

Isolated Half-Bridge Driver with Integrated High-Side Supply

FEATURES

- Integrated, isolated high-side supply
- 150 mW of secondary side power
- ▶ Isolated high-side and low-side outputs
- ▶ 100 mA output source current, 300 mA output sink current
- ► High common-mode transient immunity: >25 kV/µs
- High temperature operation: 105°C
- Adjustable power level
- ▶ Wide body, 16-lead SOIC package
- Safety and regulatory approvals
 - ▶ UL 1577
 - V_{ISO} = 2500 V rms
 - DIN EN IEC 60747-17 (VDE 0884-17) (pending)
 - V_{IORM} = 524 V peak (basic insulation)
- Qualified for automotive applications

APPLICATIONS

- MOSFET/IGBT gate drives
- Automotive
- Motor drives
- Power supplies

FUNCTIONAL BLOCK DIAGRAM

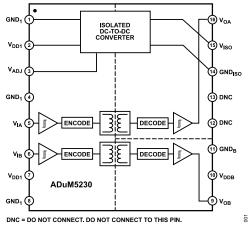


Figure 1.

GENERAL DESCRIPTION

The ADuM5230¹ is an isolated half-bridge gate driver that employs Analog Devices, Inc., *i*Coupler[®] technology to provide independent and isolated high-side and low-side outputs. Combining CMOS and microtransformer technologies, this isolation component contains an integrated dc-to-dc converter providing an isolated high-side supply. This eliminates the cost, space, and performance difficulties associated with external supply configurations such as bootstrap circuitry. This high-side isolated supply powers not only the ADuM5230 high-side output but also any external buffer circuitry used with the ADuM5230.

In comparison to gate drivers employing high voltage level translation methodologies, the ADuM5230 offers the benefit of true, galvanic isolation between the input and each output. Each output can operate up to $\pm 700 \text{ V}_{\text{P}}$ relative to the input, thereby supporting low-side switching to negative voltages. The differential voltage between the high side and low side may be as high as 700 V_{P} .

¹ Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; 7,075,329; other pending patents.

Rev. D

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. All Analog Devices products contained herein are subject to release and availability.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagram	.1
General Description	.1
Specifications	. 3
Electrical Characteristics	. 3
Package Characteristics	4
Regulatory Information	.4
Insulation and Safety-Related Specifications	.5
DIN EN IEC 60747-17 (VDE 0884-17)	
Insulation Characteristics	. 5
Recommended Operating Conditions	. 6
Absolute Maximum Ratings	.7
ESD Caution	7
Pin Configuration and Function Descriptions	. 8
Typical Performance Characteristics	10
Applications Information	12

Theory of Operation	
Printed Circuit Board (PCB) Layout	12
Thermal Analysis	12
Propagation Delay-Related Parameters	13
DC Correctness and Magnetic Field	
Immunity	13
Power Consumption	14
Increasing and Decreasing Available Power	14
Common-Mode Transient Immunity	14
Typical Application Usage	16
Insulation Lifetime	16
Outline Dimensions	17
Ordering Guide	17
No. of Channels, Output Peak Current, and	
Output Voltage Options	17
Automotive Products	

REVISION HISTORY

3/2025—Rev. C to Rev. D

Changes to Features Section	1
Changes to Regulatory Information Section and Table 3	
Changes to Table 4	5
Added DIN EN IEC 60747-17 (VDE 0884-17 Insulation Characteristics Section and Table 5;	
Renumbered Sequentially	5
Changes to Figure 2 and Figure 2 Caption	6
Changes to Table 8	7
Changes to Insulation Lifetime Section	16
Deleted Figure 26 to Figure 28	16
Added No. of Channels, Output Peak Current, and Output Voltage Options	17

ELECTRICAL CHARACTERISTICS

All voltages are relative to their respective ground. 4.5 V \leq V_{DD1} \leq 5.5 V, 12.0 \leq V_{DDB} \leq 18.0 V. All min/max specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at T_A = 25°C, V_{DD1} = 5.0 V, V_{DDB} = 15 V.

Table 1.			_			
Parameter	Symbol	Min	Тур	Мах	Unit	Test Conditions/Comments
DC SPECIFICATIONS						
Input Supply Current, Quiescent	I _{DD1 (Q)}			125	mA	I _{ISO} = 0 mA, dc signal inputs, V _{ADJ} = open
Channel B Supply Current, Quiescent	I _{DDB (Q)}			1.6	mA	
Channel A Output Supply Voltage	V _{ISO}	12	15	18.5	V	
At 0 kHz Switching Frequency						
Maximum Channel A Output Supply Current	IISO (MAX, 0)	10			mA	
At 100 kHz Switching Frequency						
Maximum Channel A Output Supply Current	IISO (MAX, 100)	7.5			mA	C _L = 200 pF
Input Supply Current	I _{DD1}			200	mA	I _{ISO} = I _{ISO (MAX, 100)}
Channel B Supply Current	I _{DDB}			1.8	mA	C _L = 200 pF
At 1000 kHz Switching Frequency						
Maximum Channel A Output Supply Current	IISO (MAX, 1000)	5.0			mA	C _L = 200 pF
Input Supply Current	I _{DD1}			200	mA	I _{ISO} = I _{ISO (MAX, 1000)}
Channel B Supply Current	I _{DDB}			7.5	mA	C _L = 200 pF
Input Currents	I _{IA} , I _{IB}	-10	+0.01	+10	μA	0 ≤ V _{IA} , V _{IB} ≤ 5.5 V
Logic High Input Voltage	V _{ATH} , V _{BTH}	0.7 × V _{DD1}			V	
Logic Low Input Voltage	V _{ATL} , V _{BTL}			0.3 × V _{DD1}	V	
Logic High Output Voltages	V _{OAH} , V _{OBH}	V _{ISO} – 0.1, V _{DDB} – 0.1		$V_{\text{ISO}}, V_{\text{DDB}}$	V	I_{OA} , I_{OB} = -1 mA
Logic Low Output Voltages	V _{OAL} , V _{OBL}			0.1	V	I _{OA} , I _{OB} = 1 mA
Undervoltage Lockout, V _{ISO} and V _{DDB} Supply						
Positive-Going Threshold	V _{DDBUV+}	8.0		10.1	V	
Negative-Going Threshold	V _{DDBUV} -	7.4		9.0	V	
Hysteresis	V _{DDBUVH}		0.9		V	
Undervoltage Lockout, V _{DD1} Supply						
Positive-Going Threshold	V _{DD1UV+}	3.5		4.2	V	
Negative-Going Threshold	V _{DD1UV} -	3.0		3.9	V	
Hysteresis	V _{DD1UVH}		0.4		V	
Output Short-Circuit Pulsed Current, Sourcing ¹	I _{OA} , I _{OB}	100			mA	
Output Short-Circuit Pulsed Current, Sinking ¹	I _{OA} , I _{OB}	300			mA	
SWITCHING SPECIFICATIONS						
Minimum Pulse Width ²	PW			100	ns	C _L = 200 pF
Maximum Switching Frequency ³		1			MHz	C _L = 200 pF
Propagation Delay ⁴	t _{PHL} , t _{PLH}			100	ns	C _L = 200 pF
Change vs. Temperature			100		ps/°C	
Pulse Width Distortion, t _{PLH} – t _{PHL}	PWD			8	ns	C _L = 200 pF
Channel-to-Channel Matching, Rising or Falling Matching Edge Polarity ⁵	t _{M2}			8	ns	C _L = 200 pF
Channel-to-Channel Matching, Rising vs. Falling Opposite Edge Polarity ⁶	t _{M1}			10	ns	C _L = 200 pF
Part to Part Matching, Rising or Falling Edges ⁷				55	ns	C _L = 200 pF
Part to Part Matching, Rising vs. Falling Edges ⁸				63	ns	$C_1 = 200 \text{ pF}$
Common-Mode Transient Immunity at Logic High Output	CM _H	25	35		kV/µs	$V_{lx} = V_{DD1}, V_{CM} = 1000 V,$

Table 1. (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
						transient magnitude = 800 V
Common-Mode Transient Immunity at Logic Low Output	CM _L	25	35		kV/µs	$V_{Ix} = 0 V$, $V_{CM} = 1000 V$, transient magnitude = 800 V
Output Rise Time (10% to 90%)	t _R			25	ns	C _L = 200 pF, I _{ISO} = 10 mA, 100 kHz switching frequency
Output Fall Time (10% to 90%)	t _F			10	ns	C_L = 200 pF, I_{ISO} = 10 mA, 100 kHz switching frequency

¹ Short-circuit duration is less than 1 sec. Average output current must conform to the limit shown under the Absolute Maximum Ratings section.

- ² The minimum pulse width is the shortest pulse width at which the specified timing parameters are guaranteed. Operation below the minimum pulse width is strongly discouraged because in some instances pulse stretching to 1 µs may occur.
- ³ The maximum switching frequency is the maximum signal frequency at which the specified timing and power conversion parameters are guaranteed. Operation above the maximum frequency is strongly discouraged.
- ⁴ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the rising edge of the V_{Ox} signal.
- ⁵ In channel-to-channel matching, the rising or falling matching edge polarity is the magnitude of the propagation delay difference between two channels of the same part when both inputs are either both rising or falling edges. The loads on each channel are equal.
- ⁶ In channel-to-channel matching, the rising vs. falling opposite edge polarity is the magnitude of the propagation delay difference between two channels of the same part when one input is a rising edge and one input is a falling edge. The loads on each channel are equal.
- ⁷ Part-to-part matching, rising or falling edges, is the magnitude of the propagation delay difference between the same channels of two different parts when the inputs are either both rising or falling edges. The supply voltages, temperatures, and loads of each part are equal.
- ⁸ Part-to-part matching, rising vs. falling edges, is the magnitude of the propagation delay difference between the same channels of two different parts when one input is a rising edge and the other input is a falling edge. The supply voltages, temperatures, and loads of each part are equal.

PACKAGE CHARACTERISTICS

Table 2	
---------	--

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ¹	R _{I-O}		10 ¹²		Ω	
Capacitance (Input to Output) ¹	C _{I-O}		2.0		pF	f = 1 MHz
Input Capacitance	CI		4.0		pF	
IC Junction-to-Ambient Thermal Resistance	θ_{JA}		48		°C/W	

¹ The device is considered a two-terminal device: Pin 1 to Pin 8 are shorted together, and Pin 9 to Pin 16 are shorted together.

REGULATORY INFORMATION

The ADuM5230 certification approvals are listed in Table 3.

Table 3.	
UL ¹	VDE (Pending) ²
UL 1577	DIN EN IEC 60747-17 (VDE 0884-17)
Single Protection, 2500 V rms	Basic insulation, 524 V peak
File E214100	Certificate (pending)

¹ In accordance with UL 1577, each ADuM5230 is proof-tested by applying an insulation test voltage ≥ 3000 V rms for 1 sec (current leakage detection limit = 5 μA).

² In accordance with DIN EN IEC 60747-17 (VDE 0884-17), each ADuM5230 is proof tested by applying an insulation test voltage ≥983 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN EN IEC 60747-17 (VDE 0884-17) approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 4.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration
Minimum External Air Gap (Clearance) ^{1, 2}	L(I01)	3.5	mm	Measured from input conductors to output conductors, shortest distance through air
Minimum External Tracking (Creepage) ¹	L(102)	3.5	mm	Measured from input conductors to output conductors, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		17	μm	Distance through the insulation
Tracking Resistance (Comparative Tracking Index) ³	CTI	>400	V	DIN IEC 112/VDE 0303 Part 1
Material Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)

¹ In accordance with IEC 62368-/IEC 60601-1 guidelines for the measurement of creepage and clearance distances for a pollution degree of 2 and altitudes <2000 m.

² Consideration must be given to pad layout to ensure the minimum required distance for clearance is maintained.

 $^3\,$ CTI rating for the ADuM5230 is >400 V and a Material Group II isolation group.

DIN EN IEC 60747-17 (VDE 0884-17) INSULATION CHARACTERISTICS

The ADuM5230 are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by the protective circuits. The asterisk (*) marking on packages denotes DIN EN IEC 60747-17 (VDE 0884-17) approval.

Table 5. VDE Characteristics

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Overvoltage Category per IEC 60664-1				
For Rated Mains Voltage ≤ 150 V rms			I to IV	
For Rated Mains Voltage ≤ 300 V rms			I to III	
For Rated Mains Voltage ≤ 600 V rms			I to II	
Climatic Classification			40/125/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Repetitive Isolation Voltage		VIORM	524	V peak
Maximum Working Insulation Voltage	AC voltage, end of life test, f = 60 Hz	V _{IOWM}	370	V rms
Input to Output Test Voltage, Method b1	$V_{IORM} \times 1.875 = V_{pd(m)}$, 100% production test, t _m = 1 sec, partial discharge < 5 pC	V _{pd(m)}	983	V peak
Input to Output Test Voltage, Method a		V _{pd(m)}		
After Environmental Tests Subgroup 1	$V_{\rm IORM}$ × 1.6 = $V_{pd(m)},t_{ini}$ = 60 sec, t_m = 10 sec, partial discharge < 5 pC	V _{pd(m)}	838	V peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	V_{IORM} × 1.2 = $V_{\text{pd}(m)},t_{\text{ini}}$ = 60 sec, t_m = 10 sec, partial discharge < 5 pC	V _{pd(m)}	629	V peak
Maximum Transient Isolation Voltage	V _{TEST} = 1.2 × V _{IOTM} , t = 1 sec (100% production)	VIOTM	4000	V peak
Maximum Impulse Voltage	Surge voltage in air, waveform per IEC 61000-4-5	VIMP	4000	V peak
Withstand Isolation Voltage	1-minute withstand rating	V _{ISO}	2500	V rms
Maximum Surge Isolation Voltage	$V_{\text{TEST}} \ge 1.3 \times V_{\text{IMP}}$ (sample test), tested in oil, waveform per IEC 61000-4-5	V _{IOSM}	6000	V peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 2)			
Maximum Ambient-Safety Temperature		T _S	150	°C
Maximum Input-Power Dissipation	Total power dissipation at 25°C	Ps	2.60	W
Insulation Resistance at T _S	V _{IO} = 500 V	R _s	>10 ⁹	Ω

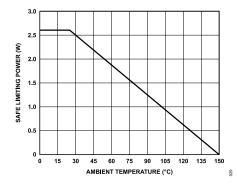


Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature Per DIN EN IEC 60747-17 (VDE 0884-17)

RECOMMENDED OPERATING CONDITIONS

Table 6.	
Parameter	Value
Operating Temperature (T _A)	-40°C to +105°C
Input Supply Voltage ¹ (V _{DD1})	4.5 V to 5.5 V
Channel B Supply Voltage ¹ (V _{DDB})	12 V to 18.5 V
Input Signal Rise and Fall Times	1 ms

¹ All voltages are relative to their respective ground.

ABSOLUTE MAXIMUM RATINGS

Ambient temperature = 25°C, unless otherwise noted.

Table 7.

Parameter	Rating
Storage Temperature (T _{ST})	−55°C to +150°C
Ambient Operating Temperature (T _A)	-40°C to +105°C
Input Supply Voltage (V _{DD1}) ¹	-0.5 V to +7.0 V
Channel B Supply Voltage (V _{DDB}) ¹	-0.5 V to +27 V
Input Voltage (V _{IA} , V _{IB}) ¹	-0.5 V to V _{DDI} + 0.5 V
Output Voltage (V _{OA} , V _{OB}) ¹	–0.5 V to V _{ISO} + 0.5 V, –0.5 V to
	V _{DDB} + 0.5 V
Input-Output Voltage ²	-700 V _{PEAK} to +700 V _{PEAK}
Output Differential Voltage ³	700 V _{PEAK}
Output DC Current (I _{OA} , I _{OB})	-20 mA to +20 mA
Common-Mode Transients ⁴	–100 kV/µs to +100 kV/µs

¹ All voltages are relative to their respective ground.

- ² Input-to-output voltage is defined as GND_{ISO} GND₁ or GND_B GND₁.
- ³ Output differential voltage is defined as GND_{ISO} GND_B.

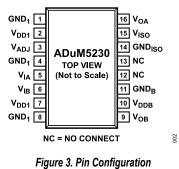
⁴ Refers to common-mode transients across any insulation barrier. Commonmode transients exceeding the Absolute Maximum Ratings may cause latch-up or permanent damage.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress

rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 8. Maximum Continuous Working Voltage¹

Parameter	Max	Unit	Constraint
AC Voltage Bipolar Waveform	524	V peak	Basic insulation rating per IEC 60747-17 (VDE 0884-17).


¹ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	GND ₁	Ground Reference for Input Logic Signals.
2	V _{DD1}	Input Supply Voltage, 4.5 V to 5.5 V.
3	V _{ADJ}	Adjusts Internal DC-to-DC Converter Duty Cycle (Normally Left Unconnected).
4	GND ₁	Ground Reference for Input Logic Signals.
5	VIA	Logic Input A.
6	V _{IB}	Logic Input B.
7	V _{DD1}	Input Supply Voltage, 4.5 V to 5.5 V.
8	GND ₁	Ground Reference for Input Logic Signals.
9	V _{OB}	Output B Signal.
10	V _{DDB}	Output B Supply Voltage, 12 V to 18 V.
11	GND _B	Ground Reference for Output B Signal.
12	DNC	Do Not Connect.
13	DNC	Do Not Connect.
14	GND ISO	Ground Reference for Output A Signal and Isolated Output Supply Voltage.
15	V _{ISO}	Isolated Output Supply Voltage.
16	V _{OA}	Output A Signal.

For specific layout guidelines, refer to the AN-0971 Application Note, Recommendations for Control of Radiated Emissions with isoPower Devices.

Table 10. Truth Table (Positive Logic)

V _{IA} Input ¹	V _{IB} Input ¹	V _{DD1} State ²	V _{ISO} State ²	V _{DDB} State ^{1, 2}	V _{OA} Output	V _{OB} Output	Notes
High	High	Powered	Powered	Powered	High	High	
High	Low	Powered	Powered	Powered	High	Low	
Low	High	Powered	Powered	Powered	Low	High	
Low	Low	Powered	Powered	Powered	Low	Low	
Х	Х	UVLO	Unpowered	X	Low	Low	Output returns to input state within 1 μs of V_{DD1} power restoration.
Х	Х	Powered	UVLO	Unpowered	Low	Low	Output returns to input state within 1 μs of V_{ISO} and V_{DDB} power restoration.
Х	High	Powered	UVLO	Powered	Low	High	Output returns to input state within 1 μs of V_{ISO} power restoration.
Х	Low	Powered	UVLO	Powered	Low	Low	Output returns to input state within 1 μs of V_{ISO} power restoration.
High	Х	Powered	Powered	UVLO	High	Low	V_{OB} output returns to input state within 1 μs of V_{DDB} power restoration.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 10. Truth Table (Positive Logic) (Continued)

V _{IA} Input ¹	V _{IB} Input ¹	V _{DD1} State ²	V _{ISO} State ²	V _{DDB} State ^{1, 2}	V _{OA} Output	V _{OB} Output	Notes
Low	Х	Powered	Powered	UVLO	Low	Low	V_{OB} output returns to input state within 1 μs of V_{DDB} power restoration.

¹ X means don't care.

² UVLO represents either a voltage below the UVLO threshold for that supply or absence of power.

TYPICAL PERFORMANCE CHARACTERISTICS

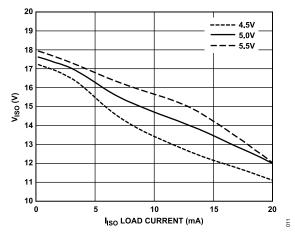


Figure 4. Typical VISO Supply Voltage vs. IISO External Load Current

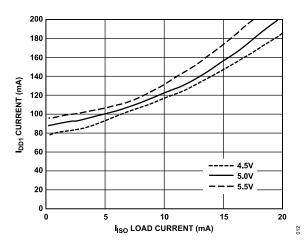


Figure 5. Typical V_{DD1} Supply Current vs. V_{ISO} External Load Current

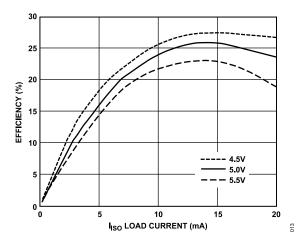


Figure 6. Typical VISO Supply Efficiency vs. VISO External Load Current

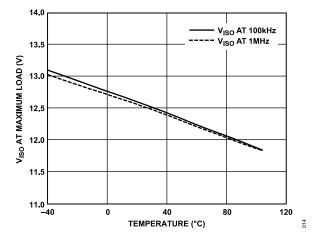


Figure 7. Typical V_{ISO} Output Voltage at Maximum Combined Load over Temperature

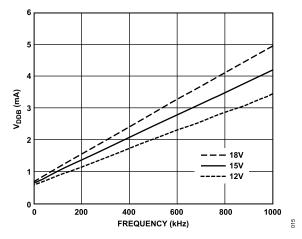


Figure 8. Typical Current Consumption for V_{OA} or V_{OB} Outputs, C_L = 200 pF

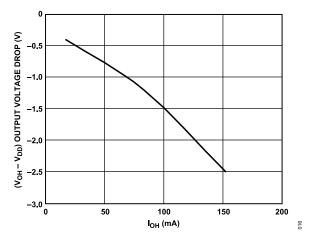


Figure 9. Typical V_{OH} Drop vs. I_{OH} (V_{DD1} = 5 V, V_{DDB}, V_{ISO} = 12 V to 18 V)

TYPICAL PERFORMANCE CHARACTERISTICS

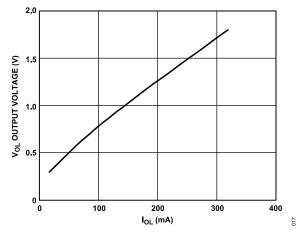


Figure 10. Typical V_{OL} vs. I_{OL} (V_{DD1} = 5 V, V_{DDB} , V_{ISO} = 12 V to 18 V)

Figure 11. Typical Propagation Delay vs. Temperature

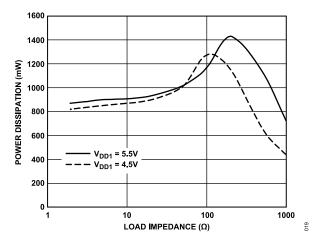


Figure 12. Power Dissipation vs. Load Impedance for Fault Conditions

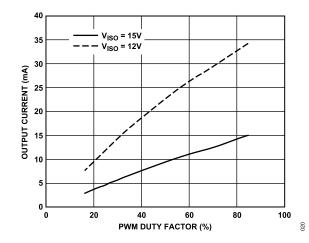


Figure 13. Current Available at the Output vs. PWM Duty Factor for V_{DD1} = 5 V

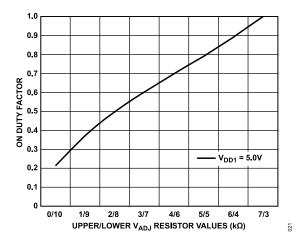


Figure 14. Upper/Lower V_{ADJ} Voltage Divider Resistor Values to Determine PWM Duty Factor for V_{DD1} = 5 V

THEORY OF OPERATION

The dc-to-dc converter section of the ADuM5230 works on principles that are common to most modern power supply designs. It is implemented as an open-loop PWM controller, which sets the power level being transferred to the secondary. V_{DD1} power is supplied to an oscillating circuit that switches current into a chip-scale air core transformer. On the secondary side, power is rectified to a dc voltage. The voltage is then clamped to approximately 18 V and provided to the secondary side V_{OA} data channel and to the V_{ISO} pin for external use. The output voltage is unregulated and varies with load.

The PWM duty cycle is set by internal bias elements, but can be controlled externally through the V_{ADJ} pin with an external resistor network. This feature allows the user to boost the available power at the secondary, or reduce excess power if it is not required for the application (see the Power Consumption section).

Undervoltage lockouts are provided on the $V_{DD1},\,V_{DDB},$ and V_{ISO} supply lines to interlock the data channels from low supply voltages.

PRINTED CIRCUIT BOARD (PCB) LAYOUT

The ADuM5230 digital isolator with a 150 mW isoPower[®] integrated dc-to-dc converter requires no external interface circuitry for the logic interfaces. Power supply bypassing is required at the input and output supply pins (see Figure 15). The power supply section of the ADuM5230 uses a very high oscillator frequency to pass power efficiently through its chip scale transformers. In addition, the normal operation of the data section of the *i*Coupler[®] introduces switching transients on the power supply pins. Bypass capacitors are required for several operating frequencies. Noise suppression requires a low inductance high frequency capacitor; ripple suppression and proper regulation require a large value capacitor. These are most conveniently connected between Pin 1 and Pin 2 for V_{DD1} and between Pin 15 and Pin 14 for V_{ISO}. To suppress noise and reduce ripple, a parallel combination of at least two capacitors is required. The recommended capacitor values are 0.1 µF and 10 µF. It is strongly recommended that a very low inductance ceramic or equivalent capacitor be used for the smaller value. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm. Bypassing with noise suppression and stiffening capacitors is recommended between Pin 1 and Pin 2, a bypass capacitor is recommended between Pin 7 and Pin 8. Bypassing with noise suppression and stiffening capacitors is recommended between Pin 14 and Pin 15.

See the AN-0971 Application Note for board layout guidelines and reduction of radiated emissions.

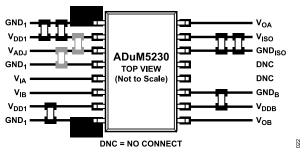


Figure 15. Recommended Printed Circuit Board Layout

In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this may cause voltage differentials between pins exceeding the absolute maximum ratings specified in Table 7, leading to latch-up and/or permanent damage.

The ADuM5230 is a power device that dissipates about 1 W of power when fully loaded and run at maximum speed. Because it is not possible to apply a heat sink to an isolation device, the device primarily depends on heat dissipation into the PCB through the GND pins. If the device is used at high ambient temperatures, care should be taken to provide a thermal path from the GND pins to the PCB ground plane. The board layout in Figure 15 shows enlarged pads for Pin 1 and Pin 8. Implement multiple vias from the pad to the ground plane, which significantly reduce the temperatures inside the chip. The dimensions of the expanded pads are left to the discretion of the designer and the available board space.

THERMAL ANALYSIS

The ADuM5230 part consists of several internal die attached to three lead frames, each with a die attach paddle. For the purposes of thermal analysis, the device is treated as a thermal unit with the highest junction temperature reflected in the θ_{JA} parameter shown in Table 2. The value of θ_{JA} is based on measurements taken with the part mounted on a JEDEC standard four-layer board with fine width traces and still air. Under normal operating conditions, the ADuM5230 operates at full load across the full temperature range without derating the output current. However, following the recommendations in the Printed Circuit Board (PCB) Layout section decreases the thermal resistance to the PCB, allowing increased thermal margin in high ambient temperatures.

Under output short-circuit conditions, as shown in Figure 12, the package power dissipation is within safe operating limits; however, if the load is in the 100 Ω range, power dissipation is high enough to cause thermal damage when the ambient temperature is above 80°C. Care should be taken to avoid excessive nonshort loads if the part is to be operated at high temperatures.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output may differ from the propagation delay to a logic high.

Figure 16. Propagation Delay Parameters

Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single AD-uM5230 component.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow (~1 ns) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than 1 μ s, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than about 5 μ s, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 10) by the watchdog timer circuit.

The limitation on the ADuM5230 magnetic field immunity is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this may occur.

The pulses at the transformer output have an amplitude greater than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$V = (-d\beta/dt) \sum \pi r_n^2; n = 1, 2, ..., N$$
(1)

where:

 β is the magnetic flux density (gauss). r_n is the radius of the nth turn in the receiving coil (cm). *N* is the number of turns in the receiving coil.

Given the geometry of the receiving coil in the ADuM5230 and an imposed requirement that the induced voltage be at most 50% of

the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 17.

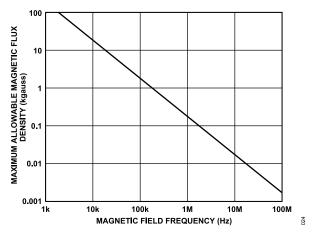


Figure 17. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse (and is of the worst-case polarity), it reduces the received pulse from >1.0 V to 0.75 V, still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM5230 transformers. Figure 18 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM5230 is extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example noted, the user would have to place a 0.5 kA current 5 mm away from the ADuM5230 to affect the operation of the component.

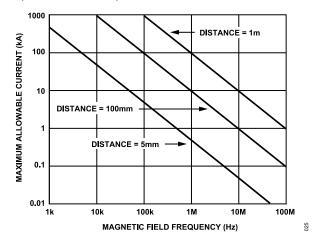


Figure 18. Maximum Allowable Current for Various Current-to-ADuM5230 Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by PCB traces may induce error voltages sufficiently large enough to trigger the thresholds of succeeding circuitry. Take care in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The power converter in the ADuM5230 provides 13 mA of power to the secondary in its default configuration. Power is provided to both the data channel, V_{OA} , and the V_{ISO} pin for off-chip use. Current consumption of V_{OA} varies with frequency as shown in Figure 8. The maximum available power for external use decreases as the frequency of the data channel increases to stay within the total available current.

INCREASING AND DECREASING AVAILABLE POWER

The V_{ADJ} pin is used to increase or decrease the available power at the V_{ISO} pin. This allows the increase of the V_{ISO} voltage for a given load or the increase of the maximum V_{ISO} load. Alternatively, power can also be reduced when it is not required at the output, lowering the quiescent current and saving power.

Power adjustment is accomplished by adding a voltage divider between V_{ADJ} , V_{DD1} , and GND, as shown in Figure 25. Under normal operation, the V_{ADJ} pin is left open, allowing the internal bias network to set the duty factor of the internal PWM. If the V_{ADJ} pin is connected via a resistor divider, a duty factor other than the default can be chosen. The relationship between the duty factor of the internal PWM and the available power under load is shown in Figure 13. When the desired duty factor is chosen, the values of the upper and lower divider resistors can be chosen as shown in Figure 14, which assumes a 10 k Ω total divider resistance.

COMMON-MODE TRANSIENT IMMUNITY

In general, common-mode transients consist of linear and sinusoidal components. The linear component of a common-mode transient is given by

$$V_{CM, \ linear} = (\Delta V / \Delta t) t \tag{2}$$

where $\Delta V/\Delta t$ is the slope of the transient shown in Figure 19 and Figure 20.

The transient of the linear component is given by

$$dV_{CM}/dt = \Delta V/\Delta t \tag{3}$$

The ability of the ADuM5230 to operate correctly in the presence of linear transients is characterized by the data in Figure 22. The data is based on design simulation and is the maximum linear transient magnitude that the ADuM5230 can tolerate without an operational error. This data shows a higher level of robustness than what is shown in Table 1 because the transient immunity values obtained in Table 1 use measured data and apply allowances for measurement error and margin.

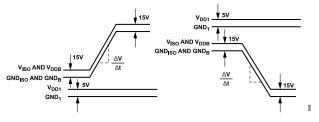


Figure 19. Common-Mode Transient Immunity Waveforms, Input to Output

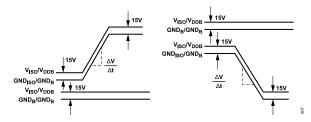


Figure 20. Common-Mode Transient Immunity Waveforms Between Outputs

Figure 21. Transient Immunity Waveforms, Output Supplies

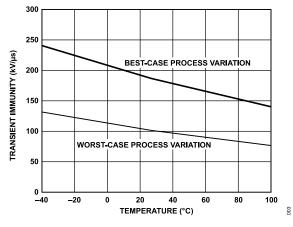


Figure 22. Transient Immunity (Linear Transients) vs. Temperature

The sinusoidal component (at a given frequency) is given by

 $V_{CM, sinusoidal} = V_0 sin(2\pi ft)$

(4)

where:

 V_0 is the magnitude of the sinusoidal. *f* is the frequency of the sinusoidal.

The transient magnitude of the sinusoidal component is given by

 $dV_{CM}/dt = 2\pi f V_0$

(5)

The ability of the ADuM5230 to operate correctly in the presence of sinusoidal transients is characterized by the data in Figure 23 and Figure 24. The data is based on design simulation and is the maximum sinusoidal transient magnitude ($2\pi V_0$) that the ADuM5230 can tolerate without an operational error. Values for immunity against sinusoidal transients are not included in Table 1 because measurements to obtain such values have not been possible.

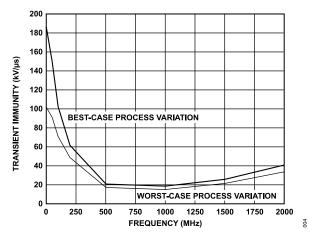


Figure 23. Transient Immunity (Sinusoidal Transients), 27°C Ambient Temperature

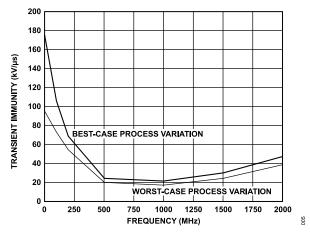


Figure 24. Transient Immunity (Sinusoidal Transients), 100°C Ambient Temperature

TYPICAL APPLICATION USAGE

The ADuM5230 is intended for driving low gate capacitance transistors (200 pF typically). Most high voltage applications involve larger transistors than this. To accommodate these applications, users can implement a buffer configuration with the ADuM5230, as shown in Figure 25. In many cases, the buffer configuration is the least expensive option and provides the greatest amount of design flexibility. The precise buffer/high voltage transistor combination can be selected to fit the needs of the application.

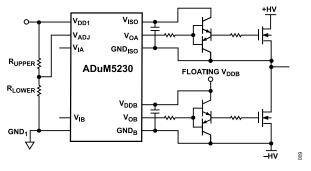


Figure 25. Application Circuit

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation depends on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices conducts an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM5230.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Table 8 summarize the maximum continuous working voltages as per IEC 60747-17. Operation at these high working voltages can lead to shortened insulation life in some cases.

OUTLINE DIMENSIONS

Package Drawing (Option)	Package Type	Package Description
RW-16	SOIC_W	16-Lead Standard Small Outline Package, Wide Body

For the latest package outline information and land patterns (footprints), go to Package Index.

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Packing Quantity	Package Option
ADuM5230ARWZ	-40°C to +105°C	16-Lead SOIC_W	Tube, 47	RW-16
ADuM5230ARWZ-RL	-40°C to +105°C	16-Lead SOIC_W	Reel, 1000	RW-16
ADuM5230WARWZ	-40°C to +105°C	16-Lead SOIC_W	Tube, 47	RW-16
ADuM5230WARWZ-RL	-40°C to +105°C	16-Lead SOIC_W	Reel, 1000	RW-16

¹ Z = RoHS Compliant Part.

² W = Qualified for Automotive Applications.

NO. OF CHANNELS, OUTPUT PEAK CURRENT, AND OUTPUT VOLTAGE OPTIONS

Model ^{1, 2}	No. of Channels	Output Peak Current (A) ³	Output Voltage (V)
ADuM5230ARWZ	2	0.1/0.3	15
ADuM5230WARWZ	2	0.1/0.3	15

¹ Z = RoHS Compliant Part.

² W = Qualified for Automotive Applications.

³ Sourcing/sinking.

AUTOMOTIVE PRODUCTS

The ADuM5230W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

