
  
Engineer-to-Engineer Note EE-374 

 

 
 

Technical notes on using Analog Devices products and development tools 
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or 
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support. 
 

Implementing Second-Stage Loader on ADSP-BF707 Blackfin® Processors 

Contributed by David H Rev 1 – June 15, 2015 

 

Copyright 2015, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ 
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their 
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no 
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes. 
 

Introduction  

While the ADSP-BF70x Blackfin® processors natively support numerous boot modes, there may be 

applications that require additional boot-time functionality. To support extensions to the boot process, a 

second-stage loader (SSL) can be introduced, where a small application is initially loaded onto the processor 

using a natively supported boot mode, and then the application is customized to perform automated tasks as 

part of the processor boot process. This EE-Note describes how to write a SSL for the ADSP-BF707 

Blackfin processor to selectively boot one of multiple executable files (DXEs) from SPI2 flash memory 

using basic GPIO push-buttons during system start-up. 

This document describes what an SSL is, how to create loader (LDR) files from DXEs, and how to write 

LDR files to SPI flash memory. The example code associated with this document was tested with 

CrossCore® Embedded Studio (CCES) version 1.1.1 using a revision 1.0 ADSP-BF707-EZKIT evaluation 

system with processor silicon revision 1.0. 

Second-Stage Loader (SSL)  

An SSL can be used to allow the processor to boot from a selection of mapped applications. 

In this example, the ADSP-BF707 Blackfin processor is operating in Memory-Mapped Mode for booting 

from SPI2 memory. The processor boots from SPI memory and loads the SSL application, which configures 

the processor to accept the PB1 and PB2 push-buttons as GPIO inputs before idling until either is pressed. 

The push-buttons determine which of two unique applications to boot from SPI memory by calling the 

adi_rom_Boot() function with an offset into SPI flash memory associated with applications that will blink 

either LED3 or LED4 on the board. The method described by this EE-Note uses three separate LDR images, 

each of which is created separately and programmed into specific locations within the SPI flash memory, 

as shown in Table 1. 

LDR SPI Memory Location 

LED_4 0x40020000  

LED_3 0x40010000 

SSL 0x00000000 

Table 1. SPI2 Flash Memory Composition 

http://www.analog.com/processors


   

 

Implementing Second-Stage Loaders for ADSP-BF707 Blackfin Processors (EE-374) Page 2 of 4 

Booting DXE Applications 

The ADSP-BF707 Blackfin processor ROM space includes the adi_rom_Boot() function for selecting a 

memory address to boot from. Detailed information on the ROM functions can be found in the ADSP-

BF707 Blackfin® Processor Hardware Reference Manual[1] (HRM). To use the ROM API, the file 

cdefBF70x_rom.h needs to be included in the project: 

#include <cdefBF70x_rom.h> 

In this SSL application, adi_rom_Boot() is called in the interrupt routines for the two push-button 

switches, as follows: 

adi_rom_Boot(LED_3,0,0,0,0x00000207);  // PB1 

adi_rom_Boot(LED_4,0,0,0,0x00000207);  // PB2 

LED_3 and LED_4 are macros in the BF707_SSL.c source file defining the physical addresses in SPI flash 

memory where the corresponding LDR files reside. 0x00000207 is the dBootCommand parameter, which is 

configuring the boot mode to SPI Master Memory-Mapped Mode, as described in Table 2. 

 Please refer to the Boot ModesSPI Master Boot ModeRun-time API section of 

the Boot ROM and Booting the Processor chapter of the HRM for details. 

 

Bit No. Bit Name Description 

31:28 SPEED  0x0 =  Maximizes SPI Clock 

27 CMDSKIPEN 0 = Disable Command Skip 

26:25 IOPROT b#00 = No SPI I/O Protocol 

24:22 DUMMY b#000 = Do Not Issue Dummy Bytes After Address 

21:20 ADDR b#00 = Issue 1 Address Byte for Read Command 

19:16 BCODE 0x0 = Boot Mode Specific Code 

14:12 SSEL b#000 = SPI Slave Signal-Select Is SEL1 

11:8 DEVENUM 0x2  = SPI2 

6 NOAUTO 0 = Device Detection Enabled 

5 NOCFG 0 = Device Configuration Mode Enabled 

4 HOST 0 = Master Boot Mode 

3:0 DEVICE 0x7  = SPI Memory-Mapped Mode 

Table 2. SPI Master Boot dBootCommand 

The ADSP-BF70x boot ROM provides the flexibility to choose which SPI chip-select output is used for SPI 

booting (SEL1 through SEL7), which allows for multiple SPI flash modules to be connected via SPI and 

booted from using the adi_rom_Boot() API. 



   

 

Implementing Second-Stage Loaders for ADSP-BF707 Blackfin Processors (EE-374) Page 3 of 4 

ADSP-BF70x Blackfin Processor Instruction Cache 

By default, revision 1.0 silicon of the ADSP-BF70x Blackfin processor has instruction cache memory 

enabled at start-up. In this example, instruction cache must be enabled for the SSL in order for it to boot 

properly. To enable instruction cache, open the system.svc file in the Project Explorer and click the 

Startup Code/LDF tab at the bottom. In the Startup Code tab, locate the Instruction Cache pull-down 

under the Cache and Memory Protection section and select “Enable instruction cache”. 

The LED examples used in this note do not require instruction cache; therefore, code must be placed in the 

SSL source to disable it prior to calling adi_rom_Boot(), which requires resetting the L1 Instruction 

Memory Control register (L1IM_ICTL) to 0: 

*pREG_L1IM_ICTL = 0; 

Creating LDR Files 

With the project selected in the CCES Project Explorer view, select FileProperties from the pull-down 

menu: 

1> In the tree to the left, select the C/C++ BuildSettings page. 

2> On the Build Artifact tab, select Loader File from the Artifact Type pull-down. 

3> Return to the Tool Settings tab and select the CrossCore Blackfin LoaderGeneral page. 

4> Set the following in the Settings page that is displayed: 

Boot Mode: SPIO master 

Boot Format: Binary 

Output Width: 16 bits 

Boot code: 1 

Use default start address checked 

Next to the Initialization file dialog box, Browse… to the initialization file for the ADSP-BF707 EZ-KIT 

(the default location is <CCES root directory>\Blackfin\ldr\init_code\BF707_init) and click OK.  

 If the above directory doesn’t contain a valid DXE file, one must be built for 

inclusion with this project. For this exercise, no modifications to the default 

initialization code are necessary. Simply open the BF707_init_vxx project in the 

above directory and build it. Once built, the needed BF707_init_vxx.dxe file will be 

generated in the \Debug directory associated with the initialization code project. 

Build the project in Debug mode, and the LDR file will be generated in the \Debug folder. 

Programming Multiple LDR Files to SPI Flash 

Once the LDR images for the SSL and applications have been generated, each LDR needs to be programmed 

into defined offsets within the SPI flash memory. This is accomplished using the CCES Command Line 

Device Programmer utility (cldp.exe), which runs a kernel program on the processor to read the LDR 

image over the debug interface and initiate the proper commands to erase and program the SPI flash memory 

on the ADSP-BF707 EZ-KIT evaluation system. More information regarding the switches and arguments 

for the CLDP utility can be found in the Help Contents in CCES. 



   

 

Implementing Second-Stage Loaders for ADSP-BF707 Blackfin Processors (EE-374) Page 4 of 4 

The following is the means of utilizing the CLDP to write the three LDRs of interest to the SPI flash using 

the ICE-1000 that ships with the LITE evaluation board: 

1. Load BF707_SSL.ldr into Flash: 

cldp –emu ICE-1000 –proc ADSP-BF707 –cmd prog –driver “<path 

name>\bf707_w25q32bv_dpia.dxe” -format bin -erase all –offset 0 –file “<path 

name>\BF707_SSL.ldr” 

2. Load LED_3.ldr into Flash: 

cldp –emu ICE-1000 –proc ADSP-BF707 –cmd prog –driver “<path 

name>\bf707_w25q32bv_dpia.dxe” -format bin -erase affected –offset 0x10000 –file 

“<path name>\LED3_blink.ldr” 

3. Load LED_4.ldr into Flash: 

cldp –emu ICE-1000 –proc ADSP-BF707 –cmd prog –driver “<path 

name>\bf707_w25q32bv_dpia.dxe” -format bin -erase affected –offset 0x20000 –file 

“<path name>\LED4_blink.ldr” 

 For all three invocations of the CLDP utility, the <path name> is the full path to 

the serial flash programmer driver (that comes with the Board Support Package for 

the evaluation board) and the LDR files for the SSL and example LED applications 

(e.g., “<ADSP-BF707-EZ-Board BSP Root Directory>\BF707_EZ-

Board\Blackfin\Examples\Device_programmer”). 

Once all three are programmed to the SPI memory, the example application can be run. 

Using the SSL Example Program 

After all three LDR files are programmed into Flash memory, reset or power-cycle the ADSP-BF707 EZ-

Kit to load and run the SSL. Pushing PB1 will boot from memory location 0x40010000 (LED_3), and PB2 

will boot from memory location 0x40020000 (LED_4).   

Once one application has been booted, the SSL is exited and cannot be used again until the next power-

cycle or reset. 

References  

[1] ADSP-BF70x Blackfin Processor Hardware Reference. Rev 0.2, May 2014. Analog Devices, Inc. 

[2] ADSP- BF70x Blackfin Processor Data Sheet. Rev PrD, 2014. Analog Devices, Inc. 

[3] Embedded Processing and DSP (http://www.analog.com/processors). May 2005. Analog Devices, Inc. 

Document History  

Revision Description 

Rev 1 – June 15, 2015  

by David H 

Initial Revision  

 

http://www.analog.com/processors

	Introduction
	Second-Stage Loader (SSL)
	Booting DXE Applications
	ADSP-BF70x Blackfin Processor Instruction Cache
	Creating LDR Files
	Programming Multiple LDR Files to SPI Flash
	Using the SSL Example Program

	References
	Document History

