
Porting LTC3589 to a mx5x-family board
List of items that have to be changed when porting to a mx5x board:

● Regulator Constraints in secondary pmic board file
● CPU Working Points in secondary pmic board file
● I2C Communications bus registration in secondary pmic board file
● PMIC IRQ gpio setup in main board file
● Included headers in pmic board file
● Kernel configuration files to properly compile secondary pmic board file and include

LTC3589 driver
● Board specific resistor values in the driver.

Assumptions
The descriptions in this section refer to the task of porting the LTC3589 to another imx5x

board. There are some differences between porting to a mx53-based board, vs. another mx5x
board (such as the imx51-evk). Those differences are highlighted by sections denoting either:

○ mx53-Specific:

OR
○ mx5x-Common:.

Please read the next section on Board File Naming for further information.

The iMX53-LOCO board was picked as an example board to port the LTC3589 PMIC to.
Since the LTC3589 PMIC is not actually on the iMX53-LOCO it is assumed that the LTC3589
PMIC would be connected in a similar manner as the currently used DA9052 PMIC. Thus:

○ DA9052_BUCK_CORE -> SW1
○ DA9052_BUCK_MEM -> SW2
○ DA9052_BUCK_PERI -> SW3
○ DA9052_LD01 -> LD01_STBY
○ DA9052_LD02 -> LD02
○ DA9052_LD03 -> LD03
○ DA9052_LD04 -> LD04

Board File Naming
There are usually 2 board files that represent the mx5x family boards.
mx53-Specific:

1. In this following examples mx53_loco.c is the main board file. This file already exists
and just has to be modified to remove the reference to the previous pmic and setting up
gpio for the PMIC. This is done by deleting the mx53_loco_init_da9052() function call.

2. In this following examples mx53_loco_pmic_ltc3589.c is the secondary board file. This

file has to be created. This file will describe the Regulator Constraints, the Consumers
who may use the regulator, and it must reference the LTC3589 device driver.

mx5x-Common:
The same modifications are made as the mx53-specific above, but the naming of the files
changes.

1. mx5x_boardname.c
a. Where x is the SOC number (mx50/mx51/mx53 etc.)
b. Where boardname is the name of the board (loco/ard/evk etc.)

2. mx5x_boardname_pmic_pmicname.c
a. Where x is the SOC number (mx50/mx51/mx53 etc.)
b. Where boardname is the name of the board (loco/ard/evk etc.)
c. Where pmicname is ltc3589

Included Headers
mx53-Specific:

● mx53_loco_pmic_ltc3589.c:
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/regulator/ltc3589.h>
#include <linux/regulator/machine.h>
#include <linux/mfd/ltc3589/core.h>
#include <mach/iomux-mx53.h>
#include <mach/irqs.h>

mx5x-Common:
The same modifications are made as the mx53-specific above, but the naming of the files
changes. Note that some include files may change depending on the mx5x architecture but
these files are not related to the pmic implementation.

● mx5x_boardname_pmic_ltc3589.c:
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/regulator/ltc3589.h>
#include <linux/regulator/machine.h>
#include <linux/mfd/ltc3589/core.h>
#include <mach/iomux-mx5x.h>
#include <mach/irqs.h>

Kernel Configuration
1. Add the pmic-board file to the makefile:
mx53-Specific:
arch/arm/mach-mx5/Makefile:

...

obj-$(CONFIG_MACH_MX53_EVK) += mx53_evk.o mx53_evk_pmic_mc13892.o
obj-$(CONFIG_MACH_MX53_ARD) += mx53_ard.o mx53_ard_pmic_ltc3589.o
obj-$(CONFIG_MACH_MX53_SMD) += mx53_smd.o mx53_smd_pmic_da9053.o
obj-$(CONFIG_MACH_MX53_LOCO) += mx53_loco.o mx53_loco_pmic_ltc3589.o

...

● The secondary pmic board file mx53_loco_pmic_ltc3589.o is compiled along with

the main board file. Porting to a new board requies changing the name of the secondary
pmic board file in the Makefile.

mx5x-Common:
arch/arm/mach-mx5/Makefile:

...

obj-$(CONFIG_MACH_MX5X_BOARD) += mx5X_BOARD.o mx5X_BOARD_pmic_ltc3589.o
...

● Same as mx53-specific but with a different board name.

2. Select the LTC3589 driver:

● The LTC3589 driver is included in two parts in the Kconfig file under drivers/mfd/
Kconfig. It can be selected from menuconfig by searching for and selecting the
following:

○ MFD_LTC3589_I2C
○ REGULATOR
○ REGULATOR_LTC3589 (this depends on the first two)

3. Select the iMX53-LOCO board:

● Since the PMIC-board file is compiled along with the main board file, simply selecting the
correct mx5x board from the menuconfig is all that is necessary. For the mx53-LOCO
board the parameter to search for is: MACH_MX53_LOCO

I2C Bus Registration
The pmic board file contains initialization code needed by the PMIC driver. This code

must be run before consumer drivers begin to make requests of the regulator during their
initialization. Information on how this is accomplished is in Appendix B.

The I2C bus instance that the PMIC is located on physically (i2c-0/i2c-1/etc.) has to be
specified. This is done in the call to i2c_register_board_info().

mx53-Specific:
On the iMX53-LOCO board the PMIC is now on i2c bus 0, instead of i2c bus 1 like on the
iMX53-ARD board.

● mx53_loco_pmic_ltc3589.c:
static __init int mx53_init_i2c(void)
{

return i2c_register_board_info(0, <c3589_i2c_device, 1);
}

mx5x-Common:
The same modifications are made as the mx53-specific above, but the naming of the files
changes.

● mx5x_boardname_pmic_ltc3589.c:
static __init int mx5X_init_i2c(void)
{

return i2c_register_board_info(bus#, <c3589_i2c_device,
1);
}

Setup PMIC GPIO/Interrupt Lines
The interrupt lines can be defined for the PMIC, and added to the i2c device structure to

allow the ltc3589 driver to initialize a work handler and make a call to request_irq() if needed.
The current version of the ltc3589 driver does not utilize the notification of an undervoltage
warning from the LTC3589 so does not actually request an IRQ.

mx53-Specific:
In mx53_loco.c:

#define LOCO_PMIC_INT (6*32 + 11) /* GPIO_7_11 */
#define LOCO_PMIC_RDY (6*32 + 13) /* GPIO_7_13 */
#define LOCO_PMIC_PBSTAT (0*32 + 6) /* GPIO_1_6 */

...

...

...

static struct pad_desc mx53_loco_pads[] = {
...

...

...

/* PMIC */
MX53_PAD_GPIO_16__GPIO_7_11,
MX53_PAD_GPIO_18__GPIO_7_13,
MX53_PAD_GPIO_6__GPIO_1_6,

};
...

...

...

static void __init mx53_loco_io_init(void)
{

...

...

...

/* PMIC */
gpio_request(LOCO_PMIC_INT, "pmic-int");
gpio_direction_input(LOCO_PMIC_INT); /*PMIC_INT*/
gpio_request(LOCO_PMIC_RDY, "pmic-rdy");
gpio_direction_input(LOCO_PMIC_RDY); /*PMIC_RDY*/
gpio_request(LOCO_PMIC_PBSTAT, "pmic-pbstat");
gpio_direction_input(LOCO_PMIC_PBSTAT); /*PMIC_PBSTAT*/

}

mx5x-Common:
Similar changes would be made to the mx5x board file to setup GPIO lines.

Board-Specific Resistor Values
mx5x-Common:
If the board is ported to a non-mx53 based design, there are modifications to the driver that are
required.

In ltc3589-regulator.c:

● A #ifdef has to be added to turn off these MX53-specific functions or the code will not
compile properly.

● The BOARD_SPECIFIC_VALUE resistor values need to be specified according to what
is located on the board.
static int ltc3589_regulator_probe(struct platform_device *pdev)
{

...

...

...

#ifdef CONFIG_ARCH_MX53

if (cpu_is_mx53_rev(CHIP_REV_2_0) >= 1) {
ltc3589_ldo2_r2 = LTC3589_LDO2_R2_TO2;
ltc3589_sw2_r2 = LTC3589_SW2_R2_TO2;

} else {
ltc3589_ldo2_r2 = LTC3589_LDO2_R2_TO1;
ltc3589_sw2_r2 = LTC3589_SW2_R2_TO1;

}
#endif

ltc3589_ldo2_r2 = BOARD_SPECIFIC_VALUE;

ltc3589_sw2_r2 = BOARD_SPECIFIC_VALUE;
...

...

...

return 0;
}

Regulator Constraints
The power constraints of each regulator that the PMIC provides change depending on

the board. The constraints placed in the pmic board file dictate the actual parameters of the
regulators on a particular board including voltage, current, or mode changes. In the
corresponding LTC3589-regulator.c driver, operations that are possible for the pmic (on all
boards) are defined. Functions are implemented for actually performing these operations as well
(via the i2c communications bus). For an explanation of the capabilites of each regulator on the
LTC3589 refer to the Study of the LTC3589 Driver document.

For instance, devices connected to a regulator will have a range of voltages (min-max)
that they can safely allow. Each regulator for a particular board has to know what the range of
allowable voltages are to prevent accidental requests for harmful voltage settings.

mx53-Specific:
mx53_loco_pmic_ltc3589.c:

static struct regulator_init_data sw3_init = {
.constraints = {

.name = "SW3",

.min_uV = 1342000,

.max_uV = 2775000,

.valid_ops_mask = REGULATOR_CHANGE_VOLTAGE,

.always_on = 1,

.boot_on = 1,

.initial_state = PM_SUSPEND_MEM,

.state_mem = {
.uV = 2500000,
.mode = REGULATOR_MODE_NORMAL,
.enabled = 1,

},
.state_standby = {

.uV = 2000000,

.mode = REGULATOR_MODE_NORMAL,

.enabled = 1,
},

},
};

● If the regulator allows stepping up/down the voltage then the constraint items that are
important to modify are:

○ min_uV: Minimum voltage setting for this regulator.
○ max_uV: Maximum voltage setting for this regulator.
○ valid_ops_mask: Set to REGULATOR_CHANGE_VOLTAGE to permit voltage

changes. This setting can be OR’d | with other allowed operations.
● If the regulator is capable of reducing its voltage during standby (like the SWx regulators

on the LTC3589) then that standby voltage has to be set. During the Suspend_Prepare
phase, a PM message is sent by the power management system in linux, to the
regulators that support standby levels. The regulators must prepare their system to be
ready for the VSTBY signal. In the case of the LTC3589 this requires setting its xxBTV2
registers. There are 3 PM levels supported in Linux: state_mem, state_standby, and
state_disk but state_mem is currently the most widely used. State_mem consists of the
following items:

○ uV: Suspend voltage the PMIC should apply to the regulator.
○ mode: Regulator operating mode. Most drivers use normal regulator power

supply mode.
○ enabled: Is the regulator enabled when in this suspend state?

mx53_loco_pmic_ltc3589.c:

static struct regulator_init_data sw4_init = {
.constraints = {

.name = "SW4",

.valid_modes_mask = REGULATOR_MODE_NORMAL |
REGULATOR_MODE_STANDBY,

.valid_ops_mask = REGULATOR_CHANGE_MODE |
REGULATOR_CHANGE_STATUS,

.apply_uV = 1,

.boot_on = 1,
}

};

● If the regulator allows changing modes (burst mode/ active / idle / standby) then the
following items that apply are:

○ valid_ops_mask: Set to REGULATOR_CHANGE_MODE to permit mode
changes.

○ valid_modes_mask: Set to all modes that are supported. For
instance on SWx this could be set to REGULATOR_MODE_FAST |
REGULATOR_MODE_NORMAL | REGULATOR_MODE_STANDBY

mx53_loco_pmic_ltc3589.c:

static struct regulator_init_data ldo4_init = {
.constraints = {

.name = "LDO4",

.min_uV = 1725000,

.max_uV = 3300000,

.valid_ops_mask = REGULATOR_CHANGE_VOLTAGE,

.valid_modes_mask = REGULATOR_MODE_NORMAL,

.always_on = 1,

.boot_on = 1,
},

};
drivers/regulator/ltc3589-regulator.c:

static struct regulator_desc ltc3589_reg[] = {
...

...

{
.name = "LDO4",
.id = LTC3589_LDO4,
.ops = <c3589_ldo4_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = ARRAY_SIZE(LDO4_VSEL_table),
.owner = THIS_MODULE,

},
};

mx53_loco.c:

static struct tve_platform_data tve_data = {
.dac_reg = "LDO4",

};

drivers/video/mxc/tve.c:
static int tve_probe(struct platform_device *pdev)
{

...

...

...

tve.dac_reg = regulator_get(&pdev->dev, plat_data->dac_reg);
if (!IS_ERR(tve.dac_reg)) {

regulator_set_voltage(tve.dac_reg, 2750000, 2750000);
regulator_enable(tve.dac_reg);

}

● Each device that draws power from a regulator is considered a consumer. Here the TVE
device is the Consumer and the Producer is regulator “LD04”. Additional information on
how to define the Consumer/Producer relationship is detailed in the section on Regulator
API.

mx5x-Common:
This section also applies to porting to another mx5X family board. All that is different is the
name of the files modified:

● mx5x_boardname_pmic_ltc3589.c
● mx5x_boardname.c

CPU Working Points
CPU Working Points describe a set of clock frequency + voltage settings. Once multiple

working points are defined, the power management system move between working points by
asking the cpu to reduce its frequency using the cpu_freq API and the pmic to reduce cpu
voltage via the Regulator API.

mx53-Specific:
The cpu_wp structure has been implemented already for all mx53 soc types. The

methods for getting/setting the wp are also implemented. Everything is defined in the files arch/
arm/mach-mx5/mx53_wp.c/.h.

The type of mx53 SOC (535/537/538/etc) is determined automatically by checking the
core clock speed in arch/arm/mach-mx5/clock.c.

mx5x-Common:
The cpu_wp structure and get/set methods for the mx5x boards is defined in the board

file. For instance in arch/arm/mach-mx5/mx51_babbage.c there are 3 working points defined
like so:

static struct cpu_wp cpu_wp_auto[] = {
{
 .pll_rate = 1000000000,
 .cpu_rate = 1000000000,
 .pdf = 0,
 .mfi = 10,
 .mfd = 11,
 .mfn = 5,
 .cpu_podf = 0,
 .cpu_voltage = 1175000,},
{
 .pll_rate = 800000000,
 .cpu_rate = 800000000,
 .pdf = 0,
 .mfi = 8,
 .mfd = 2,
 .mfn = 1,
 .cpu_podf = 0,
 .cpu_voltage = 1100000,},
{
 .pll_rate = 800000000,
 .cpu_rate = 166250000,
 .pdf = 4,
 .mfi = 8,
 .mfd = 2,
 .mfn = 1,
 .cpu_podf = 4,

 .cpu_voltage = 850000,},
};

I2C interface
The LTC3589 driver communicates with the PMIC via I2C. It contains a driver that allows
reading/writing to its registers. This driver (ltc3589-i2c.c) provides a communications interface
for the rest of the ltc3589 driver.

Regulator API

The Regulator API is a generic API for representing a regulator in Linux. The job of a regulator
is to register its constraints and handle incoming requests for adjusting the voltage/current of a
particular regulator. The ltc3589-regulator.c driver contains functions for setting the voltage,
modes, and enabling/disabling each regulator. It also links these functions to a structure
describing what operations are permitted by the Linux Power Management interface on the
regulators.

The Consumers (various device drivers that consume power and want to request voltage/
current changes of the regulator feeding them) can get a handle to their regulator by calling
regulator_get() and passing in the device name and id.

The id can be either:

● The name of the ‘supply’
● The name of the regulator

Supply example
 ‘Supply’ name is defined in arch/arm/mach-mx5/mx51_babbage_pmic_mc13892.c

static struct regulator_consumer_supply vvideo_consumers[] = {
{

/* sgtl5000 */
.supply = "VDDIO",
.dev_name = "1-000a",

},

};
...

...

...

static struct regulator_init_data vvideo_init = {
.constraints = {

.name = "VVIDEO",

.min_uV = mV_to_uV(2775),

.max_uV = mV_to_uV(2775),

.valid_ops_mask = REGULATOR_CHANGE_VOLTAGE |
REGULATOR_CHANGE_STATUS,

.apply_uV = 1,
},
.num_consumer_supplies = ARRAY_SIZE(vvideo_consumers),
.consumer_supplies = vvideo_consumers,

};

‘Supply’ name is referenced by the consumer driver sound/soc/codecs/sgtl5000.c

reg = regulator_get(&client->dev, "VDDIO");

Regulator example

Regulator name is defined in drivers/regulator/ltc3589-regulator.c:

static struct regulator_desc ltc3589_reg[] = {

...

...

...

{
.name = "SW2",
.id = LTC3589_SW2,
.ops = <c3589_sw_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = 0x1F + 1,
.owner = THIS_MODULE,

},
};

and passed to the bus_freq driver via platform data in arch/arm/mach-mx5/mx53_ard.c

static struct mxc_bus_freq_platform_data bus_freq_data = {
.gp_reg_id = "SW1",
.lp_reg_id = "SW2",

};

Regulator name is referenced by the consumer driver arch/arm/mach-mx5/bus_freq.c
lp_reg_id = p_bus_freq_data->lp_reg_id;
lp_regulator = regulator_get(NULL, lp_reg_id);

Appendix A

Referenced files for porting LTC3589 to the imx53-loco board.

Added

● arch/arm/mach-mx5/
○ mx53_loco_pmic_ltc3589.c

Modified
● arch/arm/mach-mx5/

○ mx53_loco.c

Important (relevent files from ARD board)

● arch/arm/mach-mx5/
○ mx53_wp.c/.h
○ mx53_ard.c
○ mx53_ard_pmic_ltc3589.c

● drivers/regulator/
○ ltc3589-regulator.c

● drivers/mfd/
○ ltc3589-i2c.c

Appendix B

Initialization Phases

Phase 4:
The regulator constraints from the pmic board file are registered with the Linux I2C bus

framework with a i2c_register_board_info() call using subsys_initcall(). The corresponding
ltc3589-i2c.c driver also uses subsys_initcall() to add its probing function to the Linux I2C bus
framework. The driver’s probe function is thus launched, and the init function that was passed
form the pmic board file is run mx53_ltc3589_init(). This init function registers each regulator’s
constraints with the ltc3589-regulator module using the ltc3589_register_regulator() function.
This regulator registration function creates 8 platform device instances.

Phase 4s:

The ltc3589-regulator.c module registers intself as a platform driver using the
subsys_initcall_sync() macro. This links the regulator driver with the regulator constraints and
the regulator driver probe function is run ltc3589_regulator_probe. The probe function makes
a call to regulator_register() which is how the regulators are actually registered with the Linux
Regulator API.

Phase 6/6s:
Device drivers are initialized during this phase. These are often the device drivers for

devices that act as Consumers of regulator power.

Phase 7:
The function ltc3589_pmic_init() in the pmic board file is run. This function enables all

the regulators using the regulator_enable() function of the Linux Regulator API.

