CrossCore-

Embedded Studio

CCES 2.9.0 Assembler and Preprocessor Manual

Revision 2.3, May 2019

Part Number
82-100121-01

Analog Devices, Inc.

One Technology Way

Norwood, MA 02062-9106 ANALOG
DEVICES

Copyright Information

Copyright Information
© 2019 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form

without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Ana-
log Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-Board, EZ-KIT Lite, EZ-Extender, SHARC,
SHARC+, Blackfin+, A2B and VisualDSP++ are registered trademarks of Analog Devices, Inc.

EZ-KIT Mini and SigmaStudio are trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

CCES 2.9.0 Assembler and Preprocessor Manual

il

Contents

Preface

Purpose of This Manual..........cccccceviiiiiiiiniininiiiiiiiice st nesreaes 1-1
INtENAEA AUIENCEeeeiieereieeieiieeecciteeeecteeeeeerteeeeeeaaeeeeesssaeeeeesssaeeeeesssseeesssssseeessssssesesssssseesesssaseesssssseesnnns 1-1
IMANUAL CONTENTS ...uvvvereeieeeiiiiiireeeeeeeeeeeeirrtreeeeeeeeeesssssseeeeeeesesssssssssssseseessssssssssssssesesssssssssssssssessssssssssssssssssssans 1-1
Technical SUPPOLT....c.cciiiiiiiiiiiiiiiii et as 1-2
SUPPOITEd PrOCESSOLScviiviiiniiniitiiiiiiitiictc e a e bbb b b e 1-2
Product Informationccuueeiieeuieeiiiiieeeceiieeeeeeiteeeceeireeeeesaaeeeeesssseeeessssseeeesssssseeesssseesessssseesssssssesessssseesennns 1-3
Analog Devices WEDSITEccuevuiriiiiiiiiiiiiiiiic s 1-3
ENGINEEIZIONE ...uciuniiiiiiiiiiiiiiiiiicctctc e a e b 1-3
INOTAION COMVEINTIONS ...uuvueeennnnninnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnsssnsnsssssssssssssnnsnssssssssssssnsssnsssnsssssssssssnsssnssssssssnssnnnnnnnnnnn 1-3

Assembler
ASSEIMDIET GUIAE.....eeiieeerreeiieiiieeeeeieeeecccieeeeeerteeeeeertteeeeeeseeeeeesssaeeeesssseeeessssssesesssssseesssssaeessssseeeesssssesensssnes 2-1
ASSEIMDIET OVEIVIEW ..vvveeiieeeiiiiiiiieeeeeieieeiiireeeeeeeeeeeeessaareseeeeeesesssssssssseeeeesssssssssssseseessssssssssssseesesesssssnssssneees 2-2
Writing Assembly Programs..........occcvuivueviinininiiiiniiniiiiiiecicc et sreaens 2-2
Program CONTENTcovuiiiuiiiviiiiiiiiiieii ittt a e s b e bs e s b e aa e s bt s aa s as s aae s 2-3
Assembly INSTIUCHONS c..eeuviiiiiiiiiiiiiiciette ettt s ae bt aesnesanes 2-4
ASSEMDIET DITECTIVES «..uvvvvvveeeeiiiiiiiiiiireeeeeeeeeisirrreeeeeeeeesssssssreeeeeeeessssssssseeeesessssssssssssessesssssssssssesessssnns 24
Preprocessor ComMAands........ccuevueeueririiiiniinienenentetetere ettt sse st sttt sre s st e b e aesaens 2-4
Program SEIUCHUIEc.coiuiiiiiiiiiiiiciiic bbb s b e eaa s s bs b san s 24
Code File Structure for SHARQC ProCeSSOIS........uvvveieeeiureeeeeivreeeeeiseeeeessssreeeessssseesessssseesssssssessssssssesennns 2-6
Code File Structure for Blackfin ProcCessors.........uueiiieeueeeiieiieeeeiiireeeeesiseeeeeesseeeeeessssseessssssseesssssssesssnns 2-6
Program Interfacing Requirements..........cccueiiviiviinininiiiiiiniinininicccncere e 2-7
Using Assembler Support for C StUCESccvuiviiiiiiiiniiiiiiiiciicic e 2-7
Preprocessing a Programi.........co.ooiiiiiiiiiiiniiiiiiiiiciiciccc e 2-9
Using Assembler Feature Macroscoccveviiiiiiiiniiniiniiiiiiiciciiicntnss s esesessessessesssessessens 2-10
__CCESVERSION___ Predefined Macro.......ccccccuveeeeeeireeeeeeeieeeeeeeveeeeeessseeesessssessessssssssssssssssssssssssesssnnes 2-31
Generating Make Dependenciesccviviiiiiniiniiiiiniiniiiiiiiciiccnenesees e 2-32

CCES 2.9.0 Assembler and Preprocessor Manual iii

Reading a Listing Fileccccoviviiiiiiiiiiniiiiiiiiiiiicccittccicct ettt 2-32

Assembler Syntax Reference.......cueoueviriiiiiiniiniininiiiiiceeeeee et 2-33
Assembler Keywords and Symbols...........ccoevuiviiiiiiiinininiiiiiiiiiiiiins 2-33
Assembler EXPressionscovivuiiiiiiiiiiiiniininiiiiicicnc et sa e en e 2-37
ASSEMDIEr OPELatorscoueiuiiviiiriiriiiiiititeiee ettt ettt ettt b e bttt b e sb e bbbt et et 2-38
INUMELIC FOIMALS..c...eiiiiiiiiiiieiiieteee ettt ettt e et st s bt e st e e st s e e e s st e ssne s st esnesenaesanesans 2-40

Representation of Constants in Blackfin..........ccccoevviviniiiiniiniininnininiiiiicinccccenes 2-41
Fractional TYPe SUPPOITcoueeuiiiiviiiiiriiiiiiiiiitctecicrtet ettt ettt sb e st n s 2-41
131 FLACES conneeiiieeee ettt et e e e s et s s se e s st e e e ne e s et e s e ne e s e st e e e nee s e nneeanne 2-42
1,01 SPecial Casecivivuiruiriiiiiiiiiiciiiintt e bbb bbb et b e 2-42
Fractional Arithmetic ..c...eeeueiiiiiiiiiieeierieetectee sttt ettt sae st e s s st sent e s b e s seesnesans 2-42
Mixed Type Arithmeticcouivuiniiiiiiiiiiiii e ens 2-43
COMMENT CONVENTIONS «..veruvenerrerreetersterseessestesstessesssestessesssesssesssessesssesssesssesstessesssesstesseessesssesssessesssesas 2-43
Conditional Assembly DIfeCtiVescouereririiiiniiiiirienietiteteteerest sttt et saesresae st nens 2-43
C Struct Support in Assembly Built-In Functions.........c.ccocoeviiiviiniininininiiiiininiiiciciccnceenns 2-45
OFFSETOF Built-In FUNCHOMN c..ceeuteiiiieieiieeeieccteecieeeteesteetesetesreestessseessaessssesssessssessseesssessseessennns 2-45
SIZEOF Built-In FUNCHON c...coutiiiiiiiiieteiteieeteeteieeeet ettt et sae et e st e st sse st e st essessesnnesaesssenas 2-45
SEIUCE REFEIENCES ..ottt ettt ae e st e s st e et s st e s st s sate s st e s aeesneesnnenane 2-46
ASSEMDIET DIITECHIVES. ...eeveieiereuierieeeteeriteete et ee et et eereeete s st esaeessseessessstesseesstessaesssessaesssessseesssesssnennses 2-47
ALIGN, Specify an Address AlIGNmentccouevveiiiniiniiniiiniiniiiiiniseieseseres e enenes 2-51
ASCIL.ciieeteeteeeeee ettt et s et e b e st e sa e e st e st e s st e s b e st esatesse e be st e s st esse e s e s st esse e sessbesatensaesesntesaaenranas 2-52
.BYTE, Declare a Byte Data Variable or Buffercccocueeiiiiiiiniiiiiiiiiieieeceteceeeeeeeeeeeeene 2-52
ASCII String Initialization SUPPOLt.......cccviiiviiviiniiiiiiiiiii s 2-54
.COMPRESS, Start COMPIESSIONcccviuiruirrirniiiiiiiiniiniintetet ettt essesse st esessessesaesssessenses 2-54
.EXTERN, Refer to a Globally Available Symbolcccceeirviirniiniriiiienienteeeeeteeeeeeeesee e 2-55
EXTERN STRUCT, Refer to a Struct Defined FISEWhereciivveeeeeeeeneeeeerneeerernneesseensseessssessesssnnnes 2-55
.FILE_ATTR, Create an Attribute in the Object Fileccccuvviiviininininiiniiiiniininiiiiicicicncccee, 2-56
.FILE, Override the Name of @ Source File........ccocerviiriirirniriienieniieeieetestesieeteetesee et seeae 2-56
.FORCECOMPRESS, Compress the Next INStructioncccceeeeeeriernierienienennenteneeseneeseesesnnenas 2-57
.GLOBAL, Make a Symbol Available Globallyccceecerririiiniiniriinienieceeceeenteceeeseeeeeee e 2-57
IMPORT, Provide Structure Layout Information..........cccceccevieviiviineneniininniinienenentneeeeseseeneseeeenes 2-58
iv CCES 2.9.0 Assembler and Preprocessor Manual

JNC/BINARY, Include Contents 0f @ Fileuuuuuiiie s ssnnns 2-59

.LEFTMARGIN, Set the Margin Width of a Listing Filec.cccoceviniiviininninnniiiiiiiincniiiienes 2-60
.LIST_DATFILE/.NOLIST_DATFILE, List Data Init Files.......ccccceererrtrrrninenenenerreeeerenenenceeenees 2-60
.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes..........ceceevririririininininiiiiininieiicncsieieneenens 2-61
.LIST_DEFTAB/.LIST_LOCTAB, Set Tab Widths for Listingsccccecertrrerueruirirrireneniirencnrenieennens 2-61
LIST_WRAPDATA/.NOLIST_WRAPDATAL.......cocttrteetrerteeeertereeteeeeseesseseesste st essessesseessessenas 2-62
.LIST/.NOLIST, Listing Source Lines and Opcodescccevrveirininiiniiininiiniiiiiniiiiiccnienieneenens 2-62
.LONG, Define and Initialize 4-Byte Data Objects........ccccevrurvirruirininiiiiniiiiniininiiiciccncncceeennes 2-63
.MESSAGE, Alter the Severity of an Assembler Message...........cccocevereririiniiniencninniiniiniencneneneeeennes 2-63
.NEWPAGE, Insert a Page Break in a Listing Fileccccooiiinniinininiiiiiiiiiicis 2-65
NOCOMPRESS, Terminate COmMPIeSSION.....c..ccouiivuiriiriiniiiniiiiisiiiniieiesiestesseesessesasessessesssessessseens 2-65
.PAGELENGTH, Set the Page Length of a Listing File.........ccccccouevininiininninnnniiiiiniiiiincicicenns 2-65
.PAGEWIDTH, Set the Page Width of a Listing File.........cccccceuivinininninniinininiiiiiciicie, 2-66
LPORT, Legacy DIrECIVEucevuiiiiiiiiiiiiiiiiiiiicitiicnr ettt sas st e as s san s asesasssaeens 2-66
.PRECISION, Select Floating-Point Precisioncccoveviiiiiiniiniininiiiiiiiinininiecieiescsncsnenennes 2-67
.PREVIOUS, Revert to the Previously Defined Section...........ccccocevuiririiiiiiiiinininiiniinicnicncneneinenes 2-68
PRIORITY, Allow Prioritized Symbol Mapping in Linkercccccceveriiiiviiniinenininiiiinicncncncnccnene. 2-68

Linker OPerationccccivueriiruiiiiiniiiiiiiiicnicetctertet ettt et sre st et sae bt et sa s b e st ene s 2-69
.REFERENCE, Provide Better Info in an X-REF File......uuuuuiiviiie e 2-70
.RETAIN_NAME, Stop Linker from Eliminating Symbolc.cccecovviviivininininnniniiiiiniiiiinns 2-70
.ROUND_, Select Floating-Point Rounding...........cccecevuiruiiiiiiniinininiiiiiiiiininiciciccncneenennes 2-71
.SECTION, Declare @ MemOry SECtionc..ceceeuiiiiviiriiriiniiiiiiiinienientiteseressessessssessessessessesssessenses 2-72

Common .SECTION Attributes........cocviviivuiiiiiniiniiiiiiiniiiitiienrctcc et esae s sss s s 2-72

DOUBLE* QUAlHIELS ...veiviriiiiiiieiiiiiiiteeeteet ettt sttt et sae s ae s e et ae s b e ssn e s s 2-73

SHARC-Specific QUAlIIELScuevuiruiiiiiiiiriiiiiiiiiicicntct ettt sr et esnens 2-73

Initialization Section QUAlIfIErs.......cueveruiiiriiiiriiiieieiteeete et e s ar e e s e e s s reeessseesssnnaenns 2-74
SET, Set a Symbolic Alias.......cocoiiiiiiiiiniininiiiiiiiiiiiiice e 2-75
.SHORT, Defines and Initializes 2-Byte Data Objects.........ccceeurvuereriniininniinienininiiiiienicseseseeeennes 2-75
STRUCT, Create a StrUct VArIableccvuueeiiereeeereerneeereeraneeesesasseesessssesssssssssssssnsssssssnsssssssssssssssssssssssnnnes 2-76
TYPE, Change Symbol Type........ccevviviiriininiiiiiiiiiiiiiitiiciciccnt e esessessesse s esesnes 2-78
VAR, Declare a Data Variable 0 Buer. cceeieeiereueeeeeeeereeeerennneseeeessseesssensssssesssssssssnssssssssssssssssnsssssnns 2-79

VAR and ASCII String Initialization SUpPOrt........c.coeviviiiiiiniiniiniiiiiici e 2-81

CCES 2.9.0 Assembler and Preprocessor Manual v

.WEAK, Weak Symbol Definition and Referencecccceeervuerueniriensiennieneenenienteseeseeseeseesesseenns 2-82

Assembler Command-Line Referencecceveviiiiiiiiiiiinininiiiiicicncncntcteteeeiest et 2-82
Running the Assembler...........cocooiiiiiiniiniiniiiiiii s 2-83
Assembler Command-Line Switch Descriptionscccoceveriiiiiiiniinininiiiiiiicncnencteessesseseseenenens 2-84

-anomaly-detect {id1[, id2...]|allnone} -anomaly-warn {id1[,id2]|all|none}ccccevereruevirncnenieninenncne 2-87
-anomaly-workaround {id1[, id2...][all|nONE}...c.ccueirmiiriiiiiiieecc e 2-87
CDMACTO[ZAEIINITION] ..uvvrrviiieiiiiiiiiiiiieeee et eeeeeeessisrereeeeeeeesssasssseeeeeeeessssssssseeesssssssssssssseesssessnns 2-88
-dependency-add-target........cccuiiiiiiiiniiniiiiiiiiii s 2-88
~dOUDIE-SIZE-32 ...ttt e b s r e s neea 2-88
~dOUDIE-SIZE-04 ..ottt ettt sttt sttt a et e st e s st e s e s b e st e nesrenas 2-88
~doUble-SIZe-anyccevviriiiiiiiiiiiiiii s 2-88
-expand-symbolic-linKs........ccocveiiviiniinininiiiiiiiii s 2-89
-eXPand-WiNAOWS-SHOITCULS ...c..coutiiiiiiiiiiiiieteccr ettt sb e bt es 2-89
B SN ea a1 o d A - | P 2-89
Alags-COMPILET......cooiiviiiiiiiiiiiiitc e s 2-89

User-Specified Defines OPtionsccecueeveruereriiiienienenenentitesteseseseetessessessesseseessessessessessesssessens 2-89

Include OPtionscouevuiiiiiiiiiniiiiiiiiirc et sa e a b s b ennen 2-89
flags-pp -OPtL[, ~OPL2...]cueiiiiiiiiiiiiiii s 2-90
B eeeeeeeesseesesseeeeeeeeseeeeeseeee s e 4444411411111 eeseeeseeeeeeeeeeeee e eeeeeeeesessseee 2-90

WARNING eall21: Missing End Labels........c.ccccoveririiniiniiniinininiiiiiiiiiiiicicecencncenennes 2-90
-gnu-style-dependencies ..ot 2-91
TRLEIP] ettt ettt a e st st b s b n e se s b e 2-91
e OO ORI 2-91
L HFIENAMIE .t et b et 2-92
i FHLENAMIE ..ttt et s e st s b e st e st e s s e e ae e s be s et e e st e s seeeraesneenns 2-92
e PPN 2-92
MM ettt sttt e e e s s s s a e e e e e e e e s e ra b e e e e e e e e e e s raaa e e e e eees e naaaaeaeseasnns 2-92
“MO flENAIMIE ... ueeiiieeieeeeecteet ettt ettt s e et e st st s b e st e s s e e s b e ae e s aeesaaeseseesseessaessaenns 2-93
TMEFILENAIME ..ttt bbbttt bbbt 2-93
S L1V Tez R T o o L PP 2-93
-no-anomaly-detect {id1[, id2...][all|NONE}ceeuiruiniiiririiieieeteeeee ettt 2-93
-no-anomaly-workaround {id1[, id2...][all|none}cccoceemeriinirininiiiiince e 2-93

CCES 2.9.0 Assembler and Preprocessor Manual

-n0-expand-symbolic-TinKscocevueririniiiiiiiniiii s 2-94

-n0-eXPand-WindOWs-ShOrtCULS.ccoutiiiiiiiriiiiiiictctccrcc ettt sne s 2-94
-N0-SOUICE-AEPENAENCY ...uvirviiiiiiiiiiiiiii e s 2-94
~N0-teMP-dAtA-fILE c..eouvinriiiiiiiiiiiiicc e 2-94
-NOIrMAl-WOTd-COAE OF “IWCuuviiiiiiiiiiiiiieecte ettt e et e e ste e s sae s e saae e s raessssaeesssaeesssaeessssessssaansans 2-94
O S (=T 1T+ s =TS 2-94
SPAtR-COMPILET ...ttt bbb 2-95

e] P 2-95
“PTOC PIOCESSOL «.eeiuvriiiurriintrreisiseeissreessesissaeeesstesesaseeesasesesasssesasesesbtesebse s e baesesbseeesbsesssssesesbasssnsesesaseesan 2-95
TR 5 11 o1 TR 2-95
~ShOTt-WOId-COAE OF “SWC.....uuvrieeeeeirieeiecieeeeecctteeeeectre e e e e stee e s e rareeeeeesaaeeeeessaeeeeesssasaesesssseesennssneesennssnees 2-95
“SI-TEVISION VETSIOM ceereuuurrereeruureereerseeesaessseeessessseessssssssessssssnsessesssssessesssseesssssssessssssssesssssssseessssssassssssnees 2-96
) ST STPRP 2-96
L1 | (o 1 =T T 2-96
-swe-eXclude NAME L[, NAME2]..ccoivuurriiiiiiiiiiiiirireeeeeeeeeisirrreeeeeeeesssssssreeeeeeesssssssssssssessssssssssssssesessssssnns 2-96
IS 437 Y1 2-97
LS) L+ 1 L PPN 2-97
SV i eeeeeeeeeeeeeeeaaaeaaaeaasaaeasaeaaaaaaaaeaaaaeeaaaaeaaaaaaaaaeaeeeaaaaaeeeeeaeaeeeeaeeeeeeeeteeeteeeeieeteeeeieeeieeeieeeieeeieeeeeeeieeeiereeeaeaeaees 2-97
“Werror numDber[, NUMDEI] ..cccooiiiiiiiiiieiiiciciiiiieee e e eeeeasrrreeeeeeeesssssssssseeeesesssssssssssseesssssnnns 2-97
“Winfo nUMDBEr|, MUMIDEL]....ccciiiiiiiiiiiiieiiiiiiirireeeeeceeerriirr e e e e eessssssssreeeeeeeesssssssssseeessssssssssnseesssssssns 2-97
T T+ ¥ o ST 2-97
W NUMDEI[, NUMDBET] .. vviiiieiiieeecieeeeccceee et ceectre e e e eeee e e e e abeeeeeesaaeeeeessaeeesessasaesasssseesensssneeesnsssees 2-97
-Wsuppress number[, NUMDET].......coueiuiriiriiiiiiiiicirieee e 2-97
-Wwarn number[, NUMDEL]cconiiiiiiieecceee e e e e e ee e arrr e e e e e e e raraaeeeeeeeennns 2-97
A2 T4 4 B o (o3 PPN 2-98
Specifying Assembler OPtionscocviiiriiniiiiiniiniiiiiiic e 2-98

Preprocessor

Preprocessor GUIAEc.covuiiiiiiiiiiiiiiiiiitttt ettt e a e s bbb s 3-1
Writing Preprocessor Commands ..ottt aeaens 3-2
Header Files and #include Command..........ccccueieiuieiiiiiiniiiiiiieeieieeeeieeesecteeesreeesesseesssssessssessssssssseesssssesnns 3-3
System Header FIlescoeiiiiiiiiiiiiiiiiiiitccttttcccc ettt 3-3

CCES 2.9.0 Assembler and Preprocessor Manual vii

User Header FlleS .. 3-3

Sequence Of TOKENS «...co.uivuiiiiiiiiiiiiiiiiictt ettt 34
INCIUdE Path SEarchi.......uvviieiiiiiiiiiiiieeecccccctttteee ettt e e e ee e sassaareeeeeeesessssssssseeeeeesesssssssseesssessnnnnns 34
WEItING MACTOS...eiiiniiiiiiiiiiiiiiiiiicitcct bbb s s ab s s ab e s e aba s s abeeesabesssanee s 3-5
Macro Definition and Usage Guidelines...........ccouevuiriiriiiiiiniininininiiiiiiiciiiccsnneneeenens 3-5
Examples of Multi-Line Code Macros With Arguments........cccceeveriiiiniiniinicnininiiniinneneneneinenesnesnens 3-8
Debugging MAaCIOScviuiiuiniiiiiiiiiiiicicct bbb bbb b ns 3-8
Using Predefined Preprocessor Macrosoveveiiviiniiiiiiiiiiniiniitcncscsiessesssnsesessessessessssssessessessesaes 3-9
Specifying Preprocessor OPtions..........cvcvereiiiiiiiniinininiiiieeent e se s s s essenens 3-10
Preprocessor Command Reference..........ccuovviviiviriiiiiiiniiniininiiiiiiiiiccnentctccsee et 3-10
Preprocessor Commands and OPerators..........cecueueeuerueririitinienienienentntetestesseseseseeseessessessessesseessessens 3-11
FEAEEINE coeeeeeeeiiieeeeeee ettt ceeee ettt e e e e e e e s st s sasa s s e e eeeees s s s s s aaaeeeeeeesssasbaaaaaeeeeeeansrraaaraeeeeeeenarrrraraeeeeas 3-11
2 11 U 3-12
FERISE wevveeeeeeeeeeteee et eeee e e ettt eee et aa e e e e e e e e b aara—aaeeeee e b bbb aaaae et eeaarraararaaeeeeeaarrrrraaaaaeeeeeanrrraararaeens 3-13
T £ USROS 3-13
FEEITOT 1eveeeieeeeeeiitrteeeeeeeeeeeissateeeeeeeesaesssssaaaeeeeeasssssssssaaaesessssssssssssaaeeessessssssssteeeseesssssssssseseeessassssssssseeeeeees 3-14
FIE oottt e e te e e e e e a e e e e b a e e e a bt e e tesaba et ee bt e e e ee bt e e eeaabaeeeeaabareeeeabrreseenrraeeeeerrraes 3-14
3 e 1= T 3-15
3T 1T [SO RP 3-15
FANCIUAE oottt e e e ee e baab e e e e eeeeesssssssaeeeeesesssssssssasaaeeeeesssssssssaaesssesessssssreneees 3-15
FIINIE 1eeereeeecieeeecte e ettt e e stte e e ete e e et e e s stae s e bt e e e ta e e e aae e e baeae bt e e et et e e bt e e e b e e aa bt e e e saeeebaeearaeeeraeeesaeeeaaeenraeans 3-16

i o) Va1 OO 3-17
N 1V [TR R URRRRRR PP 3-17
FWAITUIE «.cvveetiieiecite ettt ettt et et e e e e e be e e ab e e bs e e ab s e bs e e b s e be e e b s e e bs s e bseesbs e bseesbeeebneeabs e sneeaneenns 3-17

(ALGUITIENT) «oovviviiniiniiiiiiiincit ettt et bbb bbb s b e b s e b e b e b e b e s b e s b s e bb e b e b e b e sassassnsens 3-18
H# (CONCATENALE) veveeeeeeeeeeirrrrereeeeeeeeeeeisreeeeeeeeesesasssssssessessesasssssssssseesesassssssssssssessssassssssssessssesessssssssssesens 3-18

? (Generate a unique label)cocooviiiiiiiiiiiiiiiiiiii e 3-19
Variable-Length Argument Definitions.........ccocvvviiviiiiinininiiiiiiiiiiicc e 3-20
Preprocessor Command-Line Reference........cccoceviiiiiiniiniininiiinniiiiiiniiiiiicicncncntcncncscsencenenens 3-20
Running the Preprocessor.... ..ottt ae s ae e 3-21
Preprocessor Command-Line SWitchesccccoveiviiriiiiiiiiniiiiiiiiiiiiiiinccctcccceree e 3-21

viii CCES 2.9.0 Assembler and Preprocessor Manual

) LT L O 3-23

28] itiieereeeeeerreeereereeeereeseeeeseeseeseeesssesssesssesesessaesssessaesseeessesseeessesseesseesieesieeeieesiessiessieesieeeiessieesieeeieeriensaeees 3-23
e AN 3-23
2/ e e et e et e s e e e e s e e e e e e eseaeaeeeeeaaaeeaaeeaaeeaaeaeeeaeeeeaeeeaeeeeeeeeeeereeeeeeeeeeeeeereeeeeeereeeeeeeees 3-23
rCS] ettt ettt e et e b ————e ettt et et b ———————eeetettata—————_teetttarat————__tetttarana—————tetetrrrrrnnnaeseeees 3-23
1 | USRS 3-23
3D 3N e Yo c o T (< o [T T T RRT 3-24
-dependency-add-target........cocueiiiiiiiriininiiiiiii s 3-24
-expand-symbolic-linKs......cc.cocuiiiniiiiinininiiiiiiiic s 3-24
-expand-wWindows-ShOITCULScccuiviiiiiiiiiiiiiiiictctr ettt sr s sne s 3-24
~gnU-Style-dePendenciescoiiiiviiriiniiniiiiiiii e 3-24
SREIP] ettt bbb a et n s 3-24
T ttteeeeeeeeeerreeeeeeeeeeeeir——aaeeeeteeaaa—————aaeeeeeeaa s baaaaaaeeeeaaa s aaaaaaaeeeeeeaanaaaaraaaeeeeeaaasrraaareeeeeeeaansranrreeeeesaanen 3-24
SIAIEECTOTY ettt e b e s st 3-24
PPN 3-25
B Y USROS 3-25
1Y 1Y SRR 3-26
Y (O3 113 B Yo s LTSRN 3-26
Y L 1 (= 1T T 1 1 SRS R SRRUTTR 3-26
20 FHLENAIMIE ..ottt ettt e e e are e ee e br e e e e et ar e e e e b b e e e e e aaaeeee s b b e e e e e s b b e e e e rareeeeanraaeeesernraes 3-26
18 6 14T 2O 3-26
SEOKEINIZE-AOT cvvveieiiiiiiiiiiieeee ettt e eeeerbber e e e e e eesssasassaeeeeeesssssssssseeeeeeeessssssssssseeesesesssssssseeassesannes 3-26
0 4P Vs s 1PN 3-26
IS 407 Y1 3-27
SVEESION 1eeeeeeeeeeeeereeeeseeseeesseesesassesssessessssessesssesssesssesssessseessesssessseeseeeeseeseenssenees 3-27
SV eeetttuueeeeetetertaran———eeeetetaraat__—aeteeetartanra—atetearetarnrnnateeeteettstntnnaaeetetertararanaeeteeeererantnnaaeeeeearerenrrnnnesieeans 3-27
CWIUINIDET «evvvviiieiiiiiciieeeee ettt eeeeetrbe e e e e e ee e asas s e e eeeeeesssssssssaeeeeeeessssssrarreeeeeeessnsrarrreaeeeeannns 3-27
SWWAITLe1uuuueeereeeeeernnenneeeseeessesssssnsnessesesssssssssnsesesesssssssssnsssessesesssssssnssessesssssssssnnnsesessssssasssnnessessssssnsnnnnsnsesans 3-27
2 ¥ 1 <Y 5 ¢) TN 3-27

CCES 2.9.0 Assembler and Preprocessor Manual ix

Preface

1 Preface

Thank you for purchasing CrossCore® Embedded Studio (CCES), Analog Devices development software for Black-
fin®, Blackfin+®, SHARC®, and SHARC+® processors.

Purpose of This Manual

The Assembler and Preprocessor Manual contains information about the assembler and preprocessor utilities for the

following Analog Devices processor families: Blackfin (ADSP-BFxxx) and SHARC (ADSP-21xxx/SC5xx).

The manual describes how to write assembly programs for these processors and provides reference information about
related development software. It also provides information on new and legacy syntax for assembler and preprocessor
directives and comments, as well as command-line switches.

Intended Audience

The primary audience for this manual is a programmer who is familiar with Analog Devices processors. This manual
assumes that the audience has a working knowledge of the appropriate processor architecture and instruction set.
Programmers who are unfamiliar with Analog Devices processors can use this manual, but should supplement it
with other texts (such as the appropriate hardware reference and programming reference manuals) that describe your
target architecture.

Manual Contents

The manual consists of:
* Assembler

Provides an overview of the process of writing and building assembly programs. It also provides information
about assembler switches, expressions, keywords, and directives.

* Preprocessor

Provides procedures for using preprocessor commands within assembly source files as well as the preprocessor's
command-line interface options and command sets.

CCES 2.9.0 Assembler and Preprocessor Manual 1-1

Technical Support

Technical Support

You can reach Analog Devices processors and DSP technical support in the following ways:

Post your questions in the processors and DSP support community at EngineerZone®:
http://ez.analog.com/community/dsp
Submit your questions to technical support directly at:

http://www.analog.com/support

E-mail your questions about processors, DSPs, and tools development software from CrossCore Embedded Stu-
dio or VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to processor.tools.support@analog.com and automatical-
ly attaches your CrossCore Embedded Studio or Visual DSP++ version information and 1icense.dat file.

E-mail your questions about processors and processor applications to:
processor.tools.support@analog.com

processor.china@analog.com

Contact your Analog Devices sales office or authorized distributor. Locate one at:
http://www.analog.com/adi-sales

Send questions by mail to:

Analog Devices, Inc.
Technology Way

P.O. Box 9106

Norwood, MA 02062-9106
USA

Supported Processors

The CCES assembler and preprocessor support the following processor families from Analog Devices.

Blackfin® Processors

ADSP-BF504, ADSP-BF504F, ADSP-BF506F, ADSP-BF512, ADSP-BF514, ADSP-BF516, ADSP-BF518, ADSP-
BF522, ADSP-BF523, ADSP-BF524, ADSP-BF525, ADSP-BF526, ADSP-BF527, ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538, ADSP-BF539, ADSP-BF542, ADSP-
BF542M, ADSP-BF544, ADSP-BF544M, ADSP-BF547, ADSP-BF547M, ADSP-BF548, ADSP-BF548M, ADSP-
BF549, ADSP-BF549M, ADSP-BF561, ADSP-BF592-A, ADSP-BF606, ADSP-BF607, ADSP-BF608, ADSP-
BF609, ADSP-BF700, ADSP-BF701, ADSP-BF702, ADSP-BF703, ADSP-BF704, ADSP-BF705, ADSP-BF706,
ADSP-BF707 , ADSP-BF715, ADSP-BF716, ADSP-BF718, ADSP-BE719

CCES 2.9.0 Assembler and Preprocessor Manual

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.tools.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales

Product Information

SHARC® Processors

ADSP-21160, ADSP-21161, ADSP-21261, ADSP-21262, ADSP-21266, ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365, ADSP-21366, ADSP-21367, ADSP-21368, ADSP-21369, ADSP-21371,
ADSP-21375, ADSP-21467, ADSP-21469, ADSP-21477, ADSP-21478, ADSP-21479, ADSP-21483,
ADSP-21486, ADSP-21487, ADSP-21488, ADSP-21489, ADSP-21562, ADSP-21563, ADSP-21565,
ADSP-21566, ADSP-21567,ADSP-21569, ADSP-21571, ADSP-21573, ADSP-21583, ADSP-21584,
ADSP-21587, ADSP-SC570, ADSP-SC571, ADSP-SC572, ADSP-SC573, ADSP-SC582, ADSP-SC583, ADSP-
SC584, ADSP-SC587, ADSP-SC589

Product Information

Product information can be obtained from the Analog Devices website and the CCES online help.

Analog Devices Website

The Analog Devices website, http://www.analog.com, provides information about a broad range of products—ana-
log integrated circuits, amplifiers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to http://www.analog.com/processors/techni-
cal_library. The manuals selection opens a list of current manuals related to the product as well as a link to the
previous revisions of the manuals. When locating your manual title, note a possible errata check mark next to the
title that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices website that allows customization of a web page to
display only the latest information about products you are interested in. You can choose to receive weekly e-mail
notifications containing updates to the web pages that meet your interests, including documentation errata against
all manuals. MyAnalog.com provides access to books, application notes, data sheets, code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail address.

EngineerZone

EngineerZone is a technical support forum from Analog Devices, Inc. It allows you direct access to ADI technical
support engineers. You can search FAQs and technical information to get quick answers to your embedded process-
ing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also use this
open forum to share knowledge and collaborate with the ADI support team and your peers. Visit http://
ez.analog.com to sign up.

Notation Conventions

Text conventions used in this manual are identified and described as follows. Additional conventions, which apply
only to specific chapters, can appear throughout this document.

CCES 2.9.0 Assembler and Preprocessor Manual 1-3

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://ez.analog.com
http://ez.analog.com

Notation Conventions

Example

Description

File > Close

Titles in bold style indicate the location of an item within the CrossCore Embedded Studio IDE’s
menu system (for example, the Close command appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly brackets and separated by vertical
bars; read the example as this or that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and separated by vertical bars; read the
example as an optional this or that.

[this, ..]

Optional item lists in syntax descriptions appear within brackets delimited by commas and terminated
with an ellipsis; read the example as an optional comma-separated list of this.

.SECTION

Commands, directives, keywords, and feature names are in text with letter gothic font.

filename

Non-keyword placeholders appear in text with letter gothic font and italic style format.

NOTE:

NOTE: For correct operation, ...

A note provides supplementary information on a related topic. In the online version of this book, the
word NOTE: appears instead of this symbol.

CAUTION:

CAUTION: Incorrect device operation may result if ...
CAUTION: Device damage may result if ...

A caution identifies conditions or inappropriate usage of the product that could lead to undesirable
results or product damage. In the online version of this book, the word CAUTION: appears instead of
this symbol.

ATTENTION:

ATTENTION: Injury to device users may result if ...

A warning identifies conditions or inappropriate usage of the product that could lead to conditions
that are potentially hazardous for devices users. In the online version of this book, the word ATTEN-
TION: appears instead of this symbol.

1-4

CCES 2.9.0 Assembler and Preprocessor Manual

Assembler

2 Assembler

This chapter provides information on how to use the assembler to develop and assemble programs for SHARC
(ADSP-21xxx/ADSP-SCxxx) and Blackfin (ADSP-BFxxx) processors.

The chapter contains the following sections:
* Assembler Guide
Describes how to develop new programs using the processors' assembly language.
* Assembler Syntax Reference

Provides the assembler rules and conventions of syntax used to define symbols (identifiers), expressions, and to
describe different numeric and comment formats.

* Assembler Command-Line Reference

Provides reference information on the assembler's switches and conventions.

Assembler Guide

Using CCES, you can run the assembler drivers for each processor family from the Integrated Development Envi-
ronment (IDE) or from an operating system command line. The assembler processes assembly source, data, and
header files to produce an object file. Assembler operations depend on two types of controls: assembler directives
and assembler switches.

CCES contains the following assembler drivers.
* easm2lk.exe (for SHARC processors)
* easmblkfn.exe (for Blackfin processors)

This section describes how to develop new programs in the Analog Devices processor assembly language. It provides
information on how to assemble your programs from the operating system's command line.

Software developers using the assembler should be familiar with these topics:
¢ Writing Assembly Programs
* Using Assembler Support for C Structs

CCES 2.9.0 Assembler and Preprocessor Manual 2-1

Assembler Guide

* Preprocessing a Program

* Using Assembler Feature Macros
* Generating Make Dependencies
* Reading a Listing File

* Specifying Assembler Options

For information about a processor's architecture, including the instruction set used when writing assembly pro-
grams, refer to the Hardware Reference and Programming Reference for the appropriate processor.

Assembler Overview

The assembler processes data from assembly source (. asm), data (. dat), and header (. h) files to generate object
files in Executable and Linkable Format (ELF), an industry-standard format for binary object files. The object file
has a . do7j extension.

In addition to the object file, the assembler can produce a listing file (. 1st) that shows the correspondence be-
tween the binary code and the source.

Assembler switches are specified from the IDE or from the command line used to invoke the assembler. These
switches allow you to control the assembly process of source, data, and header files. Use these switches to enable and
configure assembly features, such as search paths, output file names, and macro preprocessing. For more informa-
tion, see Assembler Command-Line Reference.

You can also set assembler options via the assembler pages of the Zool Settings dialog box in the IDE. For more
information, see Specifying Assembler Options.

Writing Assembly Programs

Assembler directives are coded in assembly source files. The directives allow you to define variables, set up hardware
features, and identify program sections for placement within processor memory. The assembler uses directives for
guidance as it translates a source program into object code.

Write assembly language programs using the IDE editor or any editor that produces text files. Do not use a word
processor that embeds special control codes in the text. Use an . asm extension to source file names to identify them
as assembly source files.

The Assembler Input and Output Files figure shows a graphical overview of the assembly process. The figure shows
the preprocessor processing the assembly source (. asm) and header (. h) files.

2-2 CCES 2.9.0 Assembler and Preprocessor Manual

Writing Assembly Programs

Assembly source file
(.asm)

Preprocessor

Data initialization file Header file
(.dat) (:h)

Intermediate
preprocessed
file (is

Assembler

Listing file
(.Ist)

Object file
(-obj)

Figure 2-1: Assembler Input and Output Files

Assemble your source files from the IDE or using any mechanism, such as a batch file or makefile, that supports
invoking an appropriate assembler driver with a specified command-line command. By default, the assembler proc-
esses an intermediate file to produce a binary object file (. doJj) and an optional listing file (. 1st).

Object files produced by the processor assembler may be used as input to the linker and archiver. You can archive
the output of an assembly process into a library file (. d1b), which can then be linked with other objects into an
executable. Use the linker to combine separately assembled object files and objects from library files to produce an
executable file. For more information about the linker and archiver, refer to the Linker and Utilities Manual .

A binary object file (. doj) and an optional listing (. 1st) file are final results of the successful assembly .

The assembler listing file is a text file read for information on the results of the assembly process. The listing file also
provides information about the imported C data structures. The listing file tells which imports were used within the
program, followed by a more detailed section; see the IMPORT, Provide Structure Layout Information directive.
The file shows the name, total size, and layout with offset for the members. The information appears at the end of
the listing. You must specify the -l filename switch to produce a listing file.

The assembly source file may contain preprocessor commands, such as #include, that cause the preprocessor to
include header files (. h) into the source program. The preprocessor's only output, an intermediate source file
(.1s), is the assembler's primary input. In normal operation, the preprocessor output is a temporary file that is
deleted during the assembly process.

Program Content

Assembly source file statements include assembly instructions, assembler directives, and preprocessor commands.

CCES 2.9.0 Assembler and Preprocessor Manual 2-3

Program Content

Assembly Instructions

Instructions adhere to the processor's instruction set syntax, which is documented in the processor's Programming
Reference. Each instruction line must be terminated by a semicolon (;). The Assembly Code File Structure for
SHARC Processors figure in Code File Structure for SHARC Processors shows a sample assembly source file.

To mark the location of an instruction, place an address label at the beginning of an instruction line or on the pre-
ceding line. End the label with a colon (:) before beginning the instruction. Your program can then refer to this
memory location using the label instead of an address. The assembler places no restriction on the number of charac-
ters in a label.

Labels are case sensitive. The assembler treats “outer” and “Outer” as unique labels. For example (in Blackfin pro-
Cessors),

outer: [I1] = RO;
Outer: R1 = 0X1234;
JUMP outer; // jumps back 2 instructions

Assembler Directives

Assembler directives begin with a period (.) and end with a semicolon (;). The assembler does not differentiate
between directives in lowercase or uppercase.

NOTE: This manual prints directives in uppercase to distinguish them from other assembly statements.

Example (Blackfin processors):

.SECTION datal;
.BYTE2 sqrt coeff[2] = 0x5D1D, OxA9ED;

For details, see Assembler Directives.

Preprocessor Commands

Preprocessor commands begin with a pound sign (#) and extend to the end of the current line. The pound sign
must be the first non-white space character on the line containing the command. If the command is longer than one
line, use a backslash (\) at the end of the line to continue the command onto the next line.

Do not put any characters between the backslash and the end of the line. Unlike assembler directives, preprocessor
commands are case sensitive and must be lowercase. For example,

#include "string.h"
#define MAXIMUM 100

For more information, see Writing Preprocessor Commands. For a list of the preprocessor commands, see Preproces-
sor Command Reference.

Program Structure

An assembly source file defines code (instructions) and data. It also organizes the instructions and data to allow the
use of the linker description file (. 1df) to describe how code and data are mapped into the memory on your target
processor. The way you structure your code and data into memory should follow the memory architecture of the
target processor.

2-4 CCES 2.9.0 Assembler and Preprocessor Manual

Writing Assembly Programs

Use the . SECTION directive to organize the code and data in assembly source files. The . SECTION directive
defines a grouping of instructions and data that occupies contiguous memory addresses in the processor. The name
given in a . SECTION directive corresponds to an input section name in the linker description file.

The Suggested Input Section Names for a SHARC .ldf File and Suggested Input Section Names for a Blackfin.ldf File
tables show suggested input section names for data and code that can be used in your assembly source for various
processors. Using these predefined names in your sources makes it easier to take advantage of the default Linker
Description File, LDE (with extension . 1df) included in your installation. However, you may also define your
own sections. For information on . 1df files, refer to the Linker and Utilities Manual.

Table 2-1: Suggested Input Section Names for a SHARC .1df File

. SECTION Name Description

seg_pmco A section in program memory that holds code

seg_dmda A section in data memory that holds data

seg pmda A section in program memory that holds data

seg_rth A section in program memory that holds system initialization code and interrupt service routines

seg_swco A section in short word memory that holds instructions encoded for execution from short word memory
NOTE: Applies to the ADSP-214xx processors only.

Table 2-2: Suggested Input Section Names for a Blackfin .1df File

. SECTION Name Description

datal A section that holds data

program A section that holds code

constdata A section that holds global data (which is declared as constant) and literal constants such as strings and array
initializers

Use sections in a program to group elements to meet hardware constraints. For example, the ADSP-BF533 processor
has a separate program and data memory in Level 1 memory only. Level 2 memory and external memory are not
separated into instruction and data memory.

To group the code that resides in off-chip memory, declare a section for that code and place that section in the se-
lected memory with the linker.

The Assembly Code File Structure for SHARC Processors figure in Code File Structure for SHARC Processors and the
Assembly Source File Structure for Blackfin Processors figure in Code File Structure for Blackfin Processors describe the
assembly code file structure for each processor family. They show how a program divides into sections that match
the memory segmentation of a DSP system. Notice that an assembly source may contain preprocessor commands
(such as #include to include other files in source code), #1 fdef (for conditional assembly), or #define (to
define macros). Assembler directives, such as . VAR (or . BYTE for Blackfin processors), appear within sections to
declare and initialize variables.

CCES 2.9.0 Assembler and Preprocessor Manual 2-5

Program Structure

Code File Structure for SHARC Processors

The Assembly Code File Structure for SHARC Processors figure demonstrates assembly code file structure for
SHARC processors.

Preprocessor Commands ———Jp» #include "const.h"
#define Pl 3.14159

Assembler Directives —_— .PRECISION 40;
.ROUND_ZERO;

.SECTION/DM seg_dmda;

VAR fxd[10] = 1,2,3,4,5,6,7,8,9,0xA;
Data Section VAR rad;
.SECTION/PM seg_pmda;
.VAR fit[5] = PI,P1/2,1.0,2.0,2.0/3.0;

f .SECTION/PM seg_pmco;
* instructions */
Assembler Label
10 = fxd;
MO=1;
18 = flIt;
Code Section < M8 =1;

RO = LENGTH(flt);

LCNTR = RO, DO this_loop UNTIL LCE;
RO = DM(I0,M0), R1 = PM(I8,M8);
R2 = FIX F1 BY RO;

this_loop:
R3=R3 + R2;
o DM(rad) = R3;

Preprocessor Commands —————— #ifdef duplicate_write
for Conditional Assembly DM(rad) = R3;
#endif

Assembler Label

Figure 2-2: Assembly Code File Structure for SHARC Processors

Looking at figure, notice that the . PRECISION and . ROUND ZERO directives inform the assembler to store
floating-point data with 40-bit precision and to round a floating-point value to a closer-to-zero value if it does not

fit in the 40-bit format.

Code File Structure for Blackfin Processors

The Assembly Code File Structure for Blackfin Processors figure demonstrates the Blackfin processor's assembly code
file structure and shows how a program divides into sections that match the memory segmentation of Blackfin pro-

CESSOTrsS.

2-6 CCES 2.9.0 Assembler and Preprocessor Manual

Writing Assembly Programs

Data Section —— P _SECTION constdata;
Assembler Directive — » VAR bufferl [6] = "bufferl.dat";
Data Section —» .SECTION datal;

Assembler Directive —— VAR buffer2[0x100];

Preprocessor Commands ~——————— #ifdef INCLUDE_BUFFER3
for Conditional Assembly VAR buffer3[0x100];
#endif

Code (program) Section —— P .SECTION program;
.global my_function;

Assembler Label —— P my_function:
Assembly Instructions —_— PO =RO;
10 =R1;
P1=19;
RO =0;
R1 = [PO++];
R2 =[10++];
LSETUP (begin_loop, end_loop) LCO = P1;

begin_loop:
R1*=R2;
R2 = [I0++];
end_loop:
RO= RO + R1 (NS) || R1 = [PO++] || NOP;

R1*=R2;
RO =RO0 +R1;

Assembler Label —— P my_function.end:

Figure 2-3: Assembly Source File Structure for Blackfin Processors
Program Interfacing Requirements

You can interface your assembly program with a C or C++ program. The C/C++ compiler supports two methods for
mixing C/C++ and assembly language:

* Embedding assembly code in C or C++ programs
* Linking together C or C++ and assembly routines

To embed (inline) assembly code in your C or C++ program, use the asm () construct. To link together programs
that contain C/C++ and assembly routines, use assembly interface macros. These macros facilitate the assembly of
mixed routines. For more information about these methods, see the C/C++ Compiler and Library Manual for the
appropriate target processor.

When writing a C or C++ program that interfaces with assembly, observe the same rules that the compiler follows as
it produces code to run on the processor. These rules for compiled code define the compiler's run-time environ-
ment. Complying with a run-time environment means following rules for memory usage, register usage, and varia-
ble names.

The definition of the run-time environment for the C/C++ compiler is provided in the C/C++ Compiler and Library
Manual for the appropriate target processor, which also includes a series of examples to demonstrate how to mix
C/C++ and assembly code.

Using Assembler Support for C Structs

The assembler supports C t ypedef/struct declarations within assembly source. These assembler data direc-
tives and built-ins provide high-level programming features with C structs in the assembler.

Data Directives:

CCES 2.9.0 Assembler and Preprocessor Manual 2-7

Assembler Guide

* . IMPORT - see .IMPORT, Provide Structure Layout Information
e _EXTERN STRUCT - see .EXTERN STRUCT, Refer to a Struct Defined Elsewhere
* _STRUCT - see .STRUCT, Create a Struct Variable
C Struct in Assembly Built-Ins:
* OFFSETOF (struct/typedef, field) - see OFFSETOF Built-In Function
* SIZEOF (struct/typedef) -see SIZEOF Built-In Function
Struct References:
* struct->field - see Struct References

For more information on C struct support, refer to the ~-flags-compiler command-line switch and Reading a
Listing File.

C structs in assembly features accept the full set of legal C symbol names, including those that are otherwise reserved
in the appropriate assembler. For example,

* In the SHARC assembler, I1, I2, and I3 are reserved keywords, but it is legal to reference them in the con-
text of the C struct in assembly features.

* In the Blackfin assembler, as an example, "X" and "Z" are reserved keywords, but it is legal to reference them in

the context of the C struct in assembly features.

The examples below show how to access the parts of the struct defined in the header file, but they are not complete
programs on their own. Refer to your DSP project files for complete code examples.

Blackfin Example:

.IMPORT "Coordinate.h";
/* typedef struct Coordinate {

int X;

int Y;

int Z;

} Coordinate;*/

.SECTION datal;
.STRUCT Coordinate Coordl = {

X =1,
Y = 4,
zZ =1

bi
.SECTION program;

PO0.1 = Coordl->X;
PO.h = Coordl->X;
Pl.1 = Coordl->Y;
Pl.h = Coordl->Y;
P2.1 = Coordl->%;
P2.h = Coordl->%;

2-8 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Guide

P3.1 = Coordl+OFFSETOF (Coordinate, Z) ;
P3.h = Coordl+OFFSETOF (Coordinate, Z) ;

SHARC Example:

.IMPORT "Samples.h";
/% typedef struct Samples {
int I1l;
int I2;
int I3;
} Samples; */
.SECTION/DM seg dmda;
.STRUCT Samples Samplel ={
I1 = 0x1000,
I2 0x2000,
I3 0x3000
}:
.SECTION/PM seg pmco;
doubleMe:
/* The code may look confusing, but I2 can be used both
as a register and a struct member name */
B2 Samplel;
M2 OFFSETOF (Samplel, I2) ;
RO = DM (M2,1I2);
RO RO+RO;
DM (M2,I2) = RO;

NOTE: For better code readability, avoid using . STRUCT member names that have the same spelling as assembler
keywords. This may not always be possible if your application needs to use an existing set of C header files.

Preprocessing a Program

The assembler utilizes a preprocessor that allows the use of C-style preprocessor commands in your assembly source
files. The preprocessor automatically runs before the assembler unless you use the assembler's —sp (skip preproces-
sor) switch. The Preprocessor Command Summary table, Preprocessor Commands and Operators in the Preproces-
sor chapter lists preprocessor commands and provides a brief description of each command.

You can see the command line that the assembler uses to invoke the preprocessor by adding the -v[erbose] switch to
the assembler command line or by selecting a project in any project navigation view and choose Properties > C/C++
Build > Settings > Tool Settings > CrossCore Assembler > General > Generate verbose output (-v). See Specifying
Assembler Options.

Use preprocessor commands to modify assembly code. For example, you can use the #include command to in-
clude other source files that fill memory, load configuration registers, or set up processor parameters. You can use the
#define command to define constants and aliases for frequently used instruction sequences. The preprocessor re-
places each occurrence of the macro reference with the corresponding value or series of instructions.

For example, the MAXTMUM macro from #define MAXIMUM 100 is replaced with the number 100 during

preprocessing.

CCES 2.9.0 Assembler and Preprocessor Manual 2-9

Assembler Guide

For more information on the preprocessor command set, see the Preprocessor Command Reference, Preprocessor
Command-Line Reference in the Preprocessor chapter. For more information on the preprocessor usage, see -flags-

pp -optl[, -opt2...].

NOTE: There is one important difference between the assembler preprocessor and compiler preprocessor. The as-
sembler preprocessor treats the “.” character as part of an identifier. Thus, . EXTERN is a single identifier
and does not match a preprocessor macro EXTERN. This behavior can affect how macro expansion is done
for some instructions.

For example,

#define EXTERN ox123
.EXTERN Coordinate; /* EXTERN not affected by macro */

#define MY REG PO
MY REG.1 = 14; /* MY REG.1 is not expanded; */
/* "." is part of token */

Using Assembler Feature Macros

The assembler automatically defines preprocessor macros for properties such as the source language, the architecture,
and the specific processor. These feature macros allow programmers to use preprocessor conditional commands to
configure the source for assembly based on the context.

The Feature Macros for Blackfin Processors table lists the feature macros for the Blackfin processors. The Feature
Macros for SHARC Processors table lists the feature macros for the ARM and SHARC processors.

Table 2-3: Feature Macros for Blackfin Processors

Macro Definition

-D LANGUAGE ASM=1 Always present

-D_ ADSPBLACKFIN =1 Always present

-D__ ADSPLPBLACKFIN_ Defined to 1 for ADSP-BF5xx processors, 0x110 for ADSP-BF60x processors,

and 0x220 for ADSP-BF7xx processors

-D_ NUM CORES Defined to the number of cores on the target processor, e.g. 1 for ADSP-BF532
and 2 for ADSP-BF561

-D ADSPBF504 =1 Present when running easmblkfn -proc ADSP-BF504
-D__ADSPBF50x =1
-D_ ADSPBF5xx =1
-D__ ADSPBF506F FAMILY =1

-D__ ADSPBF504F =1 Present when running easmblkfn -proc ADSP-BF504F
-D__ADSPBF50x =1
-D__ ADSPBF5xx__ =1

-D__ ADSPBF506F FAMILY =1

2-10 CCES 2.9.0 Assembler and Preprocessor Manual

Table 2-3: Feature Macros for Blackfin Processors (Continued)

Assembler Guide

Macro Definition

-D_ ADSPBF506F =1 Present when running easmblkfn -proc ADSP-BF506F
-D ADSPBF50x =1

-D__ADSPBF5xx__ =1

-D__ ADSPBF506F FAMILY =1

-D ADSPBF512 =1 Present when running easmblkfn -proc ADSP-BF512
-D__ADSPBF51x_ =1

-D_ ADSPBF5xx =1

-D__ADSPBF518 FAMILY =1

-D__ ADSPBF514 =1 Present when running easmblkfn -proc ADSP-BF514
-D__ADSPBF51x =1

-D__ADSPBF5xx__ =1

-D_ADSPBF518 FAMILY =1

-D ADSPBF516 =1 Present when running easmblkfn -proc ADSP-BF516
-D _ ADSPBF51x =1

-D__ ADSPBF5xx =1

-D__ADSPBF518 FAMILY =1

-D ADSPBF518 =1 Present when running easmblkfn -proc ADSP-BF518
-D__ADSPBF51x__ =1

-D ADSPBFS5xx =1

-D__ADSPBF518 FAMILY =1

-D_ ADSPBF522 =1 Present when running easmblkfn -proc ADSP-BF522
-D_ ADSPBF52x =1

-D__ADSPBF52xLP__ =1

-D_ ADSPBF5xx =1

-D__ ADSPBF526 FAMILY =1

-D_ ADSPBF523 =1 Present when running easmblkfn -proc ADSP-BF523
-D__ADSPBF52x_ =1

-D__ADSPBF5xx__ =1

-D_ ADSPBF527 FAMILY =1

-D ADSPBF524 =1 Present when running easmblkfn -proc ADSP-BF524

-D__ADSPBF52x =1

-D__ ADSPBF52xLP_ =1
-D__ADSPBF5xx_ =1
-D__ADSPBF526 FAMILY =1

CCES 2.9.0 Assembler and Preprocessor Manual

2-11

Assembler Guide

Table 2-3: Feature Macros for Blackfin Processors (Continued)

Macro Definition

-D__ ADSPBF525 =1 Present when running easmblkfn -proc ADSP-BF525
-D ADSPBF52x =1
-D__ ADSPBF5xx__ =1
-D__ADSPBF527 FAMILY =1

-D ADSPBF526 =1 Present when running easmblkfn -proc ADSP-BF526
-D__ ADSPBF52x =1

-D__ ADSPBF52xLP_ =1

-D__ ADSPBF5xx =1

-D__ ADSPBF526 FAMILY =1

-D_ ADSPBF527 =1 Present when running easmblkfn -proc ADSP-BF527
-D__ ADSPBF52x =1
-D_ ADSPBF5xx_ =1
-D__ ADSPBF527 FAMILY =1

-D__ ADSPBF531 =1 Present when running easmblkfn -proc ADSP-BF531
-D_ ADSP21531 =1
-D__ADSPBF53x__ =1
-D_ ADSPBF5xx =1
-D__ ADSPBF533 FAMILY =1

-D__ ADSPBF532 =1 Present when running easmblkfn -proc ADSP-BF532
-D_ ADSP21532 =1
-D__ADSPBF53x__ =1
-D ADSPBF5xx =1
-D__ADSPBF533 FAMILY =1

-D_ ADSPBF533 =1 Present when running easmblkfn -proc ADSP-BF533
-D__ADSP21533 =1
-D__ ADSPBF53x__ =1
-D_ ADSPBF5xx_ =1
-D_ ADSPBF533 FAMILY =1

-D_ ADSPBF534 =1 Present when running easmblkfn -proc ADSP-BF534
-D__ ADSPBF53x =1
-D__ ADSPBF5xx__ =1
-D_ ADSPBF537 FAMILY =1

2-12 CCES 2.9.0 Assembler and Preprocessor Manual

Table 2-3: Feature Macros for Blackfin Processors (Continued)

Assembler Guide

Macro Definition

-D_ ADSPBF536_ =1 Present when running easmblkfn -proc ADSP-BF536
-D_ ADSPBF53x =1

-D__ADSPBF5xx__ =1

-D__ADSPBF537 FAMILY =1

-D ADSPBF537 =1 Present when running easmblkfn -proc ADSP-BF537
-D__ADSPBF53x__ =1

-D_ ADSPBF5xx =1

-D__ _ADSPBF537 FAMILY =1

-D__ ADSPBF538 =1 Present when running easmblkfn -proc ADSP-BF538
-D__ADSPBF53x =1

-D__ADSPBF5xx__ =1

-D_ ADSPBF538 FAMILY =1

-D__ADSPBF539 =1 Present when running easmblkfn -proc ADSP-BF539
-D_ ADSPBF53x =1

-D__ ADSPBF5xx =1

-D__ADSPBF538 FAMILY =1

-D ADSPBF542 =1 Present when running easmblkfn -proc ADSP-BF542
-D__ADSPBF54x__ =1

-D ADSPBF5xx =1

-D__ _ADSPBF548 FAMILY =1

-D__ ADSPBF542M =1 Present when running easmblkfn -proc ADSP-BF542M
-D__ ADSPBF54x =1

-D__ADSPBF54xM__ =1

-D_ ADSPBF5xx =1

-D__ ADSPBF548M FAMILY =1

-D_ ADSPBF544 =1 Present when running easmblkfn -proc ADSP-BF544
-D__ADSPBF54x_ =1

-D__ADSPBF5xx__ =1

-D_ ADSPBF548 FAMILY =1

-D ADSPBF544M =1 Present when running easmblkfn -proc ADSP-BF544M

-D__ADSPBF54x =1
-D__ ADSPBF54xM =1
-D__ADSPBF5xx_ =1
-D__ADSPBF548M FAMILY =1

CCES 2.9.0 Assembler and Preprocessor Manual

2-13

Assembler Guide

Table 2-3: Feature Macros for Blackfin Processors (Continued)

-D__ADSPBF56x =1
-D_ADSPBF5xx =1
-D__ADSPBF561 FAMILY =1

Macro Definition

-D_ ADSPBF547 =1 Present when running easmblkfn -proc ADSP-BF547
-D_ ADSPBF54x =1

-D__ ADSPBF5xx__ =1

-D__ ADSPBF548 FAMILY =1

-D_ADSPBF547M =1 Present when running easmblkfn -proc ADSP-BF547M
-D__ ADSPBF54x =1

-D_ ADSPBF54xM =1

-D__ ADSPBF5xx =1

-D__ ADSPBF548M FAMILY =1

-D ADSPBF548 =1 Present when running easmblkfn -proc ADSP-BF548
-D__ ADSPBF54x =1

-D_ADSPBF5xx =1

-D ADSPBF548 FAMILY =1

-D__ ADSPBF548M =1 Present when running easmblkfn -proc ADSP-BF548M
-D__ ADSPBF54x =1

-D__ ADSPBF54xM =1

-D ADSPBF5xx =1

-D ADSPBF548M FAMILY =1

-D__ ADSPBF549 =1 Present when running easmblkfn -proc ADSP-BF549
-D__ ADSPBF54x =1

-D__ADSPBF5xx__ =1

-D ADSPBF548 FAMILY =1

-D__ ADSPBF549M_ =1 Present when running easmblkfn -proc ADSP-BF549M
-D_ ADSPBF54x =1

-D__ ADSPBF54xM =1

-D__ADSPBF5xx__ =1

-D_ADSPBF548M FAMILY =1

-D ADSPBF561 =1 Present when running easmblkfn -proc ADSP-BF561

2-14

CCES 2.9.0 Assembler and Preprocessor Manual

Table 2-3: Feature Macros for Blackfin Processors (Continued)

Assembler Guide

-D_ADSPBF70x =1
-D_ ADSPBF7xx =1
-D__ ADSPBF707 FAMILY =1

Macro Definition

-D_ ADSPBF592A =1 Present when running easmblkfn -proc ADSP-BF592-A
-D_ ADSPBF592 =1

-D__ADSPBF59x =1

-D__ ADSPBF5xx__ =1

-D_ ADSPBF592 FAMILY =1

-D_ ADSPBF606_ =1 Present when running easmblkfn -proc ADSP-BF606
-D_ ADSPBF60x =1

-D__ ADSPBF6xx =1

-D__ADSPBF609 FAMILY =1

-D ADSPBF607 =1 Present when running easmblkfn -proc ADSP-BF607
-D__ ADSPBF60x =1

-D_ ADSPBF6xx =1

-D__ADSPBF609 FAMILY =1

-D__ ADSPBF608 =1 Present when running easmblkfn -proc ADSP-BF608
-D__ ADSPBF60x =1

-D__ ADSPBF6xx__ =1

-D_ ADSPBF609 FAMILY =1

-D__ ADSPBF609 =1 Present when running easmblkfn -proc ADSP-BF609
-D ADSPBF60x =1

-D__ ADSPBF6xx =1

-D__ADSPBF609 FAMILY =1

-D ADSPBF700 =1 Present when running easmblkfn -proc ADSP-BF700
-D__ADSPBF70x__ =1

-D_ ADSPBF7xx =1

-D__ADSPBF707 FAMILY =1

-D__ADSPBF701 =1 Present when running easmblkfn -proc ADSP-BF701
-D__ADSPBF70x__ =1

-D__ ADSPBF7xx__ =1

-D_ ADSPBF707 FAMILY =1

-D__ ADSPBF702__ =1 Present when running easmblkfn -proc ADSP-BF702

CCES 2.9.0 Assembler and Preprocessor Manual

2-15

Assembler Guide

Table 2-3: Feature Macros for Blackfin Processors (Continued)

Macro Definition

-D_ ADSPBF703 =1 Present when running easmblkfn -proc ADSP-BF703
-D ADSPBF70x =1
-D__ ADSPBF7xx__ =1
-D__ADSPBF707 FAMILY =1

-D ADSPBF704 =1 Present when running easmblkfn -proc ADSP-BF704
-D__ ADSPBF70x_ =1
-D__ ADSPBF7xx__ =1
-D__ADSPBF707 FAMILY =1

-D__ ADSPBF705 =1 Present when running easmblkfn -proc ADSP-BF705
-D__ADSPBF70x =1
-D__ADSPBF7xx__ =1
-D_ ADSPBF707 FAMILY =1

-D__ ADSPBF706__ =1 Present when running easmblkfn -proc ADSP-BF706
-D_ADSPBF70x =1
-D__ADSPBF7xx__ =1
-D__ADSPBF707 FAMILY =1

-D ADSPBF707 =1 Present when running easmblkfn -proc ADSP-BF707
-D__ADSPBF70x__ =1
-D_ ADSPBF7xx =1
-D__ADSPBF707 FAMILY =1

-D__ADSPBF715 =1 Present when running easmblkfn -proc ADSP-BF715
-D_ ADSPBF71x =1
-D__ ADSPBF7xx__ =1
-D_ ADSPBF716 FAMILY =1

-D__ ADSPBF716__ =1 Present when running easmblkfn -proc ADSP-BF716
-D_ADSPBF71x =1
-D__ ADSPBF7xx__ =1
-D__ADSPBF716 FAMILY =1

-D_ ADSPBF718 =1 Present when running easmblkfn -proc ADSP-BF718
-D__ADSPBF71x__ =1
-D_ ADSPBF7xx =1
-D_ ADSPBF716 FAMILY =1

2-16 CCES 2.9.0 Assembler and Preprocessor Manual

Table 2-3: Feature Macros for Blackfin Processors (Continued)

Assembler Guide

Macro

Definition

-D__ADSPBF719 =1
-D_ADSPBF71x =1
-D_ ADSPBF7xx =1
-D__ ADSPBF716 FAMILY =1

Present when running easmblkfn -proc ADSP-BF719

Table 2-4: Feature Macros for SHARC Processors

Macro

Definition

-D_LANGUAGE_ ASM=1

Always present

-D__ADSP21000 =1

Always present

-D__NUM_CORES__ =1

Defined to the number of cores on the target processor

-D ADSP21160 =1

-D_ 21lex =1

-D__ ADSP2116x =1

-D ADSP211lxx =1

-D_ ADSP21160 FAMILY =1
-D__ ADSPSHARC _=0x110
-D__NUM CORES =1

Present when running easm21K -proc ADSP-21160

-D__ ADSP2116l =1

-D_ 21lex =1

-D_ ADSP2ll6x =1

-D_ ADSP211xx =1
-D__ADSP21161 FAMILY =1
-D__ADSPSHARC _=0x110
-D__ NUM CORES =1

Present when running easm21K -proc ADSP-21161

-D_ ADSP21261 =1

-D_ 2126x =1

-D ADSP2126x =1

-D_ ADSP212xx =1

-D_ ADSP21266 FAMILY =1
-D__ADSPSHARC _=0x110
-D__NUM CORES__ =1

Present when running easm21K -proc ADSP-21261

CCES 2.9.0 Assembler and Preprocessor Manual

2-17

Assembler Guide

Table 2-4: Feature Macros for SHARC Processors (Continued)

Macro Definition

-D_ADSP21262 =1 Present when running easm21K -proc ADSP-21262
-D_ 2126x_ =1
-D__ADSP2126x =1

-D_ ADSP212xx =1
-D__ADSP21266 FAMILY =1
-D__ADSPSHARC _=0x110
-D__NUM CORES__ =1

-D_ ADSP21266_ =1 Present when running easm21K -proc ADSP-21266
D 2126x_ =1
-D__ADSP2126x_ =1

-D_ ADSP212xx =1
-D__ADSP21266 FAMILY =1
-D__ADSPSHARC _=0x110
-D__NUM CORES__ =1

-D ADSP21362 =1 Present when running easm21K -proc ADSP-21362
-D_ 2136x =1

-D_ 213xx =1

-D_ ADSP2136x =1

-D_ ADSP213xx =1

-D_ ADSP21362 FAMILY =1
-D__ADSPSHARC__=0x110
-D__NUM CORES__ =1

-D ADSP21363 =1 Present when running easm21K -proc ADSP-21363
-D_ 2136x =1

-D_ 213xx =1

-D_ ADSP2136x =1

-D_ ADSP213xx =1
-D__ADSP21362 FAMILY =1
-D__ ADSPSHARC _=0x110
-D__NUM CORES__ =1

2-18 CCES 2.9.0 Assembler and Preprocessor Manual

Table 2-4: Feature Macros for SHARC Processors (Continued)

Assembler Guide

Macro

Definition

-D__ ADSP21364 =1

-D_ 2136x =1

-D 213xx =1

-D__ ADSP2136x =1

-D ADSP213xx =1

-D_ ADSP21362 FAMILY =1
-D__ ADSPSHARC _=0x110
-D__NUM CORES =1

Present when running easm21K -proc ADSP-21364

-D__ ADSP21365 =1

-D_ 2136x =1

-D 213xx =1

-D__ ADSP2136x_ =1

-D ADSP213xx =1

-D_ ADSP21362 FAMILY =1
-D__ ADSPSHARC _=0x110
-D__NUM CORES =1

Present when running easm21K -proc ADSP-21365

-D__ ADSP21366_ =1

-D 2136x_ =1

-D_ 213xx =1

-D__ ADSP2136x =1

-D ADSP213xx =1

-D_ ADSP21362 FAMILY =1
-D__ ADSPSHARC _=0x110
-D__NUM CORES =1

Present when running easm21K -proc ADSP-21366

-D_ ADSP21367 =1

-D 2136x_ =1

-D_ 213xx =1

-D_ ADSP2136x =1

-D ADSP213xx =1
-D__ADSP21367 FAMILY =1
-D__ ADSPSHARC _ =0x110
-D__NUM CORES_ =1

Present when running easm21K -proc ADSP-21367

CCES 2.9.0 Assembler and Preprocessor Manual

2-19

Assembler Guide

Table 2-4: Feature Macros for SHARC Processors (Continued)

Macro

Definition

-D__ ADSP21368 =1
-D_ 2136x =1
-D 213xx =1
-D__ ADSP2136x =1
-D ADSP213xx =1

Present when running easm21K -proc ADSP-21368

-D__ADSPSHARC _=0x110
-D__NUM_CORES__ =1

-D_ ADSP21367 FAMILY =1

-D__ ADSPSHARC =0x110

-D NUM CORES =1

-D_ADSP21369 =1 Present when running easm21K -proc ADSP-21369
-D_ 2136x_ =1

-D 213xx =1

-D_ADSP2136x =1

-D ADSP213xx =1

-D__ADSP21367 FAMILY =1

-D__ ADSP21371 =1
-D 2137x__=1
-D_ 213xx =1
-D__ ADSP2137x_ =1
-D ADSP213xx =1

Present when running easm21K -proc ADSP-21371

-D__ADSPSHARC _=0x110
-D__NUM_CORES__ =1

-D_ ADSP21371 FAMILY =1

-D__ ADSPSHARC =0x110

-D NUM CORES =1

-D__ ADSP21375 =1 Present when running easm21K -proc ADSP-21375
-D_ 2137x =1

-D_ 213xx =1

-D__ADSP2137x =1

-D ADSP213xx =1

-D__ADSP21371 FAMILY =1

2-20

CCES 2.9.0 Assembler and Preprocessor Manual

Table 2-4: Feature Macros for SHARC Processors (Continued)

Assembler Guide

Macro

Definition

-D__ ADSP21467 =1

-D_ 2146x =1

-D 214xx =1

-D__ ADSP2146x_ =1

-D ADSP214xx =1

-D_ ADSP21469 FAMILY =1
-D__ ADSPSHARC _=0x140
-D__NUM CORES =1

Present when running easm21K -proc ADSP-21467

-D__ ADSP21469 =1

-D_ 2146x =1

-D 214xx =1

-D__ ADSP2146x =1

-D ADSP214xx =1

-D_ ADSP21469 FAMILY =1
-D__ ADSPSHARC _=0x140
-D__NUM CORES =1

Present when running easm21K -proc ADSP-21469

-D__ ADSP21477 =1

-D_ 2147x =1

-D_ 214xx =1

-D_ ADSP2147x =1

-D ADSP214xx =1

-D_ ADSP21479 FAMILY =1
-D__ ADSPSHARC _=0x147
-D__NUM CORES =1

Present when running easm21K -proc ADSP-21477

-D__ ADSP21478 =1

-D_ 2147x =1

-D_ 214xx =1

-D_ ADSP2147x =1

-D ADSP214xx =1
-D__ADSP21479 FAMILY =1
-D__ ADSPSHARC _=0x147
-D__NUM CORES_ =1

Present when running easm21K -proc ADSP-21478

CCES 2.9.0 Assembler and Preprocessor Manual

2-21

Assembler Guide

Table 2-4: Feature Macros for SHARC Processors (Continued)

Macro

Definition

-D__ ADSP21479 =1
-D_ 2147x_ =1
-D_ 21479 =1
-D__ ADSP2147x =1
-D ADSP214xx =1

Present when running easm21K -proc ADSP-21479

-D__ ADSPSHARC _=0x147
-D__NUM_CORES__ =1

-D ADSP21479 FAMILY =1

-D_ ADSPSHARC =0x147

-D NUM CORES =1

-D_ADSP21483 =1 Present when running easm21K -proc ADSP-21483
-D_ 2148x =1

-D 214xx =1

-D_ ADSP2148x =1

-D ADSP214xx =1

-D__ADSP21479 FAMILY =1

-D__ ADSP21486 =1

-D 2148x =1

-D_ 21486 =1

-D__ ADSP2148x =1

-D ADSP214xx =1

-D__ ADSP21479 FAMILY
-D__ ADSPSHARC _=0x147
-D__NUM CORES =1

1

Present when running easm21K -proc ADSP-21486

-D__ ADSP21487 =1

-D 2148x =1

-D_ 214xx =1

-D_ ADSP2148x =1

-D ADSP214xx =1
-D__ADSP21479 FAMILY
-D__ ADSPSHARC _=0x147
-D__NUM CORES_ =1

1

Present when running easm21K -proc ADSP-21487

2-22

CCES 2.9.0 Assembler and Preprocessor Manual

Table 2-4: Feature Macros for SHARC Processors (Continued)

Assembler Guide

-D__ADSP21569 FAMILY =1
-D__ ADSPSHARC _=0x220
-D__BA SHARC =1
-D__FLT64 SHARC =1
-D_NUM SHARC CORES =1
-D__NUM CORES__ =1

Macro Definition

-D_ADSP21488 =1 Present when running easm21K -proc ADSP-21488
-D_ 2148x_ =1

-D 214xx =1

-D_ADSP2148x =1

-D ADSP214xx =1

-D__ADSP21479 FAMILY =1

-D__ ADSPSHARC =0x147

-D__NUM CORES__ =1

-D_ADSP21489 =1 Present when running easm21K -proc ADSP-21489
-D_ 2148x =1

-D 214xx =1

-D_ ADSP2148x =1

-D ADSP214xx =1

-D__ADSP21479 FAMILY =1

-D__ ADSPSHARC =0x147

-D__NUM CORES__ =1

-D__ ADSP21562 =1 Present when running easm21K -proc ADSP-21562
-D__ ADSP2156x =1

-D_ ADSP215xx =1

-D_ ADSP21563 =1
-D__ADSP2156x =1

-D_ ADSP215xx =1
-D__ADSP21569 FAMILY =1
-D__ADSPSHARC _=0x220
-D__ BA SHARC =1
-D__FLT64 SHARC =1
-D__NUM SHARC CORES =1
-D__ NUM CORES =1

Present when running easm21K -proc ADSP-21563

CCES 2.9.0 Assembler and Preprocessor Manual

2-23

Assembler Guide

Table 2-4: Feature Macros for SHARC Processors (Continued)

Macro

Definition

-D__ ADSP21565 =1

-D ADSP2156x =1

-D_ ADSP215xx =1

-D__ ADSP21569 FAMILY =1
-D__ADSPSHARC _=0x220
-D__BA SHARC =1
-D__FLT64 SHARC =1
-D__NUM SHARC CORES =1
-D_ NUM CORES =1

Present when running easm21K -proc ADSP-21565

-D__ ADSP21566 =1

-D_ ADSP2156x =1

-D__ ADSP215xx =1
-D__ADSP21569 FAMILY =1
-D__ ADSPSHARC _=0x220
-D__BA SHARC =1
-D__FLT64 SHARC =1
-D__NUM SHARC CORES =1
-D__NUM CORES =1

Present when running easm21K -proc ADSP-21566

-D__ ADSP21567 =1

-D__ ADSP2156x =1

-D ADSP215xx =1

-D_ ADSP21569 FAMILY =1
-D__ ADSPSHARC _=0x220
-D__BA SHARC =1

-D__ FLT64 SHARC =1
-D__ NUM SHARC CORES =1
-D__NUM CORES =1

Present when running easm21K -proc ADSP-21567

-D__ADSP21569 =1

-D ADSP2156x =1

-D_ ADSP215xx =1

-D_ ADSP21569 FAMILY =1
-D__ ADSPSHARC _ =0x220
-D__BA SHARC =1

-D FLT64 SHARC =1
-D__NUM_SHARC CORES =1
-D__NUM CORES__ =1

Present when running easm21K -proc ADSP-21569

2-24

CCES 2.9.0 Assembler and Preprocessor Manual

Table 2-4: Feature Macros for SHARC Processors (Continued)

Assembler Guide

Macro

Definition

-D__ ADSP21571 =1

-D ADSP2157x =1

-D_ ADSP215xx =1

-D__ ADSPSC573 FAMILY =1
-D__ADSPSHARC _=0x210
-D__BA SHARC =1
-D__FLT64 SHARC =1
-D__NUM_ARM CORES =0
-D_ NUM SHARC CORES =2
-D__ NUM CORES =2

Present when running easm21K -proc ADSP-21571

-D_ ADSP21573 =1

-D__ ADSP2157x =1

-D ADSP215xx =1

-D_ ADSPSC573 FAMILY =1
-D__ ADSPSHARC _=0x210
-D__BA SHARC =1

-D_ FLT64 SHARC =1
-D__ NUM ARM CORES =0
-D__NUM SHARC CORES =2
-D__ NUM CORES =2

Present when running easm21K -proc ADSP-21573

-D_ ADSP21583 =1
-D__ADSP2158x =1

-D_ ADSP215xx =1
-D__ADSPSC589 FAMILY =1
-D_ ADSPSHARC =0x200
-D__ BA SHARC =1
-D__FLT64 SHARC =1
-D__NUM ARM CORES =0
-D__ NUM SHARC CORES =2
-D__NUM CORES =2

Present when running easm21K -proc ADSP-21583

CCES 2.9.0 Assembler and Preprocessor Manual

2-25

Assembler Guide

Table 2-4: Feature Macros for SHARC Processors (Continued)

Macro Definition

-D_ADSP21584 =1 Present when running easm21K -proc ADSP-21584
-D_ ADSP2158x_ =1

-D_ ADSP215xx =1

-D_ ADSPSC589 FAMILY =1
-D__ ADSPSHARC _ =0x200
-D__BA SHARC__ =1
-D__FLT64 SHARC =1
-D__NUM_ARM CORES__ =0
-D__NUM_SHARC_CORES__ =2
-D__NUM CORES__ =2

-D_ ADSP21587 =1 Present when running easm21K -proc ADSP-21587
-D__ADSP2158x =1

-D ADSP215xx =1
-D__ADSPSC589 FAMILY =1
-D__ ADSPSHARC _ =0x200
-D__BA SHARC__ =1
-D__FLT64 SHARC =1

-D_ NUM ARM CORES__ =0
-D__NUM_SHARC CORES =2
-D__NUM CORES__ =2

-D__ ADSPSC570_ =1 Present when running easm21K -proc ADSP-SC570
-D__ ADSPSHARC__=0x210

-D ADSP21573 FAMILY =1
-D__ADSPSC57x__ =1

-D__ ADSPSC5xx__ =1

-D_ ADSP2157x=1

-D ADSP215xx=1
-D__BA_SHARC__ =1

-D FLT64 SHARC =1

-D__NUM_ARM CORES__ =1
-D__NUM_SHARC_CORES =1

-D_NUM CORES =2
-D__HETEROGENEOUS_PROCESSOR =1

2-26 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Guide

Table 2-4: Feature Macros for SHARC Processors (Continued)

Macro Definition

-D__ ADSPSC571 =1 Present when running easm21K -proc ADSP-SC571
-D__ADSPSHARC _=0x210
-D__ADSP21573 FAMILY =1
-D_ADSPSC57x =1

-D ADSPSCbxx =1
-D__ADSP2157x=1

-D__ ADSP215xx=1

-D__BA SHARC__ =1

-D__FLT64 SHARC =1
-D__NUM ARM CORES =1
-D__NUM_SHARC CORES =2

-D__NUM CORES__ =3
-D__HETEROGENEOUS_ PROCESSOR__ =1

-D_ ADSPSC572 =1 Present when running easm21K -proc ADSP-SC572
-D__ ADSPSHARC _=0x210
-D__ADSP21573 FAMILY =1
-D__ADSPSC57x__ =1
-D_ADSPSCbxx =1
-D__ADSP2157x=1

-D_ ADSP215xx=1

-D_BA SHARC =1

-D__FLT64 SHARC =1
-D__NUM ARM CORES =1
-D__NUM SHARC CORES =1

-D__NUM CORES__ =2
-D__HETEROGENEOUS PROCESSOR =1

CCES 2.9.0 Assembler and Preprocessor Manual 2-27

Assembler Guide

Table 2-4: Feature Macros for SHARC Processors (Continued)

Macro Definition

-D ADSPSC573 =1 Present when running easm21K -proc ADSP-SC573
-D__ADSPSHARC _=0x210
-D__ADSP21573 FAMILY =1
-D_ADSPSC57x =1

-D ADSPSCbxx =1
-D__ADSP2157x=1

-D__ ADSP215xx=1

-D__BA SHARC__ =1

-D__FLT64 SHARC =1
-D__NUM ARM CORES =1
-D__NUM_SHARC CORES =2

-D__NUM CORES__ =3
-D__HETEROGENEOUS_ PROCESSOR__ =1

-D_ ADSPSC582 =1 Present when running easm21K -proc ADSP-SC582
-D__ ADSPSHARC _ =0x200
-D__ADSP21589 FAMILY =1
-D__ADSPSC58x_ =1
-D_ADSPSCbxx =1

-D__ ADSP2158x=1

-D_ ADSP215xx=1

-D_BA SHARC =1

-D__FLT64 SHARC =1
-D__NUM ARM CORES =1
-D__NUM SHARC CORES =1

-D__NUM CORES__ =2
-D__HETEROGENEOUS PROCESSOR =1

2-28 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Guide

Table 2-4: Feature Macros for SHARC Processors (Continued)

Macro Definition

-D_ADSPSC583 =1 Present when running easm21K -proc ADSP-SC583
-D__ADSPSHARC _ =0x200
-D__ADSP21589 FAMILY =1

-D_ ADSPSC58x =1

-D ADSPSCbxx =1

-D__ ADSP2158x=1

-D__ ADSP215xx=1

-D__BA SHARC__ =1

-D__FLT64 SHARC =1
-D__NUM ARM CORES =1
-D__NUM_SHARC CORES =2

-D__NUM CORES__ =3
-D__HETEROGENEOUS_ PROCESSOR__ =1

-D_ ADSPSC584 =1 Present when running easm21K -proc ADSP-SC584
-D__ ADSPSHARC _ =0x200
-D__ADSP21589 FAMILY =1
-D__ADSPSC58x_ =1
-D_ADSPSCbxx =1

-D__ ADSP2158x=1

-D_ ADSP215xx=1

-D_BA SHARC =1

-D__FLT64 SHARC =1
-D__NUM ARM CORES =1

-D_ NUM SHARC CORES =2

-D__NUM _CORES__ =3
-D__HETEROGENEOUS PROCESSOR =1

CCES 2.9.0 Assembler and Preprocessor Manual 2-29

Assembler Guide

Table 2-4: Feature Macros for SHARC Processors (Continued)

Macro Definition

-D ADSPSC587 =1 Present when running easm21K -proc ADSP-SC587
-D__ADSPSHARC _ =0x200
-D__ADSP21589 FAMILY =1

-D_ ADSPSC58x =1

-D ADSPSCbxx =1

-D__ ADSP2158x=1

-D__ ADSP215xx=1

-D__BA SHARC__ =1

-D__FLT64 SHARC =1
-D__NUM ARM CORES =1
-D__NUM_SHARC CORES =2

-D__NUM CORES__ =3
-D__HETEROGENEOUS_ PROCESSOR__ =1

-D_ ADSPSC58S8 =1 Present when running easm21K -proc ADSP-SC589
-D__ ADSPSHARC _=0x200
-D__ADSP21589 FAMILY =1

-D_ ADSPSC58x =1
-D_ADSPSCbxx =1

-D_ ADSP2158x=1

-D_ ADSP215xx=1

-D__BA SHARC =1

-D__FLT64 SHARC =1
-D__NUM ARM CORES =1

-D__ NUM SHARC CORES =2

-D__NUM CORES__ =3

-D_ HETEROGENEOUS PROCESSOR =1

-D__NORMAL WORD CODE =1 Present when running easm21K for ADSP-214xx, ADSP-215xx or ADSP-
SC5xx processors, with the —nwc switch

-D_ SHORT WORD CODE__ =1 Present when running easm21K for ADSP-214xx, ADSP-215xx or ADSP-
SC5xx processors, without the ~nwc switch

-D_ SIMDSHARC =1 Always present

For . IMPORT headers, the assembler calls the compiler driver with the appropriate processor option, and the com-
piler sets the machine constants accordingly (and defines -D LANGUAGE_C=1). This macro is present when used
for C compiler calls to specify headers. It replaces =D LANGUAGE ASM.

For example,

2-30 CCES 2.9.0 Assembler and Preprocessor Manual

Using Assembler Feature Macros

easm2lk -proc ADSP-21262 assembly ->
cc2lK -proc ADSP-21262

easmblkfn -proc ADSP-BF533 assembly ->
ccblkfn -proc ADSP-BF533

NOTE: Use the ~verbose switch to verify what macros are defined by default. Refer to the C/C++ Compiler and
Library Manual of the appropriate target processor for more information.

__CCESVERSION__ Predefined Macro

The CCESVERSION predefined macro provides product version information for CCES. The macro allows a

preprocessing check to be placed within code and is used to differentiate between releases and updates. This macro
applies to all Analog Devices processors.

The preprocessor defines this macro to be an eight-digit hexadecimal representation of the CCES release, in the
form 0xMMmmUUPP, where:

* MM is the major release number

* mm is the minor release number

* UU is the update number

* PP is the patch release number
For example, CrossCore Embedded Studio 1.1.0.0 defines CCESVERSION as 0x01010000.
The 0xMMmmUUPP information is obtained from the <install path>/System/cces.ini file.

If an unexpected problem occurs while trying to locate cces. ini or while extracting information from the
cces.ini file,the CCESVERSION macro is not encoded to the CCES version. Instead, it is set to
OxfEfEfEEEEL, as illustrated in the example below.

Code Example (Error Check):

#if CCESVERSION == Oxffffffff

ferror Unexpected build problems, unknown tools version
#endif

Code Examples (Assembly):

#if CCESVERSION == 0x01010000

/* Building with CrossCore Embedded Studio 1.1.0 */

.VAR VersionBuildString[] = "Building with CrossCore Embedded Studio 1.1.0';
#else

/* Building with unknown tools version */

.VAR VersionBuildString[] = 'Building with unknown CrossCore Embedded Studio
version?';
#endif

CCES 2.9.0 Assembler and Preprocessor Manual 2-31

Assembler Guide

Generating Make Dependencies

The assembler can generate make dependencies for a file, allowing the IDE and other makefile-based build environ-
ments to determine when to rebuild an object file due to changes in the input files. The assembly source file and any
files identified in the #include commands, . IMPORT directives, or buffer initializations (in . VAR

and . STRUCT directives) constitute the make dependencies for an object file.

When you request make dependencies for the assembly, the assembler produces the dependencies from buffer initial-
izations. The assembler also invokes the preprocessor to determine the make dependency from #include com-
mands, and the compiler to determine the make dependencies from the . IMPORT headers.

For example,
easmblkfn -proc ADSP-BF533 -MM main.asm

"main.doj": ".../Blackfin/include/defBF532.h"
"main.doj": ".../Blackfin/include/defBF533.h"
"main.doj": ".../include/def LPBlackfin.h"
"main.doj": "main.asm"

"main.doj": "input data.dat"

The original source file, main. asm, is as follows:

#include "defBF533.h"

.GLOBAL input frame;
.BYTE input frame[N] = "input data.dat"; /* load in 256 values from a test file */

In this case, defBF533. h includes de f£BF532 . h, which also includes def LPBlackfin.h.

Reading a Listing File

A listing file (. 1st) is an optional output text file that lists the results of the assembly process. Listing files provide
the following information:

e Addpress - the first column contains the offset from the . SECTION's base address.

* Opcode - the second column contains the hexadecimal opcode that the assembler generates for the line of as-
sembly source.

* Line - the third column contains the line number in the assembly source file.
* Assembly Source - the fourth column contains the assembly source line from the file.

The assembler listing file provides information about the imported C data structures. It tells which imports were
used within the program, followed by a more detailed section. It shows the name, total size, and layout with offset
for the members. The information appears at the end of the listing. You must specify the -I filename option to pro-
duce a listing file.

2-32 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Syntax Reference

Assembler Syntax Reference

When developing a source program in assembly language, include preprocessor commands and assembler directives
to control the program's processing and assembly. You must follow the assembler rules and syntax conventions to
define symbols (identifiers) and expressions, and to use different numeric and comment formats.

Software developers who write assembly programs should be familiar with:
* Assembler Keywords and Symbols
* Assembler Expressions
* Assembler Operators
* Numeric Formats
¢ Comment Conventions
* Conditional Assembly Directives
* C Struct Support in Assembly Built-In Functions
* Struct References

e Assembler Directives

Assembler Keywords and Symbols

The assembler supports predefined keywords that include register and bit field names, assembly instructions, and
assembler directives. The following tables list assembler keywords for supported processors. Although the keywords
appear in uppercase, the keywords are case insensitive in the assembler's syntax. For example, the assembler does not
differentiate between MAX and max.

Table 2-5: Blackfin Keywords

.ALIGN, .ASCII, .ASM ASSERT, .ASSERT, .BSS, .BYTE, .DATA, .ELIF, .ELSE, .END, .ENDIF, .EXTERN, .FILE, .
FILE ATTR, .GLOBAL, .GLOBL, .IF, .IMPORT, .INC, . INCBIN, .LEFTMARGIN, .LIST, .LIST DATA, .LIST
DATFILE, .LIST DEFTAB, .LIST LOCTAB, .LIST WRAPDATA, .LONG, .MESSAGE, .NEWPAGE, .NOLIST, .NOLIST
DATA, .NOLIST DATFILE, .NOLIST WRAPDATA, . PAGELENGTH, . PAGEWIDTH, . PREVIOUS, .PRIORITY, .
REFERENCE, .RETAIN NAME, .SECTION, .SET, .SHORT, .SIZE, . STRUCT, .TEXT, .TYPE, .VAR, .WEAK

A (Blackfin keywords) AO0,A0.H,A0.L,A0.W,A0.X, A1, Al .H,Al.L, A1.W, Al.X, ABORT, ABS, AC0, AC1,
ALIGN16, ALIGN24, ALIGNS, AMNOP, AN, AND, AQ, ASHIFT, ASL, ASR, ASTAT, AVO,
AVO0S, AV1, AV1S, AZ

B (Blackfin keywords) B,BO,B0O.H,B0.L,B1,B1.H,B1.L,B2,B2.H,B2.L,B3,B3.H,B3.L, BINARY,
BIT XOR AC,BITCLR, BITMUX, BITPOS, BITSET, BITTGL, BITTST, BP, BREV,
BRF, BRT, BXOR, BXORSHIFT, BY, BYTEOP16M, BYTEOP16P, BYTEOPINS,
BYTEOP1P, BYTEOP2P, BYTEOP3P, BYTEPACK, BYTEUNPACK

C (Blackfin keywords) CALL, CALL.A,CALL.L,CALL.X, CALL.XL, CC, CLI, CLIP, CMUL, CO, CODE,
CSYNC, CYCLES, CYCLES2

CCES 2.9.0 Assembler and Preprocessor Manual 2-33

Assembler Syntax Reference

Table 2-5: Blackfin Keywords (Continued)

D (Blackfin keywords)

DATA, DBG, DBGA, DBGAH, DBGAL, DBGCMPLX, DBGHALT, DBGX, DEPOSIT,
DISALGNEXCPT, DIVQ, DIVS, DOUBLE32, DOUBLE 64, DOUBLEANY, DOZE

E (Blackfin keywords)

EMUEXCPT, EXCL, EXCPT, EXPADJ, EXTRACT

F (Blackfin keywords)

FEXT, FEXTSX, FLUSH, FLUSHINV, FOR, FP, FU

G (Blackfin keywords)

GE, GF, GT

H (Blackfin keywords)

H, HI, HLT

I (Blackfin keywords)

10,10.4,10.1,11,I1.H,11.5,I2,I2.4,12.L,1I3,I3.H,I3.L, IDLE, IF,
IFLUSH, IH, INTRP, INVALIDATE, IS, ISS2, IU

J (Blackfin keywords)

JUMP, JUMP.A, JUMP.L, JUMP.S, JUMP.X, JUMP.XL

L (Blackfin keywords)

L, .o0,.0.4,1.0.1,01,L1.H4,L1.L,L2,L2.H,L2.L,L3,L3.H, L3.L, LBO, LB1,
LCO, LC1, LE, LENGTH, LINES, LINK, LJUMP, LMAX, LMIN, LO, LOOP, LOOPLEZ,

LOOPZ, LOOP_BEGIN, LOOP_ END, LSETUP, LSETUPLEZ, LSETUPZ, LSHIFT, LT,
LTO,LT1

M (Blackfin keywords)

M, MO,M0.H,M0.L,M1,M1.H,M1.L, M2, M2.H, M2.L, M3, M3.H, M3.L, MAX,
MAXINT, MIN, MNOP, MUNOP

N (Blackfin keywords)

NEG, NO_INIT, NOP, NOT, NS

O (Blackfin keywords)

OFFSETOF, ONES, OR, OUTC

P (Blackfin keywords)

PO,PO0.H,P0.L,P1,P1.H,P1.L,P2,P2.H,P2.L,P3,P3.H, P3.L, P4, P4 .H,
P4.L, P5,P5.H, P5.L, PACK, PC, PREFETCH, PRNT, PRNTX

R (Blackfin keywords)

R,RO,R0.B,R0O.H,R0.L,R1,R1.B,R1.H,R1.L,R2,R2.B,R2.H,R2.L,R3,R3.B,
R3.H,R3.1L,R32,R4,R4.B,R4.H,R4.L,R5,R5.B,R5.H,R5.L,R6,R6.B,R6.H,
R6.L,R7,R7.B,R7.H, R7.L, RAISE, RETE, RETI, RETN, RETS, RETX, RND,

RND MOD, RND12, RND20, RNDH, RNDL, ROL, ROR, ROT, ROT L AC, ROT R AC,
RSDL, RTE, RTT, RTN, RTS, RTX, RUNTIME INIT

S (Blackfin keywords)

S, S2RND, SAA, SAA1H, SAAL1L, SAA2H, SAA2L, SAA3H, SAA3L, SAT, SCO, SEARCH,

SEQSTAT, SIGN, SIGNBITS, SIZEQOF, SKPF, SKPT, SLEEP, SP, SS, SSF, SSF_RND,

SSF _RND HI, SSF _TRUNC, SSF _TRUNC HI, SSYNC, STI, STRUCT, SU, SYNCEXCL,
SYSCFG

T (Blackfin keywords) T, TESTPOINT, TESTSET, TFU, TH, TL, TST

U (Blackfin keywords) UNLINK, UNRATSE, UNTIL, USP, UU

V (Blackfin keywords) V, VALIDATE, VIT MAX, VS

W (Blackfin keywords) W, W32

X (Blackfin keywords) X, XOR

Z (Blackfin keywords) Z, ZERO_ INIT
2-34 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Syntax Reference

Table 2-6: SHARC Keywords

. (SHARC keywords) .ALIGN, .ASM ASSERT, .BB, .BF, .BYTE, .BYTE2, .BYTE4, .BYTES8, . COMPRESS
, .DEF, .DIM, .DM, .EB, .EF, .ELIF, .ELSE, .END REPEAT, .ENDEF, .ENDIF, .
ENDSEG, .EOS, .EXTERN, .FILE, .FILE ATTR, . FORCECOMPRESS, .GCC_
COMPILED, .GLOBAL, . IF, . IMPORT, . INC, . INCBIN, . LEFTMARGIN, .LINE, .
LIST, .LIST DATA, .LIST DATFILE, .LIST DEFTAB, .LIST LOCTAB, .LIST
WRAPDATA, .LN, .MESSAGE, .MESSAGE DEFAULT, .MESSAGE POP, .MESSAGE
RESTORE, .MESSAGE_RESTORE_CL, .NEWPAGE, .NO TRANSFORM C RETURN, .
NOCOMPRESS, .NOLIST, .NOLIST DATA, .NOLIST DATFILE, .NOLIST
WRAPDATA, . PAGELENGTH, . PAGEWIDTH, . PM, . PORT, . PRECISION, . PREVIOUS,
.PRIORITY, .REPEAT, .RETAIN NAME, .ROUND MINUS, .ROUND NEAREST, .
ROUND PLUS, .ROUND_ZERO, .SCL, . SECTION, .SEGMENT, .SET, .SIZE, .
STRUCT, .SWF_OFF, . SWF_ON, .TAG, . TYPE, .VAL, . VAR, .WEAK

A (SHARC keywords) ABS, AC, ACT, ADDRESS, AND, ASHIFT, ASTAT, ASTATX, ASTATY, AV

B (SHARC keywords) BO,B1,B10,B11,B12,B13,B14, B15, B2, B2W, B3, B4, B5, B6, B7, B8, B9, BCLR,
BFFWRP, BINARY, BIT, BITDEP, BITEXT, BITREV, BM, BSET, BTGL, BTST, BW,
BWSE, BY, BYTE_ADDRESS

C (SHARC keywords) CA, CACHE, CALL, CH, CI, CJUMP, CL, CLIP, CLR, CODE, COMP, COMPU, COPYSIGN,
COS, CURLCNTR

D (SHARC keywords) DADDR, DATA, DATA64, DB, DM, DM_CACHE, DMA1E, DMA1S, DMA2E, DMA2S, DMADR,
DMAONLY, DMBANK1, DMBANK?2, DMBANK3, DMWAIT, DO, DOUBLE32, DOUBLE64,
DOUBLEANY, DOVL

E (SHARC keywords) ECE, ELSE, EMUCLK, EMUCLK2, EMUIDLE, EMUN, EQ, EX, EXP, EXP2, EXTERNAL

F (SHARC keywords) FO,F1,F10,F11,F12,F13,F14, F15, F2, F3, F4, F5, F6, F7, F8, F9, FADDR, FDEP,
FEXT, FIX, FLAGO IN, FLAG1 IN, FLAG2 IN, FLAG3_ IN, FLAGS, FLOAT, FLUSH,
FMERG, FOR, FOREVER, FPACK, FR, FUNPACK

G (SHARC keywords) GE, GT

I (SHARC keywords) 10,11,110,111,112,113,114,115,12,13,14,15,16,17,18,19, 1 CACHE,
IDLE, IDLEl6, IF, IMASK, IMASKP, INVALIDATE, IRPTL

J (SHARC keywords) JUMP

L (SHARC keywords) 10,11,L10,L11,L12,L13,L14, 115, L2, L3, L4, L5, L6, L7, L8, L9, LA, LADDR,

LCE, LCNTR, LE, LEFTO, LEFTZ, LENGTH, LINE, LINES, LIRPTL, LOAD, LOG2,
LOGB, LOOP, LR, LSHIFT, LT, LW

M (SHARC keywords) MO, M1,M10,M11,M12, M13, M14, M15, M2, M3, M4, M5, M6, M7, M8, M9, MANT, MAX,
MIN, MMASK, MODE1, MODE1STK, MODE2, MROB, MROF, MR1B, MR1F, MR2B, MR2F
MRB, MRF, MS, MV

N (SHARC keywords) NE, NO_INIT, NOFO, NOFZ, NOP, NOPSPECIAL, NOT, NU, NW
O (SHARC keywords) OFFSETOF, OR
P (SHARC keywords) P20, P24, P32, P40, PACK, PAGE, PASS, PC, PCSTK, PCSTKP, PEX, PEY, PM, PMADR,

PMBANKI1, PM CACHE, PMCODE, PMDAE, PMDAS, PMDATA, PMWAIT, POP, POVLO,
POVL1, PSA1E, PSA1S, PSA2E, PSA2S, PSA3E, PSA3S, PSA4E, PSA4S, PUSH, PX,
PX1, PX2

CCES 2.9.0 Assembler and Preprocessor Manual 2-35

Assembler Syntax Reference

Table 2-6: SHARC Keywords (Continued)

R (SHARC keywords) RO, R1,R10,R11,R12,R13, R14, R15, R2, R3, R4, R5, R6, R7, R8, R9, READ,

RECIPS, RFRAME, RND, ROT, RSQRTS, RTI, RTS, RUNTIME INIT

S (SHARC keywords) so,s1,s10,s811,S512,513, 514, s15, 2,83, 54, S5, 56, S7, S8, S9, SAT, SCALB,

SE, SET, SF, SFO, SF1, SF10, SF11, SF12, SF13, SF14, SF15, SF2, SF3, SF4, SF5,
SF6, SF7, SF8, SF9, SI, SIN, SIZEOF, SQR, SR, SSF, SSFR, SSI, SSIR, ST, STEP,
STKY, STKYX, STKYY, STRUCT, STS, SUF, SUFR, SUI, SUIR, SV, SW, SWSE, SYNC, SZ

T (SHARC kCyWOl‘ds) TCOUNT, TF, TGL, TPERIOD, TRUE, TRUNC, TST

U (SHARC keywords) UF, UI, UNPACK, UNTIL, UR, USF, USFR, USI, USIR, USTAT1, USTAT2, USTAT3,
USTAT4, UUF, UUFR, UUI, UUIR

W (SHARC keywords) W2B, WITH, WORD ADDRESS, WRITEBACK

X (SHARC keywords) XOR

Z (SHARC keywords) ZERO_INIT

Extend these sets of keywords with symbols that declare sections, variables, constants, and address labels. When de-

fining symbols in assembly source code, follow these conventions:

Define symbols that are unique within the file in which they are declared. If you use a symbol in more than one
file, use the . GLOBAL assembly directive to export the symbol from the file in which it is defined. Then use
the . EXTERN assembly directive to import the symbol into other files.

If you use a symbol in more than one file, use the . GLOBAL assembly directive to export the symbol from the
file in which it is defined. Then use the . EXTERN assembly directive to import the symbol into other files.

Begin symbols with alphabetic characters.

Symbols can use alphabetic characters (A-Z and a-z), digits (0-9), and the special characters " $" and " "
(dollar sign and underscore) as well as " . " (dot).

Symbols are case sensitive; so input addr and INPUT ADDR define unique variables.

The dot, point, or period " ." as the first character of a symbol triggers special behavior in the IDE. A symbol

witha" ." as the first character cannot have a digit as the second character. Such symbols will not appear in
the debugger. A symbol name in which the first two characters are dots will not appear even in the symbol table

of the object.

The compiler and run-time libraries prepend " " to avoid using symbols in the user namespace that begin
with an alphabetic character.

Do not use a reserved keyword to define a symbol.

Match source and LDF sections' symbols. Ensure that . SECTION name symbols do not conflict with the
linker's keywords in the . 1df file. The linker uses sections' name symbols to place code and data in the pro-
cessor's memory. For details, see the Linker and Utilities Manual. Ensure that . SECTION name symbols do
not begin with the " ." (dot).

2-36 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Syntax Reference

Ensure that . SECTION name symbols do not conflict with the linker’s keywords in the . 1df file. The linker

uses sections’ name symbols to place code and data in the processor’s memory. For details, see the Linker and
Utilities Manual.

Ensure that . SECTION name symbols do not begin with the “.” (dot).
* Terminate the definition of address label symbols with a colon (:).

* The reserved word list for processors includes some keywords with commonly used spellings; therefore, ensure
correct syntax spelling.

Address label symbols may appear at the beginning of an instruction line or standalone on the preceding line.

The following disassociated lines of code demonstrate symbol usage.

.BYTE2 xoperand; /* xoperand is a l6-bit variable */

.BYTE4 input array[10]; /* input array is a 32-bit wide */
/* data buffer with 10 elements */

sub routine 1: /* sub _routine 1 is a label */

.SECTION kernel; /* kernel is a section name w4

Assembler Expressions

The assembler can evaluate simple expressions in source code. The assembler supports two types of expressions: con-
stant expressions and symbolic expressions. Constant Expressions

A constant expression is acceptable where a numeric value is expected in an assembly instruction or in a preprocessor
command. Constant expressions contain an arithmetic or logical operation on two or more numeric constants.

For example,
2.9e-5 + 1.29
(128 - 48) / 3
0x55 & OxOF
0x0f7.6r - 0.8r

For information about fraction type support, refer to Fractional Type Support.Symbolic Expressions

Symbolic expressions contain symbols, whose values may not be known until link-time. For example,

data/8

(data bufferl + data buffer2) & OxF
strtup + 2

data bufferl + LENGTH (data buffer?2) *2

Symbols in this type of expression are data variables, data buffers, and program labels. In the first three examples
above, the symbol name represents the address of the symbol. The fourth example combines that meaning of a sym-
bol with a use of the length operator (see the Special Assembler Operators table in Assembler Operators).

CCES 2.9.0 Assembler and Preprocessor Manual 2-37

Assembler Syntax Reference

Assembler Operators

The Operator Precedence table lists the assembler's numeric and bitwise operators used in constant expressions and

address expressions. These operators are listed in group order from highest precedence to lowest precedence. Opera-

tors with the highest precedence are evaluated first. When two operators have the same precedence, the assembler

evaluates the left-most operator first. Relational operators are supported only in relational expressions in conditional

assembly, as described in Conditional Assembly Directives.

Table 2-7: Operator Precedence

Operator Description Designation
(expression) expression in parentheses evaluates first Parentheses
~ Ones complement Tilde

- Unary minus Minus

* Multiply Asterisk

/ Divide Slash

5 Modulus Percentage
+ Addition Plus

- Subtraction Minus

<< Shift left

>> Shift right

& Bitwise AND

| Bitwise inclusive OR

. Bitwise exclusive OR

NOTE: If right-shifting a negative value, ones are shifted in from the MSB, which preserves the sign bit.

The assembler also supports special operators. The Special Assembler Operators table lists and describes special oper-

ators used in constant and address expressions.

Table 2-8: Special Assembler Operators

Operator

Description

BITPOS (constant)

Bit position (Blackfin processors only).

BYTE ADDRESS (expression)
WORD ADDRESS (expression)

Converts symbol or expression to the byte-addressed or word-addressed alias
space, respectively. (SHARC ADSP-215xx and ADSP-SC5xx processors only).

HI (expression)

LO (expression)

Extracts the most significant 16 bits of expression. Extracts the least significant 16
bits of expression.

NOTE: Used with the Blackfin assembler only. The expression in the HI and
LO operators can be either symbolic or constant.

2-38

CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Syntax Reference

Table 2-8: Special Assembler Operators (Continued)

Operator Description

LENGTH (symbol) Length of symbo1l in number of elements (in a buffer/array).

The LENGTH operator can be used with external symbols-apply it to symbols that are defined in other sections
as . GLOBAL symbols.

Blackfin Processor Example

The following example demonstrates how Blackfin assembler operators are used to load the length and address infor-
mation into registers.
#define n 20

.SECTION datal; /* data section */

.VAR real data [n]; /* n=number of input samples */
.SECTION program; /* code section */

PO.L = real data;

PO.H = real data;

P1=LENGTH (real data); /* buffer's length */
LOOP loopl LCO=P1;

LOOP BEGIN loopl;

RO=[PO++]; /* get next sample */

LOOP _END loopl;

The code fragment above initializes PO and P1 to the base address and length, respectively, of the real data
buffer. The loop is executed 20 times.

The BITPOS () operator takes a bit constant (with one bit set) and returns the position of the bit. Therefore,
BITPOS (0x10) would return 4 and BITPOS (0x80) would return 7. For example,

#define DLAB 0x80

#define EPS 0x10

RO = DLAB | EPS (z):;

cc = BITSET (RO, BITPOS (DLAB)) ;

SHARC Processor Example

The following code example determines the base address and length of the real data circular buffer. The buf-
fer's length value (contained in L5) determines when addressing wraps around to the top of the buffer (when set-
ting up circular buffers in SHARC processors). For further information on circular buffers, refer to the Hardware
Reference of the target processor.

.SECTION/DM seg dmda; /* data segment */
.VAR real datal[n]; /* n=number of input samples */
.SECTION/PM seg pmco; /* code segment */

CCES 2.9.0 Assembler and Preprocessor Manual 2-39

Assembler Syntax Reference

B5=real data; /* buffer base address */

/* I5 loads automatically */
L5=LENGTH (real data); /* buffer's length */
M6=1; /* post-modify I5 by 1 */

LCNTR=LENGTH (real data)
.DO loopend UNTIL LCE;

/* loop counter=buffer's length */
FO=DM (I5, M6) ; /* get next sample */

loopend:
NOTE: Although the SHARC assembler accepts the source code written with the legacy @ operator, it is recom-
mended to use LENGTH () in place of @.

SHARC ADSP-215xx and ADSP-SC5xx Processor Byte/Word-Addressing Example

The following code example shows how the BYTE ADDRESS () and WORD ADDRESS () assembly operators can
be used to convert addresses between the byte- and word-addressed aliased memory spaces.

.SECTION seg dmda; /* data segment */
.BYTE a.[4]; /* byte-addressed 32-bit value */
Bo &
.VAR = WORD ADDRESS (a.) ; /* initialize to word-address &y
/* equivalent of byte-address a. */
.p..end:
extern b; /* word-address b defined in another */
/* translation unit &y
.SECTION/SW seg swco; /* code segment */
RO=DM (BYTE ADDRESS(b)) (BW); /* load from address b converted */
/* to byte-address alias space =/

NOTE: The linker will report an error if the BYTE ADDRESS () or WORD ADDRESS () assembly operators are
used to try to convert an address for which there is no equivalent in the target address space. This includes
use of WORD ADDRESS () on a byte-address that is not aligned on a 32-bit boundary. Use of the opera-
tors on an address that is already in the target address space leaves the address unchanged.

Numeric Formats

Depending on the processor architectures, the assemblers support binary, decimal, hexadecimal, floating-point, and
fractional numeric formats (bases) within expressions and assembly instructions. The Numeric Formats table de-
scribes the notation conventions used by the assembler to distinguish between numeric formats.

Table 2-9: Numeric Formats

Convention Description

O0xnumber The "0x" prefix indicates a hexadecimal number

2-40 CCES 2.9.0 Assembler and Preprocessor Manual

Table 2-9: Numeric Formats (Continued)

Numeric Formats

Convention Description
B#number The "B#" or "b#" prefix indicates a binary number
b#number

number.number[e {+/-} number]

Entry for floating-point number

number

No prefix and no decimal point indicates a decimal number

numberr

The "r" suffix indicates a fractional number

NOTE: Due to the support for b# and B# binary notation, the preprocessor stringization functionality is turned

off, by default, to avoid possible undesired stringization. For more information, refer to the processor’s #

(Argument) and -stringize command-line switches, and the assembler’s -flags-pp -optl[, -opt2...] com-

mand-line switch.

Representation of Constants in Blackfin

The Blackfin assembler keeps an internal 32-bit signed representation of all constant values. Keep this in mind when
working with immediate values. The immediate value is used by the assembler to determine the instruction length
(16, 32 or 64 bit). The assembler selects the smallest opcode that can accommodate the immediate value.

Blackfin processors preceding Blackfin+® did not support 64-bit instructions with 32-bit immediates. When target-

ing such a processor, if there is no opcode that can accommodate the value, semantic error ea5003 is reported.

Examples:

RO = -64;

RO = O0xBF;

RO = OxFFBEF;

RO = OxFFFFFFBEF;
RO = 0x8000;

/*
/*
/*
/*
/*

l6-bit
32-bit
64-bit
32-bit
64-bit

Fractional Type Support

instruction:
instruction:
instruction:
instruction:
instruction:

-64 fits into
191 fits into
65471 doesn't
-65 fits into
32768 doesn't

7-bit immediate value */

16-bit immediate value */
fit into 16-bit immediate
16 bit immediate value */
fit into 16-bit immediate

*/

*/

Fractional (fract) constants are specially marked floating-point constants to be represented in fixed-point format. A

fract constant uses the floating-point representation with a trailing "r", where r stands for fract.

The legal range is [-1 1). This means the values must be greater than or equal to —1 and less than 1. Fracts are

represented as signed values.

For example,

.VAR myFracts/[]
/* Constants are examples of legal fracts */

.VAR OutOfRangeFract

/* [Error

{0.5r,

-0.5e-4r, -0.25e-3r,

= 1.5r;

Fract constant '1l.5r'
Fract constants must be greater than or equal to -1
and less than 1.

*/

0.875r};

is out of range.

CCES 2.9.0 Assembler and Preprocessor Manual

2-41

Fractional Type Support

NOTE: In Blackfin processors, the 1.15 fract format is the default. Use a /R32 qualifier (in .BYTE4/R32
or . VAR/R32) to support 32-bit initialization for use with 1.31 fracts.

1.31 Fracts

Fracts supported by Analog Devices processors use the 1.31 format, which means a sign bit and "31 bits of fraction".
Thisis -1 to +1 — 2 ~31, For example, 1.31 maps the constant 0. 5r to the bit pattern 0x40000000.

The conversion formula used by processors to convert from floating-point format to fixed-point format uses a scale
factor of 31.

For example,

.VAR/R32 myFract = 0.5r;
// Fract output for 0.5r is 0x4000 0000
// sign bit + 31 bits
// 0100 0000 0000 0000 0000 0000 0000 0000
!/ 4 0 0 0 0 0 0 0 = 0x4000 0000 = .5r

.VAR/R32 myFract = -1.0r;
// Fract output for -1.0r is 0x8000 0000
// sign bit + 31 bits
// 1000 0000 0000 0000 0000 0000 0000 0000

// 8 0 0 0 0 0 0 0 = 0x8000 0000 =
-1.0r
.VAR/R32 myFract = -1.72471041E-03r;

// Fract output for -1.72471041E-03 is OxFFC77C15
// sign bit + 31 bits

// 1111 1111 1100 0111 0111 1100 0001 0101

// F F C 77 C 1 5

1.0r Special Case

1.0r is out-of-the-range fract. Specify 0x7FFF FFFF for the closest approximation of 1 . 0r within the 1.31

representation.

Fractional Arithmetic

The assembler provides support for arithmetic expressions using operations on fractional constants, consistent with
the support for other numeric types in constant expressions, as described in Assembler Expressions.

The internal (intermediate) representation for expression evaluation is a double floating-point value. Fract range
checking is deferred until the expression is evaluated. For example,

#define fromSomewhereElse 0.875r

.SECTION datal;

.VAR localOne = fromSomewhereElse + 0.005r;
// Result .88r is within the legal range

.VAR xyz = 1.5r -0.9r;
// Result .6r is within the legal range
.VAR abc = 1.5r; // Error: 1.5r out of range

2-42 CCES 2.9.0 Assembler and Preprocessor Manual

Fractional Type Support

Mixed Type Arithmetic

The assembler does not support arithmetic between fracts and integers. For example,

.SECTION datal;

.VAR myFract = 1 - 0.5r;
[Error €al998] "fract.asm":2 User Error: Illegal
mixing of types in expression.

Comment Conventions

The assemblers support C and C++ style formats for inserting comments in assembly sources. The assemblers do not
support nested comments. The Comment Conventions table lists and describes assembler comment conventions.

Table 2-10: Comment Conventions

Convention Description
/* comment */ A"/* */" string encloses a multiple-line comment
// comment A pair of slashes "/ /" begin a single-line comment

Conditional Assembly Directives

Conditional assembly directives are used for evaluation of assembly-time constants using relational expressions. The
expressions may include relational and logical operations.

The conditional assembly directives include:
* .IF constant-relational-expression;
* .ELIF constant-relational-expression;
e .ELSE;
e .ENDIF;

Conditional assembly blocks begin with an . IF directive and end with an . ENDIF directive. The Relational Oper-
ators for Conditional Assembly table shows examples of conditional directives.

Table 2-11: Relational Operators for Conditional Assembly

Operator | Purpose Conditional Directive Examples

! Not LIF 10;

> Greater than .IF (SIZEOF (myStruct) > 16);
>= Greater than or equal to .IF (SIZEOF (myStruct) >= 16);
< Less than .IF (SIZEOF (myStruct) < 16);
<= Less than or equal to .IF (SIZEOF (myStruct) <= 16);
== Equality .IF (8 == SIZEOF (myStruct));

CCES 2.9.0 Assembler and Preprocessor Manual 2-43

Assembler Syntax Reference

Table 2-11: Relational Operators for Conditional Assembly (Continued)

Operator | Purpose Conditional Directive Examples

I= Not equal .IF (8 != SIZEOF (myStruct));

[Logical OR JIF (2 =4) || (5 == 5);

&& Logical AND .IF (SIZEOF (char) == 2 && SIZEOF (int) == 4);

Optionally, any number of . ELIF directives and a final . ELSE directive may appear within a pair of . IF

and .ENDIF directives. The conditional directives are each terminated with a semi-colon "; ", same as other assem-
bler directives. Conditional directives do not have to appear alone on a line. These directives are in addition to the
C-style #1f, #elif, #else, and #endif preprocessing directives.

The . IF conditional assembly directive must be used to query about C structs in assembly using the STZEOF ()
and/or OFFSETOF () built-in functions. These built-ins are evaluated at assembly time, so they cannot appear in
expressions in #1 f preprocessor directives.

In addition, the STZEOF () and OFFSETOF () built-in functions (see C Struct Support in Assembly Built-In
Functions) can be used in relational expressions. Different code sequences can be included based on the result of the
expression.

For example, SIZEOF (struct/typedef/C base type) is permitted.

The assembler supports nested conditional directives. The outer conditional result propagates to the inner condi-
tion, just as it does in C preprocessing.

Assembler directives are distinct from preprocessor directives, as follows:

* The # directives are evaluated during preprocessing by the preprocessor. Therefore, preprocessor #1 £ directives
cannot use assembler built-ins (see C Struct Support in Assembly Built-In Functions).

* The conditional assembly directives are processed by the assembler in a later pass. Therefore, you are able to
write a relational or logical expression whose value depends on the value of a #define.

For example,

.IF tryit == 2;
<some code>
.ELIF tryit >= 3;
<some more code>
.ELSE;
<some more code>
.ENDIF;

* Ifyouhave #define tryit 2, thecode <some code> isassembled, and <some more code> is
not assembled.

* There are no parallel assembler directives for C-style directives #define, #include, #ifdef, #if
defined (name), #ifndef, and so on.

2-44 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Syntax Reference

C Struct Support in Assembly Built-In Functions

The assemblers support built-in functions that enable you to pass information obtained from the imported C struct
layouts. The assemblers currently support two built-in functions: OFFSETOF () and SIZEOF ().

OFFSETOF Built-In Function

The OFFSETOF () built-in function is used to calculate the offset of a specified member from the beginning of its
parent data structure.

OFFSETOF (struct/typedef, memberName) ;
where:
struct/typedef - astruct VAR or a typedef can be supplied as the first argument

memberName - a member name within the struct or typedef (second argument)

NOTE: For Blackfin processors, OFFSETOF () units are in bytes. For SHARC processors, OFFSETOF () units
are in words. For SHARC+ processors, OFFSETOF () units are in bytes when assembling with the -
char-size-8 switch and in words when assembling with the ~char-size-32 switch; see the sec-
tion "Byte-Addressed C structs in Assembly" in the C/C++ Compiler Manual for SHARC® Processors for
more information on the use of OFFSETOF () when assembling with ~char-size-8.

SIZEOF Built-In Function

The SIZEOF () built-in function returns the amount of storage associated with an imported C struct or data mem-
ber. It provides functionality similar to its C counterpart.

SIZEOF (struct/typedef/ C base type);
where:

The SIZEOF () function takes a symbolic reference as its single argument. A symbolic reference is a name followed
by none or several qualifiers to members.

The SIZEOF () function gives the amount of storage associated with:
* An aggregate type (structure)
* A Cbase type (int, char, and so on)
* A member of a structure (any type)

For example (Blackfin processor code),

.IMPORT "Celebrity.h";

.EXTERN STRUCT Celebrity StNick;

L3 = SIZEOF (Celebrity); // typedef

L3 = SIZEOF (StNick) ; // struct var of typedef Celebrity
L3 = SIZEOF (char) ; // C built-in type

L3 = SIZEOF (StNick->Town) ; // member of a struct var

L3 = SIZEOF (Celebrity->Town) ; // member of a struct typedef

e

CCES 2.9.0 Assembler and Preprocessor Manual 2-45

Assembler Syntax Reference

NOTE: The SIZEOF () built-in function returns the size in the units appropriate for its processor. For Blackfin
processors, units are in bytes. For SHARC processors, units are in words. For SHARC+ processors, units
are in bytes when assembling with the ~char-size-8 switch and in words when assembling with the—
char-size-32 switch; see the section "Byte-Addressed C structs in Assembly" in the C/C++ Compiler
Manual for SHARC® Processors for more information on the use of STZEOF () when assembling with -
char-size-8.

When applied to a structure type or variable, STZEOF () returns the actual size, which may include padding bytes
inserted for alignment. When applied to a statically dimensioned array, SIZEOF () returns the size of the entire
array.

Struct References

A reference to a struct VAR provides an absolute address. For a fully qualified reference to a member, the address

is offset to the correct location within the struct. The assembler syntax for struct references is "->".

The following example references the address of Member5 located within myStruct.
myStruct->Memberb

If the struct layout changes, there is no need to change the reference. The assembler recalculates the offset when the
source is reassembled with the updated header.

Nested struct references are supported. For example,

myStruct->nestedRef->AnotherMember

NOTE: Unlike struct members in C, struct members in the assembler are always referenced with “->” (not

« »

.”) because “.” is a legal character in identifiers in assembly and is not available as a struct reference.

«

The “->” does not indicate pointer dereferencing as it does in C.

References within nested structures are permitted. A nested struct definition can be provided in a single reference in
assembly code, and a nested struct via a pointer type requires more than one instruction. Use the OFFSETOF ()
built-in function to avoid hard-coded offsets that may become invalid if the struct layout changes in the future.

Following are two nested struct examples for . IMPORT "CHeaderFile.h".
Example 1: Nested Reference Within the Struct Definition with Appropriate C Declarations
C Code

struct Location {
char Town[l6];
char State[l6];
)

struct myStructTag {

int fieldl;

struct Location NestedOne;
¥

2-46 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Syntax Reference

Assembly Code (for Blackfin Processors)
.EXTERN STRUCT myStructTag myStruct;

P3.L = LO(myStruct->NestedOne->State) ;
P3.H = HI(myStruct->NestedOne->State) ;

Example 2: Nested Reference When Nested via a Pointer with Appropriate C Declarations

When nested via a pointer, myStructTagWithPtr (which has pNestedOne) uses pointer register offset in-
structions.

C Code:

// from C header
struct Location {
char Town[l6];
char State[l6];
¥

struct myStructTagWithPtr {

int fieldl;

struct Location *pNestedOne;
i

Assembly Code (for Blackfin Processors):

// in assembly file

.EXTERN STRUCT myStructTagWithPtr myStructWithPtr;
P1.L = LO(myStructWithPtr->pNestedOne) ;

P1.H HI (myStructWithPtr->pNestedOne) ;

PO [P1 + OFFSETOF (Location, State)];

Assembler Directives

Directives in an assembly source file control the assembly process. Unlike assembly instructions, directives do not
produce opcodes during assembly. Use the following general syntax for assembler: directives:

.directive[/qualifiers|arguments];

Each assembler directive starts with a period (.) and ends with a semicolon (;). Some directives take qualifiers and

arguments. A directive's qualifier immediately follows the directive and is separated by a slash (/); arguments follow
qualifiers. Assembler directives can be uppercase or lowercase; uppercase distinguishes directives from other symbols
in your source code

The Assembler Directive Summary table lists all currently supported assembler directives. A description of each di-
rective appears in the following sections.

Table 2-12: Assembler Directive Summary

Directive Description

Specifies an alignment requirement for data or code. Refer to .ALIGN, Specify an Address Alignment.

CCES 2.9.0 Assembler and Preprocessor Manual 2-47

Assembler Syntax Reference

Table 2-12: Assembler Directive Summary (Continued)

Directive Description
ALIGN
.ASCII Initializes ASCII strings. Refer to .ASCIL
NOTE: Blackfin processors only.
.BSS Equivalent to . SECTION/zero init bsz;. Refer to .SECTION, Declare a Memory Section.

NOTE: Blackfin processors only.

.BYTE .BYTE2 .BYTE4

Defines and initializes one-, two-, and four-byte data objects, respectively. Refer to .BYTE, Declare a
Byte Data Variable or Buffer.

NOTE: Blackfin processors only.

.COMPRESS Starts compression. Refer to .COMPRESS, Start Compression.
NOTE: ADSP-214xx SHARC processors only.

.DATA Equivalent to . SECTION datal;. Refer to .SECTION, Declare a Memory Section.
NOTE: Blackfin processors only.

.ELSE Conditional assembly directive. Refer to Conditional Assembly Directives.

.ENDIF Conditional assembly directive. Refer to Conditional Assembly Directives.

.EXTERN Allows reference to a global symbol. Refer to .EXTERN, Refer to a Globally Available Symbol.

.EXTERN STRUCT

Allows reference to a global symbol (struct) that was defined in another file. Refer to . EXTERN
STRUCT, Refer to a Struct Defined Elsewhere.

.FILE Overrides £i1lename given on the command line. Refer to .FILE, Override the Name of a Source
File.
.FILE ATTR Creates a file attribute in the generated object file. Refer to .FILE_ATTR, Create an Attribute in the
Object File.
.FORCECOMPRESS Compresses the next instruction. Refer to .FORCECOMPRESS, Compress the Next Instruction.
NOTE: ADSP-214xx SHARC processors only.
.GLOBAL Changes a symbol's scope from local to global. Refer to .GLOBAL, Make a Symbol Available Globally.
.GLOBL Equivalent to . GLOBAL. Refer to .GLOBAL, Make a Symbol Available Globally.
NOTE: Blackfin processors only.
LIF Conditional assembly directive. Refer to Conditional Assembly Directives.
. IMPORT Provides the assembler with structure layout (C struct) information. Refer to .IMPORT, Provide Struc-

ture Layout Information.

.INC/BINARY

Includes the content of a file at the current location. Refer to .INC/BINARY, Include Contents of a
File.

2-48

CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Syntax Reference

Table 2-12: Assembler Directive Summary (Continued)

Directive Description

.INCBIN

Equivalent to . INC/BINARY. Refer to .INC/BINARY, Include Contents of a File.

NOTE: Blackfin processors only.

.LEFTMARGIN

Defines the width of the left margin of a listing. Refer to . LEFTMARGIN, Set the Margin Width of a
Listing File.

.LIST/.NOLIST

Starts listing of source lines. Refer to .LIST/.NOLIST, Listing Source Lines and Opcodes.

.LIST DATA

Starts listing of data opcodes. Refer to .LIST_DATA/.NOLIST_DATA, Listing Data Opcodes.

.LIST DATFILE

Starts listing of data initialization files. Refer to .LIST_DATFILE/ NOLIST_DATFILE, List Data Init
Files.

.LIST DEFTAB

Sets the default tab width for listings. Refer to .LIST_DEFTAB/.LIST_LOCTAB, Set Tab Widths for
Listings.

.LIST LOCTAB

Sets the local tab width for listings. Refer to .LIST_DEFTAB/.LIST_LOCTAB, Set Tab Widths for
Listings.

.LIST WRAPDATA

Starts wrapping opcodes that don't fit listing column. Refer to .LIST_WRAPDATA/.NO-
LIST_WRAPDATA.

. LONG Supports four-byte data initializer lists for GNU compatibility. Refer to .LONG, Define and Initialize
4-Byte Data Objects.
NOTE: Blackfin processors only.
.MESSAGE Alters the severity of an error, warning or informational message generated by the assembler. Refer
to .MESSAGE, Alter the Severity of an Assembler Message.
. NEWPAGE Inserts a page break in a listing. Refer to .NEWPAGE, Insert a Page Break in a Listing File.
.NOCOMPRESS Terminates compression. Refer to NOCOMPRESS, Terminate Compression.
NOTE: ADSP-214xx SHARC processors only.
.NOLIST Stops listing of source lines. Refer to .LIST_DATA/.NOLIST_DATA, Listing Data Opcodes.

.NOLIST DATA

Stops listing of data opcodes. Refer to NEWPAGE, Insert a Page Break in a Listing File.

.NOLIST DATFILE

Stops listing of data initialization files. Refer to .LIST_DATFILE/.NOLIST_DATFILE, List Data Init
Files.

.NOLIST WRAPDATA

Stops wrapping opcodes that do not fit listing column. Refer to .LIST_WRAPDATA/.NO-
LIST_WRAPDATA.

.PAGELENGTH

Defines the length of a listing page. Refer to PAGELENGTH, Set the Page Length of a Listing File.

.PAGEWIDTH Defines the width of a listing page. Refer to . PAGEWIDTH, Set the Page Width of a Listing File.
. PORT Legacy directive. Declares a memory-mapped 1/O port. Refer to .PORT, Legacy Directive.
NOTE: SHARC processors only.
.PRECISION Defines the number of significant bits in a floating-point value. Refer to .PRECISION, Select Float-

ing-Point Precision.

CCES 2.9.0 Assembler and Preprocessor Manual 2-49

Assembler Syntax Reference

Table 2-12: Assembler Directive Summary (Continued)

Directive Description
NOTE: SHARC processors only.
.PREVIOUS Reverts to a previously described . SECTION. Refer to .PREVIOUS, Revert to the Previously Defined
Section.
.PRIORITY Allows prioritized symbol mapping in the linker. Refer to PRIORITY, Allow Prioritized Symbol Map-
ping in Linker.
.REFERENCE Provides better information in an X-REF file. Refer to .REFERENCE, Provide Better Info in an X-

REF File.

NOTE: Blackfin processors only.

.RETAIN NAME

Stops the linker from eliminating a symbol. Refer to .RETAIN_NAME, Stop Linker from Eliminating
Symbol.

.ROUND NEAREST

Specifies the round-to-nearest mode. Refer to ROUND_, Select Floating-Point Rounding.

NOTE: SHARC processors only.

.ROUND MINUS

Specifies the round-to-negative infinity mode. Refer to .ROUND_, Select Floating-Point Rounding.

NOTE: SHARC processors only.

.ROUND PLUS Specifies the round-to-positive infinity mode. Refer to .ROUND_, Select Floating-Point Rounding,.
NOTE: SHARC processors only.
.ROUND_ZERO Specifies the round-to-zero mode. Refer to .ROUND_, Select Floating-Point Rounding,.
NOTE: SHARC processors only.
.SECTION Marks the beginning of a section. Refer to .SECTION, Declare a Memory Section.
.SET Sets symbolic aliases. Refer to .SET, Set a Symbolic Alias.
. SHORT Supports two-byte data initializer lists for GNU compatibility. Refer to .SHORT, Defines and Initializ-
es 2-Byte Data Objects.
NOTE: Blackfin processors only.
. STRUCT Defines and initializes data objects based on C typedefs from . IMPORT C header files. Refer
to .STRUCT, Create a Struct Variable.
.TEXT Equivalent to . SECTION program;. Refer to .SECTION, Declare a Memory Section.
NOTE: Blackfin processors only.
.TYPE Changes the default data type of a symbol; used by C compiler. Refer to .TYPE, Change Symbol Type.
. VAR Defines and initializes 32-bit data objects. Refer to .VAR, Declare a Data Variable or Buffer.
.WEAK Creates a weak definition or reference. Refer to .\WEAK, Weak Symbol Definition and Reference.
2-50 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

.ALIGN, Specify an Address Alignment

The . ALIGN directive forces the address alignment of an instruction or data item. The assembler sets the alignment
of the section to match the largest alignment requirement specified in the section and inserts padding at each align-
ment location to ensure that the following item has the proper offset from the start of the section to maintain the
requested alignment. The linker honors the alignment specified by the assembler when placing the section in memo-
ry, thus guaranteeing the integrity of the alignment of each element aligned with a . ALIGN directive.

You also can use the INPUT SECTION ALIGN (#number) LDF command (in the . 1d£ file) to force all of
the following input sections to the specified alignment. Refer to the Linker and Utilities Manual for more informa-
tion on section alignment.

Syntax:
.ALTIGN expression;
where

expression - evaluates to an integer. It specifies an alignment requirement; its value must be a power of 2. When
aligning a data item or instruction, the assembler adjusts the address of the current location counter to the next
address that can be divided by the value of expression, with no remainder. The expression set to 0 or 1 signifies
no address alignment requirement.

The linker stops allocating padding for symbols aligned by 16 or more.

NOTE: In the absence of the . ALIGN directive, the default address alignment is 1.
Example:

In the following example, the assembler sets the alignment of the section to 4 to match the value specified in the
second alignment directive. This satisfies the first alignment directive as well, since any item alignment on an address
multiple of 4 is also aligned on a multiple of 2. If the target is a byte-addressed processor, such as Blackfin, there is
no padding inserted between "single” and "samples” since . VAR creates a four-byte word of storage. If the target is a
processor on which the . VAR directive reserves a one-address unit, such as SHARC, three words of padding follow
"single" in the section produced by the assembler.

.ALIGN 1; /* no alignment requirement */

.SECTION datal;

ALIGN 2;

.VAR single; /* aligns the data item on the word boundary,
at the location with the address value that can
be evenly divided by 2 */

.ALIGN 4;

.VAR samplesl[100]="datal.dat";

/* aligns the first data item on the double-word
boundary, at the location with the address value
that can be evenly divided by 4; advances other
data items consecutively */

CCES 2.9.0 Assembler and Preprocessor Manual 2-51

Assembler Directives

NOTE: The Blackfin assembler accepts . BYTE, .BYTE2, .BYTE4, and . VAR.

LASCII

NOTE: Used with the Blackfin processors only.

The .ASCIT directive initializes a data location with one or more characters from a double-quoted ASCII string.
This is equivalent to the . BYTE directive. Note that the syntax differs from the . BYTE directive as follows:

* There is no "=" sign

* The string is enclosed in double-quotes, not single quotes
Syntax:
.ASCII "string";

Example:

.SECTION datal;

ASCII String:

. TYPE ASCII_String, STT OBJECT;
.ASCII "ABCD";

.ASCII String.end:

Byte String:

.TYPE Byte String,STT OBJECT;
.Byte = “ABCD';

.Byte String.end:

.BYTE, Declare a Byte Data Variable or Buffer

NOTE: Used with the Blackfin processors only.

The .BYTE, .BYTEZ2, and .BYTE4 directives declare and optionally initialize one-, two-, and four-byte data ob-
jects, respectively. Note that the . BYTE4 directive performs the same function as the . VAR directive.

Syntax:

When declaring and/or initializing memory variables or buffer elements, use one of these forms:
.BYTE varNamel [, varName2, , ...];

.BYTE = initExpressionl, initExpressionZ, ,...;

.BYTE varNamel = initExpression,varNameZ = initExpressionZ,,...;
.BYTE bufferName [] = initExpressionl, initExpression2, ,...;

.BYTE bufferName []= "fileName";

.BYTE bufferName [length] = "fileName";

.BYTE bufferName [length] = initExpressionl, initExpression2, ,...;

2-52 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

where:
varName - user-defined symbols that name variables
bufferName - user-defined symbols that name buffers

fileName - indicates that the elements of a buffer get their initial values from the £ileName data file. The
fileName parameter can consist of the actual name and path specification for the data file. If the initialization file
is in the current directory, only the £ileName need be given inside double quotation mark (" ") characters. Note
that when reading in a data file, the assembler reads in whitespace-separated lists of decimal digits or hex strings.

If the file name is not found in the current directory, the assembler looks in the directories in the processor
include path. You can use the -1 filename switch to add a directory to the processor include path.

Initializing from files is useful for loading buffers with data, such as filter coefficients or FFT phase rotation factors
that are generated by other programs. The assembler determines how the values are stored in memory when it reads

the data files.
Ellipsis (...) - represents a comma-delimited list of parameters.

initExpressions parameters - sets initial values for variables and buffer elements.

NOTE: The optional [length] parameter defines the length of the associated buffer in words. The number of
initialization elements defines the Iength of an implicit-size buffer. The brackets [] that enclose the
optional [ZIength] are required. For more information, see the following . BYTE examples.

In addition, use a /R32 qualifier (.BYTE4/R32) to support 32-bit initialization for 1.31 fracts (see
1.31 Fracts).

The following lines of code demonstrate . BYTE directives:

Bufferl:
.TYPE Bufferl, STT OBJECT;
.BYTE = 5, 6, 7;
// initialize three 8-bit memory locations
// for data label Bufferl
.Bufferl.end:
.BYTE samples[] = 123, 124, 125, 126, 127;
// declare an implicit-length buffer and initialize it
// with five l-byte constants
.BYTE4/R32 points[] = 0.01lr, 0.02r, 0.03r;
// declare and initialize an implicit-length buffer
// and initialize it with three 4-byte fract constants
.BYTE2 Ins, Outs, Remains;
// declare three 2-byte variables zero-initialized by
// default
.BYTE4 demo codes[100] = "inits.dat";
// declare a 100-location buffer and initialize it
// with the contents of the inits.dat file;
.BYTE2 taps=100;
// declare a 2-byte variable and initialize it to 100

CCES 2.9.0 Assembler and Preprocessor Manual 2-53

.BYTE, Declare a Byte Data Variable or Buffer

.BYTE twiddles[10] = "phase.dat";
// declare a 10-location buffer and load the buffer
// with contents of the phase.dat file

.BYTE4/R32 Fract Byte4 R32[] = "fr32FormatFract.dat";

When declaring or initializing variables with . BYTE, consider constraints applied to the . VAR directive.
The . VAR directive allocates and optionally initializes 32-bit data objects. Refer to .VAR, Declare a Data Variable or
Buffer for more information about the directive.

ASCII String Initialization Support

The assembler supports ASClI-string initialization. This allows the full use of the ASCII character set, including
digits and special characters.

In Blackfin processors, ASCII initialization can be provided with .BYTE, .BYTEZ2, or . VAR directives. The most
likely use is the . BYTE directive, where each char is represented by one byte versus a . VAR directive, in which
each char needs four bytes. The characters are stored in the upper byte of 32-bit words. The LSBs are cleared.

String initialization takes one of the following forms:

.BYTE symbolString[length] = ‘initString', 0;

.BYTE symbolString[] = 'initString', 0;

Note that the number of initialization characters defines the optional Iength of a string (implicit-size initializa-
tion).

Example:

.BYTE k[13] = "Hello world!', 0;

.BYTE k[] = "Hello world!', O0;

The trailing zero character is optional. It simulates ANSI-C string representation.

.COMPRESS, Start Compression

NOTE: Used with the ADSP-214xx SHARC processors only.

The . COMPRESS directive indicates that all of the following instructions in the source file should be compressed, if
possible. The directive affects sections assembled as short word. Compression can be canceled by a . NOCOMPRESS
directive later in the source file (see NOCOMPRESS, Terminate Compression).

.COMPRESS is advisory only:
* There is no guarantee that a particular instruction will be compressed.
* Instructions can be ‘uncompressed' if they are near the end of a DO loop.

* Whether a particular instruction is compressed can change due to assembler changes such as anomaly work-
arounds.

* There are no warnings if instructions cannot be compressed.

2-54 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

Therefore, it is not recommended to create code layouts (tables with fixed size entries) that depend on particular
instructions being compressed.

Syntax:
.COMPRESS;
.EXTERN, Refer to a Globally Available Symbol

The .EXTERN directive allows a code module to reference global data structures, symbols that are declared
as . GLOBAL in other files. For additional information, see the . GLOBAL directive (GLOBAL, Make a Symbol
Available Globally).

Syntax:
.EXTERN symbolNamel[, symbolName2 , ...];
where:

symbolName - the name of a global symbol to import. A single . EXTERN directive can reference any number of
symbols on one line, separated by commas.

Example:

.EXTERN coeffs;
// This code declares an external symbol to reference
// the global symbol "coeffs" declared in the example
// code in the .GLOBAL directive description.

.EXTERN STRUCT, Refer to a Struct Defined Elsewhere

The .EXTERN STRUCT directive allows a code module to reference a struct defined in another file. Code in the
assembly file can then reference the data members by name, just as if they were declared locally.

Syntax:

.EXTERN STRUCT typedef structvarName;
where:

typedef - the type definition for a struct VAR
structvarName - a struct VAR name

The .EXTERN STRUCT directive specifies a struct symbol name declared in another file. The naming conventions
for structs are the same as for variables and arrays:

 Ifastruct was declared in a C file, refer to it with a leading .
* Ifastruct was declared in an . asm file, use the name "as is", no leading underscore (_) is necessary.
The .EXTERN STRUCT directive optionally accepts a list, such as:

.EXTERN STRUCT typedef structvarName [, STRUCT typedef structvarName ...]

CCES 2.9.0 Assembler and Preprocessor Manual 2-55

Assembler Directives

The key to the assembler knowing the layout is the . IMPORT directive and the . EXTERN STRUCT directive as-
sociating the typedef with the struct VAR. To reference a data structure declared in another file, use

the . IMPORT directive with the . EXTERN directive. This mechanism can be used for structures defined in assem-
bly source files as well as in C files.

The . EXTERN directive supports variables in the assembler. If the program references struct members, . EXTERN
STRUCT must be used because the assembler must consult the struct layout to calculate the offset of the struct
members. If the program does not reference struct members, you can use . EXTERN for struct VARs.

Example (SHARC Code):

.IMPORT "MyCelebrities.h";
// 'Celebrity' is the typedef for struct var 'StNick'
// .EXTERN means that ' StNick' is referenced within this
// file, but not locally defined. This example assumes StNick
// was declared in a C file and it must be referenced with
// a leading underscore.
.EXTERN STRUCT Celebrity StNick;
// "isSeniorCitizen" is one of the members of the 'Celebrity'
// type
P3.L = LO(StNick->isSeniorCitizen);
P3.H = HI(StNick->isSeniorCitizen);

.FILE_ATTR, Create an Attribute in the Object File

The .FILE ATTR directive instructs the assembler to place an attribute in the object file which can be referenced
in the . 1df file when linking. See the Linker and Utilities Manual for more information.

Syntax:
.FILE ATTR attrNamel [= attrVall] [, attrName2 [= attrVall2];]
where:

attrName - the name of the attribute. Attribute names must follow the same rules for naming symbols.

1

attrvVal - sets the attribute to this value. If omitted, "1" is used. The value must be double-quoted unless it follows

the rules for naming symbols (as described in Assembler Keywords and Symbols).

Examples:

.FILE ATTR atl;
.FILE ATTR atl0=al23;
.FILE ATTR atlOl=al23, atl02,atl03="999";

.FILE, Override the Name of a Source File

The . FILE directive overrides the name of the source file. This directive can appear in the C/C++ compiler-gener-
ated assembly source file (. s). The . FILE directive is used to ensure that the debugger has the correct file name for
the source file that generated the object file.

Syntax:

2-56 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

.FILE " filename.ext";
where:

filename - the name of the source file to associate with the object file. The argument is enclosed in double quotes.

.FORCECOMPRESS, Compress the Next Instruction

NOTE: Used with the ADSP-214xx SHARC processors only.

The . FORCECOMPRESS directive causes the next instruction to be compressed, if possible. The directive affects
sections that are assembled as short word. The directive overrides the effect of a previous . NOCOMPRESS directive
(see NOCOMPRESS, Terminate Compression) for one instruction. Only the immediately following assembly in-
struction is affected by . FORCECOMPRESS, while . COMPRESS (see .COMPRESS, Start Compression) starts a
sequence of compressed instructions ended by . NOCOMPRESS.

The . FORCECOMPRESS directive can override certain conservative assumptions normally made by the assembler,
such as when an immediate value is an expression containing a symbol. In this case, the assembler normally does not
generate a compressed instruction because the ultimate value of the symbolic expression may not fit in the immedi-
ate field of the compressed instruction.

The . FORCECOMPRESS directive is advisory only:
* There is no guarantee that a particular instruction will be compressed.
* An instruction can be ‘uncompressed’ if it is near the end of a DO loop.

* Whether a particular instruction is compressed can change due to assembler changes such as anomaly work-
arounds.

* There are no warnings if an instruction cannot be compressed.

Therefore, it is not recommended to create code layouts (tables with fixed size entries) that depend on particular
instructions being compressed.

Syntax:
.FORCECOMPRESS;

.GLOBAL, Make a Symbol Available Globally

The . GLOBAL directive changes the scope of a symbol from local to global, making the symbol available for refer-
ence in object files that are linked to the current one.

By default, a symbol has local binding, meaning the linker can resolve references to the symbol only from the local
file (that is, the same file in which the symbol is defined). The symbol is visible only in the file in which it is de-
clared. Local symbols in different files can have the same name, and the linker considers them to be independent
entities. Global symbols are visible from other files; all references from other files to an external symbol by the same
name will resolve to the same address and value, corresponding to the single global definition of the symbol.

CCES 2.9.0 Assembler and Preprocessor Manual 2-57

Assembler Directives

Change the default scope with the . GLOBAL directive. Once the symbol is declared global, other files may refer to
it with . EXTERN. For more information, refer to .COMPRESS, Start Compression. Note that . GLOBAL
(or . WEAK) scope is required for symbols that appear in RESOLVE commands in the . 1df file.

NOTE: The .GLOBAL (or . WEAK) directive is required to make symbols available for placement through
RESOLVE commands in the . 1df file.

Syntax:
.GLOBAL symbolNamel [, symbolNameZ2 , ...];
where:

symbolName - the name of a global symbol. A single . GLOBAL directive may define the global scope of any num-
ber of symbols on one line, separated by commas.

Example (SHARC Code):

.VAR coeffs[10]; // declares a buffer

.VAR taps=100; // declares a variable

.GLOBAL coeffs, taps; // makes the buffer and the variable

// visible to other files

Example (Blackfin Code):

.BYTE coeffs[10]; // declares a buffer
.BYTE4 taps=100; // declares a variable
.GLOBAL coeffs, taps; // makes the buffer and the variable

// visible to other files

.IMPORT, Provide Structure Layout Information

The . IMPORT directive makes struct layouts visible inside an assembler program. The . IMPORT directive provides
the assembler with the following structure layout information:

* The names of typedefs and structs available
* The name of each data member
* The sequence and offset of the data members

* Information as provided by the C compiler for the size of C base types (alternatively, for STZEOF () C base
types).
Syntax:
. IMPORT "headerfilenamel" [, "headerfilename2'", ...];

where:

headerfilename - one or more comma-separated C header files enclosed in double quotes.

2-58 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

NOTE: The system processes each . IMPORT directive and each file specified in an . IMPORT directive separately.
Therefore, all type information must be available within the context for the individual file.

If headerfilel.h defines a type referenced in headerfile?2.h, an attempt to import the second file into
assembly fails. One solution is to have the assembler call the compiler once for the set of import statements. The
compiler then has all the information it needs when processing the second header file.

In other words, create a third file to be imported in place of headerfile2.h. This file would simply consist of
these lines:

#include "headerfilel.h"
#include "headerfile2.h"

The . IMPORT directive does not allocate space for a variable of this type. Allocating space requires the . STRUCT
directive (see .STRUCT, Create a Struct Variable).

The assembler takes advantage of knowing the struct layouts. The assembly programmer can reference struct data
members by name in an assembler source file, as one does in C. The assembler calculates the offsets within the struc-
ture based on the size and sequence of the data members.

If the structure layout changes, the assembly code needs no change. It needs to get the new layout from the header
file, via the compiler. Make dependencies track the . IMPORT header files and know when a rebuild is needed. Use
the ~-flags—-compiler assembler switch to pass options to the C compiler for . IMPORT header file compila-
tions.

An . IMPORT directive with one or more . EXTERN directives allow code in the module to refer to a struct variable
that was declared and initialized elsewhere. The C struct can be declared in C-compiled code or another assembly

file.

The . IMPORT directive with one or more . STRUCT directives declares and initializes variables of that structure
type within the assembler section in which it appears.

For more information, refer to .EXTERN, Refer to a Globally Available Symbol and .STRUCT, Create a Struct
Variable.

Example:

. IMPORT "CHeaderFile.h";

. IMPORT "ACME_IIir.h","ACME_IFir.h";

.SECTION program;
// ... code that uses CHeaderFile, ACME IIir, and
// ACME IFir C structs

.INC/BINARY, Include Contents of a File

The . INC/BINARY directive includes the content of file at the current location. You can control the search paths
used via the -i command-line switch.

Syntax:

.INC/BINARY [symbol = "filename" [, skipl[,count]];

CCES 2.9.0 Assembler and Preprocessor Manual 2-59

Assembler Directives

.INC/BINARY [symbol[] = "filename" [, skip[,count]];

where:

symbol is the name of a symbol to associate with the data being included from the file
filename is the name of the file to include. The argument is enclosed in double quotes.
The skip argument skips a number of bytes from the start of the file.

The count argument indicates the maximum number of bytes to read.

Example:

.SECTION datal;

.VAR jim;

.INC/BINARY sym[] = "bert",10,6;

.VAR fred;

.INC/BINARY Imagel[] = "photos/Picturel.jpg";

.LEFTMARGIN, Set the Margin Width of a Listing File

The . LEFTMARGIN directive sets the margin width of a listing page. It specifies the number of empty spaces at the
left margin of the listing file (. 1st), which the assembler produces when you use the -1 switch. In the absence of
the . LEFTMARGIN directive, the assembler leaves no empty spaces for the left margin.

The assembler compares the . LEFTMARGIN and . PAGEWIDTH values against one another. If the specified values
do not allow enough room for a properly formatted listing page, the assembler issues a warning and adjusts the di-
rective that was specified last to allow an acceptable line width.

Syntax:
. LEFTMARGIN expression ;
where:

expression evaluates to an integer from 0 to 100. Default is 0. Therefore, the minimum left margin value is 0
and the maximum left margin value is 100. To change the default setting for the entire listing, place
the . LEFTMARGIN directive at the beginning of your assembly source file.

Example:
.LEFTMARGIN 9; /* the listing line begins at column 10 */

NOTE: You can set the margin width only once per source file. If the assembler encounters multiple occurrences of
the . LEFTMARGIN directive, it ignores all of them except the last directive.

.LIST_DATFILE/.NOLIST_DATFILE, List Data Init Files

The .LIST DATFILE/.NOLIST DATFILE directives (off by default) turn the listing of data initialization files
on and off. Nested source files inherit the current setting of this directive pair, but a change to the setting made in a
nested source file will not affect the parent source file.

2-60 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

The .LIST DATFILE/.NOLIST DATFILE directives do not take any qualifiers or arguments.
Syntax:

.LIST DATFILE;

.NOLIST DATFILE;

These directives can appear multiple times anywhere in a source file, and their effect depends on their location in the
source file. They are used in assembly source files, but not in data initialization files.

.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes

The .LIST DATA/.NOLIST DATA directives (off by default) turn the listing of data opcodes on and off.
When .NOLIST DATA is in effect, opcodes that correspond to variable declarations do not appear in the opcode
column. Nested source files inherit the current setting of this directive pair, but a change to the setting made in a
nested source file does not affect the parent source file.

.LIST DATA/.NOLIST DATA directives do not take any qualifiers or arguments.
Syntax:

.LIST DATA;

.NOLIST DATA;

These directives can appear multiple times anywhere in a source file, and their effect depends on their location in the
source file.

.LIST_DEFTAB/.LIST_LOCTAB, Set Tab Widths for Listings

Tab-characters in source files are expanded to blanks in listing files under the control of two internal assembler pa-
rameters that set the tab expansion width. The default tab width is normally in effect, but it can be overridden if the
local tab width is explicitly set with a directive.

The .LIST DEFTAB directive sets the default tab width, and the . LIST LOCTAB directive sets the local tab
width.

Both the default tab width and the local tab width can be changed any number of times via the . LIST DEFTAB
and .LIST LOCTAB directives. The default tab width is inherited by nested source files, but the local tab width
only affects the current source file.

Syntax:

.LIST DEFTAB expression;

.LIST LOCTAB expression;

where:

expression evaluates to an integer greater than or equal to 0.

In the absence of a . LIST DEFTAB directive, the default tab width defaults to 4.

CCES 2.9.0 Assembler and Preprocessor Manual 2-61

Assembler Directives

In the absence of a . LIST LOCTAB directive, the local tab width defaults to the current setting for the default tab
width.

A value of 0 sets the default tab width and the local tab width to the current setting of the default tab width.

Example:

// Tabs here are expanded to the default of 4 columns
.LIST DEFTAB 8;

// Tabs here are expanded to 8 columns
.LIST LOCTAB 2;

// Tabs here are expanded to 2 columns

// But tabs in "include 1.h" will be expanded to 8 columns
#include "include 1.h"
.LIST DEFTAB 4;

// Tabs here are still expanded to 2 columns

// But tabs in "include 2.h" will be expanded to 4 columns
#include "include 2.h"

.LIST_WRAPDATA/.NOLIST_WRAPDATA

The .LIST WRAPDATA/.NOLIST WRAPDATA directives control the listing of opcodes that are too big to fit
in the opcode column. By default, the . NOLIST WRAPDATA directive is in effect.

This directive pair applies to any opcode that does not fit, but in practice, such a value almost always is the data
(alignment directives can also result in large opcodes).

e If .LIST WRAPDATA is in effect, the opcode value is wrapped so that it fits in the opcode column (resulting
in multiple listing lines).

e If .NOLIST WRAPDATA is in effect, the printout is what fits in the opcode column.

Nested source files inherit the current setting of this directive pair, but a change to the setting made in a nested
source file does not affect the parent source file.

The .LIST WRAPDATA/.NOLIST WRAPDATA directives do not take any qualifiers or arguments.
Syntax:

.LIST WRAPDATA;

.NOLIST WRAPDATA;

These directives can appear multiple times anywhere in a source file, and their effect depends on their location in the
source file.

.LIST/.NOLIST, Listing Source Lines and Opcodes
The .LIST/.NOLIST directives (on by default) turn on and off the listing of source lines and opcodes.

If .NOLIST is in effect, no lines in the current source (or any nested source) are listed until a . LIST directive is
encountered in the same source, at the same nesting level. The . NOLIST directive operates on the next source line,
so that the line containing a . NOLIST appears in the listing and accounts for the missing lines.

2-62 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

The .LIST/.NOLIST directives do not take any qualifiers or arguments.
Syntax:
LLIST

.NOLIST;

These directives can appear multiple times anywhere in a source file, and their effect depends on their location in the
source file.

.LONG, Define and Initialize 4-Byte Data Objects

NOTE: Used with the Blackfin processors only.

The . LONG directive declares and optionally initializes four-byte data objects. It is effectively equivalent

to .BYTE4 initExpressionl, initExpressionZ.For more information, see .BYTE, Declare a Byte Data
Variable or Buffer.

Syntax:

When declaring and/or initializing memory variables or buffer elements, use the following format. Note that the
terminating semicolon is optional.

.LONG initExpressionl, initExpression2, ...[;]

.LONG constExpressionl, constExpression2, ...[;]

where:

initExpressions parameters contain one or more comma-separated "symbol=value" expressions.
constExpressions parameters contain a comma-separated list of constant values.

The following lines of code demonstrate . LONG directives:

// Define an initialized variable
.LONG bufl=0x1234;
// Define two initialized variables
.LONG 0x1234, 0x5678;
// Declare three 4-byte areas of memory, initialized to
// 3, 4, and 5 respectively
.LONG 0x0003, 0x0004, 0x0005;

.MESSAGE, Alter the Severity of an Assembler Message

The .MESSAGE directive can be used to alter the severity of an error, warning, or informational message generated
by the assembler for all or part of an assembly source.

Syntax:
.MESSAGE/qualifier warnidl[, warnid2, ...]:;
.MESSAGE/qualifier warnidl[, warnid2, ...] UNTIL sym ;

CCES 2.9.0 Assembler and Preprocessor Manual 2-63

Assembler Directives

.MESSAGE/qualifier warnidl[, warnid2, ...] FORnLINES;

.MESSAGE/DEFAULT/qualifier warnidl[, warnid2, ...] ;

where:

warnidl[, warnid2, ...] isalist of one or more message identification numbers.

A qualifier can be:

ERROR - change messages to errors

WARN - change messages to warnings

INFO - change messages to informational messages
SUPPRESS - do not output the messages

RESTORE_CL - change the severity of the messages back to the default values they had at the beginning of the
source file, after the command line arguments were processed, but before any DEFAULT directives have been
processed.

RESTORE - change the severity of the messages back to the default values they had at the beginning of the
source file, after the command line arguments were processed, and after any DEFAULT directives have been
processed.

POP - change the severity of the messages back to what they were prior to the previous . MESSAGE directive.

The RESTORE, RESTORE CL, and POP qualifiers cannot be used with the UNTIL, FOR, or DEFAULT forms of
the . MESSAGE directive.

The DEFAULT qualifier cannot be used with the UNTIL or FOR forms of the . MESSAGE directive.

The simple form of the . MESSAGE directive changes the severity of messages until another .MESSAGE directive is

seen. It can be placed anywhere in a source file. Messages that cannot be associated with a source line can be report-
ed with line number 0. These cannot be altered in severity by a . MESSAGE directive; use the -Werror

number [, number], -Wwarn number [, number],-Winfo number[, number], or -

Wsuppress number [, number] assembler switch.

Example:

.MESSAGE/ERROR 1049;
.SECTION program;

.VAR two[2]=1; // generates an error
.MESSAGE/SUPPRESS 1049;

.VAR three[3]=1,2; // generates no message
.MESSAGE/WARN 1049;

.VAR four[4]1=1,2,3; // generates a warning

The temporary forms of the . MESSAGE directive (UNTIL and FOR) changes the severity of messages until the
specified label (or for the specified number of source lines). The temporary forms of the . MESSAGE directive must

start and end within a single . SECTION directive.

2-64 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

Include files inherit any severity changes from the files which #include them. . MESSAGE directives in include
files do not control the severity of messages generated after returning to the source file which included them.

A .MESSAGE/DEFAULT directive in an include file controls the severity of messages generated after returning to
the source file which included them.

.NEWPAGE, Insert a Page Break in a Listing File

The . NEWPAGE directive inserts a page break in the printed listing file (. 1st), which the assembler produces
when you use the -1 filename switch. The assembler inserts a page break at the location of the . NEWPAGE
directive.

The . NEWPAGE directive does not take any qualifiers or arguments.
Syntax:
.NEWPAGE;

This directive can appear anywhere in your source file. In the absence of the . NEWPAGE directive, the assembler
generates no page breaks in the file.

.NOCOMPRESS, Terminate Compression

NOTE: Used with the ADSP-214xx SHARC processors only.

The .NOCOMPRESS directive indicates that all of the following instructions in the source file should not be com-
pressed.

Syntax:
.NOCOMPRESS;

The directive's effect is canceled by a . COMPRESS, Start Compression directive later in the source file.
The directive’s effect also is canceled by a . FORCECOMPRESS, Compress the Next Instruction
directive for one instruction only.

.PAGELENGTH, Set the Page Length of a Listing File

The . PAGELENGTH directive controls the page length of the listing file produced by the assembler when you use
the -1 filename switch.

Syntax:
.PAGELENGTH expression;
where:

expression - evaluates to an integer 0 or greater. It specifies the number of text lines per printed page. The default
page length is 0, which means the listing has no page breaks.

CCES 2.9.0 Assembler and Preprocessor Manual 2-65

Assembler Directives

To format the entire listing, place the . PAGELENGTH directive at the beginning of your assembly source file. If a
page length value greater than 0 is too small to allow a properly formatted listing page, the assembler issues a
warning and uses its internal minimum page length (approximately 10 lines).

Example:

.PAGELENGTH 50; // starts a new page after printing 50 lines

NOTE: You can set the page length only once per source file. If the assembler encounters multiple occurrences of
the directive, it ignores all except the last directive.

.PAGEWIDTH, Set the Page Width of a Listing File

The . PAGEWIDTH directive sets the page width of the listing file produced by the assembler when you use the -1
switch.

Syntax:

.PAGEWIDTH expression ;

where:

expression evaluates to an integer

Depending on setting of the . LEFTMARGIN directive, this integer should be at least equal to:
* LEFTMARGIN value plus 46 (for Blackfin processors)
* LEFTMARGIN value plus about 66 (for SHARC processors)

You cannot set this integer to less than 46, 49, or 66, respectively. There is no upper limit. If LEFTMARGIN = 0 and
the . PAGEWIDTH value is not specified, the actual page width is set to any number over 46, 49, or 66, respectively.

To change the number of characters per line in the entire listing, place the . PAGEWIDTH directive at the beginning
of the assembly source file.

Example:

.PAGEWIDTH 72; // starts a new line after 72 characters
// are printed on one line, assuming
// the .LEFTMARGIN setting is O.

NOTE: You can set the page width only once per source file. If the assembler encounters multiple occurrences of
the directive, it ignores all of them except the last directive.

.PORT, Legacy Directive

NOTE: Used with the SHARC processors only.

The . PORT legacy directive assigns port name symbols to I/O ports. Port name symbols are global symbols that
correspond to memory-mapped I/O ports defined in the . 1df file.

The . PORT directive uses the following syntax:

2-66 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

.PORT portName;,

where:

portName is a globally available port symbol.
Example:

.PORT pl; // declares I/O port P1
.PORT p2; // declares I/O port P2

To declare a port using the SHARC assembler, use the . VAR directive (for port-identifying symbols) and the linker
description file (for corresponding I/O sections). The linker resolves port symbols in the . 1df file.

For more information on the linker description file, see the Linker and Utilities Manual.

.PRECISION, Select Floating-Point Precision

NOTE: Used with the SHARC processors only.

The . PRECISION directive controls how the assembler interprets floating-point numeric values in constant decla-
rations and variable initializations. To configure the floating-point precision of the target processor system, you must
set up control registers of the chip using instructions specific to the processor core.

Use one of the following syntax options:

.PRECISION [=] 32;

.PRECISION [=] 40;

where:

The precision of 32 or 40 (default) specifies the number of significant bits for floating-point data. The equal sign
(=) following the . PRECISION keyword is optional.

Note that the . PRECISION directive applies only to floating-point data. Precision of fixed-point data is deter-
mined by the number of digits specified. The . PRECISION directive applies to all following floating-point expres-
sions in the file up to the next . PRECISION directive.

Example:

.PRECISION=32; /* Selects standard IEEE 32-bit
single-precision format. */

.PRECISION 40; /* Selects 40-bit format with
extended mantissa. This is the default
setting. */

NOTE: The .ROUND directives (see . ROUND_, Select Floating-Point Rounding) specify how the assembler
converts a value of many significant bits to fit into the selected precision.

CCES 2.9.0 Assembler and Preprocessor Manual 2-67

Assembler Directives

.PREVIOUS, Revert to the Previously Defined Section

The . PREVIOUS directive instructs the assembler to set the current section in memory to the section described

immediately before the current one. The . PREVIOUS directive operates on a stack.

Syntax:

.PREVIOUS;

The following examples provide valid and invalid cases of the use of the consecutive . PREVIOUS directives.

Example of Invalid Directive Use:

.SECTION datal; //
.SECTION code; //
.PREVIOUS; //

.PREVIOUS; //

Example of Valid Directive Use:

#define MACRO1 \
.SECTION dataZ2; \
.VAR vd = 4; \
.PREVIOUS;
.SECTION datal; //
.VAR va = 1;
.SECTION program; //
.VAR vb = 2;
MACRO1 //
.PREVIOUS;

.VAR vc = 3;

evaluates as:

.SECTION datal; //
.VAR va = 1;
.SECTION program; //
.VAR vb = 2;
//
.SECTION dataZ2;
.VAR vd = 4;
.PREVIOUS; //
//
.PREVIOUS; //

.VAR vc = 3;

data
instructions

previous section ends, back to datal
no previous section to set to

data

instructions

invoke macro

data

instructions

Start MACRO1

end data2, section program

End MACRO1
end program,

start datal

PRIORITY, Allow Prioritized Symbol Mapping in Linker

The . PRIORITY directive allows prioritized symbol mapping in the linker. The directive can be specified for:

* A symbol defined in the same file as the directive

* A globally defined symbol

2-68

CCES 2.9.0 Assembler and Preprocessor Manual

PRIORITY, Allow Prioritized Symbol Mapping in Linker

* Alocal symbol in a different source file
Syntax:
.PRIORITY symbolName, priority;
.PRIORITY symbolName, "sourcefile", priority;
where:

In the first case, symbolName is a global symbol or locally defined symbol. In the second case, symbolName is a

symbol defined in " sourcefile ".

Example:

.PRIORITY foo, 35; // Symbol with highest priority
.PRIORITY main, 15; // Symbol with medium priority

.PRIORITY bar, "barFile.asm", -10; // Symbol with lowest priority
Linker Operation

After the absolute placement of symbols specified in the . 1df file's RESOLVE () command, but before mapping
commands are processed, the linker tries to map all symbols appearing in priority directives in decreasing order of
their priorities.

The prioritized symbol is placed into memory that contains only the INPUT SECTIONS () command for input
sections defining the symbol. Symbols with assigned priority are mapped after absolutely placed symbols, but before
symbols without assigned priority.

The symbols are placed into memory segments based on the order that the segments appear in the . 1df file. There-
fore, an output section targeting a higher-priority memory segment should appear before an output section targeting

a lower-priority segment.

Example of Assembler Code:

.section program;
_funcl:
_func2:

.section L1 code;
L1 func:

.PRIORITY L1 func,10;
.PRIORITY _funcl,11;
.PRIORITY _func2,12;

Example of LDF Code:

L1 A { INPUT SECTIONS ($SOBJECTS (L1 code))} > L1 A;
L1 B { INPUT SECTIONS (SOBJECTS (L1 code program)) } > L1 B;
L2 { INPUT SECTIONS (SOBJECTS (program))} > L2;

The preceding examples result in the linker executing the following steps:

CCES 2.9.0 Assembler and Preprocessor Manual 2-69

Assembler Directives

1. Because func? is assigned the highest priority (12) in the assembler code, the linker tries to map it first. It is
in section "program" and can only be mapped into memory segment L1 B or L2. The linker attempts to map
in the order the segments appear in the LDE The linker first tries to map it into the L1 B memory segment. If
_func?2 does not fit into L1 B, the linker tries the L2 segment.

2. Because funcl is assigned the middle priority (11) in the assembler code, the linker maps it next. This sym-
bol is also in the section "program" and so the linker first tries to map it into the L1 B memory segment. If
_funcl does not fit into L1 B, the linker tries the L2 segment.

3. Because L1 func is assigned the lowest priority (10) in the assembler code, the linker maps it last. Because
this symbol is in section L1 code, the linker first tries to map it into the L1 A memory segment. If
L1 func doesnotfitinto L1 A, the linker tries the L1 B segment.

.REFERENCE, Provide Better Info in an X-REF File

NOTE: Used with the Blackfin processors only.

The .REFERENCE directive is used by the compiler to provide better information in an X-REF file generated by
the linker. This directive is used when there are indirect symbol references that would otherwise not appear in an X-

REF file.

The .REFERENCE directive uses the following syntax:
.REFERENCE symbol/,

where:

symbol is a symbol.

Example:

.REFERENCE
Pl g

.REFERENCE P2;

.RETAIN_NAME, Stop Linker from Eliminating Symbol

The .RETAIN NAME directive stops the linker from eliminating the symbol when linking the generated object
file. This directive has the same effect as the KEEP () LDF command.

Syntax:

The .RETAIN NAME directive uses the following syntax:
. RETAIN_NAME symbol,

where:

symbol is a user-defined symbol.

For information on KEEP (), refer to the Linker and Utilities Manual.

2-70 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

.ROUND_, Select Floating-Point Rounding

NOTE: Used with the SHARC processors only.

The .ROUND _ directives control how the assembler interprets literal floating-point numeric data af-
ter . PRECISION is defined. The . PRECISION directive determines the number of bits to be truncated to match
the number of significant bits; see . PRECISION, Select Floating-Point Precision.

The .ROUND directives determine how the assembler handles the floating-point values in constant declarations
and variable initializations. They do not affect the floating-point rounding modes of the target processor system
which are determined by processor-specific control registers.

The .ROUND directives use the following syntax:
.ROUND mode ;
where:

The mode string specifies the rounding scheme used to fit a value in the destination format. Use one of the follow-
ing IEEE standard modes:

.ROUND NEAREST; (default: round to nearest)
.ROUND_PLUS; (round towards positive infinity)
.ROUND_ MINUS; (round towards negative infinity)
.ROUND ZERO; (round towards zero)

In the following examples, the numbers with four decimal places are reduced to three decimal places and rounded
accordingly.
.ROUND NEAREST;
/* Selects Round-to-Nearest scheme; the default setting.
A 5 is added to the digit that follows the third
decimal digit (the least significant bit - LSB). The
result is truncated after the third decimal digit (LSB).

1.2581 rounds to 1.258

8.5996 rounds to 8.600

-5.3298 rounds to -5.329

-6.4974 rounds to -6.496

=)
.ROUND_ZERO;
/* Selects Round-to-Zero. The closer to zero value is taken.

The number is truncated after the third decimal digit (LSB).

1.2581 rounds to 1.258

8.5996 rounds to 8.599

-5.3298 rounds to -5.329

-6.4974 rounds to -6.497
=)

CCES 2.9.0 Assembler and Preprocessor Manual 2-71

Assembler Directives

.ROUND_ PLUS;

/* Selects Round-to-Positive Infinity. The number rounds
to the next larger.
For positive numbers, a 1 is added to the third decimal
digit (the least significant bit). Then the result is
truncated after the LSB.
For negative numbers, the mantissa is truncated after
the third decimal digit (LSB).

1.2581 rounds to 1.259
8.5996 rounds to 8.600
-5.3298 rounds to -5.329
-6.4974 rounds to -6.497

oy

.ROUND_MINUS;

/* Selects Round-to-Negative Infinity. The value
rounds to the next smaller.
For negative numbers, a 1 is subtracted from the
third decimal digit (the least significant bit).
Then the result is truncated after the LSB.
For positive numbers, the mantissa is truncated
after the third decimal digit (LSB).

1.2581 rounds to 1.258

8.5996 rounds to 8.599

-5.3298 rounds to -5.330

-6.4974 rounds to -6.498
oy

.SECTION, Declare a Memory Section

The . SECTION directive marks the beginning of a logical section corresponding to an array of contiguous loca-
tions in your processor memory. Statements between one . SECTION directive and the following . SECTION di-
rective (or the end-of-file instruction), comprise the content of the section.

Blackfin Syntax:
.SECTION/qualifier [/qualifier] sectionName [sectionType];
SHARC Syntax:
.SECTION/TYPE/qualifier sectionName [sectionType];

NOTE: All qualifiers are optional, and more than one qualifier can be used.
Common .SECTION Attributes
The following are common syntax attributes used by the assembler:

* sectionName - section name symbol which is not limited in length and is case sensitive. Section names must
match the corresponding input section names used by the . 1df file to place the section. Use the default . 1df

2-72 CCES 2.9.0 Assembler and Preprocessor Manual

.SECTION, Declare a Memory Section

file included in the <install path>/ processor family /1df subdirectory of the installation directo-
ry, or write your own . 1df file.

NOTE: Some sections starting with ". " names have certain meaning within the linker. Do not use the dot
(.) as the initial character for sectionName.

The assembler generates relocatable sections for the linker to fill in the addresses of symbols at link-time. The
assembler implicitly prefixes the name of the section with the ". rela." string to form a relocatable section.

Al

To avoid ambiguity, ensure that your section names do not begin with " . rela.".

* sectionType - an optional ELF section type identifier. The assembler uses the default SHT PROGBITS
when this identifier is absent.

Blackfin Example:

/* Declared below memory sections correspond to the default
LDF's input sections. */

.SECTION/DOUBLE32 datal; /* memory section to store data */

.SECTION/DOUBLE32 program; /* memory section to store code */

DOUBLE* Qualifiers
The DOUBLE* qualifier can be one of the qualifiers in the DOUBLE Qualifiers table.

Table 2-13: DOUBLE Qualifiers

Qualifier Description

DOUBLE32 DOUBLES are represented as 32-bit types

DOUBLE64 DOUBLES are represented as 64-bit types

DOUBLEANY Section does not include code that depends on the size of DOUBLE

The DOUBLE size qualifiers are used to ensure that object files are consistent when linked together and with run-
time libraries. A memory section can have one DOUBLE size qualifier - it cannot have two DOUBLE size qualifiers.
Sections in the same file do not have to have the same type size qualifiers.

NOTE: Use of DOUBLEANY in a section implies that DOUBLE's are not used in this section in any way that
would require consistency checking with any other section.

SHARC-Specific Qualifiers

For the SHARC assembler, the . SECTION directive supports qualifiers that specify the size of data words in the
section. A qualifier can specify restricted placement for the section. Each section that defines data or code must bear
an appropriate size qualifier; the placement qualifier is optional. The SHARC-Specific Qualifiers table lists qualifiers
that are specific to SHARC processors.

CCES 2.9.0 Assembler and Preprocessor Manual 2-73

.SECTION, Declare a Memory Section

Table 2-14: SHARC-Specific Qualifiers

Memory/Section Type Description

PM or Code Section contains instructions and/or data in the processor's default code word size; for example, 16 bits
for ADSP-214xx processors (without the —nwc switch), and 48 bits for everything else.

DM or Data Section contains data in 40-bit words

DATA64 Section defines data in 64-bit words

DMAONLY Placement qualifier for a section to be placed in memory and accessed through DMA only.

The qualifier passes to the linker a request to place the section in a memory segment with the
DMAONLY qualifier, which applies to memory accessed through the external parallel port of the
ADSP-2126x and some ADSP-2136x processors.

NW Placement qualifier for a normal-word section. Instructions will be assembled as normal 48-bit instruc-
tions and loaded into a 48-bit memory segment. Unlike PM sections, NW sections are always 48 bits
and unaffected by the ~short-word-code or —swc switch. See -short-word-code or -swec.

NOTE: Applicable to the ADSP-214xx processors only.

SW Placement qualifier for a 16-bit short-word section. Instructions will be assembled and loaded into a
16-bit short-word memory segment. Instructions will be assembled as compressed 16- or 32-bit in-
structions, if possible. See -short-word-code or -swc for more information.

NOTE: Applicable to the ADSP-214xx processors only.
Example:

.SECTION/DM/DMAONLY seg extm;

.VAR external var[100];

Initialization Section Quailifiers

The . SECTION directive may identify "how/when/if" a section is initialized. The initialization qualifiers, common

for all supported assemblers, are listed in the SHARC-Specific Initialization Qualifiers table.

Table 2-15: SHARC-Specific Initialization Qualifiers

Qualifier Description

NO_INIT The section is "sized" to have enough space to contain all data elements placed in this section. No data
initialization is used for this memory section.

ZERO_INIT Similar to /NO_INIT, except that the memory space for this section is initialized to zero at "load

time" or "runtime", if invoked with the linker's -meminit switch. If the -meminit switch is not
used, the memory is initialized at "load" time when the . DXE file is loaded via the IDE, or boot-load-
ed by the boot kernel. If the memory initializer is invoked, the C/C++ run-time library (CRTL) proc-
esses embedded information to initialize the memory space during the CRTL initialization process.

RUNTIME INIT

If the memory initializer is not run, this qualifier has no effect. If the memory initializer is invoked, the
data for this section is set during the CRTL initialization process.

Example:

2-74

CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

.SECTION/NO_INIT seg bss;
.VAR big[0x100000];

.SECTION/ZERO INIT seg bsz;
.VAR big[0x100000];

Initialized dataina /NO INIT or /ZERO INIT section is ignored. For example, the assembler generates a warn-
ing for the . VAR zzinitialization below.

.SECTION/DM/NO INIT seg bss;

.VAR xx[1000];

.VAR zz = 25; /* [Warning ealld4l] "example.asm":3 'zz':
Data directive with assembly-time initializers found
in .SECTION 'seg bss' with qualifier /NO_INIT. */

Likewise, the assembler generates a warning for an explicit initialization to 0 in a ZERO_INIT section.

.SECTION/DM/ZERO_INIT seg bsz;
. VAR xx[1000];
.VAR zz = 0;

The assembler calculates the size of NO INIT and ZERO INIT sections exactly as for the standard
SHT PROGBITS sections. These sections, like the sections with initialized data, have the SHF ALLOC flag set.
Alignment sections are produced for NO_ INIT and ZERO INIT sections.

.SET, Set a Symbolic Alias

The . SET directive is used to alias one symbol to another.
Syntax:

.SET symboll, symbol2

where:

symboll becomes an alias to symbol2.

Example:
.SET symboll alias, symboll

.SHORT, Defines and Initializes 2-Byte Data Objects

NOTE: Used with the Blackfin processors only.

The . SHORT directive declares and optionally initializes two-byte data objects. It is effectively equivalent
to .BYTE2 initExpressionl, initExpression2,For moreinformation, see .BYTE, Declare a Byte
Data Variable or Buffer.

Syntax:

When declaring and/or initializing memory variables or buffer elements, use this format. Note that the terminating
semicolon is optional.

CCES 2.9.0 Assembler and Preprocessor Manual 2-75

Assembler Directives

.SHORT initExpressionl, initExpression2, ...[;]
.SHORT constExpressionl, constExpression2, ...[;]
where:

initExpressions parameters - contain one or more comma-separated "symbol=value" expressions
constExpressions parameters - contain a comma-separated list of constant values

The following lines of code demonstrate the . SHORT directives:

// Declare three 2-byte variables, zero-initialized
.SHORT Ins, Outs, Remains;

// Declare a 2-byte variable and initialize it to 100
.SHORT taps=100;

// Declare three 2-byte areas of memory, initialized to

// 3, 4 and 5 respectively
.SHORT 0x3, 0x4, 0x5;

.STRUCT, Create a Struct Variable

The . STRUCT directive allows you to define and initialize high-level data objects within the assembly code.

The . STRUCT directive creates a struct variable using a C-style typedef as its guide from . IMPORT C header
files.

Syntax:
.STRUCT typedef structName;

.STRUCT typedef structName = {};

.STRUCT typedef structName = {struct-member-initializers

[, struct-member-initializers ...] };

.STRUCT typedef ArrayOfStructs|[] = {struct-member-initializers
[, struct-member-initializers ...] };

where:

typedef - name of a struct type definition
structName - name of a new struct variable
struct-member-initializers - per struct member initializers

The { } curly braces are used for consistency with the C initializer syntax. Initialization can be in long form or
short form where data member names are not included. The short form corresponds to the syntax in C compiler
struct initialization with these changes:

* C compiler keyword struct is changed to . struct by adding the period (.)

2-76 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

* C compiler constant string syntax "MyString" is changed to 'MyString' by changing the double quotes ("

") into single quotes (' ').
The long form is assembler-specific and provides the following benefits:
* Provides better error checking

* Supports self-documenting code

* Protects from possible future changes to the layout of the st ruct. If an additional member is added before
the member is initialized, the assembler will continue to offset to the correct location for the specified initializa-

tion and zero-initialize the new member.

Any members that are not present in a long-form initialization are initialized to zero. For example, if struct
StructThree has three members (memberl, member?2, and member3), and

.STRUCT StructThree myThree = {
memberl = Oxaa,
member3 = 0Oxff

b e

member? is initialized to 0 because no initializer was present for it. If no initializers are present, the entire struct
is zero-initialized.

If data member names are present, the assembler validates that the assembler and compiler are in agreement about
these names. The initialization of data struct members declared via the assembly . STRUCT directive is processor-

specific.

Example 1. Long Form .STRUCT Directive
#define NTSC 1
// contains layouts for playback and capture hdr
.IMPORT "comdat.h";
.STRUCT capture hdr myLastCapture = {
captureInt = 0,
captureString = "InitialState'’
i
.STRUCT myPlayback playback = {
theSize = 0,
ready = 1,
stat debug = 0,
last capture = mylLastCapture,
watchdog = O,
vidtype = NTSC
i

Example 2. Short Form .STRUCT Directive

#define NTSC 1
// contains layouts for playback and capture hdr

.IMPORT "comdat.h";

CCES 2.9.0 Assembler and Preprocessor Manual 2-77

Assembler Directives

.STRUCT capture hdr myLastCapture = { 0, "InitialState' };
.STRUCT playback myPlayback = {0, 1, 0, myLastCapture, 0, NTSC};

Example 3. Long Form .STRUCT Directive to Initialize an Array

.STRUCT structWithArrays XXX = ({
scalar = 5,

arrayl = { 1,2,3,4,5 },
array2 = { "filel.dat" },
array3 = "WithBraces.dat" // must have { } within dat

b

In the short form, nested braces can be used to perform partial initializations as in C. In Example 4 below, if the
second member of the struct is an array with more than four elements, the remaining elements are initialized to zero.

Example 4. Short Form .STRUCT Directive to Initialize an Array
.STRUCT structWithArrays XXX = { 5, { 1,2,3,4 }, 1, 2 };

Example 5. Initializing a Pointer

A struct may contain a pointer. Initialize pointers with symbolic references.
.EXTERN outThere;

.VAR myString[] = 'abcde',0;
.STRUCT structWithPointer PPP = {
scalar = 5,

myPtrl = myString,
myPtr2 = outThere
i

Example 6. Initializing a Nested Structure

A struct may contain a struct. Use fully qualified references to initialize nested struct members.

.STRUCT NestedStruct nestedOne = {
scalar = 10,
nested->scalarl = 5,
nested->array = { 0x1000, 0x1010, 0x1020 }

e

.TYPE, Change Symbol Type

The . TYPE directive directs the assembler to change the symbol type of an object. This directive may appear in the

compiler-generated assembly source file (. s).
Syntax:

. TYPE symbolName, symbolType;
where:

symbolName is the name of the object to which the symbolType is applied.

2-78 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Directives

symbolType is an ELF symbol type STT *. Valid ELF symbol types are listed in the ELF . h header file. By de-
fault, a label has an STT FUNC symbol type, and a variable or buffer name defined in a storage directive has an
STT OBJECT symbol type.

.VAR, Declare a Data Variable or Buffer

The . VAR directive declares and optionally initializes variables and data buffers. A variable uses a single memory
location, and a data buffer uses an array of memory locations.

When declaring or initializing variables:

* A . VAR directive can appear only within a section. The assembler associates the variable with the memory type
of the section in which the . VAR appears.

* Asingle . VAR directive can declare any number of variables or buffers, separated by commas, on one line.

Unless the absolute placement for a variable is specified with a RESOLVE () command (from an . 1df file),
the linker places variables in consecutive memory locations. For example, . VAR d, £, k[50]; sequentially
places symbols x, y, and 50 elements of the buffer z in the processor memory.

* The number of initializer values may not exceed the number of variables or buffer locations that you declare.

* The . VAR directive may declare an implicit-size buffer by using empty brackets [1. The number of initiali-
zation elements defines the Zength of the implicit-size buffer. At runtime, the length operator can be used to
determine the buffer size. For example,

.SECTION datal;
.VAR buffer [] = 1,2,3,4;

.SECTION program;
LO = LENGTH(buffer); // Returns 4

Syntax:
The . VAR directive takes one of the following forms:

.VAR varNamel [, varName2, ...];

.VAR = initExpressionl, initExpression2, ...;

.VAR bufferName[] = {initExpressionl, initExpression2, ...};
.VAR bufferName[] = {"fileName"};

.VAR bufferName[length] = "fileName";

.VAR bufferName[length]| = initExpressionl, initExpression2, ...;
where:

varName - user-defined symbols that identify variables

bufferName - user-defined symbols that identify buffers

CCES 2.9.0 Assembler and Preprocessor Manual 2-79

Assembler Directives

fileName parameter - indicates that the elements of a buffer get their initial values from the £ileName data file.
The f£ileName can consist of the actual name and path specification for the data file. If the initialization file is in
the current directory of your operating system, only the fileName is quoted. Note that when reading in a data file,
the assembler reads in whitespace-separated lists of decimal digits or hex strings.

Initialization from files is useful for loading buffers with data, such as filter coefficients or FFT phase rotation factors
that are generated by other programs. The assembler determines how the values are stored in memory when it reads

the data files.
Ellipsis (. . .) - a comma-delimited list of parameters.

[Iength] - optional parameter that defines the length (in words) of the associated buffer. When length is not
provided, the buffer size is determined by the number of initializers.

Brackets ([]) - enclosing the optional [1ength] is required. For more information, see the following . VAR exam-

ples.

initExpressions parameters - set initial values for variables and buffer elements.

NOTE: With Blackfin processors, the assembler uses a /R32 qualifier (. VAR/R32) to support 32-bit initializa-
tion for use with 1.31 fracts. (See 1.31 Fracts.)

The following code demonstrates some . VAR directives.

.VAR bufl=0x1234;

/* Define one initialized variable */
.VAR=0x1234, 0x5678;

/* Define two initialized words */
.VAR samples[] = {10, 11, 12, 13, 14};

/* Declare and initialize an implicit-length buffer
since there are five values; this has the same effect
as samples[5]. */

/* Initialization values for implicit-size buffer must
be in curly brackets. */

.VAR Ins, Outs, Remains;
/* Declare three uninitialized variables */
.VAR samples[100] = "inits.dat";
/* Declare a 100-location buffer and initialize it
with the contents of the inits.dat file; */
.VAR taps=100;
/* Declare a variable and initialize the variable to 100 */
.VAR twiddles[10] = "phase.dat";

/* Declare a 10-location buffer and load the buffer

with the contents of the phase.dat file */
.VAR Fract Var R32[] = "fr32FormatFract.dat";

/* Declare a buffer that gets its initial values from the

file fr32FormatFract.dat */

2-80 CCES 2.9.0 Assembler and Preprocessor Manual

.VAR, Declare a Data Variable or Buffer

NOTE: All Blackfin processor memory accesses require proper alignment. Therefore, when loading or storing an
N-byte value into the processor, ensure that this value is aligned in memory by N boundary; otherwise, a
hardware exception is generated.

Blackfin Code Example:

In the following example, the 4-byte variables y0, y1, and y2 would be misaligned unless the . ALIGN 4; direc-
tive is placed before the . VAR y0; and . VAR y2; statements.

.SECTION datal;

.ALIGN 4;

.VAR XO0;

.VAR X1;

.BYTE BO;

.ALIGN 4; /* aligns the following data item "YO" on a word
boundary; advances other data items consequently */

.VAR YO;

.VAR Y1;

.BYTE B1;

.ALIGN 4; /* aligns the following data item "Y2" on a word
boundary */

.VAR Y2;

VAR and ASCII String Initialization Support

The assemblers support ASCII string initialization. This allows the full use of the ASCII character set, including
digits and special characters.

On SHARC processors, the characters are stored in the lower byte of 32-bit words. The remaining bits are cleared.

On Blackfin processors, use the . BYTE directive (see .BYTE, Declare a Byte Data Variable or Buffer for more infor-
mation).

String initialization takes one of the following forms:

.VAR symbolString[length] = ‘initString', 0;
.VARsymbolString[] = ‘initString', 0;

Note that the number of initialization characters defines the length of a string.

For example,

.VAR x[13] = "Hello world!', 0;
.VAR x[] = { Hello world!', 0};

The trailing zero character is optional. It simulates ANSI-C string representation.

Strings can be mixed with numeric constants, which allows special characters to be included. For example,

.VAR sl1[] = {'lst line',13,10, '2nd line',13,10,0};
/* carriage return */
.VAR s2[] = {'say:"hello"',13,10,0}; /* quotation mark */

CCES 2.9.0 Assembler and Preprocessor Manual 2-81

Assembler Directives

.VAR s3[] = {'say:',39, 'hello',39,13,10,0};
/* simple quotation marks */

.WEAK, Weak Symbol Definition and Reference

The .WEAK directive supports weak binding for a symbol. Use this directive where the symbol is defined (replacing
the . GLOBAL directive to make a weak definition) and the . EXTERN directive (to make a weak reference).

Syntax:

.WEAK symbol ;

where:

symbol is the user-defined symbol.

Although the linker generates an error if two objects define global symbols with identical names, it allows any num-
ber of instances of weak definitions of a name. All will resolve to the first, or to a single, global definition of a sym-

bol.

One difference between . EXTERN and . WEAK references is that the linker does not extract objects from archives to
satisfy weak references. Such references, left unresolved, have the value 0.

NOTE: The . WEAK (or . GLOBAL scope) directive is required to make symbols available for placement through
RESOLVE commands in the . 1df file.

Assembler Command-Line Reference

This section describes the assembler command-line interface and switch set. It describes the assembler's switches,
which are accessible from the operating system's command line or from the IDE.

This section contains:
* Running the Assembler
* Assembler Command-Line Switch Descriptions

Command-line switches control certain aspects of the assembly process, including debugging information, listing,
and preprocessing. Because the assembler automatically runs the preprocessor as your program assembles (unless you
use the —sp switch), the assembler's command line can receive input for the preprocessor program and direct its
operation. For more information on the preprocessor, see the Preprocessor chapter.

NOTE: When developing a DSP project, you may find it useful to modify the assembler’s default options settings.
The way you set assembler options depends on the environment used to run the DSP development soft-
ware.

See Specifying Assembler Options for more information.

2-82 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Command-Line Reference

Running the Assembler

To run the assembler from the command line, type the name of the appropriate assembler program followed by
arguments (in any order), and the name of the assembly source file.

easm21K [-switchl |

easmblkfn [-switchl

-switch2]] sourceFile

[-switch2]] sourceFile

The Assembler Command Line Arguments table explains these arguments.

Table 2-16: Assembler Command Line Arguments

Argument Description

easm21K Name of the assembler program for SHARC and Blackfin processors, respectively.

easmblkfn

-switch Switch (or switches) to process. The command-line interface offers many optional switches that select
operations and modes for the assembler and preprocessor. Some assembler switches take a file name as
a required parameter.

sourceFile Name of the source file to assemble.

The name of the source file to assemble can be provided as:

short file name - a file name without quotes (no special characters)

long file name - a quoted file name (may include spaces and other special path name characters)

The assembler outputs a list of command-line options when run without arguments (same as ~h [elp]).

The assembler supports relative path names and absolute path names. When you specify an input or output file
name as a parameter, follow these guidelines for naming files:

Include the drive letter and path string if the file is not in the current project directory.

Enclose long file names in double quotation marks; for example, "long file name".

* Append the appropriate file name extension to each file.

The File Name Extension Conventions table summarizes file extension conventions accepted by the IDE.

Table 2-17: File Name Extension Conventions

File Extension Description
.asm Assembly source file
NOTE: The assembler treats files with unrecognized (or not existing) extensions as assembly source
files.
.1is

Preprocessed assembly source file

CCES 2.9.0 Assembler and Preprocessor Manual 2-83

Assembler Command-Line Reference

Table 2-17: File Name Extension Conventions (Continued)

File Extension Description

.h Header file

.1lst Listing file

.doj Assembled object file in ELF/DWAREF-2 format
.dat Data initialization file

Assembler command-line switches are case sensitive.

For example, the following command line

easmblkfn -proc ADSP-BF533 -1 pList.lst -Dmax=100 -v -o bin/pl.doj pl.asm

runs the assembler with:

* -proc ADSP-BF533 - specifies ADSP-BF533 as target processor

* -1 pList.lst - directs the assembler to output a listing file

* -Dmax=100 - defines the preprocessor macro max to be 100

* -v - displays verbose information on each phase of the assembly

* -0 bin/pl.doj - specifies the name and directory for the assembled object file

* pl.asm - identifies the assembly source file to assemble

Assembler Command-Line Switch Descriptions

This section describes the assembler command-line switches in alphabetic order. A summary of the assembler
switches appears in the Assembler Command-Line Switch Summary table. A detailed description of each assembler

switch follows the table.

Table 2-18: Assembler Command-Line Switch Summary

Switch Name

Purpose

—anomaly-detect {idl[, id2]lall|
none}

Enables detection of specified anomalies. See -anomaly-detect {id1[, id2...]]all|
none} -anomaly-warn {id1[,id2]|all|none}.

—anomaly-warn {idl[, id2]]all]
none}

Same as —anomaly-detect. See -anomaly-detect {id1[, id2...]|all|none} -
anomaly-warn {id1[,id2][all|none}.

NOTE: Blackfin processors only.

—anomaly-workaround {idl[, id2]|
all|none}

Enables workarounds for specified anomalies. See -anomaly-workaround {id1[,
id2...][all|none}.

-Dmacro[=definition]

Passes macro definition to the preprocessor. See -Dmacro[=definition].

-dependency-add-target

Adds a target to dependency output. See -dependency-add-target.

2-84

CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Command-Line Reference

Table 2-18: Assembler Command-Line Switch Summary (Continued)

Switch Name

Purpose

-double-size-32

Adds /DOUBLE32 to the . SECTIONSs in the source file. See -double-size-32.

-double-size-64

Adds /DOUBLE64 to the . SECTIONSs in the source file. See -double-size-64.

-double-size-any

Adds /DOUBLEANY to the . SECTIONs in the source file. See -double-size-any.

—expand-symbolic-links

Enables support for Cygwin style paths. See -expand-symbolic-links.

-expand-windows-shortcuts

Enables support for Windows shortcuts. See -expand-windows-shortcuts.

—-file-attr attr [=value]

Creates an attribute in the generated object file. See -file-attr attr[=val].

-flags-compiler -optl

Passes each comma-separated option to the compiler. Used when compil-
ing . IMPORT C header files.

See -flags-compiler.

-flags-pp -optl

Passes each comma-separated option to the preprocessor. See -flags-pp -optl][, -
opt2...].

-g

Generates debug information (DWAREF-2 format). See -g.

-gnu-style-dependencies

Produces dependency information compatible with the GNU Make tool. See -
gnu-style-dependencies.

-h[elp]

Outputs a list of assembler switches. See -h[elp].

-i|-I directory pathname

Searches a directory for included files. See -i.

-1 filename

Outputs the named listing file. See -1 filename.

-1i filename

Outputs the named listing file with #include files expanded. See -li filename.

-M Generates make dependencies for #include and data files only, but does not
assemble. No object file is created. See -M.
-MM Generates make dependencies for #include and data files. Use —~MM for make

dependencies with assembly. See -MM.

-Mo filename

Writes make dependencies to the £ilename specified. The —Mo option is for use
with either the M or -MM option. If ~Mo is not present, the default is
<stdout> display. See -Mo filename.

-Mt filename

Specifies the make dependencies target name. The —~Mt option is for use with ei-
ther the =M or -MM option. If =Mt is not present, the default is base name plus
'DOJ". See -Mt filename.

-micaswarn

Treats multi-issue conflicts as warnings. See -micaswarn.

NOTE: Blackfin processors only.

all|none}

-no-anomaly-detect {idl[, id2..

-1

Does not issue a warning or an error for an anomaly ID. See -no-anomaly-detect

{id1[, id2...]|all|none}.

-no-anomaly-workaround {idlf[,
id2...]lall|none}

Does not implement a workaround for an anomaly id. See -no-anomaly-work-
around {id1[, id2...]|all|none}.

-no-expand-symbolic-1inks

Disables support for Cygwin style paths. See -no-expand-symbolic-links.

CCES 2.9.0 Assembler and Preprocessor Manual

2-85

Assembler Command-Line Reference

Table 2-18: Assembler Command-Line Switch Summary (Continued)

Switch Name

Purpose

-no-expand-windows-shortcuts

Disables support for Windows shortcuts. See -no-expand-windows-shortcuts.

-no-source-dependency

Suppresses output of the source filename in the dependency output produced
when =M or =MM is specified. See -no-source-dependency.

-no-temp-data-file

Suppresses writing temporary data to a disk file. See -no-temp-data-file.

NOTE: Blackfin processors only.

-normal-word-code

—nwc

Encodes input sections bearing the /PM qualifier (for execution from normal
word memory. See SHARC-Specific Qualifiers and -normal-word-code or -nwec.

NOTE: ADSP-214xx processors only.

-0 filename

Outputs the named object [binary] file. See -o filename.

-path-compiler pathname

Specifies which compiler to invoke when processing . IMPORT directives. See -
path-compiler.

—pp

Runs the preprocessor only; does not assemble. See -pp.

—proc processor

Specifies a target processor for which the assembler should produce suitable code.
See -proc processor.

—-save-temps

Saves intermediate files. See -save-temps.

-short-word-code

—SWwWC

Encodes input sections bearing the /PM qualifier for execution from short word
memory. See SHARC-Specific Qualifiers and -normal-word-code or -nwec.

NOTE: ADSP-214xx processors only.

-si-revision version

Specifies silicon revision of the specified processor. See -si-revision version.

-sp

Assembles without preprocessing. See -sp.

-stallcheck={none|cond|all}

Displays stall information:
* none - no messages
* cond - conditional stalls only (defaul)
* all -all stall information

See -stallcheck.

NOTE: Blackfin processors only.

-swc—-exclude namel[, nameZl]

Excludes the named section(s) from the effect of the —short-word-code (-

swc) switch. See -swc-exclude namel[, name2].

NOTE: ADSP-214xx processors only.

-v or —verbose

Displays information on each assembly phase. See -v[erbose].

-version Displays version information for the assembler and preprocessor programs. See -
version.
-w Disables all assembler-generated warnings. See -w.
2-86 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Command-Line Switch Descriptions

Table 2-18: Assembler Command-Line Switch Summary (Continued)

Switch Name Purpose

-Werror number[, number] Selectively turns assembler messages into errors. See -Werror number[, number].

-Winfo number[, number] Selectively turns assembler messages into informationals. See -Winfo number],
number].

-Wno-info Does not display informational assembler messages. See -Wno-info.

—Wnumber [, number] Selectively disables warnings by one or more message numbers. For example, -

W1092 disables warning message eal092. See -Wnumber[, number].

-Wsuppress number([, number] Selectively turns off assembler messages. See -Wsuppress number[, number].

-Wwarn number[, number] Selectively turns assembler messages into warnings. See -Wwarn number[, num-
ber].

-Wwarn-error Displays all assembler warning messages as errors. See -Wwarn-error.

-anomaly-detect {id1][, id2...] | all| none} -anomaly-warn {id1[,id2] | all | none}

The —anomaly-detect and —~anomaly-warn switches direct the assembler to check for assembly code that
may be affected by any of the hardware anomalies listed in the 1d switches.

NOTE: The —~anomaly-warn switch is used with Blackfin processors only.
The id switch parameter is:

id - Anomaly identifier. The anomaly identifier syntax can use or omit dashes. For example, either 05-00-0245
or 05000245 are accepted. Additionally, ids specified override the a11 and none options. For example, -
anomaly-detect none, 050000245 detects only anomaly 05000245.

all - use all identifiers applicable to the given processor
none - ignore all identifiers not specifically provided (same as —-no-anomaly-detect all)

If the check detects assembly code that will be affected by the specified anomaly (or anomalies), the assembler issues
a warning. Using this option helps you detect and avoid code combinations affected by anomalies.

NOTE: A warning can also be issued if the assembler always implements a code workaround for an anomaly, in-
stead of just performing a check.

The most recent list of anomalies can be obtained from Software and Tools Anomalies search page on the Analog
Devices website at:

http://www.analog.com/blackfin-anomalies.
-anomaly-workaround {id1[, id2...] | all| none}

The ~anomaly-workaround switch directs the assembler to switch on workarounds for specific anomalies.
Switch parameters are:

id - anomaly identifier (for example, 05-00-0245 or 05000245)

CCES 2.9.0 Assembler and Preprocessor Manual 2-87

http://www.analog.com/blackfin-anomalies

Assembler Command-Line Switch Descriptions

all - uses all identifiers applicable to the given processor (same as ~-no-anomaly-workaround none)
none - ignore all identifiers not specifically provided (same as -no-anomaly-workaround all)

The anomaly identifier syntax may use or omit dashes. For example, either 05-00-0245 or 05000245 are ac-
cepted. Additionally, specified ids override the 211 and none options. For example, —anomaly-workaround
none, 050000245 works around only anomaly 050000245.

The workaround may result in the assembler altering the user assembly code so that it cannot encounter the anom-
aly. The assembler may issue a message to indicate that it has altered the user assembly code. This option overrules
any default behavior for the anomaly.

-Dmacro[=definition]

The -D (define macro) switch directs the assembler to define a macro and pass it to the preprocessor. See Using
Assembler Feature Macros for the list of predefined macros.

For example,

-Dinput // defines input as 1
-Dsamples=10 // defines samples as 10
-Dpoint='Start' // defines point as the string "Start'

-dependency-add-target

The -dependency-add-target switch directs the assembler to add the file name that follows the switch to
the list of targets when generating a list of dependencies. The switch is used when dependencies are being generated,
by invoking the —M or ~MM switch.

-double-size-32

The —double-size-32 switch directs the assembler to add /DOUBLE32 to . SECTIONSs in the source file that
do not have double size qualifiers. For . SECTIONSs in the source file that already have a double size qualifier,
this option is ignored. For more information, see .SECTION, Declare a Memory Section.

-double-size-64

The ~double-size-64 switch directs the assembler to add /DOUBLE64 to . SECTIONSs in the source file that
do not have double size qualifiers. For . SECTIONSs in the source file that already have a double size qualifier,
this option is ignored. During linking, the linker ensures that all of the sections have a consistent interpretation of
the size of the C type double. If the sections are not consistent, the linker generates a warning,.

Linker Warning Example:

[Warning 1i12151] Input sections have inconsistent qualifiers as follows.
For more information, see .SECTION, Declare a Memory Section.

-double-size-any

The —-double-size-any switch directs the assembler to add /DOUBLEANY to . SECTIONSs in the source file
that do not have double size qualifiers, making SECTION contents independent of size of double type.

2-88 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Command-Line Switch Descriptions

For . SECTIONs in the source file that already have a double size qualifier, this option is ignored. For more infor-
mation, see .SECTION, Declare a Memory Section.

-expand-symbolic-links

The —expand-symbolic-1inks switch directs the assembler to correctly access directories and files whose
name or path contain Cygwin path components.

-expand-windows-shortcuts

The ~expand-windows-shortcuts switch directs the assembler to correctly access directories and files
whose name or path contain Windows shortcuts.

-file-attr attr[=val]

The —~file-attr (file attribute) switch directs the assembler to add an attribute (attr) to the object file. The
attribute will be given the value (val) or "1" if the value is omitted. At t r should follow the rules for naming
symbols. Val should be double-quoted unless it follows the rules for naming symbols. See Assembler Keywords and
Symbols for more information on naming conventions.

-flags-compiler

The -flags-compiler -optl [,-opt2] switch passes each comma-separated option to the C compiler
when compiling . IMPORT headers.

For example,

// file.asm has .IMPORT "myHeader.h"
easmbkln -proc ADSP-BF533 -flags-compiler -I/Path -I. file.asm

The rest of the assembly program, including its #include files, are processed by the assembler preprocessor. The
-flags-compiler switch processes a list of one or more valid C compiler options, including the =D and -T
options.

User-Specified Defines Options

—D (defines) options in an assembler command line are passed to the assembler preprocessor, but they are not passed
to the compiler for . IMPORT header processing. If #defines are used for . IMPORT header compilation, they
must be explicitly specified with the ~-flags-compiler switch.

For example,

// file.asm has .IMPORT "myHeader.h"

easmblkfn -proc ADSP-BF533 -DaDef -flags-compiler -DbDef, -DbDefTwo=2 file.asm
// -DaDef is not passed to the compiler

ccblkfn -proc ADSP-BF533 -c -debug-types -DbDef -DbDefTwo=2 myHeader.h

NOTE: See Using Assembler Feature Macros for the list of predefined macros, including default macros.

Include Options

The -T (include search path) options and —~flags-compiler arguments are passed to the C compiler for
each . IMPORT header compilation. The compiler include path is always present automatically.

CCES 2.9.0 Assembler and Preprocessor Manual 2-89

Assembler Command-Line Switch Descriptions

Use the -flags—compiler switch to control the order that the include directories are searched. The —
flags-compiler switch attributes take precedence from the assembler's — I options.

For example,

easmblkfn -proc ADSP-BF533 -I/aPath -DaDef -flags-compiler -I/cPath,-I. file.asm
ccblkfn -proc ADSP-BF533 -c -debug-types -I/cPath -I. myHeader.h

The . IMPORT C header files are preprocessed by the C compiler preprocessor. The struct headers are standard
C headers, and the standard C compiler preprocessor is needed. The rest of the assembly program (including its
#include files) are processed by the assembler preprocessor.

Assembly programs are preprocessed using the pp preprocessor (the assembler/linker preprocessor) as well as —T and
—D options from the assembler command line. However, the pp call does not receive the ~-flags-compiler
switch options.

-flags-pp -optil[, -opt2...]

The -flags-pp switch passes each comma-separated option to the preprocessor.

NOTE: Use -~flags-pp with caution. For example, if pp legacy comment syntax is enabled, the comment char-
acters become unavailable for non-comment syntax.

)
The —g (generate debug information) switch directs the assembler to generate data type information for arrays,
functions, and C structs. This switch also generates DWARF2 function information with starting and ending ranges

based on the myFunc: myFunc.end: label boundaries, as well as line number and symbol information in
DWAREF2 binary format, allowing you to debug the assembly source files.

When the assembler's —g switch is in effect, the assembler produces a warning when it is unable to match a * . end
label to a matching beginning label. This feature can be disabled using the ~-Wnumber [, number] switch.

WARNING eal1121: Missing End Labels

Warning eal121 occurs on assembly file debug builds (using the —g switch) when a globally-defined function or

label for a data object is missing its corresponding ending label, with the naming convention label + ". end".

For example,

[Warning eall2l] "./gfxeng thickarc.asm":42 gfxeng thickarc:
-g assembly with global function without ending label. Use
' gfxeng thickarc.end' or ' gfxeng thickarc.END' to mark the
ending boundary of the function for debugging information for
automated statistical profiling of assembly functions.

The ending label marks the boundary of the end of a function. Compiled code automatically provides ending labels.
Hand-written assembly code needs to have the ending labels explicitly added to tell the tool chain where the ending
boundary is. This information is used to automate statistical profiling of assembly functions. It is also needed by the
linker to eliminate unused functions and other features.

2-90 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Command-Line Switch Descriptions

To suppress a specific assembler warning by unique warning number, the assembler provides the ~-Wsuppress
1121 switch.

NOTE: It is highly recommended that warning ea1121 not be suppressed and the code be updated to have end-
ing labels.

Functions (Code):

_gfxeng vertspan:

[--sp]l = fp;

rts;

Add an ending label after rts; . Use the suffix ". end" and begin the label with "." to have it treated as an internal

label that is not displayed in the debugger.
.global gfxeng vertspan;

_gfxeng vertspan:
[--sp] = fp;

TES s

. gfxeng vertspan.end:

-gnu-style-dependencies

The ~gnu-style-dependencies switch directs the assembler to produce dependency information that is
compatible with the GNU Make tool. This switch is used when dependencies are being generated, by invoking the
—M or ~MM switch. This switch ensures that all backslashes in dependency paths are converted to forward slashes,
that the names of target and dependencies have their case preserved, whitespace in file names is escaped using back-
slashes, and all path names are normalized to be relative to the current working directory of the tool.

-h[elp]

The -h (or ~help) switch directs the assembler to print a list of command-line switches with a syntax summary to
standard output.

The -1 directory (or —I) switch (include directory path) directs the assembler to append the specified directory
(or a list of directories separated by semicolons "; ") to the search path for included files.

NOTE: No space is allowed between —1i and the path name.
These files are:
* Header files (. h) included with the #include preprocessor command
* Data initialization files (. dat) specified with the . VAR assembly directive

The assembler passes this information to the preprocessor; the preprocessor searches for included files in the follow-
ing order:

CCES 2.9.0 Assembler and Preprocessor Manual 2-91

Assembler Command-Line Switch Descriptions

1. Directory for assembly program
2. <processor family>/include subdirectory of the installation directory
3. Specified directory (or list of directories). The order of the list defines the order of multiple searches.

Relative paths are based on the path of the assembly source, not the directory of the project. Usage of full path
names for the — I switch on the command line is recommended.

For example,
easm21K -proc ADSP-21161 -I "/bin/SHARC/include" file.asm
-l filename

The -1 filename (listing) switch directs the assembler to generate the named listing file. Each listing file (. 1st)
shows the relationship between your source code and instruction opcodes that the assembler produces.

For example,
easmblkfn -proc ADSP-BF533 -I <file path> -I. -1 file.lst file.asm

The file name is a required argument to the -1 switch. For more information, see Reading a Listing File.

-li flename

The -11 (listing) switch directs the assembler to generate the named listing file with #include files. The file
name is a required argument to the —=11 switch. For more information, see Reading a Listing File.

-M

The —M (generate make rule only) assembler switch directs the assembler to generate make dependency rules, suita-
ble for the make utility, describing the dependencies of the source file. No object file is generated for —M assemblies.
For make dependencies with assembly, use the —MM switch.

The output, an assembly make dependencies list, is written to stdout in the standard command-line format:
"target file": '"dependency file.ext"

dependency file.ext may be an assembly source file, a header file included with the #include preprocessor
command, a data file, or a header file imported via the . IMPORT directive.

The -Mo filename switch writes make dependencies to the £ilename specified instead of <stdout>. For con-
sistency with the compilers, when —o filename is used with M, the assembler outputs the make dependencies list
to the named file. The ~Mo filename takes precedence if both —~0 filename and ~Mo filename are present
with —-M.

-MM

The -MM (generate make rule and assemble) assembler switch directs the assembler to output a rule, suitable for the
make utility, describing the dependencies of the source file. The assembly of the source into an object file proceeds
normally. The output, an assembly make dependencies list, is written to stdout. The only difference between —
MM and —-M actions is that the assembling continues with —=MM. See —M for more information.

2-92 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Command-Line Switch Descriptions

-Mo filename

The -Mo (output make rule) assembler switch specifies the name of the make dependencies file that the assembler
generates when you use the =M or ~MM switch. If ~Mo is not present, the default is <stdout> display. If the
named file is not in the current directory, you must provide the path name in double quotation marks (").

NOTE: The -Mo filename switch takes precedence over the ~o filename switch.

-Mt filename

The -Mt filename (output make rule for named object) assembler switch specifies the name of the object file for
which the assembler generates the make rule when you use the M or ~MM switch. If the named file is not in the
current directory, you must provide the path name. If Mt is not present, the default is the base name plus

the . doj extension. See —M for more information.

-micaswarn

The -micaswarn switch treats multi-issue conflicts as warnings.

NOTE: This switch is used with Blackfin processors only.

-no-anomaly-detect {id1], id2...] | all| none}

The -no-anomaly-detect switch directs the assembler to switch off any check for a specific anomaly ID in
the assembler. No assembler warning or error will be issued when the assembler encounters assembly code that the
anomaly will have an impact upon. This option overrules any default behavior for the anomaly.

The switch parameter is:

id - anomaly identifier (for example, 05-00-0245 or 05000245)

all - ignore all identifiers not specifically provided (same as ~anomaly-detect none))
none - use all identifiers applicable to the given processor (same as —anomaly-detect all)

The anomaly identifier syntax may use or omit dashes. For example, either 05-00-0245 or 05000245 are ac-
cepted. Additionally, specified ids override the a11 and none options. For example, —-no-anomaly-detect
all, 050000245 detects only anomaly 050000245.

A warning may be issued if the assembler always implements a workaround for the anomaly instead of a check.

-no-anomaly-workaround {id1[, id2...] | all| none}

The -no-anomaly-workaround switch directs the assembler to switch off any workaround for a specific
anomaly id in the assembler. The assembler will not alter the user assembly code so that it cannot encounter the
anomaly. This option overrules any default behavior for the anomaly.

The switch parameter is:
id - anomaly identifier (for example, 05-00-0245 or 05000245)

all - ignore all identifiers not specifically provided (same as ~anomaly-workaround none)

CCES 2.9.0 Assembler and Preprocessor Manual 2-93

Assembler Command-Line Switch Descriptions

none - use all identifiers applicable to the given processor (same as ~anomaly-workaround all)

The anomaly identifier syntax may use or omit dashes. For example, either 05-00-0245 or 05000245 are ac-
cepted. Additionally, specified ids override the a1l and none options. For example, -no-anomaly-
workaround all, 050000245 works around only anomaly 050000245.

A warning may be issued if the assembler always checks for the anomaly and has no workaround.
-no-expand-symbolic-links

The no-expand-symbolic-1inks switch directs the assembler not to expand directories or files whose name

or path contain Cygwin path components.

-no-expand-windows-shortcuts

The -no-expand-windows-shortcuts switch directs the assembler not to expand directories or files whose
name or path contain Windows shortcuts.

-no-source-dependency

The -no-source-dependency switch directs the assembler not to print anything about dependency between
the . asm source file and the . doj object file when outputting dependency information. This switch can only be
used in conjunction with the -M or —~MM switch.

-no-temp-data-file

The -no-temp-data-£file switch directs the assembler not to write temporary data to a disk.

As part of a space saving measure, the assembler stores all data declarations into a file. This is to allow large sources
to assemble more quickly by freeing valuable memory resources. By default, the temporary data files are stored into
the system temporary folder (for example, C: /Documents and Settings/User/Local Settings/

Temp) and is given the prefix "EasmblkfnNode"). These files are removed by the assembler but, if for any rea-

son the assembler does not complete, these files will not be deleted and persist in the temporary folder. These files
can always be safely deleted in such circumstances after the assembler has stopped.

This command-line option allows the user to turn off this default feature. When turned off, all data is stored into
internal memory and not written to the disk.

-normal-word-code or -nwc

The -normal-word-code or —nwc switch directs the assembler to encode input sections bearing the /PM
qualifier (see SHARC-Specific Qualifiers) for execution from normal word memory.

NOTE: The switch is used with the ADSP-214xx SHARC processors only.

-o filename

The —o filename (output file) switch directs the assembler to use the specified £ilename argument as the output
file. This switch names the output, whether for conventional production of an object, a preprocessed, assemble-pro-
duced file (. is), or make dependency (-M). By default, the assembler uses the root input file name for the output
and appends a . doj extension.

2-94 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Command-Line Switch Descriptions

Some examples of this switch syntax are:

easmblkfn -proc ADSP-BF533 -pp -0 testl.is test.asm
// preprocessed output goes into testl.is

easmblkfn -proc ADSP-BF533 -o -debug/prog3.doj prog3.asm
// specify directory and filename for the object file

-path-compiler

The -path-compiler pathname switch allows you to specify the compiler to be invoked when processing
headers in . IMPORT directives. By default, the assembler will invoke the compiler for the appropriate architecture
in its CrossCore Embedded Studio installation.

For example:
easmbkln -proc ADSP-BF533 -path-compiler C:\CCES 2.0.0\ccblkfn.exe file.asm
-pp

The -pp (proceed with preprocessing only) switch directs the assembler to run the preprocessor, but stop without
assembling the source into an object file. When assembling with the —pp switch, the . is file is the final result of
the assembly. By default, the output file name uses the same root name as the source, with the . 1s extension.

-proc processor

The -proc processor (target processor) switch instructs the assembler to produce code suitable for the specified

processor.
The processor identifiers directly supported by CCES are listed in the online help.

For example,

easm21K -proc ADSP-21161 -o bin/pl.doj pl.asm
easmblkfn -proc ADSP-BF533 -o bin/pl.doj pl.asm

NOTE: See also the description of the -si-revision version switch for specifying a particular silicon revision of a
processor
-save-temps

The -save-temps (save intermediate files) switch directs the assembler to retain intermediate files generated and

normally removed as part of the assembly process.

-short-word-code or -swc

The -~short-word-code or —swc switch directs the assembler to encode input sections bearing the /PM quali-
fier (see SHARC-Specific Qualifiers) for execution from short word memory.

NOTE: The switch is used with the ADSP-214xx SHARC processors only.

CCES 2.9.0 Assembler and Preprocessor Manual 2-95

Assembler Command-Line Switch Descriptions

-si-revision version

The -~si-revision version (silicon revision) switch directs the assembler to build for a specific hardware re-
vision. Any errata workarounds available for the targeted silicon revision will be enabled. The version parameter
represents a silicon revision for the processor specified by the ~-proc processor switch.

For example,

easmblkfn -proc ADSP-BF533 -si-revision 0.6

Specifying silicon version "any" enables all errata workarounds for the target processor.

If the -si-revision switch is not used, the assembler will build for the target processor's latest known silicon
revision and will enable any errata workarounds appropriate for the latest silicon revision.

For processors other than ADSP-BF71x processors, the SILICON REVISION macro is set by the assembler
to two hexadecimal digits representing the major and minor numbers in the silicon revision. For example, 1.0
becomes 0x100 and 10.21 becomes 0xal5. For ADSP-BF71x processors, the silicon revision is represented by a
single letter, starting with A. The SILICON REVISION macro is set by the assembler to a number based on
the silicon revision: 0x0 for silicon revision A, O0x1 for silicon revision B, etc.

If the silicon revision is set to "any", the SILICON REVISION macro isset to Oxfff£.

-sp

The -sp (skip preprocessing) switch directs the assembler to assemble the source file into an object file without
running the preprocessor. When the assembler skips preprocessing, no preprocessed assembly file (. is) is created.

-stallcheck

The -stallcheck=option switch provides the following choices for displaying stall information. See the -szall-
check Options table.

Table 2-19: -stallcheck Options

-stallcheck Option Description
-stallcheck=none Displays no messages for stall information. Default setting for SHARC processors.
-stallcheck=cond Displays information about conditional stalls only. Default setting for Blackfin processors.

(Blackfin processors only)

-stallcheck=all Displays information for all detected stalls.

-swc-exclude namel[, name2]

The -swc-exclude name switch directs the assembler to exclude the named input section(s) from the effect of
the ~-short-word-code/-swc switch.

NOTE: The switch is used with the ADSP-214xx SHARC processors only.

2-96 CCES 2.9.0 Assembler and Preprocessor Manual

Assembler Command-Line Switch Descriptions

-v[erbose]

The -v (or —~verbose) switch directs the assembler to display version and command-line information for each

phase of assembly.

-version

The —~version (display version) switch directs the assembler to display version information for the assembler and
preprocessor programs.

-w

The —w (disable all warnings) switch directs the assembler not to display warning messages generated during assem-

bly.
-Werror number[, number]

The ~-Werror number switch turns the specified assembler messages into errors. For example, "-Werror
1177" turns warning message eal177 into an error. This switch optionally accepts a list, such as [, number].

NOTE: Some error messages cannot be altered in severity.

-Winfo number[, number]

The ~-Winfo number switch turns the specified assembler messages into informational messages. For example, "~
Winfo 1177" turns warning message eall77 into an informational message. This switch optionally accepts a
list, such as [, number].

NOTE: Some error messages cannot be altered in severity.
-Wno-info
The -Wno-info switch turns off all assembler informational messages.
-Wnumber[, number]

The -W (warning suppression) switch selectively disables warnings specified by one or more message numbers. For
example, ~-W1 092 disables warning message eal092. Optionally, this switch accepts a list, such as [, number].

-Wsuppress number[, number]

The ~-Wsuppress number switch selectively turns off assembler messages. For example, "~-Wsuppress 1177"
turns off warning message eal177. Optionally, this switch accepts a list, such as [, number].

NOTE: Some error messages cannot be altered in severity.

-Wwarn number[, number]

The ~-Wwarn number switch turns the specified assembler messages into warnings. For example, "-Wwarn
p g g p
1154" turns error message €al154 into a warning. Optionally, this switch accepts a list, such as [, number].

NOTE: Some error messages cannot be altered in severity.

CCES 2.9.0 Assembler and Preprocessor Manual 2-97

Assembler Command-Line Switch Descriptions

-Wwarn-error

The ~-Wwarn-error switch turns all assembler warnings into errors.

Specifying Assembler Options

Within the CCES IDE, specify settings for projects. Select a project in any project navigation view and choose
Properties > C/C++ Build > Settings. Use the Settings property pages to select the target processor, configure tool-
chain, build steps, and other settings for your project.

Use the assembler property pages of Tool Settings to specify assembler options used while building your project.

Most dialog box options have corresponding assembler command-line switches described in Assembler Command-
Line Switch Descriptions.

Use the Additional Options page to enter appropriate command-line switches, file names, and options that do not
have corresponding controls on the assembler property pages but are available via command-line invocation.

Assembler options direct calls to an assembler when assembling . asm files. Changing assembler options in the IDE
does not affect the assembler calls made by the compiler during the compilation of . ¢/ . cpp files.

For more information, refer to the CCES help.

2-98 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor

3 Preprocessor

The preprocessor program (pp . exe) evaluates and processes preprocessor commands in source files on all support-
ed processors. The preprocessor commands direct the preprocessor to define macros and symbolic constants, include
header files, test for errors, and control conditional assembly and compilation. The preprocessor supports ANSI C
standard preprocessing with extensions, such as ? and

The preprocessor is run by other build tools (assembler and linker) from the operating system's command line or
from within the IDE. The pp preprocessor can also operate from the command line with its own command-line
switches.

This chapter contains:
* Preprocessor Guide
Contains the information on building programs.
* Preprocessor Command Reference
Describes the preprocessor's commands, with syntax and usage examples.
* Preprocessor Command-Line Reference

Describes the preprocessor's command-line switches, with syntax and usage examples.

Preprocessor Guide

This section describes pp preprocessor information used when building programs from a command line or from
within the IDE. Software developers who use the preprocessor should be familiar with:

e Writing Preprocessor Commands

* Header Files and #include Command
* Writing Macros

* Using Predefined Preprocessor Macros

* Specifying Preprocessor Options

CCES 2.9.0 Assembler and Preprocessor Manual 3-1

Preprocessor Guide

Compiler Preprocessor

The compiler has it own preprocessor that enables the use of preprocessor commands within C/C++ source. The
compiler preprocessor automatically runs before the compiler. This preprocessor is separate from the assembler pre-
processor and has some features that may not be used within your assembly source files. For more information, refer

to the C/C++ Compiler and Library Manual for the target processor.

Assembler Preprocessor

The assembler preprocessor differs from the ANSI C standard preprocessor in several ways. First, the assembler pre-
processor supports a "?" operator (see ? (Generate a unique label)) that directs the preprocessor to generate a unique
label for each macro expansion. Second, the assembler preprocessor does not treat "." as a separate token. Instead, "."
is treated as part of an identifier. This behavior matches the assembler's behavior, which uses "." to start directives
and accepts ". " in symbol names. For example, the following command sequence:

#define VAR my var
.VAR x;

does not cause any change to the variable declaration. The text " . VAR" is treated as a single identifier which does
not match the macro name VAR.

The standard C preprocessor treats .VAR as two tokens ("." and "VAR") and makes the following substitution:

.my var Xx;

The assembler preprocessor also produces assembly-style strings (single-quote delimiters) instead of C-style strings.

Finally, under command-line switch control, the assembler preprocessor supports legacy assembler commenting for-
mats ("!"and "{ 1}").

Writing Preprocessor Commands

Preprocessor commands begin with a pound sign (#) and extend to the end of the line. The pound sign must be the
first non-white space character on the line containing the command. If the command is longer than one line, use a
backslash (\) and a carriage return to continue the command on the next line. Do not place any characters between
the backslash and the line ending. Unlike assembly directives, preprocessor commands are case sensitive and must be
lowercase.

For more information on preprocessor commands, see Preprocessor Command-Line Reference.

For example,

#include "string.h"
#define MAXIMUM 100

When the preprocessor runs, it modifies the source code by:
* Including system header files and user-defined header files

* Defining macros and symbolic constants

3-2 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Guide

* Providing conditional assembly

Specify preprocessing options with preprocessor commands-lines that start with a # character. In the absence of
commands, the preprocessor performs these three global substitutions:

* Replaces comments with single spaces
* Deletes line continuation characters (\)
* Replaces macro references with corresponding expansions
The following cases are notable exceptions to the described substitutions:

* The preprocessor does not recognize comments or macros within the file name delimiters of an #include
command.

* The preprocessor does not recognize comments or predefined macros within a character or string constant.

Header Files and #include Command

Header (. h) files contain lines of source code to be included (textually inserted) into another source file. Typically,
header files contain declarations and macro definitions.

The #include preprocessor command includes a copy of the header file at the location of the command. There
are three forms for the #include command, as described in:

* Include Path Search
* System Header Files
* User Header Files
* Sequence of Tokens
System Header Files
Syntax: #include <filename>

The file name is placed between a pair of angle bracket characters. The file name in this form is interpreted as a
system header file. These files are used to declare global definitions, especially memory-mapped registers, system ar-
chitecture, and processors.

Example:

#include <device.h>

System header files are installed in the <processor>/include folder for the processor family in the CCES installa-
tion.

User Header Files

Syntax: #include "filename"

CCES 2.9.0 Assembler and Preprocessor Manual 3-3

Header Files and #include Command

The file name is placed within a pair of double quote characters. The file name in this form is interpreted as a user
header file. These files contain declarations for interfaces between the source files of the program.

Example:

#include "def.h"
#include "fft ovly.h"

Sequence of Tokens
Syntax: #include text
In this case, text is a sequence of tokens subject to macro expansion by the preprocessor.

It is an error if after macro expansion the text does not match one of the two header file forms. If the text on the line
after the #include is not placed between double quotes (as a user header file) or between angle brackets (as a
system header file), the preprocessor performs macro expansion on the text. After that expansion, the line requires
either of the two header file forms.

NOTE: Unlike most preprocessor commands, the text after the #include is available for macro expansion.

Examples:

/* define preprocessor macro with name for include file */
#define includefilename "header.h"

/* use the preprocessor macro in an #include command */
#include includefilename

/* the code above evaluates to #include "header.h"™ */

/* define preprocessor macro to build system include file */
#define syshdr (name) <name ## .h>

/* use the preprocessor macro in a #include command */
#include syshdr (adi)

/* the code above evaluates to #include <adi.h> */

Include Path Search

It is good programming practice to distinguish between system header files and user header files. The only technical
difference between the two different notations is the directory search order that the assembler follows to locate the

specified header file.

For example, when using Blackfin processors, the #include <file> search order is:
1. The include path specified by the - T switch
2. <install path>/Blackfin/include folders

The #include "file" search order is:
1. The local directory - the directory in which the source file resides

2. The include path specified by the - T switch

34 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Guide

3. <install path>/Blackfin/include folders

If you use the —T and the —I - switches on the command line, the system search path (#include < >)is modi-
fied in such a manner that search directories specified with the — T switch that appear before the directory specified
with the —I - switch are ignored. For syntax information and usage examples on the # include preprocessor com-
mand, see #include.

Writing Macros

The assembler/linker preprocessor processes macros in assembly source files and linker description files (. 1d£).
Macros provide for text substitution.

The term macro defines a macro-identifying symbol and its corresponding definition that the preprocessor uses to
substitute the macro reference(s).

For example, use macros to define symbolic constants or to manipulate register bit masks in an assembly program
based on a macro argument, as follows:

/* Define a symbolic constant */
#define MAX INPUT 256

/* Mask peripheral #x interrupt */
#define SIC MASK(x) (1 << ((x)&0x1F))

Macros can be defined to repeat code sequences in assembly source code. When you pass parameters to a code mac-
ro, the macro serves as a general-purpose routine that is usable in many different programs. The block of instruc-
tions that the preprocessor substitutes can vary with each new set of arguments.

A macro differs from a subroutine call. During assembly, each instance of a macro inserts a copy of the same block
of instructions, so multiple copies of that code appear in different locations in the object code. By comparison, a
subroutine appears only once in the object code, and the block of instructions at that location is executed for every
call.

For more information, see:
* #define
* Macro Definition and Usage Guidelines
* Examples of Multi-Line Code Macros With Arguments
* Debugging Macros
Macro Definition and Usage Guidelines

A macro definition can be any text that may occur legally in the source file that references the macro. In assembly
files, the macro may expand to include instructions, directives, register names, constants, and so on. In LDFs, a
macro may expand to include LDF commands, memory descriptions and other items that are legal in an LDE The
macro definition may also have other macro names that are replaced with their own definitions.

The following guidelines are provided to help you construct macros and use them appropriately.

CCES 2.9.0 Assembler and Preprocessor Manual 3-5

Writing Macros

* A macro definition must begin with #define and must end with a carriage return.

* Macro termination. If a macro definition ends with a terminator on the instruction (one semicolon (;) for
SHARC and Blackfin processors), do not place a terminator at the end of the macro (usage) in an assembly
statement. However, if a macro definition does not end with a terminator, each instance of the macro usage
must be followed by the terminator in the assembly statement.

Be consistent with regard to how you use terminators in macro definitions.

NOTE: Examples shown in this section omit the terminator in the macro definition and use the terminator in the

« »

assembly text. Note that the mac; statement in the following Blackfin example has a “;”.

#define mac mrf = mrf+R2*R5(ssfr) // macro definition

R2 = R1-RO; // macro usage; set parameters
R5 = DM(I1,MO0):;
mac;

* Line continuation. A macro definition can be split across multiple lines for readability. When a macro defini-
tion is longer than one line, place a backslash (\) character at the end of each line (except the last line) for line
continuation.

Incorrect:

#define MultiLineMacro
instructionl; \
instruction2; \
instruction3

Notice that the backslash in the #define line is missing.

Correct:

#define MultilLineMacro \
instructionl; \
instruction2; \
instruction3

No characters are permitted on a line after a backslash. A warning is generated when there is white space after
what might have been intended as a line continuation.

For example,

#define macrol \
instructionl; \ (whitespace)
instruction2; \
instruction3

[Warning pp0003] "header.h":3
The backslash at the end of this line
is followed by whitespace.
It is not a line continuation.

3-6 CCES 2.9.0 Assembler and Preprocessor Manual

Writing Macros

* Comments within #define. Use C-style comments (/* comment */) within multi-line macros. Otherwise,
the line-continuation character (\) will cause the next line to be concatenated to the comment, thus becoming
part of the comment.

The preprocessor supports C-style comments (/* comment */) as well as C++-style comments (/ /
comment). The C-style comment has a delimiter at the start and end of the comment; the C++-style com-
ment begins at the "/ /" and terminates at the end of the line.

The "terminates at the end of the line" aspect of C++-style comments renders "/ /" comments unsuitable with-
in multi-line macro definitions. The line continuation character causes the next line to be concatenated to the
comment, thus becoming part of the comment.

The following code fragment demonstrates the problem.

#define macro \
first line; \
second line

when expanded by writing "macro” in your . asm file, this code becomes:

first line; second line

If you use C-style comments, you can write:

#define macro \
/* this macro has two lines */ \
first line; \
/* and two comments */ \
second line

which will expand to:
first line; second line

However, if you use C++ style comments as shown below:

#define macro \
// this comment will devour the rest of the macro \
first line; \
second line

the macro expands into an "empty" macro.

In the code above, the first line of the macro definition starts a comment. Since there are line-continuation
characters, the logical end of line for that comment is the end of the macro. Thus, the code yields an "empty"

macro.

* Macro nesting (macros called within another macro) is limited only by the memory available during prepro-
cessing. Recursive macro expansion, however, is not allowed.

Refer to #define for more information on the #define command.

CCES 2.9.0 Assembler and Preprocessor Manual 3-7

Writing Macros

Examples of Multi-Line Code Macros With Arguments
The following are examples of multi-line code macros with arguments.

Blackfin Code Example:

#define false O
#define xchg (xv, yv)

PO=xv;

Pl=yv;

RO=[PO

R1=[P1
[P1]
[PO]

4

4

— = = = =

]
]
RO;
R1

SHARC Code Example:

#define ccall (x)
R2=16; I6=17;
JUMP (pc, x) (db);
DM (I7,M7)=R2;
DM(I7, M7)=PC

— = =

Macro Usage in Code Section:

<instruction code here>

ccall (labell) ;

<instruction code here>
labell: NOP;

<instruction code here>

Debugging Macros

If you get an unexpected syntax error from the assembler on a macro expansion, it can be helpful to debug the mac-
ro by looking at what the preprocessor produced post preprocessing. The intermediate file produced by the prepro-
cessor is the . 1s output file.

From the IDE, select the Save temporary files (-save-temps) check box on the General assembler page of the Tool
Settings dialog box. If you are running the assembler from the command line, add the ~save-temps switch (see -
save-temps in the Assembler chapter).

Tips for Debugging Macros:

Assembly programmers may find it useful to include the processor system header files for predefined macros that are
helpful to assembly language programmers for that processor family. These are known as "de £ headers". For exam-

ple, an ADSP-BF534 programmer uses:
//Header is located in <install path>/Blackfin/include

#include "defBF534.h"

3-8 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Guide

A symbol in your program may inadvertently use the same spelling as a #define in the de f header. Typically, this
results in a syntax error due to the symbol being replaced with a constant or constant expression, which is not what
you intended.

For example, de fBF534 . h contains:
#define ALARM 0x0002 /* Alarm Interrupt Enable */

If an assembly program uses ALARM as a symbol name, it will get a textual replacement of "0x0002", making the
program illegal, as demonstrated by the following code fragment.

#include "defBF534.h"
#define FALSE O
#define TRUE 1

.SECTION datal;
. VAR ALARM = FALSE;

[Error e€a5004] "alarm.asm":7 Syntax Error in
.var 0x0002 = 1;
syntax error is at or near text '0x0002'.
Attempting error recovery by ignoring text until the ';'

Using Predefined Preprocessor Macros

In addition to macros you define, the pp preprocessor provides a set of predefined macros and feature macros that
can be used in assembly code. The preprocessor automatically replaces each occurrence of the macro reference found
throughout the program with the specified (predefined) value. The DSP development tools also define feature mac-
ros that can be used in your code.

NOTE: The DATE , FILE ,and TIME _ macros return strings within the single quotation marks
(*”) suitable for initializing character buffers. For more information, see VAR and ASCII String Initializa-
tion Support in the Assembler chapter.

The Common Predefined Preprocessor Macros table describes the common predefined macros provided by the pre-
processor. Tables in Using Assembler Feature Macros list feature macros for Blackfin and SHARC processors. These
processor-specific feature macros are defined by the project development tools to specify the architecture and lan-
guage being processed.

Table 3-1: Common Predefined Preprocessor Macros

Macro Definition

ADI Always set to 1

_ LastSuffix_ Specifies the last value of suffix that was used to build preprocessor generated labels
__ LINE__ Expands to the line number in the source file that the macro appears on

CCES 2.9.0 Assembler and Preprocessor Manual 3-9

Preprocessor Guide

Table 3-1: Common Predefined Preprocessor Macros (Continued)

Macro Definition

_ FILE Expands to the name and extension of the file in which the macro is defined, for example,
‘macro.asm

_ TIME Expands to the current time in 24-hour format “hh:mm:ss"', for example, *06:54:35"

__DATE Expands to the current date in the format “mm dd yyyy', for example, “Oct 02 2000

Specifying Preprocessor Options

When developing a DSP project, it may be useful to modify the preprocessor's default options. Because the assem-
bler and linker automatically run the preprocessor as your program is built (unless you skip preprocessing entirely),
these project development tools can receive input for the preprocessor program and direct its operation. The way the
preprocessor options are set depends on the environment used to run the project development software.

You can specify preprocessor options from the preprocessor's command line or within the IDE:

* From the operating system command line, select the preprocessor's command-line switches. For more informa-
tion on these switches, see Preprocessor Command-Line Switches.

* In the IDE, select the preprocessor's options in the assembler or linker pages of the Tools Settings dialog box,
accessible by selecting a project in any project navigation view and choose Properties > C/C++ Build > Settings
> Tool Settings.

Refer to Specifying Assembler Options in the Assembler chapter.

For more information, see the CCES online help.

Preprocessor Command Reference

This section provides reference information about the preprocessor's commands and operators used in source code,
including their syntax and usage examples. It provides the summary and descriptions of all preprocessor commands
and operators.

The preprocessor reads code from a source file (. asm or . 1df), modifies it according to preprocessor commands,
and generates an altered preprocessed source file. The preprocessed source file is an input file for the assembler or
linker.

Preprocessor command syntax must conform to these rules:
* Must be the first non-whitespace character on its line
* Cannot be more than one line in length unless the backslash character (\) is inserted
* Cannot come from a macro expansion

The preprocessor operators are defined as special operators when used in a #define command.

3-10 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Command Reference

Preprocessor Commands and Operators

The Preprocessor Command Summary table lists preprocessor commands. The Preprocessor Operator Summary ta-

ble lists preprocessor operators. The following sections describe each preprocessor command and operator.

Table 3-2: Preprocessor Command Summary

Command/Operator Description

#define Defines a macro. See #define.

#elif Subdivides an #1f #endif pair. See #elif.

#else Identifies alternative instructions within an #1f #endif pair. See #else.
#endif Endsan #if #endif pair. See #endif.

#error Reports an error message. See #error.

#if Beginsan #1f #endif pair See #if.

#ifdef Begins an #ifdef #endif pair and tests if macro is defined. See #ifdef.
#ifndef Begins an #ifndef #endif pair and tests if macro is not defined. See #ifndef.
#include Includes contents of a file. See #include.

#line Sets a line number during preprocessing. See #line.

#pragma Takes any sequence of tokens. See #pragma.

#undef Removes macro definition. See #undef.

#warning Reports a warning message. See #warning.

Table 3-3: Preprocessor Operator Summary

Command/Operator Description
Converts a macro argument into a string constant. See # (Argument). By default, this operator is disa-
bled. Use the command-line switch -stringize to enable it.
#4 Concatenates two tokens. See ## (Concatenate).
? Generates unique labels for repeated macro expansions. See ? (Generate a unique label).
Specifies a variable-length argument list. See Variable-Length Argument Definitions.
#define

The #define command defines macros.

When defining macros in your source code, the preprocessor substitutes each occurrence of the macro with the de-
fined text. Defining this type of macro has the same effect as using the Find/Replace feature of a text editor, al-

though it does not replace literals in double quotation marks (" ") and does not replace a match within a larger

token.

CCES 2.9.0 Assembler and Preprocessor Manual 3-11

Preprocessor Commands and Operators

For macro definitions longer than one line, place a backslash character (\) at the end of each line (except the last
line) for readability; refer to the macro definition rules in Writing Macros.

You can add arguments to the macro definition. The arguments are symbols separated by commas that appear with-
in parentheses.

Syntax:

#define macroSymbol replacementText

#define macroSymbol [(argl,arg?2,)] replacementText

where:

macroSymbol - macro identifying symbol

replacementText - text to substitute each occurrence of macroSymbol in your source code

Examples:

#define BUFFER SIZE 1020
/* Defines a macro named BUFFER SIZE and sets its
value to 1020.

=y
#define copy(src,dest) \
RO = DM(src) ; \
DM (dest) = RO

/* Define a macro named copy with two arguments.

The definition includes two instructions that copy

a word from memory to memory.

For example,
copy (0x3F,0xCO) ;

calls the macro, passing parameters to it.

The preprocessor replaces the macro with the code:
RO = DM (0x3F) ;
DM (0xC0) = RO; */

#elif

The #e11if command (else if) is used within an #1f #endif pair. The #e11if includes an alternative condition
to test when the initial #1 f condition evaluates as FALSE. The preprocessor tests each #e11if condition inside the
pair and processes instructions that follow the first true #e11f. There can be an unlimited number of #e1if
commands inside one #1 f #end pair.

Syntax:
#elif condition
where:

condition - expression to evaluate as TRUE (nonzero) or FALSE (zero)

3-12 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Commands and Operators

Example:
#if X ==

#elif X ==

/* The preprocessor includes text within the section
and excludes all other text before #else when X=2. */
#else

#endif

#else

The #else command is used within an #1f #endif pair. It adds an alternative instruction to the #1f #endif
pair. Only one #else command can be used inside the pair. The preprocessor executes instructions that follow
#else after all the preceding conditions are evaluated as FALSE (zero). If no #else text is specified, and all pre-

ceding #1f and #elif conditions are FALSE, the preprocessor does not include any text inside the #1i £
#endif pair

Syntax:

#else

Example:

#if X == 1

#elif X ==

#else

/* The preprocessor includes text within the section

and excludes all other text before #else when
x!=1 and x!=2. */

#endif

#endif

The #endif command is required to terminate #1f #endif, #ifdef #endif, and #ifndef #endif
pairs. Ensure that the number of #1 f commands matches the number of #endif commands.

Syntax:

#endif

Example:

#1f condition

fendif
/* The preprocessor includes text within the section only
if the test is true. */

CCES 2.9.0 Assembler and Preprocessor Manual 3-13

Preprocessor Commands and Operators

#error

The #error command causes the preprocessor to raise an error. The preprocessor uses the text following the
#error command as the error message.

Syntax:

ferror messageText

where:

messageText - user-defined text

To break a long messageText without changing its meaning, place a backslash character (\) at the end of each line
(except the last line).

Example:

#ifndef _ ADSPBF533

ferror \

MyError: \

Expecting a ADSP-BF533.\

Check the Linker Description File!
#endif

#if
The #if command begins an #1if #endif pair. Statements inside an #1f #endif pair can include other pre-
processor commands and conditional expressions. The preprocessor processes instructions inside the #1 f #endif

pair only when the condition that follows the #1f evaluates as TRUE. Every #1 f command must be terminated
with an #endif command.

Syntax:

#if condition

where:

condition - expression to evaluate as TRUE (nonzero) or FALSE (zero)
Example:

#if x!=100 /* test for TRUE condition */

/* The preprocessor includes text within the section
if the test is true. */
#endif

More Examples:

#if (x!=100) && (y==20)
#if defined(ADSPBF533)

3-14 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Commands and Operators

#ifdef

The #ifdef (if defined) command begins an #1ifdef #endif pair and instructs the preprocessor to test wheth-
er the macro is defined. Each #1fdef command must have a matching #endif command.

Syntax:

#ifdef macroSymbol

where:

macroSymbol - macro identifying symbol

Example:

#ifdef ADSPBF533
/* Includes text after #ifdef only when ADSPBF533 has
been defined. */
#endif

#ifndef

The #ifndef (if not defined) command begins an #ifndef #endif pair and directs the preprocessor to test
for an undefined macro. The preprocessor considers a macro undefined if it has no defined value. Each #ifndef
command must have a matching #endif command.

Syntax:

#ifndef macroSymbol

where:

macroSymbol - macro identifying symbol

Example:

#ifndef ADSPBF533
/* Includes text after #ifndef only when ADSPBF533
is not defined. */
#endif

#include

The #include command directs the preprocessor to insert the text from a header file at the command location.
There are two types of header files: system and user. However, the #include command may be presented in three
forms:

* #include <filename> - used with system header files
* #include "filename" - used with user header files

* #include text - used with a sequence of tokens The sequence of tokens is subject to macro expansion by
the preprocessor. After macro expansion, the text must match one of the header file forms.

CCES 2.9.0 Assembler and Preprocessor Manual 3-15

Preprocessor Commands and Operators

The only difference to the preprocessor between the two types of header files is the way the preprocessor searches for
them.

* System header file <fileName> - The preprocessor searches for a system header file in this order: (1) the direc-
tories you specify, and (2) the standard list of system directories.

* User header file "fileName" - The preprocessor searches for a user header file in this order:
1. Current directory - the directory where the source file that has the #include command(s) lives
2. Directories you specify
3. Standard list of system directories

Refer to Header Files and #include Command for more information.

Syntax:
#include <fileName> // include a system header file
#include "fileName" // include a user header file

#include macroFileNameExpansion
/* Include a file named through macro expansion.
This command directs the preprocessor to expand the
macro. The preprocessor processes the expanded text,
which must match either <fileName> or "fileName". */

Example:

#ifdef ADSPBF533
/* Tests that _ ADSPBF533 has been defined. */
#include <stdlib.h>

#endif

#line

The #1ine command directs the preprocessor to set the internal line counter to the specified value. Use this com-
mand for error tracking purposes.

Syntax:

#1line lineNumber "sourceFile"
where:
lineNumber - line number of the source line

sourceFile - name of the source file included in double quotation marks. The sourceFile entry can include
the drive, directory, and file extension as part of the file name.

Example:
#line 7 "myFile.c"

3-16 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Commands and Operators

NOTE: All assembly programs have #11ine directives after preprocessing. They always have a first line with
#line 1 "filename.asm" and they will also have #1ine directives to establish correct line num-
bers for text that came from include files as a result of the processed # include directives.

#pragma

The #pragma command is the implementation-specific command that modifies the preprocessor behavior. The
#pragma command can take any sequence of tokens. This command is accepted for compatibility with other
CCES tools. The pp preprocessor currently does not support any pragmas; therefore, it ignores any information in
the #pragma command.

Syntax:
#pragma any sequence of tokens

Example:
#pragma disable warning 1024

#undef

The #undef command directs the preprocessor to undefine a macro.
Syntax:

#undef macroSymbol

where:

macroSymbol - macro created with the #define command

Example:
#undef BUFFER SIZE /* undefines a macro named BUFFER SIZE*/

#warning

The #warning command causes the preprocessor to issue a warning. The preprocessor uses the text following the
#warning command as the warning message.

Syntax:

#warning messageText
where:

messageText - user-defined text

To break a long messageText without changing its meaning, place a backslash character (\) at the end of each line
(except the last line).

Example:

#ifndef ADSPBF533
fwarning \

CCES 2.9.0 Assembler and Preprocessor Manual 3-17

Preprocessor Commands and Operators

MyWarning: \

Expecting a ADSPBF533. \

Check the Linker Description File!
#endif

(Argument)

The # (argument) "stringization" operator directs the preprocessor to convert a macro argument into a string con-

stant. The preprocessor converts an argument into a string when macro arguments are substituted into the macro
definition.

The preprocessor handles white space in string-to-literal conversions by:

* Ignoring leading and trailing white spaces

* Converting white space in the middle of the text to a single space in the resulting string
Syntax:
toString

where:

toString - macro formal parameter to convert into a literal string. The # operator must precede a macro parame-
ter. The preprocessor includes a converted string within double quotation marks ("").

NOTE: This feature is off by default. Use the -stringize command-line switch to enable it.

C Code Example:

#define WARN IF (EXP)\
fprintf (stderr,"Warning:"#EXP "/n")
/* Defines a macro that takes an argument and converts
the argument to a string. */
WARN IF (current <minimum) ;
/* Invokes the macro passing the condition. */

fprintf (stderr,"Warning:""current <minimum""/n") ;
/* Note that the #EXP has been changed to current <minimum
and is enclosed in " ". */

(Concatenate)

The ## (concatenate) operator directs the preprocessor to concatenate two tokens. When you define a macro, you

request concatenation with ## in the macro body. The preprocessor concatenates the syntactic tokens on either side
of the concatenation operator.

Syntax:
tokenl ## token2

Example:

#define varstring(name) .VAR var ##name[] = { name', 0};
varstring (error);

3-18 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Commands and Operators

varstring (warning);

/* The above code results in */
.VAR var error[] = {error', 0};
.VAR var warning[] = { warning', O0};

? (Generate a unique label)

The "?" operator directs the preprocessor to generate unique labels for iterated macro expansions. Within the defi-
nition body of a macro (#define), you can specify one or more identifiers with a trailing question mark (?) to
ensure that unique label names are generated for each macro invocation.

The preprocessor affixes " num" to a label symbol, where num is a uniquely generated number for every macro
expansion. For example,
abcd? ===> abcd 1

If a question mark is a part of the symbol that needs to be preserved, ensure that "?" is delimited from the symbol.
For example, "abcd?" is a generated label, and "abcd 2" is not.

Example:

#define loop(x,y) mylabel?:x =1+1;/
X = 2+42;/

yourlabel?:y =3*3;/

y = 5*5;/

JUMP mylabel?;/
JUMP yourlabel?;
loop (bz,kijb)
loop (1lt,ss)
loop (yc,3jl)

// Generates the following output:
mylabel 1:bz =1+1;bz =2+2;yourlabel 1l:kjb =3*3;kjb = 5*5;
JUMP mylabel 1;
JUMP yourlabel 1;
mylabel 2:1t =1+1;1t =2+2;yourlabel 2:s5s=3*3;ss =5*5;
JUMP mylabel 2;
JUMP yourlabel 2;
mylabel 3:yc =1+1;yc =2+2;yourlabel 3:J1=3*3;J1l =5*5;
JUMP mylabel 3;
JUMP yourlabel 3;

The last numeric suffix used to generate unique labels is maintained by the preprocessor and is available through a
preprocessor predefined macro LastSuffix (see Using Predefined Preprocessor Macros). This value can be
used to generate references to labels in the last macro expansion.

The following example assumes the macro "Loop" from the previous example.

CCES 2.9.0 Assembler and Preprocessor Manual 3-19

Preprocessor Command Reference

/I Some macros for appending a suffix to a label #define makelab(a, b) a##b #define Attach(a, b) makelab(a##_, b)
#define LastLabel(foo) Attach(foo, _ LastSuffix__) // jump back to label in the previous expansion JUMP
LastLabel(mylabel);

The above expands to (the last macro expansion had a suffix of 3):
JUMP mylabel 3;

Variable-Length Argument Definitions
A macro can also be defined with a variable-length argument list (by means of the operator).
#define test(a,)<definition>

For example, the code above defines a macro named test, which takes two or more arguments. It is invoked like
any other macro, although the number of arguments can vary.

For example, in the macro definition, the VA ARGS_ identifier is available to take on the value of all of the
trailing arguments, including the commas, all of which are merged to form a single item. See the Sample Variable-

Length Argument List table.

Table 3-4: Sample Variable-Length Argument List

Sample Argument List Description
test (1) Error; the macro must have at least one more argument than formal parameters, not counting " "
test(1,2) Valid entry
test(1,2,3,4,5) Valid entry

For example, the code
#define test(a,) bar(a); testbar(VA ARGS);

expands into

test (1,2) -> bar(l); testbar(2);
test (1,2,3,4,5) -> bar(l); testbar(2,3,4,5);

Preprocessor Command-Line Reference

The pp preprocessor is invoked implicitly by the assembler and linker when processing assembly sources and linker
description files. The preprocessor can also be invoked directly from the command line.

This section contains:
* Running the Preprocessor

* Preprocessor Command-Line Switches

3-20 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Command-Line Reference

Running the Preprocessor

To run the preprocessor from the command line, type the name of the program followed by arguments in any order.

pp [-switchl [-switchZ]] [sourceFile]

The Preprocessor Command Line Argument Summary summarizes these arguments.

Table 3-5: Preprocessor Command Line Argument Summary

Argument Description
pPp Name of the preprocessor program
-switch Switch (or switches) to process. The preprocessor offers several switches that are used to select its opera-

tion and modes. Some preprocessor switches take a file name as a required parameter.

sourceFile Name of the source file to process. The preprocessor supports relative path names and absolute path
names. The pp . exe outputs a list of command-line switches when run without this argument.

For example, the following command line:

pp -Dfilter taps=100 -v -o bin/pl.is pl.asm
runs the preprocessor with:

* -Dfilter taps=100 - defines the macro filter taps asequal to 100

-v - displays verbose information for each phase of the preprocessing
* -0 bin\pl.is - specifies the name and directory for the intermediate preprocessed file

* pl.asm - specifies the assembly source file to preprocess

NOTE: Most switches without arguments can be negated by prefixing —no to the switch. For example, -nowarn
turns off warning messages, and ~nocs! turns off omitting “!” style comments.

Preprocessor Command-Line Switches

The preprocessor is normally controlled through the switches (or CCES options) of other development tools namely
the assembler and linker, although it can also operate independently from the command line with its own com-
mand-line switches.

The Preprocessor Command-Line Switch Summary table lists pp . exe switches. A detailed description of each
switch follows the table.

Table 3-6: Preprocessor Command-Line Switch Summary

Switch Name Description

—cpredef Enables the "stringization" operator and provides C compiler-style preprocessor behavior. See -cpredef.

CCES 2.9.0 Assembler and Preprocessor Manual 3-21

Preprocessor Command-Line Reference

Table 3-6: Preprocessor Command-Line Switch Summary (Continued)

-cs! Treats as a comment all text after " ! on a single line. See -cs!.

-cs/* Treats as a comment all text within /* *. See -cs/*.

-cs// Treats as a comment all text after / /. See -cs//.

-cs{ Treats as a comment all text within { }. See -cs{.

-csall Accepts comments in all formats. See -csall.

—-Dmacro[=definition] Defines macro. See -Dmacro[=def].

-dependency-add- Adds the name of the target to the target list. See -dependency-add-target.
target

-expand-symbolic- Enables support for Cygwin style paths. See -expand-symbolic-links.

links

-expand-windows- Enables support for Windows shortcuts. See -expand-windows-shortcuts.
shortcuts

-gnu-style- Produces dependency information compatible with the GNU Make tool. See -gnu-style-dependencies.
dependencies

-h[elp] Outputs a list of command-line switches. See -h[elp].

-1 Outputs only makefile dependencies for include files specified in double quotes. See -i.
—-i|Idirectory Searches directory for included files. See -Idirectory.

-I- Indicates where to start searching for system include files, which are delimited by < >. See -I-.
-M Makes dependencies only. See -M.

-MM Makes dependencies and produces preprocessor output. See -MM.

-Mo filename Specifies £ilename for the make dependencies output file. See -Mo filename.
-Mt filename Makes dependencies for the specified source file. See -Mt filename.

-0 filename Writes output to named file. See -o filename.

-stringize Enables stringization (includes a string in double quotes). See -stringize.
-tokenize-dot Treats " ." (dot) as an operator when parsing identifiers. See -tokenize-dot.
-Uname Undefines a macro on the command line. See -Uname.

-v[erbose] Displays information about each preprocessing phase. See -v[erbose].
-version Displays version information for the preprocessor. See -version.

W Suppresses all preprocessor-generated warnings. See -w.

-Wnumber Suppresses any report of the specified warning. See -Wnumber.

-warn Prints warning messages (default). See -warn.

-Wwarn-error Raises all preprocessor-generated warnings to errors. See -Wwarn-error.

The following sections describe preprocessor command-line switches.

3-22 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Command-Line Switches

-cpredef

The —cpredef switch directs the preprocessor to produce C compiler-style strings in all cases. By default, the pre-
processor produces assembler-style strings within single quotes (for example, * string') unless the ~-cpredef

switch is used.
The —cpredef switch sets the following C compiler-style behaviors:

* Directs the preprocessor to use double quotation marks rather than the default single quotes as string delimiters
for any preprocessor- generated strings. The preprocessor generates strings for predefined macros that are ex-
pressed as string constants, and as a result of the stringize operator in macro definitions (see the Common Pre-
defined Preprocessor Macros table in Using Predefined Preprocessor Macros).

* Enables the stringize operator (#) in macro definitions. By default, the stringize operator is disabled to avoid
conflicts with constant definitions (see -stringize).

* Parses identifiers using C language rules instead of assembler rules. In C, the character "." is an operator and is
not considered part of an identifier. In the assembler, the "." is considered part of a directive or label. With -
cpredef, the preprocessor treats " ." as an operator.

The following example shows the difference in effect of the two styles.

#define end last
// what label.end looks like with -cpredef
label.last // "end" parsed as ident and macro expanded

// what label.end looks like without -cpredef (asm rules)

label.end // "end" not parsed separately

-cs!

The —cs! switch directs the preprocessor to treat as a comment all text after "! " on a single line.
-cs/*

The —cs/* switch directs the preprocessor to treat as a comment all text within /* */ on multiple lines. This is

enabled by default.
-cs//

The —cs// switch directs the preprocessor to treat as a comment all text after // on a single line. This is enabled

by default.
-cs{
The —cs { switch directs the preprocessor to treat as a comment all text within { } on multiple lines.

-csall

The —~csall switch directs the preprocessor to accept comments in all formats.

CCES 2.9.0 Assembler and Preprocessor Manual 3-23

Preprocessor Command-Line Switches

-Dmacro[=def]

The -Dmacro switch directs the preprocessor to define a macro. If you do not include the optional definition
string (= def), the preprocessor defines the macro as value 1. Similarly to the C compiler, you can use the =D
switch to define an assembly language constant macro.

Examples:

-Dinput // defines input as 1
-Dsamples=10 // defines samples as 10
-Dpoint="Start" // defines point as "Start"
-D LANGUAGE ASM=1 // defines _LANGUAGE ASM as 1

-dependency-add-target

The ~dependency-add-target switch directs the preprocessor to add the file name that follows the switch to
the list of targets when generating a list of dependencies. The switch is used when dependencies are being generated,
either by invoking the —M or ~MM switch.

-expand-symbolic-links

The expand-symbolic-1inks switch directs the preprocessor to correctly access directories and files whose

name or path contain Cygwin path components.

-expand-windows-shortcuts

The expand-windows-shortcuts switch directs the preprocessor to correctly access directories and files
whose name or path contain Windows shortcuts.

-gnu-style-dependencies

The ~gnu-style-dependencies switch directs the preprocessor to produce dependency information that is
compatible with the GNU Make tool. This switch is used when dependencies are being generated, either by invok-
ing the —M or —MM switch. This switch ensures that all backslashes in dependency paths are converted to forward
slashes, that the names of target and dependencies have their case preserved, whitespace in file names is escaped us-
ing backslashes, and all path names are normalized to be relative to the current working directory of the tool.

-h[elp]

The —h (or —~help) switch directs the preprocessor to send to standard output the list of command-line switches
with a syntax summary.

-i
The -1 (less includes) switch may be used with the M or —MM switches to direct the preprocessor to 7oz output

dependencies on any system files. System files are any files that are brought in using #include < >. Files includ-
ed using #include " " (double quote characters) are included in the dependency list.

-ldirectory

The —~Idirectory switch directs the preprocessor to append the specified directory (or a list of directories separat-
ed by semicolons) to the search path for included header files (see #include).

3-24 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Command-Line Switches

NOTE: No space is allowed between —T and the path name.
The preprocessor searches for included files delimited by double quotation marks (" ") in this order:
1. The source directory (that is, the directory in which the original source file resides)

2. The directories in the search path supplied by the — I switch. If more than one directory is supplied by the - I
switch, they are searched in the order that they appear on the command line.

3. The system directory (that is, the /include subdirectory of the installation directory)
NOTE: The current directory is the directory where the source file lives, not the directory of the assembler

program. Usage of full path names for the — I switch on the command line (omitting the disk parti-

tion) is recommended.
The preprocessor searches for included files delimited by < > in this order:

1. The directories in the search path supplied by the -I- switch (subject to modification by the switch. If more
than one directory is supplied by the — T switch, the directories are searched in the order that they appear on
the command line.

2. The system directory (that is, the <processor family>/include subdirectory of the installation directo-
ry.
-l-

The - I~ switch indicates where to start searching for system include files, which are delimited by < >. If there are
several directories in the search path, the —I- switch indicates where in the path the search for system include files
begins.

For example,

pp -Idirl -Idir2 -I- -Idir3 -Idir4 myfile.asm

When searching for #include "incl.h" the preprocessor searches in the source directory, then dirl, dir2,

dir3,and dir4 in that order.

When searching for #include <inc2.h> the preprocessor searches for the file in dir3 and then dir4. The
-I- switch marks the point where the system search path starts.

-M

The —M switch directs the preprocessor to output a rule (generate make rule only) suitable for the make utility, de-
scribing the dependencies of the source file. The output, a make dependencies list, is written to stdout in the
standard command-line format.

"target file'": "dependency file.ext"
where:

dependency file.ext may be an assembly source file or a header file included with the # include preproces-
sor command

CCES 2.9.0 Assembler and Preprocessor Manual 3-25

Preprocessor Command-Line Switches

When ~o filename is used with —M, the —o switch is ignored. To specify an alternate target name for the make
dependencies, use the -Mt filename switch. To direct the make dependencies to a file, use the -Mo filename switch.

-MM

The -MM switch directs the preprocessor to output a rule (generate make rule and preprocess) suitable for the make
utility, describing the dependencies of the source file. The output, a make dependencies list, is written to stdout
in the standard command-line format.

The only difference between —MM and —M actions is that the preprocessing continues with —~MM. See -M for more
information.

-Mo filename

The -Mo switch specifies the name of the make dependencies file (output make rule) that the preprocessor generates
when using the ~M or ~MM switch. The switch overrides default of make dependencies to stdout.

-Mt filename

The -Mt switch specifies the name of the target file (output make rule for the named source) for which the prepro-
cessor generates the make rule using the —M or MM switch. The -Mt filename switch overrides the default file-
name . 1s file. See -M for more information.

-o filename

The o switch directs the preprocessor to use the specified £ilename argument for the preprocessed output file.
The preprocessor directs the output to stdout when no o switch is specified.

-stringize

The -~stringize switch enables the preprocessor stringization operator. By default, this switch is off to avoid
possible undesired stringization.

For example, there is a conflict between the stringization operator and the assembler's boolean constant format in
the following macro definition:
#define bool const b#00000001

-tokenize-dot

The ~tokenize-dot switch parses identifiers using C language rules instead of assembler rules, without the
need of other C semantics (see -cpredef for more information).

When the ~tokenize-dot switch is used, the preprocessor treats " . " as an operator and not as part of an identi-
fier. If the —-notokenize-dot switch is used, it returns the preprocessor to the default behavior.

-Uname

The ~Uname switch directs the preprocessor to undefine a macro on the command line. The "undefine macro”
switch applies only to macros defined on the same command line. The functionality provides a way for users to
undefine feature macros specified by the assembler or linker.

3-26 CCES 2.9.0 Assembler and Preprocessor Manual

Preprocessor Command-Line Switches

-v[erbose]

The -v [erbose] switch directs the preprocessor to output the version of the preprocessor program and informa-
tion for each phase of the preprocessing.

-version

The -version switch directs the preprocessor to display version information for the preprocessor program.

NOTE: The -version switch on the assembler command line provides version information for both the assem-
bler and preprocessor. The version switch on the preprocessor command line provides preprocessor ver-

sion information only.
-W

The —w (disable all warnings) switch directs the assembler not to display warning messages generated during assem-
bly. Note that —w has the same effect as the ~-nowarn switch.

-Wnumber

The ~Wnumber (warning suppression) switch selectively disables warnings specified by one or more message num-
bers. For example, ~W74 disables warning message pp0074.

-wdarn

The —~warn switch generates (prints) warning messages (this switch is on by default). The ~nowarn switch negates

this action.

-Wwarn-error

The ~-Wwarn-error switch turns all preprocessor warnings into errors.

CCES 2.9.0 Assembler and Preprocessor Manual 3-27

Index

Symbols
 DATE. MaCIO. it ieeeeeeeeeeeeeeeeeeeee e 3-10
D 2 8 50 A o o V- Vs o TR 3-10
_ LASTSUFFIX MAaCrO.ceueeueeeeeeeeeeeeeeeeeeeeeeaeeens 3-9,3-19
 LINE. mMaCI0.ciuuiiiieeeeeeeee et eeeees 3-9
__ SILICON_REVISION__ macro..ccueeeeeeeeeeeeeeeeeeennnnn. 2-96
_ TIME. MACIO.cciiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 3-10
~ VA _ARGS__ identifier....ccoeeeueeeeeeieeeeeeeeeeeeeeeeeeenn. 3-20
_VA_ARGS__identifier.......ccevvveeeeeeenieerieereeereeereennen. 3-20
? PIEPIOCESSOL OPEIATOL...uuviiurieiurieinrieiiieeinaeesnreesreesaeeas 3-19
<. PTEPIOCESSOL OPEIALOL...ueiiuririnreeerereinieeiseeeisreeenreeenaeeas 3-20
ALIGN (address alignment) assembler directive............ 2-51
LS FI1€S.c e 2-2
.BSS assembler directive........cccevverreriiiiiiiiiieeiie e, 2-48
.BYTE, .BYTE2, .BYTE4 assembler directives............... 2-52
.BYTE4/R32 assembler directive.........ccoeeevvreevvreeveeenne.. 2-53
.COMPRESS assembler directive........c...cevureevreevueeennenn. 2-54
.DATA assembler directive........cccoveevrieereeereenreenreeereennens 2-48
dat files ..o 2-2,2-84
LD €S, 2-3
O files...uiiiiiii 2-2
.ELIF conditional assembly directive.........cccccvrrererueuennee 2-43
.ELSE conditional assembly directive...........ccoerurerunee. 2-43
.ENDIF conditional assembly directive..........ccccueuueece. 2-43
.EXTERN (address alignment) assembler directive........ 2-55
.EXTERN STRUCT assembler directive....................... 2-55
.FILE_ATTR

assembler direCtiVes......c.uveeverieeeeeeeeeeeeeeeeereeeneens 2-56
FILE_ATTR assembler directives.......cceeueeeeeeeeeeeeeaaanan... 2-56
FILE assembler directive.........c.cevvevveeereevreeereeireeireenens 2-56
.FORCECOMPRESS assembler directives.................... 2-57
.GLOBAL (global symbol) assembler directive......2—48,2-57
IF conditional assembly directive...........cccccvreininnnne. 2-43
IMPORT assembler directive.........ccoceevveeeureecreeeneennne. 2-58
IMPORT header files........coeevrievrieiriecreeieeiieieeee e 2-32
INC/BINARY assembler directive.........covureevveerreennn... 2-59
INCBIN assembler directive........cccccoveeeeeeeeceeeecreeenens 2-49
s (preprocessed assembly) files........ccocerureriniiinciinccnes 3-8
.LEFTMARGIN assembler directive........c..ccovevurrvurennnnns 2-60
LIST _DATA assembler dir€CtiVe.......cceeveeevueeeeeereeeennen. 2-61
.LIST_DATFILE assembler directive.........ceeeerereeeeeeeen... 2-60

LIST DEFTAB assembler directive.........oceevvuueveeeeeeann. 2-61
LIST _LOCTAB assembler directives........eueueueeeeueuenens 2-61
LIST_WRAPDATA assembler directive.........ccouevnn..... 2-62
LIST assembler directive........c.covvevevuieecreeenereereeeeneeenne. 2-62
.LONG assembler directive..........ccceevvreeevreeeeereeeeeeneens 2-63
.MESSAGE assembler directive.......c...ccoueevvreeureeneennee. 2-63
NEWPAGE assembler directive.........cccovvevreeereeereenene. 2-65
.NOCOMPRESS assembler directive...........ccvreererne... 2-65
NOLIST DATA assembler directives........cceeeeereeennee.. 2-61
NOLIST_DATFILE asembler directive..........uuuuueueunee.. 2-60
NOLIST_WRAPDATA assembler directive................. 2-62
NOLIST assembler directive..........coouvevvrevueeerreeeneenne. 2-62
PAGELENGTH assembler directive........cccceevvreurennn... 2-65
.PAGEWIDTH assembly directive........ccccecereruereenncne 2-66
PORT (declare port) assembler legacy directive............. 2-66
.PRECISION assembler directive.....cccoovveeereeeennnn. 2-67,2—68
.REFERENCE assembler legacy directive...................... 2-70
RETAIN_NAME assembler directive........ccuuueueueeuennnn. 2-70
ROUND_MINUS (rounding mode) assembler directive......

... 2-71
ROUND_NEAREST (rounding mode) assembler directive.

... 2-71

.ROUND_PLUS (rounding mode) assembler directive. 2-71
.ROUND_ZERO (rounding mode) assembler directive 2-71

.SECTION (start or embed a section) assembler directive.....
... 2-72
initialization qualifiers........cccoecevveirincninccinccnnne. 2-74

SET (address alignment) assembler directive........ 2-50,2-75

SHORT assembler directives..........ccceeevvreeereeevreeeereennne. 2-75

SHORT EXPRESSION-LIST assembler directive........ 2-50

.STRUCT (struct variable) assembler directive.............. 2-76

.TEXT assembler directive.........covvveevviievuiierreeeeeeeenenenns 2-50

.TYPE (change default type) assembler directive............ 2-78

VAR and .VAR/INIT24 (declare variable) assembler direc-
EIVES.teeeeeurreeeerreeeeirreeeeereeeesreeeeesreeeenraeesnnnees 2-52,2-79

WEAK assembler directiveccccovvvevvveeeiveeeireeeereeenenn 2-82

(stringization) preprocessor OPerator..........cceverueueueenes 3-18

#define (macro) preprocessor command.................. 3-5,3-12

#elif (else if) preprocessor command.......c.cccccvvveueruenennee 3-12

#else (alternate instruction) preprocessor command....... 3-13

#endif (termination) preprocessor command................. 3-13

#error (error message) preprocessor command............... 3-14

CCES 2.9.0 Assembler and Preprocessor Manual

#if (test if true) preprocessor command..........ccccevveuennen. 3-14 SYMDOIS..c.eiiiieiiieiec e 2-36
#ifdef (test if defined) preprocessor command................ 3-15 assembler directives
#ifndef (test if not defined) preprocessor command....... 3-15 ALIGN oottt 2-51
#include (insert a file) preprocessor command. 3-3,3-4,3-16 ASCIL e e e 2-52
#pragma preprocessor command.............coceeviuiiiiiinnnnn. 3-17 BSS. 2-48
#undef (undefine) preprocessor command..................... 3-17 BYTE directives........ccceueerueinieinieiiiiieiieinieees 2-52
#warning (warning message) preprocessor command..... 3-17 COMPRESS......ccooiiiiiiiiiiiicicce 2-54
L0 fEACE cuviiviere ettt ettt ettt eete e reeeaeeeaee s 2-42 DATA ..ottt 2-48
115 fEACE catiii ittt ettt 2-41 EXTERN ..ottt 2-55
1.31 fTACE cuiiii ittt 2-42 EXTERN STRUCTouvviiieiiiieeeeeee e 2-55
L.31 fTaCtS.cccreeeeeee ettt ettt e 2-53 FILE. .o 2-56
32-bit initialization (used with 1.31 fracts)........ccuec....... 2-53 FORCECOMPRESS......ooiiiiiiieieeeeeceeeeee e 2-57
GLOBAL.....ooiiiieeeeeeeeeeeeae 2-57
A (] @)) U 2-48
absolute address.........ooovviiiiiiiieiiiiieieee e 2-46 IMPORT o 2-58
ADI MACIO0. 111 3-9 INC/BINARY covvesssvvnrrnsssssssssssmrnsssssssssssnsnsssssss 2-59
INCBIN. .o 2-49
Symbols LEFTMARGIN. ... 2-60
. | 51 R 2-62
-anomaly-detect assembler switch.........ccccoceenee. 2-87,2-93 LIST DATA...... 2 61
oy vorsound bl . I 1 ———
A LIST_DEFTAB ... 2-61
LIST _LOCTAB...ieeeeeeeeeeeeeeeeee e 2-61
arithmetic LIST_WRAPDATA.oovvvveemrerereeereerseesere. 2-62
fractional.........coeeerieeiieeieceeeeece e 2-42 LONG oo 263
mixed fractional.........cceevveeieiienienieneeeeeeeereeen 2-43 MESSAGE. .o 2-63
ASCIL NEWPAGE.......covveerveeeeresersesesesesesessesssesneseons 2-65
String direCtive.....c.ceueerueiriciiiciicecceccee, 2-48 NOCOMPRESS. oo 2-65
string initialization........oooveveeervvvicnnns. 2-54,2-69,2-81 (0] 5 £ L 2-62
ASCII assembler directiVe.....eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 2-52 NOLIST DATA oo, 261
assembler NOLIST_DATFILE........coomrrrrrroereenrerrseeeisnnrenee 2-60
Blackfin feature macros.........ccoeeeeveeecreeeeereeieeenenn, 2-10 NOLIST WRAPDATA. oo 2-62
command-line SyNaX..........ooevvveniveisriiiinniinnnns 2-83 PAGELENGTH.veoooeoeeeeseeeeseeesesereesersesere 2-65
debugging Syntax errors.......ovvvvevervvvsssiviisiiennns 3-8 PAGEWIDTH.......oooovoooeereeeeeeeeeoeeeeeeeoeeeeeeoen 2-66
directive SyNEaX....ovvesrvvvesssisiisssssissisnes 2-4,2-47 11024 OSSO 2-66
INSTIUCTION SETuvriirrieereeereeeereeeeseeeeseeeeseeeeiseseereeeeseeens 2-4 PRECISION oo 2-67,2-68
Keywords......ccoevenieiieininicciee 2-36 PREVIOUS. oo 2-68
OVETVIEW . .euuvvveeeeeereuirreeeesssssensreeeesssssnseseeesssnssnssesees 2-2 PRIORITY .o 2-68
running from command lin€........co..cooeevvviinrivinnnn. 2-83 REFERENCE...........coommmmrimmmrrrremmseeressnseeresnnee. 2-70
FUN-TIME ENVIFONIMENT....ccuvvrrreeeeeereerreeeeeesssrrreeeeenas 2-1 RETAIN NAME .o 2-70
S8 uT Vo] o1uTe} o KOOSR 2-82,2-98) ROUND_ MINUS. oo 2-71
SHARC feature macroS.......cceeeveeereeereerreenreesveenneen. 2-10 .ROUND_NE AREST oo 2-71
source files (.aSm).......cceeeereeeveeeeeeeereeeree e 2-2 .ROUND_PLUS ‘‘ 271
special OPErators........ceveruerveveirienrenieeeeererieneeeenens 2-39 .ROUND:ZERO .. 2-71
SECTION. oo 2-72
SET e 2-50,2-75
CCES 2.9.0 Assembler and Preprocessor Manual 29

SHORT ...t 2-75 -Wnumber (warning suppression)..........c.c.eceeveuee. 2-97
SHORT EXPRESSION-LIST......ccoeeierrereennene. 2-50 -Wsuppress NUMDET.......c.coveuerieeirieiinieieieieneeieeeeenes 2-97
STRUCT e 2-76 W WaIN-€ITO veeeceiieeeeiiee et et eree e e e e e 2-98
TEXT oottt e eve e 2-50 “Wwarn nUMber......covveevieeiieiicecceceeceeeeeeee e 2-97
TYPE. i 2-78 assembly
VAR ..ottt ettt 2-79 code, embedding (inline) in C/Ct+..ccvcuvvicuiicuennene. 2-7
WEAK ..o 2-82 language constant..........ccoccceveiniiiniiiiiiiicns 3-24
conditional......c.ccovruerinieiiniciinieiec e 2-43 language programs, Writing.........cccceveeveeverennenennnne. 2-2
assembler switches attributes, creating in object files...........ccccoovviiiininnen. 2-56
-anomaly-detect.....coevveeeerenenienieenenieenen 2-87,2-93
-anomaly-workaround.........c.cceceeeviiiininininieninnnn 2-88 B
-D (define macro).......ooevvvveisnreviii 2-88,2-89 backslash character.........cccooviieciiiiiiiiiiececeeceeee, 3-12
~double-size-32. v 2-88 binary files, including..........ccccoveeiiinniiiiniiiccine 2-49
~double-SiZe-64..........cooueeeeeieieeeeeeeeee e 2-88 BITPOS() assembler 0perator....................eeeeeee.... 2-38,2-39
-double-size-any.......cccoeveeieininineneieeeen 289 block initialization section QUAlIfiErs. ..., 274
-expand-symbolic-links........cccoeverreninccnnee. 2-89,3-24 Luilt-in functions
-expand-windows-shortcuts............co.ooeernnnnss 2-89,3-24 OFESETOF ...t 2-44,2-45
-flags-compiler........coooviiiiiiniiiiiiie 2-89 SIZEOF .o 244,245
-g (generate debug info).........ccceeciiiiniiiiiiinns 2-90 BYTE_ADDRESS() assembler operator........................ 238
“h (Relp) e 2-91
-1 (include directory path)........cccoeireinincnnncnnee 2-91 C
" (include scarch pah) option for the Hlags-comPEES ¢, tme library, initiaizing..ercrr 274
-1 (named listing file).....c.ccevveeninciinciniinccinne, 2-92 (?++ programs, inteffacing ASSEMblY..ooveeree 7
i (listing With include)......c.erooroerrroserern 292 circular buffers, semng ... 2-39
10-210maly-WOrkaround........ooroeorsoroeo. 93 comma-separated OPtioNS........cccucvruevireeerieerieieirieenens 2-90
-no-expand-symbolic-links.........ccccevnineninninnn 294 concatenate (##) prep [OCESSOT OPEIALOT: vvvvvsssssssssessees 518
-no-expand-windows-shortcuts.cocccvvveerueuennee 2-94 conditional assembly directives
ormalwordecode 994 Eilsl; ... ;:i;
O 2-94 ENDﬂ% .. o
10-temp-data-le.. oo 2-94 PRI s o
1w (10rmal WOTd COAE) oo 2-94 e
S 294 constant‘ EXPIESSIONS. cuveiiureiereieinrieiteeeteeereeesseeesraeeeareeas 2-37
-path-compiler......cccooevererieiininincicceecce 295 ~ convenuons . 4
-pp (proceed with preprocessing)......eosersrrsere 295 ;T::n;;lzi; 0 - SRS i:sg
“PLOC PLOCESSOL....uiiuiiiiiiuiiiieniesiiesiiesiee e saee e 2-95
save-temps (save intermediate files)........oor.r... .95 user-defined symbols..........cceveveriniiininieniniin, 2-36
—si—revi'sion version gsilicon FEVISION) uuvvevereeeeiennenes 2-96 Symbols
-sp (skip preprocessing)...........cccceuevrucuevicuerencnnnnenes 2-96
—SWC-EXCIUdE. i evierieiieiececece e 2-96 -cpredef (C-style definitions)
2V (VEIDOSE) vttt 2-97 Preprocessor SWitch. ..o 3-23
-version (display version).........c.cccceeeecirecineinienne. 2-97
-w (skip warning messages)...........ccccceeueiriciricnnnnn. 2-97 c
Werror NUMDET.....vvviiiiiiiiiiieeeeeeeeeeee e 2-97 C programs, interfacing assembly..........ccoeiviiiiincnnnnne. 2-7
-Winfo number (informational messages)............... 2-97 CrossCore Embedded Studio
-Wno-info (no informational messages).................. 2-97 project properties dialog box..........cccceiiiiiiiininns 2-98
CCES 2.9.0 Assembler and Preprocessor Manual 30

SELtiNg PIEProCesSOr OPLIONS....uveviruiruirierierueiseennens 3-10

Tool Settings dialog box.........cccoveviieinieinicinnnes 3-10
Symbols
-cs! (! comment style) preprocessor switch.......c.cccceueunee 3-23
-cs// (/I comment style) preprocessor switch.................. 3-23
-cs/* (/* */ comment style) preprocessor switch.............. 3-23
-cs{ ({ } comment style) preprocessor switch................... 3-23
-csall (all comment styles) preprocessor switch............... 3-23
C
C structs, in assembly SOUTCe......c.cvveverierieerinenieieinenen 2-7
Symbols
-D_LANGUAGE_C Macro....ccceeuuuueeeeeeeeeeeeeeeeeeeeeaaeens 2-30
-D (define macro)

assembler SWItCh....ooeeeueeeeeeeeeeeeeeeeeeeeeeene 2-88,2-89

preprocessor switch.......ccoeviviiiiiiiiniiniiie, 3-24
D
DATAG4 (64-bit word section) qualifierc..ccceeeeeee. 2-74
debugging

generate information..........cceecevveenieeniecnneeninnenn, 2-90
debugging mMacros..........ccceveiviieiiiciinieiicceeeas 3-8
dependencies, from buffer initialization........c.ccccoeueneeee. 2-32
directives list, assembler.........c..cocvevrieviiiciiinieeeeieeienen. 2-47
DM (data), 40-bit word section qualifiercccc.c...... 2-74
DMAONLY section qualifier........ccccccevieiniciniiininnenne 2-74
DOUBLE32|64|ANY section qualifiers........c.cceueveuenee. 2-73
Symbols
-double-size-32 assembler switch.........c.cecvevvrevrienreennnnne. 2-88
-double-size-64 assembler switch..........cccceeevveeeerereerennnne. 2-88
-double-size-any assembler switch.......c.cccceveririeniennncnne. 2-89
D
DWAREF2 function information...........c.ceceeeeeereeereennenns 2-90
E
easm2 1k assembler driver.........coveevvieeeieeieiiieeeeeeeee e 2-1
easmblkfn assembler driver.......ccccovevievievieiiceciec 2-1
ELEh header filecvooovieivieiieiieeceeeeceeeeeeeeeeeeiea 2-73
ELF section typescccoviviiviiniiiiiniinieniiieieneseeeeee 2-73
end 1abels.......oooviiieiiiiieeee e 2-90

end Of @ fUNCHON...eeeeeeeee e eeeeeeee e e 2-90

Symbols

-expand-symbolic-links assembler switch.............. 2-89,3-24

-expand-windows-shortucts assembler switch........ 2-89,3-24

E

EXPIESSIONS. c.vivriiniiiiiiiiii ittt 2-37

Symbols

-file-attr (file attribute) assembler switch.............coeuve... 2-89

F

file format, ELF (Executable and Linkable Format).......... 2-2

files
.asm (assembly SOUICE)....c.coervirieiiininiiniiiciececae 2-2
dat (data)...coceeeeicieieccee e 2-2
dIb (HBrary)...ceeeveeeeeeirinieieeeceeeeeeee e 2-3
d0j (ODJECT) v 2-2
h (header).....oooouvieeuieieeeeeeeeeeeee e 2-2
s (preprocessed assembly).........cocevverieirininininnncns 3-8
NAMING CONVENTIONS. c..eiuiiiuiiiiiiieiiieiie e 2-83

Symbols

-flags-compiler assembler switch..........ccccoiiiiiiniins 2-89

-flags-pp assembler switch..........ccccoiiiiiiiii 2-90

F

floating-point data.......cccoveerveeinieineinincincenne 2-67,2-71

four-byte data initializer lists........ccccoevevineiincineniniccnes 2-49

fractional data type arithmetic........coceeveerinincncincnnnn 2-42

fracts
1.0r special Case....c.evveuenieveriereniiieinicincrceeee 2-42
1.31 fOrMAL.cuieeienieiirienieteieieeeesieseeee e 2-42
COMSTANLS..cvvenvntvtenenteseneenteseesessensenseneesessesseseneesens 2-41
mixed type arithmetiC....ccuecveereneriecreienenienieeeeee. 2-43
signed values.......cooeeviveincnncinieice 2-41

Symbols

-g (generate debug info) assembler switch...................... 2-90

G

global symbols..........cccoooiiiiiiii 2-57

CCES 2.9.0 Assembler and Preprocessor Manual

31

Symbols PrOdUCING. ...ttt 2-3
. b Widths.....ooeoviieiieeeeeeeeee e 2-61
-h (hel bl Bievresenessnssssesss e 2-91 set ta
(help) assembler switc ? source lines and opcodes.........coceverieieirinenienennne 2-62
H WEAP OPCOAES...eiuvrinieiiiiteieteieteitrtetete et 2-62
LO(assembler operator........c.cccvvveinieinieinieiniecnnieans 2-38
header files (.h extension) local symbols......cccecveirininiiiii 2-57
SOUTCE Il 2-2 local tab width........cooviiiiiieiicc e 2-61
R 1 4 4 RN 3-3 long_form IIAlIZATION e 2-76,2-77
TOKEIS. ..cvveeetie ettt ettt ettt 3-4
LS teeeeuetteeeeueteeeeutteessunseeeeabteeesabbeeeesabaeessaneeeeennreeas 3-3 Symbols
HI bler OPerator........ccvevveereeveeereereereeereere e 2-38
() assembler operator 3 ‘M (make rule only)
Symbols assembler sWitch.......ccccoeviieiiiiiiiiiieeeeeeeeeee, 2-92
Preprocessor SWitCh.......ccuevverreruerieenenenieieieennens 3-25
-1 (include directory path)
assembler SWItCh........ocvevieeuieeieeieceeeeeeeeceeeee e, 2-91 M
-I (include search-path)) assembler option..................... 2-90 .)
; . . macro argument, converting into string constant........... 3-18
-1 (less includes) preprocessor switch..........cccovveenieuennnne. 3-24
-I- (search system include files) preprocessor switch....... 3-25 fnacros .
. . . debugging........cccooueiviiiiiiiiiiiii, 3-8
-1 assembler switch, see -flags-compiler switch............... 2-90 ;
defiNing..c..eveeieeeieiciecircnce e 3-5,3-11
I EXPANSION...viuviuiiiiiiieitiieteiee ettt 3-4
predefined by preprocessor..........cccoceveuevirieiiicinnnne. 3-9
IMPORT header files.......cccovevrievriiiiiiiecriecieecieeieenne 2-59 SHARC assembler...ooooo 2-30
initialization section qualifiers.........ccccoueverenenicrinenennns 2-74 make dependencies. ... 2-32.2-59
initializer MemMOIY.....ccccvviririeieiiinenccteesereeeaae 2-74
INPUT_SECTION_ALIGN() command..................... 2-51 Symbols
input section alignment instruction.........c.ececvvveuerueuennee 2-51 R .
intermediate SOUrce fle (IS)..oorooossooosoooosoo) 3 -meminit linker switch.........cccoevieviiiiiiiieiieeeee 2-74
Symbols M
1 (named listing fil [SIRTIS 2-92 MmO
(named listing file) assembler swite ? RAM (random access memory).......ccceeeererverueneenen. 2-74
L sections, declaring..........ccceveevinecinecinieiinienincenes 2-72
EYPES. cvvtneeretenetetentetee ettt ettt eenen 2-4,2-74
legacy directive, PORT......ccocoeiiiiiiiniiiniiiiiinece, 2-66
LENGTH() assembler operator........c.cceceeveveueeenuenennne 2-39 Symbols
Symbols -micaswarn assembler SWitch.........c..cccoevveeveeviieeeieennnnn, 2-93
-MM (make rule and assemble)
-li (listing with include) assembler switch..........covvvevvvev.. 2-92 assembler sWitch.......c.coovvieviiiiiiiiieeeeeceeeeee e 2-92
L Preprocessor SWitch.......coveveervciniccniccniecnn 3-25,3-26
-Mo (output make rule)
Linker Description Files (Idf).......ccoceciniiniinnniins 2-4,2-5 assembler SWitCh.......c.covviiiviiiiiiieeeeeeeeeee e, 2-93
listing files Preprocessor SWitch......coeecivciiniciiniiiiniiiiiee 3-26
St eXtension....c..ceveeeieinicnieece 2-3,2-32 -Mzt (output make rule for named file)
data initialization.........ccceceveeeeieeeiecreeceeeieeeiee i 2-60 assembler SWItCh........c.covvevveeieiiieiecieceeceeeee e 2-93
data opcodes......coueueieuiiiiiiiiic e 2-61 Preprocessor SWitch.....oeoveeeivicciniciniciiniciniecicne 3-26
NAMEd....uviiiiiieiie e e ere e e e e e e e te e e e beeres 2-92
CCES 2.9.0 Assembler and Preprocessor Manual 32

N U ADSP2I262 e 2-18
N boundary alignment..........cccccoeeiiiiniiiiiiniiicne 2-81 _ﬁgggi i ;gg_ """"""""""""""""""""""""""" i_i 2
nested STrUCE FEfErENCES. .uuveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeans 2-46 _ADSP2 13 63_ """"""""""""""""""""""""""" 2_1 g
NO INIT . T T —

- . ADSP213604 . e 2-19
MEMOIY SECHIOM .. uuviiurieiiieiiieeireesreeersesneeeiae s 2-75 ADSP21365 > 19
section qualifier.....c..coueeverencniiininincceeeee 2-74 _ADSP2) 366_ """""""""""""""""""""""""" 2_ 19

Symbols ADSP21307 e 2-19
 ADSP2I368 e 2-20
-no-anomaly-workaround assembler switch................... 2-93 ADSP21369 e 2-20
-no-expand-symbolic-links assembler switch.................. 2-94 NS X AT 72 D 2-20
-no-expand-windows-shortucts assembler switch........... 2-94 ADSP21375 oo 2-20
-normal-word-code assembler switch........c.o.cooviiinninnne. 2-94 _ADSP2 1 467_ ... 2-21
-no-source-dependency assembler switch..........c........... 2-94 _ADSPZ 1 469_ ... 2-21
-no-temp -data-file assembler switch.......ccooovvionriiinnninns 2-94 _ADSP2 1 477_ ... 2-21
-NOWArnN Preprocessor SWitChu.....ooeveveerirenenicrienencnuennes 3-27 o ADSP2147 8_ ... 2-21
N U ADSP21483 e 2-22
U ADSP21487 e 2-22
NW (48-bit normal-word section) qualifier................... 2-74 U ADSP 21488 e 2-23
_ADSP21489 e 2-23
Symbols BN 0)) e 2-22
-nWC assembler SWITCH. .. .ueeeeeeeeeeeeeeeeeeee e 2-94 —ADSP2I562__.....csiniisinsinsosinssnssrsinisisissssorsinas 2-23
o (outpun) BN oty T S 223
assembler SWITCH....ooeeie oo 2-94 —ADSP2I565__ucouininniisininssisnssinsensssssensssssinns 2-24
preprocessor SWitch.......cocvveiviicninciniciniciccee, 3-26 —ADSP2I566 ..ot 2-24
 AD S 21567 s 2-24
(o) ADSP21569 e 2-24
. . . ADSP2I57T e 2-25
ob]ecctl ﬁlels (.doj extension).......ccceeveuerevieinieinieeieeen 22;2 T ADSP21573, oo oy
0podes, [arge......coveueuiirieieieiririeceere e — T ADSP21583, oo 235
Symbols ADSP21584 e 2-26
 AD S P 21587 e 2-26
-path-compiler assembler switch..........cceecinivinecnnnene. 2-95 U ADSPSCS570 e 226
_ ADSPSCSO71 e 2-27
P ADSPSCS72 oo 2-27
PM (48-bit word section) qualifier..........ccocecevueuirinnennne 2-74 __ADSPSCS573_ e 2-28
_ADSPSCS82 e 2-28
Symbols _ ADSPSCO83 e 2-29
-pp (proceed with preprocessing) assembler switch......... 2-95 _ ADSPSCS584 e 2-29
 AD S PSCO87 e 2-30
P _ ADSPSCS589 e 2-30
_ NORMAL_WORD_CODE__...cceeeevvveeriviinnnn. 2-30
predefined macros SHORT_WORD_CODE_......ccccoummmmmmmmns 2-30
_ ADSP2T000__ aeeeeiieeieeeieeeeee e 2-17 _SIMDSI—EARC - T 2-30
_ADSP21160__ e 2-17 — T

U ADSP2I16T e 2-17

U ADSP2126] e 2-17
CCES 2.9.0 Assembler and Preprocessor Manual 33

_LANGUAGE_ASM.......coviiiiieeeiceeeeeeeeeene 2-17 P
preprocessor
assembly files.......oocoveniiinininiie 310 Progems bli)
COMMANd SYNEX..r 5432310321 ASSEMIING. .o —
2GSl SWILCH. vt 3-23 PIEPTOCERSIAG cosevvvemmmevssssssssssmmmmmni el 29
es/1 (/] comment style) SWitch. ..o 3.23 PIOject SEttings, PrEPIOCESSOL...uuivriivrriiuriireeireesreesreesseennes 3-10
-cs/* (/* */ comment style) switch.....c..occoveeeinncnne. 3-23 Q
-cs{ ({ } comment style) switch......cceovvirenieinennnne 3-23
~csall (all comment styles) SWitch...........vvvcrrerreeees 3.23 QUALIIETS...eveeiieicicic e 2-63
fEATULE MACTOS...cuvievierieereeeeeteeete e et e eeeeseeeeeens 3-9 question mark (?) preprocessor Operator. ... ssusssseenee. 3-19
-1 (less includes) sWitCh.........covvvvivvviiiiviieeiiiieeeinns 3-24
-I- (search system include files) switch...........c........ 3-25 R
output file (.is extension)........coecevveerirerirecineennne. 2-3 relational
running from command line..........cc.cccooeinninnee. 3-21 EXPIESSIONS. ..ttt 2-44
SELLING OPLIONS. ..vvivriiiiriiriiniiie ettt enees 3-10 OPELATOLS. c.euviiurienrierietr et et ettt ae e 2-38
SOULCE FILES. ettt eeeeeeeeeas 3-10 RESOLVE() command (in LDF)cooovviiiiiiiiiiiieeeis 2-79
system header files.........ccovvereneiinininineniinenne 3-16 rounding Modes.........cceeueuiririiiiniininieiceeeen 2-71
user header files.........coccovviiniiniiiniiiie, 3-16 ~ RUNTIME_INIT section qualifier...........cccccevrueunnnene. 2-74
-w (skip warning messages) switch...........ccccceeuenes 3-27
-Wnumber (warning suppression) switch................ 3-27 Symbols
N Y o s <) o (o) SRR 3-27 ~save-temps (save intermediate files) assembler switch.... 2-95
preprocessor commands
HefINe...ccvvieiieeiie e 3-12 S
e —— 5 i
section
————— R S 273
FEEL oo 3-15 qualifier, DM (data memory)...o.cvsvesvsvsvces 2-74
TG T 1< ORI 3-15 qualifier, NW (normal-word memory).......ccovsvo 2-74
FINCIUAE. coecveeeeeceeeeeece e 3-16 qualifier, PM (code and data).......ccovessovsocseso 2-74
HPLAGIMA...einerriiiieeeieieieieee ettt 3-17 qualifier, RAM (random access memory).....c...... 2-74
1S 3-17 qualifier, SW (short-word memory)...o.cvivsvsvse 2-74
AWAINING. ..ot 3-17 P Hdentfier....cs s 2-73
) SHE_ALLOC flag......ccoeueiinirieieinireecerireeeceeeenes 2-75
Preprocessor UIde.cuevruiirieinieiniciiceeeeeeene 3-1 shortform initialhation. ... 976
PIeprocessor macros, COMMON MACIOS.uveeurereververenenns 3-9
preprocessor operaFors Symbols
? (generate unique label).........ccccoviiiniinn 3-19
... (variable-length argument list)......c.cccovveuereurnnnne 3-20 -short-word-code assembler switch........................ 2-95,2-96
(StrINGIZation)......cevveveiriiiiiiiiicccceeee 3-18
HH (CONCATENATE) .uvvvveeeeeeirieereeeeeeeeeerrereeeeeesenaneees 3-18 S
SHT_DEBUGINFO section type «..c.ccoceeeverrereeeenrennens 2-73
Symbols SHT_NULL SECtION TYPE w.vvvvrreremrmemenenenenesenenenenenenens 2-73
-proc (target processor) assembler switch..........ccccceeee. 2-95 SHT_PROGBITS
[T [N 1<) SRR 2-73
IMEMOLY SECTIOM. v ureurerueenrererreenrenrenreeeensessesseeeennens 2-75
SHT_PROGBITS section typecoceeveveuerenreruenueennens 2-73
CCES 2.9.0 Assembler and Preprocessor Manual 34

Symbols assembler direCtives........oovvvuveeuiecuiiiieieee e 2-47
si-revision (silicon revision) assembler switch............. 296 .constan'ts .. 2-37
INSTIUCHION SET.uveiiurieeirreeereeeireeeereeeeseeeeseeeeseeeeiseeereeas 2-4
S ITLACTOS ¢ uvvreeeevreeeeereeeesrreeeasseeeensssesesnsseeesnssseessnnsees 3-5
Preprocessor Commands........c.eeveveeveveerueeereenuerennes 3-10
SIZEOF() built-in function.......coooevvvvineriinnrinen. 2-45 system header files.........coeoveinincniinininiieenne 3-3,3-25
source files (LaSM)......covviievreieiieieieeeeee e 2-2
T
Symbols
‘ . ‘ tab
-sp (skip preprocessing) assembler switch...........cooooeve. 2-96 characters in source files............ccceeeevevveveeiereereenennnn 2-61
S width (changing)........cccoovevviiniiniiniiiincs 2-61
temporary data file, not written to a memory (disk)....... 2-94
special characters, dot.....c.cocvvueinieinieieniecniieeciene 2-36
special operators, assembler..........ccccoivniereicininniecennn 2-38 Symbols
Symbols -tokenize-dot (identifier parsing) preprocessor switch.....3-26
-stallcheck assembler switch.........c.ccooveeeiiiiiiiiiicne, 2-96 T
tokens, Macro eXpansion.........ccceueuereeuerieuerenreirueeseennenes 34
S .
trailing zero character..........cccccooeviiiiiiiiciii 2-54
stall Information.........coceceiviiiiiiiniiicirccce 2-96 two-byte data initializer lists.........ccevueiininiciininnen. 2-50
string initialization.......c.coecevveerinerincninicincene, 2-54,2-81
Symbols
Symbols -Uname (undefine macro) preprocessor switch............... 3-26
-stringize (double quotes) preprocessor switch................ 3-26
U
S . .
unique labels, generating............ccccoceciviiiiiininenn. 3-19
struct
JayOUL v e 2-59,2-76 Symbols
Variable.....uviiiiiiee e 2-76 -v (verbose)
STT_* symbol type.cvevevvevvvveeveveni 279 Preprocessor SWitch......ooovvvecivcciniciinciiniiiiince 3-27
SW (16-bit short-word section) qualifier.........c.ccceueueeee 2-74
\')
Symbols
variable-length argument list..........ccococoiiiiiiiininnnn. 3-20
-swc assembler SWitCh.....oovvveeeeeeeeiiiiiiiiiieeeeeeeenn, 2-95,2-96
s Symbols
-version (display version)
symbol _ assembler SWitch.......c.ocoviieviiiiiiiceeceeeeeee e 2-97
CONVENTIONS. c..viuiviiiiiiiriiiteeieceee e 2-36 (skip warning messages)
types ... 2—79 assembler SWitCh .. 2-97
symbo'hc ‘ Preprocessor SWitChi......c.c.eueueuiuiueeececcceccceenne 3-27
alias, Setting.......ccccovvvrviiiiiiiiniicc 250 _am (print warnings) preprocessor switch.................... 327
EXPIESSIONS. c.viiuviiiiiiiiiiieniiei et 2-37
syntax W
bl dline...oooeiieeceeeceeeee e, 2-83
assembler command fine WARNING eal121, missing end labels......................... 2-90
CCES 2.9.0 Assembler and Preprocessor Manual 35

WALIINEZS. .evviviiiniiiieieeiie it 3-27

multi-issue conflicts......ceovereririesienireeeeeeeeee 2-93
PIINTING. ..ottt 3-27
weak symbol binding.........cccoeeciveoiniiniiniiicnene 2-82
Symbols
-Werror number assembler switch...........ccoccervrieciennnne. 2-97
-Winfo number (informational messages) assembler switch...
... 2-97
-Wno-info (no informational messages) assembler switch......
... 2-97
-Wnumber (warning suppression)
assembler switch.......ccoeoieiiiininiii 2-97
preprocessor SWitch.......coovveeviiiiincinciiniciicee, 3-27
W
WORD_ADDRESS() assembler operator.................... 2-38
wrapping, opcode listings.........cccovveiriiiniiiniiiiiiinnnne, 2-62
Symbols
-Wsuppress number assembler switch..........ccoccenenenenn. 2-97
-Wwarn-error
Preprocessor SWitCh.......evververveveieenienienieenenennens 3-27
-Wwarn-error assembler switch.........c.covveeveireniirieiennne. 2-98
-Wwarn number assembler switch.........cccocererieenennenn 2-97
Y4
ZERO_INIT
MEMOIY SECTIOM. eueeurenrieurererrerreereresreennessesreeneennes 2-75
section qualifier......c.evevveerinciinciinieirccecene 2-74

CCES 2.9.0 Assembler and Preprocessor Manual

36

	Copyright Information
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Website
	EngineerZone

	Notation Conventions

	Assembler
	Assembler Guide
	Assembler Overview
	Writing Assembly Programs
	Program Content
	Assembly Instructions
	Assembler Directives
	Preprocessor Commands

	Program Structure
	Code File Structure for SHARC Processors
	Code File Structure for Blackfin Processors

	Program Interfacing Requirements

	Using Assembler Support for C Structs
	Preprocessing a Program
	Using Assembler Feature Macros
	__CCESVERSION__ Predefined Macro

	Generating Make Dependencies
	Reading a Listing File

	Assembler Syntax Reference
	Assembler Keywords and Symbols
	Assembler Expressions
	Assembler Operators
	Numeric Formats
	Representation of Constants in Blackfin
	Fractional Type Support
	1.31 Fracts
	1.0r Special Case
	Fractional Arithmetic
	Mixed Type Arithmetic

	Comment Conventions
	Conditional Assembly Directives
	C Struct Support in Assembly Built-In Functions
	OFFSETOF Built-In Function
	SIZEOF Built-In Function

	Struct References
	Assembler Directives
	.ALIGN, Specify an Address Alignment
	.ASCII
	.BYTE, Declare a Byte Data Variable or Buffer
	ASCII String Initialization Support

	.COMPRESS, Start Compression
	.EXTERN, Refer to a Globally Available Symbol
	.EXTERN STRUCT, Refer to a Struct Defined Elsewhere
	.FILE_ATTR, Create an Attribute in the Object File
	.FILE, Override the Name of a Source File
	.FORCECOMPRESS, Compress the Next Instruction
	.GLOBAL, Make a Symbol Available Globally
	.IMPORT, Provide Structure Layout Information
	.INC/BINARY, Include Contents of a File
	.LEFTMARGIN, Set the Margin Width of a Listing File
	.LIST_DATFILE/.NOLIST_DATFILE, List Data Init Files
	.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes
	.LIST_DEFTAB/.LIST_LOCTAB, Set Tab Widths for Listings
	.LIST_WRAPDATA/.NOLIST_WRAPDATA
	.LIST/.NOLIST, Listing Source Lines and Opcodes
	.LONG, Define and Initialize 4-Byte Data Objects
	.MESSAGE, Alter the Severity of an Assembler Message
	.NEWPAGE, Insert a Page Break in a Listing File
	.NOCOMPRESS, Terminate Compression
	.PAGELENGTH, Set the Page Length of a Listing File
	.PAGEWIDTH, Set the Page Width of a Listing File
	.PORT, Legacy Directive
	.PRECISION, Select Floating-Point Precision
	.PREVIOUS, Revert to the Previously Defined Section
	PRIORITY, Allow Prioritized Symbol Mapping in Linker
	Linker Operation

	.REFERENCE, Provide Better Info in an X-REF File
	.RETAIN_NAME, Stop Linker from Eliminating Symbol
	.ROUND_, Select Floating-Point Rounding
	.SECTION, Declare a Memory Section
	Common .SECTION Attributes
	DOUBLE* Qualifiers
	SHARC-Specific Qualifiers
	Initialization Section Qualifiers

	.SET, Set a Symbolic Alias
	.SHORT, Defines and Initializes 2-Byte Data Objects
	.STRUCT, Create a Struct Variable
	.TYPE, Change Symbol Type
	.VAR, Declare a Data Variable or Buffer
	VAR and ASCII String Initialization Support

	.WEAK, Weak Symbol Definition and Reference

	Assembler Command-Line Reference
	Running the Assembler
	Assembler Command-Line Switch Descriptions
	-anomaly-detect {id1[, id2...]|all|none} -anomaly-warn {id1[,id2]|all|none}
	-anomaly-workaround {id1[, id2...]|all|none}
	-Dmacro[=definition]
	-dependency-add-target
	-double-size-32
	-double-size-64
	-double-size-any
	-expand-symbolic-links
	-expand-windows-shortcuts
	-file-attr attr[=val]
	-flags-compiler
	User-Specified Defines Options
	Include Options

	-flags-pp -opt1[, -opt2...]
	-g
	WARNING ea1121: Missing End Labels

	-gnu-style-dependencies
	-h[elp]
	-i
	-l filename
	-li filename
	-M
	-MM
	-Mo filename
	-Mt filename
	-micaswarn
	-no-anomaly-detect {id1[, id2...]|all|none}
	-no-anomaly-workaround {id1[, id2...]|all|none}
	-no-expand-symbolic-links
	-no-expand-windows-shortcuts
	-no-source-dependency
	-no-temp-data-file
	-normal-word-code or -nwc
	-o filename
	-path-compiler
	-pp
	-proc processor
	-save-temps
	-short-word-code or -swc
	-si-revision version
	-sp
	-stallcheck
	-swc-exclude name1[, name2]
	-v[erbose]
	-version
	-w
	-Werror number[, number]
	-Winfo number[, number]
	-Wno-info
	-Wnumber[, number]
	-Wsuppress number[, number]
	-Wwarn number[, number]
	-Wwarn-error

	Specifying Assembler Options

	Preprocessor
	Preprocessor Guide
	Writing Preprocessor Commands
	Header Files and #include Command
	System Header Files
	User Header Files
	Sequence of Tokens
	Include Path Search

	Writing Macros
	Macro Definition and Usage Guidelines
	Examples of Multi-Line Code Macros With Arguments
	Debugging Macros

	Using Predefined Preprocessor Macros
	Specifying Preprocessor Options

	Preprocessor Command Reference
	Preprocessor Commands and Operators
	#define
	#elif
	#else
	#endif
	#error
	#if
	#ifdef
	#ifndef
	#include
	#line
	#pragma
	#undef
	#warning
	# (Argument)
	## (Concatenate)
	? (Generate a unique label)

	Variable-Length Argument Definitions

	Preprocessor Command-Line Reference
	Running the Preprocessor
	Preprocessor Command-Line Switches
	-cpredef
	-cs!
	-cs/*
	-cs//
	-cs{
	-csall
	-Dmacro[=def]
	-dependency-add-target
	-expand-symbolic-links
	-expand-windows-shortcuts
	-gnu-style-dependencies
	-h[elp]
	-i
	-Idirectory
	-I-
	-M
	-MM
	-Mo filename
	-Mt filename
	-o filename
	-stringize
	-tokenize-dot
	-Uname
	-v[erbose]
	-version
	-w
	-Wnumber
	-warn
	-Wwarn-error

	Index

