
I²C Quick Guide

I²C Standard

The I^2C (inter-IC) bus is a 2-wire, multi-drop, digital communications link for ICs that has become the defacto standard for many embedded applications. Serial, 8-bit, bidirectional data transfer can occur at speeds up to 3.4Mbps, though 400kHz is usually sufficient. Since only two bus lines are required, a serial data line (SDA) and serial clock line (SCL), building a system with multiple master or slave devices is relatively simple. The number of I^2C devices that can be connected to a single I^2C bus segment is limited only by a maximum bus capacitance (400pF) and address space.

I²C vs SMBus vs PMBus

Specification			SMBus			
		I ² C	High Power	Low Power	PMBus	
	Packet Error Checking (Optional)	-	•			
Signaling	SMBALERT (Optional)	_	•			
	Block Size Limit	-	32 bytes 255 bytes			
Timing	Data Rate (Standard Mode)		100kbps			
	Data Rate (Fast Mode)	400kbps	-	_	400kbps	
	Data Rate (Fast Mode Plus)	1Mbps	-	_	-	
	Data Rate (High Speed Mode)	3.4Mbps	-	-	-	
	Clock Speed	0Hz to 3.4MHz	10kHz to 100kHz 10kHz to 400kHz			
	Bus Timeout	-	25ms to 35ms			
	Bus Master Request Delay (Min)	-	50µs			
	SCL Hold Time (Max)	-	2ms			
	Data Hold Time (Min)	-	300ns			
Electrical	Capacitance Load per Bus Segment (Max)	400pF		_	400pF	
	Rise Time (Max)	1µs at 100kHz, 300ns at 400kHz	1µs		1µs at 100kHz, 300ns at 400kHz	
	Pull-Up Current at 0.4V (Max)	3mA (Standard Mode and Fast Mode)	4mA	350μΑ	4mA	
	Leakage Current per Device (Max)	±10µA	±5µA		±10μA	
	V _{IL} Input Logic Low Threshold (Max)	0.3V _{DD} or 1.5V	0.8V			
	V _{IH} Input Logic High Threshold (Min)	0.7V _{DD} or 3V	2.1V			
	V _{OL} Output Logic Low Threshold (Max)		0.4V			

Frequently Asked Questions

Q1) How are I²C, SMBus and PMBus related?

Answer: Originally developed to facilitate battery management systems, SMBus uses I²C hardware but adds second-level software, which ultimately allows devices to be hot swapped without restarting the system. PMBus extends SMBus by defining a set of device commands specifically designed to manage power converters, exposing device attributes such as measured voltage, current, temperature and more. In general, I²C, SMBus and PMBus devices can share a bus without any major issues.

Q2) How do I build a large system and still meet bus capacitance and rise time specifications?

Answer: Linear Technology's bus buffers resolve common electrical limitations posed by specifications, thereby allowing more devices to be added to the bus. These devices break up large busses into several smaller I²C compliant (<400pF) pieces, while still providing simultaneous communications to all bus segments and optionally injecting a boosted pull-up current during positive bus transitions to quickly slew large bus capacitances.

Q3) How do I resolve a stuck bus?

Answer: Other than having a host try to manually fix a bus stuck low, Linear Technology's bus buffers provide stuck bus protection which recovers a stuck bus by automatically generating pulses on SCLOUT in an attempt to unstick the bus. Otherwise, a hard reset is required.

Q4) How do I increase the number of I²C addresses available?

Answer: Linear Technology's address translators and software or hardware controlled I²C multiplexers provide the ability to address one of multiple identical devices or simply increase fan-out, thus resolving address conflict issues, while also providing Hot Swap capabilities, bus buffering, rise time acceleration and stuck bus protection.

Linear Technology provides a comprehensive family of I²C-enabled devices for a variety of applications. From Hot Swap controllers to bus isolators, these devices provide on-the-fly adjustability, enhance I²C performance or simply enable designers to easily manage key system parameters.

Hot Swap Controller

- Control inrush current on a live backplane, while monitoring current, voltage, power and energy
- Record past and present fault conditions and configure latchoff or auto-restart

Power Supply/LED Driver

 Control power-on/-off or dimming and configure mode of operation, output voltage, sequencing and slew rate for single- or multi-topology converters

Power System Management Controller

- Control, monitor, supervise, sequence and margin multiple power supplies
- Access EEPROM for user configuration, fault logging and telemetry

Power/Energy Monitor

 Monitor current, voltage, average power, charge and energy, while minimizing software polling with min/max registers and configurable alerts

Temperature Monitor

- Measure combinations of voltage, current and internal or external temperature
- Trigger single or repeated measurements and change formats (Celsius or Kelvin)

I²C

Bus

Bus Buffer/Multiplexer/Address Translator/Rise Time Accelerator

 Break up bus capacitance, increase fan-out, level shift busses, decrease rise times and nest addresses while providing Hot Swap capabilities and stuck bus protection

Bus Isolator

 Break ground loops and isolate logic level interfaces, while also providing Hot Swap capabilities or adjustable isolated power to neighboring components

Power over Ethernet Power Sourcing Equipment (PSE)

• Efficiently source up to 90W of power, while configuring PSE mode of operation and monitoring per port status, current, MOSFET health and die temperature

Battery Charger/Gas Gauge

 Adjust charge current, float voltage and charge termination, while monitoring status, charge, current, voltage or temperature of battery, USB or wall sources

ADC/DAC

 Write to or read from data converters with no latency, and select input or output data formats and use of internal or external reference

Silicon Oscillator

 Enable and program clock frequency with 0.1% resolution, as well as instantaneously change octaves using DACs with 10-bit monotonicity and less than 1% nonlinearity

