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TUTORIAL

 
Taking the Mystery out of the Infamous Formula, 

"SNR = 6.02N + 1.76dB," and Why You Should Care 
 

by Walt Kester 
 

INTRODUCTION 
 
You don't have to deal with ADCs or DACs for long before running across this often quoted 
formula for the theoretical signal-to-noise ratio (SNR) of a converter. Rather than blindly 
accepting it on face value, a fundamental knowledge of its origin is important, because the 
formula encompasses some subtleties which if not understood can lead to significant 
misinterpretation of both data sheet specifications and converter performance. Remember that 
this formula represents the theoretical performance of a perfect N-bit ADC. You can compare the 
actual ADC SNR with the theoretical SNR and get an idea of how the ADC stacks up.   
 
This tutorial first derives the theoretical quantization noise of an N-bit analog-to-digital converter 
(ADC). Once the rms quantization noise voltage is known, the theoretical signal-to-noise ratio 
(SNR) is computed. The effects of oversampling on the SNR are also analyzed.  
 
QUANTIZATION NOISE MODEL 
 
The maximum error an ideal converter makes when digitizing a signal is ±½ LSB as shown in 
the transfer function of an ideal N-bit ADC (Figure 1). The quantization error for any ac signal 
which spans more than a few LSBs can be approximated by an uncorrelated sawtooth waveform 
having a peak-to-peak amplitude of q, the weight of an LSB. Another way to view this 
approximation is that the actual quantization error is equally probable to occur at any point 
within the range ±½ q. Although this analysis is not precise, it is accurate enough for most 
applications.  
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Figure 1: Ideal N-bit ADC Quantization Noise 
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W. R. Bennett of Bell Laboratories analyzed the actual spectrum of quantization noise in his 
classic 1948 paper (Reference 1). With the simplifying assumptions previously mentioned, his 
detailed mathematical analysis simplifies to that of Figure 1. Other significant papers and books 
on converter noise followed Bennett's classic publication (References 2-6). 
 
The quantization error as a function of time is shown in more detail in Figure 2. Again, a simple 
sawtooth waveform provides a sufficiently accurate model for analysis. The equation of the 
sawtooth error is given by 
 

e(t) = st, –q/2s < t < +q/2s.     Eq. 1 
 
The mean-square value of e(t) can be written: 
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Performing the simple integration and simplifying, 
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The root-mean-square quantization error is therefore 
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Figure 2: Quantization Noise as a Function of Time 
 
The sawtooth error waveform produces harmonics which extend well past the Nyquist bandwidth 
of dc to fs/2. However, all these higher order harmonics must fold (alias) back into the Nyquist 
bandwidth and sum together to produce an rms noise equal to q/√12.  
 
As Bennett points out (Reference 1), the quantization noise is approximately Gaussian and 
spread more or less uniformly over the Nyquist bandwidth dc to fs/2. The underlying assumption 
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here is that the quantization noise is uncorrelated to the input signal. Under certain conditions 
where the sampling clock and the signal are harmonically related, the quantization noise 
becomes correlated, and the energy is concentrated in the harmonics of the signal—however, the 
rms value remains approximately q/√12. The theoretical signal-to-noise ratio can now be 
calculated assuming a full-scale input sinewave: 
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The rms value of the input signal is therefore 
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The rms signal-to-noise ratio for an ideal N-bit converter is therefore 
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SNR = 6.02N + 1.76dB,  over the dc to fs/2 bandwidth.   Eq. 9 

 
Bennett's paper shows that although the actual spectrum of the quantization noise is quite 
complex to analyze, the simplified analysis which leads to Eq. 9 is accurate enough for most 
purposes. However, it is important to emphasize again that the rms quantization noise is 
measured over the full Nyquist bandwidth, dc to fs/2.  
 
FREQUENCY SPETRUM OF QUANTIZATION NOISE 
 
In many applications, the actual signal of interest occupies a smaller bandwidth, BW, which is 
less than the Nyquist bandwidth (see Figure 3). If digital filtering is used to filter out noise 
components outside the bandwidth BW, then a correction factor (called process gain) must be 
included in the equation to account for the resulting increase in SNR as shown in Eq. 10.  
 

BW2
flog10dB76.1N02.6SNR s

10 ⋅
++= ,   over the bandwidth BW. Eq. 10 

 
The process of sampling a signal at a rate which is greater than twice its bandwidth is referred to 
as oversampling. Oversampling in conjunction with quantization noise shaping and digital 
filtering are the key concepts in sigma-delta converters, although oversampling can be used with 
any ADC architecture.  
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Figure 3: Quantization Noise Spectrum Showing Process Gain 
 
 
The significance of process gain can be seen from the following example. In many digital 
basestations or other wideband receivers the signal bandwidth is composed of many individual 
channels, and a single ADC is used to digitize the entire bandwidth. For instance, the analog 
cellular radio system (AMPS) in the U.S. consists of 416 30-kHz wide channels, occupying a 
bandwidth of approximately 12.5 MHz. Assume a 65-MSPS sampling frequency, and that digital 
filtering is used to separate the individual 30-kHz channels. The process gain due to 
oversampling for these conditions is given by: 
 

dB3.30
10302

1065log10
BW2
flog10GainocessPr 3

6
10

s
10 =

××

×
=

⋅
= .    Eq. 11 

 
The process gain is added to the ADC SNR specification to yield the SNR in the 30-kHz 
bandwidth. In the above example, if the ADC SNR specification is 65 dB (dc to fs/2), then it is 
increased to 95.3 dB in the 30-kHz channel bandwidth (after appropriate digital filtering).  
 
Figure 4 shows an application which combines oversampling and undersampling. The signal of 
interest has a bandwidth BW and is centered around a carrier frequency fc. The sampling 
frequency can be much less than fc and is chosen such that the signal of interest is centered in its 
Nyquist zone. Analog and digital filtering removes the noise outside the signal bandwidth of 
interest, and therefore results in process gain per Eq. 10.   
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Figure 4: Undersampling and Oversampling 

Combined Results in Process Gain 
 
CORRELATION BETWEEN QUANTIZATION NOISE AND INPUT SIGNAL YIELDS 
MISLEADING RESULTS 

T SIGNAL YIELDS 
MISLEADING RESULTS 
  
Although the rms value of the noise is accurately approximated by q/√12, its frequency domain 
content may be highly correlated to the ac-input signal under certain conditions. For instance, 
there is greater correlation for low amplitude periodic signals than for large amplitude random 
signals. Quite often, the assumption is made that the theoretical quantization noise appears as 
white noise, spread uniformly over the Nyquist bandwidth dc to fs/2. Unfortunately, this is not 
true in all cases. In the case of strong correlation, the quantization noise appears concentrated at 
the various harmonics of the input signal, just where you don't want them.  
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there is greater correlation for low amplitude periodic signals than for large amplitude random 
signals. Quite often, the assumption is made that the theoretical quantization noise appears as 
white noise, spread uniformly over the Nyquist bandwidth dc to fs/2. Unfortunately, this is not 
true in all cases. In the case of strong correlation, the quantization noise appears concentrated at 
the various harmonics of the input signal, just where you don't want them.  
  
In most practical applications, the input to the ADC is a band of frequencies (always summed 
with some unavoidable system noise), so the quantization noise tends to be random. In spectral 
analysis applications (or in performing FFTs on ADCs using spectrally pure sinewaves as inputs, 
however, the correlation between the quantization noise and the signal depends upon the ratio of 
the sampling frequency to the input signal.  

In most practical applications, the input to the ADC is a band of frequencies (always summed 
with some unavoidable system noise), so the quantization noise tends to be random. In spectral 
analysis applications (or in performing FFTs on ADCs using spectrally pure sinewaves as inputs, 
however, the correlation between the quantization noise and the signal depends upon the ratio of 
the sampling frequency to the input signal.  
  
This is demonstrated in Figure 5, where the output of an ideal 12-bit ADC is analyzed using a 
4096-point FFT. In the left-hand FFT plot (A), the ratio of the sampling frequency (80.000 
MSPS) to the input frequency (2.000 MHz) was chosen to be exactly 40, and the worst harmonic 
is about 77 dB below the fundamental. The right hand diagram (B) shows the effects of slightly 
offsetting the input frequency to 2.111 MHz, showing a relatively random noise spectrum, where 
the SFDR is now about 93 dBc and is limited by the spikes in the noise floor of the FFT. In both 
cases, the rms value of all the noise components is approximately q/√12 (yielding a theoretical 
SNR of 74 dB) but in the first case, the noise is concentrated at harmonics of the fundamental 
because of the correlation.  

This is demonstrated in Figure 5, where the output of an ideal 12-bit ADC is analyzed using a 
4096-point FFT. In the left-hand FFT plot (A), the ratio of the sampling frequency (80.000 
MSPS) to the input frequency (2.000 MHz) was chosen to be exactly 40, and the worst harmonic 
is about 77 dB below the fundamental. The right hand diagram (B) shows the effects of slightly 
offsetting the input frequency to 2.111 MHz, showing a relatively random noise spectrum, where 
the SFDR is now about 93 dBc and is limited by the spikes in the noise floor of the FFT. In both 
cases, the rms value of all the noise components is approximately q/√12 (yielding a theoretical 
SNR of 74 dB) but in the first case, the noise is concentrated at harmonics of the fundamental 
because of the correlation.  
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Figure 5: Effect of Ratio of Sampling Clock to Input Frequency 
on Quantization Noise Frequency Spectrum for Ideal 12-bit ADC, 4096-Point FFT. 

(A) Correlated Noise, (B) Uncorrelated Noise 
 
Note that this variation in the apparent harmonic distortion of the ADC is an artifact of the 
sampling process caused by the correlation of the quantization error with the input frequency. In 
a practical ADC application, the quantization error generally appears as random noise because of 
the random nature of the wideband input signal and the additional fact that there is a usually a 
small amount of system noise which acts as a dither signal to further randomize the quantization 
error spectrum.  
 
It is important to understand the above point, because single-tone sinewave FFT testing of ADCs 
is one of the universally accepted methods of performance evaluation. In order to accurately 
measure the harmonic distortion of an ADC, steps must be taken to ensure that the test setup 
truly measures the ADC distortion, not the artifacts due to quantization noise correlation. This is 
done by properly choosing the frequency ratio and sometimes by summing a small amount of 
noise (dither) with the input signal. The exact same precautions apply to measuring DAC 
distortion with an analog spectrum analyzer.  
 
SNR, PROCESS GAIN, AND FFT NOISE FLOOR RELATIONSHIPS 
 
Figure 6 shows the FFT output for an ideal 12-bit ADC. Note that the average value of the noise 
floor of the FFT is approximately 107 dB below full-scale, but the theoretical SNR of a 12-bit 
ADC is 74 dB. The FFT noise floor is not the SNR of the ADC, because the FFT acts like an 
analog spectrum analyzer with a bandwidth of fs/M, where M is the number of points in the FFT. 
The theoretical FFT noise floor is therefore 10log10(M/2) dB below the quantization noise floor 
due to the processing gain of the FFT.  
 
In the case of an ideal 12-bit ADC with an SNR of 74 dB, a 4096-point FFT would result in a 
processing gain of 10log10(4096/2) = 33 dB, thereby resulting in an overall FFT noise floor of 
74 + 33 = 107 dBc. In fact, the FFT noise floor can be reduced even further by going to larger 
and larger FFTs; just as an analog spectrum analyzer's noise floor can be reduced by narrowing 
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the bandwidth. When testing ADCs using FFTs, it is therefore important to ensure that the FFT 
size is large enough so that the distortion products can be distinguished from the FFT noise floor 
itself. Averaging a number of FFTs does not further reduce the noise floor, it simply reduces the 
variations between the individual noise spectral component amplitudes.  
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Figure 6: Noise Floor for an Ideal 12-bit ADC Using 4096-point FFT 
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