
Engineer-to-Engineer Note EE-231

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

In-Circuit Programming of an SPI Flash with SHARC® Processors
Contributed by Brian M. Rev 2 – August 22, 2007

Copyright 2004-2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
ADSP-2126x, ADSP-2136x, and ADSP-2137x
SHARC® processors are able to boot from SPI
flash devices, providing a cheap booting
alternative to parallel flash, SPI EEPROM, or
host processor schemes.

Hereafter, this document collectively
refers to ADSP-2126x, ADSP-2136x,
and ADSP-2137x processors as SHARC
processors.

Note that earlier SHARC processors,
(ADSP-2106x and ADSP-2116x),
do not support booting from SPI flash
devices.

Since the details of the general booting process
are discussed in the System Design chapter of the
SHARC Processor Hardware Reference Manuals
[2][4][5], this EE-Note describes how to program
the desired code or data into the SPI flash in-
circuit using an STMicroelectronics M25P20
serial flash memory. Example code to implement
in-circuit programming for ADSP-21262 and
ADSP-21364 processors is provided in the
associated .ZIP file.

Default SPI Settings
The default SHARC SPI settings do not match
those supported by most SPI flash devices. Two
issues arise when interfacing an SPI memory
device to these processors: word transfer order
and SPI mode.

By default, SHARC processors transfer words in
least significant bit first (LSBF) format, yet most
SPI memory devices transfer in most significant
bit first (MSBF) format. In most applications,
this will not be a problem because the SPI of the
processor can be set up to transfer in MSBF
format. However, while booting, the word format
setting cannot be changed. Therefore, it is
necessary to program boot data into the SPI
memory device in a bit-reversed manner for
devices that support MSBF format only.

There are two ways to transfer bit-reversed
words to the flash. The loader utility included
with the VisualDSP++® development tools has
an option to automatically bit-reverse the boot
data. The SPI Master and SPI PROM loader
options use this format. This format should be
used only when the SPI memory will be
programmed by a dedicated memory
programmer (such as those used to program an
SPI EEPROM).

Alternatively, it is possible to communicate with
the SPI flash in an LSBF format, while bit
reversing the commands to look like they are in
MSBF format. For debugging purposes, this
format is much easier to read, since it matches
the format shown in VisualDSP++ memory
windows. This is the method used in this
example.

The other issue is much more problematic, but
does not apply to the ST M25P20 SPI flash used
in this example. By default, SHARC processors
use SPI mode 3 (the SPI clock toggles at the start

 a

In-Circuit Programming of an SPI Flash with SHARC® Processors (EE-231) Page 2 of 6

of the first data bit, and the SPI clock is active-
low). Some SPI memory devices support SPI
mode 0 only, or provide only partial mode 3
support. If the device does not support SPI
mode 3, the part cannot boot these SHARC
processors.

If partial support for SPI mode 3 is available (as
in the Atmel AT25F512 serial flash memory
found on ADSP-2126x, ADSP-2136x, and
ADSP-2137x EZ-KIT Lite® development
boards), a workaround may be available. For the
Atmel part mentioned above, reading from the
flash in SPI mode 3 works correctly, but
programming to the flash exhibits a bit error on
the last word of each page if a certain pattern
exists in the previous word. This can be
addressed in two ways. The easiest way to avoid
this problem is to append a final (8- or 32-bit)
word, each bit existing entirely of 1s (0xFF or
0xFFFFFFFF). If this final word wraps around to
the beginning of the page, it will not overwrite
what was previously programmed there, nor does
it waste that word, since the flash cannot
overwrite bits that are set to 1 without an erase
command. This method is used by the
VisualDSP++ Flash Programmer utility. The
alternate method presented herein avoids using
problematic words. Since the SPI flash is
programmed on a page-by-page basis, it is
possible to shift the position of the starting word
to ensure that the offending bit pattern will not
be matched. For an example of how to
accomplish this, refer to the Atmel SPI Flash
Programmer code included with the ADSP-
2126x, ADSP-2136x, and ADSP-2137x EZ-KIT
Lite installation.

SPI Interface and Status Bits
Each SPI consist of a dedicated
Transmit/Receive Shift register and
Transmit/Receive Buffer register. Data to be
transmitted is written into TXSPIx (Buffer
register) and then automatically transferred into
the TXSRx (Shift register). Once a full data word

is received in the RXSRx register, the data is
automatically transferred into the RXSPIx
register, from which the data is read. Data
transfer to/from internal memory can be done
either through core transfer or DMA transfer.
During core transfer, a single word is written into
the TXSPIx register and a single word is received
from the RXSPIx register. But while using DMA,
there is a four-word deep DMA FIFO that the
SPI ports use to improve the data throughput, in
addition to the TXSPIx and RXSPIx data buffers.
During transmit, the FIFO is not available for
receive path and vice-versa. When performing
transmit DMA transfers, data moves through the
DMA FIFO, then into the TXSPIx buffers, and
finally into the shift register. DMA interrupts are
latched when the I/O processor moves the last
word from memory to the peripheral. For the
SPI, this means that the SPI “DMA complete”
interrupt is latched when there are still six words
yet to be fully transmitted (four in the FIFO, one
in the TXSPIx buffers, and one being shifted out
of the shift register).

Figure 1. Status bits that must be checked at each
stage

While performing a transfer, it is important to
poll the appropriate status bits to ensure that all
valid data has been transferred completely.
Figure 1, denotes the different bits that need to
be checked at different stages of transfer. Some
of the important bits have been described next.

 a

In-Circuit Programming of an SPI Flash with SHARC® Processors (EE-231) Page 3 of 6

 SPIDMAS – This bit is set during a DMA
transfer to/from the FIFO and cleared after
the transfer is complete.

 TXS - This bit is set when the TXSPIx register
is full and is cleared when empty (completed
transferring a word to TXSRx register).

 RXS – This bit is set when the RXSPIx register
is full and is cleared when empty (completed
transferring a word to internal memory for
code transfer or the FIFO for DMA transfer).

 SPIF – This bit is set when a single word has
been shifted out of a TXSRx or RXSRx register.

 SPIFE – This bit is available only in ADSP-
2136x and ADSP-2137x processors. This bit
indicates that all SPI-related operations have
been completed at the external SPI interface.

It is important to follow the right order while
configuring the SPI for transmit and receive and
while checking the status bits. Refer to [2][4][5] for
details on how to configure the SPI.

Flash Programmer Functions
An SPI flash operates by receiving commands
from the Master Out Slave In (MOSI) line, and
returning any response on the Master In Slave
Out (MISO) line. The FLAG0 pin is used as chip
select for the SPI flash device. The following is
a brief discussion of the commands implemented
in the associated example code.

Write Enable (0x06)

This function enables modification to the status
register settings or contents of the flash. Since no
address or additional data is required, this
command is sent directly by the core as a 1-byte,
MSBF word.

The Write Enable function is called
automatically by each function that requires the
Write Enable Latch bit in the flash’s status
register to be set to function properly. These
functions are the Write Status Register, Page

Program, and Erase (Bulk and Sector)
commands.

Write Disable (0x04)

This function disables modification of the status
register settings or the contents of the flash after
the Write Enable command has already been
registered. Since no address or additional data is
required, this command is sent directly by the
core as a 1-byte, MSBF word.

Read Status Register (0x05)

This function fetches the value of the byte-wide
status register. It is implemented as a 2-word
DMA using a 1-byte MSBF word.

The first returned byte, which corresponds to the
command sent from the processor, can be
ignored. The second returned byte contains the
value of the status register placed in the lowest
byte of the destination.

Write Status Register (0x01)

This function writes to the byte-wide status
register. It is implemented as a 2-word DMA
using a 1-byte MSBF word. The first byte sent is
the command from the processor, and second
byte is the desired value of the status register.

The Write Enable command must be sent before
using this command. Before calling this function,
place the desired value of the status register in
the second location of the status register buffer.
This is the same location that returns the value of
the status register in the Read Status Register
function. The first location in this buffer is
reserved for the command being sent to the
device.

Read Data Bytes (0x03)

This function reads any number of words from
the flash. The destination address in the
processor’s internal memory, the source address
in the flash, and the number of 32-bit words to be
read are passed to the function using the

 a

In-Circuit Programming of an SPI Flash with SHARC® Processors (EE-231) Page 4 of 6

dedicated memory locations. It is implemented
as an N-word DMA using 32-bit LSBF words,
where N is the number of words passed to the
function. The first word in the destination buffer
will be garbage corresponding to the 1-byte
command plus 3-byte address that must precede
the data (one 32-bit word).

Page Program (0x02)

This function complements the Read function.
The destination address in the flash, source
address in the internal memory of the processor,
and number of 32-bit words are passed to this
function using the dedicated memory locations.

The flash requires that it be programmed one
page at a time. Before being sent to the flash, the
buffer referenced in the call is transferred into a
temporary buffer corresponding to the page size.

After each page has been sent, the lowest bit in
the flash’s status register, write-in-progress
(WIP), is tested in a loop to determine when the
flash has finished programming the new data into
memory.

The function included in this example also
verifies each page after completing the write by
calling the Read Data Bytes function and
comparing the result of the call to what was sent.
The number of 32-bit words that do not match is
tracked.

Because this example programs the flash for
booting, this requires LSBF format, both the
Read Data Bytes command and the Page
Program command use LSBF format. Therefore,
both the command and address must be bit-
reversed before transfer so that the flash receives
them in MSBF format. (This is accomplished
using the BITREV instruction [3].)

Sector Erase (0xD8)

This function erases one sector of the flash
according to the memory layout in the SPI
flash’s data sheet. An address in the sector to be
erased is passed to the function with the call.

This command uses a 1-byte command and 3-
byte address, comprising one 32-bit word. Since
the Page Program and Read Data Bytes function
use a function that joins the command and
address into a single 32-bit word, the Sector
Erase command is sent in LSBF format. After
sending the command, the status register is
polled until the WIP bit is clear.

Bulk Erase (0xC7)

This function erases the entire flash. No address
is passed to this function. Therefore, the function
is implemented as a 1-byte command sent in
MSBF format. After sending the command, the
status register is polled until the WIP bit is clear.

Deep Powerdown (0xB9)

This function puts the flash into a low-power
state. Since no address or additional data is
required, this command is sent directly by the
core as a 1-byte, MSBF word.

Deep Powerdown Release/Electronic Signature
(0xAB)

This function returns the flash from the low-
power state. It is also used when the flash is not
in the low-power state to retrieve the electronic
signature of the part. It is implemented as a 5-
word DMA using a 1-byte MSBF word. The first
byte, which corresponds to the command from
the processor, can be ignored. The middle three
bytes, which are garbage returned by the flash,
can also be ignored. The final byte contains the
value of the status register placed in the lowest
byte of the destination. For the M25P20, the
lowest byte is 0x13.

 a

In-Circuit Programming of an SPI Flash with SHARC® Processors (EE-231) Page 5 of 6

Generating the Loader File
To generate a loader file compatible with this
example, it is necessary to use SPI Slave format.
Though it may seem logical to use SPI PROM
format, SPI PROM format produces an image
that is bit-reversed. In addition, an SPI PROM
only uses a 16-bit address; thus, an extra byte is
pre-pended to the image to make the boot stream
compatible with the processor. For details, refer
to the booting section in the SHARC Processor
Hardware Reference Manuals [2][4][5].

Considerations for Different
Processors
Be aware of the following considerations.

 Status Bit Availability – As mentioned
earlier, SPIFE is an additional bit that is
available for ADSP-2136x and ADSP-2137x
processors in the SPISTAT register. This bit is
set to 1 when the last bit of the last word has
been shifted out from the external SPI
Interface.

 Note that once a command/instruction is sent
to the SPI flash device, a certain amount of
time must pass for the SPI flash to be

available for further use. To know the exact
values, refer to the STMicroelectronics
M25P20 Serial Flash Memory Datasheet [7].
The processor must wait for that many cycles
before sending out another instruction. The
number of cycles for the delay must be
calculated according to the core clock of the
processor. For example, it takes 5 ms for the
part to be available after Page Program [7];
therefore, ADSP-2126x processors with a
200 MHz core clock (i.e., 3 ns) must wait for
1.66 x 106 cycles. The same delay routine
may be modified for other processors,
according to the core clock operated.

Conclusion
This document discusses the bits that are vital in
ensuring reliable transfer of data between
SHARC processors and the SPI Flash and also
discusses the different instructions available in
the SPI flash. Each function included in the
example is described. To compare this project to
a similar example, refer to the Atmel SPI Flash
Programmer included with the ADSP-2126x,
ADSP-2136x, and ADSP-2137x EZ-KIT Lite
installation for the VisualDSP++ development
tools.

 a

In-Circuit Programming of an SPI Flash with SHARC® Processors (EE-231) Page 6 of 6

References
[1] ADSP-2126x SHARC DSP Core Manual. Rev 2.0, February 2004. Analog Devices, Inc.

[2] ADSP-2126x SHARC Processor Peripherals Manual. Rev 3.0, December 2005. Analog Devices, Inc.

[3] ADSP-2136x SHARC Processor Programming Reference. Rev 1.0, March 2007. Analog Devices, Inc.

[4] ADSP-2136x SHARC Processor Hardware Reference. Rev 1.0, October 2005. Analog Devices, Inc.

[5] ADSP-21368 SHARC Processor Hardware Reference. Rev 1.0, September 2006. Analog Devices, Inc.

[6] VisualDSP++ 4.5 Loader and Utilities Manual. Rev 1.0, April 2006. Analog Devices, Inc.

[7] M25P20 Serial Flash Memory Datasheet. Rev 10, June 2006. STMicroelectronics, Inc.

Document History

Revision Description

Rev 2 – August 22,2007
by Deepa Venkataraman

Made the EE-Note generic for ADSP-2126x, ADSP-2136x, and ADSP-2137x
SHARC processors, and updated document title accordingly.

Rev 1 – March 02, 2004
by Brian M.

Initial Release.

http://www.analog.com/UploadedFiles/Associated_Docs/624414032755326387ADSP_2126x_HRM.pdf

	Introduction
	Default SPI Settings
	SPI Interface and Status Bits
	Flash Programmer Functions
	Write Enable (0x06)
	Write Disable (0x04)
	Read Status Register (0x05)
	Write Status Register (0x01)
	Read Data Bytes (0x03)
	Page Program (0x02)
	Sector Erase (0xD8)
	Bulk Erase (0xC7)
	Deep Powerdown (0xB9)
	Deep Powerdown Release/Electronic Signature (0xAB)

	Generating the Loader File
	Considerations for Different Processors
	Conclusion
	References
	Document History

