

超低ノイズ、

200 mAリニア・レギュレータ

データシート ADM7160

特長

PSRR 性能:54 dB (100 kHz) 超低ノイズ

0.1 Hz~10 Hz:3 μV rms

 $0.1~Hz\sim100~kHz:9.5~\mu V~rms$

10 Hz~100 kHz:9 μV rms

10 Hz~1 MHz:17 μV rms

低ドロップアウト電圧: 150 mV (200 mA 負荷時)

最大出力電流: 200 mA 入力電圧範囲: 2.2 V~5.5 V

低静止電流と低シャットダウン電流

初期精度: ±1%

ライン、負荷、温度に対する精度: -2.5%/+1.5%

5 ピン TSOT パッケージまたは 6 ピン LFCSP パッケージを採用

アプリケーション

ADC/DAC 電源 RF、VCO、PLL 電源 ポスト DC/DC レギュレーション

概要

ADM7160 は 2.2 V~5.5 V で動作し、最大 200 mA の電流を供給 する超低ノイズ低ドロップアウトのリニア・レギュレータです。 200 mA 負荷で 150 mV とドロップアウト電圧が低いため効率が 向上し、広い入力電圧範囲で動作することができます。

ADM7160 は技術革新的回路を採用し、バイパス・コンデンサなしで超低ノイズ性能を実現しているため、ノイズに敏感なアナログ・フロントエンドおよび RF アプリケーションに最適なデバイスになっています。また、ADM7160 は PSRR または過渡ラインおよび負荷性能を犠牲にすることなく超低ノイズ性能を実現しています。

電流制限保護回路と熱過負荷保護回路により、悪条件での損傷を防止します。ADM7160 は、EN 入力にプルダウン抵抗も内蔵しています。

アプリケーション回路

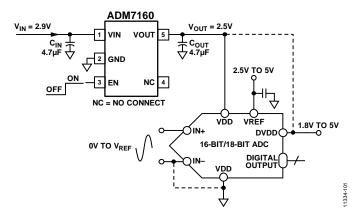


図 1. 16/18 ビット ADC に電源を供給する ADM7160

ADM7160 は特に、高性能でスペースに制約があるアプリケーションの要求を満たすように、小型 1 μF、±30%セラミック入力/出力コンデンサで安定に動作するよう設計されています。

ADM7160 は、小型 5 ピン TSOT または 6 ピン LFCSP パッケージを採用し、 $1.1 \text{ V} \sim 3.3 \text{ V}$ の 16 種類の固定出力電圧オプションを提供しています。LFCSP は非常に小型なソリューションを提供し、小型なロー・プロファイル・フットプリントで最大 200 mA の出力電流を必要とするアプリケーションに対して優れた熱性能を提供します。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって 生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示 的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、それぞれの所有 者の財産です。※日本語版資料は REVISION が古い場合があります。最新の内容については、英語版をご参照ください。

©2013-2014 Analog Devices, Inc. All rights reserved.

目次

符長	1
アプリケーション	1
アプリケーション回路	1
概要	1
改訂履歴	2
仕様	3
入力コンデンサと出力コンデンサの推奨仕様	4
絶対最大定格	5
熱データ	5
熱抵抗	5
ESD の注意	5
ピン配置およびピン機能説明	6
代表的な性能特性	7
改訂履歴	
4/14—Rev. 0 to Rev. A	
Changes to Ordering Guide	22

動作原理	13
イネーブル機能	13
ソフトスタート	14
電流制限および熱過負荷保護	14
アプリケーション情報	15
コンデンサの選択	15
熱に対する考慮事項	16
プリント基板レイアウト時の考慮事項	19
代表的なアプリケーション回路	20
外形寸法	21
オーガー・ガイド	22

6/13—Revision 0: Initial Version

仕様

特に指定がない限り、 V_{IN} = $(V_{OUT}$ + 0.4 V) または 2.2 V (いずれか大きい方)、 EN = V_{IN} 、 I_{LOAD} = 10 mA、 C_{IN} = C_{OUT} = 1 μF 、 T_A = 25 $^{\circ}$ C。表 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT VOLTAGE RANGE	$V_{\rm IN}$	$T_{\rm J} = -40^{\circ}{\rm C} \text{ to } +125^{\circ}{\rm C}$	2.2		5.5	V
OPERATING SUPPLY CURRENT	$I_{ m GND}$	$I_{LOAD} = 0 \mu A$		10		μΑ
		$I_{LOAD} = 0 \mu A, T_J = -40^{\circ} C \text{ to } +125^{\circ} C$			20	μΑ
		$I_{LOAD} = 100 \mu A$		20		μΑ
		$I_{LOAD} = 100 \mu\text{A}, T_{J} = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$			40	μΑ
		$I_{LOAD} = 10 \text{ mA}$		60		μA
		$I_{LOAD} = 10 \text{ mA}, T_J = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$			90	μΑ
		$I_{LOAD} = 200 \text{ mA}$		265		μΑ
		$I_{LOAD} = 200 \text{ mA}, T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			350	μΑ
SHUTDOWN CURRENT	$I_{GND\text{-}SD}$	EN = GND		0.2		μA
		EN = GND, $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			1.0	μA
OUTPUT VOLTAGE ACCURACY	V_{OUT}	$I_{LOAD} = 10 \text{ mA}$	-1		+1	%
		$100 \mu\text{A} < I_{\text{LOAD}} < 200 \text{mA}, V_{\text{IN}} = (V_{\text{OUT}} + 1) Mathematical Mathema$				
		0.4 V) to 5.5 V , $T_J = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$				
		$V_{OUT} < 1.8 \text{ V}$	-3		+2	%
	TTI DO	$V_{OUT} \ge 1.8 \text{ V}$	-2.5	•	+1.5	%
TEMPERATURE COEFFICIENT	TEMPCO	$V_{OUT} = 2.5 \text{ V}, T_J = 25^{\circ}\text{C to } 85^{\circ}\text{C}$	0.07	29	0.07	ppm/°C
LINE REGULATION	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = (V_{OUT} + 0.4 \text{ V}) \text{ to } 5.5 \text{ V},$	-0.05		+0.05	%/V
VOLD DEGLE LETON		$T_{J} = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$				
LOAD REGULATION	$\Delta V_{OUT}/\Delta I_{LOAD}$	100 4 200 4		0.006		0// 4
$V_{OUT} < 1.8 \text{ V}$		$I_{LOAD} = 100 \mu\text{A}$ to 200 mA		0.006	0.012	%/mA
		$I_{LOAD} = 100 \mu\text{A to } 200 \text{mA},$			0.012	%/mA
V > 1.0 V		$T_J = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$		0.002		0/ / 4
$V_{OUT} \ge 1.8 \text{ V}$		$I_{LOAD} = 100 \mu\text{A} \text{ to } 200 \text{mA}$		0.003	0.008	%/mA
		$I_{LOAD} = 100 \mu A \text{ to } 200 \text{ mA},$ $T_{J} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			0.008	%/mA
DROPOUT VOLTAGE ¹	V _{DROPOUT}	$I_{IOAD} = 10 \text{ mA}$		10		mV
DROFOUT VOLTAGE	V DROPOUT	$I_{LOAD} = 10 \text{ mA}$ $I_{LOAD} = 10 \text{ mA}$, $T_{LI} = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$		10	30	mV
		$I_{LOAD} = 200 \text{ mA}$		150	30	mV
		$I_{LOAD} = 200 \text{ m}\text{A}$ $I_{LOAD} = 200 \text{ mA}$, $T_J = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$		150	230	mV
START-UP TIME ²	t _{START-UP}	$V_{OUT} = 3.3 \text{ V}$		180	250	μs
CURRENT-LIMIT THRESHOLD ³	I _{LIMIT}	$T_{\rm J} = 0^{\circ} \text{C to } 125^{\circ} \text{C}$	220	300	400	mA
UNDERVOLTAGE LOCKOUT	UVLO	$T_1 = -40$ °C to +125°C				
Input Voltage Rising	UVLO _{RISE}				1.96	V
Input Voltage Falling	UVLO _{FALL}		1.28			V
Hysteresis	UVLO _{HYS}		1.20	120		mV
THERMAL SHUTDOWN	CYLOHIS			120		III v
Thermal Shutdown Threshold	TS_SD	T_I rising		150		°C
		111121118		150		°C
Thermal Shutdown Hysteresis	TS _{SD-HYS}			13		C
EN INPUT	1,7	227 47 4557	1.2			***
EN Input Logic High	V _{IH}	$2.2 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}$	1.2		0.4	V
EN Input Logic Low	V_{IL}	$2.2 \text{ V} \leq \text{V}_{\text{IN}} \leq 5.5 \text{ V}$			0.4	V
EN Input Pull-Down Resistance	R _{EN}	$V_{\rm IN} = V_{\rm EN} = 5.5 \text{ V}$		2.6		ΜΩ
OUTPUT NOISE	OUT _{NOISE}	$V_{IN} = 5 \text{ V}, V_{OUT} = 2.5 \text{ V}$				
		0.1 Hz to 10 Hz		3		μV rms
		0.1 Hz to 100 kHz		9.5		μV rms
		10 Hz to 100 kHz		9		μV rms
		10 Hz to 1 MHz		17		μV rms

Rev. \mathbf{A} -3/22 -

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
POWER SUPPLY REJECTION RATIO	PSRR	$I_{LOAD} = 100 \text{ mA}$				
$V_{\rm IN} = V_{\rm OUT} + 0.5 \ V$		$100 \text{ kHz}, V_{IN} = 3.8 \text{ V}, V_{OUT} = 3.3 \text{ V}$		49		dB
		$500 \text{ kHz}, V_{IN} = 3.8 \text{ V}, V_{OUT} = 3.3 \text{ V}$		43		dB
		1 MHz, $V_{IN} = 3.8 \text{ V}$, $V_{OUT} = 3.3 \text{ V}$		43		dB
		$100 \text{ kHz}, V_{IN} = 3.0 \text{ V}, V_{OUT} = 2.5 \text{ V}$		46		dB
		$500 \text{ kHz}, V_{IN} = 3.0 \text{ V}, V_{OUT} = 2.5 \text{ V}$		44		dB
		1 MHz, $V_{IN} = 3.0 \text{ V}$, $V_{OUT} = 2.5 \text{ V}$		44		dB
$V_{IN} = V_{OUT} + 1 V$		$100 \text{ kHz}, V_{IN} = 4.3 \text{ V}, V_{OUT} = 3.3 \text{ V}$		54		dB
		$500 \text{ kHz}, V_{IN} = 4.3 \text{ V}, V_{OUT} = 3.3 \text{ V}$		46		dB
		1 MHz, $V_{IN} = 4.3 \text{ V}$, $V_{OUT} = 3.3 \text{ V}$		46		dB
		$100 \text{ kHz}, V_{IN} = 3.5 \text{ V}, V_{OUT} = 2.5 \text{ V}$		49		dB
		$500 \text{ kHz}, V_{IN} = 3.5 \text{ V}, V_{OUT} = 2.5 \text{ V}$		47		dB
		1 MHz, $V_{IN} = 3.5 \text{ V}$, $V_{OUT} = 2.5 \text{ V}$		47		dB

¹ ドロップアウト電圧は、入力電圧を公称出力電圧に設定したときの入力電圧—出力電圧間の電位差として定義されます。 この仕様は、2.2 V を超える出力電圧に対してのみ適用されます。

入力コンデンサと出力コンデンサの推奨仕様

 $T_A = -40^{\circ}C \sim +125^{\circ}C_{\circ}$

表 2.

Parameter	Symbol	Min	Тур	Max	Unit
Minimum Input and Output Capacitance ¹	C_{MIN}	0.7			μF
Capacitor ESR	R _{ESR}	0.001		0.2	Ω

¹ 最小入力容量と最小出力容量は、全動作範囲で 0.7 µF より大きい必要があります。 最小容量規定値を確実に満たすようにするため、デバイス選択時にアプリケーションの全動作範囲を考慮する必要があります。 X7R タイプと X5R タイプのコンデンサの使用が推奨されます。 Y5V コンデンサと Z5U コンデンサはすべての LDO レギュレータに推奨できません。 詳細については、入力コンデンサと出力コンデンサの特性のセクションを参照してください。

Rev. **A** — 4/22 —

 $^{^2}$ スタートアップ時間は、ENの立上がりエッジから V_{OUT} が公称値の 90%になるまでの時間として定義されます。

 $^{^3}$ 電流制限スレッショールドは、出力電圧が規定 typ 値の 90%に低下する電流値として定義されます。 例えば、3.0 V 出力電圧の電流制限値は、出力電圧が 3.0 V の 90% すなわち 2.7 V に低下する電流値として定義されます。

絶対最大定格

表 3.

Parameter	Rating
VIN to GND	-0.3 V to +6.5 V
VOUT to GND	-0.3 V to VIN
EN to GND	-0.3 V to +6.5 V
Storage Temperature Range	−65°C to +150°C
Operating Junction Temperature Range	−40°C to +125°C
Operating Ambient Temperature Range	−40°C to +125°C
Soldering Conditions	JEDEC J-STD-020

上記の絶対最大定格を超えるストレスを加えるとデバイスに恒 久的な損傷を与えることがあります。この規定はストレス定格 の規定のみを目的とするものであり、この仕様の動作のセクションに記載する規定値以上でのデバイス動作を定めたものでは ありません。デバイスを長時間絶対最大定格状態に置くとデバイスの信頼性に影響を与えます。

熱データ

絶対最大定格は、組み合わせではなく個別に適用されます。ジャンクション温度を超えると ADM7160 は損傷を受けることがあります。周囲温度をモニタしても、 T_J が規定温度範囲内にあることを保証できません。

消費電力が大きくかつ熱抵抗が高い PCB を使用するアプリケーションでは、最大周囲温度を下げる必要があります。中程度の消費電力で、PCB の熱抵抗が低いアプリケーションでは、ジャンクション温度が規定値内にある限り、最大周囲温度はこの最大値を超えても問題はありません。

デバイスのジャンクション温度(T_J) は、周囲温度 (T_A)、デバイス 消費電力 (P_D)、パッケージのジャンクション—周囲間熱抵抗 (θ_{JA})に依存します。 T_J は次式で計算されます。

$$T_{\rm J} = T_A + (P_D \times \theta_{JA})$$

パッケージのジャンクション—周囲間の熱抵抗(θ_{JA}) は 4 層ボードを使用したモデルと計算に基づいています。 θ_{JA} は、アプリケーションとボード・レイアウトに強く依存します。最大消費電力が大きいアプリケーションでは、ボードの熱設計に注意が必要です。 θ_{JA} の値は、PCB の材料、レイアウト、環境条件に応じて変わります。

 θ_{JA} の規定値は、4 層、4 インチ × 3 インチの回路ボード (PCB)に基づきます。ボード構造については JEDEC JESD51-7 と JESD51-9 を参照してください。LFCSP パッケージの詳細については、AN-772 アプリケーション・ノート「A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP)」をご覧ください。

 Ψ_{JB} はジャンクション—ボード間サーマル・キャラクタライゼーション・パラメータであり、単位は $^{\mathbf{C}}/\mathbf{W}$ です。パッケージの Ψ_{JB} は、4層ボードを使ったモデルと計算に基づいています。

JEDEC JESD51-12 「Guidelines for Reporting and Using Electronic Package Thermal Information」には、サーマル・キャラクタライゼーション・パラメータは熱抵抗と同じではないと記載されています。 Ψ_{JB} は、熱抵抗 (θ_{JB})の場合のように1つのパスではなく、複数のサーマル・パスを経由する成分を表します。したがって、 Ψ_{JB} サーマル・パスには、パッケージ上面からの対流、パッケージからの放射、実際のアプリケーションで Ψ_{JB} を有効にしているファクタが含まれます。

最大ジャンクション温度 (T_I) は、次式を使ってボード温度 (T_B) と消費電力 (P_D) から計算されます。

$$T_J = T_B + (P_D \times \Psi_{JB})$$

 Ψ_{JB} の詳細については、JEDEC JESD51-8 と JESD51-12 を参照してください。

熱抵抗

 θ_{JA} と Ψ_{JB} はワーストケース条件で規定。すなわち表面実装パッケージの場合、デバイスを回路ボードにハンダ付けした状態で規定。

表 4.熱抵抗

Package Type	θ_{JA}	Ψ_{JB}	Unit
5-Lead TSOT	170	43	°C/W
6-Lead LFCSP	63.6	28.3	°C/W

ESD の注意

ESD (静電放電) の影響を受けやすいデバイスです。電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術である ESD 保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESD に対する適切な予防措置を講じることをお勧めします。

Rev. **A** - 5/22 -

ADM7160

ピン配置およびピン機能説明

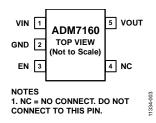


図 2.5 ピン TSOT のピン配置

- NOTES

 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.

 2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.
 THE EXPOSED PAD ENHANCES THE THERMAL
 PERFORMANCE OF THE PACKAGE.

図 3.6 ピン LFCSP のピン配置

表 5.ピン機能の説明

ピン番号			
TSOT	LFCSP	記号	説明
1	6	VIN	レギュレータ入力電源。VIN と GND との間に 1 μF 以上のコンデンサを接続してバイパスしてくださ
			l V _o
2	3	GND	グラウンド。
3	4	EN	イネーブル入力。ENをハイ・レベルにするとレギュレータがオンし、ロー・レベルにするとレギュレー
			タがオフします。自動スタートアップの場合は、EN と VIN を接続します。
4	2, 5	NC	未接続。このピンは接続しないでください。
5	1	VOUT	レギュレーションされた出力電圧。1μF以上のコンデンサで VOUT を GND へバイパスしてください。
N/A	7	EPAD	エクスポーズド・パッド。エクスポーズド・パッドはグラウンドに接続する必要があります。エクスポ
			ーズド・パッドはパッケージの熱性能を強化します。

- 6/22 -Rev. A

代表的な性能特性

特に指定がない限り、 V_{IN} = 2.9 V、 V_{OUT} = 2.5 V、 I_{LOAD} = 1 mA、 C_{IN} = C_{OUT} = 4.7 μF 、 T_A = 25 $^{\circ}C_{\circ}$

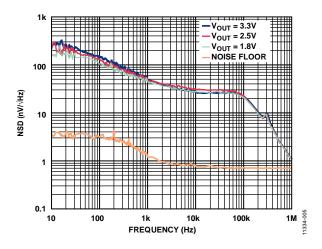


図 4.様々な出力電圧でのノイズ・スペクトル密度 $I_{LOAD} = 10 \text{ mA}$

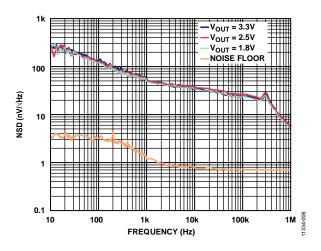


図 5.様々な出力電圧でのノイズ・スペクトル密度 I_{LOAD} = 200 mA

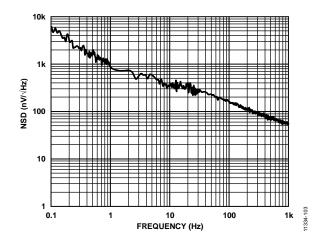


図 6.ノイズ・スペクトル密度、0.1 Hz~1 kHz

図 7.負荷電流対 RMS ノイズ、10 Hz~100 kHz

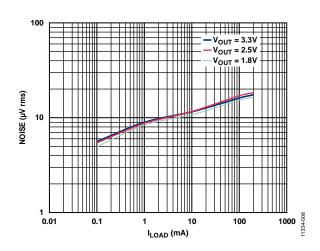


図 8.負荷電流対 RMS ノイズ、10 Hz~1 MHz

Rev. **A** - 7/22 -

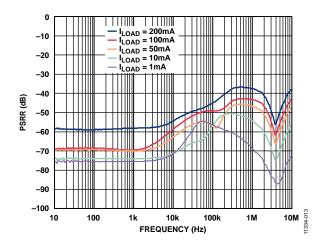


図 9.様々な負荷電流での PSRR の周波数特性 500 mV ヘッドルーム、V_{OUT} = 3.3 V

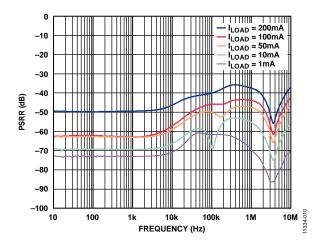


図 10.様々な負荷電流での PSRR の周波数特性 500 mV ヘッドルーム、V_{OUT} = 2.5 V

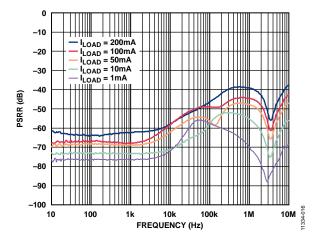


図 11.様々な負荷電流での PSRR の周波数特性 500 mV ヘッドルーム、V_{OUT} = 1.8 V

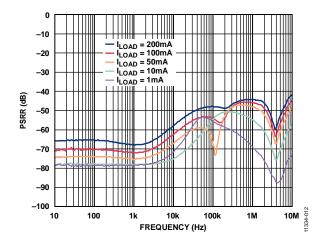


図 12.様々な負荷電流での PSRR の周波数特性 1 V ヘッドルーム、V_{OUT} = 3.3 V

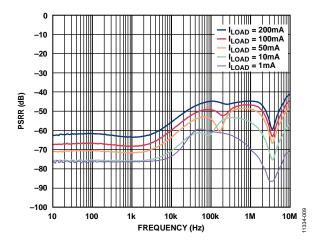


図 13.様々な負荷電流での PSRR の周波数特性 1 V ヘッドルーム、V_{OUT} = 2.5 V

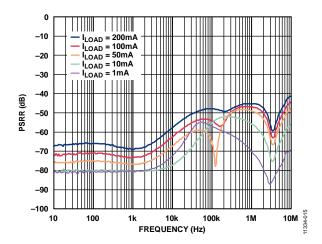


図 14.様々な負荷電流での PSRR の周波数特性 1 V ヘッドルーム、V_{OUT} = 1.8 V

Rev. **A** - 8/22 -

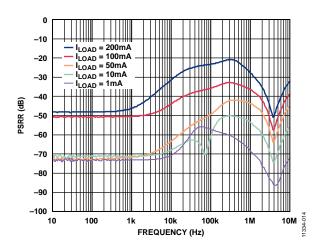


図 15.様々な負荷電流での PSRR の周波数特性 300 mV ヘッドルーム、V_{OUT} = 3.3 V

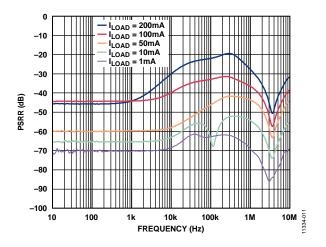


図 16.様々な負荷電流での PSRR の周波数特性 300 mV ヘッドルーム、V_{OUT} = 2.5 V

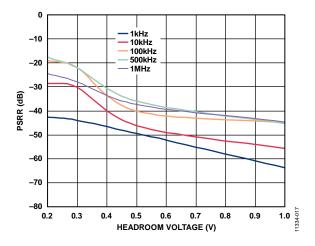


図 17.様々な周波数でのヘッドルーム 電圧対 PSRR $I_{LOAD} = 200 \text{ mA}$

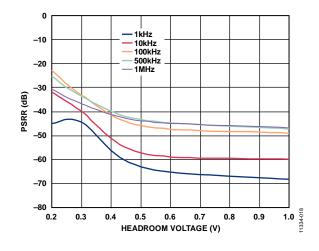


図 18.様々な周波数でのヘッドルーム 電圧対 PSRR I_{LOAD} = 100 mA

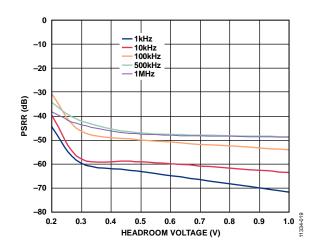


図 19.様々な周波数でのヘッドルーム 電圧対 PSRR $I_{LOAD} = 50 \text{ mA}$

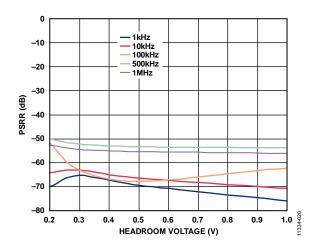


図 20.様々な周波数でのヘッドルーム 電圧対 PSRR I_{LOAD} = 10 mA

Rev. **A** - 9/22 -

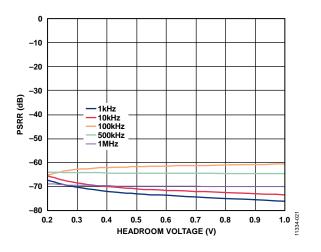


図 21.様々な周波数でのヘッドルーム 電圧対 PSRR I_{LOAD} = 1 mA

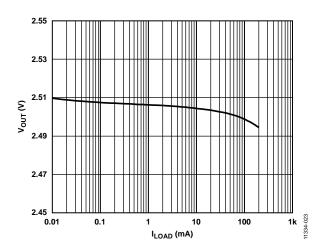


図 22.負荷電流対出力電圧

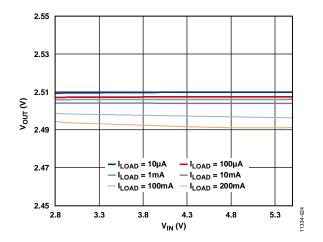


図 23.入力電圧対出力電圧

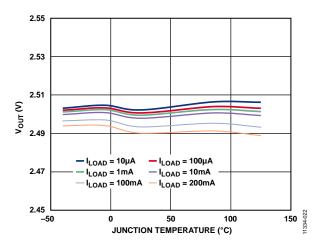


図 24.ジャンクション温度対出力電圧

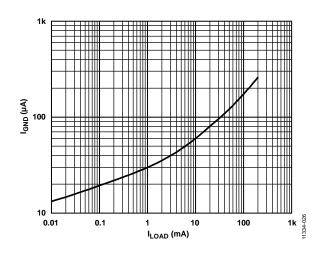


図 25.負荷電流対グラウンド電流

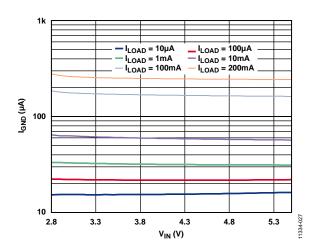


図 26.入力電圧対グラウンド電流

Rev. **A** — 10/22 —

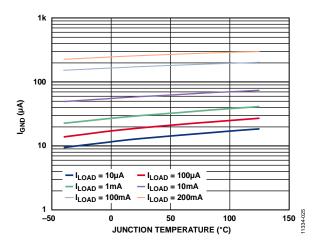


図 27.ジャンクション温度対グラウンド電流

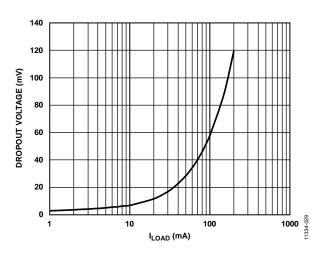


図 28.負荷電流対ドロップアウト電圧

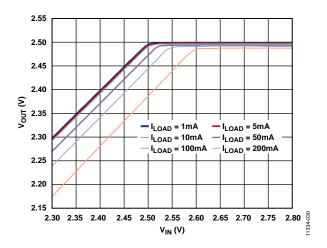


図 29.入力電圧対出力電圧(ドロップアウト時)

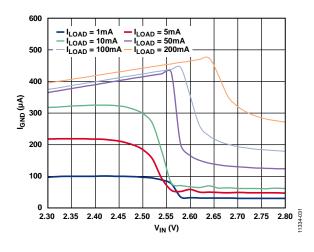


図 30.入力電圧対グラウンド電流(ドロップアウト時)

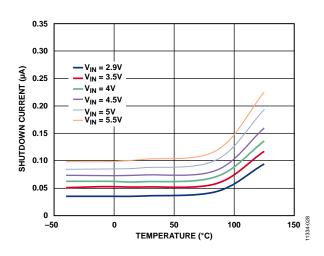


図 31.様々な入力電圧でのシャットダウン電流の温度特性

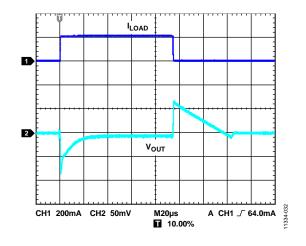


図 32.負荷過渡応答 C_{IN} および C_{OUT} = 1 μF 、 I_{LOAD} = 1 mA \sim 200 mA

Rev. **A** — 11/22 —

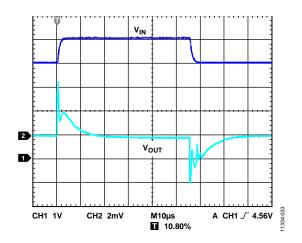


図 33.ライン過渡応答 C_{IN}および C_{OUT} = 1 µF、I_{LOAD} = 200 mA

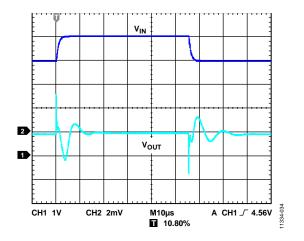


図 34.ライン過渡応答 C_{IN} および C_{OUT} = 1 µF、I_{LOAD} = 1 mA

Rev. **A** — 12/22 —

動作原理

ADM7160 は 2.2 V~5.5 V で動作し、最大 200 mA の電流を供給する超低ノイズ、低静止電流、低ドロップアウトのリニア・レギュレータです。 ADM7160 が消費する静止電流はフル負荷で 265 μ A (typ) です。 シャットダウン消費電流は 200 nA (typ)です。 ADM7160 は技術革新的回路を採用し、ノイズに敏感なアナログ・フロントエンドおよび RF アプリケーションに対してノイズ・バイパス・コンデンサなしで超低ノイズ性能を提供します。また、ADM7160 は小型の 1μ F セラミック・コンデンサの使用に対して最適化されています。

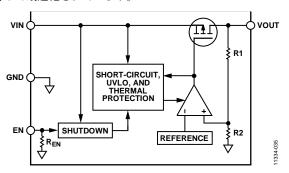


図 35.内部ブロック図

内部的には、ADM7160 は、リファレンス電圧、エラーアンプ、 帰還分圧器、PMOS パス・トランジスタから構成されています。 出力電流は、誤差アンプから制御される PMOS パス・デバイス を経由して供給されます。エラーアンプは、リファレンス電圧 と出力からの帰還電圧を比較して、その差を増幅します。帰還 電圧がリファレンス電圧より低い場合、PMOS デバイスのゲート電位が低くなるので、通過する電流が大きくなり、出力電圧 が上昇します。帰還電圧がリファレンス電圧より高い場合は、 PMOS デバイスのゲート電位が高くなるので、通過する電流が 小さくなり、出力電圧が低下します。

EN 入力の内蔵プルダウン抵抗により、EN ピンの未接続時に入力がロー・レベルに維持されます。

ADM7160 では、1.1 V~3.3 V の 16 種類の出力電圧オプションを提供しています。

イネーブル機能

ADM7160では EN ピンを使って、通常の動作状態で VOUT ピンをイネーブル/ディスエーブルします。EN がハイ・レベルのとき VOUT がオンし、EN がロー・レベルのとき、VOUT がオフします。自動スタートアップの場合は、EN と VIN を接続することができます。

図 36に示すように、ENの電圧上昇がアクティブ・スレッショールドを超えると、VOUTがオンします。ENの電圧が非アクティブ・スレッショールドを下回ると、VOUTがオフします。ENピンにはヒステリシスが付いています。このヒステリシスは、ENピンがスレッショールド・ポイントを通過するときにノイズにより発生するオン/オフ発振を防止します。

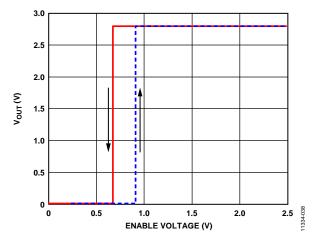


図 36.一般的な EN ピンの動作

EN ピンのアクティブ/非アクティブ・スレッショールドは VIN 電圧から発生されます。このため、これらのスレッショールドは入力電圧の変化により変動します。図 37 に、入力電圧が 2.2 V から 5.5 V まで変化するときの EN のアクティブ/非アクティブ・スレッショールド(typ 値)を示します。

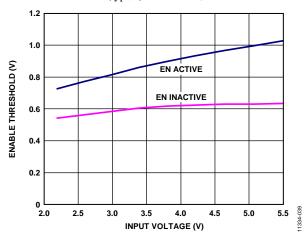


図 37.入力電圧対 EN ピン・スレッショールド(typ 値)

Rev. A

ソフトスタート

ADM7160 では内部ソフトスタート機能を使って、出力をイネーブルしたときの突入電流を制限しています。3.3~V オプションでのスタートアップ時間は、EN アクティブ・スレッショールドを通過してから出力が最終値の 90%に到達するまでとして約 180 μ s です。図 38 に示すように、スタートアップ時間は出力電圧の設定に依存します。

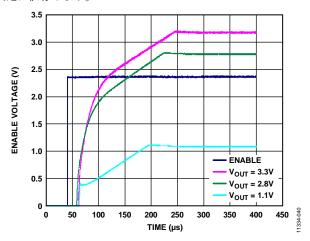


図 38.代表的なスタートアップ動作

電流制限および熱過負荷保護

ADM7160 は、過電流保護回路と熱過負荷保護回路により大きな消費電力による損傷から保護されています。ADM7160 は、出力負荷が 300 mA (typ)に到達したとき、電流を制限するように設計されています。出力負荷が 300 mA を超えると、出力電圧を下げて一定の電流限界値を維持します。

熱過負荷保護機能によりジャンクション温度を最大 150° C (typ) に制限しています。極限状態(周囲温度が高く、消費電力が大きい)で、ジャンクション温度が 150° C を超え始めると、出力がオフされて、出力電流が 0 mA になります。ジャンクション温度が 135° C を下回ると、出力が再びオンして、出力電流が公称値に戻ります。

VOUT がグラウンドへ短絡するケースを考えます。先ず、ADM7160 は短絡電流が 300 mA を超えないように電流制限します。ジャンクションの自己発熱が大きくなると温度が 150° C を超えるので、サーマル・シャットダウンが起動されて、出力がオフされ、出力電流が 0 mA になります。ジャンクション温度が 135° C を下回ると、出力がオンして短絡に 300 mA が流れて、再びジャンクション温度が 150° C を超えます。 135° C と 150° C の間のこの熱的発振により、300 mA と 0 mA の間の電流発振が発生して、出力に短絡が残っている間この発振が続きます。

電流制限機能と熱過負荷保護機能は、偶発的な過負荷状態に対してデバイスを保護することを目的としています。信頼度の高い動作を得るためには、外部からデバイス消費電力を制限して、ジャンクション温度が 125℃ を超えないようにする必要があります。

Rev. **A** — 14/22 —

アプリケーション情報

コンデンサの選択

出力コンデンサ

ADM7160 は、小型で省スペースのセラミック・コンデンサで動作するように設計されていますが、実効直列抵抗(ESR)値に注意すれば一般的に使用されているコンデンサで動作することもできます。出力コンデンサの ESR は、LDO 制御ループの安定性に影響を与えます。ADM7160 の安定性のためには、1 Ω 以下の ESR を持つ最小 1 μ F のコンデンサの使用が推奨されます。負荷電流の変化に対する過渡応答も出力容量の影響を受けます。大きな値の出力容量を使用すると、負荷電流の大きな変化に対する ADM7160 の過渡応答を向上させることができます。図 39 に、1 μ F の出力容量値に対する過渡応答を示します。

図 39.出力過渡応答、 $C_{OUT} = 1 \mu F$

入力バイパス・コンデンサ

VIN ピンと GND の間に $1 \mu F$ のコンデンサを接続すると、PCB のレイアウトによる影響を小さくすることができます。(特に入力パターンが長い、もしくはソース・インピーダンスが高い場合)

 $1~\mu F$ より大きい出力容量が必要な場合は、出力容量に合わせて入力コンデンサを大きくすることが推奨されます。

入力コンデンサと出力コンデンサの特性

最小容量と最大 ESR 条件を満たすかぎり、ADM7160 に任意の高品質セラミック・コンデンサを使うことができます。セラミック・コンデンサは様々な誘電体を使って製造され、温度と加えられる電圧に対して異なる特性を持ちます。コンデンサは、必要とされる温度範囲と DC バイアス条件に対して最小容量を保証する適切な誘電体を持っている必要があります。電圧定格6.3 V または 10 V の X5R 誘電体または X7R 誘電体の使用が推奨されます。Y5V 誘電体と Z5U 誘電体は温度特性と DC バイアス特性が十分でないため推奨されません。

図 40 に、0402、1 μ F、10 V の X5R コンデンサについて電圧バイアス対容量特性を示します。コンデンサの電圧安定性は、コンデンサのサイズと電圧定格の影響を大きく受けます。一般に、コンデンサのパッケージが大きいほど、または電圧定格が大きいほど、優れた安定性を示します。X5R 誘電体の温度変動は、 -40° C~ $+85^{\circ}$ C の温度範囲で約 $\pm15\%$ であり、パッケージ・サイズまたは電圧定格の関数になっていません。

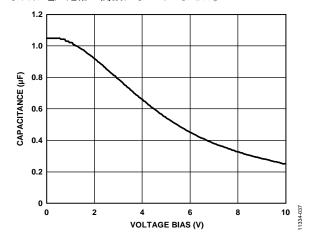


図 40.電圧バイアス対容量特性

式1を使うと、温度、部品許容誤差、電圧に対するコンデンサの 変動を考慮した、ワーストケース容量を求めることができます。

$$C_{EFF} = C_{BIAS} \times (1 - TEMPCO) \times (1 - TOL) \tag{1}$$

ここで、

CRIASは動作電圧での実効容量。

TEMPCO は最悪時のコンデンサ温度係数です。

TOL は最悪時の部品許容誤差です。

この例では、 -40° C~+85°C でのワーストケース温度係数 (TEMPCO)を、X5R 誘電体では 15% と想定しています。図 40 に示すように、コンデンサの許容誤差(TOL)は 10%、かつ 1.8 V で $C_{BIAS} = 0.94 \,\mu\text{F}$ としています。

これらの値を式1に代入すると、

 $C_{EFF} = 0.94 \ \mu\text{F} \times (1 - 0.15) \times (1 - 0.1) = 0.719 \ \mu\text{F}$

したがって、この例で選択したコンデンサは、選択した出力電圧で、温度と許容誤差に対する LDO レギュレータの最小容量条件を満たします。

ADM7160 の性能を保証するためには、コンデンサ動作に対する DC バイアス、温度、許容誤差の影響を各アプリケーションごとに評価することが不可欠です。

図 41 と図 42 に、それぞれ 5 ピン TSOT パッケージと 6 ピン LFCSP パッケージでの VIN ピンと VOUT ピンの 4.7 μ F コンデン サの接続を示します。

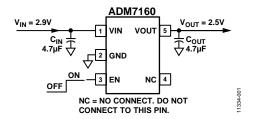


図 41.5 ピン TSOT での入力および出力の 4.7 µF コンデンサ

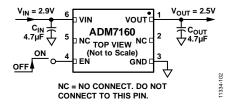


図 42.6 ピン LFCSP での入力および出力の 4.7 µF コンデンサ

熱に対する考慮事項

大部分のアプリケーションでは、ADM7160の効率が高いため、大きな発熱はありませんが、周囲温度が高く、かつ入力電圧と出力電圧の差が大きいアプリケーションでは、パッケージの発熱が大きくなって、チップのジャンクション温度が最大ジャンクション温度 125°C を超えるようになります。

ジャンクション温度が 150 °C を超えると、ADM7160 はサーマル・シャットダウンします。永久的な損傷を防止するため、ジャンクション温度が 135°C を下回るまでレギュレータは回復しません。したがって、すべての条件で信頼度の高い性能を保証するためには、選択したアプリケーションの熱解析が非常に重要です。式 2 に示すように、チップのジャンクション温度は、周囲温度と電力消費によるパッケージの温度上昇の和です。

信頼度の高い動作を保証するためには、ADM7160 のジャンクション温度が 125° C を超えないようにする必要があります。ジャンクション温度をこの最大値より低く維持するためには、ジャンクション温度の変化に寄与するパラメータを知っておく必要があります。これらのパラメータとしては、周囲温度、パワー・デバイスの消費電力、ジャンクション—周囲間の熱抵抗(θ_{JA})があります。 θ_{JA} 値は、パッケージ組み立て材料とパッケージの GND ピンとエクスポーズド・パッド(LFCSP の場合)をPCB へハンダ付けする際に使用する銅の量に依存します。

表 6 に、PCB の銅サイズに対する 5 ピン TSOT パッケージと 6 ピン LFCSP パッケージの θ_{JA} 値 (typ)を示します。

表 6.θ_{JA} 値(typ)

	θ _{JA} (°C/W)		
Copper Size (mm ²)	TSOT	LFCSP	
0^1	170	231.2	
50	152	161.8	
100	146	150.1	
300	134	111.5	
500	131	91.8	

「デバイスは最小サイズのピン・パターンにハンダ付け。

表 7 に、5 ピン TSOT パッケージと 6 ピン LFCSP パッケージの $\Psi_{\rm B}$ 値(typ)を示します。

表 7.Ψ_{JB} 値(typ)

Package	Ψ _{JB} (°C/W)
TSOT	43
LFCSP	28.3

ADM7160のジャンクション温度は次式で計算できます。

$$T_J = T_A + (P_D \times \theta_{JA}) \tag{2}$$

ここで、

TAは周囲温度。

 θ_{JA} はジャンクション—周囲間のパッケージ熱抵抗。 P_D はチップの消費電力で、次式で与えられます。

$$P_D = [(V_{IN} - V_{OUT}) \times I_{LOAD}] + (V_{IN} \times I_{GND})$$
(3)

ここで

 V_{IN} と V_{OUT} は、それぞれ入力電圧と出力電圧。

ILOADは負荷電流。

 I_{GND} はグラウンド電流。

グラウンド電流による消費電力は小さいため無視できます。 たがって、ジャンクション温度の式は次のように簡単になります。

$$T_J = T_A + \{ [(V_{IN} - V_{OUT}) \times I_{LOAD}] \times \theta_{JA} \}$$
(4)

式4に示すように、与えられた周囲温度に対して、ジャンクション温度が125℃を超えないようにするため、入力と出力間の電位差、連続負荷電流、最小銅サイズ条件がPCBに対して存在します。

図 43 ~図 54 に、様々な周囲温度、負荷電流、入力—出力間電位差、PCB 銅面積に対するジャンクション温度計算を示します。

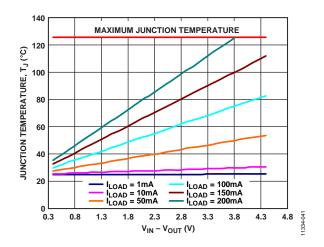


図 43.TSOT、500 mm²の PCB 銅、 $T_A = 25$ °C

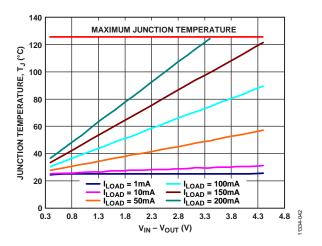


図 44.TSOT、100 mm 2 の PCB 銅、 $T_A = 25$ °C

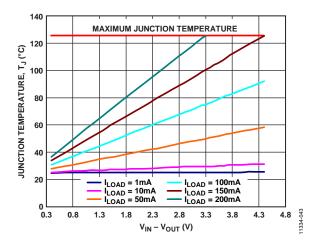


図 45.TSOT、50 mm²の PCB 銅、 $T_A = 25$ °C

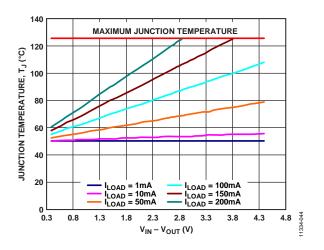


図 46.TSOT、500 mm²の PCB 銅、 $T_A = 50$ °C

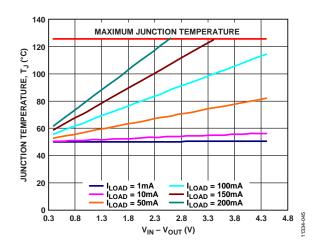


図 47.TSOT、100 mm² の PCB 銅、 $T_A = 50$ °C

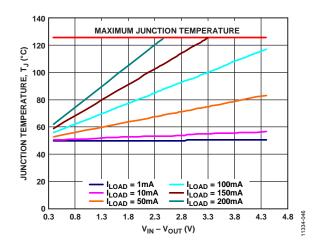


図 48.TSOT、50 mm² の PCB 銅、 $T_A = 50$ °C

Rev. **A** - 17/22 -

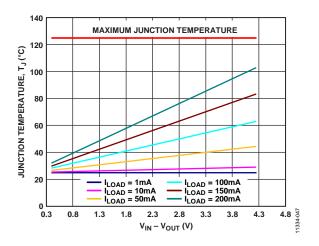


図 49.LFCSP、500 mm² の PCB 銅、 $T_A = 25$ °C

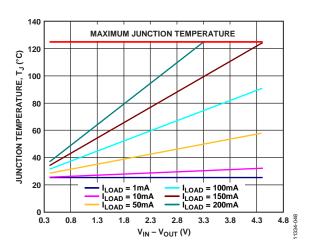


図 50.LFCSP、100 mm 2 の PCB 銅、 $T_A = 25$ °C

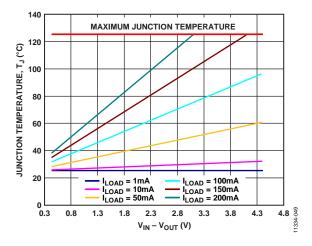


図 51.LFCSP、50 mm 2 の PCB 銅、 $T_A = 25$ °C

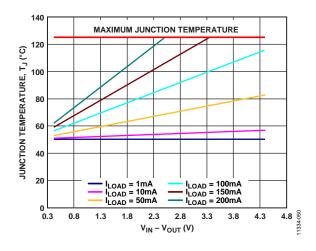


図 52.LFCSP、500 mm² の PCB 銅、 $T_A = 50$ °C

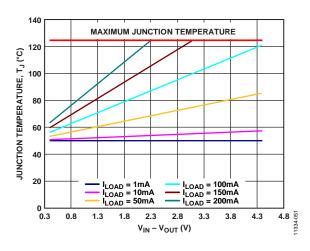
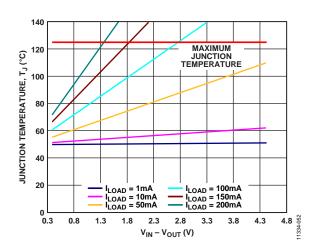
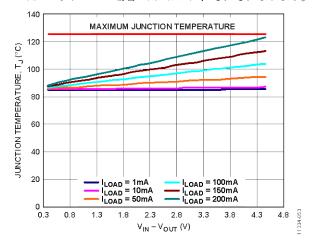
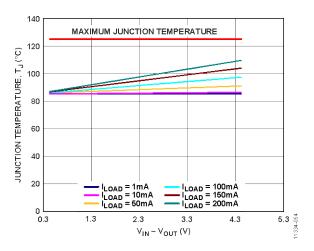


図 53.LFCSP、100 mm² の PCB 銅、 $T_A = 50$ °C




図 54.LFCSP、50 mm²の PCB 銅、 $T_A = 50$ °C

Rev. **A** — 18/22 —


ボード温度が既知の場合、サーマル・キャラクタライゼーション・パラメータ Ψ_{JB} を使ってジャンクション温度上昇を計算することができます(図 55 と図 56 参照)。最大ジャンクション温度 (T_J) は、次式を使ってボード温度 (T_B) と消費電力 (P_D) から計算されます。

$$T_J = T_B + (P_D \times \Psi_{JB}) \tag{5}$$

 Ψ_{JB} の typ 値は、5 ピン TSOT パッケージの場合 43°C/W に、6 ピン LFCSP パッケージの場合 28.3°C/W に、それぞれなります。

 \boxtimes 55.TSOT, $T_A = 85^{\circ}C$

 \boxtimes 56.LFCSP、 $T_A = 85^{\circ}C$

プリント基板レイアウト時の考慮事項

ADM7160 のピンに接触する銅の量を増やすとパッケージからの 放熱を改善することができますが、表 6 に示すように、限界点 に到達して、それ以上銅サイズを増やしても熱放散を大きく改 善できません。

入力コンデンサは VIN ピンと GND ピンのできるだけ近くに配置します。出力コンデンサは VOUT ピンと GND ピンのできるだけ近くに配置します。0402 または 0603 サイズのコンデンサを使うと、面積が制限されているボード上で最小のフットプリント・ソリューションが実現できます。

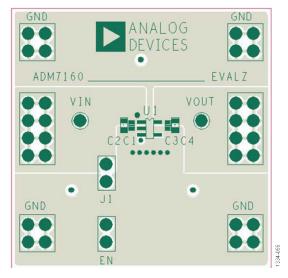


図 57. PCB レイアウト例、TSOT パッケージ

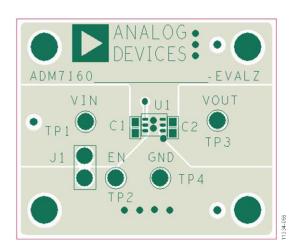


図 58.PCB レイアウト例、LFCSP パッケージ

Rev. **A** — 19/22 —

代表的なアプリケーション回路

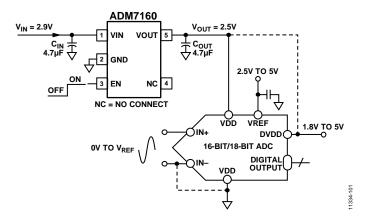


図 59. 16/18 ビット ADC に電源を供給する ADM7160

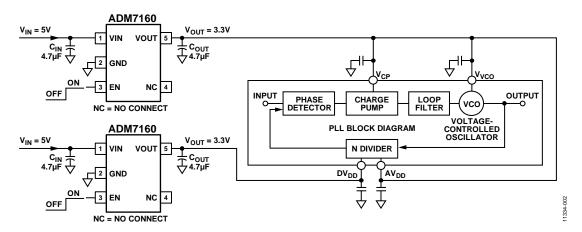


図 60. PLL/VCO に電源を供給する ADM7160

Rev. **A** — 20/22 —

外形寸法

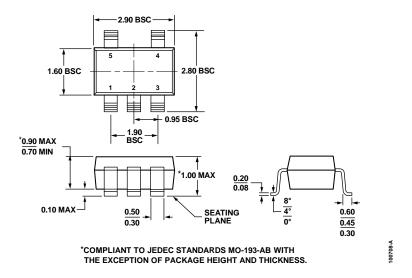


図 61.5 ピン薄型スモール・アウトライン・トランジスタ・パッケージ[TSOT] (UJ-5) 寸法: mm

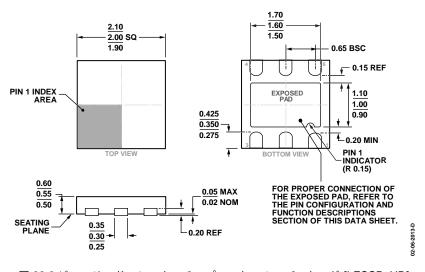


図 62.6 ピン・リードフレーム・チップ・スケール・パッケージ [LFCSP_UD] 2.00 mm × 2.00 mm ボディ、極薄、デュアル・リード (CP-6-3) 寸法: mm

Rev. **A** — 21/22 —

オーダー・ガイド

Model ^{1, 2}	Temperature Range	Output Voltage (V)	Package Description	Package Option	Branding
ADM7160AUJZ-1.8-R7	−40°C to +125°C	1.8	5-Lead TSOT	UJ-5	LNH
ADM7160AUJZ-2.5-R7	−40°C to +125°C	2.5	5-Lead TSOT	UJ-5	LNJ
ADM7160AUJZ-3.3-R7	−40°C to +125°C	3.3	5-Lead TSOT	UJ-5	LNK
ADM7160AUJZ-1.8-R2	−40°C to +125°C	1.8	5-Lead TSOT	UJ-5	LNH
ADM7160AUJZ-2.5-R2	−40°C to +125°C	2.5	5-Lead TSOT	UJ-5	LNJ
ADM7160AUJZ-3.3-R2	−40°C to +125°C	3.3	5-Lead TSOT	UJ-5	LNK
ADM7160ACPZN1.8-R7	−40°C to +125°C	1.8	6-Lead LFCSP_UD	CP-6-3	LNH
ADM7160ACPZN2.5-R7	−40°C to +125°C	2.5	6-Lead LFCSP_UD	CP-6-3	LNJ
ADM7160ACPZN3.3-R7	−40°C to +125°C	3.3	6-Lead LFCSP_UD	CP-6-3	LNK
ADM7160ACPZN1.8-R2	−40°C to +125°C	1.8	6-Lead LFCSP_UD	CP-6-3	LNH
ADM7160ACPZN2.5-R2	-40°C to +125°C	2.5	6-Lead LFCSP_UD	CP-6-3	LNJ
ADM7160ACPZN3.3-R2	−40°C to +125°C	3.3	6-Lead LFCSP_UD	CP-6-3	LNK
ADM7160CP-EVALZ			Evaluation Board for LFCSP_UD		
ADM7160UJ-EVALZ			Evaluation Board for TSOT		

¹ Z = RoHS 準拠製品。

Rev. **A** — 22/22 —

 $^{^2}$ その他の電圧オプションについては、最寄りのアナログ・デバイセズ販売代理店へご連絡ください。