

Engineer-to-Engineer Note EE-376

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques

Contributed by Akash Agarwal, Mitesh Moonat, and Nabeel Shah Rev 1 – January 5, 2016

Copyright 2016, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

The ADSP-BF70x family of Blackfin+TM processors (hereafter referred to as ADSP-BF707 processors)

provides an optimized architecture supporting high system bandwidth and advanced peripherals. The

purpose of this EE-Note is to discuss the processor’s key architectural features affecting the overall system

bandwidth and provide various bandwidth optimization techniques.

The ADSP-BF707 Blackfin+ processor architecture is similar in many ways to the ADSP-BF60x Blackfin®

processor architecture and other older Blackfin processors. Thus, some of the system optimization

techniques discussed in System Optimization Techniques for Blackfin® Processors (EE-324)[1] and ADSP-

BF60x Blackfin® Processor System Optimization Techniques (EE-362)[2] are also applicable for these

processors.

ADSP-BF707 Processor Architecture

This section provides a holistic view of the ADSP-BF707 processor architectural features that play a crucial

role in terms of system bandwidth and performance. For detailed information about these features, please

refer to the ADSP-BF70x Processor Hardware Reference Manual[3].

System Bus Slaves

The system bus slaves are shown on the right side in Figure 1. They include on-chip and off-chip memory

devices/controllers, such as L1 SRAM, L2 SRAM, the Dynamic Memory Controller (DMC) for DDR2 and

LPDDR SDRAM devices, the Static Memory Controller (SMC) for SRAM and flash devices, SPI flash, the

One-Time Programmable Memory Controller (OTPC), and the System Memory-Mapped Registers

(MMRs).

Each system bus slave has its own latency characteristics, operating in a given clock domain. For example,

L1 SRAM access is faster than L2 SRAM access, which is in turn faster than DMC and SMC memory

accesses.

System Bus Masters

The system bus masters are shown on the left side in Figure 1. They include peripheral Direct Memory

Access (DMA) channels, such as the Enhanced Parallel Peripheral Interface (EPPI) and Serial Port

(SPORT), among others. Also included are the Memory-to-Memory DMA channels (MDMA) and the core.

http://www.analog.com/processors

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 2 of 20

Each peripheral runs at a different clock speed, so each has individual bandwidth requirements. For example,

parallel peripherals like the EPPI require higher bandwidth as compared to the slower serial peripherals

(e.g., SPORT, SPI, TWI, etc.).

Figure 1. ADSP-BF707 Processor System Architecture

System Crossbars

The System Crossbars (SCB) are the fundamental building blocks of the system bus interconnect. As shown

in Figure 1, the SCB interconnect is built from multiple SCBs in a hierarchical model connecting system

bus masters to system bus slaves. They allow concurrent data transfer between multiple bus masters and

multiple bus slaves, providing flexibility and full-duplex operation. The SCBs also provide a programmable

arbitration model for bandwidth and latency management. Also, as highlighted earlier, SCBs run on

different clock domains (SCLK0, SCLK1, and SYSCLK), which introduces unique latencies to the system.

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 3 of 20

System Latencies, Throughput, and Optimization Techniques

Understanding the System Masters

DMA Parameters

Each DMA channel has two buses:

 one that connects to the SCB, which in turn is connected to the SCB slave (e.g., memories)

 one that connects to either a peripheral or another DMA channel

The SCB/memory bus width can vary between 8-, 16-, 32-, or 64-bit, as defined by the DMA_STAT.MBWID bit

field, while the peripheral bus width is further configurable to 128-bit, as defined by the DMA_STAT.PBWID

bit field. For ADSP-BF707 processors, the memory and peripheral bus widths are fixed to 32-bit (4-byte).

The DMA_CFG.PSIZE DMA parameter determines the width of the peripheral bus being used. It can be

configured to 1-, 2-, 4-, or 8-byte. However, it cannot exceed the maximum possible bus width defined by

DMA_STAT.PBWID because burst transactions are not supported on the peripheral bus.

The DMA_CFG.MSIZE DMA parameter determines the actual size of the SCB bus being used. It also

determines the minimum number of bytes which will be transferred from/to memory corresponding to a

single DMA request/grant. It can be configured to 1-, 2-, 4-, 8-, 16-, or 32-byte. If DMA_CFG.MSIZE is greater

than DMA_STAT.MBWID, the SCB performs burst transfers with the width defined in DMA_CFG.MSIZE. Thus,

it is important to understand how to choose the appropriate DMA_CFG.MSIZE value, from both a functionality

and a performance perspective. The following points should be considered when setting DMA_CFG.MSIZE:

 The start address of the work unit should always align to the DMA_CFG.MSIZE value selected. Failing to

do so will generate a DMA error interrupt.

 As a general rule, from a performance/throughput perspective, the largest possible DMA_CFG.MSIZE

value (32-byte) should be used for better average throughput. This is because it results in a higher

likelihood of uninterrupted sequential accesses to the slave (memory), which is most efficient for typical

memory designs.

 From a performance perspective, in some cases, the minimum DMA_CFG.MSIZE value is determined by

the burst length supported by the memory device. For example, for DDR2 accesses, the minimum

DMA_CFG.MSIZE value is limited by the DDR2 burst length (4- or 8-byte). Any DMA_CFG.MSIZE value

below this would lead to a significant throughput loss. For more details, please refer to the L3/External

Memory Throughput section.

Bandwidth Limiting and Monitoring

MDMA channels are equipped with a bandwidth limit and monitor mechanism. The bandwidth limit feature

can be used to reduce the number of DMA requests being sent by the corresponding masters to the SCB.

The DMA_BWLCNT register can be programmed to configure the number of SCLK cycles between two DMA

requests. This can be used to make sure that such DMA channels’ requests do not occur more frequently

than required. Programming a value of 0x0000 allows the DMA to request as often as possible. A value of

0xFFFF represents a special case and causes all requests to stop. The maximum throughput (in MB/s) is a

function of SCLK (in MHz) and can be limited by the DMA_BWLCNT value and the DMA_CFG.MSIZE value (in

bytes), calculated as follows:

Bandwidth = min ((SCLK * 4), (SCLK * DMA_CFG.MSIZE / DMC_BWLCNT))

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 4 of 20

The example code provided in the associated ZIP file [4] utilizes a MDMA stream to perform data transfers

from DDR2 to L1 memory. In this example, DMC_BWLCNT is programmed to different values to limit the

throughput to an expected value for different DMA_CFG.MSIZE values. Table 1 provides a summary of the

theoretical and measured throughput values. As shown, the measured throughput is very close to the

theoretical bandwidth, which it never exceeds. The SCLK1 frequency used for testing was 200 MHz, and the

DMA buffer size was 16384 words.

Sample

No.

MSIZE BWLCNT Theoretical Throughput (MB/s)

(SCLK * MSIZE / BWLCNT)

Measured Throughput (MB/s)

1 32 8 800 695

2 32 16 400 372

3 32 32 200 192

4 32 64 100 98

5 32 128 50 49

6 16 8 400 351

7 16 16 200 187

8 16 32 100 96

9 16 64 50 49

10 16 128 25 24

11 8 8 200 176

12 8 16 100 93

13 8 32 50 48

14 8 64 25 24

15 8 128 12.5 12

Table 1. DMC MDMA Read Throughput at Different DMC_BWLCNT Settings

The bandwidth monitor feature can also be used to check for starving DMA channels. The DMC_BMCNT

register can be programmed to the number of SCLK cycles within which the corresponding DMA should

finish. Each time the DMA_CFG register is written to via an MMR access, a work unit ends, or an autobuffer

wraps, the DMA loads the value from DMA_BWMCNT into DMA_BWMCNT_CUR. The DMA decrements

DMA_BWMCNT_CUR every SCLK a work unit is active. If DMA_BWMCNT_CUR reaches 0x00000000 before the

work unit finishes, the DMA_STAT.IRQERR bit is set, and the DMA_STAT.ERRC is set to 0x6. The

DMA_BWMCNT_CUR remains at 0x00000000 until it is reloaded when the work unit completes.

Unlike other error sources, a bandwidth monitor error does not stop work unit processing. Programming

0x00000000 disables bandwidth monitor functionality. This feature can also be used to measure the actual

throughput.

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 5 of 20

Example code is also provided to help explain this functionality. The example uses MDMA streams 18-19,

configured to read from DDR2 memory to L1 memory. For an expected throughput of 400 MB/s, the

DMC_BWMCNT register must be programmed to 8192 (Buffer Size * SCLK / Bandwidth = 16384 * 200 / 400).

When this MDMA runs alone, the measured throughput (using both cycle count and DMC_BWMCNT) is as

expected (773 MB/s), as shown in Figure 2.

Figure 2. Using DMC_BWMCNT for Measuring Throughput

Using the same example code, if another DMC read MDMA stream is initiated in parallel

(#define ADD_ANOTHER_MDMA), the throughput drops to less than 400 MB/s, and a bandwidth monitor error

is generated (as shown in Figure 3).

Figure 3. Bandwidth Monitor Expires Due to Less than Expected Throughput

SCLK0 runs up to SYSCLK and is the clock source for the MDMA1 and MDMA2 channels. Meanwhile, SCLK1

runs up to SYSCLK/2 and is the clock source for the MDMA0 channel. As such, using the MDMA1 and

MDMA2 streams instead of the MDMA0 stream is recommended for higher efficiency.

Understanding the System Crossbars

As shown in Figure 1, the SCB interconnect consists of a hierarchical model connecting multiple SCB units.

Figure 4 shows the block diagram for a single SCB unit. It connects the system bus masters (M) to the

system bus slaves (S) by using a Slave Interface (SI) and a Master Interface (MI). On each SCB unit, each

S is connected to a fixed MI, and each M is connected to a fixed SI.

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 6 of 20

Figure 4. Single SCB Block Diagram

The slave interface of the crossbar (where the masters such as DDE connect to) performs two functions.

o Arbitration: the programmable Quality of Service (QoS) registers can be viewed as being

associated with SCBx. For example, the QoS registers for DDE14-17, USB, and SPIHP can

be viewed as residing in SCB3. Whenever a transaction is received at DDE14, the

programmed QoS value is associated with that transaction and is arbitrated with the rest of

the masters at SCB3.

o Clock Domain Conversion: IB1–3 perform clock domain crossing from SCLK0 to SYSCLK.

SCLK0 is always assumed to be an integer ratio (1::n) to SYSCLK and passes through a one-

stage synchronizer. Therefore, there are no programmable registers for IB1–3. IB4–6

perform clock domain crossing from SCLK1 to SYSCLK. The clock domain crossing from

SCLK1 to SYSCLK is programmable via the sync mode register associated with IB4, IB5, and

IB6. Similarly, the IB7 preset at the DDR boundary performs clock domain crossing from

SYSCLK to DCLK. This crossing is also programmable via the sync mode register in IB7.

Synchronization across clock domains affects the SCB performance. Interface blocks IB4

(MDMA1), IB5 (MDMA2), IB6 (Crypto), and IB7 (DDR) should be programmed depending

upon the clock ratios of the two clock domains.

Programming the SCB QoS Registers

Consider a scenario where:

 At SCB1, masters M1, M2, and M3 have RQoS values of 6, 4, and 2, respectively.

 At SCB2, masters M4, M5, and M6 have RQoS values of 12, 13, and 1, respectively.

Figure 5 Arbitration among Various Masters

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 7 of 20

In this case:

 M1 wins at SCB1, and M5 wins at SCB2, as each has the largest RQoS value for its respective group.

 In a perfect competition at SCB0, M4 and M5 would have the highest overall RQoS values and would

fight for arbitration directly at SCB0; however, due to the mini-SCBs, M1 is able to win against M4

and make it all the way to SCB0, despite the much lower RQoS value.

Programming Sync Mode in the IBx Registers

To illustrate the effect of using the sync mode when programming the IBx registers, DMC read throughput

was measured using the MDMA1 stream with the core clock (CCLK) set to 400 MHz and SCLK1, SYSCLK,

and DCLK each set to 200 MHz. Figure 6 shows the measured throughput for the following four cases:

1. IB4 and IB7 in ASYNC mode

2. IB4 in SYNC(1:1) mode, and IB7 in ASYNC mode

3. IB4 in ASYNC mode, and IB7 in SYNC(1:1) mode

4. IB4 and IB7 in SYNC(1:1) mode

Figure 6. DMC MDMA Throughput with and without IBx Sync Mode

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 8 of 20

As can be seen, the throughput is best when both IB4 and IB7 are programmed in SYNC mode, and it is

worst when both are programmed in ASYNC mode.

Understanding the System Slaves

Memory Hierarchy

ADSP-BF707 processors contain a hierarchical memory model (L1-L2-L3) similar to that of previous

Blackfin devices. Thus, the memory-related optimization techniques discussed in System Optimization

Techniques for Blackfin® Processors (EE-324) apply also to ADSP-BF707 processors. The following

sections discuss access latencies and achievable throughput associated with each memory level.

L1 memory runs at the core clock (CCLK) speed and is the fastest accessible memory in the hierarchy. L2

memory access times are longer, as the maximum L2 clock frequency is the system clock (SYSCLK), which

operates at CCLK/2. The L2 memory controller contains two ports to connect to the system crossbar. Port 0

is a 64-bit interface dedicated to core traffic, while port 1 is a 32-bit interface that connects to the DMA

engine. Each port has a read and a write channel. For more details, refer to the ADSP-BF70x Processor

Hardware Reference.

L2 Memory Throughput

Since L2 runs at SYSCLK, it’s capable of providing a maximum theoretical throughput of

200 MHz * 4 = 800 MB/s in one direction. Since there are separate read and write channels, the total

throughput in both directions is 1600 MB/s. In order to be able to operate L2 SRAM memory at its optimum

throughput, both the core and DMA ports and separate read and write channels should be used in parallel.

All accesses to L2 memory are converted to 64-bit accesses (8-byte) by the L2 memory controller. Thus, in

order to achieve optimum throughput for DMA access to L2 memory, the DMA channel’s DMA_CFG.MSIZE

field should be configured to 8 bytes or more.

Unlike L3 (DMC) memory accesses, L2 memory throughput for sequential and non-sequential accesses is

the same.

ADSP-BF707 processors feature up to 1 MB of L2 SRAM, which is ECC-protected and organized into

eight banks. A single 8- or 16-bit access, or a non-32-bit address-aligned 8-bit or 16-bit burst access to an

ECC-enabled bank creates an additional latency of two SYSCLK cycles. This is because the ECC

implementation is on the order of 32-bit, meaning that any writes that are less than 32-bit to an ECC-enabled

SRAM bank will be implemented as a read-followed-by-write and will require three cycles to complete

(two cycles for the read, and one cycle for the write).

When performing simultaneous core and DMA accesses to the same L2 memory bank, read and write

priority control registers can be used to increase DMA throughput. If both the core and DMA access the

same bank, the best access rate that the DMA can achieve is one 64-bit access every three SYSCLK cycles

during the conflict period. This is achieved by programming the read and write priority count bits

(L2CTL_RPCR.RPC0 and L2CTL_WPCR.WPC0) to 0, while programming the L2CTL_RPCR.RPC1 and

L2CTL_WPCR.WPC1 bits to 1.

Figure 7 shows the measured MDMA throughput for the case where the source and destination buffers are

in different L2 memory banks.

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 9 of 20

Figure 7. L2 MDMA Throughput for Different DMA_CFG.MSIZE and Work Unit Size Values

As can be seen, the maximum throughput is very close to 800 MB/s in one direction (1600 MB/s in both

directions) for all DMA_CFG.MSIZE settings greater than or equal to 8 bytes, but it drops significantly for a

DMA_CFG.MSIZE of 4 bytes. L2 throughput drops drastically for 8-bit and 16-bit accesses as well. This is

partly due to the non-utilization of the 32-bit wide DMA bus and the additional internal overhead.

Throughput for a DMA_CFG.MSIZE of 8 bytes improves by disabling ECC.

L3/External Memory Throughput

ADSP-BF707 processors provide interfaces for connecting to different types of off-chip L3 memory devices

such as parallel SRAM/Flash devices using the Static Memory Controller (SMC) and DRAM

(DDR2/LPDDR) devices using the Dynamic Memory Controller (DMC).

The DMC interface operates at up to 200 MHz; therefore, for the 16-bit DDR2 interface, the maximum

theoretical throughput which the DMC can deliver is 800 MB/s. However, the practical maximum DMC

throughput is less because of the latencies introduced by the internal system interconnects, as well as the

latencies introduced by the DRAM technology itself (access patterns, page hit to page miss ratio, etc.).

Although most of the throughput optimization concepts are illustrated using MDMA as an example, the

same can be applied to other system masters as well.

Because they run in the SCLK1 domain, the MDMA1/2 channels can request DMC accesses faster than any

other masters. The maximum SCLK1 is 200 MHz; therefore, for a 32-bit peripheral bus width, the maximum

possible throughput using only MDMA channel(s) is 200 MHz * 4 = 800 MB/s. That said, the practical

DMC throughput possible using MDMA also depends upon a number of factors, such as whether the

32 64 128 256 512 1024 2048 4096 8192 16384

MSIZE_32 168.42 278.26 412.90 544.68 648.10 716.08 755.72 777.23 788.45 794.18

MSIZE_16 168.42 278.26 412.90 544.68 648.10 716.08 755.72 777.23 788.45 794.18

MSIZE_8 168.42 278.26 412.90 544.68 648.10 716.08 755.72 777.23 788.45 794.18

MSIZE_4 168.42 278.26 400.00 371.01 373.72 387.88 393.85 396.90 398.25 399.22

MSIZE_2 168.42 206.45 158.02 122.49 55.11 220.22 209.62 204.70 202.32 201.15

MSIZE1_ECC_Enabled 103.23 108.47 79.50 61.39 55.11 52.43 51.19 50.59 50.29 50.15

MSIZE1_ECC_Disabled 104.92 113.27 117.97 104.70 96.06 95.08 94.60 94.36 94.24 94.18

0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

Work Unit Size (Bytes)

L2 MDMA Throughput

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 10 of 20

accesses are sequential or non-sequential, the block size of the transfer, and other DMA parameters (e.g.,

DMA_CFG.MSIZE).

Figure 8 and Figure 9 provide the DMC’s measured throughput between L1 and L3 memories for sequential

read and write accesses using MDMA streams 18-19 and 20-21, respectively, for various DMA_CFG.MSIZE

values and for different buffer sizes. The lines with square markers are DMA streams 18-19, whereas the

lines with round markers are DMA streams 20-21.

Figure 8. DMC Measured Throughput for Sequential MDMA Reads

Figure 9. DMC Measured Throughput for Sequential MDMA Writes

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 11 of 20

The following important observations can be made from these plots:

 The throughput trends are very similar for reads and writes with regards to DMA_CFG.MSIZE and buffer

sizes.

 The throughput depends largely upon the DMA buffer size. For smaller buffer sizes, the throughput is

significantly lower, increasing to up to 780 MB/s with a larger buffer size. For instance, DMA channel 18

with DMA_CFG.MSIZE of 32 and a buffer size of 32 bytes yields a read throughput of 168.4 MB/s (21.05%),

whereas the throughput reaches 780 MB/s (97.5%) for a 16 KB buffer size. This is largely due to the

overhead incurred when programming the DMA registers, as well as the system latencies when sending

the initial request from the DMA engine to the DMC controller.

Try to rearrange the DMC accesses such that the DMA count is as large as possible (i.e., better

sustained throughput is obtained for continuous transfers over time).

 To some extent, throughput also depends upon the DMA_CFG.MSIZE value of the source MDMA channel

for reads and the destination MDMA channel for writes. As shown in Figure 8 and Figure 9, in most cases,

larger DMA_CFG.MSIZE values provide better results. Ideally, DMA_CFG.MSIZE should be at least equal to

the DDR2 memory burst length. That is, for MDMA channel 18 with a buffer size of 16384 bytes, the read

throughput is 780 MB/s (97.5%) for DMA_CFG.MSIZE of 32, but it reduces significantly to 152 MB/s (19%)

for a DMA_CFG.MSIZE of 4. This is due to the fact that, for a DMA_CFG.MSIZE of 4, although all accesses

are still sequential, the full DDR2 memory burst length of 8 bytes (four 16-bit words) is not used.

As explored, for sequential reads, it is easily possible to achieve optimum throughput, particularly for larger

buffer sizes. This is because the DRAM memory page hit ratio is high, and the DMC controller does not

need to close and open DDR2 device rows too many times. However, in the case of non- sequential accesses,

throughput may drop slightly or significantly depending upon the page hit-to-miss ratio.

Figure 10 provides a comparison of the DMC throughput numbers measured for sequential MDMA read

accesses for a DMA_CFG.MSIZE of 8 bytes (equal to the DDR2 burst length) and DMC_CTL.ADDRMODE set to 0

(bank interleaving) versus non-sequential accesses with a modifier of 2048 bytes (equal to the DDR2 page

size, thus leading to a worst-case scenario with maximum possible page misses).

Figure 10. DMC Throughput for Non-Sequential and Sequential Read Accesses

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 12 of 20

As can be seen, for a buffer size of 16384 bytes, throughput drops significantly from 494.24 to 141.55 MB/s.

DDR2 memory devices also support concurrent bank operation, allowing the DMC controller to activate a

row in another bank without pre-charging the row of a particular bank. This feature is extremely helpful in

cases where DDR2 access patterns incur page misses. By setting the DMC_CTL.ADDRMODE bit, throughput

can be improved by ensuring that such accesses are to different banks. Figure 11 shows this in practice.

Figure 11. Optimizing Throughput for Non-Sequential Accesses

As can be seen, the DMC throughput increases from 141.55 MB/s to 225.30 MB/s (in red) simply by setting

the DMC_CTL.ADDRMODE bit for the non-sequential access pattern shown in Figure 10.

The throughput can be further improved using the DMC_CTL.PREC bit, which forces the DMC to close the

row automatically as soon as a DDR read burst is complete (using the Read with Auto Pre-charge

command). This allows the row of a bank to proactively pre-charge after it has been accessed, helping

improve the throughput by saving the latency involved in pre-charging the row at the time when the next

row of the same bank has to be activated, as illustrated by the green line in Figure 11.

Note how the throughput increases from 225.30 MB/s to 384.92 MB/s by just setting the DMC_CTL.PREC bit.

The same result can be achieved by setting the DMC_EFFCTL.PRECBANK[7-0] bits, which is used on a per

bank basis. However, setting the DMC_CTL.PREC bit overrides the DMC_EFFCTL_PRECBANK[7-0] bits and

results in pre-charging of the rows after every read burst, while setting the DMC_EFFCTL_PRECBANK[7-0]

bits pre-charge the row after the last burst (corresponding to the respective DMC_CFG.MSIZE settings). This

can provide an added throughput advantage for cases where DMA_CFG.MSIZE (e.g., 32 bytes) is greater than

the DDR2 burst length (8 bytes).

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 13 of 20

For reads, the throughput can be further improved by using the additive latency feature supported by the

DMC controller and DDR2 SDRAM devices, as shown in Figure 12 and Figure 13 (TN-47-02: DDR2 Offers

New Features/Functionality Introduction [6]).

Figure 12. DDR2 Reads without Additive Latency

Figure 13. DDR2 Reads with Additive Latency

Programming the additive latency to tRCD-1 allows the DMC to send the Read with Autoprecharge

command right after the Activate command, before the tRCD duration. This enables the controller to schedule

the Activate and Read commands for other banks, eliminating gaps in the data stream. The purple line in

Figure 11 shows how the throughput improves from 384.92 MB/s to 442.03 MB/s by programming the

additive latency (AL) in the DMC_EMR1 register to tRCD-1 (in this case, it is set to three).

The DMC also allows elevating the priority of the accesses requested by a particular SCB master via the

DMC_PRIO and DMC_PRIOMSK registers. The associated ZIP file provides example code in which two MDMA

DMC read channels (18 and 20) run in parallel. Table 2 summarizes the measured throughout.

Test Case

No.

Priority Channel

(SCB ID)

MDMA1 (Ch.18)

Throughput (MB/s)

MDMA2 (Ch.20)

Throughput (MB/s)

1 None 328 326

2 MDMA1(0xC0) 317 363

Table 2. Measured DMC Throughput for Different DMC_PRIO Settings for MDMA Channels 20 and 21

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 14 of 20

For test case 1, when no priority is selected, the throughput for MDMA channel 18 is 328 MB/s, while

channel 20 is at 326 MB/s. MDMA channel 20 throughput increases to 363 MB/s by setting the DMC_PRIO

register to the corresponding SCB ID (0xC0) and the DMC_PRIOMSK register to 0xFFFF.

Furthermore, the Postpone Autorefresh command can be used to ensure that auto-refreshes do not interfere

with any critical data transfers. Up to eight Autorefresh commands can be accumulated in the DMC. The

exact number of Autorefresh commands can be programmed using the DMC_EFFCTL.NUM_REF bit.

After the first refresh command is accumulated, the DMC constantly looks for an opportunity to schedule a

refresh command. When the SCB read and write command buffers become empty (which implies that no

access is outstanding) for the programmed number of clock cycles (IDLE_CYCLES) in the DMC_EFFCTL

register, the accumulated number of refresh commands are sent back-to-back to the DRAM memory.

After every refresh, the SCB command buffers are checked to ensure they stay empty. However, if the SCB

command buffers are always full, once the programmed number of refresh commands gets accumulated,

the refresh operation is elevated to urgent priority and one refresh command is sent immediately. After this,

the DMC continues to wait for an opportunity to send out refresh commands. If self-refresh is enabled, all

pending refresh commands are issued only after that DMC enters self-refresh mode.

Figure 14 shows the measured throughput for a MDMA stream reading via the DMC controller for different

work unit sizes with and without using the Postpone Autorefresh feature. The IDLE cycles were programmed

to its maximum supported value (15).

Figure 14. DMC Throughput Optimization with Postpone Autoreresh Feature

As can be seen, there is a slight throughput improvement, especially for the case where the block lengths

are 512, 4096, 8192, and 16384 bytes.

System MMR Latencies

Unlike previous Blackfin processors, ADSP-BF70x processors may have higher MMR access latencies.

This is mainly due to the interconnect fabric between the core and the MMR space and the number of

32 64 128 256 512 1024 2048 4096 8192 16384

PPREF=0 168.42 278.26 412.90 544.68 499.51 716.08 755.72 739.35 748.47 760.63

PPREF=1 168.42 278.26 412.90 544.68 648.10 716.08 755.72 772.83 781.68 777.41

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

Th
ro

u
gh

p
u

t
in

 M
B

/s
e

c

DMC Throughput Improvement with Postpone Auto-refresh Feature

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 15 of 20

different clock domains (SYSCLK, SCLK0 and SCLK1). With this, ADSP-BF70x processors have three groups

of peripherals for which the MMR latency varies, as summarized in Table 3.

Group 1 Group 2 Group 3

RCU GPIO COUNTER CRC

TRU PINT HADC CRYPTO

CGU TMR OTP MDMA1/2

DPM WDT MSI

SEC TWI SWU

SPU SPI USB

SMPU UART MDMA0

L2CTL PPI DMA0/15

DEBUG CAN RTC

Table 3. Peripheral Groups Sorted by MMR Latency

Table 4 shows the MMR latencies associated with the peripheral groups defined in Table 3. Each peripheral

in the group observes the same MMR access latencies.

MMR Access Group1 Group2 Group3

Read (Single Read access) 36 CCLK 52 CCLK 40 CCLK

Write (8 sequential Posted Write) 91 CCLK 91 CCLK 91CCLK

Write (8 sequential Non- Posted Write) 187 CCLK 269 CCLK 211 CCLK

Table 4. Approximate MMR Access Latencies

On ADSP-BF70x processors, MMR write latency can be reduced by using the posted write feature

supported by the core, enabled by setting the SYSCFG.MPWEN bit. When posted writes are enabled, the core

does not wait for the write completion response before executing the next instruction, which could be

another MMR write (thereby reducing the latency for multiple writes). However, the MMR access latencies

may vary depending upon:

 Clock ratios. All MMR accesses are through SCB0, which is in the SYSCLK domain, while peripherals are in

the SCLK0/1 domains. Thus, the CCLK::SYSCLK::SCLK0::SCLK1 ratio will affect the MMR latency. For

example, a ratio of 4::2::1::2 is optimum for minimal MMR latency.

 The number of concurrent MMR access requests in the system. Although a single write incurs half the

system latency as compared to back-to-back writes, the latency observed by the core will be shorter.

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 16 of 20

Similarly, the system latency incurred by a read followed by a write, or vice-versa, will differ from that

observed by the core.

 Posted write enabled. The application may use an SSYNC instruction to force the core to wait for the

responses from all the previous writes before executing the next instruction.

MMR write latencies are for eight back-to-back write accesses, as observed by the core, and have

been calculated using C code (so numbers may vary slightly from case to case). A single MMR

write latency is just two CCLKs.

System Bandwidth Optimization Procedure

Although the optimization techniques may vary from one application to another, the general procedure

involved in the overall system bandwidth optimization remains the same. Figure 15 provides a flow chart

of a typical system bandwidth optimization procedure for ADSP-BF707-based applications.

Figure 15. Typical System Bandwidth Optimization Procedure

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 17 of 20

For an SCB slave:

 Identify the individual and total throughput requirements for all the masters accessing the SCB slave in the

system and allocate the corresponding read/write SCB arbitration slots accordingly. Consider the total

throughput requirement to be value X.

 Calculate the observed throughput that the SCB slave(s) may be able to supply under the specific

application conditions, and call this value Y.

 If X <= Y, the bandwidth requirements are met. If X > Y, however, at least one peripheral is likely to

encounter reduced throughput or an underflow condition. In this case, apply the bandwidth optimization

techniques discussed earlier to either:

o Increase the value of Y by applying the slave-specific optimization techniques (e.g.; using the DMC

efficiency controller features).

o Decrease the value of X by:

 Reanalyzing whether a particular peripheral really needs to run that fast. If not, then

reduce the peripheral clock to reduce the bandwidth requested by the peripheral.

 Reanalyzing whether a particular MDMA can be slowed down (e.g., use DMAx_BWLCNT to

limit the bandwidth of that particular DMA channel).

Application Example

Figure 16 shows a block diagram of the example code in the associated ZIP file.

The supplied code is intended to stress the SCBs and the DMC controller for high throughput

requirements to show various bandwidth optimization techniques. It does not consider pin

multiplexing limitations.

Figure 16. Example Application Showing DMC Throughput Distribution across Various SCBs

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 18 of 20

The example code defines the following application characteristics:

 CCLK = 400 MHz, DCLK = 200 MHz, SYSCLK = 200MHz, SCLK0 = SCLK1 = 100 MHz

 SCB3:

o EPPI0 is configured for 24-bit data (3-byte) transmit with internal clock and frame syncs at

EPPICLK = 50 MHz. The required throughput is therefore 50 MHz * 3 = 150 MB/s.

 SCB4 and SCB5:

o MDMA1 channels (18-19) and MDMA2 channels (20-21)

o Throughout requirements depend upon the corresponding DMAx_BWLCNT register values. If

not programmed, the MDMA channels request for the bandwidth with full throttle (every

SCLK1 cycle). This means that both MDMA channels request from the SCB4 and SCB5, each

with a throughput of 200 MB/s * 4 = 800 MB/s.

As shown in Figure 16, the total required throughput from the DMC controller is 1.75 GB/s (150 + 2 * 800).

Theoretically, with DCLK = 200 MHz and a 16-bit bus width, it should be possible to meet this requirement.

However, the maximum throughput that can be supplied by the DMC controller and DDR2 SDRAM

memory depends upon the page hit vs. page miss ratio when multiple masters are trying to concurrently

access the DMC and the internal latencies involved when switching between masters accessing the DMC.

For these reasons, it is possible for one or more masters to not get the required bandwidth, which could

result in decreased throughput (for masters like a MDMA channel) or an underflow condition (for masters

like the EPPI).

Bandwidth optimization strategies are provided in the example code, as defined in the following steps.

Step 1

In this step, all DMA channels run without applying any optimization techniques. To replicate the worst

case scenario, the source buffers for all the DMA channels are placed in a single DDR2 SDRAM bank. The

row corresponding to “No optimization” in Table 5 shows the expected and measured throughput for all

DMA channels and the corresponding SCBs for this case.

All units are expressed in MB/s.

Table 5. Example Application System Bandwidth Optimization Steps

As illustrated, the individual measured throughput of almost all channels is significantly less than expected,

and the EPPI port encounters an underflow condition. The total expected throughput from the DMC

(X) is 1750 MB/s, and the effective DMC throughput (Y) is 526 MB/s. As X is greater than Y, bandwidth

optimization techniques should be applied to achieve better application performance.

Required Measured Required Measured Required Measured

1 No optimization 150 95.27 800 221.17 800 221 1750 537.47 YES

2
Optimization at

the slave - T1
150 144.37 800 313 800 312.85 1750 770.22 YES

3
Optimization at

the master - T2
150 150.2 300 290 300 289.8 750 729.89 NO

4
Optimization at

the master - T3
150 150.44 500 490.32 100 98.35 750 739.11 NO

Total

throughput

Requirement

X

Measured

throughput

Y'

PPI

Underflow

?

PPI0 MDMA1 MDMA2
S.No. Condition

SCB3 SCB4 SCB5

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 19 of 20

Step 2

As previously discussed, frequent DDR2 SDRAM page misses within the same bank can significantly

degrade throughput. Although DMA channel accesses are sequential, multiple channels trying to access the

DMC concurrently makes page misses more likely to occur. To work around this, the DMA channel source

buffers can be reallocated to different DDR2 SDRAM banks, which will allow for parallel accesses to be

made to multiple pages of different banks, thus helping to improve Y. The “Optimization at the slave - T1”

row in Table 5 provides the measured throughput numbers under this condition. Both the individual and

overall throughput numbers increase significantly. The maximum throughput delivered by the DMC (Y)

increases to 766 MB/s. However, since X is still greater than Y, the measured throughput is still lower than

expected, resulting in an underflow condition in EPPI0.

Step 3

There is not much more room to significantly increase the value of Y on the slave end, but optimization

strategy techniques can also be employed on the master end. One method is to try reducing the overall

expected throughput to less than 766 MB/s. To meet this target, the bandwidth of the MDMA1 and MDMA2

streams can be limited to 300 MB/s each, thus decreasing the total MDMA required throughput from

1600 MB/s to 600 MB/s. The “Optimization at the master - T2” row in Table 5 shows the measured

throughput under this condition. As can be seen, each individual component’s bandwidth requirement (and

the overall throughput requirement) are nearly met, and no underflow condition exists.

Step 4

Let’s assume it’s desired to increase MDMA1 throughput to 500 MB/s. In this case, bandwidth can be

reallocated from the MDMA2 stream by limiting its bandwidth to 100 MB/s in such a way that the overall

expected throughput remains nearly the same (i.e.; 750 MB/s). The “Optimization at the master - T3” row

in Table 5 provides the measured throughput numbers under this condition. Again, each individual

component’s bandwidth requirement (and the overall throughput requirement) are nearly met, and no

underflow condition exists.

System Optimization Checklist

This section summarizes the system bandwidth optimization techniques discussed in this EE-note, while

also listing a few additional tips:

 Analyze the overall bandwidth requirements and make use of the bandwidth limit feature for memory

pipe DMA channels to regulate the overall DMA traffic.

 Program the DMA channels’ DMA_CFG.MSIZE parameters to optimum values to maximize throughput

and avoid any potential underflow/overflow conditions.

 Program the SCB_MST_RQOS and SCB_MST_WQOS registers to allocate priorities to various masters as per

system requirements.

 Program the clock domain crossing (SCB_IBx) registers depending upon the clock ratios across SCBs.

 Make use of various optimization techniques at the SCB slave end, such as:

o Efficient usage of the DMC controller

o Usage of multiple L2/L1 sub-banks to avoid access conflicts

o Usage of instruction/data caches

 Maintain the optimum clock ratios across different clock domains

ADSP-BF70x Blackfin+TM Processor System Optimization Techniques (EE-376) Page 20 of 20

 MMR write latencies can be reduced by enabling posted writes on the cores. If writes are done to

different peripherals, use an SSYNC instruction in between them to avoid interrupt scenarios that would

result in re-entering the interrupt routine.

 Since MMR latencies affect the interrupt service latency, ADSP-BF707 processors offer the Trigger Routing

Unit (TRU) for bandwidth optimization and system synchronization. The TRU allows for synchronizing

system events without processor core intervention. It maps the trigger masters (trigger generators) to

trigger slaves (trigger receivers), thereby offloading processing from the core. For more details, refer to

Utilizing the Trigger Routing Unit for System Level Synchronization (EE-360)[7]. Though it is written for the

ADSP-BF60x Blackfin processor, the concepts can be used for the ADSP-BF707 processor as well.

References

[1] System Optimization Techniques for Blackfin Processors (EE-324). Rev 1, July 2007. Analog Devices, Inc.

[2] ADSP-BF60x Blackfin® Processor System Optimization Techniques (EE-362). Rev 1, November 2013. Analog Devices,

Inc.

[3] ADSP-BF70x Blackfin Processor Hardware Reference. Rev 0.2, May 2014. Analog Devices, Inc.

[4] Associated ZIP File for EE-373. Rev 1. July 2015. Analog Devices, Inc.

[5] ADSP-BF701/ADSP-BF702/ADSP-BF703/ADSP-BF704/ADSP-BF705/ADSP-BF706/ADSP-BF707 Blackfin Embedded

Processors Data Sheet. Rev PrD, November 2014. Analog Devices, Inc.

[6] ADSP-BF60x Blackfin® Processors System Optimization Techniques (EE-362). Rev 1, November 12, 2013. Analog

Devices, Inc.

[7] Utilizing the Trigger Routing Unit for System Level Synchronization (EE-360). Rev 1, October 2013. Analog Devices Inc

[8] TN-47-02: DDR2 Offers New Features/Functionality Introduction. Rev A, June 2006. Micron Technology Inc.

Document History

Revision Description

Rev 1 – January 5th, 2016

by Akash Agarwal, Mitesh Moonat, and Nabeel Shah.

Initial release.

	Introduction
	ADSP-BF707 Processor Architecture
	System Bus Slaves
	System Bus Masters
	System Crossbars

	System Latencies, Throughput, and Optimization Techniques
	Understanding the System Masters
	DMA Parameters
	Bandwidth Limiting and Monitoring

	Understanding the System Crossbars
	Programming the SCB QoS Registers
	Programming Sync Mode in the IBx Registers

	Understanding the System Slaves
	Memory Hierarchy
	L2 Memory Throughput
	L3/External Memory Throughput
	System MMR Latencies

	System Bandwidth Optimization Procedure
	Application Example
	Step 1
	Step 2
	Step 3
	Step 4

	System Optimization Checklist
	References
	Document History

