
CCES 2.9.0 Loader and Utilities Manual

Revision 2.3, May 2019

Part Number
82-100114-01

Analog Devices, Inc.
One Technology Way
Norwood, MA 02062-9106

Copyright Information

©2019 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form
without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Ana-
log Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, Blackfin+, CrossCore, EngineerZone, EZ-Board, EZ-KIT, EZ-KIT Lite, EZ-
Extender, SHARC, SHARC+, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

EZ-KIT Mini is a trademark of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

CCES 2.9.0 Loader and Utilities Manual ii

Contents

Preface

Purpose of This Manual... 1–1

Intended Audience... 1–1

Manual Contents ... 1–1

Technical Support .. 1–2

Supported Processors ... 1–3

Product Information.. 1–3

Analog Devices Website.. 1–3

EngineerZone ... 1–4

Notation Conventions ... 1–4

Introduction

Definition of Terms ... 2–1

Program Development Flow .. 2–5

Compiling and Assembling... 2–6

Linking... 2–6

Loading, Splitting, or Both... 2–6

Non-Bootable Files Versus Boot-Loadable Files .. 2–7

Loader Utility Operations ... 2–8

Using CCES Loader Interface.. 2–8

Splitter Utility Operations... 2–8

Using CCES Splitter Interface... 2–8

Boot Modes ... 2–9

No-Boot Mode ... 2–9

PROM Boot Mode... 2–9

Host Boot Mode... 2–10

Boot Kernels .. 2–10

Boot Streams.. 2–10

CCES 2.9.0 Loader and Utilities Manual iii

Loader File Searches... 2–11

Loader File Extensions ... 2–11

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting ... 3–1

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide .. 3–5

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors 3–5

Loader Command-Line Switches for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x 3–6

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader Files ... 3–13

CCES Loader and Splitter Interface for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors 3–14

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF53x/BF561 Processor Booting.. 4–1

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting............................. 4–2

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor On-Chip Boot ROM 4–4

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams 4–5

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Block Headers and Flags 4–5

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Initialization Blocks 4–8

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor No-Boot Mode 4–10

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Memory Ranges........... 4–12

ADSP-BF561 Processor Booting .. 4–13

ADSP-BF561 Processor On-Chip Boot ROM... 4–14

ADSP-BF561 Processor Boot Streams... 4–14

ADSP-BF561 Processor Initialization Blocks .. 4–18

ADSP-BF561 Dual-Core Application Management .. 4–18

ADSP-BF561 Processor Memory Ranges .. 4–19

ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management 4–20

ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support 4–22

Compressed Streams.. 4–23

Compressed Block Headers ... 4–24

Uncompressed Streams.. 4–25

Booting Compressed Streams .. 4–25

iv CCES 2.9.0 Loader and Utilities Manual

Decompression Initialization Files... 4–26

ADSP-BF53x/BF561 Processor Loader Guide ... 4–27

Loader Command Line for ADSP-BF53x/BF561 Processors .. 4–27

Loader Command-Line Switches for ADSP-BF533/BF561 Processors.. 4–28

CCES Loader and Splitter Interface for ADSP-BF53x/BF561 Processors ... 4–35

Loader/Splitter for ADSP-BF60x Blackfin Processors

ADSP-BF60x Processor Booting.. 5–1

ADSP-BF60x Processor Boot Modes .. 5–2

ADSP-BF60x BCODE Field for Memory, RSI, and SPI Master Boot .. 5–2

Building a Dual-Core Application .. 5–3

-NoFinalTag .. 5–3

Programming Memory on a Target Board ... 5–4

CRC32 Protection.. 5–5

Block Sizes.. 5–5

ADSP-BF60x Processor Loader Guide ... 5–5

CCES Loader and Splitter Interface for ADSP-BF60x Processors... 5–6

ROM Splitter Capabilities for ADSP-BF60x Processors ... 5–6

ADSP-BF60x Loader Collateral.. 5–7

Loader/Splitter for ADSP-BF7xx Blackfin Processors

ADSP-BF7xx Processor Booting .. 6–1

ADSP-BF7xx Processor Boot Modes .. 6–2

ADSP-BF7xx BCODE Field for SPI Boot Modes... 6–2

Secure Boot and Encrypted Images... 6–3

CRC32 Protection.. 6–4

Block Sizes.. 6–4

ADSP-BF7xx Processor Loader Guide ... 6–4

CCES Loader and Splitter Interface for ADSP-BF7xx Processors ... 6–5

ROM Splitter Capabilities for ADSP-BF7xx Processors ... 6–5

ADSP-BF7xx Loader Collateral .. 6–6

CCES 2.9.0 Loader and Utilities Manual v

Loader for ADSP-SC5xx/ADSP-215xx Processors

ADSP-SC5xx/ADSP-215xx Processor Booting .. 7–2

ADSP-SC5xx/ADSP-215xx Processor Boot Modes .. 7–3

ADSP-SC5xx/ADSP-215xx BCODE Field for SPI Boot Modes... 7–3

ADSP-SC5xx/ADSP-215xx Building a Multicore Application.. 7–5

Initializing ADSP-SC5xx/ADSP-215xx using Init Codes .. 7–7

ADSP-SC5xx/ADSP-215xx Loader File Formats .. 7–8

Secure Boot and Encrypted Images... 7–9

CRC32 Protection.. 7–9

ADSP-SC5xx/ADSP-215xx Processor Loader Guide ... 7–9

Loader Command Line for ADSP-SC5xx/ADSP-215xx Processors .. 7–10

Loader Command-Line Switches for ADSP-SC5xx/ADSP-215xx Processors ... 7–10

CCES Loader Interface for ADSP-SC5xx/ADSP-215xx Processors.. 7–14

ADSP-SC5xx/ADSP-215xx Loader Collateral ... 7–15

Loader for ADSP-21160 SHARC Processors

ADSP-21160 Processor Booting .. 8–1

Power-Up Booting Process ... 8–2

Boot Mode Selection .. 8–3

ADSP-21160 Boot Modes .. 8–3

EPROM Boot Mode ... 8–4

Host Boot Mode ... 8–6

Link Port Boot Mode .. 8–7

No-Boot Mode .. 8–8

ADSP-21160 Boot Kernels... 8–8

Processor Boot Steams... 8–8

Boot Kernel Modification and Loader Issues ... 8–10

ADSP-21160 Interrupt Vector Table .. 8–11

ADSP-21160 Multi-Application (Multi-DXE) Management.. 8–11

ADSP-21160 Processor ID Numbers .. 8–12

Processor Loader Guide ... 8–13

vi CCES 2.9.0 Loader and Utilities Manual

Loader Command Line for Processors .. 8–13

Loader Command-Line Switches for Processors .. 8–14

CCES Loader Interface for Processors .. 8–15

Loader for ADSP-21161 SHARC Processors

ADSP-21161 Processor Booting .. 9–1

Power-Up Booting Process ... 9–2

Boot Mode Selection .. 9–2

ADSP-21161 Processor Boot Modes .. 9–3

EPROM Boot Mode ... 9–3

Host Boot Mode ... 9–6

Link Port Boot Mode .. 9–8

SPI Port Boot Mode.. 9–9

No-Boot Mode .. 9–10

ADSP-21161 Processor Boot Kernels ... 9–10

Processor Boot Streams ... 9–10

Boot Kernel Modification and Loader Issues ... 9–11

Rebuilding a Boot Kernel File .. 9–11

Rebuilding a Boot Kernel Using Command Lines.. 9–12

Loader File Issues ... 9–12

ADSP-21161 Processor Interrupt Vector Table... 9–13

ADSP-21161 Multi-Application (Multi-DXE) Management.. 9–13

Boot From a Single EPROM... 9–13

Sequential EPROM Boot .. 9–13

Processor ID Numbers .. 9–14

ADSP-21161 Processor Loader Guide ... 9–14

Loader Command Line for Processors .. 9–14

Loader Command-Line Switches for ADSP-21161 Processors .. 9–15

CCES Loader Interface for Processors .. 9–17

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

ADSP-2126x/2136x/2137x/214xx Processor Booting ... 10–1

CCES 2.9.0 Loader and Utilities Manual vii

Power-Up Booting Process ... 10–2

ADSP-2126x/2136x/2137x/214xx Processor Interrupt Vector Table.. 10–3

General Boot Definitions.. 10–3

Boot Mode Selection .. 10–3

Boot DMA Configuration Settings... 10–4

PROM Boot Mode.. 10–4

Packing Options for External Memory... 10–4

Multiplexed Parallel Port.. 10–5

AMI/SDRAM/DDR2.. 10–5

Packing and Padding Details.. 10–5

SPI Port Boot Modes .. 10–6

SPI Slave Boot Mode ... 10–6

SPI Master Boot Modes ... 10–6

Booting From an SPI Flash (24-Bit Address).. 10–9

Booting From an SPI PROM (16-Bit Address) .. 10–9

Booting From an SPI Host Processor (No Address).. 10–10

Reserved (No Boot) Mode ... 10–10

ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels .. 10–10

Boot Kernel Modification and Loader Issues ... 10–11

Rebuilding a Boot Kernel File .. 10–12

Rebuilding a Boot Kernel Using Command Lines.. 10–12

Loader File Issues ... 10–12

ADSP-2126x/2136x/2137x/214xx Processor Boot Streams.. 10–13

Boot Stream Block Tags .. 10–13

ZERO_INIT Blocks.. 10–14

INIT_L48 Blocks... 10–14

INIT_L16 Blocks... 10–15

INIT_L64 Blocks... 10–16

MULT_PROC Blocks .. 10–16

FINAL_INIT Blocks.. 10–16

Multi-Application (Multi-DXE) Management .. 10–19

viii CCES 2.9.0 Loader and Utilities Manual

ADSP-2126x/2136x/2137x Processor Compression Support ... 10–21

Compressed Streams.. 10–21

Compressed Block Headers ... 10–22

Uncompressed Streams.. 10–23

Overlay Compression .. 10–23

Booting Compressed Streams .. 10–24

Decompression Kernel File.. 10–24

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide... 10–25

Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors ... 10–25

Loader Command-Line Switches for ADSP-2126x/2136x/2137x/214xx Processors 10–26

CCES Loader Interface for ADSP-2126x/2136x/2137x/214xx Processors.. 10–29

Splitter for SHARC Processors

Splitter Command Line ... 11–1

Splitter File Searches... 11–3

Splitter Output File Extensions .. 11–3

Splitter Command-Line Switches ... 11–3

File Formats

Source Files.. 12–1

C/C++ Source Files... 12–1

Assembly Source Files ... 12–2

Assembly Initialization Data Files... 12–2

Header Files.. 12–3

Linker Description Files ... 12–3

Linker Command-Line Files ... 12–3

Build Files.. 12–3

Assembler Object Files.. 12–3

Library Files.. 12–3

Linker Output Files .. 12–4

Memory Map Files ... 12–4

CCES 2.9.0 Loader and Utilities Manual ix

Bootable Loader Output Files... 12–4

Loader Output Files in Intel Hex-32 Format... 12–4

Loader Output Files in Include Format ... 12–6

Loader Output Files in Binary Format .. 12–7

Loader Output Files in Motorola S-Record Format ... 12–7

Non-Bootable Loader Output Files in Byte Format .. 12–8

Splitter Output Files... 12–9

Splitter Output Files in Intel Hex-32 Format .. 12–10

Splitter Output Files in Byte-Stacked Format .. 12–10

Splitter Output Files in ASCII Format .. 12–11

Splitter Output Files in Motorola S-Record Format .. 12–11

Debugger Files ... 12–11

Utilities

hexutil - Hex-32 to S-Record File Converter .. 13–1

elf2dyn - ELF to Dynamically-Loadable Module Converter... 13–2

Dynamically-Loadable Modules ... 13–2

Syntax... 13–3

File Formats and -l Switch .. 13–4

Exported Symbols... 13–5

Section Alignment .. 13–6

elf2elf - ELF to ELF File Converter.. 13–6

dyndump - Display the Contents of Dynamically-Loadable Modules .. 13–7

-f Family ... 13–8

Output ... 13–8

dynreloc - Relocate Dynamically-Loadable Modules .. 13–9

Explicit Mappings... 13–10

Region Mappings ... 13–10

signtool - Sign and Encrypt Boot Streams for Secure Booting.. 13–11

Syntax... 13–11

Output Formats.. 13–12

x CCES 2.9.0 Loader and Utilities Manual

Key Generation for Signing .. 13–12

Key Generation for Encryption... 13–12

Signing and Encrypting Boot Streams .. 13–13

Extracting Public Keys.. 13–13

securebootsim - Verify and Validate Boot Streams for Secure Booting.. 13–14

Validating a Signed Boot Stream... 13–14

CCES 2.9.0 Loader and Utilities Manual xi

1 Preface

Thank you for purchasing CrossCore® Embedded Studio (CCES), Analog Devices development software for Black-

fin®, Blackfin+®, SHARC®, SHARC+®, and ARM® processors.

Purpose of This Manual
The Loader and Utilities Manual contains information about the loader/splitter program for Analog Devices process-
ors.

The manual describes the loader/splitter operations for these processors and references information about related de-
velopment software. It also provides information about the loader and splitter command-line interfaces.

Intended Audience
The primary audience for this manual is a programmer who is familiar with Analog Devices processors. The manual
assumes the audience has a working knowledge of the appropriate processor architecture and instruction set. Pro-
grammers who are unfamiliar with Analog Devices processors can use this manual, but should supplement it with
other texts, such as hardware reference and programming reference manuals, that describe their target architecture.

Manual Contents
The manual contains:

• Introduction provides an overview of the loader utility (or loader) program as well as the process of loading and
splitting, the final phase of the application development flow.

• Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors explains how the loader/
splitter utility is used to convert executable files into boot-loadable or non-bootable files for the ADSP-BF50x,
ADSP-BF51x, ADSP-BF52x, ADSP-BF54x, and ADSP-BF59x Blackfin processors.

• Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors explains how the loader/splitter utility is used to
convert executable files into boot-loadable or non-bootable files for the ADSP-BF53x and ADSP-BF561 Black-
fin processors.

Preface

CCES 2.9.0 Loader and Utilities Manual 1–1

• Loader/Splitter for ADSP-BF60x Blackfin Processors explains how the loader/splitter utility
(elfloader.exe) is used to convert executable files into boot-loadable or non-bootable files for the ADSP-
BF60x Blackfin processors.

• Loader for ADSP-21160 SHARC Processors explains how the loader utility is used to convert executable files
into boot-loadable files for the ADSP-21160 SHARC processors.

• Loader for ADSP-21161 SHARC Processors explains how the loader utility is used to convert executable files
into boot-loadable files for the ADSP-21161 SHARC processors.

• Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors explains how the loader utility is used to
convert executable files into boot-loadable files for the ADSP-2126x, ADSP- 2136x, ADSP-2137x,
ADSP-2146x, ADSP-2147x, and ADSP-2148x SHARC processors.

• Loader for ADSP-SC5xx/ADSP-215xx Processors explains how the loader utility is used to convert executable
files into boot-loadable files for the ADSP-SC5xx and ADSP-215xx multicore processors.

• Splitter for SHARC Processors explains how the splitter utility is used to convert executable files into non-
bootable files for the earlier SHARC processors.

• File Formats describes source, build, and debugger file formats.

• Utilities describes several utility programs included with CrossCore Embedded Studio, some of which run from
a command line only.

Technical Support
You can reach Analog Devices processors and DSP technical support in the following ways:

• Post your questions in the processors and DSP support community at EngineerZone®:

http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:

http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools development software from CrossCore Embedded Stu-
dio or VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to processor.tools.support@analog.com and automatical-
ly attaches your CrossCore Embedded Studio or VisualDSP++ version information and license.dat file.

• E-mail your questions about processors and processor applications to:

processor.tools.support@analog.com

processor.china@analog.com

• Contact your Analog Devices sales office or authorized distributor. Locate one at:

Technical Support

1–2 CCES 2.9.0 Loader and Utilities Manual

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.tools.support@analog.com
mailto:processor.china@analog.com

http://www.analog.com/adi-sales

• Send questions by mail to:
Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The CrossCore Embedded Studio loader and utility programs support the following processor families from Analog
Devices.

Blackfin ® Processors

ADSP-BF504, ADSP-BF504F, ADSP-BF506F, ADSP-BF512, ADSP-BF514, ADSP-BF516, ADSP-BF518, ADSP-
BF522, ADSP-BF523, ADSP-BF524, ADSP-BF525, ADSP-BF526, ADSP-BF527, ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538, ADSP-BF539, ADSP-BF542, ADSP-
BF542M, ADSP-BF544, ADSP-BF544M, ADSP-BF547, ADSP-BF547M, ADSP-BF548, ADSP-BF548M, ADSP-
BF549, ADSP-BF549M, ADSP-BF561, ADSP-BF592-A, ADSP-BF606, ADSP-BF607, ADSP-BF608, ADSP-
BF609, ADSP-BF700, ADSP-BF701, ADSP-BF702, ADSP-BF703, ADSP-BF704, ADSP-BF705, ADSP-BF706,
ADSP-BF707, ADSP-BF715, ADSP-BF716, ADSP-BF718, ADSP-BF719

SHARC ® Processors

ADSP-21160, ADSP-21161, ADSP-21261, ADSP-21262, ADSP-21266, ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365, ADSP-21366, ADSP-21367, ADSP-21368, ADSP-21369, ADSP-21371,
ADSP-21375, ADSP-21467, ADSP-21469, ADSP-21477, ADSP-21478, ADSP-21479, ADSP-21483,
ADSP-21486, ADSP-21487, ADSP-21488, ADSP-21489, ADSP-21562, ADSP-21563, ADSP-21565,
ADSP-21566, ADSP-21567,ADSP-21569, ADSP-21571, ADSP-21573, ADSP-21583, ADSP-21584,
ADSP-21587, ADSP-SC570, ADSP-SC571, ADSP-SC572, ADSP-SC573, ADSP-SC582, ADSP-SC583, ADSP-
SC584, ADSP-SC587, ADSP-SC589

Product Information
Product information can be obtained from the Analog Devices website and the CrossCore Embedded Studio online
help.

Analog Devices Website

The Analog Devices website, http://www.analog.com, provides information about a broad range of products—ana-
log integrated circuits, amplifiers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to http://www.analog.com/processors/techni-
cal_library. The manuals selection opens a list of current manuals related to the product as well as a link to the

Supported Processors

CCES 2.9.0 Loader and Utilities Manual 1–3

http://www.analog.com/adi-sales
http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/

previous revisions of the manuals. When locating your manual title, note a possible errata check mark next to the
title that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices website that allows customization of a web page to
display only the latest information about products you are interested in. You can choose to receive weekly e-mail
notifications containing updates to the web pages that meet your interests, including documentation errata against
all manuals. MyAnalog.com provides access to books, application notes, data sheets, code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail address.

EngineerZone

EngineerZone is a technical support forum from Analog Devices. It allows you direct access to ADI technical sup-
port engineers. You can search FAQs and technical information to get quick answers to your embedded processing
and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also use this
open forum to share knowledge and collaborate with the ADI support team and your peers. Visit http://
ez.analog.com to sign up.

Notation Conventions
Text conventions used in this manual are identified and described as follows. Additional conventions, which apply
only to specific chapters, may appear throughout this document.

Example Description

File > Close Titles in bold style indicate the location of an item within the CrossCore Embedded Studio
IDE’s menu system (for example, the Close command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly brackets and separated by
vertical bars; read the example as this or that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and separated by vertical bars; read
the example as an optional this or that.

[this, …] Optional item lists in syntax descriptions appear within brackets delimited by commas and ter-
minated with an ellipsis; read the example as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with letter gothic font.

filename Non-keyword placeholders appear in text with letter gothic font and italic style format.

NOTE: NOTE: For correct operation, ...

A note provides supplementary information on a related topic. In the online version of this
book, the word NOTE: appears instead of this symbol.

Product Information

1–4 CCES 2.9.0 Loader and Utilities Manual

http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://ez.analog.com
http://ez.analog.com

Example Description

CAUTION: CAUTION: Incorrect device operation may result if ...

CAUTION: Device damage may result if ...

A caution identifies conditions or inappropriate usage of the product that could lead to undesir-
able results or product damage. In the online version of this book, the word CAUTION: appears
instead of this symbol.

ATTENTION: ATTENTION: Injury to device users may result if ...

A warning identifies conditions or inappropriate usage of the product that could lead to condi-
tions that are potentially hazardous for devices users. In the online version of this book, the
word ATTENTION: appears instead of this symbol.

Notation Conventions

CCES 2.9.0 Loader and Utilities Manual 1–5

2 Introduction

The majority of this manual describes the loader utility (or loader) program as well as the process of loading and
splitting, the final phase of the application development flow.

Most of this chapter applies to all 8-, 16-, and 32-bit processors. Information specific to a particular processor, or to
a particular processor family, is provided in the following chapters.

• Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors

• Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

• Loader/Splitter for ADSP-BF60x Blackfin Processors

• Loader for ADSP-21160 SHARC Processors

• Loader for ADSP-21161 SHARC Processors

• Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

• Splitter for SHARC Processors

• File Formats

• Utilities

Definition of Terms

Loader and Loader Utility

The term loader refers to a loader utility that is part of CrossCore Embedded Studio. The loader utility post-
processes one or multiple executable (.dxe) files, extracts segments that have been declared by the
TYPE(RAM) command in a Linker Description File (.ldf), and generates a loader file (.ldr). Since
the .dxe file meets the Executable and Linkable Format (ELF) standard, the loader utility is often called
elfloader utility. See also Loader Utility Operations.

Introduction

CCES 2.9.0 Loader and Utilities Manual 2–1

Splitter Utility

The splitter utility is part of CrossCore Embedded Studio. The splitter utility post-processes one or multiple
executable (.dxe) files, extracts segments that have been declared by the TYPE(R0M) command in a Linker
Description File (.ldf), and generates a file consisting of processor instructions (opcodes). If burned into an
EPROM or flash memory device connected to the target processor's system bus, the processor can directly
fetch and execute these instructions. See also Splitter Utility Operations.

Splitter and loader jobs can be managed either by separate utility programs or by the same program (see Non-
Bootable Files Versus Boot-Loadable Files). In the latter case, the generated output file can contain code in-
structions and boot streams.

Loader File

A loader file is generated by the loader utility. The file typically has the .ldr extension and is often called an
LDR file. Loader files can meet one of multiple formats. Common formats are Intel hex-32, binary, or ASCII
representation. Regardless of the format, the loader file describes a boot image, which is the binary version of
the loader file. See also Non-Bootable Files Versus Boot-Loadable Files.

Loader Command Line

If invoked from a command-line prompt, the loader and splitter utilities accept numerous control switches to
customize the loader file generation.

Loader Properties Page

The loader properties page is part of the Tool Settings dialog box in the IDE. The properties page is a graphical
tool that assists in composing the loader utility's command line.

Boot Mode

Most processors support multiple boot modes. A boot mode is determined by special input pins that are inter-
rogated when the processor awakes from either a reset or power-down state. See also Boot Modes.

Boot Kernel

A boot kernel is software that runs on the target processor. It reads data from the boot source and interprets the
data as defined in the boot stream format. The boot kernel can reside in an on-chip boot ROM or off-chip
ROM device. Often, the kernel has to be prebooted from the boot source before it can be executed. In this
case, the loader utility puts a default kernel to the front of the boot image, or, allows the user to specify a
customized kernel. See also Boot Kernels.

Definition of Terms

2–2 CCES 2.9.0 Loader and Utilities Manual

Boot ROM

A boot ROM is an on-chip read-only memory that holds the boot kernel and, in some cases, additional ad-
vanced booting routines.

Second-Stage Loader

A second-stage loader is a special boot kernel that extends the default booting mechanisms of the processor. It is
typically booted by a first-stage kernel in a standard boot mode configuration. Afterward, it executes and boots
in the final applications. See also Boot Kernels.

Boot Source

A boot source refers to the interface through which the boot data is loaded as well as to the storage location of a
boot image, such as a memory or host device.

Boot Image

A boot image that can be seen as the binary version of a loader file. Usually, it has to be stored into a physical
memory that is accessible by either the target processor or its host device. Often it is burned into an EPROM
or downloaded into a flash memory device using the Programmer plug-in.

The boot image is organized in a special manner required by the boot kernel. This format is called a boot
stream. A boot image can contain one or multiple boot streams. Sometimes the boot kernel itself is part of the
boot image.

Boot Stream

A boot stream is basically a list of boot blocks. It is the data structure that is processed and interpreted by the
boot kernel. The loader utility generates loader files that contain one or multiple boot streams. A boot stream
often represents one application. However, a linked list of multiple application-level boot streams is referred to
as a boot stream.

Boot Host

A boot host is a processor or programmable logic that feeds the device configured in a slave boot mode with a
boot image or a boot stream.

Boot Block

Multiple boot blocks form a boot stream. These blocks consist of boot data that is preceded by a block header.
The header instructs the boot kernel how to interpret the payload data. In some cases, the header may contain
special instructions only. In such blocks, there is likely no payload data present.

Definition of Terms

CCES 2.9.0 Loader and Utilities Manual 2–3

Boot Code

Boot code refers to all boot-relevant ROM code. Boot code typically consists of the preboot routine and the
boot kernel.

Boot Strapping

If the boot process consists of multiple steps, such as preloading the boot kernel or managing second-stage
loaders, this is called boot strapping.

Initialization Code

Initialization code or initcode is part of a boot stream for Blackfin processors and is a special boot block. While
normally all boot blocks of an application are booted in first and control is passed to the application afterward,
the initialization code executes at boot time. It is common that an initialization code is booted and executed
before any other boot block. This initialization code can customize the target system for optimized boot proc-
essing.

Global Header

Some boot kernels expect a boot stream to be headed by a special information tag. The tag is referred to as a
global header.

Callback Routine

Some processors can optionally call a user-defined routine after a boot block has been loaded and processed.
This is referred to as a callback routine. It provides hooks to implement checksum and decompression strat-
egies.

Slave Boot

The term slave boot spans all boot modes where the target processor functions as a slave. This is typically the
case when a host device loads data into the target processor's memories. The target processor can wait passively
in idle mode or support the host-controlled data transfers actively. Note that the term host boot usually refers
only to boot modes that are based on so-called host port interfaces.

Master Boot

The term master boot spans all boot modes where the target processor functions as master. This is typically the
case when the target processor reads the boot data from parallel or serial memories.

Boot Manager

A boot manager is firmware that decides which application is to be booted. An application is usually represent-
ed as a project in the IDE and stored in a .dxe file. The boot manger itself can be managed within an

Definition of Terms

2–4 CCES 2.9.0 Loader and Utilities Manual

application .dxe file, or have its own separate .dxe file. Often, the boot manager is executed by initializa-
tion code.

In slave boot scenarios, boot management is up to the host device and does not require special tools support.

Multi-dxe Boot

A loader file can contain data of multiple application (.dxe) files if the loader utility was invoked by specify-
ing multiple .dxe files. Either a boot manager decides which application is to be booted exclusively or, alter-
natively, one application can terminate and initiate the next application to be booted. In some cases, a single
application can also consist of multiple .dxe files.

Next .dxe File Pointer

If a loader file contains multiple applications, some boot stream formats enable them to be organized as a
linked list. The next .dxe pointer (NDP) is simply a pointer to a location where the next application's boot
stream resides.

Preboot Routine

A preboot routine is present in the boot ROM of parts that feature OTP memory on a processor. Preboot
reads OTP memory and customizes several MMR registers based on factory and user instructions, as program-
med to OTP memory. A preboot routine executes prior to the boot kernel.

Program Development Flow
The Program Development Flow figure is a simplified view of the application development flow.

The development flow can be split into three phases:

1. Compiling and Assembling

2. Linking

3. Loading, Splitting, or Both

A brief description of each phase follows.

Program Development Flow

CCES 2.9.0 Loader and Utilities Manual 2–5

SOURCE
FILES

ASSEMBLER
AND/OR

COMPILER

.asm, .c, .cpp

PROCESSOR

LOADER
AND/OR

SPLITTER

EXTERNAL
MEMORY

BOOTING
UPON

RESET

TARGET SYSTEM

.doj .dxe

.ldr

LINKER

Figure 2-1: Program Development Flow

Compiling and Assembling

Input source files are compiled and assembled to yield object files. Source files are text files containing C/C++ code,
compiler directives, possibly a mixture of assembly code and directives, and, typically, preprocessor commands. The
assembler and compiler are documented in the Assembler and Preprocessor Manual and C/C++ Compiler Manual,
which are part of the online help.

Linking

Under the direction of the linker description file (LDF) and linker settings, the linker consumes separately-assem-
bled object and library files to yield an executable file. If specified, the linker also produces the shared memory files
and overlay files. The linker output (.dxe files) conforms to the ELF standard, an industry-standard format for
executable files. The linker also produces map files and other embedded information (DWARF-2) used by the de-
bugger.

These executable files are not readable by the processor hardware directly. They are neither supposed to be burned
onto an EPROM or flash memory device. Executable files are intended for debugging targets, such as the simulator
or emulator. Refer to the Linker and Utilities Manual and online help for information about linking and debugging.

Loading, Splitting, or Both

Upon completing the debug cycle, the processor hardware needs to run on its own, without any debugging tools
connected. After power-up, the processor's on-chip and off-chip memories need to be initialized. The process of ini-
tializing memories is often referred to as boot process, introduction to booting. Therefore, the linker output must be
transformed to a format readable by the processor. This process is handled by the loader and/or splitter utility. The
loader/splitter utility uses the debugged and tested executable files as well as shared memory and overlay files as in-
puts to yield a processor-loadable file.

Program Development Flow

2–6 CCES 2.9.0 Loader and Utilities Manual

CrossCore Embedded Studio includes these loader and splitter utilities:

• elfloader.exe (loader utility) for Blackfin and SHARC processors. The loader utility for Blackfin pro-
cessors also acts as a ROM splitter when evoked with the corresponding switches.

• elfspl21k.exe (ROM splitter utility) for earlier SHARC processors. Starting with the ADSP-214xx pro-
cessors, splitter functionality is available through elfloader.exe.

The loader/splitter output is either a boot-loadable or non-bootable file. The output is meant to be loaded onto the
target. There are several ways to use the output:

• Download the loadable file into the processor's PROM space on an EZ-KIT Lite®/EZ-Board® board via the
Device Programmer plug-in. Refer to the online help for information on the Device Programmer.

• Use the IDE to simulate booting in a simulator session. Load the loader file and then reset the processor to
debug the booting routines. No hardware is required: just point to the location of the loader file, letting the
simulator to do the rest. You can step through the boot kernel code as it brings the rest of the code into memo-
ry.

• Store the loader file in an array for a multiprocessor system. A master (host) processor has the array in its mem-
ory, allowing a full control to reset and load the file into the memory of a slave processor.

Non-Bootable Files Versus Boot-Loadable Files

A non-bootable file executes from an external memory of the processor, while a boot-loadable file is transported into
and executes from an internal memory of the processor. The boot-loadable file is then programmed into an external
memory device (burned into EPROM) within your target system. The loader utility outputs loadable files in for-
mats readable by most EPROM burners, such as Intel hex-32 and Motorola S formats. For advanced usage, other
file formats and boot modes are supported. (See File Formats.)

A non-bootable EPROM image file executes from an external memory of the processor, bypassing the built-in boot
mechanisms. Preparing a non-bootable EPROM image is called splitting. In most cases (except for Blackfin process-
ors), developers working with floating- and fixed-point processors use the splitter instead of the loader utility to pro-
duce a non-bootable memory image file.

A booting sequence of the processor and application program design dictate the way loader/splitter utility is called to
consume and transform executable files:

• For Blackfin processors, loader and splitter operations are handled by the loader utility program,
elfloader.exe. The splitter is invoked by a different set of command-line switches than the loader.

In the IDE, with the addition of the -readall switch, the loader utility for the ADSP-BF50x/BF51x/
BF52x/BF54x/BF59x Blackfin processors can call the splitter program automatically. For more information, see
-readall #.

• For earlier SHARC processors, splitter operations are handled by the splitter program, elfspl21k.exe.
Starting with the ADSP-214xx processors, splitter functionality is available through elfloader.exe.

Program Development Flow

CCES 2.9.0 Loader and Utilities Manual 2–7

Loader Utility Operations

Common tasks performed by the loader utility can include:

• Processing loader properties or command-line switches.

• Formatting the output .ldr file according to user specifications. Supported formats are binary, ASCII, Intel
hex-32, and more. Valid file formats are described in File Formats.

• Packing the code for a particular data format: 8-, 16- or 32-bit for some processors.

• Adding the code and data from a specified initialization executable file to the loader file, if applicable.

• Adding a boot kernel on top of the user code.

• If specified, preprogramming the location of the .ldr file in a specified PROM space.

• Specifying processor IDs for multiple input .dxe files for a multiprocessor system, if applicable.

Using CCES Loader Interface

Run the loader utility from the CrossCore Embedded Studio command line (elfloader) or within the IDE. To
use the loader utility for a project, the project's output (artifact) type must be a loader file (.ldr). The IDE invokes
the elfloader.exe utility to build the output loader file.

To run the loader utility within the IDE and/or modify the loader settings, use the loader pages. The pages (also
called properties pages) show the default loader properties for the project's target processor. The loader properties
control how the loader utility processes executable files into boot-loadable files, letting you select and modify ker-
nels, boot modes, and output file formats. Settings on the loader properties pages correspond to switches typed on
the elfloader command line.

See the CCES online help for more information about the loader interface.

Splitter Utility Operations

Splitter utility operations depend on the processor family, splitter properties, and command-line switches, which
control which utility is invoked, and how it processes executable files into non-bootable files:

• For Blackfin processors, the loader utility includes the ROM splitter capabilities invoked through the CCES
IDE or command line. The IDE settings correspond to switches typed on the elfloader command line.
Refer to the CCES online help for more information.

• For SHARC processors earlier than ADSP-214xx, the splitter functionality is available in CCES via the com-
mand-line (elfspl21k.exe). Refer to the Splitter for SHARC Processors chapter for more information.

• For SHARC ADSP-214xx processors, the loader utility includes section splitting capabilities via the -
splitter switch. Splitter for SHARC Processors chapter for more information.

Using CCES Splitter Interface

For Blackfin and SHARC processors, use the splitter capabilities of the loader from the CrossCore Embedded Studio
command line (elfloader) or within the IDE. To use the splitter capabilities for a project, the project's output

Non-Bootable Files Versus Boot-Loadable Files

2–8 CCES 2.9.0 Loader and Utilities Manual

(artifact) type must be a loader file (.ldr). The IDE invokes the elfloader.exe utility to build the output
loader file.

For Blackfin processors, use the CCES splitter page. The page (also called properties page) show the default splitter
properties for the project's target processor. The properties control how the loader utility processes executable files
into non-bootable files, letting you select and modify address masks, data packing options, and output file formats.

For the ADSP-214xx SHARC processors, use the CCES Additional Options properties page of the loader and speci-
fy the -splittersection-name switch.

Settings on the properties pages correspond to switches typed on the elfloader command line. See the CCES
online help for more information about the loader/splitter interface.

Boot Modes
Once an executable file is fully debugged, the loader utility is ready to convert the executable file into a processor-
loadable (boot-loadable) file. The loadable file can be automatically downloaded (booted) to the processor after
power-up or after a software reset. The way the loader utility creates a boot-loadable file depends upon how the
loadable file is booted into the processor.

The boot mode of the processor is determined by sampling one or more of the input flag pins. Booting sequences,
highly processor-specific, are detailed in the following chapters.

Analog Devices processors support different boot mechanisms. In general, the following schemes can be used to pro-
vide program instructions to the processors after reset.

• No-Boot Mode

• PROM Boot Mode

• Host Boot Mode

No-Boot Mode

After reset, the processor starts fetching and executing instructions from EPROM/flash memory devices directly.
This scheme does not require any loader mechanism. It is up to the user program to initialize volatile memories.

The splitter utility generates a file that can be burned into the PROM memory.

PROM Boot Mode

After reset, the processor starts reading data from a parallel or serial PROM device. The PROM stores a formatted
boot stream rather than raw instruction code. Beside application data, the boot stream contains additional data, such
as destination addresses and word counts. A small program called a boot kernel (described in Boot Kernels) parses
the boot stream and initializes memories accordingly. The boot kernel runs on the target processor. Depending on
the architecture, the boot kernel may execute from on-chip boot RAM or may be preloaded from the PROM device
into on-chip SRAM and execute from there.

Boot Modes

CCES 2.9.0 Loader and Utilities Manual 2–9

The loader utility generates the boot stream from the linker output (an executable file) and stores it to file format
that can be burned into the PROM.

Host Boot Mode

In this scheme, the target processor is a slave to a host system. After reset, the processor delays program execution
until the slave gets signaled by the host system that the boot process has completed. Depending on hardware capa-
bilities, there are two different methods of host booting. In the first case, the host system has full control over all
target memories. The host halts the target while initializing all memories as required. In the second case, the host
communicates by a certain handshake with the boot kernel running on the target processor. This kernel may execute
from on-chip ROM or may be preloaded by the host devices into the processor's SRAM by any bootstrapping
scheme.

The loader/splitter utility generates a file that can be consumed by the host device. It depends on the intelligence of
the host device and on the target architecture whether the host expects raw application data or a formatted boot
stream. In this context, a boot-loadable file differs from a non-bootable file in that it stores instruction code in a
formatted manner in order to be processed by a boot kernel. A non-bootable file stores raw instruction code.

Boot Kernels
A boot kernel refers to the resident program in the boot ROM space responsible for booting the processor. Alterna-
tively (or in absence of the boot ROM), the boot kernel can be preloaded from the boot source by a bootstrapping
scheme.

When a reset signal is sent to the processor, the processor starts booting from a PROM, host device, or through a
communication port. For example, an ADSP-2116x processor, brings a 256-word program into internal memory for
execution. This small program is a boot kernel.

The boot kernel then brings the rest of the application code into the processor's memory. Finally, the boot kernel
overwrites itself with the final block of application code and jumps to the beginning of the application program.

Some of the newer Blackfin processors do not require to load a boot kernel-a kernel is already present in the on-chip
boot ROM. It allows the entire application program's body to be booted into the internal and external memories of
the processor. The boot ROM has the capability to parse address and count information for each bootable block.

Boot Streams
The loader utility's output (.ldr file) is essentially the same executable code as in the input .dxe file; the loader
utility simply repackages the executable as shown in the .dxe Files Versus .ldr Files figure.

Processor code and data in a loader file (also called a boot stream) is split into blocks. Each code block is marked
with a tag that contains information about the block, such as the number of words and destination in the processor's
memory. Depending on the processor family, there can be additional information in the tag. Common block types
are "zero" (memory is filled with 0s); nonzero (code or data); and final (code or data). Depending on the processor
family, there can be other block types.

Boot Modes

2–10 CCES 2.9.0 Loader and Utilities Manual

.LDR FILE

CODE

DATA

SYMBOLS

DEBUG
INFORMATION

.DXE FILE

CODE

DATA

SYMBOLS

DEBUG
INFORMATION

A .DXE FILE INCLUDES:
 - DSP INSTRUCTIONS (CODE AND DATA)
 - SYMBOL TABLE AND SECTION INFORMATION
 - TARGET PROCESSOR MEMORY LAYOUT
 - DEBUG INFORMATION

AN .LDR FILE INCLUDES:
 - DSP INSTRUCTIONS (CODE AND DATA)
 - RUDIMENTARY FORMATTING
 (ALL DEBUG INFORMATION HAS
 BEEN REMOVED)

Figure 2-2: .dxe Files Versus .ldr Files

Loader File Searches
File searches are important in the loader utility operations. The loader utility supports relative and absolute directory
names and default directories. File searches occur as follows.

• Specified path-If relative or absolute path information is included in a file name, the loader utility searches only
in that location for the file.

• Default directory-If path information is not included in the file name, the loader utility searches for the file in
the current working directory.

• Overlay and shared memory files-The loader utility recognizes overlay and shared memory files but does not
expect these files on the command line. Place the files in the directory that contains the executable file that
refers to them, or place them in the current working directory. The loader utility can locate them when process-
ing the executable file.

When providing an input or output file name as a loader/splitter command-line parameter, use these guidelines:

• Enclose long file names within straight quotes, "long file name".

• Append the appropriate file extension to each file.

Loader File Extensions
Some loader switches take a file name as an optional parameter. The File Extensions table lists the expected file
types, names, and extensions.

Loader File Searches

CCES 2.9.0 Loader and Utilities Manual 2–11

Table 2-1: File Extensions

Extension File Description

.dxe Loader input files, boot kernel files, and initialization files

.ldr Loader output file

.knl Loader output files containing kernel code only when two output files are selected

In some cases, the loader utility expects the overlay input files with the .ovl file extension, shared memory input
files with the .sm extension, or both but does not expect those files to appear on a command line or properties
pages. The loader utility expects to find these files in the directory of the associated .dxe files, in the current work-
ing directory, or in the directory specified for the .ldf file.

Loader File Extensions

2–12 CCES 2.9.0 Loader and Utilities Manual

3 Loader/Splitter for ADSP-BF50x/BF51x/
BF52x/BF54x/BF59x Blackfin Processors

This chapter explains how the loader/splitter utility (elfloader.exe) is used to convert executable (.dxe) files
into boot-loadable or non-bootable files for the ADSP-BF50x, ADSP-BF51x, ADSP-BF52x, ADSP-BF54x, and
ADSP-BF59x Blackfin processors.

Refer to the Introduction chapter for the loader utility overview. Loader operations specific to the ADSP-BF50x/
BF51x/BF52x/BF54x and ADSP-BF59x Blackfin processors are detailed in the following sections.

• ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

Provides general information on various boot modes, including information on second-stage kernels.

• ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

Provides reference information on the loader utility's command-line syntax and switches.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting
Refer to the processor's data sheet and hardware reference manual for detailed information on system configuration,
peripherals, registers, and operating modes.

• Blackfin processor data sheets and processor manuals can be found online at:

http://www.analog.com/index.html.

• Blackfin processor manuals can be found online at:

http://www.analog.com/index.html or downloaded into the CCES IDE via Help > Install New Software.

The following table lists the part numbers that currently comprise the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
families of Blackfin processors. Future releases of CrossCore Embedded Studio may support additional processors.

Table 3-1: ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Part Numbers

Processor Family Part Numbers

ADSP-BF504 ADSP-BF504, ADSP-BF504F, ADSP-BF506

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors

CCES 2.9.0 Loader and Utilities Manual 3–1

http://www.analog.com/index.html
http://www.analog.com/index.html

Table 3-1: ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Part Numbers (Continued)

Processor Family Part Numbers

ADSP-BF518 ADSP-BF512, ADSP-BF514, ADSP-BF516, ADSP-BF518

ADSP-BF526 ADSP-BF522, ADSP-BF524, ADSP-BF526

ADSP-BF527 ADSP-BF523, ADSP-BF525, ADSP-BF527

ADSP-BF548 ADSP-BF542, ADSP-BF544, ADSP-BF547, ADSP-BF548, ADSP-BF549

ADSP-BF548M ADSP-BF542M, ADSP-BF544M, ADSP-BF547M, ADSP-BF548M, ADSP-BF549M

ADSP-BF592 ADSP-BF592-A

Upon reset, an ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processor starts fetching and executing instructions from
the on-chip boot ROM at address 0xEF00 0000. The boot ROM is an on-chip read-only memory that holds a
boot kernel program to load data from an external memory or host device. The boot ROM details can be found in
the corresponding hardware reference manual.

There are other boot modes available, including idle (no-boot) mode. The processor transitions into the boot mode
sequence configured by the BMODE pins; see the ADSP-BF50x Boot Modes, ADSP-BF51x Boot Modes, ADSP-
BF52x/BF54x, and ADSP-BF59x Boot Modes tables. The BMODE pins are dedicated mode-control pins; that is, no
other functions are performed by the pins. The pins can be read through bits in the system configuration register
(SYSCR).

Table 3-2: ADSP-BF50x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

Stacked parallel flash memory in async mode 001*1 0x2000 0000

Stacked parallel flash memory in sync burst mode 010 0x2000 0000
SPI0 master from SPI memory 011 0x0000 0000
SPI0 slave from host device 100 N/A

16-bit PPI host 101 N/A

Reserved 110 N/A

UART0 slave from UART host 111 N/A

*1 ADSP-BF504 processors do not support BMODE 001 or 010 because they have no internal flash.

Table 3-3: ADSP-BF51x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

3–2 CCES 2.9.0 Loader and Utilities Manual

Table 3-3: ADSP-BF51x Boot Modes (Continued)

Boot Source BMODE[2:0] Start Address

8- or 16-bit external flash memory (default mode) 001 0x2000 0000
Internal SPI memory 010 0x2030 0000
External SPI memory (EEPROM or flash) 011 0x0000 0000
SPI0 host device 100 N/A

One-time programmable (OTP) memory 101 N/A

SDRAM memory 110 N/A

UART0 host 111 N/A

Table 3-4: ADSP-BF52x/BF54x Boot Modes

Boot Source BMODE[3:0] Start Address

Idle (no-boot) 0000 N/A

8- or 16-bit external flash memory (default mode) 0001 0x2000 0000
16-bit asynchronous FIFO 0010 0x2030 0000
8-, 16-, 24-, or 32-bit addressable SPI memory 0011 0x0000 0000
External SPI host device 0100 N/A

Serial TWI memory 0101 0x0000 0000
TWI host 0110 N/A

UART0 host on ADSP-BF52x processors; UART1 host on ADSP-
BF54x processors

0111 N/A

UART1 host on the ADSP-BF52x processors; reserved on ADSP-
BF54x processors

1000 N/A

Reserved 1001 N/A

SDRAM/DDR 1010 0x0000 0010
OTP memory 1011 default page 0x40
8- or 16-bit NAND flash memory 1100, 1101 0x0000 0000
16-bit host DMA 1110 N/A

8-bit host DMA 1111 N/A

Table 3-5: ADSP-BF59x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

Reserved 001 N/A

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

CCES 2.9.0 Loader and Utilities Manual 3–3

Table 3-5: ADSP-BF59x Boot Modes (Continued)

Boot Source BMODE[2:0] Start Address

External serial SPI memory using SPI1 010 N/A

SPI host device using SPI1 011 N/A

External serial SPI memory using SPI0 100 N/A

PPI host 101 N/A

UART host 110 N/A

Internal L1 ROM 111 0x2000 0000

In general, there are two categories of boot modes: master and slave. In master boot modes, the processor actively
loads data from parallel or serial memory devices. In slave boot modes, the processor receives data from parallel or
serial memory devices.

The Blackfin loader utility generates .ldr files that meet the requirements of the target boot mode; for example:

• HOSTDP (-b HOSTDP)

When building for the HOSTDP boot, the loader utility aligns blocks with payload to the appropriate FIFO
depth for the target processor. Note that HOSTDP differs from other boot modes in the default setting for the
Loader Command-Line Switches for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x switch. The HOSTDP boot
mode directs the loader not to produce fill (zero) blocks by default.

To enable fill blocks for HOSTDP builds in the CCES IDE:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. The Tool Settings page appears.

3. Click Additional Options under CrossCore Blackfin Loader. The loader Additional Options properties
page appears.

4. Click Add (+). The Enter Value dialog box appears.

5. In Additional Options, type in -FillBlock.

6. Click OK to close the dialog box.

7. Click Apply.

• NAND (-b NAND)

When building for NAND boot, the loader utility appends 256 bytes to the boot NAND loader stream, a re-
quirement for the boot kernel for the prefetch mechanism. While fetching one 256 byte block of data, it pre-
fetches the next 256 byte block of data. The padding ensures that the final block of the loader stream is pro-
grammed, and the error correction parity data is written.

• OTP (-b OTP)

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

3–4 CCES 2.9.0 Loader and Utilities Manual

When building for OTP boot, no width selection is used. OTP is always a 32-bit internal transfer. Use Intel
hex-32 format for the OTP boot mode and provide the offset to the start address for the OTP page. The OTP
flash programmer requires the offset to the start address for the OTP page when Intel hex loader format is se-
lected. To specify the start address in the CCES IDE:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. The Tool Settings page appears.

3. Click General under CrossCore Blackfin Loader. The loader General properties page appears.

4. In Boot format (-f), ensure Intel hex is selected.

5. Disable Use default start kernel. The Start address (-p) is enabled.

6. In Start address (-p), enter the page number multiplied by 16. For example, if you are building for OTP
boot and writing to page 0x40L, specify start address 0x400.

7. Click Apply.

On the loader command-line, the above example corresponds to:

-b otp -f hex -p 0x400
Refer to the CCES online help for information about the loader properties pages.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader
Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable files.
You select features, such as boot modes, boot kernels, and output file formats via the properties. The properties are
specified on the loader utility's command line or the Tool Settings dialog box in the IDE (CrossCore Blackfin Loader
pages). The default loader settings for a selected processor are preset in the IDE.

NOTE: The IDE’s Tool Settings correspond to switches displayed on the command line.

These sections describe how to produce a bootable (single and multiple) or non-bootable loader file:

• Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

• CCES Loader and Splitter Interface for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

The loader utility uses the following command-line syntax for the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin processors.

For a single input file:

elfloader inputfile -proc processor [-switch]

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 3–5

For multiple input files:

elfloader inputfile1 inputfile2 -proc processor [-switch]

where:

• inputfile - Name of the executable (.dxe) file to be processed into a single boot-loadable or non-bootable
file. An input file name can include the drive and directory. For multiprocessor or multi-input systems, specify
multiple input .dxe files. Put the input file names in the order in which you want the loader utility to process
the files. Enclose long file names within straight quotes, "long file name".

• -procprocessor - Part number of the processor (for example, -proc ADSP-BF542) for which the load-
able file is built. Provide a processor part number for every input .dxe if designing multiprocessor systems; see
the part numbers in ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting.

• -switch - One or more optional switches to process. Switches select operations and modes for the loader utili-
ty.

NOTE: Command-line switches can be placed on the command line in any order, except the order of input files
for a multi-input system. For a multi-input system, the loader utility processes the input files in the order
presented on the command line.

Loader Command-Line Switches for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x

A summary of the loader command-line switches for the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin pro-
cessors appears in the following table. For a quick on-line help on the switches available for a specific processor: for
an ADSP-BF548 processor, use the following command line.
elfloader -proc ADSP-BF548 -help

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

3–6 CCES 2.9.0 Loader and Utilities Manual

Table 3-6: ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader Command-Line Switches

Switch Description

-b {flash|prom|spimaster|spislave|
twimaster|twislave|uart|fifo|otp|
nand|ppi|hostdp}

The -b switch directs the loader utility to prepare a boot-loadable file for the
specified boot mode. The default boot mode for all processors described in this
chapter is PROM/FLASH.

Other valid boot modes include:

• SPI master (-b spimaster) for the ADSP-BF50x, BF51x/52x/54x/
54xM, and ADSP-BF59x processors.

• SPI slave (-b spislave) for the ADSP-BF50x, BF51x/52x/54x/54xM,
and ADSP-BF59x processors.

• UART (-b uart) for the ADSP-BF50x, BF51x/52x/54x/54xM, and
ADSP-BF59x processors.

• TWI master (-b twimaster) for the ADSP-BF52x/54x/54xM processors.

• TWI slave (-b twislave) for the ADSP-BF52x/54x/54xM processors.

• FIFO (-b fifo) for the ADSP-BF52x/54x/54xM processors.

• OTP (-b otp) for the ADSP-BF51x/52x/54x/54xM processors.

• NAND (-b nand) for the ADSP-BF52x/54x/54xM processors.

• PPI (-b ppi) - for the ADSP-BF50x and BF59x processors.

• HOSTDP (-b hostdp) for the ADSP-BF52x, BF544/7/8/9, and
BF544M/547M/548M/549M processors.

See additional information on the HOSTDP, NAND, and OTP boot modes in
this chapter.

-CRC32 [polynomial] The -CRC32 (polynomial coefficient) switch directs the loader utility to generate
CRC32 checksum. Use a polynomial coefficient if specified; otherwise, use default
0xD8018001.

This switch inserts an initcode boot block that calls an initialization routine resid-
ing in the on-chip boot ROM. The argument field of the boot block provides the
used polynomial. The loader utility calculates the CRC checksum for all subse-
quent data blocks and stores the result in the block header's argument field.

-callback sym= symbol [arg=
const32]

The -callback switch takes a sym=symbol (no spaces) assignment.

The switch directs the loader utility to isolate the named subroutine into a sepa-
rate block, set the block header's BFLAG_CALLBACK flag, and fill in the block
header's argument field with the specified constant 32-bit values. The switch is
used for boot-time callbacks.

The callback is guaranteed to be made prior to the target address of sym=sym-
bol.

NOTE: The -callback cannot be used with -CRC32.

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

CCES 2.9.0 Loader and Utilities Manual 3–7

Table 3-6: ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader Command-Line Switches (Continued)

Switch Description

-dmawidth {8|16|32} The -dmawidth {8|16|32} switch specifies a DMA width (in bits) for
memory boot modes. It controls the DMACODE bit field, issued to the boot block
headers by the -width switch.

For FIFO boot mode, 16 is the only DMA width. SPI, TWI, and UART modes
use 8-bit DMA.

-f {hex|ascii|binary|include} The -f {hex|ascii|binary|include} switch specifies the format of a
boot-loadable file: Intel hex-32, ASCII, binary, or include. If the -f switch does
not appear on the command line, the default file format is hex for flash/PROM
boot modes; and ASCII for other boot modes.

-FillBlock FILL blocks are enabled by default for all boot modes, except -b hostdp.

-h or -help The -help switch invokes the command-line help, outputs a list of command-
line switches to standard output, and exits. By default, the -h switch alone pro-
vides help for the loader driver. To obtain a help screen for your target Blackfin
processor, add the -proc switch to the command line. For example, type
elfloader -proc ADSP-BF542 -h to obtain help for the ADSP-BF542
processor.

-init filename.dxe The -init filename.dxe switch directs the loader utility to include the ini-
tialization code from the named executable file. The loader utility places the code
and data from the initialization sections at the top of the boot stream. The boot
kernel loads the code and then calls it. It is the code's responsibility to save/restore
state/registers and then perform an RTS back to the kernel. Initcodes can be writ-
ten in C language and are compliant to C calling conventions.

The -init filename.dxe switch can be used multiple times to specify the
same file or different files a number of times. The loader utility places the code
from the initialization files in the order the files appear on the command line. For
more information, see ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE
Loader Files.

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

3–8 CCES 2.9.0 Loader and Utilities Manual

Table 3-6: ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader Command-Line Switches (Continued)

Switch Description

-initcall sym= sym_symbol

at= at_symbol [stride= DstAddrGap
count= times]

While the -init filename.dxe switch integrates initialization codes, man-
aged by a separate application program, the -initcall switch controls calls to
initialization subroutines that are part of the same application.

The -initcall switch directs the loader utility to dispatch a boot-time initiali-
zation call to the sym subroutine when the at symbol is encountered and loaded.
The stride and count parameters are optional:

• If an optional stride= constant 32-bit value is specified, the loader utility
insets the target program call every stride= target address locations.

• If an optional count= constant 32-bit value is specified, the loader utility
insets the target program call count= times, every stride= target address
locations apart. A count value without a stride value is an error.

For example, the following command line:

-initcall sym=_initcode at=_othersymbol stride=0x100
count=5
results in function _initcode being called five times the first time, just prior to
data in _othersymbol being booted. Thereafter, every 256 destination load
addresses _initcode is called again until a total of five calls have been made.

The -initcall restrictions are:

• -initcall target (sym_symbol) must be a routine entry point, end with
an RTS. It can be written in C language and can rely on the presence of a
stack. However, the routine must not call any libraries, not rely on compiler
run-time environment (such as heaps) - must be self-contained

• -initcall subroutine must be previously loaded and still in memory

• -initcall subroutine cannot contain any forward references to code not
yet loaded

• sym_symbol address must be less than at_symbol address

For more information, see ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-
DXE Loader Files.

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

CCES 2.9.0 Loader and Utilities Manual 3–9

Table 3-6: ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader Command-Line Switches (Continued)

Switch Description

-kb {flash|prom|spimaster|
spislave|uart|twimaster|twislave|
fifo|nand|ppi}

The -kb switch specifies the boot mode for the initialization code and/or boot
kernel output file if two output loader files are selected.

The -kb switch must be used in conjunction with the -o2 switch.

If the -kb switch is absent from the command line, the loader utility generates
the file for the init and/or boot kernel code in the same boot mode as used to out-
put the user application program.

Other valid boot modes include:

• PROM/FLASH (-kb prom or -kb flash) - the default boot mode for
all processors described in this chapter.

• SPI master (-kb spimaster) for the ADSP-BF50x, BF51x/52x/54x/
54xM, and ADSP-BF59x processors.

• SPI slave (-kb spislave) for the ADSP-BF50x, BF51x/52x/54x/54xM,
and ADSP-BF59x processors.

• UART (-kb uart) for the ADSP-BF50x, BF51x/52x/54x/54xM, and
ADSP-BF59x processors.

• TWI master (-kb twimaster) for the ADSP-BF52x/54x/54xM process-
ors.

• TWI slave (-kb twislave) for the ADSP-BF52x/54x/54xM processors.

• FIFO (-kb fifo) for the ADSP-BF52x/54x/54xM processors.

• NAND (-kb nand) - for the ADSP-BF52x/54x/54xM processors.

• PPI (-kb ppi) for the ADSP-BF50x and BF59x processors.

-kf {hex|ascii|binary|include} The -kf {hex|ascii|binary|include} switch specifies the output file
format (hex, ASCII, binary, include) for the initialization and/or boot kernel code
if two output files from the loader utility are selected: one file for the init code
and/or boot kernel and one file for user application code.

The -kf switch must be used in conjunction with the-o2 switch.

If -kf is absent from the command line, the loader utility generates the file for
the initialization and /or boot kernel code in the same format as for the user appli-
cation code.

-kp # The -kp # switch specifies a hex flash/PROM start address for the initialization
and/or boot kernel code. A valid value is between 0x0 and 0xFFFFFFFF. The
specified value is ignored when neither kernel nor initialization code is included in
the loader file.

-kwidth {8|16|32} The -kwidth {8|16|32} switch specifies an external memory device width
(in bits) for the initialization code and/or the boot kernel if two output files from
the loader utility are selected.

If -kwidth is absent from the command line, the loader utility generates the
boot kernel file in the same width as the user application program.

The -kwidth # switch must be used in conjunction with the -o2 switch.

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

3–10 CCES 2.9.0 Loader and Utilities Manual

Table 3-6: ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader Command-Line Switches (Continued)

Switch Description

-l userkernel.dxe The -l userkernel.dxe switch specifies the user boot kernel file.

There is no default kernel for the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
processors.

-M The -M switch generates make dependencies only, no output file is generated.

-maskaddr # The -maskaddr # switch masks all EPROM address bits above or equal to #.
For example, -maskaddr 29 (default) masks all of the bits above and includ-
ing A29 (ANDed by 0x1FFF FFFF). For example, 0x2000 0000 becomes
0x0000 0000. The valid #s are integers 0 through 32, but based on your spe-
cific input file, the value can be within a subset of [0, 32].

The -maskaddr# switch requires -romsplitter and affects the ROM sec-
tion address only.

-MaxBlockSize # The -MaxBlockSize # switch specifies the maximum block size, up to
0x7FFFFFF0. The value must be a multiple of 4.

The default maximum block size is 0xFFF0 or the value specified by the -
MaxBlockSize switch.

-MaxFillBlockSize # The -MaxFillBlockSize # switch specifies the maximum fill block size, up
to 0xFFFFFF0. The value must be a multiple of two. The default fill block size
is 0xFFF0.

-MM The -MM switch generates make dependencies while producing the output files.

-Mo filename The -Mo filename switch writes make dependencies to the named file. Use the
-Mo switch with either -M or -MM. If -Mo is absent, the default is a <stdout>
display.

-Mt target The -Mt target switch specifies the make dependencies target output file. Use
the -Mt switch with either -M or -MM. If -Mt is not present, the default is the
name of the input file with an .ldr extension.

-NoFillBlock The -NoFillBlock switch directs the loader utility not to produce FILL
blocks, zero, or repeated blocks.

The -NoFillBlock switch is set automatically in the HOSTDP (-b
HOSTDP) boot mode.

-NoInitCode The -NoInitCode switch directs the loader utility not to expect an init code
file. The loader utility may expect an init code file, specified through the -init
filename.dxe switch if the application has an external memory section. The
init code file should contain the code to initialize registers for external memory
initialization.

-o filename The -o filename switch directs the loader utility to use the specified file as the
name of the loader utility's output file. If the filename is absent, the default
name is the root name of the input file with an .ldr extension.

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

CCES 2.9.0 Loader and Utilities Manual 3–11

Table 3-6: ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader Command-Line Switches (Continued)

Switch Description

-o2 The -o2 switch directs the loader utility to produce two output files: one file for
code from the initialization block and/or boot kernel and one file for user applica-
tion code.

To have a different format, boot mode, or output width for the application code
output file, use the -kb -kf -kwidth switches to specify the boot mode, the
boot format, and the boot width for the output kernel file, respectively.

Combine -o2 with -l filename and/or -init filename.dxe.

-p # The -p # switch specifies a hex flash/PROM output start address for the applica-
tion code. A valid value is between 0x0 and 0xFFFFFFFF. A specified value
must be greater than that specified by -kp if both kernel and/or initialization and
application code are in the same output file (a single output file).

For boot mode -b OTP and -f hex format, use -p to supply the offset to the
start address for the OTP page (page # multiplied by 16).

-proc processor The -proc processor switch specifies the target processor.

The processor can be one of the processors listed in the ADSP-BF50x/BF51x/
BF52x/BF54x/BF59x Part Numbers table in ADSP-BF50x/BF51x/BF52x/
BF54x/BF59x Processor Booting.

-quickboot sec= section The -quickboot switch takes a sec=section (no spaces) assignment.

The switch directs the loader utility to mark blocks within the LDF-defined out-
put section name with theBFLAG_QUICKBOOT flag. The switch is used to mark
blocks to skip on warm-boot cycles.

-readall # The -readall # switch directs the loader utility to integrate fixed-position
ROM sections within the loader boot stream. The switch calls the splitter utility
as a transparent sub-process to the loader utility. Memory segments declared with
the TYPE(ROM) command in the LDF file are processed by the splitter. Seg-
ments with the TYPE(RAM) command emit to the boot stream.

The valid switch argument is an integer between 0 and 32, where 29 is the de-
fault. In the resulting loader (.ldr) file in Intel hex-32 format, the ROM-based
splitter data is merged with the RAM-based loader stream.

The # argument is similar to the -maskaddr # switch, which designates the
upper PROM address bit position for extended address mapping. The splitter
utility is required to provide the -maskaddr # parameter to the loader utility
to generate a ROM-based splitter stream, but the required splitter parameter is
not available on the loader command line. The loader utility solves this require-
ment by supporting the -readall # switch.

-romsplitter The -romsplitter switch creates a non-bootable image only. This switch
overwrites the -b switch and any other switch bounded by the boot mode.

In the .ldf file, declare memory segments to be `split' as type ROM. The splitter
skips RAM segments, resulting in an empty file if all segments are declared as RAM.
The -romsplitter switch supports Intel hex and ASCII formats.

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

3–12 CCES 2.9.0 Loader and Utilities Manual

Table 3-6: ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader Command-Line Switches (Continued)

Switch Description

-save [sec= section] The -save switch takes a sec=section (no spaces) assignment.

The switch directs the loader utility to mark blocks within the LDF-defined sec-
tion name with the BFLAG_SAVE flag. The switch is used to mark blocks to ar-
chive for low-power or power-fail cycles.

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for the processor
hardware. If -si-revision is not used, the target is a default revision from
the supported revisions.

-v The -v switch directs the loader utility to output verbose loader messages and
status information as the loader processes files.

-width {8|16|32} The -width {8|16|32} switch specifies an external memory device width
(in bits) to the loader utility in flash/PROM boot mode (default is 8). For FIFO
boot mode, the only valid width is 16. For SPI, TWI, and UART boot modes,
the only valid width is 8.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader Files

An ADSP-BF50x/BF51x/BF52x/BF54x/BF59x loader (.ldr) file can contain data of multiple application (.dxe)
files. At boot time, the boot kernel boots one application file exclusively, or one application file initiates the boot of
the next application file. In some cases, a single application can consist of multiple .dxe files.

Initialization code is a subroutine called at boot time. Unlike the ADSP-BF53x/BF56x processors, the ADSP-
BF50x/BF51x/BF52x/BF54x/BF59x processors support initcode written in both assembly and C.

CrossCore Embedded Studio supports two methods of integrating multiple initcode subroutines:

• The -init filename.dxecommand-line switch expects a .dxe file. The initcode is managed by a sepa-
rate project. If the initcode is written in C language, ensure that the .dxe file does not include the CRT code
because the boot kernel expects a subroutine.

The -init filename.dxe switch can be used multiple times to specify the same file or different files a
number of times. The loader utility places the code from the initialization files in the order the files appear on
the command line. All initcodes are inserted after the first regular .dxe file.

The loader utility equips every initcode with a dedicated first boot block, which has the BFLAG_FIRST flag
set. Initcodes, however, do not feature a final block; they are terminated by a boot block, tagged by the
BFLAG_INIT flag. Therefore, in absence of the BFLAG_FINAL flag, the boot kernel continues processing of
the subsequent .dxe data after finishing execution of the initcode.

• The -initcall sym=sym_symbol command-line switch relies on initcode subroutines that are part of
the same project. Initcode subroutines invoked by the -initcall switch are not accompanied by any first
boot blocks with the BFLAG_FIRST flag set. In the loader file, the initcode subroutines translate to boot
blocks tagged by the BFLAG_INIT flag.

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

CCES 2.9.0 Loader and Utilities Manual 3–13

When writing an initcode subroutine in C, ensure that the code does not rely on libraries or heap support, which
may not be available in memory by the time the initcode executes. An initcode routine is expected to return properly
to the boot kernel by an RTS instruction and to meet C-language calling conventions (see the C/C++ Compiler and
Library Manual for Blackfin Processors).

Refer to the initcode examples provided with the installation in <install_path>/Blackfin/ldr/
init_code.

CCES Loader and Splitter Interface for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Processors

Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

The IDE invokes the elfloader.exe utility to build the output loader file. To modify the default loader prop-
erties, use the project's Tool Settings dialog box. The controls on the pages correspond to the loader command-line
switches and parameters (see Loader Command-Line Switches for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x). The
loader utility for Blackfin processors also acts as a ROM splitter when evoked with the corresponding switches.

The loader pages (also called loader properties pages) show the default loader settings for the project's target processor.
Refer to the CCES online help for information about the loader/splitter interface.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

3–14 CCES 2.9.0 Loader and Utilities Manual

4 Loader/Splitter for ADSP-BF53x/BF561
Blackfin Processors

This chapter explains how the loader/splitter utility (elfloader.exe) is used to convert executable (.dxe) files
into boot-loadable or non-bootable files for the ADSP-BF53x and ADSP-BF561 Blackfin processors.

Refer to the Introduction chapter for the loader utility overview. Loader operations specific to the ADSP-BF53x and
ADSP-BF561 Blackfin processors are detailed in the following sections.

• ADSP-BF53x/BF561 Processor Booting

Provides general information on various boot modes.

• ADSP-BF53x/BF561 Processor Loader Guide

Provides reference information on the loader utility's command-line syntax and switches.

ADSP-BF53x/BF561 Processor Booting
At power-up, after a reset, the processor transitions into a boot mode sequence configured by the BMODE pins. The
BMODE pins are dedicated mode-control pins; that is, no other functions are performed by these pins. The pins can
be read through bits in the system reset configuration register SYSCR.

An ADSP-BF53x or an ADSP-BF561 Blackfin processor can be booted from an 8- or 16-bit flash/PROM memory
or from an 8-, 16-, or 24-bit addressable SPI memory. The ADSP-BF561 processors does not support 24-bit ad-
dressable SPI memory boot. There is also a no-boot option (bypass mode) in which execution occurs from a 16-bit
external memory. For more information, refer to:

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting

• ADSP-BF561 Processor Booting

Software developers who use the loader utility should be familiar with the following operations:

• ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

CCES 2.9.0 Loader and Utilities Manual 4–1

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting

Upon reset, an ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ BF538/BF539 processor jumps to the on-chip
boot ROM or jumps to 16-bit external memory for execution (if BMODE = 0) located at 0x2000 0000. The
ROM description can be found in ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor
On-Chip Boot ROM.

The Boot Mode Selections for ADSP-BF531/BF532/BF533/BF538/BF539 Processors table summarizes boot modes
and execution start addresses for the named processors.

Table 4-1: Boot Mode Selections for ADSP-BF531/BF532/BF533/BF538/BF539 Processors

Boot Source BMODE[1:0] Execution Start Address

ADSP-BF531

ADSP-BF532

ADSP-BF533

ADSP-BF538

ADSP-BF539

Executes from a 16-bit external ASYNC bank 0 mem-
ory (no-boot mode); see ADSP-BF531/BF532/
BF533/BF534/BF536/BF537/BF538/BF539 Process-
or No-Boot Mode

00 0x2000 0000 0x2000 0000

8- or 16-bit flash/PROM 01 0xFFA0 8000 0xFFA0 0000
SPI host in SPI slave mode 10 0xFFA0 8000 0xFFA0 0000
8-, 16-, or 24-bit addressable SPI memory in SPI
master boot mode with support for Atmel
AT45DB041B, AT45DB081B, and AT45DB161B
DataFlash devices

11 0xFFA0 8000 0xFFA0 0000

The ADSP-BF534/BF536/BF537 Processor Boot Modes table summarizes boot modes for the ADSP-BF534/
BF536/BF537 processors, which in addition to all of theADSP-BF531/BF532/BF533 processor boot modes, also
boot from a TWI serial device, a TWI host, and a UART host.

Table 4-2: ADSP-BF534/BF536/BF537 Processor Boot Modes

Boot Source BMODE[2:0]

Executes from an external 16-bit memory connected to ASYNC bank 0; (no-boot mode or bypass on-
chip boot ROM); see ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor
No-Boot Mode

000

8- or 16-bit flash/PROM 001
Reserved 010
8-, 16-, or 24-bit addressable SPI memory in SPI master mode with support for Atmel AT45DB041B,
AT45DB081B, and AT45DB161B DataFlash devices

011

SPI host in SPI slave mode 100

ADSP-BF53x/BF561 Processor Booting

4–2 CCES 2.9.0 Loader and Utilities Manual

Table 4-2: ADSP-BF534/BF536/BF537 Processor Boot Modes (Continued)

Boot Source BMODE[2:0]

TWI serial device 101
TWI host 110
UART host 111

• Execute from 16-bit external memory - execution starts from address 0x2000 0000 with 16-bit packing.
The boot ROM is bypassed in this mode. All configuration settings are set for the slowest device possible (3-
cycle hold time; 15-cycle R/W access times; 4-cycle setup).

• Boot from 8-bit or 16-bit external flash memory - the 8-bit or 16-bit flash boot routine located in boot ROM
memory space is set up using asynchronous memory bank 0. All configuration settings are set for the slowest
device possible (3-cycle hold time; 15-cycle R/W access times; 4-cycle setup). The boot ROM evaluates the first
byte of the boot stream at address 0x2000 0000. If it is 0x40, 8-bit boot is performed. A 0x60 byte as-
sumes a 16-bit memory device and performs 8-bit DMA. A 0x20 byte also assumes 16-bit memory but per-
forms 16-bit DMA.

• Boot from serial SPI memory (EEPROM or flash) - 8-, 16-, or 24-bit addressable devices are supported as well
as AT45DB041, AT45DB081, AT45DB161, AT45DB321, AT45DB642, and AT45DB1282 DataFlash devi-
ces from Atmel. The SPI uses the PF10/SPI SSEL1 output pin to select a single SPI EEPROM/flash device,
submits a read command and successive address bytes (0x00) until a valid 8-, 16-, or 24-bit, or Atmel address-
able device is detected, and begins clocking data into the processor.

• Boot from SPI host device - the Blackfin processor operates in SPI slave mode and is configured to receive the
bytes of the .ldr file from an SPI host (master) agent. To hold off the host device from transmitting while the
boot ROM is busy, the Blackfin processor asserts a GPIO pin, called host wait (HWAIT), to signal the host
device not to send any more bytes until the flag is deasserted. The flag is chosen by the user and this informa-
tion is transferred to the Blackfin processor via bits 10:5 of the FLAG header.

• Boot from UART - using an autobaud handshake sequence, a boot-stream-formatted program is downloaded
by the host. The host agent selects a baud rate within the UART's clocking capabilities. When performing the
autobaud, the UART expects an "@" (boot stream) character (8 bits data, 1 start bit, 1 stop bit, no parity bit)
on the RXD pin to determine the bit rate. It then replies with an acknowledgment that is composed of 4 bytes:
0xBF, the value of UART_DLL, the value of UART_DLH, and 0x00. The host can then download the boot
stream. When the processor needs to hold off the host, it deasserts CTS. Therefore, the host must monitor this
signal.

• Boot from serial TWI memory (EEPROM/flash) - the Blackfin processor operates in master mode and selects
the TWI slave with the unique ID 0xA0. It submits successive read commands to the memory device starting
at two byte internal address 0x0000 and begins clocking data into the processor. The TWI memory device

should comply with Philips I2C Bus Specification version 2.1 and have the capability to auto-increment its in-
ternal address counter such that the contents of the memory device can be read sequentially.

ADSP-BF53x/BF561 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 4–3

• Boot from TWI host - the TWI host agent selects the slave with the unique ID 0x5F. The processor replies
with an acknowledgment, and the host can then download the boot stream. The TWI host agent should com-

ply with Philips I2C Bus Specification version 2.1. An I2C multiplexer can be used to select one processor at a
time when booting multiple processors from a single TWI.

To augment the boot modes, a secondary software loader can be added to provide additional booting mechanisms.
The secondary loader could provide the capability to boot from flash, variable baud rate, and other sources.

The following loader topics also are discussed in this chapter.

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Memory Ranges

NOTE: Refer to the processor’s data sheet and hardware reference manual for more information on system config-
uration, peripherals, registers, and operating modes:

• Blackfin processor data sheets can be found at

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/
index.html.

• Blackfin processor manuals can be found at

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/
index.html or downloaded into the CCES IDE via Help > Install New Software.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor On-Chip Boot ROM

The on-chip boot ROM for the ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539 processors
does the following.

1. Sets up supervisor mode by exiting the RESET interrupt service routine and jumping into the lowest priority
interrupt (IVG15).

Note that the on-chip boot ROM of the ADSP-BF534/BF536 and ADSP-BF537 processors executes at the
Reset priority level, does not degrade to the lowest priority interrupt.

2. Checks whether the RESET was a software reset and, if so, whether to skip the entire sequence and jump to the
start of L1 memory (0xFFA0 0000 for the ADSP-BF533/BF534/BF536/BF537/BF538 and ADSP-BF539
processors; 0xFFA0 8000 for the ADSP-BF531/BF532 processors) for execution. The on-chip boot ROM
does this by checking the NOBOOT bit (bit 4) of the system reset configuration register (SYSCR). If bit 4 is not
set, the on-chip boot ROM performs the full boot sequence. If bit 4 is set, the on-chip boot ROM bypasses the
full boot sequence and jumps to the start of L1 memory.

3. The NOBOOT bit, if bit 4 of the SYSCR register is not set, performs the full boot sequence; see the ADSP-
BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processors: Booting Sequence figure).

The boot ROM has the capability to parse address and count information for each bootable block.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting

4–4 CCES 2.9.0 Loader and Utilities Manual

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html

The loader utility converts the application code (.dxe) into the loadable file by parsing the code and creating a file
that consists of different blocks. Each block is encapsulated within a 10-byte header, which is illustrated in the boot-
ing sequence figure and detailed in the following section. The headers, in turn, are read and parsed by the on-chip
boot ROM during booting.

ADSP-BF531/32/33/34/36/37/39/39 Processor

10-Byte Header for Block 1

App.
Code/
Data

Block 1

PROM/Flash or SPI Device

L1 Memory
Block 1

SDRAM

Block 2

0xEF00 0000

Block 3
10-Byte Header for Block 2

Block 2

10-Byte Header for Block 3

Block 3

Block n

........

10-Byte Header for Block n

........

On-Chip
Boot ROM

Figure 4-1: ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processors: Booting Sequence

The 10-byte header provides all information the on-chip boot ROM requires-where to boot the block to, how many
bytes to boot in, and what to do with the block.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams

The following sections describe the boot stream, header, and flag framework for the ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538, and ADSP-BF539 processors.

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Block Headers and Flags

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Initialization Blocks

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Block Headers and Flags

As the loader utility converts the code from an input .dxe file into blocks comprising the output loader file, each
block receives a 10-byte header (see the ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Pro-
cessors: Boot Stream Structure figure), followed by a block body (if a non-zero block) or no-block body (if a zero
block). A description of the header structure can be found in the ADSP-BF531/BF532/BF533 Block Header Struc-
ture table.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 4–5

4-BYTE ADDRESS

4-BYTE COUNT

2-BYTE FLAG

10-BYTE HEADER

SEE FLAG INFORMATION

.DXE 1 BYTE COUNT

HEADER OF .DXE 1

BLOCK 1 HEADER

BLOCK 2 HEADER

BLOCK 2 BODY

......

......

......

......

.DXE 2 BYTE COUNT

BLOCK 1 BODYBOOT STREAM
OF THE

1st EXECUTABLE
(.DXE 1)

HEADER OF .DXE 2

BOOT STREAM
OF THE

2nd EXECUTABLE
 (.DXE 2)

Figure 4-2: ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processors: Boot Stream Structure

Table 4-3: ADSP-BF531/BF532/BF533 Block Header Structure

Bit Field Description

Address 4-byte address at which the block resides in memory

Count 4-byte number of bytes to boot

Flag 2-byte flag containing information about the block; the following text describes the flag structure

Refer to the Flag Bit Assignments for 2-Byte Block Flag Word figure and Flag Structure table for the flag's bit de-
scriptions.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams

4–6 CCES 2.9.0 Loader and Utilities Manual

Zero-Fill:

 1 = Zero-Fill Block

 0 = No Zero-Fill Block

Processor Type:

 1 = ADSP-BF533/534/536/537/538/539

 0 = ADSP-BF531/BF532

Initialization Block:

 1 = Init Block, 0 = No Init Block

Ignore Block:

 1 = Ignore Block

 0 = Do Not Ignore Block

Last Block:

 1 = Last Block

 0 = Not Last Block

Compressed Block:

 1 = Compress ed Block

 0 = Not Compressed Block

Port Number:

 00 = Disabled, 01 =Port F

 10 = Port G, 11 = Port H

Programmable Flag:

 0 = Default, Selectable from 0–15

Bits 14, 12–11, 2 are reserved for future use

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 4-3: Flag Bit Assignments for 2-Byte Block Flag Word

Table 4-4: Flag Structure

Bit Field Description

Zero-fill block Indicates that the block is for a buffer filled with zeros. The body of a zero block is not included
within the loader file. When the loader utility parses through the .dxe file and encounters a
large buffer with zeros, it creates a zero-fill block to reduce the .ldr file size and boot time. If
this bit is set, there is no block body in the block.

Processor type Indicates the processor, either the ADSP-BF531/BF532/BF538 or the ADSP-BF533/BF534/
BF536/BF537/BF539. Once booting is complete, the on-chip boot ROM jumps to 0xFFA0
0000 on the ADSP-BF533/BF536/BF537/BF538/BF539 processor and to 0xFFA0 8000
on the ADSP-BF531/BF532/ processors.

Initialization block Indicates that the block is to be executed before booting. The initialization block indicator al-
lows the on-chip boot ROM to execute a number of instructions before booting the actual ap-
plication code. When the on-chip boot ROM detects an init block, it boots the block into inter-
nal memory and makes a CALL to it (initialization code must have an RTS at the end).

This option allows the user to run initialization code (such as SDRAM initialization) before the
full boot sequence proceeds.

The figures in ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Initialization
Blocks illustrate the process. Initialization code can be included within the .ldr file by using
the -init switch (see -init filename.dxe).

Ignore block Indicates that the block is not to be booted into memory; skips the block and moves on to the
next one. Currently is not implemented for application code.

NOTE: This flag is equivalent to the FIRST flag in boot streams on the ADSP-BF51x/
BF52x/BF54x processors. Because the IGNORE flag is used for other purposes on
the ADSP-BF51x/BF52x/BF54x processors, the FIRST flag is invented to indicate
the first header.

Compressed block Indicates that the block contains compressed data. The compressed block can include a number
of blocks compressed together to form a single compressed block.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams

CCES 2.9.0 Loader and Utilities Manual 4–7

Table 4-4: Flag Structure (Continued)

Bit Field Description

Last block Indicates that the block is the last block to be booted into memory. After the last block, the
processor jumps to the start of L1 memory for application code execution. When it jumps to L1
memory for code execution, the processor is still in supervisor mode and in the lowest priority
interrupt (IVG15).

Note that the ADSP-BF534/BF536/BF537 processor can have a special last block if the boot mode is two-wire in-
terface (TWI). The loader utility saves all the data from 0xFF90 3F00 to 0xFF90 3FFF and makes the last
block with the data. The loader utility, however, creates a regular last block if no data is in that memory range. The
space of 0xFF90 3F00 to 0xFF90 3FFF is saved for the boot ROM to use as a data buffer during a boot
process.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Initialization Blocks

The -init filename switch directs the loader utility to produce the initialization blocks from the initialization
section's code in the named file. The initialization blocks are placed at the top of a loader file. They are executed
before the rest of the code in the loader file booted into the memory (see the ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/ BF539 Processors: Initialization Block Execution figure).

INIT BLOCK HEADER

APP.
CODE/
DATA

INIT BLOCKS

L1 BLOCK HEADER

L1 BLOCK

SDRAM BLOCK HEADER

BLOCK N

........

BLOCK N 10-BYTE HEADER

SDRAM BLOCK

ADSP-BF531/32/33/34/36/37/39/39 Processor
PROM/FLASH OR SPI
 DEVICE

L1 Memory
Init Blocks

SDRAM

0xEF00 0000

On-Chip
Boot ROM

Figure 4-4: ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processors: Initialization Block Execution

Following execution of the initialization blocks, the boot process continues with the rest of data blocks until it en-
counters a final block (see the ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processors: Boot-
ing Application Code figure). The initialization code example follows in Initialization Block Code Example.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams

4–8 CCES 2.9.0 Loader and Utilities Manual

A

L1 Me mor y
Init Block

SDRAM

0x EF00 0 000

On-Ch p
BootROM

i

L1 Block

SDRAM Block

INIT BLOCK HEADER

APP.
CODE/
DATA

INIT BLOCKS

L1 BLOCK HEADER

L1 BLOCK

SDRAM BLOCK HEADER

BLOCK N

........

BLOCK N 10-BYTE HEADER

SDRAM BLOCK

PROM/FLASH OR SPI
 DEVICE

ADSP-BF531/32/33/34/36/37/39/39 Processor

Figure 4-5: ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processors: Booting Application Code

Initialization Block Code Example
/* This file contains 3 sections: */
/* 1) A Pre-Init Section-this section saves off all the
 processor registers onto the stack.
 2) An Init Code Section-this section is the initialization
 code which can be modified by the customer
 As an example, an SDRAM initialization code is supplied.
 The example setups the SDRAM controller as required by
 certain SDRAM types. Different SDRAMs may require
 different initialization procedure or values.
 3) A Post-Init Section-this section restores all the register
 from the stack. Customers should not modify the Pre-Init
 and Post-Init Sections. The Init Code Section can be
 modified for a particular application.*/

#include <defBF532.h>
.SECTION program;
/**********************Pre-Init Section************************/
[--SP] = ASTAT; /* Stack Pointer (SP) is set to the end of */
[--SP] = RETS; /* scratchpad memory (0xFFB00FFC) */
[--SP] = (r7:0); /* by the on-chip boot ROM */
[--SP] = (p5:0);
[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;
[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;
[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;
[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams

CCES 2.9.0 Loader and Utilities Manual 4–9

/*******************Init Code Section**************************/
/*******Please insert Initialization code in this section******/
/***********************SDRAM Setup****************************/
Setup_SDRAM:
 P0.L = LO(EBIU_SDRRC);
 /* SDRAM Refresh Rate Control Register */
 P0.H = HI(EBIU_SDRRC);
 R0 = 0x074A(Z);
 W[P0] = R0;
 SSYNC;

 P0.L = LO(EBIU_SDBCTL);
 /* SDRAM Memory Bank Control Register */
 P0.H = HI(EBIU_SDBCTL);
 R0 = 0x0001(Z);
 W[P0] = R0;
 SSYNC;

 P0.L = LO(EBIU_SDGCTL);
 /* SDRAM Memory Global Control Register */
 P0.H = HI(EBIU_SDGCTL);
 R0.L = 0x998D;
 R0.H = 0x0091;
 [P0] = R0;
 SSYNC;
/*********************Post-Init Section************************/
L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];
M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];
B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];
I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];
(p5:0) = [SP++];
(r7:0) = [SP++];
RETS = [SP++];
ASTAT = [SP++];
/**/
RTS;

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor No-Boot Mode

The hardware settings of BMODE = 00 for the ADSP-BF531, ADSP-BF532, and ADSP-BF533 processors select
the no-boot option. In this mode of operation, the on-chip boot kernel is bypassed after reset, and the processor
starts fetching and executing instructions from address 0x2000 0000 in the asynchronous memory bank 0. The
processor assumes 16-bit memory with valid instructions at that location.

To create a proper .ldr file that can be burned into either a parallel flash or EPROM device, you must modify the
standard LDF file in order for the reset vector to be located accordingly. The Section Assignment (LDF File) Exam-
ple and ROM Segment Definitions (LDF File) Example code fragments illustrate the required modifications in case
of an ADSP-BF533 processor.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting

4–10 CCES 2.9.0 Loader and Utilities Manual

Section Assignment (LDF File) Example
MEMORY
{
 /* Off-chip Instruction ROM in Async Bank 0 */
 MEM_PROGRAM_ROM { TYPE(ROM) START(0x20000000) END(0x2009FFFF) WIDTH(8) }
 /* Off-chip constant data in Async Bank 0 */
 MEM_DATA_ROM { TYPE(ROM) START(0x200A0000) END(0x200FFFFF) WIDTH(8) }
 /* On-chip SRAM data, is not booted automatically */
 MEM_DATA_RAM { TYPE(RAM) START(0xFF903000) END(0xFF907FFF) WIDTH(8) }

ROM Segment Definitions (LDF File) Example
PROCESSOR p0
{
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS
 {
 program_rom
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(rom_code))
 } >MEM_PROGRAM_ROM
 data_rom
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(rom_data))
 } >MEM_DATA_ROM
 data_sram
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(ram_data))
 } >MEM_DATA_RAM

With the LDF file modified this way, the source files can now take advantage of the newly-introduced sections, as in
Section Handling (Source File) Example.

Section Handling (Source File) Example
.SECTION rom_code;
_reset_vector: l0 = 0;
 1 = 0;
 l2 = 0;
 l3 = 0;
 /* continue with setup and application code */
 /* . . . */
.SECTION rom_data;
.VAR myconst x = 0xdeadbeef;
 /* . . . */
.SECTION ram_data;
.VAR myvar y; /* note that y cannot be initialized automatically */

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 4–11

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Memory Ranges

The on-chip boot ROM on the ADSP-BF531/BF532/BF533/BF534/BF536/ BF537/BF538/BF539 Blackfin pro-
cessors allows booting to the following memory ranges.

• L1 memory

• ADSP-BF531 processor:

Data bank A SRAM (0xFF80 4000-0xFF80 7FFF)

Instruction SRAM (0xFFA0 8000-0xFFA0 BFFF)

• ADSP-BF532 processor:

Data bank A SRAM (0xFF80 4000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 4000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 8000-0xFFA1 3FFF)

• ADSP-BF533 processor:

Data bank A SRAM (0xFF80 0000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• ADSP-BF534 processor:

Data bank A SRAM (0xFF80 0000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 0000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• ADSP-BF536 processor:

Data bank A SRAM (0xFF80 4000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 4000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• ADSP-BF537 processor:

Data bank A SRAM (0xFF80 0000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 0000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• ADSP-BF538 processor:

Data bank A SRAM (0xFF80 4000-0xFF80 7FFF)

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting

4–12 CCES 2.9.0 Loader and Utilities Manual

Data bank B SRAM (0xFF90 4000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 8000-0xFFA1 3FFF)

• ADSP-BF539 processor:

Data bank A SRAM (0xFF80 0000-0xFF80 3FFF)

Data bank B SRAM (0xFF90 2000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• SDRAM memory:

• Bank 0 (0x0000 0000-0x07FF FFFF)

NOTE: Booting to scratchpad memory (0xFFB0 0000) is not supported.

NOTE: SDRAM must be initialized by user code before any instructions or data are loaded into it.

ADSP-BF561 Processor Booting

The booting sequence for the ADSP-BF561 dual-core processors is similar to the ADSP-BF531/BF532/BF533 pro-
cessor boot sequence described in ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor
On-Chip Boot ROM. Differences occur because the ADSP-BF561 processor has two cores: core A and core B. After
reset, core B remains idle, but core A executes the on-chip boot ROM located at address 0xEF00 0000.

The ADSP-BF561 ROM details can be found in ADSP-BF561 Processor On-Chip Boot ROM.

The ADSP-BF561 Processor Boot Mode Selections table summarizes the boot modes and execution start addresses
for the ADSP-BF561 processors.

Table 4-5: ADSP-BF561 Processor Boot Mode Selections

Boot Source BMODE[1:0]

16-bit external memory (bypass boot ROM) 00

8- or 16-bit flash 01

SPI host 10

SPI serial EEPROM (16-bit address range) 11

• Execute from 16-bit external memory - execution starts from address 0x2000 0000 with 16-bit packing.
The boot ROM is bypassed in this mode. All configuration settings are set for the slowest device possible (3-
cycle hold time, 15-cycle R/W access times, 4-cycle setup).

• Boot from 8-bit/16-bit external flash memory - the 8-bit/16-bit flash boot routine located in boot ROM mem-
ory space is set up using asynchronous memory bank 0. All configuration settings are set for the slowest device
possible (3-cycle hold time; 15-cycle R/W access times; 4-cycle setup).

ADSP-BF53x/BF561 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 4–13

• Boot from SPI host - the ADSP-BF561 processor is configured as an SPI slave device and a host is used to boot
the processor. The host drives the SPI clock and is therefore responsible for the timing. The baud rate should
be equal to or less than one fourth of the ADSP-BF561 system clock (SCLK).

• Boot from SPI serial EEPROM (16-bit addressable) - the SPI uses the PF2 output pin to select a single SPI
EPROM device, submits a read command at address 0x0000, and begins clocking data into the beginning of
L1 instruction memory. A 16-bit/24-bit addressable SPI-compatible EPROM must be used.

The following loader topics also are discussed in this chapter.

• ADSP-BF561 Processor Boot Streams

• ADSP-BF561 Processor Initialization Blocks

• ADSP-BF561 Dual-Core Application Management

• ADSP-BF561 Processor Memory Ranges

NOTE: Refer to the ADSP-BF561 Embedded Symmetric Multiprocessor data sheet and the ADSP-BF561 Blackfin
Processor Hardware Reference manual for information about the processor’s operating modes and states, in-
cluding background information on system reset and booting.

ADSP-BF561 Processor On-Chip Boot ROM

The boot ROM loads an application program from an external memory device and starts executing that program by
jumping to the start of core A's L1 instruction SRAM, at address 0xFFA0 0000.

Similar to the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561 boot ROM uses the interrupt vectors to
stay in supervisor mode.

The boot ROM code transitions from the RESET interrupt service routine into the lowest priority user interrupt
service routine (Int 15) and remains in the interrupt service routine. The boot ROM then checks whether it has
been invoked by a software reset by examining bit 4 of the system reset configuration register (SYSCR).

If bit 4 is not set, the boot ROM presumes that a hard reset has occurred and performs the full boot sequence. If bit
4 is set, the boot ROM understands that the user code has invoked a software reset and restarts the user program by
jumping to the beginning of core A's L1 memory (0xFFA0 0000), bypassing the entire boot sequence.

When developing an ADSP-BF561 processor application, you start with compiling and linking your application
code into an executable (.dxe) file. The debugger loads the .dxe file into the processor's memory and executes it.
With two cores, two .dxe files can be loaded at once. In the real-time environment, there is no debugger which
allows the boot ROM to load the executables into memory.

ADSP-BF561 Processor Boot Streams

The loader utility converts the .dxe file into a boot stream (.ldr) file by parsing the executable and creating
blocks. Each block is encapsulated within a 10-byte header. The .ldr file is burned into the external memory de-
vice (flash memory, PROM, or EEPROM). The boot ROM reads the external memory device, parsing the headers
and copying the blocks to the addresses where they reside during program execution. After all the blocks are loaded,
the boot ROM jumps to address 0xFFA0 0000 to execute the core A program.

ADSP-BF561 Processor Booting

4–14 CCES 2.9.0 Loader and Utilities Manual

NOTE: When code is run on both cores, the core A program is responsible for releasing core B from the idle state
by clearing bit 5 in core A’s system configuration register. Then core B begins execution at address
0xFF60 0000.

Multiple .dxe files are often combined into a single boot stream (see ADSP-BF561 Dual-Core Application Man-
agement and ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management).

Unlike the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561 boot stream begins with a 4-byte global head-
er, which contains information about the external memory device. A bit-by-bit description of the global header is
presented in the ADSP-BF561 Global Header Structure table. The global header also contains a signature in the
upper 4 bits that prevents the boot ROM from reading in a boot stream from a blank device.

Table 4-6: ADSP-BF561 Global Header Structure

Bit Field Description

0 1 = 16-bit flash, 0 = 8-bit flash; default is 0
1-4 Number of wait states; default is 15
5 Unused bit

6-7 Number of hold time cycles for flash; default is 3

8-10 Baud rate for SPI boot: 00 = 500k, 01 = 1M, 10 = 2M

11-27 Reserved for future use

28-31 Signature that indicates valid boot stream

Following the global header is a .dxe count block, which contains a 32-bit byte count for the first .dxe file in the
boot stream. Though this block contains only a byte count, it is encapsulated by a 10-byte block header, just like the
other blocks.

The 10-byte header instructs the boot ROM where, in memory, to place each block, how many bytes to copy, and
whether the block needs any special processing. The block header structure is the same as that of the ADSP-BF531/
BF532/BF533 processors (described in ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Block
Headers and Flags). Each header contains a 4-byte start address for the data block, a 4-byte count for the data block,
and a 2-byte flag word, indicating whether the data block is a "zero-fill" block or a "final block" (the last block in
the boot stream).

For the .dxe count block, the address field is irrelevant since the block is not going to be copied to memory. The
"ignore bit" is set in the flag word of this header, so the boot loader utility does not try to load the .dxe count but
skips the count. For more details, see ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Block
Headers and Flags.

Following the .dxe count block are the rest of the blocks of the first .dxe.

A bit-by-bit description of the boot steam is presented in the ADSP-BF561 Processor Boot Stream Structure table.
When learning about the ADSP-BF561 boot stream structure, keep in mind that the count byte for each .dxe is,
itself, a block encapsulated by a block header.

ADSP-BF561 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 4–15

Table 4-7: ADSP-BF561 Processor Boot Stream Struc-
ture

Bit Field Description

0-7 LSB of the global header 32-Bit Global Header

8-15 8-15 of the global header

16-23 16-23 of the global header

24-31 MSB of the global header

32-39 LSB of the address field of 1st .dxe count block (no
care)

10-Byte .dxe1 Header

40-47 8-15 of the address field of 1st .dxe count block (no
care)

48-55 16-23 of the address field of 1st .dxe count block
(no care)

56-63 MSB of the address field of 1st .dxe count block (no
care)

64-71 LSB (4) of the byte count field of 1st .dxe count
block

72-79 8-15 (0) of the byte count field of 1st .dxe count
block

80-87 16-23 (0) of the byte count field of 1st .dxe count
block

88-95 MSB (0) of the byte count field of 1st .dxe count
block

96-103 LSB of the flag word of 1st .dxe count block - ig-
nore bit set

104-111 MSB of the flag word of 1st .dxe count block

112-119 LSB of the first 1st .dxe byte count 32-Bit Block Byte Count

120-127 8-15 of the first 1st .dxe byte count

128-135 16-23 of the first 1st .dxe byte count

136-143 24-31 of the first 1st .dxe byte count

1-0-Byte Block Header 144-151 LSB of the address field of the 1st data block in
1st .dxe

.dxe1 Block Data

152-159 8-15 of the address field of the 1st data block in
1st .dxe

160-167 16-23 of the address field of the 1st data block in
1st .dxe

168-175 MSB of the address field of the 1st data block in
1st .dxe

ADSP-BF561 Processor Booting

4–16 CCES 2.9.0 Loader and Utilities Manual

Table 4-7: ADSP-BF561 Processor Boot Stream Struc-
ture (Continued)

Bit Field Description

176-183 LSB of the byte count of the 1st data block in
1st .dxe

184-191 8-15 of the byte count of the 1st data block in
1st .dxe

192-199 16-23 of the byte count of the 1st data block in
1st .dxe

200-207 MSB of the byte count of the 1st data block in
1st .dxe

208-215 LSB of the flag word of the 1st block in 1st .dxe
216-223 MSB of the flag word of the 1st block in 1st .dxe

Block Data 224-231 Byte 3 of the 1st block of 1st .dxe
232-239 Byte 2 of the 1st block of 1st .dxe
240-247 Byte 1 of the 1st block of 1st .dxe
248-255 Byte 0 of the 1st block of 1st .dxe
256-263 Byte 7 of the 1st block of 1st .dxe
... And so on ...

10-Byte Block Header ... LSB of the address field of the nth data block in
1st .dxe

... 8-15 of the address field of the nth data block in
1st .dxe

... 16-23 of the address field of the nth data block in
1st .dxe

... MSB of the address field of the nth data block in
1st .dxe

... LSB of the byte count of the nth data block in
1st .dxe

... 8-15 of the byte count of the nth data block in
1st .dxe

... 16-23 of the byte count of the nth data block in
1st .dxe

... MSB of the byte count of the nth data block in
1st .dxe

... LSB of the flag word of the nth block in 1st .dxe

... MSB of the flag word of the nth block in 1st .dxe

ADSP-BF561 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 4–17

Table 4-7: ADSP-BF561 Processor Boot Stream Struc-
ture (Continued)

Bit Field Description

Block data ... And so on ...

... Byte 1 of the nth block of 1st .dxe

... Byte 0 of the nth block of 1st .dxe
... LSB of the address field of 2nd .dxe count block

(no care)
10-Byte .dxe2 Header

... 8-15 of the address field of 2nd .dxe count block
(no care)

... And so on ...

ADSP-BF561 Processor Initialization Blocks

The initialization block or a second-stage loader utility must be used to initialize the SDRAM memory of the
ADSP-BF561 processor before any instructions or data are loaded into it.

The initialization blocks are identified by a bit in the flag word of the 10-byte block header. When the boot ROM
encounters the initialization blocks in the boot stream, it loads the blocks and executes them immediately. The initi-
alization blocks must save and restore registers and return to the boot ROM, so the boot ROM can load the rest of
the blocks. For more details, see ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Block Headers
and Flags.

Both the initialization block and second-stage loader utility can be used to force the boot ROM to load a specif-
ic .dxe file from the external memory device if the boot ROM stores multiple executable files. The initialization
block can manipulate the R0 or R3 register, which the boot ROM uses as the external memory pointers for flash/
PROM or SPI memory boot, respectively.

After the processor returns from the execution of the initialization blocks, the boot ROM continues to load blocks
from the location specified in the R0 or R3 register, which can be any .dxe file in the boot stream. This option
requires the starting locations of specific executables within external memory. The R0 or R3 register must point to
the 10-byte count header, as illustrated in ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Man-
agement.

ADSP-BF561 Dual-Core Application Management

A typical ADSP-BF561 dual-core application is separated into two executable files: one executable file for each core.
The default linker description (.ldf) file for the ADSP-BF561 processor creates two separate executable files
(p0.dxe and p1.dxe) and some shared memory files (sml2.sm and sml3.sm). By modifying the LDF, it is
possible to create a dual-core application that combines both cores into a single .dxe file. This is not recommended
unless the application is a simple assembly language program which does not link any C run-time libraries. When
using shared memory and/or C run-time routines on both cores, it is best to generate a separate .dxe file for each
core. The loader utility combines the contents of the shared memory files (sml2.sm, sml3.sm) only into the
boot stream generated from the .dxe file for core A (p0.dxe).

ADSP-BF561 Processor Booting

4–18 CCES 2.9.0 Loader and Utilities Manual

By default, the boot ROM loads only one single executable before the ROM jumps to the start of core A instruction
SRAM (0xFFA0 0000). When two .dxe files are loaded, a second-stage loader is used. (Or, when the -
noSecondStageKernel switch is called, the loader utility combines the two .dxe files into one.) If the he
second-stage boot loader is used, it must start at 0xFFA0 0000. The boot ROM loads and executes the second-
stage loader. A default second-stage loader is provided for each boot mode and can be customized by the user.

Unlike the initialization blocks, the second-stage loader takes full control over the boot process and never returns to
the boot ROM.

The second-stage loader can use the .dxe byte count blocks to find specific .dxe files in external memory if a
loader file includes the codes and data from a number of .dxe files.

ATTENTION: The default second-stage loader uses the last 1024 bytes of L2 memory. The area must be reserved
during booting but can be reallocated at runtime.

ADSP-BF561 Processor Memory Ranges

The on-chip boot ROM of the ADSP-BF561 processor can load a full application to the various memories of both
cores. Booting is allowed to the following memory ranges. The boot ROM clears these memory ranges before boot-
ing in a new application.

• Core A

• L1 instruction SRAM (0xFFA0 0000 - 0xFFA0 3FFF)

• L1 instruction cache/SRAM (0xFFA1 0000 - 0xFFA1 3FFF)

• L1 data bank A SRAM (0xFF80 0000 - 0xFF80 3FFF)

• L1 data bank A cache/SRAM (0xFF80 4000 - 0xFF80 7FFF)

• L1 data bank B SRAM (0xFF90 0000 - 0xFF90 3FFF)

• L1 data bank B cache/SRAM (0xFF90 4000 - 0xFF90 7FFF)

• Core B

• L1 instruction SRAM (0xFF60 0000 - 0xFF6 03FFF)

• L1 instruction cache/SRAM (0xFF61 0000 - 0xFF61 3FFF)

• L1 data bank A SRAM (0xFF40 0000 - 0xFF40 3FFF)

• L1 data bank A cache/SRAM (0xFF40 4000 - 0xFF40 7FFF)

• L1 data bank B SRAM (0xFF50 0000 - 0xFF50 3FFF)

• L1 data bank B cache/SRAM (0xFF50 4000 - 0xFF50 7FFF)

• 128K of shared L2 memory (FEB0 0000 - FEB1 FFFF)

• Four banks of configurable synchronous DRAM (0x0000 0000 - (up to) 0x1FFF FFFF)

ADSP-BF561 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 4–19

ATTENTION: The boot ROM does not support booting to core A scratch memory (0xFFB0 0000 - 0xFFB0
0FFF) and to core B scratch memory (0xFF70 0000-0xFF70 0FFF). Data that needs to be
initialized prior to runtime should not be placed in scratch memory.

ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management

This section describes how to generate and boot more than one .dxe file for the ADSP-BF531/BF532/BF533/
BF534/BF536/BF537/ BF538/BF539 and ADSP-BF561 processors. For further information about the ADSP-
BF561 processors, refer to ADSP-BF561 Dual-Core Application Management.

The ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539 and ADSP-BF561 loader file structure
and the silicon revision of 0.1 and higher allow generation and booting of multiple .dxe files into a single process-
or from external memory. As illustrated in the ADSP-BF531/BF32/BF33/BF534/ BF536/BF537/BF538/ BF539/
BF561 Processors: Multi-Application Booting Streams figure, each executable file is preceded by a 4-byte count
header, which is the number of bytes within the executable, including headers. This information can be used to boot
a specific .dxe file into the processor. The 4-byte .dxe count block is encapsulated within a 10-byte header to be
compatible with the silicon revision 0.0. For more information, see ADSP-BF531/BF532/BF533/BF534/BF536/
BF537/BF538/BF539 Block Headers and Flags.

ADSP-BF53x/BF561 Processor Booting

4–20 CCES 2.9.0 Loader and Utilities Manual

BLOCK 1

BLOCK 2 10-BYTE HEADER

BLOCK 3 10-BYTE HEADER

BLOCK 2

BLOCK 1 10-BYTE HEADER10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE1

.DXE 1 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 2

.DXE 2 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 3

.DXE 3 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 4

.......................

.......................

.DXE 1

.DXE 2

.DXE 3

.DXE 4

BLOCK 3

..............

Figure 4-6: ADSP-BF531/BF32/BF33/BF534/ BF536/BF537/BF538/ BF539/BF561 Processors: Multi-Application Booting Streams

Booting multiple executables can be accomplished by one of the following methods.

• Use the second-stage loader switch, -l userkernel.dxe. The option allows you to use your own second-
stage loader.

After the second-stage loader is booted into internal memory via the on-chip boot ROM, the loader has full
control over the boot process. Now the second-stage loader can use the .dxe byte counts to boot in one or
more .dxe files from external memory.

• Use the initialization block switch, -init filename.dxe, where filename.dxe is the name of the execut-
able file containing the initialization code. This option allows you to change the external memory pointer and
boot a specific .dxe file via the on-chip boot ROM. On the ADSP-BF531 and ADSP-BF561 processors, the
initialization code is an assembly written subroutine.

A sample initialization code is included in Listing 3-5. The R0 and R3 registers are used as external memory point-
ers by the on-chip boot ROM. The R0 register is for flash/PROM boot, and R3 is for SPI memory boot. Within
the initialization block code, change the value of R0 or R3 to point to the external memory location at which the

ADSP-BF53x/BF561 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 4–21

specific application code starts. After the processor returns from the initialization block code to the on-chip boot
ROM, the on-chip boot ROM continues to boot in bytes from the location specified in the R0 or R3 register.

Initialization Block Code Example for Multiple .dxe Boot
#include <defBF532.h>

.SECTION program;
/*******Pre-Init Section***************************************/
 [--SP] = ASTAT;
 [--SP] = RETS;
 [--SP] = (r7:0);
 [--SP] = (p5:0);
 [--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;
 [--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;
 [--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;
 [--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;
/**/
/*******Init Code Section**************************************
R0.H = High Address of DXE Location (R0 for flash/PROM boot, R3 for SPI boot)
R0.L = Low Address of DXE Location. (R0 for flash/PROM boot, R3 for SPI boot)
***/
/*******Post-Init Section**************************************/
L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];
 M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];
 B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];
 I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];
 (p5:0) = [SP++];
 /* MAKE SURE NOT TO RESTORE R0 for flash/PROM Boot, R3 for SPI Boot */
 (r7:0) = [SP++];
RETS = [SP++];
ASTAT = [SP++];
/**/
 RTS;

ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support

The loader utility for the ADSP-BF531/BF532/BF533/BF534/BF536/BF537 processors offers a loader file (boot
stream) compression mechanism known as zLib. The zLib compression is supported by a third party dynamic link
library, zLib1.dll. Additional information about the library can be obtained from the http://www.zlib.net web-
site.

The zLib1.dll dynamic link library is included with CrossCore Embedded Studio. The library functions per-
form the boot stream compression and decompression procedures when the appropriate options are selected for the
loader utility. The initialization executable files with built-in decompression mechanism must perform the decom-
pression on a compressed boot stream in a boot process. The default initialization executable files with decompres-
sion functions are included in CrossCore Embedded Studio.

ADSP-BF53x/BF561 Processor Booting

4–22 CCES 2.9.0 Loader and Utilities Manual

http://www.zlib.net

The loader -compression switch directs the loader utility to perform the boot stream compression from the
command line. The IDE also includes a dedicated loader properties page to manage the compression. Refer to the
online help for details.

The loader utility takes two steps to compress a boot stream. First, the utility generates the boot stream in the con-
ventional way (builds data blocks), then applies the compression to the boot stream. The decompression initializa-
tion is the reversed process: the loader utility decompresses the compressed stream first, then loads code and data
into memory segments in the conventional way.

The loader utility compresses the boot stream on the .dxe -by-.dxe basis. For each input .dxe file, the utility
compresses the code and data together, including all code and data from any associated overlay (.ovl) and shared
memory (.sm) files.

Compressed Streams

The Loader File with Compressed Streams figure illustrates the basic structure of a loader file with compressed
streams.

INITIALIZATION CODE
(KERNEL WITH DECOMPRESSION ENGINE)

......

1st .dxe COMPRESSED STREAM

1st .dxe UNCOMPRESSED STREAM

2nd .dxe COMPRESSED STREAM

2nd .dxe UNCOMPRESSED STREAM

......

Figure 4-7: Loader File with Compressed Streams

The initialization code is on the top of the loader file. The initialization code is loaded into the processor first and is
executed first when a boot process starts. Once the initialization code is executed, the rest of the stream is brought
into the processor. The initialization code calls the decompression routine to perform the decompression operation
on the stream, and then loads the decompressed stream into the processor's memory in the same manner a conven-
tional boot kernel does when it encounters a compressed stream. Finally, the loader utility loads the uncompressed
boot stream in the conventional way.

The Compressed Block figure illustrates the structure of a compressed block.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support

CCES 2.9.0 Loader and Utilities Manual 4–23

COMPRESSED BLOCK HEADER

COMPRESSED STREAM

Figure 4-8: Compressed Block

Compressed Block Headers

A compressed stream always has a header, followed by the payload compressed stream. The Compressed Block Head-
er figure shows the structure of a compressed block header.

 16 BITS:
 PADDED BYTE COUNT
OF COMPRESSED STREAM

32 BITS:
TOTAL BYTE COUNT OF THE COMPRESSED STREAM

INCLUDING PADDED BYTES

16 BITS:
COMPRESSED BLOCK FLAG WORD

 16 BITS:
 SIZE OF USED COMPRESSION
 WINDOW

Figure 4-9: Compressed Block Header

The first 16 bits of the compressed block header hold the padded byte count of the compressed stream. The loader
utility always pads the byte count if the resulting compressed stream from the loader compression engine is an odd
number. The loader utility rounds up the byte count of the compressed stream to be a next higher even number.
This 16-bit value is either 0x0000 or 0x0001.

The second 16 bits of the compressed block header hold the size of the compression window, used by the loader
compression engine. The value range is 8-15 bits, with the default value of 9 bits. The compression window size
specifies to the compression engine a number of bytes taken from the window during the compression. The window
size is the 2's exponential value.

As mentioned before, the compression/decompression mechanism for Blackfin processors utilizes the open-source
lossless data-compression library zLib1. The zLib1 deflate algorithm, in turn, is a combination of a variation of
Huffman coding and LZ77 compression algorithms.

LZ77 compression works by finding sequences of data that are repeated within a sliding window. As expected, with
a larger sliding window, the compression algorithm is able to find more repeating sequences of data, resulting in
higher compression ratios. However, technical limitations of the zLib1 decompression algorithm dictate that the
window size of the decompressor must be the same as the window size of the compressor. For a more detailed tech-
nical explanation of the compression/decompression implementation on a Blackfin processor, refer to the
readme.txt file in the <install_path>/Blackfin/ldr/zlib/src directory.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support

4–24 CCES 2.9.0 Loader and Utilities Manual

NOTE: It is not recommended to use memory ranges used by the zlib kernel. The memory ranges used by the
kernel, such as heap and static data, are defined in the LDF file, for example in <install_- path>/
Blackfin/ldr/zlib/src/blkfin_zlib_init.ldf.

In the Blackfin implementation, the decompressor is part of the decompression initialization files (see Decompres-
sion Initialization Files). These files are built with a default decompressor window size of 9 bits (512 bytes). Thus, if
you choose a non-default window size for the compressor from the Compression window size (-compressWS) drop-
down list on the loader's Compression properties page, then the decompressor must be re-built with the new window
size. Refer to the CCES online help for information about the Compression properties page. For details on re-build-
ing of the decompressor init project, refer to the readme.txt file located in the <install_path>/
Blackfin/ldr/zlib/src directory.

While it is true that a larger compression window size results in better compression ratios, note that there are coun-
ter factors that decrease the overall effective compression ratios with increasing window sizes for Blackfin's imple-
mentation of zlib. This is because of the limited memory resources on an embedded target, such as a Blackfin pro-
cessor. For more information, refer to the readme.txt file in the <install_path>/Blackfin/ldr/
zlib/src directory.

The last 16 bits of the compressed header is the flag word. The valid compression flag assignments are shown in the
Flag Word of Compressed Block Header figure.

0

03151

Compression Flag:
Bit 13: 0 = Not Compression Mode
 1 = Compression Block

1

Figure 4-10: Flag Word of Compressed Block Header

Uncompressed Streams

Following the compressed streams (illustrated in the Loader File with Compressed Streams figure in Compressed
Streams), the loader file includes the uncompressed streams. The uncompressed streams include application codes,
conflicted with the code in the initialization blocks in the processor's memory spaces, and a final block. The uncom-
pressed stream includes only a final block if there is no conflicted code. The final block can have a zero byte count.
The final block indicates the end of the application to the initialization code.

Booting Compressed Streams

The ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Compressed Stream: Booting Sequence figure shows the
booting sequence of a loader file with compressed streams. The loader file is prestored in the flash memory.

1. The boot ROM is pointing to the start of the flash memory. The boot ROM reads the initialization code head-
er and boots the initialization code.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support

CCES 2.9.0 Loader and Utilities Manual 4–25

2. The boot ROM jumps to and starts executing the initialization code.

3. (A) The initialization code scans the header for any compressed streams (see the compression flag structure in
the Flag Word of Compressed Block Header figure in Compressed Block Headers). The code decompresses the
streams to the decompression window (in parts) and runs the initialization kernel on the decompressed data.

(B) The initialization kernel boots the data into various memories just as the boot ROM kernel does.

4. The initialization code sets the boot ROM to boot the uncompressed blocks and the final block (FINAL flag is
set in the block header's flag word). The boot ROM boots the final payload, overwriting any areas used by the
initialization code. Because the final flag is set in the header, the boot ROM jumps to EVT1 (0xFFA0 0000
for the ADSP-BF533/BF534/BF536/BF537/BF538 and ADSP-BF539 processors; 0xFFA0 8000 for the
ADSP-BF531/BF532 processors) to start application code execution.

INIT CODE HEADER

 INIT CODE
PAYLOAD

(KERNEL AND
DECOMPRESSION

ENGINE)

COMPRESSED
HEADER

COMPRESSED
IMAGE PAYLOAD

FINAL SECTION
HEADER

FINAL PAYLOAD
(OVERWRITES LOCA-
TION FROM WHICH

INIT CODE EXE-
CUTES)

FLASH MEMORY

INITIALIZATION
KERNEL AND

 DECOMPRESSION
ENGINE

DECOMPRESSION
WINDOW

BOOT ROM BOOTS
FINAL PAYLOAD, OVER-
WRITING INITIALIATION

KERNEL AND
DECOMPRESSION WINDOW
IN L1, THEN JUMPS TO EVT1

L1 MEMORY

DECOMPRESSED
STREAM IN PARTS
BOOTS INTO VARI-

OUS MEMORIES
THROUGH INIT

1

2

3A

3B

4

BOOT ROM

Figure 4-11: ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Compressed Stream: Booting Sequence

Decompression Initialization Files

As stated before, a decompression initialization .dxe file must be used when building a loader file with compressed
streams. The file has a built-in decompression engine to decompress the compressed streams from the loader file.

The decompression initialization file can be specified from the loader properties page or from the loader command
line via the -init filename.dxe switch. CrossCore Embedded Studio includes the default decompression initi-
alization files, which the loader utility uses if no other initialization file is specified. The default decompression

ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support

4–26 CCES 2.9.0 Loader and Utilities Manual

initialization file is stored in the <install_path>/Blackfin/ldr/zlib directory. The default file is built
for the compression window size of 9 bits.

To use a different compression window size, build your own decompression initialization file. For details, refer to the
readme.txt file located in the <install_path>/Blackfin/ldr/zlib/src directory. The size can be
changed through the loader properties page or the -compressWS # command-line switch. The valid range for
the window size is [8-15] bits.

ADSP-BF53x/BF561 Processor Loader Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable files.
You select features, such as boot modes, boot kernels, and output file formats via the properties. The properties are
specified on the loader utility's command line or the Tool Settings dialog box in the IDE (CrossCore Blackfin Loader
pages). The default loader settings for a selected processor are preset in the IDE.

NOTE: The IDE’s Tool Settings correspond to switches displayed on the command line.

These sections describe how to produce a bootable or non-bootable loader file:

• Loader Command Line for ADSP-BF53x/BF561 Processors

• CCES Loader and Splitter Interface for ADSP-BF53x/BF561 Processors

Loader Command Line for ADSP-BF53x/BF561 Processors

The loader utility uses the following command-line syntax for the ADSP-BF53x/BF561 Blackfin processors.

For a single input file:

elfloader inputfile -proc processor [-switch]
For multiple input files:

elfloader inputfile1 inputfile2 -proc processor [-switch]

where:

• inputfile - Name of the executable (.dxe) file to be processed into a single boot-loadable or non-bootable
file. An input file name can include the drive and directory. For multiprocessor or multi-input systems, specify
multiple input .dxe files. Put the input file names in the order in which you want the loader utility to process
the files. Enclose long file names within straight quotes, "long file name".

• -proc processor - Part number of the processor (for example, -proc ADSP-BF531) for which the
loadable file is built. Provide a processor part number for every input .dxe if designing multiprocessor sys-
tems.

• -switch - One or more optional switches to process. Switches select operations and modes for the loader utili-
ty.

ADSP-BF53x/BF561 Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 4–27

NOTE: Command-line switches may be placed on the command line in any order, except the order of input files
for a multi-input system. For a multi-input system, the loader utility processes the input files in the order
presented on the command line.

Loader Command-Line Switches for ADSP-BF533/BF561 Processors

A summary of the loader command-line switches for the ADSP-BF53x/BF561 Blackfin processors appears in the
following table.

Table 4-8: ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

-b {prom|flash|spi|spislave|uart|
twi|fifo}

The -b switch specifies the boot mode and directs the loader utility to prepare a
boot-loadable file for the specified boot mode.

If -b does not appear on the command line, the default is -b flash.

Other valid boot modes include:

• SPI master (-b spi) for all processors described in this chapter.

• SPI slave (-b spislave) for the ADSP-BF531/2/3/4/6/7/9 and ADSP-
BF561 processors.

• UART (-b uart) for the ADSP-BF534/6/7 processors.

• TWI (-b twi) for the ADSP-BF534/6/7 processors.

• FIFO (-b fifo) for the ADSP-534/6/7 processors.

-compression The -compression switch directs the loader utility to compress the boot
stream; see ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Com-
pression Support. Either a default or user initialization .dxe file with decompres-
sion code must be provided for -compression.

This switch is for flash/PROM boot modes only and does not apply to the ADSP-
BF538, ADSP-BF539, or ADSP-BF561 processors.

-compressWS # The -compressWS # switch specifies a compression window size in bytes. The
number is a 2's exponential value to be used by the compression engine. The valid
values are [8,15] bits, with the default of 9 bits.

This switch is for flash/PROM boot modes only and does not apply to the ADSP-
BF538, ADSP-BF539, or ADSP-BF561 processors.

-dmawidth {8|16} The -dmawidth {8|16} switch specifies a DMA width (in bits) to the loader
utility.

For FIFO boot mode, 16 is the only DMA width. For other boot modes, all
DMA widths are valid with the default of 8.

The switch does not apply to the ADSP-BF561 processors.

Loader Command Line for ADSP-BF53x/BF561 Processors

4–28 CCES 2.9.0 Loader and Utilities Manual

Table 4-8: ADSP-BF53x/BF561 Loader Command-Line Switches (Continued)

Switch Description

-enc dll_filename The -enc dll_filename switch encrypts the data stream from the applica-
tion input .dxe files with the encryption algorithms in the dynamic library file
dll_filename. The dll_filename is required. Two functions with the fol-
lowing APIs are required in the encryption DLL:

For setting the encryption initial value:

int EncryptInit(unsigned int FixedData);
For getting encrypted data:

int EncryptBlock(unsigned int * buffer, unsigned int
BlkSize, char * message);
The loader calls the encryption routines as it is creating the ldr output file. The
loader sets reserved bit 2 in the block header to indicate the payload is encrypted.

-f {hex|ascii|binary|include} The -f {hex|ASCII|binary|include} switch specifies the format of a
boot-loadable file (Intel hex-32, ASCII, binary, include). If the -f switch does
not appear on the command line, the default boot mode format is hex for flash/
PROM and ASCII for SPI, SPI slave, UART, and TWI.

-ghc # The -ghc # switch specifies a 4-bit value (global header cookie) for bits 31-28
of the global header (see the ADSP-BF561 Global Header Structure figure in
ADSP-BF561 Processor Boot Streams).

NOTE: The switch applies to the ADSP-BF561 processors only.

-h or -help The -h[elp] switch invokes the command-line help, outputs a list of com-
mand-line switches to standard output, and exits. By default, the -h switch alone
provides help for the loader driver. To obtain a help screen for your target Blackfin
processor, add the -proc switch to the command line. For example, type
elfloader -proc ADSP-BF533 -h to obtain help for the ADSP-BF533
processor.

-init filename.dxe The -init filename.dxe switch directs the loader utility to include the ini-
tialization code from the named file. The loader utility places the code from the
initialization sections of the specified .dxe file in the boot stream. The kernel
loads the code and then calls it. It is the responsibility of the code to save/restore
state/registers and then perform an RTS back to the kernel.

Loader Command Line for ADSP-BF53x/BF561 Processors

CCES 2.9.0 Loader and Utilities Manual 4–29

Table 4-8: ADSP-BF53x/BF561 Loader Command-Line Switches (Continued)

Switch Description

-kb {prom|flash|spi|spislave|uart|
twi|fifo}

The -kb switch specifies the boot mode for the boot kernel output file if you
generate two output files from the loader utility: one for the boot kernel and an-
other for user application code.

The -kb switch must be used in conjunction with the -o2 switch.

If the -kb switch is absent from the command line, the loader utility generates
the file for the boot kernel in the same boot mode as used to output the user ap-
plication program.

Valid boot modes include:

• PROM/FLASH (-kb prom or -kb flash) - the default boot mode for
all processors described in this chapter.

• SPI master (-kb spi) for all processors described in this chapter.

• SPI slave (-kb spislave) for the ADSP-BF531/2/3/4/6/7/9 and ADSP-
BF561 processors.

• UART (-kb uart) for the ADSP-BF534/6/7 processors.

• TWI (-kb twi) for the ADSP-BF534/6/7 processors.

• FIFO (-kb fifo) for the ADSP-534/6/7 processors.

-kf {hex|ascii|binary|include} The -kf {hex|asci|binary|include} switch specifies the output file
format (hex, ASCII, binary, or include) for the boot kernel if you output two files
from the loader utility: one for the boot kernel and one for user application code.

The -kf switch must be used in conjunction with the-o2 switch.

If the -kf switch is absent from the command line, the loader utility generates
the file for the boot kernel in the same format as for the user application program.

-kenc dll_filename The -kenc dll_filename switch specifies the user encryption dynamic li-
brary file for the encryption of the data stream from the kernel file. The
dll_filename is required. Two functions with the following APIs are required
in the encryption DLL:

For setting the encryption initial value: int EncryptInit (unsigned
int FixedData);
For getting encrypted data: int EncryptBlock (unsigned int *
buffer, unsigned int BlkSize, char * message);
The loader calls the encryption routines as it is creating the .knl output file.
The loader sets reserved bit 2 in the block header to indicate the payload is en-
crypted.

-kp # The -kp # switch specifies a hex flash/PROM output start address for the kernel
code. A valid value is between 0x0 and 0xFFFFFFFF. The specified value is ig-
nored when no kernel or/and initialization code is included in the loader file.

Loader Command Line for ADSP-BF53x/BF561 Processors

4–30 CCES 2.9.0 Loader and Utilities Manual

Table 4-8: ADSP-BF53x/BF561 Loader Command-Line Switches (Continued)

Switch Description

-kwidth {8|16|32} The -kwidth {8|16|32} switch specifies the width of the boot kernel out-
put file when there are two output files: one for the boot kernel and one for user
application code.

Valid values are:

• 8 or 16 for PROM or flash boot kernel

• 16 for FIFO boot kernel

• 8 for SPI and other boot kernels

If this switch is absent from the command line, the default file width is:

• the -width parameter for flash/PROM boot mode

• 16 for FIFO boot mode

• 8 when booting from SPI and other boot modes

The -kwidth switch must be used in conjunction with the -o2 switch.

-M The -M switch generates make dependencies only, no output file is generated.

-maskaddr # The -maskaddr # switch masks all EPROM address bits above or equal to #.
For example, -maskaddr 29 (default) masks all the bits above and including
A29 (ANDed by 0x1FFF FFFF). For example, 0x2000 0000 becomes
0x0000 0000. The valid #s are integers 0 through 32, but based on your spe-
cific input file, the value can be within a subset of [0, 32].

The -maskaddr # switch requires -romsplitter and affects the ROM
section address only.

-MaxBlockSize # The -MaxBlockSize # switch specifies the maximum block byte count,
which must be a multiple of 16.

-MaxZeroFillBlockSize # The -MaxZeroFillBlockSize # switch specifies the maximum block byte
count for zero-filled blocks. The valid values are from 0x0 to 0xFFFFFFF0,
and the default value matches -MaxBlockSize #.

-MM The -MM switch generates make dependencies while producing the output files.

-Mo filename The -Mo filename switch writes make dependencies to the named file. Use the
-Mo switch with either -M or -MM. If -Mo is not present, the default is a
<stdout> display.

-Mt filename The -Mt filename switch specifies the make dependencies target output file.
Use the -Mt switch with either -M or -MM. If -Mt is not present, the default is
the name of the input file with an .ldr extension.

-noFinalBlock The -noFinalBlock switch directs the loader utility not to make a special fi-
nal block for TWI boot.

The switch applies to the ADSP-BF537 processors only.

Loader Command Line for ADSP-BF53x/BF561 Processors

CCES 2.9.0 Loader and Utilities Manual 4–31

Table 4-8: ADSP-BF53x/BF561 Loader Command-Line Switches (Continued)

Switch Description

-noFinalTag The -noFinalTag switch directs the loader utility not to set the final block tag
for the first .dxe file. As a result, the boot process continues with code from the
second .dxe file, following the first file.

The switch applies to the ADSP-BF56x processors only.

-noInitCode The -noInitCode switch directs the loader utility not to expect an initializa-
tion input file even though an external memory section is present in the in-
put .dxe file.

The switch applies to the ADSP-BF531/BF532/BF533, ADSP-BF534/BF536/
BF537/BF538/BF539 processors only.

-noSecondStageKernel The -noSecondStageKernel switch directs the loader utility not to include
a default second-stage kernel into the loader stream.

The switch applies to the ADSP-BF56x processors only.

-o filename The -o filename switch directs the loader utility to use the specified file as the
name of the loader utility's output file. If the filename is absent, the default
name is the root name of the input file with an .ldr extension.

-o2 The -o2 switch produces two output files: one for the init block (if present) and
boot kernel and one for user application code.

To have a different format, boot mode, or output width from the application code
output file, use the -kb -kf -kwidth switches to specify the boot mode, the
boot format, and the boot width for the output kernel file, respectively.

Combine -o2 with -l filename and/or -init filename on the ADSP-
BF531/BF532/BF533, ADSP-BF534/BF536/BF537/BF538/BF539, ADSP-
BF561 processors.

-p # The -p # switch specifies a hex flash/PROM output start address for the applica-
tion code. A valid value is between 0x0 and 0xFFFFFFFF. A specified value
must be greater than that specified by -kp if both kernel and/or initialization and
application code are in the same output file (a single output file).

-pflag {#|PF#|PG#|PH# } The -pflag { #|PF#|PG#|PH# } switch specifies a 4-bit hex value for a
strobe (programmable flag) or for one of the ports: F, G, or H. There is no default
value. The value is dynamic and varies with processor, silicon revision, boot mode,
and width. The loader generates warnings for illegal combinations.

The -pFlag Values for ADSP-BF531/BF532/BF533 Processors, -pFlag Values for
ADSP-BF534/BF536/BF537, and -pFlag Values for ADSP-BF538/BF539 Pro-
cessors tables show the valid values for the switch.

The switch applies to the ADSP-BF531x and ADSP-BF561 processors only.

-proc processor The -proc processor switch specifies the target processor.

The processor can be one of the following: ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-
BF538, ADSP-BF539, ADSP-BF561.

Loader Command Line for ADSP-BF53x/BF561 Processors

4–32 CCES 2.9.0 Loader and Utilities Manual

Table 4-8: ADSP-BF53x/BF561 Loader Command-Line Switches (Continued)

Switch Description

-romsplitter The -romsplitter switch creates a non-bootable image only. This switch
overwrites the -b switch and any other switch bounded by the boot mode.

In the .ldf file, declare memory segments to be `split' as type ROM. The splitter
skips RAM segments, resulting in an empty file if all segments are declared as RAM.
The -romsplitter switch supports hex and ASCII formats.

-ShowEncryptionMessage The -ShowEncryptionMessage switch displays a message returned from
the encryption function.

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for the processor
hardware. If -si-revision is not used, the target is a default revision from
the supported revisions.

-v The -v switch directs the loader utility to output verbose loader messages and
status information as the loader processes files.

-width {8|16|32} The -width {8|16|32} switch specifies the loader output file's width in
bits. Valid values are 8 and 16, depending on the boot mode. The default value is
16 for FIFO boot mode and 8 for all other boot modes.

• For flash/PROM booting, the size of the output file depends on the -width
switch.

• For FIFO booting, the only available width is 16.

• For SPI booting, the size of the output .ldr file is the same for both -
width 8 and -width 16. The only difference is the header information.

-ZeroPadForced The -ZeroPadForced switch forces the loader utility to pad each data byte
with a zero byte for 16-bit output. Use this switch only if your system requires
zero padding in a loader file. Use this switch with caution: arbitrating pad data
with zeros can cause the loader file to fail. The loader utility performs default zero
padding automatically in general.

The switch applies to the ADSP-BF531/BF532/BF533/BF534, ADSP-BF536/
BF537/BF538/BF539 processors only.

Table 4-9: -pFlag Values for ADSP-BF531/BF532/BF533 Processors. (The ADSP-BF531/BF532/BF533 processors always have the RE-
SVECT bit (bit 2 in the block header flag word) cleared.)

Silicon Revision 0.6

Width 8 16
Flash boot mode NONE NONE
SPI boot mode NONE
SPI slave boot mode 1-15

PF1-15

Loader Command Line for ADSP-BF53x/BF561 Processors

CCES 2.9.0 Loader and Utilities Manual 4–33

Table 4-10: -pFlag Values for ADSP-BF534/BF536/BF537. (The ADSP-BF534/BF536/BF537 processors always have the RESVECT bit
(bit 2 in the block header flag word) set.)

Silicon Revision 0.3

Width 8 16

Flash boot mode NONE
PF0-15
PG0-15
PH0-15

NONE
PF0-15
PG0-15
PH0-15

SPI boot mode NONE
PF0-9
PF15
PG0-15
PH0-15

SPI slave boot mode NONE
PF0-10
PF15
PG0-15
PH0-15

TWI boot mode NONE
PF0-15
PG0-15
PH0-15

TWI slave boot mode NONE
PF0-15
PG0-15
PH0-15

UART boot mode NONE
PF2-15
PG0-15
PH0-15

FIFO boot mode NONE
PF0
PF2-15
PG0-15
PH0-15

Loader Command Line for ADSP-BF53x/BF561 Processors

4–34 CCES 2.9.0 Loader and Utilities Manual

Table 4-11: -pFlag Values for ADSP-BF538/BF539 Processors

Silicon Revision All

Width 8 16
Flash boot mode NONE NONE
SPI boot mode NONE
SPI slave boot mode 1-15

PF1-15

NOTE: The ADSP-BF538/BF539 processors always have the RESVECT bit (bit 2 in the block header flag word)
set.

CCES Loader and Splitter Interface for ADSP-BF53x/BF561 Processors

Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

The IDE invokes the elfloader.exe utility to build the output loader file. To modify the default loader prop-
erties, use the project's Tool Settings dialog box. The controls on the pages correspond to the loader command-line
switches and parameters (see Loader Command-Line Switches for ADSP-BF533/BF561 Processors). The loader
utility for Blackfin processors also acts as a ROM splitter when evoked with the corresponding switches.

The loader pages (also called loader properties pages) show the default loader settings for the project's target processor.
Refer to the CCES online help for information about the loader/splitter interface.

ADSP-BF53x/BF561 Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 4–35

5 Loader/Splitter for ADSP-BF60x Blackfin Pro-
cessors

This chapter explains how the loader/splitter utility (elfloader.exe) is used to convert executable (.dxe) files
into boot-loadable or non-bootable files for the ADSP-BF60x Blackfin processors.

Refer to the Introduction chapter for the loader utility overview. Loader operations specific to the ADSP-BF60x
Blackfin processors are detailed in the following sections.

• ADSP-BF60x Processor Booting

Provides general information on various boot modes.

• ADSP-BF60x Processor Loader Guide

Provides information on how to build loader files.

ADSP-BF60x Processor Booting
For detailed information on the boot loader stream and modes for the ADSP-BF60x processors, refer to the booting
chapter of the ADSP-BF60x Blackfin Processor Hardware Reference.

Refer to the processor's data sheet and hardware reference manual for detailed information on system configuration,
peripherals, registers, and operating modes.

• Blackfin processor data sheets can be found at http://www.analog.com.

• Blackfin processor manuals can be found at http://www.analog.com or downloaded into the CCES online help
system via Help > Install New Software.

The ADSP-BF60x Part Numbers table lists the part numbers that currently comprise the ADSP-BF60x family of
Blackfin processors. Future releases of CrossCore Embedded Studio may support additional processors.

Table 5-1: ADSP-BF60x Part Numbers

ADSP-BF606 ADSP-BF608

ADSP-BF607 ADSP-BF609

Loader/Splitter for ADSP-BF60x Blackfin Processors

CCES 2.9.0 Loader and Utilities Manual 5–1

http://www.analog.com
http://www.analog.com

This section covers the following topics:

• ADSP-BF60x Processor Boot Modes

• ADSP-BF60x BCODE Field for Memory, RSI, and SPI Master Boot

• Building a Dual-Core Application

• CRC32 Protection

• Block Sizes

ADSP-BF60x Processor Boot Modes

Table 5-2: ADSP-BF60x Processor Boot Modes

ADSP-BF60x Boot Mode Boot (-b) Boot Code (-bcode) Notes

MEMORY -b MEMORY -bcode #*1 Generic memory boot mode. Replaces -b
FLASH. The argument for the -bcode switch is
the MDMACODE, one of the supported numeric
values specific to memory boot.

RSI0 master -b RSI -bcode # The argument for the -bcode switch is the
RSICODE, one of the supported numeric val-
ues specific to RSI master boot.

SPI0 master -b SPI -bcode # The argument for the -bcode switch is the
SPIMCODE, one of the supported numeric
values specific to SPI master boot.

SPI0 slave -b SPISLAVE Boot code field in headers is not used for slave
boot modes.

LP0 slave -b LPSLAVE Boot code field in headers is not used for slave
boot modes.

UART0 slave -b UARTSLAVE Boot code field in headers is not used for slave
boot modes.

*1 Legal values for the -bcode # switch can be found in the booting chapter of the ADSP-BF60x Blackfin Processor Hardware Refer-
ence.

ADSP-BF60x BCODE Field for Memory, RSI, and SPI Master Boot

A bootable loader stream is a series of boot blocks, each block beginning with a block header. Bits 0:3 of the
ADSP-BF60x block header is a boot mode specific code field known as BCODE. The -bcode # switch controls
what value is written to the BCODE field in the block headers in a bootable loader stream.

For detailed information on .ldr block headers, see the booting chapter of the ADSP-BF60x Blackfin Processor
Hardware Reference.

The loader requires an explicit BCODE value when creating loader streams for master boot modes. For the ADSP-
BF60x processors, this includes memory, RSI, and SPI master boot modes. When used in the context of a specific

ADSP-BF60x Processor Booting

5–2 CCES 2.9.0 Loader and Utilities Manual

boot mode, BCODE is referred to by its boot-specific name: MDMACODE for memory boot, RSICODE for RSI boot,
and SPIMCODE for SPI master boot.

NOTE: The -bcode switch is not used for slave boot modes. The BCODE field is zero for slave boot modes.

When building loader streams, explicitly specify the BCODE field for the .ldr block headers:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. The Tool Settings page appears.

3. Click General under CrossCore Blackfin Loader. The loader General properties page appears.

4. In Boot code (-bcode), enter the number.

The BCODE is specific for that particular boot mode. For -bcode # valid values, see the booting chapter of
the ADSP-BF60x Blackfin Processor Hardware Reference.

5. Click OK to close the dialog box.

6. Click Apply.

If you do not specify -bcode #, the loader reports Error ld0260. For example, if -bcode # is not present
when building a loader stream for RSI boot:
[Error ld0260]: Missing boot code header value for target ADSP-BF609 block
headers.
 The -bcode # switch is required for specifying the boot code value
 for boot modes MEMORY, RSI, and SPI.
 For MEMORY boot, consult the MDMACODE table.
 For RSI boot, consult the RSICODE table.
 For SPI boot, consult the SPIMCODE table.

Building a Dual-Core Application

When building a dual-core application, use the -NoFinalTag switch to append the core 1 processing to core 0.
The loader processes the input executables (.dxe) in order. If building at the command-line, place
DualCoreApp_Core1.dxe after DualCoreApp.dxe:
elfloader -proc ADSP-BF609 -b SPI -bcode 0x1 DualCoreApp.dxe -
NoFinalTag="DualCoreApp.dxe"
DualCoreApp_Core1.dxe -o DualCoreApp.ldr -f HEX -Width 8

NOTE: Since the default startup code does not include functionality to allow core 0 to enable core 1, a convenient
way to enable core 1 is to use the adi_core_1_enable function in the main program of
DualCoreApp.

-NoFinalTag

Use the -NoFinalTag switch for multi-core booting.

Syntax

ADSP-BF60x Processor Booting

CCES 2.9.0 Loader and Utilities Manual 5–3

-NoFinalTag[="DxeFile"]

NOTE: Note there is no white space around = when specifying the executable name.

The -NoFinalTag switch directs the loader utility not to set the FINAL flag on the last code block from
the .dxe file. When building an .ldr file with multiple .dxe files, this prevents the boot from halting after the
first .dxe completes.

The loader processes the input .dxe files in the order they appear on the elfloader command-line. If the -
NoFinalTag doesn't include the DxeFile file argument, it defaults to the first application .dxe file. Thus, the
following command applies -NoFinalTag to Core0.dxe:
elfloader -proc ADSP-BF609 -b SPI -bcode 0x1 -init BF609_init_v00.dxe Core0.dxe
-NoFinalTag Core1.dxe -o DualCoreApp.ldr -f HEX -Width 8

You can explicitly specify the .dxe file to which -NoFinalTag applies. The following example is equivalent to
the previous command:
elfloader -proc ADSP-BF609 -b SPI -bcode 0x1 -init BF609_init_v00.dxe Core0.dxe
-NoFinalTag="Core0.dxe" Core1.dxe -o DualCoreApp.ldr -f HEX -Width 8

The -NoFinalTag with a .dxe argument can appear multiple times. In the following example, there are four
application .dxe files, and the -NoFinalTag switch appears twice, scoped to the appropriate .dxe:
elfloader -proc ADSP-BF609 -b spi -bcode 0x1 -f hex -width 8 -o multicore.ldr
Rel/App0_Core0.dxe Rel/App0_Core1.dxe Rel/App1_Core0.dxe Rel/App1_Core1.dxe
-NoFinalTag="App0_Core0.dxe" -NoFinalTag="App1_Core0.dxe"

As long as the .dxe files on the command line are uniquely named, you only need to specify the .dxe file name,
without a full path. If the .dxe files are not uniquely named, the -NoFinalTag .dxe files must be matched
by paths. When specifying pathnames, use forward slash (/).
elfloader -proc ADSP-BF609 -b spi -bcode 0x1 -f hex -width 8 -o multicore.ldr
AppA/App_Core0.dxe AppA/App_Core1.dxe AppB/App_Core0.dxe AppB/App_Core1.dxe
-NoFinalTag="AppA/App_Core0.dxe" -NoFinalTag="AppB/App_Core0.dxe" -verbose

Use -verbose to get a "per dxe file" build summary from elfloader:
*** Summary of -NoFinalTag usage
 NoFinalTag AppA/App_Core0.dxe was successful
 -NoFinalTag AppB/App_Core0.dxe was successful

Any -NoFinalTag .dxe file that did not get a match gets a warning, with or without -verbose:
[Warning ld0265]: 'unknown.dxe' from -NoFinalTag switch resulted in no matches.

Programming Memory on a Target Board

Use the CCES Device Programmer utility (cldp) for programming the memory on a target board.

In the building a dual-core application example above, DualCoreApp.ldr was built for boot mode SPIO master
with format hex.

Driver:

Building a Dual-Core Application

5–4 CCES 2.9.0 Loader and Utilities Manual

ADSP-BF609_EZBoard/Examples/Device_Programmer/serial/w25q32bv_dpia/
w25q32bv_dpia.dxe

cldp -proc ADSP-BF609 -emu HPUSB -driver w25q32bv_dpia.dxe
-cmd prog -erase affected -offset 0 -format hex -file DualCoreApp.ldr

NOTE: You can save the device programmer commands to a file:
cldp -@ myPath/SPI_Flash_Programming.txt

See the Device Programmer section in the CCES online help for more information (search help for "device pro-
grammer").

CRC32 Protection

ADSP-BF60x CRC32 protection is implemented in hardware. The boot kernel provides mechanisms to allow each
block to be verified using a 32-bit CRC.

When building a LDR file for CRC32 protection, use the -CRC32 <PolynomialCoefficient> switch.

-CRC32 (PolynomialCoefficient)

The -CRC32 switch directs the loader to generate CRC32 checksums. It uses the polynomial coefficient if speci-
fied, otherwise uses the default coefficient (0xD8018001).

Block Sizes

The loader creates blocks with payload and fill blocks using default maximum size and alignment that meets the
requirements of the target hardware. Switches are available to override the defaults.

Table 5-3: ADSP-BF60x Processor Block Sizes

Switch Description Default Requirements

-MaxBlockSize # Specify the maximum block byte
count

Loader uses maximum block size
0x7FFFFFF0 as default

The maximum block size is lim-
ited to 0xFFFFFFFC bytes and
must be a multiple of 4.

-MaxFillBlockSize # Specify the maximum fill block
byte count

Loader uses maximum fill block
size 0x7FFFFFF0 as default

The maximum fill block size is
limited to 0xFFFFFFFC bytes
and must be a multiple of 4.

ADSP-BF60x Processor Loader Guide
The loader utility post processes executable (.dxe) files and generates loader (.ldr) files. A loader file can be for-
matted as binary, ASCII or Intel hex style. An .ldr file contains the boot stream in a format expected by the on-
chip boot kernel.

Loader utility operations depend on the loader properties, which control how the utility processes executable files.
You select features, such as boot modes, boot kernels, and output file formats via the properties. The properties are

ADSP-BF60x Processor Booting

CCES 2.9.0 Loader and Utilities Manual 5–5

specified on the loader utility's command line or the Tool Settings dialog box in the IDE (CrossCore Blackfin Loader
pages). The default loader settings for a selected processor are preset in the IDE.

NOTE: The IDE’s Tool Settings correspond to switches displayed on the command line.

These sections describe how to produce a bootable (single and multiple) or non-bootable loader file:

• CCES Loader and Splitter Interface for ADSP-BF60x Processors

• ROM Splitter Capabilities for ADSP-BF60x Processors

• ADSP-BF60x Loader Collateral

CCES Loader and Splitter Interface for ADSP-BF60x Processors

Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

The IDE invokes the elfloader.exe utility to build the output loader file. To modify the default loader prop-
erties, use the project's Tool Settings dialog box. The controls on the pages correspond to the loader command-line
switches and parameters. Refer to the online help for more information.

ROM Splitter Capabilities for ADSP-BF60x Processors

NOTE: The readall feature is available for the automatic merging of fixed-position ROM data with code blocks
within the bootable loader stream and typically supersedes the use of the legacy romsplitter feature descri-
bed below.

When the loader utility is invoked with the splitter capabilities, it does not format the application data when trans-
forming a .dxe file to an .ldr file. The splitter emits raw data only. Whether data and/or instruction sections are
processed by the loader or by the splitter depends upon the LDF's TYPE() command. Sections declared with
TYPE(RAM) are consumed by the loader, and sections declared by TYPE(ROM) are consumed by the splitter.

The contents of the ROM memory segments are extracted from the .dxe. The contents of the ROM segments get
written to the .ldr file in raw format, each segment preceded by header words. The header consists of the follow-
ing four 32-bit words written in unprefixed hex format:

Address Start address of ROM memory segment (as defined in LDF)

Length # of bytes extracted from the DXE for this segment

Control Word 32 bit control word

00

xx address multiply

xx logical width

xx physical width

Reserved word All zeros

ADSP-BF60x Processor Loader Guide

5–6 CCES 2.9.0 Loader and Utilities Manual

Example - ASCII Formatted Splitter .ldr File

This is an example of the header preceding the raw content extracted from the .dxe for segment MEM1.

Assume 256 bytes were written to the .ldr file and MEM1 was defined in the LDF as:
MEM1 { TYPE(ROM) WIDTH(8) START(0xB0000000) END(0xB3FFFFFF) }

The -romsplitter .ldr output will be:

B0000000
00000100
00010101
00000000
00 <- content starts here
01
02
03
...

ADSP-BF60x Loader Collateral

The CrossCore Embedded Studio installation contains additional files and projects to assist with development and
debugging of ADSP-BF60x applications which rely on booting functionality.

ROM Code

ROM code is available in Blackfin/ldr/rom_code of the CrossCore Embedded Studio installation.

Init Code

The sources and prebuilt executables for the init codes for the ADSP-BF609 EZ-KIT Lite are available in
Blackfin/ldr/init_code of the CrossCore Embedded Studio installation.

The list of boot kernel symbols can be found in the booting chapter of the ADSP-BF60x Blackfin Processor Hardware
Reference. Instructions for loading symbols can be found in the online help (search for "debugging the boot proc-
ess").

Configuration information can be found in the init_platform.h file located in the corresponding part/silicon
revision project. For example, for a ADSP-BF609 processor, -si-revision 0.1, see Blackfin/ldr/
init_code/BF609_init/BF609_init_v01/src/include/init_platform.h.

You can include an init code dxe into the *.ldr file built for your application . To do so, use the Initializa-
tion file option in the IDE or the -init filename switch on the command line. Multiple -init switches are
supported.

ROM Programming

ROM API headers for Blackfin processors, including the ADSP-BF609, are available in the CrossCore Embedded
Studio installation. Build macros automatically configure bfrom.h (Blackfin/include/bfrom.h) for
your build target processor.

ADSP-BF60x Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 5–7

The boot programming model is documented in the ADSP-BF60x Blackfin Processor Hardware Reference.

ADSP-BF60x Processor Loader Guide

5–8 CCES 2.9.0 Loader and Utilities Manual

6 Loader/Splitter for ADSP-BF7xx Blackfin Pro-
cessors

This chapter explains how the loader/splitter utility (elfloader.exe) is used to convert executable (.dxe) files
into boot-loadable or non-bootable files for the ADSP-BF7xx Blackfin processors.

Refer to the Introduction chapter for the loader utility overview. Loader operations specific to the ADSP-BF7xx
Blackfin processors are detailed in the following sections.

• ADSP-BF7xx Processor Booting

Provides general information on various boot modes.

• ADSP-BF7xx Processor Loader Guide

Provides information on how to build loader files.

ADSP-BF7xx Processor Booting
For detailed information on the boot loader stream and modes for the ADSP-BF7xx processors, refer to the booting
chapter of the ADSP-BF7xx Blackfin+ Processor Hardware Reference.

Refer to the processor's data sheet and hardware reference manual for detailed information on system configuration,
peripherals, registers, and operating modes.

• Blackfin processor data sheets can be found at http://www.analog.com.

• Blackfin processor manuals can be found at http://www.analog.com or downloaded into the CCES online help
system via Help > Install New Software.

The ADSP-BF7xx Part Numbers table lists the part numbers that currently comprise the ADSP-BF7xx family of
Blackfin processors. Future releases of CrossCore Embedded Studio may support additional processors.

Table 6-1: ADSP-BF7xx Part Numbers

Processor Family Part Numbers

ADSP-BF70x ADSP-BF700, ADSP-BF701, ADSP-BF702, ADSP-BF703, ADSP-
BF704, ADSP-BF705, ADSP-BF706, ADSP-BF707

Loader/Splitter for ADSP-BF7xx Blackfin Processors

CCES 2.9.0 Loader and Utilities Manual 6–1

http://www.analog.com
http://www.analog.com

Table 6-1: ADSP-BF7xx Part Numbers (Continued)

Processor Family Part Numbers

ADSP-BF71x ADSP-BF715, ADSP-BF716, ADSP-BF718, ADSP-BF719

This section covers the following topics:

• ADSP-BF7xx Processor Boot Modes

• ADSP-BF7xx BCODE Field for SPI Boot Modes

• CRC32 Protection

• Block Sizes

ADSP-BF7xx Processor Boot Modes

Table 6-2: ADSP-BF7xx Processor Boot Modes

ADSP-BF7xx Boot Mode Boot (-b) Boot Code (-bcode) Notes

SPI master -b SPI -bcode #*1 The argument for the -bcode
switch is the SPIMCODE, one of
the supported numeric values
specific to SPI master boot
modes.

SPI slave -b SPISLAVE -bcode # The argument for the -bcode
switch is one of the supported
numeric values, specific to SPI
boot mode.

UART slave -b UARTSLAVE Not applicable Boot code field in headers is not
used for UART slave boot mode.

*1 Values for the -bcode # switch can be found in the booting chapter of the ADSP-BF7xx Blackfin+ Processor Hardware Reference.

ADSP-BF7xx BCODE Field for SPI Boot Modes

A bootable loader stream is a series of boot blocks, each block beginning with a block header. Bits 0:3 of the
ADSP-BF7xx block header is a boot mode specific code field known as BCODE. The -bcode # switch controls
what value is written to the BCODE field in the block headers in a bootable loader stream.

For detailed information on .ldr block headers, see the booting chapter of the ADSP-BF7xx Blackfin+ Processor
Hardware Reference manual.

The loader requires an explicit BCODE value when creating loader streams for master boot modes. For the ADSP-
BF7xx processors, this is SPI master boot mode. When used in the context of SPI master boot mode, BCODE is
referred to by its boot-specific name, SPIMCODE.

NOTE: The -bcode switch is not used for slave boot modes. The BCODE field is zero for slave boot modes.

ADSP-BF7xx Processor Booting

6–2 CCES 2.9.0 Loader and Utilities Manual

When building loader streams, explicitly specify the BCODE field for the .ldr block headers:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. The Tool Settings page appears.

3. Click General under CrossCore Blackfin Loader. The loader General properties page appears.

4. In Boot code (-bcode), enter the number.

The BCODE is specific for that particular boot mode. For -bcode # valid values, see the booting chapter of
the ADSP-BF7xx Blackfin+ Processor Hardware Reference.

5. Click OK to close the dialog box.

6. Click Apply.

If you do not specify -bcode #, the loader reports Error ld0274. For example, if -bcode # is not present
when building a loader stream for SPI boot:
[Error ld0274]: Missing boot code header value for target ADSP-BF707 block
headers.
 The -bcode # switch is required for specifying the boot code value for
 the SPI boot modes. Consult the SPIMCODE table.

Secure Boot and Encrypted Images

The ADSP-BF7xx processors provide security features for secure booting and encryption. Creating signed and op-
tionally encrypted images is a multistage process using the Blackfin loader and signing utility (signtool.exe).
The Blackfin loader builds the boot image in binary format, while the signtool protects that boot image.

1. LDR file creation:

Build an .ldr file in CrossCore Embedded Studio or via the command-line.

NOTE: For secure booting, the .ldr file must be built in binary format (-f binary). The signtool utility
treats it as raw binary data with no interpretation. If the .ldr file is not built in binary format, the
resulting secure-boot image is not be usable.

2. Secure-boot image creation:

To sign/encrypt the boot image, use the signtool utility, either as a post-build step in the .ldr file build in the
IDE or via the command-line. Refer to the signtool documentation in Utilities.

Using signtool to build a signed and optionally encrypted images in CCES:

The CCES IDE invokes the signtool utility after the main build, in a user-specified post-build step. The post-build
step is helpful for the repetitive steps of creating a binary .ldr file and signing and optionally encrypting it:

To specify the post-build step:

NOTE: The post-build step is executed only if the main build has executed successfully.

ADSP-BF7xx Processor Booting

CCES 2.9.0 Loader and Utilities Manual 6–3

1. It is assumed that the project's Build Artifact type is a Loader File

2. Select the project in a navigation view:

a. From the context menu, choose Properties > C++ Build > Settings. The Settings dialog box appears.

b. Click Build Steps. The Build Steps dialog box appears.

3. In Post-build steps, type the signtool command for signing and optional encrypting:
signtool genkeypair –algo ecdsa224 –outfile keypair.der

NOTE: The signtool sign step requires the keypair file as input in addition to the .ldr stream. Typically the
keypair file is created in a one-time up-front setup operation.

4. Click OK

CRC32 Protection

ADSP-BF7xx CRC32 protection is implemented in hardware. The boot kernel provides mechanisms to allow each
block to be verified using a 32-bit CRC.

When building a LDR file for CRC32 protection, use the -CRC32 <PolynomialCoefficient> switch.

-CRC32 (PolynomialCoefficient)

The -CRC32switch directs the loader to generate CRC32 checksums. It uses the polynomial coefficient if specified,
otherwise uses the default coefficient (0xD8018001).

Block Sizes

The loader creates blocks with payload and fill blocks using default maximum size and alignment that meets the
requirements of the target hardware. Switches are available to override the defaults.

Table 6-3: ADSP-BF7xx Processor Block Sizes

Switch Description Default Requirements

-MaxBlockSize # Specify the maximum block byte
count

Loader uses maximum block size
0x7FFFFFF0 as default

The maximum block size is lim-
ited to 0xFFFFFFFC bytes and
must be a multiple of 4.

-MaxFillBlockSize # Specify the maximum fill block
byte count

Loader uses maximum fill block
size 0x7FFFFFF0 as default

The maximum fill block size is
limited to 0xFFFFFFFC bytes
and must be a multiple of 4.

ADSP-BF7xx Processor Loader Guide
The loader utility post processes executable (.dxe) files and generates loader (.ldr) files. A loader file can be for-
matted as binary, ASCII or Intel hex style. An .ldr file contains the boot stream in a format expected by the on-
chip boot kernel.

ADSP-BF7xx Processor Booting

6–4 CCES 2.9.0 Loader and Utilities Manual

Loader utility operations depend on the loader properties, which control how the utility processes executable files.
You select features, such as boot modes, boot kernels, and output file formats via the properties. The properties are
specified on the loader utility's command line or the Tool Settings dialog box in the IDE (the CrossCore Blackfin
Loader pages). The default loader settings for a selected processor are preset in the IDE.

NOTE: The IDE’s Tool Settings correspond to switches displayed on the command line.

These sections describe how to produce a bootable or non-bootable loader file:

• CCES Loader and Splitter Interface for ADSP-BF7xx Processors

• ROM Splitter Capabilities for ADSP-BF7xx Processors

• ADSP-BF7xx Loader Collateral

CCES Loader and Splitter Interface for ADSP-BF7xx Processors

Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

The IDE invokes the elfloader.exe utility to build the output loader file. To modify the default loader prop-
erties, use the project's Tool Settings dialog box. The controls on the pages correspond to the loader command-line
switches and parameters. Refer to the online help for more information.

ROM Splitter Capabilities for ADSP-BF7xx Processors

NOTE: The readall feature is available for the automatic merging of fixed-position ROM data with code blocks
within the bootable loader stream and typically supersedes the use of the legacy romsplitter feature descri-
bed below.

When the loader utility is invoked with the splitter capabilities, it does not format the application data when trans-
forming a .dxe file to an .ldr file. The splitter emits raw data only. Whether data and/or instruction sections are
processed by the loader or by the splitter depends upon the LDF's TYPE() command. Sections declared with
TYPE(RAM) are consumed by the loader, and sections declared by TYPE(ROM) are consumed by the splitter.

The contents of the ROM memory segments are extracted from the .dxe. The contents of the ROM segments get
written to the .ldr file in raw format, each segment preceded by header words. The header consists of the follow-
ing four 32-bit words written in unprefixed hex format:

Address Start address of ROM memory segment (as defined in LDF)

Length # of bytes extracted from the DXE for this segment

ADSP-BF7xx Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 6–5

Control Word 32 bit control word

00

xx address multiply

xx logical width

xx physical width

Reserved word All zeros

Example - ASCII Formatted Splitter .ldr File

This is an example of the header preceding the raw content extracted from the .dxe for segment MEM1.

Assume 256 bytes were written to the .ldr file and MEM1 was defined in the LDF as:
MEM1 { TYPE(ROM) WIDTH(8) START(0xB0000000) END(0xB3FFFFFF) }
The -romsplitter .ldr output will be:

B0000000
00000100
00010101
00000000
00 <- content starts here
01
02
03
...

ADSP-BF7xx Loader Collateral

The CrossCore Embedded Studio (CCES) installation contains additional files and projects to assist with develop-
ment and debugging of ADSP-BF7xx applications which rely on booting functionality.

ROM Code

The sources for ROM code are not available in CCES to protect the ADSP-BF7xx secure booting and encryption
details.

The list of boot kernel symbols can be found in the booting chapter of the ADSP-BF7xx Blackfin+ Processor Hard-
ware Reference. Instructions for loading symbols can be found in the online help (search for "debugging the boot
process").

Init Code

The example init code project for ADSP-BF7xx parts is included in CCES, it is Blackfin/ldr/init_code/
BF7xx_init. There are prebuilt init code executables to support the ADSP-BF707 EZ-KIT Lite and ADSP-
BF706 EZ-KIT Mini evaluation boards. These prebuilt executables are available for each of the supported ADSP-
BF7xx silicon revisions.

There are also variants of the prebuilt versions of the init code that disable instruction cache to enable booting of
applications that use the L1 SRAM/ICache memory in SRAM mode.

ADSP-BF7xx Processor Loader Guide

6–6 CCES 2.9.0 Loader and Utilities Manual

Details of the support provided by the example init codes can be found in the init_platform.h file and
readme.txt in the BF7xx_init project.

You can include an init code executable into the .ldr file built for your application . To do so, use the Initializa-
tion file option in the loader setting of a CCES project or the -init switch for command line builds. Multiple -
init switches are supported.

NOTE: The init code example is provided for non-secure booting. Init code or any form of callback is not sup-
ported in secure boot because the code is inherently insecure.

ROM Programming

ROM API headers for Blackfin processors, including the ADSP-BF7xx processors, are available in the CCES instal-
lation. Build macros automatically configure bfrom.h (Blackfin/include/bfrom.h) for your build target
processor.

The boot programming model is documented in the ADSP-BF7xx Blackfin+ Processor Hardware Reference.

ADSP-BF7xx Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 6–7

7 Loader for ADSP-SC5xx/ADSP-215xx Pro-
cessors

This chapter explains how the loader utility (elfloader.exe) is used to convert executable (.dxe) files into
boot-loadable (.ldr) files for the ADSP-SC5xx and ADSP-215xx processors.

The various ADSP-SC5xx processors are based on the ARM® Cortex-A5™ core 0 and SHARC+ processor cores 1
and 2. The ADSP-2157x and ADSP-2158x processors are also multi-core but only have SHARC+ cores 1 and 2
(there is no ARM core). The ADSP-2156x family of processors has a single SHARC+ core 0.

All these ADSP-SC5xx and ADSP-215xx processors use a boot ROM and loader file format based on those in use
for the latest Blackfin processors.

The CCES elfloader builds .ldr files from executable files, built with the:

• GNU ARM tool chain for ADSP-SC5xx core 0

• CCES SHARC tool chain for the SHARC+ cores

Refer to the ARM Development Tools Documentation for more information on building ARM executables. For in-
formation on building SHARC executables, refer to the SHARC Development Tools Documentation.

Refer to the Introduction chapter for the loader utility overview. Loader operations specific to the ADSP-SC5xx and
ADSP-215xx processors are detailed in the following sections.

• ADSP-SC5xx/ADSP-215xx Processor Booting

Provides general information about the part numbers and various boot modes.

• ADSP-SC5xx/ADSP-215xx Processor Loader Guide

Provides information on how to build loader files from the command-line.

• CCES Loader Interface for ADSP-SC5xx/ADSP-215xx Processors

Provides information on how to create projects, set build artifacts, and customize the default loader settings
using the CCES IDE.

Loader for ADSP-SC5xx/ADSP-215xx Processors

CCES 2.9.0 Loader and Utilities Manual 7–1

ADSP-SC5xx/ADSP-215xx Processor Booting
For detailed information about the boot loader stream and modes, refer to the booting chapter of the Hardware
Reference manual for your target processor.

Refer to the processor's data sheet and hardware reference manual for information about system configuration, pe-
ripherals, registers, and operating modes.

• Processor data sheets can be found at http://www.analog.com.

• Processor manuals can be found at http://www.analog.com or downloaded into the CCES help system via Help
> Install New Software.

Tables ADSP-2156x Part Numbers, ADSP-2157x Part Numbers, ADSP-2158x Part Numbers, ADSP-SC57x Part
Numbers and ADSP-SC58x Part Numbers list the part numbers that currently comprise the ADSP-SC5xx/215xx
family of processors.

Table 7-1: ADSP-2156x Part Numbers

A
D
S
P
-
2
1
5
6
2

A
D
S
P
-
2
1
5
6
3

ADSP-21565 ADSP-21566 ADSP-21567 ADSP-21569

Table 7-2: ADSP-2157x Part Numbers

ADSP-21571 ADSP-21573

Table 7-3: ADSP-2158x Part Numbers

ADSP-21583 ADSP-21584 ADSP-21587

Table 7-4: ADSP-SC5xx Part Numbers

ADSP-SC570 ADSP-SC571 ADSP-SC572 ADSP-SC573

Table 7-5: ADSP-SC58x Part Numbers

ADSP-SC582 ADSP-SC583 ADSP-SC584 ADSP-SC587 ADSP-SC589

This section also covers the following topics:

• ADSP-SC5xx/ADSP-215xx Processor Boot Modes

ADSP-SC5xx/ADSP-215xx Processor Booting

7–2 CCES 2.9.0 Loader and Utilities Manual

http://www.analog.com
http://www.analog.com

• ADSP-SC5xx/ADSP-215xx BCODE Field for SPI Boot Modes

• ADSP-SC5xx/ADSP-215xx Building a Multicore Application

• ADSP-SC5xx/ADSP-215xx Loader Collateral

ADSP-SC5xx/ADSP-215xx Processor Boot Modes

You can specify the ADSP-SC5xx/ADSP-215xx processor boot mode using the -b loader switch.

Syntax:

-b BootMode
where the BootMode argument can take one of the following forms:

• -b SPIMASTER
• -b SPISLAVE
• -b LPSLAVE
• -b UARTSLAVE

The default boot mode for the ADSP-SC5xx/215xx processors is SPIMASTER .

NOTE: To create an OSPI Master Boot mode compatible loader file for ADSP-2156x processors use -b
SPIMASTER.

NOTE: There is no MEMORY/FLASH boot mode for these processors.

Silicon Revision Syntax:

-si-revision x.x
The silicon revision switch is optional.

NOTE: If not provided, the elfloader uses the same default as for other components in the CCES tool chain.
In the rare instance where a specific action is taken by the elfloader, based on the silicon revision,
refer to the Tools Support for IC Anomalies section of the online help.

ADSP-SC5xx/ADSP-215xx BCODE Field for SPI Boot Modes

A bootable loader stream is a series of boot blocks, each block beginning with a block header. Bits 0:3 of the
ADSP-SC5xx/ADSP-215xx block header is a boot mode-specific code field, known as BCODE. The -bcode #
switch controls what value is written to the BCODE field in the block headers in a bootable loader stream. For de-
tailed information on .ldr block headers, see the booting chapter of your Processor Hardware Reference manual.

ADSP-SC5xx/ADSP-215xx Processor Booting

CCES 2.9.0 Loader and Utilities Manual 7–3

The loader utility requires an explicit BCODE value when creating loader streams for the SPIMASTER modes for
the ADSP-SC5xx/ADSP-215xx processors. The supported BCODE values are documented in the Processor Hard-
ware Reference Manual.

ADSP-SC5xx/ADSP-215xx Processor Boot Modes

Boot Mode Boot (-b) Boot Code (-bcode) Notes

SPI Master -b SPIMASTER -bcode # Boot from integrated Flash memory through the SPI2
peripheral configured for memory-mapped mode.

The argument for the -bcode switch is one of the
supported BCODEnumeric values documented in SPI
Master BCODE Configuration Lookup Table in the
Processor Hardware Reference manual.

SPI slave -b SPISLAVE Not Applicable Boot through the SPI2 peripheral configured as a
slave.

Boot code field in block headers is not used for slave
boot modes.

LINKPORT -b LPSLAVE Not applicable Boot through LINKPORT0 peripheral configured as
a slave receiver.

Boot code field in block headers is not used for slave
boot modes.

UART -b UARTSLAVE Not applicable Boot through UART0 configured as a slave receiver.

Boot code field in block headers is not used for slave
boot modes.

OSPI Master -b SPIMASTER -bcode # OSPI Master Boot is for ADSP-2156x parts only.

Boot from integrated Flash memory through the
OSPI peripheral configured for memory-mapped
mode.

The -bcode switch value should be selected from
those documented in the OSPI Master BCODE Con-
figuration Lookup Table in the ADSP-2156x SHARC
+ Processor Hardware Reference.

To explicitly specify the BCODE field value for the .ldr block headers using CCES:

1. Open the Properties dialog box for the booting core project.

2. Choose C/C++ Build > Settings > Tool Settings in the tree control.

The Tool Settings page appears.

3. Click General under CrossCore SHARC Loader in the tree control.

The loader General properties page appears.

4. In Boot code (-bcode), enter the number.

ADSP-SC5xx/ADSP-215xx Processor Booting

7–4 CCES 2.9.0 Loader and Utilities Manual

5. Click Apply.

6. Click OK to close the dialog box.

NOTE: If you do not specify -bcode #when it is needed the loader reports Warning ld0274and default to
1.

For example, if -bcode # is not present when building a loader stream for SPIMASTER boot mode:
[Warning ld0274]: Using a default -bcode value of 1 for SPIMASTER boot mode.

ADSP-SC5xx/ADSP-215xx Building a Multicore Application

NOTE: Not applicable for single core ADSP-2156x family processors.

-core0, -core1, -core2

When building an ADSP-SC5xx/ADSP-215xx application, specify a list of one or more application files. Each file
must be identified by core, using a –core0/-core1 or –core2 switch. (Not all cores are available on all parts).

Syntax:

-core[0 | 1 | 2]=” InputFile "
where InputFile is the name of an executable file.

Examples:

-core0=”ARMFilePath” - ARM0 core (executable from the ARM tool chain) -core1=”DxeFilePath”
- SHARC0 core (executable from SHARC+ proprietary tool chain) -core2=”DxeFilePath” - SHARC1 core
(executable from SHARC+ proprietary tool chain)

NOTE: Do not use spaces around “=”.

The following table shows the usage of the –coren switch for the ADSP-2157x/ADSP-SC57x processors.

ADSP-SC573 ADSP-SC573 ADSP-SC570 ADSP-SC570 ADSP-2157x ADSP-2157x

Core elfloader Switch LDR File Block
Header Signature

elfloader Switch LDR File Block
Header Signature

elfloader Switch LDR File Block
Header Signature

ARM0

(Cortex-A5)

-core0 0xAD -core0 0xAD Not applicable

Error ld0275
Not applicable

SHARC0

(SHARC+)

-core1 0xAC -core1 0xAC -core1 0xAC

SHARC1

(SHARC+)

-core2 0xAB Not applicable

Error ld0275
Not applicable. -core2 0xAB

The following table shows the usage of the –coren switch for the ADSP-2158x/ADSP-SC58x processors.

ADSP-SC5xx/ADSP-215xx Processor Booting

CCES 2.9.0 Loader and Utilities Manual 7–5

ADSP-SC589 ADSP-SC589 ADSP-SC582 ADSP-SC582 ADSP-2158x ADSP-2158x

Core elfloader Switch LDR File Block
Header Signature

elfloader Switch LDR File Block
Header Signature

elfloader Switch LDR File Block
Header Signature

ARM0

(Cortex-A5)

-core0 0xAD -core0 0xAD Not applicable

Error ld0275
Not applicable

SHARC0

(SHARC+)

-core1 0xAC -core1 0xAC -core1 0xAC

SHARC1

(SHARC+)

-core2 0xAB Not applicable

Error ld0275
Not applicable. -core2 0xAB

Error Diagnostics

If a –coren switch is not applicable for the part being targeted, error ld0275 terminates the creation of the load-
er file.
elfloader -proc ADSP-21584 -core0=Input/ARM0_TEST –core1=Input/SHARC0_TEST.exe
 -core2=Input/SHARC1_TEST.dxe -b SPI -bcode 1 -f ASCII -width 8

[Error ld0275]: Unable to process –core0
 (input file 'Source/ARM0_TEST) for processor ADSP-21584.
 The –core0 switch is disabled because the ADSP-21584
 does not support an ARM core.

-NoFinalTag

The -NoFinalTag switch is available for building LDR files for multi-core booting to provide for executing code
on multiple cores before halting the boot. Each executable results in a series of blocks in the loader stream. By de-
fault, elfloader sets the "FINAL" flag in the last block in the sequence for an executable. Use the -
NoFinalTag switch to prevent the "FINAL" flag setting for an executable if it is not intended to halt the boot.

The -NoFinalTag switch does not require a full path name. Use –verbose on the elfloader command-
line to report success on each -NoFinalTag.

Syntax:

-NoFinalTag=" ExecutableFile "

NOTE: Do not use spaces around “=”.

Multicore Command-Line Example

When building a multi-core application, use the -NoFinalTag switch to append the core input without intro-
ducing a “FINAL” flag that halts the boot. In the example below, the ARM_Core (core 0) and SH_Core1.dxe (core
1) executables have -NoFinalTag switches. The boot will not halt until the FINAL block for SH_Core2.dxe
(core 2).

ADSP-SC5xx/ADSP-215xx Processor Booting

7–6 CCES 2.9.0 Loader and Utilities Manual

The elfloader processes the input executables in the specified order. If building from the command-line, ensure
that the first executable of the booting core appears on the command-line first.

Line breaks included for readability:
elfloader -proc ADSP-SC589
 -init “Path/ARMInitCode”
 -core0=”ARM_Path/ARM_Core"
 -NoFinalTag="ARM_Core"
 -core1=”LongPath/Source/SH_Core1.dxe
 -NoFinalTag="SH_Core1.dxe"
 -core2=”./Another Long Path/Source/SH_Core2.dxe”
 -b SPI -bcode 0x1 -f HEX -Width 8
 -verbose
 -o ./SHARC/SPIMASTER_MULTICORE.ldr

Elfloader –verbose

Use -verbose to get a –NoFinalTag "per dxe file" build summary from elfloader:

*** Summary of -NoFinalTag usage -NoFinalTag LongPath/Source/SH_Core1.dxe was successful

Any –NoFinalTag file that does not get a match, gets a warning, with or without -verbose: [Warning
ld0265]: 'unknown.dxe' from -NoFinalTag switch resulted in no matches.

Initializing ADSP-SC5xx/ADSP-215xx using Init Codes

Init Codes

Code to initialize ADSP-SC5xx/ADSP-215xx processors at application boot is specified via one or more –init
switches. Typically such init codes set clock frequencies and do setup for external memory.

All initialization code is run on the booting core and expected to initialize all of the cores.

• For the ADSP-SC5xx processors, the booting core is the ARM core 0 and the initialization code is built with
the ARM Cortex-A toolchain.

• For the multicore ADSP-215xx or single core ADSP-2156x processors, the booting core is SHARC0 and the
init executable(s) need to be built with the SHARC+ toolchain.

-init
The -init switch directs the loader utility to include the init code routine from the named executable file.

Syntax:

-init ” FileName ” [{ AddrHexFormat | Symbol }]
where:

• FileName - the name of an executable file.

ADSP-SC5xx/ADSP-215xx Processor Booting

CCES 2.9.0 Loader and Utilities Manual 7–7

• {AddrHexFormat or Symbol} - an optional entry parameter, enclosed within {}. Either a start address in
hex format (for AddrHexFormat) or a string (for Symbol).

If the optional code start address or symbol is present, the loader utility uses it in place of the ELF entry address in
the -init executable.

Examples:
-init ./MyPath/InitARMCode
-init ./MyPath/Init.dxe {0x20080291}
-init ./MyPath/Init.dxe {AlternateStart.}

NOTE: When building using a CCES project, use Tools settings in "CrossCore SHARC Loader" > "Initialization
tools" to specify an init code and optional start address or symbol.

Do not enclose the optional start address or symbol within {}in the CCES settings.

When writing init codes, carefully read the Init Block section (under Block Types) in the Boot ROM and
Booting the Processor chapter of the Hardware Reference manual for your processor. It specifies the require-
ments and restrictions for initialization blocks.

NOTE: New to the ADSP-SC5xx/ADSP-215xx family are pre-load executable files which are part of the default
launch configuration when debugging executable files for EZ-KIT parts. These are not intended for use
with the -init switch when building bootable LDR files. They do not meet the requirements and re-
strictions for initialization blocks in LDR files and cause boot failure.

Entry Address

When building an ADSP-SC5xx /ADSP-215xx application, the elfloader must know the start address. The -
init executable must contain an entry address in the ELF header or provide the argument for the address or sym-
bol.
-init ./MyPath/Init.dxe {0x20080291}
-init ./MyPath/Init.dxe {AlternateStart.}

ADSP-SC5xx/ADSP-215xx Loader File Formats

You can specify the format of a boot loadable file using the -f switch.

Syntax:

-f format
where:

format - one of BINARY, HEX, ASCII, or INCLUDE.

Examples

• -f BINARY

ADSP-SC5xx/ADSP-215xx Processor Booting

7–8 CCES 2.9.0 Loader and Utilities Manual

• -f HEX (Intel hex)

• -f ASCII
• -f INCLUDE (INCLUDE is a comma-separated ASCII format)

You can also specify the word width of the boot loadable file using the -Width switch.

–Width 8 is used for all ADSP-SC5xx/215xx elfloader builds.

Secure Boot and Encrypted Images

The ADSP-SC5xx/ADSP-215xx processor features include secure booting and encryption. Creating signed (and op-
tionally encrypted) images is a multistage process using the eloader and signing utility (signtool.exe). The
loader builds the boot image in binary format, while the signtool protects that boot image.

The ADSP-SC5xx/ADSP-215xx security features are similar to those of the ADSP-BF7xx Blackfin processors. Refer
to Secure Boot and Encrypted Images for more information about secure booting and encryption. Refer to signtool -
Sign and Encrypt Boot Streams for Secure Booting for more information about the signing utility.

CRC32 Protection

ADSP-SC5xx/ADSP-215xx CRC32 protection is implemented in hardware. The boot kernel provides mechanisms
to allow each block to be verified using a 32-bit CRC.

When building a loader file for CRC32 protection, use the -CRC32 <PolynomialCoefficient> switch.

-CRC32 (PolynomialCoefficient)

The -CRC32 switch directs the loader utility to generate CRC32 checksums. It uses the polynomial coefficient if
specified, otherwise uses the default coefficient (0xD8018001).

ADSP-SC5xx/ADSP-215xx Processor Loader Guide
The loader utility post-processes executable (.dxe) files and generates loader (.ldr) files. A loader file can be for-
matted as binary, include, ASCII, or Intel hex style. An .ldr file contains the boot stream in a format expected by
the on-chip boot kernel.

Loader utility operations depend on the loader properties, which control how the utility processes executable files.
You can select boot modes and output file formats. The properties are specified on the loader utility's command line
or the Tool Settings dialog box in CCES. The default loader options for a target processor are preset in CCES
project settings.

NOTE: The CrossCore SHARC Loader CCES project Tool Settings correspond to switches displayed on the com-
mand line.

These sections describe how to produce a bootable loader file:

ADSP-SC5xx/ADSP-215xx Processor Booting

CCES 2.9.0 Loader and Utilities Manual 7–9

• Loader Command Line for ADSP-SC5xx/ADSP-215xx Processors

• CCES Loader Interface for ADSP-SC5xx/ADSP-215xx Processors

Loader Command Line for ADSP-SC5xx/ADSP-215xx Processors

The loader utility uses the following command-line syntax for the ADSP-SC5xx/ADSP-215xx processors.

Use this syntax for a single input file:

elfloader InputFile -proc processor [-switch]
Use this syntax for multiple input files:

elfloader InputFile1 InputFile2 -proc processor [-switch]

where:

• InputFile - Name of the executable (.dxe) file to be processed into a single boot-loadable or non-bootable
file. An input file name can include the drive and directory. For multiprocessor or multi-input systems, specify
multiple input .dxe files. Put the input file names in the order in which you want the loader utility to process
the files. Enclose long file names within straight quotes, "long file name".

• -proc processor - Part number of the processor (for example, -proc ADSP-21584) for which the
loadable file is built. Provide a processor part number for every input .dxe; see the part numbers in ADSP-
SC5xx/ADSP-215xx Processor Booting.

• -switch - One or more optional switches to process. Switches select operations and modes for the loader utili-
ty.

NOTE: Command-line switches can be placed on the command line in any order, except the order of input files.
For a multi-input system, the loader utility processes the input files in the order presented on the com-
mand line.

Loader Command-Line Switches for ADSP-SC5xx/ADSP-215xx Processors

A summary of the loader command-line switches for the ADSP-SC5xx/ADSP-215xx processors appears in the fol-
lowing table.

A command line help summary is also available for specific processors by using -help along with -proc. For
example, to get the command line help output for an ADSP-21584 processor, use:
elfloader -proc ADSP-21584 -help

ADSP-SC5xx/ADSP-215xx Processor Loader Guide

7–10 CCES 2.9.0 Loader and Utilities Manual

Table 7-6: ADSP-SC5xx/ADSP-215xx Loader Command-Line Switches

Switch Description

-b {SPIMASTER|SPISLAVE|LPSLAVE|
UARTSLAVE}

The -b switch directs the loader utility to prepare a boot-loadable file for the
specified boot mode.

The default boot mode for ADSP-SC5xx/ADSP-215xx processors is SPIMAS-
TER.

The loader will accept SPI or SPIMASTER for the boot mode switch for SPI mas-
ter.

-bcode # The -bcode switch specifies a numeric value for the BCODE field in the ADSP-
SC5xx target block headers.

For -b SPI (SPI master), specify the SPIMCODE value.

For -b SPISLAVE boot mode, specify the SPISCODE value found in the
SPICMD table.

-callback sym= symbol [arg=const32] The -callback switch takes a sym=symbol (no spaces) assignment.

The switch directs the loader utility to isolate the named subroutine into a sepa-
rate block, set the block header's CALLBACK flag, and fill in the block header's
argument field with the specified 32-bit, constant value. The switch is used for
boot-time callbacks.

The callback is guaranteed to be made prior to the target address of sym=sym-
bol.

NOTE: The -callback cannot be used with -CRC32.

-core[012]=" ExecutableFile " The -core[012] switch directs the loader utility to process the specified file or
files. The switch can appear multiple times and is intended for multi-core input.
The -core[012] switch is not required for single core parts such as
ADSP-2156x.

Do not use white space around = when specifying ExecutableFile. If specify-
ing a full path, use forward slash /.

Examples (for the ADSP-SC5xx part supporting all three cores):

-core0="ARMPath/ARM_Core0"
-core1="SHARC_Core1.dxe"
-core2="SHARC_Core2.dxe"

-CRC32 [polynomial] The -CRC32 (polynomial coefficient) switch directs the loader utility to generate
CRC32 checksum. It uses a polynomial coefficient specified; otherwise, uses the
default (0xD8018001).

This switch inserts an initcode boot block that calls an initialization routine, re-
siding in the on-chip boot ROM. The argument field of the boot block provides
the used polynomial. The loader utility calculates the CRC checksum for all sub-
sequent data blocks and stores the result in the block header's argument field.

-chipmemsplitter This switch causes additional loader file outputs for on-chip and off-chip memory
to be produced along with the usual loader file output. These additional outputs

ADSP-SC5xx/ADSP-215xx Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 7–11

Table 7-6: ADSP-SC5xx/ADSP-215xx Loader Command-Line Switches (Continued)

Switch Description

can be useful when it is necessary to create an encrypted boot image for
ADSP-2156x part on-chip memory.

-enc [DllFile] The -enc switch directs the loader to encrypt the data stream from the applica-
tion .dxe files. The encryption algorithm in DllFile is used if DllFile is
specified; otherwise the default Analog Devices algorithm is used.

-f {hex|ascii|binary|include} The -f {hex|ascii|binary|include} switch specifies the format of a
boot-loadable file: Intel hex-32, ASCII, binary, or include.

If the -f switch does not appear on the command line, the default file format is
ASCII.

-h or -help The -help switch invokes the command-line help, outputs a list of command-
line switches to standard output, and exits.

By default, the -h switch alone provides help for the loader driver. To obtain a
help screen for your target processor, add the -proc switch to the command
line. For example, type elfloader -proc ADSP-21584 -h to obtain
help for the ADSP-21584 processor.

-init " FileName " [{ AddrHexFormat |
Symbol }]

The -init FileName.dxe switch directs the loader utility to include the ini-
tialization code from the named executable file. If a symbol or start address is
specified, the loader utility uses that in place of the ELF entry address.

For more information, see Initializing ADSP-SC5xx/ADSP-215xx using Init Co-
des .

-initcall tgt= symbol

at= at_symbol [count=const32 [stride=
const32]]

While the -init FileName.dxe switch integrates initialization codes, man-
aged by a separate application program, the -initcall switch controls calls to
initialization subroutines that are part of the same application. The switch directs
the loader utility to:

• Dispatch a boot-time call to the tgt symbol when at_symbol is encoun-
tered.

• If optional stride value is specified, insert the tgt program call every
stride target address locations.

• If optional count value is specified, insert the tgt program call count
times, every stride target address locations.

-maskaddr # The -maskaddr # switch masks all EPROM address bits above or equal to #.

For example, -maskaddr 29 (default) masks all of the bits above and includ-
ing A29 (ANDed by 0x1FFF FFFF).

For example, 0x2000 0000 becomes 0x0000 0000. The valid # is an inte-
ger 0 through 32, but based on your specific input file, the value can be within a
subset of [0, 32].

-MaxBlockSize # The -MaxBlockSize # switch specifies the maximum block byte size, up to
0xFFFFFFFC. The value must be a multiple of four.

The default maximum block size is 0x7FFFFFF0.

ADSP-SC5xx/ADSP-215xx Processor Loader Guide

7–12 CCES 2.9.0 Loader and Utilities Manual

Table 7-6: ADSP-SC5xx/ADSP-215xx Loader Command-Line Switches (Continued)

Switch Description

-MaxFillBlockSize # The -MaxFillBlockSize # switch specifies the maximum fill block size, up
to 0xFFFFFFFC. The value must be a multiple of four.

The default fill block size is 0x7FFFFFF0.

-M The -M switch generates make dependencies only, no output file is generated.

-MM The -MM switch generates make dependencies while producing the output files.

-Mo FileName The -Mo FileName switch writes make dependencies to the named file. Use the
-Mo switch with either -M or -MM. If -Mo is absent, the default is a <stdout>
display.

-Mt TargetName The -Mt TargetName switch specifies the make dependencies target output
file. Use the -Mt switch with either -M or -MM. If -Mt is not present, the default
is the name of the input file with an .ldr extension.

-NoFillBlock The -NoFillBlock switch directs the loader utility not to produce FILL
blocks, zero, or repeated non-zero pattern blocks. By default, FILL block creation
is enabled for space compression.

-NoFinalTag=" ExecutableFile "

-NoFinalTag[="ExecutableFile"] (for mul-
ti-core ADSP-BF561 / ADSP-BF60x / ADSP-
SC5xx / ADSP-215xx processors only)

The -NoFinalTag switch is used for multiple core booting on multi-core
ADSP-BF561/ADSP-BF60x/ADSP-SC5xx/ADSP-215xx processors.

If no ExecutableFile is specified, -NoFinalTag defaults to the first appli-
cation .dxe (p0.dxe).

NOTE: Specify the executable file name for the ADSP-SC5xx/ADSP-215xx
processors.

-NoFinalTag with executable argument can appear multiple times.

-NoFinalTag directs the loader not to set the FINAL flag on the
final block, for code built from the executable.

Do not use white space around = when specifying the executable
name. If specifying a full path, use forward slash /.

Example: -NoFinalTag="App0_Core0" -
NoFinalTag="PathDxe/App1_Core0.dxe"

-o FileName The -o FileName switch directs the loader utility to use the specified name for
the loader utility's output file. If FileName is absent, the default name is the root
name of the input file with an .ldr extension.

-proc processor The -proc processor switch specifies the target processor.

The processor can be one of those listed in ADSP-SC5xx/ADSP-215xx Pro-
cessor Booting.

-quickboot sec= section The -quickboot switch takes a sec=section (no spaces) assignment.

The switch directs the loader utility to mark blocks within the LDF-defined out-
put section name with the QUICKBOOT block flag (0x0200). The switch is
used to mark blocks to skip on warm-boot cycles.

ADSP-SC5xx/ADSP-215xx Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 7–13

Table 7-6: ADSP-SC5xx/ADSP-215xx Loader Command-Line Switches (Continued)

Switch Description

-readall # The -readall # switch directs the loader utility to integrate fixed-position
ROM sections within the loader boot stream. The switch calls the splitter utility
as a transparent sub-process to the loader utility. Memory segments declared with
the TYPE(ROM) command in the LDF file are processed by the splitter. Seg-
ments with the TYPE(RAM) command emit to the boot stream.

The valid switch argument is an integer between 0 and 32, where 29 is the de-
fault. In the resulting loader (.ldr) file in Intel hex-32 format, the ROM-based
splitter data is merged with the RAM-based loader stream.

The # argument is similar to the -maskaddr # switch, which designates the
upper PROM address bit position for extended address mapping. The splitter
utility is required to provide the -maskaddr # parameter to the loader utility
to generate a ROM-based splitter stream, but the required splitter parameter is
not available on the loader command line. The loader utility solves this require-
ment by supporting the -readall# switch.

-romsplitter The -romsplitter switch creates a non-bootable image only. This switch
overwrites the -b switch and any other switch bounded by the boot mode.

In the .ldf file, declare memory segments to be `split' as type ROM. The splitter
skips RAM segments, resulting in an empty file if all segments are declared as RAM.
The -romsplitter switch supports Intel hex and ASCII formats.

-save [sec= section] The -save switch takes a sec=section (no spaces) assignment.

The switch directs the loader utility to mark blocks within the LDF-defined sec-
tion name with the SAVE block flag (0x0010). The switch is used to mark
blocks to archive for low-power or power-fail cycles.

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for the processor
hardware. If -si-revision is not used, the target is a default revision from
the supported revisions.

-v The -v switch directs the loader utility to output verbose loader messages and
status information as the loader processes files.

-Width # The -Width 8 switch specifies an external memory device width (in bits). The
only valid width is 8.

-W
-W ###

The -w switch directs the loader utility to suppress all warnings and information-
al messages.

The -W switch directs the loader utility to suppress the specified warning/infor-
mational message number ### (multiple -W### allowed).

CCES Loader Interface for ADSP-SC5xx/ADSP-215xx Process-
ors
Once a project is created in CrossCore Embedded Studio (CCES), you can change the project's output (Build Arti-
fact) type from the default Executable to Loader File.

CCES Loader Interface for ADSP-SC5xx/ADSP-215xx Processors

7–14 CCES 2.9.0 Loader and Utilities Manual

When the output to be a loader file is selected, CCES invokes the elfloader.exe utility to build the output
loader file when the project is built. To modify the default loader properties, use the project's CrossCore SHARC
Loader Tool Settings. The controls available in these CCES settings correspond to the loader command-line switches
and parameters. Refer to the online help for more information (search for "loader properties").

ADSP-SC5xx/ADSP-215xx Loader Collateral
The CrossCore Embedded Studio (CCES) installation contains additional files and projects to assist with develop-
ment and debugging of the ADSP-SC5xx/ADSP-215xx applications which rely on booting functionality.

ROM Code

The sources for ROM code are not available in CCES to protect the ADSP-SC5xx/ADSP-215xx secure booting and
encryption details.

Init Codes and Preloads

The projects and pre-built init code executables for the ADSP-21569, ADSP-SC573, ADSP-SC584 and ADSP-
SC589 EZ-KIT support are available in CCES. These perform various initializations such as setting clocks and con-
figuring external memory. The pre-built init core executable files are located in SHARC/ldr.

The configured projects and their sources are provided in family and part specific subfolders, for example
SHARC/ldr/init_code/SC58x_Init/sc589_init_Core0. These may be useful when your hardware
is similar to an EZ-KIT, as a basis for building an init code executable for your own custom hardware. Alternatively
there are unconfigured init code projects that might be a better starting point when your target is less like an EZ-
KIT, these are:

• SHARC/ldr/init_code/2156x_Init/2156x_init for ADSP-2156x processors

• SHARC/ldr/init_code/SC5xx_Init/sc5xx_init_Core0 for ADSP-SC5xx processors

• SHARC/ldr/init_code/215xx_Init/215xx_init_Core1 for ADSP-2157x or ADSP-2158x
processors

The init code functionality is built into the preload executables, which are part of the default launch configuration
when loading an application into the processor via the debugger. The preload executables are simple programs that
invoke the init code functionality to configure the processor prior to loading the main application. Pre-built preload
executables are located in SHARC/ldr.

There are projects and sources for rebuilding preloads provided with CCES, for example SHARC/ldr/
init_code/SC58x_Init/sc589_preload_Core0. Consult the readme.txt files in these provided
projects for directions on rebuilding for different configurations.

For ADSP-2158x or ADSP-2157x processors the SHARC+ core 1 is the booting core so the preload and init code
must be built using the SHARC+ toolchain for Core 1. Use the supplied 215xx_preload_Core1 and
215xx_init_Core1 projects as a basis for custom hardware support using these parts.

ADSP-SC5xx/ADSP-215xx Loader Collateral

CCES 2.9.0 Loader and Utilities Manual 7–15

NOTE: Do not use the preload executables when building bootable LDR files with the -init switch. The preload
executables are not configured for use for LDR initialization blocks.

ROM Programming

ROM API headers for the ADSP-SC5xx/ADSP-215xx processors are available in the CCES installation.

The boot programming model is documented in the Hardware Reference Manual for your processor.

SHARC Example

Build macros automatically configure sharc_rom.h (SHARC/include/sharc_rom.h) for your build tar-
get processor:
#include <sharc_rom.h>

ARM Example

Build macros automatically configure arm_rom.h (ARM/arm-none-eabi/arm-none-eabi/
include/adi/cortex-a5/arm_rom.h) for your build target processor.
#include <arm_rom.h>

ADSP-SC57x and ADSP-2158x Family Processors Running at 500 MHz

The ADSP-SC57x/ADSP-2157x and ADSP-SC58x/ADSP-2158x family processors can have a maximum core clock
frequency (CCLK) of 500 MHz. The ADSP-SC573/SC584/SC589 EZ-KITs and their pre-built initcode and pre-
load executable support are configured instead for 450 MHz. When not using an EZ-KIT and developing for
ADSP-SC57x/ADSP-2157x or ADSP-SC58x/ADSP-2158x processors, the core clock frequency can be set to 500
MHz by modifying and rebuilding the preloads and initcodes. Refer to the readme.txt of an appropriate pre-
load or initcode project for an explanation of how to set the core clock frequency. The ADSP-SC573 preload and
initcode projects are located in the SHARC/ldr/init_code/SC57x_Init folder, and the ADSP-SC589 and
ADSP-SC584 preload and initcode projects are located in the SHARC/ldr/init_code/SC58x_Init folder.

ADSP-SC5xx/ADSP-215xx Loader Collateral

7–16 CCES 2.9.0 Loader and Utilities Manual

8 Loader for ADSP-21160 SHARC Processors

This chapter explains how the loader utility (elfloader.exe) is used to convert executable (.dxe) files into
boot-loadable files for the ADSP-21160 SHARC processors.

Refer to the Introduction chapter for the loader utility overview; the introductory material applies to all processor
families. Refer to Loader for ADSP-21161 SHARC Processors chapter for information about the ADSP-21161 pro-
cessors. Refer to Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors chapter for information about
the ADSP-2126x and ADSP-2136x processors.

Loader operations specific to the SHARC processors are detailed in the following sections.

• ADSP-21160 Processor Booting

Provides general information about various booting modes, including information about boot kernels.

• Processor Loader Guide

Provides reference information about the loader utility's graphical user interface, command-line syntax, and
switches.

ADSP-21160 Processor Booting
The processors support three boot modes: EPROM, host, link port, and no-boot (see the ADSP-21160 Boot Mode
Pins and ADSP-21160 Boot Modes tables in Boot Mode Selection). Boot-loadable files for these modes pack boot
data into 48-bit instructions and use an appropriate DMA channel of the processor's DMA controller to boot-load
the instructions.

NOTE: The ADSP-21160 processors use DMAC8 for link port booting and DMAC10 for the host and EPROM
booting.

• When booting from an EPROM through the external port, the processor reads boot data from an 8-bit exter-
nal EPROM.

• When booting from a host processor through the external port, the processor accepts boot data from a 8- or
16-bit host microprocessor.

• When booting through the link port, the processor receives boot data as 4-bit wide data in link buffer 4.

• In no-boot mode, the processor begins executing instructions from external memory.

Loader for ADSP-21160 SHARC Processors

CCES 2.9.0 Loader and Utilities Manual 8–1

Software developers who use the loader utility should be familiar with the following operations.

• Power-Up Booting Process

• Boot Mode Selection

• ADSP-21160 Boot Modes

• ADSP-21160 Boot Kernels

• ADSP-21160 Interrupt Vector Table

• ADSP-21160 Multi-Application (Multi-DXE) Management

• ADSP-21160 Processor ID Numbers

Power-Up Booting Process

The ADSP-21160 processors include a hardware feature that boot-loads a small, 256-instruction program into the
processor's internal memory after power-up or after the chip reset. These instructions come from a program called
boot kernel. When executed, the boot kernel facilitates booting of user application code. The combination of the
boot kernel and application code comprise the boot-loadable (.ldr) file.

At power-up, after the chip reset, the booting process includes the following steps.

1. Based on the boot type, an appropriate DMA channel is automatically configured for a 256-instruction (48-
bit) transfer. This transfer boot-loads the boot kernel program into the processor memory. DMA channels used
by various processor models are shown in the Processor DMA Channels table.

Table 8-1: Processor DMA Channels

Processor PROM Booting Host Booting Link Booting

ADSP-21160 DMAC10*1 DMAC10 DMAC8

2. The boot kernel runs and loads the application executable code and data.

3. The boot kernel overwrites itself with the first 256 words of the application at the end of the booting process.
After that, the application executable code begins to execute from location 0x40000 (ADSP-21160). The
start addresses and reset vector addresses are summarized in the Processor Start Addresses table.

Table 8-2: Processor Start Addresses

Processor Start Address Reset Vector Address*2

ADSP-21160 0x40000 0x40004

*1 See the DMA Settings for ADSP-21160 EPROM Booting table in EPROM Boot Mode.

*2 The reset vector address must not contain a valid instruction since it is not executed during the booting sequence. Place a NOP or
IDLE instruction at this location.

ADSP-21160 Processor Booting

8–2 CCES 2.9.0 Loader and Utilities Manual

The boot type selection directs the system to prepare the appropriate boot kernel.

Boot Mode Selection

The state of various pins selects the processor boot mode. See the ADSP-21160 Boot Mode Pins and ADSP-21160
Boot Modes tables.

Table 8-3: ADSP-21160 Boot Mode Pins

Pin Type Description

EBOOT I EPROM boot. When EBOOT is high, the processor boot-loads from an 8-bit EPROM through
the processor's external port. When EBOOT is low, the LBOOT and BMS pins determine the
booting mode.

LBOOT I Link port boot. When LBOOT is high and EBOOT is low, the processor boots from another
SHARC through the link port. When LBOOT is low and EBOOT is low, the processor boots
from a host processor through the processor's external port.

BMS I/O/T*1 Boot memory select. When boot-loading from an EPROM (EBOOT=1 and LBOOT=0), this pin
is an output and serves as the chip select for the EPROM. In a multiprocessor system, BMS is
output by the bus master. When host-booting or link-booting (EBOOT=0), BMS is an input and
must be high.

*1 Three-statable in EPROM boot mode (when BMS is an output).

Table 8-4: ADSP-21160 Boot Modes

EBOOT LBOOT BMS Boot Mode

0 0 0 (Input) No-boot (processor executes from external memory)

0 0 1 (Input) Host processor

0 1 0 (Input) Reserved

0 1 1 (Input) Link port

1 0 Output EPROM (BMS is chip select)

1 1 x (Input) Reserved

ADSP-21160 Boot Modes

The processors support these boot modes: EPROM, host, and link. The following sections describe each of the
modes.

• EPROM Boot Mode

• Host Boot Mode

• Link Port Boot Mode

• No-Boot Mode

ADSP-21160 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 8–3

For multiprocessor booting, refer to ADSP-21160 Multi-Application (Multi-DXE) Management.

EPROM Boot Mode

The processor is configured for EPROM boot through the external port when the EBOOT pin is high and the
LBOOT pin is low. These settings cause the BMS pin to become an output, serving as chip select for the EPROM.
The PROM Connections to Processors table lists all PROM-to-processor connections.

Table 8-5: PROM Connections to Processors

Processor Connection

ADSP-21160 PROM/EPROM connects to DATA39-32 pins

ADSP-21xxx Address pins of PROM connect to lowest address pins of any processor

ADSP-21xxx Chip select connects to the BMS pin

ADSP-21160 Output enable connects to RDH pin

During reset, the ACK line is pulled high internally with a 2K ohm equivalent resistor and is held high with an
internal keeper latch. It is not necessary to use an external pull-up resistor on the ACK line during booting or at any
other time.

The DMA channel parameter registers are initialized at reset for EPROM booting as shown in the DMA Settings for
ADSP-21160 EPROM Booting table. The count is initialized to 0x0100 to transfer 256 words to internal memo-
ry. The external count register (ECx), which is used when external addresses (BMS space) are generated by the
DMA controller, is initialized to 0x0600 (0x100 words at six bytes per word).

Table 8-6: DMA Settings for ADSP-21160 EPROM Booting

DMA Setting ADSP-21160 Processor

BMS space 8M x 8-bit

DMA channel DMAC10 = 0x4A1
II10 0x40000
IM10 0x1 (implied)

C10 0x100
EI10 0x800000
EM10 0x1 (implied)

EC10 0x600
IRQ vector 0x40050

After the processor's RESET pin goes inactive on start-up, a SHARC system configured for EPROM boot under-
goes the following boot-loading sequence:

1. The processor BMS pin becomes the boot EPROM chip select.

ADSP-21160 Boot Modes

8–4 CCES 2.9.0 Loader and Utilities Manual

2. The processor goes into an idle state, identical to that caused by the IDLE instruction. The program counter
(PC) is set to the processor reset vector address (refer to the Processor Start Addresses table in Power-Up Boot-
ing Process).

3. The DMA controller reads 8-bit EPROM words, packs them into 48-bit instruction words, and transfers them
into internal memory (low-to-high byte packing order) until the 256 words are loaded.

4. The DMA parameter registers for appropriate DMA channels are initialized, as shown in the DMA Settings for
ADSP-21160 EPROM Booting table. The external port DMA channel (6 or 10) becomes active following re-
set; it is initialized to set external port DMA enable and selects DTYPE for instruction words. The packing
mode bits (PMODE) are ignored, and 48- to 8-bit packing is forced with least significant word first. The UBWS
and UBWM fields of the WAIT register are initialized to generate six wait states for the EPROM access in un-
banked external memory space.

5. The processor begins 8-bit DMA transfers from the EPROM to internal memory using the D39-32 external
port data bus lines.

6. Data transfers begin and increment after each access. The external address lines (ADDR31-0) start at 0x80
0000.

7. The processor RD pin asserts as in a normal memory access, with six wait states (seven cycles).

8. After finishing DMA transfers to load the boot kernel into the processor, theBSO bit is cleared in the SYSCON
register, deactivating the BMS pin and activating normal external memory select.

The boot kernel uses three copies of SYSCON-one that contains the original value of SYSCON, a second that
contains SYSCON with the BSO bit set (allowing the processor to gain access to the boot EPROM), and a third
with the BSO bit cleared.

When BSO=1, the EPROM packing mode bits in the DMACx control register are ignored and 8- to 48-bit
packing is forced. (8-bit packing is available only during EPROM booting or when BSO is set.) When an exter-
nal port DMA channel is being used in conjunction with the BSO bit, none of the other three channels may be
used. In this mode, BMS is not asserted by a core processor access but only by a DMA transfer. This allows the
boot kernel to perform other external accesses to non-boot memory.

The EPROM is automatically selected by the BMS pin after reset, and other memory select pins are disabled. The
processor's DMA controller reads the 8-bit EPROM words, packs them into 48-bit instruction words, and transfers
them to internal memory until 256 words have been loaded. The master DMA internal and external count registers
(Cx and ECx) decrement after each EPROM transfer. When both counters reach zero, DMA transfer has stopped
and RTI returns the program counter to the address where the kernel starts.

NOTE: To EPROM boot a single-processor system, include the executable on the command-line without a switch.
Do not use the -id#exe switch with ID=0 (see ADSP-21160 Processor ID Numbers).

The WAIT register UBWM (used for EPROM booting) is initialized at reset to both internal wait and external ac-
knowledge required. The internal keeper latch on the ACK pin initially holds acknowledge high (asserted). If ac-
knowledge is driven low by another device during an EPROM boot, the keeper latch may latch acknowledge low.

ADSP-21160 Boot Modes

CCES 2.9.0 Loader and Utilities Manual 8–5

The processor views the deasserted (low) acknowledge as a hold off from the EPROM. In this condition, wait states
are continually inserted, preventing completion of the EPROM boot. When writing a custom boot kernel, change
the WAIT register early within the boot kernel so UBWM is set to internal wait mode (01).

Host Boot Mode

The ADSP-21160 processors accept data from a 8- and 16-bit host microprocessor (or other external device)
through the external port EPB0 and pack boot data into 48-bit instructions using an appropriate DMA channel.
The host is selected when the EBOOT and LBOOT inputs are low and BMS is high. Configured for host booting, the
processor enters the slave mode after reset and waits for the host to download the boot program. The Host Connec-
tions to ADSP-21160 Processors table lists host connections to processors.

Table 8-7: Host Connections to ADSP-21160 Processors

Processor Connection/Data Bus Pins

ADSP-21160 Host connected to DATA63-32 or DATA47-31 pins (based on HPM bits)

ADSP-21160 ADSP-21160 host address to IOP registers and internal memory

After reset, the processor goes into an idle stage with PC set to address 0x40004.

The parameter registers for the external port DMA channel (0, 6, or 10) are initialized as shown in the DMA Set-
tings for ADSP-21160 EPROM Booting table (in EPROM Boot Mode), except that registers EIx, EMx and ECx
are not initialized and no DMA transfers start.

The DMA channel control register (DMAC10) for the ADSP-21160 processor is initialized, which allows external
port DMA enable and selects DTYPE for instruction words, PMODE for 16- to 48-bit word packing, and least sig-
nificant word first.

Because the host processor is accessing the EPB0 external port buffer, the HPM host packing mode bits of the
SYSCON register must correspond to the external bus width specified by the PMODE bits of DMACx control register.

For a different packing mode, the host must write to DMACx and SYSCON to change the PMODE and HBW setting.
The host boot file created by the loader utility requires the host processor to perform the following sequence of ac-
tions:

1. The host initiates the synchronous booting operation by asserting the processor HBR input pin, informing the
processor that the default 8-/16-bit bus width is used. The host may optionally assert the CS chip select input
to allow asynchronous transfers.

2. After the host receives the HBG signal (and ACK for synchronous operation or READY for asynchronous opera-
tion) from the processor, the host can start downloading instructions by writing directly to the external port
DMA buffer 0 or the host can change the reset initialization conditions of the processor by writing to any of
the IOP control registers. The host must use data bus pins as shown in the Host Connections to ADSP-21160
Processors table.

3. The host continues to write 16-bit words to EPB0 until the entire program is boot-loaded. The host must wait
between each host write to external port DMA buffer 0.

ADSP-21160 Boot Modes

8–6 CCES 2.9.0 Loader and Utilities Manual

After the host boot-loads the first 256 instructions of the boot kernel, the initial DMA transfers stop, and the boot
kernel:

1. Activates external port DMA channel interrupt (EP0I), stores the DMACx control setting in R2 for later re-
store, clears DMACx for new setting, and sets the BUSLCK bit in the MODE2 register to lock out the host.

2. Stores the SYSCON register value in R12 for restore.

3. Enables interrupts and nesting for DMA transfer, sets up the IMASK register to allow DMA interrupts, and
sets up the MODE1 register to enable interrupts and allow nesting.

4. Loads the DMA control register with 0x00A1 and sets up its parameters to read the data word by word from
external buffer 0. Each word is read into the reset vector address (refer to the Processor Start Addresses table in
Power-Up Booting Process) for dispatching. The data through this buffer has a structure of boot section which
could include more than one initialization block.

5. Clears the BUSLCK bit in the MODE2 register to let the host write in the external buffer 0 right after the ap-
propriate DMA channel is activated.

For information on the data structure of the boot section and initialization, see ADSP-21160 Boot Kernels.

6. Loads the first 256 words of target the executable file during the final initialization stage, and then the kernel
overwrites itself.

The final initialization works the same way as with EPROM booting, except that the BUSLCK bit in the MODE2
register is cleared to allow the host to write to the external port buffer.

The default boot kernel for host booting assumes IMDW is set to 0 during boot-loading, except during the final
initialization stage. When using any power-up booting mode, the reset vector address (refer to the Processor Start
Addresses table in Power-Up Booting Process) must not contain a valid instruction because it is not executed during
the booting sequence. Place a NOP or IDLE instruction at this location.

If the boot kernel initializes external memory, create a custom boot kernel that sets appropriate values in the
SYSCON and WAIT register. Be aware that the value in the DMA channel register is non-zero, and IMASK is set to
allow DMA channel register interrupts. Because the DMA interrupt remains enabled in IMASK, this interrupt must
be cleared before using the DMA channel again. Otherwise, unintended interrupts may occur.

A master SHARC processor may boot a slave SHARC processor by writing to its DMACx control register and setting
the packing mode (PMODE) to 00. This allows instructions to be downloaded directly without packing. The wait
state setting of 6 on the slave processor does not affect the speed of the download since wait states affect bus master
operation only.

Link Port Boot Mode

When link-boot the SHARC processors, the processor receives data from 4-bit link buffer 4 and packs boot data
into 48-bit instructions using the appropriate DMA channels (DMA channel 8).

Link port mode is selected when the EBOOT is low and LBOOT and BMS are high. The external device must pro-
vide a clock signal to the link port assigned to link buffer 4. The clock can be any frequency, up to a maximum of

ADSP-21160 Boot Modes

CCES 2.9.0 Loader and Utilities Manual 8–7

the processor clock frequency. The clock falling edges strobe the data into the link port. The most significant 4-bit
nibble of the 48-bit instruction must be downloaded first. The link port acknowledge signal generated by the pro-
cessor can be ignored during booting since the link port cannot be preempted by another DMA channel.

Link booting is similar to host booting-the parameter registers (IIx and Cx) for DMA channels are initialized to
the same values. The DMA channel 6 control register (DMAC6) is initialized to 0x00A0, and the DMA channel 10
control register (DMAC10) is initialized to 0x100000. This disables external port DMA and selects DTYPE for
instruction words. The LCTL and LCOM link port control registers are overridden during link booting to allow link
buffer 4 to receive 48-bit data.

After booting completes, the IMASK remains set, allowing DMA channel interrupts. This interrupt must be cleared
before link buffer 4 is again enabled; otherwise, unintended link interrupts may occur.

No-Boot Mode

No-boot mode causes the processor to start fetching and executing instructions at address 0x800004 in external
memory space for ADSP-21160 processors. All DMA control and parameter registers are set to their default initiali-
zation values. The loader utility is not intended to support no-boot mode.

ADSP-21160 Boot Kernels

The boot-loading process starts with a transfer of the boot kernel program into the processor memory. The boot
kernel sets up the processor and loads boot data. After the boot kernel finishes initializing the rest of the system, the
boot kernel loads boot data over itself with a final DMA transfer.

Boot kernels are loaded at reset into program segment seg_ldr, which is defined in 160_ldr.ldf. The files
are stored in the SHARC/ldr directory of CCES. The files shipped are listed in the Default Boot Kernel Files
table.

Table 8-8: Default Boot Kernel Files

Processor PROM Booting Link Booting Host Booting

ADSP-21160 160_prom.asm 160_link.asm 160_host.asm

Once the boot kernel has been loaded successfully into the processor, the kernel follows the following sequence:

1. Each boot kernel begins with general initializations for the DAG registers, appropriate interrupts, processor ID
information, and various SDRAM or WAIT state initializations.

2. Once the boot kernel has finished the task of initializing the processor, the kernel initializes processor memory,
both internal and external, with user application code.

Processor Boot Steams

The structure of a loader file enables the boot kernel to load code and data, block by block. In the loader file, each
block of code or data is preceded by a block header, which describes the block -length, placement, and data or in-
struction type. After the block header, the loader utility outputs the block body, which includes the actual data or
instructions for placement in the processor memory. The loader utility, however, does not output a block body if the

ADSP-21160 Boot Modes

8–8 CCES 2.9.0 Loader and Utilities Manual

actual data or instructions are all zeros in value. This type of block called a zero block. The Boot Block Format table
describes the block header and body formats.

Table 8-9: Boot Block Format

Block header First word Bits 16-47 are not used Bits 0-15 define the type of data block (tag)

Second word Bits 16-47 are the start address of the block Bits 0-15 are the word
count for the block

Block body (if not a zero block) Word 1 (48 bits) Word 2 (48 bits)

The loader utility identifies the data type in the block header with a 16-bit tag that precedes the block. Each type of
initialization has a unique tag number. The tag numbers and block types are shown in the ADSP-21160 Processor
Loader Block Tags table.

Table 8-10: ADSP-21160 Processor Loader Block Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000A zero pm48
0x0001 zero dm16 0x000B init pm16
0x0002 zero dm32 0x000C init pm32
0x0003 zero dm40 0x000E init pm48
0x0004 init dm16 0x000F zero dm64
0x0005 init dm32 0x0010 init dm64
0x0007 zero pm16 0x0011 zero pm64
0x0008 zero pm32 0x0012 init pm64
0x0009 zero pm40

The kernel enables the boot port (external or link) to read the block header. After reading information from the
block header, the kernel places the body of the block in the appropriate place in memory if the block has a block
body, or initializes in the appropriate place with zero values in the memory if the block is a zero block.

The final section, which is identified by a tag of 0x0, is called the final initialization section. This section has self-
modifying code that, when executed, facilitates a DMA over the kernel, replacing it with user application code that
actually belongs in that space at run time. The final initialization code also takes care of interrupts and returns the
processor registers, such as SYSCON and DMAC or LCTL, to their default values.

When the loader utility detects the final initialization tag, it reads the next 48-bit word. This word indicates the
instruction to load into the 48-bit Px register after the boot kernel finishes initializing memory.

The boot kernel requires that the interrupt, external port (or link port address, depending on the boot mode) con-
tains an RTI instruction. This RTI is inserted automatically by the loader utility to guarantee that the kernel exe-
cutes from the reset vector, once the DMA that overwrites the kernel is complete. A last remnant of the kernel code
is left at the reset vector location to replace the RTI with the user's intended code. Because of this last kernel

ADSP-21160 Boot Kernels

CCES 2.9.0 Loader and Utilities Manual 8–9

remnant, user application code should not use the first location of the reset vector. This first location should be a
NOP or IDLE instruction. The kernel automatically completes, and the program controller begins sequencing the
user application code at the second location in the processor reset vector space.

When the boot process is complete, the processor automatically executes the user application code. The only re-
maining evidence of the boot kernel is at the first location of the interrupt vector. Almost no memory is sacrificed to
the boot code.

Boot Kernel Modification and Loader Issues

Some systems require boot kernel customization. The operation of other tools (such as the C/C++ compiler) is influ-
enced by whether the boot kernel is used.

When producing a boot-loadable file, the loader utility reads a processor executable file and uses information in it to
initialize the memory. However, the loader utility cannot determine how the processor SYSCON and WAIT registers
are to be configured for external memory loading in the system.

If you modify the boot kernel by inserting values for your system, you must rebuild it before generating the boot-
loadable file. The boot kernel contains default values for SYSCON. The initialization code can be found in the com-
ments in the boot kernel source file.

After modifying the boot kernel source file, rebuild the boot kernel (.dxe) file. Do this from the IDE (refer to
online help for details), or rebuild the boot kernel file from the command line.

NOTE: Specify the name of the modified kernel executable in the Kernel file (-l) field on the CrossCore SHARC
Loader > General page of the Tool Settings dialog box.

If you modify the boot kernel for EPROM, host, or link boot modes, ensure that the seg_ldr memory segment is
defined in the .ldf file. Refer to the source of the segment in the .ldf file located in the <install_path>/
SHARC/ldr directory.

The loader utility generates a warning when vector address 0x40004 does not contain NOP or IDLE. Because the
boot kernel uses this address for the first location of the reset vector during the boot-load process, avoid placing code
at this address. When using any of the processor's power-up boot modes, ensure that the address does not contain a
critical instruction. Because the address is not executed during the booting sequence, place a NOP or IDLE instruc-
tion at this location.

The boot kernel project can be rebuilt from the IDE. The command-line can also be used to rebuild various default
boot kernels for the processors.

EPROM Booting. The default boot kernel source file for the ADSP-21161 EPROM booting is 161_prom.asm.
Copy this file to my_prom.asm and modify it to suit your system. Then use the following commands to rebuild
the boot kernel:
easm21k -21161 my_prom.asm

or
easm21k -proc ADSP-21161 my_prom.asm
linker -T 161_ldr.ldf my_prom.doj

ADSP-21160 Boot Kernels

8–10 CCES 2.9.0 Loader and Utilities Manual

Host Booting. The default boot kernel source file for the ADSP-21161 host booting is 161_host.asm. Copy this
file to my_host.asm and modify it to suit your system. Then use the following commands to rebuild the boot
kernel:
easm21k -21161 my_host.asm

or
easm21k -proc ADSP-21161 my_host.asm
linker -T 161_ldr.ldf my_host.doj

Link Port Booting. The default boot kernel source file for the ADSP-21160 link port booting is 161_link.asm.
Copy this file to my_link.asm and modify it to suit your system. Then use the following commands to rebuild
the boot kernel:
easm21k -21161 my_link.asm

or
easm21k -proc ADSP-21161 my_link.asm
linker -T 161_ldr.ldf my_link.doj

Rebuilding Boot Kernels

To rebuild the PROM boot kernel for the ADSP-21160 processors, use these commands:
easm21k -21160 my_prom.asm

or
easm21k -proc ADSP-21160 my_prom.asm
linker -T 160_ldr.ldf my_prom.doj

ADSP-21160 Interrupt Vector Table

If an SHARC processor is booted from an external source (EPROM, host, or another SHARC processor), the inter-
rupt vector table is located in internal memory. If, however, the processor is not booted and executes from external
memory, the vector table must be located in external memory.

The IIVT bit of the SYSCON control register can be used to override the boot mode in determining where the
interrupt vector table is located. If the processor is not booted (no-boot mode), setting IIVT to 1 selects an internal
vector table, and setting IIVT to 0 selects an external vector table. If the processor is booted from an external
source (any mode other than no-boot mode), IIVT has no effect. The IIVT default initialization value is 0.

Refer to EE-189: Link Port Tips and Tricks for ADSP-2116x on the Analog Devices website for more information.

ADSP-21160 Multi-Application (Multi-DXE) Management

Currently, the loader utility generates single-processor loader files for host and link port boot modes. As a result, the
loader utility supports multiprocessor EPROM boot mode only. The application code must be modified for a multi-
processor system boot in host and link port modes.

ADSP-21160 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 8–11

The loader utility can produce boot-loadable files that permit the SHARC processors in a multiprocessor system to
boot from a single EPROM. In such a system, the BMS signals from each SHARC processor are OR'ed together to
drive the chip select pin of the EPROM. Each processor boots in turn, according to its priority. When the last pro-
cessor finishes booting, it must inform the processors to begin program execution.

Besides taking turns when booting, EPROM boot of multiple processors is similar to a single-processor EPROM
boot.

When booting a multiprocessor system through a single EPROM:

• Connect all BMS pins to EPROM.

• Processor with ID# of 1 boots first. The other processors follow.

• The EPROM boot kernel accepts multiple .dxe files and reads the ID field in SYSTAT to determine which
area of EPROM to read.

• All processors require a software flag or hardware signal (FLAG pins) to indicate that booting is complete.

When booting a multiprocessor system through an external port:

• The host can use the host interface.

• A SHARC processor that is EPROM-, host-, or link-booted can boot the other processors through the external
port (host boot mode).

For multiprocessor EPROM booting, select the CrossCore SHARC Loader > Multiprocessor page of the Tool Settings
dialog box or specify the -id1exe= switch on the loader command line. These options specify the executable file
targeted for a specific processor.

Do not use the -id1exe= switch to EPROM-boot a single processor whose ID is 0. Instead, name the executable
file on the command line without a switch. For a single processor with ID=1, use the -id1exe= switch.

ADSP-21160 Processor ID Numbers

A single-processor system requires only one input (.dxe) file without any prefix and suffix to the input file name,
for example:
elfloader -proc ADSP-21160 -bprom Input.dxe

A multiprocessor system requires a distinct processor ID number for each input file on the command line. A pro-
cessor ID is provided via the -id#exe=filename.dxe switch, where # is 0 to 6.

In the following example, the loader utility processes the input file Input1.dxe for the processor with an ID of 1
and the input file Input2.dxe for the processor with an ID of 2.
elfloader -proc ADSP-21160 -bprom -id1exe=Input1.dxe -id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N processor, the output loader file contains
only one copy of the code from the input file.
elfloader -proc ADSP-21160 -bprom -id1exe=Input.dxe -id2ref=1

ADSP-21160 Multi-Application (Multi-DXE) Management

8–12 CCES 2.9.0 Loader and Utilities Manual

The loader utility points the id(2)exe loader jump table entry to the id(1)exe image, effectively reducing the
size of the loader file.

Processor Loader Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable files.
You select features, such as boot modes, boot kernels, and output file formats via the properties. The properties are
specified on the loader utility's command line or the Tool Settings dialog box in the IDE (CrossCore Blackfin Loader
pages). The default loader settings for a selected processor are preset in the IDE.

NOTE: The IDE’s Tool Settings correspond to switches displayed on the command line.

For detailed information about the processor loader properties page, refer to the online help.

These sections describe how to produce a bootable loader (.ldr) file:

• Loader Command Line for Processors

• CCES Loader Interface for Processors

Loader Command Line for Processors

The loader utility uses the following command-line syntax for the ADSP-21160 SHARC processors.

elfloader inputfile -proc part_number -switch [-switch]
where:

• inputfile - Name of the executable (.dxe) file to be processed into a single boot-loadable file. An input file
name can include the drive and directory. Enclose long file names within straight quotes, "long file
name".

• -proc part_number - Part number of the processor (for example, -proc ADSP-21160) for which the
loadable file is built. The -proc switch is mandatory.

• -switch - One or more optional switches to process. Switches select operations and boot modes for the loader
utility. A list of all switches and their descriptions appear in Loader Command-Line Switches for Processors.

NOTE: Command-line switches are not case-sensitive and placed on the command line in any order.

The following command line,
elfloader p0.dxe -bprom -fhex -l 160_prom.dxe -proc ADSP-21160

runs the loader utility with:

• p0.dxe - Identifies the executable file to process into a boot-loadable file. The absence of the -o switch caus-
es the output file name to default to p0.ldr.

• -bprom - Specifies EPROM booting as the boot type for the boot-loadable file.

Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 8–13

• -fhex - Specifies Intel hex-32 format for the boot-loadable file.

• -l 160_prom.exe - Specifies 160_prom.exe as the boot kernel file to be used in the boot-loadable file.

• -proc ADSP-21160 - Identifies the processor model as ADSP-21160.

Loader Command-Line Switches for Processors

The Loader Command-Line Switches table is a summary of the loader switches for the ADSP-21160 processors.

Table 8-11: Loader Command-Line Switches

Switch Description

-bprom
-bhost
-blink
-bJTAG

Specifies the boot mode. The -b switch directs the loader utility to prepare a boot-loadable file
for the specified boot mode. Valid boot modes include PROM, host, and link.

If -b does not appear on the command line, the default is -bprom. To use a custom boot ker-
nel, the boot type selected with the -b switch must correspond to the boot kernel selected with
the -l switch. Otherwise, the loader utility automatically selects a default boot kernel based on
the selected boot type (see ADSP-21160 Boot Kernels).

-e filename Except shared memory. The -e switch omits the specified shared memory (.sm) file from the
output loader file. Use this option to omit the shared parts of the executable file intended to
boot a multiprocessor system.

To omit multiple.sm files, repeat the switch and parameter multiple times on the command
line. For example, to omit two files, use: -e fileA.sm -e fileB.sm.

In most cases, it is not necessary to use the -e switch: the loader utility processes the .sm files
efficiently-includes a single copy of the code and data from each .sm file in a loader file.

-fhex
-fASCII
-fbinary
-finclude
-fS1
-fS2
-fS3

Specifies the format of the boot-loadable file (Intel hex-32, ASCII, S1, S2, S3, binary, or in-
clude). If the -f switch does not appear on the command line, the default boot file format is
Intel hex-32 for PROM, and ASCII for host or link.

Available formats depend on the boot type selection (-b switch):

• For PROM boot type, select a hex, ASCII, S1, S2, S3, or include format.

• For host or link boot type, select an ASCII, binary, or include format.

-h
or

-help

Command-line help. Outputs a list of the command-line switches to standard out and exits.
Type elfloader -proc ADSP-21xxx -h, where xxx is 160 to obtain help for
SHARC processors. By default, the -h switch alone provides help for the loader driver.

-id#exe=filename Specifies the processor ID. The -id#exe= switch directs the loader utility to use the processor
ID (#) for the corresponding executable file (filename parameter) when producing a boot-
loadable file for a multiprocessor system. This switch is used to produce a boot-loadable file that
boots multiple processors from a single EPROM. Valid values for # are 1, 2, 3, 4, 5, and 6.

Do not use this switch for single-processor systems. For single-processor systems, use filename
as a parameter without a switch. For more information, refer to ADSP-21160 Processor ID
Numbers.

Loader Command Line for Processors

8–14 CCES 2.9.0 Loader and Utilities Manual

Table 8-11: Loader Command-Line Switches (Continued)

Switch Description

-id#ref=N Points the processor ID (#) loader jump table entry to the ID (N) image. If the executable file
for the (#) processor is identical to the executable of the (N) processor, the switch can be used to
set the PROM start address of the processor with ID of # to be the same as for the processor
with ID of N. This effectively reduces the size of the loader file by providing a single copy of an
executable to two or more processors in a multiprocessor system. For more information, refer to
ADSP-21160 Processor ID Numbers.

-l kernelfile Directs the loader utility to use the specified kernelfile as the boot-loading routine in the
output boot-loadable file. The boot kernel selected with this switch must correspond to the boot
type selected with the -b switch.

If the -l switch does not appear on the command line, the loader searches for a default boot
kernel file. Based on the boot type (-b switch), the loader utility searches in the processor-spe-
cific loader directory for the boot kernel file as described in ADSP-21160 Boot Kernels.

-o filename Directs the loader utility to use the specified filename as the name for the loader output file.
If not specified, the default name is inputfile.ldr.

-p address PROM start address. Places the boot-loadable file at the specified address in the EPROM.

If the -p switch does not appear on the command line, the loader utility starts the EPROM file
at address 0x0; this EPROM address corresponds to 0x800000 on ADSP-21160 processors.

-proc processor Specifies the processor. This a mandatory switch.

-si-revision [none|any|
x.x]

Sets revision for the build, with x.x being the revision number for the processor hardware. If -
si-revision is not used, the target is a default revision from the supported revisions.

-t # (Host boot only) Specifies timeout cycles; for example, -t100. Limits the number of cycles
that the processor spends initializing external memory with zeros. Valid timeout values (#) range
from 3 to 32765 cycles; 32765 is the default. The # is directly related to the number of cycles
the processor locks the bus for boot-loading, instructing the processor to lock the bus for no
more than two times the timeout number of cycles. When working with a fast host that cannot
tolerate being locked out of the bus, use a relatively small timeout value.

-use32bitTagsfor
ExternalMemoryBlocks

Directs the loader utility to treat the external memory sections as 32-bit sections, as specified in
the .ldf file and does not pack them into 48-bit sections before processing. This option is
useful if the external memory sections are packed by the linker and do not need the loader utili-
ty to pack them again.

-v Outputs verbose loader utility messages and status information as the utility processes files.

-version Directs the loader utility to show its version information. Type elfloader -version to
display the version of the loader drive. Add the -proc switch, for example, elfloader -
proc ADSP-21160 -version to display version information of both loader drive and
SHARC loader utility.

CCES Loader Interface for Processors

Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 8–15

The IDE invokes the elfloader.exe utility to build the output loader file. To modify the default loader prop-
erties, use the project's Tool Settings dialog box. The controls on the pages correspond to the loader command-line
switches and parameters (see Loader Command-Line Switches for Processors).

The loader pages (also called loader properties pages) show the default loader settings for the project's target processor.
Refer to the CCES online help for information about the loader interface.

The CCES splitter interface for the ADSP-21160 processors is documented in the Splitter for SHARC Processors
chapter.

Processor Loader Guide

8–16 CCES 2.9.0 Loader and Utilities Manual

9 Loader for ADSP-21161 SHARC Processors

This chapter explains how the loader utility (elfloader.exe) is used to convert executable (.dxe) files into
boot-loadable files for the ADSP-21161 SHARC processors.

Refer to the Introduction chapter for the loader utility overview; the introductory material applies to all processor
families. Refer to the Loader for ADSP-21160 SHARC Processors chapter for information about the ADSP-21160
processors. Refer to the Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors chapter for information
about the ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x, ADSP-2147x, and ADSP-2148x processors.

Loader operations specific to the SHARC processors are detailed in the following sections.

• ADSP-21161 Processor Booting

Provides general information about various boot modes, including information about boot kernels.

• ADSP-21161 Processor Loader Guide

Provides reference information about the loader utility's graphical user interface, command-line syntax, and
switches.

ADSP-21161 Processor Booting
The processors support five boot modes: EPROM, host, link port, SPI port, and no-boot (see tables ADSP-21161
Boot Mode Pins and ADSP-21161 Boot Mode Pin States in Boot Mode Selection). Boot-loadable files for these
modes pack boot data into words of appropriate widths and use an appropriate DMA channel of the processor's
DMA controller to boot-load the words.

• When booting from an EPROM through the external port, the ADSP-21161 processor reads boot data from
an 8-bit external EPROM.

• When booting from a host processor through the external port, the ADSP-21161 processor accepts boot data
from 8- or 16-bit host microprocessor.

• When booting through the link port, the ADSP-21161 processor receives boot data through the link port as 4-
bit wide data in link buffer 4.

• When booting through the SPI port, the ADSP-21161 processor uses DMA channel 8 of the IO processor to
transfer instructions to internal memory. In this boot mode, the processor receives data in the SPIRx register.

Loader for ADSP-21161 SHARC Processors

CCES 2.9.0 Loader and Utilities Manual 9–1

• In no-boot mode, the ADSP-21161 processors begin executing instructions from external memory.

Software developers who use the loader utility should be familiar with the following operations:

• Power-Up Booting Process

• Boot Mode Selection

• ADSP-21161 Processor Boot Modes

• ADSP-21161 Processor Boot Kernels

• Boot Kernel Modification and Loader Issues

• ADSP-21161 Processor Interrupt Vector Table

• ADSP-21161 Multi-Application (Multi-DXE) Management

Power-Up Booting Process

The processors include a hardware feature that boot-loads a small, 256-instruction program into the processor's in-
ternal memory after power-up or after the chip reset. These instructions come from a program called boot kernel.
When executed, the boot kernel facilitates booting of user application code. The combination of the boot kernel and
application code comprises the boot-loadable (.ldr) file.

At power-up, after the chip reset, the booting process includes the following steps.

1. Based on the boot mode, an appropriate DMA channel is automatically configured for a 256-instruction trans-
fer. This transfer boot-loads the boot kernel program into the processor memory.

2. The boot kernel runs and loads the application executable code and data.

3. The boot kernel overwrites itself with the first 256 words of the application at the end of the booting process.
After that, the application executable code starts running.

The boot mode selection directs the system to prepare the appropriate boot kernel.

Boot Mode Selection

The state of the LBOOT, EBOOT, and BMS pins selects the processor's boot mode. The ADSP-21161 Boot Mode
Pins and ADSP-21161 Boot Mode Pin States tables show how the pin states correspond to the modes.

Table 9-1: ADSP-21161 Boot Mode Pins

Pin Type Description

EBOOT I EPROM boot - when EBOOT is high, the processor boot-loads from an 8-bit EPROM through
the processor's external port. When EBOOT is low, the LBOOT and BMS pins determine boot-
ing mode.

ADSP-21161 Processor Booting

9–2 CCES 2.9.0 Loader and Utilities Manual

Table 9-1: ADSP-21161 Boot Mode Pins (Continued)

Pin Type Description

LBOOT I Link port boot - when LBOOT is high and EBOOT is low, the processor boots from another
SHARC processor through the processor's link port. When LBOOT is low and EBOOT is low,
the processor boots from a host processor through the processor's external port.

BMS I/O/T*1 Boot memory select - when boot-loading from EPROM (EBOOT=1 and LBOOT=0), the pin is
an output and serves as the chip select for the EPROM. In a multiprocessor system, BMS is out-
put by the bus master. When host-booting, link-booting, or SPI-booting (EBOOT=0), BMS is
an input and must be high.

*1 Three-statable in EPROM boot mode (when BMS is an output).

Table 9-2: ADSP-21161 Boot Mode Pin States

EBOOT LBOOT BMS Booting Mode

1 0 Output EPROM (connects BMS to EPROM chip select)

0 0 1 (Input) Host processor

0 1 1 (Input) Link port

0 1 0 (Input) Serial port (SPI)

0 0 0 (Input) No-boot (processor executes from external memory)

ADSP-21161 Processor Boot Modes

The processors support these boot modes: EPROM, host, link, and SPI. The following section describe each of the
modes.

• EPROM Boot Mode

• Host Boot Mode

• Link Port Boot Mode

• SPI Port Boot Mode

• No-Boot Mode

NOTE: For multiprocessor booting, refer to ADSP-21161 Multi-Application (Multi-DXE) Management.

EPROM Boot Mode

EPROM boot via the external port is selected when the EBOOT input is high and the LBOOT input is low. These
settings cause the BMS pin to become an output, serving as chip select for the EPROM.

The DMAC10 control register is initialized for booting packing boot data into 48-bit instructions. EPROM boot
mode uses channel 10 of the IO processor's DMA controller to transfer the instructions to internal memory. For
EPROM booting, the processor reads data from an 8-bit external EPROM.

ADSP-21161 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 9–3

After the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the processor begins
to execute instructions. Because most processor programs require more than 256 words of instructions and initializa-
tion data, the 256 words typically serve as a loading routine for the application. CrossCore Embedded Studio in-
cludes loading routines (boot kernels) that can load entire programs; see ADSP-21161 Processor Boot Kernels for
more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed information on DMA and system configu-
rations.

NOTE: Be aware that DMA channel differences between the ADSP-21161 and previous SHARC processors ac-
count for boot differences. Even with these differences, the ADSP-21161 processor supports the same boot
capability and configuration as previous SHARC processors. The DMACx register default values differ be-
cause the ADSP-21161 processor has additional parameters and different DMA channel assignments.
EPROM boot mode uses EPB0, DMA channel 10. Similar to previous SHARC processors, the
ADSP-21161 processor boots from DATA23—16.

The processor determines the booting mode at reset from the EBOOT, LBOOT, and BMS pin inputs. When
EBOOT=1 and LBOOT=0, the processor boots from an EPROM through the external port and uses BMS as the
memory select output. For information on boot mode selection, see the boot memory select pin descriptions in ta-
bles ADSP-21161 Boot Mode Pins and ADSP-21161 Boot Mode Pin States (in Boot Mode Selection).

NOTE: When using any of the power-up boot modes, address 0x40004 should not contain a valid instruction
since it is not executed during the booting sequence. Place a NOP or IDLE instruction at this location.

EPROM boot (boot space 8M x 8-bit) through the external port requires that an 8-bit wide boot EPROM be con-
nected to the processor data bus pins 23-16 (DATA23-16). The processor's lowest address pins should be connect-
ed to the EPROM address lines. The EPROM's chip select should be connected to BMS, and its output enable
should be connected to RD.

In a multiprocessor system, the BMS output is driven by the ADSP-21161 processor bus master only. This allows
the wired OR of multiple BMS signals for a single common boot EPROM.

NOTE: Systems can boot up to six ADSP-21161 processors from a single EPROM using the same code for each
processor or differing code for each processor.

During reset, the ACK line is internally pulled high with the equivalent of an internal 20K ohm resistor and is held
high with an internal keeper latch. It is not necessary to use an external pull-up resistor on the ACK line during
booting or at any other time.

The RBWS and RBAM fields of the WAIT register are initialized to perform asynchronous access and generate seven
wait states (8 cycles total) for the EPROM access in external memory space. Note that wait states defined for boot
memory are applied to BMS asserted accesses.

The DMA Channel 10 Parameter Registers for EPROM Booting table shows how DMA channel 10 parameter regis-
ters are initialized at reset. The count register (CEP0) is initialized to 0x0100 to transfer 256 words to internal
memory. The external count register (ECEP0), used when external addresses (BMS space) are generated by the

ADSP-21161 Processor Boot Modes

9–4 CCES 2.9.0 Loader and Utilities Manual

DMA controller, is initialized to 0x0600 (0x0100 words at six bytes per word). The DMAC10 control register is
initialized to 0x00 0561.

Table 9-3: DMA Channel 10 Parameter Registers for EPROM Booting

Parameter Register Initialization Value

IIEP0 0x40000
IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x100 (256-instruction words)

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 0x800000
EMEP0 Uninitialized (increment by 1 is automatic)

ECEP0 0x600 (256 words x 6 bytes/word)

The default value sets up external port transfers as follows:

• DEN = 1, external port enabled

• MSWF = 0, LSB first

• PMODE = 101, 8-bit to 48-bit packing, Master = 1
• DTYPE = 1, three column data

The following sequence occurs at system start-up, when the processor RESET input goes inactive.

1. The processor goes into an idle state, identical to that caused by the IDLE instruction. The program counter
(PC) is set to address 0x40004.

2. The DMA parameter registers for channel 10 are initialized as shown in the DMA Channel 10 Parameter Reg-
isters for EPROM Booting table.

3. The BMS pin becomes the boot EPROM chip select.

4. 8-bit master mode DMA transfers from EPROM to the first internal memory address on the external port data
bus lines 23-16.

5. The external address lines (ADDR23-0) start at 0x800000 and increment after each access.

6. The RD strobe asserts as in a normal memory access with seven wait states (8 cycles).

The processor's DMA controller reads the 8-bit EPROM words, packs them into 48-bit instruction words, and
transfers them to internal memory until 256 words have been loaded. The EPROM is automatically selected by the
BMS pin; other memory select pins are disabled.

The master DMA internal and external count registers (CEP0) ECEP0 decrement after each EPROM transfer.
When both counters reach zero, the following wake-up sequence occurs:

ADSP-21161 Processor Boot Modes

CCES 2.9.0 Loader and Utilities Manual 9–5

1. DMA transfers stop.

2. External port DMA channel 10 interrupt (EP0I) is activated.

3. The BMS pin is deactivated, and normal external memory selects are activated.

4. The processor vectors to the EP0I interrupt vector at 0x40050.

At this point, the processor has completed its boot and is executing instructions normally. The first instruction at
the EP0Iinterrupt vector location, address 0x40050, should be an RTI (return from interrupt). This process re-
turns execution to the reset routine at location 0x40005 where normal program execution can resume. After reach-
ing this point, a program can write a different service routine at the EP0I vector location 0x40050.

Host Boot Mode

The processor can boot from a host processor through the external port. Host booting is selected when theEBOOT
and LBOOT inputs are low and BMS is high. Configured for host booting, the processor enters the slave mode after
reset and waits for the host to download the boot program.

The DMAC10 control register is initialized for booting, packing boot data into 48-bit instructions. Channel 10 of
the IO processor's DMA controller is used to transfer instructions to internal memory. Processors accept data from
8- or 16-bit host microprocessor (or other external devices).

After the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the processor begins
executing instructions. Because most processor programs require more than 256 words of instructions and initializa-
tion data, the 256 words typically serve as a loading routine for the application. CrossCore Embedded Studio in-
cludes loading routines (boot kernels) that can load entire programs; refer to ADSP-21161 Processor Boot Kernels
for more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed information on DMA and system configu-
rations.

NOTE: DMA channel differences between the ADSP-21161 and previous SHARC family processors account for
boot differences. Even with these differences, the ADSP-21161 processors support the same boot capabili-
ty and configuration as previous SHARC processors. The DMAC10 register default values differ because
the ADSP-21161 processor has additional parameters and different DMA channel assignments. Host boot
mode uses EPB0, DMA channel 10.

The processor determines the boot mode at reset from the EBOOT, LBOOT, and BMS pin inputs. When EBOOT=0,
LBOOT=0, and BMS=1, the processor boots from a host through the external port. Refer to tables ADSP-21161
Boot Mode Pins and ADSP-21161 Boot Mode Pin States in Boot Mode Selection for boot mode selections.

When using any of the power-up boot modes, address 0x40004 should not contain a valid instruction. Because it
is not executed during the boot sequence, place a NOP or IDLE instruction at this location.

During reset, the processor ACK line is internally pulled high with an equivalent 20K ohm resistor and is held high
with an internal keeper latch. It is not necessary to use an external pull-up resistor on the ACK line during booting
or at any other time.

ADSP-21161 Processor Boot Modes

9–6 CCES 2.9.0 Loader and Utilities Manual

The DMA Channel 10 Parameter Register for Host Boot table shows how the DMA channel 10 parameter registers
are initialized at reset for host boot. The internal count register (CEP0) is initialized to 0x0100 to transfer 256
words to internal memory. The DMAC10 control register is initialized to 0000 0161.

Table 9-4: DMA Channel 10 Parameter Register for Host Boot

Parameter Register Initialization Value

IIEP0 0x0004 0000
IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x0100 (256-instruction words)

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 Uninitialized

EMEP0 Uninitialized

ECEP0 Uninitialized

The default value sets up external port transfers as follows:

• DEN = 1, external port enabled

• MSWF = 0, LSB first

• PMODE = 101, 8-bit to 48-bit packing

• DTYPE = 1, three column data

At system start-up, when the processor RESET input goes inactive, the following sequence occurs.

1. The processor goes into an idle state, identical to that caused by the IDLE instruction. The program counter
(PC) is set to address 0x40004.

2. The DMA parameter registers for channel 10 are initialized as shown in the DMA Channel 10 Parameter Reg-
ister for Host Boot table.

3. The host uses HBR and CS to arbitrate for the bus.

4. The host can write to SYSCON (if HBG and READY are returned) to change boot width from default.

5. The host writes boot information to external port buffer 0.

The slave DMA internal count register (CEP0) decrements after each transfer. When CEP0 reaches zero, the follow-
ing wake-up sequence occurs:

1. The DMA transfers stop.

2. The external port DMA channel 10 interrupt (EP0I) is activated.

3. The processor vectors to the EP0I interrupt vector at 0x40050.

ADSP-21161 Processor Boot Modes

CCES 2.9.0 Loader and Utilities Manual 9–7

At this point, the processor has completed its boot mode and is executing instructions normally. The first instruc-
tion at the EP0Iinterrupt vector location, address 0x40050, should be an RTI (return from interrupt). This
process returns execution to the reset routine at location 0x40005 where normal program execution can resume.
After reaching this point, a program can write a different service routine at the EP0I vector location 0x40050.

Link Port Boot Mode

Link port boot uses DMA channel 8 of the IO processor to transfer instructions to internal memory. In this boot
mode, the processor receives 4-bit wide data in link buffer 0.

After the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the processor begins
to execute instructions. Because most processor programs require more than 256 words of instructions and initializa-
tion data, the 256 words typically serve as a loading routine for the application. CrossCore Embedded Studio in-
cludes loading routines (boot kernels) that load an entire program through the selected port; refer to ADSP-21161
Processor Boot Kernels for more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed information on DMA and system configu-
rations.

NOTE: DMA channel differences between the ADSP-21161 and previous SHARC family processors account for
boot differences. Even with these differences, the ADSP-21161 processors support the same boot capabili-
ties and configuration as the previous SHARC processors.

The processor determines the boot mode at reset from the EBOOT, LBOOT and BMS pin inputs. When EBOOT=0,
LBOOT=1, and BMS=1, the processor boots through the link port. For information on boot mode selection, see
tables ADSP-21161 Boot Mode Pins and ADSP-21161 Boot Mode Pin States in Boot Mode Selection.

NOTE: When using any of the power-up booting modes, address 0x40004 should not contain a valid instruc-
tion. Because it is not executed during the boot sequence, place a NOP or IDLE instruction at this loca-
tion.

In link port boot, the processor gets boot data from another processor link port or 4-bit wide external device after
system power-up.

The external device must provide a clock signal to the link port assigned to link buffer 0. The clock can be any
frequency up to the processor clock frequency. The clock falling edges strobe the data into the link port. The most
significant 4-bit nibble of the 48-bit instruction must be downloaded first.

The DMA Channel 8 Parameter Register for Link Port Boot table shows how the DMA channel 8 parameter regis-
ters are initialized at reset. The count register (CLB0) is initialized to 0x0100 to transfer 256 words to internal
memory. The LCTL register is overridden during link port boot to allow link buffer 0 to receive 48-bit data.

Table 9-5: DMA Channel 8 Parameter Register for Link Port Boot

Parameter Register Initialization Value

IILB0 0x0004 0000

ADSP-21161 Processor Boot Modes

9–8 CCES 2.9.0 Loader and Utilities Manual

Table 9-5: DMA Channel 8 Parameter Register for Link Port Boot (Continued)

Parameter Register Initialization Value

IMLB0 Uninitialized (increment by 1 is automatic)

CLB0 0x0100 (256-instruction words)

CPLB0 Uninitialized

GPLB0 Uninitialized

In systems where multiple processors are not connected by the parallel external bus, booting can be accomplished
from a single source through the link ports. To simultaneously boot all the processors, make a parallel common con-
nection to link buffer 0 on each of the processors. If a daisy chain connection exists between the processors' link
ports, each processor can boot the next processor in turn. Link buffer 0 must always be used for booting.

SPI Port Boot Mode

Serial peripheral interface (SPI) port booting uses DMA channel 8 of the IO processor to transfer instructions to
internal memory. In this boot mode, the processor receives 8-bit wide data in the SPIRx register.

During the boot process, the program loads 256 words into memory locations 0x40000 through 0x400FF. The
processor subsequently begins executing instructions. Because most processor programs require more than 256
words of instructions and initialization data, the 256 words typically serve as a loading routine for the application.
CrossCore Embedded Studio includes loading routines (boot kernels) which load an entire program through the
selected port. See ADSP-21161 Processor Boot Kernels for more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed information on DMA and system configu-
rations.

The processor determines the boot mode at reset from the EBOOT, LBOOT, and BMS pin inputs. When EBOOT=0,
LBOOT=1, and BMS=0, the processor boots through its SPI port. For information on the boot mode selection, see
tables ADSP-21161 Boot Mode Pins and ADSP-21161 Boot Mode Pin States in Boot Mode Selection.

NOTE: When using any of the power-up booting modes, address 0x40004 should not contain a valid instruc-
tion. Because it is not executed during the boot sequence, place a NOP or IDLE instruction placed at this
location.

For SPI port boot, the processor gets boot data after system power-up from another processor's SPI port or another
SPI compatible device.

The DMA Channel 8 Parameter Register for SPI Port Boot table shows how the DMA channel 8 parameter registers
are initialized at reset. The SPI control register (SPICTL) is configured to 0x0A001F81 upon reset during SPI
boot.

This configuration sets up the SPIRx register for 32-bit serial transfers. The SPIRx DMA channel 8 parameter
registers are configured to DMA in 0x180 32-bit words into internal memory normal word address space starting
at 0x40000. Once the 32-bit DMA transfer completes, the data is accessed as 3 column, 48-bit instructions. The
processor executes a 256 word (0x100) boot kernel upon completion of the 32-bit, 0x180 word DMA.

ADSP-21161 Processor Boot Modes

CCES 2.9.0 Loader and Utilities Manual 9–9

For 16-bit SPI hosts, two words are shifted into the 32-bit receive shift register before a DMA transfer to internal
memory occurs. For 8-bit SPI hosts, four words are shifted into the 32-bit receive shift register before a DMA trans-
fer to internal memory occurs.

Table 9-6: DMA Channel 8 Parameter Register for SPI Port Boot

Parameter Register Initialization Value

IISRX 0x0004 0000
IMSRX Uninitialized (increment by 1 is automatic)

CSRX 0x0180 (256-instruction words)

GPSRX Uninitialized

No-Boot Mode

No-boot mode causes the processor to start fetching and executing instructions at address 0x200004 in external
memory space. In no-boot mode, the processor does not boot-load and all DMA control and parameter registers are
set to their default initialization values. The loader utility does not produce the code for no-boot execution.

ADSP-21161 Processor Boot Kernels

The boot-loading process starts with a transfer of the boot kernel program into the processor memory. The boot
kernel sets up the processor and loads boot data. After the boot kernel finishes initializing the rest of the system, the
boot kernel loads boot data over itself with a final DMA transfer.

Four boot kernels are shipped with CrossCore Embedded Studio; refer to the Default Boot Kernel Files table.

Table 9-7: Default Boot Kernel Files

PROM Booting Link Booting Host Booting SPI Booting

161_PROM.dxe 161_LINK.dxe 161_HOST.dxe 161_SPI.dxe

Boot kernels are loaded at processor reset into the seg_ldr memory segment, which is defined in the
161_ldr.ldf. The file is stored in the <install_path>/SHARC/ldr directory.

Processor Boot Streams

The loader utility produces the boot stream in blocks and inserts header words at the beginning of data blocks in the
loader (.ldr) file. The boot kernel uses header words to properly place data and instruction blocks into processor
memory. The header format for PROM, host, and link boot-loader files is as follows.
0x00000000DDDD
0xAAAAAAAALLLL

In the above example, D is a data block type tag, A is a block start address, and L is a block word length.

For single-processor systems, the data block header has three 32-bit words in SPI boot mode, as follows.

ADSP-21161 Processor Boot Modes

9–10 CCES 2.9.0 Loader and Utilities Manual

0xLLLLLLLL First word. Data word length or data word count of the data block.

0xAAAAAAAA Second word. Data block start address.

0x000000DD Third word. Tag of data block type.

The boot kernel examines the tag to determine the type of data or instruction being loaded. The ADSP-21161N
Processor Block Tags table lists the ADSP-21161N processor block tags.

Table 9-8: ADSP-21161N Processor Block Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000E init pm48
0x0001 zero dm16 0x000F zero dm64
0x0002 zero dm32 0x0010 init dm64
0x0003 zero dm40 0x0012 init pm64
0x0004 init dm16 0x0013 init pm8 ext
0x0005 init dm32 0x0014 init pm16 ext
0x0007 zero pm16 0x0015 init pm32 ext
0x0008 zero pm32 0x0016 init pm48 ext
0x0009 zero pm40 0x0017 zero pm8 ext
0x000A zero pm48 0x0018 zero pm16 ext
0x000B init pm16 0x0019 zero pm32 ext
0x000C init pm32 0x001A zero pm48 ext
0x0011 zero pm64

Boot Kernel Modification and Loader Issues

Some systems require boot kernel customization. In addition, the operation of other tools (such as the C/C++ com-
piler) is influenced by whether the loader utility is used.

If you do not specify a boot kernel file via the loader pages of the Tool Settings dialog box in the IDE (or via the -l
kernelfile command-line switch), the loader utility places a default boot kernel in the loader output file (see
ADSP-21161 Processor Boot Kernels) based on the specified boot mode.

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.asm) file by inserting correct values for your system, you must rebuild the
boot kernel (.dxe) before generating the boot-loadable (.ldr) file. The boot kernel source file contains default
values for the SYSCON register. The WAIT, SDCTL, and SDRDIV initialization code is in the boot kernel file com-
ments.

To Modify a boot kernel source file

ADSP-21161 Processor Boot Kernels

CCES 2.9.0 Loader and Utilities Manual 9–11

1. Copy the applicable boot kernel source file (161_link.asm, 161_host.asm, 161_prom.asm, or
161_spi.asm).

2. Apply the appropriate initializations of the SYSCON and WAIT registers.

After modifying the boot kernel source file, rebuild the boot kernel (.dxe) file. Do this from the IDE (refer to
online help for details), or rebuild the boot kernel file from the command line.

Rebuilding a Boot Kernel Using Command Lines

Rebuild a boot kernel using command lines as follows.

EPROM Boot. The default boot kernel source file for EPROM booting is 161_prom.asm. After copying the de-
fault file to my_prom.asm and modifying it to suit your system, use the following command lines to rebuild the
boot kernel.
easm21k -proc ADSP-21161 my_prom.asm
linker -T 161_ldr.ldf my_prom.doj

Host Boot. The default boot kernel source file for host booting is 161_host.asm. After copying the default file
to my_host.asm and modifying it to suit your system, use the following command lines to rebuild the boot ker-
nel.
easm21k -proc ADSP-21161 my_host.asm
linker -T 161_ldr.ldf my_host.doj

Link Boot. The default boot kernel source file for link booting is 161_link.asm. After copying the default file to
my_link.asm and modifying it to suit your system, use the following command lines to rebuild the boot kernel.
easm21k -proc ADSP-21161 my_link.asm
linker -T 161_ldr.ldf my_link.doj

SPI Boot. The default boot kernel source file for link booting is 161_SPI.asm. After copying the default file to
my_SPI.asm and modifying it to suit your system, use the following command lines to rebuild the boot kernel:
easm21k -proc ADSP-21161 my_SPI.asm
linker -T 161_ldr.ldf my_SPI.doj

Loader File Issues

If you modify the boot kernel for the EPROM, host, SPI, or link booting modes, ensure that the seg_ldr memo-
ry segment is defined in the .ldf file. Refer to the source of this memory segment in the .ldf file located in the
ldr directory of the of the target processor.

Because the loader utility uses the address of 0x40004 for the first location of the reset vector during the boot-load
process, avoid placing code at this address. When using any of the processor's power-up boot modes, ensure that this
address does not contain a critical instruction. Because this address is not executed during the booting sequence,
place a NOP or IDLE in this location. The loader utility generates a warning if the vector address 0x40004 does
not contain NOP or IDLE.

NOTE: When creating the loader file, specify the name of the customized boot kernel executable in the Kernel file
(-l) field on the CrossCore SHARC Loader page of the Tool Settings dialog box.

Boot Kernel Modification and Loader Issues

9–12 CCES 2.9.0 Loader and Utilities Manual

ADSP-21161 Processor Interrupt Vector Table

If the processor is booted from an external source (EPROM, host, link port, or SPI), the interrupt vector table is
located in internal memory. If the processor is not booted and executes from external memory (no-boot mode), the
vector table must be located in external memory.

The IIVT bit in the SYSCON control register can be used to override the booting mode in determining where the
interrupt vector table is located. If the processor is not booted (no-boot mode), setting IIVT to 1 selects an internal
vector table, and setting IIVT to zero selects an external vector table. If the processor is booted from an external
source (any boot mode other than no-boot), IIVT has no effect. The default initialization value of IIVT is zero.

ADSP-21161 Multi-Application (Multi-DXE) Management

Currently, the loader utility generates single-processor loader files for host, link, and SPI port boot. The loader utili-
ty supports multiprocessor EPROM boot only. The application code must be modified to properly set up multi-
processor booting in host, link, and SPI port boot modes.

There are two methods by which a multiprocessor system can be booted:

• Boot From a Single EPROM

• Sequential EPROM Boot

Regardless of the method, the processors perform the following steps.

1. Arbitrate for the bus

2. Upon becoming bus master, DMA the 256-word boot stream

3. Release the bus

4. Execute the loaded instructions

Boot From a Single EPROM

The loader utility can produce boot-loadable files that permit SHARC processors in a multiprocessor system to boot
from a single EPROM. The BMS signals from each processor may be wire ORed together to drive the EPROM's
chip select pin. Each processor can boot in turn, according to its priority. When the last processor has finished boot-
ing, it must inform the other processors (which may be in the idle state) that program execution can begin (if all
processors are to begin executing instructions simultaneously).

When multiple processors boot from a single EPROM, the processors can boot identical code or different code from
the EPROM. If the processors load differing code, use a jump table in the loader file (based on processor ID) to
select the code for each processor.

Sequential EPROM Boot

Set the EBOOT pin of the processor with ID# of 1 high for EPROM booting. The other processors should be con-
figured for host boot (EBOOT=0, LBOOT=0, and BMS=1), leaving them in the idle state at startup and allowing
the processor with ID=1 to become bus master and boot itself. Connect the BMS pin of processor #1 only to the

ADSP-21161 Processor Booting

CCES 2.9.0 Loader and Utilities Manual 9–13

EPROM's chip select pin. When processor #1 has finished booting, it can boot the remaining processors by writing
to their external port DMA buffer 0 (EPB0) via the multiprocessor memory space.

Processor ID Numbers

A single-processor system requires only one input (.dxe) file without any prefix and suffix to the input file name,
for example:
elfloader -proc ADSP-21161 -bprom Input.dxe

A multiprocessor system requires a distinct processor ID number for each input file on the command line. A pro-
cessor ID is provided via the -id#exe=filename.dxe switch, where # is 1 to 6.

In the following example, the loader utility processes the input file Input1.dxe for the processor with an ID of 1
and the input file Input2.dxe for the processor with an ID of 2.
elfloader -proc ADSP-21161 -bprom -id1exe=Input1.dxe -id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N processor, the output loader file contains
only one copy of the code from the input file, as directed by the command-line switch -id#ref=N used in the
example:
elfloader -proc ADSP-21161 -bprom -id1exe=Input.dxe -id2ref=1

where 2 is the processor ID, and 1 is another processor ID referenced by processor 2.

The loader utility points the id(2)exe loader jump table entry to the id(1)exe image, effectively reducing the
size of the loader file.

ADSP-21161 Processor Loader Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable files.
You select features, such as boot modes, boot kernels, and output file formats via the properties. The properties are
specified on the loader utility's command line or the Tool Settings dialog box in the IDE (CrossCore Blackfin Loader
pages). The default loader settings for a selected processor are preset in the IDE.

NOTE: The IDE’s Tool Settings correspond to switches displayed on the command line.

These sections describe how to produce a bootable loader (.ldr) file:

• Loader Command Line for Processors

• CCES Loader Interface for Processors

Loader Command Line for Processors

The loader utility uses the following command-line syntax for the ADSP-21161 SHARC processors.

elfloader inputfile -proc ADSP-21161 -switch [-switch]
where:

ADSP-21161 Multi-Application (Multi-DXE) Management

9–14 CCES 2.9.0 Loader and Utilities Manual

• inputfile - Name of the executable file (.dxe) to be processed into a single boot-loadable file. An input file
name can include the drive and directory. Enclose long file names within straight quotes, "long file
name".

• -proc ADSP-21161 - Part number of the processor for which the loadable file is built. The -proc switch
is mandatory.

• -switch - One or more optional switches to process. Switches select operations and boot modes for the loader
utility. A list of all switches and their descriptions can be found in Loader Command-Line Switches for
ADSP-21161 Processors.

NOTE: Command-line switches are not case-sensitive and placed on the command line in any order.

Single-Processor Systems

The following command line,
elfloader Input.dxe -bSPI -proc ADSP-21161

runs the loader utility with:

• Input.dxe - Identifies the executable file to process into a boot-loadable file for a single-processor system.
Note that the absence of the -o switch causes the output file name to default to Input.ldr.

• -bSPI - Specifies SPI port booting as the boot type for the boot-loadable file.

• -proc ADSP-21161 - Specifies ADSP-21161 as the target processor.

Multiprocessor Systems

The following command line,
elfloader -proc ADSP-21161 -bprom -id1exe=Input1.dxe -id2exe=Input2.dxe

runs the loader utility with:

• -proc ADSP-21161 - Specifies ADSP-21161 as the target processor.

• -bprom - Specifies EPROM booting as the boot type for the boot-loadable file.

• -id1exe=Input1.dxe - Identifies Input1.dxe as the executable file to process into a boot-loadable
file for a processor with ID of 1 (see Processor ID Numbers).

• -id2exe=Input2.dxe - Identifies Input2.dxe as the executable file to process into a boot-loadable
file for a processor with ID of 2 (see Processor ID Numbers).

Loader Command-Line Switches for ADSP-21161 Processors

The ADSP-21161 Loader Command Line Switches table is a summary of the loader switches for the
ADSP-21161processors.

Loader Command Line for Processors

CCES 2.9.0 Loader and Utilities Manual 9–15

Table 9-9: ADSP-21161 Loader Command Line Switches

Switch Description

-bprom
-bhost
-blink
-bspi

Specifies the boot mode. The -b switch directs the loader utility to prepare a boot-loadable file
for the specified boot mode. The valid modes (boot types) are PROM, host, link, and SPI. If
the switch does not appear on the command line, the default is -bprom. To use a custom boot
kernel, the boot mode selected with the -b switch must correspond with the boot kernel select-
ed with the -l kernelfile switch. Otherwise, the loader utility automatically selects a de-
fault boot kernel based on the selected boot type (see ADSP-21161 Processor Boot Kernels).

-e filename Except shared memory. The -e switch omits the specified shared memory (.sm) file from the
output loader file. Use this option to omit the shared parts of the executable file intended to
boot a multiprocessor system.

To omit multiple .sm files, repeat the switch and its parameter multiple times on the command
line. For example, to omit two files, use: -efileA.SM -efileB.SM.

In most cases, it is not necessary to use the -e switch: the loader utility processes the .sm files
efficiently (includes a single copy of the code and data from each .sm file in a loader file).

-fhex
-fASCII
-fbinary
-finclude
-fS1
-fS2
-fS3

Specifies the format of the boot-loadable file (Intel hex-32, ASCII, include, binary, S1, S2, and
S3 (Motorola S-records). If the -f switch does not appear on the command line, the default
boot file format is hex for PROM, and ASCII for host, link, or SPI.

Available formats depend on the boot mode selection (-b switch):

• For a PROM boot, select a hex-32, S1, S2, S3, ASCII, or include format.

• For host or link boot, select an ASCII, binary, or include format.

• For SPI boot, select an ASCII or binary format.

-h
or

-help

Command-line help. Outputs the list of command-line switches to standard output and exits.
Combining the -h switch with -proc ADSP-21161; for example, elfloader -proc
ADSP-21161 -h, yields the loader syntax and switches for the ADSP-21161 processors. By
default, the -h switch alone provides help for the loader driver.

-hostwidth {8|16|32} Sets up the word width for the .ldr file. By default, the word width for PROM and host is 8,
for link is 16, and for SPI is 32. The valid word widths for the various boot modes are:

• PROM - 8 for hex or ASCII format, 8 or 16 for include format

• host - 8 or 16 for ASCII or binary format, 16 for include format

• link - 16 for ASCII, binary, or include format

• SPI - 8, 16, or 32 for Intel hex 32 or ASCII format

-id#exe= filename Specifies the processor ID. The -id#exe= switch directs the loader utility to use the processor
ID (#) for the corresponding executable file (filename) when producing a boot-loadable file
for EPROM boot of a multiprocessor system. This switch is used only to produce a boot-loada-
ble file that boots multiple processors from a single EPROM.

Valid values for # are 1, 2, 3, 4, 5, and 6.

Do not use this switch for single-processor systems. For single-processor systems, use filename
as a parameter without a switch. For more information, refer to Processor ID Numbers.

Loader Command Line for Processors

9–16 CCES 2.9.0 Loader and Utilities Manual

Table 9-9: ADSP-21161 Loader Command Line Switches (Continued)

Switch Description

-id#ref=N Points the processor ID (#) loader jump table entry to the ID (N) image. If the executable file
for the (#) processor is identical to the executable of the (N) processor, the switch can be used to
set the PROM start address of the processor with ID of # to be the same as for the processor
with ID of N. This effectively reduces the size of the loader file by providing a single copy of an
executable to two or more processors in a multiprocessor system. For more information, refer to
Processor ID Numbers.

-l kernelfile Directs the loader utility to use the specified kernelfile as the boot-loading routine in the
output boot-loadable file. The boot kernel selected with this switch must correspond to the boot
mode selected with the -b switch.

If the -l switch does not appear on the command line, the loader utility searches for a default
boot kernel file. Based on the boot mode (-b switch), the loader utility searches in the process-
or-specific loader directory for the boot kernel file as described in ADSP-21161 Processor Boot
Kernels.

-o filename Directs the loader utility to use the specified filename as the name for the loader output file.
If not specified, the default name is inputfile.ldr.

-noZeroBlock The -noZeroBlock switch directs the loader utility not to build zero blocks.

-p address Directs the loader utility to start the boot-loadable file at the specified address in the EPROM.
This EPROM address corresponds to 0x8000000 on the processor. If the -p switch does not
appear on the command line, the loader utility starts the EPROM file at address 0x0.

-proc ADSP-21161 Specifies the processor. This is a mandatory switch.

-si-revision [none|any|
x.x]

Sets revision for the build, with x.x being the revision number for the processor hardware. If -
si-revision is not used, the target is a default revision from the supported revisions.

-t # (Host boot type only) Specifies timeout cycles. The -t switch (for example, -t100) limits the
number of cycles that the processor spends initializing external memory with zeros. Valid values
range from 3 to 32765 cycles; 32765 is the default value.

The timeout value (#) is related directly to the number of cycles the processor locks the bus for
boot-loading, instructing the processor to lock the bus for no more than two times the timeout
number of cycles. When working with a fast host that cannot tolerate being locked out of the
bus, use a relatively small timeout value.

-v Outputs verbose loader messages and status information as the loader utility processes files.

-version Directs the loader utility to show its version information. Type elfloader -version to
display the version of the loader drive. Add the -proc switch, for example, elfloader -
proc ADSP-21161 -version to display version information of both loader drive and
SHARC loader.

CCES Loader Interface for Processors

Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

ADSP-21161 Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 9–17

The IDE invokes the elfloader.exe utility to build the output loader file. To modify the default loader prop-
erties, use the project's Tool Settings dialog box. The controls on the pages correspond to the loader command-line
switches and parameters (see Loader Command-Line Switches for ADSP-21161 Processors).

The loader pages (also called loader properties pages) show the default loader settings for the project's target processor.
Refer to the CCES online help for information about the loader interface.

The CCES splitter interface for the ADSP-21161 processors is documented in the Splitter for SHARC Processors
chapter.

ADSP-21161 Processor Loader Guide

9–18 CCES 2.9.0 Loader and Utilities Manual

10 Loader for ADSP-2126x/2136x/2137x/
214xx SHARC Processors

This chapter explains how the loader utility (elfloader.exe) is used to convert executable (.dxe) files into
boot-loadable files for the ADSP-2126x, ADSP- 2136x, ADSP-2137x, and ADSP-214xx SHARC processors.

NOTE: For information on specific SHARC processors, refer to the product- specific hardware reference, program-
ming reference, and data sheet.

Refer to the Introduction chapter for the loader utility overview; the introductory material applies to all processor
families. Refer to the Loader for ADSP-21160 SHARC Processors chapter for information about the ADSP-21160
processors. Refer to the Loader for ADSP-21161 SHARC Processors chapter for information about the
ADSP-21161 processors.

Loader operations specific to the ADSP-2126x/2136x/2137x/214xx SHARC processors are detailed in the following
sections.

• ADSP-2126x/2136x/2137x/214xx Processor Booting

Provides general information about various booting modes, including information about boot kernels.

• ADSP-2126x/2136x/2137x/214xx Processor Loader Guide

Provides reference information about the graphical user interface, command-line syntax, and switches.

ADSP-2126x/2136x/2137x/214xx Processor Booting
The ADSP-2126x, ADSP-2136x, ADSP-2137x and ADSP-214xx processors can be booted from various sources:

• The boot source is selected via the boot configuration pins during power-up.

• All processors do support 8-bit parallel flash boot mode and SPI master/slave boot modes.

• The ADSP-2146x processor does support link port boot mode.

• In no-boot mode, the processor fetches and executes instructions directly from the internal ROM memory, by-
passing the boot kernel entirely. The loader utility does not produce a file supporting the no-boot mode.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CCES 2.9.0 Loader and Utilities Manual 10–1

• SPI master boot does support three cases: SPI master (no address), SPI PROM (16-bit address), and SPI flash
(24-bit address).

• The ADSP-21367/21368/21369, ADSP-21371/21375, and ADSP-214xx processors support parallel flash
multiprocessing boot by decoding the processor ID number from the boot stream.

NOTE: Only the ADSP-21367/21368/21369, ADSP-21371/21375, and ADSP-214xx processors are supporting
multiprocessing, so the loader can use an ID lookup table between the kernel and the rest of the applica-
tion.

NOTE: Upon ADSP-2126x processors, no boot mode from external memory with internal/external IVT option is
no longer supported.

Software developers who use the loader utility should be familiar with the following operations.

• Power-Up Booting Process

• ADSP-2126x/2136x/2137x/214xx Processor Interrupt Vector Table

• General Boot Definitions

• Boot Mode Selection

• Boot DMA Configuration Settings

• ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels

• ADSP-2126x/2136x/2137x/214xx Processor Boot Streams

Power-Up Booting Process

The ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-214xx processors include a hardware feature that boot-loads
a small, 256-instruction, program into the processor's internal memory after power-up or after the chip reset. These
instructions come from a program called a boot kernel. When executed, the boot kernel facilitates booting of user
application code. The combination of the boot kernel and application code comprise the boot-loadable (.ldr) file.

At power-up, after the chip reset, the booting process includes the following steps.

1. Based on the boot type, an appropriate DMA channel is automatically configured for a 384-word (32-bit)
transfer or a 256-word (48-bit) transfer. This transfer boot-loads the boot kernel program into the processor
memory.

2. The boot kernel runs and loads the application executable code and data.

3. The boot kernel overwrites itself with the first 256 (48-bit) words of the application at the end of the booting
process. After that, the application executable code starts running.

The boot type selection directs the system to prepare the appropriate boot kernel. Note that the DAI/DPI pins are
enabled by default for correct booting over the peripherals.

ADSP-2126x/2136x/2137x/214xx Processor Booting

10–2 CCES 2.9.0 Loader and Utilities Manual

ADSP-2126x/2136x/2137x/214xx Processor Interrupt Vector Table

If the ADSP-2126x, ADSP-2136x, ADSP-2137x or ADSP-214xx processor is booted from an external source
(PROM or SPI or link port), the IVT is always located in internal memory.

General Boot Definitions

The boot source is determined by sampling the state of the boot configuration pins.

On the ADSP-2126x/2136x/2137x/214xx processors, the boot type is determined by sampling the state of the
BOOT_CFG1-0 pins (BOOT_CFG2-0 pins for ADSP-214xx processors). The truth table for boot configuration
pins can be found in the processor data sheet.

Note all referred RESET vector locations in this chapter are dependent on the processor type and are defined as
follows:

ADSP-2126x 0x80004

ADSP-2136x/2137x 0x90004

ADSP-214xx 0x8C004

All processors operate with an interrupt vector table (IVT) located in internal memory block0 which is used to load
and execute the kernel (256x48-bit words) located at the following address:

ADSP-2126x 0x80000 - 0x800FF

ADSP-2136x/2137x 0x90000 - 0x900FF

ADSP-214xx 0x8C000 - 0x8C0FF

Boot Mode Selection

NOTE: On the ADSP-2126x/2136x/2137x/214xx processors, the boot type is determined by sampling the state of
the BOOTCFGx pins, described in the ADSP-2126x/2136x/2137x Boot Mode Selection and ADSP-214xx
Boot Mode Selection tables, and the selection of the corresponding boot kernel in the elfloader.

A description of each boot type follows the tables.

Table 10-1: ADSP-2126x/2136x/2137x Boot Mode Selection

HW Pins BOOT_CFG[1-0] Boot Mode SW Elfloader Settings Boot Mode Selection

00 SPI slave -bspislave
01 SPI master (SPI flash, SPI PROM, or a host

processor via SPI master mode)
-bspiflash
-bspiprom
-bspimaster

10 EPROM boot via the parallel port -bprom

ADSP-2126x/2136x/2137x/214xx Processor Booting

CCES 2.9.0 Loader and Utilities Manual 10–3

Table 10-1: ADSP-2126x/2136x/2137x Boot Mode Selection (Continued)

HW Pins BOOT_CFG[1-0] Boot Mode SW Elfloader Settings Boot Mode Selection

11 No boot (not available on all processors) Does not use the loader utility

Table 10-2: ADSP-214xx Boot Mode Selection

HW Pins BOOT_CFG[2-0] Boot Mode SW Elfloader Settings Boot Mode Selection

000 SPI slave -bspislave
001 SPI master (SPI flash, SPI PROM, or a host

processor via SPI master mode)
-bspiflash
-bspiprom
-bspimaster

010 EPROM boot via the parallel port -bprom
011 No boot (not available on all processors) Does not use the loader utility

100 Link Port 0 boot -blink

Boot DMA Configuration Settings

All peripheral boot mode use a 256 words instruction length DMA (as described in "power-up booting process"
which does load the kernel into the internal memory. At reset, the control and parameter registers settings of the
peripheral's boot DMA can be found at:

• For the ADSP-2126x products, refer to the ADSP-2126x SHARC Processor Hardware Reference

• For the ADSP-2136x products, refer to the ADSP-2136x SHARC Processor Hardware Reference

• For the ADSP-21367/8/9 and ADSP-2137xx products, refer to the ADSP-2137x SHARC Processor Hardware
Reference

• For the ADSP-214xx products, refer to the ADSP-214xx SHARC Processor Hardware Reference

PROM Boot Mode

All processors supporting external memory typically have memory I/O size that is different from a normal word of
32 bits. The linker's width command takes care of logical and physical addressing.

Packing Options for External Memory

The WIDTH() command in the linker specifies which packing mode should be used to initialize the external mem-
ory: WIDTH(8) for 8-bit memory or WIDTH(16) for 16-bit memory.

The loader utility packs the external memory data from the .dxe file according to the linker's WIDTH() com-
mand. The loader utility unpacks the data from the executable file and packs the data again in the loader file if the
data is packed in the .dxe file due to the packing command in the linker description (.ldf) file.

The next section lists the different packing options depending on model, and data versus instruction fetch.

ADSP-2126x/2136x/2137x/214xx Processor Booting

10–4 CCES 2.9.0 Loader and Utilities Manual

Multiplexed Parallel Port

The ADSP-2126x/2136x processors do use a parallel port which does multiplex the address and data (in order to
save pin count). The Data Packing Options for Parallel Port table and following sections list the different packing
options, depending on part numbers and data versus instructions.

Table 10-3: Data Packing Options for Parallel Port

Packing Options WIDTH (8) WIDTH (16) WIDTH (32)

ADSP-2126x Yes Yes No

ADSP-2136x Yes Yes No

For ADSP-2126x processors, the external memory address ranges are 0x10 00000-0x2F FFFFF. For
ADSP-2136x processors, the external memory address ranges are 0x12 00000-0x1203FFF. External instruc-
tion fetch is not supported by these processors.

AMI/SDRAM/DDR2

The ADSP-21367/8/9 processors external port is used to arbitrate between AMI and SDRAM/DDR2 access.

Table 10-4: Data Packing Options for External Port

Packing Options WIDTH (8) WIDTH (16) WIDTH (32)

ADSP-21367/8/9 AMI AMI/SDRAM AMI/SDRAM

ADSP-2137x AMI AMI/SDRAM AMI/SDRAM

ADSP-214xx AMI AMI/SDRAM/DDR2 No

For ADSP-2137x/214xx processors, the external memory address range for ISA instruction fetch (bank0 only) is
0x20 0000-0x5FFFFF.

For ADSP-214xx processors, the external memory address range for VISA instruction fetch (bank0 only) is 0x60
0000-0xFFFFFF.

Table 10-5: Instruction Fetch Packing Options for External Port

Packing Options WIDTH (8) WIDTH (16) WIDTH (32)

ADSP-2137x AMI AMI/SDRAM AMI/SDRAM

ADSP-214xx AMI AMI/SDRAM/DDR2 No

Packing and Padding Details

For ZERO_INIT sections in a .dxe file, no data packing or padding in the .ldr file is required because only the
header itself is included in the .ldr file. However, for other section types, additional data manipulation is required.
It is important to note that in all cases, the word count placed into the block header in the loader file is the original
number of words. That is, the word count does not include the padded word.

PROM Boot Mode

CCES 2.9.0 Loader and Utilities Manual 10–5

SPI Port Boot Modes

Both SPI boot modes support booting from 8-, 16-, or 32-bit SPI devices. In all SPI boot modes, the data word size
in the shift register is hardwired to 32 bits. Therefore, for 8- or 16-bit devices, data words are packed into the SPI
shift register to generate 32-bit words least significant bit (LSB) first, which are then shifted into internal memory.

When booting, the ADSP-2126x/2136x/2137x/214xx processor expects to receive words into the RXSPI buffer
seamlessly. This means that bits are received continuously without breaks in the SPIDS link. For different SPI host
sizes, the processor expects to receive instructions and data packed in a least significant word (LSW) format.

SPI Slave Boot Mode

In SPI slave boot mode, the host processor initiates the booting operation by activating the SPICLK signal and
asserting the SPIDS signal to the active low state. The 256-word boot kernel is loaded 32 bits at a time, via the SPI
receive shift register. To receive 256 instructions (48-bit words) properly, the SPI DMA initially loads a DMA count
of 384 32-bit words, which is equivalent to 256 48-bit words.

NOTE: The processor’s SPIDS pin should not be tied low. When in SPI slave mode, including booting, the
SPIDS signal is required to transition from high to low. SPI slave booting uses the default bit settings
shown in the SPI Slave Boot Bit Settings table.

Table 10-6: SPI Slave Boot Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI enabled

MS Cleared (= 0) Slave device

MSBF Cleared (= 0) LSB first

WL 10, 32-bit SPI Receive Shift register word length

DMISO Set (= 1) MISO MISO disabled

SENDZ Cleared (= 0) Send last word

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit

SPI Master Boot Modes

In SPI master boot mode, the ADSP-2126x/2136x/2137x/214xx processor initiates the booting operation by:

1. Activating the SPICLK signal and asserting the FLAG0 signal to the active low state

2. Writing the read command 0x03 and 24-bit address 0x00000 to the slave device

NOTE: The processor's SPIDS pin should not be tied low. When in SPI slave mode, including booting, the
SPIDS signal is required to transition from high to low. SPI slave booting uses the default bit set-
tings shown in the SPI Slave Boot Bit Settings table (see SPI Slave Boot Mode).

Boot DMA Configuration Settings

10–6 CCES 2.9.0 Loader and Utilities Manual

From the perspective of the processor, there is no difference between booting from the three types of SPI slave devi-
ces. Since SPI is a full-duplex protocol, the processor is receiving the same amount of bits that it sends as a read
command. The read command comprises a full 32-bit word (which is what the processor is initialized to send) com-
prised of a 24-bit address with an 8-bit opcode. The 32-bit word, received while the read command is transmitted, is
thrown away in hardware and can never be recovered by the user. Consequently, special measures must be taken to
guarantee that the boot stream is identical in all three cases.

NOTE: SPI master boot mode is used when the processor is booting from an SPI compatible serial PROM, serial
flash, or slave host processor.

The processor boots in least significant bit first (LSB) format, while most serial memory devices operate in most
significant bit first (MSB) format. Therefore, it is necessary to program the device in a fashion that is compatible
with the required LSB format. See Bit-Reverse Option for SPI Master Boot Modes for details.

Also, because the processor always transmits 32 bits before it begins reading boot data from the slave device, the
loader utility must insert extra data into the byte stream (in the loader file) if using memory devices that do not use
the LSB format. The loader utility includes an option for creating a boot stream compatible with both endian for-
mats, and devices requiring 16-bit and 24-bit addresses, as well as those requiring no read command at all. See
Initial Word Option for SPI Master Boot Modes for details.

The SPI Master Mode Booting Using Various Serial Devices figure shows the initial 32-bit word sent out from the
processor. As shown in the figure, the processor initiates the SPI master boot process by writing an 8-bit opcode
(LSB first) to the slave device to specify a read operation. This read opcode is fixed to 0xC0 (0x03 in MSB first
format). Following that, a 24-bit address (all zeros) is always driven by the processor. On the following SPICLK
cycle (cycle 32), the processor expects the first bit of the first word of the boot stream. This transfer continues until
the boot kernel has finished loading the user program into the processor.

SPI Port Boot Modes

CCES 2.9.0 Loader and Utilities Manual 10–7

SPICLK

MOSI

SPI FLASH
MISO

SPI PROM
MISO

SPI MASTER
MISO

FLAG0

51ADMC TIB-8 -8A23- 7A61 -0

BYTE0
(0XA5) BYTE1

MSB LSB

BYTE0
(0XA5) BYTE1

BYTE0
(0XA5)

BYTE0
(0XA5) BYTE1BYTE3BYTE1 BYTE2BYTE0

VALID DATADATA IGNORED

24-BIT ADDRESS

16-BIT ADDRESS

Figure 10-1: SPI Master Mode Booting Using Various Serial Devices

Bit-Reverse Option for SPI Master Boot Modes

SPI PROM. For the SPI PROM boot type, the entirety of the SPI master .ldr file needs the option of bit-revers-
ing when loading to SPI PROMs. This is because the default setting of the MSBF bit (SPICTL register) is cleared
which sets order to be LSB first. sets the bit order to be LSB first. SPI EPROMs are usually MSB first, so the .ldr
file must be sent in bit-reversed order.

SPI Master and SPI Slave. When loading to other slave devices, the SPI master and SPI slave boot types do not
need bit reversing necessarily. For SPI slave and SPI master boots to non-PROM devices, the same default exists (bit-
reversed); however, the host (master or slave) can simply be configured to transmit LSB first.

Initial Word Option for SPI Master Boot Modes

Before final formatting (binary, include, etc.) the loader must prepend the word 0xA5 to the beginning of the byte
stream. During SPI read command, the SPI port discards the first byte read from the SPI via the MISO line (see the
Initial Word for SPI Master and SPI PROM in .ldr File table).

Table 10-7: Initial Word for SPI Master and SPI PROM in .ldr File

Boot Mode Additional Word -hostwidth

32 16 8

SPI master*1 0xA5000000 A5000000 0000 00
A500 00

00
A5

SPI Master Boot Modes

10–8 CCES 2.9.0 Loader and Utilities Manual

Table 10-7: Initial Word for SPI Master and SPI PROM in .ldr File (Continued)

Boot Mode Additional Word -hostwidth

32 16 8

SPI PROM*2 0xA5 A5 A5 A5

*1 Initial word for SPI master boot type is always 32 bits. See the SPI Master Mode Booting Using Various Serial Devices figure in Bit-
Reverse Option for SPI Master Boot Modes for explanation.

*2 Initial word for SPI PROM boot type is always 8 bits. See the SPI Master Mode Booting Using Various Serial Devices figure in Bit-
Reverse Option for SPI Master Boot Modes for explanation.

SPI PROM. For the SPI PROM boot type, the word 0xA5 prepended to the stream is one byte in length. SPI
PROMs receives a 24-bit read command before any data is sent to the processor, the processor then discards the first
byte it receives after this 24-bit opcode is sent (totaling one 32-bit word).

SPI Master. For the SPI master boot type, the word 0xA5000000 prepended to the stream is 32 bits in length. An
SPI host configured as a slave begins sending data to the processor while the processor is sending the 24-bit PROM
read opcode. These 24-bits must be zero-filled because the processor discards the first 32-bit word that it receives
from the slave.

NOTE: Initial word option is only required for SPI master/prom boot mode. The CrossCore Embedded Studio
tools automatically handle this in the loader file generation process for SPI boot devices.

With bit reversing for SPI master boot mode, the 32-bit word is handled according to the host width. With bit
reversing for SPI PROM boot, the 8-bit word is reversed as a byte and prepended (see the Default Settings for
PROM and SPI Boot Modes table).

Table 10-8: Default Settings for PROM and SPI Boot Modes

Boot Type Selection Host Width Output Format Bit Reverse Initial Word

-bprom 8 Intel hex No -

-bspislave 32 ASCII No -

-bspiflash 32 ASCII No -

-bspimaster 32 ASCII No 0x000000a5
-bspiprom 8 Intel hex Yes 0xa5

Booting From an SPI Flash (24-Bit Address)

For SPI flash devices, the format of the boot stream is identical to that used in SPI slave mode, with the first byte of
the boot stream being the first byte of the kernel. This is because SPI flash devices do not drive out data until they
receive an 8-bit command and a 24-bit address.

Booting From an SPI PROM (16-Bit Address)

The SPI Master Mode Booting Using Various Serial Devices figure in Bit-Reverse Option for SPI Master Boot
Modes shows the initial 32-bit word sent out from the processor from the perspective of the serial PROM device.

SPI Port Boot Modes

CCES 2.9.0 Loader and Utilities Manual 10–9

As shown in the figure, SPI EEPROMs only require an 8-bit opcode and a 16-bit address. These devices begin trans-
mitting on clock cycle 24. However, because the processor is not expecting data until clock cycle 32, it is necessary
for the loader to pad an extra byte to the beginning of the boot stream when programming the PROM. In other
words, the first byte of the boot kernel is the second byte of the boot stream.

Booting From an SPI Host Processor (No Address)

Typically, host processors in SPI slave mode transmit data on every SPICLK cycle. This means that the first four
bytes that are sent by the host processor are part of the first 32-bit word that is thrown away by the processor (see
the SPI Master Mode Booting Using Various Serial Devices figure in Bit-Reverse Option for SPI Master Boot
Modes). Therefore, it is necessary for the loader to pad an extra four bytes to the beginning of the boot stream when
programming the host; for example, the first byte of the kernel is the fifth byte of the boot stream.

Reserved (No Boot) Mode

In no boot mode, upon reset, the processor starts executing the application stored in the internal boot kernel.

ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels

The boot-loading process starts with a transfer of the boot kernel program into the processor memory. The boot
kernel sets up the processor and loads boot data. After the boot kernel finishes initializing the rest of the system, the
boot kernel loads boot data over itself with a final DMA transfer.

The ADSP-2126x/2136x/2137x/214xx Default Boot Kernel Files table lists the ADSP-2126x/2136x/2137x/214xx
boot kernels shipped with CrossCore Embedded Studio.

Table 10-9: ADSP-2126x/2136x/2137x/214xx Default Boot Kernel Fileskernels (ADSP-2126x/36x/37x/46x processors) default source files

Processor PROM SPI Slave, SPI Flash, SPI Mas-
ter, SPI PROM

Link Port Boot (ADSP-2146x)

ADSP-2126x 26x_prom.dxe 26x_spi.dxe N/A

ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365,
ADSP-21366

36x_prom.dxe 36x_spi.dxe N/A

ADSP-21367, ADSP-21368,
ADSP-21369

369_prom.dxe 369_spi.dxe N/A

ADSP-21371 371_prom.dxe 371_spi.dxe N/A

ADSP-21375 375_prom.dxe 375_spi.dxe N/A

ADSP-21467, ADSP-21469 469_prom.dxe 469_spi.dxe 469_link.dxe
ADSP-21477, ADSP-21478,
ADSP-21479

479_prom.dxe 479_spi.dxe N/A

ADSP-21483, ADSP-21486,
ADSP-21487, ADSP-21488,
ADSP-21489

489_prom.dxe 489_spi.dxe N/A

SPI Port Boot Modes

10–10 CCES 2.9.0 Loader and Utilities Manual

At processor reset, a boot kernel is loaded into the seg_ldr memory segment as defined in the Linker Description
File for the default loader kernel that corresponds to the target processor, for example, 2126x_ldr.ldf, which is
stored in the <install_path>/SHARC/ldr/26x_prom directory of the target processor.

Boot Kernel Modification and Loader Issues

Boot kernel customization is required for some systems. In addition, the operation of other tools (such as the C/C++
compiler) is influenced by whether the loader utility is used.

If you do not specify a boot kernel file via the Loader > General page of theTool Settings dialog box in the IDE (or
via the-l command-line switch), the loader utility places a default boot kernel (see the ADSP-2126x/2136x/2137x/
214xx Default Boot Kernel Files table in ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels) in the loader
output file based on the specified boot type.

If you do not want to use any boot kernel file, check the No kernel (-nokernel) box (or specify the -nokernel
command-line switch). The loader utility places no boot kernel in the loader output file.

• To omit a boot kernel. The -nokernel switch denotes that a running on the processor (already booted) sub-
routine imports the .ldr file. The loader utility does not insert a boot kernel into the .ldr file-a similar
subroutine is present already on the processor. Instead, the loader file begins with the first header of the first
block of the boot stream.

• To omit any interrupt vector table (IVT) handling. In internal boot mode, the boot stream is not imported by
a boot kernel executing from within the IVT; no self-modifying FINAL_INIT code (which overwrites itself
with the IVT) is needed. Thus, the loader utility does not give any special handling to the 256 instructions
located in the IVT (0x80000-0x800FF for ADSP-2126x processors and 0x90000-0x900FF for
ADSP-2136x processors). Instead, the IVT code or data are handled like any other range of memory.

• To omit an initial word of 0xa5. When -nokernel is selected, the loader utility does not place an initial
word (A5) in the boot stream as required for SPI master booting.

• To replace the FINAL_INIT block with a USER_MESG header. The FINAL_INIT block (which typically
contains the IVT code) should not be included in the .ldr file because the contents of the IVT (if any) is
incorporated in the boot stream. Instead, the loader utility appends one final bock header to terminate the
loader file.

The final block header has a block tag of 0x0 (USER_MESG). The header indicates to a subroutine processing
the boot stream that this is the end of the stream. The header contains two 32-bit data words, instead of count
and address information (unlike the other headers). The words can be used to provide version number, error
checking, additional commands, return addresses, or a number of other messages to the importing subroutine
on the processor.

The two 32-bit values can be set on the command line as arguments to the -nokernel[message1,
message2] switch (see the ADSP-2126x/2136x/2137x/214xx Loader Switches table in Loader Command-
Line Switches for ADSP-2126x/2136x/2137x/214xx Processors. The first optional argument is msg_word1,
and the second optional argument is msg_word2, where the values are interpreted as 32-bit unsigned num-
bers. If only one argument is issued, that argument is msg_word1. It is not possible to specify msg_word2

ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels

CCES 2.9.0 Loader and Utilities Manual 10–11

without specifying msg_word1.) If one or no arguments are issued at the command line, the default values for
the arguments are 0x00000000.

The Internal Booting: USER_MESG Block Header Format listing shows a sample format for the USER_MESG
header.

Internal Booting: USER_MESG Block Header Format
0x00000000 /* USER_MESG tag */
0x00000000 /* msg_word1 (1st cmd-line parameter) */
0x00000000 /* msg_word2 (2nd cmd-line parameter) */

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.asm) file by inserting appropriate settings for your system, you must rebuild
the boot kernel (.dxe) before generating the boot-loadable (.ldr) file. Note the boot kernel source file already
contains default register configurations for the external memories (AMI/SDRAM/DDR2).

To Modify a Boot Kernel Source File

1. Copy the applicable boot kernel source file (26x_prom.asm, 26x_spi.asm, 36x_prom.asm,
36x_spi.asm, 369_prom.asm, 369_spi.asm).

2. Apply the appropriate changes.

NOTE: Any modification requires that the RTI instruction should still be located at the required peripheral ISR,
otherwise the booting may fail.

After modifying the boot kernel source file, rebuild the boot kernel (.dxe) file. Do this from within the IDE (refer
to online help for details) or rebuild a boot kernel file from the command line.

Rebuilding a Boot Kernel Using Command Lines

Rebuild a boot kernel using command lines as follows.

PROM Booting. The default boot kernel source file for PROM booting is 26x_prom.asm for the ADSP-2126x
processors. After copying the default file to my_prom.asm and modifying it to suit your system, use the following
command lines to rebuild the boot kernel.
easm21k -proc ADSP-21262 my_prom.asm
linker -T 2162x_ldr.ldf my_prom.doj

SPI Booting. The default boot kernel source file for link booting is 2126x_SPI.asm for the ADSP-2126x pro-
cessors. After copying the default file to my_SPI.asm and modifying it to suit your system, use the following
command lines to rebuild the boot kernel:
easm21k -proc ADSP-21262 my_SPI.asm
linker -T 2126x_ldr.ldf my_SPI.doj

Loader File Issues

If you modify the boot kernel for the PROM or SPI booting modes, ensure that the seg_ldr memory segment is
defined in the .ldf file. Refer to the source of this memory segment in the .ldf file located in the ldr installa-
tion directory of the target processor.

Boot Kernel Modification and Loader Issues

10–12 CCES 2.9.0 Loader and Utilities Manual

Because the loader utility uses the RESET vector location during the boot-load process, avoid placing code at the
address. When using any of the processor's power-up booting modes, ensure that the address does not contain a
critical instruction, because the address is not executed during the booting sequence. Place a NOP or IDLE in this
location. The loader utility generates a warning if the RESET vector location does not contain NOP or IDLE.

NOTE: When creating the loader file, specify the name of the customized boot kernel executable in the Kernel file
(-l) field on the CrossCore SHARC Loader > General page of the Tool Settings dialog box.

ADSP-2126x/2136x/2137x/214xx Processor Boot Streams

The loader utility generates and inserts a header at the beginning of a block of contiguous data and instructions in
the loader file. The kernel uses headers to properly place blocks into processor memory. The architecture of the
header follows the convention used by other SHARC processors.

For all of the ADSP-2126x/2136x/2137x/214xx processor boot types, the structures of block header are the same.
The header consists of three 32-bit words: the block tag, word count, and destination address. The order of these
words is as follows.

0x000000TT First word. Tag of the data block (T)

0x0000CCCC Second word. Data word length or data word count (C) of the data block.

0xAAAAAAAA Third word. Start address (A) of the data block.

Boot Stream Block Tags

The ADSP-2126x/2136x/2137x/214xx Processor Block Tags table details the processor block tags.

Table 10-10: ADSP-2126x/2136x/2137x/214xx Processor Block Tags

Tag Count 1 Address Padding

0x0 FINAL_INIT None

0x1 ZERO_LDATA Number of 16-, 32-, or 64-bit
words

Logical short, normal, or long
word address

None

0x2 ZERO_L48 2 Number of 48-bit words Logical normal word (ISA) or
Short word (VISA) address

None

0x3 INIT_L16 Number of 16-bit words Logical short word address If count is odd, pad with 16-bit
zero word; see INIT_L16 Blocks
for details.

0x4 INIT_L32 Number of 32-bit words Logical normal word address None

0x5 INIT_L48 2 Number of 48-bit words Logical normal word (ISA) or
Short word (VISA) address

If count is odd, pad with 48-bit
zero word; see INIT_L48 Blocks
for details.

0x6 INIT_L64 Number of 64-bit words Logical long word address None; see INIT_L64 Blocks for
details.

ADSP-2126x/2136x/2137x/214xx Processor Booting

CCES 2.9.0 Loader and Utilities Manual 10–13

Table 10-10: ADSP-2126x/2136x/2137x/214xx Processor Block Tags (Continued)

Tag Count 1 Address Padding

0x7 ZERO_EXT8 Number of 32-bit words Physical external address None

0x8 ZERO_EXT16 Number of 32-bit words Physical external address None

0x9 INIT_EXT8 Number of 32-bit words Physical external address None

0xA INIT_EXT16 Number of 32-bit words Physical external address None

0xB MULTI_PROC for
ADSP-21368, ADSP-2146x pro-
cessors

Processor IDs (bits 0-7); see
Multi-Application (Multi-DXE)
Management for details.

Offset to the next processor ID
in words (32 bits)

None

0x0 USR_MESG msg_word1 msg_word2 None

1 The count is the actual number of words and does NOT included padded words added by the loader utility.

2 40-bit floating point data and 48-bit ISA/VISA instructions words are treated identically.

The ADSP-2126x/2136x/2137x/214xx processor uses eleven block tags, a lesser number of tags compared to other
SHARC predecessors.

ZERO_INIT Blocks

There is only one initialization tag per width because there is no need to draw distinction between pm and dm
sections during initialization. The same tag is used for 16-bit (short word), 32-bit (normal word), and 64-bit (long
word) blocks that contain only zeros. The 0x1 tag is used for ZERO_LDATA blocks of 16-bit, 32-bit, and 64-bit
words. The 0x2 tag is used for ZERO_L48 blocks of 40-bit floating point data and 48-bit ISA (VISA instructions
ADSP-214xx).

For clarity, the letter L has been added to the names of the internal block tags. L indicates that the associated section
header uses the logical word count and logical address. Previous SHARC boot kernels do not use logical values. For
example, the count for a 16-bit block may be the number of 32-bit words rather than the actual number of 16-bit
words.

Only four tags are required to handle an external memory, two for each packing mode (see Packing Options for
External Memory). The external memory can be accessed only via the physical address of the memory. This means
that each 32-bit word corresponds to either four (for 8-bit) or two (for 16-bit) external addresses. The EXT append-
ed to the name of the block tag indicates that the address is a physical external address. For
ADSP-21367/21368/21369/2137x and ADSP-214xx processors, tag INIT_L32 also is used for all external 32-bit
blocks.

INIT_L48 Blocks

The INIT_L48 block has one packing and one padding requirements. First, there must be an even number of 48-
bit words in the block. If there is an odd number of instructions, then the loader utility must append one additional
48-bit NOP instruction that is all zeros. In all cases, the count placed into the header is the original logical number
of words. That is, the count does not include the padded word. Once the number of words in the block is even, the
data in this block is packed according to the INIT_L48 Block Packing and Zero-Padding (ASCII Format) table.

ADSP-2126x/2136x/2137x/214xx Processor Boot Streams

10–14 CCES 2.9.0 Loader and Utilities Manual

Table 10-11: INIT_L48 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

32 16 8

111122223333 22223333 22223333 3333 33
444455556666 66661111 55551111 2222 33
AAAABBBBCCCC 44445555 44445555 1111 22

BBBBCCCC BBBBCCCC 6666 22
0000AAAA 0000AAAA 5555 11
00000000 00000000 4444 11

CCCC 66
BBBB 66
AAAA 55
0000 55
0000 44
0000 44

CC
CC
BB

INIT_L16 Blocks

For 16-bit initialization blocks, the number of 16-bit words in the block must be even. If an odd number of 16-bit
words is in the block, then the loader utility adds one additional word (all zeros) to the end of the block, as shown in
the INIT_L16 Block Packing and Zero-Padding (ASCII Format) table. The count stored in the header is the actual
number of 16-bit words. The count does not include the padded word.

Table 10-12: INIT_L16 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

32 16 8

1122 33441122 33441122 1122 22
3344 00005566 00005566 3344 11
5566 5566 44

0000 33
66
55
00

ZERO_INIT Blocks

CCES 2.9.0 Loader and Utilities Manual 10–15

Table 10-12: INIT_L16 Block Packing and Zero-Padding (ASCII Format) (Continued)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

32 16 8

00

INIT_L64 Blocks

For 64-bit initialization blocks, the data is packed as shown in the INIT_L64 Block Packing (ASCII Format) table.

Table 10-13: INIT_L64 Block Packing (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

32 16 8

1111222233334444 33334444 33334444 4444 44
11112222 11112222 3333 44

2222 33
1111 33

22
22
11
11

MULT_PROC Blocks

The 0xB tag is for multiprocessor systems, exclusively supported on ADSP-21368 and ADSP-2146x processors.
The tag indicates that the header is a processor ID header with the ID values and offset values stored in the header.
A block can have multiple IDs in its block header, which makes it possible to boot the block into multiple process-
ors.

Two data tags, USER_MESG and FINAL_INIT, differ from the standard format for other SHARC data tags. The
USER_MESG header is described in Boot Kernel Modification and Loader Issues, and the FINAL_INIT header in
FINAL_INIT Blocks.

FINAL_INIT Blocks

The final 256-instructions of the .ldr file contain the instructions for the IVT. The instructions are initialized by a
special self-modifying subroutine in the boot kernel (see Listing 7-2). To support the self-modifying code, the loader
utility modifies the FINAL_INIT block as follows:

1. Places a multi-function instruction at the fifth instruction of the block: The loader utility places the instruction
R0=R0-R0, DM(I4,M5)=R9, PM(I12,M13)=R11; at RESET vector location. The instruction over-
writes whatever instruction is at that address. The opcode for this instruction is 0x39732D802000.

2. Places an RTI instruction in the IVT: The loader utility inserts an RTI instruction (opcode
0x0B3E00000000) at the first address in the IVT entry associated with the boot-source. Unlike the

ZERO_INIT Blocks

10–16 CCES 2.9.0 Loader and Utilities Manual

multifunction instruction placed at RESET vector location which overwrites the data, the loader utility pre-
serves the user-specified instruction which the RTI replaces. This instruction is stored in the header for
FINAL_INIT as shown in Listing 7-2.

• For parallel boot mode, the RTI is placed at address 0x80050 for ADSP-2126x processors, at 0x90050
for ADSP-2136x/2137x processors, and at 0x8C050 for ADSP-214xx processors.

• For all SPI boot modes, the RTI is placed at address 0x80030 for ADSP-2126x processors, at 0x90030
for ADSP-2136x/2137x processors, and at 0x8C030 for ADSP-214xx processors (high priority SPI in-
terrupt).

3. Saves an IVT instruction in the FINAL_INIT block header. The count and address of a FINAL_INIT
block are constant; to avoid any redundancy, the count and address are not placed into the block header. In-
stead, the 32-bit count and address words are used to hold the instruction that overwrites the RTI inserted into
the IVT. Listing 7-2 illustrates the block header for FINAL_INIT if, for example, the opcode
0xAABBCCDDEEFF is assumed to be the user-intended instruction for the IVT.

FINAL_INIT Block Header Format
0x00000000 /* FINAL_INIT tag = 0x0 */
 0xEEFF0000 /* LSBs of instructions */
 0xAABBCCDD /* 4 MSBs of instructions */

FINAL_INIT Section (ADSP-2126x)
/* ====================== FINAL_INIT ======================== */
/* The FINAL_INIT subroutine in the boot kernel program sets up
a DMA to overwrite itself. The code is the very last piece that
runs in the kernel; it is self-modifying code, It uses a DMA
to overwrite itself, initializing the 256 instructions that
reside in the Interrupt Vector Table. */
/* -- */

final_init:

 /* ----------- Setup for IVT instruction patch ------------- */
 I8=0x80030; /* Point to SPI vector to patch from PX */
 R9=0xb16b0000; /* Load opcode for "PM(0,I8)=PX" into R9 */
 PX=pm(0x80002); /* User instruction destined for 0x80030
 is passed in the section-header for
 FINAL_INIT. That instr. is initialized
 upon completion of this DMA (see comments
 below) using the PX register. */
 R11=BSET R11 BY 9; /* Set IMDW to 1 for inst. write */
 DM(SYSCTL)=R11; /* Set IMDW to 1 for inst. write */

 /* ------ Setup loop for self-modifying instruction ------- */
 I4=0x80004; /* Point to 0x080004 for self-modifying
 code inserted by the loader at 0x80004
 in bootstream */

ZERO_INIT Blocks

CCES 2.9.0 Loader and Utilities Manual 10–17

 R9=pass R9, R11=R12; /* Clear AZ, copy power-on value
 of SYSCTL to R11 */
 DO 0x80004 UNTIL EQ; /* Set bottom-of-loop address (loopstack)
 to 0x80004 and top-of-loop (PC Stack)
 to the address of the next
 instruction. */
 PCSTK=0x80004; /* Change top-of-loop value from the
 address of this instruction to
 0x80004. */

 /* ------------- Setup final DMA parameters --------------- */
 R1=0x80000;DM(IISX)=R1; /* Setup DMA to load over ldr */
 R2=0x180; DM(CSX)=R2; /* Load internal count */
 DM(IMSX)=M6; /* Set to increment internal ptr */

 /*----------------- Enable SPI interrupt --------------------*/
 bit clr IRPTL SPIHI; /* Clear any pending SPI interr. latch */
 bit set IMASK SPIHI; /* Enable SPI receive interrupt */
 bit set MODE1 IRPTEN; /* Enable global interrupts */

 FLUSH CACHE; /* Remove any kernel instr's from cache */

 /*---------- Begin final DMA to overwrite this code -------- */
 ustat1=dm(SPIDMAC);
 bit set ustat1 SPIDEN;
 dm(SPIDMAC)=ustat1; /* Begin final DMA transfer */

 /*------------ Initiate self-modifying sequence ----------- */
 JUMP 0x80004 (DB); /* Causes 0x80004 to be the return
 address when this DMA completes and
 the RTI at 0x80030 is executed. */
 IDLE; /* After IDLE, patch then start */
 IMASK=0; /* Clear IMASK on way to 0x80004 */

/* == */
/* When this final DMA completes, the high-priority SPI interrupt
 is latched, which triggers the following chain of events:

1) The IDLE in the delayed branch to completes
2) IMASK is cleared
3) The PC (now 0x80004 due to the "JUMP RESET (db)") is pushed
 on the PC stack and the processor vectors to 0x80030 to
 service the interrupt.
 Meanwhile, the loader (anticipating this sequence) has automatically
 inserted an "RTI" instruction at 0x80030. The user
 instruction intended for that address is instead placed
 in the FINAL_INIT section-header and has loaded into PX before
 the DMA was initiated.)

4) The processor executes the RTI at 0x80030 and vectors to the

ZERO_INIT Blocks

10–18 CCES 2.9.0 Loader and Utilities Manual

 address stored on the PC stack (0x80004).
 Again, the loader has inserted an instruction into the boot
 stream and has placed it at 0x80005 (opcode x39732D802000):
 R0=R0-R0,DM(I4,M5)=R9,PM(I12,M13)=R11;

 This instruction does the following.
 A) Restores the power-up value of SYSCTL (held in R11).
 B) Overwrites itself with the instruction "PM(0,I8)=PX;"
 The first instruction of FINAL_INIT places the opcode for
 this new instruction, 0xB16B00000000, into R9.
 C) R0=R0-R0 causes the AZ flag to be set.

 This satisfies the termination-condition of the loop set up
 in FINAL_INIT ("DO RESET UNTIL EQ;"). When a loop condition
 is achieved within the last three instructions of a loop,
 the processor branches to the top-of-loop address (PCSTK)
 one final time.

5) We manually changed this top-of-loop address 0x80004, and so
 to conclude the kernel, the processor executes the instruction
 at 0x80004 *again*.

6) There's a new instruction at 0x80004: "PM(0,I8)=PX;". This
 initializes the user-intended instruction at 0x80030 (the vector
 for the High-Priority-SPI interrupt).

At this point, the kernel is finished, and execution continues
at 0x80005, with the only trace as if nothing happened! */
/* == */

Multi-Application (Multi-DXE) Management

Up to four ADSP-21367/21368/21369/21371/21375, and two ADSP-214xx processors can be clustered together
and supported by the CrossCore Embedded Studio loader utility. In PROM boot mode, all of the processors can
boot from the same PROM. The loader utility assigns an input executable (.dxe) file to a processor ID or to a
number of processor IDs, provided a corresponding loader option is selected on the properties page or on the com-
mand line.

The loader utility inserts the ID into the output boot stream using the multiprocessor tag MULTI_PROC (see the
ADSP-2126x/2136x/2137x/214xx Processor Block Tags table in Boot Stream Block Tags). The loader utility also
inserts the offset (the 32-bit word count of the boot stream built from the input executable (.dxe) file) into the
boot stream. The MULTI_PROC tag enables the boot kernel to identify each section of the boot stream with the
executable (.dxe) file from which that section was built. The Multiprocessor Boot Stream figure shows the multi-
processor boot stream structure.

ADSP-2126x/2136x/2137x/214xx Processor Booting

CCES 2.9.0 Loader and Utilities Manual 10–19

BOOT KERNEL

......

1st .dxe BLOCK HEADER

1st .dxe DATA BLOCKS

2nd .dxe BLOCK HEADER

2nd .dxe DATA BLOCKS

......

Figure 10-2: Multiprocessor Boot Stream

The processor ID of the corresponding processor is indicated in a 32-bit word, which has the Nth bit set for
the .dxe file corresponding to ID=N. The Multiprocessor ID Fields table shows possible ID fields.

Table 10-14: Multiprocessor ID Fields

Processor ID Number Loader ID Field

0 0x00000001
1 0x00000002
2 0x00000004
3 0x00000008
4 0x00000010
5 0x00000020
6 0x00000040
7 0x00000080
1 && 4 0x00000012
6 && 7 0x000000C0

The multiprocessor tag, processor ID, and the offset are encapsulated in a multiprocessor header. The multiproces-
sor header includes three 32-bit words: the multiprocessor tag; the ID (0-7) of the associated processor .dxe file
in the lowest byte of a word; and the offset to the next multiprocessor tag. The loader -id#exe=filename
switch is used to assign a processor ID number to an executable file. The loader -id#ref=N switch is used to
share the same executable file by setting multiple bits in the ID field. The Multiprocessor Header figure shows the
multiprocessor header structure.

ADSP-2126x/2136x/2137x/214xx Processor Booting

10–20 CCES 2.9.0 Loader and Utilities Manual

0xB

PROCESSOR ID

OFFSET TO THE NEXT MULTIPROCESSOR HEADER

Figure 10-3: Multiprocessor Header

ADSP-2126x/2136x/2137x Processor Compression Support

NOTE: Compression is not supported on the ADSP-214xx processors.

The loader utility for the ADSP-2126x/2136x/2137x processors offers a loader file (boot stream) compression mech-
anism known as zLib. The zLib compression is supported by a third party dynamic link library, zLib1.dll. Ad-
ditional information about the library can be obtained from the http://www.zlib.net website.

The zLib1 dynamic link library is included with CrossCore Embedded Studio. The library functions perform the
boot stream compression and decompression procedures when the appropriate options are selected for the loader
utility.

The boot kernel with built-in decompression mechanism must perform the decompression on the compressed boot
stream in a booting process. The default boot kernel with decompression functions are included with CrossCore
Embedded Studio.

The loader -compression switch directs the loader utility to perform the boot stream compression from the
command line. The IDE also offers a dedicated loader properties page (Compression) to manage the compression
from the graphical user interface.

The loader utility takes two steps to compress a boot stream. First, the utility generates the boot stream in the con-
ventional way (builds data blocks), then applies the compression to the boot stream. The decompression initializa-
tion is the reversed process: the loader utility decompresses the compressed stream first, then loads code and data
into memory segments in the conventional way.

The loader utility compresses the boot stream on the .dxe -by-.dxe basis. For each input .dxe file, the utility
compresses the code and data together, including all code and data from any associated shared memory (.sm) files.
The loader utility, however, does not compress automatically any data from any associated overlay files. To compress
data and code from the overlay file, call the utility with the -compressionOverlay switch, either from the
properties page or from the command line.

Compressed Streams

The basic structure of a loader file with compressed streams is shown in the Loader File With Compressed Streams
figure.

ADSP-2126x/2136x/2137x/214xx Processor Booting

CCES 2.9.0 Loader and Utilities Manual 10–21

http://www.zlib.net

KERNEL WITH DECOMPRESSION ENGINE

......

1st .dxe COMPRESSED STREAM

1st .dxe UNCOMPRESSED STREAM

2nd .dxe COMPRESSED STREAM

2nd .dxe UNCOMPRESSED STREAM

......

Figure 10-4: Loader File With Compressed Streams

The kernel code with the decompression engine is on the top of the loader file. This section is loaded into the pro-
cessor first and is executed first when a boot process starts. Once the kernel code is executed, the rest of the stream is
brought into the processor. The kernel code calls the decompression routine to perform the decompression opera-
tion on the stream, and then loads the decompressed stream into the processor's memory in the same manner a
conventional kernel does when it encounters a compressed stream.

The Compressed Block figure shows the structure of a compressed boot stream.

COMPRESSED BLOCK HEADER

COMPRESSED STREAM

Figure 10-5: Compressed Block

Compressed Block Headers

A compressed stream always has a header, followed by the payload compressed stream.

The compressed block header is comprised of three 32-bit words. The structure of a compressed block header is
shown in the Compressed Block Header figure.

ADSP-2126x/2136x/2137x Processor Compression Support

10–22 CCES 2.9.0 Loader and Utilities Manual

COMPRESSED BLOCK HEADER

COMPRESSED STREAM

Figure 10-6: Compressed Block Header

The first 32-bit word of the compressed block header holds the compression flag, 0x00002000, which indicates
that it is a compressed block header.

The second 32-bit word of the compressed block header hold the size of the compression window (takes the upper
16 bits) and padded word count (takes the lower 16 bits). For the ADSP-2126x/2136x/2137x processors, the loader
utility always rounds the byte count of the compressed stream to be a multiple of 4. The loader utility also pads 3
bytes to the compressed stream if the byte count of the compressed stream from the loader compression engine is
not a multiple of 4. An actual padded byte count is a value between 0x0000 and 0x0003.

The compression window size is 8-15 bits, with the default value of 9 bits. The compression window size specifies to
the compression engine a number of bytes taken from the window during the compression. The window size is the
2's exponential value.

The next 32 bits of the compressed block header holds the value of the compressed stream byte count, excluding the
byte padded.

A window size selection affects, more or less, the outcome of the data compression. Streams in decompression win-
dows of different sizes are, in general, different and most likely not compatible to each other. If you are building a
custom decompression kernel, ensure the same compression window size is used for both the loader utility and the
kernel. In general, a bigger compression window size leads to a smaller outcome stream. However, the benefit of a
big window size is marginal in some cases. An outcome of the data compression depends on a number of factors,
and a compression window size selection is only one of them. The other important factor is the coding structure of
an input stream. A compression window size selection can not cause a much smaller outcome stream if the compres-
sion ability of the input stream is low.

Uncompressed Streams

Following the compressed streams, the loader utility file includes the uncompressed streams. The uncompressed
streams include application codes, conflicted with the code in the initialization blocks in the processor's memory
spaces, and a final block. The uncompressed stream includes only a final block if there is no conflicted code. The
final block can have a zero byte count. The final block indicates the end of the application to the initialization code.

Overlay Compression

The loader utility compresses the code and data from the executable .dxe and shared memory .sm files when the
-compression command-line switch is used alone, and leaves the code and data from the overlay (.ovl) files
uncompressed. The -compressionOverlay switch directs the loader utility to compress the code and data
from the .ovl files, in addition to compressing the code and data from the .dxe and .sm files.

ADSP-2126x/2136x/2137x Processor Compression Support

CCES 2.9.0 Loader and Utilities Manual 10–23

The -compressionOverlay switch must be used in conjunction with -compression.

Booting Compressed Streams

The ADSP-2126x/2136x/2137x Compressed Loader Stream: Booting Sequence figure shows the booting sequence of
a loader file with compressed streams. The loader file is prestored in the flash memory.

1. A booting process is initialized by the processor.

2. The processor brings the 256 words of the boot kernel from the flash memory to the processor's memory for
execution.

3. The decompression engine is brought in.

4. The compressed stream is brought in, then decompressed and loaded into the memory.

5. The uncompressed stream is brought and loaded into memory, possibly to overwrite the memory spaces taken
by the compressed code.

6. The final block is brought and loaded into the memory to overwrite the memory spaces taken by the boot
kernel.

BOOT KERNEL

 DECOMPRESSION
ENGINE

COMPRESSED
STREAM

UNCOMPRESSED
STREAM

FINAL BLOCK

FLASH MEMORY

MEMORY

PROCESSOR
1
2

3

5

4

6

Figure 10-7: ADSP-2126x/2136x/2137x Compressed Loader Stream: Booting Sequence

Decompression Kernel File

As stated before, a decompression kernel .dxe file must be used when building a loader file with compressed
streams. The decompression kernel file has a built-in decompression engine to decompress the compressed streams
from the loader file.

A decompression kernel file can be specified from the loader properties page or from the command line via the -l
userkernel switch. CrossCore Embedded Studio includes the default decompression kernel files, which the loader

ADSP-2126x/2136x/2137x Processor Compression Support

10–24 CCES 2.9.0 Loader and Utilities Manual

utility uses if no other kernel file is specified. If building a custom decompression kernel, ensure that you use the
same decompression function, and use the same compression window size for both the kernel and the loader utility.

The default decompression kernel files are stored in the <install_path>/SHARC/ldr/zlib directory of
CrossCore Embedded Studio. The loader utility uses the window size of 9 bits to perform the compression opera-
tion. The compression window size can be changed through the loader properties page or the -compressWS # com-
mand-line switch. The valid range for the window size is from 8 to 15 bits.

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable files.
You select features, such as boot modes, boot kernels, and output file formats via the properties. The properties are
specified on the loader utility's command line or the Tool Settings dialog box in the IDE (CrossCore Blackfin Loader
pages). The default loader settings for a selected processor are preset in the IDE.

NOTE: The IDE’s Tool Settings correspond to switches displayed on the command line.

These sections describe how to produce a bootable loader file (.ldr):

• Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors

• CCES Loader Interface for ADSP-2126x/2136x/2137x/214xx Processors

Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors

The loader utility uses the following command-line syntax for the ADSP-2126x, ADSP-2136x, ADSP-2137x, and
ADSP-214xx SHARC processors.

elfloader inputfile -proc processor -switch [switch]
where:

• inputfile - Name of the executable file (.dxe) to be processed into a single boot-loadable file. An input file
name can include the drive and directory. Enclose long file names within straight quotes, "long file
name".

• -proc processor - Part number of the processor (for example, -proc ADSP-21262) for which the
loadable file is built. The -proc switch is mandatory.

• -switch - One or more optional switches to process. Switches select operations and boot modes for the loader
utility. A list of all switches and their descriptions appear in Loader Command-Line Switches for ADSP-2126x/
2136x/2137x/214xx Processors.

NOTE: Command-line switches are not case-sensitive and may be placed on the command line in any order.

The following command line,
elfloader Input.dxe -bSPIflash -proc ADSP-21262

runs the loader utility with:

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 10–25

• Input.dxe - Identifies the executable file to process into a boot-loadable file. Note that the absence of the -
o switch causes the output file name to default to Input.ldr.

• -bspiflash - Specifies SPI flash port booting as the boot type for the boot-loadable file.

• -proc ADSP-21262 - Specifies ADSP-21262 as the target processor.

Loader Command-Line Switches for ADSP-2126x/2136x/2137x/214xx Processors

The ADSP-2126x/2136x/2137x/214xx Loader Switches table is a summary of the loader switches for the
ADSP-2126x, ADSP-2136x, ADSP-2137x, and ADSP-214xx processors.

Table 10-15: ADSP-2126x/2136x/2137x/214xx Loader Switches

Switch Description

-bprom
-bspislave|-bspi
-bspimaster
-bspiprom
-bspiflash
-blink

Specifies the boot mode. The -b switch directs the loader utility to prepare a boot-loadable file
for the specified boot mode. The valid modes (boot types) are PROM, SPI slave, SPI master,
SPI PROM, SPI flash, and link port (ADSP-2146x processors).

If -b does not appear on the command line, the default is -bprom. To use a custom boot ker-
nel, the boot type selected with the -b switch must correspond with the boot kernel selected
with the -l switch. Otherwise, the loader utility automatically selects a default boot kernel
based on the selected boot type (see ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels).

NOTE: Do not use with the -nokernel switch.

-compression Directs the loader utility to compress the application data and code, including all data and code
from the application-associated shared memory files (see ADSP-2126x/2136x/2137x Processor
Compression Support). The data and code from the overlay files are not compressed if this
switch is used alone (see -compressionOverlay).

-compressionOverlay Directs the loader utility to compress the application data and code from the associated overlay
files (see Overlay Compression).

NOTE: This switch must be used with -compression.

-compressWS # The -compressWS # switch specifies a compression window size in bytes. The number is a
2's exponential value to be used by the compression engine. The valid values are [8-15], with
the default of 9.

-fhex
-fASCII
-fbinary
-fbyte
-finclude
-fs1
-fs2
-fs3

Specifies the format of a boot-loadable file (Intel hex-32, ASCII, binary, byte, include). If the -
f switch does not appear on the command line, the default boot file format is Intel hex-32 for
PROM and SPI PROM, ASCII for SPI slave, SPI flash, and SPI master.

Available formats depend on the boot type selection (-b switch):

• For PROM and SPI PROM boot types, select a hex, ASCII, s1, s2, s3, or include format.

• For other SPI boot types, select an ASCII or binary format.

• The byte format is used with -splitter only. The byte format is not available for boota-
ble loader files.

Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors

10–26 CCES 2.9.0 Loader and Utilities Manual

Table 10-15: ADSP-2126x/2136x/2137x/214xx Loader Switches (Continued)

Switch Description

-h
or

-help

Invokes the command-line help, outputs a list of command-line switches to standard output,
and exits. By default, the -h switch alone provides help for the loader driver. To obtain a help
screen for the target processor, add the -proc switch to the command line.

For example: type elfloader -proc ADSP-21262 -h to obtain help for the
ADSP-21262 processor.

-hostwidth [8|16|32] Sets up the word width for the .ldr file. By default, the word width for PROM and SPI
PROM boot modes is 8; for SPI slave, SPI flash, and SPI master boot modes is 32. The valid
word widths are:

• 8 for Intel hex 32 and Motorola S-records formats.

• 8, 16, or 32 for ASCII, binary, and include formats.

• 8, 16, or 32 for byte format when building with -splitter section_name.

-id# exe=filename Specifies the processor ID. Directs the loader utility to use the processor ID (#) for a corre-
sponding executable file (the filename parameter) when producing a boot-loadable file. This
switch is used to produce a boot-loadable file to boot multiple processors. Valid values for # are
0, 1, 2, 3, 4, 5, 6, 7.

Do not use this switch for single-processor systems. For single-processor systems, use filename
as a parameter without a switch.

NOTE: This switch is applicable to the ADSP-21367/21368/21369/21371/21375 and
ADSP-214xx processors only.

-id#ref=N Directs the loader utility to share the boot stream for processor N with processor #. If the execut-
able file of the # processor is identical to the executable of the N processor, the switch can be
used to set the start address of the processor with ID of # to be the same as that of the processor
with ID of N. This effectively reduces the size of the loader file by providing a single copy of the
file to two or more processors in a multiprocessor system.

The ADSP-21367/21378/21369/21371/213755] and ADSP-214xx processors support 8 pro-
cessors, and the valid processor ids are 0, 1, 2, 3, 4, 5, 6, 7.

NOTE: This switch is applicable to the ADSP-21367/21368/21369/21371/21375 and
ADSP-214xx processors only.

-l userkernel Directs the loader utility to use the specified userkernel and to ignore the default boot kernel
for the boot-loading routine in the output boot-loadable file.

NOTE: The boot kernel file selected with this switch must correspond to the boot type se-
lected with the -b switch).

If the -l switch does not appear on the command line, the loader utility searches for a default
boot kernel file in the installation directory, (see ADSP-2126x/2136x/2137x/214xx Processor
Boot Kernels). For kernels with the decompression engine, see Decompression Kernel File.

NOTE: The loader utility does not search for any kernel file if -nokernel is selected.

Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors

CCES 2.9.0 Loader and Utilities Manual 10–27

Table 10-15: ADSP-2126x/2136x/2137x/214xx Loader Switches (Continued)

Switch Description

-nokernel [message1, mes-
sage2]

Supports internal boot mode. The -nokernel switch directs the loader utility:

• Not to include the boot kernel code into the loader (.ldr) file.

• Not to perform any special handling for the 256 instructions located in the IVT.

• To put two 32-bit hex messages in the final block header (optional).

• Not to include the initial word in the loader file.

For more information, see Boot Kernel Modification and Loader Issues.

-o filename Directs the loader utility to use the specified filename as the name for the loader's output file.
If the -o filename is absent, the default name is the root name of the input file with
an .ldr extension.

-noZeroBlock The -noZeroBlock switch directs the loader utility not to build zero blocks.

-p address Specifies the PROM offset start address. This PROM address corresponds to 0x80000
(ADSP-2126x processors) or to external bank MS1 for ADSP-2136x/2137x/214xx processors.
The -p switch starts the boot-loadable file at the specified offset address in the EPROM.

If the p switch does not appear on the command line, the loader utility starts the EPROM file
at offset address 0x0.

-proc processor Specifies the processor. This is a mandatory switch. The processor argument is one of the
following:

ADSP-21261 ADSP-21262 ADSP-21266
ADSP-21362 ADSP-21363 ADSP-21364
ADSP-21365 ADSP-21366 ADSP-21367
ADSP-21368 ADSP-21369 ADSP-21371
ADSP-21375 ADSP-21467 ADSP-21469
ADSP-21477 ADSP-21478 ADSP-21479
ADSP-21483 ADSP-21486 ADSP-21487
ADSP-21488 ADSP-21489

-retainSecondStageKernel Directs the loader utility to retain the decompression code in the memory at runtime.

NOTE: The -retainSecondStageKernel switch must be used with -
compression.

-si-revision [none|any|
x.x]

Sets revision for the build, with x.x being the revision number for the processor hardware. If -
si-revision is not used, the target is a default revision from the supported revisions.

-splitter section_name The -splitter section_name switch provides for selectively extracting a section (sec-
tion_name) from the DXE and writing it to a non-bootable .ldr file. The section name is a
required argument for -splitter. It specifies what section the loader is to extract content
from. All other sections are ignored.

NOTE: This switch is provided for the ADSP-214xx processors only. The -splitter
section_name provides support for SW (VISA) sections or NW (normal-word).

Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors

10–28 CCES 2.9.0 Loader and Utilities Manual

Table 10-15: ADSP-2126x/2136x/2137x/214xx Loader Switches (Continued)

Switch Description

-v Outputs verbose loader messages and status information as the loader utility processes files.

-version Directs the loader utility to show its version information. Type elfloader -version to
display the version of the loader drive.

Add the -proc switch, for example, elfloader -proc ADSP-21262 -version to
display version information of both loader drive and SHARC loader.

-u value Specify a value for the content of the user flag field in a BYTE format header. The value
range is 0x0-0xFF. If no -u switch is specified, the user flag field is zero.

NOTE: Use with non-bootable files built with the -fbyte and -splitter sec-
tion_name switches only.

CCES Loader Interface for ADSP-2126x/2136x/2137x/214xx Processors

Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

The IDE invokes the elfloader.exe utility to build the output loader file. To modify the default loader prop-
erties, use the project's Tool Settings dialog box. The controls on the pages correspond to the loader command-line
switches and parameters (see Loader Command-Line Switches for ADSP-2126x/2136x/2137x/214xx Processors).
The loader utility for the ADSP-214xx SHARC processors also acts as a ROM splitter when evoked with the corre-
sponding switches.

The loader pages (also called loader properties pages) show the default loader settings for the project's target processor.
Refer to the CCES online help for information about the loader interface.

The CCES splitter interface for the ADSP-2126x/2136x/2137x processors is documented in the Splitter for
SHARC Processors chapter.

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide

CCES 2.9.0 Loader and Utilities Manual 10–29

11 Splitter for SHARC Processors

This chapter explains how the splitter utility (elfspl21k.exe) is used to convert executable (.dxe) files into
non-bootable files for the ADSP-21xxx SHARC processors. Non-bootable PROM image files execute from external
memory of a processor. For SHARC processors, the utility creates a 64-/48-/40-/32-bit image file or an image file to
match a physical memory size.

ATTENTION: Users who are migrating from VisualDSP++

VisualDSP++ legacy splitter projects cannot be imported into the CrossCore Embedded Studio IDE.
There is no SHARC splitter build artifact in the IDE. If attempting to import a VisualDSP++ legacy
splitter project, a status of "Not Converted" appears along with the following error messages:

The legacy SHARC splitter elfspl21k.exe is available with CrossCore Embedded Studio for
command-line usage.

Splitter functionality for SHARC processors, beginning with the ADSP-214xx family, is available
through the SHARC loader instead of the legacy splitter utility.

For SHARC processors, the splitter utility also properly packs the external memory data or code to match the speci-
fied external memory widths if the logical width of the data or code is different from that of the physical memory.

In most instances, developers working with SHARC processors use the loader utility instead of the splitter. One of
the exceptions is a SHARC system that can execute instructions from external memory. Refer to the Introduction
chapter for the splitter utility overview; the introductory material applies to both processor families.

Splitter Command Line
Use the following syntax for the SHARC splitter command line.

elfspl21k [-switch] -pm &|-dm &|-64 &| -proc part_number inputfile

or

elfspl21k [-switch] -s section_name inputfile

where:

• inputfile - Specifies the name of the executable file (.dxe) to be processed into a non-bootable file for a
single-processor system. The name of the inputfile file must appear at the end of the command. The name

Splitter for SHARC Processors

CCES 2.9.0 Loader and Utilities Manual 11–1

can include the drive, directory, file name, and file extension. Enclose long file names within straight quotes;
for example, "long file name".

• -switch - One or more optional switches to process. Switches select operations for the splitter utility.
Switches may be used in any order. A list of the splitter switches and their descriptions can be found in Splitter
Command-Line Switches.

• -pm &| -dm &| -64 - For SHARC processors, the &| symbol between the switches indicates AND/OR.
The splitter command line must include one or more of -pm, -dm, or -64 (or the -s switch). The -64
switch corresponds to DATA64 memory space.

• -s section_name - The -s switch can be used without the -pm, -dm, or -64 switch. The splitter com-
mand line must include one or more of the -pm, -dm, and, -64 switches or the -s switch.

NOTE: Most items in the splitter command line are not case sensitive; for example, -pm and -PM are inter-
changeable. However, the names of memory sections must be identical, including case, to the names used
in the executable.

Each of the following command lines,
elfspl21k -pm -o pm_stuff my_proj.dxe -proc ADSP-21161
elfspl21k -dm -o dm_stuff my_proj.dxe -proc ADSP-21161
elfspl21k -64 -o 64_stuff my_proj.dxe -proc ADSP-21161
elfspl21k -s seg-code -o seg-code my_proj.dxe

runs the splitter utility for the ADSP-21161 processor. The first command produces a PROM file for program
memory. The second command produces a PROM file for data memory. The third command produces a PROM
file for DATA64 memory. The fourth command produces a PROM file for section seg-code.

The switches on these command lines are as follows.

-pm
-dm
-64

Selects program memory (-pm), data memory (-dm), or DATA64 memory (-64) as sources in the
executable for extraction and placement into the image.

Because these are the only switches used to identify the memory source, the specified sources are PM,
DM, or DATA64 memory sections. Because no other content switches appear on these command lines,
the output file format defaults to a Motorola 32-bit format, and the PROM word width of the output
defaults to 8 bits for all PROMs.

-o pm_stuff
-o dm_stuff
-o seg-code

Specify names for the output files. Use different names so the output of a run does not overwrite the
output of a previous run. The output names are pm_stuff.s_# and dm_stuff.s_#. The split-
ter utility adds the .s_# file extension to the output files; # is a number that differentiates one output
file from another.

my_proj.dxe Specifies the name of the input (.dxe) file to be processed into non-bootable PROM image files.

Splitter Command Line

11–2 CCES 2.9.0 Loader and Utilities Manual

Splitter File Searches

File searches are important in the splitter process. The splitter utility supports relative and absolute directory names,
default directories, and user-selected directories for file search paths. File searches occur as described in Loader File
Searches in the Introduction chapter.

Splitter Output File Extensions

The splitter utility follows the conventions shown in the Splitter Output File Extensions table for output file exten-
sions.

Table 11-1: Splitter Output File Extensions

Extension File Description

.s_# Motorola S-record format file. The # indicates the position (0 = least significant, 1 = next-to-least sig-
nificant, and so on). For info about Motorola S-record file format, refer to Loader Output Files in Mo-
torola S-Record Format in the File Formats appendix.

.h_# Intel hex-32 format file. The # indicates the position (0 = least significant, 1 = next-to-least significant,
and so on). For information about Intel hex-32 file for mat, refer to Splitter Output Files in Intel
Hex-32 Format in the File Formatsappendix.

.stk Byte-stacked format file. These files are intended for host transfer of data, not for PROMs. For more
information about byte stacked file format, format files, refer to Splitter Output Files in Byte-Stacked
Format in the File Formats appendix.

Splitter Command-Line Switches

A list of the splitter switches appears in the Splitter Command-Line Switches table.

Table 11-2: Splitter Command-Line Switches

Item Description

-64 The -64 (include DATA64 memory) switch directs the splitter utility to extract
all sections declared as 64-bit memory sections from the input .dxe file. The
switch influences the operation of the -ram and -norom switches, adding 64-
bit data memory as their target.

-dm The -dm (include data memory) switch directs the splitter utility to extract mem-
ory sections declared as data memory ROM from the input .dxe file. The -dm
switch influences the operation of the -ram and -norom switches, adding data
memory as their target.

Splitter Command Line

CCES 2.9.0 Loader and Utilities Manual 11–3

Table 11-2: Splitter Command-Line Switches (Continued)

Item Description

-f h
-f s1
-f s2
-f s3
-f b

The -f (PROM file format) switch directs the splitter utility to generate a non-
bootable PROM image file in the specified format. Available selection include:

• h-Intel hex-32 format

• s1-Motorola EXORciser format

• s2-Motorola EXORMAX format

• s3-Motorola 32-bit format

• b-byte stacked format

If the -f switch does not appear on the command line, the default format for the
PROM file is Motorola 32-bit (s3). For information on file formats, see Build
Files in the File Formats appendix.

-norom The -norom (no ROM in PROM) switch directs the splitter utility to ignore
ROM memory sections in the inputfile when extracting information for the
output image. The -dm and -pm switches select data memory or program memo-
ry. The operation of the -s switch is not influenced by the -norom switch.

-o imagefile The -o (output file) switch directs the splitter utility to use imagefile as the
name of the splitter output file(s). If not specified, the default name for the split-
ter output file is inputfile.ext, where ext depends on the output format.

-pm The -pm (include program memory) switch directs the splitter utility to extract
memory sections declared program memory ROM from the input.dxe file. The
-pm switch influences the operation of the -ram and -norom switches, adding
program memory as the target.

-proc part_number Specifies the processor type to the splitter utility. Valid processors are:

• ADSP-21160, ADSP-21161
• ADSP-21261, ADSP-21262, ADSP-21266
• ADSP-21363, ADSP-21364, ADSP-21365, ADSP-21366,
ADSP-21367, ADSP-21368, ADSP-21369,

• ADSP-21371, ADSP-21375

Splitter Command Line

11–4 CCES 2.9.0 Loader and Utilities Manual

Table 11-2: Splitter Command-Line Switches (Continued)

Item Description

-r#[#] The -r (PROM widths) switch specifies the number of PROM files and their
width in bits. The splitter utility can create PROM files for 8-, 16-, and 32-bit
wide PROMs. The default width is 8 bits. Each # parameter specifies the width of
one PROM file. Place # parameters in order from most significant to least signifi-
cant. The sum of the # parameters must equal the bit width of the destination
memory (40 bits for DM, 48 bits for PM, or 64 bits for 64-bit memory).

Example:

elfspl21k -dm -r 16 16 8 myfile.dxe
This command extracts data memory ROM from myfile.dxe and creates the
following output PROM files.

• myfile.s_0-8 bits wide, contains bits 7-0

• myfile.s_1-16 bits wide, contains bits 23-8

• myfile.s_2-16 bits wide, contains bits 39-24

The width of the three output files is 40 bits.

-ram The -ram (include RAM in PROM) switch directs the splitter utility to extract
RAM sections from the inputfile. The -dm, -pm, and -64 switches select
the memory. The -s switch is not influenced by the -ram switch.

-s section_name The -s (include memory section) switch directs the splitter utility to extract the
content of one memory section (section_name) from the executable. The sec-
tion_name argument is case sensitive and must exactly match the name as it ap-
pears in the LDF for the executable.

You must also specify the switch -dm or -pm or -64 for the memory type. Re-
run the splitter for any additional sections that are required, changing the memory
type switch and output file as needed for each invocation.

NOTE: Short-word sections are not supported in the legacy SHARC splitter.
To split a SW section into a raw (non-bootable) format, use the new -
splitter section_name switch in the SHARC ADSP-214xx
loader.

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for the processor
hardware. If -si-revision is not used, the target is a default revision from
the supported revisions.

-u # (Byte-stacked format files only) The -u (user flags) switch, which may be used
only in combination with the -f b switch, directs the splitter utility to use the
number # in the user-flags field of a byte stacked format file. If the -u switch is
not used, the default value for the number is 0. By default, # is decimal. If # is
prefixed with 0x, the splitter utility interprets the number as hexadecimal. For
more information, see Splitter Output Files in Byte-Stacked Format in the File
Formats appendix.

-version Directs the splitter utility to show its version information.

Splitter Command Line

CCES 2.9.0 Loader and Utilities Manual 11–5

12 File Formats

CrossCore Embedded Studio supports many file formats, in some cases several for each development tool. This ap-
pendix describes file formats that are prepared as inputs and produced as outputs.

The appendix describes three types of files:

• Source Files

• Build Files

• Debugger Files

Most of the development tools use industry-standard file formats. These formats are described in their respective
format specifications.

Source Files
This section describes the following source (input) file formats.

• C/C++ Source Files

• Assembly Source Files

• Assembly Initialization Data Files

• Header Files

• Linker Description Files

• Linker Command-Line Files

C/C++ Source Files

C/C++ source files are text files (.c, .cpp, .cxx, and so on) containing C/C++ code, compiler directives, possibly
a mixture of assembly code and directives, and, typically, preprocessor commands.

Several dialects of C code are supported: pure (portable) ANSI C, and at least two subtypes of ANSI C with ADI
extensions. These extensions include memory type designations for certain data objects, and segment directives used
by the linker to structure and place executable files.

File Formats

CCES 2.9.0 Loader and Utilities Manual 12–1

The C/C++ compiler, run-time library, as well as a definition of ADI extensions to ANSI C, are detailed in the C/C+
+ Compiler and Library Manual.

Assembly Source Files

Assembly source files (.asm) are text files containing assembly instructions, assembler directives, and (optionally)
preprocessor commands. For information on assembly instructions, see the Programming Reference manual for your
processor.

The processor's instruction set is supplemented with assembly directives. Preprocessor commands control macro
processing and conditional assembly or compilation.

For information on the assembler and preprocessor, see the Assembler and Preprocessor Manual.

Assembly Initialization Data Files

Assembly initialization data files (.dat) are text files that contain fixed- or floating-point data. These files provide
initialization data for an assembler .VAR directive or serve in other tool operations.

When a .VAR directive uses a .dat file for data initialization, the assembler reads the data file and initializes the
buffer in the output object file (.doj). Data files have one data value per line and may have any number of lines.

The .dat extension is explanatory or mnemonic. A directive to #include <filename> can take any file name
and extension as an argument.

Fixed-point values (integers) in data files may be signed, and they may be decimal, hexadecimal, octal, or binary
based values. The assembler uses the prefix conventions listed in the Numeric Formats table to distinguish between
numeric formats.

Table 12-1: Numeric Formats

Convention Description

0xnumber
H#number
h#number

Hexadecimal number

number

D#number
d#number

Decimal number

B#number
b#number

Binary number

O#number
o#number

Octal number

For all numeric bases, the assembler uses words of different sizes for data storage. The word size varies by the pro-
cessor family.

Source Files

12–2 CCES 2.9.0 Loader and Utilities Manual

Header Files

Header files (.h) are ASCII text files that contain macros or other preprocessor commands which the preprocessor
substitutes into source files. For information on macros and other preprocessor commands, see the Assembler and
Preprocessor Manual.

Linker Description Files

Linker description files (.ldf) are ASCII text files that contain commands for the linker in the linker scripting
language. For information on the scripting language, see the Linker and Utilities Manual.

Linker Command-Line Files

Linker command-line files (.txt) are ASCII text files that contain command-line inputs for the linker. For more
information on the linker command line, see the Linker and Utilities Manual.

Build Files
Build files are produced by CrossCore Embedded Studio while building a project. This section describes the follow-
ing build file formats.

• Assembler Object Files

• Library Files

• Linker Output Files

• Memory Map Files

• Bootable Loader Output Files

• Non-Bootable Loader Output Files in Byte Format

• Splitter Output Files

Assembler Object Files

Assembler output object files (.doj) are binary object and linkable files (ELF). Object files contain relocatable code
and debugging information for a DSP program's memory segments. The linker processes object files into an execut-
able file (.dxe). For information on the object file's ELF format, see the TIS Committee specification.

Library Files

Library files (.dlb), the output of the archiver, are binary, object and linkable files (ELF). Library files (called ar-
chive files in previous software releases) contain one or more object files (archive elements).

The linker searches through library files for library members used by the code. For information on the ELF format
used for executable files, refer to the ELF specification.

NOTE: The archiver automatically converts legacy input objects from COFF to ELF format.

Source Files

CCES 2.9.0 Loader and Utilities Manual 12–3

Linker Output Files

The linker's output files (.dxe, .sm, .ovl) are binary executable files (ELF). The executable files contain pro-
gram code and debugging information. The linker fully resolves addresses in executable files. For information on the
ELF format used for executable files, see the TIS Committee specification.

The loaders/splitter utilities are used to convert executable files into boot-loadable or non-bootable files.

Executable files are converted into a boot-loadable file (.ldr) for the ADI processors using a splitter utility. Once
an application program is fully debugged, it is ready to be converted into a boot-loadable file. A boot-loadable file is
transported into and run from a processor's internal memory. This file is then programmed (burned) into an exter-
nal memory device within your target system.

A splitter utility generates non-bootable, PROM-image files by processing executable files and producing an output
PROM file. A non-bootable, PROM-image file executes from processor external memory.

Memory Map Files

The linker can output memory map files (.xml), which are ASCII text files that contain memory and symbol in-
formation for the executable files. The .xml file contains a summary of memory defined with the MEMORY{}
command in the .ldf file, and provides a list of the absolute addresses of all symbols.

Bootable Loader Output Files

• Loader Output Files in Intel Hex-32 Format

• Loader Output Files in Include Format

• Loader Output Files in Binary Format

• Loader Output Files in Motorola S-Record Format

Loader Output Files in Intel Hex-32 Format

The loader utility can output Intel hex-32 format files (.ldr). The files support 8-bit-wide PROMs and are used
with an industry-standard PROM programmer to program memory devices. One file contains data for the whole
series of memory chips to be programmed.

The following example shows how Intel hex-32 format appears in the loader's output file. Each line in the Intel
hex-32 file contains an extended linear address record, a data record, or the end-of-file record.

:020000040000FA Extended linear address record

:0402100000FE03F0F9 Data record

:00000001FF End-of-file record

Extended linear address records are used because data records have a 4-character (16-bit) address field, but in many
cases, the required PROM size is greater than or equal to 0xFFFF bytes. Extended linear address records specify bits
31-16 for the data records that follow.

Build Files

12–4 CCES 2.9.0 Loader and Utilities Manual

The Extended Linear Address Record Example table shows an extended linear address record.

Table 12-2: Extended Linear Address Record Example

Field Purpose

:020000040000FA Example record

: Start character

02 Byte count (always 02)

0000 Address (always 0000)

04 Record type

0000 Offset address

FA Checksum

The Data Record Example table shows the organization of a data record.

Table 12-3: Data Record Example

Field Purpose

:0402100000FE03F0F9 Example record

: Start character

04 Byte count of this record

0210 Address

00 Record type

00 First data byte

F0 Last data byte

F9 Checksum

The End-of-File Record Example table shows an end-of-file record.

Table 12-4: End-of-File Record Example

Field Purpose

:00000001FF End-of-file record

: Start character

00 Byte count (zero for this record)

0000 Address of first byte

01 Record type

Bootable Loader Output Files

CCES 2.9.0 Loader and Utilities Manual 12–5

Table 12-4: End-of-File Record Example (Continued)

Field Purpose

FF Checksum

CrossCore Embedded Studio includes a utility program to convert an Intel hexadecimal file to Motorola S-record or
data file. Refer to hexutil - Hex-32 to S-Record File Converter for details.

Loader Output Files in Include Format

The loader utility can output include format files (.ldr). These files permit the inclusion of the loader file in a C
program.

The word width (8- or16-bit) of the loader file depends on the specified boot type. Similar to Intel hex-32 output,
the loader output in include format have some basic parts in the following order.

1. Initialization code (some Blackfin processors)

2. Boot kernel (some Blackfin and SHARC processors)

3. User application code

4. Saved user code in conflict with the initialization code (some Blackfin processors)

5. Saved user code in conflict with the kernel code (some Blackfin and SHARC processors)

The initialization code is an optional first part for some Blackfin processors, while the kernel code is the part for
some Blackfin and SHARC processors. User application code is followed by the saved user code.

Files in include format are ASCII text files that consist of 48-bit instructions, one per line (on SHARC processors).
Each instruction is presented as three 16-bit hexadecimal numbers. For each 48-bit instruction, the data order is
lower, middle, and then upper 16 bits. Example lines from an include format file are:
0x005c, 0x0620, 0x0620,
0x0045, 0x1103, 0x1103,
0x00c2, 0x06be, 0x06be

This example shows how to include this file in a C program:
const unsigned loader_file[] =
 {
 #include "foo.ldr"
 };
const unsigned loader_file_count = sizeof loader_file
 / sizeof loader_file[0];

The loader_file_count reflects the actual number of elements in the array and cannot be used to process the
data.

Bootable Loader Output Files

12–6 CCES 2.9.0 Loader and Utilities Manual

Loader Output Files in Binary Format

The loader utility can output binary format files (.ldr) to support a variety of PROM and microcontroller storage
applications.

Binary format files use less space than other loader file formats. Binary files have the same contents as the corre-
sponding ASCII file, but in binary format.

Loader Output Files in Motorola S-Record Format

The loader and splitter utilities can output Motorola S-record format files (.s_#), which conform to the Intel stand-
ard. The three file formats supported by the loader and PROM splitter utilities differ only in the width of the ad-
dress field: S1 (16 bits), S2 (24 bits), or S3 (32 bits).

An S-record file begins with a header record and ends with a termination record. Between these two records are data
records, one per line:

S00600004844521B Header record

S10D00043C4034343426142226084C Data record (S1)

S903000DEF Termination record (S1)

The Header Record Example table shows the organization of a header record.

Table 12-5: Header Record Example

Field Purpose

S00600004844521B Example record

S0 Start character

06 Byte count of this record

0000 Address of first data byte

484452 Identifies records that follow

1B Checksum

The S1 Data Record Example table shows the organization of an S1 data record.

Table 12-6: S1 Data Record Example

Field Purpose

S10D00043C4034343426142226084C Example record

S1 Record type

0D Byte count of this record

0004 Address of the first data byte

Bootable Loader Output Files

CCES 2.9.0 Loader and Utilities Manual 12–7

Table 12-6: S1 Data Record Example (Continued)

Field Purpose

3C First data byte

08 Last data byte

4C Checksum

The S2 data record has the same format, except that the start character is S2 and the address field is six characters
wide. The S3 data record is the same as the S1 data record except that the start character is S3 and the address field
is eight characters wide.

Termination records have an address field that is 16-, 24-, or 32 bits wide, whichever matches the format of the
preceding records. The S1 Termination Record Example table shows the organization of an S1 termination record.

Table 12-7: S1 Termination Record Example

Field Purpose

S903000DEF Example record

S9 Start character

03 Byte count of this record

000D Address

EF Checksum

The S2 termination record has the same format, except that the start character is S8 and the address field is six
characters wide.

The S3 termination record is the same as the S1 format, except the start character is S7 and the address field is
eight characters wide.

For more information, see hexutil - Hex-32 to S-Record File Converter.

Non-Bootable Loader Output Files in Byte Format

The loader utility can output non-bootable loader files (.ldr) in byte format. This format is only available when
the -splitter section-name switch is used.

The non-bootable file in BYTE format has these characteristics:

• A one-line header

• A block of one or more lines of section data from the .dxe file

• A zero header that signals the end of the file

The Byte Format File Example table shows a sample byte-format file created by the loader utility.

Build Files

12–8 CCES 2.9.0 Loader and Utilities Manual

Table 12-8: Byte Format File Example

Field Purpose

200688AB0012435D00000768 Example header record (the first line of file)

20 Width of address and length fields (in bits) Addresses are 32-bit width.

06 Reserved field in use by ADI for versioning. The loader is currently setting this to
Version 6.

NOTE: The elfspl21k utility is currently setting this to Version 5
for .stf files).

88 Flags (88 = SW, 80 = PM, 00 = DM)This shows a build with -splitter sec-
tion_name that is a SW section

AB User-defined flags (loaded with -u value switch). This build shows the result of
a build with -u 0xAB. If no -u switch is present, the user-defined flag field is
00.

0012435D Start address of the data block

00000768 Number of bytes of data that follow

0f14000b20010fb40000 Lines of section data. The -hostwidth [8|16|32] switch determines the
number of bytes per line. This example shows the content from a SW section for a
build using -hostwidth 16.

000000000000000000000000 Example header record (signals the end of file)

To produce a byte-formatted file in the CCES IDE:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. The Tool Settings page appears.

3. Click Additional Options under CrossCore SHARC Loader. The loader Additional Options properties page ap-
pears.

4. Click Add (+). The Enter Value dialog box appears.

5. In Additional Options, type in -splitter my_sw_section -fBYTE -u 0xAB.

6. Click OK to close the dialog box.

7. Click Apply.

For information about the byte-stacked format (.stf) files produced by the legacy elfspl21k.exe utility, see
Splitter Output Files in Byte-Stacked Format.

Splitter Output Files

• Splitter Output Files in Intel Hex-32 Format

• Splitter Output Files in Byte-Stacked Format

Build Files

CCES 2.9.0 Loader and Utilities Manual 12–9

• Splitter Output Files in ASCII Format

• Splitter Output Files in Motorola S-Record Format

Splitter Output Files in Intel Hex-32 Format

The splitter utility can output Intel hex-32 format (.h_#) files. These ASCII files support a variety of PROM devi-
ces. For an example of how the Intel hex-32 format appears for an 8-bit wide PROM, see Splitter Output Files in
Intel Hex-32 Format.

The splitter utility prepares a set of PROM files. Each PROM holds a portion of each instruction or data. This
configuration differs from the loader output.

Splitter Output Files in Byte-Stacked Format

The splitter utility can output files in byte-stacked (.stk) format. These files are not intended for PROMs, but are
ideal for microcontroller data transfers.

A file in byte-stacked format comprises a series of one line headers, each followed by a block (one or more lines) of
data. The last line in the file is a header that signals the end of the file. Lines consist of ASCII text that represents
hexadecimal digits. Two characters represent one byte. For example, F3 represents a byte whose decimal value is
243.

The Header Record in Byte-Stacked Format Example table shows a header record in byte-stacked format.

Table 12-9: Header Record in Byte-Stacked Format Example

Field Purpose

20008000000000080000001E Example record

20 Width of address and length fields (in bits)

00 Reserved

80 PROM splitter flags (80 = PM, 00 = DM)

00 User defined flags (loaded with -u switch)

00000008 Start address of data block

0000001E Number of bytes that follow

In the above example, the start address and block length fields are 32 (0x20) bits wide. The file contains program
memory data (the MSB is the only flag currently used in the PROM splitter flags field). No user flags are set. The
address of the first location in the block is 0x08. The block contains 30 (1E) bytes (5 program memory code
words). The number of bytes that follow (until next header record or termination record) must be non- zero.

A block of data records follows its header record, five bytes per line for data memory, and six byte per line for pro-
gram memory or in other physical memory width. For example:

Program Memory Section (Code or Data)

Splitter Output Files

12–10 CCES 2.9.0 Loader and Utilities Manual

3C4034343426
142226083C15

Data Memory Section
3C40343434
2614222608

DATA64 Memory Section
1122334455667788
99AABBCCDDEEFF00

The bytes are ordered left to right, most significant to least.

The termination record has the same format as the header record, except for the rightmost field (number of records),
which is all zeros.

Splitter Output Files in ASCII Format

When the Blackfin splitter utility is invoked as a splitter utility, its output can be an ASCII format file with
the.ldr extension. ASCII format files are text representations of ROM memory images that can be post-processed
by users.

Data Memory (DM) Example:

ext_data { TYPE(DM ROM) START(0x010000) END(0x010003) WIDTH(8) }
The above DM section results in the following code.
00010000 /* 32-bit logical address field */
00000004 /* 32-bit logical length field */
00020201 /* 32-bit control word: 2x address multiply */
 /* 02 bytes logical width, 01 byte physical width */
00000000 /* reserved */
0x12 /* 1st data word, DM data is 8 bits */
0x56
0x9A
0xDE /* 4th (last) data word */
CRC16 /* optional, controlled by the -checksum switch */

Splitter Output Files in Motorola S-Record Format

The splitter utility can output Motorola S-record format files (.s_#). See Loader Output Files in Motorola S-Re-
cord Format for more information.

Debugger Files
Debugger files provide input to the debugger to define support for simulation or emulation of your program. The
debugger consumes all the executable file types produced by the linker (.dxe, .sm, .ovl). To simulate IO, the
debugger also consumes the assembler data file format (.dat) and the loadable file formats (.ldr).

Splitter Output Files

CCES 2.9.0 Loader and Utilities Manual 12–11

The standard hexadecimal format for a SPORT data file is one integer value per line. Hexadecimal numbers do not
require a 0x prefix. A value can have any number of digits but is read into the SPORT register as follows.

• The hexadecimal number is converted to binary.

• The number of binary bits read in matches the word size set for the SPORT register and starts reading from the
LSB. The SPORT register then zero-fills bits shorter than the word size or conversely truncates bits beyond the
word size on the MSB end.

In the following example (the SPORT Data File Example table), a SPORT register is set for 20-bit words, and the
data file contains hexadecimal numbers. The simulator converts the hex numbers to binary and then fills/truncates
to match the SPORT word size. The A5A5 is filled and 123456 is truncated.

Table 12-10: SPORT Data File Example

Hex Number Binary Number Truncated/Filled

A5A5A 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010
FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001
A5A5 1010 0101 1010 0101 0000 1010 0101 1010 0101
5A5A5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101
11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001
123456 0001 0010 0011 0100 0101 0110 0010 0011 0100 0101 0110

Debugger Files

12–12 CCES 2.9.0 Loader and Utilities Manual

13 Utilities

CrossCore Embedded Studio includes several utility programs, some of which run from a command line only.

This appendix describes the following utilities.

• hexutil - Hex-32 to S-Record File Converter

• elf2elf - ELF to ELF File Converter

• signtool - Sign and Encrypt Boot Streams for Secure Booting

• securebootsim - Verify and Validate Boot Streams for Secure Booting

This section also describes the following tools which are used with the deprecated support for Dynamically-Loadable
Modules using libdyn. These tools are also deprecated and will be removed in a future release. Support for Dy-
namically-Loadable Modules is now provided using the libldr library. See Dynamically-Loadable Modules in the
System Runtime documentation for further details.

• elf2dyn - ELF to Dynamically-Loadable Module Converter

• dyndump - Display the Contents of Dynamically-Loadable Modules

• dynreloc - Relocate Dynamically-Loadable Modules

Other CrossCore Embedded Studio utilities, for example, the ELF file dumper, are described in the Linker and Util-
ities Manual (search the online help).

ATTENTION: VisualDSP++ executables are not upwardly compatible with CrossCore Embedded Studio executa-
bles. The ELF format has changed.

hexutil - Hex-32 to S-Record File Converter
The hex-to-S file converter (hexutil.exe) transforms a loader (.ldr) file in Intel hexadecimal 32-bit format to
Motorola S-record format or produces an unformatted data file.

Syntax

hexutil.exe is a command-line utility. It has the following syntax:

hexutil input_file [-s1|s2|s3|StripHex] [-o file_name]

Utilities

CCES 2.9.0 Loader and Utilities Manual 13–1

where:

input_file is the name of the .ldr file generated by the CrossCore Embedded Studio splitter utility.

The hexutil Command-Line Switches table lists the optional switches used with the hexutil command.

Table 13-1: hexutil Command-Line Switches

Switch Description

-s1 Specifies Motorola output format S1.

-s2 Specifies Motorola output format S2.

-s3 Specifies the default output format - Motorola S3. That is, when no switch appears on the command
lines, the output file format defaults to S3.

-StripHex Generates an unformatted data file.

-o Names the output file; in the absence of the -o switch, causes the output file name to default to
input_file.s.

The Intel hex-32 and Motorola S-record file formats are described in the File Formats chapter.

elf2dyn - ELF to Dynamically-Loadable Module Converter

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help for information on how to use the adi_libldr.h APIs to load a DLM from
a loader stream.

The ELF to dynamically-loadable module converter (elf2dyn.exe) accepts an executable (.dxe) file produced
by the CrossCore Embedded Studio linker and converts the file from ELF (Executable and Linkable Format) to a
'lighter-weight' format suitable for loading into an existing application at runtime. In short, elf2dyn produces
Dynamically-Loadable Modules (DLMs).

By default, a .dxe file converted to DLM format cannot be used immediately. Some extra steps must be taken,
which typically involves producing a specialized .ldf file. For details, refer to the System Runtime Documentation
section of the help system.

Dynamically-Loadable Modules

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documentation
section of help for information on how to use the adi_libldr.h APIs to load a DLM from a
loader stream.

A dynamically-loadable module - a DLM - is intended to be loaded by another, 'main' application at runtime. The
DLM can contain executable code, data, or both.

elf2dyn - ELF to Dynamically-Loadable Module Converter

13–2 CCES 2.9.0 Loader and Utilities Manual

DLM files have the following characteristics:

• DLMs are not standalone applications. A DLM does not set up the stack, configure the processor, etc. All such
initialization are done by the main application prior to loading the DLM.

• DLMs are self-contained. Although a DLM can consist of multiple elements of code and/or data, which can
reference each other, the DLM cannot make symbolic references to code elements outside of the DLM.

• DLMs are not yet relocated. This means that when the linker produced the .dxe, from which the DLM has
been derived, the linker was instructed not to resolve cross-references within the DLM to final, absolute ad-
dresses. Instead, all internal references still are expressed in relative terms. After loading the DLM, a process
known as relocation must be carried out before the DLM's contents can be used.

• DLMs export one or more symbols, which can be used by the main application to reference the contents of the
DLM.

NOTE: Because of the noted differences, most .dxe files are not suitable for conversion to DLMs.

For information on how to construct .dxe files that can be converted to DLMs, load DLMs, and access DLM
contents, refer to the System Runtime Documentation section in help.

Syntax

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help for information on how to use the adi_libldr.h APIs to load a DLM from
a loader stream.

The elf2dyn.exe utility is invoked from the command-line or CCES IDE, as a post-build step specified in your
project's Settings > Build Steps dialog box.

The command-line syntax for the utility is:

elf2dyn [-h|l|r|v] [-aname=num][-esym] [-S|R|W|E errnum] [-ooutfile] elfin-
file

where:

elfinfile is the name of the .dxe file in ELF format to convert into a DLM file for Blackfin or SHARC pro-
cessors. The file name must appear at the end of the command line. In order to be useful as a DLM, it must contain
relocations, as described in the System Runtime Documentation help section.

The elf2dyn Command-Line Switches table lists the optional switches used with the elf2dyn command. Switches
must appear before elfinfile on the command line.

elf2dyn - ELF to Dynamically-Loadable Module Converter

CCES 2.9.0 Loader and Utilities Manual 13–3

Table 13-2: elf2dyn Command-Line Switches

Switch Description

-h Displays a list of accepted switches.

-l Creates a `lite' format output file; see File Formats and -l Switch.

-r Emits remarks (if any apply).

-v Emits version information.

-aname=num Forces section name to have alignment num; see Section Alignment.

-esymbol Exports symbol so that it can be referenced by the main application; see Exported Symbols.

-ooutfile Use outfile as the name of the DLM to create. The switch specifies where elf2dyn creates the
DLM file. If -o is omitted, elf2flt creates elfinfile.dyn, which means that the output file
has the same name as the input file with the .dyn suffix appended.

-Serrnum Suppresses diagnostic errnum.

-Rerrnum Makes diagnostic errnum a remark.

-Werrnum Makes diagnostic errnum a warning.

-Eerrnum Makes diagnostic errnum an error.

File Formats and -l Switch

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help for information on how to use the adi_libldr.h APIs to load a DLM from
a loader stream.

elf2dyn supports two formats, a full format and a lite format. By default, DLMs are created using the full format,
the lite format can be enabled by specifying the -l switch.

Both ELF files and DLM files are divided into sections, some of which specify content which makes up the code
and/or data of the application, and some of which specify metadata about the code and/or data of the application.
For example, the debug information of an application is used by a debugger, which controls the processor, but not
downloaded to the processor by the debugger. For the purposes of this discussion, the following sections use the
terms application section and metadata section to make this distinction.

The lite format is closely modeled on the bFLT file format, which in turn is influenced by the UNIX a.out file
format. It imposes the following constraints on the .dxe input file:

1. The ELF file must contain exactly three application sections with the following names and uses:

NOTE: The lite format is supported for Blackfin processors only because of the mentioned constraints.

• .text, which contains only executable code

• .data, which contains only initialized data (initialized to any value)

• .bss, which contains only zero-initialized data

elf2dyn - ELF to Dynamically-Loadable Module Converter

13–4 CCES 2.9.0 Loader and Utilities Manual

2. All sections must contain 8-bit byte-addressed values.

3. Exported symbols are impossible, so the code entry point must be the first instruction at the start of
the .text section, and any data entry point must be the first location at the start of the .data section.

In contrast, the full DLM format supports the following:

• The ELF file can have any number of application sections, from 1 to 255.

• Application sections can have any valid section name. *1

• Application sections can use any word size that is valid for the target processor. Note that not all sections need
be the same word size.

• Symbols may be exported, so that entry points need not be at the start of a particular section.

*1 If exported symbols are being used, two names are reserved: .expsym and .expstr.

NOTE: The full DLM format is proprietary to Analog Devices, Inc. Although more complex than the bFLT-in-
spired lite format, it is still lighter than the full ELF standard.

Exported Symbols

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help for information on how to use the adi_libldr.h APIs to load a DLM from
a loader stream.

The -e switch specifies particular symbols for exporting. The symbol table of the ELF file is a metadata section, so
it is not available to the application when the application runs. When a symbol is exported by elf2dyn, the sym-
bol is placed into an exported symbol table, which is in an application rather than a metadata section. This means
that the table is available to the running application, and the application can locate DLM contents by searching for
the symbol in the table.

The exported symbol table is two new application sections that are added to the DLM by elf2dyn when the -e
switch is being used:

• .expstr is the exported string table; it contains NULL-terminated strings which are the exported symbol
names. These strings are in the native target processor data format.

• .expsym is the exported symbol table; it contains one or more records, where each record consists of two
pointers - to the symbol's name in the exported string table, and to the symbol's location in memory, respec-
tively. Because the record contains pointers, the exported symbol table is only accessible once the DLM has
been relocated.

The -e switch accepts names exactly as they appear in the symbol table of the ELF input file elfinfile. No
name-demangling or parsing is done by elf2dyn. This means that, for example, to export your main() function in
your DLM, -e _main is used. If you are unsure how to specify a symbol's name for exporting, use the following
command:

elf2dyn - ELF to Dynamically-Loadable Module Converter

CCES 2.9.0 Loader and Utilities Manual 13–5

elfdump -n .symtabelfinfile
The elfdump utility displays the contents of the ELF file's symbol table; elfdump shows both mangled and de-
mangled names. For more information, see dyndump - Display the Contents of Dynamically-Loadable Modules.

After a DLM is loaded and resolved, you can map an exported symbol's name into its address using
dyn_LookupByName(). Refer to the System Runtime Documentation help section for details.

Section Alignment

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help for information on how to use the adi_libldr.h APIs to load a DLM from
a loader stream.

By default, the elf2elf utility creates a DLM in which each section has the same alignment constraints as the
original sections in the input ELF file. You can specify a stronger alignment for a section by using the -a switch.
The-a switch requires a parameter of the form name=number, where:

• name is the name of the section in the input ELF file

• number is a positive power-of-two decimal integer.

Multiple instances of the -a switch are permitted on the same command-line to specify stronger alignment for more
than one section.

It is not an error if the input ELF file does not contain a section called name. If the input file does not have a
section with a matching name, the switch is ignored.

elf2elf - ELF to ELF File Converter
The ELF to ELF file converter (elf2elf.exe) is a command-line utility for upgrading executables built using
VisualDSP++ 5.0 to the new CrossCore Embedded Studio ELF format.

ATTENTION: VisualDSP++ executables are not upwardly compatible to CrossCore Embedded Studio executables.
The ELF format has changed.

The loaders and splitters take executable files in ELF format as input. These are files with the suffixes dxe, ovl, or
sm. The CrossCore Embedded Studio loaders and splitters expect input in the CrossCore Embedded Studio ELF
format, which has significant differences from the VisualDSP++ ELF format.

You do not need to use elf2elf when:

• Creating new projects in the CrossCore Embedded Studio IDE

• Importing VisualDSP++ legacy projects into the CrossCore Embedded Studio IDE and rebuilding all code
from source

In both cases, CrossCore Embedded Studio creates the executables in the expected ELF format.

elf2dyn - ELF to Dynamically-Loadable Module Converter

13–6 CCES 2.9.0 Loader and Utilities Manual

The following unrecoverable error is reported by the CrossCore Embedded Studio loaders and splitters if any
dxe/ovl/sm in the build is one built with VisualDSP++:
[Error ld0002]
 File in legacy ELF format created with VisualDSP++ 5.0 or earlier.
 Rebuild from source or upgrade using the elf2elf utility: <filename>

If you do not have sources to rebuild your code, the elf2elf utility is available.

Syntax

elf2elf.exe has the following syntax:

elf2elf [switches] [infile]
where:

infile is the name of the ELF input file produced by CrossCore Embedded Studio.

The elf2elf Command-Line Switches table shows the optional switches used with the elf2elf command.

Table 13-3: elf2elf Command-Line Switches

Switch Description

-o file Produces the output file with a name given by file.

-keep Prevents any temporary files that have been created by the ELF Conversion Tool from being deleted.

-merge Merge the contents of the .ovl and .sm files specified in the input .dxe into the output .dxe.

-version Displays the version number of the ELF conversion utility.

Example: elf2elf.exe oldKernel.dxe -o newKernel.dxe

NOTE: If you are building loader files, do no use -merge; instead, do the following:

• Upgrade the .dxe file without -merge
• Upgrade each .sm or .ovl file with elf2elf

dyndump - Display the Contents of Dynamically-Loadable
Modules

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help for information on how to use the adi_libldr.h APIs to load a DLM from
a loader stream.

To display the contents of dynamically-loadable modules (DLMs) produced by elf2dyn.exe, use
dyndump.exe.

dyndump - Display the Contents of Dynamically-Loadable Modules

CCES 2.9.0 Loader and Utilities Manual 13–7

Refer to elf2dyn - ELF to Dynamically-Loadable Module Converter for more information on elf2dyn.

Syntax

dyndump.exe is a command-line utility. It has the following syntax:

dyndump [-ffamily] dlmname
where:

dlmname is the name of a file generated by elf2dyn; see elf2dyn - ELF to Dynamically-Loadable Module Con-
verter.

The dyndump Command-Line Switches table lists switches used with the dyndump command.

Table 13-4: dyndump Command-Line Switches

Switch Description

-fFamily Select the target processor family; see -f Family.

dlmname The file to be displayed; see Output.

-f Family

ATTENTION: This support for dynamically-loadable modules (DLMs) using libdyn.h has been deprecated, and
will be removed in a future release. Please see Dynamically-Loadable Modules in the System Runtime
documentation for information on how to use the adi_libldr.h APIs to load a DLM from a
loader stream.

The dyndump utility can display files for both Blackfin and SHARC processors in full and lite DLM format. The
lite format files do not include any information indicating their target processor; without this information, the
dyndump utility cannot decode the target-specific relocations section. See File Formats and -l Switch for more in-
formation.

The valid forms of the -f family switch are:

• -f blackfin
• -f sharc

NOTE: Full-format DLM files do specify their target processor, so the -f switch is not necessary for display-
ing such files.

Output

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help for information on how to use the adi_libldr.h APIs to load a DLM from
a loader stream.

dyndump - Display the Contents of Dynamically-Loadable Modules

13–8 CCES 2.9.0 Loader and Utilities Manual

The dyndump utility displays the header from the input file, followed by the metadata sections and application
sections, in the order they appear in the file. In general, dyndump displays information in several ways, providing:

• The offset within a section in the native addressing of that section

• The byte offset from the start of the file

• A hexadecimal dump of the bytes in the order they appear within the file. Each target address location in an
application is displayed on a separate line, so byte-addressed sections shows a single byte per line, while 64-bit
addressed sections shows eight bytes per line.

• An ASCII representation of the bytes in the order they appear within the file.

File headers, section headers (where present) and relocations are displayed more explicitly.

dynreloc - Relocate Dynamically-Loadable Modules

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help for information on how to use the adi_libldr.h APIs to load a DLM from
a loader stream.

To relocate DLMs produced by elf2dyn.exe, use dynreloc.exe.

Refer to elf2dyn - ELF to Dynamically-Loadable Module Converter for more information about elf2dyn.

The dynreloc utility reads a DLM file as input, performs relocations according to address mappings provided
through command-line switches, and writes out a new DLM file. The new DLM file contains no relocations and
can be loaded only into the locations specified to the dynreloc utility.

Syntax dynreloc.exe is a command-line utility. It has the following syntax:

dynreloc [-h|v] [-asec=addr] [-ma:n:w:m][-ooutfile]infile
where:

infile is the name of the DLM file to relocate.

The dynreloc Command-Line Switches table lists the optional switches used with the dynreloc command.
Switches must appear before infile on the command line.

Table 13-5: dynreloc Command-Line Switches

Switch Description

-h Displays a list of accepted switches.

-v Displays version information.

-asec=addr Forces section sec to start at address addr; see Explicit Mappings.

dynreloc - Relocate Dynamically-Loadable Modules

CCES 2.9.0 Loader and Utilities Manual 13–9

Table 13-5: dynreloc Command-Line Switches (Continued)

Switch Description

-ma:n:w:m Specifies a memory range that can be used for section mapping; see Region Mappings.

-ooutfile Use outfile as the name of the file to write the relocated DLM.

Explicit Mappings

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help on how to use the adi_libldr.h APIs to load a DLM from a loader stream.

The -a switch specifies explicit section mappings to the dynreloc utility.

The -a switch requires a parameter, of the form sec=addr. The sec argument identifies the section in the input
DLM, while addr gives the address to which the section is to be mapped in the output DLM. It is your responsibil-
ity to ensure that:

• Starting address addr is appropriately aligned for section sec.

• Starting address addr is in an appropriate memory space for section sec.

• Starting address addr points to a free area of memory that has sufficient space for the contents of section sec.

There may be multiple instances of the -a switch to specify mappings for more than one section. A given section
may be named by only one -a switch.

Region Mappings

ATTENTION: Support for dynamically-loadable modules (DLMs) using libdyn.h is deprecated and to be re-
moved in a future release. See Dynamically-Loadable Modules in the System Runtime Documenta-
tion section of help for information on how to use the adi_libldr.h APIs to load a DLM from
a loader stream.

The -m switch specifies regions of memory which can be used for mapping sections that have not otherwise been
explicitly mapped through the -a switch.

The -m switch requires a parameter of the form a:n:w:m. The parameter's fields have the following meanings:

Field Description

a Starting address of the memory region.

n Number of addressable locations in the region.

w Width of each addressable location (in bits).

m Alignment; allocations from the region will be in multiples of this value.

When relocating a section sec of sz locations from the DLM, the dynreloc utility uses the following approach:

dynreloc - Relocate Dynamically-Loadable Modules

13–10 CCES 2.9.0 Loader and Utilities Manual

1. The dynreloc utility looks for an explicit mapping for the section sec, as specified by the -a switch. If
such a mapping is found, the mapping is used.

2. If no explicit mapping is found, the dynreloc utility searches for a memory region that has the same memo-
ry width as section sec. If such a memory region is found, the dynreloc utility claims sz locations from
the region and maps sec to the first of those locations. The remainder of the region is available for other sec-
tions.

3. If no region has been specified with the same width as sec, or if the region has insufficient unallocated loca-
tions to accommodate the sz locations required by sec, the dynreloc utility reports an error.

NOTE: Only one region may be specified for each memory width.

Region mappings are a more convenient method of specifying mappings because the dynreloc utility ensures that
sections allocated from the same region do not overlap. This is not the case with -a mappings, which are used with-
out any validation.

signtool - Sign and Encrypt Boot Streams for Secure Booting
The signing utility (signtool.exe) supports secure booting by cryptographically signing boot stream files. It
can also encrypt boot streams and provides public-key management support. The input to signtool is the boot
stream file to be protected, in binary form. The output is the signed (and optionally encrypted) boot stream, ready
for secure booting.

Note that signtool treats its input as raw, binary data, and performs no interpretation of the content. Ensure
that the -f binary switch is specified when invoking the elfloader utility; otherwise, the resulting secure-
boot image is not be usable.

The secure boot simulator utility (securebootsim - Verify and Validate Boot Streams for Secure Booting) provides a
means to test the validity of a signed boot stream without the necessity to go through the secure boot process on the
hardware.

The signtool and securebootsim utilities are provided by a third party; not all functionality is used by
CrossCore Embedded Studio or applicable to Analog Devices processors.

Syntax

Invoke the signtool utility from the command line or the CrossCore Embedded Studio IDE, as a post-build
step specified in your project's Settings > Build Steps.

The command-line syntax for the signtool utility is:

signtool cmd switches

where cmd indicates the kind of operation to perform (the choices are described in the following sections).
switches are dependent on the choice of cmd.

signtool - Sign and Encrypt Boot Streams for Secure Booting

CCES 2.9.0 Loader and Utilities Manual 13–11

Output Formats

When signing or encrypting a file, signtool generates output in one of several forms, depending on whether
encryption is required, and delivers the encryption key to the processor for decryption. The different output formats
are known by the abbreviations BLp, BLx, BLw, and BLe.

• The BLp format supports signing, not encryption. The output file includes a signature produced by a 224-bit
Elliptic Curve Digital Signature Algorithm (ECDSA) private key. The corresponding public key must be sepa-
rately programmed into the processor's OTP to allow the target processor to authenticate the boot stream.

• The BLx format supports signing and encryption. The output file is signed, as per the BLp format. It is also
encrypted using an AES-128 key. The encryption key is not part of the output file, so it must be programmed
into the processor's OTP to allow the target processor to decrypt the boot stream.

• The BLw format supports signing and encryption. The output file is signed, as per the BLp format. It is also
encrypted using an AES-128 key as per the BLx format, but unlike BLx, the encryption key is also included in
the output file, itself encrypted by a second AES-128 key (the "wrap" key). The wrap key must be programmed
into the processor's OTP to allow the target processor to decrypt the encryption key, which then allows the
processor to decrypt the boot stream.

• The BLe format is only intended for testing, and should not be used for production systems. It supports au-
thentication and encryption, but the encryption key is included in the output file as-is, without any protection.

Key Generation for Signing

Boot stream files are signed using the private key from a 224-bit Elliptic Curve Digital Signature Algorithm (ECD-
SA) keypair, stored in DER format. The signtool utility's own genkeypair command can be used to create
such a keypair. The following table describes the switches available for the genkeypair command.

The following is an example command for creating a keypair:
signtool genkeypair -algo ecdsa224 -outfile keychain.der

NOTE: Ensure you keep your keypair safe, once you have created it, and keep it secret, as the private key therein is
essential for authenticity.

Switch Description

-algo ecdsa224|ecdsa256 Selects the algorithm used to create the keypair. For Analog Devices processors,
ecdsa224 is required.

-outfile file.der Directs signtool to create the keypair in the file file.der.

-userpin pin Not used with CrossCore Embedded Studio.

Key Generation for Encryption

Boot stream files are encrypted using 128-bit keys, via the AES-128 algorithm. This is a symmetric algorithm,
meaning that the same key is used for encryption and decryption. The signtool utility does not provide built-in

signtool - Sign and Encrypt Boot Streams for Secure Booting

13–12 CCES 2.9.0 Loader and Utilities Manual

support for generating AES-128 keys; you can create any 16-character file and use that as your AES-128 key. Ensure
that you keep the key secret.

Signing and Encrypting Boot Streams

Boot streams are signed using the private key from a 224-bitElliptic Curve Digital Signature Algorithm (ECDSA)
keypair, by invoking the sign command of the signtool utility. The following table lists the switches that are
relevant to the sign command.

The public key is verified using securebootsim, as described in securebootsim - Verify and Validate Boot
Streams for Secure Booting.

Switch Description

-type BLp|BLw|BLx|BLe Indicates whether and how to encrypt. See Output Formats for details.

-prikey file.der Identifies the file containing the ECDSA-224 public keypair for signing (BLp,
BLx, and BLw).

-enckey file.key Identifies the 16-characer file containing the AES-128 key string to be used for
encrypting the file's content. This switch is required for BLx. It is optional for
BLw. If omitted, signtool generates a random key for encryption.

-wrapkey file.key Identifies the 16-character file containing the AES-128 key string to be used for
wrapping the encryption key (BLw).

-infile bootstream.bin Specifies the binary file containing the boot stream to be signed/encrypted.

-outfile secure.bin Specifies the name of the file to create, containing the signed/encrypted version of
bootstream.bin.

-attribute Not used on Analog Devices processors.

-userpin Not used on Analog Devices processors.

-cert Not used on Analog Devices processors.

The following is an example of signing a boot stream file:
signtool sign -type BLp -prikey keychain.der -infile boot.bin -outfile secboot.bin

The following is an example of signing and encrypting a boot stream file, where a random encryption key is gener-
ated by signtool:
signtool sign -type BLw -prikey keychain.def -wrapkey aes.bin \\
 -infile boot.bin -outfile secboot.bin

Extracting Public Keys

When a processor boots using secure boot, it must authenticate the boot stream before processing it. The boot
stream will have been signed using the private key from a keypair; the authentication is done using the correspond-
ing public key from the same keypair. Use signtool's getkey command to extract the public key so that you
can store it in OTP on the processor, where it can be used during secure boot.

signtool - Sign and Encrypt Boot Streams for Secure Booting

CCES 2.9.0 Loader and Utilities Manual 13–13

The switches relevant to the getkey command are listed in the table below.

Switch Description

-type BLKey|BLKeyC Determine the output format for the public key.

-key keyfile.der Specify the file containing the keypair, from which to extract the public key.

-outfile pubkey Specify the name of the file to which the public key should be written.

-userpin Not used with CrossCore Embedded Studio

The following is an example of extracting the public key in binary form:
signtool getkey -type BLKey -key keychain.der -outfile pubkey.bin

The following is an example of extracting the public key as a C header file, suitable for inclusion into an application:
signtool getkey -type BLKeyC -key keychain.der -outfile pubkey.h

securebootsim - Verify and Validate Boot Streams for Secure
Booting
The secure boot simulator utility (securebootsim.exe) provides a means to test the validity of a signed (with
signtool - Sign and Encrypt Boot Streams for Secure Booting) boot stream without the necessity to go through the
secure boot process on the hardware.

The securebootsim and signtool utilities are provided by a third party; not all functionality is used by
CrossCore Embedded Studio or applicable to Analog Devices processors.

Syntax

Invoke the securebootsim utility from the command line or the CrossCore Embedded Studio IDE, as a post-
build step specified in your project's Settings > Build Steps.

The command-line syntax for the securebootsim utility is:

securebootsim switches

where switches indicate the kind of operation to perform (see Validating a Signed Boot Stream).

Validating a Signed Boot Stream

Use the securebootsim utility to verify a secure boot stream image signed with the signtool utility. This
verifies that the boot stream can be correctly decoded without the necessity to go through the boot process on hard-
ware.

The following table lists the switches accepted by the securebootsim utility. You must also specify the boot
stream itself and the public key on the command, as shown in the example below. The public key is generated using
signtool, as described in Extracting Public Keys.

securebootsim - Verify and Validate Boot Streams for Secure Booting

13–14 CCES 2.9.0 Loader and Utilities Manual

Switch Description

--deckeyfile=file.bin Specify the binary file that contains the key for a secure boot stream in BLx for-
mat.

--unwrapkeyfile=file.bin Specify the binary file that contains the key for unwrapping the encryption key
for a secure boot stream in BLw format.

--polldelay=seconds Not used when validating a boot stream.

--readblock=bytes Not used when validating a boot stream.

-1 Not used when validating a boot stream.

-2 Not used when validating a boot stream.

The following is an example of validating a signed boot stream file in BLx format:
securebootsim --deckeyfile=enckey.bin pubkey.bin secboot.bin

The following is an example of validating a signed boot stream file in BLw format:
securebootsim --unwrapkeyfile=wrapkey.bin pubkey.bin secboot.bin

For boot streams in the BLp and BLe formats, a decode key or unwrap key is not required:
securebootsim pubkey.bin secboot.bin

securebootsim - Verify and Validate Boot Streams for Secure Booting

CCES 2.9.0 Loader and Utilities Manual 13–15

Index

Symbols

.asm (assembly) source files..................................... 2–6,12–2

.bss files (DLM format)... 13–4

.dat (data) initialization files...12–2

.data files (DLM format)..13–4

.dlb (library) files... 12–3

.doj (object) files.. 12–3

.dxe (executable) files........................ 2–10,2–12,12–4,12–11

.h_# (Intel hex-32) file format.......... 11–3,11–4,12–4,12–10

.knl (kernel code) files..2–12

.ldr (loader output) files
ASCII format.. 12–3,12–11
binary format...12–7,12–8
hex-32 format...12–4
include format files... 12–6
naming... 3–11,4–32,7–13
specifying host bus width.............................9–16,10–27

.map (memory map) files...12–4

.s_# (Motorola S-record) files.....................11–3,12–7,12–11

.sm (shared memory) files........ 2–12,8–14,9–16,12–4,12–11

.stk (byte-stacked) files...............................11–3-11–5,12–10

.text files (DLM lite format).. 13–4

.txt (ASCII text) files..12–3

.VAR directive..12–2
16- to 48-bit word packing.. 8–6
48- to 8-bit word packing.. 8–5
4- to 48-bit word packing.. 8–7
-64 splitter switch.. 11–3
8- to 48-bit word packing........................... 8–5,8–6,9–3,9–5

A

ACK pin..8–4-8–6,9–4
ADDR23-0 address lines... 9–5
address records, linear format...12–4
ADSP-21160 processors.. 8–1

ADSP-21160 boot modes..................................8–1,8–3
boot sequence... 8–2

ADSP-21161 processors.. 9–2
boot modes..9–1,9–3
boot sequence... 9–2

multiprocessor support... 9–13
ADSP-2126x/36x/37x/46x processors

boot modes..10–1,10–6
boot sequence... 10–2

ADSP-2136x/37x/4xx processors, multiprocessor support.....
...10–19

ADSP-BF50x processors
boot modes...3–2
multi-dxe loader files.. 3–13

ADSP-BF51x processors
boot modes...3–2
multi-dxe loader files.. 3–13

ADSP-BF52x/54x processors
boot modes...3–3
multi-dxe loader files.. 3–13

ADSP-BF531/2/3/4/6/7/8/9 processors4–9
ADSP-BF534/6/7 (only) boot modes....................... 4–2
boot modes...4–2
boot streams... 4–5
compression support...4–22
memory ranges... 4–12
multi-dxe loader files..................................... 4–20,4–21
on-chip boot ROM.................. 4–2,4–4,4–5,4–12,4–21

ADSP-BF561 processors
boot modes...4–13
boot streams... 4–14,4–16-4–18
dual-core architecture... 4–13
memory ranges... 4–19
multi-dxe loader files..................................... 4–20,4–21
multiprocessor support... 4–18
on-chip boot ROM............ 4–13,4–14,4–18,4–19,4–21

ADSP-BF60x processors
BCODE field... 5–2
boot modes...5–2

ADSP-BF7xx processors
BCODE field... 6–2
boot modes...6–2

ADSP-SC5xx processors
ADSP-215xx processors

BCODE field ... 7–3
BCODE field .. 7–3
BCODE pins, ADSP-215xx processors 7–3

CCES 2.9.0 Loader and Utilities Manual 16

boot modes ..7–3

Symbols

-a name=num switch (elf2dyn utility)............................ 13–4

A

application loading (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors.......... 4–8,4–22
ADSP-BF561 processors.......................4–14,4–19,4–22

application loading (SHARC processors)
ADSP-21161 processors............................. 9–2,9–4,9–6
ADSP-2126x/36x/37x/46x processors.................... 10–2
ADSP-2126x/36x/37x processors......................... 10–17

applications..3–12
code start address......................3–12,4–32,8–2,8–9,9–4
development flow... 2–5
loading, introduction to..2–10
multiple-dxe files.. 3–13

archive files, See library files (.dlb)................................. 12–3
archiver..12–3
ASCII file format....................... 3–8,4–29,7–12,12–3,12–11

Symbols

-a sec=addr switch (dynreloc utility)....................13–9,13–10

A

assembling, introduction to... 2–6
assembly

directives.. 12–2
initialization data files (.dat)................................... 12–2
object files (.doj)...12–3
source text files (.asm)......................................2–6,12–2

asynchronous FIFO boot mode, ADSP-BF52x/54x process-
ors.. 3–3

B

baud rate (Blackfin processors).......................................4–15

Symbols

-bcode # loader switch for ADSP-SC5xx/215xx processors....
...7–11

B

BCODE pins, ADSP-BF60x processors...........................5–2

BCODE pins, ADSP-BF7xx processors........................... 6–2
BCODE pins, ADSP-SC5xx processors7–3
BFLAG_CALLBACK block flag......................................3–7
BFLAG_QUICKBOT block flag...................................3–12
BFLAG_SAVE block flag...3–13
binary format files (.ldr)........................3–8,4–29,7–12,12–7
bit-reverse option (SHARC processors)..........................10–8
block...10–15,10–16

byte counts (ADSP-SC5xx/215xx processors).........7–12
byte counts (Blackfin processors)................... 3–11,4–31
of application code, introduction to........................2–10
tags..8–9,9–11,10–11,10–14

block headers (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors............ 4–5,4–6
ADSP-BF561 processors................................4–15,4–18
ADSP-BF60x processors...5–2
ADSP-BF7xx processors... 6–2

block headers (SHARC processors)
ADSP-21161 processors... 9–10
ADSP-2126x/36x/37x processors.............. 10–11,10–13
ADSP-215xx processors..7–3
ADSP-SC5xx processors... 7–3

blocks of application code (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors................... 4–5
ADSP-BF561 processors...4–14
ADSP-BF60x processors...5–5
ADSP-BF7xx processors... 6–4

blocks of application code (SHARC processors)
ADSP-21161 processors... 9–10
ADSP-2126x/36x/37x processors......................... 10–13

BMODE1-0 pins, ADSP-BF531/2/3/8/9 processors.............
..4–2,4–10

BMODE2-0 pins
ADSP-BF51x processors...3–2
ADSP-BF534/6/7 processors............................. 4–2,4–3

BMODE3-0 pins, ADSP-BF52x/54x processors..............3–3
BMS pins

ADSP-21160 processors........................... 8–6,8–7,8–12
ADSP-21161 processors...... 9–2,9–4,9–6,9–8,9–9,9–13

boot differences (Blackfin processors)............ 4–2,4–13-4–15
boot differences (SHARC processors)................... 10–7,10–9
boot file formats

specifying for ADSP-SC5xx/215xx processors........ 7–12
specifying for Blackfin processors.....................3–8,4–29

CCES 2.9.0 Loader and Utilities Manual 17

specifying for SHARC processors........8–14,9–16,10–26
boot-loadable files

introduction to.. 2–6,2–7
versus non-bootable file.. 2–10

boot-loading sequence... 8–4
boot modes (Blackfin processors)

ADSP-BF50x processors...3–2
ADSP-BF51x processors...3–2
ADSP-BF52x/54x processors.............................3–2,3–3
ADSP-BF531/2/3/8/9 processors............................. 3–5
ADSP-BF534/6/7 processors.................................... 4–2
ADSP-BF561 processors...4–13
ADSP-BF60x processors...5–2
ADSP-BF7xx processors... 6–2
specifying...3–7,4–28

boot modes (SC5xx/215xx processors)
specifying..7–11

boot modes (SHARC processors)
ADSP-21160 processors.................................... 8–1,8–3
ADSP-21161 processors.................................... 9–1,9–3
ADSP-2126x/36x/37x processors.................. 10–3,10–4
ADSP-215xx.. 7–3
ADSP-SC5xx processors... 7–3
specifying..........................8–14,9–16,10–3,10–4,10–26

boot mode select pins (Blackfin processors)
ADSP-BF51x processors...3–2
ADSP-BF52x/54x processors....................................3–3
ADSP-BF531/2/3/4/6/7/8/9 processors................... 4–2
ADSP-BF60x processors...5–2
ADSP-BF7xx processors... 6–2

boot mode select pins (SHARC processors)
ADSP-21161 processors... 9–2
ADSP-2116x/160 processors.................................... 8–3
ADSP-2126x/36x/37x processors.................. 10–3,10–4
ADSP-215xx processors..7–3
ADSP-SC5xx processors... 7–3

boot sequences, introduction to....................................... 2–7
boot sequences (SHARC processors)

ADSP-21161 processors... 9–2
ADSP-2116x/160 processors.................................... 8–2
ADSP-2126x/36x/37x/46x processors.................... 10–2

bootstraps.. 2–10
boot streams, introduction to..................................2–9,2–10
boot streams (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors.......... 4–5,4–20

ADSP-BF561 processors.... 4–14,4–16-4–18,4–20,4–21
boot streams (SHARC processors)

ADSP-21160 processors... 8–9
ADSP-21161 processors... 9–10
ADSP-2126x/36x/37x processors.............. 10–11,10–13

Symbols

-b prom|flash|spi|spislave|UART|TWI|FIFO, loader switch
for ADSP-BF53x processors................................... 4–28

-b prom|flash|spi|spislave|UART|TWI|FIFO|OTP|NAND,
loader switch for ADSP-BF51x/52x/54x processors........
..3–4,3–7

-bprom|host|link|JTAG, loader switch for ADSP-21160 pro-
cessors...8–14

-bprom|host|link|spi, loader switch for ADSP-21161 pro-
cessors...9–16

-bprom|spislave|spiflash|spimaster|spiprom, loader switch for
ADSP-2126x/36x/37x/46x processors......... 10–9,10–26

B

BSO bit... 8–5

Symbols

-b SPIMASTER|SPISLAVE|LPSLAVE|UARTSLAVE loader
switch for ADSP-SC5xx/215xx processors.............. 7–11

B

BUSLCK bit..8–7
bypass mode, See no-boot mode...................................... 4–2
BYTE format (non-bootable files)..................................12–8
BYTE format files (.ldr)...12–8
byte-stacked format files (.stk)................... 11–3-11–5,12–10

Symbols

-callback, loader switch for ADSP-SC5xx/215xx processors...
...7–11

-callback, loader switch for Blackfin.................................3–7

C

CALLBACK block flag.. 7–11
C and C++ source files..2–6,12–1
CEP0 register..9–5,9–7

CCES 2.9.0 Loader and Utilities Manual 18

Symbols

-chipmemsplitter, loader switch for ADSP-2156x.......... 7–11

C

CLB0 register..9–8,9–9
CLKPL bit...10–6
command line

loader/splitter for Blackfin processors..............................
...3–5,4–27,8–13,9–14

loader for SHARC processors............. 8–13,9–14,10–25
splitter... 11–1,11–3

compilation, introduction to..2–6
compressed block headers

Blackfin processors.. 4–7,4–24
SHARC processors... 10–22

compressed streams
Blackfin processors.. 4–23,4–25
SHARC processors.................................... 10–21,10–24

Symbols

-compression
loader switch for Blackfin.............................. 4–23,4–28
loader switch for SHARC............... 10–21,10–23,10–26

-compressionOverlay, loader switch for SHARC....................
...10–21,10–23,10–26

C

compression support
ADSP-BF531/2/3/4/6/7/8/9 processors................. 4–22

compression window...................... 4–24,4–27,10–23,10–25

Symbols

-compressWS
loader switch for Blackfin....................................... 4–27
loader switch for SHARC.......................... 10–25,10–26

-compressWS #..4–28

C

conversion utilities....................................... 13–1,13–2,13–7

Symbols

-core, loader switch for ADSP-SC5xx/215xx processors. 7–11

C

count headers (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors................. 4–20
ADSP-BF561 processors.......................4–15,4–18,4–20

CPEP0 register... 9–5,9–7
CPHASE bit..10–6
CPLB0 register.. 9–9

Symbols

-CRC32, loader switch for ADSP-SC5xx/215xx............ 7–11
-CRC32, loader switch for ADSP-SCx8x/ADSP-215xx... 7–9
-CRC32, loader switch for Blackfin................... 3–7,5–5,6–4

C

CRC32 protection, ADSP-215xx processors.................... 7–9
CRC32 protection, ADSP-BF60x processors................... 5–5
CRC32 protection, ADSP-BF7xx processors................... 6–4
CRC32 protection, ADSP-SC5xx processors................... 7–9
CS pin... 8–6,9–7,10–6
CSRX register.. 9–10
Cx register... 8–4,8–5,8–8

D

D39-32 bits... 8–5
data..8–5

initialization files (.dat)...12–2
memory (dm) sections................................... 11–2,11–3

DATA23-16 pins... 9–4
DATA39-32 pins... 8–4
DATA63-32 pins... 8–6
DATA64 memory sections....................................11–2,11–3
data banks (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors................. 4–12
ADSP-BF561 processors...4–19

DataFlash devices...4–2
data packing (SHARC processors)

ADSP-21160 processors....................................8–5-8–7
ADSP-21161 processors.................................... 9–3,9–5
ADSP-2126x/36x/37x/46x processors............................

..10–4,10–15,10–16
data streams

encrypting from application................................... 4–29
encrypting from kernel... 4–30

debugger file formats.. 2–6,12–11

CCES 2.9.0 Loader and Utilities Manual 19

debugging targets...2–6
decompression

initialization files.. 4–26
kernel files.. 10–24

DEN register.. 9–5,9–7
DLMs to ELF DLM converter.......................................13–7

Symbols

-dm, splitter switch.. 11–3

D

DMA (ADSP-21160 processors)......................................8–6
buffers.. 8–6
channel control registers.................................... 8–5-8–8
channel interrupts..8–7,8–8
channel parameter registers.........................8–4-8–6,8–8
controller..8–1,8–4,8–5
transfers...8–5-8–9

DMA (ADSP-21161 processors)......................................9–1
buffers.. 9–14
channel control registers.................... 9–3,9–6,9–7,9–10
channel interrupts..9–6,9–7
channel parameter registers................9–4,9–5,9–7-9–10
controller..9–3,9–5,9–6
transfers....................................9–2,9–5,9–9,9–10,9–13

DMA (ADSP-2126x/36x/37x/46x processors)
parameter registers.. 10–6
transfers..10–10

DMA (ADSP-2126x/36x/37x/46x processors): code example
...10–17

DMA (ADSP-2126x/36x/37x/46x processors): parameter
registers.. 10–17

DMAC0 channel (ADSP-21160 processors)....................8–6
DMAC10 channels

ADSP-21160 processors......................8–2,8–4-8–6,8–8
ADSP-21161 processors............................. 9–3,9–5,9–6

DMAC6 channel (ADSP-21160 processors)......8–5,8–6,8–8
DMAC8 channels

ADSP-21160 processors.................................... 8–6,8–7
ADSP-21161 processors............................. 9–1,9–8,9–9

Symbols

-dmawidth #, loader switch for Blackfin................. 3–8,4–28

D

DMISO bit..10–6
DTYPE register... 8–6,9–5,9–7
dual-core applications

ADSP-BF561 processors...4–18
ADSP-BF60x processors...5–3

DWARF-2 debugging information.................................. 2–6
Dynamically Loadable Modules (DLMs)....................... 13–2
dyndump utility...13–7
dynreloc utility.. 13–9

E

EBOOT pins
ADSP-21160 processors...................... 8–3,8–4,8–6,8–7
ADSP-21161 processors......9–2-9–4,9–6,9–8,9–9,9–13

ECEP0 register.. 9–4,9–5,9–7
ECx register..8–4-8–6

Symbols

-e filename, loader switch for ADSP-21160 processors...8–14
-efilename, loader switch for SHARC............................ 9–16

E

EIEP0 register...9–5,9–7
EIx register..8–4,8–6
elf2dyn utility... 13–2,13–3
elf2flt utility...13–6
elfdump utility...13–6
elfloader, see loader
ELF to BFLT file converter.. 13–6
elf to DLM converter...13–2
EMEP0 register.. 9–5,9–7
EMx register.. 8–4

Symbols

-enc dll_filename, loader switch for Blackfin..................4–29
-enc dllfile loader switch for ADSP-SC5xx/215xx processors.

...7–12

E

encrypted images, ADSP-ADSP-SC5xx processors.......... 7–9
encrypted images, ADSP-BF7xx processors......................6–3
encryption functions....................................4–29,4–30,4–33
end-of-file records..12–5

CCES 2.9.0 Loader and Utilities Manual 20

EP0I vector..8–7,9–6,9–7
EPB0 buffer...8–6
EPROM boot mode (SHARC processors)

ADSP-21160 processors........... 8–1,8–3,8–4,8–11,8–12
ADSP-21161 processors....................................9–1-9–3
multiprocessor systems..9–13

EPROM flash memory devices.. 2–9

Symbols

-e symbol switch (elf2dyn utility)..........................13–4,13–5

E

executable and linkable format (ELF)
executable files (.dxe)................................ 2–6,2–7,12–4
object files (.doj)...12–3

exported symbols... 13–5
external

memory boot..2–7
resistors...8–4
vector tables..8–11

external memory (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors.......... 4–2,4–20
ADSP-BF561 processors................................4–18,4–20
multiprocessor support... 4–20

external memory (SHARC processors)
ADSP-21160 processors...

..........................8–3,8–5,8–7,8–8,8–10,8–11,8–15
ADSP-21161 processors................ 9–3,9–10,9–13,9–17
ADSP-2126x/36x/37x/46x processors.................... 10–4
ADSP-2126x/36x/37x processors)........................ 10–14

external ports (SHARC processors)
ADSP-21160 processors...........................8–3-8–9,8–12
ADSP-21161 processors...........................9–2-9–7,9–14

Symbols

-f {hex|ascii|binary|include}.. 4–29
-f family switch (elf2dlm utility).................................... 13–8
-f h|s1|s2|s3|b, splitter switch... 11–4
-fhex|ascii|binary|byte|include|s1|s2|s3, loader switch for

SHARC.. 10–26
-f hex|ascii|binary|include, loader switch for ADSP-SC5xx/

215xx processors...7–12
-f hex|ascii|binary|include, loader switch for Blackfin....... 3–8
-fhex|ascii|binary|include|s1|s2|s3, loader switch for SHARC.

..8–14,9–16

F

file formats
ASCII..3–8,4–29,7–12,12–11
binary... 3–8,4–29,7–12
byte-stacked (.stk)... 11–3-11–5
debugger input files.. 12–11
hexadecimal (Intel hex-32)... 3–8,4–29,7–12,11–3,11–4
include... 3–8,4–29,7–12
list of.. 2–11
s-record (Motorola)....................................... 11–3,11–4

file formatting
selecting for output..3–10,4–30
specifying word width...4–33

file search rules...2–11

Symbols

-FillBlock, loader switch for Blackfin............... 3–4,3–8,12–9

F

final blocks.. 4–8
introduction to... 2–10
SHARC processors............................. 8–9,10–11,10–16

FLAG pins, ADSP-21160 processors............................. 8–12
flag words (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors................... 4–7
ADSP-BF561 processors................................4–15,4–18

flash memory
ADSP-BF51x processors...3–3
ADSP-BF52x/54x processors....................................3–3
devices.. 2–6

FLG0 signal... 10–6
frequency.. 8–7,9–8

Symbols

-ghc #, loader switch for Blackfin...................................4–29

G

global header structures, See block headers............4–15,4–29
GPEP0 register... 9–5,9–7
GPLB0 register.. 9–9
GPSRX register..9–10

CCES 2.9.0 Loader and Utilities Manual 21

Symbols

-h|help
loader switch for ADSP-SC5xx/215xx processors... 7–12
loader switch for Blackfin................................ 3–8,4–29
loader switch for SHARC................... 8–14,9–16,10–27

H

HBG pin... 8–6
HBR pin..9–7
header files (.h)... 4–15,12–3
header records

byte-stacked format (.stk)..................................... 12–10
s-record format (.s_#)... 12–7

hex-to-S converter..13–1
hexutil utility... 13–1
hold time cycles... 4–15
host boot mode, introduction to.................................... 2–10
host boot mode (SHARC processors)

ADSP-21160 processors........................... 8–1,8–6,8–12
ADSP-21161 processors.................................... 9–1,9–6
ADSP-2126x/36x/37x/46x processors.................. 10–10

host DMA boot mode, ADSP-BF52x/54x processors...... 3–3

Symbols

-hostwidth #, loader switch for SHARC.................................
.......................................9–16,10–8,10–9,10–15,10–27

H

HPM bit..8–6

Symbols

-h switch
dynreloc utility... 13–9
elf2dyn utility...13–4

-id#exe=filename
loader switch for SHARC.......... 8–12,8–14,9–16,10–27

-id#exe=N, loader switch for SHARC............................ 9–17
-id#ref=N, loader switch for SHARC..................8–15,10–27

I

IDLE instruction...................................... 8–2,8–7,8–10,9–6
ignore blocks (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors................... 4–7
ADSP-BF561 processors...4–15

IIEP0 register..9–5,9–7
IILB0 register...9–8
IISRX register.. 9–10
IIVT bit..8–11,9–13
IIx register...8–4,8–8
image files, See PROM, non-bootable files.....................11–1
IMASK register...8–7,8–8
IMDW register... 8–7,10–17
IMEP0 register... 9–5,9–7
IMLB0 register.. 9–9
IMSRX register..9–10
IMx register... 8–4
include file format..12–6
INIT_L16 blocks...10–15
INIT_L48 blocks...10–14
INIT_L64 blocks...10–16

Symbols

-initcall, ADSP-BF52x/54x Blackfin loader switch..3–9,3–13
-initcall, ADSP-SC5xx/215xx loader switch...................7–12
-init filename, loader switch for ADSP-SC5xx/215xx pro-

cessors...7–12
-init filename, loader switch for Blackfin................................

.............................3–8,3–12,3–13,4–7,4–21,4–29,4–32

I

initialization blocks (ADSP-2126x/36x/37x/46x processors)..
..10–13-10–17

initialization blocks (Blackfin processors).......................3–13
ADSP-BF531/2/3/4/6/7/8/9 processors... 4–7,4–8,4–21
ADSP-BF561 processors.......................4–18,4–19,4–21

initialization blocks (Blackfin processors): code example........
..4–9,4–22

initial word option (SHARC processors)........................10–8
input file formats, See source file formats.......................12–1
input files

executable (.dxe) files................. 2–12,8–13,9–15,10–25
extracting memory sections from................... 11–3,11–5

instruction SRAM (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors................. 4–12
ADSP-BF561 processors...4–19

Intel hex-32 file format.................. 3–5,3–8,4–29,7–12,12–4
internal memory, boot-loadable file execution..................2–7
interrupt vector location... 9–6,9–8
interrupt vector tables.......... 8–11,9–13,10–11,10–16,10–17
IOP registers..8–6

CCES 2.9.0 Loader and Utilities Manual 22

IRQ vector...8–4
IVG15 lowest priority interrupt.......................4–4,4–8,4–14

Symbols

-kb prom|flash|spi|spislave|UART|TWI|FIFO, loader switch
for Blackfin...4–30

-kb prom|flash|spi|spislave|uart|twi|fifo|otp|nand, loader
switch for Blackfin..3–10

-keep switch (elf2elf utility)... 13–7
-kenc dll_filename, loader switch for Blackfin................4–30

K

kernels (ADSP-21160 processors)
boot sequence.. 8–2,8–8
default source files... 8–8,8–10
loading to processor...8–5,8–7
modifying...8–10
rebuilding... 8–11
replacing with application code.................................8–9
specifying user kernel..8–15

kernels (ADSP-21161 processors)
boot sequence... 9–2
default source files... 9–10,9–12
modifying...9–11
rebuilding.. 9–11,9–12

kernels (ADSP-2126x/36x/37x/46x processors)
boot sequence.. 10–2,10–10
compression/decompression...................... 10–21,10–24
loading to processor.......................................10–6,10–7
modifying..10–11,10–12
omitting in output..10–11
rebuilding... 10–12

kernels (Blackfin processors)
compression/decompression.......................... 4–23,4–26
specifying boot mode.....................................3–10,4–30
specifying file format..................................... 3–10,4–30
specifying file width..4–31
specifying hex address.................................... 3–10,4–30
specifying user kernel..3–11

Symbols

-kf #, loader switch for Blackfin..................................... 3–10
-kf hex|ascii|binary|include, loader switch for Blackfin... 4–30
-kp #, loader switch for Blackfin......... 3–10,3–12,4–30,4–32
-kwidth #, loader switch for Blackfin.................... 3–10,4–31

L

L1 memory (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors... 4–4,4–8,4–12
ADSP-BF561 processors................................4–14,4–19

L2 memory (Blackfin processors)
ADSP-BF561 processors...4–19

last blocks (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors................... 4–8
ADSP-BF561 processors...4–15

LBOOT pins
ADSP-21161 processors...

........................ 8–3,8–4,8–6,9–2-9–4,9–6,9–8,9–9
LCOM register.. 8–8
LCTL register.. 8–8,8–9,9–8
least significant bit first (LSB) format.............................10–7
library files (.dlb)... 12–3
link buffers.. 8–7,8–8,9–8
linker... 2–6

command-line files (.txt).. 12–3
memory map files (.map)..12–4
output files (.dxe, .sm, .ovl)............................. 2–6,12–4

linking, introduction to... 2–6
link port boot mode

ADSP-2146x SHARC processors..........................10–26
link port boot mode (SHARC processors)

ADSP-21160 processors.................................... 8–1,8–3
ADSP-21161 processors............................. 9–1,9–3,9–8

loadable files, See boot-loadable files................................ 2–6
loader

operations...2–8
output file formats................2–8,2–10,12–4,12–6-12–8

loader/splitter for ADSP-SC5xx/215xx processors7–10
loader for ADSP-21160 processors.................................. 8–1
loader for ADSP-21161 processors.................................. 9–1
loader for ADSP-2126x/36x/37x/469 processors........... 10–1
loader for ADSP-215xx SHARC......................................7–1
loader for ADSP-BF51x/52x/54x Blackfin (includes splitter).

...3–1
loader for ADSP-BF53x/BF561 Blackfin (includes splitter)...

...4–1
loader for ADSP-BF60x Blackfin (includes splitter)......... 5–1
loader for ADSP-BF7xx Blackfin (includes splitter)......... 6–1
loader for ADSP-SC5xx SHARC..................................... 7–1
loader kernels, See boot kernels......................................2–10
loader switches, See switches by name............3–6,4–28,7–10
loading, introduction to...2–6

CCES 2.9.0 Loader and Utilities Manual 23

Symbols

-l switch (elf2dyn utility)... 13–4
-l userkernel

loader switch for Blackfin.............................. 3–11,4–21
loader switch for SHARC...

..............................8–15,9–17,10–11,10–25,10–27
-M, loader switch for ADSP-SC5xx/215xx.................... 7–13
-M, loader switch for Blackfin...............................3–11,4–31

M

make files...3–11,4–31,7–13

Symbols

-maskaddr #, loader switch for ADSP-SC5xx/215xx...... 7–12
-maskaddr #, loader switch for Blackfin................ 3–11,4–31

M

masking EPROM address bits......................3–11,4–31,7–12
master (host) boot, introduction to..................................2–7

Symbols

-MaxBlockSize #, loader switch for ADSP-SC5xx/215xx.......
...7–12

-MaxBlockSize #, loader switch for Blackfin..........................
..3–11,4–31,5–5,6–4

-MaxFillBlockSize #, loader switch for ADSP-SC5xx/215xx..
...7–13

-MaxFillBlockSize #, loader switch for Blackfin............. 3–11
-MaxZeroFillBlockSize #, loader switch for Blackfin..............

...4–31,5–5,6–4

M

memory map files (.map)...12–4
memory programming on ADSP-BF60x processors.........5–4
memory ranges (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors................. 4–12
ADSP-BF561 processors...4–19

Symbols

-merge switch (elf2elf utility)... 13–7

M

microcontroller data transfers.......................................12–10

Symbols

-MM, loader switch for ADSP-SC5xx/215xx.................7–13
-MM, loader switch for Blackfin...........................3–11,4–31

M

MODE1 register..8–7
MODE2 register..8–7

Symbols

-Mo filename, loader switch for ADSP-SC5xx/215xx.... 7–13
-Mo filename, loader switch for Blackfin...............3–11,4–31

M

most significant bit first (MSB) format.......................... 10–7
Motorola S-record file format.. 12–7
MSBF bit...10–6
MS bit... 10–6
MSWF register... 9–5,9–7

Symbols

-m switch (dynreloc utility)..13–10
-Mt filename, loader switch for ADSP-SC5xx/215xx.....7–13
-Mt filename, loader switch for Blackfin............... 3–11,4–31

M

multiprocessor booting, introduction to...........................2–7
multiprocessor systems (Blackfin processors)3–13,4–20,4–21
multiprocessor systems (SHARC processors)

ADSP-21160 processors... 8–12
ADSP-21161 processors......................... 9–4,9–13,9–14

N

no-boot mode
introduction to.. 2–7,2–9
selecting with -romsplitter switch......... 3–12,4–33,7–14

no-boot mode (Blackfin processors)
ADSP-BF50x processors...3–2
ADSP-BF51x processors...3–2
ADSP-BF52x/54x processors....................................3–3
ADSP-BF531/2/3/4/6/7/8/9 processors................... 4–2
ADSP-BF561 processors...4–14

no-boot mode (SHARC processors)
ADSP-21160 processors.................................... 8–1,8–8
ADSP-21161 processors........................... 9–1,9–3,9–10

CCES 2.9.0 Loader and Utilities Manual 24

Symbols

-NoFillBlock, loader switch for ADSP-SC5xx/215xx..... 7–13
-NoFillBlock, loader switch for Blackfin................. 3–4,3–11
-nofinalblock, loader switch for Blackfin........................4–31
-nofinaltag, loader switch

ADSP-BF561 processors...4–32
ADSP-BF60x processors...5–3

-NoFinalTag, loader switch for ADSP-SC5xx/215xx......7–13
-noinitcode, loader switch for Blackfin..................3–11,4–32
-nokernel, loader switch for ADSP-2126x/36x/37x/46x pro-

cessors...10–28

N

non-bootable files
creating from command line...................................11–1
ignoring ROM sections.. 11–4
introduction to.. 2–7,2–10
specifying format.. 11–4
specifying name.. 11–4
specifying word width....................................11–2,11–5

non-bootable output files...12–8
NOP instruction.......................................8–2,8–7,8–10,9–6

Symbols

-norom, splitter switch...11–4
-nosecondstageloader, loader switch for Blackfin............4–32
-nozeroblock, loader switch for SHARC............. 9–17,10–28

N

numeric formats...12–2

Symbols

-o2, loader switch for Blackfin............ 3–10,3–12,4–30,4–32

O

object files (.doj).. 12–3

Symbols

-o filename
dynreloc utility switch.. 13–10
elf2dyn utility switch.. 13–4
elf2elf utility switch.. 13–7
loader switch for ADSP-SC5xx/215xx.................... 7–13
loader switch for Blackfin.............................. 3–11,4–32

loader switch for SHARC................... 8–15,9–17,10–28
splitter switch... 11–4

O

on-chip boot ROM
ADSP-BF531/2/3/4/6/7/8/9 processors.........................

..........................2–10,4–2,4–4,4–5,4–7,4–12,4–21
ADSP-BF561 processors.....4–13,4–14,4–18,4–19,4–21
introduction to... 2–10

OTP boot mode, ADSP-BF51x/52x/54x processors........ 3–3
output files.. 13–2

generating kernel and application.................. 3–12,4–32
specifying format...................................... 2–8,2–9,12–4
specifying name.................................... 3–11,4–32,7–13
specifying with -o switch.. 13–2
specifying word width....................................4–33,9–16

overlay compression... 10–23
overlay memory files (.ovl)......................... 2–12,12–4,12–11

Symbols

-p #, loader switch for Blackfin............................. 3–12,4–32

P

packing boot data.. 9–1

Symbols

-paddress, loader switch for SHARC.......... 8–15,9–17,10–28

P

parallel/serial PROM devices... 2–9

Symbols

-pflag {#|PF#|PG#|PH#}, loader switch for Blackfin...... 4–32
-pflag #|PF|PG|PH #, loader switch for Blackfin...4–33-4–35

P

PFx signals...4–32
PMODE register.. 8–5,8–6,9–5,9–7

Symbols

-pm splitter switch... 11–4

P

processor IDs... 8–12,9–13,9–14

CCES 2.9.0 Loader and Utilities Manual 25

assigning to .dxe file............................8–14,9–16,10–27
pointing to jump table...................................8–15,9–17

processor-loadable files, introduction to...........................2–9
processor type bits (Blackfin boot streams).......................4–7

Symbols

-proc part_number
loader switch for ADSP-SC5xx/215xx.................... 7–13
loader switch for Blackfin.............................. 3–12,4–32
loader switch for SHARC................... 8–15,9–17,10–28
splitter switch... 11–4

P

program counter settings (ADSP-21160 processors)........ 8–6
program development flow.. 2–5
program memory sections (splitter).......................11–2,11–4
PROM

boot mode, introduction to...................................... 2–9
downloading boot-loadable files............................... 2–7
memory devices... 10–9,12–4

PROM/flash boot mode (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors.......... 4–2,4–21
ADSP-BF561 processors................................4–18,4–21

PROM (image) files
creating from command line...................................11–1
ignoring ROM sections.. 11–4
specifying format.. 11–4
specifying name.. 11–4
specifying width..11–5

PROM boot mode, ADSP-2126x/36x/37x/46x processors....
..10–4,10–12

pull-up resistors... 9–4
Px register... 8–9,10–17

Symbols

-quickboot, loader switch for ADSP-SC5xx/215xx........ 7–13
-quickboot, loader switch for Blackfin............................3–12

Q

QUICKBOOT block flag..7–13

Symbols

-r #, splitter switch...11–5
-ram, splitter switch.. 11–3,11–5

R

RBAM bit..9–4
RBWS bit.. 9–4
RD pin... 8–5,9–5

Symbols

-readall, loader switch for ADSP-SC5xx/215xx..............7–14
-readall, loader switch for Blackfin................................. 3–12

R

reset
ADSP-21160 processors......................8–2,8–4-8–6,8–8
ADSP-21161 processors............... 9–2,9–4,9–6,9–8,9–9
ADSP-2126x/36x/37x/46x processors......... 10–2,10–11
ADSP-BF561 processors.......................4–10,4–13,4–14
Blackfin processors..................................... 3–2,4–1,4–2
dual-core Blackfin processors.................................. 4–13
processor, introduction to................................ 2–9,2–10
vector addresses................................. 8–2,8–5,8–7,9–12
vector routine... 9–6

RESET
interrupt service routine........................... 4–4,4–14,9–8
pin..8–4,9–5,9–7

reset: vector routine... 4–11

Symbols

-retainSecondStageKernel, loader switch for SHARC...10–28

R

ROM...2–7
memory images as ASCII text files........................12–11
memory sections...11–4

Symbols

-romsplitter, loader switch for ADSP-SC5xx/215xx....... 7–14
-romsplitter, loader switch for Blackfin..................................

..3–11,3–12,4–31,4–33

R

Rx registers.. 4–18,4–21,8–7

S

s1 (Motorola EXORciser) file format.................... 11–4,12–7
s2 (Motorola EXORMAX) file format.................. 11–4,12–7

CCES 2.9.0 Loader and Utilities Manual 26

s3 (Motorola 32-bit) file format............................ 11–4,12–7
SAVE block flag...7–14

Symbols

-save section, loader switch for ADSP-SC5xx/215xx...... 7–14
-save section, loader switch for Blackfin......................... 3–13

S

scratchpad memory (Blackfin processors)
ADSP-BF561 processors...4–20

SDCTL register... 9–11
SDRAM/DDR boot mode, ADSP-BF52x/54x processors.....

...3–3
SDRAM memory (ADSP-21160 processors)................... 8–8
SDRAM memory (Blackfin processors)........................... 4–9

ADSP-BF531/2/3/4/6/7/8/9 processors.......... 4–7,4–13
ADSP-BF561 processors................................4–18,4–19

SDRDIV register... 9–11
second-stage loader

ADSP-BF561 processors................................4–18,4–19
secure boot, ADSP-BF7xx processors...............................6–3
secure boot, ADSP-SC5xx processors...............................7–9
SENDZ bit..10–6
sequential EPROM boot..9–13
shared memory

Blackfin processors.. 4–18,4–19
file format (.sm).........................2–12,4–18,12–4,12–11
in compressed .ldr files...............................10–21,10–23
omitting from loader file................................8–14,9–16

shift register, See RX registers...10–6

Symbols

-ShowEncryptionMessage, loader switch for Blackfin.....4–33

S

simulators, for boot simulation.. 2–7
single-processor systems............................... 8–12,9–14,11–1

Symbols

-si-revision none|any|x.x
loader switch...11–5
loader switch for ADSP-SC5xx/215xx.................... 7–14
loader switch for Blackfin.............................. 3–13,4–33
loader switch for SHARC................... 8–15,9–17,10–28

S

slave processors.. 2–7,2–10,10–6
software reset... 2–9,4–4,4–14
source file formats

assembly text (.asm)..12–2
C/C++ text (.c, .cpp, .cxx)...................................... 12–1

SPI boot modes (SHARC processors)
ADSP-21161 processors............................. 9–1,9–3,9–9
ADSP-2126x/36x/37x/46x processors 10–6,10–8,10–12

SPICLK register...10–6,10–7,10–10
SPICTL register...9–9
SPIDS signal..10–6
SPI EEPROM boot mode (Blackfin processors)

ADSP-BF561 processors...4–18
SPIEN bit..10–6
SPI flash boot mode (ADSP-2126x/2136x/2137x/21469

processors).. 10–9
SPI host boot mode (ADSP-2126x/36x/37x/46x processors).

...10–10
SPI master boot modes

ADSP-2126x/36x/37x/46x processors........... 10–6,10–8
ADSP-2126x/36x/37x processors......................... 10–11
ADSP-215xx processors..7–3
ADSP-BF51x processors...3–3
ADSP-BF52x/54x processors....................................3–3
ADSP-BF531/2/3/8/9 processors............................. 4–2
ADSP-BF534/6/7 processors............................. 3–3,4–2
ADSP-BF60x processors...5–2
ADSP-BF7xx processors... 6–2
ADSP-SC5xx processors... 7–3

SPI memory slave devices...10–7
SPI PROM boot mode (ADSP-2126x/36x/37x/46x process-

ors).. 10–8,10–9
SPIRCV bit... 10–6
SPIRx register... 9–1,9–9
SPI slave boot mode (ADSP-2126x/2136x/2137x/21469

processors).. 10–6
SPI slave boot mode (ADSP-2126x/36x/37x/46x processors).

..10–6,10–8
SPI slave boot mode (Blackfin processors)

ADSP-BF51x processors...3–3
ADSP-BF52x/54x processors....................................3–3
ADSP-BF531/2/3/8/9 processors............................. 4–2
ADSP-BF534/6/7 processors.................................... 4–2

splitter
command-line syntax..11–1

CCES 2.9.0 Loader and Utilities Manual 27

file extensions... 11–3
introduction to..2–6-2–9
list of switches.. 11–3
output file formats.....................................12–10,12–11

SPORT hex data files...12–12
SRAM memory (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors................. 4–12
ADSP-BF561 processors................................4–14,4–19

Symbols

-s section_name, splitter switch......................................11–5

S

start addresses
ADSP-21160 application code................................. 8–2
Blackfin application code...............................3–12,4–32

status information..3–13,4–33,7–14
supervisor mode (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors................... 4–4
ADSP-BF561 processors...4–14

synchronous boot operations... 8–6
SYSCON register (SHARC processors)

ADSP-21160 processors......................... 8–6,8–10,8–11
ADSP-21161 processors................................ 9–11,9–13

SYSCR register (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors................... 4–4
ADSP-BF561 processors...4–14

SYSCTL register.. 10–17
SYSTAT register...8–12
system reset configuration register, See SYSCR register..........

..3–2,4–1

Symbols

-t#, loader switch for SHARC...............................8–15,9–17

T

termination records..12–8
text files... 12–11
Tool Settings dialog box...

...........3–5,4–27,5–6,6–5,7–9,8–13,9–14,10–11,10–25
two-wire interface (TWI) boot mode

ADSP-BF2x/54x processors......................................3–3
ADSP-BF534/6/7 processors.................................... 4–3

Symbols

-u, loader switch for SHARC....................................... 10–29
-u, splitter switch... 11–5

U

UART slave boot mode (Blackfin processors)............3–3,4–3
UBWM register... 8–5
uncompressed streams...4–25,10–23

Symbols

-use32bitTagsforExternal Memory Blocks, loader switch for
SHARC.. 8–15

U

utility programs (list).. 13–1,13–14

Symbols

-v (verbose)
loader switch for ADSP-SC5xx/215xx.................... 7–14
loader switch for Blackfin.............................. 3–13,4–33
loader switch for SHARC........ 8–15,9–17,10–28,10–29

V

vector addresses...8–10,9–12

Symbols

-version
elf2elf utility switch.. 13–7
loader switch for SHARC................... 8–15,9–17,10–29
splitter switch... 11–5

-v switch
dynreloc utility... 13–9
elf2dyn utility...13–4

-W, loader switch for ADSP-SC5xx/215xx.....................7–14

W

WAIT register..................................8–5,8–8,8–10,9–4,9–11
wait states... 8–5,8–7,9–4,9–5

Symbols

-Width #, loader switch for ADSP-SC5xx/215xx...........7–14
-width #, loader switch for Blackfin............. 3–13,4–31,4–33

CCES 2.9.0 Loader and Utilities Manual 28

W

WL bit...10–6
word width, setting for loader output file.......................9–16

Z

zero-fill blocks (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors.......... 4–7,4–31
ADSP-BF561 processors...4–15

zero-fill blocks (SHARC processors)
ADSP-21160 processors... 8–9
ADSP-2126x/36x/37x processors......................... 10–14

zero-padding (ADSP-2126x/36x/37x/46x processors)............
..10–15,10–16

Symbols

-zeroPadForced #, loader switch for Blackfin..................4–33

CCES 2.9.0 Loader and Utilities Manual 29

	Copyright Information
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Website
	EngineerZone

	Notation Conventions

	Introduction
	Definition of Terms
	Program Development Flow
	Compiling and Assembling
	Linking
	Loading, Splitting, or Both
	Non-Bootable Files Versus Boot-Loadable Files
	Loader Utility Operations
	Using CCES Loader Interface
	Splitter Utility Operations
	Using CCES Splitter Interface

	Boot Modes
	No-Boot Mode
	PROM Boot Mode
	Host Boot Mode

	Boot Kernels
	Boot Streams
	Loader File Searches
	Loader File Extensions

	Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide
	Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors
	Loader Command-Line Switches for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader Files

	CCES Loader and Splitter Interface for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

	Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors
	ADSP-BF53x/BF561 Processor Booting
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor On-Chip Boot ROM
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Block Headers and Flags
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Initialization Blocks

	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor No-Boot Mode
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Memory Ranges

	ADSP-BF561 Processor Booting
	ADSP-BF561 Processor On-Chip Boot ROM
	ADSP-BF561 Processor Boot Streams
	ADSP-BF561 Processor Initialization Blocks
	ADSP-BF561 Dual-Core Application Management
	ADSP-BF561 Processor Memory Ranges

	ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support
	Compressed Streams
	Compressed Block Headers
	Uncompressed Streams
	Booting Compressed Streams
	Decompression Initialization Files

	ADSP-BF53x/BF561 Processor Loader Guide
	Loader Command Line for ADSP-BF53x/BF561 Processors
	Loader Command-Line Switches for ADSP-BF533/BF561 Processors

	CCES Loader and Splitter Interface for ADSP-BF53x/BF561 Processors

	Loader/Splitter for ADSP-BF60x Blackfin Processors
	ADSP-BF60x Processor Booting
	ADSP-BF60x Processor Boot Modes
	ADSP-BF60x BCODE Field for Memory, RSI, and SPI Master Boot
	Building a Dual-Core Application
	-NoFinalTag
	Programming Memory on a Target Board

	CRC32 Protection
	Block Sizes

	ADSP-BF60x Processor Loader Guide
	CCES Loader and Splitter Interface for ADSP-BF60x Processors
	ROM Splitter Capabilities for ADSP-BF60x Processors
	ADSP-BF60x Loader Collateral

	Loader/Splitter for ADSP-BF7xx Blackfin Processors
	ADSP-BF7xx Processor Booting
	ADSP-BF7xx Processor Boot Modes
	ADSP-BF7xx BCODE Field for SPI Boot Modes
	Secure Boot and Encrypted Images
	CRC32 Protection
	Block Sizes

	ADSP-BF7xx Processor Loader Guide
	CCES Loader and Splitter Interface for ADSP-BF7xx Processors
	ROM Splitter Capabilities for ADSP-BF7xx Processors
	ADSP-BF7xx Loader Collateral

	Loader for ADSP-SC5xx/ADSP-215xx Processors
	ADSP-SC5xx/ADSP-215xx Processor Booting
	ADSP-SC5xx/ADSP-215xx Processor Boot Modes
	ADSP-SC5xx/ADSP-215xx BCODE Field for SPI Boot Modes
	ADSP-SC5xx/ADSP-215xx Building a Multicore Application
	Initializing ADSP-SC5xx/ADSP-215xx using Init Codes
	ADSP-SC5xx/ADSP-215xx Loader File Formats
	Secure Boot and Encrypted Images
	CRC32 Protection

	ADSP-SC5xx/ADSP-215xx Processor Loader Guide
	Loader Command Line for ADSP-SC5xx/ADSP-215xx Processors
	Loader Command-Line Switches for ADSP-SC5xx/ADSP-215xx Processors

	CCES Loader Interface for ADSP-SC5xx/ADSP-215xx Processors
	ADSP-SC5xx/ADSP-215xx Loader Collateral

	Loader for ADSP-21160 SHARC Processors
	ADSP-21160 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	ADSP-21160 Boot Modes
	EPROM Boot Mode
	Host Boot Mode
	Link Port Boot Mode
	No-Boot Mode

	ADSP-21160 Boot Kernels
	Processor Boot Steams
	Boot Kernel Modification and Loader Issues

	ADSP-21160 Interrupt Vector Table
	ADSP-21160 Multi-Application (Multi-DXE) Management
	ADSP-21160 Processor ID Numbers

	Processor Loader Guide
	Loader Command Line for Processors
	Loader Command-Line Switches for Processors

	CCES Loader Interface for Processors

	Loader for ADSP-21161 SHARC Processors
	ADSP-21161 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	ADSP-21161 Processor Boot Modes
	EPROM Boot Mode
	Host Boot Mode
	Link Port Boot Mode
	SPI Port Boot Mode
	No-Boot Mode

	ADSP-21161 Processor Boot Kernels
	Processor Boot Streams
	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues

	ADSP-21161 Processor Interrupt Vector Table
	ADSP-21161 Multi-Application (Multi-DXE) Management
	Boot From a Single EPROM
	Sequential EPROM Boot
	Processor ID Numbers

	ADSP-21161 Processor Loader Guide
	Loader Command Line for Processors
	Loader Command-Line Switches for ADSP-21161 Processors

	CCES Loader Interface for Processors

	Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors
	ADSP-2126x/2136x/2137x/214xx Processor Booting
	Power-Up Booting Process
	ADSP-2126x/2136x/2137x/214xx Processor Interrupt Vector Table
	General Boot Definitions
	Boot Mode Selection
	Boot DMA Configuration Settings
	PROM Boot Mode
	Packing Options for External Memory
	Multiplexed Parallel Port
	AMI/SDRAM/DDR2
	Packing and Padding Details

	SPI Port Boot Modes
	SPI Slave Boot Mode
	SPI Master Boot Modes
	Booting From an SPI Flash (24-Bit Address)
	Booting From an SPI PROM (16-Bit Address)
	Booting From an SPI Host Processor (No Address)

	Reserved (No Boot) Mode

	ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels
	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues

	ADSP-2126x/2136x/2137x/214xx Processor Boot Streams
	Boot Stream Block Tags
	ZERO_INIT Blocks
	INIT_L48 Blocks
	INIT_L16 Blocks
	INIT_L64 Blocks
	MULT_PROC Blocks
	FINAL_INIT Blocks

	Multi-Application (Multi-DXE) Management
	ADSP-2126x/2136x/2137x Processor Compression Support
	Compressed Streams
	Compressed Block Headers
	Uncompressed Streams
	Overlay Compression
	Booting Compressed Streams
	Decompression Kernel File

	ADSP-2126x/2136x/2137x/214xx Processor Loader Guide
	Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors
	Loader Command-Line Switches for ADSP-2126x/2136x/2137x/214xx Processors

	CCES Loader Interface for ADSP-2126x/2136x/2137x/214xx Processors

	Splitter for SHARC Processors
	Splitter Command Line
	Splitter File Searches
	Splitter Output File Extensions
	Splitter Command-Line Switches

	File Formats
	Source Files
	C/C++ Source Files
	Assembly Source Files
	Assembly Initialization Data Files
	Header Files
	Linker Description Files
	Linker Command-Line Files

	Build Files
	Assembler Object Files
	Library Files
	Linker Output Files
	Memory Map Files
	Bootable Loader Output Files
	Loader Output Files in Intel Hex-32 Format
	Loader Output Files in Include Format
	Loader Output Files in Binary Format
	Loader Output Files in Motorola S-Record Format

	Non-Bootable Loader Output Files in Byte Format
	Splitter Output Files
	Splitter Output Files in Intel Hex-32 Format
	Splitter Output Files in Byte-Stacked Format
	Splitter Output Files in ASCII Format
	Splitter Output Files in Motorola S-Record Format

	Debugger Files

	Utilities
	hexutil - Hex-32 to S-Record File Converter
	elf2dyn - ELF to Dynamically-Loadable Module Converter
	Dynamically-Loadable Modules
	Syntax
	File Formats and -l Switch
	Exported Symbols
	Section Alignment

	elf2elf - ELF to ELF File Converter
	dyndump - Display the Contents of Dynamically-Loadable Modules
	-f Family
	Output

	dynreloc - Relocate Dynamically-Loadable Modules
	Explicit Mappings
	Region Mappings

	signtool - Sign and Encrypt Boot Streams for Secure Booting
	Syntax
	Output Formats
	Key Generation for Signing
	Key Generation for Encryption
	Signing and Encrypting Boot Streams
	Extracting Public Keys

	securebootsim - Verify and Validate Boot Streams for Secure Booting
	Validating a Signed Boot Stream

	Index

