費電力ベースバンド PLL で は、特定のサンプル・レートのサポートの点で制限があります が、消費電力は少なくなります。高性能と低消費電力のどちら のベースバンド PLL も、システムのデータ・レート条件および サンプル・レート条件に基づき自動的にプログラムされます。

SPI

ADRV9002は、SPIを使ってベースバンド・プロセッサとの通信 を行います。このインターフェースは、受信専用ポートと送信 専用ポートを持つ4線式インターフェースとして設定するか、1 つの双方向データ通信ポートを持つ3線式インターフェースと して設定することができます。このバスにより、ベースバン ド・プロセッサは、単純なアドレス・データ・シリアル・バ ス・プロトコルを使って、すべてのデバイス制御パラメータを 設定することができます。

書込みコマンドは24ビット・フォーマットを使用します。最初 のビットはバス転送の方向を設定します。次の15ビットは、デ ータを書き込むアドレスを設定します。最後の8ビットには、 特定のレジスタ・アドレスへ転送されるデータが含まれます。 読出しコマンドも同様のフォーマットを使用します。異なるの は、最初の16ビットがSPI_DIOピンで転送される点と、4線式 モードでは最後の8ビットがSPI_DOピンを介して ADRV9002 から読み出され、3線式モードでは SPI_DIOピンを介して読み 出される点です。

GPIO ピン

デジタル汎用入出力(DGPIO)

VDIGIO_1P8電源を基準とする ADRV9002の GPIO 信号は、デジ タル回路とのインターフェースを目的とし、数多くの機能に対 して設定できます。これらのピンの一部は、出力として設定さ れた場合、リアルタイム信号としてベースバンド・プロセッサ によって使用され、多数の内部設定や測定が可能となります。 この設定により、ベースバンド・プロセッサはレシーバー性能 を異なる状況でモニタできます。手動ゲイン・モード、キャリ ブレーション・フラグ、ステート・マシンの状態、および様々 なレシーバー・パラメータに使われる信号は、これらのピンで モニタすることができる出力です。更に、一部のピンは入力と して設定し、リアルタイムでのレシーバー・ゲイン設定やトラ ンスミッタ減衰設定など、様々な機能に使用することができま す。

アナログ汎用入出力(AGPIO)

AGPIO ピンは、アナログ機能を実行するシステム・ブロックと のインターフェースを目的としています。VAGPIO_1P8 電源を 基準とする AGPIO ピンは、ロー・ノイズ・アンプ(LNA)やデ ジタル・ステップ・アッテネータ(DSA)などの外付け部品に 制御信号を供給します。選択された AGPIO ピンには、代替の補 助 DAC 機能があります。ピン・マッピングの詳細については表 18 を参照してください。

補助コンバータ

補助 ADC 入力(AUXADC_x)

ADRV9002 には、4 つの専用入力ピン(AUXADC_x)に接続さ れた対応する入力を持つ、4 つの補助 ADC があります。このブ ロックは部品を追加することなくシステムの電圧をモニタでき ます。補助 ADCは、10ビットで、入力電圧範囲は0.05V~0.95V です。イネーブルすると、フリー・ランニング状態になります。 API 機能を使用すると、ADC によってラッチされた最後の値を 読み出すことができます。

補助 DAC 出力(AUXDAC_x)

ADRV9002 には、バイアス電圧、アナログ制御電圧、その他の システム機能を提供できる、4 つの同一の補助 DAC (AUXDAC_x) があります。これらの補助 DAC (AUXDAC_0 ~AUXDAC_3) は、表 18に示すように、AGPIO_xx ピンを使用 してマルチプレクスできます。補助 DAC は 12 ビットで、約 0.05V~VDDA_1P8 - 0.05V の出力電圧範囲と 10mA の電流駆動 能力があります。補助 DAC は、ADRV9002 にロードし専用の DGPIO ピンの状態に基づいてトリガできる、ランプ・アップ・ パターンとランプ・ダウン・パターンを生成できます。

JTAG バウンダリ・スキャン

ADRV9002は、JTAGバウンダリ・スキャンをサポートしていま す。JTAGインターフェース関連のデュアル機能ピンは5本あり

表 18. ピン番号と AGPIO xx の対応付けと AUXDAC x

ます。これらのピンは、表 19 に示すように、オンチップ・テス ト・アクセス・ポートへアクセスするために使用します。JTAG 機能を有効にするには、表 19 に示すように、DGPIO_8 ピン~ DGPIO_11 ピンと MODE ピンを設定します。

Pin Number	Primary Function	Alternate Function
E12	AGPIO_0	AUXDAC_0
F10	AGPIO_1	AUXDAC_1
E3	AGPIO_2	AUXDAC_2
F5	AGPIO_3	AUXDAC_3
F4	AGPIO_4	Not applicable
G4	AGPIO_5	Not applicable
G6	AGPIO_6	Not applicable
H6	AGPIO_7	Not applicable
G9	AGPIO_8	Not applicable
Н9	AGPIO_9	Not applicable
F11	AGPIO_10	Not applicable
G11	AGPIO_11	Not applicable

表 19. ピン番号と DGPIO_xx の対応付けと JTAG 機能

Pin Number	Primary Function	JTAG Function, Boundary Scan CMOS Mode	JTAG Function, Boundary Scan LVDS Mode
K6	DGPIO 0	Not applicable	Not applicable
K7	DGPIO_1	Not applicable	Not applicable
K8	DGPIO_2	Not applicable	Not applicable
K9	DGPIO_3	TDO	TDO
K10	DGPIO_4	TRST	TRST
K11	DGPIO_5	TDI	TDI
L4	DGPIO_6	TMS	TMS
L5	DGPIO_7	TCLK	TCLK
L6	DGPIO_8	User sets to 0	User sets to 1
L9	DGPIO_9	User sets to 0	User sets to 0
L10	DGPIO_10	User sets to 0	User sets to 0
L11	DGPIO_11	User sets to 0	User sets to 0
M9	DGPIO_12/TX1_DCLK_OUT-	Not applicable	Not applicable
M10	DGPIO_13/TX1_DCLK_OUT+	Not applicable	Not applicable
M6	DGPIO_14/TX2_DCLK_OUT-	Not applicable	Not applicable
M5	DGPIO_15/TX2_DCLK_OUT+	Not applicable	Not applicable
L13	MODE Pin	User sets to 1	User sets to 1

アプリケーション情報

電源シーケンス

ADRV9002 は、望ましくないパワーアップ電流を避けるために 特別なパワーアップ・シーケンスを必要とします。最適なパワ ーオン・シーケンスでは、VDD_1P0 を最初にパワーアップしま す。VDD_1P0 電源の次には、VDDA_1P3 電源と VDDA_1P8 電 源をパワーアップします。VDDA_1P0 を使用する場合、 VDDA_1P0 は、VDDA_1P3 と VDDA_1P8 がイネーブルされた後 にパワーアップします。

ユーザは、電力が安定した後 RESET をトグルしてから、設定を 行う必要があります。

デジタル・データ・インターフェース

ADRV9002 データ・インターフェースは、CMOS および LVDS の両方の電気的インターフェースをサポートします。CSSI は、 狭い RF 信号帯域幅を対象とし、LVDS 同期シリアル・インター フェース (LSSI) は ADRV9002 の全 RF 帯域幅に対応できま す。表 20 に概要を示します。詳細については ADRV9001 のシ ステム開発ユーザ・ガイドを参照してください。

すべての信号レーンは両方の電気的インターフェースに対応し ますが、両方のインターフェースの同時動作はサポートされて いません。また、レシーバー・チャンネルとトランスミッタ・ チャンネルにはそれぞれ、情報を転送するための一連の専用レ ーンがあります。レシーバー・チャンネルとトランスミッタ・ チャンネルは、設計によって割り当てられたものとは異なるも う1つのボール配置に再構成することはできません。

CSSI

CSSIは、1レーンのシリアル化されたデータと4レーンのデー タの2つの動作モードに対応しています。どちらの場合も、 CMOS構成がサポートする最大クロック周波数は80MHzです。

1 レーン・データ・モードの CSSI では、16 ビットの I データと 16 ビットの Q データ(合計 32 データ・ビット)が1つのレー ンにシリアル化されています。図 301 に1 レーン・データ・モ ードの CSSI の概要を図示します。

4 レーン・データ・モードの CSSI では、I および Q のデジタ ル・データが 4 つのデータ・レーンに広がっています。16 ビッ トの I データと 16 ビットの Q データが 8 ビットに分割され、4 つのデータ・レーンの1つに送られます。例えば、レーン 0 に は I データの 8LSB ビット、レーン 1 には I データの 8MSB ビッ ト、レーン 2 には Q データの 8LSB ビット、レーン 3 には Q デ ータの 8MSB ビットが送られます。

4 レーン・データ・モードの CSSI は、フル・レート・クロック とダブル・データ・レート (DDR) クロックの両方をサポート します。DDR クロック・モードを使用すると、データを立上が りエッジと立下がりエッジの両方でラッチでき、これによって 図 302 に示すように、利用可能な RF 帯域幅を 2 倍にすることが できます。

CSSI 受信

レシーバーCMOS構成では、1レーン・モードの CSSIと4レーン・モードの CSSIの場合について説明したデータ・レーン条件に加え、ストローブ信号とクロック信号用に2つのシグナル・

レーンを追加することが必要です。これによって、合計3つの シグナル・レーンが1レーン・データ・モードのCSSIで、ま た、合計6つのシグナル・レーンが4レーン・データ・モード のCSSIで使用できます。

RXx_DCLK_OUTは、データとストローブ出力信号を同期させ る出力クロック信号です。RXx_STROBE_OUTは、シリアル・ データ・ストリームの最初のビットを示すストローブ出力信号 です。RXx_STROBE_OUT信号はIおよびQサンプルの開始を 示すように設定できます。16ビット・データ・サンプルの場 合、RXx_STROBE_OUT信号は、1クロック・サイクルの間ハ イとなり31クロック・サイクルの間ローになります。あるい は、RXx_STROBE_OUT信号は、Iデータの期間はハイとなりQ データの期間はローになるように設定することもできます。こ の場合、16ビット・データ・サンプルについては、 RXx_STROBE_OUT信号は、16クロック・サイクル(Iデー

タ)の問ハイとなり16クロック・サイクル(Qデータ)の間ローになります。

CSSI 送信

トランスミッタ CMOS 構成では、1 レーン・モードの CSSI と4 レーン・モードの CSSI の場合について説明したデータ・レーン 条件に加え、ストローブ、クロック入力、クロック出力用に3 つのシグナル・レーンを追加することが必要です。これによっ て、合計4つのシグナル・レーンが1 レーン・データ・モード の CSSI で、また、合計7つのシグナル・レーンが4 レーン・デ ータ・モードの CSSI で使用できます。

TXx_DCLK_INは、ADRV9002 への入力クロックで、データ入 力 (TXx_DATA_IN) とストローブ入力 (TXx_STROBE_IN) に 同期します。TXx_STROBE_INは、シリアル・データ・サンプ ルの最初のビットを示す入力信号です。レシーバー・パスと同 様、トランスミッタ・ストローブには 2 つの設定オプションが あります。TXx_DCLK_OUT は ADRV9002 から外部ベースバン ド・デバイスへの出力クロックで、TXx_DCLK_IN、 TXx_STROBE_IN、TXx_DATA_IN の各信号を生成します。

LSSI

LSSIはより広い RF チャンネル帯域幅をサポートし、差動シグ ナル・ペアを必要とします。LSSI モードでは、2つのデータ転 送フォーマットがあります。すなわち、IデータとQデータが1 つの差動ペアでシリアル化されている1レーン・データ・モー ドと、IデータおよびQデータが別々の差動ペアを占める2レ ーン・データ・モードです。1レーン・データ・モードと2レ ーン・データ・モードのどちらを選択するかは、RF チャンネル の帯域幅によって決まります。ADRV9002の最大 RF 帯域幅で ある40MHzを確保するには、2レーン・データ・モードの LSSI を選択します。どちらの場合も、LSSI 構成がサポートする最大 クロック周波数は491.52MHzで、クロック・タイプは DDR で す。詳細は、図 303 を参照してください。

アプリケーション情報

表 20. ADRV9002 データ・ポートのインターフェース・モード

Interface Mode	Data Lanes per Channel	Serialization Factor per Data Lane	Maximum Data Lane Rate (MHz)	Maximum Clock Rate (MHz)	Maximum RF Bandwidth (MHz)	Sample Rate for I and Q Data (MHz)	Data Type¹	Figure Reference
CSSI in 1-Lane	1	32	80	80	1.25	2.5	Normal	Figure 301
Data								
CSSI in 1-Lane	1	32	160	80	2.5	5	DDR	
Data								
CSSI in 4-Lane	4	8	80	80	5	10	Normal	
Data								
CSSI in 4-Lane	4	8	160	80	10	20	DDR	Figure 302
Data								
LSSI in 1-Lane	1	32	983.04	491.52	20	30.72	DDR	
Data								
LSSI in 2-Lane	2	16	983.04	491.52	40	61.44	DDR	Figure 303
Data								
LSSI in 2-Lane	2	12	737.28	368.64	40	61.44	DDR	
Data								

¹通常(Normal)のデータ・タイプは、立上がりエッジでのデータを指します。DDRはダブル・データ・レートで、データは入力クロックの立上がりエッジと立下がりエッジで使用できます。

図 301.1 レーン・データ・モードの CSSI

データシート

アプリケーション情報

図 303.2 レーン・データ・モード、DDR の LSSI

外形寸法

データシート

寸法:mm

オーダー・ガイド

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADRV9002BBCZ	-40°C to +85°C	196-Ball CSP-BGA (12 mm × 12 mm × 1.09 mm)	Tray, 189	BC-196-14
ADRV9002BBCZ-RL	-40°C to +85°C	196-Ball CSP-BGA (12 mm × 12 mm × 1.09 mm)	Reel, 1500	BC-196-14

¹Z=RoHS 準拠製品

