
Table of Contents
Table of Contents
Overview
References
Power management on the i.MX53 ARD board

Low-level Power Management (PM) Driver
Hardware Operation
Software Operation
Kernel configuration
Code Analysis

system.c
pm.c

Dynamic Voltage and Frequency Scaling Core (DVFSC)
Hardware Operation
Software Operation
Kernel configuration
Code Analysis

dvfs_core.c
Software Interface

CPU Frequency Scaling (CPUFREQ) Driver
Software Operation
Kernel configuration
Software Interface

Software Based Peripheral Domain Frequency Scaling
Software Interface
Kernel configuration
Software Operation

Study of the LTC3589 driver
Kernel configuration
Source files
Using the driver

Overview
This document is intended to provide an understanding of the Linux Power Management
features of the LTC3589 PMIC driver. In particular the focus is on Freescale iMX5x platforms as
this is the basis for the current driver implementation.

The Linux Kernel referenced is version 2.6.35 with modifications to support Freescale’s

implementation of the Android 2.3 (Gingerbread). The code was provided from Freescale’s
Android Release R10 freely available on their website. The link is available by visiting iMX53
Board Support and then selecting i.MX53 Android 10 Source Code. Registration may be
required.

References
● i.MX53 START Linux Reference Manual, Rev.11.01.00 (01/2011)
● i.MX53 Multimedia Applications Processor Reference Manual
● LTC3589 Reference Manual

Power management on the i.MX53 ARD
board
The software implementation of power management for the i.MX53 ARD board is described in
chapters 16-17-18-19 of the Linux reference manual (although it is not the manual for the ARD
board, the information that it provides is relevant for all i.MX53 implementations).
The main subsystems are:

● Low-level Power Management (PM) Driver: controls low-power modes (e.g. System idle,
Standby...)

● Dynamic Voltage Frequency Scaling (DVFS) Driver: Controls dynamic modifications of
the frequency and voltage of the CPU core power domain.

● Software Based Peripheral Domain Frequency Scaling: Dynamically changes the clocks
in the peripheral domain.

● CPU Frequency Scaling (CPUFREQ) driver: Implements the CPU frequency changes
and working points, which are a combination of the {CPU voltage, CPU frequency, PLL
rate}.

Low-level Power Management (PM) Driver
Most of the information in this paragraph has been copied from the Linux Reference Manual -
Chapter 16. Please refer to this document for more information.

Hardware Operation
The i.MX5 supports four low power modes: RUN, WAIT, STOP, and LPSR (low power screen).

Mode Core Modules PLL CKIH/FPM CKIL

RUN Active Active, Idle or
Disable

On On On

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53_SW&parentCode=IMX53QSB&fpsp=1
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53_SW&parentCode=IMX53QSB&fpsp=1
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53_SW&parentCode=IMX53QSB&fpsp=1
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53_SW&parentCode=IMX53QSB&fpsp=1
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53_SW&parentCode=IMX53QSB&fpsp=1
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53_SW&parentCode=IMX53QSB&fpsp=1
https://www.freescale.com/webapp/Download?colCode=IMX53_R10_ANDROID_SOURCE_CODE&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1298573788032723957803&Parent_pageType=product&Parent_nodeId=1298573788032723957803&Parent_pageType=product
https://www.freescale.com/webapp/Download?colCode=IMX53_R10_ANDROID_SOURCE_CODE&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1298573788032723957803&Parent_pageType=product&Parent_nodeId=1298573788032723957803&Parent_pageType=product
https://www.freescale.com/webapp/Download?colCode=IMX53_R10_ANDROID_SOURCE_CODE&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1298573788032723957803&Parent_pageType=product&Parent_nodeId=1298573788032723957803&Parent_pageType=product
https://www.freescale.com/webapp/Download?colCode=IMX53_R10_ANDROID_SOURCE_CODE&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1298573788032723957803&Parent_pageType=product&Parent_nodeId=1298573788032723957803&Parent_pageType=product
https://www.freescale.com/webapp/Download?colCode=IMX53_R10_ANDROID_SOURCE_CODE&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1298573788032723957803&Parent_pageType=product&Parent_nodeId=1298573788032723957803&Parent_pageType=product
https://www.freescale.com/webapp/Download?colCode=IMX53_R10_ANDROID_SOURCE_CODE&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1298573788032723957803&Parent_pageType=product&Parent_nodeId=1298573788032723957803&Parent_pageType=product
https://www.freescale.com/webapp/Download?colCode=IMX53_R10_ANDROID_SOURCE_CODE&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1298573788032723957803&Parent_pageType=product&Parent_nodeId=1298573788032723957803&Parent_pageType=product
https://www.freescale.com/webapp/Download?colCode=IMX53_R10_ANDROID_SOURCE_CODE&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1298573788032723957803&Parent_pageType=product&Parent_nodeId=1298573788032723957803&Parent_pageType=product
https://www.freescale.com/webapp/Download?colCode=IMX53_R10_ANDROID_SOURCE_CODE&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1298573788032723957803&Parent_pageType=product&Parent_nodeId=1298573788032723957803&Parent_pageType=product

WAIT Disable Active, Idle or
Disable

On On On

STOP Disable Disable Off Off On

LPSR Disable Disable Off On On

Software Operation
The i.MX5 PM driver maps the low-power modes to the kernel power management states as
listed below:

● Standby: maps to WAIT mode which offers minimal power saving, while providing a very
low-latency transition back to a working system

● Mem (suspend to RAM):maps to STOP mode which offers significant power saving
as all blocks in the system are put into a low-power state, except for memory, which is
placed in self-refresh mode to retain its contents

● System idle—maps to WAIT mode

Kernel configuration
● CONFIG_PM: Build support for power management. In menuconfig, this option is

available under Power management options > Power Management support
By default, this option is Y.

● CONFIG_SUSPEND: Build support for suspend. In menuconfig, this option is available
under Power management options > Suspend to RAM and standby

Code Analysis
The code implementing the PM driver is mainly located in the two following files - available in
arch/arm/mach-mx5:

File Description

pm.c Supports suspend operation

system.c Supports low-power modes

Note: The documentation also mentions wfi.S and suspend.S, but these files are generic to the
i.MX5x SoCs and do not involve the PMIC. We will only focus on the areas where the PMIC is
involved.

system.c
This file contains arch_idle() and mxc_cpu_lp_set(), which set the CPU low-power mode
before issuing the wait for interrupt instruction. This code takes care of settings the right clocks
depending on the low-power mode that has been requested. It does not directly involve the
PMIC.

pm.c
Implements the Standby and Mem states. This file is also generic to the i.MX5x but has some
hooks to another PMIC driver (DA9053 - used on the i.MX53 Quick Start Board) which are not
required for the LTC3589.
mx5_suspend_prepare() is called before entering the suspend state (implemented in
mx5_suspend_enter() which also calls the functions in system.c). It sets the CPU working point
to 400MHz (workaround for the i.MX53) which causes PMIC driver to adjust the voltage for the
CPU (more details in the next section).

Dynamic Voltage and Frequency Scaling Core
(DVFSC)
Most of the information in this paragraph has been copied from the Linux Reference Manual -
Chapter 17. Please refer to this document for more information.

Hardware Operation
The DVFSC allows simple dynamic voltage frequency scaling:

● The frequency of the core clock domain and the voltage of the core power domain
can be changed on the fly while all blocks (including the ARM platform) continue their
normal operation. The frequency of the core clock domain can be changed by switching
temporarily to an alternate PLL clock, and then get back to the updated PLL, already
locked at a specific frequency, or by merely changing the post dividers division factors.

● DVFSC is a monitor that only provides an interrupt when counting exceeds a predefined
value (e.g. the CPU load is high or low) and does not actually send request to make a
change a change of voltage and frequency. The interrupt is processed in software by the
DVFS driver.

● The voltage of the core power domain is changed through the PMIC.

For more information on the hardware DVFS Core block, refer to the DVFS chapter in the
Multimedia Applications Processor documentation.

Software Operation
The DVFS device driver allows the frequency of the core clock domain and the voltage of the
core power domain to be changed on the fly.

● The frequency of the core clock domain and the voltage of the core power domain are
changed by switching between defined freq-voltage operating points.

● The frequencies are manipulated using the clock framework API. More information about
the clock framework API: http://www.kernel.org/doc/htmldocs/kernel-api/clk.html

● The voltage is set using the regulators API. More information in the Linux kernel
documentation: http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/

http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://www.kernel.org/doc/htmldocs/kernel-api/clk.html
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/

Kernel configuration

There are no menu configuration options for this driver. The DVFS core is included by default.

Code Analysis
● The code implementing the DVFS Core driver is located in arch/arm/plat-mxc/

dvfs_core.c
● For DVFS CPU working point settings, see arch/arm/mach-mx5/mx53_wp.c

dvfs_core.c
● The interrupts raised by the DVFS controller are handled in dvfs_irq(), which schedules

a work item handled in dvfs_core_work_handler(). The CPU frequency is changed using
set_cpu_freq().

● The available CPU working points (frequencies/voltages) are defined in arch/arm/mach-
mx5/mx53_wp.c:

○ Different arrays corresponding to the different versions i.MX53 SoC (Automotive,
Consumer 1GHz and 1.2GHz) define all the possible working points.

○ The Automotive revision (IMX53_AEC) only has one working point defined by the
following structure:
/* working point for auto*/

static struct cpu_wp cpu_wp_aec[] = {

 {

 .pll_rate = 800000000,

 .cpu_rate = 800000000,

 .pdf = 0,

 .mfi = 8,

 .mfd = 2,

 .mfn = 1,

 .cpu_podf = 0,

 .cpu_voltage = 1050000,},

};

This implies that the ARD board (which has the automotive version of the
i.MX53) only has one working point (CPU at 800MHz).
Other revisions of the i.MX53 (e.g. the one present on the Quick Start Board) can
scale the CPU frequency between 1.2GHz and 160MHz.

● set_cpu_freq() also calls regulator_set_voltage(core_regulator, gp_volt, gp_volt) to
adjust the voltage of the core regulator. This voltage is set my the PMIC itself.

● The handle to the regulator is obtained at initialization (i.e. boot time since the DVFS

core driver is built-in) through the regulator API in mxc_dvfs_core_probe():
core_regulator = regulator_get(NULL, dvfs_data->reg_id);

● In order to make let the DVFS driver - which is generic with regards to the regulators
used - know that this regulator (SW1 on the PMIC) is available on the ARD board, the

following structures are defined in arch/arm/mach-mx5/mx53_ard.c:

static struct mxc_dvfs_platform_data dvfs_core_data = {

 .reg_id = "SW1",

 .clk1_id = "cpu_clk",

 .clk2_id = "gpc_dvfs_clk",

 .gpc_cntr_offset = MXC_GPC_CNTR_OFFSET,

 .gpc_vcr_offset = MXC_GPC_VCR_OFFSET,

 .ccm_cdcr_offset = MXC_CCM_CDCR_OFFSET,

 .ccm_cacrr_offset = MXC_CCM_CACRR_OFFSET,

 .ccm_cdhipr_offset = MXC_CCM_CDHIPR_OFFSET,

 .prediv_mask = 0x1F800,

 .prediv_offset = 11,

 .prediv_val = 3,

 .div3ck_mask = 0xE0000000,

 .div3ck_offset = 29,

 .div3ck_val = 2,

 .emac_val = 0x08,

 .upthr_val = 25,

 .dnthr_val = 9,

 .pncthr_val = 33,

 .upcnt_val = 10,

 .dncnt_val = 10,

 .delay_time = 30,

};

dvfs_core_data is then passed as a parameter to platform_device_register
and retrieved from the DVFSC driver using the Linux driver model semantics.

● For the ARD board, SW1 is declared in arch/arm/mach-mx5/mx53_ard_pmic_ltc3589.c:

/* CPU */

static struct regulator_consumer_supply sw1_consumers[] = {

 {

 .supply = "cpu_vcc",

 }

};

struct ltc3589;

static struct regulator_init_data sw1_init = {

 .constraints = {

 .name = "SW1",

 .min_uV = 564000,

 .max_uV = 1167000,

 .valid_ops_mask = REGULATOR_CHANGE_VOLTAGE,

 .valid_modes_mask = 0,

 .always_on = 1,

 .boot_on = 1,

 .initial_state = PM_SUSPEND_MEM,

 .state_mem = {

 .uV = 950000,

 .mode = REGULATOR_MODE_NORMAL,

 .enabled = 1,

 },

 },

 .num_consumer_supplies = ARRAY_SIZE(sw1_consumers),

 .consumer_supplies = sw1_consumers,

};

The most notable members of the structure are min_uV and max_uV. They define the voltage
range allowed by the LTC3589 PMIC. When the CPU working point (WP) is changed, the
voltage defined by the WP (cpu_voltage in the cpu_wp_aec structure) is checked against
these values and set by the PMIC regulator driver.

To interface the PMIC with the DVFSC driver, the PMIC driver only has to register its regulators,
defining the proper voltage ranges. The DVFSC driver interacts with PMIC drivers through the
generic regulator API.

Software Interface
● To Enable the DVFS core use this command:

echo 1 > /sys/devices/platform/mxc_dvfs_core.0/enable

● To Disable The DVFS core use this command:
echo 0 > /sys/devices/platform/mxc_dvfs_core.0/enable

CPU Frequency Scaling (CPUFREQ) Driver
Most of the information in this paragraph has been copied from the Linux Reference Manual -
Chapter 18. Please refer to this document for more information.

The CPU frequency scaling device driver allows the clock speed of the CPU to be changed on
the fly. This driver functions in a very similar fashion as the DVFS core driver, except that the
monitoring is done in software, through the cpufreq framework.

More information about cpufreq is available in the kernel documentation: http://lxr.linux.no/
#linux+v2.6.35.9/Documentation/cpu-freq/
The most important files for the ARD platform are governors.txt and user-guide.txt.

http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/
http://lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/

Software Operation
The CPUFREQ driver dynamically changes the CPU frequency and voltage according to the
working points (frequencies/voltages) defined in arch/arm/mach-mx5/mx53_wp.c. Please refer
to the previous section for more information about these working points.

The driver is implemented in arch/arm/plat-mxc/cpufreq.c

The working points logic and interactions with the regulator framework are implemented in
set_cpu_freq(), in a way that is very similar to the DVFSC driver. It is therefore independent
from the specifics of the PMIC (since the handle to the regulator supplying the CPU voltage is
acquired in a generic way).

Kernel configuration

CONFIG_CPU__FREQ—In menuconfig, this option is located under CPU Power Management
> CPU Frequency scaling.

The following options can be selected:
● CPU Frequency scaling
● CPU frequency translation statistics
● Default CPU frequency governor (userspace)
● Performance governor
● Powersave governor
● Userspace governor for userspace frequency scaling
● Conservative CPU frequency governor
● CPU frequency driver for i.MX CPUs

Software Interface
The behavior of the CPUFREQ driver can be changed using sysfs. The frequency and voltages
are dynamically adjusted according to governors, which are software algorithms that control the
working point according to given criteria (more information in the Linux documentation: http://
lxr.linux.no/#linux+v2.6.35.9/Documentation/cpu-freq/governors.txt).

● To view what values the CPU frequency can be changed to in KHz (The values in the
first column are the frequency values) use this command:
cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state

● To change the CPU frequency to a value that is given by using the command above
(e.g. to 800 MHz) use this command:
echo 800000 > /sys/devices/system/cpu/cpu0/cpufreq/

scaling_setspeed

The frequency 800000 is in KHz.
● The maximum frequency can be checked using this command:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
● Use the following command to view the current CPU frequency in KHz:

http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A
http://www.google.com/url?q=http%3A%2F%2Flxr.linux.no%2F%23linux%2Bv2.6.35.9%2FDocumentation%2Fcpu-freq%2Fgovernors.txt&sa=D&sntz=1&usg=AFQjCNHlTwvHNEnbUnj7ua9B3O55zDgc6A

cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq

● Use the following command to view available governors:
cat /sys/devices/system/cpu/cpu0/cpufreq/

scaling_available_governors

● Use the following command to set governors:
echo conservative > /sys/devices/system/cpu/cpu0/cpufreq/

scaling_governor

Note: The ARD board only supports one working point (800MHz), so the governors will not
change the frequency. This feature has been successfully tested on the Quick Start Board,
which uses the 1GHz version of the i.MX53 CPU.

Software Based Peripheral Domain Frequency Scaling
Most of the information in this paragraph has been copied from the Linux Reference Manual -
Chapter 19. Please refer to this document for more information.

The frequency of the clocks in the peripheral domain can be changed using the software based
Bus Frequency Scaling driver. Enabling this driver can significantly lower the power numbers
in the LP domain. Depending on the platform, the voltage of the peripheral domain can also be
dropped using the on board PMIC.

The SW will automatically lower the frequency of the various clocks in the peripheral domain
based on which drivers are active (it is assumed that the drivers will use the clock API to enable/
disable their clocks)

Software Interface
● To enable the SW based Bus Frequency Scaling (not needed to enter LPAPM mode)

use this command:
echo 1 > /sys/devices/platform/busfreq.0/enable

● To disable the SW based Bus Frequency Scaling use this command:
echo 0 > /sys/devices/platform/busfreq.0/enable

Kernel configuration
There is no option for the SW based Bus Frequency Scaling driver, it included by default.

Software Operation

The driver is implemented in arch/arm/mach-mx5/bus_freq.c

This driver is very similar to the DVFSC driver with respect to the interactions with the
PMIC. On the ARD board, it controls SW2 through the regulator API. This is defined in the
bus_freq_data from arch/arm/mach-mx5/mx53_ard.c:

static struct mxc_bus_freq_platform_data bus_freq_data = {

 .gp_reg_id = "SW1",

 .lp_reg_id = "SW2",

};

This structure is passed to the bus_freq driver using the Linux driver model semantics and
platform_device_register().

Study of the LTC3589 driver
The LTC3589 driver code is made of two main parts:

● The actual driver, which is board-agnostic (in drivers/)
● The plaftorm glue, that ties the PMIC driver to the platform (in arch/arm/mach-xxx)

Since the latter is described in detail in Porting LTC3589 to a mx5x-family board, we will only
focus on the actual driver.

The driver has been extracted from the Freescale kernel for the i.MX53 ARD board since it is
not part of the mainline Linux kernel.

Kernel configuration
To enable the LTC3589 driver, select the following items in a menuconfig:

● Multifunction device drivers > Support for Linear LTC3589 with I2C
● Voltage and Current Regulator Support > LTC3589 Regulator Support

The corresponding configuration parameters are CONFIG_REGULATOR_LTC3589,
CONFIG_MFD_LTC3589_I2C and CONFIG_MFD_LTC3589.

The driver is registered in the kernel build/configuration system using:
● drivers/mfd/Makefile
● drivers/mfd/Kconfig
● drivers/regulator/Makefile
● drivers/regulator/Kconfig

Source files
The driver is split into two parts:

● drivers/mfd/ltc3589-i2-c:
○ Implements the communication with the PMIC using the I2C API. Since this

API is generic, the driver does not need to know about the details of the I2C
implementation for a given board.

○ This file typically does not need to be modified
○ The I2C address is a board specific setting and is defined by

ltc3589_i2c_device in arch/arm/mach-mx5/mx53_ard_pmic_ltc3589.c for
the ARD board.

● drivers/regulator/ltc3589-regulator:
○ This is where the regulator logic is implemented.
○ The regulators are registered in the board file (arch/arm/mach-mx5/

mx53_ard_pmic_ltc3589.c for the ARD board) using arch/arm/mach-mx5/
mx53_ard_pmic_ltc3589.c(). This function creates a platform device
for each regulator. Since it gets matched with the platform driver registered in

ltc3589_regulator_driver, ltc3589_regulator_probe() is called and
then registers it using the regulator API function regulator_register().

○ All the regulators implemented by the LTC3589 driver are defined in the following
structure:

static struct regulator_desc ltc3589_reg[] = {

 {

 .name = "SW1",

 .id = LTC3589_SW1,

 .ops = <c3589_sw_ops,

 .type = REGULATOR_VOLTAGE,

 .n_voltages = 0x1F + 1,

 .owner = THIS_MODULE,

 },

 {

 .name = "SW2",

 .id = LTC3589_SW2,

 .ops = <c3589_sw_ops,

 .type = REGULATOR_VOLTAGE,

 .n_voltages = 0x1F + 1,

 .owner = THIS_MODULE,

 },

 {

 .name = "SW3",

 .id = LTC3589_SW3,

 .ops = <c3589_sw_ops,

 .type = REGULATOR_VOLTAGE,

 .n_voltages = 0x1F + 1,

 .owner = THIS_MODULE,

 },

 {

 .name = "SW4",

 .id = LTC3589_SW4,

 .ops = <c3589_sw4_ops,

 .type = REGULATOR_VOLTAGE,

 .owner = THIS_MODULE,

 },

 {

 .name = "LDO1_STBY",

 .id = LTC3589_LDO1,

 .ops = <c3589_ldo13_ops,

 .type = REGULATOR_VOLTAGE,

 .owner = THIS_MODULE,

 },

 {

 .name = "LDO2",

 .id = LTC3589_LDO2,

 .ops = <c3589_ldo2_ops,

 .type = REGULATOR_VOLTAGE,

 .n_voltages = 0x1F + 1,

 .owner = THIS_MODULE,

 },

 {

 .name = "LDO3",

 .id = LTC3589_LDO3,

 .ops = <c3589_ldo13_ops,

 .type = REGULATOR_VOLTAGE,

 .owner = THIS_MODULE,

 },

 {

 .name = "LDO4",

 .id = LTC3589_LDO4,

 .ops = <c3589_ldo4_ops,

 .type = REGULATOR_VOLTAGE,

 .n_voltages = ARRAY_SIZE(LDO4_VSEL_table),

 .owner = THIS_MODULE,

 },

};

○ Using the .ops field, a callback function is assigned for each regulator operation

(e.g. get/set voltage/suspend...)
○ Note: There is still one board-specific reference to cpu_is_mx53_rev() that

should be removed when porting the code to other platforms. The values of the
resistors hard-coded at the top of the file (LTC3589_LDO2_Rx) also need to be
changed.

Using the driver
● When porting the driver to a different platform:

○ The files in drivers are board-agnostic and typically do not need to be
modified. When using this driver on a new board, one typically wants to call
ltc3589_register_regulator() in the board files (under arch/arm). This
function is declared in include/linux/mfd/ltc3589/core.h.

● When using the regulator from a driver or from the platform code:
○ Regulators can be acquired and released using the regulator API

(http://lxr.linux.no/#linux+v2.6.35.9/Documentation/power/regulator/):
regulator_get() and regulator_put(). The voltages can be set using
regulator_set_voltage(). Other settings can also be changed on runtime
(please refer to the kernel documentation). The name of the regulator has to be

passed as a parameter and is usually put in platform data structures.
○ A good example is the DVFS Core driver.

