
a

W 5.0
Loader and Utilities Manual

(including the ADSP-BFxxx, ADSP-21xxx, ADSP-TSxxx)

Revision 2.5, January 2011

Part Number
82-000450-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2011 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, TigerSHARC,
and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 5.0 Loader and Utilities Manual iii

 CONTENTS

PREFACE

Purpose of This Manual .. xv

Intended Audience .. xv

Manual Contents ... xvi

What’s New in This Manual ... xvii

Technical or Customer Support ... xvii

Supported Processors .. xviii

Product Information .. xix

Analog Devices Web Site .. xix

VisualDSP++ Online Documentation xix

Technical Library CD .. xx

EngineerZone ... xxi

Social Networking Web Sites .. xxi

Notation Conventions .. xxi

INTRODUCTION

Definition of Terms .. 1-2

Program Development Flow .. 1-7

Compiling and Assembling .. 1-8

Contents

iv VisualDSP++ 5.0 Loader and Utilities Manual

Linking ... 1-8

Loading, Splitting, or Both .. 1-9

Non-bootable Files Versus Boot-loadable Files 1-10

Loader Utility Operations ... 1-11

Splitter Utility Operations .. 1-12

Boot Modes .. 1-13

No-Boot Mode ... 1-13

PROM Boot Mode ... 1-14

Host Boot Mode ... 1-14

Boot Kernels .. 1-15

Boot Streams ... 1-16

File Searches ... 1-17

LOADER/SPLITTER FOR
ADSP-BF50X/BF51X/BF52X/BF54X/BF59X BLACKFIN
PROCESSORS

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting 2-2

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide 2-7

Using Blackfin Loader Command Line 2-8

File Searches ... 2-9

File Extensions ... 2-9

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Loader
Command-Line Switches ... 2-9

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE
Loader Files ... 2-20

Using VisualDSP++ Loader ... 2-22

VisualDSP++ 5.0 Loader and Utilities Manual v

Contents

Using VisualDSP++ Second-Stage Loader 2-24

Using VisualDSP++ ROM Splitter ... 2-26

LOADER/SPLITTER FOR ADSP-BF53X/BF561 BLACKFIN
PROCESSORS

ADSP-BF53x/BF561 Processor Booting .. 3-2

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Booting .. 3-3

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor On-Chip Boot ROM 3-7

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Boot Streams 3-9

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Block Headers and Flags 3-10

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Initialization Blocks 3-13

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 and ADSP-BF535 Processor No-Boot Mode 3-16

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processor Memory Ranges 3-19

ADSP-BF535 Processor Booting .. 3-21

ADSP-BF535 Processor On-Chip Boot ROM 3-23

ADSP-BF535 Processor Second-Stage Loader 3-24

ADSP-BF535 Processor Boot Streams 3-27

Loader Files Without a Second-Stage Loader 3-28

Loader Files With a Second-Stage Loader 3-30

Global Headers .. 3-32

Contents

vi VisualDSP++ 5.0 Loader and Utilities Manual

Block Headers and Flags ... 3-33

ADSP-BF535 Processor Memory Ranges 3-34

Second-Stage Loader Restrictions 3-35

ADSP-BF561 Processor Booting .. 3-36

ADSP-BF561 Processor On-Chip Boot ROM 3-38

ADSP-BF561 Processor Boot Streams 3-38

ADSP-BF561 Processor Initialization Blocks 3-43

ADSP-BF561 Dual-Core Application Management 3-44

ADSP-BF561 Processor Memory Ranges 3-45

ADSP-BF53x and ADSP-BF561 Multi-Application
(Multi-DXE) Management ... 3-46

ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor
Compression Support ... 3-49

Compressed Streams ... 3-50

Compressed Block Headers ... 3-51

Uncompressed Streams ... 3-53

Booting Compressed Streams .. 3-54

Decompression Initialization Files 3-55

ADSP-BF53x/BF561 Processor Loader Guide 3-56

Using Blackfin Loader Command Line 3-57

File Searches ... 3-58

File Extensions ... 3-58

Blackfin Loader Command-Line Switches 3-59

Using VisualDSP++ Loader ... 3-70

Using VisualDSP++ Compression .. 3-73

VisualDSP++ 5.0 Loader and Utilities Manual vii

Contents

Using VisualDSP++ Second-Stage Loader for ADSP-BF535
Processors ... 3-74

Using VisualDSP++ ROM Splitter ... 3-76

ADSP-BF535 and ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/BF539 Processor No-Boot Mode .. 3-77

LOADER FOR ADSP-2106X/21160 SHARC PROCESSORS

ADSP-2106x/21160 Processor Booting .. 4-2

Power-Up Booting Process ... 4-3

Boot Mode Selection ... 4-5

ADSP-2106x/21160 Boot Modes ... 4-6

EPROM Boot Mode ... 4-7

Host Boot Mode ... 4-11

Link Port Boot Mode .. 4-15

No-Boot Mode ... 4-16

ADSP-2106x/21160 Boot Kernels ... 4-16

ADSP-2106x/21160 Processor Boot Steams 4-17

Boot Kernel Modification and Loader Issues 4-20

ADSP-2106x/21160 Interrupt Vector Table 4-22

ADSP-2106x/21160 Multi-Application (Multi-DXE)
Management .. 4-23

ADSP-2106x/21160 Processor ID Numbers 4-24

ADSP-2106x/21160 Processor Loader Guide 4-25

Using ADSP-2106x/21160 Loader Command Line 4-26

File Searches ... 4-27

File Extensions .. 4-27

Contents

viii VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-2106x/21160 Loader Command-Line Switches 4-28

Using VisualDSP++ Interface (Load Page) 4-31

LOADER FOR ADSP-21161 SHARC PROCESSORS

ADSP-21161 Processor Booting .. 5-2

Power-Up Booting Process ... 5-3

Boot Mode Selection ... 5-4

ADSP-21161 Processor Boot Modes .. 5-5

EPROM Boot Mode ... 5-5

Host Boot Mode ... 5-9

Link Port Boot Mode .. 5-12

SPI Port Boot Mode ... 5-14

No-Boot Mode ... 5-16

ADSP-21161 Processor Boot Kernels 5-16

ADSP-21161 Processor Boot Streams 5-17

Boot Kernel Modification and Loader Issues 5-18

Rebuilding a Boot Kernel File 5-18

Rebuilding a Boot Kernel Using Command Lines 5-19

Loader File Issues .. 5-20

ADSP-21161 Processor Interrupt Vector Table 5-21

ADSP-21161 Multi-Application (Multi-DXE) Management .. 5-21

Boot From a Single EPROM ... 5-22

Sequential EPROM Boot .. 5-22

Processor ID Numbers .. 5-23

ADSP-21161 Processor Loader Guide ... 5-24

VisualDSP++ 5.0 Loader and Utilities Manual ix

Contents

Using ADSP-21161 Loader Command Line 5-24

File Searches ... 5-26

File Extensions .. 5-26

Loader Command-Line Switches 5-27

Using VisualDSP++ Interface (Load Page) 5-31

LOADER FOR
ADSP-2126X/2136X/2137X/2146X/2147X/2148X SHARC
PROCESSORS

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor Booting 6-2

Power-Up Booting Process ... 6-3

Boot Mode Selection ... 6-4

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors
Boot Modes .. 6-5

PROM Boot Mode .. 6-6

Packing Options for External Memory 6-7

Packing and Padding Details .. 6-7

SPI Port Boot Modes ... 6-8

 SPI Slave Boot Mode .. 6-9

SPI Master Boot Modes ... 6-10

Booting From an SPI Flash .. 6-17

Booting From an SPI PROM (16-bit address) 6-17

Booting From an SPI Host Processor 6-18

Link Port Boot Mode .. 6-18

Internal Boot Mode ... 6-20

Contents

x VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors
Boot Kernels .. 6-22

Boot Kernel Modification and Loader Issues 6-23

Rebuilding a Boot Kernel File 6-23

Rebuilding a Boot Kernel Using Command Lines 6-24

Loader File Issues .. 6-25

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors
Interrupt Vector Table .. 6-25

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor Boot
Streams .. 6-26

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Block Tags ... 6-27

INIT_L48 Blocks ... 6-29

INIT_L16 Blocks ... 6-30

INIT_L64 Blocks ... 6-31

FINAL_INIT Blocks .. 6-31

ADSP-2136x/2137x/2146x/2147x/2148x Multi-Application
(Multi-DXE) Management ... 6-36

ADSP-2126x/2136x/2137x Processors Compression Support . 6-38

Compressed Streams ... 6-39

Compressed Block Headers ... 6-40

Uncompressed Streams ... 6-42

Overlay Compression ... 6-42

Booting Compressed Streams .. 6-43

Decompression Kernel File ... 6-44

VisualDSP++ 5.0 Loader and Utilities Manual xi

Contents

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor Loader
Guide .. 6-45

Using Blackfin/2137x/2146x/2147x/2148x Loader Command
Line .. 6-46

File Searches ... 6-47

File Extensions .. 6-47

Loader Command-Line Switches 6-48

Using VisualDSP++ Interface (Load Page) 6-53

LOADER FOR TIGERSHARC PROCESSORS

TigerSHARC Processor Booting .. 7-2

Boot Type Selection ... 7-3

TigerSHARC Processor Boot Kernels 7-3

Boot Kernel Modification .. 7-4

TigerSHARC Loader Guide .. 7-5

Using TigerSHARC Loader Command Line 7-5

File Searches ... 7-7

File Extensions .. 7-8

TigerSHARC Command-Line Switches 7-9

Using VisualDSP++ Interface (Load Page) 7-12

SPLITTER FOR SHARC AND TIGERSHARC
PROCESSORS

Splitter Command Line ... 8-2

File Searches .. 8-5

Output File Extensions .. 8-5

Contents

xii VisualDSP++ 5.0 Loader and Utilities Manual

Splitter Command-Line Switches .. 8-6

VisualDSP++ Interface (Split Page) ... 8-9

FILE FORMATS

Source Files .. A-1

C/C++ Source Files ... A-2

Assembly Source Files .. A-2

Assembly Initialization Data Files .. A-2

Header Files .. A-3

Linker Description Files .. A-4

Linker Command-Line Files .. A-4

Build Files .. A-4

Assembler Object Files .. A-5

Library Files ... A-5

Linker Output Files .. A-5

Memory Map Files .. A-6

Loader Output Files in Intel Hex-32 Format A-6

Loader Output Files in Include Format A-8

Loader Output Files in Binary Format A-10

Output Files in Motorola S-Record Format A-10

Splitter Output Files in Intel Hex-32 Format A-12

Splitter Output Files in Byte-Stacked Format A-12

Splitter Output Files in ASCII Format A-14

Debugger Files .. A-15

Format References .. A-16

VisualDSP++ 5.0 Loader and Utilities Manual xiii

Contents

UTILITIES

hexutil – Hex-32 to S-Record File Converter B-2

elf2flt – ELF to BFLT File Converter .. B-3

fltdump – BFLT File Dumper ... B-4

INDEX

Contents

xiv VisualDSP++ 5.0 Loader and Utilities Manual

VisualDSP++ 5.0 Loader and Utilities Manual xv

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
Analog Devices embedded processors.

Purpose of This Manual
The VisualDSP++ 5.0 Loader and Utilities Manual contains information
about the loader/splitter program for Analog Devices processors.

The manual describes the loader/splitter operations for these processors
and references information about related development software. It also
provides information about the loader and splitter command-line
interfaces.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware reference and programming reference manuals, that describe
their target architecture.

Contents

xvi VisualDSP++ 5.0 Loader and Utilities Manual

Manual Contents
The manual contains:

• Chapter 1, “Introduction”, provides an overview of the loader util-
ity (or loader) program as well as the process of loading and
splitting, the final phase of the application development flow.

• Chapter 2, “Loader/Splitter for
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors”,
explains how the loader/splitter utility is used to convert executable
files into boot-loadable or non-bootable files for the ADSP-BF50x,
ADSP-BF51x, ADSP-BF52x, ADSP-BF54x, and ADSP-BF59x
Blackfin processors.

• Chapter 3, “Loader/Splitter for ADSP-BF53x/BF561 Blackfin Pro-
cessors”, explains how the loader/splitter utility is used to convert
executable files into boot-loadable or non-bootable files for the
ADSP-BF53x and ADSP-BF561 Blackfin processors.

• Chapter 4, “Loader for ADSP-2106x/21160 SHARC Processors”,
explains how the loader utility is used to convert executable files
into boot-loadable files for the ADSP-21060, ADSP-21061,
ADSP-21062, ADSP-21065L, and ADSP-21160 SHARC
processors.

• Chapter 5, “Loader for ADSP-21161 SHARC Processors”, explains
how the loader utility is used to convert executable files into
boot-loadable files for the ADSP-21161 SHARC processors.

• Chapter 6, “Loader for
ADSP-2126x/2136x/2137x/2146x/2147x/2148x SHARC Proces-
sors”, explains how the loader utility is used to convert executable
files into boot-loadable files for the ADSP-2126x, ADSP- 2136x,
ADSP-2137x, ADSP-2146x, ADSP-2147x, and ADSP-2148x
SHARC processors.

VisualDSP++ 5.0 Loader and Utilities Manual xvii

Contents

• Chapter 7, “Loader for TigerSHARC Processors”, explains how the
loader utility is used to convert executable files into boot-loadable
or non-bootable files for the ADSP-TSxxx
TigerSHARC processors.

• Chapter 8, “Splitter for SHARC and TigerSHARC Processors”,
explains how the splitter utility is used to convert executable files
into non-bootable files for the ADSP-21xxx SHARC and
ADSP-TSxxx TigerSHARC processors.

• Appendix A, “File Formats”, describes source, build, and debugger
file formats.

• Appendix B, “Utilities”, describes several utility programs included
with VisualDSP++, some of which run from a command line only.

What’s New in This Manual
This revision of the VisualDSP++ 5.0 Loader and Utilities Manual docu-
ments loader and splitter functionality that is new to VisualDSP++ 5.0
and updates, including support for new SHARC and Blackfin processors.

In addition, modifications and corrections based on errata reports against
the previous revision of the manual have been made.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technical_support

• E-mail tools questions to
processor.tools.support@analog.com

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com

Contents

xviii VisualDSP++ 5.0 Loader and Utilities Manual

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD (800-262-5643)

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:
Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
Loader and utility programs of VisualDSP++ 5.0 supports the following
Analog Devices, Inc. processors.

• Blackfin® (ADSP-BFxxx)

• SHARC® (ADSP-21xxx)

• TigerSHARC® (ADSP-TSxxx)

The majority of the information in this manual applies to all processors.
For a complete list of processors supported by VisualDSP++ 5.0, refer to
the online Help.

mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

VisualDSP++ 5.0 Loader and Utilities Manual xix

Contents

Product Information
Product information can be obtained from the Analog Devices Web site,
VisualDSP++ online Help system, and a technical library CD.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals. MyAna-
log.com provides access to books, application notes, data sheets, code
examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools software documenta-

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

Contents

xx VisualDSP++ 5.0 Loader and Utilities Manual

tion. You can search easily across the entire VisualDSP++ documentation
set for any topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the VisualDSP++ installation CD.

Each documentation file type is described as follows.

Technical Library CD
The technical library CD contains seminar materials, product highlights, a
selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin, SHARC, TigerSHARC, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the
latest manual revisions and associated documentation errata.

File Description

.chm Help system files and manuals in Microsoft help format

.htm or

.html
Dinkum Abridged C++ library and FLEXnet License Tools software documenta-
tion. Viewing and printing the .html files requires a browser, such as Internet
Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/

VisualDSP++ 5.0 Loader and Utilities Manual xxi

Contents

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

Social Networking Web Sites
You can now follow Analog Devices processor development on Twitter
and LinkedIn. To access:

• Twitter: http://twitter.com/ADIsharc and
http://twitter.com/blackfin

• LinkedIn: Network with the LinkedIn group, Analog Devices
SHARC or Analog Devices Blackfin: http://www.linkedin.com

Notation Conventions
Text conventions used in this manual are identified and described as fol-
lows. Additional conventions, which apply only to specific chapters, may
appear throughout this document.

http://ez.analog.com
http://twitter.com/ADIsharc
http://twitter.com/blackfin
http://www.linkedin.com

Notation Conventions

xxii VisualDSP++ 5.0 Loader and Utilities Manual

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close com-
mand appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipse; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for the
devices users. In the online version of this book, the word Warning
appears instead of this symbol.

VisualDSP++ 5.0 Loader and Utilities Manual 1-1

1 INTRODUCTION

The majority of this manual describes the loader utility (or loader) pro-
gram as well as the process of loading and splitting, the final phase of the
application development flow.

Most of this chapter applies to all 8-, 16-, and 32-bit processors. Informa-
tion specific to a particular processor, or to a particular processor family, is
provided in the following chapter.

• Chapter 2, “Loader/Splitter for
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors”

• Chapter 3, “Loader/Splitter for ADSP-BF53x/BF561 Blackfin
Processors”

• Chapter 4, “Loader for ADSP-2106x/21160 SHARC Processors”

• Chapter 5, “Loader for ADSP-21161 SHARC Processors”

• Chapter 6, “Loader for
ADSP-2126x/2136x/2137x/2146x/2147x/2148x SHARC
Processors”

• Chapter 7, “Loader for TigerSHARC Processors”

• Chapter 8, “Splitter for SHARC and TigerSHARC Processors”

• Appendix A, “File Formats”

• Appendix B, “Utilities”

Definition of Terms

1-2 VisualDSP++ 5.0 Loader and Utilities Manual

The code examples in this manual have been compiled using
VisualDSP++ 5.0. The examples compiled with another version of
VisualDSP++ may result in build errors or different output;
although, the highlighted algorithms stand and should continue to
stand in future releases of VisualDSP++.

Definition of Terms
Loader and Loader Utility

The term loader refers to a loader utility that is part of the VisualDSP++
development tools suite. The loader utility post-processes one or multiple
executable (.dxe) files, extracts segments that have been declared by the
TYPE(RAM) command in a Linker Description File (.ldf), and generates a
loader file (.ldr). Since the .dxe file meets the Executable and Linkable
Format (ELF) standard, the loader utility is often called elfloader utility.
See also “Loader Utility Operations” on page 1-11.

Splitter Utility

The splitter utility is part of the VisualDSP++ development tools suite.
The splitter utility post-processes one or multiple executable (.dxe) files,
extracts segments that have been declared by the TYPE(R0M) command in a
Linker Description File (.ldf), and generates a file consisting of processor
instructions (opcodes). If burned into an EPROM or flash memory device
connected to the target processor’s system bus, the processor can directly
fetch and execute these instructions. See also “Splitter Utility Operations”
on page 1-12.

Splitter and loader jobs can be managed either by separate utility pro-
grams or by the same program (see “Non-bootable Files Versus
Boot-loadable Files” on page 1-10). In the latter case, the generated out-
put file may contain code instructions and boot streams.

VisualDSP++ 5.0 Loader and Utilities Manual 1-3

Introduction

Loader File

A loader file is generated by the loader utility. The file typically has the
.ldr extension and is often called an LDR file. Loader files can meet one
of multiple formats. Common formats are Intel hex-32, binary, or ASCII
representation. Regardless of the format, the loader file describes a boot
image, which is the binary version of the loader file. See also
“Non-bootable Files Versus Boot-loadable Files” on page 1-10.

Loader Command Line

If invoked from a command-line prompt, the loader and splitter utilities
accept numerous control switches to customize the loader file generation.

Loader Property Page

The loader property page is part of the Project Options dialog box of the
VisualDSP++ graphical user interface. The property page is a graphical
tool that assists in composing the loader utility’s command line.

Boot Mode

Most processors support multiple boot modes. A boot mode is determined
by special input pins that are interrogated when the processor awakes from
either a reset or power-down state. See also “Boot Modes” on page 1-13.

Boot Kernel

A boot kernel is software that runs on the target processor. It reads data
from the boot source and interprets the data as defined in the boot stream
format. The boot kernel can reside in an on-chip boot ROM or in an
off-chip ROM device. Often, the kernel has to be pre-booted from the
boot source before it can be executed. In this case, the loader utility puts a
default kernel to the front of the boot image, or, allows the user to specify
a customized kernel. See also “Boot Kernels” on page 1-15.

Definition of Terms

1-4 VisualDSP++ 5.0 Loader and Utilities Manual

Boot ROM

A boot ROM is an on-chip read-only memory that holds the boot kernel
and, in some cases, additional advanced booting routines.

Second-Stage Loader

A second-stage loader is a special boot kernel that extends the default boot-
ing mechanisms of the processor. It is typically booted by a first-stage
kernel in a standard boot mode configuration. Afterward, it executes and
boots in the final applications. See also “Boot Kernels” on page 1-15.

Boot Source

A boot source refers to the interface through which the boot data is loaded
as well as to the storage location of a boot image, such as a memory or host
device.

Boot Image

A boot image that can be seen as the binary version of a loader file. Usually,
it has to be stored into a physical memory that is accessible by either the
target processor or its host device. Often it is burned into an EPROM or
downloaded into a flash memory device using the VisualDSP++ Flash Pro-
grammer plug-in.

The boot image is organized in a special manner required by the boot ker-
nel. This format is called a boot stream. A boot image can contain one or
multiple boot streams. Sometimes the boot kernel itself is part of the boot
image.

Boot Stream

A boot stream is basically a list of boot blocks. It is the data structure that is
processed and interpreted by the boot kernel. The VisualDSP++ loader
utility generates loader files that contain one or multiple boot streams. A
boot stream often represents one application. However, a linked list of
multiple application-level boot streams is referred to as a boot stream.

VisualDSP++ 5.0 Loader and Utilities Manual 1-5

Introduction

Boot Host

A boot host is a processor or programmable logic that feeds the device con-
figured in a slave boot mode with a boot image or a boot stream.

Boot Block

Multiple boot blocks form a boot stream. These blocks consist of boot data
that is preceded by a block header. The header instructs the boot kernel
how to interpret the payload data. In some cases, the header may contain
special instructions only. In such blocks, there is likely no payload data
present.

Boot Code

Boot code refers to all boot-relevant ROM code. Boot code typically con-
sists of the pre-boot routine and the boot kernel.

Boot Strapping

If the boot process consists of multiple steps, such as pre-loading the boot
kernel or managing second-stage loaders, this is called boot strapping.

Initialization Code

Initialization code or initcode is part of a boot stream for Blackfin proces-
sors and is a special boot block. While normally all boot blocks of an
application are booted in first and control is passed to the application
afterward, the initialization code executes at boot time. It is common that
an initialization code is booted and executed before any other boot block.
This initialization code can customize the target system for optimized
boot processing.

Global Header

Some boot kernels expect a boot stream to be headed by a special informa-
tion tag. The tag is referred to as a global header.

Definition of Terms

1-6 VisualDSP++ 5.0 Loader and Utilities Manual

Callback Routine

Some processors can optionally call a user-defined routine after a boot
block has been loaded and processed. This is referred to as a callback rou-
tine. It provides hooks to implement checksum and decompression
strategies.

Slave Boot

The term slave boot spans all boot modes where the target processor func-
tions as a slave. This is typically the case when a host device loads data into
the target processor’s memories. The target processor can wait passively in
idle mode or support the host-controlled data transfers actively. Note that
the term host boot usually refers only to boot modes that are based on
so-called host port interfaces.

Master Boot

The term master boot spans all boot modes where the target processor
functions as master. This is typically the case when the target processor
reads the boot data from parallel or serial memories.

Boot Manager

A boot manager is firmware that decides which application is to be booted.
An application is usually represented by a VisualDSP++ project and stored
in a .dxe file. The boot manger itself can be managed within an applica-
tion .dxe file, or have its own separate .dxe file. Often, the boot manager
is executed by initialization code.

In slave boot scenarios, boot management is up to the host device and
does not require special VisualDSP++ support.

Multi-.dxe Boot

A loader file can contain data of multiple application (.dxe) files if the
loader utility was invoked by specifying multiple .dxe files. Either a boot
manager decides which application is to be booted exclusively or, alterna-

VisualDSP++ 5.0 Loader and Utilities Manual 1-7

Introduction

tively, one application can terminate and initiate the next application to
be booted. In some cases, a single application can also consist of multiple
.dxe files.

Next .dxe File Pointer

If a loader file contains multiple applications, some boot stream formats
enable them to be organized as a linked list. The next .dxe pointer (NDP)
is simply a pointer to a location where the next application’s boot stream
resides.

Preboot Routine

A preboot routine is present in the boot ROM of parts that feature OTP
memory on a processor. Preboot reads OTP memory and customizes sev-
eral MMR registers based on factory and user instructions, as programmed
to OTP memory. A preboot routine executes prior to the boot kernel.

Program Development Flow
Figure 1-1 is a simplified view of the application development flow.

Figure 1-1. Program Development Flow

SOURCE
FILES

ASSEMBLER
AND/OR

COMPILER

.ASM, .C, .CPP

PROCESSOR

LOADER
AND/OR

SPLITTER

EXTERNAL
MEMORY

BOOTING
UPON
RESET

TARGET SYSTEM

.DOJ .DXE

.LDR

LINKER

Program Development Flow

1-8 VisualDSP++ 5.0 Loader and Utilities Manual

The development flow can be split into three phases:

1. “Compiling and Assembling”

2. “Linking”

3. “Loading, Splitting, or Both”

A brief description of each phase follows.

Compiling and Assembling
Input source files are compiled and assembled to yield object files. Source
files are text files containing C/C++ code, compiler directives, possibly a
mixture of assembly code and directives, and, typically, preprocessor com-
mands. The assembler and compiler are documented in the
VisualDSP++ 5.0 Assembler and Preprocessor Manual and
VisualDSP++ 5.0 C/C++ Compiler and Library Manual, which are part of
the online help.

Linking
Under the direction of the linker description file (LDF) and linker set-
tings, the linker consumes separately-assembled object and library files to
yield an executable file. If specified, the linker also produces the shared
memory files and overlay files. The linker output (.dxe files) conforms to
the ELF standard, an industry-standard format for executable files. The
linker also produces map files and other embedded information
(DWARF-2) used by the debugger.

These executable files are not readable by the processor hardware directly.
They are neither supposed to be burned onto an EPROM or flash memory
device. Executable files are intended for VisualDSP++ debugging targets,
such as the simulator or emulator. Refer to the VisualDSP++ 5.0 Linker
and Utilities Manual and online Help for information about linking and
debugging.

VisualDSP++ 5.0 Loader and Utilities Manual 1-9

Introduction

Loading, Splitting, or Both
Upon completing the debug cycle, the processor hardware needs to run on
its own, without any debugging tools connected. After power-up, the
processor’s on-chip and off-chip memories need to be initialized. The pro-
cess of initializing memories is often referred to as booting. Therefore, the
linker output must be transformed to a format readable by the processor.
This process is handled by the loader and/or splitter utility. The
loader/splitter utility uses the debugged and tested executable files as well
as shared memory and overlay files as inputs to yield a processor-loadable
file.

VisualDSP++ 5.0 includes these loader and splitter utilities:

• elfloader.exe (loader utility) for Blackfin, TigerSHARC, and
SHARC processors. The loader utility for Blackfin processors also
acts as a ROM splitter utility when evoked with the corresponding
switches.

• elfspl21k.exe (ROM splitter utility) for TigerSHARC and
SHARC processors.

The loader/splitter output is either a boot-loadable or non-bootable file.
The output is meant to be loaded onto the target. There are several ways
to use the output:

• Download the loadable file into the processor’s PROM space on an
EZ-KIT Lite® board via the Flash Programmer plug-in. Refer to
VisualDSP++ Help for information on the Flash Programmer.

• Use VisualDSP++ to simulate booting in a simulator session (cur-
rently supported on the ADSP-21060, ADSP-21061,
ADSP-21065L, ADSP-21160, and ADSP-21161 processors). Load
the loader file and then reset the processor to debug the booting
routines. No hardware is required: just point to the location of the

Program Development Flow

1-10 VisualDSP++ 5.0 Loader and Utilities Manual

loader file, letting the simulator to do the rest. You can step
through the boot kernel code as it brings the rest of the code into
memory.

• Store the loader file in an array for a multiprocessor system. A mas-
ter (host) processor has the array in its memory, allowing a full
control to reset and load the file into the memory of a slave
processor.

Non-bootable Files Versus Boot-loadable Files
A non-bootable file executes from an external memory of the processor,
while a boot-loadable file is transported into and executes from an internal
memory of the processor. The boot-loadable file is then programmed into
an external memory device (burned into EPROM) within your target sys-
tem. The loader utility outputs loadable files in formats readable by most
EPROM burners, such as Intel hex-32 and Motorola S formats. For
advanced usage, other file formats and boot modes are supported. (See
“File Formats” on page A-1.)

A non-bootable EPROM image file executes from an external memory of
the processor, bypassing the built-in boot mechanisms. Preparing a
non-bootable EPROM image is called splitting. In most cases (except for
Blackfin processors), developers working with floating- and fixed-point
processors use the splitter instead of the loader utility to produce a
non-bootable memory image file.

VisualDSP++ 5.0 Loader and Utilities Manual 1-11

Introduction

A booting sequence of the processor and application program design dic-
tate the way loader/splitter utility is called to consume and transform
executable files:

• For Blackfin processors, loader and splitter operations are handled
by the loader utility program, elfloader.exe. The splitter is
invoked by a different set of command-line switches than the
loader.

In VisualDSP++ 5.0, with the addition of the -readall switch, the
loader utility for the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin processors can call the splitter program automatically. For
more information, see -readall #.

• For TigerSHARC and SHARC processors, splitter operations are
handled by the splitter program, elfspl21k.exe.

Loader Utility Operations

Common tasks performed by the loader utility can include:

• Processing the loader option settings or command-line switches.

• Formatting the output .ldr file according to user specifications.
Supported formats are binary, ASCII, Intel hex-32, and more.
Valid file formats are described in “File Formats” on page A-1.

• Packing the code for a particular data format: 8-, 16- or 32-bit for
some processors.

• Adding the code and data from a specified initialization executable
file to the loader file, if applicable.

• Adding a boot kernel on top of the user code.

Program Development Flow

1-12 VisualDSP++ 5.0 Loader and Utilities Manual

• If specified, preprogramming the location of the .ldr file in a
specified PROM space.

• Specifying processor IDs for multiple input .dxe files for a
multiprocessor system, if applicable.

You can run the loader utility from the VisualDSP++ Integrated Develop-
ment and Development Environment (IDDE), when the IDDE is
available, or from the command line. In order to do so in the IDDE, open
the Project Options dialog box from the Project menu, and change the
project’s target type from Executable file to Loader File.

Loader utility operations depend on the loader options, which control
how the loader utility processes executable files into boot-loadable files,
letting you select features such as kernels, boot modes, and output file for-
mats. These options are set on the Load pages of the Project Options
dialog box in the IDDE or on the loader command line. Option settings
on the Load pages correspond to switches typed on the elfloader.exe
command line.

Splitter Utility Operations

Splitter utility operations depend on the splitter options, which control
how the splitter utility processes executable files into non-bootable files:

• For Blackfin processor, the loader utility includes the ROM splitter
capabilities invoked through the Project Options dialog box. Refer
to “Using VisualDSP++ ROM Splitter” on page 3-76. Option set-
tings in the dialog box correspond to switches typed on the
elfloader.exe command line.

• For SHARC and TigerSHARC processors, change the project’s tar-
get type to Splitter file. The splitter options are set via the Project:
Split page of the Project Options dialog box. Refer to “Splitter for

VisualDSP++ 5.0 Loader and Utilities Manual 1-13

Introduction

SHARC and TigerSHARC Processors” on page 8-1. Option set-
tings in the dialog box correspond to switches typed on the
elfspl21k.exe command line.

Boot Modes
Once an executable file is fully debugged, the loader utility is ready to
convert the executable file into a processor-loadable (boot-loadable) file.
The loadable file can be automatically downloaded (booted) to the proces-
sor after power-up or after a software reset. The way the loader utility
creates a boot-loadable file depends upon how the loadable file is booted
into the processor.

The boot mode of the processor is determined by sampling one or more of
the input flag pins. Booting sequences, highly processor-specific, are
detailed in the following chapters.

Analog Devices processors support different boot mechanisms. In general,
the following schemes can be used to provide program instructions to the
processors after reset.

• “No-Boot Mode”

• “PROM Boot Mode”

• “Host Boot Mode”

No-Boot Mode
After reset, the processor starts fetching and executing instructions from
EPROM/flash memory devices directly. This scheme does not require any
loader mechanism. It is up to the user program to initialize volatile
memories.

Boot Modes

1-14 VisualDSP++ 5.0 Loader and Utilities Manual

The splitter utility generates a file that can be burned into the PROM
memory.

PROM Boot Mode
After reset, the processor starts reading data from a parallel or serial
PROM device. The PROM stores a formatted boot stream rather than raw
instruction code. Beside application data, the boot stream contains addi-
tional data, such as destination addresses and word counts. A small
program called a boot kernel (described on page 1-15) parses the boot
stream and initializes memories accordingly. The boot kernel runs on the
target processor. Depending on the architecture, the boot kernel may exe-
cute from on-chip boot RAM or may be preloaded from the PROM
device into on-chip SRAM and execute from there.

The loader utility generates the boot stream from the linker output (an
executable file) and stores it to file format that can be burned into the
PROM.

Host Boot Mode
In this scheme, the target processor is a slave to a host system. After reset,
the processor delays program execution until the slave gets signalled by the
host system that the boot process has completed. Depending on hardware
capabilities, there are two different methods of host booting. In the first
case, the host system has full control over all target memories. The host
halts the target while initializing all memories as required. In the second
case, the host communicates by a certain handshake with the boot kernel
running on the target processor. This kernel may execute from on-chip
ROM or may be preloaded by the host devices into the processor’s SRAM
by any bootstrapping scheme.

The loader/splitter utility generates a file that can be consumed by the
host device. It depends on the intelligence of the host device and on the

VisualDSP++ 5.0 Loader and Utilities Manual 1-15

Introduction

target architecture whether the host expects raw application data or a for-
matted boot stream.

In this context, a boot-loadable file differs from a non-bootable file in that
it stores instruction code in a formatted manner in order to be processed
by a boot kernel. A non-bootable file stores raw instruction code.

Boot Kernels
A boot kernel refers to the resident program in the boot ROM space
responsible for booting the processor. Alternatively (or in absence of the
boot ROM), the boot kernel can be preloaded from the boot source by a
bootstrapping scheme.

When a reset signal is sent to the processor, the processor starts booting
from a PROM, host device, or through a communication port. For exam-
ple, an ADSP-2106x/2116x processor, brings a 256-word program into
internal memory for execution. This small program is a boot kernel.

The boot kernel then brings the rest of the application code into the pro-
cessor’s memory. Finally, the boot kernel overwrites itself with the final
block of application code and jumps to the beginning of the application
program.

Some of the newer Blackfin processors do not require to load a boot ker-
nel—a kernel is already present in the on-chip boot ROM. It allows the
entire application program’s body to be booted into the internal and
external memories of the processor. The boot kernel in the on-chip ROM
behaves similar to the second-stage loader of the ADSP-BF535 processors.
The boot ROM has the capability to parse address and count information
for each bootable block.

Boot Streams

1-16 VisualDSP++ 5.0 Loader and Utilities Manual

Boot Streams
The loader utility’s output (.ldr file) is essentially the same executable
code as in the input .dxe file; the loader utility simply repackages the exe-
cutable as shown in Figure 1-2.

Processor code and data in a loader file (also called a boot stream) is split
into blocks. Each code block is marked with a tag that contains informa-
tion about the block, such as the number of words and destination in the
processor’s memory. Depending on the processor family, there can be
additional information in the tag. Common block types are “zero” (mem-
ory is filled with 0s); nonzero (code or data); and final (code or data).
Depending on the processor family, there can be other block types.

Refer to the following chapters to learn more about boot streams.

Figure 1-2. A .dxe File Versus an .ldr File

.LDR FILE

CODE

DATA

SYMBOLS

DEBUG
INFORMATION

.DXE FILE

CODE

DATA

SYMBOLS

DEBUG
INFORMATION

A .DXE FILE INCLUDES:
- DSP INSTRUCTIONS (CODE AND DATA)
- SYMBOL TABLE AND SECTION INFORMATION
- TARGET PROCESSOR MEMORY LAYOUT
- DEBUG INFORMATION

AN .LDR FILE INCLUDES:
- DSP INSTRUCTIONS (CODE AND DATA)
- RUDIMENTARY FORMATTING

(ALL DEBUG INFORMATION HAS
BEEN REMOVED)

VisualDSP++ 5.0 Loader and Utilities Manual 1-17

Introduction

File Searches
File searches are important in the loader utility operation. The loader util-
ity supports relative and absolute directory names and default directories.
File searches occur as follows.

• Specified path—If relative or absolute path information is included
in a file name, the loader utility searches only in that location for
the file.

• Default directory—If path information is not included in the file
name, the loader utility searches for the file in the current working
directory.

• Overlay and shared memory files—The loader utility recognizes
overlay and shared memory files but does not expect these files on
the command line. Place the files in the directory that contains the
executable file that refers to them, or place them in the current
working directory. The loader utility can locate them when pro-
cessing the executable file.

When providing an input or output file name as a loader/splitter com-
mand-line parameter, use these guidelines:

• Enclose long file names within straight quotes, “long file name”.

• Append the appropriate file extension to each file.

File Searches

1-18 VisualDSP++ 5.0 Loader and Utilities Manual

VisualDSP++ 5.0 Loader and Utilities Manual 2-1

2 LOADER/SPLITTER FOR
ADSP-BF50X/BF51X/BF52X/
BF54X/BF59X BLACKFIN
PROCESSORS

This chapter explains how the loader/splitter utility (elfloader.exe) is
used to convert executable (.dxe) files into boot-loadable or non-bootable
files for the ADSP-BF50x, ADSP-BF51x, ADSP-BF52x, ADSP-BF54x,
and ADSP-BF59x Blackfin processors.

Refer to “Introduction” on page 1-1 for the loader utility overview.
Loader operations specific to the ADSP-BF50x/BF51x/BF52x/BF54x and
ADSP-BF59x Blackfin processors are detailed in the following sections.

• “ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting”
on page 2-2
Provides general information on various boot modes, including
information on second-stage kernels.

• “ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader
Guide” on page 2-7
Provides reference information on the loader utility’s com-
mand-line syntax and switches.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

2-2 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Processor Booting

Refer to the processor’s data sheet and hardware reference manual for
detailed information on system configuration, peripherals, registers, and
operating modes.

• Blackfin processor data sheets can be found at:
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/data-sheets/resources/index.html.

• Blackfin processor manuals can be found at:
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/manuals/resources/index.html.

Table 2-1 lists the part numbers that currently comprise the
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x families of Blackfin proces-
sors. Future releases of VisualDSP++ may support additional processors.

Upon reset, an ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processor
starts fetching and executing instructions from the on-chip boot ROM at

Table 2-1. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Part Numbers

Processor Family Part Numbers

ADSP-BF504 ADSP-BF504, ADSP-BF504F, ADSP-BF506F

ADSP-BF518 ADSP-BF512, ADSP-BF514, ADSP-BF516, ADSP-BF518

ADSP-BF526 ADSP-BF522, ADSP-BF524, ADSP-BF526

ADSP-BF527 ADSP-BF523, ADSP-BF525, ADSP-BF527

ADSP-BF548 ADSP-BF542, ADSP-BF544, ADSP-BF547, ADSP-BF548, ADSP-BF549

ADSP-BF548M ADSP-BF542M, ADSP-BF544M, ADSP-BF547M, ADSP-BF548M,
ADSP-BF549M

ADSP-BF592 ADSP-BF592-A

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html

VisualDSP++ 5.0 Loader and Utilities Manual 2-3

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

address 0xEF00 0000. The boot ROM is an on-chip read-only memory
that holds a boot kernel program to load data from an external memory or
host device. The boot ROM details can be found in the corresponding
hardware reference manual.

There are other boot modes available, including idle (no-boot) mode. The
processor transitions into the boot mode sequence configured by the
BMODE pins; see Table 2-2 through Table 2-5. The BMODE pins are dedi-
cated mode-control pins; that is, no other functions are performed by the
pins. The pins can be read through bits in the system configuration regis-
ter (SYSCR).

Table 2-2. ADSP-BF50x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

Stacked parallel flash memory in async mode 0011

1 ADSP-BF504 processors do not support BMODE 001 or 010 because they have no internal
flash.

0x2000 0000

Stacked parallel flash memory in sync burst mode 0101 0x2000 0000

SPI0 master from SPI memory 011 0x0000 0000

SPI0 slave from host device 100 N/A

16-bit PPI host 101 N/A

Reserved 110 N/A

UART0 slave from UART host 111 N/A

Table 2-3. ADSP-BF51x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

Eight- or 16-bit external flash memory (default mode) 001 0x2000 0000

Internal SPI memory 010 0x2030 0000

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

2-4 VisualDSP++ 5.0 Loader and Utilities Manual

External SPI memory (EEPROM or flash) 011 0x0000 0000

SPI0 host device 100 N/A

One-time programmable (OTP) memory 101 N/A

SDRAM memory 110 N/A

UART0 host 111 N/A

Table 2-4. ADSP-BF52x/BF54x Boot Modes

Boot Source BMODE[3:0] Start Address

Idle (no-boot) 0000 N/A

Eight- or 16-bit external flash memory (default mode) 0001 0x2000 0000

16-bit asynchronous FIFO 0010 0x2030 0000

Eight-, 16-, 24-, or 32-bit addressable SPI memory 0011 0x0000 0000

External SPI host device 0100 N/A

Serial TWI memory 0101 0x0000 0000

TWI host 0110 N/A

UART0 host on ADSP-BF52x processors;
UART1 host on ADSP-BF54x processors

0111 N/A

UART1 host on ADSP-BF52x processors;
Reserved on ADSP-BF54x processors

1000 N/A

Reserved 1001 N/A

SDRAM/DDR 1010 0x0000 0010

OTP memory 1011 default page
0x40

Eight- or 16-bit NAND flash memory 1100, 1101 0x0000 0000

16-bit host DMA 1110 N/A

Eight-bit host DMA 1111 N/A

Table 2-3. ADSP-BF51x Boot Modes (Cont’d)

Boot Source BMODE[2:0] Start Address

VisualDSP++ 5.0 Loader and Utilities Manual 2-5

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

In general, there are two categories of boot modes: master and slave. In
master boot modes, the processor actively loads data from parallel or serial
memory devices. In slave boot modes, the processor receives data from par-
allel or serial memory devices.

The Blackfin loader utility generates .ldr files that meet the requirements
of the target boot mode; for example:

• HOSTDP (-b HOSTDP)
When building for the HOSTDP boot, the loader utility aligns
blocks with payload to the appropriate FIFO depth for the target
processor.

Note that HOSTDP differs from other boot modes in the default
setting for -NoFillBlock. The HOSTDP boot mode directs the
loader not to produce fill (zero) blocks by default. To enable fill
blocks for HOSTDP builds, add -FillBlock to the
Additional options box on the Load page of the Project Options

Table 2-5. ADSP-BF59x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

Reserved 001 N/A

External serial SPI memory using SPI1 010 N/A

SPI host device using SPI1 011 N/A

External serial SPI memory using SPI0 100 N/A

PPI host 101 N/A

UART host 110 N/A

Internal L1 ROM 111 0x2000 0000

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

2-6 VisualDSP++ 5.0 Loader and Utilities Manual

dialog box in the VisualDSP++ environment (the loader property
page). See “Using VisualDSP++ Loader” on page 2-22 for informa-
tion on the loader property page.

• NAND (-b NAND)
When building for the NAND boot, the loader utility appends 256
bytes to the boot NAND loader stream, a requirement for the boot
kernel for the prefetch mechanism. While fetching one 256 byte
block of data, it prefetches the next 256 byte block of data. The
padding ensures that the final block of the loader stream is pro-
grammed, and the error correction parity data is written.

• OTP (-b OTP)
When building for the OTP boot, no width selection is used.
OTP is always a 32-bit internal transfer. Use Intel hex-32 format
for the OTP boot mode and provide the offset to the start address
for the OTP page.

The OTP flash programmer requires the offset to the start address
for the OTP page when Intel hex loader format is selected. If using
VisualDSP++ IDDE, on the Load page do the following:

• Ensure Intel hex boot format is selected for the OTP boot
mode

• Uncheck the Use default start address option. Enter the
page number multiplied by 16 in the Start address field. For
example, if you are building for OTP boot and writing
to page 0x40L, specify start address 0x400. See “Using Visu-
alDSP++ Loader” on page 2-22 for information on the
loader property page.

On the loader command-line, the above example corresponds to
-b otp -f hex -p 0x400.

VisualDSP++ 5.0 Loader and Utilities Manual 2-7

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Processor Loader Guide

The loader utility post processes VisualDSP++ executable (.dxe) files and
generates loader (.ldr) files. A loader file can be formatted as binary,
ASCII or Intel hex style. An .ldr file contains the boot stream in a format
expected by the on-chip boot kernel.

Loader utility operations depend on the loader options, which control
how the utility processes executable files. You select features such as boot
modes, boot kernels, and output file formats via the options. The options
are specified on the loader utility’s command line or via the Load page of
the Project Options dialog box in the VisualDSP++ environment. The
Load page consists of multiple panes. When you open the Load page, the
default loader settings for the selected processor are set already.

Option settings on the Load page correspond to switches displayed
on the command line.

These sections describe how to produce a bootable (single and multiple)
or non-bootable loader file:

• “Using Blackfin Loader Command Line” on page 2-8

• “Using VisualDSP++ Loader” on page 2-22

• “Using VisualDSP++ Second-Stage Loader” on page 2-24

• “Using VisualDSP++ ROM Splitter” on page 2-26

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-8 VisualDSP++ 5.0 Loader and Utilities Manual

Using Blackfin Loader Command Line
The ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin loader utility
uses the following command-line syntax.

For a single input file:

elfloader inputfile -proc processor [-switch …]

For multiple input files:

elfloader inputfile1 inputfile2 … -proc processor [-switch …]

where:

• inputfile—Name of the executable (.dxe) file to be processed
into a single boot-loadable or non-bootable file. An input file name
can include the drive and directory. For multiprocessor or
multi-input systems, specify multiple input .dxe files. Put the
input file names in the order in which you want the loader utility
to process the files. Enclose long file names within straight quotes,
“long file name”.

• -proc processor—Part number of the processor (for example,
-proc ADSP-BF542) for which the loadable file is built. Provide a
processor part number for every input .dxe if designing multipro-
cessor systems; see Table 2-1.

• -switch …—One or more optional switches to process. Switches
select operations and modes for the loader utility.

Command-line switches may be placed on the command line in
any order, except the order of input files for a multi-input system.
For a multi-input system, the loader utility processes the input files
in the order presented on the command line.

VisualDSP++ 5.0 Loader and Utilities Manual 2-9

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-17.

File Extensions

Some loader switches take a file name as an optional parameter. Table 2-6
lists the expected file types, names, and extensions.

In some cases, the loader utility expects the overlay input files with the
.ovl file extension, shared memory input files with the .sm extension, or
both but does not expect those files to appear on a command line or on
the Load property page. The loader utility finds these files in the directory
of the associated .dxe files, in the current working directory, or in the
directory specified in the .ldf file.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Loader Com-
mand-Line Switches

A summary of the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin
loader command-line switches appears in Table 2-7. For a quick on-line
help on the switches available for a specific processor; for example an

Table 2-6. File Extensions

Extension File Description

.dxe Loader input files, boot kernel files, and initialization files

.ldr Loader output file

.knl Loader output files containing kernel code only when two output files are selected

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-10 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF548 processor, use the following command line.
elfloader -proc ADSP-BF548 -help

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary

Switch Description

-b flash
-b prom
-b spimaster
-b spislave
-b TWImaster
-b TWIslave
-b UART
-b FIFO
-b OTP
-b NAND
-b PPI
-b HOSTDP

The -b switch directs the loader utility to prepare a boot-load-
able file for the specified boot mode. The default boot mode for
all processors described in this chapter is PROM/FLASH.

Other valid boot modes include:
• SPI (SPImaster) – for the ADSP-BF50x,

BF51x/52x/54x/54xM, and ADSP-BF59x processors
• SPIslave – for the ADSP-BF50x, BF51x/52x/54x/54xM, and

ADSP-BF59x processors
• UART – for the ADSP-BF50x, BF51x/52x/54x/54xM, and

ADSP-BF59x processors
• TWI (TWI Master) – for the ADSP-BF52x/54x/54xM

processors
• TWISlave – for the ADSP-BF52x/54x/54xM processors
• FIFO – for the ADSP-BF52x/54x/54xM processors
• OTP – for the ADSP-BF51x/52x/54x/54xM processors
• NAND – for the ADSP-BF52x/54x/54xM processors
• PPI – for the ADSP-BF50x and BF59x processors
• HOSTDP – for the ADSP-BF52x, BF544/7/8/9, and

BF544M/547M/548M/549M processors

See additional information on page 2-5 on the HOSTDP,
NAND, and OTP boot modes.

-CRC32 [polynomial] The -CRC32 (polynomial coefficient) switch directs the loader
utility to generate CRC32 checksum. Use a polynomial coeffi-
cient if specified; otherwise, use default 0xD8018001.
This switch inserts an initcode boot block that calls an initial-
ization routine residing in the on-chip boot ROM. The argu-
ment field of the boot block provides the used polynomial. The
loader utility calculates the CRC checksum for all subsequent
data blocks and stores the result in the block header’s argument
field.

VisualDSP++ 5.0 Loader and Utilities Manual 2-11

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

-callback sym=symbol
[arg=const32]

The -callback switch takes a sym=symbol (no spaces) assign-
ment.
The switch directs the loader utility to isolate the named sub-
routine into a separate block, set the block header’s
BFLAG_CALLBACK flag, and fill in the block header’s argument
field with the specified constant 32-bit values. The switch is
used for boot-time callbacks.
The callback is guaranteed to be made prior to the target
address of sym=symbol.

The -callback cannot be used with -CRC32.

-dmawidth # The -dmawidth {8|16|32}switch specifies a DMA width (in
bits) for memory boot modes. It controls the DMACODE bit field
issued to the boot block headers by the -width switch.
For FIFO boot mode, 16 is the only DMA width. SPI, TWI,
and UART modes use 8-bit DMA.

-f hex
-f ASCII
-f binary
-f include

The -f {hex|ASCII|binary|include} switch specifies the
format of a boot-loadable file: Intel hex-32, ASCII, binary, or
include. If the -f switch does not appear on the command line,
the default file format is hex for flash/PROM boot modes; and
ASCII for other boot modes.

-FillBlock FILL blocks are enabled by default for all boot modes, except
-b HOSTDP.

-h or -help The -help switch invokes the command-line help, outputs a
list of command-line switches to standard output, and exits. By
default, the -h switch alone provides help for the loader driver.
To obtain a help screen for your target Blackfin processor, add
the -proc switch to the command line. For example, type
elfloader -proc ADSP-BF542 -h to obtain help for the
ADSP-BF542 processor.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-12 VisualDSP++ 5.0 Loader and Utilities Manual

-init filename.dxe The -init filename.dxe switch directs the loader utility to
include the initialization code from the named executable file.
The loader utility places the code and data from the initializa-
tion sections at the top of the boot stream. The boot kernel
loads the code and then calls it. It is the code’s responsibility to
save/restore state/registers and then perform an RTS back to the
kernel. Initcodes can be written in C language and are compli-
ant to C calling conventions.
The -init filename.dxe switch can be used multiple times to
specify the same file or different files a number of times. The
loader utility will place the code from the initialization files in
the order the files appear on the command line.
 For more information, see
“ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE
Loader Files” on page -20.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 2-13

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

-initcall sym=sym_symbol
at=at_symbol
[stride=DstAddrGap
count=times]

While the -init filename.dxe switch integrates initialization
codes managed by a separate application program, the -init-
call switch controls calls to initialization subroutines that are
part of the same application.
The -initcall switch directs the loader utility to dispatch a
boot-time initialization call to the sym subroutine when the at
symbol is encountered and loaded. The stride and count
parameters are optional:
• If an optional stride= constant 32-bit value is specified, the

loader utility insets the target program call every stride=
target address locations.

• If an optional count= constant 32-bit value is specified, the
loader utility insets the target program call count= times,
every stride= target address locations apart. A count value
without a stride value is an error.

For example, the following command line
-initcall sym=_initcode at=_othersymbol

stride=0x100 count=5
results in function _initcode being called five times the first
time, just prior to data in _othersymbol being booted. There-
after, every 256 destination load addresses _initcode is called
again until a total of five calls have been made.

-initcall restrictions:
• -initcall target (sym_symbol) must be a routine entry

point, end with an RTS. It can be written in C language and
can rely on the presence of a stack. However, the routine
must not call any libraries, not rely on compiler run-time
environment (such as heaps) – must be self-contained

• -initcall subroutine must be previously loaded and still in
memory

• -initcall subroutine cannot contain any forward references
to code not yet loaded

• sym_symbol address must be less than at_symbol address
For more information, see
“ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE
Loader Files” on page -20.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-14 VisualDSP++ 5.0 Loader and Utilities Manual

-kb flash
-kb prom
-kb spimaster
-kb spislave
-kb UART
-kb TWImaster
-kb TWIslave
-kb FIFO
-kb nand
-kb PPI

The -kb switch specifies the boot mode for the initialization
code and/or boot kernel output file if two output loader files are
selected.

The -kb switch must be used in conjunction with the -o2
switch.

If the -kb switch is absent from the command line, the loader
utility generates the file for the init and/or boot kernel code in
the same boot mode as used to output the user application pro-
gram.

Other valid boot modes include:
• PROM/FLASH – the default boot mode for all processors

described in this chapter
• SPI (SPImaster) – for the ADSP-BF50x,

BF51x/52x/54x/54xM, and ADSP-BF59x processors
• SPIslave – for the ADSP-BF50x, BF51x/52x/54x/54xM, and

ADSP-BF59x processors
• UART – for the ADSP-BF50x, BF51x/52x/54x/54xM, and

ADSP-BF59x processors
• TWI (TWI Master) – for the ADSP-BF52x/54x/54xM

processors
• TWISlave – for the ADSP-BF52x/54x/54xM processors
• FIFO – for the ADSP-BF52x/54x/54xM processors
• NAND – for the ADSP-BF52x/54x/54xM processors
• PPI – for the ADSP-BF50x and BF59x processors

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 2-15

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

-kf hex
-kf ascii
-kf binary
-kf include

The -kf {hex|ascii|binary|include} switch specifies the
output file format (hex, ASCII, binary, include) for the initial-
ization and/or boot kernel code if two output files from the
loader utility are selected: one file for the init code and/or boot
kernel and one file for user application code.

The -kf switch must be used in conjunction with the -o2
switch.

If -kf is absent from the command line, the loader utility gen-
erates the file for the initialization and /or boot kernel code in
the same format as for the user application code.

-kp # The -kp # switch specifies a hex flash/PROM start address for
the initialization and/or boot kernel code. A valid value is
between 0x0 and 0xFFFFFFFF. The specified value is ignored
when neither kernel nor initialization code is included in the
loader file.

-kwidth # The -kwidth {8|16|32} switch specifies an external memory
device width (in bits) for the initialization code and/or the boot
kernel if two output files from the loader utility are selected.
If -kwidth is absent from the command line, the loader utility
generates the boot kernel file in the same width as the user
application program.

The -kWidth # switch must be used in conjunction with the
-o2 switch.

-l userkernel.dxe The -l userkernel.dxe switch specifies the user boot kernel
file.

There is no default kernel for the
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processors.

-M The -M switch generates make dependencies only, no output file
is generated.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-16 VisualDSP++ 5.0 Loader and Utilities Manual

-maskaddr # The -maskaddr # switch masks all EPROM address bits above
or equal to #. For example, -maskaddr 29 (default) masks all
the bits above and including A29 (ANDed by 0x1FFF FFFF). For
example, 0x2000 0000 becomes 0x0000 0000. The valid #s
are integers 0 through 32, but based on your specific input file,
the value can be within a subset of [0, 32].

The -maskaddr # switch requires -romsplitter and affects
the ROM section address only.

-MaxBlockSize # The -MaxBlockSize # switch specifies the maximum block size
up to 0x7FFFFFF0. The value must be a multiple of 4.
The default maximum block size is 0xFFF0 or the value speci-
fied by the -MaxBlockSize switch.

-MaxFillBlockSize # The -MaxFillBlockSize # switch specifies the maximum fill
block size up to 0xFFFFFF0. The value must be a multiple of
two. The default fill block size is 0xFFF0.

-MM The -MM switch generates make dependencies while producing
the output files.

-Mo filename The -Mo filename switch writes make dependencies to the
named file. Use the -Mo switch with either -M or -MM. If -Mo is
absent, the default is a <stdout> display.

-Mt target The -Mt target switch specifies the make dependencies target
output file. Use the -Mt switch with either -M or -MM. If -Mt is
not present, the default is the name of the input file with an
.ldr extension.

-NoFillBlock The -NoFillBlock switch directs the loader utility not to pro-
duce FILL blocks, zero, or repeated blocks.
The -NoFillBlock switch is set automatically in the HOSTDP
(-b HOSTDP) boot mode.

-NoInitCode The -NoInitCode switch directs the loader utility not to expect
an init code file. The loader utility may expect an init code file,
specified through the -init filename.dxe switch if the appli-
cation has an external memory section. The init code file should
contain the code to initialize registers for external memory ini-
tialization.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 2-17

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

-o filename The -o filename switch directs the loader utility to use the
specified file as the name of the loader utility’s output file. If the
filename is absent, the default name is the root name of the
input file with an .ldr extension.

-o2 The -o2 switch directs the loader utility to produce two output
files: one file for code from the initialization block and/or boot
kernel and one file for user application code.
To have a different format, boot mode, or output width for the
application code output file, use the -kb -kf -kwidth
switches to specify the boot mode, the boot format, and the
boot width for the output kernel file, respectively.

Combine -o2 with -l filename and/or -init filename.dxe.

-p # The -p # switch specifies a hex flash/PROM output start
address for the application code. A valid value is between 0x0
and 0xFFFFFFFF. A specified value must be greater than that
specified by -kp if both kernel and/or initialization and applica-
tion code are in the same output file (a single output file).

For boot mode -b OTP and -f hex format, use -p to supply
the offset to the start address for the OTP page (page # multi-
plied by 16).

-proc processor The -proc processor switch specifies the target processor.
The processor can be one of the processors listed in
Table 2-1.

-quickboot sec=section The -quickboot switch takes a sec=section (no spaces)
assignment.
The switch directs the loader utility to mark blocks within the
LDF-defined output section name with the BFLAG_QUICKBOOT
flag. The switch is used to mark blocks to skip on warm-boot
cycles.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-18 VisualDSP++ 5.0 Loader and Utilities Manual

-readall # The -readall # switch directs the loader utility to integrate
fixed-position ROM sections within the loader boot stream.
The switch calls the splitter utility as a transparent sub-process
to the loader utility. Memory segments declared with the
TYPE(ROM) command in the LDF file are processed by the split-
ter. Segments with the TYPE(RAM) command emit to the boot
stream.
The valid switch argument is an integer between 0 and 32,
where 29 is the default. In the resulting loader (.ldr) file in
Intel hex-32 format, the ROM-based splitter data is merged
with the RAM-based loader stream.
The # argument is similar to the -maskaddr # switch, which
designates the upper PROM address bit position for extended
address mapping. The splitter utility is required to provide the
-maskaddr # parameter to the loader utility to generate a
ROM-based splitter stream, but the required splitter parameter
is not available on the loader command line. The loader utility
solves this requirement by supporting the -readall # switch.

-romsplitter The -romsplitter switch creates a non-bootable image only.
This switch overwrites the -b switch and any other switch
bounded by the boot mode.
In the .ldf file, declare memory segments to be ‘split’ as type
ROM. The splitter skips RAM segments, resulting in an empty file
if all segments are declared as RAM. The -romsplitter switch
supports Intel hex and ASCII formats.

-save [sec=section] The -save switch takes a sec=section (no spaces) assignment.
The switch directs the loader utility to mark blocks within the
LDF-defined section name with the BFLAG_SAVE flag. The
switch is used to mark blocks to archive for low-power or
power-fail cycles.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 2-19

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

-si-revision #.#|none|any The -si-revision {#.#|none|any} switch provides a silicon
revision of the specified processor. The switch parameter repre-
sents a silicon revision of the processor specified by the -proc
processor switch. The parameter takes one of three forms:
• The #.# value indicates one or more decimal digits, followed

by a point, followed by one or two decimal digits. Examples
of revisions are: 0.0, 0.1, 0.2, 0.3.

• The none value indicates that the VisualDSP++ ignores sili-
con errata.

• The any value indicates that VisualDSP++ produces an out-
put file that can be run at any silicon revision.

The switch generates either a warning about any potential
anomalous conditions or an error if any anomalous conditions
occur.

In the absence of the silicon revision switch, the loader utility
selects the default silicon revision it is aware of, if any.

-v The -v switch directs the loader utility to output verbose loader
messages and status information as the loader processes files.

-width # The -width {8|16|32} switch specifies an external memory
device width (in bits) to the loader utility in flash/PROM boot
mode (default is eight). For FIFO boot mode, the only valid
width is 16. For SPI, TWI, and UART boot modes, the only
valid width is eight.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-20 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader Files

An ADSP-BF50x/BF51x/BF52x/BF54x/BF59x loader (.ldr) file can con-
tain data of multiple application (.dxe) files. At boot time, the boot kernel
boots one application file exclusively, or one application file initiates the
boot of the next application file. In some cases, a single application can
consist of multiple .dxe files.

Initialization code is a subroutine called at boot time. Unlike the
ADSP-BF53x/BF56x processors, the
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processors support initcode
written in both assembly and C.

VisualDSP++ supports two methods of integrating multiple initcode
subroutines:

• The -init filename.dxe command-line switch expects a .dxe file.
The initcode is managed by a separate VisualDSP++ project. If the
initcode is written in C language, ensure that the .dxe file does not
include the CRT code because the boot kernel expects a subrou-
tine.

The -init filename.dxe switch can be used multiple times to
specify the same file or different files a number of times. The loader
utility places the code from the initialization files in the order the
files appear on the command line. All initcodes are inserted after
the first regular .dxe file.

The loader utility equips every initcode with a dedicated first boot
block, which has the BFLAG_FIRST flag set. Initcodes, however, do
not feature a final block; they are terminated by a boot block,

VisualDSP++ 5.0 Loader and Utilities Manual 2-21

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

tagged by the BFLAG_INIT flag. Therefore, in absence of the
BFLAG_FINAL flag, the boot kernel continues processing of the sub-
sequent .dxe data after finishing execution of the initcode.

• The -initcall sym=sym_symbol command-line switch relies on
initcode subroutines that are part of the same VisualDSP++ proj-
ect. Initcode subroutines invoked by the –initcall switch are not
accompanied by any first boot blocks with the BFLAG_FIRST flag
set. In the loader file, the initcode subroutines translate to boot
blocks tagged by the BFLAG_INIT flag.

When writing an initcode subroutine in C, ensure that the code does not
rely on libraries or heap support, which may not be available in memory
by the time the initcode executes. An initcode routine is expected to
return properly to the boot kernel by an RTS instruction and to meet
C-language calling conventions (see the VisualDSP++ 5.0 C/C++
Compiler and Library Manual for Blackfin Processors).

Refer to the initcode examples provided with the VisualDSP++ installa-
tion in <install_path>\Blackfin\ldr\init_code.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-22 VisualDSP++ 5.0 Loader and Utilities Manual

Using VisualDSP++ Loader
After selecting a Loader file (.ldr) as the project output type for your
Blackfin application on the Application Settings page in the VisualDSP++
Project Wizard, modify the default load settings.

The Load control in the Project tree control consists of multiple pages.
When you open the Load: Options page (also called loader property page),
view the default load settings for the selected processor. As an example,
Figure 2-1 shows the ADSP-BF548 processor’s default load settings for
PROM boot mode. The dialog box options are equivalent to the com-
mand-line switches. Refer to “ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Loader Command-Line Switches” on page 2-9 for more informa-
tion about the switches.

Figure 2-1. Project: Load: Options Page for ADSP-BF548 Processors

VisualDSP++ 5.0 Loader and Utilities Manual 2-23

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

Using the page controls, select or modify the load settings. Table 2-8
describes each load control and corresponding setting. When satisfied
with the settings, click OK to complete the load setup.

Table 2-8. Base Load Page Settings for
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

Setting Description

Load Selections for the loader utility. The selections are:
• Options – default boot options (this section)
• Kernel – specification for a second-stage loader (see on page 2-24)
• Splitter – specification for the no-boot mode (see on page 2-26)

Boot Mode Specifies flash/PROM, SPI, SPI slave, NAND, PPI, UART, TWI, FIFO,
OTP, or HOSTDP as a boot source.

Boot Format Specifies Intel hex, ASCII, include, or binary format.

Output Width Specifies eight or 16 bits.

Wait state Specifies the number of wait states for external access (0–15).
For the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processors, the field
is grayed out.

Baud rate Specifies a baud rate for SPI booting (500 kHz, 1 MHz, and 2 MHz).
For the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x1 processors, the
field is grayed out.

Hold time Specifies the number of the hold time cycles for flash/PROM boot (0–3).
For the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processors, the field
is grayed out.

Programmable flag Same as the -pFlag command-line switch—selects a programmable flag
number (0–15) for a strobe or for a port. The box is inactive for the
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processors.

Use default start

address

Uses the default flash/PROM output start address in hex format for the
application code.

Start address Specifies a flash/PROM output start address in hex format for the appli-
cation code.

Verbose Generates status information as the loader utility processes the files.

Initialization file Directs the loader utility to include the initialization file (init code).

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-24 VisualDSP++ 5.0 Loader and Utilities Manual

Using VisualDSP++ Second-Stage Loader
If you use a second-stage loader, select Kernel under Load in the Project
Options tree control. The page shows the default settings for a loader file
that does not include a second-stage loader.

Output file Names the loader utility’s output file.

Additional options Specifies additional loader switches. You can specify additional input
files for a multi-input system. Type the input file names with the paths if
the files are not in the current working directory, separate any two file
names with a space in order for the loader utility to retrieve the files.
Note: The loader utility processes the input files in the order in which
the files appear on the command line, generated from the property page.

Table 2-8. Base Load Page Settings for
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors (Cont’d)

Setting Description

VisualDSP++ 5.0 Loader and Utilities Manual 2-25

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

Unless you develop a second-stage loader and use it, most of the options
on the Kernel page are grayed out. Figure 2-2 shows a sample Kernel page
with options set for an ADSP-BF548 Blackfin processor.

To create a loader file which includes a second-stage loader:

1. If not already, select Options (under Load) to set up base load
options (see “Using VisualDSP++ Loader” on page 2-22).

2. Select Kernel (under Load) to set up the second-stage loader
options (Figure 2-2).

3. On the Kernel page, select Use boot kernel.

4. In Kernel file, enter the name of the second-stage loader file
(.dxe).

Figure 2-2. Project: Load: Kernel Page for ADSP-BF548 Processors

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-26 VisualDSP++ 5.0 Loader and Utilities Manual

5. To produce two output files, select the Output kernel in separate
file check box. This option allows to boot the second-stage loader
with an initialization code (if any) from one source and the appli-
cation code from another source. You can specify the kernel output
file options, such as the Boot Mode (source), Boot Format, and
Output Width.

6. Select Change hex output kernel code start address to specify the
Start address in hex format for the second-stage loader code. This
option allows you to place the second-stage loader file at a specific
location within the flash/PROM.

7. Click OK to complete the loader utility setup.

Using VisualDSP++ ROM Splitter
Unlike the loader utility, the splitter utility does not format the applica-
tion data when transforming a .dxe file to an .ldr file. The splitter utility
emits raw data only. Whether data and/or instruction sections are pro-
cessed by the loader or by the splitter utility depends upon the LDF’s
TYPE() command. Sections declared with TYPE(RAM) are consumed by the
loader utility, and sections declared by TYPE(ROM) are consumed by the
splitter.

Figure 2-3 shows a sample Load: Splitter page with ROM splitter options.
With the Enable ROM splitter box unchecked, only TYPE(RAM) segments
are processed and all TYPE(ROM) sections are ignored by the loader utility.

VisualDSP++ 5.0 Loader and Utilities Manual 2-27

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

If the box is checked, TYPE(RAM) sections are ignored, and TYPE(ROM) seg-
ments are processed by the splitter utility.

The Mask Address field masks all EPROM address bits above or equal to
the number specified. For example, Mask Address = 29 (default) masks all
bits above and including A29 (ANDed by 0x1FFF FFFF). Thus, 0x2000 0000
becomes 0x0000 0000. The valid numbers are integers 0 through 32; based
on your specific input file, the value can be within a subset of [0, 32].

Figure 2-3. Project: Splitter Page for ADSP-BF548 Processors

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-28 VisualDSP++ 5.0 Loader and Utilities Manual

VisualDSP++ 5.0 Loader and Utilities Manual 3-1

3 LOADER/SPLITTER FOR
ADSP-BF53X/BF561
BLACKFIN PROCESSORS

This chapter explains how the loader/splitter utility (elfloader.exe) is
used to convert executable (.dxe) files into boot-loadable or non-bootable
files for the ADSP-BF53x and ADSP-BF561 Blackfin processors.

Refer to “Introduction” on page 1-1 for the loader utility overview.
Loader operations specific to the ADSP-BF53x and ADSP-BF561 Black-
fin processors are detailed in the following sections.

• “ADSP-BF53x/BF561 Processor Booting” on page 3-2
Provides general information on various boot modes, including
information on the second-stage kernels.

• “ADSP-BF53x/BF561 Processor Loader Guide” on page 3-56
Provides reference information on the loader utility’s com-
mand-line syntax and switches.

ADSP-BF53x/BF561 Processor Booting

3-2 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF53x/BF561 Processor Booting
At power-up, after a reset, the processor transitions into a boot mode
sequence configured by the BMODE pins. The BMODE pins are dedicated
mode-control pins; that is, no other functions are performed by these
pins. The pins can be read through bits in the system reset configuration
register SYSCR.

An ADSP-BF53x or an ADSP-BF561 Blackfin processor can be booted
from an eight- or 16-bit flash/PROM memory or from an eight-,16-, or
24-bit addressable SPI memory. The ADSP-BF561 processors does not
support 24-bit addressable SPI memory boot. There is also a no-boot
option (bypass mode) in which execution occurs from a 16-bit external
memory.

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Booting description is on page 3-3

• ADSP-BF535 Processor Booting description is on page 3-21

• ADSP-BF561 Processor Booting description is on page 3-36

Software developers who use the loader utility should be familiar with the
the following operations.

• “ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE)
Management” on page 3-46

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor
Compression Support” on page 3-49

VisualDSP++ 5.0 Loader and Utilities Manual 3-3

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Booting

Upon reset, an ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 processor jumps to the on-chip boot ROM or jumps to
16-bit external memory for execution (if BMODE = 0) located at
0x2000 0000. The
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Pro-
cessor On-Chip Boot ROM can be found on page 3-23.

Table 3-1 summarizes the boot modes and execution start addresses for
the ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF538, and
ADSP-BF539 processors.

Table 3-2 summarizes the boot modes for the
ADSP-BF534/BF536/BF537 processors, which in addition to all of the

ADSP-BF53x/BF561 Processor Booting

3-4 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF531/BF532/BF533 processor boot modes, also can boot from a
TWI serial device, a TWI host, and a UART host.

Table 3-1. Boot Mode Selections for ADSP-BF531/BF532/
BF533/BF538/BF539 Processors

Boot Source BMODE[1:0] Execution Start Address

ADSP-BF531
ADSP-BF532

ADSP-BF533A
DSP-BF538
ADSP-BF539

Executes from a 16-bit external ASYNC
bank 0 memory (no-boot mode); see
on page 3-16

00 0x2000 0000 0x2000 0000

Eight- or 16-bit flash/PROM 01 0xFFA0 8000 0xFFA0 0000

SPI host in SPI slave mode 10 0xFFA0 8000 0xFFA0 0000

Eight-, 16-, or 24-bit addressable SPI memory
in SPI master boot mode with support for
Atmel AT45DB041B, AT45DB081B, and
AT45DB161B DataFlash devices

11 0xFFA0 8000 0xFFA0 0000

Table 3-2. ADSP-BF534/BF536/BF537 Processor Boot Modes

Boot Source BMODE[2:0]

Executes from an external 16-bit memory connected to
ASYNC bank 0; (no-boot mode or bypass on-chip boot
ROM); see on page 3-16

000

Eight- or 16-bit flash/PROM 001

Reserved 010

Eight-, 16-, or 24-bit addressable SPI memory in SPI master
mode with support for Atmel AT45DB041B, AT45DB081B,
and AT45DB161B DataFlash devices

011

SPI host in SPI slave mode 100

TWI serial device 101

TWI host 110

UART host 111

VisualDSP++ 5.0 Loader and Utilities Manual 3-5

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

• Execute from 16-bit external memory – execution starts from
address 0x2000 0000 with 16-bit packing. The boot ROM is
bypassed in this mode. All configuration settings are set for the
slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

• Boot from eight-bit or 16-bit external flash memory – the eight-bit
or 16-bit flash boot routine located in boot ROM memory space is
set up using asynchronous memory bank 0. All configuration set-
tings are set for the slowest device possible (3-cycle hold time;
15-cycle R/W access times; 4-cycle setup). The boot ROM evalu-
ates the first byte of the boot stream at address 0x2000 0000. If it is
0x40, eight-bit boot is performed. A 0x60 byte assumes a 16-bit
memory device and performs eight-bit DMA. A 0x20 byte also
assumes 16-bit memory but performs 16-bit DMA.

• Boot from serial SPI memory (EEPROM or flash) – eight-, 16-, or
24-bit addressable devices are supported as well as AT45DB041,
AT45DB081, AT45DB161, AT45DB321, AT45DB642, and
AT45DB1282 DataFlash® devices from Atmel. The SPI uses the
PF10/SPI SSEL1 output pin to select a single SPI EEPROM/flash
device, submits a read command and successive address bytes
(0x00) until a valid eight-, 16-, or 24-bit, or Atmel addressable
device is detected, and begins clocking data into the processor.

• Boot from SPI host device – the Blackfin processor operates in SPI
slave mode and is configured to receive the bytes of the .ldr file
from an SPI host (master) agent. To hold off the host device from
transmitting while the boot ROM is busy, the Blackfin processor
asserts a GPIO pin, called host wait (HWAIT), to signal the host device
not to send any more bytes until the flag is deasserted. The flag is
chosen by the user and this information is transferred to the Black-
fin processor via bits 10:5 of the FLAG header.

ADSP-BF53x/BF561 Processor Booting

3-6 VisualDSP++ 5.0 Loader and Utilities Manual

• Boot from UART – using an autobaud handshake sequence, a
boot-stream-formatted program is downloaded by the host. The
host agent selects a baud rate within the UART’s clocking capabili-
ties. When performing the autobaud, the UART expects an “@”
(boot stream) character (eight bits data, 1 start bit, 1 stop bit, no
parity bit) on the RXD pin to determine the bit rate. It then replies
with an acknowledgement that is composed of 4 bytes: 0xBF, the
value of UART_DLL, the value of UART_DLH, and 0x00. The host can
then download the boot stream. When the processor needs to hold
off the host, it deasserts CTS. Therefore, the host must monitor this
signal.

• Boot from serial TWI memory (EEPROM/flash) – the Blackfin
processor operates in master mode and selects the TWI slave with
the unique ID 0xA0. It submits successive read commands to the
memory device starting at two byte internal address 0x0000 and
begins clocking data into the processor. The TWI memory device
should comply with Philips I2C Bus Specification version 2.1 and
have the capability to auto-increment its internal address counter
such that the contents of the memory device can be read
sequentially.

• Boot from TWI host – the TWI host agent selects the slave with
the unique ID 0x5F. The processor replies with an acknowledge-
ment, and the host can then download the boot stream. The TWI
host agent should comply with Philips I2C Bus Specification ver-
sion 2.1. An I2C multiplexer can be used to select one processor at
a time when booting multiple processors from a single TWI.

To augment the boot modes, a secondary software loader can be added to
provide additional booting mechanisms. The secondary loader could pro-
vide the capability to boot from flash, variable baud rate, and other
sources.

VisualDSP++ 5.0 Loader and Utilities Manual 3-7

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

The following loader topics also are discussed in this chapter.

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processor Boot Streams” on page -9

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processor Memory Ranges” on page -19

Refer to the processor’s data sheet and hardware reference manual
for more information on system configuration, peripherals, regis-
ters, and operating modes:

• Blackfin processor data sheets can be found at
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/data-sheets/resources/index.html.

• Blackfin processor manuals can be found at
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/manuals/resources/index.html.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539
Processor On-Chip Boot ROM

The on-chip boot ROM for the ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/BF539 processors does the following.

1. Sets up supervisor mode by exiting the RESET interrupt service
routine and jumping into the lowest priority interrupt (IVG15).

Note that the on-chip boot ROM of the ADSP-BF534/BF536 and
ADSP-BF537 processors executes at the Reset priority level, does
not degrade to the lowest priority interrupt.

2. Checks whether the RESET was a software reset and, if so, whether
to skip the entire sequence and jump to the start of L1 memory
(0xFFA0 0000 for the ADSP-BF533/BF534/BF536/BF537/BF538
and ADSP-BF539 processors; 0xFFA0 8000 for the

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html

ADSP-BF53x/BF561 Processor Booting

3-8 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF531/BF532 processors) for execution. The on-chip boot
ROM does this by checking the NOBOOT bit (bit 4) of the system
reset configuration register (SYSCR). If bit 4 is not set, the on-chip
boot ROM performs the full boot sequence. If bit 4 is set, the
on-chip boot ROM bypasses the full boot sequence and jumps to
the start of L1 memory.

3. The NOBOOT bit, if bit 4 of the SYSCR register is not set, performs the
full boot sequence (Figure 3-1).

The booting sequence for the
ADSP-BF531/BF532/BF533/BF534/BF536/ BF537/BF538/BF539 pro-
cessors is different from that for the ADSP-BF535 processors. The
on-chip boot ROM for the former processors behaves similarly to the sec-
ond-stage loader of the ADSP-BF535 processors (see on page 3-23). The
boot ROM has the capability to parse address and count information for
each bootable block. This alleviates the need for a second-stage loader
because a full application can be booted to the various memories with just
the on-chip boot ROM.

Figure 3-1. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/B
F539 Processors: Booting Sequence

ADSP-BF531/32/33/34/36/37/39/39 Processor

10-Byte Header for Block 1

App.
Code/
Data

Block 1

PROM/Flash or SPI Device

L1 Memory
Block 1

SDRAM

Block 2

0xEF00 0000

Block 3
10-Byte Header for Block 2

Block 2

10-Byte Header for Block 3

Block 3

Block n

........

10-Byte Header for Block n

........

On-Chip
Boot ROM

VisualDSP++ 5.0 Loader and Utilities Manual 3-9

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

The loader utility converts the application code (.dxe) into the loadable
file by parsing the code and creating a file that consists of different blocks.
Each block is encapsulated within a 10-byte header, which is illustrated in
Figure 3-1 and detailed in the following section. The headers, in turn, are
read and parsed by the on-chip boot ROM during booting.

The 10-byte header provides all information the on-chip boot ROM
requires—where to boot the block to, how many bytes to boot in, and
what to do with the block.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processor Boot Streams

The following sections describe the boot stream, header, and flag frame-
work for the ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF534,
ADSP-BF536, ADSP-BF537, ADSP-BF538, and ADSP-BF539
processors.

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Block Headers and Flags” on page 3-10

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Initialization Blocks” on page 3-13

The ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539
processor boot stream is similar to the boot stream that uses a second-stage
kernel of the ADSP-BF535 processors (detailed in “Loader Files With a
Second-Stage Loader” on page 3-30). However, since the former proces-
sors do not employ a second-stage loader, their boot streams do not
include the second-stage loader code and the associated 4-byte header on
the top of the kernel code. There is also no 4-byte global header.

ADSP-BF53x/BF561 Processor Booting

3-10 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Block Headers and Flags

As the loader utility converts the code from an input .dxe file into blocks
comprising the output loader file, each block receives a 10-byte header
(Figure 3-2), followed by a block body (if a non-zero block) or no-block
body (if a zero block). A description of the header structure can be found
in Table 3-3.

Figure 3-2. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processors: Boot Stream Structure

Table 3-3. ADSP-BF531/BF532/BF533 Block Header Structure

Bit Field Description

Address 4-byte address at which the block resides in memory

4-BYTE ADDRESS

4-BYTE COUNT

2-BYTE FLAG

10-BYTE HEADER

SEE FLAG INFORMATION

.DXE 1 BYTE COUNT

HEADER OF .DXE 1

BLOCK 1 HEADER

BLOCK 2 HEADER

BLOCK 2 BODY

......

......

......

......

.DXE 2 BYTE COUNT

BLOCK 1 BODY
BOOT STREAM

OF THE

1st EXECUTABLE
(.DXE 1)

HEADER OF .DXE 2

BOOT STREAM
OF THE

2nd EXECUTABLE
(.DXE 2)

VisualDSP++ 5.0 Loader and Utilities Manual 3-11

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Refer to Table 3-4 and Figure 3-3 for the flag’s bit descriptions.

Count 4-byte number of bytes to boot

Flag 2-byte flag containing information about the block; the following text
describes the flag structure

Figure 3-3. Flag Bit Assignments for 2-Byte Block Flag Word

Table 3-4. Flag Structure

Bit Field Description

Zero-fill block Indicates that the block is for a buffer filled with zeros. The body of a zero block
is not included within the loader file. When the loader utility parses through
the .dxe file and encounters a large buffer with zeros, it creates a zero-fill block
to reduce the .ldr file size and boot time. If this bit is set, there is no block
body in the block.

Processor type Indicates the processor, either the ADSP-BF531/BF532/BF538 or the
ADSP-BF533/BF534/BF536/BF537/BF539. Once booting is complete, the
on-chip boot ROM jumps to 0xFFA0 0000 on the
ADSP-BF533/BF536/BF537/BF538/BF539 processor and to 0xFFA0 8000 on
the ADSP-BF531/BF532/ processors.

Table 3-3. ADSP-BF531/BF532/BF533 Block Header Structure (Cont’d)

Bit Field Description

Zero-Fill:

 1 = Zero-Fill Block

 0 = No Zero-Fill Block

Processor Type:

 1 = ADSP-BF533/534/536/537/538/539

 0 = ADSP-BF531/BF532

Initialization Block:

 1 = Init Block, 0 = No Init Block

Ignore Block:

 1 = Ignore Block

 0 = Do Not Ignore Block

Last Block:

 1 = Last Block

 0 = Not Last Block

Compressed Block:

 1 = Compressed Block

 0 = Not Compressed Block

Port Number:

 00 = Disabled, 01 =Port F

 10 = Port G, 11 = Port H

Programmable Flag:

 0 = Default, Selectable from 0–15

Bits 14, 12–11, 2 are reserved for future use

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

ADSP-BF53x/BF561 Processor Booting

3-12 VisualDSP++ 5.0 Loader and Utilities Manual

Note that the ADSP-BF534/BF536/BF537 processor can have a special
last block if the boot mode is two-wire interface (TWI). The loader utility
saves all the data from 0xFF90 3F00 to 0xFF90 3FFF and makes the last
block with the data. The loader utility, however, creates a regular last
block if no data is in that memory range. The space of 0xFF90 3F00 to
0xFF90 3FFF is saved for the boot ROM to use as a data buffer during a
boot process.

Initialization
block

Indicates that the block is to be executed before booting. The initialization
block indicator allows the on-chip boot ROM to execute a number of instruc-
tions before booting the actual application code. When the on-chip boot ROM
detects an init block, it boots the block into internal memory and makes a CALL
to it (initialization code must have an RTS at the end).
This option allows the user to run initialization code (such as SDRAM initial-
ization) before the full boot sequence proceeds. Figure 3-4 and Figure 3-5 illus-
trate the process. Initialization code can be included within the .ldr file by
using the -init switch (see “-init filename.dxe” on page 3-61).
See “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Ini-
tialization Blocks” on page 3-13 for more information.

Ignore block Indicates that the block is not to be booted into memory; skips the block and
moves on to the next one. Currently is not implemented for application code.

This flag is equivalent to the FIRST flag in boot streams on the
ADSP-BF51x/BF52x/BF54x processors. Because the IGNORE flag
is used for other purposes on the ADSP-BF51x/BF52x/BF54x
processors, the FIRST flag is invented to indicate the first header.

Compressed
block

Indicates that the block contains compressed data. The compressed block can
include a number of blocks compressed together to form a single compressed
block.

Last block Indicates that the block is the last block to be booted into memory. After the
last block, the processor jumps to the start of L1 memory for application code
execution. When it jumps to L1 memory for code execution, the processor is
still in supervisor mode and in the lowest priority interrupt (IVG15).

Table 3-4. Flag Structure (Cont’d)

Bit Field Description

VisualDSP++ 5.0 Loader and Utilities Manual 3-13

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Initialization Blocks

The -init filename option directs the loader utility to produce the ini-
tialization blocks from the initialization section’s code in the named file.
The initialization blocks are placed at the top of a loader file. They are
executed before the rest of the code in the loader file booted into the
memory (see Figure 3-4).

Figure 3-4. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processors: Initialization Block Execution

INIT BLOCK HEADER

APP.
CODE/
DATA

INIT BLOCKS

L1 BLOCK HEADER

L1 BLOCK

SDRAM BLOCK HEADER

BLOCK N

........

BLOCK N 10-BYTE HEADER

SDRAM BLOCK

ADSP-BF531/32/33/34/36/37/39/39 Processor PROM/FLASH OR SPI
DEVICE

L1 Memory
Init Blocks

SDRAM

0xEF00 0000

On-Chip
Boot ROM

ADSP-BF53x/BF561 Processor Booting

3-14 VisualDSP++ 5.0 Loader and Utilities Manual

Following execution of the initialization blocks, the boot process
continues with the rest of data blocks until it encounters a final block (see
Figure 3-5). The initialization code example follows in Listing 3-1.

Listing 3-1. Initialization Block Code Example

/* This file contains 3 sections: */

/* 1) A Pre-Init Section–this section saves off all the

processor registers onto the stack.

2) An Init Code Section–this section is the initialization

code which can be modified by the customer

As an example, an SDRAM initialization code is supplied.

The example setups the SDRAM controller as required by

certain SDRAM types. Different SDRAMs may require

different initialization procedure or values.

3) A Post-Init Section–this section restores all the register

from the stack. Customers should not modify the Pre-Init

Figure 3-5. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processors: Booting Application Code

A

L1 Memory
Init Block

SDRAM

0xEF00 0000

On-Ch p
Boot ROM

i

L1 Block

SDRAM Block

INIT BLOCK HEADER

APP.
CODE/
DATA

INIT BLOCKS

L1 BLOCK HEADER

L1 BLOCK

SDRAM BLOCK HEADER

BLOCK N

........

BLOCK N 10-BYTE HEADER

SDRAM BLOCK

PROM/FLASH OR SPI
DEVICE

ADSP-BF531/32/33/34/36/37/39/39 Processor

VisualDSP++ 5.0 Loader and Utilities Manual 3-15

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

and Post-Init Sections. The Init Code Section can be

modified for a particular application.*/

#include <defBF532.h>

.SECTION program;

/**********************Pre-Init Section************************/

[--SP] = ASTAT; /* Stack Pointer (SP) is set to the end of */

[--SP] = RETS; /* scratchpad memory (0xFFB00FFC) */

[--SP] = (r7:0); /* by the on-chip boot ROM */

[--SP] = (p5:0);

[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;

[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/*******************Init Code Section**************************/

/*******Please insert Initialization code in this section******/

/***********************SDRAM Setup****************************/

Setup_SDRAM:

P0.L = LO(EBIU_SDRRC);

/* SDRAM Refresh Rate Control Register */

P0.H = HI(EBIU_SDRRC);

R0 = 0x074A(Z);

W[P0] = R0;

SSYNC;

P0.L = LO(EBIU_SDBCTL);

/* SDRAM Memory Bank Control Register */

P0.H = HI(EBIU_SDBCTL);

R0 = 0x0001(Z);

W[P0] = R0;

SSYNC;

P0.L = LO(EBIU_SDGCTL);

ADSP-BF53x/BF561 Processor Booting

3-16 VisualDSP++ 5.0 Loader and Utilities Manual

/* SDRAM Memory Global Control Register */

P0.H = HI(EBIU_SDGCTL);

R0.L = 0x998D;

R0.H = 0x0091;

[P0] = R0;

SSYNC;

/*********************Post-Init Section************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

(p5:0) = [SP++];

(r7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

/**/

RTS;

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539
and ADSP-BF535 Processor No-Boot Mode

The hardware settings of BMODE = 00 for the ADSP-BF531, ADSP-BF532,
and ADSP-BF533 processors or BMODE = 000 for the ADSP-BF535 proces-
sors select the no-boot option. In this mode of operation, the on-chip
boot kernel is bypassed after reset, and the processor starts fetching and
executing instructions from address 0x2000 0000 in the asynchronous
memory bank 0. The processor assumes 16-bit memory with valid instruc-
tions at that location.

To create a proper .ldr file that can be burned into either a parallel flash
or EPROM device, you must modify the standard LDF file in order for
the reset vector to be located accordingly. The following code fragments
(Listing 3-2 and Listing 3-3) illustrate the required modifications in case
of an ADSP-BF533 processor.

VisualDSP++ 5.0 Loader and Utilities Manual 3-17

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Listing 3-2. Section Assignment (LDF File) Example

MEMORY

{

/* Off-chip Instruction ROM in Async Bank 0 */

MEM_PROGRAM_ROM { TYPE(ROM) START(0x20000000) END(0x2009FFFF)

WIDTH(8) }

/* Off-chip constant data in Async Bank 0 */

MEM_DATA_ROM { TYPE(ROM) START(0x200A0000) END(0x200FFFFF)

WIDTH(8) }

/* On-chip SRAM data, is not booted automatically */

MEM_DATA_RAM { TYPE(RAM) START(0xFF903000) END(0xFF907FFF)

WIDTH(8) }

Listing 3-3. ROM Segment Definitions (LDF File) Example

PROCESSOR p0

{

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS

{

program_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_code))

} >MEM_PROGRAM_ROM

data_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_data))

} >MEM_DATA_ROM

data_sram

{

ADSP-BF53x/BF561 Processor Booting

3-18 VisualDSP++ 5.0 Loader and Utilities Manual

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(ram_data))

} >MEM_DATA_RAM

With the LDF file modified this way, the source files can now take advan-
tage of the newly-introduced sections, as in Listing 3-4.

Listing 3-4. Section Handling (Source File) Example

.SECTION rom_code;

_reset_vector: l0 = 0;

1 = 0;

l2 = 0;

l3 = 0;

/* continue with setup and application code */

/* . . . */

.SECTION rom_data;

.VAR myconst x = 0xdeadbeef;

/* . . . */

.SECTION ram_data;

.VAR myvar y; /* note that y cannot be initialized automatically

*/

VisualDSP++ 5.0 Loader and Utilities Manual 3-19

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processor Memory Ranges

The on-chip boot ROM on the
ADSP-BF531/BF532/BF533/BF534/BF536/ BF537/BF538/BF539
Blackfin processors allows booting to the following memory ranges.

• L1 memory

• ADSP-BF531 processor:

 Data bank A SRAM (0xFF80 4000–0xFF80 7FFF)
 Instruction SRAM (0xFFA0 8000–0xFFA0 BFFF)

• ADSP-BF532 processor:

Data bank A SRAM (0xFF80 4000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 4000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 8000–0xFFA1 3FFF)

• ADSP-BF533 processor:

Data bank A SRAM (0xFF80 0000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• ADSP-BF534 processor:

Data bank A SRAM (0xFF80 0000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 0000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• ADSP-BF536 processor:

Data bank A SRAM (0xFF80 4000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 4000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

ADSP-BF53x/BF561 Processor Booting

3-20 VisualDSP++ 5.0 Loader and Utilities Manual

• ADSP-BF537 processor:

Data bank A SRAM (0xFF80 0000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 0000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• ADSP-BF538 processor:

Data bank A SRAM (0xFF80 4000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 4000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 8000–0xFFA1 3FFF)

• ADSP-BF539 processor:

Data bank A SRAM (0xFF80 0000–0xFF80 3FFF)
Data bank B SRAM (0xFF90 2000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• SDRAM memory:

• Bank 0 (0x0000 0000–0x07FF FFFF)

Booting to scratchpad memory (0xFFB0 0000) is not supported.

SDRAM must be initialized by user code before any instructions or
data are loaded into it.

VisualDSP++ 5.0 Loader and Utilities Manual 3-21

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF535 Processor Booting
Upon reset, an ADSP-BF535 processor jumps to an external 16-bit mem-
ory for execution (if BMODE = 000) or to the on-chip boot ROM (if
BMODE = 001, 010, or 011). The ADSP-BF535 Processor On-Chip Boot
ROM details can be found on page 3-23. Table 3-5 summarizes the boot
modes and code execution start addresses for the ADSP-BF535 processors.

• Execute from 16-bit external memory—execution starts from
address 0x2000000 with 16-bit packing. The boot ROM is bypassed
in this mode.

• Boot from eight-bit external flash memory—the eight-bit flash
boot routine located in boot ROM memory space is set up using
asynchronous memory bank 0. All configuration settings are set for
the slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

Table 3-5. ADSP-BF535 Processor Boot Mode Selections

Boot Source BMODE[2:0] Execution Start
Address

Executes from a 16-bit external memory (async
bank 0); no-boot mode (bypass on-chip boot ROM);
 see on page 3-16.

000 0x2000 0000

Boots from an eight- or 16-bit flash memory 001 0xF000 00001

1 The processor jumps to this location after the booting is complete.

Boots from an eight-bit address SPI0 serial EEPROM 010 0xF000 00001

Boots from a 16-bit address SPI0 serial EEPROM 011 0xF000 00001

Reserved 111—100 N/A

ADSP-BF53x/BF561 Processor Booting

3-22 VisualDSP++ 5.0 Loader and Utilities Manual

• Boot from SPI serial EEPROM (eight-bit addressable)—the SPI0
uses PF10 output pin to select a single SPI EPROM device, submits
a read command at address 0x00, and begins clocking data into the
beginning of L2 memory. An eight-bit addressable SPI compatible
EPROM must be used.

• Boot from SPI serial EEPROM (16-bit addressable)— the SPI0
uses PF10 output pin to select a single SPI EPROM device, submits
a read command at address 0x0000, and begins clocking data into
the beginning of L2 memory. A 16-bit addressable SPI compatible
EPROM must be used.

A secondary software loader is provided to augment the boot modes. The
secondary loader provides the capability to boot from PCI, 16-bit flash
memory, fast flash, variable baud rates, and so on. The ADSP-BF535 Pro-
cessor Second-Stage Loader is detailed on page 3-24.

The following ADSP-BF535 topics also are discussed in this chapter.

• “ADSP-BF535 Processor Boot Streams” on page -27

• “ADSP-BF535 Processor Memory Ranges” on page -34

Refer to the ADSP-BF535 Blackfin Embedded Processor data sheet
and the ADSP-BF535 Blackfin Processor Hardware Reference man-
ual for more information on system configuration, peripherals,
registers, and operating modes.

VisualDSP++ 5.0 Loader and Utilities Manual 3-23

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF535 Processor On-Chip Boot ROM

The on-chip boot ROM for the ADSP-BF535 processor does the follow-
ing (Figure 3-6).

1. Sets up supervisor mode by exiting the RESET interrupt service rou-
tine and jumping into the lowest priority interrupt (IVG15).

2. Checks whether the RESET is a software reset and if so, whether to
skip the entire boot sequence and jump to the start of L2 memory
(0xF000 0000) for execution. The on-chip boot ROM does this by
checking bit 4 of the system reset configuration register (SYSCR). If

Figure 3-6. ADSP-BF535 Processors: On-Chip Boot ROM

ADSP-BF53x/BF561 Processor Booting

3-24 VisualDSP++ 5.0 Loader and Utilities Manual

bit 4 is not set, the on-chip boot ROM performs the full boot
sequence. If bit 4 is set, the on-chip boot ROM bypasses the full
boot sequence and jumps to 0xF000 0000.

3. Finally, if bit 4 of the SYSCR register is not set, performs the full
boot sequence. The full boot sequence includes:

• Checking the boot source (either flash/PROM or SPI mem-
ory) by reading BMODE2–0 from the SYSCR register.

• Reading the first four bytes from location 0x0 of the exter-
nal memory device. These four bytes contain the byte
count (N), which specifies the number of bytes to boot in.

• Booting in N bytes into internal L2 memory starting at loca-
tion 0xF000 0000.

• Jumping to the start of L2 memory for execution.

The on-chip boot ROM boots in N bytes from the external memory. These
N bytes can define the size of the actual application code or a second-stage
loader that boots in the application code.

ADSP-BF535 Processor Second-Stage Loader

The only situation where a second-stage loader is unnecessary is when the
application code contains only one section starting at the beginning of L2
memory (0xF000 0000).

A second-stage loader must be used in applications in which multiple seg-
ments reside in L2 memory or in L1 memory and/or SDRAM. In
addition, a second-stage loader must be used to change the wait states or
hold time cycles for a flash/PROM booting or to change the baud rate for
an SPI boot (see “Blackfin Loader Command-Line Switches” on
page 3-59 for more information on these features). Some Second-Stage
Loader Restrictions are documented on page 3-35.

VisualDSP++ 5.0 Loader and Utilities Manual 3-25

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

When a second-stage loader is used for booting, the following sequence
occurs.

1. Upon reset, the on-chip boot ROM downloads N bytes (the
second-stage loader) from external memory to address 0xF000 0000
in L2 memory (Figure 3-7).

Figure 3-7. ADSP-BF535 Processors: Booting With Second-Stage Loader

ADSP-BF53x/BF561 Processor Booting

3-26 VisualDSP++ 5.0 Loader and Utilities Manual

2. The second-stage loader copies itself to the bottom of L2 memory.

3. The second-stage loader downloads the application code and data
into the various memories of the Blackfin processor (Figure 3-9).

Figure 3-8. ADSP-BF535 Processors: Copying Second-Stage Loader

Figure 3-9. ADSP-BF535 Processors: Booting Application Code

4-Byte Header (N)

2nd Stage Loader

PROM/Flash or SPI Device

0x0

Application
Code/Data

ADSP-BF535 Processor

2nd Stage Loader
or

Application
Code

L2 Memory
(0xF000 0000)

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader

2nd Stage Loader

VisualDSP++ 5.0 Loader and Utilities Manual 3-27

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

4. Finally, after booting, the second-stage loader jumps to the start of
L2 memory (0xF000 0000) for application code execution
(Figure 3-10).

ADSP-BF535 Processor Boot Streams

The loader utility generates the boot stream and places the boot stream in
the output loader (.ldr) file. The loader utility prepares the boot stream
in a way that enables the on-chip boot ROM and the second-stage loader
to load the application code and data to the processor memory correctly.
Therefore, the boot stream contains not only user application code but
also header and flag information that is used by the on-chip boot ROM
and the second-stage loader.

Figure 3-10. ADSP-BF535 Processors: Starting Application Code

ADSP-BF535 Processor

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader

A

B

L1 Memory

L2 Memory
(0xF000 0000)

4-Byte Header (N)

2nd Stage Loader

0x0

Application
Code/Data

A

B

C

PROM/Flash or SPI Device

C

SDRAM

ADSP-BF53x/BF561 Processor Booting

3-28 VisualDSP++ 5.0 Loader and Utilities Manual

The following diagrams illustrate boot streams utilized by the
ADSP-BF535 processor’s boot kernel:

• “Loader Files Without a Second-Stage Loader” on page 3-28

• “Loader Files With a Second-Stage Loader” on page 3-30

• “Global Headers” on page 3-32

• “Block Headers and Flags” on page 3-33

Loader Files Without a Second-Stage Loader

Figure 3-11 is a graphical representation of an output loader file for
eight-bit flash/PROM boot and eight-/16-bit addressable SPI boot with-
out the second-stage loader.

Figure 3-11. Loader File for Eight-bit Flash/PROM and SPI Boot With-
out Second-Stage Loader

4-BYTE HEADER FOR
BYTE COUNT (N)

BYTE 0

BYTE 1

BYTE 2

BYTE 3

........

........

OUTPUT .LDR FILE

D7 D0

APPLICATION
CODE
(N WORDS)

BYTE COUNT FOR
APPLICATION CODE

........

VisualDSP++ 5.0 Loader and Utilities Manual 3-29

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Figure 3-12 is a graphical representation of an output loader file for 16-bit
flash/PROM boot without the second-stage loader.

Figure 3-12. Loader File for 16-bit Flash/PROM Boot Without Sec-
ond-Stage Loader

4-BYTE HEADER FOR
BYTE COUNT (N)

BYTE 0

BYTE 1

BYTE 2

BYTE 3

........

........

OUTPUT .LDR FILE

0x00

0x00

0x00

0x00

0x00

D15 D8 D7 D0

........

0x00

0x00

0x00

APPLICATION
CODE
(N WORDS)

BYTE COUNT FOR
APPLICATION CODE

ADSP-BF53x/BF561 Processor Booting

3-30 VisualDSP++ 5.0 Loader and Utilities Manual

Loader Files With a Second-Stage Loader

Figure 3-13 is a graphical representation of an output loader file for
eight-bit flash/PROM boot and eight- or 16-bit addressable SPI boot with
the second-stage loader.

Figure 3-13. Loader File for Eight-bit Flash/PROM and SPI Boot With
Second-Stage Loader

4-BYTE HEADER FOR
BYTE COUNT (N)

BYTE 0

BYTE 1

BYTE 2

BYTE 0

BYTE 1

BYTE 2

........

OUTPUT .LDR FILE

D7 D0

........

BYTE COUNT FOR

2nd STAGE LOADER

SEE ALSO
FIGURE 3-12

2nd STAGE
LOADER (N BYTES)

APPLICATION
CODE
(iN BLOCKS)

SEE ALSO
FIGURE 3-14

VisualDSP++ 5.0 Loader and Utilities Manual 3-31

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Figure 3-14 is graphical representation of an output loader file for 16-bit
flash/PROM boot with the second-stage loader.

Figure 3-14. Loader File for 16-bit Flash/PROM Boot With Second-Stage
Loader

0x00

0x00

0x00

0x00

0x00

BYTE 1

BYTE 3

BYTE 5

D15 D8

........

4-BYTE HEADER FOR
BYTE COUNT (N)

BYTE 0

BYTE 1

BYTE 2

BYTE 0

........

BYTE 2

........

OUTPUT .LDR FILE

D7 D0

BYTE 4

BYTE COUNT FOR

2nd STAGE LOADER

SEE ALSO
FIGURE 3-12

2nd STAGE
LOADER

APPLICATION
CODE
(iN BLOCKS)

SEE ALSO
FIGURE 3-14

ADSP-BF53x/BF561 Processor Booting

3-32 VisualDSP++ 5.0 Loader and Utilities Manual

Global Headers

Following the second-stage loader code and address in a loader file, there
is a 4-byte global header. The header provides the global settings for a
booting process (see Figure 3-15).

A global header’s bit assignments for eight- and 16-bit Flash/PROM boot
are illustrated in Figure 3-16.

Figure 3-15. Global Header

Figure 3-16. Flash/PROM Boot: Global Header Bit Assignments

BYTE COUNT (N)

2nd STAGE LOADER

2nd STAGE LOADER
ADDRESS

GLOBAL HEADER

SIZE OF APPLICATION
CODE (N1)

APPLICATION CODE

4 BYTES

N BYTES

4 BYTES

4 BYTES

4 BYTES

N1 BYTES

OUTPUT .LDR FILE

BYTE COUNT FOR

2nd STAGE LOADER

SEE FIGURES 3-18 AND 3-19

L2 MEMORY END ADDRESS

(FROM WHICH 2nd STAGE
LOADER RUNS)

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Number of hold time cycles: 3 (default)

Number of wait states: 15 (default)

1 = 16-bit Admix, 0 = 8-bit flash/PROM: 0 (default)

VisualDSP++ 5.0 Loader and Utilities Manual 3-33

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

A global header’s bit assignments for eight- and 16-bit addressable SPI
boot are illustrated in Figure 3-17.

Block Headers and Flags

For application code, a block is the basic structure of the output .ldr file
when the second-stage loader is used. All application code is grouped into
blocks. A block always has a header and a body if it is a non-zero block. A
block does not have a body if it is a zero block. A block structure is illus-
trated in Figure 3-18.

Figure 3-17. SPI Boot: Global Header Bit Assignments

Figure 3-18. An Application Block

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Baud rate: 0 = 500 kHz (default), 1 = 1 MHz, 2 = 2 MHz

START ADDRESS
OF BLOCK 1

SIZE OF APPLICATION
CODE (N1)

BYTE COUNT
OF BLOCK 1

FLAG FOR BLOCK 1

BODY OF BLOCK 1

START ADDRESS
OF BLOCK 2

BYTE COUNT
OF BLOCK 2

......

4 BYTES

4 BYTES

2 BYTES

B
L

O
C

K
H

E
A

D
E

R

B
L

O
C

K

BYTE COUNT (N)

2nd STAGE LOADER

2nd STAGE LOADER
ADDRESS

GLOBAL HEADER

SIZE OF APPLICATION
CODE (N1)

APPLICATION CODE

OUTPUT .LDR FILE

4 BYTES

N BYTES

4 BYTES

4 BYTES

4 BYTES

N1 BYTES

ADSP-BF53x/BF561 Processor Booting

3-34 VisualDSP++ 5.0 Loader and Utilities Manual

A block header has three words: 4-byte clock start address, 4-byte block
byte count, and 2-byte flag word.

The ADSP-BF535 block flag word’s bits are illustrated in Figure 3-19.

ADSP-BF535 Processor Memory Ranges

Second-stage loaders are available for the ADSP-BF535 processors in
VisualDSP++ 3.0 and higher. They allow booting to:

• L2 memory (0xF000 0000)

• L1 memory

• Data bank A SRAM (0xFF80 0000)

• Data bank B SRAM (0xFF90 0000)

• Instruction SRAM (0xFFA0 0000)

• Scratchpad SRAM (0xFFB0 0000)

• SDRAM

• Bank 0 (0x0000 0000)

• Bank 1 (0x0800 0000)

• Bank 2 (0x1000 0000)

• Bank 3 (0x1800 0000)

SDRAM must be initialized by user code before any instructions or
data are loaded into it.

Figure 3-19. Block Flag Word Bit Assignments

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit 15: 1 = Last Block, 0 = Not Last Block Bit 0: 1 = Zero-Fill, 0 = No Zero-Fill

VisualDSP++ 5.0 Loader and Utilities Manual 3-35

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Second-Stage Loader Restrictions

Using the second-stage loader imposes the following restrictions.

• The bottom of L2 memory must be reserved during booting. These
locations can be reallocated during runtime. The following loca-
tions pertain to the current second-stage loaders.

• For eight- and 16-bit flash/PROM booting, reserve
0xF003 FE00—0xF003 FFFF (last 512 bytes).

• For eight- and 16-bit addressable SPI booting, reserve
0xF003 FD00—0xF003 FFFF (last 768 bytes).

• If segments reside in SDRAM memory, configure the SDRAM reg-
isters accordingly in the second-stage loader before booting.

• Modify a section of code called “SDRAM setup” in the
second-stage loader and rebuild the second-stage loader.

• Any segments residing in L1 instruction memory
(0xFFA0 0000–0xFFA0 3FFF) must be eight-byte aligned.

• Declare segments, within the .ldf file, that reside in L1
instruction memory at starting locations that are eight-byte
aligned (for example, 0xFFA0 0000, 0xFFA0 0008,
0xFFA0 0010, and so on).

• Use the .ALIGN 8; directives in the application code.

The two reasons for these restrictions are:

• Core writes into L1 instruction memory are not allowed.

• DMA from an eight-bit external memory is not possible since the
minimum width of the external bus interface unit (EBIU) is 16
bits.

ADSP-BF53x/BF561 Processor Booting

3-36 VisualDSP++ 5.0 Loader and Utilities Manual

Load bytes into L1 instruction memory by using the instruction test com-
mand and data registers, as described in the Memory chapter of the
appropriate hardware reference manual. These registers transfer eight-byte
sections of data from external memory to internal L1 instruction memory.

ADSP-BF561 Processor Booting
The booting sequence for the ADSP-BF561 dual-core processors is similar
to the ADSP-BF531/BF532/BF533 processor boot sequence described
on page 3-7. Differences occur because the ADSP-BF561 processor has
two cores: core A and core B. After reset, core B remains idle, but core A
executes the on-chip boot ROM located at address 0xEF00 0000.
The ADSP-BF561 Processor On-Chip Boot ROM details can be found
on page 3-23.

Table 3-6 summarizes the boot modes and execution start addresses for
the ADSP-BF561 processors.

• Execute from 16-bit external memory – execution starts from
address 0x2000 0000 with 16-bit packing. The boot ROM is
bypassed in this mode. All configuration settings are set for the
slowest device possible (3-cycle hold time, 15-cycle R/W access
times, 4-cycle setup).

Table 3-6. ADSP-BF561 Processor Boot Mode Selections

Boot Source BMODE[1:0]

16-bit external memory (bypass boot ROM) 00

Eight- or 16-bit flash 01

SPI host 10

SPI serial EEPROM (16-bit address range) 11

VisualDSP++ 5.0 Loader and Utilities Manual 3-37

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

• Boot from eight-bit/16-bit external flash memory – the
eight-bit/16-bit flash boot routine located in boot ROM memory
space is set up using asynchronous memory bank 0. All configura-
tion settings are set for the slowest device possible (3-cycle hold
time; 15-cycle R/W access times; 4-cycle setup).

• Boot from SPI host – the ADSP-BF561 processor is configured as
an SPI slave device and a host is used to boot the processor. The
host drives the SPI clock and is therefore responsible for the tim-
ing. The baud rate should be equal to or less than one fourth of the
ADSP-BF561 system clock (SCLK).

• Boot from SPI serial EEPROM (16-bit addressable) – the SPI uses
the PF2 output pin to select a single SPI EPROM device, submits a
read command at address 0x0000, and begins clocking data into the
beginning of L1 instruction memory. A 16-bit/24-bit addressable
SPI-compatible EPROM must be used.

The following loader topics also are discussed in this chapter.

• “ADSP-BF561 Processor Boot Streams” on page -38

• “ADSP-BF561 Processor Initialization Blocks” on page -43

• “ADSP-BF561 Dual-Core Application Management” on page -44

• “ADSP-BF561 Processor Memory Ranges” on page -45

Refer to the ADSP-BF561 Embedded Symmetric Multiprocessor data
sheet and the ADSP-BF561 Blackfin Processor Hardware Reference
manual for information about the processor’s operating modes and
states, including background information on system reset and
booting.

ADSP-BF53x/BF561 Processor Booting

3-38 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF561 Processor On-Chip Boot ROM

The boot ROM loads an application program from an external memory
device and starts executing that program by jumping to the start of
core A’s L1 instruction SRAM, at address 0xFFA0 0000.

Similar to the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561
boot ROM uses the interrupt vectors to stay in supervisor mode.

The boot ROM code transitions from the RESET interrupt service routine
into the lowest priority user interrupt service routine (Int 15) and
remains in the interrupt service routine. The boot ROM then checks
whether it has been invoked by a software reset by examining bit 4 of the
system reset configuration register (SYSCR).

If bit 4 is not set, the boot ROM presumes that a hard reset has occurred
and performs the full boot sequence. If bit 4 is set, the boot ROM under-
stands that the user code has invoked a software reset and restarts the user
program by jumping to the beginning of core A’s L1 memory
(0xFFA0 0000), bypassing the entire boot sequence.

When developing an ADSP-BF561 processor application, you start with
compiling and linking your application code into an executable (.dxe)
file. The debugger loads the .dxe file into the processor’s memory and
executes it. With two cores, two .dxe files can be loaded at once. In the
real-time environment, there is no debugger which allows the boot ROM
to load the executables into memory.

ADSP-BF561 Processor Boot Streams

The loader utility converts the .dxe file into a boot stream (.ldr) file by
parsing the executable and creating blocks. Each block is encapsulated
within a 10-byte header. The .ldr file is burned into the external memory
device (flash memory, PROM, or EEPROM). The boot ROM reads the
external memory device, parsing the headers and copying the blocks to the
addresses where they reside during program execution. After all the blocks

VisualDSP++ 5.0 Loader and Utilities Manual 3-39

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

are loaded, the boot ROM jumps to address 0xFFA0 0000 to execute the
core A program.

When code is run on both cores, the core A program is responsible
for releasing core B from the idle state by clearing bit 5 in core A’s
system configuration register. Then core B begins execution at
address 0xFF60 0000.

Multiple .dxe files are often combined into a single boot stream
(see “ADSP-BF561 Dual-Core Application Management” on page 3-44
and “ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE)
Management” on page 3-46).

Unlike the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561
boot stream begins with a 4-byte global header, which contains informa-
tion about the external memory device. A bit-by-bit description of the
global header is presented in Table 3-7. The global header also contains a
signature in the upper 4 bits that prevents the boot ROM from reading in
a boot stream from a blank device.

Following the global header is a .dxe count block, which contains a 32-bit
byte count for the first .dxe file in the boot stream. Though this block

Table 3-7. ADSP-BF561 Global Header Structure

Bit Field Description

0 1 = 16-bit flash, 0 = eight-bit flash; default is 0

1–4 Number of wait states; default is 15

5 Unused bit

6–7 Number of hold time cycles for flash; default is 3

8–10 Baud rate for SPI boot: 00 = 500k, 01 = 1M, 10 = 2M

11–27 Reserved for future use

28–31 Signature that indicates valid boot stream

ADSP-BF53x/BF561 Processor Booting

3-40 VisualDSP++ 5.0 Loader and Utilities Manual

contains only a byte count, it is encapsulated by a 10-byte block header,
just like the other blocks.

The 10-byte header instructs the boot ROM where, in memory, to place
each block, how many bytes to copy, and whether the block needs any
special processing. The block header structure is the same as that of the
ADSP-BF531/BF532/BF533 processors (described in
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Block Headers and Flags” on page 3-10). Each header contains a 4-byte
start address for the data block, a 4-byte count for the data block, and a
2-byte flag word, indicating whether the data block is a “zero-fill” block or
a “final block” (the last block in the boot stream).

For the .dxe count block, the address field is irrelevant since the block is
not going to be copied to memory. The “ignore bit” is set in the flag word
of this header, so the boot loader utility does not try to load the .dxe
count but skips the count. For more details, see
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Block Headers and Flags” on page 3-10.

Following the .dxe count block are the rest of the blocks of the first .dxe.

A bit-by-bit description of the boot steam is presented in Table 3-8.
When learning about the ADSP-BF561 boot stream structure, keep in
mind that the count byte for each .dxe is, itself, a block encapsulated by a
block header.

Table 3-8. ADSP-BF561 Processor Boot Stream Structure

Bit Field Description

0–7 LSB of the global header

32
-B

it
 G

lo
ba

l
H

ea
de

r

8–15 8–15 of the global header

16–23 16–23 of the global header

24–31 MSB of the global header

VisualDSP++ 5.0 Loader and Utilities Manual 3-41

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

32–39 LSB of the address field of 1st .dxe count block (no care)

10
-B

yt
e

.d
xe

1
H

ea
de

r

40–47 8–15 of the address field of 1st .dxe count block (no care)

48–55 16–23 of the address field of 1st .dxe count block (no care)

56–63 MSB of the address field of 1st .dxe count block (no care)

64–71 LSB (4) of the byte count field of 1st .dxe count block

72–79 8–15 (0) of the byte count field of 1st .dxe count block

80–87 16–23 (0) of the byte count field of 1st .dxe count block

88–95 MSB (0) of the byte count field of 1st .dxe count block

96–103 LSB of the flag word of 1st .dxe count block – ignore bit set

104–111 MSB of the flag word of 1st .dxe count block

112–119 LSB of the first 1st .dxe byte count

32
-B

it
 B

lo
ck

B
yt

e
C

ou
nt120–127 8–15 of the first 1st .dxe byte count

128–135 16–23 of the first 1st .dxe byte count

136–143 24–31 of the first 1st .dxe byte count

1-
0-

B
yt

e
B

lo
ck

 H
ea

de
r

144–151 LSB of the address field of the 1st data block in 1st .dxe

.d
xe

1
B

lo
ck

 D
at

a

152–159 8–15 of the address field of the 1st data block in 1st .dxe

160–167 16–23 of the address field of the 1st data block in 1st .dxe

168–175 MSB of the address field of the 1st data block in 1st .dxe

176–183 LSB of the byte count of the 1st data block in 1st .dxe

184–191 8–15 of the byte count of the 1st data block in 1st .dxe

192–199 16–23 of the byte count of the 1st data block in 1st .dxe

200–207 MSB of the byte count of the 1st data block in 1st .dxe

208–215 LSB of the flag word of the 1st block in 1st .dxe

216–223 MSB of the flag word of the 1st block in 1st .dxe

ADSP-BF53x/BF561 Processor Booting

3-42 VisualDSP++ 5.0 Loader and Utilities Manual

B
lo

ck
 D

at
a

224–231 Byte 3 of the 1st block of 1st .dxe

.d
xe

1
B

lo
ck

 D
at

a
(C

on
t’d

)

232–239 Byte 2 of the 1st block of 1st .dxe

240–247 Byte 1 of the 1st block of 1st .dxe

248–255 Byte 0 of the 1st block of 1st .dxe

256–263 Byte 7 of the 1st block of 1st .dxe

… And so on …

10
-B

yt
e

B
lo

ck

H
ea

de
r

… LSB of the address field of the nth data block in 1st .dxe

.d
xe

1
B

lo
ck

 D
at

a
(C

on
t’d

)

… 8–15 of the address field of the nth data block in 1st .dxe

… 16–23 of the address field of the nth data block in 1st .dxe

… MSB of the address field of the nth data block in 1st .dxe

… LSB of the byte count of the nth data block in 1st .dxe

… 8–15 of the byte count of the nth data block in 1st .dxe

… 16–23 of the byte count of the nth data block in 1st .dxe

… MSB of the byte count of the nth data block in 1st .dxe

… LSB of the flag word of the nth block in 1st .dxe

… MSB of the flag word of the nth block in 1st .dxe

B
lo

ck
 D

at
a

… And so on …
.d

xe
1

B
lo

ck
 D

at
a

(C
on

t’d
)

… Byte 1 of the nth block of 1st .dxe

… Byte 0 of the nth block of 1st .dxe

… LSB of the address field of 2nd .dxe count block (no care)

10
-B

yt
e

.d
xe

2
H

ea
de

r… 8–15 of the address field of 2nd .dxe count block (no care)

… And so on…

VisualDSP++ 5.0 Loader and Utilities Manual 3-43

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF561 Processor Initialization Blocks

The initialization block or a second-stage loader utility must be used to
initialize the SDRAM memory of the ADSP-BF561 processor before any
instructions or data are loaded into it.

The initialization blocks are identified by a bit in the flag word of the
10-byte block header. When the boot ROM encounters the initialization
blocks in the boot stream, it loads the blocks and executes them immedi-
ately. The initialization blocks must save and restore registers and return
to the boot ROM, so the boot ROM can load the rest of the blocks. For
more details, see
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Block Headers and Flags” on page 3-10.

Both the initialization block and second-stage loader utility can be used to
force the boot ROM to load a specific .dxe file from the external memory
device if the boot ROM stores multiple executable files. The initialization
block can manipulate the R0 or R3 register, which the boot ROM uses as
the external memory pointers for flash/PROM or SPI memory boot,
respectively.

After the processor returns from the execution of the initialization blocks,
the boot ROM continues to load blocks from the location specified in the
R0 or R3 register, which can be any .dxe file in the boot stream. This
option requires the starting locations of specific executables within exter-
nal memory. The R0 or R3 register must point to the 10-byte count header,
as illustrated in “ADSP-BF53x and ADSP-BF561 Multi-Application
(Multi-DXE) Management” on page -46.

ADSP-BF53x/BF561 Processor Booting

3-44 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF561 Dual-Core Application Management

A typical ADSP-BF561 dual-core application is separated into two execut-
able files: one executable file for each core. The default linker description
(.ldf) file for the ADSP-BF561 processor creates two separate executable
files (p0.dxe and p1.dxe) and some shared memory files (sml2.sm and
sml3.sm). By modifying the LDF, it is possible to create a dual-core
application that combines both cores into a single .dxe file. This is not
recommended unless the application is a simple assembly language pro-
gram which does not link any C run-time libraries. When using shared
memory and/or C run-time routines on both cores, it is best to generate a
separate .dxe file for each core. The loader utility combines the contents
of the shared memory files (sml2.sm, sml3.sm) only into the boot stream
generated from the .dxe file for core A (p0.dxe).

By default, The boot ROM loads only one single executable before the
ROM jumps to the start of core A instruction SRAM (0xFFA0 0000).
When two .dxe files are loaded, a second-stage loader is used. (Or, when
the -noSecondStageKernel switch is called, the loader utility combines the
two .dxe files into one.) If the he second-stage boot loader is used, it must
start at 0xFFA0 0000. The boot ROM loads and executes the second-stage
loader. A default second-stage loader is provided for each boot mode and
can be customized by the user.

Unlike the initialization blocks, the second-stage loader takes full control
over the boot process and never returns to the boot ROM.

The second-stage loader can use the .dxe byte count blocks to find spe-
cific .dxe files in external memory if a loader file includes the codes and
data from a number of .dxe files.

The default second-stage loader uses the last 1024 bytes of L2
memory. The area must be reserved during booting but can be
reallocated at runtime.

VisualDSP++ 5.0 Loader and Utilities Manual 3-45

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF561 Processor Memory Ranges

The on-chip boot ROM of the ADSP-BF561 processor can load a full
application to the various memories of both cores. Booting is allowed to
the following memory ranges. The boot ROM clears these memory ranges
before booting in a new application.

• Core A

• L1 instruction SRAM (0xFFA0 0000 – 0xFFA0 3FFF)

• L1 instruction cache/SRAM (0xFFA1 0000 – 0xFFA1 3FFF)

• L1 data bank A SRAM (0xFF80 0000 – 0xFF80 3FFF)

• L1 data bank A cache/SRAM (0xFF80 4000 – 0xFF80 7FFF)

• L1 data bank B SRAM (0xFF90 0000 – 0xFF90 3FFF)

• L1 data bank B cache/SRAM (0xFF90 4000 – 0xFF90 7FFF)

• Core B

• L1 instruction SRAM (0xFF60 0000 – 0xFF6 03FFF)

• L1 instruction cache/SRAM (0xFF61 0000 – 0xFF61 3FFF)

• L1 data bank A SRAM (0xFF40 0000 – 0xFF40 3FFF)

• L1 data bank A cache/SRAM (0xFF40 4000 – 0xFF40 7FFF)

• L1 data bank B SRAM (0xFF50 0000 – 0xFF50 3FFF)

• L1 data bank B cache/SRAM (0xFF50 4000 – 0xFF50 7FFF)

• 128K of shared L2 memory (FEB0 0000 – FEB1 FFFF)

• Four banks of configurable synchronous DRAM
(0x0000 0000 – (up to) 0x1FFF FFFF)

ADSP-BF53x/BF561 Processor Booting

3-46 VisualDSP++ 5.0 Loader and Utilities Manual

The boot ROM does not support booting to core A scratch mem-
ory (0xFFB0 0000 – 0xFFB0 0FFF) and to core B scratch memory
(0xFF70 0000–0xFF70 0FFF). Data that needs to be initialized prior
to runtime should not be placed in scratch memory.

ADSP-BF53x and ADSP-BF561 Multi-Application
(Multi-DXE) Management

This section does not apply to the ADSP-BF535 processors.

This section describes how to generate and boot more than one .dxe file
for the
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 and
ADSP-BF561 processors. For further information about the ADSP-BF561
processors, refer to “ADSP-BF561 Dual-Core Application Management”
on page -44.

The ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539
and ADSP-BF561 loader file structure and the silicon revision of 0.1 and
higher allow generation and booting of multiple .dxe files into a single
processor from external memory. As illustrated in Figure 3-20, each exe-
cutable file is preceded by a 4-byte count header, which is the number of
bytes within the executable, including headers. This information can be
used to boot a specific .dxe file into the processor. The 4-byte .dxe count
block is encapsulated within a 10-byte header to be compatible with the
silicon revision 0.0. For more information, see
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Block Headers and Flags” on page 3-10.

VisualDSP++ 5.0 Loader and Utilities Manual 3-47

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Booting multiple executables can be accomplished by one of the following
methods.

• Use the second-stage loader switch, -l userkernel.dxe. The
option allows you to use your own second-stage loader.

After the second-stage loader is booted into internal memory via

Figure 3-20. ADSP-BF531/BF32/BF33/BF534/ BF536/BF537/BF538/
BF539/BF561 Processors: Multi-Application Booting Streams

BLOCK 1

BLOCK 2 10-BYTE HEADER

BLOCK 3 10-BYTE HEADER

BLOCK 2

BLOCK 1 10-BYTE HEADER

-

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE1

.DXE 1 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 2

.DXE 2 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 3

.DXE 3 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 4

.......................

.......................

.DXE 1

.DXE 2

.DXE 3

.DXE 4

BLOCK 3

..............

ADSP-BF53x/BF561 Processor Booting

3-48 VisualDSP++ 5.0 Loader and Utilities Manual

the on-chip boot ROM, the loader has full control over the boot
process. Now the second-stage loader can use the .dxe byte counts
to boot in one or more .dxe files from external memory.

• Use the initialization block switch, -init filename.dxe, where
filename.dxe is the name of the executable file containing the ini-
tialization code. This option allows you to change the external
memory pointer and boot a specific .dxe file via the on-chip boot
ROM. On the ADSP-BF531 and ADSP-BF561 processors, the ini-
tialization code is an assembly written subroutine.

A sample initialization code is included in Listing 3-5. The R0 and R3 reg-
isters are used as external memory pointers by the on-chip boot ROM.
The R0 register is for flash/PROM boot, and R3 is for SPI memory boot.
Within the initialization block code, change the value of R0 or R3 to point
to the external memory location at which the specific application code
starts. After the processor returns from the initialization block code to the
on-chip boot ROM, the on-chip boot ROM continues to boot in bytes
from the location specified in the R0 or R3 register.

Listing 3-5. Initialization Block Code Example for Multiple .dxe Boot

#include <defBF532.h>

.SECTION program;

/*******Pre-Init Section***************************************/

[--SP] = ASTAT;

[--SP] = RETS;

[--SP] = (r7:0);

[--SP] = (p5:0);

[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;

[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/**/

/*******Init Code Section**************************************

VisualDSP++ 5.0 Loader and Utilities Manual 3-49

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

R0.H = High Address of DXE Location (R0 for flash/PROM boot,

R3 for SPI boot)

R0.L = Low Address of DXE Location. (R0 for flash/PROM boot,

R3 for SPI boot)

***/

/*******Post-Init Section**************************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

(p5:0) = [SP++];

/* MAKE SURE NOT TO RESTORE

R0 for flash/PROM Boot, R3 for SPI Boot */

(r7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

/**/

RTS;

ADSP-BF531/BF532/BF533/BF534/BF536/BF537
Processor Compression Support

The loader utility for the
ADSP-BF531/BF532/BF533/BF534/BF536/BF537 processors offers a
loader file (boot stream) compression mechanism known as zLib. The zLib
compression is supported by a third party dynamic link library,
zLib1.dll. Additional information about the library can be obtained from
the http://www.zlib.net Web site.

The zLib1.dll dynamic link library is included in VisualDSP++. The
library functions perform the boot stream compression and decompression
procedures when the appropriate options are selected for the loader utility.
The initialization executable files with built-in decompression mechanism
must perform the decompression on a compressed boot stream in a boot

ADSP-BF53x/BF561 Processor Booting

3-50 VisualDSP++ 5.0 Loader and Utilities Manual

process. The default initialization executable files with decompression
functions are included in VisualDSP++.

The loader -compression switch directs the loader utility to perform the
boot stream compression from the command line. VisualDSP++ also
offers a dedicated loader property page (see Figure 3-27) to manage the
compression from the IDDE.

The loader utility takes two steps to compress a boot stream. First, the
utility generates the boot stream in the conventional way (builds data
blocks), then applies the compression to the boot stream. The decompres-
sion initialization is the reversed process: the loader utility decompresses
the compressed stream first, then loads code and data into memory seg-
ments in the conventional way.

The loader utility compresses the boot stream on the .dxe-by-.dxe basis.
For each input .dxe file, the utility compresses the code and data together,
including all code and data from any associated overlay (.ovl) and shared
memory (.sm) files.

Compressed Streams

Figure 3-21 illustrates the basic structure of a loader file with compressed
streams.

Figure 3-21. Loader File with Compressed Streams

INITIALIZATION CODE
(KERNEL WITH DECOMPRESSION ENGINE)

 1ST .dxe COMPRESSED STREAM

 1ST .dxe UNCOMPRESSED STREAM

 2ND .dxe COMPRESSED STREAM

 2ND .dxe UNCOMPRESSED STREAM

 . . .

 . . .

VisualDSP++ 5.0 Loader and Utilities Manual 3-51

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

The initialization code is on the top of the loader file. The initialization
code is loaded into the processor first and is executed first when a boot
process starts. Once the initialization code is executed, the rest of the
stream is brought into the processor. The initialization code calls the
decompression routine to perform the decompression operation on the
stream, and then loads the decompressed stream into the processor’s mem-
ory in the same manner a conventional boot kernel does when it
encounters a compressed stream. Finally, the loader utility loads the
uncompressed boot stream in the conventional way.

The Figure 3-22 illustrates the structure of a compressed block.

Compressed Block Headers

A compressed stream always has a header, followed by the payload com-
pressed stream. Figure 3-23 shows the structure of a compressed block
header.

The first 16 bits of the compressed block header hold the padded byte
count of the compressed stream. The loader utility always pads the byte
count if the resulting compressed stream from the loader compression

Figure 3-22. Compressed Block

Figure 3-23. Compressed Block Header

 COMPRESSED BLOCK HEADER

 COMPRESSED STREAM

16 BITS:
PADDED BYTE COUNT

OF COMPRESSED STREAM

16 BITS:
SIZE OF USED COMPRESSION

WINDOW

32 BITS:
TOTAL BYTE COUNT OF THE COMPRESSED STREAM

INCLUDING PADDED BYTES

16 BITS:
COMPRESSED BLOCK FLAG WORD

ADSP-BF53x/BF561 Processor Booting

3-52 VisualDSP++ 5.0 Loader and Utilities Manual

engine is an odd number. The loader utility rounds up the byte count of
the compressed stream to be a next higher even number. This 16-bit value
is either 0x0000 or 0x0001.

The second 16 bits of the compressed block header hold the size of the
compression window, used by the loader compression engine. The value
range is 8–15 bits, with the default value of 9 bits. The compression win-
dow size specifies to the compression engine a number of bytes taken from
the window during the compression. The window size is the 2’s exponen-
tial value.

As mentioned before, the compression/decompression mechanism for
Blackfin processors utilizes the open-source lossless data-compression
library zLib1. The zLib1 deflate algorithm, in turn, is a combination of a
variation of Huffman coding and LZ77 compression algorithms.

LZ77 compression works by finding sequences of data that are repeated
within a sliding window. As expected, with a larger sliding window, the
compression algorithm is able to find more repeating sequences of data,
resulting in higher compression ratios. However, technical limitations of
the zLib1 decompression algorithm dictate that the window size of the
decompressor must be the same as the window size of the compressor. For
a more detailed technical explanation of the compression/decompression
implementation on a Blackfin processor, refer to the readme.txt file in the
<install_path>\Blackfin\ldr\zlib\src directory of VisualDSP++.

It is not recommended to use memory ranges used by the zlib ker-
nel. The memory ranges used by the kernel, such as heap and static
data, are defined in the LDF file, for example in
<install_path>\Blackfin\ldr\zlib\src\blkfin_zlib_init.ldf
of VisualDSP++ 5.0.

In the Blackfin implementation, the decompressor is part of the decom-
pression initialization files (see “Decompression Initialization Files” on
page 3-55). These files are built with a default decompressor window size
of 9 bits (512 bytes). Thus, if you choose a non-default sliding window

VisualDSP++ 5.0 Loader and Utilities Manual 3-53

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

size for the compressor by sliding the Compression Window Size slider
bar in the Compression tab (under Load in the Project Options dialog
box), then the decompressor must be re-built with the newly chosen win-
dow size. For details on re-building of the decompressor init project, refer
to the readme.txt file located in the <install_path>\Black-
fin\ldr\zlib\src VisualDSP++ directory.

While it is true that a larger compression window size results in better
compression ratios, note that there are counter factors that decrease the
overall effective compression ratios with increasing window sizes for
Blackfin’s implementation of zlib. This is because of the limited memory
resources on an embedded target, such as a Blackfin processor. For more
information, refer to the readme.txt file in the <install_path>\Black-
fin\ldr\zlib\src directory of VisualDSP++.

The last 16 bits of the compressed header is the flag word. The only valid
compression flag assignments are shown in Figure 3-24.

Uncompressed Streams

Following the compressed streams (see Figure 3-21), the loader file
includes the uncompressed streams. The uncompressed streams include
application codes, conflicted with the code in the initialization blocks in
the processor’s memory spaces, and a final block. The uncompressed
stream includes only a final block if there is no conflicted code. The final
block can have a zero byte count. The final block indicates the end of the
application to the initialization code.

Figure 3-24. Flag Word of Compressed Block Header

0

15 13 0

Compression Flag:
Bit 13: 0 = Not Compression Mode
 1 = Compression Block

1

ADSP-BF53x/BF561 Processor Booting

3-54 VisualDSP++ 5.0 Loader and Utilities Manual

Booting Compressed Streams

The Figure 3-25 shows the booting sequence of a loader file with com-
pressed streams. The loader file is pre-stored in the flash memory.

1. The boot ROM is pointing to the start of the flash memory. The
boot ROM reads the initialization code header and boots the ini-
tialization code.

2. The boot ROM jumps to and starts executing the initialization
code.

3. (A) The initialization code scans the header for any compressed
streams (see the compression flag structure in Figure 3-24). The
code decompresses the streams to the decompression window (in
parts) and runs the initialization kernel on the decompressed data.

(B) The initialization kernel boots the data into various memories
just as the boot ROM kernel does.

4. The initialization code sets the boot ROM to boot the uncom-
pressed blocks and the final block (FINAL flag is set in the block
header’s flag word). The boot ROM boots the final payload, over-
writing any areas used by the initialization code. Because the final
flag is set in the header, the boot ROM jumps to EVT1
(0xFFA0 0000 for the ADSP-BF533/BF534/BF536/BF537/BF538

VisualDSP++ 5.0 Loader and Utilities Manual 3-55

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

and ADSP-BF539 processors; 0xFFA0 8000 for the
ADSP-BF531/BF532 processors) to start application code
execution.

Decompression Initialization Files

As stated before, a decompression initialization .dxe file must be used
when building a loader file with compressed streams. The decompression
initialization .dxe file has a built-in decompression engine to decompress
the compressed streams from the loader file.

The decompression initialization file can be specified from the loader
property page or from the loader command line via the -init filename.dxe
switch. VisualDSP++ includes the default decompression initialization

Figure 3-25. ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Com-
pressed Stream: Booting Sequence

INIT CODE HEADER

 INIT CODE
PAYLOAD

(KERNEL AND
DECOMPRESSION

ENGINE)

COMPRESSED
HEADER

COMPRESSED
IMAGE PAYLOAD

FINAL SECTION
HEADER

FINAL PAYLOAD
(OVERWRITES LOCA-
TION FROM WHICH

INIT CODE EXE-
CUTES)

FLASH MEMORY

INITIALIZATION
KERNEL AND

 DECOMPRESSION
ENGINE

DECOMPRESSION
WINDOW

BOOT ROM BOOTS
FINAL PAYLOAD, OVER-
WRITING INITIALIATION

KERNEL AND
DECOMPRESSION WINDOW
IN L1, THEN JUMPS TO EVT1

L1 MEMORY

DECOMPRESSED
STREAM IN PARTS
BOOTS INTO VARI-

OUS MEMORIES
THROUGH INIT

1

2

3A

3B

4

BOOT ROM

ADSP-BF53x/BF561 Processor Loader Guide

3-56 VisualDSP++ 5.0 Loader and Utilities Manual

files, which the loader utility uses if no other initialization file is specified.
The default decompression initialization file is stored in the
<install_path>\Blackfin\ldr\zlib VisualDSP++ directory. The default
decompression initialization file is built for the compression window size
of 9 bits.

To use a different compression window size, build your own decompres-
sion initialization file. For details, refer to the readme.txt file located in
the <install_path>\Blackfin\ldr\zlib\src directory. The size can be
changed through the loader property page or the -compressWS # com-
mand-line switch. The valid range for the window size is [8, 15] bits.

ADSP-BF53x/BF561 Processor Loader
Guide

Loader utility operations depend on the options, which control how the
utility processes executable files. You select features such as boot modes,
boot kernels, and output file formats via the options. The options are
specified on the loader utility’s command line or via the Load page of the
Project Options dialog box in the VisualDSP++ environment. The Load
page consists of multiple panes. When you open the Load page, the
default loader settings for the selected processor are set already.

Option settings on the Load page correspond to switches displayed
on the command line.

These sections describe how to produce a bootable or non-bootable loader
file:

• “Using Blackfin Loader Command Line” on page 3-57

• “Using VisualDSP++ Loader” on page 3-70

• “Using VisualDSP++ Compression” on page 3-73

VisualDSP++ 5.0 Loader and Utilities Manual 3-57

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

• “Using VisualDSP++ Second-Stage Loader for ADSP-BF535 Pro-
cessors” on page 3-74

• “Using VisualDSP++ ROM Splitter” on page 3-76

Using Blackfin Loader Command Line
The ADSP-BF5xx Blackfin loader utility uses the following command-line
syntax.

For a single input file:

elfloader inputfile -proc processor [-switch …]

For multiple input files:

elfloader inputfile1 inputfile2 … -proc processor [-switch …]

where:

• inputfile—Name of the executable (.dxe) file to be processed
into a single boot-loadable or non-bootable file. An input file name
can include the drive and directory. For multiprocessor or
multi-input systems, specify multiple input .dxe files. Put the
input file names in the order in which you want the loader utility
to process the files. Enclose long file names within straight quotes,
“long file name”.

• -proc processor—Part number of the processor (for example,
-proc ADSP-BF531) for which the loadable file is built. Provide a
processor part number for every input .dxe if designing multipro-
cessor systems.

• -switch …—One or more optional switches to process. Switches
select operations and modes for the loader utility.

ADSP-BF53x/BF561 Processor Loader Guide

3-58 VisualDSP++ 5.0 Loader and Utilities Manual

Command-line switches may be placed on the command line in
any order, except the order of input files for a multi-input system.
For a multi-input system, the loader utility processes the input files
in the order presented on the command line.

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-17.

File Extensions

Some loader switches take a file name as an optional parameter. Table 3-9
lists the expected file types, names, and extensions.

In some cases the loader utility expects the overlay input files with the file
extension of .ovl, shared memory input files with the extension of .sm or
both, but does not expect those files to appear on a command line or on
the Load property page. The loader utility finds these files in the directory
of the associated .dxe files, in the current working directory, or in the
directory specified in the .ldf file.

Table 3-9. File Extensions

Extension File Description

.dxe Loader input files, boot kernel files, and initialization files

.ldr Loader output file

.knl Loader output files containing kernel code only when two output files are selected

VisualDSP++ 5.0 Loader and Utilities Manual 3-59

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Blackfin Loader Command-Line Switches

A summary of the Blackfin loader command-line switches appears in
Table 3-10.

Table 3-10. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

-b prom
-b flash
-b spi
-b spislave
-b NAND
-b UART
-b TWI
-b FIFO

The -b switch specifies the boot mode and directs the loader utility
to prepare a boot-loadable file for the specified boot mode.

If -b does not appear on the command line, the default is
-b flash.

Other valid boot modes include:
• SPI (SPImaster) – for all processors described in this chapter
• SPIslave – for the ADSP-BF531/2/3/4/6/7/9 and ADSP-BF561

processors
• UART – for the ADSP-BF534/6/7 processors
• TWI (TWI Master) – for the ADSP-BF534/6/7 processors
• FIFO – for the ADSP-534/6/7 processors of silicon revision 0.4

or newer only.

-baudrate # The -baudrate # switch accepts a baud rate for SPI booting only.
Valid baud rates and corresponding values (#) are:
• 500K – 500 kHz, the default value
• 1M – 1 MHz
• 2M – 2 MHz
Boot kernel loading supports an SPI baud rate up to 2 MHz.

The switch applies to the ADSP-BF535 processors only.

-compression The -compression switch directs the loader utility to compress the
boot stream; see
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor
Compression Support” on page 3-49. Either a default or user ini-
tialization .dxe file with decompression code must be provided for
-compression.

This switch is for flash/PROM boot modes only and does not apply
to the ADSP-BF535, ADSP-BF538, ADSP-BF539, or
ADSP-BF561 processors.

ADSP-BF53x/BF561 Processor Loader Guide

3-60 VisualDSP++ 5.0 Loader and Utilities Manual

-compressWS # The -compressWS # switch specifies a compression window size in
bytes. The number is a 2’s exponential value to be used by the com-
pression engine. The valid values are [8,15] bits, with the default
of 9 bits.

This switch is for flash/PROM boot modes only and does not apply
to the ADSP-BF535, ADSP-BF538, ADSP-BF539, or
ADSP-BF561 processors.

-dmawidth # The -dmawidth {8|16} switch specifies a DMA width (in bits) to
the loader utility.

For FIFO boot mode, 16 is the only DMA width. For other boot
modes, all DMA widths are valid with the default of eight.

The switch does not apply to the ADSP-BF535 or ADSP-BF561
processors.

-enc dll_filename The -enc dll_filename switch encrypts the data stream from the
application input .dxe files with the encryption algorithms in the
dynamic library file dll_filename. If the dll_filename parame-
ter does not appear on the command line, the encryption algorithm
from the default ADI’s file is used.

-f hex
-f ASCII
-f binary
-f include

The -f {hex|ASCII|binary|include} switch specifies the for-
mat of a boot-loadable file (Intel hex-32, ASCII, binary, include). If
the -f switch does not appear on the command line, the default
boot mode format is hex for flash/PROM and ASCII for SPI, SPI
slave, UART, and TWI.

-ghc # The -ghc # switch specifies a 4-bit value (global header cookie) for
bits 31–28 of the global header (see Table 3-7 on page 3-39).

The switch applies to the ADSP-BF561 processors only.

-h or -help The -h[elp] switch invokes the command-line help, outputs a list
of command-line switches to standard output, and exits. By default,
the -h switch alone provides help for the loader driver. To obtain a
help screen for your target Blackfin processor, add the -proc switch
to the command line. For example: type
elfloader -proc ADSP-BF535 -h to obtain help for the
ADSP-BF535 processor.

Table 3-10. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 3-61

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

-HoldTime # The -HoldTime # switch allows the loader utility to specify a num-
ber of hold time cycles for flash/PROM boot. The valid values (#)
are from 0 through 3. The default value is 3.

The switch applies to the ADSP-BF535 processors only.

-init filename.dxe The -init filename.dxe switch directs the loader utility to
include the initialization code from the named file. The loader util-
ity places the code from the initialization sections of the specified
.dxe file in the boot stream. The kernel loads the code and then
calls it. It is the responsibility of the code to save/restore state/regis-
ters and then perform an RTS back to the kernel.

The switch does not apply to the ADSP-BF535 processors.

-kb prom
-kb flash
-kb spi
-kb spislave
-kb NAND
-kb UART
-kb TWI
-kb FIFO

The -kb switch specifies the boot mode for the boot kernel output
file if you generate two output files from the loader utility: one for
the boot kernel and another for user application code.

The -kb switch must be used in conjunction with the -o2 switch.

If the -kb switch is absent from the command line, the loader util-
ity generates the file for the boot kernel in the same boot mode as
used to output the user application program.
Valid boot modes include:
• PROM/FLASH – the default boot mode for all processors

described in this chapter
• SPI (SPImaster) – for all processors described in this chapter
• SPIslave – for the ADSP-BF531/2/3/4/6/7/9 and ADSP-BF561

processors
• UART – for the ADSP-BF534/6/7 processors
• TWI (TWI Master) – for the ADSP-BF534/6/7 processors
• FIFO – for the ADSP-534/6/7 processors of silicon revision 0.4

or newer only.

Table 3-10. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

ADSP-BF53x/BF561 Processor Loader Guide

3-62 VisualDSP++ 5.0 Loader and Utilities Manual

-kf hex
-kf ascii
-kf binary
-kf include

The -kf {hex|asci|binary|include} switch specifies the out-
put file format (hex, ASCII, binary, or include) for the boot kernel
if you output two files from the loader utility: one for the boot ker-
nel and one for user application code.

The -kf switch must be used in conjunction with the -o2 switch.

If the -kf switch is absent from the command line, the loader util-
ity generates the file for the boot kernel in the same format as for
the user application program.

-kenc dll_filename The -kenc dll_filename switch specifies the user encryption
dynamic library file for the encryption of the data stream from the
kernel file. If the filename parameter does not appear on the com-
mand line, the encryption algorithm from the default ADI’s file is
used.

-kp # The -kp # switch specifies a hex flash/PROM output start address
for the kernel code. A valid value is between 0x0 and 0xFFFFFFFF.
The specified value is ignored when no kernel or/and initialization
code is included in the loader file.

-kWidth # The -kWidth # switch specifies the width of the boot kernel output
file when there are two output files: one for the boot kernel and one
for user application code.
Valid values are:
• Eight or 16 for PROM or flash boot kernel
• 16 for FIFO boot kernel
• Eight for SPI and other boot kernels
If this switch is absent from the command line, the default file
width is:
• the -width parameter for flash/PROM boot mode
• 16 for FIFO boot mode
• Eight when booting from SPI and other boot modes

The -kWidth # switch must be used in conjunction with the -o2
switch.

Table 3-10. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 3-63

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

-l userkernel.dxe The -l userkernel.dxe switch specifies the user boot kernel file.
The loader utilizes the user-specified kernel and ignores the default
boot kernel if there is one.

Currently, only the ADSP-BF535 processors have default kernels.

-M The -M switch generates make dependencies only, no output file is
generated.

-maskaddr # The -maskaddr # switch masks all EPROM address bits above or
equal to #. For example, -maskaddr 29 (default) masks all the bits
above and including A29 (ANDed by 0x1FFF FFFF). For example,
0x2000 0000 becomes 0x0000 0000. The valid #s are integers
0 through 32, but based on your specific input file, the value can be
within a subset of [0, 32].

The -maskaddr # switch requires -romsplitter and affects the
ROM section address only.

-MaxBlockSize # The -MaxBlockSize # switch specifies the maximum block byte
count, which must be a multiple of 16.

-MaxZeroFillBlockSize # The -MaxZeroFillBlockSize # switch specifies the maximum
block byte count for zero-filled blocks. The valid values are from
0x0 to 0xFFFFFFF0, and the default value matches
-MaxBlockSize #.

-MM The -MM switch generates make dependencies while producing the
output files.

-Mo filename The -Mo filename switch writes make dependencies to the named
file. Use the -Mo switch with either -M or -MM. If -Mo is not present,
the default is a <stdout> display.

-Mt filename The -Mt filename switch specifies the make dependencies target
output file. Use the -Mt switch with either -M or -MM. If -Mt is not
present, the default is the name of the input file with an .ldr
extension.

Table 3-10. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

ADSP-BF53x/BF561 Processor Loader Guide

3-64 VisualDSP++ 5.0 Loader and Utilities Manual

-no2kernel The -no2kernel switch produces the output file without the boot
kernel but uses the boot-strap code from the internal boot ROM.
The boot stream generated by the loader utility is different from the
one generated by the boot kernel.

The switch applies to the ADSP-BF535 processors only.

-noFinalBlock The -noFinalBlock switch directs the loader utility not to make a
special final block for TWI boot.

The switch applies to the ADSP-BF537 processors only.

-noFinalTag The -noFinalTag switch directs the loader utility not to set the
final block tag for the first .dxe file. As a result, the boot process
continues with code from the second .dxe file, following the first
file.

The switch applies to the ADSP-BF56x processors only.

-noInitCode The -noInitCode switch directs the loader utility not to expect an
initialization input file even though an external memory section is
present in the input .dxe file.

The switch applies to the ADSP-BF531/BF532/BF533,
ADSP-BF534/BF536/BF537/BF538/BF539 processors only.

-noSecondStageKernel The -noSecondStageKernel switch directs the loader utility not
to include a default second-stage kernel into the loader stream.

The switch applies to the ADSP-BF56x processors only.

-o filename The -o filename switch directs the loader utility to use the speci-
fied file as the name of the loader utility’s output file. If the file-
name is absent, the default name is the root name of the input file
with an .ldr extension.

Table 3-10. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 3-65

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

-o2 The -o2 switch produces two output files: one for the init block (if
present) and boot kernel and one for user application code.
To have a different format, boot mode, or output width from the
application code output file, use the -kb -kf -kwidth switches to
specify the boot mode, the boot format, and the boot width for the
output kernel file, respectively.

Do not combine the -o2 switch with -nokernel on the
ADSP-BF535 processors.

Combine -o2 with -l filename and/or -init filename on the
ADSP-BF531/BF532/BF533,
ADSP-BF534/BF536/BF537/BF538/BF539, ADSP-BF561 proces-
sors.

-p # The -p # switch specifies a hex flash/PROM output start address for
the application code. A valid value is between 0x0 and
0xFFFFFFFF. A specified value must be greater than that specified
by -kp if both kernel and/or initialization and application code are
in the same output file (a single output file).

-pFlag #
-pFlag PF#
-pFlag PG#
-pFlag PH#

The -pflag {#|PF#|PG#|PH#} switch specifies a 4-bit hex value
for a strobe (programmable flag) or for one of the ports: F, G, or H.
There is no default value. The value is dynamic and varies with pro-
cessor, silicon revision, boot mode, and width. The loader generates
warnings for illegal combinations.
Table 3-11, Table 3-12, and Table 3-11 show the valid values for
the -pFlag switch.

The switch applies to the ADSP-BF531/BF532/BF533/BF534,
ADSP-BF536/BF537/BF538/BF539, and ADSP-BF561 processors
only.

-proc processor The -proc processor switch specifies the target processor.
The processor can be one of the following: ADSP-BF531,
ADSP-BF532, ADSP-BF533, ADSP-BF534, ADSP-BF535,
ADSP-BF536, ADSP-BF537, ADSP-BF538, ADSP-BF539,
ADSP-BF561.

Table 3-10. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

ADSP-BF53x/BF561 Processor Loader Guide

3-66 VisualDSP++ 5.0 Loader and Utilities Manual

-romsplitter The -romsplitter switch creates a non-bootable image only. This
switch overwrites the -b switch and any other switch bounded by
the boot mode.
In the .ldf file, declare memory segments to be ‘split’ as type ROM.
The splitter skips RAM segments, resulting in an empty file if all seg-
ments are declared as RAM. The -romsplitter switch supports hex
and ASCII formats.

-ShowEncryptionMessage The -ShowEncryptionMessage switch displays a message returned
from the encryption function.

-si-revision #|none|any The -si-revision {#|none|any} switch provides a silicon revi-
sion of the specified processor.
The switch parameter represents a silicon revision of the processor
specified by the -proc processor switch. The parameter takes one
of three forms:
• The none value indicates that the VisualDSP++ ignores silicon

errata.
• The #.# value indicates one or more decimal digits, followed by

a point, followed by one or two decimal digits. Examples of revi-
sions are: 0.0 = 0.5 for the ADSP-BF53x/BF561 processors and
0.2, 1.0 - 1.3 for the ADSP-BF535 processors.

• The any value indicates that VisualDSP++ produces an output
file that can be run at any silicon revision.

The switch generates either a warning about any potential anoma-
lous conditions or an error if any anomalous conditions occur.

In the absence of the silicon revision switch, the loader utility
selects the greatest silicon revision it is aware of, if any.

-v The -v switch directs the loader utility to output verbose loader
messages and status information as the loader processes files.

-waits # The -waits # switch specifies the number of wait states for external
access. Valid inputs are 0 through 15. Default is 15. Wait states
apply to the flash/PROM boot mode only.

The switch applies to the ADSP-BF535 processors only.

Table 3-10. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 3-67

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

-width # The -width # switch specifies the loader output file’s width in bits.
Valid values are eight and 16, depending on the boot mode. The
default value is 16 for FIFO boot mode and eight for all other
boot modes.
On the ADSP-BF535 processors, the switch has no effect on boot
kernel code processing. The loader utility processes the kernel in
eight-bit widths regardless of the output width selection.
• For flash/PROM booting, the size of the output file depends on

the -width # switch.
• For FIFO booting, the only available width is 16.
• For SPI booting, the size of the output .ldr file is the same for

both -width 8 and -width 16. The only difference is the
header information.

-ZeroPadForced The -ZeroPadForced switch forces the loader utility to pad each
data byte with a zero byte for 16-bit output. Use this switch only if
your system requires zero padding in a loader file. Use this switch
with caution: arbitrating pad data with zeros can cause the loader
file to fail. The loader utility performs default zero padding auto-
matically in general.

The switch applies to the ADSP-BF531/BF532/BF533/BF534,
ADSP-BF536/BF537/BF538/BF539 processors only.

Table 3-11. -pFlag Values for ADSP-BF531/BF532/BF533 Processors1

Silicon Revision 0.0–0.2 0.3–0.5

Width 8 16 8 16

Flash boot mode NONE NONE NONE NONE

SPI boot mode NONE NONE

SPI slave boot mode 1–15
PF1–15

1 The ADSP-BF531/BF532/BF533 processors always have the RESVECT bit (bit 2 in the block
header flag word) cleared.

Table 3-10. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

ADSP-BF53x/BF561 Processor Loader Guide

3-68 VisualDSP++ 5.0 Loader and Utilities Manual

Table 3-12. -pFlag Values for ADSP-BF534/BF536/BF5371

Silicon Revision 0.0 0.1–0.2 0.3

Width 8 16 8 16 8 16

Flash boot mode NONE NONE NONE
PF0–15
PG0–15
PH0–15

NONE
PF0–15
PG0–15
PH0–15

NONE
PF0–15
PG0–15
PH0–15

NONE
PF0–15
PG0–15
PH0–15

SPI boot mode NONE NONE
PF0–9
PF15
PG0–15
PH0–15

NONE
PF0–9
PF15
PG0–15
PH0–15

SPI slave boot
mode

1–15
PF1–15

NONE
PF0–10
PF15
PG0–15
PH0–15

NONE
PF0–10
PF15
PG0–15
PH0–15

TWI boot mode NONE NONE
PF0–15
PG0–15
PH0–15

NONE
PF0–15
PG0–15
PH0–15

TWI slave boot
mode

NONE NONE
PF0–15
PG0–15
PH0–15

NONE
PF0–15
PG0–15
PH0–15

UART boot mode 2–15
PF2–15

NONE
PF2–15
PG0–15
PH0–15

NONE
PF2–15
PG0–15
PH0–15

FIFO boot mode NONE
PF0
PF2–15
PG0–15
PH0–15

1 The ADSP-BF534/BF536/BF537 processors always have the RESVECT bit (bit 2 in the block
header flag word) set.

VisualDSP++ 5.0 Loader and Utilities Manual 3-69

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Table 3-13. -pFlag Values for ADSP-BF538/BF539 Processors1

Silicon Revision 0.0–0.3

Width 8 16

Flash boot mode NONE NONE

SPI boot mode NONE

SPI slave boot mode 1–15
PF1–15

1 The ADSP-BF538/BF539 processors always have the RESVECT bit (bit 2 in the
block header flag word) set.

ADSP-BF53x/BF561 Processor Loader Guide

3-70 VisualDSP++ 5.0 Loader and Utilities Manual

Using VisualDSP++ Loader
After selecting a Loader file (.ldr) as the project output type for your
application on the Application Settings page in the VisualDSP++ Project
Wizard, modify the default load settings.

The Load control in the Project tree control consists of multiple pages.
When you open the Load: Options page (also called loader property
page), view the default load settings for the selected processor. As an
example, Figure 3-26 shows the ADSP-BF535 processor’s default load set-
tings for PROM booting. The dialog box options are equivalent to the
command-line switches. Refer to “Blackfin Loader Command-Line
Switches” on page 3-59 for more information about the switches.

Figure 3-26. Project: Load: Options Page for ADSP-BF535 Processors

VisualDSP++ 5.0 Loader and Utilities Manual 3-71

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Using the page controls, select or modify the load settings. Table 3-14
describes each load control and corresponding setting. When satisfied
with the settings, click OK to complete the load setup.

Table 3-14. Base Load Page Settings for ADSP-BF53x/BF561 Processors

Setting Description

Load Selections for the loader utility. The options are:
• Options – default boot options (this section)
• Compression – specification for zLib compression; applies to the

ADSP-BF531/BF532/BF533/BF534, ADSP-BF536, and ADSP-BF537
processors (see page -49). For the ADSP-BF535 processor based proj-
ects, the compression is not available.

• Kernel – specification for a second-stage loader. Can be used to over-
ride the default boot kernel if there is one by default, as on the
ADSP-BF535 processors (see page -74).

• Splitter – specification for the no-boot mode (see page -76)

If you do not use the boot kernel for the ADSP-BF535 processors, the
Kernel page appears with all kernel option fields grayed out. The loader
utility does not search for the boot kernel if you boot from the on-chip
ROM by setting the -no2kernel command-line switch as described
on page 3-64.
For the ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539/BF561 processors, which do not have software boot kernels by
default, select the boot kernel to use one.

Boot Mode Specifies flash/PROM, SPI, SPI slave, NAND, PPI, UART, TWI, and
FIFO as a boot source.

Boot Format Specifies Intel hex, ASCII, include, or binary format.

Output Width Specifies eight or 16 bits.
If BMODE = 01 or 001 and flash/PROM is 16-bit wide, the 16-bit option
must be selected.

Wait state Specifies the number of wait states for external access (0–15).
The selection is active for the ADSP-BF535 processors. For the
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539/
BF561 processors, the field is grayed out.

ADSP-BF53x/BF561 Processor Loader Guide

3-72 VisualDSP++ 5.0 Loader and Utilities Manual

Baud rate Specifies a baud rate for SPI booting (500 kHz, 1 MHz, and 2 MHz).
The selection is active for the ADSP-BF535 processors. For the
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539/
BF561 processors, the field is grayed out.

Hold time Specifies the number of the hold time cycles for flash/PROM boot (0–3).
The selection is active for the ADSP-BF535 processors. For the
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539/
BF561 processors, the field is grayed out.

Programmable flag Same as the -pFlag command-line switch—selects a programmable flag
number (0–15) for a strobe or for a port. The box is active for the
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 pro-
cessors. Valid values are listed in Table 3-11 through Table 3-13. The
NONE option also is available; when chosen, no -pFlag switch appears on
the command line.
Verify the programmable flag setting whenever the processor, silicon revi-
sion, boot mode, or width is changed.

Use default start

address

Specifies the default flash/PROM output start address in hex format for
the application code.

Start address Specifies a flash/PROM output start address in hex format for the applica-
tion code.

Verbose Generates status information as the loader utility processes the files.

Initialization file Directs the loader utility to include the initialization file (init code).

Use default decom-
pression INIT file

Directs the loader utility to include the default decompression initializa-
tion file (init code). The initialization file selection is active for the
ADSP-BF531/BF532/BF533, and ADSP-BF561 processors. For the
ADSP-BF535 processors, the field is grayed out.

Output file Names the loader utility’s output file.

Additional options Specifies additional loader switches. You can specify additional input files
for a multi-input system. Type the input file names with the paths if the
files are not in the current working directory, separate two file names with
a space in order for the loader utility to retrieve the files.
Note: The loader utility processes the input files in the order in which the
files appear on the command line, generated from the property page.

Table 3-14. Base Load Page Settings for ADSP-BF53x/BF561 Processors

Setting Description

VisualDSP++ 5.0 Loader and Utilities Manual 3-73

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Using VisualDSP++ Compression
If you develop an ADSP-BF531/BF532/BF533/BF534/BF536 or
ADSP-BF537 processor based application, you can select Compression
under Load in the Project Options tree control to set parameters for zLib
compression.

To enable compression, select Enable Compression. You can select the
Compression window size (~2**N), Retain kernel after boot, and Com-
press Overlays options. The dialog box options are equivalent to
command-line switches. See
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compres-
sion Support” on page 3-49 for more information.

Figure 3-27. Project: Load: Compression Page for ADSP-BF537 Proces-
sors

ADSP-BF53x/BF561 Processor Loader Guide

3-74 VisualDSP++ 5.0 Loader and Utilities Manual

Using VisualDSP++ Second-Stage Loader for
ADSP-BF535 Processors

If you use a second-stage loader, select Kernel under Load in the Project
Options tree control. The page shows the default settings for a loader file
that includes a second-stage loader.

Unless you develop an application for the ADSP-BF535 processor, most
of the options on the Kernel page are grayed out. Figure 3-28 shows a
sample Kernel page with options set for an ADSP-BF535 Blackfin
processor.

Figure 3-28. Project: Load: Kernel Page for ADSP-BF535 Processors

VisualDSP++ 5.0 Loader and Utilities Manual 3-75

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

To create a loader file which includes a second-stage loader:

1. Select Options (under Load) to set up base load options (see
“Using VisualDSP++ Loader” on page 3-70).

2. Select Kernel (under Load) to set up the second-stage loader
options (Figure 3-28).

3. On the Kernel page, select Use boot kernel.

4. In Kernel file, enter the name of the second-stage loader file
(.dxe).

The Use default kernel option is available for the ADSP-BF535
and grayed out for the ADSP-BF531/BF532/BF533/
BF534/BF536/BF537/BF538/BF539/BF561 processors. In case of
an ADSP-BF535 processor, choose between the default or user sec-
ond-stage loader file. The following default second-stage loaders
are currently available for the ADSP-BF535 processors.

For the ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/BF539/BF561 processors, no second-stage
loaders are required; hence, no default kernel files are provided.
You can supply your own second-stage loader file if so desired
(steps 3 and 4).

5. To produce two output files, select the Output kernel in separate
file check box. This option allows to boot the second-stage loader
with an initialization code (if any) from one source and the appli-

Boot Mode Second -Stage Loader File

Eight-bit flash/PROM 535_prom8.dxe

16-bit flash/PROM 535_prom16.dxe

SPI 535_spi.dxe

ADSP-BF53x/BF561 Processor Loader Guide

3-76 VisualDSP++ 5.0 Loader and Utilities Manual

cation code from another source. You can specify the kernel output
file options, such as the Boot Mode (source), Boot Format, and
Output Width.

6. Select Change hex output kernel code start address to specify the
Start address in hex format for the second-stage loader code. This
option allows you to place the second-stage loader file at a specific
location within the flash/PROM.

7. Click OK to complete the loader setup.

Using VisualDSP++ ROM Splitter
Unlike the loader utility, the splitter does not format the application data
when transforming a .dxe file to an .ldr file. It emits raw data only.
Whether data and/or instruction segments are processed by the loader or
by the splitter utility depends upon the LDF’s TYPE() command. Sections
declared with TYPE(RAM) are consumed by the loader utility, and sections
declared by TYPE(ROM) are consumed by the splitter.

Figure 3-29 shows a sample Load: Splitter page with ROM splitter
options. With the Enable ROM splitter box unchecked, only TYPE(RAM)
sections are processed and all TYPE(ROM) segments are ignored by the
loader utility. If the box is checked, TYPE(RAM) sections are ignored, and
TYPE(ROM) sections are processed by the splitter utility.

VisualDSP++ 5.0 Loader and Utilities Manual 3-77

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

The Mask Address field masks all EPROM address bits above or equal to
the number specified. For example, Mask Address = 29 (default) masks all
bits above and including A29 (ANDed by 0x1FFF FFFF). Thus, 0x2000 0000
becomes 0x0000 0000. The valid numbers are integers 0 through 32 but,
based on your specific input file, the value can be within a subset of
[0, 32].

ADSP-BF535 and ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/BF539 Processor No-Boot Mode

The hardware settings of BMODE = 000 for the ADSP-BF535 processors or
BMODE = 00 for ADSP-BF531, ADSP-BF532, and ADSP-BF533 proces-
sors select the no-boot option. In this mode of operation, the on-chip
boot kernel is bypassed after reset, and the processor starts fetching and

Figure 3-29. Project: Splitter Page for ADSP-BF533 Processors

ADSP-BF53x/BF561 Processor Loader Guide

3-78 VisualDSP++ 5.0 Loader and Utilities Manual

executing instructions from address 0x2000 0000 in the asynchronous
memory bank 0. The processor assumes 16-bit memory with valid instruc-
tions at that location.

To create a proper .ldr file that can be burned into either a parallel flash
or EPROM device, you must modify the standard LDF file in order for
the reset vector to be located accordingly. The following code fragments
(Listing 3-6 and Listing 3-7) illustrate the required modifications in case
of an ADSP-BF533 processor.

Listing 3-6. Section Assignment (LDF File) Example

MEMORY

{

/* Off-chip Instruction ROM in Async Bank 0 */

MEM_PROGRAM_ROM { TYPE(ROM) START(0x20000000) END(0x2009FFFF)

WIDTH(8) }

/* Off-chip constant data in Async Bank 0 */

MEM_DATA_ROM { TYPE(ROM) START(0x200A0000) END(0x200FFFFF)

WIDTH(8) }

/* On-chip SRAM data, is not booted automatically */

MEM_DATA_RAM { TYPE(RAM) START(0xFF903000) END(0xFF907FFF)

WIDTH(8) }

Listing 3-7. ROM Segment Definitions (LDF File) Example

PROCESSOR p0

{

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS

{

program_rom

{

VisualDSP++ 5.0 Loader and Utilities Manual 3-79

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_code))

} >MEM_PROGRAM_ROM

data_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_data))

} >MEM_DATA_ROM

data_sram

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(ram_data))

} >MEM_DATA_RAM

With the LDF file modified this way, the source files can now take advan-
tage of the newly-introduced sections, as in Listing 3-8.

Listing 3-8. Section Handling (Source File) Example

.SECTION rom_code;

_reset_vector: l0 = 0;

1 = 0;

l2 = 0;

l3 = 0;

/* continue with setup and application code */

/* . . . */

.SECTION rom_data;

.VAR myconst x = 0xdeadbeef;

/* . . . */

.SECTION ram_data;

.VAR myvar y; /* note that y cannot be initialized automatically

*/

ADSP-BF53x/BF561 Processor Loader Guide

3-80 VisualDSP++ 5.0 Loader and Utilities Manual

VisualDSP++ 5.0 Loader and Utilities Manual 4-1

4 LOADER FOR
ADSP-2106X/21160 SHARC
PROCESSORS

This chapter explains how the loader utility (elfloader.exe) is used to
convert executable (.dxe) files into boot-loadable files for the
ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L, and
ADSP-21160 SHARC processors.

Refer to “Introduction” on page 1-1 for the loader utility overview; the
introductory material applies to all processor families. Refer to “Loader for
ADSP-21161 SHARC Processors” on page 5-1 for information about the
ADSP-21161 processors. Refer to “Loader for
ADSP-2126x/2136x/2137x/2146x/2147x/2148x SHARC Processors” on
page 6-1 for information about the ADSP-2126x and ADSP-2136x
processors.

Loader operations specific to the ADSP-2106x/21160 SHARC processors
are detailed in the following sections.

• “ADSP-2106x/21160 Processor Booting” on page 4-2
Provides general information about various booting modes, includ-
ing information about boot kernels.

• “ADSP-2106x/21160 Processor Loader Guide” on page 4-25
Provides reference information about the loader utility’s graphical
user interface, command-line syntax, and switches.

ADSP-2106x/21160 Processor Booting

4-2 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-2106x/21160 Processor Booting
The ADSP-2106x/21160 processors support three boot modes: EPROM,
host, link port, and no-boot (see Table 4-3 and Table 4-4 on page 4-5).
Boot-loadable files for these modes pack boot data into 48-bit instructions
and use an appropriate DMA channel of the processor’s DMA controller
to boot-load the instructions.

The ADSP-2106x processors use DMA channel 6 (DMAC6) for boot-
ing. The ADSP-21160 processors use DMAC8 for link port booting
and DMAC10 for the host and EPROM booting.

• When booting from an EPROM through the external port, the
ADSP-2106x/21160 processor reads boot data from an 8-bit exter-
nal EPROM.

• When booting from a host processor through the external port, the
ADSP-2106x/21160 processor accepts boot data from a 8- or
16-bit host microprocessor.

• When booting through the link port, the ADSP-2106x/21160 pro-
cessor receives boot data as 4-bit wide data in link buffer 4.

• In no-boot mode, the ADSP-2106x/21160 processor begins exe-
cuting instructions from external memory.

Software developers who use the loader utility should be familiar with the
following operations.

• “Power-Up Booting Process” on page 4-3

• “Boot Mode Selection” on page 4-5

• “ADSP-2106x/21160 Boot Modes” on page 4-6

• “ADSP-2106x/21160 Boot Kernels” on page 4-16

• “ADSP-2106x/21160 Interrupt Vector Table” on page 4-22

VisualDSP++ 5.0 Loader and Utilities Manual 4-3

Loader for ADSP-2106x/21160 SHARC Processors

• “ADSP-2106x/21160 Multi-Application (Multi-DXE) Manage-
ment” on page 4-23

• “ADSP-2106x/21160 Processor ID Numbers” on page 4-24

Power-Up Booting Process
The ADSP-2106x and ADSP-21160 processors include a hardware feature
that boot-loads a small, 256-instruction program into the processor’s
internal memory after power-up or after the chip reset. These instructions
come from a program called boot kernel. When executed, the boot kernel
facilitates booting of user application code. The combination of the boot
kernel and application code comprise the boot-loadable (.ldr) file.

At power-up, after the chip reset, the booting process includes the follow-
ing steps.

1. Based on the boot type, an appropriate DMA channel is automati-
cally configured for a 256-instruction (48-bit) transfer. This
transfer boot-loads the boot kernel program into the processor
memory. DMA channels used by the various processor models are
shown in Table 4-1.

Table 4-1. ADSP-2106x/21160 Processor DMA Channels

Processor PROM Booting Host Booting Link Booting

ADSP-21060
DMAC6 (See Table 4-8) DMAC6 (See Table 4-8)

DMAC6

ADSP-21061 Not supported

ADSP-21062 DMAC6

ADSP-21065L DMAC8 (DMAC0 programs
DMAC8; see Table 4-8)

DMAC8 (DMAC0 programs
DMAC8; see Table 4-8)

Not supported

ADSP-21160 DMAC10 (See Table 4-9) DMAC10 (See Table 4-9) DMAC8

ADSP-2106x/21160 Processor Booting

4-4 VisualDSP++ 5.0 Loader and Utilities Manual

2. The boot kernel runs and loads the application executable code and
data.

3. The boot kernel overwrites itself with the first 256 words of the
application at the end of the booting process. After that, the appli-
cation executable code begins to execute from locations 0x20000
(ADSP-21060/61/62), 0x8000 (ADSP-21065L), and 0x40000
(ADSP-21160). The start addresses and reset vector addresses are
summarized in Table 4-2.

The boot type selection directs the system to prepare the appropriate boot
kernel.

Table 4-2. ADSP-2106x/21160 Processor Start Addresses

Processor Start Address Reset Vector Address1

1 The reset vector address must not contain a valid instruction since it is not executed during the
booting sequence. Place a NOP or IDLE instruction at this location.

ADSP-21060 0x20000 0x20004

ADSP-21061 0x20000 0x20004

ADSP-21062 0x20000 0x20004

ADSP-21065L 0x8000 0x8004

ADSP-21160 0x40000 0x40004

VisualDSP++ 5.0 Loader and Utilities Manual 4-5

Loader for ADSP-2106x/21160 SHARC Processors

Boot Mode Selection
The state of various pins selects the processor boot mode. For the
ADSP-21060, ADSP-21061, ADSP-21062, and ADSP-21160 processors,
refer to Table 4-3 and Table 4-4. For the ADSP-21065L processors, refer
to Table 4-5 and Table 4-6.

Table 4-3. ADSP-21060/061/062 and ADSP-21160 Boot Mode Pins

Pin Type Description

EBOOT I EPROM boot. When EBOOT is high, the processor boot-loads from an 8-bit
EPROM through the processor’s external port. When EBOOT is low, the LBOOT
and BMS pins determine the booting mode.

LBOOT I Link port boot. When LBOOT is high and EBOOT is low, the processor boots
from another SHARC through the link port. When LBOOT is low and EBOOT
is low, the processor boots from a host processor through the processor’s exter-
nal port.

BMS I/O/T1

1 Three-statable in EPROM boot mode (when BMS is an output).

Boot memory select. When boot-loading from an EPROM (EBOOT=1 and
LBOOT=0), this pin is an output and serves as the chip select for the EPROM.
In a multiprocessor system, BMS is output by the bus master. When host-boot-
ing or link-booting (EBOOT=0), BMS is an input and must be high.

Table 4-4. ADSP-21060/061/062 and ADSP-21160 Boot Modes

EBOOT LBOOT BMS Boot Mode

0 0 0 (Input) No-boot (processor executes from external memory)

0 0 1 (Input) Host processor

0 1 0 (Input) Reserved

0 1 1 (Input) Link port

1 0 Output EPROM (BMS is chip select)

1 1 x (Input) Reserved

ADSP-2106x/21160 Processor Booting

4-6 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-2106x/21160 Boot Modes
The ADSP-2106x/21160 processors support these boot modes: EPROM,
host, and link. The following sections describe each of the modes.

• “EPROM Boot Mode” on page 4-7

• “Host Boot Mode” on page 4-11

Table 4-5. ADSP-21065L Boot Mode Pins

Pin Type Description

BMS I/O/T1 Boot memory select
When BSEL is low, BMS is an input pin and selects between host boot mode
and no-boot mode. In no-boot mode, the processor executes from external
memory. For no-boot mode, connect BMS to ground. For host boot mode,
connect BMS to VDD.
When BSEL is high, BMS is an output pin and the processor starts up in
EPROM boot mode. Connect BMS to the EPROM’s chip select.

BSEL I EPROM boot select
Hardwire this signal; it is used for system configuration.
When BSEL is high, the processor starts up in EPROM boot mode.
The processor assumes the EPROM data bus is 8 bits wide. Connect BSEL to
the processor data bus in LSB alignment.
When BSEL is low, BMS determines the booting mode. Connect BSEL to
ground.

1 Three-statable in EPROM boot mode (when BMS is an output).

Table 4-6. ADSP-21065L Boot Modes

BSEL BMS Description

0 1 No-boot mode.
The processor executes from external memory at location 0x20004.

0 1 Host boot mode.
The processor defaults to an 8-bit host bus width.

1 Output EPROM boot mode.
The processor assumes an 8-bit EPROM data bus width. Connect to the
data bus in LSB alignment.

VisualDSP++ 5.0 Loader and Utilities Manual 4-7

Loader for ADSP-2106x/21160 SHARC Processors

• “Link Port Boot Mode” on page 4-15

• “No-Boot Mode” on page 4-16

For multiprocessor booting, refer to “ADSP-2106x/21160 Multi-Applica-
tion (Multi-DXE) Management” on page 4-23.

EPROM Boot Mode

The ADSP-2106x/21160 processor is configured for EPROM boot
through the external port when the EBOOT pin is high and the LBOOT pin is
low. These settings cause the BMS pin to become an output, serving as chip
select for the EPROM. Table 4-7 lists all PROM-to-processor
connections.

During reset, the ACK line is pulled high internally with a 2K ohm
equivalent resistor and is held high with an internal keeper latch. It is not
necessary to use an external pull-up resistor on the ACK line during booting
or at any other time.

The DMA channel parameter registers are initialized at reset for EPROM
booting as shown in Table 4-8 and Table 4-9. The count is initialized to
0x0100 to transfer 256 words to internal memory. The external count

Table 4-7. PROM Connections to ADSP-2106x/21160 Processors

Processor Connection

ADSP-21060/61/62 PROM/EPROM connects to DATA23—16 pins

ADSP-21065L PROM/EPROM connects to DATA7—0 pins

ADSP-21160 PROM/EPROM connects to DATA39—32 pins

ADSP-21xxx Address pins of PROM connect to lowest address pins of any pro-
cessor

ADSP-21xxx Chip select connects to the BMS pin

ADSP-21060/61/62/65L Output enable connects to the RD pin

ADSP-21160 Output enable connects to RDH pin

ADSP-2106x/21160 Processor Booting

4-8 VisualDSP++ 5.0 Loader and Utilities Manual

register (ECx), which is used when external addresses (BMS space) are gen-
erated by the DMA controller, is initialized to 0x0600 (0x100 words at six
bytes per word).

Table 4-8. DMA Settings for ADSP-2106x EPROM Booting

DMA Setting Processor Model

ADSP-21060/61/62 ADSP-21065L

BMS space 4M x 8-bit 8M x 8-bit

DMA channel DMAC6 = 0x2A1 DMAC0 = 0x2A1

II6 IIEP0 0x20000 0x8000

IM6 IMEP0 0x1 (implied) 0x1 (implied)

C6 CEP0 0x100 0x100

EI6 EIEP0 0x80 0000 0x40 0000

EM6 EMEP0 0x1 (implied) 0x1 (implied)

EC6 ECEP0 0x600 0x600

IRQ vector 0x20040 0x8040

Table 4-9. DMA Settings for ADSP-21160 EPROM Booting

DMA Setting ADSP-21160 Processor

BMS space 8M x 8-bit

DMA channel DMAC10 = 0x4A1

II10 0x40000

IM10 0x1 (implied)

C10 0x100

EI10 0x800000

EM10 0x1 (implied)

EC10 0x600

IRQ vector 0x40050

VisualDSP++ 5.0 Loader and Utilities Manual 4-9

Loader for ADSP-2106x/21160 SHARC Processors

After the processor’s RESET pin goes inactive on start-up, a SHARC system
configured for EPROM boot undergoes the following boot-loading
sequence:

1. The processor BMS pin becomes the boot EPROM chip select.

2. The processor goes into an idle state, identical to that caused by the
IDLE instruction. The program counter (PC) is set to the processor
reset vector address (refer to Table 4-2 on page 4-4).

3. The DMA controller reads 8-bit EPROM words, packs them into
48-bit instruction words, and transfers them into internal memory
(low-to-high byte packing order) until the 256 words are loaded.

4. The DMA parameter registers for appropriate DMA channels are
initialized, as shown in Table 4-8 and Table 4-9. The external port
DMA channel (6 or 10) becomes active following reset; it is
initialized to set external port DMA enable and selects DTYPE for
instruction words. The packing mode bits (PMODE) are ignored,
and 48- to 8-bit packing is forced with least significant word first.
The UBWS and UBWM fields of the WAIT register are initialized to gen-
erate six wait states for the EPROM access in unbanked external
memory space.

5. The processor begins 8-bit DMA transfers from the EPROM to
internal memory using the following external port data bus lines:

• D23—16 for the ADSP-21060/61/62 processors

• D7—0 for the ADSP-21065L processors

• D39—32 for the ADSP-21160 processors

ADSP-2106x/21160 Processor Booting

4-10 VisualDSP++ 5.0 Loader and Utilities Manual

6. Data transfers begin and increment after each access. The external
address lines (ADDR31—0) start at:

• 0x40 0000 for the ADSP-21060/61/62 processors

• 0x00 0000 for the ADSP-21065L processors

• 0x80 0000 for the ADSP-21160 processors

7. The processor RD pin asserts as in a normal memory access, with six
wait states (seven cycles).

8. After finishing DMA transfers to load the boot kernel into the pro-
cessor, the BSO bit is cleared in the SYSCON register, deactivating the
BMS pin and activating normal external memory select.

The boot kernel uses three copies of SYSCON—one that contains the
original value of SYSCON, a second that contains SYSCON with the
BSO bit set (allowing the processor to gain access to the boot
EPROM), and a third with the BSO bit cleared.

When BSO=1, the EPROM packing mode bits in the DMACx control
register are ignored and 8- to 48-bit packing is forced. (8-bit pack-
ing is available only during EPROM booting or when BSO is set.)
When an external port DMA channel is being used in conjunction
with the BSO bit, none of the other three channels may be used. In
this mode, BMS is not asserted by a core processor access but only by
a DMA transfer. This allows the boot kernel to perform other
external accesses to non-boot memory.

The EPROM is automatically selected by the BMS pin after reset, and other
memory select pins are disabled. The processor’s DMA controller reads
the 8-bit EPROM words, packs them into 48-bit instruction words, and
transfers them to internal memory until 256 words have been loaded. The
master DMA internal and external count registers (Cx and ECx) decrement
after each EPROM transfer. When both counters reach zero, DMA trans-

VisualDSP++ 5.0 Loader and Utilities Manual 4-11

Loader for ADSP-2106x/21160 SHARC Processors

fer has stopped and RTI returns the program counter to the address where
the kernel starts.

To EPROM boot a single-processor system, include the executable
on the command-line without a switch. Do not use the -id#exe
switch with ID=0 (see “ADSP-2106x/21160 Processor ID Num-
bers” on page 4-24).

The WAIT register UBWM (used for EPROM booting) is initialized at reset to
both internal wait and external acknowledge required. The internal keeper
latch on the ACK pin initially holds acknowledge high (asserted). If
acknowledge is driven low by another device during an EPROM boot, the
keeper latch may latch acknowledge low.

The processor views the deasserted (low) acknowledge as a hold off from
the EPROM. In this condition, wait states are continually inserted, pre-
venting completion of the EPROM boot. When writing a custom boot
kernel, change the WAIT register early within the boot kernel so UBWM is set
to internal wait mode (01).

Host Boot Mode

The ADSP-2106x/21160 processors accept data from a 8- and 16-bit host
microprocessor (or other external device) through the external port EPB0
and pack boot data into 48-bit instructions using an appropriate DMA
channel. The host is selected when the EBOOT and LBOOT inputs are low and
BMS is high. Configured for host booting, the processor enters the slave
mode after reset and waits for the host to download the boot program.
Table 4-10 lists host connections to processors.

Table 4-10. Host Connections to ADSP-2106x/21160 Processors

Processor Connection/Data Bus Pins

ADSP-21060/61/62 Host connected to DATA47—16 or DATA31—16 pins (based on HPM bits)

ADSP-21065L Host connected to DATA31—0 or DATA15—0 or DATA7—0 pins (based on
HBW bits)

ADSP-2106x/21160 Processor Booting

4-12 VisualDSP++ 5.0 Loader and Utilities Manual

After reset, the processor goes into an idle stage with:

• PC set to address 0x20004 on the ADSP-21060/61/62 processors

• PC set to address 0x8004 on the ADSP-21065L processors

• PC set to address 0x40004 on the ADSP-21160 processors

The parameter registers for the external port DMA channel (0, 6, or 10)
are initialized as shown in Table 4-8 and Table 4-9, except that registers
EIx, EMx and ECx are not initialized and no DMA transfers start.

The DMA channel control register (DMAC6) for the ADSP-21060/61/62
processors, DMAC0 for the ADSP-21065L processors, or DMAC10 for the
ADSP-21160 processors) is initialized, which allows external port DMA
enable and selects DTYPE for instruction words, PMODE for 16- to 48-bit
word packing (8- to 48-bit for the ADSP-21065L processors), and least
significant word first.

Because the host processor is accessing the EPB0 external port buffer, the
HPM host packing mode bits of the SYSCON register must correspond to the
external bus width specified by the PMODE bits of DMACx control register.

For a different packing mode, the host must write to DMACx and SYSCON to
change the PMODE and HBW (HPW for the ADSP-21065L processors) setting.

ADSP-21160 Host connected to DATA63—32 or DATA47—31 pins (based on HPM bits)

ADSP-21060/61/62/65L ADSP-21065L host address to IOP registers only

ADSP-21160 ADSP-21160 host address to IOP registers and internal memory

Table 4-10. Host Connections to ADSP-2106x/21160 Processors (Cont’d)

Processor Connection/Data Bus Pins

VisualDSP++ 5.0 Loader and Utilities Manual 4-13

Loader for ADSP-2106x/21160 SHARC Processors

The host boot file created by the loader utility requires the host processor
to perform the following sequence of actions:

1. The host initiates the synchronous booting operation (synchronous
not valid for the ADSP-21065L processors) by asserting the proces-
sor HBR input pin, informing the processor that the default
8-/16-bit bus width is used. The host may optionally assert the CS
chip select input to allow asynchronous transfers.

2. After the host receives the HBG signal (and ACK for synchronous
operation or READY for asynchronous operation) from the proces-
sor, the host can start downloading instructions by writing directly
to the external port DMA buffer 0 or the host can change the reset
initialization conditions of the processor by writing to any of the
IOP control registers. The host must use data bus pins as shown in
Table 4-10.

3. The host continues to write 16-bit words (8-bit for the
ADSP-21065L) to EPB0 until the entire program is boot-loaded.
The host must wait between each host write to external port DMA
buffer 0.

After the host boot-loads the first 256 instructions of the boot kernel, the
initial DMA transfers stop, and the boot kernel:

1. Activates external port DMA channel interrupt (EP0I), stores the
DMACx control setting in R2 for later restore, clears DMACx for new
setting, and sets the BUSLCK bit in the MODE2 register to lock out the
host.

2. Stores the SYSCON register value in R12 for restore.

3. Enables interrupts and nesting for DMA transfer, sets up the IMASK
register to allow DMA interrupts, and sets up the MODE1 register to
enable interrupts and allow nesting.

ADSP-2106x/21160 Processor Booting

4-14 VisualDSP++ 5.0 Loader and Utilities Manual

4. Loads the DMA control register with 0x00A1 and sets up its param-
eters to read the data word by word from external buffer 0.

Each word is read into the reset vector address (refer to Table 4-2
on page 4-4) for dispatching. The data through this buffer has a
structure of boot section which could include more than one ini-
tialization block.

5. Clears the BUSLCK bit in the MODE2 register to let the host write in
the external buffer 0 right after the appropriate DMA channel is
activated.

For information on the data structure of the boot section and ini-
tialization, see “ADSP-2106x/21160 Processor Boot Steams” on
page 4-17.

6. Loads the first 256 words of target the executable file during the
final initialization stage, and then the kernel overwrites itself.

The final initialization works the same way as with EPROM booting,
except that the BUSLCK bit in the MODE2 register is cleared to allow the host
to write to the external port buffer.

The default boot kernel for host booting assumes IMDW is set to 0 during
boot-loading, except during the final initialization stage. When using any
power-up booting mode, the reset vector address (refer to Table 4-2 on
page 4-4) must not contain a valid instruction because it is not executed
during the booting sequence. Place a NOP or IDLE instruction at this
location.

If the boot kernel initializes external memory, create a custom boot kernel
that sets appropriate values in the SYSCON and WAIT register. Be aware that
the value in the DMA channel register is non-zero, and IMASK is set to
allow DMA channel register interrupts. Because the DMA interrupt
remains enabled in IMASK, this interrupt must be cleared before using the
DMA channel again. Otherwise, unintended interrupts may occur.

VisualDSP++ 5.0 Loader and Utilities Manual 4-15

Loader for ADSP-2106x/21160 SHARC Processors

A master SHARC processor may boot a slave SHARC processor by writing
to its DMACx control register and setting the packing mode (PMODE) to 00.
This allows instructions to be downloaded directly without packing. The
wait state setting of 6 on the slave processor does not affect the speed of
the download since wait states affect bus master operation only.

Link Port Boot Mode

Link port boot is supported on all SHARC processors except the
ADSP-21061 and ADSP-21065L processors.

When link-boot the ADSP-2106x/21160 SHARC processors, the proces-
sor receives data from 4-bit link buffer 4 and packs boot data into 48-bit
instructions using the appropriate DMA channels (DMA channel 6 for
the ADSP-2106x processors, DMA channel 8 for the ADSP-21160
processors).

Link port mode is selected when the EBOOT is low and LBOOT and BMS are
high. The external device must provide a clock signal to the link port
assigned to link buffer 4. The clock can be any frequency, up to a maxi-
mum of the processor clock frequency. The clock falling edges strobe the
data into the link port. The most significant 4-bit nibble of the 48-bit
instruction must be downloaded first. The link port acknowledge signal
generated by the processor can be ignored during booting since the link
port cannot be preempted by another DMA channel.

Link booting is similar to host booting—the parameter registers
(IIx and Cx) for DMA channels are initialized to the same values. The
DMA channel 6 control register (DMAC6) is initialized to 0x00A0, and the
DMA channel 10 control register (DMAC10) is initialized to 0x100000. This
disables external port DMA and selects DTYPE for instruction words. The
LCTL and LCOM link port control registers are overridden during link boot-
ing to allow link buffer 4 to receive 48-bit data.

ADSP-2106x/21160 Processor Booting

4-16 VisualDSP++ 5.0 Loader and Utilities Manual

After booting completes, the IMASK remains set, allowing DMA channel
interrupts. This interrupt must be cleared before link buffer 4 is again
enabled; otherwise, unintended link interrupts may occur.

No-Boot Mode

No-boot mode causes the processor to start fetching and executing
instructions at address 0x400004 (ADSP-2106x), 0x20004
(ADSP-21065L), and 0x800004 (ADSP-21160) in external memory space.
All DMA control and parameter registers are set to their default initializa-
tion values. The loader utility is not intended to support no-boot mode.

ADSP-2106x/21160 Boot Kernels
The boot-loading process starts with a transfer of the boot kernel program
into the processor memory. The boot kernel sets up the processor and
loads boot data. After the boot kernel finishes initializing the rest of the
system, the boot kernel loads boot data over itself with a final DMA
transfer.

Boot kernels are loaded at reset into program segment seg_ldr, which is
defined in:

• 06x_ldr.ldf for the ADSP-2106x processors

• 065L_ldr.ldf for the ADSP-21065L processors

• 160_ldr.ldf for the ADSP-21160 processors

The files are stored in the <install_path>\21k\ldr (ADSP-2106x proces-
sors) and \211xx\ldr (ADSP-21160 processors) directories of
VisualDSP++.

VisualDSP++ 5.0 Loader and Utilities Manual 4-17

Loader for ADSP-2106x/21160 SHARC Processors

The default boot kernel files shipped with VisualDSP++ are listed in
Table 4-11.

Once the boot kernel has been loaded successfully into the processor, the
kernel follows the following sequence:

1. Each boot kernel begins with general initializations for the DAG reg-
isters, appropriate interrupts, processor ID information, and
various SDRAM or WAIT state initializations.

2. Once the boot kernel has finished the task of initializing the pro-
cessor, the kernel initializes processor memory, both internal and
external, with user application code.

ADSP-2106x/21160 Processor Boot Steams

The structure of a loader file enables the boot kernel to load code and
data, block by block. In the loader file, each block of code or data is pre-
ceded by a block header, which describes the block —length, placement,
and data or instruction type. After the block header, the loader utility out-
puts the block body, which includes the actual data or instructions for
placement in the processor memory. The loader utility, however, does not
output a block body if the actual data or instructions are all zeros in value.

Table 4-11. ADSP-2106x/21160 Default Boot Kernel Files

Processor PROM Booting Link Booting Host Booting

ADSP-21060 060_prom.asm 060_link.asm 060_host.asm

ADSP-21065L 065L_prom.asm N/A 065L_host.asm

ADSP-21160 160_prom.asm 160_link.asm 160_host.asm

ADSP-2106x/21160 Processor Booting

4-18 VisualDSP++ 5.0 Loader and Utilities Manual

This type of block called a zero block. Table 4-12 describes the block
header and block body formats.

The loader utility identifies the data type in the block header with a 16-bit
tag that precedes the block. Each type of initialization has a unique tag
number. The tag numbers and block types are shown in Table 4-13.

The kernel enables the boot port (external or link) to read the block
header. After reading information from the block header, the kernel places
the body of the block in the appropriate place in memory if the block has

Table 4-12. Boot Block Format

Block header
First word Bits 16–47 are not used

Bits 0–15 define the type of data block (tag)

Second word Bits 16–47 are the start address of the block
Bits 0–15 are the word count for the block

Block body
(if not a zero block)

Word 1 (48 bits)
Word 2 (48 bits)

Table 4-13. ADSP-2106x/21160 Processor Loader Block Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000A zero pm48

0x0001 zero dm16 0x000B init pm16

0x0002 zero dm32 0x000C init pm32

0x0003 zero dm40 0x000E init pm48

0x0004 init dm16 0x000F zero dm64 (ADSP-21160 only)

0x0005 init dm32 0x0010 init dm64 (ADSP-21160 only)

0x0007 zero pm16 0x0011 zero pm64 (ADSP-21160 only)

0x0008 zero pm32 0x0012 init pm64 (ADSP-21160 only)

0x0009 zero pm40

VisualDSP++ 5.0 Loader and Utilities Manual 4-19

Loader for ADSP-2106x/21160 SHARC Processors

a block body, or initializes in the appropriate place with zero values in the
memory if the block is a zero block.

The final section, which is identified by a tag of 0x0, is called the final ini-
tialization section. This section has self-modifying code that, when
executed, facilitates a DMA over the kernel, replacing it with user applica-
tion code that actually belongs in that space at run time. The final
initialization code also takes care of interrupts and returns the processor
registers, such as SYSCON and DMAC or LCTL, to their default values.

When the loader utility detects the final initialization tag, it reads the next
48-bit word. This word indicates the instruction to load into the 48-bit Px
register after the boot kernel finishes initializing memory.

The boot kernel requires that the interrupt, external port (or link port
address, depending on the boot mode) contains an RTI instruction. This
RTI is inserted automatically by the loader utility to guarantee that the
kernel executes from the reset vector, once the DMA that overwrites the
kernel is complete. A last remnant of the kernel code is left at the reset
vector location to replace the RTI with the user’s intended code. Because
of this last kernel remnant, user application code should not use the first
location of the reset vector. This first location should be a NOP or IDLE
instruction. The kernel automatically completes, and the program con-
troller begins sequencing the user application code at the second location
in the processor reset vector space.

When the boot process is complete, the processor automatically executes
the user application code. The only remaining evidence of the boot kernel
is at the first location of the interrupt vector. Almost no memory is sacri-
ficed to the boot code.

ADSP-2106x/21160 Processor Booting

4-20 VisualDSP++ 5.0 Loader and Utilities Manual

Boot Kernel Modification and Loader Issues

Some systems require boot kernel customization. The operation of other
tools (such as the C/C++ compiler) is influenced by whether the boot ker-
nel is used.

When producing a boot-loadable file, the loader utility reads a processor
executable file and uses information in it to initialize the memory. How-
ever, the loader utility cannot determine how the processor SYSCON and
WAIT registers are to be configured for external memory loading in the
system.

If you modify the boot kernel by inserting values for your system, you
must rebuild it before generating the boot-loadable file. The boot kernel
contains default values for SYSCON. The initialization code can be found in
the comments in the boot kernel source file.

After modifying the boot kernel source file, rebuild the boot kernel (.dxe)
file. Do this from the VisualDSP++ IDDE (refer to VisualDSP++ online
Help for details), or rebuild the boot kernel file from the command line.

When using VisualDSP++, specify the name of the modified kernel
executable in the Kernel file box on the Kernel page of the Project
Options dialog box.

If you modify the boot kernel for EPROM, host, or link boot modes,
ensure that the seg_ldr memory segment is defined in the .ldf file. Refer
to the source of the segment in the .ldf file located in the
<install_path>\21k\ldr\ or <install_path>\211xx\ldr\ directory of
VisualDSP++.

The loader utility generates a warning when vector address (0x20004 for
the ADSP-21060/61/62 processors, 0x40004 for the ADSP-21160 proces-
sors, or 0x8004 for the ADSP-21065L processors) does not contain NOP or
IDLE. Because the boot kernel uses this address for the first location of the
reset vector during the boot-load process, avoid placing code at this
address. When using any of the processor’s power-up boot modes, ensure

VisualDSP++ 5.0 Loader and Utilities Manual 4-21

Loader for ADSP-2106x/21160 SHARC Processors

that the address does not contain a critical instruction. Because the address
is not executed during the booting sequence, place a NOP or IDLE instruc-
tion at this location.

The boot kernel project can be rebuilt from the VisualDSP++ IDDE. The
command-line can also be used to rebuild various default boot kernels for
the ADSP-2106x/21160 processors.

EPROM Booting. The default boot kernel source file for the
ADSP-2106x EPROM booting is 060_prom.asm. Copy this file to
my_prom.asm and modify it to suit your system. Then use the following
commands to rebuild the boot kernel.
easm21k -21060 my_prom.asm

or

easm21k -proc ADSP-21060 my_prom.asm

linker -T 060_ldr.ldf my_prom.doj

Host Booting. The default boot kernel source file for the ADSP-2106x
host booting is 060_host.asm. Copy this file to my_host.asm and modify it
to suit your system. Then use the following commands to rebuild the boot
kernel.
easm21k -21060 my_host.asm

or

easm21k -proc ADSP-21060 my_host.asm

linker -T 060_ldr.ldf my_host.doj

Link Port Booting. The default boot kernel source file for the
ADSP-2106x link port booting is 060_link.asm. Copy this file to
my_link.asm and modify it to suit your system. Then use the following
commands to rebuild the boot kernel:
easm21k -21060 my_link.asm

ADSP-2106x/21160 Processor Booting

4-22 VisualDSP++ 5.0 Loader and Utilities Manual

or

easm21k -proc ADSP-21060 my_link.asm

linker -T 060_ldr.ldf my_link.doj

Rebuilding Boot Kernels

To rebuild the PROM boot kernel for the ADSP-21065L processors, use
these commands:
easm21k -21065L my_prom.asm

or

easm21k -proc ADSP-21065L my_prom.asm

linker -T 065L_ldr.ldf my_prom.doj

To rebuild the PROM boot kernel for the ADSP-21160 processors, use
these commands.
easm21k -21160 my_prom.asm

or

easm21k -proc ADSP-21160 my_prom.asm

linker -T 160_ldr.ldf my_prom.doj

ADSP-2106x/21160 Interrupt Vector Table
If an ADSP-2106x/21160 SHARC processor is booted from an external
source (EPROM, host, or another SHARC processor), the interrupt vec-
tor table is located in internal memory. If, however, the processor is not
booted and executes from external memory, the vector table must be
located in external memory.

The IIVT bit of the SYSCON control register can be used to override the
boot mode in determining where the interrupt vector table is located. If
the processor is not booted (no-boot mode), setting IIVT to 1 selects an
internal vector table, and setting IIVT to 0 selects an external vector table.

VisualDSP++ 5.0 Loader and Utilities Manual 4-23

Loader for ADSP-2106x/21160 SHARC Processors

If the processor is booted from an external source (any mode other than
no-boot mode), IIVT has no effect. The IIVT default initialization value
is 0.

Refer to EE-56: Tips & Tricks on the ADSP-2106x EPROM and HOST
bootloader, EE-189: Link Port Tips and Tricks for ADSP-2106x and
ADSP-2116x, and EE-77: SHARC Link Port Booting on the Analog
Devices Web site for more information.

ADSP-2106x/21160 Multi-Application (Multi-DXE)
Management

Currently, the loader utility generates single-processor loader files for host
and link port boot modes. As a result, the loader utility supports multipro-
cessor EPROM boot mode only. The application code must be modified
for a multiprocessor system boot in host and link port modes.

The loader utility can produce boot-loadable files that permit the
ADSP-2106x/21160 SHARC processors in a multiprocessor system to
boot from a single EPROM. In such a system, the BMS signals from each
SHARC processor are OR’ed together to drive the chip select pin of the
EPROM. Each processor boots in turn, according to its priority. When
the last processor finishes booting, it must inform the processors to begin
program execution.

Besides taking turns when booting, EPROM boot of multiple processors
is similar to a single-processor EPROM boot.

When booting a multiprocessor system through a single EPROM:

• Connect all BMS pins to EPROM.

• Processor with ID# of 1 boots first. The other processors follow.

ADSP-2106x/21160 Processor Booting

4-24 VisualDSP++ 5.0 Loader and Utilities Manual

• The EPROM boot kernel accepts multiple .dxe files and reads the
ID field in SYSTAT to determine which area of EPROM to read.

• All processors require a software flag or hardware signal (FLAG pins)
to indicate that booting is complete.

When booting a multiprocessor system through an external port:

• The host can use the host interface.

• A SHARC processor that is EPROM-, host-, or link-booted can
boot the other processors through the external port (host boot
mode).

For multiprocessor EPROM booting, select the Multiprocessor check box
on the Load page of the Project Options dialog box or specify the
-id1exe= switch on the loader command line. These options specify the
executable file targeted for a specific processor.

Do not use the -id1exe= switch to EPROM-boot a single processor whose
ID is 0. Instead, name the executable file on the command line without a
switch. For a single processor with ID=1, use the -id1exe= switch.

ADSP-2106x/21160 Processor ID Numbers

A single-processor system requires only one input (.dxe) file without any
prefix and suffix to the input file name, for example:

elfloader -proc ADSP-21060 -bprom Input.dxe

A multiprocessor system requires a distinct processor ID number for each
input file on the command line. A processor ID is provided via the
-id#exe=filename.dxe switch, where # is 0 to 6.

In the following example, the loader utility processes the input file
Input1.dxe for the processor with an ID of 1 and the input file
Input2.dxe for the processor with an ID of 2.

VisualDSP++ 5.0 Loader and Utilities Manual 4-25

Loader for ADSP-2106x/21160 SHARC Processors

elfloader -proc ADSP-21060 -bprom -id1exe=Input1.dxe

-id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N
processor, the output loader file contains only one copy of the code from
the input file.

elfloader -proc ADSP-21060 -bprom -id1exe=Input.dxe -id2ref=1

The loader utility points the id(2)exe loader jump table entry to the
id(1)exe image, effectively reducing the size of the loader file.

ADSP-2106x/21160 Processor Loader
Guide

Loader operations depend on the loader options, which control how the
loader utility processes executable files. You select features such as boot
modes, boot kernels, and output file formats via the loader options. These
options are specified on the loader utility’s command line or via the Load
page of the Project Options dialog box in the VisualDSP++ environment.
When you open the Load page, the default loader settings for the selected
processor are already set. Use the Additional Options box to enter options
that have no dialog box equivalent.

Option settings on the Load page correspond to switches displayed
on the command line.

For detailed information about the ADSP-2106x/21160 processor loader
property page, refer to the VisualDSP++ online help.

These sections describe how to produce a bootable loader (.ldr) file:

• “Using ADSP-2106x/21160 Loader Command Line” on page 4-26

• “Using VisualDSP++ Interface (Load Page)” on page 4-31

ADSP-2106x/21160 Processor Loader Guide

4-26 VisualDSP++ 5.0 Loader and Utilities Manual

Using ADSP-2106x/21160 Loader Command Line
Use the following syntax for the SHARC loader command line.

elfloader inputfile -proc part_number -switch [-switch …]

where:

• inputfile—Name of the executable (.dxe) file to be processed
into a single boot-loadable file. An input file name can include the
drive and directory. Enclose long file names within straight quotes,
“long file name”.

• -proc part_number—Part number of the processor (for example,
-proc ADSP-21062) for which the loadable file is built. The -proc
switch is mandatory.

• -switch …—One or more optional switches to process. Switches
select operations and boot modes for the loader utility. A list of all
switches and their descriptions appear in Table 4-15 on page 4-28.

Command-line switches are not case-sensitive and placed on the
command line in any order.

The following command line,
elfloader p0.dxe -bprom -fhex -l 060_prom.dxe -proc ADSP-21060

runs the loader utility with:

• p0.dxe—Identifies the executable file to process into a boot-load-
able file. The absence of the -o switch causes the output file name
to default to p0.ldr.

• -bprom —Specifies EPROM booting as the boot type for the
boot-loadable file.

• -fhex —Specifies Intel hex-32 format for the boot-loadable file.

VisualDSP++ 5.0 Loader and Utilities Manual 4-27

Loader for ADSP-2106x/21160 SHARC Processors

• -l 060_prom.exe—Specifies 060_prom.exe as the boot kernel file
to be used in the boot-loadable file.

• -proc ADSP-21060—Identifies the processor model as
ADSP-21060.

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-17.

File Extensions

Some loader switches take a file name as an optional parameter.
Table 4-14 lists the expected file types, names, and extensions.

Table 4-14. File Extensions

Extension File Description

.dxe Input executable files and boot kernel files. The loader utility recognizes overlay
memory files (.ovl) and shared memory files (.sm), but does not expect these files
on the command line. Place .ovl and .sm files in the same directory as the .dxe
file that refers to them. The loader utility finds the files when processing the .dxe
file. The .ovl and .sm files may also be placed in the .ovl and .sm file output
directory specified in the .ldf file or current working directory.

.ldr Loader output file

ADSP-2106x/21160 Processor Loader Guide

4-28 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-2106x/21160 Loader Command-Line Switches

Table 4-15 is a summary of the ADSP-2106x and ADSP-21160 loader
switches.

Table 4-15. ADSP-2106x/21160 Loader Command-Line Switches

Switch Description

-bprom
-bhost
-blink
-bJTAG

Specifies the boot mode. The -b switch directs the loader utility to pre-
pare a boot-loadable file for the specified boot mode. Valid boot modes
include PROM, host, and link.
For the ADSP-21020 processors, JTAG is the only permitted boot
mode.
If -b does not appear on the command line, the default is -bprom.
To use a custom boot kernel, the boot type selected with the -b switch
must correspond to the boot kernel selected with the -l switch. Other-
wise, the loader utility automatically selects a default boot kernel based
on the selected boot type (see “ADSP-2106x/21160 Boot Kernels” on
page 4-16).

-caddress Custom option. This switch directs the loader utility to use the specified
address. Valid addresses are:
• 20004 and 20040 for the ADSP-2106x processors
• 8004 and 8040 for the ADSP-21065L processors
• 40000 and 40050 for the ADSP-21160 processors
The loader utility obtains the proper address even when this switch is
absent from the command line.

-e filename Except shared memory. The -e switch omits the specified shared mem-
ory (.sm) file from the output loader file. Use this option to omit the
shared parts of the executable file intended to boot a multiprocessor sys-
tem.
To omit multiple .sm files, repeat the switch and parameter multiple
times on the command line. For example, to omit two files, use:
-e fileA.sm -e fileB.sm.
In most cases, it is not necessary to use the -e switch: the loader utility
processes the .sm files efficiently—includes a single copy of the code
and data from each .sm file in a loader file.

VisualDSP++ 5.0 Loader and Utilities Manual 4-29

Loader for ADSP-2106x/21160 SHARC Processors

-fhex
-fASCII
-fbinary
-finclude
-fS1
-fS2
-fS3

Specifies the format of the boot-loadable file (Intel hex-32, ASCII, S1,
S2, S3, binary, or include). If the -f switch does not appear on the com-
mand line, the default boot file format is Intel hex-32 for PROM, and
ASCII for host or link.
Available formats depend on the boot type selection (-b switch):
• For PROM boot type, select a hex, ASCII, S1, S2, S3, or include

format.
• For host or link boot type, select an ASCII, binary, or include format.

-h
or
-help

Command-line help. Outputs a list of the command-line switches to
standard out and exits. Type elfloader -proc ADSP-21xxx -h,
where xxx is 060, 061, 062, 065L, or 160 to obtain help for SHARC
processors. By default, the -h switch alone provides help for the loader
driver.

-id#exe=filename Specifies the processor ID. The -id#exe= switch directs the loader util-
ity to use the processor ID (#) for the corresponding executable file
(filename parameter) when producing a boot-loadable file for a multi-
processor system. This switch is used to produce a boot-loadable file
that boots multiple processors from a single EPROM. Valid values for #
are 1, 2, 3, 4, 5, and 6.
Do not use this switch for single-processor systems. For single-processor
systems, use filename as a parameter without a switch. For more infor-
mation, refer to “ADSP-2106x/21160 Processor ID Numbers” on
page 4-24.

-id#ref=N Points the processor ID (#) loader jump table entry to the ID (N) image.
If the executable file for the (#) processor is identical to the executable
of the (N) processor, the switch can be used to set the PROM start
address of the processor with ID of # to be the same as for the processor
with ID of N. This effectively reduces the size of the loader file by pro-
viding a single copy of an executable to two or more processors in a mul-
tiprocessor system. For more information, refer to “ADSP-2106x/21160
Processor ID Numbers” on page 4-24.

Table 4-15. ADSP-2106x/21160 Loader Command-Line Switches

Switch Description

ADSP-2106x/21160 Processor Loader Guide

4-30 VisualDSP++ 5.0 Loader and Utilities Manual

-l kernelfile Directs the loader utility to use the specified kernelfile as the
boot-loading routine in the output boot-loadable file. The boot kernel
selected with this switch must correspond to the boot type selected with
the -b switch.
If the -l switch does not appear on the command line, the loader
searches for a default boot kernel file. Based on the boot type (-b
switch), the loader utility searches in the processor-specific loader direc-
tory for the boot kernel file as described in “ADSP-2106x/21160 Boot
Kernels” on page 4-16.

-o filename Directs the loader utility to use the specified filename as the name for
the loader output file. If not specified, the default name is input-
file.ldr.

-paddress PROM start address. Places the boot-loadable file at the specified
address in the EPROM.
If the -p switch does not appear on the command line, the loader utility
starts the EPROM file at address 0x0; this EPROM address corresponds
to 0x800000 on the ADSP-21060/21061/21062, ADSP-21065L, and
ADSP-21160 processors.

-proc processor Specifies the processor. This a mandatory switch. The processor is one
of the following:
ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L, ADSP-21160

-si-revision
#|none|any

The -si-revision {#|none|any} switch provides a silicon revision of
the specified processor.
The switch parameter represents a silicon revision of the processor spec-
ified by the -proc processor switch. The parameter takes one of three
forms:
• The none value indicates that the VisualDSP++ ignores silicon errata.
• The #.# value indicates one or more decimal digits, followed by a

point, followed by one or two decimal digits. Examples of revisions
are: 0.0, 0.1, 0.2, 0.3.

• The any value indicates that VisualDSP++ produces an output file
that can be run at any silicon revision.

The switch generates either a warning about any potential anomalous
conditions or an error if any anomalous conditions occur.

In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader utility gener-
ates an error.

Table 4-15. ADSP-2106x/21160 Loader Command-Line Switches

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 4-31

Loader for ADSP-2106x/21160 SHARC Processors

Using VisualDSP++ Interface (Load Page)
After selecting a Loader file as the target type on the Project page in Visu-
alDSP++ Project Options dialog box, modify the default options on the
Load: Processor page (also called loader property page). Click OK to save
the selections. Selecting Build Project from the Project menu generates a
loader file. For information relative to a specific processor, refer to the
VisualDSP++ online help for that processor.

VisualDSP++ invokes the elfloader utility to build the output file. The
Load page buttons and fields correspond to loader command-line switches
and parameters (see Table 4-15 on page 4-28). Use the Additional
Options box to enter options that do not have dialog box equivalents.

-t# (Host boot only) Specifies timeout cycles; for example, -t100. Limits
the number of cycles that the processor spends initializing external
memory with zeros. Valid timeout values (#) range from 3 to 32765
cycles; 32765 is the default. The # is directly related to the number of
cycles the processor locks the bus for boot-loading, instructing the pro-
cessor to lock the bus for no more than two times the timeout number
of cycles. When working with a fast host that cannot tolerate being
locked out of the bus, use a relatively small timeout value.

-use32bitTagsfor
ExternalMemory-
Blocks

Directs the loader utility to treat the external memory sections as 32-bit
sections, as specified in the .ldf file and does not pack them into 48-bit
sections before processing. This option is useful if the external memory
sections are packed by the linker and do not need the loader utility to
pack them again.

-v Outputs verbose loader utility messages and status information as the
the utility processes files.

-version Directs the loader utility to show its version information. Type
elfloader -version to display the version of the loader drive. Add
the -proc switch, for example,
elfloader -proc ADSP-21062 -version to display version infor-
mation of both loader drive and SHARC loader utility.

Table 4-15. ADSP-2106x/21160 Loader Command-Line Switches

Switch Description

ADSP-2106x/21160 Processor Loader Guide

4-32 VisualDSP++ 5.0 Loader and Utilities Manual

For the ADSP-21020 processors, the only permitted boot mode is
JTAG: -bJTAG is automatically entered in the Additional Options
box.

VisualDSP++ 5.0 Loader and Utilities Manual 5-1

5 LOADER FOR ADSP-21161
SHARC PROCESSORS

This chapter explains how the loader utility (elfloader.exe) is used to
convert executable (.dxe) files into boot-loadable files for the
ADSP-21161 SHARC processors.

Refer to “Introduction” on page 1-1 for the loader utility overview; the
introductory material applies to all processor families. Refer to “Loader for
ADSP-2106x/21160 SHARC Processors” on page 4-1 for information
about the ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L,
and ADSP-21160 processors. Refer to “Loader for
ADSP-2126x/2136x/2137x/2146x/2147x/2148x SHARC Processors” on
page 6-1 for information about the ADSP-2126x and ADSP-2136x
processors.

Loader operations specific to the ADSP-21161 SHARC processors are
detailed in the following sections.

• “ADSP-21161 Processor Booting” on page 5-2
Provides general information about various boot modes, including
information about boot kernels.

• “ADSP-21161 Processor Loader Guide” on page 5-24
Provides reference information about the loader utility’s graphical
user interface, command-line syntax, and switches.

Refer to EE-177 SHARC SPI Booting, EE-199 Link Port Booting on the
ADSP-21161 SHARC DSP, EE-209 Asynchronous Host Interface on the
ADSP-21161 SHARC DSP on the Analog Devices Processor Web site for
related information.

ADSP-21161 Processor Booting

5-2 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-21161 Processor Booting
The ADSP-21161 processors support five boot modes: EPROM, host,
link port, SPI port, and no-boot (see Table 5-1 and Table 5-2 on
page 5-4.) Boot-loadable files for these modes pack boot data into words
of appropriate widths and use an appropriate DMA channel of the proces-
sor’s DMA controller to boot-load the words.

• When booting from an EPROM through the external port, the
ADSP-21161 processor reads boot data from an 8-bit external
EPROM.

• When booting from a host processor through the external port, the
ADSP-21161 processor accepts boot data from 8- or 16-bit host
microprocessor.

• When booting through the link port, the ADSP-21161 processor
receives boot data through the link port as 4-bit wide data in link
buffer 4.

• When booting through the SPI port, the ADSP-21161 processor
uses DMA channel 8 of the IO processor to transfer instructions to
internal memory. In this boot mode, the processor receives data in
the SPIRx register.

• In no-boot mode, the ADSP-21161 processors begin executing
instructions from external memory.

Software developers who use the loader utility should be familiar with the
following operations:

• “Power-Up Booting Process” on page 5-3

• “Boot Mode Selection” on page 5-4

• “ADSP-21161 Processor Boot Modes” on page 5-5

• “ADSP-21161 Processor Boot Kernels” on page 5-16

VisualDSP++ 5.0 Loader and Utilities Manual 5-3

Loader for ADSP-21161 SHARC Processors

• “Boot Kernel Modification and Loader Issues” on page 5-18

• “ADSP-21161 Processor Interrupt Vector Table” on page 5-21

• “ADSP-21161 Multi-Application (Multi-DXE) Management” on
page 5-21

Power-Up Booting Process
The ADSP-21161 processors include a hardware feature that boot-loads a
small, 256-instruction program into the processor’s internal memory after
power-up or after the chip reset. These instructions come from a program
called boot kernel. When executed, the boot kernel facilitates booting of
user application code. The combination of the boot kernel and application
code comprises the boot-loadable (.ldr) file.

At power-up, after the chip reset, the booting process includes the follow-
ing steps.

1. Based on the boot mode, an appropriate DMA channel is automat-
ically configured for a 256-instruction transfer. This transfer
boot-loads the boot kernel program into the processor memory.

2. The boot kernel runs and loads the application executable code and
data.

3. The boot kernel overwrites itself with the first 256 words of the
application at the end of the booting process. After that, the appli-
cation executable code starts running.

The boot mode selection directs the system to prepare the appropriate
boot kernel.

ADSP-21161 Processor Booting

5-4 VisualDSP++ 5.0 Loader and Utilities Manual

Boot Mode Selection
The state of the LBOOT, EBOOT, and BMS pins selects the ADSP-21161 pro-
cessor’s boot mode. Table 5-1 and Table 5-2 show how the pin states
correspond to the modes.

Table 5-1. ADSP-21161 Boot Mode Pins

Pin Type Description

EBOOT I EPROM boot – when EBOOT is high, the processor boot-loads from an 8-bit
EPROM through the processor’s external port. When EBOOT is low, the
LBOOT and BMS pins determine booting mode.

LBOOT I Link port boot – when LBOOT is high and EBOOT is low, the processor boots
from another SHARC processor through the processor’s link port. When
LBOOT is low and EBOOT is low, the processor boots from a host processor
through the processor’s external port.

BMS I/O/T1

1 Three-statable in EPROM boot mode (when BMS is an output).

Boot memory select – when boot-loading from EPROM (EBOOT=1 and
LBOOT=0), the pin is an output and serves as the chip select for the EPROM.
In a multiprocessor system, BMS is output by the bus master. When
host-booting, link-booting, or SPI-booting (EBOOT=0), BMS is an input and
must be high.

Table 5-2. ADSP-21161 Boot Mode Pin States

EBOOT LBOOT BMS Booting Mode

1 0 Output EPROM (connects BMS to EPROM chip select)

0 0 1 (Input) Host processor

0 1 1 (Input) Link port

0 1 0 (Input) Serial port (SPI)

0 0 0 (Input) No-boot (processor executes from external memory)

VisualDSP++ 5.0 Loader and Utilities Manual 5-5

Loader for ADSP-21161 SHARC Processors

ADSP-21161 Processor Boot Modes
The ADSP-21161 processors support these boot modes: EPROM, host,
link, and SPI. The following section describe each of the modes.

• “EPROM Boot Mode” on page 5-5

• “Host Boot Mode” on page 5-9

• “Link Port Boot Mode” on page 5-12

• “SPI Port Boot Mode” on page 5-14

• “No-Boot Mode” on page 5-16

For multiprocessor booting, refer to “ADSP-21161 Multi-Applica-
tion (Multi-DXE) Management” on page 5-21.

EPROM Boot Mode

EPROM boot via the external port is selected when the EBOOT input is
high and the LBOOT input is low. These settings cause the BMS pin to
become an output, serving as chip select for the EPROM.

The DMAC10 control register is initialized for booting packing boot data
into 48-bit instructions. EPROM boot mode uses channel 10 of the IO
processor’s DMA controller to transfer the instructions to internal mem-
ory. For EPROM booting, the processor reads data from an 8-bit external
EPROM.

After the boot process loads 256 words into memory locations 0x40000
through 0x400FF, the processor begins to execute instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for
the application. VisualDSP++ includes loading routines (boot kernels)
that can load entire programs; see “ADSP-21161 Processor Boot Kernels”
on page 5-16 for more information.

ADSP-21161 Processor Booting

5-6 VisualDSP++ 5.0 Loader and Utilities Manual

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed
information on DMA and system configurations.

Be aware that DMA channel differences between the ADSP-21161
and previous SHARC processors (ADSP-2106x) account for boot
differences. Even with these differences, the ADSP-21161 proces-
sor supports the same boot capability and configuration as the
ADSP-2106x processors. The DMACx register default values differ
because the ADSP-21161 processor has additional parameters and
different DMA channel assignments. EPROM boot mode uses
EPB0, DMA channel 10. Similar to the ADSP-2106x processors,
the ADSP-21161 processor boots from DATA23—16.

The processor determines the booting mode at reset from the EBOOT,
LBOOT, and BMS pin inputs. When EBOOT=1 and LBOOT=0, the processor
boots from an EPROM through the external port and uses BMS as the
memory select output. For information on boot mode selection, see the
boot memory select pin descriptions in Table 5-1 and Table 5-2 on
page 5-4.

When using any of the power-up boot modes, address 0x40004
should not contain a valid instruction since it is not executed dur-
ing the booting sequence. Place a NOP or IDLE instruction at this
location.

EPROM boot (boot space 8M x 8-bit) through the external port requires
that an 8-bit wide boot EPROM be connected to the processor data bus
pins 23–16 (DATA23—16). The processor’s lowest address pins should be
connected to the EPROM address lines. The EPROM’s chip select should
be connected to BMS, and its output enable should be connected to RD.

In a multiprocessor system, the BMS output is driven by the ADSP-21161
processor bus master only. This allows the wired OR of multiple BMS signals
for a single common boot EPROM.

VisualDSP++ 5.0 Loader and Utilities Manual 5-7

Loader for ADSP-21161 SHARC Processors

Systems can boot up to six ADSP-21161 processors from a single
EPROM using the same code for each processor or differing code
for each processor.

During reset, the ACK line is internally pulled high with the equivalent of
an internal 20K ohm resistor and is held high with an internal keeper
latch. It is not necessary to use an external pull-up resistor on the ACK line
during booting or at any other time.

The RBWS and RBAM fields of the WAIT register are initialized to perform
asynchronous access and generate seven wait states (eight cycles total) for
the EPROM access in external memory space. Note that wait states
defined for boot memory are applied to BMS asserted accesses.

Table 5-3 shows how DMA channel 10 parameter registers are initialized
at reset. The count register (CEP0) is initialized to 0x0100 to transfer 256
words to internal memory. The external count register (ECEP0), used when
external addresses (BMS space) are generated by the DMA controller, is ini-
tialized to 0x0600 (0x0100 words at six bytes per word). The DMAC10
control register is initialized to 0x00 0561.

The default value sets up external port transfers as follows:

• DEN = 1, external port enabled

• MSWF = 0, LSB first

• PMODE = 101, 8-bit to 48-bit packing, Master = 1

• DTYPE = 1, three column data

Table 5-3. DMA Channel 10 Parameter Registers for EPROM Booting

Parameter Register Initialization Value

IIEP0 0x40000

IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x100 (256-instruction words)

ADSP-21161 Processor Booting

5-8 VisualDSP++ 5.0 Loader and Utilities Manual

The following sequence occurs at system start-up, when the processor
RESET input goes inactive.

1. The processor goes into an idle state, identical to that caused by the
IDLE instruction. The program counter (PC) is set to address
0x40004.

2. The DMA parameter registers for channel 10 are initialized as
shown in Table 5-3.

3. The BMS pin becomes the boot EPROM chip select.

4. 8-bit master mode DMA transfers from EPROM to the first inter-
nal memory address on the external port data bus lines 23–16.

5. The external address lines (ADDR23—0) start at 0x800000 and incre-
ment after each access.

6. The RD strobe asserts as in a normal memory access with seven wait
states (eight cycles).

The processor’s DMA controller reads the 8-bit EPROM words, packs
them into 48-bit instruction words, and transfers them to internal mem-
ory until 256 words have been loaded. The EPROM is automatically
selected by the BMS pin; other memory select pins are disabled.

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 0x800000

EMEP0 Uninitialized (increment by 1 is automatic)

ECEP0 0x600 (256 words x 6 bytes/word)

Table 5-3. DMA Channel 10 Parameter Registers for EPROM Booting

Parameter Register Initialization Value

VisualDSP++ 5.0 Loader and Utilities Manual 5-9

Loader for ADSP-21161 SHARC Processors

The master DMA internal and external count registers (ECEP0/CEP0) dec-
rement after each EPROM transfer. When both counters reach zero, the
following wake-up sequence occurs:

1. DMA transfers stop.

2. External port DMA channel 10 interrupt (EP0I) is activated.

3. The BMS pin is deactivated, and normal external memory selects are
activated.

4. The processor vectors to the EP0I interrupt vector at 0x40050.

At this point, the processor has completed its boot and is executing
instructions normally. The first instruction at the EP0I interrupt vector
location, address 0x40050, should be an RTI (return from interrupt). This
process returns execution to the reset routine at location 0x40005 where
normal program execution can resume. After reaching this point, a pro-
gram can write a different service routine at the EP0I vector location
0x40050.

Host Boot Mode

The processor can boot from a host processor through the external port.
Host booting is selected when the EBOOT and LBOOT inputs are low and BMS
is high. Configured for host booting, the processor enters the slave mode
after reset and waits for the host to download the boot program.

The DMAC10 control register is initialized for booting, packing boot data
into 48-bit instructions. Channel 10 of the IO processor’s DMA control-
ler is used to transfer instructions to internal memory. Processors accept
data from 8- or 16-bit host microprocessor (or other external devices).

After the boot process loads 256 words into memory locations 0x40000
through 0x400FF, the processor begins executing instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for

ADSP-21161 Processor Booting

5-10 VisualDSP++ 5.0 Loader and Utilities Manual

the application. VisualDSP++ includes loading routines (boot kernels)
that can load entire programs; refer to “ADSP-21161 Processor Boot Ker-
nels” on page 5-16 for more information.

Refer to EE-177: SHARC SPI Booting, located on the Analog Devices Web
site for information about SPI slave booting. Refer to the ADSP-21161
SHARC DSP Hardware Reference for detailed information on DMA and
system configurations.

DMA channel differences between the ADSP-21161 and previous
SHARC family processors (ADSP-2106x) account for boot differ-
ences. Even with these differences, the ADSP-21161 processors
support the same boot capability and configuration as the
ADSP-2106x processors. The DMAC10 register default values differ
because the ADSP-21161 processor has additional parameters and
different DMA channel assignments. Host boot mode uses EPB0,
DMA channel 10.

The processor determines the boot mode at reset from the EBOOT, LBOOT,
and BMS pin inputs. When EBOOT=0, LBOOT=0, and BMS=1, the processor
boots from a host through the external port. Refer to Table 5-1 and
Table 5-2 on page 5-4 for boot mode selection.

When using any of the power-up boot modes, address 0x40004 should not
contain a valid instruction. Because it is not executed during the boot
sequence, place a NOP or IDLE instruction at this location.

During reset, the processor ACK line is internally pulled high with an
equivalent 20K ohm resistor and is held high with an internal keeper
latch. It is not necessary to use an external pull-up resistor on the ACK line
during booting or at any other time.

Table 5-4 shows how the DMA channel 10 parameter registers are initial-
ized at reset for host boot. The internal count register (CEP0) is initialized
to 0x0100 to transfer 256 words to internal memory. The DMAC10 control
register is initialized to 0000 0161.

VisualDSP++ 5.0 Loader and Utilities Manual 5-11

Loader for ADSP-21161 SHARC Processors

The default value sets up external port transfers as follows:

• DEN = 1, external port enabled

• MSWF = 0, LSB first

• PMODE = 101, 8-bit to 48-bit packing

• DTYPE = 1, three column data

At system start-up, when the processor RESET input goes inactive, the fol-
lowing sequence occurs.

1. The processor goes into an idle state, identical to that caused by the
IDLE instruction. The program counter (PC) is set to address
0x40004.

2. The DMA parameter registers for channel 10 are initialized as
shown in Table 5-4.

3. The host uses HBR and CS to arbitrate for the bus.

Table 5-4. DMA Channel 10 Parameter Register for Host Boot

Parameter Register Initialization Value

IIEP0 0x0004 0000

IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x0100 (256-instruction words)

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 Uninitialized

EMEP0 Uninitialized

ECEP0 Uninitialized

ADSP-21161 Processor Booting

5-12 VisualDSP++ 5.0 Loader and Utilities Manual

4. The host can write to SYSCON (if HBG and READY are returned) to
change boot width from default.

5. The host writes boot information to external port buffer 0.

The slave DMA internal count register (CEP0) decrements after each trans-
fer. When CEP0 reaches zero, the following wake-up sequence occurs:

1. The DMA transfers stop.

2. The external port DMA channel 10 interrupt (EP0I) is activated.

3. The processor vectors to the EP0I interrupt vector at 0x40050.

At this point, the processor has completed its boot mode and is executing
instructions normally. The first instruction at the EP0I interrupt vector
location, address 0x40050, should be an RTI (return from interrupt). This
process returns execution to the reset routine at location 0x40005 where
normal program execution can resume. After reaching this point, a pro-
gram can write a different service routine at the EP0I vector location
0x40050.

Link Port Boot Mode

Link port boot uses DMA channel 8 of the IO processor to transfer
instructions to internal memory. In this boot mode, the processor receives
4-bit wide data in link buffer 0.

After the boot process loads 256 words into memory locations 0x40000
through 0x400FF, the processor begins to execute instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for
the application. VisualDSP++ includes loading routines (boot kernels)
that load an entire program through the selected port; refer to
“ADSP-21161 Processor Boot Kernels” on page 5-16 for more
information.

VisualDSP++ 5.0 Loader and Utilities Manual 5-13

Loader for ADSP-21161 SHARC Processors

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed
information on DMA and system configurations.

DMA channel differences between the ADSP-21161 and previous
SHARC family processors (ADSP-2106x) account for boot differ-
ences. Even with these differences, the ADSP-21161 processors
support the same boot capabilities and configuration as the
ADSP-2106x processors.

The processor determines the boot mode at reset from the EBOOT, LBOOT
and BMS pin inputs. When EBOOT=0, LBOOT=1, and BMS=1, the processor
boots through the link port. For information on boot mode selection, see
Table 5-1 and Table 5-2 on page 5-4.

When using any of the power-up booting modes, address 0x40004
should not contain a valid instruction. Because it is not executed
during the boot sequence, place a NOP or IDLE instruction at this
location.

In link port boot, the processor gets boot data from another processor link
port or 4-bit wide external device after system power-up.

The external device must provide a clock signal to the link port assigned
to link buffer 0. The clock can be any frequency up to the processor clock
frequency. The clock falling edges strobe the data into the link port. The
most significant 4-bit nibble of the 48-bit instruction must be down-
loaded first.

Table 5-5 shows how the DMA channel 8 parameter registers are initial-
ized at reset. The count register (CLB0) is initialized to 0x0100 to transfer

ADSP-21161 Processor Booting

5-14 VisualDSP++ 5.0 Loader and Utilities Manual

256 words to internal memory. The LCTL register is overridden during link
port boot to allow link buffer 0 to receive 48-bit data.

In systems where multiple processors are not connected by the parallel
external bus, booting can be accomplished from a single source through
the link ports. To simultaneously boot all the processors, make a parallel
common connection to link buffer 0 on each of the processors. If a daisy
chain connection exists between the processors’ link ports, each processor
can boot the next processor in turn. Link buffer 0 must always be used for
booting.

SPI Port Boot Mode

Serial peripheral interface (SPI) port booting uses DMA channel 8 of the
IO processor to transfer instructions to internal memory. In this boot
mode, the processor receives 8-bit wide data in the SPIRx register.

During the boot process, the program loads 256 words into memory loca-
tions 0x40000 through 0x400FF. The processor subsequently begins
executing instructions. Because most processor programs require more
than 256 words of instructions and initialization data, the 256 words typ-
ically serve as a loading routine for the application. VisualDSP++ includes
loading routines (boot kernels) which load an entire program through the
selected port. See “ADSP-21161 Processor Boot Kernels” on page 5-16 for
more information.

Table 5-5. DMA Channel 8 Parameter Register for Link Port Boot

Parameter Register Initialization Value

IILB0 0x0004 0000

IMLB0 Uninitialized (increment by 1 is automatic)

CLB0 0x0100 (256-instruction words)

CPLB0 Uninitialized

GPLB0 Uninitialized

VisualDSP++ 5.0 Loader and Utilities Manual 5-15

Loader for ADSP-21161 SHARC Processors

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed
information on DMA and system configurations. For information about
SPI slave booting, refer to EE-177: SHARC SPI Booting, located on the
Analog Devices Web site.

The processor determines the boot mode at reset from the EBOOT, LBOOT,
and BMS pin inputs. When EBOOT=0, LBOOT=1, and BMS=0, the processor
boots through its SPI port. For information on the boot mode selection,
see Table 5-1 and Table 5-2 on page 5-4.

When using any of the power-up booting modes, address 0x40004
should not contain a valid instruction. Because it is not executed
during the boot sequence, place a NOP or IDLE instruction placed at
this location.

For SPI port boot, the processor gets boot data after system power-up
from another processor’s SPI port or another SPI compatible device.

Table 5-6 shows how the DMA channel 8 parameter registers are initial-
ized at reset. The SPI control register (SPICTL) is configured to
0x0A001F81 upon reset during SPI boot.

This configuration sets up the SPIRx register for 32-bit serial transfers.
The SPIRx DMA channel 8 parameter registers are configured to DMA in
0x180 32-bit words into internal memory normal word address space start-
ing at 0x40000. Once the 32-bit DMA transfer completes, the data is
accessed as 3 column, 48-bit instructions. The processor executes a 256
word (0x100) boot kernel upon completion of the 32-bit, 0x180 word
DMA.

For 16-bit SPI hosts, two words are shifted into the 32-bit receive shift
register before a DMA transfer to internal memory occurs. For 8-bit SPI

ADSP-21161 Processor Booting

5-16 VisualDSP++ 5.0 Loader and Utilities Manual

hosts, four words are shifted into the 32-bit receive shift register before a
DMA transfer to internal memory occurs.

No-Boot Mode

No-boot mode causes the processor to start fetching and executing
instructions at address 0x200004 in external memory space. In no-boot
mode, the processor does not boot-load and all DMA control and
parameter registers are set to their default initialization values.The loader
utility does not produce the code for no-boot execution.

ADSP-21161 Processor Boot Kernels
The boot-loading process starts with a transfer of the boot kernel program
into the processor memory. The boot kernel sets up the processor and
loads boot data. After the boot kernel finishes initializing the rest of the
system, the boot kernel loads boot data over itself with a final DMA
transfer.

Four boot kernels are shipped with VisualDSP++; refer to Table 5-7.

Table 5-6. DMA Channel 8 Parameter Register for SPI Port Boot

Parameter Register Initialization Value

IISRX 0x0004 0000

IMSRX Uninitialized (increment by 1 is automatic)

CSRX 0x0180 (256-instruction words)

GPSRX Uninitialized

Table 5-7. ADSP-21161 Default Boot Kernel Files

PROM Booting Link Booting Host Booting SPI Booting

161_prom.dxe 161_link.dxe 161_host.dxe 161_spi.dxe

VisualDSP++ 5.0 Loader and Utilities Manual 5-17

Loader for ADSP-21161 SHARC Processors

Boot kernels are loaded at processor reset into the seg_ldr memory seg-
ment, which is defined in the 161_ldr.ldf. The file is stored in the
<install_path>\211xx\ldr directory of VisualDSP++.

ADSP-21161 Processor Boot Streams

The loader utility produces the boot stream in blocks and inserts header
words at the beginning of data blocks in the loader (.ldr) file. The boot
kernel uses header words to properly place data and instruction blocks
into processor memory. The header format for PROM, host, and link
boot-loader files is as follows.

0x00000000DDDD

0xAAAAAAAALLLL

In the above example, D is a data block type tag, A is a block start address,
and L is a block word length.

For single-processor systems, the data block header has three 32-bit words
in SPI boot mode, as follows.

The boot kernel examines the tag to determine the type of data or instruc-
tion being loaded. Table 5-8 lists the ADSP-21161N processor block tags.

0xLLLLLLLL First word. Data word length or data word count of the data block.

0xAAAAAAAA Second word. Data block start address.

0x000000DD Third word. Tag of data block type.

Table 5-8. ADSP-21161N Processor Block Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000E init pm48

0x0001 zero dm16 0x000F zero dm64

0x0002 zero dm32 0x0010 init dm64

ADSP-21161 Processor Booting

5-18 VisualDSP++ 5.0 Loader and Utilities Manual

Boot Kernel Modification and Loader Issues

Some systems require boot kernel customization. In addition, the opera-
tion of other tools (such as the C/C++ compiler) is influenced by whether
the loader utility is used.

If you do not specify a boot kernel file via the Load page of the Project
Options dialog box in VisualDSP++ (or via the -l kernelfile command-line
switch), the loader utility places a default boot kernel in the loader output
file (see “ADSP-21161 Processor Boot Kernels” on page 5-16) based on
the specified boot mode.

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.asm) file by inserting correct values
for your system, you must rebuild the boot kernel (.dxe) before generating
the boot-loadable (.ldr) file. The boot kernel source file contains default
values for the SYSCON register. The WAIT, SDCTL, and SDRDIV initialization
code is in the boot kernel file comments.

0x0003 zero dm40 0x0012 init pm64

0x0004 init dm16 0x0013 init pm8 ext

0x0005 init dm32 0x0014 init pm16 ext

0x0007 zero pm16 0x0015 init pm32 ext

0x0008 zero pm32 0x0016 init pm48 ext

0x0009 zero pm40 0x0017 zero pm8 ext

0x000A zero pm48 0x0018 zero pm16 ext

0x000B init pm16 0x0019 zero pm32 ext

0x000C init pm32 0x001A zero pm48 ext

0x0011 zero pm64

Table 5-8. ADSP-21161N Processor Block Tags (Cont’d)

Tag Number Block Type Tag Number Block Type

VisualDSP++ 5.0 Loader and Utilities Manual 5-19

Loader for ADSP-21161 SHARC Processors

To Modify a Boot Kernel Source File

1. Copy the applicable boot kernel source file (161_link.asm,
161_host.asm, 161_prom.asm, or 161_spi.asm).

2. Apply the appropriate initializations of the SYSCON and WAIT
registers.

After modifying the boot kernel source file, rebuild the boot kernel (.dxe)
file. Do this from the VisualDSP++ IDDE (refer to VisualDSP++ online
Help for details), or rebuild the boot kernel file from the command line.

Rebuilding a Boot Kernel Using Command Lines

Rebuild a boot kernel using command lines as follows.

EPROM Boot. The default boot kernel source file for EPROM booting is
161_prom.asm. After copying the default file to my_prom.asm and modify-
ing it to suit your system, use the following command lines to rebuild the
boot kernel.

easm21k -proc ADSP-21161 my_prom.asm

linker -T 161_ldr.ldf my_prom.doj

Host Boot. The default boot kernel source file for host booting is
161_host.asm. After copying the default file to my_host.asm and modify-
ing it to suit your system, use the following command lines to rebuild the
boot kernel.

easm21k -proc ADSP-21161 my_host.asm

linker -T 161_ldr.ldf my_host.doj

Link Boot. The default boot kernel source file for link booting is
161_link.asm. After copying the default file to my_link.asm and modify-

ADSP-21161 Processor Booting

5-20 VisualDSP++ 5.0 Loader and Utilities Manual

ing it to suit your system, use the following command lines to rebuild the
boot kernel.

easm21k -proc ADSP-21161 my_link.asm

linker -T 161_ldr.ldf my_link.doj

SPI Boot. The default boot kernel source file for link booting is
161_SPI.asm. After copying the default file to my_SPI.asm and modifying
it to suit your system, use the following command lines to rebuild the
boot kernel:

easm21k -proc ADSP-21161 my_SPI.asm

linker -T 161_ldr.ldf my_SPI.doj

Loader File Issues

If you modify the boot kernel for the EPROM, host, SPI, or link booting
modes, ensure that the seg_ldr memory segment is defined in the .ldf
file. Refer to the source of this memory segment in the .ldf file located in
the …\ldr\ directory of the of the target processor.

Because the loader utility uses the address of 0x40004 for the first location
of the reset vector during the boot-load process, avoid placing code at this
address. When using any of the processor’s power-up boot modes, ensure
that this address does not contain a critical instruction. Because this
address is not executed during the booting sequence, place a NOP or IDLE in
this location. The loader utility generates a warning if the vector address
0x40004 does not contain NOP or IDLE.

When using VisualDSP++ to create the loader file, specify the
name of the customized boot kernel executable in the Kernel file
box on the Load page of the Project Options dialog box.

VisualDSP++ 5.0 Loader and Utilities Manual 5-21

Loader for ADSP-21161 SHARC Processors

ADSP-21161 Processor Interrupt Vector Table
If the ADSP-21161 processor is booted from an external source (EPROM,
host, link port, or SPI), the interrupt vector table is located in internal
memory. If the processor is not booted and executes from external mem-
ory (no-boot mode), the vector table must be located in external memory.

The IIVT bit in the SYSCON control register can be used to override the
booting mode in determining where the interrupt vector table is located.
If the processor is not booted (no-boot mode), setting IIVT to 1 selects an
internal vector table, and setting IIVT to zero selects an external vector
table. If the processor is booted from an external source (any boot mode
other than no-boot), IIVT has no effect. The default initialization value of
IIVT is zero.

ADSP-21161 Multi-Application (Multi-DXE)
Management

Currently, the loader utility generates single-processor loader files for
host, link, and SPI port boot. The loader utility supports multiprocessor
EPROM boot only. The application code must be modified to properly
set up multiprocessor booting in host, link, and SPI port boot modes.

There are two methods by which a multiprocessor system can be booted:

• “Boot From a Single EPROM”

• “Sequential EPROM Boot”

Regardless of the method, the processors perform the following steps.

1. Arbitrate for the bus

2. Upon becoming bus master, DMA the 256-word boot stream

ADSP-21161 Processor Booting

5-22 VisualDSP++ 5.0 Loader and Utilities Manual

3. Release the bus

4. Execute the loaded instructions

Boot From a Single EPROM

The loader utility can produce boot-loadable files that permit SHARC
processors in a multiprocessor system to boot from a single EPROM. The
BMS signals from each processor may be wire ORed together to drive the
EPROM’s chip select pin. Each processor can boot in turn, according to
its priority. When the last processor has finished booting, it must inform
the other processors (which may be in the idle state) that program execu-
tion can begin (if all processors are to begin executing instructions
simultaneously).

When multiple processors boot from a single EPROM, the processors can
boot identical code or different code from the EPROM. If the processors
load differing code, use a jump table in the loader file (based on processor
ID) to select the code for each processor.

Sequential EPROM Boot

Set the EBOOT pin of the processor with ID# of 1 high for EPROM boot-
ing. The other processors should be configured for host boot (EBOOT=0,
LBOOT=0, and BMS=1), leaving them in the idle state at startup and allowing
the processor with ID=1 to become bus master and boot itself. Connect the
BMS pin of processor #1 only to the EPROM’s chip select pin. When
processor #1 has finished booting, it can boot the remaining processors by
writing to their external port DMA buffer 0 (EPB0) via the multiprocessor
memory space.

VisualDSP++ 5.0 Loader and Utilities Manual 5-23

Loader for ADSP-21161 SHARC Processors

Processor ID Numbers

A single-processor system requires only one input (.dxe) file without any
prefix and suffix to the input file name, for example:

elfloader -proc ADSP-21161 -bprom Input.dxe

A multiprocessor system requires a distinct processor ID number for each
input file on the command line. A processor ID is provided via the
-id#exe=filename.dxe switch, where # is 1 to 6.

In the following example, the loader utility processes the input file
Input1.dxe for the processor with an ID of 1 and the input file
Input2.dxe for the processor with an ID of 2.

elfloader -proc ADSP-21161 -bprom -id1exe=Input1.dxe

-id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N
processor, the output loader file contains only one copy of the code from
the input file, as directed by the command-line switch -id#ref=N used in
the example:

elfloader -proc ADSP-21161 -bprom -id1exe=Input.dxe -id2ref=1

where 2 is the processor ID, and 1 is another processor ID referenced by
processor 2.

The loader utility points the id(2)exe loader jump table entry to the
id(1)exe image, effectively reducing the size of the loader file.

ADSP-21161 Processor Loader Guide

5-24 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-21161 Processor Loader Guide
Loader operations depend on the loader options, which control how the
loader utility processes executable files. You select features such as boot
modes, boot kernels, and output file formats via the options. The options
are specified on the loader utility’s command line or via the Load page of
the Project Options dialog box in the VisualDSP++ environment.

The Load page consists of multiple panes. For information specific to the
ADSP-21161 processor, refer to the VisualDSP++ online help for that
processor. When you open the Load page, the default loader settings for
the selected processor are already set. Use the Additional Options box to
enter options that have no dialog box equivalent.

Option settings on the Load page correspond to switches displayed
on the command line.

These sections describe how to produce a bootable loader (.ldr) file:

• “Using ADSP-21161 Loader Command Line” on page 5-24

• “Using VisualDSP++ Interface (Load Page)” on page 5-31

Using ADSP-21161 Loader Command Line
Use the following syntax for the ADSP-21161 loader command line.

elfloader inputfile -proc ADSP-21161 -switch [-switch…]

where:

• inputfile—Name of the executable file (.dxe) to be processed
into a single boot-loadable file. An input file name can include the
drive and directory. Enclose long file names within straight quotes,
“long file name”.

• -proc ADSP-21161—Part number of the processor for which the
loadable file is built. The -proc switch is mandatory.

VisualDSP++ 5.0 Loader and Utilities Manual 5-25

Loader for ADSP-21161 SHARC Processors

• -switch …—One or more optional switches to process. Switches
select operations and boot modes for the loader utility. A list of all
switches and their descriptions appear in Table 5-10 on page 5-27.

Command-line switches are not case-sensitive and placed on the
command line in any order.

Single-Processor Systems

The following command line,
elfloader Input.dxe -bSPI -proc ADSP-21161

runs the loader utility with:

• Input.dxe—Identifies the executable file to process into a
boot-loadable file for a single-processor system. Note that the
absence of the -o switch causes the output file name to default to
Input.ldr.

• -bSPI—Specifies SPI port booting as the boot type for the
boot-loadable file.

• -proc ADSP-21161—Specifies ADSP-21161 as the target processor.

Multiprocessor Systems

The following command line,

elfloader -proc ADSP-21161 -bprom -id1exe=Input1.dxe

-id2exe=Input2.dxe

runs the loader utility with:

• -proc ADSP-21161—Specifies ADSP-21161 as the target processor.

• -bprom—Specifies EPROM booting as the boot type for the
boot-loadable file.

ADSP-21161 Processor Loader Guide

5-26 VisualDSP++ 5.0 Loader and Utilities Manual

• -id1exe=Input1.dxe—Identifies Input1.dxe as the executable file
to process into a boot-loadable file for a processor with ID of 1
(see “Processor ID Numbers” on page 5-23).

• -id2exe=Input2.dxe—Identifies Input2.dxe. as the executable file
to process into a boot-loadable file for a processor with ID of 2
(see “Processor ID Numbers” on page 5-23).

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-17.

File Extensions

Some loader switches take a file name as an optional parameter. Table 5-9
lists the expected file types, names, and extensions.

Table 5-9. File Extensions

Extension File Description

.dxe Executable files and boot kernel files. The loader utility recognizes overlay memory
files (.ovl) and shared memory files (.sm) but does not expect these files on the
command line. Place .ovl and .sm files in the same directory as the .dxe file that
refers to them so the loader utility can find them when processing the .ldr file. The
.ovl and .sm files can also be placed in the .ovl and .sm file output directory spec-
ified in the .ldf file.

.ldr Loader output file

VisualDSP++ 5.0 Loader and Utilities Manual 5-27

Loader for ADSP-21161 SHARC Processors

Loader Command-Line Switches

Table 5-10 is a summary of the ADSP-21161 loader switches.

Table 5-10. ADSP-21161 Loader Command Line Switches

Switch Description

-bprom
-bhost
-blink
-bspi

Specifies the boot mode. The -b switch directs the loader utility to
prepare a boot-loadable file for the specified boot mode. The valid
modes (boot types) are PROM, host, link, and SPI.
If the switch does not appear on the command line, the default is
-bprom.
To use a custom boot kernel, the boot mode selected with the -b
switch must correspond with the boot kernel selected with the -l
kernelfile switch. Otherwise, the loader utility automatically
selects a default boot kernel based on the selected boot type
(see “ADSP-21161 Processor Boot Kernels” on page 5-16).

-efilename Except shared memory. The -e switch omits the specified shared
memory (.sm) file from the output loader file. Use this option to
omit the shared parts of the executable file intended to boot a mul-
tiprocessor system.
To omit multiple .sm files, repeat the switch and its parameter
multiple times on the command line. For example, to omit two
files, use: -efileA.SM -efileB.SM.
In most cases, it is not necessary to use the -e switch: the loader
utility processes the .sm files efficiently (includes a single copy of
the code and data from each .sm file in a loader file).

-fhex
-fASCII
-fbinary
-finclude
-fS1
-fS2
-fS3

Specifies the format of the boot-loadable file (Intel hex-32, ASCII,
include, binary, S1, S2, and S3 (Motorola S-records). If the -f
switch does not appear on the command line, the default boot file
format is hex for PROM, and ASCII for host, link, or SPI.
Available formats depend on the boot mode selection (-b switch):
• For a PROM boot, select a hex-32, S1, S2, S3, ASCII, or

include format.
• For host or link boot, select an ASCII, binary, or include

format.
• For SPI boot, select an ASCII or binary format.

ADSP-21161 Processor Loader Guide

5-28 VisualDSP++ 5.0 Loader and Utilities Manual

-h
or
-help

Command-line help. Outputs the list of command-line switches to
standard output and exits.
Combining the -h switch with -proc ADSP-21161; for example,
elfloader -proc ADSP-21161 -h, yields the loader syntax and
switches for the ADSP-21161 processors. By default, the -h switch
alone provides help for the loader driver.

-hostwidth # Sets up the word width for the .ldr file. By default, the word
width for PROM and host is 8, for link is 16, and for SPI is 32.
The valid word widths for the various boot modes are:
• PROM—8 for hex or ASCII format, 8 or 16 for include format
• host—8 or 16 for ASCII or binary format, 16 for include

format
• link—16 for ASCII, binary, or include format
• SPI—8, 16, or 32 for Intel hex 32 or ASCII format

-id#exe=filename Specifies the processor ID. The -id#exe= switch directs the
loader utility to use the processor ID (#) for the corresponding
executable file (filename) when producing a boot-loadable file
for EPROM boot of a multiprocessor system. This switch is used
only to produce a boot-loadable file that boots multiple processors
from a single EPROM.
Valid values for # are 1, 2, 3, 4, 5, and 6.
Do not use this switch for single-processor systems. For single-pro-
cessor systems, use filename as a parameter without a switch. For
more information, refer to “Processor ID Numbers” on page 5-23.

-id#ref=N Points the processor ID (#) loader jump table entry to the ID (N)
image. If the executable file for the (#) processor is identical to the
executable of the (N) processor, the switch can be used to set the
PROM start address of the processor with ID of # to be the same
as for the processor with ID of N. This effectively reduces the size
of the loader file by providing a single copy of an executable to two
or more processors in a multiprocessor system. For more informa-
tion, refer to “Processor ID Numbers” on page 5-23.

Table 5-10. ADSP-21161 Loader Command Line Switches (Cont’d)

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 5-29

Loader for ADSP-21161 SHARC Processors

-l kernelfile Directs the loader utility to use the specified kernelfile as the
boot-loading routine in the output boot-loadable file. The boot
kernel selected with this switch must correspond to the boot mode
selected with the -b switch.
If the -l switch does not appear on the command line, the loader
utility searches for a default boot kernel file. Based on the boot
mode (-b switch), the loader utility searches in the processor-spe-
cific loader directory for the boot kernel file as described in
“ADSP-21161 Processor Boot Kernels” on page 5-16.

-o filename Directs the loader utility to use the specified filename as the
name for the loader output file. If not specified, the default name
is inputfile.ldr.

-noZeroBlock The -noZeroBlock switch directs the loader utility not to build
zero blocks.

-paddress Directs the loader utility to start the boot-loadable file at the spec-
ified address in the EPROM. This EPROM address corresponds to
0x8000000 on the ADSP-21161 processor. If the -p switch does
not appear on the command line, the loader utility starts the
EPROM file at address 0x0.

-proc ADSP-21161 Specifies the processor. This is a mandatory switch.

Table 5-10. ADSP-21161 Loader Command Line Switches (Cont’d)

Switch Description

ADSP-21161 Processor Loader Guide

5-30 VisualDSP++ 5.0 Loader and Utilities Manual

-si-revision #|none|any The -si-revision {#|none|any} switch provides a silicon revi-
sion of the specified processor.
The switch parameter represents a silicon revision of the processor
specified by the -proc processor switch. The parameter takes
one of three forms:
• The none value indicates that the VisualDSP++ ignores silicon

errata.
• The #.# value indicates one or more decimal digits, followed by

a point, followed by one or two decimal digits. Examples of
revisions are: 0.0 - 0.3 and 1.0 - 1.3.

• The any value indicates that VisualDSP++ produces an output
file that can be run at any silicon revision.

The switch generates either a warning about any potential anoma-
lous conditions or an error if any anomalous conditions occur.
In the absence of the silicon revision switch, the loader utility
selects the greatest silicon revision it is aware of, if any.

In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader utility
generates an error.

-t# (Host boot type only) Specifies timeout cycles. The -t switch (for
example, -t100) limits the number of cycles that the processor
spends initializing external memory with zeros. Valid values range
from 3 to 32765 cycles; 32765 is the default value.
The timeout value (#) is related directly to the number of cycles
the processor locks the bus for boot-loading, instructing the pro-
cessor to lock the bus for no more than two times the timeout
number of cycles. When working with a fast host that cannot tol-
erate being locked out of the bus, use a relatively small timeout
value.

-v Outputs verbose loader messages and status information as the
loader utility processes files.

-version Directs the loader utility to show its version information. Type
elfloader -version to display the version of the loader drive.
Add the -proc switch, for example,
elfloader -proc ADSP-21161 -version to display version
information of both loader drive and SHARC loader.

Table 5-10. ADSP-21161 Loader Command Line Switches (Cont’d)

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 5-31

Loader for ADSP-21161 SHARC Processors

Using VisualDSP++ Interface (Load Page)
After selecting a Loader file as the target type on the Project page in Visu-
alDSP++ Project Options dialog box, modify the default options on the
Load: Processor page (also called loader property page). Click OK to save
the selections. Selecting Build Project from the Project menu generates a
loader file. For information relative to a specific processor, refer to the
VisualDSP++ online help for that processor.

VisualDSP++ invokes the elfloader utility to build the output file. The
Load page buttons and fields correspond to loader command-line switches
and parameters (see Table 5-10 on page 5-27). Use the Additional
Options box to enter options that do not have dialog box equivalents.

ADSP-21161 Processor Loader Guide

5-32 VisualDSP++ 5.0 Loader and Utilities Manual

VisualDSP++ 5.0 Loader and Utilities Manual 6-1

6 LOADER FOR
ADSP-2126X/2136X/2137X/
2146X/2147X/2148X SHARC
PROCESSORS

This chapter explains how the loader utility (elfloader.exe) is used to
convert executable (.dxe) files into boot-loadable files for the
ADSP-2126x, ADSP- 2136x, ADSP-2137x, ADSP-2146x, ADSP-2147x,
and ADSP-2148x SHARC processors.

Refer to “Introduction” on page 1-1 for the loader utility overview; the
introductory material applies to all processor families. Refer to “Loader for
ADSP-2106x/21160 SHARC Processors” on page 4-1 for information
about the ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L,
and ADSP-21160 processors. Refer to “Loader for ADSP-21161 SHARC
Processors” on page 5-1 for information about the ADSP-21161
processors.

Loader operations specific to the
ADSP-2126x/2136x/2137x/2146x/2147x/2148x SHARC processors are
detailed in the following sections.

• “ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor Boot-
ing”
Provides general information about various booting modes, includ-
ing information about boot kernels.

• “ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Loader Guide”
Provides reference information about the graphical user interface,
command-line syntax, and switches.

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-2 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-2126x/2136x/2137x/2146x/2147x/
2148x Processor Booting

The ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x,
ADSP-2147x, and ADSP-2148x processors can be booted from an exter-
nal PROM memory device via the parallel port (PROM mode) or via the
serial peripheral interface (SPI slave, SPI flash, or SPI master mode). In
no-boot mode, the processor is booted from the internal ROM (only
available on some processors).

• In parallel port boot mode, the loader output file (.ldr) is stored in
an 8-bit wide parallel PROM device and fetched by the processor.

On the ADSP-2126x/2136x/2137x/2146x/2147x/2148x proces-
sors, whether supporting multiprocessing or not, there is no ID
lookup table between the kernel and the rest of the application.

• In SPI slave boot mode, the loader file is transmitted to the proces-
sor by a host processor configured as an SPI master.

• There are three cases for the SPI master boot mode: SPI master
(no address), SPI PROM (16-bit address), and SPI flash (24-bit
address). The difference between the these modes is the way the
slave device sends the first word of the .ldr file. In SPI PROM and
SPI flash boot modes, the .ldr file is stored in a passive memory
device and fetched by the processor. In SPI master, the .ldr file is
transmitted to the processor by a host processor configured as an
SPI slave.

• In no-boot mode, the processor fetches and executes instructions
directly from the external memory, bypassing the boot kernel
entirely. The loader utility does not produce a file supporting the
no-boot mode.

VisualDSP++ 5.0 Loader and Utilities Manual 6-3

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

Software developers who use the loader utility should be familiar with the
following operations.

• “Power-Up Booting Process” on page 6-3

• “Boot Mode Selection” on page 6-4

• “ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors Boot
Modes” on page 6-5

• “ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors Boot
Kernels” on page 6-22

• “ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors
Interrupt Vector Table” on page 6-25

• “ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor Boot
Streams” on page 6-26

Power-Up Booting Process
The ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x,
ADSP-2147x, and ADSP-2148x processors include a hardware feature
that boot-loads a small, 256-instruction, program into the processor’s
internal memory after power-up or after the chip reset. These instructions
come from a program called a boot kernel. When executed, the boot ker-
nel facilitates booting of user application code. The combination of the
boot kernel and application code comprise the boot-loadable (.ldr) file.

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-4 VisualDSP++ 5.0 Loader and Utilities Manual

At power-up, after the chip reset, the booting process includes the follow-
ing steps.

1. Based on the boot type, an appropriate DMA channel is automati-
cally configured for a 384-word (32-bit) transfer or a 256-word
(48-bit) transfer. This transfer boot-loads the boot kernel program
into the processor memory.

2. The boot kernel runs and loads the application executable code and
data.

3. The boot kernel overwrites itself with the first 256 (48-bit) words
of the application at the end of the booting process. After that, the
application executable code starts running.

The boot type selection directs the system to prepare the appropriate boot
kernel.

Boot Mode Selection
Unlike earlier SHARC processors, Blackfin/2137x/2146x/2147x/2148x
processors do not have a boot memory select (BMS) pin. On these proces-
sors, the boot type is determined by sampling the state of the BOOT_CFGx
pins, as described in Table 6-1 and Table 6-2. A description of each boot
type follows in “ADSP-2126x/2136x/2137x/2146x/2147x/2148x Proces-
sors Boot Modes”.

Table 6-1. ADSP-2126x/2136x/2137x Boot Mode Pins

BOOT_CFG[1–0] Boot Mode Boot Mode Selection

00 SPI slave -bspislave

01 SPI master (SPI flash, SPI PROM, or a host
processor via SPI master mode)

-bspiflash
-bspiprom
-bspimaster

VisualDSP++ 5.0 Loader and Utilities Manual 6-5

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

ADSP-2126x/2136x/2137x/2146x/2147x/2148x
Processors Boot Modes

The following sections describe the
ADSP-2126x/2136x/2137x/2146x/2147x/2148x processor boot types:

• “PROM Boot Mode” on page 6-6

• “SPI Port Boot Modes” on page 6-8

• “Link Port Boot Mode” on page 6-18

• “Internal Boot Mode” on page 6-20

10 EPROM boot via the parallel port -bprom

11 Internal boot (not available on all
ADSP-2126x processors)

Does not use the loader utility

Table 6-2. ADSP-2146x/2147x/2148x Boot Mode Pins

BOOT_CFG[2–0] Boot Mode Boot Mode Selection

000 SPI slave -bspislave

001 SPI master (SPI flash, SPI PROM, or a host
processor via SPI master mode)

-bspiflash
-bspiprom
-bspimaster

010 AMI user boot (for 8-bit flash memory boot) -bprom

011 ADSP-2147x: reserved;
ADSP-2146x/2148x: no boot (processor exe-
cutes from internal ROM after reset)

N/A
N/A

100 Lnk port 0 boot -blink

101 Reserved N/A

Table 6-1. ADSP-2126x/2136x/2137x Boot Mode Pins (Cont’d)

BOOT_CFG[1–0] Boot Mode Boot Mode Selection

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-6 VisualDSP++ 5.0 Loader and Utilities Manual

PROM Boot Mode

The Blackfin/2137x/2146x/2147x/2148x processors support an 8-bit boot
mode through the parallel port. This mode is used to boot from external
8-bit-wide memory devices. The processor is configured for 8-bit boot
mode when the BOOT_CFG1–0 pins = 10 or BOOT_CFG2–0 pins = 010. When
configured for parallel booting, the parallel port transfers occur with the
default bit settings for the PPCTL register (shown in Table 6-3).

The parallel port DMA channel is used when downloading the boot kernel
information to the processor. At reset, the DMA parameter registers are
initialized to the values listed in Table 6-4.

Table 6-3. PPCTL Register Settings for PROM Boot Mode

Bit Setting

PPALEPL = 0; ALE is active high

PPEN = 1

PPDUR = 10111; (23 core clock cycles per data transfer cycle)

PPBHC = 1; insert a bus hold cycle on every access

PP16 = 0; external data width = 8 bits

PPDEN = 1; use DMA

PPTRAN = 0; receive (read) DMA

PPBHD = 0; buffer hang enabled

Table 6-4. Parameter Register Settings for PROM Boot Mode

Parameter Register Initialization Value Comment

PPCTL 0x0000 016F See Table 6-3

IIPP ADSP-2126x: 0;
ADSP-2136x/2146x/2147x/2148x:
0x10000

The offset from internal mem-
ory normal word starting
address of 0x80000

VisualDSP++ 5.0 Loader and Utilities Manual 6-7

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

Packing Options for External Memory

For the ADSP-2126x processors, the external memory address ranges are
0x1000000–0x2FFFFFF. For the ADSP-21362/21363/21364/21365/21366
processors, the external memory address ranges are 0x1200000—0x1203FFF.
For the ADSP-21367/21368/21369/2137x/2146x/2147x and
ADSP-2148x processors, the external PM memory address ranges are
0x200000—0x23FFFF. The parallel port automatically packs internal 32-bit
words to either 8-bit or 16-bit words for external memory. These are the
only widths supported. The WIDTH() command in the linker specifies
which packing mode should be used to initialize the external memory:
WIDTH(8) for 8-bit memory or WIDTH(16) for 16-bit memory.

The loader utility packs the external memory data from the .dxe file
according to the linker’s WIDTH() command. The loader utility unpacks
the data from the executable file and packs the data again in the loader file
if the data is packed in the .dxe file due to the packing command in the
linker description (.ldf) file.

Packing and Padding Details

For ZERO_INIT sections in a .dxe file, no data packing or padding in the
.ldr file is required because only the header itself is included in the .ldr
file. However, for other section types, additional data manipulation is

ICPP 0x180 (384) The number of 32-bit words
that are equivalent to 256
instructions

IMPP 0x01

EIPP 0x00

ECPP 0x600 The number of bytes in 0x100
48-bit instructions

EMPP 0x01

Table 6-4. Parameter Register Settings for PROM Boot Mode (Cont’d)

Parameter Register Initialization Value Comment

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-8 VisualDSP++ 5.0 Loader and Utilities Manual

required. It is important to note that in all cases, the word count placed
into the block header in the loader file is the original number of words.
That is, the word count does not include the padded word.

SPI Port Boot Modes

The ADSP-2126x/2136x/2137x/2146x/2147x/2148x SHARC processor
supports booting from a host processor via serial peripheral interface slave
mode (BOOT_CFG1–0 = 00 or BOOT_CFG2–0 = 000), and booting from an
SPI flash, SPI PROM, or a host processor via SPI master
mode (BOOT_CFG1–0 = 01). SPI slave boot mode is discussed on page 6-9,
and SPI master boot modes are discussed on page 6-10.

Both SPI boot modes support booting from 8-, 16-, or 32-bit SPI devices.
In all SPI boot modes, the data word size in the shift register is hardwired
to 32 bits. Therefore, for 8- or 16-bit devices, data words are packed into
the shift register (RXSPI) to generate 32-bit words least significant bit
(LSB) first, which are then shifted into internal memory.

For 16-bit SPI devices, two words shift into the 32-bit receive shift regis-
ter (RXSR) before a DMA transfer to internal memory occurs. For 8-bit SPI
devices, four words shift into the 32-bit receive shift register before a
DMA transfer to internal memory occurs.

When booting, the ADSP-2126x/2136x/2137x/2146x/2147x/2148x pro-
cessor expects to receive words into the RXSPI register seamlessly. This
means that bits are received continuously without breaks in the CS link.
For different SPI host sizes, the processor expects to receive instructions
and data packed in a least significant word (LSW) format.

See the manual for the target SHARC processor peripherals for informa-
tion on how data is packed into internal memory during SPI booting for
SPI devices with widths of 32, 16, or 8 bits.

VisualDSP++ 5.0 Loader and Utilities Manual 6-9

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

 SPI Slave Boot Mode

In SPI slave boot mode, the host processor initiates the booting operation
by activating the SPICLK signal and asserting the SPIDS signal to the active
low state. The 256-word boot kernel is loaded 32 bits at a time, via the
SPI receive shift register. To receive 256 instructions (48-bit words) prop-
erly, the SPI DMA initially loads a DMA count of 384 32-bit words,
which is equivalent to 256 48-bit words.

The processor’s SPIDS pin should not be tied low. When in SPI
slave mode, including booting, the SPIDS signal is required to tran-
sition from high to low. SPI slave booting uses the default bit
settings shown in Table 6-5.

Table 6-5. SPI Slave Boot Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI enabled

MS Cleared (= 0) Slave device

MSBF Cleared (= 0) LSB first

WL 10, 32-bit SPI Receive Shift register word length

DMISO Set (= 1) MISO MISO disabled

SENDZ Cleared (= 0) Send last word

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-10 VisualDSP++ 5.0 Loader and Utilities Manual

The SPI DMA channel is used when downloading the boot kernel infor-
mation to the processor. At reset, the DMA parameter registers are
initialized to the values listed in Table 6-6.

Zero initialization must be considered while performing slave boot;
for more information about SPI slave booting, refer to EE-177:
SHARC SPI Booting, located on the Analog Devices Web site.

SPI Master Boot Modes

In SPI master boot mode, the
ADSP-2126x/2136x/2137x/2146x/2147x/2148x processor initiates the
booting operation by:

1. Activating the SPICLK signal and asserting the FLAG0 signal (on
ADSP-2126x and ADSP-21362/21363/21364/21365/21366) or
the SPI_FLAG0_O signal (routed by default to the DPI_PB05 pin on
the ADSP-21367/21368/21369/2137x/2146x/2147x and
ADSP-2148x) to the active low state to enable slave select

2. Writing the read command 0x03 and address 0x00 to the slave
device

Table 6-6. Parameter Register Settings for SPI Slave Boot

Parameter Register Initialization Value Comment

SPICTL 0x0000 4D22

SPIDMAC 0x0000 0007 Enabled, RX, initialized on completion

IISPI 0x0008 0000 Start of block 0 normal word memory

IMSPI 0x0000 0001 32-bit data transfers

CSPI 0x0000 0180

VisualDSP++ 5.0 Loader and Utilities Manual 6-11

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

SPI master boot mode is used when the processor is booting from an SPI
compatible serial PROM, serial flash, or slave host processor. The specifics
of booting from these devices are discussed individually:

• “Booting From an SPI Flash” on page 6-17

• “Booting From an SPI PROM (16-bit address)” on page 6-17

• “Booting From an SPI Host Processor” on page 6-18

On reset, the interface starts up in SPI master mode performing a three
hundred eighty-four 32-bit word DMA transfer.

SPI master booting uses the default bit settings shown in Table 6-7.

Table 6-7. SPI Master Boot Mode Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI enabled

MS Set (= 1) Master device

MSBF Cleared (= 0) LSB first

WL 10 32-bit SPI receive shift register word length

DMISO Cleared (= 0) MISO enabled

SENDZ Set (= 1) Send zeros

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-12 VisualDSP++ 5.0 Loader and Utilities Manual

The SPI DMA channel is used when downloading the boot kernel infor-
mation to the processor. At reset, the DMA parameter registers are
initialized to the values listed in Table 6-8.

From the perspective of the processor, there is no difference between boot-
ing from the three types of SPI slave devices. Since SPI is a full-duplex
protocol, the processor is receiving the same amount of bits that it sends as
a read command. The read command comprises a full 32-bit word (which
is what the processor is initialized to send) comprised of a 24-bit address
with an 8-bit opcode. The 32-bit word, received while the read command
is transmitted, is thrown away in hardware and can never be recovered by
the user. Consequently, special measures must be taken to guarantee that
the boot stream is identical in all three cases.

The processor boots in least significant bit first (LSB) format, while most
serial memory devices operate in most significant bit first (MSB) format.
Therefore, it is necessary to program the device in a fashion that is com-
patible with the required LSB format. See “Bit-Reverse Option for SPI
Boot Modes” on page 6-14 for details.

Table 6-8. Parameter Registers Settings for SPI Master Boot

Parameter Register Initialization Value Comment

SPICTL 0x0000 5D06

SPIBAUD 0x0064 CCLK/400 =500 KHz@ 200 MHz

SPIFLG 0xfe01 ADSP-2126x/21362/21363/21364/21365 and
ADSP-2136:FLAG0;
ADSP-21367/21368/21369/2137x/2146x/2147x
and ADSP-2148x:SPI_FLAG0_O is used as
slave-select

SPIDMAC 0x0000 0007 Enable receive interrupt on completion

IISPI 0x0008 0000 Start of block 0 normal word memory

IMSPI 0x0000 0001 32-bit data transfers

CSPI 0x0000 0180 0x100 instructions = 0x180 32-bit words

VisualDSP++ 5.0 Loader and Utilities Manual 6-13

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

Also, because the processor always transmits 32 bits before it begins read-
ing boot data from the slave device, the loader utility must insert extra
data into the byte stream (in the loader file) if using memory devices that
do not use the LSB format. The loader utility includes an option for creat-
ing a boot stream compatible with both endian formats, and devices
requiring 16-bit and 24-bit addresses, as well as those requiring no read
command at all. See “Initial Word Option for SPI Master Boot Modes”
on page 6-15 for details.

Figure 6-1 shows the initial 32-bit word sent out from the processor. As
shown in the figure, the processor initiates the SPI master boot process by
writing an 8-bit opcode (LSB first) to the slave device to specify a read
operation. This read opcode is fixed to 0xC0 (0x03 in MSB first format).
Following that, a 24-bit address (all zeros) is always driven by the proces-
sor. On the following SPICLK cycle (cycle 32), the processor expects the

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-14 VisualDSP++ 5.0 Loader and Utilities Manual

first bit of the first word of the boot stream. This transfer continues until
the boot kernel has finished loading the user program into the processor.

Bit-Reverse Option for SPI Boot Modes

SPI PROM. For the SPI PROM boot type, the entirety of the SPI master
.ldr file needs the option of bit-reversing when loading to SPI PROMs.
This is because the default setting for the SPICTL register (see Table 6-8 on
page 6-12) sets the bit order to be LSB first. SPI EPROMs are usually
MSB first, so the .ldr file must be sent in bit-reversed order.

SPI Master and SPI Slave. When loading to other slave devices, the SPI
master and SPI slave boot types do not need bit reversing necessarily. For
SPI slave and SPI master boots to non-PROM devices, the same default
exists (bit-reversed); however, the host (master or slave) can simply be
configured to transmit LSB first.

Figure 6-1. SPI Master Mode Booting Using Various Serial Devices

VisualDSP++ 5.0 Loader and Utilities Manual 6-15

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

For more information about SPI slave booting, refer to EE-177: SHARC
SPI Booting, located on the Analog Devices Web site.

Initial Word Option for SPI Master Boot Modes

Before final formatting (binary, include, etc.) the loader must prepends
the word 0xA5 to the beginning of the byte stream. During SPI master
booting, the SPI port discards the first byte read from the SPI.

SPI PROM. For the SPI PROM boot type, the word 0xA5 prepended to
the stream is one byte in length. SPI PROMs receives a 24-bit read com-
mand before any data is sent to the processor, the processor then discards
the first byte it receives after this 24-bit opcode is sent (totaling one 32-bit
word).

SPI Master. For the SPI master boot type, the word 0xA5000000 pre-
pended to the stream is 32 bits in length. An SPI host configured as a slave
begins sending data to the processor while the processor is sending the
24-bit PROM read opcode. These 24-bits must be zero-filled because the
processor discards the first 32-bit word that it receives from the slave.

The 0xA5 byte is only required for SPI master boot mode.

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-16 VisualDSP++ 5.0 Loader and Utilities Manual

Figure 6-2 and Table 6-9 illustrates the first 32-bit word for both the SPI
PROM and SPI master cases.

Figure 6-2. SPI Master Boot from a Slave Processor Vs. a Slave PROM

Table 6-9. Initial Word for SPI Master and SPI PROM in .ldr File

Boot Mode Additional Word -hostwidth

 32 16 8

SPI master1

1 Initial word for SPI master boot type is always 32 bits. See Figure 6-1 on page 6-14 for explana-
tion.

0xA5000000 A5000000 0000 00

A500 00

00

A5

SPI PROM2

2 Initial word for SPI PROM boot type is always 8 bits. See Figure 6-1 on page 6-14 for explanation

0xA5 A5 A5 A5

VisualDSP++ 5.0 Loader and Utilities Manual 6-17

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

With bit reversing for SPI master boot mode, the 32-bit word is handled
according to the host width. With bit reversing for SPI PROM boot, the
8-bit word is reversed as a byte and prepended (see Table 6-10).

Booting From an SPI Flash

For SPI flash devices, the format of the boot stream is identical to that
used in SPI slave mode, with the first byte of the boot stream being the
first byte of the kernel. This is because SPI flash devices do not drive out
data until they receive an 8-bit command and a 24-bit address.

Booting From an SPI PROM (16-bit address)

Figure 6-2 shows the initial 32-bit word sent out from the processor from
the perspective of the serial PROM device.

As shown in Figure 6-2, SPI EEPROMs only require an 8-bit opcode and
a 16-bit address. These devices begin transmitting on clock cycle 24.
However, because the processor is not expecting data until clock cycle 32,
it is necessary for the loader to pad an extra byte to the beginning of the
boot stream when programming the PROM. In other words, the first byte
of the boot kernel is the second byte of the boot stream. The VisualDSP++
tools automatically handles this in the loader file generation process for
SPI PROM devices.

Table 6-10. Default Settings for PROM and SPI Boot Modes

Boot Type
Selection

Host
Width

Output Format Bit Reverse Initial Word

-bprom 8 Intel hex No -

-bspislave 32 ASCII No -

-bspiflash 32 ASCII No -

-bspimaster 32 ASCII No 0x000000a5

-bspiprom 8 Intel hex Yes 0xa5

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-18 VisualDSP++ 5.0 Loader and Utilities Manual

Booting From an SPI Host Processor

Typically, host processors in SPI slave mode transmit data on every SPICLK
cycle. This means that the first four bytes that are sent by the host proces-
sor are part of the first 32-bit word that is thrown away by the processor
(see Figure 6-1). Therefore, it is necessary for the loader to pad an extra
four bytes to the beginning of the boot stream when programming the
host; for example, the first byte of the kernel is the fifth byte of the boot
stream. VisualDSP++ automatically handles this in the loader file genera-
tion process.

For more information about SPI slave booting, refer to EE-177: SHARC
SPI Booting, located on the Analog Devices Web site.

Link Port Boot Mode

Booting is supported through link port 0. The acknowledge signal (LACK0)
is asserted at RESET since the link port is configured as a receiver. The host
initiates the transfer by toggling the link port clock (LCLK0). Boot data is
shifted in 8-bits every clock cycle through the LDAT0x pins. The received
data streams of 4 x 8-bit is packed by the 2 deep RXLP0 buffer into 32-bit
words, least significant bit (LSB) first, and passed into the internal mem-
ory (Figure 6-3).

Once the DMA is completed, a link port 0 interrupt (P1I) occurs. If
BOOT_CFG2–0 is 100 (link port 0 boot), P1I is programmed as link port 0
interrupt at reset and the interrupt is unmasked at reset. Otherwise, P1I is
programmed as an SPIHI interrupt at reset.

VisualDSP++ 5.0 Loader and Utilities Manual 6-19

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

For link port boot, LCK0 should only be asserted after RESETOUT has
de-asserted.

Table 6-11 shows the link port control settings after reset.

Figure 6-3. Link Port Data Packing

Table 6-11. LPCTL0 Boot Settings (0x403)

Bit Name Setting

0 LEN Link port enabled (set = 1)

1 LDEN DMA enabled (set = 1)

2 LCHEN DMA Chaining (cleared = 0)

3 LTRAN Receive operation (cleared = 0)

7 BHD Buffer hang disabled (cleared = 0)

8 LTRQ_MSK LP transmit request mask (cleared = 0)

9 LRRQ_MSK LP receive request mask (cleared = 0)

10 DMACH_IRPT_MSK LP DMA channel interrupt unmask (P1I) (set = 1)

11 LPIT_MSK LP Invalid transmit mask (cleared = 0)

12 TXFR_DONE_MSK External transfer done interrupt mask (cleared = 0)

R
XL

P0
In te r na l
M e m or y

32 32
D M A

8-
bi

t
to

 3
2-

b
it

pa
ck

in
g

LD A T A [7 :0]

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-20 VisualDSP++ 5.0 Loader and Utilities Manual

The DMA parameters for the Link Port0 channel are configured as shown
in Table 6-12.

Internal Boot Mode

In internal boot mode, upon reset, the processor starts executing the appli-
cation stored in the internal boot kernel.

To facilitate internal booting, the -nokernel command-line switch com-
mands the loader utility:

• To omit a boot kernel.
The -nokernel switch denotes that a running on the processor
(already booted) subroutine imports the .ldr file. The loader util-
ity does not insert a boot kernel into the .ldr file—a similar
subroutine is present already on the processor. Instead, the loader
file begins with the first header of the first block of the boot
stream.

• To omit any interrupt vector table (IVT) handling.
In internal boot mode, the boot stream is not imported by a boot
kernel executing from within the IVT; no self-modifying
FINAL_INIT code (which overwrites itself with the IVT) is needed.
Thus, the loader utility does not give any special handling to the
256 instructions located in the IVT (0x80000–0x800FF for the
ADSP-2126x, 0x90000–0x900FF for the ADSP-2136x, and

Table 6-12. Parameter Initialization for Link Boot

Parameter Register
Elf splitter

Initialization Value Comment

IILP0 IVT_START_ADDR Start of block 0

IMLP0 0x1 32-bit data transfers

ICLP0 0x180 384 × 32-bit transfers

VisualDSP++ 5.0 Loader and Utilities Manual 6-21

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

0x8C000–0x8C0FF for the ADSP-2146x/2147x/2148x processors).
Instead, the IVT code or data are handled like any other range of
memory.

• To omit an initial word of 0xa5.
When -nokernel is selected, the loader utility does not place an
initial word (A5) in the boot stream as required for SPI master
booting.

• To replace the FINAL_INIT block with a USER_MESG header.
The FINAL_INIT block (which typically contains the IVT code)
should not be included in the .ldr file because the contents of the
IVT (if any) is incorporated in the boot-stream. Instead, the loader
utility appends one final bock header to terminate the loader file.

The final block header has a block tag of 0x0 (USER_MESG). The
header indicates to a subroutine processing the boot stream that
this is the end of the stream. The header contains two 32-bit data
words, instead of count and address information (unlike the other
headers). The words can be used to provide version number, error
checking, additional commands, return addresses, or a number of
other messages to the importing subroutine on the processor.

The two 32-bit values can be set on the command line as argu-
ments to the -nokernel[message1, message2] switch. The first
optional argument is msg_word1, and the second optional argument
is msg_word2, where the values are interpreted as 32-bit unsigned
numbers. If only one argument is issued, that argument is
msg_word1. It is not possible to specify msg_word2 without specify-
ing msg_word1.) If one or no arguments are issued at the command
line, the default values for the arguments are 0x00000000.

Listing 6-1 shows a sample format for the USER_MESG header.

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-22 VisualDSP++ 5.0 Loader and Utilities Manual

Listing 6-1. Internal Booting: FINAL_INIT Block Header Format

0x00000000 /* USER_MESG tag */

0x00000000 /* msg_word1 (1st cmd-line parameter) */

0x00000000 /* msg_word2 (2nd cmd-line parameter) */

ADSP-2126x/2136x/2137x/2146x/2147x/2148x
Processors Boot Kernels

The boot-loading process starts with a transfer of the boot kernel program
into the processor memory. The boot kernel sets up the processor and
loads boot data. After the boot kernel finishes initializing the rest of the
system, the boot kernel loads boot data over itself with a final DMA
transfer.

Table 6-13 lists the ADSP-2126x/2136x/2137x/2146x/2147x/2148x boot
kernels shipped with VisualDSP++.

Table 6-13. ADSP-2126x/2136x/2137x/2146x Default Boot Kernel Files

Processor PROM SPI Slave, SPI Flash,
SPI Master, SPI PROM

Link Port Boot

ADSP-2126x 26x_prom.dxe 26x_spi.dxe N/A

ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365,
ADSP-21366

36x_prom.dxe 36x_spi.dxe N/A

ADSP-21367, ADSP-21368,
ADSP-21369

369_prom.dxe 369_spi.dxe N/A

ADSP-2137x 375_prom.dxe 375_spi.dxe N/A

ADSP-21462, ADSP-21465,
ADSP-21467, ADSP-21469

469_prom.dxe 469_spi.dxe 469_link.dxe

VisualDSP++ 5.0 Loader and Utilities Manual 6-23

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

At processor reset, a boot kernel is loaded into the seg_ldr memory seg-
ment as defined in the Linker Description File for the default loader
kernel that corresponds to the target processor, for example,
2126x_ldr.ldf, which is stored in the <isntall_path>\ldr VisualDSP++
directory of the target processor.

Boot Kernel Modification and Loader Issues

Boot kernel customization is required for some systems. In addition, the
operation of other tools (such as the C/C++ compiler) is influenced by
whether the loader utility is used.

If you do not specify a boot kernel file via the Load page of the Project
Options dialog box in VisualDSP++ (or via the -l command-line switch),
the loader utility places a default boot kernel (see Table 6-13) in the
loader output file based on the specified boot type.

If you do not want to use any boot kernel file, check the No kernel box (or
specify the -nokernel command-line switch). The loader utility places no
boot kernel in the loader output file.

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.asm) file by inserting correct values
for your system, you must rebuild the boot kernel (.dxe) before generating

ADSP-21471, ADSP-21472,
ADSP-21475, ADSP-21478,
ADSP-21479

479_prom.dxe 479_spi.dxe N/A

ADSP-21481, ADSP-21482,
ADSP-21483, ADSP-21485,
ADSP-21486, ADSP-21487,
ADSP-21488, ADSP-21489

489_spi.dxe 489_spi.dxe N/A

Table 6-13. ADSP-2126x/2136x/2137x/2146x Default Boot Kernel Files

Processor PROM SPI Slave, SPI Flash,
SPI Master, SPI PROM

Link Port Boot

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-24 VisualDSP++ 5.0 Loader and Utilities Manual

the boot-loadable (.ldr) file. The boot kernel source file contains default
values for the SYSCON register. The WAIT, SDCTL, and SDRDIV initialization
code are in the boot kernel file comments.

To Modify a Boot Kernel Source File

1. Copy the applicable boot kernel source file (.asm).

2. Apply the appropriate changes.

After modifying the boot kernel source file, rebuild the boot kernel (.dxe)
file. Do this from within the VisualDSP++ IDDE (refer to VisualDSP++
online Help for details) or rebuild a boot kernel file from the command
line.

Rebuilding a Boot Kernel Using Command Lines

Rebuild a boot kernel using command lines as follows.

PROM Booting. The default boot kernel source file for PROM booting is
26x_prom.asm for the ADSP-2126x processors. After copying the default
file to my_prom.asm and modifying it to suit your system, use the following
command lines to rebuild the boot kernel.

easm21k -proc ADSP-21262 my_prom.asm

linker -T 2162x_ldr.ldf my_prom.doj

SPI Booting. The default boot kernel source file for link booting is
2126x_SPI.asm for the ADSP-2126x processors. After copying the default
file to my_SPI.asm and modifying it to suit your system, use the following
command lines to rebuild the boot kernel:

easm21k -proc ADSP-21262 my_SPI.asm

linker -T 2126x_ldr.ldf my_SPI.doj

VisualDSP++ 5.0 Loader and Utilities Manual 6-25

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

Loader File Issues

If you modify the boot kernel for the PROM or SPI booting modes,
ensure that the seg_ldr memory segment is defined in the .ldf file. Refer
to the source of this memory segment in the .ldf file located in the …\ldr
installation directory of the target processor.

Because the loader utility uses address of 0x80004 (for the ADSP-2126x
processors) and address of 0x9004 (for the
ADSP-2136x/2137x/2146x/2147x/2148x processors) as the first location
of the reset vector during the boot-load process avoid placing code at those
addresses. When using any of the processor’s power-up booting modes,
ensure that the address does not contain a critical instruction, because the
address is not executed during the booting sequence. Place a NOP or IDLE
in this location. The loader utility generates a warning if the vector
address 0x80004 for the ADSP-2126x processors (0x90004 for the
ADSP-2136x/2137x/2146x/2147x/2148x processors) does not contain
NOP or IDLE.

When using VisualDSP++ to create the loader file, specify the
name of the customized boot kernel executable in the Kernel file
box on the Load page of the Project Options dialog box.

ADSP-2126x/2136x/2137x/2146x/2147x/2148x
Processors Interrupt Vector Table

If the ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x,
ADSP-2137x, or ADSP-2148x processor is booted from an external source
(PROM or SPI boot modes), the interrupt vector table is located in inter-
nal memory (0x80000–0x800FF for the ADSP-2126x processors, 0x90000–
0x900FF for the ADSP-2136x/2137x/2146x/2147x/2148x processors). If
the processor is not booted and executes from external memory (no-boot
mode), the vector table must be located in external memory.

The IIVT bit in the SYSCTL control register can be used to override the
booting mode when determining the location of the interrupt vector table.

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-26 VisualDSP++ 5.0 Loader and Utilities Manual

If the processor is not booted (no-boot mode), setting IIVT to 1 selects an
internal vector table, and setting IIVT=0 selects an external vector table.
If the processor is booted from an external source (any boot mode other
than no-boot), IIVT has no effect. The default initialization value of IIVT
is zero.

ADSP-2126x/2136x/2137x/2146x/2147x/2148x
Processor Boot Streams

The loader utility generates and inserts a header at the beginning of a
block of contiguous data and instructions in the loader file. The kernel
uses headers to properly place blocks into processor memory. The archi-
tecture of the header follows the convention used by other SHARC
processors.

For all of the ADSP-2126x/2136x/2137x/2146x/2147x/2148x processor
boot types, the structures of block header are the same. The header con-
sists of three 32-bit words: the block tag, word count, and destination
address. The order of these words is as follows.

0x000000TT First word. Tag of the data block (T)

0x0000CCCC Second word. Data word length or data word count (C) of the data block.

0xAAAAAAAA Third word. Start address (A) of the data block.

VisualDSP++ 5.0 Loader and Utilities Manual 6-27

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Block Tags

Table 6-14 details the ADSP-2126x/2136x/2137x/2146x/2147x/2148x
processor block tags.

Table 6-14. Blackfin/2137x/2146x Processor Block Tags

Tag Count1 Address Padding

0x0
FINAL_INIT

None

0x1
ZERO_LDATA

Number of 16-, 32-,
or 64-bit words

Logical short, normal,
or long word address

None

0x2

ZERO_L482
Number of 48-bit
words

Logical normal word
address

None

0x3
INIT_L16

Number of 16-bit
words

Logical short word
address

If count is odd, pad with
16-bit zero word; see
“INIT_L16 Blocks” on
page 6-30 for details.

0x4
INIT_L32

Number of 32-bit
words

Logical normal word
address

None

0x5
INIT_L48

Number of 48-bit
words

Logical normal word
address

If count is odd, pad with
48-bit zero word; see
“INIT_L48 Blocks” on
page 6-29 for details.

0x6
INIT_L64

Number of 64-bit
words

Logical long word
address

None; see “INIT_L64
Blocks” on page 6-31 for
details.

0x7
ZERO_EXT8

Number of 32-bit
words

Physical external
address

None

0x8
ZERO_EXT16

Number of 32-bit
words

Physical external
address

None

0x9
INIT_EXT8

Number of 32-bit
words

Physical external
address

None

0xA
INIT_EXT16

Number of 32-bit
words

Physical external
address

None

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-28 VisualDSP++ 5.0 Loader and Utilities Manual

The ADSP-2126x/2136x/2137x/2146x/2147x/2148x processor uses
eleven block tags, a lesser number of tags compared to other SHARC pre-
decessors. There is only one initialization tag per width because there is no
need to draw distinction between pm and dm sections during initialization.
The same tag is used for 16-bit (short word), 32-bit (normal word), and
64-bit (long word) blocks that contain only zeros. The 0x1 tag is used for
ZERO_INIT blocks of 16-bit, 32-bit, and 64-bit words. The 0x2 tag is used
for ZERO_INIT blocks of 40-bit data and 48-bit instructions.

For clarity, the letter L has been added to the names of the internal block
tags. L indicates that the associated section header uses the logical word
count and logical address. Previous SHARC boot kernels do not use logi-
cal values. For example, the count for a 16-bit block may be the number
of 32-bit words rather than the actual number of 16-bit words.

Only four tags are required to handle an external memory, two for each
packing mode (see “Packing Options for External Memory” on page 6-7)
because parallel port DMA is the only way to access the external memory.

0xB
MULTI_PROC for
ADSP-21367,
ADSP-21368,
ADSP-21369,
ADSP-2137x,
ADSP-2146x,
ADSP-2147x,
ADSP-2148x

Processor IDs
(bits 0–7);
see on page 6-36 for
details.

Offset to the next pro-
cessor ID in words
(32 bits)

None

0x0
USR_MESG

msg_word1 msg_word2 None; see “Internal Boot
Mode” on page 6-20 for
more info on msgword.

1 The count is the actual number of words and does NOT included padded words added by the
loader utility.

2 40-bit data and 48-bit words are treated identically.

Table 6-14. Blackfin/2137x/2146x Processor Block Tags (Cont’d)

Tag Count1 Address Padding

VisualDSP++ 5.0 Loader and Utilities Manual 6-29

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

The external memory can be accessed only via the physical address of the
memory. This means that each 32-bit word corresponds to either four (for
8-bit) or two (for 16-bit) external addresses. The EXT appended to the
name of the block tag indicates that the address is a physical external
address. For the ADSP-2136x/2137x/2146x/2147x and ADSP-2148x pro-
cessors, tag INIT_L32 also is used for all external 32-bit blocks.

The 0xB tag is for multiprocessor systems, exclusively supported on the
ADSP-2136x/2137x/2146x/2147x and ADSP-2148x processors. The tag
indicates that the header is a processor ID header with the ID values and
offset values stored in the header. A block can have multiple IDs in its
block header, which makes it possible to boot the block into multiple
processors.

Two data tags, USER_MESG and FINAL_INIT, differ from the standard for-
mat for other SHARC data tags. The USER_MESG header is described
on page 6-20 and the FINAL_INIT header on page 6-31.

INIT_L48 Blocks

The INIT_L48 block has one packing and one padding requirements. First,
there must be an even number of 48-bit words in the block. If there is an
odd number of instructions, then the loader utility must append one addi-
tional 48-bit instruction that is all zeros. In all cases, the count placed into
the header is the original logical number of words. That is, the count does
not include the padded word. Once the number of words in the block is
even, the data in this block is packed according to Table 6-15.

Table 6-15. INIT_L48 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

 32 16 8

111122223333 22223333 22223333 3333 33

444455556666 66661111 55551111 2222 33

AAAABBBBCCCC 44445555 44445555 1111 22

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-30 VisualDSP++ 5.0 Loader and Utilities Manual

INIT_L16 Blocks

For 16-bit initialization blocks, the number of 16-bit words in the block
must be even. If an odd number of 16-bit words is in the block, then the
loader utility adds one additional word (all zeros) to the end of the block,
as shown in Table 6-16. The count stored in the header is the actual num-
ber of 16-bit words. The count does not include the padded word.

BBBBCCCC BBBBCCCC 6666 22

0000AAAA 0000AAAA 5555 11

00000000 00000000 4444 11

CCCC 66

BBBB 66

AAAA 55

0000 55

0000 44

0000 44

CC

CC

BB

Table 6-16. INIT_L16 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

 32 16 8

1122 33441122 33441122 1122 22

3344 00005566 00005566 3344 11

5566 5566 44

Table 6-15. INIT_L48 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

 32 16 8

VisualDSP++ 5.0 Loader and Utilities Manual 6-31

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

INIT_L64 Blocks

For 64-bit initialization blocks, the data is packed as shown in Table 6-17.

FINAL_INIT Blocks

The final 256-instructions of the .ldr file contain the instructions for the
IVT. The instructions are initialized by a special self-modifying subrou-

0000 33

66

55

00

00

Table 6-17. INIT_L64 Block Packing (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

 32 16 8

1111222233334444 33334444 33334444 4444 44

11112222 11112222 3333 44

2222 33

1111 33

22

22

11

11

Table 6-16. INIT_L16 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

 32 16 8

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-32 VisualDSP++ 5.0 Loader and Utilities Manual

tine in the boot kernel (see Listing 6-2). To support the self-modifying
code, the loader utility modifies the FINAL_INIT block as follows:

1. Places a multi-function instruction at the fifth instruction of the
block:
The loader utility places the instruction R0=R0-R0, DM(I4,M5)=R9,
PM(I12,M13)=R11; at 0x80004 for the ADSP-2126x processors or
0x90004 for the ADSP-2136x/2137x/2146x/2147x/2148x proces-
sors. The instruction overwrites whatever instruction is at that
address. The opcode for this instruction is 0x39732D802000.

2. Places an RTI instruction in the IVT:
The loader utility places an RTI instruction
(opcode 0x0B3E00000000) at the first address in the IVT entry asso-
ciated with the boot-source, either PROM or SPI. Unlike the
multifunction instruction placed at 0x80004 (for the ADSP-2126x
processors) or 0x90004 (for the
ADSP-2136x/2137x/2146x/2147x/2148x processors), which over-
writes the data, the loader utility preserves the user-specified
instruction which the RTI replaces. This instruction is stored in
the header for FINAL_INIT as shown in Listing 6-2.

• For PROM boot mode, the RTI is placed at address
0x80050 for the ADSP-2126x and at 0x90050 for the
ADSP-2136x/2137x/2146x/2147x/2148x processors.

• For all SPI boot modes, the RTI is placed at address
0x80030 for the ADSP-2126x and at 0x90030 for the
ADSP-2136x/2137x/2146x/2147x/2148x processors (high
priority SPI interrupt).

3. Saves an IVT instruction in the FINAL_INIT block header.
The count and address of a FINAL_INIT block are constant; to avoid
any redundancy, the count and address are not placed into the
block header. Instead, the 32-bit count and address words are used
to hold the instruction that overwrites the RTI inserted into the

VisualDSP++ 5.0 Loader and Utilities Manual 6-33

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

IVT. Listing 6-2 illustrates the block header for FINAL_INIT if, for
example, the opcode 0xAABBCCDDEEFF is assumed to be the
user-intended instruction for the IVT.

Listing 6-2. FINAL_INIT Block Header Format

0x00000000 /* FINAL_INIT tag = 0x0 */

0xEEFF0000 /* LSBs of instructions */

0xAABBCCDD /* 4 MSBs of instructions */

Listing 6-3. FINAL_INIT Section

/* ====================== FINAL_INIT ======================== */
/* The FINAL_INIT subroutine in the boot kernel program sets up

a DMA to overwrite itself. The code is the very last piece that

runs in the kernel; it is self-modifying code, It uses a DMA

to overwrite itself, initializing the 256 instructions that

reside in the Interrupt Vector Table. */

/* -- */

final_init:

/* ----------- Setup for IVT instruction patch ------------- */

I8=0x80030; /* Point to SPI vector to patch from PX */

R9=0xb16b0000; /* Load opcode for “PM(0,I8)=PX” into R9 */

PX=pm(0x80002); /* User instruction destined for 0x80030

is passed in the section-header for
FINAL_INIT. That instr. is initialized

upon completion of this DMA (see com

ments below) using the PX register. */

R11=BSET R11 BY 9; /* Set IMDW to 1 for inst. write */

DM(SYSCTL)=R11; /* Set IMDW to 1 for inst. write */

/* ------ Setup loop for self-modifying instruction ------- */

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-34 VisualDSP++ 5.0 Loader and Utilities Manual

I4=0x80004; /* Point to 0x080004 for self-modifying

code inserted by the loader at 0x80004

in bootstream */

R9=pass R9, R11=R12; /* Clear AZ, copy power-on value

of SYSCTL to R11 */

DO 0x80004 UNTIL EQ; /* Set bottom-of-loop address (loopstack)

to 0x80004 and top-of-loop (PC Stack)
to the address of the next
instruction. */

PCSTK=0x80004; /* Change top-of-loop value from the

address of this instruction to

 0x80004. */

/* ------------- Setup final DMA parameters --------------- */

R1=0x80000;DM(IISX)=R1; /* Setup DMA to load over ldr */

R2=0x180; DM(CSX)=R2; /* Load internal count */

DM(IMSX)=M6; /* Set to increment internal ptr */

/*----------------- Enable SPI interrupt -------------------*/

bit clr IRPTL SPIHI; /* Clear any pending SPI interr. latch */

bit set IMASK SPIHI; /* Enable SPI receive interrupt */

bit set MODE1 IRPTEN; /* Enable global interrupts */

FLUSH CACHE; /* Remove any kernel instr’s from cache */

/*---------- Begin final DMA to overwrite this code -------- */

ustat1=dm(SPIDMAC);

bit set ustat1 SPIDEN;

dm(SPIDMAC)=ustat1; /* Begin final DMA transfer */

/*------------ Initiate self-modifying sequence ----------- */

JUMP 0x80004 (DB); /* Causes 0x80004 to be the return

address when this DMA completes and

the RTI at 0x80030 is executed. */

VisualDSP++ 5.0 Loader and Utilities Manual 6-35

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

IDLE; /* After IDLE, patch then start */

IMASK=0; /* Clear IMASK on way to 0x80004 */

/* == */

/* When this final DMA completes, the high-priority SPI interrupt

is latched, which triggers the following chain of events:

1) The IDLE in the delayed branch to completes

2) IMASK is cleared

3) The PC (now 0x80004 due to the “JUMP RESET (db)”) is pushed

on the PC stack and the processor vectors to 0x80030 to

service the interrupt.

Meanwhile, the loader (anticipating this sequence) has auto-
matically inserted an “RTI” instruction at 0x80030. The user
instruction intended for that address is instead placed

in the FINAL_INIT section-header and has loaded into PX before
the DMA was initiated.)

4) The processor executes the RTI at 0x80030 and vectors to the

address stored on the PC stack (0x80004).

Again, the loader has inserted an instruction into the boot

stream and has placed it at 0x40005 (opcode x39732D802000):
R0=R0-R0,DM(I4,M5)=R9,PM(I12,M13)=R11;

This instruction does the following.

A) Restores the power-up value of SYSCTL (held in R11).

B) Overwrites itself with the instruction “PM(0,I8)=PX;”

The first instruction of FINAL_INIT places the opcode for

this new instruction, 0xB16B00000000, into R9.

C) R0=R0-R0 causes the AZ flag to be set.

This satisfies the termination-condition of the loop set up

in FINAL_INIT (“DO RESET UNTIL EQ;”). When a loop condition

is achieved within the last three instructions of a loop,

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-36 VisualDSP++ 5.0 Loader and Utilities Manual

the processor branches to the top-of-loop address (PCSTK)
one final time.

5) We manually changed this top-of-loop address 0x80004, and so

to conclude the kernel, the processor executes the instruction

at 0x80004 *again*.

6) There’s a new instruction at 0x80004: “PM(0,I8)=PX;”. This

initializes the user-intended instruction at 0x80030 (the vec-

tor for the High-Priority-SPI interrupt).

At this point, the kernel is finished, and execution continues
at 0x80005, with the only trace as if nothing happened! */

/* == */

ADSP-2136x/2137x/2146x/2147x/2148x
Multi-Application (Multi-DXE) Management

Up to eight ADSP-2136x/2137x/2146x/2147x and ADSP-2148x proces-
sors can be clustered together and supported by the VisualDSP++ loader
utility. In PROM boot mode, all of the processors can boot from the same
PROM. The loader utility assigns an input executable (.dxe) file to a pro-
cessor ID or to a number of processor IDs, provided a corresponding
loader option is selected on the property page or on the command line.
The loader utility inserts the ID into the output boot stream using the
multiprocessor tag MULTI_PROC (see Table 6-14). The loader utility also
inserts the offset (the 32-bit word count of the boot stream built from the
input executable (.dxe) file) into the boot stream. The MULTI_PROC tag
enables the boot kernel to identify each section of the boot stream with

VisualDSP++ 5.0 Loader and Utilities Manual 6-37

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

the executable (.dxe) file from which that section was built. Figure 6-4
shows the multiprocessor boot stream structure.

The processor ID of the corresponding processor is indicated in a 32-bit
word, which has the Nth bit set for the .dxe file corresponding to ID=N.
Table 6-18 shows all possible ID fields.

Figure 6-4. Multiprocessor Boot Stream

Table 6-18. Multiprocessor ID Fields

Processor ID Number Loader ID Field

0 0x00000001

1 0x00000002

2 0x00000004

3 0x00000008

4 0x00000010

5 0x00000020

6 0x00000040

7 0x00000080

1 && 4 0x00000012

6 && 7 0x000000C0

 BOOT KERNEL

 1ST .dxe BLOCK HEADER

 1ST .dxe DATA BLOCKS

 2ND .dxe BLOCK HEADER

 2ND .dxe DATA BLOCKS

 . . .

 . . .

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-38 VisualDSP++ 5.0 Loader and Utilities Manual

The multiprocessor tag, processor ID, and the offset are encapsulated in a
multiprocessor header. The multiprocessor header includes three 32-bit
words: the multiprocessor tag; the ID (0–7) of the associated processor
.dxe file in the lowest byte of a word; and the offset to the next multipro-
cessor tag. The loader -id#exe=filename switch is used to assign a
processor ID number to an executable file. The loader -id#ref=N switch is
used to share the same executable file by setting multiple bits in the ID
field. Figure 6-5 shows the multiprocessor header structure.

ADSP-2126x/2136x/2137x Processors Compression
Support

Compression is not supported on the ADSP-214xx processors.

The loader utility for the ADSP-2126x/2136x/2137x processors offers a
loader file (boot stream) compression mechanism known as zLib. The zLib
compression is supported by a third party dynamic link library,
zLib1.dll. Additional information about the library can be obtained from
the http://www.zlib.net Web site.

The zLib1 dynamic link library is included in VisualDSP++. The library
functions perform the boot stream compression and decompression proce-
dures when the appropriate options are selected for the loader utility.

The boot kernel with built-in decompression mechanism must perform
the decompression on the compressed boot stream in a booting process.
The default boot kernel with decompression functions are included in
VisualDSP++.

Figure 6-5. Multiprocessor Header

 0xB

 PROCESSOR IDS

OFFSET TO NEXT MULITPROCESSOR HEADER

VisualDSP++ 5.0 Loader and Utilities Manual 6-39

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

The loader -compression switch directs the loader utility to perform the
boot stream compression from the command line. VisualDSP++ also
offers a dedicated loader property page (Load Compression) to manage
the compression from the graphical user interface.

The loader utility takes two steps to compress a boot stream. First, the
utility generates the boot stream in the conventional way (builds data
blocks), then applies the compression to the boot stream. The decompres-
sion initialization is the reversed process: the loader utility decompresses
the compressed stream first, then loads code and data into memory seg-
ments in the conventional way.

The loader utility compresses the boot stream on the .dxe-by-.dxe basis.
For each input .dxe file, the utility compresses the code and data together,
including all code and data from any associated shared memory (.sm) files.
The loader utility, however, does not compress automatically any data
from any associated overlay files. To compress data and code from the
overlay file, call the utility with the -compressionOverlay switch, either
from the property page or from the command line.

Compressed Streams

The basic structure of a loader file with compressed streams is shown in
Figure 6-5.

Figure 6-6. Loader File with Compressed Streams

 KERNEL WITH DECOMPRESSION ENGINE

 1ST .dxe COMPRESSED STREAM

 1ST .dxe UNCOMPRESSED STREAM

 2ND .dxe COMPRESSED STREAM

 2ND .dxe UNCOMPRESSED STREAM

 . . .

 . . .

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-40 VisualDSP++ 5.0 Loader and Utilities Manual

The kernel code with the decompression engine is on the top of the loader
file. This section is loaded into the processor first and is executed first
when a boot process starts. Once the kernel code is executed, the rest of
the stream is brought into the processor. The kernel code calls the decom-
pression routine to perform the decompression operation on the stream,
and then loads the decompressed stream into the processor’s memory in
the same manner a conventional kernel does when it encounters a com-
pressed stream.

Figure 6-6 shows the structure of a compressed boot stream.

Compressed Block Headers

A compressed stream always has a header, followed by the payload com-
pressed stream.

The compressed block header is comprised of three 32-bit words. The
structure of a compressed block header is shows in Figure 6-7.

The first 32-bit word of the compressed block header holds the compres-
sion flag, 0x00002000, which indicates that it is a compressed block
header.

Figure 6-7. Compressed Block

Figure 6-8. Compressed Block Header

 COMPRESSED BLOCK HEADER

 COMPRESSED STREAM

 0X00002000 COMPRESSION TAG/FLAG

 0XWBIT0PAD WINDOW SIZE/PADDED WORD COUNT

0XBYTEBYTE COMPRESSED BYTE COUNT

VisualDSP++ 5.0 Loader and Utilities Manual 6-41

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

The second 32-bit word of the compressed block header hold the size of
the compression window (takes the upper 16 bits) and padded word count
(takes the lower 16 bits). For the ADSP-2126x/2136x/2137x processors,
the loader utility always rounds the byte count of the compressed stream
to be a multiple of 4. The loader utility also pads 3 bytes to the com-
pressed stream if the byte count of the compressed stream from the loader
compression engine is not a multiple of 4. An actual padded byte count is
a value between 0x0000 and 0x0003.

The compression window size is 8–15 bits, with the default value of 9 bits.
The compression window size specifies to the compression engine a num-
ber of bytes taken from the window during the compression. The window
size is the 2’s exponential value.

The next 32 bits of the compressed block header holds the value of the
compressed stream byte count, excluding the byte padded.

A window size selection affects, more or less, the outcome of the data
compression. Streams in decompression windows of different sizes are, in
general, different and most likely not compatible to each other. If you are
building a custom decompression kernel, ensure the same compression
window size is used for both the loader utility and the kernel. In general, a
bigger compression window size leads to a smaller outcome stream. How-
ever, the benefit of a big window size is marginal in some cases. An
outcome of the data compression depends on a number of factors, and a
compression window size selection is only one of them. The other impor-
tant factor is the coding structure of an input stream. A compression
window size selection can not cause a much smaller outcome stream if the
compression ability of the input stream is low.

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-42 VisualDSP++ 5.0 Loader and Utilities Manual

Uncompressed Streams

Following the compressed streams, the loader utility file includes the
uncompressed streams. The uncompressed streams include application
codes, conflicted with the code in the initialization blocks in the proces-
sor’s memory spaces, and a final block. The uncompressed stream includes
only a final block if there is no conflicted code. The final block can have a
zero byte count. The final block indicates the end of the application to the
initialization code.

Overlay Compression

The loader utility compresses the code and data from the executable .dxe
and shared memory .sm files when the -compression command-line
switch is used alone, and leaves the code and data from the overlay (.ovl)
files uncompressed. The -compressionOverlay switch directs the loader
utility to compress the code and data from the .ovl files, in addition to
compressing the code and data from the .dxe and .sm files.

The -compressionOverlay switch must be used in conjunction with
-compression.

VisualDSP++ 5.0 Loader and Utilities Manual 6-43

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

Booting Compressed Streams

Figure 6-8 shows the booting sequence of a loader file with compressed
streams. The loader file is pre-stored in the flash memory.

1. A a booting process is initialized by the processor.

2. The processor brings the 256 words of the boot kernel from the
flash memory to the processor’s memory for execution.

3. The decompression engine is brought in.

4. The compressed stream is brought in, then decompressed and
loaded into the memory.

Figure 6-9. ADSP-2126x/2136x/2137x Compressed Loader Stream: Boot-
ing Sequence

BOOT KERNEL

 DECOMPRESSION
ENGINE

COMPRESSED
STREAM

UNCOMPRESSED
STREAM

FINAL BLOCK

FLASH MEMORY

MEMORY

PROCESSOR
1
2

3

5

4

6

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Booting

6-44 VisualDSP++ 5.0 Loader and Utilities Manual

5. The uncompressed stream is brought and loaded into memory,
possibly to overwrite the memory spaces taken by the compressed
code.

6. The final block is brought and loaded into the memory to over-
write the memory spaces taken by the boot kernel.

Decompression Kernel File

As stated before, a decompression kernel .dxe file must be used when
building a loader file with compressed streams. The decompression kernel
file has a built-in decompression engine to decompress the compressed
streams from the loader file.

A decompression kernel file can be specified from the loader property page
or from the command line via the -l userkernel switch. VisualDSP++
includes the default decompression kernel files, which the loader utility
uses if no other kernel file is specified. If building a custom decompression
kernel, ensure that you use the same decompression function, and use the
same compression window size for both the kernel and the loader utility.

The default decompression kernel files are stored in the
<install-path>\212xx\ldr\zlib and <install-path>\213xx\ldr\zlib
directories of VisualDSP++. The loader utility uses the window size of 9
bits to perform the compression operation. The compression window size
can be changed through the loader property page or the -compressWS #
command-line switch. The valid range for the window size is from 8 to 15
bits.

VisualDSP++ 5.0 Loader and Utilities Manual 6-45

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

ADSP-2126x/2136x/2137x/2146x/2147x/
2148x Processor Loader Guide

Loader operations depend on the loader options, which control how the
loader utility processes executable files. You select features such as boot
modes, boot kernels, and output file formats via the loader options. These
options are specified on the loader utility’s command line or via the Load
page of the Project Options dialog box in the VisualDSP++ environment.

The Load page consists of multiple panes. For information specific to the
ADSP-2126x/2136x/2137x/2146x/2147x/2148x processor, refer to the
VisualDSP++ online help for that processor. When you open the Load
page, the default loader settings for the selected processor are already set.
Use the Additional Options box to enter options that have no dialog box
equivalent.

Option settings on the Load page correspond to switches displayed
on the command line.

These sections describe how to produce a bootable loader file (.ldr):

• “Using Blackfin/2137x/2146x/2147x/2148x Loader Command
Line” on page 6-46

• “Using VisualDSP++ Interface (Load Page)” on page 6-53

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Loader Guide

6-46 VisualDSP++ 5.0 Loader and Utilities Manual

Using Blackfin/2137x/2146x/2147x/2148x Loader
Command Line

Use the following syntax for the SHARC loader command line.
elfloader inputfile -proc processor -switch [switch …]

where:

• inputfile—Name of the executable file (.dxe) to be processed
into a single boot-loadable file. An input file name can include the
drive and directory. Enclose long file names within straight quotes,
“long file name”.

• -proc processor—Part number of the processor (for example,
-proc ADSP-21262) for which the loadable file is built. The -proc
switch is mandatory.

• -switch …—One or more optional switches to process. Switches
select operations and boot modes for the loader utility. A list of all
switches and their descriptions appear in Table 6-20 on page 6-48.

Command-line switches are not case-sensitive and may be placed
on the command line in any order.

The following command line,
elfloader Input.dxe -bSPIflash -proc ADSP-21262

runs the loader utility with:

• Input.dxe—Identifies the executable file to process into a
boot-loadable file. Note that the absence of the -o switch causes the
output file name to default to Input.ldr.

• -bspiflash—Specifies SPI flash port booting as the boot type for
the boot-loadable file.

• -proc ADSP-21262 —Specifies ADSP-21262 as the target
processor.

VisualDSP++ 5.0 Loader and Utilities Manual 6-47

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-17.

File Extensions

Some loader switches take a file name as an optional parameter.
Table 6-19 lists the expected file types, names, and extensions.

Table 6-19. File Extensions

Extension File Description

.dxe Executable files and boot kernel files. The loader utility recognizes overlay memory
files (.ovl) and shared memory files (.sm), but does not expect these files on the
command line. Place .ovl and .sm files in the same directory as the .dxe file that
refers to them. The loader utility finds the files when processing the .dxe file. The
.ovl and .sm files may also be placed in the .ovl and .sm file output directory
specified in the .ldf file.

.ldr Loader output file

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Loader Guide

6-48 VisualDSP++ 5.0 Loader and Utilities Manual

Loader Command-Line Switches

Table 6-20 is a summary of the ADSP-2126x, ADSP-2136x,
ADSP-2137x, ADSP-2146x, ADSP-2147x, and ADSP-2148x loader
switches.

Table 6-20. ADSP-2126x/2137x/2146x/2147x/2148x Loader
Command-Line Switches

Switch Description

-bprom
-bspislave|-bspi
-bspimaster
-bspiprom
-bspiflash
-blink

Specifies the boot mode. The -b switch directs the loader utility to
prepare a boot-loadable file for the specified boot mode.
The valid modes (boot types) are PROM, SPI slave, SPI master, SPI
PROM, SPI flash, and link port (ADSP-2146x processors).

If -b does not appear on the command line, the default is -bprom.
To use a custom boot kernel, the boot type selected with the -b
switch must correspond with the boot kernel selected with the -l
switch. Otherwise, the loader utility automatically selects a default
boot kernel based on the selected boot type
(see “ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors
Boot Kernels” on page 6-22). Do not use with the -nokernel
switch.

-compression Directs the loader utility to compress the application data and code,
including all data and code from the application-associated shared
memory files (see “ADSP-2126x/2136x/2137x Processors Compres-
sion Support” on page 6-38). The data and code from the overlay
files are not compressed if this switch is used alone
(see -compressionOverlay).

-compressionOverlay Directs the loader utility to compress the application data and code
from the associated overlay files (see “Overlay Compression” on
page 6-42).

This switch must be used with -compression.

-compressWS # The -compressWS # switch specifies a compression window size in
bytes. The number is a 2’s exponential value to be used by the com-
pression engine. The valid values are [8–15], with the default of 9.

VisualDSP++ 5.0 Loader and Utilities Manual 6-49

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

-fhex
-fASCII
-fbinary
-finclude
-fs1
-fs2
-fs3

Specifies the format of a boot-loadable file (Intel hex-32, ASCII,
binary, include). If the -f switch does not appear on the command
line, the default boot file format is
Intel hex-32 for PROM and SPI PROM, ASCII for SPI slave, SPI
flash, and SPI master.

Available formats depend on the boot type selection (-b switch):
• For PROM and SPI PROM boot types, select a hex, ASCII, s1, s2,

s3, or include format.
• For other SPI boot types, select an ASCII or binary format.

-h
or
-help

Invokes the command-line help, outputs a list of command-line
switches to standard output, and exits.
By default, the -h switch alone provides help for the loader driver. To
obtain a help screen for the target processor, add the -proc switch to
the command line.

For example: type elfloader -proc ADSP-21262 -h to obtain
help for the ADSP-2126x/2136x and ADSP-2137x processors.

-hostwidth # Sets up the word width for the .ldr file. By default, the word width
for PROM and SPI PROM boot modes is 8; for SPI slave, SPI flash,
and SPI master boot modes is 32. The valid word widths are:
• 8 for Intel hex 32 and Motorola S-records formats;
• 8, 16, or 32 for ASCII, binary, and include formats

-id#exe=filename Specifies the processor ID. Directs the loader utility to use the proces-
sor ID (#) for a corresponding executable file (the filename parame-
ter) when producing a boot-loadable file. This switch is used to
produce a boot-loadable file to boot multiple processors. Valid values
for # are 0, 1, 2, 3, 4, 5, 6, and 7.
Do not use this switch for single-processor systems. For single-proces-
sor systems, use filename as a parameter without a switch.

This switch applies to the ADSP-2136x/2137x/2146x/2147x and
ADSP-2148x processors only.

Table 6-20. ADSP-2126x/2137x/2146x/2147x/2148x Loader
Command-Line Switches (Cont’d)

Switch Description

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Loader Guide

6-50 VisualDSP++ 5.0 Loader and Utilities Manual

-id#ref=N Directs the loader utility to share the boot stream for processor N with
processor #. If the executable file of the # processor is identical to the
executable of the N processor, the switch can be used to set the start
address of the processor with ID of # to be the same as that of the
processor with ID of N. This effectively reduces the size of the loader
file by providing a single copy of the file to two or more processors in
a multiprocessor system.

This switch applies to the
ADSP-21367/21368/21369/2137x/2146x/2147x and ADSP-2148x
processors only.

-l userkernel Directs the loader utility to use the specified userkernel and to
ignore the default boot kernel for the boot-loading routine in the
output boot-loadable file.
Note: The boot kernel file selected with this switch must correspond
to the boot type selected with the -b switch).
If the -l switch does not appear on the command line, the loader
utility searches for a default boot kernel file in the installation direc-
tory, (see “ADSP-2126x/2136x/2137x/2146x/2147x/2148x Proces-
sors Boot Kernels” on page 6-22). For kernels with the
decompression engine, see “Decompression Kernel File” on
page 6-44.

The loader utility does not search for any kernel file if -nokernel is
selected.

-nokernel[message1,
message2]

Supports internal boot mode. The -nokernel switch directs the
loader utility:
• Not to include the boot kernel code into the loader (.ldr) file.
• Not to perform any special handling for the 256 instructions

located in the IVT.
• To put two 32-bit hex messages in the final block header

(optional).
• Not to include the initial word in the loader file.
For more information, see “Internal Boot Mode” on page 6-20.

-o filename Directs the loader utility to use the specified filename as the name
for the loader’s output file. If the -o filename is absent, the default
name is the root name of the input file with an .ldr extension.

Table 6-20. ADSP-2126x/2137x/2146x/2147x/2148x Loader
Command-Line Switches (Cont’d)

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 6-51

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

-noZeroBlock The -noZeroBlock switch directs the loader utility not to build zero
blocks.

-paddress Specifies the PROM start address. This EPROM address corresponds
to 0x80000 (ADSP-2126x processors) or to 0x90000
(ADSP-2136x/2137x/2146x/2147x/2148x processors). The -p
switch starts the boot-loadable file at the specified address in the
EPROM.

If the -p switch does not appear on the command line, the loader
utility starts the EPROM file at address 0x0.

-proc processor Specifies the processor. This is a mandatory switch. The processor
argument is one of the following:
ADSP-21261 ADSP-21262 ADSP-21266
ADSP-21267 ADSP-21362 ADSP-21363
ADSP-21264 ADSP-21365 ADSP-21366
ADSP-21267 ADSP-21368 ADSP-21369
ADSP-21371 ADSP-21375 ADSP-21462
ADSP-21465 ADSP-21467 ADSP-21469
ADSP-21471 ADSP-21472 ADSP-21475
ADSP-21478 ADSP-21479 ADSP-21481
ADSP-21482 ADSP-21483 ADSP-21485

ADSP-21486 ADSP-21487 ADSP-21488

ADSP-21489

-retainSecond-
StageKernel

Directs the loader utility to retain the decompression code in the
memory at runtime.

The -retainSecondStageKernel switch must be used with -com-
pression.

Table 6-20. ADSP-2126x/2137x/2146x/2147x/2148x Loader
Command-Line Switches (Cont’d)

Switch Description

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Loader Guide

6-52 VisualDSP++ 5.0 Loader and Utilities Manual

-si-revision
#|none|any

The -si-revision {#|none|any} switch provides a silicon revision
of the specified processor.
The switch parameter represents a silicon revision of the processor
specified by the -proc processor switch. The parameter takes one
of three forms:
• The none value indicates that the VisualDSP++ ignores silicon

errata.
• The #.# value indicates one or more decimal digits, followed by a

point, followed by one or two decimal digits. Examples of revisions
are: 0.0 - 0.5.

• The any value indicates that VisualDSP++ produces an output file
that can be run at any silicon revision.

The switch generates either a warning about any potential anomalous
conditions or an error if any anomalous conditions occur.

In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader utility
generates an error.

-v Outputs verbose loader messages and status information as the loader
utility processes files.

-version Directs the loader utility to show its version information. Type
elfloader -version to display the version of the loader drive.

Add the -proc switch, for example,
elfloader -proc ADSP-21262 -version to display version infor-
mation of both loader drive and SHARC loader.

Table 6-20. ADSP-2126x/2137x/2146x/2147x/2148x Loader
Command-Line Switches (Cont’d)

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 6-53

Loader for ADSP-2126x/2136x/2137x/2146x/2147x/2148x
SHARC Processors

Using VisualDSP++ Interface (Load Page)
After selecting a Loader file as the target type on the Project page in Visu-
alDSP++ Project Options dialog box, modify the default options on the
Load pages (also called loader property page). Click OK to save the selec-
tions. Selecting Build Project from the Project menu generates a loader
file. For information relative to a specific processor, refer to the Visu-
alDSP++ online help for that processor.

VisualDSP++ invokes the elfloader utility to build the output file. Dia-
log box buttons and fields correspond to command-line switches and
parameters (see Table 6-20 on page 6-48). Use the Additional Options
box to enter options that have no dialog box equivalent.

ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor
Loader Guide

6-54 VisualDSP++ 5.0 Loader and Utilities Manual

VisualDSP++ 5.0 Loader and Utilities Manual 7-1

7 LOADER FOR TIGERSHARC
PROCESSORS

This chapter explains how the loader utility (elfloader.exe) is used to
convert executable (.dxe) files into boot-loadable or non-bootable files for
the ADSP-TSxxx TigerSHARC processors.

Refer to “Introduction” on page 1-1 for the loader utility’s overview; the
introductory material applies to all processor families. Loader operations
specific to the ADSP-TSxxx TigerSHARC processors are detailed in the
following sections.

• “TigerSHARC Processor Booting” on page 7-2
Provides general information on various booting modes, including
information on boot kernels.

• “TigerSHARC Loader Guide” on page 7-5
Provides reference information on the loader utility’s com-
mand-line syntax and switches.

Refer to the processor’s data sheet and hardware reference manual for
more information on system configuration, peripherals, registers, and
operating modes.

TigerSHARC Processor Booting

7-2 VisualDSP++ 5.0 Loader and Utilities Manual

TigerSHARC Processor Booting
At chip reset, a TigerSHARC processor loads (bootstraps) a 256-instruc-
tion program (called a boot kernel) into the processor’s internal memory.
The boot kernel program may be stored on an external PROM, a host pro-
cessor, or another TigerSHARC processor. The boot type is selected via
the processor’s boot mode select (BMS) pin as described in “Boot Type
Selection” on page 7-3. After the boot kernel loads, it executes itself and
then loads the rest of the application program and data into the processor.
The combination of the boot kernel and the application program com-
prises a boot-loadable file.

TigerSHARC processors support three booting modes: EPROM/flash,
host, and link. The boot-loadable files for each of these modes pack the
boot data into 32-bit instructions and use a DMA channel of the proces-
sor’s DMA controller to boot-load the instructions.

Additionally, there are several no-boot modes, which do not require
kernels.

• In EPROM/flash boot mode, the loader utility generates a PROM
image that contains all project data and loader code. The project
data is then stored in an 8-bit wide external EPROM. After reset,
the processor performs a special booting scenario, reading the
EPROM content through the processor’s external port and initial-
izing on-chip and off-chip memories.

• In host boot mode, the processor accepts boot data from a 32- or
64-bit synchronous microprocessor (host). The host writes a
boot-loadable file to the processor’s AUTODMA register through the
processor’s external port, one 32-bit word at a time. Once the last
word is written, the processor takes over and runs the user code.

• In link port boot mode, the processor receives boot data via its link
port from another TigerSHARC processor.

VisualDSP++ 5.0 Loader and Utilities Manual 7-3

Loader for TigerSHARC Processors

EE-174: ADSP-TS101S TigerSHARC Processor Boot Loader Kernels
Operation and EE-200: ADSP-TS20x TigerSHARC Processor Boot
Loader Kernels Operation provide additional information about the
loader. These EE notes are available from the Analog Devices Web
site at:
http://www.analog.com/processors/processors/tiger-

sharc/technicalLibrary/index.html.

Boot Type Selection
To determine the boot mode, a TigerSHARC processor samples its boot
mode select (BMS) pin. While the processor is held in reset, the BMS pin is
an active input.

If BMS is sampled low a certain number of clock cycles after reset,
EPROM/flash boot is selected and, after RESET goes high, BMS becomes an
output, acting as EPROM chip select.

If BMS is sampled high after reset, the TigerSHARC processor is at an IDLE
state, waiting for a host or link boot.

The 100K Ohm internal pull-down on BMS may not suffice, depending on
the line loading. Thus, an additional external pull-down resistor may be
necessary for the EPROM boot mode. If host or link boot is desired, BMS
must be high and may be tied directly to the system power bus.

TigerSHARC Processor Boot Kernels
Upon completion of the DMA, in all boot modes, the boot-loading pro-
cess continues by downloading the boot kernel into the processor
memory. The boot kernel sets up and initializes the processor’s memory.
After initializing the rest of the system, the boot kernel overwrites itself.

http://www.analog.com/processors/processors/tigersharc/technicalLibrary/index.html
http://www.analog.com/processors/processors/tigersharc/technicalLibrary/index.html

TigerSHARC Processor Booting

7-4 VisualDSP++ 5.0 Loader and Utilities Manual

You can build an .ldr file that includes or does not include a ker-
nel. To build without a kernel, use the -nokernel command-line
switch or uncheck the Use boot kernel option on the Kernel page
of the Project Options dialog box.

VisualDSP++ includes three distinct kernel programs for each Tiger-
SHARC processor. A boot kernel is loaded at reset into a memory
segment, seg_ldr, which is defined in the ADSP-TSxxx_Loader.ldf file.
The provided files are located in the <install_path>\TS\ldf directory of
VisualDSP++.

Boot Kernel Modification

For most systems, some customization of the boot kernel is required. The
operation of other tools (notably the C/C++ compiler) is influenced by
loader usage.

For more information on boot kernel operations, refer to the comments in
the corresponding boot kernel source files and application notes EE-174:
ADSP-TS101S TigerSHARC Processor Boot Loader Kernels Operation and
EE-200: ADSP-TS20x TigerSHARC Processor Boot Loader Kernels Opera-
tion. The notes can be found at:
http://www.analog.com/processors/processors/tigersharc/techni-

calLibrary/index.html.

Table 7-1. TigerSHARC Boot Kernel Source Files

PROM Boot Kernel Host Boot Kernel Link Port Boot Kernel

Ts101_prom.asm Ts101_host.asm Ts101_link.asm

Ts201_prom.asm Ts201_host.asm Ts201_link.asm

Ts202_prom.asm Ts202_host.asm Ts202_link.asm

Ts203_prom.asm Ts203_host.asm Ts203_link.asm

http://www.analog.com/processors/processors/tigersharc/technicalLibrary/index.html
http://www.analog.com/processors/processors/tigersharc/technicalLibrary/index.html

VisualDSP++ 5.0 Loader and Utilities Manual 7-5

Loader for TigerSHARC Processors

TigerSHARC Loader Guide
Loader operations depend on the loader options, which control how the
loader utility processes executable files. You select features such as boot
modes, boot kernels, and output file formats via the loader options. These
options are specified on the loader utility’s command line or via the Load
page of the Project Options dialog box in the VisualDSP++ environment.
When you open the Load page, the default loader settings for the selected
processor are already set.

Option settings on the Load page correspond to switches displayed
on the command line.

These sections describe how to produce a bootable file (.ldr):

• “Using TigerSHARC Loader Command Line” on page 7-5

• “Using VisualDSP++ Interface (Load Page)” on page 7-12

Using TigerSHARC Loader Command Line
The TigerSHARC loader utility uses the following command-line syntax.

For a single input file:
elfloader inputfile -proc processor [-switch …]

For multiple input files:
elfloader id1exe=inputfile.dxe id2exe=inputfile2.dxe… -proc pro-

cessor [-switch …]

TigerSHARC Loader Guide

7-6 VisualDSP++ 5.0 Loader and Utilities Manual

where:

• inputfile—Name of the executable file (.dxe) to be processed
into a single boot-loadable. An input file name can include the
drive and directory.

For multiprocessor or multi-input systems, specify multiple input
.dxe files. Use the -id#exe= switch, where # is the ID number
(from 0 to 7) of the processor. Enclose long file names within
straight quotes, “long file name”.

• -proc processor—Part number of the processor (for example,
ADSP-TS101) for which the loadable file is built.

• -switch …—One or more optional switches to process. Switches
select operations and modes for the loader utility.

Command-line switches may be placed on the command line in
any order. For a multi-input system, the loader utility processes the
input executable files in the ascending order from the -id#exe=
switch presented on the command line.

elfloader p0.dxe -proc ADSP-TS101 -bprom -fhex -l Ts101_prom.dxe

In the above example, the command line runs the loader utility with:

• p0.dxe—Identifies the executable file to process into a boot-load-
able file. Note the absence of the -o switch causes the output file
name to default to p0.ldr.

• -proc ADSP-TS101—Specifies ADSP-TS101 as the processor type.

• -bprom—Specifies EPROM booting as the boot type for the
boot-loadable file.

VisualDSP++ 5.0 Loader and Utilities Manual 7-7

Loader for TigerSHARC Processors

• -fhex—Specifies Intel hex-32 format for the boot-loadable file.

• -l TS101_prom.exe—Specifies the boot kernel file to be used for
the boot-loadable file.

elfloader -id2exe=p0.dxe -id3exe=p1.dxe -proc ADSP-TS101 -bprom

-fhex -l Ts101_prom.dxe

In the above example, the command line runs the loader utility with:

• p0.dxe—Identifies the executable file for the processor with ID
of 2 to process into a boot-loadable file. Note the absence of the -o
switch causes the output file name to default to p0.ldr.

• p1.dxe—Identifies the executable file for the processor with ID
of 3 to process into a boot-loadable file.

• -proc ADSP-TS101—Specifies ADSP-TS101 as the processor type.

• -bprom—Specifies EPROM booting as the boot type for the
boot-loadable file.

• -fhex—Specifies Intel hex-32 format for the boot-loadable file.

• -l Ts101_prom.exe—Specifies the boot kernel file to be used for
the boot-loadable file.

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-1.

TigerSHARC Loader Guide

7-8 VisualDSP++ 5.0 Loader and Utilities Manual

File Extensions

Some loader switches take a file name as an optional parameter. Table 7-2
lists the expected file types, names, and extensions. The loader utility takes
files with extensions of .dxe, .ovl, and .sm but expects only those with
extension .dxe in a command line on the Load page. The loader utility
finds files with extensions of .ovl and .sm as it processes the associated
.dxe file. The loader utility searches for .ovl and .sm files in the directory
holding the .dxe files, in the directory specified in the .ldf file, or in the
current directory.

Table 7-2. TigerSHARC File Extensions

Extension File Description

.dxe Loader input files and boot kernel files

.ldr Loader output file

.ovl Overlay files. The loader utility does not expect them on a command line

.sm Shared memory files. The loader utility does not expect them on a command line

VisualDSP++ 5.0 Loader and Utilities Manual 7-9

Loader for TigerSHARC Processors

TigerSHARC Command-Line Switches

A summary of the loader command-line switches appears in Table 7-3.

Table 7-3. TigerSHARC Loader Command-Line Switches

Switch Description

-bprom
-bhost
-blink

Prepares a boot-loadable file for the specified boot mode. Valid boot
types include PROM, host, and link port. If the -b switch does not
appear on the command line, the default setting is -bprom. To use a
custom kernel, the boot type selected with the -b switch must corre-
spond to the boot kernel selected with the -l switch.

-fhex
-fASCII
-fbinary
-fs1
-fs2
-fs3

 Prepares a boot-loadable file in the specified format. Available format
selections are: hex (Intel hex-32), s1, s2, s3 (Motorola S-records),
include, ASCII, and binary. Valid formats depend on the -b switch
boot type selection.
• For a PROM boot type, use a hex, s1, s2, s3, include, binary, or

ASCII format.
• For host or link port booting, use ASCII or binary formats.
If the -f switch does not appear on the command line, the default
boot type format is hex for PROM, and ASCII for host or link.

-h
or
-help

Invokes the command-line help, outputs a list of command-line
switches to standard output, and exits. By default, the -h switch alone
provides help for the loader driver. To obtain a help screen for the tar-
get TigerSHARC processor, add the -proc switch to the command
line. For example, type elfloader-proc ADSP-TS101 -h to obtain
help for the ADSP-TS101S processor.

-id#exe=filename Directs the loader utility to use the processor ID number for the cor-
responding executable file when producing a boot-loadable file for a
EPROM- or host-boot multiprocessor system.
Use this switch only to produce a boot-loadable file that boots multi-
ple processors from a single EPROM. Valid # are 0, 1, 2, 3, 4, 5, 6,
and 7.
Warning: Do not use this switch for single-processor systems. For sin-
gle-processor systems, use the executable file name as a parameter
without a switch.

TigerSHARC Loader Guide

7-10 VisualDSP++ 5.0 Loader and Utilities Manual

-l userkernele Directs the loader utility to use the specified userkernel and to
ignore the default boot kernel for the boot-loading routine in the out-
put boot-loadable file.
Note: The boot kernel file selected with this switch must correspond
to the boot type selected with the -b switch).
If -l does not appear on the command line, the loader utility searches
for a default boot kernel file in the installation directory
(see “TigerSHARC Processor Boot Kernels” on page 7-3).

-nokernel Supports internal boot mode. The -nokernel switch directs the
loader utility not to include the boot kernel code into the loader
(.ldr) file.

-o filename Directs the loader utility to use the specified filename as the name of
the loader output file. If the filename is absent, the default name is
the name of the input file with an .ldr extension.

-p # Specifies the EPROM start address (hex format) for the boot-loadable
file. If the -p switch does not appear on the command line, the loader
utility starts the EPROM file at address 0x0 in the EPROM; this
EPROM address corresponds to address 0x4000000 in a Tiger-
SHARC processor.

-proc processor Specifies the target processor. The processor can be one of the fol-
lowing: ADSP-TS101, ADSP-TS201, ADSP-TS202, or ADSP-TS203.

-t # Sets the number of timeout cycles (#) as a maximum number of cycles
the processor spends initializing external memory. Valid values range
from 3 to 32765 cycles; 32765 is the default value. The timeout value
is directly related to the number of cycles the processor locks the bus
for boot-loading, instructing the processor to lock the bus for no
more than 2x timeout number of cycles. When working with a fast
host that cannot tolerate being locked out of the bus, use a relatively
small timeout value.

-v Outputs verbose loader messages and status information as the loader
utility processes files.

Table 7-3. TigerSHARC Loader Command-Line Switches (Cont’d)

Switch Description

VisualDSP++ 5.0 Loader and Utilities Manual 7-11

Loader for TigerSHARC Processors

-version Directs the loader utility to display its version information. Type
elfloader -version to display the version of the loader drive. Add
the -proc switch, such as in elfloader -proc ADSP-TS201 -ver-
sion to display version information for the loader drive and Tiger-
SHARC loader utility.

-si-revision
#|none|any

The -si-revision {#|none|any} switch provides a silicon revision
of the specified processor.
The switch parameter represents a silicon revision of the processor
specified by the -proc processor switch. The parameter takes one
of three forms:
• The none value indicates that the VisualDSP++ ignores silicon

errata.
• The #.# value indicates one or more decimal digits, followed by a

point, followed by one or two decimal digits. Examples of revisions
are: 0.0, 0.1, 0.2, 0.3.

• The any value indicates that VisualDSP++ produces an output file
that can be run at any silicon revision.

The switch generates either a warning about any potential anomalous
conditions or an error if any anomalous conditions occur.
In the absence of the silicon revision switch, the loader utility selects
the greatest silicon revision it is aware of, if any.

In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader utility gen-
erates an error.

Table 7-3. TigerSHARC Loader Command-Line Switches (Cont’d)

Switch Description

TigerSHARC Loader Guide

7-12 VisualDSP++ 5.0 Loader and Utilities Manual

Using VisualDSP++ Interface (Load Page)
After selecting a Loader file as the target type on the Project page in Visu-
alDSP++ Project Options dialog box, modify the default options on the
Load page (also called loader property page). Click OK to save the selec-
tions. Selecting Build Project from the Project menu generates a loader
file. For information relative to a specific processor, refer to the Visu-
alDSP++ online help for that processor.

VisualDSP++ invokes the elfloader utility to build the output file. Dia-
log box buttons and fields correspond to command-line switches and
parameters (see Table 7-3 on page 7-9). Use the Additional Options box
to enter options that have no dialog box equivalent.

VisualDSP++ 5.0 Loader and Utilities Manual 8-1

8 SPLITTER FOR SHARC AND
TIGERSHARC PROCESSORS

This chapter explains how the splitter utility (elfspl21k.exe) is used to
convert executable (.dxe) files into non-bootable files for the ADSP-21xxx
SHARC and ADSP-TSxxx TigerSHARC processors. Non-bootable
PROM image files execute from external memory of a processor. For Tig-
erSHARC processors, the splitter utility creates a 32-bit image file. For
SHARC processors, the utility creates a 64-/48-/40-/32-bit image file or
an image file to match a physical memory size.

For SHARC processors, the splitter utility also properly packs the external
memory data or code to match the specified external memory widths if the
logical width of the data or code is different from that of the physical
memory.

In most instances, developers working with SHARC and TigerSHARC
processor use the loader utility instead of the splitter. One of the excep-
tions is a SHARC system that can execute instructions from external
memory. The non-bootable PROM image files are often used with the
ADSP-21065L processor systems, which have limited internal memory.
Refer to “Introduction” on page 1-1 for the splitter utility overview; the
introductory material applies to both processor families.

Splitter Command Line

8-2 VisualDSP++ 5.0 Loader and Utilities Manual

Splitter operations are detailed in the following sections.

• “Splitter Command Line” on page 8-2
Provides reference information about the splitter utility’s com-
mand-line syntax and switches.

• “VisualDSP++ Interface (Split Page)” on page 8-9
Provides reference information about the splitter utility’s graphical
user interface.

Splitter Command Line
Use the following syntax for the SHARC and TigerSHARC splitter com-
mand line.

elfspl21k [-switch …] -pm &|-dm &|-64 &| -proc part_number

inputfile

or
elfspl21k [-switch …] -s section_name inputfile

where:

• inputfile—Specifies the name of the executable file (.dxe) to be
processed into a non-bootable file for a single-processor system.
The name of the inputfile file must appear at the end of the com-
mand. The name can include the drive, directory, file name, and
file extension. Enclose long file names within straight quotes; for
example, “long file name”.

• -switch …—One or more optional switches to process. Switches
select operations for the splitter utility. Switches may be used in
any order. A list of the splitter switches and their descriptions
appear in Table 8-2 on page 8-6.

VisualDSP++ 5.0 Loader and Utilities Manual 8-3

Splitter for SHARC and TigerSHARC Processors

• -pm &| -dm &| -64—For SHARC processors, the &| symbol between
the switches indicates AND/OR. The splitter command line must
include one or more of -pm, -dm, or -64 (or the -s switch). The -64
switch corresponds to DATA64 memory space.

TigerSHARC processors do not have -pm, -dm, or -64 switches.

• -s section_name—The -s switch can be used without the -pm, -dm,
or -64 switch. The splitter command line must include one or
more of the -pm, -dm, and, -64 switches or the -s switch.

Most items in the splitter command line are not case sensitive; for
example, -pm and -PM are interchangeable. However, the names of
memory sections must be identical, including case, to the names
used in the executable.

Each of the following command lines,

elfspl21k -pm -o pm_stuff my_proj.dxe -proc ADSP21161

elfspl21k -dm -o dm_stuff my_proj.dxe -proc ADSP21161

elfspl21k -64 -o 64_stuff my_proj.dxe -proc ADSP21161

elfspl21k -s seg-code -o seg-code my_proj.dxe

runs the splitter utility for the ADSP-21161 processor. The first command
produces a PROM file for program memory. The second command pro-
duces a PROM file for data memory. The third command produces a
PROM file for DATA64 memory. The fourth command produces a PROM
file for section seg-code.

The switches on these command lines are as follows.

Splitter Command Line

8-4 VisualDSP++ 5.0 Loader and Utilities Manual

-pm
-dm
-64

Selects program memory (-pm), data memory (-dm), or DATA64 mem-
ory (-64) as sources in the executable for extraction and placement into
the image. DATA64 memory does not apply to the ADSP-2106x proces-
sors.
Warning: The -pm, -dm, or -64 switch does not apply to the
ADSP-TSxxx processors.
Because these are the only switches used to identify the memory source,
the specified sources are PM, DM, or DATA64 memory sections. Because
no other content switches appear on these command lines, the output
file format defaults to a Motorola 32-bit format, and the PROM word
width of the output defaults to 8 bits for all PROMs.

-o pm_stuff
-o dm_stuff
-o seg-code

Specify names for the output files. Use different names so the output of
a run does not overwrite the output of a previous run. The output
names are pm_stuff.s_# and dm_stuff.s_#. The splitter utility adds
the .s_# file extension to the output files; # is a number that differenti-
ates one output file from another.

my_proj.dxe Specifies the name of the input (.dxe) file to be processed into
non-bootable PROM image files.

VisualDSP++ 5.0 Loader and Utilities Manual 8-5

Splitter for SHARC and TigerSHARC Processors

File Searches
File searches are important in the splitter process. The splitter utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-17.

Output File Extensions
The splitter utility follows the conventions shown in Table 8-1 for output
file extensions.

Table 8-1. Output File Extensions

Extension File Description

.s_# Motorola S-record format file. The # indicates the position (0 = least significant,
1 = next-to-least significant, and so on). For info about Motorola S-record file for-
mat, refer to “Output Files in Motorola S-Record Format” on page A-10.

.h_# Intel hex-32 format file. The # indicates the position (0 = least significant,
1 = next-to-least significant, and so on). For information about Intel hex-32 file for
mat, refer to “Splitter Output Files in Intel Hex-32 Format” on page A-12.

.stk Byte-stacked format file. These files are intended for host transfer of data, not for
PROMs. For more information about byte stacked file format, format files, refer to
“Splitter Output Files in Byte-Stacked Format” on page A-12.

Splitter Command Line

8-6 VisualDSP++ 5.0 Loader and Utilities Manual

Splitter Command-Line Switches
A list of the splitter command-line switches appears in Table 8-2.

Table 8-2. Splitter Command-Line Switches

Item Description

-64 The -64 (include DATA64 memory) switch directs the splitter utility to
extract all sections declared as 64-bit memory sections from the input
.dxe file. The switch influences the operation of the -ram and -norom
switches, adding 64-bit data memory as their target.

-dm The -dm (include data memory) switch directs the splitter utility to
extract memory sections declared as data memory ROM from the input
.dxe file. The -dm switch influences the operation of the -ram and
-norom switches, adding data memory as their target.

-o imagefile The -o (output file) switch directs the splitter utility to use imagefile
as the name of the splitter output file(s).
If not specified, the default name for the splitter output file
is inputfile.ext, where ext depends on the output format.

-norom The -norom (no ROM in PROM) switch directs the splitter utility to
ignore ROM memory sections in the inputfile when extracting
information for the output image. The -dm and -pm switches select data
memory or program memory. The operation of the -s switch is not
influenced by the -norom switch.

-pm The -pm (include program memory) switch directs the splitter utility to
extract memory sections declared program memory ROM from the
input.dxe file. The -pm switch influences the operation of the -ram
and -norom switches, adding program memory as the target.

VisualDSP++ 5.0 Loader and Utilities Manual 8-7

Splitter for SHARC and TigerSHARC Processors

-r # [# …] The -r (PROM widths) switch specifies the number of PROM files and
their width in bits. The splitter utility can create PROM files for 8-,
16-, and 32-bit wide PROMs. The default width is 8 bits.
Each # parameter specifies the width of one PROM file.
Place # parameters in order from most significant to least significant.
The sum of the # parameters must equal the bit width of the destina-
tion memory (40 bits for DM, 48 bits for PM, or 64 bits for 64-bit
memory).
Example:
elfspl21k –dm –r 16 16 8 myfile.dxe
This command extracts data memory ROM from myfile.dxe and cre-
ates the following output PROM files.
• myfile.s_0—8 bits wide, contains bits 7–0
• myfile.s_1—16 bits wide, contains bits 23–8
• myfile.s_2—16 bits wide, contains bits 39–24
The width of the three output files is 40 bits.

-ram The -ram (include RAM in PROM) switch directs the splitter utility to
extract RAM sections from the inputfile. The -dm, -pm, and -64
switches select the memory. The -s switch is not influenced by the
-ram switch.

-f h
-f s1
-f s2
-f s3
-f b

The -f (PROM file format) switch directs the splitter utility to gener-
ate a non-bootable PROM image file in the specified format.
Available selection include:
• h—Intel hex-32 format
• s1—Motorola EXORciser format
• s2—Motorola EXORMAX format
• s3—Motorola 32-bit format
• b—byte stacked format
If the -f switch does not appear on the command line, the default
format for the PROM file is Motorola 32-bit (s3).
For information on file formats, see “Build Files” on page A-4.

-s section_name The -s (include memory section) switch directs the splitter utility to
extract the contents of the specified memory section (section_name).
Use the -s section_name switch as many times as needed. Each
instance of the -s switch can specify only one section_name.
Warning: Do not use -s with (-pm, -dm, or -64).

Table 8-2. Splitter Command-Line Switches (Cont’d)

Item Description

Splitter Command Line

8-8 VisualDSP++ 5.0 Loader and Utilities Manual

-proc part_number Specifies the processor type to the splitter utility. This is a mandatory
switch. Valid processors are:
• ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L
• ADSP-21160, ADSP-21161
• ADSP-21261, ADSP-21262, ADSP-21266, ADSP-21267,
• ADSP-21363, ADSP-21364, ADSP-21365, ADSP-21366,

ADSP-21367, ADSP-21368, ADSP-21369,
• ADSP-21371, ADSP-21375
• ADSP-TS101, ADSP-TS201, ADSP-TS202, and ADSP-TS203

-u # (Byte-stacked format files only) The -u (user flags) switch, which may
be used only in combination with the -f b switch, directs the splitter
utility to use the number # in the user-flags field of a byte stacked for-
mat file.
If the -u switch is not used, the default value for the number is 0. By
default, # is decimal. If # is prefixed with 0x, the splitter utility inter-
prets the number as hexadecimal. For more information, see “Splitter
Output Files in Byte-Stacked Format” on page A-12.

-si-revision
#|none|any

The -si-revision {#|none|any} switch provides a silicon revision
of the specified processor.
The switch parameter represents a silicon revision of the processor spec-
ified by the -proc processor switch. The parameter takes one of three
forms:
• The none value indicates that the VisualDSP++ ignores silicon

errata.
• The #.# value indicates one or more decimal digits, followed by a

point, followed by one or two decimal digits. Examples of revisions
are: 0.0, 0.1, 0.2, 0.3.

• The any value indicates that VisualDSP++ produces an output file
that can be run at any silicon revision.

The switch generates either a warning about any potential anomalous
conditions or an error if any anomalous conditions occur.
In the absence of the silicon revision switch, the loader selects the great-
est silicon revision it is aware of, if any.

In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader generates an
error.

-version Directs the splitter utility to show its version information.

Table 8-2. Splitter Command-Line Switches (Cont’d)

Item Description

VisualDSP++ 5.0 Loader and Utilities Manual 8-9

Splitter for SHARC and TigerSHARC Processors

VisualDSP++ Interface (Split Page)
After selecting a Splitter file as the target type on the Project page in Visu-
alDSP++ Project Options dialog box, modify the default options on the
Project: Split page (also called splitter property page). Click OK to save
the selections. Selecting Build Project from the Project menu invokes the
splitter utility to build a non-bootable PROM image file.

Splitter operation relies on splitter options, which control the processing
of the executable files into output files. The page buttons and fields corre-
spond to the splitter utility’s command-line switches and parameters
(see Table 8-2 on page 8-6). Use the Additional Options box to enter
options that do not have dialog box equivalents. Refer to VisualDSP++
online Help for details.

VisualDSP++ Interface (Split Page)

8-10 VisualDSP++ 5.0 Loader and Utilities Manual

VisualDSP++ 5.0 Loader and Utilities Manual A-1

A FILE FORMATS

VisualDSP++ development tools support many file formats, in some cases
several for each development tool. This appendix describes file formats
that are prepared as inputs and produced as outputs.

The appendix describes three types of files:

• “Source Files” on page A-1

• “Build Files” on page A-4

• “Debugger Files” on page A-15

Most of the development tools use industry-standard file formats. These
formats are described in “Format References” on page A-16.

Source Files
This section describes the following source (input) file formats.

• “C/C++ Source Files” on page A-2

• “Assembly Source Files” on page A-2

• “Assembly Initialization Data Files” on page A-2

• “Header Files” on page A-3

• “Linker Description Files” on page A-4

• “Linker Command-Line Files” on page A-4

Source Files

A-2 VisualDSP++ 5.0 Loader and Utilities Manual

C/C++ Source Files
C/C++ source files are text files (.c, .cpp, .cxx, and so on) containing
C/C++ code, compiler directives, possibly a mixture of assembly code and
directives, and, typically, preprocessor commands.

Several dialects of C code are supported: pure (portable) ANSI C, and at
least two subtypes1 of ANSI C with ADI extensions. These extensions
include memory type designations for certain data objects, and segment
directives used by the linker to structure and place executable files.

The C/C++ compiler, run-time library, as well as a definition of ADI
extensions to ANSI C, are detailed in the VisualDSP++ 5.0 C/C++
Compiler and Library Manual for Blackfin Processors.

Assembly Source Files
Assembly source files (.asm) are text files containing assembly instructions,
assembler directives, and (optionally) preprocessor commands. For infor-
mation on assembly instructions, see the Programming Reference manual
for your processor.

The processor’s instruction set is supplemented with assembly directives.
Preprocessor commands control macro processing and conditional assem-
bly or compilation.

For information on the assembler and preprocessor, see the
VisualDSP++ 5.0 Assembler and Preprocessor Manual.

Assembly Initialization Data Files
Assembly initialization data files (.dat) are text files that contain fixed- or
floating-point data. These files provide initialization data for an assembler
.VAR directive or serve in other tool operations.

1 With and without built-in function support; a minimal differentiator. There are others dialects.

VisualDSP++ 5.0 Loader and Utilities Manual A-3

File Formats

When a .VAR directive uses a .dat file for data initialization, the assembler
reads the data file and initializes the buffer in the output object file (.doj).
Data files have one data value per line and may have any number of lines.

The .dat extension is explanatory or mnemonic. A directive to
#include <filename> can take any file name and extension as an
argument.

Fixed-point values (integers) in data files may be signed, and they may be
decimal, hexadecimal, octal, or binary based values. The assembler uses
the prefix conventions listed in Table A-1 to distinguish between numeric
formats.

For all numeric bases, the assembler uses words of different sizes for data
storage. The word size varies by the processor family,

Header Files
Header files (.h) are ASCII text files that contain macros or other prepro-
cessor commands which the preprocessor substitutes into source files. For
information on macros and other preprocessor commands, see the
VisualDSP++ 5.0 Assembler and Preprocessor Manual.

Table A-1. Numeric Formats

Convention Description

0xnumber
H#number
h#number

Hexadecimal number

number
D#number
d#number

Decimal number

B#number
b#number

Binary number

O#number
o#number

Octal number

Build Files

A-4 VisualDSP++ 5.0 Loader and Utilities Manual

Linker Description Files
Linker description files (.ldf) are ASCII text files that contain commands
for the linker in the linker scripting language. For information on the
scripting language, see the VisualDSP++ 5.0 Linker and Utilities Manual.

Linker Command-Line Files
Linker command-line files (.txt) are ASCII text files that contain
command-line inputs for the linker. For more information on the linker
command line, see the VisualDSP++ 5.0 Linker and Utilities Manual.

Build Files
Build files are produced by VisualDSP++ development tools while build-
ing a project. This section describes the following build file formats.

• “Assembler Object Files” on page A-5

• “Library Files” on page A-5

• “Linker Output Files” on page A-5

• “Memory Map Files” on page A-6

• “Loader Output Files in Intel Hex-32 Format” on page A-6

• “Loader Output Files in Include Format” on page A-8

• “Loader Output Files in Binary Format” on page A-10

• “Output Files in Motorola S-Record Format” on page A-10

• “Splitter Output Files in Intel Hex-32 Format” on page A-12

VisualDSP++ 5.0 Loader and Utilities Manual A-5

File Formats

• “Splitter Output Files in Byte-Stacked Format” on page A-12

• “Splitter Output Files in ASCII Format” on page A-14

Assembler Object Files
Assembler output object files (.doj) are binary object and linkable files
(ELF). Object files contain relocatable code and debugging information
for a DSP program’s memory segments. The linker processes object files
into an executable file (.dxe). For information on the object file’s ELF for-
mat, see “Format References” on page A-16.

Library Files
Library files (.dlb), the output of the archiver, are binary, object and link-
able files (ELF). Library files (called archive files in previous software
releases) contain one or more object files (archive elements).

The linker searches through library files for library members used by the
code. For information on the ELF format used for executable files, refer to
“Format References” on page A-16.

The archiver automatically converts legacy input objects from
COFF to ELF format.

Linker Output Files
The linker’s output files (.dxe, .sm, .ovl) are binary executable files
(ELF). The executable files contain program code and debugging
information. The linker fully resolves addresses in executable files. For
information on the ELF format used for executable files, see the TIS Com-
mittee texts cited in “Format References” on page A-16.

The loaders/splitter utilities are used to convert executable files into
boot-loadable or non-bootable files.

Build Files

A-6 VisualDSP++ 5.0 Loader and Utilities Manual

Executable files are converted into a boot-loadable file (.ldr) for the ADI
processors using a splitter utility. Once an application program is fully
debugged, it is ready to be converted into a boot-loadable file.
A boot-loadable file is transported into and run from a processor’s internal
memory. This file is then programmed (burned) into an external memory
device within your target system.

A splitter utility generates non-bootable, PROM-image files by processing
executable files and producing an output PROM file. A non-bootable,
PROM-image file executes from processor external memory.

Memory Map Files
The linker can output memory map files (.xml), which are ASCII text files
that contain memory and symbol information for the executable files. The
.xml file contains a summary of memory defined with the MEMORY{} com-
mand in the .ldf file, and provides a list of the absolute addresses of all
symbols.

Loader Output Files in Intel Hex-32 Format
The loader utility can output Intel hex-32 format files (.ldr). The files
support 8-bit-wide PROMs and are used with an industry-standard
PROM programmer to program memory devices. One file contains data
for the whole series of memory chips to be programmed.

The following example shows how Intel hex-32 format appears in the
loader’s output file. Each line in the Intel hex-32 file contains an extended
linear address record, a data record, or the end-of-file record.

:020000040000FA Extended linear address record

:0402100000FE03F0F9 Data record

:00000001FF End-of-file record

VisualDSP++ 5.0 Loader and Utilities Manual A-7

File Formats

Extended linear address records are used because data records have a
4-character (16-bit) address field, but in many cases, the required PROM
size is greater than or equal to 0xFFFF bytes. Extended linear address
records specify bits 31–16 for the data records that follow.

Table A-2 shows an example of an extended linear address record.

Table A-3 shows the organization of a sample data record.

Table A-2. Extended Linear Address Record Example

Field Purpose

:020000040000FA Example record

: Start character

02 Byte count (always 02)

0000 Address (always 0000)

04 Record type

0000 Offset address

FA Checksum

Table A-3. Data Record Example

Field Purpose

:0402100000FE03F0F9 Example record

: Start character

04 Byte count of this record

0210 Address

00 Record type

00 First data byte

F0 Last data byte

F9 Checksum

Build Files

A-8 VisualDSP++ 5.0 Loader and Utilities Manual

Table A-4 shows an end-of-file record.

VisualDSP++ includes a utility program to convert an Intel hexadecimal
file to Motorola S-record or data file. Refer to “hexutil – Hex-32 to
S-Record File Converter” on page B-2 for details.

Loader Output Files in Include Format
The loader utility can output include format files (.ldr). These files per-
mit the inclusion of the loader file in a C program.

The word width (8- or16-bit) of the loader file depends on the specified
boot type. Similar to Intel hex-32 output, the loader output in include
format have some basic parts in the following order.

1. Initialization code (some Blackfin processors)

2. Boot kernel (some Blackfin, SHARC, and TigerSHARC
processors)

3. User application code

Table A-4. End-of-File Record Example

Field Purpose

:00000001FF End-of-file record

: Start character

00 Byte count (zero for this record)

0000 Address of first byte

01 Record type

FF Checksum

VisualDSP++ 5.0 Loader and Utilities Manual A-9

File Formats

4. Saved user code in conflict with the initialization code (some
Blackfin processors)

5. Saved user code in conflict with the kernel code (some Blackfin,
SHARC, and TigerSHARC processors)

The initialization code is an optional first part for some Blackfin proces-
sors, while the kernel code is the part for some Blackfin, SHARC, and
TigerSHARC processors. User application code is followed by the saved
user code.

Files in include format are ASCII text files that consist of 48-bit
instructions, one per line (on SHARC processors). Each instruction is pre-
sented as three 16-bit hexadecimal numbers. For each 48-bit instruction,
the data order is lower, middle, and then upper 16 bits. Example lines
from an include format file are:

0x005c, 0x0620, 0x0620,

0x0045, 0x1103, 0x1103,

0x00c2, 0x06be, 0x06be

This example shows how to include this file in a C program:

const unsigned loader_file[] =

{

#include “foo.ldr”

};

const unsigned loader_file_count = sizeof loader_file

/ sizeof loader_file[0];

The loader_file_count reflects the actual number of elements in the
array and cannot be used to process the data.

Build Files

A-10 VisualDSP++ 5.0 Loader and Utilities Manual

Loader Output Files in Binary Format
The loader utility can output binary format files (.ldr) to support a vari-
ety of PROM and microcontroller storage applications.

Binary format files use less space than the other loader file formats. Binary
files have the same contents as the corresponding ASCII file, but in binary
format.

Output Files in Motorola S-Record Format
The loader and splitter utilities can output Motorola S-record format files
(.s_#), which conform to the Intel standard. The three file formats sup-
ported by the loader and PROM splitter utilities differ only in the width
of the address field: S1 (16 bits), S2 (24 bits), or S3 (32 bits).

An S-record file begins with a header record and ends with a termination
record. Between these two records are data records, one per line:

S00600004844521B Header record
S10D00043C4034343426142226084C Data record (S1)
S903000DEF Termination record (S1)

Table A-5 shows the organization of an example header record.

Table A-5. Header Record Example

Field Purpose

S00600004844521B Example record

S0 Start character

06 Byte count of this record

0000 Address of first data byte

484452 Identifies records that follow

1B Checksum

VisualDSP++ 5.0 Loader and Utilities Manual A-11

File Formats

Table A-6 shows the organization of an S1 data record.

The S2 data record has the same format, except that the start character is
S2 and the address field is six characters wide. The S3 data record is the
same as the S1 data record except that the start character is S3 and the
address field is eight characters wide.

Termination records have an address field that is 16-, 24-, or 32 bits wide,
whichever matches the format of the preceding records. Table A-7 shows
the organization of an S1 termination record.

The S2 termination record has the same format, except that the start char-
acter is S8 and the address field is six characters wide.

Table A-6. S1 Data Record Example

Field Purpose

S10D00043C4034343426142226084C Example record

S1 Record type

0D Byte count of this record

0004 Address of the first data byte

3C First data byte

08 Last data byte

4C Checksum

Table A-7. S1 Termination Record Example

Field Purpose

S903000DEF Example record

S9 Start character

03 Byte count of this record

000D Address

EF Checksum

Build Files

A-12 VisualDSP++ 5.0 Loader and Utilities Manual

The S3 termination record is the same as the S1 format, except the start
character is S7 and the address field is eight characters wide.

For more information, see “hexutil – Hex-32 to S-Record File Converter”
on page B-2.

Splitter Output Files in Intel Hex-32 Format
The splitter utility can output Intel hex-32 format (.h_#) files. These
ASCII files support a variety of PROM devices. For an example of how
the Intel hex-32 format appears for an 8-bit wide PROM, see “Loader
Output Files in Intel Hex-32 Format” on page A-6.

The splitter utility prepares a set of PROM files. Each PROM holds a por-
tion of each instruction or data. This configuration differs from the loader
output.

Splitter Output Files in Byte-Stacked Format
The splitter utility can output files in byte-stacked (.stk) format. These
files are not intended for PROMs, but are ideal for microcontroller data
transfers.

A file in byte-stacked format comprises a series of one line headers, each
followed by a block (one or more lines) of data. The last line in the file is a
header that signals the end of the file.

Lines consist of ASCII text that represents hexadecimal digits. Two
characters represent one byte. For example, F3 represents a byte whose
decimal value is 243.

VisualDSP++ 5.0 Loader and Utilities Manual A-13

File Formats

Table A-8 shows an example of a header record in byte-stacked format.

In the above example, the start address and block length fields are 32
(0x20) bits wide. The file contains program memory data (the MSB is the
only flag currently used in the PROM splitter flags field). No user flags are
set. The address of the first location in the block is 0x08. The block con-
tains 30 (1E) bytes (5 program memory code words). The number of bytes
that follow (until next header record or termination record) must be non-
zero.

A block of data records follows its header record, five bytes per line for
data memory, and six byte per line for program memory or in other phys-
ical memory width. For example:

Program Memory Section (Code or Data)

3C4034343426

142226083C15

Data Memory Section

3C40343434

2614222608

Table A-8. Example – Header Record in Byte-Stacked Format

Field Purpose

20008000000000080000001E Example record

20 Width of address and length fields (in bits)

00 Reserved

80 PROM splitter flags (80 = PM, 00 = DM)

00 User defined flags (loaded with -u switch)

00000008 Start address of data block

0000001E Number of bytes that follow

Build Files

A-14 VisualDSP++ 5.0 Loader and Utilities Manual

DATA64 Memory Section

1122334455667788

99AABBCCDDEEFF00

The bytes are ordered left to right, most significant to least.

The termination record has the same format as the header record, except
for the rightmost field (number of records), which is all zeros.

Splitter Output Files in ASCII Format
When the Blackfin splitter utility is invoked as a splitter utility, its output
can be an ASCII format file with the .ldr extension. ASCII format files
are text representations of ROM memory images that can be post-pro-
cessed by users.

Data Memory (DM) Example:

ext_data { TYPE(DM ROM) START(0x010000) END(0x010003) WIDTH(8) }

The above DM section results in the following code.

00010000 /* 32-bit logical address field */

00000004 /* 32-bit logical length field */

00020201 /* 32-bit control word: 2x address multiply */

/* 02 bytes logical width, 01 byte physical width */

00000000 /* reserved */

0x12 /* 1st data word, DM data is 8 bits */

0x56

0x9A

0xDE /* 4th (last) data word */

CRC16 /* optional, controlled by the -checksum switch */

VisualDSP++ 5.0 Loader and Utilities Manual A-15

File Formats

Debugger Files
Debugger files provide input to the debugger to define support for simula-
tion or emulation of your program. The debugger consumes all the
executable file types produced by the linker (.dxe, .sm, .ovl). To simulate
IO, the debugger also consumes the assembler data file format (.dat) and
the loadable file formats (.ldr).

The standard hexadecimal format for a SPORT data file is one integer
value per line. Hexadecimal numbers do not require a 0x prefix. A value
can have any number of digits but is read into the SPORT register as
follows.

• The hexadecimal number is converted to binary.

• The number of binary bits read in matches the word size set for the
SPORT register and starts reading from the LSB. The SPORT register
then zero-fills bits shorter than the word size or conversely trun-
cates bits beyond the word size on the MSB end.

In the following example (Table A-9), a SPORT register is set for 20-bit
words, and the data file contains hexadecimal numbers. The simulator
converts the hex numbers to binary and then fills/truncates to match the
SPORT word size. The A5A5 is filled and 123456 is truncated.

Table A-9. SPORT Data File Example

Hex Number Binary Number Truncated/Filled

A5A5A 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010

FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001

A5A5 1010 0101 1010 0101 0000 1010 0101 1010 0101

5A5A5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101

11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001

123456 0001 0010 0011 0100 0101 0110 0010 0011 0100 0101 0110

Format References

A-16 VisualDSP++ 5.0 Loader and Utilities Manual

Format References
The following texts define industry-standard file formats supported by
VisualDSP++.

• Gircys, G.R. (1988) Understanding and Using COFF by O’Reilly &
Associates, Newton, MA

• (1995) Executable and Linkable Format (ELF) V1.1 from the
Portable Formats Specification V1.2, Tools Interface Standards
(TIS) Committee.

http://refspecs.freestandards.org/elf/elf.pdf

• (1992) Debugging Information Format (DWARF) V1.1.0 from the
Portable Formats Specification V1.1, UNIX International, Inc.

http://dwarfstd.org/doc/dwarf_1_1_0.pdf

• (2001-2005) uClinux - BFLT Binary Flat Format by Craig Peacock
from beyondlogic.org.

http://www.beyondlogic.org/uClinux/bflt.htm

http://dwarfstd.org/doc/dwarf_1_1_0.pdf
http://refspecs.freestandards.org/elf/elf.pdf
http://www.beyondlogic.org/uClinux/bflt.htm

VisualDSP++ 5.0 Loader and Utilities Manual B-1

B UTILITIES

The VisualDSP++ development software includes several utility programs,
some of which run from a command line only.

This appendix describes the following utilities.

• “hexutil – Hex-32 to S-Record File Converter” on page B-2

• “elf2flt – ELF to BFLT File Converter” on page B-3

• “fltdump – BFLT File Dumper” on page B-4

Other VisualDSP++ utilities, for example, the ELF file dumper, are
described in the VisualDSP++ 5.0 Linker and Utilities Manual or online
Help.

hexutil – Hex-32 to S-Record File Converter

B-2 VisualDSP++ 5.0 Loader and Utilities Manual

hexutil – Hex-32 to S-Record File
Converter

The hex-to-S file converter (hexutil.exe) utility transforms a loader
(.ldr) file in Intel hexadecimal 32-bit format to Motorola S-record format
or produces an unformatted data file.

Syntax: %hexutil input_file [-s1|s2|s3|StripHex] [-o file_name]

where:

input_file is the name of the .ldr file generated by the VisualDSP++
splitter utility.

Table B-1 shows optional switches used with the %hexutil command.

The Intel hex-32 and Motorola S-record file formats are described
on page A-6 and on page A-10, respectively.

Table B-1. Hex to S-Record File Converter Command-Line Switches

Switch Description

-s1 Specifies Motorola output format S1

-s2 Specifies Motorola output format S2

-s3 Specifies the default output format – Motorola S3. That is, when no switch
appears on the command lines, the output file format defaults to S3.

-StripHex Generates an unformatted data file

-o Names the output file; in the absence of the -o switch, causes the output file
name to default to input_file.s.

VisualDSP++ 5.0 Loader and Utilities Manual B-3

Utilities

elf2flt – ELF to BFLT File Converter
The ELF-to-BFLT file converter (elf2flt.exe) utility converts a (.dxe)
file in Executable and Linkable Format (ELF) to Binary Flat Format
(BFLT).

The .bflt file contains three output sections: text, data, and bss. Output
sections are defined by the ELF file standard. The .bflt file can be loaded
and executed in an environment running a uClinux operating system.

For more information on the BFLT file format, see uClinux Web site:
http://www.beyondlogic.org/uClinux/bflt.htm.

The elf2flt currently supports ELF files compiled for Blackfin and
SHARC architectures. The elf2flt implements revision 5 flat relocation
type. For more information, see the BFLT relocation structure defined in
flat.h.

Elf2flt does not support ELF files with position-independent
code and global offset table (PIC with GOT).

Elf2flt is not capable of compressing text and data segments with
gzip tool.

Syntax: elf2flt [-V|r|k] [-s #] [-o file_name] elf_input_file

where:

elf_input_file is the name of the .dxe file generated by the
VisualDSP++ linker.

fltdump – BFLT File Dumper

B-4 VisualDSP++ 5.0 Loader and Utilities Manual

Table B-2 shows optional switches used with the elf2flt command.

fltdump – BFLT File Dumper
The BFLT file dumper (fltdump.exe) utility extracts data from
BFLT-format executable (.bflt) files and yields text showing the BFLT
file’s contents.

The fltdump utility prints the entire contents of the .bflt file in hex. In
addition, the fltdump prints contents of the text section as a list of disas-
sembled machine instructions.

For more information on the BFLT file format, see uClinux Web site:
http://www.beyondlogic.org/uClinux/bflt.htm.

Syntax: fltdump [switch…] [object_file]

where:

object_file is the name of the .bflt file whose contents is to be printed.

Table B-2. ELF to BFLT File Converter Command-Line Switches

Switch Description

-V Verbose operation

-r Forces load to RAM

-k Enables kernel trace on load (for debug)

-s# Sets application stack-size number

-o file_name Names the output file

-h Prints the list of the elf2flt switches

-v Prints version information

http://www.beyondlogic.org/uClinux/bflt.htm

VisualDSP++ 5.0 Loader and Utilities Manual B-5

Utilities

Table B-3 shows optional switches used with the fltdump command.

Table B-3. BFLT File Dumper Command-Line Switches

Switch Description

-D Dumps the file built for the specified processor

-help Prints the list of the elfdump switches to stdout

-v Prints version information

-o file_name Prints s the output to the specified file

fltdump – BFLT File Dumper

B-6 VisualDSP++ 5.0 Loader and Utilities Manual

VisualDSP++ 5.0 Loader and Utilities Manual I-1

I INDEX

Numerics
-64 splitter switch, 8-6
16- to 48-bit word packing, 4-12
32- to 16-bit word packing, 6-7
32- to 8-bit word packing, 6-7
48- to 8-bit word packing, 4-9
4- to 48-bit word packing, 4-15
8- to 48-bit word packing, 4-10, 4-11, 4-12,

5-5, 5-8

A
ACK pin, 4-7, 4-11, 4-13, 5-7
ADDR23-0 address lines, 5-8
ADDR31-0 address lines, 4-10
address records, linear format, A-7
ADSP-2106x/160 processors

ADSP-21060/061/062 boot modes, 4-2, 4-5
ADSP-21065L boot modes, 4-2, 4-6
ADSP-21160 boot modes, 4-2, 4-5
boot sequence, 4-3
direct memory access, See DMA, DMACx

ADSP-21161 processors
boot modes, 5-2, 5-5
boot sequence, 5-3
direct memory access, See DMA, DMACx
multiprocessor support, 5-21

ADSP-2126x/36x/37x/46x processors
boot modes, 6-2, 6-4, 6-8
boot sequence, 6-3
compression support, 6-38
direct memory access, See DMA, DMACx

ADSP-2136x/37x/46x processors
multiprocessor support, 6-36

ADSP-BF50x processors
boot modes, 2-3
multi-dxe loader files, 2-20

ADSP-BF51x processors
boot modes, 2-3
multi-dxe loader files, 2-20

ADSP-BF52x/54x processors
boot modes, 2-4
multi-dxe loader files, 2-20

ADSP-BF531/2/3/4/6/7/8/9 processors
ADSP-BF534/6/7 (only) boot modes, 3-4
boot modes, 3-3
boot sequence, 3-8
boot streams, 3-9, 3-10
compression support, 3-49
memory ranges, 3-19
multi-dxe loader files, 3-46
on-chip boot ROM, 3-3, 3-7, 3-9, 3-19, 3-48

ADSP-BF535 processors
boot modes, 3-16, 3-21, 3-77
boot sequence, 3-24
boot streams, 3-27, 3-28
memory ranges, 3-34
on-chip boot ROM, 3-21, 3-23, 3-25
second stage loader, 3-24

Index

I-2 VisualDSP++ 5.0 Loader and Utilities Manual

ADSP-BF561 processors
boot modes, 3-36
boot streams, 3-38, 3-40
dual-core architecture, 3-36, 3-39
memory ranges, 3-45
multi-dxe loader files, 3-46
multiprocessor support, 3-44
on-chip boot ROM, 3-36, 3-38, 3-43, 3-44,

3-45, 3-48
.ALIGN directive, 3-35
application loading (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-8,
3-12, 3-48

ADSP-BF535 processors, 3-26, 3-27, 3-33
ADSP-BF561 processors, 3-38, 3-39, 3-44,

3-45, 3-48
application loading (SHARC processors)

ADSP-2106x/160 processors, 4-4, 4-17
ADSP-21161 processors, 5-3, 5-5, 5-9
ADSP-2126x/36x/37x/46x processors, 6-4,

6-20
ADSP-2126x/36x/37x processors, 6-33

applications
See also blocks of application code
loading, introduction to, 1-15
code start address, 2-17, 2-23, 3-65, 3-72,

4-4, 4-19, 5-5
default code start address, 2-23, 3-72
development flow, 1-7
multiple-dxe files, 2-20

archive files, See library files (.dlb)
archiver, A-5
ASCII file format, 2-11, 3-60, 7-9, A-4, A-14
.asm (assembly) source files, 1-8, A-2
assembling, introduction to, 1-8
assembly

directives, A-2
initialization data files (.dat), A-2
object files (.doj), A-5
source text files (.asm), 1-8, A-2

asynchronous FIFO boot mode,
ADSP-BF52x/54x processors, 2-4

AUTODMA register, 7-2

B
-baudrate #, loader switch for Blackfin, 3-59
baud rate (Blackfin processors), 2-23, 3-24,

3-39, 3-72
BFLAG_CALLBACK block flag, 2-11
BFLAG_QUICKBOT block flag, 2-17
BFLAG_SAVE block flag, 2-18
BFLT file dumper, B-4
binary flat format (.bflt), B-3, B-4
binary format files (.ldr), 2-11, 3-60, 7-9, A-10
bit-reverse option (SHARC processors), 6-14
block

of application code, introduction to, 1-16
byte counts (Blackfin processors), 2-16, 3-63
flags, See flag words
packing, See data packing
tags, 4-18, 5-17, 6-21, 6-27, 6-28

block headers (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-9,

3-10
ADSP-BF535 processors, 3-34
ADSP-BF561 processors, 3-40, 3-43

block headers (SHARC processors)
ADSP-2106x/160 processors, 4-17
ADSP-21161 processors, 5-17
ADSP-2126x/36x/37x processors, 6-21, 6-26

blocks of application code (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-9
ADSP-BF535 processors, 3-33
ADSP-BF561 processors, 3-38

blocks of application code (SHARC processors)
ADSP-2106x/160 processors), 4-17
ADSP-21161 processors, 5-17
ADSP-2126x/36x/37x processors, 6-26

VisualDSP++ 5.0 Loader and Utilities Manual I-3

Index

BMODE1-0 pins
ADSP-BF531/2/3/8/9 processors, 3-4, 3-16,

3-77
BMODE2-0 pins

ADSP-BF51x processors, 2-3
ADSP-BF534/6/7 processors, 3-4
ADSP-BF535 processors, 3-16, 3-21, 3-77

BMODE3-0 pins
ADSP-BF52x/54x processors, 2-4

BMS pins
ADSP-2106x/160 processors, 4-5, 4-7, 4-10,

4-11, 4-15, 4-23
ADSP-21161 processors, 5-4, 5-6, 5-9, 5-13,

5-15, 5-22
TigerSHARC processors, 7-2, 7-3

boot
sequences, introduction to, 1-11
ROM, See on-chip boot ROM
sources, See boot modes

BOOT_CFG1-0 pins, 6-4, 6-6, 6-8
BOOT_CFG2-0 pins, 6-5, 6-6, 6-8
boot differences (Blackfin processors), 3-3, 3-8,

3-36, 3-38, 3-39
boot differences (SHARC processors), 6-12,

6-17
boot file formats

specifying for Blackfin processors, 2-11, 2-23,
3-60, 3-71

specifying for SHARC processors, 4-29, 5-27,
6-49

specifying for TigerSHARC processors, 7-9
boot kernels

See also kernels, second-stage loaders
introduction to, 1-15

boot-loadable files
introduction to, 1-9, 1-10
versus non-bootable file, 1-15

boot modes (Blackfin processors)
ADSP-BF50x processors, 2-3
ADSP-BF51x processors, 2-3
ADSP-BF52x/54x processors, 2-4
ADSP-BF531/2/3/8/9 processors, 2-6
ADSP-BF534/6/7 processors, 3-4
ADSP-BF535 processors, 3-21
ADSP-BF561 processors, 3-36
specifying, 2-10, 2-23, 3-59, 3-71

boot mode select pins (Blackfin processors)
ADSP-BF51x processors, 2-3
ADSP-BF52x/54x processors, 2-4
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-4
ADSP-BF535 processors, 3-21

boot mode select pins (SHARC processors)
ADSP-21161 processors, 5-4
ADSP-2116x/160 processors, 4-5, 4-6
ADSP-2126x/36x/37x processors, 6-4
ADSP-2146x processors, 6-5

boot mode select pins (TigerSHARC
processors), 7-2, 7-3

boot modes (SHARC processors)
ADSP-2106x/160 processors, 4-2, 4-6
ADSP-21161 processors, 5-2, 5-5
ADSP-2126x/36x/37x/46x processors, 6-2
ADSP-2126x/36x/37x processors, 6-4
ADSP-2146x processors, 6-5
specifying, 4-28, 5-27, 6-4, 6-5, 6-48

boot process, introduction to, 1-9
boot sequences (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-8
ADSP-BF535 processors, 3-8, 3-24
ADSP-BF561 processors, 3-36

boot sequences (SHARC processors)
ADSP-21161 processors, 5-3
ADSP-2116x/160 processors, 4-3
ADSP-2126x/36x/37x/46x processors, 6-3

bootstraps, 1-14, 1-15, 3-64, 7-2
boot streams, introduction to, 1-14, 1-15, 1-16

Index

I-4 VisualDSP++ 5.0 Loader and Utilities Manual

boot streams (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-9,

3-47
ADSP-BF535 processors, 3-27, 3-28
ADSP-BF561 processors, 3-38, 3-40, 3-47
similarities between, 3-9

boot streams (SHARC processors)
ADSP-2106x/160 processors, 4-17
ADSP-21161 processors, 5-17
ADSP-2126x/36x/37x processors, 6-20, 6-26

-b prom|flash|spi|spislave|UART|TWI|FIFO,
loader switch for ADSP-BF53x processors,
3-59

-b
prom|flash|spi|spislave|UART|TWI|FIFO|
OTP|NAND, loader switch for
ADSP-BF51x/52x/54x processors, 2-5,
2-10

-bprom|host|link, loader switch for
TigerSHARC, 7-9, 7-10

-bprom|host|link|JTAG, loader switch for
ADSP-2106x/160 processors, 4-28

-bprom|host|link|spi, loader switch for
ADSP-21161 processors, 5-27

-bprom|spislave|spiflash|spimaster|spiprom,
loader switch for
ADSP-2126x/36x/37x/46x processors,
6-17, 6-48

BSEL pin, 4-6
BSO bit, 4-10
build file formats, list of, A-4
BUSLCK bit, 4-13, 4-14
bypass mode, See no-boot mode
byte-stacked format files (.stk), 8-5, 8-7, 8-8,

A-12

C
-caddress, loader switch for ADSP-2106x/160

processors, 4-28
-callback, loader switch for Blackfin, 2-11

C and C++ source files, 1-8, A-2
CEP0 register, 4-8, 5-7, 5-9, 5-11, 5-12
CLB0 register, 5-13, 5-14
CLKPL bit, 6-9, 6-11
COFF to ELF file conversion, A-5
command line

loader for SHARC processors, 4-26, 5-24,
6-46

loader for TigerSHARC processors, 7-5
loader/splitter for Blackfin processors, 2-8,

3-57
splitter, 8-2, 8-6

compilation, introduction to, 1-8
compressed block headers

Blackfin processors, 3-12, 3-51
SHARC processors, 6-40

compressed streams
Blackfin processors, 3-50, 3-54
SHARC processors, 6-39, 6-43

-compression
loader switch for Blackfin, 3-50, 3-59
loader switch for SHARC, 6-39, 6-42, 6-48

Compression (Load) page (Blackfin processors),
3-73

-compressionOverlay, loader switch for
SHARC, 6-39, 6-42, 6-48

compression support
ADSP-2126x/36x/37x/46x processors, 6-38
ADSP-BF531/2/3/4/6/7/8/9 processors,

3-49, 3-73
compression window, 3-52, 3-56, 6-41, 6-44
-compressWS

loader switch for Blackfin, 3-56, 3-60
loader switch for SHARC, 6-44, 6-48

conversion utilities, B-2
count headers (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-46
ADSP-BF561 processors, 3-39, 3-43, 3-46

CPEP0 register, 5-8, 5-11
CPHASE bit, 6-9, 6-11

VisualDSP++ 5.0 Loader and Utilities Manual I-5

Index

CPLB0 register, 5-14
-CRC32, loader switch for Blackfin, 2-10
CS pin, 4-13, 5-11, 6-8
CSPI register, 6-10, 6-12
CSRX register, 5-16
customer support, xvii
Cx register, 4-8, 4-10, 4-15

D
D23-16 bits, 4-9
D39-32 bits, 4-9
D7-0 bits, 4-9
data

initialization files (.dat), A-2
memory (dm) sections, 8-3, 8-6
records in Intel hex-32 format, A-7
transfers, See DMA transfers

DATA15-0 pins, 4-11
DATA23-16 pins, 4-7, 5-6
DATA31-16 pins, 4-11
DATA39-32 pins, 4-7
DATA47-16 pins, 4-11
DATA63-32 pins, 4-12
DATA64 memory sections, 8-4, 8-6
DATA7-0 pins, 4-7, 4-11
data banks (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-19
ADSP-BF535 processors, 3-34
ADSP-BF561 processors, 3-45

DataFlash devices, 3-4
data packing (SHARC processors)

ADSP-2106x/160 processors, 4-9, 4-10,
4-11, 4-12, 4-15

ADSP-21161 processors, 5-5, 5-8
ADSP-2126x/36x/37x/46x processors, 6-7,

6-29, 6-30
data streams

encrypting from application, 3-60
encrypting from kernel, 3-62

.dat (data) initialization files, A-2
debugger file formats, 1-8, A-15
debugging targets, 1-8
decompression

initialization files, 3-55
kernel files, 6-44

DEN register, 5-7, 5-11
.dlb (library) files, A-5
-dm, splitter switch, 8-6
DMA (ADSP-2106x/160 processors)

channels, See channels by name (DMACx)
buffers, 4-13
channel control registers, 4-10, 4-12, 4-13,

4-14, 4-15, 4-16
channel interrupts, 4-13, 4-14, 4-16
channel parameter registers, 4-7, 4-9, 4-10,

4-12, 4-16
controller, 4-2, 4-8, 4-9, 4-10
transfers, 4-9, 4-10, 4-12, 4-13, 4-16, 4-19

DMA (ADSP-21161 processors)
channels, See channels by name (DMACx)
buffers, 5-22
channel control registers, 5-5, 5-6, 5-9, 5-10,

5-16
channel interrupts, 5-9, 5-12
channel parameter registers, 5-7, 5-9, 5-10,

5-12, 5-13, 5-15, 5-16
controller, 5-5, 5-7, 5-8, 5-9
transfers, 5-3, 5-8, 5-15, 5-16, 5-21

DMA (ADSP-2126x/36x/37x/46x processors)
code example, 6-33
parallel port channels, 6-6, 6-28
parameter registers, 6-6, 6-9, 6-12, 6-34
SPI channels, 6-10, 6-12
transfers, 6-6, 6-8, 6-11, 6-22

DMAC0 channel (ADSP-2106x/160
processors), 4-3, 4-8, 4-12

Index

I-6 VisualDSP++ 5.0 Loader and Utilities Manual

DMAC10 channels
ADSP-2106x/160 processors, 4-2, 4-3, 4-8,

4-9, 4-12, 4-15
ADSP-21161 processors, 5-5, 5-6, 5-7, 5-9,

5-10
DMAC6 channel (ADSP-2106x/160

processors), 4-2, 4-3, 4-8, 4-9, 4-12, 4-15
DMAC8 channels

ADSP-2106x/160 processors, 4-2, 4-3, 4-12,
4-15

ADSP-21161 processors, 5-2, 5-12, 5-13,
5-14, 5-15

DMA differences (SHARC processors), 5-6,
5-10, 5-13

DMA (TigerSHARC processors)
controller, 7-2
register, 7-2
transfers, 7-2, 7-3

-dmawidth #, loader switch for Blackfin, 2-11,
3-60

DMISO bit, 6-9, 6-11
.doj (object) files, A-5
DTYPE register, 4-12, 5-7, 5-11
dual-core architectures, See ADSP-BF561

processors
DWARF-2 debugging information, 1-8
.dxe (executable) files, 1-16, 2-9, 3-58, 4-27,

6-47, 7-8, A-5, A-15

E
EBOOT pins

ADSP-2106x/160 processors, 4-5, 4-7, 4-11,
4-15

ADSP-21161 processors, 5-4, 5-5, 5-6, 5-9,
5-13, 5-15, 5-22

ECEP0 register, 4-8, 5-7, 5-8, 5-9, 5-11
ECPP register, 6-7

ECx register, 4-8, 4-10, 4-12
-e filename, loader switch for ADSP-2106x/160

processors, 4-28
-efilename, loader switch for SHARC, 5-27
EIEP0 register, 4-8, 5-8, 5-11
EIPP register, 6-7
EIx register, 4-8, 4-12
elf2flt utility, B-3
elfloader, See loader
ELF to BFLT file converter, B-3
EMEP0 register, 4-8, 5-8, 5-11
EMPP register, 6-7
EMx register, 4-8, 4-12
-enc dll_filename, loader switch for Blackfin,

3-60
encryption functions, 3-60, 3-62, 3-66
end-of-file records, A-8
EP0I vector, 4-13, 5-9, 5-12
EPB0 buffer, 4-11, 4-12
EPROM boot mode (SHARC processors)

ADSP-2106x/160 processors, 4-2, 4-5, 4-7,
4-9, 4-11, 4-23, 4-24

ADSP-21161 processors, 5-2, 5-4, 5-5
multiprocessor systems, 5-21, 5-22

EPROM/flash boot mode (TigerSHARC
processors), 7-2, 7-3, 7-10

EPROM flash memory devices, 1-13
executable and linkable format (ELF)

executable files (.dxe), 1-2, 1-8, 1-11, A-5
object files (.doj), A-5
reference information, A-16
to binary flat format (BFLT) converter, B-3

external
memory boot, 1-10
resistors, 4-7, 7-3
vector tables, 4-22

external bus interface unit (EBIU), 3-35

VisualDSP++ 5.0 Loader and Utilities Manual I-7

Index

external memory (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-3,

3-4, 3-46
ADSP-BF535 processors, 3-21, 3-24, 3-25,

3-35
ADSP-BF561 processors, 3-43, 3-46
multiprocessor support, 3-46

external memory (SHARC processors)
ADSP-2106x/160 processors, 4-5, 4-6, 4-9,

4-10, 4-14, 4-16, 4-20, 4-22, 4-31
ADSP-21161 processors, 5-4, 5-16, 5-21,

5-30
ADSP-2126x/36x/37x/46x processors, 6-7,

6-25
ADSP-2126x/36x/37x processors), 6-28

external ports (SHARC processors)
ADSP-2106x/160 processors, 4-5, 4-7, 4-9,

4-11, 4-13, 4-14, 4-15, 4-19, 4-24
ADSP-21161 processors, 5-4, 5-5, 5-6, 5-7,

5-8, 5-9, 5-10, 5-12, 5-22
external ports (TigerSHARC processors), 7-2
external vector tables, 5-21
EZ-KIT Lite board targets, 1-9

F
-f h|s1|s2|s3|b, splitter switch, 8-7
-f hex|ascii|binary|include, loader switch for

Blackfin, 2-11, 3-60
-fhex|ascii|binary|include|s1|s2|s3, loader switch

for SHARC, 4-29, 5-27, 6-49
-fhex|ascii|binary|s1|s2|s3, loader switch for

TigerSHARC, 7-9

file formats
list of, 2-9, 3-58
ASCII, 2-11, 3-60, 7-9, A-14
binary, 2-11, 3-60, 7-9
build files, A-4
byte-stacked (.stk), 8-5, 8-7, 8-8
debugger input files, A-15
hexadecimal (Intel hex-32), 2-11, 3-60, 7-9,

8-5, 8-7
include, 2-11, 3-60, 7-9
reference information, A-16
s-record (Motorola), 7-9, 8-5, 8-7

file formatting
selecting for output, 2-15, 3-62
specifying word width, 3-67

file search rules, 1-17
-FillBlock, loader switch for Blackfin, 2-5, 2-11
final blocks

See also last blocks (Blackfin processors)
introduction to, 1-15
SHARC processors, 4-19, 6-21, 6-31

FLAG pins, ADSP-2106x/160 processors, 4-24
flag words (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-11
ADSP-BF535 processors, 3-34
ADSP-BF561 processors, 3-40, 3-43

flash memory
See also PROM/flash boot mode
ADSP-BF51x processors, 2-3
ADSP-BF52x/54x processors, 2-4
devices, 1-8
hold-time cycle selection, 2-23, 3-61, 3-72

FLG0 signal, 6-10, 6-12
fltdump utility, B-4
frequency, 4-15, 5-13

G
-ghc #, loader switch for Blackfin, 3-60
global header cookies (Blackfin processors),

3-60

Index

I-8 VisualDSP++ 5.0 Loader and Utilities Manual

global headers (Blackfin processors)
ADSP-BF535 processors, 3-32, 3-33
ADSP-BF561 processors, 3-39

GPEP0 register, 5-8, 5-11
GPLB0 register, 5-14
GPSRX register, 5-16

H
-h|help

loader switch for Blackfin, 2-11, 3-60
loader switch for SHARC, 4-29, 5-28, 6-49
loader switch for TigerSHARC, 7-9

HBG pin, 4-13
HBR pin, 5-11
HBW bits, 4-11
header files (.h), A-3

See also global headers
header records

byte-stacked format (.stk), A-13
s-record format (.s_#), A-10

hexadecimal format, See .h_# (Intel hex-32) file
format

hexutil utility, B-2
.h_# (Intel hex-32) file format, 7-9, 8-5, 8-7,

A-6, A-12
-HoldTime #, loader switch for Blackfin, 3-61
hold time cycles, 3-24, 3-39
host boot mode, introduction to, 1-14
host boot mode (SHARC processors)

ADSP-2106x/160 processors, 4-2, 4-6, 4-11,
4-13, 4-24

ADSP-21161 processors, 5-2, 5-9
ADSP-2126x/36x/37x/46x processors, 6-8,

6-11, 6-18
host boot mode (TigerSHARC processors), 7-2,

7-4, 7-9
host DMA boot mode, ADSP-BF52x/54x

processors, 2-4
-hostwidth #, loader switch for SHARC, 5-28,

6-16, 6-29, 6-49

HPM bit, 4-12

I
ICPP register, 6-7
-id#exe=filename

loader switch for SHARC, 4-24, 4-29, 5-23,
5-28, 6-49

loader switch for TigerSHARC, 7-6, 7-9
-id#exe=N, loader switch for SHARC, 5-28
IDLE instruction, 4-4, 4-14, 4-19, 4-20, 5-6,

5-10, 5-13, 5-15, 6-25
idle state, 3-39, 7-3
-id#ref=N, loader switch for SHARC, 4-29,

6-50
ignore blocks (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-12
ADSP-BF561 processors, 3-40

IIEP0 register, 4-8, 5-7, 5-11
IILB0 register, 5-14
IIPP register, 6-6
IISPI register, 6-10, 6-12
IISRX register, 5-16
IIVT bit, 4-22, 5-21, 6-25
IIx register, 4-8, 4-15
image files, See PROM, non-bootable files
IMASK register, 4-13, 4-14, 4-16
IMDW register, 4-14, 6-33
IMEP0 register, 4-8, 5-7, 5-11
IMLB0 register, 5-14
IMPP register, 6-7
IMSPI register, 6-10, 6-12
IMSRX register, 5-16
IMx register, 4-8
include file format, 7-9, A-8
-initcall, ADSP-BF52x/54x Blackfin loader

switch, 2-13, 2-21
-init filename, loader switch for Blackfin, 2-12,

2-17, 2-20, 3-12, 3-48, 3-55, 3-61, 3-65

VisualDSP++ 5.0 Loader and Utilities Manual I-9

Index

initialization
external memory, 7-10
file inclusion, 2-12, 2-23, 3-61, 3-72

initialization blocks
(ADSP-2126x/36x/37x/46x processors),
6-27, 6-29, 6-30, 6-31, 6-33

initialization blocks (Blackfin processors), 2-20
ADSP-BF531/2/3/4/6/7/8/9 processors,

3-12, 3-13, 3-48
ADSP-BF561 processors, 3-43, 3-44, 3-48
code example, 3-14, 3-48

initialization calls, 2-13
initial word option (SHARC processors), 6-15,

6-16
INIT_L16 blocks, 6-30
INIT_L48 blocks, 6-29
INIT_L64 blocks, 6-31
input file formats, See source file formats
input files

executable (.dxe) files, 2-9, 3-58, 4-26, 5-24,
6-46, 7-8

extracting memory sections from, 8-6, 8-7
in multiprocessor systems, 7-6

instruction SRAM (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-19
ADSP-BF535 processors, 3-34
ADSP-BF561 processors, 3-44, 3-45

Intel hex-32 file format, 2-6, 2-11, 3-60, 7-9,
A-6

internal boot mode (SHARC processors), 6-20
internal memory, boot-loadable file execution,

1-10
internal vector tables, 4-22, 5-21
interrupt vector location, 5-9, 5-12
interrupt vector tables, 4-22, 5-21, 6-20, 6-21,

6-25, 6-32, 6-33
IOP registers, 4-12, 4-13

IRQ vector, 4-8
IVG15 lowest priority interrupt, 3-7, 3-12,

3-23, 3-38

K
-kb prom|flash|spi|spislave|UART|TWI|FIFO,

loader switch for Blackfin, 3-61
-kb

prom|flash|spi|spislave|uart|twi|fifo|otp|na
nd, loader switch for Blackfin, 2-14

-kenc dll_filename, loader switch for Blackfin,
3-62

Kernel (Load) page (Blackfin processors), 2-24,
3-74

kernels (ADSP-2106x/160 processors)
boot sequence, 4-3, 4-16
default source files, 4-17, 4-21
loading to processor, 4-10, 4-13
modifying, 4-20
rebuilding, 4-22
replacing with application code, 4-19
specifying user kernel, 4-30

kernels (ADSP-21161 processors)
boot sequence, 5-3
default source files, 5-16, 5-19
modifying, 5-18, 5-19
rebuilding, 5-18, 5-19

kernels (ADSP-2126x/36x/37x/46x processors)
boot sequence, 6-4, 6-22
compression/decompression, 6-38, 6-39,

6-43, 6-44
default source files, 6-22
loading to processor, 6-9, 6-14
modifying, 6-23, 6-24
omitting in output, 6-20
rebuilding, 6-23, 6-24

Index

I-10 VisualDSP++ 5.0 Loader and Utilities Manual

kernels (Blackfin processors)
See also second-stage loader
compression/decompression, 3-50, 3-55
graphical user interface, 2-24, 3-74
omitting in output, 3-64
specifying boot mode, 2-14, 2-23, 3-61, 3-71
specifying file format, 2-15, 3-62
specifying file width, 2-23, 3-62, 3-71
specifying hex address, 2-15, 3-62
specifying hold time, 2-23, 3-72
specifying kernel and app files, 2-26, 3-75
specifying user kernel, 2-15, 3-63

kernels (TigerSHARC processors)
modifying, 7-4
omitting in output, 7-4, 7-10
source files, 7-4
specifying user kernel, 7-10

-kf hex|ascii|binary|include, loader switch for
Blackfin, 2-15, 3-62

.knl (kernel code) files, 2-9, 3-58
-kp #, loader switch for Blackfin, 2-15, 2-17,

3-62, 3-65
-kWidth #, loader switch for Blackfin, 2-15,

3-62

L
L1 memory (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-7,
3-12, 3-19

ADSP-BF535 processors, 3-24, 3-34, 3-35
ADSP-BF561 processors, 3-38, 3-45

L2 memory (Blackfin processors)
ADSP-BF535 processors, 3-23, 3-24, 3-34,

3-35
ADSP-BF561 processors, 3-44, 3-45

last blocks (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors,

3-12, 3-14
ADSP-BF561 processors, 3-40

LBOOT pins
ADSP-2106x/161 processors, 4-5, 4-7, 4-11
ADSP-21161 processors, 5-4, 5-5, 5-6, 5-9,

5-13, 5-15
LCOM register, 4-15
LCTL register, 4-15, 4-19, 5-14
.ldr (loader output) files

ASCII format, A-4, A-14
binary format, A-10
hex-32 format, A-6
include format files, A-8
naming, 2-17, 3-64, 7-10
specifying host bus width, 5-28, 6-49

least significant bit first (LSB) format, 6-12
library files (.dlb), A-5
link buffers, 4-15, 5-12, 5-13
linker

command-line files (.txt), A-4
description file (LDF) See .ldf files
memory map files (.map), A-6
output files (.dxe, .sm, .ovl), 1-8, A-5

linking, introduction to, 1-8
link port boot mode

ADSP-2146x SHARC processors, 6-48
TigerSHARC processors, 7-9

link port boot mode (SHARC processors)
ADSP-2106x/160 processors, 4-2, 4-5, 4-15
ADSP-21161 processors, 5-2, 5-4, 5-12

link port boot mode (TigerSHARC processors),
7-2

loadable files, See boot-loadable files
loader

operations, 1-11
output file formats, 1-11, 1-16, A-6, A-8,

A-10
setting options, 2-22, 3-70, 4-31, 5-31, 6-53,

7-12, 8-9

VisualDSP++ 5.0 Loader and Utilities Manual I-11

Index

loader file formats (ADSP-BF535 processors)
PROM/flash boot with kernel, 3-31
PROM/flash boot without kernel, 3-29
PROM/flash/SPI boot with kernel, 3-28,

3-30
loader for ADSP-2106x/21160 processors, 4-1
loader for ADSP-21161 processors, 5-1
loader for ADSP-2126x/36x/37x/469

processors, 6-1
loader for ADSP-BF51x/52x/54x Blackfin

(includes splitter), 2-1
loader for ADSP-BF53x/BF561 Blackfin

(includes splitter), 3-1
loader for Blackfin (includes splitter)

command-line syntax, 2-8, 2-9, 3-57, 3-59
default settings, 2-22, 3-70
graphical user interface, 2-22, 3-70
list of switches, 2-5, 2-10, 3-59

loader for TigerSHARC
command-line syntax, 7-5
graphical user interface, 7-12
list of switches, 7-9
operations, 7-1

loader kernels, See boot kernels
loader output, See output files
loader switches, See switches by name
loading, introduction to, 1-9
Load page

Blackfin processors, 2-22, 3-70
SHARC processors, 4-31, 5-31, 6-53
TigerSHARC processors, 7-12

Load (Splitter) page (Blackfin processors), 2-26,
3-76

-l userkernel
loader switch for Blackfin, 2-15, 3-47, 3-63
loader switch for SHARC, 4-30, 5-29, 6-23,

6-44, 6-50
loader switch for TigerSHARC, 7-9, 7-10

M
-M, loader switch for Blackfin, 2-15, 2-16, 3-63
make files, 2-15, 2-16, 3-63
.map (memory map) files, A-6
-maskaddr #, loader switch for Blackfin, 2-16,

3-63
masking EPROM address bits, 2-16, 3-63
master (host) boot, introduction to, 1-10
-MaxBlockSize #, loader switch for Blackfin,

2-16, 3-63
-MaxFillBlockSize #, loader switch for Blackfin,

2-16
-MaxZeroFillBlockSize #, loader switch for

Blackfin, 3-63
memory map files (.map), A-6
memory ranges (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-19
ADSP-BF535 processors, 3-34
ADSP-BF561 processors, 3-45

microcontroller data transfers, A-12
-MM, loader switch for Blackfin, 2-16, 3-63
MODE1 register, 4-13
MODE2 register, 4-13, 4-14
-Mo filename, loader switch for Blackfin, 2-16,

3-63
most significant bit first (MSB) format, 6-12
Motorola S-record file format, 7-9, A-10
MSBF bit, 6-9, 6-11
MS bit, 6-9, 6-11
MSWF register, 5-7, 5-11
-Mt filename, loader switch for Blackfin, 2-16,

3-63
Multi, 2-20
multiprocessor booting, introduction to, 1-10
multiprocessor systems (Blackfin processors),

2-20, 3-47
See also dual-core systems

Index

I-12 VisualDSP++ 5.0 Loader and Utilities Manual

multiprocessor systems (SHARC processors)
ADSP-2106x/21160 processors, 4-23, 4-24
ADSP-21161 processors, 5-6, 5-21, 5-22,

5-23
ADSP-2136x/37x processors, 6-36

multiprocessor systems (TigerSHARC
processors), 7-5, 7-9

N
NAND flash boot mode, ADSP-BF52x/54x

processors, 2-4
-no2kernel, loader switch for Blackfin, 3-64
no-boot mode

introduction to, 1-10, 1-13
See also internal boot mode
selecting with -romsplitter switch, 2-18, 3-66

no-boot mode (Blackfin processors)
ADSP-BF50x processors, 2-3
ADSP-BF51x processors, 2-3
ADSP-BF52x/54x processors, 2-4
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-4
ADSP-BF535 processors, 3-21
ADSP-BF561 processors, 3-38
selecting, 2-23, 3-16, 3-77

no-boot mode (SHARC processors)
ADSP-2106x/160 processors, 4-2, 4-6, 4-16
ADSP-21161 processors, 5-2, 5-4, 5-16

-NoFillBlock, loader switch for Blackfin, 2-5,
2-16

-nofinalblock, loader switch for Blackfin, 3-64
-nofinaltag, loader switch for Blackfin, 3-64
-noinitcode, loader switch for Blackfin, 2-16,

3-64
-nokernel

loader switch for ADSP-2126x/36x/37x/46x
processors, 6-50

loader switch for Blackfin, 3-65
loader switch for SHARC, 6-20
loader switch for TigerSHARC, 7-4, 7-10

non-bootable files
introduction to, 1-9, 1-10, 1-15
creating from command line, 8-2
creating from IDDE, 8-9
ignoring ROM sections, 8-6
specifying format, 8-7
specifying name, 8-6
specifying word width, 8-4, 8-7

NOP instruction, 4-4, 4-14, 4-19, 4-20, 5-6,
5-10, 5-13, 5-15, 6-25

-norom, splitter switch, 8-6
-nosecondstageloader, loader switch for

Blackfin, 3-64
-nozeroblock, loader switch for SHARC, 5-29,

6-51
numeric formats, A-3

O
-o2, loader switch for Blackfin, 2-14, 2-15,

2-17, 3-61, 3-62, 3-65
object files (.doj), A-5
-o filename

loader switch for Blackfin, 2-17, 3-64
loader switch for SHARC, 4-30, 5-29, 6-50
loader switch for TigerSHARC, 7-10
splitter switch, 8-6

on-chip boot ROM
introduction to, 1-14
ADSP-BF531/2/3/4/6/7/8/9 processors,

1-15, 3-3, 3-7, 3-9, 3-12, 3-19, 3-48
ADSP-BF535 processors, 3-21, 3-23, 3-25
ADSP-BF561 processors, 3-36, 3-38, 3-43,

3-44, 3-45, 3-48
OTP boot mode, ADSP-BF51x processors, 2-4
OTP boot mode, ADSP-BF52x/54x processors,

2-4

VisualDSP++ 5.0 Loader and Utilities Manual I-13

Index

output files
See also -o loader switch
generating kernel and application, 2-17, 3-65
specifying format, 1-12, A-5
specifying name, 2-17, 3-64, 7-10
specifying with -o switch, B-2
specifying word width, 3-67, 5-28

overlay compression, 6-42
overlay memory files (.ovl), 2-9, 3-58, 7-8, A-5,

A-15

P
-p #

loader switch for Blackfin, 2-17, 3-65
loader switch for TigerSHARC, 7-10

packing boot data, 5-2, 7-2
-paddress, loader switch for SHARC, 4-30,

5-29, 6-51
parallel ports, 6-6
parallel/serial PROM devices, 1-14
-pflag #|PF|PG|PH #, loader switch for Blackfin,

2-23, 3-65, 3-67, 3-68, 3-69, 3-72
PFx signals, 3-65
placement rules, of the command-line, 2-8,

3-58, 7-6
PMODE register, 4-9, 4-12, 5-7, 5-11
-pm splitter switch, 8-6
PP16 bit, 6-6
PPALEPL bit, 6-6
PPBHC bit, 6-6
PPBHD bit, 6-6
PPCTL register, 6-6
PPDEN bit, 6-6
PPDUR bit, 6-6
PPEN bit, 6-6
PPTRAN bit, 6-6
processor IDs, 4-23, 4-24, 5-22, 5-23, 7-6, 7-9

assigning to .dxe file, 4-29, 5-28, 6-49
pointing to jump table, 4-29, 5-28

processor-loadable files, introduction to, 1-13

processor type bits (Blackfin boot streams), 3-11
-proc part_number

loader switch for Blackfin, 2-17, 3-65
loader switch for SHARC, 4-30, 5-29, 6-51
loader switch for TigerSHARC, 7-9, 7-10
splitter switch, 8-8

program counter settings (ADSP-2106x/160
processors), 4-12

program development flow, 1-7
program memory sections (splitter), 8-3, 8-6
Project Options dialog box, 1-12, 2-5, 2-7,

2-22, 2-23, 3-56, 3-70, 3-71, 6-23, 7-4,
7-5

PROM
boot mode, introduction to, 1-14
downloading boot-loadable files, 1-9
memory devices, 6-17, A-6

PROM boot mode, ADSP-2126x/36x/37x/46x
processors, 6-6, 6-24, 6-32

PROM boot mode, TigerSHARC processors,
7-4, 7-9

PROM/flash boot mode (Blackfin processors)
ADSP-535 processors, 3-61
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-4,

3-48
ADSP-BF535 processors, 3-21, 3-28, 3-29,

3-30, 3-31, 3-35
ADSP-BF561 processors, 3-43, 3-48

PROM (image) files
creating from command line, 8-2
creating from GUI, 8-9
ignoring ROM sections, 8-6
specifying format, 8-7
specifying name, 8-6
specifying width, 8-7

pull-up resistors, 5-7
Px register, 4-19, 6-33

Q
-quickboot, loader switch for Blackfin, 2-17

Index

I-14 VisualDSP++ 5.0 Loader and Utilities Manual

R
-r #, splitter switch, 8-7
-ram, splitter switch, 8-6, 8-7
RBAM bit, 5-7
RBWS bit, 5-7
RD pin, 4-10, 5-8
-readall, loader switch for Blackfin, 2-18
references, file formats, A-16
RESET

interrupt service routine, 3-7, 3-23, 3-38,
5-12

pin, 4-9, 5-8, 5-11, 7-3
reset

processor, introduction to, 1-14, 1-15
ADSP-2106x/160 processors, 4-3, 4-7, 4-10,

4-11, 4-12, 4-16
ADSP-21161 processors, 5-3, 5-6, 5-7, 5-9,

5-10, 5-13, 5-15
ADSP-2126x/36x/37x/46x processors, 6-3,

6-6, 6-10, 6-11, 6-20, 6-23
ADSP-BF561 processors, 3-16, 3-36, 3-38,

3-77
Blackfin processors, 2-2, 3-2, 3-3, 3-21, 3-25
dual-core Blackfin processors, 3-36
TigerSHARC processors, 7-2, 7-3, 7-4
vector addresses, 4-4, 4-9, 4-14, 5-20, 6-25
vector routine, 3-18, 3-79, 5-9

resistors (pull-up), 7-3
restrictions, second-stage loader, 3-35
-retainSecondStageKernel, loader switch for

SHARC, 6-51
ROM

memory images as ASCII text files, A-14
memory sections, 8-6
setting splitter options (Blackfin processors),

2-26, 3-76
splitter, See splitter

-romsplitter, loader switch for Blackfin, 2-16,
2-18, 3-63, 3-66

Rx registers, 3-43, 3-48, 4-13

RXSPI register, 6-8
RXSR register, 6-8
RXx registers, 6-10

S
s1 (Motorola EXORciser) file format, 7-9, 8-7,

A-10
s2 (Motorola EXORMAX) file format, 7-9, 8-7,

A-10
s3 (Motorola 32-bit) file format, 7-9, 8-7, A-10
-save section, loader switch for Blackfin, 2-18
scratchpad memory (Blackfin processors)

ADSP-BF535 processors, 3-34
ADSP-BF561 processors, 3-46

SDCTL register, 5-18, 6-24
SDRAM/DDR boot mode, ADSP-BF52x/54x

processors, 2-4
SDRAM memory (ADSP-2106x/160

processors), 4-17
SDRAM memory (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors,
3-12, 3-15, 3-20

ADSP-BF535 processors, 3-24, 3-34, 3-35
ADSP-BF561 processors, 3-43, 3-45

SDRDIV register, 5-18, 6-24
second-stage loader

ADSP-BF535 processors, 1-15, 3-24, 3-27,
3-33, 3-34, 3-35

ADSP-BF561 processors, 3-43, 3-44
creating from VisualDSP++, 2-25, 3-75
setting options, 2-23, 3-71, 3-73
source files (ADSP-BF535 processors), 3-75

SENDZ bit, 6-9, 6-11
sequential EPROM boot, 5-22
shared memory

Blackfin processors, 3-44, 3-45
file format (.sm), 2-9, 3-44, 3-58, 7-8, A-5,

A-15
in compressed .ldr files, 6-39, 6-42
omitting from loader file, 4-28, 5-27

VisualDSP++ 5.0 Loader and Utilities Manual I-15

Index

shift register, See RX registers
-ShowEncryptionMessage, loader switch for

Blackfin, 3-66
silicon revision, setting, 2-19, 3-66, 4-30, 5-30,

6-52, 7-11, 8-8
simulators, for boot simulation, 1-9
single-processor systems, 4-24, 5-23, 7-5, 7-9,

8-2
-si-revision #|none|any

loader switch for Blackfin, 2-19, 3-66
loader switch for SHARC, 4-30, 5-30, 6-52
loader switch for TigerSHARC, 7-11
splitter switch, 8-8

slave processors, 1-10, 1-14, 6-10
.s_# (Motorola S-record) files, 8-5, A-10
.sm (shared memory) files, 2-9, 3-58, 4-28,

5-27, 7-8, A-5, A-15
software reset, 1-13, 3-7, 3-23, 3-38
source file formats

assembly text (.asm), A-2
C/C++ text (.c, .cpp, .cxx), A-2

SPIBAUD register, 6-12
SPI boot modes (SHARC processors)

ADSP-21161 processors, 5-2, 5-4, 5-14
ADSP-2126x/36x/37x/46x processors, 6-8,

6-14, 6-24, 6-32
SPICLK register, 6-9, 6-10, 6-13, 6-18
SPICTL register, 5-15, 6-10, 6-12
SPIDMAC register, 6-10, 6-12
SPIDS signal, 6-9
SPI EEPROM boot mode (Blackfin processors)

ADSP-BF535 processors, 3-21, 3-24, 3-28,
3-30

ADSP-BF561 processors, 3-43
SPIEN bit, 6-9, 6-11
SPI_FLAG0_O signal, 6-10, 6-12
SPI flash boot mode

(ADSP-2126x/2136x/2137x/21469
processors), 6-17

SPIFLG register, 6-12

SPI host boot mode
(ADSP-2126x/36x/37x/46x processors),
6-18

SPI master boot modes
ADSP-2126x/36x/37x/46x processors, 6-8,

6-10, 6-14, 6-15
ADSP-2126x/36x/37x processors, 6-21
ADSP-BF51x processors, 2-4
ADSP-BF52x/54x processors, 2-4
ADSP-BF531/2/3/8/9 processors, 3-4
ADSP-BF534/6/7 processors, 2-4, 3-4
See also SPI flash, SPI ROM, host processor

master boot modes
SPI memory slave devices, 6-12
SPI PROM boot mode

(ADSP-2126x/36x/37x/46x processors),
6-14, 6-15, 6-17

SPIRCV bit, 6-9, 6-11
SPIRx register, 5-2, 5-14, 5-15
SPI slave boot mode

(ADSP-2126x/2136x/2137x/21469
processors), 6-9

SPI slave boot mode
(ADSP-2126x/36x/37x/46x processors),
6-8, 6-14

SPI slave boot mode (Blackfin processors)
ADSP-BF51x processors, 2-4
ADSP-BF52x/54x processors, 2-4
ADSP-BF531/2/3/8/9 processors, 3-4
ADSP-BF534/6/7 processors, 3-4

Split page, 8-9
splitter

introduction to, 1-9, 1-10, 1-12, 1-14
as ROM splitter on Blackfin processors, 2-23,

3-71
command-line syntax, 8-2
file extensions, 8-5
graphical user interface, 8-9
list of switches, 8-6
output file formats, A-10, A-12, A-14

Index

I-16 VisualDSP++ 5.0 Loader and Utilities Manual

SPORT hex data files, A-15
SRAM memory (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-19
ADSP-BF535 processors, 3-34
ADSP-BF561 processors, 3-38, 3-45

-s section_name, splitter switch, 8-7
start addresses

ADSP-2106x/160 application code, 4-4
Blackfin application code, 2-17, 2-23, 3-65,

3-72
status information, 2-19, 2-23, 3-66, 3-72
.stk (byte-stacked) files, 8-5, 8-7, 8-8, A-12
streams, See boot streams
supervisor mode (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-7
ADSP-BF535 processors, 3-23
ADSP-BF561 processors, 3-38

synchronous boot operations, 4-13
SYSCON register (SHARC processors)

ADSP-2106x/160 processors, 4-10, 4-12,
4-20, 4-22

ADSP-21161 processors, 5-18, 5-21
ADSP-2126x/36x/37x/46x processors, 6-24,

6-25
SYSCR register (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-8
ADSP-BF561 processors, 3-38, 3-39

SYSCTL register, 6-34
SYSTAT register, 4-24
system reset configuration register, See SYSCR

register

T
-t#

loader switch for SHARC, 4-31, 5-30
loader switch for TigerSHARC, 7-10

termination records, A-11
text files, A-4, A-14
TigerSHARC processors, boot modes, 7-2, 7-3,

7-9

timeout cycles (TigerSHARC processors), 7-10
two-wire interface (TWI) boot mode

ADSP-BF2x/54x processors, 2-4
ADSP-BF534/6/7 processors, 3-4, 3-12

.txt (ASCII text) files, A-4

U
-u, splitter switch, 8-8
UART slave boot mode (Blackfin processors),

2-4, 3-4
UBWM register, 4-11
uncompressed streams, 3-53, 6-42
-use32bitTagsforExternal Memory Blocks,

loader switch for SHARC, 4-31
utility programs, B-1

V
.VAR directive, A-3
vector addresses, 4-20, 5-20
-version

loader switch for SHARC, 4-31, 5-30, 6-52
loader switch for TigerSHARC, 7-11
splitter switch, 8-8

-v (verbose)
loader switch for Blackfin, 2-19, 3-66
loader switch for SHARC, 4-31, 5-30, 6-52
loader switch for TigerSHARC, 7-10

W
WAIT register, 4-9, 4-11, 4-17, 4-20, 5-7, 5-18,

6-24
-waits #, loader switch for Blackfin, 3-66
wait states, 2-23, 3-24, 3-66, 3-71, 4-10, 4-15,

5-7, 5-8
-width #, loader switch for Blackfin, 2-19, 3-62,

3-67
WIDTH() command, 6-7
WL bit, 6-9, 6-11

VisualDSP++ 5.0 Loader and Utilities Manual I-17

Index

word width, setting for loader output file, 5-28,
6-49

Z
zero-fill blocks (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors,
3-11, 3-63

ADSP-BF561 processors, 3-40

zero-fill blocks (SHARC processors)
ADSP-2106x/160 processors, 4-19
ADSP-2126x/36x/37x processors, 6-28

zero-padding (ADSP-2126x/36x/37x/46x
processors), 6-29, 6-30

-zeroPadForced #, loader switch for Blackfin,
3-67

	Loader and Utilities Manual
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	VisualDSP++ Online Documentation
	Technical Library CD
	EngineerZone
	Social Networking Web Sites

	Notation Conventions

	1 Introduction
	Definition of Terms
	Program Development Flow
	Compiling and Assembling
	Linking
	Loading, Splitting, or Both
	Non-bootable Files Versus Boot-loadable Files
	Loader Utility Operations
	Splitter Utility Operations

	Boot Modes
	No-Boot Mode
	PROM Boot Mode
	Host Boot Mode

	Boot Kernels
	Boot Streams
	File Searches

	2 Loader/Splitter for ADSP-BF50x/BF51x/BF52x/ BF54x/BF59x Blackfin Processors
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide
	Using Blackfin Loader Command Line
	File Searches
	File Extensions
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Loader Command-Line Switches
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader Files

	Using VisualDSP++ Loader
	Using VisualDSP++ Second-Stage Loader
	Using VisualDSP++ ROM Splitter

	3 Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors
	ADSP-BF53x/BF561 Processor Booting
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ BF538/BF539 Processor Booting
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor On-Chip Boot ROM
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processor Boot Streams
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Block Headers and Flags
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Initialization Blocks

	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 and ADSP-BF535 Processor No-Boot Mode
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processor Memory Ranges

	ADSP-BF535 Processor Booting
	ADSP-BF535 Processor On-Chip Boot ROM
	ADSP-BF535 Processor Second-Stage Loader
	ADSP-BF535 Processor Boot Streams
	Loader Files Without a Second-Stage Loader
	Loader Files With a Second-Stage Loader
	Global Headers
	Block Headers and Flags

	ADSP-BF535 Processor Memory Ranges
	Second-Stage Loader Restrictions

	ADSP-BF561 Processor Booting
	ADSP-BF561 Processor On-Chip Boot ROM
	ADSP-BF561 Processor Boot Streams
	ADSP-BF561 Processor Initialization Blocks
	ADSP-BF561 Dual-Core Application Management
	ADSP-BF561 Processor Memory Ranges

	ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support
	Compressed Streams
	Compressed Block Headers
	Uncompressed Streams
	Booting Compressed Streams
	Decompression Initialization Files

	ADSP-BF53x/BF561 Processor Loader Guide
	Using Blackfin Loader Command Line
	File Searches
	File Extensions
	Blackfin Loader Command-Line Switches

	Using VisualDSP++ Loader
	Using VisualDSP++ Compression
	Using VisualDSP++ Second-Stage Loader for ADSP-BF535 Processors
	Using VisualDSP++ ROM Splitter
	ADSP-BF535 and ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539 Processor No-Boot Mode

	4 Loader for ADSP-2106x/21160 SHARC Processors
	ADSP-2106x/21160 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	ADSP-2106x/21160 Boot Modes
	EPROM Boot Mode
	Host Boot Mode
	Link Port Boot Mode
	No-Boot Mode

	ADSP-2106x/21160 Boot Kernels
	ADSP-2106x/21160 Processor Boot Steams
	Boot Kernel Modification and Loader Issues

	ADSP-2106x/21160 Interrupt Vector Table
	ADSP-2106x/21160 Multi-Application (Multi-DXE) Management
	ADSP-2106x/21160 Processor ID Numbers

	ADSP-2106x/21160 Processor Loader Guide
	Using ADSP-2106x/21160 Loader Command Line
	File Searches
	File Extensions
	ADSP-2106x/21160 Loader Command-Line Switches

	Using VisualDSP++ Interface (Load Page)

	5 Loader for ADSP-21161 SHARC Processors
	ADSP-21161 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	ADSP-21161 Processor Boot Modes
	EPROM Boot Mode
	Host Boot Mode
	Link Port Boot Mode
	SPI Port Boot Mode
	No-Boot Mode

	ADSP-21161 Processor Boot Kernels
	ADSP-21161 Processor Boot Streams
	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues

	ADSP-21161 Processor Interrupt Vector Table
	ADSP-21161 Multi-Application (Multi-DXE) Management
	Boot From a Single EPROM
	Sequential EPROM Boot
	Processor ID Numbers

	ADSP-21161 Processor Loader Guide
	Using ADSP-21161 Loader Command Line
	File Searches
	File Extensions
	Loader Command-Line Switches

	Using VisualDSP++ Interface (Load Page)

	6 Loader for ADSP-2126x/2136x/2137x/ 2146x/2147x/2148x SHARC Processors
	ADSP-2126x/2136x/2137x/2146x/2147x/ 2148x Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors Boot Modes
	PROM Boot Mode
	Packing Options for External Memory
	Packing and Padding Details

	SPI Port Boot Modes
	SPI Slave Boot Mode
	SPI Master Boot Modes
	Bit-Reverse Option for SPI Boot Modes
	Initial Word Option for SPI Master Boot Modes

	Booting From an SPI Flash
	Booting From an SPI PROM (16-bit address)
	Booting From an SPI Host Processor

	Link Port Boot Mode
	Internal Boot Mode

	ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors Boot Kernels
	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues

	ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processors Interrupt Vector Table
	ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor Boot Streams
	ADSP-2126x/2136x/2137x/2146x/2147x/2148x Processor Block Tags
	INIT_L48 Blocks
	INIT_L16 Blocks
	INIT_L64 Blocks
	FINAL_INIT Blocks

	ADSP-2136x/2137x/2146x/2147x/2148x Multi-Application (Multi-DXE) Management
	ADSP-2126x/2136x/2137x Processors Compression Support
	Compressed Streams
	Compressed Block Headers
	Uncompressed Streams
	Overlay Compression
	Booting Compressed Streams
	Decompression Kernel File

	ADSP-2126x/2136x/2137x/2146x/2147x/ 2148x Processor Loader Guide
	Using Blackfin/2137x/2146x/2147x/2148x Loader Command Line
	File Searches
	File Extensions
	Loader Command-Line Switches

	Using VisualDSP++ Interface (Load Page)

	7 Loader for TigerSHARC Processors
	TigerSHARC Processor Booting
	Boot Type Selection
	TigerSHARC Processor Boot Kernels
	Boot Kernel Modification

	TigerSHARC Loader Guide
	Using TigerSHARC Loader Command Line
	File Searches
	File Extensions
	TigerSHARC Command-Line Switches

	Using VisualDSP++ Interface (Load Page)

	8 Splitter for SHARC and TigerSHARC Processors
	Splitter Command Line
	File Searches
	Output File Extensions
	Splitter Command-Line Switches

	VisualDSP++ Interface (Split Page)

	A File Formats
	Source Files
	C/C++ Source Files
	Assembly Source Files
	Assembly Initialization Data Files
	Header Files
	Linker Description Files
	Linker Command-Line Files

	Build Files
	Assembler Object Files
	Library Files
	Linker Output Files
	Memory Map Files
	Loader Output Files in Intel Hex-32 Format
	Loader Output Files in Include Format
	Loader Output Files in Binary Format
	Output Files in Motorola S-Record Format
	Splitter Output Files in Intel Hex-32 Format
	Splitter Output Files in Byte-Stacked Format
	Splitter Output Files in ASCII Format

	Debugger Files
	Format References

	B Utilities
	hexutil – Hex-32 to S-Record File Converter
	elf2flt – ELF to BFLT File Converter
	fltdump – BFLT File Dumper

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

