
a ADSP-21990: Implementation of PI Controller AN21990-13

a

ADSP-21990: Implementation of PI
Controllers

AN21990-13

© Analog Devices Inc., December 2001 Page 1 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

Table of Contents

SUMMARY.. 3

1 CHARACTERISATION OF THE PI CONTROLLER .. 3

1.1 The continuous time domain ...3

1.2 The discrete time domain...4
1.2.1 Zero order hold (ZOH)...4
1.2.2 First order hold (FOH) ...5

1.3 Implementation on a digital signal processor...5

1.4 Accuracy of the routine..6

1.5 Anti Wind-up ..6

2 USING THE PI ROUTINES .. 7

2.1 Determination of the coefficients...7

2.2 Usage of the controller routine ..8

2.3 Usage of the DSP registers ...8

2.4 Access to the library through the header file: pi.h ..8

2.5 The program code...9

3 SOFTWARE EXAMPLE: PI CONTROL... 9

3.1 Using the PI routines: Calculation of coefficients..9

3.2 The main program: main.dsp..9

3.3 Main.h..10

4 EXPERIMENTAL RESULTS.. 10

© Analog Devices Inc., December 2001 Page 2 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

Summary
PI controllers are universally known because of their flexibility combined with the relatively
easy tuning. This application note describes the conversion from the continuous to the discrete
time domain, which is essential for every implementation on a digital processor. A routine is
then presented that implements the discrete time representation of the PI controller.

1 Characterisation of the PI controller

1.1 The continuous time domain

PI controllers are in most cases analysed and tuned in the continuous time domain. The corresponding
transfer function is given as

 () ()sI
s

KKsU I
P ⋅






 += (1.1)

where I and U denote the input error signal and the controller’s output, respectively, s is the Laplace
variable and KP and KI are the two parameters of the PI controller associated with the proportional (P) and
integral (I) part. However, tuning a PI controller is not very intuitive when specifying these two
parameters. The equation above may be rewritten as follows:

 () () ()sI
s

KsI
sK

K
KsU PI

s

PIP
P

I
P ⋅









 +
⋅⋅=⋅








⋅+⋅=

111 ωω (1.2)

where
P

I
K
K

PI =ω (expressed in [rad/s]). Evidently, this transfer function presents a pole in the origin and a

zero located at PIω . The gain at high frequencies is given by KP itself. The following figure illustrates a
typical bode diagram of a PI controller, with KP and PIω set to 0.25 (-12dB) and 50Hz (314rad/s),
respectively.

Frequency (rad/sec)

P
ha
se
 (d
e
g)
; M
a
gn
itu
de
 (d
B
)

Bode Diagrams

-20

-10

0

10

20

30

40
From: U(1)

100 101 102 103 104
-100

-80

-60

-40

-20

0

To
: Y
(1
)

Figure 1 Typical bode diagram of a PI controller

© Analog Devices Inc., December 2001 Page 3 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

In the following, the controller is supposed to be tuned in the continuous time domain by KP and PIω .

1.2 The discrete time domain
The transition from the continuous to the discrete time domain entails that the integral operation has to be
approximated by a discrete summation. There are several methods for replacing the integral. Two of them
will be discussed hereafter.

1.2.1 Zero order hold (ZOH)
With this approach, the signal is sampled at the instant k and held constant until the next sampling instant
k+1. The following figure illustrates this.

k k+1

Ik

Ik+1

Σk

I(t)

t

Figure 2 Integral with ZOH approximation

The integral operation is approximated by accumulating the rectangular areas. Denoting the sum at instant
k with Σk, the signal at instant k with Ik and the sample time with Tsample, the “integration” is achieved by:

 samplekkk TI ⋅+Σ=Σ +1 (1.3)

As known, the same equation may be expressed in the z-domain by

 () () () sampleTzIzzz ⋅+Σ=Σ⋅ (1.4)

which leads to

 () ()zI
z

T
z sample

1−
=Σ (1.5)

Therefore the continuous integration s
1 in equation (1.1) is replaced by the 1st factor in the equation

above. The transfer function in the discrete domain is obtained from (1.1) and (1.5) as:

 () () () ()zI
z

TKzK
zI

z
T

KzU samplePIPPsample
PIP 1

1
1

1
−

−⋅⋅+
=








−

⋅+⋅=
ω

ω (1.6)

This corresponds to the following difference equation:

 () kksamplePIPkPk UITKIKU +⋅−⋅+⋅= ++ 111 ω (1.7)

© Analog Devices Inc., December 2001 Page 4 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

1.2.2 First order hold (FOH)

A slightly improved approach is shown in the following figure.

k k+1

Ik

Ik+1

Σk

I(t)

t

Figure 3 Integral with FOH approximation

The integral operation is approximated by accumulating the trapezoidal areas. Denoting the sum at instant
k with Σk, the signal at instant k with Ik and the sample time with Tsample, the “integration” is achieved by:

 sample
kk

kk TII
⋅

+
+Σ=Σ +

+ 2
1

1 (1.8)

where the last term is derived from the known formula for the area of a trapezoid. Following a similar
procedure as in the previous section, this may be expressed in the z-domain by

 () () () sampleTzzIzzz ⋅
+

⋅+Σ=Σ
2

1 (1.9)

which results in

 () ()zI
z
zT

z sample ⋅
−
+

=Σ
1
1

2
 (1.10)

This time, the continuous integration s
1 in equation (1.1) is replaced by the whole factor preceding I(z).

The transfer function in the discrete domain is obtained from (1.1) and (1.10) as:

 () () () () ()zI
z

KzK
zI

z
zT

KzU
samplePIsamplePI T

P
T

Psample
PIP 1

11
1
1

2
1 22

−
−⋅++⋅

=







−
+

⋅+⋅=
⋅⋅ ωω

ω (1.11)

This corresponds to the following difference equation:

 () () kk
T

Pk
T

Pk UIKIKU samplePIsamplePI +⋅−+⋅+= ⋅
+

⋅
+ 11 2121

ωω (1.12)

1.3 Implementation on a digital signal processor

It is easily seen that both the difference equations of (1.7) and (1.12) are of the same form as reported
below:

© Analog Devices Inc., December 2001 Page 5 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

 kkkk UIAIAU +⋅+⋅= ++ 0111 (1.13)

This is a sequence of multiply and accumulate operations that are ideally suited for implementation on a
DSP such as the ADSP-21990. However, care must be taken due to the 16 bit fixed-point representation
of the values. For correct operation, all coefficients and signals are to be scaled to the common 1.15
format. Assuming the input error I is already in this format, the coefficients may generally have to be
scaled to lie within this range. This is achieved by introducing a scale factor B0 and reformulating
equation (1.13) as follows:

 (1.14) 001100010101 BUIAIABUIBAIBABU kk
sc

k
sc

kkkk ⋅+⋅+⋅=⋅+⋅⋅+⋅⋅=⋅ +++

where the apex ‘sc’ denotes the scaled values of the coefficients. B0 is chosen such that both coefficients
are in the range between –1 and 1 with the maximal precision. In addition, if it is chosen as a power of 2,
the final de-scaling is a simple shift operation. This will be explained in more detail in Section 2.1.

1.4 Accuracy of the routine

It is clear from equation (1.14) that the increments of Uk at each iteration becomes smaller as the input
error decreases and as Ik+1 does not change significantly compared to its previois value Ik. In addition, the
scaled coefficients may be small. It might therefore in some cases occur that Uk is no longer incremented
even with non-zero input error, which leads to a steady state error. One way to improve the controller is to
increase the word length of Uk. Hence, the proposed library includes a 32-bit version of the algorithm. An
example output will be included in Section 4.

1.5 Anti Wind-up
The phenomenon of wind-up of the integral part is easily avoided by saturating the current sum Uk+1
whenever it exceeds +1 or is less than –1. This feature is incorporated into the routines presented here.
Refer to Section 2.5 for more details on this issue.

© Analog Devices Inc., December 2001 Page 6 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

2 Using the PI routines

2.1 Determination of the coefficients

Once the PI controller is tuned in the continuous time domain (therefore given KP and ωPI), the user has to
choose a suitable sample time Tsample. It may be shown that for values such that 20

1≤⋅ samplePI Tω or

10
1≤⋅ samplePI Tω in the cases of the zero or first order hold, respectively, the approximation error is less

than 3%. For values that are higher than these limits, the discrete controller will no longer behave like its
continuous pendant. Next, A1 and A0 are to be determined by comparison of the coefficients of equation
(1.13) with those in (1.7) and (1.12) for ZOH and FOH, respectively. At last, an appropriate scale factor
has to be found. It is easily seen that all coefficients of equation (1.13) are converted into the 1.15 format
if they are divided by the following value:

 ()1,,max 01 AABreal = (2.1)

However, in order to simplify the de-scaling and the anti wind-up procedure, the scale factor is chosen to
be a power of two, as mentioned in section 1.3. If n denotes a non-negative integer values such that

, it is clear that n may be found by nB −= 20

 ()realBn 2log= (2.2)

where the bar above the expression stands for the operation of rounding towards the next higher integer.
The following table reassumes all operations that are required to implement the PI controller.

Table 1 Determination of the coefficients

Parameter ZOH FOH

Tsample
1

20
1 −⋅≤ PIsampleT ω 1

10
1 −⋅≤ PIsampleT ω

A1 PKA =1 ()121 += ⋅ samplePI T
PKA ω

A0 ()10 −⋅= samplePIP TKA ω ()120 −= ⋅ samplePI T
PKA ω

n ()()1,,maxlog 012 AAn =

B0
nB −= 20

scA1 011 BAAsc ⋅=

scA0 000 BAAsc ⋅=

© Analog Devices Inc., December 2001 Page 7 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

2.2 Usage of the controller routine

The routines are developed as an easy-to-use library, which has to be linked to the user’s application. The
library consists of two files. The file “pi.dsp” contains the assembly code for the subroutines. This
package has to be compiled and can then be linked to an application. The user has to include the header
file “pi.h”, which provides a function-like call to the routines. The example file in the following section
will demonstrate the usage of the controller. The following table reassumes the set of macros defined in
this library.

Table 2 Implemented routines

Precision Operation Usage Input Output

Initialisation PI32_Init(Delay_line, Initial_value); none none
32 bit

PI PI32(Delay_line, Coefficients, Scale_Shift); ar sr1

As will be seen in more detail in Section 2.5, the PI control routine requires the coefficients A1, A0 stored
(in this order) in program memory. This is done with a circular buffer called Coefficients in Table 2.
Similarly, Ik+1 and Uk+1(MSW and LSW) need to be stored in a circular buffer called the Delay_line (in
data memory and in this order) at the end of the computation since they are required for the next call to
the routine. Scale_Shift denotes the integer value n that was defined by equation (2.2). Initial_value is the
initial output of the PI (corresponding to the initial value of the integrator in the continuous case). A call
to PI32_Init initialises the buffer Delay_line by clearing Ik and loading Uk with this parameter (resets the
PI if Initial_value is equal to zero). At last, the input error for the PI routine (defined as difference
between reference value and feedback signal) is required to be stored in the ar register (1.15 format). The
output value (1.15 format) is contained in the sr1 register after executing the routine.

2.3 Usage of the DSP registers
In this library, two macros are defined, as shown in Table 2. Table 3 gives an overview of the DSP core
registers that are modified by them. Besides, the delay line is also modified.

Table 3 Usage of DSP core registers for the subroutines

Precision Usage Modified registers

PI32_Init(Delay_line, Initial_value); I3, L3, ar, B3, M3

32 bit
PI32(Delay_line, Coefficients, Scale_Shift);

I3, L3, ax0, B3, M3, I7,
L7, ay0, mx1, mx0, mr1,
mr0, ar, se, sr, my0

2.4 Access to the library through the header file: pi.h

The library may be accessed by including the header file “pi.h” in the application code. The header file is
intended to provide function-like calls to the PI routines. It defines the calls shown in Table 2. The usage
of them requires that the buffers Delay_line and Coefficients be set-up correctly. The parameter

© Analog Devices Inc., December 2001 Page 8 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

Initial_value serves as reset value for the initialisation routine. Note how I3 is used to point the delay line
buffer in data memory and I7 points the coefficient buffer in program memory. For more information,
please refer to the comments in the “pi.h” file.

2.5 The program code: pi.dsp
In this file, the PI32_Control_ routine is defined. Assuming that the DAG registers I3 and I7 are
correctly set (in the macro “PI32”), then the delay line is loaded into the core registers. The multiplication
by B0 of the last term of equation (1.14) is achieved by a shift over the entire 32-bit value Uk. Next,
equation (1.14) is executed. Then the routine checks if the final shift by n (contained in ay0) will produce
a resulting Uk+1 that is bigger than 1 in absolute value. If not, the shift is executed and the output value is
stored in the delay line for the next cycle. If the shifted result would be bigger than one, Uk+1 is saturated
to +1 or –1 (depending on the sign of the result) and this value is stored. For more detail, please refer to
“pi.dsp”.

3 Software Example: PI Control

3.1 Using the PI routines: Calculation of coefficients
The example demonstrates how to use the routines and may be used for reference in own applications.
Here, the example file implements a PI controller of the following parameters:

 KP = 0.25

 ωPI = 314rad/s (corresponding to a zero at 50Hz)

 Tsample = 100µs (corresponding to a controller frequency of 10kHz)

Note that 20
1214.3 <=⋅ −eTsamplePIω so that both the ZOH and the FOH approximation introduce errors

that are less than 3%. Following the procedure of Section 2.1yields the following coefficients:

 ZOH FOH

11
00n

0.246073-0.242146-
0.25392725.0

0

0

1

=
=
=
=

B

A
A

sc

sc

The last step is the conversion of those values into hexadecimal values in 1.15 format (showing only the
case of the ZOH):

1010

20000

0

1

xEA

xA
sc

sc

=

=

The exponent n=0 is the third parameter of the PI macro. The corresponding label in the example code is
PI_SF32.

3.2 The main program: main.dsp
It contains the initialisation and PWMSYNC and PWMTRIP interrupt service routines. Please note that
this file is written for demonstrating how to use the routine, the user has to modify the program for their

© Analog Devices Inc., December 2001 Page 9 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

application. The general systems constants and PWM configuration constants1 (main.h-see the next
section) are included. Also, the PWM library (pwm21990.h) and the PI library (pi.h) are included.

Then, some variables such as the PI parameters are defined and initialised. Here, the PI delay line (Ik (16-
bit), Uk (32-bits, split into 2 16-bit data memory locations)) is declared.

At the start of the program, initialisations such as setting the data memory page registers to accessing the
internal memory is achieved. Then the PWM block and the PI controller are initialised.

The PWMSYNC interrupt service routine is executed at the PWM switching rate (10kHz here). First, the
PWMSYNC interrupt status in the PWM status register is cleared. The error signal is computed by
subtracting the feedback signal from the command (reference) signal. Please note that, assuming both the
reference value and the feedback signal being in 1.15 format, the difference may assume values
comprised between –2 and 2. Clearly, those values can no longer be represented in 1.15 format. However,
by enabling the ALU saturation mode, the difference is saturated to values in the range of –1 to 1. This
should normally have only minimal effects on the overall behaviour, since errors that are larger than full
scale should appear only in small transition times. If nonetheless the saturation of the error is
unacceptable, it is necessary to divide it by two, call the PI routine and multiply the output by two. Note
also that if the reference and feedback signals are both uni-polar, the error is represented in 1.15 format
and the enabling of the saturation mode is not required. Then, this error signal is stored in the AR register.
As stated before, this file has to be modified by the user, here; the reference and the feedback signals have
to be defined by the user according to the application. The error then serves as an input into the PI
controller and the PI control routine is implemented. Thus, the sampling time of the PI controller is
dictated by the PWM switching frequency, which is 10kHz here. The output from the controller is stored
in the SR1 register.

In the PWMTRIP interrupt service routine, the users can define what to implement in case of a PWM
fault. In this example, the status bit of the PWMTRIP interrupt in the PWM status register is cleared.

For more details on the “main.dsp”, please refer to the comments in the file.

3.3 Main.h
The use of this file is to define general system parameters and constants, such as the crystal clock [kHz],
core clock [kHz] and the peripheral clock [kHz] (also denoted as Hclk). Besides, any constants required by
the library files will be defined here. In this case, the constants needed by the PWM library, such as the
PWM switching frequency [Hz], the dead time [nsec] and the PWM sync pulse time [nsec] will be
included in this file. Two files, the “ADSP-21990.h” and the “macro.h” are also included in the “main.h”
file. The “ADSP-21990.h” defines the peripheral registers of the ADSP-21990 while the “macro.h”
defines the most commonly used macro.

4 Experimental Results
The following figures show the step response (from 0 to 30%) of the PI controller, using the configuration
as stated in the previous section. The output from the PI controller directly serves as the feedback signal
input, thus this corresponds to a control system of unity gain. Figure 4 shows the simulation result while
Figure 5 shows the results obtained from the ADSP-21990. Please note that the results from Figure 5 is
obtained from the Digital to Analog Converter (DAC) such that the voltage output ranges from 0V to 2V
representing –1 to +1 in digital value. Hence, 1V means a value of zero, and it is denoted as the zero line
on Figure 5. As shown in Figure 4, it takes 90ms for the feedback signal to reach the reference input. This
result matches the one implemented in the ADSP-21990, as shown in Figure 5. Besides, one can also see
that the error dies down to zero at this point.

1 Please refer to the comments in the “pwm21990.h” and “pwm21990.dsp” for more information.

© Analog Devices Inc., December 2001 Page 10 of 11

a ADSP-21990: Implementation of PI Controller AN21990-13

Reference signal: Step input

Zero line

Fi

© Analog Devices Inc., Dec

Feedback signal = PI controller output

Error signal = reference - feedback

]

Figure 4 Simulatio

Reference signal: Ste

gure 5 DSP implemen

ember 2001
Time [s
n result of PI controller

p input

Feedback signal = PI controller output

Error signal = reference - feedback

tation result of PI controller

Page 11 of 11

	Summary
	Characterisation of the PI controller
	The continuous time domain
	The discrete time domain
	Zero order hold (ZOH)
	First order hold (FOH)

	Implementation on a digital signal processor
	Accuracy of the routine
	Anti Wind-up

	Using the PI routines
	Determination of the coefficients
	Usage of the controller routine
	Usage of the DSP registers
	Access to the library through the header file: pi.h
	The program code: pi.dsp

	Software Example: PI Control
	Using the PI routines: Calculation of coefficients
	The main program: main.dsp
	Main.h

	Experimental Results

