Engineer-to-Engineer Note

EE-202

ANALOG Technical notes on using Analog Devices DSPs, processors and development tools
DEVICES Contact our technical support at processor.support@analog.com and dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Using the Expert Linker for Multiprocessor LDFs

Contributed by Maikel Kokaly-Bannourah

Introduction

This EE-Note explains the use of the Expert
Linker (EL) for creating Linker Description Files
(LDFs) for multiprocessor (MP) systems.

Although, this concept applies to VisualDSP++®
for all SHARC® processor families (ADSP-
21x6x and ADSP-TSxxx), the examples shown
throughout this document are for the ADSP-
TS101S TigerSHARC® processor.

The example code used for this note is based on
Introduction to TigerSHARC Multiprocessor
Systems Using VisualDSP++ (EE-167) ! and it
was written using VisualDSP++ for
TigerSHARC Processors, release 4.0.

Expert Linker Overview

The Expert Linker is a graphical tool that
simplifies complex tasks such as memory map
manipulation, code and data placement, overlay
and shared memory creation, and C stack/heap
usage. This tool provides a visualization
capability enabling new users to take immediate
advantage of the powerful LDF format flexibility
in a very user-friendly way.

This note assumes a basic understanding of the
Linker Description File as well as the way the
linker utility (Finker .exe) operates. For detailed
information on this utility as well as the LDF,
please use the VisualDSP++ on-line help. Also,
refer to the VisualDSP++ 4.0 Linker and
Utilities Manual® and Understanding and Using
Linker Description Files (LDFs) (EE-69) & for a

Rev 3 — May 9, 2005

general description on the LDF, and EE-167 (for
an explanation on the different multiprocessor
linker commands).

Expert Linker LDF Wizard

The Expert Linker (EL) wizard is used to
generate an LDF for new VisualDSP++ projects.
However, the Expert Linker can also be used to
view or modify an already existing LDF.

Open the project (MP TS101.dpj) attached to
this note. The source code comes with no LDF,
which will be created, step-by-step, through this
note.

Please note that an MPTS101 orig_ldf.txt
containing an already created LDF file is
available as a reference.

Let’s now get started with the creation of the
LDF. First of all, to invoke the Expert Linker
wizard, choose from the pull-down menu as
shown in Figure 1.

6N Window Help
»

Linear Profiling 4

Expert Linker 4 Create LDF...

Flash Programmer...

PGO .
VCSE 5

Figure 1. Invoking the Expert Linker Wizard

Figure 2 shows the start up window when first
invoking the EL wizard.

Copyright 2005, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Create LDF gj

= Welcome to the Create LDF
& Wizard

This wizard will guide you through the creation of a new LDF
file.

To continue, click Next.

‘ Next >

[Cancel ll Help

Figure 2. Expert Linker Wizard Start-up Window
Click Next.

Project type

At this stage, the user needs to specify the project
information corresponding to the project type for
which the LDF is being generated. As shown in
Figure 3, the type can be C, C++, Assembly or
VDK.

Note that in case a mix of assembly and C files
or any other combination is used, the most
abstract programming language should be
selected. For example, for a project with C and
assembly files, a C LDF should be selected.
Similarly, for a C++ and C project the C++ LDF
should be selected.

In this particular example, the files source code
is assembly, and therefore the selected project
type is also Assembly.

The LDF name is specified here as well, which
by default uses the same as the project name.

Note that if an LDF file already exists, the user
will be prompted whether to replace the existing
file.

ANALOG

DEVICES

Project Information

Choose the LDF file name and the project type.

LDF filename:

CAMP TS101 ASMWMP TS1071.Idf B

Project type

Ooc

OCx+

® Assembly

l < Back ” Next > } [Cancel l l Help

Figure 3. Project Type
Click Next.

Selecting an MP LDF

By default, the LDF is for single processors.
Choose the Multiprocessor box for MP support
(Figure 4).

Create LDF - Step 2 of 3 @§|

System Information
Configure the DSP system by choosing the processors in your system and the processor type.

System type Processor type:

O Single processor

(® Multiprocessor

[Set up system from debug session settings

Processor properties
Processors: Output file

Processor | MP StartA_ | MPEndA ~ $COMMAND_LINE_OUTPUT_DIRECTORY

Bro 0x2000000 Ox23fffff
0x2400000 Ox27fffff
0x2800000 Ox2bfffff
0x2c00000 Ou2fiffif
0x3000000 Ox33fffff o

< bd

Executables to link against:

l < Back " Next > }l Cancel l[Help

Figure 4. Multiprocessor LDF selection

Determining the Number of Processors and MP
Memory Offset Values

Right click on the Processor Properties box
to add the desired number of processors to be
included in the LDF. For this particular example,
a dual processor system is selected. Therefore, a
second processor (P1) needs to be added to the
list.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 2 of 10

Create LDF - Step 2 of 3 @E‘

System Information
Configure the DSP system by choosing the processors in your system and the processor type

System type Processor type:
(O Single processor

(® Multiprocessor
’ [[1Set up system from debug session settings

Processor properties
Processors: Output file

Processor | MP StartA.. MPEndA » || [SCOMMAND_LINE_OUTPUT_DIRECTORY

Oro 0x2000000 Ox23fffff
3 0x2400000 Ox2 7fffff Executables to link against:
0x2800000 Ox2bfffff
0x2c00000 Ox2ffifff
0x3000000 Ox33fffff .
< >
[< Back ” Next > ‘ [Cancel I l Help

Figure 5. Processors and MMS Offset

As it can be seen in the Processor window
(Figure 5), the multiprocessor memory space
(MMS) offset value is automatically added in by
the EL. This helps the user to avoid having to
worry about specific MP addresses and memory
offsets, making the use of MP commands much
easier. This is an automatic replacement for the
linker command MPMEMORY used in the LDF
source file.

Linking Processors Executables

In the output File box, the user can specify the
name of the executable file for each processor in
the system. By default, the EL selects the same
name for the .dxe file as for the processor name.

In this case, PO.dxe and P1.dxe are selected as
the names for the DSP executable files and are
placed in the Debug folder within the project
folder.

ANALOG

Global Properties ? Eg
General | Processor PLIT | Elimination
System type Processor type:
O Single processor ADSP-TS101 v

(® Multiprocessor

Processor properties

Processors Output file

Processor MP Start A MPEndA ~ || [$COMMAND_LINE_OUTPUT_DIRECTORY

Bro 0x2000000 Ox23fffff

Opr1 0x2400000 Ox27fffff
0x2800000 Ox2bfffff
0x2c00000 Ox2ffffff
0x3000000 Ox33fffff o

< >

Executables to link against:

WAND LINE OUTPUT DIRECTORY'\P1.dxel

Figure 6. Executables to Link Against

As it would be done in the LDF source file with
the LINK_AGAINST command, the EL allows
the user to resolve symbols declared within MP
space. This is done by simply specifying for each
processor to which DSP to link against.

In this example, symbols referenced in Po, but
declared in P1 can be resolved by the linker by
adding ~ $COMMAND_LINE_OUTPUT_DIRECTORY/
P1.dxe to the Executable to Link Against
box (Figure 6) for PO.

Similarly, $COMMAND_L INE_OUTPUT_DIRECTORY/
PO.dxe is added for P1. In cases where more
than one .dxe is added to this box, commas or
spaces can be used as separators.

Now that an MP LDF has been selected, the
processors have been added to the list, and the
relevant linker commands have been specified,
the LDF is ready for completion.

Click Next.

Note that in the case where shared external
memory is used (shared.sm), this would also
need to be added to the 1ink against command
box. This is automatically handled by the EL and
will be explained later on.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 3 of 10

MP LDF Wizard Completion
Create LDF - Step 3 of 3 E‘g‘

Wizard Completed

The Create LDF Wizard now has enough information to create
your LDF file.

Summary of choices:

LDF file name: C:\Documents and Settings\MKokalyiMy D; »
Project type: Assembly
System type: Multiprocessor
Processor type: ADSP-TS101
Processors:
PO
Output file name: $COMMAND_LINE_OUTPUT_DIREC
Link against: $SCOMMAND_LINE_OUTPUT_DIRECTOF v
< >

Click Finish to close this wizard, create the new LDF file, and
view the LDF file with Expert Linker.

l < Back ” Finish I[Cancel II Help

Figure 7. Expert Linker Wizard Completion
Click Finish.

Expert Linker Window

After completion of the Expert Linker wizard,
the LDF graphical interface will open up as
shown in Figure 8.

Expert Linker - MP TS101.I1df

Input Sections: Memory Map: 2l

[# 0 MEM_ARGV
=0 psz 0
-0 bsz_init 10000
=0 gatat g

50000
* 0 data2 100000

* 0 program 110000
180000

180800

400000
1c00000
2000000
2400000
2800000
200000
3000000
3400000
3800000
300000
4000000 4000000
8000000 M5S0 |EDDDDDD
e000000 MST c000000
10000000

" Om [T

Figure 8. Expert Linker Window

The EL window has two panes: Input
sections (displays a tree of all the projects input
sections) and Memory Map (tree or graphical
representation of each memory map).

ANALOG

DEVICES
For more details on the Expert Linker window
and display options, please use the on-line help
in VisualDSP++.

Adding Shared Memory Segments

In many DSP applications where large amounts
of memory for multiprocessing tasks and sharing
of data are required, an external resource in the
form of shared memory may be desired.

To add a shared memory section to the LDF
using the EL, the following steps should be
followed:

1. Right click on the Memory Map pane
2. Select New/Shared Memory

3. Specify a name for the shared memory
segment (.sM). All output files should use the
$COMMAND_LINE_OUTPUT_DIRECTORY macro
to ensure that output files can easily be
moved for different configuration builds.
Therefore, name this new share memory
segment as follows:

$COMMAND_LINE_OUTPUT_DIRECTORY/share
d.sm

4. Select the DSPs that have access to this
shared memory segment.

Click oK.

As shown in Figure 9, a new shared memory
segment, visible to Processors PO and P1, has
been successfully added to the system.

Note that variables declared in the shared
memory segment will be accessed by both
processors in the system. In order for the linker
to be able to correctly resolve these variables, the
link against command should be used once
again (see Linking Processors Executables).

The EL automatically does this, and therefore the
user does not need to perform any additional
modifications to the LDF.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 4 of 10

Shared Memory Properties

Shared Memory | Elimination

]

[Quitput file

| $COMMAND_LINE_OUTPUT_DIRECTORYsh ared_st
L

Lttt Expert Linker - MP TS101.1df*

Input Sections

Memory Map

MEM_ARGY
¥k psz g
=B bsz_init 10000
B data
@ data2
¥ 5 program

¢

90000

110000
180000
160800
400000

2000000
2400000
2800000
200000
3000000
3400000
3800000
Jc00000
4000000
g0o00a0
<00000a
10000000

go000a0 . M1Data

100000 . M2Data

100000 (B8

MOCode

80000

100000

SDRAM 4000000
M30 Gooooan
Ms1 000000

Figure 9. Shared Memory Segment

The user can confirm that the EL has correctly
added the .sm file to the link against command
line by simply viewing the Memory Map pane
properties:

1. Right click on the Memory Map pane

2. Select View Global Properties

3. Click on the Processor tab

Shared.sm should now be contained in the
Executables to Link Against box for each
processor as illustrated in Figure 10.

Global Properties

Bl P1 ©P SCOMMAND_LINE_OUTPUT_DIREGTORY\shared sm |

General | Processor |PLIT | Eiimination|

ANALOG
DEVICES

2X]

System type Processor type:
O single processor |ADSP-TS101 2
(@) Multiprocessor
Processor properties
Processors: Output file
Processor | MP StartA.. MPEndA ~ $COMMAND_L\NE_OUTPUT_D\RECTORY|
Bro 0x2000000 Ox23fffff 7
Cp1 0x2400000 Ox27fffff Executables to link against:
0x2800000 Ox2bfffff — —
0x2c00000 OX2FfFFF (D_LINE OUTPUT DIRECTORY\shared.sm|
0x3000000 Ox33fffff o |\
. Py .T ,,,,, _—

[o

l [Cancel

Figure 10. Adding shared.sm to the
Executables to link against box.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 5 of 10

Detection of Non-Linked Input
Sections

There are several memory sections used in the
default LDF files (MEM_ARGV, bsz, bsz_init,
datal, data2 and program) for each processor
as well as for the shared memory segment.

Expert Linker - MP TS101.I1df

Input Sections Mermory Map:

ANALOG

DEVICES
In the scenario where the user declares in his
code an input section different to any of the ones
mentioned above, the EL will detect it and it will
mark it with a red cross as a “non-linked” input
section (Figure 11).

d

EREN MEM ARGV

#1 psz

0 psz_init

& datal

E-F] gt

= o ext_data

=gl $COMMAND_LINE_OBJECTS
=4 $OBJECTS

¥ datadoj

program

10000 =3 ={a¥i=1}
0000 . M1Data
100000 M2Data
1IDDDD [=1)
180000
180800
400000
100000
2000000
2400000
2800000
2e00000
3oooooo
3400000 [
Ja0ooon e
3c00000 |EEEEEEE
4000000 SDRAM

MOCode 0

goooooo MS0

c0000oo0 MS1
10000000

goooo

100000

4000000
goooooo
c0000oo0

Po £ | ©9 SCOMMAND_LINE_OUTPUT_DIRECTORY\chared sm J

Figure 11. Detection of non-linked input sections

An example of “non-linked” section is provided
in the source code (ext_data). Press the
Rebuild All button and update the contents of
the EL window (double click on the LDF file in
the project window).

Figure 11 shows how the linker has detected this
“non-linked” input section. In this case, it
corresponds to a variable declared in external
SDRAM memory, which belongs to the shared
memory segment.

Note that at this stage, the linker will generate
some errors when building the project. This is
due to the fact that the output sections have not

been properly configured (object files not linked
yet).

Linking Object Files

Now that both processors and the shared memory
segments have been properly configured, and the
EL has detected all input sections, the next step
is to link the object files from these different
input sections to their corresponding memory
sections.

First of all, sort the left pane of the Expert Linker
window by LDF Macros instead of Input
Sections (default setting). This can be done by

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 6 of 10

right clicking on the left pane and selecting Sort
by/LDF Macros.

Then, right click on the LDF Macro window and
add a new macro for PO (Add/LDF Macro). For
example, $SOBJECTS_PO. Repeat the same step for
P1 and shared.sm (Figure 12).

Expert Linker - MP TS101.1df

Input Sections:

+ dll §COMMAND_LINE_OBJECTS
+dll $0BJECTS

L WSNEWMACROJM Expert Linker - MP TS101.1df*

Input Sections:

+ dll $COMMAND_LINE_OBJECTS
+ dll $OBJECTS
b1 SOBJECTS PO
dil $0BJECTS_P1
dll $OBJECTS_SM

Figure 12. Creating LDF Macros

The next step is to add the object files (.doj)
that correspond to each processor as well as to
the shared memory segment. This is done by
right clicking on each recently created LDF
Macro and then selecting Add/Object/Library
File. Figure 13 shows the objects files added to
each LDF Macro.

Expert Linker - MP TS101.1df*

Input Sections:

+ &l SCOMMAND_LINE_OBJECTS
+ 4l $0BJECTS
= dil $0BJECTS_PO
il \Cile do Input Sections:
dll $OBJECTS_P1

+ &
il 0B JECTS_SM $COMMAND_LINE_OBJECTS

+ dll $0BJECTS

=-dil $0BJECTS_PO
+ @ |D0.doj

= dil $OBJECTS P1
+ @ |D1.doj

= 4l $OBJECTS_SM
@ data.doj

Expert Linker - MP TS101.l1df*

Figure 13. Adding Obiject Files

The use of LDF macros becomes extremely
useful in systems where there is more than one
.doj file per processor or shared memory
segment, in which case the same step previously
explained should be followed for each .doj file.

ANALOG

DEVICES
As shown in Figure 14, the LDF macro
$COMMAND_LINE_OBJECTS must be deleted from
the $OBJECTS macro to avoid duplicate of object
files during the linking process.

The $COMMAND_LINE_OBJECTS macro contains
the .doj files that correspond to every source file
used in the project (in this case 1D0.doj,
ID1.doj and data.doj). If this macro is left in,
the linker will automatically map the .doj files
for both processors into each processor's memory
map, i.e. MOCode/code will contain
IDO.doj(program) and 1D1.doj(program).
This is obviously wrong, since there is no need to
map any of 1D1.doj code into processor PO.

Therefore, right click on the
$COMMAND_LINE_OBJECTS macro and select
Remove.

Expert Linker - MP TS101.Idf*

Input Sections: Memory

+ dl $COMMAND_LINE_OBJECTS
- 4l $0BJECTS
% | SCOMMAND LINE OBJECTS
»
' \

= dll $OBJECTS Sort by
= @ |D0.doj Add
- dil $0BJECTS |
POl koo |
= dll $OBJECTS
+ @ data doj Expand All LDF Macros !
View Legend... t
View Global Properties... l
i
|
|
i

v Allow Docking
Hide

Float In Main Window

Figure 14. Deleting the $COMMAND_L INE_OBJECTS
LDF Macro

The next step is to map the new macros into
memory. This is done by placing each macro into
its corresponding memory section.

Before this can be done, the left pane needs to be
sorted by Input Sections instead of LDF
macros. Thus, right click on the left pane and
select Sort by/Input Sections.

Additionally, change in the right pane the
Memory Map View Mode from Graphical to
Tree mode. Right click on the Memory Map
window, select View Mode and then Memory Map
Tree.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 7 of 10

Now select one of the processors by clicking on
the processor’s name tab. In this case PO is
selected first. Then, place (drag and drop) the
recently created LDF macro, $OBJECTS_PO, in its

Expert Linker - MP TS101.1df*

ANALOG
DEVICES

corresponding memory segment. These steps are
shown in Figure 15.

Input Sections: Memony Map:
[+ 10 MEM_ARGV SeamentSection Start Add__ End Addr_
0 psz ERAl M0Code 0x0 Oxffff
[0 psz_init = code
=¥ datal B $0BJECTS (program)
4l §COMMAND_LINE_OBJECTS =% M1Data 0x80000 Ox8ffff
il 0BIECTS =3 datal
4l §OBJECTS_PO 0 $OBJECTS (datal)
—5iTOR - i) bsz_init Expert Linker - MP TS101.Idf*
@ D0 doj Wi O meminit Input Sections Memary Map
: % ID1.doj ¥ [# 0 MEM_ARGV Segment/Section Stat Add_ | End Addr__
=® data2 = MEM_AR # @ psz B M0Code 0x0 Oxifif -
bkl Seomann, L e paRETS Ul ah = el 1 m_
= e \ =3 data2 N tal [1 ¢op DroQram
4l $0BJECTS PO i 9 $OBJECTS (data2) ol g D_LINE_OBJECTS >
THSOE P TT~Z_SDRAM i - & TTData 0x80000 OBt
@ D0 doj o & dil §0BJECTS_PO =& datal
| ®iDido # MS1 =4l $0BJECTS_P1 M | el
[oxt_data SHOST @ |D0.doj [_Déggﬁgfﬁm
= & program T % HOST1 N L3 ID1.doj @ L psz_init
-l SCOMMAND_LINE_OBJEC @ HOST2 ‘ & mominit
8B40+ @ HOST3 INE OBJECTS 0 psz
= dll §0BJECTS_PO # HOST4 il $0BJECTS < =30 MEM ARGV
Tl 508 P HOST5 =-dil $0BJECTS_PO = % M2Data 0x100000 OXTOfFf
© 100.doj @ HOST6 = dl SOBJECTS_P1 N~ 3 data2
ID1.doj @ HOST7 € Dodoj [s0R data
» €0 $COMMAND_LINE_OUTPUT_DRECTO)| ® ID1.doj
= oxt_data & SDRAM 0x4000000 Ox7ffiff
S8 program S MSp 0x8000000 OXbfTIffF
& dil SCOMMAND_LINE_OBJECTS Ms1 0xc000000 Oxfififif
4l $0BJECTS “ HOST 0x100000... Oxfffff
= dil $0BJECTS_PO # HOSTI 0x300000.. OxAffiffif
=il §0BJECTS_P1 @ HOST2 0x500000... OXBFFFFT
@ D0.doj # HOST3 0x700000... OXBFFfFf
% D1.doj 2 _HOST4 0x900000.. Oxaffffifi | v
P W})GD\‘VﬂN:‘,ulwE,DL’F‘L:’,D\REZ’T'“!V‘?T?; sm J
Figure 15. Linking Object Files Using LDF Macros
Repeat the same steps for processor P1 As it can be seen in Figure 16, the red crosses

($0BJECTS_P1) and for the shared memory
segment, shared.sm (place $0BJECTS_SM in the
SDRAM section).

Press Rebuild All.

denoting the “non-linked” sections have
disappeared, indicating that the input sections
have been properly mapped into memory.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 8 of 10

ANALOG
DEVICES

Expert Linker - MP TS101.1df

Input Sections: temaory Map:
1 MEM_ARGV Segment/Section Start Add... End Addr._..
bsz ERI MOCode 0x0 Oxffff
bsz_init =3 code 0x0 0x53
=L data? -1 1D0.doj (program) 0x0 Ox4b
dll $0BJECTS =% M1Data 0x80000 Oxaffff
= dll $0BJECTS_PO =3 dataT 0x80000 0xB80071f
= dll $OBJECTS_P1 ID0.doj (data1) 0x80000 0Ox8001f
® |D0.doj O bsz_init N/A NIA
@ ID1.doj O bsz N/A N/A
=0 data2 0 MEM_ARGV N/A NIA
dll $0BJECTS 8 meminit 0x80020 Oxaffff
= 4l $OBJECTS_PO =& M2Data 0x100000 Ox1Offff
& dll $OBJECTS_P1 =3 data2 0x100000 0x10000f
¥ |D0.doj ID0.doj (data2) 0x100000 0x10000f
@ |D1.doj # SDRAM 0x4000000 OXZFfffff
=0 ext_data * MS0 0x8000000 Oxbffffff
= dll $OBJECTS_SM R MG 0xc000000 Oxffffif
® data.doj @ HOST 0x100000... Ox2fffffff
= L1 program # HOST1 0x300000... Ox4fffffff
all $0BJECTS @ HOST2 0X500000... Ox6fffffff
= dll $OBJECTS_PO @ HOST3 0x700000... Ox8fffffff
=il $OBJECTS_P1 # HOST4 0x900000... Oxafffffff
¥ |D0.doj # HOSTS 0xb00000... Oxcfffffff
¢ |D1.doj @ HOST6 0xd00000... Oxefffffff
 HOST7 0xf0000000 OXFFFFF

T Om [OF COMMAND_LINE_OUTPUT_DIRECTORYshared.sm
Bro |[Dr: R

Figure 16. Expert Linker Multiprocessor LDF

Also, note that the LDF macros that were moved
from the Input Sections window (left pane) to
their corresponding sections in the Memory Map
window (right pane) have been automatically
replaced during linking process with the actual
object files (.doj) used by the linker.

Expert Linker
LDF Source Code
The LDF is now complete! Figure 17 illustrates

the generated LDF in the Source Code View
mode.

Multiprocessor

As shown in Figure 17, the multiprocessor linker
commands, MPMEMORY, SHARED MEMORY and L INK
AGAINST, as well as the corresponding LDF
Macros, have been successfully generated by the
Expert Linker in a way absolutely transparent to
the user.

The complete project is now ready to be built.
Once again, perform a Rebuild All and safely
start debugging with the application code.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 9 of 10

ANALOG
DEVICES

B mP TS101.1df

~7 Bimplified version for editing purposes
ARCHITECTURE (ADSP-T5101)

Libraries from the command line are included in COMMAND_ LINE OBJECTS.
SOBJECTS =
SOBJECTS_SM = data.doj:
SOBJECTE_F1 = ID1l.doj:
SOBJECTS_PO = IDO.doj:

[...]

MEMEMORY {
PO { START(0x2000000) }
P1 { STAERT(0xz2400000) }

i
PROCESSOR PO{ LINK_AGAINST (SCOMMAND_LINE_OUTEUT_DIRECTORYSP1.dze, SCOMMAND_LINE_OUTEUT_DIRECTORY\shared.sm)
OUTPUT(SCOMMAND_LINE_OUTPUT DIRECTORY-PO.dxe)
SECTIONS{
code{ FILL{Ozk3c00000)
INPUT_SECTION ALIGH (4)
INPUT_SECTIONS (SOBJECTS (progrem) — SOBJECTS_PO(program))

.= .+ 8
1 >MOCode
datal{ INPUT_SECTIONS(SOBJECT=Z(datal) SOBJECTS_FO(datal))
} *MlData
data2{ INPUT_SECTIONS(SOBJECTS(data) SOBJECTS_PO(datal))

} >M2Data 13
PROCESSOR P1{ LINK_AGAINST (SCOMMAND_LINE_OUTPUT_DIRECTORY-PO.dze, SCOMMAND_LIME_OUTEUT_DIRECTORY“shared.sm)
OUTPUT (SCOMMAND_LINE_OUTPUT_DIRECTORY“P1.dze)
SECTIONS{
code{ FILL{Ozk3c00000)
INPUT_SECTION ALIGH (4)
INPUT_SECTIONS (SOBJECTS_P1(program) SOBJECTS (program))

O -

1rMOCode
datal{ INPUT_SECTIONS (SOBJECTS_Pl(datal) SOBJECTS(datal))
}:M1Data
dataz{ INPUT_SECTIONS (SOBJECTS_P1l(data2) SOBJECTZ(dataz))
1xM2Data

SHARED MEMORY { OUTPUT (SCOMMAND LINE OUTPUT_DIRECTORY“shared.sm)

SECTIONS]

SDREM{ INPUT_SECTIONS (SOBJECTS_SM(ext_data))
1>5DRAM 1

I

< | >

Figure 17. Expert Linker Multiprocessor LDF Source code

References

[1] ADSP-TS101 TigerSHARC Processor Hardware Reference. Rev.1.1, May 2004. Analog Devices, Inc.

[2] VisualDSP++ 4.0 Linker and Utilities Manual. Rev. 1.0, January 2005. Analog Devices, Inc.

[3] Understanding and Using Linker Description Files (LDFs) (EE-69). August 1999. Analog Devices, Inc.

[4] Introduction to TigerSHARC Multiprocessor Systems Using VisualDSP++ (EE-167). April 2003. Analog Devices, Inc.

Document History

Version Description

Rev 3 — May 09, 2005 Updated for VisualDSP++ for TigerSHARC Processors Release 4.0.
by Maikel Kokaly-Bannourah

Rev 2 — September 10, 2004 Updated for VisualDSP++ 3.5 for TigerSHARC Processors.
by Maikel Kokaly-Bannourah

Rev 1 —July 17, 2003 Initial Release.
by Maikel Kokaly-Bannourah

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 10 of 10

	Introduction
	Expert Linker Overview
	Expert Linker LDF Wizard
	Project type
	Selecting an MP LDF
	Determining the Number of Processors and MP Memory Offset Va
	Linking Processors Executables
	MP LDF Wizard Completion

	Expert Linker Window
	Adding Shared Memory Segments
	Detection of Non-Linked Input Sections
	Linking Object Files
	Expert Linker Multiprocessor LDF Source Code
	References
	Document History

