
Application Note 168

AN168-1

an168f

January 2018

Table 1. Telemetry Modes
COMMANDED VALUE TELEMETRY SELECTED

0x0E – 0xFF Reserved

0x0D ADC Short Round-Robin

0x0C Channel 1 External Temperature

0x0B Reserved

0x0A Channel 1 IOUT

0x09 Channel 1 VOUT

0x08 Channel 0 External Temperature

0x07 Reserved

0x06 Channel 0 IOUT

0x05 Channel 0 VOUT

0x04 Internal IC Temperature

0x03 Reserved

0x02 Reserved

0x01 VIN

0x00 Standard ADC Round-Robin Telemetry

Value 0x00 behaves exactly the same as first-generation
devices. The value 0x0D enables a round-robin function
that includes four measurements (VOUT0, IOUT0, VOUT1,
IOUT1). The remaining values enable a single measurement.

The MFR_ADC_CONTROL is not stored in EEPROM, so
firmware must send the selection to the device to enable
a mode other than the default of round-robin (0x00). It
is recommended that controllers run in round-robin ADC
mode most of the time to assure that ADC-enabled faults
such as temperature and VIN_OV are operational.

INTRODUCTION

The second-generation Power System Management (PSM)
Controllers, such as the LTC®3887, introduce new features
for fast telemetry1. Fast telemetry allows firmware to focus
on a single measurement, or a fixed set of common voltage/
current measurements to improve telemetry bandwidth
up to 16 times. Two new commands allow control of the
telemetry multiplexer (MFR_ADC_CONTROL) and time
alignment (MFR_ADC_TELEMETRY_STATUS). The mul-
tiplexer can be set to a single or smaller set of measure-
ments, and the status enables polling for a “measurement
complete”. When combined, not only is the throughput
improved, but there are no duplicate measurements: all
obtained values are unique ADC measurements.

FIRST-GENERATION ADC MULTIPLEXER

The LTC38XX family prior to the LTC3887 (LTC3880 and
LTC3883) uses a multiplexer and a round-robin approach
to measurements. Measurements are always made in the
same order, with a total loop time of approximately 100ms.

From a firmware perspective, any given measurement is
updated once each 100ms, and there is no way to know
how “fresh” the current returned value is. Any given mea-
surement could be up to 100ms old, and sampling faster
than every 100ms just returns the same data.

SECOND-GENERATION ADC MULTIPLEXER AND STATUS

The LTC3887 and newer devices upgraded the
round-robin approach with behavioral choices. The
MFR_ADC_CONTROL command selects 1 of 10 telem-
etry modes, or selections as shown in Table 1.

Note 1. LTC3884, LTC3886, LTC3887, LTM®4676A, LTM4675, LTM4677
all support fast telemetry.

Implementing Fast Telemetry with Power System
Management Controllers
Michael Jones

All registered trademarks and trademarks are the property of their respective owners.

http://www.linear.com/LTC3887

Application Note 168

AN168-2

an168f

The second-generation devices also add measurement
status capability that enables polling for a change in
measurement value. Table 2 shows that there are status
bits for the four critical measurements using command
MFR_ADC_TELEMETRY_STATUS. Each bit transitions
from 0 to 1 immediately after the corresponding measure-
ment is performed. Writing a one to a bit clears it.
Table 2. Telemetry Status

BIT TELEMETRY DATA AVAILABLE

7 Reserved Returns 0

6 Reserved Returns 0

5 Reserved Returns 0

4 Reserved Returns 0

3 Channel 1 IOUT Readback (IOUT1)

2 Channel 1 VOUT Readback (VOUT1)

3 Channel 0 IOUT Readback (IOUT0)

1 Channel 0 VOUT Readback (VOUT0)

When switching from 0x0D, short telemetry loop, to another
mode, the firmware must first switch to 0x00, round-robin,
for at least 120ms, before switching to the new mode, to
ensure well behaved status. Switching between all other
modes does not require switching to 0x00 first.

IMPACT ON SUPERVISION AND VOLTAGE SERVO

First-generation devices rely on the multiplexer and ADC
for three non-telemetry functions: temperature supervision,
VIN overvoltage supervision and voltage servo.

Temperature changes slowly in a system: typical latency
in a PSM controller ADC is sufficiently small that tempera-
ture supervision is easily managed with the ADC. VIN also
moves slowly in most PSM applications allowing the ADC
to adequately supervise the input voltage.

All PSM controllers rely on the ADC to achieve 0.5% total
DC accuracy. The second-generation devices can only
provide this feature for multiplexer selection 0x00.

In both cases, the only way to ensure that all temperature
and VIN supervision and all VOUT accuracies are achieved is
to use multiplexer selection 0x00, or to design firmware to
ensure that selection 0x00 is periodically enabled for long
enough time to allow the ADC to make the measurements
required. This means selecting 0x00 for at least 120ms to
allow a full round-robin telemetry loop. The time between
selections that interfere with these measurements will
determine the response time of the feature.

FIRMWARE DESIGN

Second-generation application firmware can be evaluated
using Linduino® PSM and a demo board.

The Linduino PSM API contains an SMBus and PMBus
interface to the LTC38XX, LTM46XX and LTC29XX families.

The best place to start is to look at code for selection
0x0D, the short loop. We will use LTC3887 for the fol-
lowing discussion.

BACKWARDS COMPATIBILITY

If the new commands are not used, the second-
generation devices behave like the first-generation
devices and no firmware changes are required.

Application Note 168

AN168-3

an168f

Code Listing 1 Shows a Short Telemetry Loop. Line 1 puts
the LTC3887 into the “ADC Short Round-Robin” mode
using value 0x0D, and command MFR_ADC_CONTROL.
This command is an SMBus Write Byte.

Line 2 clears the status using value 0x0F and command
MFR_ADC_TELEMETRY_STATUS.

At this point, the code can monitor the status register using
polling until it notices a change to VOUT0. Line 6 sets the
PAGE to 0, corresponding to VOUT0. Line 7 enters a polling
loop on bit one. When this loop completes, it indicates
that VOUT0 was just measured. Line 9 reads the value of
VOUT0 and stores it in an array.

The short telemetry loop measures in this order: VOUT0,
IOUT0, VOUT1, IOUT1.

The following lines loop on the status of each of these
measurements. At the end, on line 30, the MFR_ADC_
TELEMETRY_STATUS is cleared in preparation for the
loop to wrap around and continue.

When all loops are complete, line 32 sets the telemetry
back to the standard mode, and line 33 delays 120ms to
ensure there is at least one full round-robin, thus allowing
the temperature supervisor and voltage servo to update.

Other code in this listing measures the time between
measurements.

Table 3 shows the results. On the first line, notice the time
value of 33296µs. When the telemetry mode is changed to
the short round-robin, the current measurement in progress
must complete before the first short round-robin measure-
ment can be made. Therefore, this number represents a
latency of getting into the short round-robin mode.

The times between telemetry loops are approximately
28ms, a 3× to 4× improvement over the older generation.
The time measurement resolution will be the time it takes
to query the PMBus for the status, which depends on the
clock rate of the PMBus master.

Table 3.
∆t VOUT0 ∆t IOUT0 ∆t VOUT1 ∆t IOUT0

33296µs 5.00 6704µs 0.21 5816µs 2.00 6812µs 0.08

6164µs 5.00 6712µs 0.21 6268µs 2.00 6808µs 0.08

6156µs 5.00 6704µs 0.21 6264µs 2.00 6808µs 0.08

6164µs 5.00 6712µs 0.21 6256µs 2.00 6372µs 0.08

6156µs 5.00 6712µs 0.20 6268µs 2.00 6808µs 0.09

6156µs 5.00 6708µs 0.21 6260µs 2.00 6808µs 0.08

6164µs 5.00 6700µs 0.21 6264µs 2.00 6812µs 0.08

6164µs 5.00 6712µs 0.21 5824µs 2.00 6808µs 0.08

6156µs 5.00 6704µs 0.21 6264µs 2.00 6804µs 0.09

6168µs 5.00 6700µs 0.21 6264µs 2.00 6820µs 0.08

Application Note 168

AN168-4

an168f

Listing 1: Short Loop

 1 smbus->writeByte(ltc3880_i2c_address, MFR_ADC_CONTROL, 0x0D); // Fast
 2 smbus->writeByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS, 0x0F); // Clear status
 3 start_time = micros();
 4 for (i = 0; i < NUM_MEAS; i++)
 5 {
 6 pmbus->setPage(ltc3880_i2c_address, 0);
 7 while ((smbus->readByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS) & 0x01) == 0);
 8 current_time = micros();
 9 voltage0[i] = pmbus->readVout(ltc3880_i2c_address, false);
10 voltage0_time[i] = current_time > start_time ? current_time - start_time :
 max_time - start_time + current_time;
11 start_time = current_time;
12 smbus->writeByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS, 0x0E); // Clear remain-
ing status
13 while ((smbus->readByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS) & 0x02) == 0);
14 current_time = micros();
15 current0[i] = pmbus->readIout(ltc3880_i2c_address, false);
16 current0_time[i] = current_time > start_time ? current_time - start_time :
 max_time - start_time + current_time;
17 start_time = current_time;
18 pmbus->setPage(ltc3880_i2c_address, 1);
19 while ((smbus->readByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS) & 0x04) == 0);
20 current_time = micros();
21 voltage1[i] = pmbus->readVout(ltc3880_i2c_address, false);
22 voltage1_time[i] = current_time > start_time ? current_time - start_time :
 max_time - start_time + current_time;
23 start_time = current_time;
24 while ((smbus->readByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS) & 0x08) == 0);
25 current_time = micros();
26 current1[i] = pmbus->readIout(ltc3880_i2c_address, false);
27 current1_time[i] = current_time > start_time ? current_time - start_time :
 max_time - start_time + current_time;
28 start_time = current_time;
29
30 smbus->writeByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS, 0x0F); // Clear status
31 }
32 smbus->writeByte(ltc3880_i2c_address, MFR_ADC_CONTROL, 0x00); // Standard
33 delay(120);

Listing 2: Single Measurement

 1 smbus->writeByte(ltc3880_i2c_address, MFR_ADC_CONTROL, 0x06); // Iout0
 2 pmbus->setPage(ltc3880_i2c_address, 0);
 3
 4 smbus->writeByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS, 0x0F); // Clear status
 5 start_time = micros();
 6 for (i = 0; i < NUM_MEAS; i++)
 7 {
 8 while ((smbus->readByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS) & 0x02) == 0);
 9 current_time = micros();
10 current0[i] = pmbus->readIout(ltc3880_i2c_address, false);
11 current0_time[i] = current_time > start_time ? current_time - start_time :
 max_time - start_time + current_time;
12 start_time = current_time;
13 smbus->writeByte(ltc3880_i2c_address, ADC_MFR_TELEMETRY_STATUS, 0x0F);
14 }
15 smbus->writeByte(ltc3880_i2c_address, MFR_ADC_CONTROL, 0x00); // Standard
16 delay(120);

Application Note 168

AN168-5

an168f

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

To get another 4× improvement, firmware can concentrate
on a single measurement. Listing 2 demonstrates a fast
measurement of output current. Table 4 shows the results.
Table 4

∆t IOUT0

7564µs 0.21

6704µs 0.21

6264µs 0.21

6272µs 0.20

6268µs 0.21

6272µs 0.21

6700µs 0.21

6264µs 0.21

6260µs 0.21

6268µs 0.21

Notice the initial delay of 7564µs. This is the same variable
delay as the short round-robin mode. The delay between
measurements is 6.2ms, an improvement of 16×!

HOW TO SOLVE PROBLEMS WITH FAST TELEMETRY

The most typical usages of fast telemetry are char-
acterization and system debugging. During system
characterization, systems engineers want an accurate
record of voltage and current along with other system
measurements such as computational load.

During debug, occasionally a system has a start-up issue
or other complex interaction and fast telemetry can gather
more data.

In the above cases, the firmware, or even an external
USB-based PMBus master, may keep the device in short
loop mode and neglect the temperature and servo. This
might be OK during debug, but is dangerous during sys-
tem deployment. For deployment, temperature and VIN
measurements protect the design, and output voltage
measurements ensure 0.5% accuracy.

HANDLING MULTIPLE DEVICES

If data from more than one device is required in fast mode,
the firmware or external controller will have to interleave
polling of all devices of concern. However, it is possible
to use a timer to learn the time delays between different
devices and poll them just before the expected measure-
ment. This will make the timing of the measurements a
little more deterministic, and in multi threaded applications,
allow the microcontroller to service other tasks.

SUMMARY

The second-generation Power System Management
Controllers have new telemetry features that allow up
to 16× improvement in throughput. By focusing the
multiplexer and ADC on a smaller set of measurements,
the telemetry loop runs faster. Polling allows firmware
or an external PMBus master to determine the time that
the ADC makes a measurement assuring captured data
has no duplicate values. Most sophisticated polling can
capture data from multiple devices in a time-correlated
fashion. A little care must be used if fast telemetry is
used on production units so that the temperature VIN
supervisors and voltage servos have adequate time to
protect the system and ensure its accuracy.

Application Note 168

AN168-6

an168f

LT 0118 • PRINTED IN USA

 ANALOG DEVICES, INC. 2018

