ANALOG DEVICES

700~2700MHzの 直交変調器

AD8349

特長

出力周波数範囲:700~2700MHz 変調帯域幅:DC~160MHz(大信号BW) 1dB出力圧縮:5.6dBm@2140MHz 出力ディスエーブル機能:-50dBm未満の出力(<50ns) ノイズ・フロア:-156dBm/Hz 位相直交誤差:0.3度@2140MHz 振幅バランス:0.1dB 単電源:4.75~5.5V AD8345/AD8346とピン互換 16ピン・パドル露出型TSSOPパッケージ

アプリケーション

セルラ/PCS通信システム・インフラ WCDMA/CDMA2000/PCS/GSM/EDGE ワイヤレスLAN/ワイヤレス・ローカル・ループ LMDS/ブロードバンド・ワイヤレス・アクセス・システム

機能ブロック図

概要

AD8349は、700~2700MHzで使用するシリコン・モノリシックRF直交変調器(クワドラチャー・モジュレータ)です。優れた位相精度と振幅バランスにより、通信システム向けの高性能なダイレクトRF変調が可能です。

差動LO入力信号をバッファリングした後、多相位相スプリッ タで同相(I)信号と直交位相(Q)信号に分割します。2つの LO信号をさらにバッファリングしてから、2つのギルバート・ セル・ミキサーで、対応するIチャンネルとQチャンネルのベー スバンド信号にミキシングします。その後、ミキサーの出力を 出力アンプで加算します。出力アンプは、50Ωの負荷を駆動す るように設計されています。

ENOPピンに制御パルスを印加することによって、50ns以内で RF出力のオン/オフ切替えができます。 AD8349は、GSM、CDMA、WCDMA基地局などのデジタ ル・コミュニケーション・システムや、QPSKまたはQAMブ ロードバンド・ワイヤレス・アクセス・トランスミッタにおけ るダイレクト/RF変調器として使用できます。高いダイナミッ ク・レンジと優れた変調精度によって、複雑な変調フォーマッ トを使うローカル多地点配信サービス(LMDS)で利用できる 完ペきなIF変調器になります。

AD8349は、アナログ・デバイセズの高度な相補シリコン・バ イポーラ・プロセスで製造されており、16ピンのパドル露出型 TSSOPパッケージを採用しています。性能は、-40~+85℃ の温度範囲で仕様規定されています。

目次

仕様3
絶対最大定格5
ESDに関する注意5
ピン配置と機能の説明6
等価回路7
代表的な性能特性8
回路の説明14
概要
LOインターフェース14
V/Iコンバータ14
ミキサー
D/Sアンプ14
バイアス回路
出力イネーブル 14
基本的な接続 15
ベースバンドI入力とO入力 15
シングルエンド・ベースバンド駆動 15
10入力駆動レベル 16
国波数範囲 16
同仮気地回
LU八万イマビーフマハのマフフマフ10 シングルエンドLO販動
シンクルーン『LU配期
мґш/Ј1/

改訂履歴

11/04—Data Sheet Changed from Rev. 0 to Rev. A

Changes to Figure 25 through Figure 30	11
Changes to Figure 37 through Figure 39	13
Change to WCDMA MultiCarrier Application section	21
Change to Figure 60 and Figure 61	21

11/03—Revision 0: Initial Version

出力イネーブル17
ベースバンドDACとのインターフェース18
AD9777とのインターフェース18
バイアスとフィルタ処理18
不要なサイドバンド・リークの低減19
LOフィードスルーの低減19
サイドバンド抑制とLOフィードスルーの温度特性20
ベースバンド駆動レベルとシングル・サイドバンド性能
との関係20
3次高調波歪みの改善20
アプリケーション
3GPP WCDMAのシングル・キャリア・アプリケーション21
WCDMAのマルチキャリア・アプリケーション21
GSM/EDGEアプリケーション
ハンダ処理について23
PLLによるLOの生成23
送信DACのオプション23
評価用ボード
特性評価用セットアップ
SSBセットアップ26
外形寸法
オーダー・ガイド27

仕様

特に指定のない限り、VS=5V、周囲温度(TA)=25℃、LO=-6dBm、I/Q入力=1.2Vp-p差動正弦波(400mV DCバイアスでの直 交)、ベースバンド周波数=1MHz、LOソース・インピーダンスとRF出力負荷インピーダンスは50Ω。

表1

パラメータ	条件	Min	Тур	Max	単位
動作周波数		700		2700	MHz
LO=900MHz 出力パワー 出力P1 dB キャリア・フィードスルー サイドバンド抑制 3次高調波 ¹ 出力IP3 直交誤差 I/Q振幅バランス ノイズ・フロア GSMサイドバンド・ノイズ	$P_{OUT} - (F_{LO} + (3 \times F_{BB}))$ 、 $P_{OUT} = 4dBm$ $F1_{BB} = 3MHz$ 、 $F2_{BB} = 4MHz$ 、 $P_{OUT} = -4.2dBm$ LOからのオフセット = 20MHz、 全BB入力は400mVのDCパイアスのみ LOからのオフセット = 20MHz、 BB入力 = 1.2Vp-p 差動(400mV DC) LO = 884.8MHz、 $LOからのオフセット = 6MHz$ 、 $P_{OUT} = 2dBm$	1.5	$\begin{array}{c} 4 \\ 7.6 \\ -45 \\ -35 \\ -39 \\ 21 \\ 1.9 \\ 0.1 \\ -155 \\ -150 \\ -152 \end{array}$	6 -30 -31 -36	dBm dBm dBc dBc dBm 度 dB dBm/Hz dBm/Hz dBm/Hz dBc/Hz
LO=1900MHz 出力パワー 出力P1 dB キャリア・フィードスルー サイドバンド抑制 3次高調波 ¹ 出力IP3 直交誤差 I/Q振幅バランス ノイズ・フロア GSMサイドバンド・ノイズ	$P_{OUT} - (F_{LO} + (3 \times F_{BB}))$ 、 $P_{OUT} = 3.8 dBm$ F1 _{BB} =3MHz、F2 _{BB} =4MHz、 $P_{OUT} = -4.5 dBm$ LOからのオフセット=20MHz、 全BB入力は400mVのDCバイアスのみ LOからのオフセット=20MHz、 BB入力=1.2Vp-p差動(400mV DC) LO=1960MHz、LOからのオフセット=6MHz、 P _{OUT} =2dBm	0	3.8 6.8 -38 -40 -37 22 0.7 0.1 -156 -150 -151	6 -36 -36	dBm dBm dBc dBc dBm 度 dB dBm/Hz dBm/Hz dBc/Hz
LO=2140MHz 出力パワー 出力P1 dB キャリア・フィードスルー サイドバンド抑制 3次高調波! 出力IP3 直交誤差 I/Q振幅バランス ノイズ・フロア WCDMAノイズ・フロア	$P_{OUT} - (F_{LO} + (3 \times F_{BB}))$ 、 $P_{OUT} = 2.4dBm$ F1 _{BB} =3MHz、F2 _{BB} =4MHz、 $P_{OUT} = -6.5dBm$ LOからのオフセット=20MHz、 全BB入力は400mVのDCバイアスのみ LOからのオフセット=20MHz、 BB入力=1.2Vp-p差動(400mV DC) LO=2140MHz、LOからのオフセット=30MHz、 P _{CHAN} =17.3dBm	-2	2.4 5.6 -42 -43 -37 19 0.3 0.1 -156 -151 -156	5.1 -30 -36 -36	dBm dBm dBc dBc dBm 度 dBm/Hz dBm/Hz dBm/Hz
LO入力 LO駆動レベル 公称インピーダンス 入力リターン損失	ピンLOIPとLOIN 特性評価はtyp値レベルで実行 1:1バランによって駆動、LO=2140MHz	-10	$-6 \\ 50 \\ -8.6$	0	dBm Ω dB
 ベースバンド入力 I入力とQ入力のバイアス・レベル 入力パイアス電流 入力オフセット電流 帯域幅 (0.1dB) 帯域幅 (3dB) 	ビンIBBP、IBBN、QBBP、QBBN LO=1500MHz、 ベースバンド入力=600mVp-p正弦波(400mV DC) LO=1500MHz、 ベースバンド入力=600mVp-p正弦波(400mV DC) LO=1500MHz、 ベースバンド入力=600mVp-p正弦波(400mV DC) LO=1500MHz、 ベースバンド入力=600mVp-p正弦波(400mV DC)		400 11 1.8 10 24 160 340		mV μA MHz MHz MHz MHz MHz

パラメータ	条件	Min	Тур	Max	単位
出力イネーブル	ピンENOP				
オフ・アイソレーション	ENOPローレベル		-78	-50	dBm
ターンオン・セトリング・タイム	ENOPローからハイ (エンベロープの90%)		20		ns
ターンオフ・セトリング・タイム	ENOPハイからロー (エンベロープの10%)		50		ns
ENOPハイレベル (ロジック1)		2.0			V
ENOPローレベル (ロジック0)				0.8	V
 電源	ピンVPS1とVPS2				
電圧		4.75		5.5	V
電源電流	ENOP=ハイレベル		135	150	mA
	ENOP=ローレベル		130	145	mA

¹ シングル・サイドバンド (SSB)のパワーを基準にした3次高調波の振幅は、ベースバンド駆動レベルの減少とともに減少します(図19、図20、図21を参照)。

絶対最大定格

表2

パラメータ	定格
電源電圧VPOS	5.5V
IBBP, IBBN, QBBP, QBBN	0V、2.5V
LOIPとLOIN	10dBm
内部消費電力	800mW
θ _{JA} (露出パドルのハンダ付けあり)	30℃/W
最大ジャンクション温度	125°C
動作温度範囲	$-40 \sim +85^{\circ}$ C
保存温度範囲	$-65\sim+150$ °C

絶対最大定格を超えるストレスを加えると、デバイスに恒久的 な損傷を与えることがあります。この規定はストレス定格のみ を指定するものであり、この仕様の動作セクションに記載する 規定値以上でのデバイス動作を定めたものではありません。デ バイスを長時間絶対最大定格状態に置くと、デバイスの信頼性 に影響を与えることがあります。

注意

ESD(静電放電)の影響を受けやすいデバイスです。人体や試験機器には4000Vもの高圧の静 電気が容易に蓄積され、検知されないまま放電されることがあります。本製品は当社独自の ESD保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、回復 不能の損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、 ESDに対する適切な予防措置を講じることをお勧めします。

ピン配置と機能の説明

IBBP 1	AD8349	16 QBBP
IBBN 2		15 QBBN
COM1 3	上面図	14 COM3
COM1 4	(実寸ではありません)	13 COM3
LOIN 5		12 VPS2
LOIP 6		11 VOUT
VPS1 7		10 СОМЗ อ
ENOP 8		9 COM2 🖗
I		i s

図2

表3. ピン機能の説明

ピン番号	記号	説明	等価回路
1、2 15、16	IBBP、IBBN、 QBBN、QBBP	同相および直交のベースバンド差動入力。これらは高インピーダンス入力であるため、 約400mVにDCバイアスし、低インピーダンス源から駆動する必要があります。仕様 で用いられている公称AC信号振幅は、各ピンで600mVp-pです(100~700mV)。こ れによって400mVにDCバイアスされた1.2Vp-pの差動駆動が得られます。入力は内 部バイアスされていないので、外付けのバイアス回路が必要です。	回路A
3, 4	COM1	LO位相スプリッタとLOバッファ用の共通ピン。COM1、COM2、COM3は、低イン ピーダンス・パスによってすべてグラウンド・プレーンに接続してください。	
5、6	LOIN, LOIP	差動LO入力。 V_s =5.0Vの場合、内部で約1.8VにDCバイアスされます。LOピンはACカップリングする必要があります。シングルエンド駆動が可能ですが、性能は低下します。	回路B
7	VPS1	LOバイアス・セルとバッファ用の正側電源電圧(4.75~5.5V)。VPS1とVPS2は同じ 電源に接続してください。十分な外部バイパスを得るには、VPS1とグラウンドの間 に0.1µFと100pFのコンデンサを接続します。	
8	ENOP	出力イネーブル。このピンを使用して、RF出力をイネーブル/ディスエーブルにで きます。通常動作では、ハイ・ロジック・レベルに接続します。出力をディスエーブ ルにするには、ロー・ロジック・レベルに接続します。	回路C
9	COM2	出力アンプ用の共通ピン。COM1、COM2、COM3は、低インピーダンス・パスに よってすべてグラウンド・プレーンに接続してください。	
10、13、 14	COM3	V/Iコンバータとミキサー・コアの入力に対する共通ピン。COM1、COM2、COM3 は、低インピーダンス・パスによってすべてグラウンド・プレーンに接続してください。	
11	VOUT	デバイス出力。内部で50ΩにバイアスされたシングルエンドのRF出力。ピンは負荷 にACカップリングする必要があります。	回路D
12	VPS2	ベースバンド入力V/Iコンバータ、ミキサー・コア、バンド・ギャップ・リファレン ス、出力アンプに対する正側電源電圧(4.75~5.5V)。VPS1とVPS2は同じ電源に接 続してください。十分な外部バイパスを得るには、VPS2とグラウンドの間に0.1µFと 100pFのコンデンサを接続します。	

等価回路

図5. 回路C

図6. 回路D

代表的な性能特性

03570-0-010

3570-0016

03570-0-017

図23. LOIPポートS₁₁のスミス・チャート (LOINピンをグラウンドにAC結合)、 バランと外部終端抵抗を接続したとき のカーブも表示(T_A=25℃)

03570-0-022

33570-0-028

03570-0-029

03570-0-030

REV. A

— 11 —

-12-

03570-0-037

03570-0-038

図40. 温度範囲の両極におけるキャリア・フィード スルー分布(T_A=25℃でキャリア・フィード スルーを-65dBm未満にNULL調整した後。 F_{LO}=2140MHz、IとQの入力は400mVのバ イアス)

REV. A

回路の説明

概要

AD8349は、局部発振器(LO)インターフェース、ベースバンド電圧/電流(V/I)コンバータ、ミキサー、差動/シングルエンド(D/S)アンプ、バイアス回路の5つの部分に分けられます。デバイスの詳細なブロック図を図42に示します。

図42. AD8349のブロック図

LOインターフェースは、90度の位相差をもつ2つのLO信号を 生成し、2つのミキサーを直交で駆動します。ベースバンド信 号はV/Iコンバータによって電流に変換され、2つのミキサーに 供給されます。ミキサーの出力はそれぞれ結合され、50 Ω の出 力インターフェースを構成する差動/シングルエンド・アンプ に供給されます。バイアス回路で各部へのリファレンス電流が 生成されます。さらに、50ns以内で出力のオン/オフ切替えが 可能な出力イネーブル・ピン(ENOP)によって、RF出力が制 御されます。以下、各部について詳しく説明します。

LOインターフェース

LOインターフェースは、バッファ・アンプと多相位相スプ リッタを交互に配置した段で構成されています。入力バッファ には、LO信号源がLOIPとLOINを駆動するための50Ωの終端 がなされています。また、このバッファでLO信号振幅を増大 させ、位相スプリッタを駆動します。位相スプリッタはRC多 相ネットワークで構成されており、これにより、正確な直交位 相関係にある2つのLO信号を生成します。その後、各LO信号 はバッファ・アンプを通過しますが、一方位相スプリッタで発 生した信号損失も補正します。この2つの信号はもう1つの位相 スプリッタを通過し、動作周波数の全域にわたって直交精度を 向上させます。2番目の位相スプリッタの出力は、ミキサーの LO入力用のドライバ・アンプに供給されます。

V/Iコンバータ

ベースバンド入力ピンに印加される差動ベースバンド入力電圧 は、差動電圧/電流変換を実行する2つのオペアンプに供給さ れます。その後、これらのオペアンプの差動出力電流は、それ ぞれのミキサーに供給されます。

ミキサー

AD8349には2つのダブル・バランス型ミキサーがあり、1つは 同相チャンネル(Iチャンネル)用、もう1つは直交チャンネル (Qチャンネル)用です。いずれのミキサーも、4つの交差接続 されたトランジスタから成るギルバート・セル設計を採用して います。2つのミキサーからの出力電流は、1対の抵抗とインダ クタ(R-L)の負荷によって加算されます。R-L負荷の両端に 発生する信号は、D/Sアンプに出力されます。

D/Sアンプ

出力D/Sアンプは、2つのエミッタ・フォロアで構成されており、 トーテム・ポール出力段を駆動します。出力インピーダンスは、 出力トランジスタ内のエミッタ抵抗で決まります。この段の出 力は、出力 (VOUT) ピンに接続されます。

バイアス回路

バンド・ギャップ・リファレンス回路は、絶対温度に比例する (PTAT) リファレンス電流を生成し、その電流は各部で使用さ れます。また、バンド・ギャップ・リファレンス回路はV/Iコ ンバータ内で温度に安定な電流を発生させるので、温度に依存 しないスルーレートが得られます。

出力イネーブル

通常動作(ENOP=ハイレベル)では、V/Iコンバータからの出 力電流はミキサーに供給され、そこで2つの位相のLO信号とミ キシングされます。ENOPがローレベルになると、V/I出力電流 がミキサーに流入しないため、RF出力がオフになります。LO ドライバの最終段への電力供給も切断され、LOフィードス ルーを最小に抑えます。出力がディスエーブルの場合でも、一 定の出力インピーダンスを維持するために差動/シングルエン ド段はパワーアップされたままです。

基本的な接続

AD8349を動作させるための基本的な接続図を図43に示しま す。ピンVPS1とVPS2には、4.75~5.5Vの単電源を接続します。 VPS1とVPS2の間は1対のESD保護ダイオードで内部的に接続 されるため、この2本のピンを同じ電位に接続する必要があり ます。2本のピンは、100pFと0.1µFのコンデンサを使用してグ ラウンドにそれぞれデカップリングします。コンデンサは、で きる限りデバイスの近くに配置してください。通常動作では、 出力イネーブル・ピンのENOPをハイレベルにする必要があり ます。ENOPのターンオン・スレッショールドは2Vです。ピン COM1、COM2、COM3は、低インピーダンス・パスによりす べて同じグラウンド・プレーンに接続してください。

ベースバンドI入力とQ入力

I入力とQ入力は、差動で駆動してください。IとQのベースバン ド信号に対する代表的な差動駆動レベル(特性評価の測定に使 用される代表値)は1.2Vp-pであり、これは各ベースバンド入 力の600mVp-pに等価です。ベースバンド入力は、400~ 500mVのレベルに外部でバイアスする必要があります。最高性 能を得るための最適レベルは400mVです。1.2Vp-pという推奨 駆動レベルは、最大駆動レベルではありません。圧縮に近い動 作が望ましい場合は、1.2Vp-pの差動限界を超えることができ ます。

CDDAやWCDMAなど、ピーク値と平均値の比が大きいベー スバンド信号の場合、信号ピークのクリッピングを防止するた めに、ピーク信号レベルをAD8349の圧縮レベル未満にする必 要があります。信号ピークのクリッピングが発生すると、歪み が増大します。CDMAとWCDMAの入力の場合、クリッピン グによって隣接チャンネルへの信号リークが増加します。一般 に、ベースバンド駆動のレベルは、出力信号のピーク信号電力 がAD8349の出力圧縮ポイントより少なくともクレスト・ファ クタだけ下になるようにしてください。WCDMAシステムや GSM/EDGEシステムでの駆動レベルの注意点については、「ア プリケーション」を参照してください。

ベースバンド駆動レベルを小さくすることで、ベースバンド入 力の帯域幅が増えるというメリットもあります。これによって AD8349を高い変調帯域幅を必要とするアプリケーションで、 たとえば高データレートのマイクロ波無線のIF変調器として使 用できます。

シングルエンド・ベースバンド駆動

シングルエンドのI信号とQ信号しか使用できない場合には、 AD8132やAD8138などの差動アンプを使用して、AD8349に 必要な差動駆動信号を生成できます。

図44に示す回路例では、グラウンド基準のシングルエンド信号 を差動信号に変換し、必要な400mVのバイアス電圧が加えられ ます。

ベースバンド入力は、400mVにバイアスされたシングルエンド 信号(未使用入力は400mVにDCバイアス)によっても駆動で きます。ただし、これは推奨動作モードではありません。駆動 信号のバイアス・レベルと未使用入力のDCレベルとの間にDC レベルの差(温度ドリフトの影響を含む)があると、LOフィー ドスルーが増大する可能性があるからです。さらに、これに よって低歪みの最大出力電力が6dB減少します。

図43. 基本的な接続図

図44. シングルエンドIQ駆動回路

LO入力駆動レベル

LO入力は差動で駆動する設計になっており、-6dBmのLO駆動レベルで仕様規定されています。このレベルは、最高のノイズ性能が得られるように選択されています。LO駆動レベルが大きくなると、サイドバンド抑制が劣化してキャリア・フィードスルーが増大しますが、ノイズ性能は向上します。LO駆動レベルが小さくなると、これとは反対にサイドバンド抑制が改善され、キャリア・フィードスルーが減少します。

周波数範囲

LO周波数範囲は700~2700MHzです。この限界値は、LO位相 スプリッタ回路の特性によって決まります。位相スプリッタが 内蔵ミキサー用に生成するLO駆動信号は、互いに90度位相が ずれています。仕様の周波数範囲(700~2700MHz)外では、 この直交精度が低下するため、サイドバンド除去性能が低下し ます。図45と図46に、仕様のLO周波数範囲外で動作する代表 的なデバイスのサイドバンド抑制を示します。サイドバンド抑 制と性能のレベルは、製造プロセスの変動にも影響されます。

LO入力インピーダンスのマッチング

シングルエンドのLO信号源は、1:1のバラン(ETC1-1-13)に よって差動信号に変換されます。バラン回路のデバイス側の各 LO入力に200Ωのシャント抵抗をGNDに接続することによっ て、LO入力ポートのリターン損失が減少します。LO入力ピン は内部でDCバイアスされているため、各LO入力ピンでACカッ プリング・コンデンサを使用する必要があります(図43参照)。

図46. 2700MHzを超える場合のサイドバンド抑制

シングルエンドLO駆動

LO入力は、大部分の周波数でLOフィードスルーが高くなりま すが、シングルエンドで駆動できます(図48を参照)。LOINを グラウンドにACカップリングし、LOIPをシングルエンドの 50Ω信号源からカップリング・コンデンサを通じて駆動します (図47を参照)。

測定では、ACカップリング・コンデンサの信号源側で400Ωの シャント抵抗を使用しました。

図47. シングルエンドLO駆動の回路図

図48. シングルエンドLO駆動と差動LO駆動のLO周波数 対 LOフィードスルー(シングル・サイドバンド変調)

RF出力

RF出力は、50Ωの負荷を駆動するように設計されていますが、 内部でDCバイアスされるために、図43に示すようにACカップ リングする必要があります。RF出力インピーダンスはほぼ50Ω であり、仕様の動作周波数範囲(図24を参照)でのリターン損 失がかなり少ないといえます。ですから、出力で50Ω負荷を駆 動する場合、マッチング回路を追加する必要はありません。図 7に、公称条件(1.2Vp-pの差動ベースバンド駆動、400mVの DCベースバンド・バイアス、5V電源)下でのAD8349の出力 電力を示します。

出力イネーブル

ENOPピンを使用して、RF出力をオン/オフできます。通常動作では、このピンをハイレベル (>2V) に保持してください。 ENOPをローレベル (<800mV) にすると、出力電力がディス エーブルになり、出力のオフ・アイソレーション・レベルが -50dBm未満になります。

図49と図50に、900MHzにおけるENOP機能のイネーブルと ディスエーブルの時間軸応答を示します。代表的なイネーブル 時間とディスエーブル時間は、それぞれ約20nsと50nsです。

図49. ENOPイネーブル時間 (900MHz)

ベースバンドDACとのインターフェース

AD8349は、差動ベースバンド入力の入力振幅とバイアスが推 奨レベルであれば、外付けの能動部品を使用せずに大部分の ベースバンドDACに直接接続できます。一般にこれらのDAC は、各差動出力ピンで差動フルスケール出力電流0~20mAを もっています。これらの電流は、グラウンドを基準にしたシャ ント抵抗を使用して簡単に電圧に変換できます。送信用の多く のベースバンドDACの設計では、シングル・パッケージに2つ のDACを搭載しています。

AD9777とのインターフェース

AD977xファミリーのデュアルDACは、AD8349のベースバンド入力の駆動に適しています。AD9777はデュアル16ビットDACで、内蔵の複素変調器を使用して、ベースバンド出力または複素IFを生成します。

図51に、AD9777のI_{OUT}出力とAD8349の差動ベースバンド入 力との基本インターフェースを示します。抵抗R1とR2がDCバ イアス・レベルを設定し、R3がベースバンド入力電圧振幅の大 きさを設定します。

図51. AD9777とAD8349の基本インターフェース

図52. 図51のR3とピーク・ベースバンド入力電圧との関係

バイアスとフィルタ処理

図51に示すR1とR2を40 Ω 抵抗にすると、必要な400mVのDC バイアスが得られます。なお、これはR3の値とは無関係です。 図52に、40 Ω 抵抗を用いたときのピーク・ベースバンド入力電 圧とR3の値との関係を示します。図52から、240 Ω の値によっ て、約1.2Vp-p差動のピークtoピーク振幅がAD8349のベースバ ンド入力に供給されることがわかります。

標準抵抗に最も近い抵抗値は、40.2Ωと240Ωです。DACを信 号源として使用したときのAD8349の特性評価では、これらの 抵抗値を使用しました。

DACを使用するときは、DACから生じるイメージを除去する ために、一般にローパス・イメージ除去フィルタを使用します。 こうしたフィルタには、DACから変調器に入り込むブロードバ ンド・ノイズを除去するというメリットもあります。

図53に、2140MHzでのシングル・サイドバンド・スペクトル を示します。ベースバンド正弦波信号と余弦波信号は、ロー デ・シュワルツのAMIQ任意波形発生器のデジタル出力から得 られます。これらの信号でAD9777デュアルDACを駆動し、 AD9777デュアルDACでAD8349のベースバンド入力を駆動し ます。なお、AD9777の複素変調器は使用しません。

AD8349の動作範囲におけるオフセット電圧、内部デバイス・ ミスマッチ、不完全な直交性によって、SSBスペクトルには、 LOフィードスルーや不要なサイドバンドのリークなど多くの 好ましくない成分が存在します。変調されたベースバンド信号 (8-PSK、GMSK、QPSK、QAMなど)によってAD8349を駆 動すると、これらの好ましくない特性によってエラー・ベクト ル振幅 (EVM) や信号純度の劣化が生じます。

図53. 2140MHzにおけるAD8349のシングル・サイドバンド・ スペクトル

不要なサイドバンド・リークの低減

不要なサイドバンド・リークは、IチャンネルとQチャンネルの ベースバンド信号間における位相と振幅の不平衡によって生じ ます。したがって、不要なサイドバンドのリークを低減するに は、ミキサー・コアにおいてベースバンド信号の振幅と位相を 一致させる必要があります。ミキサーまでのベースバンド入力 パスにおけるミスマッチによって、デバイスのピンでは完全に 一致していたベースバンド信号も、ミキサーに来たときには必 ずしも完全に一致していないことがあります。したがって、こ のようなミスマッチを補正するために、ベースバンド信号の位 相と振幅に若干の調整を行う必要があります。

まず、入力の1つ(たとえばIチャンネル)をリファレンス信号 にします。次に、不要なサイドバンド・パワーが谷に到達する までに、Qチャンネルの信号の振幅と位相を調整します。 AD9777に内蔵されているゲイン調整レジスタを使用すれば、 この作業は簡単にできます。振幅と位相の調整を繰り返せば、 不要なサイドバンド・リークを最小に抑えることができます。

なお、動作ベースバンド周波数が補正を行った周波数から遠ざ かるにつれて、補正されたサイドバンド除去性能は低下します。 その結果、I正弦波とQ正弦波の周波数は、変調されたキャリア のベースバンド帯域幅の約半分になります。たとえば、この変 調器を使用して、DCから3.84/2MHzに及ぶベースバンド・ス ペクトルのシングルWCDMAキャリアを送信する場合、1MHz のI正弦波とQ正弦波によってキャリブレーションを効果的に実 行できます。

LOフィードスルーの低減

I信号とQ信号はLOと乗算されるため、これらの入力に内部オ フセット電圧があると、LOから出力へのリークが発生します。 さらに、ミキサー内のLOとRFとの間に不平衡があっても、LO 信号はミキサーを通じてRF出力に漏れます。シングル・サイド バンド・スペクトルでは、このLOフィードスルーがはっきり とわかります(図53)。-42dBmの公称LOフィードスルーは、 IとQの両入力にオフセット補償電圧を印加することで、さらに 低減できます。なお、400mVの公称バイアス・レベルを変更す ることによってではなく、I入力とQ入力での差動オフセット電 圧(xBBP-xBBN)を変更することで、LOフィードスルーを 低減できます。これは、LOフィードスルーを最小に抑えるた めに必要な適切なDACオフセット・コードをプログラミング し、格納することによって簡単にできます。ただし、このため には、DACからIとQの入力へのDCカップリングが必要です。

LOフィードスルーを低減する手順は簡単です。LOフィードス ルーが谷に到達するまでに、I DACから差動オフセット電圧を 印加します。このオフセット・レベルを保持したまま、下側の 谷に到達するまでにQDACに差動オフセット電圧を印加しま す(この作業を繰り返します)。

図54に、Qチャンネル・オフセットをNULL調整した後のIチャ ンネル・オフセット(mV単位)とLOフィードスルーの関係を 示します。この図からわかりますが、LOフィードスルーを -65dBm未満に低減するには、補償オフセット電圧の分解能を 少なくとも100µVにする必要があります。図55に、LOの NULL調整後の2140MHzにおけるシングル・サイドバンド・ スペクトルを示します。図53に示す性能と比較すると、LO フィードスルーが低減したことが明らかです。

LO周波数が補償を行った周波数から遠ざかるにつれて、補償 されたLOフィードスルーは若干悪化します。しかし、30MHz や60MHzのセルラ帯域では、この変動は非常にわずかです。 この小さい変動は、パッケージの周囲やボード上のLO/RFの出 カリークの影響によるものです。

図54. Iチャンネル・ベースバンド・オフセット 対 LOフィー ドスルー(Qチャンネル・オフセットをNULL調整)

図55. LO NULL調整後の2140MHzにおけるAD8349のシン グル・サイドバンド・スペクトル

サイドバンド抑制とLOフィードスルーの温度 特性

実際のアプリケーションでは、LOフィードスルーと不要なサ イドバンドの低減は、ワンタイム・キャリプレーションで実行 し、必要な補正値を不揮発性RAMに格納します。このような 補正方式は、温度範囲の全域にわたって有効です。図40と図41 に、25℃で補償が行われた後のLOフィードスルーとサイドバ ンド抑制の温度変動を示します。

ベースバンド駆動レベルとシングル・サイド バンド性能との関係

図56に、940MHz、1960MHz、2140MHzのLO周波数におけ る、ベースバンド駆動レベルとSSB出力電力およびノイズ・フ ロア(dBc/100kHz単位)の関係を示します。

3次高調波歪みの改善

サイドバンド抑制は相対的なベースバンド振幅と位相を調整す ることで改善できますが、3次高調波を低減するための唯一の 方法は、出力パワーを減らすことです(図19、図20、図21を参 照)。ただし、出力パワーが低下するにつれて、出力曲線の上 端のノイズ・フロア(dBc単位)がほとんど変化しなくなるこ とになります(図56)。つまり、S/N比を犠牲にすることなく、 許容できる3次高調波が得られるレベルまで出力パワーを低減 できることを意味します。出力パワーとS/N比の関係が一定で あることから、ベースバンド電圧変動をうまく利用すれば、シ ステム出力パワーの制御やシグナル・チェーン・ゲインの調整 ができることがわかります。

図56. ベースバンド駆動レベル 対 SSB P_{out}および20MHz ノイズ・フロア (F_{L0}=940MHz、1960MHz、2140MHz)

アプリケーション

3GPP WCDMAのシングル・キャリア・アプ リケーション

図57に、WCDMA性能の測定に使用するインターポレーショ ン・フィルタを示します。この3次ベッセル・フィルタは、 12MHzの3dB帯域幅をもっています。3GPPのシングル・チャ ンネル帯域幅は3.84MHzにすぎませんが、この12MHzの3dB 帯域幅は、ベースバンド信号の少なくとも半分の帯域幅までフ ラットな群遅延を必要とするために用いています。図58に、 3GPPのテスト・モデル1(64チャンネル・アクティブ)を使用 し、2140MHzでのWCDMAのスペクトル・プロットを示しま す。-17.3dBmの出力パワーでは、-69dBc弱のACPR(隣接 チャンネル・パワー比)が測定されました。

図59に、1960MHzと2140MHzの出力パワーによるACPRの変動 を示します。また、変調されたWCDMA信号のセンターから 30MHzのオフセットで測定されたノイズ・フロアも示します。 これらのグラフからは、最高のACPRを実現する、最適な動作出 力パワーが存在することがわかります。出力パワーがそのポイ ントを超えると、歪みの増大によってACPRが悪化します。最適 値を下回ると、信号のS/N比の低下のためにACPRが悪化しま す。

図57. シングル・キャリアWCDMAのアプリケーション回路 (DACと変調器の相互接続)

図58. 2140MHzにおけるシングル・キャリアWCDMAのス ペクトル・プロット(ACPRと代替チャンネル・パワー 比を含む)

図59. 1960MHzおよび2140MHzでのチャンネル・パワー 対 シングル・キャリアWCDMAのACPRおよび30MHz キャリア・オフセットでのノイズ・フロア (dBm/Hz) (64のアクティブ・チャンネルによるテスト・モデル1)

WCDMAのマルチキャリア・アプリケーション AD8349は、その高いダイナミック・レンジによってマルチ キャリアWCDMAアプリケーションでも使用できます。図60に、 1960MHzでの4キャリアWCDMAのスペクトルを示します。 -24.2dBmのキャリア当たりのパワーでは、ACPRが-60.4dB になります。図61に、出力パワーによるACPとノイズ・フロア (dBc/Hz)の変化を示します。

図60. 1960MHzにおける4キャリアWCDMAのスペクトル・ プロット (ACPRと代替チャンネル・パワー比を含む)

図61. 1960MHzおよび2140MHzでのチャンネル当たりのパ ワー 対 4キャリアWCDMAのACPRおよび代替チャン ネル・パワー比および50MHzキャリア・オフセットでの ノイズ・フロア (dBm/Hz)

GSM/EDGEアプリケーション

図62と図64に、885MHzと1960MHzでのGMSKエラー・ベク トル振幅(EVM)、スペクトル性能、ノイズ・フロア(6MHz キャリア・オフセットでのdBc/100kHz)のプロットを示しま す。スペクトル性能に基づいて、最大出力パワー・レベルは 2dBmほどが適切となります。ただし、出力パワーがこのレベ ルより低下すると、dBcノイズ・フロアはごくわずかですが増加 するので注意してください。これで、ベースバンド駆動レベル を変えることによって、S/N比をほとんど、もしくはまったく 犠牲にすることなく、少なくとも5dBの範囲でシグナル・チェー ンのゲインを制御または補正できます。

図63と図65に、885MHzと1960MHzにおける8-PSK EVM、スペクトル性能、ノイズ・フロアのプロットを示します。

GMSKと8-PSKに対しては、約-6dBmのLO駆動レベルを推奨 します。LO駆動パワーを高くするとノイズ・フロアが若干改 善しますが、EVMが悪化する傾向があります。

図62. チャンネル・パワー 対 GMSK EVM、スペクトル性能、 ノイズ・フロア(周波数=885MHz)

図63. チャンネル・パワー 対 8-PSK EVM、スペクトル性能、 ノイズ・フロア(周波数=885MHz)

図64. チャンネル・パワー 対 GMSK EVM、スペクトル性能、 ノイズ・フロア(周波数=1960MHz)

図65. チャンネル・パワー 対 8-PSK EVM、スペクトル性能、 ノイズ・フロア(周波数=1960MHz)

ハンダ処理について

AD8349は、露出パドル付きの16ピンTSSOPパッケージを採用 しています。熱抵抗を下げ、グラウンドへのインダクタンスを 低減するには、露出パドルをグラウンド・プレーンの露出金属 部分にハンダ付けする必要があります。これによって、接合部 と周囲温度間の熱抵抗(θ_{IA})が30°C/Wになります。複数のグ ラウンド・プレーン(多層)が存在する場合は、露出パドルの 下の部分をビアで継ぎ合わせてください。

PLLによるLOの生成

アナログ・デバイセズのPLLシリーズを使用して、LO信号を 生成できます。表4に、PLLとその最大周波数および位相ノイ ズ性能を示します。

表4. アナログ・デバイセズのPLLセレクション・テーブル

モデル名	周波数F _Ⅳ (MHz)	位相ノイズ (dBc/Hz)@ 1kHz、PFD=200kHz
ADF4111BRU	1200	-78
ADF4111BCP	1200	-78
ADF4112BRU	3000	-86
ADF4112BCP	3000	-86
ADF4117BRU	1200	-87
ADF4118BRU	3000	-90

アナログ・デバイセズは、シンセサイザとVCOをシングル・ チップに完全に統合したADF4360シリーズも提供しています。 ADF4360シリーズを使用すると、AD8349のLO入力を駆動す るための差動出力が得られることから、シングルエンド/差動 変換に必要なバランを使用せずに済みます。ADF4360シリーズ は、動作周波数範囲の異なるモデルが6つ用意されていますの で、必要なLO周波数に基づいて動作周波数範囲を選択できます。 このようなVCOを内蔵したシンセサイザを使用すれば、 AD8349のノイズ性能は若干犠牲になりますが、PLLとVCOが 別のソリューションに比べてずっと安価な方法になります。表 5に、使用可能なオプションを示します。

表5. ADF4360ファミリーの動作周波数

モデル名	出力周波数範囲(MHz)
ADF4360-1	2150/2450
ADF4360-2	1800/2150
ADF4360-3	1550/1950
ADF4360-4	1400/1800
ADF4360-5	1150/1400
ADF4360-6	1000/1250
ADF4360-7	外付けLによって設定される低周波数

送信DACのオプション

このデータシートではAD9777を推奨していますが、AD8349 の駆動に使用できるDACはAD9777のみではありません。求め られる性能のレベルによっては、ほかにも適切なDACがありま す。表6に、アナログ・デバイセズが提供するデュアルTx-DACを示します。

表6. アナログ・デバイセズのデュアルTx-DACセレクション・ テーブル

デバイス	分解能(ビット)	更新レート(MSPS Min)
AD9709	8	125
AD9761	10	40
AD9763	10	125
AD9765	12	125
AD9767	14	125
AD9773	12	160
AD9775	14	160
AD9777	16	160

評価用ボード

AD8349実装済みの評価用ボードを用意しております。

AD8349にはパッケージの下側に露出パドルがあり、ボードに ハンダ付けされています。この評価用ボードは、ボードの下側

図66. 評価用ボードのレイアウト(最上層)

が部品のない設計になっているため、AD8349の下側を加熱して DUT (テスト対象デバイス)の取外し/交換が簡単にできます。

図67. 評価用ボードのシルクスクリーン

表7. 評価用ボ	ードの設定オプション
----------	------------

部品	機能	デフォルト状態
TP1、TP4、TP3	電源ピンおよびグラウンド・ベクトル・ピン	該当せず
SW1、ENOP、TP2	出力イネーブル:プルアップ抵抗R10によってENOPピンを+Vsに接続する には、Aの位置にします。	SW1=A
	49.9Ωのプルダウン抵抗によってピンENOPを接地し、デバイスをディスエー ブルにするには、Bの位置にします。デバイスをイネーブルにするには、 SMAコネクタENOPまたはTP2に外部電圧を印加します。	
R1, R2, R5, R9, C8~C11	ベースバンド入力フィルタ:これらの部品を使用して、ベースバンド信号用 のローパス・フィルタを実装できます。	R1、R2、R5、R9=0Ω、 C8~C11=オープン

図68. 評価用ボードの回路図

特性評価用セットアップ

SSBセットアップ

図69に、AD8349の特性評価に使用した基本セットアップを示 します。このセットアップを使用して、シングル・サイドバン ド変調器としてのAD8349を評価しました。インターフェー ス・ボードには、任意波形発生器からのシングルエンドのI入 力とQ入力を400mVのDCバイアスを持つ差動入力に変換する 回路があります。さらに、インターフェース・ボードには、電 源ルーティング用の接続も含まれています。HP34970Aとその プラグイン・ユニット34901を使用し、AD8349特性評価用 ボードに供給される電源電流と電源電圧を監視しました。 HP34907の2つのプラグイン・ユニットは、インターフェー ス・ボードにその他のさまざまなDC信号や制御信号を供給す るために使用しています。RF信号発生器がLO入力を直接駆動 し、スペクトル・アナライザで出力を直接測定しました。I チャンネルを正弦波でQチャンネルを余弦波で駆動し、下側サ イドバンドはシングル・サイドバンド(SSB)出力となります。 図53に、代表的なSSB出力のスペクトルを示します。

図69. 特性評価用ボードのSSBテスト・セットアップ

外形寸法

図70. 露出パッド型16ピンTSSOP/EP (RE-16-2) 単位寸法:mm

オーダー・ガイド

製品	温度範囲(℃)	パッケージ	パッケージ・オプション
AD8349ARE AD8349ARE-REEL7 AD8349AREZ ¹ AD8349AREZ-REEL7 ¹ AD8349-EVAL	$ \begin{array}{r} -40 \sim +85 \\ -40 \sim +85 \\ -40 \sim +85 \\ -40 \sim +85 \\ -40 \sim +85 \end{array} $	16ピンTSSOP、チューブ 16ピンTSSOP、7インチのテープ&リール 16ピンTSSOP、チューブ 16ピンTSSOP、7インチのテープ&リール 評価用ボード	RE-16 RE-16 RE-16 RE-16

¹ Z=Pb-free part.