
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3698

Keywords: MAXQ,MAXQ2000,Rowley,CrossWorks,ANSI C,C compiler

APPLICATION NOTE 3698

Getting Started with Rowley CrossWorks and the
MAXQ2000 Evaluation Kit
Dec 22, 2005

Abstract: The MAXQ2000 is a powerful, low-cost, low-power microcontroller with considerable peripheral
support for many applications. With the support of Rowley Associates' powerful CrossWorks tools for the
MAXQ development enviroment, complex applications can be written in C and debugged. The application
note shows how to set up the MAXQ2000 Evaluation Kit and get started using the CrossWorks tools. As
an application, a simple running counter on an LCD illustrates the functions of both the MAXQ2000
Evaluation Kit and CrossWorks.

Overview
The MAXQ microcontroller development platform is supported by Rowley Associates' CrossWorks
programming tools. This application note describes how to use CrossWorks v.1.0 and the MAXQ2000
Evaluation Kit to create, build, and debug applications written in C and targeted for the MAXQ platform.
These instructions should remain applicable for later versions of CrossWorks. Features of the
MAXQ2000 microcontroller are demonstrated as part of the Setting Up description below.

Setting Up the MAXQ2000 Evaluation Kit
Before we start writing code, we must connect the MAXQ2000 evaluation kit.

The kit comes with three boards, one of which has a small LCD screen. Figure 1 shows the largest
boardwith the LCD daughterboard connected. This is the actual MAXQ2000 EV kit, which we will discuss
later. Take the LCD board and connect it to the header on the MAXQ2000 Evaluation Kit board (Figure
1) labeled J3.

Page 1 of 15

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/maxq2000-kit
http://www.maximintegrated.com/maxq2000-kit

Figure 1. MAXQ2000 Evaluation Kit with LCD board attached.

The MAXQ2000 loader and debug engine communicate using the JTAG protocol. Because virtually no
general-purpose, commercially available JTAG adapters exist for personal computers, Dallas
Semiconductor provides a Serial-to-JTAG converter board, the third board in the evaluation kit. Use the
small 10-pin cable included with the evaluation kit to attach the header labeled J4 on the MAXQ2000
Evaluation Kit to the header labeled P2 on JTAG board. See Figure 2. Note that the red side of the
connector is on the side marked as pins 1 and 2 on both boards.

Page 2 of 15

Figure 2. MAXQ2000 Evaluation Kit connected to JTAG board.

There should be three jumpers placed on the MAXQ2000 Evaluation Kit. Pins 1 and 2 of header JU1
should be jumpered together. Similarly, pins 1 and 2 of header JU2, and pins 1 and 2 of header JU3
should be jumpered together. In addition, ensure that the high-frequency crystal is placed at Y1 (near
the microprocessor on the board). The demonstration code in this application note assumes a 16Mhz
crystal, which is included as part of the evaluation kit. The JTAG board should also have three jumpers
placed on headers JH1, JH2, and JH3.

A 5V ±5% DC power supply, center positive, is required for this setup. Refer to the MAXQ2000
Evaluation Kit documentation for more information on the power-supply requirements. Connect the
power supply to the power jack, J2, on the JTAG board.

Finally, we connect our PC serial port to the JTAG board. Use a normal, 9-pin, straight-through serial
cable to connect one of the serial ports on your computer to the serial port on the JTAG board. NOTE:
Do not connect to the serial port on the MAXQ2000 Evaluation Kit. Figure 3 shows a proper connection.

Page 3 of 15

Figure 3. Correct position for the serial cable attached to JTAG board.

We are now ready to start working with the CrossWorks tools.

Creating a MAXQ2000 Project in CrossWorks
Rowley Associates provides a fully-functional version of CrossWorks for MAXQ with a 30-day evaluation
license which can be downloaded from their website at: www.rowley.co.uk/maxq/index.htm. Follow the
instructions during installation, choosing the defaults for installation location and other options. Note that
Rowley Associates' CrossWorks for MAXQ is currently only available for Windows platforms. You will
need to obtain a 30-day product activation key from Rowley Associates by email before proceeding;
follow the instructions on Rowley Associates' website under Support: Evaluating CrossWorks.

After installation is complete, start CrossWorks for MAXQ by selecting the following links from the Start
Menu: Rowley Associates Limited, then CrossWorks MAXQ 1.0, then CrossStudio. The main
window will open with an overview of the features available in CrossWorks.

Create a new project by selecting File, then New, then New Project from the menu. In the dialog box
which appears, select C Executable from the templates, enter a name and location for your new project,
and click OK (See Figure 4).

Page 4 of 15

http://www.rowley.co.uk/maxq/index.htm

Figure 4. New Project options dialog window.

In the Project Setup dialog which follows (Figure 5), verify that the MAXQ2000 is selected for the Target
Processor option. The rest of the settings can be left at their default values. Click Finish to generate
the new MAXQ2000 project.

Page 5 of 15

Figure 5. New Project Setup dialog window.

Next, we need to enter enough code to make the MAXQ2000 Evaluation Kit do something interesting. If
the Project Explorer window is not open, open it by selecting View and then Project Explorer. Now
open the main.c file from the Project Explorer window by double-clicking on it. Enter the following code
(deleting all the original code in main.c first):

#include <MAXQ2000.h>

void main(void)
{
 int i = 0;
 int j = 0;
 int k = 1;

 LCRA = 0x03E0; // Set LCD configuration
 LCFG = 0xF3; // Set up all segments as outputs, normal operation
 // mode, and enable display.
 while (1) {
 for (i = 0; i < 500; i++) {
 for (j = 0; j < 500; j++) {
 // delay loop
 }
 }
 k = (k << 1);
 if (k == 64) {
 k = 1;
 }
 LCD0 = k;
 LCD1 = k;
 LCD2 = k;
 LCD3 = k;
 }
}

After this code has been entered, make sure that the MAXQ2000 Evaluation Kit board and Serial-to-
JTAG board are powered up and connected as described earlier. The status bar at the bottom of the
CrossWorks window should have an indicator reading MAXQ Serial to JTAG with a yellow light next to it.
If, however, there is a Disconnected indicator with a grey light next to it, connect to the Serial-to-JTAG
board by selecting Target, and then Connect MAXQ Serial to JTAG from the menu.

Once the Serial-to-JTAG board is connected and ready, build and execute the project code by selecting
Build, then Build and Run from the menu. A series of messages ending with Verify Completed should
appear in the Output window; the LCD segments on the MAXQ2000 Evaluation Kit display should begin
animating as the code runs.

The code shown above demonstrates several features of CrossWorks for MAXQ. First, all the registers
for the MAXQ2000 are predefined in the MAXQ2000.h include file. This file is shipped with CrossWorks
and is located in the directory %Program Files%\Rowley Associates Limited\CrossWorks
MAXQ 1.0\include. This directory is searched automatically when projects compile, so there is no
need to copy the MAXQ2000.h file into your project directory.

Including the MAXQ2000.h file in the project allows code to reference all the MAXQ2000's internal
registers directly from C, as shown above, with the registers LCRA, LCFG, LCD0, LCD1, LCD2, and
LCD3. For the full list of system and peripheral registers supported by the MAXQ2000, refer to the
MAXQ2000 User's Guide Supplement.

Note: Registers whose names include embedded brackets, such as A[0] and DP[0], must be
referenced in CrossWorks with underscores, as A_0 and DP_0. Additionally, individual register

Page 6 of 15

http://www.maximintegrated.com/products/microcontrollers/pdfs/MAXQ2000_UG.pdf

bits may not be set directly from C code, so IMR.0 = 0 is not allowed.

Features of the MAXQ2000 Evaluation Kit
Before moving on to the CrossWorks debugger, we will set up a more in-depth application which
demonstrates some of the features of the MAXQ2000 evaluation kit board. The code for this example is
available for download.

This application displays a running counter value on the LCD which constantly increments or decrements
like a stopwatch timer. The counter value rolls over at 19999, the maximum value which the LCD can
display. Two pushbuttons on the MAXQ2000 Evaluation Kit board are programmed to act as control
switches for this application:

Pressing SW5 causes the counter value to reset to 0000.
Pressing SW4 causes the counter to reverse direction. If it was previously counting upward, it will
begin counting downward, and vice versa. If the counter drops below 0, it rolls under to 19999.

To change the application code, right-click on main.c in the Project Explorer window and select
Remove from the pop-up menu. Next, right-click on Source Files and select Add Existing File. Select
the demo2000.c file you downloaded from the above link. After the file has been added to the project,
select Build, and then Build and Run from the menu. The new application should compile, load, and
execute on the MAXQ2000 Evaluation Kit. After the application is running, check that all the DIP
switches on the board are turned off except for SW6.2 and SW6.5, which should be turned on.

Now is a good time to demonstrate one of the more useful features of the MAXQ2000 Evaluation Kit—
the RESET button. On the low left side of the Evaluation Kit board is a switch labeled SW2 and RESET.
Press the button and watch the LCD screen. It should instantly start over from 0 again. This RESET
button is tied to the reset pin of the MAXQ2000. If you ever need to restart your application, just press
this button.

Initializing the MAXQ2000 LCD Controller
The MAXQ2000 provides a hardware controller module for liquid crystal displays (LCDs) that run in full-
bias, 1/2-bias, or 1/3-bias modes with static, x2, x3, or x4 multiplexing. This means that the 37 lines that
can be dedicated to LCD drive functionality on the MAXQ2000-RAX (COM0 through COM3 and SEG0
through SEG32) can drive up to 132 LCD segments (33 segments X 4 commons) on a x4 multiplexed
display.

Each segment on an active LCD display requires a continuous pattern of voltage to be driven across the
segment and common lines between which the segment is connected. This voltage pattern keeps the
segment either turned on or off as desired without developing a DC voltage bias which could damage the
LCD glass. The MAXQ2000 LCD controller automatically generates these patterns in the background.
This means that the LCD controller registers only need to be modified when the segments displayed on
the LCD are changing.

As in the previous example, the first step is to initialize the LCD controller registers for the display being
used.

void initLCD(void)
{
 LCRA = 0x03E0; // Set LCD configuration
 LCFG = 0xF3; // Set up all segments as outputs, normal operation
 // mode, and enable display.
}

The LCRA register controls three important functions: the display type, which is static in this instance;
the adjustable resistance between VADJ and ground, which can be used to modify the contrast of the

Page 7 of 15

http://files.dalsemi.com/microcontroller/maxq/maxq2000/examples/rowleyappnote.zip

display; and the frequency of the patterns used to drive the LCD segments. The LCFG register turns the
LCD controller on and off, and controls which dual-purpose pins are to be used as port pins and which
are to be used as LCD segments.

Writing Values to the Display
Regardless of the type of LCD used and the multiplexing mode, each LCD segment is controlled by a
single bit in one of the LCD controller display registers. Setting this bit causes the segment to turn on
(dark); clearing the bit causes the segment to turn off (transparent). The LCD segments that we are
using are memory-mapped for the MAXQ2000 Evaluation Kit board, as shown in Figure 6.

Figure 6. Memory mapping of LCD segments to LCD display-memory register bits.

Each digit on the LCD occupies one LCD display memory register, and the patterns of bits are the same
for each digit. Consequently, we can write numeric values to the LCD by using a lookup table for the
segment pattern for each digit from 0 to 9.

#define LCD_PATTERN_0 0x03F
#define LCD_PATTERN_1 0x006
#define LCD_PATTERN_2 0x05B
#define LCD_PATTERN_3 0x04F
#define LCD_PATTERN_4 0x066
#define LCD_PATTERN_5 0x06D
#define LCD_PATTERN_6 0x07D
#define LCD_PATTERN_7 0x007
#define LCD_PATTERN_8 0x07F
#define LCD_PATTERN_9 0x067

int PATTERNS[] = {
 LCD_PATTERN_0, LCD_PATTERN_1, LCD_PATTERN_2, LCD_PATTERN_3, LCD_PATTERN_4,
 LCD_PATTERN_5, LCD_PATTERN_6, LCD_PATTERN_7, LCD_PATTERN_8, LCD_PATTERN_9
};

/**
 * Returns the value that will need to be placed in one of LCD0-LCD3 to
display
 * a digit 0-9. No bounds checking is done here. If you ask for a digit other
 * than 0-9, you will get a bogus display.
 */
int getLCDDigit(int digit)
{
 return PATTERNS[digit];
}

With these routines in place, we can write our counter value (4 digits, with a special case '1' for the fifth
digit) to the display as follows:

int show(int value)
{
 if (value >= 10000)
 LCD4 = 0x40;

Page 8 of 15

 else
 LCD4 = 0;
 LCD3 = getLCDDigit((value / 1000) % 10);
 LCD2 = getLCDDigit((value / 100) % 10);
 LCD1 = getLCDDigit((value / 10) % 10);
 LCD0 = getLCDDigit((value) % 10);
 return 0;
}

Debouncing Pushbutton Inputs
The other interactive elements in our application are the two pushbuttons, SW4 and SW5, which are
connected through the DIP switch block, SW6, to port pins P5.2 and P7.1, respectively. (The RESET
switch requires no programming support, as it is hardwired directly to the active-low reset line on the
MAXQ2000.)

The power-on default mode of all the MAXQ2000 port pins (except for P4.0 through P4.3, which
comprise the JTAG interface) is input mode, with a weak internal pullup from the port pin to VDDIO.
Since the SW4 and SW5 switches are wired to pull the port pins down to ground when depressed, the
port pins are already in the configuration that we need. The state of the port pin can be read quite simply
by examining the port-pin input bit (PI5.2 for SW4 and PI7.1 for SW5); the switch is depressed when the
bit is zero and released when the bit is one.

Because these are mechanical switches, however, a single press can result in a number of rapid
transitions from 0 to 1. To prevent this, we will perform some simple debouncing by using the existing
main loop and delay as building blocks.

while(1)
{
 for (i = 0; i < 32000; i++)
 {
 // just a delay loop
 }
 show(counter);

 if (((PI5 & 0x04) == 0) && (debounce1 == 0)) {
 inc *= -1;
 debounce1 = 20;
 }

 if (((PI7 & 0x02) == 0) && (debounce2 == 0)) {
 counter = 0;
 debounce2 = 20;
 }

 counter += inc;
 if (counter > 19999) { counter = 0; }
 if (counter < 0) { counter = 19999; }

 if ((debounce1 > 0) && ((PI5 & 0x04) == 0x04)) { debounce1--; }
 if ((debounce2 > 0) && ((PI7 & 0x02) == 0x02)) { debounce2--; }
}

When a switch transitions from high to low, a debounce counter is set. The switch must remain in the
high state for 20 clicks of the main counter before another high-to-low transition will be accepted.
Besides preventing switch bounce, the debounce counter ensures that holding a switch down will not
cause the function to repeat; the switch must be released and pressed again.

Using the CrossWorks Debugger
Now that this application is running on the MAXQ2000, we can examine the features of the CrossWorks
debugging system. The same JTAG interface used to load code into the MAXQ2000 also supports a

Page 9 of 15

number of debugging features in hardware. Some examples include:
Step-by-step single-instruction execution
Breakpointing by execution address (up to four simultaneously active breakpoints available)
Direct register reads and writes
Code and stack memory dumping
Data memory dumping and direct editing

These debugging features are supported by the MAXQ2000 (and many other MAXQ microcontrollers) at
a very low level, allowing in-system debugging with almost no impact on the processor resources
available to the application. The use of the dedicated JTAG port for this purpose means that no other
interfaces (such as the UART ports on the MAXQ2000) need to used to communicate with the host
system. Additionally, the breakpointing mechanism operates entirely in the background; whenever the
MAXQ2000 is not halted by the debugger, it runs at full speed. It is even possible to add, remove, or
modify breakpoints while the MAXQ2000 is running, entirely in the background.

CrossWorks utilizes these hardware debugging features to provide C- and assembly-level source code
debugging, with a full-featured set of debugging functions including breakpointing, variable and register
watches, and memory dump and editing modes. To begin debugging the application, select Build,
followed by Build and Debug from the menu. The application will compile, load into the MAXQ2000
Evaluation Kit, and halt execution just inside the main() function (Figure 7).

Page 10 of 15

Figure 7. CrossWorks debugging mode.

Several CrossWorks debugger features can be seen in Figure 7.
The current execution line is marked with a yellow arrow in the left margin. All executable lines
(which excludes comments, whitespace, and some braces) are marked with blue triangles also on
the left.
Local variables and their values are shown in the section to the right of the application code
display. These values can be edited by clicking the value and typing in a new one.

The red light next to the MAXQ Serial To JTAG label at the very bottom of the screen indicates that the
application is paused. From this point, there are a number of options for continuing execution.

Step Into (F11) advances execution by a single line, allowing you to step through the code. If the
line consists of a function call, the function will be stepped into, moving the execution point to the
start of the function.
Step Over (F10) advances execution by a single line as well, unless that line consists of a function
call. In the latter case, execution will run through the function without stopping (the function is
executed, not skipped) and pause on the line following the function call.
Step Out (Shift+F11) can only be used from inside a function (not the top-level function main()). It
advances execution through the rest of the function, and stops at the line following whichever one
called the function.
Run to Cursor (Control+F10) advances execution until it reaches the line on which the cursor is
placed. The cursor must be on an executable code line for this to work.

The application can also be run at normal speed by selecting Go (F5). This releases the application from
debug control and lets it run normally. While the application is running, the light next to the MAXQ Serial
to JTAG label at the bottom blinks green to indicate that the application is free-running but that the
debugger will break in and pause execution if necessary. There are two principal methods to cause a
running application to pause and re-enter debug control.

The Break command (Control+".") will cause the application to halt immediately at whatever location
it is currently.
Breakpoints may be set anywhere in the application by left-clicking the blue triangle that marks an
executable code line. This changes the blue triangle to a red circle. If the application reaches a
breakpoint while it is running, it will halt and re-enter debug mode at the breakpointed line. Up to
four breakpoints can be set or cleared while the application is paused or free-running. (Note that
since the various stepping functions occupy a breakpoint, only three breakpoints may be set if the
step-by-step mode is used.)

Finally, selecting Stop (Shift+F5) will terminate the debug session and release the application to free-
run.

There are three different modes for viewing applications while in debug mode:
Source Mode (Control+T, S) shows the application as C code only.
Assembly Mode (Control+T, A) shows the application in assembly. Step-by-step and breakpointing
functions may be used on individual assembly code lines.
Interleaved Mode (Control+T, I) (Figure 8) shows both C and assembly code in the same window.

Page 11 of 15

Figure 8. Debugging in interleaved mode.

Using the Register Window
While an application is paused in debug mode, it is possible to view and edit the registers of the
MAXQ2000 directly (Figure 9). To open this display, select Debug, then Debug Windows, and
Registers (1,2,3,4) from the menu. There are four different register windows available for quick display;
each of these windows may be configured to show a different group of registers by clicking the Groups
icon on the upper left.

Page 12 of 15

Figure 9. Register window.

Using the Call Stack Window
Another debugging window shows the current call stack of the application (Figure 10). This display lists
all the functions called to reach the point at which the code is currently executing. The function currently
being executed is shown at the end of the list; the prior function that called the current function
appearson the line above. This display pattern continues until main() is shown on the first line. To open
this window, select Debug, followed by Debug Windows, and Call Stack, or hit Control+Alt+S.

Figure 10. Call Stack window.

Using the Variable and Watch Windows
Other debug windows are available from the Debug and Debug Windows menu. Locals and Globals
windows display the values of local (to the current function or scope) and global variables respectively.
The local-variable display window is shown in Figure 7 above. An additional window, the Watch window,
can be used to show not only the values of variables but also the values of arbitrary C expressions
(Figure 11). MAXQ2000 registers, however, cannot be used in these expressions. Up to four separate
Watch windows may be defined, each with a separate list of variables and expressions.

Page 13 of 15

Figure 11. Watch window.

Viewing Code and Data Memory
The Memory windows (reached from Debug, then Debug Windows, and finally Memory (1,2,3,4)) can
be configured to show the current values of any segment of code or data memory. These values will be
updated following each execution step or pause at a breakpoint (Figure 12). In addition, the data
memory values can be edited directly by clicking and typing in new values.

Figure 12. Data Memory window.

Support Options
There are several support options available for the MAXQ platform. An online discussion forum monitored
by Dallas Semiconductor developers answers questions posted by users. It also serves as a news outlet
for developers, as it contains information on the latest tools available and other topics of interest.

For questions that are not appropriate for a public forum, please contact us through our Maxim Support
Center.

For general news and information, and as your starting point for information on the MAXQ2000, the
MAXQ platform, and future MAXQ devices, see the MAXQ homepage.

Troubleshooting
When starting with any new device, there are a few typical problems that people encounter when trying
to communicate. Many problems can be solved by verifying that all the instructions presented in the first
part of this document were followed (such as board hookup and project configuration). Additional
common problems and solutions are shown below.

Page 14 of 15

http://discuss.dalsemi.com/
http://www.maximintegrated.com/support
http://www.maximintegrated.com/support
http://www.maximintegrated.com/MAXQ

Problem Possible Solution

When I compile my application,
I get an "undeclared identifier"
error each place I use a
MAXQ2000 register.

Make sure you have the line

#include <MAXQ2000.h>

at the start of your application.
When I select Connect MAXQ
Serial to JTAG, I get a
"Device is not responding"
error.

Make sure: that both boards are connected and powered up; that the
JTAG cable connects with the red wire going to pin 1 on both sides;
and that jumpers P2 (on the Serial-to-JTAG board) and JU11 (on the
MAXQ2000 board) are both closed.

When I select Connect MAXQ
Serial to JTAG, I get a
"Cannot open serial link" error.

Make sure no other software is using the COM port you have selected.
Often, PDA software will own the serial port from the time you boot
your computer. You can either choose a different COM port, or turn off
your PDA software.

The LCD segments are
scrambled when I run the
demo application.

Make sure that the LCD daughterboard is hanging off the top side of
the MAXQ2000 Evaluation kit, not in the position where it hangs
downward over the center of the board.

Conclusion
The MAXQ2000 is a powerful, low-cost, low-power microcontroller with plenty of peripheral support for
many applications. With the support of Rowley Associates' CrossWorks for the MAXQ development
enviroment, complex applications can be written in C and debugged with the assistance of powerful
tools. This effort results in fast time-to-market and high-quality products.

Related Parts

MAXQ2000 Low-Power LCD Microcontroller Free Samples

MAXQ2000-KIT Evaluation Kit for the MAXQ2000

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3698: http://www.maximintegrated.com/an3698
APPLICATION NOTE 3698, AN3698, AN 3698, APP3698, Appnote3698, Appnote 3698
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 15 of 15

http://www.maximintegrated.com/datasheet/index.mvp/id/4466
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ2000
http://www.maximintegrated.com/datasheet/index.mvp/id/4478
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3698
http://www.maximintegrated.com/legal

	maxim-ic.com
	Getting Started with Rowley CrossWorks and the MAXQ2000 Evaluation Kit - Application Note - Maxim

