
a

W 5.0
Run-Time Library Manual

 for SHARC® Processors

Revision 1.5, January 2011

Part Number
82-000420-09

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2011 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, TigerSHARC,
and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 5.0 iii
Run-Time Library Manual for SHARC Processors

 CONTENTS

PREFACE

Purpose of This Manual .. xxiii

Intended Audience .. xxiii

Manual Contents ... xxiv

What’s New in This Manual ... xxiv

Technical or Customer Support ... xxv

Supported Processors ... xxv

Product Information .. xxvi

Analog Devices Web Site .. xxvi

VisualDSP++ Online Documentation xxvii

Technical Library CD .. xxvii

Social Networking Web Sites .. xxviii

Notation Conventions .. xxviii

C/C++ RUN-TIME LIBRARY

C and C++ Run-Time Libraries Guide ... 1-2

Calling Library Functions .. 1-3

Linking Library Functions ... 1-4

Library Attributes .. 1-13

Contents

iv VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Exceptions to the Attribute Conventions 1-17

Mapping Objects to FLASH Memory Using Attributes 1-18

Working With Library Header Files 1-18

adi_types.h ... 1-20

assert.h ... 1-20

ctype.h ... 1-21

cycle_count.h ... 1-21

cycles.h .. 1-22

device.h .. 1-22

device_int.h .. 1-22

errno.h ... 1-22

float.h .. 1-23

iso646.h ... 1-23

limits.h .. 1-24

locale.h .. 1-24

math.h ... 1-25

misra_types.h ... 1-26

setjmp.h ... 1-26

signal.h ... 1-26

stdarg.h .. 1-27

stdbool.h .. 1-27

stddef.h .. 1-27

stdfix.h ... 1-27

stdint.h .. 1-28

VisualDSP++ 5.0 v
Run-Time Library Manual for SHARC Processors

Contents

stdio.h .. 1-30

stdlib.h ... 1-33

string.h ... 1-35

time.h ... 1-35

Calling Library Functions From an ISR 1-37

Using the Libraries in a Multi-Threaded Environment 1-38

Using Compiler Built-In C Library Functions 1-39

Abridged C++ Library Support .. 1-41

Embedded C++ Library Header Files 1-42

complex .. 1-42

exception .. 1-42

fract .. 1-42

fstream .. 1-43

iomanip .. 1-43

ios .. 1-43

iosfwd ... 1-43

iostream .. 1-43

istream .. 1-43

new .. 1-43

ostream ... 1-43

sstream ... 1-44

stdexcept ... 1-44

streambuf .. 1-44

Contents

vi VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

string .. 1-44

strstream .. 1-44

C++ Header Files for C Library Facilities 1-44

Embedded Standard Template Library Header Files 1-46

algorithm ... 1-46

deque ... 1-46

functional .. 1-46

hash_map ... 1-46

hash_set .. 1-46

iterator ... 1-46

list .. 1-46

map .. 1-47

memory ... 1-47

numeric .. 1-47

queue ... 1-47

set .. 1-47

stack .. 1-47

utility ... 1-47

vector ... 1-47

Header Files for C++ Library Compatibility 1-48

Using Thread-Safe C/C++ Run-Time Libraries
With VDK .. 1-48

Measuring Cycle Counts ... 1-48

Basic Cycle Counting Facility .. 1-49

Cycle Counting Facility With Statistics 1-51

VisualDSP++ 5.0 vii
Run-Time Library Manual for SHARC Processors

Contents

Using time.h to Measure Cycle Counts 1-54

Determining the Processor Clock Rate 1-56

Considerations When Measuring Cycle Counts 1-57

File I/O Support .. 1-59

Extending I/O Support To New Devices 1-59

DevEntry Structure ... 1-60

Registering New Devices ... 1-65

Pre-Registering Devices ... 1-66

Default Device .. 1-67

Remove and Rename Functions 1-68

Default Device Driver Interface ... 1-68

Data Packing for Primitive I/O 1-70

Data Structure for Primitive I/O 1-70

Documented Library Functions ... 1-74

C Run-Time Library Reference .. 1-79

abort .. 1-80

abs .. 1-81

absfx ... 1-82

acos .. 1-84

asctime ... 1-85

asin ... 1-87

atan .. 1-88

atan2 .. 1-89

atexit ... 1-90

Contents

viii VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

atof .. 1-91

atoi .. 1-94

atol .. 1-95

atold .. 1-96

atoll ... 1-99

avg .. 1-100

bitsfx .. 1-101

bsearch ... 1-102

calloc ... 1-105

ceil ... 1-107

clear_interrupt .. 1-108

clearerr ... 1-118

clip .. 1-120

clock .. 1-121

cos ... 1-123

cosh ... 1-124

count_ones ... 1-125

countlsfx .. 1-126

ctime .. 1-128

difftime .. 1-130

div ... 1-132

divifx ... 1-134

exit ... 1-135

exp ... 1-136

VisualDSP++ 5.0 ix
Run-Time Library Manual for SHARC Processors

Contents

fabs .. 1-137

fclose .. 1-138

feof ... 1-140

ferror .. 1-141

fflush .. 1-142

fgetc ... 1-143

fgetpos .. 1-145

fgets .. 1-147

floor ... 1-149

fmod .. 1-150

fopen .. 1-151

fprintf ... 1-153

fputc ... 1-159

fputs ... 1-160

fread ... 1-161

free ... 1-163

freopen ... 1-164

frexp ... 1-166

fscanf .. 1-168

fseek ... 1-173

fsetpos .. 1-175

ftell ... 1-176

fwrite .. 1-178

fxbits .. 1-180

Contents

x VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fxdivi .. 1-182

getc .. 1-183

getchar ... 1-185

getenv .. 1-187

gets .. 1-188

gmtime .. 1-190

heap_calloc .. 1-192

heap_free .. 1-194

heap_install .. 1-196

heap_lookup_name .. 1-199

heap_malloc ... 1-201

heap_realloc ... 1-203

heap_switch ... 1-206

idivfx ... 1-208

interrupt .. 1-209

isalnum .. 1-211

isalpha .. 1-212

iscntrl ... 1-213

isdigit ... 1-214

isgraph ... 1-215

isinf ... 1-216

islower .. 1-218

isnan .. 1-219

isprint .. 1-221

VisualDSP++ 5.0 xi
Run-Time Library Manual for SHARC Processors

Contents

ispunct ... 1-222

isspace .. 1-223

isupper ... 1-225

isxdigit .. 1-226

labs .. 1-227

lavg .. 1-228

lclip .. 1-229

lcount_ones .. 1-230

ldexp .. 1-231

ldiv ... 1-232

llabs ... 1-234

llavg ... 1-235

llclip ... 1-236

llcount_ones ... 1-237

lldiv .. 1-238

llmax .. 1-240

llmin .. 1-241

lmax ... 1-242

lmin ... 1-243

localeconv ... 1-244

localtime ... 1-247

log .. 1-249

log10 .. 1-250

longjmp .. 1-251

Contents

xii VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

malloc .. 1-253

max .. 1-254

memchr .. 1-255

memcmp .. 1-256

memcpy ... 1-257

memmove .. 1-258

memset .. 1-259

min .. 1-260

mktime .. 1-261

modf .. 1-264

mulifx .. 1-265

perror ... 1-266

pow .. 1-268

printf ... 1-269

putc ... 1-271

putchar .. 1-272

puts .. 1-273

qsort .. 1-274

raise ... 1-276

rand ... 1-278

read_extmem .. 1-279

realloc .. 1-281

remove ... 1-283

rename ... 1-285

VisualDSP++ 5.0 xiii
Run-Time Library Manual for SHARC Processors

Contents

rewind .. 1-287

roundfx .. 1-289

scanf ... 1-291

setbuf ... 1-293

setjmp .. 1-295

setlocale .. 1-297

setvbuf .. 1-298

set_alloc_type ... 1-300

signal .. 1-302

sin .. 1-304

sinh .. 1-305

snprintf .. 1-306

sprintf .. 1-308

sqrt ... 1-310

srand .. 1-311

sscanf .. 1-312

strcat .. 1-314

strchr .. 1-315

strcmp .. 1-316

strcoll ... 1-317

strcpy ... 1-318

strcspn .. 1-319

strerror ... 1-320

strftime ... 1-321

Contents

xiv VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strlen .. 1-325

strncat .. 1-326

strncmp .. 1-327

strncpy ... 1-328

strpbrk ... 1-329

strrchr .. 1-330

strspn ... 1-331

strstr .. 1-332

strtod ... 1-333

strtofxfx ... 1-336

strtok ... 1-339

strtol .. 1-341

strtold .. 1-343

strtoll ... 1-346

strtoul .. 1-348

strtoull ... 1-350

strxfrm ... 1-352

system .. 1-354

tan ... 1-355

tanh ... 1-356

time ... 1-357

tolower ... 1-358

toupper .. 1-359

ungetc .. 1-360

VisualDSP++ 5.0 xv
Run-Time Library Manual for SHARC Processors

Contents

va_arg ... 1-362

va_end .. 1-365

va_start ... 1-366

vfprintf ... 1-367

vprintf .. 1-369

vsnprintf ... 1-371

vsprintf ... 1-373

write_extmem ... 1-375

DSP RUN-TIME LIBRARY

DSP Run-Time Library Guide ... 2-2

Calling DSP Library Functions .. 2-2

Linking DSP Library Functions ... 2-3

Library Attributes .. 2-5

Working With Library Source Code .. 2-5

DSP Header Files .. 2-6

asm_sprt.h .. 2-7

cmatrix.h .. 2-7

comm.h .. 2-8

complex.h ... 2-8

cvector.h ... 2-9

Header Files That Define Processor-Specific System
Register Bits ... 2-10

Contents

xvi VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Header Files That Allow Access to Memory-Mapped
Registers From C/C++ Code .. 2-11

dma.h .. 2-12

filter.h .. 2-12

filters.h .. 2-14

macros.h .. 2-15

math.h ... 2-15

matrix.h ... 2-16

platform_include.h ... 2-17

processor_include.h .. 2-17

saturate.h ... 2-19

sport.h ... 2-19

stats.h .. 2-19

sysreg.h ... 2-19

trans.h .. 2-19

vector.h .. 2-20

window.h ... 2-21

Built-In DSP Library Functions .. 2-22

Implications of Using SIMD Mode 2-23

Using Data in External Memory .. 2-24

Documented Library Functions .. 2-25

VisualDSP++ 5.0 xvii
Run-Time Library Manual for SHARC Processors

Contents

DSP Run-Time Library Reference ... 2-31

a_compress ... 2-32

a_expand .. 2-34

alog .. 2-37

alog10 .. 2-38

arg .. 2-39

autocoh .. 2-41

autocorr .. 2-43

biquad .. 2-45

cabs .. 2-52

cadd ... 2-54

cartesian ... 2-55

cdiv .. 2-57

cexp .. 2-59

cfft ... 2-61

cfft_mag (SHARC SIMD Processors) ... 2-64

cfftN .. 2-66

cfftN (SHARC SIMD Processors) .. 2-70

cfftf (SHARC SIMD Processors) .. 2-73

circindex ... 2-76

circptr ... 2-78

cmatmadd ... 2-80

cmatmmlt ... 2-82

cmatmsub ... 2-85

Contents

xviii VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cmatsadd .. 2-87

cmatsmlt .. 2-89

cmatssub .. 2-91

cmlt ... 2-93

conj .. 2-94

convolve ... 2-95

copysign .. 2-97

cot ... 2-98

crosscoh ... 2-100

crosscorr ... 2-103

csub ... 2-106

cvecdot ... 2-107

cvecsadd ... 2-109

cvecsmlt ... 2-111

cvecssub ... 2-113

cvecvadd ... 2-115

cvecvmlt ... 2-117

cvecvsub ... 2-119

dma_disable .. 2-121

dma_enable ... 2-122

dma_setup ... 2-123

dma_status .. 2-124

favg ... 2-125

fclip ... 2-126

VisualDSP++ 5.0 xix
Run-Time Library Manual for SHARC Processors

Contents

fft_magnitude ... 2-127

fftf_magnitude (SHARC SIMD Processors) 2-131

fir ... 2-134

fir_decima .. 2-138

fir_interp .. 2-142

fmax ... 2-147

fmin ... 2-148

gen_bartlett .. 2-149

gen_blackman ... 2-151

gen_gaussian ... 2-153

gen_hamming ... 2-155

gen_hanning ... 2-157

gen_harris ... 2-159

gen_kaiser ... 2-161

gen_rectangular .. 2-163

gen_triangle .. 2-165

gen_vonhann .. 2-167

histogram ... 2-168

idle ... 2-170

ifft .. 2-171

ifftf (SHARC SIMD Processors) .. 2-174

ifftN ... 2-177

ifftN (SHARC SIMD Processors) .. 2-181

iir ... 2-184

Contents

xx VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

matinv ... 2-193

matmadd .. 2-195

matmmlt .. 2-197

matmsub .. 2-200

matsadd ... 2-202

matsmlt .. 2-204

matssub .. 2-206

mean .. 2-208

mu_compress ... 2-210

mu_expand .. 2-212

norm .. 2-215

polar .. 2-217

poll_flag_in .. 2-219

rfft ... 2-221

rfft_mag (SHARC SIMD Processors) .. 2-225

rfftf_2 (SHARC SIMD Processors) .. 2-227

rfftN ... 2-230

rfftN (SHARC SIMD Processors) ... 2-233

rms .. 2-237

rsqrt .. 2-239

set_flag ... 2-240

set_semaphore .. 2-242

test_and_set_semaphore ... 2-243

timer_off .. 2-244

VisualDSP++ 5.0 xxi
Run-Time Library Manual for SHARC Processors

Contents

timer0_off, timer1_off (ADSP-21065L Processor Only) 2-246

timer_on ... 2-248

timer_set .. 2-250

timer0_on, timer1_on (ADSP-21065L Processor) 2-252

timer0_set, timer1_set ... 2-254

transpm .. 2-256

twidfft .. 2-258

twidfftf (SHARC SIMD Processors) .. 2-261

var .. 2-264

vecdot ... 2-266

vecsadd ... 2-268

vecsmlt ... 2-270

vecssub ... 2-272

vecvadd ... 2-274

vecvmlt ... 2-276

vecvsub ... 2-278

zero_cross ... 2-280

INDEX

Contents

xxii VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

VisualDSP++ 5.0 xxiii
Run-Time Library Manual for SHARC Processors

 PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
signal processing applications.

Purpose of This Manual
The VisualDSP++ 5.0 Run-Time Library Manual for SHARC Processors
contains information about the C/C++ and DSP run-time libraries for
SHARC® (ADSP-21xxx) processors. It leads you through the process of
using library routines and provides information about the ANSI standard
header files and different libraries that are included with this release of the
cc21k compiler.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the SHARC architecture and the C/C++ pro-
gramming languages.

Programmers who are unfamiliar with SHARC processors can use this
manual, but they should supplement it with other texts (such as the
appropriate hardware reference and programming reference manuals) that
describe their target architecture.

Manual Contents

 xxiv VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Manual Contents
This manual contains:

• Chapter 1, “C/C++ Run-Time Library”
Describes how to use library functions and provides a complete
C/C++ library function reference (for functions covered in the cur-
rent compiler release)

• Chapter 2, “DSP Run-Time Library”
Describes how to use DSP library functions and provides a com-
plete library function reference (for functions covered in the
current compiler release)

What’s New in This Manual
This revision (1.5) of the VisualDSP++ 5.0 Run-Time Library Manual for
SHARC Processors documents changes/additions related to the run-time
library for VisualDSP++® 5.0 and subsequent updates (up to update 9).
Changes to this book from revision 1.4 include:

• The library now supports the 64-bit integer types long long and
unsigned long long. The following new functions have been
added: atoll, llabs, llavg, llclip, llcount_ones, lldiv, llmax,
llmin, strtoll, strtoull.

• The library now supports the native fixed-point fract type. The
following new functions have been added: absfx, bitsfx,
countlsfx, divifx, fxbits, fxdivi, idivfx, mulifx, roundfx,
strtofxfx.

• Corrections of typographic errors and reported document errata

This manual documents C/C++ and DSP libraries for all current SHARC
processors listed in the online help.

VisualDSP++ 5.0 xxv
Run-Time Library Manual for SHARC Processors

Preface

Refer to the VisualDSP++ 5.0 C/C++ Compiler Manual for a complete
description of C/C++ compiler features and the use of the cc21k compiler
in developing efficient and user-friendly source code.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technical_support

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

Supported Processors
The name SHARC refers to a family of Analog Devices, Inc. high-perfor-
mance 32-bit floating-point digital signal processors that can be used in
speech, sound, graphics, and imaging applications. For a complete list of
processors supported by VisualDSP++ 5.0, refer to VisualDSP++ online
Help.

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Product Information

 xxvi VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Product Information
Product information can be obtained from the Analog Devices Web site,
VisualDSP++ online Help system, and a technical library CD.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

VisualDSP++ 5.0 xxvii
Run-Time Library Manual for SHARC Processors

Preface

VisualDSP++ Online Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools documentation. You
can search easily across the entire VisualDSP++ documentation set for any
topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the VisualDSP++ installation CD.

Each documentation file type is described as follows.

Technical Library CD
The technical library CD contains seminar materials, product highlights,
a selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin®, SHARC, TigerSHARC®, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

File Description

.chm Help system files and manuals in Microsoft help format

.htm or

.html
Dinkum Abridged C++ library and FLEXnet license tools software
documentation. Viewing and printing the .html files requires a browser, such as
Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/

Notation Conventions

 xxviii VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the
latest manual revisions and associated documentation errata.

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

Social Networking Web Sites
You can now follow Analog Devices SHARC development on Twitter and
LinkedIn. To access:

• Twitter: http://twitter.com/ADISHARC

• LinkedIn: Network with the LinkedIn group, Analog Devices
SHARC: http://www.linkedin.com

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

 Additional conventions, which apply only to specific chapters, may
appear throughout this document.

http://ez.analog.com
http://twitter.com/ADISHARC
http://www.linkedin.com

VisualDSP++ 5.0 xxix
Run-Time Library Manual for SHARC Processors

Preface

Example Description

Close command
(File menu)

Titles in in bold style reference sections indicate the location of an item
within the VisualDSP++ environment’s menu system (for example, the
Close command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipse; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Notation Conventions

 xxx VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

VisualDSP++ 5.0 1-1
Run-Time Library Manual for SHARC Processors

1 C/C++ RUN-TIME LIBRARY

The C and C++ run-time libraries are collections of functions, macros,
and class templates that you can call from your source programs. Many
functions are implemented in the ADSP-21xxx assembly language. C and
C++ programs depend on library functions to perform operations that are
basic to the C and C++ programming environments. These operations
include memory allocations, character and string conversions, and math
calculations. Using the library simplifies your software development by
providing code for a variety of common needs.

The sections of this chapter present the following information on the
compiler:

• “C and C++ Run-Time Libraries Guide” on page 1-2
provides introductory information about the ANSI/ISO standard
C and C++ libraries. It also provides information about the ANSI
standard header files and built-in functions that are included with
this release of the cc21k compiler.

• “C Run-Time Library Reference” on page 1-79
contains reference information about the C run-time library func-
tions included with this release of the cc21k compiler.

The cc21k compiler provides a broad collection of library functions,
including those required by the ANSI standard and additional functions
supplied by Analog Devices that are of value in signal processing applica-
tions. In addition to the standard C library, this release of the compiler
software includes the Abridged C++ library, a conforming subset of the
standard C++ library. The Abridged C++ library includes the embedded
C++ and embedded standard template libraries.

C and C++ Run-Time Libraries Guide

1-2 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

This chapter describes the standard C/C++ library functions that are sup-
ported in the current release of the run-time libraries. Chapter 2, “DSP
Run-Time Library” describes a number of signal processing, matrix, and
statistical functions that assist code development.

 For more information on the algorithms on which many of the C
library’s math functions are based, see W. J, Cody and W. Waite,
Software Manual for the Elementary Functions, Englewood Cliffs,
New Jersey: Prentice Hall, 1980. For more information on the C++
library portion of the ANSI/ISO Standard for C++, see Plauger, P.
J. (Preface), The Draft Standard C++ Library, Englewood Cliffs,
New Jersey: Prentice Hall, 1994, (ISBN: 0131170031).

The Abridged C++ library software documentation is located on the
VisualDSP++ installation CD in the <install_path>\Docs\Reference
folder. Viewing or printing these files requires a browser, such as Internet
Explorer 6.0 (or higher). You can copy these files from the installation CD
onto another disk.

C and C++ Run-Time Libraries Guide
The C and C++ run-time libraries contain routines that you can call from
your source program. This section describes how to use the libraries and
provides information on the following topics:

• “Calling Library Functions” on page 1-3

• “Linking Library Functions” on page 1-4

• “Library Attributes” on page 1-13

• “Working With Library Header Files” on page 1-18

• “Calling Library Functions From an ISR” on page 1-37

VisualDSP++ 5.0 1-3
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

• “Using the Libraries in a Multi-Threaded Environment” on
page 1-38

• “Using Compiler Built-In C Library Functions” on page 1-39

• “Abridged C++ Library Support” on page 1-41

• “Measuring Cycle Counts” on page 1-48

• “File I/O Support” on page 1-59

For information on the C library’s contents, see “C Run-Time Library
Reference” on page 1-79. For information on the Abridged C++ library’s
contents, see “Abridged C++ Library Support” on page 1-41.

Calling Library Functions
To use a C/C++ library function, call the function by name and give the
appropriate arguments. The name and arguments for each function appear
on the function’s reference page. The reference pages appear in the
“C Run-Time Library Reference” on page 1-79.

Like other functions you use, library functions should be declared. Decla-
rations are supplied in header files. For more information about the
header files, see “Working With Library Header Files” on page 1-18.

Function names are C/C++ function names. If you call a C/C++ run-time
library function from an assembly program, you must use the assembly
version of the function name (prefix an underscore on the name). For
more information on the naming conventions, see Chapter 1 of the Visu-
alDSP++ 5.0 Compiler Manual, in the section “C/C++and Assembly
Interface.”

 You can use the archiver, elfar, described in the VisualDSP++ 5.0
Linker and Utilities Manual, to build library archive files of your
own functions.

C and C++ Run-Time Libraries Guide

1-4 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Linking Library Functions
The C/C++ run-time library is organized as five libraries:

• C run-time library – Comprises all the functions that are defined
by the ANSI standard

• C++ run-time library

• DSP run-time library – Contains additional library functions sup-
plied by Analog Devices that provide services commonly required
by DSP applications

• I/O library – Supports a subset of the C standard’s I/O
functionality

• Fixed-point I/O library – Supports a subset of the C standard’s I/O
functionality for fractional data types

In general, several versions of the C/C++ run-time library are supplied in
binary form; for example, variants are available for different SHARC
architectures and are listed in Table 1-1, Table 1-2, Table 1-3, and
Table 1-4. Some versions of these binary files are also built for running in
a multi-threaded environment; these binaries have mt in their filename.

In addition to regular run-time libraries, VisualDSP++ 5.0 also has
libio*_lite.dlb libraries which provide smaller versions of LibIO (the
I/O run-time support library) with more limited functionality. These
smaller LibIO libraries can be used by specifying the switch
-flags-link -MD__LIBIO_LITE on the build command line. There are also
libio*_fx.dlb libraries which provide versions of LibIO (the I/O
run-time support library) with full support for the fixed-point format
specifiers for the fract types. These libraries can be used by specifying the
switch -flags-link -MD__LIBIO_FX on the build command line.

VisualDSP++ 5.0 1-5
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Table 1-1 contains a list of the run-time libraries and start-up files that
have been built for the ADSP-21020 and ADSP-2106x processors, and are
installed in the subdirectory 21k\lib.

Table 1-1. C/C++ Files and Libraries for ADSP-210xx Processors

Description Library Name Comments

C run-time library libc.dlb
libc020.dlb
libcmt.dlb

ADSP-21020 processor only

C++ run-time library libcpp.dlb
libcppmt.dlb

C++ run-time library with
exception handling support

libcppeh.dlb
libcppehmt.dlb

Legacy library libcpprt.dlb
libcpprtmt.dlb
libcpprteh.dlb
libcpprtehmt.dlb
libeh.dlb
libehmt.dlb

These libraries contain no
functions and are only pro-
vided for the purpose of link-
ing against a legacy .ldf file

DSP run-time library libdsp.dlb
libdsp020.dlb ADSP-21020 processor only

I/O run-time library libio.dlb
libio020.dlb
libiomt.dlb

ADSP-21020 processor only

I/O run-time library with no
support for alternative device
drivers or printf(“%a”)

libio_lite.dlb
libio020_lite.dlb
libio_litemt.dlb

libio32.dlb
libio64.dlb

ADSP-21020 processor only

Legacy library
Legacy library

I/O run-time library with full
support for the fixed-point for-
mat specifiers

libio_fx.dlb
libio_fxmt.dlb

C and C++ Run-Time Libraries Guide

1-6 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The binary files that have been built for ADSP-2116x processors are cata-
logued in Table 1-2.

C start-up file — calls set-up
routines and main()

020_hdr.doj
060_hdr.doj

061_hdr.doj
065L_hdr.doj

ADSP-21020 processor only
ADSP-21060/062 processors
only
ADSP-21061 processor only
ADSP-21065L processor only

C start-up file with EZ-KIT —
calls set-up routines and main()

061_hdr_ezkit.doj
065L_hdr_ezkit.doj

ADSP-21061 processor only
ADSP-21065L processor only

C++ start-up file — calls set-up
routines and main()

060_cpp_hdr.doj

061_cpp_hdr.doj
065L_cpp_hdr.doj

060_cpp_hdr_mt.doj

061_cpp_hdr_mt.doj
065L_cpp_hdr_mt.doj

ADSP-21060/062 processors
only
ADSP-21061 processor only
ADSP-21065L processor only

ADSP-21060/062 processors
only
ADSP-21061 processor only
ADSP-21065L processor only

C++ start-up file with EZ-KIT —
calls set-up routines and main()

061_cpp_hdr_ezkit.doj
065L_cpp_hdr_ezkit.doj

061_cpp_hdr_ezkit_mt.doj
065L_cpp_hdr_ezkit_mt.doj

ADSP-21061 processor only
ADSP-21065L processor only

ADSP-21061 processor only
ADSP-21065L processor only

Table 1-2. C/C++ Files and Libraries for ADSP-2116x Processors

Description Library Name Comments

C run-time library libc160.dlb
libc161.dlb

libc160mt.dlb
libc161mt.dlb

ADSP-21160 processor only
ADSP-21161 processor only

ADSP-21160 processor only
ADSP-21161 processor only

C++ run-time library libcpp.dlb
libcppmt.dlb

Table 1-1. C/C++ Files and Libraries for ADSP-210xx Processors (Cont’d)

Description Library Name Comments

VisualDSP++ 5.0 1-7
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

 The run-time libraries and binary files for the ADSP-21160 proces-
sors in this table have been compiled with the -workaround rframe
compiler switch, while those for the ADSP-21161 processors have

C++ run-time library with excep-
tion handling support

libcppeh.dlb
libcppehmt.dlb

Legacy library libcpprt.dlb
libcpprtmt.dlb
libcpprteh.dlb
libcpprtehmt.dlb
libeh.dlb
libehmt.dlb

These libraries contain no
functions and are only pro-
vided for the purpose of link-
ing against a legacy .ldf file

DSP run-time library libdsp160.dlb

I/O run-time library libio.dlb
libiomt.dlb

I/O run-time library with no sup-
port for alternative device drivers
or printf(“%a”)

libio_lite.dlb
libio_litemt.dlb

libio32.dlb
libio64.dlb

Legacy library
Legacy library

I/O run-time library with full
support for the fixed-point format
specifiers

libio_fx.dlb
libio_fxmt.dlb

C start-up file — calls set-up rou-
tines and main()

160_hdr.doj
161_hdr.doj

ADSP-21160 processor only
ADSP-21161 processor only

C start-up file with EZ-KIT —
calls set-up routines and main()

160_hdr_ezkit.doj ADSP-21160 processor only

C++ start-up file — calls set-up
routines and main()

160_cpp_hdr.doj
161_cpp_hdr.doj

160_cpp_hdr_mt.doj
161_cpp_hdr_mt.doj

ADSP-21160 processor only
ADSP-21161 processor only

ADSP-21160 processor only
ADSP-21161 processor only

C++ start-up file with EZ-KIT —
calls set-up routines and main()

160_cpp_hdr_ezkit.doj
160_cpp_hdr_ezkit_mt.doj

ADSP-21160 processor only
ADSP-21160 processor only

Table 1-2. C/C++ Files and Libraries for ADSP-2116x Processors (Cont’d)

Description Library Name Comments

C and C++ Run-Time Libraries Guide

1-8 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

been compiled with the -workaround 21161-anomaly-45 switch.
An additional set of libraries and binary files that also work around
the shadow write FIFO anomaly that affect ADSP-2116x chips is
installed in the subdirectory 211xx\lib\swfa.

Table 1-3 contains a list and a brief description of the library files that
have been built for the ADSP-212xx processors. These files are installed in
the subdirectory 212xx\lib.

Table 1-3. C/C++ Libraries for ADSP-212xx Processors

Description Library Name Comments

C run-time library libc26x.dlb
libc26xmt.dlb

C++ run-time library libcpp.dlb
libcppmt.dlb

C++ run-time library with excep-
tion handling support

libcppeh.dlb
libcppehmt.dlb

Legacy library libcpprt.dlb
libcpprtmt.dlb
libcpprteh.dlb
libcpprtehmt.dlb
libeh.dlb
libehmt.dlb

These libraries contain no func-
tions and are only provided for
the purpose of linking against a
legacy .ldf file

DSP run-time library libdsp26x.dlb

I/O run-time library libio.dlb
libiomt.dlb

I/O run-time library with no sup-
port for alternative device drivers
or printf(“%a”)

libio_lite.dlb
libio_litemt.dlb

I/O run-time library with full
support for the fixed-point format
specifiers

libio_fx.dlb
libio_fxmt.dlb

VisualDSP++ 5.0 1-9
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The libraries located in 212xx\lib are built without any workarounds
enabled. There are directories within the 212xx\lib directory named
2126x_rev_<revision> that contain libraries built for that specific revi-
sion, for example, 2126x_rev_0.0. A single revision library directory may
support more than one specific silicon revision; as an example,
2126x_rev_0.0 supports revisions 0.0, 0.1 and 0.2 of ADSP-2126x
processors.

In addition, a library directory called 2126x_any is supplied. Libraries in
this directory will contain workarounds for all relevant anomalies on all
revisions of ADSP-2126x processors.

The -si-revision switch can be used to specify a silicon revision—Visu-
alDSP++ will use the appropriate libraries to build the application.

As well as libraries, the directory 212xx\lib also contains two different sets
of object files. The first set of object files are the C start-up files for the
ADSP-212xx processor family. Each processor in the family has its own C
start-up file that initializes the environment and then calls main(). These
object files have names of the form 2xx_hdr.doj where xx identifies a spe-
cific processor; for example, the file 261_hdr.doj is the C start-up file for
the ADSP-21261 processor.

The second set of object files in the directory 212xx\lib are the start-up
files for C++ applications; they have names of the form 2xx_cpp_hdr.doj
and 2xx_cpp_hdr_mt.doj, where xx represents a specific ADSP-212xx pro-
cessor. For example, the file 261_cpp_hdr.doj initializes the run-time
environment and then calls main(), for a C++ application that runs on the
ADSP-21261 processor.

C and C++ Run-Time Libraries Guide

1-10 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Table 1-4 describes the library files that have been built for the
ADSP-213xx processors, and which are installed in the subdirectory
213xx\lib.

As well as libraries, the directory 213xx\lib also contains two different sets
of object files. The first set of object files are the C start-up files for the
ADSP-213xx processor family. Each processor in the family has its own C
start-up file that initializes the environment and then calls main(). These

Table 1-4. C/C++ Libraries for ADSP-213xx Processors

Description Library Name Comments

C run-time library libc36x.dlb
libc36xmt.dlb
libc37x.dlb
libc37xmt.dlb

C++ run-time library libcpp.dlb
libcppmt.dlb

C++ run-time library with excep-
tion handling support

libcppeh.dlb
libcppehmt.dlb

Legacy library libcpprt.dlb
libcpprtmt.dlb
libcpprteh.dlb
libcpprtehmt.dlb
libeh.dlb
libehmt.dlb

These libraries contain no
functions and are only pro-
vided for the purpose of link-
ing against a legacy .ldf file.

DSP run-time library libdsp36x.dlb
libdsp37x.dlb

I/O run-time library libio.dlb
libiomt.dlb

I/O run-time library with no sup-
port for alternative device drivers
or printf(“%a”)

libio_lite.dlb
libio_litemt.dlb

I/O run-time library with full sup-
port for the fixed-point format
specifiers

libio_fx.dlb
libio_fxmt.dlb

VisualDSP++ 5.0 1-11
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

object files have names of the form 3xx_hdr.doj where xx identifies a spe-
cific processor; for example, the file 363_hdr.doj is the C start-up file for
the ADSP-21363 processor.

The second set of object files in the directory 213xx\lib are the start-up
files for C++ applications; they have names of the form 3xx_cpp_hdr.doj
and 3xx_cpp_hdr_mt.doj, where xx represents a specific ADSP-212xx pro-
cessor. For example, the file 363_cpp_hdr.doj initializes the run-time
environment and then calls main(), for a C++ application that runs on the
ADSP-21363 processor.

Table 1-5 contains a list and a brief description of the library files that
have been built for the ADSP-214xx processors. These files are installed in
the subdirectory 214xx\lib. The libraries are built in short-word mode by
default, though there are versions which have been built in normal-word
mode; these binaries have nwc in their filename.

Table 1-5. C/C++ Libraries for ADSP-214xx Processors

Description Library Name Comments

C run-time library libc.dlb
libcmt.dlb
libc_nwc.dlb
libcmt_nwc.dlb

C++ run-time library libcpp.dlb
libcppmt.dlb
libcpp_nwc.dlb
libcppmt_nwc.dlb

C++ run-time library with excep-
tion handling support

libcppeh.dlb
libcppehmt.dlb
libcppeh_nwc.dlb
libcppehmt_nwc.dlb

DSP run-time library libdsp.dlb
libdsp_nwc.dlb

C and C++ Run-Time Libraries Guide

1-12 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The libraries located in 214xx\lib are built without any workarounds
enabled. In addition, a library directory called 21469_rev_any is supplied.
Libraries in this directory contain workarounds for all relevant anomalies
on all revisions of ADSP-214xx processors.

As well as libraries, the directory 214xx\lib also contains two different sets
of object files. The first set of object files are the C start-up files for the
ADSP-214xx processor family. Each processor in the family has its own C
start-up file that initializes the environment and then calls main(). These
object files have names of the form 214xx_hdr.doj where xx identifies a
specific processor; for example, the file 21462_hdr.doj is the C start-up
file for the ADSP-21462 processor.

The second set of object files in the directory 214xx\lib are the start-up
files for C++ applications; they have names of the form
214xx_cpp_hdr.doj and 214xx_cpp_hdr_mt.doj, where xx represents a
specific ADSP-214xx processor. For example, the file 21462_cpp_hdr.doj
initializes the run-time environment and then calls main(), for a C++
application that runs on the ADSP-21462 processor.

I/O run-time library libio.dlb
libiomt.dlb
libio_nwc.dlb
libiomt_nwc.dlb

I/O run-time library with no sup-
port for alternative device drivers
or printf(“%a”)

libio_lite.dlb
libio_litemt.dlb
libio_lite_nwc.dlb
libio_litemt_nwc.dlb

I/O run-time library with full sup-
port for the fixed-point format
specifiers

libio_fx.dlb
libio_fxmt.dlb
libio_fx_nwc.dlb
libio_fxmt_nwc.dlb

Table 1-5. C/C++ Libraries for ADSP-214xx Processors (Cont’d)

Description Library Name Comments

VisualDSP++ 5.0 1-13
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

When you call a run-time library function, the call creates a reference that
the linker resolves when linking your program. One way to direct the
linker to the library’s location is to use the default Linker Description File
(ADSP-<your_target>.ldf).

If you are not using the default .ldf file, then either add the appropriate
library/libraries to the .ldf file used for your project, or use the compiler’s
-l switch to specify the library to be added to the link line. For example,
the switches -lc -ldsp add libc.dlb and libdsp.dlb to the list of libraries
to be searched by the linker. For more information on the .ldf file, see
the VisualDSP++ 5.0 Linker and Utilities Manual.

Library Attributes
The run-time libraries make use of file attributes. (See Chapter 1 of the
VisualDSP++ 5.0 Compiler Manual for more details on how to use file
attributes.) Each library function has a defined set of file attributes that
are listed in Table 1-6. For each object obj in the run-time libraries the
following is true.

Table 1-6. Run-Time Library Object Attributes

Attribute Name Meaning of Attribute and Value

libGroup A potentially multi-valued attribute. Each value is the name of a
header file that either defines obj, or that defines a function that
calls obj.

libName The name of the library that contains obj, without the processor
identifier. For example, suppose that obj were part of
libdsp160.dlb, then the value of the attribute would be
libdsp.

libFunc The name of all the functions in obj. libFunc will have multiple
values -both the C, and assembly linkage names will be listed.
libFunc will also contain all the published C and assembly link-
age names of objects in obj's library that call into obj.

C and C++ Run-Time Libraries Guide

1-14 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

If an object in the run-time library calls into another object in the same
library, whether it is internal or publicly visible, the called object will
inherit extra libGroup and libFunc values from the caller.

The following example demonstrates how attributes would look in a small
example library libfunc.dlb that comprises three objects: func1.doj,
func2.doj and subfunc.doj. These objects are built from the following
source modules:

File: func1.h
void func1(void);

prefersMem One of three values: internal, external or any. If obj contains
a function that is likely to be application performance critical, it
will be marked as internal. Most DSP run-time library func-
tions fit into the internal category. If a function is deemed
unlikely to be essential for achieving the necessary performance it
will be marked as external (all the I/O library functions fall into
this category). The default .ldf files use this attribute to place
code and data optimally.

prefersMemNum Analogous to prefersMem but takes a numeric string value. The
attribute can be used in .ldf files to provide a greater measure of
control over the placement of binary object files than is available
using the prefersMem attribute. The values "30", "50", and
"70" correspond to the prefersMem values internal, any, and
external respectively. The default .ldf files use the prefers-
Mem attribute in preference to the prefersMemNum attribute to
specify the optimum placement of files.

FuncName Multi-valued attribute whose values are all the assembler linkage
names of the defined names in obj.

Table 1-6. Run-Time Library Object Attributes (Cont’d)

Attribute Name Meaning of Attribute and Value

VisualDSP++ 5.0 1-15
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

File: func2.h

void func2(void);func1.c

#include func1.h”

void func1(void) {

/* Compiles to func1.doj */

subfunc();

}

File: func2.c

#include "func2.h"

void func2(void) {

/* Compiles to func2.doj */

subfunc();

}

File: subfunc.c

void subfunc(void) {

/* Compiles to subfunc.doj */

}

The objects in libfunc.dlb have the attributes as defined in Table 1-7.

C and C++ Run-Time Libraries Guide

1-16 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Table 1-7. Attribute Values in libfunc.dlb

Attribute Value

func1.doj
libGroup
libName
libFunc
libFunc
FuncName
prefersMem
prefersMemNum

func1.h
libfunc
_func1
func1
_func1

any(1)
50

func2.doj
libGroup
libName
libFunc
libFunc
FuncName
prefersMem
prefersMemNum

func2.h
libfunc
_func2
func2
_func2

internal(2)
30

subfunc.doj
libGroup
libGroup
libName
libFunc
libFunc
libFunc
libFunc
libFunc
libFunc
FuncName
prefersMem
prefersMemNum

func1.h

func2.h(3)
libfunc
_func1
func1
_func2
func2
_subfunc
subfunc
_subfunc

internal(4)
30

1 func1.doj will not be performance critical, based on its
normal usage.

2 func2.doj will be performance critical in many appli-
cations, based on its normal usage.

3 libGroup contains the union of the libGroup attributes
of the two calling objects.

4 prefersMem contains the highest priority of all the call-
ing objects.

VisualDSP++ 5.0 1-17
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Exceptions to the Attribute Conventions

The library attribute convention has the following exceptions:
The C++ support libraries (libcpp*.dlb) all contain functions that have
C++ linkage. Functions written in C++ have their function names encoded
(often referred to as name mangling) to allow for the overloading of
parameter types. The function name encoding includes all the parameter
types, the return type and the namespace within which the function is
declared. Whenever a function’s name is encoded, the encoded name is
used as the value for the libFunc attribute.

Table 1-8 lists additional libGroup attribute values.

Objects with any of the libGroup attribute values listed in Table 1-8 will
not contain any libGroup or libFunc attributes from any calling objects.

Table 1-9 presents a summary of the default memory placement using
prefersMem.

Table 1-8. Additional libGroup Attribute Values

Value Meaning

exceptions_support Compiler support routines for C++ exceptions

floating_point_support Compiler support routines for floating point arithmetic

integer_support Compiler support routines for integer arithmetic

runtime_support Other run-time functions that do not fit into any of the above
categories

startup One-time initialization functions called prior to the invocation
of main

C and C++ Run-Time Libraries Guide

1-18 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Most of the functions contained within the DSP run-time library
(libdsp*.dlb) have prefersMem=internal, because it is likely that any
function called in this run-time library will make up a significant part of
an application’s cycle count.

Mapping Objects to FLASH Memory Using Attributes

When using the Memory Initializer to initialize code and data areas from
flash memory, code and data used during the process of initialization must
be mapped to flash memory to ensure it is available during boot-up. The
requiredForROMBoot attribute is specified on library objects that contain
such code and data and can be used in the .ldf file to perform the
required mapping. See the VisualDSP++ 5.0 Linker and Utilities Manual
for further information on memory initialization.

Working With Library Header Files
When you use a library function in your program, you should also include
the function’s header file with the #include preprocessor command. The
header file for each function is identified in the Synopsis section of the
function’s reference page. Header files contain function prototypes. The
compiler uses these prototypes to check that each function is called with
the correct arguments.

Table 1-9. Default Memory Placement Summary

Library Placement

libcpp*.dlb any

idle*.doj
libio*.dlb

external

libdsp*.dlb internal except for the windowing functions and functions
which generate a twiddle table which are external

libc*.dlb any except for the stdio.h functions, which are external, and
qsort, which is internal

VisualDSP++ 5.0 1-19
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

A list of the header files that are supplied with this release of the cc21k
compiler appears in Table 1-10. You should use a C standard text to aug-
ment the information supplied in this chapter.

Table 1-10. Standard C Run-Time Library Header Files

Header Purpose Standard

adi_types.h Type definitions Analog extension

assert.h Diagnostics ANSI

ctype.h Character Handling ANSI

cycle_count.h Basic Cycle Counting Analog extension

cycles.h Cycle Counting with Statistics Analog extension

device.h Macros and data structures for alternative device drivers Analog extension

device_int.h Enumerations and prototypes for alternative device drivers Analog extension

errno.h Error Handling ANSI

float.h Floating Point ANSI

iso646.h Boolean Operators ANSI

limits.h Limits ANSI

locale.h Localization ANSI

math.h Mathematics ANSI

misra_types.h Exact-width integer types MISRA-C:2004

setjmp.h Non-Local Jumps ANSI

signal.h Signal Handling ANSI

stdarg.h Variable Arguments ANSI

stdbool.h Boolean macros ANSI

stddef.h Standard Definitions ANSI

stdfix.h Fixed point ISO/IEC TR
18037

stdint.h Exact width integer types ANSI

stdio.h Input/Output ANSI

C and C++ Run-Time Libraries Guide

1-20 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The following sections provide descriptions of the header files contained
in the C library. The header files are listed in alphabetical order.

adi_types.h

The adi_types.h header file contains the type definitions for char_t,
float32_t, float64_t, and also includes both stdint.h and stdbool.h.

assert.h

The assert.h header file defines the assert macro, which can be used to
insert run-time diagnostics into a source file. The macro normally tests
(asserts) that an expression is true. If the expression is false, then the
macro will first print an error message, and will then call the abort func-
tion to terminate the application. The message displayed by the assert
macro will be of the form:

ASSERT [expression] fails at "filename": linenumber

Note that the message includes the following information:

• filename - the name of the source file

• linenumber - the current line number in the source file

• expression - the expression tested

However if the macro NDEBUG is defined at the point at which the assert.h
header file is included in the source file, then the assert macro will be
defined as a null macro and no run-time diagnostics will be generated.

stdlib.h Standard Library ANSI

string.h String Handling ANSI

time.h Date and Time ANSI

Table 1-10. Standard C Run-Time Library Header Files (Cont’d)

Header Purpose Standard

VisualDSP++ 5.0 1-21
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The strings associated with assert.h can be assigned to slower, more plen-
tiful memory (and therefore free up faster memory) by placing a
default_section pragma above the sections of code containing the
asserts. For example:

#pragma default_section(STRINGS,"seg_sram")

Note that the pragma will affect the placement of all strings, and not just
the ones associated with using the ASSERT macro. See the section “Linking
Control Pragmas” in Chapter 1 of the VisualDSP++ 5.0 Compiler Manual
for more information about using the pragma.

An alternative to using the default_section pragma is to use the com-
piler’s -section switch (for example -section strings=seg_sram). You
can accomplish this in one of two ways:

• Use the command line.

• Use the VisualDSP++ Project Options dialog box. In the Compile
category, select the General tab. Then type the command in the
Additional options: field.

ctype.h

The ctype.h header file contains functions for character handling, such as
isalpha, tolower, and so on.

For a list of library functions that use this header, see Table 1-19 on
page 1-74.

cycle_count.h

The cycle_count.h header file provides an inexpensive method for bench-
marking C-written source by defining basic facilities for measuring cycle
counts. The facilities provided are based upon two macros, and a data type
which are described in more detail in the section “Measuring Cycle
Counts” on page 1-48.

C and C++ Run-Time Libraries Guide

1-22 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cycles.h

The cycles.h header file defines a set of five macros and an associated
data type that may be used to measure the cycle counts used by a section
of C-written source. The macros can record how many times a particular
piece of code has been executed and also the minimum, average, and max-
imum number of cycles used. The facilities that are available via this
header file are described in the section “Measuring Cycle Counts” on
page 1-48.

device.h

The device.h header file provides macros and defines data structures that
an alternative device driver would require to provide file input and output
services for stdio library functions. Normally, the stdio functions use a
default driver to access an underlying device, but alternative device drivers
may be registered that may then be used transparently by these functions.
This mechanism is described in “Extending I/O Support To New
Devices” on page 1-59.

device_int.h

The device_int.h header file contains function prototypes and provides
enumerations for alterative device drivers. An alternative device driver is
normally provided by an application and may be used by the stdio library
functions to access an underlying device; an alternative device driver may
coexist with, or may replace, the default driver that is supported by the
VisualDSP++ simulator and EZ-KIT Lite® evaluation systems. Refer to
“Extending I/O Support To New Devices” on page 1-59.

errno.h

The errno.h header file provides access to errno and also defines macros
for associated error codes. This facility is not, in general, supported by the
rest of the library.

VisualDSP++ 5.0 1-23
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

float.h

The float.h header file defines the properties of the floating-point data
types that are implemented by the compiler—that is, float, double, and
long double. These properties are defined as macros and include the fol-
lowing for each supported data type:

• the maximum and minimum value (for example, FLT_MAX and
FLT_MIN)

• the maximum and minimum power of ten (for example,
FLT_MAX_10_EXP and FLT_MIN_10_EXP)

• the precision available expressed in terms of decimal digits (for
example, FLT_DIG)

• a constant that represents the smallest value that may added to 1.0
and still result in a change of value (for example, FLT_EPSILON)

Note that the set of macros that define the properties of the double data
type will have the same values as the corresponding set of macros for the
float type when doubles are defined to be 32 bits wide, and they will
have the same value as the macros for the long double data type when
doubles are defined to be 64 bits wide (use the -double-size[-32|-64]
compiler switch).

iso646.h

The iso646.h header file defines symbolic names for certain C operators;
the symbolic names and their associated value are shown in Table 1-11.

C and C++ Run-Time Libraries Guide

1-24 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

 The symbolic names have the same name as the C++ keywords that
are accepted by the compiler when the -alttok switch is specified.

limits.h

The limits.h header file contains definitions of maximum and minimum
values for each C data type other than floating-point.

locale.h

The locale.h header file contains definitions for expressing numeric,
monetary, time, and other data.

For a list of library functions that use this header, see Table 1-20 on
page 1-74.

Table 1-11. Symbolic Names Defined in iso646.h

Symbolic Name Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

VisualDSP++ 5.0 1-25
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

math.h

The math.h header file includes trigonometric, power, logarithmic, expo-
nential, and other miscellaneous functions. The library contains the
functions specified by the C standard along with implementations for the
data types float and long double.

For a list of library functions that use this header, see Table 1-21 on
page 1-75.

For every function that is defined to return a double, the math.h header
file also defines corresponding functions that return a float and a long
double. The names of the float functions are the same as the equivalent
double function with f appended to its name. Similarly, the names of the
long double functions are the same as the double function with d
appended to its name.

For example, the header file contains the following prototypes for the sine
function:

float sinf (float x);

double sin (double x);

long double sind (long double x);

When the compiler is treating double as 32 bits, the header file arranges
that all references to the double functions are directed to the equivalent
float function (with the suffix f). This allows you to use the un-suffixed
names with arguments of type double, regardless of whether doubles are
32 or 64 bits long.

This header file also provides prototypes for a number of additional math
functions provided by Analog Devices, such as favg, fmax, fclip, and
copysign. Refer to Chapter 2, “DSP Run-Time Library” for more infor-
mation about these additional functions.

The math.h header file also defines the macro HUGE_VAL. This macro evalu-
ates to the maximum positive value that the type double can support.

C and C++ Run-Time Libraries Guide

1-26 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The macros EDOM and ERANGE, defined in errno.h, are used by math.h
functions to indicate domain and range errors.

A domain error occurs when an input argument is outside the domain of
the function. “C Run-Time Library Reference” on page 1-79 lists the spe-
cific cases that cause errno to be set to EDOM, and the associated return
values.

A range error occurs when the result of a function cannot be represented
in the return type. If the result overflows, the function returns the value
HUGE_VAL with the appropriate sign. If the result underflows, the function
returns a zero without indicating a range error.

misra_types.h

The misra_types.h header file contains definitions of exact-width data
types, as defined in “stdint.h” on page 1-28 and “stdbool.h” on page 1-27,
plus data types char_t, float32_t and float64_t types.

setjmp.h

The setjmp.h header file contains setjmp and longjmp for non-local
jumps.

For a list of library functions that use this header, see Table 1-22 on
page 1-75.

signal.h

The signal.h header file provides function prototypes for the standard
ANSI signal.h routines and also for several extensions, such as
interrupt() and clear_interrupt().

The signal handling functions process conditions (hardware signals) that
can occur during program execution. They determine the way that your C

VisualDSP++ 5.0 1-27
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

program responds to these signals. The functions are designed to process
such signals as external interrupts and timer interrupts.

For a list of library functions that use this header, see Table 1-23 on
page 1-75.

stdarg.h

The stdarg.h header file contains definitions needed for functions that
accept a variable number of arguments. Programs that call such functions
must include a prototype for the functions referenced.

For a list of library functions that use this header, see Table 1-24 on
page 1-76.

stdbool.h

The stdbool.h header file contains three boolean related macros (true,
false and __bool_true_false_are_defined) and an associated data type
(bool). This header file was introduced in the C99 standard library.

stddef.h

The stddef.h header file contains a few common definitions useful for
portable programs, such as size_t.

stdfix.h

The stdfix.h file contains function prototypes and macro definitions to
support the native fixed-point type fract as defined by the ISO/IEC
Technical Report 18037. The inclusion of this header file enables the
fract keyword as an alias for _Fract. A discussion of support for native
fixed-point types is given in “Using Native Fixed-Point Types” in the
VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC Processors.

C and C++ Run-Time Libraries Guide

1-28 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

stdint.h

The stdint.h header file contains various exact-width integer types along
with associated minimum and maximum values. The stdint.h header file
was introduced in the C99 standard library.

Table 1-12 describes each type with regard to MIN and MAX macros.

Table 1-12. Exact-Width Integer Types

Type Common Equivalent MIN MAX

int32_t int INT32_MIN INT32_MAX

int64_t long long INT64_MIN INT64_MAX

uint32_t unsigned int 0 UINT32_MAX

uint64_t unsigned long long 0 UINT64_MAX

int_least8_t int INT_LEAST8_MIN INT_LEAST8_MAX

int_least16_t int INT_LEAST16_MIN INT_LEAST16_MAX

int_least32_t int INT_LEAST32_MIN INT_LEAST32_MAX

int_least64_t long long INT_LEAST64_MIN INT_LEAST64_MAX

uint_least8_t unsigned int 0 UINT_LEAST8_MAX

uint_least16_t unsigned int 0 UINT_LEAST16_MAX

uint_least32_t unsigned int 0 UINT_LEAST32_MAX

uint_least64_t unsigned long long 0 UINT_LEAST64_MAX

int_fast8_t int INT_FAST8_MIN INT_FAST8_MAX

int_fast16_t int INT_FAST16_MIN INT_FAST16_MAX

int_fast32_t int INT_FAST32_MIN INT_FAST32_MAX

int_fast64_t long long INT_FAST64_MIN INT_FAST64_MAX

uint_fast8_t unsigned int 0 UINT_FAST8_MAX

uint_fast16_t unsigned int 0 UINT_FAST16_MAX

uint_fast32_t unsigned int 0 UINT_FAST32_MAX

uint_fast64_t unsigned int 0 UINT_FAST64_MAX

VisualDSP++ 5.0 1-29
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Table 1-13 describes MIN and MAX macros defined for typedefs in other
headings.

Macros for minimum-width integer constants include: INT8_C(x),
INT16_C(x), INT32_C(x), UINT8_C(x), UINT16_C(x), UINT32_C(x),
INT64_C(x) and UINT64_C(x).

Macros for greatest-width integer constants include INTMAX_C(x) and
UINTMAX_C(x).

intmax_t int INTMAX_MIN INTMAX_MAX

intptr_t int INTPTR_MIN INTPTR_MAX

uintmax_t unsigned int 0 UINTMAX_MAX

uintptr_t unsigned int 0 UINTPTR_MAX

Table 1-13. MIN and MAX Macros for typedefs in Other Headings

Type MIN MAX

ptrdiff_t PTRDIFF_MIN PTRDIFF_MAX

sig_atomic_t SIG_ATOMIC_MIN SIG_ATOMIC_MAX

size_t 0 SIZE_MAX

wchar_t WCHAR_MIN WCHAR_MAX

wint_t WINT_MIN WINT_MAX

Table 1-12. Exact-Width Integer Types (Cont’d)

Type Common Equivalent MIN MAX

C and C++ Run-Time Libraries Guide

1-30 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

stdio.h

The stdio.h header file defines a set of functions, macros, and data types
for performing input and output. Applications that use the facilities of
this header file should link with the I/O library libio.dlb in the same way
as linking with the C run-time library (see “Linking Library Functions” on
page 1-4). The library is thread-safe but it is not interrupt-safe and should
not therefore be called either directly or indirectly from an interrupt ser-
vice routine.

The compiler uses definitions within the header file to select an appropri-
ate set of functions that correspond to the currently selected size of type
double (either 32 bits or 64 bits). Any source file that uses the facilities of
stdio.h must therefore include the header file. Failure to include the
header file results in a linker failure as the compiler must see a correct
function prototype in order to generate the correct calling sequence.

The default I/O library does not support input and output of fixed-point
values in floating-point format with the r and R format specifiers in the
printf and scanf family of functions. These will be printed in hexadeci-
mal format. If you wish to include full support for the r and R format
specifiers, link your application with the fixed-point I/O library, using the
-flags-link -MD__LIBIO_FX switch. For more information, see
“Fixed-Point I/O Conversion Specifiers” in the VisualDSP++ 5.0 C/C++
Compiler Manual for SHARC Processors.

The implementation of the stdio.h routines is based on a simple interface
with a device driver that provides a set of low-level primitives for open,
close, read, write, and seek operations. By default, these operations are
provided by the VisualDSP++ simulator and EZ-KIT Lite systems and this
mechanism is outlined in the section “Default Device Driver Interface” on
page 1-68.

Alternative device drivers may be registered that can then be used trans-
parently through the stdio.h functions. See “Extending I/O Support To
New Devices” on page 1-59 for a description of the feature. Applications

VisualDSP++ 5.0 1-31
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

that do not require this functionality may be built with the -flags-link
-MD__LIBIO_LITE switch. The switch links the application with a version
of the I/O library that does not support the ability to register alternative
device drivers, does not support the %a conversion specifier in printf, and
does not support the hh, j, ll, t, or z size qualifiers in scanf. Linking with
this switch results in a smaller executable.

 When creating applications, be aware that the default device driver
is activated when:

• A file is opened or closed.

• An input buffer becomes empty.

• An output buffer becomes full or is flushed.

• Interrogating or repositioning a file pointer.

• Deleting a file through the remove library function.

• Renaming a file through the rename library function.

Under the above conditions, the default device driver will disable
interrupts and will halt the DSP while it negotiates with the host to
perform the required I/O operation. Once the I/O operation has
completed, the default device driver will restart the DSP and
re-enable interrupts.

While the DSP is stopped, the cycle count registers are not updated
and the DSP itself cannot initiate any interrupts; however, signals
that correspond to external events can still occur, and these may be
activated once the default device driver re-enables interrupts.

C and C++ Run-Time Libraries Guide

1-32 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The following restrictions apply to this software release:

• The functions tmpfile and tmpnam are not available.

• The functions rename and remove are only supported under the
default device driver supplied by the VisualDSP++ simulator and
EZ-KIT Lite systems, and they only operate on the host file system.

• Positioning within a file that has been opened as a text stream is
only supported if the lines within the file are terminated by the
character sequence \r\n.

• Support for formatted reading and writing of data of long double
type is only supported if an application is built with the
-double-size-64 switch.

At program termination, the host environment closes down any physical
connection between the application and an opened file. However, the I/O
library does not implicitly close any opened streams to avoid unnecessary
overheads (particularly with respect to memory occupancy). Thus, unless
explicit action is taken by an application, any unflushed output may be
lost.

Any output generated by printf is always flushed but output generated by
other library functions, such as putchar, fwrite, and fprintf, is not
automatically flushed. Applications should therefore arrange to close
down any streams that they open. Note that the function reference fflush
(NULL); flushes the buffers of all opened streams.

 Each opened stream is allocated a buffer which either contains data
from an input file or output from a program. For text streams, this
data is held in the form of 8-bit characters that are packed into
32-bit memory locations. Due to internal mechanisms used to
unpack and pack this data, the buffer must not reside at a memory
location that is greater than the address 0x3fffffff. Since the
stdio library allocates buffers from the heap, this restriction
implies that the heap should not be placed at address 0x40000000

VisualDSP++ 5.0 1-33
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

or above. The restriction may be avoided by using the setvbuf
function to allocate the buffer from alternative memory, as in the
following example.

#include <stdio.h>

char buffer[BUFSIZ];

setvbuf(stdout,buffer,_IOLBF,BUFSIZ);

printf("Hello World\n");

This example assumes that the buffer resides at a memory location
that is less than 0x40000000.

For a list of library functions that use this header, see Table 1-26 on
page 1-76.

stdlib.h

The stdlib.h header file offers general utilities specified by the C stan-
dard. These include some integer math functions, such as abs, div, and
rand; general string-to-numeric conversions; memory allocation functions,
such as malloc and free; and termination functions, such as exit. This
library also contains miscellaneous functions such as bsearch and qsort.

This header file also provides prototypes for a number of additional inte-
ger math functions provided by Analog Devices, such as avg, max, and
clip. Table 1-14 is a summary of the additional library functions defined
by the stdlib.h header file.

 Some functions exist as both integer and floating point functions.
The floating point functions typically have an f prefix. Make sure
you use the correct type.

C and C++ Run-Time Libraries Guide

1-34 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

A number of functions, including abs, avg, max, min, and clip, are imple-
mented via intrinsics (provided the header file has been #include’d) that
map to single-cycle machine instructions.

 If the header file is not included, the library implementation is
used instead—at a considerable loss in efficiency.

For a list of library functions that use this header, see Table 1-27 on
page 1-77.

Table 1-14. Standard Library – Additional Functions

Description Prototype

Average int avg (int a, int b);
long lavg (long a, long b);
long long llavg (long long a, long long b);

Clip int clip (int a, int b);
long lclip (long a, long b);
long long llclip (long long a, long long b);

Count bits set int count_ones (int a);
int lcount_ones (long a);
int llcount_ones (long long a);

Maximum int max (int a, int b);
long lmax (long a, long b);
long long llmax (long long a, long long b);

Minimum int min (int a, int b);
long lmin (long a, long b);
long long llmin (long long a, long long b);

Multiple
heaps for
dynamic
memory allo-
cation

void *heap_calloc(int heap_index, size_t nelem, size_t size);
void heap_free(int heap_index, void *ptr);
void *heap_malloc(int heap_index, size_t size);
void *heap_realloc(int heap_index, void *ptr, size_t size);
int set_alloc_type(char * heap_name);
int heap_install(void *base, size_t size, int userid, int pmdm);
int heap_lookup_name(char *userid);
int heap_switch(int heapid);

VisualDSP++ 5.0 1-35
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

string.h

The string.h header file contains string handling functions, including
strcpy and memcpy.

For a list of library functions that use this header, see Table 1-28 on
page 1-78.

time.h

The time.h header file provides functions, data types, and a macro for
expressing and manipulating date and time information. The header file
defines two fundamental data types, one of which is clock_t and the
other which is time_t.

The time_t data type is used for values that represent the number of sec-
onds that have elapsed since a known epoch; values of this form are known
as a calendar time. In this implementation, the epoch starts on 1st January,
1970, and calendar times before this date are represented as negative
values.

A calendar time may also be represented in a more versatile way as a
broken-down time which is a structured variable of the following form:

struct tm { int tm_sec; /* seconds after the minute [0,61] */

int tm_min; /* minutes after the hour [0,59] */

int tm_hour; /* hours after midnight [0,23] */

int tm_mday; /* day of the month [1,31] */

int tm_mon; /* months since January [0,11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1st [0,365] */

int tm_isdst; /* Daylight Saving flag */

};

C and C++ Run-Time Libraries Guide

1-36 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

 This implementation does not support either the Daylight Saving
flag in the structure struct tm; nor does it support the concept of
time zones. All calendar times are therefore assumed to relate to
Greenwich Mean Time (Coordinated Universal Time or UTC).

The clock_t data type is associated with the number of implementa-
tion-dependent processor “ticks” used since an arbitrary starting point. By
default the data type is equivalent to the long data type and can only be
used to measure an elapsed time of a small number of seconds (depending
upon the processor’s clock speed). To measure a longer time span requires
an alternative definition of the data type.

If the macro __LONG_LONG_PROCESSOR_TIME__ is defined at compile-time
(either before including the header file time.h, or by using the
compile-time switch -D__LONG_LONG_PROCESSOR_TIME__), the clock_t data
type will be typedef’d as a long long, which should be sufficient to record
an elapsed time for the most demanding application.

The header file sets the CLOCKS_PER_SEC macro to the number of processor
cycles per second and this macro can therefore be used to convert data of
type clock_t into seconds, normally by using floating-point arithmetic to
divide it into the result returned by the clock function.

 In general, the processor speed is a property of a particular chip and
it is therefore recommended that the value to which this macro is
set is verified independently before it is used by an application.

In this version of the C/C++ compiler, the CLOCKS_PER_SEC macro is set by
one of the following (in descending order of precedence):

• Via the -DCLOCKS_PER_SEC=<definition> compile-time switch

• Via the Processor speed box in the VisualDSP++ Project Options
dialog box, Compile tab, Processor category

• From the header file cycles.h

VisualDSP++ 5.0 1-37
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

For a list of library functions that use this header, see Table 1-29 on
page 1-78.

Calling Library Functions From an ISR
Not all C run-time library functions are interrupt-safe (and can therefore
be called from an interrupt service routine). For a run-time function to be
classified as interrupt-safe, it must:

• Not update any global data, such as errno, and

• Not write to (or maintain) any private static data

It is recommended therefore that none of the functions defined in the
header file math.h, nor the string conversion functions defined in
stdlib.h, be called from an ISR as these functions are commonly defined
to update the global variable errno. Similarly, the functions defined in the
stdio.h header file maintain static tables for currently opened streams and
should not be called from an ISR. Additionally, the memory allocation
routines malloc, calloc, realloc, free, and the C++ operators new and delete
read and update global tables and are not interrupt-safe.

Several other library functions are not interrupt-safe because they make
use of private static data. These functions are:

asctime

gmtime

localtime

rand

srand

strtok

While not all C run-time library functions are interrupt-safe, versions of
the functions are available that are thread-safe and may be used in a VDK
multi-threaded environment. These library functions can be found in the
run-time libraries that have the suffix _mt in their filename.

C and C++ Run-Time Libraries Guide

1-38 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Using the Libraries in a Multi-Threaded
Environment

It is sometimes desirable for there to be several instances of a given library
function to be active at any one time. Two examples of such a requirement
are:

• An interrupt or other external event invokes a function, while the
application is also executing that function,

• An application that runs in a multi-threaded environment, such as
VDK, and more than one thread executes the function
concurrently.

The majority of the functions in the C and C++ run-time libraries are safe
in this regard and may be called in either of the above schemes; this is
because the functions operate on parameters passed in by the caller and
they do not maintain private static storage, and they do not access
non-constant global data.

A subset of the library functions however either make use of private stor-
age or they operate on shared resources (such as FILE pointers). This can
lead to undefined behavior if two instances of a function simultaneously
access the same data. The issues associated with calling such library func-
tions via an interrupt or other external event is discussed in the section
“Calling Library Functions From an ISR” on page 1-37.

A VisualDSP++ installation contains versions of the C and C++ libraries
that may be used in a multi-threaded environment. These libraries have
recursive locking mechanisms so that shared resources, such as stdio FILE
tables and buffers, are only updated by a single function instance at any
given time. The libraries also make use of local-storage routines for
thread-local private copies of data, and for the variable errno (each thread
therefore has its own copy of errno).

VisualDSP++ 5.0 1-39
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The multi-threaded libraries have “mt” in their filename and will be used
automatically by the default VDK .ldf file to build a multi-threaded
application.

Note that the DSP run-time library (which is described in Chapter 2,
“DSP Run-Time Library”) is thread-safe and may be used in any
multi-threaded environment.

Using Compiler Built-In C Library Functions
The C compiler intrinsic (built-in) functions are functions that the com-
piler immediately recognizes and replaces with inline assembly code
instead of a function call. For example, the absolute value function, abs(),
is recognized by the compiler, which subsequently replaces a call to the C
run-time library version with an inline version. The cc21k compiler con-
tains a number of intrinsic built-in functions for efficient access to various
features of the hardware.

Built-in functions are recognized for cases where the name begins with the
string __builtin, and the declared prototype of the function matches the
prototype that the compiler expects. Built-in functions are declared in sys-
tem header files. Include the appropriate header file in your program to
use these functions. The normal action of the appropriate include file is to
#define the normal name as mapping to the built-in form.

Typically, inline built-in functions are faster than an average library rou-
tine, and it does not incur the calling overhead. The routines in
Table 1-15 are built-in C library functions for the cc21k compiler.

C and C++ Run-Time Libraries Guide

1-40 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

If you want to use the C run-time library functions of the same name,
compile with the -no-builtin compiler switch.

For a certain category of library function, the compiler relaxes the normal
rule whereby pointers that are passed as arguments must address Data
Memory (DM). For functions in this category, any argument that is a
pointer may also address Program Memory (PM). When the compiler rec-
ognizes that certain arguments reference PM, it generates a call to an
appropriate version of the function in the run-time library.

Table 1-16 contains a list of library functions that may be called with
pointers to Program Memory. Note that this facility is only available pro-
vided that the -no-builtin compiler switch has not been specified.

Table 1-15. Compiler Built-in Functions

abs avg clip

copysign1 copysignf fabs1

fabsf favg1 favgf

fclip1 fclipf fmax1

fmaxf fmin1 fminf

labs lavg lclip

lmax lmin max

min

1 These functions are only compiled as a built-in func-
tion if double is the same size as float.

VisualDSP++ 5.0 1-41
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Abridged C++ Library Support
When in C++ mode, the cc21k compiler can call a large number of func-
tions from the Abridged Library, a conforming subset of C++ library.

 C++ is not supported for ADSP-21020 processors.

The Abridged C++ library has two major components: embedded C++
library (EC++) and embedded standard template library (ESTL). The
embedded C++ library is a conforming implementation of the embedded
C++ library as specified by the Embedded C++ Technical Committee. You
can view the Abridged Library Reference by locating the file
docs\cpl_lib\index.html underneath your VisualDSP++ installation and
opening it in a web browser.

This section lists and briefly describes the following components of the
Abridged C++ library:

• “Embedded C++ Library Header Files” on page 1-42

• “C++ Header Files for C Library Facilities” on page 1-44

Table 1-16. Dual Memory Capable Functions

atof atoi atol frexp

frexpf memchr memcmp memcpy

memmove memset modf modff

setlocale strcat strchr strcmp

strcoll strcpy strcspn strlen

strncat strncmp strncpy strpbrk

strrchr strspn strstr strtod

strtok strtol strtoul strxfrm

C and C++ Run-Time Libraries Guide

1-42 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

• “Embedded Standard Template Library Header Files” on
page 1-46

• “Using Thread-Safe C/C++ Run-Time Libraries With VDK” on
page 1-48

For more information on the Abridged Library, see online Help.

Embedded C++ Library Header Files

The following section provides a brief description of the header files in the
embedded C++ library.

complex

The complex header file defines a template class complex and a set of asso-
ciated arithmetic operators. Predefined types include complex_float and
complex_long_double.

This implementation does not support the full set of complex operations
as specified by the C++ standard. In particular, it does not support either
the transcendental functions or the I/O operators << and >>.

The complex header and the C library header file complex.h refer to two
different and incompatible implementations of the complex data type.

exception

The exception header file defines the exception and bad_exception
classes and several functions for exception handling.

fract

The fract header file defines the fract data type, which supports frac-
tional arithmetic, assignment, and type-conversion operations. The header
file is fully described in Chapter 1 of the VisualDSP++ 5.0 Compiler Man-
ual, section “C++ Fractional Type Support”.

VisualDSP++ 5.0 1-43
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fstream

The fstream header file defines the filebuf, ifstream, and ofstream
classes for external file manipulations.

iomanip

The iomanip header file declares several iostream manipulators. Each
manipulator accepts a single argument.

ios

The ios header file defines several classes and functions for basic iostream
manipulations. Note that most of the iostream header files include ios.

iosfwd

The iosfwd header file declares forward references to various iostream
template classes defined in other standard header files.

iostream

The iostream header file declares most of the iostream objects used for
the standard stream manipulations.

istream

The istream header file defines the istream class for iostream extractions.
Note that most of the iostream header files include istream.

new

The new header file declares several classes and functions for memory allo-
cations and deallocations.

ostream

The ostream header file defines the ostream class for iostream insertions.

C and C++ Run-Time Libraries Guide

1-44 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

sstream

The sstream header file defines the stringbuf, istringstream, and
ostringstream classes for various string object manipulations.

stdexcept

The stdexcept header file defines a variety of classes for exception
reporting.

streambuf

The streambuf header file defines the streambuf classes for basic opera-
tions of the iostream classes. Note that most of the iostream header files
include streambuf.

string

The string header file defines the string template and various supporting
classes and functions for string manipulations.

 Objects of the string type should not be confused with the
null-terminated C strings.

strstream

The strstream header file defines the strstreambuf, istrstream, and
ostream classes for iostream manipulations on allocated, extended, and
freed character sequences.

C++ Header Files for C Library Facilities

For each C standard library header there is a corresponding standard C++
header. If the name of a C standard library header file were foo.h, then
the name of the equivalent C++ header file would be cfoo. For example,
the C++ header file <cstdio> provides the same facilities as the C header
file <stdio.h>.

VisualDSP++ 5.0 1-45
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Table 1-17 lists the C++ header files that provide access to the C library
facilities.

The C standard headers files may be used to define names in the C++
global namespace, while the equivalent C++ header files define names in
the standard namespace.

 Chapter 2, “DSP Run-Time Library” describes the functions in the
DSP run-time libraries. Referencing these functions with a
namespace prefix is not supported. All DSP library functions are in
the global namespace.

Table 1-17. C++ Header Files for C Library Facilities

Header Description

cassert Enforces assertions during function executions

cctype Classifies characters

cerrno Tests error codes reported by library functions

cfloat Tests floating-point type properties

climits Tests integer type properties

clocale Adapts to different cultural conventions

cmath Provides common mathematical operations

csetjmp Executes non-local goto statements

csignal Controls various exceptional conditions

cstdarg Accesses a variable number of arguments

cstddef Defines several useful data types and macros

cstdio Performs input and output

cstdlib Performs a variety of operations

cstring Manipulates several kinds of strings

C and C++ Run-Time Libraries Guide

1-46 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Embedded Standard Template Library Header Files

Templates and the associated header files are not part of the embedded
C++ standard, but they are supported by the cc21k compiler in C++
mode.

The embedded standard template library header files are:

algorithm

The algorithm header file defines numerous common operations on
sequences.

deque

The deque header file defines a deque template container.

functional

The functional header file defines numerous function templates that can
be used to create callable types.

hash_map

The hash_map header file defines two hashed map template containers.

hash_set

The hash_set header file defines two hashed set template containers.

iterator

The iterator header file defines common iterators and operations on
iterators.

list

The list header file defines a list template container.

VisualDSP++ 5.0 1-47
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

map

The map header file defines two map template containers.

memory

The memory header file defines facilities for managing memory.

numeric

The numeric header file defines several numeric operations on sequences.

queue

The queue header file defines two queue template container adapters.

set

The set header file defines two set template containers.

stack

The stack header file defines a stack template container adapter.

utility

The utility header file defines an assortment of utility templates.

vector

The vector header file defines a vector template container.

C and C++ Run-Time Libraries Guide

1-48 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Header Files for C++ Library Compatibility

The Embedded C++ library also includes several header files for compati-
bility with traditional C++ libraries. Table 1-18 describes these files.

Using Thread-Safe C/C++ Run-Time Libraries With VDK

When developing for VDK, the thread-safe variants of the run-time librar-
ies are linked with user applications. These libraries may add an overhead
to the VDK resources required by some applications.

The run-time libraries make use of VDK synchronicity functions to
ensure thread safety.

Measuring Cycle Counts
The common basis for benchmarking some arbitrary C-written source is
to measure the number of processor cycles that the code uses. Once this
figure is known, it can be used to calculate the actual time taken by multi-
plying the number of processor cycles by the clock rate of the processor.
The run-time library provides three alternative methods for measuring
processor cycles, as described in the following sections.

Table 1-18. Header Files for C++ Library Compatibility

Header Description

fstream.h Defines several iostream template classes that manipulate external
files

iomanip.h Declares several iostreams manipulators that take a single argument

iostream.h Declares the iostream objects that manipulate the standard streams

new.h Declares several functions that allocate and free storage

VisualDSP++ 5.0 1-49
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Each of these methods is described in:

• “Basic Cycle Counting Facility” on page 1-49

• “Cycle Counting Facility With Statistics” on page 1-51

• “Using time.h to Measure Cycle Counts” on page 1-54

• “Determining the Processor Clock Rate” on page 1-56

• “Considerations When Measuring Cycle Counts” on page 1-57

Basic Cycle Counting Facility

The fundamental approach to measuring the performance of a section of
code is to record the current value of the cycle count register before exe-
cuting the section of code, and then reading the register again after the
code has been executed. This process is represented by two macros that are
defined in the cycle_count.h header file:

START_CYCLE_COUNT(S)

STOP_CYCLE_COUNT(T,S)

The parameter S is set by the macro START_CYCLE_COUNT to the current
value of the cycle count register; this value should then be passed to the
macro STOP_CYCLE_COUNT, which will calculate the difference between the
parameter and current value of the cycle count register. Reading the cycle
count register incurs an overhead of a small number of cycles and the
macro ensures that the difference returned (in the parameter T) will be
adjusted to allow for this additional cost. The parameters S and T should
be separate variables; they should be declared as a cycle_t data type which
the header file cycle_count.h defines as:

typedef volatile unsigned long cycle_t;

C and C++ Run-Time Libraries Guide

1-50 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

 The cycle_t type can be configured to use the unsigned long long
type for its definition. To do this, you should compile your appli-
cation with the compile-time macro
__LONG_LONG_PROCESSOR_TIME__ defined to 1.

The header file also defines the macro:

 PRINT_CYCLES(STRING,T)

which is provided mainly as an example of how to print a value of type
cycle_t; the macro outputs the text STRING on stdout followed by the
number of cycles T.

The instrumentation represented by the macros defined in this section is
activated only if the program is compiled with the –DDO_CYCLE_COUNTS
switch. If this switch is not specified, then the macros are replaced by
empty statements and have no effect on the program.

The following example demonstrates how the basic cycle counting facility
may be used to monitor the performance of a section of code:

#include <cycle_count.h>

#include <stdio.h>

extern int

main(void)

{

cycle_t start_count;

cycle_t final_count;

START_CYCLE_COUNT(start_count);

Some_Function_Or_Code_To_Measure();

STOP_CYCLE_COUNT(final_count,start_count);

PRINT_CYCLES("Number of cycles: ",final_count);

}

VisualDSP++ 5.0 1-51
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The run-time libraries provide alternative facilities for measuring the per-
formance of C source (see “Cycle Counting Facility With Statistics” on
page 1-51 and “Using time.h to Measure Cycle Counts” on page 1-54);
the relative benefits of this facility are outlined in “Considerations When
Measuring Cycle Counts” on page 1-57.

The basic cycle counting facility is based upon macros; it may therefore be
customized for a particular application (if required), without the need for
rebuilding the run-time libraries.

Cycle Counting Facility With Statistics

The cycles.h header file defines a set of macros for measuring the perfor-
mance of compiled C source. In addition to providing the basic facility for
reading the EMUCLK cycle count register of the SHARC architecture, the
macros can also accumulate statistics suited to recording the performance
of a section of code that is executed repeatedly.

If the switch -DDO_CYCLE_COUNTS is specified at compile-time, the
cycles.h header file defines the following macros:

• CYCLES_INIT(S)
This macro initializes the system timing mechanism and clears the
parameter S; an application must contain one reference to this
macro.

• CYCLES_START(S)
This macro extracts the current value of the cycle count register
and saves it in the parameter S.

• CYCLES_STOP(S)
This macro extracts the current value of the cycle count register
and accumulates statistics in the parameter S, based on the previous
reference to the CYCLES_START macro.

C and C++ Run-Time Libraries Guide

1-52 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

• CYCLES_PRINT(S)

This macro prints a summary of the accumulated statistics
recorded in the parameter S.

• CYCLES_RESET(S)

This macro re-zeros the accumulated statistics that are recorded in
the parameter S.

The parameter S that is passed to the macros must be declared to be of the
type cycle_stats_t; this is a structured data type that is defined in the
cycles.h header file. The data type can record the number of times that
an instrumented part of the source has been executed, as well as the mini-
mum, maximum, and average number of cycles that have been used. For
example, if an instrumented piece of code has been executed 4 times, the
CYCLES_PRINT macro would generate output on the standard stream std-
out in the form:

AVG : 95

MIN : 92

MAX : 100

CALLS : 4

If an instrumented piece of code had only been executed once, then the
CYCLES_PRINT macro would print a message of the form:

CYCLES : 95

If the switch -DDO_CYCLE_COUNTS is not specified, then the macros
described above are defined as null macros and no cycle count information
is gathered. Therefore, to switch between development and release mode
only requires a re-compilation and will not require any changes to the
source of an application.

The macros defined in the cycles.h header file may be customized for a
particular application without having to rebuild the run-time libraries.

VisualDSP++ 5.0 1-53
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The following example demonstrates how this facility may be used.

#include <cycles.h>

#include <stdio.h>

extern void foo(void);

extern void bar(void);

extern int

main(void)

{

cycle_stats_t stats;

int i;

CYCLES_INIT(stats);

for (i = 0; i < LIMIT; i++) {

CYCLES_START(stats);

foo();

CYCLES_STOP(stats);

}

printf("Cycles used by foo\n");

CYCLES_PRINT(stats);

CYCLES_RESET(stats);

for (i = 0; i < LIMIT; i++) {

CYCLES_START(stats);

bar();

CYCLES_STOP(stats);

}

printf("Cycles used by bar\n");

CYCLES_PRINT(stats);

}

C and C++ Run-Time Libraries Guide

1-54 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

This example might output:

Cycles used by foo

AVG : 25454

MIN : 23003

MAX : 26295

CALLS : 16

Cycles used by bar

AVG : 8727

MIN : 7653

MAX : 8912

CALLS : 16

Alterative methods of measuring the performance of compiled C source
are described in the sections “Basic Cycle Counting Facility” on page 1-49
and “Using time.h to Measure Cycle Counts” on page 1-54. Also refer to
“Considerations When Measuring Cycle Counts” on page 1-57 which
provides some useful tips with regards to performance measurements.

Using time.h to Measure Cycle Counts

The time.h header file defines the data type clock_t, the clock function,
and the macro CLOCKS_PER_SEC, which together may be used to calculate
the number of seconds spent in a program.

In the ANSI C standard, the clock function is defined to return the num-
ber of implementation dependent clock “ticks” that have elapsed since the
program began. In this version of the C/C++ compiler, the function
returns the number of processor cycles that an application has used.

The conventional way of using the facilities of the time.h header file to
measure the time spent in a program is to call the clock function at the
start of a program, and then subtract this value from the value returned by
a subsequent call to the function. The computed difference is usually cast

VisualDSP++ 5.0 1-55
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

to a floating-point type, and is then divided by the macro CLOCKS_PER_SEC
to determine the time in seconds that has occurred between the two calls.

If this method of timing is used by an application, note that:

• The value assigned to the macro CLOCKS_PER_SEC should be inde-
pendently verified to ensure that it is correct for the particular
processor being used (see “Determining the Processor Clock Rate”
on page 1-56),

• The result returned by the clock function does not include the
overhead of calling the library function.

A typical example that demonstrates the use of the time.h header file to
measure the amount of time that an application takes is shown below.

#include <time.h>

#include <stdio.h>

extern int

main(void)

{

volatile clock_t clock_start;

volatile clock_t clock_stop;

double secs;

clock_start = clock();

Some_Function_Or_Code_To_Measure();

clock_stop = clock();

secs = ((double) (clock_stop - clock_start))

/ CLOCKS_PER_SEC;

printf("Time taken is %e seconds\n",secs);

}

C and C++ Run-Time Libraries Guide

1-56 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The cycles.h and cycle_count.h header files define other methods for
benchmarking an application—these header files are described in the sec-
tions “Basic Cycle Counting Facility” on page 1-49 and “Cycle Counting
Facility With Statistics” on page 1-51, respectively. Also refer to “Consid-
erations When Measuring Cycle Counts” on page 1-57 which provides
some guidelines that may be useful.

Determining the Processor Clock Rate

Applications may be benchmarked with respect to how many processor
cycles they use. However, applications are typically benchmarked with
respect to how much time (for example, in seconds) that they take.

Measuring the amount of time that an application takes to run on a
SHARC processor usually involves first determining the number of cycles
that the processor takes, and then dividing this value by the processor’s
clock rate. The time.h header file defines the macro CLOCKS_PER_SEC as
the number of processor “ticks” per second.

On an ADSP-21xxx (SHARC) architecture, this parameter is set by the
run-time library to one of the following values in descending order of
precedence:

• By way of the compile-time switch
-DCLOCKS_PER_SEC=<definition>.

• By way of the Processor speed box in the VisualDSP++ Project
Options dialog box, Compile tab, Processor category

• From the cycles.h header file

If the value of the macro CLOCKS_PER_SEC is taken from the cycles.h
header file, then be aware that the clock rate of the processor will usually
be taken to be the maximum speed of the processor, which is not necessar-
ily the speed of the processor at RESET.

VisualDSP++ 5.0 1-57
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Considerations When Measuring Cycle Counts

This section summarizes cycle-counting techniques for benchmarking
C-compiled code. Each of these alternatives are described below.

• “Basic Cycle Counting Facility” on page 1-49
The basic cycle counting facility represents an inexpensive and rela-
tively unobtrusive method for benchmarking C-written source
using cycle counts. The facility is based on macros that factor in
the overhead incurred by the instrumentation. The macros may be
customized and can be switched either or off, and so no source
changes are required when moving between development and
release mode. The same set of macros is available on other plat-
forms provided by Analog Devices.

• “Cycle Counting Facility With Statistics” on page 1-51
This cycle-counting facility has more features than the basic cycle
counting facility described above. It is more expensive in terms of
program memory, data memory, and cycles consumed. However, it
can record the number of times that the instrumented code has
been executed and can calculate the maximum, minimum, and
average cost of each iteration. The provided macros take into
account the overhead involved in reading the cycle count register.
By default, the macros are switched off, but they can be switched
on by specifying the -DDO_CYCLE_COUNTS compile-time switch. The
macros may be customized for a specific application. This cycle
counting facility is also available on other Analog Devices
architectures.

C and C++ Run-Time Libraries Guide

1-58 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

• “Using time.h to Measure Cycle Counts” on page 1-54
The facilities of the time.h header file represent a simple method
for measuring the performance of an application that is portable
across many different architectures and systems. These facilities are
based on the clock function.

The clock function however does not account for the cost involved
in invoking the function. In addition, references to the function
may affect the optimizer-generated code in the vicinity of the func-
tion call. This benchmarking method may not accurately reflect
the true cost of the code being measured.

This method is best suited for benchmarking applications rather
than smaller sections of code that run for a much shorter time
span.

When benchmarking code, some thought is required when adding instru-
mentation to C source that will be optimized. If the sequence of
statements to be measured is not selected carefully, the optimizer may
move instructions into (and out of) the code region and/or it may re-site
the instrumentation itself, leading to distorted measurements. Therefore,
it is generally considered more reliable to measure the cycle count of call-
ing (and returning from) a function rather than a sequence of statements
within a function.

It is recommended that variables used directly in benchmarking are simple
scalars that are allocated in internal memory (either assigned the result of a
reference to the clock function, or used as arguments to the cycle count-
ing macros). In the case of variables that are assigned the result of the
clock function, it is also recommended that they be defined with the vol-
atile keyword.

The different methods presented here to obtain the performance metrics
of an application are based on the EMUCLK register. This is a 32-bit register
that is incremented at every processor cycle; once the counter reaches the

VisualDSP++ 5.0 1-59
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

value 0xffffffff it will wrap back to zero and will also increment the
EMUCLK2 register. By default, to save memory and execution time, the
EMUCLK2 register is not used by either the clock function or the cycle
counting macros. The performance metrics therefore will wrap back to
zero after approximately every 71 seconds on a 60 MHz processor. If you
require a longer measurement duration, define the compile-time macro
__LONG_LONG_PROCESSOR_TIME__.

File I/O Support
The VisualDSP++ environment provides access to files on a host system
by using stdio functions. File I/O support is provided through a set of
low-level primitives that implement the open, close, read, write, and seek
operations. The functions defined in the stdio.h header file make use of
these primitives to provide conventional C input and output facilities.
The source files for the I/O primitives are available under the
ADSP-21xxx installation of VisualDSP++ in the subdirectory
. . .\lib\src\libio_src.

This section describes:

• “Extending I/O Support To New Devices” on page 1-59

• “Default Device Driver Interface” on page 1-68

Refer to “stdio.h” on page 1-30 for information about the conventional C
input and output facilities that are provided by the compiler.

Extending I/O Support To New Devices

The I/O primitives are implemented using an extensible device driver
mechanism. The default start-up code includes a device driver that can
perform I/O through the VisualDSP++ simulator and EZ-KIT Lite evalu-
ation systems. Other device drivers may be registered and then used
through the normal stdio functions.

C and C++ Run-Time Libraries Guide

1-60 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

This section describes:

• “DevEntry Structure” on page 1-60

• “Registering New Devices” on page 1-65

• “Pre-Registering Devices” on page 1-66

• “Default Device” on page 1-67

• “Remove and Rename Functions” on page 1-68

DevEntry Structure

A device driver is a set of primitive functions grouped together into a
DevEntry structure. This structure is defined in device.h.

struct DevEntry {

int DeviceID;

void *data;

int (*init)(struct DevEntry *entry);

int (*open)(const char *name, int mode);

int (*close)(int fd);

int (*write)(int fd, unsigned char *buf, int size);

int (*read)(int fd, unsigned char *buf, int size);

long (*seek)(long fd, int offset, int whence);

int stdinfd;

int stdoutfd;

int stderrfd;

}

typedef struct DevEntry DevEntry;

typedef struct DevEntry *DevEntry_t;

VisualDSP++ 5.0 1-61
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The fields within the DevEntry structure have the following meanings.

DeviceID:
The DeviceID field is a unique identifier for the device, known to the user.
Device IDs are used globally across an application.

data:
The data field is a pointer for any private data the device may need; it is
not used by the run-time libraries.

init:
The init field is a pointer to an initialization function. The run-time
library calls this function when the device is first registered, passing in the
address of this structure (and thus giving the init function access to
DeviceID and the field data). If the init function encounters an error, it
must return -1. Otherwise, it must return a positive value to indicate
success.

open:
The open field is a pointer to a function performs the "open file" opera-
tion upon the device; the run-time library will call this function in
response to requests such as fopen(), when the device is the cur-
rently-selected default device. The name parameter is the path name to the
file to be opened, and the mode parameter is a bitmask that indicates how
the file is to be opened:

0x0001 Open file for reading

0x0002 Open file for writing

0x0004 Open file for appending

0x0008 Truncate the file to zero length, if it already exists

0x00010 Create the file, if it does not already exist

C and C++ Run-Time Libraries Guide

1-62 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

By default, files are opened as text streams (in which the character
sequence \r\n is converted to \n when reading, and the character \n is
written to the file as \r\n). A file is opened as a binary stream if the fol-
lowing bit value is set in the mode parameter:

0x0020 Open the file as a binary stream (raw mode).

The open function must return a positive “file descriptor” if it succeeds
in opening the file; this file descriptor is used to identify the file to the
device in subsequent operations. The file descriptor must be unique for all
files currently open for the device, but need not be distinct from file
descriptors returned by other devices—the run-time library identifies the
file by the combination of device and file descriptor.

If the open function fails, it must return -1 to indicate failure.

close:
The close field is a pointer to a function that performs the “close file”
operation on the device. The run-time library calls the close function in
response to requests such as fclose() on a stream that was opened on the
device. The fd parameter is a file descriptor previously returned by a call
to the open function. The close function must return a zero value for suc-
cess, and a non-zero value for failure.

write:
The write field is a pointer to a function that performs the “write to
file” operation on the device. The run-time library calls the write func-
tion in response to requests, such as fwrite(), fprintf() and so on, that
act on streams that were opened on the device. The write function takes
three parameters:

• fd – this is a file descriptor that identifies the file to be written to;
it will be a value that was returned from a previous call to the open
function.

VisualDSP++ 5.0 1-63
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

• buf – a pointer to the data to be written to the file

• size – the number of bytes to be written to the file

The write function must return one of the following values:

• A positive value from 1 to size inclusive, indicating how many
bytes from buf were successfully written to the file

• Zero, indicating that the file has been closed, for some reason (for
example, network connection dropped)

• A negative value, indicating an error

read:
The read field is a pointer to a function that performs the “read from
file” operation on the device. The run-time library calls the read func-
tion in response to requests, such as fread(), fscanf() and so on, that act
on streams that were opened on the device. The read function’s parame-
ters are:

• fd – this is the file descriptor for the file to be read

• buf – this is a pointer to the buffer where the retrieved data must
be stored

• size – this is the number of (8-bit) bytes to read from the file. This
must not exceed the space available in the buffer pointed to by buf

The read function must return one of the following values:

• A positive value from 1 to size inclusive, indicating how many
bytes were read from the file into buf

• Zero, indicating end-of-file

• A negative value, indicating an error

C and C++ Run-Time Libraries Guide

1-64 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

 The run-time library expects the read function to return 0xa (10)
as the newline character.

seek:
The seek field is a pointer to a function that performs dynamic access on
the file. The run-time library calls the seek function in response to
requests such as rewind(), fseek(), and so on, that act on streams that
were opened on the device.

The seek function takes the following parameters:

• fd – this is the file descriptor for the file which will have its
read/write position altered

• offset – this is a value that is used to determine the new read/write
pointer position within the file; it is in (8-bit) bytes

• whence – this is a value that indicates how the offset parameter is
interpreted:

• 0: offset is an absolute value, giving the new read/write
position in the file

• 1: offset is a value relative to the current position within
the file

• 2: offset is a value relative to the end of the file

The seek function returns a positive value that is the new (absolute) posi-
tion of the read/write pointer within the file, unless an error is
encountered, in which case the seek function must return a negative
value.

If a device does not support the functionality required by one of these
functions (such as read-only devices, or stream devices that do not support
seeking), the DevEntry structure must still have a pointer to a valid func-
tion; the function must arrange to return an error for attempted
operations.

VisualDSP++ 5.0 1-65
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

stdinfd:
The stdinfd field is set to the device file descriptor for stdin if the device
is expecting to claim the stdin stream, or to the enumeration value
dev_not_claimed otherwise.

stdoutfd:
The stdoutfd field is set to the device file descriptor for stdout if the
device is expecting to claim the stdout stream, or to the enumeration
value dev_not_claimed otherwise.

stderrfd:
The stderrfd field is set to the device file descriptor for stderr if the
device is expecting to claim the stderr stream, or to the enumeration
value dev_not_claimed otherwise.

Registering New Devices

A new device can be registered with the following function:

int add_devtab_entry(DevEntry_t entry);

If the device is successfully registered, the init() routine of the device is
called, with entry as its parameter. The add_devtab_entry() function
returns the DeviceID of the device registered.

If the device is not successfully registered, a negative value is returned.
Reasons for failure include (but are not limited to):

• The DeviceID is the same as another device, already registered

• There are no more slots left in the device registry table

• The DeviceID is less than zero

• Some of the function pointers are NULL

C and C++ Run-Time Libraries Guide

1-66 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

• The device’s init() routine returned a failure result

• The device has attempted to claim a standard stream that is already
claimed by another device

Pre-Registering Devices

The library source file devtab.c (which can be found under a Visu-
alDSP++ installation in the subdirectory . . . \lib\src\libio_src)
declares the array:

DevEntry_t DevDrvTable[];

This array contains pointers to DevEntry structures for each device that is
pre-registered, that is, devices that are available as soon as main() is
entered, and that do not need to be registered at run-time by calling
add_devtab_entry(). By default, the “PrimIO” device is registered. The
PrimIO device provides support for target/host communication when
using the simulators and the Analog Devices emulators and debug agents.
This device is pre-registered, so that printf() and similar functions oper-
ate as expected without additional setup.

Additional devices can be pre-registered by the following process:

1. Take a copy of the devtab.c source file and add it to your project.

2. Declare your new device’s DevEntry structure within the devtab.c
file, for example,

extern DevEntry myDevice;

3. Include the address of the DevEntry structure within the Dev-
DrvTable[] array. Ensure that the table is null-terminated. For
example,

DevEntry_t DevDrvTable[MAXDEV] = {

#ifdef PRIMIO

&primio_deventry,

VisualDSP++ 5.0 1-67
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

#endif

&myDevice, /* new pre-registered device */

0,

};

All pre-registered devices are initialized by the run-time library when it
calls the init function of each of the pre-registered devices in turn.

The normal behavior of the PrimIO device when it is registered is to claim
the first three files as stdin, stdout and stderr. These standard streams
may be re-opened on other devices at run-time by using freopen() to
close the PrimIO-based streams and re-open the streams on the current
default device.

To allow an alternative device (either pre-registered or registered by
add_devtab_entry()) to claim one or all of the standard streams:

1. Take a copy of the primiolib.c source file, and add it to your
project.

2. Edit the appropriate stdinfd, stdoutfd, and stderrfd file descrip-
tors in the primio_deventry structure to have the value
dev_not_claimed.

3. Ensure the alternative device’s DevEntry structure has set the stan-
dard stream file descriptors appropriately.

Both the device initialization routines, called from the startup code and
add_devtab_entry(), return with an error if a device attempts to claim a
standard stream that is already claimed.

Default Device

Once a device is registered, it can be made the default device using the fol-
lowing function:

void set_default_io_device(int);

C and C++ Run-Time Libraries Guide

1-68 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The function should be passed the DeviceID of the device. There is a cor-
responding function for retrieving the current default device:

int get_default_io_device(void);

The default device is used by fopen() when a file is first opened. The
fopen() function passes the open request to the open() function of the
device indicated by get_default_io_device(). The device’s file identifier
(fd) returned by the open() function is private to the device; other devices
may simultaneously have other open files that use the same identifier. An
open file is uniquely identified by the combination of DeviceID and fd.

The fopen() function records the DeviceID and fd in the global open file
table, and allocates its own internal fid to this combination. All future
operations on the file use this fid to retrieve the DeviceID and thus direct
the request to the appropriate device’s primitive functions, passing the fd
along with other parameters. Once a file has been opened by fopen(), the
current value of get_default_io_device() is irrelevant to that file.

Remove and Rename Functions

The PrimIO device provides support for the remove() and rename() func-
tions. These functions are not currently part of the extensible File I/O
interface, since they deal purely with path names, and not with file
descriptors. All calls to remove() and rename() in the run-time library are
passed directly to the PrimIO device.

Default Device Driver Interface

The stdio functions provide access to the files on a host system through a
device driver that supports a set of low-level I/O primitives. These
low-level primitives are described under “Extending I/O Support To New
Devices” on page 1-59. The default device driver implements these primi-
tives based on a simple interface provided by the VisualDSP++ simulator
and EZ-KIT Lite systems.

VisualDSP++ 5.0 1-69
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

All the I/O requests submitted through the default device driver are chan-
neled through the C function _primIO. The assembly label has two
underscores, __primIO . The source for this function, and all the other
library routines, can be found under the base installation for VisualDSP++
in the subdirectory ...\lib\src\libio_src.

The __primIO function accepts no arguments. Instead, it examines the I/O
control block at the label _PrimIOCB. Without external intervention by a
host environment, the __primIO routine simply returns, which indicates
failure of the request. Two schemes for host interception of I/O requests
are provided.

The first scheme is to modify control flow into and out of the __primIO
routine. Typically, this would be achieved by a break point mechanism
available to a debugger/simulator. Upon entry to __primIO, the data for
the request resides in a control block at the label _PrimIOCB. If this scheme
is used, the host should arrange to intercept control when it enters the
__primIO routine, and, after servicing the request, return control to the
calling routine.

The second scheme involves communicating with the DSP processor
through a pair of simple semaphores. This scheme is most suitable for an
externally-hosted development board. Under this scheme, the host system
should clear the data word whose label is __lone_SHARC; this causes
__primIO to assume that a host environment is present and able to com-
municate with the process.

If __primIO sees that __lone_SHARC is cleared, then upon entry (for exam-
ple, when an I/O request is made) it sets a non-zero value into the word
labeled __Godot. The __primIO routine then busy-waits until this word is
reset to zero by the host. The non-zero value of __Godot raised by
__primIO is the address of the I/O control block.

C and C++ Run-Time Libraries Guide

1-70 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Data Packing for Primitive I/O

The implementation of the __primIO interface is based on a word-address-
able machine, with each word comprising a fixed number of 8-bit bytes.
All READ and WRITE requests specify a move of some number of 8-bit bytes,
that is, the relevant fields count 8-bit bytes, not words. Packing is always
little endian, the first byte of a file read or written is the low-order byte of
the first word transferred.

Data packing is set to four bytes per word for the SHARC architecture.
Data packing can be changed to accommodate other architectures by
modifying the constant BITS_PER_WORD, defined in _wordsize.h. (For
example, a processor with 16-bit addressable words would change this
value to 16).

Note that the file name provided in an OPEN request uses the processor’s
“native” string format, normally one byte per word. Data packing applies
only to READ and WRITE requests.

Data Structure for Primitive I/O

The I/O control block is declared in _primio.h, as follows.

typedef struct

{

enum

{

PRIM_OPEN = 100,

PRIM_READ,

PRIM_WRITE,

PRIM_CLOSE,

PRIM_SEEK,

PRIM_REMOVE,

PRIM_RENAME

} op;

int fileID;

VisualDSP++ 5.0 1-71
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

int flags;

unsigned char *buf; /* data buffer, or file name */

int nDesired; /* number of characters to read */

/* or write */

int nCompleted; /* number of characters actually */

/* read or written */

void *more; /* for future use */

}

PrimIOCB_T;

The first field, op, identifies which of the seven currently-supported oper-
ations is being requested.

The file ID for an open file is a non-negative integer assigned by the
debugger or other “host” mechanism. The fileID values 0, 1, and 2 are
pre-assigned to stdin, stdout, and stderr, respectively. No open request
is required for these file IDs.

Before “activating” the debugger or other host environment, an OPEN or
REMOVE request may set the fileID field to the length of the filename
to open or delete; a RENAME request may also set the field to the length
of the old filename. If the fileID field does contain a string length, then
this will be indicated in the flags field (see below), and the debugger or
other host environment will be able to use the information to perform a
batch memory read to extract the filename. If the information is not pro-
vided, then the file name has to be extracted one character at a time.

The flags field is a bit-field containing other information for special
requests. Meaningful bit values for an OPEN operation are:

M_OPENR = 0x0001 /* open for reading */

M_OPENW = 0x0002 /* open for writing */

M_OPENA = 0x0004 /* open for append */

M_TRUNCATE = 0x0008 /* truncate to zero length if file exists */

M_CREATE = 0x0010 /* create the file if necessary */

C and C++ Run-Time Libraries Guide

1-72 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

M_BINARY = 0x0020 /* binary file (vs. text file) */

M_STRLEN_PROVIDED = 0x8000 /* length of file name(s) available */

For a READ operation, the low-order four bits of the flag value contain the
number of bytes packed into each word of the read buffer, and the rest of
the value is reserved for future use.

For a WRITE operation, the low-order four bits of the flag value contain
the number of bytes packed into each word of the write buffer, and the
rest of the value form a bit-field, for which only the following bit is cur-
rently defined:

M_ALIGN_BUFFER = 0x10

If this bit is set for a WRITE request, the WRITE operation is expected to be
aligned on a processor word boundary by writing padding NULLs to the
file before the buffer contents are transferred.

For an OPEN, REMOVE, and RENAME operation, the debugger (or other host
mechanism) has to extract the filename(s) one character at a time from the
memory of the target. However, if the bit corresponding to the value
M_STRLEN_PROVIDED is set, then the I/O control block contains the length
of the filename(s) and the debugger is able to use this information to per-
form a batch read of the target memory (see the description of the fields
fileID and nCompleted).

For a SEEK request, the flags field indicates the seek mode (whence) as
follows:

enum

{

M_SEEK_SET = 0x0001, /* seek origin is the start of

the file */

M_SEEK_CUR = 0x0002, /* seek origin is the current

position within the file */

VisualDSP++ 5.0 1-73
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

M_SEEK_END = 0x0004, /* seek origin is the end of

the file */

};

The flags field is unused for a CLOSE request.

The buf field contains a pointer to the file name for an OPEN or
REMOVE request, or a pointer to the data buffer for a READ or WRITE
request. For a RENAME operation, this field contains a pointer to the old
file name.

The nDesired field is set to the number of bytes that should be transferred
for a READ or WRITE request. This field is also used by a RENAME
request, and is set to a pointer to the new file name.

For a SEEK request, the nDesired field contains the offset at which the file
should be positioned, relative to the origin specified by the flags field.
(On architectures that only support 16-bit ints, the 32-bit offset at which
the file should be positioned is stored in the combined fields [buf,
nDesired]).

The nCompleted field is set by __primIO to the number of bytes actually
transferred by a READ or WRITE operation. For a SEEK operation, __primIO
sets this field to the new value of the file pointer. (On architectures that
only support 16-bit ints, __primIO sets the new value of the file pointer in
the combined fields [nCompleted, more]).

The RENAME operation may also make use of the nCompleted field. If the
operation can determine the lengths of the old and new filenames, then it
should store these sizes in the fields fileID and nCompleted, respectively,
and also set the bit-field flags to M_STRLEN_PROVIDED. The debugger (or
other host mechanism) can then use this information to perform a batch
read of the target memory to extract the filenames. If this information is
not provided, then each character of the file names will have to be read
individually.

Documented Library Functions

1-74 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The more field is reserved for future use and currently is always set to NULL
before calling _primIO.

Documented Library Functions
The C run-time library has several categories of functions and macros
defined by the ANSI C standard, plus extensions provided by Analog
Devices.

The following tables list the library functions documented in this chapter.
Note that the tables list the functions for each header file separately; how-
ever, the reference pages for these library functions present the functions
in alphabetical order.

Table 1-19 lists the library functions in the ctype.h header file. Refer to
“ctype.h” on page 1-21 for more information on this header file.

Table 1-20 lists the library functions in the locale.h header file. Refer to
“locale.h” on page 1-24 for more information on this header file.

Table 1-19. Library Functions in the ctype.h Header File

isalnum isalpha iscntrl

isdigit isgraph islower

isprint ispunct isspace

isupper isxdigit tolower

toupper

Table 1-20. Library Functions in the locale.h Header File

localeconv setlocale

VisualDSP++ 5.0 1-75
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Table 1-21 lists the library functions in the math.h header file. Refer to
“math.h” on page 1-25 for more information on this header file.

Table 1-22 lists the library functions in the setjmp.h header file. Refer to
“setjmp.h” on page 1-26 for more information on this header file.

Table 1-23 lists the library functions in the signal.h header file. Refer to
“signal.h” on page 1-26 for more information on this header file.

Table 1-21. Library Functions in the math.h Header File

acos asin atan

atan2 ceil cos

cosh exp fabs

floor fmod frexp

isinf isnan ldexp

log log10 modf

pow sin sinh

sqrt tan tanh

Table 1-22. Library Functions in the setjmp.h Header File

longjmp setjmp

Table 1-23. Library Functions in the signal.h Header File

clear_interrupt interrupt raise

signal

Documented Library Functions

1-76 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Table 1-24 lists the library functions in the stdarg.h header file. Refer to
“stdarg.h” on page 1-27 for more information on this header file.

Table 1-25 lists the library functions in the stdfix.h header file. Refer to
“stdfix.h” on page 1-27 for more information on this header file.

Table 1-26 lists the library functions in the stdio.h header file. Refer to
“stdio.h” on page 1-30 for more information on this header file.

Table 1-24. Library Functions in the stdarg.h Header File

va_arg va_end va_start

Table 1-25. Library Functions in the stdfix.h Header File

absfx bitsfx countlsfx

divifx fxbits fxdivi

idivfx mulifx roundfx

strtofxfx

Table 1-26. Library Functions in the stdio.h Header File

clearerr fclose feof

ferror fflush fgetc

fgetpos fgets fopen

fprintf fputc fputs

fread freopen fscanf

fseek fsetpos ftell

fwrite getc getchar

gets perror printf

putc putchar puts

remove rename rewind

VisualDSP++ 5.0 1-77
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Table 1-27 lists the library functions in the stdlib.h header file. Refer to
“stdlib.h” on page 1-33 for more information on this header file.

scanf setbuf setvbuf

snprintf sprintf sscanf

ungetc vfprintf vprintf

vsnprintf vsprintf

Table 1-27. Library Functions in the stdlib.h Header File

abort abs atexit

atof atoi atol

atold atoll avg

bsearch calloc clip

count_ones div exit

free getenv heap_calloc

heap_free heap_install heap_lookup_name

heap_malloc heap_realloc heap_switch

labs lavg lclip

lcount_ones ldiv llabs

llavg llclip llcount_ones

lldiv llmax llmin

lmax lmin malloc

 max min qsort

rand realloc set_alloc_type

srand strtod strtol

strtold strtoll strtoul

strtoull system

Table 1-26. Library Functions in the stdio.h Header File (Cont’d)

Documented Library Functions

1-78 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Table 1-28 lists the library functions in the string.h header file. Refer to
“string.h” on page 1-35 for more information on this header file.

Table 1-29 lists the library functions in the time.h header file. Refer to
“time.h” on page 1-35 for more information on this header file.

Table 1-28. Library Functions in the string.h Header File

memchr memcmp memcpy

memmove memset strcat

strchr strcmp strcoll

strcpy strcspn strerror

strlen strncat strncmp

strncpy strpbrk strrchr

strspn strstr strtok

strxfrm

Table 1-29. Library Functions in the time.h Header File

asctime clock ctime

difftime gmtime localtime

mktime strftime time

VisualDSP++ 5.0 1-79
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

C Run-Time Library Reference
The C run-time library is a collection of functions that you can call from
your C/C++ programs. This section lists the functions in alphabetical
order.

Notation Conventions

An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

Reference Format

Each function in the library has a reference page. These pages have the fol-
lowing format:

Name and purpose of the function

Synopsis – Required header file and functional prototype

Description – Function specification

Error Conditions – Method that the functions use to indicate an
error

Example –Typical function usage

See Also – Related functions

Documented Library Functions

1-80 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

abort

Abnormal program end

Synopsis

#include <stdlib.h>

void abort (void);

Description

The abort function causes an abnormal program termination by raising
the SIGABRT exception. If the SIGABRT handler returns, abort() calls
exit() to terminate the program with a failure condition.

Error Conditions

The abort function does not return.

Example

#include <stdlib.h>

extern int errors;

if (errors) /* terminate program if */

abort(); /* errors are present */

See Also

atexit, exit

VisualDSP++ 5.0 1-81
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

abs

Absolute value

Synopsis

#include <stdlib.h>

int abs (int j);

Description

The abs function returns the absolute value of its integer argument.

Note: abs(INT_MIN) returns INT_MIN.

Error Conditions

The abs function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = abs (-5); /* i == 5 */

See Also

fabs, absfx, labs, llabs

Documented Library Functions

1-82 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

absfx

absolute value

Synopsis

#include <stdfix.h>

short fract abshr(short fract f);

fract absr(fract f);

long fract abslr(long fract f);

Description

The absfx family of functions return the absolute value of their
fixed-point input.

In addition to the individually-named functions for each fixed-point type,
a type-generic macro absfx is defined for use in C99 mode. This may be
used with any of the fixed-point types and returns a result of the same type
as its operand.

Error Conditions

The absfx family of functions do not return an error condition.

VisualDSP++ 5.0 1-83
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Example

#include <stdfix.h>

long fract f;

f = abslr(0.75lr); /* f == 0.75lr */

#if defined(_C99)

f = absfx(0.75lr); /* f == 0.75lr */

#endif

See Also

abs, fabs, labs, llabs

Documented Library Functions

1-84 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

acos

Arc cosine

Synopsis

#include <math.h>

float acosf (float x);

double acos (double x);

long double acosd (long double x);

Description

The arc cosine functions return the arc cosine of x. The input must be in
the range [-1, 1]. The output, in radians, is in the range [0, π].

Error Conditions

The arc cosine functions indicate a domain error (set errno to EDOM) and
return a zero if the input is not in the range [-1, 1].

Example

#include <math.h>

double x;

float y;

x = acos (0.0); /* x = π/2 */
y = acosf (0.0); /* y = π/2 */

See Also

cos

VisualDSP++ 5.0 1-85
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

asctime

Convert broken-down time into a string

Synopsis

#include <time.h>

char *asctime(const struct tm *t);

Description

The asctime function converts a broken-down time, as generated by the
functions gmtime and localtime, into an ASCII string that will contain
the date and time in the form

DDD MMM dd hh:mm:ss YYYY\n

where

• DDD represents the day of the week (that is, Mon, Tue, Wed, and so
on)

• MMM is the month and will be of the form Jan, Feb, Mar, and so on

• dd is the day of the month, from 1 to 31

• hh is the number of hours after midnight, from 0 to 23

• mm is the minute of the day, from 0 to 59

• ss is the second of the day, from 0 to 61 (to allow for leap seconds)

• YYYY represents the year

The function returns a pointer to the ASCII string, which may be over-
written by a subsequent call to this function. Also note that the function
ctime returns a string that is identical to

asctime(localtime(&t))

Documented Library Functions

1-86 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The asctime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

struct tm tm_date;

printf("The date is %s",asctime(&tm_date));

See Also

ctime, gmtime, localtime

VisualDSP++ 5.0 1-87
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

asin

Arc sine

Synopsis

#include <math.h>

float asinf (float x);

double asin (double x);

long double asind (long double x);

Description

The arc sine functions return the arc sine of the first argument. The input
must be in the range [-1, 1]. The output, in radians, is in the range -π/2 to
π/2.

Error Conditions

The arc sine functions indicate a domain error (set errno to EDOM) and
return a zero if the input is not in the range [-1, 1].

Example

#include <math.h>

double y;

float x;

y = asin (1.0); /* y = π/2 */
x = asinf (1.0); /* x = π/2 */

See Also

sin

Documented Library Functions

1-88 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

atan

Arc tangent

Synopsis

#include <math.h>

float atanf (float x);

double atan (double x);

long double atand (long double x);

Description

The arc tangent functions return the arc tangent of the first argument.
The output, in radians, is in the range -π/2 to π/2.

Error Conditions

The arc tangent functions do not return error conditions.

Example

#include <math.h>

double y;

float x;

y = atan (0.0); /* y = 0.0 */

x = atanf (0.0); /* x = 0.0 */

See Also

atan2, tan

VisualDSP++ 5.0 1-89
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

atan2

Arc tangent of quotient

Synopsis

#include <math.h>

float atan2f (float y, float x);

double atan2 (double y, double x);

long double atan2d (long double y, long double x);

Description

The atan2 functions compute the arc tangent of the input value y divided
by input value x. The output, in radians, is in the range -π to π.

Error Conditions

The atan2 functions return a zero if x=0 and y=0.

Example

#include <math.h>

double a,d;

float b,c;

a = atan2 (0.0, 0.0); /* the error condition: a = 0.0 */

b = atan2f (1.0, 1.0); /* b = π/4 */

c = atan2f (1.0, 0.0); /* c = π/2 */
d = atan2 (-1.0, 0.0); /* d = -π/2 */

See Also

atan, tan

Documented Library Functions

1-90 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

atexit

Register a function to call at program termination

Synopsis

#include <stdlib.h>

int atexit (void (*func)(void));

Description

The atexit function registers a function to be called at program termina-
tion. Functions are called once for each time they are registered, in the
reverse order of registration. Up to 32 functions can be registered using
the atexit function.

Error Conditions

The atexit function returns a non-zero value if the function cannot be
registered.

Example

#include <stdlib.h>

extern void goodbye(void);

if (atexit(goodbye))

exit(1);

See Also

abort, exit

VisualDSP++ 5.0 1-91
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

atof

Convert string to a double

Synopsis

#include <stdlib.h>

double atof(const char *nptr);

Description

The atof function converts a character string into a floating-point value
of type double, and returns its value. The character string is pointed to by
the argument nptr and may contain any number of leading whitespace
characters (as determined by the function isspace) followed by a
floating-point number. The floating-point number may either be a deci-
mal floating-point number or a hexadecimal floating-point number.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (-); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X. This character

Documented Library Functions

1-92 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.

Error Conditions

The atof function returns a zero if no conversion could be made. If the
correct value results in an overflow, a positive or negative (as appropriate)
HUGE_VAL is returned. If the correct value results in an underflow, 0.0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Notes

The atof (pdata) function reference is functionally equivalent to:

strtod (pdata, (char *) NULL);

and therefore, if the function returns zero, it is not possible to determine
whether the character string contained a (valid) representation of 0.0 or
some invalid numerical string.

Example

#include <stdlib.h>

double x;

x = atof("5.5"); /* x = 5.5 */

VisualDSP++ 5.0 1-93
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

atoi, atol, atoll, strtod

Documented Library Functions

1-94 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

atoi

Convert string to integer

Synopsis

#include <stdlib.h>

int atoi (const char *nptr);

Description

The atoi function converts a character string to an integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

Error Conditions

The atoi function returns -1 if no conversion can be made.

Example

#include <stdlib.h>

int i;

i = atoi ("5"); /* i = 5 */

See Also

atof, atol, atoll, strtod

VisualDSP++ 5.0 1-95
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

atol

Convert string to long integer

Synopsis

#include <stdlib.h>

long atol (const char *nptr);

Description

The atol function converts a character string to a long integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

 There is no way to determine if a zero is a valid result or an indica-
tor of an invalid string.

Error Conditions

The atol function returns -1 if no conversion can be made.

Example

#include <stdlib.h>

long int i;

i = atol ("5"); /* i = 5 */

See Also

atof, atoi, atoll, strtod, strtol, strtoll, strtoul, strtoull

Documented Library Functions

1-96 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

atold

Convert string to a long double

Synopsis

#include <stdlib.h>

long double atold(const char *nptr);

Description

The atold function is an extension to the ISO/IEC 9899:1990 C standard
and the ISO/IEC 9899:1999 C standard.

The atold function converts a character string into a floating-point value
of type long double, and returns its value. The character string is pointed
to by the argument nptr and may contain any number of leading
whitespace characters (as determined by the function isspace) followed
by a floating-point number. The floating-point number may either be a
decimal floating-point number or a hexadecimal floating-point number.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (-); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

VisualDSP++ 5.0 1-97
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X . This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P , an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.

Error Conditions

The atold function returns a zero if no conversion could be made. If the
correct value results in an overflow, a positive or negative (as appropriate)
LDBL_MAX is returned. If the correct value results in an underflow, 0.0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Notes

The atold (pdata) function reference is functionally equivalent to:

strtold (pdata, (char *) NULL);

and therefore, if the function returns zero, it is not possible to determine
whether the character string contained a (valid) representation of 0.0 or
some invalid numerical string.

Example

#include <stdlib.h>

long double x;

x = atold("5.5"); /* x = 5.5 */

Documented Library Functions

1-98 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

atol, atoi, atoll, strtold

VisualDSP++ 5.0 1-99
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

atoll

Convert string to long long integer

Synopsis

#include <stdlib.h>

long long atoll (const char *nptr);

Description

The atoll function converts a character string to a long long integer
value. The character string to be converted is pointed to by the input
pointer, nptr. The function clears any leading characters for which
isspace would return true. Conversion begins at the first digit (with an
optional preceding sign) and terminates at the first non-digit.

 There is no way to determine if a zero is a valid result or an indica-
tor of an invalid string.

Error Conditions

The atoll function returns 0 if no conversion can be made.

Example

#include <stdlib.h>

long long i;

i = atoll ("150000000000000"); /* i = 150000000000000LL */

See Also

atof, atoi, atol, strtod, strtol, strtoll, strtoul, strtoull

Documented Library Functions

1-100 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

avg

Mean of two values

Synopsis

#include <stdlib.h>

int avg (int x, int y);

Description

The avg function is an Analog Devices extension to the ANSI standard.

The avg function adds two arguments and divides the result by two. The
avg function is a built-in function which is implemented with an
Rn=(Rx+Ry)/2 instruction.

Error Conditions

The avg function does not return an error code.

Example

#include <stdlib.h>

int i;

i = avg (10, 8); /* returns 9 */

See Also

lavg, llavg

VisualDSP++ 5.0 1-101
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

bitsfx

Bitwise fixed-point to integer conversion

Synopsis

#include <stdfix.h>

int_hr_t bitshr(short fract f);

int_r_t bitsr(fract f);

int_lr_t bitslr(long fract f);

uint_uhr_t bitsuhr(unsigned short fract f);

uint_ur_t bitsur(unsigned fract f);

uint_ulr_t bitsulr(unsigned long fract f);

Description

Given a fixed-point operand, the bitsfx family of functions return the
fixed-point value multiplied by 2F, where F is the number of fractional
bits in the fixed-point type. This is equivalent to the bit-pattern of the
fixed-point value held in an integer type.

Error Conditions

The bitsfx family of functions do not return an error condition.

Example

#include <stdfix.h>

uint_ulr_t ulr;

ulr = bitsulr(0.125ulr); /* ulr == 0x20000000 */

See Also

fxbits

Documented Library Functions

1-102 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

bsearch

Perform binary search in a sorted array

Synopsis

#include <stdlib.h>

void *bsearch (const void *key, const void *base,

size_t nelem, size_t size,

int (*compare)(const void *, const void *));

Description

The bsearch function searches the array base for an array element that
matches the element key. The size of each array element is specified by
size, and the array is defined to have nelem array elements.

The bsearch function will call the function compare with two arguments;
the first argument will point to the array element key and the second argu-
ment will point to an element of the array. The compare function should
return an integer that is either zero, or less than zero, or greater than zero,
depending upon whether the array element key is equal to, less than, or
greater than the array element pointed to by the second argument.

If the comparison function returns a zero, then bsearch will return a
pointer to the matching array element; if there is more than one matching
elements then it is not defined which element is returned. If no match is
found in the array, bsearch will return NULL.

The array to be searched would normally be sorted according to the crite-
ria used by the comparison function (the qsort function may be used to
first sort the array if necessary).

VisualDSP++ 5.0 1-103
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Error Conditions

The bsearch function returns a null pointer when the key is not found in
the array.

Example

#include <stdlib.h>

#include <string.h>

#define SIZE 3

struct record_t {

 char *name;

 char *street;

 char *city;

};

struct record_t data_base[SIZE] = {

 {"Baby Doe" , "Central Park" , "New York"},

 {"Jane Doe" , "Regents Park" , "London" },

 {"John Doe" , "Queens Park" , "Sydney" }

};

static int

compare_function (const void *arg1, const void *arg2)

{

 const struct record_t *pkey = arg1;

 const struct record_t *pbase = arg2;

 return strcmp (pkey->name,pbase->name);

}

Documented Library Functions

1-104 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

struct record_t key = {"Baby Doe" , "" , ""};

struct record_t *search_result;

search_result = bsearch (&key,

 data_base,

 SIZE,

 sizeof(struct record_t),

 compare_function);

See Also

qsort

VisualDSP++ 5.0 1-105
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

calloc

Allocate and initialize memory

Synopsis

#include <stdlib.h>

void *calloc (size_t nmemb, size_t size);

Description

The calloc function dynamically allocates a range of memory and initial-
izes all locations to zero. The number of elements (the first argument)
multiplied by the size of each element (the second argument) is the total
memory allocated. The memory may be deallocated with the free
function.

The object is allocated from the current heap, which is the default heap
unless set_alloc_type or heap_switch has been called to change the cur-
rent heap to an alternate heap.

Error Conditions

The calloc function returns a null pointer if unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *) calloc (10, sizeof (int));

/* ptr points to a zeroed array of length 10 */

Documented Library Functions

1-106 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

free, heap_calloc, heap_free, heap_lookup_name, heap_malloc,
heap_realloc, malloc, realloc, set_alloc_type

VisualDSP++ 5.0 1-107
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

ceil

Ceiling

Synopsis

#include <math.h>

float ceilf (float x);

double ceil (double x);

long double ceild (long double x);

Description

The ceiling functions return the smallest integral value that is not less than
the argument x.

Error Conditions

The ceiling functions do not return an error condition.

Example

#include <math.h>

double y;

float x;

y = ceil (1.05); /* y = 2.0 */

x = ceilf (-1.05); /* y = -1.0 */

See Also

floor

Documented Library Functions

1-108 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

clear_interrupt

Clear a pending signal

Synopsis

#include <signal.h>

int clear_interrupt (int sig);

Description

The clear_interrupt function is an Analog Devices extension to the
ANSI standard.

The clear_interrupt function clears the signal sig in the IRPTL register.
Table 1-30, Table 1-31 on page 1-109, Table 1-32 on page 1-110,
Table 1-33 on page 1-112, Table 1-35 on page 1-115, and Table 1-35 on
page 1-115 show the possible values that the sig argument may be set to
for the appropriate ADSP-21xxx processor.

The clear_interrupt function does not work for interrupts that set any
status bits in the STKY register, such as floating-point overflow.

Table 1-30. ADSP-21020 Processor Signals

SIG Value Description

SIG_SOVF Status stack or Loop stack overflow or PC stack full

SIG_TMZ0 Timer = 0 (high priority option)

SIG_IRQ3 Interrupt 3

SIG_IRQ2 Interrupt 2

SIG_IRQ1 Interrupt 1

SIG_IRQ0 Interrupt 0

SIG_CB7 Circular buffer 7 overflow

SIG_CB15 Circular buffer 15 overflow

SIG_TMZ Timer = 0 (low priority option)

VisualDSP++ 5.0 1-109
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

SIG_FIX Fixed-point overflow

SIG_FLTO Floating-point overflow exception

SIG_FLTU Floating-point underflow exception

SIG_FLTI Floating-point invalid exception

SIG_USR0 User software interrupt 0

SIG_USR1 User software interrupt 1

SIG_USR2 User software interrupt 2

SIG_USR3 User software interrupt 3

SIG_USR4 User software interrupt 4

SIG_USR5 User software interrupt 5

Table 1-31. ADSP-2106x Processor Signals

SIG Value Definition

SIG_SOVF Status stack or Loop stack overflow or PC stack full

SIG_TMZ0 Timer = 0 (high priority option)

SIG_VIRPTI Vector Interrupt

SIG_IRQ2 Interrupt 2

SIG_IRQ1 Interrupt 1

SIG_IRQ0 Interrupt 0

SIG_SPR0I DMA Channel 0 - SPORT0 Receive

SIG_SPR1I DMA Channel 1 - SPORT1 Receive (or Link Buffer 0)

SIG_SPT0I DMA Channel 2 - SPORT0 Transmit

SIG_SPT1I DMA Channel 3 - SPORT1 Transmit (or Link Buffer 1)

1SIG_LP2I DMA Channel 4 - Link Buffer 2

1SIG_LP3I DMA Channel 5 - Link Buffer 3

SIG_EP0I DMA Channel 6 - Ext. Port Buffer 0 (or Link Buffer 4)

Table 1-30. ADSP-21020 Processor Signals (Cont’d)

SIG Value Description

Documented Library Functions

1-110 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

SIG_EP1I DMA Channel 7 - Ext. Port Buffer 1 (or Link Buffer 5)

1SIG_EP2I DMA Channel 8 - Ext. Port Buffer 2

1SIG_EP3I DMA Channel 9 - Ext. Port Buffer 3

1SIG_LSRQ Link port service request

SIG_CB7 Circular buffer 7 overflow

SIG_CB15 Circular buffer 15 overflow

SIG_TMZ Timer = 0 (low priority option)

SIG_FIX Fixed-point overflow

SIG_FLTO Floating-point overflow exception

SIG_FLTU Floating-point underflow exception

SIG_FLTI Floating-point invalid exception

SIG_USR0 User software interrupt 0

SIG_USR1 User software interrupt 1

SIG_USR2 User software interrupt 2

SIG_USR3 User software interrupt 3

1 Signal is not present on the ADSP-21061 and ADSP-21065L processors.

Table 1-32. ADSP-2116x Processor Signals

SIG Value Definition Processor Restrictions

SIG_IICDI Illegal input condition detected

SIG_SOVF Status stack or Loop stack overflow or PC stack full

SIG_TMZ0 Timer = 0 (high priority option)

SIG_VIRPTI Vector interrupt

SIG_IRQ2 Interrupt 2

SIG_IRQ1 Interrupt 1

Table 1-31. ADSP-2106x Processor Signals (Cont’d)

SIG Value Definition

VisualDSP++ 5.0 1-111
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

SIG_IRQ0 Interrupt 0

SIG_SPR0I SPORT0 Receive ADSP-21160 only

SIG_SPR1I SPORT1 Receive ADSP-21160 only

SIG_SPT01 SPORT0 Transmit ADSP-21160 only

SIG_SPT1I SPORT0 Transmit ADSP-21160 only

SIG_SP0I SPORT0 DMA ADSP-21161 only

SIG_SP1I SPORT1 DMA ADSP-21161 only

SIG_SP2I SPORT2 DMA ADSP-21161 only

SIG_SP3I SPORT3 DMA ADSP-21161 only

SIG_LP0I Link Buffer 0

SIG_LP1I Link Buffer 1

SIG_LP2I Link Buffer 2 ADSP-21160 only

SIG_LP3I Link Buffer 3 ADSP-21160 only

SIG_LP4I Link Buffer 4 ADSP-21160 only

SIG_LP5I Link Buffer 5 ADSP-21160 only

SIG_SPIRI SPI Receive DMA ADSP-21161 only

SIG_SPITI SPI Transmit DMA ADSP-21161 only

SIG_EP0I Ext. Port Buffer 0

SIG_EP1I Ext. Port Buffer 1

SIG_EP2I Ext. Port Buffer 2

Table 1-32. ADSP-2116x Processor Signals (Cont’d)

SIG Value Definition Processor Restrictions

Documented Library Functions

1-112 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

SIG_EP3I Ext. Port Buffer 3

SIG_LSRQ Link port service request

SIG_CB7 Circular buffer 7 overflow

SIG_CB15 Circular buffer 15 overflow

SIG_TMZ Timer = 0 (low priority option)

SIG_FIX Fixed-point overflow

SIG_FLTO Floating-point overflow exception

SIG_FLTU Floating-point underflow exception

SIG_FLTI Floating-point invalid exception

SIG_USR0 User software interrupt 0

SIG_USR1 User software interrupt 1

Table 1-33. ADSP-2126x Processor Signals

SIG Value Definition

SIG_IICDI Illegal input condition detected

SIG_SOVF Status stack or Loop stack overflow or PC stack full

SIG_TMZ0 Timer = 0 (high priority option)

SIG_BKP Hardware breakpoint

SIG_IRQ2 Interrupt 2

SIG_IRQ1 Interrupt 1

SIG_IRQ0 Interrupt 0

SIG_DAIH DAI High priority

SIG_SPIH SPI transmit or receive (high priority option)

SIG_GPTMR0 General-purpose IOP timer 0

SIG_SP1 SPORT 1

Table 1-32. ADSP-2116x Processor Signals (Cont’d)

SIG Value Definition Processor Restrictions

VisualDSP++ 5.0 1-113
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

SIG_SP3 SPORT 3

SIG_SP5 SPORT 5 (ADSP-21262 and ADSP-21266 processors only)

SIG_SP0 SPORT 0

SIG_SP2 SPORT 2

SIG_SP4 SPORT 4 (ADSP-21262 and ADSP-21266 processors only)

SIG_PP Parallel port

SIG_GPTMR1 General-purpose IOP timer 1

SIG_DAIL DAI low priority

SIG_GPTMR2 General-purpose IOP timer 2

SIG_SPIL SPI transmit or receive (low priority option)

SIG_CB7 Circular buffer 7 overflow

SIG_CB15 Circular buffer 15 overflow

SIG_TMZ Timer = 0 (low priority option)

SIG_FIX Fixed-point overflow

SIG_FLTO Floating-point overflow exception

SIG_FLTU Floating-point underflow exception

SIG_FLTI Floating-point invalid exception

SIG_USR0 User software interrupt 0

SIG_USR1 User software interrupt 1

SIG_USR2 User software interrupt 2

SIG_USR3 User software interrupt 3

Table 1-33. ADSP-2126x Processor Signals (Cont’d)

SIG Value Definition

Documented Library Functions

1-114 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Table 1-34. ADSP-2136x Processor Signals

SIG Value Definition Default setting (for programmable
peripheral interrupts)

SIG_IICDI Illegal input condition detected

SIG_SOVF Status stack or Loop stack overflow
or PC stack full

SIG_TMZ0 Timer = 0 (high priority option)

SIG_BKP Hardware breakpoint

SIG_IRQ2 Interrupt 2

SIG_IRQ1 Interrupt 1

SIG_IRQ0 Interrupt 0

SIG_P0 Peripheral interrupt - 0 DAI High priority

SIG_P1 Peripheral interrupt - 1 SPI transmit or receive (high priority
option)

SIG_P2 Peripheral interrupt - 2 General-purpose IOP timer 0

SIG_P3 Peripheral interrupt - 3 SPORT 1

SIG_P4 Peripheral interrupt - 4 SPORT 3

SIG_P5 Peripheral interrupt - 5 SPORT 5

SIG_P6 Peripheral interrupt - 6 SPORT 0

SIG_P7 Peripheral interrupt - 7 SPORT 2

SIG_P8 Peripheral interrupt - 8 SPORT 4

SIG_P9 Peripheral interrupt - 9 Parallel port

SIG_P10 Peripheral interrupt - 10 General-purpose IOP timer 1

SIG_P12 Peripheral interrupt - 12 DAI low priority

SIG_P13 Peripheral interrupt - 13 PWM

SIG_P15 Peripheral interrupt - 15 DTCP

SIG_P17 Peripheral interrupt - 17 General-purpose IOP timer 2

VisualDSP++ 5.0 1-115
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

SIG_P18 Peripheral interrupt - 18 SPI transmit or receive (low priority
option)

SIG_CB7 Circular buffer 7 overflow

SIG_CB15 Circular buffer 15 overflow

SIG_TMZ Timer = 0 (low priority option)

SIG_FIX Fixed-point overflow

SIG_FLTO Floating-point overflow exception

SIG_FLTU Floating-point underflow exception

SIG_FLTI Floating-point invalid exception

SIG_USR0 User software interrupt 0

SIG_USR1 User software interrupt 1

SIG_USR2 User software interrupt 2

SIG_USR3 User software interrupt 3

Table 1-35. ADSP-214xx Processor Signals

SIG Value Definition Default setting (for programmable
peripheral interrupts)

SIG_IICDI Illegal input condition detected

SIG_SOVF Status stack or Loop stack overflow
or PC stack full

SIG_TMZ0 Timer = 0 (high priority option)

SIG_BKP Hardware breakpoint

SIG_IRQ2 Interrupt 2

SIG_IRQ1 Interrupt 1

SIG_IRQ0 Interrupt 0

Table 1-34. ADSP-2136x Processor Signals (Cont’d)

SIG Value Definition Default setting (for programmable
peripheral interrupts)

Documented Library Functions

1-116 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

SIG_P0 Peripheral interrupt - 0 DAI High priority

SIG_P1 Peripheral interrupt - 1 SPI transmit or receive (high priority
option)

SIG_P2 Peripheral interrupt - 2 General-purpose IOP timer 0

SIG_P3 Peripheral interrupt - 3 SPORT 1

SIG_P4 Peripheral interrupt - 4 SPORT 3

SIG_P5 Peripheral interrupt - 5 SPORT 5

SIG_P6 Peripheral interrupt - 6 SPORT 0

SIG_P7 Peripheral interrupt - 7 SPORT 2

SIG_P8 Peripheral interrupt - 8 SPORT 4

SIG_P9 Peripheral interrupt - 9 Parallel port

SIG_P10 Peripheral interrupt - 10 General-purpose IOP timer 1

SIG_P12 Peripheral interrupt - 12 DAI low priority

SIG_P13 Peripheral interrupt - 13 PWM

SIG_P15 Peripheral interrupt - 15 DTCP

SIG_P17 Peripheral interrupt - 17 General-purpose IOP timer 2

SIG_P18 Peripheral interrupt - 18 SPI transmit or receive (low priority
option)

SIG_CB7 Circular buffer 7 overflow

SIG_CB15 Circular buffer 15 overflow

SIG_TMZ Timer = 0 (low priority option)

SIG_FIX Fixed-point overflow

SIG_FLTO Floating-point overflow exception

SIG_FLTU Floating-point underflow exception

Table 1-35. ADSP-214xx Processor Signals (Cont’d)

SIG Value Definition Default setting (for programmable
peripheral interrupts)

VisualDSP++ 5.0 1-117
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Error Conditions

The clear_interrupt function returns a 1 if the interrupt was pending;
otherwise 0 is returned.

Example

#include <signal.h>

clear_interrupt (SIG_IRQ2);

/* clear the interrupt 2 latch */

See Also

interrupt, raise, signal

SIG_FLTI Floating-point invalid exception

SIG_USR0 User software interrupt 0

SIG_USR1 User software interrupt 1

SIG_USR2 User software interrupt 2

SIG_USR3 User software interrupt 3

Table 1-35. ADSP-214xx Processor Signals (Cont’d)

SIG Value Definition Default setting (for programmable
peripheral interrupts)

Documented Library Functions

1-118 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

clearerr

Clear file or stream error indicator

Synopsis

#include <stdio.h>

void clearerr(FILE *stream);

Description

The clearerr function clears the error and end-of-file (EOF) indicators for
the particular stream pointed to by stream.

The stream error indicators record whether any read or write errors have
occurred on the associated stream. The EOF indicator records when there is
no more data in the file.

Error Conditions

The clearerr function does not return an error condition.

Example

#include <stdio.h>

FILE *routine(char *filename)

{

FILE *fp;

fp = fopen(filename, "r");

/* Some operations using the file */

/* now clear the error indicators for the stream */

clearerr(fp);

return fp;

}

VisualDSP++ 5.0 1-119
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

feof, ferror

Documented Library Functions

1-120 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

clip

Clip

Synopsis

#include <stdlib.h>

int clip (int value1, int value2);

Description

The clip function is an Analog Devices extension to the ANSI standard.

The clip function returns its first argument if its absolute value is less
than the absolute value of its second argument, otherwise it returns the
absolute value of its second argument if the first is positive, or minus the
absolute value if the first argument is negative. The clip function is a
built-in function which is implemented with an Rn = CLIP Rx BY Ry
instruction.

Error Conditions

The clip function does not return an error code.

Example

#include <stdlib.h>

int i;

i = clip (10, 8); /* returns 8 */

i = clip (8, 10); /* returns 8 */

i = clip (-10, 8); /* returns -8 */

See Also

lclip, llclip

VisualDSP++ 5.0 1-121
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

clock

Processor time

Synopsis

#include <time.h>

clock_t clock(void);

Description

The clock function returns the number of processor cycles that have
elapsed since an arbitrary starting point. The function returns the value
(clock_t) -1, if the processor time is not available or if it cannot be rep-
resented. The result returned by the function may be used to calculate the
processor time in seconds by dividing it by the macro CLOCKS_PER_SEC.
For more information, see “time.h” on page 1-35. An alternative method
of measuring the performance of an application is described in “Measur-
ing Cycle Counts” on page 1-48.

Error Conditions

The clock function does not return an error condition.

Example

#include <time.h>

time_t start_time,stop_time;

double time_used;

start_time = clock();

compute();

stop_time = clock();

time_used = ((double) (stop_time - start_time)) / CLOCKS_PER_SEC;

Documented Library Functions

1-122 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

No related function.

VisualDSP++ 5.0 1-123
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

cos

Cosine

Synopsis

#include <math.h>

float cosf (float x);

double cos (double x);

long double cosd (long double x);

Description

The cosine functions return the cosine of the first argument. The input is
interpreted as radians; the output is in the range [-1, 1].

Error Conditions

The input argument x for cosf must be in the domain [-1.647e6,
1.647e6] and the input argument for cosd must be in the domain
[-8.433e8, 8.433e8]. The functions return zero if x is outside their
domain.

Example

#include <math.h>

double y;

float x;

y = cos (3.14159); /* y = -1.0 */

x = cosf (3.14159); /* x = -1.0 */

See Also

acos, sin

Documented Library Functions

1-124 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cosh

Hyperbolic cosine

Synopsis

#include <math.h>

float coshf (float x);

double cosh (double x);

long double coshd (long double x);

Description

The hyperbolic cosine functions return the hyperbolic cosine of their
argument.

Error Conditions

The domain of coshf is [-89.39, 89.39], and the domain for coshd is
[-710.44, 710.44]. The functions return HUGE_VAL if the input argument x
is outside the respective domains.

Example

#include <math.h>

float x;

double y;

x = coshf (1.0); /* x = 1.54308 */

y = cosh (-1.0); /* y = 1.54308 */

See Also

sinh

VisualDSP++ 5.0 1-125
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

count_ones

Count one bits in word

Synopsis

#include <stdlib.h>

int count_ones (int value);

Description

The count_ones function is an Analog Devices extension to the ANSI
standard.

The count_ones function returns the number of one bits in its argument.

Error Conditions

The count_ones function does not return an error condition.

Example

#include <stdlib.h>

int flags1 = 0xAD1;

int flags2 = -1;

int cnt1;

int cnt2;

cnt1 = count_ones (flags1); /* returns 6 */

cnt2 = count_ones (flags2); /* returns 32 */

See Also

lcount_ones, llcount_ones

Documented Library Functions

1-126 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

countlsfx

Count leading sign or zero bits

Synopsis

#include <stdfix.h>

int countlshr(short fract f);

int countlsr(fract f);

int countlslr(long fract f);

int countlsuhr(unsigned short fract f);

int countlsur(unsigned fract f);

int countlsulr(unsigned long fract f);

Description

Given a fixed-point operand x, the countlsfx family of functions return
the largest value of n for which x << n does not overflow. For a zero input
value, the function will return the number of bits in the fixed-point type.

In addition to the individually-named functions for each fixed-point type,
a type-generic macro countlsfx is defined for use in C99 mode. This may
be used with any of the fixed-point types.

Error Conditions

The countlsfx family of functions do not return an error condition.

VisualDSP++ 5.0 1-127
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Example

#include <stdfix.h>

int n;

n = countlsulr(0.125ulr); /* n == 2 */

#if defined(_C99)

n = countlsfx(0.125ulr); /* n == 2 */

#endif

See Also

No related functions.

Documented Library Functions

1-128 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

ctime

Convert calendar time into a string

Synopsis

#include <time.h>

char *ctime(const time_t *t);

Description

The ctime function converts a calendar time, pointed to by the argument
t into a string that represents the local date and time. The form of the
string is the same as that generated by asctime, and so a call to ctime is
equivalent to

asctime(localtime(&t))

A pointer to the string is returned by ctime, and it may be overwritten by
a subsequent call to the function.

Error Conditions

The ctime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

if (cal_time != (time_t)-1)

printf("Date and Time is %s",ctime(&cal_time));

VisualDSP++ 5.0 1-129
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

asctime, gmtime, localtime, time

Documented Library Functions

1-130 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

difftime

Difference between two calendar times

Synopsis

#include <time.h>

double difftime(time_t t1, time_t t0);

Description

The difftime function returns the difference in seconds between two cal-
endar times, expressed as a double. By default, the double data type
represents a 32-bit, single precision, floating-point, value. This form is
normally insufficient to preserve all of the bits associated with the differ-
ence between two calendar times, particularly if the difference represents
more than 97 days. It is recommended therefore that any function that
calls difftime is compiled with the -double-size-64 switch.

Error Conditions

The difftime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

#define NA ((time_t)(-1))

time_t cal_time1;

time_t cal_time2;

double time_diff;

VisualDSP++ 5.0 1-131
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

if ((cal_time1 == NA) || (cal_time2 == NA))

printf("calendar time difference is not available\n");

else

time_diff = difftime(cal_time2,cal_time1);

See Also

time

Documented Library Functions

1-132 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

div

Division

Synopsis

#include <stdlib.h>

div_t div (int numer, int denom);

Description

The div function divides numer by denom, both of type int, and returns a
structure of type div_t. The type div_t is defined as:

typedef struct {

int quot;

int rem;

} div_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type div_t, then
result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the div function is undefined.

Example

#include <stdlib.h>

div_t result;

result = div (5, 2); /* result.quot = 2, result.rem = 1 */

VisualDSP++ 5.0 1-133
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

divifx, fmod, fxdivi, idivfx, ldiv, lldiv, modf

Documented Library Functions

1-134 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

divifx

Division of integer by fixed-point to give integer result

Synopsis

#include <stdfix.h>

int divir(int numer, fract denom);

long int divilr(long int numer, long fract denom);

unsigned int diviur(unsigned int numer, unsigned fract denom);

unsigned long int diviulr(unsigned long int numer,

 unsigned long fract denom);

Description

Given an integer numerator and a fixed-point denominator, the divifx
family of functions computes the quotient and returns the closest integer
value to the result.

Error Conditions

The divifx family of functions have undefined behavior if the
denominator is zero.

Example

#include <stdfix.h>

unsigned long int ulquo;

ulquo = diviulr(125, 0.125ulr); /* ulquo == 1000 */

See Also

div, fxdivi, idivfx, ldiv, lldiv

VisualDSP++ 5.0 1-135
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

exit

Normal program termination

Synopsis

#include <stdlib.h>

void exit (int status);

Description

The exit function causes normal program termination. The functions
registered by the atexit function are called in reverse order of their regis-
tration and the processor is put into the IDLE state. The status argument
is stored in register R0, and control is passed to the label
___lib_prog_term, which is defined in the run-time startup file.

Error Conditions

The exit function does not return an error condition.

Example

#include <stdlib.h>

exit (EXIT_SUCCESS);

See Also

abort, atexit

Documented Library Functions

1-136 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

exp

Exponential

Synopsis

#include <math.h>

float expf (float x);

double exp (double x);

long double expd (long double x);

Description

The exponential functions compute the exponential value e to the power
of their argument.

Error Conditions

The input argument x for expf must be in the domain [-87.33, 88.72] and
the input argument for expd must be in the domain [-708.2, 709.1]. The
functions return HUGE_VAL if x is greater than the domain and 0.0 if x is
less than the domain.

Example

#include <math.h>

double y;

float x;

y = exp (1.0); /* y = 2.71828 */

x = expf (1.0); /* x = 2.71828 */

See Also

log, pow

VisualDSP++ 5.0 1-137
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fabs

Absolute value

Synopsis

#include <math.h>

float fabsf (float x);

double fabs (double x);

long double fabsd (long double x);

Description

The fabs functions return the absolute value of the argument x.

Error Conditions

The fabs functions do not return error conditions.

Example

#include <math.h>

double y;

float x;

y = fabs (-2.3); /* y = 2.3 */

y = fabs (2.3); /* y = 2.3 */

x = fabsf (-5.1); /* x = 5.1 */

See Also

abs, absfx, labs, llabs

Documented Library Functions

1-138 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fclose

Close a stream

Synopsis

#include <stdio.h>

int fclose(FILE *stream);

Description

The fclose function flushes stream and closes the associated file. The
flush will result in any unwritten buffered data for the stream to be writ-
ten to the file, with any unread buffered data being discarded.

If the buffer associated with stream was allocated automatically it will be
deallocated.

The fclose function will return 0 on successful completion.

Error Conditions

If the fclose function is not successful it returns EOF.

Example

#include <stdio.h>

void example(char* fname)

{

FILE *fp;

fp = fopen(fname, "w+");

/* Do some operations on the file */

fclose(fp);

}

VisualDSP++ 5.0 1-139
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

fopen

Documented Library Functions

1-140 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

feof

Test for end of file

Synopsis

#include <stdio.h>

int feof(FILE *stream);

Description

The feof function tests whether or not the file identified by stream has
reached the end of the file. The routine returns 0 if the end of the file has
not been reached and a non-zero result of the end of file has been reached.

Error Conditions

The feof function does not return any error condition.

Example

#include <stdio.h>

void print_char_from_file(FILE *fp)

{

/* printf out each character from a file until EOF */

while (!feof(fp))

printf("%c", fgetc(fp));

printf("\n");

}

See Also

clearerr, ferror

VisualDSP++ 5.0 1-141
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

ferror

Test for read or write errors

Synopsis

#include <stdio.h>

int ferror(FILE *stream);

Description

The ferror function tests whether an uncleared error has occurred while
accessing stream. If there are no errors then the function will return zero,
otherwise it will return a non-zero value.

 The ferror function does not examine whether the file identified
by stream has reached the end of the file.

Error Conditions

The ferror function does not return any error condition.

Example

#include <stdio.h>

void test_for_error(FILE *fp)

{

if (ferror(fp))

printf("Error with read/write to stream\n");

else

printf("read/write to stream OKAY\n");

}

See Also

clearerr, feof

Documented Library Functions

1-142 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fflush

Flush a stream

Synopsis

#include <stdio.h>

int fflush(FILE *stream);

Description

The fflush function causes any unwritten data for stream to be written to
the file. If stream is a NULL pointer, fflush performs this flushing action
on all streams.

Upon successful completion the fflush function returns zero.

Error Conditions

If fflush is unsuccessful, the EOF value is returned.

Example

#include <stdio.h>

void flush_all_streams(void)

{

fflush(NULL);

}

See Also

fclose

VisualDSP++ 5.0 1-143
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fgetc

Get a character from a stream

Synopsis

#include <stdio.h>

int fgetc(FILE *stream);

Description

The fgetc function obtains the next character from the input stream
pointed to by stream, converts it from an unsigned char to an int and
advances the file position indicator for the stream.

If there are no errors, then fgetc will return the next character as the func-
tion result.

Error Conditions

If the fgetc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

char use_fgetc(FILE *fp)

{

char ch;

if ((ch = fgetc(fp)) == EOF) {

printf("Read End-of-file\n")

return 0;

} else {

return ch;

}

}

Documented Library Functions

1-144 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

getc

VisualDSP++ 5.0 1-145
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fgetpos

Record the current position in a stream

Synopsis

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

Description

The fgetpos function stores the current value of the file position indicator
for the stream pointed to by stream in the file position type object pointed
to by pos. The information generated by fgetpos in pos can be used with
the fsetpos function to return the file to this position.

Upon successful completion the fgetpos function will return 0.

Error Conditions

If fgetpos is unsuccessful, the function will return a non-zero value.

Example

#include <stdio.h>

void aroutine(FILE *fp, char *buffer)

{

fpos_t pos;

/* get the current file position */

if (fgetpos(fp, &pos)!= 0) {

printf("fgetpos failed\n");

return;

}

/* write the buffer to the file */

(void) fprintf(fp, "%s\n", buffer);

/* reset the file position to the value before the write */

Documented Library Functions

1-146 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

if (fsetpos(fp, &pos) != 0) {

printf("fsetpos failed\n");

}

}

See Also

fsetpos, ftell, fseek, rewind

VisualDSP++ 5.0 1-147
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fgets

Get a string from a stream

Synopsis

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

Description

The fgets function reads characters from stream into the array pointed to
by s. The function will read a maximum of one less character than the
value specified by n, although the get will also end if either a NEWLINE char-
acter or the end-of-file marker are read. The array s will have a NUL
character written at the end of the string that has been read.

Upon successful completion the fgets function will return s.

Error Conditions

If fgets is unsuccessful, the function will return a NULL pointer.

Example

#include <stdio.h>

char buffer[20];

void read_into_buffer(FILE *fp)

{

char *str;

str = fgets(buffer, sizeof(buffer), fp);

Documented Library Functions

1-148 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

if (str == NULL) {

printf("Either read failed or EOF encountered\n");

} else {

printf("filled buffer with %s\n", str);

}

}

See Also

 fgetc, getc, gets

VisualDSP++ 5.0 1-149
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

floor

Floor

Synopsis

#include <math.h>

float floorf (float x);

double floor (double x);

long double floord (long double x);

Description

The floor functions return the largest integral value that is not greater
than their argument.

Error Conditions

The floor functions do not return error conditions.

Example

#include <math.h>

double y;

float z;

y = floor (1.25); /* y = 1.0 */

y = floor (-1.25); /* y = -2.0 */

z = floorf (10.1); /* z = 10.0 */

See Also

ceil

Documented Library Functions

1-150 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fmod

Floating-point modulus

Synopsis

#include <math.h>

float fmodf (float x, float y);

double fmod (double x, double y);

long double fmodd (long double x, long double y);

Description

The fmod functions compute the floating-point remainder that results
from dividing the first argument by the second argument.

The result is less than the second argument and has the same sign as the
first argument. If the second argument is equal to zero, the fmod functions
return zero.

Error Conditions

The fmod functions do not return an error condition.

Example

#include <math.h>

double y;

float x;

y = fmod (5.0, 2.0); /* y = 1.0 */

x = fmodf (4.0, 2.0); /* x = 0.0 */

See Also

div, ldiv, modf

VisualDSP++ 5.0 1-151
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fopen

Open a file

Synopsis

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

Description

The fopen function initializes the data structures that are required for
reading or writing to a file. The file’s name is identified by filename, with
the access type required specified by the string mode.

Valid selections for mode are specified in Table 1-36. If any other mode
specification is selected then the behavior is undefined.

Table 1-36. Valid Selections for mode

mode Selection

r Open text file for reading. This operation fails if the file has not previ-
ously been created.

w Open text file for writing. If the filename already exists then it will be
truncated to zero length with the write starting at the beginning of the
file. If the file does not already exist then it is created.

a Open a text file for appending data. All data will be written to the end of
the file specified.

r+ As r with the exception that the file can also be written to.

w+ As w with the exception that the file can also be read from.

a+ As a with the exception that the file can also be read from any position
within the file. Data is only written to the end of the file.

rb As r with the exception that the file is opened in binary mode.

wb As w with the exception that the file is opened in binary mode.

ab As a with the exception that the file is opened in binary mode.

Documented Library Functions

1-152 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

If the call to the fopen function is successful a pointer to the object con-
trolling the stream is returned.

Error Conditions

If the fopen function is not successful a NULL pointer is returned.

Example

#include <stdio.h>

FILE *open_output_file(void)

{

/* Open file for writing as binary */

FILE *handle = fopen("output.dat", "wb");

return handle;

}

See Also

fclose, fflush, freopen

r+b/rb+ Open file in binary mode for both reading and writing.

w+b/wb+ Create or truncate to zero length a file for both reading and writing.

a+b/ab+ As a+ with the exception that the file is opened in binary mode.

Table 1-36. Valid Selections for mode (Cont’d)

mode Selection

VisualDSP++ 5.0 1-153
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fprintf

Print formatted output

Synopsis

#include <stdio.h>

int fprintf(FILE *stream, const char *format, /*args*/ ...);

Description

The fprintf function places output on the named output stream. The
string pointed to by format specifies how the arguments are converted for
output.

The format string can contain zero or more conversion specifications, each
beginning with the % character. The conversion specification itself follows
the % character and consists of one or more of the following sequence:

• Flag – optional characters that modifies the meaning of the
conversion.

• Width – optional numeric value (or *) that specifies the minimum
field width.

• Precision – optional numeric value that gives the minimum num-
ber of digits to appear.

• Length – optional modifier that specifies the size of the argument.

• Type – character that specifies the type of conversion to be applied.

Documented Library Functions

1-154 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The flag characters can be in any order and are optional. The valid flags
are described in Table 1-37.

If a field width is specified, the converted value is padded with spaces to
the specified width if the converted value contains fewer characters than
the width. Normally spaces will be used to pad the field on the left, but
padding on the right will be used if the ‘-’ flag has been specified. The ‘0’
flag may be used as an alternative to space padding; see the description of
the flag field above. The width may also be specified as a ‘*’, which indi-
cates that the current argument in the call to fprintf is an int that
defines the value of the width. If the value is negative then it is interpreted
as a ‘-’ flag and a positive field width.

Table 1-37. Valid Flags for fprintf Function

Flag Field

- Left justify the result within the field. The result is right-justified by
default.

+ Always begin a signed conversion with a plus or minus sign. By default
only negative values will start with a sign.

space Prefix a space to the result if the first character is not a sign and the +
flag has not also been specified.

The result is converted to an alternative form depending on the type of
conversion:
 o : If the value is not zero it is preceded with 0.
 x : If the value is not zero it is preceded with 0x.
 X : If the value is not zero it is preceded with 0X.
 a A e E f F: Always generate a decimal point.
 g G : as E except trailing zeros are not removed.

0 (zero) Specifies an alternative to space padding. Leading zeroes will be used as
necessary to pad a field to the specified field width, the leading zeroes
will follow any sign or specification of a base. The flag will be ignored if
it appears with a ‘-’ flag or if it is used in a conversion specification that
uses a precision and one of the conversons a, A, d, i, o, u, x or X.
The 0 flag may be used with the a, A, d, i, o, u, x, X, e, E, f, g and G
conversions.

VisualDSP++ 5.0 1-155
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The optional precision value always begins with a period (.) and is fol-
lowed either by an asterisk (*) or by a decimal integer. An asterisk (*)
indicates that the precision is specified by an integer argument preceding
the argument to be formatted. If only a period is specified, a precision of
zero will be assumed. The precision value has differing effects depending
on the conversion specifier being used:

• For A, a specifies the number of digits after the decimal point. If
the precision is zero and the # flag is not specified no decimal point
will be generated.

• For d,i,o,u,x,X specifies the minimum number of digits to
appear, defaulting to 1.

• For f,F,E,e,r,R specifies the number of digits after the decimal
point character, the default being 6. If the # specifier is present
with a zero precision then no decimal point will be generated.

• For g, G specifies the maximum number of significant digits.

• For s specifies the maximum number of characters to be written.

The length modifier (Table 1-38) can optionally be used to specify the
size of the argument. The length modifiers should only precede one of the
d, i, o, u, x, X, r, R or n conversion specifiers unless other conversion
specifiers are detailed.

Table 1-38. Length Modifiers for fprintf Function

Length Action

h The argument should be interpreted as a short int. If preceding the r or
R conversion specifier, the argument is interpreted as short fract or
unsigned short fract.

l The argument should be interpreted as a long int. If preceding the r or
R conversion specifier, the argument is interpreted as long fract or
unsigned long fract

Documented Library Functions

1-156 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Table 1-39 contains definitions of the valid conversion specifiers that
define the type of conversion applied.

ll The argument should be interpreted as a long long int.

L The argument should be interpreted as a long double argument. This
length modifier should precede one of the a, A, e, E, f, F, g, or G
conversion specifiers. Note that this length modifier is only valid if
-double-size-64 is selected. If -double-size-32 is selected no con-
version will occur, with the corresponding argument being consumed.

Table 1-39. Valid Conversion Specifier Definitions for fprintf Function

Specifier Conversion

a, A floating-point, hexadecimal notation

c character

d, i signed decimal integer

e, E floating-point, scientific notation (mantissa/exponent)

f, F floating-point, decimal notation

g, G convert as e, E or f, F

n pointer to signed integer to which the number of characters written so
far will be stored with no other output

o unsigned octal

p pointer to void

r signed fract

R unsigned fract

s string of characters

u unsigned integer

x, X unsigned hexadecimal notation

% print a % character with no argument conversion

Table 1-38. Length Modifiers for fprintf Function (Cont’d)

Length Action

VisualDSP++ 5.0 1-157
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The a|A conversion specifier converts to a floating-point number with the
notational style [-]0xh.hhhh±d where there is one hexadecimal digit
before the period. The a|A conversion specifiers always contain a mini-
mum of one digit for the exponent.

The e|E conversion specifier converts to a floating-point number nota-
tional style [-]d.ddde±dd. The exponent always contains at least two
digits. The case of the e preceding the exponent will match that of the
conversion specifier.

The f|F conversion specifies to convert to decimal notation [-]d.ddd±ddd.

The g|G conversion specifier converts as e|E or f|F specifiers depending on
the value being converted. If the value being converted is less than -4 or
greater than or equal to the precision then e|E conversions will be used,
otherwise f|F conversions will be used.

For all of the a, A, e, E, f, F, g and G specifiers an argument that represents
infinity is displayed as Inf. For all of the a, A, e, E, f, F, g and G specifiers
an argument that represents a NaN result is displayed as NaN.

The r|R conversion specifiers convert a fixed-point value to decimal nota-
tion [-]d.ddd if you are linking with the fixed-point I/O library using the
-flags-link -MD__LIBIO_FX switch. Otherwise they will convert a
fixed-point value to hexadecimal.

The fprintf function returns the number of characters printed.

Error Conditions

If the fprintf function is unsuccessful, a negative value is returned.

Documented Library Functions

1-158 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <stdio.h>

void fprintf_example(void)

{

char *str = "hello world";

/* Output to stdout is " +1 +1." */

fprintf(stdout, "%+5.0f%+#5.0f\n", 1.234, 1.234);

/* Output to stdout is "1.234 1.234000 1.23400000" */

fprintf(stdout, "%.3f %f %.8f\n", 1.234, 1.234, 1.234);

/* Output to stdout is "justified:
left:5 right: 5" */

fprintf(stdout, "justified:\nleft:%-5dright:%5i\n", 5, 5);

/* Output to stdout is

"90% of test programs print hello world" */

fprintf(stdout, "90%% of test programs print %s\n", str);

/* Output to stdout is "0.0001 1e-05 100000 1E+06" */

fprintf(stdout, "%g %g %G %G\n", 0.0001, 0.00001, 1e5, 1e6);

}

See Also

printf, snprintf, vfprintf, vprintf, vsnprintf, vsprintf

VisualDSP++ 5.0 1-159
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fputc

Put a character on a stream

Synopsis

#include <stdio.h>

int fputc(int ch, FILE *stream);

Description

The fputc function writes the argument ch to the output stream pointed
to by stream and advances the file position indicator. The argument ch is
converted to an unsigned char before it is written.

If the fputc function is successful then it will return the value that was
written to the stream.

Error Conditions

 If the fputc function is not successful EOF is returned.

Example

#include <stdio.h>

void fputc_example(FILE* fp)

{

/* put the character 'i' to the stream pointed to by fp */

int res = fputc('i', fp);

if (res != 'i')

printf("fputc failed\n");

}

See Also

putc

Documented Library Functions

1-160 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fputs

Put a string on a stream

Synopsis

#include <stdio.h>

int fputs(const char *string, FILE *stream);

Description

The fputs function writes the string pointed to by string to the output
stream pointed to by stream. The NULL terminating character of the string
will not be written to stream.

If the call to fputs is successful, the function returns a non-negative value.

Error Conditions

The fputs function will return EOF if a write error occurred.

Example

#include <stdio.h>

void fputs_example(FILE* fp)

{

/* put the string "example" to the stream pointed to by fp */

char *example = "example";

int res = fputs(example, fp);

if (res == EOF)

printf("fputs failed\n");

}

See Also

puts

VisualDSP++ 5.0 1-161
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fread

Buffered input

Synopsis

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t n, FILE *stream);

Description

The fread function reads into an array pointed to by ptr up to a maxi-
mum of n items of data from stream, where each item of data is of length
size. It stops reading data if an EOF or error condition is encountered
while reading from stream, or if n items have been read. It advances the
data pointer in stream by the number of characters read. It does not
change the contents of stream.

The fread function returns the number of items read, this may be less
than n if there is insufficient data on the external device to satisfy the read
request. If size or n is zero, then fread will return zero and does not affect
the state of stream.

When the stream has been opened as a binary stream, the Analog Devices
I/O library may choose to bypass the I/O buffer and transmit data from an
external device directly into the program, particularly when the buffer size
(as defined by the macro BUFSIZ in the stdio.h header file, or controlled
by the function setvbuf) is smaller than the number of characters to be
transferred.

Normally, binary streams are a bit-exact mirror image of the processor’s
memory such that data that is written out to a binary stream can be later
read back unmodified. The size of a binary file on SHARC architecture is
therefore normally a multiple of 32-bit words. When the size of a file is
not a multiple of four, fread will behave as if the file was padded out by a
sufficient number of trailing null characters to bring the size of the file up
to the next multiple of 32-bit words.

Documented Library Functions

1-162 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

 If an error occurs, fread returns zero and sets the error indicator for
stream.

Example

#include <stdio.h>

int buffer[100];

int fill_buffer(FILE *fp)

{

int read_items;

/* Read from file pointer fp into array buffer */

read_items = fread(&buffer, sizeof(int), 100, fp);

if (read_items < 100) {

if (ferror(fp))

printf("fill_buffer failed with an I/O error\n");

else if (feof(fp))

printf("fill_buffer failed with EOF\n");

else

printf("fill_buffer only read %d items\n",read_items);

}

return read_items;

}

See Also

ferror, fgetc, fgets, fscanf

VisualDSP++ 5.0 1-163
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

free

Deallocate memory

Synopsis

#include <stdlib.h>

void free (void *ptr);

Description

The free function deallocates a pointer previously allocated to a range of
memory (by calloc or malloc) to the free memory heap. If the pointer
was not previously allocated by calloc, malloc, realloc, heap_calloc,
heap_malloc, or heap_realloc, the behavior is undefined.

The free function returns the allocated memory to the heap from which it
was allocated.

Error Conditions

The free function does not return an error condition.

Example

#include <stdlib.h>

char *ptr;

ptr = malloc (10); /* Allocate 10 words from heap */

free (ptr); /* Return space to free heap */

See Also

calloc, heap_calloc, heap_free, heap_lookup_name, heap_malloc,
heap_realloc, malloc, realloc, set_alloc_type

Documented Library Functions

1-164 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

freopen

Open a file using an existing file descriptor

Synopsis

#include <stdio.h>

FILE *freopen(const char *fname, const char *mode, FILE *stream);

Description

The freopen function opens the file specified by fname and associates it
with the stream pointed to by stream. The mode argument has the same
effect as described in fopen. (See “fopen” on page 1-151 for more infor-
mation on the mode argument.)

Before opening the new file the freopen function will first attempt to
flush the stream and close any file descriptor associated with stream. Fail-
ure to flush or close the file successfully is ignored. Both the error and EOF
indicators for stream are cleared.

The original stream will always be closed regardless of whether the open-
ing of the new file is successful or not.

Upon successful completion the freopen function returns the value of
stream.

Error Conditions

If freopen is unsuccessful, a NULL pointer is returned.

VisualDSP++ 5.0 1-165
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

void freopen_example(FILE* fp)

{

FILE *result;

char *newname = "newname";

/* reopen existing file pointer for reading file "newname" */

result = freopen(newname, "r", fp);

if (result == fp)

printf("%s reopened for reading\n", newname);

else

printf("freopen not successful\n");

}

See Also

fclose, fopen

Documented Library Functions

1-166 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

frexp

Separate fraction and exponent

Synopsis

#include <math.h>

float frexpf (float x, int *expptr);

double frexp (double x, int *expptr);

long double frexpd (long double x, int *expptr);

Description

The frexp functions separate a floating-point input into a normalized
fraction and a (base 2) exponent. The functions return a fraction in the
interval [½, 1), and store a power of 2 in the integer pointed to by the sec-
ond argument. If the input is zero, then both the fraction and the
exponent is set to zero.

Error Conditions

The frexp functions do not return an error condition.

Example

#include <math.h>

double y;

float x;

int exponent;

y = frexp (2.0, &exponent); /* y = 0.5, exponent = 2 */

x = frexpf (5.0, &exponent); /* x = 0.5, exponent = 3 */

VisualDSP++ 5.0 1-167
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

modf

Documented Library Functions

1-168 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fscanf

Read formatted input

Synopsis

#include <stdio.h>

int fscanf(FILE *stream, const char *format, /* args */...);

Description

The fscanf function reads from the input file stream, interprets the
inputs according to format and stores the results of the conversions (if
any) in its arguments. The format is a string containing the control format
for the input with the following arguments as pointers to the locations
where the converted results are written.

The string pointed to by format specifies how the input is to be parsed
and, possibly, converted. It may consist of whitespace characters, ordinary
characters (apart from the % character), and conversion specifications. A
sequence of whitespace characters causes fscanf to continue to parse the
input until either there is no more input or until it finds a non-whitespace
character. If the format specification contains a sequence of ordinary char-
acters then fscanf will continue to read the next characters in the input
stream until the input data does not match the sequence of characters in
the format. At this point fscanf will fail, and the differing and subsequent
characters in the input stream will not be read.

The % character in the format string introduces a conversion specification.
A conversion specification has the following form:

 % [*] [width] [length] type

A conversion specification always starts with the % character. It may
optionally be followed by an asterisk (*) character, which indicates that
the result of the conversion is not to be saved. In this context the asterisk
character is known as the assignment-suppressing character. The optional

VisualDSP++ 5.0 1-169
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

token width represents a non-zero decimal number and specifies the maxi-
mum field width. fscanf will not read any more than width characters
while performing the conversion specified by type. The length token can
be used to define a length modifier.

The length modifier (Table 1-40) can be used to specify the size of the
argument. The length modifiers should only precede one of the d, i, o, u,
x, X, r, R or n conversion specifiers unless other conversion specifiers are
detailed.

 The hh, j, t, and z size specifiers are defined in the C99 (ISO/IEC
9899:1999) standard.

A definition of the valid conversion specifier characters that specify the
type of conversion to be applied can be found in Table 1-41.

Table 1-40. Length Modifiers for fscanf Function

Length Action

h The argument should be interpreted as a short int. If preceding the r or
R conversion specifier, the argument is interpreted as short fract or
unsigned short fract.

hh The argument should be interpreted as a char.

j The argument should be interpreted as intmax_t or uintmax_t.

l The argument should be interpreted as a long int. If preceding the r or
R conversion specifier, the argument is interpreted as long fract or
unsigned long fract.

L The argument should be interpreted as a long double argument. This
length modifier should precede one of the a, A, e, E, f, F, g, or G
conversion specifiers.

t The argument should be interpreted as ptrdiff_t.

z The argument should be interpreted as size_t.

Documented Library Functions

1-170 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The [conversion specifier should be followed by a sequence of characters,
referred to as the scanset, with a terminating] character and so will take
the form [scanset]. The conversion specifier copies into an array which is
the corresponding argument until a character that does not match any of
the scanset is read. If the scanset begins with a ^ character then the scan-
ning will match against characters not defined in the scanset. If the scanset
is to include the] character, then this character must immediately follow
the [character or the ^ character if specified.

Each input item is converted to a type appropriate to the conversion char-
acter, as specified in the table above. The result of the conversion is placed
into the object pointed to by the next argument that has not already been

Table 1-41. Valid Conversion Specifier Definitions for fscanf Function

Specifier Conversion

a A e E f F g G floating point, optionally preceded by a sign and optionally followed by
an e or E character

c single character, including whitespace

d signed decimal integer with optional sign

i signed integer with optional sign

n no input is consumed. The number of characters read so far will be writ-
ten to the corresponding argument. This specifier does not affect the
function result returned by fscanf

o unsigned octal

p pointer to void

r signed fract with optional sign

R unsigned fract

s string of characters up to a whitespace character

u unsigned decimal integer

x X hexadecimal integer with optional sign

[a non-empty sequence of characters referred to as the scanset

% a single % character with no conversion or assignment

VisualDSP++ 5.0 1-171
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

the recipient of a conversion. If the suppression character has been
specified then no data shall be placed into the object with the next conver-
sion using the object to store its result.

Note that the r and R format specifiers are only supported when linking
with the fixed-point I/O library using -flags-link -MD__LIBIO_FX.

The fscanf function returns the number of items successfully read.

Error Conditions

If the fscanf function is not successful before any conversion then EOF is
returned.

Example

#include <stdio.h>

void fscanf_example(FILE *fp)

{

short int day, month, year;

float f1, f2, f3;

char string[20];

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */

fscanf (fp, "%hd%*c%hd%*c%hd", &day, &month, &year);

/* Scan float values separated by "abc", for example

1.234e+6abc1.234abc235.06abc */

fscanf (fp, "%fabc%gabc%eabc", &f1, &f2, &f3);

/* For input "alphabet", string will contain "a" */

writ(fp, "%[aeiou]", string);

/* For input "drying”, string will contain "dry" */

fscanf (fp, "%[^aeiou]", string);

}

Documented Library Functions

1-172 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

scanf, sscanf

VisualDSP++ 5.0 1-173
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fseek

Reposition a file position indicator in a stream

Synopsis

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);

Description

The fseek function sets the file position indicator for the stream pointed
to by stream. The position within the file is calculated by adding the off-
set to a position dependent on the value of whence. The valid values and
effects for whence are found in Table 1-42.

Using fseek to position a text stream is only valid if either offset is zero,
or if whence is SEEK_SET and offset is a value that was previously returned
by ftell. For binary streams, the offset is measured in addressable units of
memory, which on SHARC is 32-bit words.

 Positioning within a file that has been opened as a text stream is
only supported by the libraries that Analog Devices supply if the
lines within the file are terminated by the character sequence \r\n.

A successful call to fseek will clear the EOF indicator for stream and
undoes any effects of ungetc on stream. If the stream has been opened as a

Table 1-42. Valid Values and Effects for whence

whence Effect

SEEK_SET Set the position indicator to be equal to offset characters from the
beginning of stream.

SEEK_CUR Set the new position indicator to current position indicator for stream
plus offset.

SEEK_END Set the position indicator to EOF plus offset.

Documented Library Functions

1-174 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

update stream, then the next I/O operation may be either a read request or
a write request.

Error Conditions

If the fseek function is unsuccessful, a non-zero value is returned.

Example

#include <stdio.h>

long fseek_and_ftell(FILE *fp)

{

long offset;

/* seek to 20 characters offset from given file pointer */

if (fseek(fp, 20, SEEK_SET) != 0) {

printf("fseek failed\n");

return -1;

}

/* Now use ftell to get the offset value back */

offset = ftell(fp);

if (offset == -1)

printf("ftell failed\n");

if (offset == 20)

printf("ftell and fseek work\n");

return offset;

}

See Also

fflush, ftell, ungetc

VisualDSP++ 5.0 1-175
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

fsetpos

Reposition a file pointer in a stream

Synopsis

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

Description

The fsetpos function sets the file position indicator for stream, using the
value of the object pointed to by pos. The value pointed to by pos must be
a value obtained from an earlier call to fgetpos on the same stream.

 Positioning within a file that has been opened as a text stream is
only supported by the libraries that Analog Devices supply if the
lines within the file are terminated by the character sequence \r\n.

A successful call to fsetpos function clears the EOF indicator for stream
and undoes any effects of ungetc on the same stream.

The fsetpos function returns zero if it is successful.

Error Conditions

If the fsetpos function is unsuccessful, the function returns a non-zero
value.

Example

Refer to “fgetpos” on page 1-145 for an example.

See Also

fgetpos, ftell, rewind, ungetc

Documented Library Functions

1-176 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

ftell

Obtain current file position

Synopsis

#include <stdio.h>

long int ftell(FILE *stream);

Description

The ftell function obtains the current position for a file identified by
stream.

If stream is a text stream, then the information in the position indicator is
unspecified information, usable by fseek for determining the file position
indicator at the time of the ftell call.

If stream is a binary stream, then ftell returns the current position as an
offset from the start of the file. As binary streams are normally bit-exact
images of the processor’s memory, the offset returned is in addressable
units of memory that, on a SHARC processor, is 32-bit words.

 Positioning within a file that has been opened as a text stream is
only supported by the libraries that Analog Devices supply if the
lines within the file are terminated by the character sequence \r\n.

If successful, the ftell function returns the current value of the file posi-
tion indicator on the stream.

Error Conditions

If the ftell function is unsuccessful, a value of -1 is returned.

Example

See “fseek” on page 1-173 for an example.

VisualDSP++ 5.0 1-177
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

fseek

Documented Library Functions

1-178 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fwrite

Buffered output

Synopsis

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t n,

FILE *stream);

Description

The fwrite function writes to the output stream up to n items of data
from the array pointed by ptr. An item of data is defined as a sequence of
characters of size size. The write will complete once n items of data have
been written to the stream. The file position indicator for stream is
advanced by the number of characters successfully written.

When the stream has been opened as a binary stream, the Analog Devices
I/O library may choose to bypass the I/O buffer and transmit data from
the program directly to the external device, particularly when the buffer
size (as defined by the macro BUFSIZ in the stdio.h header file, or con-
trolled by the function setvbuf) is smaller than the number of characters
to be transferred.

If successful then the fwrite function will return the number of items
written.

Error Conditions

If the fwrite function is unsuccessful, it will return the number of ele-
ments successfully written which will be less than n.

VisualDSP++ 5.0 1-179
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

char* message="some text";

void write_text_to_file(void)

{

/* Open "file.txt" for writing */

FILE* fp = fopen("file.txt", "w");

int res, message_len = strlen(message);

if (!fp) {

printf("fopen was not successful\n");

return;

}

res = fwrite(message, sizeof(char), message_len, fp);

if (res != message_len)

printf("fwrite was not successful\n");

}

See Also

fread

Documented Library Functions

1-180 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fxbits

Bitwise integer to fixed-point to conversion

Synopsis

#include <stdfix.h>

short fract hrbits(int_hr_t b);

fract rbits(int_r_t b);

long fract lrbits(int_lr_t b);

unsigned short fract uhrbits(uint_uhr_t b);

unsigned fract urbits(uint_ur_t b);

unsigned long fract ulrbits(uint_ulr_t b);

Description

Given an integer operand, the fxbits family of functions return the
integer value divided by 2F, where F is the number of fractional bits in the
result fixed-point type. This is equivalent to the bit-pattern of the integer
value held in a fixed-point type.

Error Conditions

The fxbits family of functions do not return an error condition. If the
input integer value does not fit in the number of bits of the fixed-point
result type, the result is saturated to the largest or smallest fixed-point
value.

Example

#include <stdfix.h>

unsigned long fract ulr;

ulr = ulrbits(0x20000000); /* ulr == 0.125ulr */

VisualDSP++ 5.0 1-181
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

bitsfx

Documented Library Functions

1-182 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fxdivi

Division of integer by integer to give fixed-point result

Synopsis

#include <stdfix.h>

fract rdivi(int numer, int denom);

long fract lrdivi(long int numer, long int denom);

unsigned fract urdivi(unsigned int numer, unsigned int denom);

unsigned long fract ulrdivi(unsigned long int numer,

unsigned long int denom);

Description

Given an integer numerator and denominator, the fxdivi family of
functions computes the quotient and returns the closest fixed-point value
to the result.

Error Conditions

The fxdivi family of functions have undefined behavior if the
denominator is zero.

Example

#include <stdfix.h>

unsigned long fract ulquo;

ulquo = ulrdivi(1, 8); /* ulquo == 0.125ulr */

See Also

div, divifx, idivfx, ldiv, lldiv

VisualDSP++ 5.0 1-183
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

getc

Get a character from a stream

Synopsis

#include <stdio.h>

int getc(FILE *stream);

Description

The getc function is equivalent to fgetc. The getc function obtains the
next character from the input stream pointed to by stream, converts it
from an unsigned char to an int and advances the file position indicator
for the stream.

Upon successful completion the getc function will return the next charac-
ter from the input stream pointed to by stream.

Error Conditions

If the getc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

char use_getc(FILE *fp)

{

char ch;

if ((ch = getc(fp)) == EOF) {

printf("Read End-of-file\n");

return (char)-1;

} else {

return ch;

}

}

Documented Library Functions

1-184 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

fgetc

VisualDSP++ 5.0 1-185
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

getchar

Get a character from stdin

Synopsis

#include <stdio.h>

int getchar(void);

Description

The getchar function is functionally the same as calling the getc function
with stdin as its argument. A call to getchar will return the next single
character from the standard input stream. The getchar function also
advances the standard input's current position indicator.

Error Conditions

If the getchar function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

char use_getchar(void)

{

char ch;

if ((ch = getchar()) == EOF) {

printf("getchar() failed\n");

return (char)-1;

} else {

return ch;

}

}

Documented Library Functions

1-186 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

getc

VisualDSP++ 5.0 1-187
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

getenv

Get string definition from operating system

Synopsis

#include <stdlib.h>

char *getenv (const char *name);

Description

The getenv function polls the operating system to see if a string is defined.
There is no default operating system for the SHARC processors, so getenv
always returns NULL.

Error Conditions

The getenv function does not return an error condition.

Example

#include <stdlib.h>

char *ptr;

ptr = getenv ("ADI_DSP"); /* ptr = NULL */

See Also

system

Documented Library Functions

1-188 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

gets

Get a string from a stream

Synopsis

#include <stdio.h>

char *gets(char *s);

Description

The gets function reads characters from the standard input stream into
the array pointed to by s. The read terminates when a NEWLINE character is
read, with the NEWLINE character being replaced by a null character in the
array pointed to by s. The read will also halt if EOF is encountered.

The array pointed to by s must be of equal or greater length of the input
line being read. If this is not the case, the behavior is undefined. If EOF is
encountered without any characters being read, then a NULL pointer is
returned.

Error Conditions

If the gets function is not successful and a read error occurs, then a NULL
pointer is returned.

Example

#include <stdio.h>

void fill_buffer(char *buffer)

{

if (gets(buffer) == NULL)

printf("gets failed\n");

else

printf("gets read %s\n", buffer);

}

VisualDSP++ 5.0 1-189
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

fgetc, fgets, fread, fscanf

Documented Library Functions

1-190 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

gmtime

Convert calendar time into broken-down time as UTC

Synopsis

#include <time.h>

struct tm *gmtime(const time_t *t);

Description

The gmtime function converts a pointer to a calendar time into a bro-
ken-down time in terms of Coordinated Universal Time (UTC). A
broken-down time is a structured variable, which is described in “time.h”
on page 1-35.

The broken-down time is returned by gmtime as a pointer to static mem-
ory, which may be overwritten by a subsequent call to either gmtime, or to
localtime.

Error Conditions

The gmtime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

struct tm *tm_ptr;

cal_time = time(NULL);

if (cal_time != (time_t) -1) {

tm_ptr = gmtime(&cal_time);

printf("The year is %4d\n",1900 + (tm_ptr->tm_year));

}

VisualDSP++ 5.0 1-191
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

localtime, mktime, time

Documented Library Functions

1-192 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

heap_calloc

Allocate and initialize memory in a heap

Synopsis

#include <stdlib.h>

void *heap_calloc(int heap_index, size_t nelem, size_t size);

Description

The heap_calloc function is an Analog Devices extension to the ANSI
standard.

The heap_calloc function allocates from the heap identified by
heap_index, an array containing nelem elements of size, and stores zeros
in all the elements of the array. If successful, it returns a pointer to this
array; otherwise, it returns a null pointer. You can safely convert the
return value to an object pointer of any type whose size is not greater than
size. The memory may be deallocated with the free or heap_free
function.

For more information on creating multiple run-time heaps, see Chapter 1
of the VisualDSP++ 5.0 Compiler Manual, section “Using Multiple
Heaps”.

Error Conditions

The heap_calloc function returns the null pointer if unable to allocate
the requested memory.

VisualDSP++ 5.0 1-193
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Example

#include <stdlib.h>

#include <stdio.h>

int main()

{

char *buf;

int index;

/* Obtain the heap index for "seg_hp2" */

index = heap_lookup_name("seg_hp2");

if (index < 0) {

printf("Heap with name seg_hp2 not found\n");

return 1;

}

/* Allocate memory for 128 characters from seg_hp2 */

buf = (char *)heap_calloc(index,128,sizeof(char));

if (buf != 0) {

printf("Allocated space from %p\n", buf);

free(buf); /* free can be used to release the memory */

} else {

printf("Unable to allocate from seg_hp2\n");

}

return 0;

}

See Also

calloc, free, heap_free, heap_lookup_name, heap_malloc, heap_realloc,
malloc, realloc, set_alloc_type

Documented Library Functions

1-194 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

heap_free

Return memory to a heap

Synopsis

#include <stdlib.h>

void heap_free(int heap_index, void *ptr);

Description

The heap_free function is an Analog Devices extension to the ANSI
standard.

If ptr is not a null pointer, the heap_free function deallocates the object
whose address is ptr; otherwise, it does nothing. The argument
heap_index must be the index of the heap from which the object pointed
to by ptr was originally allocated. If the object was not allocated from the
specified heap, then the behavior is undefined.

The heap_free function is somewhat faster than free, but free must be
used if the heap from which the object was allocated is not known with
certainty.

For more information on creating multiple run-time heaps, see Chapter 1
of the VisualDSP++ 5.0 Compiler Manual, section “Using Multiple
Heaps”.

Error Conditions

The heap_free function does not return an error condition.

VisualDSP++ 5.0 1-195
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Example

#include <stdlib.h>

#include <stdio.h>

int main()

{

char *buf;

int index;

/* Obtain the heap index for "seg_hp2" */

index = heap_lookup_name("seg_hp2");

if (index < 0) {

printf("Heap with name seg_hp2 not found\n");

return 1;

}

/* Allocate memory for 128 characters from seg_hp2 */

buf = (char *)heap_calloc(index,128,sizeof(char));

if (buf != 0) {

printf("Allocated space from %p\n", buf);

heap_free(index, buf); /* heap_free can be used */

/* to release the memory */

} else {

printf("Unable to allocate from seg_hp2\n");

}

return 0;

}

See Also

calloc, free, heap_calloc, heap_lookup_name, heap_malloc, heap_realloc,
malloc, realloc, set_alloc_type

Documented Library Functions

1-196 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

heap_install

Sets up a heap at run-time

Synopsis

#include <stdlib.h>

int heap_install(void *base, size_t length, int userid,

int pmdm);

Description

The heap_install function is an Analog Devices extension to the ANSI
standard.

The heap_install function sets up a memory heap (base) with a size spec-
ified by length at run-time. The dynamic heap is identified by the
userid and resides in either DM if pmdm has a value of -1 or PM memory
if pmdm has a value of 1.

On successful initialization, heap_install() returns the heap index allo-
cated for the newly installed heap. If the operation is unsuccessful, then
heap_install() returns -1.

Once the dynamic heap is initialized, heap space can be claimed using the
heap_malloc routine and associated heap management routines.

Note that the heap_lookup_name function does not work with a heap
dynamically initialized by heap_install(). The heap_lookup_name func-
tion only works with statically initialized heaps.

Error Conditions

The heap_install function returns -1 if initialization was unsuccessful.
This may be because there is not enough space available in the __heaps
table, or if a heap with the specified userid already exists.

VisualDSP++ 5.0 1-197
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Example

<< Linker Description File >>

MEMORY

{

..

seg_runtime_dm { TYPE(DM RAM)

START(0x0005b000) END(0x0005dfff) WIDTH(32) }

..

}

PROCESSOR p0

{

..

SECTIONS

{

..

seg_runtime_dm

{

_start_of_seg_runtime_dm = .;

} > seg_runtime_dm

}

}

 << C Source File >>

#include <stdlib.h>

extern int __start_of_seg_runtime_dm;

#define DM_MEM -1

#define ADDR_DM &__start_of_seg_runtime_dm

int main()

Documented Library Functions

1-198 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

{

int i;

int index;

int *x;

index = heap_install(

(void *)ADDR_DM, 100, 3, DM_MEM);

if (index != -1)

x = heap_malloc(index, 90*sizeof(int));

if (x) {

for (i = 0; i < 90; i++)

x[i] = i;

}

return 0;

}

See Also

heap_lookup_name, heap_malloc

VisualDSP++ 5.0 1-199
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

heap_lookup_name

Obtain primary heap identifier

Synopsis

#include <stdlib.h>

int heap_lookup_name(char *user_id);

Description

The heap_lookup_name function is an Analog Devices extension to the
ANSI standard.

The heap_lookup_name function returns the primary heap identifier of the
heap with user identifier user_id, if there is such a heap; otherwise, -1 is
returned. The primary heap identifier is the index of the heap descriptor
record in the heap descriptor table. The user identifier for a heap is deter-
mined by a field in the heap descriptor record. The default heap always
has user identifier 0.

For more information on multiple run-time heaps, see Chapter 1 of the
VisualDSP++ 5.0 Compiler Manual, section “Using Multiple Heaps”.

Error Conditions

The function returns -1 if the specified user identifier was not found, oth-
erwise it returns the primary heap identifier of the specified heap.

Example

#include <stdlib.h>

#include <stdio.h>

void func2(int pm * b);

func()

Documented Library Functions

1-200 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

{

int pm * x;

int loop, pm_heapID;

pm_heapID = heap_lookup_name("seg_heaq");

if (pm_heapID < 0) {

printf("Lookup failed\n");

return 1;

}

x = (int pm *)heap_malloc(pm_heapID, 1000);

// Get 1K words of PM heap space

if (x == NULL) {

printf("heap_malloc failed\n");

return 1;

}

for (loop = 0; loop < 1000; loop++)

x[loop] = loop;

func2(x); // Do something with x

}

See Also

calloc, free, heap_calloc, heap_free, heap_malloc, heap_realloc, malloc,
realloc, set_alloc_type

VisualDSP++ 5.0 1-201
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

heap_malloc

Allocate memory from a heap

Synopsis

#include <stdlib.h>

void *heap_malloc(int heap_index, size_t size);

Description

The heap_malloc function is an Analog Devices extension to the ANSI
standard.

The heap_malloc function allocates an object of size from the heap iden-
tified by heap_index. It returns the address of the object if successful;
otherwise, it returns a null pointer. You can safely convert the return value
to an object pointer of any type whose size is not greater than size.

The block of memory is uninitialized. The memory may be deallocated
with the free or heap_free function.

For more information on creating multiple run-time heaps, see Chapter 1
of the VisualDSP++ 5.0 Compiler Manual, section “Using Multiple
Heaps”.

Error Conditions

The heap_malloc function returns the null pointer if unable to allocate
the requested memory.

Example

#include <stdlib.h>

#include <stdio.h>

int main()

Documented Library Functions

1-202 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

{

char *buf;

int index;

/* Obtain the heap index for "seg_hp2" */

index = heap_lookup_name("seg_hp2");

if (index < 0) {

printf("Heap with name seg_hp2 not found\n");

return 1;

}

/* Allocate memory for 128 characters from seg_hp2 */

buf = (char *)heap_malloc(index,128);

if (buf != 0) {

printf("Allocated space from %p\n", buf);

free(buf); /* free can be used to release the memory */

} else {

printf("Unable to allocate from seg_hp2\n");

}

return 0;

}

See Also

calloc, free, heap_calloc, heap_free, heap_lookup_name, heap_realloc,
malloc, realloc, set_alloc_type

VisualDSP++ 5.0 1-203
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

heap_realloc

Change memory allocation from a heap

Synopsis

#include <stdlib.h>

void *heap_realloc(int heap_index, void *ptr, size_t size);

Description

The heap_realloc function is an Analog Devices extension to the ANSI
standard.

The heap_realloc function changes the size of a previously allocated
block of memory. The argument heap_index specifies the heap on which
the object referenced by ptr is stored. The new size of the object is speci-
fied by the argument size. The modified object will contain the values of
the old object up to minimum(original size, new size), while for (new
size > old size) any data beyond the original size will be indeterminate.

If the function successfully reallocated the object, then it will return a
pointer to the updated object. You can safely convert the return value to
an object pointer of any type whose size is not greater than size in length.
The behavior of the function is undefined if the object has not been allo-
cated from the heap specified by heap_index, or if it has already been
freed.

If ptr is a null pointer, then heap_realloc behaves the same as
heap_malloc and the block of memory returned will be uninitialized.

If ptr is not a null pointer, and if size is zero, then heap_realloc behaves
the same as heap_free.

The memory reallocated may be deallocated with the free or heap_free
function.

Documented Library Functions

1-204 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

For more information on creating multiple run-time heaps, see Chapter 1
of the VisualDSP++ 5.0 Compiler Manual, section “Using Multiple
Heaps”.

Error Conditions

The heap_realloc function returns the null pointer if unable to allocate
the requested memory; the original memory associated with ptr will be
unchanged and will still be available.

Example

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main()

{

int index,ok,prev;

char *buf,*upd;

/* Obtain the heap index for the user identifier 2 */

index = heap_lookup_name("seg_hp2");

if (index < 0) {

printf("Heap with name seg_hp2 not found\n");

return 1;

}

/* Allocate memory for 128 characters from seg_hp2 */

buf = (char *)heap_malloc(index,128);

if (buf != 0) {

strcpy(buf,”hello”);

/* Change allocated size to 256 */

upd = (char *)heap_realloc(index,buf,256);

if (upd != 0) {

printf("reallocated string for %s\n",upd);

VisualDSP++ 5.0 1-205
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

heap_free(index,upd); /* Return to seg_hp2 */

} else {

free(buf); /* free can be used to release buf */

}

} else {

printf("Unable to allocate from seg_hp2\n");

}

return 0;

}

See Also

calloc, free, heap_calloc, heap_free, heap_lookup_name, heap_malloc,
malloc, realloc, set_alloc_type

Documented Library Functions

1-206 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

heap_switch

Change the default heap at run-time

Synopsis

#include <stdlib.h>

int heap_switch (int heapid);

Description

The heap_switch function changes the default heap (as used by heap allo-
cation functions malloc, calloc, realloc and free). The function returns
the heapid of the previous default heap.

For more information on creating multiple run-time heaps, see Chapter 1
of the VisualDSP++ 5.0 Compiler Manual, section “Using Multiple
Heaps”.

 The heap_switch function is not available in multithreaded
environments.

Error Conditions

The heap_switch function reports no error conditions.

Example

#include <stdlib.h>

#include <stdio.h>

#define HEAP1_USERID 1

#define HEAP1_SIZE 1024

#define DM_MEM -1

#define PM_MEM 1

VisualDSP++ 5.0 1-207
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

int heap1[HEAP1_SIZE];

int heap1_id;

char *pbuf;

/* Initialize */

heap1_id = heap_install (heap1, sizeof(heap1), HEAP1_USERID,

DM_MEM);

/* Make heap1 the default heap */

heap_switch (heap1_id);

/* Allocate a buffer from heap1 */

pbuf = malloc (32);

if (pbuf == NULL) {

printf ("Unable to allocate buffer\n");

exit (EXIT_FAILURE);

} else {

printf("Allocated buffer from heap1 at %p\n", pbuf);

}

See Also

calloc, free, malloc, realloc

Documented Library Functions

1-208 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

idivfx

Division of fixed-point by fixed-point to give integer result

Synopsis

#include <stdfix.h>

int idivi(fract numer, fract denom);

long int idivlr(long fract numer, long fract denom);

unsigned int idivur(unsigned fract numer, unsigned fract denom);

unsigned long int idivulr(unsigned long fract numer,

 unsigned long fract denom);

Description

Given a fixed-point numerator and denominator, the idivfx family of
functions computes the quotient and returns the closest integer value to
the result.

Error Conditions

The idivfx family of functions have undefined behavior if the
denominator is zero.

Example

#include <stdfix.h>

unsigned long int ulquo;

ulquo = idivulr(0.5ulr, 0.125ulr); /* ulquo == 4 */

See Also

div, divifx, fxdivi, ldiv, lldiv

VisualDSP++ 5.0 1-209
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

interrupt

Define interrupt handling

Synopsis

#include <signal.h>

void (*interrupt (int sig, void(*func)(int))) (int);

void (*interruptnsm (int sig, void(*func)(int))) (int);

void (*interruptf (int sig, void(*func)(int))) (int);

void (*interruptfnsm (int sig, void(*func)(int))) (int);

void (*interrupts (int sig, void(*func)(int))) (int);

void (*interruptsnsm (int sig, void(*func)(int))) (int);

void (*interruptcb (int sig, void(*func)(int))) (int);

void (*interruptcbnsm (int sig, void(*func)(int))) (int);

void (*ininterruptss int sig, void(*func)(int))) (int);

void (*interruptssnsm int sig, void(*func)(int))) (int);

Description

The interrupt function determines how a signal received during program
execution is handled. The interrupt function executes the function
pointed to by func at every interrupt sig; the signal function executes the
function only once. The func argument must be one of the following that
are listed in Table 1-43. The interrupt function causes the receipt of the
signal number sig to be handled in one of the following ways found in
Table 1-43.

Table 1-43. Interrupt Handling

Func Value Action

SIG_DFL The default action is taken.

SIG_IGN The signal is ignored.

Function address The function pointed to by func is executed.

Documented Library Functions

1-210 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The function pointed to by func is executed each time the interrupt is
received. The interrupt function must be called with the SIG_IGN argu-
ment to disable interrupt handling.

The differences between the functions interrupt, interruptf,
interrupts, interruptcb, interruptnsm, interruptfnsm, interruptsnsm,
interruptcbnsm, interruptss, and interruptssnsm are discussed under
the “Support for Interrupts” section in Chapter 1 of the VisualDSP++
C/C++ Compiler Manual for SHARC Processors.

Error Conditions

The interrupt function returns SIG_ERR and sets errno equal to SIG_ERR
if the requested interrupt is not recognized.

Example

#include <signal.h>

interrupt (SIG_IRQ2, irq2_handler);

/* enable interrupt 2 whose handling routine is pointed to by

irq2_handler */

interrupt (SIG_IRQ2, SIG_IGN);

/* disable interrupt 2 */

See Also

raise, signal

VisualDSP++ 5.0 1-211
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

isalnum

Detect alphanumeric character

Synopsis

#include <ctype.h>

int isalnum (int c);

Description

The isalnum function determines if the argument is an alphanumeric
character (A-Z, a-z, or 0-9). If the argument is not alphanumeric, the
isalnum function returns a zero. If the argument is alphanumeric, isalnum
returns a non-zero value.

Error Conditions

The isalnum function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%3s", isalnum (ch) ? "alphanumeric" : "");

putchar ('\n');

}

See Also

isalpha, isdigit

Documented Library Functions

1-212 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

isalpha

Detect alphabetic character

Synopsis

#include <ctype.h>

int isalpha (int c);

Description

The isalpha function determines if the argument is an alphabetic charac-
ter (A-Z or a-z). If the argument is not alphabetic, isalpha returns a zero.
If the argument is alphabetic, isalpha returns a non-zero value.

Error Conditions

The isalpha function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%2s", isalpha (ch) ? "alphabetic" : "");

putchar ('\n');

}

See Also

isalnum, isdigit

VisualDSP++ 5.0 1-213
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

iscntrl

Detect control character

Synopsis

#include <ctype.h>

int iscntrl (int c);

Description

The iscntrl function determines if the argument is a control character
(0x00-0x1F or 0x7F). If the argument is not a control character, iscntrl
returns a zero. If the argument is a control character, iscntrl returns a
non-zero value.

Error Conditions

The iscntrl function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%2s", iscntrl (ch) ? "control" : "");

putchar ('\n');

}

See Also

isalnum, isgraph

Documented Library Functions

1-214 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

isdigit

Detect decimal digit

Synopsis

#include <ctype.h>

int isdigit (int c);

Description

The isdigit function determines if the argument c is a decimal digit
(0-9). If the argument is not a digit, isdigit returns a zero. If the argu-
ment is a digit, isdigit returns a non-zero value.

Error Conditions

The isdigit function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%2s", isdigit (ch) ? "digit" : "");

putchar ('\n');

}

See Also

isalnum, isalpha, isdigit

VisualDSP++ 5.0 1-215
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

isgraph

Detect printable character, not including white space

Synopsis

#include <ctype.h>

int isgraph (int c);

Description

The isgraph function determines if the argument is a printable character,
not including a white space (0x21-0x7e). If the argument is not a printable
character, isgraph returns a zero. If the argument is a printable character,
isgraph returns a non-zero value.

Error Conditions

The isgraph function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%2s", isgraph (ch) ? "graph" : "");

putchar ('\n');

}

See Also

isalnum, iscntrl, isprint

Documented Library Functions

1-216 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

isinf

Test for infinity

Synopsis

#include <math.h>

int isinff(float x);

int isinf(double x);

int isinfd(long double x);

Description

The isinf function is an Analog Devices extension to the ANSI standard.

The isinf functions return a zero if the argument x is not set to the IEEE
constant for +Infinity or -Infinity; otherwise, the functions return a
non-zero value.

Error Conditions

The isinf functions do not return or set any error conditions.

Example

#include <math.h>

static long val[5] = {

0x7F7FFFFF, /* FLT_MAX */

0x7F800000, /* Inf */

0xFF800000, /* -Inf */

0x7F808080, /* NaN */

0xFF808080, /* NaN */

};

VisualDSP++ 5.0 1-217
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

float *pval = (float *)(&val);

int m;

m = isinf (pval[0]); /* m set to zero */

m = isinf (pval[1]); /* m set to non-zero */

m = isinf (pval[2]); /* m set to non-zero */

m = isinf (pval[3]); /* m set to zero */

m = isinf (pval[4]); /* m set to zero */

See Also

isnan

Documented Library Functions

1-218 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

islower

Detect lowercase character

Synopsis

#include <ctype.h>

int islower (int c);

Description

The islower function determines if the argument is a lowercase character
(a-z). If the argument is not lowercase, islower returns a zero. If the argu-
ment is lowercase, islower returns a non-zero value.

Error Conditions

The islower function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%2s", islower (ch) ? "lowercase" : "");

putchar ('\n');

}

See Also

isalpha, isupper

VisualDSP++ 5.0 1-219
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

isnan

Test for Not a Number (NaN)

Synopsis

#include <math.h>

int isnanf(float x);

int isnan(double x);

int isnand(long double x);

Description

The isnan function is an Analog Devices extension to the ANSI standard.

The isnan functions return a zero if the argument x is not set to an IEEE
NaN (Not a Number); otherwise, the functions return a non-zero value.

Error Conditions

The isnan functions do not return or set any error conditions.

Example

#include <math.h>

static long val[5] = {

0x7F7FFFFF, /* FLT_MAX */

0x7F800000, /* Inf */

0xFF800000, /* -Inf */

0x7F808080, /* NaN */

0xFF808080, /* NaN */

};

Documented Library Functions

1-220 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

float *pval = (float *)(&val);

int m;

m = isnanf (pval[0]); /* m set to zero */

m = isnanf (pval[1]); /* m set to zero */

m = isnanf (pval[2]); /* m set to zero */

m = isnanf (pval[3]); /* m set to non-zero */

m = isnanf (pval[4]); /* m set to non-zero */

See Also

isinf

VisualDSP++ 5.0 1-221
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

isprint

Detect printable character

Synopsis

#include <ctype.h>

int isprint (int c);

Description

The isprint function determines if the argument is a printable character
(0x20-0x7E). If the argument is not a printable character, isprint returns
a zero. If the argument is a printable character, isprint returns a non-zero
value.

Error Conditions

The isprint function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%3s", isprint (ch) ? "printable" : "");

putchar ('\n');

}

See Also

isgraph, isspace

Documented Library Functions

1-222 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

ispunct

Detect punctuation character

Synopsis

#include <ctype.h>

int ispunct (int c);

Description

The ispunct function determines if the argument is a punctuation charac-
ter. If the argument is not a punctuation character, ispunct returns a zero.
If the argument is a punctuation character, ispunct returns a non-zero
value.

Error Conditions

The ispunct function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%3s", ispunct (ch) ? "punctuation" : "");

putchar ('\n');

}

See Also

isalnum

VisualDSP++ 5.0 1-223
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

isspace

Detect whitespace character

Synopsis

#include <ctype.h>

int isspace (int c);

Description

The isspace function determines if the argument is a blank whitespace
character (0x09-0x0D or 0x20). This includes space (), form feed (\f),
new line (\n), carriage return (\r), horizontal tab (\t) and vertical tab
(\v).

If the argument is not a blank whitespace character, isspace returns a
zero. If the argument is a blank whitespace character, isspace returns a
non-zero value.

Error Conditions

The isspace function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%2s", isspace (ch) ? "space" : "");

putchar ('\n');

}

Documented Library Functions

1-224 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

iscntrl, isgraph

VisualDSP++ 5.0 1-225
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

isupper

Detect uppercase character

Synopsis

#include <ctype.h>

int isupper (int c);

Description

The isupper function determines if the argument is an uppercase charac-
ter (A-Z). If the argument is not an uppercase character, isupper returns a
zero. If the argument is an uppercase character, isupper returns a
non-zero value.

Error Conditions

The isupper function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%2s", isupper (ch) ? "uppercase" : "");

putchar ('\n');

}

See Also

isalpha, islower

Documented Library Functions

1-226 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

isxdigit

Detect hexadecimal digit

Synopsis

#include <ctype.h>

int isxdigit (int c);

Description

The isxdigit function determines if the argument is a hexadecimal digit
character (A-F, a-f, or 0-9). If the argument is not a hexadecimal digit,
isxdigit returns a zero. If the argument is a hexadecimal digit, isxdigit
returns a non-zero value.

Error Conditions

The isxdigit function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

printf ("%2s", isxdigit (ch) ? "hexadecimal" : "");

putchar ('\n');

}

See Also

isalnum, isdigit

VisualDSP++ 5.0 1-227
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

labs

Absolute value

Synopsis

#include <stdlib.h>

long int labs (long int j);

Description

The labs function returns the absolute value of its integer argument.

 Note that labs (LONG_MIN) == LONG_MIN.

Error Conditions

The labs function does not return an error condition.

Example

#include <stdlib.h>

long int j;

j = labs (-285128); /* j = 285128 */

See Also

abs, absfx, fabs, llabs

Documented Library Functions

1-228 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

lavg

Mean of two values

Synopsis

#include <stdlib.h>

long int lavg (long int value1, long int value2);

Description

The lavg function is an Analog Devices extension to the ANSI standard.

The lavg function adds two arguments and divides the result by two. The
lavg function is a built-in function which is implemented with an
Rn=(Rx+Ry)/2 instruction.

Error Conditions

The lavg function does not return an error code.

Example

#include <stdlib.h>

long int i;

i = lavg (10, 8); /* returns 9 */

See Also

abs, avg, llavg

VisualDSP++ 5.0 1-229
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

lclip

Clip

Synopsis

#include <stdlib.h>

long int lclip (long int value1, long int value2);

Description

The lclip function is an Analog Devices extension to the ANSI standard.

The lclip function returns the first argument if its absolute value is less
than the absolute value of the second argument; otherwise it returns the
absolute value of its second argument if the first is positive, or minus the
absolute value if the first argument is negative. The lclip function is a
built-in function which is implemented with an Rn = CLIP Rx BY Ry
instruction.

Error Conditions

The lclip function does not return an error code.

Example

#include <stdlib.h>

long int i;

i = lclip (10, 8); /* returns 8 */

i = lclip (8, 10); /* returns 8 */

i = lclip (-10, 8); /* returns -8 */

See Also

clip, fclip, llclip

Documented Library Functions

1-230 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

lcount_ones

Count one bits in word

Synopsis

#include <stdlib.h>

int lcount_ones (long int value);

Description

The lcount_ones function is an Analog Devices extension to the ANSI
standard.

The lcount_ones function returns the number of one bits in its argument.

Error Conditions

The lcount_ones function does not return an error condition.

Example

#include <stdlib.h>

long int flags1 = 4095;

long int flags2 = 4096;

int cnt1;

int cnt2;

cnt1 = lcount_ones (flags1); /* returns 12 */

cnt2 = lcount_ones (flags2); /* returns 1 */

See Also

count_ones, llcount_ones

VisualDSP++ 5.0 1-231
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

ldexp

Multiply by power of 2

Synopsis

#include <math.h>

float ldexpf (float x, int n);

double ldexp (double x, int n);

long double ldexpd (long double x, int n);

Description

The ldexp functions return the value of the floating-point argument mul-
tiplied by 2n. These functions add the value of n to the exponent of x.

Error Conditions

If the result overflows, the ldexp functions return HUGE_VAL with the
proper sign. If the result underflows, a zero is returned.

Example

#include <math.h>

double y;

float x;

y = ldexp (0.5, 2); /* y = 2.0 */

x = ldexpf (1.0, 2); /* x = 5.0 */

See Also

exp, pow

Documented Library Functions

1-232 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

ldiv

Long division

Synopsis

#include <stdlib.h>

ldiv_t ldiv (long int numer, long int denom);

Description

The ldiv function divides numer by denom, and returns a structure of type
ldiv_t. The type ldiv_t is defined as:

typedef struct {

long int quot;

long int rem;

} ldiv_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type ldiv_t, then
result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the ldiv function is undefined.

Example

#include <stdlib.h>

ldiv_t result;

result = ldiv (7L, 2L); /* result.quot = 3, result.rem = 1 */

VisualDSP++ 5.0 1-233
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

div, divifx, fmod, fxdivi, idivfx, lldiv

Documented Library Functions

1-234 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

llabs

Absolute value

Synopsis

#include <stdlib.h>
long long llabs (long long j);

Description

The llabs function returns the absolute value of its integer argument.

 Note that llabs (LLONG_MIN) == LLONG_MIN.

Error Conditions

The llabs function does not return an error condition.

Example

#include <stdlib.h>

long long j;

j = llabs (-27081970LL); /* j = 27081970 */

See Also

abs, absfx, fabs, labs

VisualDSP++ 5.0 1-235
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

llavg

Mean of two values

Synopsis

#include <stdlib.h>
long long llavg (long long value1, long long value2);

Description

The llavg function is an Analog Devices extension to the ANSI standard.

The llavg function returns the average of the two arguments value1 and
value2.

Error Conditions

The llavg function does not return an error code.

Example

#include <stdlib.h>

long long i;

i = llavg (10LL, 8LL); /* returns 9 */

See Also

abs, avg, lavg

Documented Library Functions

1-236 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

llclip

Clip

Synopsis

#include <stdlib.h>
long long llclip (long long value1, long long value2);

Description

The llclip function is an Analog Devices extension to the ANSI
standard.

The llclip function returns the first argument if its absolute value is less
than the absolute value of the second argument; otherwise it returns the
absolute value of its second argument if the first is positive, or minus the
absolute value if the first argument is negative.

Error Conditions

The llclip function does not return an error code.

Example

#include <stdlib.h>

long long i;

i = llclip (10LL, 8LL); /* returns 8 */

i = llclip (8LL, 10LL); /* returns 8 */

i = llclip (-10LL, 8LL); /* returns -8 */

See Also

clip, fclip, lclip

VisualDSP++ 5.0 1-237
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

llcount_ones

Count one bits in long long

Synopsis

#include <stdlib.h>
int llcount_ones (long long value);

Description

The llcount_ones function is an Analog Devices extension to the ANSI
standard.

The llcount_ones function returns the number of one bits in its
argument.

Error Conditions

The llcount_ones function does not return an error condition.

Example

#include <stdlib.h>

long long flags1 = 4095LL;

long long flags2 = 4096LL;

int cnt1;

int cnt2;

cnt1 = llcount_ones (flags1); /* returns 12 */

cnt2 = llcount_ones (flags2); /* returns 1 */

See Also

count_ones, lcount_ones

Documented Library Functions

1-238 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

lldiv

Long long division

Synopsis

#include <stdlib.h>
lldiv_t lldiv (long long numer, long long denom);

Description

The lldiv function divides numer by denom, and returns a structure of type
lldiv_t. The type lldiv_t is defined as:

typedef struct {

long long quot;

long long rem;

} lldiv_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type lldiv_t, then:

result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the lldiv function is undefined.

Example

#include <stdlib.h>

lldiv_t result;

result = lldiv (7LL, 2LL); /* result.quot = 3, result.rem = 1 */

VisualDSP++ 5.0 1-239
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

div, divifx, fmod, fxdivi, idivfx, ldiv

Documented Library Functions

1-240 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

llmax

Long long maximum

Synopsis

#include <stdlib.h>
long long llmax (long long value1, long long value2);

Description

The llmax function is an Analog Devices extension to the ANSI standard.

The llmax function returns the larger of its two arguments.

Error Conditions

The llmax function does not return an error code.

Example

#include <stdlib.h>

long long i;

i = llmax (10LL, 8LL); /* returns 10 */

See Also

fmax, fmin, llmin, lmax, lmin, max, min

VisualDSP++ 5.0 1-241
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

llmin

Long long minimum

Synopsis

#include <stdlib.h>
long long llmin (long long value1, long long value2);

Description

The llmin function is an Analog Devices extension to the ANSI standard.

The llmin function returns the smaller of its two arguments.

Error Conditions

The llmin function does not return an error code.

Example

#include <stdlib.h>

long long i;

i = llmin (10LL, 8LL); /* returns 8 */

See Also

fmax, fmin, llmax, lmax, lmin, max, min

Documented Library Functions

1-242 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

lmax

Long maximum

Synopsis

#include <stdlib.h>

long int lmax (long int value1, long int value2);

Description

The lmax function is an Analog Devices extension to the ANSI standard.

The lmax function returns the larger of its two arguments. The lmax func-
tion is a built-in function which is implemented with an Rn = MAX(Rx,Ry)
instruction.

Error Conditions

The lmax function does not return an error code.

Example

#include <stdlib.h>

long int i;

i = lmax (10L, 8L); /* returns 10 */

See Also

fmax, fmin, llmax, llmin, lmin, max, min

VisualDSP++ 5.0 1-243
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

lmin

Long minimum

Synopsis

#include <stdlib.h>

long int lmin (long int value1, long int value2);

Description

The lmin function is an Analog Devices extension to the ANSI standard.

The lmin function returns the smaller of its two arguments. The lmin
function is a built-in function which is implemented with an
Rn = MIN(Rx,Ry) instruction.

Error Conditions

The lmin function does not return an error code.

Example

#include <stdlib.h>

long int i;

i = lmin (10L, 8L); /* returns 8 */

See Also

fmax, fmin, lmax, llmax, llmin, max, min

Documented Library Functions

1-244 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

localeconv

Get pointer for formatting to current locale

Synopsis

#include <locale.h>

struct lconv *localeconv (void);

Description

The localeconv function returns a pointer to an object of type struct
lconv. This pointer is used to set the components of the object with values
used in formatting numeric quantities in the current locale.

With the exception of decimal_point, those members of the structure
with type char* may use " " to indicate that a value is not available.
Expected values are strings. Those members with type char may use
CHAR_MAX to indicate that a value is not available. Expected values are
non-negative numbers.

The program may not alter the structure pointed to by the return value
but subsequent calls to localeconv may do so. Also, calls to setlocale
with the category arguments of LC_ALL, LC_MONETARY and LC_NUMERIC may
overwrite the structure.

Table 1-44. Members of the lconv Struct

Member Description

char *currency_symbol Currency symbol applicable to the locale

char *decimal_point Used to format nonmonetary quantities

char *grouping Used to indicate the number of digits in each nonmonetary
grouping

char *int_curr_symbol Used as international currency symbol (ISO 4217:1987)
for that particular locale plus the symbol used to separate
the currency symbol from the monetary quantity

VisualDSP++ 5.0 1-245
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

For grouping and non_grouping, an element of CHAR_MAX indicates that no
further grouping will be performed, a 0 indicates that the previous

char *mon_decimal_point Used for decimal point format monetary quantities

char *mon_grouping Used to indicate the number of digits in each monetary
grouping

char *mon_thousands_sep Used to group monetary quantities prior to the decimal
point

char *negative_sign Used to indicate a negative monetary quantity

char *positive_sign Used to indicate a positive monetary quantity

char *thousands_sep Used to group nonmonetary quantities prior to the decimal
point

char frac_digits Number of digits displayed after the decimal point in mon-
etary quantities in other than international format

char int_frac_digits Number of digits displayed after the decimal point in
international monetary quantities

char p_cs_precedes If set to 1, the currency_symbol precedes the positive
monetary quantity. If set to 0, the currency_symbol suc-
ceeds the positive monetary quantity.

char n_cs_precedes If set to 1, the currency_symbol precedes the negative
monetary quantity. If set to 0, the currency_symbol suc-
ceeds the negative monetary quantity.

char n_sign_posn Indicates the positioning of negative_sign for monetary
quantities.

char n_sep_by_space If set to 1, the currency_symbol is separated from the
negative monetary quantity. If set to 0, the
currency_symbol is not separated from the negative
monetary quantity.

char p_sep_by_space If set to 1, the currency_symbol is separated from the
positive monetary quantity. If set to 0, the
currency_symbol is not separated from the positive mon-
etary quantity.

Table 1-44. Members of the lconv Struct (Cont’d)

Member Description

Documented Library Functions

1-246 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

element should be used to group the remaining digits, and any other inte-
ger value is used as the number of digits in the current grouping.

The definitions of the values for p_sign_posn and n_sign_posn are:

• parentheses surround currency_symbol and quantity

• sign string precedes currency_symbol and quantity

• sign string succeeds currency_symbol and quantity

• sign string immediately precedes currency_symbol

• sign string immediately succeeds currency_symbol

Error Conditions

The localeconv function does not return an error condition.

Example

#include <locale.h>

struct lconv *c_locale;

c_locale = localeconv (); /* Only the C locale is */

/* currently supported */

See Also

setlocale

VisualDSP++ 5.0 1-247
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

localtime

Convert calendar time into broken-down time

Synopsis

#include <time.h>

struct tm *localtime(const time_t *t);

Description

The localtime function converts a pointer to a calendar time into a
broken-down time that corresponds to current time zone. A broken-down
time is a structured variable, which is described in “time.h” on page 1-35.
This implementation of the header file does not support the Daylight Sav-
ing flag nor does it support time zones and, thus, localtime is equivalent
to the gmtime function.

The broken-down time is returned by localtime as a pointer to static
memory, which may be overwritten by a subsequent call to either
localtime, or to gmtime.

Error Conditions

The localtime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

struct tm *tm_ptr;

cal_time = time(NULL);

if (cal_time != (time_t) -1) {

tm_ptr = localtime(&cal_time);

Documented Library Functions

1-248 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

printf("The year is %4d\n",1900 + (tm_ptr->tm_year));

}

See Also

asctime, gmtime, mktime, time

VisualDSP++ 5.0 1-249
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

log

Natural logarithm

Synopsis

#include <math.h>

float logf (float x);

double log (double x);

long double logd (long double x);

Description

The natural logarithm functions compute the natural (base e) logarithm of
their argument.

Error Conditions

The natural logarithm functions return zero and set errno to EDOM if the
input value is zero or negative.

Example

#include <math.h>

double y;

float x;

y = log (1.0); /* y = 0.0 */

x = logf (2.71828); /* x = 1.0 */

See Also

alog, exp, log10

Documented Library Functions

1-250 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

log10

Base 10 logarithm

Synopsis

#include <math.h>

float log10f (float x);

double log10 (double x);

long double log10d (long double x);

Description

The log10 functions produce the base 10 logarithm of their argument.

Error Conditions

The log10 functions indicate a domain error (set errno to EDOM) and
return zero if the input is zero or negative.

Example

#include <math.h>

double y;

float x;

y = log10 (100.0); /* y = 2.0 */

x = log10f (10.0); /* x = 1.0 */

See Also

alog, log, pow

VisualDSP++ 5.0 1-251
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

longjmp

Second return from setjmp

Synopsis

#include <setjmp.h>

void longjmp (jmp_buf env, int return_val);

Description

The longjmp function causes the program to execute a second return from
the place where setjmp (env) was called (with the same jmp_buf
argument).

The longjmp function takes as its arguments a jump buffer that contains
the context at the time of the original call to setjmp. It also takes an inte-
ger, return_val, which setjmp returns if return_val is non-zero.
Otherwise, setjmp returns a 1.

If env was not initialized through a previous call to setjmp or the function
that called setjmp has since returned, the behavior is undefined.

 The use of setjmp and longjmp (or similar functions which do not
follow conventional C/C++ flow control) may produce unexpected
results when the application is compiled with optimizations
enabled under certain circumstances. Functions that call setjmp or
longjmp are optimized by the compiler with the assumption that all
variables referenced may be modified by any functions that are
called. This assumption ensures that it is safe to use setjmp and
longjmp with optimizations enabled, though it does mean that it is
dangerous to conceal from the optimizer that a call to setjmp or
longjmp is being made, for example by calling through a function
pointer.

Documented Library Functions

1-252 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The longjmp function does not return an error condition.

Example

#include <setjmp.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

jmp_buf env;

int res;

void func (void);

main() {

if ((res = setjmp(env)) != 0) {

printf ("Problem %d reported by func ()\n", res);

exit (EXIT_FAILURE);

}

func();

}

void func (void) {

if (errno != 0) {

longjmp (env, errno);

}

}

See Also

setjmp

VisualDSP++ 5.0 1-253
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

malloc

Allocate memory

Synopsis

#include <stdlib.h>

void *malloc (size_t size);

Description

The malloc function returns a pointer to a block of memory of length
size. The block of memory is uninitialized.

The object is allocated from the current heap, which is the default heap
unless set_alloc_type or heap_switch has been called to change the cur-
rent heap to an alternate heap.

Error Conditions

The malloc function returns a null pointer if it is unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *)malloc (10); /* ptr points to an */

/* array of length 10 */

See Also

calloc, free, heap_calloc, heap_free, heap_lookup_name, heap_malloc,
heap_realloc, realloc, set_alloc_type

Documented Library Functions

1-254 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

max

Maximum

Synopsis

#include <stdlib.h>

int max (int value1, int value2);

Description

The max function is an Analog Devices extension to the ANSI standard.

The max function returns the larger of its two arguments. The max func-
tion is a built-in function which is implemented with an Rn = MAX(Rx,Ry)
instruction.

Error Conditions

The max function does not return an error code.

Example

#include <stdlib.h>

int i;

i = max (10, 8); /* returns 10 */

See Also

fmax, fmin, llmax, llmin, lmax, lmin, min

VisualDSP++ 5.0 1-255
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

memchr

Find first occurrence of character

Synopsis

#include <string.h>

void *memchr (const void *s1, int c, size_t n);

Description

The memchr function compares the range of memory pointed to by s1 with
the input character c and returns a pointer to the first occurrence of c.
A null pointer is returned if c does not occur in the first n characters.

Error Conditions

The memchr function does not return an error condition.

Example

#include <string.h>

char *ptr;

ptr = memchr ("TESTING", 'E', 7);

/* ptr points to the E in TESTING */

See Also

strchr, strrchr

Documented Library Functions

1-256 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

memcmp

Compare objects

Synopsis

#include <string.h>

int memcmp (const void *s1, const void *s2, size_t n);

Description

The memcmp function compares the first n characters of the objects pointed
to by s1 and s2. It returns a positive value if the s1 object is lexically
greater than the s2 object, a negative value if the s2 object is lexically
greater than the s1 object, and a zero if the objects are the same.

Error Conditions

The memcmp function does not return an error condition.

Example

#include <string.h>

char *string1 = "ABC";

char *string2 = "BCD";

int result;

result = memcmp (string1, string2, 3); /* result < 0 */

See Also

strcmp, strcoll, strncmp

VisualDSP++ 5.0 1-257
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

memcpy

Copy characters from one object to another

Synopsis

#include <string.h>

void *memcpy (void *s1, const void *s2, size_t n);

Description

The memcpy function copies n characters from the object pointed to by s2
into the object pointed to by s1. The behavior of memcpy is undefined if
the two objects overlap. For more information, see “memmove” on
page 1-258.

The memcpy function returns the address of s1.

Error Conditions

The memcpy function does not return an error condition.

Example

#include <string.h>

char *a = "SRC";

char *b = "DEST";

memcpy (b, a, 3); /* b = "SRCT" */

See Also

memmove, strcpy, strncpy

Documented Library Functions

1-258 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

memmove

Copy characters between overlapping objects

Synopsis

#include <string.h>

void *memmove (void *s1, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2
into the object pointed to by s1. The entire object is copied correctly even
if the objects overlap.

The memmove function returns a pointer to s1.

Error Conditions

The memmove function does not return an error condition.

Example

#include <string.h>

char *ptr, *str = "ABCDE";

ptr = str + 2;

memmove (ptr, str, 3); /* ptr = "ABC", str = "ABABC" */

See Also

memcpy, strcpy, strncpy

VisualDSP++ 5.0 1-259
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

memset

Set range of memory to a character

Synopsis

#include <string.h>

void *memset (void *s1, int c, size_t n);

Description

The memset function sets a range of memory to the input character c. The
first n characters of s1 are set to c.

The memset function returns a pointer to s1.

Error Conditions

The memset function does not return an error condition.

Example

#include <string.h>

char string1[50];

memset (string1, '\0', 50); /* set string1 to 0 */

See Also

memcpy

Documented Library Functions

1-260 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

min

Minimum

Synopsis

#include <stdlib.h>

int min (int value1, int value2);

Description

The min function is an Analog Devices extension to the ANSI standard.

The min function returns the smaller of its two arguments. The min func-
tion is a built-in function which is implemented with an Rn=MIN(Rx,Ry)
instruction.

Error Conditions

The min function does not return an error code.

Example

#include <stdlib.h>

int i;

i = min (10, 8); /* returns 8 */

See Also

fmin, llmax, llmin, lmax, lmin, max

VisualDSP++ 5.0 1-261
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

mktime

Convert broken-down time into a calendar time

Synopsis

#include <time.h>

time_t mktime(struct tm *tm_ptr);

Description

The mktime function converts a pointer to a broken-down time, which
represents a local date and time, into a calendar time. However, this
implementation of time.h does not support either daylight saving or time
zones and hence this function will interpret the argument as Coordinated
Universal Time (UTC).

A broken-down time is a structured variable which is defined in the
time.h header file as:

struct tm { int tm_sec; /* seconds after the minute [0,61] */

int tm_min; /* minutes after the hour [0,59] */

int tm_hour; /* hours after midnight [0,23] */

int tm_mday; /* day of the month [1,31] */

int tm_mon; /* months since January [0,11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1st [0,365] */

int tm_isdst; /* Daylight Saving flag */

};

The various components of the broken-down time are not restricted to the
ranges indicated above. The mktime function calculates the calendar time
from the specified values of the components (ignoring the initial values of
tm_wday and tm_yday), and then “normalizes” the broken-down time forc-
ing each component into its defined range.

Documented Library Functions

1-262 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

If the component tm_isdst is zero, then the mktime function assumes that
daylight saving is not in effect for the specified time. If the component is
set to a positive value, then the function assumes that daylight saving is in
effect for the specified time and will make the appropriate adjustment to
the broken-down time. If the component is negative, the mktime function
should attempt to determine whether daylight saving is in effect for the
specified time but because neither time zones nor daylight saving are sup-
ported, the effect will be as if tm_isdst were set to zero.

Error Conditions

The mktime function returns the value ((time_t) -1) if the calendar time
cannot be represented.

Example

#include <time.h>

#include <stdio.h>

static const char *wday[] = {"Sun","Mon","Tue","Wed",

 "Thu","Fri","Sat","???"};

struct tm tm_time = {0,0,0,0,0,0,0,0,0};

tm_time.tm_year = 2000 - 1900;

tm_time.tm_mday = 1;

if (mktime(&tm_time) == -1)

tm_time.tm_wday = 7;

printf("%4d started on a %s\n",

1900 + tm_time.tm_year,

wday[tm_time.tm_wday]);

VisualDSP++ 5.0 1-263
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

gmtime, localtime, time

Documented Library Functions

1-264 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

modf

Separate integral and fractional parts

Synopsis

#include <math.h>

float modff (float x, float *intptr);

double modf (double x, double *intptr);

long double modfd (long double x, long double *intptr);

Description

The modf functions separate the first argument into integral and fractional
portions. The fractional portion is returned and the integral portion is
stored in the object pointed to by intptr. The integral and fractional por-
tions have the same sign as the input.

Error Conditions

The modf functions do not return error conditions.

Example

#include <math.h>

double y, n;

float m, p;

y = modf (-12.345, &n); /* y = -0.345, n = -12.0 */

m = modff (11.75, &p); /* m = 0.75, p = 11.0 */

See Also

frexp

VisualDSP++ 5.0 1-265
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

mulifx

Multiplication of integer by fixed-point to give integer result

Synopsis

#include <stdfix.h>

int mulir(int a, fract b);

long int mulilr(long int a, long fract b);

unsigned int muliur(unsigned int a, unsigned fract b);

unsigned long int muliulr(unsigned long int a,

 unsigned long fract b);

Description

Given an integer and a fixed-point value, the mulifx family of functions
computes the product and returns the closest integer value to the result.

Error Conditions

The mulifx family of functions do not return error conditions.

Example

#include <stdfix.h>

unsigned long int ulprod;

ulprod = muliulr(128, 0.125ulr); /* ulquo == 16 */

See Also

No related functions.

Documented Library Functions

1-266 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

perror

Print an error message on standard error stream

Synopsis

#include <stdio.h>

void perror(const char *s);

Description

The perror function is used to output an error message to the standard
stream stderr.

If the string s is not a null pointer and if the first character addressed by s
is not a null character, then the function will output the string s followed
by the character sequence ": ". The function will then print the message
that is associated with the current value of errno. Note that the message
"no error" is used if the value of errno is zero.

Error Conditions

The perror function does not return any error conditions.

Example

#include <stdio.h>

#include <math.h>

#include <errno.h>

float x;

x = acosf (1234.5); /* domain of acosf is [-1.0,1.0] */;

if (errno != 0)

perror("acosf failure");

VisualDSP++ 5.0 1-267
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

strerror

Documented Library Functions

1-268 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

pow

Raise to a power

Synopsis

#include <math.h>

float powf (float x, float y);

double pow (double x, double y);

long double powd (long double x, long double y);

Description

The power functions compute the value of the first argument raised to the
power of the second argument.

Error Conditions

A domain error occurs if the first argument is negative and the second
argument cannot be represented as an integer. If the first argument is zero,
the second argument is less than or equal to zero and the result cannot be
represented, zero is returned.

Example

#include <math.h>

double z;

float x;

z = pow (5.0, 2.0); /* z = 16.0 */

x = powf (5.0, 2.0); /* x = 16.0 */

See Also

exp, ldexp

VisualDSP++ 5.0 1-269
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

printf

Print formatted output

Synopsis

#include <stdio.h>

int printf(const char *format, /* args*/ ...);

Description

The printf function places output on the standard output stream stdout
in a form specified by format. The printf function is equivalent to
fprintf with the stdout passed as the first argument. The argument
format contains a set of conversion specifiers, directives, and ordinary
characters that are used to control how the data is formatted. Refer to
fprintf (on page 1-153) for a description of the valid format specifiers.

The printf function returns the number of characters transmitted.

Error Conditions

If the printf function is unsuccessful, a negative value is returned.

Example

#include <stdio.h>

void printf_example(void)

{

int arg = 255;

/* Output will be "hex:ff, octal:377, integer:255" */

printf("hex:%x, octal:%o, integer:%d\n", arg, arg, arg);

}

Documented Library Functions

1-270 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

fprintf

VisualDSP++ 5.0 1-271
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

putc

Put a character on a stream

Synopsis

#include <stdio.h>

int putc(int ch, FILE *stream);

Description

The putc function writes its argument to the output stream pointed to by
stream, after converting ch from an int to an unsigned char.

If the putc function call is successful putc returns its argument ch.

Error Conditions

The stream’s error indicator will be set if the call is unsuccessful, and the
function will return EOF.

Example

#include <stdio.h>

void putc_example(void)

{

/* write the character 'a' to stdout */

if (putc('a', stdout) == EOF)

fprintf(stderr, "putc failed\n");

}

See Also

fputc

Documented Library Functions

1-272 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

putchar

Write a character to stdout

Synopsis

#include <stdio.h>

int putchar(int ch);

Description

The putchar function writes its argument to the standard output stream,
after converting ch from an int to an unsigned char. A call to putchar is
equivalent to calling putc(ch, stdout).

If the putchar function call is successful putchar returns its argument ch.

Error Conditions

The stream’s error indicator will be set if the call is unsuccessful, and the
function will return EOF.

Example

#include <stdio.h>

void putchar_example(void)

{

/* write the character 'a' to stdout */

if (putchar('a') == EOF)

fprintf(stderr, "putchar failed\n");

}

See Also

putc

VisualDSP++ 5.0 1-273
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

puts

Put a string to stdout

Synopsis

#include <stdio.h>

int puts(const char *s);

Description

The puts function writes the string pointed to by s, followed by a NEWLINE
character, to the standard output stream stdout. The terminating null
character of the string is not written to the stream.

If the function call is successful then the return value is zero or greater.

Error Conditions

The macro EOF is returned if puts was unsuccessful, and the error indica-
tor for stdout will be set.

Example

#include <stdio.h>

void puts_example(void)

{

/* write the string "example" to stdout */

if (puts("example") < 0)

fprintf(stderr, "puts failed\n");

}

See Also

fputs

Documented Library Functions

1-274 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

qsort

Quicksort

Synopsis

#include <stdlib.h>

void qsort (void *base, size_t nelem, size_t size,

int (*compar) (const void *, const void *));

Description

The qsort function sorts an array of nelem objects, pointed to by base.
The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a
comparison function pointed to by compar, which is called with two argu-
ments that point to the objects being compared. The function shall return
an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the
second.

If two elements compare as equal, their order in the sorted array is unspec-
ified. The qsort function executes a binary-search operation on a
pre-sorted array, where

• base points to the start of the array.

• nelem is the number of elements in the array.

• size is the size of each element of the array.

• compar is a pointer to a function that is called by qsort to compare
two elements of the array. The function should return a value less
than, equal to, or greater than zero, according to whether the first
argument is less than, equal to, or greater than the second.

VisualDSP++ 5.0 1-275
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Error Conditions

The qsort function does not return an error condition.

Example

#include <stdlib.h>

float a[10];

int compare_float (const void *a, const void *b)

{

float aval = *(float *)a;

float bval = *(float *)b;

if (aval < bval)

return -1;

else if (aval == bval)

return 0;

else

return 1;

}

qsort (a, sizeof (a)/sizeof (a[0]), sizeof (a[0]),

compare_float);

See Also

bsearch

Documented Library Functions

1-276 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

raise

Force a signal

Synopsis

#include <signal.h>

int raise (int sig);

int raisensm(int sig);

Description

The raise function is an Analog Devices extension to the ANSI standard.

The raise function sends the signal sig to the executing program. The
raise function forces interrupts wherever possible and simulates an inter-
rupt otherwise. The sig argument must be one of the signals listed in
Table 1-30 on page 1-108, Table 1-31 on page 1-109, Table 1-32 on
page 1-110, Table 1-33 on page 1-112, and Table 1-35 on page 1-115.

 The raise function uses self-modifying code. If this is not suitable
for your application, then use the raisensm function instead. The
choice of function has no effect on the dispatcher used and no
effect on the overall interrupt handling performance.

Error Conditions

The raise function returns a zero if successful or a non-zero value if it
fails.

Example

#include <signal.h>

raise (SIG_IRQ2); /* invoke the interrupt 2 handler */

VisualDSP++ 5.0 1-277
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

interrupt, signal

Documented Library Functions

1-278 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

rand

Random number generator

Synopsis

#include <stdlib.h>

int rand (void);

Description

The rand function returns a pseudo-random integer value in the range
[0, 231 – 1].

For this function, the measure of randomness is its periodicity, the num-
ber of values it is likely to generate before repeating a pattern. The output
of the pseudo-random number generator has a period in the order
of 231 – 1.

Error Conditions

The rand function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = rand ();

See Also

srand

VisualDSP++ 5.0 1-279
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

read_extmem

Read external memory

Synopsis

#include <21261.h>

#include <21262.h>

#include <21266.h>

#include <21267.h>

#include <21362.h>

#include <21363.h>

#include <21364.h>

#include <21365.h>

#include <21366.h>

void read_extmem(void *internal_address,

void *external_address,

size_t n);

Description

On ADSP-2126x and some ADSP-2136x processors, it is not possible for
the core to access external memory directly. The read_extmem function
copies data from external to internal memory.

The read_extmem function will transfer n 32-bit words from
external_address to internal_address.

Error Conditions

The read_extmem function does not return an error condition.

Documented Library Functions

1-280 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <21262.h>

int intmem1[100];

int intmem2[100];

/* Place extmem1 in external memory, in the user-defined */
/* section "seg_extmem" */

#pragma section("seg_extmem", DMA_ONLY)

int extmem1[100];

/* Place extmem2 in external memory, in the user-defined */
/* section "seg_extmem" */

#pragma section("seg_extmem", DMA_ONLY)

int extmem2[100];

main() {

/* Transfer 100 words from external memory to internal memory */
read_extmem(intmem1, extmem1, 100);

/* Transfer 100 words from external memory to internal memory */

write_extmem(intmem2, extmem2, 100);

}

 This example requires a customized .ldf file containing a section,
seg_extmem, that resides in external memory.

See Also

write_extmem

VisualDSP++ 5.0 1-281
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

realloc

Change memory allocation

Synopsis

#include <stdlib.h>

void *realloc (void *ptr, size_t size);

Description

The realloc function changes the memory allocation of the object
pointed to by ptr to size. Initial values for the new object are taken from
those in the object pointed to by ptr:

• If the size of the new object is greater than the size of the object
pointed to by ptr, then the values in the newly allocated section are
undefined.

• If ptr is a non-null pointer that was not allocated with malloc or
calloc, the behavior is undefined.

• If ptr is a null pointer, realloc imitates malloc. If size is zero and
ptr is not a null pointer, realloc imitates free.

• If ptr is not a null pointer, then the object is reallocated from the
heap that the object was originally allocated from.

• If ptr is a null pointer, then the object is allocated from the current
heap, which is the default heap unless set_alloc_type or
heap_switch has been called to change the current heap to an alter-
nate heap.

Error Conditions

If memory cannot be allocated, ptr remains unchanged and realloc
returns a null pointer.

Documented Library Functions

1-282 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <stdlib.h>

int *ptr;

ptr = (int *)malloc (10); /* allocate array of 10 words */

ptr = (int *)realloc (ptr, 20); /* change size to 20 words */

See Also

calloc, free, heap_calloc, heap_free, heap_lookup_name, heap_malloc,
heap_realloc, malloc, set_alloc_type

VisualDSP++ 5.0 1-283
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

remove

Remove file

Synopsis

#include <stdio.h>

int remove(const char *filename);

Description

The remove function removes the file whose name is filename. After the
function call, filename will no longer be accessible.

The remove function is only supported under the default device driver
supplied by the VisualDSP++ simulator and EZ-KIT Lite system and it
only operates on the host file system.

The remove function returns zero on successful completion.

Error Conditions

If the remove function is unsuccessful, a non-zero value is returned.

Example

#include <stdio.h>

void remove_example(char *filename)

{

if (remove(filename))

printf("Remove of %s failed\n", filename);

else

printf("File %s removed\n", filename);

}

Documented Library Functions

1-284 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

rename

VisualDSP++ 5.0 1-285
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

rename

Rename a file

Synopsis

#include <stdio.h>

int rename(const char *oldname, const char *newname);

Description

The rename function will establish a new name, using the string newname,
for a file currently known by the string oldname. After a successful rename,
the file will no longer be accessible by oldname.

The rename function is only supported under the default device driver
supplied by the VisualDSP++ simulator and EZ-KIT Lite system and it
only operates on the host file system.

If rename is successful, a value of zero is returned.

Error Conditions

If rename fails, the file named oldname is unaffected and a non-zero value
is returned.

Example

#include <stdio.h>

void rename_file(char *new, char *old)

{

if (rename(old, new))

printf("rename failed for %s\n", old);

else

printf("%s now named %s\n", old, new);

}

Documented Library Functions

1-286 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

remove

VisualDSP++ 5.0 1-287
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

rewind

Reset file position indicator in a stream

Synopsis

#include <stdio.h>

void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for stream to the
beginning of the file. This is equivalent to using the fseek routine in the
following manner:

fseek(stream, 0, SEEK_SET);

with the exception that rewind will also clear the error indicator.

Error Conditions

The rewind function does not return an error condition.

Example

#include <stdio.h>

char buffer[20];

void rewind_example(FILE *fp)

{

/* write "a string" to a file */

fputs("a string", fp);

/* rewind the file to the beginning */

rewind(fp);

/* read back from the file - buffer will be "a string" */

fgets(buffer, sizeof(buffer), fp);

}

Documented Library Functions

1-288 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

fseek

VisualDSP++ 5.0 1-289
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

roundfx

Round a fixed-point value to a specified precision

Synopsis

#include <stdfix.h>

short fract roundhr(short fract f, int n);

fract roundr(fract f, int n);

long fract roundlr(long fract f, int n);

unsigned short fract rounduhr(unsigned short fract f, int n);

unsigned fract roundur(unsigned fract f, int n);

unsigned long fract roundulr(unsigned long fract f, int n);

Description

The roundfx family of functions round a fixed-point value to the number
of fractional bits specified by the second argument. The rounding is
round-to-nearest. If the rounded result is out of range of the result type,
the result saturated to the maximum or minimum fixed-point value.

In addition to the individually-named functions for each fixed-point type,
a type-generic macro roundfx is defined for use in C99 mode. This may be
used with any of the fixed-point types and returns a result of the same type
as its operand.

Error Conditions

The roundfx family of functions do not return an error condition.

Documented Library Functions

1-290 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <stdfix.h>

long fract f;

f = roundulr(0x12345678p-32ulr, 16); /* f == 0x12340000ulr */

#if defined(_C99)

f = roundfx(0x12345678p-32ulr, 16); /* f == 0x12340000ulr */

#endif

See Also

No related functions.

VisualDSP++ 5.0 1-291
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

scanf

Convert formatted input from stdin

Synopsis

#include <stdio.h>

int scanf(const char *format, /* args */...);

Description

The scanf function reads from the standard input stream stdin, interprets
the inputs according to format and stores the results of the conversions in
it’s arguments. The string pointed to by format contains the control for-
mat for the input with the arguments that follow being pointers to the
locations where the converted results are to be written to.

The scanf function is equivalent to calling fscanf with stdin as it’s first
argument. For details on the control format string refer to “fscanf” on
page 1-168.

The scanf function returns number of successful conversions performed.

Error Conditions

The scanf function will return EOF if it encounters an error before any
conversions are performed.

Example

#include <stdio.h>

void scanf_example(void)

{

short int day, month, year;

char string[20];

Documented Library Functions

1-292 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

/* Scan a string from standard input */

scanf ("%s", string);

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */

scanf ("%hd%*c%hd%*c%hd", &day, &month, &year);

}

See Also

fscanf

VisualDSP++ 5.0 1-293
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

setbuf

Specify full buffering for a stream

Synopsis

#include <stdio.h>

void setbuf(FILE *stream, char* buf);

Description

The setbuf function results in the array pointed to by buf being used to
buffer the stream pointed to by stream instead of an automatically allo-
cated buffer. The setbuf function may be used only after the stream
pointed to by stream is opened but before it is read or written to. Note
that the buffer provided must be of size BUFSIZ as defined in the stdio.h
header.

 When the buffer contains data for a text stream (either input data
or output data), the information is held in the form of 8-bit charac-
ters that are packed into 32-bit memory locations. Due to internal
mechanisms used to unpack and pack this data, the I/O buffer
must not reside at a memory location greater than the address
0x3fffffff.

If buf is the NULL pointer, the input/output will be completely unbuffered.

Error Conditions

The setbuf function does not return an error condition.

Example

#include <stdio.h>

#include <stdlib.h>

void* allocate_buffer_from_heap(FILE* fp)

Documented Library Functions

1-294 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

{

/* Allocate a buffer from the heap for the file pointer */

void* buf = malloc(BUFSIZ);

if (buf != NULL)

setbuf(fp, buf);

return buf;

}

See Also

setvbuf

VisualDSP++ 5.0 1-295
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

setjmp

Define a run-time label

Synopsis

#include <setjmp.h>

int setjmp (jmp_buf env);

Description

The setjmp function saves the calling environment in the jmp_buf argu-
ment. The effect of the call is to declare a run-time label that can be
jumped to via a subsequent call to longjmp.

When setjmp is called, it immediately returns with a result of zero to indi-
cate that the environment has been saved in the jmp_buf argument. If, at
some later point, longjmp is called with the same jmp_buf argument,
longjmp restores the environment from the argument. The execution is
then resumed at the statement immediately following the corresponding
call to setjmp. The effect is as if the call to setjmp has returned for a sec-
ond time but this time the function returns a non-zero result.

The effect of calling longjmp is undefined if the function that called
setjmp has returned in the interim.

 The use of setjmp and longjmp (or similar functions which do not
follow conventional C/C++ flow control) may produce unexpected
results when the application is compiled with optimizations
enabled under certain circumstances. Functions that call setjmp or
longjmp are optimized by the compiler with the assumption that all
variables referenced may be modified by any functions that are
called. This assumption ensures that it is safe to use setjmp and
longjmp with optimizations enabled, though it does mean that it is
dangerous to conceal from the optimizer that a call to setjmp or
longjmp is being made, for example by calling through a function
pointer.

Documented Library Functions

1-296 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The label setjmp does not return an error condition.

Example

See “longjmp” on page 1-251

See Also

longjmp

VisualDSP++ 5.0 1-297
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

setlocale

Set the current locale

Synopsis

#include <locale.h>

char *setlocale (int category, const char *locale);

Description

The setlocale function uses the parameters category and locale to
select a current locale. The possible values for the category argument are
those macros defined in locale.h beginning with “LC_”. The only locale
argument supported at this time is the “C” locale. If a null pointer is used
for the locale argument, setlocale returns a pointer to a string which is
the current locale for the given category argument. A subsequent call to
setlocale with the same category argument and the string supplied by
the previous setlocale call returns the locale to its original status. The
string pointed to may not be altered by the program but may be overwrit-
ten by subsequent setlocale calls.

Error Conditions

The setlocale function does not return an error condition.

Example

#include <locale.h>

setlocale (LC_ALL, "C");

/* sets the locale to the "C" locale */

See Also

localeconv

Documented Library Functions

1-298 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

setvbuf

Specify buffering for a stream

Synopsis

#include <stdio.h>

int setvbuf(FILE *stream, char *buf, int type, size_t size);

Description

The setvbuf function may be used after a stream has been opened but
before it is read or written to. The kind of buffering that is to be used is
specified by the type argument. The valid values for type are detailed in
Table 1-45.

If buf is not the NULL pointer, the array it points to will be used for buffer-
ing, instead of an automatically allocated buffer. Note that if buf is
non-NULL then you must ensure that the associated storage continues to be
available until you close the stream identified by stream. The size
argument specifies the size of the buffer required. If input/output is
unbuffered, the buf and size arguments are ignored.

Table 1-45. Valid Values for type

Type Effect

_IOFBF Use full buffering for output. Only output to the host system when
the buffer is full, or when the stream is flushed or closed, or when a
file positioning operation intervenes.

_IOLBF Use line buffering. The buffer will be flushed whenever a NEWLINE is
written, as well as when the buffer is full, or when input is
requested.

_IONBF Do not use any buffering at all.

VisualDSP++ 5.0 1-299
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

 When the buffer contains data for a text stream (either input data
or output data), the information is held in the form of 8-bit charac-
ters that are packed into 32-bit memory locations. Due to internal
mechanisms used to unpack and pack this data, the I/O buffer
must not reside at a memory location greater than the address
0x3fffffff.

If buf is the NULL pointer, buffering is enabled and a buffer of size size
will be automatically generated.

The setvbuf function returns zero when successful.

Error Conditions

The setvbuf function will return a non-zero value if either an invalid
value is given for type, or if the stream has already been used to read or
write data, or if an I/O buffer could not be allocated.

Example

#include <stdio.h>

void line_buffer_stderr(void)

{

/* stderr is not buffered - set to use line buffering */

setvbuf (stderr,NULL,_IOLBF,BUFSIZ);

}

See Also

setbuf

Documented Library Functions

1-300 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

set_alloc_type

Set heap for dynamic memory allocation

Synopsis

#include <stdlib.h>

int set_alloc_type(char * heap_name);

Description

The set_alloc_type function is an Analog Devices extension to the ANSI
standard.

The set_alloc_type function specifies a heap from which malloc and
calloc should subsequently allocate memory. The heap_name argument
should be the name of the segment containing the heap as a string. For
more information on creating multiple heaps, see Chapter 1 of the Visu-
alDSP++ 5.0 Compiler Manual, section “Using Multiple Heaps”.

 The set_alloc_type function is not available in multithreaded
environments.

Error Conditions

The set_alloc_type function returns a non-zero value if the heap speci-
fied cannot be found.

Example

#include <stdlib.h>

#include <stdio.h>

char *mymem, *stdmem;

int allocate()

{

VisualDSP++ 5.0 1-301
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

int res;

res = set_alloc_type("seg_heaq");

if (res != 0) {

printf("Failed to switch heaps\n");

return 1;

}

mymem = malloc(10); /* mymem is allocated on "seg_heaq" */

if (mymem == NULL) {

printf("Failed to allocate memory from seg_heaq\n");

return 1;

}

res = set_alloc_type("seg_heap");

if (res != 0) {

printf("Failed to switch heaps\n");

return 1;

}

stdmem = malloc(10); /* stdmem is allocated on default heap */

if (stdmem == NULL) {

printf("Failed to allocate memory from the default

heap\n");

return 1;

}

printf("Memory was allocated at %p %p\n", mymem, stdmem);

return 0;

}

See Also

calloc, free, heap_calloc, heap_free, heap_lookup_name, heap_malloc,
heap_realloc, malloc, realloc

Documented Library Functions

1-302 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

signal

Define signal handling

Synopsis

#include <signal.h>

void (*signal (int sig, void (*func)(int))) (int);

void (*signalnsm (int sig, void (*func)(int))) (int);

void (*signalf (int sig, void (*func)(int))) (int);

void (*signalfnsm (int sig, void (*func)(int))) (int);

void (*signals (int sig, void (*func)(int))) (int);

void (*signalsnsm (int sig, void (*func)(int))) (int);

void (*signalcb (int sig, void (*func)(int))) (int);

void (*signalcbnsm (int sig, void (*func)(int))) (int);

void (*signalss (int sig, void (*func)(int))) (int);

void (*signalssnsm (int sig, void (*func)(int))) (int);

Description

The signal, signalnsm, signalf, signalfnsm, signals, signalsnsm,
signalcb, signalcbnsm, signalss or signalssnsm functions determine
how a signal that is received during program execution is handled. The
specified signal function causes the corresponding interrupt dispatcher
to be used when handling the interrupt (refer to “signal.h” on page 1-26
for more information).

The signal function returns the value of the previously installed interrupt
or signal handler action. The sig argument must be one of the values that
are listed in either Table 1-30 on page 1-108, Table 1-31 on page 1-109,
Table 1-32 on page 1-110, Table 1-33 on page 1-112, or Table 1-35 on
page 1-115. The signal function causes the receipt of the signal number
sig to be handled in one of the ways listed in Table 1-43 on page 1-209.
The function pointed to by func is executed once when the signal is
received. Handling is then returned to the default state.

VisualDSP++ 5.0 1-303
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The differences between the actions taken by the supplied standard inter-
rupt dispatchers, interrupt, interruptnsm, interruptf, interruptfnsm,
interrupts, interruptsnsm, interruptcb, and interruptcbnsm, are dis-
cussed under “signal.h” on page 1-26.

Error Conditions

The signal function returns SIG_ERR and sets errno to SIG_ERR if it does
not recognize the requested signal.

Example

#include <signal.h>

signal (SIG_IRQ2, irq2_handler); /* enable interrupt 2 */

signal (SIG_IRQ2, SIG_IGN); /* disable interrupt 2 */

See Also

interrupt, raise

Documented Library Functions

1-304 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

sin

Sine

Synopsis

#include <math.h>

float sinf (float x);

double sin (double x);

long double sind (long double x);

Description

The sin functions return the sine of x. The input is interpreted as radians;
the output is in the range [-1, 1].

Error Conditions

The input argument x for sinf must be in the domain [-1.647e6,
1.647e6] and the input argument for sind must be in the domain
[-8.433e8, 8.433e8]. The functions return zero if x is outside their
domain.

Example

#include <math.h>

double y;

float x;

y = sin (3.14159); /* y = 0.0 */

x = sinf (3.14159); /* x = 0.0 */

See Also

asin, cos

VisualDSP++ 5.0 1-305
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

sinh

Hyperbolic sine

Synopsis

#include <math.h>

float sinhf (float x);

double sinh (double x);

long double sinhd (long double x);

Description

The hyperbolic sine functions return the hyperbolic sine of x.

Error Conditions

The input argument x must be in the domain [-89.39, 89.39] for sinhf,
and in the domain [-710.44, 710.44] for sinhd. If the input value is
greater than the function’s domain, then HUGE_VAL is returned, and if the
input value is less than the domain, then -HUGE_VAL is returned.

Example

#include <math.h>

float x;

double y;

x = sinhf (1.0); /* x = 1.1752 */

y = sinh (-1.0); /* y = -1.1752 */

See Also

cosh

Documented Library Functions

1-306 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

snprintf

Format data into an n-character array

Synopsis

#include <stdio.h>

int snprintf (char *str, size_t n, const char *format, ...);

Description

The snprintf function is a function that is defined in the C99 Standard
(ISO/IEC 9899).

It is similar to the sprintf function in that snprintf formats data accord-
ing to the argument format, and then writes the output to the array str.
The argument format contains a set of conversion specifiers, directives,
and ordinary characters that are used to control how the data is formatted.
Refer to fprintf (on page 1-153) for a description of the valid format
specifiers.

The function differs from sprintf in that no more than n-1 characters are
written to the output array. Any data written beyond the n-1'th character
is discarded. A terminating NULL character is written after the end of the
last character written to the output array unless n is set to zero, in which
case nothing will be written to the output array and the output array may
be represented by the NULL pointer.

The snprintf function returns the number of characters that would have
been written to the output array str if n was sufficiently large. The return
value does not include the terminating null character written to the array.

The output array will contain all of the formatted text if the return value is
not negative and is also less than n.

VisualDSP++ 5.0 1-307
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Error Conditions

The snprintf function returns a negative value if a formatting error
occurred.

Example

#include <stdio.h>

#include <stdlib.h>

extern char *make_filename(char *name, int id)

{

char *filename_template = "%s%d.dat";

char *filename = NULL;

int len = 0;

int r; /* return value from snprintf */

do {

r = snprintf(filename,len,filename_template,name,id);

if (r < 0) /* formatting error? */

abort();

if (r < len) /* was complete string written? */

return filename; /* return with success */

filename = realloc(filename,(len=r+1));

} while (filename != NULL);

abort();

}

See Also

fprintf, sprintf, vsnprintf

Documented Library Functions

1-308 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

sprintf

Format data into a character array

Synopsis

#include <stdio.h>

int sprintf (char *str, const char *format, /* args */...);

Description

The sprintf function formats data according to the argument format,
and then writes the output to the array str. The argument format con-
tains a set of conversion specifiers, directives, and ordinary characters that
are used to control how the data is formatted. Refer to fprintf
(on page 1-153) for a description of the valid format specifiers.

In all respects other than writing to an array rather than a stream the
behavior of sprintf is similar to that of fprintf.

If the sprintf function is successful it will return the number of charac-
ters written in the array, not counting the terminating NULL character.

Error Conditions

The sprintf function returns a negative value if a formatting error
occurred.

Example

#include <stdio.h>

#include <stdlib.h>

char filename[128];

extern char *assign_filename(char *name)

{

VisualDSP++ 5.0 1-309
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

char *filename_template = "%s.dat";

int r; /* return value from sprintf */

if ((strlen(name)+5) > sizeof(filename))

abort();

r = sprintf(filename, filename_template, name);

if (r < 0) /* sprintf failed */

abort();

return filename; /* return with success */

}

See Also

fprintf, snprintf

Documented Library Functions

1-310 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

sqrt

Square root

Synopsis

#include <math.h>

float sqrtf (float x);

double sqrt (double x);

long double sqrtd (long double x);

Description

The square root functions return the positive square root of x.

Error Conditions

The square root functions return zero for negative input values and set
errno to EDOM to indicate a domain error.

Example

#include <math.h>

double y;

float x;

y = sqrt (2.0); /* y = 1.414..... */

x = sqrtf (2.0); /* x = 1.414..... */

See Also

rsqrt

VisualDSP++ 5.0 1-311
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

srand

Random number seed

Synopsis

#include <stdlib.h>

void srand (unsigned int seed);

Description

The srand function is used to set the seed value for the rand function.
A particular seed value always produces the same sequence of
pseudo-random numbers.

Error Conditions

The srand function does not return an error condition.

Example

#include <stdlib.h>

srand (22);

See Also

rand

Documented Library Functions

1-312 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

sscanf

Convert formatted input in a string

Synopsis

#include <stdio.h>

int sscanf(const char *s, const char *format, /* args */...);

Description

The sscanf function reads from the string s. The function is equivalent to
fscanf with the exception of the string being read from a string rather
than a stream. The behavior of sscanf when reaching the end of the string
equates to fscanf reaching the EOF in a stream. For details on the control
format string, refer to “fscanf” on page 1-168.

The sscanf function returns the number of items successfully read.

Error Conditions

If the sscanf function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void sscanf_example(const char *input)

{

short int day, month, year;

char string[20];

/* Scan for a string from "input" */

sscanf (input, "%s", string);

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */

sscanf (input, "%hd%*c%hd%*c%hd", &day, &month, &year);

}

VisualDSP++ 5.0 1-313
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

fscanf

Documented Library Functions

1-314 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strcat

Concatenate strings

Synopsis

#include <string.h>

char *strcat (char *s1, const char *s2);

Description

The strcat function appends a copy of the null-terminated string pointed
to by s2 to the end of the null-terminated string pointed to by s1. It
returns a pointer to the new s1 string, which is null-terminated. The
behavior of strcat is undefined if the two strings overlap.

Error Conditions

The strcat function does not return an error condition.

Example

#include <string.h>

char string1[50];

string1[0] = 'A';

string1[1] = 'B';

string1[2] = '\0';

strcat (string1, "CD"); /* new string is "ABCD" */

See Also

strncat

VisualDSP++ 5.0 1-315
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strchr

Find first occurrence of character in string

Synopsis

#include <string.h>

char *strchr (const char *s1, int c);

Description

The strchr function returns a pointer to the first location in s1, a
null-terminated string, that contains the character c.

Error Conditions

The strchr function returns a null pointer if c is not part of the string.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strchr (ptr1, 'E');

/* ptr2 points to the E in TESTING */

See Also

memchr, strrchr

Documented Library Functions

1-316 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strcmp

Compare strings

Synopsis

#include <string.h>

int strcmp (const char *s1, const char *s2);

Description

The strcmp function lexicographically compares the null-terminated
strings pointed to by s1 and s2. It returns a positive value if the s1 string
is greater than the s2 string, a negative value if the s2 string is greater than
the s1 string, and a zero if the strings are the same.

Error Conditions

The strcmp function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcmp (string1, string2))

printf ("%s is different than %s \n", string1, string2);

See Also

memcmp, strncmp

VisualDSP++ 5.0 1-317
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strcoll

Compare strings

Synopsis

#include <string.h>

int strcoll (const char *s1, const char *s2);

Description

The strcoll function compares the string pointed to by s1 with the string
pointed to by s2. The comparison is based on the locale macro,
LC_COLLATE. Because only the C locale is defined in the ADSP-21xxx
run-time environment, the strcoll function is identical to the strcmp
function. The function returns a positive value if the s1 string is greater
than the s2 string, a negative value if the s2 string is greater than the s1
string, and a zero if the strings are the same.

Error Conditions

The strcoll function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcoll (string1, string2))

printf ("%s is different than %s \n", string1, string2);

See Also

strcmp, strncmp

Documented Library Functions

1-318 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strcpy

Copy from one string to another

Synopsis

#include <string.h>

char *strcpy (char *s1, const char *s2);

Description

The strcpy function copies the null-terminated string pointed to by s2
into the space pointed to by s1. Memory allocated for s1 must be large
enough to hold s2, plus one space for the null character ('\0'). The behav-
ior of strcpy is undefined if the two objects overlap or if s1 is not large
enough. The strcpy function returns the new s1.

Error Conditions

The strcpy function does not return an error condition.

Example

#include <string.h>

char string1[50];

strcpy (string1, "SOMEFUN");

/* SOMEFUN is copied into string1 */

See Also

memcpy, memmove, strncpy

VisualDSP++ 5.0 1-319
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strcspn

Length of character segment in one string but not the other

Synopsis

#include <string.h>

size_t strcspn (const char *s1, const char *s2);

Description

The strcspn function returns the array index of the first character in s1
which is not in the set of characters pointed to by s2. The order of the
characters in s2 is not significant.

Error Conditions

The strcspn function does not return an error condition.

Example

#include <string.h>

char *ptr1, *ptr2;

size_t len;

ptr1 = "Tried and Tested";

ptr2 = "aeiou";

len = strcspn (ptr1, ptr2); /* len = 2 */

See Also

strlen, strspn

Documented Library Functions

1-320 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strerror

Get string containing error message

Synopsis

#include <string.h>

char *strerror (int errnum);

Description

The strerror function is called to return a pointer to an error message
that corresponds to the argument errnum. The global variable errno is
commonly used as the value of errnum, and as errno is generally not sup-
ported by the library, strerror will always return a pointer to the string
“There are no error strings defined!”.

Error Conditions

The strerror function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = strerror (1);

See Also

No related function.

VisualDSP++ 5.0 1-321
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strftime

Format a broken-down time

Synopsis

#include <time.h>

size_t strftime(char *buf,

size_t buf_size,

const char *format,

const struct tm *tm_ptr);

Description

The strftime function formats the broken-down time tm_ptr into the
char array pointed to by buf, under the control of the format string
format. At most, buf_size characters (including the null terminating
character) are written to buf.

In a similar way as for printf, the format string consists of ordinary char-
acters, which are copied unchanged to the char array buf, and zero or
more conversion specifiers. A conversion specifier starts with the character
% and is followed by a character that indicates the form of transformation
required – the supported transformations are given in Table 1-46.

Note that the strftime function only supports the “C” locale, and this is
reflected in the table.

Table 1-46. Conversion Specifiers Supported by strftime

Conversion Specifier Transformation ISO/IEC 9899

%a abbreviated weekday name yes

%A full weekday name yes

%b abbreviated month name yes

%B full month name yes

Documented Library Functions

1-322 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

%c date and time presentation in the form
of DDD MMM dd hh:mm:ss yyyy

yes

%C century of the year POSIX.2-1992 + ISO C99

%d day of the month (01 - 31) yes

%D date represented as mm/dd/yy POSIX.2-1992 + ISO C99

%e day of the month, padded with a space
character (cf %d)

POSIX.2-1992 + ISO C99

%F date represented as yyyy-mm-dd POSIX.2-1992 + ISO C99

%h abbreviated name of the month (same as
%b)

POSIX.2-1992 + ISO C99

%H hour of the day as a 24-hour clock
(00-23)

yes

%I hour of the day as a 12-hour clock
(00-12)

yes

%j day of the year (001-366) yes

%k hour of the day as a 24-hour clock pad-
ded with a space (0-23)

no

%l hour of the day as a 12-hour clock pad-
ded with a space (0-12)

no

%m month of the year (01-12) yes

%M minute of the hour (00-59) yes

%n newline character POSIX.2-1992 + ISO C99

%p AM or PM yes

%P am or pm no

%r time presented as either hh:mm:ss AM or
as hh:mm:ss PM

POSIX.2-1992 + ISO C99

%R time presented as hh:mm POSIX.2-1992 + ISO C99

%S second of the minute (00-61) yes

%t tab character POSIX.2-1992 + ISO C99

Table 1-46. Conversion Specifiers Supported by strftime (Cont’d)

Conversion Specifier Transformation ISO/IEC 9899

VisualDSP++ 5.0 1-323
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

 The current implementation of time.h does not support time zones
and, therefore, the %Z specifier does not generate any characters.

The strftime function returns the number of characters (not including
the terminating null character) that have been written to buf.

Error Conditions

The strftime function returns zero if more than buf_size characters are
required to process the format string. In this case, the contents of the array
buf will be indeterminate.

%T time formatted as %H:%M:%S POSIX.2-1992 + ISO C99

%U week number of the year (week starts on
Sunday) (00-53)

yes

%w weekday as a decimal (0-6) (0 if Sunday) yes

%W week number of the year (week starts on
Sunday) (00-53)

yes

%x date represented as mm/dd/yy (same as
%D)

yes

%X time represented as hh:mm:ss yes

%y year without the century (00-99) yes

%Y year with the century (nnnn) yes

%Z the time zone name, or nothing if the
name cannot be determined

yes

%% % character yes

Table 1-46. Conversion Specifiers Supported by strftime (Cont’d)

Conversion Specifier Transformation ISO/IEC 9899

Documented Library Functions

1-324 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <time.h>

#include <stdio.h>

extern void

print_time(time_t tod)

{

char tod_string[100];

strftime(tod_string,

100,

"It is %M min and %S secs after %l o'clock (%p)",

gmtime(&tod));

puts(tod_string);

}

See Also

ctime, gmtime, localtime, mktime

VisualDSP++ 5.0 1-325
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strlen

String length

Synopsis

#include <string.h>

size_t strlen (const char *s1);

Description

The strlen function returns the length of the null-terminated string
pointed to by s1 (not including the terminating null character).

Error Conditions

The strlen function does not return an error condition.

Example

#include <string.h>

size_t len;

len = strlen ("SOMEFUN"); /* len = 7 */

See Also

strcspn, strspn

Documented Library Functions

1-326 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strncat

Concatenate characters from one string to another

Synopsis

#include <string.h>

char *strncat (char *s1, const char *s2, size_t n);

Description

The strncat function appends a copy of up to n characters in the null-ter-
minated string pointed to by s2 to the end of the null-terminated string
pointed to by s1. It returns a pointer to the new s1 string.

The behavior of strncat is undefined if the two strings overlap. The new
s1 string is terminated with a null character ('\0').

Error Conditions

The strncat function does not return an error condition.

Example

#include <string.h>

char string1[50], *ptr;

string1[0] = '\0';

strncat (string1, "MOREFUN", 4);

/* string1 equals "MORE" */

See Also

strcat

VisualDSP++ 5.0 1-327
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strncmp

Compare characters in strings

Synopsis

#include <string.h>

int strncmp (const char *s1, const char *s2, size_t n);

Description

The strncmp function lexicographically performs the comparison on the
first n characters of the null-terminated strings pointed to by s1 and s2. It
returns a positive value if the s1 string is greater than the s2 string, a neg-
ative value if the s2 string is greater than the s1 string, and a zero if the
strings are the same.

Error Conditions

The strncmp function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = "TEST1";

if (strncmp (ptr1, "TEST", 4) == 0)

printf ("%s starts with TEST\n", ptr1);

See Also

memcmp, strcmp

Documented Library Functions

1-328 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strncpy

Copy characters from one string to another

Synopsis

#include <string.h>

char *strncpy (char *s1, const char *s2, size_t n);

Description

The strncpy function copies up to n characters of the null-terminated
string, starting with element 0, pointed to by s2 into the space pointed to
by s1. If the last character copied from s2 is not a null, the result does not
end with a null. The behavior of strncpy is undefined if the two objects
overlap. The strncpy function returns the new s1.

If the s2 string contains fewer than n characters, the s1 string is padded
with the null character until all n characters have been written.

Error Conditions

The strncpy function does not return an error condition.

Example

#include <string.h>

char string1[50];

strncpy (string1, "MOREFUN", 4);

/* MORE is copied into string1 */

string1[4] = '\0'; /* must null-terminate string1 */

See Also

memcpy, memmove, strcpy

VisualDSP++ 5.0 1-329
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strpbrk

Find character match in two strings

Synopsis

#include <string.h>

char *strpbrk (const char *s1, const char *s2);

Description

The strpbrk function returns a pointer to the first character in s1 that is
also found in s2. The string pointed to by s2 is treated as a set of charac-
ters. The order of the characters in the string is not significant.

Error Conditions

In the event that no character in s1 matches any in s2, a null pointer is
returned.

Example

#include <string.h>

char *ptr1, *ptr2, *ptr3;

ptr1 = "TESTING";

ptr2 = "SHOP"

ptr3 = strpbrk (ptr1, ptr2);

/* ptr3 points to the S in TESTING */

See Also

strspn

Documented Library Functions

1-330 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strrchr

Find last occurrence of character in string

Synopsis

#include <string.h>

char *strrchr (const char *s1, int c);

Description

The strrchr function returns a pointer to the last occurrence of character
c in the null-terminated input string s1.

Error Conditions

The strrchr function returns a null pointer if c is not found.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING”;

ptr2 = strrchr (ptr1, 'T');

/* ptr2 points to the second T of TESTING */

See Also

memchr, strchr

VisualDSP++ 5.0 1-331
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strspn

Length of segment of characters in both strings

Synopsis

#include <string.h>

size_t strspn (const char *s1, const char *s2);

Description

The strspn function returns the array index of the first character in s1
which is in the set of characters pointed to by s2. The order of the charac-
ters in s2 is not significant.

Error Conditions

The strspn function does not return an error condition.

Example

#include <string.h>

size_t len;

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = "ERST";

len = strspn (ptr1, ptr2); /* len = 4 */

See Also

strcspn, strlen

Documented Library Functions

1-332 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strstr

Find string within string

Synopsis

#include <string.h>

char *strstr (const char *s1, const char *s2);

Description

The strstr function returns a pointer to the first occurrence in the string
pointed to by s1 of the characters in the string pointed to by s2. This
excludes the terminating null character in s1.

Error Conditions

If the string is not found, strstr returns a null pointer. If s2 points to a
string of zero length, s1 is returned.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strstr (ptr1, "E");

/* ptr2 points to the E in TESTING */

See Also

strchr

VisualDSP++ 5.0 1-333
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strtod

Convert string to double

Synopsis

#include <stdlib.h>

double strtod(const char *nptr, char **endptr)

Description

The strtod function extracts a value from the string pointed to by nptr,
and returns the value as a double. The strtod function expects nptr to
point to a string that represents either a decimal floating-point number or
a hexadecimal floating-point number. Either form of number may be pre-
ceded by a sequence of whitespace characters (as determined by the
isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (-); and digits
are one or more decimal digits. The sequence of digits may contain a deci-
mal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign]

[digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X. This character

Documented Library Functions

1-334 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtod function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, a positive or negative (as appropri-
ate) HUGE_VAL is returned. If the correct value results in an underflow, zero
is returned. The ERANGE value is stored in errno in the case of either an
overflow or underflow.

Example

#include <stdlib.h>

char *rem;

double dd;

dd = strtod ("2345.5E4 abc",&rem);

/* dd = 2.3455E+7, rem = " abc" */

dd = strtod ("-0x1.800p+9,123",&rem);

/* dd = -768.0, rem = ",123" */

VisualDSP++ 5.0 1-335
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

atof, strtofxfx, strtol, strtoul

Documented Library Functions

1-336 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strtofxfx

Convert string to fixed-point

Synopsis

#include <stdfix.h>

short fract strtofxhr(const char *nptr, char **endptr);

fract strtofxr(const char *nptr, char **endptr);

long fract strtofxlr(const char *nptr, char **endptr);

unsigned short fract strtofxuhr(const char *nptr, char **endptr);

unsigned fract strtofxur(const char *nptr, char **endptr);

unsigned long fract strtofxulr(const char *nptr, char **endptr);

Description

The strtofxfx family of functions extracts a value from the string pointed
to by nptr, and converts the value to a fixed-point representation. The
strtofxfx functions expect nptr to point to a string that represents either
a decimal floating-point number or a hexadecimal floating-point number.
Either form of number may be preceded by a sequence of whitespace char-
acters (as determined by the isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

VisualDSP++ 5.0 1-337
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtofxfx functions return a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, the maximum positive or negative
(as appropriate) fixed-point value is returned. If the correct value results in
an underflow, zero is returned. The ERANGE value is stored in errno in the
case of overflow.

Example

#include <stdfix.h>

char *rem;

unsigned long fract ulr;

ulr = strtofxulr ("0x180p-12,123",&rem);

/* ulr = 0x1800p-16ulr, rem = ",123" */

Documented Library Functions

1-338 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

strtod, strtol, strtoul, strtoull

VisualDSP++ 5.0 1-339
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strtok

Convert string to tokens

Synopsis

#include <string.h>

char *strtok (char *s1, const char *s2);

Description

The strtok function returns successive tokens from the string s1, where
each token is delimited by characters from s2.

A call to strtok with s1 not NULL returns a pointer to the first token in
s1, where a token is a consecutive sequence of characters not in s2. s1 is
modified in place to insert a null character at the end of the token
returned. If s1 consists entirely of characters from s2, NULL is returned.

Subsequent calls to strtok with s1 equal to NULL return successive
tokens from the same string. When the string contains no further tokens,
NULL is returned. Each new call to strtok may use a new delimiter
string, even if s1 is NULL. If s1 is NULL, the remainder of the string is
converted into tokens using the new delimiter characters.

Error Conditions

The strtok function returns a null pointer if there are no tokens remain-
ing in the string.

Example

#include <string.h>

static char str[] = "a phrase to be tested, today";

char *t;

Documented Library Functions

1-340 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

t = strtok (str, " "); /* t points to "a" */

t = strtok (NULL, " "); /* t points to "phrase" */

t = strtok (NULL, ","); /* t points to "to be tested" */

t = strtok (NULL, "."); /* t points to " today" */

t = strtok (NULL, "."); /* t = NULL */

See Also

No related function.

VisualDSP++ 5.0 1-341
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strtol

Convert string to long integer

Synopsis

#include <stdlib.h>

long int strtol (const char *nptr, char **endptr, int base);

Description

The strtol function returns as a long int the value represented by the
string nptr. If endptr is not a null pointer, strtol stores a pointer to the
unconverted remainder in *endptr.

The strtol function breaks down the input into three sections:

• White space (as determined by isspace)

• Initial characters

• Unrecognized characters including a terminating null character

The initial characters may be composed of an optional sign character, 0x
or 0X if base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10 to
35, and their use is permitted only when those values are less than the
value of base.

If base is zero, then the base is taken from the initial characters. A leading
0x indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

Documented Library Functions

1-342 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The strtol function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer. If the correct value results in an
overflow, positive or negative (as appropriate) LONG_MAX is returned. If the
correct value results in an underflow, LONG_MIN is returned. ERANGE is
stored in errno in the case of either overflow or underflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

long int i;

i = strtol ("2345.5", &rem, base);

/* i=2345, rem=".5" */

See Also

atoi, atol, strtofxfx. strtoll, strtoul, strtoull

VisualDSP++ 5.0 1-343
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

strtold

Convert string to long double

Synopsis

#include <stdlib.h>

long double strtold(const char *nptr, char **endptr)

Description

The strtold function extracts a value from the string pointed to by nptr,
and returns the value as a long double. The strtold function expects
nptr to point to a string that represents either a decimal floating-point
number or a hexadecimal floating-point number. Either form of number
may be preceded by a sequence of whitespace characters (as determined by
the isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (-); and digits
are one or more decimal digits. The sequence of digits may contain a deci-
mal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X. This character

Documented Library Functions

1-344 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtold function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, a positive or negative (as appropri-
ate) LDBL_MAX is returned. If the correct value results in an underflow, zero
is returned. The ERANGE value is stored in errno in the case of either an
overflow or underflow.

Example

#include <stdlib.h>

char *rem;

long double dd;

dd = strtold ("2345.5E4 abc",&rem);

/* dd = 2.3455E+7, rem = " abc" */

dd = strtold ("-0x1.800p+9,123",&rem);

/* dd = -768.0, rem = ",123" */

VisualDSP++ 5.0 1-345
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

See Also

atoi, atol, strtod, strtofxfx, strtoul

Documented Library Functions

1-346 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strtoll

Convert string to long long integer

Synopsis

#include <stdlib.h>
long long strtoll (const char *nptr, char **endptr, int base);

Description

The strtoll function returns as a long long the value represented by the
string nptr. If endptr is not a null pointer, strtoll stores a pointer to the
unconverted remainder in *endptr.

The strtoll function breaks down the input into three sections:

• White space (as determined by isspace)

• Initial characters

• Unrecognized characters including a terminating null character

The initial characters may be composed of an optional sign character, 0x
or 0X if base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10 to
35, and their use is permitted only when those values are less than the
value of base.

If base is zero, then the base is taken from the initial characters. A leading
0x indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

Error Conditions

The strtoll function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr,

VisualDSP++ 5.0 1-347
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

provided that endptr is not a null pointer. If the correct value results in an
overflow, positive or negative (as appropriate) LLONG_MAX is returned. If
the correct value results in an underflow, LLONG_MIN is returned. ERANGE is
stored in errno in the case of either overflow or underflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

long long i;

i = strtoll ("2345.5", &rem, base);

/* i=2345, rem=".5" */

See Also

atoi, atol, strtol, strtoul, strtoull

Documented Library Functions

1-348 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strtoul

Convert string to unsigned long integer

Synopsis

#include <stdlib.h>

unsigned long int strtoul (const char *nptr, char **endptr, int
base);

Description

The strtoul function returns as an unsigned long int the value repre-
sented by the string nptr. If endptr is not a null pointer, strtoul stores a
pointer to the unconverted remainder in *endptr.

The strtoul function breaks down the input into three sections:

• White space (as determined by isspace)

• Initial characters

• Unrecognized characters including a terminating null character

The initial characters may comprise an optional sign character, 0x or 0X,
when base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10 to
35, and are permitted only when those values are less than the value of
base.

If base is zero, then the base is taken from the initial characters. A leading
0x indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

VisualDSP++ 5.0 1-349
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Error Conditions

The strtoul function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer. If the correct value results in an
overflow, ULONG_MAX is returned. ERANGE is stored in errno in the case of
overflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

unsigned long int i;

i = strtoul ("2345.5", &rem, base);

/* i = 2345, rem = ".5" */

See Also

atoi, atol, strtofxfx, strtol, strtoll, strtoull

Documented Library Functions

1-350 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strtoull

Convert string to unsigned long long integer

Synopsis

#include <stdlib.h>
unsigned long long strtoull (const char *nptr,

char **endptr,

 int base);

Description

The strtoull function returns as an unsigned long long the value repre-
sented by the string nptr. If endptr is not a null pointer, strtoull stores a
pointer to the unconverted remainder in *endptr.

The strtoull function breaks down the input into three sections:

• White space (as determined by isspace)

• Initial characters

• Unrecognized characters including a terminating null character

The initial characters may comprise an optional sign character, 0x or 0X,
when base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10 to
35, and are permitted only when those values are less than the value of
base.

If base is zero, then the base is taken from the initial characters. A leading
0x indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

VisualDSP++ 5.0 1-351
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Error Conditions

The strtoull function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer. If the correct value results in an
overflow, ULLONG_MAX is returned. ERANGE is stored in errno in the case of
overflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

unsigned long long i;

i = strtoull ("2345.5", &rem, base);

/* i = 2345, rem = ".5" */

See Also

atoi, atol, strtofxfx, strtol, strtoll, strtoul

Documented Library Functions

1-352 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

strxfrm

Transform string using LC_COLLATE

Synopsis

#include <string.h>

size_t strxfrm (char *s1, const char *s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 using the
locale specific category LC_COLLATE. (See “setlocale” on
page 1-297). It places the result in the array pointed to by s1.

 The transformation is such that if s1 and s2 were transformed and
used as arguments to strcmp, the result would be identical to the
result derived from strcoll using s1 and s2 as arguments. How-
ever, since only C locale is implemented, this function does not
perform any transformations other than the number of characters.

The string stored in the array pointed to by s1 is never more than n char-
acters including the terminating NULL character. strxfrm returns 1. If
this returned value is n or greater, the result stored in the array pointed to
by s1 is indeterminate. s1 can be a NULL pointer if n is zero.

Error Conditions

The strxfrm function does not return an error condition.

VisualDSP++ 5.0 1-353
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

Example

#include <string.h>

char string1[50];

strxfrm (string1, "SOMEFUN", 49);

/* SOMEFUN is copied into string1 */

See Also

setlocale, strcmp, strcoll

Documented Library Functions

1-354 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

system

Send string to operating system

Synopsis

#include <stdlib.h>

int system (const char *string);

Description

The system function normally sends a string to the operating system. In
the context of the ADSP-21xxx run-time environment, system always
returns zero.

Error Conditions

The system function does not return an error condition.

Example

#include <stdlib.h>

system ("string"); /* always returns zero */

See Also

getenv

VisualDSP++ 5.0 1-355
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

tan

Tangent

Synopsis

#include <math.h>

float tanf (float x);

double tan (double x);

long double tand (long double x);

Description

The tangent functions return the tangent of the argument x, where x is
measured in radians.

Error Conditions

The domain of tanf is [-1.647e6, 1.647e6], and the domain for tand is
[-4.21657e8 , 4.21657e8]. The functions return 0.0 if the input argument
x is outside the respective domains.

Example

#include <math.h>

double y;

float x;

y = tan (3.14159/4.0); /* y = 1.0 */

x = tanf (3.14159/4.0); /* x = 1.0 */

See Also

atan, atan2

Documented Library Functions

1-356 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

tanh

Hyperbolic tangent

Synopsis

#include <math.h>

float tanhf (float x);

double tanh (double x);

long double tanhd (long double x);

Description

The hyperbolic tangent functions return the hyperbolic tangent of the
argument x, where x is measured in radians.

Error Conditions

The hyperbolic tangent functions do not return an error condition.

Example

#include <math.h>

double x, y;

float z, w;

y = tanh (x);

z = tanhf (w);

See Also

cosh, sinh

VisualDSP++ 5.0 1-357
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

time

Calendar time

Synopsis

#include <time.h>

time_t time(time_t *t);

Description

The time function returns the current calendar time which measures the
number of seconds that have elapsed since the start of a known epoch. As
the calendar time cannot be determined in this implementation of time.h,
a result of (time_t) -1 is returned. The function’s result is also assigned
to its argument, if the pointer to t is not a null pointer.

Error Conditions

The time function will return the value ((time_t) -1) if the calendar
time is not available.

Example

#include <time.h>

#include <stdio.h>

if (time(NULL) == (time_t) -1)

printf("Calendar time is not available\n");

See Also

ctime, gmtime, localtime

Documented Library Functions

1-358 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

tolower

Convert from uppercase to lowercase

Synopsis

#include <ctype.h>

int tolower (int c);

Description

The tolower function converts the input character to lowercase if it is
uppercase; otherwise, it returns the character.

Error Conditions

The tolower function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

if (isupper (ch))

printf ("tolower=%#04x", tolower (ch));

putchar ('\n');

}

See Also

islower, isupper, toupper

VisualDSP++ 5.0 1-359
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

toupper

Convert from lowercase to uppercase

Synopsis

#include <ctype.h>

int toupper (int c);

Description

The toupper function converts the input character to uppercase if it is in
lowercase; otherwise, it returns the character.

Error Conditions

The toupper function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch = 0; ch <= 0x7f; ch++) {

printf ("%#04x", ch);

if (islower (ch))

printf ("toupper=%#04x", toupper (ch));

putchar ('\n');

}

See Also

islower, isupper, tolower

Documented Library Functions

1-360 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

ungetc

Push character back into input stream

Synopsis

#include <stdio.h>

int ungetc(int uc, FILE *stream);

Description

The ungetc function pushes the character specified by uc back onto
stream. The characters that have been pushed back onto stream will be
returned by any subsequent read of stream in the reverse order of their
pushing.

A successful call to the ungetc function will clear the EOF indicator for
stream. The file position indicator for stream is decremented for every
successful call to ungetc.

Upon successful completion, ungetc returns the character pushed back
after conversion.

Error Conditions

If the ungetc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void ungetc_example(FILE *fp)

{

int ch, ret_ch;

/* get char from file pointer */

ch = fgetc(fp);

/* unget the char, return value should be char */

VisualDSP++ 5.0 1-361
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

if ((ret_ch = ungetc(ch, fp)) != ch)

printf("ungetc failed\n");

/* make sure that the char had been placed in the file */

if ((ret_ch = fgetc(fp)) != ch)

printf("ungetc failed to put back the char\n");

}

See Also

fseek, fsetpos, getc

Documented Library Functions

1-362 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

va_arg

Get next argument in variable-length list of arguments

Synopsis

#include <stdarg.h>

void va_arg (va_list ap, type);

Description

The va_arg macro is used to walk through the variable length list of argu-
ments to a function.

After starting to process a variable-length list of arguments with va_start,
call va_arg with the same va_list variable to extract arguments from the
list. Each call to va_arg returns a new argument from the list.

Substitute a type name corresponding to the type of the next argument for
the type parameter in each call to va_arg. After processing the list, call
va_end.

The header file stdarg.h defines a pointer type called va_list that is used
to access the list of variable arguments.

The function calling va_arg is responsible for determining the number
and types of arguments in the list. It needs this information to determine
how many times to call va_arg and what to pass for the type parameter
each time. There are several common ways for a function to determine
this type of information. The standard C printf function reads its first
argument looking for %-sequences to determine the number and types of
its extra arguments. In the example below, all of the arguments are of the
same type (char*), and a termination value (NULL) is used to indicate the
end of the argument list. Other methods are also possible.

VisualDSP++ 5.0 1-363
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

If a call to va_arg is made after all arguments have been processed, or if
va_arg is called with a type parameter that is different from the type of the
next argument in the list, the behavior of va_arg is undefined.

Error Conditions

The va_arg macro does not return an error condition.

Example
#include <stdio.h>

#include <stdarg.h>

#include <string.h>

#include <stdlib.h>

char *concat(char *s1,...)

{

int len = 0;

char *result;

char *s;

va_list ap;

va_start (ap,s1);

s = s1;

while (s){

len += strlen (s);

s = va_arg (ap,char *);

}

va_end (ap);

result = malloc (len +7);

if (!result)

return result;

*result = '\0';

va_start (ap,s1);

s = s1;

Documented Library Functions

1-364 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

while (s){

strcat (result,s);

s = va_arg (ap,char *);

}

va_end (ap);

return result;

}

char *txt1 = "One";

char *txt2 = "Two";

char *txt3 = "Three";

extern int main(void)

{

char *result;

result = concat(txt1, txt2, txt3, NULL);

puts(result); /* prints "OneTwoThree" */

free(result);

}

See Also

va_end, va_start

VisualDSP++ 5.0 1-365
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

va_end

Finish variable-length argument list processing

Synopsis

#include <stdarg.h>

void va_end (va_list ap);

Description

The va_end macro can only be invoked after the va_start macro has been
invoked. A call to va_end concludes the processing of a variable-length list
of arguments that was begun by va_start.

Error Conditions

The va_end macro does not return an error condition.

Example

See “va_arg” on page 1-362

See Also

va_arg, va_start

Documented Library Functions

1-366 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

va_start

Initialize the variable-length argument list processing

Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN);

Description

The va_start macro is used to start processing variable arguments in a
function declared to take a variable number of arguments. The first argu-
ment to va_start should be a variable of type va_list, which is used by
va_arg to walk through the arguments.

The second argument is the name of the last named parameter in the func-
tion’s parameter list; the list of variable arguments immediately follows
this parameter. The va_start macro must be invoked before either the
va_arg or va_end macro can be invoked.

Error Conditions

The va_start macro does not return an error condition.

Example

See “va_arg” on page 1-362

See Also

va_arg, va_end

VisualDSP++ 5.0 1-367
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

vfprintf

Print formatted output of a variable argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vfprintf(FILE *stream, const char *format, va_list ap);

Description

The vfprintf function formats data according to the argument format,
and then writes the output to the stream stream. The argument format
contains a set of conversion specifiers, directives, and ordinary characters
that are used to control how the data is formatted. Refer to fprintf
(on page 1-153) for a description of the valid format specifiers.

The vfprintf function behaves in the same manner as fprintf with the
exception that instead of being a function which takes a variable number
or arguments it is called with an argument list ap of type va_list, as
defined in stdarg.h.

If the vfprintf function is successful, it will return the number of charac-
ters output.

Error Conditions

The vfprintf function returns a negative value if unsuccessful.

Example

#include <stdio.h>

#include <stdarg.h>

void write_name_to_file(FILE *fp, char *name_template, ...)

Documented Library Functions

1-368 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

{

va_list p_vargs;

int ret; /* return value from vfprintf */

va_start (p_vargs,name_template);

ret = vfprintf(fp, name_template, p_vargs);

va_end (p_vargs);

if (ret < 0)

printf("vfprintf failed\n");

}

See Also

fprintf, va_start, va_end

VisualDSP++ 5.0 1-369
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

vprintf

Print formatted output of a variable argument list to stdout

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vprintf(const char *format, va_list ap);

Description

The vprintf function formats data according to the argument format,
and then writes the output to the standard output stream stdout. The
argument format contains a set of conversion specifiers, directives, and
ordinary characters that are used to control how the data is formatted.
Refer to fprintf (on page 1-153) for a description of the valid format
specifiers.

The vprintf function behaves in the same manner as vfprintf with std-
out provided as the pointer to the stream.

If the vprintf function is successful it will return the number of charac-
ters output.

Error Conditions

The vprintf function returns a negative value if unsuccessful.

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

void print_message(int error, char *format, ...)

Documented Library Functions

1-370 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

{

/* This function is called with the same arguments as for */

/* printf but if the argument error is not zero, then the */

/* output will be preceded by the text "ERROR:” */

va_list p_vargs;

int ret; /* return value from vprintf */

va_start (p_vargs, format);

if (!error)

printf("ERROR: ");

ret = vprintf(format, p_vargs);

va_end (p_vargs);

if (ret < 0)

printf("vprintf failed\n");

}

See Also

fprintf, vfprintf

VisualDSP++ 5.0 1-371
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

vsnprintf

Format argument list into an n-character array

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vsnprintf (char *str, size_t n, const char *format,

va_list args);

Description

The vsnprintf function is similar to the vsprintf function in that it for-
mats the variable argument list args according to the argument format,
and then writes the output to the array str. The argument format con-
tains a set of conversion specifiers, directives, and ordinary characters that
are used to control how the data is formatted. Refer to fprintf
(on page 1-153) for a description of the valid format specifiers.

The function differs from vsprintf in that no more than n-1 characters
are written to the output array. Any data written beyond the n-1'th char-
acter is discarded. A terminating NUL character is written after the end of
the last character written to the output array unless n is set to zero, in
which case nothing will be written to the output array and the output
array may be represented by the NULL pointer.

The vsnprintf function returns the number of characters that would have
been written to the output array str if n was sufficiently large. The return
value does not include the terminating NUL character written to the array.

Error Conditions

The vsnprintf function returns a negative value if unsuccessful.

Documented Library Functions

1-372 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

char *message(char *format, ...)

{

char *message = NULL;

int len = 0;

int r;

va_list p_vargs; /* return value from vsnprintf */

do {

va_start (p_vargs,format);

r = vsnprintf (message,len,format,p_vargs);

va_end (p_vargs);

if (r < 0) /* formatting error? */

abort();

if (r < len) /* was complete string written? */

return message; /* return with success */

message = realloc (message,(len=r+1));

} while (message != NULL);

abort();

}

See Also

fprintf, snprintf

VisualDSP++ 5.0 1-373
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

vsprintf

Format argument list into a character array

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vsprintf (char *str, const char *format, va_list args);

Description

The vsprintf function formats the variable argument list args according
to the argument format, and then writes the output to the array str. The
argument format contains a set of conversion specifiers, directives, and
ordinary characters that are used to control how the data is formatted.
Refer to fprintf (on page 1-153) for a description of the valid format
specifiers.

With one exception, the vsprintf function behaves in the same manner as
sprintf with the exception that instead of being a function which takes a
variable number of arguments, it is called with an argument list args of
type va_list, as defined in stdarg.h.

The vsprintf function returns the number of characters that have been
written to the output array str. The return value does not include the ter-
minating NUL character written to the array.

Error Conditions

The vsprintf function returns a negative value if unsuccessful.

Documented Library Functions

1-374 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

char filename[128];

char *assign_filename(char *filename_template, ...)

{

char *message = NULL;

int r;

va_list p_vargs; /* return value from vsprintf */

va_start (p_vargs,filename_template);

r = vsprintf(&filename[0], filename_template, p_vargs);

va_end (p_vargs);

if (r < 0) /* formatting error? */

abort();

return &filename[0]; /* return with success */

}

See Also

fprintf, sprintf, snprintf

VisualDSP++ 5.0 1-375
Run-Time Library Manual for SHARC Processors

C/C++ Run-Time Library

write_extmem

Write to external memory

Synopsis

#include <21261.h>

#include <21262.h>

#include <21266.h>

#include <21267.h>

#include <21362.h>

#include <21363.h>

#include <21364.h>

#include <21365.h>

#include <21366.h>

void write_extmem(void *internal_address,

void *external_address,

size_t n);

Description

On ADSP-2126x and some ADSP-2136x processors, it is not possible for
the core to access external memory directly. The write_extmem function
copies data from internal to external memory.

The write_extmem function will transfer n 32-bit words from
internal_address to external_address.

Error Conditions

The write_extmem function does not return an error condition.

Example

See read_extmem for a usage example.

Documented Library Functions

1-376 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

read_extmem

VisualDSP++ 5.0 2-1
Run-Time Library Manual for SHARC Processors

2 DSP RUN-TIME LIBRARY

This chapter describes the DSP run-time library, which contains a broad
collection of functions that are commonly required by signal processing
applications. The services provided by the DSP run-time library include
support for general-purpose signal processing such as companders, filters,
and Fast Fourier Transform (FFT) functions. These services are Analog
Devices extensions to ANSI standard C.

For more information about the algorithms on which many of the DSP
run-time library’s math functions are based, see W. J. Cody and W.
Waite, Software Manual for the Elementary Functions, Englewood Cliffs,
New Jersey: Prentice Hall, 1980.

The chapter contains the following:

• “DSP Run-Time Library Guide” on page 2-2 contains information
about the library and provides a description of the DSP header files
included with this release of the cc21k compiler.

• “DSP Run-Time Library Reference” on page 2-31 contains com-
plete reference information for each DSP run-time library function
included with this release of the cc21k compiler.

DSP Run-Time Library Guide

2-2 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library Guide
The DSP run-time library contains routines that you can call from your
source program. This section describes how to use the library and provides
information on the following topics:

• “Calling DSP Library Functions” on page 2-2

• “Linking DSP Library Functions” on page 2-3

• “Library Attributes” on page 2-5

• “Working With Library Source Code” on page 2-5

• “DSP Header Files” on page 2-6

• “Built-In DSP Library Functions” on page 2-22

• “Implications of Using SIMD Mode” on page 2-23

• “Using Data in External Memory” on page 2-24

Calling DSP Library Functions
To use a DSP run-time library function, call the function by name and
provide the appropriate arguments. The names and arguments for each
function are described in the function’s reference page in “DSP Run-Time
Library Guide” on page 2-2.

Like other functions you use, library functions should be declared. Decla-
rations are supplied in header files, as described in “Working With Library
Source Code” on page 2-5.

Note that C++ namespace prefixing is not supported when calling a DSP
library function. All DSP library functions are in the C++ global
namespace.

VisualDSP++ 5.0 2-3
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

 The function names are C function names. If you call C run-time
library functions from an assembly language program, you must
use the assembly version of the function name, which is the func-
tion name prefixed with an underscore. For more information on
naming conventions, see Chapter 1 of the VisualDSP++ 5.0 Com-
piler Manual, section “C/C++ and Assembly Interface”.

You can use the archiver, described in the VisualDSP++ 5.0 Linker and
Utilities Manual, to build library archive files of your own functions.

Linking DSP Library Functions
When your C code calls a DSP run-time library function, the call creates a
reference that the linker resolves when linking your program. One way to
direct the linker to the location of the DSP library is to use the default
Linker Description File (ADSP-21<your_target>.ldf). The default Linker
Description File automatically directs the linker to the appropriate library
under your VisualDSP++ installation. Table 2-1 lists the names of these
libraries and where they are installed.

Table 2-1. DSP Run-Time Library File Names

Library Name Directory Processor

libdsp020.dlb 21k\lib ADSP-21020 processors

libdsp.dlb 21k\lib ADSP-2106X processors

libdsp160.dlb 211xx\lib ADSP-2116x processors, built with
-workaround rframe,21161-anom-
aly-45

libdsp160.dlb 211xx\lib\swfa ADSP-2116x processors, built with
-workaround rframe,21161-anom-
aly-45,swfa

libdsp26x.dlb 212xx\lib ADSP-2126x processors

libdsp26x.dlb 212xx\lib\2126x_rev_0.0 ADSP-2126x processors, built with
-si-revision 0.0

DSP Run-Time Library Guide

2-4 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The library located in 212xx\lib is built without any workarounds
enabled; the library in 212xx\lib\212xx_rev_0.0 contains libraries that
are suitable for revisions 0.0, 0.1, and 0.2; 212xx\lib\212xx_rev_any con-
tains libraries that will work with all revisions of ADSP-2126x processors.

The library located in 213xx\lib is built without any workarounds
enabled. The library in 213xx\lib\2136x_rev_0.0 contains libraries that
are suitable for revisions 0.0, 0.1, and 0.2. The library in
213xx\lib\2136x_rev_any contains libraries that will work with all revi-
sions of ADSP-2136x processors.

The libraries located in 214xx\lib are built without any workarounds
enabled. In addition, a library directory called 21469_rev_any is supplied.
Libraries in this directory contain workarounds for all relevant anomalies
on all revisions of ADSP-214xx processors.

libdsp26x.dlb 212xx\lib\2126x_rev_any ADSP-2126x processors, built with
-si-revision any

libdsp36x.dlb 213xx\lib ADSP-213xx processors

libdsp36x.dlb 213xx\lib\2136x_rev_0.0 ADSP-2136x processors, built with
-si-revision 0.0

libdsp36x.dlb 213xx\lib\2136x_rev_any ADSP-2136x processors, built with
-si-revision any

libdsp37x.dlb 213xx\lib ADSP-2137x processors

libdsp.dlb 214xx\lib ADSP-214xx processors

libdsp.dlb 214xx\lib\21469_rev_any ADSP-214xx processors, built with
-si-revision any

libdsp_nwc.dlb 214xx\lib ADSP-214xx processors, built with -nwc
(normal-word mode)

libdsp_nwc.dlb 214xx\lib\21469_rev_any ADSP-214xx processors, built with
-si-revision any -nwc (normal-word
mode)

Table 2-1. DSP Run-Time Library File Names (Cont’d)

Library Name Directory Processor

VisualDSP++ 5.0 2-5
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

If an application uses a customized Linker Description File, then either
add the appropriate library to the .ldf file, or use the compiler’s -l switch
to add the appropriate DSP run-time library to the link-line. For example,
-ldsp37x will add the library libdsp37x.dlb to the list of libraries to be
searched by the linker. The -l switch is described in more detail in Chap-
ter 1 of the manual VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors under the section “Compiler Command-Line
Switches.”

All the library functions in the DSP run-time library are re-entrant—they
only operate on data passed in via a parameter and do not directly access
non-constant static data. This means that the library may safely be used in
a multi-threaded environment (such as VDK).

Library Attributes
The DSP run-time library contains the same attributes as the C/C++
run-time library. For more information, see “Library Attributes” in
Chapter 1, C/C++ Run-Time Library.

Working With Library Source Code
The source code for the functions in the C and DSP run-time libraries is
provided with VisualDSP++. By default, the source code is installed to a
subdirectory of the directory where the run-time libraries are kept, named
<install_path>\21k\lib\src, <install_path>\211xx\lib\src,
<install_path>\212xx\lib\src, <install_path>\213xx\lib\src, and
<install_path>\214xx\lib\src. The directory contains the source for the
C run-time library, for the DSP run-time library, and for the I/O
run-time library, as well as the source for the main program startup
functions. If you do not intend to modify any of the run-time library
functions, you can delete this directory and its contents to conserve disk
space.

DSP Run-Time Library Guide

2-6 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The source code allows you to customize specific functions. To modify
these files, you need proficiency in ADSP-21xxx assembly language and an
understanding of the run-time environment, as explained in Chapter 1 of
the VisualDSP++ 5.0 Compiler Manual, section “C/C++ Run-Time Model
and Environment”.

Before modifying the source code, copy it to a file with a different file-
name and rename the function itself. Test the function before you use it in
your system to verify that it is functionally correct.

 Analog Devices supports the run-time library functions only as
provided.

DSP Header Files
The DSP header files contain prototypes for all the DSP library functions.
When the appropriate #include preprocessor command is included in
your source, the compiler uses the prototypes to check that each function
is called with the correct arguments. Table 2-2 provides summaries of the
DSP header files supplied with this release of the cc21k compiler.

Table 2-2. Summaries of DSP Header Files

Header File Summary

“asm_sprt.h” on page 2-7 Mixed C/Assembly language macros

“cmatrix.h” on page 2-7 Arithmetic between complex matrices

“comm.h” on page 2-8 Scalar companders for A-law and µ-law

“complex.h” on page 2-8 Basic complex arithmetic functions

“cvector.h” on page 2-9 Arithmetic between complex vectors

“dma.h” on page 2-12 Functions for DMA operations

“filter.h” on page 2-12 Filters and transformations

“filters.h” on page 2-14 Filters operating on scalar input values

“macros.h” on page 2-15 Macros to access processor features

VisualDSP++ 5.0 2-7
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

The following sections describe the DSP header files in more detail.

asm_sprt.h

The asm_sprt.h header file consists of ADSP-21xxx assembly language
macros, not C functions. They are used in your assembly routines that
interface with C functions. For more information, see Chapter 1 of the
VisualDSP++ 5.0 Compiler Manual, section “Using Mixed C/C++ and
Assembly Support Macros”.

cmatrix.h

The cmatrix.h header file contains prototypes for functions that perform
basic arithmetic between two complex matrices, and also between a com-
plex matrix and a complex scalar. The supported complex types are
described under the header file complex.h.

“math.h” on page 2-15 Math functions

“matrix.h” on page 2-16 Matrix functions

“platform_include.h” on page 2-17 Platform-specific functions

“processor_include.h” on page 2-17 Processor-specific functions

“saturate.h” on page 2-19 Interface for saturated arithmetic operations

“sport.h” on page 2-19 Functions for ADSP-21xxx serial port

“stats.h” on page 2-19 Statistical functions

“sysreg.h” on page 2-19 Functions for access to SHARC system registers

“trans.h” on page 2-19 Fast Fourier Transform functions (not optimized for
SHARC SIMD architectures)

“vector.h” on page 2-20 Vector functions

“window.h” on page 2-21 Window generators

Table 2-2. Summaries of DSP Header Files (Cont’d)

Header File Summary

DSP Run-Time Library Guide

2-8 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

For a list of library functions that use this header, see Table 2-10 on
page 2-26.

comm.h

The comm.h header file includes the voice-band compression and expan-
sion communication functions that operate on scalar input values.
However, the functions defined by this header file have not been opti-
mized for the SHARC SIMD architectures.

A corresponding set of companding functions that operate on vectors and
that have been optimized for the SHARC SIMD processors (that is,
ADSP-211xx, ADSP-212xx, ADSP-213xx, and ADSP-214xx) are avail-
able in the header file filter.h.

 When compiling for a SHARC SIMD processor, the two different
sets of companding functions defined in the comm.h and filter.h
header files will have the same name but different parameters.
Therefore, the user program should include the appropriate header
file. The compiler will issue a fatal compilation error message if a
source file being compiled for a SHARC SIMD processor includes
both the comm.h and filter.h header files.

For a list of library functions that use this header, see Table 2-11 on
page 2-26.

complex.h

The complex.h header file contains type definitions and basic arithmetic
operations for variables of type complex_float, complex_double, and
complex_long_double.

The following structures are used to represent complex numbers in rectan-
gular coordinates:

typedef struct {

float re;

VisualDSP++ 5.0 2-9
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

float im;

} complex_float;

typedef struct {

double re;

double im;

} complex_double;

typedef struct {

long double re;

long double im;

} complex_long_double;

Additional support for complex numbers is available via the cmatrix.h and
cvector.h header files.

For a list of library functions that use this header, see Table 2-12 on
page 2-26.

cvector.h

The cvector.h header file contains functions for basic arithmetic opera-
tions on vectors of type complex_float, complex_double, and
complex_long_double. Support is provided for the dot product operation,
as well as for adding, subtracting, and multiplying a vector by either a sca-
lar or vector.

For a list of library functions that use this header, see Table 2-13 on
page 2-27.

DSP Run-Time Library Guide

2-10 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Header Files That Define Processor-Specific System Register
Bits

The following header files define symbolic names for processor-specific
system register bits. They also contain symbolic definitions for the IOP
register address memory and IOP control/status register bits. Table 2-3
provides the header file names for processor-specific register bits.

Table 2-3. Header Files for Processor-Specific Register Bits

Header File Processor

def21020.h ADSP-21020 bit definitions

def21060.h ADSP-21060 bit definitions

def21061.h ADSP-21061 bit definitions

def21062.h ADSP-21062 bit definitions

def21065L.h ADSP-21065L bit definitions

def21160.h ADSP-21160 bit definitions

def21161.h ADSP-21161 bit definitions

def21261.h ADSP-21261 bit definitions

def21262.h ADSP-21262 bit definitions

def21266.h ADSP-21266 bit definitions

def21267.h ADSP-21267 bit definitions

def21363.h ADSP-21363 bit definitions

def21364.h ADSP-21364 bit definitions

def21365.h ADSP-21365 bit definitions

def21366.h ADSP-21366 bit definitions

def21367.h ADSP-21367 bit definitions

def21368.h ADSP-21368 bit definitions

def21369.h ADSP-21369 bit definitions

def21371.h ADSP-21371 bit definitions

def21375.h ADSP-21375 bit definitions

VisualDSP++ 5.0 2-11
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Header Files That Allow Access to Memory-Mapped Registers
From C/C++ Code

In order to allow safe access to memory-mapped registers from C/C++
code, the header files listed below are supplied. Each memory-mapped
register’s name is prefixed with “p” and is cast appropriately to ensure that
the code is generated correctly. For example, SYSCON is defined as follows:

#define pSYSCON ((volatile unsigned int *) 0x00)

and can be used as:

*pSYSCON |= 0x6000;

 Use this method of accessing memory-mapped registers in prefer-
ence to using asm statements.

def21462.h ADSP-21462 bit definitions

def21465.h ADSP-21465 bit definitions

def21467.h ADSP-21467 bit definitions

def21469.h ADSP-21469 bit definitions

def21479.h ADSP-21479 bit definitions

def21489.h ADSP-21489 bit definitions

Table 2-3. Header Files for Processor-Specific Register Bits (Cont’d)

Header File Processor

DSP Run-Time Library Guide

2-12 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Supplied header files are:

dma.h

The dma.h header file provides definitions and setup, status, enable, and
disable functions for DMA operations.

filter.h

The filter.h header file contains filters and other key signal processing
transformations such as Fast Fourier Transform (FFTs) and convolution.
The header file also includes the A-law and µ-law companders that are
used by voice-band compression and expansion applications.

The filters defined in this header file are finite and infinite impulse
response filters, and multi-rate filters. All of these functions operate on an
array of input samples; this is in contrast to the filter functions that are
defined in filters.h and operate on scalars. Similarly, the A-law and
µ-law companding functions of this header file input and output vectors
whereas the companding functions of comm.h operate on one scalar at
time.

The header file defines three different sets of FFT function. The first set is
available when running on SHARC SIMD processors and includes the
functions cfftN, ifftN, and rfftN, where N stands for the size of FFT
computed (that is N represents 16, 32, 64 ...). These functions are

Cdef21060.h Cdef21061.h Cdef21062.h Cdef21065l.h

Cdef21160.h Cdef21161.h Cdef21261.h Cdef21262.h

Cdef21266.h Cdef21267.h Cdef21363.h Cdef21364.h

Cdef21365.h Cdef21366.h Cdef21367.h Cdef21368.h

Cdef21369.h Cdef21371.h Cdef21375.h Cdef21462.h

Cdef21465.h Cdef21467.h Cdef21469.h Cdef21479.h

Cdef21489.h

VisualDSP++ 5.0 2-13
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

relatively slow but they require the least amount of code memory, and the
least amount of data memory as they re-use the input array as temporary
storage. Each of the FFT functions includes an internal twiddle table
(which is a set of sine and cosine coefficients required by FFT functions)
that has been tailored to the explicit size of the FFT being generated. For
example, the functions cfft32, ifft32, and rfft32 share one twiddle table
and cfft64, ifft64, and rfft64 share another. The size of each twiddle
table is FFTSIZE words and is allocated in DM memory. Therefore the
advantages of smaller code size and data size diminishes if an application
calculates FFTs of more than one size as it will include a set of FFT func-
tions and associated twiddle tables for each of the different sizes of FFT
computed.

The second set of Fast Fourier Transform functions is defined for all
SHARC processors and is composed of the functions cfft, ifft, and
rfft. The number of points in the FFT is passed as a parameter to these
functions. The functions are also passed a twiddle table which can be
shared if an application calculates FFTs that have more than one size.
These functions have the ability to preserve the input data. Their memory
footprint is larger than the first set of FFT functions, but an application
will only include one instance of an FFT function no matter how many
different-sized FFTs that it calculates. These FFT functions are faster and
more flexible than the first set, and will be more memory efficient if an
application calculates FFTs of different sizes.

The third set of FFT functions that is defined by this header file represent
a set of highly optimized functions that are only available on the
ADSP-21xxx SIMD platforms. This set of functions, represented by
cfftf, ifftf, and rfftf_2, sacrifice a level of flexibility in favor of opti-
mal performance. For example, twiddle tables cannot be shared when
computing FFTs of different sizes and these FFT functions overwrite the
input data. The input arrays must be aligned on an address boundary that
is a multiple of the FFT size, and the functions cannot be used to refer-
ence external memory. Memory usage lies between the first and second set
of FFT functions.

DSP Run-Time Library Guide

2-14 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The trans.h header file defines a set of alternative set of FFT functions
that are supported on all SHARC processors, but these functions have not
been optimized for the SIMD architectures of the ADSP-211xx,
ADSP-212xx, ADSP-213xx, and ADSP-214xx family of processors.

The header file also defines library functions that compute the magnitude
of an FFT, and a function that convolves two arrays.

 If a source file compiled for a SHARC SIMD processor includes
the filter.h header file, then it must not also include one of the
header files comm.h, filters.h, or trans.h. Any attempt to do so
causes the compiler to issue a fatal compilation error.

For a list of library functions that use this header, see Table 2-16 on
page 2-27.

filters.h

The filters.h header file includes finite and infinite impulse response fil-
ters that operate on scalar input values. However, the functions defined by
this header file are not optimized for the
ADSP-211xx/212xx/213xx/214xx SIMD architectures.

Note that alternative filter functions that operate on vectors are defined in
the filter.h header file. These functions will also exploit the SIMD capa-
bilities of the ADSP-211xx, ADSP-212xx, ADSP-213xx, and
ADSP-214xx processors.

 When compiling for a SHARC SIMD processor, the two different
sets of filter functions that are defined in the filter.h and
filters.h header files will have the same name but different
parameters. It is important therefore that the user program
includes the appropriate header file. The compiler will issue a fatal
compilation error message if a source file is being compiled for a
SHARC SIMD processors and it includes both the filter.h and
filters.h header files.

VisualDSP++ 5.0 2-15
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

For a list of library functions that use this header, see Table 2-15 on
page 2-27.

macros.h

The macros.h header file contains a collection of macros and other defini-
tions that allow some access to special computational features of the
underlying hardware. Some portions of this file are present for compatibil-
ity with previous releases of the VisualDSP++ toolset. In these cases,
newer implementations provide equal or better access to the underlying
functionality.

math.h

The standard math functions defined in the math.h header file have been
augmented by implementations for the float and long double data types
and additional functions that are Analog Devices extensions to the ANSI
standard.

Table 2-4 provides a summary of the additional library functions defined
by the math.h header file.

Table 2-4. Math Library – Additional Functions

Description Prototype

Anti-log double alog (double x);
float alogf (float x);
long double alogd (long double x);

Average double favg (double x, double y);
float favgf (float x, float y);
long double favgd (long double x, long double y);

Base 10 anti-log double alog10 (double x);
float alog10f (float x);
long double alog10d (long double x);

DSP Run-Time Library Guide

2-16 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

For a list of library functions that use this header, see Table 2-17 on
page 2-28.

matrix.h

The matrix.h header file declares a number of function prototypes associ-
ated with basic arithmetic operations on matrices of type float, double,
and long double. The header file contains support for arithmetic between
two matrices, and between a matrix and a scalar.

Clip double fclip (double x, double y);
float fclipf (float x, float y);
long double fclipd (long double x, long double y);

Cotangent double cot (double x);
float cotf (float x);
long double cotd (long double x);

Detect Infinity int isinf (double x);
int isinff (float x);
int isinfd (long double x);

Detect NaN int isnan (double x);
int isnanf (float x);
int isnand (long double x);

Maximum double fmax (double x, double y);
float fmaxf (float x, float y);
long double fmaxd (long double x, long double y);

Minimum double fmin (double x, double y);
float fminf (float x, float y);
long double fmind (long double x, long double y);

Reciprocal of square root double rsqrt (double x);
float rsqrtf (float x);
long double rsqrtd (long double x);

Sign copy double copysign (double x, double y);
float copysignf (float x, float y);
long double copysignd (long double x, long double y);

Table 2-4. Math Library – Additional Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 2-17
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

For a list of library functions that use this header, see Table 2-18 on
page 2-28.

platform_include.h

The platform_include.h header file includes the appropriate header files
that define symbolic names for processor-specific system register bits.
These header files also contain symbolic definitions for the IOP register
address memory and IOP control/status register bits. With the exception
of ADSP-21020, platform_include.h causes 1 or 2 include files to be
included, depending on whether assembly or C/C++ code is being
processed.

For more information on the platform-specific include files, see the fol-
lowing sections:

• “Header Files That Define Processor-Specific System Register Bits”
on page 2-10

• “Header Files That Allow Access to Memory-Mapped Registers
From C/C++ Code” on page 2-11

processor_include.h

The processor_include.h header file includes the appropriate header file
that defines the processor-specific functions of the DSP run-time library,
such as poll_flag_in() and idle(). The processor header file also
includes support for initializing, enabling, and disabling the processor’s
programmable timer (or, in the case of the ADSP-21065L processor, the
processor’s two programmable timers). The processor_include.h header
file will include one of the header files found in Table 2-5, depending
upon the target processor.

DSP Run-Time Library Guide

2-18 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

For a list of library functions that use this header, see Table 2-19 on
page 2-29.

Table 2-5. Processor-Specific Header Files

Header File Header File Processor-Specific Content

21020.h ADSP-21020 DSP functions

21060.h ADSP-2106x DSP functions

21065l.h ADSP-21065L DSP functions

21160.h ADSP-21160 DSP functions

21161.h ADSP-21161 DSP functions

21261.h ADSP-21261 DSP functions

21262.h ADSP-21262 DSP functions

21266.h ADSP-21266 DSP functions

21267.h ADSP-21267 DSP functions

21363.h ADSP-21363 DSP functions

21364.h ADSP-21364 DSP functions

21365.h ADSP-21365 DSP functions

21366.h ADSP-21366 DSP functions

21367.h ADSP-21367 DSP functions

21368.h ADSP-21368 DSP functions

21369.h ADSP-21369 DSP functions

21371.h ADSP-21371 DSP functions

21375.h ADSP-21375 DSP functions

21462.h ADSP-21462 DSP functions

21465.h ADSP-21465 DSP functions

21467.h ADSP-21467 DSP functions

21469.h ADSP-21469 DSP functions

21479.h ADSP-21479 DSP functions

21489.h ADSP-21489 DSP functions

VisualDSP++ 5.0 2-19
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

saturate.h

The saturate.h header file defines the interface for saturated arithmetic
operations. See Chapter 1 of the VisualDSP++ 5.0 Compiler Manual, sec-
tion “Saturated Arithmetic” for further information.

sport.h

The sport.h header file provides definitions and setup, enable, and dis-
able functions for the ADSP-21xxx DSP serial ports.

stats.h

The stats.h header file includes various statistics functions of the DSP
library, such as mean() and autocorr().

For a list of library functions that use this header, see Table 2-20 on
page 2-29.

sysreg.h

The sysreg.h header file defines a set of built-in functions that provide
efficient access to the SHARC system registers from C. The supported
functions are fully described in Chapter 1 of the VisualDSP++ 5.0 Com-
piler Manual, section “Access to System Registers”.

trans.h

The trans.h header file includes the Fast Fourier Transform (FFT) func-
tions. These functions operate on data in which the real and imaginary
parts of the input and output signal are stored in separate vectors. They
have not be optimized for the ADSP-21xxx SIMD architectures. The
header file defines the functions cfftN, ifftN, and rfftN, where N stands
for the number of points that the FFT function will compute (that is 16,
32, 64, ...).

DSP Run-Time Library Guide

2-20 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The cfftN and ifftN functions respectively compute the FFT, and inverse
FFT, from an N-point complex input signal. The rfftN functions are sim-
ilar to the cfftN functions, except that they operate on input signals of
real data only; this is equivalent to cfftN whose imaginary input compo-
nent is set to zero.

Alternative FFTs functions, that have been optimized for the ADSP-21xxx
SIMD processors, are defined in the filter.h header file.

 When compiling for a SHARC SIMD processor, the two different
sets of FFT functions that are defined in the trans.h and filter.h
header files will have the same name but different parameters. It is
important therefore that the user program includes the appropriate
header file. The compiler will issue a fatal compilation error mes-
sage if a source file is being compiled for a SHARC SIMD
processors and it includes both the trans.h and filter.h header
files.

For a list of library functions that use this header, see Table 2-21 on
page 2-29.

vector.h

The vector.h header file contains functions for operating on vectors of
type float, double, and long double. Support is provided for the dot
product operation as well as for adding, subtracting, and multiplying a
vector by either a scalar or vector. Similar support for the complex data
types is defined in the header file cvector.h.

For a list of library functions that use this header, see Table 2-22 on
page 2-30.

VisualDSP++ 5.0 2-21
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

window.h

The window.h header file contains various functions to generate windows
based on various methodologies. The functions, defined in the window.h
header file, are listed in Table 2-6.

For all window functions, a stride parameter a can be used to space the
window values. The window length parameter n equates to the number of
elements in the window. Therefore, for a stride a of 2 and a length n of 10,
an array of length 20 is required, where every second entry is untouched.

Table 2-6. Window Generator Functions

Description Prototype

Generate Bartlett window void gen_bartlett
(float w[], int a, int n)

Generate Blackman window void gen_blackman
(float w[], int a, int n)

Generate Gaussian window void gen_gaussian
(float w[], float alpha, int a, int n)

Generate Hamming window void gen_hamming
(float w[], int a, int n)

Generate Hanning window void gen_hanning
(float w[], int a, int n)

Generate Harris window void gen_harris
(float w[], int a, int n)

Generate Kaiser window void gen_kaiser
(float w[], float beta, int a, int n)

Generate rectangular window void gen_rectangular
(float w[], int a, int n)

Generate triangle window void gen_triangle
(float w[], int a, int n)

Generate von Hann window void gen_vonhann
(float w[], int a, int n)

DSP Run-Time Library Guide

2-22 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

For a list of library functions that use this header, see Table 2-23 on
page 2-30.

Built-In DSP Library Functions
The C/C++ compiler supports built-in functions (also known as intrinsic
functions) that enable efficient use of hardware resources. Knowledge of
these functions is built into the compiler. Your program uses them via
normal function call syntax. The compiler notices the invocation and
replaces a call to a DSP library function with one or more machine
instructions, just as it does for normal operators like “+” and “*”.

Built-in functions are declared in system header files and have names
which begin with double underscores, __builtin.

 Identifiers beginning with “__” are reserved by the C standard, so
these names do not conflict with user-defined identifiers.

These functions are specific to individual architectures. The built-in DSP
library functions supported by the cc21k compiler are listed in Table 2-7.
Refer to “Using Compiler Built-In C Library Functions” on page 1-39 for
more information on this topic.

 Use the -no-builtin compiler switch to disable this feature.

 Functions copysign, favg, fmax, and fmin are compiled as a
built-in function only if double is the same size as float.

Table 2-7. Built-in DSP Functions

avg clip copysign copysignf

favg favgf fmax fmaxf

fmin fminf labs lavg

lclip lmax lmin max

min

VisualDSP++ 5.0 2-23
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

The compiler also supports a set of built-in functions for which no inline
machine instructions are substituted. This set of built-in functions is char-
acterized by defining one or more pointers in their argument list.

For this set of built-in functions, the compiler relaxes the normal rule
whereby any pointer that is passed to a library function must address Data
Memory (DM). The compiler recognizes when certain pointers address
Program Memory (PM) and generates a call to an appropriate version of
the run-time library function. Table 2-8 lists library functions that may be
called with pointers that address Program Memory.

 Use the -no-builtin compiler switch to disable this feature.

Implications of Using SIMD Mode
The ADSP-2116x, ADSP-2126x, ADSP-213xx, and ADSP-214xx proces-
sors support Single-Instruction, Multiple-Data (SIMD) operations,
which, under certain conditions, double the computational rate over
ADSP-2106x processors. The DSP run-time library for these processors
makes extensive use of their SIMD capabilities. In essence, when running
in SIMD mode, data contained in memory is always accessed as two
32-bit words, starting at an even word boundary. Therefore, it is essential
that any array that is passed to a DSP library function be allocated on a
double-word (even word) boundary.

The cc21k compiler normally aligns arrays properly in memory. However,
the compiler cannot control the allocation of all arrays that are used as
arguments to DSP library functions. For example, the alignment of the

Table 2-8. Library Functions Called With Pointers

histogram matmaddf matmmltf

matmsubf matsaddf matsmltf

matssubf meanf rmsf

transpmf varf zero_crossf

DSP Run-Time Library Guide

2-24 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

array &a[i] is controlled by the value of the scalar i. If the value of the
scalar is odd, then the library function might return incorrect results. A
variant of this example involves the use of pointers to arrays. If the vari-
able ptr is initialized using ptr=&a[i] and the value of the scalar i is odd,
then you cannot use ptr to pass an array to a DSP library function

Refer to Chapter 1 of the VisualDSP++ 5.0 Compiler Manual, section
“Restrictions to Using SIMD” for more information on this topic. The
SIMD feature is described in detail in the same chapter, in the section
entitled “SIMD Support”.

A limited number of DSP library functions, whose arguments involve the
use of arrays, do not use the SIMD feature of ADSP-2116x, ADSP-2126x,
ADSP-213xx, and ADSP-214xx processors due to the nature of their algo-
rithm. These library functions include all long double functions and the
window generators. In addition, Table 2-9 lists the following functions:

Some ADSP-2116x, ADSP-2126x, and ADSP-213xx processors have
restrictions on the use of SIMD access to data placed in external memory.
For more information, see “Using Data in External Memory” on
page 2-24.

Using Data in External Memory
The run-time functions described in this manual have been optimized to
exploit the features of the SHARC architecture. This can lead to restric-
tions in the placement of data in external memory, particularly on some
ADSP-211xx, ADSP-212xx, and ADSP-213xx processors.

Table 2-9. Functions Not Using the SIMD Feature

biquad cmatmmlt cmatsmlt convolve

cvecdot cvecsmlt fir_decima fir_interp

iir histogram matmmlt matinv

transpm zero_cross

VisualDSP++ 5.0 2-25
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

The ADSP-212xx and some ADSP-2136x processors do not support
direct memory accesses to external memory. This means that the run-time
functions cannot read or write to data in external memory. Any such data
must first be brought into internal memory. The library functions
read_extmem and write_extmem may be used to transfer data between
internal memory and external memory.

Some ADSP-211xx and ADSP-213xx processors have a 32-bit external
bus and, due to the shorter bus width, are unable to support SIMD access
to external memory. For this reason, the DSP library contains an alterna-
tive set of functions that do not use the architecture’s SIMD capabilities.
This alternative set is selected in preference to the standard library func-
tions if the -no-simd compiler switch is specified at compilation time.

The ADSP-214xx processors do support SIMD access to external memory,
but not long word (LW) access to external memory. Therefore the
cvecvmltf library function is not suitable for use with data placed in exter-
nal memory, since it makes use of the LW mnemonic. (This also applies to
the cvecvmlt function if doubles are the same size as floats.) An alternative
version of the function does not use the architecture’s SIMD capabilities
and is suitable for use with data placed in external memory. This version is
available by way of the -no-simd compiler switch.

The optimized FFT functions cfftf, ifftf, and rfftf_2 use both SIMD
and long word memory accesses to improve their performance. All data
passed to these functions must be allocated in internal memory. There are
no versions of these functions that support data in external memory.

Documented Library Functions
The C run-time library has several categories of functions and macros
defined by the ANSI C standard, plus extensions provided by Analog
Devices.

Documented Library Functions

2-26 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The following tables list the library functions documented in this chapter.
Note that the tables list the functions for each header file separately; how-
ever, the reference pages for these library functions present the functions
in alphabetical order.

Table 2-10 lists the library functions in the cmatrix.h header file. Refer to
“cmatrix.h” on page 2-7 for more information on this header file.

Table 2-11 lists the library functions in the comm.h header file. Refer to
“comm.h” on page 2-8 for more information on this header file.

Table 2-12 lists the library functions in the complex.h header file. Refer to
“complex.h” on page 2-8 for more information on this header file.

Table 2-10. Library Functions in cmatrix.h

cmatmadd cmatmmlt cmatmsub

cmatsadd cmatsmlt cmatssub

Table 2-11. Library Functions in comm.h

a_compress a_expand mu_compress

mu_expand

Table 2-12. Supported Library Functions in complex.h

arg cabs cadd

cartesian cdiv cexp

cmlt conj csub

norm polar

VisualDSP++ 5.0 2-27
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Table 2-13 lists the library functions in the cvector.h header file. Refer to
“cvector.h” on page 2-9 for more information on this header file.

Table 2-14 lists the library functions in the dma.h header file. Refer to
“dma.h” on page 2-12 for more information on this header file.

Table 2-15 lists the library functions in the filters.h header file. Refer to
“filters.h” on page 2-14 for more information on this header file.

Table 2-16 lists the library functions in the filter.h header file. Refer to
“filter.h” on page 2-12 for more information on this header file.

Table 2-13. Supported Library Functions in cvector.h

cvecdot cvecsadd cvecsmlt

cvecssub cvecvadd cvecvmlt

cvecvsub

Table 2-14. Supported Library Functions in dma.h

dma_disable dma_enable dma_setup

dma_status

Table 2-15. Supported Library Functions in filters.h

biquad fir iir

Table 2-16. Supported Library Functions in filter.h

a_compress a_expand biquad

cfft cfft_mag (SHARC SIMD
Processors)

cfftN (SHARC SIMD Pro-
cessors)

cfftf (SHARC SIMD Pro-
cessors)

convolve fft_magnitude

Documented Library Functions

2-28 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Table 2-17 lists the library functions in the math.h header file. Refer to
“math.h” on page 2-15 for more information on this header file.

Table 2-18 lists the library functions in the matrix.h header file. Refer to
“matrix.h” on page 2-16 for more information on this header file.

fftf_magnitude (SHARC
SIMD Processors)

fir fir_decima

fir_interp ifft ifftf (SHARC SIMD Pro-
cessors)

ifftN (SHARC SIMD Pro-
cessors)

iir mu_compress

mu_expand rfft rfft_mag (SHARC SIMD
Processors)

rfftf_2 (SHARC SIMD
Processors)

rfftN (SHARC SIMD Pro-
cessors)

twidfft

twidfftf (SHARC SIMD
Processors)

Table 2-17. Supported Library Functions in math.h

alog alog10 copysign

cot favg fclip

fmax fmin rsqrt

Table 2-18. Supported Library Functions in matrix.h

matinv matmadd matmmlt

matmsub matsadd matsmlt

matssub transpm

Table 2-16. Supported Library Functions in filter.h (Cont’d)

VisualDSP++ 5.0 2-29
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Table 2-19 lists the library functions in the processor_include.h header
file. Refer to “processor_include.h” on page 2-17 for more information on
this header file.

Table 2-20 lists the library functions in the stats.h header file. Refer to
“stats.h” on page 2-19 for more information on this header file.

Table 2-21 lists the library functions in the trans.h header file. Refer to
“trans.h” on page 2-19 for more information on this header file.

Table 2-19. Library Functions in processor_include.h

circindex circptr idle

poll_flag_in set_flag set_semaphore

test_and_set_semaphore timer_off timer_on

timer0_off, timer1_off
(ADSP-21065L Processor
Only)

Table 2-20. Supported Library Functions in stats.h

autocoh autocorr crosscoh

crosscorr histogram mean

rms var zero_cross

Table 2-21. Supported Library Functions in trans.h

cfftN ifftN rfftN

Documented Library Functions

2-30 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Table 2-22 lists the library functions in the vector.h header file. Refer to
“vector.h” on page 2-20 for more information on this header file.

Table 2-23 lists the library functions in the window.h header file. Refer to
“window.h” on page 2-21 for more information on this header file.

Table 2-22. Supported Library Functions in vector.h

vecdot vecsadd vecsmlt

vecssub vecvadd vecvmlt

vecvsub

Table 2-23. Supported Library Functions in window.h

gen_bartlett gen_blackman gen_gaussian

gen_hamming gen_hanning gen_harris

gen_kaiser gen_rectangular gen_triangle

gen_vonhann

VisualDSP++ 5.0 2-31
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

DSP Run-Time Library Reference
The DSP run-time library is a collection of functions that you can call
from your C/C++ programs. This section lists the functions in alphabeti-
cal order, for both ADSP-21xxx SIMD and ADSP-210xx processors.
Functions that apply to only one processor family are labeled as such.
Note the following items that apply to all the functions in the library.

Notation Conventions
An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

Restrictions
When polymorphic functions are used and the function returns a pointer
to Program Memory, cast the output of the function to pm—for
example, (char pm *)

Reference Format
Each function in the library has a reference page. These pages have the fol-
lowing format:

Name and purpose of the function

Synopsis – Required header file and functional prototype

Description – Function specification

Algorithm – High-level mathematical representation of the function

Error Conditions – Method that the functions use to indicate an error

Example – Typical function usage

See Also – Related functions

Documented Library Functions

2-32 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

a_compress

A-law compression

Synopsis (Scalar-Valued Version)

#include <comm.h>

int a_compress (int x);

Synopsis (Vector-Valued Version)

ADSP-210xx Processors

#include <filter.h>

int *a_compress_vec (const int dm input[],

int dm output[],

int length);

ADSP-21xxx SIMD Processors

#include <filter.h>

int *a_compress (const int dm input[],

int dm output[],

int length);

Description

The A-law compression functions take a linear 13-bit signed speech sam-
ple and compresses it according to ITU recommendation G.711.

The scalar-valued version of a_compress inputs a single data sample and
returns an 8-bit compressed output sample.

The vector-valued version of a_compress takes the array input, and
returns the compressed 8-bit samples in the vector output. The parameter

VisualDSP++ 5.0 2-33
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

length defines the size of both the input and output vectors. The function
returns a pointer to the output array.

 The vector-valued version of a_compress uses serial port 0 to per-
form the companding on an ADSP-21160 processor; serial port 0
therefore must not be in use when this routine is called. The serial
port is not used by this function on any other ADSP-21xxx SIMD
architectures.

Error Conditions

The A-law compression functions do not return an error condition.

Example

Scalar-Valued

#include <comm.h>

int sample, compress;

compress = a_compress (sample);

Vector-Valued

#include <filter.h>

#define NSAMPLES 50

int data[NSAMPLES], compressed[NSAMPLES];
#if defined(__SIMDSHARC__)

a_compress (data, compressed, NSAMPLES);

#else

a_compress_vec (data, compressed, NSAMPLES);

#endif

See Also

a_expand, mu_compress

Documented Library Functions

2-34 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

a_expand

A-law expansion

Synopsis (Scalar-Valued Version)

#include <comm.h>

int a_expand (int x);

Synopsis (Vector-Valued Version)

ADSP-210xx Processors

#include <filter.h>

int *a_expand_vec (const int dm input[],

int dm output[],

int length);

ADSP-21xxx SIMD Processors

#include <filter.h>

int *a_expand (const int dm input[],

int dm output[],

int length);

Description

The a_expand function takes an 8-bit compressed speech sample and
expands it according to ITU recommendation G.711 (A-law definition).

The scalar version of a_expand inputs a single data sample and returns a
linear 13-bit signed sample.

The vector version of the a_expand function takes an array of 8-bit com-
pressed speech samples and expands them according to ITU
recommendation G.711 (A-law definition). The array returned contains

VisualDSP++ 5.0 2-35
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

linear 13-bit signed samples. This function returns a pointer to the output
data array.

 The vector version of the a_expand function uses serial port 0 to
perform the companding on an ADSP-21160 processor; serial
port 0 therefore must not be in use when this routine is called. The
serial port is not used by this function on any other ADSP-21xxx
SIMD architectures.

Error Conditions

The A-law expansion functions do not return an error condition.

Example

Scalar-Valued

#include <comm.h>

int compressed_sample, expanded;

expanded = a_expand (compressed_sample);

Vector-Valued

#include <filter.h>

#define NSAMPLES 50

int compressed_data[NSAMPLES];

int expanded_data[NSAMPLES];

#if defined(__SIMDSHARC__)

a_expand (compressed_data, expanded_data, NSAMPLES);

#else

a_expand_vec (compressed_data, expanded_data, NSAMPLES);

#endif

Documented Library Functions

2-36 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

a_compress, mu_expand

VisualDSP++ 5.0 2-37
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

alog

Anti-log

Synopsis

#include <math.h>

float alogf (float x);

double alog (double x);

long double alogd (long double x);

Description

The anti-log functions calculate the natural (base e) anti-log of their argu-
ment. An anti-log function performs the reverse of a log function and is
therefore equivalent to exponentiation.

Error Conditions

The input argument x for alogf must be in the domain [-87.3, 88.7] and
the input argument for alogd must be in the domain [-708.2, 709.1]. The
functions return HUGE_VAL if x is greater than the domain, and return 0.0 if
x is less than the domain.

Example

#include <math.h>

double x = 1.0;

double y;

y = alog(x); /* y = 2.71828... */

See Also

alog10, exp, log, pow

Documented Library Functions

2-38 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

alog10

Base 10 anti-log

Synopsis

#include <math.h>

float alog10f (float x);

double alog10 (double x);

long double alog10d (long double x);

Description

The alog10 functions calculate the base 10 anti-log of their argument. An
anti-log function performs the reverse of a log function and is therefore
equivalent to exponentiation. Therefore, alog10(x) is equivalent to
exp(x * log(10.0)).

Error Conditions

The input argument x for alog10f must be in the domain [-37.9, 38.5],
and the input argument for alog10d must be in the domain [-307.57,
308.23]. The functions return HUGE_VAL if x is greater than the domain,
and they return 0.0 if x is less than the domain.

Example

#include <math.h>

double x = 1.0;

double y;

y = alog10(x); /* y = 10.0 */

See Also

alog, exp, log10, pow

VisualDSP++ 5.0 2-39
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

arg

Get phase of a complex number

Synopsis

#include <complex.h>

float argf (complex_float a);

double arg (complex_double a);

long double argd (complex_long_double a);

Description

The arg functions compute the phase associated with a Cartesian number
represented by the complex argument a, and return the result.

Algorithm

The phase of a Cartesian number is computed as:

Error Conditions

The arg functions return a zero if a.re <> 0 and a.im = 0.

c
Im(a)
Re(a)

 atan=

Documented Library Functions

2-40 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <complex.h>

complex_float x = {0.0,1.0};

float r;

r = argf(x); /* r = pi/2 */

See Also

atan2, cartesian, polar

VisualDSP++ 5.0 2-41
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

autocoh

Autocoherence

Synopsis

#include <stats.h>

float *autocohf (float dm out[],

const float dm in[],

int samples, int lags);

double *autocoh (double dm out[],

const double dm in[],

int samples, int lags);

long double *autocohd (long double dm out[],

const long double dm in[],

int samples, int lags);

Description

The autocoherence functions compute the autocoherence of the float-
ing-point input, in[], which contain samples values. The autocoherence
of an input signal is its autocorrelation minus its mean squared. The func-
tions return a pointer to the output array out[] of length lags.

 For the ADSP-21xxx SIMD processors the autocohf function (and
autocoh, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-42 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Algorithm

The following equation is the basis of the algorithm.

where:
k = {0, 1, ..., lags-1}
a is the mean value of input vector a

Error Conditions

The autocoherence functions do not return an error condition.

Example

#include <stats.h>

#define SAMPLES 1024

#define LAGS 16

double excitation[SAMPLES];

double response[LAGS];

int lags = LAGS;

autocoh (response, excitation, SAMPLES, lags);

See Also

autocorr, crosscoh, crosscorr

ck
1
n
--- aj aj k+•()

j 0=

n k– 1–

 a()
2–=

VisualDSP++ 5.0 2-43
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

autocorr

Autocorrelation

Synopsis

#include <stats.h>

float *autocorrf (float dm out[], const float dm in[],

int samples, int lags);

double *autocorr (double dm out[], const double dm in[],

int samples, int lags);

long double *autocorrd (long double dm out[],

const long double dm in[],

int samples, int lags);

Description

The autocorrelation functions perform an autocorrelation of a signal.
Autocorrelation is the cross-correlation of a signal with a copy of itself. It
provides information about the time variation of the signal. The signal to
be autocorrelated is given by the in[] input array. The number of samples
of the autocorrelation sequence to be produced is given by lags. The
length of the input sequence is given by samples. The functions return a
pointer to the out[] output data array of length lags.

Autocorrelation is used in digital signal processing applications such as
speech analysis.

 For the ADSP-21xxx SIMD processors the autocorrf function
(and autocorr, if doubles are the same size as floats) uses SIMD
by default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-44 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Algorithm

The following equation is the basis of the algorithm.

where:
a = in;
k = {0, 1, ..., m-1}
m is the number of lags
n is the size of the input vector in

Error Conditions

The autocorrelation functions do not return an error condition.

Example

#include <stats.h>

#define SAMPLES 1024

#define LAGS 16

double excitation[SAMPLES];

double response[LAGS];

int lags = LAGS;

autocorr (response, excitation, SAMPLES, lags);

See Also

autocoh, crosscoh, crosscorr

ck
1
n
--- aj

j 0=

n k– 1–

 aj k+•

=

VisualDSP++ 5.0 2-45
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

biquad

Biquad filter section

Synopsis (Scalar-Valued Version)

#include <filters.h>

float biquad (float sample,

const float pm coeffs[],

float dm state[],

int sections);

Synopsis (Vector-Valued Version)

ADSP-210xx Processors

#include <filter.h>

float *biquad_vec (const float dm input[],

float dm output[],

const float pm coeffs[],

float dm state[],

int samples,

int sections);

ADSP-21xxx SIMD Processors

#include <filter.h>

float *biquad (const float dm input[],

float dm output[],

const float pm coeffs[],

float dm state[],

int samples,

int sections);

Documented Library Functions

2-46 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Description

The biquad functions implement a cascaded biquad filter defined by the
coefficients and the number of sections that are supplied in the call to the
function.

The scalar version of biquad produces the filtered response of its input
data sample which it returns as the result of the function.

The vector versions of the biquad function generate the filtered response
of the input data input and store the result in the output vector output.
The number of input samples and the length of the output vector is speci-
fied by the argument samples.

The number of biquad sections is specified by the parameter sections,
and each biquad section is represented by five coefficients A1, A2, B0, B1,
and B2. The biquad functions assume that the value of A0 is 1.0, and A1
and A2 should be scaled accordingly. These coefficients are passed to the
biquad functions in the array coeffs which must be located in Program
Memory (PM). The definition of the coeffs array is:

float pm coeffs[5*sections];

For the scalar version of biquad the five coefficients of each section must
be stored in reverse order:

B2, B1, B0, A2, A1

For the vector versions of the biquad function, the five coefficients must
be stored in the order:

A2, A1, B2, B1, B0

 When importing coefficients from most filter design tools, the A1
and A2 coefficients should be negated.

Each filter should have its own delay line, which is represented by the
array state. The state array should be large enough for two delay

VisualDSP++ 5.0 2-47
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

elements per biquad section and hold an internal pointer that allows the
filter to be restarted.

The definition of the state is:

float dm state[2*sections + 1];

The state array should be initially cleared to zero before calling the func-
tion for the first time, and should not otherwise be modified by the user
program.

 The library function uses the architecture’s dual-data move instruc-
tion to provide simultaneous access to the filter coefficients (in PM
data memory) and the delay line. When running on an
ADSP-21367, ADSP-21368, ADSP-21369, ADSP-21371, or
ADSP-21375 processor, the filter coefficients and the delay line
must not both be allocated in external memory; otherwise, the
function can generate an incorrect set of results. This occurs
because in a dual-data move instruction, the hardware does not
support both memory accesses allocated to external memory.
Therefore, ensure that the filter coefficients or the delay line (or,
optionally, both) are allocated in internal memory when running
on one of the 213xx processors specified above.

The vector version of the biquad functions return a pointer to the output
vector; the scalar version of the function returns the filtered response of its
input sample.

Documented Library Functions

2-48 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Algorithm

The following equations are the basis of the algorithm.

where

where m = {0,1,2,...,samples-1}

The algorithm used is adapted from Digital Signal Processing, Oppenheim
and Schafer, New Jersey, Prentice Hall, 1975. For more information, see
Figure 2-1 on page 2-51.

Error Conditions

The biquad functions do not return an error condition.

H z()
B0 B1z 1– B2z 2–+ +

1 A1z 1–– A2z 2––
--=

Dm A2 Dm 2– A1 Dm 1– xm+•+•=

Ym B2 Dm 2– B1 Dm 1– B0 Dm•+•+•=

VisualDSP++ 5.0 2-49
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

Scalar-Valued

#include <filters.h>

#define NSECTIONS 4

#define NSTATE ((2*NSECTIONS) + 1)

float sample, response, state[NSTATE];

float pm coeffs[5*NSECTIONS];

int i;

for (i = 0; i < NSTATE; i++)

state[i] = 0; /* initialize state array */

response = biquad (sample, coeffs, state, NSECTIONS);

Vector-Valued

#include <filter.h>

#define NSECTIONS 4

#define NSAMPLES 64

#define NSTATE ((2*NSECTIONS) + 1)

float input[NSAMPLES];

float output[NSAMPLES];

float state[NSTATE];

float pm coeffs[5*NSECTIONS];

int i;

Documented Library Functions

2-50 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

for (i = 0; i < NSTATE; i++)

state[i] = 0; /* initialize state array */

#if defined(__SIMDSHARC__)

biquad (input, output, coeffs, state, NSAMPLES,

NSECTIONS);

#else

biquad_vec (input, output, coeffs, state,

NSAMPLES, NSECTIONS);

#endif

See Also

fir, iir

 The biquad function makes use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

VisualDSP++ 5.0 2-51
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Figure 2-1. Biquad Sections

OUTPUT

SAMPLE

Note that N = the number of biquad sections.

coeffs [4] coeffs [1]

coeffs [3] coeffs [0]

z-1

z-1

coeffs [9] coeffs [6]

coeffs [8] coeffs [5]

z-1

z-1

FIRST SECTION SECOND SECTION
coeffs [2] coeffs [7]

coeffs [K + 4] coeffs [K + 1]

coeffs [K + 3] coeffs [K]

z-1

z-1

coeffs [K + 4] coeffs [K + 1]

coeffs [K + 3] coeffs [K]

z-1

z-1

N - 1th Section Nth Section

coeffs [K + 2] coeffs [K + 2]
K = 5 × (N - 2) K = 5 × (N - 1)

Documented Library Functions

2-52 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cabs

Complex absolute value

Synopsis

#include <complex.h>

float cabsf (complex_float z);

double cabs (complex_double z);

long double cabsd (complex_long_double z);

Description

The cabs functions return the floating-point absolute value of their com-
plex input.

The absolute value of a complex number is evaluated with the following
formula.

Error Conditions

The cabs functions do not return an error condition.

Example

#include <complex.h>

complex_float cnum;

float answer;

y Re z)()2 Im z()()2+()(=

VisualDSP++ 5.0 2-53
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cnum.re = 12.0;

cnum.im = 5.0;

answer = cabsf (cnum); /* answer = 13.0 */

See Also

fabs, labs

Documented Library Functions

2-54 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cadd

Complex addition

Synopsis

#include <complex.h>

complex_float caddf (complex_float a, complex_float b);

complex_double cadd (complex_double a, complex_double b);

complex_long_double caddd (complex_long_double a,

complex_long_double b);

Description

The cadd functions add the two complex values a and b together, and
return the result.

Error Conditions

The cadd functions do not return any error conditions.

Example

#include <complex.h>

complex_double x = {9.0,16.0};

complex_double y = {1.0,-1.0};

complex_double z;

z = cadd (x,y); /* z.re = 10.0, z.im = 15.0 */

See Also

cdiv, cmlt, csub

VisualDSP++ 5.0 2-55
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cartesian

Convert Cartesian to polar notation

Synopsis

#include <complex.h>

float cartesianf (complex_float a, float *phase);

double cartesian (complex_double a, double *phase);

long double cartesiand (complex_long_double a,

long double *phase);

Description

The cartesian functions transform a complex number from Cartesian
notation to polar notation. The Cartesian number is represented by the
argument a that the function converts into a corresponding magnitude,
which it returns as the function’s result, and a phase that is returned via
the second argument phase.

The formula for converting from Cartesian to polar notation is given by:

magnitude = cabs(a)

phase = arg(a)

Error Conditions

The cartesian functions return a zero for the phase if a.re <> 0 and
a.im = 0.

Documented Library Functions

2-56 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <complex.h>

complex_float point = {-2.0, 0.0};

float phase;

float mag;

mag = cartesianf (point,&phase); /* mag = 2.0, phase = π */

See Also

arg, cabs, polar

VisualDSP++ 5.0 2-57
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cdiv

Complex division

Synopsis

#include <complex.h>

complex_float cdivf (complex_float a, complex_float b);

complex_double cdiv (complex_double a, complex_double b);

complex_long_double cdivd (complex_long_double a,

complex_long_double b);

Description

The cdiv functions compute the complex division of complex input a by
complex input b, and return the result.

Algorithm

The following equation is the basis of the algorithm.

Error Conditions

The cdiv functions set both the real and imaginary parts of the result to
Infinity if b is equal to (0.0,0.0).

Re c() Re a() Re b()• Im a() Im b()•+
Re2 b() Im2 b()+

---=

Im c() Re b() Im a()• Im b() Re a()•–
Re2 b() Im2 b()+

--=

Documented Library Functions

2-58 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <complex.h>

complex_double x = {3.0,11.0};

complex_double y = {1.0, 2.0};

complex_double z;

z = cdiv (x,y); /* z.re = 5.0, z.im = 1.0 */

See Also

cadd, cmlt, csub

VisualDSP++ 5.0 2-59
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cexp

Complex exponential

Synopsis

#include <complex.h>

complex_float cexpf (complex_float z);

complex_double cexp (complex_double z);

complex_long_double cexpd (complex_long_double z);

Description

The cexp functions compute the exponential value e to the power of the
real argument z in the complex domain. The exponential of a complex
value is evaluated with the following formula.

Re(y) = exp (Re(z)) * cos (Im(z));

Im(y) = exp (Re(z)) * sin (Im(z));

Error Conditions

For underflow errors, the cexp functions return zero.

Documented Library Functions

2-60 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <complex.h>

complex_float cnum;

complex_float answer;

cnum.re = 1.0;

cnum.im = 0.0;

answer = cexpf (cnum); /* answer = (2.7182 + 0i) */

See Also

log, pow

VisualDSP++ 5.0 2-61
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cfft

Complex radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

complex_float *cfft (complex_float dm input[],

complex_float dm temp[],

complex_float dm output[],

const complex_float pm twiddle[],

int twiddle_stride,

int n);

Description

The cfft function transforms the time domain complex input signal
sequence to the frequency domain by using the radix-2 Fast Fourier
Transform (FFT).

The size of the input array input, the output array output, and the tempo-
rary working buffer temp must be at least n, where n represents the number
of points in the FFT; n must be a power of 2 and no smaller than 8. If the
input data can be overwritten, memory can be saved by setting the pointer
of the temporary array explicitly to the input array, or to NULL. (In either
case the input array will also be used as the temporary working array.)

The minimum size of the twiddle table must be n/2. A larger twiddle table
may be used, provided that the value of the twiddle table stride argument
twiddle_stride is set appropriately. If the size of the twiddle table is x,
then twiddle_stride must be set to (2*x)/n.

If a larger twiddle table is being used, the twiddle stride must be adjusted
to be equal to the fft size of the table generated divided by the fft size of
the table being used.

Documented Library Functions

2-62 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The library function twidfft (on page 2-258) can be used to compute the
required twiddle table. The coefficients generated are positive cosine coef-
ficients for the real part and negative sine coefficients for the imaginary
part.

 For the ADSP-21xxx SIMD processors the library also contains the
cfftf function (on page 2-73), which is an optimized implementa-
tion of a complex FFT using a fast radix-2 algorithm. The cfftf
function however imposes certain memory alignment requirements
that may not be appropriate for some applications.

The function returns the address of the output array.

 For the ADSP-21xxx SIMD processors the cfft function uses
SIMD by default. Refer to “Implications of Using SIMD Mode”
on page 2-23 for more information.

Algorithm

The following equation is the basis of the algorithm.

Error Conditions

The cfft function does not return any error conditions.

X k() x n()WN

nk

n 0=

N 1–

=

VisualDSP++ 5.0 2-63
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <filter.h>

#define N_FFT 64

complex_float input[N_FFT];

complex_float output[N_FFT];

complex_float temp[N_FFT];

int twiddle_stride = 1;

complex_float pm twiddle[N_FFT/2];

/* Populate twiddle table */

twidfft(twiddle, N_FFT);

/* Compute Fast Fourier Transform */

cfft(input, temp, output, twiddle, twiddle_stride, N_FFT);

See Also

cfftf (SHARC SIMD Processors), cfftN (SHARC SIMD Processors),
fft_magnitude, ifft, rfft, twidfft

 The cfft function makes use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

Documented Library Functions

2-64 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cfft_mag (SHARC SIMD Processors)

cfft magnitude

Synopsis

#include <filter.h>

float *cfft_mag (complex_float dm input[],

float dm output[],

int fftsize);

Description

The cfft_mag function computes a normalized power spectrum from the
output signal generated by a cfft or cfftN function. The size of the signal
and the size of the power spectrum is fftsize.

The function returns a pointer to the output matrix.

 The Nyquist frequency is located at (fftsize/2) + 1.

Algorithm

The algorithm used to calculate the normalized power spectrum is:

where:
z = {0, 1, ..., fftsize-1}
a is the input vector input

magnitude z()
Re az()2 Im az()2+

fftsize
----------------------------------=

VisualDSP++ 5.0 2-65
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Error Conditions

The cfft_mag function does not return any error conditions.

Example

#include <filter.h>

#define N 64

complex_float fft_input[N];

complex_float fft_output[N];

float spectrum[N];

cfft64 (fft_input, fft_output);

cfft_mag (fft_output, spectrum, N);

See Also

cfft, cfftN (SHARC SIMD Processors), fft_magnitude, fftf_magnitude
(SHARC SIMD Processors), rfft_mag (SHARC SIMD Processors)

 By default, this function uses SIMD. Refer to “Implications of
Using SIMD Mode” on page 2-23 for more information.

Documented Library Functions

2-66 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cfftN

N-point complex radix-2 Fast Fourier Transform

Synopsis

#include <trans.h>

float *cfft65536 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft32768 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft16384 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft8192 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft4096 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft2048 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft1024 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

VisualDSP++ 5.0 2-67
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

float *cfft512 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft256 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft128 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft64 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft32 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft16 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *cfft8 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

Description

Each of these cfftN functions computes the N-point radix-2 Fast Fourier
Transform (CFFT) of its floating-point input (where N is 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 or 65536).

Documented Library Functions

2-68 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

There are fourteen distinct functions in this set. All perform the same
function with the same type and number of arguments. The only differ-
ence between them is the size of the arrays on which they operate. Call a
particular function by substituting the number of points for N, as in

cfft8 (r_inp, i_inp, r_outp, i_outp);

The input to cfftN are two floating-point arrays of N points. The array
real_input contains the real components of the complex signal, and the
array imag_input contains the imaginary components.

If there are fewer than N actual data points, you must pad the arrays with
zeros to make N samples. However, better results occur with less zero pad-
ding. The input data should be windowed (if necessary) before calling the
function, because no preprocessing is performed on the data.

If the input data can be overwritten, then the cfftN functions allow the
array real_input to share the same memory as the array real_output, and
imag_input to share the same memory as imag_output. This improves
memory usage, but at the cost of run-time performance.

The cfftN functions return a pointer to the real_output array.

 The cfftN library functions have not been optimized for SHARC
SIMD processors. Instead, applications that run on SHARC SIMD
processors should use the FFT functions that are defined in the
header file filter.h, and described under “cfftN (SHARC SIMD
Processors)” on page 2-70.

Error Conditions

The cfftN functions do not return any error conditions.

VisualDSP++ 5.0 2-69
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <trans.h>

#define N 2048

float real_input[N], imag_input[N];

float real_output[N], imag_output[N];

cfft2048 (real_input, imag_input, real_output, imag_output);

See Also

cfft, cfftN (SHARC SIMD Processors), fft_magnitude, ifftN, rfftN

 The cfftN functions make use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

Documented Library Functions

2-70 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cfftN (SHARC SIMD Processors)

N-point complex input FFT

Synopsis

#include <filter.h>

complex_float *cfft65536 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft32768 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft16384 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft8192 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft4096 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft2048 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft1024 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft512 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft256 (complex_float dm input[],

complex_float dm output[]);

VisualDSP++ 5.0 2-71
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

complex_float *cfft128 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft64 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft32 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft16 (complex_float dm input[],

complex_float dm output[]);

complex_float *cfft8 (complex_float dm input[],

complex_float dm output[]);

Description

These cfftN functions are defined in the header file filter.h. They have
been optimized to take advantage of the SIMD capabilities of the
ADSP-211xx, ADSP-212xx, ADSP-213xx, and ADSP-214xx processors.
Therefore, they are not supported by the ADSP-210xx processor family.
These FFT functions require complex arguments to ensure that the real
and imaginary parts are interleaved in memory and thus are accessible in a
single cycle using the wider data bus of the processor.

Each of these cfftN functions computes the N-point radix-2 Fast Fourier
Transform (CFFT) of its complex input (where N is 8, 16, 32, 64, 128,
256, 512, 1024, 2048, 4096, 8192, 16384, 32768, or 65536).

There are fourteen distinct functions in this set. All perform the same
function with the same type and number of arguments. The only differ-
ence between them is the size of the arrays on which they operate. Call a
particular function by substituting the number of points for N, as in
cfft8 (input, output);

Documented Library Functions

2-72 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The input to cfftN is a floating-point array of N points. If there are fewer
than N actual data points, you must pad the array with zeros to make N
samples. Better results occur with less zero padding, however. The input
data should be windowed (if necessary) before calling the function because
no preprocessing is performed on the data. Optimal memory usage can be
achieved by specifying the input array as the output array, but at the cost
of run-time performance.

The cfftN() function returns a pointer to the output array.

 The cfftN functions use the input array as an intermediate work-
space. If the input data is to be preserved it must first be copied to
a safe location before calling these functions.

Error Conditions

The cfftN functions do not return any error conditions.

Example

#include <filter.h>

#define N 2048

complex_float input[N], output[N];

cfft2048 (input, output);

See Also

cfft, cfftf (SHARC SIMD Processors), fft_magnitude, ifftN, rfftN

 By default these functions use SIMD. For more information, refer
to “Implications of Using SIMD Mode”.

VisualDSP++ 5.0 2-73
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cfftf (SHARC SIMD Processors)

Fast N-point complex radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

void cfftf (float data_real[], float data_imag[],

float temp_real[], float temp_imag[],

const float twid_real[],

const float twid_imag[],

int n);

Description

The cfftf function transforms the time domain complex input signal
sequence to the frequency domain by using the accelerated version of the
Discrete Fourier Transform known as a Fast Fourier Transform or FFT. It
decimates in frequency using an optimized radix-2 algorithm.

The array data_real contains the real part of a complex input signal, and
the array data_imag contains the imaginary part of the signal. On output,
the function overwrites the data in these arrays and stores the real part of
the FFT in data_real, and the imaginary part of the FFT in data_imag. If
the input data is to be preserved, it must first be copied to a safe location
before calling this function. The argument n represents the number of
points in the FFT; it must be a power of 2 and must be at least 64.

The cfftf function has been designed for optimal performance and
requires that the arrays data_real and data_imag are aligned on an
address boundary that is a multiple of the FFT size. For certain applica-
tions, this alignment constraint may not be appropriate; in such cases, the
application should call the cfft function instead with no loss of facility
(apart from performance).

Documented Library Functions

2-74 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The arrays temp_real and temp_imag are used as intermediate temporary
buffers and should each be of size n.

The twiddle table is passed in using the arrays twid_real and twid_imag.
The array twid_real contains the positive cosine factors, and the array
twid_imag contains the negative sine factors; each array should be of size
n/2 . The twidfftf function (on page 2-261) may be used to initialize the
twiddle table arrays.

It is recommended that the arrays containing real parts (data_real,
temp_real, and twid_real) are allocated in separate memory blocks from
the arrays containing imaginary parts (data_imag, temp_imag, and
twid_imag); otherwise, the performance of the function degrades.

Error Conditions

The cfftf function does not return an error condition.

Example

#include <filter.h>

#define FFT_SIZE 1024

#pragma align 1024

float dm input_r[FFT_SIZE];

#pragma align 1024

float pm input_i[FFT_SIZE];

float dm temp_r[FFT_SIZE];

float pm temp_i[FFT_SIZE];

float dm twid_r[FFT_SIZE/2];

float pm twid_i[FFT_SIZE/2];

twidfftf(twid_r,twid_i,FFT_SIZE);

cfftf(input_r,input_i,

VisualDSP++ 5.0 2-75
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

temp_r,temp_i,

twid_r,twid_i,FFT_SIZE);

See Also

cfft, cfftN (SHARC SIMD Processors), fftf_magnitude (SHARC SIMD
Processors), ifftf (SHARC SIMD Processors), rfftf_2 (SHARC SIMD Pro-
cessors), twidfftf (SHARC SIMD Processors)

 The cfftf function has been implemented to make highly efficient
use of the processor’s SIMD capabilities and long word addressing
mode. The function therefore imposes the following restrictions:

• All the arrays that are passed to the function must be allocated in
internal memory. The DSP run-time library does not contain a ver-
sion of the function that can be used with data in external memory.

• The function should not be used with any application that relies on
the -reserve register[, register...] switch.

For more information, refer to “Implications of Using SIMD
Mode” and “Using Data in External Memory”.

Documented Library Functions

2-76 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

circindex

Perform circular buffer operation on loop index

Synopsis

#include <processor_include.h>

int circindex(ptrdiff_t index, ptrdiff_t incr, size_t num_items);

Description

The circindex function is used within a loop in order to implement a cir-
cular buffer operation in C/C++. When optimization is enabled, the
operation is implemented using the appropriate hardware features (B reg-
isters and L registers) of the SHARC architecture. The circindex function
is used to increment or decrement an index in a loop and this index
should be used to access memory locations.

The argument index represents the index variable, incr represents the
value by which the index should be incremented on each iteration, and
num_items represents the size of the circular buffer.

Error Conditions

The circindex function does not return an error code.

Example

#include <processor_include.h>

#include <stdio.h>

int x[10] = {1,2,3,4,5,6,7,8,9,10};

int y[10] = {2,3,4,5,6,7,8,9,10,11};

VisualDSP++ 5.0 2-77
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

int dot (const int *a, const int *b)

{

int i, ci = 0;

long s = 0;

/* This will calculate the product for the first 5 elements

* in each array only. As the loop count is 10, each sum will

* be calculated twice.

* Note that each array is indexed using 'ci'. */

for (i = 0; i < 10; i++) {

s += a[ci] * b[ci];

ci = circindex(ci, 1, 5); // Increment the index

}

return s;

}

void

main()

{

int result;

result = dot(x,y);

printf("Result is %d\n", result); // Result is 140

}

See Also

circptr

Documented Library Functions

2-78 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

circptr

Perform circular buffer operation on a pointer

Synopsis

#include <processor_include.h>

void* circptr(const void *ptr, ptrdiff_t incr,

 const void *base, size_t buflen);

Description

The circptr function is used within a loop in order to implement a circu-
lar buffer operation in C/C++. When optimization is enabled, the
operation is implemented using the appropriate hardware features (B reg-
isters and L registers) of the SHARC processor architecture. The circptr
function is used to increment or decrement a pointer variable in a loop.

 When used with a PM qualified circular buffer, the result of the cir-
cular buffer function should be cast to (void pm *).

The argument ptr represents the pointer that is being used for the circular
buffer, incr represents the value by which the circular buffer should be
incremented, base represents the array on which the circular buffer oper-
ates, and buflen represents the size of the circular buffer.

Error Conditions

The circptr function does not return an error code.

Example

#include <processor_include.h>

#include <stdio.h>

int x[10] = {1,2,3,4,5,6,7,8,9,10};

int pm y[10] = {2,3,4,5,6,7,8,9,10,11};

VisualDSP++ 5.0 2-79
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

int dot (const int *a, const int pm *b)

{

int i;

long s = 0;

const int *cba;

const int pm *cbb;

/* This will calculate the product for the first 5 elements

in each array only. As the loop count is 10,each sum will

be calculated twice. */

cba = a;

cbb = b;

for (i = 0; i < 10; i++) {

s += *cba * *cbb;

cba = circptr(cba, 1, a, 5); // Increment cba

cbb = (void pm *)circptr(cbb, 1, b, 5); // Increment cbb

}

return s;

}

void

main()

{

int result;

result = dot(x,y);

printf("Result is %d\n", result); // Result is 140

}

See Also

circindex

Documented Library Functions

2-80 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cmatmadd

Complex matrix + matrix addition

Synopsis

#include <cmatrix.h>

complex_float *cmatmaddf (complex_float dm *output,

const complex_float dm *a,

const complex_float dm *b,

int rows, int cols);

complex_double *cmatmadd (complex_double dm *output,

const complex_double dm *a,

const complex_double dm *b,

int rows, int cols);

complex_long_double *cmatmaddd (complex_long_double dm *output,

const complex_long_double dm *a,

const complex_long_double dm *b,

int rows, int cols);

Description

The cmatmadd functions perform a complex matrix addition of the input
matrix a[][] with input complex matrix b[][], and store the result in the
matrix output[][]. The dimensions of these matrices are a[rows][cols],
b[rows][cols], and output[rows][cols]. The functions return a pointer
to the output matrix.

Error Conditions

The cmatmadd functions do not return an error condition.

VisualDSP++ 5.0 2-81
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <cmatrix.h>

#define ROWS 4

#define COLS 8

complex_double a[ROWS][COLS], *a_p = (complex_double *) (&a);

complex_double b[ROWS][COLS], *b_p = (complex_double *) (&b);

complex_double c[ROWS][COLS], *res_p = (complex_double *) (&c);

cmatmadd (res_p, a_p, b_p, ROWS, COLS);

See Also

cmatmmlt, cmatmsub, cmatsadd, matmadd

 For the ADSP-21xxx SIMD processors (and cmatmadd, if doubles
are the same size as floats) uses SIMD; refer to “Implications of
Using SIMD Mode” on page 2-23 for more information.

Documented Library Functions

2-82 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cmatmmlt

Complex matrix * matrix multiplication

Synopsis

#include <cmatrix.h>

complex_float *cmatmmltf (complex_float dm *output,

const complex_float dm *a,

const complex_float dm *b,

int a_rows, int a_cols, int b_cols);

complex_double *cmatmmlt (complex_double dm *output,

const complex_double dm *a,

const complex_double dm *b,

int a_rows, int a_cols, int b_cols);

complex_long_double *cmatmmltd (complex_long_double dm *output,

const complex_long_double dm *a,

const complex_long_double dm *b,

int a_rows, int a_cols, int b_cols);

Description

The cmatmmlt functions perform a complex matrix multiplication of the
input matrices a[][] and b[][], and return the result in the matrix out-
put[][]. The dimensions of these matrices are a[a_rows][a_cols],
b[a_cols][b_cols], and output[a_rows][b_cols]. The functions return a
pointer to the output matrix.

VisualDSP++ 5.0 2-83
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Algorithm

Complex matrix multiplication is defined by the following algorithm:

where

 i = {0, 1, 2, ..., a_rows-1}, j = {0, 1, 2, ..., b_cols-1}

Error Conditions

The cmatmmlt functions do not return an error condition.

Example

#include <cmatrix.h>

#define ROWS_1 4

#define COLS_1 8

#define COLS_2 2

complex_double a[ROWS_1][COLS_1], *a_p = (complex_double *) (&a);

complex_double b[COLS_1][COLS_2], *b_p = (complex_double *) (&b);

complex_double c[ROWS_1][COLS_2], *r_p = (complex_double *) (&c);

cmatmmlt (r_p, a_p, b_p, ROWS_1, COLS_1, COLS_2);

Re ci j,() Re ai l,()() Re bl j,()()• Im ai l,() Im bl j,()•–
l 0=

a_cols 1–

=

Im ci j,() Re ai l,()() Im bl j,()()• Im ai l,() Re bl j,()•+
l 0=

a_cols 1–

=

Documented Library Functions

2-84 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

cmatmadd, cmatmsub, cmatsmlt, matmmlt

 The cmatmmlt functions make use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

VisualDSP++ 5.0 2-85
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cmatmsub

Complex matrix – matrix subtraction

Synopsis

#include <cmatrix.h>

complex_float *cmatmsubf (complex_float dm *output,

const complex_float dm *a,

const complex_float dm *b,

int rows, int cols);

complex_double *cmatmsub (complex_double dm *output,

const complex_double dm *a,

const complex_double dm *b,

int rows, int cols);

complex_long_double *cmatmsubd (complex_long_double dm *output,

const complex_long_double dm *a,

const complex_long_double dm *b,

int rows, int cols);

Description

The cmatmsub functions perform a complex matrix subtraction between
the input matrices a[][] and b[][], and return the result in the matrix
output[][]. The dimensions of these matrices are a[rows][cols],
b[rows][cols], and output[rows][cols]. The functions return a pointer
to the output matrix.

Error Conditions

The cmatmsub functions do not return an error condition.

Documented Library Functions

2-86 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <cmatrix.h>

#define ROWS 4

#define COLS 8

complex_double a[ROWS][COLS], *a_p = (complex_double *) (&a);

complex_double b[ROWS][COLS], *b_p = (complex_double *) (&b);

complex_double c[ROWS][COLS], *res_p = (complex_double *) (&c);

cmatmsub (res_p, a_p, b_p, ROWS, COLS);

See Also

cmatmadd, cmatmmlt, cmatssub, matmsub

 For the ADSP-21xxx SIMD processors the cmatmsubf function
(and cmatmsub, if doubles are the same size as floats) uses SIMD;
refer to “Implications of Using SIMD Mode” on page 2-23 for
more information.

VisualDSP++ 5.0 2-87
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cmatsadd

Complex matrix + scalar addition

Synopsis

#include <cmatrix.h>

complex_float *cmatsaddf (complex_float dm *output,

const complex_float dm *a,

complex_float scalar,

int rows, int cols);

complex_double *cmatsadd (complex_double dm *output,

const complex_double dm *a,

complex_double scalar,

int rows, int cols);

complex_long_double *cmatsaddd (complex_long_double dm *output,

const complex_long_double dm *a,

complex_long_double scalar,

int rows, int cols);

Description

The cmatsadd functions add a complex scalar to each element of the com-
plex input matrix a[][] and return the result in the matrix output[][].
The dimensions of these matrices are a[rows][cols] and
output[rows][cols]. The functions return a pointer to the output matrix.

Error Conditions

The cmatsadd functions do not return an error condition.

Documented Library Functions

2-88 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <cmatrix.h>

#define ROWS 4

#define COLS 8

complex_double a[ROWS][COLS], *a_p = (complex_double *) (&a);

complex_double c[ROWS][COLS], *res_p = (complex_double *) (&c);

complex_double z;

cmatsadd (res_p, a_p, z, ROWS, COLS);

See Also

cmatsmlt, cmatssub, cmatmadd, matsadd

 For the ADSP-21xxx SIMD processors the cmatsaddf function
(and cmatsadd, if doubles are the same size as floats) uses SIMD;
refer to “Implications of Using SIMD Mode” on page 2-23 for
more information.

VisualDSP++ 5.0 2-89
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cmatsmlt

Complex matrix * scalar multiplication

Synopsis

#include <cmatrix.h>

complex_float *cmatsmltf (complex_float dm *output,

const complex_float dm *a,

complex_float scalar

int rows, int cols);

complex_double *cmatsmlt (complex_double dm *output,

const complex_double dm *a,

complex_double scalar,

int rows, int cols);

complex_long_double *cmatsmltd (complex_long_double dm *output,

const complex_long_double dm *a,

complex_long_double scalar,

int rows, int cols);

Description

The cmatsmlt functions multiply each element of the complex input
matrix a[][] with a complex scalar, and return the result in the matrix
output[][]. The dimensions of these matrices are a[rows][cols] and
output[rows][cols]. The functions return a pointer to the output matrix.

Documented Library Functions

2-90 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Algorithm

Complex matrix multiplication is defined by the following algorithm:

where

 i = {0, 1, 2, ..., rows-1}, j = {0, 1, 2, ..., cols-1}

Error Conditions

The cmatsmlt functions do not return an error condition.

Example

#include <cmatrix.h>

#define ROWS 4

#define COLS 8

complex_double a[ROWS][COLS], *a_p = (complex_double *) (&a);

complex_double c[ROWS][COLS], *res_p = (complex_double *) (&c);

complex_double z;

cmatsmlt (res_p, a_p, z, ROWS, COLS);

See Also

cmatsadd, cmatssub, cmatmmlt, matsmlt

Re ci j,() Re ai k,()() Re bk j,()()• Im ai k,() Im bk j,()•–
k 0=

a_cols 1–

=

Im ci j,() Re ai k,()() Im bk j,()()• Im ai k,() Re bk j,()•+
k 0=

a_cols 1–

=

VisualDSP++ 5.0 2-91
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cmatssub

Complex matrix – scalar subtraction

Synopsis

#include <cmatrix.h>

complex_float *cmatssubf (complex_float dm *output,

const complex_float dm *a,

complex_float scalar,

int rows, int cols);

complex_double *cmatssub (complex_double dm *output,

const complex_double dm *a,

complex_double scalar,

int rows, int cols);

complex_long_double *cmatssubd (complex_long_double dm *output,

const complex_long_double dm *a,

complex_long_double scalar,

int rows, int cols);

Description

The cmatssub functions subtract a complex scalar from each element of
the complex input matrix a[][] and return the result in the matrix out-
put[][]. The dimensions of these matrices are a[rows][cols] and
output[rows][cols]. The functions return a pointer to the output matrix.

Error Conditions

The cmatssub functions do not return an error condition.

Documented Library Functions

2-92 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <cmatrix.h>

#define ROWS 4

#define COLS 8

complex_double a[ROWS][COLS], *a_p = (complex_double *) (&a);

complex_double c[ROWS][COLS], *res_p = (complex_double *) (&c);

complex_double z;

cmatssub (res_p, a_p, z, ROWS, COLS);

See Also

cmatsadd, cmatsmlt, cmatmsub, matssub

 For the ADSP-21xxx SIMD processors the cmatssubf function
(and cmatssub, if doubles are the same size as floats) uses SIMD;
refer to “Implications of Using SIMD Mode” on page 2-23 for
more information.

VisualDSP++ 5.0 2-93
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cmlt

Complex multiplication

Synopsis

#include <complex.h>

complex_float cmltf (complex_float a, complex_float b);

complex_double cmlt (complex_double a, complex_double b);

complex_long_double cmltd (complex_long_double a,

complex_long_double b);

Description

The cmlt functions compute the complex multiplication of the complex
numbers a and b, and return the result.

Error Conditions

The cmlt functions do not return any error conditions.

Example

#include <complex.h>

complex_float x = {3.0,11.0};

complex_float y = {1.0, 2.0};

complex_float z;

z = cmltf(x,y); /* z.re = -19.0, z.im = 17.0 */

See Also

cadd, cdiv, csub

Documented Library Functions

2-94 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

conj

Complex conjugate

Synopsis

#include <complex.h>

complex_float conjf (complex_float a);

complex_double conj (complex_double a);

complex_long_double conjd (complex_long_double a);

Description

The complex conjugate functions conjugate the complex input a, and
return the result.

Error Conditions

The complex conjugate functions do not return any error conditions.

Example

#include <complex.h>

complex_double x = {2.0,8.0};

complex_double z;

z = conj(x); /* z = (2.0,-8.0) */

See Also

No related function.

VisualDSP++ 5.0 2-95
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

convolve

Convolution

Synopsis

#include <filter.h>

float *convolve (const float a[], int asize,

 const float b[], int bsize, float output[]);

Description

The convolution function calculates the convolution of the input vectors
a[] and b[] , and returns the result in the vector output[]. The lengths of
these vectors are a[asize], b[bsize], and output[asize+bsize-1].

The convolve function returns a pointer to the output vector.

Algorithm

Convolution of two vectors is defined as:

where

k = {0, 1, ..., asize+bsize-2}
m = max(0, k+1-bsize)
n = min(k, asize-1)

Error Conditions

The convolution function does not return an error condition.

ck aj
j m=

n

 b k j–()•=

Documented Library Functions

2-96 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <filter.h>

float input[81];

float response[31];

float output[81 + 31 –1];

convolve(input,81,response,31,output);

See Also

crosscorr

 The convolve function makes use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

VisualDSP++ 5.0 2-97
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

copysign

Copy the sign of the floating-point operand.

Synopsis

#include <math.h>

float copysignf (float x, float y);

double copysign (double x, double y);

long double copysignd (long double x, long double y);

Description

The copysign functions copy the sign of the second argument y to the
first argument x without changing its exponent or mantissa.

The copysignf function is a built-in function which is implemented with
an Fn=Fx COPYSIGN Fy instruction. The copysign function is compiled as
a built-in function if double is the same size as float.

Error Conditions

The copysign functions do not return an error code.

Example

#include <math.h>

double x;

float y;

x = copysign (0.5, -10.0); /* x = -0.5 */

y = copysignf (-10.0, 0.5f); /* y = 10.0 */

See Also

No related function.

Documented Library Functions

2-98 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

cot

Cotangent

Synopsis

#include <math.h>

float cotf (float x);

double cot (double x);

long double cotd (long double x);

Description

The cotangent functions return the cotangent of their argument. The
input is interpreted as radians.

Error Conditions

The input argument x for cotf must be in the domain [-1.647e6,
1.647e6] and the input argument for cotd must be in the domain
[-4.21657e8, 4.21657e8]. The functions return zero if x is outside their
domain.

Example

#include <math.h>

#define PI 3.141592653589793

double d;

float r;

d = cot (-PI/4.0); /* d = -1.0 */
r = cotf(PI/4.0F); /* r = 1.0 */

VisualDSP++ 5.0 2-99
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

tan

Documented Library Functions

2-100 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

crosscoh

Cross-coherence

Synopsis

#include <stats.h>

float *crosscohf (float dm out[],

const float dm x[], const float dm y[],

int samples, int lags);

double *crosscoh (double dm out[],

const double dm x[], const double dm y[],

int samples, int lags);

long double *crosscohd (long double dm out[],

const long double dm x[],

const long double dm y[],

int samples, int lags);

Description

The cross-coherence functions compute the cross-coherence of two float-
ing-point inputs, x[] and y[]. The cross-coherence is the cross-correlation
minus the product of the mean of x and the mean of y. The length of the
input arrays is given by samples. The functions return a pointer to the
output array out[] of length lags.

VisualDSP++ 5.0 2-101
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

where:
k = {0, 1, ..., lags-1}
a = x
b = y
c = coherence
a is the mean value of input vector a
b is the mean value of input vector b

Error Conditions

The cross-coherence functions do not return an error condition.

Example

#include <stats.h>

#define SAMPLES 1024

#define LAGS 16

double excitation[SAMPLES], y[SAMPLES];

double response[LAGS];

int lags = LAGS;

crosscoh (response, excitation, y, SAMPLES, lags);

ck
1
n
--- aj bj k+•()

j 0=

n k– 1–

 a b•()–=

Documented Library Functions

2-102 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

autocoh, autocorr, crosscorr

 For the ADSP-21xxx SIMD processors the crosscohf function
(and crosscoh, if doubles are the same size as floats) uses SIMD;
refer to “Implications of Using SIMD Mode” on page 2-23 for
more information.

VisualDSP++ 5.0 2-103
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

crosscorr

Cross-correlation

Synopsis

#include <stats.h>

float *crosscorrf (float dm out[],

 const float dm x[], const float dm y[],

 int samples, int lags);

double *crosscorr (double dm out[],

const double dm x[], const double dm y[],

int samples, int lags);

long double *crosscorrd (long double dm out[],

const long double dm x[],

const long double dm y[],

int samples, int lags);

Description

The cross-correlation functions perform a cross-correlation between two
signals. The cross-correlation is the sum of the scalar products of the sig-
nals in which the signals are displaced in time with respect to one another.
The signals to be correlated are given by the input arrays x[] and y[]. The
length of the input arrays is given by samples. The functions return a
pointer to the output data array out[] of length lags.

Cross-correlation is used in signal processing applications such as speech
analysis.

Documented Library Functions

2-104 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Algorithm

The following equation is the basis of the algorithm.

where:
k = {0, 1, ..., lags-1}
a = x
b = y
n = samples

Error Conditions

The cross-correlation functions do not return an error condition.

Example

#include <stats.h>

#define SAMPLES 1024

#define LAGS 16

double excitation[SAMPLES], y[SAMPLES];

double response[LAGS];

int lags = LAGS;

crosscorr (response, excitation, y, SAMPLES, lags);

ck
1
n
--- aj bj k+•

j 0=

n k– 1–

•=

VisualDSP++ 5.0 2-105
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

autocoh, autocorr, crosscoh

 For the ADSP-21xxx SIMD processors the crosscorrf function
(and crosscorr, if doubles are the same size as floats) uses SIMD;
refer to “Implications of Using SIMD Mode” on page 2-23 for
more information.

Documented Library Functions

2-106 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

csub

Complex subtraction

Synopsis

#include <complex.h>

complex_float csubf (complex_float a, complex_float b);

complex_double csub (complex_double a, complex_double b);

complex_long_double csubd (complex_long_double a,

complex_long_double b);

Description

The csub functions subtract the two complex values a and b, and return
the result.

Error Conditions

The csub functions do not return any error conditions.

Example

#include <complex.h>

complex_float x = {9.0,16.0};

complex_float y = {1.0,-1.0};

complex_float z;

z = csubf(x,y); /* z.re = 8.0, z.im = 17.0 */

See Also

cadd, cdiv, cmlt

VisualDSP++ 5.0 2-107
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cvecdot

Complex vector dot product

Synopsis

#include <cvector.h>

complex_float cvecdotf (const complex_float dm a[],

const complex_float dm b[], int samples);

complex_double cvecdot (const complex_double dm a[],

const complex_double dm b[], int samples);

complex_long_double cvecdotd (const complex_long_double dm a[],

const complex_long_double dm b[],

int samples);

Description

The cvecdot functions compute the complex dot product of the complex
vectors a[] and b[], which are samples in size. The scalar result is
returned by the function.

Algorithm

The algorithm for a complex dot product is given by:

Im ci() Re ai() Im bi()() Im ai() Re bi()•+•()
l 0=

n 1–

=

Documented Library Functions

2-108 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

where:

i = {0, 1 ,2, ..., samples-1}

Error Conditions

The cvecdot functions do not return an error condition.

Example

#include <cvector.h>

#define N 100

complex_float x[N], y[N];

complex_float answer;

answer = cvecdotf (x, y, N);

See Also

vecdot

Re ci() Re ai() Re bi()() Im ai() Im bi()•–•()
l 0=

n 1–

=

VisualDSP++ 5.0 2-109
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cvecsadd

Complex vector + scalar addition

Synopsis

#include <cvector.h>

complex_float *cvecsaddf (const complex_float dm a[],

complex_float scalar,

complex_float dm output[], int samples);

complex_double *cvecsadd (const complex_double dm a[],

complex_double scalar,

complex_double dm output[], int

samples);

complex_long_double *cvecsaddd (const complex_long_double dm a[],

complex_long_double scalar,

complex_long_double dm output[],

int samples);

Description

The cvecsadd functions compute the sum of each element of the complex
vector a[], added to the complex scalar. Both the input and output vec-
tors are samples in size. The functions return a pointer to the output
vector.

Error Conditions

The cvecsadd functions do not return an error condition.

Documented Library Functions

2-110 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <cvector.h>

#define N 100

complex_float input[N], result[N];

complex_float x;

cvecsaddf (input, x, result, N);

See Also

cvecsmlt, cvecssub, cvecvadd, vecsadd

 For the ADSP-21xxx SIMD processors the cvecsaddf function
(and cvecsadd, if doubles are the same size as floats) uses SIMD
by default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

VisualDSP++ 5.0 2-111
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cvecsmlt

Complex vector * scalar multiplication

Synopsis

#include <cvector.h>

complex_float *cvecsmltf (const complex_float dm a[],

complex_float scalar,

complex_float dm output[], int samples);

complex_double *cvecsmlt (const complex_double dm a[],

complex_double scalar,

complex_double dm output[], int

samples);

complex_long_double *cvecsmltd (const complex_long_double dm a[],

complex_long_double scalar,

complex_long_double dm output[],

int samples);

Description

The cvecsmlt functions compute the product of each element of the com-
plex vector a[], multiplied by the complex scalar. Both the input and
output vectors are samples in size. The functions return a pointer to the
output vector.

Complex vector by scalar multiplication is given by the formula:

Re(ci) = Re(ai)*Re(scalar) – Im(ai)*Im(scalar)

Im(ci) = Re(ai)*Im(scalar) + Im(ai)*Re(scalar)

where:i={0,1,2,...,samples-1}

Documented Library Functions

2-112 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The cvecsmlt functions do not return an error condition.

Example

#include <cvector.h>

#define N 100

complex_float input[N], result[N];

complex_float x;

cvecsmltf (input, x, result, N);

See Also

cvecsadd, cvecssub, cvecvmlt, vecsmlt

VisualDSP++ 5.0 2-113
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cvecssub

Complex vector – scalar subtraction

Synopsis

#include <cvector.h>

complex_float *cvecssubf (const complex_float dm a[],

complex_float scalar,

complex_float dm output[], int samples);

complex_double *cvecssub (const complex_double dm a[],

complex_double scalar,

complex_double dm output[], int

samples);

complex_long_double *cvecssubd (const complex_long_double dm a[],

complex_long_double scalar,

complex_long_double dm output[],

int samples);

Description

The cvecssub functions compute the difference of each element of the
complex vector a[], minus the complex scalar. Both the input and output
vectors are samples in size. The functions return a pointer to the output
vector.

Error Conditions

The cvecssub functions do not return an error condition.

Documented Library Functions

2-114 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <cvector.h>

#define N 100

complex_float input[N], result[N];

complex_float x;

cvecssubf (input, x, result, N);

See Also

cvecsadd, cvecsmlt, cvecvsub, vecssub

 For the ADSP-21xxx SIMD processors the cvecssubf function
(and cvecssub, if doubles are the same size as floats) uses SIMD
by default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

VisualDSP++ 5.0 2-115
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cvecvadd

Complex vector + vector addition

Synopsis

#include <cvector.h>

complex_float *cvecvaddf (const complex_float dm a[],

const complex_float dm b[],

complex_float dm output[], int samples);

complex_double *cvecvadd (const complex_double dm a[],

const complex_double dm b[],

complex_double dm output[], int

samples);

complex_long_double *cvecvaddd (const complex_long_double dm a[],

const complex_long_double dm b[],

complex_long_double dm output[],

int samples);

Description

The cvecvadd functions compute the sum of each of the elements of the
complex vectors a[] and b[], and store the result in the output vector. All
three vectors are samples in size. The functions return a pointer to the
output vector.

Error Conditions

The cvecvadd functions do not return an error condition.

Documented Library Functions

2-116 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <cvector.h>

#define N 100

complex_float input_1[N];

complex_float input_2[N], result[N];

cvecvaddf (input_1, input_2, result, N);

See Also

cvecsadd, cvecvmlt, cvecvsub, vecvadd

 For the ADSP-21xxx SIMD processors the cvecvaddf function
(and cvecvadd, if doubles are the same size as floats) uses SIMD
by default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

VisualDSP++ 5.0 2-117
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cvecvmlt

Complex vector * vector multiply

Synopsis

#include <cvector.h>

complex_float *cvecvmltf (const complex_float dm a[],

const complex_float dm b[],

complex_float dm output[], int samples);

complex_double *cvecvmlt (const complex_double dm a[],

const complex_double dm b[],

complex_double dm output[], int

samples);

complex_long_double *cvecvmltd (const complex_long_double dm a[],

const complex_long_double dm b[],

complex_long_double dm output[],

int samples);

Description

The cvecvmlt functions compute the product of each of the elements of
the complex vectors a[] and b[], and store the result in the output vector.
All three vectors are samples in size. The functions return a pointer to the
output vector.

Complex vector multiplication is given by the formula:

Re(ci) = Re(ai)*Re(bi) – Im(ai)*Im(bi)

Im(ci) = Re(ai)*Im(bi) + Im(ai)*Re(bi)

where: i = {0, 1, 2, ..., samples-1}

Documented Library Functions

2-118 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The cvecvmlt functions do not return an error condition.

Example

#include <cvector.h>

#define N 100

complex_float input_1[N];

complex_float input_2[N], result[N];

cvecvmltf (input_1, input_2, result, N);

See Also

cvecsmlt, cvecvadd, cvecvsub, vecvmlt

 For the ADSP-21xxx SIMD processors restrictions apply to this
function if the data is placed in external memory. See “Using Data
in External Memory” on page 2-24 for more information.

VisualDSP++ 5.0 2-119
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

cvecvsub

Complex vector – vector subtraction

Synopsis

#include <cvector.h>

complex_float *cvecvsubf (const complex_float dm a[],

const complex_float dm b[],

complex_float dm output[], int samples);

complex_double *cvecvsub (const complex_double dm a[],

const complex_double dm b[],

complex_double dm output[], int

samples);

complex_long_double *cvecvsubd (const complex_long_double dm a[],

const complex_long_double dm b[],

complex_long_double dm output[],

int samples);

Description

The cvecvsub functions compute the difference of each of the elements of
the complex vectors a[] and b[], and store the result in the output vector.
All three vectors are samples in size. The functions return a pointer to the
output vector.

Error Conditions

The cvecvsub functions do not return an error condition.

Documented Library Functions

2-120 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <cvector.h>

#define N 100

complex_float input_1[N];

complex_float input_2[N], result[N];

cvecvsubf (input_1, input_2, result, N);

See Also

cvecssub, cvecvadd, cvecvmlt,vecvsub

 For the ADSP-21xxx SIMD processors the cvecvsubf function
(and cvecvsub, if doubles are the same size as floats) uses SIMD
by default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

VisualDSP++ 5.0 2-121
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

dma_disable

Clears the channel’s DMA enable bit

Synopsis

#include <dma.h>

static int dma_disable (int dma_channel);

Description

The dma_disable function clears the channel’s DMA enable (DEN) bit.

Error Conditions

If the channel is invalid, dma_status returns -1.

See Also

dma_status, lavg

Documented Library Functions

2-122 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

dma_enable

Sets the channel’s DMA enable bit

Synopsis

#include <dma.h>

static int dma_enable (int dma_channel);

Description

The dma_enable function sets the channel’s DMA enable (DEN) bit.

Error Conditions

If the channel is invalid, dma_status returns -1.

See Also

dma_disable, dma_setup, dma_status

VisualDSP++ 5.0 2-123
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

dma_setup

Sets up the DMA channel

Synopsis

#include <dma.h>

static int dma_setup(int dma_channel, struct __dma_control_word

dma_control_word);

Description

The dma_setup function sets up the DMA channel with the values in the
DMA control word.

Error Conditions

If the channel is invalid, dma_status returns -1.

See Also

dma_enable, dma_disable, dma_status

Documented Library Functions

2-124 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

dma_status

Returns the status of the DMA channel

Synopsis

#include <dma.h>

static int dma_status (int dma_channel);

Description

The dma_status function returns the status of the DMA channel.

Error Conditions

If the channel is invalid, dma_status returns -1.

See Also

dma_enable, dma_disable, dma_setup

VisualDSP++ 5.0 2-125
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

favg

Mean of two values

Synopsis

#include <math.h>

float favgf (float x, float y);

double favg (double x, double y);

long double favgd (long double x, long double y);

Description

The favg functions return the mean of their two arguments.

The favgf function is a built-in function which is implemented with an
Fn=(Fx+Fy)/2 instruction. The favg function is compiled as a built-in
function if double is the same size as float.

Error Conditions

The favg functions do not return an error code.

Example

#include <math.h>

float x;

x = favgf (10.0f, 8.0f); /* returns 9.0f */

See Also

avg, lavg

Documented Library Functions

2-126 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fclip

Clip

Synopsis

#include <math.h>

float fclipf (float x, float y);

double fclip (double x, double y);

long double fclipd (long double x, long double y);

Description

The fclip functions return the first argument if its absolute value is less
than the absolute value of the second argument, otherwise they return the
absolute value of the second argument if the first is positive, or minus the
absolute value if the first argument is negative.

The fclipf function is a built-in function which is implemented with an
Fn=CLIP Fx BY Fy instruction. The fclip function is compiled as a
built-in function if double is the same size as float.

Error Conditions

The fclip functions do not return an error code.

Example

#include <math.h>

float y;

y = fclipf (5.1f, 8.0f); /* returns 5.1f */

See Also

clip, lclip

VisualDSP++ 5.0 2-127
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

fft_magnitude

FFT magnitude

Synopsis

#include <filter.h>

float *fft_magnitude (complex_float input[],

float output[],

int fftsize,

int mode);

Description

The fft_magnitude function computes a normalized power spectrum
from the output signal generated by an FFT function; the mode parameter
is used to specify which FFT function has been used to generate the input
array.

If the input array has been generated by the cfft function, the mode must
be set to 0. In this case the input array and the power spectrum are of size
fftsize.

If the input array has been generated by the rfft function, mode must be
set to 2. In this case the input array and the power spectrum are of size
((fftsize / 2) + 1).

For SHARC SIMD processors, the fft_magnitude function may also be
used to calculate the power spectrum of an FFT that was generated by the
cfftN and rfftN functions. If the input array has been generated by the
rfftN function, then mode must be set to 1, and the size of the input array
and the power spectrum will be (fftsize / 2). If the input array was gen-
erated by the cfftN function, then the mode must be set to 0 and the size
of the input array and the power spectrum will be fftsize (as for the cfft
function above).

Documented Library Functions

2-128 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The fft_magnitude function returns a pointer to the output.

 For the ADSP-21xxx SIMD processors the fft_magnitude function
provides the same functionality as the cfft_mag and rfft_mag
function does. In addition, it provides a real FFT power spectrum
that includes the Nyquist frequency (only in conjunction with the
rfft function).

For the ADSP-21xxx SIMD processors the fft_magnitude func-
tion uses SIMD by default. Refer to “Implications of Using SIMD
Mode” on page 2-23 for more information.

Error Conditions

The fft_magnitude function does not return any error conditions.

Algorithm (ADSP-210xx Processor)

For mode 0 (cfft generated input):

For mode 2 (rfft generated input):

magnitude z()
Re az()2 Im az()2+

fftsize
----------------------------------=

magnitude z() 2
Re az()2 Im az()2+

fftsize
----------------------------------×=

VisualDSP++ 5.0 2-129
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Algorithm (ADSP-21xxx SIMD Processors)

For mode 0 (cfft and cfftN generated input):

For mode 1 and 2 (rfftN and rfft generated input):

Example

#include <filter.h>

#define N_FFT 64

#define N_RFFT_OUT ((N_FFT / 2) + 1)

/* Data for real FFT */

float rfft_input[N_FFT];

complex_float rfft_output[N_RFFT_OUT];

complex_float rfftN_output[N_RFFT_OUT - 1];

/* Data for complex FFT */

complex_float cfft_input[N_FFT];

complex_float cfft_output[N_RFFT_OUT];

complex_float pm twiddle[N_FFT / 2];

complex_float temp[N_FFT];

float *tmp = (float*)temp;

magnitude z()
Re az()2 Im az()2+

fftsize
----------------------------------=

magnitude z() 2
Re az()2 Im az()2+

fftsize
----------------------------------×=

Documented Library Functions

2-130 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

/* Power Spectrums */

float rspectrum[N_RFFT_OUT];

float rNspectrum[N_RFFT_OUT - 1];

float cspectrum[N_FFT];

/* Initialize */

twidfft(twiddle, N_FFT);

/* Power spectrum using rfft */

rfft (rfft_input, tmp, rfft_output, twiddle, 1, N_FFT);

fft_magnitude (rfft_output, rspectrum, N_FFT, 2);

#if defined(__SIMDSHARC__)

rfft64 (rfft_input, rfftN_output);

fft_magnitude (rfftN_output, rNspectrum, N_FFT, 1);

#endif

/* Power spectrum using cfft */

cfft (cfft_input, temp, cfft_output, twiddle, 1, N_FFT);

fft_magnitude (cfft_output, cspectrum, N_FFT, 0);

See Also

cfft, cfftN (SHARC SIMD Processors), cfft_mag (SHARC SIMD Proces-
sors), fftf_magnitude (SHARC SIMD Processors), rfft, rfft_mag (SHARC
SIMD Processors), rfftN (SHARC SIMD Processors)

VisualDSP++ 5.0 2-131
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

fftf_magnitude (SHARC SIMD Processors)

fftf magnitude

Synopsis

#include <filter.h>

float *fftf_magnitude (float input_real[],

float input_imag[],

float output[],

int fftsize,

int mode);

Description

The fftf_magnitude function computes a normalized power spectrum
from the output signal generated by one of the accelerated FFT functions
cfftf or rfftf_2.

The mode argument is used to specify which FFT function has been used.

If the input array has been generated by the cfftf function, mode must be
set to 0. In this case the input array and the power spectrum are of size
fftsize.

If the input array has been generated by the rfftf_2 function, mode must
be set to 2. In this case the input array and the power spectrum are of size
((fftsize / 2) + 1).

The fftf_magnitude function returns a pointer to the output.

Documented Library Functions

2-132 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Algorithm

For mode 0 (cfftf generated input):

For mode 2 (rfftf_2 generated input):

Error Conditions

The fftf_magnitude function does not return any error conditions.

Example

#include <filter.h>

#define N_FFT 64

#define N_RFFT_OUT ((N_FFT / 2) + 1)

float pm twiddle_re[N_FFT/2];

float dm twiddle_im[N_FFT/2];

#pragma align 64

float dm rfft1_re[N_FFT];

float dm rfft1_im[N_FFT];

#pragma align 64

float pm rfft2_re[N_FFT];

float pm rfft2_im[N_FFT];

magnitude z()
Re z()2 Im z()2+

fftsize
-------------------------------=

magnitude z() 2 Re z()2 Im z()2+
fftsize

-------------------------------×=

VisualDSP++ 5.0 2-133
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

#pragma align 64

float dm data_re[N_FFT];

float pm data_im[N_FFT];

#pragma align 64

float dm temp_re[N_FFT];

float pm temp_im[N_FFT];

float rspectrum_1[N_RFFT_OUT];

float rspectrum_2[N_RFFT_OUT];

float cspectrum[N_FFT];

twidfftf(twiddle_re, twiddle_im, N_FFT);

rfftf_2(rfft1_re, rfft1_im,

rfft2_re, rfft2_im, twiddle_re, twiddle_im, N_FFT);

fftf_magnitude(rfft1_re, rfft1_im, rspectrum_1, N_FFT, 2);

fftf_magnitude(rfft2_re, rfft2_im, rspectrum_2, N_FFT, 2);

cfftf(data_re, data_im,

temp_re, temp_im, twiddle_re, twiddle_im, N_FFT);

fftf_magnitude(data_re, data_im, cspectrum, N_FFT, 0);

See Also

cfftf (SHARC SIMD Processors), rfftf_2 (SHARC SIMD Processors)

 By default, this function uses SIMD. Refer to “Implications of
Using SIMD Mode” on page 2-23 for more information.

Documented Library Functions

2-134 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fir

Finite impulse response (FIR) filter

Synopsis (Scalar-Valued Version)

#include <filters.h>

float fir (float sample,

const float pm coeffs[],

float dm state[],

int taps);

Synopsis (Vector-Valued Version)

ADSP-2106x Non-SIMD Processors

#include <filter.h>

float *fir_vec (const float dm input[],

float dm output[],

const float pm coeffs[],

float dm state[],

int samples,

int taps);

ADSP-21xxx SIMD Processors

#include <filter.h>

float *fir (const float dm input[],

float dm output[],

const float pm coeffs[],

float dm state[],

int samples,

int taps);

VisualDSP++ 5.0 2-135
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Description

The fir functions implement a finite impulse response (FIR) filter that is
structured as a sum of products. The characteristics of the filter (passband,
stop band, and so on) are dependent on the coefficients and the number of
taps supplied by the calling program.

The scalar version of the fir function produces the filtered response of its
input data sample, which it returns as the result of the function.

The vector versions of the fir function generate the filtered response of
the input data input and store the result in the output vector output. The
number of input samples and the length of the output vector is specified
by the argument samples.

The number of coefficients is specified by the parameter taps and the
coefficients must be stored in reverse order in the array coeffs; so
coeffs[0] contains the last filter coefficient and coeffs[taps-1] contains
the first coefficient. The array must be located in program memory data
space so that the single-cycle dual-memory fetch of the processor can be
used.

Each filter should have its own delay line, which is represented by the
array state. The array contains a pointer into the delay line as its first ele-
ment, followed by the delay line values. The length of the state array is
therefore one greater than the number of taps.

The state array should be initially cleared to zero before calling the func-
tion for the first time, and should not otherwise be modified by the user
program.

 The library function uses the architecture’s dual-data move instruc-
tion to provide simultaneous access to the filter coefficients (in PM
data memory) and the delay line. When running on an
ADSP-21367, ADSP-21368, ADSP-21369, ADSP-21371, or
ADSP-21375 processor, the filter coefficients and the delay line
must not both be allocated in external memory; otherwise, the

Documented Library Functions

2-136 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

function can generate an incorrect set of results. This occurs
because in a dual-data move instruction, the hardware does not
support both memory accesses allocated to external memory.
Therefore, ensure that the filter coefficients or the delay line (or,
optionally, both) are allocated in internal memory when running
on one of the ADSP-213xx processors specified above.

The vector version of the fir functions return a pointer to the output vec-
tor; the scalar version of the function returns the filtered response of its
input sample.

Error Conditions

The fir functions do not return an error condition.

Example

Scalar-Valued

#include <filters.h>

#define TAPS 10

float y;

float pm coeffs[TAPS]; /* coeffs array must be */

/* initialized and in PM memory */

float state[TAPS+1];

int i;

for (i = 0; i < TAPS+1; i++)

state[i] = 0; /* initialize state array */

y = fir (0.775, coeffs, state, TAPS);

/* y holds the filtered output */

VisualDSP++ 5.0 2-137
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Vector-Valued

#include <filter.h>

#define TAPS 10

#define SAMPLES 256

float input[SAMPLES];

float output[SAMPLES];

float pm coeffs[TAPS]; /* coeffs array must be */

/* initialized and in PM memory */

float state[TAPS+1];

int i;

for (i = 0; i < TAPS+1; i++)

state[i] = 0; /* initialize state array */

#if defined(__SIMDSHARC__)

 fir (input, output, coeffs, state, SAMPLES, TAPS);

#else

fir_vec (input, output, coeffs, state, SAMPLES, TAPS);

#endif

See Also

biquad, fir_decima, fir_interp, iir

 By default, the fir function for SHARC SIMD processors uses
SIMD. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

 The fir_vec function makes use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler” in the VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC
Processors for information on interrupt dispatcher considerations
when circular buffers are used within an application.

Documented Library Functions

2-138 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fir_decima

FIR-based decimation filter

Synopsis

#include <filter.h>

float *fir_decima (const float input[],

float output[],

const float pm coefficients[],

float delay[],

int num_output_samples,

int num_coeffs,

int decimation_index);

Description

The fir_decima function implements a finite impulse response (FIR) fil-
ter defined by the coefficients and the delay line that are supplied in the
call of fir_decima. The function produces the filtered response of its
input data and then decimates.

The size of the output vector output is specified by the argument
num_output_samples, which specifies the number of output samples to be
generated. The input vector input should contain
decimation_index * num_output_samples samples, where
decimation_index represents the decimation index.

The characteristics of the filter are dependent on the number of coeffi-
cients and their values, and the decimation index supplied by the calling
program.

The array of filter coefficients coefficients must be located in Program
Memory (PM) data space so that the single cycle dual memory fetch of the
processor can be used. The argument num_coeffs defines the number of
coefficients, which must be stored in reverse order. Thus coefficients[0]

VisualDSP++ 5.0 2-139
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

contains the last filter coefficient, and coefficients[num_coeffs-1] con-
tains the first.

The delay line has the size num_coeffs + 1. Before the first call, all ele-
ments must be set to zero. The first element in the delay line holds the
read/write pointer being used by the function to mark the next location in
the delay line to write to. The pointer should not be modified outside this
function. It is needed to support the restart facility, whereby the function
can be called repeatedly, carrying over previous input samples using the
delay line.

The fir_decima function returns the address of the output array.

 The library function uses the architecture’s dual-data move instruc-
tion to provide simultaneous access to the filter coefficients (in PM
data memory) and the delay line. When running on an
ADSP-21367, ADSP-21368, ADSP-21369, ADSP-21371, or
ADSP-21375 processor, the filter coefficients and the delay line
must not both be allocated in external memory; otherwise, the
function can generate an incorrect set of results. This occurs
because in a dual-data move instruction, the hardware does not
support both memory accesses allocated to external memory.
Therefore, ensure that the filter coefficients or the delay line (or,
optionally, both) are allocated in internal memory when running
on one of the ADSP-213xx processors specified above.

Algorithm

The following equation is the basis for the algorithm:

y i() x i l j–×() h k 1– j–()×
j 0=

k 1–

=

Documented Library Functions

2-140 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

where:
i = {0, 1, .., num_output_samples-1}

 n = num_output_samples
 k = num_coeffs
 l = decimation_index

Error Conditions

 The fir_decima function does not return an error condition.

Example

#include <filter.h>

#define N_DECIMATION 4

#define N_SAMPLES_OUT 128

#define N_SAMPLES_IN (N_SAMPLES_OUT * N_DECIMATION)

#define N_COEFFS 33

float input[N_SAMPLES_IN];

float output[N_SAMPLES_OUT];

float delay[N_COEFFS + 1];

float pm coeffs[N_COEFFS];

int i;

/* Initialize the delay line */

for (i = 0; i < (N_COEFFS + 1); i++)

delay[i] = 0.0F;

fir_decima(input, output, coeffs, delay,

N_SAMPLES_OUT, N_COEFFS, N_DECIMATION);

VisualDSP++ 5.0 2-141
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

fir, fir_interp

 The fir_decima function makes use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

Documented Library Functions

2-142 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fir_interp

FIR interpolation filter

Synopsis

#include <filter.h>

float *fir_interp (const float input[],

float output[],

const float pm coefficients[],

float delay[],

int num_input_samples,

int num_coeffs,

int interp_index);

Description

The fir_interp function implements a finite impulse response (FIR) fil-
ter defined by the coefficients and the delay line supplied in the call of
fir_interp. It generates the interpolated filtered response of the input
data input and stores the result in the output vector output. To boost the
signal power, the filter response is multiplied by the interpolation index
interp_index before it is stored in the output array.

The number of input samples is specified by the argument
num_input_samples. The size of the output vector should be
num_input_samples*interp_index, where interp_index represents the
interpolation index.

The array of filter coefficients coefficients must be located in Program
Memory data space (PM) so that the single-cycle dual-memory fetch of
the processor can be used. The array must contain interp_index sets of
polyphase coefficients, where the number of polyphases in the filter is
equal to the interpolation index. The number of coefficients per polyphase

VisualDSP++ 5.0 2-143
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

is specified by the argument num_coeffs, and therefore the total length of
the array coefficients is of size num_coeffs*interp_index.

The fir_interp function assumes that the filter coefficients will be stored
in the following order:

coefficients[coeffs for 1st polyphase in reverse order

coeffs for 2nd polyphase in reverse order

.

coeffs for interp_index'th polyphase in reverse order]

The following example shows how the filter coefficients should be ordered
for the simple case when the interpolation index is set to 1, and when the
number of coefficients is 12. (Note that an interpolation index of 1
implies no interpolation, and that in this case the order of the coefficients
is the same order as used by the fir and fir_decima functions).

c11,c10,c9,c8,c7,c6,c5,c4,c3,c2,c1,c0

If the interpolation index is set to 3, then the above set of coefficients
should be re-ordered into three sets of polyphase coefficients in reverse
order as follows

c9,c6,c3,c0, c10,c7,c4,c1, c11,c8,c5,c2

where the 1st set of polyphase coefficients c9, c6, c3, and c0 are used to
compute output[k], the 2nd set of polyphase coefficients c10, c7, c4, and
c1 are used to compute output[k+1], and the 3rd set of polyphase coeffi-
cients c11, c8, c5, and c2 are used to compute output[k+2].

Documented Library Functions

2-144 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

In general, the re-ordering can be expressed by the following formula:

npoly = interp_index;

for (np = 1, i = (num_coeffs*npoly); np <= npoly; np++)

for (nc = 1; nc <= (num_coeffs; nc++)

coeffs[--i] = filter_coeffs[(nc * npoly) - np];

where filter_coeffs[] represents the normal order coefficients.

The delay line has the size num_coeffs + 1. Before the first call, all ele-
ments must be set to zero. The first element in the delay line contains the
read/write pointer used by the function to mark the next location in the
delay line to write to. The pointer should not be modified outside this
function. It is needed to support the restart facility, whereby the function
can be called repeatedly, carrying over previous input samples using the
delay line.

The fir_interp function returns the address of the output array.

 The library function uses the architecture’s dual-data move instruc-
tion to provide simultaneous access to the filter coefficients (in PM
data memory) and the delay line. When running on an
ADSP-21367, ADSP-21368, ADSP-21369, ADSP-21371, or
ADSP-21375 processor, the filter coefficients and the delay line
must not both be allocated in external memory; otherwise, the
function can generate an incorrect set of results. This occurs
because in a dual-data move instruction, the hardware does not
support both memory accesses allocated to external memory.
Therefore, ensure that the filter coefficients or the delay line (or,
optionally, both) are allocated in internal memory when running
on one of the ADSP-213xx processors specified above.

VisualDSP++ 5.0 2-145
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Algorithm

The algorithm for this function is given by:

where:
i = {0, 1, 2, ..., num_input_samples-1}

m = {0, 1, 2, ..., interp_index-1}
n = num_input_samples
p = interp_index
k = num_coeffs

 Error Conditions

 The fir_interp function does not return an error condition.

 Example

#include <filter.h>

#define N_INTERP 4

#define N_POLYPHASES (N_INTERP)

#define N_SAMPLES_IN 128

#define N_SAMPLES_OUT (N_SAMPLES_IN * N_INTERP)

#define N_COEFFS_PER_POLY 33

#define N_COEFFS (N_COEFFS_PER_POLY * N_POLYPHASES)

float input[N_SAMPLES_IN];

float output[N_SAMPLES_OUT];

float delay[N_COEFFS_PER_POLY + 1];

y i p m+•() x i j–() h m k•() k 1– j–()+()•
j 0=

k 1–

=

Documented Library Functions

2-146 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

/* Coefficients in normal order */

float filter_coeffs[N_COEFFS];

/* Coefficients in implementation order */

float pm coeffs[N_COEFFS];

int i, nc, np, scale;

/* Initialize the delay line */

for (i = 0; i < (N_COEFFS_PER_POLY + 1); i++)

delay[i] = 0.0F;

/* Transform the normal order coefficients from a filter design

tool into coefficients for the fir_interp function */

i = N_COEFFS;

for (np = 1, np <= N_POLYPHASES; np++)

for (nc = 1; nc <= (N_COEFFS_PER_POLY); nc++)

coeffs[--i] = filter_coeffs[(nc * N_POLYPHASES) - np];

fir_interp (input, output, coeffs, delay,

N_SAMPLES_IN, N_COEFFS_PER_POLY, N_INTERP);

/* Adjust output */

scale = N_INTERP;

for (i = 0; i < N_SAMPLES_OUT; i++)

output[i] = output[i] / scale;

See Also

fir, fir_decima

 The fir_interp function makes use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

VisualDSP++ 5.0 2-147
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

fmax

Float maximum

Synopsis

#include <math.h>

float fmaxf (float x, float y);

double fmax (double x, double y);

long double fmaxd (long double x, long double y);

Description

The fmax functions return the larger of their two arguments.

The fmaxf function is a built-in function which is implemented with an
Fn=MAX(Fx,Fy) instruction. The fmax function is compiled as a built-in
function if double is the same size as float.

Error Conditions

The fmax functions do not return an error code.

Example

#include <math.h>

float y;

y = fmaxf (5.1f, 8.0f); /* returns 8.0f */

See Also

fmin, lmax, lmin, max, min

Documented Library Functions

2-148 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

fmin

Float minimum

Synopsis

#include <math.h>

float fminf (float x, float y);

double fmin (double x, double y);

long double fmind (long double x, long double y);

Description

The fmin functions return the smaller of their two arguments.

The fminf function is a built-in function which is implemented with an
Fn=MIN(Fx,Fy) instruction. The fmin function is compiled as a built-in
function if double is the same size as float.

Error Conditions

The fmin functions do not return an error code.

Example

#include <math.h>

float y;

y = fminf (5.1f, 8.0f); /* returns 5.1f */

See Also

fmax, lmax, lmin, max, min

VisualDSP++ 5.0 2-149
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_bartlett

Generate Bartlett window

Synopsis

#include <window.h>

void gen_bartlett (float dm w[],

int a,

int N);

Description

The gen_bartlett function generates a vector containing the Bartlett win-
dow. The length is specified by parameter N, and the stride parameter a is
used to space the window values within the output vector w. The length of
the output vector should therefore be N*a.

The Bartlett window is similar to the triangle window (see “gen_triangle”
on page 2-165) but has the following different properties:

• The Bartlett window returns a window with two zeros on either
end of the sequence. Therefore, for odd n, the center section of a
N+2 Bartlett window equals an N triangle window.

• For even n, the Bartlett window is the convolution of two rectangu-
lar sequences. There is no standard definition for the triangle
window for even n; the slopes of the triangle window are slightly
steeper than those of the Bartlett window.

Documented Library Functions

2-150 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Algorithm

The algorithm for this function is given by:

where

n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

Error Conditions

The gen_bartlett function does not return an error condition.

See Also

gen_blackman, gen_gaussian, gen_hamming, gen_hanning, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle, gen_vonhann

w n[] 1
n

N 1–
2

-------------–

N 1–
2

----------------------–=

VisualDSP++ 5.0 2-151
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_blackman

Generate Blackman window

Synopsis

#include <window.h>

void gen_blackman (float dm w[],

int a,

int N);

Description

The gen_blackman function generates a vector containing the Blackman
window. The length of the required window is specified by the parameter
N, and the stride parameter a is used to space the window values within the
output vector w. The length of the output vector should therefore be N*a.

Algorithm

The algorithm for this function is given by:

where n = {0, 1, 2, ..., N-1}

Domain

 a > 0; N > 0

Error Conditions

The gen_blackman function does not return an error condition.

w n[] 0.42 0.5 cos
2πn

N 1–
-------------– 0.08 cos

4πn
N 1–
-------------+=

Documented Library Functions

2-152 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

gen_bartlett, gen_gaussian, gen_hamming, gen_hanning, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle, gen_vonhann

VisualDSP++ 5.0 2-153
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_gaussian

Generate Gaussian window

Synopsis

#include <window.h>

void gen_gaussian (float dm w[],
float alpha,

int a,

int N);

Description

The gen_gaussian function generates a vector containing the Gaussian
window. The length of the required window is specified by the parameter
N, and the stride parameter a is used to space the window values within the
output vector w. The length of the output vector should therefore be N*a.

The parameter alpha is used to control the shape of the window. In gen-
eral, the peak of the Gaussian window will become narrower and the
leading and trailing edges will tend towards zero the larger that alpha
becomes. Conversely, the peak will get wider the more that alpha tends
towards zero.

Algorithm

The algorithm for this function is given by:

w n[] 1
2
--- α

n
N
2
----– 1

2
---+

N
2

 2

–exp=

Documented Library Functions

2-154 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

where

n = {0, 1, 2, ..., N-1} and a is an input parameter

Domain

a > 0; N > 0; a > 0.0

Error Conditions

The gen_gaussian function does not return an error condition.

See Also

gen_bartlett, gen_blackman, gen_hamming, gen_hanning, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle, gen_vonhann

VisualDSP++ 5.0 2-155
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_hamming

Generate Hamming window

Synopsis

#include <window.h>

void gen_hamming (float dm w[],

int a,

int N);

Description

The gen_hamming function generates a vector containing the Hamming
window. The length of the required window is specified by the parameter
N, and the stride parameter a is used to space the window values within the
output vector w. The length of the output vector should therefore be N*a.

Algorithm

The algorithm for this function is given by:

where

n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n[] 0.54 0.46
2πn

N 1–

 cos–=

Documented Library Functions

2-156 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The gen_hamming function does not return an error condition.

See Also

gen_bartlett, gen_blackman,gen_gaussian, gen_hanning, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle, gen_vonhann

VisualDSP++ 5.0 2-157
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_hanning

Generate Hanning window

Synopsis

#include <window.h>

void gen_hanning (float dm w[],

int a,

int N);

Description

The gen_hanning function generates a vector containing the Hanning
window. The length of the required window is specified by the parameter
N, and the stride parameter a is used to space the window values within the
output vector w. The length of the output vector should therefore be N*a.
This window is also known as the Cosine window.

Algorithm

The following equation is the basis of the algorithm.

where:
N = window_size
w = hanning_window
n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n[] 0.5 0.5
2πn

N 1–

 cos–=

Documented Library Functions

2-158 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The gen_hanning function does not return an error condition.

See Also

gen_bartlett, gen_blackman,gen_gaussian, gen_hamming, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle, gen_vonhann

VisualDSP++ 5.0 2-159
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_harris

Generate Harris window

Synopsis

#include <window.h>

void gen_harris (float dm w[],

int a,

int N);

Description

The gen_harris function generates a vector containing the Harris win-
dow. The length of the required window is specified by the parameter N,
and the stride parameter a is used to space the window values within the
output vector w. The length of the output vector should therefore be N*a.
This window is also known as the Blackman-Harris window.

Algorithm

The following equation is the basis of the algorithm.

where:
N = window_size
w = harris_window
n = {0, 1, 2, ..., N-1}

Domain

 a > 0; N > 0

w[n] 0.35875 0.48829
2πn

N 1–

 cos 0.14128

4πn
N 1–

 cos 0.01168

6πn
N 1–

 cos–+–=

Documented Library Functions

2-160 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The gen_harris function does not return an error condition.

See Also

gen_bartlett, gen_blackman,gen_gaussian, gen_hamming, gen_hanning,
gen_kaiser, gen_rectangular, gen_triangle, gen_vonhann

VisualDSP++ 5.0 2-161
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_kaiser

Generate Kaiser window

Synopsis

#include <window.h>

void gen_kaiser (float dm w[],

int a,

int N);

Description

The gen_kaiser function generates a vector containing the Kaiser win-
dow. The length of the required window is specified by the parameter N,
and the stride parameter a is used to space the window values within the
output vector w. The length of the output vector should therefore be N*a.
The b value is specified by parameter beta.

Algorithm

The following equation is the basis of the algorithm.

w n[]

I0 β 1
n α–

α
------------–

2

1
2

I0 β()
--=

Documented Library Functions

2-162 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

where:
N = window_size
w = kaiser_window
n = {0, 1, 2, ..., N-1}
α = (N - 1) / 2
I0(β) represents the zeroth-order modified Bessel function

of the first kind

Domain

a > 0; N > 0; b > 0.0

Error Conditions

The gen_kaiser function does not return an error condition.

See Also

gen_bartlett, gen_blackman,gen_gaussian, gen_hamming, gen_hanning,
gen_harris, gen_rectangular, gen_triangle, gen_vonhann

VisualDSP++ 5.0 2-163
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_rectangular

Generate rectangular window

Synopsis

#include <window.h>

void gen_rectangular (float dm w[],

int a,

int N);

Description

The gen_rectangular function generates a vector containing the rectan-
gular window. The length of the required window is specified by the
parameter N, and the stride parameter a is used to space the window values
within the output vector w. The length of the output vector should there-
fore be N*a.

Algorithm

w[n] = 1

where n = {0, 1, 2, ..., N-1}

Domain

 a > 0; N > 0

Error Conditions

The gen_rectangular function does not return an error condition.

Documented Library Functions

2-164 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

gen_bartlett, gen_blackman,gen_gaussian, gen_hamming, gen_hanning,
gen_harris, gen_kaiser, gen_triangle, gen_vonhann

VisualDSP++ 5.0 2-165
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_triangle

Generate triangle window

Synopsis

#include <window.h>

void gen_triangle (float dm w[],

int a,

int N);

Description

The gen_triangle function generates a vector containing the triangle win-
dow. The length of the required window is specified by the parameter N,
and the stride parameter a is used to space the window values within the
output vector w. The length of the output vector should therefore be N*a.

Refer to the Bartlett window (described on page 2-149) regarding the rela-
tionship between it and the triangle window.

Algorithm

For even n, the following equation applies.

where:
N = window_size
w = triangle_window
n = {0, 1, 2, ..., N-1}

w n[]

2n 1+()
N

-------------------- n
N
2
----<

2N 2n– 1–
N

----------------------------- n
N
2
---->

=

Documented Library Functions

2-166 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

For odd n, the following equation applies.

where

n = {0, 1, 2, ..., N-1}

Domain

 a > 0; N > 0

Error Conditions

The gen_triangle function does not return an error condition.

See Also

gen_bartlett, gen_blackman,gen_gaussian, gen_hamming, gen_hanning,
gen_harris, gen_kaiser, gen_rectangular, gen_vonhann

w n[]

2n 2+()
N 1+

-------------------- n
N
2
----<

2N 2n–
N 1+

-------------------- n
N
2
---->

=

VisualDSP++ 5.0 2-167
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

gen_vonhann

Generate von Hann window

Synopsis

#include <window.h>

void gen_vonhann (float dm w[],

int a,

int N);

Description

The gen_vonhann function is identical to gen_hanning window (described
on page 2-157).

Error Conditions

The gen_vonhann function does not return an error condition.

See Also

gen_hanning

Documented Library Functions

2-168 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

histogram

Histogram

Synopsis

#include <stats.h>

int *histogram (int out[],

const int in[],

int out_len,

int samples,

int bin_size);

Description

The histogram function computes a scaled-integer histogram of its input
array. The bin_size parameter is used to adjust the width of each individ-
ual bin in the output array. For example, a bin_size of 5 indicates that
the first location of the output array holds the number of occurrences of a
0, 1, 2, 3, or 4.

The output array is first zeroed by the function, then each sample in the
input array is multiplied by 1/bin_size and truncated. The appropriate
bin in the output array is incremented. This function returns a pointer to
the output array.

For maximal performance, this function does not perform out-of-bounds
checking. Therefore, all values within the input array must be within
range (that is, between 0 and bin_size * out_len).

Error Conditions

The histogram function does not return an error condition.

VisualDSP++ 5.0 2-169
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <stats.h>

#define SAMPLES 1024

int length = 2048;

int excitation[SAMPLES], response[2048];

histogram (response, excitation, length, SAMPLES, 5);

See Also

mean, var

Documented Library Functions

2-170 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

idle

Execute ADSP-21xxx processor idle instruction

Synopsis

#include <processor_include.h>

void idle (void);

Description

The idle function invokes the processor’s idle instruction once and
returns. The idle instruction causes the processor to stop and respond
only to interrupts. For a complete description of the idle instruction,
refer to the appropriate SHARC processor hardware reference manual.

Error Conditions

The idle function does not return an error condition.

Example

#include <processor_include.h>

idle ();

See Also

interrupt, signal

VisualDSP++ 5.0 2-171
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

ifft

Inverse complex radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

complex_float *ifft (complex_float dm input[],

complex_float dm temp[],

complex_float dm output[],

const complex_float pm twiddle[],

int twiddle_stride,

int n);

Description

The ifft function transforms the frequency domain complex input signal
sequence to the time domain by using the radix-2 Fast Fourier Transform
(FFT).

The size of the input array input, the output array output, and the tempo-
rary working buffer temp must be at least n, where n represents the number
of points in the FFT; n must be a power of 2 and no smaller than 8. If the
input data can be overwritten, memory can be saved by setting the pointer
of the temporary array explicitly to the input array, or to NULL. (In either
case the input array will also be used as the temporary working array.)

The minimal size of the twiddle table must be n/2. A larger twiddle table
may be used provided that the value of the twiddle table stride argument
twiddle_stride is set appropriately. If the size of the twiddle table is x,
then twiddle_stride must be set to (2*x)/n.

The library function twidfft (on page 2-258) can be used to compute the
required twiddle table. The coefficients generated are positive cosine coef-
ficients for the real part and negative sine for the imaginary part.

Documented Library Functions

2-172 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

 For the SHARC 21xxx SIMD processors, the library also contains
the ifftf function (see “ifftf (SHARC SIMD Processors)” on
page 2-174), which is an optimized implementation of an inverse
complex FFT using a fast radix-2 algorithm. The ifftf function,
however, imposes certain memory alignment requirements that
may not be appropriate for some applications.

The function returns the address of the output array.

Algorithm

The following equation is the basis of the algorithm.

Error Conditions

The ifft function does not return any error condition.

Example

#include <filter.h>

#define N_FFT 64

complex_float input[N_FFT];

complex_float output[N_FFT];

complex_float temp[N_FFT];

int twiddle_stride = 1;

complex_float pm twiddle[N_FFT/2];

x n() 1
N
---- X k()WN

nk–

k 0=

N 1–

•=

VisualDSP++ 5.0 2-173
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

/* Populate twiddle table */

twidfft(twiddle, N_FFT);

/* Compute Fast Fourier Transform */

ifft(input, temp, output, twiddle, twiddle_stride, N_FFT);

See Also

cfft, ifftf (SHARC SIMD Processors), ifftN (SHARC SIMD Processors),
rfft, twidfft

 For the ADSP-21xxx SIMD processors the ifft function uses
SIMD by default. Refer to “Implications of Using SIMD Mode”
on page 2-23 for more information.

 The ifft function makes use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

Documented Library Functions

2-174 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

ifftf (SHARC SIMD Processors)

Fast inverse complex radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

void ifftf (float data_real[], float data_imag[],

float temp_real[], float temp_imag[],

const float twid_real[],

const float twid_imag[],

int n);

Description

The ifftf function transforms the frequency domain complex input sig-
nal sequence to the time domain by using the accelerated version of the
Discrete Fourier Transform known as a Fast Fourier Transform or FFT. It
decimates in frequency, using an optimized radix-2 algorithm.

The array data_real contains the real part of a complex input signal, and
the array data_imag contains the imaginary part of the signal. On output,
the function overwrites the data in these arrays and stores the real part of
the inverse FFT in data_real, and the imaginary part of the inverse FFT
in data_imag. If the input data is to be preserved, it must first be copied to
a safe location before calling this function. The argument n represents the
number of points in the inverse FFT. It must be a power of 2 and must be
at least 64.

The ifftf function has been designed for optimal performance and
requires that the arrays data_real and data_imag are aligned on an
address boundary that is a multiple of the FFT size. For certain applica-
tions, this alignment constraint may not be appropriate; in such cases, the
application should call the ifft function instead with no loss of facility
(apart from performance).

VisualDSP++ 5.0 2-175
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

The arrays temp_real and temp_imag are used as intermediate temporary
buffers and should each be of size n.

The twiddle table is passed in using the arrays twid_real and twid_imag.
The array twid_real contains the positive cosine factors, and the array
twid_imag contains the negative sine factors. Each array should be of size
n/2. The twidfftf function (on page 2-261) may be used to initialize the
twiddle table arrays.

It is recommended that the arrays containing real parts (data_real,
temp_real, and twid_real) are allocated in separate memory blocks from
the arrays containing imaginary parts (data_imag, temp_imag, and
twid_imag). Otherwise, the performance of the function degrades.

 The ifftf function has been implemented to make highly efficient
use of the processor’s SIMD capabilities and long word addressing
mode. The function therefore imposes the following restrictions:

• All the arrays that are passed to the function must be allocated in
internal memory. The DSP run-time library does not contain a ver-
sion of the function that can be used with data in external memory.

• The function should not be used with any application that relies on
the -reserve register[, register...] switch

For more information, refer to refer to “Implications of Using
SIMD Mode” and “Using Data in External Memory”.

Error Conditions

The ifftf function does not return an error condition.

Documented Library Functions

2-176 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <filter.h>

#define FFT_SIZE 1024

#pragma align 1024

float dm input_r[FFT_SIZE];

#pragma align 1024

float pm input_i[FFT_SIZE];

float dm temp_r[FFT_SIZE];

float pm temp_i[FFT_SIZE];

float dm twid_r[FFT_SIZE/2];

float pm twid_i[FFT_SIZE/2];

twidfftf(twid_r,twid_i,FFT_SIZE);

ifftf(input_r,input_i,

temp_r,temp_i,

twid_r,twid_i,FFT_SIZE);

See Also

cfftf (SHARC SIMD Processors), ifft, ifftN (SHARC SIMD Processors),
rfftf_2 (SHARC SIMD Processors), twidfftf (SHARC SIMD Processors)

VisualDSP++ 5.0 2-177
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

ifftN

N-point inverse complex radix-2 Fast Fourier Transform

Synopsis

#include <trans.h>

float *ifft65536 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft32768 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft16384 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft8192 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft4096 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft2048 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft1024 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

Documented Library Functions

2-178 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

float *ifft512 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft256 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft128 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft64 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft32 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft16 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

float *ifft8 (const float dm real_input[],

const float dm imag_input[],

float dm real_output[], float dm imag_output[]);

Description

Each of these ifftN functions computes the N-point radix-2 inverse Fast
Fourier Transform (IFFT) of its floating-point input (where N is 8, 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 or 65536).

VisualDSP++ 5.0 2-179
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

There are fourteen distinct functions in this set. All perform the same
function with the same type and number of arguments. The only differ-
ence between them is the size of the arrays on which they operate. To call
a particular function, substitute the number of points for N. For example,
ifft8 (r_inp, i_inp, r_outp, i_outp);

The input to ifftN are two floating-point arrays of N points. The array
real_input contains the real components of the inverse FFT input and
the array imag_input contains the imaginary components.

If there are fewer than N actual data points, you must pad the arrays with
zeros to make N samples. However, better results occur with less zero pad-
ding. The input data should be windowed (if necessary) before calling the
function because no preprocessing is performed on the data.

The time-domain signal generated by the ifftN functions is stored in the
arrays real_output and imag_output. The array real_output contains the
real component of the complex output signal, and the array imag_output
contains the imaginary component. The output is scaled by N, the number
of points in the inverse FFT. The functions return a pointer to the
real_output array.

If the input data can be overwritten, then the ifftN functions allow the
array real_input to share the same memory as the array real_output, and
imag_input to share the same memory as imag_output. This improves
memory usage, but at the cost of run-time performance.

 These library functions have not been optimized for SHARC
SIMD processors. Applications that run on SHARC SIMD proces-
sors should use the FFT functions that are defined in the header
file filter.h, and described under cfftN (SHARC SIMD Proces-
sors) instead.

Error Conditions

The ifftN functions do not return error conditions.

Documented Library Functions

2-180 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <trans.h>

#define N 2048

float real_input[N], imag_input[N];

float real_output[N], imag_output[N];

ifft2048 (real_input, imag_input, real_output, imag_output);

See Also

cfftN, ifft, ifftN (SHARC SIMD Processors), rfftN

 The ifftN functions make use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

VisualDSP++ 5.0 2-181
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

ifftN (SHARC SIMD Processors)

N-point inverse complex radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

complex_float *ifft65536 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft32768 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft16384 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft8192 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft4096 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft2048 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft1024 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft512 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft256 (complex_float dm input[],

complex_float dm output[]);

Documented Library Functions

2-182 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

complex_float *ifft128 (complex_float input[],

complex_float dm output[]);

complex_float *ifft64 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft32 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft16 (complex_float dm input[],

complex_float dm output[]);

complex_float *ifft8 (complex_float dm input[],

complex_float dm output[]);

Description

These ifftN functions are defined in the header file filter.h; they have
been optimized to take advantage of the SIMD capabilities of the
ADSP-211xx, ADSP-212xx, ADSP-213xx, and ADSP-214xx processors.
Therefore, they are not supported by the ADSP-210xx processor family.
These FFT functions require complex arguments to ensure that the real
and imaginary parts are interleaved in memory and are thus accessible in a
single cycle, using the wider data bus of the processor.

Each of these ifftN functions computes the N-point radix-2 inverse Fast
Fourier Transform (IFFT) of its floating-point input (where N is 8, 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, or
65536).

There are fourteen distinct functions in this set. All perform the same
function with the same type and number of arguments. The only differ-
ence between them is the size of the arrays on which they operate. To call
a particular function, substitute the number of points for N. For example,
ifft8 (input, output);

VisualDSP++ 5.0 2-183
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

The input to ifftN is a floating-point array of N points. If there are fewer
than N actual data points, you must pad the array with zeros to make N
samples. However, better results occur with less zero padding. The input
data should be windowed (if necessary) before calling the function because
no preprocessing is performed on the data. Optimal memory usage can be
achieved by specifying the input array as the output array, but at the cost
of run-time performance.

The ifftN functions return a pointer to the output array.

 The ifftN functions use the input array as an intermediate work-
space. If the input data is to be preserved it must first be copied to
a safe location before calling these functions.

Error Conditions

The ifftN functions do not return error conditions.

Example

#include <filter.h>

#define N 2048

complex_float input[N], output[N];

ifft2048 (input, output);

See Also

cfftN (SHARC SIMD Processors), ifft, ifftf (SHARC SIMD Processors),
rfftN (SHARC SIMD Processors)

 By default, these functions use SIMD. Refer to “Implications of
Using SIMD Mode” on page 2-23 for more information.

Documented Library Functions

2-184 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

iir

Infinite impulse response (IIR) filter

Synopsis (Scalar-Valued Version)

#include <filters.h>

float iir (float sample,

const float pm a_coeffs[],

const float pm b_coeffs[],

float dm state[],

int taps);

Synopsis (Vector-Valued Version)

ADSP-210xx Processors

#include <filter.h>

float *iir_vec (const float dm input[],

float dm output[],

const float pm coeffs[],

float dm state[],

int samples,

int sections);

ADSP-21xxx SIMD Processors

#include <filter.h>

float *iir (const float dm input[],

float dm output[],

const float pm coeffs[],

float dm state[],

int samples,

int sections);

VisualDSP++ 5.0 2-185
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Description (Scalar-Valued Version)

The scalar-valued version of the iir function implements a parallel sec-
ond-order direct form II infinite impulse response (IIR) filter. The
function returns the filtered response of the input data sample. The
characteristics of the filter are dependent upon a set of coefficients, a delay
line, and the length of the filter. The length of filter is specified by the
argument taps.

The set of IIR filter coefficients is composed of a-coefficients and
b-coefficients. The a0 coefficient is assumed to be 1.0, and the remaining
a-coefficients should be scaled accordingly and stored in the array
a_coeffs in reverse order. The length of the a_coeffs array is taps and
therefore a_coeffs[0] should contain ataps, and a_coeffs[taps-1]
should contain a1.

The b-coefficients are stored in the array b_coeffs, also in reverse order.
The length of the b_coeffs is taps+1, and so b_coeffs[0] contains btaps
and b_coeffs[taps] contains b0.

Both the a_coeffs and b_coeffs arrays must be located in Program Mem-
ory (PM) so that the single-cycle dual-memory fetch of the processor can
be used.

Each filter should have its own delay line which the function maintains in
the array state. The array should be initialized to zero before calling the
function for the first time and should not be modified by the calling pro-
gram. The length of the state array should be taps+1 as the function uses
the array to store a pointer to the current delay line.

 The library function uses the architecture’s dual-data move instruc-
tion to provide simultaneous access to the filter coefficients (in PM
data memory) and the delay line. When running on an
ADSP-21367, ADSP-21368, ADSP-21369, ADSP-21371, or
ADSP-21375 processor, the filter coefficients and the delay line
must not both be allocated in external memory; otherwise, the
function can generate an incorrect set of results. This occurs

Documented Library Functions

2-186 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

because in a dual-data move instruction, the hardware does not
support both memory accesses allocated to external memory.
Therefore, ensure that the filter coefficients or the delay line (or,
optionally, both) are allocated in internal memory when running
on one of the ADSP-213xx processors specified above.

The flow graph (Figure 2-2) corresponds to the iir() routine as part of
the DSP run-time library.

The biquad function should be used instead of the iir function if a
multi-stage filter is required.

Figure 2-2. Flow Graph

OUTPUT

b_coeffs [TAPS - 1]

SAMPLE

a_coeffs [TAPS - 1]

b_coeffs [TAPS - 2] a_coeffs [TAPS - 2]

b_coeffs [TAPS - 3] a_coeffs [TAPS - 3]

a_coeffs [0]b_coeffs [0]

z-1

z-1

z-1

The b_coeffs array should equal TAPS + 1.

The a_coeffs array should equal TAPS.

z-1

VisualDSP++ 5.0 2-187
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Description (Vector-Valued Version)

The vector-valued versions of the iir function implement an infinite
impulse response (IIR) filter defined by the coefficients and delay line that
are supplied in the call to the function. The filter is implemented as a cas-
caded biquad, and generate the filtered response of the input data input
and store the result in the output vector output. The number of input
samples and the length of the output vector is specified by the argument
samples.

The characteristics of the filter are dependent upon the filter coefficients
and the number of biquad sections. The number of sections is specified by
the argument sections, and the filter coefficients are supplied to the func-
tion using the argument coeffs. Each stage has four coefficients which
must be ordered in the following form:

[a2 stage 1, a1 stage 1, b2 stage 1, b1 stage 1, a2 stage 2, ...]

The function assumes that the value of B0 is 1.0, and so the B1 and B2
coefficients should be scaled accordingly. As a consequence of this, all the
output generated by the iir function must be scaled by the product of all
the B0 coefficients to obtain the correct signal amplitude. The function
also assumes that the value of the A0 coefficient is 1.0, and the A1 and A2
coefficients should be normalized. The A1 and A2 coefficients should be
negated if they have been imported from most filter design tools. These
requirements are demonstrated in the example below.

The coeffs array must be allocated in Program Memory (PM) as the func-
tion uses the single-cycle dual-memory fetch of the processor. The
definition of the coeffs array is therefore:

float pm coeffs[4*sections];

Documented Library Functions

2-188 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Each filter should have its own delay line which is represented by the array
state. The state array should be large enough for two delay elements per
biquad section and hold an internal pointer that allows the filter to be
restarted. The definition of the state is:

float state[2*sections + 1];

The state array should be initially cleared to zero before calling the func-
tion for the first time and should not be modified by the user program.

The function returns a pointer to the output vector.

The vector-valued versions of the iir functions are based on the following
algorithm:

To get the correct amplitude of the signal, H(z) should be adjusted by this
formula:

H z()
1

bn1

bn0

 z 1–+

bn2

bn0

 z 2–+

1
an1

an0

 z 1––

an2

an0

 z 2––

n 0=

sections-1

∏=

H z() H z()
bn0

an0

n 0=

sections-1

∏

•=

VisualDSP++ 5.0 2-189
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Error Conditions

The iir functions do not return an error condition.

Example

Scalar-Valued

#include <filters.h>

#define NSAMPLES 256

#define TAPS 10

float input[NSAMPLES];

float output[NSAMPLES];

float pm a_coeffs[TAPS];

float pm b_coeffs[TAPS+1];

float state[TAPS + 1];

int i;

for (i = 0; i < TAPS+1; i++)

 state[i] = 0;

for (i = 0; i < NSAMPLES; i++)

output[i] = iir (input[i], a_coeffs, b_coeffs, state, TAPS);

Vector-Valued

#include <filter.h>

#define SAMPLES 100

#define SECTIONS 4

Documented Library Functions

2-190 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

/* Coefficients generated by a filter design tool that uses

a direct form II */

const struct {

float a0;

float a1;

float a2;

} A_coeffs[SECTIONS];

const struct {

float b0;

float b1;

float b2;

} B_coeffs[SECTIONS];

/* Coefficients for the iir function */

float pm coeffs[4 * SECTIONS];

/* Input, Output, and State Arrays */

float input[SAMPLES], output[SAMPLES];

float state[2*SECTIONS + 1];

float scale; /* used to scale the output from iir */

/* Utility Variables */

float a0,a1,a2;

float b0,b1,b2;

int i;

VisualDSP++ 5.0 2-191
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

/* Transform the A-coefficients and B-coefficients from a filter

design tool into coefficients for the iir function */

scale = 1.0;

for (i = 0; i < SECTIONS; i++) {

a0 = A_coeffs[i].a0;

a1 = A_coeffs[i].a1;

a2 = A_coeffs[i].a2;

/* Negate A1 and A2 (not reqd for all filter design tools) */

a1 = -a1;

a2 = -a2;

coeffs[(i*4) + 0] = (a2/a0);

coeffs[(i*4) + 1] = (a1/a0);

b0 = B_coeffs[i].b0;

b1 = B_coeffs[i].b1;

b2 = B_coeffs[i].b2;

coeffs[(i*4) + 2] = (b2/b0);

coeffs[(i*4) + 3] = (b1/b0);

scale = scale * (b0/a0);

}

Documented Library Functions

2-192 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

/* Call the iir function */

for (i = 0; i <= 2*SECTIONS; i++)

state[i] = 0; /* initialize the state array */

#if defined(__SIMDSHARC__)

iir (input, output, coeffs, state, SAMPLES, SECTIONS);

#else

iir_vec (input, output, coeffs, state, SAMPLES, SECTIONS);

#endif

/* Adjust output by all (b0/a0) terms */

for (i = 0; i < SAMPLES; i++)

output[i] = output[i] * scale;

See Also

biquad, fir

 The iir_vec function makes use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler” in the VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC
Processors for information on interrupt dispatcher considerations
when circular buffers are used within an application.

VisualDSP++ 5.0 2-193
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

matinv

Real matrix inversion

Synopsis

#include <matrix.h>

float *matinvf (float dm *output,

const float dm *input, int samples);

double *matinv (double dm *output,

const double dm *input, int samples);

long double *matinvd (long double dm *output,

const long double dm *input, int samples);

Description

The matinv functions employ Gauss-Jordan elimination with full pivoting
to compute the inverse of the input matrix input and store the result in
the matrix output. The dimensions of the matrices input and output are
[samples][samples]. The functions return a pointer to the output matrix.

Error Conditions

If no inverse exists for the input matrix, the functions return a null
pointer.

Documented Library Functions

2-194 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <matrix.h>

#define N 8

double a[N][N];

double a_inv[N][N];

matinv ((double *)(a_inv),(double *)(a),N);

See Also

No related function.

VisualDSP++ 5.0 2-195
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

matmadd

Real matrix + matrix addition

Synopsis

#include <matrix.h>

float *matmaddf (float dm *output,

const float dm *a,

const float dm *b, int rows, int cols);

double *matmadd (double dm *output,

const double dm *a,

const double dm *b, int rows, int cols);

long double *matmaddd (long double dm *output,

const long double dm *a,

const long double dm *b, int rows, int cols);

float *matadd (float dm *output,

const float dm *a,

const float dm *b, int rows, int cols);

Description

The matmadd functions perform a matrix addition of the input matrices
a[][] and b[][], and return the result in the matrix output[][]. The
dimensions of these matrices are a[rows][cols], b[rows][cols], and
output[rows][cols].

The functions return a pointer to the output matrix.

The matadd function is equivalent to matmaddf and is provided for com-
patibility with previous versions of VisualDSP++.

Documented Library Functions

2-196 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The matmadd functions do not return an error condition.

Example

#include <matrix.h>

#define ROWS 4

#define COLS 8

double input_1[ROWS][COLS], *a_p = (double *) (&input_1);

double input_2[ROWS][COLS], *b_p = (double *) (&input_2);

double result[ROWS][COLS], *res_p = (double *) (&result);

matmadd (res_p, a_p, b_p, ROWS, COLS);

See Also

cmatmadd, matmmlt, matmsub, matsadd

 For the ADSP-21xxx SIMD processors the matmaddf function (and
matmadd, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

VisualDSP++ 5.0 2-197
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

matmmlt

Real matrix * matrix multiplication

Synopsis

#include <matrix.h>

float *matmmltf (float dm *output,

const float dm *a,

const float dm *b,

int a_rows, int a_cols, b_cols);

double *matmmlt (double dm *output,

const double dm *a,

const double dm *b,

int a_rows, int a_cols, b_cols);

long double *matmmltd (long double dm *output,

const long double dm *a,

const long double dm *b,

int a_rows, int a_cols, b_cols);

float *matmul (float dm *output,

const float dm *a,

const float dm *b,

int a_rows, int a_cols, b_cols);

Description

The matmmlt functions perform a matrix multiplication of the input
matrices a[][] and b[][], and return the result in the matrix output[][].
The dimensions of these matrices are a[a_rows][a_cols],
b[a_cols][b_cols], and output[a_rows][b_cols].

The functions return a pointer to the output matrix.

Documented Library Functions

2-198 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

The matmult function is equivalent to matmul and is provided for compat-
ibility with previous versions of VisualDSP++.

Algorithm

The following equation is the basis of the algorithm.

where

i = {0, 1, 2, ..., a_rows-1}, j = {0, 1, 2, ..., b_cols-1}

Error Conditions

The matmmlt functions do not return an error condition.

Example

#include <matrix.h>

#define ROWS_1 4

#define COLS_1 8

#define COLS_2 2

double input_1[ROWS_1][COLS_1], *a_p = (double *) (&input_1);

double input_2[COLS_1][COLS_2], *b_p = (double *) (&input_2);

double result[ROWS_1][COLS_2], *res_p = (double *) (&result);

matmmlt (res_p, a_p, b_p, ROWS_1, COLS_1, COLS_2);

ci j, ai l, bl j,•
l 0=

a_cols 1–

=

VisualDSP++ 5.0 2-199
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

cmatmmlt, matmadd, matmsub, matsmlt

 The matmmlt functions make use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler” in the VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC
Processors for information on interrupt dispatcher considerations
when circular buffers are used within an application.

Documented Library Functions

2-200 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

matmsub

Real matrix – matrix subtraction

Synopsis

#include <matrix.h>

float *matmsubf (float dm *output,

const float dm *a,

const float dm *b, int rows, int cols);

double *matmsub (double dm *output,

const double dm *a,

const double dm *b, int rows, int cols);

long double *matmsubd (long double dm *output,

const long double dm *a,

const long double dm *b, int rows, int cols);

float *matsub (float dm *output,

const float dm *a,

const float dm *b, int rows, int cols);

Description

The matmsub functions perform a matrix subtraction of the input matrices
a[][] and b[][], and return the result in the matrix output[][]. The
dimensions of these matrices are a[rows][cols], b[rows][cols], and
output[rows][cols].

The functions return a pointer to the output matrix.

The matsub function is equivalent to matmsubf and is provided for com-
patibility with previous versions of VisualDSP++.

VisualDSP++ 5.0 2-201
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Error Conditions

The matmsub functions do not return an error condition.

Example

#include <matrix.h>

#define ROWS 4

#define COLS 8

double input_1[ROWS][COLS], *a_p = (double *) (&input_1);

double input_2[ROWS][COLS], *b_p = (double *) (&input_2);

double result[ROWS][COLS], *res_p = (double *) (&result);

matmsub (res_p, a_p, b_p, ROWS, COLS);

See Also

cmatmsub, matmadd, matmmlt, matssub

 For the ADSP-21xxx SIMD processors the matmsubf function (and
matmsub, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-202 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

matsadd

Real matrix + scalar addition

Synopsis

#include <matrix.h>

float *matsaddf (float dm *output, const float dm *a,

float scalar, int rows, int cols);

double *matsadd (double dm *output, const double dm *a

double scalar, int rows, int cols);

long double *matsaddd (long double dm *output,

const long double dm *a,

long double scalar, int rows, int cols);

Description

The matsadd functions add a scalar to each element of the input matrix
a[][], and return the result in the matrix output[][]. The dimensions of
these matrices are a[rows][cols] and output[rows][cols]. The functions
return a pointer to the output matrix.

Error Conditions

The matsadd functions do not return an error condition.

VisualDSP++ 5.0 2-203
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <matrix.h>

#define ROWS 4

#define COLS 8

double input[ROWS][COLS], *a_p = (double *) (&input);

double result[ROWS][COLS], *res_p = (double *) (&result);

double x;

matsadd (res_p, a_p, x, ROWS, COLS);

See Also

cmatsadd, matmadd, matsmlt, matssub

 For the ADSP-21xxx SIMD processors the matsaddf function (and
matsadd, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-204 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

matsmlt

Real matrix * scalar multiplication

Synopsis

#include <matrix.h>

float *matsmltf (float dm *output, const float dm *a,

float scalar, int rows, int cols);

double *matsmlt (double dm *output, const double dm *a

double scalar, int rows, int cols);

long double *matsmltd (long double dm *output,

const long double dm *a,

long double scalar, int rows, int cols);

float *matscalmult (float dm *output, const float dm *a,

float scalar, int rows, int cols);

Description

The matsmlt functions multiply a scalar with each element of the input
matrix a[][], and return the result in the matrix output[][]. The dimen-
sions of these matrices are a[rows][cols] and output[rows][cols].

The functions return a pointer to the output matrix.

The matscalmult function is equivalent to matsmltf and is provided for
compatibility with previous versions of VisualDSP++.

Error Conditions

The matsmlt functions do not return an error condition.

VisualDSP++ 5.0 2-205
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <matrix.h>

#define ROWS 4

#define COLS 8

double input[ROWS][COLS], *a_p = (double *) (&input);

double result[ROWS][COLS], *res_p = (double *) (&result);

double x;

matsmlt (res_p, a_p, x, ROWS, COLS);

See Also

cmatsmlt, matmmlt, matsadd, matssub

 For the ADSP-21xxx SIMD processors the matsmltf function (and
matsmlt, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-206 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

matssub

Real matrix – scalar subtraction

Synopsis

#include <matrix.h>

float *matssubf (float dm *output, const float dm *a,

float scalar, int rows, int cols);

double *matssub (double dm *output, const double dm *a

double scalar, int rows, int cols);

long double *matssubd (long double dm *output,

const long double dm *a,

long double scalar, int rows, int cols);

Description

The matssub functions subtract a scalar from each element of the input
matrix a[][], and return the result in the matrix output[][]. The dimen-
sions of these matrices are a[rows][cols] and output[rows][cols]. The
functions return a pointer to the output matrix.

Error Conditions

The matssub functions do not return an error condition.

VisualDSP++ 5.0 2-207
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <matrix.h>

#define ROWS 4

#define COLS 8

double input[ROWS][COLS], *a_p = (double *) (&input);

double result[ROWS][COLS], *res_p = (double *) (&result);

double x;

matssub (res_p, a_p, x, ROWS, COLS);

See Also

cmatssub, matmsub, matsadd, matsmlt

 For the ADSP-21xxx SIMD processors the matssubf function (and
matssub, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-208 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

mean

Mean

Synopsis

#include <stats.h>

float meanf (const float in[], int length);

double mean (const double in[], int length);

long double meand (const long double in[], int length);

Description

The mean functions return the mean of the input array in[]. The length of
the input array is length.

Error Conditions

The mean functions do not return an error condition.

Example

#include <stats.h>

#define SIZE 256

double data[SIZE];

double result;

result = mean (data, SIZE);

VisualDSP++ 5.0 2-209
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

var

 For the ADSP-21xxx SIMD processors the meanf function (and
mean, if doubles are the same size as floats) uses SIMD by default.
Refer to “Implications of Using SIMD Mode” on page 2-23 for
more information.

Documented Library Functions

2-210 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

mu_compress

µ-law compression

Synopsis (Scalar-Valued)

#include <comm.h>

int mu_compress (int x);

Synopsis (Vector-Valued)

ADSP-210xx Processors

#include <filter.h>

int *mu_compress_vec (const int dm input[],

int dm output[],
int length);

ADSP-21xxx SIMD Processors

#include <filter.h>

int *mu_compress(const int dm input[],

int dm output[],
int length);

Description

The mu_compress functions take linear 14-bit speech samples and com-
press them according to ITU recommendation G.711 (µ-law definition).

The scalar version of mu_compress inputs a single data sample and
returns an 8-bit compressed output sample.

The vector versions of mu_compress take the array input, and return the
compressed 8-bit samples in the vector output. The parameter length
defines the size of both the input and output vectors. The functions return
a pointer to the output array.

VisualDSP++ 5.0 2-211
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

 The vector versions of mu_compress uses serial port 0 to perform
the companding on an ADSP-21160 processor; therefore, serial
port 0 must not be in use when this routine is called. The serial
port is not used by this function on any other ADSP-21xxx SIMD
architectures.

Error Conditions

The mu_compress functions do not return an error condition.

Example

Scalar-Valued

#include <comm.h>

int sample, compress;

compress = mu_compress (sample);

Vector-Valued

#include <filter.h>

#define NSAMPLES 50

int data [NSAMPLES], compressed[NSAMPLES];

#if defined(__SIMDSHARC__)

mu_compress (data, compressed, NSAMPLES);

#else

mu_compress_vec (data, compressed, NSAMPLES);

#endif

See Also

a_compress, mu_expand

Documented Library Functions

2-212 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

mu_expand

µ-law expansion

Synopsis (Scalar-Valued)

#include <comm.h>

int mu_expand (int x);

Synopsis (Vector-Valued)

ADSP-210xx Processors

#include <filter.h>

int *mu_expand_vec (const int dm input[],

int dm output[],
int length);

ADSP-21xxx SIMD Processors

#include <filter.h>

int *mu_expand(const int dm input[],

int dm output[],
int length);

Description

The mu_expand functions take 8-bit compressed speech samples and
expand them according to ITU recommendation G.711 (µ-law
definition).

The scalar version of mu_expand inputs a single data sample and returns a
linear 14-bit signed sample.

The vector version of mu_expand takes an array of 8-bit compressed speech
samples and expands it according to ITU recommendation G.711 (µ-law

VisualDSP++ 5.0 2-213
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

definition). The array returned contains linear 14-bit signed samples.
These functions returns a pointer to the output data array.

 The vector versions of mu_expand uses serial port 0 to perform the
companding on an ADSP-21160 processor. Therefore, serial port 0
must not be in use when this routine is called. The serial port is not
used by this function on any other ADSP-21xxx SIMD
architectures.

Error Conditions

The mu_expand functions do not return an error condition.

Example

Scalar-Valued

#include <comm.h>

int compressed_sample, expanded;

expanded = mu_expand (compressed_sample);

Vector-Valued

#include <filter.h>

#define NSAMPLES 50

int data [NSAMPLES];

int expanded_data[NSAMPLES];

#if defined(__SIMDSHARC__)

mu_expand (data, expanded_data, NSAMPLES);

#else

mu_expand_vec (data, expanded_data, NSAMPLES);

#endif

Documented Library Functions

2-214 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

a_expand, mu_compress

VisualDSP++ 5.0 2-215
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

norm

Normalization

Synopsis

#include <complex.h>

complex_float normf (complex_float a);

complex_double norm (complex_double a);

complex_long_double normd(complex_long_double a);

Description

The normalization functions normalize the complex input a and return
the result. Normalization of a complex number is defined as:

Algorithm

The following equations are the basis of the algorithm.

Error Conditions

The normalization functions return zero if cabs(a) is equal to zero.

Re c() Re a()
Re2 a() Im2 a()+

--=

Im c() Im a()
Re2 a() Im2 a()+

--=

Documented Library Functions

2-216 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <complex.h>

complex_double x = {2.0,-5.0};

complex_double z;

z = norm(x); /* z = (0.4472,-0.8944) */

See Also

No related function.

VisualDSP++ 5.0 2-217
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

polar

Construct from polar coordinates

Synopsis

#include <complex.h>

complex_float polarf (float mag, float phase);

complex_double polar (double mag, double phase);

complex_long_double polard (long double mag,

long double phase);

Description

These functions transform the polar coordinate, specified by the argu-
ments mag and phase, into a Cartesian coordinate and return the result as a
complex number in which the x-axis is represented by the real part, and
the y-axis by the imaginary part. The phase argument is interpreted as
radians.

Algorithm

The algorithm for transforming a polar coordinate into a Cartesian coor-
dinate is:

Re(c) = mag * cos(phase)

Im(c) = mag * sin(phase)

Error Conditions

The polar functions do not return any error conditions.

Documented Library Functions

2-218 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <complex.h>

#define PI 3.14159265

float magnitude = 2.0;

float phase = PI;

complex_float z;

z = polarf (magnitude,phase); /* z.re = -2.0, z.im = 0.0 */

See Also

arg, cartesian

VisualDSP++ 5.0 2-219
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

poll_flag_in

Test input flag

Synopsis

#include <processor_include.h>

int poll_flag_in (int flag, int mode);

Description

The poll_flag_in function tests the specified flag (0, 1, 2, or 3) for the
specified transition (0=low to high, 1=high to low, 2=flag high, 3=flag
low, 4=any transition, 5=read flag). The function returns a zero after the
specified transition has occurred in modes 0-3. In mode 4, it returns the
state of the flag after the transition. In mode 5, it returns the value of the
flag without waiting.

This function assumes that the flag direction in the MODE2 register is
already set as an input (the default state at reset).

Error Conditions

The poll_flag_in function returns a negative value for an invalid flag or
transition mode.

Table 2-24. poll_flag_in Macros and Values

Flag Macro Value Mode Macro Value

READ_FLAG0 0 FLAG_IN_LO_TO_HI 0

READ_FLAG1 1 FLAG_IN_HI_TO_LOW 1

READ_FLAG2 2 FLAG_IN_HI 2

READ_FLAG3 3 FLAG_IN_LOW 3

READ_FLAG3 3 FLAG_IN_TRANSITION 4

READ_FLAG3 3 RETURN_FLAG_STATE 5

Documented Library Functions

2-220 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Example

#include <processor_include.h>

poll_flag_in (0, 3);

/* return zero after transition has occurred */

See Also

interrupt, set_flag

VisualDSP++ 5.0 2-221
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

rfft

Real radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

complex_float *rfft (float dm input[],

float dm temp[],

complex_float dm output[],

const complex_float pm twiddle[],

int twiddle_stride,

int n);

Description

The rfft function transforms the time domain real input signal sequence
to the frequency domain by using the radix-2 Fast Fourier Transform
(FFT).

The size of the input array input and the temporary working buffer temp
must be at least n, where n represents the number of points in the FFT; n
must be a power of 2 and no smaller than 16. If the input data can be
overwritten, memory can be saved by setting the pointer of the temporary
array explicitly to the input array or to NULL. (In either case the input array
will also be used as a temporary working array.)

As the complex spectrum of a real FFT is symmetrical about the midpoint,
the rfft function will only generate the first (n/2)+1 points of the FFT,
and so the size of the output array output must be at least of length (n/2)
+ 1.

Documented Library Functions

2-222 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

After returning from the rfft function, the output array contains the fol-
lowing values:

• DC component of the signal in output[0].re (output[0].im = 0)

• First half of the complex spectrum in output[1] ...
output[(n/2)-1]

• Nyquist frequency in output[n/2].re (output[n/2].im = 0)

Refer to the Example section below to see how an application would con-
struct the full complex spectrum, using the symmetry of a real FFT.

The minimal size of the twiddle table must be n/2. A larger twiddle table
may be used, providing that the value of the twiddle table stride argument
twiddle_stride is set appropriately. If the size of the twiddle table is x,
then twiddle_stride must be set to (2*x)/n.

The library function twidfft (on page 2-258) can be used to compute the
required twiddle table. The coefficients generated are positive cosine coef-
ficients for the real part and negative sine coefficients for the imaginary
part.

 For the ADSP-21xxx SIMD processors the library also contains the
rfftf_2 function. (For more information, see “rfftf_2 (SHARC
SIMD Processors)” on page 2-227.) This function is an optimized
implementation of a real FFT using a fast radix-2 algorithm, capa-
ble of computing two real FFTs in parallel. The rfftf_2 function,
however, imposes certain memory alignment requirements that
may not be appropriate for some applications.

The function returns the address of the output array.

VisualDSP++ 5.0 2-223
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

Error Conditions

The rfft function does not return any error condition.

Example

#include <filter.h>

#include <complex.h>

#define FFTSIZE 32

float sigdata[FFTSIZE]; /* input signal */

complex_float r_output[FFTSIZE]; /* FFT of input signal */

complex_float i_output[FFTSIZE]; /* inverse of r_output */

complex_float i_temp[FFTSIZE]; /* temporary array */

complex_float c_temp[FFTSIZE]; /* temporary array */

float *r_temp = (float *) c_temp;

complex_float pm twiddle_table[FFTSIZE/2];

int i;

/* Initialize the twiddle table */

twidfft (twiddle_table,FFTSIZE);

X k() x n()W
N

nk

n 0=

N 1–

=

Documented Library Functions

2-224 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

/* Calculate the FFT of a real signal */

rfft (sigdata,r_temp,r_output,twiddle_table,1,FFTSIZE);

/* (rfft sets r_output[FFTSIZE/2] to the Nyquist) */

/* Add the 2nd half of the spectrum */

for (i = 1; i < (FFTSIZE/2); i++) {

r_output[FFTSIZE - i] = conjf (r_output[i]);

}

/* Calculate the inverse of the FFT */

ifft (r_output,i_temp,i_output,twiddle_table,1,FFTSIZE);

See Also

cfft, fft_magnitude, ifft, rfftf_2 (SHARC SIMD Processors), rfftN
(SHARC SIMD Processors), twidfft

 The rfft function makes use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

VisualDSP++ 5.0 2-225
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

rfft_mag (SHARC SIMD Processors)

rfft magnitude

Synopsis

#include <filter.h>

float *rfft_mag (complex_float dm input[],

float dm output[],

int fftsize);

float *fft_mag (complex_float dm input[],

float dm output[],

int fftsize);

Description

The rfft_mag function computes a normalized power spectrum from the
output signal generated by a rfftN function. The size of the signal and the
size of the power spectrum is fftsize/2.

The function returns a pointer to the output matrix.

The fft_mag function is equivalent to rfft_mag and is provided for com-
patibility with previous versions of VisualDSP++.

 When using the rfft_mag function, note that the generated power
spectrum will not contain the Nyquist frequency. In cases where
the Nyquist frequency is required, the fft_magnitude function
must be used in conjunction with the rfft function.

Documented Library Functions

2-226 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Algorithm

The algorithm used to calculate the normalized power spectrum is:

Error Conditions

The rfft_mag function does not return any error conditions.

Example

#include <filter.h>

#define N 64

float fft_input[N];

complex_float fft_output[N/2];

float spectrum[N/2];

rfft64 (fft_input, fft_output);

rfft_mag (fft_output, spectrum, N);

See Also

cfft_mag (SHARC SIMD Processors), fft_magnitude, fftf_magnitude
(SHARC SIMD Processors), rfftN (SHARC SIMD Processors)

 By default, this function uses SIMD. Refer to “Implications of
Using SIMD Mode” on page 2-23 for more information.

magnitude z()
2 Re az()2 Im az()2+

fftsize
-------------------------------------=

VisualDSP++ 5.0 2-227
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

rfftf_2 (SHARC SIMD Processors)

Fast parallel real radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

void rfftf_2 (float data_one_real[], float data_one_imag[],

float data_two_real[], float data_two_imag[],

const float twid_real[],

const float twid_imag[],

int n);

Description

The rfftf_2 function computes two n-point real radix-2 Fast Fourier
Transforms (FFT) using a decimation-in-frequency algorithm. The FFT
size n must be a power of 2 and not less than 64.

The array data_one_real contains the input to the first real FFT, while
data_two_real contains the input to the second real FFT. Both arrays are
expected to be of length n. For optimal performance, the arrays should be
located in different memory segments. Furthermore, the two input arrays
have to be aligned on an address boundary that is a multiple of the FFT
size n.

The arrays data_one_imag and data_two_imag of length n are used as tem-
porary workspace. At return, they contain the imaginary part of the
respective output data set. The arrays should be located in different mem-
ory segments.

The size of the twiddle table pointed to by twid_real and twid_imag must
be of size n/2. The library function twidfftf (on page 2-261) can be used
to compute the required twiddle table. The coefficients generated are
positive cosine coefficients for the real part and negative sine coefficients
for the imaginary part.

Documented Library Functions

2-228 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

 The function invokes the cfftf function, which has been imple-
mented to make highly efficient use of the processor’s SIMD
capabilities and long word addressing mode. The rfftf_2 function
therefore imposes the following restrictions:

• All the arrays that are passed to the function must be allocated in
internal memory. The DSP run-time library does not contain a ver-
sion of the function that can be used with data in external memory.

• Do not use the function with any application that relies on the
-reserve register[, register...] switch.

For more information, refer to refer to “Implications of Using
SIMD Mode” and “Using Data in External Memory”.

Error Conditions

The rfftf_2 function does not return an error condition.

Example

#include <filter.h>

#define FFT_SIZE 64

float dm twidtab_re[FFT_SIZE/2];

float pm twidtab_im[FFT_SIZE/2];

#pragma align 64

float dm fft1_re[FFT_SIZE];

float pm fft1_im[FFT_SIZE];

VisualDSP++ 5.0 2-229
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

#pragma align 64

float dm fft2_re[FFT_SIZE];

float pm fft2_im[FFT_SIZE];

twidfftf (twidtab_re, twidtab_im, FFT_SIZE);

rfftf_2(fft1_re, fft1_im,

fft2_re, fft2_im,

twidtab_re, twidtab_im, FFT_SIZE);

See Also

cfftf (SHARC SIMD Processors), fftf_magnitude (SHARC SIMD Proces-
sors), ifftf (SHARC SIMD Processors), rfft, rfftN (SHARC SIMD
Processors). twidfftf (SHARC SIMD Processors)

Documented Library Functions

2-230 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

rfftN

N-point real radix-2 Fast Fourier Transform

Synopsis

#include <trans.h>

float *rfft65536 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft32768 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft16384 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft8192 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft4096 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft2048 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft1024 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft512 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft256 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

VisualDSP++ 5.0 2-231
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

float *rfft128 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft64 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft32 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft16 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

float *rfft8 (const float dm real_input[],

float dm real_output[], float dm imag_output[]);

Description

Each of these rfftN functions are similar to the cfftN functions, except
that they only take real inputs. They compute the N-point radix-2 Fast
Fourier Transform (RFFT) of their floating-point input (where N is 8, 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, or
65536).

There are fourteen distinct functions in this set. All perform the same
function with same type and number of arguments. Their only difference
is the size of the arrays on which they operate.

Call a particular function by substituting the number of points for N; for
example, ft8 (r_inp, r_outp, i_outp);

The input to rfftN is a floating-point array of N points. If there are fewer
than N actual data points, you must pad the array with zeros to make N
samples. However, better results occur with less zero padding. The input
data should be windowed (if necessary) before calling the function because
no preprocessing is performed on the data.

Documented Library Functions

2-232 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

If the input data can be overwritten, then the rfftN functions allow the
array real_input to share the same memory as the array imag_output.
This improves memory usage with only a minimal run-time penalty.

The rfftN functions return a pointer to the real_output array.

 These library functions have not been optimized for SHARC
SIMD processors. Applications that run on SHARC SIMD proces-
sors should use the FFT functions defined in the header file
filter.h, and described under cfftN (SHARC SIMD Processors)
instead.

Error Conditions

The rfftN functions do not return any error conditions.

Example

#include <trans.h>

#define N 2048

float real_input[N];

float real_output[N], imag_output[N];

rfft2048 (real_input, real_output, imag_output);

See Also

cfftN, fft_magnitude, ifftN, rfft, rfftN (SHARC SIMD Processors)

 The rfftN functions make use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

VisualDSP++ 5.0 2-233
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

rfftN (SHARC SIMD Processors)

N-point real radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

complex_float *rfft65536 (float dm input[],

complex_float dm output[]);

complex_float *rfft32768 (float dm input[],

complex_float dm output[]);

complex_float *rfft16384 (float dm input[],

complex_float dm output[]);

complex_float *rfft8192 (float dm input[],

complex_float dm output[]);

complex_float *rfft4096 (float dm input[],

complex_float dm output[]);

complex_float *rfft2048 (float dm input[],

complex_float dm output[]);

complex_float *rfft1024 (float dm input[],

complex_float dm output[]);

complex_float *rfft512 (float dm input[],

complex_float dm output[]);

complex_float *rfft256 (float dm input[],

complex_float dm output[]);

Documented Library Functions

2-234 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

complex_float *rfft128 (float dm input[],

complex_float dm output[]);

complex_float *rfft64 (float dm input[],

complex_float dm output[]);

complex_float *rfft32 (float dm input[],

complex_float dm output[]);

complex_float *rfft16 (float dm input[],

complex_float dm output[]);

Description

The rfftN functions are defined in the header file filter.h. They have
been optimized to take advantage of the SIMD capabilities of the
ADSP-211xx, ADSP-212xx, ADSP-213xx , and ADSP-214xx processors.
They are therefore not supported by the ADSP-210xx processor family.
These FFT functions require complex arguments to ensure that the real
and imaginary parts are interleaved in memory and are therefore accessible
in a single cycle using the wider data bus of the processor.

Each of these rfftN functions are similar to the cfftN functions except
that they only take real inputs. They compute the N-point radix-2 Fast
Fourier Transform (RFFT) of their floating-point input (where N is 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, or
65536).

There are thirteen distinct functions in this set. All perform the same
function with the same type and number of arguments. The only differ-
ence between them is the size of the arrays on which they operate.

Call a particular function by substituting the number of points for N, as
in the following example.

rfft16 (input, output);

VisualDSP++ 5.0 2-235
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

The input to rfftN is a floating-point array of N points. If there are fewer
than N actual data points, you must pad the array with zeros to make N
samples. However, better results occur with less zero padding. The input
data should be windowed (if necessary) before calling the function because
no preprocessing is performed on the data. The rfftN functions will use
the input array as an intermediate workspace. If the input data is to be
preserved, the input array must be first copied to a safe location.

The complex frequency domain signal generated by the rfftN functions is
stored in the array output. Because the output signal is symmetric around
the midpoint of the frequency domain, the functions only generate N/2
output points.

 The rfftN functions do not calculate the Nyquist frequency (which
would normally located at output[N/2]). The rfft or cfftN func-
tions should be used in place of these functions if the Nyquist
frequency is required.

The rfftN functions return a pointer to the output array.

Error Conditions

The rfftN functions do not return any error conditions.

Example

#include <filter.h>

#define N 2048

float input[N];

complex_float output[N/2];

rfft2048 (input, output);

Documented Library Functions

2-236 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

See Also

cfftN (SHARC SIMD Processors), ifftN (SHARC SIMD Processors), rfft,
rfftN, rfftf_2 (SHARC SIMD Processors)

 By default, these functions use SIMD. Refer to “Implications of
Using SIMD Mode” on page 2-23 for more information.

VisualDSP++ 5.0 2-237
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

rms

Root mean square

Synopsis

#include <stats.h>

float rmsf (const float samples[], int sample_length);

double rms (const double samples[], int sample_length);

long double rmsd (const long double samples[],

int sample_length);

Description

The root mean square functions return the root mean square of the ele-
ments within the input array samples[]. The length of the input array is
sample_length.

Algorithm

The following equation is the basis of the algorithm.

where:
a = samples
n = sample_length

c

a
i
2

i 0=

n 1–

n
-----------------=

Documented Library Functions

2-238 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Error Conditions

The root mean square functions do not return an error condition.

Example

#include <stats.h>

#define SIZE 256

double data[SIZE];

double result;

result = rms (data, SIZE);

See Also

mean, var

 For the ADSP-21xxx SIMD processors the rmsf function (and rms,
if doubles are the same size as floats) uses SIMD by default. Refer
to “Implications of Using SIMD Mode” on page 2-23 for more
information.

VisualDSP++ 5.0 2-239
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

rsqrt

Reciprocal square root

Synopsis

#include <math.h>

float rsqrtf (float x);

double rsqrt (double x);

long double rsqrtd (long double x);

Description

The rsqrt functions return the reciprocal positive square root of their
argument.

Error Conditions

The rsqrt functions return zero for a negative input.

Example

#include <math.h>

double y;

y = rsqrt (2.0); /* y = 0.707 */

See Also

sqrt

Documented Library Functions

2-240 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

set_flag

Set ADSP-21xxx processor flags

Synopsis

#include <processor_include.h>

int set_flag (int flag, int mode);

Description

The set_flag function is used to set the ADSP-21xxx processor flags to
the desired output value.

The function accepts as input a flag number [0-3] and a mode. The mode
can be specified as a macro (defined in processor_include.h) or a value
[0-3].

In addition to setting the flag to the specified value, the function also sets
the MODE2 register to specify that the flag is used for output, not input.

If the TST_FLAG macro (or a 3) is specified as the mode, the current value
(0 or 1) of the flag is returned as the result of the function.

The set_flag function returns a zero upon success (except as noted in the
previous paragraph).

Table 2-25. Flag Function Macros and Values

Flag Macro Value Mode Macro Value

SET_FLAG0 0 SET_FLAG 0

SET_FLAG1 1 CLR_FLAG 1

SET_FLAG2 2 TGL_FLAG 2

SET_FLAG3 3 TST_FLAG 3

VisualDSP++ 5.0 2-241
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Error Conditions

The set_flag function returns a non-zero for an error.

Example

#include <processor_include.h>

set_flag (SET_FLAG0, CLR_FLAG);

set_flag (SET_FLAG0, SET_FLAG);

See Also

poll_flag_in

Documented Library Functions

2-242 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

set_semaphore

Set bus lock semaphore

Synopsis

#include <processor_include.h>

int set_semaphore (void dm *semaphore,

int set_value,
int timeout);

Description

The set_semaphore function is used to control bus lock in multiprocessor
ADSP-21xxx systems.

• A value of -1 is returned if the bus is locked and the bus lock time-
out is exceeded.

• A value of 0 (zero) is returned if the bus is not locked and a sema-
phore is set.

Error Conditions

The set_semaphore function does not return an error condition.

See Also

test_and_set_semaphore

VisualDSP++ 5.0 2-243
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

test_and_set_semaphore

Test and set bus lock semaphore

Synopsis

#include <processor_include.h>

int test_and_set_semaphore(void *_semaphore,
int _test_value,

int _set_value,

int _timeout);

Description

The test_and_set_semaphore function is used to control bus lock in mul-
tiprocessor ADSP-21xxx systems. The semaphore is only changed if the
value of the semaphore is equal to _test_value.

The following section lists the return values:

• A value of -1 is returned if the bus is not locked and a semaphore is
set.

• A value of 0 (zero) is returned if the bus is not locked and a sema-
phore is set.

• A value of 1 is returned if the value of the semaphore is not equal to
_test_value.

Error Conditions

The test_and_set_semaphore function does not return an error
condition.

See Also

set_semaphore

Documented Library Functions

2-244 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

timer_off

Disable ADSP-21xxx processor timer

Synopsis

#include <processor_include.h>

unsigned int timer_off (void);

Description

The timer_off function disables the ADSP-21xxx timer and returns the
current value of the TCOUNT register.

Error Conditions

The timer_off function does not return an error condition.

Example

#include <processor_include.h>

unsigned int hold_tcount;

hold_tcount = timer_off ();

/* hold_tcount contains value of TCOUNT */

/* register AFTER timer has stopped */

VisualDSP++ 5.0 2-245
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

timer_on, timer_set

 The timer_off function is not available for the ADSP-21065L.
Refer to timer0_off, timer1_off (ADSP-21065L Processor Only) to
disable the ADSP-21065L programmable timers.

Also, the function is supplied only as an inlined procedure; that is,
the compiler substitutes the appropriate statements for any refer-
ence to the procedure. Therefore, any source that references
timer_off must include the processor_include.h header file.

Documented Library Functions

2-246 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

timer0_off, timer1_off (ADSP-21065L Processor Only)

Disable ADSP-21065L processor timers

Synopsis

#include <processor_include.h>

unsigned int timer0_off (void);

unsigned int timer1_off (void);

Description

The timer0_off and timer1_off functions disable the ADSP-21065L pro-
grammable timers and return the current value of the TCOUNT0 and
TCOUNT1 registers, respectively.

Error Conditions

The timer0_off and timer1_off functions do not return an error
condition.

Example

#include <processor_include.h>

unsigned int hold_tcount;

hold_tcount = timer0_off ();

/* hold_tcount contains value of TCOUNT0 */

/* register AFTER timer 0 has stopped */

VisualDSP++ 5.0 2-247
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

timer0_on, timer1_on (ADSP-21065L Processor), timer0_off, timer1_off
(ADSP-21065L Processor Only)

 The functions are supplied only as inlined procedures; that is, the
compiler substitutes the appropriate statements for any reference to
the procedures. Therefore, any source that references timer0_off
or timer1_off must include the processor_include.h header file.

Documented Library Functions

2-248 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

timer_on

Enable ADSP-21xxx processor timer

Synopsis

#include <processor_include.h>

unsigned int timer_on (void);

Description

The timer_on function enables the ADSP-21xxx timer and returns the
current value of the TCOUNT register.

Error Conditions

The timer_on function does not return an error condition.

Example

#include <processor_include.h>

unsigned int hold_tcount;

hold_tcount = timer_on ();

/* hold_tcount contains value of TCOUNT */

/* register when timer starts */

VisualDSP++ 5.0 2-249
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

timer_off, timer_set

 The timer_on function is not available for the ADSP-21065L
processor. Refer to “timer0_on, timer1_on (ADSP-21065L Proces-
sor)” on page 2-252 to enable the ADSP-21065L programmable
timers.

Also, the function is supplied only as an inlined procedure; that is,
the compiler substitutes the appropriate statements for any refer-
ence to the procedure. Therefore, any source that references
timer_on must include the processor_include.h header file.

Documented Library Functions

2-250 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

timer_set

Initialize ADSP-21xxx processor timer

Synopsis

#include <processor_include.h>

int timer_set (unsigned int tperiod,

unsigned int tcount);

Description

The timer_set function sets the ADSP-21xxx timer registers TPERIOD and
TCOUNT. The function returns a 1 if the timer is enabled, or a zero if the
timer is disabled.

 Each interrupt call takes approximately 50 cycles on entrance and
50 cycles on return. If TPERIOD and TCOUNT registers are set too low,
you may incur an initializing overhead that could create an infinite
loop.

Error Conditions

The timer_set function does not return an error condition.

Example

#include <processor_include.h>

if (timer_set (1000, 1000) != 1)

timer_on (); /* enable timer */

VisualDSP++ 5.0 2-251
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

timer_on, timer_off

 The timer_set function is not available for the ADSP-21065L.
Refer to timer_set to initialize the ADSP-21065L programmable
timers.

Also, the function is supplied only as an inlined procedure; that is,
the compiler substitutes the appropriate statements for any refer-
ence to the procedure. Therefore, any source that references
timer_set must include the processor_include.h header file.

Documented Library Functions

2-252 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

timer0_on, timer1_on (ADSP-21065L Processor)

Enable ADSP-21065L processor timers

Synopsis

#include <processor_include.h>

unsigned int timer0_on (void);

unsigned int timer1_on (void);

Description

The timer0_on and timer1_on functions enable the ADSP-21065L pro-
grammable timers and return the current value of the TCOUNT0 and
TCOUNT1 registers, respectively.

Error Conditions

The timer0_on and timer1_on functions do not return an error condition.

Example

#include <processor_include.h>

unsigned int hold_tcount;

hold_tcount = timer0_on ();

/* hold_tcount contains value of TCOUNT0 */

/* register when timer 0 starts */

VisualDSP++ 5.0 2-253
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

See Also

timer0_off, timer1_off (ADSP-21065L Processor Only), timer0_set,
timer1_set

 The functions are supplied only as inlined procedures; that is, the
compiler substitutes the appropriate statements for any reference to
the procedures. Therefore, any source that references either
timer0_on or timer1_on must include the processor_include.h
header file.

Documented Library Functions

2-254 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

timer0_set, timer1_set

Initialize ADSP-21065L processor timers

Synopsis

#include <processor_include.h>

int timer0_set (unsigned int tperiod,

unsigned int tcount,

unsigned int tscale);

int timer1_set (unsigned int tperiod,

unsigned int tcount,

unsigned int tscale);

Description

The timer0_set and timer1_set functions set the ADSP-21065L timer
registers TPERIOD0, TCOUNT0, TPWIDTH0 and TPERIOD1, TCOUNT1, TPWIDTH1
respectively. The functions return a 1 if the corresponding timer is
enabled, or a zero if the timer is disabled.

 Each interrupt call takes approximately 50 cycles on entry and 50
cycles on return. If TPERIOD and TCOUNT registers are set too low,
you may incur an initializing overhead that could create an infinite
loop.

Error Conditions

The timer0_set and timer1_set functions do not return an error
condition.

VisualDSP++ 5.0 2-255
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <processor_include.h>

unsigned int hold_tcount;

if (timer0_set (200, 1, 150) != 1)

timer0_on (); /* enable timer 0 */

See Also

timer0_off, timer1_off (ADSP-21065L Processor Only), timer0_on,
timer1_on (ADSP-21065L Processor)

 The functions are supplied only as inlined procedures; that is, the
compiler substitutes the appropriate statements for any reference to
the procedures. Therefore, any source that references either
timer0_set or timer1_set must include the processor_include.h
header file.

Documented Library Functions

2-256 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

transpm

Matrix transpose

Synopsis

#include <matrix.h>

float *transpmf (float dm *output,

const float dm *a, int rows, int cols);

double *transpm (double dm *output,

const double dm *a, int rows, int cols);

long double *transpmd (long double dm *output,

const long double dm *a,

int rows, int cols);

Description

The transpm functions compute the linear algebraic transpose of the input
matrix a[][], and return the result in the matrix output[][]. The dimen-
sions of these matrices are a[rows][cols], and output[cols][rows].

The functions return a pointer to the output matrix.

Algorithm

The algorithm for the linear algebraic transpose of a matrix is defined as:

cji = aij

Error Conditions

The transpm functions do not return an error condition.

VisualDSP++ 5.0 2-257
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <matrix.h>

#define ROWS 4

#define COLS 8

float a[ROWS][COLS];

float a_transpose[COLS][ROWS];

transpmf ((float *)(a_transpose),(float *)(a), ROWS, COLS);

See Also

No related function.

 The transpm functions make use of circular buffers. Refer to the
“Interrupts and Circular Buffering” section of Chapter 1, “Com-
piler”, in the VisualDSP++ 5.0 C/C++ Compiler Manual for
SHARC Processors for information on interrupt dispatcher consid-
erations when circular buffers are used within an application.

Documented Library Functions

2-258 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

twidfft

Generate FFT twiddle factors

Synopsis

#include <filter.h>

complex_float *twidfft(complex_float pm twiddle_tab[],

int fftsize);

Description

The twidfft function calculates complex twiddle coefficients for an FFT
of size fftsize and returns the coefficients in the vector twiddle_tab. The
vector is known as a twiddle table; it contains pairs of cosine and sine val-
ues and is used by an FFT function to calculate a Fast Fourier Transform.
The table generated by this function may be used by any of the FFT func-
tions cfft, ifft, and rfft. A twiddle table of a given size will contain
constant values. Typically, such a table is generated only once during the
development cycle of an application and is thereafter preserved by the
application in some suitable form.

An application that computes FFTs of different sizes does not require
multiple twiddle tables. A single twiddle table can be used to calculate the
FFTs, provided that the table is created for the largest FFT that the appli-
cation expects to generate. Each of the FFT functions cfft, ifft, and
rfft have a twiddle stride argument that the application would set to 1
when it is generating an FFT with the largest number of data points. To
generate an FFT with half the number of these points, the application
would call the FFT functions with the twiddle stride argument set to 2; to
generate an FFT with a quarter of the largest number of points, it would
set the twiddle stride to 4, and so on.

The function returns a pointer to twiddle_tab.

VisualDSP++ 5.0 2-259
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Algorithm

This function takes FFT length fft_size as an input parameter and gen-
erates the lookup table of complex twiddle coefficients. The samples are:

where

n = fft_size; k = {0, 1, 2, ..., n/2-1}

Error Conditions

The twidfft function does not return an error condition.

Example

#include <filter.h>

#define N_FFT 128

#define N_FFT2 32

complex_float in1[N_FFT];

complex_float out1[N_FFT];

complex_float in2[N_FFT2];

complex_float out2[N_FFT2];

complex_float temp[N_FFT];

complex_float pm twid_tab[N_FFT / 2];

twid_re(k)
2π
n

------k
 cos=

twid_im(k)
2π
n

------k
 sin=

Documented Library Functions

2-260 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

twidfft (twid_tab, N_FFT);

cfft (in1, temp, out1, twid_tab, 1, N_FFT);

cfft (in2, temp, out2, twid_tab,

(N_FFT / N_FFT2) /* twiddle stride 4 */, N_FFT2);

See Also

cfft, ifft, rfft, twidfftf (SHARC SIMD Processors)

VisualDSP++ 5.0 2-261
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

twidfftf (SHARC SIMD Processors)

Generate FFT twiddle factors for a fast FFT

Synopsis

#include <filter.h>

void twidfftf(float twid_real[], float twid_imag[], int fftsize);

Description

The twidfftf function generates complex twiddle factors for one of the
FFT functions cfftf, ifftf, or rfftf_2. The generated twiddle factors
are sets of positive cosine coefficients and negative sine coefficients that
the FFT functions will use to calculate the FFT. The function will store
the cosine coefficients in the vector twid_real and the sine coefficients in
the vector twid_imag. The size of both the vectors should be fftsize/2,
where fftsize represents the size of the FFT and must be a power of 2
and at least 64.

 For maximal efficiency, the cfftf, ifftf, and rfftf_2 functions
require that the vectors twid_real and twid_imag are allocated in
separate memory blocks.

The twiddle factors that are generated for a specific size of FFT are con-
stant values. Typically, the factors are generated only once during the
development cycle of an application and are thereafter preserved by the
application in some suitable form.

Documented Library Functions

2-262 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

Algorithm

This function takes FFT length fft_size as an input parameter and gen-
erates the lookup table of complex twiddle coefficients. The samples are:

where

n = fft_size; k = {0, 1, 2, ..., n/2-1}

Error Conditions

The twidfftf function does not return an error condition.

Example

#include <filter.h>

#define FFT_SIZE 1024

section("seg_dmdata") float twid_r[FFT_SIZE/2];

section("seg_pmdata") float twid_i[FFT_SIZE/2];

#pragma align 1024

section("seg_dmdata") float input_r[FFT_SIZE];

#pragma align 1024

section("seg_pmdata") float input_i[FFT_SIZE];

section("seg_dmdata") float temp_r[FFT_SIZE];

section("seg_pmdata") float temp_i[FFT_SIZE];

twid_re(k)
2π
n

------k
 cos=

twid_im(k)
2π
n

------k
 sin=

VisualDSP++ 5.0 2-263
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

twidfftf(twid_r,twid_i,FFT_SIZE);

cfftf(input_r,input_i,

temp_r,temp_i,

twid_r,twid_i,FFT_SIZE);

See Also

cfftf (SHARC SIMD Processors), ifftf (SHARC SIMD Processors), rfftf_2
(SHARC SIMD Processors), twidfft

Documented Library Functions

2-264 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

var

Variance

Synopsis

#include <stats.h>

float varf (const float a[], int n);

double var (const double a[], int n);

long double vard (const long double a[], int n);

Description

The variance functions return the variance of the input array a[]. The
length of the input array is n.

Algorithm

The following equation is the basis of the algorithm.

Error Conditions

The variance functions do not return an error condition.

c

n ai
2

i 0=

n 1–

 a1
i 0=

n 1–

 2

–

n n 1–()
---=

VisualDSP++ 5.0 2-265
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <stats.h>

#define SIZE 256

double data[SIZE];

double result;

result = var (data, SIZE);

See Also

mean

 For the ADSP-21xxx SIMD processors the varf function (and var,
if doubles are the same size as floats) uses SIMD by default. Refer
to “Implications of Using SIMD Mode” on page 2-23 for more
information.

Documented Library Functions

2-266 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

vecdot

Vector dot product

Synopsis

#include <vector.h>

float vecdotf (const float dm a[],

const float dm b[], int samples);

double vecdot (const double dm a[],

const double dm b[], int samples);

long double vecdotd (const long double dm a[],

const long double dm b[], int samples);

Description

The vecdot functions compute the dot product of the vectors a[] and b[],
which are samples in size. They return the scalar result.

Algorithm

The following equation is the basis of the algorithm.

Error Conditions

The vecdot functions do not return an error condition.

return ai bi•
i 0=

samples 1–

=

VisualDSP++ 5.0 2-267
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <vector.h>

#define N 100

double x[N], y[N];

double answer;

answer = vecdot (x, y, N);

See Also

cvecdot

 For the ADSP-21xxx SIMD processors the vecdotf function (and
vecdot, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-268 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

vecsadd

Vector + scalar addition

Synopsis

#include <vector.h>

float *vecsaddf (const float dm a[], float scalar,

float dm output[], int samples);

double *vecsadd (const double dm a[], double scalar,

double dm output[], int samples);

long double *vecsaddd (const long double dm a[],

long double scalar,

long double dm output[],

int samples);

Description

The vecsadd functions compute the sum of each element of the vector
a[], added to the scalar. Both the input and output vectors are samples in
size. The functions return a pointer to the output vector.

Error Conditions

The vecsadd functions do not return an error condition.

VisualDSP++ 5.0 2-269
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <vector.h>

#define N 100

double input[N], result[N];

double x;

vecsadd (input, x, result, N);

See Also

cvecsadd, vecsmlt, vecssub, vecvadd

 For the ADSP-21xxx SIMD processors the vecsaddf function (and
vecsadd, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-270 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

vecsmlt

Vector * scalar multiplication

Synopsis

#include <vector.h>

float *vecsmltf (const float dm a[], float scalar,

float dm output[], int samples);

double *vecsmlt (const double dm a[], double scalar,

 double dm output[], int samples);

long double *vecsmltd (const long double dm a[],

long double scalar,

long double dm output[],

int samples);

Description

The vecsmlt functions compute the product of each element of the vector
a[], multiplied by the scalar. Both the input and output vectors are
samples in size. The functions return a pointer to the output vector.

Error Conditions

The vecsmlt functions do not return an error condition.

VisualDSP++ 5.0 2-271
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <vector.h>

#define N 100

double input[N], result[N];

double x;

vecsmlt (input, x, result, N);

See Also

cvecsmlt, vecsadd, vecssub, vecvmlt

 For the ADSP-21xxx SIMD processors the vecsmltf function (and
vecsmlt, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-272 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

vecssub

Vector – scalar subtraction

Synopsis

#include <vector.h>

float *vecssubf (const float dm a[], float scalar,

float dm output[], int samples);

double *vecssub (const double dm a[], double scalar,

double dm output[], int samples);

long double *vecssubd (const long double dm a[],

long double scalar,

long double dm output[],

int samples);

Description

The vecssub functions compute the difference of each element of the vec-
tor a[], minus the scalar. Both the input and output vectors are samples
in size. The functions return a pointer to the output vector.

Error Conditions

The vecssub functions do not return an error condition.

VisualDSP++ 5.0 2-273
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <vector.h>

#define N 100

double input[N], result[N];

double x;

vecssub (input, x, result, N);

See Also

cvecssub, vecsadd, vecsmlt, vecvsub

 For the ADSP-21xxx SIMD processors the vecssubf function (and
vecssub, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-274 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

vecvadd

Vector + vector addition

Synopsis

#include <vector.h>

float *vecvaddf (const float dm a[], const float dm b[],

float dm output[], int samples);

double *vecvadd (const double dm a[], const double dm b[],

double dm output[], int samples);

long double *vecvaddd (const long double dm a[],

const long double dm b[],

long double dm output[],

int samples);

Description

The vecvadd functions compute the sum of each of the elements of the
vectors a[] and b[], and store the result in the output vector. All three
vectors are samples in size. The functions return a pointer to the output
vector.

Error Conditions

The vecvadd functions do not return an error condition.

VisualDSP++ 5.0 2-275
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <vector.h>

#define N 100

double input_1[N];

double input_2[N], result[N];

vecvadd (input_1, input_2, result, N);

See Also

cvecvadd, vecsadd, vecvmlt, vecvsub

 For the ADSP-21xxx SIMD processors the vecvaddf function (and
vecvadd, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-276 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

vecvmlt

Vector * vector multiplication

Synopsis

#include <vector.h>

float *vecvmltf (const float dm a[], const float dm b[],

float dm output[], int samples);

double *vecvmlt (const double dm a[], const double dm b[],

double dm output[], int samples);

long double *vecvmltd (const long double dm a[],

const long double dm b[],

long double dm output[],

int samples);

Description

The vecvmlt functions compute the product of each of the elements of the
vectors a[] and b[], and store the result in the output vector. All three
vectors are samples in size. The functions return a pointer to the output
vector.

Error Conditions

The vecvmlt functions do not return an error condition.

VisualDSP++ 5.0 2-277
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <vector.h>

#define N 100

double input_1[N];

double input_2[N], result[N];

vecvmlt (input_1, input_2, result, N);

See Also

cvecvmlt, vecsmlt, vecvadd, vecvsub

 For the ADSP-21xxx SIMD processors the vecvmltf function (and
vecvmlt, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-278 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

vecvsub

Vector – vector subtraction

Synopsis

#include <vector.h>

float *vecvsubf (const float dm a[], const float dm b[],

float dm output[], int samples);

double *vecvsub (const double dm a[], const double dm b[],

double dm output[], int samples);

long double *vecvsubd (const long double dm a[],

const long double dm b[],

long double dm output[],

int samples);

Description

The vecvsub functions compute the difference of each of the elements of
the vectors a[] and b[], and store the result in the output vector. All three
vectors are samples in size. The functions return a pointer to the output
vector.

Error Conditions

The vecvsub functions do not return an error condition.

VisualDSP++ 5.0 2-279
Run-Time Library Manual for SHARC Processors

DSP Run-Time Library

Example

#include <vector.h>

#define N 100

double input_1[N];

double input_2[N], result[N];

vecvsub (input_1, input_2, result, N);

See Also

cvecvsub, vecssub, vecvadd, vecvmlt

 For the ADSP-21xxx SIMD processors the vecvsubf function (and
vecvsub, if doubles are the same size as floats) uses SIMD by
default. Refer to “Implications of Using SIMD Mode” on
page 2-23 for more information.

Documented Library Functions

2-280 VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors

zero_cross

Count zero crossings

Synopsis

#include <stats.h>

int zero_crossf (const float in[], int length);

int zero_cross (const double in[], int length);

int zero_crossd (const long double in[], int length);

Description

The zero_cross functions return the number of times that a signal repre-
sented in the input array in[] crosses over the zero line. If all the input
values are either positive or zero, or they are all either negative or zero,
then the functions return a zero.

Error Conditions

The zero_cross functions do not return an error condition.

Example

#include <stats.h>

#define SIZE 256

double input[SIZE];

int result;

result = zero_cross (input, SIZE);

See Also

No related function.

VisualDSP++ 5.0 I-1
 Run-Time Library Manual for SHARC Processors

I INDEX

Numerics
21020.h header file, 2-18
21060.h header file, 2-18
21065l.h header file, 2-18
21160.h header file, 2-18
21161.h header file, 2-18
21261.h header file, 2-18
21262.h header file, 2-18
21266.h header file, 2-18
21267.h header file, 2-18
21363.h header file, 2-18
21364.h header file, 2-18
21365.h header file, 2-18
21366.h header file, 2-18
21367.h header file, 2-18
21368.h header file, 2-18
21369.h header file, 2-18
21371.h header file, 2-18
21375.h header file, 2-18
21462.h header file, 2-18
21465.h header file, 2-18
21467.h header file, 2-18
21469.h header file, 2-18
21479.h header file, 2-18
21489.h header file, 2-18

A
abend. See abort function
abort (abnormal program end) function,

1-80
Abridged C++ library, 1-41

abs (absolute value, int) function, 1-81
absfx (absolute value) function, 1-82
absolute value. See abs, fabs, labs functions
a_compress function, 2-32
a_compress_vec (A-law compression)

function, 2-32
acos (arc cosine) functions, 1-84
add_devtab_entry function, 1-65
adi_types.h header file, 1-20
ADSP-20120 processor, built-in DSP

functions, 2-22
ADSP-21065L programmable timers

disabling, 2-246
enabling, 2-252
initializing, 2-254

ADSP-2106x functions
cartesian, 2-55
cfftN, 2-66
fminf, 2-148
ifftN, 2-177, 2-181
polar, 2-217
timer0_off, 2-246
timer0_on, 2-252
timer0_set, 2-254
timer1_off, 2-246
timer1_on, 2-252
timer1_set, 2-254

ADSP-2106x processors
built-in DSP functions, 2-22
serial ports, 2-19

Index

I-2 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

ADSP-2116x/2126x/2136x functions
a_compress, 2-32
a_compress_vec, 2-32
a_expand, 2-34
a_expand_vec, 2-34
alog, 2-37
alog10, 2-38
arg, 2-39
autocoh, 2-41
autocorr, 2-43
biquad, 2-45
cabs, 2-52
cadd, 2-54
cexp, 2-59
cfft, 2-61
cfftf, 2-73
cfft_mag, 2-64
cfftN, 2-70
cmatmadd, 2-80
cmatmmlt, 2-82
cmatmsub, 2-85
cmatsadd, 2-87
cmatsmlt, 2-89
cmatssub, 2-91
cmlt, 2-93
conj, 2-94
convolve, 2-95
copysign, 2-97
cot, 2-98
crosscoh, 2-100
crosscorr, 2-103
csub (complex subtraction), 2-106
cvecdot, 2-107
cvecsadd, 2-109
cvecsmlt, 2-111
cvecssub, 2-113
cvecvadd, 2-115
cvecvmlt, 2-117
cvecvsub, 2-119
dma_disable, 2-121

ADSP-21xxx functions (continued)
dma_enable, 2-122
dma_setup, 2-123
dma_status, 2-124
favg, 2-125
fclip, 2-126
fftf_magnitude, 2-131
fft_magnitude, 2-127
fir, 2-134
fir_decima, 2-138
fir_interp, 2-142
fmax, 2-147
fmin, 2-148
histogram, 2-168
idle, 2-170
ifft, 2-171
iir, 2-184
matinv, 2-193
matmadd, 2-195
matmmlt, 2-197
matsadd, 2-202
matsmlt, 2-204
matssub, 2-206
matsub, 2-200
mean, 2-208
mu_compress, 2-210
mu_expand, 2-212
norm, 2-215
polar, 2-217
poll_flag_in, 2-219
rfft, 2-221
rfftf_2, 2-227
rfft_mag, 2-225
rfftN, 2-230, 2-233
rms, 2-237
rsqrt, 2-239
set_flag, 2-240
set_semaphore, 2-242
SIMD execution model, 2-71, 2-182,

2-234

VisualDSP++ 5.0 I-3
 Run-Time Library Manual for SHARC Processors

Index

ADSP-21xxx functions (continued)
test_and_set_semaphore, 2-243
timer_off, 2-244
timer_on, 2-248
timer_set, 2-250
transpm, 2-256
twidfftf, 2-258, 2-261
var, 2-264
vecdot, 2-266
vecsadd, 2-268
vecsmlt, 2-270
vecssub, 2-272
vecvadd, 2-274
vecvmlt, 2-276
vecvsub, 2-278
zero_cross, 2-280

ADSP-2116x/2126x/2136x processors
DSP run-time library reference, 2-31
SIMD mode, 2-23

a_expand (A-law expansion) function,
2-34, 2-35

A-law
compression function, ADSP-2106x

DSPs, 2-32
compression function, ADSP-21160

DSP, 2-32
expansion function, ADSP-21160 DSP,

2-34
A-law (companders), ADSP-2106x/21020,

2-8
algebraic functions. See math functions
algorithm header file, 1-46
allocate memory. See calloc, free, malloc,

realloc functions
alog10 functions, 2-38
alog functions, 2-37
alphabetic character test. See isalpha

function
alphanumeric character test. See isalnum

function

anti-log
base 10 functions, 2-38
functions, 2-37

arg (get phase of a complex number)
functions, 2-39

argument list
formatting into a character array, 1-373
formatting into n-character array, 1-371

ASCII string. See atof, atoi, atol, atold
functions

asctime (convert broken-down time into
string) function, 1-37, 1-85, 1-128

asin (arc sine) functions, 1-87
asm_sprt.h header file, 2-7
assert.h header file, 1-20
assert macro, 1-20
atan2 (arc tangent division) functions, 1-89
atan (arc tangent) functions, 1-88
atexit (select exit) function, 1-90
atof (convert string to double) function,

1-91
atoi (string to integer) function, 1-94
atold (convert string to long double)

function, 1-96
atoll (convert string to long long integer)

function, 1-99
atol (string to long integer) function, 1-95
autocoh (autocoherence) functions, 2-41
autocorr (autocorrelation of a signal)

functions, 2-43
average (mean of 2 int) function, 1-100

B
base 10, anti-log functions, 2-38
basic cycle counting, 1-49
benchmarking C-compiled code, 1-57
binary stream, 1-161
bin_size parameter, 2-168
biquad function, 2-46
bit definitions, processor-specific, 2-10

Index

I-4 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

bitsfx (bitwise fixed-point to integer
conversion) function, 1-101

BITS_PER_WORD constant, 1-70
broken-down time

gmtime, 1-190
localtime, 1-247
mktime, 1-261
strftime, 1-321
time.h header file, 1-35

bsearch (binary search in sorted array)
function, 1-102

buffering, for a file or stream, 1-298
buf field, 1-73
BUFSIZ macro, 1-161
built-in functions

ADSP-20120 processor, 2-22
ADSP-2106x processors, 2-22
C compiler, 1-39

bus lock, controlling, 2-242

C
C++

Abridged Library, 1-41
run-time library with exception handling

support, 1-5
cabs (complex absolute value) functions,

2-52
cadd (complex addition) functions, 2-54
calendar time, 1-35, 1-357
calling C/C++ run-time library functions,

1-3
calloc (allocate initialized memory)

function, 1-105
cartesian (cartesian to polar) functions,

2-55
cartesian number phase, 2-39
C-compiled code, benchmarking, 1-57

C/C++ run-time libraries
ADSP-21020 and ADSP-2106x DSPs,

1-5
ADSP-2116x DSPs, 1-6
ADSP-212xx DSPs, 1-8
ADSP-213xx DSPs, 1-10

C/C++ run-time library, versions of, 1-4
C/C++ run-time library functions, calling,

1-3
C/C++ run-time library guide, 1-2 to 1-48
Cdef*.h header files, 2-11
cdiv (complex division) functions, 2-57
ceil (ceiling) functions, 1-107
cexp (complex exponential) functions, 2-59
cfft (complex radix-2 FFT) function, 2-61
cfftf (fast N point complex input FFT)

function, 2-73
cfft_mag (cfft magnitude) function, 2-64
cfftN (N-point complex input FFT)

functions, 2-66, 2-70
character string search, recursive. See strrchr

function
character string search. See strchr function
circindex (circular buffer operation on loop

index) function, 2-76
circptr (circular buffer operation on

pointer) function, 2-78
circular buffers

operation, on a pointer, 2-78
operation, on loop index, 2-76

clearerr (clear error indicator) function,
1-118

clear_interrupt (clear pending) function,
1-108

clip (x by y, int) function, 1-120
clock (processor time) function, 1-54, 1-58,

1-121
CLOCKS_PER_SEC macro, 1-35, 1-54,

1-56
clock_t data type, 1-35, 1-54, 1-121

VisualDSP++ 5.0 I-5
 Run-Time Library Manual for SHARC Processors

Index

close function, 1-62
cmatmadd (complex matrix + matrix

addition) functions, 2-80
cmatmmlt (complex matrix matrix

multiplication) functions, 2-82
cmatmsub (complex matrix - matrix

subtraction) functions, 2-85
cmatrix.h header file, 2-7
cmatsadd (complex matrix scalar addition)

functions, 2-87
cmatsmlt (complex matrix scalar

multiplication) function, 2-89
cmatssub (complex matrix scalar

subtraction) functions, 2-91
cmlt (complex multiplication) functions,

2-93
comm.h header file, 2-12
compare memory range. See memcmp

function
compare strings. See strcmp, strcoll, strcspn,

strpbrk, strncmp, strstr functions
complex

addition functions, 2-54
conjugate function, 2-94
division functions, 2-57
exponential function, 2-59
matrix functions, 2-7
matrix matrix addition functions, 2-80
matrix matrix multiplication functions,

2-82
matrix matrix subtraction function, 2-85
matrix scalar addition function, 2-87
matrix scalar multiplication function,

2-89
multiplication functions, 2-93
number (phase of), 2-39
radix-2 Fast Fourier transform, 2-61
subtraction functions, 2-106
vector dot product function, 2-107
vector functions, 2-9

complex_float operator, 1-42
complex.h header file

ADSP-2106x/21020 DSPs, 2-8
embedded C++ header fle, 1-42

complex_long_double operator, 1-42
concatenate, string. See strcat, strncat

function
conj (complex conjugate) functions, 2-94
constructs, from polar coordinates (polar

function), 2-217
control character test. See iscntrl function
conversion specifiers, 1-156, 1-321
convert, characters. See tolower, toupper

functions
convert, strings to long integer. See atof,

atoi, atol, strtok, strtol, strtoul,
functions

convolution, of input vectors, 2-95
convolve (convolution) function, 2-95
copy, string. See strcpy, strncpy function
copy memory range. See memcpy function
copysign functions, 2-97
cos (cosine) functions, 1-123
cosh (hyperbolic cosine) functions, 1-124
cot (cotangent) functions, 2-98
countlsfx (count leading sign or zero bits)

function, 1-126
count_ones (count one bits in word)

function, 1-125
crosscoh (cross-coherence) functions,

2-100
crosscorr (cross-correlation) functions,

2-103
C run-time library functions

dual memory, 1-40
interrupt-safe versions, 1-37

C run-time library reference, 1-79 to 1-366
csub (complex subtraction) functions,

2-106

Index

I-6 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

ctime (convert calendar time into string)
function, 1-85, 1-128

C-type functions
isalnum, 1-211
isalpha, 1-212
iscntrl, 1-213
isdigit, 1-214
isgraph, 1-215
islower, 1-216, 1-218
isprint, 1-221
ispunct, 1-222
isspace, 1-223
isupper, 1-225
isxdigit, 1-226
tolower, 1-358
toupper, 1-359

ctype.h header file, 1-21, 1-74, 2-26
customer support, xxv
cvecdot (complex vector dot product)

functions, 2-107
cvecsadd (complex vector scalar addition)

functions, 2-109
cvecsmlt (complex vector scalar

multiplication) functions, 2-111
cvecssub (complex vector scalar

subtraction) functions, 2-113
cvector.h header file, 2-9
cvecvadd (complex vector addition)

functions, 2-115
cvecvmlt (complex vector multiplication)

functions, 2-117
cvecvsub (complex vector subtraction)

functions, 2-119
cycle_count.h header file, 1-21, 1-49
cycle counting, with statistics, 1-51
cycle count register, 1-49, 1-51, 1-57
cycle counts, 1-21, 1-54
cycles.h header file, 1-22, 1-36, 1-51, 1-52
CYCLES_INIT(S) macro, 1-51
CYCLES_PRINT(S) macro, 1-52

CYCLES_RESET(S) macro, 1-52
CYCLES_START(S) macro, 1-51
CYCLES_STOP(S) macro, 1-51
cycle_t data type, 1-49

D
data

field, 1-61
packing, 1-70

data_imag array, 2-73, 2-174
data_real array, 2-73, 2-174
daylight saving flag, 1-35
-DCLOCKS_PER_SEC= compile-time

switch, 1-56
-DDO_CYCLE_COUNTS compile-time

switch, 1-51, 1-57
-DDO_CYCLE_COUNTS switch, 1-50
deallocate memory. See free function
decimation index, 2-138
def21020.h header file, 2-10
def21060.h header file, 2-10
def21061.h header file, 2-10
def21062.h header file, 2-10
def21065L.h header file, 2-10
def21160.h header file, 2-10
def21161.h header file, 2-10
def21261.h header file, 2-10
def21262.h header file, 2-10
def21266.h header file, 2-10
def21267.h header file, 2-10
def21363.h header file, 2-10
def21364.h header file, 2-10
def21365.h header file, 2-10
def21366.h header file, 2-10
def21367.h header file, 2-10
def21368.h header file, 2-10
def21369.h header file, 2-10
def21371.h header file, 2-10
def21375.h header file, 2-10
def21462.h header file, 2-11

VisualDSP++ 5.0 I-7
 Run-Time Library Manual for SHARC Processors

Index

def21465.h header file, 2-11
def21467.h header file, 2-11
def21469.h header file, 2-11
def21479.h header file, 2-11
def21489.h header file, 2-11
default

device, 1-67, 1-68
device driver, 1-68
memory placement, 1-17

deque header file, 1-46
DevEntry structure, 1-60
device

default, 1-67, 1-68
drivers, 1-59, 1-60
identifiers, 1-60
pre-registering, 1-66

device.h header file, 1-22, 1-60
DeviceID field, 1-61
device_int.h header file, 1-22
devtab.c library source file, 1-66
difftime (difference between two calendar

times) function, 1-130
digit character test. See isdigit function
div (division, int) function, 1-132
divifx (division of integer by fixed-point)

function, 1-134
division, complex, 2-57
division. See div, ldiv functions
dma_disable function, 2-121
dma_enable function, 2-122
dma.h header file, 2-12
dma_setup function, 2-123
dma_status function, 2-124
double representation, 1-333
DSP library functions, 2-2

calling, 2-2
linking, 2-3

DSP run-time
library calls, 2-2
linking programs, 2-3
processor-specific functions, 2-17

E
EDOM macro, 1-26
Embedded C++ library header files

complex, 1-42
exception, 1-42
fract, 1-42
fstream, 1-43
fstreams.h, 1-48
iomanip, 1-43
ios, 1-43
iosfwd, 1-43
iostream, 1-43
iostream.h, 1-48
istream, 1-43
new, 1-43
new.h, 1-48
ostream, 1-43
sstream, 1-44
stdexcept, 1-44
streambuf, 1-44
string, 1-44
strstream, 1-44

embedded standard template library, 1-46
EMUCLK register, 1-51, 1-58
end. See atexit, exit functions
EngineerZone, xxviii
ERANGE macro, 1-26
errno global variable, 1-37, 1-38
errno.h header file, 1-22
errrno global variable, 1-320
exception header file, 1-42
exit (program termination) function, 1-135
exp (exponential) functions, 1-136
exponential. See exp, ldexp functions
exponentiation, 2-37, 2-38

Index

I-8 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

external memory
long word access, 2-25
reading from, 1-279
restrictions, 2-24
SIMD access, 2-25
writing to, 1-375

EZ-KIT Lite system
alternative device driver, 1-22
default device driver, 1-68
I/O primitives, 1-59
stdio.h routines, 1-30

F
fabs (absolute value) functions, 1-137
far jump return. See longjmp, setjmp

functions
Fast Fourier Transform (FFT) functions,

2-19
fast N-point complex radix-2 Fast Fourier

transform, 2-73
fast parallel real radix-2 Fast Fourier

Transform, 2-227
favg (mean of two values) functions, 2-125
fclip (clip) function, 2-126
fclose (close stream) function, 1-138
feof (test for end of file) function, 1-140,

1-141
fflush (flush a stream) function, 1-142
FFT. See Fast Fourier Transform functions
fftf_magnitude (FFTF magnitude)

function, 2-131
fft_magnitude (FFT magnitude) function,

2-127
FFT twiddle factors for fast FFT, 2-261
fgetc (get character from stream) function,

1-143
fgetpos (record current position in stream)

function, 1-145
fgets (get string from stream) function,

1-147

fileID field, 1-73
file I/O

extending to new devices, 1-59
support, 1-59

file opening, 1-151
FILE pointer, 1-38
fill memory range. See memset function
filter.h header file, 2-12
filters.h header file, 2-14
finish processing argument list. See va_end

function
finite impulse response (FIR) filter, 2-134,

2-135
FIR-based decimation filter, 2-138
FIR-based interpolation filter, 2-142
fir_decima (FIR-based decimation filter)

function, 2-138
FIR filter, 2-134
fir (finite impulse response) function,

2-135, 2-185
fir_interp (FIR interpolation filter)

function, 2-142
flags field, 1-71
-flags-link -MD__LIBIO_LITE switch,

1-31
flash memory, mapping objects using

attributes, 1-18
float.h header file, 1-23
floor (integral value) functions, 1-149
FLT_MAX macro, 1-23
FLT_MIN macro, 1-23
fmax (maximum) functions, 2-147
fmin (float minimum) functions, 2-148
fmod (floating-point modulus) functions,

1-150
fopen (open file) function, 1-68, 1-151
formatted input, reading, 1-168
formatted output

printing, 1-153
printing variable argument list in, 1-367

VisualDSP++ 5.0 I-9
 Run-Time Library Manual for SHARC Processors

Index

fprintf (print formatted output) function,
1-153

fputc (put character on stream) function,
1-159

fputs (put string on stream) function, 1-160
fract header file, 1-42
fread (buffered input) function, 1-161
free (deallocate memory) functions, 1-163
freopen (open existing file) function, 1-164
frexp (fraction/exponent) functions, 1-166
fscanf (read formatted input) function,

1-168
fseek (sets the file position) function, 1-173
fsetpos (reposition file pointer) function,

1-175
fstream header file, 1-43
fstream.h header file, 1-48
ftell (obtain current file position) function,

1-176
FuncName attribute, 1-14
functional header file, 1-46
function primitive I/O, 1-30
fwrite (buffered output) function, 1-178
fxbits (bitwise integer to fixed-point

conversion) function, 1-180
fxdivi (division of integer by integer)

function, 1-182

G
gen_bartlett (generate bartlett window)

function, 2-149
gen_blackman (generate blackman

window) function, 2-151
gen_gaussian (generate gaussian window)

function, 2-153
gen_hamming (generate hamming

window) function, 2-155

gen_hanning (generate hanning window)
function, 2-157

gen_harris (generate harris window)
function, 2-159

gen_kaiser (generate kaiser window)
function, 2-161

gen_rectangular (generate rectangular
window) function, 2-163

gen_triangle (generate triangle window)
function, 2-165

gen_vohann (generate von hann window)
function, 2-167

getc (get character from stream) function,
1-183

getchar (get character from stdin) function,
1-185

get_default_io_device (retrieve current
default device) function, 1-67

getenv (get string definition from operating
system) function, 1-187

get locale pointer. See localeconv function
get next argument in list. See va_arg

function
gets (get string from stream) function,

1-188
gmtime (convert calendar time into

broken-down time as UTC) function,
1-247

gmtime (convert calendar time to
broken-down time) function, 1-190

gmtime function, 1-37, 1-85
graphical character test. See isgraph

function

H
hash_map header file, 1-46
hash_set header file, 1-46

Index

I-10 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

header files
adi_types.h, 1-20
cvector.h, 2-9
de21465.h, 2-11
def21020.h, 2-10, 2-18
def21060.h, 2-10, 2-18
def21061.h, 2-10
def21062.h, 2-10
def21065L.h, 2-10
def21065l.h, 2-18
def21160.h, 2-10
def21161.h, 2-10, 2-18
def21261.h, 2-10, 2-18
def21262.h, 2-10, 2-18
def21266.h, 2-10, 2-18
def21267.h, 2-7, 2-10, 2-18
def21363.h, 2-10, 2-18
def21364.h, 2-10, 2-18
def21365.h, 2-10, 2-18
def21366.h, 2-10, 2-18
def21367.h, 2-10, 2-18
def21368.h, 2-10, 2-18
def21369.h, 2-10, 2-18
def21462.h, 2-11, 2-18
def21465.h, 2-18
def21467.h, 2-11, 2-18
def21469.h, 2-11, 2-18
def21479.h, 2-11, 2-18
def21489.h, 2-11, 2-18
defining processor-specific symbolic

names, 2-10
DSP, list of, 2-7
embedded standard template library,

1-48
working with, 1-18

header files (ADSP-2106x/21020)
21020.h, 2-17
21060.h, 2-17
21065L.h, 2-17
asm_sprt.h, 2-7
Cdef*.h, 2-11
cmatrix.h, 2-7
comm.h, 2-8
complex.h, 2-8
dma.h, 2-12
filters.h, 2-12, 2-14
list of, 2-6
macros.h, 2-15
math.h, 2-15
matrix.h, 2-16
platform_include.h, 2-17
processor_include.h, 2-17
saturate.h, 2-19
sport.h, 2-19
stats.h, 2-19
sysreg.h, 2-19
trans.h, 2-19
vector.h, 2-20
window.h, 2-21

header files (C++ for C facilities)
cassert, 1-45
cctype, 1-45
cerrno, 1-45
cfloat, 1-45
climits, 1-45
clocale, 1-45
cmath, 1-45
csetjmp, 1-45
csignal, 1-45
cstdarg, 1-45
cstddef, 1-45
cstdio, 1-45
cstdlib, 1-45
cstring, 1-45

VisualDSP++ 5.0 I-11
 Run-Time Library Manual for SHARC Processors

Index

header files (standard)
misra_types.h, 1-26
stdfix.h, 1-27
stdint.h, 1-28

heap
allocating and initializing memory in,

1-192
allocating memory from, 1-201
allocating uninitialized memory, 1-253
changing memory allocation from, 1-203
heap_calloc function, 1-192
obtaining primary heap identifier, 1-199
return memory to, 1-194
setting for dynamic memory allocation,

1-300
heap_calloc function, 1-192
heap_free function, 1-194
heap_install function, 1-196
heap_lookup_name function, 1-196, 1-199
heap_malloc function, 1-201, 1-206
heap_realloc function, 1-203
hexadecimal digit test. See isxdigit function
histogram function, 2-168
HUGE_VAL macro, 1-25
hyperbolic. See cosh, sinh, tanh functions

I
idivfx (division of fixed-point by

fixed-point) function, 1-208
idivfx functions, 1-208
idle (execute processor idle instruction)

function, 2-170
ifftf (inverse complex radix-2 Fast Fourier

Transform) function, 2-174
ifft (inverse complex radix-2 Fast Fourier

Transform) function, 2-171
ifftN (N-point radix-2 inverse Fast Fourier

transform) functions, 2-177, 2-181
iir (infinite impulse response) function,

2-187

index in a loop, 2-76
initialize argument list. See va_start

function
initializer (DSP timer), 2-250
init (initialization) function, 1-61
input, formatted, 1-168
input flag, testing, 2-219
interrupt

See clear_interrupt, interruptf,
interrupts, signal, raise functions

interrupt (interrupt handling) function,
1-209

interrupt-safe functions, 1-37
inverse. See acos, asin, atan, atan2 functions
inverse complex radix2 Fast Fourier

transform, 2-171
I/O

buffer, 1-299
extending to new devices, 1-59
functions, 1-30
primitives, data packing, 1-70
primitives, data structure, 1-70
primitives, how implemented, 1-59
primitives, source files location, 1-59
primitives, stdio functions, 1-68
support for new devices, 1-59

iomanip.h header file, 1-43, 1-48
iosfwd header file, 1-43
ios header file, 1-43
iostream.h header file, 1-43, 1-48
IRPTL register, 1-108
isalnum (alphanumeric character test)

function, 1-211
isalpha (alphabetic character test) function,

1-212
iscntrl (control character test) function,

1-213
isdigit (digit character test) function, 1-214
isgraph (graphical character test) function,

1-215

Index

I-12 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

isinf (test for infinity) function, 1-216
islower (lower case character test) function,

1-218
isnan (test for NAN) function, 1-219
iso646.h (Boolean operator) header file,

1-23
isprint (printable character test) function,

1-221
ispunct (punctuation character test)

function, 1-222
isspace (white space character test)

function, 1-223
istream header file, 1-43
isupper (uppercase character test) function,

1-225
isxdigit (hexadecimal digit test) function,

1-226
iterator header file, 1-46

L
labs (absolute value, long) function, 1-227
lavg (mean of two values) function, 1-228,

1-235
LC_COLLATE macro, 1-317
lclip (clip) function, 1-229
lconv struct members, 1-244
lcount_ones (count one bits in word)

function, 1-230
ldexp (exponential, multiply) functions,

1-231
ldiv (division, long) function, 1-232
length modifier, 1-155
libFunc attribute, 1-13
libfunc.dlb library, object attributes, 1-15
libGroup attribute, 1-13

values, 1-17
libio.dlb library, linking with, 1-30
libio*_lite.dlb libraries, 1-4

selecting with -flags-link
-MD__LIBIO_LITE switch, 1-4

libName attribute, 1-13
___lib_prog_term label, 1-135
libraries

functions, documented, 1-74, 2-26
libraries, in multi-threaded environment,

1-38
library

attribute convention exceptions, 1-17
source code, working with, 2-5
source file, devtab.c, 1-66

library functions
called from ISR, 1-37
called with pointers, 2-23

limits.h header file, 1-24
linking

DSP library functions
(ADSP-2116x/2126x/2136x), 2-3

list header file, 1-46
llabs (absolute value) function, 1-234
llavg (mean of two values) function, 1-235
llclip (clip) function, 1-236
llcount_ones (count one bits in long long)

function, 1-237
lldiv (long long divison) function, 1-238
llmax (long long maximum) function,

1-240
llmin (long long minimum) function,

1-241
lmax (long maximum) function, 1-240,

1-242
lmin (long minimum) function, 1-241,

1-243
localeconv (localization pointer) function,

1-244
locale.h header file, 1-24
localization. See localeconv, setlocale,

strxfrm functions
localtime (convert calendar time into

broken-down time) function, 1-247

VisualDSP++ 5.0 I-13
 Run-Time Library Manual for SHARC Processors

Index

localtime (convert calendar time to
broken-down time) function, 1-190

localtime function, 1-37, 1-85
log10 (log base 10) functions, 1-250
log (log base e) functions, 1-249
long double, representation, 1-343
longjmp (far jump return) function, 1-251
long jump. See longjmp, setjmp functions
lowercase. See islower, tolower functions

M
macro.h header file, 2-15
macros

EDOM, 1-26
ERANGE, 1-26
for measuring the performance of

compiled C source, 1-51
HUGE_VAL, 1-25
LC_COLLATE, 1-317

malloc (allocate uninitialized memory)
function, 1-253

map header file, 1-47
math functions

acos, 1-84
additional, 2-15
asin, 1-87
atan, 1-88
atan2, 1-89
average, 1-34
ceil, 1-107, 1-118
ceil, ceilf, 2-78
clip, 1-34
cos, 1-123
cosh, 1-124
count bits set, 1-34
exp, 1-136
fabs, 1-137
floor, 1-149
fmod, 1-150
frexp, 1-166

math functions (continued)
ldexp, 1-231
log, 1-249
log10, 1-250
maximum, 1-34
modf, 1-264
multiple heaps, 1-34
pow, 1-268
rsqrt, 2-239
sin, sinf, 1-304
sinh, 1-305
sin (sine), 1-304
sqrt, 1-310
standard, 2-15
tan, 1-355
tanh, 1-356

math.h header file, 1-25, 1-74, 2-15, 2-26
matinv (real matrix inversion) functions,

2-193
matmadd (matrix addition) functions,

2-195
matmmlt (matrix multiplication)

functions, 2-197
matmsub (matrix subtraction) functions,

2-200
matrix addition functions, 2-195
matrix.h header file, 2-16
matrix scalar addition functions, 2-202
matrix transpose (transpm) function, 2-256
matsmlt (real matrix scalar multiplication)

functions, 2-204
matssub (real matrix scalar subtraction)

function, 2-206
matsub (matrix subtraction) function,

2-200
max (maximum) function, 1-254
mean functions, 2-208
memchr (find character) function, 1-255
memcmp (compare memory range)

function, 1-256

Index

I-14 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

memcpy (copy memory range) function,
1-257

memmove (move memory range) function,
1-258

memory
default placement, 1-17
header file, 1-47
initializer support files, 1-14

memory functions. See calloc, free, malloc,
memcmp, memcpy, memset,
memmove, memchar, realloc
functions

memory initializer
initializing code/data from flash memory,

1-18
memory-mapped registers (MMR),

accessing from C/C++ code, 2-11
memset (fill memory range) function,

1-259
min (minimum) function, 1-260
misra_types.h header file, 1-26
mixed C/assembly support, 2-7
mktime (convert broken-down time into a

calendar) function, 1-261
MODE2 register

with poll_flag_in function, 2-219
with set_flag function, 2-240

modf (modulus, float) functions, 1-264
move memory range. See memmove

function
M_STRLEN_PROVIDED bit, 1-72
mu_compress (µ-law compression)

function, 2-210
mu_expand (µ-law expansion) function,

2-212
mulifx functions, 1-265
mulifx (multiplication of integer by

fixed-point) function, 1-265
multiple heaps, 1-196

multi-threaded
environment, 1-38
libraries, 1-39

N
natural logarithm. See log functions
nCompleted field, 1-73
NDEBUG macro, 1-20
nDesired field, 1-73
new devices

I/O support, 1-59
registering, 1-65

new header file, 1-43
new.h header file, 1-48
normalized fraction. See frexp functions
norm (normalization) functions, 2-215
Not a Number (NaN) test, 1-219
N-point complex input FFT functions,

2-66, 2-70
N-point inverse FFT functions, 2-177,

2-181
N-point real input FFT functions, 2-230,

2-233
numeric header file, 1-47

O
objects, copy characters between

overlapping, 1-258
open field (open file function), 1-61, 1-68
ostream header file, 1-43

P
perror (print error message) function,

1-266
platform_include.h header file, 2-17
pointers, to program pemory, 1-40
polar (construct from polar coordinates)

functions, 2-217

VisualDSP++ 5.0 I-15
 Run-Time Library Manual for SHARC Processors

Index

polar coordinate conversion, 2-217
poll_flag_in macros, 2-219
poll_flag_in (testing input flag) function,

2-219
power. See exp, pow, functions
pow (power, x^y) functions, 1-268
precision value, 1-155
prefersMem attribute, 1-14

default memory placement using, 1-17
prefersMemNum attribute, 1-14
PrimIO device, 1-66
_primio.h header file, 1-70
__primIO label, 1-69
primiolib.c source file, 1-67
primitive I/O functions, 1-70
printable character test. See isprint function
PRINT_CYCLES(STRING,T) macro,

1-50
printf (print formatted output) function

described, 1-269
extending to new devices, 1-59, 1-66
pre-registration, 1-66

processor
clock rate, 1-56
signals, 1-108
time, 1-121

processor counts, measuring, 1-48
processor cycles, counting, 1-54
processor flags

setting, 2-240
processor_include.h header file, 2-17
processor support options

EngineerZone, xxviii
LinkedIn, xxviii
Twitter, xxviii

processor timer
enabling, 2-248
initializing, 2-250

program control functions
calloc, 1-105
free, 1-163
malloc, 1-253
realloc, 1-281

program termination, 1-32
punctuation character test (ispunct)

function, 1-222
putchar (write character to stdout)

function, 1-272
putc (put character on stream) function,

1-271
puts (put string on stream) function, 1-273

Q
qsort (quicksort) function, 1-274
queue header file, 1-47

R
raise (force a signal) function, 1-276
random number. See rand, srand functions,

1-278
rand (random number generator) function,

1-37, 1-278
read_extmem (read external memory)

function, 1-279
read (read from file) function, 1-63
realloc (allocate used memory) function,

1-281
real matrix inversion, 2-193
real radix-2 Fast Fourier Transform

function, 2-221
real-time signals. See clear_interrupt,

interruptf, interrupts, poll_flag_in,
raise, signal functions

reciprocal square root function. See rsqrt
functions

remove (remove file) function, 1-68, 1-283
rename (rename file) function, 1-68, 1-285

Index

I-16 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

requiredForROMBoot attribute, 1-18
rewind (reset file position indicator in

stream) function, 1-287
rfftf_2 (fast parallel rfft) function, 2-227
rfft_mag (rfft magnitude) function, 2-225
rfftN (N-point rfft) functions, 2-230,

2-233
rfft (real radix-2 Fast Fourier Transform)

function, 2-221
rms (root mean square) functions, 2-238
roundfx (round fixed-point value)

function, 1-289
rsqrt (reciprocal square root) math

functions, 2-239
run-time

label, 1-295
library attributes, listed, 1-13

run-time libraries
ADSP-211xx/212xx/213xx processors,

2-3
thread-safe, 1-48

S
saturate.h header file, 2-19
scanf (convert formatted input) function,

1-291
search character string. See strchr, strrchr

functions
search memory, character. See memchar

function
seek (perform dynamic access on file)

function, 1-64
send string to operating system. See system

function
serial ports

for ADSP-2106x processors, 2-19
set_alloc_type (set heap for dynamic

memory allocation) function, 1-300
setbuf (specify full buffering) function,

1-293

set_default_io_device function, 1-67
set_flag (set ADSP-21xxx processor flags)

function, 2-240
set header file, 1-47
setjmp (define runtime label) function,

1-295
setjmp.h header file, 1-26, 1-74, 2-26
set jump. See longjmp, setjmp functions
setlocale (set localization) function, 1-297
set_semaphore (set bus lock semaphore)

function, 2-242
setvbuf (allocate buffer from alternative

memory) function, 1-33, 1-298
SIGABRT handler, 1-80
sig arguments, of processor signals, 1-108
signal autocorrelation, 2-43
signal (define signal handling) function,

1-302
signal functions

clear_interrupt, 1-108
handling hardware signals, 1-26
interrupt, 1-209
raise, 1-276
signal, 1-302

signal.h header file, 1-26, 1-74, 2-26
signals

See clear_interrupt, interruptf,
interrupts, poll_flag_in, raise, signal
functions

signals, processor, 1-108
SIMD mode, with

ADSP-2116x/2126x/2136x
processors, 2-23

SIMD operations, 2-23
sine. See sin, sinh functions
sinh (sine hyperbolic) functions, 1-305
sin (sine) functions, 1-304
snprintf (format into n-character array)

function, 1-306

VisualDSP++ 5.0 I-17
 Run-Time Library Manual for SHARC Processors

Index

social networking
Twitter and LinkedIn, xxviii

sport.h header file, 2-19
sprintf (format into character array)

function, 1-308
sqrt (square root) functions, 1-310
srand (random number seed) function,

1-37, 1-311
sscanf (convert formatted input) function,

1-312
sstream header file, 1-44
stack header file, 1-47
standard argument functions

va_arg, 1-362
va_end, 1-365
va_start, 1-366

standard C library, header files, 1-18 to
1-35

standard error stream, 1-266
standard header files

assert.h, 1-20
ctype.h, 1-21
cycle_count.h, 1-21
cycles.h, 1-22
device.h, 1-22
device_int.h, 1-22
errno.h, 1-22
float.h, 1-23
iso646.h, 1-23
limits.h, 1-24
locale.h, 1-24
math.h, 1-25
setjmp.h, 1-26
signal.h, 1-26
stdarg.h, 1-27
stdbool.h, 1-27
stddef.h, 1-27
stdio.h, 1-30
stdlib.h, 1-33

standard header files (continued)
string.h, 1-35
time.h, 1-35

standard library functions
abort, 1-80
abs, 1-81, 1-101, 1-126
absfx, 1-82
acos, 1-84
atexit, 1-90
atoi, 1-94
atol, 1-95
avg, 1-100
bitsfx, 1-101
bsearch, 1-102
calloc, 1-105
clip, 1-120
countlsfx, 1-126
count_ones, 1-125
div, 1-132
divifx, 1-134
exit, 1-135
free, 1-163
fxbits, 1-180
fxdivi, 1-182
getenv, 1-187
heap_calloc, 1-192
heap_free, 1-194
heap_install, 1-196
heap_lookup_name, 1-199
heap_malloc, 1-201
heap_realloc, 1-203
heap_switch, 1-206
idivfx, 1-208
labs, 1-227
lavg, 1-228
lclip, 1-229
lcount_ones, 1-230, 1-237
ldiv, 1-232, 1-238
lmax, 1-242

Index

I-18 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

standard library functions (continued)
lmin, 1-243
malloc, 1-253
max, 1-254
min, 1-260
mulifx, 1-265
qsort, 1-274
rand, 1-278
realloc, 1-281
roundfx, 1-289
srand, 1-311
strtol, 1-341, 1-346
strtoul, 1-348, 1-350
system, 1-354

standard math functions, 2-15
fmax, 2-147
fmin, 2-148

START_CYCLE_COUNT macro, 1-49
statistics functions, 2-19
stats.h header file, 2-19
stdarg.h header file, 1-27, 1-74, 2-26
stddef.h header file, 1-27
stderrfd field, 1-65
stdexcept header file, 1-44
stdfix.h header file, 1-27
stdinfd field, 1-65
stdint.h header file, 1-28
stdio.h header file, 1-30, 1-59, 1-74, 2-26
stdlib.h header file, 1-33, 1-74, 2-26
stdoutfd field, 1-65
stop. See atexit, exit functions
STOP_CYCLE_COUNT macro, 1-49
strcat (concatenate string) function, 1-314
strchr (search character string) function,

1-315
strcmp (compare strings) function, 1-316
strcoll (compare strings, localized)

function, 1-317
strcpy (copy string) function, 1-318

strcspn (compare string span) function,
1-319

stream, closing down, 1-32
streambuf header file, 1-44
strerror (get error message string) function,

1-320
strftime (format a broken-down time)

function, 1-321
string

converting to fixed-point, 1-336
string compare. See strcmp, strcoll, strcspn,

strncmp, strpbrk, strstr functions
string concatenate. See stnrcat, strcat

functions
string conversion. See atof, atoi, atol, strtok,

strtol, strxfrm functions
string copy. See strcpy, strncpy function
string functions

memchar, 1-255
memcmp, 1-256
memcpy, 1-257
memmove, 1-258
memset, 1-259
strcat, 1-314
strchr, 1-315
strcmp, 1-316
strcoll, 1-317
strcpy, 1-318
strcspn, 1-319
strerror, 1-320
strlen, 1-325
strncat, 1-326
strncmp, 1-327
strncpy, 1-328
strpbrk, 1-329
strrchr, 1-330
strspn, 1-331
strstr, 1-332
strtok, 1-339
strxfrm, 1-352

VisualDSP++ 5.0 I-19
 Run-Time Library Manual for SHARC Processors

Index

string.h header file, 1-35, 1-44, 1-74, 2-26
string length. See strlen function
strings

converting to double, 1-333
converting to long double, 1-343

strlen (string length) function, 1-325
strncat (concatenate characters from string)

function, 1-326
strncmp (compare characters in strings)

function, 1-327
strncpy (copy characters in string) function,

1-328
strpbrk (compare strings, pointer break)

function, 1-329
strrchr (search character string, recursive)

function, 1-330
strspn (string span) function, 1-331
strstr (compare string, string) function,

1-332
strstream header file, 1-44
strtod (convert string to double) function,

1-333
strtofxfx (convert string to fixed-point)

function, 1-336
strtok (token to string) function, 1-37,

1-339
strtold (convert string to long double)

function, 1-343
strtoll (convert string to long long integer)

function, 1-346
strtol (string to long integer) function,

1-341
strtoull (convert string to unsigned long

long integer) function, 1-350
strtoul (string to unsigned long tnteger)

function, 1-348
struct tm, daylight savings flag, 1-35
strxfrm (localization transform) function,

1-352

symbolic names, specifying bit definitions,
2-10

sysreg.h header file, 2-19
system register bit definitions

for ADSP-2116x/2126x/2136x
processors, 2-10

system registers, accessing from C, 2-19
system (send string to operating system)

function, 1-354

T
tangent. See atan, atan2, cot, tan, tanh

functions
tanh (hyperbolic tangent) functions, 1-356
tan (tangent) functions, 1-355
TCOUNT register, 2-246, 2-248, 2-250
technical support forum, xxviii
template library header files

algorithm, 1-46
deque, 1-46
functional, 1-46
hash_map, 1-46
hash_set, 1-46
iterator, 1-46
list, 1-46
map, 1-47
memory, 1-47
numeric, 1-47
queue, 1-47
set, 1-47
stack, 1-47
utility, 1-47
vector, 1-47

terminate. See atexit, exit functions
test_and_set_semaphore function, 2-243
testing, specified input flag, 2-219
thread-safe

functions, 1-37
run-time libraries, 1-48

time (calendar time) function, 1-357

Index

I-20 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

time.h header file, 1-35, 1-56, 1-58
measuring cycle counts, 1-54

timer0_off function, 2-246
timer0_on function, 2-252
timer0_set function, 2-254
timer1_off function, 2-246
timer1_on function, 2-252
timer1_set function, 2-254
timer_off (disable DSP timer) function,

2-244
timer_on (enable DSP timer) function,

2-248
timer_set (initialize DSP timer) function,

2-250
time_t data type, 1-35, 1-357
time zones, 1-35
tokens, string convert. See strtok function
tolower (convert characters to lower case)

function, 1-358
toupper (convert characters to upper case)

function, 1-359
TPERIOD register, 2-250
trans.h header file, 2-19
transpm (matrix transpose) functions,

2-256
trigonometric functions. See math

functions
TST_FLAG macro, 2-240
twiddle coefficients, calculating, 2-258
twidfftf (generate FFT twiddle factors for

fast FFT) function, 2-261
twidfft (generate FFT twiddle factors)

function, 2-258

U
ungetc (push character back to input)

function, 1-360
uppercase. See isupper, toupper functions

utility functions
getenv, 1-187
system, 1-354

utility header file, 1-47

V
va_arg (get next argument in list) function,

1-362
va_end (finish processing argument list)

function, 1-365
variable argument list, printing formatted

output, 1-367
var (variance) functions, 2-264
va_start (initialize argument list) function,

1-366
vecdot (vector dot product) functions,

2-266
vecsadd (vector scalar addition) functions,

2-268
vecsmlt (vector scalar multiplication)

functions, 2-270
vecssub (vector scalar subtraction)

functions, 2-272
vector functions, 2-20
vector.h header file, 1-47, 2-20
vecvadd (vector addition) functions, 2-274
vecvmlt (vector multiplication) functions,

2-276
vecvsub (vector subtraction) functions,

2-278
vfprintf (print formatted output of variable

argument list) function, 1-367
VisualDSP++

simulator, 1-22, 1-30, 1-32, 1-59, 1-68
volatile keyword, 1-58
vprintf (print output of variable argument

list) function, 1-369
vsnprintf (format argument list into

n-character array) function, 1-371

VisualDSP++ 5.0 I-21
 Run-Time Library Manual for SHARC Processors

Index

vsprintf (format argument list into
character array) function, 1-373

W
white space character test. See isspace

function
window generator functions, 2-21
window.h header file, 2-21
_wordsize.h header file, 1-70
write_extmem (write external memory)

function, 1-375
write field, 1-62
write (write to file) function, return values,

1-63

Z
zero_cross (count zero crossings) functions,

2-280
zero padding, 2-179, 2-235
µ-law (companders)

ADSP-2106x/21020, 2-8
µ-law (compression function)

ADSP-2116x/2126x/2136x DSPs,
2-210

µ-law (expansion function)
ADSP-2116x/2126x/2136x DSPs,

2-212

Index

I-22 VisualDSP++ 5.0
 Run-Time Library Manual for SHARC Processors

	VisualDSP++ 5.0 Run-Time Library Manual for SHARC Processors, Revision 1.5, January 2011
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	VisualDSP++ Online Documentation
	Technical Library CD
	Social Networking Web Sites

	Notation Conventions

	1 C/C++ Run-Time Library
	C and C++ Run-Time Libraries Guide
	Calling Library Functions
	Linking Library Functions
	Library Attributes
	Exceptions to the Attribute Conventions
	Mapping Objects to FLASH Memory Using Attributes

	Working With Library Header Files
	adi_types.h
	assert.h
	ctype.h
	cycle_count.h
	cycles.h
	device.h
	device_int.h
	errno.h
	float.h
	iso646.h
	limits.h
	locale.h
	math.h
	misra_types.h
	setjmp.h
	signal.h
	stdarg.h
	stdbool.h
	stddef.h
	stdfix.h
	stdint.h
	stdio.h
	stdlib.h
	string.h
	time.h

	Calling Library Functions From an ISR
	Using the Libraries in a Multi-Threaded Environment
	Using Compiler Built-In C Library Functions
	Abridged C++ Library Support
	Embedded C++ Library Header Files
	complex
	exception
	fract
	fstream
	iomanip
	ios
	iosfwd
	iostream
	istream
	new
	ostream
	sstream
	stdexcept
	streambuf
	string
	strstream

	C++ Header Files for C Library Facilities
	Embedded Standard Template Library Header Files
	algorithm
	deque
	functional
	hash_map
	hash_set
	iterator
	list
	map
	memory
	numeric
	queue
	set
	stack
	utility
	vector

	Header Files for C++ Library Compatibility
	Using Thread-Safe C/C++ Run-Time Libraries With VDK

	Measuring Cycle Counts
	Basic Cycle Counting Facility
	Cycle Counting Facility With Statistics
	Using time.h to Measure Cycle Counts
	Determining the Processor Clock Rate
	Considerations When Measuring Cycle Counts

	File I/O Support
	Extending I/O Support To New Devices
	DevEntry Structure
	Registering New Devices
	Pre-Registering Devices
	Default Device
	Remove and Rename Functions

	Default Device Driver Interface
	Data Packing for Primitive I/O
	Data Structure for Primitive I/O

	Documented Library Functions
	C Run-Time Library Reference
	abort
	abs
	absfx
	acos
	asctime
	asin
	atan
	atan2
	atexit
	atof
	atoi
	atol
	atold
	atoll
	avg
	bitsfx
	bsearch
	calloc
	ceil
	clear_interrupt
	clearerr
	clip
	clock
	cos
	cosh
	count_ones
	countlsfx
	ctime
	difftime
	div
	divifx
	exit
	exp
	fabs
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	floor
	fmod
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	ftell
	fwrite
	fxbits
	fxdivi
	getc
	getchar
	getenv
	gets
	gmtime
	heap_calloc
	heap_free
	heap_install
	heap_lookup_name
	heap_malloc
	heap_realloc
	heap_switch
	idivfx
	interrupt
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	isinf
	islower
	isnan
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	lavg
	lclip
	lcount_ones
	ldexp
	ldiv
	llabs
	llavg
	llclip
	llcount_ones
	lldiv
	llmax
	llmin
	lmax
	lmin
	localeconv
	localtime
	log
	log10
	longjmp
	malloc
	max
	memchr
	memcmp
	memcpy
	memmove
	memset
	min
	mktime
	modf
	mulifx
	perror
	pow
	printf
	putc
	putchar
	puts
	qsort
	raise
	rand
	read_extmem
	realloc
	remove
	rename
	rewind
	roundfx
	scanf
	setbuf
	setjmp
	setlocale
	setvbuf
	set_alloc_type
	signal
	sin
	sinh
	snprintf
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtofxfx
	strtok
	strtol
	strtold
	strtoll
	strtoul
	strtoull
	strxfrm
	system
	tan
	tanh
	time
	tolower
	toupper
	ungetc
	va_arg
	va_end
	va_start
	vfprintf
	vprintf
	vsnprintf
	vsprintf
	write_extmem

	2 DSP Run-Time Library
	DSP Run-Time Library Guide
	Calling DSP Library Functions
	Linking DSP Library Functions
	Library Attributes
	Working With Library Source Code
	DSP Header Files
	asm_sprt.h
	cmatrix.h
	comm.h
	complex.h
	cvector.h
	Header Files That Define Processor-Specific System Register Bits
	Header Files That Allow Access to Memory-Mapped Registers From C/C++ Code
	dma.h
	filter.h
	filters.h
	macros.h
	math.h
	matrix.h
	platform_include.h
	processor_include.h
	saturate.h
	sport.h
	stats.h
	sysreg.h
	trans.h
	vector.h
	window.h

	Built-In DSP Library Functions
	Implications of Using SIMD Mode
	Using Data in External Memory

	Documented Library Functions
	DSP Run-Time Library Reference
	a_compress
	a_expand
	alog
	alog10
	arg
	autocoh
	autocorr
	biquad
	cabs
	cadd
	cartesian
	cdiv
	cexp
	cfft
	cfft_mag (SHARC SIMD Processors)
	cfftN
	cfftN (SHARC SIMD Processors)
	cfftf (SHARC SIMD Processors)
	circindex
	circptr
	cmatmadd
	cmatmmlt
	cmatmsub
	cmatsadd
	cmatsmlt
	cmatssub
	cmlt
	conj
	convolve
	copysign
	cot
	crosscoh
	crosscorr
	csub
	cvecdot
	cvecsadd
	cvecsmlt
	cvecssub
	cvecvadd
	cvecvmlt
	cvecvsub
	dma_disable
	dma_enable
	dma_setup
	dma_status
	favg
	fclip
	fft_magnitude
	fftf_magnitude (SHARC SIMD Processors)
	fir
	fir_decima
	fir_interp
	fmax
	fmin
	gen_bartlett
	gen_blackman
	gen_gaussian
	gen_hamming
	gen_hanning
	gen_harris
	gen_kaiser
	gen_rectangular
	gen_triangle
	gen_vonhann
	histogram
	idle
	ifft
	ifftf (SHARC SIMD Processors)
	ifftN
	ifftN (SHARC SIMD Processors)
	iir
	matinv
	matmadd
	matmmlt
	matmsub
	matsadd
	matsmlt
	matssub
	mean
	mu_compress
	mu_expand
	norm
	polar
	poll_flag_in
	rfft
	rfft_mag (SHARC SIMD Processors)
	rfftf_2 (SHARC SIMD Processors)
	rfftN
	rfftN (SHARC SIMD Processors)
	rms
	rsqrt
	set_flag
	set_semaphore
	test_and_set_semaphore
	timer_off
	timer0_off, timer1_off (ADSP-21065L Processor Only)
	timer_on
	timer_set
	timer0_on, timer1_on (ADSP-21065L Processor)
	timer0_set, timer1_set
	transpm
	twidfft
	twidfftf (SHARC SIMD Processors)
	var
	vecdot
	vecsadd
	vecsmlt
	vecssub
	vecvadd
	vecvmlt
	vecvsub
	zero_cross

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

