

ADRV9008-1/ADRV9008-2/ADRV9009
Hardware Reference Manual

UG-1295
One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Hardware Reference Manual for the ADRV9008-1, ADRV9008-2, and ADRV9009

Rev. 0 | Page 1 of 247

INTRODUCTION
This hardware reference manual serves as the main source of information for system engineers and software developers using the
ADRV9008-1 receiver (Rx), ADRV9008-2 transmitter (Tx) and observation receiver (ORx), and the ADRV9009 transceiver.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 2 of 247

TABLE OF CONTENTS
Introduction .. 1
Revision History ... 3
System Overview .. 4
System Architecture Description .. 5

Software Architecture .. 5
Folder Structure .. 6
Private vs. Public API Functions .. 6
Hardware Abstraction Layer (HAL) .. 7

HAL Interface Definition .. 9
Data Types and Enumerations .. 9
Detailed Hal Function Definitions ... 10

Software Integration ... 20
Implementing Hardware Abstraction Interface 20
Developing the Application .. 20

SPI ... 29
SPI Configuration Using API Function 29
SPI Bus Signals .. 30
SPI Data Transfer Protocol .. 30
Timing Diagrams .. 32

JESD204B Interface .. 34
Receiver (ADC) Datapath ... 36
Transmitters (DAC) Datapath .. 46
Multichip Synchronization .. 54
Link Establishment ... 55
Compatibility with Xilinx JESD204B FPGA IP 57
Link Sharing in TDD Mode .. 57
JESD204B Configuration Diagrams .. 59

System Initialization ... 93
Device Initialization Sequence ... 93
Device Initialization Example Code .. 93

System Shutdown .. 94
Device Shutdown Sequence .. 94

Stream Processor and System Control ... 95
Stream Processor .. 95
System Control.. 95
Use Cases ... 98

GSM Use Cases ... 101
GSM 1800 Digital Cellular System (DCS) Band 101
GSM 1900 Personal Communications Service (PCS) Band 101
GSM 850 Band .. 102

GSM 900 Band .. 102
Synthesizer Configuration... 103

Connections for External Clock (REF_CLK_IN± Pins) 104
REF_CLK_IN± Signal Phase Noise Requirements 104
Synthesizer Software Configuration 105
RF PLL Frequency Change Procedure 107
RF PLL Loop Filter Recommendations 110
RF PLL Loop Filter Change Procedure 110
RF PLL Resolution ... 111
RF PLL Lock Status .. 112
Connections for External LO ... 113
RF PLL Phase Synchronization .. 114
RF PLL Frequency Hopping ... 121

Receiver Gain Control ... 125
Receiver Datapath .. 125
Gain Control Modes .. 127
AGC Clock and Gain Block Timing 134
APD .. 135
HB2 Peak Detector ... 136
Power Detector ... 138
Gain Control API Programming.. 138
Gain Control Data Structures ... 139
Sample Python Scripts ... 144
Gain Compensation, Floating Point Formatter, and Slicer 149

Receiver DC Offset Calibration .. 158
Receiver DC Offset Correction Circuitry 158

QEC, Calibration, and Arm Configuration 161
Arm State Machine Overview .. 161
Loading the Arm Processor .. 162
ADRV9008-1, ADRV9008-2, and ADRV9009 Initial
Calibrations ... 162
ADRV9008-1, ADRV9008-2, and ADRV9009 Tracking
Calibrations ... 164
ADRV9008-1, ADRV9008-2, and ADRV9009 Tracking
Calibration Scheduler .. 165
System Considerations for Arm Calibrations 169
Arm GPIO Pins .. 181
Initialization Calibration Errors ... 187
Tracking Calibration Monitoring ... 190
Reading the Arm Version .. 193
Performing an Arm Memory Dump 193

http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 3 of 247

Filter Configuration ... 196
Receiver Signal Path ... 196
Receiver Transimpedance Amplifier (TIA) 196
Receive DEC5 ... 197
Receive Half-Band 3 (RHB3) Filter 197
Receive Half-Band 2, Narrow-Band (RHB2) Filter 197
Receive Half-Band 1 (RHB1) Filter 197
Receiver Finite Impulse Response (RFIR) Filter 197
Receiver IF Conversion ... 197
Receiver Signal Path Example .. 199
Transmitter Signal Path ... 202
Observation Receivers Signal Path .. 205
Filter Configuration API Functions 208

Observation Receiver ... 209
Observation Receiver API Structure 209
Observation Channel Control .. 210

GPIO Configuration .. 211
Low Voltage GPIO Operation .. 212
GPIO Monitor Mode Output ... 213
GPIO Bitbang Mode .. 215
GPIO Arm Output Operation .. 215
GPIO Slicer Features .. 216

GPIO For Receiver Manual Gain Control Mode
 Pin Control.. 216
Transmitter Attenuation Control, SPI2 Port 217
Low Voltage GPIO API Functions .. 218
General-Purpose Interrupt Operation 222
GP_INTERRUPT Pin API Functions 224
3.3 V GPIO Operation ... 225

Auxiliary Converters and Temperature Sensor 230
Auxilary DAC (AUXDAC) .. 230
Auxiliary ADC (AUXADC) .. 234
Temperature Sensor .. 239

Transmitter Attenuation ... 240
API Functions for Transmitter Attenuation 240

Transmitter NCO Internal Signal Source 241
Transmitter NCO API Functions ... 241

Minimum Switching Times for the ADRV9008-1,
ADRV9008-2, and ADRV9009 ...242

Elemental Times for the Stream .. 242
Minimum Switching Times for the ADRV9008-1 242
Minimum Switching Times for the ADRV9008-2 243
Minimum Switching Times for the ADRV9009 244

REVISION HISTORY
9/2018—Revision 0: Initial Version

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 4 of 247

SYSTEM OVERVIEW
The device consist of three highly integrated, radio frequency (RF) devices.

The ADRV9008-1 is a dual-channel RF receiver that operates over a frequency range of 75 MHz to 6 GHz. The ADRV9008-1 supports a
receiver bandwidth of 200 MHz and supports multicarrier, global systems for mobile communications (GSM) cellular phone standards.
Data transfer is accomplished using four JESD204B dedicated, high speed, serial interface lanes. See the ADRV9008-1 data sheet for a
block diagram of the device.

The ADRV9008-2 is a dual-channel RF transmitter and observation receiver that operates over a frequency range of 75 MHz to 6 GHz.
The ADRV9008-2 supports up to 450 MHz of transmitter bandwidth and supports multicarrier GSM. The device includes a pair of
observation receivers. Only one channel can be operational at any given time. This pair of channels supports the same frequency range
and bandwidth of the transmitter channels. Data transfer is accomplished through eight JESD204B dedicated, high speed interface lanes.
There are four lanes each for the transfer of transmitter data and observation receiver data. See the ADRV9008-2 data sheet for a block
diagram of the device.

The ADRV9009 is a dual-channel RF transmitter and receiver with an observation receiver. The ADRV9009 operates over a frequency
range of 75 MHz to 6 GHz. The device supports up to 450 MHz of synthesis bandwidth on its transmitters. The receiver portion of the
device can operate either as a dual-channel receiver that supports bandwidths up to 200 MHz or as a single-channel observation receiver
that supports bandwidths up to 450 MHz. The receiver portion is switched between single-channel and dual-channel mode in time
division duplex (TDD) operation, utilizing the dual-channel receiver mode during receiver slots and utilizing the single-channel
observation receiver in transceiver slots. The single-channel observation receiver can select either of the ORX1_IN+/ORX1_IN− or
ORX2_IN+/ORX2_IN− RF inputs. Data transfer is accomplished through eight JESD204B dedicated, high speed interface lanes. There
are four interface lanes each for the transfer of transmitter data and main receiver/observation receiver data. See the ADRV9009 data
sheet for a block diagram of the device.

A serial peripheral interface (SPI) transmits and receives control information between the devices and a baseband processor (BBP). All
software control is communicated via the SPI. The devices include a control interface that utilizes GPIO lines to provide hardware control
to and from the devices. These GPIOs can be configured to provide dedicated sets of functions for different application scenarios. Some
GPIO are intended for digital control and others are supplied by a 3.3 V analog supply to control external analog components. The
devices also include a set of four low speed auxiliary ADCs that can be used to monitor external voltages of interest to system operation.

The AD9528 is a good choice for systems and is used on the Analog Devices, Inc., evaluation platform because the AD9528 provides a
two-stage PLL with multiple outputs, along with an integrated JESD204B SYSREF generator for multiple device synchronization.

ASIC

CLOCK
CLEANUP

TRANSCEIVER

TRANSCEIVER

JESD204B

CPRI

TIMING AND
CLOCK

GENERATION

SYSREFAD9528

DEVICE CLOCK/SYSREF TRANSCEIVER

DEVICE CLOCK/SYSREF TRANSCEIVER

DEVICE
CLOCK

DEVICE
CLOCK

SYSREFDEVICE
CLOCKSYSREF

SYSTEM
REFERENCE
CLOCK

SPI

SPI

JESD204B
16

82
2-

00
4

Figure 1. Mutiple Device System Example

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/AD9528?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/AD9528?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 5 of 247

SYSTEM ARCHITECTURE DESCRIPTION
This reference manual provides information about the application programming interface (API) software, developed by Analog Devices
for the ADRV9008-1, ADRV9008-2, and ADRV9009. This document outlines the overall architecture, folder structure, and methods for
using API software on any platform. This reference manual does not explain the API library functions. Detailed information regarding
the API functions is in the device API doxygen document (Talise.chm) located at /src/doc. This file can also be viewed in the Help tab on
the Talise transceiver evaluation software (TTES) that controls the evaluation platform.

SOFTWARE ARCHITECTURE
Figure 2 and Figure 3 illustrate the software architecture for a generic system and for the Analog Devices evaluation platform, respectively.

/app/example

/devices/talise

/devices/adi_hal

/platform
(OS OPTIONAL)

PHYSICAL HARDWARE ADI TRANSCEIVERS

SPI
LIBRARY

TIMER
LIBRARY

LOG
LIBRARY

PLATFORM LIBRARIES AND HARDWARE ABSTRACTION LAYER

APPLICATION

TAL LIBRARY

API

DRIVERS FOR
OTHER DEVICES

IN SYSTEM
DEBUG ACCESS
TO PLATFORM

FUNCTIONSFPGA/
ASIC IP

DEVICE CLOCK/
SYSREF CONTROL

ADI HAL LAYER

USER REQUIRED
LIBRARIES

CLOCK/SYSREF CHIP PLATFORM HARDWARE

talise.h

adi_hal.h

16
82

2-
00

5

Figure 2. API Software Architecture (Generic System)

/app/example

/devices/talise

/devices/adi_hal

/platform
(ADI USES LINUX OS)

PHYSICAL HARDWARE ADI TRANSCEIVERS

SPI
SPIDEV

KERNEL DRIVER

TIMER
Linux rt library

nanosleep()

FPGA REGS
UIO KERNEL

DRIVER

FPGA DDR MEM
Rx/Tx WAVEFORMS

UIO KERNEL DRIVER

LOG LIBRARY
fprintf TO

FILE SYSTEM

PLATFORM LIBRARIES AND HARDWARE ABSTRACTION LAYER

APPLICATION

TAL
LIBRARY

API

DRIVERS FOR
OTHER DEVICES

IN SYSTEM
DEBUG ACCESS
TO PLATFORM

ACCESSFPGA/
ASIC IP

ADI HAL LAYER

CLOCK/SYSREF CHIP PLATFORM HARDWARE

talise.h
AD9528 CLK

LIBRARY
API

talise.h

adi_hal.h

16
82

2-
00

6

Figure 3. API Software Architecture (Analog Devices Evaluation Platform)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 6 of 247

FOLDER STRUCTURE
Source files are provided by Analog Devices in the folder structure shown in Figure 4. Analog Devices understands that the developer
may desire to use a different folder structure. Analog Devices provides the API source code releases in the folder structure shown in
Figure 4, and the developer may organize the API into a custom folder organization if required. The developer is not permitted to to
modify the content of the API source code. Modifying the content of each API source file prevents updates to future API code releases.

/app/example

/src

headless.c
headless.h

/doc

/devices
/AD9528
/adi_hal
/talise

/talise 16
82

2-
00

7

Figure 4. API Folder Structure

/src/app/example Folder

The /src/app/example folder contains a simple example application layer program. The headless.c file has the top level main function
that demonstrates the sequence of the API function calls to initialize the device. Software developers can use this example code as a
starting point to begin development on a custom application layer program. The /src/app/example folder also contains the
talise_config.c file. The talise_config.c file holds the initialization and run-time data structures used by the API. The TTES can generate
the initialization and run-time data structures for the API. Generating the talise_config.c file from the evaluation software allows the
user to create the structures with custom values selected by the graphical user interface (GUI) configuration pages.

/src/devices Folder

The /src/devices folder includes the main API code for the transmitter (/src/devices/talise). The /talise folder contains the high level
function prototypes, data types, macros, and source code that are used to build the final user software system. The user is strictly
forbidden from modifying the files contained in the /talise folder because the code is maintained by Analog Devices. The only exception
to this restriction is that the developer can modify the /talise/talise_user.c file, which contains receiver gain tables and user selectable
define macros, for example, TALISE_VERBOSE mode, which enables and disables certain API messages to the log.

The /adi_hal folder provides the means for a developer to insert custom platform hardware driver code for system integration with the
API. It is important that the function prototypes in the adi_hal.c file do not change. The developer is responsible for implementing the
code inside each adi_hal.c function to ensure that the correct hardware drivers are called for the platform hardware. In the example code
provided in the adi_hal.c file, the functions are generic wrappers that call hardware layer functions, devices, and resources for the Xilinx®
Zynq®-7000 SoC ZC706 platform. Analog Devices API implementation attempts to keep the adi_hal.c implementation generic to allow
simplified platform swapping.

/src/doc Folder

The /src/doc folder contains the device API doxygen (Talise.chm) file for user reference. This file is in compressed HTML format. For
security reasons, .chm files can only be opened from a local drive. Attempting to open these files from a network drive can result in a file
that appears empty.

PRIVATE vs. PUBLIC API FUNCTIONS
The API is made up of multiple .c and .h files. The functionality of the API is broken into modular pieces to help organize the API
functions. Because the API is written in C, there are no language modifiers to identify a function as private or public, as commonly done
in object oriented languages. Public API functions are denoted by the function name prepended with TALISE_functionName(). The
application layer is free to use any API function that is prepended with the TALISE_ naming. Private helper functions lack the TALISE_
prefix. It is not intended that the private helper functions add any value to the application layer.

Most functions in the API are prefixed with TALISE_ and are for public use. Many of these functions are never called directly from the
application layer. For this reason, the majority of the initialization and other helper functions are separated from the top level
talise.c/talise.h files to help the developer focus on the functions that are most commonly and widely used by the application layer
program.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 7 of 247

HARDWARE ABSTRACTION LAYER (HAL)
The HAL interface is a library of functions that the transceiver APIs uses when the API must access the target platform hardware. The
HAL is defined by adi_hal.h; however, the implementation of this interface is platform dependent and is implemented by the end user in
the adi_hal.c file. This architecture is depicted in Figure 2.

The HAL is a collection of APIs, macros, and defines that are designed to make the upper layers (libraries and application) as platform
independent as possible. This reference manual describes those HAL components.

The Analog Devices source code has a subfolder under the /adi_hal folder in the /device folder. The adi_hal.h header file details the HAL
interface and functions. The adi_hal.c provides details of the Analog Devices platform specific implementation of the Analog Devices
HAL (ADIHAL) interface. The adi_hal.c file can be used as an example by the end user when developing the HAL function
implementation for a custom platform.

Hardware Functions

The transceiver API requires a library of functions that facilitate access to the hardware interfaces on the target platform (see Figure 5).

PLATFORM PROCESSOR

SPI

GPIO

SPI

HARDWARE
RESET

ADI TRANCEIVER

16
82

2-
00

8

Figure 5. Hardware Controls Required by HAL Interface Functions

Access to the SPI controller that communicates with the transmitter is required. The SPI Interface details are illustrated in the SPI section.
In addition, control of the hardware reset signal that controls the RESET pin of the Analog Devices transceiver is required. This hardware
reset signal is usually implemented by a platform processor GPIO. Refer to the ADRV9008-1, ADRV9008-2, and ADRV9009 data sheets
for full details on the RESET pin. Figure 5 shows a short overview of the required HAL functions. Full details are provided in the
Hardware Abstraction Layer (HAL) section of this document.

Logging Functions

The API provides a simple logging feature function that can be enabled for debugging purposes. This feature requires an implementation
for the ADIHAL_writeToLog function. The APIs optionally call to send debug information to the system via the HAL. The
ADIHAL_setLogLevel function can be used to configure HAL flags, and the HAL flags configure how the HAL processes the various
message types from the API layer. The Analog Devices transceiver open hardware function TALISE_openHw calls this function to set
the desired logging operation.

Multidevice Support

For applications with multiple transceivers, the HAL layer requires a reference to the targeted device and its hardware particulars, for
example, the SPI chip select and reset signal. The first parameter of the HAL function prototype, void* devHalInfo, acts as the device
reference for the HAL functions.

Note that for Analog Devices transceiver APIs, it is required that only one thread can control and configure a particular device at any
given time.

devHalInfo Pointer Parameter

To transfer the target device information from the application to the HAL functions, the API layer transfers a void pointer parameter,
devHalInfo, from the application to all HAL functions. This void pointer acts as a state container for the relevant hardware information
for a particular device.

The API user must define this state container as per system HAL implementation requirements. The user can implement any structure to
transfer any hardware configuration information that the hardware requires between the application layer and the platform layer. This
state container can be used to transfer device reference information in multithreaded and multitransceiver systems.

The application transfers the device state container, devHalInfo, via the API transceiver device structure, for example,
taliseDevice_t. The API function does not read or write the (void *) devHalInfo but transfers the state container as a
parameter to all HAL function calls.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 8 of 247

Pseudo Code Example Use of devHalInfo

The device structure is as follows:
typedef struct

{

 void *devHalInfo; /*HAL layer State Container*/

 void *devStateInfo; /*API internal State Container*/

} taliseDevice_t;

The example target system HAL device state container is as follows:

typedef struct

{

 uint8_t devIndex /*Device Reference*/

 zynqSpiSettings_t *spiSettings; /*Platform SPI controller settings*/

 uint16_t wait_timeout; /*Timeout limit for HAL function
Completion*/

} zynqcAdiDev_t;

The example API call on the target system application is as follows:

 zynqAdiDev_tTaliseDev1 {…};

 taliseDevice_t device = {&TaslieDev1…..} ;

Talise_initialize(&device) ;

retval = TALISE_openHw (device-> devHalInfo);

The example target system HAL function implementation is as follows:
ADIHAL_openHw(void * device) {

 zynqAdiDev_t *talDev = device->devHalInfo;

}

HAL Functions Timeout

For systems where HAL resources are shared, it is possible that HAL functions block and must wait for resources to complete the
hardware operation. The HAL timeout variable, set by the API, instructs the HAL implementation with how long each function can take
to try to complete the operation. If the operation fails to complete within this time interval, the HAL function must return indicating that
the function timed out. See the adiHalErr_t section for details.

This timeout value is set by the API at HAL initialization via the ADIHAL_openHW function. Additionally, the API can update the
timeout requirement by calling the HAL function ADIHAL_setTimeout from the API layer for operations that may have different time
constraints.

It is expected that the HAL implementation of the end user captures and maintains the timeout value to implement the timeout feature
for all subsequent HAL function calls. The HAL implementation can use the HAL device state container, devHalInfo, to maintain this
timeout value.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 9 of 247

HAL INTERFACE DEFINITION
This section describes the Hardware Application Layer (HAL) Interface.

DATA TYPES AND ENUMERATIONS
The following data types and enumerations are used by the HAL.

adiHalErr_t

adiHalErr_t is an enumerated data type that lists the error types returned by the Analog Devices HAL interface function. These error
types include errors that the HAL implementation may detect and return to the transceiver API. The transceiver API reports any HAL
layer error detected to the application. The transceiver API can fail due to a HAL error and then recommend a recovery action to the
application. The recovery action recommended depends on the stage of API execution during which the error occurs, as well as the
function of the API. Refer to the API documentation for more details.

adiHalErr_t Synopsis

The synopsis for adiHalErr_t is as follows:

typedef enum

{

 ADIHAL_OK=0,

 ADIHAL_SPI_FAIL,

 ADIHAL_GPIO_FAIL,

 ADIHAL_TIMER_FAIL,

 ADIHAL_WAIT_TIMEOUT,

 ADIHAL_GEN_SW,

 ADIHAL_WARNING

} adiHalErr_t;

adiHalErr_t Enumerators

The enumerators for adiHalErr_t are as follows:

• ADIHAL_OK. This enumerator indicates that the HAL function completed successfully and that no errors are detected.
• ADIHAL_SPI_FAIL. This enumerator indicates that HAL SPI operation is unable to complete. The SPI controller may not be

accessible due to a fatal error. The API fails and directly passes the error to the application.
• ADIHAL_GPIO_FAIL. This enumerator indicates that HAL operations that require a system GPIO, such as ADIHAL_resetHW, are

unable to complete. The system GPIO may not be accessible due to a fatal error. The API fails and passes the error to the application.
• ADIHAL_TIMER_FAIL. This enumerator indicates that HAL operations that require delays and sleeps, such as ADIHAL_wait_us,

are unable to complete. System timers or time functions may not be accessible due to a fatal error. The API fails and passes the error
to the application.

• ADIHAL_WAIT_TIMEOUT. This enumerator indicates that HAL operations that cannot complete within the interval set by the API
return this error. This timeout may be due to the required hardware (SPI controller, GPIO, and so on) being temporarily unavailable.
The timeout value is passed to the HAL layer by the API with the ADIHAL_openHW HAL initialization function and/or at any other
time with the ADIHAL_setTimeout function. The API can fail depending on the function of the API and at what stage of
execution of the API the error is detected. The error is passed directly to the API.

• ADIHAL_GEN_SW. This enumerator indicates that the HAL functions detect a general software error during execution. This error
type includes, but is not limited to, open hardware or closed hardware failures, the device state container being a NULL pointer, an
unknown chip select, or the device being already open. The API fails and passes the error to the application.

• ADIHAL_WARNING. This enumerator indicates that the HAL functions detect an error that does not affect operation. This error acts
as a warning that such an error occurred. The API reports this error to the application, but does not take any action or indicate a
failure.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 10 of 247

adiLogLevel_t

adiLogLevel_t is an enumerated data type in bit mask format that lists the log message type received by the HAL layer from the API
via the ADIHAL_writeToLog function.

adiLogLevel_t Synopsis

The synopsis for adiLogLevel_t is as follows:

typedef enum

{

 ADIHAL_LOG_NONE = 0x0,

 ADIHAL_LOG_MSG = 0x1,

 ADIHAL_LOG_WARN = 0x2,

 ADIHAL_LOG_ERR = 0x4,

 ADIHAL_LOG_SPI = 0x8,

 ADIHAL_LOG_ALL = 0xF

} adiLogLevel_t;

adiLogLevel_t Enumerators

The enumerators for adiLogLevel_t are as follows:

• ADIHAL_LOG_NONE. This enumerator indicates that the mask for no logging is enabled. This function can be optionally used by the
ADIHAL_writeToLog implementation to ignore all error types. This function is not used by the API as an error category, but can
be used by ADIHAL_setLogLevel.

• ADIHAL_LOG_MSG. This enumerator indicates the mask for a log message or warning. This enumerator does not indicate an error.
• ADIHAL_LOG_ERR. This enumerator indicates the mask for error message.
• ADIHAL_LOG_SPI. This enumerator indicates the mask error message related to SPI operation.
• ADIHAL_LOG_ALL. This enumerator indicates that the mask for all logging is enabled. This function can be optionally used by the

ADIHAL_writeToLog implementation to represent all error types. This function is not used by the API as an error category, but
can be used by ADIHAL_setLogLevel.

DETAILED HAL FUNCTION DEFINITIONS
The following sections describe the detailed HAL function definitions.

ADIHAL_openHW

The ADIHAL_openHW HAL function performs a platform hardware initialization for device. This function initializes all external
hardware components required by the device and the HAL functions for correct functionality, such as SPI drivers, GPIOs, clocks (if
necessary), as per the target platform and the target device requirements. At a minimum, any SPI driver for the device is initialized within
this function for the SPI writes within the API to function.

The hardware initialize API calls the ADIHAL_openHW HAL function. For example, for the ADRV9008-1, ADRV9008-2, and ADRV9009
devices, the API calls the TALISE_openHw API. This API is called before any other API.

Based on the required operation, the API sets the value of the timeout parameter. After this value is set, the value serves as the timeout
requirement for all HAL operations. It is the responsibility of the HAL implementation to maintain this timeout value as a reference. The
HAL implementation must use this value to ensure the HAL function does not block longer than this time interval. Refer to the HAL
Functions Timeout section for details.

ADIHAL_openHW must be called before calling any other HAL functions.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 11 of 247

ADIHAL_openHW Synopsis

The synopsis for the ADIHAL_openHW function is as follows:
adiHalErr_t ADIHIAL_openHw(void *devHalInfo, uint32_t timeout_ms)

Parameters include the following:

 void*devHalInfo. This parameter is a void pointer to the targeted device state container. Refer to the devHalInfo Pointer
Parameter section for details.

 uint32_t timeout_ms. This parameter is a positive integer representing the time interval (in ms) in which the HAL functions
can block before returning. The HAL functions may not block indefinitely. The API provides this time value to the HAL.

Refer to the HAL Functions Timeout section for details.

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error code
to be returned to the application. Refer to the adiHalErr_t section for details.

Dependencies: the ADIHAL_openHW HAL function is dependent on application and platform specific modules.

ADIHAL_openHW Remarks

Although ADIHIAL_openHw initially sets the timeout value for HAL functions, the API may modify the timeout value by calling
ADIHAL_setTimeout for any time sensitive operations.

For Analog Devices transceiver APIs, there is a requirement that only one thread can control and configure a particular device at any
given time. For this reason, ADIHIAL_openHw may flag an ADIHAL_GEN_SW error to the API and application if the device targeted by
the *devHalInfo parameter is already initialized.

ADIHAL_closeHW

The ADIHAL_closeHW HAL function performs a platform hardware shutdown for the device. This function shuts down all external
hardware resources and peripherals required by the device for correct functionality, such as SPI drivers, GPIOs, clocks (as per the targeted
platform), and the target device. The ADIHAL_closeHW HAL function closes and frees any resources assigned in the ADIHAL_openHw API.

The hardware shutdown API calls the ADIHAL_closeHW HAL function. For example, for the ADRV9008-1, ADRV9008-2, and
ADRV9009 devices, the TALISE_closeHw API calls this function.

ADIHAL_closeHW Synopsis

The synopsis for the ADIHAL_closeHW function is as follows:

adiHalErr_t ADIHAL_closeHw(void *devHalInfo)

Parameter: void*devHalInfo. This parameter is a void pointer to the targeted device state container. Refer to the devHalInfo Pointer
Parameter section for details.

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error code
to be returned to the application. Refer to the adiHalErr_t section for details.

Dependencies: the ADIHAL_closeHW HAL function is dependent on application and platform specific modules, as well as
ADIHAL_openHW.

ADIHAL_closeHW Remarks

For Analog Devices transceiver APIs, there is a requirement that only one thread can control and configure a particular device at any
given time. For this reason, ADIHAL_closeHw may flag an ADIHAL_GEN_SW error to the API and application if the device targeted by
the *devHalInfo parameter is already closed.

ADIHAL_resetHW

Toggle the active low hardware reset pin, RESET, of the device. To ensure a successful hardware reset of the device, pull the targeted device
RESET pin low for period of at least 1 ms and then pull RESET high again. In general, for Analog Devices transceiver devices, low = 0 V
and high = the VDD_INTERFACE value. The exact reset procedure is described in the data sheet of the targeted Analog Devices device
data sheet.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 12 of 247

ADIHAL_resetHW Synopsis

The synopsis for the ADIHAL_resetHW function is as follows:
adiHalErr_t ADIHAL_resetHw(void *devHalInfo)

Parameter: void*devHalInfo. This parameter is a void pointer to the targeted device state container. Refer to the devHalInfo Pointer
Parameter section for details.

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error code
to be returned to the application. Refer to the adiHalErr_t section for details

Dependencies: the ADIHAL_resetHW HAL function is dependent on application and platform specific modules, as well as
ADIHAL_openHW and ADIHAL_closeHW. In general, it is expected that ADIHAL_openHW initializes all hardware resources for the
transceiver. This function depends on the GPIO. Therefore, it is expected that the required GPIO is initialized in ADIHAL_openHW. Do not
call ADIHAL_resetHW before ADIHAL_openHW and not call ADIHAL_resetHW after ADIHAL_closeHW.

ADIHAL_resetHW Remarks

For the ADIHAL_resetHW function, devHalInfo contains information to determine which reference to a specific device on the
platform is to be reset and any additional platform information required to toggle the RESET pin.

Do not make any communication attempts to the device for 100 μs following the toggle of the RESET pin. In general, a call to this
function is followed by call to ADIHAL_wait_us by the API.

ADIHAL_setTimeout

The ADIHAL_setTimeout HAL function sets the timeout duration for the HAL functions. This function sets the timeout duration for
the HAL functions. If the HAL operation exceeds this time, the function returns with the ADIHAL_WAIT_TIMEOUT error.

Based on the required operation, the API sets this timeout value. After this value is set, it serves as the timeout requirement for all HAL
operations. The HAL implementation must maintain this timeout value as a reference and ensure that the HAL function does not block
longer than this time interval.

ADIHAL_setTimeout Synopsis

The synopsis for the ADIHAL_setTimeout function is as follows:
adiHalErr_t ADIHAL_setTimeout(void *devHalInfo, uint32_t timeout_ms);

Parameters:

 void*devHalInfo. This parameter is a void pointer to the targeted device state container. Refer to the devHalInfo Pointer
Parameter section for details.

 uint32_t timeout_ms. This parameter is a positive integer representing the time interval (in ms) in which the HAL functions
can block before returning. The HAL functions cannot block indefinitely. The API provides this value to the HAL.

Refer to the HAL Functions Timeout section for details.

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error
code to be returned to the application. Refer to the adiHalErr_t section for details.

Dependencies: the ADIHAL_setTimeout HAL function is dependent on application and platform specific modules.

ADIHAL_setTimeout Remarks

The ADIHAL_setTimeout function is required for system environments in which HAL resources are shared and in cases where
resources, such as the SPI, are functional but not available due to these resources being used by another device.

ADIHAL_spiWriteByte

The ADIHAL_spiWriteByte function performs a single SPI write to a device. Using the SPI interface protocol, write a single byte to a
specified address within a specific device. The state container maintains the SPI chip select value to specify the target device and any other
platform specific settings required for the platforms SPI controller, such as write bit polarity and a long instruction word.

The SPI write implementation must support 15-bit addressing and 8-bit data bytes. Full details of the SPI protocol required for SPI
communication with the transceiver is described in the SPI section.

The ADIHAL_spiWriteByte HAL function is used by transceiver APIs. Therefore, any necessary SPI drivers or resources are expected
to be already opened by the ADIHAL_openHw() function call.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 13 of 247

ADIHAL_spiWriteByte Synopsis

The synopsis for the ADIHAL_spiWriteByte function is as follows:
adiHalErr_t ADIHAL_spiWriteByte(void *devHalInfo, uint16_t addr, uint8_t data);

Parameters inlcude the following:

 void*devHalInfo. This parameter is a void pointer to the targeted device state container. The device state provides the SPI device
chip select information.

 addr. This parameter provides an SPI register address in which to perform an SPI write. The address value must not exceed
15-bits because the MSB bit is used for a read/write bit in the SPI implementation.

 data. This parameter provides an 8-bit data value to write to the specified SPI address.

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error code
to be returned to the application. Refer to the adiHalErr_t section for details.

Dependencies: the ADIHAL_spiWriteByte HAL function is dependent on application and platform specific modules, as well as
ADIHAL_openHW and ADIHAL_closeHW. In general, it is expected that ADIHAL_openHW initializes all hardware resources for the
transceiver. This function depends on the SPI. Therefore, it is expected that the required SPI is initialized in ADIHAL_openHW. Do not
call ADIHAL_spiWriteByte before ADIHAL_openHW and not call ADIHAL_spiWriteByte after ADIHAL_closeHW.

ADIHAL_spiWriteByte Remarks

Analog Devices devices support various modes of the SPI protocol, such as 3-wire or 4-wire mode (see the SPI Data Transfer Protocol
section). The HAL can implement any of the supported modes. However, the transceiver must be configured to the same mode as the
HAL implementation. The SPI mode configuration of the transceiver is set by the initialization API and the desired SPI mode defined by
taliseSpiSettings_t of the initialization parameter.

ADIHAL_spiReadByte

The ADIHAL_spiReadByte HAL function performs a single SPI read to a device. Using the SPI interface protocol, read a single byte
from a specified address within a specific device. The state container maintains the SPI chip select value to specify the target device and
any other platform specific settings required for the SPI controller, such as writ bit polarity and a long instruction word.

The SPI read implementation must support 15-bit addressing and 8-bit data bytes. Full details of the SPI protocol required for SPI
communication with the transceiver is described in the SPI Data Transfer Protocol section.

This HAL function is used by most transceiver APIs. Therefore, any necessary SPI drivers or resources are expected to be already opened
by the ADIHAL_openHw() function call.

ADIHAL_spiReadByte Synopsis

The synopsis for the ADIHAL_spiReadByte function is as follows:
adiHalErr_t ADIHAL_spiReadByte(void *devHalInfo, uint16_t addr, uint8_t *readdata);

Parameters include the following:

 void*devHalInfo. This parameter is a void pointer to the targeted device state container. The device state provides the SPI device
chip select information.

 addr. This parameter provides an SPI register address on which to perform an SPI read. The address value must not exceed 15-bits
because the MSB is used for a read/write bit in the SPI implementation.

 *readdata. This parameter is a pointer to the 8-bit variable to be updated with the value read from the SPI register address. The
API layer allocates the memory for this pointer.

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error code
to be returned to the application. Refer to the adiHalErr_t section for details.

Dependencies: the ADIHAL_spiReadByte HAL function is dependent on application and platform specific modules, as well
asADIHAL_openHW and ADIHAL_closeHW. In general, it is expected that ADIHAL_openHW initializes all hardware resources for the
transceiver. This function depends on the SPI. Therefore, it is expected that the required SPI is initialized in ADIHAL_openHW. Do not
call ADIHAL_spiReadByte before ADIHAL_openHW and do not call ADIHAL_spiReadByte after ADIHAL_closeHW.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 14 of 247

ADIHAL_spiReadByte Remarks

Analog Devices devices support various modes of the SPI protocol, such as 3-wire or 4-wire mode (see the SPI Data Transfer Protocol
section). The HAL can implement any of the supported modes. However, the transceiver must be configured to the same mode as the
HAL implementation. The SPI mode configuration of the transceiver is set by the initialization API and the desired SPI mode defined by
taliseSpiSettings_t of the initialization parameter.

ADIHAL_spiWriteBytes

The ADIHAL_spiWriteBytes HAL function performs a set of SPI writes to a device. A list of SPI addresses is passed to this function
with a corresponding list of values to be written to these addresses. The ADIHAL_spiWriteBytes function performs an SPI write to
the targeted device for each member in the arrays. Each address element corresponds to the same index element in the data array.

For example, Address 0 is the SPI address for Data 0, Address 1 is the SPI add for Data 1, and so on.

If the platform layer SPI driver has no way to write an array to the SPI driver, set this function to call ADIHAL_spiWriteByte in for a loop.

The HAL_SPIWRITEARRAY_BUFFERSIZE macro in adi_hal.h must be set to the maximum number of SPI transactions supported by
the HAL implementation of ADIHAL_spiWriteBytes. The API layer references this macro when creating buffers of data to write with
ADIHAL_spiWriteBytes.

ADIHAL_spiWriteBytes Synopsis

The synopsis for the ADIHAL_spiWriteBytes function is as follows:

adiHalErr_t ADIHAL_spiWriteBytes(void *devHalInfo, uint16_t *addr, uint8_t *data, uint32_t
count);

Parameters include the following:

 void*devHalInfo. This parameter is a void pointer to the targeted device state container. The device state provides the SPI device
chip select information.

 *addr. This parameter provides an array of addresses of SPI registers to write (15-bit SPI register addresses, the MSB in the SPI
implementation sets the read/write bit).

 *readdata. This parameter provides an array of 8-bit data values to write to the SPI addresses listed in the address array.
 count. This parameter provides the number of registers on which to perform SPI writes (the size of the address and read data arrays).

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value represents an error code to
be returned to the application. Refer to the adiHalErr_t section for details.

Dependencies: the ADIHAL_spiWriteBytes HAL function is dependent on application and platform specific modules, as well as
ADIHAL_openHW and ADIHAL_closeHW. In general, it is expected that ADIHAL_openHW initializes all hardware resources for the
transceiver. This function depends on the SPI. Therefore, it is expected that the required SPI is initialized in ADIHAL_openHW. Do not
call ADIHAL_spiWriteBytes before ADIHAL_openHW and do not call ADIHAL_spiWriteBytes after ADIHAL_closeHW.

ADIHAL_spiWriteBytes Remarks

Analog Devices devices support various modes of the SPI protocol, such as 3-wire or 4-wire mode (see the SPI Data Transfer Protocol
section). The HAL can implement any of the supported modes. However, the transceiver must be configured to the same mode as the
HAL implementation. The SPI mode configuration of the transceiver is set by the initialization API and the desired SPI mode defined by
taliseSpiSettings_t of the initialization parameter.

ADIHAL_spiReadBytes

The ADIHAL_spiReadBytes function performs a set of SPI reads from a device. A list of SPI addresses is passed to this function with a
data array pointer to store the data read back from the list of SPI addresses. This function performs an SPI read from the list of SPI
addresses in the targeted device. Each address element has a corresponding index in the data array.

For example, readdata[0] stores the data from the SPI address from dataarray[0].

If the platform layer SPI driver has no way to read an array from the SPI driver, set this function to call ADIHAL_spiReadByte in for a
loop.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 15 of 247

ADIHAL_spiReadBytes Synopsis

The synopsis for the ADIHAL_spiReadBytes function is as follows:
adiHalErr_t ADIHAL_spiReadBytes(void *devHalInfo, uint16_t *addr, uint8_t *data, uint32_t
count);

Parameters include the following:

 void*devHalInfo. This parameter is a void pointer to the targeted device state container. The device state provides the SPI device
chip select information.

 *addr. This parameter provides an array of addresses of SPI register to read (15-bit SPI register addresses, the MSB in SPI
implementation sets the read/write bit).

 *readdata. This parameter provides an array of 8-bit data values to store the data read from the SPI addresses listed in the address
array. The API layer allocates the memory for this pointer.

 count. This parameter provides the number of registers on which to perform the SPI reads (the size of the address and read data arrays).

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error
code to be returned to the application. Refer to the adiHalErr_t section for details.

Dependencies: the ADIHAL_spiReadBytes HAL function is dependent on application and platform specific modules, as well as
ADIHAL_openHW and ADIHAL_closeHW.

In general, it is expected that ADIHAL_openHW initializes all hardware resources for the transceiver. This function depends on the SPI.
Therefore, it is expected that the required SPI is initialized in ADIHAL_openHW. Do not call ADIHAL_spiReadBytes before
ADIHAL_openHW and not call ADIHAL_spiReadBytes after ADIHAL_closeHW.

ADIHAL_spiReadBytes Remarks

Analog Devices devices support various modes of the SPI protocol, such as 3-wire or 4-wire mode (see the SPI Data Transfer Protocol
section). The HAL can implement any of the supported modes. However, the transceiver must be configured to the same mode as the
HAL implementation. The SPI mode configuration of the transceiver is set by the initialization API and the desired SPI mode defined by
taliseSpiSettings_t of the initialization parameter.

ADIHAL_spiWriteField

The ADIHAL_spiWriteField HAL function performs a write to a specific field within an SPI register. This function performs a
read/modify/write operation on a single SPI register. This function implements an SPI read of all 8-bit bits in the register, modifies the
bits of a specific field, and writes the new value back to the same SPI register in the device.

The mask and startBit parameters specify the field of bits within the register to be modified. The mask is expected to be applied to the
8-bit value read back from register. The startBit parameter specifies the start bit of targeted field within the register. The value of
startBit is used to shift the fieldVal parameter to the correct starting bit in the SPI register.

An example of pseudo code is as follows:

 |___****_| Mask = 0x1E startBit = 1

 /*Read a specific register*/

spiRead(regAddr, ®Val);

/* Modify specific field*/

regVal = regVal & ~mask) | ((fieldVal << startBit) & mask);

/*Write the modified value back to the SPI register*/

spiWrite(regAddr, regVal);

The SPI write/read implementations must support 15-bit addressing and 8-bit data bytes. Full details of the SPI protocol required for SPI
communication with the transceiver is described in the SPI Data Transfer Protocol section.

This HAL function is used by most transceiver APIs. Therefore, any necessary SPI drivers or resources are expected to be already opened
by the ADIHAL_openHw() function call.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 16 of 247

ADIHAL_spiWriteField Synopsis

The synopsis for the ADIHAL_spiWriteField HAL is as follows:
adiHalErr_t ADIHAL_spiWriteField(void *devHalInfo, uint16_t addr, uint8_t fieldVal, uint8_t
mask, uint8_t startBit);

Parameters include the following

 void*devHalInfo. This parameter is a void pointer to the targeted device state container. The device state provides the SPI device
chip select information.

 addr. This parameter provides the SPI register address on which to perform an SPI read. The address value must not exceed
15 bits because the MSB bit is used for the read/write bit in the SPI implementation.

 fieldVal. This parameter provides the desired new value for the targeted field within the register specified by addr parameter.
 mask. Field mask, describing the targeted bits within the register specified by addr parameter.
 startBit. This parameter provides the field LSB position in the register (0 to 7).

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates a successful operation. Any other value may represent an error
code to be returned to the application. Refer to the adiHalErr_t section for details.

Dependencies: the ADIHAL_spiWriteField HAL function is dependent on application and platform specific modules, as well as
ADIHAL_openHW and ADIHAL_closeHW. In general, it is expected that ADIHAL_openHW initializes all hardware resources for the
transceiver. This function depends on the SPI. Therefore, it is expected that the required SPI is initialized in ADIHAL_openHW. Do not
call ADIHAL_spiWriteField before ADIHAL_openHW and not call ADIHAL_spiWriteField after ADIHAL_closeHW.

ADIHAL_spiWriteField Remarks

Analog Devices devices support various modes of the SPI protocol, such as 3-wire or 4-wire mode (see the SPI Data Transfer Protocol
section). The HAL can implement any of the supported modes. However, the transceiver must be configured to the same mode as the
HAL implementation. The SPI mode configuration of the transceiver is set by the initialization API and the desired SPI mode defined by
taliseSpiSettings_t of the initialization parameter.

ADIHAL_spiReadField

The ADIHAL_spiReadField HAL function performs a read to a specific field within an SPI register. This function performs a read
operation on a single SPI register.

The mask and startBit parameters specify the field of bits within the register to be read. The mask is expected to be applied to the
8-bit value read back from register. The startBit startBit specifies the LSB of the targeted field within the register, which is used to shift
the desired field value down to the Bit 0 position.

An example of pseudo code is as follows:

 /*Read a specific register*/

 spiRead(regAddr, ®Val);

*fieldVal = ((regVal & mask) >> startBit);

The SPI read/write implementations must support 15-bit addressing and 8-bit data bytes. Full details of the SPI protocol required for SPI
communication with the transceiver is described in the SPI section and the HAL Interface Definition section.

This HAL function is used by most transceiver APIs. Therefore, any necessary SPI drivers or resources are expected to be already opened
by the ADIHAL_openHw() function call.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 17 of 247

ADIHAL_spiReadField Synopsis

The synopsis for ADIHAL_spiReadField is as follows:
adiHalErr_t ADIHAL_spiReadField(void *devHalInfo, uint16_t addr, uint8_t *fieldVal, uint8_t
mask, uint8_t startBit);

Parameters include the following:

 void*devHalInfo. This parameter is a void pointer to the targeted device state container. The device state provides the SPI device
chip select information.

 addr. This parameter provides an SPI register address on which to perform an SPI read. The address value must not exceed 15 bits
because the MSB is used for the read/write bit in the SPI implementation.

 fieldVal. This parameter is a pointer variable to return the value of the desired field specified by the mask parameter.

 mask. Field mask, describing the targeted bits within the register specified by addr parameter.
 startBit. Field LSB bit position in the register (0 to 7).

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error code
to be returned to the application. Refer to the adiHalErr_t section for details.

Dependencies: the ADIHAL_spiReadField HAL function is dependent on application and platform specific modules, as well as
ADIHAL_openHW and ADIHAL_closeHW. In general, it is expected that ADIHAL_openHW initializes all hardware resources for the
transceiver. This function depends on the SPI. Therefore, it is expected that the required SPI is initialized in ADIHAL_openHW. Do not
call ADIHAL_spiReadField before ADIHAL_openHW and not call ADIHAL_spiReadField after ADIHAL_closeHW.

ADIHAL_spiReadField Remarks

Analog Devices devices support various modes of the SPI protocol, such as 3-wire or 4-wire mode (see the SPI Data Transfer Protocol
section). The HAL can implement any of the supported modes. However, the transceiver must be configured to the same mode as the
HAL implementation. The SPI mode configuration of the transceiver is set by the initialization API and the desired SPI mode defined by
taliseSpiSettings_t of the initialization parameter.

ADIHAL_wait_us

The ADIHAL_wait_us HAL function performs a thread blocking/sleeping delay of the specified time in milliseconds. This function
must wait for this specified amount of time, at least.

ADIHAL_wait_us Synopsis

The synopsis for ADIHAL_wait_us is as follows:
uint32_t ADIHAL_wait_us(void *devHalInfo, uint32_t time_us);

Parameters include the following:

 void*devHalInfo is a void pointer to the targeted device state container. The device state provides details of the targeted device.
 uint32_t time_us is the desired amount of time in (in ms) for which the function blocks or thread sleeps.

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error code
to be returned to the application.

Dependencies: the ADIHAL_wait_us HAL function is dependent on application and platform specific modules

ADIHAL_wait_us Remarks

The ADIHAL_wait_us HAL function is used for delay/sleep between checking status events.

ADIHAL_writeToLog

The ADIHAL_writeToLog HAL function writes a message to a log file for debugging purposes. This function uses the logLevel
parameter to specify what type of message, warning, or error to write to the log file. The API functions call this function to log errors
detected during the execution of the transceiver API. Logging and file details are platform specific and the devHalInfo parameter is
expected to provide this information.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 18 of 247

ADIHAL_writeToLog Synopsis

The synopsis for ADIHAL_writeToLog is as follows:
adiHalErr_t ADIHAL_writeToLog(void *devHalInfo, adiLogLevel_t logLevel,

uint32_t errorCode, const char *comment);

Parameters include the following:

 void*devHalInfo is a void pointer to the targeted device state container. The device state provides details of the targeted device.
 adiLogLevel_t logLevel is an enumerated value to specify the type of log message being logged. The value is one of the

following adiLogLevel_t enumerator types:
 ADIHAL_LOG_MSG
 ADIHAL_LOG_WARN
 ADIHAL_LOG_ERR
 ADIHAL_LOG_SPI; refer to adiLogLevel_t section for details

 uint32_t errorCode is a 32-bit integer value representing the API error code reference for the error being logged.
 const char *comment is a character array that holds the desired comment to represent the error.

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error code
to be returned to the application.

Dependencies: the ADIHAL_writeToLog HAL function is dependent on application and platform specific modules

ADIHAL_writeToLog Remarks

This function is used to write a message to a log file for debugging purposes.

ADIHAL_setLogLevel

The ADIHAL_setLogLevel HAL function sets the HAL logging options for the device. This function sets the desired logging options
for the logging feature. The device API calls this function based on the logging options set by the API user in the API layer. The HAL
implementation maintains this logging option and defines its use with the ADIHAL_writeToLog function. Logging and file details are
platform specific and the devHalInfo parameter is expected to provide this information. The devHalInfo parameter can be used to
maintain the logging options for a particular device.

ADIHAL_setLogLevel Synopsis

The synopsis for ADIHAL_setLogLevel is as follows:

adiHalErr_t ADIHAL_setLogLevel(void *devHalInfo, uint16_t halLogLevel)

Parameters inlcude the following:

 void*devHalInfo is a void pointer to the targeted device state container. The device state provides details of the targeted device.
 uint16_t logLevel is a bit mask to indicate the desired logging options. The value is one of the following adiLogLevel_t

enumerator types:
 ADIHAL_LOG_NONE
 ADIHAL_LOG_MSG
 ADIHAL_LOG_WARN
 ADIHAL_LOG_ERR
 ADIHAL_LOG_ALL

 uint32_t errorCode is a 32-bit integer value representing the API error code reference for the error being logged.
 const char *comment is a character array that holds the desired comment to represent the error.

Return value: an error of type adiHalErr_t, ADIHAL_OK indicates successful operation. Any other value may represent an error code
to be returned to the application.

Dependencies: the ADIHAL_setLogLevel HAL function is dependent on application and platform specific modules

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 19 of 247

ADIHAL_setLogLevel Remarks

See the adiLogLevel_t and ADIHAL_writeToLog sections.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 20 of 247

SOFTWARE INTEGRATION
The API package was developed on a Xilinx Zynq ZC706 reference platform and utilizes a Cortex®-A9 processor that runs a Linux
variant. Using the provided API in a custom hardware and software environment is readily accomplished because the API was developed
abiding by ANSI C constructs and maintaining Linux system call transparency. The ANSI C standard was followed to ensure agnostic
processor and operating system integration with the API code.

IMPLEMENTING HARDWARE ABSTRACTION INTERFACE
Users develop code to target custom hardware platforms and therefore use different drivers for the peripherals, for example, SPI and
GPIO, in comparison to the drivers chosen for the Analog Devices evaluation platform. The HAL interface is a library of functions that
the API uses when the API must access the target platform hardware. The HAL is defined by adi_hal.h. The implementation of this
interface is platform dependent and is implemented by the developer in the adi_hal.c file. The prototypes of the required functions
defined in the adi_hal.h file must not be modified because doing so breaks the API.

Table 1 lists the functions required by the HAL interface for integration. For full details on the definition and required operation of these
functions, see the Hardware Abstraction Layer section and the HAL Interface Definition section.

Table 1. HAL Interface Functions for User Integration
Function Name Function Description
ADIHAL_openHw Open and initialize all platform drivers/resources and peripherals required to control the device (SPI, timer, logging)
ADIHAL_closeHw Close any resources opened by ADIHAL_openHw
ADIHAL_resetHw Toggle the hardware reset signal for the device
ADIHAL_setTimeout Set the maximum time in which the API expects the HAL functions to complete and return
ADIHAL_spiWriteByte Write a single byte of data to a 15-bit register address on the targeted SPI device
ADIHAL_spiReadByte Read a single byte of data from a 15-bit register address on the targeted SPI device
ADIHAL_spiWriteBytes Write an array of data bytes to an array of register addresses on the targeted SPI device
ADIHAL_spiReadBytes Read an array of data bytes from an array of register addresses on the targeted SPI device
ADIHAL_spiWriteField Perform a read/modify/write to a bit field in a particular SPI register
ADIHAL_spiReadField Read a particular bit field of data from a SPI register
ADIHAL_wait_us Perform a wait/thread/sleep operation in units of μs
ADIHAL_setLogLevel Mask to set the severity of information to write to the log (error/warning/message)
ADIHAL_writeToLog Log a debug message (message/warning/error) from the API to the platform log

DEVELOPING THE APPLICATION
The /src/app/example/headless.c file provides a user example demonstrating top level configuration and control. The example
application was written to support the control of one device. The API was written to support the control of multiple devices. Because the
API is written in C, a pointer to a taliseDevice_t data structure is used to describe or point to a particular device. To support
multiple devices, the application layer code must instantiate multiple taliseDevice_t structures to describe each physical device.
Many initialization settings also have data structures that are defined by the API.

Include Files

The API has multiple .h header files. For core API functionality, Table 2 shows the mandatory .h header files that must be included in the
application layer program. Optional add on API functions can be included if the application requires those features as shown in Table 3.
Note that the places typedef definitions in files with _types suffixes, for example, talise_types.h. These _types.h files are included
within their corresponding .h files and do no need to be manually included in the application layer code.

Table 2. Mandatory .h Header Files for the Application Layer
Mandatory Include Files Description

talise.h Core run-time functions
talise_error.h Core error handling functions
talise_arm.h Arm related functions
talise_cals.h Calibration related functions
talise_gpio.h GPIO related functions
talise_jesd204.h JESD204B interface related functions
talise_radioctrl.h Functions for controlling the radio
talise_rx.h Receiver related functions
talise_tx.h Transmitter related functions

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 21 of 247

Table 3. Optional .h Header Files for the Application Layer
Optional (Add On) Include Files Description
talise_agc.h Add on receiver automatic gain control (AGC) functionality

The talise_reg_addr_macros.h and talise_arm_macros.h files are not needed by the application layer and are only used directly by the
API. The talise_user.h file does not need to be included in the application layer unless the application layer is required to access the
exported variables contained in the file (receiver gain tables).

Note that the talise_user.h and talise_user.c files contain the default gain table as well as defines for API timeouts and SPI read intervals,
which can be set as needed by the baseband integrated circuit (BBIC). The talise_user.h files are the only API files that the developer has
permission to change.

API Data Structures

There are two top level data structures used by the API to allow multiple device support: the taliseDevice_t structure and the
taliseInit_t structure. The taliseDevice_t structure identifies each instance of a physical device. The taliseDevice_t
structure has two members: devHalInfo and devStateInfo.

The data structure is as follows:
typedef struct

{

 void *devHalInfo; /*!< ADI_HAL Hardware layer settings pointer specific to this
Talise instance */

 taliseInfo_t devStateInfo; /*!< Talise runtime state container */

} taliseDevice_t;

The devHalInfo member is defined as a void pointer and allows the user to define and pass any platform hardware settings to the
platform HAL layer functions. For example, the devHalInfo member can contain information, such as which SPI chip select must be
used for the physical device. The API does not use the devHalInfo member, and therefore does not define what information it should
contain. Note that the API functions are shared across all instances of physical devices. The devHalInfo structure defined by the
developer identifies which physical device is targeted (SPI chip select) when a particular API function is called. It can be necessary for the
developer to store other hardware information unique to a particular device in this structure, for example, timer instances and log file
information, to allow for multithreading. It is expected that only one thread use the API to a particular device.

The devStateInfo member of the taliseDevice_t structure is a run-time state container for the API. The application layer must
allocate memory for this structure, but only the API writes to the structure. The application layer allocates the devStateInfo member
with all zeroes. The API uses the devStateInfo member to keep up with the current state of the API (if has it been initialized or if the
Arm loaded), as well as a debug store for any run-time data, such as error codes and error sources. It is not intended for the application
layer to directly access the devStateInfo member, as the API functions are provided to access the last error code and source
information.

The taliseInit_t structure is the second important top level structure. The core initialization settings to configure a device are stored
in this structure and passed to the API initialization functions during the initialization phase. This structure contains the receiver/
transmitter/observation receiver profile settings, system clock settings, JESD204B settings, and specific SPI controller settings. The
application layer passes a pointer to an instance of the taliseInit_t structure for a particular device to the TALISE_initialize()
API function to handle the majority of the device initialization. After initialization is complete, the taliseInit_t structure can be
disposed of or deallocated.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 22 of 247

The data structure is as follows:

typedef struct

{

 taliseSpiSettings_t spiSettings; /*!< SPI settings data structure */

 taliseRxSettings_t rx; /*!< Rx settings data structure */

 taliseTxSettings_t tx; /*!< Tx settings data structure */

 taliseObsRxSettings_t obsRx; /*!< ObsRx settings data structure */

 taliseDigClocks_t clocks; /*!< Holds settings for CLKPLL and reference clock */

 taliseJesdSettings_t jesd204Settings; /*!< Holds the JESD204B data link settings */

} taliseInit_t;

Receiver, Transmitter, and Observation Receiver API Profiles

The API is designed to be configured using a use case profile of settings for the receiver, transmitter, and observation receiver. The
taliseInit_t structure shown in the API Data Structures section holds the profile information, which is used during initialization to
configure the device. The same API is used to support the receiver only device as is used to support the transmitter and observation
receiver devices and TDD devices in the family of transceivers. The API can be used for a receiver only configuration, as well as for a
transmitter and observation receiver configuration. It is not possible to use a transmitter profile only, because the observation receiver
configuration is necessary for the transmitter initialization and tracking calibrations to run properly.

For a receiver only device, the receiver member in the taliseInit_t structure must be initialized with a valid receiver profile. The
transmitter and observation receiver members of the taliseInit_t structure are allocated, but these members can be initialized to all
zeros if unused. Additionally, for a transceiver and observation receiver device, the receiver member can be initialized to zeros, and the
transceiver and observation receiver must be initialized with a valid use case profile. The TALISE_initialize API function
determines which profiles are valid based on a non-zero I/Q data rate and if the channels are enabled.

For example, init->tx.txChannels, init->obsRx.obsRxChannelsEnable, and init->rx.rxChannels members are
used by the API to identify which profiles to verify and use during initialization. The profiles are verified by ensuring that the I/Q data
rates for each enabled profile can be accomplished by the common digital clocks available to the datapath. If the profiles are not possible
due to inconsistency in the necessary shared clocks, the API returns an error during initialization.

Because the profiles share common digital clock settings, the taliseInit_t structure has a single clock member to describe the clock
PLL and digital clock information. The JESD204B framer and deframer settings are shared as well, and these settings are pulled out to the
taliseJesdSettings_t member. The receiver and observation receiver member structures contain a member that allows each
profile to select which framer to use.

The latest supported profiles can be obtained from the latest TTES. The profile information is stored in a file called ProfileLUT.txt that
ships with the software. The software is capable of generating the C code for the initialization structure necessary for the settings chosen
in the evaluation software. The autogenerated initialization structure provides the developer a with low risk path to creating a correct
initialization structure that works on the Analog Devices evaluation platform with the API.

Initialization Data Structures
The API functions use a specific set of data structures. The application layer code is responsible for initializing these data structures. All
API functions use a pointer to a taliseDevice_t structure to describe the device of interest, which allows the application layer to
control multiple devices in a system using the same API library. It is imperative that structure initialization is complete before attempting
system operation. The file /src/app/example/talise_config.c illustrates structure initialization. Explanations for each data structure can
be found in the talise.chm document. Table 4 contains a list of the initialization structures used by the API.

Table 4. Initialization Data Structures Used in the API
Data Structure Location Description
taliseInit_t /src/devices /talise/talise_types.h Top level initialization structure.
taliseSpiSettings_t /src/devices/talise/talise_types.h This contains the SPI controller configuration, which is

typically a subset of the platform hardware SPI settings.
taliseFir_t /src/devices/talise/talise_types.h Data structure to specify finite infinite response (FIR) filter

settings.
taliseRxSettings_t /src/devices/talise/talise_types.h Data structure to specify receiver datapath settings.
taliseRxProfile_t /src/devices/talise/talise_types.h Data structure to specify settings for the current receiver

specific use case profile.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 23 of 247

Data Structure Location Description
taliseRxGainControl_t /src/devices/talise/talise_types.h Data structure to hold receiver gain control settings for

initialization.
taliseTxSettings_t /src/devices/talise/talise_types.h Data structure to specify transceiver datapath settings.
taliseTxProfile_t /src/devices/talise/talise_types.h Data structure to specify settings for the current transceiver

specific use case profile.
taliseObsRxSettings_t /src/devices/talise/talise_types.h Data structure to specify observation receiver datapath

settings.
taliseORxGainControl_t /src/devices/talise/talise_types.h Data structure to specify observation receiver gain control

settings for initialization.
taliseJesdSettings_t /src/devices/talise/talise_jesd204_types.h Data structure to specify JESD204B framer and deframer

configuration information.
taliseJesd204bDeframerConfig_t /src/devices/talise/talise_jesd204_types.h Data structure to specify the settings for the deserializer and

deframer configuration.
taliseJesd204bFramerConfig_t /src/devices/talise/talise_jesd204_types.h Data structure to specify JESD204B framer configuration

settings.
taliseDigClocks_t /src/devices/talise/talise_types.h Data structure to specify digital clock settings.
taliseAgcCfg_t /src/devices/talise/talise_agc_types.h Data structure to specify AGC settings for AGC initialization.

Note that the taliseAgcCfg_t structure is not part of the taliseInit_t structure. The AGC configuration requires a large memory
footprint for its initialization structure. Because the AGC may not be used for every use case, it is not required to allocate memory for the
structure unless the AGC feature is used. If the AGC feature is desired for the main receiver datapath, allocate the taliseAgcCfg_t
structure and pass a pointer to the structure to the TALISE_setupRxAgc API function.

API Error Handling and Debug

Each API function returns a uint32_t value that represents a recovery action. Instead of returning an error code, the API functions tell
the application layer what action to take, due to a possible error in the API function call. The list of API recovery actions is short in
comparison to the number of error codes used by the API, which allows the application layer to significantly reduce error handling logic.
The possible recovery action return values are shown in Table 5.

Table 5. Possible Recovery Action Return Values
Recovery Action Name Description
TALACT_NO_ACTION API function completed successfully; no error handling action is required.
TALACT_WARN_RESET_LOG Warning, log file was unable to be written to in the ADIHAL layer; function completed.
TALACT_WARN_RERUN_TRCK_CAL Warning, tracking calibration reported an error that can cause RF performance degradation,

however the system is still operational.
TALACT_WARN_RESET_GPIO Warning, API function completed successfully, but had to circumvent use of BBIC GPIO pin.
TALACT_ERR_CHECK_TIMER Error, the ADIHAL layer reported an error with the timer platform layer code.
TALACT_ERR_RESET_ARM Error, the API detected an error that requires the Arm processor to be reset and the

initialization calbrations to be rerun.
TALACT_ERR_RERUN_INIT_CALS Error, the API detected an error that requires the initialization calibrations to be rerun. RF

performance may be unacceptable.
TALACT_ERR_RESET_SPI Error, the ADIHAL layer reported a platform hardware SPI failure. The SPI driver must be reset.

The calling API function did not complete.
TALACT_ERR_RESET_GPIO Error, the ADIHAL layer reported a platform hardware BBIC GPIO failure that prevented an API

function from completing.
TALACT_ERR_CHECK_PARAM A parameter range check or NULL pointer check in the API prevented the API function from

completing successfully. Verify parameters are correct and retry function.
TALACT_ERR_RESET_FULL Error, the API detected an error condition that requires a full hard reset of the device.

Reinitialize the device completely.
TALACT_ERR_RESET_JESD204FRAMERA Error, the API detected an error condition that requires reset/initialization of Framer A.
TALACT_ERR_RESET_JESD204FRAMERB Error, the API detected an error condition that requires reset/initialization of Framer B.
TALACT_ERR_RESET_JESD204DEFRAMERA Error, the API detected an error condition that requires reset/initialization of Deframer A.
TALACT_ERR_RESET_JESD204DEFRAMERB Error, the API detected an error condition that requires reset/initialization of Deframer B.
TALACT_ERR_REDUCE_TXSAMPLE_PWR Error, the API detected transceiver sample power has exceeded the maximum threshold set

by the BBIC in the power amplifier (PA) protection feature.
TALACT_ERR_BBIC_LOG_ERROR Error, the API detected an error condition that may or may not be a true error. The BBIC should

log this reported error and determine if this is an actual error or not.

mk:@MSITStore:C:%5CUsers%5Crmyers%5CDocuments%5CWORK%5C9378%20TALISE%5CSoftware%5CTalise_SW_0.19%5Cdoc%5Ctalise.chm::/structtalise_agc_cfg__t.html
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 24 of 247

API Recovery Action, TALACT_NO_ACTION

The TALACT_NO_ACTION recovery action is returned when an API function completes successfully. There is no recovery action to be
performed.

API Recovery Action, TALACT_WARN_RESET_LOG

The TALACT_WARN_RESET_LOG recovery action is returned if the ADIHAL layer returns a logging error, which can happen if the log
file cannot be opened or written to. The API layer does not return this as an error because the error does not directly affect radio
performance. Additionally, this recovery action does not prevent the API function from completing. It is recommended that the
application layer attempt to close the log file and reopen to resolve the log file access issue.

API Recovery Action, TALACT_WARN_RERUN_TRCK_CAL

The TALACT_WARN_RERUN_TRCK_CAL recovery action is returned if the API detects a failure for a tracking calibration. A tracking
calibration error usually is not catastrophic and likely only results in degraded RF performance. The application layer must attempt to
recover by resetting the tracking calibration.

The application layer must call TALISE_enableTrackingCals() with a mask parameter that disables the tracking calibrations, and
then call TALISE_enableTrackingCals() again enabling the desired tracking calibrations.

API Recovery Action, TALACT_WARN_RESET_GPIO

The TALACT_WARN_RESET_GPIO recovery action is returned in the event that the BBIC GPIO failed to operate correctly, but the API
was successful in circumventing the error by using the SPI port or other control mechanism. Because the API was able to successfully
complete the API function, the issue is not critical, but the application layer must attempt to debug and fix the issue reported by the
ADIHAL with respect to the BBIC GPIO control. The API function TALISE_getErrCode() can be used to return the ADIHAL error
code. Verify that the TALISE_getErrCode() function returns an error source of the ADIHAL. If an ADIHAL error code is returned,
the application layer can use it to further debug the root cause of the error.

API Recovery Action, TALACT_ERR_CHECK_TIMER

The TALACT_ERR_CHECK_TIMER recovery action is returned if the ADIHAL returns an error reporting that the timer is not working as
expected. The API uses the timer ADIHAL functions to perform thread blocking waits to ensure that the API does not poll the SPI bus
with 100% utilization. If the timer is reporting an error from the ADIHAL, it is possible that the API function works correctly, but there
can be an impact on the system, due to the incorrect usage of system resources.

The suggested application layer action is as follows:

1. Attempt to reset the timer resources.
2. Continue the use of API monitoring for future check timer recover action reports.
3. If continued reports of TALACT_ERR_CHECK_TIMER occur, a system diagnostic can be required for the particular hardware.

API Recovery Action, TALACT_ERR_RESET_ARM

The TALACT_ERR_RESET_ARM recovery action is returned if the API detects an issue with the Arm processor that requires a complete
reset and reload of the Arm firmware. This type of action can be required if the communication interface to the Arm processor fails or if
the Arm watchdog timer reports an error. These events are not expected in production code, but are failsafe mechanisms in the event of a
catastrophic error.

The suggested application layer action is as follows:

1. Issue TALISE_setRxTxEnable() to disable the transmitter to keep the hardware in a safe state. If this action fails, a full reset is
required.

2. Set the power amplifier and other RF front-end components in a powered down or initialization state.
3. Call TALISE_getErrCode() to determine the specific ADIHAL error code and verify that ADIHAL is the error source. Log the

error code and source.
4. Dump the Arm memory if necessary for debug.
5. Dump the SPI registers if necessary for debug.
6. Reload the stream processor and Arm binary firmware files.
7. Continue with normal initialization sequence to run the initialization calibrations and to enable the tracking calibrations.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 25 of 247

API Recovery Action, TALACT_ERR_RERUN_INIT_CALS

The TALACT_ERR_RERUN_INIT_CALS recovery action is returned if the API detects an error with the initialization calibrations. The
error severity is high enough that rerunning all of the initialization calibrations is required. A full device reset is not required. It is also not
required to reload the Arm firmware.

The suggested application layer action is as follows:

1. Set the power amplifier and other RF front-end components in powered down or initialization state.
2. Call TALISE_getErrCode() to determine the specific ADIHAL error code and verify that ADIHAL is the error source. Log the

error code and source.
3. Read the Arm calibration status to log debug information on the calibration failure.
4. Call TALISE_getInitCalStatus().
5. Call TALISE_runInitCals() to rerun the initialization calibrations.
6. Call TALISE_waitInitCals() and TALISE_getInitCalStatus() to confirm that there is no error in the initialization

calibrations.

API Recovery Action, TALACT_ERR_RESET_SPI

The TALACT_ERR_RESET_SPI recovery action is returned if the ADIHAL layer reports a HAL error when attempting a SPI read or
write transaction. If the ADIHAL function returns a timeout error due to the SPI hardware being busy or used by another thread, the API
attempts to retry the SPI operation once. If the SPI transaction fails again, the API reports this recovery action. This action is also
returned if an ADIHAL error is returned due to inability to access the driver.

The suggested application layer action is as follows:

1. Call TALISE_getErrCode() to determine the specific ADIHAL error code and verify that ADIHAL is the error source.
2. Log the error code and source.
3. If the ADIHAL error is a timeout, the API function can be retried.
4. If the ADIHAL error is not a timeout, the application tries resetting the SPI driver and retrying the function call.
5. If recovery action persists, verify SPI communication with other SPI devices and assess the need for a BBIC system reset.

API Recovery Action, TALACT_ERR_RESET_GPIO

The TALACT_ERR_RESET_GPIO recovery action is returned if the ADIHAL layer reports a HAL error when attempting to control the
BBIC GPIO pins. If the API function cannot circumvent the error, this action is returned. If the API can circumvent the error, only a
warning is returned (TALACT_WARN_RESET_GPIO). Currently, the only BBIC GPIO pin (RESET) used in the ADIHAL is to reset the
device.

If this action is returned, the application layer attempts to reset the BBIC GPIO pins that are used within the ADIHAL layer of code. If the
application layer can resolve the GPIO hardware driver issue, normal operation of the API can resume by retrying the failed API function.

API Recovery Action, TALACT_ERR_CHECK_PARAM

The TALACT_ERR_CHECK_PARAM recovery action is returned if an API parameter range check or a NULL parameter check failed. In
the event that this recovery action is returned, the API function did not complete. It is expected that this recovery action is only found
during the debug phase of developement. During application software development, this recovery action informs the developer to double
check the value passed into the API function parameters. When the parameters are corrected to be in the valid range, or NULL pointers
are corrected, recalling the function allows the API function to complete.

For debug, the developer can call the TALISE_getErrCode function to retrieve the last API error code and source. This information
can then be passed into the TALISE_getErrorMessage function, which returns a string that describes the error in more detail.

If the application software passes the development test but this recovery action is returned in the field, a bug in the application layer is
highly possible, causing an out of range or NULL pointer error.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 26 of 247

API Recovery Action, TALACT_ERR_RESET_FULL

The TALACT_ERR_RESET_FULL recovery action is returned if an API function cannot complete due to a detected error. If the API
cannot correct or circumvent the error, and the severity of the error requires a complete reset of the device, this action is returned.

The suggested application layer action is as follows:

1. Put system hardware in safe state by setting the power amplifier and other RF front-end components in powered down or
initialization state, then hard reset the device (TALISE_resetDevice()).

2. Read the API error code information for debug by calling TALISE_getErrCode(). Dump the Arm memory, if necessary, and
then dump the SPI registers, if necessary.

3. Reinitialize the device using a normal full initialization sequence.

API Recovery Action, TALACT_ERR_RESET_JESD204FRAMERA

The TALACT_ERR_RESET_JESD204FRAMERA recovery action is returned if an API function cannot complete due to a detected error
with Framer A. This error requires reset or initialization of Framer A only, not the entire device, which allows the BBIC to reset Framer A
without affecting traffic through Framer B. Possible framer errors that can corrected by a single framer reset or initialization include an
invalid data first in, first out (FIFO) pointer offset or a local multiframe counter (LMFC) pointer alignment error. These errors are
reported as a framer IRQ and a general-purpose interrupt, GP_INTERRUPT.

The suggested application layer action is as follows:

1. Call the gpIntHandler() function that reports and clears the interrupt.
2. Reset Framer A.
3. Initialize Framer A.

API Recovery Action, TALACT_ERR_RESET_JESD204FRAMERB

The TALACT_ERR_RESET_JESD204FRAMERB recovery action is returned if an API function cannot complete due to a detected error
with Framer B. This error only requires reset or initialization of Framer B, not the entire device. This reset feature allows the BBIC to reset
Framer B without affecting traffic through Framer A. Possible framer errors that can becorrected by a single framer reset or initialization
include an invalid data FIFO pointer offset or an LMFC pointer alignment error. These errors are reported as a framer IRQ and a general-
purpose interrupt, GP_INTERRUPT.

The suggested application layer action is as follows:

1. Call gpIntHandler() function that reports and clears the interrupt.
2. Reset Framer B.
3. Initialize Framer B.

API Recovery Action, TALACT_ERR_RESET_JESD204DEFRAMERA

The TALACT_ERR_RESET_JESD204DEFRAMERA recovery action is returned if an API function cannot complete due to a detected
error with Deframer A. This error only requires reset or initialization of Deframer A, not the entire device. This reset feature allows the
BBIC to reset Deframer A without affecting traffic through Deframer B. Possible deframer errors that can be corrected by a single
deframer reset or initialization include counter threshold overflows, and status errors, such as the following:

• Initial lane sync error (ILS)
• Interlane deskew error (ILD)
• Frame sync error (FS)
• Good checksum error (checksum)
• Code group sync error (CSG)

These errors are reported as a deframer IRQ and a general-purpose interrupt, GP_INTERRUPT.

The suggested application layer action is as follows:

1. Call the gpIntHandler() function that reports and clears the interrupt.
2. Reset Deframer A.
3. Initialize Deframer A.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 27 of 247

API Recovery Action, TALACT_ERR_RESET_JESD204DEFRAMERB

The TALACT_ERR_RESET_JESD204DEFRAMERB recovery action is returned if an API function cannot complete due to a detected
error with Deframer B. This error only requires reset or initialization of Deframer B, not the entire device. This reset feature allows the
BBIC to reset Deframer B without affecting traffic through Deframer A. Possible deframer errors that can be corrected by a single
deframer reset or initialization include counter threshold overflows and status errors. These errors are reported as a deframer IRQ and a
general-purpose interrupt, GP_INTERRUPT.

The suggested application layer action is as follows:

1. Call the gpIntHandler() function that reports and clears the interrupt.
2. Reset Deframer B.
3. Initialize Deframer B.

API Recovery Action, TALACT_ERR_REDUCE_TXSAMPLE_PWR

The TALACT_ERR_REDUCE_TXSAMPLE_PWR recovery action is returned if an API function has determined that the transceiver sample
power has exceeded the user specified maximum power threshold that is set in the power amplifier protection feature. The BBIC
immediately reduces the transceiver power to protect hardware components in the datapath from damage, such as the power amplifier.
These errors are reported as a power amplifier protection IRQ and a general-purpose interrupt, GP_INTERRUPT.

The suggested application layer action is as follows:

1. Call the gpIntHandler() function that ramps down the transceiver power, power-down the upconverter, and place the device in
radio off. It is recommended that the application place the general-purpose interrupt handler of the BBIC on a high priority event
thread to minimize the time required to service this interrupt.

2. Determine and correct the root cause of the over maximum power condition.
3. Reinitialize the device using a normal full initialization sequence.

API Recovery Action, TALACT_ERR_BBIC_LOG_ERROR

The TALACT_ERR_BBIC_LOG_ERROR API recovery action is returned if an API function has detected a condition that only the BBIC
can determine if it is a true error or not. An example of this condition is a deframer error counter threshold overflow. If a deframer
counter overflows once an hour or once a month, only the BBIC is able to determine if the counter overflow constituted an actual error
condition.

The suggested application layer action is as follows:

1. Record the error.
2. Perform any BBIC determine recovery actions.

Modifying Receiver/Observation Receiver Gain Tables

The /src/devices/talise/talise_user.h and /src/devices/talise/talise_user.c files are provided to allow developers to include custom gain
tables or other custom data necessary for use with the API. Developers can modify the talise_user.c and talise_user.h files.

Analog Devices provides default gain table settings with 0.5 dB gain steps for the receiver and the observation receiver in the talise_user.c
file. The gain tables consist of a 2D array construct where the subarray order for each gain table type is described in a code comment at
the beginning of the declaration. Each row of the 2D array specifies the gain breakdown between the RF analog gain, transimpedance
amplifier (TIA), ADC, external gain, and digital gain for a particular gain index. The first row of each gain table represents the maximum
gain index and is normalized by the API to Gain Index 255. If necessary, customers can modify the default gain tables as needed.

Note that the talise_user.h file exports the receiver and observation receiver gain tables as global variables. When using the API with
multiple devices, each instance shares the default receiver and observation receiver gain tables in this file. If a custom gain table is
required per device, the developer can create a gain table with a custom variable name. During the TALISE_initialize() function,
the default gain table is loaded from the talise_user.c file. After initialization, call TALISE_programRxGainTable() by passing a
pointer to the custom gain table as a parameter to load the table.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 28 of 247

Restrictions

Developers are not permitted to modify any code located in the /src/devices/* folder other than changing the adi_hal.c code bodies for
hardware driver insertion and gain table changes in talise_user.c. Analog Devices maintains the code in the /src/devices/talise and
/src/devices/ad9528 files. Analog Devices provides new releases to fix any code bugs in these folders.

No direct SPI read/write operation is permitted when configuring an Analog Devices clock chip device. Developers must only use the
high level API functions defined in the /src/devices/talise/talise.h, /src/devices/ad9528/ad9528.h, or other public .h files. Users must
not directly use any SPI read/write function located in the adi_hal.h file in the application layer code for configuration or control. Analog
Devices does not support any customer code containing SPI writes that are reverse engineered from the original API.

Multithread and Multidevice Application Considerations

For applications with multiple transceivers, the API requires a reference to the targeted device and its hard and soft particulars, for
example, SPI chip select, reset, and configuration status. The taliseDevice_t structure is used to identify each instance of a physical
device. See the API Data Structures section for more details

For multithreaded applications, it is required that only one thread control and configure instance of a physical device. Concurrent thread
configuration of the same instance of a physical device is not supported by the API.

Delay, Wait, and Sleep Operations

A small number of APIs require some time to allow the hardware to complete internal configurations, for example,
TALISE_setRfPllFrequency(). These APIs request the system to perform a wait or sleep operation by calling the HAL interface
function ADIHAL_wait_us. If the HAL interface implemention of the target platform chooses to implement a thread/sleep operation, it
is not permitted for the application to call another API targeting the same device. The application is required to let the wait/sleep
operation and the API to complete before continuing with the configuration of the device.

The wait/sleep periods used by the API are defined in the talise_user.h file. The timeout period values are the recommended period
required to complete the operation. Modifying these values is not recommended and can impact performance. During this timeout
period, the status of the device is polled. The frequency of the polling the status during this timeout period can be modified by the user by
adjusting the value of the polling interval.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 29 of 247

SPI
The SPI bus provides the mechanism for digital control of the device by a BBP. Each SPI register is 8 bits wide, and each register contains
control bits, status monitors, or other settings that control all functions of the device. This section is mainly an information only section
that is meant to give the user an understanding of the hardware interface used by the BBP for controlling a device. All control functions
are implemented using the API detailed within this reference manual.

SPI CONFIGURATION USING API FUNCTION
The SPI operation is configured by the TALISE_setSpiSettings (taliseDevice_t *device, taliseSpiSettings_t
*spi) helper function. This function is called by TALISE_initialize(taliseDevice_t *device, taliseInit_t *init).
Users can configure SPI settings for the device with different SPI controller configurations by configuring member values of the
taliseSpiSettings_t data structure.

The taliseSpiSettings_t data structure contains the following:

typedef struct

{

 uint8_t MSBFirst

uint8_t enSpiStreaming

uint8_t autoIncAddrUp

uint8_t fourWireMode

taliseCmosPadDrvStr_t cmosPadDrvStrength

} taliseSpiSettings_t;

Table 6. taliseSpiSettings_t Data Structure Parameters
Structure Member Value Function Default Value
MSBFirst 0x00 Least significant bit first. 0x01

0x01 Most significant bit first.
enSpiStreaming 0x00 Disable software feature.

See Multibyte Data Transfer section.
Not implemented in Analog Devices platform layer.

0x00

0x01 Enable software feature to improve SPI throughput.
See Multibyte Data Transfer section.
Not implemented in Analog Devices I platform layer.

autoIncAddrUp 0x00 Autoincrement.
Functionality intended to be used with SPI streaming.
Sets address to autoincrement > next address =
address − 1.
Not implemented in Analog Devices platform layer.

0x01

0x01 Autodecrement.
Functionality intended to be used with SPI streaming.
Sets address to autodecrement > next address = address + 1.
Not implemented in Analog Devices platform layer.

fourWireMode 0x00 SPI hardware implementation.
Use 3-wire SPI (SDIO pin is bidirectional). Figure 8 shows
example of SPI 3-wire mode of operation.
Analog Devices field-programmable gate array (FPGA)
platform always uses 4-wire mode.

0x01

0x01 SPI hardware implementation.
Use 4-wire SPI. Figure 6 and Figure 7 show examples of SPI
4-wire mode of operation.
Default mode for Analog Devices FPGA platform.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 30 of 247

Structure Member Value Function Default Value
cmosPadDrvStrength TAL_CMOSPAD_DRV_1X CMOS output pads can drive 2.5 pF load. TAL_CMOSPAD_DRV_1X

TAL_CMOSPAD_DRV_2X CMOS output pads can drive 5 pF load.
TAL_CMOSPAD_DRV_3X CMOS output pads can drive 7.5 pF load.
TAL_CMOSPAD_DRV_4X CMOS output pads can drive 10 pF load.
TAL_CMOSPAD_DRV_5X CMOS output pads can drive 12.5 pF load.
TAL_CMOSPAD_DRV_6X CMOS output pads can drive 15 pF load.
TAL_CMOSPAD_DRV_8X CMOS output pads can drive 20 pF load.
TAL_CMOSPAD_DRV_10X CMOS output pads can drive 25 pF load.

Any value that is not listed in the Table 6 is invalid.

The SPI error handling is managed by ADIHAL, which can return the TALACT_ERR_RESET_SPI error code. For more details, refer to
the API Error Handling and Debug section of this document.

SPI BUS SIGNALS

The SPI bus consists of the CS, SCLK, SDIO, and SDO signals.

CS Signal

CS is the active low chip select that functions as the bus enable signal driven from the BBP to a device. CS is driven low before the first
SCLK rising edge and is normally driven high again after the last SCLK falling edge. The device ignores the clock and data signals while
CS is high. CS also frames communication to and from the device and returns the SPI interface of the device to the ready state when it is
driven high.

Forcing CS high in the middle of a transaction aborts part or all of the transaction. If the transaction is aborted before the instruction is
complete or in the middle of the first data word, the transaction is aborted and the state machine returned to the ready state. Any
complete data byte transfers prior to CS deasserting is valid, but all subsequent transfers in a continuous SPI transaction are aborted.

SCLK Signal

SCLK is the serial interface reference clock driven by the BBP to the device. It is only active when CS is low. The minimum SCLK
frequency is 1 kHz. The maximum SCLK frequency is 50 MHz.

SDIO and SDO Signals

When configured as a 4-wire bus, the SPI utilizes two data signals: SDIO and SDO. SDIO is the data input line driven from the BBP to the
device, and SDO is the data output from the device to the BBP in this configuration. When configured as a 3-wire bus, SDIO is used as a
bidirectional data signal that receives and transmits serial data. In this mode, the SDO port is disabled.

The data signals are launched on the falling edge of SCLK and sampled on the rising edge of SCLK by the BBP and the device. SDIO
carries the control field from the BBP to the device during all transactions, and the BBP carries the write data fields during a write
transaction. In a 3-wire SPI configuration, SDIO carries the returning read data fields from the device to the BBP during a read
transaction. In a 4-wire SPI configuration, SDO carries the returning data fields to the BBP.

The SDO and SDIO pins transition to a high impedance state when the CS input is high. The device does not provide any weak pull-ups
or pull-downs on these pins. When SDO is inactive, it is floated in a high impedance state. If a valid logic state on SDO is required at all
times, add an external weak pull-up/pull-down (10 kΩ value) on the printed circuit board (PCB).

SPI DATA TRANSFER PROTOCOL
The SPI is a flexible, synchronous, serial communication bus allowing seamless interfacing to many industry-standard microcontrollers
and microprocessors. The serial input/output is compatible with most synchronous transfer formats, including both the Motorola® SPI
and Intel® SSR protocols. The control field width for the device is limited to 16 bits, and multibyte input/output operation is allowed. The
device cannot be used to control other devices on the bus; it only operates as a slave.

There are two phases to a communication cycle. Phase 1 is the control cycle, which is the writing of a control word into the device. The
control word provides the serial port controller of the device with information regarding the data field transfer cycle, which is Phase 2 of
the communication cycle. The Phase 1 control field defines whether the upcoming data transfer is read or write. This control field also
defines the register address that is accessed.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 31 of 247

Phase 1 Instruction Format

The 16-bit control field contains the following information:

• The R/W bit (Bit 15) of the instruction word, determines whether a read or write data transfer occurs after the instruction byte write.
Logic high indicates a read operation; logic zero indicates a write operation.

• The [D14:D0] bits (Bits A[14:0]) specify the starting byte address for the data transfer during Phase 2 of the input/output operation.

All byte addresses, both starting and internally generated addresses, are assumed to be valid. That is, if an invalid address (undefined
register) is accessed, the input/output operation continues as if the address space is valid. For write operations, the written bits are
discarded, and read operations result in logic zeros at the output.

Single-Byte Data Transfer

When enSpiStreaming = 0, a single-byte data transfer is chosen. In this mode, CS goes active low, the SCLK signal activates, and the
address is transferred from the BBP to device.

In LSB mode, the LSB of the address is the first bit transmitted from the BBP, followed by the next 14 bits in order from next LSB to MSB.
The next bit signifies if the operation is read (set) or write (clear). If the operation is a write, the BBP transmits the next 8 bits from LSB to
MSB. If the operation is a read, the device transmits the next 8 bits from LSB to MSB. When the final bit is transferred, the data lines
return to their idle state and the CS line must be driven high to end the communication session.

In MSB mode, the first bit transmitted is the R/W bit that determines if the operation is a read (set) or write (clear). The MSB of the
address is the next bit transmitted from the BBP, followed by the remaining 14 bits in order from next MSB to LSB. If the operation is a
write, the BBP transmits the next 8 bits from MSB to LSB. If the operation is a read, the device transmits the next 8 bits from MSB to LSB.
When the final bit is transferred, the data lines return to their idle state and the CS line must be driven high to end the communication
session.

Multibyte Data Transfer

Because most registers in the API are not consecutive, using multibyte data transfer mode provides little benefit. The user determines if
multibyte data transfer mode enhances control of the device in the end application in comparison to single command format. When
enSpiStreaming = 1, a multibyte data transfer is allowed. In this mode, data transfers across the bus as long as the CS pin is low. The
autoIncAddrUp controls how the address changes for subsequent writes or reads. When autoIncAddrUp = 1, the address increments
from the starting address for each subsequent data transfer until CS is driven high. If the last register address is reached, the next address
accessedis 0x000. When autoIncAddrUp = 0, the address decrements from the starting address for each subsequent data transfer. If
Address 0x000 is reached, the next address that is accessed is the last register location defined in the register map. Address 0x000 is used
to setup SPI interface, as well as functionality to soft reset the device. Uncontrolled data written to Address 0x000 can cause SPI
missconfiguration or can reset the device. It is strongly recommended that any data transfer using the multibyte data transfer feature be
controlled so that 0x000 is only written once at startup.

For multibyte data transfers in LSB mode, the LSB of the address is the first bit transmitted from the BBP, followed by the next 14 bits in
order from next LSB to MSB. The next bit signifies if the operation is read (set) or write (clear). If the operation is a write, the BBP
transmits the next 8 bits from LSB to MSB. After the MSB is received, the address increments or decrements based on the
autoIncAddrUp parameter. The BBP then continues to transfer data in 8-bit words from LSB to MSB, until the operation is terminated
by CS being driven high. If the operation is a read, the device transmits the next 8 bits from LSB to MSB. The device then changes the
address and continues to transfer data in 8-bit words from LSB to MSB, until the operation is terminated by CS being driven high.

For multibyte data transfers in MSB mode, the same process is followed, except the first bit transferred indicates if the operation is read
(set) or write (clear). The starting address is then transmitted by the BBP from MSB to LSB, followed by the data transfer from MSB to
LSB. Address increments or decrements are still controlled by the autoIncAddrUp parameter.

Example: LSB First Multibyte Transfer, Autoincrementing Address

To complete a 4-byte write starting at Register 0x02A and ending with Register 0x02D in LSB first format, take the following steps when
programming the master:

1. Ensure that fourWireMode = 1. The device is configured to work with 4-wire interface.
2. Ensure that MSBFirst = 0. SPI works in LSB first mode.
3. Ensure that autoIncAddrUp = 1. The address pointer automatically increments.
4. Ensure that enSpiStreaming = 1. A multibyte data transfer is allowed.
5. Force the CS line low and keep it low until the last byte is transferred.
6. Send the instruction word 0101 0100 0000 000_0 (the last 0 indicates a write operation) to select 0x02A as the starting address.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 32 of 247

7. Use the next 32 clock cycles to send the data to be written to the registers from LSB to MSB for each 8-bit word.
8. Ensure that the CS line is driven high after the last bit has been sent to 0x02D to end the data transfer.

Example: MSB First Multibyte Transfer, Autodecrementing Address

To complete a 4-byte write starting at Register 0x02A and ending with Register 0x027 in LSB first format, take the following steps when
programming the master:

1. Ensure that MSBFirst = 1; SPI works in MSB first mode.
2. Ensure that autoIncAddrUp = 0; the address pointer automatically decrements.
3. Ensure that enSpiStreaming = 1; a multibyte data transfer is allowed.
4. Force the CS line low and keep it low until the last byte is transferred.
5. Send the instruction word 0_000 0000 0010 1010 (the first 0 indicates a write operation) to select 0x02A as the starting address.
6. Use the next 32 clock cycles to send the data to be written to the registers from MSB to LSB for each 8-bit word.
7. Ensure the CS line is driven high after the last bit has been sent to 0x027 to end the data transfer.

TIMING DIAGRAMS
The diagrams in Figure 6 and Figure 7 illustrate the SPI bus waveforms for a single register write operation and a single register read
operation, respectively. In the first figure, the value 0x55 is written to Register 0x00A. In the second value, Register 0x00A is read and the
value returned by the device is 0x55. If the same operations are performed with a 3-wire bus, the SDO line in Figure 6 is eliminated, and
the SDIO and SDO lines in Figure 7 are combined on the SDIO line. Note that both operations use MSB first mode and all data is latched
on the rising edge of the SCLK signal.

WRITE TO REGISTER 0x00A: VALUE = 0x55

CS

SDIO

SCLK

SDO

16
82

2-
00

9

Figure 6. Nominal Timing Diagram, SPI Write

READ REGISTER 0x00A: VALUE = 0x55

SDIO

SCLK

SDO

16
82

2-
01

0

CS

Figure 7. Nominal Timing Diagram, SPI Read

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 33 of 247

Table 7 lists the timing specifications for the SPI bus. The relationship between these parameters is shown in Figure 8. This diagram
shows a 3-wire SPI bus timing diagram with the device returning a value of 0xD4 from Register 0x00A and timing parameters marked.
Note that this is a single-read operation, so the bus ready parameter after the data is driven from the device (tHZS) is not shown in the
diagram.

Table 7. SPI Bus Timing Constraint Values
Parameter Min Typical Max Description
tCP 20 ns 1ms SCLK cycle time (clock period)
tMP 10 ns SCLK pulse width
tSC 3 ns CS setup time to first SCLK rising edge
tHC 0 ns Last SCLK falling edge to CS hold
tS 3 ns SDIO data input setup time to SCLK
tH 0 ns SDIO data input hold time to SCLK
tCO 3 ns 8 ns SCLK falling edge to output data delay (3-wire or 4-wire mode)
tHZM tH tCO Bus turnaround time after BBP drives the last address bit
tHZS 3 ns tCO Bus turnaround time after the device drives the last data bit

SDIO

SCLK

SC

tSC

tMP tCP

tS

tH

tHZM

tHC

tCO

16
82

2-
01

1

Figure 8. 3-Wire SPI Timing with Parameter Labels, SPI Read

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 34 of 247

JESD204B INTERFACE
The device employs the JESD204B Subclass 1 standard to transfer ADC and digital-to-analog (DAC) samples between the device and a
BBP. The interface supports high speed serial lane rates of up to 12,288 Mbps. An external clock distribution solution provides a device
clock and the SYSREF signal to the device and the BBP. The SYSREF signal ensures deterministic latency between the device and the BBP.

Note that the initialization sequence of the part is critical to guarantee deterministic latency. Specifically, the Arm initialization
calibrations must be run before the JESD204B links are established, as described in the Device Initialization Sequence section of this
document. It is also imperative to check the FIFO depth after the link has been established.

MUX SERIALIZERS

SERDOUT0±
SERDOUT1±
SERDOUT2±
SERDOUT3±

SYNCIN1±

SYNCIN0±

CLOCK
GENERATION
AND SYSREF

RETIMING

DEVICE CLOCK

SYSREF

ADC
CROSSBAR

LANE
CROSSBAR

LANE
CROSSBAR

SYNC
CROSSBAR

FRAMER

SAMPLES
TO LANES

Rx1

Rx2 ADC

FRAMER

SAMPLES
TO LANES

ADC

16
82

2-
01

2

8-BIT/
10-BIT

ENCODE

8-BIT/
10-BIT

ENCODE

Figure 9. High Level JESD204B Interface Block Diagram (Receiver Only)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 35 of 247

MUX SERIALIZERS

SERDOUT0±

SERDOUT1±
SERDOUT2±

SERDOUT3±

SYNCIN1±

SYNCIN0±

CLOCK
GENERATION
AND SYSREF

RETIMING

DEVICE CLOCK

SYSREF

ADC
CROSSBAR

LANE
CROSSBAR

LANE
CROSSBAR

SYNC
CROSSBAR

FRAMER

SAMPLES
TO LANES

RECEIVERS

ADC

FRAMER

ADC

SAMPLES
TO LANES

DESERIALIZERS

SERDIN0±

SERDIN1±
SERDIN2±

SERDIN3±

DAC
CROSSBAR

LANE
CROSSBAR

LANE
CROSSBAR

DEFRAMER

SAMPLES
TO LANES

TRANSMITTERS

DAC

DEFRAMER

DAC

SAMPLES
TO LANES

SYNC
CROSSBAR

16
82

2-
01

3

8-BIT/
10-BIT

ENCODE

8-BIT/
10-BIT

ENCODE

8-BIT/
10-BIT

ENCODE

8-BIT/
10-BIT

ENCODE

SYNCOUT1±

SYNCOUT0±

Figure 10. High Level JESD204B Interface Block Diagram (Transmitter Only)

API Software Integration

Configuration of the JESD204B circuitry is handled by the TALISE_initialize() API function. Set any JESD204B link options in
the taliseInit_t data structure before calling TALISE_initialize(). The taliseJesdSettings_t member of the
taliseInit_t data structure contains structures for each framer and deframer, serializers, and deserializers. Note that when
configuring the taliseJesdSettings_t structure for a receiver only device, set the structure members for the two deframers to 0
and set the taliseInit_t.tx.txChannels member to 0.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 36 of 247

JESD204B API Data Structures

taliseJesdSettings_t

The taliseJesdsettings_t data structure contains the information required to properly configure each framer, each deframer, the
serializers, and deserializers. Details of each member can be found in the API documentation, which is provided with the software.

The data structure is as follows:

typedef struct

{

 taliseJesd204bFramerConfig_t framerA;

 taliseJesd204bFramerConfig_t framerB;

 taliseJesd204bDeframerConfig_t deframerA ;

 taliseJesd204bDeframerConfig_t deframerB ;

 uint8_t serAmplitude;

 unit8_t serPreEmphasis;

 uint8_t serInvertLanePolarity;

 uint8_t desInvertLanePolarity;

 uint8_t desEqSetting;

} taliseJesdSettings_t;

Table 8. JESD204B Settings Structure Member Description
Structure Member Valid Values Description
framerA data structure Framer A configuration data structure.
framerB data structure Framer B configuration data structure.
deframerA data structure Deframer A configuration data structure.
deframerB data structure Deframer B configuration data structure.
serAmplitude 0 to 15 Serializer amplitude setting. Default = 15.
serPreEmphasis 0 to 4 Serializer pre-emphasis setting. Default = 1.
serInvertLanePolarity 0x0 to 0xF Serializer lane polarity inversion select, one bit per lane.

If Bit 0 = 1, Lane 0 is inverted.
If Bit 1 = 1, Lane 1 is inverted.
If Bit 2 = 1, Lane 2 is inverted.
If Bit 3 = 1, Lane 3 is inverted.

desInvertLanePolarity 0x0 to 0xF Deserializer lane polarity inversion select, one bit per lane.
If Bit 0 = 1, Lane 0 is inverted.
If Bit 1 = 1, Lane 1 is inverted.
If Bit 2 = 1, Lane 2 is inverted.
If Bit 3 = 1, Lane 3 is inverted.

desEqSetting 0 to 4 Deserializer equalizer setting. Applied to all deserializer lanes.

RECEIVER (ADC) DATAPATH
The transport layer and link layer for JESD204B are performed in the device framers. The device has two JESD204B framers that
multiplex into four serial lanes. Samples from the main receivers can be connected to either framer by the ADC crossbar. Each framer has
its own SYNC signal, which allows one link to be brought down for reconfiguration without interrupting the other link.

The two framers are capable of operating at different sample rates. The higher sample rate must be a power of two multiple of the lower
sample rate (2×, 4×, or 8×). There are two options to make this work: oversample at the framer input or bit repeat at the framer output.

Oversample mode repeats sample values at the framer input of the link with the slower sample rate, which allows all serializers to run at
the same bit rate. In oversample mode, the BBP decimates the data after the transport layer to remove the extra samples.

Bit repeat mode repeats each bit at the framer output in the lane or lanes that carry the slower data before the data enters the serializer.
Because this occurs after the 8B10B encoding, it appears as if the lane is running at a slower data rate than the other lanes, which
essentially expands the eye of the signal. In bit repeat mode, the BBP must be able to configure the lane rates on the individual lanes
independently. The lanes with the slower link must receive data at a slower lane rate than the lanes with the faster link.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 37 of 247

Both framers must share the four serializers. Each framer must be configured for 0, 1, 2, or 4 lanes such that the two framers combine for
no more than 4 lanes. If one framer uses all four lanes, then the other framer cannot be used.

Each framer is capable of generating a pseudorandom bit sequence (PRBS) on the enabled lanes. When the PRBS is enabled, errors can be
injected. Enabling the PRBS generator can disable the normal JESD204B framing and cause the SYNC to deassert (if the ADC is the PRBS
test source, SYNC does not deassert).

The serializers can be configured to adjust the amplitude and preemphasis of the physical signal to help combat bit errors due to various
PCB trace lengths.

Supported Framer Link Parameters

The device supports a subset of possible JESD204B link configurations. The number of ADCs and the number of JESD204B lanes
implemented in the silicon limit these configurations (see Table 9 and Table 10).

Table 9. Maximum JESD204B Framer Parameters
JESD204B Parameter Device Value Description
M 4 Number of converters (M can be 1, 2, or 4 per Table 10). JESD204B framer parameters

dependent on number of lanes, number of ADCs, and number of samples.
L 4 Number of lanes (L can be 1, 2, or 4 per Table 10). JESD204B framer parameters

dependent on number of lanes, number of ADCs, and number of samples.
S 4 Number of samples per converter per frame (S can be 1, 2, or 4 per Table 10). JESD204B

framer parameters dependent on number of lanes, number of ADCs, and number of
samples.

N 16 Converter resolution (N can be 12, 16, or 24).
N’ 24 Total number of bits per sample (N’ can be 12, 16, or 24).
CF 0 Number of control words/frame clock cycles/converter devices.
CS 0 Number of control bits/conversion samples.
HD 0, 1 High density mode (only M1L2S1, M1L4S2, and M2L4S1 uses HD = 1).
K Variable, suggested: 32 Number of frames in 1 multiframe, (20 ≤ F × K ≤ 256), F × K must be a multiple of 4.

Table 10. JESD204B Framer Parameters Dependent on Number of Lanes, ADCs, and Samples

Number of ADCs (M)
Number of
Lanes (L)

Number of
Samples (S)

Number of Bits per
Sample (N’)

Number of Octets in 1 Frame (F),
F = N’/8 × M × S/L

1 1 1 16 2
1 1 2 16 4
1 1 4 16 8
1 2 1 16 1
1 2 2 16 2
1 2 4 16 4
1 4 2 16 1
1 4 4 16 2
2 1 1 16 4
2 1 2 16 8
2 2 1 16 2
2 2 2 16 4
2 2 4 16 8
2 4 1 16 1
2 4 2 16 2
2 4 4 16 4
4 1 1 16 8
4 2 1 16 4
4 2 2 16 8
4 4 1 16 2

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 38 of 247

Number of ADCs (M)
Number of
Lanes (L)

Number of
Samples (S)

Number of Bits per
Sample (N’)

Number of Octets in 1 Frame (F),
F = N’/8 × M × S/L

4 4 2 16 4
4 4 4 16 8
2 1 2 12 6
4 1 1 12 6
4 2 1 12 3
2 2 2 24 6
4 2 1 24 6

For a particular converter sample rate, not all combinations listed in Table 10 are valid. For the JESD204B configuration mode to be valid,
the lane rate for that mode must be within the range 3,686.4 Mbps to 12,288 Mbps. The lane rate is the serial bit rate for one lane of the
JESD204B link.

Calculate the lane rate using Equation 1.

Lane Rate = I/Q Sample Rate × M × N’ × (10 ÷ 8) ÷ L (1)

Serializer Configuration

The amplitude of the serializer is represented by a 4-bit number that is not linearly weighted. Not all settings are unique, and not all
settings meet the JESD204B transmitter mask. The JESD204B transmitter mask requires a differential amplitude greater than 360 mV and
less than 770 mV. To meet the JESD204B transmitter mask, it is recommended to set the serializer amplitude to a decimal value between
12 to 15. The default amplitude is 15.

The values shown in Table 11 are calculated values based on the design. Measured values are slightly lower than the calculated values. It is
always recommended to verify the eye diagram in the system after building a PCB to verify any layout related performance differences.

Table 11. Serializer Amplitude Settings at 9.8304 Gbps
Serializer Amplitude (Decimal) Average Differential Amplitude (mV p-p)
0 250
1 263
2 276
3 288
4 301
5 314
6 326
7 339
8 352
9 365
10 378
11 391
12 404
13 418
14 431
15 445

The serializer pre-emphasis allows boosting the amplitude any time the serial bit changes state. If no bit transition occurs, the amplitude is
de-emphasized. Pre-emphasis helps open the eye diagram for longer PCB traces or when the parasitic loading of connectors has a
noticeable effect. In most cases, to find the best setting, a simulation or measuring the eye diagram with a high speed scope at the receiver
is recommended. The serializer pre-emphasis is represented by a 3-bit number. The range in differential amplitude can be seen in
Table 11 and its effects are shown in Table 12.

Table 12. Pre-Emphasis Amplitude Settings at 9.8 Gbps and Amplitude of 15
Emphasis (Decimal) Average Differential Amplitude (mV p-p)
0 445
1 457
2 464
3 439
4 365

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 39 of 247

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

V
O

L
T

A
G

E
(V

)

POINT NUMBER

PE = OFF
PE = 0
PE = 1
PE = 2
PE = 3

16
82

2-
01

4

Figure 11. Serializer Preemphasis (PE) Measured on 3 Gbps Serial Data, Serializer

20.0%

80.0%

0.385

0.180

0

0.15 0.40 0.60 0.85 1.000

D
IF

F
E

R
E

N
T

IA
L

 V
O

L
T

A
G

E
 (

V
)

NORMALIZED BIT TIME (UI)

–0.180

–0.385

16
82

2-
01

5

Figure 12. Example 9.8304 Gbps Eye Diagram at Serializer Output

Framer

Each framer receives 16-bit ADC samples and maps them to high speed serial lanes. The mapping changes depending on the JESD204B
configuration chosen, specifically the number of lanes, the number of converters, and the number of samples per converter. Figure 13
provides one valid framer configuration for the device.

The responsibilities of the framer are as follows:

 JESD204B link initialization is the link state progresses from code ground synchronization (CGS) to initial lane assignment sequence
(ILAS), then to user data.

 Character replacement allows frame and multiframe synchronization during user data.
 Map the ADC samples to the JESD204B lanes.
 Perform 8B10B encoding.

The ADC sample input into the framer passes through a sample crossbar. The sample crossbar allows any ADC output to map to any
framed sample location in either framer during the framing process. For example, this can be used to swap I and Q samples or to send
Receiver 1 data across one link and Receiver 2 data across the other link. The framer lane data outputs also pass through a lane crossbar,
which allows mapping any framer output lane (internal to the silicon) to any physical JESD204B lane at the package pin. The framer
packs the ADC samples into lane data following the JESD204B specification. Figure 13 shows the data packing for M = 2, L = 1, S = 1 as
an example. For other configurations, refer to the Supported Framer Configurations section.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 40 of 247

CONVERTER DEVICE, 2 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1

CONFIGURATION DATA:
CF = 0
CS = 0
F = 4
L = 1
M = 2
N = 16
N' = 16
S = 1

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 4 OCTETS

TIME

NIBBLE GROUP 0

WORD 0

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

CONVERTER 0

SAMPLE 0

OCTET 2 OCTET 3

NIBBLE GROUP 1

WORD 1

CONVERTER 1

SAMPLE 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
01

6

Figure 13. Framer Data Packing for M = 2, L = 1, S = 1

Other Useful Framer IP Features

PRBS Generator

The framer has a built in PRBS test pattern generator to aid in debugging the JESD204B serial link. The pattern generator is capable of
generating PRBS7, PRBS9, PRBS15, PRBS23, or PRBS31 patterns. If errors caused by signal integrity exist, it can be difficult to get the
JESD204B framer/deframer to work properly. The PRBS generator built into the framer allows the device to output serial data even when
the link causes bit errors. With this mode enabled, the serializer amplitude and emphasis can be adjusted to find the best setting to
minimize bit errors on the serial link. For this mode to be fully utilized, the baseband processor must have a PRBS checker to check the
PRBS sequence for errors.

The typical usage sequence is as follows:

1. Initialize the device as outlined in the Link Establishment section.
2. Run the TALISE_enableFramerTestData() with the required framer, set the test data source to the desired PRBS order, and

set the injection point to serializer input.
3. Enable the PRBS checker on the BBP and reset its error count.
4. Wait a specific amount of time to allow a good number of samples to be transmitted, and then check the PRBS error count of the BBP.

API Software Integration

The configuration of the serializer and both framers are all handled by the TALISE_initialize() API function. Set any JESD204B
link options in the taliseInit_t data structure before calling TALISE_initialize(). After initialization, there are some other
API functions to aid in debug and monitoring the status of the JESD204B link.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 41 of 247

JESD204B Framer API Data Structures

taliseJesd204bFramerConfig_t

The taliseJesd204bFramerConfig_t data structure contains the information required to properly configure each framer. Details
of each member can be found in API Documentation within the TTES software. The TTES has the option to output example data
structures with values chosen from the configuration tab of the software.

The data structure is as follows:

typedef struct

{

 uint8_t bankId;

 uint8_t deviceId;

 uint8_t lane0Id;

 uint8_t M;

 uint8_t K;

 uint8_t F;

 uint8_t Np;

 uint8_t scramble;

 uint8_t externalSysref;

 uint8_t serializerLanesEnabled;

 uint8_t serializerLaneCrossbar;

 uint8_t lmfcOffset;

 uint8_t newSysrefOnRelink;

 uint8_t syncbinSelect;

 uint8_t overSample;

} taliseJesd204bFramerConfig_t;

Table 13. JESD204B Framer Configuration Structure Member Description
Structure Member Valid Values Description
bankId 0 to 15 JESD204B configuration bank ID, extension to device ID.
deviceId 0 to 255 JESD204B configuration device ID, link identification number.
lane0Id 0 to 31 JESD204B configuration lane I, if more than one lane is used, each subsequent lane increments

from this number.
M 0, 2, 4 Number of ADC converters, 2 converters per receive chain.
K 1 to 32 Number of frames in a multiframe, default is 32.

F × K must be a multiple of 4.
F 1, 2, 3, 4, 6, 8 Number of octets per frame.
NP 12, 16, 24 Number of bits per sample.
scramble 0 to 255 Scrambling enabled.

If scramble = 0, scrambling is disabled.
If scramble > 0, scrambling is enabled.

externalSysref 0 to 255 External SYSREF enabled.
If externalSysref = 0, use internal SYSREF (not currently valid).
If externalSysref > 0, use external SYSREF.

serializerLanesEnabled 0x0 to 0xF Serializer lane enabled, one bit per lane.
If Bit 0 = 0, Lane 0 is disabled.
If Bit 0 = 1, Lane 0 is enabled.
If Bit 1 = 0, Lane 1 is disabled.
If Bit 1 = 1, Lane 1 is enabled.
If Bit 2 = 0, Lane 2 is disabled.
If Bit 2 = 1, Lane 2 is enabled.
If Bit 3 = 0, Lane 3 is disabled.
If Bit 3 = 1, Lane 3 is enabled.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 42 of 247

Structure Member Valid Values Description
serializerLaneCrossbar 0x0 to 0xFF Serializer lane crossbar, two bits per lane.

Bits[1:0] identify the framer lane that connects to serializer Lane 0.
Bits[3:2] identify the framer lane that connects to serializer Lane 1.
Bits[5:4] identify the framer lane that connects to serializer Lane 2.
Bits[7:6] identify the framer lane that connects to serializer Lane 3.

lmfcOffset 0 to 31 LMFC offset value for deterministic latency setting, set such that 0 ≤ lmfcOffset ≤ (K − 1)
newSysrefOnRelink 0 to 255 New SYSREF on relink, flag to indicate that a SYSREF is required to reestablish the link.

If newSysrefOnRelink = 0, no SYSREF is required.
If newSysrefOnRelink > 0, SYSREF is required.

syncinbSelect 0 to 1 SYNC selection, selects which SYNCINx± input is connected to the framer.
If syncinBselect = 0, SYNCIN0± is connected to the framer.
If syncinBselect = 1, SYNCIN1± is connected to the framer.

overSample 0 to 1 Oversample mode, selects which method is chosen when oversample or bit repeat is needed.
If overSample = 0, bit repeat mode is selected.
If overSample = 1, oversample is selected.

JESD204B Framer Enumerated Types

taliseFramerDataSource_t

The taliseFramerDataSource_t is an enumerated data type to select the framer test data source. The allowable values are listed in
Table 14.

Table 14. Framer Data Source Enumeration Description
Enumeration Value Description
FTD_ADC_DATA Framer test data ADC data source.
FTD_CHECKERBOARD Framer test data checkerboard data source. The output sequence of subsequent N-bits sample is generated by

inverting the previous N-bits of the same data pattern at that clock cycle, counting from LSB to MSB.
FTD_TOGGLE0_1 Framer test data toggle 0 to 1 data source.
FTD_PRBS31 Framer test data PRBS31 data source.
FTD_PRBS23 Framer test data PRBS23 data source.
FTD_PRBS15 Framer test data PRBS15 data source.
FTD_PRBS9 Framer test data PRBS9 data source.
FTD_PRBS7 Framer test data PRBS7 data source.
FTD_RAMP Framer test data ramp data source.

taliseFramerInjectPoint_t

The taliseFramerInjectPoint_t is an enumerated data type to select the framer test data injection point. The allowable values are
listed in Table 15.

Table 15. Framer Injection Point Enumeration Description
Enumeration Value Description
FTD_FRAMERINPUT Framer test data injection point at framer input
FTD_SERIALIZER Framer test data injection point at serializer input
FTD_POST_LANEMAP Framer test data injection point after lane mapping

taliseFramerSel_t

The taliseFramerSel_t is an enumerated data type to select the desired framer. The allowable values are listed in Table 16.

Table 16. Framer Selection Enumeration Description
Enumeration Value Description
TAL_FRAMER_A Framer A selection.
TAL_FRAMER_B Framer B selection.
TAL_FRAMER_A_AND_B Used for cases where Rx1 uses one framer and Rx2 uses the second framer.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 43 of 247

JESD204B Framer API Functions

TALISE_enableSysrefToFramer()

This function enables or disables the external SYSREF JESD204B signal connection to the framers of the transmitter. The function is as
follows:

taliseErr_t TALISE_enableSysrefToFramer(taliseDevice_t *device, taliseFramerSel_t framerSel,
uint8_t enable);

For the framer to retime its LMFC, a SYSREF rising edge is required. The external SYSREF signal at the pin can be gated off internally so
the framer does not see a potential invalid SYSREF pulse before it is configured correctly.

By default, the device has the SYSREF signal ungated. However, the multichip sync state machine does not allow the external SYSREF
signal to reach the framer until the other stages of multichip sync have completed. As long as the external SYSREF signal is correctly
configured before performing multichip sync, this function may not be needed by the BBIC because the multichip sync state machine
gates the SYSREF signal to the framer.

The precondition for this function is that it must be called after the device has been initialized and the JESD204B framer is enabled.

This dependency of this function is device->devHalInfo.

This function has the following parameters:

• device is a pointer to the device settings structure.
• framerSel is the select framer to enable and disable SYSREF input for (valid TAL_FRAMER_A, TAL_FRAMER_B or

TAL_FRAMER_A_AND_B).
• enable = 1 enables SYSREF to framer, and enable = 0 disables SYSREF to framer.

The return values for this function are as follows:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION is the function completed successfully, no action required.

TALISE_readFramerStatus ()

This function reads back the status of the selected framer to determine the state of the JESD204B link. The framerStatus return value
returns an 8-bit status word. The function is as follows:

taliseErr_t TALISE_readFramerStatus(taliseDevice_t *device, taliseFramerSel_t framerSel, uint8_t
*framerStatus);

Table 17. Framer Status Values
framerStatus Bit Description
5 JESD204B negative edge count for SYNCIN0± = not greater than zero, and 1 = greater than zero.

4 Reserved (0).
3 Selects which SYNCINx± pin is used by the requested framer (0 = SYNCIN0± and 1 = SYNCIN1±).

2 Current SYNCINx± level (1 = high, 0 = low).

1 SYSREF phase error, a new SYSREF had different timing than the first that set the LMFC timing.
0 Framer has received the SYSREF and has retimed its LMFC.

Precondition: the receiver JESD204B link(s) must be configured and running to use this function

Dependencies: device->devHalInfo.

Parameters include the following:

• device is a pointer to the device settings structure.
• framerSel is read back the framer status of the selected framer (Framer A or Framer B).
• framerStatus is the receiver framer status byte read.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 44 of 247

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION is the function completed successfully, no action required.

TALISE_enableFramerTestData()

This function selects the PRBS type and enables or disables the receiver framer PRBS generation. This is a debug function to be used for
debug of the receiver JESD204B lanes. Receiver data transmission on the JESD204B link(s) is not possible when the framer test data is
activated. The function is as follows:

taliseErr_t TALISE_enableFramerTestData(taliseDevice_t *device, taliseframerSel_t framerSelect,
taliseFramerDataSource_t testDataSource, taliseFramerInjectPoint_t injectPoint);

Precondition: this function can be called any time after device initialization.

Dependencies: device->devHalInfo.

Parameters include the following:

• device is a pointer to the device settings structure.
• framerSel selects the framer of interest.
• testDataSource selects the desired test data pattern (normal datapath = FTD_ADC_DATA).
• injectPoint is the point in the datapath to inject the test data. Inject PRBS data into serializer for physical layer testing.

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION is the function completed successfully, no action required.

TALISE_injectFramerTestDataError

This function injects an error into the framer test data by inverting the data. This is the debug function to be used for debug of the
receiver JESD204B lanes. Receiver data transmission on the JESD204B link(s) is not possible when the framer test data is activated. The
function is as follows:

taliseErr_t TALISE_injectFramerTestDataError(TaliseDevice_t *device, taliseFramerSel_t
framerSelect);

Precondition: this function is called after the framer test data is enabled.

Dependencies: device->devHalInfo.

Parameters include the following:

• device is a pointer to the device settings structure.
• framerSel selects the framer of interest.

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION indicates that the function completed successfully, no action required.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 45 of 247

TALISE_enableFramerLink

This function enables and disables the JESD204B framer. This function is normally not necessary. In the event that the link must be reset,
this function allows a framer to be disabled and reenabled. The function is as follows:

TaliseErr_t TALISE_enableFramerLink(TaliseDevice_t *device, taliseFramerSel_t framerSelect,
uint8_t enable);

Precondition: this function can be called any time after device initialization.

Dependencies: device->devHalInfo.

Parameters include the following:

• device is a pointer to the device settings structure.
• framerSel selects the framer of interest.
• enable = 0, disables the selected framer, and enable = 1, enables the selected framer link.

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION is the function completed successfully, no action required.

TALISE_setupAdcSampleXbar()

This function sets the ADC sample crossbar to map the I/Q data from Receiver 1/Receiver 2/Observation Receiver 1/Observation
Receiver 2 to the chosen JESD204B converter of the framer. The function is as follows:

uint32_t TALISE_setupAdcSampleXbar(taliseDevice_t *device, taliseFramerSel_t framerSel,
taliseAdcSampleXbar_t adcXbar);

Precondition: this function is called during JESD204B initialization.

Dependencies: device->devHalInfo.

Parameters include the following:

• device is a pointer to the device settings structure.
• framerSel selects Framer A or Framer B to set the ADC crossbar on its input where only TAL_FRAMER_A or TAL_FRAMER_B are

valid choices.
• adcXbar is the ADC crossbar setting for the framer of choice.

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION indicates that the function completed successfully, no action required.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 46 of 247

TRANSMITTERS (DAC) DATAPATH
The device has two JESD204B deframers that share four physical lanes. The two deframers feed a sample crossbar that connects to four
DAC converters. All converters must run at the same sample rate and all lanes must run at the same data rate. The deframer is capable of
receiving a PRBS sequence and accumulating error counts. The deserializers have adjustable equalization circuits (fixed setting, not
adaptive) to counteract the insertion loss due to various PCB trace lengths and material.

Supported Deframer Link Parameters

The device supports a subset of possible JESD204B link configurations. The modes are limited by the number of DACs and the number of
JESD204B lanes implemented in the silicon (see Table 18 and Table 19).

Table 18. Maximum JESD204B Deframer Parameters
JESD204B Parameter Device Value Description
M 4 Number of converters (M can be 1, 2, or 4 per Table 19).
L 4 Number of lanes (L can be 1, 2, or 4 per Table 19).
S 1 Samples transmitted per single converter per frame cycle.
N 16 Converter resolution (N can be 12 or 16).
N’ 16 Total number of bits per sample (N’ can be 12 or 16).
CF 0 Number of control words/frame clock cycle/converter device.
CS 0 Number of control bits/conversion sample.
HD 0 or 1 High density mode. 0 is used for all cases except where specifically identified. Only M1L2 and

M2L4 uses HD = 1 mode.
K Variable, suggested: 32 Number of frames in 1 multiframe, (20 ≤ F × K ≤ 256), F × K must be a multiple of 4, K ≤ 32

Table 19. JESD204B Deframer Parameters Dependent on Number of Lanes and Number of DACs

Number of DACs (M) Number of Lanes (L) Number of Bits per Sample (N’)
Number of Octets in 1 Frame (F)
(F = N’/8 × M/L)

1 1 16 2
1 2 16 1
2 1 16 4
2 2 16 2
2 4 16 1
4 1 16 8
4 2 16 4
4 4 16 2
4 2 12 3

For a particular converter sample rate, not all combinations listed in Table 19 are valid. For the JESD204B configuration mode to be valid,
the lane rate for that mode must be within the range 2457.6 Mbps to 12,288 Mbps. The lane rate is the serial bit rate for one lane of the
JESD204B link. Calculate the lane rate using Equation 1.

The deserializer link is allowed to run at a different lane rate than the serializer link, under the condition that both lane rates are possible
with respect to the clock divider settings. Both the deserializer and serializer link rates are derived from the same clock PLL, but there are
separate dividers to generate the deserializer clock and data recovery (CDR) clock and the serializer clock.

Deserializer Configuration

The deserializer includes an equalizer that can be set to a fixed setting to help in compensate for signal integrity distortions for each
physical channel due to PCB trace length and impedance. Table 20 summarizes the amount of insertion loss each equalizer (EQ) setting
can overcome. EQ settings can range from 0 (maximum boost) to 2 (default). Note that the measured length is the value at which the eye
diagram is nearly failing the receive mask for each EQ setting at 10 Gbps.

Table 20. Measured Deserializer EQ Correction (Nomimal 1.3 V, 25°C)

EQ Settings 3 GHz Loss (dB) 6 GHz Loss (dB)
FR408HR Board Material
Length (inches)

FR4 Board Material
Length (inches)

0 17 31 30 25
1 15.5 26 20 20
2 12 21 15 15

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 47 of 247

Low power mode (equalizer setting = 2) is recommended if the insertion loss of the JESD204B PCB channels is less than 12 dB (at
6 Gbps) and 21 dB (at 10 Gbps). If the insertion loss is greater than this, one of the other settings can be appropriate. At 10 Gbps
operation, typically around 4 mW, more power per lane is consumed for each step in the equalizer settings. Note that either setting can be
used in conjunction with transmitter preemphasis to ensure functionality and/or to optimize for power. The equalizer setting can be
changed in the API using the desEqSetting parameter in the function InitJesd204bSerDes().

Deframer

The deframers receive 8B10B encoded data from the deserializer and decodes the data into 16-bit DAC samples. The deserializer to DAC
sample mapping changes depending on the JESD204B link configuration setting.

The responsibilities of the deframer are as follows:

• Monitor the JESD204B link for running disparity errors (control SYNCOUTx± pin to reset link or report errors).
• Control the JESD204B interrupt signal (can output on GP_INTERRUPT pin) to signal BBP when certain JESD204B error conditions

arise.
• Remove character replacement.
• Perform 8B10B decoding.
• Map JESD204B lane data to DAC samples.

A lane crossbar provides the ability to reorder the lanes into each deframer input. A sample crossbar provides the ability to reorder the
DAC samples at the output of the deframers. The lane and sample crossbars enable flexibility on which physical lanes are used and which
data is on each link. Figure 44 to Figure 52 show the allowable deframer configurations.

Other Useful Deframer IP Features

PRBS Checker

The deframer has a built in PRBS checker. The PRBS checker can self synchronize and check for PRBS errors on a PRBS7, PRBS15, or
PRBS31 sequence. Because this mode can work in the midst of potential bit errors on each lane, the physical link can be debugged even
when the deframer is unable to work properly. This mode can check the robustness of the physical link during initial testing and/or
factory test. For this mode to be fully utilized, the BPP must have a PRBS generator capable of creating PRBS7, PRBS15, or PRBS31 data.

A typical usage sequence is as follows:

1. Initialize the device as outlined in the Link Establishment section.
2. Enable the PRBS generator on the BBP with the same PRBS sequence that is used on the device.
3. Call the API TALISE_enableDeframerPrbsChecker() function, transferring the actual device being evaluated, the PRBS

sequence to check, and location where the check is to be done.
4. After some amount of time, call the API function TALISE_readDeframerPrbsCounters() to check the PRBS errors. This

function transfers the actual device being evaluated and the counter selection lane to be read, and the error count is returned in the
third parameter that is transferred.

To prove an error count of 0 is valid, the BBP can have a PRBS error inject feature. Alternatively, the BBP amplitude and emphasis settings
can be set to a setting where errors occur. To reset the error count, call the API function that clears the counters,
TALISE_clearDeframerPrbsCounters().

API Software Integration

The configuration of the deserializer and the Transmitter 1/Transmitter 2 deframer is handled by the TALISE_initialize() API
function. Set any JESD204B link options in the TaliseInit_t data structure before calling TALISE_initialize(). After
initialization, there are some other API functions to aid in debug and monitoring the status of the JESD204B link.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 48 of 247

JESD204B Deframer API Data Structures

TaliseJesd204bDeframerConfig_t

The taliseJesd204bDeframerConfig_t data structure contains the information required to properly configure each deframer.
Details of each member can be found in the API documentation. The TTES has the option to output example data structures with values
chosen from the Configuration tab of the software.

The data structure is as follows:

typedef struct

{

 uint8_t bankId;

 uint8_t deviceId;

 uint8_t lane0Id;

 uint8_t M;

 uint8_t K;

 uint8_t Np;

 uint8_t scramble;

 uint8_t externalSysref;

 uint8_t deserializerLanesEnabled;

 uint8_t deserializerLaneCrossbar;

 uint8_t lmfcOffset;

 uint8_t newSysrefOnRelink;

 uint8_t syncbOutSelect;

} TaliseJesd204bDeframerConfig_t;

Table 21. JESD204B Deframer Config Structure Member Description
Structure Member Valid Values Description
bankId 0 to 15 JESD204B configuration bank ID, extension to device ID.
deviceId 0 to 255 JESD204B configuration device ID, link identification number.
lane0Id 0 to 31 JESD204B configuration lane ID, if more than one lane is used, each subsequent lane

increments from this number.
M 0, 2, 4 Number of ADC converters, 2 converters per receive chain.
K 1 to 32 Number of frames in a multiframe, default is 32.

F × K must be a multiple of 4.
Np 12, 16 Number of bits per sample.
scramble 0 to 255 Scrambling enabled.

If scramble = 0, scrambling is disabled.
If scramble > 0, scrambling is enabled.

externalSysref 0 to 255 External SYSREF enabled.
If externalSysref = 0, use internal SYSREF (not currently valid).
If externalSysref > 0, use external SYSREF.

deserializerLanesEnabled 0x0 to 0xF Deserializer lane enabled, one bit per lane.
If Bit 0 = 0, Lane 0 is disabled, and if Bit 0 = 1, Lane 0 is enabled.
If Bit 1 = 0, Lane 1 is disabled, and if Bit 1 = 1, Lane 1 is enabled.
If Bit 2 = 0, Lane 2 is disabled, and if Bit 2 = 1, Lane 2 is enabled.
If Bit 3 = 0, Lane 3 is disabled, and if Bit 3 = 1, Lane 3 is enabled.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 49 of 247

Structure Member Valid Values Description
deserializerLaneCrossbar 0x0 to 0xFF Deserializer lane crossbar, two bits per lane.

Bits[1:0] identify the deserializer lane that connects to Deframer Lane 0.
Bits[3:2] identify the deserializer lane that connects to Deframer Lane 1.
Bits[5:4] identify the deserializer lane that connects to Deframer Lane 2.
Bits[7:6] identify the deserializer lane that connects to Deframer Lane 3

lmfcOffset 0 to 31 LMFC offset value for deterministic latency setting, set such that 0 ≤ lmfcOffset ≤ (K − 1)
newSysrefOnRelink 0 to 255 New SYSREF on relink, flag to indicate that a SYSREF is required to reestablish the link.

If newSysrefOnRelink = 0, no SYSREF is required.
If newSysrefOnRelink > 0, SYSREF is required.

syncbOutSelect 0 to 1 SYNC selection, selects which SYNCOUTx± output is driven by the deframer.
If syncbOutSelect = 0, the deframer drives SYNCOUT0±.
If syncbOutSelect = 1, the deframer drives SYNCOUT1±.

JESD204B Deframer Enumerated Types

taliseDeframerSel_t

The taliseDeframerSel_t is an enumerated data type to select the desired deframer. The allowable enumerator values are listed in
Table 22.

Table 22. Deframer Selection Enumerator Description
Enumeration Value Description
TAL_DEFRAMER_A Deframer A selection
TAL_DEFRAMER_B Deframer B selection
TAL_DEFRAMER_A_AND_B Used for cases where Tx1 uses one framer and Tx2 uses the second framer

taliseDeframerPrbsOrder_t

The taliseDeframerPrbsOrder_t is an enumerated data type to select the desired deframer PRBS pattern. The allowable
enumerator values are listed in Table 23.

Table 23. Deframer PRBS Polynomial Order Enumerator Description
Enumerator Value Description
TAL_PRBS_DISABLE Deframer PRBS pattern disable
TAL_PRBS7 Deframer PRBS7 pattern select
TAL_PRBS15 Deframer PRBS15 pattern select
TAL_PRBS31 Deframer PRBS31 pattern select

taliseDefPrbsCheckLoc_t

The taliseDefPrbsCheckLoc_t is an enumerated data type to select the desired location within the deframer to check the PRBS
pattern. The allowable enumerator values are listed in Table 24.

Table 24. Deframer PRBS Check Location Enumerator Description
Enumerator Value Description
TAL_PRBSCHECK_LANEDATA Deframer PRBS data check at lane data location
TAL_PRBSCHECK_SAMPLEDATA Deframer PRBS data check at sample data location

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 50 of 247

JESD204B Deframer API Functions

TALISE_enableSysrefToDeframer()

This function enables or disables the external SYSREF to the deframers of the transmitter. The function is as follows:

TaliseErr_t TALISE_enableSysrefToDeframer(TaliseDevice_t *device, taliseDeframerSel_t
deframerSel, uint8_t enable);

For the deframer to retime its LMFC, a SYSREF rising edge is required. The external SYSREF signal at the SYSREF pin can be gated off
internally so that the deframer does not see a potential invalid SYSREF pulse before the deframer is configured correctly.

By default, the device has the SYSREF signal ungated. However, the multichip sync state machine does not allow the external SYSREF
signal to reach the deframer until the other stages of multichip sync have completed. As long as the external SYSREF is correctly
configured before performing multichip sync, this function may not be needed by the BBIC because the multichip sync state machine
gates the SYSREF signal to the deframer.

Precondition: this function is called after the device has been initialized and the JESD204B deframer is enabled.

Dependencies: device->devHalInfo.

Parameters include the following:

• device is a pointer to the device settings structure.
• deframerSel selects the deframer of interest.
• enable = 1 enables SYSREF to framer, and enable = 0 disables SYSREF to framer.

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION indicates that the function completed successfully, no action required.

TALISE_enableDeframerLink()

This function enables and disables the JESD204B deframer. The function is as follows:
taliseErr_t TALISE_enableDeframerLink(taliseDevice_t *device, taliseDeframerSel_t deframerSel,
uint8_t enable)

This function is normally not necessary. If the link must be reset, this function allows a deframer to be disabled and reenabled. During
disable, the lane FIFOs for the selected deframer are also disabled. When the deframer link is enabled, the lane FIFOs for the selected
deframer are reenabled (reset). The BBIC sends valid serializer data before enabling the link so that the CDR is locked.

Precondition: this function can be called any time after device initialization.

Dependencies: device->devHalInfo.

Parameters include the following:

• device is a pointer to the device settings structure.
• deframerSel selects the deframer of interest
• enable = 0 disables the selected deframer, and enable = 1 enables the selected deframer link.

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION indicates that the function completed successfully, no action required.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 51 of 247

TALISE_readDeframerStatus()

After bringing up the device deframer JESD204B link, the BBP can check the status of the deframer. The function is as follows:
taliseErr_t TALISE_readDeframerStatus(TaliseDevice_t *device, taliseDeframerSel_t deframerSel,
uint16_t *deframerStatus);

Table 25. Deframer Status
deframerStatus Bit Bit Name Description
7 Valid checksum This bit is equal to 1 if the checksum calculated by the device matches the checksum sent in the ILAS

data.
6 EOF event This bit captures the internal status of the framer end of frame event. Value = 1 if framing error during

ILAS.
5 EOMF event This bit captures the internal status of the framer end of multi-frame event. Value = 1 if framing error

during ILAS.
4 FS lost This bit captures the internal status of the framer frame symbol event. Value = 1 if framing error during

ILAS or user data (invalid replacement characters).
3 LMFC out Not useful to read across SPI.
2 User data valid This bit is equal to 1 when in user data (deframer link is up and sending valid DAC data).
1 SYSREF received Deframer has received the external SYSREF signal.
0 Sync error A link synchronization error occurred.

Precondition: the transceiver JESD204B link(s) must be configured and running to use this function.

Dependencies: device->devHalInfo.

Parameters include the following:

 device is a pointer to the device settings structure.
 deframerSel selects the deframer of interest.
 deframerStatus is the 8-bit deframer status word return value.

Return values include the following:

 TALACT_WARN_RESET_LOG is the recovery action for log reset.
 TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
 TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
 TALACT_NO_ACTION indicates that the function completed successfully, no action required.

TALISE_enableDeframerPrbsChecker()

This function configures and enables or disables the lane or sample PRBS checker of the transceiver. Use this debug function to debug of
the transceiver JESD204B lanes. The transmitter link(s) must be configured and operational to use this function. If the
checkerLocation is TAL_PRBSCHECK_LANEDATA, the PRBS is checked at the output of the deserializer. If the checkerLocation
is TAL_PRBSCHECK_SAMPLEDATA, the PRBS data is expected to be framed JESD204B data and the PRBS is checked after the JESD204B
data is deframed. For the sample data, there is only a PRBS checker on Deframer Output 0. The lane PRBS has a checker on each
deserializer lane. The function is as follows:
TaliseErr_t TALISE_enableDeframerPrbsChecker(TaliseDevice_t *device, taliseDeframerPrbsOrder_t
polyOrder, taliseDefPrbsCheckLoc_t checkerLocation);

Precondition: this function can be called any at time after device initialization.

Dependencies: device->devHalInfo.

Parameters include the following:

 device is a pointer to the device settings structure.
 polyOrder selects the PRBS type based on enumerator values (TAL_PRBS_DISABLE, TAL_PRBS7, TAL_PRBS15, and

TAL_PRBS31).
 checkerLocation is the check at deserializer (Deframer Input 0 to Deframer Input 3) or sample (Deframer Output 0).

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 52 of 247

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION indicates that the function completed successfully, no action required.

TALISE_clearDeframerPrbsCounters()

This function allows the BBP to clear the deframer PRBS counters and resets the PRBS error counters for all lanes. It is recommended to
clear the error counters after enabling the deframer PRBS checker. The function is as follows:

taliseErr_t TALISE_clearDeframerPrbsCounters(TaliseDevice_t *device);

Precondition: the transceiver JESD204B link(s) must be configured and running to use this function.

Dependencies: device->devHalInfo.

Parameter: device is a pointer for the device settings structure.

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION indicates that the function completed successfully, no action required.

TALISE_readDeframerPrbsCounters()

After enabling the deframer PRBS checker and clearing the PRBS error counters, use this function to read back the PRBS error counters.
The lane parameter allows the BBP to select which lane error counter to read. Only one lane error counter can be read at a time. To read
error counters for all four lanes, the BBP must call this function four times. The function is as follows:
taliseErr_t TALISE_readDeframerPrbsCounters(TaliseDevice_t *device, uint8_t lane, uint8_t
*prbsErrorCount, uint8_t *prbsInvertedStatus);

In the case that the PRBS checker is set to check at the deframer output sample, there is only a checker on the Deframer Sample 0 output.
In this case, the lane function parameter is ignored and the Sample 0 PRBS counter is returned.

Precondition: the transmitter JESD204B link(s) must be configured and running to use this function.

Dependencies: device->devHalInfo.

Parameters include the following:

• device is a pointer to the device settings structure.
• lane specifies which lane to read the counter back for (valid 0, 1, 2, or 3). First silicon only reads back counter on Lane 0.
• prbsErrorCount is a return value of the 8-bit PRBS error count.
• prbsInvertedStatus is a return value of the bit mask indicating PRBS sequence is valid but inverted.

• Bit 3 = Lane 3 PRBS sequence is valid but inverted.
• Bit 2 = Lane 2 PRBS sequence is valid but inverted.
• Bit 1 = Lane 1 PRBS sequence is valid but inverted.
• Bit 0 = Lane 0 PRBS sequence is valid but inverted.

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION indicates that the function completed successfully, no action required.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 53 of 247

TALISE_getDfrmIlasMismatch()

This function compares the received Lane 0 ILAS configuration to the deframer configuration and returns a 32-bit mask that indicates values
that are mismatched. The actual Lane 0 ILAS configuration and deframer configuration values can be obtained by passing a pointer to the
taliseJesd204bLane0Config_t structure type to the dfrmCfg and dfrmIlas function parameters individually or together.
Passing a NULL pointer to either of these parameters results in no values returned for that parameter (see Table 26). The function is as
follows:

Uint32_t TALISE_getDfrmIlasMismatch(TaliseDevice_t *device, taliseDeframerSel_t deframerSelect,
uint32_t *mismatch, taliseJesd204bLane0Config_t *dfrmCfg, taliseJesd204bLane0Config_t
*dfrmIlas);

Table 26. Deframer ILAS Mismatch
Mismatch Mask Bit Description
17 Lane 3 checksum, 0 = match, 1 = mismatch
16 Lane 2 checksum, 0 = match, 1 = mismatch
15 Lane 1 checksum, 0 = match, 1 = mismatch
14 Lane 0 checksum, 0 = match, 1 = mismatch
13 HD, 0 = match, 1 = mismatch
12 CF, 0 = match, 1 = mismatch
11 S, 0 = match, 1 = mismatch
10 NP, 0 = match, 1 = mismatch
9 CS, 0 = match, 1 = mismatch
8 N, 0 = match, 1 = mismatch
7 M, 0 = match, 1 = mismatch
6 K, 0 = match, 1 = mismatch
5 F, 0 = match, 1 = mismatch
4 SCR, 0 = match, 1 = mismatch
3 L, 0 = match, 1 = mismatch
2 LID0, 0 = match, 1 = mismatch
1 BID, 0 = match, 1 = mismatch
0 DID, 0 = match, 1 = mismatch

Precondition: the transceiver JESD204B link(s) must be configured and running to use this function.

Dependencies: device->devHalInfo.

Parameters include the following:

 device is a pointer to the device settings structure.
 deframerSel is an enumerator indicating which deframer to address.
 mismatch is a pointer to a single uint32_t variable for reporting the ILAS match status, which is always returned.
 dfrmCfg is a pointer to a data structure that returns the deframer configuration settings. If this is returned as NULL, data is not

returned to the pointer.
 dfrmIlas is a pointer to a data structure that returns the received Lane 0 ILAS settings. If this is returned as NULL, no data is

returned to this pointer.

Return values include the following:

 TALACT_WARN_RESET_LOG is the recovery action for log reset.
 TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
 TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
 TALACT_NO_ACTION indicates that the function completed successfully, no action required.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 54 of 247

TALISE_setupDacSampleXbar()

This function sets the DAC sample crossbar. In the event that less than four DACs are enabled for deframing, the least significant
deframer outputs are used. The function is as follows:

uint32_t TALISE_setupDacSampleXbar(taliseDevice_t *device, taliseTxChannels_t channelSel,
taliseDacSampleXbar_t dacXbar);

Precondition: this function is called during JESD204B initialization.

Dependencies: device->devHalInfo.

Parameters include the following:

 device is a pointer to the device settings structure.
 channelSel is a taliseTxChannels_t enumerated data type for DAC crossbar channel selection, where only Transmitter 1 or

Transmitter 2 are valid choices.
 dacXbar is an enumerated data type used to map any deframer output to a specific DAC channel I/Q converter input for the

transceiver.

Return values:

 TALACT_WARN_RESET_LOG is the recovery action for log reset.
 TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
 TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
 TALACT_NO_ACTION indicates that the function completed successfully, no action required.

MULTICHIP SYNCHRONIZATION
Mulitchip synchronization is necessary when working with multiple transceivers or with one transceiver that requires deterministic
latency between the transmit and observation or main receive JESD204B datapaths. Perform a mulitchip sync after the device is
initialized. Additionally, this synchronization is used to achieve RF PLL phase synchronization. Refer to the RF PLL Phase
Synchronization section for details.

When multichip sync is enabled, the function is performed in four stages; each one is initiated with a rising SYSREF edge. The first two
SYSREF rising edges synchronize the device clock dividers. This portion of the synchronization requires some amount of time for the
clock PLL outputs to settle. The third SYSREF rising edge synchronizes the high speed digital clock dividers. The fourth SYSREF rising
edge synchronizes the numerically controlled oscillators (NCOs), the JESD204B LMFC, and the RF PLL phase synchronization.

For proper synchronization, the rising edge of SYSREF must be received at each device during the same device clock cycle. It is
recommended to disable the SYSREF, enable multichip sync, and then reenable the SYSREF signal. The SYSREF signal can either be
issued in individual pulses or be free running. If a periodic pulse is used, the phase must not change between rising edges. Single pulse
mode can be implemented by gating a free running SYSREF after the falling edge to prevent runt pulses.

Multichip Synchronization API Functions

TALISE_enableMultichipSync()

This function sets up the chip for multichip sync and cleans up after the synchronization. The function is as follows:

TaliseErr_t TALISE_enableMultichipSync(TaliseDevice_t *device, uint8_t enableMCS, uint8_t
*mcsStatus);

When the enableMcs parameter = 1, this function resets the multichip sync state machine in the device. Calling the function again
resets the state machine and expects the multichip sync sequence to start over.

When the enableMcs parameter = 0, the multichip sync state machine is not changed, allowing the user to read back the multichip sync
status in the mcsStatus parameter.

Table 27. Multichip Sync Status
mcsStatus Value Bit Name Description
3 Device clock divider sync This bit is equal to 1 if multichip sync device clock divider synchronization occurrs.
2 CLKPLL SDM sync 1 if multichip sync clock PLL Σ-Δ modulator (fractional mode) synchronization occurrs.
1 Digital clocks sync 1 if multichip sync digital clock divider synchronization occurrs.
0 JESD SYSREF sync 1 if multichip sync JESD204B SYSREF synchronization occurrs.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 55 of 247

Precondition: this function is called after the device has been initialized and PLL lock status has been verified.

Dependencies: device->devHalInfo.

Parameters include the following:

• device is a pointer to the device settings structure.
• enableMCs = 1 enables/resets the multichip sync state machine.
• mcsStatus is an optional parameter, if pointer is not NULL, the function returns the mcsStatus word described in Table 27.

Return values include the following:

• TALACT_WARN_RESET_LOG is the recovery action for log reset.
• TALACT_ERR_CHECK_PARAM is the recovery action for bad parameter check.
• TALACT_ERR_RESET_SPI is the recovery action for SPI reset required.
• TALACT_NO_ACTION indicates that the function completed successfully, no action required.

LINK ESTABLISHMENT
After applying power to the device, the serializers, framers, deserializers, deframers, and the rest of the JESD204B circuits are powered
down. Several steps are required to successfully power up the JESD204B link.

Suggested JESD204B API Initialization Sequence

The steps required to initialize the JESD204B links (both ADC and DAC datapaths) are as follows:

1. Initialize the taliseInit_t API data structure and substructures with the desired settings. The TTES can output .c or .h files
with the data structures initialized to the values from the Configuration tab of the software.

2. Call the TALISE_initialize() API command to configure the device. This sets up the device to use the receiver, transceiver, or
observation receiver profiles chosen, program the clock PLL and digital clocks, and set up the serializer, framer, deserializer, and
deframer, for the profiles that are valid.

3. Initiate multichip synchronization by resetting the multichip sync state machine, followed by the first three SYSREF pulses. After
each SYSREF pulse, monitor the multichip sync state machine status to verify that the synchronization stage is complete.

Refer to the following code:

//Disable SYSREF from clock device if free running

uint8_t mcsStatus = 0;

uint32_t talAction = TALACT_NO_ACTION; //default to no action required

//Enable MCS in Talise.

talAction = TALISE_enableMultichipSync(pTaliseDevice, 1, &mcsStatus);

if (talAction != TALISE_NO_ACTION)

{

 //function threw action code

}

//Request first two SYSREF pulses from clock device

Ad9528.requestSysref(1);

Ad9528.requestSysref(1);

do

{

 //Poll MCS Status to determine if the Device Clock dividers have synchronized

 talAction = TALISE_enableMultichipSync(pTaliseDevice, 0, &mcsStatus);

if (talAction != TALISE_NO_ACTION)

{

 //function threw action code

}

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 56 of 247

} while (!(mcsStatus & 0x8))

//Request third SYSREF pulse from clock device

Ad9528.requestSysref(1);

do

{

 //Poll MCS Status to determine if the Digital Clock dividers have synchronized

talAction = TALISE_enableMultichipSync(pTaliseDevice, 0, &mcsStatus);

if (talAction != TALISE_NO_ACTION)

{

 //function threw error code

}

} while (!(mcsStatus & 0x2))

4. Complete the normal sequence to load the Arm processor and to run the initialization calibrations. The JESD204B link initialization
is usually done at the end of initialization.

5. If the BBP requires the DAC transmit datapath, instruct the BBP to run the required initialization for the BBP. Enable the JESD204B
serializer in the BBP to the state in which it outputs CGS K characters.

6. Perform a reset to the deframer to clear any disparity bit errors previously detected. Additionally, if the serializer/deserializer
(SERDES) PLL inside the BPP resets, it can cause the device lane FIFOs to overflow/underflow, which requires a deframer reset. The
code for this reset is as follows:

TALISE_enableDeframerLink(pTaliseDevice, pTaliseDeframerSel, 0);

TALISE_enableDeframerLink(pTaliseDevice, pTaliseDeframerSel, 1);

7. Enable the JESD204B blocks to accept a SYSREF signal for an internal LMFC timing reset. Only the calls to the desired
framers/deframers are necessary. Send the fourth SYSREF pulse to the BBP and the devices to reset the JESD204B LMFC timing
locally in each device to guarantee deterministic latency. The device does not reset its LMFC timing on any future SYSREF pulses
(unless the newSysrefOnRelink option is enabled in the framer/deframer data structures). The code to enable the JESD204B
blocks is as follows:

TALISE_enableSysrefToFramer(pTaliseDevice, pTaliseFramerSel, 1);

TALISE_enableSysrefToDeframer(pTaliseDevice, pTaliseDeframerSel, 1);

//Request fourth SYSREF pulse from clock device

Ad9528.requestSysref(1);

do

{

 //Poll MCS Status to determine if the JESD LMFC has synchronized

 talAction = TALISE_enableMultichipSync(pTaliseDevice, 0, &mcsStatus);

if (talAction != TALISE_NO_ACTION)

{

 //function threw action code

}

} while (!(mcsStatus & 0x1))

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 57 of 247

When establishing a JESD204B link, it is desirable that the data arriving to the deframer does not arrive very close to an LMFC boundary.
If this does happen, the deterministic latency can vary from system to system if the data on one system arrives just before an LMFC event,
and arrives on another system just after an LMFC event. If this happens, there is an LMFC period difference in the latency between the
systems. Furthermore, the architecture in the device does not support a very small delay through the FIFO, and data corruption occurs if
the delay is too small. Therefore, it is important that the FIFO depth be checked after the link is established, and the link is adjusted to
achieve a FIFO depth that is close to the medium depth. The FIFO depth can be checked in Register 0x15CE for Deframer 0 and in
Register 0x161E for Deframer 1. Write to the appropriate register with a value of 0x80 to latch the current FIFO depth, and then read
back. The readback value is reported as a signed, twos complement number located in Bits[D5:D0] of the register with valid values from
+K2 to −(K/2 − 1). The value reported is the difference of the number of frames between the read and write pointers. If the value is found
to be close to 0, for example, −2, −1, 0, +1, or +2, adjust the depth by varying the LMFC offset parameter on either end of the JESD204B
link. Note that across multiple system starts, the depth in the FIFO can vary by one or two frames. This variation is expected because
sampling phase uncertainties are absorbed by the FIFO to give deterministic latency. Consider this fact when optimizing the JESD204B
link and performing multiple system starts to find the worst case depth values for a given LMFC offset.

Device Framers

At this point (after the framer has received a SYSREF pulse), the JESD204B serializer sends the CGS K characters when waiting for the
BBP to deassert the configured SYNCINx± signal (goes high). The device then transmits the ILAS sequence at the following LMFC
boundary, after the ILAS the framer sends the received ADC data. Refer to the TX Device portion of Figure 36 in the JEDEC Standard
No. 204B. For details on ILAS refer to Figure 35 of the JEDEC Standard No. 204B.

Device Deframer

When the deframer has received a SYSREF pulse and is receiving the CGS, the deframer drives SYNCOUTx± high at the beginning of the
next LMFC period. When SYNCOUTx± is driven high, the deframer looks for the BBP to switch from transmitting the CGS to
transmitting the ILAS. Details of the link initialization can be seen in Figure 14. When the ILAS transmission is complete, the deframer
begins decoding DAC samples, as long as no errors are detected during the ILAS transmission. Refer to the RX Device portion of
Figure 36 in the JEDEC Standard No. 204B.

Ensure that the scrambling setting matches in the BBP and in the device. It is possible for the JESD204B link to successfully link and for
the data to appear corrupt because only the data is scrambled, not the ILAS. This data scrambling can result in a transmit spectrum that
looks like noise.

COMPATIBILITY WITH XILINX JESD204B FPGA IP
Analog Devices uses the Xilinx JESD204B bundled with the XC7Z045 FFG900 for demonstration with the provided Analog Devices
evaluation platform.

Some versions of the Xilinx JESD204B include a watchdog timer that resets the high speed serial PLLs if the configured SYNCOUTx±
signal is held low for more than 10 ms. This feature causes the lane FIFOs in the deserializers to overflow/underflow, because the lane
FIFOs derive the write clock from the recovered CDR clock. When the FPGA resets its SERDES PLLs, the CDR clock in the device
unlocks and causes the lane FIFO to underflow/overflow. Typically, this is not a problem, because SYNCOUTx± is not held low for longer
than 10 ms in normal use. In debug mode, however, the user can choose to hold SYNCOUTx± low to test the link. It is recommended to
disable the 10 ms watchdog reset in the Xilinx IP wrapper to prevent unnecessary issues caused by randomly resetting PLLs in the system.

LINK SHARING IN TDD MODE
In TDD mode, a single link can be shared between receiver and observation receiver modes of operation.

Figure 14 and Figure 15 show path of data flow in observation receiver and receiver modes, respectively, in link sharing mode. For
Figure 14 and Figure 15, the same framer is shared between observation receiver and receiver modes. The observation receiver mode data
flow is indicated in red in Figure 14, and the receiver mode data flow is indicated in green in Figure 15. To use the same framer, the
observation I/Q sample rate must be the same as the receiver sample rate: 2× the receiver sample rate, or 4× the receiver sample rate.

In Figure 14 and Figure 15, the receiver is set in the 200 MHz/245.76 MSPS profile and the observation receiver is assumed to be set in the
450 MHz/491.52 MSPS profile.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 58 of 247

FRAMER LINK
B

Rx
DIGITAL

CIRCUITRY
FRAMER LINK

ARx CH1

Rx CH2

I

Q

Q

I

SAMPLE CROSSBAR

ANALOG
PHY

4×N

4×N

4×N

4×N
0

1

2

3
4×N

4×N

4×N

4×N

16
82

2-
01

7

Rx
DIGITAL

CIRCUITRY

Rx
DIGITAL

CIRCUITRY

Rx
DIGITAL

CIRCUITRY

Figure 14. Single Channel Observation Receiver Mode Operation Using Framer A (Link Sharing Mode)

FRAMER LINK
B

FRAMER LINK
ARx CH1

Rx CH2

I

Q

Q

I

SAMPLE CROSSBAR

ANALOG
PHY

4×N

4×N

4×N

4×N
0

1

2

3

0

1

2

3
4×N

4×N

4×N

4×N

16
82

2-
01

8

Rx
DIGITAL

CIRCUITRY

Rx
DIGITAL

CIRCUITRY

Rx
DIGITAL

CIRCUITRY

Rx
DIGITAL

CIRCUITRY

Figure 15. Dual-Channel Receiver Mode Operation Using Framer A (Link Sharing Mode)

Figure 16 shows link parameters and mapping of data onto lanes for the TDD in link sharing mode. The BBIC can now change the M and
S parameters on the device the fly when switching between receiver and observation receiver modes.

ORxI0[15:8] ORxI0[7:0] ORxI1[15:8] ORxI1[7:0]

ORxQ0[15:8] ORxQ0[7:0] ORxQ1[15:8] ORxQ1[7:0]

Rx1I0[15:8] Rx1I0[7:0] Rx1IQ0[15:8] Rx1Q0[7:0] ORxI0[15:8] ORxI0[7:0]

ORxQ0[15:8] ORxQ0[7:0]

LINK 0
M = 2
S = 2

LANE 0

LANE 1 Rx2I0[15:8] Rx2I0[7:0] Rx2Q0[15:8] Rx2Q0[7:0]

M2 M3

M0 M1

Rx ENABLE HIGH
M = 4, S = 1

FRAME CLOCK
ORx ENABLE HIGH

FRAME CLOCK
ORx ENABLE HIGH

16
82

2-
01

9

Figure 16. Mapping of Observation Receiver/Receiver Data onto Link in Link Sharing Mode

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 59 of 247

Enable Link Sharing Mode

Link sharing mode can be enabled using the GUI and the API. The process is as follows:

1. Using the GUI, on the JESD204B setup page, select the same framer and lane for the receiver and observation receiver.
2. Using the API, select the same framer and lanes that were selected during the receiver and observation receiver profile setup.

After setting up the profiles, the stream file is set up such that the JESD204B M and S parameters are toggled with receiver and
observation receiver enable signals, such that F is kept the same (the link does not drop). For this use case, take the following steps:

1. During receiver enable, M = 4, and S = 1.
2. During observation receiver enable, M = 2, and S = 2.

JESD204B CONFIGURATION DIAGRAMS
Supported Framer Configurations

See Table 9 for terms used in Figure 17 to Figure 43.

CONFIGURATION
DATA:
CF = 0
CS = 0
F = 2
L = 1
M = 1
N = 16
N' = 16
S = 1

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 2 OCTETS

TIME

CONVERTER DEVICE, 1 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1

NIBBLE GROUP 0

WORD 0

CONVERTER 0

SAMPLE 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
02

0

Figure 17. JESD204B Framer Configuration (M = 1, L = 1, S = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 60 of 247

CONVERTER DEVICE, 1 × 16 BITS, 2 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1

CONFIGURATION DATA:
CF = 0
CS = 0
F = 4
L = 1
M = 1
N = 16
N' = 16
S = 2

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 4 OCTETS

TIME

NIBBLE GROUP 0

WORD 0

C
r1

 S
1

[1
5:

8]

C
r1

 S
1

[7
:0

]

CONVERTER 0

SAMPLE 0

OCTET 2 OCTET 3

NIBBLE GROUP 1

WORD 1

SAMPLE 1

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
02

1

Figure 18. JESD204B Framer Configuration (M = 1, L = 1, S = 2)

CONVERTER DEVICE, 1 × 16 BITS, 4 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 8
L = 1
M = 1
N = 16
N' = 16
S = 4

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 8 OCTETS

TIME

C
r0

 S
1

[1
5:

8]

C
r0

 S
1

[7
:0

]

C
r0

 S
2

[1
5:

8]

C
r0

 S
2

[7
:0

]

C
r0

 S
3

[1
5:

8]

C
r0

 S
3

[7
:0

]

CONVERTER 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 1 SAMPLE 2 SAMPLE 3

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

16
82

2-
02

2

Figure 19. JESD204B Framer Configuration (M = 1, L = 1, S = 4)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 61 of 247

CONFIGURATION
DATA:
CF = 0
CS = 0
F = 1
L = 2
M = 1
N = 16
N' = 16
S = 1
HD = 1

LANE 0

C
r0

 S
0

[1
5:

8]

LANE 1

C
r0

 S
0

[7
:0

]

F = 1 OCTET

TIME

CONVERTER DEVICE, 1 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1

LANE 0 LANE 1

NIBBLE GROUP 0

WORD 0

CONVERTER 0

SAMPLE 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
02

3

Figure 20. JESD204B Framer Configuration (M = 1, L = 2, S = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 62 of 247

CONVERTER DEVICE, 1 × 16 BITS, 2 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1

CONFIGURATION DATA:
CF = 0
CS = 0
F = 2
L = 2
M = 1
N = 16
N' = 16
S = 2

LANE 0

LANE 1

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 2 OCTETS

TIME

NIBBLE GROUP 0

WORD 0

C
r0

 S
1

[1
5:

8]

C
r0

 S
1

[7
:0

]

CONVERTER 0

SAMPLE 0

OCTET 2 OCTET 3

NIBBLE GROUP 1

WORD 1

SAMPLE 1

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
02

4

LANE 0 LANE 1

Figure 21. JESD204B Framer Configuration (M = 1, L = 2, S = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 63 of 247

CONVERTER DEVICE, 1 × 16 BITS, 4 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0 LANE 1

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 4
L = 2
M = 1
N = 16
N' = 16
S = 4

LANE 0

LANE 1

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 4 OCTETS

TIME

C
r0

 S
1

[1
5:

8]

C
r0

 S
1

[7
:0

]

C
r0

 S
2

[1
5:

8]

C
r0

 S
2

[7
:0

]

C
r0

 S
3

[1
5:

8]

C
r0

 S
3

[7
:0

]

CONVERTER 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 1 SAMPLE 2 SAMPLE 3

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

16
82

2-
02

5

Figure 22. JESD204B Framer Configuration (M = 1, L = 2, S = 4)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 64 of 247

CONVERTER DEVICE, 1 × 16 BITS, 2 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1

CONFIGURATION DATA:
CF = 0
CS = 0
F = 1
L = 4
M = 1
N = 16
N' = 16
S = 2
HD = 1

LANE 0

LANE 1

LANE 2

LANE 3

C
r0

 S
0

[1
5:

8]
C

r0
 S

0
[7

:0
]

F = 1 OCTET

TIME

NIBBLE GROUP 0

WORD 0

C
r0

 S
1

[1
5:

8]
C

r0
 S

1
[7

:0
]

CONVERTER 0

SAMPLE 0

OCTET 2 OCTET 3

LANE 0 LANE 1 LANE 2 LANE 3

NIBBLE GROUP 1

WORD 1

SAMPLE 1

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
02

6

Figure 23. JESD204B Framer Configuration (M = 1, L = 4, S = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 65 of 247

CONVERTER DEVICE, 1 × 16 BITS, 4 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 2
L = 4
M = 1
N = 16
N' = 16
S = 4

LANE 0

LANE 1

LANE 2

LANE 3

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 2 OCTETS

TIME

C
r0

 S
1

[1
5:

8]

C
r0

 S
1

[7
:0

]

C
r0

 S
2

[1
5:

8]

C
r0

 S
2

[7
:0

]

C
r0

 S
3

[1
5:

8]

C
r0

 S
3

[7
:0

]

CONVERTER 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 1 SAMPLE 2 SAMPLE 3

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

LANE 0 LANE 1 LANE 2 LANE 3

16
82

2-
02

7

Figure 24. JESD204B Framer Configuration (M = 1, L = 4, S = 4)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 66 of 247

CONVERTER DEVICE, 2 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1

CONFIGURATION DATA:
CF = 0
CS = 0
F = 4
L = 1
M = 2
N = 16
N' = 16
S = 1

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 4 OCTETS

TIME

NIBBLE GROUP 0

WORD 0

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

CONVERTER 0

SAMPLE 0

OCTET 2 OCTET 3

NIBBLE GROUP 1

WORD 1

CONVERTER 1

SAMPLE 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
02

8

Figure 25. JESD204B Framer Configuration (M = 2, L = 1, S = 1)

CONVERTER DEVICE, 2 × 16 BITS, 2 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 8
L = 1
M = 2
N = 16
N' = 16
S = 2

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 8 OCTETS

TIME

C
r0

 S
1

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r1

 S
0

[1
5:

8]

C
r0

 S
2

[7
:0

]

C
r1

 S
1

[1
5:

8]

C
r1

 S
1

[7
:0

]

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 1 SAMPLE 0 SAMPLE 1

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

CONVERTER 0 CONVERTER 1
16

82
2-

02
9

Figure 26. JESD204B Framer Configuration (M = 2, L = 1, S = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 67 of 247

CONVERTER DEVICE, 2 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1

CONFIGURATION DATA:
CF = 0
CS = 0
F = 2
L = 2
M = 2
N = 16
N' = 16
S = 1

LANE 0

LANE 1

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 2 OCTETS

TIME

NIBBLE GROUP 0

WORD 0

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

CONVERTER 0

SAMPLE 0

OCTET 2 OCTET 3

NIBBLE GROUP 1

WORD 1

CONVERTER 1

SAMPLE 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
03

0

Figure 27. JESD204B Framer Configuration (M = 2, L = 2, S = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 68 of 247

CONVERTER DEVICE, 2 × 16 BITS, 2 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 4
L = 2
M = 2
N = 16
N' = 16
S = 2

LANE 0

LANE 1

F = 4 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 1 SAMPLE 0 SAMPLE 1

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3
C

r0
 S

0
[1

5:
8]

C
r0

 S
0

[7
:0

]

C
r0

 S
1

[1
5:

8]

C
r0

 S
1

[7
:0

]

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r1

 S
1

[1
5:

8]

C
r1

 S
1

[7
:0

]

CONVERTER 0 CONVERTER 1

LANE 0 LANE 1

16
82

2-
03

1

Figure 28. JESD204B Framer Configuration (M = 2, L = 2, S = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 69 of 247

C
O

N
VE

R
TE

R
 D

EV
IC

E,
 2

 x
 1

6
B

IT
S,

 2
 S

A
M

PL
ES

 P
ER

 S
IN

G
LE

 C
O

N
VE

R
TE

R
 P

ER
 F

R
A

M
E

C
YC

LE

LA
N

E
0

O
C

TE
T

0
O

C
TE

T
1

O
C

TE
T

2
O

C
TE

T
3

O
C

TE
T

4
O

C
TE

T
5

O
C

TE
T

6
O

C
TE

T
7

C
O

N
FI

G
U

R
A

TI
O

N
 D

A
TA

:
C

F
=

0
C

S
=

0
F

=
8

L
=

2
M

 =
 2

N
 =

 1
6

N
' =

 1
6

S
=

4

LA
N

E
0

Cr0 S0 [15:8]

Cr0 S0 [7:0]

F
=

8
O

C
TE

TS

TI
M

E

Cr0 S1 [15:8]

Cr0 S1 [7:0]

Cr0 S2 [15:8]

Cr0 S2 [7:0]

Cr0 S3 [15:8]

Cr0 S3 [7:0]

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

0
SA

M
PL

E
1

W
O

R
D

 0
W

O
R

D
 1

W
O

R
D

 2
W

O
R

D
 3

N
IB

B
LE

 G
R

O
U

P
0

N
IB

B
LE

 G
R

O
U

P
1

N
IB

B
LE

 G
R

O
U

P
2

N
IB

B
LE

 G
R

O
U

P
3

C
O

N
VE

R
TE

R
 0C

O
N

VE
R

TE
R

 D
EV

IC
E,

 4
 ×

 1
6

B
IT

S,
 4

 S
A

M
PL

ES
 P

ER
 S

IN
G

LE
 C

O
N

VE
R

TE
R

 P
ER

 F
R

A
M

E
C

YC
LE

LA
N

E
1

O
C

TE
T

8
O

C
TE

T
9

O
C

TE
T

10
O

C
TE

T
11

O
C

TE
T

12
O

C
TE

T
13

O
C

TE
T

14
O

C
TE

T
15

LA
N

E
1

Cr1 S0 [15:8]

Cr1 S0 [7:0]

Cr1 S1 [15:8]

Cr1 S1 [7:0]

Cr1 S2 [15:8]

Cr1 S2 [7:0]

Cr1 S3 [15:8]

Cr1 S3 [7:0]

N
O

 C
O

N
TR

O
L

B
IT

S
TO

 A
D

D
 C

F
=

0
A

N
D

 C
S

=
0

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

2
SA

M
PL

E
3

W
O

R
D

 4
W

O
R

D
 5

W
O

R
D

 6
W

O
R

D
 7

N
IB

B
LE

 G
R

O
U

P
4

N
IB

B
LE

 G
R

O
U

P
5

N
IB

B
LE

 G
R

O
U

P
6

N
IB

B
LE

 G
R

O
U

P
7

C
O

N
VE

R
TE

R
 1

16822-032

Figure 29. JESD204B Framer Configuration (M = 2, L = 2, S = 4)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 70 of 247

CONVERTER DEVICE, 2 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1

CONFIGURATION DATA:
CF = 0
CS = 0
F = 1
L = 4
M = 2
N = 16
N' = 16
S = 2
HD = 1

LANE 0

LANE 1

LANE 2

LANE 3

C
r0

 S
0

[1
5:

8]
C

r0
 S

0
[7

:0
]

F = 1 OCTET

TIME

NIBBLE GROUP 0

WORD 0

C
r1

 S
0

[1
5:

8]
C

r1
 S

0
[7

:0
]

SAMPLE 0

OCTET 2 OCTET 3

LANE 0 LANE 1 LANE 2 LANE 3

NIBBLE GROUP 1

WORD 1

SAMPLE 0

CONVERTER 0 CONVERTER 1

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
03

3

Figure 30. JESD204B Framer Configuration (M = 2, L = 4, S = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 71 of 247

CONVERTER DEVICE, 2 × 16 BITS, 2 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 2
L = 4
M = 2
N = 16
N' = 16
S = 2

LANE 0

LANE 1

LANE 2

LANE 3

F = 2 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 1 SAMPLE 0 SAMPLE 1

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r0

 S
1

[1
5:

8]

C
r0

 S
1

[7
:0

]

C
r1

 S
1

[1
5:

8]

C
r1

 S
1

[7
:0

]

CONVERTER 0 CONVERTER 1

LANE 0 LANE 1 LANE 2 LANE 3

16
82

2-
03

4

Figure 31. JESD204B Framer Configuration (M = 2, L = 4, S = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 72 of 247

C
O

N
VE

R
TE

R
 D

EV
IC

E,
 2

 x
 1

6
B

IT
S,

 2
 S

A
M

PL
ES

 P
ER

 S
IN

G
LE

 C
O

N
VE

R
TE

R
 P

ER
 F

R
A

M
E

C
YC

LE

LA
N

E
0

LA
N

E
1

O
C

TE
T

0
O

C
TE

T
1

O
C

TE
T

2
O

C
TE

T
3

O
C

TE
T

4
O

C
TE

T
5

O
C

TE
T

6
O

C
TE

T
7

C
O

N
FI

G
U

R
A

TI
O

N
 D

A
TA

:
C

F
=

0
C

S
=

0
F

=
4

L
=

4
M

 =
 2

N
 =

 1
6

N
' =

 1
6

S
=

4

LA
N

E
0

Cr0 S0 [15:8]

Cr0 S0 [7:0]

F
=

4
O

C
TE

TS

TI
M

E

Cr0 S1 [15:8]

Cr0 S1 [7:0]

Cr1 S0 [15:8]

Cr1 S0 [7:0]

Cr1 S1 [15:8]

Cr1 S1 [7:0]

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

2
SA

M
PL

E
3

W
O

R
D

 0
W

O
R

D
 1

W
O

R
D

 2
W

O
R

D
 3

N
IB

B
LE

 G
R

O
U

P
0

N
IB

B
LE

 G
R

O
U

P
1

N
IB

B
LE

 G
R

O
U

P
2

N
IB

B
LE

 G
R

O
U

P
3

C
O

N
VE

R
TE

R
 0C

O
N

VE
R

TE
R

 D
EV

IC
E,

 2
 ×

 1
6

B
IT

S,
 4

 S
A

M
PL

ES
 P

ER
 S

IN
G

LE
 C

O
N

VE
R

TE
R

 P
ER

 F
R

A
M

E
C

YC
LE

O
C

TE
T

8
O

C
TE

T
9

O
C

TE
T

10
O

C
TE

T
11

O
C

TE
T

12
O

C
TE

T
13

O
C

TE
T

14
O

C
TE

T
15

LA
N

E
1

LA
N

E
2

LA
N

E
3

Cr0 S2 [15:8]

Cr0 S2 [7:0]

Cr0 S3 [15:8]

Cr0 S3 [7:0]

Cr1 S2 [15:8]

Cr1 S2 [7:0]

Cr1 S3 [15:8]

Cr1 S3 [7:0]

N
O

 C
O

N
TR

O
L

B
IT

S
TO

 A
D

D
 C

F
=

0
A

N
D

 C
S

=
0

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

2
SA

M
PL

E
3

W
O

R
D

 4
W

O
R

D
 5

W
O

R
D

 6
W

O
R

D
 7

N
IB

B
LE

 G
R

O
U

P
4

N
IB

B
LE

 G
R

O
U

P
5

N
IB

B
LE

 G
R

O
U

P
6

N
IB

B
LE

 G
R

O
U

P
7

C
O

N
VE

R
TE

R
 1

LA
N

E
2

LA
N

E
3

16822-035

Figure 32. JESD204B Framer Configuration (M = 2, L = 4, S = 4)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 73 of 247

CONVERTER DEVICE, 4 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 8
L = 1
M = 4
N = 16
N' = 16
S = 1

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 8 OCTETS

TIME

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r2

 S
0

[1
5:

8]

C
r2

 S
0

[7
:0

]

C
r3

 S
0

[1
5:

8]

C
r3

 S
0

[7
:0

]

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

16
82

2-
03

6

Figure 33. JESD204B Framer Configuration (M = 4, L = 1, S = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 74 of 247

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

CONVERTER DEVICE, 4 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 4
L = 2
M = 4
N = 16
N' = 16
S = 1

LANE 0

LANE 1

F = 4 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3
C

r0
 S

0
[1

5:
8]

C
r0

 S
0

[7
:0

]

C
r2

 S
0

[1
5:

8]

C
r2

 S
0

[7
:0

]

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r3

 S
0

[1
5:

8]

C
r3

 S
0

[7
:0

]

LANE 0 LANE 1

16
82

2-
03

7

Figure 34. JESD204B Framer Configuration (M = 4, L = 2, S = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 75 of 247

C
O

N
VE

R
TE

R
 D

EV
IC

E,
 2

 x
 1

6
B

IT
S,

 2
 S

A
M

PL
ES

 P
ER

 S
IN

G
LE

 C
O

N
VE

R
TE

R
 P

ER
 F

R
A

M
E

C
YC

LE

O
C

TE
T

0
O

C
TE

T
1

O
C

TE
T

2
O

C
TE

T
3

O
C

TE
T

4
O

C
TE

T
5

O
C

TE
T

6
O

C
TE

T
7

C
O

N
FI

G
U

R
A

TI
O

N
 D

A
TA

:
C

F
=

0
C

S
=

0
F

=
8

L
=

2
M

 =
 4

N
 =

 1
6

N
' =

 1
6

S
=

2

LA
N

E
0

Cr0 S0 [15:8]

Cr0 S0 [7:0]

F
=

8
O

C
TE

TS

TI
M

E

Cr0 S1 [15:8]

Cr0 S1 [7:0]

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

0
SA

M
PL

E
1

W
O

R
D

 0
W

O
R

D
 1

W
O

R
D

 2
W

O
R

D
 3

N
IB

B
LE

 G
R

O
U

P
0

N
IB

B
LE

 G
R

O
U

P
1

N
IB

B
LE

 G
R

O
U

P
2

N
IB

B
LE

 G
R

O
U

P
3

O
C

TE
T

8
O

C
TE

T
9

O
C

TE
T

10
O

C
TE

T
11

O
C

TE
T

12
O

C
TE

T
13

O
C

TE
T

14
O

C
TE

T
15

LA
N

E
1

Cr2 S0 [15:8]

Cr2 S0 [7:0]

Cr2 S1 [15:8]

Cr2 S1 [7:0]

Cr1 S0 [15:8]

Cr1 S0 [7:0]

Cr1 S1 [15:8]

Cr1 S1 [7:0]

Cr3 S0 [15:8]

Cr3 S0 [7:0]

Cr3 S1 [15:8]

Cr3 S1 [7:0]

N
O

 C
O

N
TR

O
L

B
IT

S
TO

 A
D

D
 C

F
=

0
A

N
D

 C
S

=
0

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

0
SA

M
PL

E
1

W
O

R
D

 4
W

O
R

D
 5

W
O

R
D

 6
W

O
R

D
 7

N
IB

B
LE

 G
R

O
U

P
4

N
IB

B
LE

 G
R

O
U

P
5

N
IB

B
LE

 G
R

O
U

P
6

N
IB

B
LE

 G
R

O
U

P
7

C
O

N
VE

R
TE

R
 1

C
O

N
VE

R
TE

R
 0

C
O

N
VE

R
TE

R
 3

C
O

N
VE

R
TE

R
 2

C
O

N
VE

R
TE

R
 D

EV
IC

E,
 4

 ×
 1

6
B

IT
S,

 2
 S

A
M

PL
ES

 P
ER

 S
IN

G
LE

 C
O

N
VE

R
TE

R
 P

ER
 F

R
A

M
E

C
YC

LE

16822-038

LA
N

E
1

LA
N

E
0

Figure 35. JESD204B Framer Configuration (M = 4, L = 2, S = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 76 of 247

CONVERTER DEVICE, 4 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 2
L = 4
M = 4
N = 16
N' = 16
S = 1

LANE 0

F = 2 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

LANE 0 LANE 1 LANE 2 LANE 3

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

C
r2

 S
0

[1
5:

8]

C
r2

 S
0

[7
:0

]

LANE 1

LANE 2

LANE 3

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r3

 S
0

[1
5:

8]

C
r3

 S
0

[7
:0

]

16
82

2-
03

9

Figure 36. JESD204B Framer Configuration (M = 4, L = 4, S = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 77 of 247

16822-040

LA
N

E
0

LA
N

E
1

O
C

TE
T

0
O

C
TE

T
1

O
C

TE
T

2
O

C
TE

T
3

O
C

TE
T

4
O

C
TE

T
5

O
C

TE
T

6
O

C
TE

T
7

C
O

N
FI

G
U

R
A

TI
O

N
 D

A
TA

:
C

F
=

0
C

S
=

0
F

=
4

L
=

4
M

 =
 4

N
 =

 1
6

N
' =

 1
6

S
=

2

LA
N

E
0

Cr0 S0 [15:8]

Cr0 S0 [7:0]

F
=

4
O

C
TE

TS

TI
M

E

Cr0 S1 [15:8]

Cr0 S1 [7:0]

Cr2 S0 [15:8]

Cr2 S0 [7:0]

Cr2 S1 [15:8]

Cr2 S1 [7:0]

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

0
SA

M
PL

E
1

W
O

R
D

 0
W

O
R

D
 1

W
O

R
D

 2
W

O
R

D
 3

N
IB

B
LE

 G
R

O
U

P
0

N
IB

B
LE

 G
R

O
U

P
1

N
IB

B
LE

 G
R

O
U

P
2

N
IB

B
LE

 G
R

O
U

P
3

C
O

N
VE

R
TE

R
 D

EV
IC

E,
 4

 ×
 1

6
B

IT
S,

 2
 S

A
M

PL
ES

 P
ER

 S
IN

G
LE

 C
O

N
VE

R
TE

R
 P

ER
 F

R
A

M
E

C
YC

LE

O
C

TE
T

8
O

C
TE

T
9

O
C

TE
T

10
O

C
TE

T
11

O
C

TE
T

12
O

C
TE

T
13

O
C

TE
T

14
O

C
TE

T
15

LA
N

E
1

LA
N

E
2

LA
N

E
3

Cr1 S0 [15:8]

Cr1 S0 [7:0]

Cr1 S1 [15:8]

Cr1 S1 [7:0]

Cr3 S0 [15:8]

Cr3 S0 [7:0]

Cr3 S1 [15:8]

Cr3 S1 [7:0]

N
O

 C
O

N
TR

O
L

B
IT

S
TO

 A
D

D
 C

F
=

0
A

N
D

 C
S

=
0

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

0
SA

M
PL

E
1

W
O

R
D

 4
W

O
R

D
 5

W
O

R
D

 6
W

O
R

D
 7

N
IB

B
LE

 G
R

O
U

P
4

N
IB

B
LE

 G
R

O
U

P
5

N
IB

B
LE

 G
R

O
U

P
6

N
IB

B
LE

 G
R

O
U

P
7

C
O

N
VE

R
TE

R
 2

C
O

N
VE

R
TE

R
 3

LA
N

E
2

LA
N

E
3

C
O

N
VE

R
TE

R
 0

C
O

N
VE

R
TE

R
 1

Figure 37. JESD204B Framer Configuration (M = 4, L = 4, S = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 78 of 247

16822-041

O
C

TE
T

0
O

C
TE

T
1

O
C

TE
T

2
O

C
TE

T
3

O
C

TE
T

4
O

C
TE

T
5

O
C

TE
T

6
O

C
TE

T
7

LA
N

E
0

Cr0 S0 [15:8]

Cr0 S0 [7:0]

F
=

8
O

C
TE

TS

TI
M

E

Cr0 S1 [15:8]

Cr0 S1 [7:0]

Cr2 S0 [15:8]

Cr2 S0 [7:0]

Cr2 S1 [15:8]

Cr2 S1 [7:0]

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

2
SA

M
PL

E
3

W
O

R
D

 0
W

O
R

D
 1

W
O

R
D

 2
W

O
R

D
 3

N
IB

B
LE

 G
R

O
U

P
0

N
IB

B
LE

 G
R

O
U

P
1

N
IB

B
LE

 G
R

O
U

P
2

N
IB

B
LE

 G
R

O
U

P
3

O
C

TE
T

8
O

C
TE

T
9

O
C

TE
T

10
O

C
TE

T
11

O
C

TE
T

12
O

C
TE

T
13

O
C

TE
T

14
O

C
TE

T
15

LA
N

E
1

LA
N

E
2

LA
N

E
3

Cr1 S0 [15:8]

Cr1 S0 [7:0]

Cr1 S1 [15:8]

Cr1 S1 [7:0]

Cr3 S0 [15:8]

Cr3 S0 [7:0]

Cr3 S1 [15:8]

Cr3 S1 [7:0]

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

2
SA

M
PL

E
3

W
O

R
D

 4
W

O
R

D
 5

W
O

R
D

 6
W

O
R

D
 7

N
IB

B
LE

 G
R

O
U

P
4

N
IB

B
LE

 G
R

O
U

P
5

N
IB

B
LE

 G
R

O
U

P
6

N
IB

B
LE

 G
R

O
U

P
7

C
O

N
VE

R
TE

R
 1

Cr0 S2 [15:8]

Cr2 S0 [7:0]

Cr0 S3 [15:8]

Cr0 S3 [7:0]

Cr2 S2 [15:8]

Cr2 S2 [7:0]

Cr2 S3 [15:8]

Cr2 S3 [7:0]

Cr1 S2 [15:8]

Cr1 S2 [7:0]

Cr1 S3 [15:8]

Cr1 S3 [7:0]

Cr3 S2 [15:8]

Cr3 S2 [7:0]

Cr3 S3 [15:8]

Cr3 S3 [7:0]

C
O

N
VE

R
TE

R
 0

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

2
SA

M
PL

E
3

W
O

R
D

 8
W

O
R

D
 9

W
O

R
D

 1
0

W
O

R
D

 1
1

N
IB

B
LE

 G
R

O
U

P
8

N
IB

B
LE

 G
R

O
U

P
9

N
IB

B
LE

 G
R

O
U

P
10

N
IB

B
LE

 G
R

O
U

P
11

C
O

N
VE

R
TE

R
 D

EV
IC

E,
 4

 ×
 1

6
B

IT
S,

 4
 S

A
M

PL
ES

 P
ER

 S
IN

G
LE

 C
O

N
VE

R
TE

R
 P

ER
 F

R
A

M
E

C
YC

LE

N
O

 C
O

N
TR

O
L

B
IT

S
TO

 A
D

D
 C

F
=

0
A

N
D

 C
S

=
0

SA
M

PL
E

0
SA

M
PL

E
1

SA
M

PL
E

2
SA

M
PL

E
3

W
O

R
D

 1
2

W
O

R
D

 1
3

W
O

R
D

 1
4

W
O

R
D

 1
5

N
IB

B
LE

 G
R

O
U

P
12

N
IB

B
LE

 G
R

O
U

P
13

N
IB

B
LE

 G
R

O
U

P
14

N
IB

B
LE

 G
R

O
U

P
15

C
O

N
VE

R
TE

R
 3

aa
C

O
N

VE
R

TE
R

 2

LA
N

E
1

LA
N

E
0

LA
N

E
3

LA
N

E
2

O
C

TE
T

16
O

C
TE

T
17

O
C

TE
T

18
O

C
TE

T
19

O
C

TE
T

20
O

C
TE

T
21

O
C

TE
T

22
O

C
TE

T
23

O
C

TE
T

24
O

C
TE

T
25

O
C

TE
T

26
O

C
TE

T
27

O
C

TE
T

28
O

C
TE

T
29

O
C

TE
T

30
O

C
TE

T
31

C
O

N
FI

G
U

R
A

TI
O

N
 D

A
TA

:
C

F
=

0
C

S
=

0
F

=
8

L
=

4
M

 =
 4

N
 =

 1
6

N
' =

 1
6

S
=

4

Figure 38. JESD204B Framer Configuration (M = 4, L = 4, S = 4)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 79 of 247

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

CONVERTER DEVICE, 4 × 12 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

CONFIGURATION DATA:
CF = 0
CS = 0
F = 3
L = 2
M = 4
N = 12
N' = 12
S = 1

LANE 0

LANE 1

F = 3 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

C
r0

 S
0

[1
1:

4]

C
r0

 S
0

[3
:0

]
C

r1
 S

0
[1

1:
8]

C
r1

 S
0

[7
:0

]

C
r2

 S
0

[1
1:

4]

C
r2

 S
0

[3
:0

]
C

r3
 S

0
[1

1:
8]

C
r3

 S
0

[7
:0

]

LANE 0 LANE 1

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5

16
82

2-
04

2

Figure 39. JESD204B Framer Configuration (M = 4, L = 2, S = 1, N’ = 12)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 80 of 247

CONVERTER DEVICE, 2 × 24 BITS, 2 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

CONFIGURATION DATA:
CF = 0
CS = 0
F = 6
L = 2
M = 2
N = 24
N' = 24
S = 2

LANE 0

LANE 1

F = 6 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

WORD 0

NIBBLE GROUP 0

C
r0

 S
0

[2
3:

16
]

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

C
r0

 S
1

[2
3:

16
]

C
r0

 S
1

[1
5:

8]

C
r0

 S
1

[7
:0

]

C
r1

 S
0

[2
3:

16
]

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r1

 S
1

[2
3:

16
]

C
r1

 S
1

[1
5:

8]

C
r1

 S
1

[7
:0

]

OCTET 0 OCTET 1 OCTET 2

WORD 1

OCTET 3 OCTET 4 OCTET 5

WORD 2

NIBBLE GROUP 2

OCTET 6 OCTET 7 OCTET 8

WORD 3

NIBBLE GROUP 3

OCTET 9 OCTET 10 OCTET 11

CONVERTER 0

SAMPLE 0 SAMPLE 1

CONVERTER 1

LANE 0 LANE 1

SAMPLE 0 SAMPLE 1

NIBBLE GROUP 1

16
82

2-
04

3

Figure 40. JESD204B Framer Configuration (M = 2, L = 2, S = 2, N’ = 24)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 81 of 247

CONVERTER DEVICE, 4 × 24 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

CONFIGURATION DATA:
CF = 0
CS = 0
F = 6
L = 2
M = 4
N = 24
N' = 24
S = 1

LANE 0

LANE 1

F = 6 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

WORD 0

NIBBLE GROUP 0

C
r0

 S
0

[2
3:

16
]

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

C
r1

 S
0

[2
3:

16
]

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r2

 S
0

[2
3:

16
]

C
r2

 S
0

[1
5:

8]

C
r2

 S
0

[7
:0

]

C
r3

 S
0

[2
3:

16
]

C
r3

 S
0

[1
5:

8]

C
r3

 S
0

[7
:0

]

OCTET 0 OCTET 1 OCTET 2

WORD 1

OCTET 3 OCTET 4 OCTET 5

WORD 2

NIBBLE GROUP 2

OCTET 6 OCTET 7 OCTET 8

WORD 3

NIBBLE GROUP 3

OCTET 9 OCTET 10 OCTET 11

SAMPLE 0 SAMPLE 0

LANE 0 LANE 1

SAMPLE 0 SAMPLE 0

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

NIBBLE GROUP 1

16
82

2-
04

4

Figure 41. JESD204B Framer Configuration (M = 4, L = 2, S = 1, N’ = 24)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 82 of 247

CONVERTER 0 CONVERTER 1

CONVERTER DEVICE, 2 × 12 BITS, 2 SAMPLES PER SINGLE CONVERTER PER FRAME CYCLE

CONFIGURATION DATA:
CF = 0
CS = 0
F = 6
L = 1
M = 2
N = 12
N' = 12
S = 2

LANE 0

F = 6 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 1 SAMPLE 0 SAMPLE 1

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3
C

r0
 S

0
[1

1:
4]

C
r0

 S
0

[3
:0

]
C

r1
 S

1
[1

1:
8]

C
r0

 S
1

[7
:0

]

C
r1

 S
0

[1
1:

4]

C
r1

 S
0

[3
:0

]
C

r1
 S

1
[1

1:
8]

C
r1

 S
1

[7
:0

]

LANE 0

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5

16
82

2-
04

5

Figure 42. JESD204B Framer Configuration (M = 2, L = 1, S = 2, N’ = 12)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 83 of 247

CONFIGURATION DATA:
CF = 0
CS = 0
F = 6
L = 1
M = 4
N = 12
N' = 12
S = 1

LANE 0

F = 6 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

CONVERTER 0 COVNERTER 1 CONVERTER 2 CONVERTER 3

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

C
r0

 S
0

[1
1:

4]

C
r0

 S
0

[3
:0

]
C

r1
 S

0
[1

1:
8]

C
r1

 S
0

[7
:0

]

C
r2

 S
0

[1
1:

4]

C
r2

 S
0

[3
:0

]
C

r3
 S

0
[1

1:
8]

C
r3

 S
0

[7
:0

]

LANE 0

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5

CONVERTER DEVICE, 4 × 12 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

16
82

2-
04

6

Figure 43. JESD204B Framer Configuration (M = 4, L = 1, S = 1, N’ = 12)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 84 of 247

Supported Deframer Configurations

See Table 9 for terms used in Figure 44 to Figure 52.

CONFIGURATION
DATA:
CF = 0
CS = 0
F = 2
L = 1
M = 1
N = 16
N' = 16
S = 1

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 2 OCTETS

TIME

CONVERTER DEVICE, 1 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1

NIBBLE GROUP 0

WORD 0

CONVERTER 0

SAMPLE 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
04

7

Figure 44. JESD204B Deframer Configuration (M = 1, L = 1, S = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 85 of 247

CONFIGURATION
DATA:
CF = 0
CS = 0
F = 1
L = 2
M = 1
N = 16
N' = 16
S = 1
HD = 1

LANE 0

C
r0

 S
0

[1
5:

8]

LANE 1

C
r0

 S
0

[7
:0

]

F = 1 OCTET

TIME

CONVERTER DEVICE, 1 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1

LANE 0 LANE 1

NIBBLE GROUP 0

WORD 0

CONVERTER 0

SAMPLE 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
04

8

Figure 45. JESD204B Deframer Configuration (M = 1, L = 2, S = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 86 of 247

CONVERTER DEVICE, 2 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0 OCTET 1

CONFIGURATION DATA:
CF = 0
CS = 0
F = 4
L = 1
M = 2
N = 16
N' = 16
S = 1

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 4 OCTETS

TIME

NIBBLE GROUP 0

WORD 0

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

CONVERTER 0

SAMPLE 0

OCTET 2 OCTET 3

NIBBLE GROUP 1

WORD 1

CONVERTER 1

SAMPLE 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
04

9

Figure 46. JESD204B Deframer Configuration (M = 2, L = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 87 of 247

CONVERTER DEVICE, 2 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0 LANE 1

OCTET 0 OCTET 1

CONFIGURATION DATA:
CF = 0
CS = 0
F = 2
L = 2
M = 2
N = 16
N' = 16
S = 1

LANE 0

LANE 1

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 2 OCTETS

TIME

NIBBLE GROUP 0

WORD 0

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

CONVERTER 0

SAMPLE 0

OCTET 2 OCTET 3

NIBBLE GROUP 1

WORD 1

CONVERTER 1

SAMPLE 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
05

0

Figure 47. JESD204B Deframer Configuration (M = 2, L = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 88 of 247

CONFIGURATION DATA:
CF = 0
CS = 0
F = 1
L = 4
M = 2
N = 16
N' = 16
S = 1
HD = 1

LANE 0

LANE 1

LANE 2

LANE 3

C
r0

 S
0

[1
5:

8]

F = 1 OCTET

TIME

C
r0

 S
0

[7
:0

]
C

r1
 S

0
[1

5:
8]

C
r1

 S
0

[7
:0

]

OCTET 0 OCTET 1

NIBBLE GROUP 0

WORD 0

SAMPLE 0

OCTET 2 OCTET 3

LANE 0 LANE 1 LANE 2 LANE 3

NIBBLE GROUP 1

WORD 1

SAMPLE 0

CONVERTER 0 CONVERTER 1

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

16
82

2-
05

1

CONVERTER DEVICE, 2 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

Figure 48. JESD204B Deframer Configuration (M = 2, L = 4)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 89 of 247

LANE 0

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 8
L = 1
M = 4
N = 16
N' = 16
S = 1

LANE 0

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 8 OCTETS

TIME

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r2

 S
0

[1
5:

8]

C
r2

 S
0

[7
:0

]

C
r3

 S
0

[1
5:

8]

C
r3

 S
0

[7
:0

]

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

CONVERTER DEVICE, 4 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

16
82

2-
05

2

Figure 49. JESD204B Deframer Configuration (M = 4, L = 1)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 90 of 247

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

CONVERTER DEVICE, 4 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 4
L = 2
M = 4
N = 16
N' = 16
S = 1

LANE 0

LANE 1

F = 4 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3
C

r0
 S

0
[1

5:
8]

C
r0

 S
0

[7
:0

]

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r2

 S
0

[1
5:

8]

C
r2

 S
0

[7
:0

]

C
r3

 S
0

[1
5:

8]

C
r3

 S
0

[7
:0

]

LANE 0 LANE 1

16
82

2-
05

3

Figure 50. JESD204B Deframer Configuration (M = 4, L = 2)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 91 of 247

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

CONVERTER DEVICE, 4 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5 OCTET 6 OCTET 7

CONFIGURATION DATA:
CF = 0
CS = 0
F = 2
L = 4
M = 4
N = 16
N' = 16
S = 1

LANE 0

LANE 1

LANE 2

LANE 3

C
r0

 S
0

[1
5:

8]

C
r0

 S
0

[7
:0

]

F = 2 OCTETS

TIME

C
r1

 S
0

[1
5:

8]

C
r1

 S
0

[7
:0

]

C
r2

 S
0

[1
5:

8]

C
r2

 S
0

[7
:0

]

C
r3

 S
0

[1
5:

8]

C
r3

 S
0

[7
:0

]

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3

LANE 0 LANE 1 LANE 2 LANE 3

16
82

2-
05

4

Figure 51. JESD204B Deframer Configuration (M = 4, L = 4)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 92 of 247

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

CONVERTER DEVICE, 4 × 12 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

CONFIGURATION DATA:
CF = 0
CS = 0
F = 3
L = 2
M = 4
N = 12
N' = 12
S = 1

LANE 0

LANE 1

F = 3 OCTETS

TIME

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

WORD 0 WORD 1 WORD 2 WORD 3

NIBBLE GROUP 0 NIBBLE GROUP 1 NIBBLE GROUP 2 NIBBLE GROUP 3
C

r0
 S

0
[1

1:
4]

C
r0

 S
0

[3
:0

]
C

r1
 S

0
[1

1:
8]

C
r1

 S
0

[7
:0

]

C
r2

 S
0

[1
1:

4]

C
r2

 S
0

[3
:0

]
C

r3
 S

0
[1

1:
8]

C
r3

 S
0

[7
:0

]
LANE 0 LANE 1

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 5

16
82

2-
05

5

Figure 52. JESD204B Deframer Configuration (M = 4, L = 2, N’ = 12)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 93 of 247

SYSTEM INITIALIZATION
This section provides information about the initialization process for the device utilizing the API developed by Analog Devices. This
section does not explain the API library functions. Detailed information regarding the API functions can be found in the device API
doxygen document (talise.chm) located at /src/doc. This section does not describe API integration and the hardware abstraction
interface.

DEVICE INITIALIZATION SEQUENCE
The initialization sequence is comprised of API calls intermixed with user defined function calls that are specific to the hardware
platform. The API functions perform all of the necessary tasks for transceiver configuration, calibration, and control. The user is required
to insert their code into the initialization sequence, specific to the hardware platform requirements. These platform requirements include
but are not limited to: user clock device, user FPGA/application specific integrated circuit (ASIC)/BBIC JESD204B interface, datapath
control, and various system checks that are governed by the application. The source code contained in the /src/example/headless.c file
provides a basic initialization sequence with code comments to help guide the user with the insertion of their application specific code.

Device Initialization Sequence Order

The initialization sequence is as follows:

1. Instantiate all data structures and load their members required by the user application.
2. Initialize and setup of all clocks (platform clock source and JESD204B SYSREF signals are set up).
3. Initialize hardware platform (hardware dependent devices such as FPGA/ASIC/BBIC interfaces are initialized).
4. Initialize hardware for API (call TALISE_openHw).
5. Reset the device (call TALISE_resetDevice for reset of transceiver device in preparation for initialization).
6. Initialize the device (call TALISE_initialize function for configuration of the device).
7. Check clock PLL status for lock (call TALISE_getPllLockStatus and perform check with user defined code).
8. Multichip synchronization (necessary for JESD204B deterministic latency requirements).
9. Check clock PLL status for lock (call TALISE_getPllLockStatus and perform check with user defined code).
10. Initialize the Arm processor (call TALISE_initArm).
11. Initialize the stream processor (call TALISE_initStreamProc).
12. Load the stream processor binary file (call TALISE_loadStreamProcessor).
13. Load the Arm binary file (call TALISE_loadArmFromBinary with user defined, binary array pointer).
14. Set the RF PLL frequencies (call TALISE_setRfPllFrequency).
15. Perform RF PLL lock check (call TALISE_checkPllLockStatus).
16. Run the initialization calibrations (call TALISE_runInitCals and TALISE_waitInitCals with user defined code).
17. Enable the SYSREF signal detection for the device (call TALISE_enableSysrefToFramer functions).
18. Send the SYSREF signal to bring up the JESD204B interface.
19. Check the device JESD204B (deframer and/or framer) status (call TALISE_readDeframerStatus and

TALISE_readRxFramerStatus).
20. Verify sync and link status for hardware platform.
21. Enable the tracking calibrations (call TALISE_enableTrackingCals).
22. Turn the radio on (call TALISE_radioOn).
23. Power up desired transmitters and receivers (call TALISE_ setRxTxEnable).

DEVICE INITIALIZATION EXAMPLE CODE
For an example code, refer to the headless.c file located in the /src/app/example/headless.c folder.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 94 of 247

SYSTEM SHUTDOWN
This section provides information about the shutdown process for the device that is utilizing the API developed by Analog Devices. This
section does not explain the API library functions. Detailed information regarding the API functions can be found in the device API
doxygen document (talise.chm) located at /src/doc.

DEVICE SHUTDOWN SEQUENCE
The API library provides two main APIs that can perform a system shutdown procedure. The TALISE_shutdown function resets the
device into a safe state for powering down the device. The TALISE_closeHw function performs a hardware shutdown for the device.
This function calls ADIHAL_closeHw, which shuts down all of the external hardware blocks required to operate the device. This
hardware shutdown procedure is defined by the user’s implementation of ADIHAL.

Device Shutdown Sequence Order

The device shutdown sequence is as follows:

1. Turn the radio off (call TALISE_radioOff).
2. Put the device into safe state for shutdown (call TALISE_shutdown).
3. Shut down the external hardware for the device (call TALISE_closeHw).

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 95 of 247

STREAM PROCESSOR AND SYSTEM CONTROL
STREAM PROCESSOR
The device supports quick configuration from idle states to operation, or, given the shared nature of the observation receiver and receiver
paths, supports a quick transition between receive and observation modes. The stream processor is a processor within the device that is
tasked with performing a series of configuration tasks upon an external request. When a request is made, the stream processor performs a
series of defined actions defined in the image that is loaded into the stream during device initialization.

Therefore, the stream processor executes a series of tasks, also known as streams, for the following operations:

 Transmitter 1 enable/Transmitter 1 disable, Transmitter 2 enable/Transmitter 2 disable
 Receiver 1 enable/Receiver 1 disable, Receiver 2 enable/Receiver 2 disable
 Observation Receiver 1 enable/Observation Receiver 1 disable, Observation Receiver 2 enable/Observation Receiver 2 disable

Enabling and disabling paths is done typically using pins. However, these functions can also be controlled via the SPI bus (see the System
Control section for details). The stream is not limited to path enabling events and can react to other events, such as a GPIO input signal.

The device and the stream are flexible in configuration. In the same way that the initialization structures change with the profile, the
stream processor image must change with the configuration. For example, the stream that enables Observation Receiver 1 is different if a
450 MHz or 200 MHz profile is chosen. For this reason, it is necessary to save a stream image for each configuration of the device. When
the user saves configuration files (.c) using the GUI, a stream image is also saved automatically. Use this stream file when using the
configuration files.

The following are examples of why the stream files differ:

 The framer choices for the observation receiver and the receiver.
 If link sharing is used or not between the observation receiver and receiver.
 If the observation receiver stitching is used or not.
 The DAC mode choice in TDD modes (for example, whether or not the DAC is powered off when the transmitter is disabled).
 If floating point formatting is used on the receiver and observation receiver paths.

SYSTEM CONTROL
The signal paths within the device can be controlled either through the API or through the pin controls. If the device is controlled
through the API, this mode of control is reliant on the SPI communication bus. Therefore, for critical time alignment of powering on/off
chains, pin control is recommended. Each path is independently controlled with the enable signals defined in Table 28.

Table 28. Signal Chain Enable Signals
Enable Signal Applicable Devices
RX1_ENABLE ADRV9008-1, ADRV9009
RX2_ENABLE ADRV9008-1, ADRV9009
TX1_ENABLE ADRV9008-2, ADRV9009
TX2_ENABLE ADRV9008-2, ADRV9009
ORX1_ENABLE ADRV9008-2, ADRV9009
ORX2_ENABLE ADRV9008-2, ADRV9009

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 96 of 247

API Control

To control the signal paths through the API, the use the following command:
TALISE_ setRxTxEnable(taliseDevice_t *device, taliseRxORxChannels_t rxOrxChannel,
taliseTxChannels_t txChannel)

See Table 29 and Table 30.

Table 29. taliseTxChannels_t Enumeration Definitions
taliseTxChannels_t Elements Enabled Channel
TAL_TXOFF Not applicable
TAL_TX1 Tx1
TAL_TX2 Tx2
TAL_TX1TX2 Tx1 and Tx2

Table 30. taliseRxORxChannels_t Enumeration Definitions
taliseRxORxChannels_t Elements Enabled Channel
TAL_RXOFF_EN Not applicable
TAL_RX1_EN Rx1
TAL_RX2_EN Rx2
TAL_RX1RX2_EN Rx1 and Rx2
TAL_ORX1_EN ORx1
TAL_ORX2_EN ORx2
TAL_ORX1ORX2_EN ORx1 and ORx2

The ADRV9008-1 does not have transmitter paths. Therefore, TAL_TxOff must be selected for the transmitter channel. Do not call the
observation receiver options for the taliseRxORxChannels_t selection.

The ADRV9008-2 does not have any receiver paths. Therefore, Receiver 1, Receiver 2, and Receiver 1/Receiver 2 must not be chosen.

When TALISE_setRxTxEnable is called, the requested channels are enabled. The channels remain active until further instruction
with this command. Note that if the observation receiver is enabled continuously and is not returned to TAL_RXOFF_EN for any time, the
transmitter tracking calibrations are not able to function (as explained in the System Considerations for Arm Calibrations section).

Pin Control

The device chains can also be controlled using a series of enable pins. When these pins are toggled high, the relevant signal chain is
enabled (see Table 31).

Table 31. Enable Signal Pin Numbers
Device Enable Signal Name Pin Number
ADRV9008-1 RX1_ENABLE M5
 RX2_ENABLE M7
ADRV9008-2 TX1_ENABLE M6
 TX2_ENABLE M8
 ORX1_ENABLE M5
 ORX2_ENABLE M7
ADRV9009 RX1_ENABLE M5
 RX2_ENABLE M7
 TX1_ENABLE M6
 TX2_ENABLE M8
 ORX1_ENABLE Requires a GPIO pin (see Table 32)
 ORX2_ENABLE Requires a GPIO pin (see Table 32)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 97 of 247

As noted in Table 31, the ADRV9009 requires its ORXx_ENABLE signals to be supplied through GPIO_x pins. The GPIO_x pin options
are shown in Table 32.

Table 32. Permissible GPIO Pins for Observation Receiver Control in the ADRV9009
Option GPIO Pin Assignment
Option 1 GPIO_0, enables ORx1
 GPIO_1, enables ORx2
Option 2 GPIO_4, enables ORx1
 GPIO_5, enables ORx2
Option 3 GPIO_8, enables ORx1
 GPIO_9, enables ORx2

The following API command advises which enable signals are controlled with the pins, and also in the case of the ADRV9009, which
GPIO_x pins are used for the ORXx_ENABLE signals:

TALISE_ setRadioCtlPinMode(taliseDevice_t *device, uint8_t pinOptionsMask, taliseRadioCtrlCfg2_t
orxEnGpioPinSel)

In this command, pinOptionsMask is comprised of the taliseRadioCtlCfg1_t enumerated types described in Table 33 to
configure the use of the enable pins. orxEnGpioPinSel is a taliseRadioCtlCgf2_t enumerated type that is described in Table 34,
that indicates which GPIO_x pins are assigned for the ORXx_ENABLE pins in the ADRV9009.

Table 33. taliseRadioCtlCfg1_t Enumeration Definition
taliseRadioCtlCfg1_t Elements Description
TAL_TXRX_PIN_MODE Configures the device for Rx and Tx path control via the RXx_ENABLE and TXx_ENABLE

pins.
TAL_ORX_PIN_MODE Configures the device for ORx path control via the ORXx_ENABLE pins.
TAL_ORX_USES_RX_PINS Utilize for the ADRV9008-2. This element configures the device to use the M5 and M7

pins, as shown in Table 31. Do not use this element for the ADRV9009 because these
pins are utilized for Rx enabling.

TAL_ORX_SEL Selects ORx1 when set to 0, and ORx2 when set to 1.
TAL_ORX_SINGLE_CHANNEL This element is used when there is a single ORXx_ENABLE pin and the ORx paths are

switched between ORx1 and ORx2 through API control.
TAL_ORX_ENAB_SEL_PIN Selects the enable pin to be utilized for the TAL_ORX_SINGLE_CHANNEL use case.

Table 34. taliseRadioCtlCfg2_t Enumeration Definition
taliseRadioCtlCfg2_t Elements Description
TAL_ORX1ORX2_PAIR_01_SEL Selects Option 1 defined in Table 32 for the ORx enable pins in the ADRV9009.
TAL_ORX1ORX2_PAIR_45_SEL Selects Option 2 defined in Table 32 for the ORx enable pins on the ADRV9009.
TAL_ORX1ORX2_PAIR_89_SEL Selects Option 3 defined in Table 32 for the ORx enable pins on the ADRV9009.
TAL_ORX1ORX2_PAIR_NONE_SEL No pins selected. Use this command for the ADRV9008-1 and the ADRV9008-2.

The pinOptionsMask is created by observation receiving the appropriate elements as detailed in Table 33. Assign a single element
(listed in Table 34) to the orxEnGpioPinSel. For example, for the ADRV9009 that is utilizing the pin control mode of the receiver,
transmitter, and observation receiver paths, and choosing GPIO_0 and GPIO_1 for the observation receiver enable pins, the masks is as
follows:

unit8_t pinOptionsMask = TAL_TXRX_PIN_MODE | TAL_ORX_PIN_MODE;

uint8_t orxEnGpioPinSel = TAL_ORX1ORX2_PAIR_01_SEL;

http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 98 of 247

USE CASES
This section details example use cases for the various devices and explains how the device typically operates to ensure that calibrations run.

ADRV9008-2, Two Transmitter, One Observation Receiver Use Case

This use case considers two types of feedback paths to the observation receiver input: one for digital predistortion (DPD) data and one
utilized for voltage standing wave ratio (VSWR) reflections. Note that all switches in Figure 53 are shown in high position (Logic 1). In
this case, the Observation Receiver 1 path was chosen as the observation path. However, it is equally valid for the Observation Receiver 2
path to be chosen.

ORX1_ENABLE

Tx1

Tx2

ORx1

SW1

SW2

SW3

ORX1_TX_SEL1

TX1_ENABLE

TX2_ENABLE

ORX_TX_SEL0

TIME 0 11 2 3 4 5 6 7 8 9 10 11

PA1

PA2

PA1 (DPD)

PA2 (DPD)

PA1 (VSWR)

PA2 (VSWR)

PA OUTPUT
TO ORX1

ORX1_ENABLE

TX1_ENABLE

TX2_ENABLE

ORX_TX_SEL0

ORX_TX_SEL1

ORX1
USAGE

PA1
(DPD)

PA2
(DPD)
PA2

(DPD)
PA1

(DPD)
PA2

(DPD)
PA2

(DPD)
PA1

(DPD)
PA2

(DPD)
PA2

(DPD)
PA1

(DPD)
PA2

(DPD)
PA2

(DPD)
PA1

(DPD)
PA2

(DPD)
PA2

(DPD)
PA1

(DPD)
PA2

(DPD)
PA2

(DPD)

Tx2Tx2

DPD
PA1

DPD
PA2
DPD
PA2

DPD
PA1

DPD
PA2
DPD
PA2

Tx1
TAL 1
LOL
CAL

Tx2
TAL 1
LOL
CAL

Tx2
TAL 1
LOL
CAL

Tx1
TAL 1
QEC
CAL

Tx2
TAL 1
QEC
CAL

Tx2
TAL 1
QEC
CAL

VSWR
PA1

VSWR
PA2

DPD
PA1

DPD
PA2
DPD
PA2

Tx2Tx2 Tx2Tx2 Tx2Tx2 Tx2Tx2 Tx2Tx2Tx1Tx1 Tx1Tx1 Tx1Tx1 Tx1Tx1 Tx1Tx1 Tx1Tx1

16
82

2-
05

6

Figure 53. ADRV9008-2, Two Transmitter, One Observation Receiver Use Case

Figure 53 considers a frequency division duplex (FDD) use case, so TX1_ENABLE and TX2_ENABLE are high the entire time. The
ORX1_ENABLE signal advises when the Observation Receiver 1 path used by the user, or when the path is available for the device to
perform transmitter tracking calibrations. Tracking calibrations can only run when ORX1_ENABLE is low.

As described in Table 32, the transmitter local oscillator (LO) leakage calibration is dependent on the status of the GPIO pins that are
configured to the ORX_TX_SEL0 and ORX_TX_SEL1 functions. The device can only run Transmitter 1 LO leakage tracking when there
is a connection through the DPD path from Transmitter 1 to Observation Receiver1. Likewise, the device can only run Transmitter 2 LO
leakage tracking when there is connection through the DPD path from Transmitter 2 to Observation Receiver 1. Therefore, as shown in
Figure 53, it is equally valid to show the LO leakage calibrations where the QEC calibrations are shown in Figure 53. The scheduler
determines, at any time, which calibration must be run (which ones are pending), and based on the enable and GPIO signals, which
calibration can run.

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 99 of 247

The transmitter QEC calibration is not dependent on which transmitter is being externally looped back to the Observation Receiver 1
input. This calibration is only dependent on the utilized observation receiver path (in this case, Observation Receiver 1) being available
for calibration, because the calibration uses an internal feedback path. The transmitter QEC calibration can run where the transmitter LO
leakage tracking calibration is shown in Figure 53, and unlike the transmitter LO leakage tracking calibrations, the transmitter QEC
tracking calibrations can also swap positions because the transmitter QEC tracking calibrations are not dependent on external feedback
paths.

ORX1_TX_SEL1 advises if there is a valid feedback path between the Transmitter 1 or Transmitter 2 of this device and the observation
receiver input being utilized. As shown in Figure 53, the ORX_TX_SEL1 is used to select between the DPD and VSWR paths. When the
external LO leakage tracking calibration is running, it is important that the exact feedback path does not alternate between iterations of
the calibration because the calibration algorithm learns the channel. Therefore, if in one instance of a Transmitter 1 LO leakage tracking
calibration, Transmitter 1 is fed back to Observation Receiver 1 through the DPD path, but in another instance, it is fed back through the
VSWR path, this channel alternation affects the performance of the algorithm. This means that only the DPD feedback must be utilized,
and that no condition is allowed where the transmitter LO leakage tracking calibrations can run when VSWR is being fed back to the
observation receiver input. These conditions are guaranteed in Figure 53 because the ORX_TX_SEL1 is used to switch between the DPD
and VSWR paths.

ORX1_TX_SEL0 advises the Arm processor whether Transmitter 1 or Transmitter 2 is being fed back to the observation receiver input. In
Figure 53, it also controls the switch that selects between the Transmitter 1 and Transmitter 2 paths.

The observation receiver QEC calibration (not shown in Figure 53) runs when the observation receiver path is enabled. This calibration
does not run when the observation receiver path is disabled, for example, when the observation receiver path is available for transmitter
calibrations.

ADRV9009, Two Receiver, Two Transmitter, One Observation Receiver Use Case

The ADRV9009 use case is very similar to the ADRV9008-2, two transmitter, one observation receiver use case. See the ADRV9008-2,
Two Transmitter, One Observation Receiver Use Case section for details on transmitter calibration details and the status of the GPIO
pins/enable signals required for the transmitter calibrations to operate properly.

As noted in the System Considerations for Tracking Calibrations section, the tracking calibrations must be assigned a minimum of 500 μs
of continuous time on the observation path at any one time. The 500 μs observation time is the principle constraint on the TDD timing,
with the receiver and transmitters enabled for a minimum of 500 μs when the calibration is scheduled to track. It is permissible to have
special frames that are smaller than 500 μs as long as it is understood that the calibrations do not update based on observations of less
than 500 μs.

In the ADRV9009, the receiver and observation receiver inputs share baseband paths. In the widest bandwidth setting, a stitching
algorithm is utilized to form a single quadrature channel for the observation receiver path from four ADCs. These ADCs are also used to
form quadrature channels for Receiver 1 and Receiver 2 during receiver periods. The ADCs must not be enabled together at any time. The
two setups are mutually exclusive.

Receiver QEC tracking (not shown in Figure 54) is run continuously during the receiver data periods. This tracking is paused when the
receiver channels are disabled and resumed when the receiver channels are reenabled. The observation receiver QEC calibration runs
when the observation receiver path is enabled.

http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 100 of 247

ORX1_ENABLE

Tx1

Tx2

ORx1

SW1

SW2

Rx TxTx Rx TxTx Rx TxTx Rx TxTx Rx TxTx Rx TxTx Rx TxTx Rx TxTx

Tx1Tx1 Tx2Tx2 Tx1Tx1 Tx2Tx2 Tx1Tx1 Tx2Tx2 Tx1Tx1 Tx2Tx2

SW3

ORX1_TX_SEL1

TX1_ENABLE

TX2_ENABLE

ORX_TX_SEL0

TIME

RX1_ENABLE

Rx1

Rx2

RX1_ENABLE

RX2_ENABLE

PA1

PA2

Rx
DATA

Rx
DATA

Tx
LOL
CAL

Tx1
QEC
CAL

Tx2
QEC
CAL

Tx2
LOL
CAL

Rx
DATA

Rx
DATA

Rx
DATA

Rx
DATA

VSWR
PA1

VSWR
PA2

Rx
DATA

DPD
PA1
DPD
PA1

Rx
DATA

DPD
PA2
DPD
PA2

PA1 (DPD)

PA2 (DPD)

PA1 (VSWR)

PA2 (VSWR)

PA1
(DPD)

PA2
(DPD)

PA2
(DPD)

PA2
(DPD)

PA1
(DPD)

PA1
(DPD)

PA1
(VSWR)

PA2
(VSWR)

TX1_ENABLE

TX1_ENABLE

ORX_TX_SEL0

ORX_TX_SEL1

PA OUTPUT
TO ORx1

Rx/ORx1
USAGE

RX2_ENABLE

16
82

2-
05

7

Figure 54. ADRV9009, Two Receiver, Two Transmitter, One Observation Receiver Use Case

http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 101 of 247

GSM USE CASES
The device requires specific frequency planning to support multicarrier global systems for mobile communications (GSM) scenarios.
These frequency plans ensure optimal sensitivity and harmonic rejection performance on the receiver. In these frequency plans, second-
order harmonic distortion (HD2) falls in band and is corrected by an HD2 correction algorithm, and higher order harmonics fall out of
band. For the transmitter, the frequency plans place LO leakage, the upper sideband, and the baseband third-order harmonic distortion
(HD3) out of band.

These frequency plans require the use of a specific profile configuration. For the receiver, use the 200 MHz, I/Q rate of 245.76 MHz,
decimate by 4 (DEC4) profile, or its low IF variant, the 100 MHz, low IF receiver profile with an I/Q rate of 122.88 MHz, DEC4. The low
IF variant identically configures the device to the 200 MHz/245.76 MHz receiver profile, with the exception that the low IF variant uses a
digital IF conversion stage to frequency shift and decimate the received signal for JESD204B link transmission at 122.88 MSPS. For the
transmitter, use the widest bandwidth 200 MHz/450 MHz transmitter profile with an I/Q rate of 491.52 MHz.

GSM 1800 DIGITAL CELLULAR SYSTEM (DCS) BAND
The frequency plan for the GSM 1800 DCS band is shown in Table 35.

Table 35. Frequency Plan for the 1800 DCS Band
Function Name LO Frequency (MHz) IF Offset (MHz) Low Edge (MHz) High Edge (MHz)
Receiver 1695 52.5 15 90
Transmitter 1900 −57.5 −95 −20

1800 DCS BAND

15
50

M
H

z

Rx BW 200MHz Tx BW 450MHz

Rx LO = 1695MHz Tx LO = 1900MHz

Rx BB FREQUENCIES: 15MHz

Tx BB FREQUENCIES: –95MHz

90MHz

–20MHz

16
00

M
H

z

16
50

M
H

z

17
00

M
H

z
17

10
M

H
z

HD2
CORRECTION

17
85

M
H

z

18
05

M
H

z

18
80

M
H

z

17
50

M
H

z

18
00

M
H

z

18
50

M
H

z

19
00

M
H

z

19
50

M
H

z

20
00

M
H

z

20
50

M
H

z

21
00

M
H

z

17
45

M
H

z

(UL) Rx BAND (DL) Tx BAND

16
82

2-
05

8

Figure 55. Frequency Plan for the 1800 DCS Band

GSM 1900 PERSONAL COMMUNICATIONS SERVICE (PCS) BAND
The frequency plan for the GSM 1900 PCS band is shown in Table 36.

Table 36. Frequency Plan for the 1900 PCS Band
Function Name LO Frequency (MHz) IF Offset (MHz) Low Edge (MHz) High Edge (MHz)
Receiver 1820 60 30 90
Transmitter 2010 −50 −80 −20

1900 PCS BAND

17
00

M
H

z

Rx BW 200MHz Tx BW 450MHz

Rx LO = 1820MHz Tx LO = 2010MHz

Rx BB FREQUENCIES: 30MHz

Tx BB FREQUENCIES: –80MHz

90MHz

–20MHz

17
50

M
H

z

18
00

M
H

z

18
25

M
H

z

18
70

M
H

z

18
50

M
H

z
18

50
M

H
z

HD2
CORRECTION

19
30

M
H

z

19
90

M
H

z

19
00

M
H

z
19

10
M

H
z

19
50

M
H

z

20
00

M
H

z

20
50

M
H

z

21
00

M
H

z

21
50

M
H

z

22
00

M
H

z

22
50

M
H

z

(UL) Rx BAND (DL) Tx BAND

16
82

2-
05

9

Figure 56. Frequency Plan for the 1900 PCS Band

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 102 of 247

GSM 850 BAND
The frequency plan for the GSM 850 band is shown in Table 37.

Table 37. Frequency Plan for the GSM 850 Band
Function Name LO Frequency (MHz) IF Offset (MHz) Low Edge (MHz) High Edge (MHz)
Receiver 796 40.5 28 53
Transmitter 914 −32.5 −45 −20

GSM 850 BAND

65
0M

Hz

Rx BW 200MHz
Tx BW 450MHz

Rx LO = 796MHz Tx LO = 914MHz

Rx BB FREQUENCIES: 28MHz

Tx BB FREQUENCIES: –45MHz
53MHz

–20MHz

70
0M

Hz

75
0M

Hz

80
0M

Hz
80

1M
Hz

82
4M

Hz

HD2
CORRECTION

84
9M

Hz

86
9M

Hz

89
4M

Hz

17
50

M
Hz

90
0M

Hz

95
0M

Hz

10
00

M
Hz

20
00

M
Hz

20
50

M
Hz

84
6M

Hz

(UL) Rx
BAND

(DL) Tx
BAND

85
0M

Hz

16
82

2-
06

0

Figure 57. Frequency Plan for the GSM 850 Band

GSM 900 BAND
The frequency plan for the GSM 900 band is shown in Table 38.

Table 38. Frequency Plan for the GSM 900 Band
Function Name LO Frequency (MHz) IF Offset (MHz) Low Edge (MHz) High Edge (MHz)
Receiver 847 50.5 33 68
Transmitter 980 −37.5 −55 −20

GSM 900 BAND

65
0M

Hz

Rx BW 200MHz Tx BW 450MHz

Rx LO = 847MHz Tx LO = 980MHz

Rx BB FREQUENCIES: 33MHz

Tx BB FREQUENCIES: –55MHz

68MHz

–20MHz

80
0M

Hz

85
0M

Hz

90
0M

Hz

85
2M

Hz

89
7M

Hz
88

0M
Hz

91
5M

Hz

HD2
CORRECTION

92
5M

Hz

96
0M

Hz

10
00

M
Hz

10
50

M
Hz

11
00

M
Hz

11
50

M
Hz

12
00

M
Hz

(UL) Rx
BAND

(DL) Tx
BAND

95
0M

Hz

16
82

2-
06

1

Figure 58. Frequency Plan for the GSM 900 Band

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 103 of 247

SYNTHESIZER CONFIGURATION
The device contains three RF PLL synthesizers: the RF LO synthesizer, auxiliary synthesizer, and the clock synthesizer. Figure 59
illustrates these synthesizers and their interconnectivity within the device. Each PLL synthesizer employs a fractional–N architecture with
a completely integrated voltage controlled oscillator (VCO) and loop filter. No external components are required to cover the entire
frequency range of the device. This configuration allows the use of any convenient reference frequency for operation on any channel with
any sample rate. The fundamental frequency of each of the PLLs is from 6 GHz to 12 GHz. The LO frequency is created by dividing down
the PLL VCO frequency. The reference frequency for the PLL is scaled from the reference clock applied to the chip REF_CLK_IN± pins.

VCO
DIVIDER/LO

GENERATOR

RF LO
SYNTHESIZER

RF_EXT_LO+

RF_EXT_LO–

OUTPUT DIVIDER/
FREQUENCY GENERATOR

AUXILIARY
SYNTHESIZER

REFERENCE
DISTRIBUTION

Rx AND Tx
 SIGNAL CHAIN

DIGITAL SECTION
(LOGIC, ADCs,

DACs)
Rx LO MUX,

CALIBRATION DESTINATIONS

CLOCK RATE
GENERATOR

CLOCK
SYNTHESIZER

CLK
SCALE

CLK
SCALE

REF_CLK_IN+

REF_CLK_IN–
CLK

SCALE

16
82

2-
06

2

Figure 59. Synthesizer Interconnection Block Diagram

The clock synthesizer is used to generate all the clocking signals necessary to run the device. The reference frequency for the PLL is scaled
from the reference clock that is applied to the chip REF_CLK_IN± pins. Note that although the PLL is of fractional–N architecture, the
signal sampling relationships to the JESD204B interface rates typically require that the clock synthesizer operates in integer mode. Profiles
included in the TTES configure the clock synthesizer appropriately. Reconfiguration of the clock synthesizer is typically not necessary
after initialization. The most direct approach to clock synthesizer configuration is to follow the recommended programming sequence
and utilize the provided API functions to set the clock synthesizer to the required mode of operation.

An auxiliary synthesizer is integrated into the device to generate the signals necessary to calibrate the device. The reference frequency for
the auxiliary synthesizer is scaled from the device clock that is applied to the chip REF_CLK_IN± pins. The output signal is connected to
a switching network and injected into the various circuits to calibrate filter bandwidth corners, or injected into the receiver signal chain as
an offset LO. A number of calibrations are executed during the initialization sequence at startup. No signals are present at the
receiver/observation receiver input during the tone calibration time, and calibrations are fully autonomous. During the calibrations, the
auxiliary synthesizer is controlled solely by the internal Arm processor, and the synthesizer does not require any user interactions.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 104 of 247

CONNECTIONS FOR EXTERNAL CLOCK (REF_CLK_IN± PINS)
The external clock is used as the reference clock for the RF PLL and the clock PLL on the device and must be a clean clock source.
Connect the external clock inputs to the REF_CLK_IN+ pin and the REF_CLK_IN− pin via ac coupling capacitors. Terminate the
differential signal prior to the capacitors with 100 Ω as shown in Figure 60. The inputs of the device are biased to a 618 mV voltage level.
The inputs are high impedance, with less than 1 pF and 20 kΩ each. The frequency range of the REF_CLK signal must be between
10 MHz and 1000 MHz. Ensure that the external clock peak-to-peak amplitude does not exceed 2 V. Note that for best spurious
performance, the REF_CLK signal input level must not exceed 1 V). For best synthesizer performance, a high slew rate signal is best, with
fast rise and fall times. A clipped sine wave type signal is recommended.

100nF
E7

E8

REF_CLK_IN+

REF_CLK_IN–

100Ω
100nF

16
82

2-
06

3

Figure 60. Reference Clock Input Connections

REF_CLK_IN± SIGNAL PHASE NOISE REQUIREMENTS
To prevent performance degradation, the REF_CLK_IN± reference must be a clean signal. Optimal performance from the synthesizer
results if the applied reference is ideal. However, this is unrealistic because ideal sources do not exist, and if the sources did, these sources
would be exorbitantly expensive. Table 39 lists the required phase noise of the REF_CLK_IN± signal for a 1 dB system phase noise degradation
compared to an ideal REF_CLK_IN± signal. For different REF_CLK_IN± signal frequencies, the information shown in Table 39 can be
scaled appropriately. A clock source with phase noise performance as specified in Table 39 (or better) allows the device to achieve the
specifications listed in the ADRV9008-1, ADRV9008-2, and ADRV9009 data sheets. Using a higher phase noise source can degrade
performance delivered by the transceiver.

Table 39. REF_CLK_IN± Signal Phase Noise Requirements for 1 dB System Phase Noise Degradation Compared to an Ideal
Reference Clock (Narrow PLL Loop Bandwidth)

Frequency Offset from Carrier

Narrow PLL Loop Bandwidth (Approximately 50 kHz),
Default, Typically Used <3 GHz

122.88 MHz (dBc/Hz) 153.6 MHz (dBc/Hz) 245.76 MHz (dBc/Hz)
100 Hz −113.02 −111.08 −107.00
1000 Hz −125.02 −123.08 −119.00
10 kHz −133.02 −131.08 −127.00
100 kHz −137.02 −135.08 −131.00
1 MHz −133.02 −131.08 −127.00
10 MHz −104.02 −102.08 −98.00

Table 40. REF_CLK_IN± Signal Phase Noise Requirements for 1 dB System Phase Noise Degradation Compared to an Ideal
Reference Clock (Wide PLL Loop Bandwidth)

Frequency Offset from Carrier

Wide PLL Loop Bandwidth (Approximately 300 kHz),
User Configured, Typically Used >3 GHz

122.88 MHz (dBc/Hz) 153.6 MHz (dBc/Hz) 245.76MHz (dBc/Hz)
100 Hz −114.02 −112.08 −108.00
1000 Hz −127.02 −125.08 −121.00
10 kHz −138.02 −136.08 −132.00
100 kHz −146.02 −144.08 −140.00
1 MHz −147.02 −145.08 −141.00
10 MHz −118.02 −116.08 −112.00

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 105 of 247

SYNTHESIZER SOFTWARE CONFIGURATION
The configuration of the device is dependent on application requirements. When using an external LO, use the TTES software to generate
initial values for the API structure members.

Figure 59 outlines a high level synthesizer block diagram. There is an option to provide an external LO for the receiver and transmitter
signal chains. Figure 61 shows where the user can select an external LO from the Ext. LO dropdown list in the Configuration tab of the
TTES. An external LO can also be selected using API commands. Before the user begins to initialize the device, the
taliseDigClocks_t structure data field rfPllUseExternalLo can be set to 0 or 1 to select an internal or external LO source. The
external source must be 2× the desired LO.

16
82

2-
06

4

Figure 61. Internal and External LO Configuration in TTES

Part of the device initialization procedure includes the set up of an internal clock generation. All internal clocks are generated based on
the selected profile (reference frequency applied to the device, JESD204B lane rates, and bandwidth mode). Therefore, there is no need to
reconfigure the clock synthesizer when the device initialization sequence is complete.

The API function that initializes the clock rate generator block (see Figure 59) is as follows:

uint32_t TALISE_initialize(taliseDevice_t *device, taliseInit_t *init)

The initialization sequence calculates and updates the clock synthesizer and loop filter settings based on a VCO frequency lookup table
(LUT). The VCO frequency break points for the synthesizer LUT can be found in an array, vcoFreqArrayHz, which can be found in
the talise.c file.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 106 of 247

Synthesizer API Data Structures

This section describes the synthesizer data structures.

taliseDigClocks_t

The synthesizer configuration is stored in the taliseDigClocks_t data structure. The data structure contains the types that are
described in Table 41.

Table 41. taliseDigClocks_t Data Structure Description
Type Data Field Permissible Values Description
uint32_t deviceClock_kHz 122.88 MHz Clock PLL and device reference clock frequency in kHz.
 184.32 MHz
 245.76 MHz
uint32_t clkPllVcoFreq_kHz 6,000,000 to 12,000,000 Clock PLL VCO frequency in kHz.
taliseHsDiv_t clkPllHsDiv TAL_HSDIV_2 Clock PLL high speed clock divider, permissible values

defined by the taliseHsDiv_t enum.
 TAL_HSDIV_2P5
 TAL_HSDIV_3
 TAL_HSDIV_4
 TAL_HSDIV_5
uint8_t rfPllUseExternalLo 0, 1 1 = external LO for RF PLL.

0 = internal LO generator for RF PLL.
taliseRfPllMcs_t rfPllPhaseSyncMode TAL_RFPLLMCS_NOSYNC Sets RF PLL phase sync mode. Adds extra time to lock

RF PLL when PLL frequency change. Permissible values
defined by taliseRfPllMcs_t enum.

 TAL_RFPLLMCS_INIT_AND_SYNC
 TAL_RFPLLMCS_INIT_AND_1TRACK
 TAL_RFPLLMCS_INIT_AND_CONTTRACK

Table 42. PLL Enumerators
Parameter Name Enumerator Value Description
pllName TAL_RF_PLL Selects RF PLL for receiver and transmitter.

TAL_CLK_PLL Selects clock PLL for receiver and transmitter.
TAL_AUX_PLL Selects auxiliary PLL for receiver and transmitter.

Synthesizer API Functions

The public functions described in this section are provided to the user to configure and observe the device synthesizer settings.

TALISE_getRfPllFrequency()

Use this function to get the current operating frequency of the PLL. A taliseRfPllName_t enumerated type is passed for the desired
PLL frequency to read. The function is as follows:

TALISE_getRfPllFrequency(taliseDevice_t* device, taliseRfPllName_t pllName, uint64_t*
rfPllLoFrequency_Hz)

Precondition: this function can be used after the device has been initialized and the PLLs are configured. For the auxiliary PLL or RF PLL,
the Arm firmware must also be loaded and running to read back the PLL frequencies.

Parameters include the following:

• device is a pointer to the device data structure containing settings.
• pllName is the name of the desired PLL to read the frequency.
• rfPllLoFrequency_Hz is a 4-byte pointer to return the current LO frequency in Hz for the specified PLL.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 107 of 247

TALISE_setRfPllFrequency()

Use this function to set the operating frequency of a PLL. A taliseRfPllName_t enumerated type is passed for the desired PLL to
read. This function is as follows:

TALISE_setRfPllFrequency(taliseDevice_t* device, taliseRfPllName_t pllName, uint64_t
rfPllLoFrequency_Hz)

Precondition: this function can be called after the Arm processor has been initialized and the device must be in radio off state.

Parameters include the following:

• device is a pointer to the device data structure containing settings.
• pllName is the name of the desired PLL to read the frequency.
• rfPllLoFrequency_Hz is the desired RF LO frequency in Hz.

TALISE_setRfPllLoopFilter()

Use this function to set the configuration of the RF PLL loop filter. The function is as follows:
TALISE_setRfPllLoopFilter(taliseDevice_t* device, uint16_t loopBandwidth_kHz, uint8_t stability)

Precondition: this function can be called after the Arm has been initialized. The device must also be in the radio off state. This function
must be followed with a TALISE_setRfPllFrequency() command for the TAL_RF_PLL enumerator value to set up the RF PLL
with the new loop filter configuration.

Parameters include the following:

• device is a pointer to the device data structure containing settings.
• loopBandwidth_kHz is a desired loop bandwidth in kHz. Valid range is between 50 kHz and 750 kHz.
• stability is a factor that impacts noise and stability of the loop filter. Valid range is between 3 and 15. Lower values decrease

stability and increase rejection of noise.

TALISE_getRfPllLoopFilter()

Use this function to get the current loop bandwidth and stability factor for the RF PLL. The function is as follows:
TALISE_getRfPllLoopFilter(taliseDevice_t* device, uint16_t* loopBandwidth_kHz, uint8_t*
stability)

Precondition: this function can be used after the device has been initialized and the RF PLL has been configured. The Arm firmware must
also be loaded and running.

Parameters include the following:

• device is a pointer to the device data structure containing settings.
• loopBandwidth_kHz is a 2-byte pointer to value of loop bandwidth in kHz. Valid range is between 50 kHz and 750 kHz.
• stability is a 1-byte pointer to stability setting of loop filter. Impacts noise and stability of the loop filter. Valid range is between 3

and 15. Lower values decrease stability and increase rejection of noise.

RF PLL FREQUENCY CHANGE PROCEDURE
This section describes the procedure to use when an RF PLL change is required under specific conditions. If the user wishes to change the
transmitter, receiver, and observation receiver frequencies, if the frequency step change is less than 100 MHz, and if the frequency step
does not cross the VCO frequency break points (defined in vcoFreqArrayHz, located in the talise.c file) by two boundaries, use the
following procedure:

1. Move the device to the radio off state by executing the following command:

if ((talError = TALISE_radioOff(&talDevice)) != TALACT_NO_ACTION)

 {

 /*** < Info: errorString will contain log error string in order to debug failure > ***/

 talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

 errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 108 of 247

2. Program the new LO frequency. For example, set the LO to 2550 MHz by executing the following commands:

if ((talError = TALISE_setRfPllFrequency(&talDevice, TAL_RF_PLL , 2550000000)) !=
TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

 /*** < Action: wait 1ms for PLLs to lock > ***/

if ((talError = TALISE_getPllsLockStatus(&talDevice, &pllLockStatus)) != TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

if ((*pllLockStatus & 0x0F) == 0x07)

 {

 /*** < Info: RF, CLK, and AUX PLL locked > ***/

 }

else

 {

 /*** < Info: RF, CLK, or AUX PLL not locked > ***/

 /*** < Action: Ensure lock before proceeding - User code here> ***/

 }

3. Reset the external channel by executing the following command:

if ((talError = TALISE_resetExtTxLolChannel (&talDevice, TAL_TX1TX2)) != TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

4. Move the device back to the radio on state by executing the following command:

if ((talError = TALISE_radioOn(&talDevice)) != TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 109 of 247

If an RF PLL change is required with the following conditions: if the user wishes to change the transmitter, receiver, and observation
frequencies, if the frequency step change is more than 100 MHz, or if the frequency step crosses the VCO frequency break points (defined
in vcoFreqArrayHz, located in the talise.c file), use the following procedure:

1. Move the device to the radio off state by executing the following command:

if ((talError = TALISE_radioOff(&talDevice)) != TALACT_NO_ACTION)

 {

 /*** < Info: errorString will contain log error string in order to debug failure > ***/

 talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

 errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

2. Program the new LO frequency. For example, set the LO to 2550 MHz by executing the following commands:

if ((talError = TALISE_setRfPllFrequency(&talDevice, TAL_RF_PLL , 2550000000)) !=
TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

 /*** < Action: wait 1ms for PLLs to lock > ***/

if ((talError = TALISE_getPllsLockStatus(&talDevice, &pllLockStatus)) != TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

if ((*pllLockStatus & 0x0F) == 0x07)

 {

 /*** < Info: RF, CLK, and AUX PLL locked > ***/

 }

else

 {

 /*** < Info: RF, CLK, or AUX PLL not locked > ***/

 /*** < Action: Ensure lock before proceeding - User code here> ***/

 }

3. Rerun the initialization calibrations by calling TALISE_runInitCals and TALISE_waitInitCals with user defined code.
4. Move the device back to the radio on state by executing the following command:

if ((talError = TALISE_radioOn(&talDevice)) != TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 110 of 247

RF PLL LOOP FILTER RECOMMENDATIONS
For optimal phase noise and error vector magnitude (EVM) performance, the RF PLL loop filter bandwidth settings listed in Table 43 are
recommended.

Table 43. Recommended RF PLL Bandwidth vs. Operating Frequency
RF PLL Frequency (MHz) Loop Filter Bandwidth (kHz)
75 to 3000 50 (default)
3000 to 6000 300

Note that the device firmware defaults to a 50 kHz loop filter bandwidth and must be changed using the provided API according to design
requirements.

RF PLL LOOP FILTER CHANGE PROCEDURE
This section describes the procedure that must be used when a change to the RF PLL loop filter is required.

1. Move the device to the radio off state by executing the following command:

if ((talError = TALISE_radioOff(&talDevice)) != TALACT_NO_ACTION)

 {

 /*** < Info: errorString will contain log error string in order to debug failure > ***/

 talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

 errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

2. Change RF PLL loop filter settings. For example, set the loop bandwidth to 150 kHz with stability factor of 5 by executing the
following commands:

if ((talError = TALISE_setRfPllLoopFilter(&talDevice, 150, 5)) != TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

3. Follow RF PLL loop filter change with a setRfPllFrequency command at the current operating frequency:

if ((talError = TALISE_setRfPllFrequency(&talDevice, TAL_RF_PLL , 2550000000)) !=
TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

 /*** < Action: wait 1ms for PLLs to lock > ***/

if ((talError = TALISE_getPllsLockStatus(&talDevice, &pllLockStatus)) != TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

if ((*pllLockStatus & 0x0F) == 0x07)

 {

 /*** < Info: RF, CLK, and AUX PLL locked > ***/

 }

else

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 111 of 247

 {

 /*** < Info: RF, CLK, or AUX PLL not locked > ***/

 /*** < Action: Ensure lock before proceeding - User code here> ***/

 }

4. Move the device back to the radio on state by executing the following command:

if ((talError = TALISE_radioOn(&talDevice)) != TALACT_NO_ACTION)

 {

/*** < Info: errorString will contain log error string in order to debug failure > ***/

talError = TALISE_getErrorCode(&talDevice, &talErrSrc, &talErrCode)

errorString = TALISE_getErrorMessage(*talErrSrc, *talErrCode)

 }

RF PLL RESOLUTION
The TALISE_getRfPllFrequency() and TALISE_setRfPllFrequency()commands have frequency parameters with a 1 Hz
resolution. The real frequency that the RF PLL is tuned to can vary by a small amount, depending on the frequency of operation. The
actual frequency steps available that the RF PLL can be tuned to are limited by the fractional word, modulus, and reference clock
frequency. A modulus of 8,386,560 is used to be an exact frequency on at least a 5 kHz raster using the reference clocks that are shown in
Table 45. Table 45 outlines the RF PLL frequency step variations vs. the RF operating band. Note that the upper limit is noninclusive; if
the operating frequency is at the limit, use the next step size where the limit is lower.

The following examples shown in the Example 1 section through the Example 4 section show how to use Table 45 to determine the
correct LO frequency setting.

Table 44. Divide by 2 Boundaries vs. Desired RF Operating Frequency
Limit Divide by 32 (MHz) Divide by 16 (MHz) Divide by 8 (MHz) Divide by 4 (MHz) Divide by 2 (MHz)
Lower Limit 187.5 375 750 1500 3000
Upper Limit 375 750 1500 3000 6000

Table 45. LO Step Sizes vs. Desired RF Operating Frequency
Desired RF Operating

Frequency Range,
Lower Limit to Upper Limit (Hz)

Reference Clock
Frequency (MHz),
REF_CLK_IN±

PLL Sample
Rate

Exact Decimal Frequency
Raster (Hz)

LO Step
Size (Hz)

75 to 93.75 307.2 or 153.6 76.8 625 0.07154304
 245.76 or 122.88 61.44 500 0.057234432
 184.32 or 92.16 46.08 125 0.042925824
93.75 to 187.5 307.2 or 153.6 76.8 625 0.143086081
 245.76 or 122.88 61.44 500 0.114468864
 184.32 or 92.16 46.08 125 0.085851648
187.5 to 375 307.2 or 153.6 76.8 625 0.286172161
 245.76 or 122.88 61.44 500 0.228937729
 184.32 or 92.16 46.08 125 0.171703297
375 to 750 307.2 or 153.6 76.8 625 0.572344322
 245.76 or 122.88 61.44 500 0.457875458
 184.32 or 92.16 46.08 125 0.343406593
750 to 1500 307.2 or 153.6 76.8 625 1.144688645
 245.76 or 122.88 61.44 500 0.915750916
 184.32 or 92.16 46.08 125 0.686813187
1500 to 3000 307.2 or 153.6 76.8 625 2.289377289
 245.76 or 122.88 61.44 500 1.831501832
 184.32 or 92.16 46.08 125 1.373626374
3000 to 6000 307.2 or 153.6 76.8 625 4.578754579
 245.76 or 122.88 61.44 500 3.663003663
 184.32 or 92.16 46.08 125 2.747252747

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 112 of 247

Example 1

In this example, the REF_CLK_IN± input reference frequency is 184.32 MHz, and the user wishes to tune the LO to a frequency equal to
3,600,000,002 Hz. For this example, the LO step size for this range is 2.747252747 Hz. The count number for the code required to obtain
this frequency is as follows:

Count = 3,600,000,002 Hz ÷ 2.747252747 Hz = 1,310,400,000.849 Hz

Round this quotient to 1,310,400,001 Hz.

Actual LO Frequency = (1,310,400,001 Hz) × (2.747252747 Hz) = 3,600,000,000.416 Hz

Example 2

In this example, the REF_CLK_IN± input is 245.76 MHz, and the user wishes tune the LO to a frequency equal to 3,200,000,005 Hz. For
this example, the LO step size for this range is 3.663003663 Hz. The count number for the code required to obtain this frequency is as
follows:

Count = 3,200,000,005 Hz ÷ 3.663003663 Hz = 873,600,001.366 Hz

Round this quotient to 873,600,001 Hz.

Actual LO Frequency = (873,600,001 Hz) × (3.6630003663 Hz) = 3,200,000,003.6598 Hz

Example 3

In this example, the REF_CLK_IN± input is 245.76 MHz, and the user wishes to tune the LO to a frequency equal to 400,000,001 Hz. For
this example, the LO step size for this range is 0.457875458 Hz. The count number for the code required to obtain this frequency is as
follows:

Count = 400,000,001 Hz ÷ 0.457875458 Hz = 873,600,001,946 Hz

Round this quotient to 873,600,002 Hz.

Actual LO Frequency = (873,600,002 Hz) × (0.457875458 Hz) = 400,000,001.0246 Hz

Example 4

In this example, for any of the reference clocks listed in Table 45, the user wishes to tune the LO to a frequency of 1921.6 MHz. Because
the desired LO frequency divided by the step size results in an integer, the actual LO frequency is exactly 1921.6 MHz.

RF PLL LOCK STATUS
The lock status of the clock PLL, RF PLL, and auxillary PLL is provided through an API command. Additionally, the PLL lock status can
be set to asset via the general-purpose interrupt pin (GP_INTERRUPT).

RF PLL Lock API Functions

TALISE_getPllsLockStatus()

This function returns the status of the PLLs via the pllLockStatus pointer. The three LSBs of the uint8_t value at the
pllLockStatus represent the lock status of the clock PLL, RF PLL, and auxiliary PLL. Bit 0 is the clock PLL lock status, Bit 1 is the RF
PLL lock status, and Bit 2 is the auxiliary PLL lock status. A bit value of 1 indicates that the corresponding PLL is locked. A bit value of 0
indicates that the corresponding PLL is unlocked. The function is as follows:

TALISE_getPllsLockStatus(taliseDevice_t* device, uint8_t* pllLockStatus)

Precondition: this function can be called any time after the PLLs have been configured and are operational.

Parameters include the following:

• device is a pointer to the device data structure.
• pllLockstatus is the PLL lock status byte pointer to return the bitwise representation of the PLL lock status.

RF PLL Lock Status, General-Purpose Interrupt
Another outlet for the lock status of the PLLs is the GP_INTERRUPT pin. The interrupt mask enumeration and the GP_INTERRUPT
API functions related to the GP_INTERRUPT can be found in the General-Purpose Interrupt Operation section.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 113 of 247

CONNECTIONS FOR EXTERNAL LO
The RF_EXT_LO_I/O± pins can work in two modes. As an output, these pins provide access to the signal generated by the internal RF
LO. As an input, these pins allow the user to provide an external LO signal into the device.

RF_EXT_LO_I/O± as an Input

Unlike the internal synthesizers that always operate from 6 GHz to 12 GHz regardless of the RF tune frequency, when an external LO is
used, the frequency applied must be 2× the desired RF tune frequency.

AC couple the differential signal applied to the RF_EXT_LO_I/O± inputs as shown in Figure 62. The RF_EXT_LO_I/O± input represents
small signal input impedance (ZIN) near 50 Ω differential in parallel with 1.6 pF. The ac coupling capacitor must have a much smaller
impedance at the external VCO frequency than ZIN. Take the loss in an on-board balun into account when calculating the input power to
the RF_EXT_LO_I/O± input.

Take care when selecting an on-board balun for this application. The combination of amplitude and phase balance performance of the
balun can affect quardrature error performance. Additionally, duty cycle and differential second-order harmonic distortion impacts the
ability of the device to correct a quadrature error. The recommended minimum requirement is a combination of no more than 5° of
differential phase error, 1 dB differential amplitude error, 2% duty-cycle error, and less than −50 dBc even-order harmonics (primarily
second-order). Refer to the ADRV9008-1, ADRV9008-2, and ADRV9009 data sheets for specifications.

Set the external LO source modulus to the same value as the internal LO source modulus. The modulus must be equal to 8,386,560.
Additionally, any external LO source must be phase-locked to the device clock.

Note that in the GSM receiver application, a low noise external LO source is required to meet the system phase noise requirement at
800 kHz.

1.6pF
B8

B7

RF_EXT_LO_I/O+

RF_EXT_LO_I/O–

50Ω
INTERNAL

1.6pF

16
82

2-
06

5

Figure 62. RF_EXT_LO_I/O± as an Input, External Components

A higher frequency external LO requires a higher input power. Generally, a higher input power (PIN) results in improved phase noise. Use
the minimum input power that results in phase noise that meets requirements (with some margin).

Enabling the External LO as Input Using the API

This section describes how to enable the external LO as an input.

Prior to initialization, set rfPllUseExternalLo in the taliseInit_t data structure.

taliseDigClocks =

 {

 deviceClock_kHz = 245760, /* CLKPLL and device reference clock
frequency in kHz */

 clkPllVcoFreq_kHz = 9830400, /* CLKPLL VCO frequency in kHz */

 clkPllHsDiv = TAL_HSDIV_2, /* CLKPLL high speed clock divider */

 rfPllUseExternalLo = 1, /* 1= Use external LO for RF PLL, 0 = use
internal LO generation for RF PLL */

 rfPllPhaseSyncMode = TAL_RFPLLMCS_NOSYNC /* RFPLL MCS (Phase sync) mode */

 },

RF_EXT_LO_I/O± as an Output

The external LO output is only provided for testing purposes and is not approved for daisy-chain operation. This section provides
configuration details. Internal synthesizers always operate from 6 GHz to 12 GHz. The user can observe the internal LO frequency on the
RF_EXT_LO_I/O± pins. Users can gain access to the internal synthesizer VCO frequency (fVCO) output via the RF_EXT_LO_I/O± pins.
The output frequency on the RF_EXT_LO_I/O± pins ranges from fVCO divided by 2 to fVCO divided by 64.

For example, when the LO operates at 4 GHz, the internal VCO operates at 8 GHz (fVCO). When outputting an internal VCO signal
divided by 2, the user can observe 4 GHz (fVCO/2) at the RF_EXT_LO_I/O± pins.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 114 of 247

The hardware configuration for the RF_EXT_LO_I/O± pins operating as outputs is shown in Figure 63. To operate the
RF_EXT_LO_I/O± pins as outputs, differential lines of 50 Ω, an ac-coupled capacitor with an impedance at the desired
RF_EXT_LO_I/O± output frequency of less than 25 Ω (for example, 300 pF at 1 GHz (0.5 Ω)), and a differential load of 50 Ω is required.

300pF
B8

B7

RF_EXT_LO_I/O+

RF_EXT_LO_I/O–

50Ω

ZIN = 50Ω

300pF

16
82

2-
06

6

Figure 63. RF_EXT_LO_I/O± as an Output, External Components

RF PLL PHASE SYNCHRONIZATION
The RF PLL phase synchronization function allows the internally generated LO to be phase synchronized and aligned to the applied
reference clock. In multidevice systems, this function allows all devices to align the RF PLL to the same point. Therefore, the phase
between each device is aligned at startup so that phasing between devices is fixed and can be repeated. At startup, the standard JESD204B
multichip synchronization mechanism, implemented with the device clock (REF_CLK_IN±) and system reference signals (SYSREF),
resets the data converter clocks and all other clocks at the baseband rate. The REF_CLK_IN± and SYSREF signals are also used to
initialize the on-chip counter that is used later during PLL programming to synchronize the LO phase. No additional signals are required
to take advantage of the LO phase synchronization mechanism. A digital representation of the desired LO phase can be computed at each
PLL reference clock edge from the on-chip counter and a PLL fractional word programming. This digital representation is remembered in
the digital phase accumulator (DPA).

The LO phase synchronization hardware operates by directly sampling the LO signal (in quadrature) using the PLL reference clock signal
(REF_CLK_IN±). Averaging is required to increase the accuracy of the LO phase measurement. Therefore, at every sample, the observed
LO phase is derotated by the digitally desired phase by performing a vector multiplication of the complex conjugate of the digital phase.
The result of these operations is a vector representing the phase difference between the LO and the digitally desired phase, and these
vectors can be averaged over many REF_CLK_IN± cycles to obtain an accurate measurement of the phase adjustment required.

After the phase difference is measured, the adjustment can be applied into the first stage Σ-Δ modulator of the PLL by adding the
adjustment to the first stage modulator input. The total adjustment amount is added over many reference clock cycles to stay within the
PLL loop bandwidth and to not cause the PLL to come unlocked. To counteract temperature effects after calibration, a PLL phase tracking
mode can be activated.

Figure 64 shows a block diagram of the phase synchronization system.

PFD

REF_CLK_IN±

MAIN RF PLL LOOP AND RF LO GENERATOR

VCO

REFCLK

LOOP
FILTER

÷N

LO GEN
÷2K

Σ-∆
MODULATOR

 Σ (LOI × NCOI + LOQ × NCOQ)

 Σ (LOI × NCOQ + LOQ × NCOI)
NCO

I
CAPTURE

APD

CONTROL

PHASE
SYNCHRONIZER

FREQUENCY
TUNING WORD

MULTICHIP SYNC

Q
CAPTURE

16
82

2-
06

7

Figure 64. LO Phase Synchronization Functional Diagram

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 115 of 247

System Level Considerations

The overall phase synchronization is determined by a number of factors, including the board level clock routing (tCLK), the on-chip
reference path routing (tREFPATH), the PLL and LO divider path (tPLL), and the RF and antenna paths (tRF). In a beamforming/multiple input,
multiple output (MIMO) system, a system level antenna calibration is performed to equalize the sum of these paths between all channels
(see Figure 65). Additionally, the following supply pins are highly sensitive and can affect the phase synchronization performance,
especially during chip mode changes, for example, during TDD operation. Care must be taken to isolate the VDDA1P3_RF_SYNTH,
VDDA1P3_CLOCK_SYNTH, and VDDA1P3_RF_LO pins from the VDDA_1P3_ANALOG supply. This isolation is critical to
achieving best phase synchronization performance.

The goals of this transceiver mechanism are to reduce the complexity of the antenna calibration by initializing to a more consistent
startup condition with a deterministic PLL phase and LO divider state, to reduce the temperature dependence of the system phase
synchronization to allow the antenna calibration to run less frequently during operation, and to allow transceivers to be stopped and
started in an operational system and hot synchronize with the other transceiver elements.

LO GEN
÷2K

PLL

ΔtREFPATH

ΔtCLK

ΔtPLL ΔtRF

CLOCK
CHIP

LO GEN
÷2K

PLL

LO GEN
÷2K

PLL

16
82

2-
06

8

Figure 65. High Level Contributors to System Phase per Antenna

The LO phase synchronization method addresses the initial PLL phase and LO divider state, and reduces the temperature dependence of
the PLL phase and LO divider state to a negligible amount in comparison to other sources of phase drift in the system.

Enabling the LO Phase Sync Function Using the API

To enable the LO phase synchronization function, take the following steps:

1. Set the phase sync bit in the taliseInit_t data structure.
2. Perform a multichip synchronization to set JESD204B deterministic latency using SYSREF signal pulses as normal. The LO phase

synchronization uses existing signaling and the SYSREF signal to accomplish LO phase synchronization.

.clocks =

 {

 .deviceClock_kHz = 245760, /* CLKPLL and device reference clock
frequency in kHz */

 .clkPllVcoFreq_kHz = 9830400, /* CLKPLL VCO frequency in kHz */

 .clkPllHsDiv = TAL_HSDIV_2, /* CLKPLL high speed clock divider
*/

 .rfPllUseExternalLo = 0, /* 1= Use external LO for RF PLL, 0
= use internal LO generation for RF PLL */

 .rfPllPhaseSyncMode = TAL_RFPLLMCS_INIT_AND_SYNC /* RFPLL MCS (Phase sync)
mode . See enum values below.

 },

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 116 of 247

Possible enumerator values are:

/**

* \brief Enumerated list of RFPLL phase synchronization modes

*

* RFPLL Phase sync requires extra time to sync each time the RFPLL frequency

* is changed. If RFPLL phase sync is not required, it may be desired to

* disable the feature to allow the RFPLL to lock faster.

*

* Depending on the desired accuracy of the RFPLL phase sync, several options

* are provided.

*/

typedef enum

{

 TAL_RFPLLMCS_NOSYNC = 0, /*!< Disable RFPLL phase synchronization */

 TAL_RFPLLMCS_INIT_AND_SYNC = 1, /*!< Enable RFPLL phase sync init only */

 TAL_RFPLLMCS_INIT_AND_1TRACK = 2, /*!< Enable RFPLL phase sync init and track
once */

 TAL_RFPLLMCS_INIT_AND_CONTTRACK = 3 /*!< Enable RFPLL phase sync init and track
continuously */

} taliseRfPllMcs_t;

RF PLL Phase Synchronization Demo Setup

A vector network analyzer is used to measure the phase difference between the evaluation board output and a reference source, which is
phase-locked to the device clock for the RF PLL on the device. Figure 66 shows the test setup. It is important to use the same reference for
all the equipment in the setup. All the equipment shown in Figure 66 is locked to the same 10 MHz reference. Figure 66 applies to the
ADRV9009 and the ADRV9008-2. For the ADRV9008-1, use RF_EXT_LO_I/O± as the input to the vector network analyzer.

ADRV9008-2
AND

ADRV9009
EVALUATION BOARD

VECTOR
NETWORK
ANALYZERTx1

10MHz

SIGNAL
GENERATOR

2
1

122.88MHz
REFERENCE
OSCILLATOR

16
82

2-
06

9

Figure 66. RF PLL Phase Synchronization Test Setup

The GUI provides two options to set the RF PLL phase synchronization: Disable or Init & Track Continuously, as shown in Figure 67.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 117 of 247

Figure 67 shows the both phase synchronization modes in the dropdown list in the RFPLL Phase Sync pane. Set this control to Disable
mode to baseline the design before the function is enabled.

16
82

2-
07

0

Figure 67. GUI Setup Screen, RFPLL Phase Sync Set to Disable

Figure 68 shows five power cycles of the same device with the phase synchronization function beginning in the disabled state. At each
power-up, the phase of the transmitter output compared to the signal generator reference is a random value on each of the five power
cycles. Figure 68 also shows initialization and tracking results, which brings the intial random phase to a repeatable value.

200

–200

–150

–100

0

100

150

–50

50

1

34
5

68
9

10
33

13
77

17
21

18
93

22
37

25
81

29
25

32
69

36
13

39
57

43
01

46
45

SERIES 1
SERIES 2
SERIES 3
SERIES 4
SERIES 5

PREINITIALIZATION
ENABLED

POST INITIALIZATION
ENABLED

POST TRACK
ENABLED

16
82

2-
07

1

R
E

L
A

T
IV

E
 P

H
A

S
E

 (
D

eg
re

es
)

SAMPLE NUMBER
Figure 68. Random RF PLL Phases Compared to Laboratory Signal Generator Reference—RF PLL Phase Synchronization Transitions from Disabled Through

Inititialization and into Tracking Mode, Five Independent Power-Up Sequences

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 118 of 247

Next, enable the phase sync function. In the GUI, select the Init & Track Continuously from the dropdown list. When the device is
programmed, this function is enabled and uses the existing SYSREF signals for JESD204B bus alignment to trigger the RF PLL phase sync
at each power-up cycle.

16
82

2-
07

2

Figure 69. GUI Setup Window, RFPLL Phase Sync Set to Init & Track Continuously

Figure 70 shows the phase synchronization transitioning from initialization to tracking on the same device over five power-up cycles.
124

117

118

119

121

123

120

122

1
45 89

13
3

17
7

83
7

79
3

74
9

70
5

66
1

61
7

57
3

52
9

48
5

44
1

39
7

35
3

30
9

22
1

88
1

92
5

96
9

10
13

10
57

11
01

11
45

11
89

12
33

SERIES 1
SERIES 2
SERIES 3
SERIES 4
SERIES 5

16
82

2-
07

3

SAMPLE NUMBER

R
E

L
A

T
IV

E
 P

H
A

S
E

 (
D

eg
re

es
)

Figure 70. RF PLL Phase Synchronization—Initialization to Tracking Results

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 119 of 247

RF PLL Phase Synchronization Demo Setup with 2 Two Evaluation Platforms

A vector network analyzer is used to measure the phase difference between the evaluation board Transmitter 1 output and another
evaluation board Transmitter 1 output. The vector network analyzer is phase-locked to the reference clock for the RF PLL on the device.
Figure 71 shows the test setup. It is important to use the same reference for all the equipment in the setup. In Figure 71, all equipment is
locked to the same 10 MHz reference, and the RF tune frequency is 1800 MHz.

AD9528

R
E

F
C

L
K

SYSREF

AD9528

REFCLK

REF_CLK

122.88MHz
REFERENCE
OSCILLATOR

SYSREF

Tx1

10MHz

Tx1

VNA

16
82

2-
07

4

ADRV9008-2
AND

ADRV9009

ADRV9008-2
AND

ADRV9009

ADRV9008-2
AND

ADRV9009
EVALUATION BOARD 2

ADRV9008-2
AND

ADRV9009
EVALUATION BOARD 1

Figure 71. RF PLL Phase Sync Test Setup

In this test, five power cycles show the random initial phase difference between the presynchronized evaluation boards. Figure 72 shows
the transition from preinitialization through initialization and tracking. It is observed that the phase difference reduces to almost zero
after initialization and tracking is enabled.

200

–150

–100

100

150

–50

–50

50

0 500 1000 1500 2000 2500

SAMPLE NUMBER

3000 3500 4000 4500

SERIES 1
SERIES 2
SERIES 3
SERIES 4
SERIES 5

16
82

2-
07

5

R
E

L
A

T
IV

E
 P

H
A

S
E

 (
D

eg
re

es
) PREINITIALIZATION

ENABLED
POST INITIALIZATION

ENABLED
POST TRACK

ENABLED

Figure 72. Transmitter Output Phase Comparison through RF PLL Phase Synchronization Cycle (RF Tune Frequency = 1800 MHz)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 120 of 247

Figure 73 shows the transistion from initialization to tracking. The tracking maintains approximately 2.5 to 3.0 degrees of phase delay
between the Transmitter 1 output of each chip.

4.0

–1.0

–0.5

2.5

3.5

0.5

0

1.5

2.0

3.0

1.0

2800 2900 3000 3100 3200 3300 3400 3500 3600

SERIES 1
SERIES 2
SERIES 3
SERIES 4
SERIES 5

TRACKING ENABLED

POST INITIALIZATION
ENABLED

R
EL

AT
IV

E
PH

A
SE

 (D
eg

re
es

)

16
82

2-
07

6

RF TUNE FREQUENCY (MHz)
Figure 73. RF PLL Phase Synchronization Intialization to Tracking Transition (RF Tune Frequency = 1800 MHz)

Over temperature, continuous tracking mode is capable of maintaining phase of the LO (see Table 46).

Table 46. LO Sync Phase Difference Over Temperature
LO Frequency (MHz) Typical Time Delay Change (sec/°C) Typical Phase Change (Degrees of Phase Delay/°C)
450 1.61 × 10−12 0.27
900 1.58 × 10−12 0.54
1800 1.56 × 10−12 1.09
3600 1.56 × 10−12 2.08

Figure 74 shows the LO phase difference in comparison to a signal generator reference vs. die temperature. The data shown in Figure 74
has been normalized to the value obtained at 20°C.

450MHz
900MHz
1800MHz
3600MHz

LO
 P

H
A

SE
 D

IF
FE

R
EN

C
E

FR
O

M
 2

0°
C

M
EA

SU
R

EM
EN

T
(p

s)

–200

–150

–100

–50

0

50

100

TEMPERATURE (°C)
–40 –20 0 20 40 60 80 100 120

16
82

2-
07

7

Figure 74. LO Phase Difference Compared to Signal Generator Reference vs. Temperature,

from 20°C Measurement

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 121 of 247

RF PLL FREQUENCY HOPPING
In the device, the RF PLL can change frequency quickly to another predetermined LO frequency set by the user. This section describes
how to set up the device to achieve quick switching of the LO frequency (LO hopping). Note that using this feature can cause tradeoffs in
RF performance in certain cases. Minimum hopping time can be profile dependent, but is generally limited to approximately 60 μs.

There are two use cases through which a user can control frequency hopping:

• GPIO mode. In this mode, the user can switch the RF PLL frequency via a user assigned GPIO pin. The user must configure the
frequency hopping GPIO during the initialization time. The next hopping frequency must be set via an API command (see the RF
PLL Frequency Hopping, Software Configuration section).

• Non-GPIO mode (API mode). In this mode, the user can switch the RF PLL frequency via an API command during run time (see
the RF PLL Frequency Hopping, Software Configuration section).

To control frequency hopping in GPIO mode, assign a GPIO pin to the fhmGpioPin variable in the taliseFhmConfig_t structure to
function as the trigger to change the frequency. To operate in non-GPIO mode, set the fhmGpioPin variable to TAL_GPIO_INVALID.
Set the bounds of the frequency hopping in the same structure such that the LO cannot hop to a frequency outside the band of operation.
The API command TALISE_setFhmConfig() configures the device settings defined in the taliseFhmConfig_t. The API
command TALISE_setFhmConfig() can only be called when the device is in the radio off state.

After setting up the taliseFhmConfig_t structure, continue by setting up the taliseFhmMode_t structure to enable/disable the
RF PLL frequency hopping feature. The user can choose to enable multichip synchronization when changing LO frequency, operate in
GPIO mode or non-GPIO mode (API Mode), as well as choose the first frequency to hop to when fast hopping mode is enabled. The user
can also select if the previous loop filter bandwidth is restored or if the fast hopping mode loop bandwidth of 600 kHz is to be maintained
when exiting fast hopping mode. The API command TALISE_setFhmMode() can be called when the device is in the radio on state.

After the data structure setup and the associated API commands are run, the RF PLL frequency hopping mode is in enabled. If operating
the device in GPIO mode, use the Talise_setFhmHop()function to transfer the frequency that the device hops to next, and then a low
to high transition of the selected GPIO pin causes the device to change the LO frequency to the one specified by the user. If operating in
non-GPIO mode, the device changes the LO frequency to the frequency specified in the Talise_setFhmHop() function when the API
command runs. The Talise_setFhmHop() function can only be called when the device is in the radio on state.

RF PLL Frequency Hopping, Software Configuration

This section describes the software configuration for the RF PLL frequency hopping function.

API Data Structures for RF PLL Frequency Hopping

Table 47. taliseFhmConfig_t Data Structure Descriptions
Member Name Data Type Description Value Range
fhmGpioPin taliseGpioPinSel_t GPIO input pin to the device

to trigger frequency hopping
GPIO_0 to GPIO_15. To unassign a GPIO pin as a frequency
hopping trigger, set this pin to TAL_GPIO_INVALID

fhmMinFreq_Hz uint64_t Minimum scan frequency for
frequency hopping

Dependent on the RF design of customer board

fhmMaxFreq_Hz uint64_t Maximum scan frequency for
frequency hopping

Dependent on the RF design of customer board

Table 48. taliseFhmMode_t Data Structure Description
Member Name Data Type Description Value Range
fhmEnable uint8_t Signal to enable/disable frequency

hopping.
0: disable frequency hopping mode (FHM).

1: enable FHM
enableMcsSync uint8_t Signal to enable multichip

synchronization for frequency
hopping.

0: disable multichip synchronization.

1: enable multichip synchronization
Ignored if fhmEnable is set to 0.
For frequency hopping, multichip
synchronization calibration parameters are
modified to speed up calibration but are
restored on exiting FHM mode.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 122 of 247

Member Name Data Type Description Value Range
fhmTriggerMode taliseFhmTriggerMode_t This member configures the mode of

the frequency hopping trigger to
either GPIO mode (for timing critical
operations) or non-GPIO mode (Arm
command through SPI interface to
switch frequency).

TAL_FHM_GPIO_MODE,
TAL_FHM_NON_GPIO_MODE

 Ignored if fhmEnable is set to 0.
fhmExitMode taliseFhmModeExit_t This member sets the frequency

hopping mode of exit to either full
exit cycle or quick exit cycle. Note
that this member is only valid if
fhmEnable member in this structure
is set to 0 (disable FHM). If fhmEnable
is set to 1 (enable FHM), fhmExitMode
is ignored.

TAL_FHM_QUICK_EXIT, TAL_FHM_FULL_EXIT.
In full exit cycle, RF PLL loop bandwidth is
restored to narrow-band, the RF and auxiliary
PLLs are recalibrated, and tracking calibrations
are resumed. In quick exit cycle, RF PLL loop
bandwidth is unchanged.

 This is ignored if fhmEnable is set to 1.
 The PLL loop bandwidth s increased to

600 kHz for FHM.
fhmInitFrequency_Hz uint64_t First hop frequency on enabling

Frequency Hopping
First frequency to hop to when FHM is
enabled. This is ignored if fhmEnable is set
to 0.

Table 49. taliseFhmStatus_t Data Structure Description
Member Variable Data Type Description
currentFhmCmdErrorStatus uint16_t Current FHM error status when entering FHM mode
currentFhmHopErrorStatus uint16_t Current FHM active errors when hopping
numFhmHops uint32_t Total number of frequency changes that occurred since entering FHM
numFhmNoErrorEvents uint32_t Total number of no FHM error events
lastFhmNoErrorFreq_Hz uint64_t Last frequency for which no error was encountered
numFhmHopsOutsideScanRange uint32_t Total number of hops outside FHM scan range
lastFreqOutsideScanRange_Hz uint64_t Last frequency outside FHM scan range
numInvalidFhmHopFrequencies uint32_t Number of times that an invalid hop frequency occurred
lastInvalidHopFreq_Hz uint64_t Last invalid hop frequency
compPllError uint32_t Number of times a PLL LO computation error occurred
compPllErrorFreq_Hz uint64_t PLL LO computation error frequency
rfPllLockFailed uint32_t Number of times RF PLL lock failed
rfPllLockFailedFreq_Hz uint64_t Last frequency for which RF PLL lock failed

API Functions for RF PLL Frequency Hopping

This section provides detailed information about the API functions used to set up, enable, and read back status information for RF PLL
frequency hopping.

TALISE_setFhmConfig()

This command sets up the frequency hopping trigger GPIO pin and the frequency hopping range. The function is as follows:
TALISE_setFhmConfig(taliseDevice_t *device, taliseFhmConfig_t *fhmConfig)

Precondition: this function can be called to set up the taliseFhmstructure configuration structure before the Arm processor is
initialized. After initialization, this function can only be called when the device is in the radio off state.

Parameters include the following:

• device is a pointer to the data structure that contains settings.
• taliseFhmConfig is a configuration structure of the frequency hopping mode.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 123 of 247

TALISE_getFhmConfig()

This function retrieves the current trigger GPIO pin and frequency hopping range. The function is as follows:
TALISE_getFhmConfig(taliseDevice_t *device, taliseFhmConfig_t *fhmConfig)

Precondition: this function can be called to set up the taliseFhmstructure configuration structure before the Arm processor is
initialized. After initialization, this function can be called when the device is in the radio off and radio on states.

Parameters include the following:

• device is a pointer to the data structure that contains settings.
• taliseFhmConfig is a configuration structure of the frequency hopping mode.

TALISE_setFhmMode()

This function enables/disables frequency hopping, enables/disables multichip synchronization, and configures exit mode. This function
also configures the initial hopping frequency. The function is as follows:

TALISE_setFhmMode(taliseDevice_t *device, taliseFhmMode_t *fhmMode)

If fhmEnable is set to 1 (enable frequency hopping), the following sequence executes:

1. FHM trigger mode (GPIO/non-GPIO) is configured.
2. FHM initialization frequency is written to the Arm mailbox.
3. A command is sent to the Arm to enable FHM mode (with fhmMode.enableMcsSync flag).

Note that the fhmMode.fhmExitMode is ignored if fhmEnable is set to 1.

If fhmMode.fhmEnable is set to 0, the Arm processor is commanded to disable frequency hopping with the exit mode selected by the
user via the fhmMode.fhmExitMode command. Parameters other than fhmExitMode are ignored if fhmEnable is set to 0.

Precondition: this function can only be called after the Arm processor is initialized. After initialization, this function can be called when
the device is in the radio off and radio on states.

Parameters include the following:

• device is a pointer to the device data structure that contains settings.
• fhmMode is a mode structure of frequency hopping mode.

TALISE_getFhmMode()

The function retrieves the current frequency hopping enable state, multichip synchronization configuration, and the exit mode
configuration. The function is as follows:

TALISE_getFhmMode(taliseDevice_t *device, taliseFhmMode_t *fhmMode)

Precondition: this function can only be called after the Arm processor is initialized. After initialization, this function can be called when
the device is in the radio off and radio on states.

Parameters include the following:

• device is a pointer to the device data structure that contains settings.
• fhmMode is a pointer to the mode structure of frequency hopping mode.

TALISE_setFhmHop()

This function triggers frequency hopping via an Arm command instead of a GPIO pulse.
TALISE_setFhmHop(taliseDevice_t *device, uint64_t nextRfPllFrequency_Hz)

Precondition: this function can only be called after the Arm processor is initialized. After initialization, this function can be called when
the device is in the radio off and radio on states.

Parameters include the following:

• device is a pointer to the device data structure that contains settings.
• nextRfPllFrequency_Hz is the next frequency that the user wishes to hop to in Hz.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 124 of 247

TALISE_getFhmStatus()

This function returns the current frequency hopping status.
TALISE_getFhmStatus(taliseDevice_t *device, taliseFhmSts_t *fhmSts

Precondition: this function can only be called after the Arm processor is initialized. After initialization, this function can be called when
the device is in the radio off and radio on states.

Parameters include the following:

• device is a pointer to the device data structure that contains settings.
• fhmSts is a pointer to the status structure of frequency hopping mode.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 125 of 247

RECEIVER GAIN CONTROL
The ADRV9008-1 and ADRV9009 (Receiver 1 and Receiver 2) feature automatic and manual gain control modes that allow flexible gain
control in a wide array of applications. Automatic gain control (AGC) allows receivers to autonomously adjust the receiver gain
depending on variations of the input signal, for example, the onset of a strong interferer that can overload the receiver datapath. AGC
mode controls the gain of the device based on information from a number of signal detectors (peak/power detectors). The AGC can
control the gain of the device with fine resolution, if required. The receivers are also capable of operating in manual gain control (MGC)
mode, where changes in gain are initiated by the BBP. The gain control blocks of the device are configured by the API data structures and
several API functions exist that allow user interaction with the gain control mechanisms.

The AGC is highly flexible and can be configured in a number of ways. For base transceiver station (BTS) receivers, the received signal is
a multicarrier signal in most cases. Only perform a gain change under large overrange or underrange conditions. Gain changes do not
occur often for typical 3G/4G operation, and so, peak detect mode operation is sufficient. If an asynchronous blocker does appear, a fast
attack mode exists that can reduce the gain at a fast rate.

Alternatively, for support for GSM blockers and radar pulses that have fast rise and rapid fall times, a fast attack, fast recovery, peak detect
only mode exists. This mode can recover quickly in addition to fast attack mode.

RECEIVER DATAPATH
Figure 75 shows the receiver datapath and gain control blocks of the device. The receiver has front-end attenuators prior to the mixer
stage that are used to attenuate the signal in the RF domain to ensure the signal does not overload the receiver chain. In the digital
domain, there are two options: digital attenuation or digital gain. This digital gain block is also utilized for gain compensation.

DC
CORR

DDC
HB

DIGITAL GAIN/
COMPENSATION

FLOATING POINT
FORMATTERSLICER

SLICER
OUTPUTS
TO BBP

JE
SD

20
4B

RFIR

EXTERNAL
GAIN

ELEMENT
FRONT-END

ATTENUATOR

TIA APD HB3
HB1

HB2
OVERLOAD
DETECTOR

GPIOs

GPIOsSPI

HB1
POWER

MEASUREMENT
BLOCK

GAIN CONTROL BLOCK
(AGC, MGC)

HB2

DEC5

ADC

16
82

2-
07

8

Figure 75. Receiver Datapath and Gain Control Blocks

The receiver chain has a number of observation elements that can monitor the incoming signal. These observation elements can be used
in MGC or AGC mode. An analog peak detector (APD) exists prior to the ADC. Because the APD is in the analog baseband, this peak
detector sees signals first and also has visibility of the blocker signals that can overload the ADC but can be filtered as the blocker signals
progress through the digital chain. The second peak detector is the Half-Band 2 (HB2) overload detector, defined as such because this
detector monitors the data at the output of the HB2 filter in the receiver chain.

A power measurement detection block is also provided in the receiver chain, which takes the rms power of the received signal over a
configurable period of time. The power measurement detection block can observe power at one of a number of configurable locations.

The device can also control an external gain element through the use of the receiver gain table and the GPIOs.

The gain control block is shown in Figure 75 with multiple inputs that provide information. The gain control block controls the gain of
the signal chain using a gain table.

This gain table is user programmable, and each row of the table provides a unique combination of a front-end attenuator, external gain
element (if used), and digital gain settings. The gain control block updates the variable gain elements based on the row of this table
selected either by the user in MGC mode, or automatically by the device when in AGC mode. The user can control the gain control block
using the SPI bus (configuration of AGC or MGC) and the GPIOs.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 126 of 247

Table 50. Sample Rows from the Default Receiver Gain Table

Gain Table
Index

Front-End Attenuator
Bits[7:0]

External Gain Control
Bits[3:0]

Transimpedance
Amplifier (TIA)
/ADC Gain

Signed Digital Gain/Attenuation
Bits[10:0]

Phase
Offset

255 0 0 0 14 0
254 14 0 0 14 0
253 27 0 0 15 0

The gain table index is the reference for each unique combination of the gain settings in the programmable gain table. It is possible to
have different gain tables for Receiver 1 and Receiver 2, although typically the same gain table is used. The possible range of the gain table
is 255 to 128. However, typically, only a subset of this gain range is used. The gain table must be assigned in order of decreasing gain,
starting with the highest gain in the maximum gain index (for example, 255) to the lowest gain in the minimum gain index. The loading
of the gain table and the specification of the maximum/minimum gain indices is described in the Gain Control API Programming
section.

The front-end attenuator has an 8-bit control word. The amount of attenuation applied depends on the value set in the front-end
attenuator column of the selected gain table index.

The following equation demonstrates a relationship between the internal attenuator and the front-end attenuation value (N) programmed
in the gain table:

10
256(dB) 20log

256
N

Attenuation

The external gain control column controls four 3.3 V GPIOs for each receiver. Receiver 1 uses GPIO_3P3_3 to GPIO_3P3_0, where
Receiver 2 uses GPIO_3P3_7 to GPIO_3P3_4. These 3.3 V GPIOs must be enabled as outputs and set for external gain functionality. The
programmed 4-bit value is directly related to the status of these GPIO pins, for example, if the Receiver 1 table is programmed to
3 decimal (0011b) in the selected gain index, GPIO_3P3_0 and GPIO_3P3_1 are high, and GPIO_3P3_2 and GPIO_3P3_3 are low.

EXTERNAL
ATTENUATOR

3.3V GPIOs

Rx1

GPIO_3P3_0
GPIO_3P3_1
GPIO_3P3_2
GPIO_3P3_3

16
82

2-
07

9

Figure 76. GPIO Control of an External Gain Element to Receiver 1

The signed digital gain/attenuation is used to digitally apply gain or attenuation. The range of the digital gain is 0 dB to 41.9 dB, and the
range of the digital attenuation is 0 dB to 18.05 dB. The resolution of the steps is 0.05 dB in both directions. Therefore, a value of +14
provides a 0.7 dB gain, and a value of −14 provides 0.7 dB of attenuation.

The TIA/ADC gain is not used and must be set to zero in all rows.

The gain table loaded during the initialization of the device is stored in the talise_user.c file. This table can be modified by the user based
on the required use case. The default table provided within talise_user.c file provides 0.5 dB gain steps over a 30 dB range. The default
table does not support gain compensation, and the table must be updated for such a use case.

16
82

2-
08

0

Figure 77. Sample of the Gain Table Contained in the talise_user.c File

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 127 of 247

GAIN CONTROL MODES
The gain control mode is selected with the following API function:

TALISE_setRxGainControlMode(taliseDevice_t *device, taliseGainMode_t mode)

Parameter: mode is an enumerator that indicates what gain mode is to be used, as shown in Table 51.

Table 51. taliseGainMode_t Gain Control Modes
Enumerator Name Gain Mode Description
TAL_MGC Manual gain mode.
TAL_AGCFAST Do not use. See TAL_AGCSLOW, which is used for all AGC operation.
TAL_AGCSLOW Automatic gain control mode. This mode can be configured in fast and slow configurations.
TAL_HYBRID Do not use. Not implemented in API.

MGC Mode

The gain control block applies the settings from the selected gain index in the gain table. In MGC mode, the BBP is in control of selecting
the gain index. There are two options in MGC mode: API command mode or pin control mode. By default, if MGC is chosen, the device
is configured for API commands.

In API command mode, use the following API to select a gain index in the gain table:

TALISE_setRxManualGain(taliseDevice_t *device, taliseRxChannels_t rxChannel, uint8_t gainIndex)

Parameters include the following:

 rxChannel is an enumerator that indicates which channel’s gain is updated.
 gainIndex is the gain table index chosen for that particular receiver.

Use the following function to read back the gain index for a selected channel:

TALISE_getRxGain(taliseDevice_t *device, taliseRxChannels_t rxChannel, uint8_t *rxGainIndex)

Pin control mode within MGC mode is useful when real-time control of the gain is required. In this mode, 4 GPIO_x pins are used: two
for each receiver, one to increase the gain table index, and one to decrease the gain table index. Specify the increment and decrement step
size. A pulse is applied to the relevant GPIO_x pin to trigger an increment or decrement in gain, as shown in Figure 78. This pulse must
be held high for at least two AGC clock cycles for a gain change to occur (see the AGC Clock and Gain Block Timing section for details).

TRANSCIEVER

GPIO_0

GPIO_3

Rx1

Rx1

Rx2

Rx2

GPIO_2

GPIO_1

16
82

2-
08

1

Figure 78. MGC Pin Mode Configured for Use with GPIO_0 to GPIO_3

The following function enables the pin control mode within MGC mode:
TALISE_setRxGainCtrlPin(taliseDevice_t *device, taliseRxChannels_t rxChannel,
taliseRxGainCtrlPin_t *rxGainCtrlPin)

Parameter: rxGainCtrlPin is a structure outlined in Table 52.

Table 52. taliseRxGainCtrlPin_t Data Structure Description
Member Name Description
uint8_t incStep Increment in gain index applied when the increment gain is pulsed. Acceptable values for this parameter are 0

to 7. However, a value of 1 is added to what is programmed into this parameter, resulting in step sizes of 1 to 8.
uint8_t decStep Decrement in gain index applied when the decrement gain is pulsed. Acceptable values for this parameter are 0

to 7. However, a value of 1 is added to what is programmed into this parameter, resulting in step sizes of 1 to 8.
taliseGpioPinSel_t.rxGainIncPin Acceptable values for Rx1 are GPIO_0 or GPIO_10 and acceptable values for Rx2 are GPIO_03 or GPIO_13.

taliseGpioPinSel_t.rxGainDecPin Acceptable values for Rx1 are GPIO_01 or GPIO_11 and acceptable values for Rx2 are GPIO_04 or GPIO_14.

unit8_t enable 1 = enable (pin control) and 0 = disable (SPI control).

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 128 of 247

The overload detectors can be monitored over the GPIO pins. Principally, the GPIOs can be configured to report when an upper or lower
threshold is exceeded on the APD or HB2 detectors (see the GPIO Configuration section). For details on what causes an overrange
condition, see the Peak Detect Mode section.

AGC Mode

In AGC mode, a built in state machine automatically controls the gain based on the user defined configuration. The AGC can be
configured in peak detect mode, where only the overload detectors are used to make gain changes or in peak/power detect mode, where
information from the power detector and the overload detectors are used to make gain changes.

The agcPeakThreshGainControlMode parameter of the taliseAgcCfg_t AGC configuration structure selects the individual
modes of the AGC operation (see Table 53).

Table 53. agcPeakThreshGainControlMode settings
agcPeakThreshGainControlMode Setting Description
0 AGC in peak/power mode
1 AGC is peak detect mode

Peak Detect Mode

In this mode, only the overload detectors are used to inform the AGC to make gain changes. This section explains the basic premise of the
operation.

The APD and HB2 detector have high thresholds (apdHighThresh and hb2HighThresh) and low thresholds (apdLowThresh and
hb2UnderRangeHighThresh). These thresholds and the number of times a threshold must be exceeded for an overrange condition to
be flagged are user programmable. The high thresholds are used as limits on the incoming signal level and are principally set based on the
maximum input of the ADC. When an overrange condition occurs, the AGC reduces the gain (gain attack).

The low thresholds are used as lower limits on the signal level. If the signal peaks are not exceeding the lower threshold, this is indicative
of a low power signal, and the AGC increases the gain (gain recovery), which is defined as an underrange. The AGC stable state (where
gain is not adjusted) occurs when neither an underrange nor overrange (overload) condition occurs, for example, the signal peaks are less
than the high threshold and greater than the lower threshold.

Each overload/underrange condition has its own attack and recovery gain step (see Table 54).

Table 54. Peak Detector Overrange/Underrange Gain Steps
Overload/Underrange Condition Gain Step
apdHighThresh Overload Reduces gain by apdGainStepAttack.
apdLowThresh Underrange Increases gain by apdGainStepRecovery.
hb2HighThresh Overload Reduces gain by hb2GainStepAttack.
hb2UnderRangeHighThresh Underrange Increases gain by hb2GainStepHighRecovery.

An overrange condition occurs when the high thresholds are exceeded for a configurable number of times within a configurable period.
An underrange condition occurs when the low thresholds are not exceeded for a configurable number of times within the same
configurable period. These counters make the AGC more or less sensitive to peaks in the input signal, ensuring that a single peak
exceeding a threshold does not necessarily cause the AGC to react. This sensitivity allows the user to tradeoff the bit error rate with the
signal-to-noise ratio (SNR). Table 55 describes the counter parameters for the individual overload/underrange conditions.

Table 55. Peak Detector Overrange/Underrange Counter Settings
Overload/Underrange Condition Counter Name
apdHighThresh Overload apdUpperThreshPeakExceededCnt
apdLowThresh Underrange apdLowerThreshPeakExceededCnt
hb2HighThresh Overload hb2UpperThreshPeakExceededCnt
hb2UnderRangeHighThresh Underrange hb2LowerThreshPeakExceededCnt

The AGC uses a gain update counter to time the gain changes, where gain changes are made when the counter expires. The counter value,
and therefore the time spacing between possible gain changes, is user programmable through the agcGainUpdateCounter_us
parameter. The user specifies the period (in µs) that gain changes can be made. Typically, this period is set to frame or subframe boundary
periods. The total time between gain updates is the combination of the agcSlowLoopSettlingDelay and the
agcGainUpdateCounter_us parameters.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 129 of 247

When the gain update counter expires, all overload counters are reset. Therefore, the gain update period is a decision period, which
means that the overload thresholds and gain update counters are set based on the number of overloads that are considered acceptable for
the application within the gain update period.

Figure 79 shows an example of the AGC response to a signal vs. the APD threshold levels (the APD is considered in isolation). Initially,
the peaks of the signal are within the apdHighThresh and apdLowThresh thresholds, and no gain changes are made. Then, an
interferer suddenly appears, whose peaks exceed the apdHighThresh threshold. On the next expiration of the gain update counter
(assuming a sufficient number of peaks has occurred to exceed the counter), the AGC decrements the gain index (reduces the gain) by
using the apdGainStepAttack recovery gain step. This reduction in gain is not sufficient to get the signal peaks within the threshold
levels, and so the gain is decremented again, with the peaks now between the two thresholds. The gain is stable in this current gain level
until the interfering signal is removed, and the peaks of the wanted signal are now below the apdLowThresh threshold, which results in
an underrange condition. Therefore, the AGC increases gain with the apdGainStepRecovery recovery gain step at the next expiration
of the gain update counter, and continues to increase the gain until the peaks of the signal are within the two thresholds.

SIGNAL LEVEL

apdHighThresh

apdLowThresh

INTERFERER
PRESENT

INTERFERER
REMOVED

GAIN INCREMENT
(apdGainStepRecovery)

GAIN INCREMENT
(apdGainStepRecovery)

GAIN DECREMENT
(apdGainStepAttack)

GAIN DECREMENT
(apdGainStepAttack)

GAIN UPDATE
PERIOD

16
82

2-
08

2

Figure 79. APD Thresholds and Gain Changes Associated with Underrange and Overrange Conditions

Figure 80 shows the same scenario from the viewpoint of the HB2 detector that is considered in isolation.

SIGNAL LEVEL

hb2HighThresh

GAIN UPDATE
PERIOD

INTERFERER
PRESENT GAIN INCREMENT

(hb2GainStepRecovery)

GAIN INCREMENT
(hb2GainStepRecovery)

GAIN DECREMENT
(hb2GainStepAttack)

GAIN DECREMENT
(hb2GainStepAttack)

hb2UnderRangeHighThresh

16
82

2-
08

3

INTERFERER
REMOVED

Figure 80. HB2 Thresholds and Gain Changes Associated with Underrange and Overrange Conditions

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 130 of 247

It is possible to enable a fast attack mode in which the AGC is instructed to reduce gain immediately when an overrange condition occurs,
rather than wait until the next expiration of the gain update counter, using the agcGainChangeIfThreshHigh threshold. This
parameter has independent controls for the APD and HB2 detectors. Values from 0 to 3 are valid (see Table 56).

Table 56. agcGainChangeIfThreshHigh Settings
agcChangeGainIfThreshHigh

Setting, Bits[1:0] Gain Change Following APD Overrange Gain Change Following HB2 Overrange
00 After expiry of agcGainUpdateCounter_us After expiry of agcGainUpdateCounter_us
01 After expiry of agcGainUpdateCounter_us Immediately
10 Immediately After expiry of agcGainUpdateCounter_us
11 Immediately Immediately

Figure 81 shows the reaction of the AGC when the agcChangeGainIfThreshHigh is set for APD. In this case, when the interferer
appears, the gain is updated as soon as the number of peaks exceed the peak counter. The AGC does not wait for the next expiry of the
gain update counter. A number of gain changes can be made in quick succession, which provides a faster attack than the default
operation. The assumption is that if the ADC is overloaded, it is best to decrease the gain quickly rather than wait for a suitable moment
in the received signal to change the gain.

SIGNAL LEVEL

apdHighThresh

apdLowThresh

INTERFERER
PRESENT

INTERFERER
REMOVED

GAIN INCREMENT
(apdGainStepRecovery)

GAIN INCREMENT
(apdGainStepRecovery)

GAIN DECREMENT
(apdGainStepAttack)

GAIN DECREMENT
(apdGainStepAttack)

GAIN UPDATE
PERIOD

16
82

2-
08

4

Figure 81. APD Gain Changes with Fast Attack Enabled

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 131 of 247

Figure 82 shows the same scenario from the viewpoint of the agcChangeGainIfThreshHigh threshold set for HB2.

SIGNAL LEVEL

hb2HighThresh

hb2UnderRangeHighThresh

INTERFERER
PRESENT

INTERFERER
REMOVED

GAIN INCREMENT
(hb2GainStepRecovery)

GAIN INCREMENT
(hb2GainStepRecovery)

GAIN DECREMENT
(hb2GainStepAttack)

GAIN DECREMENT
(hb2GainStepAttack)

GAIN UPDATE
PERIOD

16
82

2-
08

5

Figure 82. HB2 Gain Changes with Fast Attack Enabled

It is also possible to enable a fast recovery mode in which gain recovery occurs before the expiration of the gain update counter. This
functionality is enabled with the agcEnableFastRecoveryLoop parameter in the HB2 overrange detector. The operation is as shown
in Figure 83. When the signal level falls below the hb2UnderRangeLowThresh threshold, the gain is incremented following the
expiration of the agcUnderRangeLowInterval counter. After sufficient gain increases to bring the signal level above the
hb2UnderRangeLowThresh threshold, the gain is incremented by hb2GainStepMidRecovery after the expiration of the
hb2GainStepMidRecovery counter. Finally, when the signal level is increased more than the hb2UnderRangeMidThresh
threshold, the gain is incremented by hb2GainStepHighRecovery following the expiration of the agcUnderRangeHighInterval
counter. The fast recovery loop is designed so that as the desired signal level is approached, the magnitude of the gain adjustments are
reduced, and the time interval between gain changes is increased, as shown in Figure 83. This design allows for a fast gain recovery when
the signal is far from the desired level, with the adjustments reducing to ensure convergence to the required level.

SIGNAL LEVEL
hb2HighThresh

hb2UnderRangeHighThresh

hb2UnderRangeMidThresh

hb2UnderRangeLowThresh

GAIN INCREMENT
(hb2GainStepLowRecovery)

agcUnderRangeLowInterval

agcUnderRangeMidInterval

agcUnderRangeHighInterval

GAIN INCREMENT
(hb2GainStepMidRecovery)

GAIN INCREMENT
(hb2GainStepHighRecovery)

16
82

2-
08

6

Figure 83. AGC Operation with HB2 Detector in Fast Recovery Mode

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 132 of 247

Priorities and Overall Operation

It is highly recommended that the apdHighThresh and hb2HighThresh thresholds are set to an equivalent dBFS value. Likewise, it is
highly recommended that the apdLowThresh and the hb2UnderRangeHighThresh thresholds are set to equivalent values. This
equivalence is approximate because these thresholds have unique threshold settings and are not exactly equal. This section discusses the
relevant priorities between the detectors, and how the AGC reacts when multiple threshold detectors have been exceeded.

Table 57 shows the priorities between the detectors when multiple overranges occur.

Table 57. Priorities of Attack Gain Steps
apdHighThresh Overrange hb2HighThresh Overrange Gain Change
No No No gain change
No Yes Gain change by hb2GainStepAttack
Yes No Gain change by apdGainStepAttack
Yes Yes Gain change by apdGainStepAttack

For recovery, the number of thresholds is dependent on whether fast recovery is enabled or not. Considering the fast recovery scenario,
the priority of the thresholds in descending order is the following:

1. hb2UnderRangeLowThresh underrange condition
2. hb2UnderRangeMidThresh underrange condition
3. hb2UnderRangeHighThresh underrange condition
4. apdLowThresh underrange condition

When one underrange condition occurs, the AGC changes the gain by the corresponding gain step size of this condition. However, if
multiple conditions occur simultaneously, the AGC acts based on the priorities indicated, for example, if the hb2UnderRangeLowThresh
threshold reports an underrange condition, the AGC adjusts the gain by hb2GainStepLowRecovery, with two exceptions.

The apdLowThresh threshold has priority in terms of preventing recovery. If apdLowThresh threshold reports an overrange
condition, for example, if the signal is exceeding its threshold, no further recovery is allowed. Configure the apdLowThresh and
hb2UnderRangeHighThresh thresholds as close to the same value of dBFS as possible, assuming some small difference between the
thresholds, and then, as soon as the apdLowThresh threshold is exceeded, recovery no longer occurs. The reverse is not true. The
hb2UnderRangeHighThresh threshold does not prevent the gain recovery towards the apdLowThresh threshold. Given the
recommendation that the apdLowThresh and hb2UnderRangeHighThresh thresholds are set equally, a condition where the
apdLowThresh is at a lower dBFS level than the hb2UnderRangeLowThresh or hb2UnderRangeMidThresh thresholds does not
occur.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 133 of 247

Another exception is if the recovery step size for a detector is set to zero. In this case, the AGC makes the gain change of the highest
priority detector with a non-zero recovery step. Figure 84 shows a flowchart of the decisions that the AGC makes when recovering the
gain in peak detect mode.

GAIN RECOVERY

N Y

N Y

N Y

N Y

N Y

IF
apdLowThresh

underrange

RECOVER GAIN BY
apdGainStepRecovery

END

RECOVER GAIN BY
hb2GainStepHighRecovery

RECOVER GAIN BY
hb2GainStepMidRecovery

RECOVER GAIN BY
hb2GainStepLowRecovery

IF
hb2UnderRange

LowThresh
underrange and

hb2GainStepLow
Recovery ǂ 0

IF
hb2UnderRange

MidThresh
underrange and
hb2GainStepMid

Recovery ǂ 0

IF
hb2UnderRange

HighThresh
underrange and

hb2GainStepHigh
Recovery ǂ 0

IF
apdLowThresh
underrange and

apdGainStep
Recovery ǂ 0

16
82

2-
08

7

Figure 84. Flowchart for AGC Recovery in Peak Detect AGC Mode

Peak/Power Detect Mode

In this mode, the power detector measurement is also used to control the gain of the receiver chain. In the event of an overrange, the peak
detectors and the power detector can instantiate a gain decrement. In the event of an underrange, only the power detector can increment
the gain. The power detector changes gain solely at the expiration of the gain update counter. The peak detectors can be set in one of two
modes (depending on the setting of agcGainChangeIfThreshHigh): the AGC waits for the gain update counter to expire before
initiating a gain change, or the AGC immediately updates the gain as soon as the overrange condition occurs (see Figure 83 to Figure 85).

The power measurement block provides the rms power of the receiver data at the measurement location. The power measurement block
can be configured to monitor the signal in one of three locations, as shown in Figure 75. In power detect mode, the AGC compares the
measured signal level to programmable thresholds that provide a second-order control loop, where the gain can be changed by larger
amounts when the signal level is further from the target level and make smaller gain changes when the signal is closer to the target level.

Figure 85 shows the operation of the AGC when using the power measurement detector. The AGC does not modify the gain when the
signal level is between upper0PowerThresh and underRangeHighPowerThresh. This range is the target range for the power
measurement.

When the signal level goes below underRangeLowPowerThresh, the AGC waits for the next gain update counter expiration and then
increments the gain using underRangeLowPowerGainStepRecovery. When the signal level is greater than
underRangeLowPowerThresh but below underRangeHighPowerThresh, the AGC increments the gain using

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 134 of 247

underRangeHighPowerGainStepRecovery. Likewise, when the signal level goes above upper1PowerThresh, the AGC
decreases the gain using upper1GainStep, and when the signal level is between upper0PowerThresh and upper1PowerThresh,
the AGC decreases the gain using upper0GainStep.

SIGNAL LEVEL
RECEIVED SIGNAL
LEVEL CHANGE

GAIN INCREMENT

GAIN INCREMENT

POWER
MEASUREMENT

DURATION

GAIN DECREMENT

GAIN DECREMENT

DECREMENT GAIN BY
4 GAIN INDICES

DECREMENT GAIN BY
4 GAIN INDICES

NO GAIN CHANGE

INDREMENT GAIN BY
underRangeHighPowerGainStepRecovery

INDREMENT GAIN BY
underRangeLowPowerGainStepRecovery

GAIN UPDATE
PERIOD

16
82

2-
08

8

RECEIVED SIGNAL
LEVEL CHANGE

upper0PowerThresh

upper1PowerThresh

underRangeHighPowerThresh

underRangeLowPowerThresh

Figure 85. PMD Thresholds and Gain Changes for Underrange and Overrange Conditions

It is possible for the AGC to get contrasting requests from the power and peak detectors, for example, a blocker that is visible to the
analog peak detector but is significantly attenuated by the power measurement block. In this case, the APD can request a gain decrement
while the power measurement block can request a gain increment. The priority scheme when the AGC is in power detect mode is as
follows:

1. APD overrange (upper level)
2. HB2 overrange (upper level)
3. APD lower level overrange
4. HB2 lower level overrange
5. Power measurement

In this example, the gain is decremented because the APD overrange has a higher priority than the power measurement. It is important to
note the APD and HB2 lower level overranges. In peak detect mode, the lower level thresholds for these detectors indicate an underrange
condition, which causes the AGC to increase the gain. In power detect more, these detectors are not used for gain recovery but can be
used to control gain recovery by setting the API parameter, agcLowThreshPreventGain. In this mode, if the signal level is exceeding
a lower level threshold, the AGC is prevented from increasing the gain regardless, of the power measurement.

Setting the agcLowThreshPreventGain parameter prevents an oscillation condition that can otherwise occur to a blocker that is
visible to an overload detector but is filtered before the power measurement block. In this case, the overload detector can cause the AGC
to decrease the gain. The overload detector does this until the blocker is no longer exceeding the defined threshold. At this point, the
power measurement block can request an increase in gain and does so until the overload threshold of the detector is exceeded, which
decreases the gain. By using these lower level thresholds, the AGC is prevented from increasing gain as the signal level approaches an
overload condition, which provides a stable gain level for the receiver chain under such a condition.

AGC CLOCK AND GAIN BLOCK TIMING
The AGC clock is the clock that drives the AGC state machine. A number of the programmable counters are used by the AGC, which are
clocked at this rate. The maximum frequency of the AGC clock is 250 MHz. The clock is derived from the Receive Half-Band 1 (RHB1)
clock, the input clock to the RHB1 filter. This clock can be scaled by 1, 2, or 4 to ensure that it is less than 250 MHz. For example, in a
receiver profile of 200 MHz with an I/Q rate of 245.76 MSPS, the frequency of the RHB1 clock is 491.52 MHz, which results in an AGC
clock of 245.76 MHz. The API automatically determines the appropriate scaling to use.

The gain update counter is used to space gain updates when fast attack or fast recovery is not used. The total time between gain updates
(gain update period) is a combination of both the agcSlowLoopSettlingDelay and the agcGainUpdateCounter_us periods.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 135 of 247

agcSlowLoopSettingDelay

agcGainUpdateCounter_us

SLOT
BOUNDARY

GPIO

DATA DATA

16
82

2-
08

9

Figure 86. Gain Update Period

Figure 86 outlines the usage of the gain update counter. The dashed lines indicate where a gain decision is made, for example, at these
instances, the AGC changes the gain if required (note that fast attack and fast recovery happen asynchronously to the gain update counter). After
the expiration of the gain update counter, the AGC enters a settling delay period, defined by agcSlowLoopSettlingDelay, where the
power measurement and overload detector blocks are disabled for a short time to allow any gain transients to flow through the receiver
path. The power measurement and overload detector blocks are enabled at the start of the gain update counter period, and a gain decision
is made at the end of the gain update period. At the expiration of the gain update counter, all measurement blocks are reset, and any peak
detector counts are reset to zero.

In Figure 86, the gain update counter is shown to expire at slot boundaries, which are suitable points in the received signal where gain
changes are acceptable. When the gain update counter first begins, its expiration is at any arbitrary phase to these slot boundaries. To
align the expiry to the slot boundaries, set the agcEnableSyncPulseForGainCounter parameter. While this bit is set, the AGC
monitors a user selected GPIO pin to find a synchronization pulse. This pulse causes the expiration of the counter at this point in time. If
the user supplies a GPIO pulse time aligned to these slot boundaries, the expiration of the counter is aligned to slot boundaries. When the
receiver is enabled, the AGC can be kept inactive for a number of AGC clock cycles by using agcRxAttackDelay, which means that
the user can specify one delay for AGC reaction when entering receiver mode and one delay for after a gain change occurs
(agcSlowLoopSettlingDelay). It is also possible to reset the gain when the receiver is disabled so that the gain is at its maximum by
setting agcResetOnRxon at the start of each receiver period.

APD
The APD is located in the analog domain, prior to the ADC input. The APD functions by comparing the signal level to programmable
thresholds. When a threshold is exceeded for a programmable number of times in a gain update period, the detector flags that the
threshold is overloaded.

There are two APD thresholds, as shown in Figure 87. These thresholds are contained in the agcPeak API structure, apdHighThresh
and apdLowThresh, respectively.

apdHighThresh (mV)

apdLowThresh (mV)

t

16
82

2-
09

0

Figure 87. Analog Peak Detector Thresholds

The thresholds are typically considered relative to the full-scale voltage of the ADC, which is 850 mV peak. Determine the mV setting of
the APD thresholds by using the following equations:

apdHighThresh (mV) = (apdHighThresh + 1) × 16 mV

apdLowThresh (mV) = (apdLowThresh + 1) × 16 mV

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 136 of 247

To determine the setting of the APD thresholds in terms of the closest possible setting in terms of dBFS of the ADC (ADCdBFS), use the
following equations:

()ln 10 ADCdBFS
20 850 16

16

e

apdHighThresh round

×

 × − =

()ln 10 ADCdBFS
20 850 16

16

e

apdLowThresh round

×

 × − =

The APD threshold must exceed a programmable number within a gain update counter period before an overrange condition occurs. The
upper and lower thresholds have a programmable counter in the agcPeak API structure, as indicated in Table 58.

Table 58. APD Programmable Threshold Counters
Threshold Name Counter Name
Upper Threshold (apdHighThresh) apdUpperThreshPeakExceededCnt
Lower Threshold (apdLowThresh) apdLowerThresPeakExceededCnt

As described in the AGC Mode section, the APD is used for gain attack and gain recovery in peak detect mode. In power detect mode,
the APD is used for gain attack and to prevent overloading during gain recovery.

In AGC mode, the APD has programmable gain attack and gain recovery step sizes (see Table 59).

Table 59. APD Attack and Recovery Step Sizes
Gain Change Step Size
Gain Attack apdGainStepAttack
Gain Recovery apdGainStepRecovery

The step size refers to the number of indices of the gain table that the gain is changed. The gain table is programmed with the largest gain
in the maximum gain index (typically index 255), with decreasing gain for decreasing gain index. If the APD gain attack step size is
programmed to 6, the gain index is reduced by 6 when the apdHighThresh is exceeded more than apdUpperThreshPeakExceededCnt
times. For example, if the gain index is 255 before this overrange condition, the gain index is reduced to 249. The amount of gain
reduction that this gain index equates to is dependent on the gain table in use. The default table has 0.5 dB steps, which in this example,
equate to a 3 dB gain reduction in the event of an APD overrange condition.

The APD is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled at the new gain
setting before monitoring the paths for overranges. The time that the ADP is held in reset is configured using the agcPeakWaitTime
parameter.

Note that although it is always recommended that thresholds be optimized for a particular use case, for LO operation lower than
200 MHz, the APD thresholds can require extra attention. In this range, the APD detector threshold levels must be configured
approximately 3 dB less than is required for LO frequencies that are greater than 200 MHz to trigger on the same input signal level.

HB2 PEAK DETECTOR
The HB2 peak detector is located in the digital domain at the output of the HB2 filter and is also referred to as the decimated data
overload detector because this detector works on decimated data. The HB2 peak detector functions by comparing the signal level to
programmable thresholds, similar to the APD detector.

The HB2 detector monitors the received signal level by observing individual I/Q samples over a period of time and comparing these
samples to the threshold. If a sufficient number of samples exceeds the threshold in the sample period, the threshold is flagged as
exceeded by the detector. The duration of the HB2 measurement is controlled by the hb2OverloadDurationCnt setting, and the
number of samples that exceeds the threshold in that period is controlled by the hb2OverloadThreshCnt setting.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 137 of 247

When the required number of samples exceeds the threshold in the duration required, the detector records that the threshold was
exceeded. The HB2 detector requires a programmable number of instances for the threshold to be exceeded in a gain update period
before the detector flags an overrange condition, similar to the APD detector.

Figure 88 shows a two level approach to detect an overrange condition. Figure 88 shows the gain update counter period, the time that is
broken into subsets of time based on the setting of the hb2OverloadDurationCnt value. Each of these periods of time is considered
separately, and the hb2OverladThreshCnt individual samples must exceed the threshold within the hb2OverloadDurationCnt to
declare an overrange. Two examples are shown in Figure 88. One example shows that the number of samples exceeding the threshold is
sufficient for the HB2 peak detector to declare an overrange. The second example shows that the number of samples exceeding the
threshold is not sufficient to declare an overrange. The number of overranges are counted, and if the number of overranges of the
hb2HighThresh exceed the hb2UpperThreshPeakExceededCnt in a gain update counter period, an overrange condition is
flagged. Similarly, if the number of overloads of the hb2UnderRangeHighThresh does not exceed the
hb2LowerThreshPeakExceededCnt, an underrange condition is flagged.

hb2OverloadDurationCnt hb2OverloadDurationCnt

agcGainUpdateCounter_us

hb2OverloadThreshCnt
EXCEEDED

hb2OverloadThreshCnt
NOT EXCEEDED

16
82

2-
09

1

Figure 88. HB2 Detector, Two Level Approach for an Overrange Condition

The HB2 detector has a number of programmable thresholds. Some of these thresholds are only used in the fast recovery mode of the
peak detect AGC configuration, as detailed in Table 60.

Table 60. HB2 Overrange Thresholds and Functions
HB2 Threshold Name Function
hb2HighThresh Used for gain attack in both peak and power detect AGC modes.
hb2UnderRangeHighThresh Used for gain recovery in peak detect AGC mode. Used to prevent overloads during gain recovery in power

detect AGC mode.
hb2UnderRangeMidThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized.
hb2UnderRangeLowThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized.

For more details on these thresholds, Figure 80, Figure 82, and Figure 83.

The HB2 overrange thresholds are related to an ADCdBFS value, which is calculated with the following equations:

 = ×

2 dBFS
202 256 10

hb HighThresh

hb HighThresh

dBFS
20= 256 ×10

hbd2UnderRangeHighThresh

hbd2UnderRangeHighThresh

 = ×

2 dBFS
202 256 10

hbd UnderRangeMidThresh

hbd UnderRangeMidThresh

 =

dBFS
20256 10×

hbd2UnderRangeLowThresh

hbd2UnderRangeLowThresh

Each HB2 threshold has an associated counter that does not flag an overrange condition until the threshold is exceeded for a specified
amount of times in a gain update period.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 138 of 247

Table 61. Gain Steps for an HB2 Overrange and Underrange Condition
HB2 Threshold Name Counter Value
hb2HighThresh hb2UpperThreshPeakExceededCnt
hb2UnderRangeHighThresh hb2LowerThreshPeakExceededCnt
hb2UnderRangeMidThresh Set to 3
hb2UnderRangeLowThresh Set to 3

In AGC mode, the HB2 has programmable gain attack and gain recovery step sizes (see Table 62).

Table 62. HB2 Attack and Recovery Step Sizes
Gain Change Name Step Size
Gain Attack hb2GainStepAttack
Gain Recovery (hb2UnderRangeHighThresh) hb2GainStepHighRecovery
Gain Recovery (hb2UnderRangeMidThresh) hb2GainStepMidRecovery
Gain Recovery (hb2UnderRangeLowThresh) hb2GainStepLowRecovery

The HB2 peak detector is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled
at the new gain setting before monitoring the paths for overrange conditions. This duration is configured using the agcPeakWaitTime
parameter.

POWER DETECTOR
The power detector measures the rms power of the incoming signal. The power detector can monitor the signal level at different
locations, namely the HB2 output, the RFIR output, and the output of the dc correction block. To choose a location to monitor, the
powerUseRfirOut and powerUseBBDC2 API parameters are utilized.

Table 63. Location of the Decimated Power Measurement
Power Measurement Location powerUseRfirOut Setting powerUseBBDC2 Setting
HB2 Output 0 0
RFIR Output 1 0
Baseband DC (BBDC) Output 0 1

The number of samples that are used in the power measurement calculation is configurable using the powerMeasurementDuration
parameter:

Power Measurement Duration (Receiver Sample Clocks) = 8 × 2powerMeasurementDuration

It is important that the power measurement duration does not exceed the gain update counter. The gain update counter resets the power
measurement block and a valid power measurement must be available before this event. In the case of multiple power measurements
occurring in a gain update period, the AGC uses the last fully completed power measurement, and any partial measurements are
discarded.

The power measurement block has a dynamic range of 40 dB by default. This range can be extended to 60 dB by enabling the
powerLogShift in the power measurement configuration.

GAIN CONTROL API PROGRAMMING
The API programming sequence for the gain control blocks in the device is shown in Figure 89. The configuration of these blocks is one
of the last items to be configured before the device is operational. The data structures are defined before initialization of the device begins.
When the device initialization has proceeded to the JESD204B configuration, the gain control configuration begins.

The TALISE_setupRxAgc() function configures the gain control blocks, for example, the peak detectors, power detector, and the
AGC (if used). Run the TALISE_setupRxAgc() function in all gain control modes. The peak and power detectors must be configured
if they are used. This function requires the following structures to be configured prior to this function being called:

• The taliseAgcCfg_t structure, which contains all the gain control settings. Principally, this structure has AGC control
structures. However, parameters such as the agcGainUpdateCounter_us counter are important in MGC mode because the
overload detectors use this counter. This structure also contains the peak and power detector structures.

• The taliseAgcPeak_t structure, which contains parameters that are used to configure the APD and HB2 peak detectors.
• The taliseAgcPower_t structure, which contains parameters that are used to configure the power measurement block.

The TALISE_setRxGainControlMode() function that configures the device in AGC or MGC mode.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 139 of 247

The final step in the AGC configuration is to configure any GPIOs as necessary, for example, the monitor outputs that allow real-time
monitoring of the peak detector outputs, the GPIO inputs that allow the AGC gain update counter to be synchronized to a slot boundary,
or the GPIOs that directly control the gain index. See the GPIO Configuration section for details.

CONFIGURE GAIN TABLE
DEVICE DATA STRUCTURE

AGC STRUCTURES

DEVICE INITIALIZATION
UP TO INCLUDING

JESD204B

RUN
TALISE_setupRxAgc()

CONFIGURE GAIN
CONTROL GPIOs

GAIN CONTROL SETUP
COMPLETE

RUN
TALISE_setRxGainControlMode()

16
82

2-
09

2

Figure 89. Gain Control Programming Flowchart

GAIN CONTROL DATA STRUCTURES
Figure 90 shows the member structure of the taliseAgcCfg_t structure and of its substructures, taliseAgcPeak_t and
taliseAgcPower_t. Each of the parameters are briefly explained in Table 64 to Table 66.

taliseAgcPeak_t

+agcPeak

+ agcUnderRangeLowInterval_ns
+ agcUnderRangeMidInterval
+ agcUnderRangeHighInterval
+ apdHighThresh
+ apdLowGainModeHighThresh
+ apdLowThresh
+ apdLowGainModeLowThresh
+ apdUpperThreshPeakExceededCnt
+ apdLowerThreshPeakExceededCnt
+ apdGainStepAttack
+ apdGainStepRecovery
+ enableHb2Overload
+ hb2OverloadDurationCnt
+ hb2OverloadThreshCnt
+ hb2HighThreshCnt
+ hb2UnderRangeLowThresh
+ hb2UnderRangeMidThresh
+ hb2UnderRangeHighThresh
+ hb2UpperThreshPeakExceededCnt
+ hb2LowerThreshPeakExceededCnt
+ hb2GainStepHighRecovery
+ hb2GainStepLowRecovery
+ hb2GainStepMidRecovery
+ hb2GainStepAttack
+ hb2OverloadPowerMode
+ hb2OvrgSel
+ hb2ThreshConfig

taliseAgcCfg_t

+ agcPeakWaitTime
+ agcRx1MaxGainIndex
+ agcRx1MinGainIndex
+ agcRx2MaxGainIndex
+ agcRx2MinGainIndex
+ agcGainUpdateCounter_us
+ agcRx1AttackDelay
+ agcRx2AttackDelay
+ agcSlowLoopSettlingDelay
+ agcLowThreshPreventGain
+ agcGainChangeIfThreshHigh
+ agcPeakThreshGainControlMode
+ agcResetOnRxOn
+ agcEnableSyncForGainCounter
+ agcEnableIp3OptimazationThresh
+ ip3OverRangeThresh
+ ip3OverRangeThreshIndex
+ ip3PeakExceededCnt
+ agcEnableFastRecoveryLoop

taliseAgcPower_t

+agcPower

+ powerEnableMeasurement
+ powerUseRfirOut
+ powerUseBBDC2
+ underRangeHighPowerThresh
+ underRangeLowPowerThresh
+ underRangeHighPowerGainStepRecovery
+ underRangeLowPowerGainStepRecovery
+ powerMeasurementDuration
+ rx1TddPowerMeasDuration
+ rx1TddPowerMeasDelay
+ rx2TddPowerMeasDuration
+ rx2TddPowerMeasDelay
+ upper0PowerThresh
+ upper1PowerThresh
+ powerLogShift

16
82

2-
09

3

Figure 90. Member Listing of taliseAgcCfg_t, taliseAgcPeak_t, and taliseAgcPower_t Data Structures

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 140 of 247

Table 64. taliseAgcCfg_t Structure Definition
Parameter Name Description Minimum Value Maximum Value
agcPeakWaitTime Number of AGC clock cycles to wait before enabling

peak/overload detectors after a gain change.
0 31

agcRx1MaxGainIndex Maximum Rx1 gain index allowed in AGC mode. Must
be greater than AGC Rx1 minimum gain index and must
be a valid gain index.

128 255

agcRx1MinGainIndex Minimum Rx1 gain index allowed in AGC mode. Must be
less than AGC Rx1 minimum gain index and must be a
valid gain index.

128 255

agcRx2MaxGainIndex Maximum Rx2 gain index allowed in AGC mode. Must
be greater than AGC Rx2 minimum gain index and must
be a valid gain index.

128 255

agcRx2MinGainIndex Minimum Rx2 gain index allowed in AGC mode. Must be
less than AGC Rx2 maximum gain index and must be a
valid gain index.

128 255

agcGainUpdateCounter_us Used as a decision period, with the peak detectors reset
on this period. Gain changes in AGC mode can also be
synchronized to this period (the expiration of this
counter). The full period is a combination of the
agcGainUpdateCounter_us and
agcSlowLoopSettlingDelay parameters.

Depends on
overload detector
settings

4,194,304 AGC
clock cycles (in μs)

agcRx1AttackDelay The duration the AGC is held in reset when the Rx1 path
is enabled.

0 63

agcRx2AttackDelay The duration the AGC is held in reset when the Rx1 path
is enabled.

0 63

agcSlowLoopSettlingDelay Number of I/Q data rate clock cycles to wait after a gain
change before peak/power measurements resume.

0 31

agcLowThreshPreventGain Only relevant in peak/power detect AGC operation. 0 1
 1: if AGC is in peak power detect mode, gain increments

requested by the power detector are prevented if there
are sufficient peaks (APD/HB2 low threshold exceeded
count) above the apdLowThresh or
hb2UnderRangeHighThresh.

 0: apdLowThresh and hb2UnderRangeHighThresh are
don’t cares for gain recovery.

agcChangeGainIfThreshHigh Applicable in both peak and peak/power detect modes. 0 1
 0: gain changes wait for the expiration of the gain

update counter if a high threshold count has been
exceeded on either the APD or HB2 detector.

 1: gain changes occur immediately when initiated by
HB2. Gain changes initiated by the APD wait for the gain
update to expire.

 2: gain changes occur immediately when initiated by
APD. Gain changes initiated by HB2 wait for the gain
update to expire.

 3: gain changes occur immediately when initiated by
APD or HB2 detectors.

agcPeakThreshGainControlMode 1: AGC in peak AGC mode, power based gain changes
are disabled.

0 1

 0: AGC in power AGC mode where both peak detectors
and power detectors are utilized.

agcResetOnRxon 1: AGC state machine is reset when receiver is disabled. 0 1

 0: AGC state machine maintains its state when receiver
is disabled.

agcEnableSyncPulseForGainCounter 1: allows synchronization of AGC gain update counter to
the time slot boundary. GPIO setup required.

0 1

 0: AGC gain update counter free runs.
agcEnableIp3OptimizationThresh This parameter is not utilized. API ignores its setting Not applicable Not applicable

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 141 of 247

Parameter Name Description Minimum Value Maximum Value
ip3OverRangeThresh This parameter is not utilized. API ignores its setting Not applicable Not applicable
ip3OverRangeThreshIndex This parameter is not utilized. API ignores its setting Not applicable Not applicable
ip3PeakExceededCnt This parameter is not utilized. API ignores its setting Not applicable Not applicable
agcEnableFastRecoveryLoop 1: enables the fast recovery AGC functionality using the

HB2 overload detector. Only applicable in peak detect
mode.

0 1

 0: AGC fast recovery is not enabled.
agcPower Structure containing all the power detector settings.

See Table 66.
Not applicable Not applicable

agcPeak Structure containing all the peak detector settings. See
Table 65.

Not applicable Not applicable

Table 65. taliseAgcPeak_t Structure Definition
Parameter Name Description Minimum Value Maximum Value
agcUnderRangeLowInterval_ns Sets the time that the AGC takes to recover when the signal peaks

are less than hb2UnderRangeLowThresh. Only applicable when the
fast recovery option is enabled in peak detect AGC mode.

Depends on HB2
detector settings

65,535 I/Q
samples (in ns)

agcUnderRangeMidInterval Sets the time constant that the AGC takes to recover when the
signal peaks are less than hb2UnderRangeMidThresh.

0 63

 Calculated as:
(agcUnderRangeMidInterval + 1) × agcUnderRangeLowInterval_ns

 Only applicable when the fast recovery option is enabled in peak
detect AGC mode.

agcUnderRangeHighInterval Sets the time constant that the AGC takes to recover when the
signal peaks are less than hb2UnderRangeHighThresh.

0 63

 Calculated as:
(agcUnderRangeHighInterval + 1) × agcUnderRangeMidInterval_ns

 Only applicable when the fast recovery option is enabled in peak
detect AGC mode.

apdHighThresh Sets the upper threshold of the analog peak detector. When the
input signal exceeds this threshold for a programmable number of
times (set by its corresponding overload counter) within a gain
update period, the overload detector flags. In AGC modes, the gain
reduces when this overload occurs.

apdLowThresh 63

 Calculated as:
apdHighThresh (mV) = (apdHighThresh + 1) × 16 mV

apdLowGainModeHighThresh Not utilized. Not applicable Not applicable

apdLowThresh This sets the lower threshold of the analog peak detector. When the
input signal exceeds this threshold a programmable number of
times (set by its corresponding overload counter) within a gain
update period, the overload detector flags. In peak AGC mode, the
gain is increased when this overload is not occurring. In power AGC
mode, this threshold can be used to prevent further gain increases if
the agcLowThreshPreventGain bit is set.

0 apdHighThresh

 Calculated as:
apdLowThresh (mv) = (apdLowThresh + 1) × 16 mV

apdLowGainModeLowThresh This parameter is not utilized.

apdUpperThreshPeakExceededCnt Sets number of peaks to detect above apdHighThresh to cause an
APD high overload event. In AGC modes, a gain decrement is set by
apdGainStepAttack.

0 255

apdLowerThreshPeakExceededCnt Sets number of peaks to detect above apdLowThresh to cause an
APD low overload event. In peak detect AGC mode, if an APD low
overload event is not occurring, a gain increment is set by
apdGainStepRecovery.

0 255

apdGainStepAttack The number of indices that the gain index pointer is decreased in
the event of an APD high overload in AGC modes. The step size in
dB depends on the gain step resolution of the gain table (default =
0.5 dB per index step).

0 31

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 142 of 247

Parameter Name Description Minimum Value Maximum Value
apdGainStepRecovery The number of indices that the gain index pointer is increased in the

event of no APD high overload event occurring in peak detect AGC
mode. The step size in dB depends on the gain step resolution of
the gain table (default = 0.5 dB per index step).

0 31

enableHb2Overload 1: HB2 overload detector enabled. 0 1

0: HB2 overload detector disabled.

hb2OverloadDurationCnt The number of clock cycles (at the HB2 output rate) within which
hb2OverloadThreshCnt must be exceeded for an overload to occur.
An HB2 overload flag is only raised when the number of these
overloads exceeds hb2UpperThreshPeakExceededCnt or
hb2LowerThreshPeakExceededCnt within a gain update period.

0 6

The number of clocks is calculated as:
2(hbd2OverloadDurationCnt + 1)

hb2OverloadThreshCnt Sets the number of individual samples exceeding hb2HighThresh or
hb2LowThresh necessary within hb2OverloadDurationCnt for an
overload to occur. The HB2 overload flag is only raised when the
number of these overloads exceeds
hb2UpperThreshPeakExceededCnt or
hb2LowerThreshPeakExceededCnt within a gain update period.

1 15

hb2HighThresh Sets the upper threshold of the HB2 detector. 0 255

hb2UnderRangeLowThresh Sets the lower threshold of the HB2 underrange threshold
detectors. Only used when the fast recovery option of the peak
detect AGC mode is utilized.

0 255

hb2UnderRangeMidThresh Sets the middle threshold of the HB2 underrange threshold
detectors. Only used when the fast recovery option of the peak
detect AGC mode is utilized.

0 255

hb2UnderRangeHighThresh Peak detect mode, threshold used for gain recovery. 0 255
Peak detect with fast recovery mode, sets the highest threshold of
the HB2 underrange threshold detectors.
Power detect mode, threshold used to prevent further gain
increases if agcLowThreshPreventGain is set.

hb2UpperThreshPeakExceededCnt Sets number of individual overloads above hb2HighThresh (number
of times hb2OverloadThreshCnt was exceeded in
hb2OverloadDuractionCnt) to cause an HB2 high overload event. In
AGC modes, a gain decrement is set by hb2GainStepAttack.

0 255

hb2LowerThreshPeakExceededCnt Sets number of individual overloads above
hb2UnderRangeHighThresh (number of times
hb2OverloadThreshCnt was exceeded in
hb2OverloadDuractionCnt) to cause an HB2 high overload event. In
peak detect AGC mode, a gain increment is set by
hb2GainStepHighRecovery.

0 255

hb2GainStepHighRecovery The number of indices that the gain index pointer is increased in the
event of an HB2 underrange high threshold overload event in AGC
modes. The step size in dB depends on the gain step resolution of
the gain table (default = 0.5 dB per index step).

0 31

hb2GainStepLowRecovery The number of indices that the gain index pointer is increased in the
event of an HB2 underrange low threshold overload event in AGC
modes. The step size in dB depends on the gain step resolution of
the gain table (default = 0.5 dB per index step). Only used when the
fast recovery option of the peak detect AGC mode is utilized.

0 31

hb2GainStepMidRecovery The number of indices that the gain index pointer is increased in the
event of an HB2 underrange mid threshold overload event in AGC
modes. The step size in dB depends on the gain step resolution of
the gain table (default = 0.5 dB per index step). Used only when the
fast recovery option of the peak detect AGC mode is utilized.

0 31

hb2GainStepAttack The number of indices that the gain index pointer is decreased in
the event of an HB2 high overload in AGC mode. The step size in dB
depends on the gain step resolution of the gain table (default =
0.5 dB per index step).

0 31

hb2OverloadPowerMode Sets the measurement mode of the HB2 detector. 0 1

hb2OvrgSel Set to 0 to enable the HB2 overload detector. 0 0

Hb2ThreshConfig Set to 3. 3 3

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 143 of 247

Table 66. taliseAgcPower_t Structure Definition
Parameter Name Description Minimum Value Maximum Value
powerEnableMeasurement 1: power measurement block enabled. 0 1

0: power measurement block disabled.
powerUseRfirOut Uses RFIR output for power measurement. 0 1
powerUseBBDC2 Uses dc offset block output for power measurement. 0 1
underRangeHighPowerThresh Threshold in dBFS (negative value assumed), which

defines the lower boundary on the stable region (no
gain change based on power measurement) of the
power detect gain control mode.

0 127

underRangeLowPowerThresh Offset (negative value assumed) from
underRangeHighPowerThresh, which defines the
outer boundary of the power based AGC
convergence. Typically, recovery is set to larger steps
than when the power measurement is greater than
this threshold.

0 31

underRangeHighPowerGainStepRecovery The number of indices that the gain index pointer is
decreased in the event that the power measurement
is less than underRangeHighPowerThresh but greater
than underRangeLowPowerThresh.

0 31

underRangeLowPowerGainStepRecovery The number of indices that the gain index pointer is
decreased in the event that the power measurement
is less than underRangeLowPowerThresh.

0 31

powerMeasurementDuration Number of I/Q samples on which to perform the
power measurement.

0 31

The number of samples corresponding to the 4-bit
word is calculated as:
8 × 2(pmdMeasDuration[3:0])
This value must be less than the AGC gain update
counter.

rx1TddPowerMeasDuration Following an Rx enable, the power measurement
block can be requested to perform a power
measurement for a specific period of a frame. This
request is applicable in TDD modes. Sets the duration
of this power measurement for Rx1. A value of 0
causes the power measurement to run until the next
gain update counter expires.

0 65,535 AGC clock
cycles

rx1TddPowerMeasDelay Following an Rx Enable, the power measurement
block can be requested to perform a power
measurement for a specific period of a frame. This
request is applicable in TDD modes. Sets the delay
between the Rx enable and the power measurement,
starting on Rx1.

0 65,535 AGC clock
cycles

rx2TddPowerMeasDuration Following an Rx enable, the power measurement
block can be requested to perform a power
measurement for a specific period of a frame. This
request is applicable in TDD modes. Sets the duration
of this power measurement for Rx2. A value of 0
causes the power measurement to run until the next
gain update counter expires.

0 65,535 AGC clock
cycles

rx2TddPowerMeasDelay Following an Rx enable, the power measurement
block can be requested to perform a power
measurement for a specific period of a frame. This
request is applicable in TDD modes. Sets the delay
between the Rx enable and the power measurement
starting on Rx2.

0 65,535 AGC clock
cycles

upper0PowerThresh Threshold in dBFS (negative value assumed), which
defines the upper boundary on the stable region (no
gain change based on power measurement) of the
power detect gain control mode.

0 127

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 144 of 247

Parameter Name Description Minimum Value Maximum Value
upper1PowerThresh Offset (positive value assumed) from

upper0PowerThresh, which defines the outer
boundary of the power based AGC convergence.
Typically, attack is set to larger steps than when the
power measurement is greater than this threshold.

0 15

powerLogShift Enable increase in dynamic range of the power
measurement from 40 dB to approximately 60 dB.

0 1

SAMPLE PYTHON SCRIPTS
It is recommended to use peak detect mode with fast attack and fast recovery for the AGC.

The following is a sample python script provided to enable the AGC in peak detect mode and power measurement mode. The user can
use this sample script as a starting point to enable AGC in the device.

For peak detect mode with fast attack and fast recovery options, the sample script provided configures the AGC in peak detect mode with
a fast attack option. This script can be executed using the Iron Python tab in the GUI.

########################

#ADI Demo Python Script

########################

#Import Reference to the DLL

import clr

import array

clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\ADRV900x Transceiver
Evaluation Software\\AdiCmdServerClient.dll")

from AdiCmdServerClient import AdiCommandServerClient

#Create an Instance of the Class

Link = AdiCommandServerClient.Instance

gen_AGC = Link.Talise.RxAgcControl

Peak_AGC = Link.Talise.RxAgcPeak

Power_AGC = Link.Talise.RxAgcPower

AgcSlowMode = Link.Talise.GainMode.Agc

#Connect to the Zynq Platform

if(Link.hw.Connected == 1):

 Connect = 0

else:

 Connect = 1

 Link.hw.Connect("192.168.1.10", 55555)

#Read the Version

print Link.Version()

Program data structure to cmd_server #

Program data structure to AGC Control class #

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 145 of 247

Link.Talise.GetAgcCtrlRegisters(gen_AGC)

gen_AGC.agcPeakWaitTime = 2

gen_AGC.agcRx1MaxGainIndex=255

gen_AGC.agcRx1MinGainIndex=195

gen_AGC.agcRx2MaxGainIndex=255

gen_AGC.agcRx2MinGainIndex=195

gen_AGC.agcGainUpdateCounter_us = 500

gen_AGC.agcRx1AttackDelay = 0

gen_AGC.agcRx2AttackDelay = 0

gen_AGC.agcSlowLoopSettlingDelay = 16

gen_AGC.agcLowThreshPreventGain = 0

gen_AGC.agcChangeGainIfThreshHigh = 1

gen_AGC.agcPeakThreshGainControlMode=1

gen_AGC.agcResetOnRxon=0

gen_AGC.agcEnableSyncPulseForGainCounter=0

gen_AGC.agcEnableFastRecoveryLoop=0

Link.Talise.InitAgcCtrlRegisters(gen_AGC)

#######################################

Program data structure to peakclass #

#######################################

Link.Talise.GetAgcPeakRegisters(Peak_AGC)

Peak_AGC.agcUnderRangeLowInterval_ns=4000

Peak_AGC.agcUnderRangeMidInterval=2

Peak_AGC.agcUnderRangeHighInterval=4

Peak_AGC.apdHighThresh=41

Peak_AGC.apdLowThresh=26

Peak_AGC.apdUpperThreshPeakExceededCnt=6

Peak_AGC.apdLowerThreshPeakExceededCnt=3

Peak_AGC.apdGainStepAttack=4

Peak_AGC.apdGainStepRecovery=2

Peak_AGC.enableHb2Overload=1

Peak_AGC.hb2OverloadDurationCnt=1

Peak_AGC.hb2OverloadThreshCnt=1

Peak_AGC.hb2HighThresh=203

Peak_AGC.hb2UnderRangeLowThresh=80

Peak_AGC.hb2UnderRangeMidThresh=100

Peak_AGC.hb2UnderRangeHighThresh=128

Peak_AGC.hb2UpperThreshPeakExceededCnt=6

Peak_AGC.hb2LowerThreshPeakExceededCnt=3

Peak_AGC.hb2GainStepHighRecovery=2

Peak_AGC.hb2GainStepMidRecovery=4

Peak_AGC.hb2GainStepLowRecovery=8

Peak_AGC.hb2GainStepAttack=4

Peak_AGC.hb2OverloadPowerMode=0

Peak_AGC.hb2OvrgSel=0

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 146 of 247

Peak_AGC.hb2ThreshConfig=3

Link.Talise.InitAgcPeakRegisters(Peak_AGC)

Program data structure to powerclass #

Power_AGC.powerEnableMeasurement=0

Power_AGC.powerUseRfirOut=1

Power_AGC.powerUseBBDC2=0

Power_AGC.underRangeHighPowerThresh=0x0E

Power_AGC.underRangeLowPowerThresh=0x02

Power_AGC.underRangeHighPowerGainStepRecovery=0x02

Power_AGC.underRangeLowPowerGainStepRecovery=0x04

Power_AGC.powerMeasurementDuration=0x05

Power_AGC.rx1TddPowerMeasDuration=0x05

Power_AGC.rx1TddPowerMeasDelay=0x01

Power_AGC.rx2TddPowerMeasDuration=0x05

Power_AGC.rx2TddPowerMeasDelay=0x01

Power_AGC.upper0PowerThresh=0x0A

Power_AGC.upper1PowerThresh=0x02

Power_AGC.powerLogShift=1

Link.Talise.InitAgcPowerRegisters(Power_AGC)

Program data structure to Talise, enable AGC #

Link.Talise.SetupRxAgc()

Link.Talise.SetRxGainControlMode(AgcSlowMode)

#Disconnect from the Zynq Platform

if(Connect == 1):

 Link.hw.Disconnect()

For power measurement detect mode with fast attack option, the sample script provided configures the AGC in power measurement
detect mode with a fast attack option. This script can be executed using the Iron Python tab in the GUI.

########################

#ADI Demo Python Script

########################

#Import Reference to the DLL

import clr

import array

clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\ADRV900x Transceiver
Evaluation Software\\AdiCmdServerClient.dll")

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 147 of 247

from AdiCmdServerClient import AdiCommandServerClient

#Create an Instance of the Class

Link = AdiCommandServerClient.Instance

gen_AGC = Link.Talise.RxAgcControl

Peak_AGC = Link.Talise.RxAgcPeak

Power_AGC = Link.Talise.RxAgcPower

AgcSlowMode = Link.Talise.GainMode.Agc

#Connect to the Zynq Platform

if(Link.hw.Connected == 1):

 Connect = 0

else:

 Connect = 1

 Link.hw.Connect("192.168.1.10", 55555)

#Read the Version

print Link.Version()

Program data structure to cmd_server #

Program data structure to AGC Control class #

Link.Talise.GetAgcCtrlRegisters(gen_AGC)

gen_AGC.agcPeakWaitTime = 2

gen_AGC.agcRx1MaxGainIndex=255

gen_AGC.agcRx1MinGainIndex=195

gen_AGC.agcRx2MaxGainIndex=255

gen_AGC.agcRx2MinGainIndex=195

gen_AGC.agcGainUpdateCounter_us = 500

gen_AGC.agcRx1AttackDelay = 0

gen_AGC.agcRx2AttackDelay = 0

gen_AGC.agcSlowLoopSettlingDelay = 16

gen_AGC.agcLowThreshPreventGain = 1

gen_AGC.agcChangeGainIfThreshHigh = 1

gen_AGC.agcPeakThreshGainControlMode=0

gen_AGC.agcResetOnRxon=0

gen_AGC.agcEnableSyncPulseForGainCounter=0

gen_AGC.agcEnableFastRecoveryLoop=0

Link.Talise.InitAgcCtrlRegisters(gen_AGC)

#######################################

Program data structure to peakclass #

#######################################

Link.Talise.GetAgcPeakRegisters(Peak_AGC)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 148 of 247

Peak_AGC.agcUnderRangeLowInterval_ns=4000

Peak_AGC.agcUnderRangeMidInterval=2

Peak_AGC.agcUnderRangeHighInterval=4

Peak_AGC.apdHighThresh=41

Peak_AGC.apdLowThresh=26

Peak_AGC.apdUpperThreshPeakExceededCnt=6

Peak_AGC.apdLowerThreshPeakExceededCnt=3

Peak_AGC.apdGainStepAttack=4

Peak_AGC.apdGainStepRecovery=2

Peak_AGC.enableHb2Overload=1

Peak_AGC.hb2OverloadDurationCnt=1

Peak_AGC.hb2OverloadThreshCnt=1

Peak_AGC.hb2HighThresh=203

Peak_AGC.hb2UnderRangeLowThresh=80

Peak_AGC.hb2UnderRangeMidThresh=100

Peak_AGC.hb2UnderRangeHighThresh=128

Peak_AGC.hb2UpperThreshPeakExceededCnt=6

Peak_AGC.hb2LowerThreshPeakExceededCnt=3

Peak_AGC.hb2GainStepHighRecovery=2

Peak_AGC.hb2GainStepMidRecovery=4

Peak_AGC.hb2GainStepLowRecovery=8

Peak_AGC.hb2GainStepAttack=4

Peak_AGC.hb2OverloadPowerMode=0

Peak_AGC.hb2OvrgSel=0

Peak_AGC.hb2ThreshConfig=3

Link.Talise.InitAgcPeakRegisters(Peak_AGC)

Program data structure to powerclass #

Power_AGC.powerEnableMeasurement=1

Power_AGC.powerUseRfirOut=1

Power_AGC.powerUseBBDC2=0

Power_AGC.underRangeHighPowerThresh=0x0E

Power_AGC.underRangeLowPowerThresh=0x02

Power_AGC.underRangeHighPowerGainStepRecovery=0x02

Power_AGC.underRangeLowPowerGainStepRecovery=0x04

Power_AGC.powerMeasurementDuration=0x05

Power_AGC.rx1TddPowerMeasDuration=0x05

Power_AGC.rx1TddPowerMeasDelay=0x01

Power_AGC.rx2TddPowerMeasDuration=0x05

Power_AGC.rx2TddPowerMeasDelay=0x01

Power_AGC.upper0PowerThresh=0x0A

Power_AGC.upper1PowerThresh=0x02

Power_AGC.powerLogShift=1

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 149 of 247

Link.Talise.InitAgcPowerRegisters(Power_AGC)

Program data structure to Talise, enable AGC #

Link.Talise.SetupRxAgc()

Link.Talise.SetRxGainControlMode(AgcSlowMode)

#Disconnect from the Zynq Platform

if(Connect == 1):

 Link.hw.Disconnect()

GAIN COMPENSATION, FLOATING POINT FORMATTER, AND SLICER
The user has the option to enable gain compensation. In gain compensation mode, the digital gain block compensates for the analog
front-end attenuation. The cumulative gain across the device is 0 dB, for example, if 5 dB of analog attenuation is applied at the front end
of the device, 5 dB of digital gain is applied. This cumulative gain ensures that the digital data is representative of the rms power of the
signal at the receiver input port. Any internal front-end attenuation changes in the device to prevent the ADC from overloading are
transparent to the BBP. This means that AGC can be used to react quickly to incoming blockers without the need for the BBP to track the
current gain index to determine the gain setting of the device for received signal strength measurements.

The digital gain block is controlled by the gain table and a compensated gain table is required to operate in this mode. This type of gain
table has a unique front-end attenuator setting with a corresponding amount of digital gain that is programmed at each index of the table.
Note that the default gain table supplied with the API is not designed for gain compensation.

Gain compensation can be used in AGC or MGC mode. The maximum amount of gain compensation is 41.95 dB, which allows
compensation of the internal analog attenuator and any external gain component (for example, a digital step attenuator (DSA) or low
noise amplifier (LNA)). Considering an ADC with a 16-bit output, large amounts of digital gain increase the bit width of the path.
Figure 91 shows a block diagram of the gain compensation portion of the receiver chain and shows the locations of the various blocks.

There are a number of modes that these blocks can be configured in.

DIGITAL GAIN/
CONPENSATION

FLOATING POINT
FORMATTERSLICER

SLICER
OUTPUTS
TO BBP

JE
SD

20
4B

16
82

2-
09

4

Figure 91. Gain Compensation, Floating Point Formatter, and Slicer Section of the Receiver Datapath

Mode 1—No Digital Gain Compensation

The device is configured to this mode by default. In this Mode 1, the digital gain block is not used for gain compensation. Instead, the
digital gain block can be utilized to apply small amounts of digital gain/attenuation to provide consistent gain steps in a gain table. The
premise is that because the analog attenuator does not have consistent stops in dB terms across its range, the digital gain block can be
utilized to even out the steps for consistency (the default table utilizes the digital gain block to provide consistent 0.5 dB steps).

Neither the slicer nor the floating point formatter block is utilized. Because no significant amounts of gain compensation are applied,
there is no bit width expansion of the digital signal. The signal is provided to the JESD204B port, which in turn sends the signal to the
BBP in 12-bit, 16-bit, or 24-bit format.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 150 of 247

Mode 2—Digital Gain Compensation with Slicer GPIO Outputs

In Mode 2, gain compensation is used with the device loaded with a gain table that compensates for the analog front-end attenuation
applied. Considering 16-bit data at the input to the digital compensation block, as more digital gain is applied, the bit width of the signal
is increased. With every 6 dB of gain, the bit width increases by 1. Figure 92 showns this effect with grey boxes indicating the valid (used)
bits in each case.

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0dB GAIN
COMPENSATION

0dB < GAIN
COMPENSATION < 6dB

6dB ≤ GAIN
COMPENSATION < 12dB 16

82
2-

09
5

Figure 92. Bit Width of Received Signal for Increasing Gain Compensation

The slicer takes (or slices) 16 MSBs of the data from each sample, regardless of input signal. The slicer moves based on the digital gain
applied (for example, the MSBs are the MSBs of the largest permissible signal). The slicker then indicates its position, or the number of
LSBs omitted from the sliced window over slicer outputs, as shown in Figure 93. These slicer outputs are outputted on GPIOs. When no
digital gain is applied, the slicer takes Bits[D15:D0], passes these bits to the JESD204B block, and outputs Position 0 on the slicer output
to the BBP. When digital gain is being applied, and the digital gain is less than 6 dB, the slicer selects Bits[D16:D1], passes these to the
JESD204B block, and 1 is output on each of the GPIOs.

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0dB GAIN
COMPENSATION

0dB < GAIN
COMPENSATION < 6dB

6dB ≤ GAIN
COMPENSATION < 12dB

0 1

MSB LSB

0

0 0 1

0 0

SLICER OUTPUTS
TO BBP

0

16
82

2-
09

6

Figure 93. Slicer Bit Selection with Digital Gain

The BBP receives these 16 bits and uses the slicer output to scale the power of the received signal to determine the power at the input to
the device (or at the input to an external gain element, if considered part of the digital gain compensation).

The slicer position vs. digital gain is described in Table 67 and the GPIOs used to indicate the Receiver 1 and Receiver 2 slicer positions
are shown in Table 68, along with the GPIOs used to output the slicer position. The GPIOs must be enabled as outputs and configured for
slicer output mode (see the GPIO Configuration section).

Table 67. Slicer GPIO Output vs. Digital Gain Compensation
Digital Gain Compensation (dB) Slicer Position (Value Output on GPIO)
0 0
0 < DIG_GAIN < 6 1
6 ≤ DIG_GAIN < 12 2
12 ≤ DIG_GAIN < 18 3
18 ≤ DIG_GAIN < 24 4
24 ≤ DIG_GAIN < 30 5
30 ≤ DIG_GAIN < 36 6
36 ≤ DIG_GAIN ≤ 41.95 7

Table 68. GPIOs Used for Slicer Output Mode
GPIO

Receiver MSB Middle Position LSB
Rx1 GPIO10 GPIO9 GPIO8
Rx2 GPIO14 GPIO13 GPIO12

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 151 of 247

Mode 3—Digital Gain Compensation with Embedded Slicer Position

Mode 3 is similar to Mode 2 because the slicer is used to select the 16 MSBs based on the amount of digital gain used by the currently
selected gain index in the gain table. However, in this mode, the GPIO slicer outputs are not used. Instead, the slicer position (or number
of trailing LSBs) are encoded in the data. There are a number of permissible ways that the trailing LSBs can be configured, which is
controlled by the intEmbeddedBits parameter. The options are to place the slicer setting as 1 bit on both I and Q, or as 2 bits on both I
and Q. These bits can be placed at the MSBs or at the LSBs. Table 69 shows the various modes that can be selected by the
intEmbeddedBits function.

Table 69. intEmbeddedBits_t Parameter Description
intEmbeddedBits Parameter Description
TAL_EMBED_1_SLICERBIT_AT_MSB Embeds 1 slicer bit each on I and Q at the MSB position. See Figure 94.
TAL_EMBED_1_SLICERBIT_AT_LSB Embeds 1 slicer bit each on I and Q at the LSB position. See Figure 95.
TAL_EMBED_2_SLICERBITS_AT_MSB Embeds 2 slicer bits each on I and Q at the MSB positions. See Figure 96.
TAL_EMBED_2_SLICERBITS_AT_LSB Embeds 2 slicer bits each on I and Q at the LSB position. See Figure 97.

S SL1 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

S SL0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

I DATA

SIGN
BIT

SLICER
VALUE

SIGN
BIT

SLICER
VALUE

Q DATA

16
82

2-
09

7

Figure 94. Encoding of Slicer Information as Control Bits (intembeddedbits = TAL_EMBED_1_SLICERBIT_AT_MSB)

S D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

S D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

I DATA

SIGN
BIT

SIGN
BIT

SL1

SL0

SLICER
VALUE

SLICER
VALUE

Q DATA

16
82

2-
09

8

Figure 95. Encoding of Slicer Information as Control bIts (intEmbeddedBits = TAL_EMBED_1_SLICERBIT_AT_LSB)

0 SL2 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

SL1 SL0 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

I DATA

SLICER VALUE

SLICER VALUE

S

S

SIGN
BIT

SIGN
BIT

Q DATA

16
82

2-
09

9

Figure 96. Encoding of Slicer Information as Control Bits (intEmbeddedBits = TAL_EMBED_2_SLICERBITS_AT_MSB)

0 SL2D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

SL1 SL0D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

I DATA

SLICER VALUE

SLICER VALUE

S

S

SIGN
BIT

SIGN
BIT

Q DATA

16
82

2-
10

0

Figure 97. Encoding of Slicer Information as Control Bits (intEmbeddedBits = TAL_EMBED_2_SLICERBITS_AT_LSB)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 152 of 247

Mode 4—Digital Gain Compensation and Slicer Input

In Mode 4, the user controls the slicer position. In Mode 2 and Mode 3, the slicer can be viewed as an attenuator, which reduces the signal
level by 6 dB with each step, such that the signal can be sent across the JESD204B link. Mode 4 operates similarly; however, the position
(amount of attenuation) is controlled externally, and the step sizes are no longer 6 dB. The valid step sizes are between 1 dB and 4 dB, and
these sizes are controlled by the extPinStepSize parameter with the TAL_EXTSLICER_STEPSIZE_1DB,
TAL_EXTSLICER_STEPSIZE_2DB, TAL_EXTSLICER_STEPSIZE_3DB, and TAL_EXTSLICER_STEPSIZE_4DB functions.

The slicer has three input pins (see Figure 91). The valid options are shown in Table 70. The value of these pins and the chosen step size
set the level of slicer attenuation applied to the data before transmission across the JESD204B link, as shown in the following equation:

Slicer Attenuation = Slicer Input Pin Values × extPinStepSize

For example, if the value on the slicer input pins is 0’b111, and the step size is 2 dB, the slicer applies 14 dB (7 × 2 dB) of attenuation to the
data.

Table 70. rx1GpioSelect and rx2GpioSelect description

Parameter Name Pin Assignment
GPIOs

MSB Middle Position LSB
rx1GpioSelect TAL_EXTSLICER_RX1_GPIO0_1_2 GPIO_2 GPIO_1 GPIO_0

TAL_EXTSLICER_RX1_GPIO5_6_7 GPIO_7 GPIO_6 GPIO_5
TAL_EXTSLICER_RX1_GPIO8_9_10 GPIO_10 GPIO_9 GPIO_8

rx2GpioSelect TAL_EXTSLICER_RX2_GPIO11_12_13 GPIO_13 GPIO_12 GPIO_11

TAL_EXTSLICER_RX2_GPIO5_6_7 GPIO_7 GPIO_6 GPIO_5

Mode 5—Digital Gain Compensation and Floating Point Formatting

The floating point formatter offers an alternative way of encoding the digitally compensated data onto the JESD204B link. In this mode,
the data is converted to the IEEE 754 standard, half precision, floating point format (Binary 16). A slight loss in resolution occurs when
using the floating point formatter, though resolution is distributed such that smaller numbers have higher resolution.

In Binary 16 floating point format, the number is composed on a sign bit (S), an exponent (E), and a significand (T). There are a number
of options in terms of the number of bits that can be assigned to the exponent. More bits in the exponent result in a higher range, and can
allow more digital compensation to be represented, and more bits in the significand provides higher resolution. The available options for
the floating point formatter are as follows:

 5-bit exponent, 10-bit significand
 4-bit exponent, 11-bit significand
 3-bit exponent, 12-bit significand
 2-bit exponent, 13-bit significand

It is also possible to pack the data in the following formats (as shown in Figure 98):

 Sign, exponent, significand
 Sign, significand, exponent

S E T

W t

SIGN
BIT MSB LSB MSB LSB

EXPONENT SIGNIFICAND

S ET

Wt

SIGN
BIT MSB LSBMSB LSB

EXPONENTSIGNIFICAND

16
82

2-
10

1

Figure 98. Floating Point Number Representation

In Figure 98, S is the sign bit, E is the value of the exponent, T is the value of the significand, w is the bit width of the exponent, and t is
the bit width of the significand.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 153 of 247

When the encoded floating point data is received, the user breaks up the Binary 16 number into its constituent parts. For the purposes of
this explanation, consider a 3-bit exponent. In IEEE 754, the maximum exponent (0’b111 in this case) is reserved for the not a number
value (NaN). The minimum exponent (0’b000) is used for a signed zero (E = 0, T = 0) and subnormal numbers (E = 0, T ≠ 0).

To decode a received floating point sample, use the following equations:

If E = 0 and T = 0,

Value = 0

If E = 0 and T ≠ 0,

Value = (−1)S × 2(E – Bias + 1) × (0 + 21 − p × T)

where:
Bias is used to convert the positive Binary values to exponents which allow for values both less than and greater than the full-scale of the
ADC.
p is the precision of the mode (p = t + 1, because there are t significand bits coupled with a sign bit).

If E ≠ 0,

Value = (−1)S × 2(E – Bias) × (1 + 2(1 – p) × T)

Table 71 provides the values to use in these equations for the various IEEE 754 supported modes.

Table 71. Floating Point Formatter, Supported IEEE 754 Modes
Exponent Bit Width (w) Significand Bit Width (t) Precision (p) Bias
5 10 11 15
4 11 12 7
3 12 13 3
2 13 14 1

Figure 99 shows how the values of a waveform are encoded in floating point format. In this case, the maximum exponent (E bias) is 3,
which means that data up to 24 dBFS of the ADC can be represented. When the signal reduces, the exponent required to represent each
waveform value differs. This concept is different to the slicer, which bit shifts the data solely based on the applied digital attenuation and
has a constant value for a constant digital gain. In this example, the floating point formatter interprets each value separately, after the
digital gain compensation. Given the fixed precision of the significand and the sign bit, Figure 99 shows that there is higher resolution at
lower signal levels than at higher signal levels, which preserves the SNR when the received signal strength is low.

16
82

2-
10

2

Figure 99. Visualization of the Floating Point Formatter Values

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 154 of 247

The floating point formatter also supports non-IEEE 754 modes, referred to as Analog Devices modes, where the largest exponent is not
used to express NaN, in accordance with IEEE 754. It is unnecessary for the device to encode NaN because none of the data values can be
NaN, and using this extra exponent value increases the largest value representable for a given exponent bit width.

Table 72. Exponent Bit Widths of IEEE 754 Modes and ADI Modes
Exponent Bit Width (w) IEE 754 Mode Exponent Range (After Unbiasing) Analog Devices Mode Exponent Range (After Unbiasing)
5 +15 to −14 +16 to −14
4 +7 to −6 +8 to −6
3 +3 to −2 +4 to −2
2 +1 to −1 +2 to −1

In the default floating point formatting format, the leading format is inferred and not encoded (for normal numbers). It is possible to
enable a format where the leading one is encoded and stored in the MSB of the significand, which reduces the precision of the values.

If the user knows that the range of attenuation that is required for the worst case blocker (and therefore the digital gain required to
compensate for the worst case blocker) exceeds the correction range allowed by the exponent width chosen, it is also possible to enable a
fixed digital attenuation (from 6 dB to 42 dB) before the floating point formatter to ensure that the signal never exceeds the maximum
range that can be encoded.

Receiver Data Format Data Structure

The configuration parameters for the floating point formatter and slicer are set up in the taliseRxDataFormat_t data structure (see
Table 73 to Table 82).

Table 73. taliseRxDataFormat_t Data Structure Definition, formatSelect Parameter
Parameter Name Data Type formatSelect Comments Format Comments
formatSelect taliseDataFormattingModes_t TAL_GAIN_COMPENSATION_DISABLED No gain compensation

(Mode 1)
 TAL_GAIN_WITH_FLOATING POINT Gain compensation and

floating point formatter
enabled (Mode 5)

 TAL_GAIN_WITH_INTSLICER_NOGPIO Gain compensation and
slicer bits embedded on
JESD204B signal (Mode 3)

 TAL_GAIN_WITH_INTSLICER Gain compensation and
slicer bits outputted on
GPIOs (Mode 2)

 TAL_GAIN_WITH_EXTERNAL_SLICER Gain compensation and
slicer position inputted from
GPIOs (Mode 4)

 For use in floating point mode; sets the round mode for the
significand; settings are defined in the IEEE 754 specification,
consult Section 4.3 in IEEE 754-2008

Gain compensation and
slicer position inputted from
GPIOs (Mode 4)

Table 74. taliseRxDataFormat_t Data Structure Definition, fpRoundMode Parameter

Parameter Name Data Type fpRoundMode Comments Floating Point Rounding Mode
fpRoundMode taliseFpRoundModes_t TAL_ROUND_TO_EVEN Floating point ties to an even

value
 TAL_ROUNDTOWARDS_POSITIVE Round floating point toward the

positive direction
 TAL_ROUNDTOWARDS_NEGATIVE Round floating point toward the

negative direction
 TAL_ROUNDTOWARDS_ZERO Round floating point toward the

zero direction
 For use in floating point mode; sets the format of the 16-bit

output on the JESD204B interface
Round floating point toward the
zero direction

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 155 of 247

Table 75. taliseRxDataFormat_t Data Structure Definition, fpDataFormat and fpEncodeNan Parameters
Parameter Name Data Type fpDataFormat Comments Floating Point Data Format
fpDataFormat uint8 t Not applicable

0 {Sign, exponent, significand}
1 {Sign, significand, exponent}
For use in floating point formatter mode; if set to 1, the
floating point formatter reserves the highest value of the
exponent for NaN to be compatible with the IEEE 754
specification; setting this parameter to 0 increases the
range of the exponent by 1 (Analog Devices mode)

{Sign, significand, exponent}

fpEncodeNan uint8_t Not applicable For use in floating point formatter mode;
used to indicate the number of exponent
bits in the floating point number
according to the following settings shown
in Table 76

Table 76. taliseRxDataFormat_t Data Structure Definition, fpNumExpBits and fpHideLeadingOne Parameters

Parameter Name Data Type fpNumExpBits Comments No. of Exponent Bits

No. of
Significand
Bits

No. of
Sign Bits

fpNumExpBits taliseFpExponentModes_t 0 2 Not
applicable

Not
applicable

1 3 13 1
2 4 12 1
3 5 11 1
For use in floating point formatter
mode; setting to 1 hides the
leading one in the significand to
be compatible to the IEEE 754
specification (IEEE mode); clearing
causes the leading one to be at the
MSB of the significand

5 10 1

fpHideLeadingOne uint8_t Not applicable For use in floating point
formatter mode;
attenuates integer data on
Rx1 when floating point
mode enabled; attenuation
values for individual
settings are shown in
Table 77

Not
applicable

Not
applicable

Table 77. taliseRxDataFormat_t Data Structure Definition, fpRx1Atten Parameter
Parameter Name Data Type fpRx1Atten Comments Attenuation (dB)
fpRx1Atten taliseFpAttenSteps_t TAL_FPATTEN_0DB 0

TAL_FPATTEN_MINUS6DB −6
TAL_FPATTEN_MINUS12DB −12
TAL_FPATTEN_MINUS18DB −18
TAL_FPATTEN_24DB +24
TAL_FPATTEN_18DB +18

TAL_FPATTEN_12DB +12
TAL_FPATTEN_6DB +6
For use in floating point formatter mode; attenuates
integer data on Rx1 when floating point mode enabled;
attenuation values for individual settings are shown in
Table 78

+6

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 156 of 247

Table 78. taliseRxDataFormat_t Data Structure Definition, FpRx2Atten Parameter

Parameter Name Data Type fpRx2Atten Comments Attenuation (dB)
fpRx2Atten taliseFpAttenSteps_t TAL_FPATTEN_0DB 0

TAL_FPATTEN_MINUS6DB −6
TAL_FPATTEN_MINUS12DB −12
TAL_FPATTEN_MINUS18DB −18
TAL_FPATTEN_24DB 24
TAL_FPATTEN_18DB 18
TAL_FPATTEN_12DB 12
TAL_FPATTEN_6DB 6
For use in slicer modes; sets the integer number of
embedded slicer bits to embed in Rx data sample and bit
position to embed them (see the Mode 3—Digital Gain
Compensation with Embedded Slicer Position section)

6

Table 79. taliseRxDataFormat_t Data Structure Definition, intEmbeddedBits Parameter

Parameter Name Data Type intEmbeddedBits Comments
Slicer Bit Embedded Position
in Data Frame

intEmbeddedBits taliseEmbeddedBits_t 0 Disabled all embedded slicer bits
1 Embeds 1 slicer bit on I, 1 slicer

bit on Q and the MSB position
2 Embeds 1 slicer bit on I and

1 slicer bit on Q and the LSB
position

3 Embeds 2 slicer bits on I and
2 slicer bits on Q and the MSB
position

4 Embeds 2 slicer bits on I and
2 slicer bits on Q and the LSB
position

Sets the integer sample resolution selecting either 12, 16, or 24
bits of data with either twos complement or signed magnitude

Embeds 2 slicer bits on I and
2 slicer bits on Q and the LSB
position

Table 80. taliseRxDataFormat_t Data Structure Definition, intSampleResolution Parameter

Parameter Name Data Type intSampleResolution Comments
Resolution of
Integer Sample

intSampleResolution taliseIntSampleResolution_t 0 12-bit resolution with
twos complement

1 12-bit resolution with
signed magnitude

2 16-bit resolution with
twos complement
(default)

3 16-bit resolution with
signed magnitude

4 24-bit resolution with
twos complement

5 24-bit resolution with
signed magnitude

For use in slicer modes; used in gain compensation with
external slicer control (Mode 4); sets the slicer step value
that is used with this external control mechanism

24-bit resolution with
signed magnitude

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 157 of 247

Table 81. taliseRxDataFormat_t Data Structure Definition, extPinStepSize Parameter
Parameter Name Data Type extPinStepSize Comments Slicer Step Size (dB)
extPinStepSize taliseGainStepSize_t TAL_EXTSLICER_STEPSIZE_1DB 1
 TAL_EXTSLICER_STEPSIZE_2DB 2
 TAL_EXTSLICER_STEPSIZE_3DB 3
 TAL_EXTSLICER_STEPSIZE_4DB 4
 For use in slicer Mode 4; selects which

GPIO pins are used for the slicer to
output its position on (Mode 2) or to
control the slicer position with
(Mode 4); see Table 68 for a full list of
possible GPIO permutations

4

Table 82. taliseRxDataFormat_t Data Structure Definition, rx1GpioSelect, Rx2GpioSelect, externalLnaGain, and
tempCompensationEnable Parameters
Parameter Name Data Type Comments
rx1GpioSelect taliseRx1ExtSlicerGpioSelect_t For use in slicer Mode 4; selects which GPIO pins are used for the slicer to output its

position on (Mode 2), or to control the slicer position with (Mode 4); see Table 68 for
a full list of possible GPIO permutations.

rx2GpioSelect taliseRx2ExtSlicerGpioSelect_t For use in dual band modes; not supported

externalLnaGain uint8_t Not supported

tempCompensationEnable uint8_t Not applicable

To configure the receiver data format, call the following API function:

TALISE_setRxDataFormat (taliseDevice_t *device, taliseRxDataFormat_t *rxDataFormat)

Note that for the slicer to properly use the GPIO, the GPIO pins must be configured appropriately during the GPIO setup. See the GPIO
Slicer Features section for details.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 158 of 247

RECEIVER DC OFFSET CALIBRATION
This section discusses the receiver and observation receiver dc offset correction algorithms within the transceiver. The device receivers
implement a direct conversion receiver architecture. To minimize dc contributions from various sources within the transceiver, a dc offset
correction algorithm minimizes dc offset in the analog circuitry and the output data that is sent to the BBP. The dc offset sources include
LO self mixing and amplifier dc offsets within the datapath.

This section provides details on receiver dc offset correction circuitry, configuration options available to the customer, and API
programming instructions.

RECEIVER DC OFFSET CORRECTION CIRCUITRY
The dc offset configuration occurs within the normal device initialization sequence. Additional API commands are not necessary to
enable the dc offset correction. However, some API commands are provided to modify the dc offset correction behavior, if required.

The dc offset correction is a hardware algorithm that does not directly involve the Arm processor. The dc offset correction circuitry
involves an RF (analog) dc offset correction and digital dc offset correction. The RF dc offset correction provides coarse dc offset
correction to reduce dc offset levels in the analog circuitry. The digital dc offset correction cleans up residual dc offset detected prior to
the JESD204B interface.

The observation point for RF and digital dc offset correction is at the end of the digital path after all digital filtering and the digital gain
block. The observation point and the correction points for RF and digital dc offset is shown in the Figure 100.

TIA

LO

RF DC OFFSET CORRECTION

DEC5/
HB3 + HB2

OTHER DIGITAL FEATURES
(IF CONV., GAIN COMP...)

DIGITAL
DC OFFSET

CORRECTION
RHB1 RFIR

TO
JESD204B

INTERFACE
QECADC

D
A

C

16
82

2-
10

3

Figure 100. DC Offset Circuitry Within the Receiver Datapath

The RF dc offset correction and digital dc offset correction are enabled by default for all receiver and observation receiver channels. This
default condition is not configurable through the API.

The digital dc offset correction is enabled on the receiver channels. The digital dc offset correction is not enabled for the observation
receiver channels.

RF (Analog) DC Offset Correction

The RF (analog) dc offset correction circuitry is responsible for a coarse correction of the dc offset in the datapath. The observation point
is at the end of the digital path, after all digital filtering and the digital gain block. This dc offset correction is applied via a dedicated
correction DAC located prior to the TIA, which injects an offset voltage to cancel the dc offset that the algorithm observes.

RF DC Offset Initialization Calibration

The Arm processor is only used to start the dc offset initialization calibration and configure the register settings for the dc offset tracking
calibrations. The dc offset initialization calibration generates an initial set of corrections to use at all gain indices. The correction value
stored for each gain index automatically switches into the correction DAC when the gain index is changed, which implies that the
hardware maintains a look-up table of RF dc offset corrections across gain indices. The dc offset initialization calibration provides a
reasonable starting point for the RF dc offset tracking calibration.

If the dc offset initialization calibration is not performed, dc offset performance significantly underperforms the specifications found in
the ADRV9008-1 and ADRV9009 data sheets.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 159 of 247

RF DC Offset Tracking Calibration

The RF dc offset tracking calibration is a type of tracking calibration that maintains the dc offset performance during the operation of the
device. Note that because the Arm processor is not used in data processing, dc offset configuration is not included in the Arm tracking
calibration mask enumerations. The RF dc offset calibration updates its correction in response to changes in the estimated dc offset that is
present in the datapath at regular intervals. Modifications to the RF dc offset tracking calibration behavior is not possible through the
API.

The RF dc offset corrections are updated by adding or subtracting to/from the current correction word. A high level depiction of this
update process is shown Figure 101.

CURRENT
GAIN
INDEX

CORRECTIONRF DC
OFFSET

ESTIMATE

RF DC CORRECTION LUT

WRITE NEW
CORRECTION WORD

DAC

16
82

2-
10

4

Figure 101. RF DC Offset Tracking Update Process

Corrections for each channel (Receiver 1, Receiver 2, Observation Receiver 1, and Observation Receiver 2) are stored independently of
one another. Additionally, I/Q datapath corrections are independently stored because of potential differences in the inherent dc offset of
the datapath.

Digital DC Offset Correction

The digital dc offset correction circuitry is responsible for reducing the residual dc offset that is uncorrected by the RF dc offset
correction. The digital dc offset correction estimates the residual dc offset to generate an equal and opposite correction value to the dc
condition present. This offset correction is added or subtracted into the digital datapath to further minimize dc energy. This offset
correction is a tracking calibration that adapts the correction to the dc offset observed in the path.

Unlike the RF dc offset correction, the digital dc offset correction does not maintain a storage table for dc offset correction values. There
is also no initialization calibration related to digital dc offset. If a gain change occurs that generates a different dc offset condition, the
digital dc offset correction takes a finite period of time to converge to an optimal correction value. The time to convergence is set, in part,
by the mShift value described in the mShift section.

The digital dc offset correction is enabled on the receiver channels. The digital dc offset correction is not enabled for the observation
receiver channels.

mShift

Note that the digital dc offset correction effectively creates a narrow-band notch filter around the dc, which can lead to degradation of the
subcarriers on or close to dc depending on the subcarrier spacing. If the default dc offset settings are causing this type of degradation, the
API provides commands to adjust the filtering behavior near the dc.

The mShift parameter controls the frequency corner for the narrowband notch filter. The mShift parameter can be set with the
TALISE_setDigDcOffsetMShift() command. Note that larger mShift values correspond to narrower notch filter bandwidth
around the dc. A narrower notch filter corresponds to an increased convergence time for the digital dc offset calibration. The notch filter
bandwidth is typically set on the order of 10s of kHz.

The Arm processor selects an mShift value depending on the profile sample rate. If this selected mShift value is not desired, call the
TALISE_setDigDcOffsetMShift() command before the dc offset initialization calibration occurs to change the mShift value. See
the DC Offset API Functions section for more information.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 160 of 247

DC Offset API Functions

The following section describes the dc offset API commands available in the API.

TALISE_setDigDcOffsetMShift()

This function sets the receiver/observation receiver channel digital dc offset convergence time (mShift). The function is as follows:

uint32_t TALISE_setDigDcOffsetMShift(taliseDevice_t * device, taliseDcOffsetChannels_t
channel, uint8_t mShift)

This function allows the BBIC to adjust the digital dc offset convergence time. This value (mShift) affects the corner frequency of the
notch filter that is used to filter the dc offset out of the receiver/observation receiver receive signal. The mShift value applies to all
receiver channels or all observation receiver channels, but the receiver and observation receiver can be set individually.

In software versions older than Arm 4.0, the Arm initialization calibration for dc offset overrides the mShift setting. The BBIC calls this
function after running the initialization calibrations to ensure that the Arm processor does not overwrite a custom mShift setting.

In software versions of Arm 4.0 or newer, the Arm bootup sets a default calculated value for the mShift based on the selected profile
sample rates. The BBIC can set the mShift any time after the Arm boots up (before or after Arm initialization calibrations). The Arm dc
offset initialization function saves and restores the custom mShift value if the Arm processor must change the mShift value.

Digital dc offset tracking is not enabled on the observation receiver channels. Applying this command to the observation receiver channel
does not have a meaningful effect.

Parameters include the following:

• *device is a pointer to the device data structure.
• channel is a receiver channel select. Refer to Table 83 for a taliseDcOffsetChannels_t enumeration definition.
• mShift is a value to set for the given channel (valid value range is 8 to 20).

Table 83. Enumerated Values for taliseDcOffsetChannels_t data type.
Enum Name (taliseDcOffsetChannels_t) Value Enumerator Description
TAL_DC_OFFSET_RX_CHN 0x0 Select Rx channel
TAL_DC_OFFSET_ORX_CHN 0x1 Select ORx channel (if selected, this command has no meaningful effect)

TALISE_getDigDcOffsetMShift()

This function retrieves the receiver/observation receiver channel digital dc offset convergence time (mShift). The function is as follows:
uint32_t TALISE_getDigDcOffsetMShift(taliseDevice_t* device, taliseDcOffsetChannels_t channel,
uint8_t* mShift)

This function allows the BBIC to read back the digital dc offset convergence time. This value (mShift) affects the corner frequency of
the notch filter that is used to filter the dc offset out of the receiver/observation receiver receive signal. The mShift value applies to all
receiver channels or all observation receiver channels, but the receiver and the observation receiver can be set individually.

In software versions older than Arm 4.0, the Arm initialization calibration for dc offset overrides the mShift setting. The BBIC calls this
function after running the initialization calibrations to ensure that the Arm processor does not overwrite a custom mShift setting.

In software versions of Arm 4.0 or newer, the Arm bootup sets a default calculated value for the mShift based on the selected profile
sample rates. The BBIC can set the mShift any time after the Arm boots up (before or after the Arm initialization calibrations). The
Arm dc offset initialization function saves and restores the custom mShift value if the Arm processor must change the mShift value.

Parameters include the following:

• *device is a pointer to the device data structure.
• channel is the digital dc offset channel to read mShift value for.
• *mShift is a pointer to store current mShift for the requested channel.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 161 of 247

QEC, CALIBRATION, AND ARM CONFIGURATION
The device comes with a built in Arm processor that is tasked with performing some initial calibrations of the signal paths of the device,
as well as maintaining QEC and LO leakage performance during device operation through tracking algorithms. It is useful to refer to the
System Control section and the Use Cases section when reviewing this section of the reference manual.

ARM STATE MACHINE OVERVIEW

STATE 0:
POWER UP/

RESET

BOOT SEQUENCE
SYSTEM INITIALIZATION

STATE 1:
READY

PERFORM INITIALIZATION
CALIBRATIONS

STATE 2:
IDLE/

RADIO OFF

RUN RADIO_ON()
COMMAND

RUN RADIO_OFF()
COMMAND

STATE 3:
RADIO ON

16
82

2-
10

5

Figure 102. Arm State Machine

State 0

When the Arm core is powered up, the Arm processor moves into power-up/reset state. At this point, an Arm image is loaded. See the
Loading the Arm Processor section for details. When the Arm image is loaded, the Arm can be enabled and begins its boot sequence.

State 1

When the Arm is successfully booted, it enters the ready state. In this state, the Arm processor can receive configuration settings or
commands (instructions), for example, performing the initialization calibrations of the device.

State 2

After the initial calibrations are performed, the Arm processor enters the idle state. In this state, the Arm processor can receive
configuration settings, for example, which tracking calibrations must be enabled.

State 3

When the required tracking calibrations are enabled, a Radio_On() command is provided to the Arm, which moves the processor into
State 3. In this state, the Arm scheduler is active, and the Arm runs tracking calibrations when the necessary signal chains are available.
The RF paths of the device are also made available for use.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 162 of 247

LOADING THE ARM PROCESSOR
When the device is powered-up or reset, it is necessary for the Arm image to be loaded to the device (this is towards the end of the
initialization process, see an initialization script for further details). Prior to loading the Arm image, the Arm core is reset and prepares to
receive its image with the following function:

TALISE_initArm(taliseDevice_t *device, taliseInit_t *init)

Parameters include the following:

• *device is the structure pointer to the data structure.
• *init is a point to the initialization data structure.

After this function is run, the Arm image is loaded with the following function:

TALISE_loadArmFromBinary(taliseDevice_t *device, uint8_t *binary, uint32_t count)

Parameters include the following:

• *binary is a pointer to the byte array containing the Arm program memory bytes.
• count is the number of bytes in this binary array.

The Arm image is provided in the resources folder of the GUI install. Note that there is a separate Arm image for each device version. The
image for the ADRV9008-1 is TaliseRxArmFirmware.bin, the ADRV9008-2 image is TaliseTxArmFirmware.bin, and the ADRV9009
image is TaliseTDDArmFirmware.bin.

When the Arm image is loaded, the Arm automatically begins its boot sequence. As part of the boot sequence, the Arm calculates a
checksum for the image that has been loaded. The following API function verifies the Arm load has been completed successfully:

TALISE_verifyArmChecksum(taliseDevice_t *device)

This function ensures that the boot sequence has completed before reading back the calculated checksum from the relevant Arm memory
location. The function compares this checksum to the precalculated checksum that is embedded in the Arm image. A successful load is
verified when the checksums are equal.

ADRV9008-1, ADRV9008-2, AND ADRV9009 INITIAL CALIBRATIONS
The Arm processor in the device is tasked with scheduling/performing initial calibrations to optimize the performance of the signal paths
prior to device operation. These calibrations are called by the following API function:

TALISE_runInitCals(taliseDevice_t *device, uint32_t calMask)

Parameters include the following:

• calMask is a 32-bit mask that informs the Arm processor of which calibrations to run.

Table 84 shows the bit assignments of the calibration mask. The Arm processor runs the selected initial calibration for each enabled
channel.

Table 84. Calibration Mask Bit Assignments
Calibration

Mask Bit(s) Corresponding Enumerator Calibration Description
D0 TX_BB_FILTER Tx baseband

filter calibration
Tunes the corner frequency of the Tx baseband filter.

D1 ADC_TUNER ADC tuner
calibration

Configures the ADC for the required profile bandwidth.

D2 TIA_3DB_CORNER Rx TIA filter
calibration

Tunes the corner frequency of the Rx TIA filter.

D3 DC_OFFSET Rx dc offset
calibration

Corrects for dc offset within the Rx chain.

D4 TX_ATTENUATION_DELAY Tx attenuation
delay

Calculates the path delay between the Tx analog and Tx digital
attenuation blocks. This delay is then used to offset the onset of Tx
analog and Tx digital attenuations relative to each other to
compensate for the path delay between these blocks.

D5 RX_GAIN_DELAY Rx gain delay Calculates the path delay between the Rx analog and Rx digital
attenuation blocks. This delay is then used to offset the onset of Rx
analog and Rx digital attenuations relative to each other to
compensate for the path delay between these blocks.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 163 of 247

Calibration
Mask Bit(s) Corresponding Enumerator Calibration Description

D6 FLASH_CAL ADC flash
calibration

Optimally configures the ADC flash converters.

D7 PATH_DELAY Path delay
calibration

Computes the Tx to loopback path delay that is required for the Tx
QEC and Tx LO leakage algorithms.

D8 TX_LO_LEAKAGE_INTERNAL Tx LO leakage
initial calibration

Performs an initial LO leakage calibration for the Tx path and utilizes
the Tx path and the internal loopback path (see Figure 108).

D9 TX_LO_LEAKAGE_EXTERNAL Tx LO leakage
external initial
calibration

Performs an initial external LO leakage calibration for the Tx path and
utilizes the Tx path, a required external loopback path, and the ORx
path (see Figure 109).

D10 TX_QEC_INIT Tx QEC initial
calibration

Performs an initial QEC calibration for the Tx path and utilizes the Tx
path and an internal loopback path (see Figure 108).

D11 LOOPBACK_RX_LO_DELAY Loopback ORx LO
delay

Performs an LO delay calibration for the loopback path.

D12 LOOPBACK_RX_RX_QEC_INIT Loopback Rx QEC
initial calibration

Performs an initial QEC calibration for the Rx path.

D13 RX_LO_DELAY Rx LO delay Performs an LO delay calibration for the Rx path. Do not use this
calibration.

D14 RX_QEC_INIT Rx QEC initial
calibration

Performs an initial QEC calibration for the Rx path.

D15 RX_PHASE_CORRECTION Rx phase
correction

Performs a phase correction calibration for the Rx path attenuator.

D16 ORX_LO_DELAY ORx LO delay Performs an LO delay calibration for the ORx path. Do not use this
calibration.

D17 ORX_QEC_INIT ORx QEC initial
calibration

Performs an initial QEC calibration for the ORx path.

D18 TX_DAC Tx DAC initial
calibration

Performs a calibration of the Tx DAC.

D19 ADC_STITCHING ADC stitching
initial calibration

Used for wideband ORx modes where the output of two ADCs are
stitched together to form a single quadrature channel. In this mode, a
total of four ADCs are used to produce the final I/Q outputs. For a
description of this, see the Observation Receiver section of this
document.

[D20:D31] Not used Not applicable.

The calibration mask can be created using a bit map from Table 84, or by utilizing the appropriate enums. For example, the following
function enables the ADC tuner and ADC flash calibration in a calibration mask to be transferred to the TALISE_runInitCals()
function:

unit32_t initCalMask = ADC_TUNER | FLASH_CAL;

These calibrations follow a specific order. The Arm processor proceeds through these calibrations in this sequential order. The user must
wait for these routines to complete before continuing the configuration of the device. Use the following function to verify that these initial
calibrations have been completed by the Arm processor:
TALISE_waitInitCals(taliseDevice_t *device, uint32_t timeoutMs, uint8_t *errorFlag)

Parameters include the following:

• timeoutMs is the time in ms that the function must wait for the calibrations to complete before returning an error.
• *errorFlag is a 3-bit flag that indicates an Arm error occurred when running the initial calibrations. Refer to the Initialization

Calibration Errors section for details.

This function implements a blocking wait until the initial calibrations have been completed. The following is an alternative function that
can be used to determine if the initial calibrations are still running:

TALISE_checkInitCalComplete(taliseDevice_t *device, uint8_t *areCalsRunning, uint8_t *errorFlag)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 164 of 247

Parameters include the following:

• areCalsRunning is a value to indicate if calibrations are still running (0 = initial calibrations have completed, 1 = initial
calibrations are still running).

• *errorFlag is the same value as the value that is returned in waitInitCals. See the Initialization Calibration Errors section for
details.

This alternative function allows the user to avoid a blocking wait and use the wait time for other system functionality. The user must call
this function until the function reports that the initial calibrations are complete. During this time, this function is the only
communication to the device until the initial calibrations have completed. The user must only proceed with the device configuration after
the initial calibrations are complete.

Note that there are requirements on a system level for these initialization calibrations to perform successfully. See the System
Considerations for Initial Calibrations section for details.

ADRV9008-1, ADRV9008-2, AND ADRV9009 TRACKING CALIBRATIONS
The Arm processor ensures that QEC and LO leakage (and HD2 for GSM applications) corrections are optimal throughout device
operation, for example, over time, attenuation, and temperature. The processor achieves optimal correction performance by performing
calibrations at regular intervals. These calibrations are referred to as tracking calibrations and utilize normal traffic data to update the
path correction coefficients.

The following function enables the tracking calibrations in the Arm processor:

TALISE_enableTrackingCals(taliseDevice_t *device, uint32_t enableMask)

Parameters: enableMask is a 10-bit mask that informs the ARM processor which calibrations to run.

Table 85 shows the bit assignments of the enable mask. The following function is also an equivalent function to read the tracking
calibrations that are enabled, which uses the same mask as the preceding function:

TALISE_getEnabledTrackingCals(taliseDevice_t *device, uint32_t *enableMask)

Table 85. Tracking Calibrations Enable Mask Bit Assignments
Calibration Mask Bit Function
D0 Rx1 QEC tracking
D1 Rx2 QEC tracking
D2 ORx1 QEC tracking
D3 ORx2 QEC tracking
D4 Tx1 LO leakage tracking
D5 Tx2 LO leakage tracking
D6 Tx1 QEC tracking
D7 Tx2 QEC tracking
D8 Rx1 HD2 tracking
D9 Rx2 HD2 tracking

Run the TALISE_enableTrackingCals() function before the Arm is moved to the radio on state. Do not run the
TALISE_enableTrackingCals() function when the device is operational (Arm is in the radio on state). The following function can
be used to suspend or resume tracking calibrations when the device is in the radio on state:
TALISE_setAllTrackCalState(taliseDevice_t *device, uint32_t calSubsetMask, uint32_t
resumeCalMask)

Parameters include the following:

• calSubsetMask is a mask that indicates which calibrations the resumeCalMask must control.
• resumeCalMask is a mask of the calibrations to be paused or resumed.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 165 of 247

The bit assignments for the calibration mask are shown in Table 86.

Table 86. Transmitter Tracking Calibration Pause/Resume Bit Assignments
Calibration Mask Bit Function
D0 Unused
D1 Unused
D2 Unused
D3 Unused
D4 Tx1 LO leakage tracking
D5 Tx2 LO leakage tracking
D6 Tx1 QEC tracking
D7 Tx2 QEC tracking

If the corresponding bit of a calibration is set to 1 in the calSubsetMask, this calibration can be paused or resumed using the
resumeCalMask function. If the corresponding bit is set to 0, the resumeCalMask cannot control the pausing/resuming of the
calibration. If the corresponding bit of a calibration is set to 1 in the resumeCalMask, the calibration resumes. If the corresponding bit
is set to 0, the calibration is paused.

Note that only calibrations that have initially been enabled when using the TALISE_enableTrackingCals() prior to moving the
device into the radio on state can be paused and resumed using this function. It is not possible to enable a tracking calibration that was
not initially enabled at the last entry into the radio on state.

To get the current status of the calibration mask (paused/enabled), use the following function:

TALISE_getAllTrackCalState(taliseDevice_t *device, uint32_t *resumeCalMask)

Parameter: resumeCalMask is a bit mask composed as shown in Table 85, with a 1 indicating that the corresponding calibration is
enabled and a 0 indicating the calibration is paused.

The Arm processor schedules the tracking calibrations. No user input is required to initiate a tracking calibration. The Arm processor
schedules its calibrations based on the periodicity required for each calibration. Transmit tracking calibrations are only run at times when
the user advises that the observation receiver path is available to the Arm processor for calibrations. See the ADRV9008-1, ADRV9008-2,
and ADRV9009 Tracking Calibration Scheduler section and the System Control section for details.

The receiver and observation receiver channels also have dc correction tracking, which is active when these channels are being utilized.
This calibration is not an Arm-based calibration.

ADRV9008-1, ADRV9008-2, AND ADRV9009 TRACKING CALIBRATION SCHEDULER
The Arm processor schedules the tracking calibrations based on the periodicity required for each calibration. No user input is required to
initiate a tracking calibration. Receive calibrations are only run when the receive chains are enabled. Transmit tracking calibrations also
require the user to assign the observation receiver path to the Arm processor for calibrations for a specified proportion of time to allow
the transmitter data to be observed.

When the device is initialized, the Arm processor enters the idle/radio off state. When the Arm processor is in idle/radio off state, the
device is not transmitting/receiving data. The Arm processor must be in the radio on state with the tracking calibrations enabled for the
device to transmit/receive data. See Figure 102 for an overview of the Arm state machine.

In the radio off state, the scheduler is not active. The signal chains are powered down, and the device is not receiving or transmitting data.

In the radio on state, the scheduler is active, and tracking calibrations are run. The signal chains are available for use (see the System Control
and Use Cases sections for details).

The following functions advise the Arm processor to move to the radio off and radio on states:

TALISE_radioOn(taliseDevice_t *device)

TALISE_radioOff(taliseDevice_t *device)

When the Arm processor moves the state machine into the radio on state, the tracking calibration scheduler is initialized. The required
tracking calibrations must be specified prior to calling the TALISE_radioOn() function.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 166 of 247

Use the following function to determine which state the Arm processor is in:

TALISE_getRadioState(taliseDevice_t *device, uint32_t *radioStatus)

In this function, *radioStatus indicates the current Arm processor state as indicated by the values in Table 87.

Table 87. Radio Status and Corresponding Arm Functions
Radio Status Arm Function
0 Power-up/reset
1 Ready
2 Radio off
3 Radio on
>3 Arm error, check profile configuration

When the device is the radio on state, the Arm scheduler performs the tracking calibrations on a periodic basis, ensuring that the
correction values are optimal. For each tracking calibration enabled in the tracking calibration mask, a corresponding calibration task is
initiated when the Arm processor is moved into the radio on state, as shown in Figure 103.

Tx1
LO LEAKAGE
CALIBRATION

TASK

Tx2
LO LEAKAGE
CALIBRATION

TASK

Tx1 QEC
CALIBRATION

TASK

ARM CALIBRATION TASKS

Tx2 QEC
CALIBRATION

TASK

ORx1 QEC
CALIBRATION

TASK

16
82

2-
10

6

Figure 103. Calibration Tasks Run in the Arm Processor

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 167 of 247

Each calibration task follows the same sequence of processes, and is responsible for indicating to the scheduler when a task must be run
through its own pending bit, as shown in Figure 104. This bit is periodically set by the calibration task when the calibration timer expires.

CALIBRATION TASK
(For example, Tx QEC tracking)

Started at radio on

START CALIBRATION TIMER
For Tx QEC, timer is currently 30s

WAIT FOR CALIBRATION
TIMER TO EXPIRE

the remaining time

RUN TRACKING CALIBRATION
This runs when radio state is

suitable, for example, with the
appropriate status of enable/control
signals. Calibrations run in batches

of at least 500µs. This function
returns only after the complete

instance of the tracking
calibration completes.

SET PENDING BIT

CLEAR PENDING BIT

YES

NO

DID AN ERROR
OCCUR DURING THE TRACKING

CALIBRATION?
SET ERROR BIT

WAIT FOR HOST TO
INTERVENE

16
82

2-
10

7

Figure 104. Single Process Scheduling Flow Diagram

The pending bits can be readback from the device. See the Tracking Calibration Monitoring section for details.

The scheduler runs each calibration when the corresponding pending bit is set; however, more than one calibration task can be pending at
any one time.

The scheduler determines which calibration task to run at any time based on three conditions: pending bits, priority, and availability of
the required paths.

Condition 1, Pending Bits

The scheduler reads the pending bits and determines which calibrations are requesting to run.

Condition 2, Priority

Each calibration task is given its own priority level. The calibration of the highest priority is given preference (highest priority being 1).
The order of the priorities is shown in Table 88.

Table 88. Priority Levels of the Calibration Tasks
Priority Level Calibration Task
1 Tx LO leakage
2 Tx QEC
3 ORx QEC
4 Rx QEC

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 168 of 247

Note that there is no set priority between the individual channels calibrations, for example, Transmitter 1 LO leakage and Transmitter 2
LO leakage. For calibration tasks of the same priority, the scheduler prioritizes the calibration task that was completed the longest time
ago.

Condition 3, Availability of Required Paths

The scheduler also determines if the calibration task can be performed. For example, as shown in Figure 104, the transmitter QEC task
needs the transmitter to be enabled and the observation receiver to be assigned to the Arm calibrations. If both conditions are not true,
the calibration cannot be run. The scheduler determines these conditions and if the calibration cannot run, the scheduler continues
through the priority list to find a calibration that is pending and can be run, for example, Receiver 1 QEC. See the System Considerations
for Tracking Calibrations section for details.

RUN Tx1
QEC

TRACKING

Tx1 QEC
PENDING BIT

X SECONDS

ARM
SCHEDULER

TX_ENABLE

ORx USAGE
ALL OTHER USES

INTERNAL CALIBRATION
MODE

ARM
PROCESSES

SET
PENDING

BIT

Tx1 QEC
PENDING BIT

SET
PENDING

BIT

RUN Tx1
QEC

TRACKING

16
82

2-
10

8

Figure 105. Arm Scheduler Operation

The scheduler runs the tracking calibrations in batches, as shown in Figure 104. Transmitter tracking calibrations typically require in the
10s of milliseconds of transmitter data observation before making an update to the correction parameters, and it is recognized that the
user may not provide sufficient time in a single instance for the tracking calibration to complete. Because of this, the scheduler performs
calibrations in batches, where the transmitter data can be observed in chunks of 500 μs. When sufficient batches of a tracking calibration
are run, the algorithm then computes the correction based on the observed data across all the batches. The pending bit is only cleared
after the correction parameters have been updated, as shown in Figure 104.

This batch operation means that when a calibration is pending and is selected by the scheduler to be run (based on the 3 conditions), the
scheduler initiates a batch to observe the transmitter data for a duration of 500 μs. When this batch is complete, the scheduler determines
which calibrations can be run next. If the same calibration cannot continue to run, for example, in TDD mode, if the path to be calibrated
is no longer active, or if a higher priority calibration is pending, the scheduler waits for the next opportunity before taking another batch
of data.

Note that if a tracking calibration batch has begun but the observation is disrupted (for example, if the transmitter or receiver path is
disabled, or if the observation path has been reacquired by the user for DPD captures) before 500 μs has completed, whatever observation
has been made up to this point is discarded. Discarding the observation does not affect the algorithm; the scheduler waits for another
batch as normal. When assigning the use of the observation receiver path for tracking calibrations, do so in slots of at least 500 μs or
multiples of 500 μs.

There are no additional requirements on the exact period of tracking calibration batches that must be maintained. The user determines
the structure of the observation receiver path assignment to fit around the observation receiver path requirements of the user (for
example, DPD and VSWR). The tracking calibration period can be supplied in one full section, or in batches of 500 μs spread across the
6 sec in a nonperiodic fashion. The Arm processor never takes control of the assignment of the observation receiver path and is reliant on
the user to assign the observation receiver for calibrations. If the user fails to provide the assignment of the observation receiver path, the
calibrations do not run.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 169 of 247

The scheduler sets the pending bits of each calibration in a periodic fashion. Each calibration is immediately pending when entering the
radio on state and the counters for each calibration are enabled. Use the following function to set a calibration as pending immediately
and restart the periodic counter:

TALISE_rescheduleTrackingCal(taliseDevice_t *device, taliseTrackingCalibrations_t trackingCal)

In this function, trackingCal is an enum indicating the calibration to be rescheduled as indicated by Table 89:

Table 89. TALISE_rescheduleTrackingCal() trackingCal Mask Defintions
Enumerator Rescheduled Calibration
TAL_TRACK_RX1_QEC Rx1 QEC tracking calibration
TAL_TRACK_RX2_QEC Rx2 QEC tracking calibration
TAL_TRACK_ORX1_QEC ORx1 QEC tracking calibration
TAL_TRACK_ORX2_QEC ORx2 QEC tracking calibration
TAL_TRACK_TX1_LOL Tx1 LO leakage tracking calibration
TAL_TRACK_TX2_LOL Tx2 LO leakage tracking calibration
TAL_TRACK_TX1_QEC Tx1 QEC tracking calibration
TAL_TRACK_TX2_QEC Tx2 QEC tracking calibration
TAL_TRACK_RX1_HD2 Rx1 HD2 tracking calibration
TAL_TRACK_RX2_HD2 Rx2 HD2 tracking calibration
TAL_TRACK_ALL All tracking calibrations

SYSTEM CONSIDERATIONS FOR ARM CALIBRATIONS
This section describes the considerations necessary from a system perspective for the Arm processor to run its calibrations, for example,
input/output path conditions for initial calibrations and GPIO status for tracking calibrations.

System Considerations for Initial Calibrations

Figure 106 to Figure 109 are used to show how the device is configured for notable calibrations with external system requirements, for
example, the QEC and LO leakage calibrations. A brief explanation of the calibration is provided in Figure 106 to Figure 109. Note that as
the Arm processor performs each of the calibrations, the processor is tasked with configuring the device and enabling/disabling paths.
This configuration does not require user input.

The user must ensure that external conditions are met, such as turning off the power amplifier for all calibrations other than the external
LO leakage initialization calibration, or properly terminating the receiver for an Rx QEC initialization calibration.

ADRV9008-1 and ADRV9009 Receiver QEC Initial Calibration

The receiver QEC initialization calibration algorithm is utilized to improve the receiver path QEC performance. The receiver QEC
calibration sweeps a number of internally generated test tones across the band, measures quadrature performance, and calculates
correction coefficients.

The input port must be isolated from incoming signals. The calibration tones appear on the receiver pins. The calibration tones must be
prevented from reaching the antenna by properly terminating the receiver port.

Note that the auxiliary PLL is used to generate the tones of the receiver QEC initialization calibration (CalPLL in Figure 106). Operation
of the auxiliary PLL must be limited to 6.061 GHz. For RF LO frequencies close to the maximum frequency, 6 GHz, the frequency limit of
the auxiliary PLL must be taken into consideration. The auxiliary PLL generates tones in the RF frequency by sweeping across the
baseband bandwidth. The range that the auxiliary PLL sweeps the tones across is RF LO frequency – baseband bandwidth/2 to RF LO
frequency + baseband bandwidth/2. A 200 MHz profile at an RF LO frequency of 6 GHz causes a conflict because the auxiliary PLL must
generate tones up to 6.1 GHz. In this case, the recommendation is to change the RF LO frequency for the initialization calibration so that
the maximum frequency generated by the auxiliary PLL is 6.061 GHz (RF LO frequency + baseband bandwidth/2 ≤ 6.061 GHz). The RF
LO frequency can be returned to the required setting before operation.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 170 of 247

50Ω
1/2 BANDS

AND FIR

1/2 BANDS
AND FIR

QEC
BLOCK

JE
SD

20
4B

 IN
TE

R
FA

C
E

ADC

ADC

Rx
INPUT

CAL
PLL Rx LO

16
82

2-
10

9

ADRV9008-2 AND ADRV9009

LOW-PASS
FILTER

LOW-PASS
FILTER

Figure 106. Receiver QEC Initial Calibration System Configuration (JESD204B Interface Not Active)

ADRV9008-2 and ADRV9009 Observation Receiver QEC Initial Calibration

The observation receiver QEC initialization calibration algorithm is utilized to improve the observation receiver path QEC performance.
The algorithm itself is a replica of the receiver QEC initialization calibration. Because the ADRV9009 shares the baseband section for the
receiver and observation receiver, it is necessary to run the receiver and observation receiver initialization calibrations, because the input
pins and mixer front ends are different between the receiver and observation receiver modes.

The observation receiver QEC calibration sweeps a number of internally generated test tones across the band, measures quadrature
performance, and calculates correction coefficients.

It is a system requirement for optimum performance and lower calibration duration, the observation receiver QEC initialization
calibration must be run at attenuations between 0 dB and 5 dB. The observation receiver input must be isolated from incoming signals
and be properly terminated into a 50 Ω load when the calibration is running. The calibration tones appear on the receiver pins and must
be prevented from reaching the antenna.

Note that the auxiliary PLL generates the tones of the observation receiver QEC initialization calibration (shown as CalPLL Figure 107).
The auxiliary PLL frequency operation must be limited to 6.061 GHz. For RF LO frequencies close to the maximum frequency of 6 GHz,
the frequency limit of the auxiliary PLL must be taken into consideration. The auxiliary PLL generates tones in RF frequency, sweeping
across the baseband bandwidth. The range that the auxiliary PLL sweeps across the tones is RF LO frequency – baseband bandwidth/2 to
RF LO frequency + baseband bandwidth/2. A 200 MHz profile at an RF LO of 6 GHz causes a conflict, because the auxiliary PLL must
generate tones up to 6.061 GHz. In this case, the recommendation is to change the RF LO frequency for the initialization calibration so
that the maximum frequency generated by the auxiliary PLL is 6.061 GHz (RF LO frequency + baseband bandwidth/2 ≤ 6.061 GHz). The
RF LO frequency can be returned to the required setting before operation

50Ω
1/2 BANDS

AND FIR

1/2 BANDS
AND FIR

QEC
BLOCK

JE
SD

20
4B

 IN
TE

R
FA

C
E

ADC

ADC

ORx
INPUT

CAL
PLL Tx LO

16
82

2-
11

0

ADRV9008-2 AND ADRV9009

LOW-PASS
FILTER

LOW-PASS
FILTER

Figure 107. Observation Receiver QEC Initial Calibration System Configuration (JESD204B Interface Not Active)

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 171 of 247

ADRV9008-2 and ADRV9009 Internal Transmitter LO Leakage and Transmitter QEC Initial Calibrations

The transmitter LO Leakage and transmitter QEC initial calibrations utilize the loopback path (feedback path) and the baseband section
of the observation receiver path to calculate the initial correction factors. During these calibrations, test signals (tones and wide-band
signals) are output. These appear at the transmitter output, and so it is important that the power amplifier at the output of the device be
switched off. Both calibrations sweep through a series of attenuation values, creating a table of initial calibration values. During operation
and at the application of a new transmitter attenuation setting, the corresponding QEC and LO leakage correction values are applied to
the transmitter channel by the Arm processor. The device configuration for this calibration is shown in Figure 108.

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

QEC
BLOCK

JE
SD

20
4B

 IN
TE

RF
AC

E

DAC

DAC
Tx

INPUT

Tx LO

CAL
PLL

Aux LO

ORx
INPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADC

FEEDBACK
PATH

ATTENUATOR

COUPLER

16
82

2-
11

1

ADRV9008-2 AND ADRV9009

SIGNAL
GENERATOR

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTERPOWER

AMPLIFIER
POWERED OFF

POWER
AMPLIFIER

Figure 108. Device Path Configuration for Transmitter LO Leakage andTransmitter QEC Initialization Calibrations (Attenuator, Coupler, Power Amplifier, Observation
Receiver Input, Calibration PLL, and JESD204B Interface Not Active)

It is a system requirement that the power amplifier in the transmitter path is powered off during these calibrations.

DAC Boost Mode

If the system performance requirement for the transmitter LO leakage is marginal in terms of the typical performance of the device, it is
possible for the user to increase the full-scale signal output of the transmitter DAC. This is a 3 dB boost, and in this mode, a further 3 dB
margin is applied between the output signal and the LO leakage. There is a reduction in linearity performance in this mode; therefore, the
setting is a tradeoff based on the system requirements of the user. Use the following function to enable DAC boost mode:

TALISE_setDacFullScale(taliseDevice_t *device, taliseDacFullScale_t dacFullScale)

In this function, dacFullScale is a parameter that selects the required DAC full-scale mode, as described in Table 90.

Table 90. Definition of taliseDacFullScale_t
Mode Enumerator
No DAC Full-Scale Boost TAL_DACFS_0DB
Full-Scale DAC Boost TAL_DACFS_3DB

The function to enable DAC boost mode must be run before the Arm is booted up.

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 172 of 247

ADRV9008-2 and ADRV9009 External Transmitter LO Leakage Initial Calibration

The external LO leakage initialization calibration requires that the power amplifier be enabled so that a full external loop is made between
the transmitter outputs and the observation receiver inputs. The purpose of this calibration is to obtain a good estimate (gain/phase) of
the external loop channel conditions prior to operation. The device configuration is shown in Figure 109. The calibration utilizes a
pseudorandom noise signal to estimate the channel conditions. This noise signal is a broadband signal with a nominal level of −78 dBFS
out of the DAC.

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

QEC
BLOCK

JE
SD

20
4B

 IN
TE

R
FA

C
E

DAC

ADRV9008-2 AND ADRV9009

DAC
Tx

INPUT

Tx LO

CAL
PLL

AUX LO

ORx
INPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADC

FEEDBACK
PATH

ATTENUATOR

COUPLER

POWER
AMPLIFIER

POWERED OFF

POWER
AMPLIFIER

SIGNAL
GENERATOR

16
82

2-
11

2

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTER

Figure 109. External LO Leakage System Configuration (Feedbac Path, Calibration PLL, and JESD204B Interface Not Active)

It is important that a suitable attenuator be chosen between the power amplifier output and the observation receiver input to prevent the
transmitter data from saturating the observation receiver input. This attenuator is also necessary from the perspective of DPD operation.
The full-scale input of the observation receiver path is −13 dBm (with a 0 dB attenuation setting) for a single tone input.

It is a system requirement that the output of the transmitter channel to be calibrated is routed to the utilized observation receiver path for
the calibration signal to be observed. The device must be configured prior to the calibration to indicate which transmitter is routed back
to which observation receiver. For optimal LO leakage performance when operating above 4 GHz, only the Observation Receiver 1 input
must be used for both Transmitter 1 and Transmitter 2 (use an external switch to accomplish this).

To advise the device which transmitter is routed to which observation receiver input, use the following function:

TALISE_setTxToOrxMapping(taliseDevice_t *device, uint8_t txCalEnable, taliseTxToOrxMapping_t
oRx1Map, taliseTxToOrxMapping_t oRx2Map)

Table 91 outlines the parameters of the setTxToOrxMapping function.

Table 91. setTxToOrxMapping Parameter Descriptions
Parameter Value Description
txCalEnable 0 Internal calibrations are disabled.

1 Internal calibrations are enabled.
oRx1Map TAL_MAP_NONE No Tx routed to ORx1.

TAL_MAP_TX1_ORX Tx1 is routed to ORx1.
TAL_MAP_TX2_ORX Tx2 is routed to ORx1.

oRx2Map TAL_MAP_NONE No Tx routed to ORx2.
TAL_MAP_TX1_ORX Tx1 is routed to ORx2.
TAL_MAP_TX2_ORX Tx2 is routed to ORx2.

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 173 of 247

Skipping External LO Leakage Initialization

It is possible to avoid running the external LO leakage algorithm during the initialization of the device. In this case, the LO leakage
algorithm does not have a valid estimate of the external channel when transmission begins. The algorithm tries to learn the channel as
quickly as possible, using the time provided to observe the external path to learn the channel. During this channel learning time,
correction factors are not updated by the tracking algorithm and performance can be worse than when an external LO leakage
initialization is run. When channel learning is completed, normal tracking resumes and the algorithm running every 6 sec on each
enabled transmitter channel, updating the correction coefficients as necessary. If the external LO leakage initialization is skipped, it is
expected that more time is assigned to the transmitter calibrations when the radio is first enabled so that the LO leakage can converge
faster. With the standard 10% assignment of time for transmitter calibrations, the LO leakage can take a number of seconds to converge.

If the fastest time to optimal LO leakage performance at the first transmission of user data is required, run the external LO leakage
initialization. Running the external LO leakage initialization is especially important for LO frequencies above 3 GHz, where the base
performance of the internal LO leakage initialization calibration is not as good as the performance at frequencies less than 3 GHz. For
frequencies greater than 3 GHz, it is recommended to use the external LO leakage initialization calibration.

Running Initialization Calibrations

Terminate the receiver inputs for the ADRV9008-1, as shown in Figure 106. All relevant calibrations in the calibration mask can be set
when calling Talise_runInitCals() (see the latest GUI script for current advice on recommended calibrations for the ADRV9008-1).
In all cases, the Arm processor runs the enabled calibrations in the calibration mask for each enabled channel. It is not necessary to call
Talise_runInitCals() separately for Receiver 1 and Receiver 2 in the case where both receivers are used.

The following serves as a timeline of how to run the initialization calibrations for the ADRV9008-1 device in a single-receiver or
dual-receiver configuration.

1. It is assumed that the device has been fully configured up to an including the JESD204B initialization.
2. Turn off the power amplifier and isolate the receiver inputs. This can be done by default on startup.
3. Run initial calibrations for all required calibrations except for the external LO leakage calibration. API command:

TALISE_runInitCals(taliseDevice_t *device, uint32_t calMask)
4. Wait until these calibrations have been completed. API command: TALISE_waitInitCals(taliseDevice_t *device,

uint32_t timeoutMs, uint8_t *errorFlag)

For the ADRV9008-2, turn off the power amplifiers, as shown in Figure 108, and the terminate the observation receiver inputs, as shown
in Figure 107. With this configuation, it is possible to run all relevant calibrations by setting the corresponding bits in the calibration
mask. Ensure that the external LO leakage initialization calibration Bit D9 is omitted, and then call Talise_runInitCals(). In all
cases, the Arm processor runs the enabled calibrations in the calibration mask for each enabled channel. It is not necessary to call
Talise_runInitCals() separately for Transmitter 1 and Transmitter 2 in the case where both transmitters are used.

The external LO leakage initialization calibration is omitted because it requires the power amplifier to be on, and requires the observation
receiver to be connected to the power amplifier output through the external loopback path. The current configuration of the external path
is advised to the Arm processor through the setTxToOrxMapping() API function. When one observation is shared between two
transmitter aths, as shown in Figure 110, the mapping must be set such that Transmitter 1 is being fed back to Observation Receiver 1, the
calibration is run, then the mapping is changed such that Transmitter 2 is being fed back to Observation Receiver 1, and the calibration is
run again. The external LO leakage calibration differs from the other internal calibrations in that it does not always run the calibration for
each path consecutively. Instead, when the calibration is called, it verifies which path is connected to which observation receiver input,
and then runs the call for that path only.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 174 of 247

ORx1/ORx2

Tx2

Tx1

ADRV9008-1

SWITCH

POWER
AMPLIFIER

POWER
AMPLIFIER 16

82
2-

11
3

Figure 110. External Observation Receiver Switch for a Two Transmitter Configuration

The following is a timeline of how the initialization calibrations must be run for the ADRV9008-2 in a two-transmitter, one-observation
receiver configuration for the 200 MHz or 450 MHz transmitter, 450 MHz observation receiver use case:

The following list describes the initialization calibration procedural steps for the ADRV9008-2. It is assumed that the device has been
fully configured up to and including the JESD204B initialization (see GUI configuration procedure for an example of the initialization
procedure):

1. Turn off the power amplifiers and isolate the observation receiver inputs. This can be done by default on startup.
2. Run initialization calibrations for all required calibrations except for the external LO leakage calibration. API command:

TALISE_runInitCals(taliseDevice_t *device, uint32_t calMask)
3. Wait until these calibrations are complete. API command: TALISE_waitInitCals(taliseDevice_t *device,

uint32_t timeoutMs, uint8_t *errorFlag).
4. Turn on Power Amplifier 1 and close switches to connect Transmitter 1 to Observation Receiver 1.
5. Advise the device of the current transmitter to observation receiver connection. API command:

TALISE_setTxToOrxMapping(taliseDevice_t *device, uint8_t txCalEnable, taliseTxToOrxMapping_t
oRx1Map, taliseTxToOrxMapping_t oRx2Map).

6. In this case, set txCalEnable to 1, define oRx1Map with the enum TAL_MAP_TX1_ORx, and define oRx2Map with the enum
TAL_MAP_NONE.

7. Run an external LO leakage initial calibration on Transmitter 1. API command: TALISE_runInitCals(taliseDevice_t
*device, uint32_t calMask). In this case, the calMask is 0x200.

8. Wait until this calibration is complete. API command: TALISE_waitInitCals(taliseDevice_t *device, uint32_t
timeoutMs, uint8_t *errorFlag).

9. Turn on Power Amplifier 2 and close switches to connect Transmitter 2 to Observation Receiver 1.
10. Advise the device of the current transmitter to observation receiver connection. API command:

TALISE_setTxToOrxMapping(taliseDevice_t *device, uint8_t txCalEnable, taliseTxToOrxMapping_t
oRx1Map, taliseTxToOrxMapping_t oRx2Map).

11. In this case, set txCalEnable should be set to 1, define oRx1Map with the enum TAL_MAP_TX2_ORx, and define oRx2Map with
the enum TAL_MAP_NONE.

12. Run an external LO leakage initial calibration on Transmitter 2. API command: TALISE_runInitCals(taliseDevice_t
*device, uint32_t calMask). In this case, the calMask is 0x200.

13. Wait until this calibration is complete. API command: TALISE_waitInitCals(taliseDevice_t *device, uint32_t
timeoutMs, uint8_t *errorFlag).

For the ADRV9009, turn off the power amplifiers, as shown Figure 108, and terminate the observation receiver inputs, as shown in
Figure 107. With this configuration, it is possible to run all relevant calibrations by setting the corresponding bits in the calibration mask.
Ensure that the external LO leakage initialization calibration bit D9 is omitted and then call Talise_runInitCals(). In all cases, the
Arm processor runs the enabled calibrations in the calibration mask for each enabled channel. It is not necessary to call
Talise_runInitCals() separately for Transmitter 1 and Transmitter 2 in the case where both transmitters are used.

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 175 of 247

The following is a timeline of how to run the initialization calibrations for the ADRV9009 in a two receiver, two transmitter, one
observation receiver configuration:

1. It is assumed that the device has been fully configured up to an including the JESD204B initialization (see GUI configuration
procedure for an example of the initialization procedure).

2. Turn off the power amplifiers and isolate the receiver and observation receiver inputs. This can be done by default on startup.
3. Run initialization calibrations for all required calibrations except for the external LO leakage calibration. API command:

TALISE_runInitCals(taliseDevice_t *device, uint32_t calMask).
4. For Step 3 to Step 11, see corresponding steps in the previous list within this section.

System Considerations for Tracking Calibrations

This section describes the operation of tracking calibrations. Figure 111 to Figure 121 show the device configuration for each calibration.
When the Arm processor performs each of the calibrations, it is tasked with configuring the whether the feedback path or observation
receiver input is selected, as shown in Figure 111 to Figure 121. No user input is required in this regard. However, for external LO leakage
tracking, the user must ensure that the feedback path is available to use.

During tracking calibrations, it can be required that the GPIO and enable pins must have many milliseconds of observation to calculate
an update; however, the Arm processor splits this time up into batches so that observations do not need to be continuous. These batches
are observations of 500 μs in duration. The receiver/observation receiver tracking algorithms run when the channels are in normal use,
and these algorithms use the data in the channel to calculate updates to the correction coefficients. The transmitter correction algorithms
utilize the observation receiver path when run, and feed back transmission data for observation to calculate updates to the correction
coefficients. This means that the observation receiver path must be time shared with other uses of the observation receiver path, for
example, DPD and VSWR.

The time requirement for the tracking calibrations is for the observation receiver to be assigned to the tracking calibrations for 10% of
transmitter operation time, and this 10% time period must occur when the transmitter is transmitting data. In a TDD scenario, where the
transmitter only accounts for 50% of the time, 20% of the transmitter operation time must be assigned to tracking calibrations.

For a tracking calibration to successfully make an observation, it must be assigned at least 500 μs in any one instance. If more time is
assigned at an instance, the time period must be in multiples of the 500 μs.

Tx ENABLE

AIR TIME Tx Rx Tx Rx

Rx ENABLE

tenable_rise_to_fall tenable_rise_to_fall

16
82

2-
11

4

Figure 111. Transmitter and Receiver Enable Signals Timing

Table 92. Receiver and Transmitter Timing for Tracking Calibrations
Symbol Description Minimum Duration for Calibration
tENABLE_RISE_TO_FALL Tx/Rx enable rising edge to enable falling edge; enable signal width high 500 μs
tENABLE_FALL_TO_RISE Tx/Rx enable falling edge to enable rising edge; enable signal width low 500 μs

Note that although Table 92 indicates that the minimum duration for a transmitter period is 500 μs, this does not mean that durations
cannot be less than this for some special transmitter subframes. If duration periods less than 500 μs occur, the tracking algorithms discard
any observations made during these shorter time periods and do not utilize these periods to calculate the next correction update.

ADRV9008-1 and ADRV9009 Receiver QEC Tracking Calibration

The receiver QEC tracking algorithm improves the receiver path QEC performance during operation. The tracking algorithm utilizes
normal traffic data to calculate updated corrected coefficients and runs continuously when the receivers are active.

It is a system requirement that receiver channels are enabled, for example, in TDD mode, receiver QEC tracking only runs during receiver
periods. If only one channel is enabled, the receiver QEC only runs on this channel.

http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 176 of 247

50Ω

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

QEC
BLOCK

JE
S

D
20

4B
 I

N
T

E
R

F
A

C
E

ADC

ADC

Rx
INPUT

CAL
PLL

Rx LO

16
82

2-
11

5

ADRV9008-1 AND ADRV9009

LOW-PASS
FILTER

LOW-PASS
FILTER

Figure 112. Receiver QEC Tracking (50 Ω Load and Calibration PLL Not Active)

Figure 113 is a timing diagram that shows when the receiver QEC tracking calibration can run in TDD mode. In frequency division
duplex (FDD) modes, receiver enable is always high. Receiver enable refers to the enable signal of Receiver 1 and/or Receiver 2.

Rx ENABLE

PERIODS WHERE
Rx QEC

CAN RUN

AIR TIME Tx Rx Tx Rx

Rx QEC Rx QEC

16
82

2-
11

6

Figure 113. Possible Periods to Run Receiver QEC Tracking Calibration in TDD Mode

ADRV9008-1 and ADRV9009 Receiver HD2 Tracking Calibration

The receiver HD2 tracking algorithm improves the receiver path HD2 performance during operation, required for GSM use cases. In
GSM use cases, use a low IF configuration should in the receive path. See the GSM Use Cases section for details. GSM reception is only
supported with a receiver profile of 200 MHz with an I/Q rate of 245.76 MSPS, or the equivalent low IF receiver profile of 100 MHz,
where the receive chain is configured as per the receiver profile of 200 MHz up to the IF conversion stage, before the carrier is shifted and
the data rate is down-converted to a lower rate. This means that the HD2 algorithm is only supported with these profiles and must not be
enabled in other profiles.

50Ω

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

QEC
BLOCK

JE
S

D
20

4B
 I

N
T

E
R

F
A

C
E

ADC

ADRV9008-1 AND ADRV9008-2

ADC

Rx
INPUT

CAL
PLL

Rx LO

16
82

2-
11

7

LOW-PASS
FILTER

LOW-PASS
FILTER

Figure 114. Receiver HD2 Tracking (50 Ω Load and Calibration PLL Not Active)

Figure 115 shows a use case where a 75 MHz multicarrier GSM signal is placed on the lower half of the spectrum. The receiver HD2
algorithm is designed to monitor the −5 MHz to −50 MHz frequency range. The algorithm detects any signals in this range and corrects
the HD2 of these signals on the same side of the spectrum as the carrier. The range of observation is limited because the HD2 of signals
outside of this range fall out of band. Similarly, if the multicarrier GSM signal was placed in the upper half of the spectrum, the HD2
correction algorithm observes between the 5 MHz and 50 MHz frequency range and corrects the HD2 on the same side of the signals
observed.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 177 of 247

MULTICARRIER GSM

HD2 ALGORITHM OBSERVES BETWEEN
–5MHz AND –50MHz, CORRECTING THE
HD2 OF ANY SIGNALS IN THIS BANDWIDTH. 16

82
2-

11
8

Figure 115. GSM Use Case and HD2 Correction Showing a Negative Offset of the Carrier from the LO

The following API is used to indicate which carrier placement is being used:
TALISE_setRxHd2Config(taliseDevice_t *device, taliseRxHd2Config_t *hd2CalConfig)

Parameter: hd2CalConfig is a taliseRxHd2Config_t structure containing one integer member, posSideBandSel. The valid settings of
posSideBandSel are described in Table 93.

Table 93. Permissible Setting Values for posSideBandSel
posSideBandSel

Setting Value Description
0 Multicarrier GSM placed on the lower side of complex spectrum. Rx HD2 corrects for HD2 components on the lower

side of the spectrum.
1 Multicarrier GSM placed on the upper side of the complex spectrum. Rx HD2 corrects for HD2 components on the

upper side of the spectrum.

The receiver HD2 tracking algorithm utilizes normal traffic data to calculate updated corrected coefficients and runs continuously when
the receivers are active.

It is a system requirement that the receiver channels are enabled for the receiver HD2 to run.

Figure 116 is a timing diagram that shows when the receiver HD2 can run based on the receiver enable signal.

Rx ENABLE

PERIODS WHERE
Rx HD2

CAN RUN
Rx HD2 Rx HD2

16
82

2-
11

9

Figure 116. Time Periods to Run Receiver HD2 Based on Receiver Enable Signal

ADRV9008-2 and ADRV9009 Observation Receiver QEC Tracking Calibration

The observation receiver QEC tracking algorithm improves the observation receiver path QEC performance during operation and utilizes
normal traffic data (for example, DPD capture data) to calculate updated corrected coefficients. The algorithm runs continuously in the
background when the observation receiver is active.

It is a system requirement that the receiver channels are enabled, for example, in TDD mode, the observation receiver QEC tracking only
runs during observation receiver periods. If only one channel is enabled, the observation receiver QEC only runs on this channel.

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

QEC
BLOCK

JE
S

D
20

4B
 I

N
T

E
R

F
A

C
E

ADC

ADRV9008-2 AND ADRV9009

ADC

ORx
INPUT

CAL
PLL Tx LO

AUX LO

16
82

2-
12

0

LOW-PASS
FILTER

LOW-PASS
FILTER

Figure 117. Observation Receiver QEC Tracking (Calibration PLL Not Active)

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 178 of 247

Figure 118 is a timing diagram that shows when the observation receiver QEC tracking calibration can be run in TDD mode. In FDD
modes, observation receive enable is high at all times. Observation receiver enable refers to the enable signal of Observation Receiver 1
and/or Observation Receiver 2.

ORx ENABLE

PERIODS WHERE
Rx QEC

CAN RUN

AIR TIME Tx Rx Tx Rx

ORx QEC ORx QEC

16
82

2-
12

1

Figure 118. Possible Periods to Run Observation Receiver QEC Tracking Calibration in TDD Mode

ADRV9008-2 and ADRV9009 Transmitter QEC Tracking Calibration

The transmitter QEC tracking is an online calibration that is run to improve the QEC performance using transmit data. The calibration
utilizes the loopback (feedback) path for operation. Therefore, the transmitter QEC tracking must be interleaved with normal DPD
captures (or channel sniffing functions) that utilize the observation receiver path. This tracking determines optimal coefficients for the
current gain setting, updating the table stored during the transmitter QEC initialization to ensure that this table has the best values for the
current operating conditions. Figure 119 shows the device configuration for the transmitter QEC tracking calibration.

It is a system requirement that the transmitter channel(s) are enabled. To run the calibration the observation receiver path must be
available for the Arm processor to use (observation receiver enable low), for example, not required by the user for DPD (or VSWR)
captures.

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

QEC
BLOCK

JE
SD

20
4B

 IN
TE

R
FA

C
E

DAC

ADRV9008-2 AND ADRV9009

DAC
Tx

INPUT

Tx LO

CAL
PLL

AUX LO

ORx
INPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADC

FEEDBACK
PATH

ATTENUATOR

COUPLER

PA

16
82

2-
12

2

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTER

SIGNAL
GENERATOR

Figure 119. Transmitter QEC Tracking Calibration Configuration (Observation Receiver Input, Calibration PLL, and Signal Generator Not Active)

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 179 of 247

Figure 120 is a timing diagram that shows periods where the tracking calibration can run in TDD mode. In FDD modes, transmit enable
is high at all times. Transmit enable refers to the enable signal of Transmitter 1 and/or Transmitter 2. Observation receive enable refers to
either Observation Receiver 1 or Observation Receiver 2, depending on which is being used.

Tx ENABLE

PERIODS WHERE
Tx QEC

CAN RUN

AIR TIME Tx Rx Tx Rx

Tx QEC

ORx ENABLE

16
82

2-
12

3

Figure 120. Possible Periods to Run Transmitter QEC Tracking Calibration in TDD Mode

Note that the transmitter QEC tracking uses an offset LO frequency on the feedback path during tracking, which ensures that the
quadrature errors of the transmitter path are not aligned with those of the observation receiver path. This frequency is set to ((Primary
Transmitter Bandwidth/4) + 5 MHz). Continuous wave tones placed at ± this offset frequency, or set at twice this offset frequency show
reduced QEC performance. Modulated signals centered at these frequencies do not have reduced performance.

ADRV9008-2 and ADRV9009 Transmitter LO Leakage Tracking Calibration

The transmitter LO leakage tracking calibration uses an external DPD path between the transmitter output and observation input to
measure LO leakage and calculate correction factors. the transmitter LO leakage tracking calibration is run when user data is being
transmitted, with the power amplifier operational). For this calibration, the auxiliary LO is used in the observation receiver path to offset
the transmitter LO leakage from the observation receiver LO. Therefore, this calibration must be interleaved with the observation
captures of the user, which utilize the transmitter LO to drive the observation receiver path. Figure 121 shows the device configuration for
the transmitter LO leakage tracking calibration with the transmitter output looped back to the observation receiver, whichever
observation receiver input is in use in the system.

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

QEC
BLOCK

JE
SD

20
4B

 IN
TE

R
FA

C
E

DAC

ADRV9008-2 AND ADRV9009

DAC
Tx

INPUT

Tx LO

CAL
PLL

AUX LO

ORx
INPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADC

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTER

FEEDBACK
PATH

ATTENUATOR

COUPLER

POWER
AMPLIFIER

SIGNAL
GENERATOR

16
82

2-
12

4

Figure 121. Transmitter LO Leakage Tracking Configuration (Feedback Path, Calibration PLL, and Signal Generator Not Active)

It is a system requirement that the transmitter channel(s) are be enabled. The observation receiver path must be available for the Arm
processor to use (observation receiver enable low), for example, not required by the user for DPD (or VSWR) captures. The observation
receiver path must be connected to the appropriate transmitter to be calibrated, and the Arm processor must be advised of which
transmitter output has a connection to which observation receiver. See the Arm GPIO Pins section for details.

The user must ensure that the appropriate external feedback path is available when the Arm processor is given access to the observation
receiver path to perform transmitter tracking calibrations.

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 180 of 247

Note that the external LO leakage tracking calibration utilizes an estimate of the external channel (gain/phase rotation) to calculate the
correction coefficients. This channel estimate is updated over time during tracking on transmitter data, and any phase/gain drift over
time/temperature can be tracked out. Sudden changes in the phase/gain of the external path can result in reduced performance, until, for
example, the algorithm that tracks the channel changes out.

By default, the algorithm acquires 67% of the new channel estimate in 200 sec. This slow update rate is chosen because, typically, the
external channel changes slowly over time. To get an optimal estimate of the external channel in a shorter period of time, the external
channel estimate can be reset using the following API function:

TALISE_resetExtTxLolChannel(taliseDevice_t *device, taliseTxChannels_t channelSel)

Parameter: channelSel is the channel for which the external LO leakage channel estimate must be reset as shown in Table 94.

Table 94. ChannelSel for TALISE_resetExtTxLolChannel()
Channels Enumerator
Tx1 TAL_TX1
Tx2 TAL_TX2
Tx1 and Tx2 TAL_TX1TX2

When the LO leakage algorithm is reset, it goes into a channel learning mode. In this mode, the channel is learned as quickly as possible,
and the default schedule is not obeyed, if the user provides more time for the algorithm to observe the external path, the algorithm takes
this time to make the observations necessary to learn the channel. The correction is not updated during this time, rather, it is frozen with
the values that were being applied before the API call was issued. After the channel is learned, further instances of transmitter LO leakage
tracking updates the LO leakage correction coefficients.

Note that the LO leakage algorithm only begins to learn the channel when the scheduler sets the pending bit. Resetting the external
channel does not reschedule the calibration; therefore, when the user resets the external channel, use the
TALISE_rescheduleTrackingCal() function to reschedule the calibration immediately after the external channel is reset.

If the sudden changes are large enough, the external channel estimate must be reset using the TALISE_rescheduleTrackingCal()
command above, but this reset is at it is at the discretion of the user at other times. The external channel must be reset is if the LO
frequency of the device has been changed or if the gain and phase have suddenly changed by the corresponding gain error and maximum
phase error values shown in Table 95.

Table 95. Table of Gain Error vs. Max Phase Error
Gain Error (dB) Maximum Phase Error (Degrees)
−3 69.26949155
−2.5 67.97895638
−2 66.59898696
−1.5 65.12136412
−1 63.53663696
−0.5 61.83382241
0 60
0.5 58.0197531
1 55.87437871
1.5 53.54073591
2 50.98950693
2.5 48.18245508
3 45.0678624

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 181 of 247

ARM GPIO PINS
The Arm processor scheduler must know which feedback is currently available so to schedule the correct transmitter LO leakage tracking
calibration, for example, if Transmitter 1 is fed back to Observation Receiver 1 at a given time, run the Transmitter 1 LO leakage tracking
calibration. The scheduler keeps track of how this feedback path(s) varies over time to ensure that the correct transmit LO leakage
tracking is run at any given time.

The Arm processor assigns two signals to each observation receiver to determine if a feedback path exists between a transmitter output
and an observation receiver input. The possible assigned signals are ORX1_TX_SEL0, ORX1_TX_SEL1, ORX2_TX_SEL0, and
ORX2_TX_SEL1. Table 96 and Table 97 show the mapping of the transmitter to the observation receiver according to these signals.

Table 96. Observation Receiver Select Bits for Observation Receiver 1
ORX1_TX_SEL1 Signal Setting ORX1_TX_SEL0 Signal Setting Description
0 0 No Tx routed to ORx1; external LO leakage tracking calibration not

run
0 1 No Tx routed to ORx1; external LO leakage tracking calibration not

run
1 0 Tx1 is routed to ORx1
1 1 Tx2 is routed to ORx1

Table 97. Observation Receiver Select Bits for Observation Receiver 2
ORX2_TX_SEL1 Signal Setting ORX2_TX_SEL0 Signal Setting Description
0 0 No Tx routed to ORx2; external LO leakage tracking calibration not

run
0 1 No Tx routed to ORx2; external LO leakage tracking calibration not

run
1 0 Tx1 is routed to ORx2
1 1 Tx2 is routed to ORx2

These signals can be controlled either through the SPI (signal level toggled internally) or through the GPIOs. To control the signals with
the SPI, use the TALISE_setTxToOrxMapping() function. This function indicates the transmitter output that is fed back to the
Observation Receiver 1 and Observation Receiver 2 input (see Table 96 and Table 97). This function is applicable in the case where fixed
feedback paths exist, for example, if Transmitter 1 is permanently routed to Observation Receiver 1 (no external switches), and
Transmitter 2 is permanently routed to Observation Receiver 2.

Note that for observation receiver bandwidths that are greater than 200 MHz (I/Q rate at 245.76 MSPS), it is not possible to switch
between observation receivers (only one can be used).

Alternatively, up to 4 GPIOs can be used (two per observation receiver used). These GPIOs can be selected from GPIO_0 to GPIO_15.
GPIOs are typically utilized because of a real-time system requirement. The ORX_TX_SEL0 signal is used to select between Transmitter 1
and Transmitter 2. The ORX_TX_SEL1 signal is used to indicate if a feedback path from either transmitter exists, which is utilized if
multiple feedback paths exist, for example, forward paths for DPD/VSWR and reverse paths for VSWR. The LO leakage algorithm must
see a consistent feedback path, and so ORX_TX_SEL1 is used to block the tracking algorithm when an alternate feedback is present at the
input of the observation receiver, such as a reverse path.

In scenarios where only two options are allowable, for example, Transmitter 1 to Observation Receiver 1 and Transmitter 2 to
Observation Receiver 1, it is possible to have the ORX_TX_SEL0 signal controlled through a GPIO for dynamic operation and to have the
ORX_TX_SEL1 signal in a fixed position, and to configure this signal through the SPI.

To advise the Arm scheduler of which pins to monitor for ORX_TX_SELx signals, use the following function:

TALISE_ setArmGpioPins(taliseDevice_t *device, taliseArmGpioConfig_t *armGpio)

In this function, *armGPIO is a pointer to a taliseArmGpioConfig structure.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 182 of 247

taliseArmGpioConfig Structure

The taliseArmGpioConfig structure contains all the settings for the Arm GPIO pins. Table 98 describes the data fields of this
structure.

Table 98. taliseArmGpioConfig Structure Parameters
Type Data Field Description
taliseArmGpioPinSettings_t orx1TxSel0Pin A structure containing the settings for the GPIO assigned to the ORX1_TX_SEL0 signal.
taliseArmGpioPinSettings_t orx1TxSel1Pin A structure containing the settings for the GPIO assigned to the ORX1_TX_SEL1 signal.
taliseArmGpioPinSettings_t orx2TxSel0Pin A structure containing the settings for the GPIO assigned to the ORX2_TX_SEL0 signal.
taliseArmGpioPinSettings_t orx2TxSel1Pin A structure containing the settings for the GPIO assigned to the ORX2_TX_SEL1 signal.
taliseArmGpioPinSettings_t enTxTrackingCals A structure containing the settings for the GPIO assigned to the enTxTrackingCals. This

pin is not supported by the Arm processor. If defined in the taliseArmGpioPinSettings_t
structure, assign the pin to GPIO_INVALID and set enable to 0.

taliseArmGpioPinSettings Structure

The taliseArmGpioPinSettings data structure holds the pin assignments, polarity, and pin enable for each of the Arm GPIO pins
(see Table 99).

Table 99. taliseArmGpioPinSettings Parameters
Type Data Field Permissible Values Description
taliseGpioSel_t gpioPinSel TAL_GPIO_00 An enumerator that contains all possible GPIO pin assignments.

TAL_GPIO_INVALID is intended for use with pins, such as the GPIO assigned to
enTxTrackingCals confirm that are not being used.

 TAL_GPIO_01
 TAL_GPIO_02
 TAL_GPIO_03
 TAL_GPIO_04
 TAL_GPIO_05
 TAL_GPIO_06
 TAL_GPIO_07
 TAL_GPIO_08
 TAL_GPIO_09
 TAL_GPIO_10
 TAL_GPIO_11
 TAL_GPIO_12
 TAL_GPIO_13
 TAL_GPIO_14
 TAL_GPIO_15
 TAL_GPIO_16
 TAL_GPIO_17
 TAL_GPIO_18
 TAL_GPIO_INVALID
unit8_t Polarity 0: normal polarity An unsigned integer indicating whether to invert GPIO polarity or not. If

inverted, then this inverts the truth tables shown in Table 96 and Table 97. 1: reversed polarity
uint8_t Enable 0: signal set by Arm

command

 1: signal set by GPIO pin

To utilize GPIO_0 as the ORX1_TX_SEL0 signal pin, a taliseArmGpioPinSettings structure is assigned to the orx1TxSel0Pin
data field of a taliseArmGpioStructure. The data fields are as follows: gpioPinSel = GPIO_0, polarity = 0, and enable = 1.

The taliseArmGpioStructure is completed with similar structures for each of the data fields, before being transferred to the
TALISE_setArmGpioPins() function.

Figure 122 shows an example of a TDD use case with Observation Receiver 1 being utilized as the observation path. There are two
forward paths used for DPD and transmitter external LO leakage. There are also two reverse paths for VSWR. With four permutations
being controlled in real-time, ORX1_TX_SEL0 and ORX1_TX_SEL1 are controlled by GPIOs.

To enable the Arm GPIOs in this configuration, the taliseArmGpioConfig structure is created as follows (assuming GPIO_10 and
GPIO_11 are used for the Arm GPIOs):

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 183 of 247

static taliseArmGpioConfig_t armGpio =

{

.orx1TxSel0Pin

{

.gpioPinSel = TAL_GPIO_10

.polarity = 0

.enable=1

}

.orx1TxSel1Pin

{

.gpioPinSel = TAL_GPIO_11

.polarity = 0

.enable=1

}

.orx2TxSel0Pin

{

.gpioPinSel = TAL_GPIO_INVALID

.polarity = 0

.enable=0

}

.orx2TxSel1Pin

{

.gpioPinSel = TAL_GPIO_INVALID

.polarity = 0

.enable=0

}

.enTxTrackingCals

{

.gpioPinSel = TAL_GPIO_INVALID

.polarity = 0

.enable=0

}

}

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 184 of 247

Figure 122 shows an example of a TDD use case where Observation Receiver 1 is used as the observation path. In this case, there are only
two forward paths that are used for DPD and transmitter external LO leakage calibrations. Two permutations are controlled in real-time,
which means that only the ORX1_TX_SEL0 signal must be controlled by a GPIO.

ORX1_TX_SEL0
ORx1

SWITCH

Tx2

Tx1

ORX1_TX_SEL1

ADRV9008-2
OR

ADRV9009

SWITCH

SWITCH

REVERSE
PATHS

FORWARD
PATHS

Tx1 ENABLE
AND

Tx2 ENABLE

PERIODS WHERE
Tx LOL

CAN RUN

AIR TIME Tx Rx Tx Rx

Tx1 LO LEAKAGE
TRACKING

Tx Rx

Tx2 LO LEAKAGE
TRACKING

ORx1 ENABLE

ORX1_TX_SEL1

ORX1_TX_SEL0

POWER
AMPLIFIER

POWER
AMPLIFIER

16
82

2-
12

5
Figure 122. Possible Periods to Run the Transmitter LO Leakage Tracking Calibration in 2-Feedback Path to a 10-Receiver TDD Use Case

The ORX1_TX_SEL1 signal must be fixed through the SPI. To do this, call the following function prior to calling the
TALISE_setArmGpioPins() function:

TALISE_setTxToOrxMapping(&taldevice, TAL_MAP_TX1_ORX, TAL_MAP_NONE)

To enable the Arm GPIOs in this configuration, the taliseArmGpioConfig structure is created as follows (assuming that GPIO_10 is
used):

static taliseArmGpioConfig_t armGpio =

{

.orx1TxSel0Pin

{

.gpioPinSel = TAL_GPIO_10

.polarity = 0

.enable=1

}

.orx1TxSel1Pin

{

.gpioPinSel = TAL_GPIO_INVALID

.polarity = 0

.enable=0

}

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 185 of 247

.orx2TxSel0Pin

{

.gpioPinSel = TAL_GPIO_INVALID

.polarity = 0

.enable=0

}

.orx2TxSel1Pin

{

.gpioPinSel = TAL_GPIO_INVALID

.polarity = 0

.enable=0

}

.enTxTrackingCals

{

.gpioPinSel = TAL_GPIO_INVALID

.polarity = 0

.enable=0

}

}

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 186 of 247

Figure 123 shows an example of a TDD use case where Transmitter 1 is fed back to Observation Receiver 1, and Transmitter 2 is fed back
to Observation Receiver 2. In this case there are two feedback paths for two transmitters. Because the feedback paths are fixed, there is no
need to control any of the ORX_TX_SEL signals in real-time. To configure this use case, call the following function during the
initialization sequence:

TALISE_setTxToOrxMapping(&taldevice, TAL_MAP_TX1_ORX, TAL_MAP_TX2_ORX)

Note that for observation receiver bandwidths that are greater than 200 MHz (I/Q rate at 245.76 MSPS), it is not possible to switch
between observation receivers (only one can used).

Tx1 ENABLE
AND

Tx2 ENABLE

PERIODS WHERE
Tx LOL

CAN RUN

AIR TIME Tx Rx Tx Rx

Tx1 LO LEAKAGE
TRACKING

Tx Rx

Tx2 LO LEAKAGE
TRACKING

ORx1 ENABLE

ORX1_TX_SEL1 LOGIC 1: FIXED OVER SPI

ORX1_TX_SEL0

ORX1_TX_SEL0

ORx1

Tx2

Tx1

ADRV9008-1
OR

ADRV9009

SWITCH

POWER
AMPLIFIER

POWER
AMPLIFIER

16
82

2-
12

6

Figure 123. Possible Periods to Run Transmitter LO Leakage Tracking Calibration Two Receiver, Two Observation Receiver TDD Use Case

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 187 of 247

INITIALIZATION CALIBRATION ERRORS
This section describes the procedure for determining the error that occurs in the event of running of the initial calibrations. If an error
occurs during an initial calibration, isolate the cause of the issue through the following description of error codes. Then, reinitialize the
device with whatever necessary change made to the initialization procedure.

For example, if the external LO leakage initial calibration is run without the external feedback path complete, the calibration advises that
it was unable to observe the transmitter channel, and that the calibration was unsuccessful. This error can be due to an external switch
being in an incorrect position.

The following commands can be used to verify that these initial calibrations have been completed by the Arm processor, as well as to
return error information from the initialization calibrations:

TALISE_waitInitCals(taliseDevice_t *device, uint32_t timeoutMs, uint8_t *errorFlag)

TALISE_checkInitCalComplete(taliseDevice_t *device, uint8_t *areCalsRunning, uint8_t *errorFlag)

In these commands, *errorFlag is used to indicate if an error has occurred. The returned error flag values are defined in Table 100.

Table 100. Error Flag Definitions Returned From waitInitCals()
errorFlag Description
0x00 Command completed successfully.
0x01 Reserved.
0x02 Command not allowed in the radio on state. The calibrations are not run. The device must not be in transmit/receive state

when initial calibrations are called.
0x03 Reserved.
0x04 Reserved.

0x05 RF PLL frequencies are not set prior to running initial calibrations. Calibrations were not run.
0x06 Initialization sequence interrupted by an abort command.
0x07 Calibration error.

If the error flag returns as 0x07, a calibration error has occurred. To determine which initial calibration is the source of the error, the
following API function can be called:

TALISE_getInitCalStatus(taliseDevice_t *device, uint32_t *calsSincePowerUp, uint32_t
*calsLastRun, uint32_t *calsMinimum, uint8_t *initErrCal, uint8_t *initErrCode)

Parameters:

• calsDoneLifetime is a bit mask indicating all the initialization calibrations that have been run since the Arm was booted. For the
definition of the bit mask, see Table 84.

• calsDoneLastRun is a bit mask indicating the specific calibrations that were run on the last call to TALISE_runInitCals().
For the definition of the bit mask, see Table 84.

• calsMinimum is a bit mask indicating the set calibrations that must be performed before the Arm allows the user to move the
processor into the radio on state. For the definition of the bit mask, see Table 84.

• initErrCal is the code that indicates which calibration returned and error, if any, during initialization. See Table 101 for the
mapping between value and type of calibration.}

• initErrCode is the exact error code returned by the calibration, if any has occurred, during TALISE_runInitCals(). See
Table 102 to Table 111 for details of the possible errors returned.

Table 101. Mapping Between intErrCal and Failed Calibration
initErrCal Calibration
0x00 Tx baseband filter calibration
0x01 ADC tuner calibration
0x02 Rx TIA filter calibration
0x03 Rx dc offset calibration
0x04 Tx attenuation delay
0x05 Rx gain delay
0x06 ADC flash calibration
0x07 Path delay calibration
0x08 Tx LO leakage initial calibration

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 188 of 247

initErrCal Calibration
0x09 Tx LO leakage external initial calibration
0x0A Tx QEC initial calibration
0x0B Loopback ORx LO delay
0x0C Loopback RxQEC initial calibration
0x0D Rx LO delay
0x0E Rx QEC initial calibration
0x0F Not applicable
0x10 ORx LO delay
0x11 ORx QEC initial calibration
0x12 Tx DAC calibration
0x13 ADC stitching calibration

Transmitter Baseband Filter Calibration Errors

Table 102 describes the initial error flags returned during transmitter baseband filter calibration.

Table 102. initErrCodes Error Flags for Transmitter Baseband Filter Calibration
initErrCode Flag Description
0 No error
1 Reserved
2 Calibration timed out

ADC Tuner Calibration Errors

Table 103 describes the initial error flags returned during ADC tuner calibration.

Table 103. initErrCodes Error Flags for ADC Tuner Calibration
initErrCode Flag Description
0 No error
1 Calibration timed out

Receiver TIA Calibration Errors

Table 104 describes the initial error flags returned during receiver TIA calibration.

Table 104. initErrCodes Error Flags for Receiver TIA Calibration
initErrCode Flag Description
0 No error
1 Error configuring PLL, ORx
2 Error during TIA Calibration, ORx
3 Error configuring PLL, Rx
4 Error during TIA calibration, Rx

Receiver DC Offset Calibration Errors

Table 105 describes the initial error flags returned during receiver dc offset calibration.

Table 105. initErrCodes Error Flags for Receiver DC Offset Calibration
initErrCode Flag Description
0 No error
1 Calibration timed out, Rx
2 Calibration timed out, ORX
3 Calibration timed out, receive path loopback

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 189 of 247

ADC Flash Calibration Errors

Table 106 describes the initial error flags returned during ADC Flash calibration.

Table 106. initErrCodes Error Flags for ADC Flash Calibration
initErrCode Flag Description
0 No error
1 Calibration aborted
2 Calibration timed out
3 No channel is selected
4 Rx is disabled
5 ORx is disabled

Path Delay Calibration Errors

Table 107 describes the initial error flags returned during path delay calibration.

Table 107. initErrCodes Error Flags for Path Delay Calibration
initErrCode Flag Description
0 No error
1 Rx is disabled
2 Tx is disabled
3 Data captured timed out due to hardware setup
4 Data capture aborted

Transmitter LO Leakage Calibration (Internal and External) Errors

Table 108 describes the initial error flags returned during transmitter LO leakage calibration.

Table 108. initErrCodes Error Flags for Transmitter LO Leakage Calibration
initErrCode Flag Description
0 No error
1 Reserved
2 Tx is disabled
3 Path delay not present (invalid)
4 Initial calibration not completed
5 Internal loopback tracking disabled
6 Data capture timed out due to hardware setup
7 Reserved
8 No Tx to ORx mapping

Receiver, Observation Receiver, and Loopback LO Delay Calibration Errors

Table 109 describes the initial error flags returned during the receiver, observation receiver, and loopback LO delay calibration.

Table 109. initErrCodes Error Flags for Receiver, Observation Receiver, and Loopback LO Delay Calibration
initErrCode Flag Description
0 No error
1 Rx is disabled
2 Tx is disabled
3 CalPLL error
4 Reserved
5 Reserved
6 Reserved
7 Batch time too small

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 190 of 247

Receiver QEC Initial Calibration Errors

Table 110 describes the initial error flags returned during the receiver QEC initial calibration.

Table 110. initErrCodes Error Flags for Receiver QEC Initial Calibration
initErrCode Description
0 No error
1 Rx is disabled
2 Tx is disabled
3 CalPLL error
4 Settling time error
5 Reserved
6 Reserved
7 Reserved
8 Batch time too small

Transmitter QEC Initial Calibration Errors

Table 111 describes the initial error flags returned during transmitter QEC calibration.

Table 111. initErrCodes Error Flags for Transmitter QEC Calibration
initErrCode Flag Description
0 No error
1 Reserved
2 Tx is disabled
3 No path delay present

TRACKING CALIBRATION MONITORING
During operation, the Arm processor can be monitored with a variety of API functions. This section describes the information that is
available from the Arm processor.

System Exception Monitoring Using the GP_INTERRUPT Pin

The GP_INTERRUPT pin alerts the user when errors occur within the device. This is a single pin that advises numerous potential errors,
such as Arm errors, PLL unlocking events, and JESD204B errors. The functionality and configuration of the GP_INTERRUPT pin is
covered in the General-Purpose Interrupt Operation section, which advises how to mask only certain events to trigger the
GP_INTERRUPT pin.

This section also advises how to determine which error event has occurred. If the source of the error is an Arm error, reset and reinitialize
the device.

Pending Calibrations and Determining Errors in Tracking Calibrations

The following function can be used to determine which calibrations are pending and if one of the tracking calibrations has returned an
error:

TALISE_getPendingTrackingCals(taliseDevice_t *device, uint32_t *pendingCalMask)

In this function, pendingCalMask is the returned mask that advises if a calibration is pending or has returned an error as indicated in
Table 112.

Table 112. pendingCalMask Bit Descriptions
pendingCalMask Bit Description
D0 Rx1 QEC tracking pending bit
D1 Rx1 QEC tracking error bit
D2] Rx2 QEC tracking pending bit
D3 Rx2 QEC tracking error bit
D4 ORx1 QEC tracking pending bit
D5 ORx1 QEC tracking error bit
D6 ORx2 QEC tracking pending bit
D7 ORx2 QEC tracking error bit
D8 Tx1 LO leakage tracking pending bit

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 191 of 247

pendingCalMask Bit Description
D9 Tx1 LO leakage tracking error bit
D10 Tx2 LO leakage tracking pending bit
D11 Tx2 LO leakage tracking error bit
D12 Tx1 QEC tracking pending bit
D13 Tx1 QEC tracking error bit
D14 Tx2 QEC tracking pending bit
D15 Tx2 QEC tracking error bit

In the event of an error occurring during one of the calibrations, clear and reschedule the error using the
TALISE_rescheduleTrackingCal()function.

Tracking Calibration Status Monitoring

Tracking calibration status monitoring that monitors how many times the calibration has run since inception, and what error the tracking
calibration has returned.

Each tracking calibration also has its own API to return its current status, as follows:

TALISE_getTxLolStatus(taliseDevice_t *device, taliseTxChannels_t channelSel, taliseTxLolStatus_t
*txLolStatus)

TALISE_getTxQecStatus(taliseDevice_t *device, taliseTxChannels_t channelSel, taliseTxQecStatus_t
*txQecStatus)

TALISE_getRxQecStatus(taliseDevice_t *device, taliseRxChannels_t channelSel, taliseRxQecStatus_t
*rxQecStatus)

TALISE_getOrxQecStatus(taliseDevice_t *device, taliseObsRxChannels_t channelSel,
taliseOrxQecStatus_t *orxQecStatus)

TALISE_getRxHd2Status(taliseDevice_t *device, taliseRxChannels_t channelSel, taliseRxHd2Status_t
*rxHd2Status)

The channelSel parameter indicates which channel status to return. It is only possible to read back one channel at a time. For this
reason, only certain elements of the taliseTxChannels_t, taliseRxChannels_t, and taliseObsRxChannels_t data
structures are applicable (see Table 113).

Table 113. Applicable Enumerators for Specified channelSel Tracking Calibration Status Functions
Enumerator taliseTxChannels_t Channels taliseRxChannels_t Channels taliseObsRxChannels_t Channels
TAL_TX1 Tx1 Not applicable Not applicable
TAL_TX2 Tx2 Not applicable Not applicable
TAL_RX1 Not applicable Rx1 Not applicable
TAL_RX2 Not applicable Rx2 Not applicable
TAL_ORX1 Not applicable Not applicable ORx1
TAL_ORX2 Not applicable Not applicable ORx2

The individual status types (taliseTxLolStatus_t, taliseTxQecStatus_t, taliseRxQecStatus_t,
taliseOrxQecStatus_t, and taliseRxHd2Status_t) are all equivalent and are composed of the parameters described in
Table 114.

Table 114. Tracking Calibration Status Type Definitions
Type Data Field Description
uint32 errorCode The returned error code from the calibration algorithm. 0 indicates no error.
uint32 percentComplete The percent of the required data collected for the current instance of the tracking calibration.

Range of field: 0 to 100.
uint32 Metric (see Table 115) A metric is provided that can provide debug information of operation of the algorithm. The name

and measurement used for this metric differs per calibration. See Table 115 for metric descriptions.
uint32 iterCount A counter that updates each time a calibration has completed.
uint32 updateCount A counter that updates each time a calibration updates the correction being applied in the

correction hardware.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 192 of 247

Table 115. Calibration Status Metric Descriptions
Calibration Status Metric Name Description
taliseTxLolStatus_t varianceMetric A metric related to the inverse of the variance of the measured LO leakage. Higher values are

indicative of lower variance, which can indicate better performance (dependent on signal
conditions). This metric can be useful in debug environments if questions of performance
exist.

taliseTxQecStatus_t correctionMetric A metric related to the phase and gain adjustments made by the QEC algorithm. Smaller
adjustments can be indicative of better performance (dependent on signal conditions). This
metric can be useful in debug environments if questions of performance exist.

taliseRxQecStatus_t selfCheckIrrDb An estimate of the current QEC performance reported as an image rejection ratio (in dB). A
readback of 80 advises that the current estimated QEC performance is 80 dBc. The
performance is measured as the power weighted average QEC performance across the entire
band. It is measured periodically after the correction block. Before the first calculation, this
metric reads back 0xFFFFFFFF − 1. This metric can be useful in debug environments if
questions of performance exist.

taliseOrxQecStatus_t selfCheckIrrDb An estimate of the current QEC performance reported as an image rejection ratio (in dB). A
readback of 80 advises that the current estimated QEC performance is 80 dBc. The
performance is measured as the power weighted average QEC performance across the entire
band. It is measured periodically after the correction block. Before the first calculation, this
metric reads back 0xFFFFFFFF − 1. This metric can be useful in debug environments if
questions of performance exist.

taliseRxHd2Status_t confidenceLevel The confidence level on the correction coefficient applied to cancel HD2. Until the calibration
makes its first observation, this metric reads back 0. Otherwise, the confidence level is
between 1 and 7, where 7 indicates the highest confidence. This metric can be useful in
debug environments if questions of performance exist.

Transmitter QEC Tracking Calibration Errors

Table 116 describes the error flags that are returned during transmitter QEC tracking calibration.

Table 116. Transmitter QEC Tracking Calibration Error Flags
initErrCode Flag Description
0 No error
0x30001 Data capture failed
0x30002 Tx is disabled
0x30003 Initial calibration not performed
0x30004 Numerically controlled oscillator failed to lock
0x30005 Batch time too small

Receiver/Observation Receiver QEC Tracking Calibration Errors

Table 117 describes the error flags that are returned during receiver/observation receiver QEC tracking calibrations.

Table 117. Receiver/Observation Receiver QEC Tracking Calibration Error Flags
initErrCode Flag Description
0 No error
1 Reserved
2 Data capture error
3 Batch time too small

Receiver HD2 Tracking Calibration Errors

Table 118 describes the error flags that are returned during receiver HD2 tracking calibrations.

Table 118. Receiver HD2 Tracking Calibration Error Flags
initErrCode Flag Description
0 No error
1 No Rx selected

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 193 of 247

READING THE ARM VERSION
When the Arm processor is booted up, it is possible to read back the Arm version using the following function:

TALISE_getArmVersion(taliseDevice_t *device, uint8_t *majorVer, uint8 minorVer, unit8_t *rcVer)

Parameters include the following:

• majorVer is the major version of the Arm build.
• minorVer is the minor version of the Arm build.
• rcVer is the release candidate version (build number).

Each Arm build has a unique combination of these versions.

PERFORMING AN ARM MEMORY DUMP
As noted in the General-Purpose Interrupt Operation section of this user guide, the Arm processor uses the GP_INTERRUPT pin to
advise if the processor detects an error. At this stage, perform an Arm memory dump, and then provide this dump to Analog Devices for
diagnostics. There is no API written to perform a full Arm memory dump because the API is written to be file system agnostic.

Example code is supplied in the Example Code for Performing an Arm Memory Dump Operation section. This code reads the Arm
memory and writes the binary byte data directly to a binary file. Note that an exception is forced if an exception has not already occurred.
When an exception occurs, important diagnostic information is stored in the Arm memory. In the event of the Arm being dumped for
debug in situations where an exception has not occurred, this code calls an exception such that this diagnostic information is stored
before the Arm memory is dumped.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 194 of 247

Example Code for Performing an Arm Memory Dump Operation

/// <summary>

 /// Reads the ARM Memory and writes the binary byte array directly to a binary file. Fi
rst 114688 bytes are program memory followed

 /// by 81920 bytes of data memory. The binaryFilename is opened before reading the ARM
memory to verify that the filepath is has valid write access

 /// before reading ARM memory. A file IO exception will be thrown if write access is no
t valid for the binaryFilename path.

 /// </summary>

 /// <param name="binaryFilename">File path to save the binary data. Make sure you have
write access to the location.</param>

 /// <exception cref="InvalidOperationException">Thrown if TCPIP is not connected</except
ion>

 public void DumpArmMemory(string binaryFilename)

 {

 if (this.dllScriptAction != AdiCommandServerClient.DllScriptActions.ExecuteOnly)

 {

 Logging.LogApi("Link.Talise.DumpArmMemory", binaryFilename);

 if (this.dllScriptAction == AdiCommandServerClient.DllScriptActions.LogOnly)

 {

 return;

 }

 }

 if (this.hw.Connected)

 {

 const UInt32 armExceptionAddr = 0x0101BFF0;

 //Write in BINARY FILE format

 String filename = binaryFilename;

 System.IO.FileStream fileStream = new System.IO.FileStream(filename, System.IO.F
ileMode.Create, System.IO.FileAccess.Write);

 byte[] programMem = new byte[114688];

 byte[] dataMem = new byte[81920];

 //Check if exception has occurred

 byte[] exceptionArray = new byte[4];

 this.ReadArmMem(armExceptionAddr, 4, 0, ref exceptionArray);

 UInt32 exceptionValue = (UInt32)(exceptionArray[0] | (exceptionArray[1] << 8) |
(exceptionArray[2] << 16) | (exceptionArray[3] << 24));

 byte armException = 0;

 //TODO: read GP Interrupt status [4] to see if ARM interrupt occurred

 if (exceptionValue == 0)

 {

 //Force an exception during ARM MEM dump for more useful information

 byte armMailboxReady = 0;

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 195 of 247

 this.ReadEventStatus(WaitEvent.ARMBUSY, ref armMailboxReady);

 if (armMailboxReady == 1)

 {

 this.SendArmCommand(0x0A, new byte[] { 0x69 }, 1);

 System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatc
h();

 stopWatch.Start();

 while (exceptionValue == 0)

 {

 //TODO: add call to get GP Interrupt status [4]

 //armException = GP INt status[4]

 this.ReadArmMem(armExceptionAddr, 4, 0, ref exceptionArray);

 exceptionValue = (UInt32)(exceptionArray[0] | (exceptionArray[1] <<
8) | (exceptionArray[2] << 16) | (exceptionArray[3] << 24));

 //timeout to break while loop

 if (stopWatch.ElapsedMilliseconds > 5000)

 {

 break;

 }

 }

 armException = 0;

 stopWatch.Stop();

 }

 }

 this.ReadArmMem(0x01000000, programMem.Length, 0, ref programMem);

 this.ReadArmMem(0x20000000, dataMem.Length, 0, ref dataMem);

 if (armException == 0)

 { //if we forced an exception, clear the exception so the ARM will continue to r
un.

 //TODO: Write x13C1[0] = 0 to clear forced ARM exception

 this.WriteArmMem(armExceptionAddr, 4, new byte[] { 0, 0, 0, 0 });

 }

 fileStream.Write(programMem, 0, programMem.Length);

 fileStream.Write(dataMem, 0, dataMem.Length);

 fileStream.Close();

 }

 else

 {

 throw new InvalidOperationException("No Hardware Connection");

 }

 }

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 196 of 247

FILTER CONFIGURATION
This section describes the digital filters within the devices, and provides a description of each of the filters in terms of filter coefficients
and positions within the signal chain. The API structures are also described in this section and an example profile specific configuration
is provided for each of the signal chains, as well as a description of the API functions that are used to configure the filters.

RECEIVER SIGNAL PATH
The ADRV9008-1 and ADRV9009 have independent signal paths for the Receiver 1 and Receiver 2 ports. Each receiver signal path
consists of separate I/Q mixers that feed into programmable TIAs serving as low-pass filters in the analog datapath. The signals are then
converted by the Σ-Δ ADCs, and filtered in half-band decimation stages and the programmable finite impulse response filter (RFIR). The
fixed coefficient half-band filters (RHB1, RHB2, RHB3, and DEC5) and the RFIR are designed to prevent data wrapping and overrange
conditions.

The IF conversion stage the receiver with the ability to frequency shift or upsample/downsample digital data. Configurations supported
include real IF (real valued baseband data) configuration and low IF (complex data) configuration.

Figure 124 shows the signal path for the Receiver 1 and Receiver 2 signal chain. The 90° block, LO generator, IADC, QADC, QEC
correction, dc correction, and digital gain blocks are not discussed in this reference manual.
Tx1 SIGNAL PATH, I AND Q CHANNEL

Tx2 SIGNAL PATH, I AND Q CHANNEL

90°

90°

DEC5

�LO
GEN

IADC RHB3 RHB2
NB

RHB1 PFIR QEC
CORR

DC
CORR

DC
GAIN

JE
S

D
20

4B
 I

N
T

E
R

F
A

C
E

16
82

2-
12

8

IF
C

O
N

V
E

R
S

IO
N

IF
C

O
N

V
E

R
S

IO
N

TIA

DEC5

QADC RHB3 RHB2
NB

RHB1 PFIR QEC
CORR

DC
CORR

DC
GAINTIA

DEC5

IADC RHB3 RHB2
NB

RHB1 PFIR QEC
CORR

DC
CORR

DC
GAINTIA

DEC5

QADC RHB3 RHB2
NB

RHB1 PFIR QEC
CORR

DC
CORR

DC
GAINTIA

Figure 124. Receiver 1 and Receiver 2 Signal Paths

RECEIVER TRANSIMPEDANCE AMPLIFIER (TIA)
The receiver transimpedance amplifier is a low-pass filter with a single, real pole frequency response. The ADRV9008-1 and ADRV9009
support bandwidths up to 200 MHz and each TIA supports a pass-band bandwidth of 100 MHz on the I and Q paths. The TIA is
calibrated during device initialization to ensure a consistent frequency corner across all devices. The TIA 3 dB bandwidth is set within the
device data structure and is profile dependent. Roll-off within the receiver pass band is compensated by the RFIR to ensure a maximally
flat pass band frequency response.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 197 of 247

RECEIVE DEC5
Either the DEC5 filter or the combination of RHB3 and RHB2 is used in the receiver digital path. The DEC5 filter decimates by a factor of
5. The DEC5 filter coefficients are as follows:

[0.002197, 0.004272, 0.006836, 0.008789, 0.008545, 0.003418, −0.004639, −0.015381, −0.025512, −0.029785, −0.022461, −0.002441,
0.03125, 0.074707, 0.119141, 0.155396, 0.176758, 0.176758, 0.155396, 0.119141, 0.074707, 0.03125, −0.002441, −0.022461, −0.029785,
−0.025512, −0.015381, −0.004639, 0.003418, 0.008545, 0.008789, 0.006836, 0.004272, 0.002197]

RECEIVE HALF-BAND 3 (RHB3) FILTER
The RHB3 filter is a fixed, coefficient decimating filter that decimates by a factor of 2. The RHB3 coefficients are as follows.

[−0.01874, −0.04218, 0.050476, 0.293884, 0.439636, 0.293884, 0.050476, −0.04218, −0.01874]

RECEIVE HALF-BAND 2, NARROW-BAND (RHB2) FILTER
The RHB2 narrow-band filter is a fixed, coefficient decimating filter that decimates by a factor of 2. The RHB2 coefficients are as follows.

[0.003174, 0, −0.01239, 0, 0.03418, 0, −0.08551, 0, 0.310913, 0.5, 0.310913, 0, −0.08551, 0, 0.03418, 0, −0.01239, 0, 0.003174]

RECEIVE HALF-BAND 1 (RHB1) FILTER
The RHB1 filter is a fixed, coefficient decimating filter that can decimate by a factor of 2, or it can be bypassed. The RHB1 coefficients are
as follows:

[−0.000122, 0, 0.000244, 0, −0.000488, 0, 0.000854, 0, −0.001221, 0, 0.001831, 0, −0.002502, 0, 0.003479, 0,
−0.004700, 0, 0.006287, 0, −0.008179, 0, 0.010620, 0, −0.013611, 0, 0.017578, 0, −0.022766, 0, 0.030029, 0, −0.040955, 0, 0.059998, 0,
−0.103027, 0, 0.313721, 0.493652, 0.313721, 0, −0.103027, 0, 0.059998, 0, −0.040955, 0, 0.030029, 0, −0.022766, 0, 0.017578, 0, −0.013611,
0, 0.010620, 0, −0.008179, 0, 0.006287, 0, −0.004700, 0, 0.003479, 0, −0.002502, 0, 0.001831, 0, −0.001221, 0, 0.000854, 0, −0.000488, 0,
0.000244, 0, −0.000122]

RECEIVER FINITE IMPULSE RESPONSE (RFIR) FILTER
The programmable RFIR filter acts as a decimating filter that can decimate by a factor of 1, 2, or 4, or it can be bypassed. The RFIR is used
to compensate for the roll-off of the analog TIA low-pass filter. The RFIR can use either 24, 48, or 72 filter taps.

The maximum number of taps is limited by the FIR clock rate (data processing clock, DPCLK). The maximum DPCLK clock rate is
500 MHz. The DPCLK clock rate is the ADC clock rate divided by 4 or 5. The ADC clock rate is divided by 4 when using the HB2 and
HB3 filters, and is divided by 5 when using the DEC5 filter. The DPCLK clock rate affects the maximum number of RFIR filter taps that
can be used, as shown in the following equation.

Maximum Number of RFIR Filter Taps = (DPCLK Clock Rate ÷ Receiver I/Q Data Rate) × 24

The RFIR also has programmable gain setting of +6 dB, 0 dB, −6 dB, or −12 dB.

RECEIVER IF CONVERSION
The IF conversion stage provides the user with the ability to change how the received data is presented to the JESD204B port. Figure 125
shows a block diagram of the IF conversion stage. There are two parallel paths where data can be processed, referred to as Band A and
Band B. In the circuitry of each band, there are two mixer stages, allowing upshifting or downshifting, interpolation and decimation
stages, and a half-band filter with a pass-band of 0.4 × sample rate. The coefficients of the half-band filter in this IF conversion stage are as
follows:

[−9.1553 × 10−5, 0, 2.4414 × 10−4, 0, −5.7983 × 10−4, 0, 0.0012, 0, −0.0023, 0, 0.0040, 0, −0.0065, 0, 0.0103, 0, −0.0157, 0, 0.0236, 0, −0.0357,
0, 0.0563, 0, −0.1015, 0, 0.3168, 0.5000, 0.3168, 0, −0.1015, 0, 0.0563, 0, −0.0357, 0, 0.0236, 0, −0.0157, 0, 0.0103, 0, −0.0065, 0, 0.0040, 0,
−0.0023, 0, 0.0012, 0, −5.7983 × 10−4, 0, 2.4414 × 10−4, 0, −9.1553 × 10−5]

IF Conversion Use Cases

The following use cases provide an example of the types of functionality supported by this block.

In the complex low IF to zero IF use case, the received signal is offset from LO such that the entire signal of interest is on one side of the
LO. The Band A, Numerically Controlled Oscillator 1, is used to downshift the signal such that it is centered at 0 Hz. There is a half-band
filter and decimate by 2 stage, that decreases the bandwidth and the I/Q rate if used. This decimation reduces the number of JESD204B
lanes required, or the rate that the lanes need to be run at.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 198 of 247

Figure 126 shows the IF conversion stage configuration for a receiver profile of 100 MHz with an I/Q rate of 122.8MHz, which is
configured for reception of a total of 200 MHz RF bandwidth to receive an offset multicarrier GSM signal. For a +75 MHz bandwidth,
multicarrier GSM signal, the center frequency is +52.5 MHz offset from the LO, so that the band occupies from ±15 MHz to ± 90 MHz.
The receiver then uses the IF conversion stage to shift the signal so that it is centered at about 0 Hz, filters with the half-band filter, and
decimates the output by two, so that the I/Q rate that is sent over the JESD204B is 122.88 MSPS.

HB FILTER

BAND A CIRCUITRY

BAND B CIRCUITRY

HB FILTER + DEC2

BAND A
NCO 1

BAND A
NCO 2

DIG GAIN
COMP

I, Q

INT2 + HB FILTER

2

2

2

2

2

2

22

2

2

2

2

2
2

2

HB FILTER

HB FILTER + DEC2

BAND B
NCO 1

BAND B
NCO 2

DIG GAIN
COMP

INT2 + HB FILTER

16
82

2-
12

9

Figure 125. Block Diagram of the IF Conversion Stage (All Circuitry is Implemented in Quadrature as Indicated)

HB FILTER

BAND A CIRCUITRY

BAND B CIRCUITRY

HB FILTER + DEC2

BAND A
NCO 1

BAND A
NCO 2

DIG GAIN
COMP

I, Q

INT2 + HB FILTER

2

2

2

2

2

2

22

2

2

2

2

2
2

2

HB FILTER

HB FILTER + DEC2

BAND B
NCO 1

BAND B
NCO 2

I, Q

DIG GAIN
COMP

INT2 + HB FILTER

MC-GSM
15MHz

52.5MHz0 f

INPUT TO IF
CONVERSION STAGE

IQ RATE: 245.76MSPS

OUTPUT OF BAND A
MIXER STAGE 1

IQ RATE: 245.76MSPS

MC-GSM

0 f

MC-GSM

0 f

OUTPUT OF HB FILTER AND
DEC 2 STAGE AND FINAL OUTPUT

IQ RATE: 122.88MSPS

16
82

2-
13

0

Figure 126. Block Diagram of the IF Conversion Stage in Zero IF, Multicarrier GSM Configuration

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 199 of 247

RECEIVER SIGNAL PATH EXAMPLE
The TTES provides an example depicting how the baseband filtering stages are used in profile configurations for a signal pathway. In this
example, the receiver profile of 200 MHz with an I/Q rate of 245.76 MHz profile is selected for the receiver channels.

Figure 127 shows the filter configuration for this profile. The signal rate shown after the RFIR block is equal to the I/Q rate of the profile.

ADC ADC CLK

1966.08MHz

TIA

491.52MHz 491.52MHz 245.76MHz

1966.08MHz
HS_DIGCLK

R1 CLKRHB3
2

FROM
MIXER

÷1

Rx SAMP CLK

Rx DATA

RHB2
2

RHB1
1

CLKRF RFIR
2

16
82

2-
13

1

Figure 127. Filter Configuration for the Receiver Profile of 200 MHz with an I/Q Rate of 245.76 MHz

A graphed frequency response of the TIA, digital filters, ADC transfer function, and the composite response from dc to the sampling rate
of the ADC is available in the TTES in the Rx Summary tab, as shown in Figure 128.

20

–36

–92

–148

M
A

G
N

IT
U

D
E

(d
B

)

–204

–260
0 393.216 786.432 1179.648

BASEBAND FREQUENCY (MHz)
1572.864 1966.080

16
82

2-
33

1

PROFILE PASS BAND (MHz)
100

3dB CORNER (MHz)
118.08

DC GAIN (dB)
Tx FILTER RESPONSE

–0.002
PASS-BAND RIPPLE (dB)

0.011

COMPOSITE
Rx TIA
DIGITAL
ADC SIGNAL TRANSFER FUNCTION

Figure 128. Receiver Filter Responses

An examination of the profile pass band frequency shows that the receiver TIA 3 dB setting slightly attenuates information within the
pass band. This analog attenuation is compensated by the digital filter response to obtain a maximally flat pass band for this profile. A
zoomed in view of the pass band is shown in Figure 129.

20

–36

–92

–148

M
A

G
N

IT
U

D
E

(d
B

)

–204

–260
0 393.216 786.432 1179.648

BASEBAND FREQUENCY (MHz)
1572.864 1966.080

COMPOSITE
Rx TIA
DIGITAL
ADC SIGNAL TRANSFER FUNCTION

16
82

2-
13

2

Figure 129. Examination of the Pass Band Frequency Response of a Receiver Profile of 200 MHz with an I/Q Rate of 245.76 MHz Profile

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 200 of 247

Receiver Filter API Structure

The filter configuration is stored in the taliseRxProfile_t structure. This structure is stored within the taliseRxSettings_t
structure, which is stored in the taliseInit_t structure and contains the parameters described in Table 119.

Table 119. taliseRxProfile_t Structure Parameters
Type Data Field Permissible Values Description
taliseFir_t rxFIR See Table 120. See Table 120.
uint8_t rxFirDecimation 1, 2, and 4 RFIR decimation setting.
unit8_t rxDec5Decimation 4, 5 Setting to use either the DEC5 or HB3

and HB2 in the ORx path.
5: Use DEC5.
4: Use HB3 and HB2.

uint8_t rhb1Decimation 1, 2 Rx HB1 decimation setting. 1 means
bypass, 2 means in use.

uint32_t rxOutputRate_kHz 46,080 to 307,200 I/Q data rate (to the input of the
JESD204B block).

uint32_t rfBandwidth_Hz 20,000,000 to 200,000,000 The RF bandwidth specified in Hz.
uint32_t rxBbf3dBCorner_kHz 20,000 to 200,000 The baseband frequency 3 dB corner

frequency specified in kHz.
uint16_t rxAdcProfile Valid ADC arrays are provided for specific use

cases through the GUI software init.c files or
Python scripts.

A 42-element array that provides the
profile for the loop filter of the Σ-Δ
ADC.

taliseRxDdc_t rxDdcMode See Table 121. See Table 121.
taliseRxNcoShifterCfg_t rxNcoShifterCfg See Table 122. See Table 122.

The permissible values provided in Table 120 are based on the currently defined profiles/use cases. A given profile has a specific
combination of these values.

Receiver FIR

The taliseFir_t structure is contained within the taliseRxProfile_t structure and contains the parameters described in
Table 120.

Table 120. taliseFir_t rxFir Structure Parameters
Type Data Field Permissible Values Description
int8_t gain_dB +6, 0, −6, −12 The setting (in dB) for the gain block within the RFIR.
uint8_t numFirCoefs 24, 48, 72 Number of taps to be used in the RFIR.
int16_t * coefs Not applicable A pointer to an array of filter coefficients.

The receiver FIR is specified in signed coefficients from +32,767 to −32,768. The gain block allows more flexibility when designing a
digital filter. For example, a FIR can be designed with a gain of 6 dB in the pass band, and then this block can be set to a gain of −6 dB to
give an overall gain of 0 dB in the pass band. The gain of the filter coefficients (Σ FIR coefficients) can be calculated as follows:

Σ
=

−
FIR Coefficients

DC Gain
152 1

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 201 of 247

Receiver Digital Downconverter (DDC) Mode

The receiver DDC mode is defined within the taliseRxProfile_t structure as an enumerated type from the taliseRxDdc_t type
definition. The permissible values are shown in Table 121.

Table 121. Permissible Settings of Receiver DDC Mode
Permissible Enumerator Values Description
TAL_RXDDC_BYPASS In this mode, the half-band filter and interpolation/decimation stages are bypassed.
TAL_RXDDC_FILTERONLY In this mode, the half-band filter stage is used, but the interpolation and decimation stages are

bypassed.
TAL_RXDDC_INT2 In this mode, the interpolate by 2 and half-band filter stages are utilized.
TAL_RXDDC_DEC2 In this mode, the half-band filter and decimate by 2 stages are utilized.
TAL_RXDDC_BYPASS_REALIF In this mode, the half-band filter and interpolation/decimation stages are bypassed. At the input to the

JESD204B core, Q data is dropped.
TAL_RXDDC_FILTERONLY_REALIF In this mode, the half-band filter stage is used, but the interpolation and decimation stages are

bypassed. At the input to the JESD204B core, Q data is dropped.
TAL_RXDDC_INT2_REALIF In this mode, the interpolate by 2 and half-band filter stages are utilized. At the input to the JESD204B

core, Q data is dropped.
TAL_RXDDC_DEC2_REALIF In this mode, the half-band filter and decimate by 2 stages are utilized. At the input to the JESD204B

code, Q data is dropped.

Receiver NCO Shifter Configuration

The taliseRxNcoShifterCfg_t structure is contained within the taliseRxProfile_t structure. It contains the settings of the
NCO stages of Band A and Band B, as well as the bandwidth and baseband center frequency of the desired signal(s). This allows the API
to ensure that the IF conversion stage has been correctly setup, and that the signal(s) post NCO shifting is falling within the bandwidth
provided by the I/Q rate being utilized, and the pass band bandwidth of the half-band filter if utilized.

Table 122. Description of the taliseRxNcoShifterCfg_t structure
Type Data Field Description
uint32_t bandAInputBandwidth_kHz The bandwidth of the received signal being processed in Band A, specified in kHz.
int32_t bandAInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in

Band A, specified in kHz.
int32_t bandANco1Freq_kHz The frequency shift to be provided by NCO1 of Band A, specified in kHz. Positive values shift the

spectrum up in frequency; negative values shift the spectrum down in frequency.
int32_t bandANco2Freq_kHz The frequency shift to be provided by NCO2 of Band A, specified in kHz. Positive values shift the

spectrum up in frequency; negative values shift the spectrum down in frequency.
uint32_t bandBInputBandwidth_kHz The bandwidth of the received signal being processed in Band B, specified in kHz.
int32_t bandBInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in

Band B, specified in kHz.
int32_t bandBNco1Freq_kHz The frequency shift to be provided by NCO1of Band B, specified in kHz. Positive values shift the

spectrum up in frequency; negative values shift the spectrum down in frequency.
int32_t bandBNco2Freq_kHz The frequency shift to be provided by NCO2 of Band B, specified in kHz. Positive values shift the

spectrum up in frequency; negative values shift the spectrum down in frequency.

Note that dual-band mode is selected when the input bandwidths of Band A and Band B are both specified, for example, are non-zero. In
nondual band modes, only specify the settings for Band A, and leave Band B with zero settings. If the NCO stages of both Band A and
Band B are not to be used, provide zero settings for all variables in the taliseRxNcoShifterCfg_t structure.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 202 of 247

TRANSMITTER SIGNAL PATH
The ADRV9008-2 and ADRV9009 transmitters have independent signal paths for the Transmitter 1 and Transmitter 2 channels. Data is
input to the transmitter signal path via the JESD204B, high speed, serial data interface at the I/Q data rate of the transmitter profile. The
serial data is converted to parallel format through the JESD204B deframer into I and Q components, is processed through digital filtering
and signal correction stages, and input to the IDACs and QDACs.

The DAC output is filtered by the transmitter low-pass filter, and input to the upconversion mixer. The I and Q paths are identical to one
another. Overranging is detected in the transmitter digital signal path at each stage and limited to the maximum code value to prevent
data wrapping. A block diagram of the Transmitter 1 and Transmitter 2 signal paths is shown in Figure 130. The 90° block, LO generator
(LO GEN), IADC, QADC, QEC correction, dc correction, and digital gain (DIG GAIN) blocks are not discussed in this reference manual.

Tx1 SIGNAL PATH, I AND Q CHANNEL

Tx2 SIGNAL PATH, I AND Q CHANNEL

90°

90°

THB3 THB2

INT5

LO
GEN

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTER

LOW-PASS
FILTER

IDAC

QDAC

IDAC

QDAC

THB1 TFIR QEC DIG
GAIN

THB3 THB2

INT5

THB1 TFIR QEC DIG
GAIN

THB3 THB2

INT5

THB1 TFIR QEC DIG
GAIN

THB3 THB2

INT5

THB1 TFIR QEC DIG
GAIN

JE
SD

20
4B

 IN
TE

R
FA

C
E

16
82

2-
13

4

Figure 130. Transmitter 1 and Transmitter 2 Signal Path Block Diagram

Low-Pass Filter

The low-pass filter is an analog, second-order, Butterworth, low-pass filter with an adjustable 3 dB corner. The transmitter chains can
support pass band bandwidths of up to 225 MHz each on I and Q. The low-pass filter is calibrated during device initialization, resulting in
a consistent frequency corner across all devices. The low-pass filter bandwidth is set within the device data structure, and is profile
dependent. Roll-off within the analog low-pass filter pass band is compensated by the TFIR to ensure a maximally flat, pass band
frequency response.

INT5 Filter

Either the INT5, or any combination of the THB3, THB2, and THB1 filters is used in the transmitter digital path. The INT5 filter
interpolates by a factor of 5. The INT5 filter coefficients are as follows:

[+0.002930, +0.029053, −0.029297, +0.031250, −0.012207, −0.005859, −0.056641, +0.051514, −0.055664, +0.025391, +0.020996,
+0.081299, −0.057617, +0.072510, −0.045166, −0.047607, −0.095947, +0.030518, −0.071289, +0.068604, +0.093994, +0.113770,
+0.030762, +0.055420, −0.103760, −0.185791, −0.185303, −0.136963, −0.037354, +0.227051, +0.518555, +0.717285, +0.928467,
+1.019287, +0.928467, +0.717285, +0.518555, +0.227051, −0.037354, −0.136963, −0.185303, −0.185791, −0.103760, +0.055420,
+0.030762, +0.113770, +0.093994, +0.068604, −0.071289, +0.030518, −0.095947, −0.047607, −0.045166, +0.072510, −0.057617,
+0.081299, +0.020996, +0.025391, −0.055664, +0.051514, −0.056641, −0.005859, −0.012207, +0.031250, −0.029297, +0.029053,
+0.002930]

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 203 of 247

Transmit Half-Band 3 (THB3) Filter

The THB3 filter is a fixed coefficient, half-band, interpolating filter that can interpolate by a factor of 2 or can be bypassed. The
coefficients are as follows:

[0.125, 0.5, 0.75, 0.5, 0.125]

Transmit Half-Band 2 (THB2) Filter

The THB2 filter is a fixed coefficient, half-band, interpolating filter that can interpolate by a factor of 2 or can be bypassed. The
coefficients are as follows:

[−0.082031, 0, +0.582031, +1, +0.582031, 0, −0.082031]

Transmit Half-Band 1 (THB1)

The THB1 filter is a fixed coefficient, half-band, interpolating filter that can interpolate by a factor of 2, or can be bypassed. The
coefficients are as follows:

[−0.002319, 0, +0.003601, 0, −0.004059, 0, +0.004120, 0, −0.006439, 0, +0.009613, 0, −0.012024, 0, +0.014404, 0, −0.018738, 0, +0.024292,
0, −0.030060, 0, +0.037354, 0, −0.048157, 0, +0.062927, 0, −0.084351, 0, +0.122284, 0, −0.209564, 0, +0.635925, +1.000000, +0.635925, 0,
−0.209564, 0, +0.122284, 0, −0.084351, 0, +0.062927, 0, −0.048157, 0, +0.037354, 0, −0.030060, 0, +0.024292, 0, −0.018738, 0, +0.014404,
0, −0.012024, 0, +0.009613, 0, −0.006439, 0, +0.004120, 0, −0.004059, 0, +0.003601, 0, −0.002319]

Transmitter Finite Impulse Response (TFIR) Filter

The programmable TFIR filter acts as an interpolating filter in the transmitter path. The TFIR can interpolate by a factor of 1, 2, or 4, or it
can be bypassed. The TFIR is used to compensate for roll-off caused by the post DAC, analog low-pass filter. The TFIR has a configurable
number of taps: 20, 40, 60, or 80 taps can be used.

The maximum number of taps is limited by the TFIR clock rate, which is derived from the data processing clock, DPCLK. The maximum
DPCLK clock rate is 500 MHz. The DPCLK clock rate is the high speed digital clock, HSDIG_CLK, divided by 4 or 5, depending on the
HSDIG_CLK divider setting. The DPCLK clock rate affects the maximum number of TFIR filter taps that can be used, as shown in the
following equation:

Maximum Number of Transmitter FIR Filter Taps = (DPCLK Clock Rate/Transmitter I/Q Data Rate) ×20

The TFIR also has a programmable gain setting of + 6 dB, 0 dB, −6 dB, or −12 dB.

Transmitter Signal Path Example

The TTES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal datapath. In
this example, the transmitter profile of 200 MHz or 450 MHz with an I/Q rate of 491.52 MHz is selected for the transmitter channels. In
this profile naming convention, 200 refers to the primary signal bandwidth and 450 refers to the DPD synthesis bandwidth.

Figure 131 shows the filter configuration for this profile. The signal rate after the TFIR block is equal to the I/Q rate of the profile.

PROFILE PASS BAND (MHz)
225

3dB CORNER (MHz)
240.36

DC GAIN (dB)
Tx FILTER RESPONSE

–0.002
PASS-BAND RIPPLE (dB)

0.182

TO MIXER

IMAGE
FILTER

ANALOG
FILTER

DAC DAC CLK T1 CLK
THB2

2
THB1

2 CLKTF Tx SAMPLE CLK

491.52MHz491.52MHz983.04MHz1966.08MHz

1966.08MHz

Tx DATA

TFIR
1

÷1

16
82

2-
13

5

Figure 131. Filter Configuration for the Transmitter Profile of 200 MHz/450 MHz with an I/Q Rate of 491.52 MHz

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 204 of 247

The Tx Summary tab of the software also shows the frequency response of the digital filters, analog filters, DAC sinc response, and the
composite response of the signal chain. The responses are plotted from dc to the DAC clock rate, as shown in Figure 132.

20

–200

–156

–112

–68

–24

0 393.216 786.432 1179.648 1572.864 1966.08

M
A

G
N

IT
U

D
E

(d
B

)

BASEBAND FREQUENCY (MHz)

ANALOG + DAC Sinc
DIGITAL
COMPOSITE

PROFILE PASS BAND (MHz)
225

3dB CORNER (MHz)
240.36

DC GAIN (dB)
Tx FILTER RESPONSE

–0.002
PASS-BAND RIPPLE (dB)

0.182

16
82

2-
13

6

Figure 132. Transmitter Filter Responses

An examination of the profile pass band in Figure 133 shows that the analog response slightly attenuates information within the profile
pass band. This analog attenuation is compensated by the digital filter response to obtain a maximally flat pass band for this profile. The
primary signal bandwidth is restricted to 200 MHz, which equates to 100 MHz on each I and Q channel. There is minimal compensation
required by digital filters within this bandwidth.

20

–200

–156

–112

–68

–24

0 393.216 786.432 1179.648 1572.864 1966.08

M
A

G
N

IT
U

D
E

(d
B

)

BASEBAND FREQUENCY (MHz)

ANALOG + DAC Sinc
DIGITAL
COMPOSITE

PROFILE PASS BAND (MHz)
225

3dB CORNER (MHz)
240.36

DC GAIN (dB)
Tx FILTER RESPONSE

–0.002
PASS-BAND RIPPLE (dB)

0.182

16
82

2-
13

7

Figure 133. Examination of the Pass Band Frequency Response of the Transmitter Profile of 200 MHz/450 MHz with an I/Q Rate of 491.52 MHz

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 205 of 247

Transmitter Filter API Structure

The transmitter filter configuration is stored in the taliseTxProfile_t structure. This structure is stored within the
taliseTxSettings_t structure, which is stored in the taliseInit_t initialization structure. The parameters for the transmitter
filter configuration (taliseTxProfile_t) are described in Table 123.

Table 123. taliseTxProfile_t Structure Parameters
Type Data Field Permissible Values Description
uint8_t dacDiv 1, 2 DAC clock, divide by 1 or 2

taliseFir_t txFIR See Table 124 See Table 124
uint8_t txFirInterpolation 1, 2, 4 Tx FIR Interpolation setting
uint8_t thb1Interpolation 1, 2 Tx HB1 interpolation setting; 1 = bypass,

2 = in use
uint8_t thb2Interpolation 1, 2 Tx HB2 interpolation setting; 1 = bypass,

2 = in use
uint8_t thb3Interpolation 1, 2 Tx HB3 interpolation setting; 1 = bypass,

2 = in use
uint8_t txInt5Interpolation 1,5 Tx INT5 interpolation setting; 1 = bypass,

5 = in use
uint32_t txInputRate_kHz 122,880 to 491,520, based on currently defined use

cases
I/Q data rate at the input to the TFIR;
specified in kHz

uint32_t primarySigBandwidth_Hz 25,000,000 to 200,000,000 Primary signal bandwidth; specified in Hz
uint32_t rfBandwidth_Hz 56,000,000 to 450,000,000 RF bandwidth; specified in Hz
uint32_t txDac3dBCorner_kHz 187,000 to 450,000 DAC 3 dB corner; specified in kHz
uint32_t txBbf3dBCorner_kHz 50,000 to 225,000 Baseband filter 3 dB corner frequency;

specified in kHz
uint16_t loopBackAdcProfile Valid ADC arrays are provided for specific use cases

through the init.c files or Python scripts
A 42-element array; provides the profile for
the loop filter of the Σ-Δ ADC

The permissible values provided in Table 124 are based on the currently defined profiles/use cases. A given profile has a specific
combination of these values.

The taliseFir_t structure is contained within the taliseTxProfile_t structure. It contains the following parameters:

Table 124. taliseFir_t Structure
Type Data Field Permissible Values Description
int8_t gain_dB +6, 0, −6, −12 The setting (in dB) for the gain block within the Tx FIR.
uint8_t numFirCoefs 20, 40, 60, 80 Number of taps to be used in the Tx FIR.
int16_t * coefs Not applicable A pointer to an array of filter coefficients

The transmitter FIR is specified in signed coefficients from +32,767 to −32,768. The gain block allows for more flexibility when designing
a digital filter. For example, a FIR can be designed with 6 dB gain in the pass band, and then this block can be set to −6 dB gain to give an
overall 0 dB gain in the pass band. The equation to calculate the gain of the filter coefficients is shown in the Receiver FIR section.

OBSERVATION RECEIVERS SIGNAL PATH
The ADRV9008-2 and the ADRV9009 feature two observation receivers (Observation Receiver 1 and Observation Receiver 2) that can be
used to capture data for DPD algorithms. The observation receiver can serve as an external loopback path to loop back the output of a
power amplifier, provided that the input level to the observation receiver is below the full-scale level of the ADC.

The ADRV9008-2 and the ADRV9009 Observation Receiver 1 and Observation Receiver 2 channels have separate I/Q mixers. These
mixers are identical to the mixers of the ADRV9008-1, with the exception that the observation mixers include an LO multiplexer. The LO
multiplexer allows either the RF PLL or the auxiliary PLL to provide the LO signal source for the Observation Receiver 1 and Observation
Receiver 2 mixers.

The mixer feeds into a programmable TIA that serves as a low-pass filter in the analog datapath. The signal is converted by the Σ-Δ ADC
and is filtered in half-band decimation stages and the programmable RFIR. The fixed coefficient half-band filters (RHB1, RHB2, RHB3,
and DEC5) and the RFIR prevent data wrapping and overrange conditions.

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 206 of 247

The observation receiver signal path allows an ADC stitching mode, which allows the Observation Receiver 1 and Observation Receiver 2
digital datapaths to be combined, creating larger observation receiver bandwidths. Bandwidths of 450 MHz can be achieved by operating
in ADC stitching mode. In this use case, the ADCs are provided with the same signal, for example, if Observation Receiver 1 is selected,
this input is digitized by all 4 ADCs.

The IF conversion stage provides the ability frequency shift or upsample/downsample digital data. Configurations supported include real
IF (real valued baseband data) configuration and low IF (complex data) configuration.

Figure 134 shows the signal path for the Observation Receiver 1 and Observation Receiver 2 signal chain.
ORx1 SIGNAL PATH, I AND Q CHANNEL

ORx2 SIGNAL PATH, I AND Q CHANNEL

TIA

TIA

TIA

TIA

90°

90°

AUX
LO

RHB3 RHB2
WB

RHB1 RFIR

RF
LO

O
R

x
C

R
O

SS
B

A
R

IADC

QADC

IADC

QADC

DEC5

DC
CORR

DIG
GAIN

DC
CORR

DIG
GAIN

DC
CORR

DIG
GAIN

DC
CORR

DIG
GAIN

RHB3 RHB2
WB

RHB1 RFIR

DEC5

RHB3 RHB2
WB

RHB1 RFIR

DEC5

RHB3 RHB2
WB

RHB1 RFIR

DEC5

Q
EC

 &
A

D
C

 S
TI

TC
H

IN
G

IF
C

O
N

VE
R

SI
O

N

JE
SD

20
4B

 IN
TE

R
F A

C
E

IF
C

O
N

VE
R

SI
O

N

16
82

2-
13

8

Figure 134. Observation Receiver 1 and Observation Receiver 2 Signal Path

Observation Receiver TIA

The observation receiver TIA is a low-pass filter with a single, real pole, frequency response. The TIA can support pass band bandwidths
up to 225 MHz each for both I and Q. The TIA is calibrated during device initialization, which ensures a consistent frequency corner
across all devices. The TIA 3 dB bandwidth is set within the device data structure and is profile dependent. Roll-off within the
observation receiver pass band is compensated by the RFIR to ensure a maximally flat pass band frequency response.

Observation Receiver DEC5 Filter

Either the observation receiver DEC5 filter, or the combination of the observation receiverRHB3 and observation receiver RHB2 is used
in the observation receiver digital path. The DEC5 filter decimates by a factor of 5. The DEC5 filter coefficients are as follows:

[+0.002197, +0.004272, +0.006836, +0.008789, +0.008545, +0.003418, −0.004639, −0.015381, −0.025512, −0.029785, −0.022461,
−0.002441, +0.03125, +0.074707, +0.119141, +0.155396, +0.176758, +0.176758, +0.155396, +0.119141, +0.074707, +0.03125, −0.002441,
−0.022461, −0.029785, −0.025512, −0.015381, −0.004639, +0.003418, +0.008545, +0.008789, +0.006836, +0.004272, +0.002197]

Observation Receiver RHB3 Filter

The observation receiver RHB3 filter is a fixed coefficient decimating filter that decimates by a factor of 2. The observation receiver RHB3
filter coefficients are as follows:

[−0.01874, −0.04218, +0.050476, +0.293884, +0.439636, +0.293884, +0.050476, −0.04218, −0.01874]

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 207 of 247

Observation Receiver Wideband RHB2 Filter

The observation receiver wideband RHB2 filter is a fixed coefficient decimating filter that decimates by a factor of 2. The observation
receiver wideband RHB2 filter coefficients are as follows:

[+0.001404, 0, −0.00134, 0, +0.002014, 0, −0.00281, 0, +0.003845, 0, −0.00519, 0, +0.006775, 0, −0.00873, 0, +0.01123, 0, −0.01428, 0,
+0.01825, 0, −0.0235, 0, +0.030823, 0, −0.04181, 0, +0.061035, 0, −0.10449, 0, +0.317749,+ 0.5, +0.317749, 0, −0.10449, 0, +0.061035, 0,
−0.04181, +0, 0.030822, 0, −0.0235, 0, +0.01825, 0, −0.01428, 0, +0.01123, 0, −0.00873, 0, +0.006775, 0, −0.00519, 0, +0.003845, 0,
−0.00281, 0, +0.002014, 0, −0.00134, 0, +0.001404]

Observation Receiver RHB1 Filter

The observation receiver RHB1 filter is a fixed coefficient decimating filter that can decimate by a factor of 2, or can be bypassed. The
observation receiver RHB1 filter coefficients are as follows:

[−0.000122, 0, +0.000244, 0, −0.000488, 0, +0.000854, 0, −0.001221, 0, +0.001831, 0, −0.002502, 0, +0.003479, 0, −0.004700, 0, +0.006287,
0, −0.008179, 0, +0.010620, 0, −0.013611, 0, +0.017578, 0, −0.022766, 0, +0.030029, 0, −0.040955, 0, +0.059998, 0, −0.103027, 0,
+0.313721, +0.493652, +0.313721, 0, −0.103027, 0, +0.059998, 0, −0.040955, 0, +0.030029, 0, −0.022766, 0, +0.017578, 0, −0.013611, 0,
+0.010620, 0, −0.008179, 0, +0.006287, 0, −0.004700, 0, +0.003479, 0, −0.002502, 0, +0.001831, 0, −0.001221, 0, +0.000854, 0, −0.000488,
0, +0.000244, 0, −0.000122]

Observation Receiver RFIR

The programmable observation receiver RFIR filter acts as a decimating filter. that can decimate by a factor of 1, 2, or 4, or it can be
bypassed. The RFIR is used to compensate for the roll-off of the analog TIA low-pass filter and can use either 24, 48, or 72 filter taps.

The maximum number of taps is limited by the FIR clock rate, which is derived from the DPCLK. The maximum DPCLK clock rate is
500 MHz. The DPCLK clock rate is the ADC clock rate divided by 4 or 5. Divide by 4 when using the HB2 and HB3 filters and divide by 5
when using the DEC5 filter. The DPCLK clock rate affects the maximum number of RFIR filter taps that can be used, as shown in the
following equation:

Maximum Number of Observation Receiver RFIR Filter Taps = (DPCLK Clock Rate/Observation Receiver I/Q Data Rate) × 24

The observation receiver RFIR also has programmable gain setting of +6 dB, 0 dB, −6 dB, or −12 dB.

Observation Receiver IF Conversion

The IF conversion stage allows for frequency shifting of the baseband digital data.

Observation Receiver Signal Path Example

The TTES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal pathway. In
this example, the observation receiver profile of 450 MHz with an I/Q rate of 491.52 MHz is selected for the observation receiver
channels.

Figure 135 shows the filter configuration for the observation receiver profile of 450 MHz with an I/Q rate of 491.52 MHz. The signal rate
shown after the RFIR block is equal to the I/Q rate of the profile.

16
82

2-
13

9

Figure 135. Filter Configuration for the Observation Receiver Profile of 450 MHz with an I/Q Rate of 491.52 MHz

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 208 of 247

Observation Receiver Filter API Structure

The observation receiver filter configuration is stored in the taliseORxProfile_t structure within the taliseObsRxSettings_t
structure, which is stored in the taliseInit_t initialization structure. The taliseORxProfile_ contains the following parameters:

Table 125. taliseORxProfile_t Structure Parameters
Type Data Field Permissible Values Description
taliseFir_t rxFIR See Table 126. See Table 126.
uint8_t rxFirDecimation 1, 2, 4 RFIR decimation setting.
unit8_t rxDec5Decimation 4, 5 Setting to use either the DEC5 or HB3 and

HB2 in the ORx path.
5 = use DEC5.
4 = use HB3 and HB2.

uint8_t rhb1Decimation 1, 2 Rx HB1 DECIMATION setting. 1 = bypass,
2 = in use.

uint32_t orxOutputRate_kHz 46,080 to 307,200 I/Q data rate to the input of the JESD204B
block.

uint32_t rfBandwidth_Hz 20000000 to 200000000 RF bandwidth, specified in Hz.
uint32_t rxBbf3dBCorner_kHz 20000 to 200000 Baseband filter 3 dB corner frequency,

specified in kHz.
uint16_t orxLowPassAdcProfile Valid ADC arrays provided for specific use cases

through the init.c files or Python scripts.
42-element array that provides the profile for
the loop filter of the ADC pair in low-pass
mode.

uint16_t orxBandPassAdcProfile Valid ADC arrays provided for specific use cases
through the init.c files or Python scripts.

42-element array that provides the profile for
the loop filter of the ADC pair in band-pass
mode.

taliseRxDdc_t orxDdcMode TAL_ORXDDC_DISABLED.
The digital downconversion (or IF conversion)
functionality for ORx usage is not supported in
the current software.

Digital downconversion mode. Device
defaults to zero IF mode, where the RF LO is
the center frequency of the digital data that
is output from the device.

int16_t orxMergeFilter Valid merge filter arrays provided for specific use
cases through the init.c files or Python scripts.

12-element array used in ADC stitching
modes, used to merge the low-pass and
band-pass ADCs to obtain the wideband ADC
transfer function.

The permissible values provided in Table 126 are based on the currently defined profiles/use cases. A given profile has a specific
combination of these values.

The taliseFir_t structure is contained within the taliseRxProfile_t structure and contains the parameters shown in Table 126.

Table 126: taliseFir_t Structure
Type Data Field Permissible Values
int8_t gain_dB +6 dB, 0 dB, −6 dB, −12 dB
uint8_t numFirCoefs 24, 48, 72
int16_t * coefs A pointer to an array of filter coefficients

The receiver RFIR is specified in signed coefficients from +32,767 to −32,768. The gain block allows more flexibility when designing a
digital filter. For example, an RFIR can be designed with 6 dB gain in the pass band, and then this block can be set to −6 dB gain to give
an overall 0 dB gain in the pass band. The gain of the filter coefficients can be calculated with the equation shown in the Receiver FIR
section.

FILTER CONFIGURATION API FUNCTIONS
The digital filters are configured in the TALISE_initialize()API function. This function utilizes the taliseRxProfile_t and
taliseTxProfile_t structures specified prior to initialization. As part of the filter configuration, the FIRs are programmed into
memory within the device, utilizing the TALISE_programFir() function. The analog filters (receiver TIA and transmitter low-pass
filter) are calibrated in order to achieve consistent pass band bandwidths. This is done after the Arm processor is initialized during the
TALISE_runInitCals() function call.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 209 of 247

OBSERVATION RECEIVER
This section describes the configuration and operation of the observation receivers integrated into the ADRV9008-2 and ADRV9009
devices. Each device has two observation receiver inputs, Observation Receiver 1 and Observation Receiver 2. Either of these observation
receivers can be used at any time.

If the observation receiver inputs are not used and the input connections are grounded on the printed circuit board (PCB), disable the
unused inputs in the configuration to prevent calibration failures.

To achieve the maximum supported bandwidth (up to 450 MHz for the observation receiver paths), the device uses four ADCs
concurrently, two for I data and two for Q data. Figure 136 shows the two observation receiver inputs, separate mixers, and TIA stages.
Each I and Q signal can be multiplexed to two Σ-Δ ADCs, which digitize the signal and process this in baseband. One ADC is configured
in a low-pass configuration and the other ADC is configured in a band-pass configuration. A stitching algorithm is then used to align and
merge the data from the concurrently running ADCs, with the merging having the effect of using the low frequency information from the
low-pass ADC, and the high frequency information from the band-pass ADC.

ORx1

ORx2

I

I

Q

Q

TIA

TIA

MUX

MUX

MUX

MUX

TIA

TIA

90°

FROM
RF LO

OR
AUXILIARY

LO

ADC

ADC

ADC

ADC DECIMATION,
FILTERING

DECIMATION,
FILTERING

DECIMATION,
FILTERING

DECIMATION,
FILTERING

QEC AND
ADC

STITCHING
JESD204B

INTERFACE

16
82

2-
14

0

Figure 136. Observation Receiver Signal Chains, Showing Use Case (Signal Flow) for Observation Receiver 1 and Observation Receiver 2

Note that in the current version (Version 3) of the firmware, it is not possible to switch between observation receiver profiles greater than
an observation receiver bandwidth of 200 MHz with an I/Q rate of 307.2 MSPS).

OBSERVATION RECEIVER API STRUCTURE
The observation receiver settings structure, taliseObsRxSettings_t, is contained within the device structure (device ->
ObsRx). The taliseObsRxSettings_t structure contains the following data fields described in Table 127.

Table 127. taliseObsRxSettings_t Structure Parameters
Type Data Field Description
taliseFramerSel_t framerSel This is used to select the desired JESD204B Framer A or Framer B to be used by the ORx path.

For more details, see the JESD204B Interface section.
taliseObsRxChannel_t obsRxChannel The ORx channel selected.
taliseObsRxLoSource_t obsRxLoSource This selects the desired LO source for the ORx path to use, either the RF PLL or auxiliary PLL.
taliseORxGainControl_t orxGainCtrl Structure that stores the settings of the ORx gain control. For more details, see the Gain Control

Modes section of this document.
taliseRxProfile_t orxProfile Contains the settings of the filters and digital data chain in the ORx path.

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 210 of 247

OBSERVATION CHANNEL CONTROL
See the System Control and Use Cases sections for details.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 211 of 247

GPIO CONFIGURATION
To advise the Arm processor of which pins to monitor for RX_ENABLE, ORX_ENABLE, TX_ENABLE, ORX1_TX_SEL0,
ORX1_TX_SEL1, ORX2_TX_SEL0, and/or ORX2_TX_SEL1, refer to Arm GPIO Pins section of the QEC, Calibration, and Arm
Configuration section.

The device has several GPIOs that can be used for a variety of control or monitoring functions. The device has 19 low voltage GPIO pins
that are designated GPIO_0 through GPIO_18. The Logic 1 voltage for the low voltage GPIO pins is determined by the
VDD_INTERFACE pin supply. The VDD_INTERFACE supply can be set between 1.8 V and 2.5 V. The device also provides twelve 3.3 V
GPIO pins that are designated GPIO_3P3_0 to GPIO_3P3_11. The Logic 1 voltage for the 3.3 V GPIO pins is determined by the
VDDA_3P3 supply pin. Ten of the twelve 3.3 V GPIO pins can be set as output pins for the auxiliary DAC signals. The AUXDAC pin
mapping is described in the targeted device data sheet. Drive strength and other specifications are described in the targeted device data
sheet.

Descriptions of pin operations related to real-time pin control of the transmitter/receiver/observation receiver state is provided in the
System Control section and the Use Cases section. The observation receiver enable signals can be controlled and assigned to GPIO pins in
the ADRV9008-2 and the ADRV9009.

The GPIO pins can be used as real-time status signals that provide device status information from the device to the BBP when the GPIO
pins are configured as outputs. When set as inputs, the GPIO pins can be used as real-time control signals that can alter the state of the
device. The API functions related to GPIO configuration give the user the ability to configure pins as inputs or outputs and assign
functionality to specific pins. This section describes the GPIO signals and their behavior in detail.

Figure 137 shows a high level block diagram of the GPIO pins.

GPIO 18

GPIO 17

GPIO 16

GPIO 15

GPIO 14

GPIO 13

GPIO 12

GPIO 11

GPIO 10

GPIO 9

GPIO 8

GPIO 7

GPIO 6

GPIO 5

GPIO 4

GPIO 3

GPIO 2

GPIO 1

GPIO 0

DEVICE
LOW VOLTAGE
GPIO

I/O BUFFERI/O CROSS POINT 1

I/O CROSS POINT 2

ARM GPIO INTERFACE

Tx ATTENUATION CONTROL

Rx MANUAL GAIN CONTROL

CONTROL OUTPUT

GENERAL-PURPOSE INPUT/OUTPUT

GPIO MODES OF OPERATION 1

GPIO MODES OF OPERATION 2

J3

M10

M11

L11

K11

J11

H11

H12

J12

K12

L12

L6

L5

K5

K6

K7

J7

J8

K8

16
82

2-
14

1

Figure 137. Low Voltage GPIO Feature Overview

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 212 of 247

LOW VOLTAGE GPIO OPERATION
The low voltage GPIO pins support a wide number of configuration options. This section describes setting up the low voltage GPIO pins
for monitoring internal signals, manual toggling of GPIO pins, Arm processor interaction, and the slicer pins. In configuring the GPIO,
the two major factors to consider are the GPIO output enable control and the GPIO source control.

The output enable signal determines the direction of the pin with respect to the GPIO pins. If a pin is set as an output, the GPIO buffer is
configured as an output.

The GPIO source control determines the functionality of the pin. The GPIO source control is assigned in groups of four. This means that
GPIO_0 to GPIO_3 share a single source control, GPIO_4 to GPIO_7 share a single source control, and so on. There are four types of
GPIO pin functions that are described by the taliseGpioMode_t enumerator type. Table 128 describes the enumerators for different
GPIO modes.

Table 128. taliseGpioMode_t Enumerators for Low Voltage GPIO Modes
taliseGpioMode_t
Enumerator Name

Enumerator
Value Description

GPIO_MONITOR_MODE 0 This mode allows a choice of debug signals to output from the device to monitor the state
of the device.

GPIO_BITBANG_MODE 3 Manual mode. An API function sets the output pin levels, and another API function can read
the input level.

GPIO_ARM_OUT_MODE 9 This mode allows communication to or from the internal Arm processor on the GPIO pins.
GPIO_SLICER_OUT_MODE 10 This mode allows the slicer to output data over specific GPIO pins. Slicer functionality is not

complete in the API.

The source control is configured by the TALISE_setGpioSourceCtrl() function. This function can be called any time after
initialization. A complementary readback command, TALISE_getGpioSourceCtrl(), returns the source control programmed to the
device.

A separate enumerator is provided in the API that represents each low voltage GPIO pin. This enumerator is designated
taliseGpioPinSel_t (see Table 129).

Table 129. taliseGpioPinSel_t Enumerations for Low Voltage GPIO Pins
taliseGpioPinSel_t Enumerator Name Enumerator Value Pin Number
TAL_GPIO_00 0 GPIO_0
TAL_GPIO_01 1 GPIO_1
TAL_GPIO_02 2 GPIO_2
TAL_GPIO_03 3 GPIO_3
TAL_GPIO_04 4 GPIO_4
TAL_GPIO_05 5 GPIO_5
TAL_GPIO_06 6 GPIO_6
TAL_GPIO_07 7 GPIO_7
TAL_GPIO_08 8 GPIO_8
TAL_GPIO_09 9 GPIO_9
TAL_GPIO_10 10 GPIO_10
TAL_GPIO_11 11 GPIO_11
TAL_GPIO_12 12 GPIO_12
TAL_GPIO_13 13 GPIO_13
TAL_GPIO_14 14 GPIO_14
TAL_GPIO_15 15 GPIO_15
TAL_GPIO_16 16 GPIO_16
TAL_GPIO_17 17 GPIO_17
TAL_GPIO_18 18 GPIO_18

Functionality for receiver manual gain control (MGC) is supported.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 213 of 247

GPIO MONITOR MODE OUTPUT
The GPIO monitor mode provides internal device information over GPIO pins that can be read back in real time by the baseband
processor. Some convenient features include real-time monitoring of overload counters related to AGC operation and PLL lock status
indicators. The GPIO monitor modes generate an 8-bit word that can be expressed over GPIO_0 through GPIO_7, GPIO_8 to GPIO_15.
Bit 4 through Bit 6 of the word can be sent to GPIO_16 to GPIO_18.

Parameters passed by the TALISE_setGpioSourceCtrl(), TALISE_setGpioOe(), and TALISE_setGpioMonitorOut()
functions determine what monitor signals are mapped to specific GPIO pins. The GPIO source control must be set to
GPIO_MONITOR_MODE with output mode enabled for the desired monitor pins.

Figure 138 shows the internal GPIO configuration when in the GPIO_MONITOR_MODE source control for all nibble groups.

GPIO 18

GPIO 17

GPIO 16

GPIO 15

GPIO 14

GPIO 13

GPIO 12

GPIO 11

GPIO 10

GPIO 9

GPIO 8

GPIO 7

GPIO 6

GPIO 5

GPIO 4

GPIO 3

GPIO 2

GPIO 1

GPIO 0

LOW
VOLTAGE
GPIO

I/O BUFFERI/O CROSS POINT 1

setGpioSourceCtrl
(gpioSrcCtrl)

setGpioOe
(gpioOutEn)

MONITOR OUTPUT SIGNALS

setGpioMonitorOut
(monitorIndex, monitorMask)

setGpioMonitorOut
(monitorIndex, monitorMask)

monitorMask[d7]

monitorMask[d6]

monitorMask[d5]

monitorMask[d4]

monitorMask[d3]

monitorMask[d2]

monitorMask[d1]

monitorMask[d0]
D0

D1

D6

D5

D4

D7

D6

D5

D4

D3

D2

D1

D0

D7

D6

D5

D4

D3

D2

D1

D0

D6 TO D4

D7 TO D4

D7 TO D4

D3 TO D0

D3 TO D0

D2

D3

D4

D5

D6

D7

D7 D6 D5 D4 D3 D2 D1 D0

16
82

2-
14

2

Figure 138. GPIO Hardware Configuration in GPIO_MONITOR_OUT_MODE Source Control

Figure 138 shows that the TALISE_setGpioMonitorOut() parameter monitor index sets the monitor mode for the device. The 8-bit
monitor mode and 8-bit monitor mask parameter are passed bitwise through an AND gate and distributed to the GPIO pins that are set
in the source control for GPIO_MONITOR_MODE and configured as outputs.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 214 of 247

Table 130 describes the available monitor modes.

Table 130. GPIO Monitor Modes for Low Voltage GPIO Pins
monitorIndex
[D7:D0] Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x01 AGC_MONITOR_0 Rx2 Gain
Change

Rx1 Gain
Change

Rx2 APD
High
Threshold
Counter
Exceeded

Rx1 APD
High
Threshold
Counter
Exceeded

Rx2 HB2
High
Threshold
Counter
Exceeded

Rx1 HB2
High
Threshold
Counter
Exceeded

Rx2 HB2 Low
Threshold Counter
Exceeded

Rx1 HB2
Low
Threshold
Counter
Exceeded

0x02 AGC_MONITOR_1 Rx2 Gain
Change

Rx1 Gain
Change

Rx2 APD
High
Threshold
Exceeded

Rx1 APD
High
Threshold
Exceeded

Rx2 HB2
High
Threshold
Exceeded

Rx1 HB2
High
Threshold
Exceeded

Not applicable

0x03 AGC_MONITOR_2 Not applicable Rx2 APD
High
Threshold
Exceeded

Rx1 APD
High
Threshold
Exceeded

Rx2 HB2
High
Threshold
Exceeded

Rx1 HB2
High
Threshold
Exceeded

Not applicable

0x04 AGC_MONITOR_3 Rx1 Low
Power
Threshold
Exceeded

Rx1 High
Power
Threshold
Exceeded

Rx1 AGC
Gain
Update
Counter
Expiry

Not applicable Rx1 Gain
Change

Rx1 Gain
Increment

Rx1 Gain
Decrement

0x05 AGC_MONITOR_4 Rx2 Low
Power
Threshold
Exceeded

Rx2 High
Power
Threshold
Exceeded

Rx2 AGC
Gain
Update
Counter
Expiry

Not applicable Rx2 Gain
Change

Rx2 Gain
Increment

Rx2 Gain
Decrement

0x06 AGC_MONITOR_5 Rx2 Gain
Increment

Rx1 Gain
Increment

Rx2 Gain
Decrement

Rx1 Gain
Decrement

Not applicable

0x07 AGC_MONITOR_6 Rx2 APD
High
Threshold
Counter
Exceeded

Rx1 APD
High
Threshold
Counter
Exceeded

Rx2 HB2
High
Threshold
Counter
Exceeded

Rx1 HB2
High
Threshold
Counter
Exceeded

Rx2 AGC
Gain
Update
Counter
Expiry

Rx1 AGC
Gain
Update
Counter
Expiry

Rx2 Gain Change Rx1 Gain
Change

0x08 AGC_MONITOR_7 Rx2 RSSI
Decimated
Power
Ready

Rx1 RSSI
Decimated
Power
Ready

Rx2 AGC
Gain
Update
Counter
Expiry

Rx1 AGC
Gain
Update
Counter
Expiry

Rx2 APD
High
Threshold
Counter
Exceeded

Rx1 APD
High
Threshold
Counter
Exceeded

Rx2 HB2 High
Threshold Counter
Exceeded

Rx1 HB2
High
Threshold
Counter
Exceeded

0x09 AGC_MONITOR_8 Rx1 Gain Index [7:0]

0x0A AGC_MONITOR_9 Rx2 Gain Index [7:0]

0x0B AGC_MONITOR_10 Rx1 Gain Index [3:0] Rx1 Gain Index [3:0]

0x0C PLL lock monitor RF
Synthesizer
RF PLL Lock

CLK
Synthesizer
Lock

AUX
Synthesizer
RF PLL Lock

Not applicable

0x2C AGC_OVERLOAD_MONITOR_CH1 Not
applicable

Rx1 APD
Low
Threshold
Exceeded

Rx1 APD
High
Threshold
Exceeded

Rx1 HB2
Interval 1
Low
Threshold
Overflow

Rx1 HB2
Interval 0
Low
Threshold
Overflow

Rx1 HB2
Low
Threshold
Overflow

Rx1 HB2 IP3 High
Threshold
Overflow

Rx1 HB2
High
Thresh
Overflow

0x2D AGC_OVERLOAD_MONITOR_CH2 Not
applicable

Rx2 APD
Low
Threshold
Exceeded

Rx2 APD
High
Threshold
Exceeded

Rx2 HB2
Interval 1
Low
Threshold
Overflow

Rx2 HB2
Interval 0
Low
Threshold
Overflow

Rx2 HB2
Low
Threshold
Overflow

Rx2 HB2 IP3 High
Threshold
Overflow

Rx2 HB2
High
Threshold
Overflow

0x2E AGC_OVERLOAD_COUNTER_MONITOR_CH1 Rx1 AGC
Gain
Update
Counter
Expiry

Rx1 APD
Low
Threshold
Counter
Exceeded

Rx1 APD
High
Threshold
Counter
Exceeded

Rx1 HB2
Interval 1
Low
Threshold
Counter
Exceeded

Rx1 HB2
Interval 0
Low
Threshold
Counter
Exceeded

Rx1 HB2
Low
Threshold
Counter
Exceeded

Rx1 HB2 IP3 High
Threshold Counter
Exceeded

Rx1 HB2
High
Threshold
Counter
Exceeded

0x2F AGC_OVERLOAD_COUNTER_MONITOR_CH2 Rx2 AGC
Gain
Update
Counter
Expiry

Rx2 APD
Low
Threshold
Counter
Exceeded

Rx2 APD
High
Threshold
Counter
Exceeded

Rx2 HB2
Interval 1
Low
Threshold
Counter
Exceeded

Rx2 HB2
Interval 0
Low
Threshold
Counter
Exceeded

Rx2 HB2
Low
Threshold
Counter
Exceeded

Rx2 HB2 IP3 High
Threshold Counter
Exceeded

Rx2 HB2
High
Threshold
Counter
Exceeded

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 215 of 247

GPIO BITBANG MODE
The GPIO bitbang mode allows the user to configure GPIO pins as inputs or outputs where the device can read back or set pin voltage
levels. This mode is also referred to as manual mode. If a GPIO pin is configured as an input, the user can read back the voltage level
present at the input. The voltage readback is either 0 or 1 (must be connected to ground or VDD_INTERFACE). If a GPIO pin is
configured as an output, the user can set a binary voltage on the pin (must be connected to ground or VDD_INTERFACE).

Figure 139 shows the operation of the device GPIO when all source control is set in the GPIO_BITBANG_MODE enumerators
(see Table 128).

setGpioPinLevel
(gpioPinLevel)

GPIO 18

GPIO 17

GPIO 16

GPIO 15

GPIO 14

GPIO 13

GPIO 12

GPIO 11

GPIO 10

GPIO 9

GPIO 8

GPIO 7

GPIO 6

GPIO 5

GPIO 4

GPIO 3

GPIO 2

GPIO 1

GPIO 0

LOW
VOLTAGE
GPIO

I/O BUFFERI/O CROSS POINT 1

SETUP

1 = HIGH

b18

b17

b16

b15

b14

b13

b12

b11

b10

b9

b8

b7

b6

b5

b4

b3

b2

b1

b0

b N

b N

setGpioSourceCtrl
(gpioSrcCtrl)

setGpioOe
(gpioOutEn)

b18, b17, b16…...……….b2, b1, b0

setGpioPinLevel
(gpioPinLevel)

0 = LOW

READBACK

1 = HIGH

0 = LOW

b18, b17, b16…...……….b2, b1, b0

16
82

2-
14

3

Figure 139. GPIO Hardware Configuration for GPIO_BITBANG_MODE Source Control

If a GPIO nibble group of four pins are set as outputs and the nibble group source control for the pins are set to GPIO_BITBANG_MODE,
the command to set the output voltage on the GPIO pins is TALISE_setGpioPinLevel(). This command takes an input parameter
specifying a voltage level for each pin, however, the pin must be set up properly for the voltage to appear on the pin. The expected level of
the GPIO pins can be read back from the device with the TALISE_getSetGpioPinLevel() command.

If a GPIO nibble group of four pins are set as inputs and the nibble group source control for the pins are set to GPIO_BITBANG_MODE,
the command to read back the input voltage on the GPIO pins is TALISE_getGpioPinLevel(). This function returns a 32-bit word
where each bit corresponds to the level detected on the GPIO pin.

GPIO ARM OUTPUT OPERATION
See the System Control section for information related to programming GPIOs relevant to the Arm processor.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 216 of 247

GPIO SLICER FEATURES
Due to the potential for values expressed over the JESD204B interface to exceed the range of a 16-bit twos complement number in
applications that use gain compensation, a floating point formatter or slicer is used to overcome this limitation. The floating point
formatter does not require GPIO connections to the BBP. However, support for floating point computation is required in the BBP. The
slicer requires a 3-bit slicer word input or output on GPIO to determine how the BBP shifts the data sent over the JESD204B interface.
The slicer can also be configured in an external control mode where the BBP sends a 3-bit slicer word to the device to shift the data, prior
to transmission over the JESD204B interface. See the Gain Control Modes section for details on the full functionality of the slicer and
floating point formatter. This section focuses on programming the GPIO pins for use with the slicer.

The slicer has two modes of operation. One mode is an internal slicer control mode, where the slicer outputs the amount of attenuation
applied in the datapath (in 6 dB/LSB steps) over a 3-bit GPIO word. The other mode is an external slicer control mode, where the 3-bit
GPIO word on the slicer input pins indicates a coefficient (from 0 to 7) to an attenuation factor (1 dB, 2 dB, 3 dB, or 4 dB).

In the internal slicer control mode, the GPIO pins that can be used are fixed. The 4-pin nibble groupings must be set to the
GPIO_SLICER_OUT_MODE source control (see Table 131).

Table 131. Internal Slicer Control Mode
Signal Internal Slicer Output Pin
RX1_SLICER_POSITION[2:0] TAL_GPIO_10 to TAL_GPIO_08
RX2_SLICER_POSITION[2:0] TAL_GPIO_14 to TAL_GPIO_12

In external slicer control mode, the GPIO pins that can be used are programmable. The pin groupings that can be used are described in
Table 132. Pin groupings are described by the enumerator types taliseRx1ExtSlicerGpioSelect_t and
taliseRx2ExtSlicerGpioSelect_t.

Table 132. External Slicer Control Mode
Signal External Slicer Input Pin
RX1_SLICER_POSITION[2:0] TAL_GPIO_02 to TAL_GPIO_00, TAL_GPIO_07 to TAL_GPIO_05, and TAL_GPIO_10 to TAL_GPIO_08
RX2_SLICER_POSITION[2:0] TAL_GPIO_07 to TAL_GPIO_05 and TAL_GPIO_13 to TAL_GPIO_11

The slicer, whether in internal or external control mode, is configured by executing the TALISE_setRxDataFormat() function. This
function also sets up the receiver data format (integer or floating point mode) and can enable gain compensation.

To retrieve the slicer position, use the TALISE_getSlicerPosition() function. The slicer position is only needed for integer 12-bit
and 16-bit formats.

GPIO FOR RECEIVER MANUAL GAIN CONTROL MODE PIN CONTROL
If the receiver is in MGC mode of operation, there are two methods to change the current gain index. The first method is through a SPI
based command, as performed in the TALISE_setRxManualGain() function, which changes the current gain index to a new value as
indicated by the input parameter to the command. The second method is through the low voltage GPIO pins, which can enable more
precise control over the timing of the gain change by assigning separate GPIO pins for gain index increment and gain index decrement
control. The gain is changed when a pulse is detected on the increment or decrement pin. The gain index increment step and gain index
decrement step are programmable from 0 to 7, corresponding to a number of gain table indices from 1 to 8. The pin assignments are also
programmable.

The MGC pin control is enabled by the TALISE_setRxGainCtrlPin() function. This command takes a device data structure
parameter, a receiver channel select parameter, and a data structure type (taliseRxGainCtrlPin_t) containing the settings for
receiver MGC pin control, particular to the receiver channel select parameter. The taliseRxGainCtrlPin_t structure is described in
Table 133.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 217 of 247

Table 133. Data Structure Description for taliseRxGainCtrlPin_t Parameters

Data Type
taliseRxGainCtrlPin_t
Structure Member Description

uint8_t incStep Increment in gain index applied when the increment gain pin is pulsed. A value of 0 to
7 applies a step size of 1 to 8. This parameter is common between Rx1 and Rx2.

uint8_t decStep Decrement in gain index applied when the decrement gain pin is pulsed. A value of 0
to 7 applies a step size of 1 to 8. This parameter is common between Rx1 and Rx2.

taliseGpioPinSel_t rxGainIncPin GPIO used for the increment gain input. Rx1 uses GPIO_0 or GPIO_10. Rx2 uses GPIO_3
or GPIO_13.

taliseGpioPinSel_t rxGainDecPin GPIO used for the decrement gain input. Rx1 uses GPIO_1 or GPIO_11. Rx2 uses GPIO_4
or GPIO_14.

uint8_t enable Enable (1) or disable (0) the gain pin control.

TRANSMITTER ATTENUATION CONTROL, SPI2 PORT
The device uses the primary SPI port for nearly all SPI transactions needed during operation but also features a secondary SPI port, SPI2,
that can be used as a communication interface. The SPI2 port has access to a limited set of device registers that are related to transmitter
attenuation control, observation receiver MGC, or current receiver gain settings (read only). Refer to Table 135. The SPI2 port uses a fixed
set of low voltage GPIO pins, from GPIO_0 to GPIO_3. Table 134 describes the pin mapping.

Table 134. SPI2 Port Function Mapping on Low Voltage GPIO Pins
GPIO Pin SPI2 Functionality Pin Direction Description
GPIO_0 SPI_DIN_2/SPI_DOUT_2 Input/output SPI Data Input 2/SPI Data Output 2; depends on 3-wire or 4-wire operation
GPIO_1 SPI_DOUT_2 Output SPI Data Output 2
GPIO_2 SPI_CLK_2 Input SPI Clock 2
GPIO_3 SPI_CSB_2 Input Chip Select 2

The SPI2 port is set up with the TALISE_setSpi2Enable() function. This function transfers a pointer to the device data structure, an
enable/disable parameter, and a level sensitive GPIO that can be used to switch between two distinct attenuation states. SPI2 uses the
same SPI configuration as the primary SPI port: LSB/MSB first, 3-wire or 4-wire mode. See the Low Voltage GPIO API Functions
section.

The SPI2 port features a level sensitive GPIO pin to switch between two distinct attenuation states. The user can program a 10-bit
attenuation word into registers designated TXx_ ATTENUATION_S1 (State 1) and TXx_ATTENUATION_S2 (State 2). When the GPIO
voltage is low, the Transmitter 1 and Transmitter 2 channels are held at the attenuation condition of State 1. When the GPIO voltage is
high, the Transmitter 1 and Transmitter 2 channels are held at the attenuation condition of State 2. The GPIO pins that can be selected
(within the taliseSpi2TxAttenGpioSel_t structure) are assigned to the TAL_SPI2_TXATTEN_GPIO4,
TAL_SPI2_TXATTEN_GPIO8, TAL_SPI2_TXATTEN_GPIO14, or TAL_SPI2_TXATTEN_GPIO_DISABLE functions.

After the two different attenuations are set in State 1 and State 2, the desired attenuation state is selected using a GPIO. Only update the
attenuation state that is not currently selected because updates to the selected attenuation state take immediate effect when the LSBs of the
attenuation value are written. Typically, it is recommended to synchronize the attenuation change of both Transmitter 1 and Transmitter 2
so that the Transmitter 1 and Transmitter 2 states that are not currently in use are written to, and then the GPIO is toggled to
simultaneously apply the new attenuation value to both transmitters.

Table 135. SPI2 Register Map

Address Register Name
Bit Number

Description 7 6 5 4 3 2 1 0
0x2E9 TX1_ATTENUATION_S1_MSB Not used TX1_ATTENUATION_S1[9:8] Tx1 State 1 MSBs
0x2EA TX1_ATTENUATION_S1_LSB TX1_ATTENUATION_s1[7:0] Tx1 State 1 LSBs
0x2EB TX1_ATTENUATION_S2_MSB Not used TX1_ATTENUATION_S2[9:8] Tx1 State 2 MSBs
0x2EC TX1_ATTENUATION_S2_LSB TX1_ATTENUATION_S2[7:0] Tx1 State 2 LSBs
0x2ED TX2_ATTENUATION_S1_MSB Not used TX2_ATTENUATION_S1[9:8] Tx2 State 1 MSBs
0x2EE TX2_ATTENUATION_S1_LSB TX2_ATTENUATION_S1[7:0] Tx2 State 1 LSBs
0x2EF TX2_ATTENUATION_S2_MSB Not used TX2_ATTENUATION_S2[9:8] Tx2 State 2 MSBs
0x2F0 TX2_ATTENUATION_S2_LSB TX2_ATTENUATION_S2[7:0] Tx2 State 2 LSBs
0x2F2 TX1_ATTENUATION_READBACK_LSB TX1_ATTENUATION_READBACK[7:0] Tx1 readback LSBs

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 218 of 247

Address Register Name
Bit Number

Description 7 6 5 4 3 2 1 0
0x2F3 TX1_ATTENUATION_READBACK_MSB Not used TX1_ATTENUATION_READBACK[9:8] Tx1 readback MSBs
0x2F4 TX2_ATTENUATION_READBACK_LSB TX2_ATTENUATION_READBACK[7:0] Tx2 readback LSBs
0x2F5 TX2_ATTENUATION_READBACK_MSB Not used TX2_ATTENUATION_READBACK[9:8] Tx2 readback MSBs
0x2F6 ORX1_GAIN_INDEX ORX1_GAIN_INDEX ORx1 gain index
0x2F7 ORX2_GAIN_INDEX ORX2_GAIN_INDEX ORx2 gain index
0x2F8 RX1_GAIN_INDEX_READBACK RX1_GAIN_INDEX_READBACK Rx1 gain index,

read only
0x2F9 RX2_GAIN_INDEX_READBACK RX2_GAIN_INDEX_READBACK Rx2 gain index,

read only

LOW VOLTAGE GPIO API FUNCTIONS
This section summarizes all API functions related to configuration of the low voltage GPIO functionality.

TALISE_setArmGpioPins()

This function instructs the Arm of which GPIO pins to use for TDD pin control and loads the taliseArmGpioConfig_t structure
settings to the Arm processor. The function is as follows:
uint32_t TALISE_setArmGpioPins(taliseDevice_t *device, taliseArmGpioConfig_t *armGpio)

The device can control any of these related signals by sending an Arm command, or the Arm signals can be routed to GPIO pins. Each
signal in the taliseArmGpioConfig_t structure has an enable member. If the enable member is set, the Arm processor expects the
BBP to drive that signal on the specified GPIO pin. The signals can be intermixed, some on GPIO pins and some set by the Arm
command.

The BBP calls this function after loading the Arm processor TALISE_loadArmFromBinary() function call. If the BBP wishes to
change the GPIO assignments, this function can be called again to change the configuration when the device is in the radio off state. This
function also sets the GPIO pin direction for any GPIO pins that are enabled in this function but does not modify the GPIO source
control parameter.

Preconditions: this function can be called after loading the Arm binary. The device must be in the radio off state.

Parameters include the following:

 *device is a structure pointer to the data structure.
 *armGpio is a structure to a pointer that describes which GPIO pins and settings to use for each possible Arm GPIO signal.

TALISE_setGpioOe()

This function sets the low voltage GPIO direction given by the transferred parameter. The direction can be either output or input per pin.
The gpioUsedMask parameter allows the function to only affect the GPIO pins of interest. The function is as follows:
uint32_t TALISE_setGpioOe(taliseDevice_t *device, uint32_t gpioOutEn)

Preconditions: execute TALISE_initialize().

Parameters include the following:

 *device is a pointer to the data structure.
 gpioOutEn is a valid range is from 0 (all low voltage GPIO are inputs) to 0x07FFFF (all low voltage GPIO are outputs). Each bit

corresponds to a GPIO pin, for example, gpioOutEn, Bit D0, corresponds to GPIO_0, gpioOutEn, Bit D1, corresponds to GPIO_1,
and so on. If a particular bit is set to 1, the corresponding GPIO pin is set as an output.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 219 of 247

TALISE_getGpioOe()

This function receives the low voltage GPIO direction currently set in the device. The direction can be either output or input per pin. The
return gpioOutEn parameter returns one bit per GPIO pin. A return value of 1 is the output from the device, and a return value of 0 is
the input into the device.

uint32_t TALISE_getGpioOe(taliseDevice_t *device, uint32_t *gpioOutEn)

Preconditions: execute TALISE_initialize().

Parameters include the following:

• *device is a pointer to the data structure.
• *gpioOutEn is a valid range is from 0 (all low voltage GPIOs are inputs) to 0x07FFFF (all low voltage GPIOs are outputs). Each bit

corresponds to a GPIO pin.

TALISE_setGpioSourceCtrl()

This function sets the GPIO output source for different GPIO functionality and only affects the GPIO pins that have their output enable
direction set to output. Each set of four GPIO pins can be assigned to a GPIO source, and each GPIO nibble (four pins) must share that
GPIO output source. The taliseGpioMode_t enumerator can be bit shifted and bitwise OR’ed together to create the value for the
gpioSrcCtrl parameter. The function is as follows:

uint32_t TALISE_setGpioSourceCtrl(taliseDevice_t *device, uint32_t gpioSrcCtrl)

Preconditions: execute TALISE_initialize().

Parameters include the following:

• *device is a pointer to the data structure.
• gpioSrcCtrl is a nibble-based source control. This is a 32-bit value containing five nibbles that set the output source control for

each set of four GPIO pins. Each nibble group has a value equal to the taliseGpioMode_t enumerator values.

TALISE_getGpioSourceCtrl()

This function reads the GPIO output source for each set of four low voltage GPIO pins. The function is as follows:

uint32_t TALISE_getGpioSourceCtrl(taliseDevice_t *device, uint32_t *gpioSrcCtrl)

Preconditions: execute TALISE_initialize().

Parameters include the following:

• *device is a pointer to the data structure.
• *gpioSrcCtrl is a nibble-based source control. This is a 32-bit value containing five nibbles that set the output source control for

each set of four GPIO pins. Each nibble group has a value equal to the taliseGpioMode_t enumerator values.

TALISE_setGpioPinLevel()

This function sets the low voltage GPIO output pin levels and only affects the GPIO pins that have their output enable direction set to
output and that have the correct source control for the nibbles in GPIO_BITBANG_MODE. The function is as follows:

uint32_t TALISE_setGpioPinLevel(taliseDevice_t *device, uint32_t gpioPinLevel)

Preconditions: execute TALISE_initialize(). The GPIO pin levels do not change unless the desired GPIO pins are set in
GPIO_BITBANG_MODE source control and are set to output enable.

Parameters include the following:

• *device is a pointer to the data structure.
• gpioPinLevel is a parameter that corresponds each bit to a GPIO pin. 0 = low output, and 1 = high output voltage.

TALISE_getGpioPinLevel()

This function reads the low voltage GPIO pin levels and returns their contents in a single, 32-bit word. The GPIO pins that are set to be
inputs in bitbang mode read back and return in the gpioPinLevel parameter. The return value is one bit per pin. GPIO_0 returns on
Bit 0 of the gpioPinLevel parameter. A logic low level returns a 0, and a logic high level returns a 1. The function is as follows:
uint32_t TALISE_getGpioPinLevel(taliseDevice_t *device, uint32_t *gpioPinLevel)

Preconditions: execute TALISE_initialize(). The GPIO pin levels are not read back properly unless the desired GPIO pins are set to
GPIO_BITBANG_MODE source control and set to input enable.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 220 of 247

Parameters include the following:

• *device is a pointer to the data structure.
• *gpioPinLevel is a pointer to a uint32_t variable that returns the GPIO pin levels that are read back on the pins that are

assigned as inputs. Each bit corresponds to a GPIO pin. 0 = low output, and 1 = high output voltage.

TALISE_getGpioSetLevel()

This function reads the GPIO pin output levels for bitbang mode to drive the pins out. The function is as follows:

uint32_t TALISE_getGpioSetLevel(taliseDevice_t *device, uint32_t *gpioPinSetLevel)

Preconditions: execute TALISE_initialize().

Parameters include the following:

• *device is a pointer to the data structure.
• *gpioPinSetLevel is a pointer to a single uint32_t variable that returns the level that is set to output each output GPIO pin.

Each bit corresponds to a GPIO pin (one bit per pin).

TALISE_setGpioMonitorOut()

This function configures the monitor output function for the GPIOs. The function is as follows:

uint32_t TALISE_setGpioMonitorOut(taliseDevice_t *device, uint8_t monitorIndex, uint8_t
monitorMask)

The monitor outputs allow visibility to some internal signals. Each monitor index outputs a set of eight signals. To output these signals on
the low voltage GPIO_10 to GPIO_0 pins, set the desired GPIO_18 to GPIO_0 pin direction, and then set the GPIO nibble source control
to allow the monitor signals to route to a set of four GPIO pins. If the GPIO_18 to GPIO_16 nibble source is set to monitor outputs,
monitor output signals, Bits[6:4] (as shown in Table 130), are routed to GPIO_18 to GPIO_16. When the nibble source is set to monitor
the outputs for GPIO_15 to GPIO_0, the monitor output signals, Bits[7:0] are routed to GPIO_07 to GPIO_0, and the monitor output
signals, Bits[7:0] are also routed to GPIO_15 to GPIO_8.

Preconditions: execute TALISE_initialize(). Pins must be set to GPIO_MONITOR_OUT source control and output enable.

Parameters include the following:

• *device is a pointer to the data structure.
• monitorIndex is the index that outputs a set of eight monitor outputs. See Table 130.
• monitorMask is a mask that indicates which outputs are sent along the assigned GPIO pins. Set to 0xFF to enable all monitor

signals.

TALISE_getGpioMonitorOut()

This function reads the GPIO monitor index and monitor mask from the device. The function is as follows:

uint32_t TALISE_getGpioMonitorOut(taliseDevice_t *device, uint8_t *monitorIndex, uint8_t
*monitorMask)

Preconditions: execute TALISE_initialize().

Parameters include the following:

• *device is a pointer to the data structure.
• *monitorIndex is a pointer to a single uint8_t variable, which returns the current monitor signal selection index.
• *monitorMask is a pointer to a single uint8_t variable, which returns the monitor out signal masking. One bit is returned per

monitor output signal.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 221 of 247

TALISE_setRxGainCtrlPin ()

This function configures the gain step size and the GPIO inputs for receiver MGC. A high pulse on the rxGainIncPin in pin control
mode increments the gain by the value set in the incStep parameter. A high pulse on the rxGainDecPin in pin control mode
decrements the gain by the value set in the decStep parameter. The function is as follows:

uint32_t TALISE_setRxGainCtrlPin(taliseDevice_t *device, taliseRxChannels_t rxChannel,
taliseRxGainCtrlPin_t *rxGainCtrlPin)

Preconditions: execute TALISE_initialize().

Parameters include the following:

• *device is a pointer to the data structure.
• rxChannel is the taliseRxChannels_t enumerator type to select the Receiver 1 or Receiver 2 channel for programming.
• *rxGainCtrlPin is a pointer to the taliseRxGainCtrlPin_t structure that configures the receiver MGC.

TALISE_getRxGainCtrlPin ()

This API function returns the configuration (gain steps and GPIO inputs) for receiver MGC. The function is as follows:

uint32_t TALISE_getRxGainCtrlPin(taliseDevice_t *device, taliseRxChannels_t rxChannel,
taliseRxGainCtrlPin_t *rxGainCtrlPin)

Preconditions: execute TALISE_initialize().

Parameters include the following:

• *device is a pointer to the data structure.
• rxChannel is the taliseRxChannels_t enumerator type to select the Receiver 1 or Receiver 2 channel for programming.
• *rxGainCtrlPin is a pointer to the taliseRxGainCtrlPin_t structure that configures the manual receiver gain pin control.

TALISE_setSpi2Enable()

This function enables or disables the SPI2 port on the device. The function is as follows:

uint32_t TALISE_setSpi2Enable(taliseDevice_t *device, uint8_t spi2Enable,
taliseSpi2TxAttenGpioSel_t spi2TxAttenGpioSel)

The device can enable a second SPI port on the low voltage GPIO_3 to GPIO_0 pins. This SPI port allows read or write access to a limited
set of transmitter attenuation and receiver gain index registers.

The SPI2 port uses the same configuration that is programmed for SPI, which includes LSB/MSB first, 4-wire mode, streaming and
address increment.

The transmitter attenuation control includes a unique feature where the SPI register value can be set and does not update to the
transmitter until a GPIO pin is toggled. The GPIO pin is level sensitive and selects the transmitter attenuation that is programmed in
either the TXx_ATTENUATION_S1 or TXx_ATTENUATION_S2 bit fields of the second SPI registers. The GPIO pin that is used to
switch between the two transmitter attenuation settings is user selectable using the enumerator in the function parameter.

For readback of the transmitter attenuation SPI registers, write to the desired register to force the value to be updated before reading the
register back across the SPI.

Preconditions: execute TALISE_initialize().

Parameters include the following:

• *device is a pointer to the data structure.
• spi2Enable is the enable = 1 or disable = 0 SPI2 protocol on the device.
• spi2TxAttenGpioSel sets up the GPIO that is used to select between two transmitter attenuation values that are programmed

through the SPI2 port. This GPIO is only used if SPI2 is enabled.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 222 of 247

TALISE_getSpi2Enable()

This function receives the current status of the SPI2 port configuration on the device. The function is as follows:
uint32_t TALISE_getSpi2Enable(taliseDevice_t *device, uint8_t spi2Enable,
taliseSpi2TxAttenGpioSel_t spi2TxAttenGpioSel)

Preconditions: execute TALISE_initialize().

Parameters include the following:

• *device is a pointer to the data structure.
• spi2Enable is the enable = 1 or disable= 0 SPI2 protocol on the device.
• spi2TxAttenGpioSel sets up the GPIO that is used to select between two transmitter attenuation values programmed through

the SPI2 port. This GPIO is only used if the SPI2 port is enabled.

GENERAL-PURPOSE INTERRUPT OPERATION
The general-purpose interrupt pin (GP_INTERRUPT) can alert the BBP that a significant event regarding device operation has occurred.
These events include the unlocking of PLLs, stream processor errors, as well as other system errors that can occur. The
GP_INTERRUPT pin is configured by the TALISE_setGpIntMask() function after device initialization. When a rising edge is
detected on the GP_INTERRUPT pin, the BBP calls the TALISE_getGpIntStatus() function to determine the source of the
interrupt.

Table 136 lists the available general-purpose interrupt sources. These sources are described with enumerators of the data type
taliseGpIntMask_t.

Table 136. taliseGpIntMask_t Enumerations and Descriptions
taliseGpIntMask_t Enumerator Name Enumerator Value Description
TAL_GP_MASK_STREAM_ERROR 0x1000 Stream processor error.
TAL_GP_MASK_ARM_CALIBRATION_ERROR 0x0800 ARM calibration error.
TAL_GP_MASK_ARM_SYSTEM_ERROR 0x0400 ARM system error.
TAL_GP_MASK_ARM_FORCE_INTERRUPT 0x0200 ARM forced interrupt event.
TAL_GP_MASK_WATCHDOG_TIMEOUT 0x0100 ARM watchdog timer timeout.
TAL_GP_MASK_PA_PROTECTION_TX2_ERROR 0x0080 Tx2 power amplifier protection error.
TAL_GP_MASK_PA_PROTECTION_TX2_ERROR 0x0040 Tx2 power amplifier protection error.
TAL_GP_MASK_JESD_DEFRMER_IRQ 0x0020 JESD204B deframer IRQ error.
TAL_GP_MASK_JESD_FRAMER_IRQ 0x0010 JESD204B framer IRQ error.
TAL_GP_MASK_CLK_SYNTH_LOCK 0x0008 Device clock PLL unlock error. This bit is not sticky and tracks to the

current PLL status.
TAL_GP_MASK_AUX_SYNTH_LOCK 0x0004 Auxiliary PLL unlock error. This bit is not sticky and tracks to the

current PLL status.
TAL_GP_MASK_RF_SYNTH_LOCK 0x0002 RF PLL unlock error. This bit is not sticky and tracks to the current PLL

status.

The GP_INTERRUPT pin represents a logical OR of the enabled GP_INTERRUPT mask sources. It is not necessary to enable all of the
interrupt sources.

GP_INTERRUPT Handler

When the GP_INTERRUPT pin is asserted, the attempt to determine what caused the GP_INTERRUPT assertion through two different
functions: TALISE_getGpIntStatus() and TALISE_gpIntHandler().

The TALISE_getGpIntStatus() function can be used if the user only wants to determine what error condition caused the
GP_INTERRUPT assertion. With this command, no further actions or information is acquired.

The TALISE_gpIntHandler() function can be used if the user wants to determine the GP_INTERRUPT source, clear the error, if
possible, and then receive further diagnositic information, if requested. The third parameter passed in this command is a pointer to a
taliseGpIntInformation_t data structure type. If this parameter is null, no diagnostic information is returned. The
taliseGpIntInformation_t data structure is described in Table 137.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 223 of 247

Table 137. taliseGpIntInformation_t Data Structure Parameters

Data Type
taliseGpIntInformation _t Struct
Member Description

uint8_t data[8] All GP_INTERRUPT sources. See Table 138.
taliseFramerSel_t framer Interrupting framer, only valid for framer sources.
taliseDeframerSel_t deframer Interrupting deframer, only valid for deframer sources
int32_t deframerInputsMask Interrupting deframer input mask (one bit per deframer input), only valid for

deframer sources (valid for 0x0 to 0xF).
 deframerInputsMask is the deframer lane after the deframer lane crossbar

swapping (lane input of the deframer).

The first parameter in the taliseGpIntInformation_t data structure is an 8-element array of uint8_t. This array can be decoded
using the Table 138.

Table 138. Definitions for the 8-Element Array (data[8]) in the taliseGpIntInformation_t Data Structure
Bit Number Array Element Description
Data 0 0 Stream Rx1 enable signal falling edge error
 1 Stream Tx2 enable signal falling edge error
 2 Stream ORx2 enable signal rising edge error
 3 Stream ORx1 enable signal rising edge error
 4 Stream Rx2 enable signal rising edge error
 5 Stream Tx2 enable signal rising edge error
 6 Stream Rx1 enable signal rising edge error
 7 Stream Tx2 enable signal rising edge error

Data 1 0 Stream Loopback 2 enable signal falling edge error
 1 Stream Loopback 2 enable signal rising edge error
 2 Stream Loopback 2 enable signal rising edge error
 3 Stream Loopback 1 enable signal rising edge error
 4 Stream ORx2 enable signal falling edge error
 5 Stream ORx1 enable signalfalling edge error
 6 Stream Rx2 enable signal falling edge error
 7 Stream Tx2 enable signal falling edge error.

Data 2 0 Stream GPIO3 signal falling edge error
 1 Stream GPIO2 signalfalling edge error
 2 Stream GPIO1 signal falling edge error
 3 Stream GPIO0 signal falling edge error
 4 Stream GPIO3 signal rising edge error
 5 Stream GPIO2 signal rising edge error
 6 Stream GPIO1 signal rising edge error
 7 Stream GPIO0 signal rising edge error

Data 3 0 Stream ORx2 low to Rx2 high signal stream error
 1 Stream ORx1 low to ORx1 high signal stream error
 2 Stream Rx2 low to ORx2 high signal stream error
 3 Stream Rx1 low to ORx1 high signal stream error
 4 Stream; erroneous completion of pin mode stream for GP_IRQ signal rising edge
 5 Deframer A, bad disparity error
 6 Deframer A, not in table error
 7 Deframer A, unexpected k error

Data 4 0 Deframer A, interlane deskew
 1 Deframer A, initial lane sync
 2 Deframer A, good checksum
 3 Deframer A, frame sync
 4 Deframer A, code group sync
 5 Reserved
 6 Deframer A, pointers out of alignment
 7 Deframer A, SYSREF misalignment to LMFC

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 224 of 247

Bit Number Array Element Description
Data 5 0 Deframer B, bad disparity error
 1 Deframer B, not in table error
 2 Deframer B, unexpected k error
 3 Deframer B, interlane deskew
 4 Deframer B, initial lane sync
 5 Deframer B, good checksum
 6 Deframer B, frame sync
 7 Deframer B, code group sync

Data 6 0 Reserved
 1 Deframer B, pointers out of alignment
 2 Deframer B, SYSREF misalignment to LMFC
 3 Framer A, asynchronous FIFO pointer offset error
 4 Framer A, misalignment to current LMFC error
 5 Framer B asynchronous FIFO pointer offset error
 6 Framer B, misalignment to current LMFC error
 7 Power amplifier protection error for Tx2

Data 7 0 Power amplifier protection error for Tx2
 1 Arm calibration error
 2 Clock PLL lock detect reset
 3 Auxiliary PLL lock detect reset
 4 RF PLL lock detect reset
 5 Reserved
 6 Reserved
 7 Reserved

When using the TALISE_gpIntHandler() function, use the uint32_t return variable to determine the appropriate recovery
mechanism.

GP_INTERRUPT PIN API FUNCTIONS
This section describes the API functions that pertain to the GP_INTERRUPT pin functionality.

TALISE_setGpIntMask()

This function can be called any time after device initialization. This command determines which GP_INTERRUPT sources can assert the
GP_INTERRUPT pin. The function is as follows:

TALISE_setGpIntMask(taliseDevice_t *device, uint16_t gpIntMask)

Precondition: this function can be called any time after device initialization.

Parameters include the following:

• *device is a pointer to the data structure.
• mask is a 16-bit word that indicates which interrupt sources are allowed to assert the GP_INTERRUPT pin.

TALISE_getGpIntStatus()

When the BBIC detects a rising edge on the GP_INTERRUPT pin, this function allows the BBIC to determine the source of the interrupt.
The value returned in the status parameter shows one or more sources for the interrupt based on the taliseGpIntMask_t structure.
The function is as follows:

TALISE_getGpIntStatus(taliseDevice_t *device, uint16_t *gpIntStatus)

The PLL unlock bits are not sticky. These bits follow the current status of the PLLs. If the PLL relocks, the status bit clears. The
GP_INTERRUPT pin is the logical OR of all the sources. When all the status bits are low, the GP_INTERRUPT pin is low. The status
word that is read back shows the current value for all interrupt sources, even if the sources are disabled by the mask. The
GP_INTERRUPT pin only asserts for the enabled sources.

Precondition: this function can be called any time after device initialization and the TALISE_setGpIntMask() function has been
executed.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 225 of 247

Parameters include the following:

• *device is a pointer to the data structure.
• *gpIntStatus is a 16-bit word that indicates which interrupt sources are currently asserted. Use the taliseGpIntMask_t

structure to determine the source of the interrupt.

TALISE_getGpIntHandler()

This function is called whenever the BBIC detects a GP_INTERRUPT pin assertion to find the source and clear it. The function is as
follows:

TALISE_getGpIntHandler(taliseDevice_t *device, uint32_t *gpIntStatus, taliseGpIntInformation_t
*gpIntDiag)

When the BBIC detects a rising edge on the GP_INTERRUPT pin, this function provides the BBIC with a simplified way to determine
the GP_INTERRUPT source, clear it if possible, and receive a recovery action.

The PLL unlock bits are not sticky and follow the current status of the PLLs. If the PLL relocks, the status bit clears. The
GP_INTERRUPT pin is the logical OR of all the sources. When all status bits are low, the GP_INTERRUPT pin is low. The status word
readback shows the current value for all interrupt sources, even if the sources are disabled by the mask. The GP_INTERRUPT pin only
asserts for the enabled sources.

Precondition: this function can be called any time after device initialization, and the TALISE_setGpIntMask() function has been
executed.

Parameters include the following:

• *device is a pointer to the data structure.
• *gpIntStatus is a 32-bit word that indicates which interrupt sources are currently asserted. Use taliseGpIntMask_t to

determine the source of the interrupt.
• *gpIntDiag is a pointer to a diagnostic structure that returns more specific error information from the GP_INTERRUPT source. If

the pointer is NULL, no diagnostic information is returned.

3.3 V GPIO OPERATION
The device features twelve, 3.3 V capable GPIOs that can be configured for numerous functions. Similar to the low voltage GPIO pins, the
3.3 V GPIO pins can be used for monitoring or controlling external devices. However, not all functions of the 3.3 V GPIOs and the low
voltage GPIOs are interchangeable.

The physical pins that are used to control the 3.3 V GPIO pins are the same physical pins that are used to control the AUXDACs
(see Table 140). It is important to note that an AUXDAC function is given priority over a 3.3 V GPIO function that is assigned to the same
GPIO.

Specific operation modes for the 3.3 V GPIO include level translate and inverted level translate mode, manual control of the 3.3 V GPIO
logic level (also known as bitbang mode), and gain table external element control.

3.3 V GPIO Overview

The 3.3 V GPIO pins can be configured as input or output pins on a per pin basis. To configure the 3.3 V GPIO pins for input or output
mode, use the TALISE_setGpio3v3Oe() function.

If a 3.3 V GPIO pin is configured as an input pin, no further action is necessary. The only input function available on the 3.3 V GPIO pin
is to obtain the logic level of a 3.3 V input pin (1 or 0).

If a 3.3 V GPIO pin is configured as an output pin, it is necessary to set the source control for the pin. The source control determines the
functionality of a group of output pins. Source control is assigned in nibble groups of four pins. There are three total nibble groups for the
twelve 3.3 V GPIO pins. Each nibble group can have a different assignment. If required, the user can set a pin within a nibble group to
input mode or to enable the AUXDAC. In this case, the nibble group assignment is ignored, and the function assigned to the individual
GPIO is executed.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 226 of 247

To set the source control, use the TALISE_setGpio3v3SourceCtrl() function. The source control assignments are described by the
taliseGpio3v3Mode_t enumerations in Table 139.

Table 139. talise3v3GpioMode_t Enumerations for 3.3V GPIO Modes
taliseGpio3v3Mode_t Enumerator Enumerator Value Description
TAL_GPIO3V3_LEVELTRANSLATE_MODE 1 Level translate mode. Signal level on low voltage GPIO pins are level

shifted to 3.3 V.
TAL_GPIO3V3_INVLEVELTRANSLATE_MODE 2 Inverted level translate mode. Inverse of signal levels on low voltage

GPIO pins are outputs.
TAL_GPIO3V3_BITBANG_MODE 3 Manual control mode. When enabled, use TALISE_setGpio3v3PinLevel()

to control the logic output level of a pin.
TAL_GPIO3V3_EXTATTEN_LUT_MODE 4 This mode configures specific 3.3 V GPIO pins to output the 4-bit,

external attenuator control word for the selected gain index.
 Rx1 uses GPIO_3P3_3 to GPIO_3P3_0.
 Rx2 uses GPIO_3P3_7 to GPIO_3P3_4.

Setup and configuration of the 3.3 V GPIOs can be performed after initialization of the device.

3.3 V GPIO, Level Translate Mode

The 3.3 V GPIO level translate mode translates digital logic input signals from the low voltage GPIO pins to 3.3 V logic levels. The inputs
and outputs for this function operate at the logic levels of each pin interface, specifically, at the logic level of the VDD_INTERFACE pin
for low voltage GPIO pins, and at the logic level of the VDDA_3P3 pin for the 3.3 V GPIOs. This control is unidirectional from the low
voltage GPIOs to the 3.3 V GPIOs. The device is capable of straightforward or inverted level translation.

Figure 140 shows the operation of the level translation block.

GPIO_3P3_11
GPIO_3P3_10
GPIO_3P3_9

GPIO_3P3 _8

GPIO_3P3_7
GPIO_3P3_6
GPIO_3P3_5
GPIO_3P3_4

GPIO_3P3_3
GPIO_3P3_2
GPIO_3P3_1
GPIO_3P3_0

GPIO 18 ON‐CHIP

LEVEL
TRANSLATION

LEVEL
TRANSLATION

GPIO 17
GPIO 16

GPIO 15
GPIO 14
GPIO 13
GPIO 12

GPIO 11
GPIO 10

GPIO 9
GPIO 8

GPIO 7
GPIO 6
GPIO 5
GPIO 4

GPIO 3
GPIO 2
GPIO 1
GPIO 0

LEVEL
TRANSLATION

16
82

2-
24

0

Figure 140. Level Translation Mode Between the Low Voltage GPIOs and 3.3 V GPIOs

To enable level translation mode, take the following steps after device initialization:

1. Set the desired low voltage GPIO pins to input mode with the TALISE_setGpioOe() function.
2. Set the desired 3.3 V GPIO pins to output mode with the TALISE_setGpio3v3Oe() function.
3. Set the source control to the desired level translation scheme.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 227 of 247

3.3 V GPIO, Bitbang Mode

The 3.3 V GPIO bitbang mode allows the user to configure the 3.3 V GPIO pins as inputs or outputs where the device can read back or set
pin logic levels. This mode is also referred to as manual mode. If a GPIO pin is configured as an input, the user can read back the logic
level present at the input. The logic readback is either 0 or 1 (must be connected to ground or VDDA_3P3). If a GPIO pin is configured as
an output, the user is able to set a logic level on the pin (must be connected to ground or VDDA_3P3).

Figure 141 shows the operation of the 3.3V GPIOs in bitbang mode.

setGpio3v3PinLevel
(gpio3v3PinLevel)

setGpio3v3SourceCtrl
(gpio3v3SrcCtrl)

setGpio3v3Oe
(gpio3v3OutEn)

getGpio3v3PinLevel
(gpio3v3PinLevell)

I/O BUFFERI/O CROSS-POINT
GPIO_3P3_11B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

READ‐BACK

SET‐UP

1 = HIGH

0 = LOW

1 = HIGH

0 = LOW

B11, B10, B9…...……….B2, B1, B0

B11, B10, B9…...……….B2, B1, B0

GPIO_3P3_10

GPIO_3P3_9

GPIO_3P3_8

GPIO_3P3_7

GPIO_3P3_6

GPIO_3P3_5

GPIO_3P3_4

GPIO_3P3_3

GPIO_3P3_2

GPIO_3P3_1

GPIO_3P3_0

16
82

2-
24

1

Figure 141. 3.3 V GPIO Hardware Configuration for Bitbang Mode

The TALISE_setGpio3v3PinLevel() function sets the output logic level on the GPIO pins is. This command requires an input
parameter that specifies a logic level for each pin. However, the pin must be set to output mode and bitbang source control for the desired
logic level to appear on the pin. To read back the expected output logic level of the GPIOs, use the
TALISE_getSet3v3GpioPinLevel() function.

Use the TALISE_getGpio3v3PinLevel() function to read back the input logic level on the 3.3 V GPIOs. This function returns a
16-bit word where each bit corresponds to the input logic level detected on the GPIOs.

3.3 V GPIO, Gain Table External Element Control

The gain table, as discussed in the Receiver Gain Control section, includes a 4-bit, external element control column. This control column
can be used to control an external, digitally stepped attenuator (DSA), or the column can be used for low noise amplifier (LNA) bypass
control. This feature is convenient for users that require external elements to the transceiver to change gain based on the gain table setting
within the transceiver, particularly in AGC scenarios.

To enable the gain table external element control, take the following steps after device initialization:

1. Load a gain table with non-zero values in the external element control column.
2. Set the 3.3 V GPIOs to output mode with the TALISE_setGpio3v3Oe() function.
3. Set the 3.3 V GPIO source control to TAL_GPIO3V3_EXTATTEN_LUT_MODE with the TALISE_setGpio3v3SourceCtrl()

function.

After these steps are performed, the following 3.3V GPIO pins express the value of the external element control column for a specific
receiver: Receiver 1 uses GPIO_3P3_3 to GPIO_3P3_0, and Receiver 2 uses GPIO_3P3_7 to GPIO_3P3_4.

The external element control values expressed on these pins depends on the gain index setting and the gain table. See the Receiver Gain
Control for details.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 228 of 247

API Functions for 3.3 V GPIOs

This section summarizes the API functions for 3.3 V GPIO function configuration.

TALISE_setGpio3v3Oe ()

This function sets the 3.3 V GPIO as an input or an output. Each GPIO can only be an input or an output (unidirectional) set by a
transferred parameter. The gpioUsedMask parameter allows this function to only affect the GPIO pins of interest. The function is as
follows:

uint32_t TALISE_setGpio3v3Oe(taliseDevice_t *device, uint16_t gpio3v3OutEn, uint16_t
gpio3v3UsedMask)

Parameters include the following:

• *device is a structure pointer to the device data structure.
• gpioOutEn = 1, the corresponding pin is configured as an output. If gpioOutEn = 0, the corresponding pin is configured as an

input.
• gpioUsedMask is a mask used to control which OE bits are set/cleared. If this mask bit = 1, that bit is modified by the

gpioOutEn bit.

TALISE_getGpio3v3Oe ()

This function retrieves the GPIO direction currently set in the device. The direction can be either output or input per pin. The return
gpioOutEn function parameter returns one bit per GPIO pin. 1 = output, and 0 = input. The function is as follows:

uint32_t TALISE_getGpio3v3Oe(taliseDevice_t *device, uint16_t *gpio3v3OutEn)

Parameters include the following:

• *device is a structure pointer to the device data structure.
• *gpioOutEn = 1, the corresponding pin is configured as an output. If *gpioOutEn = 0, the corresponding pin is configured as an

input.

TALISE_setGpio3v3SourceCtrl ()

This function sets the 3.3 V GPIO output source for different GPIO functionalities. This function only affects the GPIO pins that are set
as outputs. Each GPIO nibble (four pins) can be assigned to a GPIO source and must share that same GPIO output source. The
taliseGpio3v3Mode_t structure can be bit shifted and bitwise OR-ed together to create the value for the gpioSrcCtrl parameter.
The function is as follows:

uint32_t TALISE_setGpio3v3SourceCtrl(taliseDevice_t *device, uint16_t gpio3v3SrcCtrl)

Parameters include the following:

• *device is a structure pointer to the device data structure.
• gpio3v3SrcCtrl is a nibble-based source control. This is a 12-bit value containing three nibbles that set the output source control

for each set of four GPIO pins.

TALISE_getGpio3v3SourceCtrl ()

This function reads the 3.3 V GPIO output source for different GPIO functionalities. The function is as follows:

uint32_t TALISE_getGpio3v3SourceCtrl(taliseDevice_t *device, uint16_t *gpio3v3SrcCtrl)

Parameters include the following:

• *device is a structure pointer to the device data structure.
• *gpio3v3SrcCtrl is a pointer to readback word for nibble-based source control. This is a 12-bit value containing three nibbles

that set the output source control for each set of four GPIO pins.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 229 of 247

TALISE_setGpio3v3PinLevel ()

This function sets the 3.3 V GPIO output level. This function only affects the GPIOs that are set as outputs and that have the proper
source control set for the nibbles in TAL_GPIO3V3_BITBANG_MODE.

uint32_t TALISE_setGpio3v3PinLevel(taliseDevice_t *device, uint16_t gpio3v3PinLevel)

Parameters include the following:

• *device is a structure pointer to the device data structure.
• gpio3v3PinLevel is the bit returned per GPIO pin and indicates the level to output for each GPIO pin. 0 = low output, and 1 =

high output.

TALISE_getGpio3v3PinLevel ()

This function reads the 3.3 V GPIO pin level. The GPIO pins that are set as inputs read back and are returned in the gpioPinLevel
parameter. The return value is one bit per pin. GPIO_3P3_0 returns on Bit 0 of the gpioPinLevel parameter. A logic low level returns
a 0, and a logic high level returns a 1. The function is as follows:

uint32_t TALISE_getGpio3v3PinLevel(taliseDevice_t *device, uint16_t *gpio3v3PinLevel)

Parameters include the following:

• *device is a structure pointer to the device data structure.
• *gpio3v3PinLevel is a pointer to the readback word. One bit is returned per GPIO pin, and the return is the level to be output

for each GPIO. 0 = low input, and 1 = high input.

TALISE_getGpio3v3SetLevel ()

This function reads the GPIO pin output levels for bitbang mode. This function allows the readback of the value that the GPIO output
pins are set to so that the pins can be driven out. The function is as follows:

uint32_t TALISE_getGpio3v3SetLevel(taliseDevice_t *device, uint16_t *gpio3v3PinSetLevel)

Parameters include the following:

• *device is a structure pointer to the device data structure.
• *gpio3v3PinLevel is a pointer to the readback word. One bit is read back per GPIO pin, and the return is the level to be output

for each GPIO. 0 = low input, and 1 = high input.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 230 of 247

AUXILIARY CONVERTERS AND TEMPERATURE SENSOR
The integrated transceiver contains integrated auxiliary data converters including auxiliary DACs and auxiliary ADCs. The device also
supports a diode-based temperature sensor that can provide the current temperature of the transceiver. These features are included to
simplify control tasks for the BBIC, take static measurements during operation, and provide flexibility that can be used across multiple
applications without adding external components. This section outlines the operation of these features along with the API functions that
are required to configure the circuitry.

AUXILARY DAC (AUXDAC)
The are 12 independent AUXDACs integrated onto the device that is operating on the VDDA_3P3 pin supply domain. AUXDAC_0 to
AUXDAC_9 are 10-bit current steering DACs that can support an aggregate 12 bits with a programmable reference voltage select.
AUXDAC_10 and AUXDAC_11 are true, 12-bit DACs. The AUXDAC output mapping to 3.3 V GPIO pins is described in
Table 140.

Table 140. AUXDAC Mapping to 3.3 V GPIO Pins
AUXDAC Number 3.3 V GPIO Resolution Supported
AUXDAC_0 GPIO_3P3_10 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_1 GPIO_3P3_8 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_2 GPIO_3P3_7 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_3 GPIO_3P3_11 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_4 GPIO_3P3_0 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_5 GPIO_3P3_1 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_6 GPIO_3P3_4 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_7 GPIO_3P3_5 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_8 GPIO_3P3_6 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_9 GPIO_3P3_9 10-bit, 11-bit subrange, 12-bit subrange
AUXDAC_10 GPIO_3P3_2 12-bit
AUXDAC_11 GPIO_3P3_3 12-bit

Note that although the ten 10-bit, current steering DACs are true 10-bit DACs, the API can refer to the resolution of the DAC as
effectively an 11-bit or a 12-bit DAC. The effective 11-bit or 12-bit DAC uses the 10-bit DAC but has configurable voltage references (1 V,
1.5 V, 2 V, and 2.5 V) and high slope (11-bit) and low slope (12-bit) options that allow the 10-bit DAC to span a wider effective range. The
voltage reference and slope are not adjustable in the 12-bit mode because this mode is designed to span the range from 0 V to 3.3 V. In all
modes using the 10-bit DAC, the accepted input codes range from 0 to 1023.

The 10-bit, current steering DACs for AUXDAC_0 to AUXDAC_9 have programmable voltage reference points and a programmable
voltage resolution per LSB input. Figure 142 shows the 10-bit AUXDACs. The 10-bit input code to each AUXDAC is independent to other
AUXDACs. To ensure stability for AUXDAC_0 to AUXDAC_9, a 100 nF bypass capacitor is required at the respective 3.3 V GPIO pin.

auxDacCode[D9:D0]
AUXDAC_0

auxDacResolution[D0]
2

2

10

auxDacCode[D9:D0]
AUXDAC_9

auxDacEnables[D9]

auxDacVref[9]

auxDacResolution[9]

100nF

10
GPIO_3P3_9

EN VREF VRES

2

2

auxDacVref[D0]

auxDacEnables[D0]

EN VREF VRES 100nF
GPIO_3P3_10

16
82

2-
14

4

Figure 142. Auxiliary DAC Schematic for 10-Bit Auxiliary DACs

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 231 of 247

The true 12-bit DAC for AUXDAC_10 and AUXDAC_11 does not feature a programmable voltage reference or programmable voltage
resolution. However, the 12-bit AUXDAC supports a full 12-bit resolution without subranging. The following diagram illustrates the
12-bit AUXDACs. Use a bypass capacitor of less than 100 pF for stability.

AuxDacCode[D11:D0] AUXDAC_11
12

GPIO_3P3_3

AuxDacCode[D11:D0] AUXDAC_10
12

GPIO_3P3_2

16
82

2-
14

5

Figure 143. AUXDAC schematic for 12-bit AUXDACs

The AUXDACs are designed to be used in feedback loop operations. For example, an AUXDAC can be used to generate a voltage supply
used to control a voltage controlled crystal oscillator (VCXO) voltage input. For such control system use cases, the absolute value of the
voltage output is not critical, but the voltage steps must be 12-bit, accurate, and monotonic. The feedback of the servo loop assists to
regulate the voltage input to the desired level.

Configuration of the AUXDACs is achieved with the TALISE_setupAuxDacs() function. Setting the values for each AUXDAC can
also be performed in this function. Alternatively, where the AUXDAC value must change after AUXDAC configuration, the
TALISE_writeAuxDac() function can be used. The TALISE_writeAuxDac() function allows the user to set a new input code to a
selected AUXDAC.

AUXDAC Voltage Transfer Functions

The 10-bit, 11-bit subrange, 12-bit subrange, and true 12-bit AUXDAC ideal voltage transfer functions can be calculated with equations
described in this section. Note that gain and offset variations are not described by these equations.

The 10-bit AUXDAC, subranged 11-bit AUXDAC, and subranged 12-bit AUXDAC ideal voltage transfer function can be described by the
following equation.

+ × −
= + × +

+
0.00143136 (1)(1.094 511)

() (1 0.5 [1 : 0])
1 [1 : 0]OUT

lowres Code
V Code AuxDacVref

AuxDACStepFactor
 (2)

Where:
auxDacVref[1:0] = 0, 1, 2, or 3. These correspond to a reference voltage (VREF) of 1.0 V, 1.5 V, 2.0 V, or 2.5 V, respectively.
lowres = 0 or 1. lowres = 1 when the AUXDAC resolution is set to 10-bit, and lowres = 0 otherwise.
auxDACStepFactor[1:0] = 0 or 1. auxDACStepFactor = 1 when the AUXDAC resolution is set to 12-bit, and auxDACStepFactor = 0
otherwise.
Code = {0, 1, … 1023}. This variable corresponds to the AUXDAC input code value.

Figure 144 to Figure 147 show the idealized transfer functions for the 10-bit, 11-bit subrange, and 12-bit subrange AUXDACs. The items
in the legends of these figures denote the data structure configured reference voltage level and resolution of the AUXDAC. These plots are
calculated with Equation 2.

0 80 160 240 320 400 480 560 640 720 800 880 960

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

V O
U

T
(V

)

AUXDAC CODE (CODE)

AuxDacVref1P5V TO AuxDacRes10Bit

16
82

2-
14

6

Figure 144. Ideal Voltage Transfer Function for 10-Bit AUXDAC

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 232 of 247

0 76 152 228 304 380 456 532 608 684 760 836 912 988

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

V O
U

T
(V

)

AUXDAC CODE (CODE)

AuxDacVref1P5V TO AuxDacRes11Bit
AuxDacVref1V TO AuxDacRes11Bit
AuxDacVref2P5V TO AuxDacRes11Bit
AuxDacVref2V TO AuxDacRes11Bit

16
82

2-
14

7

Figure 145. Ideal Voltage Transfer Function for 11-Bit (Subrange) AUXDAC

0 80 160 240 320 400 480 560 640 720 800 880 960

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

V I
N

 (V
)

AUXDAC CODE (CODE)

AuxDacVref1P5V TO AuxDacRes12Bit
AuxDacVref1V TO AuxDacRes12Bit
AuxDacVref2P5V TO AuxDacRes12Bit
AuxDacVref2V TO AuxDacRes12Bit

16
82

2-
14

8

Figure 146. Ideal Voltage Transfer Function for 12-Bit (Subrange) AUXDAC

The true, 12-bit AUXDAC ideal voltage transfer function can be represented by the following equation:

VOUT(Code) = (Code × 3.3 V)/4095

where:
VOUT is the output voltage.
Code = {0, 1, … 4095}. This variable corresponds to the AUXDAC input code value.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 233 of 247

The ideal voltage transfer function for the true, 12-bit AUXDAC is shown in Figure 147. Note that there are only two true, 12-bit
AUXDACs available.

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

V I
N

 (V
)

AUXDAC CODE (CODE)

TOTAL
LINEAR (TOTAL)

16
82

2-
14

9

Figure 147. Ideal Voltage Transfer Function for True, 12-Bit AUXDAC

Data Structures and Enumerations for AUXDAC Programming

This section describes the data structures and enumerations that pertain to AUXDAC programming.

taliseAuxDac_t Data Structure

The taliseAuxDac_t data structure stores the configuration settings for all AUXDACs. The configuration settings stored in this
structure are described Table 141.

Table 141. taliseAuxDac_t Data Structure Parameters

Data Type
taliseAuxDac_t
Structure Member Description

uint16_t auxDacEnables AUXDAC enable bit for each DAC, where the first 10 bits correspond to the
10-bit DACs and the consecutive 2 bits enable the 12-bit DACs.

taliseAuxDacVref_t[10] auxDacVref AUXDAC voltage reference value for each of the 10-bit DACs. This is a
10 element array.

taliseAuxDacResolution_t[10] auxDacResolution AUXDAC slope (resolution of voltage change per AUXDAC code). Only applies
to the 10-bit DACs. This is a 10 element array.

uint16_t[12] auxDacValues AUXDAC values for each 10-bit DAC correspond to the first 10 array elements,
the next consecutive array elements correspond to the two true 12-bit
AUXDACs.

This data structure is programmed to the device registers when the TALISE_setupAuxDacs() function is called.

taliseAuxDacResolution_t Enumeration

The enumeration taliseAuxDacResolution_t is specific to the 10-bit AUXDACs. The taliseAuxDacResolution_t parameter
allows configuration of the change in voltage per LSB of the input DAC code. This enumerator is described in Table 142.

Table 142. taliseAuxDacResolution_t Enumeration Descriptions
taliseAuxDacResolution_t

Enumerator Name Enumerator Value Description
TAL_AUXDACRES_10BIT 0 10-bit DAC resolution mode. In this mode, the voltage range is from 100 mV to 3 V.

The reference voltage in this mode is 1.5 V.
TAL_AUXDACRES_11BIT 1 11-bit DAC resolution mode for a subset of the output voltage range centered around

VREF. The ΔmV/LSB is approximately 1.404 mV/LSB.
TAL_AUXDACRES_12BIT 2 12-bit DAC resolution mode for a subset of the output voltage range centered around

VREF. The ΔmV/LSB is approximately 0.702 mV/LSB.
Select this enumerator for the subrange 12-bit DAC or the true 12-bit DAC.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 234 of 247

taliseAuxDacVref_t Enumeration

The enumeration taliseAuxDacVref_t is specific to the 10-bit AUXDACs when using the 11-bit or 12-bit subranged modes
described in Table 142. This parameter allows flexible configuration of the reference voltage to four different values. This enumerator is
described Table 143. The Vref parameter cannot be selected in true 12-bit AUXDAC or 10-bit AUXDAC.

Table 143. taliseAuxDacVref_t Enumeration Descriptions
taliseAuxDacVref_t Enumerator Name Enum Value Description
TAL_AUXDACVREF_1V 0 10-bit AUXDAC reference voltage is 1 V.
TAL_AUXDACVREF_1P5V 1 10-bit AUXDAC reference voltage is 1.5 V.
TAL_AUXDACVREF_2V 2 10-bit AUXDAC reference voltage is 2 V.
TAL_AUXDACVREF_2P5V 3 10-bit AUXDAC reference voltage is 2.5 V.

API Functions for AUXDAC Programming

This section describes the API functions for programming the AUXDACs.

TALISE_setupAuxDacs()

This function sets up the 12 AUXDACs on the device. The function uses the configuration in the taliseAuxDac_t data structure
function parameter to setup each of the 12 DACs. This function can be called any time after the TALISE_initialize() function is
called to reconfigure, enable, or disable the different DAC outputs. The DACs are used in manual control mode. After calling this setup
function, it is possible to change a specific DAC code by calling the TALISE_writeAuxDac() function. The function is as follows:

uint32_t TALISE_setupAuxDacs(taliseDevice_t *device, taliseAuxDac_t *auxDac)

The AUXDAC outputs share the 3.3 V GPIO pins. When using an AUXDAC on a particular GPIO pin, ensure that the GPIO pin is set to
be an input pin to tristate the GPIO pad driver.

Preconditions: complete device initialization.

Parameters include the following:

• *device is a pointer to the device data structure.
• *auxDac is a pointer to the taliseAuxDac_t data structure .

TALISE_writeAuxDacs()

This function writes the current auxiliary DAC code for a specific AUXDAC. The function is as follows:
uint32_t TALISE_writeAuxDac(taliseDevice_t *device, uint8_t auxDacIndex, uint16_t auxDacCode)

Preconditions: complete device initialization and call the TALISE_setupAuxDacs() function.

Parameters include the following:

• *device is a pointer to the device data structure.
• auxDacIndex selects the desired DAC to load the auxDacCode for AUXDAC_0 to AUXDAC_11. Values 0 to 9 correspond to the

ten 10-bit DACs and values 10 and 11 corresponds to the two 12-bit DACs.
• auxDacCode is the DAC code to write to the selected AUXDAC. Sets the output voltage of the AUXDAC (valid code values are 0 to

1023 for auxDacIndex values 0 to 9), (valid code values are 0 to 4095 for auxDacIndex values 10 and 11).

AUXILIARY ADC (AUXADC)
The AUXADC on the device provides sixteem 3.3 V inputs for external analog-to-digital conversions. The AUXADC is a 12-bit converter
and provides users with a high impedance input that can simplify board designs by potentially eliminating the need for additional
external ADCs. The API currently supports the four AUXADC channels routed to a header on the evaluation board.

Calibration can be performed to obtain a full, 12-bit resolution for absolute measurements. If only relative and/or 7-bit uncorrected
accuracy is required, the AUXADC can be used uncalibrated.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 235 of 247

IN_0/REF

IN_1

IN_15 SDM
12b

16
82

2-
15

0

Figure 148. AUXADC Block Diagram

The true, 12-bit AUXADC ideal voltage transfer function can be represented by the following equation:

VIN = Code × 3.3 V/4095

Where Code = {0, 1, … 4095}. This variable corresponds to the AUXADC result value.

The ideal voltage transfer function for the true, 12-bit AUXADC is shown in Figure 149. Each AUXADC is a true, 12-bit AUXADC.

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

V
IN

 (
V

)

AUXADC CODE (CODE)

AuxADCVref3p3V

16
82

2-
15

1

Figure 149. Ideal Voltage Transfer Function for 12-Bit AUXADC

AUXADC Calibration

The system offset and gain errors can be calibrated out by taking three measurements. From these measurements, offset, and gain error
can be calculated, and a correction value can be determined. The first two measurments are made using the REF and REF/2 on the
AUXADC input, IN_0. Slope (gain error) and offset can be calculated using these two points. A third measurement is then taken on the
data input to which the gain and offset error correction values are applied. This results in a calibrated measurement result.

An external reference voltage can be supplied to AUXADC_0. An internal divider and mulitplexer allow this reference to be divided by
two, which can be achieved by setting Bit 2 of SPI Register 0x1206. Make a measurement of REF/2. The following procedure describes the
steps:

1. Make measurement of REF at AUXADC_0 and store as VO2.
2. Set Bit 2 at SPI Register 0x1206 to divide REF by 2.
3. Make measurement of REF/2 at AUXADC_0 and store as VO1.
4. Clear Bit 2 at SPI Register 0x1206.
5. Calculate the slope (m) with the following equation:

m = (VO2 – VO1)/(REF – REF ÷ 2)

where:
VO2 is the REF voltage measurement.
VO1 is the REF/2 voltage measurement.
REF is the external reference voltage applied to AUXADC_0.

6. Calculate the offset with the following equation:

b = VO2 – m × REF

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 236 of 247

7. Use b and m to correct signal measurement with the following equation:

VO’ = VO – b/m

where:
VO’ is the corrected signal measurement.
VO is the signal measurement from the AUXADC.

VOUT

VIN

REFREF/2

VO1

VO2

GAIN ERROR REMOVED

RAW INPUT

OFFSET REMOVED

16
82

2-
15

2

Figure 150. Offset and Gain Error Calibrations

Data Structures and Enumerations for AUXADC Programming

This section describes the data structures and enumerators for AUXADC programming.

taliseAuxAdcConfig_t Data Structure

The taliseAuxAdcConfig_t data structure stores the configuration settings for all AUXADCs. The configuration settings stored in
this structure are described in Table 144.

Table 144. taliseAuxAdcConfig_t Data Structure Parameters

Data Type
taliseAuxAdcConfig_t
Structure Member Description

taliseAuxAdcChannels_t auxAdcChannelSel Selects the channel which is supposed to sample AUXADC input for analog-
to-digital conversion.

taliseAuxAdcModes_t auxAdcMode Selects mode to latch and store conversion results.
uint16_t numSamples Number of analog-to-digital conversions to be performed in 1 to 1000 range.
uint16_t samplingPeriod_us Sampling interval in μs (minimum 15 μs). Valid only for nonpin mode. Ignored

for pin mode.

taliseAuxAdcChannels_t Enumeration

The taliseAuxAdcChannels_t enumeration is specific to the 12-bit AUXADCs. This enumeration is described in Table 145.

Table 145. taliseAuxAdcChannels_t Enumeration Description
taliseAuxDacVref_t Enumerator Name Enumerator Value Description
TAL_AUXADC_CH0 0 Select AUXADC Channel 0 for sampling and conversion
TAL_AUXADC_CH1 1 Select AUXADC Channel 1 for sampling and conversion
TAL_AUXADC_CH2 2 Select AUXADC Channel 2 for sampling and conversion
TAL_AUXADC_CH3 3 Select AUXADC Channel 3 for sampling and conversion

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 237 of 247

taliseAuxAdcModes_t Enumeration

The taliseAuxAdcChannels_t enumeration is specific to the 12-bit AUXADCs. This enumeration is used to specify AUXADC
sampling and conversion mode and is described in Table 146.

Table 146. taliseAuxAdcModes_t Enumeration Description
taliseAuxDacVref_t

Enumerator Name Enumerator Value Description
TAL_AUXADC_NONPIN_MODE 0 Select AUXADC sampling and conversion in nonpin mode (Arm internal timer is

used for sampling and conversion).
TAL_AUXADC_PIN_MODE 1 Select AUXADC sampling and conversion in pin mode (pulses on Arm GPIO

input pins are used to schedule sampling and conversion).

taliseAuxAdcResult_t Data Structure

The taliseAuxAdcResult_t data structure stores the results of scheduled AUXADC conversions. The members stored in this
structure are described in Table 147.

Table 147. taliseAuxAdcResult_t Data Structure Parameters

Data Type
taliseAuxAdcConfig_t
Structure Member Description

uint16_t auxAdcCodeAvg 12-bit average of AUXADC analog-to-digital conversion samples.
uint16_t numSamples Number of samples averaged in auxAdcCodeAvg member.
uint8_t completeIndicator Flag to indicate if a scheduled AUXADC conversion is completed. 1 = conversion complete,

and 0 = conversion incomplete.

Nonpin Mode AUXADC Conversions

The nonpin mode AUXADC conversions are initiated in the software. Prior to initiating an AUXADC conversion, the AuxAdcConfig
parameter of the taliseAuxAdcConfig_t data structure must be set up. The AUXADC channel must be set, the auxADCMode must
be set to TAL_AUXADC_NONPIN_MODE, and the number of conversions to be made and conversion period must be set. The
TALISE_startAuxAdc() function initiates the nonpin mode conversions.

Results can be read back into the taliseAuxAdcResult_t data structure with the TALISE_readAuxAdc() function.

Pin Mode AUXADC Conversions

Pin mode AUXADC conversions are initiated by a pulse applied to a selected GPIO input pin. The
TALISE_setAuxAdcPinModeGpio() function assigns a GPIO input to the AUXADC as a start signal. Passing a valid 1.8 V GPIO
(GPIO_0 to GPIO_15) assigns the GPIO to start the AUXADC conversions, if the GPIO is not already assigned to another feature.
Transferring the TAL_GPIO_INVALID command unassigns the GPIO pin that was previously assigned to the AUXADC. GPIO
assignment must be made when the device is in idle state (TALISE_RadioOff()).

Prior to initiating an AUXADC conversion, the AuxAdcConfig parameter of the taliseAuxAdcConfig_t data structure must be
setup. AUXADC channel must be set, AuxADCMode must be set to TAL_AUXADC_PIN_MODE, and the number of conversions to be
made.

The TALISE_startAuxAdc() function allows the AUXADC conversions to be made when pulses are detected at the assigned GPIO
pin. Be aware that after calling the TALISE_startAuxADC() function, the GPIO pulse are ignored for 150 μs. Additionally, after this,
the pulses are ignored every 2 sec for a duration of 150 μs, is due to sharing the AUXADC with the internal temperature sensor.
Temperature measurements take control of the AUXADC for 150 μs every 2 seconds.

Results can be read back into the taliseAuxAdcResult_t data structure with the TALISE_readAuxAdc() function.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 238 of 247

API Functions for AUXADC Conversions

This section describes the API functions for programming the AUXADC conversions.

TALISE_getAuxAdcPinModeGpio()

This function returns the GPIO pin associated with the AUXADC start signal in the Arm processor for pin mode AUXADC operations.
The function is as follows:

uint32_t TALISE_getAuxAdcPinModeGpio(taliseDevice_t *device, taliseGpioPinSel_t* pinModeGpio)

The only valid GPIO pin selects are GPIO_0 to GPIO_15. TAL_GPIO_INVALID is returned where no valid GPIO is assigned to the
AUXADC start signal.

This function has no preconditions.

Parameters include the following:

• *device is a pointer to the device data structure.
• * pinModeGpio is a pointer to the taliseGpioPinSel_t enumerator type to the GPIO pin that is currently associated with the

AUXADC that the start signal is written to.

TALISE_setAuxAdcPinModeGpio()

This function assigns the requested GPIO pin to the AUXADC start signal in the Arm processor The Arm processor expects a low (0) to
high (1) pulse on the assigned GPIO pin to start the AUXADC conversion. Only GPIO_0 to GPIO_15 are valid GPIO pin selects.
TAL_GPIO_INVALID is returned where no valid GPIO is assigned to the AUXADC start signal. The function is as follows:

uint32_t TALISE_getAuxAdcPinModeGpio(taliseDevice_t *device, taliseGpioPinSel_t pinModeGpio)

Preconditions: this function is only supported when the device is in an idle state. It is required to call TALISE_RadioOff() before
setting up the GPIO pin for the AUXADC.

Parameters include the following:

• *device is a pointer to the device data structure.
• pinModeGpio is the GPIO pin assigned and unassigned from the AUXADC start signal in the Arm processor.

TALISE_startAuxAdc()

This function configures one of four 12-bit AUXADCs on the device for sampling and analog-to-digital conversion. This function uses
the configuration in the taliseAuxAdcConfig_t data structure function parameter to set up the AUXADC channel to be used for
external analog-to-digital conversion use. In nonpin mode, this function initiates the analog-to-digital conversions. In pin mode, this
function enables the analog-to-digital conversion to be initiated by pulsing the selected GPIO from low to high. The function is as
follows:

uint32_t TALISE_startAuxAdc (taliseDevice_t *device, taliseAuxAdcConfig_t* auxAdcConfig)

Preconditions: if pin mode is selected, GPIO pin must be assigned as the AUXADC start signal and cannot be used for another feature.
The AUXADC must be configured via the auxAdcConfig data structure.

Parameters include the following:

• *device is a pointer to the device data structure.
• *auxAdcConfig is a pointer to the auxAdcConfig structure.

Note that temperature sensor measurements are prioritized over external AUXADC use. Temperature sensor measurements work in
radio on and radio off modes.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 239 of 247

TALISE_readAuxAdc()

This function reads the analog-to-digital conversion result from the Arm mailbox and updates the auxAdcResult data structure. The
result is valid depending on the complete indicator field. The CompleteIndicator parameter in the auxAdcResult_t data
structure reads back as 0 if the conversions are not complete and reads back as 1 if the conversions are complete. The function is as
follows:

uint32_t TALISE_readAuxAdc(taliseDevice_t *device, taliseAuxAdcResult_t)

Preconditions: can be called any time after TALISE_initialize() and following a TALISE_startAuxAdc() call.

Parameters include the following:

• *device is a pointer to the device data structure.
• *auxAdcResult is a pointer to the taliseAuxAdcResult_t data structure where the result of the AUXADC conversion is

written.

Note that this function works in radio on and radio off modes.

TEMPERATURE SENSOR
The temperature sensor provides the means to read back the current temperature as determined by the Arm processor. The temperature
sensor reading is scaled to return the value in degrees Celsius.

API Functions for Temperature Sensor Readback

This section describes programming functions for the temperature sensor.

TALISE_getTemperature()

This function reads the temperature sensor of the device by requesting the latest temperature sensor value from the Arm processor. The
temperature sensor value read back is scaled to return the temperature as degrees Celsius. The function is as follows:

uint32_t TALISE_getTemperature(taliseDevice_t *device, int16_t *temperatureDegC)

Preconditions: this function can be called after the device has been fully initialized any time during run-time operation but only after the
Arm processor has been configured.

Parameters include the following:

• *device is a pointer to the device data structure.
• temperatureDegC is a pointer to a single uint16_t element that returns the current 12-bit temperature sensor value in degrees

Celsius.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 240 of 247

TRANSMITTER ATTENUATION
The device uses an accurate and efficient method of transmit power control (transmitter attenuation control) that involves a minimum
interaction with the BBP. The transmitter attenuation can be set directly via the API or through an SPI2 mode, which enables real-time
operation using a GPIO pin. For more information on SPI2, see the Transmitter Attenuation Control, SPI2 Port section. The transmitter
attenuation control is implemented with the analog and digital gain in the transmitter signal chain. Gain settings are controlled via an
internal lookup table. The attenuation controls are programmable and provide a range of 0 dB to 41.95 dB of attenuation. The attenuation
step size is 0.05 dB, which results in 840 available attenuation settings. These attenuation settings are abstracted by the API for ease of use
and efficient BBP implementation. See the targeted data sheet for the supported range of attenuation during device operation.

API FUNCTIONS FOR TRANSMITTER ATTENUATION
This section describes the API functions required to program the device for transmitter attenuation.

Talise.c Functions for Transmitter Atteunuation

The following function sets transmitter attenuation:

TALISE_setTxAttenuation(taliseDevice_t* device, taliseTxChannel_t txChannel,

 uint16_t txAttenuation_mdB)

Parameters include the following:

• *device is the structure pointer to the device data structure.
• txChannel is one of the two possible transmitter channels: Transmitter 1 or Transmitter 2. Only one transmitter can be set at a

time.
• txAttenuation_mdB is the desired attenuation value expressed in mdB. The valid range for values of txAttenuation_mdB is

0 mdB to 41950 mdB. If txAttenuation_mdB is out of range, and invalid parameter error generates.

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 241 of 247

TRANSMITTER NCO INTERNAL SIGNAL SOURCE
A transmitter NCO test tone can be generated in the digital section of the device that is transmitted out the transmitter RF outputs. The
NCO frequency can be set from –Transmitter Input Rate/2 to +Transmitter Input Rate/2. The transmitter attenuation is manually
overridden when the TALISE_enableTxNco() function is enabled. Analog transmitter attenuation is set to 0 (maximum output
power), and digital is set for an attuenation of 6 dB to prevent clipping any digital filters.

TRANSMITTER NCO API FUNCTIONS
Transmitter NCO Talise.c Functions

The transmitter NCO function is set by the following:

TALISE_enableTxNco(taliseDevice_t *device, taliseTxNcoTestToneCfg_t *txNcoTestToneCfg)

/**

* \brief Data structure to hold ADRV900x Tx NCO test tone Configuration

*/

typedef struct

{

 uint8_t enable; /*!< 0 = Disable Tx NCO, 1 = Enable Tx NCO on both
transmitters */

 int32_t tx2ToneFreq_kHz; /*!< Signed frequency in kHz of the desired Tx2 tone */

 int32_t tx2ToneFreq_kHz; /*!< Signed frequency in kHz of the desired Tx2 tone */

} taliseTxNcoTestToneCfg_t;

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 242 of 247

MINIMUM SWITCHING TIMES FOR THE ADRV9008-1, ADRV9008-2, AND ADRV9009
This section provides analysis on retrieving the minimum switching time for the receiver, transmitter, and observation receiver enable
signals for the ADRV9008-1, ADRV9008-2, and ADRV9009 devices. During switching (or turning enable signals on/off), the stream file
is invoked, which governs how fast the channels can transition between different states. This stream file is needed to ensure fast and
smooth transitions between the various radio states. Note that the stream file is automatically generated by the GUI based on
configuration options and is not readable, nor modifiable, by the user. The goal of this section is to help the user to get an idea of the
switching times needed on the baseband

ELEMENTAL TIMES FOR THE STREAM
During each state transition, the stream executes a series of commands. The time needed to execute each of these commands can be used
to calculate the total time required for the transition to complete. This section discusses the time needed for the execution of each
command.

The typical Arm clock ranges from 153.6 MHz to 245.76 MHz for any profile. Taking the worst case (153.6 MHz): 1 Arm clock cycle =
6.51 ns. For x Arm clock cycles, the wait command takes approximately (number of clock cycles) × 6.51 ns.

The wait command dominates the total time required for switching between different the radio states.

The switching time calculations in this section focus only on the wait times in each stream execution. All minimum switching times are
discussed in Arm clock cycles.

MINIMUM SWITCHING TIMES FOR THE ADRV9008-1
For the following calculations, the buffer time, tBUFFER, accommodates for the extra processing time needed to execute the internal writes
done by the stream. The typical tBUFFER value ranges from 40 ns to 200 ns. The user can select 200 ns as the value for tBUFFER to
accommodate for the worst case.

For the ADRV9008-1, the only possible switching transitions are from receiver high to receiver low and from receiver low to receiver
high.

Receiver High to Receiver Low for the ADRV9008-1

For this case, the receiver low stream is executed. Calculate the time taken to execute the receiver low stream (tRX_LOW_SINGLE) for a single
channel with the following example equation:

tRX_LOW_SINGLE = 40 Arm clock cycles

For two channels, the tRX_LOW_SINGLE can be calculated with the following example equation:

2 × tRX_LOW_SINGLE = 80 Arm clock cycles + tBUFFER

Receiver Low to Receiver High for the ADRV9008-1

For this case, the receiver high stream is executed. The time taken to execute the receiver high stream (tRX_HIGH_SINGLE) for a single channel
can be calculated with the following example equation:

tRX_HIGH_SINGLE = 258 Arm clock cycles

For two channels, the tRX_HIGH_SINGLE can be calculated with the following example equation:

2 × tRX_HIGH_SINGLE = 516 Arm clock cycles + tBUFFER

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 243 of 247

Figure 151 shows the minimum time that elapses between the receiver enable signal going high and the receiver data being valid on the
datapath, and shows the minimum time after which the receiver data becomes invalid when the receiver enable signal goes low.

Rx ENABLE

Rx DATA VALID

516 ARM CLOCK CYCLES + tBUFFER

80 ARM CLOCK CYCLES + tBUFFER 16
82

2-
15

3

Figure 151. Minimum Switching Times for the ADRV9008-1 (Dual-Channel Mode)

MINIMUM SWITCHING TIMES FOR THE ADRV9008-2
For the ADRV9008-2, the possible switching transitions are from transmitter low to transmitter high, transmitter high to transmitter low,
observation receiver low to observation receiver high, and observation receiver high to observation receiver low.

Transmitter Low to Transmitter High for the ADRV9008-2

For this case, the transmitter low stream is executed. The time taken to execute the transmitter low stream (tTX_LOW_SINGLE) for a single
channel can be calculated with the following example equation:

tTX_LOW_SINGLE = (48 + 80 + 12) Arm clock cycles = 140 Arm clock cycles

For two channels, the tTX_LOW_SINGLE can be calculated with the following example equation:

2 × tTX_LOW_SINGLE = 280 Arm clock cycles + tBUFFER

Transmitter High to Transmitter Low for the ADRV9008-2

For this case, the transmitter high stream is executed. The time taken to execute the transmitter high stream (tTX_HIGH_SINGLE) for a single
channel can be calculated with the following example equation:

tTX_HIGH_SINGLE = (80 + 8 + 80) Arm clock cycles = 168 Arm clock cycles

For two channels, the tTX_HIGH_SINGLE can be calculated with the following example equation:

2 × tTX_HIGH_SINGLE = 336 Arm clock cycles + tBUFFER

Figure 152 represents the minimum time between the transmitter enable going high and the transmitter data being valid on the datapath,
and shows the minimum time after which the transmitter data becomes invalid when the transmitter enable goes low.

Tx ENABLE

Tx DATA VALID

336 ARM CLOCK CYCLES + tBUFFER

280 ARM CLOCK CYCLES + tBUFFER 16
82

2-
15

4

Figure 152. Minimum Switching Times for the ADRV9008-2 (Transmitter Only, Dual-Channel Mode)

http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 244 of 247

Observation Receiver High to Observation Receiver Low for the ADRV9008-2

For this case, the observation receiver low stream is executed. The time taken to execute the observation receiver low (tORX_LOW_SINGLE) for a
single channel can be calculated from the following example equation:

tORX_LOW_SINGLE = 64 Arm clock cycles + tBUFFER

Observation Receiver Low to Observation Receiver High for the ADRV9008-2

For this case, observation receiver high stream is executed. The time taken to execute the observation receiver high stream
(tORX_HIGH_SINGLE) for a single channel can be calculated with the following example equation:

tORX_HIGH_SINGLE = (128 + 8 + 2) Arm clock cycles + 2 μs = 138 Arm clock cycles + 2 μs + tBUFFER

Figure 153 shows the minimum time between the observation receiver enable going high and the observation receiver data being valid on
the datapath, and shows the minimum time after which the observation receiver data becomes invalid when the observation receiver
enable goes low.

ORx ENABLE

ORx DATA VALID

138 ARM CLOCK CYCLES + 2µs
tBUFFER

64 ARM CLOCK CYCLES + tBUFFER 16
82

2-
15

5

Figure 153. Minimum Switching Times for the ADRV9008-2 (Observation Receiver Only, Single-Channel)

MINIMUM SWITCHING TIMES FOR THE ADRV9009
For the ADRV9009, the possible transitions are receiver to transmitter/observation receiver to receiver, receiver to transmitter to receiver,
and receiver to observation receiver to receiver.

Receiver to Transmitter/Observation Receiver to Receiver for the ADRV9009

This switching time case is broken down into two subcases: receiver to transmitter/observation receiver and transmitter/observation
receiver to receiver.

Receiver to Transmitter/Observation Receiver Subcase for the ADRV9009

For this subcase, the streams execute a receiver low stream, a transmitter high stream, and an observation receiver high stream.

To calculate the minimum switching times for each of these streams for a single channel, use the following example equations:

tRX_LOW_SINGLE = 40 Arm clock cycles

tTX_HIGH_SINGLE = 168 Arm clock cycles

tORX_HIGH_SINGLE = 138 Arm clock cycles + 2 μs

To calculate the minimum switching times for each of these streams for two channels, use the following example equation:

2 × (tRX_LOW_SINGLE + tTX_HIGH_SINGLE) + tORX_HIGH_SINGLE = 554 Arm clock cycles + 2 μs + tBUFFER

It is important to note that the stream execution sequence for this case is Receiver 1 low stream to Receiver 2 low stream to Transmitter 1
high stream to Transmitter 2 high stream Observation Receiver 1/Observation Receiver 2 high stream.

http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 245 of 247

Transmitter/Observation Receiver to Receiver Subcase for the ADRV9009

For this subcase, the streams execute a transmitter low stream, an observation receiver low stream, and a receiver high stream.

To calculate the minimum switching time for each of these streams for a single channel, use the following example equations:

tTX_LOW_SINGLE = 140 Arm clock cycles

tORX_LOW_SINGLE = 64 Arm clock cycles

tRX_HIGH_SINGLE = 258 Arm clock cycles

To calculate the minimum switching times tor two channels, use the following example equation:

2 × (tTX_LOW_SINGLE + tRX_HIGH_SINGLE) + tORX_LOW_SINGLE = 860 Arm clock cycles + tBUFFER

It is important to note that the stream execution sequence for this case is Transmitter 1 low stream to Transmitter 2 low stream to
Observation Receiver 1/Observation Receiver 2 low stream to Receiver 1 high stream to Receiver 2 high stream.

Figure 154 shows the aggregation of these subcases.

Rx ENABLE

Tx ENABLE

ORx ENABLE

554 ARM CLOCK CYCLES + 2µs
tBUFFER

860 ARM CLOCK CYCLES + tBUFFER

t_rx_enable_high = 500µs

t_tx_enable_high = 500µs/
t_orx_enable_high = 500µs

16
82

2-
15

6

Figure 154. Minimum Switching Times for the ADRV9009 (Dual-Channel Receiver/Transmitter and Single-Channel Observation Receiver)

Figure 154 also shows the minimum time that the receiver/transmitter and observation receiver enable signals must stay high
(approximately 500 μs) to successfully run tracking calibrations. See the System Considerations for Arm Calibrations section for details.

Receiver to Transmitter to Receiver for the ADRV9009

This switching time case is broken down into two subcases: receiver to transmitter and transmitter to receiver.

Receiver to Transmitter Subcase for the ADRV9009

For this subcase, the streams execute a receiver low stream and atransmitter high stream.

To calculate the minimum switching time for each of these streams for a single channel, use the following equations:

tRX_LOW_SINGLE = 40 Arm clock cycles

tTX_HIGH_SINGLE = 168 Arm clock cycles

To calculate the minimum time switching for two channels, use the following example equation:

2 × (tRX_LOW_SINGLE + tTX_HIGH_SINGLE) = 416 Arm clock cycles + tBUFFER

It is important to note that the stream execution sequence for this case is Receiver 1 low stream to Receiver 2 low stream to Transmitter 2
high stream to Transmitter 2 high stream.

http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

UG-1295 ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual

Rev. 0 | Page 246 of 247

Transmitter to Receiver Subcase for the ADRV9009

For this subcase, the streams execute a transmitter low stream and a receiver high stream.

To calculate the minimum switching time for each of these streams for a single channel, use the following equations:

tTX_LOW_SINGLE = 140 Arm clock cycles

tRX_HIGH_SINGLE = 258 Arm clock cycles

To calculate the minimum switching time for two channels, use the following example equation:

2 × (tTX_LOW_SINGLE + tRX_HIGH_SINGLE) = 796 Arm clock cycles + tBUFFER

It is important to note that the stream execution sequence for this case is Transmitter 1 low stream to Transmitter 2 low stream to
Receiver 1 high stream to Receiver 2 high stream.

Figure 155 aggregates both the of these subcases.

Rx ENABLE

Tx ENABLE

416 ARM CLOCK CYCLES + tBUFFER

796 ARM CLOCK CYCLES + tBUFFER

t_rx_enable_high = 500µs

t_tx_enable_high = 500µs

16
82

2-
15

7

Figure 155. Minimum Switching TIMES for the ADRV9009 (Dual-Channel Receiver/Transmitter)

Figure 155 also shows the minimum time that the receiver and transmitter enable signals must stay high (approximately 500 μs) to
successfully run tracking calibrations. See the System Considerations for Arm Calibrations section for details.

Receiver to Observation Receiver to Receiver for the ADRV9009

This switching time case is broken down into two subcases: receiver to observation receiver, and observation receiver to receiver.

Receiver to Observation Receiver Subcase for the ADRV9009

For this subcase, the streams execute a receiver low stream and an observation receiver high stream.

To calculate the minimum switching time for each of these streams for a single channel, use the following example equations:

tRX_LOW_SINGLE = 40 Arm clock cycles

tORX_HIGH_SINGLE = 138 Arm clock cycles + 2 μs

To calculate the minimum switching time for two channels, use the following example equation:

2 × (tRX_LOW_SINGLE) + tORX_HIGH_SINGLE = 218 Arm clock cycles + 2 μs + tBUFFER

It is important to note that the stream execution sequence for this case is Receiver 1 low stream to Receiver 2 low stream to
Observation Receiver 1/Observation Receiver 2 high stream.

Observation Receiver to Receiver Subcase for the ADRV9009

For this subcase, the streams execute an observation receiver low stream and a receiver high stream.

To calculate the minimum switching time for each of these streams for single channel, use the following example equations:

tORX_LOW_SINGLE = 64 Arm clock cycles

tRX_HIGH_SINGLE = 258 Arm clock cycles

http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

ADRV9008-1/ADRV9008-2/ADRV9009 Hardware Reference Manual UG-1295

Rev. 0 | Page 247 of 247

To calculate the minimum switching times for two channels, use the following example equation:

2 × (tRX_HIGH_SINGLE) + tORX_LOW_SINGLE = Arm clock cycles + tBUFFER

It is important to note that the stream execution sequence for this case is Observation Receiver 1/Observation Receiver 2 low to
Receiver 1 high stream to Receiver 2 high stream.

Figure 156 aggregates these subcases.

Rx ENABLE

ORx ENABLE

218 ARM CLOCK CYCLES + 2µs
tBUFFER

580 ARM CLOCK CYCLES + tBUFFER

t_rx_enable_high = 500µs

t_orx_enable_high = 500µs

16
82

2-
15

8

Figure 156. Minimum Switching Times for ADRV9009 (Dual-Channel Receiver and Single-Channel Observation Receiver)

Figure 156 also shows the minimum time that the receiver and observation receiver enable signals must stay high (approximately 500 μs)
to successfully run tracking calibrations. See the System Considerations for Arm Calibrations section for details.

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third
parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their
respective owners. Information contained within this document is subject to change without notice. Software or hardware provided by Analog Devices may not be disassembled, decompiled or reverse
engineered. Analog Devices’ standard terms and conditions for products purchased from Analog Devices can be found at: http://www.analog.com/en/content/analog_devices_terms_and_conditions/fca.html

©2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.

UG16822-0-9/18(0)

http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-1?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com
http://www.analog.com/ADRV9009?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf
http://www.analog.com/ADRV9008-2?doc=ADRV9008-1-W-9008-2-W-9009-W-Hardware-Reference-Manual-UG-1295.pdf

	INTRODUCTION
	TABLE OF CONTENTS
	REVISION HISTORY

	SYSTEM OVERVIEW
	SYSTEM ARCHITECTURE DESCRIPTION
	SOFTWARE ARCHITECTURE
	FOLDER STRUCTURE
	/src/app/example Folder
	/src/devices Folder
	/src/doc Folder

	PRIVATE vs. PUBLIC API FUNCTIONS
	HARDWARE ABSTRACTION LAYER (HAL)
	Hardware Functions
	Logging Functions
	Multidevice Support
	devHalInfo Pointer Parameter
	Pseudo Code Example Use of devHalInfo

	HAL Functions Timeout

	HAL INTERFACE DEFINITION
	DATA TYPES AND ENUMERATIONS
	adiHalErr_t
	adiHalErr_t Synopsis
	adiHalErr_t Enumerators

	adiLogLevel_t
	adiLogLevel_t Synopsis
	adiLogLevel_t Enumerators

	DETAILED HAL FUNCTION DEFINITIONS
	ADIHAL_openHW
	ADIHAL_openHW Synopsis
	ADIHAL_openHW Remarks

	ADIHAL_closeHW
	ADIHAL_closeHW Synopsis
	ADIHAL_closeHW Remarks

	ADIHAL_resetHW
	ADIHAL_resetHW Synopsis
	ADIHAL_resetHW Remarks

	ADIHAL_setTimeout
	ADIHAL_setTimeout Synopsis
	ADIHAL_setTimeout Remarks

	ADIHAL_spiWriteByte
	ADIHAL_spiWriteByte Synopsis
	ADIHAL_spiWriteByte Remarks

	ADIHAL_spiReadByte
	ADIHAL_spiReadByte Synopsis
	ADIHAL_spiReadByte Remarks

	ADIHAL_spiWriteBytes
	ADIHAL_spiWriteBytes Synopsis
	ADIHAL_spiWriteBytes Remarks

	ADIHAL_spiReadBytes
	ADIHAL_spiReadBytes Synopsis
	ADIHAL_spiReadBytes Remarks

	ADIHAL_spiWriteField
	ADIHAL_spiWriteField Synopsis
	ADIHAL_spiWriteField Remarks

	ADIHAL_spiReadField
	ADIHAL_spiReadField Synopsis
	ADIHAL_spiReadField Remarks

	ADIHAL_wait_us
	ADIHAL_wait_us Synopsis
	ADIHAL_wait_us Remarks

	ADIHAL_writeToLog
	ADIHAL_writeToLog Synopsis
	ADIHAL_writeToLog Remarks

	ADIHAL_setLogLevel
	ADIHAL_setLogLevel Synopsis
	ADIHAL_setLogLevel Remarks

	SOFTWARE INTEGRATION
	IMPLEMENTING HARDWARE ABSTRACTION INTERFACE
	DEVELOPING THE APPLICATION
	Include Files
	API Data Structures
	Receiver, Transmitter, and Observation Receiver API Profiles
	Initialization Data Structures
	API Error Handling and Debug
	API Recovery Action, TALACT_NO_ACTION
	API Recovery Action, TALACT_WARN_RESET_LOG
	API Recovery Action, TALACT_WARN_RERUN_TRCK_CAL
	API Recovery Action, TALACT_WARN_RESET_GPIO
	API Recovery Action, TALACT_ERR_CHECK_TIMER
	API Recovery Action, TALACT_ERR_RESET_ARM
	API Recovery Action, TALACT_ERR_RERUN_INIT_CALS
	API Recovery Action, TALACT_ERR_RESET_SPI
	API Recovery Action, TALACT_ERR_RESET_GPIO
	API Recovery Action, TALACT_ERR_CHECK_PARAM
	API Recovery Action, TALACT_ERR_RESET_FULL
	API Recovery Action, TALACT_ERR_RESET_JESD204FRAMERA
	API Recovery Action, TALACT_ERR_RESET_JESD204FRAMERB
	API Recovery Action, TALACT_ERR_RESET_JESD204DEFRAMERA
	API Recovery Action, TALACT_ERR_RESET_JESD204DEFRAMERB
	API Recovery Action, TALACT_ERR_REDUCE_TXSAMPLE_PWR
	API Recovery Action, TALACT_ERR_BBIC_LOG_ERROR

	Modifying Receiver/Observation Receiver Gain Tables
	Restrictions
	Multithread and Multidevice Application Considerations
	Delay, Wait, and Sleep Operations

	SPI
	SPI CONFIGURATION USING API FUNCTION
	SPI BUS SIGNALS
	 Signal
	SCLK Signal
	SDIO and SDO Signals

	SPI DATA TRANSFER PROTOCOL
	Phase 1 Instruction Format
	Single-Byte Data Transfer
	Multibyte Data Transfer
	Example: LSB First Multibyte Transfer, Autoincrementing Address
	Example: MSB First Multibyte Transfer, Autodecrementing Address

	TIMING DIAGRAMS

	JESD204B INTERFACE
	API Software Integration
	JESD204B API Data Structures
	taliseJesdSettings_t

	RECEIVER (ADC) DATAPATH
	Supported Framer Link Parameters
	Serializer Configuration
	Framer
	Other Useful Framer IP Features
	PRBS Generator

	API Software Integration
	JESD204B Framer API Data Structures
	taliseJesd204bFramerConfig_t

	JESD204B Framer Enumerated Types
	taliseFramerDataSource_t
	taliseFramerInjectPoint_t
	taliseFramerSel_t

	JESD204B Framer API Functions
	TALISE_enableSysrefToFramer()
	TALISE_readFramerStatus ()
	TALISE_enableFramerTestData()
	TALISE_injectFramerTestDataError
	TALISE_enableFramerLink
	TALISE_setupAdcSampleXbar()

	TRANSMITTERS (DAC) DATAPATH
	Supported Deframer Link Parameters
	Deserializer Configuration
	Deframer
	Other Useful Deframer IP Features
	PRBS Checker

	API Software Integration
	JESD204B Deframer API Data Structures
	TaliseJesd204bDeframerConfig_t

	JESD204B Deframer Enumerated Types
	taliseDeframerSel_t
	taliseDeframerPrbsOrder_t
	taliseDefPrbsCheckLoc_t

	JESD204B Deframer API Functions
	TALISE_enableSysrefToDeframer()
	TALISE_enableDeframerLink()
	TALISE_readDeframerStatus()
	TALISE_enableDeframerPrbsChecker()
	TALISE_clearDeframerPrbsCounters()
	TALISE_readDeframerPrbsCounters()
	TALISE_getDfrmIlasMismatch()
	TALISE_setupDacSampleXbar()

	MULTICHIP SYNCHRONIZATION
	Multichip Synchronization API Functions
	TALISE_enableMultichipSync()

	LINK ESTABLISHMENT
	Suggested JESD204B API Initialization Sequence
	Device Framers
	Device Deframer

	COMPATIBILITY WITH XILINX JESD204B FPGA IP
	LINK SHARING IN TDD MODE
	Enable Link Sharing Mode

	JESD204B CONFIGURATION DIAGRAMS
	Supported Framer Configurations
	Supported Deframer Configurations

	SYSTEM INITIALIZATION
	DEVICE INITIALIZATION SEQUENCE
	Device Initialization Sequence Order

	DEVICE INITIALIZATION EXAMPLE CODE

	SYSTEM SHUTDOWN
	DEVICE SHUTDOWN SEQUENCE
	Device Shutdown Sequence Order

	STREAM PROCESSOR AND SYSTEM CONTROL
	STREAM PROCESSOR
	SYSTEM CONTROL
	API Control
	Pin Control

	USE CASES
	ADRV9008-2, Two Transmitter, One Observation Receiver Use Case
	ADRV9009, Two Receiver, Two Transmitter, One Observation Receiver Use Case

	GSM USE CASES
	GSM 1800 DIGITAL CELLULAR SYSTEM (DCS) BAND
	GSM 1900 PERSONAL COMMUNICATIONS SERVICE (PCS) BAND
	GSM 850 BAND
	GSM 900 BAND

	SYNTHESIZER CONFIGURATION
	CONNECTIONS FOR EXTERNAL CLOCK (REF_CLK_IN± PINS)
	REF_CLK_IN± SIGNAL PHASE NOISE REQUIREMENTS
	SYNTHESIZER SOFTWARE CONFIGURATION
	Synthesizer API Data Structures
	taliseDigClocks_t

	Synthesizer API Functions
	TALISE_getRfPllFrequency()
	TALISE_setRfPllFrequency()
	TALISE_setRfPllLoopFilter()
	TALISE_getRfPllLoopFilter()

	RF PLL FREQUENCY CHANGE PROCEDURE
	RF PLL LOOP FILTER RECOMMENDATIONS
	RF PLL LOOP FILTER CHANGE PROCEDURE
	RF PLL RESOLUTION
	Example 1
	Example 2
	Example 3
	Example 4

	RF PLL LOCK STATUS
	RF PLL Lock API Functions
	TALISE_getPllsLockStatus()

	RF PLL Lock Status, General-Purpose Interrupt

	CONNECTIONS FOR EXTERNAL LO
	RF_EXT_LO_I/O± as an Input
	Enabling the External LO as Input Using the API
	RF_EXT_LO_I/O± as an Output

	RF PLL PHASE SYNCHRONIZATION
	System Level Considerations
	Enabling the LO Phase Sync Function Using the API
	RF PLL Phase Synchronization Demo Setup
	RF PLL Phase Synchronization Demo Setup with 2 Two Evaluation Platforms

	RF PLL FREQUENCY HOPPING
	RF PLL Frequency Hopping, Software Configuration
	API Data Structures for RF PLL Frequency Hopping
	TALISE_setFhmConfig()
	TALISE_getFhmConfig()
	TALISE_setFhmMode()
	TALISE_getFhmMode()
	TALISE_setFhmHop()
	TALISE_getFhmStatus()

	RECEIVER GAIN CONTROL
	RECEIVER DATAPATH
	GAIN CONTROL MODES
	MGC Mode
	AGC Mode
	Peak Detect Mode
	Peak/Power Detect Mode

	AGC CLOCK AND GAIN BLOCK TIMING
	APD
	HB2 PEAK DETECTOR
	POWER DETECTOR
	GAIN CONTROL API PROGRAMMING
	GAIN CONTROL DATA STRUCTURES
	SAMPLE PYTHON SCRIPTS
	GAIN COMPENSATION, FLOATING POINT FORMATTER, AND SLICER
	Mode 1—No Digital Gain Compensation
	Mode 2—Digital Gain Compensation with Slicer GPIO Outputs
	Mode 3—Digital Gain Compensation with Embedded Slicer Position
	Mode 4—Digital Gain Compensation and Slicer Input
	Mode 5—Digital Gain Compensation and Floating Point Formatting
	Receiver Data Format Data Structure

	RECEIVER DC OFFSET CALIBRATION
	RECEIVER DC OFFSET CORRECTION CIRCUITRY
	RF (Analog) DC Offset Correction
	RF DC Offset Initialization Calibration
	RF DC Offset Tracking Calibration

	Digital DC Offset Correction
	mShift

	DC Offset API Functions
	TALISE_setDigDcOffsetMShift()
	TALISE_getDigDcOffsetMShift()

	QEC, CALIBRATION, AND ARM CONFIGURATION
	ARM STATE MACHINE OVERVIEW
	State 0
	State 1
	State 2
	State 3

	LOADING THE ARM PROCESSOR
	ADRV9008-1, ADRV9008-2, AND ADRV9009 INITIAL CALIBRATIONS
	ADRV9008-1, ADRV9008-2, AND ADRV9009 TRACKING CALIBRATIONS
	ADRV9008-1, ADRV9008-2, AND ADRV9009 TRACKING CALIBRATION SCHEDULER
	Condition 1, Pending Bits
	Condition 2, Priority
	Condition 3, Availability of Required Paths

	SYSTEM CONSIDERATIONS FOR ARM CALIBRATIONS
	System Considerations for Initial Calibrations
	ADRV9008-1 and ADRV9009 Receiver QEC Initial Calibration
	ADRV9008-2 and ADRV9009 Observation Receiver QEC Initial Calibration
	ADRV9008-2 and ADRV9009 Internal Transmitter LO Leakage and Transmitter QEC Initial Calibrations
	DAC Boost Mode
	ADRV9008-2 and ADRV9009 External Transmitter LO Leakage Initial Calibration
	Skipping External LO Leakage Initialization
	Running Initialization Calibrations

	System Considerations for Tracking Calibrations
	ADRV9008-1 and ADRV9009 Receiver QEC Tracking Calibration
	ADRV9008-1 and ADRV9009 Receiver HD2 Tracking Calibration
	ADRV9008-2 and ADRV9009 Observation Receiver QEC Tracking Calibration
	ADRV9008-2 and ADRV9009 Transmitter QEC Tracking Calibration
	ADRV9008-2 and ADRV9009 Transmitter LO Leakage Tracking Calibration

	ARM GPIO PINS
	taliseArmGpioConfig Structure
	taliseArmGpioPinSettings Structure

	INITIALIZATION CALIBRATION ERRORS
	Transmitter Baseband Filter Calibration Errors
	ADC Tuner Calibration Errors
	Receiver TIA Calibration Errors
	Receiver DC Offset Calibration Errors
	ADC Flash Calibration Errors
	Path Delay Calibration Errors
	Transmitter LO Leakage Calibration (Internal and External) Errors
	Receiver, Observation Receiver, and Loopback LO Delay Calibration Errors
	Receiver QEC Initial Calibration Errors
	Transmitter QEC Initial Calibration Errors

	TRACKING CALIBRATION MONITORING
	System Exception Monitoring Using the GP_INTERRUPT Pin
	Pending Calibrations and Determining Errors in Tracking Calibrations
	Tracking Calibration Status Monitoring
	Transmitter QEC Tracking Calibration Errors
	Receiver/Observation Receiver QEC Tracking Calibration Errors
	Receiver HD2 Tracking Calibration Errors

	READING THE ARM VERSION
	PERFORMING AN ARM MEMORY DUMP
	Example Code for Performing an Arm Memory Dump Operation

	FILTER CONFIGURATION
	RECEIVER SIGNAL PATH
	RECEIVER TRANSIMPEDANCE AMPLIFIER (TIA)
	RECEIVE DEC5
	RECEIVE HALF-BAND 3 (RHB3) FILTER
	RECEIVE HALF-BAND 2, NARROW-BAND (RHB2) FILTER
	RECEIVE HALF-BAND 1 (RHB1) FILTER
	RECEIVER FINITE IMPULSE RESPONSE (RFIR) FILTER
	RECEIVER IF CONVERSION
	IF Conversion Use Cases

	RECEIVER SIGNAL PATH EXAMPLE
	Receiver Filter API Structure
	Receiver FIR
	Receiver Digital Downconverter (DDC) Mode
	Receiver NCO Shifter Configuration

	TRANSMITTER SIGNAL PATH
	Low-Pass Filter
	INT5 Filter
	Transmit Half-Band 3 (THB3) Filter
	Transmit Half-Band 2 (THB2) Filter
	Transmit Half-Band 1 (THB1)
	Transmitter Finite Impulse Response (TFIR) Filter
	Transmitter Signal Path Example
	Transmitter Filter API Structure

	OBSERVATION RECEIVERS SIGNAL PATH
	Observation Receiver TIA
	Observation Receiver DEC5 Filter
	Observation Receiver RHB3 Filter
	Observation Receiver Wideband RHB2 Filter
	Observation Receiver RHB1 Filter
	Observation Receiver RFIR
	Observation Receiver IF Conversion
	Observation Receiver Signal Path Example
	Observation Receiver Filter API Structure

	FILTER CONFIGURATION API FUNCTIONS

	OBSERVATION RECEIVER
	OBSERVATION RECEIVER API STRUCTURE
	OBSERVATION CHANNEL CONTROL

	GPIO CONFIGURATION
	LOW VOLTAGE GPIO OPERATION
	GPIO MONITOR MODE OUTPUT
	GPIO BITBANG MODE
	GPIO ARM OUTPUT OPERATION
	GPIO SLICER FEATURES
	GPIO FOR RECEIVER MANUAL GAIN CONTROL MODE PIN CONTROL
	TRANSMITTER ATTENUATION CONTROL, SPI2 PORT
	LOW VOLTAGE GPIO API FUNCTIONS
	TALISE_setArmGpioPins()
	TALISE_setGpioOe()
	TALISE_getGpioOe()
	TALISE_setGpioSourceCtrl()
	TALISE_getGpioSourceCtrl()
	TALISE_setGpioPinLevel()
	TALISE_getGpioPinLevel()
	TALISE_getGpioSetLevel()
	TALISE_setGpioMonitorOut()
	TALISE_getGpioMonitorOut()
	TALISE_setRxGainCtrlPin ()
	TALISE_getRxGainCtrlPin ()
	TALISE_setSpi2Enable()
	TALISE_getSpi2Enable()

	GENERAL-PURPOSE INTERRUPT OPERATION
	GP_INTERRUPT Handler

	GP_INTERRUPT PIN API FUNCTIONS
	TALISE_setGpIntMask()
	TALISE_getGpIntStatus()
	TALISE_getGpIntHandler()

	3.3 V GPIO OPERATION
	3.3 V GPIO Overview
	3.3 V GPIO, Level Translate Mode
	3.3 V GPIO, Bitbang Mode
	3.3 V GPIO, Gain Table External Element Control
	API Functions for 3.3 V GPIOs
	TALISE_setGpio3v3Oe()
	TALISE_getGpio3v3Oe()
	TALISE_setGpio3v3SourceCtrl()
	TALISE_getGpio3v3SourceCtrl()
	TALISE_setGpio3v3PinLevel()
	TALISE_getGpio3v3PinLevel()
	TALISE_getGpio3v3SetLevel()

	AUXILIARY CONVERTERS AND TEMPERATURE SENSOR
	AUXILARY DAC (AUXDAC)
	AUXDAC Voltage Transfer Functions
	Data Structures and Enumerations for AUXDAC Programming
	taliseAuxDac_t Data Structure
	taliseAuxDacResolution_t Enumeration
	taliseAuxDacVref_t Enumeration

	API Functions for AUXDAC Programming
	TALISE_setupAuxDacs()
	TALISE_writeAuxDacs()

	AUXILIARY ADC (AUXADC)
	AUXADC Calibration
	Data Structures and Enumerations for AUXADC Programming
	taliseAuxAdcConfig_t Data Structure
	taliseAuxAdcChannels_t Enumeration
	taliseAuxAdcModes_t Enumeration
	taliseAuxAdcResult_t Data Structure
	Nonpin Mode AUXADC Conversions
	Pin Mode AUXADC Conversions

	API Functions for AUXADC Conversions
	TALISE_getAuxAdcPinModeGpio()
	TALISE_setAuxAdcPinModeGpio()
	TALISE_startAuxAdc()
	TALISE_readAuxAdc()

	TEMPERATURE SENSOR
	API Functions for Temperature Sensor Readback
	TALISE_getTemperature()

	TRANSMITTER ATTENUATION
	API FUNCTIONS FOR TRANSMITTER ATTENUATION
	Talise.c Functions for Transmitter Atteunuation

	TRANSMITTER NCO INTERNAL SIGNAL SOURCE
	TRANSMITTER NCO API FUNCTIONS
	Transmitter NCO Talise.c Functions

	MINIMUM SWITCHING TIMES FOR THE ADRV9008-1, ADRV9008-2, AND ADRV9009
	ELEMENTAL TIMES FOR THE STREAM
	MINIMUM SWITCHING TIMES FOR THE ADRV9008-1
	Receiver High to Receiver Low for the ADRV9008-1
	Receiver Low to Receiver High for the ADRV9008-1

	MINIMUM SWITCHING TIMES FOR THE ADRV9008-2
	Transmitter Low to Transmitter High for the ADRV9008-2
	Transmitter High to Transmitter Low for the ADRV9008-2
	Observation Receiver High to Observation Receiver Low for the ADRV9008-2
	Observation Receiver Low to Observation Receiver High for the ADRV9008-2

	MINIMUM SWITCHING TIMES FOR THE ADRV9009
	Receiver to Transmitter/Observation Receiver to Receiver for the ADRV9009
	Receiver to Transmitter/Observation Receiver Subcase for the ADRV9009
	Transmitter/Observation Receiver to Receiver Subcase for the ADRV9009

	Receiver to Transmitter to Receiver for the ADRV9009
	Receiver to Transmitter Subcase for the ADRV9009
	Transmitter to Receiver Subcase for the ADRV9009

	Receiver to Observation Receiver to Receiver for the ADRV9009
	Receiver to Observation Receiver Subcase for the ADRV9009
	Observation Receiver to Receiver Subcase for the ADRV9009

