
AN-798
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/461-3113 • www.analog.com

INTRODUCTION
The ADuC702x family integrates a 32-bit ARM7TDMI
microcontroller and high precision analog blocks.
Depending on the model, up to four 12-bit DACs are
available. In some applications where more analog
output is required, the PWM can also be used as a low
resolution DAC. This application note describes how to
generate an extra analog output from a PWM.

THEORY
A typical PWM signal is shown in Figure 1. The base fre-
quency (or switching frequency) is fixed and the pulse
width (duty cycle) is variable.

��������
���� �����

����� ����������

Figure 1. Typical PWM Waveform

The pulse width is proportional to the amplitude of
the signal, while the frequency of the waveform is
constant.

PWM BLOCK ON THE ADuC702x
The PWM block on the ADuC702x consists of three PWM
channels. These three PWMs have a common switch-
ing frequency programmable between 343.99 Hz and
11.27 MHz in the PWMDAT0 register.

The switching frequency (fPWM) is calculated as follows:

 fPWM = fCORE/(2 PWMDAT0)

The switching frequency is set to 5.5 kHz, or PWMDAT0 =
0x1000. This results in a sine wave at 86 Hz (64 samples
per sine wave).

The duty cycle of each channel is independent, there-
fore the three phases can be used as three independent
PWMs. In this application note, one channel of the PWM
block, Channel 0, is discussed.

Each PWM channel has two outputs: a high side and
a low side. The duty cycle is programmable from 50%
to 100% on the high side and 50% to 0% on the low

Using the PWM to Generate Analog Output on the ADuC702x Family
by Aude Richard

side. The duty cycle of Channel 0 is programmed via
the PWMCH0 register. It can be modified at each PWM
period, during a synchronization interrupt.

In the following example, a sine wave will be generated
using the PWM0H output on P3.0. On the high side out-
put, the duty cycle is only programmable between 50%
and 100%, but using the crossover option (in PWMEN
MMR) allows switching internally between 0L and 0H
resulting in a duty cycle between 0 and 50%.

����������

��

��

�������

������

������ ���

����������� ���������� �

������� �������

������

� � �������

������� ��

� � �������

Figure 2. Single Update Mode Timing

The formulas to calculate the value in the PWMA register
are as follows:

On the high side:

 T0HH = PWMDAT0 + 2(PWMCH0 – PWMDAT1) tCORE

 T0HL = PWMDAT0 – 2(PWMCH0 – PWMDAT1) tCORE

 Or dOH = 1/2 + (PWMCH0 – PWMDAT1) / PWMDAT0

Considering no dead time is being used:

 PWMCH0 = (dOH – 1/2) PWMDAT0

On the low side:

 T0LH = PWMDAT0 – 2(PWMCH0 + PWMDAT1) tCORE

 T0LL = PWMDAT0 + 2(PWMCH0 + PWMDAT1) tCORE

 Or dOL = 1/2 – (PWMCH0 + PWMDAT1) / PWMDAT0

Considering no dead time is being used:

 PWMCH0 = (1/2 – dOL) x PWMDAT0

REV. 0

http://www.analog.com

–2–

AN-798

–3–

AN-798

HARDWARE CONSIDERATION
Conversion of PWM waveforms to analog signal requires
a low-pass filter, as shown in Figure 3.

��������

���� ��������
������

Figure 3. External Filter

For an ac signal, a simple 2-pole stacked RC filter can be
used to reconstruct the sine wave. Since the switching
frequency in this example is 5.5 kHz and the sine wave
required is 86 Hz, the cut of frequency of the filter should
be around 550 Hz, 10 times less than the switching fre-
quency of the PWM, but far enough from the bandwidth
edge to reduce the amount of attenuation.

The cutoff frequency of the filter can be calculated as
follows:

FC = 1/2RC

For the first filter, R = 2 k and C = 0.2 F; for the second
filter, R = 1 M and C = 200 pF.

If a dc level is required instead of an ac signal output,
this can be generated by using a low-pass filter. An
external capacitance is necessary to hold the value. A
330 k resistor and a 0.047 F capacitance gives a cut-
off frequency of 10 Hz. The switching frequency used is
5.5 kHz.

SOFTWARE
The range of the PWMCH0 register is [0;PWMDAT/2] and
0 corresponds to 50%. Table I shows the correspondence
between register contents and duty cycle.

Table I. MMR Contents and Duty Cycle Value

 High Side Low Side

PWMA Duty Cycle PWMA Duty Cycle

0 50% 0 50%
PWMDAT0/2 100% PWMDAT/2 0%

DC VOLTAGE
With the filter on the output, a small attenuation is given.
For a 50% duty cycle, 1.25 V is measured. So to output
500 mV, a 20% duty cycle needs to be programmed. The
formula for duty cycle less than 50% is

PWMCH0 = PWMDAT0 (1/2 – dOH)

To obtain 500 mV output, PWMCH0 = 0x999 with
PWMDAT0 = 0x2000.

SINE WAVE
The sine wave values are stored in an array. The first half
of the sine wave needs to be outputted on the high side
(50% to 100%), and the second part on the low side.

��� ����

���� ����

Figure 4. Sine Wave

In terms of algorithm this is translated as

�����

� � �

� � ���

� � ���
��� ��

���

��� ����� �� �� ����
������ �

��������� � ��������

���� ����� �� �� ����
������ �

�������� � ���������

��

Figure 5. Flow Chart

See Appendix B for relevant code.

PWM ON THE ADuC7020/ADuC7021/ADuC7022
The PWM is not available on the ADuC7020/ADuC7021/
ADuC7022 because of the restricted number of GPIO.
However, one channel can be output at a time by using
the PLA. See Appendix C for the relevant code.

REV. 0 REV. 0

–2–

AN-798

–3–

AN-798

APPENDIX A: SOFTWARE FOR DC VALUE

 GP3CON = 0x10000011; // Enable the PWM outputs to P3.0 and P3.1
 // Setup the PWM
 PWMCON = 0x0001; // 0x01 is enabled
 PWMDAT0 = 0x2000; // Period register
 PWMDAT1 = 0x00; // Dead time
 PWMDAT2 = 0xFF; // PWM pulse width
 PWMCFG = 0x00; // Chop
 PWMEN = 0x12F; // Enable low side on P3.0
 PWMA = 0x999; // Duty cycle of 20%

APPENDIX B: SOFTWARE FOR SINE WAVE GENERATION

volatile int y = 0 ;

const static unsigned short SinArray[64] = {
 0x07FF, 0x08C8, 0x098E, 0x0A51, 0x0B0F, 0x0BC4, 0x0C71, 0x0D12,
 0x0DA7, 0x0E2E, 0x0EA5, 0x0F0D, 0x0F63, 0x0FA6, 0x0FD7, 0x0FF5,
 0x0FFF, 0x0FF5, 0x0FD7, 0x0FA6, 0x0F63, 0x0F0D, 0x0EA5, 0x0E2E,
 0x0DA7, 0x0D12, 0x0C71, 0x0BC4, 0x0B0F, 0x0A51, 0x098E, 0x08C8,
 0x07FF, 0x0736, 0x0670, 0x05AD, 0x04EF, 0x043A, 0x038D, 0x02EC,
 0x0257, 0x01D0, 0x0159, 0x00F1, 0x009B, 0x0058, 0x0027, 0x0009,
 0x0000, 0x0009, 0x0027, 0x0058, 0x009B, 0x00F1, 0x0159, 0x01D0,
 0x0257, 0x02EC, 0x038D, 0x043A, 0x04EF, 0x05AD, 0x0670, 0x0736
 };

void initPWM(void){
 GP3CON = 0x10000011; // Enable the PWM outputs to the GPIO
 PWMCON = 0x0001; // 0x01 is enabled
 PWMDAT0 = 0x1000; // Period register
 PWMDAT1 = 0x00; // Dead time
 PWMDAT2 = 0xFF; // PWM pulse width
 PWMCFG = 0x00; // Chop
 PWMCH0 = 0x0000; // Channel 0
/* workaround for PWM_SYNC errata */
 PLAELM15 = 0x0035; // Configure individual elements
 PLAIRQ = 0x001F; // IRQ output configuration
 }

void Sinus_IRQ(){ // Interrupt routine
 if((IRQSIG & PLA_IRQ0_BIT)!=0){ // Interrupt PWMSYNCH Signal workaround
 if (y<32) { // high side
 PWMEN = 0x02F;
 PWMDAT0 = 0x1000;
 PWMA = SinArray[y] - 0x800;
 }
 else { // low side
 PWMEN = 0x12F;
 PWMDAT0 = 0x1000;
 PWMA = 0x800 - SinArray[y];
 }
 y++;
 if(y==64) y=0;
 }
 return ;
}

REV. 0 REV. 0

A
N

05
56

7–
0–

6/
05

(0
)

–4–
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

AN-798

int main(void) {
 initPWM();
 IRQ = Sinus_IRQ; // Specify Interrupt Service Routine
 IRQEN = PLA_IRQ0_BIT ; // Enable PWMSYNCH IRQ
 while (1){} // Wait for PWMSYNC interrupt
 }

APPENDIX C: PWM ON THE ADuC7020/ADuC7021/ADuC7022

// configuration of PLA, PWM and GPIO to output 16.384 kHz on P1.7

PWMCON = 0x1; // enables o/p of the pwm
GP3CON = 0x000000001;
PWMDAT0 = 0x055F; // PWM switching frequency of 16.384 kHz
PWMDAT1 = 0x0; // dead time is zero

// Configure Port Pins
GP1CON = 0x30000000; // If you want to drive the pwm onto
GP4CON = 0x30000000; // p1.7 you need at least element 15 as
 // it is the one feedback to Block0 Elt0

// PWM0 onto SPM7 via PLAO[0]
PLAELM0 = 0x0059; // PWM from element 15
PLAELM8 = 0x0035; // PWM input
PLAELM15 = 0x0059; // PWM from element

REV. 0

	INTRODUCTION
	THEORY
	PWM BLOCK ON THE ADuC702x
	HARDWARE CONSIDERATION
	SOFTWARE
	DC VOLTAGE
	SINE WAVE
	PWM ON THE ADuC7020/ADuC7021/ADuC7022
	APPENDIX A: SOFTWARE FOR DC VALUE
	APPENDIX B: SOFTWARE FOR SINE WAVE GENERATION
	APPENDIX C: PWM ON THE ADuC7020/ADuC7021/ADuC7022

