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INTRODUCTION 
This user guide is the main source of information for systems 
engineers and software developers using the AD9371 family of 
software defined radio transceivers. This family includes the 
AD9371 and the AD9375. For this the user guide, these devices 

are interchangeable unless otherwise stated. The sections in this 
user guide are organized to simplify navigation for users to find 
the information pertinent to their area of interest.  

 

http://www.analog.com/AD9371
http://www.analog.com/AD9375
http://www.analog.com/AD9371
http://www.analog.com/AD9371
http://www.analog.com/AD9375
http://www.analog.com
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USER GUIDE SECTION DESCRIPTION 
For simplified navigation of this user guide, an overview of each 
section follows:  

 System Overview. This section explains the capability of 
the device and serves as an introduction to all the subsystems 
and functions, including the block diagrams and interfaces. 

 System Architecture Description. This section explains the 
software design approach using the application 
programming interface (API) and all details required to 
develop code on the device. 

 Software Integration. This section describes the process for 
developing code using the APIs. This section lists common 
API functions for user integration into the code base. 

 Serial Peripheral Interface (SPI). The SPI is the main 
control interface between the baseband processor (BBP) 
and the integrated transceiver. 

 JESD204B Interface. This section provides a description of 
the JESD204B digital interface, setup, and configuration 
options. 

 System Initialization. This section provides the sequence of 
steps required at startup. 

 Quadrature Error Correction, Calibration, and ARM 
Configuration. This section describes the calibration and 
error correction functions and setup guidelines for 
configuring the ARM processor to perform scheduled 
adjustments. 

 System Control. This section describes the commands and 
sequences for setting up the different radio channels. 

 Tx Power Control. This section explains the commands 
and procedures for adjusting Tx power control during 
normal operation. 

 Power Amplifier (PA) Protection. This section describes 
how to setup the PA protection features to help prevent the 
power amplifier from being overdriven. The transmitter 
channels features a protection mechanism that can help 
prevent damage to the PA connected to either of the 
transmitter outputs. When the full-scale output power of 
the device exceeds the maximum input to the PA, it can 
damage the PA. The PA protection feature implements 
feedback in the system to prevent an overload by 
measuring the signal level and by comparing it to the user-
programmable threshold. This information can reduce the 
transmit output level on the flagged channel and eliminate 
the damage threat. This section describes how to set up the 
reference clocks needed for the internal clock and for 
signal generation as well as data synchronization. 

 Synthesizer Configuration. This section describes how to 
configure the synthesizers for different modes of operation. 
This section includes details for receiver (Rx), transmitter 
(Tx), observation receiver (ORx), and clock phase-locked 
loop (PLL) setup, as well as the calibration PLL setup.  

 Gain Control. This section describes the options for 
controlling receiver gain settings, including manual gain 
control (MGC) provided by the BBP and automatic gain 
control (AGC) provided by the integrated transceiver. 

 Filter Configuration. This section describes all the digital 
filter blocks in the receivers and transmitters, and explains the 
programmable FIR filters and how to set their coefficients. 

 Observation Receiver. This section describes the ORx inputs 
and the sniffer receiver (SnRx) inputs, including system 
implementation and setup APIs. 

 TDD Configuration and Setup. This section describes 
software configuration for operating in a time division 
duplexed (TDD) system. 

 General-Purpose Input/Output (GPIO) Configuration. 
This section describes the options for configuring standard 
digital GPIO pins. 

 3.3 V General-Purpose Input/Output Overview. This 
section describes the options for configuring the 3.3 V 
supplied GPIO pins.  

 General-Purpose Interrupt Overview. This section describes 
setup and operation of the general-purpose interrupt pin. 

 Auxiliary Converters—AUXDAC_x, AUXADC. This 
section describes the capability of the AUXADC_x inputs, 
the AUXDAC_x outputs, and how to properly configure 
the inputs and outputs for various applications. 

 RF Port Interface. This section explains all the details 
necessary to properly match the RF impedances of each 
differential input and output port. 

 Printed Circuit Board Layout Guidelines. This section 
describes the printed circuit board (PCB) construction, 
layout, routing, and isolation techniques necessary to 
optimize device performance. 

 Power Management Considerations. This section describes 
the power supply design and all the considerations needed 
to optimize device performance. 

 Demonstration System Overview. This section describes 
the demonstration system, including the evaluation board, 
motherboard, and hardware integration setup needed to 
properly evaluate device performance. 

 Transceiver Evaluation Software. This section describes the 
transceiver evaluation software (TES) that provides a 
graphical user interface that controls the evaluation system. 

 DPD, CLGC, and VSWR Measurement (AD9375 Only). 
This section describes operation of the closed-loop transmitter 
control functions available only in the AD9375 device. 

 

http://www.analog.com/ad9371-evaluation-software
http://www.analog.com
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SYSTEM OVERVIEW 
Analog Devices, Inc., provides a variety of highly integrated RF 
agile transceivers, including the AD9371 and AD9375. This 
transceiver family provides dual-channel receivers, dual-channel 
transmitters, integrated synthesizers, digital signal processing 
functions, and a high speed serial interface. The AD9375 provides 
the added capability or integrated digital predistortion (DPD) 
for the transmitter channels to improve linearity and decrease 
power consumption. The devices operate over the wide frequency 
range of 300 MHz to 6 GHz and can support a transmit synthesis 
bandwidth up to 250 MHz, as well as a receiver bandwidth up 
to 100 MHz. The information in this document applies equally 
to the AD9371 and the AD9375, except for the section that 
describes DPD operation for the AD9375. To avoid confusion, 
the term device is used throughout the user guide to refer to 
both devices interchangeably. In sections that refer to only one 
device, the part number referenced to clearly delineate which 
device is being described. Note that references in the diagrams 
and the application programming interface (API) code examples 
keep the text that appears in the code, even when it applies to 
both devices. 

The device provides three receiver inputs with limited bandwidth 
(20 MHz) to monitor signals on other channels of interest. These 
receivers, commonly referred to as sniffer receivers (SnRxs), can 
be matched to different frequency range antennae to monitor a 
wider spectrum during normal operation in a more narrow band. 
The independent synthesizer associated with these receivers allows 
the receivers to operate on different frequency channels during 
normal transmit/receive operation. 

An additional pair of receiver channels can be used as dedicated 
observation receivers used to monitor the transmitter channels. 
These receivers provide the same bandwidth and gain capability 
as the main signal channel receivers, but are dedicated for use as 
monitors for transmitter performance. These receivers provide 
a feedback path to implement calibration and error correction 
algorithms on the transmit data. 

All signal data transfers are accomplished using a JESD204B 
high speed serial interface with eight separate lanes. Four lanes 
are dedicated as inputs to the transmitter system and four lanes 
are configurable to serve as outputs for the receiver system. 
When one or two main signal chain receivers are active and an 
observation/sniffer receiver is active, the main signal chain 
receivers can be assigned one or two receiver lanes, and the 
observation/sniffer receiver can also be assigned only one or 
two lanes. Note that only one observation receiver or sniffer 
receiver can be operational at any given time, but all four lanes 
can be assigned to that channel or shared between this channel 
and the active signal chain receivers. 

A serial peripheral interface (SPI) transmits and receives control 
information between the device and a baseband processor. All 
software control is communicated via this interface. There is 
also a control interface that utilizes GPIO lines to provide 
hardware control to and from the device. These pins can be 
configured to provide dedicated sets of functions for different 
application scenarios. Some GPIOs are intended for digital 
control, while others are supplied by a 3.3 V analog supply for 
use in controlling external analog components. There are also 
ten auxiliary digital to analog converters (DACs), known as 
auxiliary DACs, that can be muxed with 3.3 V GPIO pins to be 
used as control voltage sources for other devices requiring variable 
control voltages. Included in this block is a set of three low 
speed auxiliary analog to digital converters (ADCs) that 
monitor external voltages of interest to system operation. 

Figure 1 and Figure 2 show block diagrams for the AD9371 
and the AD9375, respectively. Software control of each block is 
described in the following sections of this user guide. Note that 
all software code is taken from the API that is supplied with the 
device. References to Mykonos in the API refer to the Analog 
Devices development name for the device family.  
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Figure 1. AD9371 Functional Block Diagram 
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Figure 2. AD9375 Functional Block Diagram  
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SYSTEM ARCHITECTURE DESCRIPTION 
This user guide provides information about the API software 
developed by Analog Devices for the AD9371 transceiver 
family. This user guide outlines the overall architecture, folder 
structure, and methods for using the application programming 
interface software on any platform. This user guide does not 
describe the API library functions. Detailed information regarding 
the application programming interface functions is located in 

the /src/doc file in the software package directory structure. 
This file can also be viewed in the Help tab on the transceiver 
evaluation software (TES) used for controlling the evaluation 
platform. 

SOFTWARE ARCHITECTURE 
Figure 3 shows the software architecture. 
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Figure 3. API Software Architecture 
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FOLDER STRUCTURE 
The source files are located in the folder structure shown in 
Figure 4. Each branch is explained in the following sections. 

/src

/api
/ad9528
/mykonos
common.h
common.c

/doc
mykonos.chm 14

65
2-

00
3

 
Figure 4. API Folder Structure 

/src/api 

This folder includes the main application programming interface 
code for the AD9371 transceiver family, as well as the Analog 

Devices AD9528 clock chip. The application programming 
interface (API) is composed of all files located in the /mykonos 
folder, as well as the common.h file and common.c file. The 
/mykonos folder contains the high level function prototypes, 
data types, macros, and source code used to build the final user 
software system. The user is strictly forbidden to modify the 
files contained in the /mykonos folder and the /ad9528 folder. 
Analog Devices maintains this code as intellectual property and 
all changes are at their sole discretion. The common.h and 
common.c files provide the means for a user to insert their 
hardware driver code for system integration with the AD9371 
API. A description regarding the use of common.c is contained 
in the Software Integration section.  

/src/doc 

This folder contains the API doxygen (mykonos.chm) file for 
user reference. It is in compressed HTML format. 

 

http://www.analog.com/AD9371
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SOFTWARE INTEGRATION 
The current application programming interface (API) package 
was developed on a Xilinx® ZC706 reference platform using a 
dual-core ARM A9 processor running a Linux® variant. Users are 
required to integrate the API with their platform specific code 
base. This is readily accomplished because the API abides by 
ANSI C constructs while maintaining Linux system call 
transparency. The ANSI C standard was followed to ensure 
agnostic processor and operating system integration with the 
API code. 

MODIFYING COMMON.C 
Users develop code on their own hardware specific platforms. 
Therefore, users maintain different drivers for the peripherals, 
such as the SPI and GPIO, than what is included in the API. 
Users can use their own drivers for these peripherals, or they 
may use standard drivers if they use an operating system, such 
as Linux.  

The API is designed with the intent that developers may use any 
driver of their choice for their platform requirements. Users are 
permitted to substitute their driver code within the function 
bodies located in common.c file in the /mykonos_api directory 
for their platform requirements. However, users may not modify 
the parameter declarations for these functions or any other code 
because doing so breaks the API. Analog Devices does not support 
any user application containing unauthorized API code. The 
functions in the common.c file for which a developer can 
substitute their own hardware specific information are 
described in Table 1. 

 

 

 

 

 

Table 1. Common API Functions for User Integration 
Function Description 
void CMB_hardReset(uint8_t spiChipSelectIndex)  This function performs the required platform dependent resets. 
void CMB_setGPIO(uint32_t GPIO) This function sets the GPIOs based on the platform requirement. 
void CMB_setSPIOptions(spiSettings_t *spiSettings) The device and the clock chip use the same SPI settings, but different 

chip selects. This function assigns SPI settings to each SPI enabled 
device on the board. 

void CMB_setSPIChannel(uint16_t chipSelectIndex ) This function assigns the chip select to the device on the board. Users 
know the chip select assigned to each device on their platform. 

CMB_SPIWriteByte(spiSettings_t *spiSettings, uint16_t addr, 
uint8_t data) 

Use this function to write a byte to an SPI register. 

CMB_SPIReadByte (spiSettings_t *spiSettings, uint16_t addr, 
uint8_t *readdata) 

Use this function to read a 1-byte SPI register. 

CMB_SPIWriteField(spiSettings_t *spiSettings, uint16_t addr, 
uint8_t field_val, uint8_t mask, uint8_t start_bit) 

This function writes a bit field to an SPI register. 

CMB_SPIReadField (spiSettings_t *spiSettings, uint16_t addr, 
uint8_t *field_val, uint8_t mask, uint8_t start_bit) 

This function reads a bit field from an SPI register.  

CMB_wait_ms(uint32_t time_ms) This function instructs the API to wait for units of ms. 
CMB_wait_us(uint32_t time_us) This function instructs the API to wait for units of µs. 
CMB_setTimeout_ms(uint32_t timeOut_ms) This function sets the timeout in ms. 
CMB_setTimeout_us(uint32_t timeOut_us) This function sets the timeout in µs. 
BOOL CMB_hasTimeoutExpired() This function shows if timeout happened based on the timeout 

already set in the system. 
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DEVELOPING THE APPLICATION 
The headless.c file provides a user example for top level 
configuration and control. Users can reference this to develop 
their application. However, the initialization sequence is unique 
and includes the assignment of data structure values. Data 
structures containing device configuration and operation 
variables are throughout the application programming interface. 
A headless.c file incorporating user selected settings can be 
obtained by creating a C script using transceiver evaluation 
software (TES) as described in the Other TES Features section. 

Data Structures 

The application programming interface functions use a specific 
set of data structures. The application code initializes these data 

structures. All application programming interface functions use 
a pointer to a device data structure to convey configuration and 
control settings. It is imperative that structure initialization is 
complete before attempting system operation. Table 2 contains a 
list of these structures. 

The headless.c file illustrates the structure initialization 
sequence at the beginning of the file. Explanations for each data 
structure are contained in the mykonos.chm document. 

Note that all unchanged JESD204B parameters must use the 
default JESD204B parameters in the application programming 
interface. Failure to do so results in erroneous link operation.  

 

Table 2. List of Data Structures Used in Application Programming Interface 
Data Structure Location Description 
spiSettings_t /src/api/common.h This data structure contains the SPI settings for all system 

device types. 
mykonosFir_t /src/api/mykonos/t_mykonos.h This data structure contains the FIR filter gain, the number 

of coefficients, and a pointer to a filter coefficient array. 
mykonosJesd204bFramerConfig_t /src/api/mykonos/t_mykonos.h This data structure contains the JESD204B framer 

configuration parameters. 
mykonosJesd204bDeframerConfig_t /src/api/mykonos/t_mykonos.h This data structure contains the JESD204B deframer 

configuration parameters. 
mykonosRxProfile_t /src/api/mykonos/t_mykonos.h This data structure contains the Rx profile information. 
mykonosTxProfile_t /src/api/mykonos/t_mykonos.h This data structure contains the Tx profile information. 
mykonosSnifferGainControl_t /src/api/mykonos/t_mykonos.h This data structure contains the sniffer Rx manual gain 

control information. 
mykonosORxGainControl_t /src/api/mykonos/t_mykonos.h This data structure contains the observation Rx manual 

gain control information. 
mykonosRxGainControl_t /src/api/mykonos/t_mykonos.h This data structure contains the Rx manual gain control 

information. 
mykonosAgcCfg_t /src/api/mykonos/t_mykonos.h This data structure contains the automatic gain control (AGC) 

information. 
mykonosTxSettings_t /src/api/mykonos/t_mykonos.h This data structure contains the Tx setting information. 
mykonosRxSettings_t /src/api/mykonos/t_mykonos.h This data structure contains the Rx setting information. 
mykonosObsRxSettings_t /src/api/mykonos/t_mykonos.h This data structure contains the observation Rx setting 

information. 
mykonosGpio3v3_t /src/api/mykonos/t_mykonos.h This data structure contains the 3.3 V dc GPIO setting 

information. 
mykonosGpio1v8_t /src/api/mykonos/t_mykonos.h This data structure contains the 1.8 V dc GPIO setting 

information. 
mykonosAuxIo_t /src/api/mykonos/t_mykonos.h This data structure contains the auxiliary ADC, DAC, and 

pointers to the GPIO setting information. 
mykonosDigClocks_t /src/api/mykonos/t_mykonos.h This data structure contains the digital clock parameters. 
mykonosDevice_t /src/api/mykonos/t_mykonos.h This data structure is inclusive of all previous data types, 

which are instantiated as pointers. The PROFILESVALID bit 
field identifies which profile is valid. This data type is used 
to instantiate one device for configuration and control 
after member structure initialization. 

mykonosArmGpioConfig_t /src/api/mykonos/t_mykonos.h This data structure holds the ARM GPIO pin assignments 
for each ARM input/output pin. 

mykonosPeakDetAgcCfg_t /src/api/mykonos/t_mykonos.h This data structure holds the peak detector settings for the 
AGC. 

mykonosPowerMeasAgcCfg_t /src/api/mykonos/t_mykonos.h This data structure holds the power measurement settings 
for the AGC. 
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Data Structure Location Description 
mykonosInitCalStatus_t /src/api/mykonos/t_mykonos.h This data structure reads back the initialization calibration 

status. 
mykonosTxLolStatus_t /src/api/mykonos/t_mykonos.h This data structure holds the Tx local oscillator leakage 

(LOL) status. 
mykonosTxQecStatus_t /src/api/mykonos/t_mykonos.h This data structure holds the Tx quadrature error 

correction (QEC) status. 
mykonosRxQecStatus_t /src/api/mykonos/t_mykonos.h This data structure holds the Rx QEC status. 
mykonosOrxQecStatus_t /src/api/mykonos/t_mykonos.h This data structure holds the Orx QEC status. 
mykonosGainComp_t /src/api/mykonos/t_mykonos_gpio.h This data structure holds the gain compensation settings 

for the main receive channels. 
mykonosObsRxGainComp_t /src/api/mykonos/t_mykonos_gpio.h This data structure holds the gain compensation settings 

for the observation channel. 
mykonosFloatPntFrmt_t /src/api/mykonos/t_mykonos_gpio.h This data structure holds the floating point formatter 

settings for the floating point number generation 
mykonosTempSensorConfig_t /src/api/mykonos/t_mykonos_gpio.h This data structure configures the on die temperature 

sensor. 
mykonosTempSensorStatus_t /src/api/mykonos/t_mykonos_gpio.h This data structure stores the temperature sensor related 

values. 
mykonosLaneErr_t /src/api/mykonos/mykonos_debug/ 

t_mykonos_dbgjesd.h 
This data structure holds the error counters per a given lane. 

mykonosDeframerStatus_t /src/api/mykonos/mykonos_debug/ 
t_mykonos_dbgjesd.h 

This data structure holds the deframer status. 

 

Using API Functions 

Direct SPI read/write operation is not permitted when 
configuring the device or the Analog Devices clock chip device. 
Only use the high level API functions defined in the 
/src/api/mykonos/mykonos.h, /src/api/mykonos/mykonos_ 
gpio.h, /src/api/mykonos/mykonos_debug/mykonos_ 
dbgjesd.h, or /src/api/ad9528/ad9528.h files. Users must not 
directly use any SPI read/write function located in common.c 
in their application code for device configuration or control. 
Analog Devices does not support any user code containing SPI 
writes reverse engineered from the original API. 

Adding Gain Tables and Device Profiles 

The /src/api/mykonos/mykonos_user.h and /src/api/mykonos/ 
mykonos_user.c files provide setup information for the gain 
tables. The default gain table settings for the Rx, the ORx, and 
the sniffer Rx are located in mykonos_profiles.c. Each gain table 
is organized according to a descending gain index normalized 
to a maximum gain for each respective API calling function. 
The tables consist of a two-dimensional array construct where the 
subarray order for each gain table type is a code comment at the 
beginning of the declaration. Users can modify these gain tables 
to include their own custom configurations. Users must submit 
their custom gain settings to Analog Devices for approval. 
Analog Devices does not support any custom gain tables not 
submitted for approval prior to user use. Details of these files 
are available in the device /src/doc file in the software package 
directory structure 

API Sequence 

The outline of the correct API initialization sequence illustrated 
in headless.c is as follows: 

1. Instantiate all data structures and load their members 
required by the user application (myk_init.c contents). 

2. Initialize and set up all clocks (the platform clock source 
and the JESD204B SYSREF signals are set up).  

3. Initialize the hardware platform (hardware dependent 
devices such as FPGA/ASIC/BBP interfaces are initialized). 

4. Reset the device (call MYKONOS_resetDevice for the reset 
of the transceiver device in preparation for initialization). 

5. Initialize the device (call MYKONOS_initialize function 
for configuration of the device).  

6. Check CLKPLL status for lock (call MYKONOS_ 
checkPllLockStatus and perform check with user defined 
code). 

7. Perform multichip synchronization (all JESD204B lanes are 
synchronized together for deterministic latency 
requirements).  

8. Initialize the ARM processor (call MYKONOS_initArm). 
9. Load the ARM binary file (call MYKONOS_ 

loadArmFromBinary with user defined binary array 
pointer). 

10. Set the RF PLL frequencies (call MYKONOS_ 
setRfPllFrequency for each channel used by the 
application). 

11. Perform the RF PLL lock check (call MYKONOS_ 
checkPllLockStatus and perform the check with user-
defined code). 

12. Set the GPIO functions with the desired configuration 
(check headless.c for API calls to be made). 
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13. Run the initialization calibrations (call MYKONOS_ 
runInitCals and MYKONOS_waitInitCals with user 
defined code). 

14. Enable the SYSREF for the Rx and ORx deframer (call 
MYKONOS_enableSysrefTo … functions). 

15. Send the SYSREF signal to bring up the JESD204B 
interface. 

16. Check deframer and framer status (call MYKONOS_ 
readDeframerStatus and 
MYKONOS_readRxFramerStatus). 

17. Verify the sync and link status for the hardware platform. 
18. Enable tracking calibrations (call MYKONOS_ 

enableTrackingCals). 
19. Turn the radio on for all transmitters and receivers that 

were previously set up (call MYKONOS_radioOn). 

Note that hardware designs with multiple AD9371 or AD9375 
devices require each device to have its own unique 
configuration data initialized for all data structures.  

Restrictions 

Do not modify any code located in the /src/api/* folder, other 
than changing the common.c code bodies for hardware driver 
insertion and gain table and profile changes in mykonos_ 
profiles.c, as previously discussed. Analog Devices maintains 
the code in the /src/api/mykonos and /src/api/ad9528 folders 
as intellectual property and all changes are at their sole 
discretion. Analog Devices provides new releases to fix any 
code bugs in these folders. Verification of all code bugs is 
independent of any user code. 
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SERIAL PERIPHERAL INTERFACE (SPI) 
The SPI bus provides the mechanism for all digital control of 
the device by a baseband processor (BBP). Each SPI register is 
8 bits wide, and each register contains control bits, status monitors, 
or other settings that control all functions of the device. This 
section is mainly an informational section meant to give the 
user an understanding of the interface used by the BBP for 
digital control. All control functions are implemented using the 
API detailed within this user guide. The following sections 
explain the specifics of this interface. 

SPI CONFIGURATION USING API FUNCTION 
The SPI bus is configured by the MYKONOS_setSpiSettings 
(mykonosDevice_t *device) function. Users can configure SPI 
settings for the device for use in different configurations by 
calling the MYKONOS_setSpiSettings function with the 
following parameters. 

• To use the SPI as a 4-wire interface,

MYKONOS_setSpiSettings  (device->
spiSettings->fourWireMode = 1);

• To use the SPI as a 3-wire interface (default configuration),

MYKONOS_setSpiSettings  (device->
spiSettings->fourWireMode = 0);

• To use the SPI in LSB first mode,

MYKONOS_setSpiSettings  (device->
spiSettings->MSBFirst = 0);

• To use the SPI in MSB first mode (default configuration),

MYKONOS_setSpiSettings  (device->
spiSettings->MSBFirst = 1);

• To enable single instruction SPI data transfer mode,

MYKONOS_setSpiSettings  (device->
spiSettings->enSpiStreaming = 0);

• To enable SPI streaming mode,

MYKONOS_setSpiSettings  (device->
spiSettings->enSpiStreaming = 1);

SPI streaming allows the device to automatically change the 
register address after each operation. Users can select an 
autoincrement or autodecrement SPI address with the following 
parameters: 

• For an autoincrement SPI address, where next addr = addr + 
1, program the following:

MYKONOS_setSpiSettings  (device->
spiSettings->autoIncAddrUp = 1);

• For an utodecrement SPI address, where next addr = addr − 1,
program the following:

MYKONOS_setSpiSettings  (device->
spiSettings->autoIncAddrUp = 0);

SPI BUS SIGNALS 
The SPI bus consists of the signals described in the following 
sections. 

CSB 

CSB is the active low chip select that functions as the bus enable 
signal driven from the baseband processor to the device. CSB is 
driven low before the first SCLK rising edge and is normally 
driven high again after the last SCLK falling edge. The device 
ignores the clock and data signals while CSB is high. CSB also 
frames communication to and from the device and returns the 
device to the ready state when it is driven high. 

Forcing CSB high in the middle of a transaction aborts part or 
all of the transaction. If the transaction is aborted before the 
instruction is complete or in the middle of the first data word, 
the transaction is aborted and the state machine returns to the 
ready state. Any complete data byte transfers prior to CSB 
deasserting are valid, but all subsequent transfers in a 
continuous SPI transaction are aborted. 

SCLK 

SCLK is the serial interface reference clock driven by the BBP to 
the device. It is only active while CSB is low. The maximum 
SCLK frequency is 50 MHz. 

SDIO and SDO 

When configured as a 4-wire bus, the SPI uses two data signals: 
SDIO and SDO. SDIO is the data input line driven from the 
baseband processor to the device, and SDO is the data output 
from the AD9371 to the baseband processor in this configuration. 
When configured as a 3-wire bus, SDIO is used as a bidirectional 
data signal that both receives and transmits serial data. In this 
mode, the SDO port is disabled. 

The data signals are launched on the falling edge of SCLK and 
sampled on the rising edge of SCLK by both the baseband 
processor and the device. SDIO carries the control field from 
the baseband processor to the AD9371 during all transactions, 
and it carries the write data fields during a write transaction. In 
a 3-wire SPI configuration, SDIO carries the returning read data 
fields from the device to the BBP during a read transaction. In a  
4-wire SPI configuration, SDO carries the returning data fields to 
the baseband processor. 

The SDO and SDIO pins transition to a high impedance state 
when the CSB input is high. The device does not provide any 
weak pull-up or pull-down on these pins. When SDO is inactive, it 
is floated in a high impedance state. If a valid logic state on SDO is 
required at all times, add an external, weak pull-up/pull-down 
on the printed circuit board (PCB). 

http://www.analog.com/AD9371
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SPI DATA TRANSFER PROTOCOL 
The device SPI is a flexible, synchronous serial communications 
bus allowing seamless interfacing to many industry-standard 
microcontrollers and microprocessors. The serial input/output 
(I/O) is compatible with most synchronous transfer formats, 
including both the Motorola, Inc., SPI and Intel® SSR protocols. 
The control field width is limited to 16 bits, and multibyte I/O 
operation is allowed. The device cannot be used to control other 
devices on the bus; it only operates as a slave. 

There are two phases to a communication cycle. Phase 1 is the 
control cycle, which is the writing of a control word into the 
device. The control word provides the serial port controller with 
information regarding the data field transfer cycle, which is Phase 2 
of the communication cycle. The Phase 1 control field defines 
whether the upcoming data transfer is a read or a write. It also 
defines the register address being accessed. 

Phase 1 Instruction Format 

The 16-bit control field contains information shown in Table 3. 

Table 3. Phase 1 16-Bit Control Field 
MSB [D14:D0] 
R/W A[14:0] 
 

R/W 

Bit 15 of the instruction word determines whether a read or write 
data transfer occurs after the instruction byte write. Logic high 
indicates a read operation; Logic 0 indicates a write operation. 

[D14:D0] 

Bits A[14:0] specify the starting byte address for the data 
transfer during Phase 2 of the input/output operation. 

All byte addresses, both starting and internally generated addresses, 
are assumed to be valid. That is, if an invalid address (undefined 
register) is accessed, the input/output operation continues as if the 
address space is valid. For write operations, the written bits are 
discarded, and the read operations result in Logic 0s at the 
output 

Single-Byte Data Transfer 

When enSpiStreaming = 0, a single-byte data transfer is chosen. 
In this mode, CSB goes active low, the SCLK signal activates, 
and the address is transferred from the baseband processor to 
the device.  

In LSB mode, the LSB of the address is the first bit transmitted 
from the baseband processor, followed by the next 14 bits in 
order from the next LSB to MSB. The next bit signifies if the 
operation is a read (set) or a write (clear). If the operation is a 
write, the baseband processor transmits the next 8 bits LSB to 
MSB. If the operation is a read, the device transmits the next 8 
bits LSB to MSB. After the final bit is transferred, the data lines 
return to their idle state and the CSB line must be driven high 
to end the communication session.  

In MSB mode, the first bit transmitted is the R/W bit that 
determines if the operation is a read (set) or a write (clear). The 
MSB of the address is the next bit transmitted from the baseband 
processor, followed by the remaining 14 bits in order from next 
MSB to LSB. If the operation is a write, the baseband processor 
transmits the next 8 bits MSB to LSB. If the operation is a read, the 
device transmits the next 8 bits MSB to LSB. After the final bit is 
transferred, the data lines return to their idle state and the CSB line 
must be driven high to end the communication session. 

Multibyte Data Transfer 

When enSpiStreaming = 1, a multibyte data transfer is allowed. In 
this mode, data transfers across the bus as long as the CSB pin is 
low. The autoIncAddrUp controls how the address changes for 
subsequent writes or reads. When autoIncAddrUp = 1, the address 
increments from the starting address for each subsequent data 
transfer until CSB is driven high. If the last register address is 
reached, the next address accessed is 0x000. When this bit is 
clear, the address decrements from the starting address for each 
subsequent data transfer. If this bit is clear and Address 0x000  
is reached, the next address to be accessed is the last register 
location defined in the register map. It is strongly recommended 
that any data transfer be controlled so that Address 0x000 is 
only written once at startup. 

For multibyte data transfers in LSB mode, the LSB of the 
address is the first bit transmitted from the baseband processor, 
followed by the next 14 bits in order from next LSB to MSB. The 
next bit signifies if the operation is a read (set) or a write (clear). 
If the operation is a write, the baseband processor transmits the 
next 8 bits LSB to MSB. After the MSB is received, the address 
increments or decrements based on the autoIncAddrUp 
parameter. The baseband processor then continues to transfer 
data in 8-bit words, LSB to MSB, until the operation is 
terminated by CSB being driven high. If the operation is a read, 
the device transmits the next 8 bits LSB to MSB. The device 
then changes the address and continues to transfer data in 8-bit 
words, LSB to MSB, until the operation is terminated by CSB 
being driven high. 

For multibyte data transfers in MSB mode, the same process is 
followed, except the first bit transferred indicates if the operation is 
a read (set) or a write (clear). The starting address is then trans-
mitted by the baseband processor, MSB to LSB, followed by the 
data transfer, MSB to LSB. Address increment or decrement is 
still controlled by the autoIncAddrUp parameter. 
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Example: LSB First Multibyte Transfer, Autoincrementing 
Address  

To complete a 4-byte write starting at Register 0x02A and 
ending with Register 0x02D in LSB first format, follow these 
instructions when programming the master: 

 Ensure that fourWireMode = 1 (the device is configured to 
work with the 4-wire interface). 

 Ensure that MSBFirst = 0 (the SPI works in LSB first mode). 
 Ensure that autoIncAddrUp = 1 (the address pointer 

automatically increments). 
 Ensure that enSpiStreaming = 1 (a multibyte data transfer 

is allowed). 
 Force the CSB line low and keep it low until the last byte is 

transferred. 
 Send the instruction word 0101 0100 0000 000_0 (the last 0 

indicates a write operation) to select Register 0x02A as the 
starting address. 

 Use the next 32 clock cycles to send the data to be written 
to the registers, LSB to MSB for each 8-bit word. 

 Ensure the CSB line is driven high after the last bit is sent 
to Register 0x02D to end the data transfer 

Example: MSB First Multibyte Transfer, 
Autodecrementing Address  

To complete a 4-byte write starting at Register 0x02A and 
ending with Register 0x027 in LSB first format, follow these 
instructions when programming the master: 

 Make sure that fourWireMode = 1 (the device is 
configured to work with the 4-wire interface). 

 Make sure that MSBFirst = 1 (the SPI works in MSB first 
mode). 

 Make sure that autoIncAddrUp = 0 (the address pointer 
automatically decrements). 

 Make sure that enSpiStreaming = 1 (a multibyte data 
transfer is allowed). 

 Force the CSB line low and keep it low until the last byte is 
transferred. 

 Send the instruction word 0_000 0000 0010 1010 (the first 
0 indicates a write operation) to select Register 0x02A as 
the starting address. 

 Use the next 32 clock cycles to send the data to be written 
to the registers, MSB to LSB for each 8-bit word. 

 Make sure the CSB line is driven high after the last bit has 
been sent to Register 0x027 to end the data transfer. 

TIMING DIAGRAMS 
The diagrams in Figure 5 and Figure 6 show the SPI bus 
waveforms for a single register write operation and a single 
register read operation, respectively. In Figure 5, the value 0x55 
is written to Register 0x00A. In Figure 6, Register 0x00A is read 
and the value returned by the device is 0x55. If the same operations 
are performed with a 3-wire bus, the SDO line in Figure 5 is 
eliminated, and the SDIO and SDO lines in Figure 6 are combined 
on the SDIO line. Note that both operations use MSB first mode 
and all data is latched on the rising edge of the SCLK signal. 
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Figure 5. Nominal Timing Diagram, SPI Write Operation  

 

READ REGISTER 0x00A – VALUE = 0x55

CSB

SDIO

SCLK

SDO

14
65

2-
00

5

 
Figure 6. Nominal Timing Diagram, SPI Read Operation  
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Table 4 lists the timing specifications for the SPI bus. The 
relationship between these parameters is shown in Figure 7. 
This diagram shows a 3-wire SPI bus timing diagram with the 
device returning a value of 0xD4 from Register 0x00A; the 

timing parameters are marked. Note that this is a single-read 
operation; therefore, the bus ready parameter after the data is 
driven from the device (tHZS) is not shown in the diagram. 

 

Table 4. SPI Bus Timing Constraint Values 
Parameter Min Typ Max Description 
tCP 20 ns   SCLK cycle time (clock period) 
tMP 10 ns   SCLK pulse width 
tSC 3 ns   CSB setup time to first SCLK rising edge 
tHC 0 ns   Last SCLK falling edge to CSB hold 
tS 3 ns   SDIO data input setup time to SCLK 
tH 0 ns   SDIO data input hold time to SCLK 
tCO 3 ns  8 ns SCLK falling edge to output data delay (3-wire or 4-wire mode) 
tHZM tH  tCO  Bus turnaround time after baseband processor drives the last address bit 
tHZS 3 ns  tCO  Bus turnaround time after the device drives the last data bit (not shown in Figure 7) 
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Figure 7. 3-Wire SPI Timing with Parameter Labels, SPI Read Operation  
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JESD204B INTERFACE 
The device employs the JESD204B Subclass 1 standard to 
transfer ADC and DAC samples between the device and a 
baseband processor. JESD204B Subclass 1 devices use a system 
reference (SYSREF) signal to synchronize the establishment of 
the links to provide deterministic latency through the link. For 
details on deterministic latency, refer to Section 6 of the JEDEC 
Standard No. 204B.  

The device supports high speed serial lane rates from 
614.4 Mbps to 6144 Mbps. An external clock distribution 

solution provides a device clock and a SYSREF to both the 
device and the baseband processor. The SYSREF signal ensures 
deterministic latency between the transceiver and the baseband 
processor. This signal is also used to provide digital synchronization 
when more than one device is used; it is also required to 
maintain data timing synchronization among the devices. The 
Multichip Synchronization section describes the setup required 
to achieve the desired results. 
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Figure 8. High Level JESD204B Interface Block Diagram 
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RECEIVERS (ADC) DATAPATH 
The transport and link layers for JESD204B are performed in the 
framers. The device has two JESD204B framers that multiplex into 
four serial lanes. Samples from the main receivers are sent to the 
first framer. Samples from the sniffer/observation receiver are sent 
to the second framer. Each framer has its own SYNCB signal. 
This allows the sniffer/observation JESD204B lanes to be 
brought down for reconfiguration without interrupting the 
main receiver lanes. 

The two framers are capable of operating at different sample 
rates. The higher sample rate must be a power of two multiples 
of the lower sample rate (for example, 2×, 4×, or 8×). For example, 
the two main receivers can be configured for a 122.88 MHz 
sample rate into the framer, and a sniffer with a sample rate of 
30.72 MHz can be connected to the second framer. There are 
two options to make this work: oversample at the framer input 
or bit repeat at the serializer output. Oversample mode repeats 
sample values at the framer input of the slower rate, allowing all 
the serializers to run at the same bit rate. Bit repeat mode repeats 
each bit in the lane or lanes that carry the slower data as it exits 
the serializer. Because this is after the 8-bit/10-bit encoding, it 
appears as if the lane is running at a slower data rate than the 
other lanes. 

Both framers must share the four serializers. Each framer must 
be configured for 0, 1, 2, or 4 lanes such that the two framers 

combine for no more than 4 lanes. If one framer uses all 4 lanes, 
then the other framer cannot be used. 

Each framer has an ADC crossbar that can connect any ADC  
to any framer input. The ADC crossbar for the main receiver 
framer has an optional automatic channel selection feature to 
automatically shift the Rx2 ADCs to Framer 0 and Framer 1. If 
the framer is configured for only two inputs (M = 2), Rx1 is 
disabled, and Rx2 is enabled, the ADCs for Rx2 must be connected 
to the Framer 0 and Framer 1 inputs. The automatic channel 
selection feature allows this shift without reconfiguring the 
ADC crossbar.  

Each framer is capable of generating a pseudorandom bit 
sequence (PRBS) on the enabled lanes. After the PRBS is 
enabled, errors can be injected. Enabling the PRBS generator 
disables the normal JESD204B framing, and may cause the 
SYNCB signal to deassert. 

The serializers can be configured to adjust the amplitude and 
preemphasis of the physical signal to help combat bit errors due 
to various PCB trace lengths. 

Supported Framer Link Parameters 

The device supports a subset of possible JESD204B link 
configurations. The number of ADCs and the number of 
JESD204B lanes implemented in the silicon limit these 
configurations. 

 

Table 5. Static JESD204B Parameters  
JESD204B Parameter AD9371/AD9375 Value Description 
S 1 Samples transmitted/single converter/frame cycle 
N 14 Converter resolution 
N’ 16 Total number of bits per sample 
CF 0 Number of control words/frame clock cycle/converter device 
CS 2 Number of control bits/conversion sample 
HD 0 … 1 High density mode (only M2L4 uses HD = 1) 
K Variable, suggested: 32 Number of frames in 1 multiframe, (20 ≤ F × K ≤ 256), F × K must be a multiple of 4, K ≤ 32 

 

Table 6. JESD204B Parameters Dependent on Number of Lanes and Number of ADCs 
Number of ADCs (M) Number of Lanes (L) Number of Bytes in 1 Frame (F) (F = 2 × M/L) 
2 1 4 
2 2 2 
2 4 1 
4 1 8 
4 2 4 
4 4 2 

 

 

 

 

 

 

http://www.analog.com/AD9371
http://www.analog.com/AD9375


AD9371/AD9375 System Development User Guide UG-992
 

Rev. B | Page 23 of 360 

For a particular converter sample rate, not all combinations 
listed in Table 6 are valid. For the JESD204B configuration 
mode to be valid, the lane rate for that mode must be within the 
614.4 Mbps to 6144 Mbps range. The lane rate is the serial bit 
rate for one lane of the JESD204B link. Calculate the lane rate 
using Equation 1.  

Lane Rate = IQ Sample Rate × M × 16 bits × (10 ÷ 8) ÷ L (1) 

Serializer Configuration 

A 5-bit number that is not linearly weighted represents the 
amplitude of the serializer. Not all settings are unique, and not 
all settings meet the JESD204B transmitter mask. The JESD204B 
transmitter mask requires a differential amplitude greater than 
360 mV and less than 770 mV. To meet the JESD204B transmitter 
mask, it is recommended to set the serializer amplitude to a 
decimal value between 18 to 26. The default amplitude is 
22 mV p-p.  

Table 7. Serializer Amplitude Settings That Meet the 
JESD204B Transmitter Mask 
Serializer Amplitude 
(Decimal) Differential Amplitude (mV p-p) 
18 400 
19 440 
20 480 
21 520 
22 (default) 560 
23 600 
24 640 
25 680 
26 720 
 

The values shown in Table 7 are calculated values based on the 
design. Measured values are slightly lower than the calculated 
values. It is always recommended to verify the eye diagram in 
the system after building a PCB to verify any layout related 
performance differences. 

The serializer preemphasis allows boosting the amplitude any 
time the serial bit changes state. If bit transition does not occur, 
the amplitude is deemphasized. Preemphasis helps open the eye 
diagram for longer PCB traces or when the parasitic loading of 
connectors has a noticeable effect. In most cases, to find the 
best setting, a simulation or measuring the eye diagram with a 
high speed scope at the receiver is recommended. A 3-bit 
number represents the serializer preemphasis. The range in 
differential amplitude can be seen in Table 8, and its effects are 
shown in Figure 9. 

 

 

 

 

 

Table 8. Preemphasis Amplitude Settings 
Emphasis (Decimal) Differential Amplitude (mV p-p) 
0 0 
1 40 
2 80 
3 120 
4 160 
5 200 
6 240 
7 280 
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Figure 9. Serializer Preemphasis Measured on 3 Gbps Serial Data, Serializer 

Another metric for the effect of the serializer preemphasis is 
how much insertion loss each preemphasis setting can overcome. 
Different PCBs have different insertion loss due to factors such 
as different materials, stackups, and trace geometry. However, 
the insertion loss can be measured with a network analyzer or 
simulated to estimate how much loss a particular PCB has. Note 
that the preemphasis gain has some dependency on the main 
serializer amplitude setting. 
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Figure 10. Gain (in dB) of Each Preemphasis and Amplitude Setting  
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Figure 11. Serializer Eye Diagram Requirements Mask  
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Framer 

The framer receives 16-bit ADC samples and maps them to 
high speed serial lanes. The mapping changes depending on the 
JESD204B configuration chosen, specifically the number of 
lanes and the number of converters. Table 6 summarizes the 
valid framer configurations for the device. 

The responsibilities of the framer include the following:  

 JESD204B link initialization—state machine to progress 
link from code group synchronization (CGS) to initial lane 
assignment sequence (ILAS), then to user data. 

 Character replacement. This allows frame and multiframe 
synchronization during user data. 

 Map ADC samples to JESD204B lanes. 
 Perform 8-bit/10-bit encoding. 

The ADC sample inputs into the framer pass through a sample 
crossbar, allowing the framer to map any ADC input to any 
framed sample location during the framing process. For example, 
this can be used to swap I and Q samples. The framer lane data 
outputs also pass through a lane crossbar, allowing mapping any 
framer output lane (internal to the silicon) to any physical 
JESD204B lane at the package pin. The framer packs the ADC 
samples into lane data following the JESD204B specification. 
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Figure 13. Framer Data Packing for M = 2, L = 1 
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Figure 14. Framer Data Packing for M = 2, L = 2 
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Figure 15. Framer Data Packing for M = 2, L = 4  
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Figure 16. Framer Data Packing for M = 4, L = 1  
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Figure 17. Framer Data Packing for M = 4, L = 2  
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Figure 18. Framer Data Packing for M = 4, L = 4  
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Figure 19. Framer Crossbar Detail  
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Other Useful Framer IP Features 

Serializer PRBS 

The serializer has a built in pseudorandom bit sequence (PRBS) 
test pattern it can output to aid in debugging the JESD204B 
serial link. If errors caused by signal integrity exist, it may be 
difficult to get the JESD204B framer/deframer to work properly. 
The PRBS generator built into the serializer allows the device to 
output serial data, even when the link may be causing bit errors. 
The PRBS generator can be configured to transmit PRBS7, 
PRBS15, or PRBS31 sequences. With this mode enabled, the 
serializer amplitude and emphasis can be adjusted to find the 
best setting to minimize bit errors on the serial link. For this 
mode to be fully utilized, the baseband processor must have a 
PRBS checker to check the PRBS sequence for errors. 

The typical usage sequence is as follows:  

1. Initialize the device as outlined in the Link Establishment 
section. 

2. Run the MYKONOS_enableRxFramerPrbs(…) with the 
required PRBS order and set it to enable = 1. 

3. Enable the PRBS checker on the baseband processor and 
reset its error count. 

4. Wait a specific amount of time to allow a good number of 
samples to be transmitted, and then check the PRBS error 
count of the baseband processor. 

API Software Integration 

The MYKONOS_initialize(…) API function handles the 
configuration of the serializer, Rx1/Rx2 framer, and ORx framer. 
Set any JESD204B link options in the mykonosDevice_t data 
structure before calling MYKONOS_initialize(…). After 
initialization, there are some other API functions to aid in 
debugging and monitoring the status of the JESD204B link. 

JESD204B Framer API Data Structures 

mykonosJesd204bFramerConfig_t 

The mykonosJesd204bFramerConfig_t data structure contains 
the information required to properly configure each framer. 
Details of each member can be found in Table 9. The transceiver 
evaluation software (TES) has the option to output example 
data structures with values chosen from the configuration tab of 
the software. 
typedef struct 
{ 
    uint8_t bankId;    
    uint8_t deviceId;   
    uint8_t lane0Id;    
    uint8_t M;        
    uint8_t K;    
    uint8_t scramble;   
    uint8_t externalSysref;  
    uint8_t serializerLanesEnabled;   
    uint8_t serializerLaneCrossbar;   
    uint8_t serializerAmplitude;    
    uint8_t preEmphasis;    
    uint8_t invertLanePolarity;   
    uint8_t lmfcOffset;   
    uint8_t newSysrefOnRelink;    
    uint8_t enableAutoChanXbar;    
    uint8_t ObsRxSyncbSelect;   
  
    uint8_t overSample;                     
} mykonosJesd204bFramerConfig_t; 

 

 

 

 

 

Table 9. JESD204B Framer Configuration Structure Member Description  
Structure Member Valid Values Description 
bankId  0 … 15 JESD204B configuration bank ID—extension to device ID. 
deviceId 0 … 255 JESD204B configuration device ID—link identification number. 
lane0Id 0 … 31 JESD204B configuration lane ID—if more than one lane is used, each subsequent lane 

increments from this number. 
M 0, 2, 4 Number of ADC converters—two converters per receive chain. 
K 1 … 32 Number of frames in a multiframe; the default value is 32. 
  F × K must be a multiple of 4. 
scramble 0.. … Scrambling enabled. 
  If scramble = 0, then scrambling is disabled. 
  If scramble > 0, then scrambling is enabled. 
externalSysref 0 … 255 External SYSREF enabled. 
  If externalSysref = 0, then use internal SYSREF. 
  If externalSysref > 0, then use external SYSREF. 
serializerLanesEnabled 0x0 … 0xF Serializer lane enabled—one bit per lane.  
  If Bit 0 = 0, then Lane 0 is disabled; if Bit 0 = 1, then Lane 0 is enabled. 
  If Bit 1 = 0, then Lane 1 is disabled; if Bit 1 = 1, then Lane 1 is enabled. 
  If Bit 2 = 0, then Lane 2 is disabled; if Bit 2 = 1, then Lane 2 is enabled. 
  If Bit 3 = 0, then Lane 3 is disabled; if Bit 3 = 1, then Lane 3 is enabled. 
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Structure Member Valid Values Description 
serializerLaneCrossbar 0x0 … 0xFF Serializer lane crossbar—two bits per lane. 
  Bits[1:0] identify the framer lane that connects to Serializer Lane 0. 
  Bits[3:2] identify the framer lane that connects to Serializer Lane 1. 
  Bits[5:4] identify the framer lane that connects to Serializer Lane 2. 
  Bits[7:6] identify the framer lane that connects to Serializer Lane 3. 
serializerAmplitude 0 … 31 Serializer amplitude—default is 22. 
preEmphasis 0 … 7 Serializer preemphasis—default is 4. 
invertLanePolarity 0x0 … 0xF Serializer lane polarity inversion. 
  If Bit 0 = 0, then Lane 0 is unaffected; if Bit 0 = 1, then Lane 0 is inverted. 
  If Bit 1 = 0, then Lane 1 is unaffected; if Bit 1 = 1, then Lane 1 is inverted. 
  If Bit 2 = 0, then Lane 2 is unaffected; if Bit 2 = 1, then Lane 2 is inverted. 
  If Bit 3 = 0, then Lane 3 is unaffected; if Bit 3 = 1, then Lane 3 is inverted. 
lmfcOffset 0 … 31 Local multiframe counter (LMFC) offset—local multi frame counter offset value for deterministic 

latency setting, set this such that 0 ≤ lmfcOffset ≤ (K − 1). 
newSysrefOnRelink 0 … 255 New SYSREF on relink—flag to indicate that a SYSREF is required to reestablish the link. 
  If newSysrefOnRelink = 0, then no SYSREF is required. 
  If newSysrefOnRelink > 0, then SYSREF is required. 
enableAutoChanXbar 0 … 255 Enable automatic channel select for the ADC crossbar. 
  If enableAutoChanXbar = 0, then the auto channel selection is disabled. 
  If enableAutoChanXbar > 0, then the auto channel selection is enabled. 
obsRxSyncbSelect 0 … 1 SYNCB selection—selects which SYNCINB input is connected to the framer. 
  If obsRxSyncbSelect = 0, then SYNCINB0 is connected to the framer. 
  If obsRxSyncbSelect = 1, then SYNCINB1 is connected to the framer. 
overSample 0 … 1 Oversample mode—selects which method is chosen when oversample or bit repeat is required. 
  If overSample = 0, then bit repeat mode is selected. 
  If overSample = 1, then oversample is selected. 
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API Functions 

MYKONOS_setupJesd204bFramer(…) 
mykonosErr_t 

MYKONOS_setupJesd204bFramer(mykonosDevice
_t *device);  

This function is called directly from MYKONOS_Intialize(). It 
is not necessary to call this function if MYKONOS_Intialize() is 
used. This function sets up the JESD204B Rx framer. 

 

 

 

 

 

 

 

 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
setupJesd204bFramer(…) function are as follows:  

• device → spiSettings  
• device → spiSettings → chipSelectIndex 
• device → rx → framer → M 
• device → rx → realIfData 
• device → rx → framer → bankId 
• device → rx → framer → lane0Id 
• device → rx → framer → serializerLanesEnabled 
• device → rx → framer → obsRxSyncbSelect 
• device → rx → framer → K 
• device → rx → framer → externalSysref 
• device → rx → rxChannels 
• device → rx → framer → newSysrefOnRelink 
• device → rx → framer → enableAutoChanXbar 
• device → rx → framer → lmfcOffset 
• device → rx → framer → scramble 

 

Table 10. MYKONOS_setupJesd204bFramer(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 

 

Table 11. MYKONOS_setupJesd204bFramer(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_FRAMER_INV_REAL_IF_DATA_PARM Invalid framer M, M can only = 1 in real IF mode 
MYKONOS_ERR_FRAMER_INV_M_PARM Invalid framer M (valid 1, 2, 4) 
MYKONOS_ERR_FRAMER_INV_BANKID_PARM Invalid BankId (valid 0 to 15) 
MYKONOS_ERR_FRAMER_INV_LANEID_PARM Invalid Lane0Id (valid 0 to 31) 
MYKONOS_ERR_RXFRAMER_INV_FK_PARAM Invalid F × K value (F × K must be >20 and divisible by 4) 
MYKONOS_ERR_FRAMER_INV_K_OFFSET_PARAM Invalid K offset, must be less than K 
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MYKONOS_setupJesd204bObsRxFramer(…) 
mykonosErr_t 

MYKONOS_setupJesd204bObsRxFramer(mykonosD
evice_t *device); 

This function is called directly from 
MYKONOS_Intialize(). It is not necessary to call this 
function if MYKONOS_Intialize() is used. This function 
sets up the JESD204B OBSRX framer. 

 

 

 

 

 

 

 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
setupJesd204bObsRxFramer(…) function are as follows: 

• device → spiSettings 
• device → spiSettings → chipSelectIndex 
• device → rx → framer → M 
• device → rx → realIfData 
• device → rx → framer → bankId 
• device → rx → framer → lane0Id 
• device → rx → framer → serializerLanesEnabled 
• device → rx → framer → obsRxSyncbSelect 
• device → rx → framer → K 
• device → rx → framer → externalSysref 
• device → rx → rxChannels 
• device → rx → framer → newSysrefOnRelink 
• device → rx → framer → lmfcOffset 
• device → rx → framer → scramble 

 

Table 12. MYKONOS_setupJesd204bObsRxFramer(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 

 

Table 13. MYKONOS_setupJesd204bObsRxFramer(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_OBSRX_FRAMER_INV_REAL_IF_DATA_PARM Invalid framer M, M can only = 1 in real IF mode 
MYKONOS_ERR_OBSRX_FRAMER_INV_M_PARM Invalid framer M (valid 1, 2, 4) 
MYKONOS_ERR_OBSRX_FRAMER_INV_BANKID_PARM Invalid BankId (valid 0 to 15) 
MYKONOS_ERR_OBSRX_FRAMER_INV_LANEID_PARM Invalid Lane0Id (valid 0 to 31) 
MYKONOS_ERR_OBSRX_RXFRAMER_INV_FK_PARAM Invalid F × K value (F × K must be >20 and divisible by 4) 
MYKONOS_ERR_OBSRXFRAMER_INV_K_OFFSET_PARAM Invalid K offset, must be less than K 
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MYKONOS_setupSerializers(…) 
mykonosErr_t 

MYKONOS_setupSerializers(mykonosDevice_t 
*device); 

This function is called directly from MYKONOS_Intialize(). It 
is not necessary to call this function if MYKONOS_Intialize() is 
used. This function sets up the JESD204B serializers. This 
function uses the Rx framer and ObsRx framer structures to 
setup the four serializer lanes that are shared between the two 
framers. If the Rx profile is valid, the serializer amplitude and 
preemphasis are used from the Rx framer. If only the ObsRx 
profile is valid, the obsRx framer settings are used. 

 

 

DEPENDENCIES 
The dependencies for the MYKONOS_setupSerializers(…) 
function are as follows: 

• device → spiSettings 
• device → spiSettings → chipSelectIndex 
• device → rx → framer → M 
• device → rx → framer → serializerAmplitude 
• device → rx → framer → preEmphasis 
• device → rx → framer → serializerLanesEnabled 
• device → rx → framer → invertLanePolarity 
• device → obsrx → framer → M 
• device → obsrx → framer → serializerAmplitude 
• device → obsrx → framer → preEmphasis 
• device → obsrx → framer → serializerLanesEnabled 
• device → obsrx → framer → invertLanePolarity 

Table 14. MYKONOS_setupSerializers(…) Parameters 
Parameter Description 
device Pointer to the device settings structure   

 

Table 15. MYKONOS_setupSerializers(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_INITSER_INV_VCODIV_PARM CLKPLL has invalid VCO divider, verify CLKPLL configuration 
MYKONOS_ERR_SER_LANE_CONFLICT_PARM When both Rx and ObsRx framers are enabled, framers must not share the 

same physical lane 
MYKONOS_ERR_SER_INV_REAL_IF_DATA_PARM Rx Framer M can only = 1 when real IF mode is enabled 
MYKONOS_ERR_SER_INV_M_PARM Invalid Rx Framer M (valid 1, 2, 4) 
MYKONOS_ERR_SER_INV_LANEEN_PARM Invalid Rx framer serializerLanesEnabled (valid 0 to 15) 
MYKONOS_ERR_SER_INV_AMP_PARM Invalid Rx serializer amplitude (valid 0 to 31) 
MYKONOS_ERR_SER_INV_PREEMP_PARM Invalid Rx serializer preemphesis (valid 0 to 7) 
MYKONOS_ERR_SER_INV_LANEPN_PARM Invalid Rx serializer pseudonoise (PN) invert setting (valid 0 to 15) 
MYKONOS_ERR_SER_INV_L_PARM Invalid Rx serializer lanes enabled (must use 1, 2, or 4 lanes) 
MYKONOS_ERR_SER_INV_LANERATE_PARM Invalid Rx serializer lane rate (valid 614.4 Mbps to 6144 Mbps) 
MYKONOS_ERR_SER_LANE_RATE_CONFLICT_PARM Necessary lane rates for Rx and ObsRx framer cannot be obtained with 

possible divider settings 
MYKONOS_ERR_SER_INV_HSCLK_PARM Invalid HSCLK frequency (check CLKPLL config, HSCLK must be ≤ 6144 GHz) 
MYKONOS_ERR_HS_AND_LANE_RATE_NOT_INTEGER_MULT HSCLK is not an integer multiple of the lane clock rate 
MYKONOS_ERR_SER_INV_TXSER_DIV_PARM No valid Tx serializer divider to obtain desired lane rates 
MYKONOS_ERR_INITSER_INV_PROFILE Rx/ObsRx and sniffer profiles are not valid, cannot configuration serializers 
MYKONOS_ERR_INV_RXFRAMER_PCLKDIV_PARM Invalid Rx framer PCLK divider 
MYKONOS_ERR_INV_OBSRXFRAMER_PCLKDIV_PARM Invalid ORx/sniffer framer PCLK divider 
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MYKONOS_enableSysrefToRxFramer(…) 
mykonosErr_t 

MYKONOS_enableSysrefToRxFramer(mykonosDev
ice_t *device, uint8_t enable); 

This function can gate or allow the SYSREF at the outside of the 
device to reach the SYSREF input in the Rx framer IP in the 
device. Typically, the framers ignore SYSREF (enable = 0) until 
after multichip sync is completed. When the baseband 

processor (BBP) is ready to bring up the JESD204B link, call this 
function with enable = 1 to allow the device Rx framer to retime 
the local multiframe counter (LMFC) to the SYSREF. 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
enableSysrefToRxFramer(…) function are as follows: 

• device → spiSettings 

 

Table 16. MYKONOS_enableSysrefToRxFramer(…) Parameters 
Parameter Description 
device Pointer to the device settings structure   
enable 1 enables SYSREF to the Rx framer, 0 disables SYSREF to the Rx framer  

 

Table 17. MYKONOS_enableSysrefToRxFramer(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
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MYKONOS_enableSysrefToObsRxFramer(…) 
mykonosErr_t 

MYKONOS_enableSysrefToObsRxFramer(mykonos
Device_t *device, uint8_t enable); 

This function gates or allows the SYSREF at the outside of the 
device to reach the SYSREF input in the ORx framer IP in the 
device. Typically, the framers ignore SYSREF (enable = 0) until 
after multichip sync. When the baseband processor is ready to 

bring up the JESD204B link, call this function with enable = 1 
to allow the ORx framer to retime the local multiframe counter 
to the SYSREF. 

DEPENDENCIES 
The dependencies for the MYKONOS_enableSysrefToObsRx-
Framer(…) function are as follows: 

• device → spiSettings  

 

Table 18. MYKONOS_enableSysrefToObsRxFramer(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
enable 1 enables the SYSREF to the ORx framer, 0 disables the SYSREF to the ORx framer 

 

Table 19. MYKONOS_enableSysrefToObsRxFramer(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
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MYKONOS_enableRxFramerLink(…) 
mykonosErr_t 

MYKONOS_enableRxFramerLink(mykonosDevice_
t *device, uint8_t enable); 

This function is normally not necessary. In the event that the 
link must be reset, this function allows the Rx framer to be 
disabled and reenabled. 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
enableRxFramerLink(…) function are as follows: 

• device → spiSettings 
• device → rx → framer → serializerLanesEnabled 

 

Table 20. MYKONOS_enableRxFramerLink(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
enable 1 enables the Rx framer, 0 disables the Rx framer 

 

Table 21. MYKONOS_enableRxFramerLink(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARAM Invalid serializerLanesEnabled parameter in the device data structure (valid 0 to 15) 
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MYKONOS_enableObsRxFramerLink(…) 
mykonosErr_t 

MYKONOS_enableObsRxFramerLink(mykonosDevi
ce_t *device, uint8_t enable); 

This function is normally not necessary. In the event that the 
link must be reset, this function allows the ORx framer to be 
disabled and reenabled. 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
enableObsRxFramerLink(…) function are as follows: 

• device → spiSettings 
• device → obsRx → framer → serializerLanesEnabled 

 

Table 22. MYKONOS_enableObsRxFramerLink(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
enable 1 enables the ORx framer, 0 disables the ORx framer 

 

Table 23. MYKONOS_enableObsRxFramerLink(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_ENFRAMERLINK_INV_LANESEN_PARAM Invalid serializerLanesEnabled parameter in the device data structure (valid 0 to 15) 
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MYKONOS_readRxFramerStatus (…) 
mykonosErr_t 

MYKONOS_readRxFramerStatus(mykonosDevice_
t *device, uint8_t *framerStatus); 

This function reads back the Rx framer status to determine the 
state of the JESD204B Rx framer link. The framerStatus return 
value returns an 8-bit status word. 

DEPENDENCIES 
The dependencies for the MYKONOS_readRxFramerStatus (…) 
function are as follows: 

• device → spiSettings 

 

Table 24. MYKONOS_readRxFramerStatus (…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
framerStatus Rx framer status byte as described in Table 25 

 

Table 25. Rx Framer Status Byte 
framerStatus Description 
7 SYSREF phase error—a new SYSREF has different timing than the first that set the local multiframe counter (LMFC) timing.  
6 Framer lane first in, first out (FIFO) read/write pointer delta has changed. Can help debug issues with deterministic 

latency.  
5 Framer has received the SYSREF and has retimed its LMFC. 
[4:2] Framer initial lane assignment sequence (ILAS) state. 
 0 = code group synchronization (CGS). 
 1 = 1st multframe. 
 2 = 2nd multiframe. 
 3 = 3rd multiframe. 
 4 = 4th multiframe. 
 5 = last multiframe. 
 6 = invalid. 
 7 = ILAS complete. 
[1:0]  Framer Tx state. 
 0 = CGS. 
 1 = ILAS. 
 2 = ADC data. 

 

Table 26. MYKONOS_readRxFramerStatus (…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_READ_RXFRAMERSTATUS_NULL_PARAM Function parameter framerStatus has null pointer 
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MYKONOS_readObsRxFramerStatus (…) 
mykonosErr_t 

MYKONOS_readObsRxFramerStatus(mykonosDevi
ce_t *device, uint8_t *framerStatus); 

This function read back the observation Rx framer status to 
determine the state of the JESD204B ORx framer link. The 
framerStatus return value returns an 8-bit status word. 

DEPENDENCIES 
The dependencies for the MYKONOS_readObsRxFramerStatus 
(…) function are as follows: 

• device → spiSettings 

 

Table 27. MYKONOS_readObsRxFramerStatus (…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
obsFramerStatus ORx framer status byte as described in Table 28 

 

Table 28. ORx Framer Status Byte 
obsFramerStatus Description 
7 SYSREF phase error—a new SYSREF had different timing than the first that set the local multiframe counter timing. 
6 Framer lane FIFO read/write pointer delta has changed. Can help debug issues with deterministic latency. 
5 Framer has received the SYSREF and has retimed its local multiframe counter. 
[4:2] Framer initial lane assignment sequence (ILAS) state. 
 0 = code group synchronization (CGS). 
 1 = 1st multframe. 
 2 = 2nd multiframe.  
 3 = 3rd multiframe. 
 4 = 4th multiframe.  
 5 = last multiframe.  
 6 = invalid. 
 7 = ILAS complete. 
[1:0]  Framer Tx state. 
 0 = CGS. 
 1 = ILAS. 
 2 = ADC data. 

 

Table 29. MYKONOS_readObsRxFramerStatus (…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_READ_ORXFRAMERSTATUS_NULL_PARAM Function parameter obsFramerStatus has null pointer 
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MYKONOS_enableRxFramerPrbs (…) 
mykonosErr_t 

MYKONOS_enableRxFramerPrbs(mykonosDevice_
t *device, mykonosPrbsOrder_t polyOrder, 
uint8_t enable); 

After the serializer and framer are configured with 
MYKONOS_initialize(…), this function can be called to enable 
the Rx framer to output a pseudorandom bit sequence (PRBS) 
pattern on the serializer lanes. Only the serializer lanes connected 
to the Rx framer are output. Review the lane crossbar settings 
configured in the Rx framer data structure to verify which lanes 
are affected. 

The PRBS order can be set to MYK_PRBS7, MYK_PRBS15, 
or MYK_PRBS31 by the enumerated list value passed into the 
polyOrder parameter. The PRBS generator can be enabled (1) 
or disabled (0) by the enable parameter. 

Note that if both the Rx framer and ORx framer crossbar 
settings overlap and use the same lanes, the data from the two 
framers is logically OR’ed together. This results in unexpected 
data being output from the serializer lanes. 

DEPENDENCIES 
The dependencies for the MYKONOS_enableRxFramerPrbs (…) 
function are as follows: 

• device → spiSettings 

 

Table 30. MYKONOS_enableRxFramerPrbs (…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
polyOrder Selects the pseudorandom bit sequence (PRBS) type based on enumeration value: MYK_PRBS7, MYK_PRBS15, MYK_PRBS31 
enable 1 enables PRBS generator in the Rx framer, 0 disables the PRBS generator 

 

Table 31. MYKONOS_enableRxFramerPrbs (…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_RX_FRAMER_INV_PRBS_POLYORDER_PARAM Invalid polyOrder parameter, use proper enumerator 
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MYKONOS_enableObsRxFramerPrbs (…) 
mykonosErr_t 

MYKONOS_enableObsRxFramerPrbs(mykonosDevi
ce_t *device, mykonosPrbsOrder_t 
polyOrder, uint8_t enable); 

After the serializer and framer are configured with 
MYKONOS_initialize(…), this function can be called to enable 
the ORx framer to output a pseudorandom bit sequence (PRBS) 
pattern on the serializer lanes. Only the serializer lanes connected 
to the ORx framer are output. Review the lane crossbar settings 
configured in the ORx framer data structure to verify which 
lanes are affected. 

The PRBS order can be set to MYK_PRBS7, MYK_PRBS15, or 
MYK_PRBS31 by the enumeration value passed into the 
polyOrder parameter. The PRBS generator can be enabled (1) 
or disabled (0) by the enable parameter. 

Note that if both the Rx framer and the ORx framer crossbar 
settings overlap and use the same lanes, the data from the two 
framers is logically OR’ed together. This results in unexpected 
data being output from the serializer lanes. 

DEPENDENCIES 
The dependencies for the MYKONOS_enableObsRxFramerPrbs 
(…) function are as follows: 

• device → spiSettings 

 

Table 32. MYKONOS_enableObsRxFramerPrbs(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
polyOrder Selects the pseudorandom bit sequence (PRBS) type based on enumeration value: MYK_PRBS7, MYK_PRBS15, MYK_PRBS31 
enable 1 enables the PRBS generator in the ORx framer, 0 disables the PRBS generator 

 

Table 33. MYKONOS_enableObsRxFramerPrbs(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_OBSRX_FRAMER_INV_PRBS_POLYORDER_PARAM Invalid polyOrder parameter, use proper enumerator 
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MYKONOS_rxInjectPrbsError 
mykonosErr_t 

MYKONOS_rxInjectPrbsError(mykonosDevice_t 
*device); 

To verify pseudorandom bit sequence (PRBS) is working 
correctly on a good link, errors can be injected to force the 

PRBS checker to increment. Calling this function injects one to 
three errors into the framer PRBS generation. 

DEPENDENCIES 
The dependencies for the MYKONOS_rxInjectPrbsError 
function are as follows: 

• device → spiSettings 

Table 34. MYKONOS_rxInjectPrbsError Parameters 
Parameter Description 
device Pointer to the device settings structure 

 

Table 35. MYKONOS_rxInjectPrbsError Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
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MYKONOS_obsRxInjectPrbsError 
mykonosErr_t 

MYKONOS_obsRxInjectPrbsError(mykonosDevic
e_t *device); 

To verify PRBS is working correctly on a good link, errors can 
be injected to force the PRBS checker to increment. Calling this 
function injects one to three errors into the ORx framer PRBS 
generation. 

DEPENDENCIES 
The dependencies for the MYKONOS_obsRxInjectPrbsError 
function are as follows: 

• device → spiSettings 

 

 

 

Table 36. MYKONOS_obsRxInjectPrbsError Parameters 
Parameter Description 
device Pointer to the device settings structure 

 

Table 37. MYKONOS_obsRxInjectPrbsError Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
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TRANSMITTERS (DAC) DATAPATH  
The device has one JESD204B deframer configurable for up to 
four lanes and four DAC converters. All converters must run at 
the same sample rate. Likewise, all lanes must run at the same 
data rate. The deframer is capable of receiving a pseudorandom 
bit sequence (PRBS) sequence and accumulating error counts. 
The deserializers have adjustable equalization circuits (fixed 
setting, not adaptive) to counteract the insertion loss due to 
various PCB trace lengths and materials. 

Supported Deframer Link Parameters 

The device supports a subset of possible JESD204B link 
configurations. The modes are limited by the number of DACs 
and the number of JESD204B lanes implemented in the silicon. 

For a particular converter sample rate, not all combinations 
listed in Table 39 are valid. For the JESD204B configuration 
mode to be valid, the lane rate for that mode must be within the 
614.4 Mbps to 6144 Mbps range. The lane rate is the serial bit 
rate for one lane of the JESD204B link. Calculate the lane rate 
using Equation 1. 

The deserializer link is allowed to run at a different lane rate 
than the serializer link, under the condition that both lane 
rates are possible with respect to the clock divider settings. 
Both the deserializer and serializer link rates are derived from 
the same clock PLL, but there are separate dividers to generate 
the deserializer clock data recovery (CDR) clock and the 
serializer clock. 

 

 

Deserializer Configuration 

The deserializer includes an equalizer that can be set to a fixed 
setting. Table 40 summarizes the amount of insertion loss each 
equalizer setting can overcome. Note that the measured length 
is the value at which the eye diagram is nearly failing the receive 
mask for each equalizer setting. 

Deframer 

The deframer receives 8-bit/10-bit encoded data from the 
deserializer and decodes the data into 16-bit DAC samples. 
Because the DAC samples are only 14-bit, the device uses the 
upper 14-bits of the 16-bit word DAC samples by default. The 
deserializer to DAC sample mapping changes depending on the 
JESD204B link configuration setting. The responsibilities of the 
deframer are as follows: 

• Monitor the JESD204B link for running disparity errors 
(controls the SYNCOUT_B signal to reset the link or 
report errors). 

• Control the JESD204B interrupt signal (can output on 
general-purpose interrupt pin) to signal baseband processor 
when certain JESD204B error conditions arise. 

• Remove character replacement. 
• Perform 8-bit/10-bit decoding. 
• Map JESD204B lane data to DAC samples. 

A lane crossbar provides the ability to reorder the lanes into the 
deframer input. A sample crossbar provides the ability to reorder 
the DAC samples at the output of the deframer. The lane and 
sample crossbars enable flexiblity on which physical lanes are 
used and what data is on each lane. Figure 20 to Figure 25 
demonstrate the valid deframer configurations. 

Table 38. Static JESD204B Parameters  
JESD204B Parameter AD9371/AD9375 Value Description 
S 1 Samples transmitted/single converter/frame cycle 
N 16 Converter resolution 
N’ 16 Total number of bits per sample 
CF 0 Number of control words/frame clock cycle/converter device 
CS 0 Number of control bits/conversion sample 
HD 0 or 1 High density mode (only M = 2, L = 4 uses HD = 1) 
K Variable, suggested: 32 Number of frames in 1 multiframe, (20 ≤ F × K ≤ 256), F × K must be a multiple of 4, K ≤ 32 
 

Table 39. JESD204B Parameters Dependent on Number of Lanes and Number of DACs 
Number of DACs (M) Number of Lanes (L) Number of Bytes in 1 Frame (F) (F = 2 × M/L) 
2 1 4 
2 2 2 
2 4 1 
4 1 8 
4 2 4 
4 4 2 

 

http://www.analog.com/AD9371
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Table 40. Measured Deserializer Equalizer Correction (Nomimal 1.3 V, 25°C) 
Equalizer (EQ) Setting 3 GHz Loss (dB) 6 GHz Loss (dB) FR408HR Length (Inches) FR4 Length (Inches) 
0 6.5 14 20 12 
1 11.5 21 30 20 
2 18 31 46 32 
3 21.5 38 56 40 
4 22 39 60 43 
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Figure 20. M2L1 Lane to DAC Byte Order 
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Figure 21. M2L2 Lane to DAC Byte Order  
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Figure 22. M2L4 Lane to DAC Byte Order 
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Figure 23. M4L1 Lane to DAC Byte Order  
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Figure 24. M4L2 Lane to DAC Byte Order 
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Figure 25. M4L4 Lane to DAC Byte Order  
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Figure 26. Deframer Lane Mux and Sample Mux Details  

Other Useful Deframer IP Features 

Deserializer PRBS 

The deserializer has a built in pseudorandom bit sequence 
(PRBS) checker. The PRBS checker can self synchronize and 
check for PRBS errors on a PRBS7, PRBS15, or PRBS31 sequence. 
Because this mode works even in the midst of potential bit errors 
on each lane, the physical link can be debugged even when the 
deframer is unable to work properly. This mode can be used to 
check the robustness of the physical link during initial testing 
and/or factory test. For this mode to be fully utilized, the BPP 
must have a PRBS generator capable of creating PRBS7, 
PRBS15, or PRBS31 data. 

A typical usage sequence is as follows: 

1. Initialize the device as outlined in the Link Establishment 
section. 

2. Enable the PRBS generator on the baseband processor with 
the same PRBS sequence required. 

3. Call the application programming interface (API) 
MYKONOS_enableDeframerPrbsChecker(…) passing 
the actual device being evaluated, the PRBS sequence to 
check and enable bit set to 1. 

4. After some amount of time, call the API function to check 
the PRBS errors. This can be done by calling the API 
function MYKONOS_readDeframerPrbsCounters(…) 
passing the actual device being evaluated, the counter 
selection lane to be read and the error count are returned 
in the third parameter passed. 

To prove an error count of 0 is valid, the baseband processor 
may have a PRBS error inject feature. Alternatively, the 
baseband processor amplitude and emphasis settings can be 
set to a setting where errors occur. To reset the error count, 
call the API function that clears the counters (MYKONOS_ 
clearDeframerPrbsCounters(…)). 

API Software Integration 

the MYKONOS_initialize(…) API function handles the 
configuration of the deserializer and Tx1/Tx2 deframer. Set any 
JESD204B link options in the mykonosDevice_t data structure 
before calling MYKONOS_initialize(…). After initialization, 
there are some other API functions to aid in debugging and 
monitoring the status of the JESD204B link. 
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JESD204B Deframer API Data Structures 
mykonosJesd204bDeframerConfig_t 
typedef struct 
{ 
    uint8_t bankId; 
    uint8_t deviceId; 
    uint8_t lane0Id; 
    uint8_t M; 
    uint8_t K; 
    uint8_t scramble; 

    uint8_t externalSysref; 
    uint8_t deserializerLanesEnabled; 
    uint8_t deserializerLaneCrossbar; 
    uint8_t EQSetting; 
    uint8_t invertLanePolarity; 
    uint8_t lmfcOffset; 
    uint8_t newSysrefOnRelink; 
    uint8_t enableAutoChanXbar; 
} mykonosJesd204bDeframerConfig_t; 

 

Table 41. Deframer Structure Member Description  
Structure Member Valid Values Description 
bankID 0 … 15 JESD204B configuration bank ID—extension to device ID. 
deviceID 0 … 255 JESD204B configuration device ID—link identification number. 
lane0ID 0 … 31 JESD204B configuration lane ID—if more than one lane is used, each subsequent lane 

increments from this number. 
M 0, 2, 4 Number of DAC converters—2 converters per receive chain. 
K 1 … 32 Number of frames in a multiframe—default is 32. 
  F × K must be a multiple of 4. 
scramble 0 … 255 Scrambling enabled. 
  If scramble = 0, then scrambling is disabled. 
  If scramble > 0, then scrambling is enabled. 
externalSysref 0 … 255 External SYSREF enabled. 
  If externalSysref = 0, then use internal SYSREF. 
  If externalSysref > 0, then use external SYSREF. 
deserializerLanesEnabled 0x0 … 0xF Deserializer lane enabled—one bit per lane. 
  If Bit 0 = 0, then Lane 0 is disabled; if Bit 0 = 1, then Lane 0 is enabled.  
  If Bit 1 = 0, then Lane 1 is disabled; if Bit 1 = 1, then Lane 1 is enabled. 
  If Bit 2 = 0, then Lane 2 is disabled; if Bit 2 = 1, then Lane 2 is enabled. 
  If Bit 3 = 0, then Lane 3 is disabled; if Bit 3 = 1, then Lane 3 is enabled. 
deserializerLaneCrossbar 0x0 … 0xFF Deserializer lane crossbar—two bits per lane. 
  Bits[1:0] identify the deserializer lane that connects to Deframer Lane 0. 
  Bits[3:2] identify the deserializer lane that connects to Deframer Lane 1. 
  Bits[5:4] identify the deserializer lane that connects to Deframer Lane 2. 
  Bits[7:6] identify the deserializer lane that connects to Deframer Lane 3. 
EQSetting 0 … 4 Equalizer setting, see Table 40 for details. 
invertLanePolarity 0x0 … 0xF Deserializer lane polarity inversion. 
  If Bit 0 = 0, then Lane 0 is unaffected; if Bit 0 = 1, then Lane 0 is inverted. 
  If Bit 1 = 0, then Lane 1 is unaffected; if Bit 1 = 1, then Lane 1 is inverted. 
  If Bit 2 = 0, then Lane 2 is unaffected; if Bit 2 = 1, then Lane 2 is inverted. 
  If Bit 3 = 0, then Lane 3 is unaffected; if Bit 3 = 1, then Lane 3 is inverted. 
lmfcOffset 0 … 31 Local multiframe counter (LMFC) offset—local multiframe counter offset value for deterministic 

latency setting, set this such that 0 ≤ lmfcOffset ≤ (K − 1). 
newSysrefOnRelink 0 … 255 New SYSREF on Relink—flag to indicate that a SYSREF is required to reestablish the link. 
  If newSysrefOnRelink = 0, then no SYSREF is required. 
  If newSysrefOnRelink > 0, then SYSREF is required. 
enableAutoChanXbar 0 … 255 Enable automatic channel select for the ADC crossbar. 
  If enableAutoChanXbar = 0, then the auto channel selection is disabled. 
  If enableAutoChanXbar > 0, then the auto channel selection is enabled. 

 



AD9371/AD9375 System Development User Guide UG-992 
 

Rev. B | Page 45 of 360 

API Functions 

MYKONOS_setupJesd204bDeframer(…) 
mykonosErr_t 

MYKONOS_setupJesd204bDeframer(mykonosDevi
ce_t *device); 

This function is called directly from MYKONOS_Intialize(). It 
is not necessary to call this function if MYKONOS_Intialize() is 
used. This function sets up the JESD204B deframer. 

 

 

 

 

 

 

 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
setupJesd204bDeframer(…) function are as follows: 

• device → spiSettings 
• device → spiSettings → chipSelectIndex 
• device → tx → deframer → M 
• device → tx → deframer → bankId 
• device → tx → deframer → lane0Id 
• device → tx → deframer → deserializerLanesEnabled 
• device → tx → deframer → K 
• device → tx → deframer → externalSysref 
• device → tx → deframer → newSysrefOnRelink 
• device → tx → deframer → enableAutoChanXbar 
• device → tx → deframer → lmfcOffset 
• device → tx → deframer → scramble 

Table 42. MYKONOS_setupJesd204bDeframer(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 

 

Table 43. MYKONOS_setupJesd204bDeframer(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_DEFRAMER_INV_M_PARM Invalid framer M (valid 1, 2, 4) 
MYKONOS_ERR_DEFRAMER_INV_BANKID_PARM Invalid bankId (valid 0 to 15) 
MYKONOS_ERR_DEFRAMER_INV_LANEID_PARM Invalid lane0Id (valid 0 to 31) 
MYKONOS_ERR_DEFRAMER_INV_K_PARAM Invalid K parameter in deframer structure (valid 1 to 32 with other constraints) 
MYKONOS_ERR_DEFRAMER_INV_FK_PARAM Invalid F × K value (F × K must be >20 and divisible by 4) 
MYKONOS_ERR_DEFRAMER_INV_K_OFFSET_PARAM Invalid K offset, must be less than K 
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MYKONOS_setupDeserializers(…) 
mykonosErr_t 

MYKONOS_setupDeserializers(mykonosDevice_
t *device); 

This function is called directly from MYKONOS_Intialize(). 
It is not necessary to call this function if MYKONOS_Intialize() 
is used. This function sets up the JESD204B deserializers. This 
function enables the necessary deserializer lanes, sets the 
deserializer clocks polarity inversion settings, and determines 
equalizer settings based on the information found in the device 
data structure. 

 

 

DEPENDENCIES 
The dependencies for the MYKONOS_setupDeserializers(…) 
function are as follows: 

• device → spiSettings 
• device → spiSettings → chipSelectIndex 
• device → tx → txProfile → clkPllVcoDiv 
• device → tx → txProfile → vcoFreq_kHz 
• device → tx → txProfile → txIqRate_kHz 
• device → tx → deframer → M 
• device → tx → deframer → deserializerLanesEnabled 
• device → tx → deframer → invertLanePolarity 
• device → tx → deframer → EQSetting 

 

Table 44. MYKONOS_setupDeserializers(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 

 

Table 45. MYKONOS_setupDeserializers(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_INITDES_INV_TXPROFILE Tx profile is not valid in data structure; cannot setup deserializer 
MYKONOS_ERR_INITDES_INV_VCODIV_PARM CLKPLL VCO divider is invalid 
MYKONOS_ERR_DESER_INV_M_PARM Invalid M (valid 2 or 4) 
MYKONOS_ERR_DESER_INV_L_PARM Invalid L (valid 1, 2, 4) 
MYKONOS_ERR_DESER_INV_HSCLK_PARM Invalid HSCLK, must be 6.144 G or less after CLKPLL VCO divider; verify 

CLKPLL configuration  
MYKONOS_ERR_DESER_INV_LANERATE_PARM Invalid lane rate, must be between 614.4 Mbps to 6144 Mbps 
MYKONOS_ERR_DESER_INV_LANEEN_PARM Invalid deserializerLanesEnabled (valid 0 to 15 in 1, 2, and 4 lane 

combinations) 
MYKONOS_ERR_DESER_INV_EQ_PARM Invalid equalizer parameter (valid 0 to 4) 
MYKONOS_ERR_DESER_INV_LANEPN_PARM Invalid pseudonoise (PN) invert setting, (valid 0 to 15, invert bit per lane)  
MYKONOS_ERR_DES_HS_AND_LANE_RATE_NOT_INTEGER_MULT Invalid clock settings, HSCLK is not an integer multiple of lane rate 
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MYKONOS_resetDeframer(…) 
mykonosErr_t 

MYKONOS_resetDeframer(mykonosDevice_t 
*device); 

It is important to reset the deframer after the baseband 
processor (BBP) begins outputting code group synchronization 
(CGS) characters on the JESD204B link. The lane FIFOs in the 
deframer path use the clock data recovery (CDR), recovered, 
clock. If the BBP ever resets the PLLs or clocking that drive the 
BBP serializer data, the recovered CDR clock in the device is 

lost. This can lead the lane FIFO to have underflow/overflow 
errors. This function resets the lane FIFOs and deframer IP. 
This also resets the SYSREF received internal signal. Therefore, 
send a SYSREF after this reset to properly retime the deframers 
local multiframe counter (LMFC). 

DEPENDENCIES 
The dependencies for the MYKONOS_resetDeframer(…) 
function are as follows: 

• device → spiSettings 

 

Table 46. MYKONOS_resetDeframer(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 

 

Table 47. MYKONOS_resetDeframer(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
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MYKONOS_enableSysrefToDeframer(…) 
mykonosErr_t 

MYKONOS_enableSysrefToDeframer(mykonosDev
ice_t *device, uint8_t enable); 

This function can gate or allow the SYSREF at the outside of the 
device to reach the SYSREF input in the deframer IP in the 
device. Typically, the deframer ignores SYSREF (enable = 0) 
until after multichip sync. When the baseband processor (BBP) 

is ready to bring up the JESD204B link, call this function with 
enable = 1 to allow the deframer to retime its local multiframe 
counter (LMFC) to the SYSREF. 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
enableSysrefToDeframer(…) function are as follows: 

• device → spiSettings 

 

Table 48. MYKONOS_enableSysrefToDeframer(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
enable 1 enables SYSREF to deframer, 0 disables SYSREF to deframer 

 

Table 49. MYKONOS_enableSysrefToDeframer(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
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MYKONOS_getDeframerFifoDepth(…) 
mykonosErr_t 

MYKONOS_enableSysrefToDeframer(mykonosDev
ice_t *device, uint8_t *fifoDepth, 
uint8_t *readEnLmfcCount); 

This function reads the JESD204B deframer deterministic FIFO 
depth. To verify that the deterministic latency FIFO is not close 
to a underflow or overflow condition, it is recommended to 
check the FIFO depth. If the FIFO is close to an overflow or 
underflow condition, it is possible that, from power-up to 

power-up, deterministic latency may not be met. If an underflow 
or overflow occurs, the data may still be correct, but it might 
slip by one multiframe (losing deterministic latency). To correct 
an overflow/underflow, the baseband processor must add delay 
from SYSREF until the first symbol in a multiframe. 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
getDeframerFifoDepth(…) function are as follows: 

• device → spiSettings 
 

Table 50. MYKONOS_getDeframerFifoDepth(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
fifoDepth Returns the depth of the deframer deterministic latency FIFO 
readEnLmfcCount Returns the local multiframe counter (LMFC) count value when the deterministic latency FIFO read enable was 

asserted; counts are at the internal deframer PCLK frequency 

 

Table 51. MYKONOS_getDeframerFifoDepth(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_READ_DEFFIFODEPTH_NULL_PARAM Function parameter fifoDepth is a null pointer 
MYKONOS_ERR_READ_DEFFIFODEPTH_LMFCCOUNT_NULL_PARAM Function parameter readEnLmfcCount is a null pointer 
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MYKONOS_readDeframerStatus(…) 
mykonosErr_t 

MYKONOS_readDeframerStatus(mykonosDevice_
t *device, uint8_t *deframerStatus); 

After bringing up the deframer JESD204B link, the baseband 
processor (BBP) checks the status of the deframer. 

DEPENDENCIES 
The dependencies for the MYKONOS_readDeframerStatus(…) 
function are as follows: 

• device → spiSettings 

 

Table 52. MYKONOS_readDeframerStatus(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
deframerStatus Deframer status byte as described in Table 53 

 

Table 53. deframerStatus Byte 
deframerStatus Bit Name Description 
7 Unused Unused. 
6 Deframer IRQ This bit indicates that the IRQ interrupt is asserted. 
5 Deframer SYSREF received When this bit is set, it indicates that the SYSREF pulse is received by the deframer IP. 
4 Deframer receiver error This bit is set when pseudorandom bit sequence (PRBS) receives an error. 
u Valid checksum This bit is set when the received initial lane assignment sequence (ILAS) checksum is valid. 
2 EOF event This bit captures the internal status of the framer end of frame (EOF) event. Value = 1 if 

framing error during ILAS. 
1 EOMF event This bit captures the internal status of the framer end of multiframe (EOMF) event. Value = 

1 if framing error during ILAS. 
0 FS lost This bit captures the internal status of the framer frame symbol (FS) event. Value = 1 if 

framing error during ILAS or user data (invalid replacement characters). 

 

Table 54. MYKONOS_readDeframerStatus(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_READ_DEFRAMERSTATUS_NULL_PARAMETER Function parameter deframerStatus has a null pointer 
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MYKONOS_jesd204bIlasCheck(…) 
mykonosErr_t 

MYKONOS_jesd204bIlasCheck(mykonosDevice_t 
*device, uint16_t *mismatch); 

This function allows the baseband processor (BBP) to verify 
that the initial lane assignment sequence (ILAS) configuration 
sent by the BBP to the deframer matches the configuration 
programmed during MYKONOS_initialize(). The mismatch 
parameter is a bit field that alerts the BBP of exactly which field 
has a mismatch. 

DEPENDENCIES 
The dependencies for the MYKONOS_jesd204bIlasCheck(…) 
function are as follows: 

• device → spiSettings 

 

 

 

 

Table 55. MYKONOS_jesd204bIlasCheck(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
mismatch Bit encoded word to indicate mismatch as described in Table 56 

 

Table 56. mismatch Parameter Descriptions 
mismatch Bit Description 
15 Mismatch detected bit: Bits[0:14] are OR’ed together to set this bit. 
14 JESD204B FCHK0: configuration checksum OK bit, where 0 = fail and 1 = pass. 
13 JESD204B HD: high density bit, where 0 = samples are contained with single lane and 1 = samples are divided over more 

than one lane. 
12 JESD204B CF: 0 = control bits appended to each sample, 1 = control bits appended to end of frame. 
11 JESD204B S: number of samples per converter per frame. 
10 JESD204B NP: JESD204B word size based on the highest data converter resolution. 
9 JESD204B CS: number of control bits transferred per sample per frame. 
8 JESD204B N: data converter sample resolution. 
7 JESD204B M: number of data converters. 
6 JESD204B K: frames per multiframe. 
5 JESD204B F: octets per frame. 
4 JESD204B SCR: scramble setting. 
3 JESD204B L: lanes per data converter. 
2 JESD204B LID0: lane ID. 
1 JESD204B BID: bank ID. 
0 JESD204B DID: device ID. 

 

Table 57. MYKONOS_jesd204bIlasCheck(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_JESD204B_ILAS_MISMATCH_NULLPARAM Function parameter mismatch has a null pointer 
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MYKONOS_enableDeframerPrbsChecker(…) 
mykonosErr_t 

MYKONOS_enableDeframerPrbsChecker(mykonos
Device_t *device, uint8_t lanes, 
mykonosPrbsOrder_t polyOrder, uint8_t 
enable); 

This function enables the pseudorandom bit sequence (PRBS) 
checker in the deframer IP. When enabled, the JESD204B 
deframer is disabled and PRBS data is expected on the link 
instead of framed JESD204B data. The checker is a self 
synchronizing PRBS checker, as specified in the JESD204B 
specification. It is capable of checking PRBS7, PRBS15, and 
PRBS31 sequences. 

The lanes parameter is a bit mask (bit per lane), allowing the 
checker to be enabled for a particular JESD204B deserializer 
lane. The polyOrder enumeration can be set to MYK_PRBS7, 
MYK_PRBS15, or MYK_PRBS31. The prbsOrder applies to all 
enable lanes. The enable parameter allows turning on and off 
the PRBS checker function. 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
enableDeframerPrbsChecker(…) function are as follows: 

• device → spiSettings 

 

Table 58. MYKONOS_enableDeframerPrbsChecker(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
lanes Selects the lane for pseudorandom bit sequence (PRBS) checking based on a 4-bit mask, where each bit selects a different 

lane: 1 = Lane 0, 2 = Lane 1, 4 = Lane 2, 8 = Lane 3 
polyOrder Selects the PRBS type based on enumerator values: MYK_PRBS7, MYK_PRBS15, MYK_PRBS31 
enable 1 enables checking, 0 disables checking 

 

Table 59. MYKONOS_enableDeframerPrbsChecker(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_DEFRAMER_INV_PRBS_POLYORDER_PARAM Invalid polyOrder parameter, use proper enumeration  
MYKONOS_ERR_DEFRAMER_INV_PRBS_ENABLE_PARAM Invalid enable (valid 0 to 1) or lanes (valid 0 to 15) parameter 
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MYKONOS_clearDeframerPrbsCounters(…) 
mykonosErr_t 

MYKONOS_clearDeframerPrbsCounters(mykonos
Device_t *device); 

This function allows the baseband processor to clear the deframer 
pseudorandom bit sequence (PRBS) counters. It resets the PRBS 
error counters for all lanes. It is recommended to clear the error 
counters after enabling the deframer PRBS checker. 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
clearDeframerPrbsCounters(…) function are as follows: 

• device → spiSettings 

 

 

Table 60. MYKONOS_clearDeframerPrbsCounters(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 

 

Table 61. MYKONOS_clearDeframerPrbsCounters(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 

 



UG-992 AD9371/AD9375 System Development User Guide 
 

Rev. B | Page 54 of 360 

MYKONOS_readDeframerPrbsCounters(…) 
mykonosErr_t 

MYKONOS_readDeframerPrbsCounters(mykonosD
evice_t *device, uint8_t counterSelect, 
uint32_t *prbsErrorCount); 

After enabling the deframer pseudorandom bit sequence (PRBS) 
checker and clearing the PRBS error counters, use this function 
to read back the PRBS error counters. The counterSelect parameter 
allows the baseband processor (BBP) to select which lane error 
counter to read. Only one lane error counter can be read at a 
time. To read error counters for all four lanes, the BBP calls this 

function four times. Note that the counterSelect parameter selects 
the deframer input, not the physical lane at the outside of the 
chip. The counterSelect value required to read a particular lane 
depends on the lane crossbar of the deframer. 

The 24-bit PRBS error count is returned in the prbsErrorCount 
parameter. 

DEPENDENCIES 
The dependencies for the MYKONOS_ 
readDeframerPrbsCounters(…) function are as follows: 

• device → spiSettings 
 

Table 62. MYKONOS_readDeframerPrbsCounters(…) Parameters 
Parameter Description 
device Pointer to the device settings structure 
counterSelect Selects the pseudorandom bit sequence (PRBS) error counter to be read based on values 0 to 3 
prbsErrorCount Number of errors detected in the PRBS pattern 

 

Table 63. MYKONOS_readDeframerPrbsCounters(…) Return Values 
Return Value Description 
MYKONOS_ERR_OK Function completed successfully 
MYKONOS_ERR_READ_DEFRAMERPRBS_NULL_PARAM Function parameter prbsErrorCount has a null pointer 
MYKONOS_ERR_DEFRAMER_INV_PRBS_CNTR_SEL_PARAM Invalid counterSelect parameter (valid from 0 to 3) 
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LINK ESTABLISHMENT 
After applying power to the device, the serializers, framers, 
deserializer, deframer, and the rest of the JESD204B circuits are 
powered down. Several steps are required to successfully power 
up the JESD204B link. 

Suggested JESD204B API Initialization Sequence 

The steps required to initialize the device JESD204B links (both 
ADCs and DACs datapaths) are as follows: 

1. Initialize the mykonosDevice_t application programming 
interface (API) data structure and substructures with the 
desired settings. The transceiver evaluation software (TES) 
can output a .c/.h file with the data structures initialized to 
the values from the configuration tab.  

2. Call the MYKONOS_initialize(…) API command to 
configure the device. This sets up the device to use the 
chosen Rx/Tx/ORx/sniffer profiles, program the clock PLL 
and digital clocks, set up the serializer, framer, deserializer, 
deframer, and so on, for the Rx/Tx/ORx/sniffer profiles 
that are valid. 

3. Perform multichip synchronization. Send at least two initial 
SYSREF rising edges for multichip sync between multiple 
devices. For proper synchronization, the same SYSREF 
pulses must be seen at each device during the same device 
clock cycle. If only a single device is used, this step is still 
required to ensure JESD204B deterministic latency. For 
proper operation, it is recommended to disable the 
SYSREF, enable multichip synchronization, then reenable 
SYSREF. SYSREF may either be a single pulse or free 
running. If a periodic pulse is used, the phase must not 
change between rising edges. Single-pulse mode can be 
implemented by gating a free running SYSREF after the 
falling edge occurs, allowing a single pulse to output. 

//Disable SYSREF from clock device 
if free running 
 
uint8_t mcsStatus = 0; 
mykonosErr_t mykError = 

MYKONOS_ERR_OK; //default to no error 
 
//Enable MCS in the AD9371. 
mykError = 

MYKONOS_enableMultichipSync(pthe 
AD9371Device, 1, &mcsStatus); 
if (mykError != MYKONOS_ERR_OK) 
{ 
 //function threw error code 
} 
//Request at least 2 SYSREF pulses 

from clock device 
Ad9528.requestSysref(true); 
Ad9528.requestSysref(true); 
 
//Disable MCS in the AD9371 and 

readback MCS status 
 
 

mykError = 
MYKONOS_enableMultichipSync(pthe 
AD9371Device, 0, &mcsStatus); 
if (mykError != MYKONOS_ERR_OK) 
{ 
 //function threw error code 
} 

5. Complete the normal sequence to load the ARM processor 
and to run initialization calibrations. The JESD204B link 
initialization is usually performed at the very end of 
initialization. The ARM loading and calibrations have no 
impact on the JESD204B link. 

6. If the baseband processor (BBP) requires the DAC transmit 
datapath, instruct the BBP to run the required initialization 
for the baseband processor. Enable the JESD204B serializer 
in the BBP to the state in which it outputs code group 
synchronization (CGS) K characters. 

7. Perform a reset to the deframer to clear any disparity bit 
errors previously detected. Also, if the SERDES PLL inside 
the FPGA resets, it can cause the lane FIFOs to overflow/ 
underflow, requiring a deframer reset. 

MYKONOS_resetDeframer(pthe 
AD9371Device); 

8. Enable the JESD204B IP blocks to accept a SYSREF signal 
for internal local multiframe counter (LMFC) timing reset. 
Only the calls to the desired framers/deframers are necessary. 
Send a third SYSREF pulse to the device and BBP to reset 
the JESD204B LMFC timing locally in each device to 
guarantee deterministic latency. The device does not reset 
its LMFC timing on any future SYSREF pulses unless the 
newSysrefOnRelink option is enabled in the framer/deframer 
data structures. 

MYKONOS_enableSysrefToRxFramer(pthe 
AD9371Device, 1); 
MYKONOS_enableSysrefToObsRxFramer(pt

he AD9371Device, 1); 
MYKONOS_enableSysrefToDeframer(pthe 

AD9371Device, 1); 
 
//Request a SYSREF pulse or several 

from clock device 
Ad9528.requestSysref(true); 

Framers 

When the baseband processor (BBP) asserts the SYNCIN_B signal 
(low), the framer transmits the code group synchronization (CGS) 
K characters. The framer continues to transmit the CGS until the 
SYSREF is received. After the framer receives the SYSREF pulse, the 
framer resets the local multiframe counter (LMFC) counter and 
waits for the deassertion of SYNCIN_B. After the BBP deasserts 
the SYNCIN_B signal (high), the framer transmits the initial lane 
assignment sequence (ILAS) at the beginning of the subsequent 
LMFC boundary. After the ILAS sequence is complete, the framer 
begins transmitting the ADC data. Details on the initial lane 
synchronization can be found in Section 5.3.3.5 of the 

http://www.analog.com/ad9371-evaluation-software
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JEDEC Standard No. 204B. Refer to Figure 35 in the JEDEC 
Standard No 204B for details on the ILAS. 

Deframer 

Out of reset, the deframer asserts the SYNCOUT_B signal 
(low). With the SYNCOUT_B signal asserted, the baseband 
processor (BBP) transmits the code group synchronization 
(CGS) K characters. When the deframer receives the SYSREF 
pulse, the deframer resets the local multiframe counter (LMFC) 
counter. After the deframer synchronizes to the received data 
stream and properly decodes the K characters, it deasserts the 
SYNCOUT_B signal (high) on the subsequent LMFC boundary. 
The deassertion of the SYNCOUT_B signal prompts the BBP to 
begin the ILAS. If the link is established over multiple lanes, the 
ILAS may arrive at the device skewed in time across the lanes. 
The lane FIFOs buffer the data in each lane until the next 
LMFC boundary, at which time it releases all lanes aligned in 
time. After the lanes are aligned and the configuration data in 
the ILAS is verified, the user data following the ILAS is sent to 
the DACs. For more details, refer to Section 6.3 of the JEDEC 
Standard No. 204B. Refer to Figure 36 of the JEDEC Standard 
No.204B for details on establishing a link with deterministic 
latency. 

Ensure that the scrambling setting matches in the BBP and the 
device. It is possible for the JESD204B link to successfully link 
and the data to appear corrupt because only the data is 
scrambled, not the ILAS. This can result in a transmit spectrum 
that looks like noise. 

HARDWARE CONSIDERATIONS FOR SYNC SIGNALS 
The device features pins digital input/outputs pins designated 
SYNCOUTB0+, SYNCOUTB0−, SYNCINB0+, SYNCINB0−, 
SYNCINB1+, and SYNCINB1−. In general, each SYNC pin 
allows the JESD204B receiver to communicate with the 
JESD204B transmitter. The SYNC pins can be configured as 
LVDS differential pairs or as a single ended CMOS pin. In 
LVDS mode for the SYNCINB0± and SYNCINB1±, a 100 Ω  
on-chip termination is enabled. 

When configured in CMOS mode, only the positive polarity pin 
is used. If CMOS mode is used for the SYNCINB0 signal or the 
SYNCINB1 signal, the negative polarity pin should be 
connected to ground through a pull down resistor. If CMOS 
mode is used for the SYNCOUTB0 signal, the negative polarity 
pin should not be connected.  

API Configuration  

To configure the device SYNC pins for either CMOS or LVDS 
mode, there are three device data structure members to consider: 

• To set LVDS or CMOS mode for ObsRx signal(s) 
SYNCINB1±, refer to the device data structure member 
located at: device > obsRx > framer > rxSyncbMode. 

• To set LVDS or CMOS mode for Rx signals SYNCINB0±, 
refer to the device data structure member located at: device 
> rx > framer > rxSyncbMode. 

• To set LVDS or CMOS mode for the Tx signals 
SYNCOUTB0±, refer to the device data structure member 
located at: device > tx > deframer > txSyncbMode. 

For the parameters previously mentioned, if the txSyncbMode 
or rxSyncbMode parameter is set to 0, this corresponds to 
LVDS operation. If the parameter is set greater than 0, CMOS 
operation is enabled. 

COMPATIBILITY WITH XILINX JESD204B FPGA IP 
Analog Devices uses the Xilinx JESD204B IP bundled with the 
XC7Z045 FFG900 for demonstration with the provided Analog 
Devices evaluation platform. 

Some versions of the Xilinx JESD204B IP include a watchdog 
timer that resets the high speed serial PLLs if SYNCOUT_B is 
held low for more than 10 ms. This feature causes the lane 
FIFOs in the deserializers to overflow/underflow because the 
lane FIFOs derive the write clock from the recovered clock data 
recovery (CDR) clock. When the field programmable gate array 
(FPGA) resets its SERDES PLLs, the CDR clock in the device 
unlocks and causes the lane FIFO to underflow/overflow. 
Typically, this is not a problem because SYNCOUT_B is not 
held low for longer than 10 ms in normal use. In debug mode, 
however, a user may choose to hold SYNCOUT_B low to test 
the link. It is recommended to disable the 10 ms watchdog reset 
in the Xilinx IP wrapper to prevent unnecessary issues caused 
by randomly resetting PLLs in the system.  

MULTICHIP SYNCHRONIZATION 
For multiple input, multiple output (MIMO) systems requiring 
more than two input or two output channels, multiple devices 
and a common reference oscillator are required. The device 
provides the capability to accept an external reference clock 
and synchronize operation with other devices. Each device 
includes its own baseband PLL that generates sampling and 
data clocks from the reference clock input, so an additional 
control mechanism is required to synchronize multiple devices. 
A set of logical pulses on the SYSREF_IN input is required to 
align the data clock on each device with a common reference. 
This user guide describes the hardware connections necessary 
to synchronize two devices. This user guide also provides detailed 
information about timing requirement for SYSREF pulse in 
reference to DEV_CLK signal clock. Figure 27 shows the hardware 
connections required to perform this synchronization. 

When working with multiple transceivers, or even a single 
transceiver that requires deterministic latency between the Tx 
and observation and or main Rx JESD204B datapath, multichip 
sync is necessary. The series of three (or more) SYSREF pulses 
must be synchronous to the device clock. Typically, this is an 
output from the same clock generation IC that generates the 
device clock, allowing the setup and hold times to be guaranteed. 
The device evaluation system hardware uses the AD9528 for 
clock and SYSREF generation and distribution.  

 

http://www.analog.com/AD9528
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The frequency of the SYSREF pulse train must be a submultiple 
of the JESD204B local multiframe counter (LMFC) rate. The 
first two pulses synchronize the digital circuits and the third 
and following pulses are passed along to the JESD204B 
interface. It is possible for more than three pulses to be required 
if their frequency occurs faster than the JESD204B interface 
PLL can lock and synchronize. For detailed recommendations 
regarding establishing deterministic latency on the JESD204B 
interface, refer to the Link Establishment section. 

Figure 28 shows where each SYSREF pulse is applied inside the 
device. The pulses reset the chip in the following order: 

1. Reset the device clock input scaler. 
2. Reset the digital core clock generation dividers. These 

dividers generate the ADC/DAC and digital clocks. 
3. Reset provides JESD204B lane alignment and deterministic 

lane synchronization. 

Note that the multichip synchronization (MCS) function does not 
include RF synchronization. The ability to synchronize RF local 
oscillators (LOs) is not available in devices. The only alignment 
among multiple chips that is possible using this feature is digital 
timing alignment.  
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Figure 27. Multichip Connectivity—DEV_CLK Clock and SYSREF Signal Connections from the Clock Generation 
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Figure 28. Clocking Architecture Indicating SYSREF Reset Sequence 
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MULTICHIP API FUNCTION DESCRIPTION 
The application programming interface (API) package provided 
with the device contains the MYKONOS_enableMultichipSync 
function. This function sets up the device to route SYSREF 
pulses through the chip to reset the clock synthesizer, all digital 
clocks, and the JESD204B interface. Run this function after a 
single transceiver is initialized (or all transceivers, if more than 
one is used). 
mykonosErr_t 

MYKONOS_enableMultichipSync(mykonosDevice
_t *device, uint8_t enableMcs, uint8_t 
*mcsStatus)  

The function parameters are as follows: 
enableMcs  

When set to = 1, enable the multichip synchronization (MCS) 
state machine. When set to = 0, allow reading back MCS status. 
mcsStatus 

If pointer is not null, then this parameter returns the MCS 
status word. Each bit of this status word represents the following 
functions: 

• Bit 0, MCS JESD204B SYSREF status (1 = sync occurred). 
This bit indicates that the clock synthesizer input divider 
scaler has been reset. 

• Bit 1, MCS digital clocks sync status (1 = sync occurred). 
This bit indicates that the clock synthesizer sigma delta 
modulator has been synchronized. This feature is disabled. 
The PLL operates in integer mode only for JESD204B 
support. 

• Bit 2, MCS clock PLL Σ-Δ modulator sync status (1 = sync 
occurred). This bit indicates that the digital dividers after 
the clock synth are synchronized. 

• Bit 3, MCS device clock divider sync status (1 = sync 
occurred). This bit indicates that MCS for the JESD204B 
framer/deframer required for deterministic latency has 
been performed. 

After the SYSREF pulses are sent, call the MYKONOS_ 
enableMultichipSync() function again with the enableMcs 
parameter set to 0. When enableMcs = 0, the MCS status is 
returned in the multichip sync status parameters. 

The typical sequence for multichip synchronization is as follows:  

1. Initialize all devices in system using MYKONOS_initialize().  
2. Run MYKONOS_enableMultichipSync with enableMcs = 1  
3. Send at least three SYSREF pulses. 
4. Run MYKONOS_enableMultichipSync with enableMcs = 0.  
5. Load ARM, run ARM cals and continue to active transmit/ 

receive/. 

An example sequence of multichip sync sequence copied from 
an IronPython script generated by the transceiver evaluation 
software (TES) is as follows: 

 : 

Link.the AD9371.resetDevice() 

Link.the AD9371.initialize() 

pllStatus = Link.the 
AD9371.checkPllsLockStatus() 

mcsStatus = 0 

Link.the AD9371.enableMultichipSync(1, 
mcsStatus) 

Link.Ad9528.requestSysref(True) 

Link.Ad9528.requestSysref(True) 

Link.Ad9528.requestSysref(True) 

Link.the AD9371.enableMultichipSync(0, 
mcsStatus) 

: 

The key to successful synchronization is to disable external 
SYSREF pulses before configuring the clock synth in all devices 
in the system (while the SYSREF is disabled, it must be held in a 
low state). With SYSREF still disabled, use MYKONOS_ 
enableMultichipSync as described previously. After three pulses 
are applied, all the devices sync at the same time with the SYSREF 
pulses. Exact details regarding SYSREF pulse timing relative to 
DEV_CLK are described in this user guide. 

The device only synchronizes on the first three applied SYSREF 
pulses. More than three pulses may be supplied, but they do not 
have any further effect on synchronization (additional pulses are 
passed to the JESD204B interface). To resync, it is necessary to 
reset the device with a hard reset (applied to the RESET pin). 

http://www.analog.com/ad9371-evaluation-software
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SYSTEM INITIALIZATION 
This section provides information about the initialization 
process for the transceiver device using the application 
programming interface (API) developed by Analog Devices. 
The following sections describe the developer preparation 
requirements, initialization sequence, and example code for 
using the API software on any platform. This section does not 
explain the API library functions. Detailed information regarding 
the API functions can be found in the device API doxygen 
document, located in the /src/doc file in the software package 
directory structure 

MODIFICATION OF COMMON.C FOR USER CODE 
INTEGRATION 
The user is required to integrate their platform level drivers into 
common.c before using any application programming interface 
(API) function calls. Details regarding this are contained in the 
Software Integration section. The API used in the initialization 
process does not execute properly on the user hardware 
platform if this step is ignored. 

 

DATA STRUCTURE MEMBER INITIALIZATION 
The application programming interface (API) functions use 
sets of data structures to convey configuration and control 
data. These structures must be instantiated and their members 
loaded (initialized) with valid settings in the user code before 
the initialization sequence can take place. The transceiver 
evaluation software (TES) can generate valid data structure 
member values based on user settings. The TES generates the 
myk_init.c and myk_init.h files for direct porting to the user 
code or can be cut and pasted as required. The myk_init.* files 
contain the preloaded data structures and accompanying header 
file, respectively. The data structures that must be instantiated 
and loaded are contained in Table 64.  

Note that hardware designs with multiple devices require each 
device to have its own unique configuration data initialized for 
all data structures; headless.c illustrates the structure initialization 
sequence at the beginning of the file. Explanations for each data 
structure are contained in the mykonos.chm document. 

Table 64. Data Structures Requiring Initialization 
Data Structure Location Description 
spiSettings_t /src/api/common.h This contains the SPI settings for all system device types. 
mykonosFir_t /src/api/mykonos/t_mykonos.h This contains the finite impulse response (FIR) filter gain, 

number of coefficients, and a pointer to a filter coefficient array. 
mykonosJesd204bFramerConfig_t /src/api/mykonos/t_mykonos.h This contains the JESD204B framer configuration parameters. 
mykonosJesd204bDeframerConfig_t /src/api/mykonos/t_mykonos.h This contains the JESD204B deframer configuration 

parameters. 
mykonosRxProfile_t /src/api/mykonos/t_mykonos.h This contains the Rx profile information. 
mykonosTxProfile_t /src/api/mykonos/t_mykonos.h This contains the Tx profile information 
mykonosSnifferGainControl_t /src/api/mykonos/t_mykonos.h This contains the sniffer Rx manual gain control information. 
mykonosORxGainControl_t /src/api/mykonos/t_mykonos.h This contains the observation Rx manual gain control 

information. 
mykonosRxGainControl_t /src/api/mykonos/t_mykonos.h This contains the Rx manual gain control information. 
mykonosAgcCfg_t /src/api/mykonos/t_mykonos.h This contains the automatic gain control (AGC) information. 
mykonosTxSettings_t /src/api/mykonos/t_mykonos.h This contains the Tx setting information. 
mykonosRxSettings_t /src/api/mykonos/t_mykonos.h This contains the Rx setting information. 
mykonosObsRxSettings_t /src/api/mykonos/t_mykonos.h This contains the observation Rx setting information. 
mykonosGpio3v3_t /src/api/mykonos/t_mykonos.h This contains the 3.3 V dc GPIO setting information. 
mykonosGpio1v8_t /src/api/mykonos/t_mykonos.h This contains the 1.8 V dc GPIO setting information. 
mykonosAuxIo_t /src/api/mykonos/t_mykonos.h This contains the auxiliary ADC, DAC, and pointers to the 

GPIO setting information. 
mykonosDigClocks_t /src/api/mykonos/t_mykonos.h This contains the digital clock parameters. 
mykonosDevice_t /src/api/mykonos/t_mykonos.h This data structure is inclusive of all previous data types, 

which are instantiated as pointers. The profilesValid bit field 
identifies which profile is valid. This data type is used to 
instantiate one device for configuration and control after 
member structure initialization. 

mykonosArmGpioConfig_t /src/api/mykonos/t_mykonos.h Data structure to hold ARM GPIO pin assignments for each 
ARM input/output pin. 

mykonosPeakDetAgcCfg_t /src/api/mykonos/t_mykonos.h Data structure to hold peak detector settings for the AGC. 
mykonosPowerMeasAgcCfg_t /src/api/mykonos/t_mykonos.h Data structure to hold power measurement settings for the 

AGC. 

http://www.analog.com/ad9371-evaluation-software
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Data Structure Location Description 
mykonosInitCalStatus_t /src/api/mykonos/t_mykonos.h Data structure used to read back the initialization 

calibration status. 
mykonosTxLolStatus_t /src/api/mykonos/t_mykonos.h Data structure to hold Tx local oscillator leakage (LOL) status. 
mykonosTxQecStatus_t /src/api/mykonos/t_mykonos.h Data structure to hold Tx quadrature error correction (QEC) 

status. 
mykonosRxQecStatus_t /src/api/mykonos/t_mykonos.h Data structure to hold Rx QEC status. 
mykonosOrxQecStatus_t /src/api/mykonos/t_mykonos.h Data structure to hold Orx QEC status. 
mykonosGainComp_t /src/api/mykonos/t_mykonos_gpio.h Data structure to hold gain compensation settings for the 

main receive channels. 
mykonosObsRxGainComp_t /src/api/mykonos/t_mykonos_gpio.h Data structure to hold gain compensation settings for the 

observation channel. 
mykonosFloatPntFrmt_t /src/api/mykonos/t_mykonos_gpio.h Data structure to hold floating point formatter settings for 

the floating point number generation. 
mykonosTempSensorConfig_t /src/api/mykonos/t_mykonos_gpio.h Data structure used to configure the on die temperature 

sensor. 
mykonosTempSensorStatus_t /src/api/mykonos/t_mykonos_gpio.h Data structure used to store temperature sensor related values. 
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INITIALIZATION SEQUENCE 
The initialization sequence is comprised of application 
programming interface (API) calls mixed with user defined 
function calls specific to the hardware platform. The API 
functions perform all of the necessary tasks for transceiver 
configuration, calibration, and control. The user is required to 
insert their code into the initialization sequence specific to the 
hardware platform requirements. These platform requirements 
include, but are not limited to, user clock device, user field 
programmable gate array (FPGA)\application specific IC 
(ASIC)\baseband processor (BBP) JESD204B interface, 
datapath control, and various system checks governed by the 
application. The source code contained in headless.c provides a 
basic initialization sequence with code comments to help guide 
the user with the insertion of their application specific code. 

Sequence Order 

The initialization sequence order follows these steps: 

1. Instantiate all data structures and load their members 
required by the user application (myk_init.c contents). 

2. Initialize and setup of all clocks (platform clock source and 
JESD204B SYSREF signals are set up). 

3. Initialize hardware platform (hardware dependent devices 
such as FPGA/ASIC/BBP interfaces are initialized). 

4. Reset the device (call MYKONOS_resetDevice for reset of 
transceiver device in preparation for initialization). 

5. Initialize the device (call MYKONOS_initialize function 
for configuration of the device). 

6. Check CLKPLL status for lock (call MYKONOS_ 
checkPllLockStatus and perform check with user defined 
code). 

7. Multichip synchronization (all the JESD204B lanes are 
synchronized together for deterministic latency 
requirements). 

8. Initialize the ARM processor (call MYKONOS_initArm). 
9. Load the ARM binary file (call MYKONOS_ 

loadArmFromBinary with user defined binary array 
pointer). 

10. Set the RF PLL frequencies (call MYKONOS_ 
setRfPllFrequency for each channel used by the application). 

11. Perform RF PLL lock check (call MYKONOS_ 
checkPllLockStatus and perform check with user defined 
code). 

12. Set GPIO functions with the desired configuration (check 
headless.c for API calls to be made). 

13. Run the initialization calibrations (call MYKONOS_ 
runInitCals and MYKONOS_waitInitCals with user 
defined code). 

14. Enable the SYSREF for Rx and ORx deframer (call 
MYKONOS_enableSysrefTo… functions). 

15. Send the SYSREF signal to bring up the JESD204B interface. 
16. Check deframer and framer status (call MYKONOS_ 

readDeframerStatus and 
MYKONOS_readRxFramerStatus). 

17. User verifies sync and link status for hardware platform. 
18. Enable tracking calibrations (call MYKONOS_ 

enableTrackingCals). 
19. Turn the radio on for all transmitters and receivers that 

were set up previously (call MYKONOS_radioOn). 

EXAMPLE CODE  
headless.c 

The headless.c file contains the initialization sequence example 
code. The sequence of the code written in this file matches the 
aforementioned initialization order. The headless.c file works 
with myk_init.c and myk_init.h. These source code files are 
generated by the TES based on user settings, as previously 
mentioned. The comment header at the top of headless.c 
describes the default TES user settings used to generate 
myk_init.c and myk_init.h. The data structures and their 
generated values in these files are subject to change based on 
TES revision. The headless.c file was written with the intent to be 
used as a template by the user when developing their application. 
Specially formatted code comments are placed throughout file, 
such as Action (which are user needed actions) and Info to help 
the user properly identify where they can insert their 
application specific code.  

headless.h 

The accompanying header file for headless.c is headless.h. It 
contains no code and is provided as a convenience to the user. 

Disclaimer 

Users may not modify any code located in the /src/api folder 
other than changing the common.c code bodies for hardware 
driver insertion and gain table changes in mykonos_user.c. 
Analog Devices maintains the code in /src/api/mykonos and 
/src/api/ad9528 as intellectual property and all changes are at 
their sole discretion. Analog Devices provides new releases to 
fix any code bugs in these folders. Verification of all code bugs 
is independent of any user code.  
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SOURCE CODE EXAMPLES 
myk_init.h 
/** 
 * \file myk_init.h 
 * 
 * \brief Contains structure definitions for myk_init.c 
 * 
 * The top level structure mykonosDevice_t mykDevice uses keyword 
 * extern to allow the application layer main() to have visibility 
 * to these settings. 
 */ 
 
#ifndef MYK_INIT_H_ 
#define MYK_INIT_H_ 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
extern mykonosDevice_t mykDevice; 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif 
 

myk_init.c 
/** 
 * \brief Contains init setting structure declarations for the _instance API 
 * 
 * The top level structure mykonosDevice_t mykDevice uses keyword 
 * extern to allow the application layer main() to have visibility 
 * to these settings. 
 *  
 * All data structures required for operation have been initialized with values which 
reflect these settings: 
 *  
 * Device Clock: 
 * 122.88MHz 
 *  
 * Profiles: 
 * Rx 20MHz, IQrate 30.72MSPS, Dec5 
 * Tx 20/100MHz, IQrate 122.88MSPS, Dec5 
 * ORX 100MHz, IQrate 122.88MSPS, Dec5 
 * SRx 20MHz, IQrate 30.72MSPS, Dec5 
 *  
 */ 
 
#include <stddef.h> 
#include "t_mykonos.h" 
#include "t_mykonos_gpio.h" 
#include "myk_init.h " 
 
static int16_t txFirCoefs[] = {-94,-26,282,177,-438,-368,756,732,-1170,-1337,1758,2479,-
2648,-5088,4064,16760,16759,4110,-4881,-2247,2888,1917,-1440,-1296,745,828,-358,-
474,164,298,-16,-94}; 
 
static mykonosFir_t txFir = 
{ 
    6,              /* Filter gain in dB*/ 
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    32,             /* Number of coefficients in the FIR filter*/ 
    &txFirCoefs[0]  /* A pointer to an array of filter coefficients*/ 
}; 
 
static int16_t rxFirCoefs[] = {-13,-53,-50,-20,88,197,231,80,-239,-576,-654,-
268,538,1359,1585,749,-1060,-3028,-3847,-2340,1835,7799,13660,17289,17289,13660,7799,1835,-
2340,-3847,-3028,-1060,749,1585,1359,538,-268,-654,-576,-239,80,231,197,88,-20,-50,-53,-
13}; 
 
static mykonosFir_t rxFir = 
{ 
    -6,             /* Filter gain in dB*/ 
    48,             /* Number of coefficients in the FIR filter*/ 
    &rxFirCoefs[0]  /* A pointer to an array of filter coefficients*/ 
}; 
 
static int16_t obsrxFirCoefs[] = {-14,-19,44,41,-89,-95,175,178,-303,-317,499,527,-779,-
843,1184,1317,-1781,-2059,2760,3350,-4962,-7433,9822,32154,32154,9822,-7433,-
4962,3350,2760,-2059,-1781,1317,1184,-843,-779,527,499,-317,-303,178,175,-95,-89,41,44,-
19,-14}; 
static mykonosFir_t obsrxFir = 
{ 
    -6,             /* Filter gain in dB*/ 
    48,             /* Number of coefficients in the FIR filter*/ 
    &obsrxFirCoefs[0]/* A pointer to an array of filter coefficients*/ 
}; 
 
static int16_t snifferFirCoefs[] = {-1,-5,-14,-23,-16,24,92,137,80,-120,-378,-471,-
174,507,1174,1183,98,-1771,-3216,-2641,942,7027,13533,17738,17738,13533,7027,942,-2641,-
3216,-1771,98,1183,1174,507,-174,-471,-378,-120,80,137,92,24,-16,-23,-14,-5,-1}; 
static mykonosFir_t snifferRxFir= 
{ 
    -6,             /* Filter gain in dB*/ 
    48,             /* Number of coefficients in the FIR filter*/ 
    &snifferFirCoefs[0]/* A pointer to an array of filter coefficients*/ 
}; 
 
static mykonosJesd204bFramerConfig_t rxFramer = 
{ 
    0,          /* JESD204B Configuration Bank ID -extension to Device ID (Valid 0..15)*/ 
    0,          /* JESD204B Configuration Device ID - link identification number. (Valid 
0..255)*/ 
    0,          /* JESD204B Configuration starting Lane ID.  If more than one lane used, 
each lane will increment from the Lane0 ID. (Valid 0..31)*/ 
    4,          /* number of ADCs (0, 2, or 4) - 2 ADCs per receive chain*/ 
    32,         /* number of frames in a multiframe (default=32), F*K must be a multiple of 
4. (F=2*M/numberOfLanes)*/ 
    1,          /* scrambling off if framerScramble= 0, if framerScramble>0 scramble is 
enabled.*/ 
    1,          /* 0=use internal SYSREF, 1= use external SYSREF*/ 
    0x00,       /* serializerLanesEnabled - bit per lane, [0] = Lane0 enabled, [1] = Lane1 
enabled*/ 
    0xE4,       /* serializerLaneCrossbar*/ 
    22,         /* serializerAmplitude - default 22 (valid (0-31)*/ 
    4,          /* preEmphasis - < default 4 (valid 0 - 7)*/ 
    0,          /* invertLanePolarity - default 0 ([0] will invert lane [0], bit1 will 
invert lane1)*/ 
    0,          /* lmfcOffset - LMFC_Offset offset value for deterministic latency 
setting*/ 
    0,          /* Flag for determining if SYSREF on relink should be set. Where, if > 0 = 
set, 0 = not set*/ 
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    0,          /* Flag for determining if auto channel select for the xbar should be set. 
Where, if > 0 = set, '0' = not set*/ 
    0,          /* Selects SYNCb input source. Where, 0 = use RXSYNCB for this framer, 1 = 
use OBSRX_SYNCB for this framer*/ 
    0,          /* Flag for determining if CMOS mode for RX Sync signal is used. Where, if 
> 0 = CMOS, '0' = LVDS*/ 
    0           /* Selects framer bit repeat or oversampling mode for lane rate matching. 
Where, 0 = bitRepeat mode (changes effective lanerate), 1 = overSample (maintains same lane 
rate between ObsRx framer and Rx framer and oversamples the ADC samples)*/ 
}; 
 
static mykonosJesd204bFramerConfig_t obsRxFramer = 
{ 
    0,      /* JESD204B Configuration Bank ID -extension to Device ID (Valid 0..15)*/ 
    0,      /* JESD204B Configuration Device ID - link identification number. (Valid 
0..255)*/ 
    0,      /* JESD204B Configuration starting Lane ID.  If more than one lane used, each 
lane will increment from the Lane0 ID. (Valid 0..31)*/ 
    2,      /* number of ADCs (0, 2, or 4) - 2 ADCs per receive chain*/ 
    32,     /* number of frames in a multiframe (default=32), F*K must be a multiple of 4. 
(F=2*M/numberOfLanes)*/ 
    1,      /* scrambling off if framerScramble= 0, if framerScramble>0 scramble is 
enabled.*/ 
    1,      /* 0=use internal SYSREF, 1= use external SYSREF*/ 
    0x00,   /* serializerLanesEnabled - bit per lane, [0] = Lane0 enabled, [1] = Lane1 
enabled*/ 
    0xE4,   /* Lane crossbar to map framer lane outputs to physical lanes*/ 
    22,     /* serializerAmplitude - default 22 (valid (0-31)*/ 
    4,      /* preEmphasis - < default 4 (valid 0 - 7)*/ 
    0,      /* invertLanePolarity - default 0 ([0] will invert lane [0], bit1 will invert 
lane1)*/ 
    0,      /* lmfcOffset - LMFC_Offset offset value for deterministic latency setting*/ 
    0,      /* Flag for determining if SYSREF on relink should be set. Where, if > 0 = set, 
0 = not set*/ 
    0,      /* Flag for determining if auto channel select for the xbar should be set. 
Where, if > 0 = set, '0' = not set*/ 
    1,      /* Selects SYNCb input source. Where, 0 = use RXSYNCB for this framer, 1 = use 
OBSRX_SYNCB for this framer*/ 
    0,      /* Flag for determining if CMOS mode for RX Sync signal is used. Where, if > 0 
= CMOS, '0' = LVDS*/ 
    1       /* Selects framer bit repeat or oversampling mode for lane rate matching. 
Where, 0 = bitRepeat mode (changes effective lanerate), 1 = overSample (maintains same lane 
rate between ObsRx framer and Rx framer and oversamples the ADC samples)*/ 
}; 
 
static mykonosJesd204bDeframerConfig_t deframer = 
{ 
    0,     /* bankId extension to Device ID (Valid 0..15)*/ 
    0,     /* deviceId  link identification number. (Valid 0..255)*/ 
    0,     /* lane0Id Lane0 ID. (Valid 0..31)*/ 
    4,     /* M  number of DACss (0, 2, or 4) - 2 DACs per transmit chain */ 
    32,    /* K  #frames in a multiframe (default=32), F*K=multiple of 4. 
(F=2*M/numberOfLanes)*/ 
    1,     /* scramble  scrambling off if scramble= 0.*/ 
    1,     /* External SYSREF select. 0 = use internal SYSREF, 1 = external SYSREF*/ 
    0x00,  /* Deserializer lane select bit field. Where, [0] = Lane0 enabled, [1] = Lane1 
enabled, etc */ 
    0xE4,  /* Lane crossbar to map physical lanes to deframer lane inputs [1:0] = Deframer 
Input 0 Lane section, [3:2] = Deframer Input 1 lane select, etc */ 
    1,     /* Equalizer setting. Applied to all deserializer lanes. Range is 0..4*/ 
    0,     /* PN inversion per each lane.  bit[0] = 1 Invert PN of Lane 0, bit[1] = Invert 
PN of Lane 1, etc).*/ 
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    0,     /* LMFC_Offset offset value to adjust deterministic latency. Range is 0..31*/ 
    0,     /* Flag for determining if SYSREF on relink should be set. Where, if > 0 = set, 
'0' = not set*/ 
    0,     /* Flag for determining if auto channel select for the xbar should be set. 
Where, if > 0 = set, '0' = not set*/ 
    0      /* Flag for determining if CMOS mode for TX Sync signal is used. Where, if > 0 = 
CMOS, '0' = LVDS*/ 
}; 
 
static mykonosRxGainControl_t rxGainControl = 
{ 
    MGC,            /* Current Rx gain control mode setting*/ 
    255,            /* Rx1 Gain Index, can be used in different ways for manual and AGC 
gain control*/ 
    255,            /* Rx2 Gain Index, can be used in different ways for manual and AGC 
gain control*/ 
    255,            /* Max gain index for the currently loaded Rx1 Gain table*/ 
    195,            /* Min gain index for the currently loaded Rx1 Gain table*/ 
    255,            /* Max gain index for the currently loaded Rx2 Gain table*/ 
    195,            /* Min gain index for the currently loaded Rx2 Gain table*/ 
    0,              /* Stores Rx1 RSSI value read back from the AD9371*/ 
    0               /* Stores Rx2 RSSI value read back from the AD9371*/ 
}; 
 
static mykonosORxGainControl_t orxGainControl = 
{ 
    MGC,            /* Current ORx gain control mode setting*/ 
    255,            /* ORx1 Gain Index, can be used in different ways for manual and AGC 
gain control*/ 
    255,            /* ORx2 Gain Index, can be used in different ways for manual and AGC 
gain control*/ 
    255,            /* Max gain index for the currently loaded ORx Gain table*/ 
    237             /* Min gain index for the currently loaded ORx Gain table*/ 
}; 
 
static mykonosSnifferGainControl_t snifferGainControl = 
{ 
    MGC,            /* Current Sniffer gain control mode setting*/ 
    255,            /* Current Sniffer gain index. Can be used differently for Manual Gain 
control/AGC*/ 
    255,            /* Max gain index for the currently loaded Sniffer Gain table*/ 
    203             /* Min gain index for the currently loaded Sniffer Gain table*/ 
}; 
 
static mykonosPeakDetAgcCfg_t rxPeakAgc = 
{ 
    0x1F, /* apdHighThresh: */ 
    0x16, /* apdLowThresh */ 
    0xB5, /* hb2HighThresh */ 
    0x80, /* hb2LowThresh */ 
    0x40, /* hb2VeryLowThresh */ 
    0x06, /* apdHighThreshExceededCnt */ 
    0x04, /* apdLowThreshExceededCnt */ 
    0x06, /* hb2HighThreshExceededCnt */ 
    0x04, /* hb2LowThreshExceededCnt */ 
    0x04, /* hb2VeryLowThreshExceededCnt */ 
    0x4, /* apdHighGainStepAttack */ 
    0x2, /* apdLowGainStepRecovery */ 
    0x4, /* hb2HighGainStepAttack */ 
    0x2, /* hb2LowGainStepRecovery */ 
    0x4, /* hb2VeryLowGainStepRecovery */ 
    0x1, /* apdFastAttack */ 
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    0x1, /* hb2FastAttack */ 
    0x1, /* hb2OverloadDetectEnable */ 
    0x1, /* hb2OverloadDurationCnt */ 
    0x1        /* hb2OverloadThreshCnt */ 
}; 
 
static mykonosPowerMeasAgcCfg_t rxPwrAgc = 
{ 
    0x01, /* pmdUpperHighThresh */ 
    0x03, /* pmdUpperLowThresh */ 
    0x0C, /* pmdLowerHighThresh */ 
    0x04, /* pmdLowerLowThresh */ 
    0x4, /* pmdUpperHighGainStepAttack */ 
    0x2, /* pmdUpperLowGainStepAttack */ 
    0x2, /* pmdLowerHighGainStepRecovery */ 
    0x4, /* pmdLowerLowGainStepRecovery */ 
    0x08, /* pmdMeasDuration */ 
    0x02 /* pmdMeasConfig */ 
}; 
 
static mykonosAgcCfg_t rxAgcConfig = 
{ 
    255, /* AGC peak wait time */ 
    195, /* agcRx1MinGainIndex */ 
    255, /* agcRx2MaxGainIndex */ 
    195, /* agcRx2MinGainIndex: */ 
    255, /* agcObsRxMaxGainIndex */ 
    203, /* agcObsRxMinGainIndex */ 
    1,  /* agcObsRxSelect */ 
    1,  /* agcPeakThresholdMode */ 
    1,  /* agcLowThsPreventGainIncrease */ 
    30720, /* agcGainUpdateCounter */ 
    3, /* agcSlowLoopSettlingDelay */ 
    2, /* agcPeakWaitTime */ 
    0, /* agcResetOnRxEnable */ 
    0, /* agcEnableSyncPulseForGainCounter */ 
    &rxPeakAgc, 
    &rxPwrAgc 
}; 
 
static mykonosPeakDetAgcCfg_t obsRxPeakAgc = 
{ 
    0x1F, /* apdHighThresh: */ 
    0x16, /* apdLowThresh */ 
    0xB5, /* hb2HighThresh */ 
    0x80, /* hb2LowThresh */ 
    0x40, /* hb2VeryLowThresh */ 
    0x06, /* apdHighThreshExceededCnt */ 
    0x04, /* apdLowThreshExceededCnt */ 
    0x06, /* hb2HighThreshExceededCnt */ 
    0x04, /* hb2LowThreshExceededCnt */ 
    0x04, /* hb2VeryLowThreshExceededCnt */ 
    0x4, /* apdHighGainStepAttack */ 
    0x2, /* apdLowGainStepRecovery */ 
    0x4, /* hb2HighGainStepAttack */ 
    0x2, /* hb2LowGainStepRecovery */ 
    0x4, /* hb2VeryLowGainStepRecovery */ 
    0x1, /* apdFastAttack */ 
    0x1, /* hb2FastAttack */ 
    0x1, /* hb2OverloadDetectEnable */ 
    0x1, /* hb2OverloadDurationCnt */ 
    0x1  /* hb2OverloadThreshCnt */ 
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}; 
 
static mykonosPowerMeasAgcCfg_t obsRxPwrAgc = 
{ 
    0x01, /* pmdUpperHighThresh */ 
    0x03, /* pmdUpperLowThresh */ 
    0x0C, /* pmdLowerHighThresh */ 
    0x04, /* pmdLowerLowThresh */ 
    0x4, /* pmdUpperHighGainStepAttack */ 
    0x2, /* pmdUpperLowGainStepAttack */ 
    0x2, /* pmdLowerHighGainStepRecovery */ 
    0x4, /* pmdLowerLowGainStepRecovery */ 
    0x08, /* pmdMeasDuration */ 
    0x02 /* pmdMeasConfig */ 
}; 
 
static mykonosAgcCfg_t obsRxAgcConfig = 
{ 
    255, /* agcRx1MaxGainIndex */ 
    195, /* agcRx1MinGainIndex */ 
    255, /* agcRx2MaxGainIndex */ 
    195, /* agcRx2MinGainIndex: */ 
    255, /* agcObsRxMaxGainIndex */ 
    203, /* agcObsRxMinGainIndex */ 
    1,  /* agcObsRxSelect */ 
    1,  /* agcPeakThresholdMode */ 
    1,  /* agcLowThsPreventGainIncrease */ 
    30720, /* agcGainUpdateCounter */ 
    3,  /* agcSlowLoopSettlingDelay */ 
    2,  /* agcPeakWaitTime */ 
    0,  /* agcResetOnRxEnable */ 
    0,  /* agcEnableSyncPulseForGainCounter */ 
    &obsRxPeakAgc, 
    &obsRxPwrAgc 
}; 
 
 
static mykonosRxProfile_t rxProfile = 
{/* Rx 20MHz, IQrate 30.72MSPS, Dec5 */ 
    1,              /* The divider used to generate the ADC clock*/ 
    &rxFir,         /* Pointer to Rx FIR filter structure*/ 
    4,              /* Rx FIR decimation (1,2,4)*/ 
    5,              /* Decimation of Dec5 or Dec4 filter (5,4)*/ 
    1,              /* If set, and DEC5 filter used, will use a higher rejection DEC5 FIR 
filter (1=Enabled, 0=Disabled)*/ 
    2,              /* RX Half band 1 decimation (1 or 2)*/ 
    30720,          /* Rx IQ data rate in kHz*/ 
    20000000,       /* The Rx RF passband bandwidth for the profile*/ 
    20000,          /* Rx BBF 3dB corner in kHz*/ 
    NULL            /* pointer to custom ADC profile*/ 
}; 
 
static mykonosRxProfile_t orxProfile = 
{/* ORX 100MHz, IQrate 122.88MSPS, Dec5 */ 
    1,              /* The divider used to generate the ADC clock*/ 
    &obsrxFir,      /* Pointer to Rx FIR filter structure or NULL*/ 
    2,              /* Rx FIR decimation (1,2,4)*/ 
    5,              /* Decimation of Dec5 or Dec4 filter (5,4)*/ 
    0,              /* If set, and DEC5 filter used, will use a higher rejection DEC5 FIR 
filter (1=Enabled, 0=Disabled)*/ 
    1,              /* RX Half band 1 decimation (1 or 2)*/ 
    122880,         /* Rx IQ data rate in kHz*/ 
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    100000000,      /* The Rx RF passband bandwidth for the profile*/ 
    100000,         /* Rx BBF 3dB corner in kHz*/ 
    NULL            /* Pointer to custom ADC profile*/ 
}; 
 
static mykonosRxProfile_t snifferProfile = 
{ /* SRx 20MHz, IQrate 30.72MSPS, Dec5 */ 
    1,              /* The divider used to generate the ADC clock*/ 
    &snifferRxFir,  /* Pointer to Rx FIR filter structure or NULL*/ 
    4,              /* Rx FIR decimation (1,2,4)*/ 
    5,              /* Decimation of Dec5 or Dec4 filter (5,4)*/ 
    0,              /* If set, and DEC5 filter used, will use a higher rejection DEC5 FIR 
filter (1=Enabled, 0=Disabled)*/ 
    2,              /* RX Half band 1 decimation (1 or 2)*/ 
    30720,          /* Rx IQ data rate in kHz*/ 
    20000000,       /* The Rx RF passband bandwidth for the profile*/ 
    100000,         /* Rx BBF 3dB corner in kHz*/ 
    NULL            /* pointer to custom ADC profile*/ 
}; 
 
 
 
static mykonosTxProfile_t txProfile = 
{ /* Tx 20/100MHz, IQrate 122.88MSPS, Dec5 */ 
    DACDIV_2p5,     /* The divider used to generate the DAC clock*/ 
    &txFir,         /* Pointer to Tx FIR filter structure*/ 
    2,              /* The Tx digital FIR filter interpolation (1,2,4)*/ 
    2,              /* Tx Halfband1 filter interpolation (1,2)*/ 
    1,              /* Tx Halfband2 filter interpolation (1,2)*/ 
    1,              /* TxInputHbInterpolation (1,2)*/ 
    122880,         /* Tx IQ data rate in kHz*/ 
    20000000,       /* Primary Signal BW*/ 
    100000000,      /* The Tx RF passband bandwidth for the profile*/ 
    710539,         /* The DAC filter 3dB corner in kHz*/ 
    50000,          /* Tx BBF 3dB corner in kHz*/ 
    0               /* Enable DPD, only valid for AD9373*/ 
}; 
 
static mykonosDigClocks_t mykonosClocks = 
{ 
    122880,         /* CLKPLL and device reference clock frequency in kHz*/ 
    9830400,        /* CLKPLL VCO frequency in kHz*/ 
    VCODIV_2,       /* CLKPLL VCO divider*/ 
    4               /* CLKPLL high speed clock divider*/ 
}; 
 
static mykonosRxSettings_t  rxSettings = 
{ 
    &rxProfile,     /* Rx datapath profile, 3dB corner frequencies, and digital filter 
enables*/ 
    &rxFramer,      /* Rx JESD204b framer configuration structure*/ 
    &rxGainControl, /* Rx Gain control settings structure*/ 
    &rxAgcConfig,   /* Rx AGC control settings structure*/ 
    3,              /* The desired Rx Channels to enable during initialization*/ 
    0,              /* Internal LO = 0, external LO*2 = 1*/ 
    2490000000U,    /* Rx PLL LO Frequency (internal or external LO)*/ 
    0               /* Flag to choose if complex baseband or real IF data are selected for 
Rx and ObsRx paths. Where, if > 0 = real IF data, '0' = zero IF (IQ) data*/ 
}; 
 
static mykonosDpdConfig_t dpdConfig = 
{ 
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    5,              /* 1/2^(damping + 8) fraction of power `forgotten' per sample (default: 
`1/8192' = 5, valid 0 to 15), 0 = infinite damping*/ 
    1,              /* number of weights to use for int8_cpx weights weights member of this 
structure (default = 1)*/ 
    2,              /* DPD model version: one of four different generalized polynomial 
models: 0 = same as R0 silicon, 1-3 are new and the best one depends on the PA (default: 
2)*/ 
    1,              /* 1 = Update saved model whenever peak Tx digital RMS is within 1dB of 
historical peak Tx RMS*/ 
    20,             /* Determines how much weight the loaded prior model has on DPD 
modeling (Valid 0 - 32, default 20)*/ 
    0,              /* Default off = 0, 1=enables automatic outlier removal during DPD 
modeling */ 
    512,            /* Number of samples to capture (default: 512, valid 64-32768)*/ 
    4096,           /* threshold for sample in AM-AM plot outside of 1:1 line to be thrown 
out. (default: 50% = 8192/2, valid 8192 to 1)*/ 
    0,              /* 16th of an ORx sample (16=1sample), (default 0, valid -64 to 64)*/ 
    255,            /* Default 255 (-30dBFs=(20Log10(value/8192)), (valid range  1 to 
8191)*/ 
    {{64,0},{0,0},{0,0}}/* DPD model error weighting (real/imag valid from -128 to 127)*/ 
}; 
 
static mykonosClgcConfig_t clgcConfig = 
{ 
    -2000,          /* (value = 100 * dB (valid range -32768 to 32767) - total gain and 
attenuation from the AD9371 Tx1 output to ORx1 input in (dB * 100)*/ 
    -2000,          /* (value = 100 * dB (valid range -32768 to 32767) - total gain and 
attenuation from the AD9371 Tx2 output to ORx2 input in (dB * 100)*/ 
    0,              /* (valid range 0 - 40dB), no default, depends on PA, Protects PA by 
making sure Tx1Atten is not reduced below the limit*/ 
    0,              /* (valid range 0 - 40dB), no default, depends on PA, Protects PA by 
making sure Tx2Atten is not reduced below the limit*/ 
    75,             /* valid range 1-100, default 75*/ 
    75,             /* valid range 1-100, default 45*/ 
    0,              /* 0= allow CLGC to run, but Tx1Atten will not be updated. User can 
still read back power measurements.  1=CLGC runs, and Tx1Atten automatically updated*/ 
    0,              /* 0= allow CLGC to run, but Tx2Atten will not be updated. User can 
still read back power measurements.  1=CLGC runs, and Tx2Atten automatically updated*/ 
    0,              /* 16th of an ORx sample (16=1sample), (default 0, valid -64 to 64)*/ 
    255             /* Default 255 (-30dBFs=(20Log10(value/8192)), (valid range  1 to 
8191)*/ 
}; 
 
static mykonosVswrConfig_t vswrConfig = 
{ 
    0,              /* 16th of an ORx sample (16=1sample), (default 0, valid -64 to 64)*/ 
    255,            /* Default 255 (-30dBFs=(20Log10(value/8192)), (valid range  1 to 
8191)*/ 
    0,              /* 3p3V GPIO pin to use to control VSWR switch for Tx1 (valid 0-11) 
(output from the AD9371)*/ 
    1,              /* 3p3V GPIO pin to use to control VSWR switch for Tx2 (valid 0-11) 
(output from the AD9371)*/ 
    0,              /* 3p3v GPIO pin polarity for forward path of Tx1, opposite used for 
reflection path (1 = high level, 0 = low level)*/ 
    0,              /* 3p3v GPIO pin polarity for forward path of Tx2, opposite used for 
reflection path (1 = high level, 0 = low level)*/ 
    1,              /* Delay for Tx1 after flipping the VSWR switch until measurement is 
made. In ms resolution*/ 
    1               /* Delay for Tx2 after flipping the VSWR switch until measurement is 
made. In ms resolution*/ 
}; 
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static mykonosTxSettings_t txSettings = 
{ 
    &txProfile,     /* Tx datapath profile, 3dB corner frequencies, and digital filter 
enables*/ 
    &deframer,      /* the AD9371 JESD204b deframer config for the Tx data path*/ 
    TX1_TX2,        /* The desired Tx channels to enable during initialization*/ 
    0,              /* Internal LO=0, external LO*2 if =1*/ 
    2503000000U,    /* Tx PLL LO frequency (internal or external LO)*/ 
    TXATTEN_0P05_DB,/* Initial and current Tx1 Attenuation*/ 
    10000,          /* Initial and current Tx1 Attenuation mdB*/ 
    10000,          /* Initial and current Tx2 Attenuation mdB*/ 
    NULL,           /* DPD,CLGC,VSWR settings. Only valid for AD9373 device, set pointer to 
NULL otherwise*/ 
    NULL,           /* CLGC Config Structure. Only valid for AD9373 device, set pointer to 
NULL otherwise*/ 
    NULL            /* VSWR Config Structure. Only valid for AD9373 device, set pointer to 
NULL otherwise*/ 
}; 
 
static mykonosObsRxSettings_t obsRxSettings = 
{ 
    &orxProfile,    /* ORx datapath profile, 3dB corner frequencies, and digital filter 
enables*/ 
    &orxGainControl,/* ObsRx gain control settings structure*/ 
    &obsRxAgcConfig,/* ORx AGC control settings structure*/ 
    &snifferProfile,/* Sniffer datapath profile, 3dB corner frequencies, and digital filter 
enables*/ 
    &snifferGainControl,/* SnRx gain control settings structure*/ 
    &obsRxFramer,   /* ObsRx JESD204b framer configuration structure */ 
    (MYK_ORX1_ORX2 | MYK_SNRXA_B_C),/* obsRxChannel */ 
    OBSLO_TX_PLL,   /* (obsRxLoSource) The Obs Rx mixer can use the Tx Synth(TX_PLL) or 
Sniffer Synth (SNIFFER_PLL) */ 
    2600000000U,    /* SnRx PLL LO frequency in Hz */ 
    0,              /* Flag to choose if complex baseband or real IF data are selected for 
Rx and ObsRx paths. Where if > 0 = real IF data, '0' = complex data*/ 
    NULL,           /* Custom Loopback ADC profile to set the bandwidth of the ADC response 
*/ 
    OBS_RXOFF       /* Default ObsRx channel to enter when radioOn called */ 
}; 
 
static mykonosArmGpioConfig_t armGpio = 
{ 
    0, // useRx2EnablePin; /*!< 0= RX1_ENABLE controls RX1 and RX2, 1 = separate 
RX1_ENABLE/RX2_ENABLE pins */ 
    0, // useTx2EnablePin; /*!< 0= TX1_ENABLE controls TX1 and TX2, 1 = separate 
TX1_ENABLE/TX2_ENABLE pins */ 
    0, // txRxPinMode;     /*!< 0= ARM command mode, 1 = Pin mode to power up Tx/Rx chains 
*/ 
    0, // orxPinMode;      /*!< 0= ARM command mode, 1 = Pin mode to power up ObsRx 
receiver*/ 
 
    /*the AD9371 ARM input GPIO pins -- Only valid if orxPinMode = 1 */ 
    0, // orxTriggerPin; /*!< Select desired GPIO pin (valid 4-15) */ 
    0, // orxMode2Pin;   /*!< Select desired GPIO pin (valid 0-18) */ 
    0, // orxMode1Pin;   /*!< Select desired GPIO pin (valid 0-18) */ 
    0, // orxMode0Pin;   /*!< Select desired GPIO pin (valid 0-18) */ 
 
    /* the AD9371 ARM output GPIO pins  --  always available, even when pin mode not 
enabled*/ 
    0, // rx1EnableAck;  /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    0, // rx2EnableAck;  /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    0, // tx1EnableAck;  /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
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    0, // tx2EnableAck;  /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    0, // orx1EnableAck;  /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    0, // orx2EnableAck;  /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    0, // srxEnableAck;  /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    0  // txObsSelect;   /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    /* When 2Tx are used with only 1 ORx input, this GPIO tells the BBP which Tx channel is   
*/ 
    /* active for calibrations, so BBP can route correct RF Tx path into the single ORx 
input*/ 
}; 
 
static mykonosGpio3v3_t gpio3v3 = 
{ 
    0,    /*!< Oe per pin, 1=output, 0 = input */ 
    GPIO3V3_BITBANG_MODE, /*!< Mode for GPIO3V3[3:0] */ 
    GPIO3V3_BITBANG_MODE, /*!< Mode for GPIO3V3[7:4] */ 
    GPIO3V3_BITBANG_MODE, /*!< Mode for GPIO3V3[11:8] */ 
}; 
 
static mykonosGpioLowVoltage_t gpio = 
{ 
    0,/* Oe per pin, 1=output, 0 = input */ 
    GPIO_MONITOR_MODE,/* Mode for GPIO[3:0] */ 
    GPIO_MONITOR_MODE,/* Mode for GPIO[7:4] */ 
    GPIO_MONITOR_MODE,/* Mode for GPIO[11:8] */ 
    GPIO_MONITOR_MODE,/* Mode for GPIO[15:12] */ 
    GPIO_MONITOR_MODE,/* Mode for GPIO[18:16] */ 
}; 
 
static mykonosAuxIo_t mykonosAuxIo = 
{ 
    0, //auxDacEnableMask uint16_t 
    {0,0,0,0,0,0,0,0,0,0},  //AuxDacValue uint16[10] 
    {0,0,0,0,0,0,0,0,0,0},  //AuxDacSlope uint8[10] 
    {0,0,0,0,0,0,0,0,0,0},  //AuxDacVref uint8[10] 
    &gpio3v3, //pointer to gpio3v3 struct 
    &gpio, //pointer to gpio1v8 struct 
    &armGpio 
}; 
 
static spiSettings_t mykSpiSettings = 
{ 
    1, /* chip select index - valid 1~8 */ 
    0, /* the level of the write bit of a SPI write instruction word, value is inverted for 
SPI read operation */ 
    1, /* 1 = 16-bit instruction word, 0 = 8-bit instruction word */ 
    1, /* 1 = MSBFirst, 0 = LSBFirst */ 
    0, /* clock phase, sets which clock edge the data updates (valid 0 or 1) */ 
    0, /* clock polarity 0 = clock starts low, 1 = clock starts high */ 
    0, /* Not implemented in ADIs platform layer. SW feature to improve SPI throughput */ 
    1, /* Not implemented in ADIs platform layer. For SPI Streaming, set address increment 
direction. 1= next addr = addr+1, 0:addr=addr-1 */ 
    1  /* 1: Use 4-wire SPI, 0: 3-wire SPI (SDIO pin is bidirectional). NOTE: ADI's FPGA 
platform always uses 4-wire mode */ 
}; 
 
static mykonosTempSensorConfig_t tempSensor = 
{ 
    7,              /* 3-bit value that controls the AuxADC decimation factor when used for 
temp sensor calculations; AuxADC_decimation = 256 * 2^tempDecimation*/ 
    67,             /* 8-bit offset that gets added to temp sensor code internally*/ 
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    1,              /* this bit overrides the factory-calibrated fuse offset and uses the 
value stored in the offset member*/ 
    15,             /* 4-bit code with a resolution of 1°C/LSB, each time a temperature 
measurement is performed, the device compares the current temperature against the previous 
value.*/ 
}; 
 
static mykonosTempSensorStatus_t tempStatus = 
{ 
    0,              /* 16-bit signed temperature value (in deg C) that is read back*/ 
    0,              /* If the absolute value of the difference is greater than the value in 
temperature configuration tempWindow, the windowExceeded flag is set.*/ 
    0,              /* when windowExceeded member gets set, this bit is set to 1 if current 
value is greater than previous value, else reset*/ 
    0,              /* when the reading is complete and a valid temperature value stored in 
tempCode.*/ 
}; 
 
mykonosDevice_t mykDevice = 
{ 
    &mykSpiSettings,    /* SPI settings data structure pointer */ 
    &rxSettings,        /* Rx settings data structure pointer */ 
    &txSettings,        /* Tx settings data structure pointer */ 
    &obsRxSettings,     /* ObsRx settings data structure pointer */ 
    &mykonosAuxIo,          /* Auxiliary IO settings data structure pointer */ 
    &mykonosClocks,     /* Holds settings for CLKPLL and reference clock */ 
    0                   /* the AD9371 initialize function uses this as an output to 
remember which profile data structure pointers are valid */ 
}; 
 

headless.h 
/** 
 * \file headless.h 
 * 
 * \brief Contains definitions for headless.c 
 */ 
 
#ifndef HEADLESS_H_ 
#define HEADLESS_H_ 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* HEADLESS_H_ */ 
 

headless.c 
/** 
 * \file headless.c 
 * 
 * \brief Contains example code for user integration with their application 
 * 
 * All data structures required for operation have been initialized with values which 
reflect 
 * these settings: 
 * 
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 * Device Clock: 
 * 122.88MHz 
 * 
 * Profiles: 
 * Rx 20MHz, IQrate 30.72MSPS, Dec5 
 * Tx 20/100MHz, IQrate 122.88MSPS, Dec5 
 * ORX 100MHz, IQrate 122.88MSPS, Dec5 
 * SRx 20MHz, IQrate 30.72MSPS, Dec5 
 * 
 * \def Action User needed action 
 * \def Info information section 
 */ 
 
#include <stdlib.h> 
#include "headless.h" 
#include "mykonos.h" 
#include "mykonos_gpio.h" 
#include "myk_init.h" 
/****< Action: Insert rest of required Includes Here >***/ 
 
int main() 
{ 
    const char* errorString; 
    uint8_t mcsStatus = 0; 
    uint8_t pllLockStatus = 0; 
    uint8_t binary[98304] = {0}; /*** < Action: binary should contain ARM binary file as 
array  > ***/ 
    uint32_t count = sizeof(binary); 
    uint8_t errorFlag = 0; 
    uint8_t errorCode = 0; 
    uint32_t initCalsCompleted = 0; 
    uint16_t errorWord = 0; 
    uint16_t statusWord = 0; 
    uint8_t status = 0; 
    mykonosInitCalStatus_t initCalStatus = {0}; 
 
    uint8_t deframerStatus = 0; 
    uint8_t obsFramerStatus = 0; 
    uint8_t framerStatus = 0; 
    uint32_t initCalMask = TX_BB_FILTER | ADC_TUNER | TIA_3DB_CORNER | DC_OFFSET | 
TX_ATTENUATION_DELAY | RX_GAIN_DELAY 
            | FLASH_CAL | PATH_DELAY | TX_LO_LEAKAGE_INTERNAL | TX_QEC_INIT | 
LOOPBACK_RX_LO_DELAY 
            | LOOPBACK_RX_RX_QEC_INIT | RX_LO_DELAY | RX_QEC_INIT; 
 
    uint32_t trackingCalMask = TRACK_RX1_QEC | TRACK_RX2_QEC | TRACK_TX1_QEC | 
TRACK_TX2_QEC | TRACK_ORX1_QEC 
            | TRACK_ORX2_QEC; 
 
    mykonosErr_t mykError = MYKONOS_ERR_OK; 
    mykonosGpioErr_t mykGpioErr = MYKONOS_ERR_GPIO_OK; 
 
    /* Allocating memory for the errorString */ 
    errorString = (const char*)malloc(sizeof(char) * 200); 
 
    /*** < Action: Insert System Clock(s) Initialization Code Here          > ***/ 
 
    /*** < Action: Insert BBP Initialization Code Here                     > ***/ 
 
    /*************************************************************************/ 
    /*****                the AD9371 Initialization Sequence                *****/ 
    /*************************************************************************/ 
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    /*** < Action: Toggle RESET pin on the AD9371 device                   > ***/ 
    if ((mykError = MYKONOS_resetDevice(&mykDevice)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_initialize(&mykDevice)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*************************************************************************/ 
    /*****                the AD9371 CLKPLL Status Check                    *****/ 
    /*************************************************************************/ 
    if ((mykError = MYKONOS_checkPllsLockStatus(&mykDevice, &pllLockStatus)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if (pllLockStatus & 0x01) 
    { 
        /*** < User: code here for actions once CLKPLL locked  > ***/ 
    } 
    else 
    { 
        /*** < User: code here here for actions since CLKPLL not locked 
         * ensure lock before proceeding - > ***/ 
    } 
 
    /*************************************************************************/ 
    /*****                the AD9371 Perform MultiChip Sync                 *****/ 
    /*************************************************************************/ 
    if ((mykError = MYKONOS_enableMultichipSync(&mykDevice, 1, &mcsStatus)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*** < Action: minimum 3 SYSREF pulses from Clock Device has to be produced 
     * for MulticChip Sync > ***/ 
 
    /************************************************************************/ 
    /*****                the AD9371 Verify MultiChip Sync                 *****/ 
    /************************************************************************/ 
    if ((mykError = MYKONOS_enableMultichipSync(&mykDevice, 0, &mcsStatus)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
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    if ((mcsStatus & 0x0B) == 0x0B) 
    { 
        /*** < Info: MCS successful  > ***/ 
        /*** < Action: extra User code   > ***/ 
    } 
    else 
    { 
        /*** < Info: MCS failed  > ***/ 
        /*** < Action: ensure MCS before proceeding  > ***/ 
    } 
 
    /*************************************************************************/ 
    /*****                the AD9371 Load ARM file                          *****/ 
    /*************************************************************************/ 
    if (pllLockStatus & 0x01) 
    { 
        if ((mykError = MYKONOS_initArm(&mykDevice)) != MYKONOS_ERR_OK) 
        { 
            /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
            errorString = getthe AD9371ErrorMessage(mykError); 
        } 
 
        /*** < Action: User must load ARM binary byte array into variable binary[98304] 
before calling next command > ***/ 
        if ((mykError = MYKONOS_loadArmFromBinary(&mykDevice, &binary[0], count)) != 
MYKONOS_ERR_OK) 
        { 
            /*** < Info: errorString will contain log error string in order to debug why 
             *  ARM did not load properly - check binary and device settings  > ***/ 
            /*** < Action: User code > ***/ 
            errorString = getthe AD9371ErrorMessage(mykError); 
        } 
 
    } 
    else 
    { 
        /*** < Action: check settings for proper CLKPLL lock > ***/ 
    } 
 
    /*************************************************************************/ 
    /*****                the AD9371 Set RF PLL Frequencies                 *****/ 
    /*************************************************************************/ 
    if ((mykError = MYKONOS_setRfPllFrequency(&mykDevice, RX_PLL, mykDevice.rx-
>rxPllLoFrequency_Hz)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_setRfPllFrequency(&mykDevice, TX_PLL, mykDevice.tx-
>txPllLoFrequency_Hz)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_setRfPllFrequency(&mykDevice, SNIFFER_PLL, mykDevice.obsRx-
>snifferPllLoFrequency_Hz)) 
            != MYKONOS_ERR_OK) 
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    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*** < Action: wait 200ms for PLLs to lock > ***/ 
 
    if ((mykError = MYKONOS_checkPllsLockStatus(&mykDevice, &pllLockStatus)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((pllLockStatus & 0x0F) == 0x0F) 
    { 
        /*** < Info: All PLLs locked > ***/ 
    } 
    else 
    { 
        /*** < Info: PLLs not locked  > ***/ 
        /*** < Action: Ensure lock before proceeding - User code here > ***/ 
    } 
 
    /*************************************************************************/ 
    /*****                the AD9371 Set GPIOs                              *****/ 
    /*************************************************************************/ 
    if ((mykGpioErr = MYKONOS_setupGpio(&mykDevice)) != MYKONOS_ERR_GPIO_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getGpiothe AD9371ErrorMessage(mykGpioErr); 
    } 
 
    /*************************************************************************/ 
    /*****                the AD9371 Set manual gains values                *****/ 
    /*************************************************************************/ 
    if ((mykError = MYKONOS_setRx1ManualGain(&mykDevice, 255)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_setRx2ManualGain(&mykDevice, 255)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_setObsRxManualGain(&mykDevice, OBS_RX1_TXLO, 255)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
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    if ((mykError = MYKONOS_setObsRxManualGain(&mykDevice, OBS_RX2_TXLO, 255)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_setObsRxManualGain(&mykDevice, OBS_SNIFFER_A, 255)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_setObsRxManualGain(&mykDevice, OBS_SNIFFER_B, 255)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
    if ((mykError = MYKONOS_setObsRxManualGain(&mykDevice, OBS_SNIFFER_C, 255)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*************************************************************************/ 
    /*****                the AD9371 Initialize attenuations                *****/ 
    /*************************************************************************/ 
    if ((mykError = MYKONOS_setTx1Attenuation(&mykDevice, 0)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_setTx2Attenuation(&mykDevice, 0)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*************************************************************************/ 
    /*****           the AD9371 ARM Initialization Calibrations             *****/ 
    /*************************************************************************/ 
 
    if ((mykError = MYKONOS_runInitCals(&mykDevice, (initCalMask & 
~TX_LO_LEAKAGE_EXTERNAL))) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_waitInitCals(&mykDevice, 60000, &errorFlag, &errorCode)) != 
MYKONOS_ERR_OK) 
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    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((errorFlag != 0) || (errorCode != 0)) 
    { 
        if ((mykError = MYKONOS_getInitCalStatus(&mykDevice, &initCalStatus)) != 
MYKONOS_ERR_OK) 
        { 
            /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
            errorString = getthe AD9371ErrorMessage(mykError); 
        } 
 
        /*** < Info: abort init cals > ***/ 
        if ((mykError = MYKONOS_abortInitCals(&mykDevice, &initCalsCompleted)) != 
MYKONOS_ERR_OK) 
        { 
            /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
            errorString = getthe AD9371ErrorMessage(mykError); 
        } 
        if (initCalsCompleted) 
        { 
            /*** < Info: which calls had completed, per the mask > ***/ 
        } 
 
        if ((mykError = MYKONOS_readArmCmdStatus(&mykDevice, &errorWord, &statusWord)) != 
MYKONOS_ERR_OK) 
        { 
            /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
            errorString = getthe AD9371ErrorMessage(mykError); 
        } 
 
        if ((mykError = MYKONOS_readArmCmdStatusByte(&mykDevice, 2, &status)) != 
MYKONOS_ERR_OK) 
        { 
            /*** < Info: errorString will contain log error string in order to debug why  
failed > ***/ 
            errorString = getthe AD9371ErrorMessage(mykError); 
        } 
        if (status != 0) 
        { 
            /*** < Info: Arm Mailbox Status Error errorWord > ***/ 
            /*** < Info: Pending Flag per opcode statusWord, this follows the mask > ***/ 
        } 
    } 
    else 
    { 
        /*** < Info: Calibrations completed successfully  > ***/ 
    } 
 
    /*************************************************************************/ 
    /*****  the AD9371 ARM Initialization External LOL Calibrations with PA *****/ 
    /*************************************************************************/ 
    /*** < Action: Please ensure PA is enabled operational at this time > ***/ 
    if (initCalMask & TX_LO_LEAKAGE_EXTERNAL) 
    { 
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        if ((mykError = MYKONOS_runInitCals(&mykDevice, TX_LO_LEAKAGE_EXTERNAL)) != 
MYKONOS_ERR_OK) 
        { 
            /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
            errorString = getthe AD9371ErrorMessage(mykError); 
        } 
        if ((mykError = MYKONOS_waitInitCals(&mykDevice, 60000, &errorFlag, &errorCode)) != 
MYKONOS_ERR_OK) 
        { 
            /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
            errorString = getthe AD9371ErrorMessage(mykError); 
        } 
        if ((errorFlag != 0) || (errorCode != 0)) 
        { 
            if ((mykError = MYKONOS_getInitCalStatus(&mykDevice, &initCalStatus)) != 
MYKONOS_ERR_OK) 
            { 
                /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
                errorString = getthe AD9371ErrorMessage(mykError); 
            } 
 
            /*** < Info: abort init cals > ***/ 
            if ((mykError = MYKONOS_abortInitCals(&mykDevice, &initCalsCompleted)) != 
MYKONOS_ERR_OK) 
            { 
                /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
                errorString = getthe AD9371ErrorMessage(mykError); 
            } 
            if (initCalsCompleted) 
            { 
                /*** < Info: which calls had completed, per the mask > ***/ 
            } 
 
            if ((mykError = MYKONOS_readArmCmdStatus(&mykDevice, &errorWord, &statusWord)) 
!= MYKONOS_ERR_OK) 
            { 
                /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
                errorString = getthe AD9371ErrorMessage(mykError); 
            } 
 
            if ((mykError = MYKONOS_readArmCmdStatusByte(&mykDevice, 2, &status)) != 
MYKONOS_ERR_OK) 
            { 
                /*** < Info: errorString will contain log error string in order to debug 
failure > ***/ 
                errorString = getthe AD9371ErrorMessage(mykError); 
            } 
            if (status != 0) 
            { 
                /*** < Info: Arm Mailbox Status Error errorWord > ***/ 
                /*** < Info: Pending Flag per opcode statusWord, this follows the mask > 
***/ 
            } 
        } 
        else 
        { 
            /*** < Info: Calibrations completed successfully  > ***/ 
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        } 
    } 
    /*************************************************************************/ 
    /*****             SYSTEM JESD bring up procedure                    *****/ 
    /*************************************************************************/ 
    /*** < Action: Make sure SYSREF is stopped/disabled > ***/ 
    /*** < Action: Make sure BBP JESD is reset and ready to recieve CGS chars> ***/ 
 
    if ((mykError = MYKONOS_enableSysrefToRxFramer(&mykDevice, 1)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
    /*** < Info: the AD9371 is waiting for sysref in order to start 
     * transmitting CGS from the RxFramer> ***/ 
 
    if ((mykError = MYKONOS_enableSysrefToObsRxFramer(&mykDevice, 1)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
    /*** < Info: the AD9371 is waiting for sysref in order to start 
     * transmitting CGS from the ObsRxFramer> ***/ 
 
    /*** < User: Make sure SYSREF is stopped/disabled > ***/ 
    if ((mykError = MYKONOS_enableSysrefToDeframer(&mykDevice, 0)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    if ((mykError = MYKONOS_resetDeframer(&mykDevice)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*** < User: make sure BBP JESD framer is actively transmitting CGS> ***/ 
    if ((mykError = MYKONOS_enableSysrefToDeframer(&mykDevice, 1)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*************************************************************************/ 
    /*****            Enable SYSREF to the AD9371 and BBP                  *****/ 
    /*************************************************************************/ 
    /*** < Action: Sends SYSREF Here > ***/ 
 
    /*** < Info: the AD9371 is actively transmitting CGS from the RxFramer> ***/ 
 
    /*** < Info: the AD9371 is actively transmitting CGS from the ObsRxFramer> ***/ 
 
    /*** < Action: Insert User: BBP JESD Sync Verification Code Here > ***/ 
 
    /*************************************************************************/ 
    /*****               Check the AD9371 Framer Status                     *****/ 
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    /*************************************************************************/ 
    if ((mykError = MYKONOS_readRxFramerStatus(&mykDevice, &framerStatus)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
    if ((mykError = MYKONOS_readOrxFramerStatus(&mykDevice, &obsFramerStatus)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*************************************************************************/ 
    /*****               Check the AD9371 Deframer Status                   *****/ 
    /*************************************************************************/ 
    if ((mykError = MYKONOS_readDeframerStatus(&mykDevice, &deframerStatus)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*** < Action: When links have been verified, proceed > ***/ 
 
    /*************************************************************************/ 
    /*****           the AD9371 enable tracking calibrations                *****/ 
    /*************************************************************************/ 
    if ((mykError = MYKONOS_enableTrackingCals(&mykDevice, trackingCalMask)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug why 
enableTrackingCals failed > ***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*** < Info: Allow Rx1/2 QEC tracking and Tx1/2 QEC tracking to run when in the radioOn 
state 
     *  Tx calibrations will only run if radioOn and the obsRx path is set to 
OBS_INTERNAL_CALS > ***/ 
 
    /*** < Info: Function to turn radio on, Enables transmitters and receivers 
     * that were setup during MYKONOS_initialize() > ***/ 
    if ((mykError = MYKONOS_radioOn(&mykDevice)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    /*** < Info: Allow TxQEC to run when User: is not actively using ORx receive path > 
***/ 
    if ((mykError = MYKONOS_setObsRxPathSource(&mykDevice, OBS_RXOFF)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
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    if ((mykError = MYKONOS_setObsRxPathSource(&mykDevice, OBS_INTERNALCALS)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will contain log error string in order to debug failure > 
***/ 
        errorString = getthe AD9371ErrorMessage(mykError); 
    } 
 
    return 0; 

} 
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QUADRATURE ERROR CORRECTION, CALIBRATION, AND ARM CONFIGURATION 
The device comes with a built in ARM processor. This ARM 
processor is tasked with performing some initial calibrations of the 
signal paths of the device, as well as maintaining quadrature 
error correction (QEC) and local oscillator (LO) leakage 
performance during device operation through tracking 
algorithms. This chapter outlines the application programming 
interface (API) functions used to load the ARM, perform the 
initial calibrations, and run tracking calibrations.  

ARM STATE MACHINE OVERVIEW 
See Figure 29 for the ARM state machine flowchart. 
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POWER UP/

RESET

STATE 1:
READY

STATE 2:
IDLE/

RADIO OFF

STATE 3:
RADIO ON

BOOST SEQUENCE
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Figure 29. ARM State Machine Flowchart 

State 0 

When the ARM core is powered up, the ARM moves into its 
power-up/reset state. An image is to be loaded at this point. The 
process for loading that ARM is explained in the next section. 
After the ARM image is loaded, the ARM can be enabled and 
begins its boot sequence. 

State 1 

After the ARM has been successfully booted, it enters its ready 
state. In this state, it can receive configuration settings or 
commands (instructions), such as to perform the initial 
calibrations of the device. This is explained in the Initial ARM 
Calibrations section. 

State 2 

After the initial calibrations are performed, the ARM enters its 
idle state. In this state, it can receive configuration settings, such 
as which tracking calibrations are to be enabled. This is 
explained in the Tracking Calibrations section. 

State 3 

After the required tracking calibrations are enabled, a radio on 
command is provided to the ARM, which moves it into State 3. 
In this state, the ARM scheduler is active, and the ARM runs 
tracking calibrations when the necessary signal chains are 
available. The RF paths are also made available for use. 

LOADING THE ARM 
When the device is powered up or reset, it is necessary for the 
ARM image to be loaded to the device (this is towards the end 
of the initialization process, see an initialization script for further 
details). Prior to loading the ARM image, the ARM core is reset 
and prepared to receive its image with the following API function: 
MYKONOS_initARM(mykonosDevice_t *device) 

where *device is the structure pointer to the data structure. 

After this function is run, the ARM image is then loaded with 
the following function: 

MYKONOS_loadArmFromBinary(mykonosDevice_t 
*device, uint8_t *binary, uint32_t count) 

where *binary is a pointer to the byte array containing ARM 
program memory bytes, and count is the number of bytes in 
this byte array. 

The ARM image is provided though the AD9371_M3.bin file, 
provided in the Resources folder of the TES install.  

After the ARM image is loaded, the MYKONOS_ 
loadArmFromBinary function enables the ARM, and the ARM 
automatically begins its boot sequence. As part of the boot 
sequence, the ARM calculates a checksum for the loaded image. 
The following application programming interface (API) function 
verifies the ARM load has been completed successfully: 

MYKONOS_verifyArmChecksum(mykonosDevice_t 
*device) 

This function ensures that the boot sequence completes, before 
reading back the calculated checksum from the relevant ARM 
memory location. It compares this to the precalculated checksum 
embedded in the ARM image. A successful load is verified 
when the checksums are equal. 

 

 

 

 

 

http://www.analog.com/ad9371-evaluation-software
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INITIAL ARM CALIBRATIONS 
The ARM processor in the device is tasked with scheduling/ 
performing initial calibrations to optimize the performance of 
the signal paths prior to device operation. These calibrations are 
called by the following application programming interface 
(API) function: 
MYKONOS_runInitCals(mykonosDevice_t *device, 

uint32_t calMask) 

where calMask is a 32-bit mask that informs the ARM processor 
which calibrations to run. 

Table 65 shows the bit assignments of the calibration mask. The 
ARM processor runs the selected initial calibration for each 
enabled channel.  

The calMask can thus be created using a bit map from Table 65, 
or by using the appropriate enums. For example, the following 
enable the ADC tuner and ADC flash calibration in a calMask 
to be passed to the MYKONOS_runInitCals( ) function: 
unit32_t initCalMask = ADC_TUNER | 

FLASH_CAL; 

The initial calibrations follow a specific order and must occur in 
a sequential manner. The ARM proceeds through these calibrations 
in the appropriate sequential order. It is important, however, 
that the user wait for these routines to complete prior to perform-
ing any further configuration of the device. The following API 
command is used to verify that these initial calibrations have 
been completed by the ARM: 
MYKONOS_waitInitCals(mykonosDevice_t 

*device, uint32_t timeoutMs, uint8_t 
*errorFlag, uint8_t *errorCode) 

where timeoutMs is the time in ms the function must wait for 
the calibrations to complete before returning an error, and 
*errorFlag and *errorCode indicate if an error has occurred, 
and if so, which calibration returned the error (see the Initial 
Calibration Errors section). 

 

 

 

Table 65. Calibration Mask Bit Assignments1 
Bits Corresponding Enumerator Function Description 
D0 TX_BB_FILTER Tx baseband filter 

calibration 
This tunes the corner frequency of the Tx baseband filter. 

D1 ADC_TUNER ADC tuner calibration This configures the ADC for the required profile bandwidth. 
D2 TIA_3DB_CORNER Rx TIA filter calibration This tunes the corner frequency of the Rx transimpedance amplifier 

(TIA) filter. 
D3 DC_OFFSET Rx dc offset calibration This corrects for dc offset within the Rx chain. 
D4 TX_ATTENUATION_DELAY Tx attenuation delay This is used to offset the onset of Tx analog and digital attenuations 

to compensate for the path delay between these blocks. 
D5 RX_GAIN_DELAY Rx gain delay This offsets the onset of Rx analog attenuator and digital gain/ 

attenuation block to compensate for the path delay between these 
blocks.  

D6 FLASH_CAL ADC flash calibration This optimally configures the ADC flash. 
D7 PATH_DELAY Path delay 

calibration 
This computes the Tx to loopback Rx path delay, which is required for 
the Tx quadrature error correction (QEC) and Tx local oscillator leakage 
(LOL) algorithms. 

D8 TX_LO_LEAKAGE_INTERNAL Tx LO leakage internal 
initial calibration 

This performs an initial internal LO leakage calibration for the Tx path. 
It utilizes the Tx path, the internal loopback and ORx path (see Figure 34). 

D9 TX_LO_LEAKAGE_EXTERNAL Tx LO leakage external 
initial calibration 

This performs an initial external LO leakage calibration for the Tx 
path. It utilizes the Tx path, a required external loopback path and the 
ORx path (see Figure 35). 

D10 TX_QEC_INIT Tx QEC initial 
calibration 

This performs an initial QEC calibration for the Tx path. It utilizes the 
Tx path, the internal loopback path and the ORx path (see Figure 34). 

D11 LOOPBACK_RX_LO_DELAY Loopback ORx LO 
delay 

This performs an LO delay calibration for the loopback receiver path. 

D12 LOOPBACK_RX_RX_QEC_INIT Loopback RxQEC 
initial calibration 

This performs an initial QEC calibration for the Rx path. 

D13 RX_LO_DELAY Rx LO delay This performs an LO delay calibration for the receiver path. 
D14 RX_QEC_INIT Rx QEC initial 

calibration 
This performs an initial QEC calibration for the Rx path. 

[D15:D31] Not applicable Not used Not applicable 
 
1 There are requirements on a system level for these initialization calibrations to perform successfully. These requirements are described in the System Considerations 
for ARM Calibrations section.  
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TRACKING CALIBRATIONS 
The ARM processor is tasked with ensuring that quadrature 
error correction (QEC) and local oscillator leakage (LOL) 
corrections are optimal throughout device operation, for example, 
over time, attenuation, and temperature. It achieves this by 
performing calibrations at regular intervals. These calibrations 
are termed tracking calibrations and utilize normal traffic data 
to update the path correction coefficients. 

The following application programming interface (API) 
function enables the tracking calibrations in the ARM: 
MYKONOS_enableTrackingCals(mykonosDevice_t 

*device, uint32_t enableMask) 

where enableMask is a 32-bit mask that informs the ARM 
processor which calibrations to run.  

Table 66 shows the bit assignments of the enable mask. There is 
also an equivalent function to read which tracking calibrations 
are enabled, which uses the same mask: 
MYKONOS_getEnabledTrackingCals(mykonosDevice

_t *device, uint32_t *enableMask) 

This API function must be run in the radio off state, or before 
the device is operational. It cannot be run when the device is 
operational (ARM is in radio on state) because the ARM does 
not accept changes to the enabled tracking calibrations when 
the device is actively sending and receiving traffic data. The 
device can be returned to radio off, where traffic data is not 
being sent or received, if changes to the active tracking calibrations 
must be made. However, it is recommended that the respective 
tracking calibrations for the enabled channels be active at all 
times when the device is in the radio on state.  

The ARM is tasked with the scheduling of the tracking calibrations. 
No user input is required to initiate a tracking calibration. The 
ARM schedules its calibrations based on the periodicity required 
for each calibration. Transmit tracking calibrations are run only 
at times when the user advises that the ORx path is available to 
the ARM for calibrations. The requirements of this are detailed 
in the Tracking Calibration Scheduler section, whereas the 
control of the ORx path to allow calibrations is covered in the 
System Control section. 

The Rx/ORx channels also have dc correction tracking, which is 
active at all times. This calibration is not an ARM-based 
calibration. 
Table 66. Tracking Calibrations Enable Mask Bit Assignments 
enableMask Bit(s) Function 
D0 Rx1 QEC tracking 
D1 Rx2 QEC tracking 
D2 ORx1 QEC tracking 
D3 ORx2 QEC tracking 
D4 Tx1 LOL tracking 
D5 Tx2 LOL tracking 
D6 Tx1 QEC tracking 
D7 Tx2 QEC tracking 
[D8:D31] Unused 

TRACKING CALIBRATION SCHEDULER 
The ARM is tasked with the scheduling of the tracking calibrations, 
scheduling its calibrations based on the periodicity required for 
each calibration. No user input is required to initiate a tracking 
calibration. Receive calibrations are only run when the receive 
chains are enabled; likewise, transmit tracking calibrations are 
only run when the transmit chains are enabled. Transmit tracking 
calibrations also require the user to assign the ORx path to the 
ARM for calibrations for a specified proportion of time, to 
allow the Tx data to be observed.  

After the device is initialized, the ARM enters the idle/radio off 
state. When the ARM is in this state, the device is not transmitting/ 
receiving data. For the device to transmit/receive data, the ARM 
must be in the radio on state with the tracking calibrations enabled. 
See Figure 29 for an overview of the ARM state machine. 

Radio Off 

The scheduler is not active in this state. The signal chains are 
powered down and the device is not receiving or transmitting data. 

Radio On 

The scheduler is active in this state, and tracking calibrations 
are run. The signal chains are available for use (see the System 
Control section). 

The ARM is advised to move to the radio off/radio on states 
with the following application programming interface (API) 
functions: 

• MYKONOS_radioOn(mykonosDevice_t *device) 
• MYKONOS_radioOff(mykonosDevice_t *device) 

When the ARM moves the state machine into its radio on state, 
it initiates its tracking calibration scheduler. It is therefore 
necessary that the required tracking calibrations be specified 
prior to calling the MYKONOS_radioOn() function. 

It is possible to determine which state the ARM is in by using 
the following API function: 
MYKONOS_getRadioState(mykonosDevice_t 

*device, uint32_t *radioStatus) 

where *radioStatus indicates the current ARM state, as 
indicated in Table 67. 

Table 67. Radio Status/ARM State 
radioStatus Function 
0 Power-up/reset 
1 Ready 
2 Radio off 
3 Radio on 
>3 ARM error—check profile configuration 

After the state machine is in the radio on state, the ARM scheduler 
performs the tracking calibrations on a periodic basis, ensuring that 
the correction values are optimal. For each tracking calibration 
enabled in the tracking calibration mask, a corresponding 
calibration task is initiated when the ARM is moved into the radio 
on state, as shown in Figure 30. 
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Each calibration task follows the same sequence of processes as 
shown in Figure 31. As is shown, each calibration task is 
responsible for indicating to the scheduler when it must run, 

through its own pending bit. This bit is set by the calibration 
task periodically when the calibration timer expires. 
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Figure 30. Calibration Tasks Run in the ARM Processor Based on the Tracking Calibration Mask Indicated by the User 
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Figure 31. Flowchart of the Scheduling of a Single Process 

Table 68. Possible Examples of Pending Bits for the Individual Tracking Calibrations 
Pending Bits 

Tx1 LOL  Tx2 LOL  Tx1 QEC  Tx2 QEC  ORx1 QEC  ORx2 QEC  Rx1 QEC  Rx2 QEC  
1 0 0 1 1 0 1 1 
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To read back the pending bits, use the following application 
programming interface (API) function: 

MYKONOS_getPendingTrackingCals(mykonosDevice
_t*device, uint32_t*pendingCalMask) 

where pendingCalMask is the returned mask that advises if a 
calibration is pending or has returned an error, as indicated in 
Table 69. 

Table 69. PendingCalMask Bits Descriptions 
pendingCalMask Bit Description 
D0 Rx1 quadrature error correction (QEC) 

tracking pending bit 
D1 Rx1 QEC tracking error bit 
D2 Rx2 QEC tracking pending bit 
D3 Rx2 QEC tracking error bit 
D4 ORx1 QEC tracking pending bit 
D5 ORx1 QEC tracking error bit 
D6 ORx2 QEC tracking pending bit 
D7 ORx2 QEC tracking error bit 
D8 Tx1 local oscillator leakage (LOL) 

tracking pending bit 
D9 Tx1 LOL tracking error bit 
D10 Tx2 LOL tracking pending bit 
D11 Tx2 LOL tracking error bit 
D12 Tx1 QEC tracking pending bit 
D13 Tx1 QEC tracking error bit 
D14 Tx2 QEC tracking pending bit 
D15 Tx2 QEC tracking error bit 
 

The scheduler is then tasked with running each calibration 
when its corresponding pending bit is set. At any one time, 
however, more than one calibration task can be pending, as 
indicated by a possible example shown in Table 68, and it is the 
responsibility of the scheduler to determine which calibration 
must be run at any time. 

The scheduler determines which calibration task to run at any 
time based on three conditions: 

1. Pending bits. The scheduler reads the pending bits and 
determines which calibrations are requesting to run. 

2. Priority. Each calibration task is given its own priority  
level. The calibration of the highest priority is given preference 
(highest priority being 1). The order of priority is shown in 
Table 70. 

Table 70. Priority Levels of the Calibration Tasks 
Priority Calibration Task 
1 Tx local oscillator leakage (LOL) 
2 Tx quadrature error correction (QEC) 
3 ORx QEC 
4 Rx QEC 
 

Note there is no set priority between the individual 
channels calibrations (such as Tx1 LOL and Tx2 LOL). For 
calibration tasks of the same priority; the scheduler prioritizes 
the calibration task that completed first. 

3. Availability of the required paths. The scheduler also 
determines if the calibration task can be performed. 
For example, as illustrated in Figure 32, the Tx QEC task 
requires the Tx to be enabled and the ORx to be assigned 
to ARM calibrations. If both conditions are not true, then 
the calibration cannot be run. The scheduler determines 
this, and, if the calibration cannot run, continues through 
its priority list to find a calibration which is pending and 
can be run (for example, Rx1 QEC may be run at this time). 
See the System Considerations for the Tracking Calibrations 
section for more details on the required paths for each 
tracking calibration. 

 

ARM SCHEDULER

TX_ENABLE

ORx USAGE

ARM PROCESSES

SET
PENDING

BIT

Tx1 QEC
PENDING BIT

SET
PENDING

BIT

Tx1 QEC
PENDING BIT

X SECONDS

ALL OTHER USES

INTERNAL CALS MODE

RUN Tx1
QEC TRACKING

RUN Tx1
QEC TRACKING

14
65

2-
03

1

 
Figure 32. ARM Scheduler Operation 
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The scheduler runs the tracking calibrations in batches, as noted 
in the run tracking calibrations event (see Figure 31). Tx tracking 
calibrations typically require Tx data observation in the tens 
of milliseconds before the calibrations make an update to the 
correction parameters. It is recognized that the user may not 
provide sufficient time in a single run for the tracking calibration 
to complete; therefore, the scheduler performs calibrations in 
batches, where the Tx data can be observed in chunks of 800 µs. 
When sufficient batches of a tracking calibration run, the algorithm 
then computes its correction based on the observed data across 
all the batches. It is only after the correction parameters update 
that the pending bit is cleared, as shown in Figure 31.  

This batch operation means that when a calibration is pending, 
and is selected by the scheduler to be run (based on the three 
conditions described previously), it initiates a batch to observe 
the Tx data for 800 µs. When this batch is complete, the scheduler 
again determines which calibrations can be run. If the same 
calibration cannot continue to run, for example, in time division 
duplex (TDD) mode, when the path to be calibrated may be no 
longer active, or if a higher priority calibration is pending, it 
awaits its next opportunity before it takes another batch of data. 

Note that, if a tracking calibration batch is started but the 
observation is disrupted (for example, if the Tx/Rx path is 
disabled, or if the ORx path is reacquired by user for digital 
predistortion (DPD) captures) before 800 µs has completed, 
then the observation that has been made up to this point is 
discarded. This does not affect the algorithm; it waits for another 
batch, as normal. Therefore, when assigning the use of the 
ORx path for tracking calibrations (internal cals mode), it is 
recommended that the user do so in slots of at least 800 µs, or 
multiples thereof. 

The final requirement is that the ORx path must be assigned to 
internal calibrations for 400 ms of transmit time every 2 sec. 
There are no further requirements on this; no exact period of 
tracking calibration batches that must be maintained. It is up to 
the user to determine the structure of the ORx path assignment 
to fit around their own ORx path requirements (such as DPD/ 
voltage standing wave ratio (VSWR), and so on.). It can be supplied 
in one full section, or in batches of 800 µs spread across the 
2 sec in a nonperiodic fashion. The ARM never takes control of 
the assignment of the ORx path, and is reliant on the user to 
assign the ORx for calibrations. If the user fails to provide such 
instruction, then the calibrations never run. 

In summary, for Tx calibrations to run successfully: 

• The ORx must be assigned to internal calibrations by the 
user for 400 ms of transmit time every 2 sec. 

• Assign this time in batches of at least 800 µs, or multiples 
thereof. 

Note that the assignment of the ORx path for internal calibrations 
mode, as required to run Tx tracking calibrations, is discussed 
in the System Control section. 

SYSTEM CONSIDERATIONS FOR ARM 
CALIBRATIONS 
This section indicates what is necessary from a system perspective 
for the ARM to run its calibrations, for example, input/output 
path conditions for during initial calibrations and enable signal 
status for tracking calibrations. This section is split between 
initial and tracking calibration considerations.  

System Considerations for the Initial Calibrations 

The figures in this section show how the device is configured 
for notable calibrations with external system requirements, for 
example, the quadrature error correction (QEC) and local oscillator 
leakage (LOL) calibrations. In all diagrams, greyed out lines and 
blocks are not active in the calibration. Lines showing the path of 
the local oscilators (LOs) are shown to distinguish them from the 
signal paths. A brief explanation of the calibration is provided. As 
the ARM performs each of the calibrations, it is tasked with 
configuring the device as per the figures in this section, for 
example, enabling/disabling paths, and so on. No user input is 
required in this regard.  

However, it is important that the user ensures that external 
conditions are met, such as having the power amplifier off 
for all calibrations other than the external LOL initialization 
calibration, or having the Rx input properly terminated for an 
Rx QEC initialization calibration. 

Rx QEC Initial Calibration 

The Rx quadrature error correction (QEC) initialization calibration 
algorithm improves the Rx path QEC performance. The Rx QEC 
calibration functions by sweeping a number of internally generated 
test tones across the band, measuring quadrature performance, 
and calculating correction coefficients (see Figure 33).  

The following is a system requirement: 

• For optimum performance and lower calibration duration, 
run the Rx QEC initialization at attenuations between 0 dB 
and 5 dB. For optimal Rx path calibration performance, 
ensure a maximum signal power of −92 dBm/MHz is present 
at the Rx input. In addition, it is recommended that the 
Rx input be properly terminated while the calibration is 
running, as test tones are output from the receive port. 
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Figure 33. Rx QEC Initial Calibration System Configuration  
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Figure 34. Device Path Configuration for the Tx LOL and QEC Initial Calibrations  

 

Internal Tx LO Leakage and Tx QEC Initial Calibrations 

The Tx internal local oscillator (LO) leakage and Tx quadrature 
error correction (QEC) initial calibrations use the internal 
loopback (feedback) path and the ORx baseband path to 
calculate initial correction factors. During these calibrations, 
test signals (tones and wideband signals) are output. These 
appear at the Tx output; therefore, it is important that the 
power amplifier at the output of the device be switched off. 
Both calibrations sweep through a series of attenuation values, 

creating a table of initial calibration values. Then, upon application 
of a Tx attenuation setting, the corresponding QEC and local 
oscillator leakage (LOL) correction values are applied to the Tx 
channel by the ARM. The device configuration for this calibration 
is shown in Figure 34. 

The following is a system requirement: 

 Power off the power amplifier in the Tx path during these 
calibrations.  
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External Tx LO Leakage Initial Calibration 

ADC

ADC

LPF HBFs
AND FIR

HBFs
AND FIR

ORx
INPUT

FEEDBACK
PATH

Tx
OUTPUT

ATTENUATOR

COUPLER

LPF

SnRx LO

Tx LO

DAC

DAC

LPF HBFs
AND FIR

CAL
PLL

HBFs
AND FIRLPF

QEC
BLOCK

SIG
GEN

JE
S

D
20

4
B

 I
N

T
E

R
F

A
C

E

PA

14
65

2-
03

4

 
Figure 35. External LOL System Configuration (Greyed Out Circuitry Not Used) 

The external local oscillator leakage (LOL) initialization 
calibration requires that the power amplifier be enabled such 
that a full external loop is made between the Tx outputs and the 
ORx inputs. The purpose of this calibration is to obtain a 
reasonable estimate of the external loop channel conditions 
(gain/phase) prior to operation. The device configuration is 
shown in Figure 35. The calibration uses a pseudorandom noise 
signal to estimate the channel conditions, which is a broadband 
signal with a nominal signal level of −78 dBFS out of the DAC. 

It is important that a suitable attenuator be chosen between the 
power amplifier output and the ORx input. This is to prevent Tx 
data from saturating the ORx input. This is also be necessary 
from the perspective of digital predistortion (DPD) operation. 
The full-scale input of the ORx path is −13 dBm (with a 0 dB 
attenuation setting) for a single-tone input.  

The system requires that the output of the Tx channel to be 
calibrated be routed to the utilized ORx path for the calibration 
signal to be observed. The device must be configured prior to 
the calibration to indicate which Tx is routed back to which ORx. 

Note that the external Tx LOL initialization calibration makes 
certain assumptions in terms of which Tx is fed back to which 
ORx. The ARM bases this on the following parameters within 
the device data structure: 

 For Tx channels, device → tx → txChannels. 
 For ORx channels, device → obsRx → 

obsRxChannelsEnable. 

When both Tx channels are used (txChannels = TX1_TX2) 
and both ORx channels are used (obsRxChannelsEnable = 
MYK_ORX1_ORX2), the ARM configures Tx1 to calibrate 

using ORx1, and Tx2 to calibrate using ORx2 (the user does 
not need to configure this). The ARM cycles through both Tx1 
external LOL calibration, and then Tx2 external LOL calibration, 
so it is imperative that both feedback paths are enabled before 
the calibration is called. 

Alternatively, if both Tx channels are used (txChannels = 
TX1_TX2); however, only the ORx1 channel is used 
(obsRxChannelsEnable = MYK_ORX1), then the ARM 
configures Tx1 to calibrate using ORx1, and Tx2 to also 
calibrate using ORx1, which also applies vice versa if ORx2 
is selected. This approach is illustrated in Figure 36. 

In this case, the calibration must advise the user which path it 
wishes to calibrate. It does this through the GPIO pin configured 
for the txObsSelect output. The user must configure the 
txObsSelect output before the external LOL initialization 
calibration is called (see the ARM GPIOs section). By default, 
the txObsSelect output indicates that the Tx1 output is to be 
fed back to the required ORx with a low output on this pin, 
while a high output indicates that Tx2 is to be fed back. Again, 
the initialization calibration cycles through both calibrations 
consecutively; therefore, it is important that both paths are active 
and that the request to toggle the external switch is responded 
to (the ARM expects to see the feedback path settled within 
35 μs of the state change indicated by the txObsSelect output). 

Note that this calibration does not provide good performance if 
an external LO is provided as the Tx LO. In such cases, LOL 
performance is reliant solely on the initialization calibration, 
and subsequently degrades. 
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Figure 36. The xObsSelect GPIO Used to Toggle an External Switch (Alternatively, the Output Can Be Fed Back for the BBP to Toggle the Switch) 

 

Initial Calibrations in Two Passes 

Due to system considerations, whereby the power amplifier 
must be off for all calibrations except for the external local 
oscillator leakage (LOL) initial calibration, it is necessary to 
run two instances of the following functions: 

 AD9371_runInitCals() 
 AD9371_waitInitCals()  

In the first instance, all calibrations are set in the calibration 
mask except for the external LOL initial calibration (D9). The 
PA is turned off per Figure 34, and the Rx input is terminated as 
shown in Figure 33. The ARM cycles through each of the 
calibrations in turn. Upon a successful return from the AD9371_ 
waitInitCals() function, the baseband processor (BBP) turns on 
the power amplifiers used in the Tx paths.  

In the second instance, only the external LOL initial calibration 
is run (only D9 is set in the cal mask). The signal chains in the  
device are then fully calibrated after successful completion of 
this calibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

System Considerations for the Tracking Calibrations 

This section describes the operation of the tracking calibrations. 
Figure 37 through Figure 44 shows how the device is configured 
for each calibration, and a brief explanation of the calibration is 
provided. In Figure 37, Figure 39, Figure 41, and Figure 43, the 
grayed out lines and blocks are not active in the calibration. 
Lines showing the path of the local oscillators (LOs) are shown in 
black to distinguish them from the signal paths. As the ARM 
performs each of the calibrations, it is tasked with configuring 
whether the feedback path or the ORx input is selected. No user 
input is required in this regard. When utilizing external LOL 
tracking, however, the ensure that the feedback path is available 
to use. 
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Rx QEC Tracking Calibration 

The Rx quadrature error correction (QEC) tracking algorithm 
improves the Rx path QEC performance during operation. It 
uses normal traffic data to calculate updated corrected 
coefficients. It runs continuously in the background while the 
receivers are active. The Rx QEC tracking uses the overload 
detectors (utilized by the gain control algorithms of the device) 
to indicate an overload condition within the device. If the 

device is reporting a high overload condition, it refrains from 
updating the coefficients on the basis that the data is not 
representative of QEC performance. 

The system requires that the Rx channels be enabled. In time 
division duplexed (TDD) mode, Rx QEC tracking only runs 
during Rx periods. If only one channel is enabled, the Rx QEC 
only runs on this channel. 
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Figure 37. Rx QEC Tracking 
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Figure 38. Timing Diagram Showing When Rx QEC Can Run in TDD Mode 

(In FDD Modes, Rx Enable is High at All Times; Rx Enable Refers to the Enablement of Rx1 and/or Rx2) 
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ORx QEC Tracking Calibration 

The ORx quadrature error correction (QEC) tracking algorithm 
improves the ORx path QEC performance during operation. It 
uses normal traffic data (for example, digital predistortion 
(DPD) capture data) to calculate updated corrected coefficients. 

It runs continuously in the background while the observation 
receiver is active. 

The system requires that the ORx channel be enabled, as in time 
division duplexed (TDD) mode; ORx QEC tracking only runs 
during ORx periods. 
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Figure 39. ORx QEC Tracking  
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Figure 40. Timing Diagram Showing When ORx QEC Can Run in TDD Mode  

(ORx On/Off and ORx Usage Are Not Real Signals Used in the Control of the Device, But are Generalizations of the Control of the ORx Path) 
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Tx QEC Tracking Calibration 

The Tx quadrature error correction (QEC) tracking is an online 
calibration that runs during transmission to improve the QEC 
performance. It utilizes the internal loopback path for 
operation. Therefore, the Tx QEC tracking must be interleaved 
with normal digital predistortion (DPD) captures (or channel 
sniffing functions) that utilize the ORx path. This tracking 
determines optimal coefficients for the current gain setting, 

updating the table stored during the Tx QEC initialization to 
make sure this table has the best values for the current 
operating conditions. Figure 41 shows the device configuration 
for Tx QEC tracking calibration. 

The system requires that the Tx channel(s) be enabled and that 
the ORx path be available for the ARM to use (for internal 
calibrations mode).  
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Figure 41. Tx QEC Tracking Calibration Configuration 
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Figure 42. Timing Diagram Showing When Tx QEC Can Run in TDD Mode (In FDD Modes, Tx Enable is High at All Times; Tx Enable Refers to the Enable of Tx1 and/or 
Tx2; ORx Usage Refers to Either ORx1 if Considering Tx1, and ORx2 is Considering Tx2, as Tx1 is Calibrated with the Internal Feedback Path of ORx1, and So On; Note 

that ORx Usage is Not a Real Signal Used in the Control of the Device, But is a Generalization of How the ORx is Controlled) 
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Tx LOL Tracking Calibration 

The Tx local oscillator leakage (LOL) tracking calibration uses 
the external digital predistortion (DPD) path to measure LOL 
and calculate correction factors. This calibration is run while 
user data is being transmitted (with the power amplifier 
operational). Because it utilizes the loopback path, it must be 
interleaved with normal DPD captures. Figure 43 shows the 

device configuration for the Tx LOL tracking calibration with 
the Tx output looped back to the ORx input. 

Note that this calibration does not provide good performance 
as an external LO is provided as the Tx LO. Thus, in such cases, 
LOL performance is reliant solely on the initialization calibration, 
and is therefore reduced. 
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Figure 43. Tx LOL Tracking Configuration  
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Figure 44. Timing Diagram Showing When Tx LOL Can Run in TDD Mode  

(In FDD Modes, Tx Enable is High at All Times; Tx Enable Refers to the Enable of Tx1 and/or Tx2; ORx Usage Refers to the Corresponding ORx Path of the Tx Identified 
for Tx External LOL Calibration; Note that ORx Usage is Not a Real Signal Used to Control the Device But is Instead a Generalization of How the ORx is Controlled) 
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External Channel 

The user must ensure that the appropriate external feedback 
path is available when the ARM is given access to the ORx path 
to perform the Tx tracking calibrations. In the case where both 
Tx channels are being fed back to the same ORx input, the user 
must ensure that the status of the txObsSelect output is monitored, 
and that the requested path is available for calibration (see the 
Initial ARM Calibrations section). 

Note that the external local oscillator leakage (LOL) tracking 
calibration uses an estimate of the external channel (gain/phase 
rotation) to calculate the correction coefficients. This estimate 
is updated over time while tracking on Tx data; therefore, any 
phase, gain drift over time, and temperature can be tracked out. 
However, sudden changes in the phase and gain of the external 
path may result in reduced performance until such time as the 
algorithm tracks the channel changes out. 

By default, the algorithm acquires 67% of the new channel 
estimate in 200 sec. This slow update rate is chosen because the 
external channel typically changes slowly over time. To obtain 
an optimal estimate of the external channel in a shorter time, 
reset the external channel estimate by using the following 
application programming interface (API) function: 
MYKONOS_resetExtTxLolChannel(mykonosDevice_t 
*device, mykonosTxChannels_t channelSel)  

where channelSel is the channel for which the external LOL 
channel estimate must be reset, as per Table 71. 

Table 71. Description of channelSel for 
MYKONOS_resetExtTxLolChannel() 
Channel Enumeration  
Tx1 TX1 
Tx2 TX2 
Tx1 and Tx2 TX1_TX2 

After the external LOL channel estimate is reset, the next six 
tracking instances are used to estimate the external channel. 
The correction is not updated during this time; it is frozen with 
the values applied before the API call was issued. After the first six 
tracking instances, an optimal channel estimate is obtained, and 
further instances of Tx LOL tracking update the LOL correction 
coefficients. 

If the sudden changes are large enough, the external channel 
estimate must be reset using the previous command, whereas at 
other times, it is at the discretion of the user. For cases where 
the external channel must be reset, include the following: 

• If the LO frequency of the device has changed 
• If the gain and phase have suddenly changed 

Table 72. Gain Error vs. Maximum Phase Error 
Gain Error (dB) Maximum Phase Error (Degrees) 

−3 69.26949155 
−2.5 67.97895638 
−2 66.59898696 
−1.5 65.12136412 
−1 63.53663696 
−0.5 61.83382241 
0 60 
+0.5 58.0197531 
+1 55.87437871 
+1.5 53.54073591 
+2 50.98950693 
+2.5 48.18245508 
+3 45.0678624 
 

ARM GPIOs 
The ARM has the following interfaces over pins: 

• Signal chain enables. The ARM is in control of activating 
the signal chains of the device under instruction of the user. 
This can be done through SPI control (application 
programming interface (API) functions), or through the 
TXx_ENABLE pin or the RXx_ENABLE pin. (which is 
explained in the System Control section). 

• ORx chain control. The ARM controls the assignment of 
the ORx path based on instruction from the user. This can 
be either controlled over the SPI (API functions), or 
through the four GPIO pins (which is explained in the 
System Control section). 

• ARM acknowledge signals. The ARM can also use the 
GPIOs to advise that it has activated the chains as per the 
previously described conditions over SPI input/output pins, 
which is explained in the System Control section. 

• Tx observation select bit. This bit is used by the ARM to 
indicate which Tx is to be calibrated for local oscillator 
leakage (see the External Tx LO Leakage Initial Calibration 
section). 

• The GP_INTERRUPT pin. The general-purpose interrupt 
pin alerts the user when errors occur within the device. A 
single pin advises numerous potential errors, such as ARM 
errors, phase-locked loop (PLL) unlocking events, and 
JESD204B errors. The functionality and configuration of 
the general-purpose interrupt is discussed in the General-
Purpose Input/Output (GPIO) Configuration section. This 
section also discusses how to mask only certain events 
trigger the GP_INTERRUPT pin and describes how to 
determine which event has occurred. If it is determined 
that the source of the error is an ARM error, reset and 
reinitialize the device. 
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INITIAL CALIBRATION ERRORS 
This section describes how to determine what error has 
occurred in the event if an error occurs during the running of 
the initial calibration. If an error does occur during an initial 
calibration, isolate the cause of the issue using the following 
error codes. Then, reinitialize the device with whatever 
procedure changes are necessary. 

An example of such an error is if the external local oscillator 
leakage (LOL) initial calibration runs without the external 
feedback path complete. In this event, the calibration reports 
that it was unable to observe the Tx channel and that the 
calibration was unsuccessful. This result may be due to an 
external switch in an incorrect position. 

Use the following application programming interface (API) 
command to verify that these initial calibrations have been 
completed by the ARM, and it returns error information from 
the initialization calibrations: 
MYKONOS_waitInitCals(mykonosDevice_t 

*device, uint32_t timeoutMs, uint8_t 
*errorFlag, uint8_t *errorCode) 

where timeoutMs is the time in ms the function must wait for 
the calibrations to complete before returning an error, and 
*errorFlag and *errorCode are used to indicate if an error has 
occurred, and if so, which calibration returned the error. 

MYKONOS_waitInitCals returns two error values: errorFlag and 
errorCode. errorFlag advises the error status of the initialization 
calibrations routine. The returned values are defined in Table 73. 

 

Table 73. errorFlag Parameter Definitions Returned from waitInitCals( ) 
errorFlag Description 
0x00 Command completed successfully. 
0x01 Reserved. 
0x02 Command not allowed in radio on state. The calibrations are not run. The device must not be in a transmit or receive state 

when initial calibrations are called. 
0x03 Reserved 
0x04 Reserved.  
0x05 Radio frequency phase-locked loop (PLL) frequencies are not set prior to running initial calibrations. Calibrations were not run. 
0x06 Initialization sequence interrupted by an abort command. 
0x07 Calibration error. 
 

Table 74. errorCode Designators as Included in the errorCode Parameter Returned from waitInitCals( ) 
errorCode Calibration 
0x00 Tx baseband filter calibration 
0x01 ADC tuner calibration 
0x02 Rx transimpedance amplifier (TIA) filter calibration 
0x03 Rx dc offset calibration 
0x04 Tx attenuation delay 
0x05 Rx gain delay 
0x06 ADC flash calibration 
0x07 Path delay calibration 
0x08 Tx local oscillator leakage (LOL) initial calibration 
0x09 Tx LOL external initial calibration 
0x0A Tx quadrature error correction (QEC) initial calibration 
0x0B Loopback ORx LO delay 
0x0C Loopback Rx QEC initial calibration 
0x0D Rx LO delay 
0x0E Rx QEC initial calibration 
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If the errorFlag returns as 0x07, this result indicates that a 
calibration error occurred. The errorCode parameter can then 
be analyzed to advise which calibration error occurred during 
the initialization calibration routine, as detailed in Table 74. 

It is then possible to determine which error occurred using the 
following application programming interface (API) function: 
MYKONOS_getInitCalStatus(mykonosDevice_t 

*device, mykonosInitCalStatus_t 
*initCalStatus) 

where initCalStatus is the mykonosInitCalStatus structure 
returned with the following elements: 

• calsDoneLifetime. This is a bit mask that indicates all the 
initialization calibrations that have been run since the 
ARM was booted. For the definition of the bit mask, see 
Table 65. 

• calsDoneLastRun. This is a bit mask that indicates the 
specific calibrations that were run on the last call to 
MYKONOS_runInitCals( ). For the definition of the bit 
mask, see Table 65. 

• calsMinimum. This is a bit mask that indicates the set 
calibrations that must be performed before the ARM 
allows the user to move it into its radio on state. For the 
definition of the bit mask, see Table 65. 

• initErrCal. This is the code that indicates which calibration 
returned, if any, an error during MYKONOS_runInitCals( ). It 
is equivalent to errorCode returned by MYKONOS_ 
waitInitCals( ). For the definition of the bit mask, see Table 74. 

• initErrCode. This is the exact error code returned by the 
calibration if any occurs during MYKONOS_runInitCals( ). 
See Table 75 to Table 84 for details of the possible errors 
returned. 

Table 75. initErrCodes for the ADC Tuner Calibration 
initErrCode Description 
0 No error 
1 Calibration timed out 
 

Table 76. initErrCodes for the Rx DC Offset Calibration 
initErrCode Description 
0 No error 
1 Calibration timed out—Rx 
2 Calibration timed out—ORx 
3 Calibration timed out—loop back receiver 

(LBRx) 
4 Calibration timed out—SRx  
 

Table 77. initErrCodes for the ADC Flash Calibration 
initErrCode Description 
0 No error 
1 Calibration aborted 
2 Calibration timed out 
3 No channel is selected 
4 Rx is disabled 

Table 78. initErrCodes for the LO Delay Calibration 
initErrCode Description 
0 No error 
1 Rx is disabled 
2 Tx is disabled 
3 PLL calibration error 
4 Reserved 
5 Reserved 
6 Reserved 
7 Batch time too small 
 

Table 79. initErrCodes for the Path Delay Calibration 
initErrCode Description 
0 No error 
1 Rx is disabled 
2 Tx is disabled 
3 Data captured timed out due to hardware setup 
4 Data capture aborted 
 

Table 80. initErrCodes for the Rx Quadrature Error Correction 
(QEC) Initial Calibration 
initErrCode Description 
0 No error 
1 Rx is disabled 
2 Tx is disabled 
3 PLL calibration error 
4 Settling time error 
5 Reserved 
6 Reserved 
7 Reserved 
8 Batch time too small 
 

Table 81. initErrCodes for the Rx Transimpedance Amplifier 
(TIA) Calibration 
initErrCode Description 
0 No error 
1 Error configuring PLL—ORx 
2 Error during TIA calibration—ORx 
3 Error configuring PLL—Rx 
4 Error during TIA calibration—Rx 
 

Table 82. initErrCodes for the Tx Baseband Filter Calibration 
initErrCode Description 
0 No error 
1 Reserved 
2 Calibration timed out 
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Table 83. initErrCodes for the Tx Local Oscillator Leakage 
(LOL) Calibration 
initErrCode Description 
0 No error 
1 Reserved 
2 Tx is disabled 
3 Path delay not present (invalid) 
4 Not applicable 
5 Not applicable 
6 Data capture timed out due to hardware setup 
7 GPIO not configured in single ORx mode 
8 Tx channel is not observable 
 

Table 84. initErrCodes for the Tx Quadrature Error 
Correction (QEC) Calibration 
initErrCode Description 
0 No error 
1 Reserved 
2 Tx is disabled 
3 No path delay present 
 

TRACKING CALIBRATION ERRORS 
This section describes some methods of catching errors in the 
tracking calibrations. In the event of an ARM exception, the 
GP_INTERRUPT pin triggers (as indicated previously), 
advising the user to reset and reinitialize the device. 

Alternatively, an error may occur in a calibration that can be read 
back by polling using the following application programming 
interface (API) command: 
MYKONOS_getPendingTrackingCals(mykonosDevice

_t *device, uint32_t *pendingCalMask) 

where pendingCalMask is the returned mask that advises if a 
calibration is pending or has returned an error, as indicated in 
Table 69. 

In the event of an error occurring during one of the calibrations, 
the error can be cleared and the calibration rescheduled using 
the following API command: 
MYKONOS_rescheduleTrackingCal(mykonosDevice_

t *device, mykonosTrackingCalibrations_t 
trackingCal) 

where trackingCal is an enumeration that indicates that the 
calibration must be rescheduled, as indicated by Table 85. 

 

 

 

Table 85. Definition of trackingCal Mask for MYKONOS_ 
rescheduleTrackingCal( ) 

trackingCal 
Corresponding 
Enum Calibration 

0x01 TRACK_RX1_QEC Rx1 quadrature error 
correction (QEC) tracking 
calibration 

0x02 TRACK_RX2_QEC Rx2 QEC tracking calibration 
0x04 TRACK_ORX1_QEC ORx1 QEC tracking calibration 
0x08 TRACK_ORX2_QEC ORx2 QEC tracking calibration 
0x10 TRACK_TX1_LOL Tx1 LOL tracking calibration 
0x20 TRACK_TX2_LOL Tx2 LOL tracking calibration 
0x40 TRACK_TX1_QEC Tx1 QEC tracking calibration 
0x80 TRACK_TX2_QEC Tx2 QEC tracking calibration 
 

READING THE ARM VERSION 
After the ARM is booted, it is possible to read back its version 
using the following application programming interface (API) 
function: 
MYKONOS_getArmVersion(mykonosDevice_t 

*device, uint8_t *majorVer, uint8 
minorVer, unit8_t *rcVer) 

where: 
majorVer is the major version of the ARM build. 
minorVer is the minor version of the ARM build. 
rcVer is the release candidate version (build number). 

Each ARM build has a unique combination of these versions, 
and thus can be determined from these. 

PERFORMING AN ARM MEMORY DUMP 
As noted in the ARM GPIOs section, the ARM uses the 
GP_INTERRUPT pin to report if it has detected an error. At 
this stage, perform an ARM memory dump, and then provide 
this dump to Analog Devices for diagnostics. There is no 
application programming interface (API) written to perform a 
full ARM memory dump because the API is written to file a 
system diagnostic. 

Example code is supplied in the following section for performing 
such an ARM memory dump operation. This code reads the 
ARM memory and writes the binary byte data directly to a binary 
file. Note that an exception is forced if an exception has not 
already occurred. When an exception occurs, important 
diagnostic information is stored in the ARM memory. Thus, 
in the event of the ARM being dumped for debug in situations 
where an exception has not occurred, this code calls an exception 
such that this diagnostic information is stored before the ARM 
memory is dumped. 
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Example Code for Performing an ARM Memory Dump Operation 
/// <summary> 

        /// Reads the ARM Memory and writes the binary byte array directly to a binary file.  Fi
rst 98304 bytes are program  
        /// memory followed by 65536 bytes of data memory. 
The binaryFilename is opened before reading the ARM memory to  
        /// verify that the filepath is has valid write access before reading ARM memory. 
A file IO exception will be  
        /// thrown if write access is not valid for the binaryFilename path. 
        /// </summary> 
        /// <param name="binaryFilename">File path to save the binary data.  Make sure you have 
write access to the location.</param> 
        /// <exception cref="InvalidOperationException">Thrown if TCPIP is not connected</except
ion>" 
        public void dumpArmMemory(string binaryFilename) 
        { 
            if (this.hw.Connected) 
            { 
                //Write in BINARY FILE format 
                String filename = binaryFilename; 
                System.IO.FileStream fileStream = new System.IO.FileStream(filename, System.IO.F
ileMode.Create, System.IO.FileAccess.Write); 
 
                byte[] programMem = new byte[98304]; 
                byte[] dataMem = new byte[65536]; 
                 
                //Check if exception has occurred 
                byte[] exceptionArray = new byte[4]; 
                this.readArmMem(0x01017FF0, 4, 1, ref exceptionArray); 
                UInt32 exceptionValue = (UInt32)(exceptionArray[0] | (exceptionArray[1] << 8) | 
(exceptionArray[2] << 16) | (exceptionArray[3] << 24)); 
 
                if (exceptionValue == 0) 
                { 
                    byte armNotBusy = 0; 
                    this.readEventStatus(WAIT_EVENT.ARMBUSY, ref armNotBusy); 
 
                    if (armNotBusy > 0) 
                    { 
                        //Force an exception during ARM MEM dump for more useful information 
                        this.sendArmCommand(0x0A, new byte[] { 0x69 }, 1); 
 
                        System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatc
h(); 
                        stopWatch.Start(); 
                        while (exceptionValue == 0) 
                        { 
                            this.readArmMem(0x01017FF0, 4, 1, ref exceptionArray); 
                            exceptionValue = (UInt32)(exceptionArray[0] | (exceptionArray[1] << 
8) | (exceptionArray[2] << 16) | (exceptionArray[2] << 24)); 
 
                            //timeout to break while loop 
                            if (stopWatch.ElapsedMilliseconds > 5000) 
                            { 
                                break; 
                            } 
                        } 
                        exceptionValue = 0; 
                        stopWatch.Stop(); 
                    } 
                } 
             
                this.readArmMem(0x01000000, programMem.Length, 1, ref programMem); 
                this.readArmMem(0x20000000, dataMem.Length, 1, ref dataMem); 
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                if (exceptionValue == 0) 
                {//if we forced an exception, clear the exception so the ARM will continue to ru
n. 
                    this.writeArmMem(0x01017FF0, 4, new byte[] { 0, 0, 0, 0 }); 
                    this.readArmMem(0x01017FF0, 4, 1, ref exceptionArray); 
                } 
 
                fileStream.Write(programMem, 0, programMem.Length); 
                fileStream.Write(dataMem, 0, dataMem.Length); 
 
                fileStream.Close(); 
            } 
            else 
            { 
                throw new InvalidOperationException("No Hardware Connection"); 
            } 
        } 



UG-992 AD9371/AD9375 System Development User Guide 
 

Rev. B | Page 102 of 360 

SYSTEM CONTROL 
CONTROL OF SIGNAL CHAINS (Tx/Rx) 
The ARM enables and disables the signal chains of the device, 
which can be performed either through pin control or over the 
SPI interface. In frequency division duplex (FDD) mode, it is 
possible to use the application programming interface (API) to 
enable or disable paths; however, in TDD mode, it is recommended 
to use pin control of the signal chains to adhere to the strict 
timing requirements of TDD operation. 

ARM Control Mode 

If the device is not in pin control mode, it defaults to command 
mode. In this mode, the ARM enables all signals paths (Tx/Rx) 
defined in the data structure provided during the initialization of 
the device upon entering the radio on (operational) state. 
Likewise, the ARM powers down the signal paths upon leaving 
the radio on state. The parameters in the device structure that 
determine the Rx and Tx chains enabled are as follows: 

• For Tx channels, device → tx → txChannels. 
• For Rx channels, device → rx → rxChannels. 

Pin Control Mode 

To enable pin control mode, run the following application 
programming interface (API) function: 
MYKONOS_setRadioControlPinMode(mykonosDevice

_t *device) 

This function relies on the settings stored in the mykonos-
ArmGpioConfig_t data structure, which must be included in 
the device structure at device → auxIO → armGpio. The specific 
members of the structure used by this function are shown in 
Table 86. 

 

 

Table 86. ARM GPIO Configuration Structure Member Descriptions for setRadioControlPinMode 
Structure Member Valid Values Description 
txRxPinMode 0, 1 0 = ARM command mode for powering up or powering down the Rx/Tx chains 
  1 = pin control mode for powering up or powering down the Rx/Tx chains 
orxPinMode 0, 1 0 = ARM command mode for controlling the ORx receiver 
  1 = pin control mode for controlling the ORx receiver 
useRx2EnablePins 0, 1 0 = use the RX1_ENABLE pin to power up or power down both Rx1 and Rx2 
  1 = use the RX1_ENABLE pin to power up or power down Rx1, and use the RX2_ENABLE pin 

to power up or power down Rx2 
useTx2EnablePins 0, 1 0 = use the TX1_ENABLE pin to power up or power down both Tx1 and Tx2 
  1 = use the TX1_ENABLE pin to power up or power down Tx1, and use the TX2_ENABLE pin 

to power up or power down Tx2 
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Pin control mode of the signal chains is performed with the 
TXx_ENABLE and RXx_ENABLE pins, as shown in Figure 45. 
When TX_ENABLE is high, the ARM activates the Tx chain. 
When TX_ENABLE is low, the Tx chain is disabled by the 
ARM, and vice versa for the RX_ENABLE signals. 

Two enable pins exist for each receiver and transmitter. 
TX1_ENABLE and RX1_ENABLE can enable the Tx1 and Rx1 
channels, respectively, while TX2_ENABLE and RX2_ENABLE 
can enable the Tx2 and Rx2 channels, respectively.  

Alternatively, TX1_ENABLE can enable both Tx1 and Tx2 
simultaneously, and RX1_ENABLE can enable Rx1 and Rx2 
simultaneously. 

Table 87 describes the minimum time allowed for the Tx/Rx 
chains to enable in any one instance. Note that the minimum time 

required for calibrations to complete is 800 μs. As noted in the 
Tracking Calibration Scheduler section, the tracking calibrations 
require at least 800 μs of data for a meaningful observation. 
Thus, a slot period must also be of this duration if a tracking 
calibration is run during this slot period. 

Note that this function is automatically called at the end of 
MYKONOS_ loadArmFromBinary( ). Thus, the function is 
only called again if the power-up or power-down control method 
of the baseband processor (BBP) changes. The control method 
can only be changed when the device is in a radio off state. 

Note also that if in pin control mode (txRxPinMode = 1), 
and Tx1 is used to control both chains (Tx1 and Tx2), 
TX2_ENABLE must still be controlled and low at all times. 
If the pin is not used in the reference design, ground it. 
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Figure 45. Control of Signal Chains Using RX_ENABLE and TX_ENABLE 

 

Table 87. Minimum Time of Active Periods1 
Symbol Description Min Min for Calibrations Max 
tENABLE_RISE_TO_FALL Tx/Rx enable rising edge to enable falling edge—enable signal width high 10 μs 800 μs N/A 
tENABLE_FALL_TO_RISE Tx/Rx enable falling edge to enable rising edge—enable signal width low 10 μs 800 μs N/A 
tENABLE_FALL_TO_ACK Tx/Rx enable falling edge to acknowledge signal to baseband processor (BBP) 

going low 
N/A N/A 2 μs 

tENABLE_RISE_TO_ACK Tx/Rx enable rising edge to acknowledge signal to BBP going high  N/A N/A 2 μs 
 
1 N/A means not applicable. 
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ORx PATH CONTROL 
Table 88 defines the different operational modes of the ORx 
path, each with a unique front-end configuration. Two methods 
can control the ORx path assignment:  

1. Application programming interface (API) function, where 
the following API function can send instructions to the ARM 
over the SPI interface to change the ORx path assignment:  

MYKONOS_setObsRxPathSource(mykonosDevice_
t *device, mykonosObsRxChannels_t 
obsRxCh) 

where obsRxCh is an enumeration defined in t_mykonos.h, 
detailed in Table 88. 

2. Pin control, where the ARM can also monitor four GPIO 
pins to initiate a change in the ORx configuration. Three 
pins determine the ORx mode (ORX_MODE[D2:D0], see 
Table 88). The state of the other pin is assigned to the ORX_ 
TRIGGER signal. The rising edge of the ORX_TRIGGER 

signal indicates to the ARM that the ORx mode pins must 
be immediately sampled to change the ORx mode. Figure 46 
shows an example timing diagram where ORX_MODE_2 is 
Bit D2, and so on. The following API function is used to 
configure which GPIO pins are used for the ORx mode 
control if pin control is selected: 

MYKONOS_setArmGpioPins(mykonosDevice_t 
*device) 

This function is explained in the ARM GPIOs section. 

To select the required mode for ORx path control, the following 
application programming interface (API) function is used: 
MYKONOS_ 

setRadioControlPinMode(mykonosDevice_t 
*device) 

This function is described in the Control of Signal Chains (Tx/Rx) 
section. 

 

Table 88. ORX_MODE[D2:D0] Word Definitions 
ORx Path Front End ORX_MODE[D2:D0] obsRxCh Enumeration 
ORx Off 000 OBS_RXOFF 
ORx1 with Tx Local Oscillator (LO) 001 OBS_RX1_TXLO 
ORx2 with Tx LO 010 OBS_RX2_TXLO 
ARM Calibrations 011 OBS_INTERNALCALS 
Sniffer Channel 100 OBS_SNIFFER 
ORx1 with Sniffer LO 101 OBS_RX1_SNIFFERLO 
ORx2 with Sniffer LO 110 OBS_RX2_SNIFFERLO 
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As noted previously, the Tx tracking algorithms need access to 
the ORx path so that the Tx data can be monitored and the 
ARM can optimize the current correction coefficients. For this 
reason, it is necessary to share the ORx path between digital 
predisposition (DPD) data acquisition and tracking calibrations 
for the Tx path (the SRx also requires a share of the available 
ORx periods, if used). The ARM is tasked with scheduling its 
tracking algorithms and ensuring that its correction coefficients 
are optimal at all times. 

The ARM is not in control of when it has access to the ORx path 
for calibration, which ensures that the ARM cannot interrupt a 
DPD data acquisition. It is tasked to the baseband processor 
(BBP) to ensure that the ARM has sufficient access to the ORx 
path to complete its calibrations. To ensure that the ARM can 
keep corrections optimal, it must have access to the ORx path 
for a time no less than 400 ms of the transmit time for every 2 sec.  

An additional requirement of the ORx path assignment relates 
to the minimum duration of an ARM tracking calibration in 
any one instance. This duration is 800 µs (see Table 89). This 
requirement is because tracking calibrations require 800 µs of data 
to make a valid observation of the transmitter output signal. If 
durations of less than 800 µs are used, the algorithms cannot 

make proper adjustments in the path settings, and thus discard 
the result obtained during this instance. When only periods of 
less than 800 µs are used, the algorithms never update their 
coefficients. When using a duration of 1.6 ms, the calibration 
algorithm samples two valid observations sequentially. However, if 
the duration is 1 ms, the algorithm makes only one observation, 
taking 800 µs, and the result from the remaining 200 µs of data 
is discarded. 

A tracking algorithm may need a number of observations to 
update the correction coefficients. However, the ARM scheduler 
pauses the tracking algorithms when the ORx path is used for 
other purposes and continues when the ORx is reassigned for its 
calibrations. Table 89 shows important timing parameters for 
ORx pin control mode. However, the tORX_TRIGGER_RISE_TO_RISE 
parameter is applicable in both modes of operation, with 800 µs 
being the minimum duration for an ORx mode. 

Figure 46 also shows ORX1_ENABLE_ACK, ORX2_ENABLE_ 
ACK, and SRX_ENABLE_ACK. These acknowledge signals 
can output on the GPIOs and indicate that the ARM enabled 
the relevant channel for operation. A full list of the available 
acknowledge signals, and how they are configured, is provided 
in the ARM GPIO Operation section.  

 

Table 89. Observation Receiver Signal Timings 
Timing Parameter Description Min1 Max1 
tORx_TRIGGER_RISE_TO_RISE ORx trigger frequency—minimum duration in an ORx mode 800 µs N/A 
tORx_TRIGGER_HOLD ORx trigger hold time 1 µs N/A 
tMODE_SETUP ORx mode setup time before ORx trigger rising edge 1 µs N/A 
tMODE_HOLD ORx mode hold time 2 µs N/A 
tMODE_ACK ORx mode acknowledge signal to baseband processor (BBP) from ORx trigger rising edge N/A 2 µs 
 
1 N/A means not applicable. 
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Figure 46. Observation Receiver Pin Control Timing Diagram  

 

Table 90. ARM GPIO Configuration Structure Member Descriptions for setArmGpioPins( ) 
Structure Member Input or Output Available on GPIO Pins 
orxTriggerPin Input 4 … 15 
orxMode2Pin Input 0 … 15, 18 
orxMode1Pin Input 0 … 15, 17 
orxMode0Pin Input 0 … 15, 16 
rx1EnableAck Output 0 … 15  
rx2EnableAck Output 0 … 15 
tx1EnableAck Output 0 … 15 
tx2EnableAck Output 0 … 15 
orx1EnableAck Output 0 … 15 
orx2EnableAck Output 0 … 15 
srxEnableAck Output 0 … 15 
txObsSelect Output 0 … 15 
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ARM GPIO OPERATION 
The ARM is assigned the task of enabling and disabling the 
chains of the device. In pin control mode, Tx and Rx enabling 
is performed with the defined Rx and Tx enable pins; however, 
the ORx enabling is performed through four GPIOs used to 
select from the different enabling options. The ARM can also 
use GPIOs to advise the baseband processor (BBP) of the 
current signal path control, with acknowledge signals that 
advise when the path is enabled. When high, an acknowledge 
signal advises that the path is enabled. 

 

The following application programming interface (API) 
function is used to control which GPIO pins are used by the 
ARM for communication with the BBP, and to enable pin 
control mode of the Rx and Tx signal chains: 
MYKONOS_setArmGpioPins(mykonosDevice_t 

*device) 

This function is automatically called during the loadArm-
FromBinary( ) function call. This function relies on the settings 
stored in the mykonosArmGpioConfig_t data structure, which 
is included in the device structure at device → auxIO → armGpio. 
The specific members of this structure used by this function are 
detailed in the following sections. 
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Tx POWER CONTROL 
The device features transmitter power control (TPC) to provide 
precise control of the transmitter output power. The attenuation 
control allows 41.95 dB of attenuation within the transmitter 
datapath with a minimum resolution of 0.05 dB. Note that 
transmitter performance may degrade at attenuation settings 
greater than 20 dB.  

Two transmitter signal path components have variable attenuation 
settings. These include the analog RF attenuator located after 
the mixer, and the digital attenuator located prior to the digital 
filters. Refer to Figure 47 for a simplified block diagram 
depicting the variable attenuation stages.  

Two modes of interaction regarding the TPC are as follows: 

• SPI mode. This mode uses the SPI to send a command to 
change the Tx1 or Tx2 attenuation. The resolution of the 
attenuation step size is a minimum of 0.05 dB. Separate 
commands exist for control of Tx1 or Tx2.  

• GPIO mode. This mode allows changes of the Tx1 or Tx2 
attenuation based on a low to high transition on selected 
low voltage GPIO pins. Separate pins can be assigned for 
Tx1 increment attenuation, Tx1 decrement attenuation, 
Tx2 increment attenuation, and Tx2 decrement attenuation. 
The resolution of the attenuation step size can be set to 
multiples of 0.05 dB up to 1.55 dB in the GPIO mode. 

In SPI mode, resolution of attenuation control can be selected as 
0.05 dB, 0.1 dB, 0.2 dB, or 0.4 dB. This control is set within the 
device data structure, in device → tx → txAttenStepSize. The 
control is of data type mykonosTxAttenStepSize_t, whose 
enumerated values are described in Table 91. Note that this 
value is programmed to device registers during the 
MYKONOS_initialize() command.  

 

 

 

Table 91. mykonosTxAttenStepSize_t Enumeration Values 
and Interpretation 
mykonosTxAttenStepSize_t  
Enumeration 

Enumeration  
Value 

Tx Attenuation 
Step Size (dB) 

TXATTEN_0P05_DB 0 0.05 
TXATTEN_0P1_DB 1 0.1 
TXATTEN_0P2_DB 2 0.2 
TXATTEN_0P4_DB 3 0.4 
 

In SPI mode, the application programming interface (API) 
commands used to change the Tx attenuation setting are as 
follows: 
MYKONOS_setTx1Attenuation(mykonosDevice_t 

*device, uint16_t tx1Attenuation_mdB) 
MYKONOS_setTx2Attenuation(mykonosDevice_t 

*device, uint16_t tx2Attenuation_mdB) 

These commands can be called in the radio on or radio off 
states. If the tx1Attenuation_mdB or tx2Attenuation_mdB to 
this function is not a multiple of the Tx attenuation step size, 
the value is rounded down to the nearest multiple of the 
txAttenStepSize value. 

Additionally, API commands can retrieve the current Tx 
attenuation value. These commands can be used in either SPI 
or GPIO mode. If the Tx datapath is powered down when these 
commands are called, the last valid Tx attenuation setting when 
the Tx was powered up is read back. These commands are as 
follows: 
MYKONOS_getTx1Attenuation(mykonosDevice_t 

*device, uint16_t *tx1Attenuation_mdB) 

• MYKONOS_getTx2Attenuation(mykonosDevice_
t *device, uint16_t 
*tx2Attenuation_mdB) 

Refer to the General-Purpose Input/Output (GPIO) Configuration 
section for information regarding configuration and operation 
of GPIO TPC mode. 
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Figure 47. Variable Attenuation Elements for Transmitter Power Control (TPC) 
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POWER AMPLIFIER (PA) PROTECTION 
The transmitter channels feature a protection mechanism that can 
be enabled to help prevent damage to the PA connected to either 
transmitter output. This feature is referred to as PA protection. 
When the full-scale output power of the device exceeds the 
maximum input to the PA, the overload can result in damage to 
the PA device. The PA protection feature implements feedback in 
the system to prevent such an overload by measuring the signal 
level and comparing it to the user-programmable threshold. This 
information can be used by the device to reduce the transmit output 
level on the flagged channel and to eliminate the threat of damage.  

Even though the PA protection feature includes independent 
power measurement blocks for each transmitter channel, this 
feature cannot be enabled for one channel at a time. If an overload 
is detected on one channel and not another, the overloaded 
channel asserts a PA error flag specific to that channel.  

The following sections describe the components of the PA 
protection system. 

PA ERROR FLAG 
An overload condition is noted by the PA error flag. This structure 
contains a bit for each transmitter that is asserted when an overload 
on that channel has occurred. Table 92 describes the PA error flag 
bits. 

Table 92. PA Error Flag Conditions 
PA Error Flag, 
[D1:D0] Description 
D0 1 = an overload on Tx1 has been detected. 
 0 = no overload condition detected on Tx1. 
D1 1 = an overload on Tx2 has been detected. 
 0 = no overload condition detected on Tx2. 

When one of the PA error flag bits asserts, the method by which 
PA protection operates depends on how the system has been 
configured. The options follow: 

• The baseband processor (BBP) polls the device periodically 
to check the PA error flag status and uses the application 
programming interface (API) command, 
MYKONOS_getPaProtectErrorFlagStatus(…).  

• The GP_INTERRUPT pin can be configured to allow PA 
error flag D1 or D0 to control the status of the pin (see the 
General-Purpose Interrupt Overview section for details on 
the MYKONOS_configGpInterrupt(…) command). Status 
can be monitored by the BBP through the GP_INTERRUPT 
pin, or by reading back the GP_INTERRUPT status with the 
API command, MYKONOS_readGpInterruptStatus(…). 

• The assertion of D1 or D0 can trigger an automatic increase 
in Tx attenuation that persists until the signal level on the 
corresponding channel is reduced less than the programmed 
power threshold. The attenuation change is programmable in 
steps of 0.2 dB up to 25.4 dB. The attenuation setting occurs after 
the PA error flag is asserted and persists until the bit is cleared. 
Note that if the PA error flag is configured as a sticky error 
flag, the attenuation change stays in effect until the error flag 
is manually cleared. This mode is enabled during PA protection 
setup using the txAttenuationControlEnable parameter. The 
attenuation step size is set by the attenStepSize parameter. 

PROTECTION ALGORITHM 
The PA protection system monitors the 12 most significant bits 
(MSBs) sent to the Tx1 and Tx2 inputs during user defined 
measurement intervals. The signal level measurement is made 
prior to all on-chip digital filtering. PA protection is configured 
with the MYKONOS_setupPaProtection(…) command and 
enabled through the MYKONOS_enablePaProtection(…) 
command.  

When the power measurement is completed, the PA protection 
block stores the results for the Tx1 and Tx2 datapaths and asserts 
a PA error flag if the level measured in either path is greater than 
the user defined threshold. The level measurement is an 
instantaneous power measurement performed by calculating 
I2 + Q2 of samples. The baseband processor (BBP) can read back 
the most recently computed measurement for the Tx1 and Tx2 
channels by using the MYKONOS_getDacPower(…) command. 
This command can only be used when PA protection is enabled. 

The PA error flag is asserted as soon as the power measurement 
determines that the measured channel power level is greater than 
the user programmed power threshold. This flag can be configured to 
remain high until the user issues the clear error command 
MYKONOS_clearPaErrorFlag(…) by setting the stickyFlagEnable 
field to 1. If an overload condition occurs with the stickyFlagEnable 
field set to 1 and txAttenControlEnable set to 1, the PA protection 
system will make a single attenuation reduction that persists until 
the user manually clears the PA error flag. If the stickyFlagEnable 
field is set to 0, the PA error flag remains high until the overload 
condition is not present. When the PA error flag is high, 
attenuation cannot be modified by the user.  

The PA protection functionality is summarized in Figure 48, along 
with references to programming instructions. 
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CONFIGURE PA PROTECTION
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Figure 48. PA Protection Operational Flowchart  
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API COMMANDS FOR PA PROTECTION 
The following sections provide detailed information regarding 
the application programming interface (API) commands used 
to setup, enable, and read back status information for the power 
amplifier protection system.  

MYKONOS_setupPaProtection(…) 

mykonosErr_t MYKONOS_setupPaProtection 
(mykonosDevice_t *device, uint16_t 
powerThreshold, uint8_t attenStepSize, 
uint8_t avgDuration, uint8_t 
stickyFlagEnable, uint8_t 
txAttenControlEnable) 

This command writes to device registers with settings for the 
PA protection block. It does not enable the PA protection 
functionality. Note that independent control of the PA 
protection feature for both Tx channels is not possible. The PA 
protection block allows for PA error flags to go high if the 
accumulated power in the datapath exceeds a programmable 
threshold level based on samples taken in a programmable 
duration. 

Preconditions 

This function can only be called after the MYKONOS_ 
initialize(…) command. 

Parameters 

• *device: This is the pointer to the device data structure. 
• powerThreshold: This parameter sets the power level at 

which the power amplifier error flag is raised. This threshold 
applies to both the Tx1 and Tx2 data paths. The range is 0 
to 4095. Use the following equation to calculate the desired 
power threshold in dBFS converted to the powerThreshold 
used in this function: 

powerThreshold = 4095 × 10((txPowerThresh_dBFS)/10) 

where: 
powerThreshold is the value input to this API command. 
txPowerThresh_dBFS is the power threshold level in dBFS 
relative to the Tx DAC full scale. 

• attenStepSize: this parameter sets the attenuation step size 
when the Tx attenuation control (txAttenControlEnable) is 
enabled. The range is 0 to 127 with a resolution of 0.2 dB 
per LSB.  

• avgDuration: this parameter sets the number of clock cycles 
that the power amplifier protection power measurement 
block uses to compute an estimate for the power in the 
Tx1 or Tx2 datapath. The range is from 0 to 14. Each LSB 
corresponds to 25 samples; 0 corresponds to 32 samples, 
1 corresponds to 64 samples. The samples are clocked at 
the Tx IQ data rate.  
 
 
 

• stickyFlagEnable: 1 enables the power amplifier (PA) error 
flags to stay high after an overload occurs, even if the data 
path power later decreases less than the power threshold. 
When the PA error flag is sticky, the error condition 
persists until the user manually clears the PA error flag 
through the MYKONOS_clearPaProtectErrorFlag(…) 
command. When 0, it disables this functionality.  

• txAttenControlEnable: When 1, it enables autonomous 
attenuation changes in response to the PA error flag state, and 
when 0, it disables this functionality.  

MYKONOS_enablePaProtection(…) 

mykonosErr_t MYKONOS_enablePaProtection 

(mykonosDevice_t* device, uint8_t 
paProtectEnable) 

This command enables the power amplfier protection 
block according to the parameters passed in 
MYKONOS_setupPaProtection(…). 

Preconditions 

Before calling this function, setup the power amplifier 
protection block by calling MYKONOS_setupPaProtection(…). 

Parameters 

• * device: This is a pointer to the device data structure. 
• paProtectEnable: When 1, it enables the power amplifier 

(PA) protection block, and when 0, it disables the PA 
protection block. 

MYKONOS_clearPaProtectErrorFlags(…) 

mykonosErr_t MYKONOS_clearPaErrorFlag 
(mykonosDevice_t* device) 

This function manually clears the power amplifier (PA) error 
flags. Set up the PA protection block to enable sticky error flags. 
Sticky error flags require the user to clear the bit manually even 
if the accumulated power is less than the power threshold for 
the PA protection block. 

Preconditions 

Enable the power amplifier protection block with the sticky 
error flags field bit set to 1.  

Parameters 

• * device: This is a pointer to the device data structure. 
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MYKONOS_getDacPower(…) 

mykonosErr_t MYKONOS_getDacPower 
(mykonosDevice_t *device, 
mykonosTxChannels_t channel, uint16_t 
*channelPower) 

This function obtains an estimate of the accumulated power of 
the Tx channel over the sample duration provided in 
MYKONOS_setupPaProtection(...). It uses the avgDuration 
parameter provided in MYKONOS_setupPaProtection to set 
the number of samples to accumulate to obtain an estimate for a 
Tx channel specified by the channel parameter. A 12-bit field 
estimating the channel power is returned in the *channelPower 
pointer. Use the following equation to calculate the dBFS value 
of the reading: 

txChannelPowerdBFS = 10 × log10(channelPower/4095) 

where: 
txChannelPowerdBFS is the channel power when converted into 
units of dBFS relative to the Tx DAC full scale.  
channelPower is the value of the pointer stored by this command. 
For example, if channelPower is reading 409, the channel power 
in dBFS is −10 dBFS. 

Preconditions 

Enable the power amplifier protection block.  

Parameters 

• *device: This is a pointer to the device data structure. 
• channel: selects the Tx channel power measurement to 

obtain. Only use Tx1 (1) or Tx2 (2) enumerations for 
mykonosTxChannels_t. 

• *channelPower: This is a pointer that stores the power of 
the selected channel. Readback is provided as a 12-bit value. 

MYKONOS_getPaProtectErrorFlagStatus(…) 

mykonosErr_t 
MYKONOS_getPaProtectErrorFlagStatus 
(mykonosDevice_t *device, uint8_t 
*errorFlagStatus) 

This function provides a readback of the power amplifier (PA) 
protection error flag status through the *errorFlagStatus pointer. 

Preconditions 

Enable the power amplifier protection block.  

Parameters 

• *device: This is a pointer to the device data structure. 
• *errorFlagStatus: This is a pointer that stores the error flag 

status indicating which Tx channel error flags are set. 
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REFERENCE CLOCK AND SYSREF CONNECTIONS 
The external clock is used as the reference clock for the Rx PLL, 
Tx PLL, SnRx PLL, and the clocking PLL circuits in the device. 
To maintain the highest performance levels, a clean clock source 
is required. This external clock source must be input into the 
DEV_CLK_IN+ and DEV_CLK_IN− pins. Within this 
documentation, DEV_CLK refers to the reference clock signal 
supplied to the device, and DEV_CLK_IN refers to the differential 
pair input pins on the device. 

CONNECTIONS FOR EXTERNAL CLOCK 
(DEV_CLK_IN) 
The reference clock must be supplied as a differential signal 
connected to E7 and E8. This connection must be terminated 
with a 100 Ω resister and be ac-coupled as shown in Figure 49. 
The device input pins are biased to 618 mV. The inputs are high 
impedance, with less than 1 pF and 20 kΩ each. The frequency 
range of the DEV_CLK signal must be between 10 MHz and 
320 MHz. The maximum voltage level for the DEV_CLK 
signal is 2.0 V p-p differential, and the minimum input level is 
300 mV p-p differential. 
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Figure 49. Reference Clock Input Connections 

Printed circuit board (PCB) routing is made difficult by the 
location of the DEV_CLK_IN± balls: they are located in the 
middle of the ball grid array. To avoid potential coupling of the 
reference input clock to the RF signals, it is recommended to 
place the termination resistor and ac coupling capacitors on the 
opposite side of the PCB from the device, and to use vias to 
route the clock signals up to the device as close to the input balls 
as possible to complete the connections. More information 
regarding PCB routing can be found in the Printed Circuit Board 
Layout Guidelines section. 

 

 

 

 

 

 

 

 

 

 

 

 

DEV_CLK PHASE NOISE REQUIREMENTS 
To prevent performance degradation, the DEV_CLK reference 
must be a stable, low noise signal. Table 93 lists the required 
phase noise of the DEV_CLK signal to ensure device performance 
for a 153.6 MHz input and RF frequencies as high as 6000 MHz. 
Similar phase noise requirements for a 122.88 MHz input are 
displayed in Table 94. 

Table 93. DEV_CLK Phase Noise Requirements,  
153.6 MHz Reference 
Frequency Offset from Carrier Phase Noise Level (dBc/Hz) 
100 Hz −101 
1000 Hz −122 
10 kHz −132 
100 kHz −134 
1 MHz −145 
10 MHz −155 
 

To scale the phase noise requirement for the DEV_CLK signal 
to different frequencies using the following equation: 

MHz6.153
log20 _CLKDEVNew

LevelNoisePhase   (2) 

For example, for DEV_CLK = 122.88 MHz  

20 × log(122.88 MHz/153.6 MHz) = −193 dB 

Table 94. DEV_CLK Phase Noise Requirements,  
122.88 MHz Reference 
Frequency Offset from Carrier Phase Noise Level (dBc/Hz) 
100 Hz −103 
1000 Hz −124 
10 kHz −134 
100 kHz −136 
1 MHz −147 
10 MHz −157 
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SYSREF REQUIREMENTS 
The device provides two balls for the SYSREF interface: 
SYSREF_IN+ (K3) and SYSREF_IN− (K4). The SYSREF interface 
internally aligns the generated clocks. It also provides a mechanism 
for deterministic latency per the JESD204B standard. Figure 50 
outlines where each SYSREF input pulse is directed.  

The SYSREF input also provides multichip synchronization 
(MCS) for systems with more than one device. Synchronization 

is accomplished by driving multiple chips with the same 
SYSREF signal (see the Multichip Synchronization section).  

This SYSREF input is by default a differential LVDS input. The 
device provides 100 Ω internal termination on the differential 
SYSREF input. This approach optimizes the termination by 
inserting it at the end of the route. It also reduces the routing 
complexity by allowing the traces to be routed directly to the 
device without any additional external components.  
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Minimum Delay Requirements Between SYSREF Pulses  

The first SYSREF pulse resets the device clock divider, which 
causes the clock phase-locked loop (PLL) to relock. There is a 
required wait period before any further SYSREF pulses are 
registered. The wait period is set to 1,024 phase frequency 
detector (PFD) reference clock periods. The PFD clock must 
always be less than 80 MHz. The following conditions exist for 
each option: 

 If a device clock of 122.88 MHz or 245.76 MHz is used, it 
produces a PFD reference clock of 61.44 MHz, resulting in 
a minimum wait of 16.7 μs after the first SYSREF pulse 
before the next SYSREF pulse is recognized.  

 If a device clock of 153.6 MHz or 307.2 MHz is used, it 
produces a PFD reference clock of 76.8 MHz, resulting in 
a minimum wait of 13.3 μs after the first SYSREF pulse, 
before the next SYSREF pulse is recognized. 

 

Timing of SYSREF Compared to DEV_CLK  

SYSREF can be either periodic signal, a one-shot (strobe type) 
pulse, or a gapped periodic signal. Ensure that no runt pulses or 
glitches result while turning the SYSREF signal on and off. 
SYSREF is an active high signal that is sampled by the device 
clock. SYSREF is latched internally by DEV_CLK; therefore, 
strictly adhered to the setup and hold times specified in the data 
sheet. Figure 51 and Figure 52 illustrate the idea of negative 
hold time due to the delay of the DEV_CLK signal vs. the 
SYSREF signal inside the device. 

Figure 51 and Figure 52 illustrate the relationship between the 
SYSREF signal and the DEV_CLK signal. In the end application, 
ensure that the user generated SYSREF signal follows the 
recommendations.  

In cases where periodic or gapped periodic SYSREF signals are 
used, the period must be an integer multiple of the local multiframe 
counter (LMFC) period. The LMFC and frame clock within a 
device must be phase aligned to the DEV_CLK sampling edge 
upon which the sampled SYSREF value transitions from 0 to 1.  
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Figure 51. Timing Alignment of SYSFREF vs. DEV_CLK at the Device Pins 
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Figure 52. SYSREF Setup and Hold Timing with Examples of SYSREF Pulse 
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SYNTHESIZER CONFIGURATION 
The device contains three radio frequency (RF) phased-
locked loop (PLL) synthesizers for Tx, Rx, and ORx/sniffer 
channel tuning. Figure 53 shows these synthesizers and their 
interconnectivity with each of the RF signal paths. Each PLL 
synthesizer employs a fractional–N architecture with a 
completely integrated voltage controlled oscillator (VCO) and 
loop filter. No external devices are required to cover the entire 
frequency range of the device. This configuration allows the use 
of any convenient reference frequency for operation on any 
channel with any sample rate. The fundamental frequency of 
the PLL ranges from 6 GHz to 12 GHz. The local oscillator (LO) 
frequency is created by dividing down the PLL VCO frequency. 
The reference frequency for the PLL is scaled from the reference 
clock applied to the DEV_CLK_IN± pins.  

The device also provides a clock synthesizer to generate all the 
clocking signals necessary to run the device. The reference 
frequency for the PLL is scaled from the reference clock applied 
to the chip DEV_CLK_IN± pins. Although it is a fractional–N 
architecture, note that the signal sampling relationships to the 

JESD204B interface rates typically require that the synthesizer 
operate in integer mode. Profiles that are included in the 
transceiver evaluation software (TES) configure the clock 
synthesizer appropriately. Reconfiguration of the clock synthesizer 
is typically not necessary after initialization. The most direct 
approach to the configuration is to follow the recommended 
programming sequence and use the provided application 
programming interface (API) functions to set the clock 
synthesizer to the desired mode of operation.  

A calibration PLL (CALPLL) synthesizer is integrated into the 
device to generate the signals necessary to calibrate the device. 
The reference frequency for the CALPLL is scaled from the 
device clock applied to the DEV_CLK_IN± pins. The CALPLL 
output signal is injected into the input of the Rx signal path. 
This calibration is executed during the initialization sequence at 
startup. There must be no signal present at the Rx input during 
tone calibration time. Solely the internal ARM processor 
controls the CALPLL. This procedure is fully autonomous, and 
there is no user access to control the CALPLL state.  

 

LO
GENERATOR

Tx SIGNAL CHAIN

Tx
SYNTHESIZER

TX_EXTLO+

TX_EXTLO–

LO
GENERATOR

ORx
SYNTHESIZER

SnRx SIGNAL CHAIN

DEV_CLK_IN+

TO CLK
SYNTHESIZER

TO CAL
SYNTHESIZER

DEV_CLK_IN–

Rx SIGNAL CHAIN

LO
GENERATOR

Rx
SYNTHESIZER

RX_EXTLO+

RX_EXTLO–

CLK
SCALE

CLK
SCALE

CLK
SCALE

CLK
SCALE

CLK
SCALE

REFERENCE
DISTRIBUTION

14
65

2-
04

7

 
Figure 53. Synthesizer Interconnection Block Diagram  
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CONNECTIONS FOR EXTERNAL LO 
The device provides the user with an option of using internal 
phase-locked loops (PLLs) to generate local oscillator (LO) 
frequencies or receiving the LO signals from two external LO 
sources. Unlike the internal synthesizers that always operate 
between 6 GHz to 12 GHz, regardless of the RF tune frequency, 
when an external LO is used, the frequency applied must be 2× 
the desired RF tune frequency. The signal is divided internally 
by 2 to generate the required LO quadrature relationship. The 
range of the external LO signal can be as low as 600 MHz and as 
high as 12 GHz, covering the RF tune frequency range from 
300 MHz to 6 GHz.  

The two separate differential external LO inputs follow: 

 The external LO for the Rx signal chain uses the B7 
(RX_EXTLO−) and B8 (RX_EXTLO+) balls. 

 The external LO for the Tx signal chain use the E11 
(TX_EXTLO−) and E12 (TX_EXTLO+) balls. 

Both inputs present 100 Ω differential impedance. Differential 
signals applied to the external LO inputs must be ac-coupled. 
Place a 50 Ω termination resistor on each input line as close as 
possible to the external LO input balls. Figure 54 provides a high 
level overview of the recommended configuration.  
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Figure 54. TX_EXTLO and RX_EXTLO Inputs  

Higher external LO frequencies require higher input power. 
In general, higher input power produces better phase noise 
performance. To optimize system design, the minimum input 
power that results in phase noise meeting requirements (with 
some margin) must be used. If an on-board balun is used to 
connect a single-ended LO supply to the differential inputs, 
the loss of the balun must be taken into account when 
calculating input power. Table 95 describes the specifications 
for the RX_EXT_LO and TX_EXT_LO input pins. Note that 
operation is limited to LO frequencies lower than 4000 MHz. 
Higher frequencies require use of the internal LO generators. 

 

 

Table 95. Specifications for RF External LO Inputs (RX_EXT_LO and TX_EXT_LO) 
Parameter Test Conditions/Comments Min Typ Max Unit 
Input Frequency (fEXTLO)   600  8000 MHz 
LO Frequency (fCHANNEL)  300  4000 MHz 
Input Power 50 Ω matching at the source. Signal amplitude depends on the fEXTLO frequency. 

Typical = 3 dBm for fEXTLO ≤ 2 GHz.  
0 3 6 dBm 
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Performance Limitations 

Local oscillator (LO) quadrature phase error can be caused by 
phase imbalance in the external LO input differential signal; 
therefore, it is important to design the input circuit carefully to 
avoid mismatch between the two inputs that make up the 
differential pair for each external LO signal. Three main 
parameters can affect LO phase noise when the external LO 
input is used: 

 Differential phase error (deviation from 180°) 
 Differential amplitude error (deviation from equal 

amplitudes on each input pin) 
 Duty cycle error (deviation from 50%) 

The combination of these errors must not result in a LO 
quadrature phase noise error greater than 1.5 ps. At 1.8 GHz, 
this equates to approximately 1° of phase noise. Ensure that the 
external LO input signal has less than 10° of differential phase 
error, less than 1 dB of differential amplitude error, and a duty 
cycle between 49% and 51%.  
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Figure 55. Internal and External LO Configuration in the Transceiver Evaluation Software (TES) 
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SOFTWARE CONFIGURATION 
Device configuration is dependent on the user application 
requirements. When using an external local oscillator (LO), use 
the transceiver evaluation software (TES) to generate initial 
values for application programming interface (API) structure 
members.  

Figure 53 outlines a high level synthesizer block diagram, 
including the option to provide external LOs for Rx and Tx 
signal chains. To select an external LO for Rx or Tx RF signal 
paths, a series of API commands must be executed before 
initializing the device. Select the correct frequency settings by 
using the following commands: 

static mykonosRxSettings_t  rxSettings = 

uint8_t rxPllUseExternalLo  /* 
Internal LO = 0, external LO*2 = 1 */ 

uint64_t rxPllLoFrequency_Hz   /* 
Rx PLL LO Frequency (internal or external 
LO/2) */ 

 

and 

static mykonosTxSettings_t txSettings =  

uint8_t txPllUseExternalLo      /* 
Internal LO = 0, external LO*2 if =1 */ 

uint64_t txPllLoFrequency_Hz /* 
Tx PLL LO frequency (internal or external 
LO/2) */ 

It is important to note that when an external LO is used, the 
value of the RF frequency must still be programmed for the 
Tx and Rx channels (see the red box in Figure 55) and the 
rxPllLoFrequency_Hz or rxPllLoFrequency_Hz structure 
members. For more details regarding the initialization 
procedure, refer to the System Initialization section. 

Part of the initialization procedure includes setting up internal 
clock generation. All internal clocks are generated based on the 
selected profile; therefore, there is no need for reconfiguration of 
the clock synthesizer after the device finishes the initialization 
sequence. Initialization of the clock generation block (see Figure 53) 
is done by the API function described in the following section. 

MYKONOS_initDigitalClocks 

mykonosErr_t MYKONOS_initDigitalClocks ( 
mykonosDevice_t *  device )   

This function updates the clock synthesizer and loop filter settings 
based on a voltage controlled oscillator (VCO) frequency 
lookup table (LUT). The VCO frequency break points for the 
synthesizer LUT can be found in the vcoFreqArrayHz array. 
This function has no parameters, and there is no need for 
interaction with it from the user. This function is automatically 
called inside the main initialization application programming 
interface (API) function. 

mykonosErr_t 
MYKONOS_initialize(mykonosDevice_t 
*device) 

Another user configurable option shown in Figure 53 is the 
selection of the local oscillator (LO) for the observation Rx 
signal path. The user can select the desired LO source (SnRx, 
LO, or Tx LO) for ORx1 or ORx2 using the TES dropdown 
menu, as shown in Figure 56. 

The same operation can be performed using the API function 
described in the following section. 
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Figure 56. LO Selection for Sniffer and ORx Path in the Transceiver Evaluation 

Software (TES) 

MYKONOS_setObsRxPathSource 
mykonosErr_t MYKONOS_setObsRxPathSource ( 

mykonosDevice_t * device, 
mykonosObsRxChannels_t obsRxCh ) 

When the ARM radio control is in ARM command mode, this 
function allows the user to selectively power up or power down 
the desired ObsRx datapath.  

The value set in device → obsRx → obsRxChannel determines 
the mode of operation for the SnRx path. The user options are 
as follows: 

 OBS_RXOFF: The SnRx path is disabled. 
 OBS_RX1_TXLO: The SnRx operates in observation mode 

on ORx1 with the Tx LO synthesizer.  
 OBS_RX2_TXLO: The SnRx operates in observation mode 

on ORx2 with the Tx local oscillator (LO) synthesizer. 
 OBS_INTERNALCALS: This enables scheduled Tx 

calibrations while using SnRx path. The enableTrackingCals 
function must be called in the radio off state. It sets the 
calibration mask, which the scheduler uses later to schedule 
the desired calibrations. This command is issued in radio off. 
After the device moves to the radio on state, the internal 
scheduler uses the enabled calibration mask to schedule 
calibrations whenever possible, based on the state of the 
transceiver. The Tx calibrations are not be scheduled until 
OBS_INTERNALCALS is selected, and the Tx calibrations 
are enabled in the calibration mask. 
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• OBS_SNIFFER: The SnRx operates in sniffer mode with 
the latest selected sniffer input (for hardware pin control 
operation). In pin mode, the GPIO pins designated for 
ORX_MODE select sniffer mode. Then, the MYKONOS_ 
setSnifferChannel function chooses the channel. 

• OBS_RX1_SNIFFERLO: The SnRx operates in observation 
mode on ORx1 with the sniffer LO synthesizer. 

• OBS_RX2_SNIFFERLO: The SnRx operates in observation 
mode on ORx2 with the sniffer LO synthesizer. 

• OBS_SNIFFER_A: The SnRx operates in sniffer mode on 
SnRxA with the sniffer LO synthesizer. 

• OBS_SNIFFER_B: The SnRx operates in sniffer mode on 
SnRxB with the sniffer LO synthesizer. 

• OBS_SNIFFER_C: The SnRx operates in sniffer mode on 
SnRxC with the sniffer LO synthesizer. 

Note that if this function is called when the ARM is expecting 
the GPIO pin control of the ORx path source, an error returns. 

To change the frequency of operation of each radio frequency 
local oscillator, use the application programming interface 
(API) function described in the following section. 

MYKONOS_setRfPllFrequency 

mykonosErr_t MYKONOS_setRfPllFrequency  ( 
mykonosDevice_t * device,  
mykonosRfPllName_t  pllName,uint64_t  
rfPllLoFrequency_Hz )  

This function sets the radio frequency (RF) phase-locked loop 
(PLL) local oscillator (LO) frequency (RF carrier frequency). 
This function has two parameters: 

• pllName: This parameter designates the name of the PLL to 
configure, which includes the following: 
• RX_PLL changes the operating frequency of the Rx LO. 
• TX_PLL changes the operating frequency of the Tx LO. 
• SNIFFER_PLL changes the operating frequency of the 

sniffer LO. 

• rfPllLoFrequency_Hz: This parameter designates the 
desired LO frequency in Hz. 

To read back the value programmed for a particular PLL LO 
frequency, use the application programming interface (API) 
function described in the following section. 

MYKONOS_getRfPllFrequency 

mykonosErr_t MYKONOS_getRfPllFrequency  ( 
mykonosDevice_t * device,  
mykonosRfPllName_t  pllName,uint64_t  
rfPllLoFrequency_Hz )  

This function obtains the frequency of the radio frequency (RF) 
phase-locked loop (PLL). It can obtain the frequency for the 
Rx PLL, Tx PLL, sniffer PLL, and clock PLL. 

This function has two parameters: 

• pllName: This parameter designates the name of the PLL to 
configure, which includes the following. 
• RF_PLL: reads back the Rx LO operating frequency. 
• TX_PLL: reads back the Tx LO operating frequency. 
• SNIFFER_PLL: reads back the sniffer LO operating 

frequency. 
• CLKPLL: reads back the clock LO operating 

frequency. 

• rfPllLoFrequency_Hz: This parameter is the LO frequency 
currently set for the specified PLL. 

The application programming interface (API) function described 
in the following section checks if the lock detector bit for a 
particular PLL indicates that the corresponding synthesizer has 
achieved lock. 

MYKONOS_checkPllsLockStatus 

mykonosErr_t MYKONOS_checkPllsLockStatus  ( 
mykonosDevice_t *  device,  uint8_t *  
pllLockStatus )  

This function updates the pllLockStatus pointer with a lock 
status per phase-locked loop (PLL) according to the following 
assignments:  

• pllLockStatus[0]: clock PLL locked  
• pllLockStatus[1]: Rx PLL locked  
• pllLockStatus[2]: Tx PLL locked  
• pllLockStatus[3]: sniffer PLL locked  
• pllLockStatus[4]: calibration PLL locked 

The following is an example of how MYKONOS_ 
setRfPllFrequency and MYKONOS_checkPllsLockStatus can 
program the radio frequency (RF) PLL frequencies and check 
the PLL lock status bits. More information can be found in the 
System Initialization section. 
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/*******************************/ 

/**** Set RF PLL Frequencies ***/ 

/*******************************/ 

mykError = MYKONOS_setRfPllFrequency(&mykDevice, RX_PLL, mykDevice.rx->rxPllLoFrequency_Hz); 

mykError = MYKONOS_setRfPllFrequency(&mykDevice, TX_PLL, mykDevice.tx->txPllLoFrequency_Hz); 

mykError = MYKONOS_setRfPllFrequency(&mykDevice, SNIFFER_PLL, mykDevice.obsRx-
>snifferPllLoFrequency_Hz); 

 

/*** < wait 200ms for PLLs to lock - user code here > ***/ 

 

mykError = MYKONOS_checkPllsLockStatus(&mykDevice, &pllLockStatus); 

if ((pllLockStatus & 0x0F) == 0x0F) 

{ 

 /*** < All PLLs locked - user code here > ***/ 

} 

else 

{ 

 /*** < PLLs not locked - ensure lock before proceeding - user code here > ***/ 

} 
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RF PLL FREQUENCY CHANGE PROCEDURE  
Small Frequency Step Procedure 

Use the following procedure when a radio frequency (RF) phased-
lock loop (PLL) change is required with the following conditions:  

• A desire to change the Rx, Tx, and ORx frequencies  
• The frequency step change is less than 100 MHz. 
• The frequency step does not cross the divide by 2 

boundaries outlined in Table 96.  

1. Move the device into the radio off state by executing the 
following command:  

if ((mykError = 
MYKONOS_radioOff(&mykDevice)) != 
MYKONOS_ERR_OK) 
   { 
/*** < Info: errorString will contain log 
error string in order to debug failure > 
***/ 
       errorString = getthe 
AD9371ErrorMessage(mykError); 
   } 

2. Program the new local oscillator (LO) frequency. For 
example, set the Rx LO to 2550 MHz and the Tx LO to 
2500 MHz by executing the following commands: 

if ((mykError = 
MYKONOS_setRfPllFrequency(&mykDevice, 
RX_PLL, 2550000000)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
    } 
 
if ((mykError = 
MYKONOS_setRfPllFrequency(&mykDevice, 
TX_PLL, 2500000000)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
          errorString = getthe 
AD9371ErrorMessage(mykError); 
    } 
 
      /*** < Action: wait 200ms for PLLs 
to lock > ***/ 
 
if ((mykError = 
MYKONOS_checkPllsLockStatus(&mykDevice, 
&pllLockStatus)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
          errorString = getthe 
AD9371ErrorMessage(mykError); 
    } 
 

if ((pllLockStatus & 0x0F) == 0x07) 
      { 
      /*** < Info: Clock, Rx and Tx PLLs 
locked > ***/ 
      } 
      else 
      { 
      /*** < Info: Clock, Rx and Tx PLLs 
not locked  > ***/ 
      /*** < Action: Ensure lock before 
proceeding - User code here > ***/ 
      } 

3. Reset the external channel by executing the following 
command: 

If((mykError = 
MYKONOS_resetExtTxLolChannel(&mykDevice, 
TX1_TX2)) != MYKONOS_ERR_OK) ; //where 
TX1_TX2 is part of the enum 
mykonosTxChannels_t 
{ 
/*** < Info: errorString will contain log 
error string in order to debug failure > 
***/ 
          errorString = getthe 
AD9371ErrorMessage(mykError); 
} 

4. Move the device back into the radio on state by executing 
the following command: 

if ((mykError = 
MYKONOS_radioOn(&mykDevice)) != 
MYKONOS_ERR_OK) 
   { 
/*** < Info: errorString will contain log 
error string in order to debug failure > 
***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
   } 

5. Some tracking calibrations are active only when the ORx 
path is set to the internal calibrations input. The user can 
reenable tracking calibrations by selecting the internal 
calibrations ORx path by executing the following command 
when using application programming interface (API) 
commands to control the ORx input: 

if ((mykError = 
MYKONOS_setObsRxPathSource(&mykDevice, 
OBS_INTERNALCALS)) != MYKONOS_ERR_OK) 
      { 
          /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
      } 

If the ORx input is controlled by the GPIO interface, the 
baseband processor (BBP) must configure its pins to select 
INTERNALCALS. Refer to the ARM GPIOs section and the 
Quadrature Error Correction, Calibration, and ARM 
Configuration section for more information. 
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Large Frequency Step Procedure 

Use the following procedure if a radio frequency (RF) phased-
lock loop (PLL) change is required with the following conditions:  

• A desire to change the Rx, Tx, and ORx frequencies. 
• The frequency step change is more than 100 MHz. 
• The frequency step does cross the divide by 2 boundaries 

outlined in Table 96.  

Use the following procedure:  

1. Move the device into the radio off state by executing the 
following command: 

   if ((mykError = 
MYKONOS_radioOff(&mykDevice)) != 
MYKONOS_ERR_OK) 
   { 
       /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
   } 

2. Program the new local oscillator (LO) frequency. For 
example, set the Rx LO to 2550 MHz and the Tx LO to 
2500 MHz by executing the following commands: 

if ((mykError = 
MYKONOS_setRfPllFrequency(&mykDevice, 
RX_PLL, 2550000000)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
    } 
 
if ((mykError = 
MYKONOS_setRfPllFrequency(&mykDevice, 
TX_PLL, 2500000000)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
          errorString = getthe 
AD9371ErrorMessage(mykError); 
    } 
 
      /*** < Action: wait 200ms for PLLs 
to lock > ***/ 
 
if ((mykError = 
MYKONOS_checkPllsLockStatus(&mykDevice, 
&pllLockStatus)) != MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
          errorString = getthe 
AD9371ErrorMessage(mykError); 
    } 
 

if ((pllLockStatus & 0x0F) == 0x07) 
      { 
      /*** < Info: Clock, Rx and Tx PLLs 
locked > ***/ 
      } 
      else 
      { 
      /*** < Info: Clock, Rx and Tx PLLs 
not locked  > ***/ 
      /*** < Action: Ensure lock before 
proceeding - User code here > ***/ 
      } 

3. Rerun the initialization calibrations by executing the 
following set of commands:  

uint32_t initCalMask = TX_QEC_INIT | 
LOOPBACK_RX_LO_DELAY | 
LOOPBACK_RX_RX_QEC_INIT | 
       RX_LO_DELAY | RX_QEC_INIT; 
 
                if ((mykError = 
MYKONOS_runInitCals(&mykDevice, 
initCalMask)) != MYKONOS_ERR_OK) 
      { 
          /*** < Info: errorString 
will contain log error string in order 
to debug failure > ***/ 
          errorString = getthe 
AD9371ErrorMessage(mykError); 
      } 
 
      if ((mykError = 
MYKONOS_waitInitCals(&mykDevice, 
60000, &errorFlag, &errorCode)) != 
MYKONOS_ERR_OK) 
      { 
          /*** < Info: errorString 
will contain log error string in order 
to debug failure > ***/ 
          errorString = getthe 
AD9371ErrorMessage(mykError); 
      } 
 
      if ((errorFlag != 0) || 
(errorCode != 0)) 
      { 
            if((mykError = 
MYKONOS_getInitCalStatus(&mykDevice, 
&initCalStatus)) != MYKONOS_ERR_OK) 
            { 
                  /*** < Info: 
errorString will contain log error 
string in order to debug failure > 
***/ 
                errorString = getthe 
AD9371ErrorMessage(mykError); 
            } 
 
            /*** < Info: abort init 
cals > ***/ 
            if((mykError = 
MYKONOS_abortInitCals(&mykDevice, 
&initCalsCompleted)) != 
MYKONOS_ERR_OK) 
            { 
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                  /*** < Info: 
errorString will contain log error 
string in order to debug failure > 
***/ 
                errorString = getthe 
AD9371ErrorMessage(mykError); 
            } 
            if(initCalsCompleted) 
            { 
                /*** < Info: which 
calls had completed, per the mask > 
***/ 
            } 
 
            if((mykError = 
MYKONOS_readArmCmdStatus(&mykDevice, 
&errorWord, &statusWord)) != 
MYKONOS_ERR_OK) 
            { 
                  /*** < Info: 
errorString will contain log error 
string in order to debug failure > 
***/ 
                errorString = getthe 
AD9371ErrorMessage(mykError); 
            } 
 
            if((mykError = 
MYKONOS_readArmCmdStatusByte(&mykDevic
e, 2, &status)) != MYKONOS_ERR_OK) 
        { 
                /*** < Info: 
errorString will contain log error 
string in order to debug why  failed > 
***/ 
                errorString = getthe 
AD9371ErrorMessage(mykError); 
        } 
            if(status!=0) 
            { 
                /*** < Info: Arm 
Mailbox Status Error errorWord > ***/ 
               /*** < Info: Pending 
Flag per opcode statusWord, this 
follows the mask > ***/ 
            } 
      } 
      else 
      { 
          /*** < Info: Calibrations 
completed successfully  > ***/ 
      } 

4. Move the device back into the radio on state by executing 
the following command: 

   if ((mykError = 
MYKONOS_radioOn(&mykDevice)) != 
MYKONOS_ERR_OK) 
   { 
       /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
   } 

5. Some tracking calibrations are active only when the ORx 
path is set to the internal calibrations input. The user can 
reenable tracking calibrations by selecting internal calibrations 
ORx path by executing the following command when using 
application programming interface (API) commands to 
control the ORx input: 

if ((mykError = 
MYKONOS_setObsRxPathSource(&mykDevice, 
OBS_INTERNALCALS)) != MYKONOS_ERR_OK) 
      { 
          /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
      }  

If the ORx input is controlled by the GPIO interface, the 
baseband processor (BBP) must configure its pins to select 
INTERNALCALS. Refer to the ARM GPIOs section and the 
Quadrature Error Correction, Calibration, and ARM 
Configuration section for more information. 

Sniffer Receiver PLL Procedure 

The sniffer phased-lock loop (PLL) can also be configured 
when in the radio off state or when in the radio on state if the 
sniffer PLL is not in use. This is the case when the obsRxCh 
parameter of the MYKONOS_setObsRxPathSource() function 
is set to OBS_RXOFF, OBS_RX1_TXLO, or OBS_RX2_TXLO. 
To change the sniffer frequency, use the following procedure:  

1. Move the device into the radio off state by executing the 
following command: 

   if ((mykError = 
MYKONOS_radioOff(&mykDevice)) != 
MYKONOS_ERR_OK) 
   { 
       /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
   } 

2. Program the new sniffer local oscillator (LO )frequency. 
For example, set the sniffer LO to 2600 MHz by executing 
the following commands: 

      if ((mykError = 
MYKONOS_setRfPllFrequency(&mykDevice, 
SNIFFER_PLL, 2600000000)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
          errorString = getthe 
AD9371ErrorMessage(mykError); 
    } 
 
 
      if ((pllLockStatus & 0x0F) == 0x08) 
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      { 
          /*** < Info: Sniffer PLL locked 
> ***/ 
      } 
      else 
      { 
          /*** < Info: Sniffer PLL not 
locked  > ***/ 
          /*** < Action: Ensure lock 
before proceeding - User code here > ***/ 
      } 

3. Move the device back into the radio on state by executing 
the following command: 

if ((mykError = 
MYKONOS_radioOn(&mykDevice)) != 
MYKONOS_ERR_OK) 
   { 
       /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
   } 

 
Alternatively, do the following: 

4. While the device is operating in radio on mode, change the 
ORx path LO to Tx LO, or disable it by executing any of 
following commands listed: 

if ((mykError = 
MYKONOS_setObsRxPathSource(&mykDevice, 
OBS_RXOFF)) != MYKONOS_ERR_OK) 
      { 
          /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
      } 
 
or 
 
if ((mykError = 
MYKONOS_setObsRxPathSource(&mykDevice, 
RX1_TXLO)) != MYKONOS_ERR_OK) 
      { 

          /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
      } 
 
Or 
 
if ((mykError = 
MYKONOS_setObsRxPathSource(&mykDevice, 
RX2_TXLO)) != MYKONOS_ERR_OK) 
      { 
          /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
        errorString = getthe 
AD9371ErrorMessage(mykError); 
      } 

5. Program the new sniffer local oscillator (LO) frequency. 
For example, set the sniffer LO to 2600 MHz by executing 
the following commands: 

if ((mykError = 
MYKONOS_setRfPllFrequency(&mykDevice, 
SNIFFER_PLL, mykDevice.obsRx-
>snifferPllLoFrequency_Hz)) != 
MYKONOS_ERR_OK) 
    { 
        /*** < Info: errorString will 
contain log error string in order to 
debug failure > ***/ 
          errorString = getthe 
AD9371ErrorMessage(mykError); 
    } 
      if ((pllLockStatus & 0x0F) == 0x08) 
      { 
          /*** < Info: Sniffer PLL locked 
> ***/ 
      } 
      else 
      { 
          /*** < Info: Sniffer PLL not 
locked  > ***/ 
          /*** < Action: Ensure lock 
before proceeding - User code here > ***/ 
      } 

Table 96. Divide by 2 Boundaries vs. Desired LO Frequency  
 LO Frequency Limits (MHz) 

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit 
400 750 750 1500 1500 3000 3000 6000 

Divide by 16 8 4 2 
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RF PLL RESOLUTION LIMITATIONS  
The MYKONOS_setRfPllFrequency command and the 
MYKONOS_getRfPllFrequency command both operate 
with 1 Hz resolution. The real frequency to which the Rx PLL, 
Tx PLL, and SnRx PLL are tuned can vary by a small amount 
depending on the region of operation. Table 97 outlines the Rx, 
Tx, and SnRx PLL frequency step variations vs. the operating band 
LO frequency. Note that the upper limit is noninclusive; if at the 
limit, use the next step size where the limit is lower. 

See the following examples to use Table 97 to determine the 
correct local oscillator (LO) frequency setting. 

Example 1 

The DEV_CLK_IN± input is 153.6 MHz. The user wants to 
tune the Tx LO to a frequency equal to 3,600,000,002 Hz. The 
local oscillator (LO) step size for this range is 4.578754579 Hz. The 
count number for the code required to obtain this frequency is 
as follows: 

Count = (3600000002/4.578754579) = 786240000.395 →  

round to 786,240,000   

Actual Tx LO Frequency = (786240000) × (4.578754579) =  
3600000000.2 Hz  

Example 2 

The DEV_CLK_IN± input is 245.76 MHz. The user wants to 
tune the Tx LO to a frequency equal to 5,000,000,002 Hz. The 
LO step size for this range is 3.663003663 Hz. The count number 
for the code required to obtain this frequency is as follows: 

Count = (5000000002/3.663003663) = 1365000000.5473 →  

round to 1365000001  

Actual Tx LO Frequency = (1365000001) × (3.663003663) = 
5000000003.658 Hz  

Example 3 

The DEV_CLK_IN± input is 245.76 MHz. The user wants to 
tune the Tx LO to a frequency equal to 400,000,001 Hz. The LO 
step size for this range is 0.457875458 Hz. The count number 
for the code required to obtain this frequency is as follows: 

Count = (400000001/0.457875458) = 873600002.184 →  

round to 873 600 002  

Actual Tx LO Frequency = (873600002) × (0.457875458) = 
400000000.9 Hz.  

 

 

Table 97. LO Steps Size vs. Desired LO Frequencies 
 

DEV_CLK_IN± (MHz) 

Desired LO Frequency Ranges (MHz) 
Lower  
Limit 

Upper  
Limit 

Lower  
Limit 

Upper  
Limit 

Lower  
Limit 

Upper  
Limit 

Lower  
Limit 

Upper  
Limit 

400 750 750 1500 1500 3000 3000 6000 
LO Step  
Size (Hz) 

153.6 0.572344322 1.144688645 2.289377289 4.578754579 
307.2 
122.88 0.457875458 0.9157510916 1.831501832 3.663003663 
245.76 
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GAIN CONTROL 
The device main receivers (Rx1 and Rx2) and sniffer receivers 
(SnRxA, SnRxB, and SnRxC) feature automatic and manual 
gain control modes that provide flexible gain control in a wide 
array of applications. The observation receivers (ORx1 and 
ORx2) feature manual gain control (MGC) only. Automatic 
gain control (AGC) allows the receivers to autonomously adjust 
the receiver gain depending on variations of the input signal, 
such as the onset of a strong interferer overloading the receiver 
datapath. All the receivers are also capable of operating in MGC 
mode where changes in gain are initiated by the baseband 
processor (BBP) over the SPI or the GPIO control mode. The 
gain control blocks are configured by the application programming 
interface (API) data structures, and several API commands exist 
to allow user interaction with the gain control mechanisms.  

This section begins by explaining the variable gain elements in 
the receiver datapaths, the structure of the gain tables, and how 
to develop and program custom gain tables. This information is 
followed by a description of the AGC peak detectors, overload 
detectors, and power measurement detectors to provide insight 

into the configurable settings of the AGC engine. Following the 
receiver gain control programming descriptions, the remaining 
sections examine the gain compensation methods available in 
the device (slicer/floating point formatter). Details of the API 
commands and data structures are provided throughout this 
section.  

VARIABLE GAIN ELEMENTS IN THE RECEIVER 
DATAPATHS 
Gain Control Block Diagram Overview 

The receivers have several variable gain elements within their 
datapaths. For the Rx and ORx datapaths, the variable gain 
stages include an internal RF attenuator, an (optional) external 
RF attenuator, and a digital gain/attenuation block. The external 
attenuator is an optional stage outside of the device that can be 
controlled by using the GPIO pins. An example of an external 
attenuator is a digital step attenuator (DSA). The datapath for 
the Rx channel is shown in Figure 57.  
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Figure 57. Rx Datapath, Highlighting the Gain Control Block and the Variable Gain Elements (Not the Complete Datapath)  
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Figure 58. SNRXA Datapath, Highlighting the Gain Control Block and the Variable Gain Elements (Not the Complete Datapath)  

 

The variable gain elements (the external attenuator control, 
internal attenuator, and digital gain/attenuator) in the Rx datapath 
are also present in the ORx datapath. However, AGC is not 
supported on the ORx channels. 

The variable gain elements in the SnRx datapath are similar to 
those of the Rx/ORx paths, excluding the low noise amplifier 
(LNA) at the front end of each sniffer channel. The LNA can be 
bypassed to reduce the front-end gain, if desired. Other variable 
gain elements in the SnRx datapath include the internal attenuator 
and the digital gain and attenuation stage. There is no external 
attenuator control for the SnRx input.  

The datapath for the SNRXA input is shown in Figure 58.  

Note that the ORx1, ORx2, SNRXA, SNRXB, SNRXC, and 
internal loopback (OBS_INTERNALCALS) paths share a 
common baseband datapath. The mixer and internal attenuator 
for SNRXA, SNRXB, and SNRXC are shared but have separate 
front-end LNAs. 

Internal Attenuator 

The ORx and Rx internal attenuators each have a 6-bit control 
word in the first column of the gain table (see Table 98 for the 
gain table format). The internal attenuator has 64 attenuation 
settings in the ORx and Rx datapaths. The valid range of 
internal attenuator index values is 0 to 63. The amount of 
attenuation provided by the internal attenuator depends on the 
value set in the internal attenuator column of the gain table. 
The maximum gain condition for the internal attenuator is met 
when the internal attenuator word is set to 0.  

Increasing values of the attenuator corresponds to an increase of 
attenuation. Equation 3 relates the 6-bit internal attenuator 
word to the internal attenuator attenuation in the ORx and Rx 
channels.  

Attenuation = 20log((64 − N)/64) (3) 

where N is a 6-bit value.  

 

 

The SnRx internal attenuator is similar to the ORx and Rx internal 
attenuators. However, the valid range of internal attenuator index 
values extends from 0 to 19 (5-bit control) on the SnRx. The 
maximum gain condition for the internal attenuator in the SnRx is 
met when the internal attenuator word is set to 0.  

External Attenuator 

The device can control an external DSA with the GPIO pins. A 
4-bit word set in the second column of the gain table controls 
an external attenuator. If an external attenuator is not used, zeros 
may be set in the external attenuator column of the gain table.  

The 4-bit external attenuator control word is output on the 
3.3 V GPIO pins. Rx1 uses GPIO_3P3_3 to GPIO_3P3_0 and 
Rx2 uses GPIO_3P3_7 to GPIO_3P3_4. The ORx channels 
use GPIO_3P3_11 to GPIO_3P3_7. The external attenuator 
requires the 3.3 V GPIO source control to be set to the 
GPIO3V3_EXTATTEN_LUT_MODE parameter and that 
the 3.3 V GPIO pins are set to output mode. 

External attenuator control is available on the Rx and ORx 
ports only. 

Digital Gain/Attenuation 

The digital gain/attenuation block allows finer resolution gain 
or attenuation adjustments than the internal RF attenuator, 
resulting in a finer level of receiver datapath attenuation or gain 
control than the internal attenuator word, which attempts to 
compensate for unequal analog gain steps.  

The digital gain/attenuation block acts as an attenuator if the 
digital attenuation enable holds a 1. The digital gain/attenuation 
word corresponds to 0.05 dB/LSB of digital attenuation in 
attenuation mode.  

The digital gain/attenuation block provides digital gain if the 
digital attenuation enable holds 0. The digital gain/attenuation 
word corresponds to 0.25 dB/LSB of digital gain in gain mode.  
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LNA Bypass Enable 

The SnRx channel features an integrated LNA at its input. The 
SnRx features an LNA bypass mode. The LNA bypass is enabled 
for a particular gain index if the second column of the a SnRx 
gain table row holds a 1. LNA bypass is disabled when the 
second column of the selected SnRx gain table row holds a 0. 
LNAs are not present on the ORx and Rx channels.  

GAIN TABLE FORMAT 
The device gain control block, in AGC or MGC, points to a gain 
index row in the receiver gain table and programs settings for 
the variable gain elements in the receiver datapath. Separate 
gain tables can be implemented for the Rx1, Rx2, ORx, and 
SnRx channels.  

The default gain tables can be found in the mykonos_user.c file. 
The mykonos_user.c and mykonos_user.h files can be customized 
to modify, add, or delete the default gain table settings. Consult 
Analog Devices applications engineering prior to changing the 
gain tables. 

The Rx1 and Rx2 channels can operate simultaneously. Rx1 and 
Rx2 may use separate gain tables and point to different gain 
index values within those tables. In the default gain tables, Rx1 
and Rx2 use the same gain table. The Rx1 and Rx2 gain tables 
support up to 255 gain index rows. 

The observation receiver system (ORx, including the ORx1, 
ORx2, SNRXA, SNRXB, and SNRXC receivers) uses a common 

baseband datapath; only one ORx front end can connect to the 
common baseband at any time. The gain index set or readback 
for the ORx, therefore, applies only to the selected input. The 
ORx gain table supports up to 47 gain index rows. The SnRx 
gain table supports up to 127 gain index rows.  

Rx and ORx Gain Table 

The format of the columns in the Rx and ORx gain table rows 
are as follows:  

• Internal attenuator word 
• External attenuator word 
• Digital gain/attenuation word 
• Digital attenuation enable 

An example of the gain table structure is provided in Table 98 
for the Rx gain table. Because the Rx and ORx datapaths have 
the same variable gain elements, they have the same gain table 
column format.  

The first row of all gain tables corresponds to Gain Index 255 
and the successive rows correspond to Gain Index 254, Gain 
Index 253, and so on. In the default gain tables, the first gain 
index in the table, Gain Index 255, is the maximum gain condition. 
The first column in Table 98 indicates the gain index. The two 
right most columns provide information regarding the attenuation 
level relative to maximum gain condition (defined in the default 
tables as Gain Index 255) and the attenuation level relative to 
the previous gain index.  

Table 98. Sample Elements From the Default Rx Gain Table 
Gain 
Table 
Index 

Internal 
Attenuator[5:0]1 

External 
Attenuator[3:0]1 

Digital Gain/ 
Attenuation[6:0]1 

Digital 
Attenuation 
Enable1 

Attenuation in dB 
(Relative to 
Maximum Gain) 

Difference 
(dB) (Step 
Size = 1) 

255 0 0 0 0 0.00 Not applicable 
254 3 0 2 1 −0.52 0.52 
253 6 0 3 1 −1.01 0.49 
252 10 0 0 0 −1.47 0.47 
 
1 Only the elements shown in these columns are programmed to the device registers. 
 

The following example demonstrates the calculations involved in Gain Table Index 253: 

Atten(GainIndex) = AIntAtten(IntAtten[5:0]) + AextAtten(ExtAtten[3:0]) + AdigAttenGain(digAttenEn, digGainAtten[6:0]) 

Atten(253) = AIntAtten(IntAtten[5:0]) + AdigAttenGain(1, 3) 

Atten(253) = 20log10((64 − 6)/64) + AdigAttenGain(1, 3) 

Atten(253) = −0.855 + (−1) × (0.05) 

Atten(253) = −0.855 – 0.15 = −1.01 dB 
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The following code excerpt from mykonos_user.c shows the implementation of the Rx gain table:  
 /** 
 * \file mykonos_user.c 
 * \brief Contains the AD9371 default gain table values for Rx, ObsRx, and SnRx 
 */ 
 
#include <stdint.h> 
#include "t_mykonos.h" 
#include "mykonos_user.h" 
 
/** 
 * \brief Default Rx gain table settings 
 */ 
uint8_t RxGainTable [61][4] = 
{ 
 /* Order: {FE table, External Ctl, Digital Gain/Atten, Enable Atten} */ 
        {0, 0, 0, 0},  /* Gain index 255 */ 
        {3, 0, 2, 1},  /* Gain index 254 */ 
        {6, 0, 3, 1},  /* Gain index 253 */ 
        {10, 0, 0, 0}, /* Gain index 252 */ 
        {13, 0, 1, 1}, /* Gain index 251 */ 
        {16, 0, 0, 0}, /* Gain index 250 */ 
        … 

For example, when the device sets the Rx1 gain index to gain index of 254, the values in the row corresponding to Gain Index 254 are 
programmed into the device registers corresponding the four columns within that row. For the default Rx gain tables, this corresponds to 
a 0.5 dB decrease in receiver gain compared to the gain condition in Gain Index 255 (maximum gain). 
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Table 99. Sample Rows from the Default SnRx Gain Table 

Gain Table 
Index 

Internal 
Attenuator[4:0]1 

LNA 
Bypass1 

Digital Gain/ 
Attenuation [6:0]1 

Digital Attenuation 
Enable1 

Attenuation in dB 
(Relative to 
Maximum Gain) 

Difference (dB) 
(Step Size = 1) 

255 0 0 0 0 0 Not applicable 
254 1 0 7 1 −0.99 0.99 
253 3 0 1 0 −1.97 0.98 
252 3 0 15 1 −2.97 1.00 
 
1 Only the elements shown in these columns are programmed to the device registers. 

 

SnRx Gain Table 

The format of the columns in the SnRx gain table rows are as 
follows:  

• Internal attenuator word 
• LNA bypass enable 
• Digital gain/attenuation word 
• Digital attenuation enable 

A different gain table column format is used in the SnRx gain 
table because the variable gain elements are different in the 
SnRx datapath relative to the Rx/ORx datapath. The SnRx gain 
table includes a column representing the LNA bypass bit. LNA 
bypass is activated when these bits are equal to 1. The SnRx gain 
table does not allow external attenuator control. When not 
using the LNA at all during SnRx operation, set the LNA bypass 
column to 1 for all rows. 

Custom Gain Tables  

The default gain tables can be found in the mykonos_user.c file. 
The mykonos_user.c and mykonos_user.h files can be customized 
to modify, add, or delete the default gain table settings. Consult 
Analog Devices applications engineering prior to changing gain 
tables. 

In the mykonos_user.c file, receiver gain tables can be modified 
for the intended application. In the default gain tables, the gain 
step size between neighboring gain indices for the Rx channel 
are 0.5 dB, 1 dB for the ORx channel, and 1 dB for the SnRx 
channel. These tables have a gain range extending to 30 dB, 
18 dB, and 52 dB, respectively. In the default gain tables, the 
maximum gain condition for all the tables is the first index in 
the gain table, which corresponds to Gain Index 255.  

To set a target gain for the Rx datapath, the device allows the 
user to configure the maximum gain index (independently for 
both Rx1 and Rx2 channels) such that any gain index value can 
be configured to be the maximum gain index. For example, if 
the target gain for the Rx subsystem is 40 dB, but the factory 
calibration returns a total gain of 42 dB, it is possible to 
configure the target gain appropriately by changing the 
maximum gain index from 255 to 251 (−2 dB).  

 

 

There are two ways to change the default gain tables: 

1. Modify the mykonos_user.c and mykonos_user.h files with 
valid settings and gain tables. Note that gain tables are 
programmed to device registers when the MYKONOS_ 
initArm(…) command is called in the initialization 
sequence. 

2. Perform gain table programming during or after the 
initialization sequence provided in the headless.c file. 
After verifying the ARM is loaded properly (executing 
MYKONOS_verifyArmChecksum(…) without returning 
an error), custom gain tables can be written by using the 
following application programming interface (API) 
function: 

mykonosErr_t 
MYKONOS_programRxGainTable(mykonosDevi
ce_t* device, uint8_t* gainTablePtr, 
uint8_t numGainIndexesInTable, 
mykonosGainTable_t rxChannel) 

This function takes a pointer to a 4 × N array, the value N, 
and the channel with the gain table to be overwritten. The 
N variable specifies the number of rows of the new gain 
table. This function can write gain tables for the Rx1, Rx2, 
Rx1 channels and the Rx2, ORx, and SnRx channels. Note 
that Rx1 and Rx2 may have separate gain tables.  
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GAIN TABLE PROGRAMMING DESCRIPTION 
The MYKONOS_programRxGainTable(…) command is 
demonstrated in the following section. 

MYKONOS_programRxGainTable (…) 

mykonosErr_t 
MYKONOS_programRxGainTable(mykonosDevice_t 
*device, uint8_t *gainTablePtr, uint8_t 
numGainIndexesInTable, mykonosGainTable_t 
rxChannel) 

Description 

This command programs the gain table settings for either the 
Rx1, Rx2, Rx1 and Rx2, ORx, or SnRx receiver types. This 
command is called during MYKONOS_initArm(…). It is not 
necessary to call this function after initialization. 

The gain table for a receiver type is set with the parameters 
passed by the uint8_t gainTablePtr array. gainTablePtr is a 4 × n 
array, where there are four elements per index, and the array 
length (n) is dependent upon receiver type. The (n) value is 
conveyed by numGainIndexesInTable. All gain tables have a 
maximum index of 255 when used with this function. The 
minimum gain index is application dependent. 

For Rx1, Rx2, and ORx (A, B, C, or D), A indicates front end 
Gain, B indicates external control, C indicates digital attenuation/ 
gain, and D indicates attenuation/gain select. 

For SnRx (A, B, C, or D), A indicates front end gain, B indicates 
LNA bypass, C indicates digital attenuation/gain, and D indicates 
attenuation/gain select. 

The gain table starting address changes with each receiver type. 
This function accounts for this change as well as the difference 
between each byte for the Rx1, Rx2, ORx, and SnRx receiver 
array values and programs the correct registers. 

Preconditions 

The MYKONOS_programRxGainTable(…) command does not 
need to be called by user if following headless.c instructions. 

Parameters 

 *device: A pointer to the device data structure. 
 *gainTablePtr: A pointer to a 4 × n array containing gain 

table values. 
 numGainIndexesInTable: The number of n indices in a 4 × n 

array. A range check is performed to ensure the maximum 
is not exceeded. 

 rxChannel: mykonosGainTable_t enumeration type to 
select either the Rx1, Rx2, Rx1 and Rx2, ORx, or SnRx gain 
table for programming. A channel check is performed to 
ensure a valid selection.  

For all custom gain tables, note that the maximum number 
of rows in the gain table is limited to 255 for the Rx1 and 
Rx2 channels, 127 for the SnRx channels, and 47 for the 
ORx channels.  

Rx GAIN DELAY 
Within the signal path, there are a few variable gain elements, 
such as the RF internal attenuator, the digital gain/attenuation 
block, and the digital gain compensation clock. Consider the 
case of a gain index decrement where new values for the 
internal attenuator and digital gain/attenuation are set, ignoring 
the gain compensation and the optional external attenuator for 
the moment. If the new settings for the internal attenuator and 
digital gain/attenuation block are applied at the same time, data 
in the Rx datapath between the internal attenuator and the digital 
gain/attenuation block experience analog gain of the old gain 
index and digital gain of the new gain index when the data 
propagates through the digital gain/attenuation block. In the 
baseband data, this appears as a double gain step. This scenario 
is shown Figure 59.  

40000

–40000

–30000

–20000

–10000

0

10000

20000

30000

0 350300250255150

SAMPLE NUMBER

O
U

T
P

U
T

 C
O

D
E

10050

GAIN CHANGE

DIGITAL GAIN APPEARS FIRST

DATA WITH NEW RF
ATTENUATION SETTING

14
65

2-
05

2

 
Figure 59. Double Gain Step Observed in Baseband Data Due to Insufficient 

Digital Gain Delay  

The Rx gain delay calibration (ARM calibration) alleviates this 
double gain step by calculating a delay value for the onset of 
digital gain/attenuation. A successful calibration makes it 
appear to the baseband processor that only one gain change has 
been made, as shown in Figure 60. The calibration depends on 
the datapath configuration.  
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Figure 60. Single Gain Step with Proper Setting for Digital Gain Delay 
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Consider now the digital gain compensation block. This block 
is described in the Digital Gain Compensation, Slicer, and 
Floating Point Formatter section. The digital gain compensation 
block applies digital gain based on the current gain index. The 
timing of the onset of digital gain compensation must be 
delayed to prevent a double gain step. This value is calculated 
and programmed to the device during the Rx gain delay 
calibration as well.  

The device is unable to delay the onset of external attenuator 
control word over the GPIO 3.3 V pins. Delays are only 
available for the digital gain/attenuator block and the digital 
gain compensation block.  
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MANUAL GAIN CONTROL, HYBRID MODE, AND 
AUTOMATIC GAIN CONTROL OVERVIEW 
The receiver supports three modes of gain control. These modes 
are described in brief as follows: 

• Manual gain control (MGC). MGC provides the user 
full control over the current gain index. In MGC mode, 
the gain index can be controlled by the application 
programming interface (API) commands and through 
GPIO signaling.  

• Hybrid mode. When the user sends a pulse to a GPIO pin 
enabled as the hybrid mode gain change pin, the automatic 
gain control (AGC) overload counters are polled to determine 
if a gain increase or decrease is necessary. When the pulse 
is registered by the gain control block, a gain increase is 
made in the case of an underrange scenario, a gain decrease is 
made in the case of an overrange signal, or no gain change 
is made. This mode allows the user to determine when gain 
changes occur. The hybrid mode is a subset of AGC because 
hybrid mode uses many of the same circuits, thresholds, 
and counter parameters as AGC  

• Automatic gain control (AGC). AGC determines when gain 
changes are made. There are several configurations that can 
be used in AGC mode. Examples include the option to 
reduce gain as soon as an overrange is detected (fast attack 
mode), to change gain (if necessary) only at the expiration 
of a variable length counter (AGC gain update counter, 
operating without fast attack), to synchronize the counter 
to an external pulse (AGC enable sync pulse), among 
others.  

Selection between the three different modes of operation is 
performed with the MYKONOS_setRxGainControlMode(…) 
command for Rx1and Rx2. The ObsRx uses MYKONOS_ 
setObsRxGainControlMode(…) to set the gain control mode 
for the ORx1, ORx2, and all SnRx channels. Note that AGC for 
the ORx depends on the setting in device → obsRx → orxAgcCtrl 
→ agcObsRxSelect. Descriptions of the gain control selection 
functions are provided in the following sections.  

MYKONOS_setRxGainControlMode(…) 

mykonosErr_t 
MYKONOS_setRxGainControlMode(mykonosDevice_
t* device,mykonosGainMode_t mode) 

Description 

This function configures the Rx gain control mode. 

Preconditions 

Run this function after MYKONOS_initialize(…). It is 
recommended to wait until after the headless.c instructions 
are complete before running this function. 

 

 

 

Parameters 

• * device: This is a pointer to the device data structure. 
• Mode: This is a mykonosGainMode_t enumerated data 

type indicating gain control mode, where manual gain is 
manual gain control, automatic gain control is automatic 
gain control, and hybrid mode is hybrid. 

MYKONOS_setObsRxGainControlMode(…) 

mykonosErr_t 
MYKONOS_setObsRxGainControlMode(mykonosDe
vice_t* device, mykonosGainMode_t mode) 

Description 

This function configures the ORx gain control mode.  

Preconditions 

Run this function after MYKONOS_initialize(…).It is 
recommended to wait until after the headless.c instructions are 
complete before running this function. 

Parameters 

• * device: This is a pointer to the device data structure. 
• Mode: a mykonosGainMode_t enumerated data type 

indicating gain control mode, where manual gain is 
manual gain control, automatic gain control is automatic 
gain control, and hybrid mode is hybrid.  

Functions Common to All Gain Control Modes 

Application programming interface (API) functions can also 
obtain the current gain index for a particular channel. These 
commands can also be used in any gain control mode. The 
commands to get the current gain index are as follows:  
mykonosErr_t 

MYKONOS_getRx1Gain(mykonosDevice_t* 
device, uint8_t* rx1GainIndex) 

mykonosErr_t 
MYKONOS_getRx2Gain(mykonosDevice_t* 
device, uint8_t* rx2GainIndex) 

mykonosErr_t 
MYKONOS_getObsRxGain(mykonosDevice_t* 
device, uint8_t* gainIndex) 

Whether in manual gain control, hybrid, or automatic gain 
control mode, the GPIO monitor outputs have several helpful 
status signals that assist users with determining when overloads 
occur in real-time. Refer to the General-Purpose Input/Output 
(GPIO) Configuration section for more information about the 
signals that can be observed on the GPIO pins.  
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MANUAL GAIN CONTROL 
In manual gain control (MGC) mode, there are two ways to 
change the gain index pointer: application programming 
interface (API) commands and GPIO signaling. GPIO signaling 
is only available on Rx1 and Rx2. 

API/SPI Mode MGC 

The application programming interface (API) commands used 
to change gain in manual gain control (MGC) mode are listed in 
the following sections. The first two of these commands are 
specific to the Rx1 and Rx2 channels, respectively. The third 
command uses an enumerated data type to specify the ORx1, 
ORx2, SNRXA, SNRXB, or SNRXC channels of the ORx. 
Details regarding the API command mode for MGC are 
provided in the following section.  

MYKONOS_setRx1ManualGain(…) 

mykonosErr_t 
MYKONOS_setRx1ManualGain(mykonosDevice_
t* device, uint8_t gainIndex) 

Description 

This function sets the Rx1 manual gain index.  

If the value passed in the gainIndex parameter is within range of 
the gain table minimum and maximum indexes, the Rx1 gain 
index is updated in the device data structure and written to the 
transceiver. Otherwise, an error is returned. The maximum 
index is 255, and the minimum index is application specific. 

Preconditions 

Run this function after MYKONOS_initialize(…). It is 
recommended to wait until after headless.c instructions are 
complete before running this function. 

Parameters 

• * device: This is a pointer to the device data structure. 
• gainIndex: This is the desired Rx1 gain index. 

MYKONOS_setRx2ManualGain(…) 

mykonosErr_t 
MYKONOS_setRx2ManualGain(mykonosDevice_
t* device, uint8_t gainIndex) 

Description 

This function sets the Rx2 manual gain index.  

If the value passed in the gainIndex parameter is within range of 
the gain table minimum and maximum indexes, the Rx2 gain 
index is updated in the device data structure and written to the 
transceiver. Otherwise, an error is returned. The maximum 
index is 255, and the minimum index is application specific. 

Preconditions 

Run this function after MYKONOS_initialize(…). It is 
recommended to wait until after headless.c instructions are 
complete before running this function. 

 

Parameters 

• * device: This is a pointer to the device data structure. 
• gainIndex: This is the desired Rx2 gain index. 

MYKONOS_setObsRxManualGain(…) 

mykonosErr_t 
MYKONOS_setObsRxManualGain(mykonosDevice_
t* device, mykonosObsRxChannels_t 
obsRxCh, uint8_t gainIndex) 

Description 

This function sets the Rx gain of the selected ORx channel by 
the obsRxCh parameter.  

The ORx channel can have different RF inputs (ORx1/ORx2/ 
SNRXA, SNRXB, or SNRXC) This function sets the ORx gain 
index independently for ORx1/ORx2, or SnRx. SNRXA, SNRXB, 
and SNRXC share the same gain index. Note that ORx1/ORx2 
share a gain table, as does SNRXA, SNRXB, and SNRXC. The 
maximum index is 255, and the minimum index is application 
specific. 

Preconditions 

Run this function after MYKONOS_initialize(…). It is 
recommended to wait until after headless.c instructions are 
complete before running this function. 

Parameters 

• * device: This is a pointer to the device data structure. 
• obsRxCh: This is an enumeration to identify the desired 

RF input for gain change. 
• gainIndex: the desired manual gain table index to be set.  

GPIO Mode MGC 

The GPIO pins can also be configured to make gain changes for 
Rx1 and Rx2. GPIO manual gain control (MGC) setup commands 
configure the gain index increment step size, gain index 
decrement step size, and pin selection for the increment and 
decrement pins. Some restrictions on the increment and 
decrement pin selections are as follows: 

• The Rx1 increment pin must be either GPIO_0 or GPIO_10. 
• The Rx1 decrement pin must be either GPIO_1 or GPIO_11. 
• The Rx2 increment pin must be either GPIO_3 or GPIO_13. 
• The Rx2 decrement pin must be either GPIO_4 or GPIO_14. 
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MYKONOS_setRx1GainCtrlPin(…) 

mykonosErr_t 
MYKONOS_setRx1GainCtrlPin(mykonosDevice_t
*device, uint8_t incStep, uint8_t 
decStep, mykonosGpioSelect_t 
rx1GainIncPin, mykonosGpioSelect_t 
rx1GainDecPin) 

Description 

This application programming interface (API) function 
configures the GPIO inputs for controlling the Rx gain, 
allowing the user to control the gain index in manual gain 
control (MGC) mode. If there is a high pulse on the 
rx1GainIncPin in pin control mode, it increments the gain by 
the value set in incStep. A high pulse on the rx1GainDecPin in 
pin control mode decrements the gain by the number of indices 
set in decStep. 

Preconditions 

Run this function after MYKONOS_initialize(…).  

Parameters 

• *device: This is a pointer to the device data structure. 
• obsRxCh: This is an enumeration to identify the desired 

RF input for gain change. 
• gainIndex: the desired manual gain table index to set. 

MYKONOS_setRx2GainCtrlPin(…) 

mykonosErr_t 
MYKONOS_setRx2GainCtrlPin(mykonosDevice_t
*device, uint8_t incStep,  uint8_t 
decStep, mykonosGpioSelect_t 
rx2GainIncPin, mykonosGpioSelect_t 
rx2GainDecPin) 

Description 

This application programming interface (API) function configures 
the GPIO inputs for controlling the Rx gain, allowing the user 
to control the gain index in manual gain control (MGC) mode. 
If there is a high pulse on the rx2GainIncPin in pin control 
mode, it increments the gain by the value set in incStep. A high 
pulse on the rx2GainDecPin in pin control mode decrements 
the gain by the number of indices set in decStep. 

Preconditions 

Run this function after MYKONOS_initialize(…).  

Parameters 

• *device: This is a pointer to the device data structure. 
• obsRxCh: This is an enumeration to identify the desired 

RF input for gain change. 
• gainIndex: the desired manual gain table index to set. 

These obsRxCh and gainIndex commands have complementary 
get commands for the set functions listed previously. These 
commands are MYKONOS_getRx1GainCtrlPin(…) and 
MYKONOS_getRx2GainCtrlPin(…).  

HYBRID GAIN CONTROL 
Hybrid gain control is a hybrid between automatic gain control 
(AGC) and manual gain control (MGC) modes of operation. 
Hybrid gain control mode allows the device to monitor the state 
of the overload detectors and waits for a baseband processor 
(BBP) signal on a GPIO to make a gain change. When an external 
pulse on a GPIO pin is provided, the gain control algorithm 
either increments the gain index if underrange conditions are 
detected, decrements the gain index if overrange conditions are 
detected, or does nothing if neither an underrange or overrange 
condition is detected. If fast attack for the analog peak detector 
(APD) or Half-Band 2 (HB2) is enabled, a gain decrease occurs 
immediately without the external pulse applied.  

In hybrid gain control mode, the gain update counter does not 
run. The peak detector counters do not reset until a pulse is 
detected on the selected GPIO pin. For Rx1, the allowed pins 
for this feature are GPIO_1, GPIO_10, and GPIO_11. For Rx2, 
the allowed pins for this feature are GPIO_4, GPIO_10, and 
GPIO_13.  

For proper operation of the hybrid gain control mode, the setup 
command for the AGC must be run. This command is 
MYKONOS_setupRxAgc(…). Running this command sets up 
all the necessary parameters for the AGC and hybrid mode. The 
parameters include threshold settings, how many indices to 
increment or decrement the gain index, and others. See the 
following section for an explanation of the AGC parameters.  

When in hybrid mode, it is necessary to call a setup function to 
assign a GPIO pin per Rx channel for this feature. The function 
MYKONOS_setRxHybridGainChangePin(…) is described in 
the following section. Additionally, the GPIO pin selected must 
be set as an input (see the General-Purpose Input/Output 
(GPIO) Configuration section).  

MYKONOS_setRxHybridGainChangePin(…) 

mykonosErr_t 
MYKONOS_setRxHybridGainChangePin(mykonosD
evice_t *device, mykonosGpioSelect_t 
rx1GainChangePin, mykonosGpioSelect_t 
rx2GainChangePin) 

Description 

This application programming interface (API) function sets the 
pins for hybrid gain control.  

To call this function, set the gain mode to hybrid. The gain 
change is controlled with the selected GPIO pin. A pulse on 
the rx1GainChangePin in hybrid pin control enables the gain 
change for Rx1, and a pulse on the rx2GainChangePin in hybrid 
pin control enables the gain change for Rx2. A gain change is only 
made if deemed necessary by the automatic gain control (AGC).  

Preconditions 

Run this function after MYKONOS_initialize(…). Set the gain 
control mode to hybrid mode. 
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Parameters 

• *device: This a pointer to the device data structure. 
• rx1GainChangePin: This selects the GPIO pin to be used 

for hybrid gain change control. The available pins for Rx1 
channel hybrid control are GPIO_1, GPIO_10, and GPIO_11. 
Use the MYKGPIONAN parameter for no GPIO selected. 

• rx2GainChangePin: This selects the GPIO pin to be used 
for hybrid gain change control. The available pins for Rx2 
channel hybrid control are GPIO_4, GPIO_10, and GPIO_13. 
Use the MYKGPIONAN parameter for no GPIO selected. 

AUTOMATIC GAIN CONTROL (AGC) 
When using AGC mode, there are several configurable 
parameters allowing the modification of how AGC mode 
responds to overrange or underrange conditions. This section 
provides details regarding configuration of the AGC by explaining 
the AGC theory of operation and the configuration options 
available in the application programming interface (API). This 
section explains the AGC at a high level. Parameters referenced 
in this section are data structure members within the following data 
structure types: mykonosAgcCfg_t, mykonosPeakDetAgcCfg_t, 
and mykonosPowerMeasAgcCfg_t. 

AGC Theory of Operation 

The automatic gain control (AGC) uses upper and lower thresholds 
from two peak detector circuits to determine if a gain index 
increment or decrement is necessary, depending on input signal 
conditions. The peak detector circuits include the analog peak 
detector (APD) and the Half-Band 2 (HB2) overload detector. 
Refer to Figure 57 or Figure 58 for the location of these peak 
detectors in the different receivers.  

Additionally, power measurement detectors can be enabled to 
determine if a gain index increment or decrement is necessary. 
These blocks sample digital data at the HB2, programmable 
receiver finite impulse response (RFIR) filter, or dc correction 
block. Refer to Figure 57 or Figure 58 for the location of these 
power measurement detectors in the different receivers.  

It is recommended to configure the AGC in peak threshold 
mode. However, the best configuration is application dependent. 
Peak threshold mode uses the APD/HB2 detectors to determine 
when to make gain changes. Peak threshold mode can also disable 
the power-based AGC mode by setting agcPeakThresholdMode = 
1. Peak threshold mode, when configured for fast attack response 
to overrange signals mode (apdFastAttack, hb2FastAttack), 
offers the quickest response to the sudden onset of the blocking 
signals. Peak threshold mode with fast attack response is the 
recommended operation mode for the AGC. 

If it is desired to use only power detector measurement AGC 
mode, set the gain step settings for the APD and HB2 to 0 and 
set agcPeakThresholdMode to 0 to enable the power measurement 
detectors to make gain changes. 

Analog Peak Detector (APD) Basics 

The APD overload detector is part of the peak threshold 
automatic gain control (AGC). The APD is considered the 
blocker overload detector because it determines if the received 
signal is overloading the blocks before the digital chain, including 
the ADC. Because the APD is located after the analog low-pass 
filter, attenuation increases for signals further from the Rx local 
oscillator (LO) frequency. APD thresholds are specified in units of 
voltage (peak). The ADC full-scale voltage is 707 mV peak. 

The APD high threshold (apdHighThresh) determines if a gain 
reduction is necessary. If a detected input signal level is less 
than the APD high threshold but exceeds this threshold by a 
number of samples equal to or greater than a programmable 
number (apdHighThreshExceededCnt) within the duration of 
the AGC gain update counter (agcGainUpdateCounter), the 
AGC decrements the gain index according to the 
programmable APD gain step attack parameter 
(apdHighGainStepAttack) at a time depending on the APD fast 
attack setting (apdFastAttack). The gain decrement can occur 
when the overrange condition is detected by the APD or when 
the AGC gain update counter expires. If the potential gain index 
decrement places the gain index less than the AGC minimum 
gain index (for example, agcRx1MinGainIndex), the decrement 
is not made.  

The APD low threshold (apdLowThresh) determines if an 
increase in gain is necessary. If a detected input signal level 
is less than the APD low threshold and does not exceed this 
threshold by a number of samples equal to or greater than a 
programmable number (apdLowThreshExceededCnt) 
within the duration of the AGC gain update counter 
(agcGainUpdateCounter), the AGC increments the gain index 
according to the programmable APD low gain step recovery 
parameter (apdLowGainStepRecovery). The gain index 
increment occurs at the expiration of the AGC gain update 
counter. If the potential gain index increment puts the gain 
index outside of the AGC maximum gain index (for example, 
agcRx1MaxGainIndex), the increment is not made.  

Figure 61 shows the APD response to the presence and removal 
of an interferer when the APD fast attack bit is not set. Note that 
the gain decrement in response to the APD overrange condition 
occurs at the expiration of the AGC gain update counter.  

Figure 62 shows the APD response to the presence and removal 
of an interferer when the APD fast attack bit is set. With this 
setting enabled, the total time when the Rx is overranged is 
reduced because the gain decrement occurs immediately when 
the APD high threshold exceeded counter overflows. All peak 
detector counters reset with a gain change. The AGC gain 
update counter does not reset with a gain change. The fast attack 
mode can help reduce the time the receiver ADC is overloaded, 
leading to smaller windows where data can be lost.  
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Figure 61. APD Response to Interferer Onset and Removal with APD Fast Attack Disabled 
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Figure 62. APD Response to Interferer Onset and Removal with APD Fast Attack Enabled 
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Half-Band 2 (HB2) Overload Detector Basics 

The HB2 overload detector is part of the peak threshold AGC 
mode. The HB2 overload detector can be disabled if desired 
(hb2OverloadDetectEnable). The HB2 overload detector has 
configurable high, low, and very low thresholds. The HB2 
overload detector is considered the decimated data overload 
detector because it uses the data output of the HB2 digital 
decimation filter to determine if an overload is occurring. The 
HB2 overload detector is similar in function to the APD. HB2 
peak detector thresholds are specified in units of −dBFS relative 
to the ADC full-scale voltage.  

The HB2 high threshold (hb2HighThresh) determines if a gain 
reduction is necessary. If a detected input signal level is less 
than the HB2 high threshold but exceeds this threshold by a 
number of samples equal to or greater than a programmable 
number (hb2HighThreshExceededCnt) within the duration of 
the AGC gain update counter (agcGainUpdateCounter), the 
AGC reduces the gain according to the programmable HB2 
gain step attack parameter (hb2HighGainStepAttack) at a time 
depending on the HB2 fast attack setting (hb2FastAttack). The 
gain decrement can occur when the overrange condition is 
detected by the HB2 or when the AGC gain update counter 
expires. If the potential gain index decrement puts the gain 
index outside of the programmable gain index limits (for 
example, agcRx1MinGainIndex), the decrement is not made.  

The HB2 low threshold (hb2LowThresh) determines if a gain 
increase is necessary. If a detected input signal level is less than 
the HB2 low threshold and does not exceed this threshold by a 
number of samples equal to or greater than a programmable 
number (hb2LowThreshExceededCnt) within the duration of 
the AGC gain update counter (agcGainUpdateCounter), the 

AGC increases the gain according to the programmable 
HB2 low threshold gain step recovery parameter 
(hb2LowGainStepRecovery). The gain index increment 
occurs at the expiration of the AGC gain update counter. If 
the potential gain index increment puts the gain index 
outside of the AGC maximum gain index (for example, 
agcRx1MaxGainIndex), the increment is not made. 

The HB2 very low threshold (hb2VeryLowThresh) determines 
if a gain increase is necessary. If a detected input signal level is 
less than the HB2 very low threshold and does not exceed this 
threshold by a number of samples equal to or greater than a 
programmable number (hb2VeryLowThreshExceededCnt) 
within the duration of the AGC gain update counter 
(agcGainUpdateCounter), the AGC increases the gain 
according to the programmable HB2 very low threshold gain 
step recovery parameter (hb2LowGainStepRecovery). The gain 
index increment occurs at the expiration of the AGC gain update 
counter. If the potential gain index increment puts the gain 
index outside of the AGC maximum gain index (for example, 
agcRx1MaxGainIndex), the increment is not made. It is 
recommended to set the very low threshold gain step recovery 
parameter larger than the low threshold gain step recovery 
parameter to recovery gain quicker in very low underrange 
situations.  

Figure 63 shows an example of HB2 operation within the AGC 
when the HB2 fast attack mode is not enabled. The behavior is 
similar to the behavior of the APD without fast attack. All peak 
detector counters reset upon a gain change. The AGC gain 
update counter does not reset upon a gain change. 

The diagram in Figure 64 shows the same situation in the case 
where HB2 fast attack is enabled.  
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Figure 63. HB2 Thresholds and Gain Changes Associated with Underrange and Overrange Conditions with HB2 Fast Attack Mode Disabled 
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Figure 64. HB2 Thresholds and Gain Changes Associated with Underrange and Overrange Conditions with HB2 Fast Attack Mode Enabled 
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Power Measurement Detector (PMD) Basics 

The PMD obtains estimates of the digital power received at 
various points in the digital signal path. These locations include 
the HB2 output, RFIR output, and the output of the baseband 
dc (BBDC) correction block. The power measurement detector is 
a slower responding automatic gain control (AGC) mode than 
the peak threshold mode with fast attack enabled.  

The thresholds are set such that the relative magnitude of the 
thresholds are pmdUpperHighThresh → pmdUpperLowThresh 
→ pmdLowerHighThresh → pmdLowerLowThresh. It is 
recommended that the gain step associated with the outer 
thresholds (pmdUpperHighThresh, pmdLowerLowThresh) are 
greater than that of the inner thresholds (pmdUpperLowThresh, 
pmdLowerHighThresh) to speed gain attack or recovery in far 
overrange or far underrange conditions.  

There are two PMD upper level thresholds to determine if a gain 
decrease is necessary. The upper thresholds are further split into 
high (pmdUpperHighThresh) and low (pmdUpperLowThresh) 
thresholds. The PMD is polled at the expiration of the AGC 
gain update counter (agcGainUpdateCounter) to determine if a 

gain index increment is necessary. If the pmdUpperHighThresh 
is exceeded, a gain index decrement is made according to 
pmdUpperHighGainStepAttack. If the pmdUpperLowThresh is 
exceeded, a gain index decrement is made according to 
pmdUpperLowGainStepAttack. Gain decrements occur only at 
the end of the AGC gain update counter. 

There are two PMD lower level thresholds to determine if a gain 
increment is necessary. The lower thresholds are further split into 
high (pmdLowerHighThresh) and low (pmdLowerLowThresh) 
thresholds. The PMD is polled at the expiration of the AGC gain 
update counter (agcGainUpdateCounter) to determine if a gain 
index increment is necessary. If the pmdLowerHighThresh is 
exceeded, a gain index increment is made according to 
pmdLowerHighGainStepAttack. If the pmdLowerLowThresh 
is exceeded, a gain index decrement is made according to 
pmdLowerLowGainStepAttack. Gain decrements occur only 
at the end of the AGC gain update counter. 

The diagram in Figure 65 shows the relative threshold levels for 
the PMD.  
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Figure 65. Power Measurement Detector (PMD) Thresholds and Gain Index Changes Associated with Underrange and Overrange Conditions 
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Automatic Gain Control Operation 

Gain decrements occur due to overrange conditions. 

 The analog peak detector (APD) overrange condition 
occurs when the apdHighThreshExceededCnt counter 
overflows. Gain index decrement occurs immediately or at 
the end of the AGC gain update counter. 

 The Half-Band 2 (HB2) overrange condition occurs when 
the hb2HighThreshExceededCnt counter overflows. Gain 
index decrement occurs immediately or at the end of the 
AGC gain update counter. 

 Power-based overrange conditions occur when the power 
measurement exceeds either upper level power thresholds, 
pmdUpperHighThresh or pmdUpperLowThresh. Gain 
index decrements due to power-based overrange conditions 
only occur at the end of the AGC gain update counter. 

 If multiple overrange conditions are detected, gain step 
priority is given to the APD attack gain step, then the HB2 
attack gain step, then the PMD upper high threshold attack 
gain step, and then the PMD upper low threshold attack 
gain step.  

Gain increments occur due to underrange conditions. All gain 
index increments occur at the end of the AGC gain update 
counter. 

 The APD underrange condition occurs when the 
apdLowThreshExceededCnt counter does not overflow by 
the end of the AGC gain update counter. 

 The HB2 underrange condition occurs when the 
hb2LowThreshExceededCnt counter does not overflow by 
the end of the AGC gain update counter. 

 The HB2 very low underrange condition occurs when the 
hb2VeryLowThreshExceededCnt counter does not 
overflow by the end of the AGC gain update counter 

 Power-based underrange conditions occur when the power 
measurement does not exceed either lower level power 
thresholds, pmdLowerHighThresh or pmdLowerLowThresh. 

 If multiple underrange conditions are detected, gain step 
priority is given to the HB2 very low recovery gain step, 
then the APD low recovery gain step, then the HB2 low 
recovery gain step, then the PMD lower low threshold 
recovery gain step, and then the PMD lower high threshold 
recovery gain step. 

When configuring the AGC, it is important to ensure that the 
difference between the high level thresholds and low level 
thresholds, in dB, is greater than the gain decrement step size 
and greater than the gain increment step size in dB. Setting the 
thresholds and step sizes in this way prevents a small overload 
from pushing the receiver from an overrange condition into an 
underrange condition when the gain decrement occurs, which 
may cause an underrange condition and a gain increment. This 
situation may lead to an undesirable gain index oscillation 
scenario.  

 

A time domain depiction of the peak threshold with fast attack 
AGC operation is shown in Figure 66. Figure 66 also shows the 
receiver gain. The right side plot shows an example input wave-
form. Due to the presence of the large signal, the AGC reduces 
the receiver gain at approximately 1000 μs and 11,000 μs. The 
receiver gain decrements immediately after detecting the sufficient 
number of signal peaks, as described previously. When the large 
signal is removed from the input, the gain recovers. The gain index 
increments at the expiration of the AGC gain update counter. 
The gain recovery instances occur at 2000 μs and 12,000 μs. The 
time between gain increments is greater than the time between 
gain decrements because gain increments (recovery) wait until 
the expiration of the AGC gain update counter. 
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Figure 66. Typical Automatic Gain Control (AGC) Operation vs. Time  
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Figure 67. Typical Receiver Data Output Codes vs. Time with AGC Active  
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AGC API COMMANDS 
The automatic gain control (AGC) data structure members 
must be programmed to the device registers by an application 
programming interface (API) command prior to putting the 
device into AGC mode. To program the AGC registers with the 
settings in the mykonosAgcCfg_t data structure, the following 
API commands can be used. Descriptions of the members of 
the mykonosAgcCfg_t data structure are provided in the 
following sections.  

MYKONOS_setupRxAgc(…) 

mykonosErr_t 
MYKONOS_setupRxAgc(mykonosDevice_t* 
device) 

Description 

This function sets up the device Rx automatic gain control 
(AGC) registers.  

Three data structures (mykonosAgcCfg_t, 
mykonosPeakDetAgcCfg_t, and mykonosPowerMeasAgcCfg_t) 
must be instantiated prior to calling this function. Valid ranges 
for data structure members must also be provided. 

Preconditions 

Run this function after device initialization. It is recommended 
to wait until after headless.c instructions are complete before 
running this function. 

Parameters 

• *device: this is a pointer to the device data structure. 

MYKONOS_setupObsRxAgc(…) 

mykonosErr_t 
MYKONOS_setupObsRxAgc(mykonosDevice_t* 
device) 

Description 

This function sets up the device Rx AGC registers.  

Three data structures (of types mykonosAgcCfg_t, 
mykonosPeakDetAgcCfg_t, and mykonosPowerMeasAgcCfg_t) 
must be instantiated prior to calling this function. Valid ranges 
for data structure members must also be provided. 

Preconditions 

Run this function after device initialization.  

Parameters 

• *device: This is a pointer to the device data structure. 

The AGC enable sync pulse for the gain counter feature allows 
synchronization of the AGC gain update counter to the 
beginning of the time slots as signaled on the GPIO pins. The 
function to assign a pin for this functionality is given in the 
following section. The function can only be assigned to GPIO_1, 
GPIO_10, or GPIO_11 for Rx1, and GPIO_4, GPIO_10, or 
GPIO_13 for Rx2. 

MYKONOS_setRxAgcEnSyncPin(…) 

mykonosErr_t 
MYKONOS_setRxAgcEnSyncPin(mykonosDevice_t
* device, mykonosGpioSelect_t 
rx1AgcSyncPin, mykonosGpioSelect_t 
rx2AgcSyncPin) 

Description 

This application programming interface (API) function sets the 
pins for sync automatic gain control (AGC).  

To call this function, set the Rx gain control to AGC mode. The 
AGC gain sync is controlled with the selected GPIO pin. A 
pulse on rx1AgcSyncPin in AGC mode enables the AGC gain 
sync for Rx1, and a pulse on rx2AgcSyncPin in AGC enables the 
AGC gain sync for Rx2. 

Preconditions 

Run this function after device initialization in AGC mode. Set the 
device → rx → rxAgcCtrl → agcEnableSyncPulseForGainCounter 
parameter to 1 for this feature to work as intended; note that 
this is not a precondition for this function to be called.  

Parameters 

• *device: This is a pointer to the device data structure. 
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APPLICATION PROGRAMMING INTERFACE (API) PROGRAMMING SUMMARY 
To summarize the programming requirements of the different 
gain control modes, a flowchart is provided in Figure 68 to 
assist users with setting up their desired gain control mode. The 
chart describes how to set up the manual gain control (MGC), 
hybrid, and automatic gain control (AGC) modes. For proper 

operation of GPIO based functions, refer to the General-
Purpose Input/Output (GPIO) Configuration section. For 
GPIO input modes, such as hybrid mode, selected pins must be 
assigned as inputs in addition to the configuration described in 
the flowchart.  
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Figure 68. Gain Control Programming Flowchart 
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Data Structures and Parameters for AGC and Hybrid 
Mode 

The automatic gain control (AGC) allows the automatic 
adjustment of receiver gain to avoid overrange conditions and 
underrange conditions. The AGC engine compares the received 
signal to programmable thresholds at various points in the signal 
chain. This section explains the programmable settings of the 
AGC by looking into the AGC configuration data structures. 

The AGC uses three data structures to store configuration 
settings. For the Rx channels, the AGC configuration data 
structures are substructures to the mykonosRxSettings_t data 
structure. For the ORx channels, the AGC configuration data 

structures are substructures to the mykonosObsRxSettings_t 
data structure.  

The AGC configuration data structures are divided into a 
higher level data structure, corresponding to general AGC 
configuration settings called mykonosAgcCfg_t, with two 
substructures for more specific configuration settings. The two 
substructures correspond to peak detector AGC settings 
(mykonosPeakDetAgcCfg_t) and power measurement detector 
settings (mykonosPowerMeasAgcCfg_t). The Rx AGC and ORx 
AGC use the same data structure types; however, one instance is 
specific for Rx and the other specific for ORx. The data structures 
are shown in Figure 69. 

 

mykonosPeakDetAgcCfg_t

+ apdHighThresh
+ apdLowThresh
+ hb2HighThresh
+ hb2LowThresh
+ hb2VeryLowThresh
+ apdHighThreshExceededCnt
+ apdLowThreshExceededCnt
+ hb2HighThreshExceededCnt
+ hb2LowThreshExceededCnt
+ hb2VeryLowThreshExceededCnt
+ apdHighGainStepAttack
+ apdLowGainStepRecovery
+ hb2HighGainStepAttack
+ hb2LowGainStepRecovery
+ hb2VeryLowGainStepRecovery
+ apdFastAttack
+ hb2FastAttack
+ hb2OverloadDetectEnable
+ hb2OverloadDurationCnt
+ hb2OverloadThreshCnt

mykonosAgcCfg_t

+ agcRx1MaxGainIndex
+ agcRx1MinGainIndex
+ agcRx2MaxGainIndex
+ agcRx2MinGainIndex
+ agcObsRxMaxGainIndex
+ agcObsRxMinGainIndex
+ agcObsRxSelect
+ agcPeakThresholMode
+ agcLowThsPreventGainIncrease
+ agcGainUpdateCounter
+ agcSlowLoopSettlingDelay
+ agcPeakWaitTime
+ agcResetOnRxEnable
+ agcEnableSyncPulseForGainCounter

mykonosPowermeasAgcCfg_t

+ pmdUpperHighThresh
+ pmdUpperLowThresh
+ pmdLowerHighThresh
+ pmdLowerLowThresh
+ pmdUpperHighGainStepAttack
+ pmdUpperLowGainStepAttack
+ pmdLowerHighGainStepRecovery
+ pmdLowerLowGainStepRecovery
+ pmdMeasDuration
+ pmdMeasConfig

+peakAgc +powerAgc
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Figure 69. Member Listing of the mykonosAgcCfg_t, mykonosPeakDetAgcCfg_t, and mykonosPowerMeasAgcCfg_t Data Structures 
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mykonosAgcCfg_t Data Structure 

The following sections describe parameters within the data 
structure mykonosAgcCfg_t. This data structure contains the 
peak detector automatic gain control (AGC) settings, power 
measurement AGC settings, and several other general parameters 
for AGC operation.  

AGC Minimum and Maximum Receiver Gain Indices  

The following sections outline the parameters within the three 
automatic gain control (AGC) configuration structures with 
recommended settings and minimum and maximum settings. 
At the end of the section is a summary of all default, minimum, 
and maximum settings for the AGC data structures. 

The members of the mykonosAgcCfg_t structure referring to 
maximum and minimum gain indices for a given receiver channel 
are listed in Table 100. These parameters limit the AGC to make 
gain change decisions that result in gain indices within the 
minimum and maximum parameter specified for a given 
channel.  

The current application programming interface (API) 
implementation dictates that agcObsRxMaxGainIndex 
and agcObsRxMinGainIndex are used in reference to the 
SnRx channels. If the user is attempting to set up the 
mykonosAgcCfg_t data structure for use with an ORx 
input, the agcObsRxSelect member must be set for SnRx usage. 

Table 101 provides the receiver associated with the valid values 
of the agcObsRxSelect member. Only one value is supported for 
this data structure member.  

The MYKONOS_setupRxAgc(…) function does not program 
the parameters specific to the ORx AGC. These ignored parameters 
are agcObsRxSelect, agcObsRxMaxGainIndex, and 
agcObsRxMinGainIndex.  

The MYKONOS_setupObsRxAgc(…) function does not 
program parameters specific to the Rx AGC. These ignored 
parameters are agcRx1MaxGainIndex, agcRx1MinGainIndex, 
agcRx2MaxGainIndex, and agcRx2MinGainIndex. 

AGC Peak Threshold Mode 

The member agcPeakThresholdMode of the mykonosAgcCfg_t 
data structure determines if the automatic gain control (AGC) 
runs in peak threshold mode. This is a 1-bit field. Setting this 
bit disables the power measurement detector from making gain 
changes. Setting this bit also enables the analog peak detector 
(APD)/Half-Band 2 (HB2) lower thresholds to make gain 
increments. 

Peak threshold mode is the recommended AGC configuration 
because it allows for fast attack response (see apdFastAttack, 
hb2FastAttack) in response to the sudden presence of a 
blocking signal.  

 

Table 100. AGC Minimum and Maximum Gain Index Value Limits 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t agcRx1MaxGainIndex 255 agcRx1MinGainIndex  255 
uint8_t agcRx1MinGainIndex 195 Minimum Rx1 Table Index agcRx1MaxGainIndex 
uint8_t agcRx2MaxGainIndex 255 agcRx2MinGainIndex 255 
uint8_t agcRx2MinGainIndex 195 Minimum Rx2 Table Index agcRx2MaxGainIndex 
uint8_t agcObsRxMaxGainIndex 255 agcObsRxMinGainIndex 255 
uint8_t agcObsRxMinGainIndex 203 Minimum ObsRx Table Index agcObsRxMaxGainIndex 
 

Table 101. Parameter Limits and Defaults for agcObsRxSelect 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t agcObsRxSelect 1 1 1 
 

Table 102. Parameter Definitions for agcPeakThresholdMode1 
Data Type Parameter Value Note 
uint8_t agcPeakThresholdMode 0 Power measurement detectors are enabled to make gain changes. Disables 

APD/HB2 from making gain step increments.  
1 (default) Power measurement detectors are disabled from making gain changes. Enables 

APD/HB2 to make gain step increments 
 
1 All values greater than 1 result in an error. 

Table 103. Parameter Definitions for agcLowerThreshPreventGainIncrease1 
Data Type Parameter Value Note 
uint8_t agcLowerThreshPreventGainInc 0 PMD lower thresholds increase gain; however, disregard if the APD/HB2 low 

threshold is exceeded. 
1 (default) PMD cannot increase gain when the APD/HB2 low thresholds are exceeded. 

 
1 All values greater than 1 result in an error. 
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AGC Lower Threshold Prevent Gain Increase  

The agcLowerThreshPreventGainInc member of the 
mykonosAgcCfg_t data structure prevents the gain index from 
incrementing in certain conditions when this bit is set to 1. This 
is a 1-bit field. If this bit is set, the power measurement detector 
(PMD) cannot initiate a gain increment when either the analog 
peak detector (APD) or Half-Band 2 (HB2) low thresholds are 
exceeded. If this bit is cleared, APD or HB2 low thresholds are 
ignored by the automatic gain control (AGC).  

AGC Gain Update Counter  

The automatic gain control (AGC) gain update time (denoted 
by the agcGainUpdate-Counter member) is a member that 
determines the length of the gain update counter. The interval 
between the gain update counter expiration is determined by 
agcGainUpdateCounter and agcSlowLoopSettlingDelay, though 
agcGainUpdateCounter length is typically several orders of 
magnitude greater than the agcSlowLoopSettling delay. Refer 
to Figure 70 for a depiction of agcSlowLoopSettlingDelay and 
agcGainUpdateCounter.  

The total number of IQ data rate clock cycles between expiration of 
the AGC gain update counter is given by the following equation: 

IQ Clock Cycles = agcGainupdateCounter[21:0] + 
agcSlowLoopSettingDelay[4:0]  (4) 

When the AGC gain update counter expires, the peak detectors 
and/or power measurement detectors are polled to determine if 
a gain change is necessary. Gain increments can only occur on 
the termination of this counter. Gain decrements can occur at 
the end of the counter or when the apdHighThreshExceededCnt 
or hb2HighThreshExceeddedCnt counters overflow (see 
apdFastAttack and hb2FastAttack).  

The AGC gain update counter runs at the IQ data rate of the 
receiver. The following equation governs the AGC gain update 
time (the left side indicates the value of the agcGainUpdateCounter 
for a given gain update counter length on the right side): 

agcGainupdateCounter[21:0] = 
agcGainupdateCounterLength (μs) × IQ Rate (MHz) (5) 

Using this equation, for an AGC gain update counter length of 
250 μs with an Rx profile that has an IQ data rate of 122.88 MHz, 
the agcGainUpdateCounter setting is 30720 (decimal). Table 104 
shows the limits of the agcGainUpdateCounter parameter. 
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Figure 70. AGC Gain Update Counter Timing Diagram 

 

Table 104. Parameter Limits and Defaults for agcGainUpdateCounter 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint32_t agcGainUpdateCounter 30720 (0x7800) 1 (0x000001) 4194303 (0x3FFFFF) 
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Table 105. Parameter Limits and Defaults for agcSlowLoopSettlingDelay  
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t agcSlowLoopSettlingDelay 4  0 31 (0x1F) 
 

Table 106. Parameter Limits and Defaults for agcPeakWaitTime  
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t agcPeakWaitTime 2 2 31 (0x1F) 
 

Table 107. Parameter Definitions for agcResetOnRxEnable1 
Data Type Parameter Value Note 
uint8_t agcResetOnRxEnable 0 (default) AGC preserves state on falling edge of Rx enable or wait/radio off state 

1 AGC resets on falling edge of Rx enable or wait/radio_off state 
 
1 All values greater than 1 result in an error. 
 

Table 108. Parameter Definitions for agcEnableSyncPulseForGainCounter1 
Data Type Parameter Value Note 
uint8_t agcEnableSyncPulseForGainCounter 0 (default) AGC gain update counter operates as normal 

1 AGC gain update counter can be synchronized to an external source 
 
1 All values greater than 1 result in an error. 
 

AGC Slow Loop Settling Delay 

The automatic gain control (AGC) slow loop settling delay 
(denoted by member agcSlowLoopSettlingDelay) determines 
the number of IQ data rate clock cycles to wait after a gain 
change before resuming operation of the analog peak detector 
(APD)/Half-Band 2 (HB2) or power measurement detector 
(PMD). This is a 5-bit field. This parameter allows the AGC to 
ignore any transients associated with a gain change for the 
number of cycles indicated by this parameter. 

If this parameter is set to 4, for example, the APD/HB2 and 
PMD blocks are held in reset for four IQ data rate clock cycles 
before resuming normal operation. Table 105 shows the limits 
of the agcSlowLoopSettlingDelay.  

AGC Peak Wait Time 

The AGC peak wait time (denoted by member agcPeakWaitTime) 
configures the amount of time that the gain control algorithm 
waits before enabling regular operation of the peak detectors 
after AGC is enabled or a peak is detected. This is a 5-bit field. 
The peak detectors in the receiver datapaths include the APD 
and HB2 overrange detector.  

The value of the agcPeakWaitTime member of the 
mykonosAgcCfg_t data structure is the number of IQ data clock 
cycles that elapse after using enabling AGC and prior to peak 
detector circuits entering regular operation. This time is also 
the minimum time for the AGC to wait after detecting a peak.  

AGC Reset on Rx Enable 

The AGC reset on Rx enable (denoted by member 
agcResetOnRxEnable) allows for a reset of the AGC when the 
receiver is turned on. When this bit is set, the receiver resets the 
AGC to its initial state when the Rx is disabled. The gain index 
is reset to the maximum condition when the Rx is disabled. 
When this bit is set to 0, the AGC holds its current state when 
Rx enable is taken low. When Rx enable goes high again, AGC 
continues its operation.  

AGC Enable Sync Pulse for Gain Counter  

The AGC enable sync pulse for gain counter (denoted by the 
agcEnableSyncPulseForGainCounter member) allows 
synchronization of the AGC gain update counter to beginning 
of time slots as signaled on GPIO pins. It is also required to call 
the MYKONOS_setRxAgcEnSyncPin(…)command before 
synchronization can occur. 
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mykonosPeakDetAgcCfg_t Data Structure 

The following sections describe parameters within the data 
structure mykonosPeakDetAgcCfg_t. This data structure 
contains several parameters that set the behavior of the peak 
detector mode AGC.  

APD Thresholds  

Two members of the mykonosPeakDetAgcCfg_t data structure 
determine the high and low threshold levels for the analog peak 
detector (APD) circuit. They are denoted by apdHighThresh 
and apdLowThresh. Each are 6-bit fields. The APD determines 
if received signals contain peaks greater than or less than the 
apdHighThresh and apdLowThresh signal threshold levels. The 
following equations relate the value of the apdHighThresh and 
apdLowThresh data structure members to the high and low 
peak voltage threshold levels.  

apdHighThresh (mV peak) = 16 mV × 
(apdHighThresh[D5:D0] + 1) (6) 

apdLowThresh (mV peak) = 16 mV × 
(apdLowThresh[D5:D0] + 1) (7) 

The full-scale voltage of the Rx/ORx ADC is 707 mV peak. The 
APD thresholds can be approximated in −dBFS with the following 
equation, which is an approximation because some roll-off is 
introduced by the analog transimpedance amplifier (TIA) low-
pass filter (LPF) prior to the APD circuitry.  

Threshold (dBFS) =  
20 × log((Threshold (mV peak)/707 mV peak) (8) 

For example, if the apdHighThresh is set as 0x1F, this 
corresponds to a peak voltage of 512 mV peak, which is 
approximately −2.8 dBFS. 

If the received signal exceeds the apdHighThresh signal level 
for the number of times set by the apdHighThreshExceededCnt 
during the agcGainUpdateCounter counter duration, a gain 
decrease is made based on the apdGainStepAttack. The gain 
decrease can occur either at the expiration of the 
agcGainUpdateCounter or be made immediately when the 
apdHighThreshExceededCnt value is exceeded. The timing of 
the gain decrement is controlled by the apdFastAttack member.  

If the received signal does not exceed the apdLowThresh for the 
number of times set by the apdLowerThreshExceededCnt 
within the agcGainUpdateCounter, a gain increase is made 
according to the apdGainStepRecovery member.  

APD Threshold Counts  

Two members determine the number of times the apdHighThresh 
or apdLowThresh peak thresholds must be exceeded to trigger a 
gain change. They are denoted by apdHighThreshExceededCnt 
for the apdHighThresh threshold exceeded count and 
apdLowThreshExceededCnt for the apdLowThresh threshold 
exceeded count. When the count value exceeds the 
apdHighThreshExceededCnt, a gain index decrement of 
apdGainStepAttack indices occurs at a time determined by the 
apdFastAttack data structure member. When the count value 
does not exceed the apdLowThreshExceededCnt within the 
duration of the agcGainUpdateCounter, a gain index increment 
of apdGainStepRecovery indices occurs at the expiration of the 
agcGainUpdate-Counter.  

 

Table 109. Parameter Limits and Defaults for apdHighThresh/apdLowThresh1 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t apdHighThresh 0x1F 0 0x3F 
uint8_t apdLowThresh 0x16 0 0x3F 
 
1 Do not use values less than 0x7. 

 

Table 110. Parameter Limits and Default Values for apdHighThreshExceededCnt/apdLowThreshExceededCnt 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t apdHighThreshExceededCnt 6 0 255 
uint8_t apdLowThreshExceededCnt 4 0 255 

 

Table 111. Parameter Limits and Default Values for apdHighGainStepAttack 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t apdHighGainStepAttack 2 0 31 

 

Table 112. Parameter Limits and Default Values for apdLowGainStepRecovery 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t apdLowGainStepRecovery 2 0 31 
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APD Gain Step Attack  

The analog peak detector (APD) gain step attack (denoted 
by apdHighGainStepAttack) is a member that determines 
the number of gain indices decremented when the 
apdHighThreshExceededCnt counter is exceeded, which is 
the APD overrange condition. When a received signal exceeds 
the apdHighThresh level the number of times set by the 
apdHighThreshExceededCnt, the gain is decremented by the 
number of indices specified by the apdHighGainStepAttack. 
The apdFastAttack member can control the timing of the gain 
decrement.  

Set the value of this member as the number of gain steps to 
decrement during APD overrange conditions. This step size 
depends on the application and the implemented gain table. It 
is recommended to make this step size the same step size as the 
hb2GainStepAttack parameter. 

APD Gain Step Recovery  

The analog peak detector (APD) gain step recovery (denoted by 
apdLowGainStepRecovery) is a member that determines the 
number of gain indices incremented when the apdLowThresh-
ExceededCnt counter is not exceeded. This is the APD 
underrange condition. When a received signal does not 
exceed the apdLowThresh level the number of times set by the 
apdLowThreshExceededCnt, the gain is incremented by the 
number of indices specified by the apdLowGainStepRecovery. 
The gain step always occurs at the end of expiration of the 
agcGainUpdateCounter. 

Set the value of this member as the number of gain steps to 
increment during APD underrange conditions. This step size 
depends on the application and the implemented gain table. It is 
recommended to make this step size the same step size as the 
hb2GainStepRecovery parameter.  

HB2 Thresholds  

Three members determine the high, low, and very low 
threshold levels for the Receive Half-Band 2 (HB2) overload 
detector. They are denoted by hb2HighThresh, hb2LowThresh, 
and hb2VeryLowThresh (see Table 113). The HB2 overload 
detector determines if the decimated data at the output of 
the receiver HB2 digital decimation filter exceeds the 
hb2HighThresh, hb2LowThresh, and hb2VeryLowThresh. 

The following equations provide the threshold levels for the 
HB2 overload detector.  

20
2

10256]0:7[2
dBFSHighhb

HighThreshhb ×=  (9) 

20
2

10256]0:7[2
dBFSLowhb

LowThreshhb ×=  (10) 

20
2

10256]0:7[2
dBFSVeryLowhb

eshVeryLowThrhb ×=  (11) 

The hb2HighThresh sets a threshold for HB2 overrange conditions. 
If the received signal exceeds the hb2HighThresh the number of 
times specified by hb2HighThreshExceededCnt, the AGC makes a 
gain decrement according to the hb2HighGainStepAttack member, 
which is similar to the behavior of the APD high threshold 
detection. The timing of the gain decrement is according to the 
hb2FastAttack bit.  

Note that the apdHighThresh overload has a higher priority 
than the hb2HighThresh overload. If the detected signal exceeds 
both the apdHighThresh and the hb2HighThresh levels for their 
respective counter values, the AGC makes a gain increment 
according to the higher priority detector gain step, namely, 
apdGainStepAttack.  

The hb2LowThresh sets a threshold for HB2 underrange 
conditions. If the detected signal does not exceed the 
hb2LowThresh the number of times specified by 
hb2LowThreshExceededCnt, the AGC makes a gain 
increment according to the HB2 low recovery gain step 
member, hb2LowGainStepRecovery.  

The hb2VeryLowThresh sets a lower threshold than 
hb2LowThresh to allow faster gain recovery. If the detected 
signal does not exceed the hb2VeryLowThresh the number of 
times specified by hb2VeryLowThreshCnt, the AGC makes a 
gain increase according to the HB2 very low recovery gain step 
member hb2VeryLowGainStepRecovery.  

From Equation 9, Equation 10, and Equation 11, the thresholds 
must be input such that the magnitude of the following: 

hb2HighThresh (dBFS) > hb2LowThresh (dBFS) > 
hb2VeryLowThresh (dBFS) (12) 

 

 

Table 113. Parameter Limits and Default Values for Half-Band 2 (HB2) Thresholds 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t hb2HighThresh 0xB5 0 255 
uint8_t hb2LowThresh 0x80 0 hb2HighThresh 
uint8_t hb2VeryLowThresh 0x40 0 hb2LowThresh 

 

 

 

 



AD9371/AD9375 System Development User Guide UG-992 
 

Rev. B | Page 151 of 360 

HB2 Threshold Counts  

Three members determine the number of times the Half-
Band 2 (HB2) thresholds must be exceeded to trigger a gain 
change. These members are hb2HighThreshExceededCnt 
for the hb2HighThresh threshold exceeded count, 
hb2LowThreshExceeededCnt for the hb2LowThresh threshold 
exceeded count, and hb2VeryLowThreshExceededCnt for the 
hb2VeryLowThresh threshold exceeded count.  

For HB2 overrange conditions, the HB2 overload detector must 
detect greater than hb2HighThreshExceededCnt number of 
overloads above the hb2HighThresh within the agcGain-
UpdateCounter.  

For HB2 underrange conditions, the HB2 overload detector 
must detect less than hb2LowThreshExceededCnt or 
hb2VeryLowThreshExceededCnt number of overloads above 
the hb2LowThresh or hb2VeryLowThresh, respectively. These 
overloads must be detected within the agcGainUpdateCounter.  

HB2 Gain Step Attack  

The HB2 gain step attack (hb2HighGainStepAttack) is a member 
that determines the number of gain indices decremented when the 
hb2HighThreshExceededCnt counter is exceeded, which is the 
HB2 overrange condition. When a received signal exceeds the 
hb2HighThresh level the number of times set by the 
hb2HighThreshExceededCnt, the gain is decremented by the 
number of indices specified by the hb2HighGainStepAttack. 
The timing of the gain decrement is controlled by the 
hb2FastAttack member.  

Set the value of this member as the number of gain steps to 
decrement during HB2 overrange conditions. This step size 
depends on the application and the implemented gain table. It is 
recommended to make this step size the same step size as the 
apdGainStepAttack parameter.  

HB2 Gain Step Recovery  

Two members allow recovery from the HB2 underrange 
conditions (denoted by hb2LowGainStepRecovery and 
hb2VeryLowGainStepRecovery). If the underrange condition 
is with respect to the hb2VeryLowThresh, the gain index increment 
is made according to the hb2VeryLowGainStepRecovery. If the 
underrange condition is with respect to the hb2LowThresh, 
the gain index increment is made according to the 
hb2LowGainStepRecovery. It is recommended to set the 
hb2VeryLowGainStepRecovery parameter larger than the 
hb2LowGainStepRecovery to enable quicker recovery. The 
timing of the gain index step occurs at the expiration of the 
agcGainUpdateCounter.  

APD and HB2 Fast Attack Setting  

The automatic gain control (AGC), in analog peak detector 
(APD) and HB2 overrange conditions, can be programmed to 
make a gain step immediately when the overrange occurs or to 
make the gain step occur at the end of the agcGainUpdateCounter. 
It is recommended to set the fast attack bits for the APD and 
HB2. The fast attack setting is controlled by the apdFastAttack 
for APD overrange conditions, and hb2FastAttack for HB2 
overrange conditions. These are both 1-bit fields.  

Table 114. Parameter Limits and Default Values for HB2 Threshold Counters 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t hb2HighThreshExceededCnt 6 0 255 
uint8_t hb2LowThreshExceededCnt 4 0 255 
uint8_t hb2VeryLowThreshExceededCnt 4 0 255 
 

Table 115. Parameter Limits and Default Values for apdHighGainStepAttack 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t hb2HighGainStepAttack 2 0 31 
 

Table 116. Parameter Limits and Default Values for apdHighGainStepAttack 
Data Type Parameter Default Value Minimum Value Maximum Value 
uint8_t hb2LowGainStepRecovery 2 0 31 
uint8_t hb2VeryLowGainStepRecovery 4 0 31 
 

Table 117. Parameter Definitions for Fast Attack Settings  
Data Type Parameter Value Note 
uint8_t apdFastAttack 0 In response to APD overrange, gain decrement occurs at the expiration of the 

agcGainUpdateCounter 
1 (default) In response to APD overrange, gain decrement occurs immediately 

uint8_t hb2FastAttack 0 In response to HB2 overrange, gain decrement occurs at the expiration of the 
agcGainUpdateCounter 

1 (default) In response to HB2 overrange, gain decrement occurs immediately 
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HB2 Overload Detect Enable  

The hb2OverloadDetectEnable parameter is a 1-bit field that 
enables the High-Band 2 (HB2) detector. It is recommended to 
set this bit.  

HB2 Overload Duration Count  

The HB2 overload duration count (hb2OverloadDurationCnt) 
specifies the size of the window of IQ data rate clock cycles 
to meet the overload count set in hb2OverloadThreshCnt to 
increment the HB2 overload detector counters. This is a 3-bit 
field. If the number of overload counts set in hb2Overload-
ThreshCnt is exceeded within the window of IQ data rates 
provided by hb2OverloadThreshCnt, the counter increments, 
which avoids double counting overload instances. 

HB2 Overload Threshold Count  

The 4-bit field hb2OverloadThreshCnt specifies the number of 
individual overload instances within the number of samples 
given by hb2OverloadDurationCnt required to increment the 
HB2 overload detector counter. For example, if hb2Overload-
DurationCnt = 1 (sample size of 4) and hb2OverloadThreshCnt 
is 1, then 1 overload instance must be detected within the duration 
of the receiver HB2 overload duration count to trigger the 
receiver HB2 overload detector signal. Each LSB in this field 
maps to a single sample. The default is 1. 

 

mykonosPowerMeasAgcCfg_t Data Structure  

The following sections describe parameters within the 
mykonosPowerMeasAgcCfg_t data structure. This data 
structure contains several parameters that set the behavior of 
the power measurement mode automatic gain control (AGC).  

PMD Thresholds  

There are four thresholds for the power measurement detector 
(PMD) that correspond to four gain step sizes. The PMD 
thresholds are located in the mykonosPowerMeasAgcCfg_t 
data structure. The members that set the threshold levels are, 
from highest signal power to lowest, pmdUpperHighThresh, 
pmdUpperLowThresh, pmdLowerHighThresh, and pmdLower-
LowThresh. The pmdUpperLowThresh and pmdLowerHigh-
Thresh are 7-bit fields that set the absolute threshold level. The 
pmdUpperHighThresh and pmdLowerLowThresh are 4-bit 
fields that set offset thresholds relative to pmdUpperLowThresh 
and pmdLowerHighThresh. 

Each LSB of the threshold words corresponds to 1 dBFS. The 
threshold levels corresponding to the default PMD thresholds 
are −2 dBFS, −3 dBFS, −12 dBFS, and −16 dBFS for pmdUpper-
HighThresh, pmdUpperLowThresh, pmdLowerHighThresh, 
and pmdLowerLowThresh, respectively.  

The application programming interface (API) returns an error 
if pmdUpperLowThresh is set greater than (smaller signal) or 
equal to pmdLowerHighThresh.  

Table 118. Parameter Definitions for hb2OverloadDetectEnable  
Data Type Parameter Value Note 
uint8_t hb2OverloadDetectEnable 0 HB2 overload detector disabled 

1 (default) HB2 overload detector enabled 

 

Table 119. Parameter Definitions for Fast Attack Settings  
Data Type Parameter Value Window Size for HB2 Overload 
uint8_t hb2OverloadDurationCnt 0 1 

1 (default) 4 
2 8 
3 12 
4 16 
5 24 
6 32 
>7 Invalid 

 

Table 120. Parameter Limits and Default Values for PMD Thresholds 
Data Type Parameter Bit Width Default Value Minimum Value Maximum Value 
uint8_t pmdUpperHighThresh 4 1 0 15 
uint8_t pmdUpperLowThresh 7 3 0 127 
uint8_t pmdLowerHighThresh 7 12 0 127 
uint8_t pmdLowerLowThresh 4 4 0 15 
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PMD Gain Steps  

Each of the power measurement detector (PMD) thresholds 
has a corresponding gain step. If the detected power is greater 
than the pmdUpperHighThresh or pmdUpperLowThresh 
threshold, a gain decrement is made according to pmdUpper-
HighGainStepAttack or pmdUpperLowGainStepAttack. When 
both power thresholds are exceeded, the gain step is made 
according to pmdUpperHighGainStepAttack. 

If the detected power is less than pmdLowerHighThresh or 
pmdLowerLowThresh, a gain increment is made according 
to pmdLowerHighGainStepRecovery or pmdLowerLow-
GainStepRecovery. When both lower power thresholds are 
not exceeded, the gain step is made according 
to pmdLowerLowGainStepAttack.  

Because the inner thresholds (pmdUpperLowThresh and 
pmdLowerHighThresh) are closer to the desired received signal 
power than the outer thresholds (pmdUpperHighThresh and 
pmdLowerLowThresh), it is recommended to make the inner 
gain steps (pmdUpperLowGainStepAttack and pmdLower-
HighGainStepRecovery) smaller than the outer gain steps 
(pmdUpperHighGainStepAttack and pmdLowerLowGain-
StepRecovery). This allows the gain to recover very quickly if 
the signal is far underrange, then slows the recovery as it 
approaches the desired received power.  

PMD Measurement Duration  

The measurement duration of the power measurement blocks 
(denoted by pmdMeasDuration) sets the number of samples that 
the power measurement blocks use to evaluate the received signal 
power level. This counter counts at either the IQ data rate (if 
receiver finite impulse response (RFIR) or Baseband DC 2 (BBDC2) 
is chosen as the measurement configuration) or at the RFIR 

input clock rate (see Figure 57 and Figure 58). The value of 
this member value must satisfy the following relationship with 
the agcGainUpdateCounter. Equation 13 assumes that the 
pmdMeasDuration is specified in IQ data rate clock cycles. 
Divide pmdMeasDuration by the RFIR decimation factor if 
the HB2 output is used.  

agcGainUpdateCounter[21:0] > 8 × 2pmdMeasDuration (13) 

PMD Measurement Configuration  

The measurement configuration of the power measurement 
blocks (denoted by pmdMeasConfig) determines where in the 
receiver signal chain the measurement takes place. There are 
three locations where decimated power measurements can 
occur: the output of the finite impulse response (RFIR), the 
output of the Half-Band 2 (HB2) filter, and the output of the 
BBDC2. This member also controls an enable bit that can 
disable the power measurement detector (PMD) block. See 
Table 123 for details.  

Enabling the PMD at the RFIR output allows only the filtered 
data (after the RFIR) to be used to determine the power. In this 
mode, the measurement duration word (pmdMeasDuration) 
obeys Equation 13 because the sample rate is at the IQ data rate, 
which is the recommended setting for the PMD.  

Enabling the PMD at the HB2 output increases the bandwidth 
of the power measurement approximately by a factor of 2, 
which allows more out of band blocker energy into the 
power measurement. When PMD is enabled, note that 
pmdMeasDuration is determined using the RFIR input clock 
rate, which is not necessarily the same as the IQ data rate. This 
refers to pmdMeasDuration at the input clock rate to the RFIR, 
not necessarily the IQ data rate.  

Table 121. Parameter Limits and Default Values for PMD Gain Steps 
Data Type Parameter Bit Width Default Value Minimum Value Maximum Value 
uint8_t pmdUpperHighGainStepAttack 5 4 0 31 
uint8_t pmdUpperLowGainStepAttack 5 2 0 31 
uint8_t pmdLowerHighGainStepRecovery 5 2 0 31 
uint8_t pmdLowerLowGainStepRecovery 5 4 0 31 

 

Table 122. Parameter Limits and Default Values for pmdMeasDuration 
Data Type Parameter Default value Minimum Value Maximum Value 
uint8_t pmdMeasDuration 8 0 15 

 

Table 123. Parameter Definitions for pmdMeasConfig  
Data Type Parameter Value Note 
uint8_t pmdMeasConfig 0 PMD disabled 

1 PMD enabled at the HB2 output 
2 (default) PMD enabled at the RFIR output 
3 PMD enabled at the BBDC2 output 

 



UG-992 AD9371/AD9375 System Development User Guide 
 

Rev. B | Page 154 of 360 

SUMMARY OF THE AGC PARAMETERS  
This section provides a summary of all automatic gain control (AGC) data structure parameters, limits, and members. For information 
about the parameters and their meanings, refer to the previous sections in this user guide. 

Table 124. Parameter Limits and Default Values for mykonosAgcCfg_t 
Data Type Parameter Bit Width Default Value Minimum Value Maximum Value 
uint8_t agcRx1MaxGainIndex 8 255 agcRx1MinGainIndex 255 
uint8_t agcRx1MinGainIndex 8 195 Minimum Rx1 table index agcRx1MaxGainIndex 
uint8_t agcRx2MaxGainIndex 8 255 agcRx2MinGainIndex 255 
uint8_t agcRx2MinGainIndex 8 195 Minimum Rx2 table index agcRx2MaxGainIndex 
uint8_t agcObsRxMaxGainIndex 8 255 agcObsRxMinGainIndex 255 
uint8_t agcObsRxMinGainIndex 8 203 Minimum ORx table index agcObsRxMaxGainIndex 
uint8_t agcObsRxSelect 1 1 1 1 
uint8_t agcPeakThresholdMode 1 1 0 1 
uint8_t agcLowThsPreventGainIncrease 1 1 0 1 
uint32_t agcGainUpdateCounter 22 30720 1 0x3FFFFF 
uint8_t agcSlowLoopSettlingDelay 7 3 0 127 
uint8_t agcPeakWaitTime 5 2 2 31 
uint8_t agcResetOnRxEnable 1 0 0 1 
uint8_t agcEnableSyncPulseForGainCounter 1 0 0 1 
 *mykonosPeakDetAgcCfg_t     
 *mykonosPowerMeasAgcCfg_t     
 

Table 125. Parameter Limits and Default Values for mykonosPeakDetAgcCfg_t 
Data Type Parameter Bit Width Default Value Minimum Value Maximum Value 
uint8_t apdHighThresh 6 31 apdLowThresh 63 
uint8_t apdLowThresh 6 22 0 apdHighThresh 
uint8_t hb2HighThresh 8 181 hb2LowThresh 255 
uint8_t hb2LowThresh 8 128 hb2VeryLowThresh hb2HighThresh 
uint8_t hb2VeryLowThresh 8 64 0 hb2LowThresh 
uint8_t apdHighThreshExceededCnt 8 6 0 255 
uint8_t apdLowThreshExceededCnt 8 4 0 255 
uint8_t hb2HighThreshExceededCnt 8 6 0 255 
uint8_t hb2LowThreshExceededCnt 8 4 0 255 
uint8_t hb2VeryLowExceededCnt 8 4 0 255 
uint8_t apdHighGainStepAttack 5 4 0 31 
uint8_t apdLowGainStepRecovery 5 2 0 31 
uint8_t hb2HighGainStepAttack 5 4 0 31 
uint8_t hb2LowGainStepRecovery 5 2 0 31 
uint8_t hb2VeryLowGainStepRecovery 5 4 0 31 
uint8_t apdFastAttack 1 1 0 1 
uint8_t hb2FastAttack 1 1 0 1 
uint8_t hb2OverloadDetectEnable 1 1 0 1 
uint8_t hb2OverloadDurationCnt 3 1 0 7 
uint8_t hb2OverloadThreshCnt 4 1 0 15 
 

Table 126. Parameter Limits and Default Values for mykonosPowerMeasAgcCfg_t 
Data Type Parameter Bit Width Default Value Minimum Value Maximum Value 
uint8_t pmdUpperHighThresh 4 1 0 15 
uint8_t pmdUpperLowThresh 7 3 0 pmdLowerHighThresh 
uint8_t pmdLowerHighThresh 7 12 pmdUpperLowThresh 127 
uint8_t pmdLowerLowThresh 4 4 0 15 
uint8_t pmdUpperHighGainStepAttack 5 4 0 31 
uint8_t pmdUpperLowGainStepAttack 5 2 0 31 
uint8_t pmdLowerHighGainStepRecovery 5 2 0 31 
uint8_t pmdLowerLowGainStepRecovery 5 4 0 31 
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DIGITAL GAIN COMPENSATION, SLICER, AND FLOATING POINT FORMATTER 
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Figure 71. Gain Compensation, Floating Point Formatter, and Slicer Section of the Receiver Datapath  

The device contains a digital gain compensation block that, if 
enabled, provides digital gain compensation to offset the gain 
reduction from the receiver. Gain compensation allows variation in 
the receiver gain to be transparent to the baseband processor 
(BBP), which can be useful in applications where the gain index 
may change quickly, leading to undesirable amplitude variations 
seen in the BBP that may cause problems with demodulation. 
Gain compensation is useful in an automatic gain control 
(AGC) application where the onset of an interferer can force a 
sharp and potentially quick reduction in the receiver gain. 
Without gain compensation, the BBP must request the current 
gain index to recover the input signal level from the device via 
an SPI command, which can take much longer than using gain 
compensation.  

Gain compensation can be used in manual gain control (MGC) 
mode, hybrid mode, and AGC mode. The gain compensation 
block is capable of applying up to 31.75 dB of digital gain 
compensation, which is sufficient to compensate for the full 
attenuation range supported by the Rx datapath. 

The gain compensation, slicer, and floating point formatter 
blocks are shown in Figure 71. 

The bit width at the output of the digital gain compensation 
block is several bits wider than its input. This increase in bit 
width allows support for up to 31.75 dB of gain compensation.  

The JESD204B data interface supports up to 16-bit data. 
Depending on the amount of compensation applied, the datapath 
may exceed the maximum or minimum value allowed by 16-bit 
signed integers. To accommodate the expanded bit width in the 
Rx datapath under gain compensation, two methods are available 
to send data to a BBP. These two methods are the slicer and the 
floating point formatter. The slicer requires three GPIO pins per 
receiver. The floating point formatter does not require GPIO pins.  

 

Digital Gain Compensation  

The digital gain compensation block is capable of fine 
adjustments in digital gain at a minimum resolution of 0.25 dB 
over a total compensation range of 31.75 dB. Gain compensation 
occurs only digitally. Gain compensation compensates for changes 
in receiver gain in MGC mode, hybrid mode, and AGC mode.  

There are two gain table requirements for gain compensation to 
work properly: 

 Gain table steps (dB) between adjacent indices must be 
uniform throughout the range of the table. 

 The gain table step size must be one of the following 
options: 0.25 dB, 0.5 dB, 1 dB, 2 dB, 3 dB, 4 dB, or 6dB. 

The digital gain compensation uses the programmable gain 
table step parameter (mykonosGainComp_t → compStep) and 
how many gain indices from the maximum gain index the 
receiver is operating at to set the digital gain compensation level. 
Figure 72 shows this behavior.  
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Figure 72. Gain Compensation Parameters for Setting the Digital Gain 

Compensation Level  
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In Figure 72, assume the maximum gain index is 255, and the 
gain table step size is 0.5 dB (the default gain table). In the case 
that the user selects Gain Index 245, the gain index choice 
results in 5 dB (10 × 0.5 dB) total attenuation. If gain 
compensation is enabled, the digital gain compensation adds 
5 dB gain (x × y dB) in the digital datapath.  

The gain compensation block is capable of compensating gain 
for an external attenuator; however, the table must conform to 
the dB step sizes previously listed.  

When digital compensation is enabled, there are potentially 
6 bits added into the datapath. Not all of these bits can fit into 
the 16-bit JESD204B datapath. The device features two methods 
to overcome this limitation: the slicer and the floating point 
formatter. 

Slicer  

The slicer allows 16-bit data transmission over the JESD204B 
interface along with a 3-bit shift value sent over three GPIO pins 
per receiver. Six GPIO pins are required if the application uses both 
Rx1 and Rx2. The slicer bit shifts data down prior to 
transmission over the JESD204B interface, such that the 
16 MSBs of data are sent to the baseband processor (BBP).  

Slicer Output Mode  

The shift value, expressed over GPIO, informs the BBP how 
many bits the JESD204B data has shifted. The shift value 
depends on the amount of gain compensation applied. If the 
gain index is at its maximum condition, the shift value is zero 
because no shift in the data is necessary (no digital gain 
compensation is applied). If the gain index is reduced from the 
maximum gain condition by 1 LSB (for example, 255 to 254), the 
shift value is set to 1 to indicate to the BBP that the JESD204B data 

must be left shifted by 1 bit to recover the original value. When the 
slicer position is 1, 1 LSB is not sent to the BBP.  

The shift position of 1 is shown in Figure 73. When the shift 
position is 1, bits above B17 are not used. Using the default gain 
table and gain compensation configuration, this scenario occurs 
when the gain index is set between 254 and 243, or when gain 
compensation is greater than 0 dB and less than 6 dB.  

Table 127 provides information regarding how the amount of 
gain compensation affects the slicer position, the shift value, 
and the value expressed over the three GPIO slicer pins. This 
information assumes that the default gain tables are used and that 
the gain compensation block is programmed correctly. The slicer 
position indicates the reduction, in dB, of the data prior to 
transmission over the JESD204B interface. The shift value 
indicates the number of bits to shift the data in the BBP to 
recover the original data. Recall that the amount of gain 
compensation per LSB from maximum gain condition is 
programmable via the mykonosGainComp_t → compStep 
parameter. 

The BBP monitors the state of the slicer pins to shift the data to 
the original signal level. These pins are listed as follows. Note 
that no other GPIO pins can be used to indicate the slicer 
position. The pins must be set to GPIO_SLICER_OUT_MODE, 
and the output must be enabled by the GPIO configuration for 
proper operation. The following groupings are listed from MSB 
to LSB: 

 For Rx1, use GPIO10, GPIO9, and GPIO8. 
 For Rx2, use GPIO14, GPIO13, and GPIO12. 
 For ORx, use GPIO18, GPIO17, and GPIO16. 
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Figure 73. Mapping of Data from Digital Gain Compensation to JESD204B Interface with Slicer Position = 1 

 

Table 127. GPIO Output State for Slicer Position 
Gain Compensation (dB) Slicer Position (dB) Shift Value Rx1/Rx2 Slicer GPIO Value (3-Bit) 
0 0 0 0 
0.25 to 5.75 6 1 1 
6 to 11.75 12 2 2 
12 to 17.75 18 3 3 
18 to 23.75 24 4 4 
24 to 29.75 30 5 5 
30 to 31.75 36 6 6 
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Slicer Input Mode  

Alternatively, the slicer is able to take an input shift value over 
the GPIO pins and shift the data as desired to allow the baseband 
processor (BBP) to set a desired digital gain instead of letting 
the slicer position and gain compensation be determined by the 
internal gain control block. When gain compensation is enabled, 
the user must call the MYKONOS_setSlicerCtrl(…) command 
to use this functionality and assign the GPIO pins for this 
purpose. The user is able to set a slicer gain step for each LSB 
over the three slicer input pins of 1 dB, 2 dB, 3 dB, and 4 dB.  

The valid GPIO pins for the slicer input mode are configurable 
and include the pin groupings as follows (groupings are listed 
from MSB to LSB): 

 For Rx1, use the GPIO2, GPIO1, GPIO0 group, the GPIO7, 
GPIO6, GPIO5 group, and the GPIO10, GPIO9, GPIO8 
group. 

 For Rx2, use the GPIO7, GPIO6, GPIO5 group and the 
GPIO13, GPIO12, GPIO11 group. 

 For ORx, use the GPIO18, GPIO17, GPIO16 group and the 
GPIO16, GPIO15, GPIO14 group. 

Programming information is included in the API Support for Gain 
Compensation, Slicer, and Floating Point Formatter section. 

Floating Point Formatter  

The floating point formatter offers an alternative method to 
reduce the digital gain compensation output into 16-bit data 
that can be sent over the JESD204B link. The floating point 
formatter is located prior to the JESD204B interface on the 
receivers to minimize floating point arithmetic in the receiver 
digital datapath. Representing the gain compensation output in 
a 16-bit floating point results in a slight loss of resolution. To 
minimize the loss of resolution, multiple modes are included in 
the device that are modifications to the IEEE 754 half precision 
binary floating point format (binary16).  

Figure 74 shows the representation for the binary16 floating 
point number. In Figure 74, w is the bit width of the exponent, 
and t is the bit width of the significand. The exponent is stored 

after adding a bias to the actual exponent value. The user is able 
to switch the order from (sign, exponent, significand) to (sign, 
significand, exponent) if desired.  

S

MSB

w t

MSBLSB LSB

E (BIASED
EXPONENT)

SIGNIFICAND

14
65

2-
06

6

 
Figure 74. Floating Point Number Representation 

The total precision for the significand is p = t + 1. If t = 10, that 
means 10 bits of the significand are stored explicitly and 1 bit is 
a sign bit, leading to 11 bits of significand precision.  

For example, if the exponent is set as e, the stored exponent is 
E = e + bias. The significand precision is p and the significand 
itself varies between 1.0 and 1 + 2(1 − p) × t. The value of the 
floating point number (Value) is represented by the following 
equation. This formula is important to decode information on 
the BBP side of the JESD204B link.  

Value = (−1)S × 2E − bias × (1 + 21 – p × t)  (14) 

where S is the sign bit (1 or 0). 

The numbers have an implicit leading significand of 1 unless E = 0 
and t = 0. In this case, the number is a signed 0.  

If E = 0 and t ≠ 0, the number is referred to as a subnormal 
number, and the value is instead found by the following equation: 

Value = (−1)S × 2e min × (0 + 21 – p × t)  (15) 

The device allows support for several different formats that 
conform to the IEEE 754 standard and other formats that do 
not adhere to the IEEE 754 standard, called Analog Devices 
modes. These modes are described in Table 128.  

Note that the first column in Table 128 includes the value of the 
parameter leading the floating point formatter data structure, 
mykonosFloatPntFrmt_t. This data structure type is described 
in the Floating Point Formatter section. Table 128 shows that 
the Analog Devices modes of operation allow an increased 
maximum value of the exponent. 

The user has direct control over the first column (leading) and 
the second column (bit width of exponents). Selecting a desired 
w value sets the bias for the exponent.  

Table 128. Floating Point Formatter—IEEE 754 Modes Supported 

Analog Devices/IEEE Mode 
(Leading) w (Bit Width of Exponent) t (Bit Width of Significand) Precision (p) Bias (E − e) 

Range of e 
Min Max 

IEEE (1) 5 10 11 15 −14 +15 
IEEE (1) 4 11 12 7 −6 +7 
IEEE (1) 3 12 13 3 −2 +3 
IEEE (1) 2 13 14 1 0 +1 
Analog Devices (0) 5 10 11 15 −15 +16 
Analog Devices (0) 4 11 12 7 −7 +8 
Analog Devices (0) 3 12 13 3 −3 +4 
Analog Devices (0) 2 13 14 1 −1 +2 
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API Support for Gain Compensation, Slicer, and Floating 
Point Formatter 

The application programming interface (API) allows 
configuration of the gain compensation, slicer, and floating 
point formatter. Important data structures and their members 
are outlined in this section. API commands are also described 
throughout this section. These commands are necessary to 
configure gain compensation, the slicer, or the floating point 
formatter. 

A programming flowchart is provided in Figure 75. This diagram 
begins where Figure 68 ends, at the completion of gain control 
setup. The diagram does not explicitly mention the configuration 
of the GPIO pins. However, if the user sets up the GPIO pins in 
the device data structure prior to the initialization sequence, the 
pins are still configured according to the device data structure.  
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Figure 75. Rx Gain Compensation Programming Flowchart 

 

Table 129. Parameter Limits and Default Values for mykonosGainComp_t 
Data Type Parameter Bit Width Default Value Comments 
uint8_t rx1Offset 5 0 This parameter contains the Rx1 offset word used for the gain 

compensation when the gain index is at its maximum setting. This 
parameter ranges from 0 to 0x1F with a resolution of 0.5 dB/LSB. 

uint8_t rx2Offset 5 0 This parameter contains the Rx2 offset word used for the gain 
compensation when the gain is at its maximum setting. This 
parameter ranges from 0 to 0x1F with a resolution of 0.5 dB/LSB. 

uint8_t compStep 3 1 This parameter sets the value (in dB) that gain compensation 
applies to an LSB change in the gain index according to the 
following settings. 

    compStep dB Step (dB) 
    0 0.25 
    1 0.5 
    2 1 
    3 2 
    4 3 
    5 4 
    6 6 
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Gain Compensation Data Structure 

The configuration parameters for the gain compensation block 
are set up in a data structure of type mykonosGainComp_t. The 
members of the data structure are described in Table 129. 

The data structure mykonosGainComp_t is not a part of the 
device data structure and does not need to be instantiated if 
gain compensation is not used in the user application.  

Gain Compensation API Commands  

The application programming interface (API) uses the 
MYKONOS_setRxGainCompensation(…) command to 
configure internal device registers for a desired gain 
compensation configuration. This command does not 
determine whether the slicer or the floating point formatter 
is used. The command configures the gain compensation 
block for user values determined by the data structure 
type mykonosGainComp_t. A description of the 
mykonosGainComp_t data type is provided in Table 129. 

MYKONOS_setRxGainCompensation(…) 

mykonosErr_t 
MYKONOS_setRxGainCompensation(mykonosDevi
ce_t *device, mykonosGainComp_t 
*gainComp, uint8_t enable) 

Description 

MYKONOS_setRxGainCompensation(…) is the gain 
compensation enable and setup function.  

The gain compensation block is a function that compensates for 
the attenuation in the internal attenuator for the Rx channels. 

Preconditions 

The gain control setup must be complete. 

Parameters  

• *device: This is a pointer to the device data structure. 
• gainComp: This is a data structure containing the gain 

compensation settings. 
• enable: this parameter enables or disables the gain 

compensation block (enable = 1 and disable = 0).  

MYKONOS_getRxGainCompensation(…) 

mykonosErr_t 
MYKONOS_getRxGainCompensation(mykonosDevi
ce_t *device, mykonosGainComp_t 
*gainComp, uint8_t enable) 

Description 

This function obtains the gain compensation setup and enabled 
function.  

The gain compensation block is a function that compensates for 
the attenuation in the internal attenuator for the Rx channels. 
This function obtains the current setup and the enable state of 
the block. 

Preconditions 

The gain control setup must be complete. 

Parameters 

• *device: This is a pointer to the device data structure. 
• *gainComp: This is a pointer to a mykonosGainComp_t 

structure which holds the current device gain compensation 
settings. 

• enable: This is a pointer to a parameter containing the 
enable state of the gain compensation block (enabled = 1 
and disabled = 0). 

SLICER API COMMANDS AND GPIO INFORMATION 
The slicer can be configured in two different ways. The first 
method allows the slicer to determine its own position based on 
the receiver gain index and output the slicer position value over 
GPIO pins. The second method allows the baseband processor 
(BBP) to control the slicer position over the GPIO pins. Both 
methods require the gain compensation block to be enabled for 
proper slicer functionality. There is no API data structure 
specific to the slicer setup.  

• If the user desires the BBP to read the slicer position over 
the GPIO pin, and to use that position information to 
appropriately shift the data, specific GPIO pins must be 
set as outputs in the proper mode. The Rx1 channel uses 
GPIO_10 to GPIO_8 to output the slicer position. The Rx2 
channel uses GPIO_14 to GPIO_12 to output the slicer 
position. No other GPIO pins can be used to indicate the 
slicer position. To configure the device to output the slicer 
position over the GPIO signals, ensure that the GPIO pins 
are set as outputs and that the mykonosGpioMode_t for 
GPIO_11 to GPIO_8 and GPIO_15 to GPIO_12 are set to 
GPIO_SLICER_OUT_MODE. 

• If the user desires the BBP to control the slicer position, the 
desired GPIO pins must be set for input control and the 
command listed in the following section must be run. This 
command configures specific sets of GPIO pins as inputs 
to the slicer (rx1Pins, rx2Pins), sets the step size of the 
slicer when external pin control mode is enabled (slicerStep), 
and enables or disables the external pin control feature 
(enable). Refer to the following section for the valid pin 
configurations. Set the mykonosGpioMode_t for 
GPIO_BITBANG_MODE.  

MYKONOS_setRxSlicerCtrl(…) 

mykonosErr_t 
MYKONOS_setRxSlicerCtrl(mykonosDevice_t 
*device, uint8_t slicerStep,  
mykonosRxSlicer_t rx1Pins, 
mykonosRxSlicer_t rx2Pins, uint8_t 
enable); 

Description 

This function is the slicer control over the GPIO inputs.  

The user can control the slicer position via three GPIO inputs 
per channel. There are various configurations for the GPIO pins, 
and these configurations are enumerated in the 
mykonosRxSlicer_t. 
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Preconditions  

Configure the gain control. 

Parameters  

• *device: This is a pointer to the device data structure. 
• slicerStep: The slicer configuration command also allows 

the user to set the slicer step size (slicerStep). The slicer 
gain is equal to the 3-bit word expressed on the GPIO 
inputs multiplied by the step size. Table 130 shows the 
relationship between the slicer step size and slicerStep 
parameter value. 

Table 130. slicerStep Parameter Related to dB Steps in the Slicer 
slicerStep dB Step (dB) 
0 1 
1 2 
2 3 
3 4 
 

• Rx1Pins: The value of the mykonosRxSlicer_t enumeration 
determines which grouping of three GPIO pins are used as 
inputs to the device to set the 3-bit slicer position. The valid 
pin groupings are listed as follows for the Rx1 channel, 
from MSB to LSB, with the mykonosRxSlicer_t 
enumeration value listed in parentheses: 
• GPIO_2, GPIO_1, and GPIO_0 (GPIO_0_1_2). 
• GPIO_7, GPIO_6, and GPIO_5 (GPIO_5_6_7). 
• GPIO_10, GPIO_9, and GPIO_8 (GPIO_8_9_10). 

• Rx2Pins: The value of the mykonosRxSlicer_t enumeration 
determines which grouping of three GPIO pins are used as 
inputs to the device to set the 3-bit slicer position. The 
valid pin groupings are listed as follows for the Rx2 channel, 
from MSB to LSB, with the mykonosRxSlicer_t 
enumeration value listed in parentheses: 
• GPIO_7, GPIO_6, and GPIO_5 (GPIO_5_6_7). 
• GPIO_10, GPIO_9, and GPIO_8 (GPIO_8_9_10). 

• enable: set enable = 1 to enable the external pin control 
for slicer. Set enable = 0 to disable external pin control for the 
slicer.  

A get version of this command is described in the following 
section. 

MYKONOS_getRxSlicerCtrl (…) 

mykonosErr_t 
MYKONOS_getRxSlicerCtrl(mykonosDevice_t 
*device, uint8_t *slicerStep, 
mykonosRxSlicer_t *rx1Pins, 
mykonosRxSlicer_t *rx2Pins, uint8_t 
*enable); 

Description  

This function obtains the programmed slicer control for the 
Rx1 and Rx2 channels.  

The user can control the slicer position via three GPIO inputs 
per channel. There are various configurations for the GPIO 
pins, and these configurations are enumerated in the 
mykonosRxSlicer_t. 

Preconditions 

Configure the gain control. 

Parameters  

• *device: This is a pointer to the device data structure. 
• slicerStep: This contains the configured step size. 
• rx1Pins: This contains the configured GPIO combination 

for Rx1. 
• rx2Pins: This contains the configured GPIO combination 

for Rx2. 
• *enable: This contains the programmed enable setting. 

The slicer defaults to the first mode (internal mode) of 
operation when gain compensation is enabled. The slicer is 
disabled if gain compensation is disabled. Note that enabling 
gain compensation does not configure the GPIO pins.  

Floating Point Data Structure  

The configuration parameters for the floating point formatter 
are set up in a data structure of type mykonosFloatPntFrmt_t. 
The members of the data structure are described in Table 131. 

 

Table 131. Parameter Limits and Default Values for mykonosFloatPntFrmt_t 
Data 
Type Parameter 

Bit 
Width 

Default 
Value Comments 

uint8_t roundMode 2 0 This parameter sets the round mode for the significand. The following settings are defined 
in the IEEE754 specification. For more information, consult Section 4.3 in IEEE 754-2008: 

    roundMode Round Mode 
    0 Round ties to even 
    1 Round towards positive 
    2 Round towards negative 
    3 Round towards 0 
    4 Round ties to away 
uint8_t dataFormat 1 0 This parameter sets the format of the 16-bit output on the JESD204B interface.  
    dataFormat Format 
    0 MSB to LSB (sign, exponent, significand) 
    1 MSB to LSB (sign, significand, exponent) 
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Data 
Type Parameter 

Bit 
Width 

Default 
Value Comments 

uint8_t encNan 1 0 If this parameter is set to 1, then the floating point formatter reserves the highest value of 
exponent for NaN (not a number) to be compatible with the IEEE754 specification. Setting 
this parameter to 0 increases the range of the exponent by 1. 

uint8_t expBits 2 2 This parameter is used to indicate the number of exponent bits in the floating point 
number according to the following settings. 

    expBits No. of Exponent Bits No. of Significand Bits No. of Sign Bits 
    0 2 13 1 
    1 3 12 1 
    2 4 11 1 
    3 5 10 1 
uint8_t leading 1 1 Setting this parameter to 1 hides the leading one in the significand to be compatible to the 

IEEE754 specification (IEEE mode). Clearing this parameter causes the leading one to be at 
the MSB of the significand (Analog Devices mode). 

 

FLOATING POINT API COMMANDS  
The floating point formatter uses several application 
programming interface (API) commands that configure 
the floating point formatter, enable the Rx floating point 
formatter, and enable the ORx floating point formatter. The 
floating point formatter uses the data structure of type 
mykonosFloatPntFrmt_t to store configuration parameters.  

To set up the configuration parameters of the floating point 
formatter for Rx1, Rx2 and ORx, use the command described in 
the following section.  

MYKONOS_setFloatPointFrmt (…) 

mykonosGpioErr_t 
MYKONOS_setFloatPointFrmt(mykonosDevice
_t *device,mykonosFloatPntFrmt_t 
*floatFrmt); 

Description 

Floating point formatter enable and setup function.  

The floating point formatter block is a function that works in 
conjunction with the gain compensating block, as the gain 
compensation requires increased dynamic range which 
increases the bit width in the digital datapath. 

Preconditions  

Configure the gain control. 

Parameters  

• *device: This is a pointer to the device data structure. 
• *floatFrmt: a mykonosFloatPntFrmt_t data structure 

containing floating point formatter settings.  

A get version of this command is described in the following 
section. 

 

 

 

 

MYKONOS_getFloatPointFrmt(…) 

mykonosGpioErr_t 
MYKONOS_setFloatPointFrmt(mykonosDevice
_t *device,mykonosFloatPntFrmt_t 
*floatFrmt); 

Description  

MYKONOS_getFloatPointFrmt(…) is the floating point 
formatter setup function. This command obtains the 
programmed floating point formatter settings.  

The floating point formatter block is a function that works in 
conjunction with the gain compensating block, as the gain 
compensation requires increased dynamic range, which 
increases the bit width in the digital datapath. 

Preconditions  

Configure the gain control. 

Parameters  

• *device: This is a pointer to the device data structure. 
• *floatFrmt: a mykonosFloatPntFrmt_t data structure 

containing floating point formatter settings.  

The following commands enable the floating point formatter. 
The floating point formatter has separate enable commands for 
Rx1/Rx2 and the ORx.  

MYKONOS_setRxEnFloatPointFrmt (…) 

mykonosGpioErr_t 
MYKONOS_setFloatPointFrmt(mykonosDevice
_t *device, uint8_t rx1Att, uint8_t 
rx2Att, uint8_t enable) 

Description  

MYKONOS_setRxEnFloatPointFrmt (…) is the floating point 
formatter enable/disable function for Rx1 and Rx2.  

The floating point formatter block is a function that works in 
conjunction with the gain compensating block, as the gain 
compensation requires increased dynamic range, which 
increases the bit width in the digital datapath. 
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Preconditions  

Configure the gain control. 

Parameters  

• *device: This is a pointer to the device data structure. 
• rx1Att: This parameter sets the integer data attenuation for 

the Rx1 channel in 6 dB steps to enable the entire data 
range to be represented in the selected floating point format. 

• rx2Att: This parameter sets the integer data attenuation for 
the Rx2 channel in 6 dB steps to enable the entire data 
range to be represented in the selected floating point format. 

• enable: This parameter enables or disables the gain 
compensation block (enable = 1 and disable = 0).  

A get version of this command is described in the following 
section.  

MYKONOS_getRxEnFloatPointFrmt(…) 

mykonosGpioErr_t 
MYKONOS_getRxEnFloatPointFrmt(mykonosDe
vice_t *device, uint8_t *rx1Att, 
uint8_t *rx2Att, uint8_t *enable) 

Description  

MYKONOS_getRxEnFloatPointFrmt(…) is the floating point 
formatter readback function for Rx1 and Rx2.  

The floating point formatter block is a function that works in 
conjunction with the gain compensating block, as the gain 
compensation requires increased dynamic range, which 
increases the bit width in the digital datapath. 

Preconditions  

Configure the gain control. 

Parameters  

• *device: This is a pointer to the device data structure. 
• *rx1Att: This parameter sets the integer data attenuation 

for the Rx1 channel in 6 dB steps to enable the entire data 
range to be represented in the selected floating point format. 

• *rx2Att: This parameter sets the integer data attenuation 
for the Rx2 channel in 6d B steps to enable the entire data 
range to be represented in the selected floating point format. 

• *enable: This parameter enables or disables the gain 
compensation block (enable = 1 and disable = 0).  

 

 

 

 

 

 

 

MYKONOS_setOrxEnFloatPointFrmt (…) 

mykonosGpioErr_t 
MYKONOS_setOrxEnFloatPointFrmt(mykonosD
evice_t *device, uint8_t  orxAtt, 
uint8_t enable) 

Description  

MYKONOS_setOrxEnFloatPointFrmt (…) is the floating point 
formatter enable/disable for the ORx channel.  

The floating point formatter block is a function that works in 
conjunction with the gain compensating block, as the gain 
compensation requires increased dynamic range, which 
increases the bit width in the digital datapath. 

Preconditions  

Configure the gain control. 

Parameters  

• *device: This is a pointer to the device data structure. 
• orxAtt: this parameter sets the integer data attenuation for 

the Rx1 channel in 6 dB steps to enable the entire data 
range to be represented in the selected floating point format. 

• enable: This parameter enables or disables the gain 
compensation block (enable = 1 and disable = 0).  

A get version of this command is noted in the following section. 

MYKONOS_getOrxFloatPointFrmt(…) 

mykonosGpioErr_t 
MYKONOS_setFloatPointFrmt(mykonosDevice
_t *device, uint8_t rx1Att, uint8_t 
rx2Att, uint8_t enable) 

Description  

MYKONOS_getOrxFloatPointFrmt(…) is the floating point 
formatter enable/disable Rx1 and Rx2 function.  

The floating point formatter block is a function that works in 
conjunction with the gain compensating block, as the gain 
compensation requires increased dynamic range which 
increases the bit width in the digital datapath. 

Preconditions  

Configure the gain control. 

Parameters  

• *device: This is a pointer to the device data structure. 
• rx1Att: This parameter sets the integer data attenuation for 

the Rx1 channel in 6 dB steps to enable the entire data 
range to be represented in the selected floating point format. 

• rx2Att: This parameter sets the integer data attenuation for 
the Rx2 channel in 6 dB steps to enable the entire data 
range to be represented in the selected floating point format. 

• enable: This parameter enables or disables the gain 
compensation block (enable = 1 and disable = 0). 
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FILTER CONFIGURATION 
This section describes the digital filters within the integrated 
transceiver. Descriptions of the main receivers, transmitters and 
the observation/sniffer receiver system filters are provided. Also 
described in this section is an overview of the application 
programming interface (API) data structures and commands 
necessary to configure the digital filters for proper operation. 

Analog Devices uses profiles to designate different device 
configuration settings for the Tx, Rx, ORx, and SnRx channels. 
When selecting a profile, note that Rx1 and Rx2 use the same 
profile; Tx1 and Tx2 use the same profile; ORx1 and ORx2 use 
the same profile; and SnRxA, SnRxB, and SnRxC use the same 
profile. The profile dictates how the digital filters, analog filters, 
clock rates, and clock dividers are configured in the device. 
Some specific parameters set by the profiles include the IQ data 
rate, ADC clock rate, analog filter corners, FIR filter coefficients, 
and interpolation/decimation factors in the half-band filters.  

Several profiles can be examined in the transceiver evaluation 
software (TES) for given device clock frequencies. If the desired 
profile exists in the software, it is recommended to set up the 
desired profile in and use the data structure values generated by 

the Create Config.c file for the Tx, Rx, ORx, and SnRx profile 
data structures. Custom profiles can be generated using other 
Analog Devices software tools that are not described in this 
section.  

RECEIVER SIGNAL PATH 
The main receivers have independent signal paths for the Rx1 
and Rx2 ports. Each receiver signal path consists of an 
adjustable analog transimpedance low-pass filter, a Σ-Δ ADC, 
and digital decimation filters. The fixed coefficient decimation 
filters (RHB1, RHB2, RHB3, DEC5, and DEC5HR) are designed to 
eliminate overranging. The programmable receiver FIR filter 
(RFIR) in the Rx digital baseband path can overrange, depending 
on coefficients. However, the RFIR output code is limited to a 
maximum code value when overrange conditions occur.  

A block diagram of the Rx1 and Rx2 datapath is shown in 
Figure 76. Quadrature error correction (QEC), dc offset 
correction, and digital gain are not described in this section. 
The following sections describe the functionality of the digital 
and analog filters and their configurations. 
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Figure 76. Rx1 and Rx2 Signal Path Diagram  
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Low-Pass Filter 

The Rx low-pass filter (LPF) is a transimpedance amplifier 
(TIA) with a single, real pole frequency response. The 3 dB 
bandwidth of the TIA LPF ranges from 20 MHz to 100 MHz. 
The TIA LPF is calibrated based on the 3 dB bandwidth, resulting 
in a consistent frequency corner across all devices. The TIA 
3 dB bandwidth is set within the device data structure and is 
profile dependent. Roll-off within the analog TIA LPF pass 
band is compensated by the RFIR to ensure a maximally flat 
pass-band frequency response.  

The LPF bandwidth is set in the device data structure at device → rx 
→ rxProfile → rxBbf3dBCorner_kHz.  

DEC5/DEC5HR 

The main Rx signal path features an option to use either the 
decimate by 5 (DEC5), the decimate by 5 high rejection 
(DEC5HR), or the series combination of the Receiver Half-Band 3 
(RHB3) and Receiver Half-Band 2 (RHB2) digital decimation 
filters. The difference between the DEC5HR and the DEC5 
digital filters is that DEC5HR features a higher stop-band 
rejection than DEC5. Both DEC5 and DEC5HR are fixed 
coefficient, decimating filters. Full scale for the DEC5 digital 
filter is 8192 (213). Full scale for the DEC5HR is 32768 (215).  

Coefficients for the DEC5HR filter are [−64, −165, −305, −442, 
−499, −273, +280, +1208, +2433, +3762, +4866, +5503, +5503, 
+4866, +3762, +2433, +1208, +280, −273, −499, −442, −305, 
−165, −64]. 

Coefficients for the DEC5 filter are [+18, +35, +56, +72, +70, 
+28, −38, −126, −209, −244, −184, −20, +256, +612, +976, 
+1273, +1448, +1448, +1273, +976, +612, +256, −20, −184, 
−244, −209, −126, −38, +28, +70, +72, +56, +35, +18]. 

The choice between DEC5 and DEC5HR is set in the device 
data structure in device → rx → rxProfile → enHighRejDec5. 
This parameter is typically set to 1 to enable the DEC5HR filter.  

The decimation factor for the first filter after the ADC is set 
in the device data structure in device → rx → rxProfile → 
rxDec5Decimation. Set this parameter as 5 to use the DEC5 
or DEC5HR path.  

RHB3 

The Receive Half-Band 3 (RHB3) filter is a fixed coefficient 
decimating filter. RHB3 decimates by a factor of 2. The full scale 
for this filter is 16 (24). The RHB3 coefficients are [1, 4, 6, 4, 1]. 

RHB2 

The Receive Half-Band 2 (RHB2) filter is a fixed coefficient 
decimating filter. RHB2 decimates by a factor of 2. The series 
combination of RHB2 and RHB3 can be bypassed using the 
DEC5 or DEC5HR filter. The full scale for this filter is 128 (27). 
The RHB2 coefficients are [+1, +0, −7, 0, +38, +64, +38, 0, −7, 
0, +1].  

 

 

The decimation factor for the first filter after the ADC is set 
in the device data structure in device → rx → rxProfile → 
rxDec5Decimation. Set this parameter as 4 to use the series 
combination of the RHB3 and RHB2 filters. 

RHB1 

The Receiver Half Band 1 (RHB1) filter is a fixed coefficient 
decimating filter. RHB1 can decimate by a factor of 2, or it can 
be bypassed. The full scale for this filter is 16384 (214). The 
RHB1 coefficients are [+9, 0, −41, 0, +124, 0, −304, 0, +665, 0, 
−1473, 0, +5074, +8108, +5074, 0, −1473, 0, +665, 0, −304, 0, 
+124, 0, −41, 0, +9]. 

The decimation factor for RHB1 is set in the device data 
structure in device → rx → rxProfile → rxDec5Decimation. This 
can be either 1 (bypass) or 2 (decimate by 2).  

Programmable Receiver Finite Impulse Response (RFIR) 
Filter 

The programmable RFIR filter acts as a decimating filter. The 
RFIR can decimate by a factor of 1, 2, or 4, or it can be bypassed. 
The RFIR can use a configurable number of taps from 24 taps to 
72 taps in multiples of 24. The RFIR is typically used to compensate 
for the roll-off of the analog TIA LPF and decimating filters.  

The maximum number of taps is limited by the FIR clock rate 
(data processing clock, DPCLK). The maximum DPCLK is 
400 MHz. The DPCLK is the ADC clock rate divided by either 2 
or 4 to limit the DPCLK below 400 MHz when the DEC5 and 
DEC5HR are disabled. The DPCLK is the ADC clock rate 
divided by 5 or 10 to limit the DPCLK below 400 MHz when 
DEC5 or DEC5HR are enabled. 

Maximum Number of Rx FIR Filter Taps =  
(DPCLK/Rx IQ Data Rate) × 24 (16) 

The RFIR coefficients are stored in the device data structure in 
device → rx → rxProfile → *rxFir, which is a pointer to a 
structure with data type mykonosFir_t.  

The RFIR decimation factor is set in the device data structure in 
device → rx → rxProfile → rxFirDecimation, which can be either 
1 (bypass), 2, or 4.  

Real IF  

The real IF block contains an interpolating filter and 
upconversion mixer used to convert complex signals centered 
around dc into real valued signals centered around an offset IF 
frequency. The real IF conversion block is typically bypassed, 
but it does provide the capability to operate at an IF frequency 
near baseband for systems that prefer to perform complex 
demodulation in their digital baseband. The full-scale value for 
the real IF interpolating filter is 16384 (214). The filter 
coefficients for the real IF filter are [−3, 0, +8, 0, −19, 0, +40, 0, 
−75, 0, +130, 0, −214, 0, +336, 0, −514, 0, +773, 0, −1169, 0, 
+1845, 0, −3327, 0, +10380, +16384, +10380, 0, −3327, 0, 
+1845, 0, −1169, 0, +773, 0, −514, 0, +336, 0, −214, 0, +130, 0, 
−75, 0, +40, 0, −19, 0, +8, 0, −3]. 
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The real IF mode can be enabled in the device data structure in 
device → rx → realIfData, which can be either 0 (disable real IF) 
or 1 (enable real IF).  

Rx SIGNAL PATH EXAMPLE 
The transceiver evaluation software (TES) provides examples 
depicting how the baseband filtering stages are used for particular 
profiles. In this example, the Rx = 100 MHz, the IQ rate = 
122.88 MHz, and the DEC5 profile is selected for the Rx 
channels. This profile is compatible with the other examples 
provided in this user guide.  

Descriptions of the profile name conventions are as follows: 

 Rx 100 MHz, which implies a RF (complex) receiver 
bandwidth of 100 MHz. In Figure 77 and Figure 78, note 
that the profile pass band is set to 50 MHz because the real 
IF mode is disabled and the received data is centered around 
dc. The filter responses are also symmetrical around dc. 
Only the positive half of the spectrum is shown. The pass 
band extends from −50 MHz to +50 MHz in the figure, 
which corresponds to RF frequencies of ±50 MHz from the 
Rx LO frequency.  

 IQ Rate 122.88 MHz refers to the IQ data rate across the 
JESD204B interface.  

 DEC5 string determines which profiles are compatible with 
each other. A given Rx (or Tx, or SnRx, or ORx) profile can 
only be used if all profiles (Rx, Tx, SnRx, ORx) have the same 
tag in the profile name string. Constraints in digital clocking 
prevent using DEC5 profiles with non DEC5 profiles. 

Figure 79 shows the filter configuration for this profile, 
excluding correction stage blocks such as dc offset correction. 
Note that the clocking frequencies are in blue. The signal rate 
after the RFIR block is equal to the IQ data rate of the profile. 

Also available in the transceiver evaluation software (TES) Rx 
Summary tab is the frequency response of the analog 
transimpedance amplifier (TIA) low-pass filter (LPF), digital 
filters, the ADC transfer function, and the composite response 
from dc to the sampling rate of the ADC (see Figure 77). 
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Figure 77. Main Receiver Filter Responses  

An examination of the profile pass-band frequency shows that 
the Rx TIA 3 dB setting slightly attenuates information within 
the pass band. This analog attenuation is compensated by the 
digital filter response to obtain a maximally flat pass band for 
this profile. A zoom in view of the pass band is shown in Figure 78. 
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Figure 78. Pass-Band Frequency Response of the Rx = 100 MHz, 122.88 MHz, 

DEC5 Profile (Pass Band Zoom In View)  
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Figure 79. Filter Configuration for the Rx = 100 MHz, 122.88 MHz, DEC5 Profile 
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TRANSMITTER SIGNAL PATH 
The transmitter has independent signal paths for the Tx1 and 
Tx2 ports. The Tx signal path receives data from the JESD204B 
interface block and sends this data through interpolating filters 
prior to a Σ-Δ DAC. The analog output of the DAC is low pass 
filtered by the Tx low-pass filter (LPF) prior to the upconversion 
mixer. The I and Q paths are identical to one another. Overranging 
is detected in the Tx digital signal path at each stage and is limited 
to the maximum code value to prevent data wrapping. A block 
diagram of the Tx1 and Tx2 signal paths is shown in Figure 80. 
Blocks are shown that correspond to the digital or analog filters in 
the Tx datapath. 

LPF 

The low-pass filter (LPF) is an analog, second-order Butterworth 
LPF with an adjustable 3 dB corner. The LPF is calibrated based 
on the 3 dB bandwidth, resulting in a consistent frequency 
corner across all devices. The transimpedance amplifier (TIA) 
bandwidth is set within the device data structure and is profile 
dependent. Roll-off within the analog LPF pass band is 
compensated by the transmitter finite impulse response (TFIR) 
to ensure a maximally flat pass-band frequency response.  

The Tx LPF bandwidth is determined by the parameter device → 
tx → txProfile → txBbf3dBCorner_kHz. 

THB2 

The Transmit Half-Band 2 (THB2) is a fixed coefficient half-
band interpolating filter. THB2 can interpolate by a factor of 2 
or it can be bypassed. The full-scale range for this filter is 256 (28). 
The THB2 filter coefficients are [−17, 0, +145, +256, +145, 0, −17]. 

The THB2 interpolation factor is set by device → tx → txProfile → 
thb2Interpolation. Set this to either to 1 (bypass) or 2.  

THB1 

The Transmit Half-Band 1 (THB1) is a fixed coefficient half-
band interpolating filter. THB1 can interpolate by a factor of 2 
or it can be bypassed. The full-scale range for this filter is 8192 (213). 
The THB2 filter coefficients are [+21, 0, −56, 0, +108, 0, −188, 0, 
+319, 0, −526, 0, +876, 0, −1632, 0, +5179, +8192, +5179, 0, −1632, 
0, +876, 0, −526, 0, +319, 0, −188, 0, +108, 0, −56, 0, +21]. 

The THB2 interpolation factor is set by device → tx → txProfile → 
thb1Interpolation. Set this to either 1 (bypass) or 2.  

TFIR 

The programmable transmitter finite impulse response (TFIR) 
filter acts as a interpolating filter in the Tx path. The TFIR can 
interpolate by a factor of 1, 2, or 4, or it can be bypassed. The 
TFIR is typically used to compensate for roll-off caused by the 
post DAC analog LPF. The TFIR can use a configurable number of 
taps from 16 to 96 in multiples of 16.  

The maximum number of taps is limited by the TFIR clock rate 
(data processing clock, DPCLK). The maximum DPCLK is 
400 MHz. The DPCLK is the DAC clock (DACCLK) or 
DACCLK/2 to ensure that the DPCLK below 400 MHz. 

Maximum Number of Tx FIR Filter Taps = 
(DPCLK/TX_IQDataRate) × 16 (17) 

The TFIR coefficients are stored in the device data structure in 
device → tx → txProfile → *txFir, which is a pointer to a structure 
with data type mykonosFir_t.  

The TFIR interpolation factor is set in the device data structure 
in device → tx → txProfile → txFirInterpolation, which can be 
either 1 (bypass), 2, or 4.  
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Figure 80. Tx1 and Tx2 Signal Path Diagram 

 

 

 

 



AD9371/AD9375 System Development User Guide UG-992
 

Rev. B | Page 167 of 360 

Tx SIGNAL PATH EXAMPLE 
The transceiver evaluation software (TES) provides an example 
depicting how the baseband filtering stages are used in profile 
configurations for a signal datapath. In this example, Tx 75 MHz/ 
200 MHz, IQ rate = 245.76 MHz, and the DEC5 profile are 
selected for the Tx channels. This profile is compatible with the 
other examples provided in this user guide. 

There is a difference in the naming convention for Tx profiles in 
the portion of the 75/200 MHz profile string. The 75 refers to 
the primary signal bandwidth, which is the bandwidth at which 
the user transmits large signal data, such as modulated carriers. 
The 200 refers to the digital predistortion (DPD) synthesis 
bandwidth.  

Figure 83 shows the filter configuration for this profile. Note 
that the clocking frequencies are in blue. The signal rate after 
the TFIR block is equal to the IQ data rate of the profile.  

The Tx Summary tab also shows the frequency response of the 
digital filters, the analog filters, the DAC sinc response, and the 
composite response of the signal chain. The response is plotted 
from dc to the DAC clock rate (see Figure 81).  
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Figure 81. Transmitter Filter Responses  

An examination of the profile pass band in Figure 82 shows that 
the analog response slightly attenuates information within the 
profile pass band. This analog attenuation is compensated by 
the digital filter response to obtain a maximally flat pass band 
for this profile. Recall that the primary signal bandwidth is 
restricted to 75 MHz. There is minimal digital gain applied to 
signals with baseband frequency less than 75 MHz from dc. 
Transmitting signals near the DAC full scale outside of this 
bandwidth may cause undesirable spurs. 
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Figure 82. Examination of the Pass-Band Frequency Response of the 

Tx 75 MHz/200 MHz, 245.76 MHz, DEC5 Profile 
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Figure 83. Filter Configuration for the Tx 75 MHz/200 MHz, 245.76 MHz, DEC5 Profile 
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OBSERVATION RECEIVERS SIGNAL PATH 
The observation system receiver (ORx) selects one signal from 
five available receiver signal inputs: two observation receiver 
inputs (ORx1 and ORx2) and three sniffer receiver inputs 
(SnRxA, SnRxB, and SnRxC). It can also be used for internal 
calibration at initialization by connecting to one of two internal 
loopback paths This mode is designated as 
OBS_INTERNALCALS and allows the ARM to switch between 
ORx configurations as needed. 

This path has two filter banks: one for the sniffer channels and 
another for the observation channels, where coefficients for the 
respective receiver type are loaded. The device switches from 
one bank to the other when switching the ORx input from one 
source to another. See the Observation Receiver (ORx) section 
for additional details about the ORx. 

The ORx passes downconverted I/Q data from one of the seven 
channels into the ORx baseband signal path. The ORx baseband 
signal path consists of a programmable low-pass filter (LPF), a 
Σ-Δ ADC, and digital decimation stages. The fixed coefficient 
decimation filters (RHB1, RHB2, RHB3, and DEC5) eliminate 
overranging. The programmable receiver FIR filter (RFIR) in 
the ORx digital baseband path can overrange, depending on 
coefficients. However, the RFIR output code is limited to a 
maximum code value when overrange conditions occur.  

Low-Pass Filter 

The ORx LPF is a transimpedance amplifier (TIA) with a single, 
real pole frequency response. The 3 dB bandwidth of the TIA 
LPF ranges from 20 MHz to 100 MHz. The TIA LPF is calibrated 
based on the 3 dB bandwidth, resulting in a consistent frequency 
corner across all devices. The TIA 3 dB bandwidth is set within 
the device data structure and is profile dependent. Any roll-off 
within the pass band is compensated by the RFIR to ensure a 
maximally flat pass-band frequency response. 

The LPF bandwidth is set in the device data structure in device → 
obsRx → orxProfile → rxBbf3dBCorner_kHz for the ORx1 and 
ORx2 channels, and in device → obsRx → snifferProfile → 
rxBbf3dBCorner_kHz for the SnRxA, SnRxB, and SnRxC 
channels.  

DEC5 

The main ORx signal path features an option to use either the 
decimate by 5 (DEC5) or the series combination of the decimating 

Receiver Half-Band 3 (RHB3) and Receive Half-Band 2 (RHB2) 
digital filters. The DEC5 filter is a fixed coefficient decimating 
filter. Full scale for the DEC5 digital filter is 8192 (213). The 
coefficients for the DEC5 filter are [+18, +35, +56, +72, +70, 
+28, −38, −126, −209, −244, −184, −20, +256, +612, +976, +1273, 
+1448, +1448, +1273, +976, +612, +256, −20, −184, −244, −209, 
−126, −38, +28, +70, +72, +56, +35, +18]. 

The decimation factor for the first filter after the ADC is set in 
the device data structure in device → obsRx → orxProfile → 
rxDec5Decimation for the ORx1 and ORx2 channels, and in 
device → obsRx → snifferProfile → rxDec5Decimation for the 
SnRxA, SnRxB, and SnRxC channels. Set this parameter as 5 to 
use the DEC5 path.  

RHB3 

The RHB3 filter is a fixed coefficient decimating filter. RHB3 
decimates by a factor of 2. The full scale for this filter is 16 (24). 
The RHB3 coefficients are [1, 4, 6, 4, 1]. 

RHB2 

The RHB2 filter is a fixed coefficient decimating filter. RHB2 
can decimate by a factor of 2. The series combination of RHB2 
and RHB3 can be bypassed using the DEC5 filter. The full scale 
for this filter is 128 (27). The RHB2 coefficients are [+1, 0, −7, 0, 
+38, +64, +38, 0, −7, 0, +1]. 

The decimation factor for the first filter after the ADC is set in 
the device data structure in device → obsRx → orxProfile → 
rxDec5Decimation for the ORx1 and ORx2 channels and device → 
obsRx → snifferProfile → rxDec5Decimation for the SnRxA, 
SnRxB, and SnRxC channels. Set this parameter as 4 to use the 
series combination of the RHB3 and RHB2 filters. 

RHB1 

The RHB1 filter is a fixed coefficient decimating filter. The 
RHB1 can decimate by a factor of 2, or it can be bypassed. The 
full scale for this filter is 16384 (214). The RHB1 coefficients are 
[+9, 0, −41, 0, +124, 0, −304, 0, +665, 0, −1473, 0, +5074, +8108, 
+5074, 0, −1473, 0, +665, 0, −304, 0, +124, 0, −41, 0, +9]. 

The decimation factor for RHB1 is set in the device data structure 
in device → obsRx → orxProfile → rhb1Decimation for the ORx1 
and ORx2 channels and device → obsRx → snifferProfile → 
rhb1Decimation for the SnRxA, SnRxB, and SnRxC channels. 
This can be either 1 (bypass) or 2 (decimate by 2).  
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Figure 84. ORx Signal Path After the I/Q Mux Stage  
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RFIR  

The programmable receiver finite impulse response (RFIR) 
filter acts as a decimating filter. The RFIR can decimate by a 
factor of 1, 2, or 4, or it can be bypassed. The RFIR can use a 
configurable number of taps from 24 taps to 72 taps in multiples of 
24. The RFIR is typically used to compensate for the roll-off of 
the analog transimpedance amplifier (TIA) low-pass filter and 
decimating filters.  

The maximum number of taps is limited by the FIR clock rate 
(data processing clock, DPCLK). The maximum DPCLK is 
400 MHz. The DPCLK is the ADC clock rate divided by either 2 
or 4 to limit the DPCLK below 400 MHz when the DEC5 is 
disabled. The DPCLK is the ADC clock rate divided by 5 or 10 
to limit the DPCLK below 400 MHz when DEC5 is enabled. 

Maximum Number of Rx FIR Filter Taps = 
(DPCLK/ObsRx_IQDataRate) × 24 (18) 

The RFIR coefficients are stored in the device data structure in 
device → obsRx → orxProfile → *rxFir for the ORx1 and ORx2 
channels and device → obsRx → snifferProfile → *rxFir for the 
SnRxA, SnRxB, and SnRxC channels, which is a pointer to a 
structure with data type mykonosFir_t.  

The RFIR decimation factor is set in the device data structure in 
device → obsRx → orxProfile → rxFirDecimation for the ORx1 
and ORx2 channels and device → obsRx → snifferProfile → 
rxFirDecimation for the SnRxA, SnRxB, and SnRxC channels, 
which can be either 1 (bypass), 2, or 4.  

Real IF  

The real IF block contains an interpolating filter and mixer used 
to convert complex signals centered around dc into real valued 
signals centered around some IF frequency. The real IF conversion 
block is typically bypassed, but it does provide the capability to 
operate at an IF frequency near baseband for systems that prefer 
to perform complex demodulation in their digital baseband. 
The full-scale value for the real IF interpolating filter is 16384 
(214). The coefficients for the real IF filter are [−3, 0, +8, 0, −19, 
0, +40, 0, −75, 0, +130, 0, −214, 0, +336, 0, −514, 0, +773, 0, 
−1169, 0, +1845, 0, −3327, 0, +10380, +16384, +10380, −3327, 

0, +1845, 0, −1169, 0, +773, 0, −514, 0, +336, 0, −214, 0, +130, 0, 
−75, 0, +40, 0, −19, 0, +8, 0, −3]. 

The real IF mode can be enabled in the device data structure in 
device → obsRx → realIfData, which can be either 0 (disable real IF) 
or 1 (enable real IF). 

OBSERVATION RECEIVER SIGNAL PATH EXAMPLE 
The transceiver evaluation software (TES) provides an example 
depicting how the baseband filtering stages are used in profile 
configurations for a signal path. In this example, the ORx 
200 MHz, IQ rate 245.76 MHz, and DEC5 profile are selected 
for the ORx channels. This profile is compatible with the other 
examples provided in this user guide. 

Figure 86 shows the filter configuration for this profile, 
excluding correction stage blocks such as dc offset correction. 
Note that the clocking frequencies are in blue. The signal rate 
after the RFIR block is equal to the IQRate of the profile. 

Also available on the TES ObsRx/Sniffer Summary tab is the 
graphed frequency response of the TIA, digital filters, the ADC 
transfer function, and the composite response from dc to the 
sampling rate of the ADC, which is shown in Figure 85. 
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Figure 85. ORx Filter Responses  
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Figure 86. Filter Configuration for the ORx 200 MHz, IQRate 245.76 MHz, Dec5 Profile 
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An examination of the profile pass-band frequency shows that 
the ORx transimpedance amplifier (TIA) 3 dB setting slightly 
attenuates information within the pass band. This analog 
attenuation is compensated by the digital filter response to 
obtain a maximally flat pass band for this profile. A zoom in 
view of the pass band is shown in Figure 87. 
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Figure 87. Examination of the Pass-Band Frequency Response of the Rx 

100 MHz, 122.88 MHz, DEC5HR Profile  

APPLICATION PROGRAMMING INTERFACE (API) 
DATA STRUCTURES AND API COMMANDS 
Analog Devices software tools, such as the transceiver evaluation 
software (TES), populate the Tx, Rx, ORx, and SnRx profile 
data structures with the correct values that allow accurate pass-
band flatness. If the desired profile exists in the software, it is 
recommended to set up the desired profile and use the data 
structure values generated by the Create Config.c file for the 
Tx, Rx, ORx, and SnRx profile data structures.  

The following are subsets of the data structures and a partial 
listing of data structure members related to the configuration of 
the digital filters. Many of these data structure members have 
been covered in previous sections. Consult the device API.chm 
file for additional reference.  

 mykonosRxSettings_t. This data structure contains 
members such as realIFData, the data structure rxProfile of 
the mykonosRxProfile_t type. 

 mykonosRxProfile_t. This data structure contains 
members such as adcDiv, rxFirDecimation, 
enHighRejDec5, rhb1Decimation, iqRate_kHz, 
rfBandwidth_Hz, rxBbf3dBCorner_kHz, and the data 
structure rxFir of type mykonosFir_t. 

 mykonosFir_t. This data structure contains gain_dB, 
numFirCoefs, and coefs members. 

 mykonosObsRxSettings_t. This data structure contains 
members such as realIFData, and the data structures for 
orxProfile and snifferProfile. These data structures are of 
type mykonosRxProfile_t. 

 mykonosTxSettings_t. This data structure contains 
members such as the data structure txProfile of type 
mykonosTxProfile_t. 

 mykonosTxProfile_t. This data structure contains members 
such as dacDiv, txFirinterpolation, thb1Interpolation, 
thb2Interpolation, iqRate_kHz, primarySigBandwidth_Hz, 
rfBandwidth_Hz, txDac3dBCorner_kHz, and the data 
structure txFir of type mykonosFir_t. 

mykonosFir_t Data Structure 

The mykonosFir_t data structure is a structure that contains the 
finite impulse response (FIR) settings for the configurable 
transmitter finite impulse response (TFIR) and receiver finite 
impulse response (RFIR) filters. These filters are programmable 
to ensure digital compensation for analog filter roll-off to 
ensure a maximally flat pass band for any valid profile. Include 
an instance of the mykonosFir_t data structure for each profile 
used, for example, the Rx channels have a mykonosFir_t 
structure populated with the desired RFIR configuration, the Tx 
channels have a mykonosFir_t data structure populated with the 
TFIR configuration, and so on. 

The data structure prototype is as follows: 

/** 
 *  \brief Data structure to hold FIR 
filter settings */ 
typedef struct 
{ 
    int8_t gain_dB;          
/*!< Filter gain in dB*/ 
    uint8_t numFirCoefs;     
/*!< Number of coefficients in the FIR 
filter */ 
    int16_t *coefs;          
/*!< A pointer to an array of filter 
coefficients */ 

} mykonosFir_t; 

The parameter descriptions are as follows: 

 gain_dB. For Rx, ORx, and SnRx profiles, the valid gain 
settings are +6 dB, 0 dB, −6 dB, and −12 dB. For Tx 
profiles, the valid gain settings are 6 dB and 0 dB.  

 numFirCoefs. For Rx, ORx, and SnRx profiles, the valid 
number of FIR coefficients are 24, 48, or 72. For Tx profiles, 
the valid number of FIR coefficients are 16, 32, 48, 64, 80 
or 96.  

 *coefs. This parameter points to an array of filter 
coefficients. The range of these coefficients can span the 
range of 16-bit signed integers. 

These parameters are typically generated by Analog Devices or 
Analog Devices filter tools but must be loaded into data 
structures in the user application for desired operation.  
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Programming Filter Settings via API 

Assuming that the device data structure, specifically the Tx, Rx, 
ORx, and SnRx profiles, are loaded properly, the procedure 
described in headless.c/headless.h sets up the digital and 
analog filters correctly. Some commands of note are listed as 
follows, with descriptions related to the digital filter settings: 

• MYKONOS_initialize(…). This command initializes the 
device based on the desired device settings. This command 
calls MYKONOS_initDigitalClocks(…), which allows the 

filters to be clocked at the appropriate data rates. The 
MYKONOS_initDigitalClocks(…) command does not 
typically need to be called outside of 
MYKONOS_initialize(…). 

• MYKONOS_initArm(…). This command resets the ARM 
processor and performs initialization. This command calls 
MYKONOS_initSubRegisterTables(…), which calls 
MYKONOS_programFir(…). These commands do not 
need to be called outside of the MYKONOS_initArm(…) 
command. 
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OBSERVATION RECEIVER (ORx) 
This section describes the configuration and operation of the 
ORx. There are five receiver front-end inputs available in the 
ORx. The ORx also features a calibration mode, allowing Tx 
tracking calibration updates. This section includes a description 
of the signal chain of the ORx as well as references to application 
programming interface (API) commands and data structures 
used to configure the ORx.  

The five front-end inputs include two observation receiver 
channels (ORx1 and ORx2) suitable for transmitter output 
observation and three sniffer receiver channels (SnRxA, SnRxB, 
and SnRxC) to monitor radioactivity at frequencies of interest. 
There is also an internal ORx input for Tx loopback calibration 
signals, OBS_INTERNALCALS. In OBS_INTERNALCALS 
mode, the ARM microprocessor controls the ORx.  

The signal flow through the ORx is as follows: frequency 
downconverted I/Q data from one of the five receiver inputs 
passes through the I/Q mux switch into to the I/Q 
transimpedance amplifier (TIA) low-pass filter (LPF), which 

feeds the signal to the ADC and then to the digital signal path. 
The digital signal path consists of digital filters and signal 
conditioning stages. Refer to the Filter Configuration section 
for more information on the ORx digital filters. Note that only 
one input channel of the ORx inputs can be active at any time.  

A high level block diagram of the ORx datapath is shown in 
Figure 88. Note that the digital filtering and signal conditioning 
between the ADC and the JESD204B interface is omitted from 
this diagram. 

Proper functionality of the ORx requires power supplied to the 
3.3 V and 1.3 V analog supply pins.  

To achieve optimal device performance levels from the ORx 
ports, the receiver input pins likely need to be impedance matched. 
This matching typically involves a single-ended to differential 
signal conversion. Proper impedance matching facilitates ORx 
performance comparable to levels indicated in the data sheet. 
Information regarding RF port impedance matching is found in 
the RF Port Interface section.  
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Figure 88. Simplified Block Diagram of the ORx Front End  
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OBSERVATION SYSTEM RECEIVER DETAILS 
This section outlines the different front-end selections available 
in the ORx, explains how to select the active ORx channel, and 
other details regarding operation of the ORx.  

Observation Receiver (ORx) Overview 

The two independent observation receiver inputs have 
programmable bandwidths up to 250 MHz. The local oscillator 
(LO) source for the ORx1 and ORx2 mixers can come from the 
Tx LO or the SnRx LO. The SnRx LO facilitates the use of an 
LO frequency different than that of the Tx LO to monitor the 
Tx output. Each ORx channel has an independent analog front 
end up to the I/Q mux switch that is common to all ORx analog 
front ends.  

The ORx inputs run a quadrature error correction (QEC) 
tracking calibration and dc offset calibration when the channel 
is enabled to improve the ORx image rejection and dc offset 
performance. These calibrations use ORx data to calculate 
calibration update words. The dc offset calibration runs any 
time the ORx channels are used. The QEC tracking calibration 
only runs if it is included in the tracking calibration mask set by 
the MYKONOS_enable-TrackingCals(…) command. ORx1 and 
ORx2 have independent bit masks in the tracking calibration 
mask. See the Quadrature Error Correction, Calibration, and 
ARM Configuration section for more information.  

An external Tx LO signal can also be used in place of the 
integrated Tx LO. In this case, the external LO signal frequency 
must be twice that of the desired LO frequency of operation. 
When using the external LO, it is still necessary to program 
device data structures to represent the desired LO frequency, 
which allows the ARM calibration algorithms to function properly 
with respect to the LO frequency. There is no external LO 
option when the SnRx LO is selected. 

Sniffer Receiver (SnRx) 

Three SnRx inputs with maximum bandwidth of 20 MHz are 
also available on the ORx channel. Each SnRx has its own 
integrated low noise amplifier (LNA). The sniffer receivers 

share an inphase and quadrature mixer for the SnRxA, SnRxB, and 
SnRxC inputs. The sniffer mixer LO is generated by the SnRx LO.  

Because there are three SnRx channels, it is useful to design 
matching networks with different center frequencies such that 
each SnRx channel can sniff in a different frequency band with 
optimum signal quality. Note that only one input can be activated 
at any given time.  

The SnRx inputs run a dc offset calibration when the channel is 
enabled to improve the SnRx dc offset performance. These 
calibrations use SnRx data to calculate calibration update words. 
These calibrations only execute when the channel is active. 

OBS_INTERNALCALS 

The ORx must be set to OBS_INTERNALCALS to allow Tx 
tracking calibrations to update properly. This ORx input selection 
allows the ARM to control the ORx to generate update information 
for the active Tx tracking calibrations. The tracking calibrations 
that can update when in OBS_INTERNALCALS mode are the 
Tx LO leakage tracking calibration and the Tx QEC tracking 
calibration. Baseband processor (BBP) access to the ORx is not 
possible when this input is selected. It is recommended to set 
the ORx to OBS_INTERNALCALS when ORx data is not 
required by the BBP.  

Refer to the Quadrature Error Correction, Calibration, and 
ARM Configuration section for more information. 

Single ORx Mode 

The single ORx mode is a mode that allows reduction of the 
number of ORx channels that must be used to maintain Tx LO 
leakage calibration performance. Typical modes of operation 
involve looping back the output of Tx1 into ORx1 and Tx2 into 
ORx2. With the single ORx mode, both Tx1 and Tx2 can be 
looped back into a switch that sends data from one of the 
transmitters into an ORx port.  

See the Initial ARM Calibrations section for additional 
information.  

Selecting the ORx Front End 

Table 132 lists all front-end inputs available in the ORx. 

 

Table 132. ORx Front-End Input Selections 
Enumeration Name ORx Front End Enumeration Value ORX_MODE[2:0]  
OBS_RXOFF None 0 000 
OBS_RX1_TXLO ORx1 1 001 
OBS_RX2_TXLO ORx2 2 010 
OBS_INTERNALCALS Dependent on calibration scheduling 3 011 
OBS_SNIFFER Sniffer (select channel) 4 100 
OBS_RX1_SNIFFERLO ORx1 5 101 
OBS_RX2_SNIFFERLO ORx2 6 110 
OBS_SNIFFER_A SnRxA 0x14 100 
OBS_SNIFFER_B SnRxB 0x24 100 
OBS_SNIFFER_C SnRxC 0x34 100 
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There are two control modes that select the ORx front-end 
channel: ORx ARM command mode or ORx ARM pin control 
mode. Selection between these two modes is determined in 
mykonosArmGpioConfig_t, which is in the orxPinMode data 
structure.  

Set the orxPinMode member to 0 for ORx ARM command 
mode, or set it to 1 for ORx ARM pin control mode. Assuming 
the desired mode is set in the mykonosArmGpioConfig_t 
structure, the ORx control mode updates with successful 
execution of the MYKONOS_setRadioControlPinMode(…) 
API command. The MYKONOS_setRadioControlPinMode(…) 
command is called during MYKONOS_loadArmFromBinary(…). 

The ORx does not need to be under the same control mode as 
the Tx/Rx (txRxPinMode). 

ORx ARM Command Mode 

The ORx ARM command mode method uses application 
programming interface (API) commands to switch between the 
various ORx inputs. The API command to switch between the ORx 
inputs is MYKONOS_setObsRx-PathSource(…). This command 
passes an argument of the mykonosObsRxChannels_t type. The 
enumerators corresponding to the various front ends of the 
ORx are listed in Table 132.  

When calling the MYKONOS_setObsRxPathSource(…) 
command, the device must be set into the radio on mode. The 
MYKONOS_setObsRxPathSource(…) command can only be 
used when the ARM is in ORx command mode; otherwise, an 
error is returned.  

ORx ARM Pin Control Mode 

Alternatively, the ARM can be set into ORx ARM pin control 
mode. ORx ARM pin control mode is helpful in cases requiring 
precise control over the state of the ORx, such as in time 
division duplexed (TDD) applications.  

When the device is set in ORx ARM pin control mode, the 
orxTriggerPin, orxMode2Pin, orxMode1Pin, and orxMode0Pin 
members of the mykonosArmGpioConfig_t data structure 
assign the GPIO pins for the 3-bit word, ORX_MODE[2:0] and 
for ORX_TRIGGER. These four signals are ARM inputs and 
control the active channel of the ORx when in ORx pin control 
mode.  

The ORX_MODE[2:0] is a 3-bit value, set by three GPIO pins 
that are assigned to the orxMode2Pin, orxMode1Pin, and 
orxMode0Pin functions. These functions set the active channel 
of the ORx. At most, one of the ORx channels is connected to 

the shared baseband datapath at any given time. The available 
ORx modes are indicated in Table 132. The ORX_MODE[2:0] 
pins are sampled after the rising edge of the ORX_TRIGGER 
signal. Refer to the right column of Table 132 to correlate the 
ORX_MODE[2:0] word to the ORx front end.  

Note the following specifics about the GPIO pin assignments 
for ORX_MODE[2:0] and ORX_TRIGGER: 

• The ARM ignores the ORX_MODE[2:0] and ORX_ 
TRIGGER pin inputs if the ORx is set to command mode, 
even if the ORX_MODE[2:0] and ORX_TRIGGER signals 
are assigned to GPIO input pins.  

• If the ORX_MODE[2:0] signals are assigned to GPIO_18 
to GPIO_16, the ARM assumes ORX_MODE[0] maps to 
GPIO_16, ORX_MODE[1] maps to GPIO_17, and ORX_ 
MODE[2] maps to GPIO_18. 

• Configure all three ORX_MODE[2:0] pins to GPIO pins 
within the pin ranges of GPIO_3 to GPIO_0, GPIO_15 to 
GPIO_4, or GPIO_18 to GPIO_16.  

The ARM GPIO pins are configured to the settings within the 
mykonosArmGpioConfig_t data structure with the API 
command MYKONOS_setArmGpioPins(…).  

When the ARM is set in ORx pin control mode, SnRxA, SnRxB, 
and SnRxC are not specified by ORX_MODE[2:0]. To select a 
sniffer channel, use the MYKONOS_setSnifferChannel(…) API 
command.  

Note that the ARM can also send output signals indicating the 
status of the ORx (ARM acknowledge signals). These outputs 
are specified by the orx1EnableAck, orx2EnableAck, and 
srxEnableAck members of mykonosArmGpioConfig_t. These 
ARM acknowledge signals can be assigned to any GPIO pin 
from GPIO_0 to GPIO_15. For the pin assignment members, Bit 4 
of the assignment 8-bit word must be set to enable the output. 
Figure 89 shows the relationship between ORX_MODE[2:0], 
ORX_TRIGGER, and the ORx ARM acknowledge signals. Note 
that, while the ORX_MODE[2:0] signals may toggle, they are 
not sampled until the ORX_TRIGGER satisfies the tORX_TRIGGER_HOLD 
timing constraint.  

The timing characteristics of Figure 89 are described in Table 133. 
Note that the minimum times for ORx switching depend on if 
the user is enabling tracking calibrations. The ORx must be set 
to OBS_INTERNALCALS to update for the minimum time for 
the Tx tracking calibrations (for example, Tx quadrature error 
correction (QEC) tracking and Tx local oscillator leakage (LOL) 
tracking) to update.  
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Figure 89. ORx Pin Control Mode Timing Diagram 

Table 133. ORx Pin Control Timing Characteristics 

Symbol Description 
Absolute 
Minimum Time 

Minimum Time for Tx 
Tracking Calibrations Maximum 

tENABLE_RISE_TO_FALL  Tx/Rx enable rising edge to enable falling 
edge—ENABLE signal width high 

10 μs 800 μs Not applicable 

tENABLE_FALL_TO_RISE Tx/Rx enable falling edge to enable rising 
edge—ENABLE signal width low 

10 μs 800 μs Not applicable 

tENABLE_FALL_TO_ACK Tx/Rx enable falling edge to acknowledge signal, 
to BBP going low 

Not applicable Not applicable 3 μs 

tENABLE_RISE_TO_ACK Tx/Rx enable rising edge to acknowledge signal, 
to BBP going high 

Not applicable Not applicable 3 μs 

 

ORx AGC, HYBRID, AND MGC 
The device supports manual gain control (MGC) for all channels in 
the ORx path. The SnRx has the added capability of supporting 
hybrid gain control mode and automatic gain control (AGC) 
mode as well. In MGC, the baseband processor (BBP) can 
control the gain index of the channel via the application 
programming interface (API) commands to set the gain. The 
gain control block adjusts the gain of the ORx or SnRx receiver 
based on settings provided in the corresponding gain table. Gain 
settings and gain control only affect the active input of the ORx 
because only one input can be active at any given time.  

To change the gain mode of the ORx channel, use the 
MYKONOS_setObsRxGainControlMode(…) API command, 
using the proper enumerated value for the gain control mode. 
The enumerated data type is mykonosGainMode_t. 

 

To change the gain of the active channel, use the MYKONOS_ 
setObsRxManualGain(…) API command. The ORx must be in 
MGC mode to use this function. This API command returns an 
exception if the argument passed is out of range for the gain 
index of the active channel. For example, if the SnRx gain table 
is defined for Gain Index 255 to Gain Index 203, values outside 
of that range cause an error.  

Readback of the current gain index for the active channel is 
available using MYKONOS_getObsRxGain(…). This function 
is valid in the MGC, hybrid, and AGC modes of operation.  

Custom gain tables can be created in the mykonos_user.c and 
the mykonos_user.h files. The gain tables provide a means to 
vary the internal radio frequency (RF) attenuation, the external 
RF attenuation, the digital attenuation, and the digital gain. The 
data structure that sets up the AGC operation parameters is of 
the mykonosAgcCfg_t. type. 

Additional details regarding the implementation of gain control 
schemes are provided in the Gain Control section. 
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OBSERVATION SYSTEM RECEIVER FRONT-END 
PROGRAMMING 
Programming Prior to Device Initialization 

This section provides a brief explanation of the data structures 
and application programming interface (API) commands used 
to configure the ORx channel. 

Several data structures must be initialized and configured prior to 
initializing the device. Some of these data structures are members 
of other data structures, such as the mykonosObsRxSettings_t 
data structure, which is one of several members of the 
mykonosDevice_t data structure.  

Assuming all the device data structures are valid, when the 
MYKONOS_initialize(…) API command is executed, the 
settings contained within the members of the device data 
structures are programmed to device registers. 

Refer to the device API.chm file for clarification on data 
structure definitions and their member data types. This file is 
located under Files/File List/t_mykonos.h.  

Important data structures for the ORx are listed as follows, with 
hierarchy details and short descriptions: 

• mykonosDevice_t (device). This data structure type contains 
all device settings. The members of the structure relevant 
to the ORx setup include the mykonosObsRxSettings_t 
and mykonosTxSettings_t data structures. This data 
structure type also includes the mykonosDigClocks_t and 
profilesValid members. 

• mykonosObsRxSettings_t (device → obsRx). This data 
structure type contains all ORx profile settings, JESD204B 
interface settings, and all other parameters specific to the 
operation of the available receivers of the ORx. This data 
structure sets up the SnRx LO frequency.  

• mykonosOrxGainControl_t (device → obsRx → orxGainCtrl). 
This data structure type contains general gain control 
settings related to the gain mode of the ORx1 and ORx2 
channels, the gain setting of the ORx1 and ORx2 channels 
when active, and their minimum and maximum gain indices. 

• mykonosAgcCfg_t (device → obsRx → orxAgcCtrl). This 
data structure type contains gain control settings specific to 
the AGC for a specific ObsRx channel.  

• mykonosSnifferGainControl (device → obsRx → 
snifferGainCtrl). This data structure type contains general 
gain control settings related to the gain mode of the sniffer 
channels, the gain setting of the sniffer channel when active, 
and the minimum and maximum gain indices of the sniffer 
channel. The SnRxA, SnRxB, and SnRxC inputs use the 
same gain index.  

• mykonosRxProfile_t (device → obsRx → orxProfile and 
device → obsRx → snifferProfile). This data structure type 
contains profile settings used to configure the main receivers 
or observation receivers. This data structure type is used to 
define the profile for the SnRx and ORx channels.  

• mykonosJesd204bFramerConfig_t (device → obsRx → 
framer). This data structure type contains configuration 
settings for the JESD204B digital interface. Information 
regarding the data structure members and how to set up 
the interface are provided in the JESD204B Interface section. 

• mykonosFir_t (device → obsRx → orxProfile → rxFir and 
device → obsRx → snifferProfile → rxFir). This data 
structure type contains members required to program the 
programmable finite impulse response (PFIR) digital filter 
in the ORx channel.  

Programming After Initialization 

After initialization, some settings can be altered using other API 
commands. A list of the API commands relevant to the ORx are 
listed in this section. Refer to the section of the device API.chm 
file under Files/File List/mykonos.c for more information 
about the parameters to pass into these functions.  

• MYKONOS_enableObsRxFramerPrbs(…). This function 
selects the pseudorandom bit sequence (PRBS) type and 
enables or disables ORx framer PRBS20 generation. 

• MYKONOS_enableSysrefToObsRxFramer(…). This 
function enables or disables the SYSREF signal to the ORx 
framer of the transceiver. 

• MYKONOS_getObsRxGain(…). This function obtains the 
gain index of the currently enabled ORx channel. The ORx 
datapath can have multiple RF sources. This function reads 
back the gain index of the currently enabled RF source. If 
the ORx datapath is disabled, an error is returned. If the 
uint8_t *gainIndex parameter is a valid pointer, the gain 
index is returned at the pointers address. Or, if the uint8_t 
*gainIndex pointer is null, the gainIndex readback is stored 
in the device data structure. 

• MYKONOS_obsRxInjectPrbsError(…). This function 
initiates a PRBS error injection into the ORx datapath. 

• MYKONOS_radioOff(…). This function instructs the 
ARM processor to move the radio state to the off state.  
When the ARM moves from the radio on state to the radio 
off (idle) state, the ARM tracking calibrations are stopped, 
and the Tx enable, Rx enable, and GPIO control pins 
(among others) are ignored. This stoppage also keeps the 
receive and transmit chains powered down until the 
MYKONOS_radioOn() function is called again. 

• MYKONOS_radioOn(…). This function instructs the 
ARM processor to move the radio state to the radio on 
state. When the ARM moves to the radio on state, the 
enabled Rx and Tx signal chains power up, and the ARM 
tracking calibrations begin. To exit this state back to a low 
power, offline state (MYKONOS_radioOff(…) function). 

• MYKONOS_readOrxFramerStatus(…). This function 
reads the status of the transceiver ORx framer. 

• MYKONOS_setObsRxGaincontrolMode(…). This 
function configures the ORx gain control mode. 
 

mk:@MSITStore:C:%5CUsers%5Ckmohamme%5CDesktop%5Cmykonos.chm::/mykonos_8c.html#af504d6da479a8a58f311d61174029284
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• MYKONOS_setObsRxManualGain(…). This function sets 
the Rx gain of the ORx channel. The ORx channel can have 
different RF inputs, for example, ORx1, ORx2, SnRxA, 
SnRxB, or SnRxC. This function sets the ORx gain index 
independently for ORx1 and ORx2, or SnRx. SnRxA, 
SnRxB, and SnRxC share the same gain index. Note that 
ORx1 and ORx2 share a gain table, as do SnRxA, SnRxB, 
and SnRxC. The maximum index is 255 and the minimum 
index is application specific. 

• MYKONOS_setObsRxPathSource(…). This function 
powers up or powers down the observation Rx signal 
chain. When the ARM radio control is in ARM command 
mode, this function allows the user to selectively power up 
or power down the desired ORx datapath. If this function 
is called when the ARM is expecting GPIO pin control of 
the ORx path source, an error is returned. 

• MYKONOS_setRfPllFrequency(…). This function sets the 
RF PLL local oscillator frequency (RF carrier frequency). 
This function must be called in the radio off state.  

• MYKONOS_setSnifferChannel(…). This function selects 
the sniffer RF input to use for the observation receiver when 
in ORx pin mode (ORX_MODE = Sniffer 4). This function 
is only valid when using ORx pin mode. In pin mode, three 
GPIO pins select an observation Rx source for mykonos-
ObsRxChannels_t enumerator values less than 7. When 
the ORX_MODE GPIO pins are set to 4 for sniffer mode, 
Sniffer Input A, Sniffer Input B, and Sniffer Input C can be 
chosen by calling this function. This function can be called 
any time after the ARM is loaded and running, and it can 
be called in the radio on or radio off state. 

• MYKONOS_setupObsRxAgc(…). This function sets up 
the ORx AGC registers. Due to the dependencies, the 
instantiated AGC setting structure (mykonosAgcCfg_t) 
must be initialized with valid settings before this function 
can be used  

• MYKONOS_setupJesd204bObsRxFramer(…). This 
function sets up the JESD204B ORx framer. 

• MYKONOS_setArmGpioPins(…). This function programs 
register values to the device based on the current values 
stored in the mykonosArmGpioConfig_t data structure. 
This function does not write the entirety of the structure, 
only the orxTriggerPin, orxMode2Pin, orxMode1Pin, 
orxMode0Pin, rx1EnableAck, rx2EnableAck, tx1EnablePin, 
tx2EnableAck, orx1EnableAck, orx2EnableAck, 
srxEnableAck, or txObsSelect data structure members.  

• MYKONOS_setRadioControlPinMode(…). This function 
programs register values to the device based on the current 
values stored in the mykonosArmGpioConfig_t data 
structure. This function does not write the entirety of the 
structure, only the useRx2EnablePin, useTx2EnablePin, 
txRxPinMode, or orxPinMode data structure members. 
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TDD CONFIGURATION AND SETUP 
This section describes how to configure the device for time division 
duplexed (TDD) use cases. This section describes how to 
program the ZC706 (Zynq) evaluation platform and the 
evaluation board, the timing requirements for operating the 
device in ARM pin control mode, and relevant application 
programming interface (API) and .dll commands that configure 
the system for TDD operation. The guidelines in this section 
enable users to set up programming environments for TDD 
performance evaluation without the graphical user interface (GUI). 

The transceiver evaluation software (TES) can configure the 
device and field programmable gate array (FPGA) into a TDD 
use case. The TDD page in the GUI configures the FPGA for 
Tx/Rx/ORx enable/disable timing and data timing, and it 
configures the device for pin control mode. To determine what 
commands are executed when the GUI configures TDD, see the 
log (found under File → View Log Files) in the GUI. This log is a 
helpful reference to configure TDD functionality with the 
evaluation system outside of the GUI. See the TES Interface for 
TDD Mode section for more information. 

In this document, the .dll or the .dll layer refers to the 
AdiCmdServerClient.dll library, which is a .NET framework 
library allowing interaction with the device API from .NET-
compatible languages such as C#, MATLAB, or IronPython. The 
.dll is typically run in a PC environment and facilitates 
communication between a PC and the ZC706 motherboard. 
Example scripts in this document are provided in IronPython and 
can be used in the Iron Python Script tab in TES. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDD IN THE MYKONOS EVALUATION SYSTEM 
The evaluation system allows users to implement TDD use 
cases. For TDD operation, the device must be set into ARM pin 
control mode for the Tx/Rx. The ORx can be set to either ARM 
pin control mode or ARM command mode. The setting that 
determines ARM pin control mode vs. ARM command mode is 
contained within the mykonosArmGpioConfig_t data structure 
(txRxPinMode, orxPinMode) in the API, and the procedure to 
modify this data structure is described in the ARM Pin Mode 
Configuration section. Pin control mode allows strict timing 
control over the state of the transceiver required by TDD use 
cases. 

In the evaluation system, FPGA output signals can be programmed 
to drive the GPIO pins. The voltage on these pins can be monitored 
on the GPIO headers on the evaluation card. In ARM pin control 
mode, these pins act as inputs to the ARM to control the enable 
or disable state of the Tx/Rx/ORx. The FPGA, which can be 
implemented as a baseband processor (BBP) in user systems, 
controls the state of the transceiver through the GPIO pins. 

Refer to the TddFsmParameters_us Class Details section (in 
.dll layer) and the mykonosArmGpioConfig_t Data Structure 
Details section (in the Mykonos API) to become familiar with 
the configurable parameters available for TDD implementation. 
TddFsmParameters_us configures the FPGA, while 
mykonosArmGpioConfig_t is used to configure the device. 
Also note that although there are descriptions of several 
API/.dll commands in this document, they are not related to 
the ARM command mode unless otherwise specified.  

Note that the prefix MYKONOS_ implies that the function 
described exists in the Mykonos API. The prefix FpgaMykonos 
or Mykonos implies that the command exists in the 
AdiCommandServerClient.dll. All functions in the API have a 
.dll counterpart. 

ARM Input and Output Signals 

A BBP controls the Tx/Rx/ORx state of the device by interfacing 
through the GPIO pins to the ARM microcontroller in pin 
control mode. The ARM core has two main responsibilities with 
respect to TDD use cases: the real-time control of the Tx/Rx/ORx 
and the scheduling and execution of device calibrations. This 
section focuses on the real-time control of Tx/Rx/ORx data paths 
with respect to ARM pin control mode.  

Refer to the mykonosArmGpioConfig_t Data Structure Details 
section for a brief overview of the GPIO controls available for 
the ARM.  
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ARM Pin Mode Configuration  

The ADRV9371-N/PCBZ and ADRV9371-W/PCBZ evaluation 
boards have pin headers for the TX1_ENABLE, TX2_ENABLE, 
RX1_ENABLE, and RX2_ENABLE signals. The silkscreen 
indicators adjacent to the enable header pins are highlighted 
in Figure 90. The channel enable header pins are routed to 
corresponding balls (M6, M8, M5, and M9, respectively). The 
FPGA outputs enable signals to drive these pins. These signals 
are ignored unless the device is set to pin mode.  

Pin control mode offers real-time control of the Tx/Rx/ORx 
channels. In pin control mode, the enable signals determine if 
the Tx/Rx/ORx signal chain is powered up or down. The API 
allows the Tx/Rx control mode to be set independently of the 
ORx control mode. The members that determine pin mode vs. 
command mode are txRxPinMode and orxPinMode within the 
mykonosArmGpioConfig_t data structure. If these parameters 
are set to 0, the device is in command mode. If set to 1, the 
device is set to pin mode. The user is able to configure the 
Tx/Rx in pin mode and ORx in command mode, if desired. 

The Rx1/Rx2 and Tx1/Tx2 channels can be powered up together 
or independently. The member useTx2EnablePin of the data 
structure mykonosArmGpioConfig_t, if set to 0, allows the 
TX1_ENABLE pin voltage level to control the state of Tx1 and 
Tx2 simultaneously. If useTx2EnablePin is set to 1, the 
TX1_ENABLE pin only controls the enable signal for Tx1 while 
the TX2_ENABLE pin controls the enable signal for Tx2. Similarly, 
setting the useRx2EnablePin in the mykonosArmGpioConfig_t 
allows independent control of Rx1 and Rx2.  

Note that updating the mykonosArmGpioConfig_t data structure 
does not change device settings. Two commands exist in the API 
to write ARM pin control settings (denoted useRx2EnablePin, 
useTx2EnablePin, txRxPinMode, orxPinMode) or ARM GPIO 
configuration settings (denoted orxTriggerPin, orxMode2Pin, 
orxMode1Pin, orxMode0Pin, rx1EnableAck, rx2EnableAck, 
tx2EnableAck, tx2EnableAck, orx1EnableAck, srxEnableAck, 
txObsSelect). MYKONOS_setRadioControlMode(…) and 
MYKONOS_setArmGpioPins(…) are these commands, 
respectively. The equivalent commands at the delay-locked loop 
(DLL) level are Mykonos.setRadioPinControlMode(…) and 
Mykonos.setArmGpioPins(…).  
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Figure 90. Tx1/Tx2 and Rx1/Rx2 Enable Pins 
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ARM Acknowledge Signals  

The ARM microcontroller provides real-time control of Tx and 
Rx channels in the device when in Tx/Rx pin control mode. The 
ARM features several output signals that can be configured to 
output at user defined GPIO pins. The ARM acknowledgement 
(ARM ACK) signals go high (or low) to indicate that the ARM 
has powered up (or down) a Tx/Rx/ORx channel. For example, 
when the TX1_ENABLE signal goes high, the ARM outputs a 
signal when it enables the Tx1 channel. Table 134 shows the 
available ARM ACK signals.  

Table 134. Available ARM Acknowledgement Signals 
ARM Output Signal Description 
RX1_ENABLE_ACK Indicates that Rx1 (or Rx2)1 is/are enabled 
RX2_ENABLE_ACK Indicates that Rx2 is enabled 
TX1_ENABLE_ACK Indicates that Tx1 (or Tx2)2 is/are enabled 
TX2_ENABLE_ACK Indicates that Tx2 is enabled 
ORX1_ENABLE_ACK Indicates that ORx1 is enabled for BBIC use 
ORX2_ENABLE_ACK Indicates that ORx2 is enabled for BBIC use 
SNRX_ENABLE_ACK Indicates that SnRxA, B, or C is enabled for 

BBIC use 
 
1 Determined by member useRx2EnablePin in mykonosArmGpioConfig_t. 0 = 

RX1_ENABLE controls Rx1 and Rx2, 1 = separate RX1_ENABLE/RX2_ENABLE pins. 
2 Determined by member useTx2EnablePin in mykonosArmGpioConfig_t. 0 = 

TX1_ENABLE controls Tx1 and Tx2, 1 = separate TX1_ENABLE/TX2_ENABLE pins 
 

The ARM ACK signals are valid even when not in pin control 
mode; however, they must be assigned and enabled in the 
mykonosArmGpioConfig_t data structure.  

Assigning the GPIO pin for an ARM acknowledge signal is a 
two step process in the device, and this procedure is specific to 

the ARM ACK output GPIO pin assignments. This two step 
process follows: 

1. The device must be told what GPIO pin to output an 
ARM ACK signal. Pin assignment is accomplished by 
the rx1EnableAck, rx2EnableAck, tx1EnableAck, 
tx2EnableAck, orx1EnableAck, orx2EnableAck, and 
srxEnableAck members of the mykonosArmGpioConfig_t 
data structure in the API. Set these members to user 
desired configuration in the data structure instance. The 
data structure members listed previously are of Type uint8_t. 
The valid pin assignments for these signals are GPIO_0 
through GPIO_15. In the 8-bit word, Bits[3:0] designate 
the pin, and Bit 4 enables the signal. The ARM ACK 
signals are not sent to the GPIO without the enable bit 
(Bit 4) set to 1.  

2. Write the mykonosArmGpioConfig_t data structure values 
to the device by calling the 
MYKONOS_setArmGpioPins(…) API command, which 
can be done through the .dll command in the Mykonos 
class, Mykonos.setArmGpioPins(…). 

Additionally, the ARM ACK signals can be used as a data path 
trigger in the evaluation system for the Tx and Rx. See the 
Datapath Trigger Modes section for more information about 
how to use the ARM ACK signals as trigger sources for Tx and 
Rx datapaths.  

Figure 91 illustrates the timing relationship between the Tx and 
Rx enable signals and the Tx and Rx ARM ACK signals. Note 
that the minimum time period for any enable or disable state is 
800 μs.  
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Figure 91. Tx and Rx Enable and Enable Acknowledge Signal Timing Diagram 
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Table 135. Tx and Rx Timing Characteristics 

Symbol Description 
Absolute 
Minimum (µs) 

Minimum Time for  
Tracking Calibrations (µs) Maximum (µs) 

tENABLE_RISE_TO_FALL Tx/Rx enable rising edge to enable falling edge—enable 
signal width high 

10  800   

tENABLE_FALL_TO_RISE Tx/Rx enable falling edge to enable rising edge—enable 
signal width low 

10  800   

tENABLE_FALL_TO_ACK Tx/Rx enable falling edge to ACK signal to BBP going low   2  
tENABLE_RISE_TO_ACK Tx/Rx enable rising edge to ACK signal to BBP going high    2  

 

Regarding calibrations, the internal tracking calibrations in the 
device are scheduled by the ARM microprocessor. The calibrations 
perform data captures in batches, with each batch guaranteed to 
have a duration greater than the value listed in the Minimum 
Time for Tracking Calibrations column of Table 135. Each 
calibration needs to capture a certain number of batches of data 
per second to keep up with device parameter (temperature, 
voltage supply variation) drift. If the transceiver state switches 
before a batch of data can be collected, the corresponding data 
is unusable by the calibration and thrown out.  

Assuming that all tracking calibrations are active, Rx tracking 
calibrations update when the Rx is enabled. Tx tracking 
calibrations only update when the Tx channel is enabled and 
the ObsRx path source is set to INTERNAL_CALS mode. 
When in INTERNAL_CALS mode, the ARM has access to the 
ObsRx, temporarily preventing the baseband processor (BBP) 
access to the ORx datapath.  

ORX_MODE and ORX_TRIGGER  

When the ARM is set in pin control mode for the ORx, the 
members orxTriggerPin, orxMode2Pin, orxMode1Pin, and 
orxMode0Pin of the mykonosArmGpioConfig_t data structure 
assign GPIO pins for the ORX_MODE[2:0] 3-bit word and the 
ORX_TRIGGER. These four signals are ARM inputs and 

control the active channel of the ORx when in ORx pin control 
mode.  

The ORX_MODE[2:0] is a 3-bit value (set by three GPIO pins: 
orxMode2Pin, orxMode1Pin, and orxMode0Pin) that sets the 
active channel of the ORx. At most, one of the ORx channels is 
connected to the shared baseband datapath at any given time. 
The ORX_MODEs available are detailed in Table 136. The 
ORX_MODE[2:0] pins are sampled after the rising edge of the 
ORX_TRIGGER signal.  

Table 136. ORX_MODE[2:0] Word Definitions 
ORX_MODE[2:0] ORx Front End 
000 ORx off 
001 ORx1 with Tx local oscillator (LO) 
010 ORx2 with Tx LO 
011 Internal calibrations (OBS_INTERNALCALS) 
100 Sniffer channel 
101 ORx1 with sniffer LO 
110 ORx2 with sniffer LO 
111 Reserved 

Figure 92 shows these relationships between the ORX_TRIGGER, 
ORX_MODE[2:0], and the ObsRx ARM ACK signals.  
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Figure 92. Observation Receiver (ORx) Signal Timing in TDD Mode  

 

Table 137. Observation Receiver (ORx) Timing Characteristics 

Symbol Description 
Absolute 
Minimum (μs) 

Minimum Time for 
Tracking Calibrations (μs) 

tORX_TRIGGER_RISE_TO_RISE ORX_TRIGGER frequency—how often ORX_MODE[2:0] can be  
changed in the device.  

10  800  

tORX_TRIGGER_HOLD ORX_TRIGGER hold time 1   
tMODE_SETUP ORX_MODE[2:0] setup time before ORX_TRIGGER rising edge 1   
tMODE_HOLD ORX_MODE[2:0] hold time to be sample by ARM  2   

 

Figure 92 illustrates that the ORX_MODE[2:0] is setup before 
the rising edge of the ORX_TRIGGER. This setup time is given 
by tMODE_SETUP. The ORX_MODE[2:0] is not sampled until the 
ORX_TRIGGER has been high for tORX_TRIGER_HOLD. The 
ORX_MODE[2:0] must have a hold time relative to ORX_ 
TRIGGER going high of tMODE_HOLD. The ORX_MODE[2:0] can 
be changed at a minimum period of tORX_TRIGGER_RISE_TO_RISE. This 
time is dependent on whether tracking calibrations are 
operational for the Tx, because the Tx tracking calibrations use 
the ObsRx in OBS_INTERNALCALS mode. This timing is 
summarized in Table 137.  

Timing constraints for the ORX_MODE[2:0] and ORX_TRIGGER 
signals are summarized in Table 138. Additionally, it is 
recommended that the ORX_TRIGGER signal stay low for at 
least 10 μs prior to the ORX_TRIGGER signal going high (high 
to low to high transition) to properly detect the rising edge. 

 

To change the ORX_MODE[2:0] and ORX_TRIGGER GPIO 
pin assignments, set the members orxTriggerPin, orxMode2Pin, 
orxMode1Pin, and orxMode0Pin to the desired GPI O pins. 
Valid pin assignments for these signals range from GPIO Pin 0 
to GPIO Pin 18. Be sure that orxPinMode is set to 1 to set the 
device into orxPinMode; otherwise, the pin assignments for 
ORX_MODE[2:0] and ORX_TRIGGER are ignored. Write the 
mykonosArmGpioConfig_t data structure values to the device 
by calling the MYKONOS_setArmGpioPins(…) API command, 
through the .dll command in the Mykonos.setArmGpioPins(…) 
class. This procedure is a similar procedure to the one outlined 
in the ARM Acknowledge Signals section. 

 

 

 

 

 



AD9371/AD9375 System Development User Guide UG-992 
 

Rev. B | Page 183 of 360 

Note the following details about the GPIO pin assignments for 
ORX_MODE[2:0] and ORX_TRIGGER: 

• The ARM ignores the ORX_MODE[2:0] and 
ORX_TRIGGER pin inputs if the ORx is set to command 
mode, even if the ORX_MODE[2:0] and ORX_TRIGGER 
signals are assigned to GPIO input pins.  

• If the ORX_MODE[2:0] signals are assigned to 
GPIO[18:16], ARM assumes ORX_MODE[0] maps to 
GPIO[16], ORX_MODE[1] maps to GPIO[17], and 
ORX_MODE[2] maps to GPIO[18]. 

• Configure all three ORX_MODE[2:0] pins to GPIO pins 
within the pin ranges of GPIO[3:0], GPIO[15:4], or 
GPIO[18:16].  

The ORx can also run in ARM command mode if desired. This 
mode does not allow as precise timing control over the state of 
the ORx mode; however, it can free up GPIO pins. See the 
Observation Receiver (ORx) section for more details.  

 

 

 

 

FPGA Output Signals 

In the evaluation system, the field programmable gate array 
(FPGA) is capable of outputting the TX1_ENABLE/ 
TX2_ENABLE, RX1_ENABLE/RX2_ENABLE, ORX_MODE[2:0], 
and ORX_TRIGGER signals to the GPIO pins. The ARM responds 
to some or all of these FPGA output signals depending on the value 
of txRxPinMode and orxPinMode. This section describes how to 
program the FPGA enable and trigger signals to setup a variety 
of time division duplexed (TDD) use cases. A major software 
class in the evaluation system is the TddFsmParameters_us, 
which offers a highly configurable class to set TDD configuration 
parameters, and Tx/Rx/ORx enable and disable timing in the 
FPGA.  

Datapath Trigger Modes 

The FPGA used with the evaluation system provides several trigger 
sources that initiate either data captures in the case of the receivers 
or data transmission in case of the transmitters.  

The trigger sources for data captures include an IMMEDIATE 
capture mode, a TDD_SM_PULSE mode, an EXT_SMA mode, 
and an ARM_ACK mode. These modes and some associated 
details are listed in Table 138.  

 

Table 138. Rx Trigger Modes and Descriptions 
RXTRIGGER Enumeration Name  Description 
IMMEDIATE Data in the Rx datapath is loaded into the FPGA memory immediately and stops when the capture is 

complete.  
TDD_SM_PULSE Data from the Rx datapath is loaded into the FPGA memory at the beginning of the frame and 

continues until the end of the capture. The sample captures are fixed to start at the beginning of the 
frame, given by TDD_SM_PULSE, but the number of samples to capture can be changed. This is the 
recommended data capture trigger.  

EXT_SMA Data from the Rx datapath is loaded into the FPGA at the rising edge of an external signal applied to the 
J68 surface-mount SMA on the ZC706 platform. The external trigger pin is configured with the 
FpgaMykonos.setupRxExtTrigPin(…) .dll command. 

ARM_ACK  Data from the Rx datapath is loaded into the FPGA memory at the onset of the RX_ENABLE_ACK 
signal from the ARM. The FPGA must know the GPIO pin assignment for the Rx1, Rx2, and/or ObsRx 
ARM ACK pins, as configured in mykonosArmGpioConfig_t, for proper data capture. This setup is 
performed with the following commands in the .dll: FpgaMykonos.setupRx1ArmAckGpio(…), 
FpgaMykonos.setupRx2ArmAckGpio(…), and FpgaMykonos.setupOrxArmAckGpio(…). 
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For the evaluation system, the field programmable gate array 
(FPGA) programming mandates that the GPIO pin assignment 
for ARM acknowledge outputs to be the same pin (that is, pin 
assignments for orx1EnableAck = orx2EnableAck = 
srxEnableAck).  

The trigger sources for data transmission include an 
IMMEDIATE transmit mode, a TDD_SM_PULSE mode, 
EXT_SMA mode, and an ARM_ACK mode. These modes and 
some associated details are listed in Table 139.  

Table 139. Tx Trigger Modes and Descriptions  
TXTRIGGER Enumeration Name Description 
IMMEDIATE The FPGA transmits data from memory immediately into the Tx datapath. 
TDD_SM_PULSE The FPGA transmits data from memory into the Tx datapath at the beginning of the frame and 

continues until all samples have been transmitted. It is important to keep the duration of the 
transmitted samples equal to one frame length because the data loops to the beginning when the 
FPGA has transmitted the last sample of the frame. The wrong number of samples can lead to looping 
unsynchronized to the beginning of the frame. 

EXT_SMA The FPGA transmits data from memory into the Tx datapath at the rising edge of an external signal 
applied to the J67 throughhole SMA on the ZC706 platform. The external trigger pin is configured 
with the FpgaMykonos.setupRxExtTrigPin(…) .dll command. 

ARM_ACK  Data from the FPGA is loaded into the Tx datapath at the onset of the Tx enable acknowledge signal 
from the ARM on the device. The FPGA must know the GPIO pin assignment for the Tx1 and/or Tx2 
ARM acknowledge pins, as configured in mykonosArmGpioConfig_t, for proper data transmission. This 
setup is performed with the following commands in the .dll: FpgaMykonos.setupTx1ArmAckGpio(…) 
and FpgaMykonos.setupTx2ArmAckGpio(…). 
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TDD Finite State Machine Class 

The .dll offers a mechanism to program configuration settings, 
enable timings, disable timings, and datapath delays for the Tx, 
Rx, and ORx channels in the field programmable gate array 
(FPGA). The TddFsmParameters_us class is a .dll features that 
sets up several variables that control the timing settings, allowing 
the user to program a variety of time division duplexed (TDD) 
uplink/downlink configuration timing on the evaluation system. 
The TDD finite state machine (FSM) is implemented on the 
FPGA to provide the Tx/Rx enable, ORX_MODE[2:0], 
ORX_TRIGGER, and EXT TRIG signals. 

A full listing of the parameters in the TddFsmParameters_us class 
and a short description is provided in the TddFsmParameters_us 
Class Details section. The five major member categories of the 
TddFsmParameters_us class are as follows:  

• Configuration settings: includes members such as 
TddSecondPtrEnable, TddLoopCount, TddFrameCount_us, 
and more. The length of the frame is defined in this region by 
the TddFrameCount_us member.  

• Primary region pointers: includes the start time and stop 
time pointers for a primary region within a frame. In this 
case, primary refers to the first event within a frame when 
a Tx/Rx/ObsRx channel is enabled. If a UL/DL frame 
configuration has two separate Tx/Rx/ObsRx enable 
events, the primary region pointers set up the first event, 
and the secondary region pointers set up the second 
event. These values must be positive and less than the 
TddFrameCount_us duration.  

• Secondary region pointers: includes the start and stop time 
pointers for a secondary region within a frame. These values 
must be positive and less than the TddFrameCount_us.  

 

• Delay values: These are not included in the FPGA 
Version 0x46000030 or earlier. The option to delay the 
datapaths relative to the Tx/Rx/ObsRx enable events will be 
included in a future release of FPGA code. Setting a delay 
value has no effect in FPGA Version 0x46000030 or earlier. 

• Other: includes pointers for the start and stop time for the 
EXT TRIG signal. The EXT TRIG can be further configured 
with the FpgaMykonos.setupTxExtTri(…) and/or 
FpgaMykonos.setupRxExtTrig(…) commands in the .dll.  

Writing new values into this class does not update the FPGA 
registers with new values. After creating an instance and 
setting TDD FSM parameters to the desired values, the 
FpgaMykonos.initTdd(…) command passes an instance of 
the class to the cmd_server to update the FPGA.  

Quick Help for Programming FPGA/Mykonos 

To summarize the setup and configuration concepts described 
in this document thus far, general strategies on how to program 
the evaluation system are provided as follows.  

• To configure the ARM pin control mode setup, GPIO pin 
assignments for ARM inputs (enable/ORX_MODE/ 
ORX_TRIGGER[2:0]) and ARM outputs (ARM ACKs): 
• From the application programming interface (API), 

first, write the desired values into the Mykonos-
ArmGpioConfig_t type data structure. Two commands 
exist to update the ARM. Table 140 depicts which 
parameters are updated using specific API commands.  

• From the delay-locked loop (DLL), first, write the 
desired values into the mykonosArmGpioConfig_t 
type data structure by using the Mykonos.init_ 
armGpioStructure(…) command. Two commands 
exist to update the ARM. Table 140 depicts which 
parameters are updated using specific DLL commands.  

Table 140. Commands to Program mykonosArmGpioConfig_t Data Structure Members to the ARM 
mykonosArmGpioConfig_t 
Parameter How to Update the ARM from the API How to Update the ARM from the DLL 
useRx2EnablePin MYKONOS_setRadioControlPinMode(…) Mykonos.setRadioControlPinMode() 
useTx2EnablePin MYKONOS_setRadioControlPinMode(…) Mykonos.setRadioControlPinMode() 
txRxPinMode MYKONOS_setRadioControlPinMode(…) Mykonos.setRadioControlPinMode() 
orxPinMode MYKONOS_setRadioControlPinMode(…) Mykonos.setRadioControlPinMode() 
orxTriggerPin MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
orxMode2Pin MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
orxMode1Pin MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
orxMode0Pin MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
rx1EnableAck MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
rx2EnableAck MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
tx1EnableAck MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
tx2EnableAck MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
orx1EnableAck MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
srxEnableAck MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
txObsSelect MYKONOS_setArmGpioPins(…) Mykonos.setArmGpioPins(…) 
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• To configure the field programmable gate array (FPGA) in 
the Mykonos evaluation system, including Tx/Rx/ORx start 
and stop primary and secondary regions, time division 
duplexed (TDD) configuration parameters, delay variables, 
and external trigger setup: 
• From the application programming interface (API), it 

is not applicable. 
• From the delay-locked loop (DLL), first, write the 

desired values into an instance of the 
TddFsmParameters_us class. Second, program the 
values to device with FpgaMykonos.initTdd_us(…) 
and passing the TddFsmParameters_us instance as the 
argument.  

• Set up the Tx trigger source as follows: 
• From the API, it is not applicable. 
• From the DLL, pass the desired trigger source into the 

FpgaMykonos.setTxTrigger(…) command. 
• Set up the Rx trigger source as follows: 

• From the API, it is not applicable. 
• From the DLL, pass the desired trigger source into the 

FpgaMykonos.setRxTrigger(…) command. 
• Set up the external trigger sources from the DLL as follows: 

• For the Tx external trigger, set up with the 
FpgaMykonos.setupTxExtTrigPin(…) command, 
which is the J67 SMA connector on the ZC706 
motherboard. 

• For the Rx external trigger, set up with the 
FpgaMykonos.setupRxExtTrigPin(…) command, 
which is the J68 SMA connector on the ZC706 
motherboard. 

 

 

 

 

 

The ORX_MODE[2:0] and ORX_TRIGGER Seen by the FPGA 

The ORX_MODE[2:0] and ORX_TRIGGER are ARM input 
signals driven by the FPGA. The FPGA must send commands 
to the appropriate GPIO pins configured in the device. The 
following two commands set up the FPGA to drive the 
ORX_MODE[2:0] and ORX_TRIGGER signals: 

• FpgaMykonos.setupFpgaGpio(…) 
• FpgaMykonos.setupFpgaOrxGpio(…) 

The first command sets the FPGA to enable the ORX_MODE[2:0] 
and ORX_TRIGGER signals from the FPGA. The second 
command assigns the pin that these signals are sent to. It is 
important that these assignment match with the Mykonos 
GPIO pin assignments for the ORX_MODE[2:0] and 
ORX_TRIGGER set in the mykonosArmGpioConfig_t data 
structure. These commands are explained in the API/DLL 
Commands for TDD Configuration section.  

Refer to the ORX_MODE and ORX_TRIGGER section for 
GPIO pin assignment constraints.  

Example TDD Script in IronPython 

The following script is an example used to configure the device 
for TDD operation in LTE UL/DL Configuration 3. This script 
does not demonstrate the steps necessary to capture Rx/ObsRx 
samples or to transmit a Tx data file. This functionality can be 
performed in the transceiver evaluation software (TES) or in 
the scripting tab itself.  

Commands related to TDD that have not been explained to this 
point are described in the API/DLL Commands for TDD 
Configuration section. 

Note that details such as file paths and TCPIP addresses may 
need to be modified to properly connect to the device. This script 
is set up for LTE Uplink/Downlink Configuration 0 (D, S, U, U, 
U, D, S, U, U, U). To achieve best performance, the timing of the 
enable pointers may need to be adjusted. Note that for the 
TddFsmParamters_us pointers, Time 0 corresponds to the 
beginning of the frame in the FPGA counter.  

Run this script after a successful program device execution.  

 

http://www.analog.com/ad9371-evaluation-software
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######################## 
#ADI Demo Python Script 
######################## 
 
#Import Reference to the DLL 
import clr 
clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\Mykonos Transceiver 
Evaluation Software\\AdiCmdServerClient.dll") 
from AdiCmdServerClient import AdiCommandServerClient 
from AdiCmdServerClient import TddFsmParameters_us 
 
#Create an Instance of the Command server client, FpgaMykonos, Mykonos, and 
TddFsmParameters_us classes 
Link = AdiCommandServerClient.Instance 
FPGA = Link.FpgaMykonos.Instance  
MYK  = Link.Mykonos.Instance  
 
#Connect to the Zynq Platform 
if(Link.hw.Connected == 1): 
    Connect = 0 
else: 
    Connect = 1 
    Link.hw.Connect("192.168.1.10", 55555) 
 
#Read the Version 
print Link.version() 
 
DISABLE = 0 
ENABLE = 1 
OUTPUT = 0 
INPUT = 1 
 
 
################################ 
###        ENABLE TDD        ### 
################################ 
 
MYK.radioOff() 
Link.hw.ReceiveTimeout = 0 
 
############## 
# FPGA SETUP # 
############## 
FPGA.disableTdd() #Disable TDD FSM in FPGA 
FPGA.gateDataTdd(ENABLE) #Enable data gating for Tx 
 
#Set FPGAs to output ORX_MODE/ORX_TRIG on GPIO pins 
FPGA.setupFpgaGpio(FPGA.GPIO_FEATURES.TDDORXMODE, OUTPUT) 
 
#Assign GPIO pins for ORX_MODE/ORX_TRIG signals 
FPGA.setupFpgaOrxGpio(FPGA.ORXGPIO_SELECT.GPIO_15, #ORX_TRIGGER 
                      FPGA.ORXGPIO_SELECT.GPIO_16, #ORX_MODE[0] 
                      FPGA.ORXGPIO_SELECT.GPIO_17, #ORX_MODE[1] 
                      FPGA.ORXGPIO_SELECT.GPIO_18) #ORX_MODE[2] 
 
#Setup ARM ACK Output Signals on FPGA side 
FPGA.setupTx1ArmAckGpio(0x80)   #GPIO 7 
FPGA.setupTx2ArmAckGpio(0x100)  #GPIO 8 
FPGA.setupRx1ArmAckGpio(0x200)  #GPIO 9 
FPGA.setupRx2ArmAckGpio(0x400)  #GPIO 10 
FPGA.setupOrxArmAckGpio(0x800)  #GPIO 11    
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#Enable ARM ACK Output Signals on FPGA 
FPGA.enableArmAckOutputs(ENABLE)         
 
#Setup FPGA TX/RX Data Path Trigger to TDD_SM_PULSE signals 
FPGA.setTxTrigger(FPGA.TXTRIGGER.TDD_SM_PULSE) 
FPGA.setRxTrigger(FPGA.RXTRIGGER.TDD_SM_PULSE) 
 
#Create instance of TDD FSM Class 
tddFsm = TddFsmParameters_us() 
 
#Set Miscellaneous TDD Settings 
tddFsm.TddLoopCount = 0 
tddFsm.TddFrameCount_us = 10000 
tddFsm.TddSecondPtrEnable = 1 
tddFsm.TddExtTrigOnPtr_us = 9900 
tddFsm.TddExtTrigOffPtr_us = 0 
 
#Set Tx Timings 
tddFsm.TddTx1OnPtr_us = 9950 
tddFsm.TddTx1OffPtr_us = 1800 
tddFsm.Tdd2ndTx1OnPtr_us = 4950 
tddFsm.Tdd2ndTx1OffPtr_us = 6800 
tddFsm.TddTx2OnPtr_us = 9950 
tddFsm.TddTx2OffPtr_us = 1800 
tddFsm.Tdd2ndTx2OnPtr_us = 4950 
tddFsm.Tdd2ndTx2OffPtr_us = 6800 
tddFsm.TddIntCalsOnPtr_us = 50 
tddFsm.TddIntCalsOffPtr_us = 1700 
tddFsm.Tdd2ndIntCalsOnPtr_us = 5050 
tddFsm.Tdd2ndIntCalsOffPtr_us = 6700 
 
#tddFsm.TddTx1DataPathDel_us = 40 
#tddFsm.TddTx2DataPathDel_us = 40 
#tddFsm.Tdd2ndTx1DataPathDel_us = 40 
#tddFsm.Tdd2ndTx2DataPathDel_us = 40 
 
#Set Rx Timings 
tddFsm.TddRx1OnPtr_us = 1800 
tddFsm.TddRx1OffPtr_us = 4950 
tddFsm.Tdd2ndRx1OnPtr_us = 6800 
tddFsm.Tdd2ndRx1OffPtr_us = 9950 
tddFsm.TddRx2OnPtr_us = 1800 
tddFsm.TddRx2OffPtr_us = 4950 
tddFsm.Tdd2ndRx2OnPtr_us = 6800 
tddFsm.Tdd2ndRx2OffPtr_us = 9950 
 
#tddFsm.TddRx1DataPathDel_us = 40 
#tddFsm.TddRx2DataPathDel_us = 40 
#tddFsm.Tdd2ndRx1DataPathDel_us = 40 
#tddFsm.Tdd2ndRx2DataPathDel_us = 40 
 
#Load Tdd Fsm parameters into FPGA 
FPGA.initTdd_us(tddFsm) 
 
#Setup the Tx/Rx External Trigger Output (J67/J68 SMA on Zynq) 
FPGA.setupTxExtTrigPin(FPGA.FPGA_TRIGGER_DIRECTION.FPGA_OUTPUT, 
                       FPGA.FPGA_EXT_TRIGGER_SOURCE.TDD_FSM_TRIG) 
FPGA.setupRxExtTrigPin(FPGA.FPGA_TRIGGER_DIRECTION.FPGA_OUTPUT, 
                       FPGA.FPGA_EXT_TRIGGER_SOURCE.TDD_FSM_TRIG) 
 
############# 
# ARM SETUP # 
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############# 
useRx2EnablePin = ENABLE 
useTx2EnablePin = ENABLE 
txRxPinMode = ENABLE 
orxPinMode = ENABLE 
orxTriggerPin = 15 
orxMode2Pin = 18 
orxMode1Pin = 17 
orxMode0Pin = 16 
rx1EnableAck = (9 | 0x10) #OR the pin assignment with 0x10 to make the pin an output pin.  
rx2EnableAck = (10 | 0x10) 
tx1EnableAck = (7 | 0x10) 
tx2EnableAck = (8 | 0x10) 
orx1EnableAck = (11 | 0x10) 
orx2EnableAck = (11 | 0x10) 
srxEnableAck = (11 | 0x10) 
txObsSelect = 0 
 
MYK.init_armGpioStructure(useRx2EnablePin, useTx2EnablePin, 
    txRxPinMode, orxPinMode, orxTriggerPin, orxMode2Pin, orxMode1Pin,  
    orxMode0Pin, rx1EnableAck, rx2EnableAck, tx1EnableAck, tx2EnableAck, 
    orx1EnableAck, orx2EnableAck, srxEnableAck, txObsSelect) 
 
FPGA.enableArmAckOutputs(ENABLE) 
MYK.setArmGpioPins() 
MYK.setRadioControlPinMode() 
 
 
########################################## 
##         Write Tx Data To RAM         ## 
########################################## 
 
FPGA.stopTxData() 
FPGA.setTxTransmitMode(1) #Set Tx into continuous data transmit mode in data path 
FPGA.enableTxDataPaths(FPGA.TX_DATAPATH.TX1_TX2) 
FPGA.startTxData() 
MYK.radioOn() 
FPGA.enableTdd() 
 
#Disconnect from the Zynq Platform 
if(Connect == 1): 
    Link.hw.Disconnect() 
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API/DLL COMMANDS FOR TDD CONFIGURATION 
This section provides a list of functions that can assist in 
configuration of time division duplexed (TDD) mode. Note that 
the MYKONOS_ prefix implies that the function described 
exists in the Mykonos application programming interface 
(API). The FpgaMykonos. or Mykonos. prefix implies that the 
command exists in the AdiCommandServerClient.dll. All 
functions in the API have a .dll counterpart.  

TDD Specific Commands in the FPGA 

FpgaMykonos.disableTdd() 

• Purpose: This command disables the field programmable 
gate array (FPGA) TDD finite state machine (FSM).  

• Arguments: None. 

FpgaMykonos.gateDataTdd(byte enable) 

• Purpose: This command gates zeros into the datapath to 
the JESD204B framer until the TDD module is enabled, if 
the Tx RAM is connected to the Tx datapath. This command 
is useful before and after the TDD module is enabled.  

• Argument enable: set enable to 1 to enable TDD data 
gating, and set enable to 0 to disable TDD data gating. 

FpgaMykonos.initTdd_us(byte rw, ref 
TddFsmParameters_us tddParameters) 

• Purpose: This command sets up the FPGA registers with the 
timing information set by the TddFsmParameters_us class. 
This class contains the start time and stop time for the 
primary and secondary pointers of a TDD frame, 
secondary pointer enable, continuous capture and 
transmit, and several other TDD FSM parameters.  

• Argument rw: this is a read/write (0 = read, 1 = write) 
control. If read is selected, the FPGA registers values 
corresponding to the TDD FSM parameters are loaded into 
the tddFsmParameters_us structure. If write is selected, the 
FPGA registers are written to with the values in the 
tddFsmParameters_us structure.  

• Argument tddParameters: see the TddFsmParameters_us 
Class Details section for more information.  

GPIO Specific Commands 

FpgaMykonos.setupFpgaGpio(GPIO_FEATURES 
configSetting, UInt32 gpioDirection) 

• Purpose: This command sets the pin direction (input or 
output) of the GPIO pins.  

• Argument gpioDirection: This argument uses the lower 
19 bits to individually map to the GPIO pins, 0 through 18. 
Bit 0 corresponds to GPIO_0, Bit 1 corresponds to 
GPIO_1, and so on. Setting a bit sets the corresponding 
GPIO pin as an input. 
 
 

• Argument configSetting: Several configuration settings are 
available. These modes can be enabled simultaneously so 
that the enumeration type GPIO_FEATURES provides 
combinations of the modes listed as follows. In the .dll 
layer, the available GPIO modes are as follows: 
• SPI2 is over GPIO[4:0]. 
• ORX_TRIGGER and ORX_MODE interface 

enable. The user can define GPIO pins indicating 
the ORX_MODE over three pins set by the 
setupFpgaOrxGpio(…) command. The 
setupFpgaOrxGpio(…) also sets a GPIO pin for 
the ORX_TRIGGER signal.  

• HSCP mode over GPIO[17:12] and GPIO[8:5]. 
• TESTPIN mode. 

FpgaMykonos.setupFpgaOrxGpio(ORXGPIO_SELECT 
gpioOrxTrig, ORXGPIO_SELECT gpioOrxMode_0, 
ORXGPIO_SELECT gpioOrxMode_1, 
ORXGPIO_SELECT gpioOrxMode_2) 

• Purpose: Set GPIO pins for the ORX_MODE and 
ORX_TRIGGER signals. 

• Argument gpioOrxTrig: Designates a GPIO pin for the 
ORX_TRIGGER signal. ORX_TRIGGER goes high for 
~1 µs at the start and stop time of an ORX_MODE.  

• Arguments gpioOrxMode_0, gpioOrxMode_1, 
gpioOrxMode_2: Designates GPIO pins for the 3-bit word 
describing the active ObsRx mode. See Table 136 for 
ORX_MODES available and The ORX_MODE[2:0] and 
ORX_TRIGGER Seen by the FPGA section for GPIO 
restrictions.  

FpgaMykonos.enableArmAckOutputs(byte enableArmAck
Output) 

• Purpose: This command enables or disables the ARM 
acknowledge signal output sent to the GPIO pins specified 
by the setup commands (setupTx1ArmAckGpio(…), 
setupTx2ArmAckGpio(…), and so on). 

• Argument enableArmAckOutput: 0 = disable, and 1 = 
enable.  

FpgaMykonos.setupTx1ArmAckGpio(UInt32 tx1ArmAck
Gpio) 

• Purpose: This command sets up a GPIO pin to output 
the ARM acknowledge signal for TX1_ENABLE_ACK. 
The signal does not appear on GPIO until the 
enableArmAckOutputs(…) command runs.  

• Argument tx1ArmAckGpio: Sets the GPIO output pin for 
the TX1_ENABLE_ACK signal. The argument is a 19-bit 
[18:0] bit mask aligned for each GPIO pin.  
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FpgaMykonos.setupTx2ArmAckGpio(UInt32 tx2ArmAck
Gpio) 

• Purpose: This command sets up a GPIO pin to output 
the ARM acknowledge signal for TX2_ENABLE_ACK. 
The signal does not appear on GPIO until the 
enableArmAckOutputs(…) command is run.  

• Argument tx2ArmAckGpio: Sets the GPIO output pin for 
the TX2_ENABLE_ACK signal. The argument is a 19-bit 
[18:0] bit mask aligned for each GPIO pin.  

FpgaMykonos.setupRx1ArmAckGpio(UInt32 rx1ArmAck
Gpio) 

• Purpose: This command sets up a GPIO pin to output 
the ARM acknowledge signal for RX1_ENABLE_ACK. 
The signal does not appear on GPIO until the 
enableArmAckOutputs(…) command runs.  

• Argument rx1ArmAckGpio: Sets the GPIO output pin for 
the RX1_ENABLE_ACK signal. The argument is a 19-bit 
[18:0] bit mask aligned for each GPIO pin.  

FpgaMykonos.setupRx2ArmAckGpio(UInt32 rx2ArmAck
Gpio) 

• Purpose: This command sets up a GPIO pin to output 
the ARM acknowledge signal for RX2_ENABLE_ACK. 
The signal does not appear on GPIO until the 
enableArmAckOutputs(…) command runs.  

• Argument rx2ArmAckGpio: Sets the GPIO output pin for 
the RX2_ENABLE_ACK signal. Argument is a 19-bit 
[18:0] bit mask aligned for each GPIO pin.  

FpgaMykonos.setupOrxArmAckGpio(UInt32 orxArmAck
Gpio) 

• Purpose: This command sets up a GPIO pin to output 
the ARM acknowledge signal for ORX_ENABLE_ACK. 
The signal does not appear on GPIO until the 
enableArmAckOutputs(…) command runs. Note that all 
ObsRx channels acknowledge signal (ORx1, ORx2, SnRx) 
share an acknowledge pin.  

• Argument orxArmAckGpio: Sets the GPIO output pin for 
the TX1_ENABLE_ACK signal. Argument is a 19-bit 
[18:0] bit mask aligned for each GPIO pin.  

Mykonos.init_armGpioStructure(byte useRx2EnablePin, 
byte useTx2EnablePin, byte txRxPinMode, byte 
orxPinMode, byte orxTriggerPin, byte orxMode2Pin, byte 
orxMode1Pin, byte orxMode0Pin, byte rx1EnableAck, byte 
rx2EnableAck, byte tx1EnableAck, byte tx2EnableAck, byte 
orx1EnableAck, byte orx2EnableAck, byte srxEnableAck) 

• Purpose: This command writes to the mykonos-
ArmGpioConfig_t data structure in the Mykonos 
application programming interface (API). This command 
also has an overload function providing read/write access 
to the mykonosArmGpioConfig_t data structure. 

• Arguments: See Mykonos API .chm file on 
mykonosArmGpioConfig_t. 

Mykonos.setArmGpioPins(…) 

• Purpose: Program register values to Mykonos based on the 
current values stored in the mykonosArmGpioConfig_t 
data structure. This does not write the entirety of the 
structure, only the following data structure members: 
orxTriggerPin, orxMode2Pin, orxMode1Pin, orxMode0Pin, 
rx1EnableAck, rx2EnableAck, tx1EnablePin, tx2EnableAck, 
orx1EnableAck, orx2EnableAck, srxEnableAck, and 
txObsSelect. This function also exists in the API as 
MYKONOS_setArmGpioPins(…). 

• Arguments: none. 

Mykonos.setRadioControlPinMode(…) 

• Purpose: Program register values to Mykonos based on the 
current values stored in the mykonosArmGpioConfig_t 
data structure. This does not write the entirety of the 
structure, only the following data structure members: 
useRx2EnablePin, useTx2EnablePin, txRxPinMode, and 
orxPinMode. This function also exists in the API 
MYKONOS_setRadioControlPinMode(…). 

• Arguments: none. 

Trigger Specific Commands 

FpgaMykonos.setRxTrigger(RXTRIGGER rxTrig) 
• Purpose: The Rx trigger determines what event triggers the 

receiver datapath to move data into the field programmable 
gate array (FPGA). Table 138 contains descriptions of the 
available RXTRIGGER enumerations in the FpgaMykonos 
class.  

• Argument rxTrig: Refer to Table 138. 

FpgaMykonos.setTxTrigger(TXTRIGGER txTrig) 

• Purpose: The Tx trigger determines what event triggers the 
beginning of Tx data transmission.  

• Argument txTrig: Refer to Table 139.  

TddFsmParameters_us Class Details 

This section provides an explanation for the members of the 
TddFsmParameters_us class. Primary and secondary region 
timing are relative to the beginning of a frame.  

Configuration Options 

The configuration options are as follows: 

• TddSecondPtrEnable: enables the second pointer regions.  
• TddLoopCount: loop count determines the number of 

frames. 0 = continuous loop mode, 1 = one total frame, 2 = 
two total frames, and so on, 4-bit value.  

• TddContRxCapture: This value is ignored. Continuous 
sample capture is default.  

• TddContTxTransmit: This value is ignored. Continuous 
sample transmit is default. 

• TddSyncExtTrig: sync frames to the external sync trigger.  
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• TddEnableSnRxPtr: enables pointers for SnRxA, SnRxB, 
and SnRxC regions. 

• TddEnableOrx1SnifferLoPtrs: enables pointers for ORx1 
with SnRx local oscillator (LO) input to the mixer. 

• TddEnableOrx2SnifferLoPtrs: enables pointers for ORx2 
with SnRx LO input to the mixer. 

Primary Region Pointers 

The primary region pointers include the following: 

• TddFrameCount_us: duration of the frame. 
• TddTx1OnPtr_us: start time of primary Tx1 transmit 

region. Must be less than the TddFrameCount_us value.  
• TddTx1OffPtr_us: stop time of primary Tx1 transmit 

region. Must be less than the TddFrameCount_us value. 
• TddTx2OnPtr_us: start time of primary Tx2 transmit 

region. Must be less than the TddFrameCount_us value. 
• TddTx2OffPtr_us: stop time of primary Tx2 transmit 

region. Must be less than the TddFrameCount_us value. 
• TddRx1OnPtr_us: start time of primary Rx1 receive 

region. Must be less than the TddFrameCount_us value. 
• TddRx1OffPtr_us: start time of primary Rx1 receive 

region. Must be less than the TddFrameCount_us value. 
• TddRx2OnPtr_us: start time of primary Rx2 receive 

region. Must be less than the TddFrameCount_us value. 
• TddRx2OffPtr_us: start time of primary Rx2 receive 

region. Must be less than the TddFrameCount_us value. 
• TddOrx1TxLoOnPtr_us: start time of primary ORx1 

with Tx LO receive region. Must be less than the 
TddFrameCount_us value. 

• TddOrx1TxLoOffPtr_us: stop time of primary ORx1 
with Tx LO receive region. Must be less than the 
TddFrameCount_us value. 

• TddOrx2TxLoOnPtr_us: start time of primary ORx2 
with Tx LO receive region. Must be less than the 
TddFrameCount_us value. 

• TddOrx2TxLoOffPtr_us: stop time of primary ORx2 
with Tx LO receive region. Must be less than the 
TddFrameCount_us value. 

• TddIntCalsOnPtr_us: start time of the primary ORx 
internal calibrations receive region. Must be less than the 
TddFrameCount_us value.  

• TddIntCalsOffPtr_us: start time for the primary ObsRx 
internal calibrations receive region. Must be less than the 
TddFrameCount_us value. 

• TddSnRxOnPtr_us: start time for the SnRx (A, B, or C) 
receive region. Must be less than the TddFrameCount_us 
value. 

• TddSnRxOffPtr_us: stop time for the SnRx (A, B, or C) 
receive region. Must be less than the TddFrameCount_us 
value. 

• TddOrx1SnifferLoOnPtr_us: start time for the ORx1 
with SnRx LO receive region. Must be less than the 
TddFrameCount_us value. 

• TddOrx1SnifferLoOffPtr_us: stop time for the ORx1 
with SnRx LO receive region. Must be less than the 
TddFrameCount_us value. 

• TddOrx2SnifferLoOnPtr_us: Start time for the ORx2 
with SnRx LO receive region. Must be less than the 
TddFrameCount_us value. 

• TddOrx2SnifferLoOffPtr_us: Stop time for the ORx2 
with SnRx LO receive region. Must be less than the 
TddFrameCount_us value. 

Secondary Region Pointers 

The secondary region pointers include the following: 

• Tdd2ndTx1OnPtr_us: start time of the secondary Tx1 
transmit region. Must be less than the TddFrameCount_us 
value.  

• Tdd2ndTx1OffPtr_us: stop time of the secondary Tx1 
transmit region. Must be less than the TddFrameCount_us 
value. 

• Tdd2ndTx2OnPtr_us: start time of the secondary Tx2 
transmit region. Must be less than the TddFrameCount_us 
value. 

• Tdd2ndTx2OffPtr_us: stop time of the secondary Tx2 
transmit region. Must be less than the TddFrameCount_us 
value. 

• Tdd2ndRx1OnPtr_us: start time of the secondary Rx1 
receive region. Must be less than the TddFrameCount_us 
value. 

• Tdd2ndRx1OffPtr_us: stop time of the secondary Rx1 
receive region. Must be less than the TddFrameCount_us 
value. 

• Tdd2ndRx2OnPtr_us: start time of the secondary Rx2 
receive region. Must be less than the TddFrameCount_us 
value. 

• Tdd2ndRx2OffPtr_us: stop time of the secondary Rx2 
receive region. Must be less than the TddFrameCount_us 
value. 

• Tdd2ndOrx1TxLoOnPtr_us: start time of the secondary 
ORx1 with Tx LO receive region. Must be less than the 
TddFrameCount_us value. 

• Tdd2ndOrx1TxLoOffPtr_us: stop time of the secondary 
ORx1 with Tx LO receive region. Must be less than the 
TddFrameCount_us value. 

• Tdd2ndOrx2TxLoOnPtr_us: start time of the secondary 
ORx2 with Tx LO receive region. Must be less than the 
TddFrameCount_us value. 

• Tdd2ndOrx2TxLoOffPtr_us: Stop time of the secondary 
ORx2 with Tx LO receive region. Must be less than the 
TddFrameCount_us value. 

• Tdd2ndIntCalsOnPtr_us: start time for the secondary 
ObsRx internal calibrations receive region. Must be less 
than the TddFrameCount_us value. 
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• Tdd2ndIntCalsOffPtr_us: stop time for the secondary 
ObsRx internal calibrations receive region. Must be less 
than the TddFrameCount_us value. 

Delay Values (Secondary Datapath Delays (in Gray Blocks) 
are Ignored in the TDD FSM) 

The delay values (secondary datapath delays are ignored in the 
time division duplexed, TDD, finite state machine, FSM) 
include the following: 

• TddTx1DataPathDel_us: Tx1 primary start and stop time 
delay. Can be positive or negative. Maximum/minimum 
delay is abs(215/(TxLaneRate_MHz/40)). 

• TddTx2DataPathDel_us: Tx2 primary start and stop time 
delay. Can be positive or negative. Maximum/minimum 
delay is abs(215/(TxLaneRate_MHz/40)). 

• TddRx1DataPathDel_us: Rx1 primary start and stop time 
delay. Can be positive or negative. Maximum/minimum 
delay is abs(215/(TxLaneRate_MHz/40)). 

• TddRx2DataPathDel_us: Rx2 primary start and stop time 
delay. Can be positive or negative. Maximum/minimum 
delay is abs(215/(TxLaneRate_MHz/40)). 

• TddOrx1TxLoDataPathDel_us: ORx1 with Tx local oscillator 
(LO) primary start and stop time delay. Can be positive or 
negative. Maximum/minimum delay is 
abs(215/(TxLaneRate_MHz/40)). 

• TddOrx2TxLoDataPathDel_us: ORx2 with Tx LO primary 
start and stop time delay. Can be positive or negative. 
Maximum/minimum delay is abs(215/(TxLaneRate_MHz/40)). 

• Tdd2ndTx1DataPathDel_us: Tx1 secondary start and stop 
time delay. Can be positive or negative. Maximum/ 
minimum delay is abs(215/(TxLaneRate_MHz/40)). 

• Tdd2ndTx2DataPathDel_us: Tx2 secondary start and stop 
time delay. Can be positive or negative. Maximum/ 
minimum delay is abs(215/(TxLaneRate_MHz/40)). 

• Tdd2ndRx1DataPathDel_us: Rx1 secondary start and stop 
time delay. Can be positive or negative. Maximum/ 
minimum delay is abs(215/(TxLaneRate_MHz/40)). 

• Tdd2ndRx2DataPathDel_us: Rx2 secondary start and stop 
time delay. Can be positive or negative. Maximum/ 
minimum delay is abs(215/(TxLaneRate_MHz/40)). 

• Tdd2ndOrx1TxLoDataPathDel_us: ORx1 with Tx LO 
secondary start and stop time delay. Can be positive or 
negative. Maximum/minimum delay is 
abs(215/(TxLaneRate_MHz/40)). 

• Tdd2ndOrx2TxLoDataPathDel_us: ORx2 with Tx LO 
secondary start and stop time delay. Can be positive or 
negative. Maximum/minimum delay is 
abs(215/(TxLaneRate_MHz/40)). 

• TddSnRxDataPathDel_us: SnRx (A, B, or C) secondary 
start and stop time delay. Can be positive or negative. 
Maximum/minimum delay is 
abs(215/(TxLaneRate_MHz/40)). 

• TddOrx1SnifferLoPathDel_us: ORx1 with SnRx LO 
secondary start and stop time delay. Can be positive or 
negative. Maximum/minimum delay is 
abs(215/(TxLaneRate_MHz/40)). 

• TddOrx2SnifferLoPathDel_us: ORx2 with SnRx LO 
secondary start and stop time delay. Can be positive or 
negative. Maximum/minimum delay is 
abs(215/(TxLaneRate_MHz/40)). 

Other Values 

Other values include the following: 

• TddExtTrigOnPtr_us: start time for the external trigger 
signal. The rising edge of the external trigger signal can 
indicate the beginning of a frame if set to 0.  

• TddExtTrigOffPtr_us: stop time for the external trigger 
signal. 

mykonosArmGpioConfig_t Data Structure Details 

The mykonosArmGpioConfig_t data structure contains the 
following members. They are all data type uint8_t.  

Configuration Modes 

Configuration modes include the following: 

• useRx2EnablePin: 0 = RX1_ENABLE controls Rx1 and 
Rx2. 1 = separate RX1_ENABLE/RX2_ENABLE pins. 

• useTx2EnablePin: 0 = TX1_ENABLE controls TX1 and 
TX2. 1 = separate TX1_ENABLE/TX2_ENABLE pins. 

• txRxPinMode: 0 = ARM command mode. 1 = pin mode to 
power up Tx/Rx chains. 

• orxPinMode: 0 = ARM command mode. 1 = pin mode to 
power up ORx receiver. 

Mykonos ARM Input GPIO Pins (Only Valid if 
orxPinMode = 1) 

Mykonos ARM input GPIO pins (only valid if orxPinMode = 1) 
includes the following:  

• orxTriggerPin: Select desired GPIO pin (valid 0 to 18). 
• orxMode2Pin: Select desired GPIO pin (valid 0 to 18). 
• orxMode1Pin: Select desired GPIO pin (valid 0 to 18). 
• orxMode0Pin: Select desired GPIO pin (valid 0 to 18). 
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Mykonos ARM Output GPIO Pins (Always Available, 
Even When Pin Mode Not Enabled) 

Mykonos ARM output GPIO pins (always available, even when 
pin mode is not available) include the following: 

• rx1EnableAck: select desired GPIO pin (0 to 15), 
[4] = output enable. 

• rx2EnableAck: select desired GPIO pin (0 to 15), 
[4] = output enable. 

• tx1EnableAck: select desired GPIO pin (0 to 15), 
[4] = output enable. 

• tx2EnableAck: select desired GPIO pin (0 to 15), 
[4] = output enable. 

• orx1EnableAck: select desired GPIO pin (0 to 15), 
[4] = output enable. 

• orx2EnableAck: select desired GPIO pin (0 to 15), 
[4] = output enable. 

• srxEnableAck: select desired GPIO pin (0 to 15), 
[4] = output enable. 

• txObsSelect: select desired GPIO pin (0 to 15), [4] = output 
enable. When two Tx are used with only one ORx input, 
this GPIO tells the baseband processor (BBP) which Tx 
channel is active for calibrations, so that the BBP can route 
the correct radio frequency (RF) Tx path into the single 
ORx input. 
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GENERAL-PURPOSE INPUT/OUTPUT (GPIO) CONFIGURATION 
The device provides 19 general-purpose input/output (GPIO) 
capable signals that can be used for a variety of control functions. 
These signals can be configured using the transceiver evaluation 
software (TES) to demonstrate the available configurations. This 
user guide refers to these signals as GPIO_x, where x is the GPIO 
number 0 through 18. All 19 signals have output buffers powered 
from the VDD_IF domain. The voltage range for these outputs 
is the same as the VDD_IF supply: 1.8 V to 2.5 V. 

In addition to being used as general-purpose control signals, 
certain GPIO pins can be used as real-time control signals that 
provide operational details from the device to the baseband 
processor (BBP) when configured as outputs, enabling transceiver 
performance monitoring in different situations. The application 

programming interface (API) functions created to manage this 
block allow the user to configure pins as inputs or outputs for 
specific functions. This section describes the GPIO signals and 
their behavior in detail, while also describing how to program 
the device using the API functions so that the desired signals 
are available on the appropriate pins.  

Figure 93 outlines different functionalities that can be enabled 
in the device and then controlled using the GPIO interface. Not 
all functionalities can be enabled at the same time. Use the TES 
to preconfigure API structures, ensuring that the desired 
combination is possible, and that there are no conflicts on the 
GPIO interface.  
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Figure 93. Overview of the GPIO Modes of Operation 
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GPIO OPERATION 
Figure 94 outlines the flow of events to follow while configuring 
the GPIO in a desired configuration. In general, all general-
purpose input/output (GPIO) configuring can be performed in 
the radio on or radio off state, except ARM GPIO mode. ARM 

GPIO mode can only be configured in the radio off state. Use 
the transceiver evaluation software (TES) to set member values for 
all GPIO structures, ensuring that there is no conflict among the 
different GPIO functionalities.  
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Figure 94. GPIO Interface Configuration and Control Flowchart 

http://www.analog.com/ad9371-evaluation-software


AD9371/AD9375 System Development User Guide UG-992 
 

Rev. B | Page 197 of 360 

API Description 

As shown in Figure 93, there are many functionalities available 
that can be enabled and to interact with the baseband processor 
(BBP) over the general-purpose input/output (GPIO) interface. 
Two separate crosspoint switches and one buffer must be 
configured properly to enable a particular functionality. The 
application programming interface (API) package includes 
functions that can configure all blocks to desired states. The 
following sections contain general API functions and short 
descriptions of their functionalities.  

MYKONOS_setupGpio 
mykonosGpioErr_t 
MYKONOS_setupGpio(mykonosDevice_t *device) 

This function sets the GPIO configuration registers. It 
configures the pin direction for each GPIO, as well as the 
crosspoints. This function relies on the correct settings of the 
device → auxIo → gpio structure members. An overview of this 
structure follows:  

 

typedef struct 
{ 
    uint32_t  gpioOe;                     /*!< Output Enable per low voltage GPIO pin 
(1=output, 0=input) */ 
    mykonosGpioMode_t  gpioSrcCtrl3_0;    /*!< Mode for low voltage GPIO[3:0] pins */ 
    mykonosGpioMode_t  gpioSrcCtrl7_4;    /*!< Mode for low voltage GPIO[7:4] pins */ 
    mykonosGpioMode_t  gpioSrcCtrl11_8;   /*!< Mode for low voltage GPIO[11:8] pins */ 
    mykonosGpioMode_t  gpioSrcCtrl15_12;  /*!< Mode for low voltage GPIO[15:12] pins */ 
    mykonosGpioMode_t  gpioSrcCtrl18_16;  /*!< Mode for low voltage GPIO[18:16] pins */ 
} mykonosGpioLowVoltage_t; 
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The gpioOe function controls configuration of the I/O buffer 
shown in Figure 93. The gpioSrcCtrlNN_nn function controls 
the configuration of I/O Crosspoint 1, as shown in Figure 93. 
The values for gpioSrcCtrlNN_nn are as follows: 

• GPIO_MONITOR_MODE. This value allows a choice of 
debug signals to output from the device to monitor the state 
of the device. See the Monitor Output section for more details. 

• GPIO_BITBANG_MODE—(manual mode). This 
application programming interface (API) function sets the 
output pin levels and reads the input pin levels. See the 
GPIO Manual Mode section for more details. 

• GPIO_ARM_OUT_MODE. This value allows the internal 
ARM processor to output on the GPIO pins. See the ARM 
GPIO Interface section for more details. 

• GPIO_SLICER_OUT_MODE. This value assigns the slicer 
active configuration to the GPIO output pins. See the ARM 
GPIO Interface section for more details. 

Use the transceiver evaluation software (TES) to set member 
values of this structure, which ensures that there are no conflicts 
with other GPIO functions.  

MYKONOS_setGpioOe 
mykonosGpioErr_t 

MYKONOS_setGpioOe(mykonosDevice_t 
*device, uint32_t gpioOutEn, uint32_t 
gpioUsedMask) 

This is a helper function called by the MYKONOS_setupGpio() 
function (this helper function must not be called by the user). 

This function sets the GPIO direction given by the passed 
parameter. This direction can be either output or input. The 
gpioUsedMask parameter allows the function to affect only the 
GPIO pins of interest. 

Parameters 

• gpioOutEn: The valid range for this variable is from 0x0 to 
0x07FFFF. Each bit represents the corresponding GPIO pin 
(Bit 0 represents GPIO_0, Bit 1 represents GPIO_1, and so 
on). The direction of the input buffer is set by each bit 
value: 0 indicates input, and 1 indicates output. 

• gpioUsedMask: This parameter is the mask used to control 
which bits are set/cleared. If a mask bit = 1, that bit is 
modified by the value in GPIOOUTEN. 

MYKONOS_getGpioOe 
mykonosGpioErr_t 

MYKONOS_getGpioOe(mykonosDevice_t 
*device, uint32_t *gpioOutEn) 

This function reads back the current status of the GPIO direction 
set in the device. The direction can be either output or input. 
The function parameter returns a bit per GPIO pin where 1 
indicates output and 0 indicates input  

Parameters 

• *gpioOutEn: This parameter is a pointer to the data to be 
returned with the output enable GPIO pins. 

MYKONOS_setGpioSourceCtrl 
mykonosGpioErr_t 

MYKONOS_setGpioSourceCtrl(mykonosDevice_t 
*device, uint32_t gpioSrcCtrl) 

This is a helper function called by the MYKONOS_setupGpio() 
function (the helper function must not be called by the user).  

This function configures crosspoints for different GPIO 
functionality. This function only affects the GPIO pins that have 
their output enable direction set by the MYKONOS_getGpioOe() 
function as outputs. 

Parameters 

• gpioSrcCtrl: This parameter is a nibble-based source 
control, and it is a 32-bit value containing five nibbles that 
set the source control. Use the TES to generate correct 
settings for a desired configuration.  

MYKONOS_getGpioSourceCtrl 
mykonosGpioErr_t 

MYKONOS_getGpioSourceCtrl(mykonosDevice_t 
*device, uint32_t *gpioSrcCtrl) 

This function reads back the current status of the GPIO source 
control for different GPIO functionality.  

Parameters 

• *gpioSrcCtrl: This parameter is a nibble-based source 
control, and it is a 32-bit value containing five nibbles that 
represent the current settings of the source control 
(crosspoint configuration). 

MYKONOS_setGpioDrv 
mykonosGpioErr_t 

MYKONOS_setGpioDrv(mykonosDevice_t 
*device, mykonosGpioSelect_t gpioDrv) 

This function configures the drive strength of each GPIO. This 
function only affects the GPIO pins that have their OE direction 
set by the MYKONOS_getGpioOe() function as outputs.  

Parameters 

• gpioDrv: This parameter indicates which GPIO is to be 
selected to set its drive strength. If the bit in gpioDrv 
corresponds to particular a GPIO is set to 0, the drive 
strengths of this GPIO is set as described in the data sheet. 
If a bit in gpioDrv corresponds to a particular GPIO is set 
to 1, the drive strengths of this GPIO is doubled, compare 
to the description in the data sheet. The valid range of this 
parameter is from 0x00000 to 0x7FFFF. There are 
limitations for the way drive strength can be configured. 
Table 141 outlines these limitations in the configuration 
flexibility.  

The range of GPIO pins from GPIO_8 to GPIO_17 can only 
be selected in pairs. Setting one of the corresponding bits 
automatically selects the other one, meaning, for example, if it is 
required to double the drive strength for GPIO_17, the drive 
strength is also doubled for GPIO_16, and so on. 
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Table 141. GPIO Configuration Limitations—gpioDrv 
GPIO Pin Corresponding Bits in the gpioDrv Parameter 
GPIO_0  xxx xxxx xxxx xxxx xxxN 
GPIO_1 xxx xxxx xxxx xxxx xxNx 
… xxx xxxx xxxx xNNN NNxx 
GPIO_7 xxx xxxx xxxx Nxxx xxxx 
GPIO_8 xxx Nxxx xxxN xxxx xxxx 
GPIO_9 xxx xxxx xNNx xxxx xxxx 
GPIO_10 xxx xxxx xNNx xxxx xxxx 
GPIO_11 xxx xxxN Nxxx xxxx xxxx 
GPIO_12 xxx xxxN Nxxx xxxx xxxx 
GPIO_13 xxx xNNx xxxx xxxx xxxx 
GPIO_14 xxx xNNx xxxx xxxx xxxx 
GPIO_15 xxx Nxxx xxxN xxxx xxxx 
GPIO_16 xNN xxxx xxxx xxxx xxxx 
GPIO_17 xNN xxxx xxxx xxxx xxxx 
GPIO_18 Nxx xxxx xxxx xxxx xxxx 

 

MYKONOS_getGpioDrv 
mykonosGpioErr_t 

MYKONOS_getGpioDrv(mykonosDevice_t 
*device, mykonosGpioSelect_t *gpioDrv) 

This function reads back the current status of the GPIO drive 
strength setting, set by the MYKONOS_setGpioDrv() function.  

Parameters 

• *gpioDrv: This parameter is a pointer to the data to be 
returned with the current GPIOs drive strength setting. 
Refer to the MYKONOS_setGpioDrv() function 
description for bit field interpretation. 
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MYKONOS_setGpioSlewRate 
mykonosGpioErr_t 

MYKONOS_setGpioSlewRate(mykonosDevice_t 
*device, mykonosGpioSelect_t gpioSelect, 
mykonosGpioSlewRate_t slewRate) 

This function configures the slew rate of the selected GPIO. 
This function only affects the GPIO pins that have their output 
enable direction set by the MYKONOS_getGpioOe() function 
as outputs.  

Parameters 

• gpioSelect: This parameter indicates which GPIO is to be 
selected to set its slew rate. If the bit in gpioSelect that 
corresponds to a particular GPIO is set to 0, its slew rate 
does not change. If the bit in gpioSelect that corresponds to 
a particular GPIO is set to 1, its slew rate changes to the 
value selected by the slewRate parameter. The valid range 
for this parameter is from 0x00000 to 0x7FFFF. There are 
limitations in the way that GPIO can be selected for its 
slew rate settings. Table 142 outlines these limitations in 
the configuration flexibility. 

• slewRate: This parameter contains information of slew rate 
that to be applied to the GPIO selected using the gpioSelect 
parameter.The valid slew rate settings are given by the 
enumeration type mykonosGpioSlewRate_t. 
• MYK_SLEWRATE_NONE—lower slew rate for the 

selected GPIO. 
• MYK_SLEWRATE_LOW—low slew rate for the 

selected GPIO. 
• MYK_SLEWRATE_MEDIUM—medium slew rate for 

the selected GPIO. 
• MYK_SLEWRATE_HIGH—high slew rate for the 

selected GPIO  

The GPIO pins from GPIO_8 to GPIO_17 can only be selected 
in pairs. Setting one bit automatically selects the other one. For 
example, if it is required to set the slew rate for GPIO_17, the 
same slew rate is also applied for GPIO_16, and so on. 

MYKONOS_getGpioSlewRate 
mykonosGpioErr_t 

MYKONOS_getGpioSlewRate(mykonosDevice_t 
*device, mykonosGpioSelect_t gpioSelect, 
mykonosGpioSlewRate_t *slewRate) 

This function reads back the current status of the GPIO slew 
rate setting set by the MYKONOS_setGpioSlewRate() function.  

Parameters 

• gpioSelect: This parameter indicates which GPIO is 
selected to read back its programmed slew rate settings 
Each bit in gpioSelect corresponds to a particular GPIO. 
GPIO_0 is selected by Bit 0, GPIO_1 is selected by Bit 1, 
and so on. Setting a bit to 1 selects the corresponding 
GPIO. Only a single GPIO can be selected at one time. The 
valid range on this parameter is from 0x00000 to 0x7FFFF.  

• *slewRate: This parameter is a pointer to the data to be 
returned with the current slew rate programmed for the 
GPIO selected by the gpioSelect parameter. Refer to the 
MYKONOS_setGpioSlewRate() function for a description 
of the mykonosGpioSlewRate_t enumeration type. 

 

 

 

 

 

 

Table 142. GPIO Configuration Limitations—gpioSelect 
GPIO Pin Corresponding Bits in the gpioDrv Parameter 
GPIO_0  xxx xxxx xxxx xxxx xxxN 
GPIO_1 xxx xxxx xxxx xxxx xxNx 
… xxx xxxx xxxx xNNN NNxx 
GPIO_7 xxx xxxx xxxx Nxxx xxxx 
GPIO_8 xxx Nxxx xxxN xxxx xxxx 
GPIO_9 xxx xxxx xNNx xxxx xxxx 
GPIO_10 xxx xxxx xNNx xxxx xxxx 
GPIO_11 xxx xxxN Nxxx xxxx xxxx 
GPIO_12 xxx xxxN Nxxx xxxx xxxx 
GPIO_13 xxx xNNx xxxx xxxx xxxx 
GPIO_14 xxx xNNx xxxx xxxx xxxx 
GPIO_15 xxx Nxxx xxxN xxxx xxxx 
GPIO_16 xNN xxxx xxxx xxxx xxxx 
GPIO_17 xNN xxxx xxxx xxxx xxxx 
GPIO_18 Nxx xxxx xxxx xxxx xxxx 
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GPIO MANUAL MODE 
Figure 95 shows the GPIO_x signals in GPIO manual mode. In 
this mode, the user can configure GPIOs as outputs or inputs.  

If a GPIO pin is configured as an output, the user can also 
control its logic level. If a GPIO pin is configured as an input, 
the user can read back the voltage level present at the input.  

In both cases, low (or 0) corresponds to the ground level and 
high (or 1) corresponds to the VDD_IF voltage level.  

Note that two I/O crosspoints (Crosspoint 1 and Crosspoint 2) 
access a single I/O buffer (see Figure 93). Crosspoint 2 has a 

higher priority when accessing the I/O buffer. To configure the 
device for GPIO manual mode only, or for manual mode when 
working with any other GPIO mode in parallel, use the transceiver 
evaluation software (TES) to preconfigure the application 
programming interface (API) auxIo/gpio structure with valid 
configurations prior to writing the code to accomplish this 
function. 

Manual mode uses Crosspoint 1. This crosspoint operates using 
nibbles (4 bits); the GPIOs are controlled in groups of four. The 
exception to this is that the three most significant GPIOs operate in 
a block of three (GPIO_16, GPIO_17, and GPIO_18). 
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Figure 95. GPIO Manual Mode 

 

 

 

 

 

 

 

http://www.analog.com/ad9371-evaluation-software


UG-992 AD9371/AD9375 System Development User Guide 
 

Rev. B | Page 202 of 360 

API Description 

The application programming interface (API) provides 
functions designed to operate the GPIO in manual mode. Before 
the user can employ manual mode, the crosspoints and the I/O 
buffer must be configured. Use the MYKONOS_setupGpio() 
function to properly configure the crosspoints and the I/O 
buffer. This function relies on correct configuration of device → 
auxIo → gpio structure members. Use the transceiver evaluation 
software (TES) to generate correct settings for this structure. 
After the crosspoints and I/O buffer are configured, the user 
can start operating the GPIOs in manual mode. The following 
sections list the manual mode API functions, along with short 
descriptions of their functionalities. 

MYKONOS_getGpioPinLevel 
mykonosGpioErr_t 

MYKONOS_getGpioPinLevel(mykonosDevice_t 
*device, uint32_t *gpioPinLevel) 

This function reads the GPIO pins that are set as inputs in 
manual mode. Pin levels are returned in the form of a single 32-bit 
word. The return value is 1 bit per pin. The GPIO_0 level returns 
on Bit 0 of the gpioPinLevel parameter, the GPIO_1 level returns 
on Bit 1, and so on. A logic low level returns a 0, and a logic 
high level returns a 1. 

Parameters 

• *gpioPinLevel: the input GPIO pin levels read back on the 
pins assigned as inputs (1 bit per pin). 

MYKONOS_setGpioPinLevel 
mykonosGpioErr_t 

MYKONOS_setGpioPinLevel(mykonosDevice_t 
*device, uint32_t gpioPinLevel) 

This function sets the GPIO output pin levels. This function 
only affects the GPIO pins that are set as outputs in manual 
mode. GPIO_0 reflects the Bit 0 status of the gpioPinLevel 
parameter, GPIO_1 reflects the Bit 1 status, and so on. A logic 
low is set at the GPIO output if its corresponding bit is set to 0. 
A logic high is set at the GPIO output if its corresponding bit is 
set to 1. 

Parameters 

• gpioPinLevel: This parameter describes the output level for 
each bit per GPIO pin (0 = low output, and 1 = high output). 

MYKONOS_getGpioSetLevel 
mykonosGpioErr_t 

MYKONOS_getGpioSetLevel(mykonosDevice_t 
*device, uint32_t *gpioPinSetLevel) 

This function provides readback of the value describing how 
GPIO output pins are set in the manual mode. 

Parameters 

• *gpioPinSetLevel: This parameter is a pointer to the 32-bit 
variable that contains the level of each GPIO pin, 1 bit per 
pin (0 = sets output to low level, and 1 = sets output to high 
level). 

MONITOR OUTPUT 
The device offers the capability to output a real-time status for a 
variety of internal conditions or states through the GPIO interface 
to the baseband processor (BBP). Information, such as the state 
of the overload detectors in the receiver signal path or 
automatic gain control (AGC) states, are just a few of the many 
options available. This section describes these signals and also 
how to use API functions to make the desired signals available 
on the appropriate GPIO pins. Figure 96 shows the possible 
connections between the monitor output signals and the GPIO 
pins. Note that the logic block format of the figure shows the 
functional operation of the GPIO signals, but it does not necessarily 
represent the method of implementation inside the device. 

The monitor output signals allow the user to monitor selected 
internal device functions by outputting a single row from the 
monitor output signal table. Table 143 lists the available signal 
combinations that can be routed to the selected GPIO pins. The 
user can only monitor the signals in one row at a time. Selection 
of one signal over another depends on which other signals the 
BBP must monitor simultaneously. Some internal signals are 
available on more than one table row using different GPIO 
assignments. Some of the signals are helpful in a production 
system, while others are useful for debugging purposes. In 
either case, Analog Devices recommends connecting the device 
monitor outputs to the BBP inputs so that the signals can be 
monitored under real-time conditions. 
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setGpioMonitorOut
(monitorIndex,
monitorMask
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Figure 96. Monitor Output Signal Routing  

 

Table 143. Monitor Output Signals 
Monitor 
Index 

Bits 

D7 D6 D5 D4 D3 D2 D1 D0 

0x01 Rx1: gain change 
(OR of gain 
increment/ 
gain decrement) 

Rx1: APD upper 
threshold 
counter 
exceeded  
(slow loop) 

Rx1: HB2 upper 
threshold 
counter 
exceeded 

Rx1: HB2 lower 
threshold 
counter 
exceeded 

Rx2: gain 
change (OR of 
gain increment/ 
gain decrement) 

Rx2: APD upper 
threshold 
counter 
exceeded 

Rx2: HB2 upper 
threshold 
counter 
exceeded 

Rx2: HB2 lower 
threshold 
counter 
exceeded 

0x02 Rx1: gain change 
(OR of gain 
increment/ 
gain decrement) 

Rx1: APD upper 
threshold 
exceeded 

Rx1: HB2 upper 
threshold 
exceeded 

Rx1: digital 
saturation  

Rx2: gain 
change (OR of 
gain increment/ 
gain decrement) 

Rx2: APD upper 
threshold 
exceeded 

Rx2: HB2 upper 
threshold 
exceeded 

Rx2: digital 
saturation  

0x03 Rx1: gain lock Rx1: APD upper 
threshold 
exceeded 

Rx1: HB2 upper 
threshold 
exceeded 

Rx1: energy lost Rx2: gain lock Rx2: APD upper 
threshold 
exceeded 

Rx2: HB2 upper 
threshold 
exceeded 

Rx2: energy lost 

0x04 Rx1: low 
threshold 
exceeded 

Rx1: high 
threshold 
exceeded 

Rx1: gain update 
counter expired 

Reserved Rx1: gain 
change 

Rx1: gain 
change 
increment 

Rx1: gain change 
decrement 

0x05 Rx2: low 
threshold 
exceeded 

Rx2: high 
threshold 
exceeded 

Rx2: gain update 
counter expired 

Reserved Rx2: gain 
change 

Rx2: gain 
change 
increment 

Rx2: gain change 
decrement 

0x06 Rx1: gain change 
increment 

Rx1: gain change 
decrement 

Rx2: gain change 
increment 

Rx2: gain change 
decrement 

Reserved 
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Monitor 
Index 

Bits 

D7 D6 D5 D4 D3 D2 D1 D0 

0x07 Rx1: APD upper 
threshold 
counter 
exceeded  
(slow loop) 

Rx1: HB2 upper 
threshold 
counter 
exceeded 

Rx1: gain update 
counter expired 

Rx1: gain change Rx2: APD upper 
threshold 
counter 
exceeded 

Rx2: HB2 upper 
threshold 
counter 
exceeded 

Rx2: gain 
update counter 
expired 

Rx2: gain change 

0x08 Rx1: decrement 
power ready 

Rx1: gain update 
counter expired 

Rx1: APD upper 
threshold 
counter 
exceeded  
(slow loop) 

Rx1: HB2 upper 
threshold 
counter 
exceeded 

Rx2: decimate 
power ready 

Rx2: gain 
update counter 
expired 

Rx2: APD upper 
threshold 
counter 
exceeded 

Rx2: HB2 upper 
threshold 
counter 
exceeded 

0x09 Rx1: gain index 
(Bit D7) 

Rx1: gain index 
(Bit D6) 

Rx1: gain index 
(Bit D5) 

Rx1: gain index 
(Bit D4) 

Rx1: gain index 
(Bit D3) 

Rx1: gain index 
(Bit D2) 

Rx1: gain index 
(Bit D1) 

Rx1: gain index 
(Bit D0) 

0x0A Rx2: gain index 
(Bit D7) 

Rx2: gain index 
(Bit D6) 

Rx2: gain index 
(Bit D5) 

Rx2: gain index 
(Bit D4) 

Rx2: gain index 
(Bit D3) 

Rx2: gain index 
(Bit D2) 

Rx2: gain index 
(Bit D1) 

Rx2: gain index 
(Bit D0) 

0x0C Rx1: gain index 
(Bit D3) 

Rx1: gain index 
(Bit D2) 

Rx1: gain index 
(Bit D1) 

Rx1: gain index 
(Bit D0) 

Rx2: gain index 
(Bit D3) 

Rx2: gain index 
(Bit D2) 

Rx2: gain index 
(Bit D1) 

Rx2: gain index 
(Bit D0) 

0x22 Tx2:  RFIR 
overflow 

Tx2: Tx HB2 
overflow 

Tx2: Tx HB1 
overflow 

Tx2: TFIR 
overflow 

Tx1: RFIR 
overflow 

Tx1: Tx HB2 
overflow 

Tx1: Tx HB1 
overflow 

Tx1: TFIR 
overflow 

0x23 Reserved Rx1: Signal of 
interest (SOI) 
present 

Rx1: correction 
word above 
threshold 

Rx1: update 
counter expired 

Rx1: gain 
change 

Rx1: update dc 
offset in the RF 
section 

Rx1: measure dc 
offset in the RF 
section 

Rx1: RF dc count 
reached 

0x24 Reserved Rx2: SOI present Rx2: correction 
word above 
threshold 

Rx2: update 
counter expired 

Rx2: gain 
change 

Rx2: update dc 
offset in the RF 
section 

Rx2: measure dc 
offset in the RF 
section 

Rx2: RF dc count 
reached 

0x42 Rx2 overrange 
very low counter 
exceeded 

Rx2 overrange 
low counter 
exceeded 

Rx2 overrange 
high counter 
exceeded 

Rx2 gain update 
counter expired 

Rx1 overrange 
very low 
counter 
exceeded 

Rx1 overrange 
low counter 
exceeded 

Rx1 overrange 
high counter 
exceeded 

Rx1 gain update 
counter expired 

0x43 Reserved ORx overrange 
very low 
counter 
exceeded 

ORx overrange 
low counter 
exceeded 

ORx overrange 
high counter 
exceeded 

ORx gain update 
counter expired 

 

Table 144 through Table 159 provide the detailed descriptions of the signals available for each monitor index address listed in Table 143. 

Table 144. Monitor Index: 0x01 (Name: AGC Monitor 1) 
Bits Description Reset 
D7 Rx1: gain change. The gain index (in automatic gain control (AGC) and manual gain control (MGC) mode) is used to select an 

entry in the gain table. This signal is active (output level toggle between high and low) only if there is a difference in entries 
in the gain table when the AGC or MGC index changes. If the entries of the two indices are identical, the Rx gain change signal 
is not generated (toggled). 

0x0 

D6 Rx1 APD upper threshold counter exceeded. The Rx1 analog peak detector (APD) is set when the upper threshold counter is 
exceeded. This bit operates in real-time. 

0x0 

D5 Rx1 HB2 upper threshold counter exceeded. Set this bit when the Rx1 ADC/High-Band 2 (HB2) upper threshold overflow counter is 
exceeded. 

0x0 

D4 Rx1 HB2 lower threshold counter exceeded. Set this bit when the Rx1 ADC/HB2 lower threshold overflow counter is exceeded. 0x0 
D3 Rx2: gain change. The gain index (in AGC and MGC mode) selects an entry in the gain table. This signal is active (the output 

level toggles between high and low) only if there is a difference in entries in the gain table when the AGC or MGC index 
changes. If the entries of the two indices are identical, the Rx gain change signal is not generated (toggled). 

0x0 

D2 Rx2 APD upper threshold counter exceeded. The Rx2 APD set when the upper threshold counter is exceeded. This bit 
operates in real-time. 

0x0 

D1 Rx2 HB2 upper threshold counter exceeded. Set this bit when the Rx2 ADC/HB2 upper threshold overflow counter is exceeded. 0x0 
D0 Rx2 HB2 lower threshold counter exceeded. Set this bit when the Rx2 ADC/HB2 lower threshold overflow counter is exceeded. 0x0 
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Table 145. Monitor Index: 0x02 (Name: AGC Monitor 2) 
Bits Description Reset 
D7 Rx1: gain change. The gain index (in automatic gain control (AGC) and manual gain control (MGC) mode) is used to select an 

entry in the gain table. This signal is active (the output level toggles between high and low) only if there is a difference in 
entries in the gain table when the AGC or MGC index changes. If the entries of the two indices are identical, the Rx gain 
change signal is not generated (toggled). 

0x0 

D6 Rx1: analog peak detector (APD) upper threshold exceeded. Set this bit when the upper threshold is exceeded. This bit 
operates in real-time. 

0x0 

D5 Rx1: High-Band 2 (HB2) upper threshold. Set this bit when high threshold detector overflow occurs. 0x0 
D4 Rx1: digital saturation. Set this bit when the signal is saturated after digital gain is applied. 0x0 
D3 Rx2: gain change. The gain index (in AGC and MGC mode) is used to select an entry in the gain table. This signal is active (the 

output level toggles between high and low) only if there is a difference in entries in the gain table when the AGC or MGC 
index changes. If the entries of the two indices are identical, the Rx gain change signal is not generated (toggled). 

0x0 

D2 Rx2: APD upper threshold exceeded. Set this bit when the upper threshold is exceeded. This bit operates in real-time. 0x0 
D1 Rx2: HB2 upper threshold exceeded. Set this bit when high threshold detector overflow occurs. 0x0 
D0 Rx2 digital saturation. Set this bit when the signal is saturated after digital gain is applied. 0x0 
 

Table 146. Monitor Index: 0x03 (Name: AGC Monitor 3) 
Bits Description Reset 
D7 Rx1: gain lock. Set this bit when the gain locks. 0x0 
D6 Rx1: APD upper threshold exceeded. Set this bit when the upper threshold is exceeded. This bit operates in real-time. 0x0 
D5 Rx1: HB2 upper threshold. Set this bit when high threshold detector overflow occurs. 0x0 
D4 Rx1: energy lost. Set this bit when the signal power change exceeds the lower threshold. 0x0 
D3 Rx2: gain lock. Set this bit when the gain locks. 0x0 
D2 Rx2: APD upper threshold exceeded. Set this bit when the upper threshold is exceeded. This bit operates in real-time. 0x0 
D1 Rx2: HB2 upper threshold. Set this bit when high threshold detector overflow occurs. 0x0 
D0 Rx2: energy lost. Set this bit when the signal power change exceeds the threshold. 0x0 
 

Table 147. Monitor Index: 0x04 (Name: AGC Monitor 4) 
Bits Description Reset 
D7 Rx1: low threshold exceeded. Set this bit when the low power threshold is exceeded. 0x0 
D6 Rx1: high threshold exceeded. Set this bit when the high power threshold is exceeded. 0x0 
D5 Rx1: gain update counter expired. This bit signals when the gain update counter expires. 0x0 
[D4:D3] Reserved. 0x0 
D2 Rx1: gain change. The gain index (in AGC and MGC mode) is used to select an entry in the gain table. This signal is active 

(the output level toggles between high and low) only if there is a difference in entries in the gain table when the AGC or 
MGC index changes. If the entries of the two indices are identical, the Rx gain change signal is not generated (toggled). 

0x0 

D1 Rx1: gain change increment. This bit toggles when the gain increases. 0x0 
D0 Rx1: gain change decrement. This bit toggles when the gain decreases. 0x0 
 

Table 148. Monitor Index: 0x05 (Name: AGC Monitor 5) 
Bits Description Reset 
D7 Rx2: low threshold exceeded. Set this bit when the low power threshold is exceeded. 0x0 
D6 Rx2: high threshold exceeded. Set this bit when the high power threshold is exceeded. 0x0 
D5 Rx2: gain update counter expired. This bit signals when the gain update counter expires. 0x0 
[D4:D3] Reserved. 0x0 
D2 Rx2: gain change. This bit toggles when the gain changes value. 0x0 
D1 Rx2: gain change increment. This bit toggles when the gain increases. 0x0 
D0 Rx2: gain change decrement. This bit toggles when the gain decreases. 0x0 
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Table 149. Monitor Index: 0x06 (Name: AGC Monitor 6) 
Bits Description Reset 
D7 Rx1: gain change increment. This bit toggles when the gain increases. 0x0 
D6 Rx1: gain change decrement. This bit toggles when the gain decreases. 0x0 
D5 Rx2: gain change increment. This bit toggles when the gain increases. 0x0 
D4 Rx2: gain change decrement. This bit toggles when the gain decreases. 0x0 
[D3:D0] Reserved. 0x0 
 

Table 150. Monitor Index: 0x07 (Name: AGC Monitor 7) 
Bits Description Reset 
D7 Rx1 APD upper threshold counter exceeded. The Rx1 analog peak detector (APD) is set when the upper threshold counter is 

exceeded. This bit operates real-time. 
0x0 

D6 Rx1 HB2 upper threshold counter exceeded. Set this bit when the Rx1 ADC/High-Band 2 (HB2) upper threshold overflow 
counter is exceeded. 

0x0 

D5 Rx1: gain update counter expired. This bit signals when the gain update counter expires. 0x0 
D4 Rx1: gain change. The gain index (in automatic gain control (AGC) and manual gain control (MGC) mode) is used to select an 

entry in the gain table. This signal is active (the output level toggles between high and low) only if there is a difference in 
entries in the gain table when the AGC or MGC index changes. If the entries of the two indices are identical, the Rx gain change 
signal is not generated (toggled). 

0x0 

D3 Rx2 APD upper threshold counter exceeded. The Rx2 analog peak detector (APD) is set when the upper threshold counter is 
exceeded. This bit operates real-time. 

0x0 

D2 Rx2 HB2 upper threshold counter exceeded. Set this bit when the Rx2 ADC/HB2 upper threshold overflow counter is exceeded. 0x0 
D1 Rx2: gain update counter expired. This bit signals when the gain update counter expires. 0x0 
D0 Rx2: gain change. The gain index (in AGC and MGC mode) is used to select an entry in the gain table. This signal is active (the 

output level toggles between high and low) only if there is a difference in entries in the gain table when the AGC or MGC 
index changes. If the entries of the two indices are identical, the Rx Gain change signal is not generated (toggled). 

0x0 

 

Table 151. Monitor Index: 0x08 (Name: AGC Monitor 8) 
Bits Description Reset 
D7 Rx1: decimated power ready. The received signal strength indicator (RSSI) power word is ready. 0x0 
D6 Rx1: gain update counter expired. Signals when the gain update counter expires. 0x0 
D5 Rx1 APD upper threshold counter exceeded. The Rx1 APD is set when the upper threshold counter is exceeded. This bit 

operates real-time. 
0x0 

D4 Rx1 HB2 upper threshold counter exceeded. Set this bit when the Rx1 ADC/HB2 upper threshold overflow counter is exceeded. 0x0 
D3 Rx2: decimated power ready. RSSI power word is ready. 0x0 
D2 Rx2: gain update counter expired. This bit signals when the gain update counter expires. 0x0 
D1 Rx2 APD upper threshold counter exceeded. The Rx2 APD is set when the upper threshold counter is exceeded. This bit 

operates real-time. 
0x0 

D0 Rx2 HB2 upper threshold counter exceeded. Set this bit when the Rx2 ADC/HB2 upper threshold overflow counter is exceeded. 0x0 
 

Table 152. Monitor Index: 0x09 (Name: AGC Monitor 9) 
Bits Description Reset 
[D7:D0] AGC—Rx1 gain index 0x0 
 

Table 153. Monitor Index: 0x0A (Name: AGC Monitor 10) 
Bits Description Reset 
[D7:D0] AGC—Rx2 gain index 0x0 
 

Table 154. Monitor Index: 0x0C (Name: AGC Monitor 11) 
Bits Description Reset 
[D7:D4] AGC—Rx1 gain index (4 LSBs only) 0x0 
[D3:D0] AGC—Rx2 gain index (4 LSBs only) 0x0 
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Table 155. Monitor Index: 0x22 (Name: Datapath Overflow) 
Bits Description Reset 
D7 Tx2 datapath—RFIR overflow error  0x0 
D6 Tx2 datapath—HB2 overflow 0x0 
D5 Tx2 datapath—HB1 overflow 0x0 
D4 Tx2 datapath—TFIR overflow  0x0 
D3 Tx1 datapath—RFIR overflow error  0x0 
D2 Tx1 datapath—HB2 overflow 0x0 
D1 Tx1 datapath—HB1 overflow 0x0 
D0 Tx1 datapath—TFIR overflow  0x0 
 

Table 156. Monitor Index: 0x23 (Name: RF DC Offset Correction Tracking Signals, Channel 1) 
Bits Description Reset 
D7 Reserved. 0x0 
D6 Rx1: Signal of interest (SOI) present. The SOI is calculated in the decimated power block. 0x0 
D5 Rx1: correction word above threshold. The calculated radio frequency (RF) DC offset word is above the threshold. 0x0 
D4 Rx1: update counter expired. The RF DC update counter is expired. 0x0 
D3 Rx1: gain change. The gain index (in automatic gain control (AGC) and manual gain control (MGC) is used to select an entry 

in the gain table. This signal is active (the output level toggles between high and low) only if there is a difference in entries 
in the gain table when the AGC or MGC index changes. If the entries of the two indices are identical, the Rx gain change signal is 
not generated (toggled). 

0x0 

D2 Rx1: update dc offset in the RF section. Updates the RF dc offset word. 0x0 
D1 Rx1: measure dc offset in the RF section. Calibration and tracking is in measurement mode. 0x0 
D0 Rx1: RF dc count reached. Calibration and tracking measurement counter expired. 0x0 
 

Table 157. Monitor Index: 0x24 (Name: RF DC Offset Correction Tracking Signals, Channel 2) 
Bits Description Reset 
D7 Reserved. 0x0 
D6 Rx2: SOI present. The SOI is calculated in the decimated power block. 0x0 
D5 Rx2: correction word above threshold. The calculated RF dc offset word is above threshold. 0x0 
D4 Rx2: update counter expired. The RF dc update counter is expired. 0x0 
D3 Rx2: gain change. The gain index (in AGC and MGC mode) is used to select an entry in the gain table. This signal is active (the 

output level toggles between high and low) only if there is a difference in entries in the gain table when the AGC or MGC 
index changes. If the entries of the two indices are identical, the Rx gain change signal is not generated (toggled). 

0x0 

D2 Rx2: update dc offset in the RF section. Updates the RF dc offset word. 0x0 
D1 Rx2: measure dc offset in the RF section. Calibration and tracking is in measurement mode. 0x0 
D0 Rx2: RFDC count reached. Calibration/tracking measurement counter expired. 0x0 
 

Table 158. Monitor Index: 0x42 (Name: AGC Monitor 12) 
Bits Description Reset 
D7 Rx2: overrange very low counter exceeded. This pin goes high when High-Band 2 (HB2) detects a number of peaks greater 

than the counter value (hb2VeryLowThreshExceededCnt—refer to Automatic Gain Control section for more details). These 
peaks must be greater than the hb2VeryLowThresh threshold to increment the count. If this signal is high at the end of the 
AGC gain update time counter, no gain decrement is made. This signal resets at the expiration of the AGC gain update counter. 

0x0 

D6 Rx2: overrange low counter exceeded. This pin goes high when HB2 detects a number of peaks greater than the counter 
value (hb2LowThreshExceededCnt—refer to Automatic Gain Control section for more details). These peaks must be greater 
than the hb2LowThresh threshold to increment the count. If this signal is high at the end of the AGC gain update time 
counter, no gain decrement is made. This signal resets at the expiration of the AGC gain update counter. 

0x0 

D5 Rx2: overrange high counter exceeded. This pin goes high when HB2 detects a number of peaks greater than the counter 
value (hb2HighThreshExceededCnt—refer to Automatic Gain Control section for more details). These peaks must be greater 
than the hb2HighThresh threshold to increment the count. This signal going high initiates a gain decrement immediately if 
hb2FastAttack mode is enabled or at the expiration of the AGC gain update counter if hb2FastAttack mode is disabled. This 
signal resets at the expiration of the AGC gain update counter. 

0x0 

D4 Rx2: gain update counter expired. This bit signals when the gain update counter expires. 0x0 
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Bits Description Reset 
D3 Rx1: overrange very low counter exceeded. This pin goes high when High-Band 2 (HB2) detects a number of peaks greater 

than the counter value (hb2VeryLowThreshExceededCnt—refer to Automatic Gain Control section for more details). These 
peaks must be greater than the hb2VeryLowThresh threshold to increment the count. If this is high at the end of the 
automatic gain control (AGC) gain update time counter, no gain decrement is made. This signal resets at the expiration of 
the AGC gain update counter. 

0x0 

D2 Rx1: overrange low counter exceeded. This pin goes high when HB2 detects a number of peaks greater than the counter 
value (hb2LowThreshExceededCnt —refer to Automatic Gain Control section for more details). These peaks must be greater 
than the hb2LowThresh threshold to increment the count. If this signal is high at the end of the AGC gain update time 
counter, no gain decrement is made. This signal resets at the expiration of the AGC gain update counter. 

0x0 

D1 Rx1: overrange high counter exceeded. This pin goes high when HB2 detects a number of peaks greater than the counter 
value (hb2HighThreshExceededCnt—refer to Automatic Gain Control section for more details). These peaks must be greater 
than the hb2HighThresh threshold to increment the count. This signal going high initiates a gain decrement immediately if 
hb2FastAttack mode is enabled or at the expiration of the AGC gain update counter if hb2FastAttack mode is disabled. This 
signal resets at the expiration of the AGC gain update counter. 

0x0 

D0 Rx1: gain update counter expired. This bit signals when the gain update counter expires. 0x0 
 

Table 159. Monitor Index: 0x43 (Name: AGC Monitor 13) 
Bits Description Reset 
[7:4] Reserved. 0x0 
3 ORx: overrange very low counter exceeded. This pin goes high when HB2 detects a number of peaks greater than the 

counter value (hb2VeryLowThreshExceededCnt—refer to the Automatic Gain Control section for more details). These peaks 
must be greater than the hb2VeryLowThresh threshold to increment the count. If this is high at the end of the AGC gain 
update time counter, no gain decrement is made. This signal resets at the expiration of the AGC gain update counter. 

0x0 

2 ORx: overrange low counter exceeded. This pin goes high when HB2 detects a number of peaks greater than the counter 
value (hb2LowThreshExceededCnt—refer to the Automatic Gain Control section for more details). These peaks must be 
greater than the hb2LowThresh threshold to increment the count. If this signal is high at the end of the AGC gain update 
time counter, no gain decrement is made. This signal resets at the expiration of the AGC gain update counter. 

0x0 

1 ORx: overrange high counter exceeded. This pin goes high when HB2 detects a number of peaks greater than the counter 
value (hb2HighThreshExceededCnt —refer to the Automatic Gain Control section for more details). These peaks must be 
greater than the hb2HighThresh threshold to increment the count. This signal going high initiates a gain decrement 
immediately if hb2FastAttack mode is enabled or at the expiration of the AGC gain update counter if hb2FastAttack mode 
is disabled. This signal resets at the expiration of the AGC gain update counter. 

0x0 

0 ORx: gain update counter expired. Signals when the gain update counter has expired. 0x0 
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API Description 

The application programming interface (API) package provides 
functions that allow users to operate GPIO in monitor output 
mode. Before the user can use this mode, the crosspoints and 
the input/output buffer must be configured. Use the 
MYKONOS_setupGpio() function to properly configure the 
crosspoints and input/output buffers. This function relies on 
correct configuration of the device → auxIo → gpio structure 
members.  

For an example, see the following configuration: 

• device → auxIo → gpio → gpioOe = 0xXXXFF, the first eight 
GPIOs (Bits[D7:D0]) have the output enabled 

• device → auxIo → gpio → gpioSrcCtrl3_0 = 
GPIO_MONITOR_MODE 

• device → auxIo → gpio → gpioSrcCtrl4_7 = 
GPIO_MONITOR_MODE 

These commands enable monitor Output D3 to Output D0 on 
GPIO_3 through GPIO_0, and Output D7 to Output D4 on 
GPIO_7 through GPIO_4. Refer to the API Description section 
in the GPIO Operation section for more details. In general, use 
the transceiver evaluation software (TES) to generate correct 
settings for this structure. After the crosspoint and input/output 
buffers are configured, the user can start to operate GPIOs in 
monitor output mode. A list of API functions dedicated for 
monitor output configuration, with short description of their 
functionalities, is in the following section. 

As described previously, the control output signals are mapped 
as a table. Use the API MYKONOS_setGpioMonitorOut() 
function to select a particular row in the monitor output in 
Table 143, as well as to enable particular bits from the selected 
row. The device holds low any pins that are not enabled.  

MYKONOS_setGpioMonitorOut 
mykonosGpioErr_t 

MYKONOS_setGpioMonitorOut(mykonosDevice_t 
*device, uint8_t monitorIndex, uint8_t 
monitorMask) 

This API function configures the monitor output function for 
the GPIOs. The monitor outputs are grouped in sets of nibbles 
(4 bits). The user can set individual nibbles for having the monitor 
output function across the available GPIO. Use the TES to 
generate correct settings for this structure. 

Parameters 

• monitorIndex: This parameter selects a row from  
Table 143, which in turn selects the desired monitor 
output signal assignments for the GPIO outputs. 

• monitorMask: This parameter enables or disables active 
monitor output bits in the selected word. Setting Bit 0 of 
that word enables the D0 monitor output, setting Bit 1 of 
that word enables the D1 monitor output, and so on. The 
device holds low any pins that are not enabled. 

MYKONOS_getGpioMonitorOut 
mykonosGpioErr_t 

MYKONOS_getGpioMonitorOut(mykonosDevice_t 
*device, uint8_t *monitorIndex, uint8_t 
*monitorMask) 

This API function reads back the current monitor index and 
monitor mask used to control monitor outputs. 

Parameters 

• *monitorIndex: Pointer to a variable storing the current 
monitor index to which outputs are set. 

• *monitorMask: Pointer to a variable storing current monitor 
output bits in the word selected by *monitorIndex. Bit 0 of 
that word outlines the status of the D0 monitor output, Bit 1 of 
that word outlines status of the D1 monitor output, and so 
on. If a bit is set to 1, then that monitor output signal is 
enabled. If a bit is set to 0, then that monitor output signal 
is disabled. 

ARM GPIO INTERFACE 
The ARM microcontroller in the device can communicate with 
external devices using the GPIO interface. Various ARM input 
and output signals can be configured to map to specific GPIO pins. 
The specific pin location for ARM microcontroller GPIO 
functionalities can be configured using API commands.  

Several external (GPIO) pins are used for controlling timing 
critical functionality provided by the ARM. When planning the 
routing of ARM microcontroller signals to the GPIO interface, 
the user must adhere to some routing limitations. Figure 97 and 
Table 160 outline the restrictions that apply to configuring the 
GPIOs as an ARM interface. 

 

http://www.analog.com/ad9371-evaluation-software
http://www.analog.com/ad9371-evaluation-software
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Figure 97. ARM Microcontroller to GPIO Interface  

 

Table 160. GPIO Routing Options for ARM Signals 
Signal Name Description Possible GPIO pin 
RX1_ENABLE This pin can be configured to enable/disable Rx1 by itself, or to enable/disable both Rx1 and 

Rx2 simultaneously. 
RX1_ENABLE pin 

RX2_ENABLE Optionally, this pin can be configured to enable/disable Rx2. RX2_ENABLE pin 
TX1_ENABLE This pin can be configured to enable/disable Tx1 by itself, or to enable/disable both Tx1 and 

Tx2 simultaneously. 
TX1_ENABLE pin 

TX2_ENABLE Optionally, this pin can be configured to enable/disable Tx2. TX2_ENABLE pin 
ORX_TRIGGER A rising edge on this signal triggers a change in the configuration of the ORx receiver. On the 

rising edge, the ORX_MODE[2:0] pins are sampled to determine the target ORx configuration. 
Any pin from 
GPIO_15 to GPIO_4 

ORX_MODE[2:0] Selects the ORx mode. Sampled on rising edge of ORX_TRIGGER. Any three pins 
from GPIO_3 to 
GPIO_0 or any 
three pins from 
GPIO_15 to 
GPIO_4; or, 
ORX_MODE[0] on 
GPIO_16, 
ORX_MODE[1]  
on GPIO_17, or 
ORX_MODE[2]  
on GPIO_18. 

 000 = ORx powered off. 
 001 = ORx1 (with Tx local oscillator (LO)). 
 010 = ORx2 (with Tx LO). 
 011 = no baseband processor (BBP) access. ORx available to internal Tx calibrations.  
 100 = sniffer Rx. 
 101 = ORx1 (with sniffer LO). 
 110 = ORx2 (with sniffer LO).  
 111 = reserved (trigger ignored). 
 Note that all three ORX_MODE[2:0] pins must come from the same bank of GPIOs. Banks are 

defined as GPIO_3 to GPIO_0, or GPIO_15 to GPIO_4, or GPIO_18 to GPIO_16. When GPIO_18 to 
GPIO_16 are used, the only valid assignments are ORX_MODE[0] on GPIO_16, ORX_MODE[1] on 
GPIO_17, and ORX_MODE[2] on GPIO_18.  
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Signal Name Description Possible GPIO pin 
RX1_ENABLE_ACK Indicates that Rx1 is (or both Rx1 and Rx2 are) enabled. Any pin from 

GPIO_15 to GPIO_0 
RX2_ENABLE_ACK Indicates that Rx2 is enabled. Any pin from 

GPIO_15 to GPIO_0 
TX1_ENABLE_ACK Indicates that Tx1 is (or both Tx1 and Tx2 are) enabled. Any pin from 

GPIO_15 to GPIO_0 
TX2_ENABLE_ACK Indicates that Tx2 is enabled. Any pin from 

GPIO_15 to GPIO_0 
ORX1_ENABLE_ACK Indicates that ORx1 is enabled for BBP use. Any pin from 

GPIO_15 to GPIO_0 
ORX2_ENABLE_ACK Indicates that ORx2 is enabled for BBP use. Any pin from 

GPIO_15 to GPIO_0 
SNRX_ENABLE_ACK Indicates that SnRx is enabled for BBP use. Any pin from 

GPIO_15 to GPIO_0 
TX_OBS_SELECT When two transmitters are used with only one ORx input, this GPIO tells the BBP which 

transmitter channel is active for calibrations. BBP controls an RF switch that routes the desired 
RF Tx path into the single ORx input. 

Any pin from 
GPIO_15 to GPIO_0 

ARM_ERROR Indicates that the ARM must be rebooted because of some error. The ARM was able to detect a 
problem and record some diagnostic information before setting this flag. 

GP_INTERRUPT pin 

ARM_WATCHDOG Indicates that the watchdog has expired because of some error that the ARM was unable to 
respond to (for example, the ARM was unable to set the ARM_ERROR flag). The ARM must be 
rebooted. 

GP_INTERRUPT pin 
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API Description 

The application programming interface (API) package provides 
functions that allow the user to operate the GPIO in ARM 
GPIO interface mode. The ARM GPIO input and output signals 
that are desired for Rx/Tx control in pin mode must be set up 
before the device enters radio on mode.  

The ARM GPIO interface configurations rely on correct values 
set to the device → auxIo → armGpio structure members. A 
quick overview of this structure is as follows (use the transceiver 
evaluation software (TES) to generate correct settings for this 
structure): 

 
typedef struct 
{ 

uint8_t useRx2EnablePin;  /*!< 0= RX1_ENABLE controls RX1 and RX2, 1 = separate 
RX1_ENABLE/RX2_ENABLE pins */ 

uint8_t useTx2EnablePin;  /*!< 0= TX1_ENABLE controls TX1 and TX2, 1 = separate 
TX1_ENABLE/TX2_ENABLE pins */ 

uint8_t txRxPinMode;      /*!< 0= ARM command mode, 1 = Pin mode to power up Tx/Rx 
chains */ 

uint8_t orxPinMode;       /*!< 0= ARM command mode, 1 = Pin mode to power up ObsRx 
receiver*/ 

 
    /* the AD9371 ARM input GPIO pins -- Only valid if orxPinMode = 1 */ 
    uint8_t orxTriggerPin;  /*!< Select desired GPIO pin (valid 4-15) */ 
    uint8_t orxMode2Pin;    /*!< Select desired GPIO pin (valid 0-18  - limited combin.) */ 
    uint8_t orxMode1Pin;    /*!< Select desired GPIO pin (valid 0-18) - limited combin.) */ 
    uint8_t orxMode0Pin;    /*!< Select desired GPIO pin (valid 0-18) - limited combin.) */ 
 
    /* the AD9371 ARM output GPIO pins  --  always available, even when pin mode not enabled*/ 
    uint8_t rx1EnableAck;    /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    uint8_t rx2EnableAck;    /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    uint8_t tx1EnableAck;    /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    uint8_t tx2EnableAck;    /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    uint8_t orx1EnableAck;   /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    uint8_t orx2EnableAck;   /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    uint8_t srxEnableAck;    /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 
    uint8_t txObsSelect;     /*!< Select desired GPIO pin (0-15), [4] = Output Enable */ 

/* When 2Tx are used with only 1 ORx input, this GPIO tells the 
BBP which Tx channel is active for calibrations, so BBP can 
route correct RF Tx path into the single ORx input */ 

} mykonosArmGpioConfig_t; 

 

http://www.analog.com/ad9371-evaluation-software
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The previously described structure controls all sections of the 
ARM GPIO interface hardware shown in Figure 97, including 
the input/output (I/O) buffer, I/O Crosspoint 1, and the ARM 
processor. The previous description outlines the structure 
members values and their interpretations. For the orxMode2Pin, 
orxMode1Pin, and orxMode0Pin structure members, refer to 
Table 160 for limitations in possible routing combinations. Note 
that the ORX_MODE and ORX_TRIGGER signals are ignored 
if ORx control orxPinMode is set to command mode, even if 
these signals are mapped to GPIO pins.  

MYKONOS_setArmGpioPins 
mykonosGpioErr_t 

MYKONOS_setArmGpioPins(mykonosDevice_t 
*device) 

This function sets the input and output GPIO pin selections for 
ARM related signals. The baseband processor (BBP) does not 
have to call this function because it is automatically set up 
during the MYKONOS_loadArmFromBinary() function call. If 
the BBP wishes to change the GPIO assignments, this function 
can be called again to change the configuration while the ARM 
is in the radio off state. This function relies on correct settings 
in the armGpio structure. Use the transceiver evaluation 
software (TES) to generate correct settings for this structure. 

MYKONOS_setRadioControlPinMode 
mykonosGpioErr_t 

MYKONOS_setRadioControlPinMode(mykonosDev
ice_t *device) 

This function configures the radio power-up/power-down 
control for the Rx and Tx paths to be controlled by pins 
(TX1_ENABLE, TX2_ENABLE, RX1_ENABLE, RX2_ENABLE, 
and the GPIO pins) or an application programming interface 
(API) function call. The GPIO setup and configuration can be 
performed in both the ready and idle state; it can be performed 
as many times as desired. The BBP does not have to call this 
function because it is automatically set up at the end of the 
MYKONOS_loadArm-FromBinary() function call. If the BBP 
wishes to change the GPIO assignments, this function can be 
recalled to change the configuration while the ARM is in the 
radio off state.  

This function relies on correct settings in the armGpio 
structure. Use the TES to generate correct settings for this 
structure. 

Tx ATTENUATION CONTROL 
The device uses an accurate and efficient method of transmit 
power control (Tx attenuation control) that involves minimum 
interaction with the BBP. The power control in the transmit 
chain is implemented with two variable attenuations: one in 
the digital domain and one in the analog domain. The digital 
attenuator is programmable from 0 dB to −6 dB in steps of 
0.05 dB. The analog RF attenuator is programmable from 0 dB 
to −36.12 dB. There are 64 possible settings for the analog 
attenuator. An internal table is provided within the device that 
adjusts both analog and digital attenuators simultaneously. Each 
row in this table provides a unique combination of analog and 
digital gain. The table is arranged in increasing attenuation, 
with Row 0 being the lowest attenuation setting (0 dB) and 
Row 839 being the largest attenuation setting (41.95 dB). A 
consistent attenuation step size of 0.05 dB is maintained 
between each consecutive row of the table.  

Figure 98 shows the location of the analog and digital attenuation 
blocks within the Tx chain, as well as the GPIO interface to 
control it. The attenuation table is controlled by a pointer. By 
moving the pointer to the required row of the table, the 
corresponding analog and digital attenuation settings of this 
row are applied.  

The pointer to the attenuation table can be controlled through 
the GPIO pins. In this mode, four GPIO pins control the Tx 
attenuation values for Tx1 and Tx2: two pins for Tx1 (one to 
increase pointer index, one to decrease), and two pins for Tx2. 
There is also an option to use just two GPIO pins to control Tx 
attenuation for both Tx1 and Tx2 at the same time. Minimum 
lengths of pulse are present at the GPIO input to be latched is 
2 clock radio frequency (RF) cycles. The clock RF frequency 
can be found in the Rx Summary tab of the TES. 
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Figure 98. GPIO Interface for Tx Attenuation Control  

API Description 

The application programming interface (API) package provides 
functions that allow users to operate the GPIO in Tx attenuation 
control mode. Before users can use the device in Tx attenuation 
control mode, Crosspoint 2 and the input/output (I/O) buffer 
must be configured. Use the MYKONOS_setupGpio() function 
to properly configure the crosspoint and I/O buffers. This 
function relies on correct configuration of device → auxIo → gpio 
structure members. Use the transceiver evaluation software (TES) 
to generate correct settings for this structure. After a crosspoint and 
I/O buffer are configured, the user can start to operate GPIOs in 
Tx attenuation control mode. The following sections list Tx 
attenuation control mode API functions and short descriptions 
of their functions. 

 

 

 

 

 

 

MYKONOS_setTx1AttenCtrlPin  
mykonosGpioErr_t 

MYKONOS_setTx1AttenCtrlPin(mykonosDevice_
t *device, uint8_t stepSize, 
mykonosGpioSelect_t tx1AttenIncPin, 
mykonosGpioSelect_t tx1AttenDecPin, 
uint8_t enable, uint8_t useTx1ForTx2) 

This API function allows the user to control the Tx1 attenuation 
using GPIO inputs. When a low to high transition is applied to 
configure the GPIO input, the attenuation changes by the 
desired step.  

Parameters 

 stepSize: This parameter is the step that increases or 
decreases the Tx1 channel attenuation. This parameter sets 
the change in Tx attenuation for each increment or decrement 
signal received in increment/decrement mode. A step of 1 
changes attenuation by 0.05 dB. 

 tx1AttenIncPin: This parameter is the GPIO pin configuration 
that controls the increment of Tx1 attenuation. The available 
pins are MYKGPIO4 and MYKGPIO12. 

 tx1AttenDecPin: This parameter is the GPIO pin configuration 
that controls the decrement of Tx1 attenuation. The available 
pins are MYKGPIO5 and MYKGPIO13. 
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• enable: This parameter enables or disables Tx attenuation 
pin control mode for Tx1. 
• 0 = disables the attenuation pin control for Tx1. 
• 1 = enables the attenuation pin control for Tx1. 

• useTx1ForTx2: This parameter enables use of Tx1 GPIOs 
to control attenuation for both the Tx1 and Tx2 channels. 
• 0 = disables use of Tx1 GPIOs to control attenuation 

for both the Tx1 and Tx2 channels. 
• 1 = enables use of Tx1 GPIOs to control attenuation 

for both the Tx1 and Tx2 channels. 

MYKONOS_setTx2AttenCtrlPin 
mykonosGpioErr_t 

MYKONOS_setTx2AttenCtrlPin(mykonosDevice_
t *device, uint8_t stepSize, 
mykonosGpioSelect_t tx2AttenIncPin, 
mykonosGpioSelect_t tx2AttenDecPin, 
uint8_t enable) 

This application programming interface (API) function allows 
the user to control the Tx2 attenuation using GPIO inputs. When 
a low to high transition is applied to configure the GPIO input, 
the attenuation changes by the desired step.  

Parameters 

• stepSize: This parameter is the step that increases or 
decreases the Tx2 channel attenuation. This parameter sets 
the change in Tx attenuation for each increment or decrement 
signal received in increment/decrement mode. A step of 1 
changes attenuation by 0.05 dB. 

• tx2AttenIncPin: This parameter is the GPIO pin configuration 
that controls the increment of Tx2 attenuation. The available 
pins are MYKGPIO6 and MYKGPIO14. 

• tx2AttenDecPin: This parameter is the GPIO pin configuration 
that controls the decrement of Tx2 attenuation. The available 
pins are MYKGPIO7 and MYKGPIO15. 

• enable: This parameter enables or disables Tx attenuation 
pin control mode for Tx2. 
• 0 = disables the attenuation pin control for Tx2. 
• 1 = enables the attenuation pin control for Tx2. 

 

 

 

 

 

 

 

 

 

 

 

 

MYKONOS_getTx1AttenCtrlPin 
mykonosGpioErr_t 

MYKONOS_getTx1AttenCtrlPin(mykonosDevice_
t *device, uint8_t *stepSize, 
mykonosGpioSelect_t *tx1AttenIncPin, 
mykonosGpioSelect_t *tx1AttenDecPin, 
uint8_t *enable, uint8_t *useTx1ForTx2) 

This API function returns the current configuration of Tx1 
attenuation in pin control mode.  

Parameters 

• *stepSize: This is a pointer to the variable that contains the 
step used for increment and decrement of Tx1 attenuation. 

• *tx1AttenIncPin: This is a pointer to the variable that stores 
information about the pin used for Tx1 attenuation increment. 

• *tx1AttenDecPin: This is a pointer to the variable that 
stores information about the pin used for Tx1 attenuation 
decrement. 

• *enable: This is a pointer to the variable that contains the 
enable status for this channel. If it is set to 1, then this 
function is enabled for this channel, and if it is 0, it is not 
enabled. 

• *useTx1ForTx2. This is a pointer to the variable that 
contains the parameter indicating if Tx1 settings are used 
to control attenuation in the Tx2 channel. 

MYKONOS_getTx2AttenCtrlPin 
mykonosGpioErr_t 

MYKONOS_getTx2AttenCtrlPin(mykonosDevice_
t *device, uint8_t *stepSize, 
mykonosGpioSelect_t *tx2AttenIncPin, 
mykonosGpioSelect_t *tx2AttenDecPin, 
uint8_t *enable, uint8_t *useTx1ForTx2) 

This API function returns the current configuration of Tx2 
attenuation in pin control mode. 

Parameters 

• *stepSize: This is a pointer to the variable that contains the 
step used for increment and decrement of Tx2 attenuation. 

• *tx2AttenIncPin: This is a pointer to the variable that stores 
information about the pin used for Tx2 attenuation 
increment. 

• *tx2AttenDecPin: This is a pointer to the variable that 
stores information about the pin used for Tx2 attenuation 
decrement. 

• *enable: This is a pointer to the variable that contains the 
enable status for this channel. If it is set to 1, then this 
function is enabled for this channel, and if it is 0, it is not 
enabled. 

• *useTx1ForTx2: This is a pointer to the variable that 
contains parameter indicating if Tx1 settings are used to 
control attenuation in the Tx2 channel. 
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SECONDARY SERIAL PERIPHERAL INTERFACE 
(SPI2) 
The transmitter (Tx) features an optional dedicated SPI, or 
SPI2, interface that can adjust Tx attenuation. The SPI2 interface 
is included exclusively for the control of Tx attenuation on both 
channels. It can only be used to write to the 8 registers mentioned 
in this section; it does not offer write access to any other 
registers.  

The SPI2 interface allows users to program two distinct 
attenuation states (S1 and S2) per transmitter and use an 
additional pin to toggle between these states. This interface can 

be particularly useful for solutions that need to adjust the Tx 
attenuation at a precise instance in time but need a wider 
attenuation range than what is available over the GPIO based 
Tx attenuation increment/decrement control. Note that when 
SPI2 is enabled, the primary SPI port cannot be used to adjust 
Tx attenuation.  

A block diagram depicting the use of the SPI2 interface is 
shown in Figure 99. 

Figure 100 shows another way to look at the use case where the 
Tx1 and Tx2 attenuation are changed to accommodate a special 
slot in time.  

 

TX1 S1[D9:D8] = SPI2 REG 0x318[D1:D0]
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Figure 99. Block Diagram of SPI2 Operation 
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Figure 100. Timing Diagram of SPI2 Operation 
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The SPI2 interface uses the GPIO_3 to GPIO_0 pins for the SPI 
control pins and an additional pin that toggle between Tx 
attenuation states, S1 and S2. The additional pin, S1/S2 select, can 
be designated as one of the following pins: GPIO_4, GPIO_8, and 
GPIO_14. The pin mapping is described in Table 161.  

The SPI2 port uses the same SPI protocol as the primary SPI port 
in terms of MSB/LSB first and descending/ascending order. Note 
that the GPIO output enables must be set correctly for SPI2 to 
work properly.  

Table 161. GPIO Pin Mappings for SPI2 
GPIO Pin I/O Function Description 
GPIO_0 Input SDIO2 SPI2 port data input 
GPIO_1 Output SDO2 SPI2 port data output 
GPIO_2 Input SCLK2 SPI2 port data clock 
GPIO_3 Input CSB2 SPI2 port chip select bar 

(negative logic) 
GPIO_4/GPIO_8/ 
GPIO_14 

Input S1/S2  
Select 

Selection of Tx 
attenuation word  
(0 = S1, 1 = S2) 

 

SPI2 Register Map 

The SPI2 interface is restricted to 8 addresses. These addresses 
cannot be accessed via the main SPI interface. The SPI2 registers 
correspond to 10-bit words for Tx1 attenuation S1, Tx1 attenuation 
S2, Tx2 attenuation S1, Tx2 attenuation S2 as detailed in the 
SPI2 register map. Because the Tx attenuation is set as a 10-bit 
word, it takes two SPI writes to write a single Tx attenuation word.  

Note that the LSB in the 10-bit words are programmable. The step 
size can be set to 0.05dB (default), 0.1dB, 0.2dB, or 0.4dB per LSB. 
Refer to the parameter in the device data structure device → tx → 

txAttenStepSize. The txAttenStepSize is written over the primary 
SPI interface during MYKONOS_initialize(…). 

The attenuation readback registers (0x2E8 to 0x2EB) can be 
read over the SPI port or the SPI2 port. These allow the user to 
read the currently applied Tx attenuation settings. The SPI2 
register map is shown in Table 162.  

API Description 

The SPI2 is set up with the application programming interface 
(API) command as described as follows.  

MYKONOS_spi2GpioSetup 

mykonosGpioErr_t 
MYKONOS_spi2GpioSetup(mykonosDevice_t 
*device, uint8_t enable, uint8_t 
updateTxAttenPinSelect) 

This API function configures and enables the secondary SPI 
port. This port allows control compatibility with baseband 
processors (BBPs) that employ dual SPI ports. The GPIO 
mapping for SPI2 is fixed, excluding a configurable select pin 
that selects Tx attenuation between Attenuation State 1 (S1) and 
Attenuation State 2 (S2).  

Parameters 

 enable: This is the parameter that enables the secondary 
SPI port. 1 = enable, and 0 = disable. 

 updateTxAttenPinSelect: This parameter sets the GPIO pin 
to be toggled for determining the S1 or S2 state. Configuration 
options include the following: 

 GPIO_4 → updateTxAttenPinSelect = 0x00 
 GPIO_8 → updateTxAttenPinSelect = 0x01 
 GPIO_14 → updateTxAttenPinSelect = 0x02 

Table 162. SPI2 Register Map  
Register 
Address Name D7 D6 D5 D4 D3 D2 D1 D0 Default R/W 

I/O  
Scope 

0x2E8 Tx1 atten index  
readback LSB 

Tx1 attenuation index readback[7:0] 0x00 R Digital 

0x2E9 Tx1 atten index  
readback MSB 

Unused Tx1 attenuation index  
readback[9:8] 

0x00 R Digital 

0x2EA Tx2 atten index  
readback LSB 

Tx2 attenuation index readback[7:0] 0x00 R Digital 

0x2EB Tx2 atten index  
readback MSB 

Unused Tx2 attenuation index  
readback[9:8] 

0x00 R Digital 

0x318 Tx1 attenuation S1 MSB Unused Tx1 attenuation S1[9:8] 0x00 R/W Digital 

0x319 Tx1 attenuation S1 LSB Tx1 attenuation S1[7:0] (update happens when this byte is written, write  
this byte after S1[9:8] to see update) 

0x00 R/W Digital 

0x31A Tx1 attenuation S2 MSB Unused Tx1 attenuation S2[9:8] 0x00 R/W Digital 

0x31B Tx1 attenuation S2 LSB Tx1 attenuation S2[7:0] (update happens when this byte is written, write  
this byte after S2[9:8] to see update) 

0x00 R/W Digital 

0x31C Tx2 attenuation S1 MSB Unused Tx2 attenuation S1[9:8] 0x00 R/W Digital 

0x31D Tx2  attenuation S1 LSB Tx2 attenuation S1[7:0] (update happens when this byte is written, write  
this byte after S1[9:8] to see update) 

0x00 R/W Digital 

0x31E Tx2 attenuation S2 MSB Unused Tx2 attenuation S2[9:8] 0x00 R/W Digital 

0x31F Tx2 attenuation S2 LSB Tx2 attenuation S2[7:0] (update happens when this byte is written, write  
this byte after S2[9:8] to see update) 

0x00 R/W Digital 
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Rx MANUAL GAIN CONTROL  
The device provides gain control blocks that are externally 
controllable through GPIO pins, allowing the user complete 
control over the applied attenuation. This section describes the 
GPIO configuration for and the operation of manual gain 
control (MGC). Refer to the Gain Control section for more 
information about the gain control block. 

Figure 101 shows a block diagram of the receiver paths together 
with the gain control blocks and the GPIO interface connection. 
There are two variable gain elements in the receive path: the 
internal RF attenuator and the digital gain/attenuator block. 
The MGC blocks control the gains of both these components 
simultaneously; the Gain Control block outputs in Figure 101 
indicate this control.  

Note that this device has two receiver chains. Each receiver has 
its own gain table that simultaneously controls each of the 
variable gain blocks in Figure 101. Each row of this table has a 
unique combination of gain settings. A pointer to the table 
determines which settings from this table are used. The internal 
radio frequency (RF) attenuator has 64 different attenuation 
settings, or indices (0 to 63), which range from 0 dB to 36.12 dB 

of attenuation. The device also has a digital gain block that can 
provide higher resolution than provided by the internal RF 
attenuator. The digital gain has 128 indices (0 to 127) that 
corresponds to a gain range of 0 dB to 31.75 dB in 0.25 dB steps. 
The device also has functionality allowing the user to control a 
digital stepped attenuator with GPIO_3P3_x pins. There are up 
to four bits (on GPIO_3P3 interface) available.  

In MGC mode, the baseband processor (BBP) controls the gain 
index pointer(s), which is the pointer used to select the required 
row of the gain table. In MGC mode, the gain index pointer can 
be controlled either by using the SPI interface or by using the 
GPIO interface. The GPIO interface method is implemented by 
toggling the GPIO pins to initiate gain changes according to the 
following process. The gain control GPIO pins are driven high. 
A transition from a logic low to a logic high, held high for at 
least 2 clock RF cycles, initiates a gain change in the device 
(clock RF is the clock at the input to the Rx finite impulse 
response (FIR), refer to transceiver evaluation software (TES) for 
more information). Similarly, a logic low must be maintained 
for at least 2 clock RF cycles. The number of gain indices that an 
increase or decrease corresponds to is user programmable.  
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Figure 101. GPIO Configuration for Manual Gain Control Mode 
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API Description 

The application programming interface (API) package provides 
functions that allow users to operate the GPIO in Rx manual 
gain control mode. Before the user can use the device in Rx manual 
gain control mode, Crosspoint 2 and the input/output (I/O) 
buffers must be configured. Use the MYKONOS_setupGpio() 
function to properly configure the crosspoint and I/O buffers. This 
function relies on correct configuration of device → auxIo → gpio 
structure members. Use the transceiver evaluation software 
(TES) to generate correct settings for this structure. After the 
crosspoint and I/O buffers are configured, the user can start to 
operate GPIOs in Rx manual gain control mode. The following 
sections list the Rx manual gain control mode API functions and 
short descriptions of their functionalities. 

MYKONOS_setRx1GainCtrlPin 
mykonosGpioErr_t 

MYKONOS_setRx1GainCtrlPin(mykonosDevice_t 
*device, uint8_t incStep, uint8_t 
decStep, mykonosGpioSelect_t 
rx1GainIncPin, mykonosGpioSelect_t 
rx1GainDecPin, uint8_t enable) 

This API function configures the GPIO input pin and step size 
to allow the baseband processor (BBP) to control gain changes 
in Rx1 signal chain. A high pulse on the GPIO pin set by 
rx1GainIncPin increments the gain by the value set in incStep. A 
high pulse on the GPIO pin set by rx1GainDecPin decrements 
the gain by the value set in decStep. 

Parameters 

• incStep: This parameter sets the change (increase) in the 
gain index that is applied when the increment gain pin (in 
manual gain control (MGC) pin control mode) is pulsed. 

• decStep: This parameter sets the change (decrement) in 
gain index to be applied when the decrement gain pin (in 
MGC pin control mode) is pulsed high and none of the 
peak detector signals trigger. If any combination of the peak 
detector signals are high, the gain step that corresponds to 
that combination of peak detector signals is used as the 
decrement step size. 

• rx1GainIncPin: This parameter selects the GPIO used for 
the Rx1 manual gain increment input. The available pins are 
MYKGPIO0 and MYKGPIO10. 

• rx1GainDecPin: This parameter selects the GPIO used for 
the Rx1 manual gain decrement input. The available pins are 
MYKGPIO1 and MYKGPIO11. 

• enable: This parameter enables or disables manual gain 
control mode for Rx1. 
• 0 = disables the manual gain control pin mode for Rx1. 
• 1 = enables the manual gain control pin mode for Rx1. 

 

 

 

 

MYKONOS_setRx2GainCtrlPin 
mykonosGpioErr_t 

MYKONOS_setRx2GainCtrlPin(mykonosDevice_t 
*device, uint8_t incStep, uint8_t 
decStep, mykonosGpioSelect_t 
rx2GainIncPin, mykonosGpioSelect_t 
rx2GainDecPin, uint8_t enable) 

This API function configures the GPIO input pin and step size 
to allow the BBP to control gain changes in the Rx2 signal 
chain. A high pulse on the GPIO pin set by rx2GainIncPin 
increments the gain by the value set in incStep. A high pulse on the 
GPIO pin set by rx2GainDecPin decrements the gain by the 
value set in decStep. 

Parameters 

• incStep: This parameter sets the change (increase) in gain 
index that is applied when the increment gain pin (in MGC 
pin control mode) is pulsed.  

• decStep: This parameter sets the change (decrement) in 
gain index to be applied when the decrement gain pin (in 
MGC pin control mode) is pulsed high and none of the 
peak detector signals have triggered. If any combination 
of the peak detector signals are high, the gain step that 
corresponds to that combination of peak detector signals 
is used as the decrement step size. 

• rx2GainIncPin: This parameter selects the GPIO used for 
the Rx2 manual gain increment input. The available pins are 
MYKGPIO3 and MYKGPIO13. 

• rx2GainDecPin: This parameter selects the GPIO used for 
the Rx2 manual gain decrement input. The available pins are 
MYKGPIO4 and MYKGPIO14. 

• enable: This parameter enables or disables manual gain 
control mode for Rx2. 
• 0 = disables the manual gain control pin mode for Rx2. 
• 1 = enables the manual gain control pin mode for Rx2. 

MYKONOS_getRx1GainCtrlPin 
mykonosGpioErr_t 

MYKONOS_getRx1GainCtrlPin(mykonosDevice_t 
*device, uint8_t *incStep, uint8_t 
*decStep, mykonosGpioSelect_t 
*rx1GainIncPin, mykonosGpioSelect_t 
*rx1GainDecPin, uint8_t *enable) 

This API function returns the configuration for the GPIO 
inputs and step sizes used to control the gain index in MGC 
input pin control mode for the Rx1 signal chain. 

Parameters 

• *incStep: A pointer to a variable that contains the step used 
for gain increment. 

• *decStep: A pointer to a variable that contains the step used 
for gain decrement. 

• *rx1GainIncPin: A pointer to a variable that has the pin 
used for gain increment. 

• *rx1GainDecPin: A pointer to a variable that has the pin 
used for gain decrement. 
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• *enable: A pointer to a variable that contains the enable 
status for the Rx1 channel.  
• 1 = function is enabled for the Rx1 channel. 
• 0 = function is not enabled for the Rx1 channel. 

MYKONOS_getRx2GainCtrlPin 
mykonosGpioErr_t 

MYKONOS_getRx2GainCtrlPin(mykonosDevice_t 
*device, uint8_t *incStep, uint8_t 
*decStep, mykonosGpioSelect_t 
*rx2GainIncPin, mykonosGpioSelect_t 
*rx2GainDecPin, uint8_t *enable) 

This application programming interface (API) function returns 
the configuration for the GPIO inputs and step sizes used to 
control the gain index in manual gain control (MGC) input pin 
control mode for the Rx2 signal chain. 

Parameters 

• *incStep: A pointer to a variable that contains the step used 
for gain increment. 

• *decStep: A pointer to a variable that contains the step used 
for gain decrement. 

• *rx2GainIncPin: A pointer to a variable that has the pin 
used for gain increment. 

• *rx2GainDecPin: A pointer to a variable that has the pin 
used for gain decrement. 

• *enable: A pointer to a variable that contains the enable 
status for the Rx2 channel.  
• 1 = function is enabled for the Rx2 channel. 
• 0 = function is not enabled for the Rx2 channel. 
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3.3 V GENERAL-PURPOSE INPUT/OUTPUT OVERVIEW 
The device provides 12, 3.3 V capable (GPIO_3P3_x) general-
purpose input/output signals that can be configured for numerous 
functions. The GPIO_3P3_x pins control or monitor external 
devices, and several features are included to facilitate this control/ 
monitor function. In this user guide, the naming convention 
used to describe these pins is GPIO_3P3_x, where x is the number 
of the port.  

Some of the GPIO_3P3_x pins can also be configured as 
outputs for the auxiliary DACs. To prevent any conflict on the 
GPIO_3P3_x pins, the auxiliary DAC has priority; that is, if the 
auxiliary DAC is powered up using the application programming 
interface (API) function, the pin takes on the auxiliary DAC 
function and the GPIO output buffer is tristated. Refer to the 
Auxiliary DACs section for more details on auxiliary DAC 
configuration and operation. 

This section describes control of the GPIO_3P3_x signals and 
their behavior in detail. It also outlines how to program the 
GPIO_3P3_x API structure parameters and use API functions 
so that the desired signals are available on the appropriate pins.  

API Description 

As shown in Figure 102, there are a number of functionalities 
available in this block that can be enabled and then interacted 
with over the GPIO_3P3_x interface. There are crosspoints and 
an I/O buffer that must be configured properly to enable particular 
functionality. The API package provides functions that allow 
users to configure those blocks to their desired states. The 
following sections provides a list of general API functions and 
short descriptions of their functionalities.  
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Figure 102. High Level Overview of the GPIO_3V3_x Interface 
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MYKONOS_setupGpio3v3 
mykonosGpioErr_t 

MYKONOS_setupGpio3v3(mykonosDevice_t 
*device) 

This function sets the GPIO_3P3_x configuration registers. It 
configures the pin direction for each GPIO_3P3_x pin, as well 
as the crosspoint. This function relies on correct settings of the 
device → auxIo → gpio3v3 structure members. A quick overview 
of this structure follows: 

typedef struct 
{ 
    uint16_t gpio3v3Oe;                         
/*!< Pin direction: bit per 3.3v GPIO, 
0=Input, 1=Output from the AD9371 device 
*/ 
    mykonosGpio3v3Mode_t 
gpio3v3SrcCtrl3_0;     /*!< Mode for 
GPIO3v3[3:0] pins */ 
    mykonosGpio3v3Mode_t 
gpio3v3SrcCtrl7_4;     /*!< Mode for 
GPIO3v3[7:4] pins */ 
    mykonosGpio3v3Mode_t 
gpio3v3SrcCtrl11_8;    /*!< Mode for 
GPIO3v3[11:8] pins */ 
} mykonosGpio3v3_t; 

The gpio3v3Oe member controls the configuration of the 
input/output (I/O) buffer shown in Figure 102. The 
gpio3v3SrcCtrlNN_N structure member control configuration 
of the I/O crosspoint is shown in Figure 102. Options for 
gpio3v3SrcCtrlNN_N are as follows: 

• GPIO3V3_LEVELTRANSLATE_MODE—level translate 
mode, signal level on low voltage GPIO output on the 
GPIO_3P3_x pins. 

• GPIO3V3_INVLEVELTRANSLATE_MODE—inverted 
level translate mode, inverse of signal level on low voltage 
GPIO output on GPIO_3P3_x pins. 

• GPIO3V3_BITBANG_MODE—manual mode; the API 
function sets the output pin levels and reads the input pin 
levels. 

• GPIO3V3_EXTATTEN_LUT_MODE—GPIO_3P3_x 
output level follows the Rx1/Rx2 gain table external control 
4-bit field.  

Use the transceiver evaluation software (TES) for setting the 
values for the members of this structure, ensuring that there is 
no conflict with the other GPIO functionalities.  

MYKONOS_setGpio3v3Oe 
mykonosGpioErr_t 

MYKONOS_setGpio3v3Oe(mykonosDevice_t 
*device, uint16_t gpio3v3OutEn) 

This is a helper function that is called by the MYKONOS_ 
setupGpio3v3() function.  

This function sets the GPIO_3P3_x direction given by the 
gpio3v3OutEn parameter. The direction can be either output or 
input. A bit set to 1 indicates that the pin is configured as an output. 
A bit set to 0 indicates that the pin is configured as an input.  

For example, setting gpio3v3OutEn = 0x02 configures 
GPIO_3P3_2 as an output and the rest of the GPIO_3P3_x pins 
as inputs. 

The function parameter is as follows: 

• gpio3v3OutEn. The valid range for this variable is from 
0x0 to 0x0FFF. Each bit represents the corresponding 
GPIO_3P3_x pin (Bit 0 represents GPIO_3P3_0, Bit 1 
represents GPIO_3P3_1, and so on.). The direction of the 
input buffer is set by each bit value: 0 = input, and 1 = 
output. 

MYKONOS_getGpio3v3Oe 
mykonosGpioErr_t 

MYKONOS_getGpio3v3Oe(mykonosDevice_t 
*device, uint16_t *gpio3v3OutEn) 

This function reads back the current status of the GPIO_3P3_x 
direction set in the device. The direction can be either output or 
input. The function parameter returns a bit per the 
GPIO_3P3_x pin, where 1 outputs from the device and 0 inputs 
to the device. 

Parameters 

• *gpio3v3OutEn: a pointer to the data to be returned with 
the output to enable the GPIO_3P3_x pins in a bit field 
format. 

MYKONOS_setGpio3v3SourceCtrl 
mykonosGpioErr_t 

MYKONOS_setGpio3v3SourceCtrl(mykonosDevic
e_t *device, uint16_t gpio3v3SrcCtrl) 

This is a helper function that is called by the MYKONOS_ 
setupGpio3v3() function.  

This function configures the crosspoint for different 
GPIO_3P3_x functionality. This function only affects the 
GPIO_3P3_x pins that have their output enable direction set 
by the MYKONOS_getGpio3v3Oe() function as outputs. 

Parameters 

• gpioSrcCtrl (nibble-based source control): This parameter 
is a 12-bit number that contains three nibbles that set the 
source control. Use the TES to generate correct settings for 
the desired configuration.  

MYKONOS_getGpio3v3SourceCtrl 
mykonosGpioErr_t 

MYKONOS_getGpio3v3SourceCtrl(mykonosDev
ice_t *device, uint16_t 
*gpio3v3SrcCtrl) 

This function reads back the current status of the GPIO_3P3 
source control for different GPIO functionality.  

Parameters 

• gpio3v3SrcCtrl (nibble-based source control): this is a 12-bit 
number that contains three nibbles that represent the 
current settings of the source control (crosspoint 
configuration). 
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3.3 V GENERAL-PURPOSE INPUT/OUTPUT 
CONTROL 
Figure 103 shows a graphical representation of the GPIO_3P3_x 
signals in manual mode. In this mode, the user can configure 
the GPIO_3P3_x inputs/outputs as outputs or inputs. If a 
GPIO_3P3_x pin is configured as an output, the user can 
control its logic level. If a GPIO_3P3_x pin is configured as an 
input, the user can read back the voltage level present at the pin. 
In both cases, a logic low or 0 corresponds to the ground voltage 
level. A logic high or 1 corresponds to the 3.3 V voltage level 
present at the VDDA_3P3 pin.  

Some of the GPIO_3P3_x pins can also be configured to 
provide access to the auxiliary DAC outputs (as per Figure 102). 
To prevent any conflict on the GPIO_3P3_x pins, the auxiliary 

DAC has priority. If the auxiliary DAC is powered up using its 
application programming interface (API) function, the pin takes 
on the auxiliary DAC function and the GPIO output buffer is 
tristated. Refer to the Auxiliary DACs section for more details 
on auxiliary DAC configuration and operation. 

When using GPIO manual mode only or when working with 
any other GPIO mode in parallel, use the transceiver evaluation 
software (TES) to set up the API auxIo/gpio3v3 structure with a 
valid configuration.  

The GPIO_3P3_x interface in manual mode uses the input/ 
output crosspoint. This crosspoint operates using nibbles 
(4 bits), meaning that the GPIO_3P3_x pins are controlled in 
groups of four.  
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Figure 103. GPIO_3P3_x in Manual Mode of Operation 
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API Description 

The application programming interface (API) package provides 
functions that allow users to operate the GPIO_3P3_x signals in 
manual mode. Before the user can set the GPIO_3P3_x signals 
in manual mode, the crosspoint and input/output (I/O) buffers 
must be configured. Use the MYKONOS_setupGpio3v3() 
function to properly configure the crosspoints and I/O buffers. 
This function relies on correct configuration of device → auxIo → 
gpio3v3 structure members. Use the transceiver evaluation 
software (TES) to generate correct settings for this structure. 
After the crosspoints and I/O buffers are configured, the user 
can operate GPIO_3P3_x signals in manual mode. The following 
sections describe the manual mode API functions and provide 
short descriptions of their functionalities. 

MYKONOS_getGpio3v3PinLevel 
mykonosGpioErr_t 

MYKONOS_getGpio3v3PinLevel(mykonosDevice_
t *device, uint16_t *gpio3v3PinLevel) 

This function reads the GPIO_3P3_x pins that are set to be 
inputs in manual mode. Any pin set to be an output reads back 
as zero. The pin level is returned in the form of a single 16-bit 
word. The returned value is a bit per pin. GPIO_3P3_0 returns 
on Bit 0 of the gpio3v3PinLevel parameter, GPIO_3P3_1 returns 
on Bit 1 of the gpio3v3PinLevel, and so on. A logic low level 
returns 0, and a logic high level returns 1. 

Parameters 

• *gpio3v3PinLevel: input GPIO pin levels are read back on 
the pins assigned as inputs (1 bit per pin).  

 

MYKONOS_setGpio3v3PinLevel 

mykonosGpioErr_t 
MYKONOS_setGpio3v3PinLevel(mykonosDevice_
t *device, uint16_t gpio3v3PinLevel) 

This function sets the GPIO_3P3_x output pin level. This function 
only affects the GPIO_3P3_x pins that are set to be outputs in 
manual mode. GPIO_3P3_0 reflects the status of Bit 0 of the 
gpio3v3PinLevel parameter, GPIO_3P3_1 reflects the status of 
Bit 1 of the gpio3v3PinLevel, and so on. A logic low is set at the 
GPIO output and its corresponding bit is set to 0. A logic high is 
set at the GPIO_3P3_x output (the corresponding bit is set to 1). 

Parameters 

• gpio3v3PinLevel: This parameter describes the level output 
for each GPIO_3P3_x pin (0 = low output, and 1 = high 
output). 

MYKONOS_getGpio3v3SetLevel 
mykonosGpioErr_t 

MYKONOS_getGpio3v3SetLevel(mykonosDevice_
t *device, uint16_t *gpio3v3SetLevel) 

This function allows the user to read the value of each 
GPIO_3P3_x output pin set to output in manual mode. 

Parameters 

• *gpio3v3PinSetLevel: a pointer to the 16-bit variable that 
contains the level of each GPIO_3P3_x pin (1 bit per pin). 
0 sets the output to a low level, and 1 sets the output to a high 
level. 
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GENERAL-PURPOSE INTERRUPT OVERVIEW 
The device provides the user with an interrupt signal in the 
form of a single, general-purpose interrupt output pin 
GP_INTERRUPT. This pin asserts to a logic high level when 
interrupt events occur. When the baseband processor (BBP) 
detects a rising edge on the GP_INTERRUPT pin, the BBP uses 
an application programming interface (API) function to 
determine the source of the interrupt.  

The user can control (enable or disable) assertion of the 
GP_INTERRUPT pin by certain events. Figure 104 shows 
interrupt sources for the device and outlines control blocks for 
them. The ARM error interrupt cannot be ignored and can 
always assert the GP_INTERRUPT pin. Note that the logic 
block format in Figure 104 is intended to show the functional 
operation of the GP_INTERRUPT signal but does not necessarily 
represent the method of implementation inside the device. 

 

 

 

API Description 

MYKONOS_configGpInterrupt  
mykonosGpioErr_t 

MYKONOS_configGpInterrupt(mykonosDevice_t 
*device, uint16_t gpMask) 

This function sets the general-purpose (GP) interrupt register 
bit mask to enable interrupt sources that assert the GP_ 
INTERRUPT pin. The GP_INTERRUPT pin only asserts for 
the enabled sources. The events that cause the GP_INTERRUPT 
pin to assert are user selectable by setting the gpMask parameter 
in this function. The device default is gpMask = x1FF, which 
means ignore all events. The ARM error interrupt cannot be 
ignored and can always assert the GP_INTERRUPT pin. Table 163 
outlines possible interrupt sources for this device.  

Parameters 

 gpMask: This value is passed to enable one or more general 
purpose interrupt sources (1 = ignores the source, and 0 = 
enables the source interrupt to the GP_INTERRUPT pin). 
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Figure 104. General-Purpose Interrupt Structure  

Table 163. GP_Interrupt Configurations 
gpMask Bits Description Reset 
0 Tx PLL lock 0x1 
 0 = allows phased-locked loop (PLL) unlocking to assert the GP_INTERRUPT pin  
 1 = ignores Tx PLL lock  
1 Rx PLL lock 0x1 
 0 = allows PLL unlocking to assert the GP_INTERRUPT pin  
 1 = ignores Rx PLL lock  
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gpMask Bits Description Reset 
2 Sniffer PLL lock 0x1 
 0 = allows PLL unlocking to assert the GP_INTERRUPT pin  
 1 = ignores sniffer PLL lock  
3 Calibration PLL lock 0x1 
 0 = allows PLL unlocking to assert the GP_INTERRUPT pin  
 1 = ignores calibration PLL lock  
4 Clock PLL lock 0x1 
 0 = allows PLL unlocking to assert the GP_INTERRUPT pin  
 1 = ignores clock PLL lock  
5 JESD204 deframer interrupt 0x1 
 0 = allows the JESD204B deframer interrupt to assert the GP_INTERRUPT pin  
 1 = ignores JESD204 deframer interrupt  
6 Tx1 PA protection 0x1 
 0 = allows the Tx1 PA protection event to assert the GP_INTERRUPT pin  
 1 = ignores Tx1 PA protection  
7 Tx2 PA protection 0x1 
 0 = allows the Tx2 PA protection event to assert the GP_INTERRUPT pin  
 1 = ignores Tx2 PA protection  
8 ARM watchdog  0x1 
 0 = allows the ARM watchdog timeout to assert the GP_INTERRUPT pin  
 1 = ignores the watchdog timeout event  
9 ARM error. 0x1 
 0 = allows the ARM to assert the GP_INTERRUPT pin when an error occurs.  
 1 = ignores the ARM error event.  
[15:10] Reserved for future use 0x0 

 

MYKONOS_readGpInterruptStatus 
mykonosGpioErr_t 

MYKONOS_readGpInterruptStatus(mykonosDevi
ce_t *device, uint16_t *status) 

This function reads the GP interrupt status to determine what 
caused the GP_INTERRUPT pin to assert. When the baseband 
processor (BBP) detects a rising edge on the GP_INTERRUPT 
pin, this function allows the BBP to determine the source of the 
interrupt. The value returned in the status parameter shows one 
or more sources for the interrupt, as shown in Table 164. 

Note that the phase-locked loop (PLL) unlock bits are not sticky. 
These bits follow the current status of the PLLs. If the PLL relocks, 
the status bit clears as well. The GP_INTERRUPT pin is the 
logical OR of all the sources. When all the status bits are low, the 
GP_INTERRUPT pin is low. The status word readback shows the 
current value for all interrupt sources, even if they are disabled 
by the mask using the MYKONOS_configGpInterrupt() 
function. However, the GP_INTERRUPT pin only asserts for 
the enabled sources. 

Parameters 

• status: This parameter returns the IRQ source(s) that 
caused the GP_INTERRUPT pin to assert. 

Table 164. GP_INTERRUPT Status 
Status Bit(s) Description 
0 1 = Tx PLL unlock 
1 1 = Rx PLL unlock 
2 1 = sniffer PLL unlock 
3 1 = calibration PLL unlock 
4 1 = clock PLL unlock 
5 1 = JESD204 deframer interrupt occurred 
6 1 = Tx1 PA protection event 
7 1 = Tx2 PA protection event 
8 1 = ARM watchdog timeout 
9 1 = ARM interrupt occurred 
[15:10] Reserved for future use 
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AUXILIARY CONVERTERS—AUXDAC_x, AUXADC_x, AND TEMPERATURE SENSOR 
This section describes the setup and operation of the auxiliary 
data converters in the device. These features are included to 
simplify control tasks, take static measurements during normal 
operation, and provide flexibility that can be used across multiple 
applications without adding external components. The following 
sections provide details needed to set up each block and the 
application programming interface (API) functions required to 
control operation. 

AUXILIARY DACs 
The 10 auxiliary digital-to-analog converters (DACs) are 10-bit, 
general-purpose DACs. An auxiliary DAC is a segmented 10-bit 
current source array. Two additional bits of dynamic range are 
created through a reference voltage selection. The aggregate 
auxiliary DAC spans approximately 12 bits of dynamic range. The 
auxiliary DAC output range spans from 0.5 V to 3.0 V (Changed to 
3.0 V to match d/s). Each auxiliary DAC is capable of sourcing 10 
mA. The auxiliary DACs and the 12 GPIO_3P3_x ports are 
multiplexed onto the same pins. Figure 105 shows the auxiliary 
DAC block. Note that, for stability, a 100 nF bypass capacitor 
must be placed at each active auxiliary DAC output.  

100nF

100nF

GPIO_3P3_810

AUX DAC 9

VREF

SLOPE

GPIO_3P3_910

ENABLE

AUX DAC 0

VREF

SLOPE

14
65

2-
09

2

 
Figure 105. Auxiliary DACs Block Diagram  

 

 

Hardware Configuration 

The auxiliary DACs have priority use of the pins when a given 
auxiliary DAC is enabled. The pin takes on the auxiliary DAC 
function and the corresponding GPIO_3P3_x output driver is 
tristated. See Table 166 for auxiliary DAC to GPIO_3P3_x pin 
mapping. 

The auxiliary DACs are designed to be used in feedback loop 
operations. For example, one can generate a voltage supply used 
to control a voltage controlled crystal oscillator (VCXO) input. 
For such control system uses, the absolute value of the voltage 
output is not critical, but it is recommended that the voltage 
steps be 12-bit accurate and monotonic. The feedback of the 
servo loop renders the absolute level unimportant. 

Note that when using an auxiliary DAC as a controlled voltage 
reference, take care regarding the tolerances on the 3.3 V 
domain that serve as the supplies for the auxiliary DACs. 

Auxiliary DAC Control Software Control Procedure 

The flowchart shown in Figure 106 illustrates the process 
required to properly control the auxiliary DACs when using 
them to generate control voltage outputs. 

Rise and Fall Times 

Table 165 provides an example of auxiliary DAC rise and fall times. 

Table 165. Example Auxiliary DAC Rise and Fall Times 
Voltage Change (V) Bit Change Rise Time (μs) Fall Time (μs) 
1.325 768 2.86 11.86 
 

PSRR 

The auxiliary DAC power supply rejection ratio (PSRR) is 
measured to 100 kHz (20 mV ripple injection). Worst case 
PSRR is approximately 6 dB and occurs near the maximum 
output levels.  

 

Table 166. Auxiliary DAC to GPIO_3P3_x Pin Mapping 
Pin Number Type Mnemonic Description 
C13 Output GPIO_3P3_9 Auxiliary DAC 0 output pin. 
D12 Output GPIO_3P3_7 Auxiliary DAC 1 output pin 
E14 Output GPIO_3P3_6 Auxiliary DAC 2 output pin 
D14 Output GPIO_3P3_10 Auxiliary DAC 3 output pin 
C1 Output GPIO_3P3_0 Auxiliary DAC 4 output pin 
C2 Output GPIO_3P3_1 Auxiliary DAC 5 output pin 
D1 Output GPIO_3P3_3 Auxiliary DAC 6 output pin 
E1 Output GPIO_3P3_4 Auxiliary DAC 7 output pin 
D5 Output GPIO_3P3_5 Auxiliary DAC 8 output pin 
D13 Output GPIO_3P3_8 Auxiliary DAC 9 output pin 
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Figure 106. Auxiliary DAC Control Procedure  
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Auxiliary DACs Software Configuration 

The process required to enable the auxiliary DACs requires the 
user to select values for members in the mykonosAuxIo_t 
substructure associated with the auxiliary DAC. The following 
descriptions outline the possible values for the mykonosAuxIo_t 
structure members and the interpretation of these values. Each 
auxiliary DAC can be independently configured.  

The device → auxIo → auxDacEnable structure member settings 
follow:  

 When set to 0, this structure member disables the 
corresponding auxiliary DAC (Bit 0 corresponds to 
Auxiliary DAC 0, Bit 1 corresponds to Auxiliary DAC 1, 
and so on). 

 When set to 1, this structure member enables the 
corresponding auxiliary DAC (Bit 0 corresponds to 
Auxiliary DAC 0, Bit 1 corresponds to Auxiliary DAC 1, 
and so on). 

The device → auxIo → auxDacSlope[i] structure member 
settings follow: 

 When set to 0, this structure member sets the 
corresponding auxiliary DAC voltage output (VOUT) codes 
to be 1.404 mV/code (see Figure 107). 

 When set to 1, this structure member sets the 
corresponding auxiliary DAC voltage output (VOUT) codes 
to be 0.702 mV/code (see Figure 108). 

The device → auxIo → auxDacVref[i] structure member settings 
follow: 

 When set to 0, this structure member sets the corresponding 
auxiliary DAC output midpoint to 1 V (see Figure 107 and 
Figure 108). 

 When set to 1, this structure member sets the corresponding 
auxiliary DAC output midpoint to 1.5 V (see Figure 107 
and Figure 108). 

 When set to 2, this structure member sets the corresponding 
auxiliary DAC output midpoint to 2 V (see Figure 107 and 
Figure 108). 

 When set to 3, this structure member sets the corresponding 
auxiliary DAC output midpoint to 2.5 V (see Figure 107 and 
Figure 108). 

The device → auxIo → auxDacValue[i] structure member 
settings follow: 

 The value programmed to this structure member is loaded 
to the corresponding auxiliary DAC and is output as the 
corresponding analog voltage. The value programmed to 
this member must be in range between 0 and 1023 (10-bit 
DAC code). 
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Figure 107. Auxiliary DAC Output Voltage (VOUT) vs. Auxiliary DAC Code for 

the Different auxDacVref Values (auxDacSlope = 0) 
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Figure 108. Auxiliary DAC Output Voltage (VOUT) vs. Auxiliary DAC Codes for 

Different auxDacVref Values (auxDacSlope = 1) 

MYKONOS_setupAuxDacs 

After correctly configuring all structure members mentioned in 
the Auxiliary DACs Software Configuration section, execute the 
following application programming interface (API) function: 
mykonosErr_t 

MYKONOS_setupAuxDacs(mykonosDevice_t 
*device) 

This function reads data from the device auxiliary input/output 
substructure and then loads this data into the device. This 
function programs all configuration parameters for 10 auxiliary 
DACs at the same time, including the enable/disable, slope, VREF 
(midpoint), and the initial auxiliary DAC code. 

This function can be called any time after MYKONOS_initialize() 
to reconfigure, enable, or disable the different auxiliary DAC 
outputs. The auxiliary DACs are used in manual control mode.  
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MYKONOS_writeAuxDac 

After calling this setup function, it is possible to change a 
particular auxiliary DAC code by calling the following function: 

mykonosErr_t 
MYKONOS_writeAuxDac(mykonosDevice_t 
*device, uint8_t auxDacIndex, uint16_t 
auxDacCode) 

This function updates the 10-bit code that controls the auxiliary 
DAC output voltage. The auxiliary DAC code is updated for the 
specified auxiliary DAC and is written to the device data structure 
for future reference. 

Parameters 

 *device: This is a pointer to the device settings structure. 
 auxDacIndex: an index that selects which auxiliary DAC to 

set the new DAC code. The allowable values are from 0 to 9. 
 auxDacCode: the DAC code to update the auxiliary DAC; 

sets the output voltage of selected DAC. The programmed 
value must be in range between 0 and 1023 (10-bit DAC 
code). 

This function can be called any time after MYKONOS_ 
initialize() and MYKONOS_setupAuxDacs(). 

AUXILIARY ADC 
The auxiliary analog-to-digital converter (ADC) is a single 12-bit 
auxiliary converter with four multiplexed inputs that cover an 
input level range from 0.05 V to 3.25 V. The auxiliary ADC 
allows monitoring of the desired voltages, such as a power 
amplifier (PA) power detector or an external temperature 
sensor. Figure 109 shows the general auxiliary ADC input 
connection scheme.  
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Figure 109. Auxiliary ADC Input Block Diagram 

Table 167 outlines the hardware connections on the device for 
the auxiliary ADC inputs. A small value capacitor (680 pF) can 
be placed on the auxiliary ADC input pins to improve noise 
performance. 

Auxiliary (AUX) ADC Readback Software Control 
Procedure 

The flowchart shown in Figure 111 illustrates the process 
required to properly control the auxiliary ADCs when using 
them to read voltage levels. A typical plot of output code vs. 
input voltage is shown in Figure 110.  
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Figure 110. Auxiliary ADC Code vs. Input Voltage 

 

 

Table 167. Auxiliary ADC Input Mapping 
Pin Number Type Mnemonic Description 
E13 Input AUXADC_0 Auxiliary ADC 0 input pin 
C11 Input AUXADC_1 Auxiliary ADC 1 input pin 
C12 Input AUXADC_2 Auxiliary ADC 2 input pin 
D11 Input AUXADC_3 Auxiliary ADC 3 input pin 
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Figure 111. Auxiliary (AUX) ADC Readback Procedure  

Auxiliary ADCs Software Configuration  

The user must use an application programming interface (API) 
command to read back the ADC code for a selected input. A list 
of API commands with instructions detailing how to use them 
is outlined in this section. 

MYKONOS_setupAuxAdcs  

The following function configures an auxiliary ADC with the 
requested decimation factor; excecute this command first. 

mykonosErr_t MYKONOS_setupAuxAdcs 
(mykonosDevice_t *device, uint8_t 
adcDecimation,uint8_t  enable) 

The auxiliary ADC clock is automatically set as close as possible 
to 40 MHz. The auxiliary ADC conversion time = (1/40 MHz) × 
decimation, where the decimation ranges from 256 auxiliary 
ADC clock cycles to 32,768 auxiliary ADC clock cycles. 

 

 

 

 

 

 

Parameters 

 *device: This is a pointer to the device settings structure. 
 adcDecimation: ADC decimation factor. The allowable 

values are in the 0 to 7 range. 

Decimation = 256 × 2adcDecimation (19) 

Conversion Time = ADC Clock Cycles × Decimation (20) 

where ADC Clock Cycles = (1/40 MHz) = 25 ns.  

For example, if adcDecimation = 4, the ADC conversion time is 
approximately 0.1 ms  

 enable: When set to 0, this disables the auxiliary ADC. 
When set to 1, this enables the auxiliary ADC. 

This function can be called any time after MYKONOS_ 
initializer(). 
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MYKONOS_setAuxAdcChannel 

The next API function to be used with the auxiliary ADC is as 
follows: 

mykonosErr_t MYKONOS_setAuxAdcChannel 
(mykonosDevice_t *device,  uint8_t  
auxAdcChannel ) 

This function sets the selected input channel of the auxiliary 
ADC. After setting the auxiliary ADC channel, wait at least 1 
auxiliary ADC conversion time before reading back the 
auxiliary ADC value. 

Parameters 

 *device: A pointer to the device settings structure 
 auxAdcChannel: this parameter selects the auxiliary ADC 

inputs and internal temperature sensor as follows: 
 When set to 0, this parameter selects Auxiliary ADC 

Input 0. Refer to Table 167 for hardware configuration. 
 When set to 1, this parameter selects Auxiliary ADC 

Input 1. Refer to Table 167 for hardware configuration. 
 When set to 2, this parameter selects Auxiliary ADC 

Input 2. Refer to Table 167 for hardware configuration. 
 When set to 3, this parameter selects Auxiliary ADC 

Input 3. Refer to Table 167 for hardware configuration.  
 When set to 16, this parameter selects the internal 

temperature sensor. 

This function can be called any time after MYKONOS_ 
initialize() and MYKONOS_setupAuxAdcs(). 

MYKONOS_readAuxAdc 

To read the auxiliary ADC data for the selected auxiliary ADC 
input, use the following application programming interface 
(API) function: 

mykonosErr_t MYKONOS_readAuxAdc  
(mykonosDevice_t *device,  uint16_t 
*adcCode ) 

Before using this function to read back the output value of the 
selected auxiliary ADC, ensure that at least one ADC conversion 
time passes after setting the auxiliary ADC channel. 

Parameters 

 *device: This is a pointer to the device settings structure. 
 *adcCode: This is a pointer for the 12-bit ADC read value. 

This function can be called any time after MYKONOS_ 
initialize(). First, configure the auxiliary ADC using the 
MYKONOS_setupAuxAdcs() and MYKONOS_ 
setAuxAdcChannel() functions. 

TEMPERATURE SENSOR 
The transceiver provides the user with an option to use the 
auxiliary ADC to measure the transceiver die temperature. This 
temperature sensor is on the die; therefore, it cannot be used to 
measure the ambient device temperature.  

Figure 112 shows the temperature sensor output vs. the 
temperature measured at the surface of the device. 

430

230

250

270

290

310

330

350

370

390

410

–
3
9.

28
6

–
3
5.

15
9

–
3
0.

02
2

–
2
4.

62
3

–
2
0.

31
4

–
1
5.

42
6

–
1
0.

35
4

–
5.

42
5

0.
31

2
5.

18
1

9.
91

6
1
4.

53
7

2
0.

16
9

2
4.

86
0

3
0.

42
2

3
5.

06
6

3
9.

79
1

4
5.

21
0

4
9.

66
3

5
4.

71
4

5
9.

60
1

64
.5

4
6
9.

80
6

7
9.

64
5

8
9.

95
1

1
0
0.

53
3

7
5.

08
3

8
5.

29
7

9
5.

45
7

1
0
5.

41
9

1
1
0.

11
4

IN
T

E
R

N
A

L
 T

E
M

P
E

R
A

T
U

R
E

 S
E

N
S

O
R

 C
O

D
E

CASE TEMPERATURE (°C) 14
65

2-
19

9

 
Figure 112. Internal Temperature Sensor Code vs. Case Temperature  

Software Configuration 

The API provides functions to read back the internal die 
temperature sensor output. Figure 113 outlines the procedure 
that must be followed to read back the internal temperature 
sensor. A list of API commands with instructions detailing how 
to use them is outlined in the following section.  
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Figure 113. Temperature Sensor Readback Procedure  

 

 

 

 

 

 

 

 



UG-992 AD9371/AD9375 System Development User Guide 
 

Rev. B | Page 234 of 360 

The user must use API commands to read back the ADC code 
for a selected input. A list of API commands with instructions 
detailing how to use them is outlined in this section. 

MYKONOS_setupTempSensor 

The following function sets up the operation of the internal 
temperature sensor: 
mykonosGpioErr_t 

MYKONOS_setupTempSensor(mykonosDevice_t * 
device, mykonosTempSensorConfig_t 
*tempSensor) 

Before using this function, ensure that the MYKONOS_ 
setupAuxADC() function executes and MYKONOS_ 
setAuxAdcChannel() is configured to read back from 
the internal temperature sensor. Also ensure that the 
mykonosTempSensorConfig_t structure is populated with 
correct values. 

Parameters 

• * device: This is a pointer to the device settings structure. 
• *tempSensor: this is a pointer to the mykonos-

TempSensorConfig_t structure that holds the 
configuration settings for the temperature sensor.  

The following members are the mykonosTempSensorConfig_t 
structure members: 

• uint8_t tempDecimation—a 3-bit value that controls the 
auxiliary ADC decimation factor when used for temperature 
sensor calculations, according to the following: 

Auxiliary ADC decimation = 256 × 2tempDecimation (21) 

• uint8_t offset—an 8-bit offset added to the temperature 
sensor code internally. 

• uint8_t overrideFusedOffset—a bit that overrides the 
factory calibrated offset value; uses the value stored in the 
offset member. 

• uint8_t tempWindow—a 4-bit code with a resolution of 
1°C/LSB. Each time a temperature measurement is 
performed, the device compares the current temperature 
against the previous value. If the value exceeds 
tempWindow, the windowExceeded member of the 
mykonosTempSensorStatus_t structure is set. 

In the scenario where structure member values are outside of 
range, the MYKONOS_setupTempSensor() returns an error. 
Refer to the description in the application programming 
interface (API) help file for more details.  

This function can be called any time after MYKONOS_ 
initialize(). 

MYKONOS_getTempSensorConfig 

The next API function reads data from the temperature sensor 
registers and populates the *tempSensor data structure. After 
this function is executed, the *tempSensor parameter holds 
updated values from the device registers. This parameter is used 
as follows: 

mykonosGpioErr_t 
MYKONOS_getTempSensorConfig(mykonosDevice
_t *device,mykonosTempSensorConfig_t 
*tempSensor) 

Parameters 

• *device: This is a pointer to the device setting structure. 
• *tempSensor: This is a pointer to the mykonosTemp-

SensorConfig_t structure, which holds the configuration 
settings for the temperature sensor. 

This function can be called any time after MYKONOS_ 
initialize(). 

MYKONOS_startTempMeasurement 

This API function initiates a temperature sensor measurement.  
mykonosGpioErr_t 

MYKONOS_startTempMeasurement(mykonosDevic
e_t *device) 

Before this function can be executed, the user must do the 
following: 

• Set up the temperature sensor using the MYKONOS_ 
setupTempSensor() function. 

• Connect the auxiliary ADC input mux to the internal 
temperature sensor (Channel 16 = 0x10) using the 
MYKONOS_setAuxAdcChannel() function. 

After this function is executed, the internal temperature sensor 
block performs a measurement and updates the register values. 
The user can read back the temperature sensor information 
using the MYKONOS_readTempSensor() function.  

Parameters 

• *device: This is a pointer to the device settings structure. 

This function can be called any time after MYKONOS_ 
initialize(). 

MYKONOS_readTempSensor 

To read temperatures from the internal on die temperature 
sensor and update temperature sensor status information, use 
the following API command: 

mykonosGpioErr_t 
MYKONOS_readTempSensor(mykonosDevice_t 
*device, mykonosTempSensorStatus_t 
*tempStatus) 

Before using this function to read back the temperature sensor 
information, the user must do the following: 

• Set up the temperature sensor using the MYKONOS_ 
setupTempSensor() function. 

• Set up the auxiliary ADC input mux to the internal 
temperature sensor (Channel 16 = 0x10 ) using the 
MYKONOS_setAuxAdcChannel() function. 

• Initiate temperature sensor measurements using the 
MYKONOS_startTempMeasurement() function. The user 
must call this function every time temperature readings 
must be performed. 
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The user must allow at least one computation period to elapse 
between the temperature measurement request function call, 
MYKONOS_startTempMeasurement(), and the temperature 
readback using the MYKONOS_readTempSensor() function.  

The temperature sensor computation period equals six times 
the auxiliary ADC conversion time, which is determined by  

Auxiliary ADC Conversion Time = 61040
2256
×

× tiontempDecima
 (22) 

The tempDecimation parameter is stored in the mykonos-
TempSensorConfig_t structure. 

The results of a temperature measurement function call are 
stored in the mykonosTempSensorStatus_t structure. If a valid 
measurement is achieved, the tempValid member of the mykonos-
TempSensorStatus_t structure is set, and the tempCode of the 
mykonosTempSensorStatus_t structure contains the actual 
reading. 

Parameters 

• *device: This is a pointer to the device settings structure. 
• *tempStatus: a pointer to the mykonosTempSensorStatus_t 

structure that is updated with the temperature sensor 
readings. 

The description of the mykonosTempSensorStatus_t structure 
members is as follows: 

• int16_t tempCode. This structure member contains a  
16-bit signed temperature value. This value is reported in 
degrees Celsius. 

• uint8_t windowExceeded. This flag is set if the absolute 
value of the difference between the previous and current 
temperature measurement is greater than the value stored 
in the temperature configuration tempWindow, a member 
of mykonosTempSensorConfig_t structure. 

• uint8_t windowHiLo. When windowExceeded flag is set, 
this bit is set to 1 if the current value is greater than the 
previous value. This bit is set to 0 if the current value is less 
than or equal to the previous value. 

• uint8_t tempValid. This structure member indicates valid 
measurement results when the temperature reading is 
complete, and a valid temperature value is stored in the 
tempCode structure member. 
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RF PORT INTERFACE 
This section provides the recommended RF transmitter and 
receiver interfaces to obtain optimal device performance. This 
section includes data regarding the expected RF port impedance 
values, potential impedance matching network techniques, and 
examples of impedance matching networks. Some reference 
material is also provided regarding board layout techniques and 
balun selection guidelines. 

The device is a highly integrated transceiver with two 
transmitters, two main receivers, and an observation channel 
with two observation receiver inputs and three sniffer receiver 
inputs. All input and output ports are differential; therefore, 
external impedance matching networks are required on 
transmitter and receiver ports to convert them from single-
ended to differential as well as to achieve performance levels 
indicated on the data sheet.  

SERIES AND PARALLEL IMPEDANCE MODELS  
In describing differential impedances, two equivalent models 
are commonly used: series equivalent differential impedance 
(SEDZ) and parallel equivalent differential impedance (PEDZ). 
Both formats are used throughout this user guide, and descriptions 
of the models and the conversion between the two formats are 
provided in the following sections.  

Series Equivalent Differential Impedance (SEDZ) Models 

The SEDZ model is depicted in Figure 114. Note that series 
refers to the fact that the resistance is in series with the reactance 
formed by the parallel combination of the capacitor and 
inductor (see Figure 114).  
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Figure 114. SEDZ Definition 

Mathematically, the differential series impedance is represented by 

SEDZ = RS + jXS (23) 

The + sign implies that the elements are in series. The jXS can 
be positive (inductive) or negative (capacitive). 

Parallel Equivalent Differential Impedance (PEDZ) Model  

The PEDZ model is depicted in Figure 115. In contrast to the 
SEDZ model, the resistance is in parallel with the reactance 
formed by the parallel combination of the capacitor and inductor.  
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Figure 115. PEDZ Definition 

Mathematically, the PEDZ model is represented as 

PEDZ = RP||jXP (24) 

The notation, a || b is short for a in parallel with b. The term, 
jXP, can be positive (inductive) or negative (capacitive). 

Conversions Between SEDZ and PEDZ  

From a network theory perspective, the SEDZ model and the 
PEDZ model are equivalent. The following equations provide a 
means to calculate a PEDZ model from a SEDZ model. Note 
that SEDY is the series equivalent differential admittance, which 
is the reciprocal of SEDZ. Similarly, PEDY is the parallel equivalent 
differential admittance, which is the reciprocal of PEDZ.  
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Conversion from and to the SEDZ model from the PEDZ 
model is accomplished using the following equations: 
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Example 1 and Example 2 that follow illustrate the simplicity of 
the conversion process. 

Example 1: SEDZ to PEDZ Conversion  

Given SEDZ = 100 – j20 Ω, the PEDZ model calculation uses 
Equation 25 and Equation 26 as follows: 
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−[0.0019]–1 = −j520 Ω (30) 

The preceding calculations show that PEDZ = RP || jXP = 104 || 
(−j520 Ω). 
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Example 2: PEDZ to SEDZ Conversion 

Given PEDZ = 104 || −j520 Ω, the SEDZ model calculation uses 
Equation 27 and Equation 28 as follows: 
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The preceding calculations show SEDZ = RS + jXS = 100 – j20 Ω. 

Thus, Example 1 and Example 2 illustrate that conversion 
between the two models is straightforward. 

The following two major factors must be kept in mind: 

 The SEDZ model is equivalent to the PEDZ model. The 
conversion between the models is straightforward. 

 Understanding the differential impedance models is 
critical when interpreting the data within this user guide. 

RF PORT IMPEDANCE DATA 
This section provides the port impedance data for all transmitters 
and receivers in the device. The following points of consideration 
are important for this section: 

 ZO is defined as 50 Ω. 
 The reference plane for this data is the device ball pads. 

Figure 116, Figure 118, Figure 120, Figure 122, Figure 124, 
Figure 126, Figure 128, and Figure 130 show the SEDZ vs. 
frequency in the Smith chart. Figure 117, Figure 119, Figure 121, 
Figure 123, Figure 125, Figure 127, Figure 129, and Figure 131 
show PEDZ vs. frequency. The X STATUS parameter in the 
PEDZ plot indicates if the L or C PE parameter represents a 
capacitance measured in pF (X STATUS = 0) or an inductance 
measured in nH (X STATUS = 1). 
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Figure 116. Tx1 and Tx2 Series Equivalent Differential Port Impedance 
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Figure 117. Tx1 and Tx2 Parallel Equivalent Differential Port Impedance 
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Figure 118. Rx1 Series Equivalent Differential Port Impedance 

 
Rx1 PORT PEDZ

NOTES
1. X STATUS: 0 = CAPACITANCE IN pF, 1 = INDUCTANCE IN nH.

200

20

60

100

40

80

120

140

160

180

0.55

0

0.10

0.20

0.30

0.40

0.50

0.05

0.15

0.25

0.35

0.45

0 1 2 3 4 5 6

FREQUENCY (GHz)

R PEDZ
L OR C PE
X STATUS

m7
FREQUENCY = 5.625GHz
L OR C PE = 0.355

m6
FREQUENCY = 5.625GHz
R PEDZ = 32.066

m6

m7

R
 P

E
D

Z

L
 O

R
 C

 P
E

X
 S

T
A

T
U

S
14

65
2-

20
5

 
Figure 119. Rx1 Parallel Equivalent Differential Port Impedance 
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Figure 120. Rx2 Series Equivalent Differential Port Impedance 
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Figure 121. Rx2 Parallel Equivalent Differential Port Impedance 
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Figure 122. ORx1 Series Equivalent Differential Port Impedance 
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Figure 123. ORx1 Parallel Equivalent Differential Port Impedance 
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Figure 124. ORx2 Series Equivalent Differential Port Impedance 
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Figure 125. ORx2 Parallel Equivalent Differential Port Impedance 
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Figure 126. SnRxA Series Equivalent Differential Port Impedance 
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Figure 127. SnRxA Parallel Equivalent Differential Port Impedance 
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Figure 128. SnRxB Series Equivalent Differential Port Impedance 
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Figure 129. SnRxB Parallel Equivalent Differential Port Impedance 
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Figure 130. SnRxC Series Equivalent Differential Port Impedance (X STATUS Transitions from 0 to 1 at 3.1 GHz) 

 
SnRxC PORT PEDZ

NOTES
1. X STATUS: 0 = CAPACITANCE IN pF, 1 = INDUCTANCE IN nH.
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Figure 131. SnRxC Parallel Equivalent Differential Port Impedance (X STATUS Transitions from 0 to 1 at 3.1 GHz) 
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TRANSMITTER BIAS AND PORT INTERFACE 
This section explains the dc biasing of the transmitter (Tx) 
outputs and how to interface to each Tx port. The transmitters 
operate over a wide range of frequencies. The Tx outputs are dc 
biased to a 1.8 V supply voltage using either RF chokes (wire 
wound inductors) or a transformer center tap connection. At 
full output power, each differential output side draws approximately 
100 mA of dc bias current. For a differential Tx port application, 
the total Tx current consumption is approximately 400 mA.  

Careful design of the dc bias network is required to ensure 
optimal RF performance levels. When designing the dc bias 
network, select components with low dc resistance (RDCR) to 
minimize the voltage drop across the series parasitic resistance 
element with either of the suggested dc bias schemes shown in 
Figure 132 and Figure 133. The RDCR resistors indicate the parasitic 
elements. As the impedance of the parasitics increase, the voltage 
drop (ΔV) across the parasitic element increases, causing the 
transmitter RF performance (that is, PO, 1dB, PO, MAX, and so forth) 
to degrade. Select a high enough choke inductance (LC) relative 
to the load impedance to avoid degrading the output power (see 
Figure 132).  

The recommended dc bias network is shown in Figure 133. This 
network has fewer parasitics and fewer total components. 
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Figure 132. RF DC Bias Configuration: Parasitic Losses Due to Wire Wound Chokes  
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Figure 133. RF DC Bias Configuration: Parasitic Losses Due to Center Tapped 

Transformers  

Figure 134 through Figure 137 identify four basic differential 
transmitter output configurations. Impedance matching 
networks (balun single-ended ports) are likely to be required to 
achieve optimum device performance from the device. In 
addition, the transmitter outputs must be ac-coupled in most 
applications due to the dc bias voltage applied to the differential 
output lines of the transmitter.  

RF Interface Options 

Figure 134 shows the recommended RF transmitter interface. It 
features a center tapped balun and offers the lowest component 
count of all of the options.  
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Figure 134. Recommended RF Transmitter Interface (Center Tapped Balun) 
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Figure 135. RF Transmitter Interface (RF Chokes Bias Differential Tx Output Lines 

with Additional Coupling Capacitors Creating a Transmission Line Balun) 
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Figure 136. RF Transmitter Interface (RF Chokes Bias Differential Tx Output 

Lines and Connect to Transformer, No Additional Capacitors) 
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Figure 137. RF Transmitter Interface (RF Chokes Bias the Differential Output 

Lines That Are AC-Coupled Into the Input of a Driver Amplifier) 
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If a Tx balun is selected that requires a set of external dc bias 
chokes, careful planning is required. It is necessary to find the 
optimum compromise between the choke physical size, choke 
dc resistance (RDCR), and the balun low frequency insertion loss. 
In commercially available dc bias chokes, resistance decreases as 
size increases. However, as choke inductance increases, resistance 
increases. Therefore, it is undesirable to use physically small 
chokes with high inductance because they exhibit the greatest 
resistance. For example, the voltage drop of 500 nH on a 0603 
package size choke at 100 mA is roughly 50 mV. 

Table 168. Sample Wire Wound DC Bias Choke Resistance vs. 
Inductance (0603 and 1206 Package Sizes) 

Inductance (nH) 
Resistance (Ω) 

Size 0603 Size 1206 
100 0.10  0.08 
200 0.15 0.10 
300 0.16 0.12 
400 0.28 0.14 
500 0.45 0.15 
600 0.52 0.20 
 

Transmitter Impedance Matching Network Design 
Methodology  

The transmitter differential output port is viewed as a medium 
signal device. Therefore, impedance matching is based on load-
pull style matching techniques as opposed to a small signal 
design used on the receivers, which is a similar methodology to 
power amplifier impedance matching. The goal is to provide a 
transmitter output differential load impedance that represents the 
best compromise between the maximum output power delivered 
(POUT) and the highest possible third-order linearity (POIP3).  

Load-pull is a general term that defines the power delivered into 
a specific load impedance. Typically, this term is applied to 
systems where, at a given load impedance, the power delivered 
is limited by either the dc power supply voltage or the maximum 
current through the device. If enough sample points are taken, 
contours of delivered power (or other performance parameters 
such as POIP3) can be plotted on the Smith chart vs. load 
impedance and frequency. 

Load-pull style matching is straightforward. Determine the 
frequency of interest and provide the load impedance that 
represents the desired compromise between the output power 
and linearity. The focus is on developing the preferred load 
impedance at the Tx output ball pads. A quick contrast between 
load-pull and small signal matching is instructive and follows:  

• Load-pull: design the matching network for the preferred 
load impedance at the transmitter output pads. 

• Small signal: design the matching network for the 
maximum power transfer based on the transducer gain. 

From the empirical data, the preferred transmitter output 
differential load impedance is 50 Ω. Note the following: 

• The reference plane is the transmitter output evaluation 
board ball pads. 

• The fundamental power (POUT) is inversely proportional to 
the real portion of the load impedance. 

• The output third-order intercept point (POIP3) is inversely 
proportional to the real portion of the load impedance. 

• The POIP3 is higher for capacitive loads compared to 
inductive loads. Therefore, if matching errors persist 
throughout the design, it is preferable to err to the side of 
capacitive rather than inductive to avoid voltage peaking 
effects. 

• The optimum transmitter differential output load 
impedance is subject to change. 

One negative issue associated with the load-pull style matching 
is that the transmitter port, S11, may degrade compared to the 
small signal matching technique. However, sometimes it is not 
possible to make a small signal style match, which is the case 
when the transmitter output impedance of the packaged device 
is capacitive. A conjugate match provides an inductive residual 
reactance; this is potentially harmful to device output third-
order intercept (IP3) and harmonic distortion perspectives.  

GENERAL RECEIVER PATH INTERFACE 
The device has three types of receivers. These include two main 
receive pathways (Rx1 and Rx2), two observation receivers 
(ORx1 and ORx2), and three sniffer receivers (SnRxA, SnRxB, 
and SnRxC). The Rx path can support up to 100 MHz bandwidth, 
the ORx path can support up to 250 MHz bandwidth, and the 
SnRx path can support up to 20 MHz bandwidth. The ORx and 
Rx channels are designed for differential use only. The SnRx 
path supports both differential and single-ended usage, but 
differential configurations are recommended. 

The receivers support a wide range of operation frequencies. In 
the case of the Rx and ORx channels, the differential signals 
interface to an integrated mixer. The mixer input pins have a dc 
bias of ~0.7 V and may need to be ac-coupled depending on the 
common-mode voltage level of the external circuit.  

For the SnRx channel, the input pins interface directly to an 
integrated low noise amplifier (LNA). The LNA input pins have 
a dc bias of ~0.6 V. These inputs may need to be ac-coupled, 
depending on the common-mode voltage of the external circuit. 
To achieve best noise figure and even-order distortion (IP2) 
performance, use the SnRx ports in differential mode.  
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Important considerations for the receiver port interface are as 
follows: 

 The device being interfaced to the transceiver. Options for 
this consideration include, but are not limited to, filters, 
baluns transmit/receive switches, external LNAs, and 
external power amplifiers (PAs). It is important to 
determine if the interfaced device presents a short to 
ground at dc. 

 Rx and ORx maximum input power is 23 dBm (peak). The 
SnRx maximum safe input power is 2 dBm (peak). 

 Rx and ORx optimum dc bias voltage is 0.7 VBIAS to ground. 
The SnRx optimum dc bias voltage is 0.6 VBIAS to ground.  

 Board design: reference planes, transmission lines, 
impedance matching, including careful attention to low 
noise layout techniques, placement of transmission lines, 
and accurate impedance matching are essential for optimal 
performance. 

Single-Ended and Differential Receiver Input Interface 
Circuits 

Figure 138 through Figure 141 show possible single-ended and 
differential receiver port interface circuits. The options presented in 
Figure 138 and Figure 139 are valid only for the SnRx channels in 
single-ended mode. The options in Figure 140 and Figure 141 
are valid for all receiver inputs operating in differential mode, 
though only the Rx1 signal names are indicated. Differential 
inputs with impedance matching may be necessary to obtain 
data sheet performance levels.  
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Figure 138. Single-Ended Input Interface Circuit, SnRx Only, Negative Side of 

Differential Input 
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Figure 139. Single-Ended Input Interface Circuit, SnRx Only, Positive Side of 

Differential Input 
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Figure 140. Differential Receiver Interface Using a Transformer, All Receiver Inputs 
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Figure 141. Differential Receiver Interface Using a Transmission Line Balun, 

All Receiver Inputs 

Given wide RF bandwidth applications, surface-mount device 
(SMD) balun devices function well. Decent loss and differential 
balance are available in relatively small (0603, 0805) packages.  

For receiver applications, the transmission line balun referenced 
in Figure 141 may be configured in multiple ways. Most 
configurations are based on a Marchand planer design 
derivative like the one shown in Figure 142. 

1

2

6

1: SINGLE-ENDED PORT
2: GROUND OR BIAS
3: BALANCED PORT 1
4: BALANCED PORT 2
5: PACKAGE GROUND
6: NO CONNECT

43 5

14
65

2-
22

2

 
Figure 142. Marchand Planer Balun Schematic 

The termination applied to the balun, Pin 2 (ground or bias), 
may be implemented in at least two ways. For applications 
where a dc short to ground (through the balun) is tolerated at 
the differential ports, connecting the Balun Pin 2 pad to ground 
is the best approach. However, if the application does not allow 
a short to ground, termination of Balun Pin 2 with a decoupling 
capacitor creates a simultaneous dc open and RF short. The 
decoupling capacitor value may be tuned to set the RF bandwidth 
low frequency corner. 

If the impedance matching network component count or layout 
size is a critical parameter, a good choice is to terminate Balun 
Pin 2 with a decoupling capacitor. 
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General Receiver Impedance Matching Network Design 
Methodology 

The device application determines the best receiver input port 
impedance matching methodology. The recommendations 
within this section are general-purpose only.  

Low Noise Matching Network Design 

If noise figure is a critical parameter in the application, low loss 
impedance matching between the receiver ports and the rest of 
the system is required.  

A low loss generic impedance matching topology is defined in 
Figure 143. Because this topology is generic, it may be simplified by 
removing unused SMD component pads to save board layout 
area. The receiver input ports exhibit a dc bias voltage to 
ground. Avoid a dc short to ground on the input pins.  

Note that in Figure 143, the single-ended match is a Π topology. 
The differential side shows a differential T network in the small box 
on the left and a dc block PI network in the large box on the right.  

Given a three port device, such as a balun, both single-ended 
impedance matching and differential impedance matching 
may be required to obtain the lowest possible system power 
transmission loss. Implementation of an impedance matching 
network on only one side rarely results in optimum small signal 
power transfer.  

In terms of design methodology, optimum impedance matching 
network performance is not guaranteed by monitoring only 
S11, the single-ended port parameter. Baluns and filters exhibit 
dissipative loss. When the dissipative loss is severe, it prevents 
the S11 single-ended side measurement from detecting 
differential side impedance matching issues. 

For single-ended impedance matching, the PI topology is the 
most flexible option. Referring to Figure 143, the S1P7, S1P8, 
and S1P9 blocks form the PI shape. It is possible to reduce this 
network to an L topology by eliminating one of the shunt 
components (S1P7 or S1P9).  

For differential side impedance matching, the network may be 
implemented as a T network (see Figure 143) or a dc block PI 
network (see Figure 143). Realizing that the single-ended T 
shape is formed by S1P2, S1P4, and S1P5, the differential T is 
formed by inclusion of the S1P3 and S1P6 blocks. The 
differential T is horizontally symmetrical.  

Similarly, the components S1P1, S1P2, and S1P4 form a single-
ended PI network. The differential PI network is formed by the 
inclusion of the S1P3 blocks. The addition of the S1P5 and S1P6 
blocks complete the topology to form a dc block PI differential 
impedance matching network.  

Both the T and dc block PI impedance matching topologies can 
be reduced to L networks, if desired. The L network may enable 
the widest possible impedance matching with the lowest 
number of SMD matching components.  

A summary of the differential T and dc blocked differential PI 
topology is listed in Table 169. 

If the three port device does not exhibit a dc short from each 
differential side to ground, the dc block PI topology may be 
simplified to a standard differential PI topology (removing 
components S1P5 and S1P6). This change results in reduced 
SMD component count (four) and reduced board layout area.  

Note that many devices within the system such as baluns, filters, 
or switches heavily influence the optimum impedance matching 
topology. It is best to simulate the impedance matching options 
and then implement the best overall solution. 
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Figure 143. Generic Single-Ended to Differential Matching Topology  

Table 169. Topology Advantage/Disadvantage Summary 
Topology Advantage Disadvantage 
Differential T Lower SMD component count (5) Impedance matching bandwidth may be up to 5% 

smaller than dc blocked differential PI topology 
DC Blocked Differential PI Relatively wide impedance matching bandwidth and 

impedance matching topology implementation flexibility 
Higher SMD component count (6) 
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Simplified Matching Design 

For applications that use an external low noise amplifier (LNA) 
before the input receiver ports, the device noise figure may not be 
very important. An external LNA allows a simplified impedance 
matching topology to potentially achieve wider RF bandwidth. 
From an RF bandwidth viewpoint, the limiting factor becomes 
the three-port device. In certain cases, RF bandwidths 
approaching 1.5 GHz are possible. Figure 144 illustrates the 
simplified schematic. 

The impedance matching network in Figure 144 adds some 
insertion loss to the channel. However, in applications that 
utilize an external LNA before the receiver input ports, the loss 
associated with this simple impedance matching network may 
not be significant to system performance. When this network is 
implemented, the noise figure of the device is expected to 
degrade somewhat with respect to an application that utilizes a 
low loss impedance matching methodology. However, careful 
LNA selection mitigates such differences in overall system noise 
figure. 
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Figure 144. Simplified Impedance Matching Network 

Note the following regarding the proposed topology in Figure 144: 

 The R1 SMD component sets the real portion of the 
impedance set by the balun or filter. 

 L1 resonates with the receiver input port capacitance, 
which results in the highest possible RF bandwidth. 

 C1 and C2 are dc block capacitors. Depending on 
balun/filter selection, these SMD components may be 
replaced with 0 Ω resistors (that is, if the differential output 
lines do not exhibit a dc short to ground). 

 The shunt SMD device (S1P1) on the single-ended port of 
the balun/filter is intended to resonate with either the 
inductance or capacitance seen at the balun/filter input 
port. This component may not be necessary for particular 
applications. 

IMPEDANCE MATCHING NETWORK  
Impedance matching networks are required to achieve the 
performance levels that are noted in the data sheet. This section 
provides example topologies and components used on the 
evaluation boards.  

The S parameter models of the devices, board, balun, and SMD 
components are required to build an accurate system level 
simulation. The board layout model may be obtained from an 
electromagnetic momentum simulator. The balun and SMD 
component models may be obtained from the balun and SMD 
vendors or built from empirical data.  

The impedance matching networks provided in this section 
have not been evaluated in terms of mean time to failure 
(MTTF) in high volume production. Consult with component 
vendors for long-term reliability concerns. Additionally, consult 
with balun vendors to determine appropriate conditions for dc 
biasing.  

The impedance matching networks and the component 
designators in the following diagrams are specific to the 
ADRV9371-N/PCBZ evaluation board. The board revision is 
indicated on the silkscreen under the RadioVerse™ logo. 

The schematics show three elements in parallel; however, only 
one set of SMD component pads are placed on the board. For 
example, R201, L201, and C201 in Figure 145 have only one set 
of SMD pads for one SMD component. The schematic shows 
that in a generic port impedance matching network, the shunt 
or series elements may be a resistor, inductor, or a capacitor. 
Figure 145 through Figure 149 show the schematic blocks for 
the Rx1, Rx2, SnRxA, ORx1, and ORx2 channels, respectively. 

In the transmitter (Tx) matching networks shown in Figure 150 
and Figure 151, the C307, L307, L308, and C308 components 
for Tx1 (see Figure 150) and the C315, L315, L316, and C316 
for components for Tx2 (see Figure 151) form dc bias feeds into 
the differential port of the transmitter. For baluns that do not 
supply dc to the differential side of the balun, this is an example 
of an external feed topology that can be used to supply proper 
voltage to the Tx output. For the matching networks listed in 
Table 175 and Table 176, these components are all DNI. 
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Figure 145. Rx1 Generic Matching Network Topology from the ADRV9371-N/PCBZ Evaluation Board 
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Figure 146. Rx2 Generic Matching Network Topology from the ADRV9371-N/PCBZ Evaluation Board 
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Figure 147. SnRxA Generic Matching Network Topology from ADRV9371-N/PCBZ Evaluation Board 
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Figure 148. ORx1 Generic Matching Network Topology from the ADRV9371-N/PCBZ Evaluation Board 
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Figure 149. ORx2 Generic Matching Network Topology from the ADRV9371-N/PCBZ Evaluation Board 
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Figure 150. Tx1 Generic Matching Network Topology from ADRV9371-N/PCBZ Evaluation Board  
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Figure 151. Tx2 Generic Matching Network Topology from ADRV9371-N/PCBZ Evaluation Board  
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Selected Balun and Component Values 

Table 170 through Table 176 show the selected balun and 
component values used in theADRV9371-N/PCBZ evaluation 
board for four matching network sets. DNI stands for do not 
install (leave open). Component tolerances are also indicated. 
Note that all tolerances are at ±5%, unless noted in parentheses. 
Tolerance notations are either in percent (%) or units.  

The Suffix column in Table 170 through Table 176 indicates the 
reference used to describe each matching network frequency 
band. Note that circuit values for the SnRxB and SnRxC inputs 
are not included here because the ADRV9371-N/PCBZ 
evaluation board only provides one sniffer receiver input. 

 

Table 170. Main Receiver Rx1  

Frequency  
Band (MHz) 

Suffix 
(G) 

Component Location on PCB (All Tolerances at ±5% Unless Noted) 

C200,  
L200 

C201,  
L201,  
R201 

C202,  
L202 

C245,  
R202 

C203,  
R203 

C204,  
L204 

C205, 
L205, 
R205 

C206, 
L206, 
R206 

C207, 
L207 T200 

300 to 1000 −0.7  DNI  10 pF  
(±1%) 

27 nH  
(±3%) 

220 pF  180 pF  1.0 pF  
(±0.1 pF) 

9.1 nH  
(±3%) 

9.1 nH  
(±3%) 

0.6 pF  
(±0.1 pF) 

Anaren  
B0310J50100AHF 

1800 to 2800  −2.6  10 nH  0 Ω  DNI  0 Ω  0 Ω  0.5 pF  
(±0.1 pF) 

100 pF  100 pF  3.9 nH  Anaren  
BD0826J50200AHF 

3300 to 3800  −3.5  DNI 0 Ω  0.2 pF 
(±0.1 pF) 

0 Ω  0 Ω  0.3 pF  
(±0.1 pF) 

10 pF 10 pF 0.4 pF  
(±0.1 pF) 

Johanson  
3700BL15B050 

5300 to 5900  −5.5  0.3 pF  
(±0.1 pF) 

1.2 nH  
(±0.1 nH) 

DNI 0 Ω  0 Ω  DNI 0.4 pF  
(±0.1 pF) 

0.4 pF  
(±0.1 pF) 

5.1 nH Johanson  
5400BL15B200 

 

Table 171. Main Receiver Rx2 

Frequency  
Band (MHz) 

Suffix 
(G) 

Component Location on PCB (All Tolerances at ±5% Unless Noted) 

C208,  
L208 

C209,  
L209,  
R209 

C211,  
L211 

C241,  
R204 

C212,  
R212 

C213,  
L213 

C214, 
L214, 
R214 

C215, 
L215, 
R215 

C216, 
L216 T201 

300 to 1000 −0.7  DNI  10 pF  
(±1%) 

27 nH  
(±3%) 

220 pF  180 pF  1.0 pF  
(±0.1 pF) 

9.1 nH  
(±3%) 

9.1 nH  
(±3%) 

0.6 pF  
(±0.1 pF) 

Anaren  
B0310J50100AHF 

1800 to 2800  −2.6  10 nH  0 Ω  DNI  0 Ω  0 Ω  0.5 pF  
(±0.1 pF) 

100 pF  100 pF  3.9 nH  Anaren  
BD0826J50200AHF 

3300 to 3800  −3.5  DNI 0 Ω  0.2 pF  
(±0.1 pF) 

0 Ω  0 Ω  0.3 pF  
(±0.1 pF) 

10 pF 10 pF 0.4 pF  
(±0.1 pF) 

Johanson  
3700BL15B050 

5300 to 5900  −5.5  0.3 pF  
(±0.1 pF) 

1.2 nH  
(±0.1 nH) 

DNI 0 Ω  0 Ω  DNI 0.4 pF  
(±0.1 pF) 

0.4 pF  
(±0.1 μF) 

5.1 nH Johanson  
5400BL15B200 

 

Table 172. Observation Receiver ORx1 

Frequency  
Band (MHz) 

Suffix 
(G) 

Component Location on PCB (All Tolerances at ±5% Unless Noted) 

C225,  
L225 

C226,  
L226,  
R226 

C227,  
L227 

C243,  
R208 

C228,  
R228 

C229,  
L229 

C230, 
L230, 
R230 

C231, 
L231, 
R231 

C232, 
L232 T203 

300 to 1000 −0.7  DNI  15 pF  
(±2%) 

33 nH  
(±3%) 

220 pF  180 pF  1.0 pF  
(±0.1 pF) 

8.2 nH  
(±3%) 

8.2 nH  
(±3%) 

0.4 pF  
(±0.1 pF) 

Anaren  
B0310J50100AHF 

1800 to 2800  −2.6  27 nH  5.6 pF  
(±0.1 pF) 

DNI  0 Ω  0 Ω  6.2 nH  6.0 pF  
(±0.1 pF) 

6.0 pF  
(±0.1 pF) 

1.0 pF  
(±0.1 pF) 

Anaren  
B0322J5050AHF 

3300 to 3800  −3.5  DNI 0 Ω  DNI 0 Ω  0 Ω  DNI 2.0 pF  
(±0.1 pF) 

2.0 pF  
(±0.1 pF) 

7.5 nH  
(±0.1 nH) 

Johanson  
3700BL15B200 

5300 to 5900  −5.5  10 nH  
(±0.1 nH) 

100 pF 4.7 nH  
(±3%) 

0 Ω  0 Ω  DNI 0.6 pF  
(±0.1 pF) 

0.6 pF  
(±0.1 pF) 

1.5 nH Johanson  
5400BL15B200 
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Table 173. Observation Receiver ORx2 

Frequency  
Band (MHz) 

Suffix 
(G) 

Component Location on PCB (All Tolerances at ±5% Unless Noted) 

C233,  
L233 

C234,  
L234,  
R234 

C235,  
L235 

C244,  
R210 

C236,  
R236 

C237,  
L237 

C238, 
L238, 
R238 

C239, 
L239, 
R239 

C240, 
L240 T204 

300 to 1000 −0.7  DNI  15 pF  
(±2%) 

33 nH  
(±3%) 

220 pF  180 pF  1.0 pF  
(±0.1 pF) 

8.2 nH  
(±3%) 

8.2 nH  
(±3%) 

0.4 pF  
(±0.1 pF) 

Anaren  
B0310J50100AHF 

1800 to 2800  −2.6  27 nH  5.6 pF  DNI  0 Ω  0 Ω  6.2 nH  6.0 pF  
(±0.1 pF) 

6.0 pF  
(±0.1 pF) 

1.0 pF  
(±0.1 pF) 

Anaren  
B0322J5050AHF 

3300 to 3800  −3.5  DNI 0 Ω  DNI  0 Ω  0 Ω  DNI 2.0 pF  
(±0.1 pF) 

2.0 pF  
(±0.1 pF) 

7.5 nH  
(±0.1 nH) 

Johanson  
3700BL15B200 

5300 to 5900  −5.5  DNI  100 pF 2.7 nH  
(±0.1 nH) 

0 Ω  0 Ω  DNI 0.6 pF  
(±0.1 pF) 

0.6 pF  
(±0.1 pF) 

1.8 nH Johanson  
5400BL15B200 

 

Table 174. Sniffer Receiver SnRxA 

Frequency  
Band (MHz) 

Suffix 
(G) 

Component Location on PCB (All Tolerances at ±5% Unless Noted) 

C217,  
L217 

C218,  
L218,  
R218 

C219,  
L219 

C242,  
R207 

C220,  
R220 

C221,  
L221 

C222, 
L222, 
R222 

C223, 
L223, 
R223 

C224, 
L224 T202 

300 to 1000 −0.7  75 nH  
(±3%) 

15 nH  
(±3%) 

0.7 pF  
(±0.1 pF) 

220 pF  180 pF  0.9 pF  
(±0.1 pF) 

27 nH  
(±3%) 

27 nH  
(±3%) 

DNI Anaren  
B0310J50100AHF 

1800 to 2800  −2.6  0.5 pF  
(±0.1 pF)  

22 pF  
(±0.1 pF) 

3.0 nH  
(±0.1 nH) 

0 Ω  100 pF  DNI  5.6 nH  5.6 nH  0.6 pF  
(±0.05 pF) 

Johanson  
2450BL15B200E 

3300 to 3800  −3.5  100 nH 1.8 pF  
(±0.1 pF) 

100 nH 0 Ω  8 pF  DNI 2.5 nH  
(±0.1 nH) 

2.5 nH  
(±0.1 nH) 

4.7 nH  
(±0.1 nH) 

Johanson  
3700BL15B050 

5300 to 5900  −5.5  0.5 pF  
(±0.05 pF) 

1.0 nH  
(±0.1 nH) 

0.3 pF  
(±0.1 pF) 

0 Ω  0 Ω  3.6 nH  
(±0.1 nH) 

0.2 pF  
(±0.1 pF) 

0.2 pF  
(±0.1 pF) 

8.2 nH Johanson  
5400BL15B200 

 

Table 175. Transmitter Tx1  

Frequency  
Band (MHz) 

Suffix 
(G) 

Component Location on PCB (All Tolerances at ±5% Unless Noted) 

C311, 
L311 

C309, 
R309, 

C310, 
R310 

C303, 
L303 L305 

C305,  
R303 

C323, 
L323 

C301, 
L301, 
R301 

C324, 
L324 L340 C322 T305 

300 to 1000 −0.7  DNI  0 Ω 0 Ω DNI  39 nH 0 Ω 1.0 pF  
(±0.1 pF) 

5.6 nH  
(±3%) 

DNI 27 nH 180 pF Anaren  
B0322J5050AHF 

1800 to 2800 −2.6  1 pF  
(±0.1 pF) 

0 Ω 0 Ω DNI  DNI  0 Ω DNI 1.5 nH  0.75 pF  
(±0.1 pF) 

27 nH 0.1 μF  Mini-Circuits  
NCS1-292+ 

3300 to 3800 −3.5  0.6 pF  
(±0.1 pF) 

0 Ω 0 Ω DNI  DNI  0 Ω DNI 0 Ω DNI 27 nH 0.1 μF  Johanson  
3700BL15B100 

5300 to 5900 −5.5  5.1 nH  
(±3%)  

1.5 nH  
(±1 nH)  

1.5 nH  
(±1 nH)  

5.1 nH  
(±3%)  

DNI  0 Ω DNI 0 Ω DNI 0 Ω 1.2 pF  
(±0.1 pF) 

TDK HHM1752A2 

 

Table 176. Transmitter Tx2  

Frequency  
Band (MHz) 

Suffix 
(G) 

Component Location on PCB (All Tolerances at ±5% Unless Noted) 

C319, 
L319 

C317, 
R317, 

C318, 
R318 

C304, 
L304 L306 

C306,  
R304 

C328, 
L328 

C302, 
L302, 
R302 

C329, 
L329 L341 C327 T306 

300 to 1000 −0.7 DNI  0 Ω 0 Ω DNI  39 nH 0 Ω 1.0 pF  
(±0.1 pF) 

5.6 nH  
(±3%) 

DNI 27 nH 180 pF Anaren  
B0322J5050AHF 

1800 to 2800  −2.6 1 pF  
(±0.1 pF) 

0 Ω 0 Ω DNI  DNI  0 Ω DNI 1.5 nH  0.75 pF  
(±0.1 pF) 

27 nH 0.1 μF  Mini-Circuits  
NCS1-292+ 

3300 to 3800  −3.5 0.6 pF  
(±0.1 pF) 

0 Ω 0 Ω DNI  DNI  0 Ω DNI 0 Ω DNI 27 nH 0.1 μF  Johanson  
3700BL15B100 

5300 to 5900  −5.5 5.1 nH  
(±3%)  

1.5 nH  
(±1 nH)  

1.5 nH  
(±1 nH)  

5.1 nH  
(±3%)  

DNI  0 Ω DNI 0 Ω DNI 0 Ω 1.2 pF  
(±0.1 pF) 

TDK HHM1752A2 
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Mykonos Tx1 and Tx2 Port Impedance 
The equivalent parallel equivalent differential impedances and 
the corresponding S11 values for the Tx1 and Tx2 output ports 
are shown in Table 177 for a series of operating frequencies 
ranging from 1.000 GHz to 6.000 GHz. The relationship between 
these points is illustrated in the Smith chart in Figure 152 and 
the frequency response plot in Figure 153.  
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Figure 152. SEDZ vs. Frequency, Tx1 and Tx2 Port Impedance  
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Figure 153. PEDZ vs. Frequency, Tx1 and Tx2 Ports 

BOARD LAYOUT DESIGN RECOMMENDATIONS 
Circuit board layout is a critical part of the impedance matching 
process. Design trade-offs are often required to balance material 
cost, performance, and bandwidth. Refer to the RF and JESD204B 
Transmission Line Layout section for details on how to design 
the circuit board traces that make matching circuits more 
accurate.  

 

Table 177. PEDZ vs. Frequency 
Parameter M1 M2 M3 M4 M5 M8 
Frequency (GHz) 1.000  2.000  3.000 4.000 5.000 6.000 
S11  +0.205/−126.314 0.391/175.770 0.548/128.665 0.657/88.433 0.719/52.629 0.742/18.124 
Impedance (Ω) 37.272 – j12.862 21.298 + j1.492 17.610 + j21.560 30.335 + j47.066 37.502 + j88.705 160.279 + j164.892 
 

 



UG-992 AD9371/AD9375 System Development User Guide 
 

Rev. B | Page 256 of 360 

PRINTED CIRCUIT BOARD LAYOUT GUIDELINES 
Because of the integration complexity of the device and its high 
pin count, careful printed circuit board (PCB) layout is important 
to optimize performance. This section provides a checklist of 
issues to look for and guidelines on how to optimize the PCB to 
mitigate performance issues. The goal of this document is to 
help achieve the best possible performance from the device while 
reducing board layout effort. It is assumed that the reader is an 
experienced analog/RF engineer who understands RF PCB layout 
and has an understanding of RF transmission lines as well as 
low noise analog design techniques. The ADRV9371-N/PCBZ 
evaluation board is used as the reference for this information, 
but all guidelines are best practices that can be applied to other 
reference designs. This document provides guidelines for system 
designers and discusses the following issues relative to layout 
and power management.  

• PCB material and stack up selection 
• Fanout and layout guidelines relative to trace widths and 

spacing 
• Component placement and routing guidelines 
• RF and JESD204B transmission line layout 
• Isolation techniques used on the ADRV9371-N/PCBZ 

evaluation board 
• Power management considerations—how to maximize 

performance without using linear low dropout (LDO) 
regulators 

• Instructions for what to do with unused pins  

 

 

 

PCB MATERIAL AND STACK UP SELECTION 
Figure 154 shows the PCB stackup used for the evaluation 
board. The board employs 14 layers to achieve proper routing 
and isolation to best demonstrate all device functionality. The 
dielectric material used on the top and the bottom layers is 
Rogers 4003C with a thickness of 7.50 mil. The remaining 
dielectric layers are FR4-370 HR. The board design uses the 
Rogers laminate for the top and the bottom layers for its low loss 
tangent at high frequencies. The ground planes under the Rogers 
laminate (Layer 2 and Layer 13) are the reference planes for the 
transmission lines routed on the outer surfaces. These layers are 
solid copper planes under the RF traces with no discontinuities. 
Layer 2 and Layer 13 are crucial to maintaining the RF signal 
integrity. Layer 3 and Layer 12 are used to route power supply 
domains. To keep the RF area isolated from the fast transients of 
the digital area, the JESD204B interface lines are routed on 
Layer 5 and Layer 10. Those layers have an impedance control set 
to 100 Ω differential for the differential JESD204B pairs. The 
remaining digital signals are routed on inner Layer 7 and Layer 8. 
Table 178 describes details of the trace impedance controls used 
on different layers.  

RF traces on the outer layers must be a controlled impedance to 
achieve the best performance. These outer layers use 1.5 oz 
copper so that the RF traces are less prone to pealing. One ounce 
copper is used for all the inner layers in this board. All ground 
planes on this board are full copper floods with no splits except 
for vias, throughhole components, and isolation structures. 
Note that it is important to route ground planes entirely to the 
edge of the PCB under the SMA connectors to maintain signal 
launch integrity. Power planes can be pulled back from the 
board edge to decrease the risk of developing shorts with the 
ground plane.  
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Figure 154. ADRV9371-N/PCBZ Evaluation Board Stackup  

Table 178. ADRV9371-N/PCBZ Evaluation Board Trace Impedance Table 

Layer 

Impedance  
Require- 
ment (Ω) 

Tolerance (Ω) 

Type 

Reference Line Width (mil) Spacing (mil) Finished  
Line  
Width (mil) 

Finished 
Spacing  
(mil) 

Impedance 
Simulation 
(Ω) 

Pos  
(+) 

Neg  
(−) Upper Lower Designed Plotted Designed Coplaner 

I1comp 50 5.0 5.0 Surface  
single-ended  
coplaner 

 I2pp 15.50 15.00  20.00 14.50  50.2 

I1comp 100 10.0 10.0 Surface  
microstrip  
differential 

 I2pp 8.00 9.00 6.00  8.50 5.50 100.1 

I1comp 50 5.0 5.0 Coated  
single-ended  
coplaner 

 I2pp 15.50 13.75  20.00 13.25  49.7 

I1comp 100 10.0 10.0 Coated  
microstrip  
differential 

 I2pp 8.00 7.50 6.00  7.00 7.00 100.6 

I5mix 50 5.0 5.0 Single-ended I6pp I4pp 4.50 4.50   4.00  50.9 
I5mix 100 10.0 10.0 Differential I6pp I4pp 3.60 4.25 6.40  3.75 6.25 98.9 
I7mix 50 5.0 5.0 Single-ended I8pp I6pp 4.50 4.75   4.25  48.2 
I7mix 100 10.0 10.0 Differential I8pp I6pp 3.60 4.00 6.40  3.50 6.50 100.6 
I8mix 50 5.0 5.0 Single-ended I7pp I9pp 4.50 4.75   4.25  48.2 
I8mix 100 10.0 10.0 Differential I7pp I9pp 3.60 4.00 6.40  3.50 6.50 100.6 
I10mix 50 5.0 5.0 Single-ended I11pp I9pp 4.50 5.00   4.50  49.8 
I10mix 100 10.0 10.0 Differential I11pp I9pp 3.60 4.50 6.40  4.00 6.00 100.8 
I14sold 50 5.0 5.0 Surface  

single-ended  
coplaner 

 I13pp 15.50 15.00  20.00 14.50  50.2 

I14sold 100 10.0 10.0 Surface  
microstrip  
differential 

 I13pp 8.00 9.00 6.00  8.50 5.50 100.1 

I14sold 50 5.0 5.0 Coated  
single-ended  
coplaner 

 I13pp 15.50 13.75  20.00 13.25  49.7 

I14sold 100 10.0 10.0 Coated  
microstrip  
differential 

 I13pp 8.00 7.50 6.00  7.00 7.00 100.6 
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FANOUT AND TRACE SPACE GUIDELINES 
The device uses a 12 mm × 12 mm, 196-ball CSP_BGA 
package. The recommended BGA land pad size is 14 mils. The 
pitch between the pins is 0.8 mm, which makes it impractical to 
route all signals from the balls away from the device on a single 
PCB layer. RF pins have been placed on the outer edges of the 
package, making it easier to route the critical signals on a single 
PCB layer. Each digital signal is routed from the BGA pad using 
a 10 mil trace at a 45° angle to begin the route. The trace is 
connected to a fanout via that is centered between four BGA 
pads to maximize separation from each signal. The 
recommended via size is 6 mil with a 12 mil keepout. The 
signals are then routed to internal layers where they are routed 
to other parts of the system.  

The JESD204B interface signals must be treated differently than 
other general-purpose digital signals. These traces are routed on 
two signal layers that utilizes impedance control (Layer 5 and 
Layer 10 on the ADRV9371-N/PCBZ board). The spacing between 
the BGA pads and each escape via is 22 mil. When the signal is 
connected to the inner layers, a 3.6 mil trace (50 Ω) is used to 
route the JESD204B signal to the FMC connector. Figure 155 
shows the fanout scheme of the ADRV9371-N/PCBZ evaluation 
card. Another option not used on this evaluation board is the 
via in the pad technique. Putting the fanout vias directly inside 
the ball pads increases separation distance from other signals 
compared to placing the vias between four balls. This routing 
approach was not used on the ADRV9371-N/PCBZ PCB 
because of added cost; however, it can be used if there are no 
issues with manufacturing capabilities. 

 

Ø 6 mil PAD/
   12 mil KEEP OUT

Ø 14 mil BGA
    LAND SIZE

4.5 mil TRACE

4.5 mil TRACE
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LAND TO
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Figure 155. ADRV9371-N/PCBZ Trace Fanout Scheme 
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COMPONENT PLACEMENT AND ROUTING 
PRIORITIES 
The device requires few external components to function; 
however, those that are needed require careful placement and 
routing to optimize performance. The following sections 
provide a priority order and checklist for properly placing and 
routing critical signals and components as well as those whose 
location and isolation are not as critical. 

Signals with Highest Routing Priority 

RF lines and JESD204B interface signals are the signals that are 
most critical and must be routed with highest priority. Figure 156 
shows the general directions in which each of the signals must be 
routed so that they can be properly isolated from noisy signals.  

RF baluns are typically used to interface single-ended signals to 
the differential receiver and transmitter ports. These baluns and 
their associated matching circuits affect overall RF performance. 

Every effort must be made to optimize the component selection 
and placement to avoid performance degradation. Refer to the 
RF Port Interface for more information. 

RF signal path isolation is critical to achieving the level of 
isolation specified in the data sheet. More details on proper 
isolation are provided in the Isolation Techniques Used on the 
ADRV9371-N/PCBZ Evaluation  section. 

For each RF Tx output, install a 10 μF capacitor near the balun 
power supply pin connected to the VDDA_1P8 supply. If baluns 
with no dc supply connection are used, power must be supplied 
to the Tx outputs using RF chokes connected between the 
VDDA_1P8 supply and each Tx output. In both cases, the 10 μF 
capacitor acts as a reservoir for Tx supply current. The Tx Balun 
DC Supply Options section describes the Tx output power 
supply configuration in more detail. 
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Figure 156. RF Input/Output, DEV_CLK, and JESD204B Signal Routing Guidelines 
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Connect the external clock inputs to the DEV_CLK_IN+ (E7) 
and DEV_CLK_IN− (E8) balls using ac coupling capacitors. 
Use a 100 Ω termination at the input to the device. Figure 157 
illustrates the recommended placement for these components 
near the DEV_CLK_IN± balls. Traces must be shielded by 
surrounding ground with vias staggered along the edge of the 
differential trace pair. This arrangement creates a shielded 
channel that prevents the reference clock from any interference 
from other signals. Refer to the ADRV9371-N/PCBZ evaluation 
card layout for exact details.  

It is recommended that the JESD204B interface be routed at the 
beginning of the PCB design and with the same priority as RF 
signals. The JESD204B Trace Routing Recommendations 
section outlines recommendations for JESD204B interface 
routing. Ensure that appropriate isolation between these 
differential pairs are provided. The Isolation Between JESD204B 
Lines section provides guidelines for optimizing isolation.  

The RX_EXTLO− (B7), RX_EXTLO+ (B8), TX_EXTLO− 
(E11), TX_EXTLO+ (E12) balls are internally dc biased. If an 
external local oscillator (LO) is used, connect it via ac coupling 
capacitors.  
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Figure 157. DEV_CLK Signal Routing Recommendations 
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Signals with Second Routing Priority 

Power supply quality has direct impact on overall system 
performance. To achieve optimal performance, follow the 
recommendations regarding power supply routing. The 
following recommendations outline how different power 
domains can be routed and which supplies can be tied to the 
same supply but separated by a ferrite bead or 0 Ω resistor.  

A general recommendation for power supply routing is to 
follow the star methodology in which each power domain is 
deliver by a separate trace from the source supply. Ensure that 
each power trace is surrounded by ground. Figure 158 shows an 
example of such traces routed on the evaluation card on Layer 12. 
Each trace is separated from any other signal by ground plane 
fill and vias. This approach is essential to providing necessary 
isolation between power domains. 

Each power supply requires a 0.1 μF bypass capacitor near the 
ball at a minimum. Place the ground side of the bypass capacitor 
so that ground currents flow away from other power balls and 
their bypass capacitors. 

For those domains shown in Figure 159 that are powered 
through a ferrite bead (FB), place the ferrite beads near the 
supply pins. It is recommended to space the ferrite beads to ensure 
their electric fields do not influence each other. Figure 160 
shows an example of how to place the ferrite beads, reservoir 
capacitors, and decoupling capacitors. The ferrite bead must 
supply a trace with a reservoir capacitor connected to it. It is 
recommended to shield this trace with ground and to provide 
power to the input power ball. Place a 100 nF capacitor near the 
power supply ball with the ground side of the bypass capacitor 
placed so that ground currents flow away from other power balls 
and their bypass capacitors.  
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Figure 158. Layout Example of Power Supply Connections Routed with Ground Shielding (Layer 12) 
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Figure 159. Power Supply Domains with Connection Guidelines  
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Figure 160. Placement Example for Ferrite Bead, Reservoir Capacitor, and Decoupling Capacitor on the ADRV9371-N/PCBZ Evaluation Card 
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Signals with Lowest Routing Priority 

The following guidelines govern those signals that are the lowest 
signal routing priority. These signals can be routed after all critical 
signal routes have been completed so that they do not interfere 
with the critical component placement and routing. The signals 
shown in Figure 161 can be routed with the lowest priority.  

 Ceramic 1 μF bypass capacitors must be placed at the 
VRX_VCO_LDO, VTX_VCO_LDO, VSNRX_VCO_LDO 
and VCLK_VCO_LDO balls. Place these capacitors as 
close as possible to the device with the ground side of the 
bypass capacitor placed so that ground currents flow away 
from other power balls and their bypass capacitors if at all 
possible.  

 Connect a 14.3 kΩ resistor to RBIAS pin (C14). This 
resistor must have a 1% tolerance or better. 

 The device has support for JTAG boundary scan, and the 
TEST ball is used to access the function. Connect the TEST 
ball (J6) to ground for normal operation. Refer to the data 
sheet for JTAG boundary scan information. 

 Connect the RESET pin (J4) to VDD_IF with a 10 kΩ 
resistor for normal operation. The device can be reset by 
driving this pin low.  

 When routing digital signals from Row H and under, it is 
important to route them away from the analog section (Row A 
through Row G). It is recommended that digital signal routing 
not pass before the dashed line highlighted in Figure 161. 

 The GPIO_3P3_N signals can be routed using inner PCB 
layers. Those signals control analog blocks such as power 
amplifiers or low noise amplifiers. They can also be used as 
general-purpose analog outputs when muxed to the 
internal auxiliary DAC outputs. To prevent noise coupling 
into those signals, route them away from the digital region 
(before the dashed line highlighted in Figure 161). 

 The AUXADC_N signals can be routed using inner PCB 
layers. Those signals sense analog voltage levels such as 
temperature sensors. To prevent noise coupling into those 
signals, route them away from the digital region (before the 
dashed line highlighted in Figure 161). 

 

VDDA_
SNRXVCO

VSSA

VSSA

VSSA VSSA VSSA VSSA

VSSA

VSSA

VSSA VSSA

VSSA VSSA

VSSA

VSSA VSSAVSSA

VSSA

VSSA VSSAVSSA

VSSA VSSA VSSA VSSA

VSSA VSSA VSSA

VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA

VSSA VSSA VSSA VSSAVSSA

VSSAVSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA

VSSAVSSA

VSSA

VSSAVSSA

VSSA

VSSAVSSA

VSSAVSSA

VSSA

VSSA

VSSAVSSAVSSA

VSSA

VSSAVSSA

VSSAVSSAVSSD

VSSA

VSSD

VSSA

VSSA

VDDA_RXRF

VDDA_RXLO
VDDA_
RXVCO

VDDA_3P3

VDDA_1P8

VDDA_BB

VDDA_RXTX

VDDA_
CALPLL

VDDA_
CLKSYNTH

VDDA_
SNRXSYNTH

VDDA_
TXSYNTH

VDDA_
RXSYNTH

VDDA_
TXVCO VDDA_TXLO

VDIGVDIG

VDDA_CLK VDDA_SER

VDDA_SER

VDDA_DES

JESD_VTT_
DES

GPIO_3P3_5

1 4 7 8 11 142 3 5 6 9 10 12 13

A

G

K

L

P

J

H

B

M

N

C

D

E

F

14
65

1-
16

1

ORX2+ ORX2– RX2+ RX2– RX1+ RX1– ORX1+ ORX1–

RX_EXTLO– RX_EXTLO+

DEV_
CLK_IN+

DEV_
CLK_IN–SNRXA+

SNRXA–

SNRXB+

SNRXB–

SNRXC+

SNRXC–

TX2+

TX2–

TX1–

TX1+

SYSREF_IN+ SYSREF_IN–

TX_EXTLO– TX_EXTLO+

SERDIN1+SERDIN1–SERDIN0+SERDIN0–

SERDIN3+SERDIN3–SERDIN2+SERDIN2–

SYNCOUTB0–SYNCOUTB0+

SERDOUT1–

SERDOUT3+SERDOUT3–

SYNCINB0+SYNCINB0–

SYNCINB1+SYNCINB1–

SERDOUT0+SERDOUT0–SERDOUT1+

SERDOUT2+SERDOUT2–

VDDA_
SNRXVCO

VSSA

VSSA

VSSA VSSA VSSA VSSA

VSSA

VSSA

VSSA VSSA

VSSA VSSA

VSSA

VSSA VSSAVSSA

VSSA

VSSA VSSAVSSA

VSSA VSSA VSSA VSSA

VSSA VSSA VSSA

VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA

VSSA VSSA VSSA VSSAVSSA

VSSAVSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA

VSSAVSSA

VSSA

VSSAVSSA

VSSA

VSSAVSSA

VSSAVSSA

VSSA

VSSA

VSSAVSSAVSSA

VSSA

VSSAVSSA

VSSAVSSAVSSD

VSSA

VSSD

VSSA

VSSA

VDDA_RXRF

VDDA_RXLO
VDDA_
RXVCO

VDDA_3P3

VDDA_1P8

VDDA_BB

VDDA_RXTX

VDDA_
CALPLL

VDDA_
CLKSYNTH

VDDA_
SNRXSYNTH

VDDA_
TXSYNTH

VDDA_
RXSYNTH

VDDA_
TXVCO VDDA_TXLO

VDIGVDIG

VDDA_CLK VDDA_SER

VDDA_SER

VDDA_DES

JESD_VTT_
DES

GPIO_3P3_5

ORX2+ ORX2– RX2+ RX2– RX1+ RX1– ORX1+ ORX1–

RX_EXTLO– RX_EXTLO+

DEV_
CLK_IN+

DEV_
CLK_IN–SNRXA+

SNRXA–

SNRXB+

SNRXB–

SNRXC+

SNRXC–

TX2+

TX2–

TX1–

TX1+

SYSREF_IN+ SYSREF_IN–

TX_EXTLO– TX_EXTLO+

SERDIN1+SERDIN1–SERDIN0+SERDIN0–

SERDIN3+SERDIN3–SERDIN2+SERDIN2–

SYNCOUTB0–SYNCOUTB0+

SERDOUT1–

SERDOUT3+SERDOUT3–

SYNCINB0+SYNCINB0–

SYNCINB1+SYNCINB1–

SERDOUT0+SERDOUT0–SERDOUT1+

SERDOUT2+SERDOUT2–

VSNRX_
VCO_LDOGPIO_3P3_0

ALL DIGITAL GPIO SIGNALS ROUTED BELOW THE DASHED LINE

GPIO_3P3_1

GPIO_3P3_3

GPIO_3P3_4

GPIO_3P3_2

VCLK_
VCO_LDO

VRX_
VCO_LDO

VTX_
VCO_LDO

GPIO_3P3_10

GPIO_3P3_6

GPIO_3P3_11

GPIO_3P3_9

GPIO_3P3_8GPIO_3P3_7

AUXADC_1 AUXADC_2

AUXADC_3

RBIAS

AUXADC_0

VDD_IFGPIO_17 GPIO_16

GPIO_15 GPIO_8

GPIO_9GPIO_14

GPIO_10

GPIO_11

GPIO_13

GPIO_12

GPIO_0

GPIO_1

GPIO_3

GPIO_2

GPIO_4

GPIO_7

GPIO_5

GPIO_6

SDIO

SCLK

SDO

CSB

GPIO_18 RESET
GP_

INTERRUPT TEST

RX1_
ENABLE

TX1_
ENABLE

RX2_
ENABLE

TX2_
ENABLE

1µF CAPACITOR

14.3kΩ
CAPACITOR

 
Figure 161. Auxiliary ADC, SPI, Analog GPIO/Auxiliary DAC, and Digital GPIO Signal Routing Guidelines  
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RF AND JESD204B TRANSMISSION LINE LAYOUT 
Board layout design involves compromise. The recommendations 
within this user guide are intended for wide RF bandwidth 
applications. For narrow RF bandwidth applications, the board line 
impedance parameters within this document may not be optimal.  

The following list provides general suggestions for board 
design: 

• Match the evaluation board design as close as possible to 
the board design files available on the product page.  

• Be attentive to power distribution and power ground 
return methodology.  

• Do not run high speed digital lines in close proximity to dc 
power distribution routes or RF line routes.  

• Use microstrip or coplanar waveguides (CPWG) for 
transmission lines. These structures do not require via 
structures that cause additional impedance discontinuities 
that vary across frequency. For ports such as the Sniffer 
receivers, which do not have balls on the perimeter of the 
BGA, a via structure such as stripline may be necessary. 

Design the RF line systems between the device ball pad reference 
plane and the balun/filter reference plane for a differential 
impedance (ZDIFF) of 100 Ω for the receivers and 50 Ω for the 
transmitters. This design is a compromise impedance with 
respect to frequency and a good starting point for design. The 
ZDIFF can be optimized to fit a narrower frequency range. It is 
desirable to design the lines for reasonable coupling (−10 dB to 
−15 dB) to promote adequate electromagnetic interface (EMI) 
suppression performance.  

In most cases, the required board artwork stackup is different 
than the ADRV9371-N/PCBZ evaluation board stackup. 
Optimization of RF transmission lines specific to the desired 
board environment is essential to the design and layout process.  

The ADRV9371-N/PCBZ evaluation board uses microstrip 
lines for Rx, ORx and Tx RF traces. The SnRx signal is routed 
using a combination of microstrip lines on the bottom of the 
PCB and stripline traces on internal layers due to board 
complexity. In general, it is not recommended to use vias with 
RF traces unless a direct line route is not possible.  

Differential lines from the balun to the Rx, ORx, SnRx and Tx 
balls must be as short as possible. It is also recommended that 
the length of the single-ended transmission lines be short to 
minimize the effects of parasitic coupling.  

System designers can optimize RF performance with the proper 
selection of balun, matching components, and ac coupling 
capacitors. The external local oscillator (LO) traces and the 
DEV_CLK_IN traces may require matching components as well 
to ensure optimal performance. For additional information on 
matching network design see the RF Port Interface section. 

 

 

Differential Line Design Equations 

Some high level differential line design equations follow; these 
are valid for reasonably low loss transmission lines. 

Odd Impedance Mode 

Odd impedance mode is represented by the variable, ZODD. 

ZODD = ZDIFF ÷ 2 (33) 

where ZDIFF is 100 Ω for receivers and 50 Ω for trasmitters. 

Even Impedance Mode 

Even impedance is represented by the variable, ZEVEN.  

ZEVEN = ZCM × 2  (34) 

where: 
ZCM is the common-mode impedance from each pin to ground. 

Differential Mode Characteristic Impedance  

Differential mode impedance is represented by the variable, Z0. 

Z0 = √ZODDZEVEN (35) 

where: 
ZEVEN is a function of line coupling. As the line coupling increases, 
both ZEVEN and Z0 increase. Given the ball pad diameter of 17.7 mil, 
0.45 mm, and the array pitch of 31.5 mil, 0.8 mm coupled, 
microstrip differential lines are the preferred design choice. 

Single-Ended Impedance  

Single-ended impedance is represented by the variable, ZSE. 

ZSE = (ZODD + ZEVEN) ÷ 2 (36) 

Inductance per Unit Length  

Inductance per unit length is represented by the variable, Lʹ. 

Lʹ = 
c

Z rε0  (37) 

where: 
εr is the media relative dielectric constant. 
c is the speed of light (1.1803 × 1013 mils/sec). 

Capacitance per Unit Length 

Capacitance per unit length is represented by the variable, Cʹ. 

Cʹ = 
cZ
r

0

ε
 (38) 

Alternative Characteristic Differential Impedance  

The alternative characteristic differential impedance is 
represented by the variable, Z0. 

Z0 = 
C
L
′
′

 (39) 

Line Design Examples 

The following sections provide examples of transmission line 
design. These design examples frequently use Equation 33 
through Equation 39 and electromagnetic simulation tools to 
calculate the impedance parameters. 
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Example 1: Microstrip Line System, Receiver Only, 
ZDIFF = 100 Ω  

The line system described by the parameters in Table 179 is a 
well suited line system for the receiver system. The line coupling 
is adequate and electromagnetic interface (EMI) issues are not 
expected. 

This design is not acceptable for a JESD204B application. The 
ZDIFF requirement is met, but the ZCM requirement of 25 Ω is not 
met. This line system is only acceptable for receiver lines. 

Table 179. Example 1 Microstrip Parametric Calculated Results 
Parameter Value 
εr (Rogers 4003C)  3.55  
Dissipation Loss Tangent (TanD) 0.0021 
Height 8.0 mil 
Width 8.5 mil 
Spacing  5.0 mil 
ZEVEN 85.1 Ω 
ZODD 50.2 Ω 
Z0 65.4 Ω 
Coupling −11.8 dB 
Inductance per Unit Length (L/UL)  10.44 pH/mil 
Capacitance per Unit Length (C/UL) 2.44 fF/mil 
ZDIFF = 2 × ZODD 100.4 Ω 
ZCM = ZEVEN ÷ 2 42.6 Ω 
 

Example 2: Microstrip Line System, Receiver and 
JESD204B Traces, ZDIFF = 100 Ω 

From a line impedance perspective, this is a good system for 
both the receiver system and JESD204B system (see Table 180). 
However, the lines are weakly coupled. Exercise care during the 
board layout phase to reduce EMI risk. 

Another advantage of Example 2 over Example 1 is that the line 
width is closer to the board ball diameter of 17.7 mil thereby 
reducing discontinuities between the line and pad structures. 

Table 180. Example 2 Microstrip Parametric Calculated Results 
Parameter Value 
εr (Rogers 4003C)  3.55  
Dissipation Loss Tangent (TanD) 0.0021 
Height 8.0 mil 
Width 15.0 mil 
Spacing  30.0 mil 
ZEVEN 54.3 Ω 
ZODD 50.2 Ω 
Z0 52.2 Ω 
Coupling −27.9 dB 
Inductance per Unit Length (L/UL)  8.33 pH/mil 
Capacitance per Unit Length (C/UL) 3.06 fF/mil 
ZDIFF = 2 × ZODD 100.4 Ω 
ZCM = ZEVEN ÷ 2 27.2 Ω 

 

 

Example 3: Microstrip Line System, Transmitter Traces 
Only, ZDIFF = 50 Ω 

Generally, this is a good system for transmitter systems (see 
Table 181). The line coupling is adequate, and EMI issues are 
not expected. These lines are wide relative to the transmitter 
board ball pads; they must be tapered down to create minimal 
discontinuity between the lines and pads. Some amount of line 
width tuning may be required to obtain an adequate broadband 
system impedance. 

Table 181. Example 3 Microstrip Parametric Calculated Results 
Parameter Value 
εr (Rogers 4003C)  3.55  
Dissipation Loss Tangent (TanD) 0.0021 
Height 8.0 mil 
Width 34.0 mil 
Spacing  4.0 mil 
ZEVEN 35.2 Ω 
ZODD 25.2 Ω 
Z0 29.8 Ω 
Coupling −15.6 dB 
Inductance per Unit Length (L/UL)  4.76 pH/mil 
Capacitance per Unit Length (C/UL) 5.36 fF/mil 
ZDIFF = 2 × ZODD 50.4 Ω 
ZCM = ZEVEN ÷ 2 17.6 Ω 
 

Example 4: Microstrip Line System, Receiver and 
JESD204B Traces, Typical Production PCB, ZDIFF = 100 Ω  

This line design represents a typical production circuit board 
scenario (see Table 182). The low stackup height represents a 
challenge to generating a ZDIFF of 100 Ω. Generally, this is an 
adequate line for the receiver and JESD204B systems; however, 
exercise care during board layout to minimize the line to ball 
pad discontinuities and potential EMI risk. 

Table 182. Example 4 Microstrip Parametric Calculated Results 
Parameter Value 
εr (Rogers 4003C)  3.55  
Dissipation Loss Tangent (TanD) 0.0021 
Height 8.0 mil 
Width 34.0 mil 
Spacing  4.0 mil 
ZEVEN 35.2 Ω 
ZODD 25.2 Ω 
Z0 29.8 Ω 
Coupling −15.6 dB 
Inductance per Unit Length (L/UL)  4.76 pH/mil 
Capacitance per Unit Length (C/UL) 5.36 fF/mil 
ZDIFF = 2 × ZODD 50.4 Ω 
ZCM = ZEVEN ÷ 2 17.6 Ω 
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Example 5: Microstrip Line System, Transmitter Traces 
Only, ZDIFF = 100 Ω  

Generally, this is a good line design for the transmitter system. 
The line coupling is marginal. Exercise care during board layout 
to reduce the EMI risk. Note this example assumes FR4 for the 
circuit board material, so the dielectric constant is substantially 
higher than the other examples. 

Table 183. Example 5 Microstrip Parametric Calculated 
Parameter Value 
εr (Rogers 4003C)  4.6  
Dissipation Loss Tangent (TanD) 0.025 
Height 3.0 mil 
Width 12.0 mil 
Spacing  4.0 mil 
ZEVEN 30.8 Ω 
ZODD 25.2 Ω 
Z0 27.9 Ω 
Coupling −19.9 dB 
Inductance per Unit Length (L/UL)  5.07 pH/mil 
Capacitance per Unit Length 
(C/UL) 

6.51 fF/mil 

ZDIFF = 2 × ZODD 50.4 Ω 
ZCM = ZEVEN ÷ 2 15.4 Ω 
 

RF Line Design Summary 

As evident in Example 1 through Example 5, the RF line design 
is a compromise between many variables. Line impedance, line 
to line coupling, and physical size represent the parameters 
subject to compromise.  

Smallest physical size is in direct opposition to the ZCM of the 
line, which is directly opposed to the line electromagnetic 
interface (EMI) performance. In addition, the interface between 
the RF line width and the device ball pad diameter on the PCB 
represents a potential discontinuity. As the RF line width 
approaches the ball pad diameter, the risk associated with 
potential interface discontinuity reduces. 

The circuit shown in Figure 162 shows the layout topology for 
the chosen receiver matching network. Note the location and 
orientation of each component; placement is critical to achieve 
expected performance. Similarly, the circuit in Figure 163 shows 
the layout topology used for the transmitter matching network 
(see the RF Port Interface section for circuit details). 
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Figure 162. Receiver Matching Network on ADRV9371-N/PCBZ Evaluation Board 
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Figure 163. Transmitter Matching Network on ADRV9371-N/PCBZ Evaluation Board 
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Transmitter Bias Design Considerations 

This section considers the dc biasing of the device transmitter 
(Tx) outputs and how to interface to each Tx port. At full 
output power, each differential output side draws approximately 
100 mA of dc bias current. The Tx outputs are dc biased to a 
1.8 V supply voltage using either RF chokes (wire wound 
inductors) or a transformer (balun) center tap connection.  

Careful design of the dc bias network is required to ensure 
optimal RF performance levels. When designing the dc bias 
network, select components with low dc resistance (RDCR) to 
minimize the voltage drop across the series parasitic resistance 
element with either of the dc bias schemes suggested in 
Figure 164 and Figure 165. The resistors (RDCR) indicate the 
parasitic elements. As the impedance of the parasitics increase, 
the voltage drop (ΔV) across the parasitic element increases 
which causes the transmitter RF performance to degrade. The 
choke inductance (LC) must be selected high enough relative to 
the load impedance such that it does not degrade the output 
power. If chokes are used, they must be very well matched 
(including PCB traces). Uneven matching of chokes design can 
cause unwanted emission of spikes at the Tx output. This 
emission can affect components connected to the Tx output.  
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Figure 164. ADRV9371-N/PCBZ DC Bias Configuration for the Transmitter 

Output Using Wire Wound Chokes  
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Figure 165. ADRV9371-N/PCBZ DC Bias Configuration for the Transmitter 

Output Using a Center Tapped Transformer  

The recommended dc bias network is the one using the center 
tap balun shown in Figure 165. This network has fewer 
parasitics and fewer total components. 

The ADRV9371-N/PCBZ evaluation board provides flexibility 
to configure each Tx output to either work with a center tapped 
transformer (balun) or a set of two closely matched wire wounded 
chokes. The center tapped transformer passes the bias voltage 
directly to the transmitter outputs through each differential 
input. This configuration offers the lowest component count.  

In some cases, the desired balun does not provide a dc 
connection to the transmitter output lines. To support this 
situation, the ADRV9371-N/PCBZ evaluation board provides 
the placeholders for RF chokes tied to the VDDA_1P8 (1.8 V) 
supply. It also provides the placeholders for ac coupling capacitors 
to prevent creating a dc short through the balun to ground. 

Impedance matching networks on the balun single-ended port 
are usually required to achieve optimum performance. In 
addition, ac coupling is often required on the single-ended side 
if the balun contains a dc path from one of the differential 
outputs transmitter to the single-ended port.  

Careful planning is required for the Tx balun selection. If a Tx 
balun is selected that requires a set of external dc bias chokes, it 
is necessary to find the optimum compromise between the 
choke physical size, choke dc resistance (RDCR), and the balun 
pass-band insertion loss. Refer to the RF Port Interface section 
for more information on Tx output balun and RF choke 
selection as well as matching circuit recommendations.  
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Tx Balun DC Supply Options 

Each transmitter requires approximately 200 mA supplied 
through an external connection. The PCB layout of the 
ADRV9371-N/PCBZ allows use of external chokes to provide 
the 1.8 V power domain to the device outputs to allow users to 
try different baluns that may not have a dc center tap pin to 
supply the bias voltage to the transmitter outputs.  

To reduce switching transients when attenuation settings change, 
it is recommended to power the balun dc feed directly by the 
1.8 V plane. Design the geometry of the 1.8 V plane so that each 
balun or each pair of chokes is isolated from those of the other 
transmitter. If careful layout and isolation of the dc supply is not 
followed, it can adversely affect Tx to Tx isolation.  

Figure 166 shows the power supply layout configuration used 
on the ADRV9371-N/PCBZ board to achieve the desired Tx to 
Tx isolation performance. This image illustrates how a trade-off 
was used when a direct star connection was not possible. To 
improve isolation, one transmitter is fed from the power plane, and 
the plane is continued until it can be connected to the other 
transmitter. This process keeps the impedance for the second 
transmitter feed as low as possible and separates the current 
paths enough to avoid intermingling of supply currents.  

An example of the balun feed supply designed to achieve the 
channel isolation in the evaluation board is shown in Figure 167 
and Figure 168.  
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Figure 166. 1.8 V Tx Power Supply Routing on the ADRV9371-N/PCBZ Evaluation Board 

 

http://www.analog.com/EVAL-ADRV9371
http://www.analog.com/AD9371?doc=AD9371-User-Guide-UG-992.pdf
http://www.analog.com/EVAL-ADRV9371
http://www.analog.com/EVAL-ADRV9371


UG-992 AD9371/AD9375 System Development User Guide
 

Rev. B | Page 270 of 360 

1.8V
RESERVOIR
CAPACITORS

OPTIONAL RF
ISOLATION INDUCTOR

DECOUPLING CAPACITOR
(ORIENTATION IS IMPORTANT)

OPTIONAL RF CHOKE
(NEEDED FOR BALUNS

WITH ONLY ONE DC FEED)

1.8V POWER PLANE
CONNECTION

BALUN

SERIES MATCHING
COMPONENTS

14
65

2-
16

7

 
Figure 167. Transmitter Power Supply for a Balun with a Center Tap  
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Figure 168. Transmitter Power Supply Using RF Chokes 

DC Balun  

When a Tx balun that is able to conduct dc is used, use the 
system shown in Figure 167. Place the decoupling capacitor 
near the Tx balun as close as possible to the dc feed pin of the 
balun. Its orientation must be perpendicular to the device so 
that the return current avoids a ground loop with the ground 
pins surrounding the Tx input. The evaluation board provides 
an option to install an RF isolation inductor, which can provide 
extra isolation between the Tx1 and Tx2 balun supply feeds. A 
10 μF capacitor and a 0.1 μF capacitor are helpful on the dc feed 
pin to eliminate Tx spectrum spurs and dampen the transients. 
Note that when this supply approach is used, the series matching 
components must be dc shorts. It is recommended to use 0 Ω if an 
inductor is not needed to match the balun impedance to the Tx 
output impedance. 

 

 

 

 

Chokes  

The ADRV9371-N/PCBZ evaluation board provides flexibility 
to use a Tx balun that is not capable of conducting dc current. 
In such a scenario, the user must install dc chokes as well as 
their decoupling capacitors as highlighted in Figure 168. Care 
must be taken to match both chokes to avoid potential current 
spikes. Differences in parameters between both chokes can 
cause unwanted emission at Tx outputs. Note that, if the 
differential input to the balun can form a dc short to ground 
through the balun, the series matching components must be 
capacitors. If a short can form on the single-ended side, the 
single-end series blocking element must be a capacitor. 
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JESD204B Trace Routing Recommendations  

Routing the JESD204B data lines requires techniques similar to 
routing differential RF traces. To ensure performance of this 
interface, keep the differential traces as short as possible by 
placing the device as close as possible to the baseband processor 
(BBP) and route the traces as directly as possible between the 
devices. Using a PCB material with a low dielectric constant 
(<4) to minimize loss is also strongly recommended. For 
distances greater than 6 inches, it is recommended to use a 
premium PCB material such as Rogers 4003C. 

Routing Recommendations 

Route the differential pairs on a single plane using a solid 
ground plane as a reference on the layers above and/or below 
these traces 

All JESD204B lane traces must be impedance controlled to 
achieve 50 Ω to ground. It is recommended that the differential 
pair be coplanar and loosely coupled (a typical configuration is 
5 mil trace width, 15 mil edge to edge spacing) with the trace 
width maximized.  

It is recommended that trace widths match pin/ball widths as 
closely as possible while maintaining impedance control. Trace 
widths of at least 8 mils using 1 oz. copper are recommended. It is 
recommended that coupling capacitor pad size match JESD204B 
lane trace widths as closely as possible. 

Pad area for all connector and passive component choices must 
be minimized as much as possible due to a capacitive plate 
effect that can lead to problems with signal integrity. 

Reference planes for impedance controlled signals must not be 
segmented or broken for the entire length of a trace. 

The DEV_CLK_IN and SYSREF signal traces must be impedance 
controlled for Z0 = 50 Ω. 

 

 

 

Stripline vs. Microstrip 

When routing the PCB layout for JESD204B data lines, the 
designer must decide to route the signals using stripline or 
microstrip traces. There are positives and negatives for each that 
must be carefully considered. 

 Stripline has less loss and emits less electromagnetic 
interface (EMI) than microstrip lines, but stripline traces 
require the use of vias that can add complexity to the task 
of controlling the impedance by adding line inductance. 

 Microstrip is easier to implement if the component 
placement and density allow for routing on the top layer, 
simplifying the task of controlling the impedance. 

If using the top layer of the PCB is problematic or the advantages of 
stripline are desirable, follow these recommendations: 

 Minimize the number of vias. 
 Use blind vias wherever possible to eliminate via stub 

effects, and use microvias to minimize via inductance. 
 If using standard vias, use maximum via length to 

minimize the stub size. For example, on an 8-layer board, 
use Layer 7 for the stripline pair. 

 For each via pair, place a pair of ground vias in close 
proximity to them to minimize the impedance 
discontinuity.  

 For the JESD204B lines, the recommendation is to route 
them on the top side of the board as a differential 100 Ω 
pair (microstrip). In the case of the ADRV9371-N/PCBZ 
evaluation board, the JESD204B differential signals are 
routed on inner layers of the board (Layer 5 and Layer 10) 
as differential 100 Ω pairs (stripline). To minimize potential 
coupling, these signals are placed on an inner layer using a 
via embedded in the component footprint pad where the 
ball connects to the PCB. AC coupling capacitors (100 nF) 
on these signals are placed at the connector, away from the 
chip, to minimize coupling. The JESD204B interface can 
operate at frequencies up to 6.4 GHz. Care must be exercised 
to maintain signal integrity from the chip to the connector. 
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Figure 169. JESD204B Differential Pair Routing Example 
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ISOLATION TECHNIQUES USED ON THE 
ADRV9371-N/PCBZ EVALUATION BOARD 
The device was designed to provide extremely good channel 
isolation. Significant isolation challenges must be overcome 
while designing the ADRV9371-N/PCBZ evaluation board. The 
following isolation requirements were followed to accurately 
evaluate transceiver performance:  

 Tx to Tx: 80 dB out to 6 GHz 
 Tx to Rx: 80 dB out to 6 GHz 
 Rx to Rx: 60 dB out to 6 GHz 
 ORx to ORx: 60 dB out to 6 GHz 

To meet those goals with significant margin, isolation structures 
were introduced.  

Figure 170 shows the isolation structures used on the 
ADRV9371-N/PCBZ evaluation card. These structures consist 
of a combination of slots and square apertures. Both structures 
are present on every copper layer of the PCB stack. The advantage 
of using square apertures is that signals can be routed between 
the openings without disturbing the isolation benefits that the 
array of apertures provides.  

When utilizing the proposed isolating structures, it is important 
to place ground vias around the slots and apertures.  
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Figure 170. Isolation Structures on the ADRV9371-N/PCBZ Evaluation Board 
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The methodology used on the ADRV9371-N/PCBZ evaluation 
board is shown in Figure 171. When slots are used, place ground 
vias at each end of the slots and along each side. When square 
apertures are used, place at least one single ground via adjacent 
to each square. It is recommended that these vias be 
throughhole vias connecting the top to the bottom layer and all 
layers in between. The function of these vias is to steer return 
current to the ground planes near the apertures.  

It is recommended to use electromagnetic simulation software to 
develop accurate slot spacing and square aperture layout when 
designing a PCB for an AD9371 family transceiver. Ensure that 
spacing between square apertures is not more than 1/10 of the 
shortest wavelength supported.  

The wavelength can be calculated using Equation 40. 

rfrequency
wavelength




)MHz(
300)m(  (40) 

where εr is the dielectric constant of the isolator material. 

For Roger 4003C material, microstrip structure (and taking in 
account air as an insulator), εr = 3.55.  

For FR4-370 HR material, stripline structure, εr = 4.6. 

For example, the following: 

 Maximum RF signals frequency is 6 GHz. 
 For Rogers 4003C material (and taking in account air as an 

insulator), using microstrip structures, and εr = 3.55, the 
minimum wavelength is approximately 26.5 mm. 

To fulfill the 1/10 of a wavelength rule, square aperture spacing 
must be at a distance of 2.65 mm or closer. 
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Figure 171. Current Steering Vias Placed Near Isolation Slots and Apertures 
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Isolation Between JESD204B Lines 

The JESD204B interface uses eight line pairs that can operate at 
speeds of up to 6.4 GHz. Care must be taken when doing PCB 
layout to ensure those lines are routed following the rules 
described in the JESD204B Trace Routing Recommendations 
section. In addition, use isolation techniques to prevent crosstalk 
between different JESD204B lane pairs. A technique used on 
the ADRV9371-N/PCBZ evaluation board uses via fencing. 
Figure 172 illustrates this technique. Ground vias placed around 
each JESD204B pair provide isolation and decrease crosstalk. 
Spacing between vias follows the rule provided in Equation 40. 
JESD204B lines are routed on Layer 5 and Layer 10 so that they 
utilizes stripline structures. The dielectric material used in the 
inner layers of the ADRV9371-N/PCBZ evaluation board PCB 
is FR4-370 HR.  

For accurate spacing of JESD204B fencing vias, use layout 
simulation software. Use Equation 40 with the following 
outlined details: 

 Maximum JESD204B signal frequency is around 6.4 GHz. 
 For FR4-370 HR material, stripline structure, and εr = 4.6, 

the minimum wavelength is approximately 21.9 mm. 

To fulfill the 1/10 wavelength spacing rule, use vias spaced at a 
distance of 2.19 mm or closer. 
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Figure 172. Via Fencing Shield Around JESD204B Lines (Layer 10 of the ADRV9371-N/PCBZ Shown) 

 

http://www.analog.com/EVAL-ADRV9371
http://www.analog.com/EVAL-ADRV9371
http://www.analog.com/EVAL-ADRV9371
http://www.analog.com/EVAL-ADRV9371


UG-992 AD9371/AD9375 System Development User Guide 
 

Rev. B | Page 276 of 360 

UNUSED BALLS 
In some end applications, the user may decide not to use all 
available inputs or outputs. In these cases, ensure that unused 
pins follow the recommendations outlined in Table 184.  

 

 

Table 184. Recommendations for Unused Balls 
Pin No. Type Mnemonic When Pins Are Not Used 
A9, A10, A5, A6 I RX1+, RX1−, RX2+, RX2− Do not connect. When active, there is a 0.7 VBIAS. When disabled, the 

internal protection diodes protect the inputs. 
A12, A13, A2, A3  I ORX1+, ORX1−, ORX2+, ORX2− Do not connect. When active, there is a 0.7 VBIAS. When disabled, the 

internal protection diodes protect the inputs. 
D4, E4, D3, E3, D2, E2 I SNRXA−, SNRXA+, SNRXB−, 

SNRXB+, SNRXC−, SNRXC+ 
Connect to GND with a 1 kΩ pull-down resistor or directly to GND. 
Note that when active there is a bias voltage on those inputs. 

H14, J14, H1, J1 O TX1+, TX1−, TX2−, TX2+ Do not connect. 
B7, B8 I/O RX_EXTLO−, RX_EXTLO+ Do not connect. 
E11, E12 I/O TX_EXTLO−, TX_EXTLO+ Do not connect. 
M5, M7, M6, M8 I RX1_ENABLE, RX2_ENABLE, 

TX1_ENABLE, TX2_ENABLE 
Connect to GND with a 1 kΩ pull-down resistor or directly to GND. 

E13, C11, C12, D11 I AUXADC_0, AUXADC_1, 
AUXADC_2, AUXADC_3 

Connect to GND with a 1 kΩ pull-down resistor or directly to GND. 

H11, H12, J3, J7, J8, 
J11, J12, K5 to K8, 
K11, K12, L5, L6, L11, 
L12, M10, M11 

I/O GPIO_0 to GPIO_18 Because these pins contain an input stage, the voltage on the pin 
must be controlled. They can be tied to ground through a 1 kΩ 
resistor (to safeguard against misconfiguration), or they can be left 
floating, programmed as outputs, and driven low.  

C1, C2, C13, D1, D5, 
D12, D13, D14, E1, 
E14, F1, F14 

I/O GPIO_3P3_0 to GPIO_3P3_11  Because these pins contain an input stage, the voltage on the pin 
must be controlled. They can be tied to ground through a 1 kΩ 
resistor (to safeguard against misconfiguration), or they can be left 
floating, programmed as outputs, and driven low. 

J5 O GP_INTERRUPT Do not connect. 
J6 I TEST Connect to GND. 
J10 O SDO In SPI, 3-wire mode, do not connect. 
M3, M4, L3, L4 I SYNCINB0−, SYNCINB0+, 

SYNCINB1−, SYNCINB1+ 
Connect to GND with a 1 kΩ pull-down resistor or directly to GND. 

M13, M14 O SYNCOUTB0+, SYNCOUTB0− Do not connect. 
P11, P12, P13, P14, 
N10, N11, N12, N13 

I SERDIN0−, SERDIN0+, SERDIN1−, 
SERDIN1+, SERDIN2−, SERDIN2+, 
SERDIN3−, SERDIN3+ 

Do not connect. These pins have a bias on them; therefore, they 
must not be tied to power or GND. 

P6, P7, P4, P5, N5, 
N6, N3, N4 

O SERDOUT0−, SERDOUT0+, 
SERDOUT1−, SERDOUT1+, 
SERDOUT2−, SERDOUT2+, 
SERDOUT3−, SERDOUT3+ 

Do not connect. These pins have a bias on them; therefore, they 
must not be tied to power or GND. 
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POWER MANAGEMENT CONSIDERATIONS 
The device has six different power supply domains: 

• 1.3 V is the main analog domain that powers the major 
part of the chip, which is divided into various 1.3 V 
domains, all with a tolerance of ±2.5%.  

• The JESD_VTT_DES and VDDA_SER supplies are 1.3 V. 
These can be powered from the main analog core voltage, 
if desired, as long as appropriate isolation is used. It is 
suggested that for best performance the JESD_VTT_DES 
and VDDA_SER supplies come from a separate regulator 
so that they can be varied from 1.3 V to 1.2 V to adhere to 
the JESD204B specification. Both require a tolerance of ±5%.  

• The VDIG supply is the main digital power supply. It must 
be kept separate from the main 1.3 V analog supply to 
minimize digital noise coupling into analog circuits. The 
tolerance for this supply is ±2.5%.  

• The VDD_IF supply is a separate power domain. The 
nominal input voltage on the VDD_IF can range from 
1.8 V to 2.5 V. This voltage controls the voltage levels of the 
digital interface (SPI and control signals). It has a tolerance 
of ±5%.  

• The VDDA_3P3 supply is a 3.3 V domain. This supply 
provides a higher voltage rail for GPIO_3P3s, receiver 
mixer switches, auxiliary DACs, and the auxiliary ADC; 
therefore, it is required whether the GPIO_3P3s are used 
or not. It has a tolerance of ±5%. 

• The VDDA_1P8 supplies the Tx output section and is 
applied to the balun center taps. In the scenario where 
baluns do not have the dc feed capability, RF chokes can be 
used. They must be connected from this supply to each Tx 
output. This domain has a tolerance of ±5%. 

 

 

 

 

 

 

POWER SUPPLY SEQUENCE 
The device requires a specific power-up sequence to avoid 
undesired power-up currents. In the optimal power-up sequence, 
the VDIG and the VDDA supplies (all 1.3 V domains) come up 
first and simultaneously. If they cannot be brought up 
simultaneously, the VDIG supply must come up first. It is 
recommended to bring up the VDDA_3P3, VDDA1P8, 
VDD_JESD_VTT, and VDDA_SER supplies after the 1P3 
supplies. The VDD_IF supply can be brought up at any time. 
Note that no device damage occurs if this sequence is not 
observed; however, this can result in higher than expected 
power-up currents. It is also recommended to toggle the RESET 
signal after power has stabilized prior to configuration. The 
power-down sequence is not critical. If a power-down sequence 
is followed, the VDIG supply must be removed last to avoid any 
back biasing of the digital control lines. 

POWER DISTRIBUTION FOR DIFFERENT POWER 
SUPPLY DOMAINS 
One key aspect to ensuring good PCB performance is careful low 
noise power management design. Table 185 lists the pin number, 
the pin name, the recommended routing technique for that pin 
from the main 1.3 V analog supply (if applicable), and a brief 
description of the block it powers in the chip. When routing 
power traces to the device, follow a star configuration where a 
separate trace from a common power plane is used to power 
each 1.3 V power supply pins.  

The information listed in Table 185 shows which power supply 
pins must be powered by designated traces with ferrite bead and 
which pins are tied together to the power plain using 0 Ω resistors.  

The VDDA_SER and JESD_VTT_DES power domains can be 
connected together and driven by a separate regulator. Noise from 
this supply can affect the JESD204B link performance directly. 

Although the recommendation for VDDA1P3_DES is to keep it 
separate from the other JESD204B supplies using a separate 
trace, it is acceptable to power this input from the other 1.3 V 
analog supply to simplify layout. 

Table 185. Power Supply Layout Recommendations (N/A Means Not Applicable) 

Pin Name Pin No. Type 
Voltage 
(V) 

Maximum 
Current  
(mA)1 Recommended Routing/Notes Description 

Tx Balun or RF  
Choke DC Feed 

N/A Analog 1.8 240 1.8 V plane, separate trace to common 
supply point. 

1.8 V supply for Tx1 

Tx Balun or RF  
Choke DC Feed 

N/A Analog 1.8 240 1.8 V plane, separate trace to common 
supply point. 

1.8 V supply for Tx2 

VDDA_3P3 B14 Analog 3.3 200 To 3.3 V supply (routing typically not critical). GPIO 3.3 V, auxiliary 
DAC, auxiliary ADC, RF 
bias, supply voltage 

VDD_IF M12 Analog 1.8 to 2.5 60 CMOS/LVDS interface supply (routing 
typically not critical). 

Interface pull-up 
voltage (1.8 V to 2.5 V) 

VDDA_1P8 D10 Analog 1.8 20 1.8 V plane, separate trace to common 
supply point. 

1.8 V supply for Tx 
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Pin Name Pin No. Type 
Voltage 
(V) 

Maximum 
Current  
(mA)1 Recommended Routing/Notes Description 

VDIG L8, L9 Digital 1.3 1700 1.3 V separate supply domain. Use thick 
trace to separate power domain. Use 
reservoir capacitors close to the chip. 

1.3 V digital core high 
current 

VDDA_RXRF B1 Analog 1.3 20 Separate trace (using 0 Ω resistor) to 1.3 V 
analog power plane. Use reservoir 
capacitors close to the chip. 

Sniffer front end only 

VDDA_RXTX F2 Analog 1.3 560 Separate trace (using 0 Ω resistor) to1.3 V 
analog power plane. Use reservoir 
capacitors close to the chip. 

1.3 V supply for Tx/ORx 
baseband circuits, TIA/ 
Tx GM/baseband filters 

VDDA_BB E5 Analog 1.3 670 Separate trace (using 0 Ω resistor) to1.3.V 
analog power plane. Use reservoir 
capacitors close to the chip. 

Rx ADC, ORx ADC, Tx 
DAC, auxiliary ADC, 
REF_CLK 

VDDA_RXLO C6 Analog 1.3 270 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

1.3 V LO generator for Rx 
synthesizer, external LO  

VDDA_TXLO F12 Analog 1.3 400 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

1.3 V LO generator for 
Tx synthesizer, buffers, 
external LO  

VDDA_CALLPLL G4 Analog 1.3 230 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

1.3 V LO generator for 
calibration PLL 
synthesizer 

VDDA_RXSYNTH G9 Analog 1.3 12 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

Rx synthesizer supply 

VDDA_TXSYNTH G8 Analog 1.3 12 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

Tx synthesizer supply 

VDDA_SNRXSYNTH G7 Analog 1.3 12 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

ORx synthesizer supply 

VDDA_CLKSYNTH G6 Analog 1.3 12 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

Clock synthesizer 
supply 

VDDA_SNRXVCO C4 Analog 1.3 340 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

SnRx PLL LDO, LO, 
buffers 

VDDA_CLK N1 Analog 1.3 270 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

Clock LDO 

VRX_VCO_LDO C8 Analog 1.1 N/A 1 µF bypass close to chip. 1.1 V VCO supply, 
decouple with 1 µF 

VTX_VCO_LDO F13 Analog 1.1 N/A 1 µF bypass close to chip. 1.1 V VCO supply, 
decouple with 1 µF 

VSNRX_VCO_LDO C3 Analog 1.1 N/A 1 µF bypass close to chip. 1.1 V VCO supply, 
decouple with 1 µF 

VCLK_VCO_LDO M1 Analog 1.1 N/A 1 µF bypass close to chip. 1.1 V VCO supply, 
decouple with 1 µF 

VDDA_RXVCO C7 Analog 1.3 85 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

Rx PLL LDO 

VDDA_TXVCO F11 Analog 1.3 85 1.3 V separate trace (using FB) to common 
supply point. Very sensitive to aggressors. 

Tx PLL LDO 

VDDA_SER N8 Analog 1.2 to 1.3 120 Connect to P8, P9 and to 1.3 V. Use separate 
trace (using FB) to common supply point. 
Use reservoir capacitors close to the chip.  

JESD204B VTT signal 
for serializer 

VDDA_SER P8 Analog 1.2 to 1.3 120 Connect to N8, P9 and to 1.3 V. Use separate 
trace (using FB) to common supply point. 
Use reservoir capacitors close to the chip. 

JESD204B VTT signal 
for serializer 

JESD_VTT_DES P9 Analog 1.2 to 1.3 60 Connect to N8, P8 and to 1.3 V. Use separate 
trace (using FB) to common supply point. 
Use reservoir capacitors close to the chip.  

JESD204B VTT signal 
for deserializer 

VDDA_DES N9 Analog 1.3 240 1.3 V separate trace (using FB) to common 
supply point. Use reservoir capacitors close 
to the chip.  

1.3 V supply for 
JESD204B deserializer 

 
1 Maximum current is used for sizing voltage regulators not for calculating power consumption, which is heavily dependent on operating conditions. 



AD9371/AD9375 System Development User Guide UG-992
 

Rev. B | Page 279 of 360 

ADRV9371-N/PCBZ EVALUATION BOARD POWER 
SUPPLY BLOCK DIAGRAM 
The diagram in Figure 173 outlines the power supply 
configuration used on the ADRV9371-N/PCBZ evaluation 
board. This configuration follows recommendations outlined in 
Table 185. The ADRV9371-N/PCBZ evaluation board supports 
the recommended power-up sequence. The open drain 
input/output (I/O)[1], open drain I/O[2], and open drain 
I/O[3] signals allow the user to implement external control over 
power-up and power-down sequencing as described in the 
Power Supply Sequence section. 

The ADP5054 contains four switch mode, step down regulators. 
Each of those regulators produces a different power domain 
that supplies power to the device. Power signals to the device 
are further isolates using high current ferrite beads. The device 
uses sense line to monitor the voltage output after the ferrite 
bead. This approach ensures that the voltage drop resulting 
from the FB resistance is taken into account, and that the 
voltage level delivered is in line with expected accuracy. 

The power trace connections to the device shown in Figure 173 
are made using four different devices: 

 High current ferrite beads (FB1) 
 Medium current ferrite beads with better RF rejection (FB2) 
 Low current ferrite beads with high dc resistance, best RF 

rejection (FB3) 
 0 Ω resistors  

The use of each 0 Ω resistor accomplishes two goals: 

 It serves as a placeholder for a ferrite bead in cases where 
the user encounters noise problems and more isolation is 
required. For more details regarding ferrite bead selection, 
refer to the RF and Clock Synthesizer Supplies section. 

 It ensures that the layout engineer follows the power 
routing advice outlined in the Signals with Second Routing 
Priority section. Resistor placeholders in series force the 
use of separate traces to deliver different power domains to 
the device. 

For more details on exact power supply implementation, refer 
to the schematic of the ADRV9371-N/PCBZ evaluation board. 
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Figure 173. Power Supply Connection Block Diagram of ADRV9371-N/PCBZ Evaluation Card 
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RF AND CLOCK SYNTHESIZER SUPPLIES 
The noise performance of the power domain used to power the 
RF blocks directly affects the phase noise. The following pins 
can be powered from a single power supply using a star 
configuration where each domain is separated using 0 Ω 
resistors:  

• VDDA_RXRF 
• VDDA_RXTX 
• VDDA_BB 

Those domains must have a minimum 100 µF capacitor placed 
near the device to help mitigate effects of transients on the 1.3 V 
analog supply.  

It is recommended that the following power domains be 
powered using separate traces with extra isolation using a low 
DCR ferrite bead, such as the Murata BLM15AX300SN1D or a 
similar device:  

• VDDA_DES 
• VDDA_SER 
• VDDA_CALPLL 
• VDDA_CLK 
• VDDA_RXLO 
• VDDA_RXVCO 
• VDDA_SNRXVCO 
• VDDA_TXVCO 
• VDDA_TXLO 

The power supply noise rejection on the synthesizer power 
input pins is very low, meaning that any noise ripple on these 
pins affects the synthesizer performance. The RF synthesizer 
requires more critical supply decoupling because any noise or 

variation in voltage that occurs during operation is directly 
imposed on the RF channel. Refer to Figure 173 for an example 
of how the power supply connections are made on the 
ADRV9371-N/PCBZ evaluation board. 

The synthesizers are more susceptible to low frequency noise 
than other supplies because they have programmable loop filters. 
The loop filter bandwidth defaults are 50 kHz for the Rx, Tx, 
and ORx synthesizers, and 350 kHz for the clock synthesizer. 
The loop filter bandwidth directly affects the supply noise 
rejection on the synthesizers. For example, if the loop filter 
bandwidth is 50 kHz, any noise on the supply less than 50 kHz 
is not filtered. The roll-off of the loop filter provides a noise 
rejection of more than 50 kHz. 

For each of the following power domains listed, a ferrite bead 
with high isolation at the frequency of operation is recommended 
to help isolate the pin from the supply source for best performance, 
which is especially important when operating in time division 
duplexed (TDD) mode. Such high isolation ferrite beads tend to 
also have high dc resistance. This trade-off is acceptable for the 
synthesizer power inputs because their low current draws result 
in relatively small voltage drops that are well within the supply 
tolerance range. 

It is recommended that the following power domains be 
powered using a separate trace with extra isolation using a high 
rejection ferrite bead such as the Taiyo Yuden BK1005LL470-T 
or a similar device: 

• VDDA_CLKSYNTH 
• VDDA_RXSYNTH  
• VDDA_SNRXSYNTH 
• VDDA_TXSYNTH 
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DEMONSTRATION SYSTEM OVERVIEW 
The demonstration system enables users to evaluate the device 
without having to develop custom software or hardware. The 
system is comprised of a radio daughtercard, a Xilinx® Zynq® 
field programmable gate array (FPGA) evaluation platform, an 
SanDisk® (SD) card with an operating system, a power supply, 
and a C#-based evaluation software application. The evaluation 
system uses an Ethernet interface to communicate with the PC. 

INITIAL SETUP 
The transceiver evaluation software (TES) can run with or 
without evaluation hardware. When TES runs without the 
hardware connected, it can be configured for a particular 
operating mode. If the evaluation hardware is connected, the 
desired operating parameters can be setup with TES and then 
the software programs the device evaluation hardware. Once 
the device is configured, use the evaluation software to transmit 
waveforms, observe received waveforms, and initiate correction 
algorithms. A sequence of application programming interface 
(API) commands in the form of an IronPython script can be 
generated and executed using the TES. 

HARDWARE AND SOFTWARE REQUIREMENTS 
The hardware and software require the following: 

• The Xilinx ZC706 ZYNQ evaluation platform (not 
included in the demonstration kit). Both Xilinx platforms, 
EK-Z7-ZC706 Rev. 1.2 and AES-Z7-JESD3-G Rev. 1.2, are 
compatible with the device demonstration system kit. 

• The device demonstration system kit.  
• The operating system on the controlling PC must be 

Windows® Vista SP2 (x86 or x64) or Windows 7 SP1 
(x86 or x64). 

• The PC must have a free Ethernet port with the following 
constraints: 
• If the Ethernet port is occupied by another LAN 

connection, use a USB to Ethernet adapter. 

• Using a dedicated Ethernet connection, the PC can 
access the following ports:  
• 22—SSH protocol 
• 55555—access to the evaluation software on the 

ZYNQ platform 
• TES—available on the RadioVerse landing page 

(users must have PC administrative privileges). 

Hardware Kit 

The device demonstration system hardware kit contains the 
following: 

• The evaluation board is a daughter card. There are two 
versions: the ADRV9371-N/PCBZ for a narrow tuning 
range, and the ADRV9371-N/PCBZ for tuning across the 
entire range. Both operate with no differences with the 
TES. The ADRV9371-N/PCBZ is used for all descriptions 
in this user guide. 

• Two SD cards containing the files for the Xilinx ZC706 
motherboard. The SD card is 8 GB, Type 4. 

• One SD card with the Linux operating system with 
required Linux-based evaluation software (see the 
RadioVerse landing page for further information on this). 

• One SD card with the Linux operating system and interface 
needed to operate with the Windows-based TES. 

Hardware Setup 

The ZYNQ platform setup (see Figure 174) requires the following 
steps: 

1. Place all jumpers in the positions shown in Figure 174. 
2. Place the SW11 toggle switches in the positions as shown 

in Figure 174 (Toggle Switch 1, Toggle Switch 2, and 
Toggle Switch 5 = Position A. 

3. Place the SD card (included with the evaluation kit) in the 
J30 slot of the ZYNQ board. 
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Figure 174. Xilinx EK-Z7-ZC706 ZYNQ Motherboard with Jumper Settings and Switch Position Configured to Work with the Device Evaluation Board  

 

 



AD9371/AD9375 System Development User Guide UG-992
 

Rev. B | Page 283 of 360 

ETHERNET
CONNECTION

PC RUNNING
EVALUATION SOFTWARE

SWITCHING
POWER SUPPLY

12V DC

POWER
SWITCH

SD CARD WITH IMAGE

SIGNAL GENERATOR

SIGNAL SYNTHESIZER

SIGNAL ANALYZER

Tx1

ORx1

ORx2

Rx1

Rx2

Tx2
SNRxA

REFERENCE CLOCK SOURCE
30.72MHz/+5dBm

14
65

2-
30

2

 
Figure 175. Evaluation Board and Xilinx EK-Z7-ZC706 ZYNQ Motherboard with Connections Required for Channel 1 Transmit and Receive Testing 

Do the following to set up the evaluation board for testing: 

1. Connect the evaluation board and the ZYNQ evaluation 
platform together, as shown in Figure 175. Use the HPC 
FMC connector (J37). Ensure proper alignment of the 
connectors. 

2. Ensure that all jumpers on the ZYNQ motherboard, as well 
as the SW11 position, match the settings shown in Figure 174 
(1, 2, 5 = Position A). 

3. Insert the for use with the Windows-based transceiver 
evaluation software (TES) SD card that came with the 
device evaluation kit into the ZYNQ SD card slot (J30). 

4. Provide a 30.72 MHz clock source (or frequency that 
matches the setting selected on the AD9528 configuration 
(Config) tab, see Figure 202), at a 5 dBm power level to the 
J401 connector on the daughter card. This signal drives the 
reference clock into the AD9528 clock generation chip on 
the daughter card. Note that the REFA/REFA pins of 
AD9528 generate the DEV_CLK signal for the device and 
the REF_CLK signal for the field programmable gate array 
(FPGA) on the ZYNQ platform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Connect a 12 V, 5 A power supply to the ZYNQ evaluation 
platform at the J22 header. 

6. Connect the ZYNQ evaluation platform to the PC with an 
Ethernet cable (connect to P3). No driver installation is 
required. Note the following: 
a. In cases where the Ethernet port is already occupied 

by another connection, use a USB to Ethernet adapter. 
b. With an Ethernet connection dedicated to the ZYNQ 

platform, manually set the IPv4 address to 192.168.1.2 
and set the IPv4 subnet mask to 255.255.255. See the 
Instructions to Set the IPv4 Addresses section and 
Figure 176 to Figure 178 for instructions on setting 
the IPv4 addresses.  

7. Ensure that the following ports on the PC are not blocked 
by firewall software: 

 22: SSH protocol  
 55555: access to the evaluation software on the ZYNQ 

platform 

Note that the ZYNQ IP address is set by default to: 192.168.1.10. 

 

 

 

 

 

 

 

 

 

 

 

http://www.analog.com/ad9371-evaluation-software
http://www.analog.com/AD9528
http://www.analog.com/AD9528
http://www.analog.com/AD9528


UG-992 AD9371/AD9375 System Development User Guide
 

Rev. B | Page 284 of 360 

Instructions to Set the IPv4 Addresses 

To set the IPv4 addresses as instructed in the evaluation board 
testing setup (Step 6b), take the following steps: 

1. In the Windows Control Panel, navigate to Network 
Connections > Local Area Connection > General, and 
click Properties (see Figure 176). 
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Figure 176. General Tab Properties 

2. Select Networking and check Internet Protocol Version 4 
(TCP/IPv4), as shown in Figure 177. 
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Figure 177. Select Internet Protocol Version 4 (TCP/IPv4) 

3. Verify that the appropriate addresses (Step 6b of the 
evaluation system setup) are listed for the fields, IP address 
and Subnet mask, as shown in Figure 178. 
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Figure 178. Select the Proper IP Address and Subnet Mask 
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HARDWARE SETUP FOR EXTERNAL Tx LO 
LEAKAGE CALIBRATION  
The device is a direct conversion transceiver. The Tx baseband 
dc offset and direct coupling of the local oscillator (LO) to the 
Tx output can cause an undesired continuous wave (CW) 
emission at the Tx LO frequency. The purpose of the transmitter 
local oscillator leakage (LOL) calibration is to minimize this 
emission. The evaluation system supports two types of Tx LOL 
calibration algorithms, internal and external. Make Tx LOL 
calibration algorithm selections in the calibration boxes located 
in the transceiver evaluation software (TES), see Figure 179 (the 
full screen capture of this graphical user interface (GUI) is 
shown in Figure 184). 
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Figure 179. Tx LOL Calibration Options 

When user selects Internal Tx LOL, external hardware is not 
necessary. Note that, in this case, there is no Tx LOL tracking 
calibration available. 

When the user selects External Tx LOL in the Initial Calibration 
list and External Tx LOL in the Tracking Calibration list as 
shown in Figure 179, external components must be connected 
to the evaluation platform for proper operation. Figure 180 
shows the proper configuration to demonstrate performance of 
the Tx LOL calibration algorithm.  
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Figure 180. Demonstration Operation of External Tx LOL Calibration on the 

Device Evaluation System  

The user must connect an RF splitter at the Tx output. Connect 
one of the splitter outputs to the corresponding observation 
(ORx) inputs through an RF attenuator (Tx1 → ORx1, Tx2 → 
ORx2). The amount of attenuation needed depends on the 
attenuation introduced by the splitter. For maximum ORx gain, 
do not exceed a −16 dBm signal level at the ORx input. Note 
that for external Tx LOL tracking calibration, both transmitters 
must loop back to both observation receivers through splitters 
and attenuators. 

For example, for maximum ORx gain with a maximum Tx output 
signal of 7 dBm (CW), the RF splitter attenuation = 3 dB and 
the RF attenuator = 20 dB (7 dBm – 3 dB – 20 dB = –16 dBm). 

To use the device evaluation system with a power amplifier 
(PA), either split or couple the signal after the PA and then 
connect it to the corresponding ORx channel through an 
appropriate attenuator. Do not exceed –16 dBm maximum 
signal level at the ORx input. Calculate the amount of attenuation 
required based on the power level after the PA and RF coupler 
(see Figure 181). 
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Figure 181. End User Application of External Tx LOL Calibration Using the 

Device Evaluation System 
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HARDWARE OPERATION 
Turn on the evaluation system by switching the ZYNQ board 
power switch (SW1) to the on position. Two LEDs (Blue DS701 
and Green DS702) on the device evaluation board turn on. If 
the LEDs do not turn on, it indicates improper hardware 
connection. 

The ZYNQ evaluation system uses a Linux operating system. It 
takes approximately 30 seconds before the system is ready for 
operation and can accept commands from PC software. Boot 
status can be observed on the ZYNQ GPIO LEDs (L, C, R, O) 
(see Figure 174 for LED locations). Take the following steps for 
proper operating sequence:  

1. Wait approximately 15 sec after SW1 turns on and all four 
LEDs turn on to allow the image to copy from the SD card 
into the field programmable gate array (FPGA) memory. 

2. Allow another approximately 15 sec for the ZYNQ system to 
boot up, which is indicated by flashing LEDs. Note that the 
flashing sequence occurs one LED at a time. When the 
LEDs cease flashing, the system is ready for normal 
operation. 

3. After the LEDs stop flashing, establish a connection with 
the PC over the Ethernet (using the transceiver evaluation 
software (TES)). 

During normal operation, the LED lights indicate system 
status as defined in Table 186.  

Table 186. GPIO LED Status Light Indicators 
GPIO LED Description 
L RF Rx JESD204B sync 
C RF SnRx/ORx JESD204B sync 
R RF Tx JESD204B sync 
O FPGA phase-locked loops (PLLs) lock 
 

4. Connect the reference clock signal (30.72 MHz continuous 
wave (CW) tone, 5 dBm maximum) to J401.  
a. After using the TES to program the system, the two 

LEDs on the evaluation board (D401 and D402) are on.  
b. Active LEDs indicate that the correct reference clock 

is provided and the PLLs in the AD9528 are locked. 
5. For receiver testing on the device evaluation board, use a 

clean signal generator with low phase noise to provide an 
input signal to the selected RF input. Use a shielded RG-58, 
50 Ω coaxial cable (1 m or shorter) to connect the signal 
generator to the desired RF input. To set the input level, do 
the following: 
a. To set the input level near full scale of the Rx receiver, 

set the generator level (for a single-tone signal) to 
approximately −15 dBm. This level depends on the 
input frequency and the gain settings through the 
path. Do not apply the input signal to the Rx input 
when performing an initialization calibration. 

b. To set the input level near the full scale of the ORx 
receiver, set the generator level (for a single-tone 
signal) to approximately −15 dBm. This level depends 
on the input frequency and the gain settings through 
the path. 

c. To set the input level near the full scale of the SnRx 
receiver, set the generator level (for a single-tone 
signal) to approximately −16 dBm. This level depends 
on the input frequency and the gain settings through 
the path. 

6. For transmitter testing, connect a spectrum analyzer to 
either Tx output on the device evaluation board. Use a 
shielded RG-58, 50 Ω coaxial cable (1 m or shorter) to 
connect the spectrum analyzer. Terminate both Tx paths 
into the spectrum analyzers or, if only one Tx is being 
checked, terminate one Tx path into a spectrum analyzer 
and terminate the other Tx into 50 Ω. Note that, initial 
calibrations run on both channels and can take an extended 
time to complete if a Tx channel is not correctly terminated. 

7. Power off must be executed using the TES or the user must 
power down the ZYNQ system using the SW9 push button 
(see Figure 174) before the user powers down the 
evaluation system by switching SW1 off.  

8. When shutdown is executed using the TES, the ZYNQ 
operating system begins the power-down procedure. It 
takes a few seconds to finish. All four LEDs blinking 
together indicates that the user can safely power off the 
system using the SW1 switch on the ZYNQ platform.  

Shutdown Caution 

The device evaluation system utilizes a Linux operating system. 
Linux requires time to boot up as well as time for the software 
to shut down before hardware power-off. To safely shut down 
the system use the power-off feature in the TES, or press the 
SW9 button on the ZYNQ platform before physically switching 
power off by using the SW1 switch. Using any other shutdown 
procedure risks corrupting the file system on the SD card and 
causing the evaluation system to stop operating.  

To shut down the system, execute one of these options 

• Close the TES application (Windows X button) and then 
select Switch Zynq Off. 

• Select Device > Shutdown Zynq Platform in the TES. 

After several seconds, when all four GPIO LEDs on the ZYNQ 
platform blink together, the user can safely power off the system 
using the SW1 switch on the ZYNQ platform. 
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TRANSCEIVER EVALUATION SOFTWARE 
INSTALLATION 
Download the transceiver evaluation software (TES) directly 
from the design center landing page. After the initial software 
download, copy the software to the target system and unzip the 
files (if not already unzipped). The downloaded zip container 
contains an executable file, AD9371 Transceiver Evaluation 
Software.exe. Note that the same process is followed when 
using the AD9375 evaluation board (or any other compatible 
variant). 

PC administrator privileges are required to install TES. After 
running an executable file, the standard installation process 
follows. Portions of the installation build are Microsoft .NET 
Framework 4.5 (which is mandatory for the software to operate) 
and IronPython 2.7.4 (which is optional and recommended). 
Figure 182 shows the recommended configuration for 
installation. 

14
65

2-
30

9

 
Figure 182. Software Installation Components 

 

 

STARTING THE TRANSCEIVER EVALUATION 
SOFTWARE (TES) 
Click Start > All Programs > Analog Devices > AD9371 
Transceiver Evaluation Software > AD9371 Transceiver 
Evaluation Software to start the software. Figure 183 shows the 
opening page of the TES after it activates.  
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Figure 183. TES Interface  

When the evaluation hardware is not connected, the software 
can still be used in demonstration mode by following these steps: 

1. Click Connect (see Figure 184) in the TES.  
2. The Zynq board is disconnected message will appear, then 

click OK. 

After clicking OK, the software automatically enters 
demonstration mode in which a subset of all the features 
display. 

Indication of the connection status is shown at the bottom of 
the Zynq Platform software window. When Disconnected is 
the status display, the TES operates in demonstration mode. 
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Figure 184. Transceiver Evaluation Software (TES) Project Setup Page  
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NORMAL OPERATION  
When the hardware is connected to the PC and the user wants 
to use the complete evaluation system, the transceiver evaluation 
software (TES) will establish a connection with the ZYNQ system 
via the Ethernet cable after the Connect button is clicked. When 
proper connection is established, click DaughterCard in the 
device tree on the left side of the window (see Figure 185).  

Once DaughterCard is selected, information about the revisions 
of the different setup blocks appear in the main window. This 
window shows the TCP IP address set to 192.168.1.10, and the 
port number set to 55555. Figure 185 shows an example of the 
correct connection between a PC and the ZYNQ system with a 
daughter card connected to them.  

Software Update 

Before continuing, determine if the latest version of software is 
installed by checking for updates on the landing page of the 
design center at www.analog.com/ad9371-evaluation-software. 

Typically, when performing a TES update, platform files must 
also be updated. To perform a platform files update, select 
Device > Update > Platform Files. The TES automatically 
updates files on the ZYNQ SD card and reboots the evaluation 
system.  

After installation of all updates, the system is ready for normal 
operation. 
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Figure 185. Setup Revision Information  
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CONFIGURING THE AD9371 
The transceiver evaluation software (TES) contains four main 
user configurable pages (see Figure 186 through Figure 188 and 
Figure 202). After the user selects the AD9371 in the device 
tree, the Config tab activates. Contained within this tab are eight 
subtabs that contain setup options for the device.  

 

 

 

Configuration Tab 

The Configuration tab is the first tab within the Config tab 
(see Figure 186). The following selections are available within 
the Configuration tab: 

 Device clock frequency 
 Number of active Rx channels 
 Number of active Tx channels 
 Observation/sniffer input 
 Rx, Tx, ORx (Obs), and sniffer profiles 
 Rx, Tx, and SnRx/ORx LO PLL  
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Figure 186. Main Configuration Tab 
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Calibration Tab 

The second user configurable tab within the Config tab is 
Calibration. Within this tab, users can enable initialization and 
tracking of Rx/Tx quadrature error correction (QEC) and Tx 
local oscillator leakage (LOL) calibrations. Figure 187 shows a 
calibration configuration example. The user can enable or 
disable initialization calibrations as well as tracking calibrations.  

Use external circuitry for External Tx LOL initialization calibration 
as well as Tx1 LOL and Tx2 LOL tracking calibrations. The 
Hardware Setup for External Tx LO Leakage Calibration section 
explains the external hardware configuration. The External Init 
Atten option, located in the Initialization Calibration section of 
the Calibration tab (see Figure 187), allows the user to control 
the level of attenuation applied internally at both Tx outputs 
simultaneously. 
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Figure 187. Calibration Configuration Tab 
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JESD204B Setup Tab 

The third user configurable tab within the Config tab is the 
JESD204b Setup tab. Users can set the characteristics of the 
digital data interface within this tab. Figure 188 shows a 
JESD204B setup configuration example. The user can set the 

desired JESD204B lane configuration, select scrambling, and 
choose whether the selected framer/deframer relinks on 
SYSREF. The user can also select either an internal (free 
running) or external (provided by the AD9528) SYSREF to 
synchronize the JESD204B links.  
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Figure 188. JESD204b Setup Tab 
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GPIO Configuration Tab  

The fourth user configurable tab within the Config tab is the 
general-purpose input/output configuration (GPIO Config) 
tab. Users can set the characteristics of the general-purpose 
input/output (GPIO) interface. It allows the user to program 
behavior of the GPIO interface (powered from the 
VDD_INTERFACE power domain).  

Use the GPIO Config tab, to do the following: 

 Monitor the status of the GPIO pins using the GPIO 
ACTIVE controls. When modifying GPIO settings, click 
the Check GPIO button to check the new settings, and 
click the Program GPIO to program these settings to the 
transceiver (see Figure 190 and Figure 191). 

 Check the Rx MGC Pin control box (see Figure 190 and 
Figure 189), to select the GPIO pins used by Rx manual 
gain control (MGC) mode.  
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Figure 189. Rx MCG Pin control Box (Circle Highlight for Emphasis Only) 

 The user can select increment or decrement gain steps as 
well as assign particular GPIO pins to perform selected 
actions. Figure 190 shows a GPIO receive configuration 
example. 
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Figure 190. GPIO Tab Setup: Rx MGC, Tx TPC, and ARM GPIO Settings 
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Figure 191. GPIO Tab Setup, Input/Output Manual Control and Monitor Output Mode 

 Check the Tx TPC Pin control box (see Figure 190 and 
Figure 192) to select the GPIO pins used by Tx transmit 
power control mode.  

14
65

2-
31

9

 
Figure 192. Tx TPC Pin Control Checkbox (Circle Highlight for Emphasis Only) 

 The user can select attenuation step size as well as assign 
particular GPIO pins to perform selected actions. Figure 190 
shows a GPIO transmit configuration example. 

 Check the ARM GPIO settings box (see Figure 190 and 
Figure 193) to selecting the GPIO pins assigned to interface 
with the on-board ARM microcontroller.  
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Figure 193. ARM GPIO Checkbox (Circle Highlight for Emphasis Only) 

 The user can select GPIO pin or SPI interface mode to 
control the on-board ARM mode operation. Figure 190 
shows a GPIO ARM configuration example. 

 Check the GPIO Monitor selection box (see Figure 191) 
to select the GPIO pins used by the internal monitoring 
block. Press the Ctrl key while clicking in the cells within 
the shown table to select the various options for selecting 
the desired signals (see Figure 194). Note that only cells 
from a single row can be selected at one time. The user can 
select from a single row the entire set of monitoring output 
signals or a subset of them. Figure 191 shows a GPIO 
monitor configuration example where all signals from the 
Index 1 row are selected. The Search function helps the 
user navigate in the control output signals table. 
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Figure 194. Index 1, GPIO Monitor Selection Table 

 Selecting the GPIO pins used by the GPIO operating in 
manual input/output mode are enabled by Check the 
GPIO input/Output Pin Level box (see Figure 191 and 
Figure 195).  
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Figure 195. GPIO input/Output Pin Level Box Location (Yellow Circle for 

Emphasis) 

 Click the Output Enables (Outputs or Inputs) box to 
select the GPIO pins to be used in manual mode (see 
Figure 191). Choosing whether a GPIO pin will operate 
as an output, an input, or be disabled is determined by the 
number of clicks made to the selection. For example, to 
select a pin (such as GPIO Pin 8 in Figure 196) to operate 
as an output, place your mouse cursor over the 8 box and 
click once. Each mouse click on an individual box toggles 
the operational status of that pin between three options: 
output (one click), input (two clicks), and disabled (three 
clicks). Disabling the selected GPIO pin in manual mode 
allows that GPIO pin to be used by different GPIO modes. 
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Figure 196. Selecting GPIO Pin Status: Output, Input, or Disabled 

 Select the logic level (high or low) of the GPIO pins in the 
Set output Pin Level when Output Enable are set as 
outputs (High or Low) section (see Figure 191). Click 
either once (for high) or twice (for low) on its respective 
numbered icon to set the desired logic level of each GPIO 
pin. To apply the logic selections, click Write Outputs (see 
Figure 197). 
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Figure 197. Setting Logic Level of GPIO Pins 

 Read the logic level for the GPIO input only pins in the Pin 
Level when Output Enable are set as inputs section. Click 
Read Inputs to populate the logic levels for the inputs, 
high (Hi), low (Lo), or off (OFF) (see Figure 198). 
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Figure 198. Setting GPIO Inputs to Logic High or Logic Low 

Figure 191 shows a configuration example with GPIO Pin 8 
to GPIO Pin 11 set to operate as outputs and GPIO Pin 12 to 
GPIO Pin 15 set to operate as inputs. GPIO Pin 8 and GPIO 
Pin 10 are set to logic high. GPIO Pin 9 and GPIO Pin 11 are set 
to logic low. GPIO Pin 12, GPIO Pin 13, and GPIO Pin 15 read 
back logic low, and GPIO Pin 14 reads back logic high. 
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3V3 GPIO Tab 

The fifth user configurable tab within the Config tab is the 3v3 
GPIO tab (see Figure 200). This tab sets the characteristics of 
the 3.3 V general-purpose input/output interface. It allows users 
to program the behavior of the GPIO interface (powered from a 
3.3 V power domain). Within the 3V3 GPIO tab, the user can 
select and enable operation of the 3.3 V GPIO pins in manual 
input/output mode. Check the GPIO 3v3 Input/Output Pin 
Level box to enable manual mode.  

Within the 3v3 GPIO tab, users can perform the following: 

 Click the GPIO numbered boxes in the Output Enables 
(Outputs or Inputs) section (see Figure 200) to select which 
3.3 V GPIO pin is used in manual mode. Click once on a 
numbered box to set the 3.3 V GPIO pin to operate as an 
output, click twice to set it to operate as an input, and click 
it a third time to disable manual mode for that 3.3 V GPIO 
pin. For example, in Figure 200, click once in the 0 box to set 
the 3.3 V GPIO 0 pin as an output. 
 
 
 
 
 
 

 Click on the numbered boxes in the Set output Pin Level 
when Output Enable are set as outputs (High or Low) 
section to select the logic level for the 3.3 V GPIO output only 
pins. Click once on the box to set that 3.3 V GPIO pin to 
logic high and click twice on the box to set the pin to logic 
low. Click Write Outputs to selected the levels applied to the 
3.3 V GPIO pins (see Figure 199). 
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Figure 199. Setting Logic Levels for the 3.3 V GPIO Pins 

 Read the logic level for the 3.3 V GPIO input only pins in 
the Pin Level when Output Enable are set as inputs 
section. Click Read Inputs to populate the logic levels for 
the inputs, high (Hi), low (Lo), or off (OFF).  

Figure 200 shows a configuration example with 3.3 V GPIO 
Pin 0 to Pin 3, Pin 8, and Pin 9 set to operate as outputs, and 
3.3 V GPIO Pin 4 to Pin 7 set to operate as inputs. The 3.3 V 
GPIO Pin 0, Pin 1, and Pin 8 are set to logic high, and the 3.3 V 
GPIO Pin 2, Pin 3, and Pin 9 are set to logic low. The 3.3 V GPIO 
Pin 4 to Pin 7 read back logic high. 
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Figure 200. 3v3 GPIO Tab Setup  
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Rx, Tx and ObsRx/Sniffer Summary Tabs 

The Rx Summary, Tx Summary, and ObsRx/Sniffer Summary 
tabs are primarily informative and are based on the profile 
selection in the Configuration tab (see Figure 186). In each of 
these tabs, the user can check clock rates at each filter node as 
well as filter characteristics and their pass-band flatness. Quick 
zooming capabilities allow zooming of the pass-band response 

using the mouse cursor as well as restoring to the full-scale plot. 
Right-click on the graph area and select Export Data to File 
within the transceiver evaluation software (TES) to export the 
data plotted on the graphs to an external file. Data can then be 
saved to a file for later analyses. Figure 201 shows an example of 
the Rx Summary tab with the resulting composite filter response 
for the chosen profile.  
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Figure 201. Rx Summary Tab 
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Configuring the AD9528 Clock Chip 

The daughter card utilizes the AD9528 clock chip to provide 
the reference clock, DEV_CLK, as well as a SYSREF pulse to 
the device and the field programmable gate array (FPGA) on 
the ZYNQ platform via the FMC connector. Configure the 
AD9528 using the Clock Setup tab (see Figure 202). Use the 
Ref A dropdown menu within the Clock Setup tab to select the 
input reference frequency. Note that an external reference clock 
must be connected to the J401 SMA connector that matches the 
frequency selected in the dropdown menu. The signal amplitude 
must not exceed 5 dBm.  

 

 

On-Board VCXO Modification 

The device evaluation board contains an on-board voltage 
controlled crystal oscillator (VCXO) as well as the AD9528 chip 
responsible for the device clock and SYSREF signal generation 
and distribution. With the hardware configuration provided on 
the evaluation board, a user can generate device clock frequencies 
such as 122.88 MHz, 153.6 MHz, 184.32 MHz, 245.76 MHz, 
and 307.2 MHz.  

There are limitations with the default hardware configuration in 
the scenario where user desired device frequencies are not related 
to the on-board 122.88 MHz VCXO by a rational fraction. 
Examples of such device clock frequencies are: 125 MHz, 
133.33 MHz, 250 MHz, and 266.66 MHz. The following section 
outlines these limitations and explains how to overcome them with 
evaluation board hardware modifications.  
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Figure 202. AD9528 Clock Setup Configuration Page  
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Figure 203. AD9528 PLL2 Block Diagram 

 

AD9528 Description 

The AD9528 contains two cascaded phase-locked loop (PLL) 
stages. The first PLL stage (PLL1) works with a narrow loop 
filter bandwidth. PLL1 provides jitter clean up of the input 
reference signal to provide a clean clock for the input stage of 
PLL2. The configuration of PLL2 is described in Figure 203.  

PLL2 blocks are programmable and the following values can be 
selected: 

 M = 3, 4, or 5 
 N2 = 1, 2, 3, …, 256 
 R1 = 0.5, 1, 2, …, 31 
 chDIV = 1, 2, 3, …, 256 

Note that the PLL2 voltage controlled oscillator (VCO) frequency 
operates from 3450 MHz to 4025 MHz. 

To calculate the DEV_CLK frequency, use the following equations: 

VCO Frequency = (VCXO Frequency × M × N2)/R1 (41) 

Note that the VCO can operate with a frequency range from 
3450 MHz to 4025 MHz. 

DEVCLK Frequency = VCXO Frequency/(M × 
Channel Division) (42) 

AD9528 Operation Examples  

The AD9528 can only generate different DEV_CLK frequencies 
from the VCXO frequency when the ratio of the two frequencies is 
a rational fraction. If the result of the DEV_CLK division and 
VCXO frequency does not create a rational fraction, the 
AD9528 cannot precisely generate the desired DEV_CLK.  

The following are some examples of how DEV_CLK is calculated 
based on an on-board VCXO with a frequency of 122.88 MHz. 

Example 1: This example targets a DEV_CLK of 245.76 MHz. 
Plugging in values to Equation 41 produces Equation 43 and, 
likewise, using Equation 42 generates the results shown in 
Equation 44. 

(122.88 MHz × 3 × 30)/3 = 3686.4 MHz (43) 

3686.4 MHz/(3 × 5) = 245.76 MHz (44) 

Therefore, Equation 43 and Equation 44 demonstrate that a 
DEV_CLK = 245.76 MHz can generate using the on-board VCXO. 

 

Example 2: This example targets a 153.6 MHz DEV_CLK.  
Using Equation 41 and Equation 42, the following results: 

(122.88 MHz × 3 × 30)/3 = 3686.4 MHz (45)  
3686.4 MHz/(3 × 8) = 153.6 MHz (46) 

Equation 45 and Equation 46 demonstrate that a DEV_CLK = 
153.6 MHz can be generated using the on-board VCXO. 

Example 3: This example targets a DEV_CLK of 125 MHz. 
Following the same process as the previous examples, the 
following results are obtained: 

(122.88 MHz × 3 × 30)/3 = 3686.4 MHz (47) 

3686.4 MHz/(3 × 10) = 122.88 MHz ≠ 125 MHz (48) 

In the scenario presented in Equation 47 and Equation 48, the 
on-board VCXO cannot generate a DEV_CLK of 125 MHz. 
Likewise, Equation 49 and Equation 50 produce the same result 
wherein a DEV_CLK of 125 MHz cannot be generated using 
the on-board VCXO. 

(122.88 MHz × 3 × 31)/3 = 3809.28 MHz (49) 

3809.28 MHz/(3 × 10) = 126.976 MHz ≠ 125 MHz (50) 

Example 4: This example uses a VCXO of 125 MHz rather than 
the 128.88 MHz used in the previous equations to achieve a 
DEV_CLK of 125 MHz. By modifying the hardware to use a 
VCXO of 125 MHz, a 125 MHz DEV_CLK can now be selected. 

(125 MHz × 3 × 30)/3 = 3750 MHz (51) 

3750 MHz/(3 × 8) = 125 MHz (52) 

Example 5: This example returns to using a VCXO of 122.88 
MHz and targets a DEV_CLK of 266.66 MHz. 

(122.88 MHz × 3 × 32)/3 = 3932.16 MHz (53) 

3932.16 MHz/(3 × 5) = 262.144 MHz ≠ 266 MHz (54) 

Equation 53 and Equation 54 demonstrate that a DEV_CLK of 
266.66 MHz cannot be generated using the on-board VCXO.  
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Example 6: Like Example 5, this example attempts to generate a 
266.66 MHz DEV_CLK. However, similar to achieving a 
125 MHz DEV_CLK through hardware modification, in this 
example, the 266.66 MHz DEV_CLK can be achieved by 
modifying the hardware to use a VCXO of 133.33 MHz rather 
than 122.88 MHz, as demonstrated in Equation 55 and 
Equation 56. 

achieves a DEV_CLK of 266.66 MHz by modifying the 
hardware with a VCXO of 133.33 MHz. 

(133.33 MHz × 3 × 30)/3 = 3999.9 MHz (55) 

3999.9 MHz/(3 × 5) = 266.66 MHz (56) 

On-Board VCXO Hardware Replacement  

The evaluation board supports two different footprints for the 
on-board voltage controlled crystal oscillator (VCXO). Figure 204 
outlines two different VCXO symbols present in the evaluation 
board schematic. Both footprint details are outlined in Figure 205 
and Figure 206. 
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Figure 204. Double Footprint for the On-Board VCXO 
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Figure 205. VCXO Footprint: SMD, 5.0 mm × 9.0 mm 
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Figure 206. VCXO Footprint: SMD, 9.0 mm × 14.0 mm 
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VCXO Recommendations 

The evaluation board utilizes a voltage controlled crystal 
oscillator (VCXO) manufactured by Crystek Corporation. All 
frequency variants recommended for the evaluation board are 
based on the Crystek Corporation VCXO CVHD-950 series.  

Table 187 lists the typical characteristics of the CVHD-950 
series VCXO. 

Table 187. Typical CVHD-950 Series Parameters 
Parameter Value 
Frequency Range 40 MHz to 130 MHz 
Input Voltage 3.3 V ± 0.3 V 
Input Current 15 mA typical; 25 mA maximum 
Control Voltage 1.65 V ± 1.65 V 
Frequency Pulling ±20 ppm APR minimum 
Typical Phase Noise (100 MHz)  

1 kHz −140 dBc/Hz 
10 kHz −155 dBc/Hz 
100 kHz −164 dBc/Hz 
1 MHz −166 dBc/Hz 

Phase Noise Floor −166 dBc/Hz typical,  
−162 dBc/Hz maximum 

PROGRAMMING THE EVALUATION SYSTEM 
After all tabs are configured, click Program to send (via the 
transceiver evaluation software (TES)) a series of application 
programming interface (API) commands that are executed by a 
dedicated application running on the ZYNQ platform. A 
progress bar is shown at the bottom of the window and, upon 
programming completion, the system is ready to operate (see 
Figure 207).  
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Figure 207. Program Device Window  
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OTHER TES FEATURES 
The transceiver evaluation software (TES) provides the user with 
multiple options to store and load the TES and also hardware 
configurations. Figure 208 outlines all dropdown menu options 
provided by TES.  
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Figure 208. TES Device Dropdown Menu 

Device Dropdown Menu 

The following option selections are available in the Device 
dropdown menu:  

 Update > Platform Files is for updating files on the ZYNQ 
SD card after installing a new version of the software. See 
the Software Update section for more details. 

 Reboot Zynq Platform is for when a soft restart of the 
evaluation system is needed. 

 Shutdown Zynq Platform is for powering down the 
evaluation system. The user must use this option or power 
down the system by closing the TES application and by 
selecting Switch Zynq Off to correctly execute the power-
down sequence. If this process is not followed, the file 
system on the SD card can be corrupted, and the evaluation 
system may stop operating. 

File Dropdown Menu 

The following selections are available in the File dropdown menu: 

 Save GUI Setup stores all TES configuration settings. TES 
generates an XML format file with all software settings 
recorded. Click Load Setup and select the saved setup file 
to load software settings. 

 Load GUI Setup loads all TES configuration settings 
stored in XML format using the Save GUI Setup option.  

 Load Custom Profile allows the user to load a custom 
version of the TES profile using the Filter Wizard software 
available at the RadioVerse landing page. 

 Clear Custom Profile restores the TES software to the 
state before a custom profile was loaded. 
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Figure 209. TES File Dropdown Menu 

 

 View Log Files monitors application programming 
interface (API) activities. It opens a window where the 
following options are available (see Figure 210): 
 Monitoring all API activates. The output is displayed in 

an IronPython script form. 
 Monitoring error log only. To observe error messages 

reported by the API software layer, click Refresh Log 
and content of the log window updates. Log Window 
allows the user to store log messages as text files for 
further analysis. Click Clear Log to clear the Log 
Window. 
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Figure 210. TES Log Window 

 Exit opens the Shutdown window (see Figure 211) where 
the following options are available: 
 Switch Zynq Off powers down the entire system and 

closes TES. 
 Close GUI Only closes only the TES software, and the 

ZYNQ system remains active 
 Cancel closes the Shutdown window. 
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Figure 211. Shutdown Window 
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Tools Dropdown Menu 

Figure 212 shows the Tools dropdown menu. 
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Figure 212. Transceiver Evaluation Software (TES) Tools Dropdown Menu 

This menu allows selection of the following options: 

 Options allows the user to configure a path to the 
Iron Python library folder (see Figure 213). This setting 
is automatically populated with the path set during the 
installation process. 
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Figure 213. TES Options Window 

 Create Script allows the storing of the initialization script. 
The TES allows the creation of a script in the following 
forms: 
 Python. When this function executes, the user is 

asked for the script file name and place where it can be 
stored. TES generates the new_name.py file with all 
API initialization calls in the form of IronPython 
functions. This file can then execute using the Iron 
Python Script tab shown in Figure 226. 

 C Script. This action opens the Save as window, 
requires the user to name the file and specify its 
location for storage. Based on configuration settings 
outlined in the Configuring the AD9371 section, the 
TES sets up structure members values that are then 
used by application programming interface (API) 
commands. The TES allows the user to create a *.c file 
that contains all initial values. This file can be imported 
into the system of the user that utilizes APIs. The TES 
generates five separate files the include headless.c, 
headless.h, user_name.c, user_name.h, and 
user_name_ad9528init.c (see Table 188).   

 

 

 

 

Table 188. TES Files 
File Description 
headless.c Provides an example file that 

calls into the API to initialize 
the device. 

headless.h Header file for headless.c. 
user_name.c Contains all initialization values 

for the structures members 
used by APIs.  

user_name.h Header file for user_name.c. 
user_name_ad9528init.c Contains all initialization values 

for the structures used by the 
AD9528 (clock IC) APIs 

Memory Dump Provides users with the ability 
to store register values from 
the internal ARM processor, the 
register map, and the ZYNQ 
field programmable gate array 
(FPGA) register map. When the 
user clicks Memory Dump, the 
user must enter a file name for 
the file and select a location 
where those files are to be 
stored. The TES then reads 
internal register values and 
stores them in three separate 
files: user_name.bin, 
user_name_MykonosReg.txt, 
and user_name_FpgaReg.txt 

user_name_bin For internal ARM processor 
dump. 

user_name_ 
MykonosReg.txt 

For register dump. 

user_name_FpgaReg.txt For ZYNQ FPGA register dump. 
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Help Dropdown Menu 

The Help dropdown menu (see Figure 217) includes the 
following: 

 API Help File opens the Mykonos Device API file in 
Windows help format (*.chm). Refer to the software detail 
maual that comes with the software when looking for 
detailed information about the API commands.  

 DLL Help File opens ADI ZC706 TCPIP Client DLL file 
in Windows help format (*.chm). Refer to this document 
when looking for detailed information about functions to 
control the device that use the Xilinx ZC706 FPGA 
platform.  

 About opens an information window about the transceiver 
evaluation software (TES) and delay-locked loop (DLL) 
versions installed on the PC as well as for the software and 
firmware versions installed on the ZYNQ SD card. It also 
displays information about the internal ARM firmware 
version of the device (see Figure 214). 
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Figure 214. TES Help About Window 

System Status Bar 

The TES provides the user with visual information about the 
current state of the evaluation system (see Figure 215).  
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Figure 215. TES Status Bar 

The status bar information can be interpreted as follows: 

 Zynq Platform: connected or disconnected. 
 Connected. PC established connection with the 

ZYNQ evaluation system, 
 Disconnected. No connection between PC and the 

ZYNQ evaluation system. 
 Radio: on or off. 

 On. The device is enabled and ready to transmit/receive.  
 Off. The device must be initialized and moved into 

the radio on state before data can be transmitted or 
received.  

 Tracking: TxQEC, TxLOL, or RxQEC. 
 TxQEC, TxLOL, RxQEC. Those controls display the status 

of the tracking calibrations used by the device.  
 Green control indicates calibration is enabled and 

active. 
 Red control indicates calibration is enabled but not 

active. 
 Grey control indicates calibration is disabled (using 

the calibration tab described in the Calibration Tab 
section of this user guide). 

 Programmed Successfully indicates the progress when 
programming the evaluation system (see Figure 216). 
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Figure 216. Program Status Bar 
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Figure 217. TES Help Dropdown Menu 
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RECEIVER SETUP 
Rx Signal Chain 

After configuring the TES using the Config tab and programming 
the system by executing the Program function, the system is 
ready for normal operation. Select Receive Data to open the 
RxDataPlot function, as shown in Figure 218. From the Receive 
Data tab, the user can enter the radio frequency (RF) Rx center 
frequency in megahertz, and set the Rx gain by entering the 
desired gain index for each Rx channel. The gain index refers to 
the value in the programmable gain index table. Refer to the 
Gain Control section for details on implementing the gain 
index table. The user can also enable or disable Rx1/Rx2 
quadrature error correction (QEC) tracing calibrations as well 
as rerun Rx initialization calibrations from this window. 

Click the play symbol in the Receiver Data tab, to move the 
device to the receive state and to generate graphs for the 

received data in both frequency and time domains. An example 
of a captured waveform is shown in Figure 218.  

The upper plot displays the fast Fourier transform (FFT) result. 
Check the corresponding boxes to select if both Rx1 and Rx2 data 
are displayed in this window, or only one of type of data is 
displayed.  

The lower plot shows the time domain waveform.  

Check the corresponding boxes to select if both Rx1 and Rx2 data 
are displayed in this window, or only one of type of data is 
displayed. The user can also select if only I or only Q data is 
displayed in the same manner.  

The time domain waveform display supports zoom function by 
selecting the region of the time plot to zoom in to. Right-click 
on the Time Domain window and select Undo All Zoom/Pan 
to return the time domain plot to its original scale. Check the 
AutoScale box to enable automatic scale in the time domain plot. 
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Figure 218. Rx Receiver Data Tab 
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If the fast Fourier transform (FFT) analysis is selected 
(multicolored pie chart symbol), basic analysis information from 
the FFT is displayed on the left side of the screen. The FFT 
results are displayed separately for each Rx channel. 

Select among the following in the RxTrigger dropdown box: 

• IMMEDIATE starts the capture as soon as the SPI 
command is received to initiate capture.  

• EXT_SMA starts the capture when a high level is present 
at Connector J68 on the ZYNQ platform. 

• TDD_SM_PULSE hands over control of the Rx datapaths 
to the state machine that is implemented in the ZYNQ on-
board field programmable gate array (FPGA). Use this 
option when the device operates in the time division 
duplexed (TDD) mode.  

The floppy disk icon saves the receive data to a file. Selecting 
this option opens a window allowing selection of the format for 
the exported data. The file type can be specified as one of the 
following: 

• Agilent Data. The TES adds a header to the saved file that 
Agilent VSA software can read and use to demodulate the 
data. The header is followed by data stored in I <TAB> Q 
[new_line] format.  

• No Header (Tab delimited). The TES saves data as a text 
file where I data is separated by <TAB> from Q data. Each 
data record is finished with a [new_line] character. There is 
no header information stored in this file format. 

• No Header (Comma delimited). The TES saves data as a 
text file where I data is separated by a comma [,] from Q 
data. Each data line is finished with a [new_line] character. 
There is no header information stored in this file format. 

Additional settings in the Receive Data tab include the following: 

• # Samples: the number of points saved to the file is 
determined by the number of samples selected in this box 
(see Figure 218). 

• Rx Init Cals: click Rx Init Cals to rerun initial Rx calibrations. 
When calibrations execute, the button changes its appearance 
to running. Do not apply an input signal to the Rx input 
when performing an initialization calibration. 

• Rx1 QEC Tracking and Rx2 QEC Tracking: enable or 
disable Rx1/Rx2 QEC tracking calibrations. Check Rx1 
QEC Tracking to enable tracking calibration for the Rx1 
path and check Rx2 QEC Tracking to enable tracking 
calibration for the Rx2 path. Tracking calibrations operate 
when an Rx signal path receives data. 

• ObsRx Sniffer Data: opens the ObsDataPlot page (see 
Figure 219). When this tab is open, the user can enter the 
observation receive (ObsRx) radio frequency (RF) center 
frequency in megahertz, and set the ObsRx gain by 
entering the desired gain index. The gain index refers to 
the value in the programmable gain index table. See the 
Gain Control section for details on implementing the gain 
index table. 

• ObsChannel: This dropdown menu (see Figure 219) offers 
the following input choices: 
• Internal path allows the ObsRx path to be used by 

internal calibrations. See the Gain Control section for 
details on calibration requirements.  

• SNIFFER A—Sniffer A input is the only sniffer input 
accessible on the device evaluation system. 

• SNIFFER B—It is not used and it is not available. 
• SNIFFER C—It is not used and it is not available. 
• ORx1 with TxLO—Used to select the ORx1 channel 

and the Tx LO PLL. 
• ORx2 with TXLO— Used to select the ORx2 channel 

and the Tx LO PLL. 
• ORx1 with SNIFFERLO— Used to select the ORx1 

channel and the SNIFFERLO PLL. 
• ORx2 with SNIFFERLO— Used to select the ORx2 

channel and the Tx LO PLL.  

When clicking the play symbol in the ObsRx Sniffer Data tab, 
the device moves to the receive state and graphs the output data. 
An example of a captured waveform is shown in Figure 219.  
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Figure 219. Observation Rx Receive Tab 

 

The upper plot displays the fast Fourier transform (FFT) result 
and the lower plot shows the time domain waveform. The user 
can select if only I or only Q data is displayed. The time domain 
waveform display supports a zoom function by selecting the 
region of the time plot to zoom in to. Right-click the Time 
Domain window and selectUndo All Zoom/Pan to return the 
time domain plot to its original scale.  

If the FFT analysis is selected (multicolored pie chart symbol), 
basic analysis information from the FFT displays on the left side 
of the screen. 

Click the floppy disk icon to save the data received by the 
observation receive (ObsRx) channel. By selecting this window, 
users can select the format for the exported data.  

When a file type chosen, the following happens within the file 
chosen: 

 Agilent Data. The TES adds a header to the saved file that 
Agilent VSA software can read and use to demodulate the 
data. The header is followed by data stored in I <TAB> Q 
[new_line] format.  

 No Header (Tab delimited). Saves data as a text file where 
I data is separated by <TAB> from Q data. Each data 
record is finished with [new_line] character. There is no 
header information in stored this file format. 

 No Header (Comma delimited). Saves data as a text file 
where I data is separated by comma [,] from Q data. Each 
data line is finished with [new_line] character. There is no 
header information stored in this file format. 

 # Samples. The number of points saved to the file is 
determined by the number of samples selected in the 
# Samples box. 
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TRANSMITTER SETUP  
Selecting the Transmit Data tab opens the page shown in 
Figure 220.  

The upper plot displays the fast Fourier transform (FFT) result. 
Check the corresponding box(es) to select if both Tx1 and Tx2 
data are displayed in this window, or if only one type of data is 
displayed.  

The lower plot shows the time domain waveform. Check the 
corresponding box(es) to select if both Tx1 and Tx2 data are 
displayed in this window, or if only one type of data is displayed. 
The user can also select if only I or only Q data is displayed.  

The time domain waveform display supports zoom function by 
selecting the region of the time plot to zoom in to. To return the 
plot to its original scale, right-click Time Domain window and 
select Undo All Zoom/Pan. To enable automatic scaling in the 
time domain plot, check the AutoScale box. 

From the Transmit Data tab, the user can enter the radio 
frequency (RF) Tx center frequency in megahertz, change 
the attenuation level independently for each Tx output, 
enable/disable various calibrations, control data scaling, and 
transmit continuous wave (CW) tones or a desired Tx data file.  
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Figure 220. Transmit Data Tab 
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Transmitter Data Options 

The transceiver evaluation software (TES) provides the 
following options for inputting transmitter data: 

 A single tone or two tones can be generated by the evaluation 
system using the Tone Parameters menu (see Figure 221).  
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Figure 221. Tx ToneParameters Setup Menu  

Within Tone Parameters, the user can select the number 
of tones (1 or 2) for transmission on the selected Tx output. 
The user has control over the tone frequency offset with 
respect to the local oscillator (LO) frequency as well as 
tone amplitude in dBFS. Select Save Tx Raw Data into a 
File to store those signals in the form of text files. Before 
data can populate into those files, Play must be clicked. 

 To select user generated data files, use the Load Tx1 and 
Load Tx2 buttons as follows:  
 Format these files as: I sample <tab> Q sample 

<new_line> per line. Each I or Q sample must be in a 
range between +32768 and −32767.  

 If values of I and Q samples are smaller, check the 
Scaling Required box in the Load file menu to scale 
the values up to numbers in the correct range.  

 File size is limited to 4 megasamples for each channel 
(I data = 4 megasamples maximum, and Q data = 
4 megasamples maximum). The ZYNQ platform, 
allocates 134,217,728 MB for each buffer. Rx1, Rx2, 
ORx, Tx1, and Tx2 have separate buffers. Each datapath 
uses four bytes (16-bit for I sample and 16-bit for Q 
sample); each datapath has 33,554,432, 16-bit I/Q pairs 
dedicated for sample collection. At a 122.88 MSPS I/Q 
data rate, this translates to 273 ms of capture time for 
each channel. 

 

 

 Press Play to enable device data transmitted on the Tx1/Tx2 
outputs. It starts a process where the generated continuous 
wave (CW) data or the I/Q data in the Tx1 and Tx2 files 
are sent to the device. The data is stored on the ZYNQ 
motherboard RAM, and the RAM pointer loops through 
the data continuously until Stop is clicked. 

 The Tx1 Attenuation (dB) input controls analog attenuation 
in the Tx1 channel. It provides 0.05 dB of attenuation control 
accuracy. Tx2 Attenuation (dB) performs the same 
operation on the Tx2 channel. 

 Tx1 Scaling (dBFS) input controls digital scaling of data 
sent over the Tx1 channel. It can be varied in 1 dB steps. It 
is only available for Tx data loaded using the Load Tx1/ 
Load Tx2 buttons. Tx2 Scaling (dBFS) performs the same 
operation on the data sent over the Tx2 channel. 

 Check the Tx1 LOL Tracking box to enable Tx local 
oscillator leakage (LOL) tracking calibration. Calibration 
improves the LOL performance on the Tx1 channel. Check 
the Tx2 LOL Tracking box to perform the same operation 
on the Tx2 channel. To perform Tx LOL tracking calibrations, 
external circuitry is required to route the Tx signals back 
through an ORx receiver input. For more details, see the 
Hardware Setup for External Tx LO Leakage Calibration 
section. Note that for external Tx LOL tracking calibration, 
both transmitters must loop back to both observation 
receivers through splitters and attenuators. 

 Check the Tx1 QEC Tracking box to enable a Tx quadrature 
error correction (QEC) tracking calibration on the Tx1 
channel. Calibration improves the QEC performance. 
Check the Tx2 QEC Tracking box to perform the same 
operation on the Tx2 channel. 
Note that Tx1/Tx2 LOL and QEC tracking calibrations 
can only operate when the observational receive path is 
configured for use by internal calibrations. When the user 
enables Tx outputs, the TES automatically reconfigures the 
observational receive path to the internal calibration mode. 
The user can change the observational receive path at any 
time using the ObsRx Sniffer Data tab.  

 Click Tx Init Cals to run Tx initialization QEC and LO 
leakage calibrations. Run these calculations first before 
transmitting real data. Terminate both Tx paths into 
spectrum analyzers unless only one Tx is monitored; in 
that case, terminate the unused Tx into a 50 Ω termination 
to avoid extended initial calibration times. Longer initial 
calibration times occur when they are running on both 
channels, and when a Tx channel is improperly terminated. 
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TDD MODE  
The transceiver evaluation hardware together with the 
transceiver evaluation software (TES) provide capabilities 
to demonstrate time division duplex (TDD) operation. The 
following sections explain the setup and operation in the TES 
to observe TDD operation and characterize performance. 

LTE TDD Frame Structure 

Preset configurations provided in the TES follow 3GPP™ 
specifications (TS 36.211 version 10.0.0 Release 10), in which 
Frame Structure Type 2 is utilized for TDD operation. In this 
configuration, each 10 ms radio frame consists of two, 5 ms half 
frames. Each half frame consists of five 1 ms subframes. The 
supported uplink and downlink configurations are listed in 
Table 189 where the following parameters are described for each 
subframe in a radio frame: 

 D denotes a subframe reserved for downlink transmissions  
 U denotes a subframe reserved for uplink transmissions  
 S denotes a special subframe with the three fields: DwPTS 

(downlink pilot time slot), GP (guard period), and UpPTS 
(uplink pilot time slot)  

The TES provides a preset configuration for all uplink and 
downlink configurations with both a 5 ms and 10 ms downlink 
to uplink switch point periodicity. All preset configurations are 
shown in Figure 222. In the case of the 5 ms downlink to uplink 
switch point periodicity, the special subframe exists in both half 
frames. In case of 10 ms downlink to uplink switch point 
periodicity, the special subframe only exists in the first half 
frame.  

Table 189. Uplink and Downlink Configurations (Source: Table 4.2-2; 3GPP TS 36.211, Version 10.0.0, Release 10) 

Uplink and Downlink Configuration Downlink to Uplink Switchpoint Timing (ms) 
Subframe Number 

0 1 2 3 4 5 6 7 8 9 
0 5  D S U U U D S U U U 
1 5  D S U U D D S U U D 
2 5  D S U D D D S U D D 
3 10  D S U U U D D D D D 
4 10  D S U U D D D D D D 
5 10  D S U D D D D D D D 
6 5  D S U U U D S U U D 
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Figure 222. Graphical Representation of Uplink and Downlink Configurations in the TDD Frame 
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Evaluation Hardware in TDD Mode  

For time division duplex (TDD) operation, the initialization 
calibrations are run just as they are for frequency division 
duplex (FDD) mode. After the initialization calibrations are 
complete, the TDD command is used to configure the device 
into TDD mode.  

The field programmable gate array (FPGA) on the ZYNQ 
platform contains a configurable TDD state machine to control 
the Tx enable, Rx enable, and GPIO hardware signals provided 
to the device. The TDD/FDD Switching tab in transceiver 
evaluation software (TES) allows enabling and disabling of the 
TDD state machine and configuring of the Tx/Rx regions in the 
TDD frame pulse to either a preset LTE™ TDD configuration or 
a user defined configuration.  

The ARM processor inside the device uses the Rx enable, Tx 
enable, and GPIO signals controlled by the ZYNQ FPGA to 
determine when the device is in the Rx state, Tx state, ORx 
state, and so forth. Figure 223 is a timing diagram of the Tx 
enable and Rx enable signals during the LTE Configuration 0 
type frame. The device responds based on the signal levels of 
TX_ENABLE and RX_ENABLE. Note that, for proper calibration 
operation, the minimum required duration for the Rx enable or 
Tx enable signal is 800 μs. 

D S U U U D S U U U
LTE UL-DL
CONFIG 0

TX_ENABLE

RX_ENABLE

GP

OVERLAP

1ms
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Figure 223. Timing Diagram Showing Example RX_ENABLE/TX_ENABLE 

Signaling for LTE Uplink and Downlink Configuration 0 
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TES Interface for TDD Mode 

Figure 224 shows the transceiver evaluation software (TES) 
time division duplex (TDD) interface tab. The parameters 
available within are as follows:  

 Preset allows the selection of one of eight LTE TDD Type 2 
frame structures (described in the LTE TDD Frame 
Structure section) as well as provides options for user 
specific TDD frame timing, such as custom mode or 
custom LTETDD0 mode. 
 In custom mode, all parameters described in this section 

can configure the desired radio frequency (RF) paths 
with user specific timing.  
 

 The TES also provides a special mode, custom 
LTETDD0 mode that configures the hardware and 
software with LTE TDD 0 frame timing, optimized 
specifically to suit the evaluation system. The TES also 
provides Tx data files with timing optimized for this 
particular mode. The Resources subfolder inside the TES 
installation folder is where the TDD0_245.76_ 
Downlink_20MHz_TM3p1.txt file is located. 

 The Total Frame Time[μs] field determines the total 
length of a single TDD frame in microseconds. 
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Figure 224. The TES TDD Interface Tab 
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The Transmit Path section of the time division duplex (TDD) 
parameters allows the control the following fields: 

 The First Tx1 Time[μs] field determines the beginning and 
end of the first Tx1 subframes (or group of subframes).  

 The Start Time [μs] field determines the beginning of a 
subframe (or group of subframes) in a single frame.  

 The Stop Time [μs] field determines the end of a subframe 
(or group of subframes) in a single frame.  

The transceiver evaluation software (TES) TDD interface 
follows the convention where a subframe (or group of 
subframes) is enabled at the end and loops back to the 
beginning of a frame border. The subframe (or group of 
subframes) beginning is marked at the end of a single frame. 
Figure 225 shows the naming conventions used in the TES. 

FIRST
STOP TIME

SECOND
START TIME

FIRST
START TIME

SECOND
STOP TIME

SECOND
START TIME

SECOND
STOP TIME

FIRST
START TIME

FIRST
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Figure 225. Naming Convention Used for TDD Start/Stop Description in the TES 

 The First Tx2 Time[μs] field determines the beginning and 
end of the first Tx2 subframes (or group of subframes). 

 If more than one Tx1 subframe (or group of subframes) is 
used, the Second Tx1 Time[μs] field determines the 
beginning and end of the second Tx1 subframes (or group of 
subframes). 

 If more than one Tx2 subframe (or group of subframes) is 
used, the Second Tx2 Time[μs] field determines the beginning 
and end of the second Tx2 subframes (or group of subframes). 

The Receive Path section of the TDD parameters allows control 
of the following fields:  

 The First Rx1 Time[μs] field determines the beginning and 
end of the first Rx1 subframes (or group of subframes). It 
follows the same convention as described in Figure 225. 

 The First Rx2 Time[μs] field determines the beginning and 
end of the first Rx2 subframes (or group of subframes). 

 If more than one Rx1 subframe (or group of subframes) is 
used, the Second Rx1 Time[μs] field determines the beginning 
and end of the second Rx1 subframes (or group of subframes). 

 If more than one Rx2 subframe (or group of subframes) is 
used, the Second Rx2 Time[μs] field determines the beginning 
and end of the second Rx2 subframes (or group of subframes). 

 

 

 

The number of parameters available in the Obs Channels section 
determines operation details for the internal ORx/sniffer path. 
Note that there is only one internal observation/sniffer path; 
therefore, only one function mentioned as follows can be active at 
any given time (see Figure 224): 

 The First ORx1 TxLO Time[μs] field determines the beginning 
and end of the first ORx1 subframes (or group of subframes). 

 The First ORx2 TxLO Time[μs] field determines the 
beginning and end of the first ORx2 subframes (or group of 
subframes). 

 If more than one ORx1 subframe (or group of subframes) is 
used, the Second ORx1 TxLO Time[μs] field determines the 
beginning and end of the second ORx1 subframes (or group 
of subframes). 

 If more than one ORx1 subframe (or group of subframes) is 
used, the Second ORx2 TxLO Time[μs] field determines the 
beginning and end of the second ORx2 subframes (or group 
of subframes). 

 The Sniffer SnfLO time[μs] field determines the beginning 
and end of the sniffer subframes (or group of subframes). 

 The First Internal Calibration Timing[μs] field determines 
the beginning and end of the first internal calibration window. 
Use the minimum duration of 800 μs for the internal calibration 
window. 

 The Second Internal Calibration Timing[μs] field determines 
the beginning and end of the second internal calibration 
window. Use the minimum duration of 800 μs for the 
internal calibration window. 

The Misc section of the TDD parameters allows control of the 
following fields (see Figure 224): 

 The Tx path delay (+/-μs) field allows the user to delay data 
sent to the Tx path over the JESD204B interface in reference 
to the TX_ENABLE signal. 

 The Rx path delay (+/-μs) field allows the user to delay data 
received from the Rx path over the JESD204B interface in 
reference to the RX_ENABLE signal. 

 The Obs Rx Path Delay (+/-μs) field allows delaying of data 
received from the ORx path over the JESD204B interface in 
reference to the ORx_ENABLE signal. 

 In TDD mode, the device evaluation hardware generates a 
pulse on SMA Connector J67, located on the ZYNQ platform. 
The External Trigger J67(μs) parameter controls the 
position and the width of that pulse in reference to the start 
of the TDD frame. 

 The Loop N Times option allows control of the number of 
loop repetitions. The allowable range is from 1 to 15, or the 
repetitions loop until stopped by the user. 

The bottom part of the TDD/FDD Switching tab in the TES 
provides a diagram of the timing parameters entered in the table 
shown in Figure 224. This feature allows the user to visually check 
activities on the Rx, Tx, and ORx datapaths.  
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The time division duplex (TDD) page (see Figure 224) also 
contains four buttons to interact with the user. A description of 
the functionalities provided by these buttons follows: 

• Press SetUp TDD Timing to cause the current TDD 
configuration stop/start parameters from the table to be 
written into the field programmable gate array (FPGA) and 
sets up the state machine for operation. This button also 
zeroes the Tx datapath, resets the Tx RAM pointer to the 
start address of the data, and then reconnects the Tx RAM in 
the ZYNQ FPGA to the Tx datapath. Finally, it enables the 
TDD state machine and starts the data. After the evaluation 
system is in the TDD state, this button changes its name to 
Disable TDD. Press Disable TDD to stop the TDD state 
machine.  

• After the user sets up TDD mode and presses the SetUp 
TDD Timing button, the device evaluation system enables 
the TDD state machine, and the TDD mode becomes 
operational. There is no data present at the Tx output until 
the user presses the Enable Tx Data Transmit button. This 
button enables the data transfer in the FPGA. The Tx 
datapath is zeroed until the Enable Tx Data Transmit 
button is pressed (data does not start until the Enable Tx 
Data Transmit button is pressed). After being placed in 
TDD mode, the Tx data is sent continuously to the device 
through the JESD204B link, which is not gated by the 
TX_ENABLE signal. Therefore, the content of the TDD Tx 
data files must be properly time aligned to the TDD state 
machine signals. 

• The Save TDD Frame Timing button saves TDD timing to 
the file in a text readable format. 

• The Load TDD Frame Timing button loads TDD timing 
from the previously saved TDD timing file using the save 
TDD frame timing option. 

Setting Up TDD Functionality  

Perform the following steps to operate the device evaluation 
system and the transceiver evaluation software (TES) in 
TDD mode. 

Hardware Configuration  

Follow the hardware configuration described instructions found 
in the Hardware Setup section. If external local oscillator (LO) 
calibrations are used, setup must contain external hardware 
connections between the Tx outputs and ORx inputs, as 
described in the Hardware Setup for External Tx LO Leakage 
Calibration section.  

 

 

 

 

 

 

The device evaluation system provides a synchronization pulse on 
the ZYNQ motherboard SMA Connector J67. Use this pulse to 
synchronize external measurement equipment. Fine tuning of this 
signal can be applied using the TES interface described in the TES 
Interface for TDD Mode section. After all hardware is connected 
properly, the user can start configuring the software. 

TES Configuration  

A number of steps must be performed before enabling TDD 
mode using the TES. The following list provides guidelines for 
completing these steps: 

1. Using the TES interface described in the Configuring the 
AD9371Configuring the  section, perform the following 
steps: 
a. Select profiles for the Rx channels, Tx channels, and 

ORx or SnRx channels (if used). 
b. Set the same frequency for the Tx PLL and the Rx PLL. 

In TDD mode, both the Rx and Tx operate at the same 
frequency; therefore, select the same carrier frequency 
for both the Rx and Tx radio frequency (RF) phase-
locked loops (PLLs). 

2. Use the calibration page described in the Configuring the 
AD9371 section, to enable the desired calibrations. 

3. After all configurations are complete, click Program to 
program the device evaluation system (see Figure 207). 

4. After the device evaluation system is programmed, move to 
the Receiver Data tab shown in Figure 218. In this tab, 
perform the following actions: 
a. Set RxTrigger to TDD_SM_PULSE value. 
b. Set the number of samples in # Samples to at least 

1 frame length (10 ms for standard LTE TDD Type 2 
frame structures described in the LTE TDD Frame 
Structure section). 

c. Click Play. 
5. Click the Transmit Data tab shown in Figure 220. In this 

tab, perform the following actions: 
a. Load the data files that are time aligned with the desired 

LTE TDD Type 2 frame structure. The TES provides an 
example data file that can be used with LTE TDD 0 Type 2 
frame structure. See the TES Interface for TDD Mode 
section for more information. 

b. Click the Play button. 
6. Select the desired TDD timing profile using the TES TDD/ 

FDD Switching tab shown in Figure 224. A detailed description 
of this tab is provided in the TES Interface for TDD Mode 
section. After all timing settings are configured, perform the 
following actions: 
a. Click SetUp TDD Timings.  
b. Click Enable Tx Data Transmit. 

If the user does not follow this sequence, the TES software 
provides real-time pop-up warning messages. These messages 
inform the user about possible misconfigured settings.  
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SCRIPTING  
After the user configures the device to the desired profile, a script 
can generate with all application programming interface (API) 
initialization calls in the form of IronPython functions. The Tools 
> Create Script > Python function can accomplish this task. 
Refer to the Tools Dropdown Menu section for more details. 

The Iron Python Script tab allows the user to use IronPython to 
write a unique sequence of events and then execute them using 
the device evaluation system.  

Scripts generated using the Tools > Create Script > Python function 
can load, modify if needed, and run in the IronPython Script 
tab. Figure 226 shows the Iron Python Script tab after executing 
the File > New function in the Iron Python Script tab. The top 
portion of the window contains IronPython script commands, and 
the bottom part of the window displays the script output.  
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Figure 226. Iron Python Script Window 
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The Iron Python Script tab offers a number of options to manipulate 
the editing and execution of the Iron Python scripts. The File drop-
down menu in the Iron Python Script tab, shown in Figure 227, 
offers the user following options: 

 New. This function creates a new Iron Python script that 
connects to the device evaluation system and checks the API 
version operating on the ZYNQ hardware.  

 Load. This function allows the user to load previously stored 
Iron Python scripts. 

 Save and Save As. These functions allow the user to store 
Iron Python scripts. 

 Close. This function closes the currently active Iron Python 
script tab. 

The Build dropdown menu in the Iron Python Script tab, shown 
in Figure 228, offers the user following options: 

 Run. This function executes the Iron Python script open in 
the active script tab using the device evaluation hardware. 
Script output is displayed in bottom side of the Iron Python 
script tab.  

 Clear Script. This function clears the Iron Python script 
editing window. 

 Clear Output. This function clears the Iron Python script 
output window. 
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Figure 227. File Menu in the Iron Python Script Window 
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Figure 228. Build Menu in the Iron Python Script Window 

 



AD9371/AD9375 System Development User Guide UG-992 
 

Rev. B | Page 317 of 360 

IronPython Script Example 

The following example, which is generated after executing the File > New function in the IronPython Script tab, connects to the device 
evaluation system and then checks and displays the application programming interface (API) version operating on the ZYNQ hardware.  

######################## 

#ADI Demo Python Script 

######################## 

 

#Import Reference to the DLL 

import clr 

clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\AD9371 
Transceiver Evaluation Software\\AdiCmdServerClient.dll") 

from AdiCmdServerClient import AdiCommandServerClient 

from AdiCmdServerClient import Mykonos 

 

#Create an Instance of the Class 

Link = AdiCommandServerClient.Instance 

 

#Connect to the Zynq Platform 

if(Link.hw.Connected == 1): 

    Connect = 0 

else: 

    Connect = 1 

    Link.hw.Connect("192.168.1.10", 55555) 

 

#Read the Version 

print Link.version() 

 

#Disconnect from the Zynq Platform 

if(Connect == 1): 

    Link.hw.Disconnect() 
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When using the Iron Python window, the user can execute any 
application programming interface (API) command.  

The list of all API commands is provided by the transceiver 
evaluation software (TES). Review this list by executing Help > 
DLL Help File. When called in the IronPython window, rename 
all API functions to reflect the Iron Python mnemonic: 

MYKONOS_ →  Mykonos. 

Add a header with a new class instance for a new connection. For 
example, after calling 

#Create an Instance of the Class 

Link = AdiCommandServerClient.Instance 

The new class instance for device evaluation hardware is 
Link. 

An example of an API function called using Iron Python is as 
follows. If checking the gain index for Rx1 signal chain use the 
following API function: 

MYKONOS_getRx1Gain() 

The user calls the following Iron Python function (assuming that 
the platform was initialized using example code described 
previously): 

print Link.Mykonos.getRx1Gain() 

Troubleshooting  

This section provides a quick help guide if the system is not 
operational. This guide assumes that the user followed all 
instructions and that the hardware configuration matches that 
described in this user guide. 

Startup  

No LED Activity  

If there is no LED activity at startup, perform the following actions: 

1. Check if the board is powered properly (12 V must be 
present at the J22 input). After powering on the ZYNQ 
platform (SW1 is turned on), the following is true: 
a. The fan on the ZYNQ platform is activated. 
b. A number of green LEDs on the ZYNQ platform near 

SW1 are on with no red LEDs active on the ZYNQ 
platform. 

c. The ZYNQ GPIO LEDs follow the sequence described 
in the Hardware Operation section. 

2. If the LED sequence is not as described, check the jumper 
settings and the SW11 positions on the ZYNQ platform. If 
these are correct, check if the SD card is correct and properly 
inserted in the J30 socket. Use the SD card provided with the 
evaluation system. 

If there is still a problem, and the user is certain that the ZYNQ 
platform is operational, contact an Analog Devices representative 
at www.analog.com/en/landing-pages/001/sdr-radioverse-
pavilion/support.html. 

LED Active, TES Reports That Hardware Not Connected 

At startup, if the LEDs are active but the TES reports that 
hardware is not connected, perform the following actions: 

1. Check if the Ethernet cable is properly connected between 
the PC used to run the TES and the ZYNQ platform. The 
LEDs on the ZYNQ platform next to the Ethernet socket 
flash when the connection is active. 

2. If the cable is properly connected, check if Windows is able 
to communicate over the Ethernet port with the ZYNQ 
platform. Check if the IP number and open ports for the 
Ethernet connection used to communicate with the ZYNQ 
platform follow what is described in the Hardware Setup 
section.  

3. Run cmd.exe on the Window operating system and then 
type ping 192.168.1.10. The user then sees a reply from the 
ZYNQ platform. If no reply is received, connection with the 
ZYNQ platform must be reexamined. 

4. If connection with the ZYNQ platform is established but the 
TES still reports that hardware is not available, ensure that 
Port 22 (SSH) and Port 55555 (evaluation software) are not 
blocked by firewall software on the Ethernet connection used 
to communicate with the ZYNQ platform. Both ports must 
be open for normal operation. Refer to the Hardware Setup 
section for more details. 

Error Handling  

The TES provides the user with a number of error messages in 
case there are problems with hardware or software configuration. 
The error messages the TES displays provide a description of the 
problem encountered by the software. If an error description 
refers to the delayed-locked loop (DLL) command, refer to the 
API and DLL help files supplied with the TES.  
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DPD, CLGC, AND VSWR MEASUREMENT (AD9375 ONLY) 
The AD9375 device variant provides digital signal processing 
capabilities in the embedded ARM processor using closed-loop 
feedback signals from the observation receiver channels. These 
functions improve transmitter performance, measure system 
output, and reduce system power consumption. The list of 
functions includes the following: digital predistortion (DPD), 
closed-loop gain control (CLGC), and voltage standing wave 
ratio (VSWR) measurement. 

This section describes the hardware setup and application 
programming interface (API) commands used to control these 
transmitter features. While the API descriptions are intended 
for customer software developers, the paragraphs describing the 
DPD graphical user interface (GUI) can guide the evaluation of 
the DPD algorithm performance by the systems designers of the 
customer. The combination of this information can develop 
system designs using these algorithms and to develop the code 
to integrate control into the baseband processor (BBP). 

DPD OVERVIEW 
The DPD is a feature available on the AD9375 that enables 
users to achieve higher power amplifier (PA) efficiency while 
still meeting adjacent channel leakage ratio (ACLR) 
requirements in the Tx signal chain for compliance with 3GPP 
and European Telecommunications Standards Institute (ETSI) 
standards for LTE and other technologies. The DPD works on 
the principle of predistorting the Tx data to cancel distortion 
caused by PA compression. The DPD engine in the AD9375 is 

based on a pruned implementation of generalized memory 
polynomials (GMP) that are a generalized subset of the well 
known Volterra series. The simplified polynomial used in the 
AD9375 models a large number of PA characteristics such as 
weak nonlinearities, temperature variation, and memory effects. 
Integration of the DPD into the transceiver chip results in 
significant system level cost, space, and power savings when 
compared to conventional external implementations. The DPD 
implementation on the AD9375 is especially well suited for use 
in a small cell application (typically 0.1 W to 10 W at the 
antenna), where significant cost savings can be achieved at 
conventional performance levels. 

The DPD algorithm runs on the ARM processor of the AD9375 
and calculates the coefficients and terms of the inverse PA model. 
This model predistorts the digital baseband signal before digital-
to-analog conversion and transmission of samples to the Tx 
upconverter (this output becomes the radio frequency (RF) 
input to the PA). This computation is performed along with 
other transceiver operations as specified by the priorities of the 
ARM scheduler. The PA output is sampled using an external 
loopback to an observation receiver (ORx) port on the AD9375. 
A simplified representation of the implementation of DPD in 
AD9375 is shown in Figure 229. 

 

1, 2, 4 Tx1 FILTER/DUPLEXER

DPD

MODEL

FEEDBACK
COUPLER

JE
S

D
20

4B

PA–1 PA1

1, 2, 4

AD9375

Tx2 FILTER/DUPLEXER

ORx1

ORx2

DPD

MODEL

FEEDBACK
COUPLER

PA–1 PA2

ARM ORx

14
65

2-
70

4

 
Figure 229. Representation of the Integrated DPD Implementation in AD9375 
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Figure 229 illustrates that the Tx1 and Tx2 digital datastreams 
are first upsampled by a factor of 1, 2, or 4 depending on the 
active Tx profile. The digital datastreams are sent via JESD204B 
interfaces. Upsampling allows the baseband processor (BBP) to 
transmit a lower rate on the JESD204B link than is needed for 
the full digital predistortion (DPD) bandwidth, saving valuable 
JESD204B resources, which directly translates to power savings 
and lower data rates in the digital front end (DFE). This 
upsampling is done to achieve a wide enough bandwidth 
expansion for the DPD algorithm to obtain optimal results. 
DPD algorithms in general require a bandwidth 3× to 5× larger 
than the signal bandwidth to correct for power amplifier (PA) 
nonlinearities that cause higher adjacent channel leakage ration 
(ACLR) levels. The ORx input is sparsely time sampled and fed 
to the ARM for DPD processing. The DPD engine then correlates 
the ORx and transceiver (Tx) samples to calculate the latest 
coefficients. The DPD engine performs a brief check on model 
error before updating the lookup tables (LUTs) that feed the 
correction coefficients into the DPD actuator hardware. Due to 
the relatively simple implementation of this algorithm, the 
overall time taken to react to sudden changes in Tx waveforms is 
relatively short and is typically less than 1 second (actual time 
depends on the configurable parameters of the DPD and ARM 
scheduling). Certain protection criteria are designed into the 
algorithm to prevent damage to the PA due to large model errors. 

Sample Capture 

Samples used to learn the latest model are captured by the ARM 
processor using a sparse sampling technique. Whenever the 
processor is available, it captures a time aligned sample set of 
seven Tx samples x(n), x(n − 1) … x(n − 6) and seven 
consecutive ORx samples y(n), y(n − 1) … , y(n − 6).  

Time alignment is performed during the device initialization by 
generating a pseudonoise (PN) sequence and maximizing Tx to 
ORx correlation to within 1/16 of a sample period. Delay for 
alignment is implemented with a first in, first out (FIFO) and a 
1/16 sample fractional delay filter. Additional fractional sample 
offsets from the initialized delay can be introduced with an 

application programming interface (API) command to tune 
modeling performance (see additionalDelayOffset in Table 193). 
Alignment accuracy and tuning is most important when 
performing DPD on wider bandwidth signals. 

For a given x(n) and a set of three time aligned y(n) samples, a 
correlation computation involving 22 generalized memory 
polynomials (GMP) nonlinear functions of the y samples is 
performed. Sampling is random and on the fly; it can be 
interrupted and resumed at any time. Samples are spread out 
and tend to be less correlated so that the features are more 
independent and their correlation converges faster than with 
blocks of consecutive samples. In practice, less than 2048 sparse 
captures are required for a full adaptation update. Using only 22 
features reduces the number of required samples because the 
number of features limits the degrees of freedom that need to be 
learned in the PA model. 

DPD Actuator Model Configurations 

A few configurable adjustments of the DPD actuator datapath 
are also supported. These are Model 0 through Model 3 and 
involve multiplexing various LUT outputs differently (see 
Figure 230 to Figure 233). As shown in accompanying figures, 
the magnitude squared data is put through a compander that 
has been optimized for LTE signals. The companded input is 
then used to address each of the four LUTs which contains the 
DPD coefficients. The output of the LUTs is then multiplexed 
depending on the model configuration being used (see 
modelVersion in Model 2 (see Figure 232 and Table 193) is 
recommended as a starting point for most power amplifiers 
(PAs), especially for gallium arsenide (GaAs) PAs, and gives 
good wideband performance, as does Model 3. Model 0 and 
Model 1 may achieve superior narrow-band performance in 
some cases. The absence of deeper delay terms in Model 0 
prevents the DPD from overfitting on narrow-band signals. 
Model 1 has also been shown to give marginally better 
performance for some lateral diffused metal-oxide 
semiconductors (LDMOS) PAs. 
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Figure 230. Model 0 
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Figure 231. Model 1 
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Figure 232. Model 2 
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Figure 233. Model 3 
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High Amplitude Model Priors 

One of the challenges in a digital predistortion (DPD) system is 
how to handle large swings in input signal power. Immediately 
after a transition event (low to high or high to low power), the 
power amplifier (PA) amplifies in a different region of its 
operating curve than where the training samples for the current 
model were taken. At this moment, the model may be inaccurate 
and adjacent channel leakage ratio (ACLR) performance may 
degrade. Another model update may not occur for a few 
milliseconds, and the emissions are higher during this time.  
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Figure 234. Model Accuracy Deviation with High Amplitude Swings  

Typically, the challenging situations are low to high power 
transitions, where the model is first fit to small signal 
measurements, then the PA operates on high power data. At 
high amplitudes, the model is an extrapolation of polynomial 
fits at lower amplitudes.  

If operating at low power for a long duration, leaky correlation 
averaging eventually diminishes high amplitude PA model 
information. One mitigating approach is to keep some high 
power measurement data in the correlation matrix at all times, 
even if the data is outdated. Stored high amplitude samples can be 
stratified across fixed amplitude bins. In every model regression, 
these samples can be included so that the polynomials fit these 
high power sample points as well. This technique is adequate to 
keep performance stable before a full update with fresh high 
amplitude training samples. However, this technique generally 
requires a large number of samples to work well, and it is hard 
to store enough samples. 

Instead, the AD9375 DPD incorporates a probabilistic prior 
model on   values (DPD actuator terms) when solving for 
new model coefficients, which provides information about what 
the higher order coefficients should be if they are not well 
defined based on the current low amplitude data.  

 

 

 

 

 

When the prior model is Gaussian distributed (for example, 

some guess vector 0α  values and the associated precision 
matrix (P) are an inverse covariance matrix), the combined 
estimate of prior and new data follows Equation 57. The matrix 
(F) denotes the correlation feature matrix used by the DPD. 

   0
1 αPyFPFFα HH    (57) 

where: 

α  values are the DPD model coefficient vector. 
FHF is the autocorrelation of the feature matrix 
P is the precision matrix. 
y is ORx sample vector. 

0α is the prior model vector. 

In the AD9375 DPD, 0α  prior coefficients can be programmed 
at startup or during operation (if it is known that the operating 
condition of the PA is about to change) with the save and restore 
DPD model application programming interface (API). The 
prior model precision matrix P is scaled by a modelPriorWeight 
API parameter that scales the strength in the final solution (see 
modelPriorWeight in Table 193). Setting the weight higher 
causes the prior model precision matrix (P) to have more 
influence than the current data when determining the final 
coefficients used for the lookup tables (LUTs). 

Optionally, the prior model coefficients can update automatically 
during high power data (by default, within 1 dB of the highest 
Tx rms power observed by the DPD) by setting this option in 
the API or GUI default: enabled. When automatically updated, 
P is the diagonal portion of the correlation matrix [CYY = FHF] 

and 0α  is the solution vector from the previous iteration of 
DPD that included high power rms data. 
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CLGC OVERVIEW 
The closed-loop gain control (CLGC) feature in the AD9375 
enables a constant gain level to be maintained at the ORx input 
(total gain from Tx output to ORx input) which translates to a 
constant output power (POUT) at the power amplifier (PA) for a 
given digital input level. The gain level is controlled by modifying 
the Tx attenuation and by specifying a desired loop gain value 
(here, gain means the net loop gain and attenuation combined, 
including all transceiver gain and attenuation blocks on-chip). 
Note that the CLGC must be enabled to establish the total 
desired loop gain in the system. The CLGC feature in the AD9375 
reacts to changes in the overall system loopback, which includes 
PA and channel gain as well as ORx gain variations. ORx gain 
variations over time, temperature, and bandwidth are typically 
minimal; however, the user must refer to the AD9375 data sheet 
to verify the tolerance over these factors in the user-specific use 
case. Therefore, the CLGC primarily compensates for any PA 
gain drift over time and temperature by periodically monitoring 
and modifying the Tx attenuation to achieve a constant target 
gain. Note that the CLGC does not track when power at the 
ORx input results in a digital signal less than −39 dBFS to avoid 
damage to the PA by either increasing the Tx power too much, 
or by causing CLGC instability issues due to the low ORx power 
available (see the Other Considerations section for more 
information). This compensation protects the PA if the ORx 
gets disconnected, or if some other component in the loopback 
fails. A minimum Tx attenuation can also be configured to 
protect the PA during CLGC tracking (see 
tx1AttenLimit/tx2AttenLimit parameter in Table 195). 

VOLTAGE STANDING WAVE RATIO 
MEASUREMENT OVERVIEW 
The voltage standing wave ratio (VSWR) on a transmission line 
is defined as the ratio of the voltage maxima to the voltage minima 
along the line. The VSWR measurement feature in the AD9375 
facilitates the computation of this quantity by means of using 
the ORx path that is time multiplexed to measure both the 
forward and reflected voltages. An example block diagram is 
shown in Figure 235. 

Formally, 
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where:  
VSWR is the voltage standing wave ratio.  

F/Tx
R/Tx

Γ   

where: 
R is the reflected power.  
F is the forward power measured at the ORx.  
Tx is the transmit power measured within the device. 

Note that R and F must be calculated at different time intervals; 
therefore, the accuracy of the VSWR measurement can be 
impacted by signal statistics (VSWR performance with fast 
changing and dynamic signals may vary). 
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Figure 235. VSWR Measurement Setup Example  
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DPD GUI 
The digital predistortion (DPD) graphical user interface (GUI) 
is the primary evaluation tool for the DPD, closed-loop gain 
control (CLGC), and voltage standing wave ratio (VSWR) 
features. Figure 236 shows the initial DPD GUI, and Figure 237 
shows the GUI when it is connected to the command server. All 
DPD functionality can be controlled from this DPD GUI. It also 
incorporates waveform generation, CLGC, and VSWR control. 

These features are described in subsequent sections of this user 
guide. In addition, the DPD, application programming interface 
(API), and delay-locked loop (DLL) may be used to interact and 
control the DPD via Python or C#. The transceiver evaluation 
software (TES) GUI supports an IronPython tab that may be 
used for scripting purposes. 
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Figure 236. Initial DPD GUI Interface—Not Connected to Command Server 
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Figure 237. Initial DPD GUI Interface—After Connecting to Command Server 

WAVEFORM SETUP 
The baseband waveform characteristics can be manipulated using the Tx Baseband Waveform section of the GUI (see Figure 238). 
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Figure 238. Waveform Characteristics 
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Carrier Setup 

The modulation is based on the wireless standard chosen from 
the dropdown list box (LTE or Custom). The suggested modes 
for adjacent channel leakage ratio (ACLR) conformance testing 
according to 3GPP Technical Specification (TS) 36.141 are  
E-UTRA test model (E-TM) 1.1 (maximum power) and E-TM 1.2 
(boosting). However, more dynamic waveforms such as E-TM 2.0 
can also be selected (although not intended for ACLR compliance 
tests). The maximum fully occupied bandwidth that can be 
selected is 20 MHz. However, a number of smaller waveforms 
may be spliced together, resulting in an aggregated configuration. 
For example, a 4 × 5 MHz LTE waveform can be generated and 
transmitted in a 1011 configuration to give 15 MHz of signal 
bandwidth in 20 MHz of spectrum. A baseband frequency offset 
may also be specified to position the waveforms at a non-zero 
(non dc) offset from the RF local oscillator (LO). Digital back 
off is applied by means of the digital scale input. The digital 
predistortion (DPD) requires digital expansion headroom to 
operate; therefore, it is recommended to apply at least −3 dBFS 
digital back off to the signal. Note that the DPD algorithm can 
handle up to 40 MHz of fully occupied bandwidth while still 
exceeding the ACLR specification for some power amplifiers 
(PAs). However, this result is contingent upon the bandwidth 
performance of the PA because memory effects increase with 
increasing signal bandwidth. The user must verify PA performance 
against the report published by the PA vendor. For wider 
bandwidths, choose an appropriate Tx DPD profile and a PA 
that can support video bandwidths exceeding what is required 
for the signal. PA gain flatness may also play a role in the 
achievable ACLR performance. 

Custom Waveforms 

Click within the dropdown menu that currently displays LTE in 
Figure 238 for access to this option. Only LTE frequency 
division duplex (FDD) downlink (DL) waveforms are included 
in the DPD GUI library. For other technologies and special 
configurations, use the Custom option and load the waveform 
using a complex I/Q tabbed text file (no headers). Enter the 
sample rate and ensure that the waveform time length is as 
expected. Choose the scaling and the crest factor reduction 
(CFR) as desired, and load the waveform while leaving all other 
carrier setup controls as don’t care. If the user does not want the 
DPD GUI to replicate the baseband waveform, set the Number 
of Carriers to 1× mode. Choosing any other value creates copies 
of the waveform around dc (LO). 

 

 

 

 

 

 

 

CFR Setup  
A CFR algorithm is provided along with the GUI for evaluation 
purposes. When a target peak to average power ratio (PAPR) is 
specified, the CFR algorithm clips and shapes the baseband 
waveform to prevent high PAPR on the Tx output. CFR is a 
typical prerequisite in most DPD setups to prevent the PA from 
going into deep saturation and to achieve higher power added 
efficiency (PAE). To validate the CFR, view the complementary 
cumulative distribution function (CCDF) of the Tx signal on a 
spectrum analyzer. When setting the PA bias voltages (in the 
reference setup, the SKY66297-11 is biased at 5.1 V), account 
for the crest factor of the test waveform. A peak to average ratio 
(PAR) of 7.5 dB to 8.5 dB is typical for a 20 MHz LTE FDD 
waveform post CFR. Note that the CFR operations on the test 
waveforms are precomputed in the GUI software. A CFR block 
is not integrated into the AD9375 transceiver. Tweaking the 
PAR value while evaluating the AD9375 DPD for error vector 
magnitude (EVM) tests is recommended because the optimal 
point between choosing a high enough PAR (to achieve better 
EVM performance) while maintaining desired levels of ACLR 
margin and power output at the PA is user and use case 
dependent. Also note that, a 10 ms waveform must be used for 
full frame LTE EVM tests. While gated EVM measurements 
may be possible and are valid, these measurements may not give 
the user the same insight into PA and DPD behavior as a full 
frame test. Synchronization between the REF_CLK source and 
the spectrum analyzer is recommended to minimize phase 
inaccuracies that affect EVM. Refer to the EVM Tests section 
for additional details. 
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DPD SETUP 
When a waveform is loaded, power on the power amplifier (PA) 
and enable the digital predistortion (DPD). When the PA is 
powered on, the long-term evolution (LTE) waveform received 
on the ORx input is visible on the graph as a red trace. 

To enable the DPD, take the following steps: 

1. Click Initialize PA Cals to reset the DPD actuator and run 
the DPD initialization calibration. Initialization is required 
for proper time alignment of DPD samples (external delay 
measurement). To reiterate, DPD does not function unless 
this initialization step is completed. When run, the 
AD9375 Embedded DPD Interface, PA Calibrations 
section, changes as shown in Figure 240.  

2. Check the Activate DPD box for the DPD to begin the 
adaptation process (see Figure 236). 

The pink trace in Figure 239 shows the power spectral density 
(PSD) of the transmitter output with no DPD adaptation. The 
yellow trace is the PA ouput PSD that is received by the ORx 
channel. There should be a noticeable improvement in the PA 
output adjacent channel level rejection (ACLR) from the no 
DPD case (pink trace) and the DPD on case (yellow trace). If 
this not the case, or an error shows in the DPD Status section, 
proceed to the Error Messages and Debug Information section.  
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Figure 239. DPD GUI FFT Plot  

Click Reset PA Cal to reset the DPD at any time. This operation 
performs a full reset of the DPD actuator and reinitializes the 
DPD, ensuring proper time alignment for the DPD samples. 
Once the DPD resets, check DPD Adaptation to reenabled it.  

ORx Noise Floor Correction 

The ORx noise floor correction is a one time GUI calibration 
where the noise floor on the ORx path is measured and then 
correction is applied to reduce the effects of the ORx noise floor 
on the received signal (see Figure 239). Note that this correction 
runs in the GUI and should not be confused with device 
calibration. Enabling this correction decreases the noise floor of 
the displayed ORx signal and generally improves the accuracy 
of the adjacent channel leakage ratio (ACLR) displayed by the 
GUI. This setting has no effect on the actual Tx output (observed 
on, say, a spectrum analyzer) apart from a momentary loss of 
transmission while the actual calibration measurement is 
performed. 

PA1/PA2 On/Off Control 

Refer to the two GPIO, GPIO (PA 1) and GPIO (PA 2), buttons 
shown at the top of Figure 237. These buttons control the GPIO 
pins, which in turn can control PA 1 and PA 2, respectively. Use 
the dropdown menus attached to the GPIO (PA 1) and GPIO 
(PA 2) buttons to assign the GPIO_3P3 pins. Red indicates that the 
pin is currently disabled (0), and green indicates that the pin is 
toggled on (1). The text within the dropdown menu displays the 
status that the pin toggles to when clicked. Note that this is an 
optional feature, and the exact voltage reference or PA enabled 
signal must be derived from the 3.3 V GPIO pin. 

Tx Channel Control 

The Tx Channel dropdown menu controls the channel currently 
displayed within the ACLR graph and also controls the individual 
settings (see Figure 236). Enabling or disabling the DPD and/or 
the closed-loop gain control (CLGC) can be done separately for 
both channels. Due to the multiplexed nature of the ORx, the 
ORx Gain Index is also common for both channels. 
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Figure 240. DPD Setup Tab  
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Tx/ORx Control 

The Tx / ORx Control section controls some of the parameters 
for the Tx channel that were selected using the Tx Channel 
dropdown menu (see Figure 236). 

ORx Gain Index 

The ORx Gain Index box within the Tx / ORx Control section 
can vary from 238 to 255. This value controls the ORx gain (for 
both TX channels) and starting at a low value during initialization 
is recommended. Increase the gain index to a value where the 
AM-AM plot does not have too many outliers (AM-AM appears 
thin and the samples are tight around the linear plot), which 
implies less noise on the ORx. A good gain index achieves a 
−12 dBFS value for a single 20 MHz LTE carrier with 7.5 dB 
peak to average ratio (PAR), which allows a margin of 4.5 dB for 
the occurrence of statistically rare samples exceeding the 7.5 dB 
peak value while not saturating the ORx, resulting in linear 
operation. A clean, linear ORx is key to a successful DPD 
operation. With the default ORx gain table, the ORx gain 
changes n dB for an n value change in index; for example, 
3 dB for a change from 238 to 241. 

Tx Attenuation 

The Tx Attenuation box within the Tx / ORx Control section 
controls the attenuation for the current channel. 

Tx PLL Frequency 

The Tx PLL Freq: box within the Tx / ORx Control section 
controls the frequency of operation of the current Tx channel. 
Modifying this value while radio calibrations are running can 
lead to poor performance with other tracking calibrations. 
Reprogramming the device (or at least rerunning initialization 
calibrations at the new frequency of operation) is recommended 
in such cases. For reprogramming the device or rerunning the 
initialization calibrations, disconnect the digital predistortion 
(DPD) GUI and use the TES software or other methods (for 
example, Python scripts) to perform the necessary operations. 
Note that the DPD performance degrades with large frequency 
steps. For such cases, rerun the DPD initialization calibrations 
within the PA Calibrations section and then check off the 
Activate DPD box (see Figure 236).  
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Figure 241. Tx/ORx Control Section 
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PA CALIBRATION CONFIGURATION 
Calibration configuration is controlled using the window shown 
in Figure 242. The subsequent sections explain each setting. See 
the Systems Design Considerations section for details on digital 
predistortion (DPD) tuning procedure using some of these 
settings. 

General 

Adjust the Delay Offset controls in decrements or increments 
of 1/16 of a sample, where the fractional part is the x/16 (see the 
dropdown menu), and the integer delay values can be adjusted 
using the integer dropdown menu (see Figure 242). For example, 
chose −, 1, and 1/16 in the respective dropdown menus for a 
−1 value with a 1/16 sample delay. Changes in the delay offset 
values requires rerunning the DPD initialization calibration. 
Refer to the additionalDelayOffset parameter in Table 193 for 
a detailed description. 

The linear feedback shift register (LFSR) level and iterations 
control the power level of the wideband signal that is sent 
during the DPD initialization calibration. PN-Seq Level is a 
fixed value for information only (see Figure 242). Refer to the 
pathDelayPnSeqLevel parameter in Table 193 for a detailed 
description. 

DPD Configuration  

The DPD Configuration section of the AD9375 PA 
Calibrations Configuration window allows the user to 
manipulate certain key parameters of the DPD engine (see 
Figure 242). For more detailed instructions on tuning DPD 
using these configuration parameters, see the Systems Design 
Considerations section. 

The DPD memory model dropdown menu allows the selection 
of between four different polynomial models to model the PA 
with, based on various implementations of generalized memory 
polynomials (see Figure 242). See the DPD Actuator Model 
Configurations section for more details. Refer to the 
modelVersion parameter in Table 193 for a detailed description. 

The Samples per update text box controls the number of input 
samples required to complete a DPD adaptation (see Figure 242). 
Refer to the samples parameter in Table 193 for a detailed 
description. 

The Automatically reject outlier samples box is deprecated 
and its use is not supported (see Figure 242). Refer to the 
robustModeling parameter in Table 193 for more details. 
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Figure 242. AD9375 PA Calibrations Configuration Window  
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Enable the Update saved model at high Tx RMS box to allow 
the DPD to update a separate high power power amplifier (PA) 
model that remembers high amplitude PA characteristics and 
improves adjacent channel leakage ratio (ACLR) in dynamic power 
conditions (see Figure 242). Refer to the highPowerModelUpdate 
parameter in Table 193 for a detailed description. 

The Saved model weight text box controls how much weight or 
influence the high power startup power amplifier (PA) model is 
given when computing the final applied predistortion function 
(see Figure 242). Refer to the modelPriorWeight parameter in 
Table 193 for a detailed description. 

The update saved model at high Tx RMS parameter allows 
enabling or disabling of the DPD prior model update.  

The Model averaging factor text box controls how much weight 
the previous DPD correlations can exert on the current adaptation. 
Refer to the damping parameter in Table 193 for a detailed 
description. 

Increase the value in the Model error threshold text box if 
additional model errors must be allowed in a DPD adaptation 
before error code 0x09 occurs. This value is not configurable via 
the application programming interface (API). 

Adjust the value in the AM-AM Outlier threshold text box to 
control the occurrence of the AM_AM_OUTLIERS error (0x0A). 
Generally, this threshold is only violated when the PA is deep into 
compression and heavily saturated. Refer to the outlierThreshold 
parameter in Table 193 for a detailed description. 

The DPD algorithm works by minimizing the Tx to ORx sample 
error. However, due to PA or external loop spectral asymmetries, 
the adjacent channel leakage ratio (ACLR) performance may be 
worse on certain sides of the desired signal. The AD9375 DPD 
includes a 4-tap finite impulse response (FIR) filter that can 
help shape the error such that the DPD focuses more on the 
error on the poorer performing side of the spectrum. This 
frequency-weighting is achieved by adding zeros and creating 
an FIR filter that is overlaid on the ACLR spectrum of the DPD 
GUI as a red curve. By default, one zero is placed at (64 + 0j) on 
the complex Z plane to help minimize the Δ-Σ shaped noise at 
the ORx band edges. Additional zeros can be placed to create 
different filter shapes depending on how the user wants to 
direct the attention of the DPD. Deeper notches instruct the 
DPD that it must focus less on the errors in the notched out 
part of the spectrum, while the response shapes outside of the 
desired signal bands make the DPD focus more on those parts 
of the spectrum.  

For example, see Figure 242 and note the multicarrier 3 × 5 MHz 
101 configuration. The locations of the zeros indicate that the DPD 
must focus more on the ACLR side of the spectrum rather than the 
error in the carriers themselves. The improvement for tougher 
cases can be as good as 2 dB to 3 dB in ACLR performance. 
Note, however, that some error vector magnitude (EVM) 
degradation may occur due to the lack of focus of the DPD 
on the carrier themselves. As always, tuning the DPD is a 
systems choice and must be done with due consideration to 
the permissible limits of performance tolerance for all systems 
metrics, 3GPP mandated or otherwise. Refer to the numWeights 
and weights[3] parameters in Table 193 for a detailed description. 
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ERROR MESSAGES AND DEBUG INFORMATION 
The DPD GUI has the capability to display the operating status 
of the DPD adaptation. If an error occurs during an adaptation, 
the error status is displayed in the DPD Status window. Click 
the error status to open the debug message. The DPD Status 
window displays the total number of DPD adaptations that have 
occurred along with the current model error. 

Total Adaptations (see Figure 243) shows the number of 
successful DPD adaptations that have occurred since the last 
DPD initialization calibration (Reset PA Cal). If an error occurs 
during a DPD iteration, the total number of adaptations does not 
count up. For an erroneous adaptation, an error status appears 
and the DPD adaptation is not applied to the actuator.  

It is important to note that the last known good model is always 
stored in the DPD actuator and applied to the Tx samples until 
the DPD hardware is reset using a DPD initialization 

calibration calibration, even if DPD is disabled (that is, the 
tracking calibration mask does not contain a DPD calibration). 

Current model error (see Figure 243) is a measure of how close 
the current PA model is to the actual PA. This error is calculated 
before the DPD applies the newly learned coefficients to predict 
the PA output from the current input samples for a short instance 
of time to calculate this error. A threshold for this model error 
can be set in the DPD Configuration window. If the error 
exceeds this threshold, DPD adaptation does not occur, and the 
DPD returns an ERROR 9 (MODEL_ERROR_TOO_HIGH). 

For more information on the DPD, closed-loop gain control 
(CLGC), and voltage standing wave ratio (VSWR) status codes, 
respectively, and troubleshooting options, see Table 194, Table 196, 
and Table 198. 
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Figure 243. DPD Status Window and Status Codes 
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DPD API 
This section describes all the application programming 
interface (API) data structures and functions that are associated 
with the digital predistortion (DPD) feature. 

ARM SETUP COMMANDS 
A few ARM setup commands are introduced in the following 
subsection that are ancillary to DPD, closed-loop gain control 
(CLGC), and voltage standing wave ratio (VSWR) operation.  

The following API functions enable the use of the DPD, CLGC, 
and VSWR calibrations. These functions must be called in 
order to successfully execute these calibrations. 

MYKONOS_runInitCals (…) 

mykonosErr_t 
MYKONOS_runInitCals(mykonosDevice_t 
*device, uint32_t calMask) 

Description 

This function performs the ARM initialization calibrations (init 
cals) that are prerequisites for the calibrations present in the 
enableMask enabled by MYKONOS_enableTrackingCals(…). 
This command must be called when the device is in the 
radioOff state. 

Parameter 

• *device: This is a structure pointer for the device data 
structure. 

• calMask: Initialization calibration mask for initializing the 
different calibrations. 

Table 190. Initial Calibrations Bit Mask  
calMask Bit description 
0 Tx baseband filter  
1 ADC runner 
2 transimpedance amplifier (TIA) 3 dB corner 
3 DC offset 
4 Tx attenuation delay 
5 Rx gain delay 
6 Flash calibration 
7 Path delay 
8 Tx local oscillator (LO) leakage internal 
9 Tx LO leakage external 
10 Tx quadrature error correction (QEC) initialization 
11 Loopback Rx LO delay 
12 Loopback Rx QEC initialization 
13 Rx LO delay 
14 Rx QEC initialization 
15 DPD initialization 
16 CLGC initialization 
17 VSWR initialization 

 

 

 

It is important to note the following: 

• Running the external initialization calibrations (external 
LO leakage (LOL), DPD, CLGC, and VSWR initialization 
calibrations) in a single execution of the MYKONOS_ 
runInitCals(…) results in running the initialization 
calibrations in the following order: VSWR, LOL, DPD, and 
CLGC.   

• It is recommended that the user always perform DPD, 
CLGC, and VSWR initialization calibrations at the Tx 
attenuation value that corresponds to the final rated power 
amplifier (PA) operating power conditions. Following this 
recommendation improves the path delay estimation of the 
calibrations in general and reduces variability from run to 
run because the signal noise ratio (SNR) at ORx is better 
when there is more of the pseudonoise (PN) sequence to 
correlate with. A small deviation in the estimated path delay 
can cause a DPD performance degradation of up to 3 dB. 

• When using an older ARM version or when running 
initialization calibrations differently than is suggested in 
the first bullet, it is important to remember that VSWR 
initialization calibration sets up the path observed by the 
ORx switch (forward or reflected), and therefore, must be 
executed before the other external initialization 
calibrations, such as the LOL, DPD, and CLGC 
calibrations, which are calibrations that require knowledge 
of the external loopback path delay. For example, if each of 
the external initialization calibrations are run separately, 
the following sequence is recommended: VSWR, LOL, 
DPD, and CLGC initialization calibrations. It is important 
to not override the VSWR switch control by writing to the 
GPIO pin that is used by the VSWR calibration. 
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MYKONOS_enableTrackingCals(…) 

mykonosErr_t 
MYKONOS_enableTrackingCals(mykonosDevice_t 
*device, uint32_t enableMask) 

Description 

This function sets which ARM tracking calibrations are enabled 
during the radioOn state. The command must be called during 
the radioOff state. Any of the closed-loop gain control (CLGC), 
and voltage standing wave ratio (VSWR), and digital predistortion 
(DPD) tracking calibrations may be enabled using this function 
by selecting the appropriate value for the tracking calibration mask. 

Parameters 

• *device: This is a structure pointer for the device data 
structure. 

• enableMask: This is the tracking calibration mask for 
enabling the different tracking calibrations. Options are 
shown in Table 191. 

Table 191. Tracking Calibration Bit Mask 
enableMask Bit Description 
0 TRACK_RX1_QEC 
1 TRACK_RX2_QEC 
2 TRACK_ORX1_QEC 
3 TRACK_ORX2_QEC 
4 TRACK_TX1_LOL 
5 TRACK_TX2_LOL 
6 TRACK_TX1_QEC 
7 TRACK_TX2_QEC 
8 TRACK_TX1_DPD 
9 TRACK_TX2_DPD 
10 TRACK_TX1_CLGC 
11 TRACK_TX2_CLGC 
12 TRACK_TX1_VSWR 
13 TRACK_TX2_VSWR 
 
• To ensure that the tracking calibrations runs correctly, 

enforce the following sequence: 

1. Run initial calibrations with the xxx_INIT calibration bits 
enabled in the calmask during the initialization process. 
The application programming interface (API) is 
MYKONOS_runInitCals(…). 

2. Set tracking calibration mask to include the TRACK_ 
TX1_DPD, TRACK_TX2_DPD, TRACK_TX1_CLGC, 
TRACK_TX2_CLGC, TRACK_TX1_VSWR, and/or 
TRACK_TX2_VSWR mask bits, depending on the desired 
calibrations for each channel.  

3. Note that the TRACK_ORX1_QEC and the TRACK_ 
ORX2_QEC mask bits must be set in order to have 
successful DPD, CLGC, and VSWR tracking. 

4. The API is MYKONOS_enableTrackingCals(…). 

 

The host must set the ORx path source to OBS_INTERNALCALS 
by calling MYKONOS_setObsRxPathSource(…). Setting the 
ORx path source to OBS_INTERNALCALS enables scheduling 
of regular tracking radio calibrations, such as Tx QEC and 
Tx local oscillator leakage (LOL) tracking along with DPD 
tracking in either frequency division duplex (FDD) or time 
division duplex (TDD), ARM command or pin mode. See the 
Observation Receiver (ORx) section for ORx channel setup 
details. Performing the previously mentioned steps enables the 
ARM to access ORx data and initiates the DPD, CLGC, and 
VSWR tracking and measurement processes. 

MYKONOS_setAllTrackCalState(…) 

mykonosErr_t 
MYKONOS_setAllTrackCalState(mykonosDevice_
t *device, uint32_t trackCals) 

Description 

This function sets which ARM tracking calibrations are allowed 
to track during the radioOn state (also known as the suspend/ 
resume or pause/resume feature). The command can be called in 
either the radioOff or radioOn state, with the primary intent 
being that this function be used by the user in the radioOn state 
to quickly suspend or resume calibrations. Note that the state of 
the calibration (paused: no updates scheduled by ARM, or 
resumed: normal expected behavior) is sticky between the 
radioOff and the radioOn states when in a tracking state (and 
even if the respective initialization calibrations are performed). 
It is the responsibility of the host to control the state of the 
calibrations. By controlling the trackCals bit mask, calibrations 
can be suspended (bit value of 0) or active/resumed (bit value of 1). 

Parameters 

• *device: This is a structure pointer for the device data 
structure whose calibrations are to be suspended or 
resumed. 

• trackCals: The value specified by this argument is some 
subset of the currently enabled tracking calibration mask 
bits that controls which calibrations are to suspended or 
resumed. An error code is returned if the user attempts to 
resume a calibration that is not part of the active tracking 
calibration bit mask defined by enableMask in MYKONOS_ 
enableTrackingCals(…). For the allowed bit mask values, 
refer to Table 191.  
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MYKONOS_getAllTrackCalState(…) 

mykonosErr_t 
MYKONOS_getAllTrackCalState(mykonosDevice_
t *device, uint32_t *trackCals) 

Description 

This function reads back the ARM tracking calibrations that are 
allowed to track during the radioOn state (also known as the 
suspend/resume or pause/resume feature). The command can 
be called in either the radioOff or the radioOn state, with the 
primary intent being that this function be used by the user in 
the radioOn state. Note that the state of the calibration (paused: 
no updates scheduled by ARM, or active/resumed: normal 
expected behavior) is sticky between the radioOff and the 
radioOn states when in a tracking state (and even if the 
respective initialization calibrations are performed). It is the 
responsibility of the host to control the state of the calibrations. 

Parameters 

 *device: This is a structure pointer for the device data 
structure whose calibrations are to suspended or resumed. 

 *trackCals: The value returned in this pointer shows 
currently enabled tracking calibration mask bits that 
represent which calibrations have been suspended (bit 
value of 0) or active/resumed (bit value of 1). The active 
tracking calibration bit mask defined by enableMask in 
MYKONOS_enableTrackingCals(…) can be used to 
determine which bit mask values shown in Table 191 are 
available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPD API DATA STRUCTURES 
The data structures associated with the digital predistortion (DPD) 
functionality follow. 

int8_cpx 

The int8_cpx structure is used within the mykonosDpdConfig_t 
structure to hold an int8_t complex number that is used in the 
weights member described in Table 193. 
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Figure 244. int8_cpx Structure 

typedef struct 

{ 

  int8_t real; 

  int8_t imag; 

} int8_cpx; 

Table 192. int8_cpx Structure Member Description 
Structure 
Member Valid Values Description 
real −128…+127 The real part of the 

complex number used in 
the weights member of the 
mykonosDpdConfig_t 
structure. 

imag −128…+127 The imaginary part of the 
complex number used in 
the weights member of the 
mykonosDpdConfig_t 
structure. 
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mykonosDpdConfig_t 

mykonosDpdConfig_t is the main data structure that stores all 
of the parameters relevant to the DPD configuration. This 
information is loaded into the ARM memory using the 
MYKONOS_configDpd() function before running the DPD 
initialization or tracking calibrations. The unified modeling 
language (UML) representation of the structure is shown in 
Figure 245. 
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Figure 245. mykonosDpdConfig_t UML Representation  

typedef struct 

{ 

    uint8_t damping;  

    uint8_t numWeights;  

    uint8_t modelVersion;  

    uint8_t highPowerModelUpdate; 

    uint8_t modelPriorWeight; 

    uint8_t robustModeling; 

    uint16_t samples;  

    uint16_t outlierThreshold;  

    int16_t  additionalDelayOffset;  

    uint16_t pathDelayPnSeqLevel;  

    int8_cpx weights[3];    

} mykonosDpdConfig_t; 
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Table 193. AD9375 Digital Predistortion (DPD) Configuration Structure Member Description  
Structure Member Valid Values Description 
damping 0…15  1/(2DAMPING + 8) is a weighting factor multiplied to past DPD correlations when 

computing a new DPD correlation matrix for every DPD iteration. The default 
value of this factor is 5, resulting in a 1/8192 value. This parameter may be viewed 
as a leakage factor to avoid overtraining the model on a new set of samples while 
retaining some memory or history of the previous correlations (this is because the 
past correlations are accumulated in a leaky fashion). A 0 value results in infinite 
damping (that is, past correlation values are accumulated forever with no leakage). It is 
recommended that this parameter be adjusted in conjunction with the samples 
parameter. Note that DPD performance can vary quite a bit for dynamic signals 
when adjusting this parameter. 

numWeights 0…3 Number of weights to use in the weights[3] member of this structure for frequency 
weighting of the DPD error. 

modelVersion 0…3 DPD model version: one of four different polynomial models. The choice of the 
optimum model usually depends on the power amplifier (PA) and operating 
bandwidth. 

highPowerModelUpdate 0, 1 A 1 value for this member results in the update of a separate high power or prior 
PA model that is used to remember the high amplitude PA characteristics and to 
improve the adjacent channel leakage ratio (ACLR) in dynamic power conditions. 
Updates to the high power model are made when the Tx rms power is within 1 dB 
of the historical peak Tx rms. During periods of lower Tx power, the DPD algorithm 
includes the stored higher power model for computing the PA predistorter model 
if the DPD has ever tracked successfully while this parameter was high. During low 
to high power transitions, DPD already has adaptation coefficients for the Tx higher 
powered samples improving dynamic performance. Setting this parameter to 0 
disables updates to the prior model and uses the initial loaded model instead (if 
one was provided at startup). Default: 1. 

modelPriorWeight 0…32 weight = 2modelPriorWeight + 10. This parameter controls how much weight or influence 
the high power/startup PA model is given when computing the final applied 
predistortion function. A larger value causes adaptation to move less from the 
high power/startup PA model, limiting low power ACLR improvement but 
improving high power ACLR during fast low to high power transitions. Default: 20. 

robustModeling 0, 1 Note that this feature has been marked for deprecation and use of this feature is 
discouraged. 

samples 64…32768 Number of Tx and ORx I/Q samples to capture. Default is 512. The DPD algorithm 
computes the model coefficients by sparsely sampling the Tx and ORx data, and 
this parameter controls the number of capture blocks required per update. 
Reducing the number of samples per update results in faster processing at the risk 
of possible reduced performance (depending on input waveform and PA 
conditions). 

outlierThreshold 1…8192 This is the threshold for samples to be discarded if they are outside of the 1:1 line 
on the AM-AM plot. Default: 4096 (50% of 8192). Adjust this input to control the 
occurrence of the AM_AM_OUTLIERS (0x0A) DPD status message/error from the 
ARM. Generally, this threshold is exceeded only when the PA is deep into compression 
and heavily saturated. Too many outliers (higher than percentage of samples set 
using this parameter) cause the current model adaptation to be discarded. 
Increase the threshold to force the DPD to adapt to a more nonlinear PA state 
(performance varies according to PA). 

additionalDelayOffset −64…+64 This parameter adds or reduces delay to the external sample delay assessed 
during the sample time alignment process. Resolution of additional delay is 1/16 
of an ORx sample. Delay Offset = additionalDelayOffset/16. Using 16 for this 
parameter implies a 1-sample delay. Default: 0. By default, the DPD algorithm in 
the AD9375 begins the PA model from the peak in the cross correlation between 
the PA input and output samples (using the sample time alignment delay 
determined during the DPD initialization calibration). However, for modeling 
some PAs, it may be beneficial to offset the model slightly from the correlation 
peak by a fixed amount (usually a fraction of a sample). In many PAs, the peak in 
the impulse response is not the lead (zero lag) coefficient. Time alignment offset 
allows the learning model impulse terms before this peak and can improve 
modeling accuracy and DPD performance. Changes in the delay offset values 
require rerunning the DPD initialization calibration. 
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Structure Member Valid Values Description 
pathDelayPnSeqLevel 1…8192 Amplitude level of broadband pseudonoise (PN) sequence sent out during DPD 

initialization calibration. Default: 255 (−30 dBFS = 20 log10(value/8192)). Analog 
Devices recommends using the default value for this parameter unless the PA is 
highly sensitive to broadband radio frequency (RF) input tones. Note that the user 
must always perform the DPD, CLGC, and VSWR initialization calibrations at the Tx 
attenuation value that corresponds to the final rated PA operating power conditions, 
which improves the estimation of the path delay and reduces variability from run 
to run. 

weights[3] −128…+127 DPD model error frequency weighting. The DPD algorithm works by minimizing 
the Tx to ORx sample error. The AD9375 R1 DPD includes a 4-tap FIR filter that can 
help shape the error such that DPD focuses more on the error at certain 
frequencies. Each element of the weights member holds a Z-plane zero location 
that will shape the filter response of the FIR to influence the frequencies at which 
DPD is most focused. By default, one zero is placed at (64 + 0j) on the complex-Z 
plane to help minimize the Δ-Σ shaped noise at the ORx band edges. Refer to the 
PA Calibration Configuration section for more information on this parameter. 
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mykonosDpdStatus_t 

The mykonosDpdStatus_t structure contains four members that 
provide information on the status of the digital predistortion 
(DPD) calibration. This structure can be used as an error 
checker and debug tool for the DPD. 
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Figure 246. mykonosDpdStatus_t Structure  

 

typedef struct 

{     

    uint32_t dpdErrorStatus; 

    uint32_t dpdTrackCount; 

    uint32_t dpdModelErrorPercent; 

    uint32_t dpdExtPathDelay; 

} mykonosDpdStatus_t; 

 

 

 

Table 194. AD9375 DPD Status Structure Member Description 
Structure Member Value Description 
dpdErrorStatus 0 No error: DPD operation is normal. 
 1 ORx disabled: The observation receiver (ORx) for this channel is currently disabled. 
 2 Tx disabled: The transmitter for this channel is currently disabled. 
 3 Path delay not setup: indicates that the process for sample alignment arrived at 

an invalid answer. This error is most commonly caused by a Tx or ORx that is not 
physically connected or a PA that is switched off. Ensure that everything is properly 
connected, and that the PA is turned on, and then rerun the DPD initialization. 

 4 DPD initialization not run: must run DPD initialization calibration for the DPD to 
start adaptations. 

 5 ORx signal too low: The ORx signal is lower than −28 dBFS. Ensure that the PA is 
on and all SMA cables are connected properly. Consider increasing the ORx gain 
index or removing the physical attenuation between the PA and ORx input. 

 6 ORx signal saturated: The ORx measured too many samples above the configured 
saturation threshold. Consider reducing the ORx gain index or adding attenuation 
between the PA and the ORx input. The saturation threshold level is not configurable 
by application programming interface (API) and is defaulted to 87% of 0 dBFS. 
When this error occurs, the DPD zeroes out the correlators and starts over to 
prevent corrupting future adaptations. 

 7 Tx signal too low: The Tx signal is off or has too little power for DPD adaptation to 
proceed. Consider increasing the digital Tx signal power. Threshold is −28 dBFS. 

 8 Tx signal saturated: The post DPD Tx signal amplitude exceeds the configured 
saturation threshold. Decrease the Tx waveform digital peak value (scaling) to 
allow for sufficient amplitude expansion during predistortion (for example, 
−3 dBFS). When this error occurs, the DPD zeroes out the correlators, zeroes the 
prior model used, and starts over to prevent corruption of future adaptations. 

 9 Model error high: The DPD model error is higher than 10%, and the calculated 
model was not applied to the DPD actuator. This condition can occur if the PA is 
highly nonlinear, or the signal chain is adjusted while DPD adaptation is still being 
performed. When this error occurs, the DPD zeroes out the correlators and starts 
over to prevent corruption of future adaptations. 

 10 AM-AM outliers: Too many PA input to output samples were out of the configured 
linearity boundaries. Consider backing off the PA or adjusting the dpdOutlierThreshold 
in mykonosDpdConfig_t (see Table 192). When this error occurs, the DPD zeroes 
out the correlators and starts over to prevent corruption of future adaptations. 
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Structure Member Value Description 
 11 Invalid Tx profile. 
 12 ORx quadrature error correction (QEC) disabled: Set the calmask bits to enable ORx 

QEC1/QEC2 tracking calibrations because the DPD relies on the assumption that 
the ORx is a clean representation of the power amplifier (PA) output. 

dpdTrackCount 0..0xFFFFFFFF Number of times the DPD has successfully run since DPD initialization calibration. 
dpdModelErrorPercent 0..1000 Percent error of PA model ×10 to include 1 decimal place. 
dpdExtPathDelay 0..0xFFFFFFFF External path delay from Tx output to ORx input, at 1/16 sample resolution of the 

ORx sample rate. Calculate true value by dividing this member. 

 

DPD FUNCTIONALITY API FUNCTIONS 
The application programming interface (API) functions 
associated with the digital predistortion (DPD) functionality 
follow. Refer to the Tracking Calibrations section for more 
information on setting up the calibration from an ARM system 
standpoint. 

MYKONOS_configDpd (…) 

mykonosErr_t 
MYKONOS_configDpd(mykonosDevice_t *device) 

Description 

This function call configures the device with the parameters in 
the DPD data structure, mykonosDpdConfig_t. This function 
also performs some sanity checks to the data parameters (range 
and ARM state checks) in the mykonosDpdConfig_t data 
structure. This function can be called when the device is in 
either the radioOn or radioOff state. However, not all parameters 
in the mykonosDpdConfig_t structure can be changed in 
radioOn state. This function must be called in the radioOff state 
when attempting to change the additionalDelayOffset and 
pathDelayPnSeqLevel parameters. Changes to the latter 
parameters do not take effect unless modified in a radioOff 
state, and are ignored by the API and ARM. 

MYKONOS_getDpdConfig(…) 

mykonosErr_t 
MYKONOS_getDpdConfig(mykonosDevice_t 
*device) 

Description 

This function reads the DPD config structure from the ARM 
memory and updates the device → tx → dpdConfig data structure. 
There are no radio state dependencies for this function. 

MYKONOS_getDPDStatus(…) 

mykonosErr_t 
MYKONOS_getDPDStatus(mykonosDevice_t 
*device, mykonosTxChannels_t txChannel, 
mykonosDpdStatus_t *dpdStatus) 

Description 

This function reads back the DPD calibration status from the 
ARM processor and returns the result to the mykonosDpdStatus_t 
structure.  

 

Parameters 

• *device: This is the device data structure pointer from 
which the DPD status is read back. 

• txChannel: Input argument to set which Tx channel the 
function reads back the DPD status for. Valid enumeration 
values are Tx1 and Tx2 only. 

• *dpdStatus: This is a pointer to the structure that contains 
the returned DPD status information. 

MYKONOS_saveDpdModel(…) 

mykonosErr_t 
MYKONOS_saveDpdModel(mykonosDevice_t 
*device, mykonosTxChannels_t txChannel, 
uint8_t *modelDataBuffer, uint32_t 
modelNumberBytes) 

Description 

This function reads a copy of the DPD prior model (or high Tx 
power model) from the ARM memory and saves it to the user 
memory specified by the modelDataBuffer pointer. The device 
must be in the radioOff state to call this function. 

Parameters 

• *device: This is the device data structure pointer from 
which the DPD model is saved. 

• txChannel: specifies the Tx channels for which the DPD 
models are saved. Valid values are TX1, TX2, and 
TX1_TX2. 

• The user must provide the correct buffer size with the 
modelNumberBytes argument. 172 bytes per channel are 
expected. 
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MYKONOS_restoreDpdModel (…) 

mykonosErr_t 
MYKONOS_restoreDpdModel(mykonosDevice_t 
*device, mykonosTxChannels_t txChannel, 
uint8_t *modelDataBuffer, uint32_t 
modelNumberBytes) 

Description 

This function writes a copy of the user specific digital 
predistortion (DPD) model to the ARM memory, pointed to by 
the modelDataBuffer pointer, and instructs the ARM to install 
that DPD model into the ARM memory as a prior model. The 
device must be in the radioOff state to call this function. Note 
that resetting or reinitializing the device overwrites the restored 
DPD model data. 

Parameters 

• *device: This is the device data structure pointer on to 
which the DPD model is restored or loaded. 

• txChannel: specifies the Tx channels for which the DPD 
models are loaded. Valid values are TX1, TX2, and 
TX1_TX2. 

• The user must provide the correct buffer size with the 
modelNumberBytes argument. 172 bytes per channel are 
expected. The model data pointed to by the modelDataBuffer 
pointer must contain modelNumberBytes, resulting in an 
error otherwise. 

MYKONOS_setDpdActState (…) 

mykonosErr_t 
MYKONOS_setDpdActState(mykonosDevice_t 
*device, mykonosTxChannels_t txChannel, 
uint8_t actState) 

Description 

This function enables the user to bypass the DPD actuator on a 
given Tx channel. This function can be called in the radioOn 
state. However, it is recommended that the user suspend 
(pause) the DPD calibration before using this function to 
synchronize all internal ARM scheduler tasks. The DPD 
calibration can be resumed when this function has been 
successfully executed. 

Parameters 

• *device: This is the device data structure pointer whose 
DPD actuator is being bypassed. 

• txChannel: specifies the Tx channels for which the DPD 
actuators must be controlled. Valid values are TX1, TX2, 
and TX1_TX2. 

• By setting the argument actState to 0, the DPD actuator for 
the specified txChannel is bypassed. A 1 for actState reenables 
the use of the DPD actuator for the desired channel.  

MYKONOS_resetDpd (…) 

mykonosErr_t 
MYKONOS_resetDpd(mykonosDevice_t *device, 
mykonosTxChannels_t txChannel, uint8_t 
reset) 

Description 

This function enables the user to reset the DPD actuator for a 
given Tx channel. The user can call this function in the radioOn 
state. However, it is recommended that the user suspend (pause) 
the DPD calibration before using this function to synchronize 
all internal ARM scheduler tasks. The DPD calibration can be 
resumed when this function successfully executes. 

Parameters 

• *device: This is the device data structure pointer whose 
DPD actuator is being bypassed. 

• txChannel: specifies the Tx channels for which the DPD 
actuators must be controlled. Valid values are TX1, TX2, 
and TX1_TX2. 

• reset: A 1 resets the DPD actuator and the prior model. 
Calling this function with a reset value of 1 is equivalent to 
performing a DPD initialization calibration but without 
performing the external path delay measurement in 
radioOff mode that is typical of the DPD initialization 
calibration (no PN sequence is transmitted). A 0 is not a 
valid choice. 

Note that a 2 for this argument is reserved for future use. 
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CLGC TRACKING CALIBRATION 
To enable the closed-loop gain control (CLGC), click 
Initialize/Reset PA Cals. Next, check off the CLGC box to 
allow the CLGC to start measuring the gain of the Tx to ORx 
path and to update statuses. Note that tracking (applying 
control) does not begin until the selection of the Track box 
shown in Figure 248. 

The value in the Desired Gain box is the desired loopback gain 
that is usually negative when the total loop attenuation is higher 
than the total loop gain. Refer to the tx1DesiredGain/ 
tx2DesiredGain parameters in Table 195 for a detailed 
description. 

The value displayed in the Current Gain box is the current 
loopback gain. Refer to the currentGain parameter in Table 196 
for a detailed description. 

The Track check box allows the CLGC to control the loop gain 
by changing the Tx attenuation. When first enabling the CLGC 
using the DPD GUI (and not via the application programming 
interface (API)-/delay locked loop (DLL)-based scripts), the 
current gain is set as the desired gain (that is, the previously 
configured desired gain value is overwritten). Refer to the 
allowTx1AttenUpdates and allowTx2AttenUpdates parameters 
in Table 195 for a detailed description. 

 

The Tx RMS and ORx RMS are a measure of the rms value of 
the digital power measured by the CLGC at the Tx or ORx 
measurement points. Refer to the txRms and orxRms 
parameters in Table 196 for a detailed description. 

A description of the Status codes can be found in Table 196. 

CLGC CONFIGURATION 
See Figure 242 to see the following CLGC digital predistortion 
(DPD) GUI settings. 

The Tx Atten Min Limit is the absolute minimum attenuation 
allowed during CLGC tracking. This box allows some level of 
PA protection from the CLGC gain going too high. Refer to the 
tx1AttenLimit and tx2AttenLimit parameters in Table 195 for a 
detailed description. 

The Control Ratio field controls the rate at which the CLGC 
tracks the gain changes. Refer to the tx1ControlRatio and 
tx2ControlRatio parameters in Table 195 for a detailed 
description. 

The Tx Rel Threshold feature lets the CLGC flag rapid changes 
from the target desired gain. Check the box next to this feature 
to enable the relative threshold. Refer to the tx1RelThreshold 
and tx2RelThreshold parameters in Table 195 for a detailed 
description. 
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Figure 247. Closed-Loop Gain Control (CLGC) Tracking  
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Figure 248. CLGC Control and Status Display 
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CLGC API 
This section describes all of the application programming 
interface (API) data structures and functions that are associated 
with the closed-loop gain control (CLGC) feature. 

CLGC API DATA STRUCTURES 
The data structures associated with the CLGC functionality are 
listed in the following subsections. 

mykonosClgcConfig_t 

The mykonosClgcConfig_t structure is the main data structure 
that stores all parameters for the CLGC configuration. The 
information in this structure is loaded into the ARM using the 
MYKONOS_configClgc() function. The unified modeling 
language (UML) representation of the structure is shown in 
Figure 249. 
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Figure 249. mykonosClgcConfig_t UML Structure  

typedef struct 

{ 

    int16_t tx1DesiredGain;  

    int16_t tx2DesiredGain;  

    uint16_t tx1AttenLimit;  

    uint16_t tx2AttenLimit;  

    uint16_t tx1ControlRatio;  

    uint16_t tx2ControlRatio; 

    uint8_t allowTx1AttenUpdates;  

    uint8_t allowTx2AttenUpdates; 

    int16_t additionalDelayOffset;  

    uint16_t pathDelayPnSeqLevel; 

    uint16_t tx1RelThreshold; 

    uint16_t tx2RelThreshold; 

    uint8_t tx1RelThresholdEn; 

    uint8_t tx2RelThresholdEn; 

} mykonosClgcConfig_t; 

 

Table 195. AD9375 CLGC Config Structure Member Description 
Structure Member Valid Values Description 
tx1DesiredGain/tx2DesiredGain −10000…+10000  Value given by 100 × (Desired Gain in dB). Represents total 

gain and attenuation from AD9375 Tx1/Tx2 output to 
ORx1/Orx2 input in (dB × 100). Default: 0. 

tx1AttenLimit/tx2AttenLimit 0…40 No typical value suggested; user must define value and can be 
set in increments of 1 dB from 0 dB to 40 dB. Parameter depends 
on power amplifier (PA) and external loopback attenuation. 
Value is set to protect PA by making sure that Tx1/Tx2 
attenuation is not reduced less than the limit during CLGC 
tracking. Default value is 0. 
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Structure Member Valid Values Description 
tx1ControlRatio/tx2ControlRatio 1…100 This parameter controls the control logic for the CLGC tracking 

on Tx1/Tx2. Higher values indicate a more aggressive change 
in the direction of the gain change. This parameter can be seen 
as a fraction of the gain change that is proportional to the 
difference between current and desired gains. Default value: 75 
which corresponds to a control ratio of 75%. 

allowTx1AttenUpdates/allowTx2AttenUpdates 0, 1 A 0 implies that the CLGC calibration runs but that the Tx1/Tx2 
attenuation values do not get updated. User can still read back 
power measurements. A 1 implies that the CLGC calibration 
runs, and Tx1/Tx2 attenuation values automatically update. 

additionalDelayOffset −64…+64 This parameter adds or reduces delay to the external sample 
delay assessed during the sample time alignment process 
performed with the CLGC initialization calibration. Resolution 
of additional delay is 1/16 of a sample. Delay offset = 
additionalDelayOffset/16. Using 16 for this parameter implies a 
1-sample delay. Default: 0. Changes in the delay offset values 
requires rerunning the CLGC initialization calibration. Because 
the effect of tuning this value on calibration performance may 
not be immediately apparent, it is recommended that a value 
similar to that in the mykonosDpdConfig_t structure be used 
here as well. 

pathDelayPnSeqLevel 0…8192 Amplitude level of broadband pseudonoise (PN) sequence 
sent out during CLGC initialization calibration. Default: 255 (−30 
dBFS = 20log10(Value/8192). Analog Devices recommends 
using the default value for this parameter unless the PA is 
highly sensitive to broadband RF input tones. The user must 
always perform DPD, CLGC, and VSWR initialization calibrations 
at the Tx attenuation value that corresponds to the final rated 
power amplifier (PA) operating power conditions, which improves 
the estimation of the path delay and reduces variability from 
run to run. 

tx1RelThreshold/tx2RelThreshold 0…10000 Value given by 100 × (Relative Gain Threshold in dB). Enforce this 
threshold by setting tx1RelThresholdEn/tx2RelThresholdEn to 1 in 
mykonosClgcConfig_t. When the CLGC is tracking at a given 
gain level in steady state, this threshold represents the maximum 
dB change allowed in currentGain from one CLGC iteration to 
the next. ERR_16 is thrown if the relative threshold is violated. 
Note that the steady state condition implies that the currentGain 
and desiredGain values are fairly close because the relative 
threshold test condition checks the currentGain against a bound 
of desiredGain ± tx1RelThreshold/tx2RelThreshold limit. 
Default value is 600 (6 dB). 

tx1RelThresholdEn/tx2RelThresholdEn 0, 1 A 1 enforces the use of tx1RelThreshold/Tx2RelThreshold limit 
check set in mykonosClgcConfig_t. A 0 bypasses this check. 
Default value is 0. 
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mykonosClgcStatus_t 

This structure contains six members that provide information 
on the closed-loop gain control (CLGC) calibration status. This 
structure can be used as an error checker and debug tool for the 
CLGC. 
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Figure 250. mykonosClgcStatus_t Structure 

 

typedef struct 

{ 

    uint32_t errorStatus; 

    uint32_t trackCount; 

    int32_t desiredGain;      

    int32_t currentGain;       

    uint32_t txGain;           

    int32_t txRms;        

    int32_t orxRms;        

} mykonosClgcStatus_t; 

 

Table 196. AD9375 CLGC Status Structure Member Description 
Structure Member Value Description 
errorStatus 0 No error. 

1 Tx is disabled. 
2 ORx is disabled. 
3 Loopback switch is closed. 
4 Data measurement aborted during capture: calibration interrupted by a higher 

priority task or calibration. This error is a warning message to note that something 
interrupted sample collection. 

5 No initialization calibration was run. 
6 Path delay not setup. 
7 CLGC is running but does not apply control. Not enough samples were collected for 

control signal generation. This error can also occur when the ORx signal is less than 
the −39 dBFS threshold. Recovering from this error requires manual intervention. 

8 Control value is out of range. 
9 CLGC feature is disabled. This error is displayed when allowTx1AttenUpdates/ 

allowTx2AttenUpdates are disabled. 
10 Tx attenuation is capped. CLGC control reaches cap limit (Tx1AttenLimit/ 

Tx2AttenLimit in mykonosClgcConfig_t, see Table 195.). 
11 Gain measurement error during tracking. 
12 No GPIO configured in single ORx configuration. 
13 Tx is not observable with any of the ORx channels.  
14 ORx tracking must be enabled; ORx_QEC tracking calibration must be enabled 

before running CLGC. 
15 Power amplifier (PA) protection activated: PA Protection hardware feature will 

preempt any CLGC control. Check GP_INT status. 
16 Relative threshold violated; currentGain of the CLGC increased more than the 

relative threshold set by tx1RelThreshold/tx2RelThreshold in mykonosClgcConfig_t. 
trackCount 0..0xFFFFFFFF Number of times CLGC has successfully run since CLGC initialization calibration. 
desiredGain −10000..+10000 Desired loop gain (can be negative if total attenuation is greater than amplification) 

from Tx output to ORx input. Desired GaindB = desiredGain/100 
currentGain −10000..+10000 Current measured gain in 1/100ths dB scale. Current GaindB = currentGain/100 
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Structure Member Value Description 
txGain 0..4000 Current Tx attenuation setting for a given channel in 0.05 dB resolution, as determined 

by the CLGC algorithm. However, this value is written to by the CLGC algorithm and 
may differ slightly from Tx attenuation returned by 
MYKONOS_getTx1/2Attenuation() due to these actions not being synchronous. 
Tx AttenuationdB = txGain/200 

txRms −2147483648..+2147483647 RMS Tx digital sample power measured at the output of the DPD actuator. 
Measurement resolution is 0.01 dB. Prms dBFS = txRms/100. 

orxRms −2147483648..+2147483647 RMS ORx digital sample power measured within the DPD block on the ORx side. 
Measuremen resolution is 0.01 dB. Prms dBFS = orxRms/100. 

 

CLGC FUNCTIONALITY API FUNCTIONS 
The application programming interface (API) functions associated 
with the closed-loop gain control (CLGC) functionality follow. 

MYKONOS_configClgc(…) 

mykonosErr_t 
MYKONOS_configClgc(mykonosDevice_t 
*device) 

Description 

This function call configures the device with the parameters in 
the CLGC data structure, mykonosDpdConfig_t. This function 
also performs some sanity checks to the data parameters (range 
and ARM state checks) in the mykonosClgcConfig_t data 
structure. This function can be called when the device is in 
either the radioOn or the radioOff state. However, not all 
parameters in the mykonosClgcConfig_t structure can be 
changed in the radioOn state. Call this function in the radioOff 
state when attempting to change the additionalDelayOffset and 
pathDelayPnSeqLevel parameters. Changes to the latter 
parameters do not take effect unless modified in a radioOff 
state and are ignored by the API and ARM. 

MYKONOS_getClgcConfig(…) 

mykonosErr_t 
MYKONOS_getClgcConfig(mykonosDevice_t 
*device) 

Description 

This function reads the CLGC configuration structure from the 
ARM memory and updates the device → tx → clgcConfig data 
structure. There are no radio state dependencies for this 
function. 

 

 

 

 

 

 

 

 

MYKONOS_getClgcStatus(…) 

mykonosErr_t 
MYKONOS_getClgcStatus(mykonosDevice_t 
*device, mykonosTxChannels_t txChannel, 
mykonosClgcStatus_t *clgcStatus) 

Description 

This function reads back the CLGC calibration status from the 
ARM processor and returns the result to the mykonosClgcStatus_t 
structure. 

Parameters 

 *device: This is the device data structure pointer from 
which the CLGC status is read back. 

 txChannel: input argument to set which Tx channel the 
function reads back the CLGC status for. Valid enumeration 
values are TX1 or TX2 only. 

 *clgcStatus: This is a pointer to the structure that contains 
the returned CLGC status information. 

MYKONOS_setClgcGain(…) 

mykonosErr_t 
MYKONOS_setClgcGain(mykonosDevice_t 
*device, mykonosTxChannels_t txChannel, 
int16_t gain) 

Description 

This function configures the tx1DesiredGain/tx2DesiredGain 
parameters in the CLGC data structure, mykonosClgcConfig_t, 
in the radioOn state. 

Parameters 

 *device: This is the device data structure pointer for which 
this function takes effect. 

 txChannel: input argument to set which Tx channel is to be 
modified. Valid enumeration values are TX1, TX2, and 
TX1_TX2. 

 gain: This is the new value written into tx1DesiredGain/ 
tx2DesiredGain. 

Note that because the update of most mykonosClgcConfig_t 
parameters is allowed in the radioOn state, use this function if 
only the tx1DesiredGain/tx2DesiredGain needs updating. 
Issuing this command (instead of configClgc() in the radioOn 
state) can also be slightly faster due to the reduced number of 
API to ARM interactions. 
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VSWR TRACKING CALIBRATION 
To enable the voltage standing wave ratio (VSWR) measurement, 
click Initialize/Reset PA Cals. Next, check off the VSWR box 
to enable the VSWR tracking calibration. The VSWR monitoring 
begins, and the VSWR Monitoring window shown in Figure 253 
starts displaying new values. To calculate the VSWR number, 
use the rms/complex gains by computing the ratio of the reflected 
gain to the forward gain to obtain Γ, as shown in Equation 58 found 
in the Voltage Standing Wave Ratio Measurement Overview 
section.  

VSWR MONITORING 
Gain 

The VSWR monitoring Forward Gain section includes the 
following: 

 RMS: forward rms gain measured from Tx to ORx path. 
 REAL: real part of the forward path complex gain. 
 IMAGINARY: imaginary part of the forward path 

complex gain. 

The VSWR monitoring Reverse Gain section includes the 
following: 

 RMS: reflected rms gain measured from antenna to ORx. 
 REAL: real part of the reflected path complex gain. 
 IMAGINARY: imaginary part of the reflected path 

complex gain. 

ORx Switch GPIO Setting 

The ORx Switch GPIO Setting section controls the switch that 
selects between the forward path and the reflected path. These 
two paths (forward and reflected) are time multiplexed into the 
ORx and controlled by the VSWR calibration via a designated 
GPIO_3.3 V pin. 

Note that to change the GPIO pin or GPIO polarity for the 
switch, the VSWR measurement must be disabled by unchecking 
the VSWR check box. 

The ORx Switch GPIO Setting section includes the following: 

 Ch1 GPIO: Use this box to select the 3.3 V GPIO pin used 
to control the VSWR switch on Tx1. 

 Ch1 Polarity: Use this box to select the polarity of the 
3.3 V GPIO pin for the forward path on Tx1 (1 = high 
level, and 0 = low level). The opposite polarity is used for 
the reflection path. 

 Ch2 GPIO: Use this box to select the 3.3 V GPIO pin used 
to control the VSWR switch on Tx2. 

 Ch2 Polarity: Use this box to select the polarity of the 
3.3 V GPIO pin for the forward path on Tx2 (1 = high 
level, and 0 = low level). The opposite polarity is used for 
the reflection path. 

VSWR State 

The VSWR monitoring VSWR State section includes the 
following: 

 Channel: The Tx channel for which the VSWR status is 
being displayed. 

 Enabled: displays whether the VSWR calibration is 
currently enabled or disabled. 

 Status: displays the VSWR error code.  
 VSWR Counter: displays the number of times the VSWR 

has been successfully scheduled since VSWR initialization 
calibration. 
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Figure 251. VSWR Monitoring Window 
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VSWR API 
This section describes all of the application programming 
interface (API) data structures and functions that are associated 
with the voltage standing wave ratio (VSWR) feature. 

VSWR API DATA STRUCTURES 
The data structures associated with the VSWR functionality are 
listed in the following subsections. 

mykonosVswrConfig_t 

The mykonosVswrConfig_t structure is the main data structure 
that stores all parameters for the VSWR measurement 
configuration. The information in this structure is loaded into 
the ARM using the MYKONOS_configVswr() function. The 
UML representation of the structure is shown in Figure 252. 
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Figure 252. mykonosVswrConfig_t UML Structure  

typedef struct 

{ 

    int16_t additionalDelayOffset;  

    uint16_t pathDelayPnSeqLevel;  

 

    uint8_t tx1VswrSwitchGpio3p3Pin;  

    uint8_t tx2VswrSwitchGpio3p3Pin;  

    uint8_t tx1VswrSwitchPolarity;  

    uint8_t tx2VswrSwitchPolarity;  

    uint8_t tx1VswrSwitchDelay_us;  

    uint8_t tx2VswrSwitchDelay_us;   

} mykonosVswrConfig_t; 

 

Table 197. AD9375 VSWR Configuration Structure Member Description 
Structure Member Valid Values Description 
additionalDelayOffset −64…+64 This parameter adds or reduces delay to the external 

sample delay assessed during the sample time alignment 
process. Resolution of additional delay is 1/16 of an 
ORx sample. Delay offset = additionalDelayOffset/16. 
Using 16 for this parameter implies a 1-sample delay. 
Default: 0. Changes in the delay offset values requires 
rerunning the VSWR initialization calibration. Because 
the effect of tuning, this value on calibration 
performance may not be immediately apparent, it is 
recommended that a value similar to that in the 
mykonosDpdConfig_t structure is used here, as well. 

pathDelayPnSeqLevel 0…8192 Amplitude level of broadband pseudonoise (PN) 
sequence sent out during VSWR initialization calibration. 
Default: 255 (−30 dBFS = 20 log10(Value/8192). Analog 
Devices recommends using the default value for this 
parameter unless the power amplifier (PA) is highly 
sensitive to broadband RF input tones. The user must 
always perform the DPD, CLGC, and VSWR initialization 
calibrations at the Tx attenuation value that corresponds 
to the final rated PA operating power conditions, which 
improves the estimation of the path delay and reduces 
variability from run to run.  

http://www.analog.com/AD9375
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Structure Member Valid Values Description 
tx1VswrSwitchGpio3p3Pin/tx2VswrSwitchGpio3p3Pin 0…11 The GPIO_3P3_x pin used to control the VSWR switch 

for Tx1/Tx2 (output from AD9375). 
tx1VswrSwitchPolarity/tx2VswrSwitchPolarity 0, 1 The GPIO_3P3_x pin polarity for the forward path of 

Tx1/Tx2, opposite used for reflection path (1 = high 
level, and 0 = low level). 

tx1VswrSwitchDelay_ms/tx2VswrSwitchDelay_us 0…255 Delay for Tx1/Tx2 VSWR calibration to expect reflection 
data at ORx (until data capture starts) after flipping the 
VSWR switch. These have microsecond resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.analog.com/AD9375


AD9371/AD9375 System Development User Guide UG-992
 

Rev. B | Page 349 of 360 

mykonosVswrStatus_t 

The mykonosVswrStatus_t structure contains members that 
provide information on the status of the voltage standing wave 
ratio (VSWR) measurement. This structure can be used as a 
status/error checker and debug tool for the VSWR. 
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Figure 253. mykonosVswrStatus_t Structure 

 

typedef struct 

{     

    uint32_t errorStatus; 

    uint32_t trackCount; 

    int32_t forwardGainRms_dB; 

    int32_t forwardGainReal; 

    int32_t forwardGainImag; 

    int32_t reflectedGainRms_dB; 

    int32_t reflectedGainReal; 

    int32_t reflectedGainImag; 

    int32_t vswr_forward_tx_rms; 

    int32_t vswr_forward_orx_rms; 

    int32_t vswr_reflection_tx_rms; 

    int32_t vswr_reflection_orx_rms; 

} mykonosVswrStatus_t; 

 

 

 

 

Table 198. AD9375 VSWR Status Structure Member Description 
Structure Member Value Description 
errorStatus 0 No error: normal VSWR operation. 

1 Tx datapath not enabled: the transmitter for this channel is currently disabled. 
2 ORx datapath is not enabled. 
3 Loopback switch is closed. 
4 VSWR initialization calibration not run: rerun VSWR initialization calibration. 
5 Path delay error: check external path and rerun VSWR initialization calibration. 
6 Data measurement was aborted: warning message to show that 

something interrupted data collection. 
7 VSWR disabled: check tracking calibration mask. 
8 Entered calibration but VSWR measurement could not be completed. 
9 No GPIO pin configured for single ORx configuration. Used in shared ORx 

mode. 
10 Tx is not observable with any of the ORx channels. Used in shared ORx mode. 

trackCount 0..0xFFFFFFFF Number of times VSWR has successfully run since VSWR initialization 
calibration. 

forwardGainRms_dB 0..1000 Forward rms gain measured from Tx to ORx path (1 = 0.01 dB gain). 
forwardGainReal 0..1000 Real part of the forward path complex gain (1 = 0.01 linear gain). 
forwardGainImag 0..1000 Imaginary part of the forward path complex gain (1 = 0.01 linear gain). 
reflectedGainRms_dB 0..1000 Measured reflected path gain in rms (1 = 0.01 dB gain). 
reflectedGainReal 0..1000 Real part of the reflected path complex gain (1 = 0.01 linear gain). 
reflectedGainImag 0..1000 Imaginary part of the reflected path complex gain (1 = 0.01 linear gain). 
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Structure Member Value Description 
vswr_forward_tx_rms −2147483648..+2147483647 RMS Tx digital sample power measured at the output of the DPD actuator 

in the forward measurement mode. Measurement resolution is 0.01 dB. 
Expect a 21 dB offset from the JESD204B dBFS value as well as from the 
txRms data reported by the CLGC. Prms dBFS = txRms/100 +21 dB. 

vswr_forward_orx_rms −2147483648..+2147483647 RMS ORx digital sample power measured at the DPD block for t.he ORx 
data in the forward measurement mode. Measurement resolution is 
0.01 dB. Expect a 21 dB offset from the JESD204B dBFS value as well as 
from the txRms data reported by the CLGC. Prms dBFS = orxRms/100 +21 dB. 

vswr_reflection_tx_rms −2147483648..+2147483647 RMS Tx digital sample power measured at the output of the DPD actuator 
for the reverse measurement. Measurement resolution is 0.01 dB. Expect a 
21 dB offset from the JESD204B dBFS value as well as from the txRms data 
reported by the CLGC. Prms dBFS = txRms/100 +21 dB. 

vswr_reflection_orx_rms −2147483648..+2147483647 RMS ORx digital sample power measured at the DPD block for the ORx 
data in the reverse measurement mode. Measurement resolution is 
0.01 dB. Expect a 21 dB offset from the JESD204B dBFS value as well as 
from the orxRms data reported by the CLGC. Prms dBFS = orxRms/100 +21 dB.  

 

VSWR FUNCTIONALITY API FUNCTIONS 
The application programming interface (API) functions associated 
with the voltage standing wave ratio (VSWR) functionality are 
listed in the following subsections. 

MYKONOS_configVswr(…) 

mykonosErr_t 
MYKONOS_configVswr(mykonosDevice_t 
*device)   

Description 

This function call configures the device with the parameters in 
the VSWR data structure, mykonosVswrConfig_t. This function 
also performs some sanity checks to the data parameters (range 
and ARM state checks) in the mykonosVswrConfig_t data 
structure. The device must be in the radioOff state before this 
function can be called. 

MYKONOS_getVswrConfig(…) 

mykonosErr_t 
MYKONOS_getVswrConfig(mykonosDevice_t 
*device) 

Description 

This function reads the VSWR config structure from the ARM 
memory and updates the device → tx → vswrConfig data structure. 
There are no radio state dependencies for this function. 

MYKONOS_getVswrStatus(…) 

mykonosErr_t 
MYKONOS_getVswrStatus(mykonosDevice_t 
*device, mykonosTxChannels_t txChannel, 
mykonosVswrStatus_t *vswrStatus) 

Description 

This function reads back the VSWR calibration status from the 
ARM processor and returns the result to the 
mykonosVswrStatus_t structure. 

Parameters 

• *device: This is the device data structure pointer from 
which the VSWR status is read back. 

• txChannel: Input argument to set which Tx channel the 
function reads back the VSWR status for. Valid 
enumeration values are TX1 or TX2 only. 

• *vswrStatus: This is a pointer to the structure that contains 
the returned VSWR status information. 

 

 

 

 

 

 

 



AD9371/AD9375 System Development User Guide UG-992 
 

Rev. B | Page 351 of 360 

SYSTEMS DESIGN CONSIDERATIONS 
DPD TUNING PROCEDURE 
The following tuning procedure is suggested to iteratively find 
the digital predistortion (DPD) configuration parameters that 
optimize performance for any given power amplifier (PA). As 
the DPD affects and is affected by many system considerations, 
a balance must be found between the different performance 
metrics such that all metrics are within the limits of tolerance of 
the application or use case. Refer to the mykonosDpdConfig_t 
section for more details regarding the parameters being 
adjusted here. 

1. Starting with the default setup and a given test waveform 
(for example, 1 × 20 MHz E-TM 1.1), apply the DPD and 
note the adjacent channel leakage ratio (ACLR) and other 
systems metrics. 

2. Choose an appropriate DPD modelVersion for the given 
PA: the model that minimizes asymmetry and performs 
close to, if not better than, the values noted in Step 1 is 
probably the best suited for the given PA. 

3. Increase or decrease the damping or model averaging 
factor such that any fluctuations in the spectrum are down 
to an acceptable minimum. 

4. Increase or decrease the samples per update parameter, 
such that any fluctuations in the spectrum (time varying 
ACLR) are down to an acceptable minimum. Note that 
increasing the value of this parameter implies longer DPD 
adaptation cycles and vice versa. For some PAs, increasing 
this value may improve the spectral performance 
(regrowth) further away from the local oscillator (LO) 
frequency (dc). Because Step 3 and Step 4 are both 
complementary and similar in some respects, tuning 
iteratively between these steps before proceeding is 
recommended. 

5. Note the external sample delay in the DPD Status section 
leading up to this step (see Figure 243). Adjust the 
additionalDelayOffset value in decrements or increments 
of 1/16 of a sample starting from the default value of 0. 
Iteratively, find the best value of delay offset that improves 
the ACLR value (up to 2 dB to 3 dB can be expected in 
some cases). For some fractional sample delays, the AM-
AM plot starts misbehaving. It is recommended that the 
user not exceed these arbitrary boundary values. 

6. Once some acceptable level of performance is achieved, 
adjust the frequency weights to shape the DPD error 
spectrum more evenly and correct asymmetries in the 
ACLR. 

7. Enable the closed-loop gain control (CLGC) if desired 
(refer to the CLGC Tracking Cal section for controlling the 
CLGC). Iterate Step 1 through Step 6 as needed with each gain 
level. Note that the compensation of PA gain flatness vs. 
frequency or temperature is not an objective of the AD9375 
DPD/CLGC and must be handled by the system of the 
customer (baseband processor (BBP) or other control). 

8. Adjust the modelPriorWeight such that the right level of DPD 
adaptation agility or inertia is achieved at different attenuation 
and/or baseband power levels. Refer to Table 193 and the 
DPD Model Save/Restore Functionality section for more 
guidance. 

Refer to the debug notes in the Troubleshooting Issues by 
Making Changes to the DPD Configuration Structure section. 

DPD MODEL SAVE/RESTORE FUNCTIONALITY 
The save and restore functionality included in the AD9375 is 
designed to speed up or enhance the DPD adaptation in the 
field. This function can save the DPD model data during the 
factory calibration phase of base station equipment deployment, 
such that the saved model(s) can be reused when the operating 
conditions in the field are similar to the factory test conditions. 
Therefore, by training the DPD on a known set of parameters 
and test conditions considered difficult, and by choosing a 
higher value of the model prior weight (see Table 193) when 
restoring the saved model, DPD gets a head start on tackling 
similar conditions in the field. 

An alternate application for this functionality is when frequency 
hopping within certain bands is desired, where the latest DPD 
model can be saved before switching frequencies, and a host 
baseband processor (BBP) can restore this saved model when 
returning to the older frequency of operation. The user is 
encouraged to devise a scheme that suits the application (for 
example, with the help of the parameters detailed in Table 194) 
to determine whether the current DPD model is a good model 
or not. An example is using the dpdModelErrorPercent as 
guidance for checking a predefined acceptable threshold before 
saving the DPD model. 

Note that it is the responsibility of the user to record metadata, 
such as the frequency of operation, DPD configuration 
structure, and the Tx channel and PA used, while saving the 
DPD model data. Restoring a DPD model to a different Tx path 
or configuration than from when the model was saved does not 
yield the desired performance. Ideally, with all else being equal, 
restoring a saved model replicates the exact same DPD 
performance as when the DPD model was saved. Note that the 
device needs to be in radioOff mode before saving or restoring. 

Note that because this DPD relies on having a good prior model 
when adapting to PA behavior under different operating 
conditions, users are highly encouraged to leverage the save and 
restore feature for preloading a prior model. 
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Practical System Considerations to When Using Save 
and Restore 

As mentioned in the DPD Model Save/Restore Functionality 
section, the save and restore feature is a useful technique to 
jumpstart the digital predistortion (DPD) with a known good 
model. However, the following important practical system 
considerations and trade-offs must be considered while 
evaluating and implementing this feature:  

• The quality of the saved DPD model is completely dependent 
on the power amplifier (PA) type and conditions under 
which the DPD model was saved. This dependence implies 
that if the operating conditions between when the factory 
calibration was performed and when the basestation 
equipment first boots up in the field are drastically 
different, the saved DPD model may lead to poor DPD 
adapatations. For example, if the prior model was saved 
when the system was operational for fifteen minutes in the 
factory, and it had sufficient time to self heat and reach 
thermal equilibrium with the environment while the boot-up 
conditions are drastically different and may be either hotter 
or cooler than the factory conditions. 

• Temperature range considerations. Because the behavior of 
a PA can change with operating temperature, it may be 
necessary to save the prior models in different temperature 
regions. For example, consider saving three models for 
room, hot, and cold temperature ranges. 

• Massive multiple input, multiple output (MIMO) system 
design. When designing massive MIMO systems, it can 
become impractical to save models for each path of a 
64T64R system, for instance, during the factory calibration 
due to time, memory, and/or practical limitations. 

In addition, note that, due to the limitations in the use cases 
previously described, it is recommended to also explore 
alternative options, such as booting the system with no prior 
model (for example, right after the DPD initialization calibration) 
and monitoring the DPD status for indications on when a given 
model of a channel is suitable for saving to memory. Controlling 
when the highPowerModelUpdate member in the Mykonos-
DpdConfig_t is enabled allows the system to be setup to operate 
with a prior model. If the output spectrum cannot be retrieved in 
the system of the user (that is, no ORx is routed), the DPD 
model error and error status in mykonosDpdStatus_t can give a 
fair indication of whether a given channel has adapted successfully. 
Some experimentation is required to determine what works best 
for the overall system of the user, and trade offs between 
software complexity and system requirements may be needed. 

 

 

 

 

 

GUIDELINES FOR DEVELOPING AND 
TROUBLESHOOTING A DPD SYSTEM 
In the course of developing a system that uses any DPD solution, 
there are a number of tests that must be run to pass conformance 
testing limits set by regulatory bodies such as 3GPP, the FCC, 
and ETSI. Therefore, while it is important to verify that the 
basic DPD requirements of the user are met with the integrated 
DPD solution of the AD9375 (such as adjacent channel leakage 
ratio (ACLR) correction with desired occupied bandwidth), the 
user is also encouraged to study various other system design 
metrics, such as time division duplexed (TDD) configuration 
timing and its impact on the ARM calibrations scheduler, RF 
trace and antenna coupling in a MIMO application, impact on 
factory calibration and test times when using the save/restore 
functionality for loading a good prior model, studying the 
impact of 3GPP LTE E-TM2 or broadcast channel only 
waveforms on spectrum emission mask (SEM) and ACLR 
requirements, and so on. Most of these topics are covered under 
separate headings in the following sections, with this section 
dedicated to troubleshooting DPD specific problems for a 
system that uses the AD9375. These subsections are especially 
useful when the customer has migrated from the evaluation 
phase to bringing up a system prototype. 

Dissecting the DPD, CLGC, and VSWR Status Logs 

One of the best possible resources that a user has access to when 
identifying system issues is to make extensive use of the DPD, 
closed-loop gain control (CLGC), voltage standing wave ratio 
(VSWR), and other calibration status structures. It is highly 
recommended that the user build diagnostics into the RF 
software suite that allow the baseband processor (BBP) to 
collect time stamped status logs. This strategy helps the user 
identify issues in the system by observing the response of 
calibrations to various stimuli (waveforms, operating conditions, 
and so on) during system bring-up as well as during normal 
field operation. Because the DPD family of calibrations are 
dependent on, or seek to control components that reside 
outside of the AD9375, the calibrations are sensitive to any 
system level disturbances. Therefore, it is important to have 
access to contextual diagnostic status readbacks that allow the 
analysis of the calibration statuses of the system. 
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EVM Tests 

More often than not, the preliminary digital predistorition 
(DPD) evaluation of the user centers around adjacent channel 
leakage ratio (ACLR) tests for various signal conditions. 
However, because the closed loop of the DPD extends well 
beyond the AD9375 and encompasses the power amplifier (PA) 
and any other loopback components, any variation that affects 
the output spectrum is expected to be corrected by the DPD 
algorithm This correction necessitates the study of both out of 
band (ACLR and SEM) and in-band (error vector magnitude 
(EVM)) metrics. Because the EVM captures any latent phase 
issues in the PA and other loopback components, it is important 
to study the residual EVM of the entire signal chain with and 
without DPD with various signals and in different operating 
conditions. For example, short duration pulses trigger most PA 
gain and phase drifts. The E-TM2 waveform has sparsely 
occupied data resource blocks (RBs) and contains a distinct 
time domain pulsed signature when compared to the E-TM3.1 
waveform, which looks more or less uniform (due to the fully 
occupied nature of the waveform). Therefore, performing EVM 
tests along with ACLR tests results in a better system check. 

Troubleshooting Issues by Making Changes to the DPD 
Configuration Structure 

When initially tuning for ACLR and SEM specifications with a 
static signal, it is recommended to set the damping or model 
averaging factor to 1 and the modelPriorWeight to 0. The 
significance of these parameters becomes more apparent when 
dealing with dynamic signal cases where the baseband processor 
(BBP) may switch between different types of signals and/or be 
accompanied by ramping power up and down digitally for entire 
waveforms, or by controlling certain RBs. By making these 
changes, the objective is to identify if the damped correlations 
or the prior model has degraded the performance. These tests 
are especially useful when performing long-term stability tests. 

DESIGNING A SYSTEM FOR A TDD APPLICATION 
Long term evolution (LTE) supports the use of a time division 
duplexed (TDD) frame, and the AD9375 DPD can be used 
when the device is set up in TDD mode. Refer to the TDD 
Configuration and Setup section for more details. TDD 
configurations vary from a downlink (DL) to uplink (UL) ratio 
of 20% (TDD Configuration 0) to 80% (TDD Configuration 5). 
Because DPD runs as an ARM calibration only when the ORx is 
configured in INTERNAL_CALS mode, the amount of DL data 
observable by DPD depends greatly on the TDD configuration 
used and the time allowed by the user for the AD9375 to perform 
all of its calibrations. Therefore, when some low DL duty-cycle 
configurations are used, the possibility exists that certain 
calibrations do not get sufficient time to execute. 

 

 

 

 

To understand this further, it is important to remember that the 
ARM schedules all of the calibrations based on a priority table. 
Each calibration attempts to run and capture the requisite 
number of sample points as soon as the update interval expires, 
with higher priority calibrations having the ability to interrupt 
the lower priority calibrations at specific points within a the 
execution of a calibration. Therefore, it is shown that certain 
low priority calibrations fail to update in certain TDD 
configurations. See Table 199 for the update rate for the 
AD9375 calibrations.  

Table 199. Default Priority and Update Intervals for the 
AD9375 Calibrations 
Priority Calibration Update Interval (ms) 
1 Tx local oscillator leakage 

(LOL) external 
2000 

2 DPD 250 
3 Closed-loop gain control 

(CLGC) 
250 

4 Voltage standing wave ratio 
(VSWR) 

1000 

5 Tx quadrature error 
correction (QEC) 

30000 

6 ORx QEC 1000 
7 Rx QEC 5 

Because the DPD configuration structure allows the capturing 
of a variable number of samples, it is important to tune the ACLR 
performance not just in frequency division duplex (FDD) but 
also in TDD, such that a good trade-off exists between acceptable 
ACLR performance and other metrics, while also allowing 
sufficient time for the lower priority calibrations to run. In the 
event that the lower priority calibrations do not run, performance 
deviates from that stated in the AD9375 data sheet. When the 
samples parameter fails to provide the necessary margin for 
calibrations to run, consider changing the update rate of the 
DPD and CLGC calibrations (because these are the calibrations 
that take the longest times for their respective data captures). To 
inquire about instructions for changing the update rate, go to the 
following: www.analog.com/en/applications/technology/sdr-
radioverse-pavilion-home/rf-transceiver-support.html. 
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EXTERNAL LOOPBACK FLATNESS REQUIREMENTS 
The adjacent channel leakage ratio (ACLR) improvement that 
the AD9375 digital predistortion (DPD) can provide degrades 
at frequencies where the loopback channel is not flat. The 
loopback flatness requirement at a given frequency depends on 
the ideal DPD ACLR improvement at the given frequency. The 
ideal ACLR improvement is defined as the ACLR improvement 
observed for the PA with the DPD using a near perfect loopback 
channel (over 5 × bandwidth). 

The theoretical formula for how much the loopback channel 
gain can vary without degrading the ACLR from this ideal case 
by more than 1 dBc follows: 
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where: 
ACLR is the ideal ACLR improvement at the frequency of interest. 
GAIN is an allowed gain at that frequency. Note that GAIN is given 
in dB relative to the loopback gain at the LTE carrier frequency.  

For example, in Figure 255, a single 20 MHz LTE carrier is 
transmitted and centered on the local oscillator (LO) through a 
gallium nitride (GaN) power amplifier (PA) and with a near 
ideal loopback channel. The ACLR improvement with DPD is 
observed as 28 dBc at ±10 MHz.  

Looking at Figure 254, gain flatness at ±10 MHz must be <0.1 dB 
to not degrade digital predistortion (DPD) performance (at 
±10 MHz) by more than 1 dBc from the ideal loopback case. 

Outside of the ±10 MHz frequency range, the ACLR improvement 
is smaller, 22 dBc at ±20 MHz. Then, Figure 254 shows that the 
required loopback flatness out to this frequency is only < 0.25 dB. 
At ±30 MHz, the ACLR improvement is only 12 dBc. According 
to Figure 254, loopback flatness is then relaxed and must only be 
<0.8 dB. Beyond about ±50 MHz, the ideal ACLR improvement is 
only 5 dBc. In this case, the loopback channel can have up to 
1.6 dB greater gain or as low as −1.9 dB less gain and not affect 
performance. Note that if no ACLR improvement occurs at a 
given frequency, the flatness at that frequency can be as poor as 
±3 dB and not cause noticeable distortion. 
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Figure 254. Range Over Which Loopback Gain Can Vary Without Affecting 

DPD ACLR Improvement by More Than 1 dBc of Degradation 

Therefore, the DPD loopback flatness requirements are a 
function of the desired ACLR improvement. To not degrade 
optimal predistortion results by more than 1 dB, obey the 
flatness requirements shown in Figure 254. 
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Figure 255. Power Spectral Density of PA Output Showing Before (Magenta) and After DPD (Yellow)  
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CLGC CONVERGENCE TIME 
The closed-loop gain control (CLGC) convergence time is 
typically < 5 seconds for full stable convergence. Figure 256 shows 
a power vs. time graph of the convergence time required for a 
20 dB change in the CLGC tx1DesiredGain/tx2DesiredGain 
parameter (see Table 195). Note that the CLGC is continuously 
tracking when these changes are applied, and that the AD9375 
is in radioOff mode when the config parameter is updated. 
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Figure 256. Power vs. Time Showing CLGC Tracking a 20 dB Change in the 
Desired Gain Parameter  

DPD LIMITATIONS 
The following subsections outline AD9375 digital predistortion 
(DPD) limitations and guidelines to observe during system 
design that allow workarounds of these limitations.  

Need for Crest Factor Reduction 

The AD9375 DPD seeks to predistort the true radio frequency 
(RF) behavior of a power amplifier (PA) using a simple behavioral 
model with a limited number of polynomial terms. Therefore, 
with the reduced complexity of the DPD solution, it is difficult 
to model large behavioral variations in the PA at widely varying 
power levels. One of the easiest ways to improve the reliability 
and stability of DPD is to employ a crest factor reduction (CFR) 
algorithm in the baseband processor (BBP) to reduce the peak 
to average ratio (PAR) of the baseband signal seen by the DPD 
block. The CFR algorithm helps to prevent cases where the 
DPD observes a sparse sample set of the nonlinear behavior of 
the PA (as is the case with high PAR signals) and makes poor 
guesses or extrapolations of the unobserved behavior. These 
erroneous estimates can often manifest as spurious signals 
adjacent to the desired signal on a spectrum analyzer. For 
example, if a user starts DPD tracking with an E-TM2 signal 
(PAR = ~12 dB) and no prior information, the DPD sees a very 
poor excitation of the nonlinear PA behavior and makes poor 
assumptions. The situation is made even worse when the prior 
model of the DPD is corrupted with this poor data set. The 
solution is to train the DPD on a fully occupied E-TM3.1-like 
signal with an 8 dB PAR or lower to update the prior model 

with the important nonlinear characteristics of the PA before 
switching to an E-TM2 or similar broadcast signal. Note that the 
PA must be operating at its rated power for the model to be a 
meaningful prior model. 

Analog Devices highly recommends the use of a CFR algorithm, 
however rudimentary, to improve the stability of the DPD 
algorithm. Even though the user may devise a scheme involving 
the DPD Model Save/Restore Functionality, the need for a CFR 
is not entirely obviated, and the CFR must only be used after 
consulting with an Analog Devices representative at 
www.analog.com/en/landing-pages/001/sdr-radioverse-
pavilion/support.html. 

Maximum Occupied Signal Bandwidth 

The maximum occupied linearizable signal bandwidth for most 
PAs is 40 MHz with this DPD. Some PAs may be linearizable at 
wider RF bandwidths (contiguous or noncontiguous carrier 
aggregation); however, typical levels of ACLR correction with 
DPD cannot be guaranteed nor justified in these cases. For PA 
recommendations that suit specific applications, consult with an 
Analog Devices representative at www.analog.com/en/landing-
pages/001/sdr-radioverse-pavilion/support.html. 

Using DPD with GaN PAs 

Even though the AD9375 DPD models the RF behavior at 
baseband of a given PA and doesn’t really care about the PA 
process type nor design architecture, certain types of PAs such 
as gallium nitride (GaN) PAs can pose significant linearization 
challenges. Note that some GaN PAs may be linearizable after 
following the standard tuning procedure; however, there exists a 
very clear motivation to look at specific system level tests to qualify 
a PA with DPD. For example, even though the ACLR performance 
may be within the system design specifications, it is important 
to also measure error vector magnitude (EVM) for standard 
signals such as E-TM3.1 and E-TM2. For PA recommendations 
that suit user specific applications, consult with an Analog 
Devices representative at www.analog.com/en/landing-
pages/001/sdr-radioverse-pavilion/support.html. 

OTHER CONSIDERATIONS 
The following are other considerations to keep in mind: 

 It is recommended to keep Tx to ORx isolation greater
than −55 dBc to avoid any negative effects on DPD
performance, which is a useful consideration to keep in
mind during printed circuit board (PCB) layout.

 The minimum ORx rms power threshold required by the
CLGC is set to −39 dBFS by default; however, this number
can be modified, if required, at the expense of accepting
some degradation in tracking tolerance at ORx power
levels below −39 dBFS. To inquire about setup instructions,
go to www.analog.com/en/landing-pages/001/sdr-
radioverse-pavilion/support.html.

http://www.analog.com/AD9375
http://www.analog.com/AD9375
http://www.analog.com/AD9375
http://www.analog.com/en/landing-pages/001/sdr-radioverse-pavilion/support.html
http://www.analog.com/en/landing-pages/001/sdr-radioverse-pavilion/support.html
http://www.analog.com/en/landing-pages/001/sdr-radioverse-pavilion/support.html
http://www.analog.com/en/landing-pages/001/sdr-radioverse-pavilion/support.html
http://www.analog.com/AD9375
http://www.analog.com/en/landing-pages/001/sdr-radioverse-pavilion/support.html
http://www.analog.com/en/landing-pages/001/sdr-radioverse-pavilion/support.html
http://www.analog.com/en/landing-pages/001/sdr-radioverse-pavilion/support.html
http://www.analog.com/en/landing-pages/001/sdr-radioverse-pavilion/support.html


AD9371/AD9375 System Development User Guide UG-992
 

Rev. B | Page 357 of 360 

TYPICAL TEST SETUP AND DPD PERFORMANCE
The SKY66297-11 power amplifier (PA) is optimized for signals 
of no more than 20 MHz bandwidth. A waveform setup with a 
total bandwidth greater than 20 MHz pushes the PA out of its 
optimized range, and performance measures, such as the adjacent 
channel leakage ratio (ACLR) and error vector magnitude 
(EVM), may start to degrade. This degradation is due to 
limitations of the PA and cannot necessarily be attributed to the 
digital predistortion (DPD) algorithm. To see the full benefit 
that the AD9375 DPD solution can deliver, the PA must be 
tested using signals that conform to the limitations of each 
individual PA. As a first order test to confirm the DPD 
performance, recreate similar settings as shown in Figure 257 
and Figure 258. 

Figure 257 shows a typical setup for testing the DPD with the 
SKY66297-11 PA while keeping the PA within its optimized 
bandwidth. Note that these are the initial conditions and some 
configurations inputs can be changed to achieve better 
performance. Prior to enabling the DPD, the AM-AM plot must 
show compression (weak nonlinearity). If not, reduce the Tx 
attenuation until the PA AM-AM output starts to roll over and 
compress. Figure 258 shows the DPD performance with the 
closed-loop gain control (CLGC) enabled. The ORx Gain Index 
can be increased up to a point where most of the points on the 
AM-AM plot are close to the linear curve as possible. The 
ACLR achieved using this setup after enabling DPD is typically 
−50 dBc (or better) at a 28 dBm output power (POUT). 
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Figure 257. Typical Test Setup 
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Figure 258. DPD Performance with CLGC Enabled 
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TDD SETUP INSTRUCTIONS 
Apart from the normal user actions necessary for digital 
predistortion (DPD) operation, take the following steps to perform 
the DPD with time division duplexed (TDD) waveforms. 

1. Program the device to operate in TDD mode using the TES 
or scripts. 

2. Disconnect from the TES and launch the DPD GUI. 
Because the DPD GUI only has frequency division duplex 
(FDD) waveforms in its library, use the Custom waveform 
dropdown menu to load the desired TDD waveform. Refer 
to the Waveform Setup section for more information. 

3. Close the DPD GUI and connect using the TES. Navigate 
to the TDD/FDD Switching tab and set up the Tx and Rx 
frame timing according to the baseband signal loaded in 
Step 2. Refer to Figure 259 for a Configuration 1 setup. 

4. Choose the tracking calibration timing to observe different 
Tx or downlink (DL) bursts in the TDD waveform (ORx 1 
and ORx2 cannot be active at the same time) to enable the 
DPD to adapt to both the Tx1 and the Tx2 outputs. Allow 
for some guard period (variable) around the Tx switching 

time to maximize DPD performance. Alternatively, the 
user can enable tracking calibrations throughout the frame 
so that Rx calibrations can also be scheduled during Rx or 
uplink (UL) bursts. Note that, by default, the DPD, the 
closed-loop gain control (CLGC), and the voltage standing 
wave ratio (VSWR) do not track in ORx1 or ORx2 path 
source modes. 

5. Click SetUp TDD Timings → Enable Tx Data Transmit to 
start the TDD bursts. After disconnecting from the TES, 
running the DPD initialization calibration, and enabling 
the DPD adaptation, observe the DPD status. Note that a 
spectrum analyzer must be used for observing the spectrum 
because the ORx data display (ACLR and AM-AM plots) 
used in the GUI cannot display TDD bursts. 

Alternatively, the TES Transmit Data tab can load a TDD 
waveform (in this case, skip Step 2). However, the DPD must be 
separately enabled. If there is some misalignment observed in 
gated measurements, repeat Step 5 until the frame bursts are 
properly aligned. 
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Figure 259. TES TDD Configuration 1 Waveform Switching Configuration with Tx Tracking Calibrations  
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Figure 260. TDD Configuration 1 Waveform with Digital Predistortion (DPD), Gated PXA Measurement 
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