
a

W 5.0
C/C++ Compiler Manual
for SHARC® Processors

Revision 1.5, January 2011

Part Number
82-001963-02

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2011 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, SHARC, and VisualDSP++ are registered trade-
marks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 5.0 C/C++ Compiler Manual iii
for SHARC Processors

 CONTENTS

PREFACE

Purpose of This Manual ... xxxi

Intended Audience ... xxxi

Manual Contents .. xxxii

What’s New in This Manual .. xxxii

Technical or Customer Support .. xxxiii

Supported Processors .. xxxiv

Product Information .. xxxiv

Analog Devices Web Site .. xxxiv

VisualDSP++ Online Documentation xxxv

Technical Library CD ... xxxvi

EngineerZone ... xxxvi

Social Networking Web Sites ... xxxvii

Notation Conventions ... xxxvii

Contents

iv VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

COMPILER

C/C++ Compiler Overview ... 1-3

Compiler Command-Line Interface .. 1-5

Running the Compiler .. 1-6

Compiler Command-Line Switches ... 1-7

C/C++ Compiler Switch Summaries 1-7

C/C++ Mode Selection Switch Descriptions 1-20

-c89 ... 1-20

-c99 ... 1-20

-c++ ... 1-20

C/C++ Compiler Common Switch Descriptions 1-21

sourcefile .. 1-21

-@ filename .. 1-21

-A name[tokens] ... 1-21

-add-debug-libpaths .. 1-22

-aligned-stack ... 1-23

-alttok ... 1-23

-always-inline ... 1-24

-annotate .. 1-24

-annotate-loop-instr .. 1-24

-auto-attrs .. 1-25

-build-lib .. 1-25

-C .. 1-25

-c ... 1-25

VisualDSP++ 5.0 C/C++ Compiler Manual v
for SHARC Processors

Contents

-compatible-pm-dm .. 1-25

-const-read-write ... 1-25

-const-strings .. 1-26

-D .. 1-26

-debug-types ... 1-26

-double-size[-32|-64] ... 1-27

-double-size-any .. 1-28

-dry .. 1-28

-dryrun ... 1-28

-E ... 1-29

-ED .. 1-29

-EE ... 1-29

-eh .. 1-29

-enum-is-int .. 1-30

-extra-keywords ... 1-30

-file-attr name[=value] .. 1-31

-flags ... 1-31

-float-to-int ... 1-32

-force-circbuf .. 1-32

-fp-associative ... 1-32

-full-version .. 1-32

-fx-contract ... 1-33

-fx-rounding-mode-biased ... 1-33

-fx-rounding-mode-truncation 1-33

Contents

vi VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-fx-rounding-mode-unbiased ... 1-33

-g ... 1-33

-glite ... 1-34

-H ... 1-34

-HH ... 1-35

-h[elp] .. 1-35

-I .. 1-35

-I- .. 1-36

-i .. 1-36

-implicit-pointers .. 1-36

-include ... 1-37

-ipa .. 1-37

-L .. 1-38

-l ... 1-38

-list-workarounds .. 1-39

-M ... 1-39

-MD .. 1-39

-MM .. 1-39

-Mo .. 1-40

-Mt .. 1-40

-map .. 1-40

-mem ... 1-40

-multiline ... 1-40

-never-inline ... 1-41

VisualDSP++ 5.0 C/C++ Compiler Manual vii
for SHARC Processors

Contents

-no-aligned-stack ... 1-41

-no-alttok ... 1-41

-no-annotate ... 1-41

-no-annotate-loop-instr ... 1-42

-no-auto-attrs .. 1-42

-no-builtin .. 1-42

-no-circbuf .. 1-43

-no-const-strings ... 1-43

-no-db .. 1-43

-no-defs .. 1-43

-no-eh ... 1-43

-no-extra-keywords .. 1-44

-no-fp-associative .. 1-44

-no-fx-contract .. 1-44

-no-mem ... 1-45

-no-multiline .. 1-45

-no-progress-rep-timeout ... 1-45

-no-sat-associative ... 1-45

-no-saturation ... 1-46

-no-shift-to-add .. 1-46

-no-simd ... 1-46

-no-std-ass .. 1-47

-no-std-def .. 1-47

-no-std-inc .. 1-47

Contents

viii VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-no-std-lib .. 1-47

-no-threads ... 1-47

-no-workaround ... 1-48

-normal-word-code ... 1-48

-nwc ... 1-48

-O[0|1] .. 1-48

-Oa .. 1-49

-Og .. 1-49

-Os ... 1-49

-Ov .. 1-49

-o .. 1-51

-overlay .. 1-52

-overlay-clobbers .. 1-52

-P ... 1-53

-PP ... 1-53

-path-{ asm | compiler | lib | link } 1-53

-path-install ... 1-53

-path-output .. 1-54

-path-temp .. 1-54

-pch ... 1-54

-pchdir .. 1-54

-pgo-session ... 1-54

-pguide ... 1-55

-pplist ... 1-55

VisualDSP++ 5.0 C/C++ Compiler Manual ix
for SHARC Processors

Contents

-proc processor .. 1-56

-progress-rep-func ... 1-57

-progress-rep-opt ... 1-57

-progress-rep-timeout .. 1-57

-progress-rep-timeout-secs secs 1-57

-R ... 1-57

-R- ... 1-58

-reserve ... 1-58

-restrict-hardware-loops ... 1-59

-S ... 1-59

-s .. 1-59

-sat-associative .. 1-59

-save-temps ... 1-59

-section ... 1-60

-short-word-code ... 1-61

-show .. 1-61

-si-revision .. 1-61

-signed-bitfield .. 1-62

-structs-do-not-overlap .. 1-62

-swc .. 1-63

-syntax-only .. 1-63

-sysdefs ... 1-63

-T .. 1-63

-threads .. 1-64

Contents

x VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-time .. 1-64

-U ... 1-64

-unsigned-bitfield ... 1-65

-v ... 1-65

-verbose .. 1-66

-version .. 1-66

-W ... 1-66

-Werror-limit number ... 1-67

-Werror-warnings ... 1-67

-Wremarks .. 1-67

-Wterse ... 1-67

-w .. 1-67

-warn-protos ... 1-68

-workaround ... 1-68

-write-files .. 1-68

-write-opts .. 1-69

-xref filename .. 1-69

C Mode (MISRA) Compiler Switch Descriptions 1-70

-misra ... 1-70

-misra-linkdir ... 1-70

-misra-no-cross-module .. 1-70

-misra-no-runtime .. 1-71

-misra-strict .. 1-71

-misra-suppress-advisory ... 1-71

VisualDSP++ 5.0 C/C++ Compiler Manual xi
for SHARC Processors

Contents

-misra-testing .. 1-71

-Wmis_suppress .. 1-71

-Wmis_warn ... 1-72

C++ Mode Compiler Switch Descriptions 1-72

-anach ... 1-72

-check-init-order ... 1-73

-extern-inline .. 1-74

-friend-injection .. 1-74

-full-dependency-inclusion .. 1-74

-ignore-std .. 1-75

-no-anach ... 1-75

-no-extern-inline ... 1-75

-no-friend-injection ... 1-76

-no-implicit-inclusion ... 1-76

-no-rtti ... 1-76

-no-std-templates .. 1-76

-rtti .. 1-76

-std-templates ... 1-77

Environment Variables Used by the Compiler 1-77

Data Type and Data Type Sizes .. 1-78

Integer Data Types .. 1-80

Floating-Point Data Types ... 1-80

Contents

xii VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Optimization Control ... 1-81

Optimization Levels ... 1-81

Interprocedural Analysis ... 1-84

Interaction With Libraries ... 1-85

Controlling Silicon Revision and Anomaly Workarounds
Within the Compiler .. 1-86

Using the -si-revision Switch ... 1-87

Using the -workaround Switch .. 1-88

Using the -no-workaround Switch 1-89

Interactions Between the Silicon Revision and
Workaround Switches .. 1-89

Using Native Fixed-Point Types .. 1-90

Fixed-Point Type Support .. 1-90

Native Fixed-Point Types ... 1-91

Native Fixed-Point Constants .. 1-92

A Motivating Example .. 1-93

Fixed-Point Arithmetic Semantics .. 1-94

Data Type Conversions and Fixed-Point Types 1-94

Bit-Pattern Conversion Functions: bitsfx and fxbits 1-96

Arithmetic Operators for Fixed-Point Types 1-97

FX_CONTRACT ... 1-99

Rounding Behavior ... 1-101

VisualDSP++ 5.0 C/C++ Compiler Manual xiii
for SHARC Processors

Contents

Arithmetic Library Functions ... 1-103

divifx .. 1-104

idivfx .. 1-105

fxdivi .. 1-106

mulifx ... 1-107

absfx ... 1-108

roundfx .. 1-108

countlsfx ... 1-109

strtofxfx .. 1-109

Fixed-Point I/O Conversion Specifiers 1-109

Setting the Rounding Mode ... 1-111

Language Standards Compliance ... 1-113

C Mode .. 1-113

C++ Mode ... 1-114

MISRA-C Compiler ... 1-115

MISRA-C Compiler Overview ... 1-115

MISRA-C Compliance .. 1-116

Using the Compiler to Achieve Compliance 1-117

Rules Descriptions ... 1-120

C/C++ Compiler Language Extensions 1-128

Function Inlining .. 1-133

Inlining and Optimization .. 1-136

Inlining and Out-of-Line Copies 1-136

Contents

xiv VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Inlining and Global asm Statements 1-137

Inlining and Sections .. 1-137

Variable Argument Macros .. 1-138

Restricted Pointers .. 1-138

Variable-Length Array Support .. 1-139

Non-Constant Initializer Support .. 1-141

Designated Initializers ... 1-142

Hexadecimal Floating-Point Numbers 1-144

Declarations Mixed With Code ... 1-145

Compound Literals ... 1-146

C++ Style Comments .. 1-147

Enumeration Constants That Are Not int Type 1-147

Boolean Type Support Keywords (bool, true, false) 1-147

The fract Native Fixed-Point Type 1-148

Inline Assembly Language Support Keyword (asm) 1-148

asm() Construct Syntax ... 1-150

asm() Construct Syntax Rules 1-152

asm() Construct Template Example 1-153

Assembly Construct Operand Description 1-154

Using long long Types in asm Constraints 1-160

Assembly Constructs With Multiple Instructions 1-161

Assembly Construct Reordering and Optimization 1-162

Assembly Constructs With Input and Output
Operands ... 1-163

Assembly Constructs With Compile-Time Constants 1-164

VisualDSP++ 5.0 C/C++ Compiler Manual xv
for SHARC Processors

Contents

Assembly Constructs and Flow Control 1-165

Guidelines on the Use of asm() Statements 1-165

Dual Memory Support Keywords (pm dm) 1-166

Memory Keywords and Assignments/
Type Conversions ... 1-169

Memory Keywords and Function Declarations/
Pointers ... 1-170

Memory Keywords and Function Arguments 1-171

Memory Keywords and Macros 1-172

Bank Type Qualifiers ... 1-173

Placement Support Keyword (section) 1-174

Placement of Compiler-Generated Code and Data 1-175

Long Identifiers ... 1-176

Preprocessor Generated Warnings .. 1-176

Compiler Built-In Functions .. 1-177

Access to System Registers .. 1-177

Circular Buffer Built-In Functions 1-180

Circular Buffer Increment of an Index 1-181

Circular Buffer Increment of a Pointer 1-181

Compiler Performance Built-In Functions 1-182

Expected Behavior ... 1-182

Known Values ... 1-184

Fractional Built-In Functions .. 1-185

Miscellaneous Built-In Function 1-187

Contents

xvi VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Pragmas .. 1-187

Data Alignment Pragmas .. 1-189

#pragma align num ... 1-189

#pragma alignment_region (alignopt) 1-191

#pragma pack (alignopt) .. 1-192

#pragma pad (alignopt) ... 1-193

Interrupt Handler Pragmas ... 1-193

#pragma implicit_push_sts_handler 1-194

#pragma interrupt .. 1-194

#pragma interrupt_complete_nesting 1-195

#pragma interrupt_complete 1-196

#pragma save_restore_40_bits 1-196

#pragma save_restore_simd_40_bits
(SIMD SHARCs Only) .. 1-197

Interrupt Pragmas and the Interrupt Vector Table 1-197

Loop Optimization Pragmas ... 1-198

#pragma SIMD_for .. 1-199

#pragma all_aligned .. 1-199

#pragma no_vectorization ... 1-199

#pragma loop_count (min, max, modulo) 1-200

#pragma loop_unroll N .. 1-200

#pragma no_alias .. 1-203

#pragma vector_for .. 1-203

VisualDSP++ 5.0 C/C++ Compiler Manual xvii
for SHARC Processors

Contents

General Optimization Pragmas .. 1-204

Function Side-Effect Pragmas .. 1-205

#pragma alloc .. 1-206

#pragma const ... 1-206

#pragma misra_func(arg) ... 1-207

#pragma noreturn ... 1-207

#pragma pgo_ignore .. 1-207

#pragma pure .. 1-208

#pragma regs_clobbered string 1-209

#pragma regs_clobbered_call string 1-213

#pragma overlay .. 1-217

#pragma result_alignment (n) 1-217

Class Conversion Optimization Pragmas 1-218

#pragma param_never_null param_name [...] 1-218

#pragma suppress_null_check 1-219

Template Instantiation Pragmas 1-221

#pragma instantiate instance .. 1-222

#pragma do_not_instantiate instance 1-223

#pragma can_instantiate instance 1-223

Header File Control Pragmas ... 1-223

#pragma hdrstop ... 1-223

#pragma no_implicit_inclusion 1-224

#pragma no_pch ... 1-225

Contents

xviii VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

#pragma once ... 1-226

#pragma system_header .. 1-226

Fixed-Point Arithmetic Pragmas 1-226

#pragma FX_CONTRACT {ON|OFF} 1-227

#pragma FX_ROUNDING_MODE
{TRUNCATION|BIASED|UNBIASED} 1-227

#pragma STDC FX_FULL_PRECISION
{ON|OFF|DEFAULT} ... 1-228

#pragma STDC FX_FRACT_OVERFLOW
{SAT|DEFAULT} ... 1-228

Inline Control Pragmas ... 1-229

#pragma always_inline .. 1-229

#pragma inline ... 1-230

#pragma never_inline ... 1-230

Linking Control Pragmas .. 1-231

#pragma linkage_name identifier 1-231

#pragma core .. 1-231

 #pragma retain_name .. 1-236

#pragma section/#pragma default_section 1-238

#pragma file_attr(“name[=value]”
[, “name[=value]” [...]]) .. 1-242

 #pragma weak_entry .. 1-243

VisualDSP++ 5.0 C/C++ Compiler Manual xix
for SHARC Processors

Contents

Diagnostic Control Pragmas .. 1-243

Modifying the Severity of Specific Diagnostics 1-244

Modifying the Behavior of an Entire Class of
Diagnostics .. 1-245

Saving or Restoring the Current Behavior of All
Diagnostics .. 1-245

Memory Bank Pragmas ... 1-246

#pragma code_bank(bankname) 1-247

#pragma data_bank(bankname) 1-247

#pragma stack_bank(bankname) 1-248

#pragma bank_memory_kind(bankname, kind) 1-250

#pragma bank_read_cycles(bankname, cycles) 1-250

#pragma bank_write_cycles(bankname, cycles) 1-251

#pragma bank_optimal_width(bankname, width) 1-252

Code Generation Pragmas ... 1-253

#pragma avoid_anomaly_45 {on | off } 1-253

#pragma no_db_return .. 1-253

Exceptions Table Pragma ... 1-254

#pragma generate_exceptions_tables 1-254

GCC Compatibility Extensions ... 1-256

Statement Expressions ... 1-256

Type Reference Support Keyword (Typeof) 1-258

GCC Generalized Lvalues ... 1-259

Conditional Expressions with Missing Operands 1-259

Zero-Length Arrays ... 1-260

Contents

xx VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

GCC Variable Argument Macros 1-260

Line Breaks in String Literals .. 1-260

Arithmetic on Pointers to Void and Pointers to
Functions .. 1-261

Cast to Union ... 1-261

Ranges in Case Labels ... 1-261

Escape Character Constant ... 1-261

Alignment Inquiry Keyword (__alignof__) 1-261

Keyword for Specifying Names in Generated
Assembler (asm) ... 1-262

Function, Variable and Type Attribute Keyword
(__attribute__) .. 1-263

Unnamed struct/union Fields Within struct/unions 1-263

C++ Fractional Type Support .. 1-264

Format of Fractional Literals ... 1-264

Conversions Involving Fractional Values 1-265

Fractional Arithmetic Operations 1-265

Mixed Mode Operations ... 1-266

Saturated Arithmetic ... 1-266

Support for 40-bit Arithmetic ... 1-267

Using 40-bit Arithmetic in Compiled Code 1-268

Run-Time Library Functions That Use 40-bit
Arithmetic ... 1-269

Interrupt Support ... 1-270

VisualDSP++ 5.0 C/C++ Compiler Manual xxi
for SHARC Processors

Contents

SIMD Support .. 1-271

A Brief Introduction to SIMD Mode 1-271

What the Compiler Can Do Automatically 1-272

What Prevents the Compiler From Automatically
Exploiting SIMD Mode .. 1-273

How to Help the Compiler Exploit SIMD Mode 1-274

How to Prevent SIMD Code Generation 1-275

Accessing External Memory on ADSP-2126x and
ADSP-2136x Processors .. 1-275

Link-Time Checking of Data Placement 1-275

Inline Functions for External Memory Access 1-276

Support for Interrupts ... 1-276

Interrupt Dispatchers .. 1-277

Interrupts and Circular Buffering 1-281

Avoiding Self-Modifying Code .. 1-281

Interrupt Nesting Restrictions on ADSP-211xx/212xx/
213xx/214xx Processors .. 1-282

Restriction on Use of Super-Fast Dispatcher on
ADSP-2106x Processors ... 1-282

Restrictions on Using Normal and Circular Buffer
Interrupt Dispatchers on ADSP-2136x Processors 1-284

Migrating .ldf Files From Previous VisualDSP++
Installations .. 1-284

C++ Support Tables (ctor, gdt) .. 1-285

ADSP-21375 Memory Map .. 1-287

Contents

xxii VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

C++ Run-Time Libraries Rationalization 1-288

Fixed-Point I/O Support ... 1-288

Preprocessor Features .. 1-289

Predefined Preprocessor Macros ... 1-290

Writing Macros ... 1-297

Compound Macros ... 1-297

C/C++ Run-Time Model and Environment 1-300

C/C++ Run-Time Environment ... 1-300

Memory Usage ... 1-302

Program Memory Code Storage 1-304

Data Memory Data Storage ... 1-305

Program Memory Data Storage 1-305

Run-Time Stack Storage ... 1-306

Run-Time Heap Storage .. 1-306

Initialization Data Storage ... 1-307

Run-Time Header Storage ... 1-308

Memory Allocation for Stack and Heap on ADSP-2106x,
ADSP-2116x, and ADSP-2126x Processors 1-310

Example of Heap/Stack Memory Allocation 1-311

Measuring the Performance of the Compiler 1-312

Constructors and Destructors of Global Class Instances 1-313

Constructors, Destructors and Memory Placement 1-314

Support for argv/argc .. 1-315

VisualDSP++ 5.0 C/C++ Compiler Manual xxiii
for SHARC Processors

Contents

Using Multiple Heaps .. 1-316

Declaring a Heap .. 1-317

Heap Identifiers .. 1-319

Allocating C++ STL Objects to a Non-Default Heap 1-319

Using Alternate Heaps With the Standard Interface 1-322

Using the Alternate Heap Interface 1-323

C++ Run-Time Support for the Alternate Heap
Interface ... 1-324

Example C Programs ... 1-325

Compiler Registers ... 1-327

Miscellaneous Information About Registers 1-327

User Registers ... 1-328

Call Preserved Registers ... 1-329

Scratch Registers ... 1-330

Stack Registers .. 1-331

Alternate Registers ... 1-331

Managing the Stack ... 1-332

Transferring Function Arguments and Return Value 1-338

Passing a C++ Class Instance ... 1-341

Using Data Storage Formats .. 1-341

fract Data Representation .. 1-344

Using the Run-Time Header ... 1-346

Contents

xxiv VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

C/C++ and Assembly Interface .. 1-347

Calling Assembly Subroutines From C/C++ Programs 1-347

Calling C/C++ Functions From Assembly Programs 1-350

Using Mixed C/C++ and Assembly Support Macros 1-353

entry .. 1-353

exit ... 1-353

leaf_entry ... 1-354

leaf_exit ... 1-354

ccall(x) ... 1-354

reads(x) .. 1-354

puts=x .. 1-354

gets(x) .. 1-354

alter(x) ... 1-355

save_reg .. 1-355

restore_reg .. 1-355

Using Mixed C/C++ and Assembly Naming
Conventions .. 1-357

Implementing C++ Member Functions in Assembly
Language ... 1-359

Writing C/C++ Callable SIMD Subroutines 1-361

C++ Programming Examples ... 1-362

Using Fract Support .. 1-363

Using Complex Support ... 1-364

VisualDSP++ 5.0 C/C++ Compiler Manual xxv
for SHARC Processors

Contents

Mixed C/C++/Assembly Programming Examples 1-365

Using Inline Assembly (Add) ... 1-367

Using Macros to Manage the Stack 1-367

Using Scratch Registers (Dot Product) 1-369

Using Void Functions (Delay) ... 1-370

Using the Stack for Arguments (Add 5) 1-372

Using Registers for Arguments and Return (Add 2) 1-373

Using Non-Leaf Routines That Make Calls (RMS) 1-374

Using Call Preserved Registers (Pass Array) 1-376

Exceptions Tables in Assembly Routines 1-378

Compiler C++ Template Support ... 1-381

Template Instantiation ... 1-381

Implicit Instantiation .. 1-382

Exported Templates ... 1-383

Generated Template Files .. 1-384

Identifying Un-Instantiated Templates 1-385

File Attributes ... 1-387

Automatically-Applied Attributes ... 1-388

Content Attributes .. 1-389

FuncName Attributes .. 1-389

Encoding Attributes .. 1-390

Default LDF Placement ... 1-390

Contents

xxvi VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Sections Versus Attributes ... 1-391

Granularity ... 1-391

“Hard” Versus “Soft” .. 1-392

Number of Values ... 1-392

Using Attributes .. 1-393

Example 1 .. 1-393

Example 2 .. 1-395

ACHIEVING OPTIMAL PERFORMANCE FROM C/C++
SOURCE CODE

General Guidelines ... 2-2

How the Compiler Can Help .. 2-3

Using the Compiler Optimizer .. 2-4

Using Compiler Diagnostics ... 2-4

Warnings and Remarks ... 2-5

Assembly Annotations ... 2-7

Using the Statistical Profiler .. 2-7

Using Profile-Guided Optimization 2-8

Using Profile-Guided Optimization With a Simulator 2-8

Using Profile-Guided Optimization With
Non-Simulatable Applications 2-10

Profile-Guided Optimization and Multiple
Source Uses ... 2-10

Profile-Guided Optimization and the -Ov Switch 2-11

VisualDSP++ 5.0 C/C++ Compiler Manual xxvii
for SHARC Processors

Contents

Profile-Guided Optimization and Multiple PGO
Data Sets .. 2-11

When to Use Profile-Guided Optimization 2-12

Using Interprocedural Optimization 2-12

Data Types .. 2-13

Avoiding Emulated Arithmetic .. 2-14

Getting the Most From IPA ... 2-15

Initialize Constants Statically ... 2-16

Dual Word-Aligning Your Data ... 2-17

Using __builtin_aligned .. 2-18

Avoiding Aliases .. 2-20

Indexed Arrays Versus Pointers ... 2-22

Trying Pointer and Indexed Styles 2-23

Using Function Inlining ... 2-23

Using Inline asm Statements .. 2-24

Memory Usage .. 2-25

Improving Conditional Code .. 2-27

Loop Guidelines ... 2-28

Keeping Loops Short ... 2-28

Avoiding Unrolling Loops .. 2-29

Avoiding Loop-Carried Dependencies 2-29

Avoiding Loop Rotation by Hand .. 2-30

Avoiding Complex Array Indexing ... 2-32

Inner Loops vs. Outer Loops .. 2-32

Avoiding Conditional Code in Loops 2-33

Contents

xxviii VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Avoiding Placing Function Calls in Loops 2-34

Avoiding Non-Unit Strides .. 2-34

Loop Control .. 2-35

Using the Restrict Qualifier ... 2-36

Avoiding Long Latencies ... 2-37

Using Built-In Functions in Code Optimization 2-38

Using System Support Built-In Functions 2-38

Using Circular Buffers ... 2-40

Smaller Applications: Optimizing for Code Size 2-42

Using Pragmas for Optimization ... 2-43

Function Pragmas ... 2-44

#pragma alloc ... 2-44

#pragma const .. 2-45

#pragma pure ... 2-45

#pragma result_alignment ... 2-45

#pragma regs_clobbered .. 2-46

#pragma optimize_
{off|for_speed|for_space|as_cmd_line} 2-48

Loop Optimization Pragmas .. 2-49

#pragma loop_count ... 2-49

#pragma no_vectorization ... 2-50

#pragma vector_for ... 2-50

#pragma SIMD_for .. 2-51

#pragma all_aligned .. 2-51

#pragma no_alias .. 2-52

VisualDSP++ 5.0 C/C++ Compiler Manual xxix
for SHARC Processors

Contents

Useful Optimization Switches .. 2-53

How Loop Optimization Works .. 2-54

Terminology .. 2-54

Clobbered Register .. 2-54

Live Register ... 2-55

Spill .. 2-55

Scheduling .. 2-55

Loop Kernel .. 2-56

Loop Prolog .. 2-56

Loop Epilog .. 2-56

Loop Invariant .. 2-56

Hoisting ... 2-57

Sinking ... 2-57

Loop Optimization Concepts ... 2-57

Software Pipelining ... 2-58

Loop Rotation .. 2-59

Loop Vectorization .. 2-61

Modulo Scheduling ... 2-63

Initiation Interval (II) and the Kernel 2-65

Minimum Initiation Interval Due to Resources
(Res MII) ... 2-68

Minimum Initiation Interval Due to Recurrences
(Rec MII) ... 2-68

Stage Count (SC) .. 2-69

 xxx VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Variable Expansion and MVE Unroll 2-71

Trip Count ... 2-76

A Worked Example ... 2-77

Assembly Optimizer Annotations .. 2-80

Global Information ... 2-81

Procedure Statistics ... 2-83

Instruction Annotations .. 2-88

Loop Identification ... 2-88

Loop Identification Annotations 2-89

File Position ... 2-93

Vectorization ... 2-96

Loop Flattening .. 2-97

Vectorization Annotations ... 2-99

Modulo Scheduling Information ... 2-101

Annotations for Modulo Scheduled Instructions 2-101

Warnings, Failure Messages and Advice 2-107

Analyzing Your Application ... 2-111

Stack Overflow Detection ... 2-111

The Stack Overflow Detection Facility 2-113

INDEX

VisualDSP++ 5.0 C/C++ Compiler Manual xxxi
for SHARC Processors

 PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
signal processing applications.

Purpose of This Manual
The VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC Processors con-
tains information about the C/C++ compiler and its features designed for
use with SHARC® (ADSP-21xxx) processors. It includes syntax for com-
mand lines, switches, and language extensions. It leads you through the
process of using library routines and writing mixed C/C++/assembly code.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the SHARC architecture and instruction set
and the C/C++ programming languages.

Programmers who are unfamiliar with SHARC processors can use this
manual, but they should supplement it with other texts (such as the
appropriate hardware reference and programming reference manuals) that
describe their target architectures.

Manual Contents

 xxxii VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Manual Contents
This manual contains:

• Chapter 1, “Compiler”
Provides information on compiler options, language extensions and
C/C++/assembly interfacing

• Chapter 2, “Achieving Optimal Performance From C/C++ Source
Code”
Shows how to optimize compiler operation

What’s New in This Manual
This revision (1.5) of the manual documents changes/additions related to
the C/C++ compiler for VisualDSP++® 5.0 and subsequent updates (up
to update 9). Changes to this book from revision 1.4 include:

• 64-bit integer support: The compiler now supports the 64-bit inte-
ger types long long and unsigned long long, with corresponding
support in the ISO/IEC C standard library functions.

• Embedded C Support: The compiler supports the fixed-point type
fract as a native type. Refer to “Using Native Fixed-Point Types”
on page 1-90 for more information.

• Improved compliance with ISO/IEC standards: The compiler has
optional support for a freestanding implementation of the
ISO/IEC 9899:1999 C standard (“C99”), and support for a free-
standing implementation of the ISO/IEC14882:2003 C++
standard (“C++ 2003”). See “Language Standards Compliance” on
page 1-113 for more information.

VisualDSP++ 5.0 C/C++ Compiler Manual xxxiii
for SHARC Processors

Preface

• Stack overflow detection: The C runtime system detects when the
application exceeds the allocated stack space. For multi-threaded
applications, this facility requires RTOS support. For more infor-
mation, see “Stack Overflow Detection” on page 2-111.

• Corrections of typographic errors and reported document errata

The VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC Processors pro-
vides information on C/C++ compiler and its features and documents
support for all current SHARC processors. It does not describe C/C++
and DSP run-time libraries which are separated into a library reference
manual, VisualDSP++ 5.0 Run-Time Library Manual for SHARC
Processors.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technical_support

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Supported Processors

 xxxiv VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Supported Processors
The name “SHARC” refers to a family of Analog Devices, Inc. high-per-
formance 32-bit floating-point digital signal processors that can be used in
speech, sound, graphics, and imaging applications. For a complete list of
processors supported by VisualDSP++ 5.0, refer to VisualDSP++ online
Help.

Product Information
Product information can be obtained from the Analog Devices Web site,
VisualDSP++ online Help system, and a technical library CD.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

http://www.analog.com
http://www.analog.com/processors/technical_library/

VisualDSP++ 5.0 C/C++ Compiler Manual xxxv
for SHARC Processors

Preface

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools documentation. You
can search easily across the entire VisualDSP++ documentation set for any
topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the VisualDSP++ installation CD.

Each documentation file type is described as follows.

File Description

.chm Help system files and manuals in Microsoft help format

.htm or

.html
Dinkum Abridged C++ library and FLEXnet license tools software
documentation. Viewing and printing the .html files requires a browser, such as
Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

Product Information

 xxxvi VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Technical Library CD
The technical library CD contains seminar materials, product highlights,
a selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin®, SHARC, TigerSHARC®, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the
latest manual revisions and associated documentation errata.

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/
http://ez.analog.com

VisualDSP++ 5.0 C/C++ Compiler Manual xxxvii
for SHARC Processors

Preface

Social Networking Web Sites
You can now follow Analog Devices SHARC development on Twitter and
LinkedIn. To access:

• Twitter: http://twitter.com/ADISHARC

• LinkedIn: Network with the LinkedIn group, Analog Devices
SHARC: http://www.linkedin.com

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

 Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu)

Titles in in bold style reference sections indicate the location of an item
within the VisualDSP++ environment’s menu system (for example, the
Close command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipse; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

http://twitter.com/ADISHARC
http://www.linkedin.com

Notation Conventions

 xxxviii VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Example Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-1
for SHARC Processors

1 COMPILER

The C/C++ compiler (cc21k) is part of Analog Devices development soft-
ware for SHARC (ADSP-21xxx) processors.

 The code examples in this manual have been compiled using
VisualDSP++ 5.0. The examples compiled with other versions of
VisualDSP++ may result in build errors or different output
although the highlighted algorithms stand and should continue to
stand in future releases of VisualDSP++.

This chapter contains:

• “C/C++ Compiler Overview” on page 1-3
provides an overview of C/C++ compiler for SHARC processors.

• “Compiler Command-Line Interface” on page 1-5
describes the operation of the compiler as it processes programs,
including input and output files, and command-line switches.

• “Using Native Fixed-Point Types” on page 1-90
describes the compiler’s support for the native fixed-point type
fract, defined in Chapter 4 of the “Extensions to support embedded
processors” ISO/IEC draft technical report TR 18037.

• “Language Standards Compliance” on page 1-113
describes how to enable the best possible compliance to either the
ISO/IEC 9899:1990 C standard, the ISO/IEC 9899:1999 C stan-
dard or the ISO/IEC 14882:2003 C++ standard.

1-2 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• “MISRA-C Compiler” on page 1-115
describes how the cc21k compiler enables checking for MISRA-C:
2004 Guidelines.

• “C/C++ Compiler Language Extensions” on page 1-128
describes the cc21k compiler’s extensions to the ISO/ANSI stan-
dard for the C and C++ languages.

• “Preprocessor Features” on page 1-289
contains information on the preprocessor and ways to modify
source compilation.

• “C/C++ Run-Time Model and Environment” on page 1-300
contains reference information about implementation of C/C++
programs, data, and function calls in ADSP-21xxx processors.

• “C/C++ and Assembly Interface” on page 1-347
describes how to call an assembly language subroutine from a
C/C++ program, and how to call a C/C++ function from within an
assembly language program.

• “Compiler C++ Template Support” on page 1-381
describes how templates are instantiated at compile time

• “File Attributes” on page 1-387
describes how file attributes help with the placement of runtime
library functions.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-3
for SHARC Processors

Compiler

C/C++ Compiler Overview
The C/C++ compiler (cc21k) is designed to aid your project development
efforts by:

• Processing C and C++ source files, producing machine-level ver-
sions of the source code and object files

• Providing relocatable code and debugging information within the
object files

• Providing relocatable data and program memory segments for
placement by the linker in the processors’ memory

Using C/C++, developers can significantly decrease time-to-market since
it gives them the ability to efficiently work with complex signal processing
data types. It also allows them to take advantage of specialized processor
operations without having to understand the underlying processor
architecture.

The C/C++ compiler (cc21k) compiles ISO/ANSI standard C and C++
code for the SHARC processors. Additionally, Analog Devices includes
within the compiler a number of C language extensions designed to assist
in processor development. The compiler runs from the VisualDSP++ envi-
ronment or from an operating system command line.

The C/C++ compiler (cc21k) processes your C and C++ language source
files and produces SHARC assembler source files. The assembler source
files are assembled by the SHARC assembler (easm21k). The assembler
creates Executable and Linkable Format (ELF) object files that can either
be linked (using the linker) to create an ADSP-21xxx executable file or
included in an archive library (elfar). The way in which the compiler
controls the assemble, link, and archive phases of the process depends on
the source input files and the compiler options used.

C/C++ Compiler Overview

1-4 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Your source files contain the C/C++ program to be processed by the com-
piler. The cc21k compiler supports the following standards, each with
Analog Devices extensions enabled:

• A hosted implementation of the ISO/IEC 9899:1990 C standard
(C89).

• A freestanding implementation of the ISO/IEC 9899:1999 C stan-
dard (C99).

• A freestanding implementation of the ISO/IEC 14882:2003 C++
standard (C++ 2003).

RTTI and Exceptions for C++ are supported, but disabled by default. See
information on these switches: “-rtti” on page 1-76 and “-eh” on
page 1-29.

For information on the C language standard, see any of the many refer-
ence texts on the C language. Analog Devices recommends the Bjarne
Stroustrup text “The C++ Programming Language” from Addison Wesley
Longman Publishing Co (ISBN: 0201889544) (1997) as a reference text
for the C++ programming language.

The cc21k compiler supports a set of C/C++ language extensions. These
extensions support hardware features of the ADSP-21xxx processors. For
information on these extensions, see “C/C++ Compiler Language Exten-
sions” on page 1-128.

You can set the compiler options from the Compile page of the Project
Options dialog box of the VisualDSP++ Integrated Development and
Debug Environment (IDDE). These selections control how the compiler
processes your source files, letting you select features that include the lan-
guage dialect, error reporting, and debugger output.

For more information on the VisualDSP++ environment, see the
VisualDSP++ 5.0 User’s Guide and online Help.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-5
for SHARC Processors

Compiler

Compiler Command-Line Interface
This section describes how the cc21k compiler is invoked from the com-
mand line, the various types of files used by and generated from the
compiler, and the switches used to tailor the compiler’s operation.

This section contains:

• “Running the Compiler” on page 1-6

• “Compiler Command-Line Switches” on page 1-7

• “Environment Variables Used by the Compiler” on page 1-77

• “Data Type and Data Type Sizes” on page 1-78

• “Optimization Control” on page 1-81

• “Controlling Silicon Revision and Anomaly Workarounds Within
the Compiler” on page 1-86

By default, the compiler runs with Analog Devices extension keywords for
C code enabled. This means that the compiler processes source files writ-
ten in ISO/IEC 9899:1989 standard C language supplemented with
Analog Devices extensions. Table 1-2 on page 1-7 lists the switches that
select the language dialect.

Although many switches are generic between C and C++, some of them
are valid in C++ mode only. A summary of the generic C/C++ compiler
switches appears in Table 1-3 on page 1-8. A summary of the C++-specific
compiler switches appears in Table 1-5 on page 1-19. The summaries are
followed by descriptions of each switch.

 When developing a project, sometimes it is useful to modify the
compiler’s default options settings. The way the compiler’s options
are set depends on the environment used to run the processor
development software.

Compiler Command-Line Interface

1-6 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Running the Compiler
Use the following syntax for the cc21k command line:

cc21k [-switch [-switch …] sourcefile [sourcefile …]]

Table 1-1 describes these syntax elements.

 When file names or other switches for the compiler include spaces
or other special characters, you must ensure that these are properly
quoted (usually using double-quote characters), to ensure that they
are not interpreted by the operating system before being passed to
the compiler.

The sourceFile element (the name of the source file to be processed) can
include the drive, directory, file name and file extension. The compiler
supports both Win32 and POSIX-style paths by using forward or back
slashes as the directory delimiter. It also supports UNC path names (start-
ing with two slashes and a network name). If the name contains spaces,
enclose it in straight quotes; for example, "long file name.c"

Table 1-1. cc21k Command Line Syntax

Command
Element

Description

cc21k Name of the compiler program for SHARC processors.

-switch Switch (or switches) to process.
The compiler has many switches. These switches select the operations and
modes for the compiler and other tools. Command-line switches are case
sensitive. For example, -O is not the same as -o.

sourceFile Name of the file to be preprocessed, compiled, assembled, and/or linked

VisualDSP++ 5.0 C/C++ Compiler Manual 1-7
for SHARC Processors

Compiler

Compiler Command-Line Switches
This section describes the command-line switches used when compiling.
It contains a set of tables that provide a brief description of each switch.
These tables are organized by type of switch. Following these tables are
sections that provide fuller descriptions of each switch.

C/C++ Compiler Switch Summaries

This section contains a set of tables that summarize generic and specific
switches (options).

• “C/C++ Mode Selection Switches”, Table 1-2 on page 1-7

• “C/C++ Compiler Common Switches”, Table 1-3 on page 1-8

• “C Mode (MISRA) Compiler Switches”, Table 1-4 on page 1-18

• “C++ Mode Compiler Switches”, Table 1-5 on page 1-19

A brief description of each switch follows the tables, beginning
on page 1-20.

Table 1-2. C/C++ Mode Selection Switches

Switch Name Description

-c89
(on page 1-20)

Supports programs that conform to the
ISO/IEC 9899:1990 standard. This is the
default mode.

-c99
(on page 1-20)

Supports programs that conform to the
ISO/IEC 9899:1999 standard.

-c++
(on page 1-20)

Supports ISO/IEC 1482:2003 standard C++
with Analog Devices extensions. Note that C++
is not supported on the ADSP-21020 processor.

Compiler Command-Line Interface

1-8 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Table 1-3. C/C++ Compiler Common Switches

Switch Name Description

sourcefile
(on page 1-21)

Specifies file to be compiled

-@ filename
(on page 1-21)

Reads command-line input from the file

-A name[tokens]
(on page 1-21)

Asserts the specified name as a predicate

-add-debug-libpaths
(on page 1-22)

Link against debug-specific variants of system libraries,
where available

-aligned-stack
(on page 1-23)

Aligns the program stack on a double-word boundary

-alttok
(on page 1-23)

Allows alternative keywords and sequences in sources

-always-inline
(on page 1-24)

Treats inline keyword as a requirement rather than a
suggestion

-annotate
(on page 1-24)

Annotates compiler-produced assembly files

-annotate-loop-instr
(on page 1-24)

Provides additional annotation information for the
prolog, kernel and epilog of a loop

-auto-attrs
(on page 1-25)

Directs the compiler to emit automatic attributes
based on the files it compiles. Enabled by default.

-build-lib
(on page 1-25)

Directs the librarian to build a library file

-C
(on page 1-25)

Retains preprocessor comments in the output file;
must run with the -E or -P switch

-c
(on page 1-25)

Compiles and/or assembles only, but does not link

-compatible-pm-dm
(on page 1-25)

Specifies that the compiler shall treat dm- and pm-qual-
ified pointers as assignment-compatible

-const-read-write
(on page 1-25)

Specifies that data accessed via a pointer to const data
may be modified elsewhere

-const-strings
(on page 1-26)

Directs the compiler to mark string literals as
const-qualified

VisualDSP++ 5.0 C/C++ Compiler Manual 1-9
for SHARC Processors

Compiler

-D macro[=definition]
(on page 1-26)

Defines a macro

-debug-types
(on page 1-26)

Supports building a *.h file directly and writing a
complete set of debugging information for the header
file

-double-size [-32|-64]
(on page 1-27)

Selects 32- or 64-bit IEEE format for double.
The -double-size-32 is the default mode.

-double-size-any
(on page 1-28)

Indicates that the resulting object can be linked with
objects built with any double size

-dry
(on page 1-28)

Displays, but does not perform, main driver actions
(verbose dry-run)

-dryrun
(on page 1-28)

Displays, but does not perform, top-level driver
actions (terse dry-run)

-E
(on page 1-29)

Preprocesses, but does not compile, the source file

-ED
(on page 1-29)

Preprocesses and sends all output to a file

-EE
(on page 1-29)

Preprocesses and compiles the source file

-eh
(on page 1-29)

Enables exception handling

-enum-is-int
(on page 1-30)

By default enums can have a type larger than int. This
option ensures the enum type is int.

-extra-keywords

(on page 1-30)

Recognizes ADI extensions to ANSI/ISO standards for
C and C++ (default mode)

-file-attr name[=value]
(on page 1-31)

Adds the specified attribute name/value pair to the
file(s) being compiled

-flags-{tools} <arg1> [,arg2...]
(on page 1-31)

Passes command-line switches through the compiler to
other build tools

-float-to-int
(on page 1-32)

Uses a support library function to convert a float to
an integer

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-10 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-force-circbuf
(on page 1-32)

Treats array references of the form array[i%n] as cir-
cular buffer operations

-fp-associative
(on page 1-32)

Treats floating-point multiply and addition as an asso-
ciative

-full-version
(on page 1-32)

Displays the version number of the driver and any pro-
cesses invoked by the driver

-fx-contract
(on page 1-33)

Sets the default mode of FX_CONTRACT to ON.

-fx-rounding-mode-biased
(on page 1-33)

Sets the default mode of FX_ROUNDING_MODE to
BIASED.

-fx-rounding-mode-truncation
(on page 1-33)

Sets the default mode of FX_ROUNDING_MODE to
TRUNCATION.

-fx-rounding-mode-unbiased
(on page 1-33)

Sets the default mode of FX_ROUNDING_MODE to
UNBIASED.

-g

(on page 1-33)

Generates DWARF-2 debug information

-glite

(on page 1-34)

Generates lightweight DWARF-2 debug information

-H

(on page 1-34)

Outputs a list of included header files, but does not
compile

-HH

(on page 1-35)

Outputs a list of included header files and compiles

-h[elp]

(on page 1-35)

Outputs a list of command-line switches

-I directory
(on page 1-35)

Appends directory to the standard search path

-I-
(on page 1-36)

Establishes the point in the include directory list at
which the search for header files enclosed in angle
brackets should begin

-i
(on page 1-36)

Outputs only header details or makefile dependencies
for include files specified in double quotes

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-11
for SHARC Processors

Compiler

-implicit-pointers
(on page 1-36)

Demotes incompatible-pointer-type errors into discre-
tionary warnings. Not valid when compiling in C++
mode.

-include filename
(on page 1-37)

Includes named file prior to preprocessing each source
file

-ipa
(on page 1-37)

Enables interprocedural analysis

-L directory
(on page 1-38)

Appends directory to the standard library search path

-l library
(on page 1-38)

Searches library for functions when linking

-list-workarounds
(on page 1-39)

Lists all compiler-supported errata workarounds

-M

(on page 1-39)

Generates make rules only, but does not compile

-MD

(on page 1-39)

Generates make rules, compiles, and prints to a file

-MM

(on page 1-39)

Generates make rules and compiles

-Mo filename
(on page 1-40)

Writes dependency information to filename. This
switch is used in conjunction with the -ED or -MD
options

-Mt filename
(on page 1-40)

Makes dependencies, where the target is renamed as
filename

-map filename
(on page 1-40)

Directs the linker to generate a memory map of all
symbols

-mem

(on page 1-40)

Enables memory initialization

-misra
(on page 1-70)

(C compiler switch): Enables checking for MISRA-C:
2004 Guidelines, allows some relaxation of interpreta-
tion

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-12 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-multiline
(on page 1-40)

Enables string literals over multiple lines (default)

-never-inline
(on page 1-41)

Ignores inline keyword on function definitions

-no-aligned-stack
(on page 1-41)

Does not double-word align the program stack

-no-alttok
(on page 1-41)

Does not allow alternative keywords and sequences in
sources

-no-annotate
(on page 1-41)

Disables the annotation of assembly files

-no-annotate-loop-instr
(on page 1-42)

Disables the production of additional loop annotation
information by the compiler (default mode)

-no-auto-attrs
(on page 1-42)

Directs the compiler not to emit automatic attributes
based on the files it compiles

-no-builtin

(on page 1-42)

Recognizes only built-in functions that begin with two
underscores(__)

-no-circbuf
(on page 1-43)

Disables the automatic generation of circular buffer
code by the compiler

-no-db

(on page 1-43)

Specifies that the compiler shall not generate code con-
taining delayed branches jumps

-no-defs

(on page 1-43)

Disables preprocessor definitions: macros, include
directories, library directories, run-time headers, or
keyword extensions

-no-eh
(on page 1-43)

Disables exception handling

-no-extra-keywords

(on page 1-44)

Does not accept ADI keyword extensions that might
affect ISO/ANSI standards for C and C++

-no-fp-associative
(on page 1-44)

Does not treat floating-point multiply and addition as
an associative

-no-fx-contract
(on page 1-44)

Sets the default mode of FX_CONTRACT to OFF.

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-13
for SHARC Processors

Compiler

-no-mem

(on page 1-45)

Disables memory initialization

-no-multiline
(on page 1-45)

Disables multiple line string literal support

-no-progress-rep-timeout
(on page 1-45)

Prevents the compiler from issuing a diagnostic during
excessively long compilations

-no-sat-associative
(on page 1-45)

Saturating addition is not associative.

-no-saturation
(on page 1-46)

Causes the compiler not to introduce saturation
semantics when optimizing expressions

-no-shift-to-add
(on page 1-46)

Disables automatic SIMD mode when compiling for
ADSP-211xx, ADSP-212xx, ADSP-213xx or
ADSP-214xx processors

-no-simd
(on page 1-46)

Disables automatic SIMD mode when compiling for
ADSP-211xx, ADSP-212xx, ADSP-213xx or
ADSP-214xx processors

-no-std-ass

(on page 1-47)

Disables any predefined assertions and system-specific
macro definitions

-no-std-def

(on page 1-47)

Disables preprocessor definitions and ADI keyword
extensions that do not have leading underscores(__)

-no-std-inc

(on page 1-47)

Searches for preprocessor include header files only in
the current directory and in directories specified with
the -I switch

-no-std-lib

(on page 1-47)

Searches for libraries only in directories specified with
the -L switch

-no-threads
(on page 1-47)

Specifies that all compiled code need not be
thread-safe

-no-workaround workaround_id
(on page 1-48)

Disables specific hardware anomaly workarounds
within the compiler

-normal-word-code
(on page 1-48)

Directs the compiler to generate instructions of
normal-word size (48-bits)

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-14 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-nwc
(on page 1-48)

Has the same effect as compiling with the
-normal-word-code switch

-O [0|1]

(on page 1-48)

Enables code optimizations

-Oa

(on page 1-49)

Enables automatic function inlining

-Og

(on page 1-49)

Enables a compiler mode that performs optimizations
while still preserving the debugging information

-Os

(on page 1-49)

Optimizes for code size

-Ov num

(on page 1-49)

Controls speed versus size optimizations

-o filename
(on page 1-51)

Specifies the output file name

-overlay
(on page 1-52)

Disables the propagation of register information
between functions and forces the compiler to assume
that all functions clobber all scratch registers

-overlay-clobbers regs
(on page 1-52)

Specifies the registers assumed to be clobbered by an
overlay manager

-P

(on page 1-53)

Preprocesses, but does not compile, the source file;
omits line numbers in the preprocessor output

-PP
(on page 1-53)

Similar to -P, but does not halt compilation after pre-
processing

-path-{asm|compiler|lib|link}
pathname
(on page 1-53)

Uses the specified directory as the location of the spec-
ified compilation tool (assembler, compiler, librarian,
or linker, respectively)

-path-install directory
(on page 1-53)

Uses the specified directory as the location of all com-
pilation tools

-path-output directory
(on page 1-54)

Specifies the location of non-temporary files

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-15
for SHARC Processors

Compiler

-path-temp directory
(on page 1-54)

Specifies the location of temporary files

-pch
(on page 1-54)

Generates and uses precompiled header files (*.pch)

-pchdir directory
(on page 1-54)

Specifies the location of PCHRepository

-pgo-session
(on page 1-54)

Specifies PGO session identifier; used with pro-
file-guided optimization

-pguide
(on page 1-55)

Adds instrumentation for the gathering of a profile as
the first stage of performing profile-guided optimiza-
tion

-pplist filename
(on page 1-55)

Outputs a raw preprocessed listing to the specified file

-proc processor
(on page 1-56)

Specifies that the compiler should produce code suit-
able for the specified processor

-progress-rep-func
(on page 1-57)

Issues a diagnostic message each time the compiler
starts compiling a new function. Equivalent to
-Wwarn=cc1472.

-progress-rep-opt
(on page 1-57)

Issues a diagnostic message each time the compiler
starts a new generic optimization pass on the current
function. Equivalent to -Wwarn=cc1473.

-progress-rep-timeout
(on page 1-57)

Issues a diagnostic message if the compiler exceeds a
time limit during compilation

-progress-rep-timeout-secs secs
(on page 1-57)

Specifies how many seconds must elapse during a com-
pilation before the compiler issues a diagnostic on the
length of compilation

-R directory
(on page 1-57)

Appends directory to the standard search path for
source files

-R-
(on page 1-58)

Removes all directories from the standard search path
for source files

-reserve <reg1>[,reg2...]
(on page 1-58)

Reserves certain registers from compiler use.
Note: Reserving registers can have a detrimental effect
on the compiler’s optimization capabilities.

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-16 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-restrict-hardware-loops maximum
(on page 1-59)

Restrict the number of levels of loop nesting used by
the compiler

-S
(on page 1-59)

Stops compilation before running the assembler

-s
(on page 1-59)

Removes debug info from the output executable file

-sat-associative
(on page 1-59)

Saturating addition is associative

-save-temps
(on page 1-59)

Saves intermediate files

-section id=section_name
(on page 1-60)

Orders the compiler to place data/program of type
“id” into the section “section_name”

-short-word-code
(on page 1-61)

Directs the compiler to generate instructions of short
word size (16/32/48-bits)

-show
(on page 1-61)

Displays the driver command-line information

-si-revision version
(on page 1-61)

Specifies a silicon revision of the specified processor.
The default setting is the latest silicon revision.

-signed-bitfield
(on page 1-62)

Makes the default type for int bit-fields signed

-structs-do-not-overlap
(on page 1-62)

Specifies that struct copies may use “memcpy” seman-
tics, rather than the usual “memmove” behavior

-swc
(on page 1-63)

Directs the compiler to generate instructions of short
word size (16/32/48-bits)

-syntax-only
(on page 1-63)

Checks the source code for compiler syntax errors, but
does not write any output

-sysdefs
(on page 1-63)

Defines the system definition macros

-T filename

(on page 1-63)

Specifies the Linker Description File

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-17
for SHARC Processors

Compiler

-threads
(on page 1-64)

Specifies that support for multithreaded applications is
to be enabled

-time
(on page 1-64)

Displays the elapsed time as part of the output infor-
mation on each part of the compilation process

-Umacro

(on page 1-64)

Undefines macro(s)

-unsigned-bitfield
(on page 1-65)

Makes the default type for plain int bit-fields
unsigned

-v
(on page 1-65)

Displays both the version and command-line informa-
tion

-verbose
(on page 1-66)

Displays command-line information

-version
(on page 1-66)

Displays version information

-W{error|remark|
suppress|warn} number
(on page 1-66)

Overrides the default severity of the specified error
message

-Werror-limit number
(on page 1-67)

Stops compiling after reaching the specified number of
errors

-Werror-warnings
(on page 1-67)

Directs the compiler to treat all warnings as errors

-Wremarks
(on page 1-67)

Indicates that the compiler may issue remarks, which
are diagnostic messages even milder than warnings

-Wterse
(on page 1-67)

Issues only the briefest form of compiler warning,
errors, and remarks

-w
(on page 1-67)

Does not display compiler warning messages

-warn-protos
(on page 1-68)

Produces a warnings when a function is called without
a prototype

-workaround workaround_id
(on page 1-68)

Enables code generator workaround for specific hard-
ware errata

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-18 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-write-files
(on page 1-68)

Enables compiler I/O redirection

-write-opts
(on page 1-69)

Passes the user options (but not input filenames) via a
temporary file

-xref filename
(on page 1-69)

Outputs cross-reference information to the specified
file

Table 1-4. C Mode (MISRA) Compiler Switches

Switch Name Description

-misra
(on page 1-70)

Enables checking for MISRA-C: 2004 Guidelines, allows some
relaxation of interpretation

-misra-linkdir
(on page 1-70)

Specifies directory for generation of .misra files.
If this option is not specified, a local directory called MIS-
RARepository is created.

-misra-no-cross-module
(on page 1-70)

Enables checking for MISRA-C: 2004 Guidelines, allows some
relaxation of interpretation. Does not generate .misra files to
check for link-time rule violations.

-misra-no-runtime
(on page 1-71)

Enables checking for MISRA-C: 2004 Guidelines, allows some
relaxation of interpretation. Does not generate extra code to
perform run-time checking in support of a number of Rules.

-misra-strict
(on page 1-71)

Enables checking for MISRA-C: 2004 Guidelines

-misra-suppress-advisory
(on page 1-71)

Enables checking for MISRA-C: 2004 Guidelines. Advisory
rules are not reported.

-misra-testing
(on page 1-71)

Enables checking for MISRA-C: 2004 Guidelines. Suppresses
reporting of MISRA-C rule 20.4, 20.7, 20.8, 20.9, 20.10,
20.11 and 20.12.

-Wmis_suppress
(on page 1-71)

Overrides the default severity of the specified messages relating
to the specified MISRA-C rules

-Wmis_warn
(on page 1-72)

Overrides the default severity of the specified messages relating
to the specified MISRA-C rules

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-19
for SHARC Processors

Compiler

Table 1-5. C++ Mode Compiler Switches

Switch Name Description

-anach
(on page 1-72)

Supports some language features (anachronisms) that are prohib-
ited by the C++ standard but still in common use

-check-init-order
(on page 1-73)

Adds run-time checking to the generated code highlighting poten-
tial uninitialized external objects.

-extern-inline
(on page 1-74)

Allows standard behavior with respect to extern inline functions

-friend-injection
(on page 1-74)

Allows non-standard behavior with respect to friend declarations.
When friend names are not injected, function names are visible
only when using argument-dependent lookup

-full-dependency-
inclusion
(on page 1-74)

Ensures re-inclusion of implicitly included files when generating
dependency information

-ignore-std
(on page 1-75)

Disables namespace std within the C++ Standard header files.

-no-anach
(on page 1-75)

Disallows the use of anachronisms that are prohibited by the C++
standard

-no-extern-inline
(on page 1-75)

Treats extern inline functions as though they have static linkage

-no-friend-injection
(on page 1-76)

Allows standard behavior. Friend function names are visible only
when using argument-dependent lookup. Friend class names are
never visible

-no-implicit-inclusion
(on page 1-76)

Prevents implicit inclusion of source files as a method of finding
definitions of template entities to be instantiated

-no-rtti
(on page 1-76)

Disables run-time type information

-no-std-templates
(on page 1-76)

Disables the lookup of names used in templates

-rtti
(on page 1-76)

Enables run-time type information

-std-templates
(on page 1-77)

Enables the lookup of names used in templates

Compiler Command-Line Interface

1-20 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

C/C++ Mode Selection Switch Descriptions

The following command-line switches provide C/C++ mode selection.

-c89

The -c89 switch directs the compiler to support programs that conform to
the ISO/IEC 9899:1990 standard. For greater conformance to the stan-
dard, the following switches should be used: -alttok, -const-read-write,
and -no-extra-keywords. (See Table 1-3 on page 1-8.)

-c99

The -c99 switch directs the compiler to support programs that conform to
a freestanding implementation of the ISO/IEC 9899:1999 standard. For
greater conformance to the standard, the following switches should be
used: -alttok, -const-read-write, and -no-extra-keywords. (See
Table 1-3 on page 1-8.)

 The compiler does not support the _Complex and _Imaginary key-
words. Complex arithmetic in C mode is enabled by including the
Analog Devices-specific header file <complex.h>.

-c++

The -c++ (C++ mode) switch directs the compiler to compile the source
file(s) written in ISO/IEC 1482:2003 standard C++ with Analog Devices
language extensions. When using this switch, source files with an exten-
sion of .c is compiled and linked in C++ mode.

All the standard features of C++ are accepted in the default mode except
exception handling and run-time type identification because these impose
a run-time overhead that is not desirable for all embedded programs. Sup-
port for these features can be enabled with the -eh and -rtti switches.
(See Table 1-5 on page 1-19.)

 C++ is not supported on the ADSP-21020 processor.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-21
for SHARC Processors

Compiler

C/C++ Compiler Common Switch Descriptions

The following command-line switches apply in both C and C++ modes.

sourcefile

The sourcefile parameter (or parameters) specifies the name of the file
(or files) to be preprocessed, compiled, assembled, and/or linked. A file
name can include the drive, directory, file name, and file extension. The
cc21k compiler uses the file extension to determine the operations to
perform.

-@ filename

The -@filename (command file) switch directs the compiler to read
command-line input from filename. The specified file must contain
driver options but may also contain source filenames and environment
variables. It can be used to store frequently used options as well as to read
from a file list.

-A name[tokens]

The -A (assert) switch directs the compiler to assert name as a predicate
with the specified tokens. This has the same effect as the #assert prepro-
cessor directive. The following assertions are predefined in Table 1-6.

Table 1-6. Predefined Assertions

Assertion Value

system embedded

machine adsp21xxx

cpu adsp21xxx

compiler cc21k

Compiler Command-Line Interface

1-22 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The -A name(value) switch is equivalent to including

#assert name(value)

in your source file, and both may be tested in a preprocessor condition in
the following manner:

#if #name(value)

// do something

#else

// do something else

#endif

For example, the default assertions may be tested as:

#if #machine(adsp21xxx)

// do something

#endif

 The parentheses in the assertion need quotes when using the -A
switch, to prevent misinterpretation. No quotes are needed for a
#assert directive in a source file.

-add-debug-libpaths

The -add-debug-libpaths switch prepends the Debug subdirectory to the
search paths passed to the linker. The Debug subdirectory, found in each
of the silicon-revision-specific library directories, contains variants of cer-
tain libraries (for example, system services), which provide additional
diagnostic output to assist in debugging problems arising from their use.

 Invoke this switch with the Use Debug System Libraries radio but-
ton located in the VisualDSP++ Project Options dialog box, Link
page, Processor category.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-23
for SHARC Processors

Compiler

-aligned-stack

The -aligned-stack switch directs the compiler to align the program
stack on a double-word boundary.

-alttok

The -alttok (alternative tokens) switch directs the compiler to allow
alternative operator keywords and digraph sequences in source files.
Additionally, this switch enables the recognition of these alternative oper-
ator keywords in C++ source files (Table 1-7).

See also the -no-alttok switch (on page 1-41).

 To use alternative tokens in C, you should use #include
<iso646.h>.

Table 1-7. Alternative Operator Keywords

Keyword Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

or ||

or_eq |=

not !

not_eq !=

xor ^

xor_eq ^=

Compiler Command-Line Interface

1-24 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-always-inline

The -always-inline switch instructs the compiler to always attempt to
inline any call to a function that is defined with the inline qualifier. It is
equivalent to applying #pragma always_inline to all functions in the
module that have the inline qualifier. See also the –never-inline switch
(on page 1-41).

 Invoke this switch with the Always radio button located in the
Inlining area of the VisualDSP++ Project Options dialog box,
Compile page, General category.

-annotate

The -annotate (enable assembly annotations) switch directs the compiler
to annotate assembly files generated by the compiler. The default behavior
is that whenever optimizations are enabled all assembly files generated by
the compiler are annotated with information on the performance of the
generated assembly. See “Assembly Optimizer Annotations” on page 2-80
for more details on this feature. Also, see also the –no-annotate switch
(on page 1-41).

 Invoke this switch by checking the Generate assembly code anno-
tations check box located in the VisualDSP++ Project Options
dialog box, Compile page, General category.

-annotate-loop-instr

The -annotate-loop-instr switch directs the compiler to provide addi-
tional annotation information for the prolog, kernel and epilog of a loop.
See “Assembly Optimizer Annotations” on page 2-80 for more details on
this feature. Also, see also the –no-annotate-loop-instr switch
(on page 1-42).

VisualDSP++ 5.0 C/C++ Compiler Manual 1-25
for SHARC Processors

Compiler

-auto-attrs

The -auto-attrs (automatic attributes) switch directs the compiler to
emit automatic attributes based on the files it compiles. Emission of auto-
matic attributes is enabled by default. See “File Attributes” on page 1-387
for more information about attributes, and what automatic attributes the
compiler emits. See also the -no-auto-attrs switch (on page 1-42) and
the -file-attr switch (on page 1-31).

-build-lib

The -build-lib (build library) switch directs the compiler to use elfar
(the librarian) to produce a library file (.dlb) as the output instead of
using the linker to produce an executable file (.dxe). The -o option must
be used to specify the name of the resulting library.

-C

The -C (comments) switch, which may only be run in combination with
the -E or -P switches, directs the C/C++ preprocessor to retain comments
in its output file.

-c

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but stop before linking. The output is an object
file (.doj) for each source file.

-compatible-pm-dm

The compatible-pm-dm switch specifies that the compiler shall treat dm-
and pm-qualified pointers as assignment-compatible.

-const-read-write

The -const-read-write switch directs the compiler to specify that con-
stants may be accessed as read-write data (as in ANSI C). The compiler’s

Compiler Command-Line Interface

1-26 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

default behavior assumes that data referenced through const pointers
never changes.

The -const-read-write switch changes the compiler’s behavior to match
the ANSI C assumption, which is that other non-const pointers may be
used to change the data at some point.

 Invoke this switch with the Pointers to const may point to
non-const data check box located in the Constants area of the
VisualDSP++ Project Options dialog box, Compile page, Lan-
guage Settings category.

-const-strings

The -const-strings (const-qualify strings) switch directs the compiler to
mark string literals as const-qualified. This is the default behavior. See
also the -no-const-strings switch (on page 1-43).

 Invoke this switch with the Literal strings are const check box
located in the Constants area of the VisualDSP++ Project Options
dialog box, Compile page, Language Settings category.

-D

The -D macro[=definition] (define macro) switch directs the compiler to
define a macro. If you do not include the optional definition string, the
compiler defines the macro as the string ‘1’. Note that the compiler pro-
cesses all -D switches on the command line before any -U (undefine macro)
switches. For more information, see “-U” on page 1-64.

-debug-types

The -debug-types switch builds a *.h file directly and writes a complete
set of debugging information for the header file. The -g option need not
be specified with the -debug-types switch because it is implied. For
example,

cc21k -debug-types anyHeader.h

VisualDSP++ 5.0 C/C++ Compiler Manual 1-27
for SHARC Processors

Compiler

Until the introduction of -debug-types, the compiler would not accept an
*.h file as a valid input file. The implicit -g option writes debugging infor-
mation for only those typedefs that are referenced in the program. The
-debug-types option provides complete debugging information for all
typedefs and structs.

-double-size[-32|-64]

The -double-size-32 (double is 32 bits) and the -double-size-64 (dou-
ble is 64 bits) switches select the storage format that the compiler uses for
type double. The default mode is -double-size-32.

The C/C++ type double poses a special problem for the compiler. The C
and C++ languages default to double for floating-point constants and
many floating-point calculations. If double has the customary size of 64
bits, many programs inadvertently use slow speed emulated 64-bit
floating-point arithmetic, even when variables are declared consistently as
float.

To avoid this problem, cc21k provides a mode in which double is the
same size as float. This mode is enabled with the -double-size-32 switch
and is the default mode.

Representing double using 32 bits gives good performance and provides
enough precision for most DSP applications. This, however, does not fully
conform to the C and C++ standards. The standard requires that double
maintains 10 digits of precision, which requires 64 bits of storage. The
-double-size-64 switch sets the size of double to 64 bits for full standard
conformance.

With -double-size-32, a double is stored in 32-bit IEEE single-precision
format and is operated on using fast hardware floating-point instructions.
Standard math functions such as sin also operate on 32-bit values. This
mode is the default and is recommended for most programs. Calculations
that need higher precision can be done with the long double type, which
is always 64 bits.

Compiler Command-Line Interface

1-28 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

With -double-size-64, a double is stored in 64-bit IEEE double-preci-
sion format and is operated on using slow floating-point emulation
software. Standard math functions such as sin also operate on 64-bit val-
ues and are similarly slow. This mode is recommended only for porting
code that requires that double have more than 32 bits of precision.

The -double-size-32 switch defines the __DOUBLES_ARE_FLOATS__ macro,
while the -double-size-64 switch undefines the __DOUBLES_ARE_FLOATS__
macro.

 Invoke this switch with the Double size radio buttons located in
the VisualDSP++ Project Options dialog box, Compile tab,
Compile category, Processor (1) subcategory.

-double-size-any

The -double-size-any switch specifies that the input source files make no
use of double-typed data, and that the resulting object files should be
marked in such a way that will enable them to be linked against objects
built with doubles either 32-bit or 64-bit in size.

 Invoke this switch with the Allow mixing of sizes check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Processor (1) category.

-dry

The -dry (verbose dry run) switch directs the compiler to display main
cc21k actions, but not to perform them.

-dryrun

The -dryrun (terse dry run) switch directs the compiler to display
top-level cc21k actions, but not to perform them.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-29
for SHARC Processors

Compiler

-E

The -E (stop after preprocessing) switch directs the compiler to stop after
the C/C++ preprocessor runs (without compiling). The output
(preprocessed source code) prints to the standard output stream unless the
output file is specified with the -o switch.

-ED

The -ED (run after preprocessing to file) switch directs the compiler to
write the output of the C/C++ preprocessor to a file named
original_filename.i. After preprocessing, compilation proceeds
normally.

 Invoke this switch with the Generate preprocessed file check box
located in the VisualDSP++ Project Options dialog box, Compile
page, General category.

-EE

The -EE (run after preprocessing) switch is similar to the -E switch, but it
does not halt compilation after preprocessing.

-eh

The -eh (enable exception handling) switch directs the compiler to allow
C++ code that contains catch statements and throw expressions and other
features associated with ANSI/ISO standard C++ exceptions. When this
switch is enabled, the compiler defines the macro __EXCEPTIONS to be 1.

If used when compiling C programs, without the -c++ (C++ Mode) switch
(on page 1-20), the -eh switch directs the compiler to generate exceptions
tables but does not change the language accepted. In this case
__EXCEPTIONS is not defined.

The –eh switch also causes the compiler to define __ADI_LIBEH__ during
the linking stage so that appropriate sections can be activated in the .ldf

Compiler Command-Line Interface

1-30 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

file, and the program can be linked with a library built with exceptions
enabled.

Object files created with exceptions enabled may be linked with objects
created without exceptions. However, exceptions can only be thrown from
and caught, and cleanup code executed, in modules compiled with -eh. If
an attempt is made to throw an exception through the execution of a func-
tion not compiled -eh then abort or the function registered with
set_terminate is called. See also “#pragma generate_exceptions_tables”
on page 1-254 and the -no-eh switch (on page 1-43).

In non-threaded applications, the buffer used for the passing of exception
data is not returned to the heap on application exit. This is to avoid
unnecessary code and will have no impact on behavior.

 Invoke this switch with the C++ exceptions and RTTI check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Language Settings category.

-enum-is-int

The -enum-is-int switch ensures that the type of an enum is int. By
default, the compiler defines enumeration types with integral types larger
than int, if int is insufficient to represent all the values in the enumera-
tion. This switch prevents the compiler from selecting a type wider than
int.

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the Analog Devices keyword extensions to
ANSI/ISO standard C and C++, such as pm and dm, without leading under-
scores, which can affect conforming ANSI/ISO C and C++ programs.
This is the default mode.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-31
for SHARC Processors

Compiler

The -no-extra-keywords switch (on page 1-44) can be used to disallow
support for the additional keywords. Table 1-17 on page 1-131 provides a
list and a brief description of keyword extensions.

-file-attr name[=value]

The -file-attr (file attribute) switch directs the compiler to add the
specified attribute name/value pair to all the files it compiles. To add mul-
tiple attributes, use the switch multiple times. If "=value" is omitted, the
default value of “1” will be used. See the section “File Attributes” on
page 1-387 for more information about attributes, and what automatic
attributes the compiler emits. See also the -auto-attrs switch
(on page 1-25) and the -no-auto-attrs switch (on page 1-42).

 Invoke this switch with the Additional attributes text field located
in the VisualDSP++ Project Options dialog box, Compile page,
General category.

-flags

The -flags -{asm|compiler|lib|link|mem} switch [,switch2 [,...]]
(command-line input) switch directs the compiler to pass command-line
switches to the other build tools.

The tools are listed in Table 1-8.

Table 1-8. Switches Passed to Other Build Tools

Option Tool

-flags-asm Assembler

-flags-compiler Compiler executable

-flags-lib Library Builder (elfar.exe)

-flags-link Linker

-flags-mem Memory Initializer

Compiler Command-Line Interface

1-32 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-float-to-int

The -float-to-int switch instructs the compiler to use a support library
function to convert a float to an integer. The library support routine per-
forms extra checking to avoid a floating-point underflow occurring.

-force-circbuf

The -force-circbuf (circular buffer) switch instructs the compiler to
make use of circular buffer facilities, even if the compiler cannot verify
that the circular index or pointer is always within the range of the buffer.
Without this switch, the compiler’s default behavior is conservative, and
does not use circular buffers unless it can verify that the circular index or
pointer is always within the circular buffer range. See “Circular Buffer
Built-In Functions” on page 1-180.

 Invoke this switch with the Even when pointer may be outside
buffer range check box located in the VisualDSP++ Project
Options dialog box, Compile page, Language Settings category.

-fp-associative

The -fp-associative switch directs the compiler to treat floating-point
multiplication and addition as an associative. This switch is on by default.
See the -no-fp-associative switch (on page 1-44) for more information.

-full-version

The -full-version (display versions) switch directs the compiler to dis-
play version information for build tools used in a compilation.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-33
for SHARC Processors

Compiler

-fx-contract

The -fx-contract switch sets the default state of FX_CONTRACT to ON,
which is the default setting. This switch controls the performance and
accuracy of arithmetic on the native fixed-point type, fract. See
“FX_CONTRACT” on page 1-99 for more information.

See also “-no-fx-contract” on page 1-44.

-fx-rounding-mode-biased

The -fx-rounding-mode-biased switch sets the default state of
FX_ROUNDING_MODE to BIASED. This switch controls the rounding behavior
of arithmetic on the native fixed-point type, fract. See “Setting the
Rounding Mode” on page 1-111 for more information.

-fx-rounding-mode-truncation

The -fx-rounding-mode-truncation switch sets the default state of
FX_ROUNDING_MODE to TRUNCATION, which is the default setting. This switch
controls the rounding behavior of arithmetic on the native fixed-point
type, fract. See “Setting the Rounding Mode” on page 1-111 for more
information.

-fx-rounding-mode-unbiased

The -fx-rounding-mode-unbiased switch sets the default state of
FX_ROUNDING_MODE to UNBIASED. This switch controls the rounding behav-
ior of arithmetic on the native fixed-point type, fract. See “Setting the
Rounding Mode” on page 1-111 for more information.

-g

The -g (generate debug information) switch directs the compiler to out-
put symbols and other information used by the debugger.

When the -g switch is used in conjunction with the enable optimization
(-O) switch, the compiler performs standard optimizations. The compiler

Compiler Command-Line Interface

1-34 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

also outputs symbols and other information to provide limited
source-level debugging through the VisualDSP++ IDDE (debugger). This
combination of options provides line debugging and global variable
debugging.

 When the -g and -O switches are specified, no debug information is
available for local variables and the standard optimizations can
sometimes rearrange program code in a way that inaccurate line
number information may be produced. For full debugging capabil-
ities, use the -g switch without the -O switch. See also the -Og
switch (on page 1-49).

 Invoke this switch by selecting the Generate debug information
check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.

-glite

The -glite (lightweight debugging) switch can be used on its own, or in
conjunction with any of the -g, -Og or -debug-types compiler switches.
When this switch is enabled it instructs the compiler to remove any
unnecessary debug information for the code that is compiled.

When used on its own, the switch also enables the -g option.

 This switch can be used to reduce the size of object and executable
files, but will have no effect on the size of the code loaded onto the
target.

-H

The -H (list headers) switch directs the compiler to output only a list of
the files included by the preprocessor via the #include directive, without
compiling.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-35
for SHARC Processors

Compiler

-HH

The -HH (list headers and compile) switch directs the compiler to output
to the standard output stream a list of the files included by the preproces-
sor via the #include directive. After preprocessing, compilation proceeds
normally.

-h[elp]

The -help (command-line help) switch directs the compiler to output a
list of command-line switches with a brief syntax description.

-I

The -I directory [{,|;} directory...] (include search directory)
switch directs the C/C++ compiler preprocessor to append the directory
(directories) to the search path for include files. This option can be speci-
fied more than once; all specified directories are added to the search path.

 Invoke this switch with the Additional include directories text
field located in the VisualDSP++ Project Options dialog box,
Compile page, Preprocessor category.

Include files, whose names are not absolute path names and that are
enclosed in “...” when included, are searched for in the following directo-
ries in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch in the order they are
listed on the command line

3. Any directories on the standard list:
 <VDSP++ install dir>/.../include

 If a file is included using the <...> form, this file is only searched
for by using directories defined in items 2 and 3 above.

Compiler Command-Line Interface

1-36 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-I-

The -I- (start include directory list) switch establishes the point in the
include directory list at which the search for header files enclosed in angle
brackets begins. Normally, for header files enclosed in double quotes, the
compiler searches in the directory containing the current input file; then
the compiler reverts back to looking in the directories specified with the
-I switch and then in the standard include directory.

It is possible to replace the initial search (within the directory containing
the current input file) by placing the -I- switch at the point on the com-
mand line where the search for all types of header file begins. All include
directories on the command line specified before the -I- switch are used
only in the search for header files that are enclosed in double quotes.

 The -I switch removes the directory containing the current input
file from the include directory list.

-i

The -i (less includes) switch can be used with the –H, -HH, -M, or -MM
switches to direct the compiler to only output header details (-H, -HH) or
makefile dependencies (-M, -MM) for include files specified in double
quotes.

-implicit-pointers

The -implicit-pointers (implicit pointer conversion) switch allows a
pointer to one type to be converted to a pointer to another without the use
of an explicit cast. The compiler produces a discretionary warning rather
than an error in such circumstances. This option is not valid when com-
piling in C++ mode.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-37
for SHARC Processors

Compiler

For example, the following code will not compile without this switch:

int *foo(int *a) {

return a;

}

int main(void) {

char *p = 0, *r;

r = foo(p); /* Bad: normally produces an error */

return 0;

}

In this example, both the argument to foo and the assignment to r will be
faulted by the compiler. Using -implicit-pointers converts these errors
into warnings.

 Invoke the -implicit-pointers switch with the Allow incompati-
ble pointer types check box located in the VisualDSP++ Project
Options dialog box, Compile page, Language Settings category.

-include

The -include filename (include file) switch directs the preprocessor to
process the specified file before processing the regular input file. Any -D
and -U options on the command line are always processed before an
-include file. Only one -include may be given.

-ipa

The -ipa (interprocedural analysis) switch turns on Interprocedural
Analysis (IPA) in the compiler. This option enables optimization across
the entire program, including between source files that were compiled sep-
arately. If used, the -ipa option should be applied to all C and C++ files in
the program.

Compiler Command-Line Interface

1-38 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

For more information, see “Interprocedural Analysis” on page 1-84. Spec-
ifying -ipa also implies setting the -O switch (on page 1-48).

 Invoke this switch by selecting the Interprocedural Analysis check
box in the VisualDSP++ Project Options dialog box, Compile tab,
General category.

-L

The -L directory[{;|,}directory…] (library search directory) switch
directs the compiler to append the directory to the search path for library
files.

-l

The -l library (link library) switch directs the compiler to search the
library for functions and global variables when linking. The library name
is the portion of the file name between the lib prefix and the .dlb
extension.

For example, the -lc compiler switch directs the linker to search in the
library named c. This library resides in a file named libc.dlb.

When using this switch, list all object files on the command line before
listing libraries using the -l switch. When a reference to a symbol is made,
the symbol definition will be taken from the left-most object or library on
the command line that contains the global definition of that symbol. If
two objects on the command line contain definitions of the symbol x, x
will be taken from the left-most object on the command line that contains
a global definition of x.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-39
for SHARC Processors

Compiler

If one of the definitions for x comes from user objects, and the other from
a user library, and the library definition should be overridden by the user
object definition, it is important that the user object comes before the
library on the command line.

Libraries included in the default .ldf file are searched last for symbol
definitions.

-list-workarounds

The -list-workarounds (list supported errata workarounds) switch dis-
plays a list of all errata workarounds which the compiler supports. See
“Controlling Silicon Revision and Anomaly Workarounds Within the
Compiler” on page 1-86 for details of valid workarounds and the interac-
tion of the -si-revision, -workaround and -no-workaround switches.

-M

The -M (generate make rules only) switch directs the compiler not to com-
pile the source file, but to output a rule suitable for the make utility,
describing the dependencies of the main program file. The format of the
make rule output by the preprocessor is:

object-file: include-file …

-MD

The -MD (generate make rules and compile) switch directs the preprocessor
to print to a file called original_filename.d a rule describing the depen-
dencies of the main program file. After preprocessing, compilation
proceeds normally. See also the –Mo switch.

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to standard out a rule describing the dependencies of the main
program file. After preprocessing, compilation proceeds normally.

Compiler Command-Line Interface

1-40 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-Mo

The -Mo filename (preprocessor output file) switch directs the compiler
to use filename for the output of –MD or –ED switches.

-Mt

The -Mt name (output make rule for the named source) switch modifies the
target of generated dependencies, renaming the target to name. It only has
an effect when used in conjunction with the -M or -MM switch.

-map

The -map filename (generate a memory map) switch directs the compiler
to output a memory map of all symbols. The map file name corresponds
to the filename argument. For example, if the argument is test, the map
file name is test.xml. The .xml extension is added where necessary.

-mem

The -mem (enable memory initialization) switch directs the compiler to
run the mem21k initializer (utility). The memory initializer can be con-
trolled through the -flags-mem switch (on page 1-31). See the -no-mem
switch (on page 1-45) for more information.

-multiline

The -multiline switch enables a compiler GNU compatibility mode
which allows string literals to span multiple lines without the need for a
“\” at the end of each line. This is the default mode. See the -no-multi-
line switch (on page 1-45) for more information.

 Invoke this switch with the Allow multi-line character strings
check box located in the VisualDSP++ Project Options dialog box,
Compile page, Language Settings category.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-41
for SHARC Processors

Compiler

-never-inline

The -never-inline switch instructs the compiler to ignore the inline
qualifier on function definitions, so that no calls to such functions will be
inlined. See also “-always-inline” on page 1-24.

 Invoke this switch with the Never check box located in the Inlining
area of the VisualDSP++ Project Options dialog box, Compile
page, General category.

-no-aligned-stack

The -no-aligned-stack (disable stack alignment) switch directs the com-
piler to not align the program stack on a double-word boundary. For more
information, see “-aligned-stack” on page 1-23.

-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler
not to accept alternative operator keywords and digraph sequences in the
source files. This is the default mode. For more information, see “-alttok”
on page 1-23.

-no-annotate

The -no-annotate (disable assembly annotations) switch directs the com-
piler not to annotate assembly files generated by the compiler. The default
behavior is that whenever optimizations are enabled all assembly files gen-
erated by the compiler are annotated with information on the
performance of the generated assembly. See “Assembly Optimizer Annota-
tions” on page 2-80 for more details on this feature. For more
information, see “-annotate” on page 1-24.

 Invoke this switch by clearing the Generate assembly code annota-
tions check box located in the VisualDSP++ Project Options
dialog box, Compile page, General category.

Compiler Command-Line Interface

1-42 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-no-annotate-loop-instr

The -no-annotate-loop-instr switch disables the production of addi-
tional loop annotation information by the compiler. This is the default
mode. See the -annotate--loop-instr switch (on page 1-24).

-no-auto-attrs

The -no-auto-attrs (no automatic attributes) switch directs the compiler
not to emit automatic attributes based on the files it compiles. Emission of
automatic attributes is enabled by default. See “File Attributes” on
page 1-387 for more information about attributes, and what automatic
attributes the compiler emits. See also the -auto-attrs switch
(on page 1-25) and the -file-attr switch (on page 1-31). For more
information, see “-auto-attrs” on page 1-25.

 Invoke this switch by clearing the Auto-generated attributes check
box located in the VisualDSP++ Project Options dialog box,
Compile page, General category.

-no-builtin

The -no-builtin (no built-in functions) switch directs the compiler not
to generate short names for the built-in functions (for example, abs()),
and to accept only the full name (for example, __builtin_abs()). Note
that this switch influences many functions. This switch also predefines the
__NO_BUILTIN preprocessor macro. For more information on built-in func-
tions, see “Compiler Built-In Functions” on page 1-177.

 Invoke this switch by selecting the Disable builtin functions check
box in the VisualDSP++ Project Options dialog box, Compile tab,
Language Settings category.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-43
for SHARC Processors

Compiler

-no-circbuf

The -no-circbuf (no circular buffer) switch disables the automatic gener-
ation of circular buffer code by the compiler. Uses of the circindex() and
circptr() functions (that is, explicit circular buffer operations) are not
affected.

 Invoke this switch with the Never check box located in the
Circular Buffer Generation area of the VisualDSP++ Project
Options dialog box, Compile page, Language Settings category.

-no-const-strings

The -no-const-strings switch directs the compiler not to make string lit-
erals const qualified. See the -const-strings switch (on page 1-26) for
more information.

-no-db

The -no-db (no delayed branches) switch specifies that the compiler shall
not generate jumps that use delayed branches.

 Disabling of interrupts within the epilogue code of a re-entrant
interrupt function still uses a delayed branch jump to minimise
interrupt latency.

-no-defs

The -no-defs (disable defaults) switch directs the preprocessor not to
define any default preprocessor macros, include directories, library direc-
tories, libraries, and run-time headers. It also disables the Analog Devices
cc21k C/C++ keyword extensions.

-no-eh

The -no-eh (disable exception handling) switch directs the compiler to
disallow ANSI/ISO C++ exception handling. This is the default mode. See
the -eh switch (on page 1-29) for more information.

Compiler Command-Line Interface

1-44 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize the Analog Devices keyword extensions that
might affect conformance to ISO/ANSI standards for C and C++ lan-
guages. These include keywords such as pm and dm, which may be used as
identifiers in standard conforming programs. Alternate keywords, which
are prefixed with two leading underscores, such as __pm and __dm,
continue to work. See the -extra-keywords switch (on page 1-30) for
more information.

 Invoke this switch with the Disable Analog Devices extension key-
words check box located in the VisualDSP++ Project Options
dialog box, Compile page, Language Settings category.

-no-fp-associative

The -no-fp-associative switch directs the compiler NOT to treat
floating-point multiplication and addition as an associative. See the
-fp-associative switch (on page 1-32) for more information.

 Invoke this switch with the Do not treat floating point operations
as associative check box located in the VisualDSP++ Project
Options dialog box, Compile page, Language Settings category.

-no-fx-contract

The -no-fx-contract switch sets the default state of FX_CONTRACT to OFF.
This switch controls the performance and accuracy of arithmetic on the
native fixed-point type, fract. See “FX_CONTRACT” on page 1-99 for
more information.

See also “-fx-contract” on page 1-33.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-45
for SHARC Processors

Compiler

-no-mem

The -no-mem (disable memory initialization) switch directs the compiler
not to run the mem21k initializer. Note that if you use -no-mem, the com-
piler does not initialize globals and statics. See the -mem switch
(on page 1-40) for more information.

-no-multiline

The -no-multiline switch disables a compiler GNU compatibility mode
which allows string literals to span multiple lines without the need for a
“\” at the end of each line. See the -multiline switch (on page 1-40) for
more information.

 Invoke this switch by clearing the Allow multi-line character
strings check box located in the VisualDSP++ Project Options dia-
log box, Compile page, Language Settings category.

-no-progress-rep-timeout

The -no-progress-rep-timeout (disable progress message for long compi-
lations) switch disables the diagnostic message issued by the compiler to
indicate that it is still working, when a function’s compilation is taking an
excessively long time. The message is disabled by default. See also the
-progress-rep-timeout switch (on page 1-57) and the
-progress-rep-timeout-secs switch (on page 1-57).

-no-sat-associative

The -no-sat-associative (saturating addition is not associative) switch
instructs the compiler not to consider saturating addition operations as
associative: (a+b)+c may not be rewritten as a+(b+c), when the addition
operator saturates. The default is that saturating addition is not associa-
tive. See the -sat-associative switch (on page 1-59) for more
information.

Compiler Command-Line Interface

1-46 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-no-saturation

The -no-saturation switch directs the compiler not to introduce faster
operations in cases where the faster operation would saturate (if the
expression overflowed) when the original operation would have wrapped
the result. The code produced may be less efficient than when the switch
is not used. Saturation is enabled by default when optimizing, and may be
disabled by this switch. Saturation is disabled when not optimizing (this
switch is the default when not optimizing).

-no-shift-to-add

The -no-shift-to-add switch prevents the compiler from replacing a
shift-by-one instruction with an addition. While this can produce faster
code, it can also lead to arithmetic overflow.

 Invoke this switch from the Disable shift-to-add conversion check
box located in the VisualDSP++ Project Options dialog box,
Compile page, Processor (1) category.

-no-simd

The -no-simd (disable SIMD mode) switch directs the compiler to disable
automatic SIMD code generation when compiling for ADSP-211xx,
ADSP-212xx, ADSP-213xx, or ADSP-214xx processors. Note that SIMD
code is still generated for a loop if it is preceded with the "SIMD_for"
pragma. The pragma is treated as an explicit user request to generate
SIMD code and is always obeyed, if possible. See “SIMD Support” on
page 1-271 for more information.

 Invoke this switch from the Disable automatic SIMD code gener-
ation check box located in the VisualDSP++ Project Options
dialog box, Compile page, Processor (1) category.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-47
for SHARC Processors

Compiler

-no-std-ass

The -no-std-ass (disable standard assertions) switch prevents the com-
piler from defining the standard assertions. See the -A switch
(on page 1-21) for the list of standard assertions.

-no-std-def

The -no-std-def (disable standard macro definitions) switch prevents the
compiler from defining default preprocessor macro definitions.

 This switch also disables the Analog Devices keyword extensions
that have no leading underscores, such as pm and dm.

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the
C/C++ preprocessor to search for header files in the current directory and
directories specified with the -I switch.

 You can invoke this switch by selecting the Ignore standard
include paths check box in the VisualDSP++ Project Options dia-
log box, Compile tab, Preprocessor category.

-no-std-lib

The -no-std-lib (disable standard library search) switch directs the com-
piler to search for libraries in only the current project directory and
directories specified with the -L switch.

-no-threads

The -no-threads (disable thread-safe build) switch directs the compiler to
link against the non-thread-safe variants of the C/C++ run-time library.
This is the default.

Compiler Command-Line Interface

1-48 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-no-workaround

The -no-workaround workaround_id (disable avoidance of specific errata)
switch disables compiler code generator workarounds for specific hard-
ware errata. See “Controlling Silicon Revision and Anomaly Workarounds
Within the Compiler” on page 1-86 for details of valid workarounds and
the interactions of the -si-revision, -workaround and -no-workaround
switches.

-normal-word-code

The -normal-word-code switch has the same effect as compiling with the
-nwc switch. It directs the compiler to generate instructions of normal
word size (48-bits). This switch applies only when compiling code tar-
geted for ADSP-214xx processors.

-nwc

The -nwc switch has the same effect as compiling with the
-normal-word-code switch. It directs the compiler to generate instructions
of normal word size (48-bits). This switch applies only when compiling
code targeted for ADSP-214xx processors.

-O[0|1]

The -O (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the cc21k compiler. (Note that the switch settings begin with
the uppercase letter “O” and end with a digit—a zero or a one.) The
switch setting -O or -O1 turns optimization on, while setting -O0 turns off
all optimizations.

 You can invoke this switch by selecting the Enable optimization
check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-49
for SHARC Processors

Compiler

-Oa

The -Oa (automatic function inlining) switch enables the inline expansion
of C/C++ functions, which are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the –Ov (optimize for speed versus size) switch (on page 1-49).
Therefore, use of -Ov100 indicates that as many functions as possible are
auto-inlined, whereas –Ov0 prevents any function from being auto-inlined.
Specifying -Oa also implies the use of -O.

 Invoke this switch with the Automatic check box located in the
Inlining area of the VisualDSP++ Project Options dialog box,
Compile page, General category.

-Og

The -Og switch enables a compiler mode that attempts to perform optimi-
zations while still preserving the debugging information. It is meant as an
alternative for those who want a debuggable program but who are also
concerned about the performance of their debuggable code and are less
concerned about the compilation time.

-Os

The -Os (optimize for size) switch directs the compiler to produce code
that is optimized for size. This is achieved by performing all optimizations
except those that increase code size. The optimizations not performed
include loop unrolling, some delay slot filling, and jump avoidance.

-Ov

The -Ov num (optimize for speed versus size) switch informs the compiler
of the relative importance of speed versus size, when considering whether
such trade-offs are worthwhile. The num variable should be an integer
between 0 (purely size) and 100 (purely speed).

Compiler Command-Line Interface

1-50 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

For any given optimization, the compiler modifies the code being gener-
ated. Some optimizations produce code that will execute in fewer cycles,
but which will require more code space. In such cases, there is a trade-off
between speed and space.

The num variable indicates a sliding scale between 0 and 100 which is the
probability that a linear piece of generated code—a “basic block”—will be
optimized for speed or for space. At -Ov0 all blocks are optimized for space
and at -Ov100 all blocks are optimized for speed. At any point in between,
the decision is based upon num and how many times the block is expected
to be executed—the “execution count” of the block. Figure 1-1 demon-
strates this relationship.

Figure 1-1. -Ov Switch Optimization Curve

0

Execution
count

Optimize for speed

-Ovnum
0 100

Infinity

Optimize
for space

Limit line

VisualDSP++ 5.0 C/C++ Compiler Manual 1-51
for SHARC Processors

Compiler

For any given optimization where speed and size conflict, the potential
benefit is dependent on the execution count: an optimization that
increases performance at the expense of code size is considerably more
beneficial if applied to the core loop of a critical algorithm than if applied
to one-time initialization code or to rarely-used error-handling functions.
If code appears to be executed only once, it will be optimized for space. As
its execution count increases, so too does the likelihood that the compiler
will consider the code increase worthwhile for the corresponding benefit
in performance.

As Figure 1-1 shows, the -Ov switch affects the point at which a given exe-
cution count is considered sufficient to switch optimization from “for
space” to “for speed”. Where num is a low value, the compiler is biased
towards space, so a block’s execution count has to be relatively high for the
compiler to apply code-increasing transformations. Where num has a high
value, the compiler is biased towards speed, so the same transformation
will be considered valid for a much lower execution count.

The -Ov switch is most effective when used in conjuction with profile-
guided optimization, where accurate execution counts are available. With-
out profile-guided optimization, the compiler makes estimates of the
relative execution counts using heuristics.

 Invoke this switch with the Optimize for code size/speed slider
located in the VisualDSP++ Project Options dialog box, Compile
page, General category.

For more information, see “Using Profile-Guided Optimization” in
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

-o

The -o filename (output file) switch directs the compiler to use filename
for the name of the final output file.

Compiler Command-Line Interface

1-52 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-overlay

The -overlay (program may use overlays) switch will disable the propaga-
tion of register information between functions and force the compiler to
assume that all functions clobber all scratch registers. Note that this switch
will affect all functions in the source file, and may result in a performance
degradation. For information on disabling the propagation of register
information only for specific functions, see “#pragma overlay” on
page 1-217.

-overlay-clobbers

The -overlay-clobbers clobbered-regs (registers clobbered by overlay
manager) switch identifies the set of registers clobbered by an overlay
manager, if one is used. The compiler will assume that any call to an
overlay-managed function will clobber the values in clobbered-regs, in
addition to those clobbered by the function in question. A function is
considered to be an overlay-managed function if the -overlay switch
(on page 1-52) is specified, or if the function is marked with #pragma
overlay (on page 1-217).

The clobbered-regs variable is a single string formatted as per the argu-
ment to #pragma regs_clobbered, except that individual components of
the list may also be separated by commas.

 Whitespace and semi-colons are valid separators for the compo-
nents of the list, but must be properly quoted when being passed to
the compiler.

Examples:

cc21k -O t.c -overlay -overlay-clobbers r3,m4,r5

cc21k -O t.c -overlay -overlay-clobbers Dscratch

cc21k -O t.c -overlay -overlay-clobbers "r3 m4;r5"

VisualDSP++ 5.0 C/C++ Compiler Manual 1-53
for SHARC Processors

Compiler

-P

The -P (omit line numbers) switch directs the compiler to stop after the
C/C++ preprocessor runs (without compiling) and to omit the #line pre-
processor command with line number information from the preprocessor
output. The -C switch can be used in conjunction with -P to retain
comments.

-PP

The -PP (omit line numbers and compile) switch is similar to the -P
switch; however, it does not halt compilation after preprocessing.

-path-{ asm | compiler | lib | link }

The -path-{asm|compiler|lib|link} pathname (tool location) switch
directs the compiler to use the specified component in place of the
default-installed version of the compilation tool. The component
comprises a relative or absolute path to its location. Respectively, the tools
are the assembler, compiler, librarian, or linker. Use this switch when
overriding the normal version of one or more of the tools. The
-path-{...} switch also overrides the directory specified by the
-path-install switch.

-path-install

The -path-install directory (installation location) switch directs the
compiler to use the specified directory as the location for all compilation
tools instead of the default path. This is useful when working with multi-
ple versions of the tool set.

 You can selectively override this switch with the -path-{asm|com-
piler|lib|link} switch.

Compiler Command-Line Interface

1-54 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-path-output

The -path-output directory (non-temporary files location) switch directs
the compiler to place final output files in the specified directory.

-path-temp

The -path-temp directory (temporary files location) switch directs the
compiler to place temporary files in the specified directory.

-pch

The -pch (precompiled header) switch directs the compiler to automati-
cally generate and use precompiled header files. A precompiled output
header has a .pch extension attached to the source file name. By default,
all precompiled headers are stored in a directory called PCHRepository.

-pchdir

The -pchdir directory (locate PCHRepository) switch specifies the loca-
tion of an alternative PCHRepository for storing and invocation of
precompiled header files. If the directory does not exist, the compiler cre-
ates it. Note that -o (output) does not influence the -pchdir option.

-pgo-session

The -pgo-session session-id (specify PGO session identifier) switch is
used with profile-guided optimization. It has the following effects:

• When used with the -pguide switch (on page 1-55), the compiler
associates all counters for this module with the session identifier
session-id.

• When used with a previously-gathered profile (a .pgo file), the
compiler ignores the profile contents, unless they have the same
session-id identifier.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-55
for SHARC Processors

Compiler

This is most useful when the same source file is being built in more than
one way (for example, different macro definitions, or for multiple proces-
sors) in the same application; each variant of the build can have a different
session-id associated with it, which means that the compiler will be able
to identify which parts of the gathered profile should be used when opti-
mizing for the final build.

If each source file is only built in a single manner within the system (the
usual case), then the -pgo-session switch is not needed.

 Invoke this switch with the PGO session name text field located in
the VisualDSP++ Project Options dialog box, Compile page,
Profile-Guided Optimization category.

For more information, see “Using Profile-Guided Optimization” in
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

-pguide

The -pguide switch causes the compiler to add instrumentation for the
gathering of a profile (a .pgo file) as the first stage of performing profile-
guided optimization.

 Invoke this switch with the Prepare application to create new pro-
file check box located in the VisualDSP++ Project Options dialog
box, Compile page, Profile-Guided Optimization category.

For more information, see “Using Profile-Guided Optimization” in
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

-pplist

The -pplist filename (preprocessor listing) directs the preprocessor to
output a listing to the named file. When more than one source file is pre-
processed, the listing file contains information about the last file
processed. The generated file contains raw source lines, information on
transitions into and out of include files, and diagnostics generated by the

Compiler Command-Line Interface

1-56 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

compiler. Each listing line begins with a key character that identifies its
type as shown in Table 1-9.

-proc processor

The -proc processor (target processor) switch specifies the compiler pro-
duces code suitable for the specified processor. Refer to VisualDSP++
online Help for the list of supported SHARC processors. For example,

cc21k -proc ADSP-21161 -o bin\p1.doj p1.asm

 If no target is specified with the -proc switch, the system uses the
ADSP-21060 processor settings as a default.

When compiling with the -proc switch, the appropriate processor macro
as well as __ADSP21000__ are defined as 1. For example, __ADSP21060__
and __ADSP21000__ are 1.

 See also “-si-revision” on page 1-61 for more information on sili-
con revision of the specified processor.

Table 1-9. Key Characters

Character Meaning

N Normal line of source

X Expanded line of source

S Line of source skipped by #if or #ifdef

L Change in source position

R Diagnostic message (remark)

W Diagnostic message (warning)

E Diagnostic message (error)

C Diagnostic message (catastrophic error)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-57
for SHARC Processors

Compiler

-progress-rep-func

The -progress-rep-func switch provides feedback on the compiler’s
progress that may be useful when compiling and optimizing very large
source files. It issues a “warning” message each time the compiler starts
compiling a new function. The “warning” message is a remark that is dis-
abled by default, and this switch enables the remark as a warning. The
switch is equivalent to -Wwarn=cc1472.

-progress-rep-opt

The -progress-rep-opt switch provides feedback on the compiler’s prog-
ress that may be useful when compiling and optimizing a very large,
complex function. It issues a “warning” message each time the compiler
starts a new optimization pass on the current function. The “warning”
message is a remark that is disabled by default, and this switch enables the
remark as a warning. The switch is equivalent to -Wwarn=cc1473.

-progress-rep-timeout

The -progress-rep-timeout switch issues a diagnostic message if the
compiler exceeds a time limit during compilation. This indicates the com-
piler is still operating, just taking a long time.

-progress-rep-timeout-secs secs

The -progress-rep-timeout-secs switch specifies how many seconds
must elapse during a compilation before the compiler issues a diagnostic
message about the length of time the compilation has used so far.

-R

The -R directory[{:|,}directory … (add source directory) switch directs
the compiler to add the specified directory to the list of directories
searched for source files. On Windows platforms, multiple source directo-
ries are given as a colon, comma, or semicolon separated list.

Compiler Command-Line Interface

1-58 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The compiler searches for the source files in the order specified on the
command line. The compiler searches the specified directories before
reverting to the current project directory. The -R directory option is
position-dependent on the command line. That is, it affects only source
files that follow the option.

 Source files whose file names begin with /, ./ or ../ (or Windows
equivalent) and contain drive specifiers (on Windows platforms)
are not affected by this option.

-R-

The -R- (disable source path) switch removes all directories from the stan-
dard search path for source files, effectively disabling this feature.

 This option is position-dependent on the command line; it only
affects files following it.

-reserve

The -reserve register[, register …] (reserve register) switch directs
the compiler not to use the specified registers. This guarantees that a
known set of registers are available for inline assembly code or linked
assembly modules. Separate each register name with a comma on the com-
piler command line.

You can reserve the following registers: b0, l0, m0, i0, b1, l1, m1, i1, b8,
l8, m8, i8, b9, l9, m9, i9, ustat1, and ustat2 (as well as ustat3 and ustat4
on ADSP-211xx, ADSP-212xx, ADSP-213xx, and ADSP-214xx proces-
sors). When reserving an L (length) register, you must reserve the
corresponding I (index) register; reserving an L register without reserving
the corresponding I register may result in execution problems.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-59
for SHARC Processors

Compiler

-restrict-hardware-loops

The -restrict-hardware-loops maximum switch restricts the level of
nested hardware loops that the compiler generates. The default setting is
6, which is the maximum number of levels that the hardware supports.

-S

The -S (stop after compilation) switch directs cc21k to stop compilation
before running the assembler. The compiler outputs an assembly file
with an .s extension.

-s

The -s (strip debug information) switch directs the compiler to remove
debug information (symbol table and other items) from the output execut-
able file during linking.

-sat-associative

The -sat-associative (saturating addition is associative) switch instructs
the compiler to consider saturating addition operations as associative:
(a+b)+c may be rewritten as a+(b+c), when the addition operator satu-
rates. The default is that saturating addition is not associative.

-save-temps

The -save-temps (save intermediate files) switch directs the compiler to
retain intermediate files, generated and normally removed as part of the
various compilation stages. These intermediate files are placed in the
–path-output specified output directory or the build directory if the
–path-output switch is not used. See Table 1-3 on page 1-8 for a list of
intermediate files.

 Invoke this switch with the Save temporary files check box located
in the VisualDSP++ Project Options dialog box, Compile page,
General category.

Compiler Command-Line Interface

1-60 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-section

The -section id=section_name[,id=section_name...] switch controls
the placement of types of data produced by the compiler. The data is
placed into the section “section_name” as specified on the command line.

The compiler currently supports the following section identifiers:

code Controls placement of machine instructions
Default is seg_pmco

data Controls placement of initialized variable data
Default is seg_dmda

pm_data Controls placement of initialized data declared with the _pm keyword

constdata Controls placement of constant data

pm_constdata Controls placement of constant data declared with the _pm keyword

bsz Controls placement of zero-initialized variable data
Default is seg_dmda

sti Controls placement of the static C++ class constructor “start” functions
Default is seg_pmco
For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-313.

switch Controls placement of jump-tables used to implement C/C++ switch
statements

strings Controls placement of string literals

vtbl Controls placement of the C++ virtual lookup tables
Default is seg_vtbl

vtable Synonym for vtbl

autoinit Controls placement of data used to initialize aggregate autos

alldata Controls placement of data, constdata, bss, strings and autoinit
all at once

VisualDSP++ 5.0 C/C++ Compiler Manual 1-61
for SHARC Processors

Compiler

Please note that alldata is not a real section kind, but rather a placeholder
for data, constdata, bsz, strings and autoinit. Theferore,

-section alldata=X

is equivalent to

-section data=X -section constdata=X -section bsz=X

-section strings=X -section autoinit=X

Make sure that the section selected via the command line exists within the
.ldf file. (Refer to the “Linker” chapter in the VisualDSP++ 5.0 Linker
and Utilities Manual.)

-short-word-code

The -short-word-code switch has the same effect as compiling with the
-swc switch on page 1-63. It directs the compiler to generate instructions
of short word size (16/32/48-bits). This switch only applies when compil-
ing code targeted for ADSP-214xx processors and is the default setting.

-show

The -show (display command line) switch shows the command-line argu-
ments passed to cc21k, including expanded option files and environment
variables. This option allows you to ensure that command-line options
have been passed successfully.

-si-revision

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision (version). Any errata workarounds
available for the targeted silicon revision will be enabled. For more infor-
mation, see “Controlling Silicon Revision and Anomaly Workarounds
Within the Compiler” on page 1-86.

Compiler Command-Line Interface

1-62 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-signed-bitfield

The -signed-bitfield (make plain bit-fields signed) switch directs the
compiler to make bit-fields (which have not been declared with an explicit
signed or unsigned keyword) to be signed. This switch does not affect
plain one-bit bit-fields which are always unsigned. This is the default
mode. See also the -unsigned-bitfield switch (on page 1-65).

-structs-do-not-overlap

The -structs-do-not-overlap switch specifies that the source code being
compiled contains no structure copies such that the source and the desti-
nation memory regions overlap each other in a non-trivial way.

For example, in the statement

*p = *q;

where p and q are pointers to some structure type S, the compiler, by
default, always ensures that, after the assignment, the structure pointed to
by “p” contains an image of the structure pointed to by “q” prior to the
assignment. In the case where p and q are not identical (in which case the
assignment is trivial) but the structures pointed to by the two pointers
may overlap each other, doing this means that the compiler must use the
functionality of the C library function “memmove” rather than “memcpy”.

It is slower to use “memmove” to copy data than it is to use “memcpy”. There-
fore, if your source code does not contain such overlapping structure
copies, you can obtain higher performance by using the command-line
switch -structs-do-not-overlap.

 Invoke this switch from the Structs/classes do not overlap check
box in the VisualDSP++ Project Options dialog box, Compile tab,
Language Settings category.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-63
for SHARC Processors

Compiler

-swc

The -swc switch has the same effect as compiling with the
-short-word-code switch on page 1-61. It directs the compiler to generate
instructions of short-word size (16/32/48-bits). This switch only applies
when compiling code targeted for ADSP-214xx processors and is the
default setting.

-syntax-only

The -syntax-only (check syntax only) switch directs the compiler to
check the source code for syntax errors but not to write any output.

-sysdefs

The -sysdefs (system definitions) switch directs the compiler to define
several preprocessor macros describing the current user and user’s system.
The macros are defined as character string constants and are used in func-
tions with null-terminated string arguments.

The following macros are defined if the system returns information for
them (Table 1-10).

-T

The -T filename (linker description file) switch directs the compiler to use
the specified linker description file (.ldf) as control input for linking. If
-T is not specified, a default .ldf file is selected based on the processor
variant.

Table 1-10. System Macros Defined

Macro Description

__HOSTNAME__ The name of the host machine

__SYSTEM__ The Operating System name of the host machine

__USERNAME__ The current user’s login name

Compiler Command-Line Interface

1-64 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-threads

The -threads switch directs the compiler to link against the thread-safe
variants of the C/C++ run-time libraries. When used, the -threads switch
defines the macro _ADI_THREADS as one (1) at the compile, assemble and
link phases of a build.

When applications are built within VisualDSP++, this switch is added
automatically to projects that have VDK support selected.

 The use of thread-safe libraries is necessary in conjunction with the
-threads flag when using the VisualDSP++ Kernel (VDK). The
thread-safe libraries can be used with other RTOSs but this
requires the definition of various VDK interfaces.

The use of the -threads switch does not imply that the compiler
will produce thread-safe code when compiling C/C++ source.
Make sure to use multi-threaded programming practices in your
code (such as semaphores to access shared data).

-time

The -time (tell time) switch directs the compiler to display the elapsed
time as part of the output information about each phase of the compila-
tion process.

-U

The -U macro (undefine macro) switch directs the compiler to undefine
macros. If you specify a macro name, it is undefined. Note that the com-
piler processes all -D (define macro) switches on the command line before
any -U (undefine macro) switches. For more information, see “-D” on
page 1-26.

 Invoke this switch by entering macro names to be undefined, sepa-
rated by commas, in the Undefines field in the VisualDSP++
Project Options dialog box, Compile tab, Preprocessor category.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-65
for SHARC Processors

Compiler

-unsigned-bitfield

The -unsigned-bitfield (make plain bit-fields unsigned) switch directs
the compiler to make bit-fields which have not been declared with an
explicit signed or unsigned keyword to be unsigned. This switch does not
affect plain one-bit bit-fields which are always unsigned.

For example, given the declaration

struct {

int a:2;

int b:1;

signed int c:2;

unsigned int d:2;

} x;

Table 1-11 lists the bit-field values.

See also the -signed-bitfields switch (on page 1-62).

-v

The -v (version and verbose) switch directs the compiler to display both
the version and command-line information for all the compilation tools as
they process each file.

Table 1-11. Bit-Field Values

Field -unsigned-bitfield -signed-bitfield Why

x.a -2..1 0..3 Plain field

x.b 0..1 0..1 One bit

x.c -2..1 -2..1 Explicit signed

x.d 0..3 0..3 Explicit unsigned

Compiler Command-Line Interface

1-66 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-verbose

The -verbose (display command line) switch directs the compiler to dis-
play command-line information for all the compilation tools as they
process each file.

-version

The -version (display version) switch directs the compiler to display ver-
sion information for all the compilation tools as they process each file.

-W

The -W{error|remark|suppress|warn} number[,number ...] (override
error message) switch directs the compiler to override the severity of the
specified diagnostic messages (errors, remarks, or warnings). The number
argument specifies the message to override.

At compilation time, the compiler produces a number for each specific
compiler diagnostic message. The {D} (discretionary) string after the diag-
nostic message number indicates that the diagnostic may have its severity
overridden. Each diagnostic message is identified by a number that is used
across all compiler software releases.

 If the processing of the compiler command line generates a diag-
nostic, the position of the -W switch on the command line is
important. If the -W switch changes the severity of the diagnostic, it
must occur before the command line switch that generates the
diagnostic; otherwise, no change of severity will occur.

Also, as shown in the Output window and in Help, error codes
sometimes begin with a leading zero (for example, cc0025). If you
try to suppress error codes with #pragma diag() or
-W{error|remark|suppress|warn}, and supply the code with a
leading zero, it does not work. This is because the compiler reads
the number as an octal value, and will suppress a different warning
or error.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-67
for SHARC Processors

Compiler

-Werror-limit number

The -Werror-limit (maximum compiler errors) switch lets you set a max-
imum number of errors for the compiler before it aborts.

-Werror-warnings

The -Werror-warnings (treat warnings as errors) switch directs the com-
piler to treat all warnings as errors, with the result that a warning will
cause the compilation to fail.

-Wremarks

The -Wremarks (enable diagnostic warnings) switch directs the compiler to
issue remarks, which are diagnostic messages milder than warnings.

 Invoke this switch by selecting the Enable remarks check box in
the VisualDSP++ Project Options dialog box, Compile tab,
Warning selection.

-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.

-w

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

Invoke this switch by selecting the Disable all warnings and remarks
check box in the VisualDSP++ Project Options dialog box, Compile tab,
Warning selection.

Compiler Command-Line Interface

1-68 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

 If the processing of the compiler command line generates a warn-
ing, the position of the -w switch on the command line is
important. If the -w switch is located before the command line
switch that causes the warning, the warning will be suppressed;
otherwise, it will not be suppressed.

-warn-protos

The -warn-protos (warn if incomplete prototype) switch directs the com-
piler to issue a warning when it calls a function for which an incomplete
function prototype has been supplied. This option has no effect in C++
mode.

Invoke this switch with the Function declarations without prototypes
check box located in the VisualDSP++ Project Options dialog box,
Compile page, Warning category.

-workaround

The -workaround workaround_id [,workaround_id...] (enable avoid-
ance of specific errata) switch enables compiler code generator
workarounds for specific hardware errata. See “Controlling Silicon Revi-
sion and Anomaly Workarounds Within the Compiler” on page 1-86 for
details of valid workarounds and the interaction of the -si-revision,
-workaround and -no-workaround switches.

-write-files

The -write-files (enable driver I/O redirection) switch directs the com-
piler driver to redirect the file name portions of its command line through
a temporary file. This technique helps to handle long file names, which
can make the compiler driver’s command line too long for some operating
systems.

 This switch is deprecated.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-69
for SHARC Processors

Compiler

-write-opts

The -write-opts (user options) switch directs the compiler to pass the
user options (but not the input filenames) to the main driver via a tempo-
rary file which can help if the resulting main driver command line is too
long.

 This switch is deprecated.

-xref filename

The -xref (cross-reference list) switch directs the compiler to write
cross-reference listing information to the specified file. When more than
one source file has been compiled, the listing contains information about
the last file processed.

For each reference to a symbol in the source program, a line of the form

symbol-id name ref-code filename line-number column-number

is written to the named file.

The symbol-id identifier represents a unique decimal number for the sym-
bol, and ref-code is one of the characters found in Table 1-12.

Table 1-12. ref-code Characters

Character Meaning

D Definition

d Declaration

M Modification

A Address taken

U Used

C Changed (used and modified)

R Any other type of reference

E Error (unknown type of reference)

Compiler Command-Line Interface

1-70 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

 Please note that the compiler’s -xref switch differs from the -xref
switch used by the linker. Refer to the VisualDSP++ 5.0 Linker and
Utilities Manual for more information.

C Mode (MISRA) Compiler Switch Descriptions

The following switches apply only to the C compiler. See “MISRA-C
Compiler” on page 1-115 for more information.

-misra

The –misra switch enables checking for MISRA-C Guidelines. Some rules
or parts of rules are relaxed with this switch enabled. Rules relaxed by this
option are 5.1, 5.7, 6.3, 6.4, 8.1, 8.2, 8.5, 10.3, 10.4, 10.5, 12.8, 13.7
and 19.7. This is explained in more detail, see “Rules Descriptions” on
page 1-120.

The -misra switch is not supported in conjunction with the -w and
-Werror|suppress|warn switches. The switch predefines the
_MISRA_RULES preprocessor macro.

-misra-linkdir

The –misra-linkdir directory switch specifies a directory in which to
place .misra files. The default is a local directory called MISRARepository.
The .misra files enables checking of violations of rules 5.5, 8.8 and 8.10.

-misra-no-cross-module

The switch implies -misra, but also disables checking for a number of rules
that require the use of the prelinker to check across multiple modules for
rule violation. The MISRA-C rules suppressed are 5.5, 8.8 and 8.10.

The -misra-no-cross-module switch is not supported in conjunction with
the -w and -Werror|remark|suppress|warn switches.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-71
for SHARC Processors

Compiler

-misra-no-runtime

The switch implies -misra, but also disables runtime-checking for
MISRA-C rules 21, 17.1, 17.2 and 17.3. It limits the checking of rules
9.1, 12.8, 16.2 and 17.4.

The -misra-no-runtime switch is not supported in conjunction with the
-w and -Werror|remark|suppress|warn switches.

-misra-strict

The –misra-strict switch enables checking for MISRA-C Guidelines.
The switch ensures a strict interpretation of the MISRA-C: 2004 Guide-
lines. See “Rules Descriptions” on page 1-120 for more detail.

The -misra-strict switch is not supported in conjunction with the -w
and -Werror|remark|suppress|warn switches. The switch predefines the
_MISRA_RULES preprocessor macro.

-misra-suppress-advisory

The switch implies -misra, but suppresses the reporting of advisory rules.

The –misra-suppress-advisory switch is not supported in conjunction
with the -w and -Werror|remark|suppress|warn switches.

-misra-testing

The switch implies –misra but also suppresses checking of MISRA-C rules
20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12.

The -misra-testing switch is not supported in conjunction with the -w
and -Werror|remark|suppress|warn switches.

-Wmis_suppress

The –Wmis_suppress rule_number [, rule_number] switch with a
rule_number argument directs the compiler to suppress the specified

Compiler Command-Line Interface

1-72 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

diagnostic for a MISRA-C rule. The rule_number argument identifies the
specific message to override.

-Wmis_warn

The –Wmis_warn rule_number [, rule_number] switch with a
rule_number argument directs the compiler to override the severity of the
specified diagnostic to produce a warning for a MISRA-C rule. The
rule_number argument identifies the specific message to override.

C++ Mode Compiler Switch Descriptions

The following switches apply only to the C++ compiler.

-anach

The -anach (enable C++ anachronisms) directs the compiler to accept
some language features that are prohibited by the C++ standard but still in
common use. This is the default mode. Use the –no-anach switch
(on page 1-75) for greater standard compliance.

The following anachronisms are accepted in the default C++ mode:

• Overload is allowed in function declarations. It is accepted and
ignored.

• Definitions are not required for static data members that can be
initialized using default initialization. The anachronism does not
apply to static data members of template classes; they must always
be defined.

• The number of elements in an array may be specified in an array
delete operation. The value is ignored.

• A single operator++() and operator--() function can be used to
overload both prefix and postfix operations.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-73
for SHARC Processors

Compiler

• The base class name may be omitted in a base class initializer if
there is only one immediate base class.

• A bound function pointer (a pointer to a member function for a
given object) can be cast to a pointer to a function.

• A nested class name may be used as an un-nested class name pro-
vided no other class of that name has been declared. The
anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a
different type. A temporary is created; it is initialized from the
(converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an
rvalue of the class type or a derived class thereof. No (additional)
temporary is used.

• A function with old-style parameter declarations is allowed and
may participate in function overloading as though it were proto-
typed. Default argument promotion is not applied to parameter
types of such functions when the check for compatibility is done,
so that the following statements declare the overload of two func-
tions named f.

int f(int);

int f(x) char x; { return x; }

-check-init-order

It is not guaranteed that global objects requiring constructors are initial-
ized before their first use in a program consisting of separately compiled
units. The compiler will output warnings if these objects are external to
the compilation unit and are used in dynamic initialization or in construc-
tors of other objects. These warnings are not dependent on the
-check-init-order switch.

Compiler Command-Line Interface

1-74 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

In order to catch uses of these objects and to allow the opportunity for
code to be rewritten, the -check-init-order (check initialization order)
switch adds run-time checking to the code. This generates output to
stderr that indicates uses of such objects are unsafe.

 This switch generates extra code to aid development, and should
not be used when building production systems.

 Invoke this switch with the Check initialization order check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Source Language Settings category.

-extern-inline

The -extern-inline switch directs the compiler to conform to the
ISO/IEC 14882:2003 standard with respect to inline functions that are
non-static. If the definition of the function needs to be retained then the
compiler will ensure that there is a unique entry point. This is not enabled
by default.

See -no-extern-inline on page 1-75.

-friend-injection

The -friend-injection switch directs the compiler to conform to per-
form name lookup in a non-standard way with respect to friend
declarations. With this switch enabled a friend declaration will be injected
into the scope enclosing the class containing the friend declaration. This
switch is enabled by default.

See -no-friend-injection on page 1-76.

-full-dependency-inclusion

The -full-dependency-inclusion switch ensures that when generating
dependency information for implicitly-included .cpp files, the .cpp file
will be re-included. This file is re-included only if the .cpp files are

VisualDSP++ 5.0 C/C++ Compiler Manual 1-75
for SHARC Processors

Compiler

included more than once in the source (via re-inclusion of their
corresponding header file).

This switch is required only if your C++ source files are compiled more
than once with different macro guards.

 Enabling this switch may increase the time required to generate
dependencies.

-ignore-std

The -ignore-std switch directs the compiler to allow backwards compati-
bility to earlier versions of VisualDSP C++, which did not use namespace
std to guard and encode C++ Standard Library names. By default, the
header files and libraries now use namespace std.

 Invoke this switch by clearing the Use std:: namespace check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Source Language Settings category.

-no-anach

The -no-anach (disable C++ anachronisms) switch directs the compiler to
disallow some old C++ language features that are prohibited by the C++
standard. See the –anach switch (on page 1-72) for a full description of
these features.

-no-extern-inline

The -no-extern-inline switch directs the compiler to treat all inline
functions as static. If the function definition needs to be retained an exter-
nal entry point is not generated. This is the default mode.

See -extern-inline on page 1-74.

Compiler Command-Line Interface

1-76 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-no-friend-injection

The -no-friend-injection switch directs the compiler to conform to the
ISO/IEC 14882:2003 standard with respect to friend declarations. The
friend declaration is visible when the class of which it is a friend is among
the associated classes considered by argument-dependent lookup.

See -friend-injection on page 1-74.

-no-implicit-inclusion

The -no-implicit-inclusion switch prevents implicit inclusion of source
files as a method of finding definitions of template entities to be
instantiated.

-no-rtti

The -no-rtti (disable run-time type identification) switch directs the
compiler to disallow support for dynamic_cast and other features of
ANSI/ISO C++ run-time type identification. This is the default mode.
Use –rtti to enable this feature.

-no-std-templates

The -no-std-templates switch disables dependent name processing, for
example, the special lookup of names used in templates as required by the
C++ standard.

-rtti

The -rtti (enable run-time type identification) switch directs the com-
piler to accept programs containing dynamic_cast expressions and other
features of ANSI/ISO C++ run-time type identification. The switch also

VisualDSP++ 5.0 C/C++ Compiler Manual 1-77
for SHARC Processors

Compiler

causes the compiler to define the macro __RTTI to 1. See also the –no-rtti
switch.

 Invoke this switch with the C++ exceptions and RTTI check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Language Settings category.

-std-templates

The -std-templates switch enables dependent name processing, that is,
the special lookup of names used in templates as required by the C++
standard.

Environment Variables Used by the Compiler
The compiler refers to a number of environment variables during its oper-
ation, as listed below. The majority of the environment variables identify
path names to directories. You should be aware that placing network paths
into these environment variables may adversely affect the time required to
compile applications.

• PATH
This is your System search path, used to locate Windows applica-
tions when you run them. Windows uses this environment variable
to locate the compiler when you execute it from the command line.

• TMP
This directory is used by the compiler for temporary files, when
building applications. For example, if you compile a C file to an
object file, the compiler first compiles the C file to an assembly file
which can be assembled to create the object file. The compiler usu-
ally creates a temporary directory within the TMP directory into
which to put such files. However, if the -save-temps switch is
specified, the compiler creates temporary files in the current direc-
tory instead. This directory should exist and be writable. If this
directory does not exist, the compiler issues a warning.

Compiler Command-Line Interface

1-78 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• TEMP
This environment variable is also used by the compiler when look-
ing for temporary files, but only if TMP was examined and was not
set or the directory that TMP specified did not exist.

• ADI_DSP
The compiler locates other tools in the tool-chain through the
VisualDSP++ installation directory, or through the -path-install
switch. If neither is successful, the compiler looks in ADI_DSP for
other tools.

• CC21K_OPTIONS
If this environment variable is set, and CC21K_IGNORE_ENV is not set,
this environment variable is interpreted as a list of additional
switches to be prepended to the command line. Multiple switches
are separated by spaces or new lines. A vertical-bar (|) character
may be used to indicate that any switches following it will be pro-
cessed after all other command-line switches.

• CC21K_IGNORE_ENV
If this environment variable is set, CC21K_OPTIONS is ignored.

Data Type and Data Type Sizes
The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types and
therefore at high speed. Table 1-13 shows the size used for each of the
intrinsic C/C++ data types.

Table 1-13. Data Type Sizes for the ADSP-21xxx Processors

Type Bit Size Result of sizeof operator

int 32 bits signed 1

unsigned int 32 bits unsigned 1

long 32 bits signed 1

VisualDSP++ 5.0 C/C++ Compiler Manual 1-79
for SHARC Processors

Compiler

Analog Devices does not support data sizes smaller than the addressable
unit size on the processor. For the ADSP-21xxx processors, this means
that both short and char have the same size as int. Although 32-bit chars
are unusual, they do conform to the standard. For information about the
fract data type, refer to “C++ Fractional Type Support” on page 1-264.
For information about how to use the fixed-point data types in C, refer to
“Using Native Fixed-Point Types” on page 1-90.

unsigned long 32 bits unsigned 1

long long 64 bits signed 2

unsigned long long 64 bits unsigned 2

bool 32 bits signed 1

char 32 bits signed 1

unsigned char 32 bits unsigned 1

short 32 bits signed 1

unsigned short 32 bits unsigned 1

pointer 32 bits 1

float 32 bits float 1

short fract 32 bits fixed-point 1

fract 32 bits fixed-point 1

long fract 32 bits fixed-point 1

unsigned short
fract

32 bits unsigned fixed-point 1

unsigned fract 32 bits unsigned fixed-point 1

unsigned long
fract

32 bits unsigned fixed-point 1

double either 32 or 64 bits float (default 32) either 1 or 2 (default 1)

long double 64 bits float 2

Table 1-13. Data Type Sizes for the ADSP-21xxx Processors (Cont’d)

Type Bit Size Result of sizeof operator

Compiler Command-Line Interface

1-80 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Integer Data Types

On any platform, the basic type int is the native word size. For SHARC
processors, it is 32 bits. Many library functions are available for 32-bit
integers, and these functions provide support for the C/C++ data types
int and long int. Pointers are the same size as ints. 64-bit integer support
is provided by the long long and unsigned long long data types, which
are emulated data types, implemented through software.

Floating-Point Data Types

For SHARC processors, the float data type is 32 bits long. The double
data type is option-selectable for 32 or 64 bits. The C and C++ languages
tend to default to double for constants and for many floating-point calcu-
lations. In general, double word data types run more slowly than 32-bit
data types because they rely largely on software-emulated arithmetic.

Type double poses a special problem. Without some special handling,
many programs would inadvertently end up using slow-speed, emulated,
64-bit floating-point arithmetic, even when variables are declared consis-
tently as float. In order to avoid this problem, Analog Devices provides
the -double-size[-32|-64] switch (on page 1-27), which allows you to
set the size of double to either 32 bits (default) or 64 bits. The 32-bit set-
ting gives good performance and should be acceptable for most DSP
programming. However, it does not conform fully to the ANSI C
standard.

For a larger floating-point type, the long double data type provides 64-bit
floating-point arithmetic.

For either size of double, the standard #include files automatically rede-
fine the math library interfaces so that functions such as sin can be
directly called with the proper size operands. Access to 64-bit floating-
point arithmetic and libraries is always provided via long double.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-81
for SHARC Processors

Compiler

Therefore,

float sinf (float); /* 32-bit */

double sin (double); /* 32 or 64-bit */

For full descriptions of these functions and their implementation, see
VisualDSP++ 5.0 Run-Time Library Manual for SHARC Processors.

Optimization Control
The general aim of compiler optimization is to generate correct code that
executes quickly and is small in size. Not all optimizations are suitable for
every application or possible all the time. Therefore, the compiler opti-
mizer has a number of configurations, or optimization levels, which can be
applied when needed. Each of these levels are enabled by one or more
compiler switches (and VisualDSP++ project options) or pragmas.

 Refer to Chapter 2, “Achieving Optimal Performance From C/C++
Source Code” for information on how to obtain maximal code per-
formance from the compiler.

Optimization Levels

The following list identifies several optimization levels. The levels are
notionally ordered with least optimization listed first and most optimiza-
tion listed last. The descriptions for each level outline the optimizations
performed by the compiler and identify any switches or pragmas required,
or that have direct influence on the optimization levels performed.

• Debug
The compiler produces debug information to ensure that the object
code matches the appropriate source code line. See “-g” on
page 1-33 and “-Og” on page 1-49 for more information.

Compiler Command-Line Interface

1-82 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• Default
The compiler does not perform any optimization by default when
none of the compiler optimization switches are used (or enabled in
VisualDSP++ project options). Default optimization level can be
enabled using the optimize_off pragma (on page 1-204).

• Procedural Optimizations
The compiler performs advanced, aggressive optimization on each
procedure in the file being compiled. The optimizations can be
directed to favor optimizations for speed (-O1 or O) or space (-Os)
or a factor between speed and space (-Ov). If debugging is also
requested, the optimization is given priority so the debugging func-
tionality may be limited. See “-O[0|1]” on page 1-48, “-Os” on
page 1-49, “-Ov” on page 1-49 and “-Og” on page 1-49. Proce-
dural optimizations for speed and space (-O and -Os) can be
enabled in C/C++ source using the pragma
optimize_{for_speed|for_space}. (For more information, see
“General Optimization Pragmas” on page 1-204.)

• Profile-Guided Optimizations (PGO)
The compiler performs advanced aggressive optimizations using
profiler statistics (.pgo files) generated from running the applica-
tion using representative training data. PGO can be used in
conjunction with IPA and automatic inlining. See “-pguide” on
page 1-55 for more information.

 PGO is supported in the simulator only.

The most common scenario in collecting PGO data is to setup one
or more simple File to Device streams where the File is a standard
ASCII stream input file and the Device is any stream device sup-
ported by the simulator target, such as memory and peripherals.
The PGO process can be broken down into the execution of one or
more “Data Sets” where a Data Set is the association of zero or
more input streams with a single .pgo output file. The user can cre-
ate, edit and delete the Data Sets through the IDDE and then

VisualDSP++ 5.0 C/C++ Compiler Manual 1-83
for SHARC Processors

Compiler

“run” the Data Sets with the click of one button to produce an
optimized application. The PGO operation is handled via a new
PGO submenu added to the top-level Tools menu:
Tools -> PGO -> Manage Data Sets.

For more information, see “Using Profile-Guided Optimization”
in Chapter 2, Achieving Optimal Performance From C/C++
Source Code.

 Note the requirement for allowing command-line arguments in
your project when using PGO. For further details refer to “Support
for argv/argc” on page 1-315.

• Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. It does this when
it has determined that doing so reduces execution time. How
aggressively the compiler performs automatic inlining is controlled
using the -Ov switch. Automatic inlining is enabled using the -Oa
switch which additionally enables procedural optimizations (-O).
See “-Oa” on page 1-49, “-Ov” on page 1-49, “-O[0|1]” on
page 1-48 and “Function Inlining” on page 1-133 for more
information.

 When remarks are enabled, the compiler produces a remark to
indicate each function that is inlined.

• Interprocedural Optimizations
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. The interprocedural analysis (IPA) is enabled
using the -ipa switch which additionally enables procedural opti-
mizations (-O). See “Interprocedural Analysis”, “-ipa” on page 1-37
and “-O[0|1]” on page 1-48 for more information.

Compiler Command-Line Interface

1-84 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The compiler optimizer attempts to vectorize loops when it is safe to do
so. When IPA is used it can identify additional safe candidates for vector-
ization which might not be classified as safe at a procedural optimization
level. Additionally, there may be other loops that are known to be safe
candidates for vectorization which can be identified to the compiler with
use of various pragmas. (See “Loop Optimization Pragmas” on
page 1-198.)

Using the various compiler optimization levels is an excellent way of
improving application performance. However consideration should be
given to how applications are written so that compiler optimizations are
given the best opportunity to be productive. These issues are the topic of
Chapter 2, “Achieving Optimal Performance From C/C++ Source Code”.

Interprocedural Analysis

The cc21k compiler has a capability called interprocedural analysis (IPA),
an optimization that allows the compiler to optimize across translation
units instead of within just one translation unit. This capability effectively
allows the compiler to see all of the source files that are used in a final link
at compilation time and make use of that information when optimizing.

Interprocedural analysis is enabled by selecting the Interprocedural Anal-
ysis check box in the VisualDSP++ Project Options dialog box, Compile
tab, General category, or by specifying the -ipa command-line switch.

The -ipa switch automatically enables the -O switch to turn on optimiza-
tion. (See “-ipa” on page 1-37.)

Use of the -ipa switch generates additional files along with the object file
produced by the compiler. These files have .ipa filename extensions and
should not be deleted manually unless the associated object file is also
deleted.

All of the -ipa optimizations are invoked after the initial link, whereupon
a special program called the prelinker reinvokes the compiler to perform

VisualDSP++ 5.0 C/C++ Compiler Manual 1-85
for SHARC Processors

Compiler

the new optimizations, recompiling source files where necessary, to make
use of gathered information.

 Because a file may be recompiled by the prelinker, do not use the
-S option to see the final optimized assembler file when -ipa is
enabled. Instead, use the -save-temps switch (on page 1-59), so
that the full compile/link cycle can be performed first.

Interaction With Libraries

When IPA is enabled, the compiler examines all of the source files to build
up usage information about all of the function and data items. It then uses
that information to make additional optimizations across all of the source
files by recompiling where necessary.

Because IPA operates only during the final link, the -ipa switch has no
benefit when initially compiling source files to object format for inclusion
in a library. IPA gathers information about each file and embeds this
within the object format, but cannot make use of it at this point, because
the library contents have not yet been used in a specific context.

When IPA is invoked during linking, it will recover the gathered informa-
tion from all linked-in object files that were built with -ipa, and where
necessary and possible, will recompile source files to apply additional opti-
mizations. Modules linked in from a library are not recompiled in this
manner, as source is not available for them. Therefore, the gathered
information in a library module can be used to further optimize applica-
tion sources, but does not provide a benefit to the library module itself.

If a library module makes references to a function in a user module in the
program, this will be detected during the initial linking phase, and IPA
will not eliminate the function. If the library module was not compiled
with -ipa, IPA will not make any assumptions about how the function
may be called, so the function may not be optimized as effectively as if all
references to it were in source code visible to IPA, or from library modules
compiled with -ipa.

Compiler Command-Line Interface

1-86 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Controlling Silicon Revision and Anomaly
Workarounds Within the Compiler

The compiler provides three switches which specify that code produced by
the compiler will be generated for a specific revision of a specific proces-
sor, and appropriate silicon revision targeted system run time libraries will
be linked against. Targeting a specific processor allows the compiler to
produce code that avoids specific hardware errata reported against that
revision. For the simplest control, use the -si-revision switch which
automatically controls compiler workarounds.

 The compiler cannot apply errata workarounds to code inside
asm() constructs.

When developing using the IDDE, the silicon revision within a project is
set to a default value of Automatic. Using a silicon revision of Automatic
will select a value for the -si-revision switch based on the hardware con-
nected and the session type that is currently in use. This will enable all
errata workarounds for the determined silicon revision.

This section describes:

• “Using the -si-revision Switch” on page 1-87

• “Using the -workaround Switch” on page 1-88

• “Using the -no-workaround Switch” on page 1-89

• “Interactions Between the Silicon Revision and Workaround
Switches” on page 1-89

VisualDSP++ 5.0 C/C++ Compiler Manual 1-87
for SHARC Processors

Compiler

Using the -si-revision Switch

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The parameter version
represents a silicon revision of the processor specified by the -proc switch
(on page 1-56).

For example,

cc21k -proc ADSP-21161 -si-revision 0.1 prog.c

If silicon version none is used, then no errata workarounds are enabled,
whereas specifying silicon version any will enable all errata workarounds
for the target processor.

If the -si-revision switch is not used, the compiler will build for the lat-
est known silicon revision for the target processor and any errata
workarounds which are appropriate for the latest silicon revision will be
enabled.

Run-time libraries built without any errata workarounds are located in the
platform’s lib sub-directory; for example, 212xx/lib. Within the lib
sub-directory, there are library directories for each silicon revision; these
libraries have been built with errata workarounds appropriate for the sili-
con revision enabled. Note that an individual set of libraries may cover
more than one specific silicon revision, so if several silicon revisions are
affected by the same errata, then one common set of libraries might be
used.

The __SILICON_REVISION__ macro is set by the compiler to two hexadeci-
mal digits representing the major and minor numbers in the silicon
revision. For example, 1.0 becomes 0x100 and 10.21 becomes 0xa15.

If the silicon revision is set to any, the __SILICON_REVISION__ macro is set
to 0xffff and if the -si-revision switch is set to none the compiler will
not set the __SILICON_REVISION__ macro.

Compiler Command-Line Interface

1-88 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The compiler driver will pass the -si-revision switch, as specified in the
command line, when invoking other tools in the VisualDSP++ toolchain.

 On ADSP-2116x processors, the workaround for the shadow write
FIFO anomaly is only required under certain circumstances and is
therefore not enabled by default. If this workaround is required,
the -workaround swfa switch should be used. On the ADSP-21161
processor, anomaly #45 can only occur if the code is executed from
external memory, and accordingly the workaround for this anom-
aly is not enabled by default. If this workaround is required, the
-workaround 21161-anomaly-45 switch should be used.

 Visit http://www.analog.com/processors/technicalSup-
port/ICAnomalies.html to get more information on specific
anomalies (including anomaly IDs).

Using the -workaround Switch

The -workaround workaround_id switch (on page 1-68) enables compiler
code generator workarounds for specific hardware errata.

When workarounds are enabled, the compiler defines the macro
__WORKAROUNDS_ENABLED at the compile, assembly, and link build stages.
The compiler also defines individual macros for each of the enabled work-
arounds for each of these stages, as indicated by each macro description.

For a complete list of anomaly workarounds and associated workaround_id
keywords, refer to the anomaly .xml files provided in the
<install_path>/System/ArchDef directory. These are named in the
format <platform_name>-anomaly.xml.

To find which workarounds are enabled for each chip and silicon revision,
refer to the appropriate <chip_name>-compiler.xml file in the same
directory (for example, ADSP-21488-compiler.xml). Each *-compiler.xml
file references an *-anomaly.xml file via the name in the
<vdsp-anomaly-dictionary> element.

http://www.analog.com/processors/technicalSupport/ICAnomalies.html
http://www.analog.com/processors/technicalSupport/ICAnomalies.html

VisualDSP++ 5.0 C/C++ Compiler Manual 1-89
for SHARC Processors

Compiler

The anomaly .xml files relevant to SHARC processors have filenames of
the form SHARC-21xxx-anomaly.xml.

Using the -no-workaround Switch

The no-workaround workaroundID[,workaroundID ... switch disables
compiler code generator workarounds for specific hardware errata. For a
complete list of valid workaroundID values, refer to the relevant *-anom-
aly.xml file. For more information, see “Using the -workaround Switch”
on page 1-88.

The -no-workaround switch can be used to disable workarounds enabled
via the -si-revision version or -workaround workaroundID switch.

All workarounds can be disabled by providing -no-workaround with all
valid workarounds for the selected silicon revision or by using the option
-no-workaround all . Disabling all workarounds via the -no-workaround
switch will link against libraries with no silicon revision in cases where the
silicon revision is not none.

Interactions Between the Silicon Revision and Workaround
Switches

The interactions between -si-revision, -workaround and -no-work-
around can only be determined once all the command line arguments have
been parsed.

To this effect options will be evaluated as follows:

1. The -si-revision version is parsed to determine which revision
of the run-time libraries the application will link against. It also
produces an initial list of all the default compiler errata work-
arounds to enable.

2. Any additional workarounds specified with the -workaround switch
will be added to the errata list.

Using Native Fixed-Point Types

1-90 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

3. Any workarounds specified with -no-workaround will then be
removed from this list.

4. If silicon revision is not none or if any workarounds were declared
via -workaround, the macro __WORKAROUNDS_ENABLED will be
defined at compile and assembly and link stages, even if -no-work-
around disables all workarounds.

Using Native Fixed-Point Types
This section provides an overview of the compiler’s support for the native
fixed-point type fract, defined in Chapter 4 of the “Extensions to support
embedded processors” ISO/IEC draft document Technical Report 18037.

Fixed-Point Type Support
A fixed-point data type is one where the radix point is at a fixed position.
This includes the integer types (the radix point is immediately to the right
of the least-significant bit). However, this section uses the term to apply
exclusively to those that have a non-zero number of fractional bits –
that is, bits to the right of the radix point.

The SHARC processor has hardware support for arithmetic on 32-bit
fixed-point data types. For example, it is able to perform addition, sub-
traction and multiplication on 32-bit fractional values. However, the C
language does not make it easy to express the semantics of the arithmetic
that maps to the underlying hardware support.

To make it easier to use this hardware capability, and to facilitate expres-
sion of DSP algorithms that manipulate fixed-point data, the compiler
supports a number of native fixed-point types whose arithmetic obeys the
fixed-point semantics. This makes it easy to write high-performance algo-
rithms that manipulate fixed-point data, without having to resort to
compiler built-ins, or inline assembly.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-91
for SHARC Processors

Compiler

An emerging standard for such fixed-point types is set out in Chapter 4 of
the “Extensions to support embedded processors” ISO/IEC Technical Report
18037. VisualDSP++ provides all the functionality specified in that chap-
ter except that related to the accum type, and the chapter is a useful
reference that explains the subtleties of the semantics of the library func-
tions and arithmetic operators. However, the following sections give an
overview of these data types, the semantics of arithmetic using these types,
and guidelines for how to write high-performance code using these types.

Native Fixed-Point Types
The keyword _Fract is used to declare variables of fixed-point type. The
_Accum keyword, defined in the ISO/IEC Technical Report to specify
fixed-point data types with an integer as well as a fractional part is not cur-
rently supported by VisualDSP++. The _Fract keyword may also be used
in conjunction with the type specifiers short and long, and signed and
unsigned. There are therefore 6 fixed-point types available, although
many of these are aliases for types of the same size and format.

By including the header file stdfix.h, the more convenient alternative
spelling fract may be used instead of _Fract . This header file also pro-
vides prototypes for many useful functions and it is highly recommended
that you include it in source files that use fixed-point types. Therefore, the
discussion that follows uses the spelling fract, as does the rest of the Visu-
alDSP++ documentation.

The formats of the fixed-point types are given in table Table 1-14. In the
“Representation” column of the table, the number after the point indi-
cates the number of fractional bits, while the number before the point
refers to the number of integer bits, including a sign bit when it is pre-
ceded by “s”. Signed types are in two’s complement form. The range of
values that can be represented is also given in the table. Note that the bot-
tom of the range can be represented exactly, whereas the top of the range
cannot – only the value one bit less than this limit can be represented.

Using Native Fixed-Point Types

1-92 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The Technical Report also defines a _Sat (alternative spelling sat) type
qualifier for the fixed-point types. This stipulates that all arithmetic on
fixed-point types shall be saturating arithmetic (that is, that the result of
arithmetic that overflows the maximum value that can be represented by
the type shall saturate at the largest or smallest representable value). When
the sat qualifier is not used, the standard says that arithmetic that over-
flows may behave in an undefined manner. VisualDSP++ accepts the sat
qualifier for compatibility but will always produce code that saturates on
overflow whether the sat qualifier is used or not. This gives maximum
reproducibility of results and permits code to be written without worrying
about obtaining unexpected results on overflow.

Native Fixed-Point Constants
Fixed-point constants may be specified in the same format as for
floating-point constants, inclusive of any decimal or binary exponent.
For more information on these formats, refer to “strtofxfx” on page 1-109.
Suffixes are used to identify the type of constants. The stdfix.h header
also declares macros for the maximum and minimum values of the
fixed-point types. See Table 1-15 for details of the suffixes and maximum
and minimum fixed-point values.

Table 1-14. Data Storage Formats, Ranges, and Sizes of the Native
Fixed-Point Types

Type Representation Range sizeof returns

short fract s1.31 [-1.0,1.0) 1

fract s1.31 [-1.0,1.0) 1

long fract s1.31 [-1.0,1.0) 1

unsigned short fract 0.32 [0.0,1.0) 1

unsigned fract 0.32 [0.0,1.0) 1

unsigned long fract 0.32 [0.0,1.0) 1

VisualDSP++ 5.0 C/C++ Compiler Manual 1-93
for SHARC Processors

Compiler

A Motivating Example
Consider a very simple example—pairwise addition of two sets of frac-
tional values, saturating at the largest or smallest fractional value if the
addition overflows. How might you write this using the native fixed-point
types? Assume that the data consist of vectors of 32-bit values, represent-
ing values in the range [-1.0,1.0). Then it is natural to write:

Example

#include <stdfix.h>

void pairwise_add(fract *out, const fract *a, const fract *b,

int n)

{

 int i;

 for (i = 0; i < n; i++)

 out[i] = a[i] + b[i];

}

The above algorithm shows that it is easy to express algorithms that
manipulate fixed-point data and perform saturation on overflow without
needing to find special ways to express these semantics through integer
arithmetic.

Table 1-15. Fixed-Point Type Constant Suffixes and Macros

Type Suffix Example Minimum value Maximum value

short fract hr 0.5hr SFRACT_MIN SFRACT_MAX

fract r 0.5r FRACT_MIN FRACT_MAX

long fract lr 0.5lr LFRACT_MIN LFRACT_MAX

unsigned short fract uhr 0.5uhr 0.0uhr USFRACT_MAX

unsigned fract ur 0.5ur 0.0ur UFRACT_MAX

unsigned long fract ulr 0.5ulr 0.0ulr ULFRACT_MAX

Using Native Fixed-Point Types

1-94 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Fixed-Point Arithmetic Semantics
The semantics of fixed-point arithmetic according to the Technical
Report are as follows:

1. If a binary operator has one floating-point operand, the other
operand is converted to floating-point and the operator is applied
to two floating-point operands to give a floating-point result.

2. If the operator has two fixed-point operands of different signed-
ness, convert the unsigned one to signed without changing its size.
(However, see also “FX_CONTRACT” on page 1-99.)

3. Deduce the result type. The result type is the operand type of
highest rank. Rank increases in the following order: short fract,
fract, long fract (or their unsigned equivalents). An operator
with only one fixed-point operand produces a result of this
fixed-point type. (An exception is the result of a comparison, which
gives a boolean result.)

4. The result is the mathematical result of applying the operator to
the operand values, converted to the result type deduced in step 3.
In other words, the result is as if it was computed to infinite
precision before converting this result to the final result type.

The conversions between different types are discussed in “Data Type Con-
versions and Fixed-Point Types” on page 1-94.

Data Type Conversions and Fixed-Point Types
The rules for conversion to and from fixed-point types are as follows:

1. When converting to a fixed-point type, if the value of the operand
can be represented by the fixed-point type, the result is this value.
If the operand value is out of range of the fixed-point type, the
result is the closest fixed-point value to the operand value. In other

VisualDSP++ 5.0 C/C++ Compiler Manual 1-95
for SHARC Processors

Compiler

words, conversion to fixed-point saturates the operand’s mathemat-
ical value to the fixed-point type’s range. If the operand value is
within the range of the fixed-point type, but cannot be represented
exactly, the result is the closest value either higher or lower than
the operand value. For more information, see “Rounding Behav-
ior” on page 1-101.)

2. When converting to an integer type from a fixed-point type, the
result is the integer part of the fixed-point type. The fractional part
is discarded, so rounding is towards zero; both (int)(0.9r)
and (int)(-0.9r) give 0.

3. When converting to a floating-point type, the result is the closest
floating-point value to the operand value.

These rules have some important consequences of which you should be
aware:

 Conversion of an integer to a fractional type is only useful when
the integer is -1, 0, or 1. Any other integer value will be saturated
to the fractional type. So a statement like

fract f = 0x40000000; // try to assign 0.5 to f

will not assign 0.5 to f, but will instead result in FRACT_MAX,
because 0x40000000 is an integer greater than 1. Instead, use

fract f = 0.5r;

- or -
fract f = 0x40000000p-31r;

Note that the second format above uses the binary exponent syntax
available for fixed-point constants; specifically the value
0x40000000 is scaled by 2-31.

Using Native Fixed-Point Types

1-96 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

 Assignment of a fractional value to an integer yields zero unless the
fractional value is -1.0. Assignment of an unsigned fractional value
to an integer always results in zero.

Compiler warnings will be produced to aid in the diagnosis of problems
where these conversions are likely to produce unexpected results.

Bit-Pattern Conversion Functions: bitsfx and fxbits
The stdfix.h header file provides functions to convert a bit pattern to a
fixed-point type and vice versa. These functions are particularly useful for
converting between native types (fract, unsigned fract) and integer
bit-patterns representing these values.

For each fixed-point type, a corresponding integer type is declared, which
is big enough to hold the bit pattern for the fixed-point type. These are
int_fx_t, where fx is one of hr, r, or lr, and uint_fx_t where fx is one of
uhr, ur, or ulr.

To convert a fixed-point type to a bit pattern, use the bitsfx family of
functions. fx may be any of hr, r, lr, uhr, ur, or ulr. For example, using the
prototype

uint_ur_t bitsur(unsigned fract);

you can write

#include <stdfix.h>

unsigned fract f;

uint_ur_t f_bit_pattern;

void foo(void) {

 f = 0.5ur;

 f_bit_pattern = bitsur(f); // gives 0x80000000

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-97
for SHARC Processors

Compiler

For more information, see “bitsfx” in the Visual DSP++ 5.0 Run-Time
Library Manual for SHARC Processors.

Similarly, to convert to a fixed-point type from a bit pattern, use the
fxbits family of functions. So, to convert from a int_lr_t to a long
fract, use:

#include <stdfix.h>

#include <fract.h>

int_lr_t f32;

long fract lf;

void foo(void) {

f32 = 0x40000000; // that’s 0.5

lf = lrbits(f32); // gets 0.5lr as expected

}

For more information, see “fxbits” in the Visual DSP++ 5.0 Run-Time
Library Manual for SHARC Processors.

Arithmetic Operators for Fixed-Point Types
You can use the +, -, *, and / operators on fixed-point types, which have
the same meaning as their integer or floating-point equivalents, aside from
any overflow or rounding semantics. As discussed on page 1-91,
fixed-point operations that overflow give results saturated at the highest or
lowest fixed-point value. Rounding is discussed in “Rounding Behavior”
on page 1-101.

Using Native Fixed-Point Types

1-98 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

You can use << to shift a fixed-point value up by a positive integer shift
amount less than the fixed-point type size in bits. This gives the same
result as multiplication by a power of 2, including overflow semantics:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.125r;

f2 = f1 << 2; // gives 0.5r

}

void foo2(void) {

f1 = -0.125r;

f2 = f1 << 10; // gives -1.0r

}

You can also use >> to shift a fixed-point value down by an integer shift
amount in the same range. This is defined to give the same result as divi-
sion by a power of 2, including any rounding behavior:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.5r;

f2 = f1 >> 2; // gives 0.125r

}

void foo2(void) {

f1 = 0x00000003p-31r;

f2 = f1 >> 2; // gives 0x00000000p-31r when rounding

// mode is truncation

// and 0x00000001p-31r when rounding

VisualDSP++ 5.0 C/C++ Compiler Manual 1-99
for SHARC Processors

Compiler

// mode is biased or unbiased

}

Any of these operators can be used in conjunction with assignment, for
example:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.2r;

f2 = 0.3r;

f2 += f1;

}

In addition, there are a number of unary operators that may be used with
fixed-point types. These are:

• ++ Equivalent to adding integer 1

• -- Equivalent to subtracting integer 1

• + Unary plus, equivalent to adding value to 0.0 (no effect)

• - Unary negate, equivalent to subtracting value from 0.0

• ! 1 if equal to 0.0, 0 otherwise

FX_CONTRACT
Consider the example of a multiplying a signed fract by an unsigned one:

fract f;

unsigned fract uf;

f = f * uf;

Bearing in mind the rules discussed in the previous section, what are the
semantics of the multiplication? Since the two fract operands differ in

Using Native Fixed-Point Types

1-100 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

signedness, the unsigned one is first converted to signed fract, with sub-
sequently two s1.31 operands multiplied together to yield an s1.31 result.
So the rules say that it should be equivalent to writing:

fract tmp = uf;

f = f * tmp;

However, this means that one bit of precision is lost from the unsigned
operand before the multiplication. The SHARC processors, however, have
hardware support for multiplying two fractional operands of opposite
signedness together directly, which involve no loss in precision. Use of this
support is both more precise and more efficient.

For convenience, the compiler can do this step for you, using a mode
known as FX_CONTRACT. The name FX_CONTRACT is used as the behavior is
similar to that of FP_CONTRACT in C99. When FX_CONTRACT is on, the com-
piler may keep intermediate results in greater precision than that specified
by the Technical Report. In other words, it may choose not to round away
extra bits of precision or to saturate an intermediate result unnecessarily.
More precisely, the compiler keeps the intermediate result in greater preci-
sion when:

• Maintaining the higher-precision intermediate result will be more
efficient – it maps better to the underlying hardware.

• The intermediate result is not stored back to any named variable.

• No explicit casts convert the type of the intermediate result.

In other words,

f = f * uf;

will result in an instruction that multiplies the signed and unsigned oper-
ands together directly, but

f = f * (fract)uf;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-101
for SHARC Processors

Compiler

- or -

fract tmp = uf;

f = f * tmp;

will both force the unsigned operand to be converted to fract type before
the multiplication.

By default, the compiler permits FX_CONTRACT behavior. The FX_CONTRACT
mode can be controlled with a pragma (see also “#pragma
FX_CONTRACT {ON|OFF}” on page 1-227) or with command-line
switches, -fx-contract and –no-fx-contract (see “-fx-contract” on
page 1-33 and “-no-fx-contract” on page 1-44). The pragma may be used
at file scope or within functions. It obeys the same scope rules as the
FX_ROUNDING_MODE pragma discussed on page 1-111 with an example in
Listing 1-1 on page 1-112.

Rounding Behavior
Some fixed-point operations are also affected by rounding. For example,
multiplication of two fractional values to produce a fractional result of the
same size requires discarding a number of bits of the exact result. For
example, s1.31 * s1.31 produces an exact s2.62 result. This is saturated to
s1.62 and the thirty-one least-significant bits must be discarded to pro-
duce an s1.31 result.

By default, any bits that must be discarded are truncated – in other words,
they are simply chopped off the end of the value. For example:

#include <stdfix.h>

fract f1, f2, prod;

void foo(void) {

f1 = 0x3ffffffp-31r;

f2 = 0x10000000p-31r;

prod = f1 * f2; // gives 0x007fffffp-31r, discarded

Using Native Fixed-Point Types

1-102 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

// least-significant bits 0xe0000000

}

This is equivalent to always rounding down toward negative infinity. It
tends to produce results whose accuracy tends to deteriorate as any round-
ing errors are generally in the same direction and are compounded as the
calculations proceed.

If this does not give you the accuracy you require, you can use either
biased or unbiased round-to-nearest rounding. The compiler supports
pragmas and switches to control the rounding mode. In the biased or
unbiased rounding modes, the above product will be rounded to the
nearest value that can be represented by the result type, so the final result
will be 0x00800000p-31r.

The difference between biased and unbiased rounding occurs when the
value to be rounded lies exactly half-way between the two closest values
that can be represented by the result type. In this case, biased rounding
will always round toward the greater of the two values (applying saturation
if this rounding overflows) whereas unbiased rounding will round toward
the value whose least-significant bit is zero. For example:

#include <stdfix.h>

fract f1, f2, prod;

void foo1(void) {

f1 = 0x00008000p-31r;

f2 = 0x34568000p-31r;

prod = f1 * f2; // gives 0x3456p-31r in unbiased rounding

 // mode, but 0x3457p-31r in biased rounding

 // mode

}

void foo2(void) {

f1 = 0x00008000p-31r;

f2 = 0x34578000p-31r;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-103
for SHARC Processors

Compiler

prod = f1 * f2; // gives 0x3458p-31r in both unbiased

 // and biased rounding modes

}

In general, unbiased rounding is more costly than biased rounding in
terms of cycles, but yields a more accurate result since rounding errors in
the half-way case are not all in the same direction and therefore are not
compounded so strongly in the final result.

The rounding discussed here only affects operations that yield a
fixed-point result. Operations that yield an integer result round toward
zero. There are also a few exceptions to the rounding rules:

• Conversion of a floating-point value to a fixed-point value rounds
towards zero.

• The roundfx, strtofxfx, and fxdivi functions always perform
unbiased rounding. They do not support the truncation rounding
mode.

Details of how to set rounding mode are given in “Setting the Rounding
Mode” on page 1-111.

Arithmetic Library Functions
The stdfix.h header file also declares a number of functions that permit
useful arithmetic operations on combinations of fixed-point and integer
types. These are the divifx, idivfx, fxdivi, mulifx, absfx, roundfx,
countlsfx, and strtofxfx families of functions.

Using Native Fixed-Point Types

1-104 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

divifx

The divifx functions, where fx is one of r, lr, ur, or ulr, allow division of
an integer value by a fixed-point value to produce an integer result. If you
write

#include <stdfix.h>

fract f;

int i, quo;

void foo(void) {

// BAD: division of int by fract gives fract result, not int

f = 0.5r;

i = 2;

quo = i / f;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

#include <stdfix.h>

fract f;

int i, quo;

void foo(void) {

// GOOD: uses divifx to give integer result

f = 0.5r;

i = 2;

quo = divir(i, f);

}

which will store the value 4 into the variable quo.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-105
for SHARC Processors

Compiler

idivfx

The idivfx functions, where fx is one of r, lr, ur, or ulr, allow division of
a fixed-point value by a fixed-point value to produce an integer result. If
you write

#include <stdfix.h>

fract f1, f2;

int quo;

void foo(void) {

// BAD: division of two fracts gives fract result, not int

f1 = 0.5r;

f2 = 0.25r;

quo = f1 / f2;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

#include <stdfix.h>

fract f1, f2;

int quo;

void foo(void) {

// GOOD: uses idivfx to give integer result

f1 = 0.5r;

f2 = 0.25r;

quo = idivr(f1, f2);

}

which will store the value 2 into the variable quo.

Using Native Fixed-Point Types

1-106 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

fxdivi

The fxdivi functions, where fx is one of r, lr, ur, or ulr, allow division of
an integer value by an integer value to produce a fixed-point result. If you
write

#include <stdfix.h>

int i1, i2;

fract quo;

void foo(void) {

// BAD: division of int by int gives int result, not fract

i1 = 5;

i2 = 10;

quo = i1 / i2;

}

then the result of the division is an integer which is then converted to a
fract to be stored in the variable quo. This means that the value of quo is
zero, as the division is rounded to integer zero and then converted to
fract.

To get the desired result, write

#include <stdfix.h>

int i1, i2;

fract quo;

void foo(void) {

// GOOD: uses fxdivi to give fract result

i1 = 5;

i2 = 10;

quo = rdivi(i1, i2);

}

which will store the value 0.5 into the variable quo.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-107
for SHARC Processors

Compiler

mulifx

The mulifx functions, where fx is one of r, lr, ur, or ulr, allow multiplica-
tion of an integer value by a fixed-point value to produce an integer result.
If you write

#include <stdfix.h>

int i, prod;

fract f;

void foo(void) {

// BAD: multiplication of int by fract

// produces fract result, not int

i = 50;

f = 0.5r;

prod = i * f;

}

then the result of the multiplication is a fract whose integer part is stored
in the variable prod. This means that the value of prod is zero, as the mul-
tiplication overflows and thus produces a fractional result that is nearly
one.

To get the desired result, write

#include <stdfix.h>

int i, prod;

fract f;

void foo(void) {

// GOOD: uses mulifx to give integer result

i = 50;

f = 0.5r;

prod = mulir(i, f);

}

which will store the value 25 into the variable prod.

Using Native Fixed-Point Types

1-108 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

absfx

The absfx functions, where fx is one of hr, r, or lr, compute the absolute
value of a fixed-point value.

In addition, you can also use the type-generic macro absfx(), where the
operand type can be any of the signed fixed-point types.

roundfx

The roundfx functions, where fx is one of hr, r, lr, uhr, ur, or ulr, take
two arguments. The first is a fixed-point operand whose type corresponds
to the name of the function called. The second gives a number of frac-
tional bits. The first operand is rounded to the number of fractional bits
given by the second operand. The second operand must specify a value
between 0 and the number of fractional bits in the type. Rounding is
unbiased to-nearest.

#include <stdfix.h>

fract f, rnd;

void foo1(void) {

f = 0x45608100p-31r;

rnd = roundr(f, 15); // produces 0x45610000p-31r;

}

void foo2(void) {

f = 0x7fff9034p-31r;

rnd = roundr(f, 15); // produces 0x7fffffffp-31r;

}

In addition, you can also use the type-generic macro roundfx(), where the
first operand type can be any of the fixed-point types.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-109
for SHARC Processors

Compiler

countlsfx

The countlsfx functions, where fx is one of hr, r, lr, uhr, ur, or ulr,
return the largest integer value k such that its operand, when shifted up by
k, does not overflow. For zero input, the result is the size in bits of the
operand type.

#include <stdfix.h>

int scal1, scal2;

void foo(void) {

scal1 = countlsr(-0.1r); // gives 3, because

// -0.1r<<3 = -0.8r

scal2 = countlsur(0.1ur); // gives 3, because

// 0.1ur<<3 = 0.8ur

}

In addition, you can also use the type-generic macro countlsfx(), where
the operand type can be any of the fixed-point types.

strtofxfx

The strtofxfx functions, where fx is one of hr, r, lr, uhr, ur, or ulr, parse
a string representation of a fixed-point number and return a fixed-point
result. They behave similarly to strtod, and accept input in the same
format.

Fixed-Point I/O Conversion Specifiers
The printf and scanf families of functions support conversion specifiers
for the fixed-point types. These are given in Table 1-16. Note that the
conversion specifier for the signed types, %r, is lowercase while the one for
the unsigned types, %R, is uppercase.

Using Native Fixed-Point Types

1-110 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

When used with the scanf family of functions, these conversion specifiers
accept input in the same format as consumed by the strtofxfx functions,
which is the same as that accepted for %f.

When used with the printf family of functions, fixed-point values are
printed:

• As hexadecimal values by default, or when using the Lite version of
the VisualDSP++ I/O library. For example,

printf(“fract: %r\n”, 0.5r); // prints fract: 40000000

• Like floating-point values when linking with the version of the
VisualDSP++ I/O library with full fixed-point support, using the
-flags-link -MD__LIBIO_FX switch. For more information, see
“stdio.h” in the Visual DSP++ 5.0 Run-Time Library Manual for
SHARC Processors. For example,

printf(“fract: %r\n”, 0.5r); // prints fract: 0.500000

Optional precision specifiers are accepted that control the number of dec-
imal places printed, and whether a trailing decimal point is printed.
However, these will have no effect unless the version of the VisualDSP++
I/O library with full fixed-point support is being used.

Table 1-16. I/O Conversion Specifiers for the Fixed-Point Types

Type Conversion Specifier

short fract %hr

fract %r

long fract %lr

unsigned short fract %hR

unsigned fract %R

unsigned long fract %lR

VisualDSP++ 5.0 C/C++ Compiler Manual 1-111
for SHARC Processors

Compiler

For more information, see “fprintf” in the Visual DSP++ 5.0 Run-Time
Library Manual for SHARC Processors.

Setting the Rounding Mode
As discussed in “Rounding Behavior” on page 1-101, there are three
rounding modes supported for fixed-point arithmetic:

• Truncation (this is the default rounding mode)

• Biased round-to-nearest rounding

• Unbiased round-to-nearest rounding

To set the rounding mode, you can use a pragma or a compile-time
switch.

The following compile-time switches control rounding behavior:

• -fx-rounding-mode-truncation (on page 1-33)

• -fx-rounding-mode-biased (on page 1-33)

• -fx-rounding-mode-unbiased (on page 1-33)

The given rounding mode will then be the default for the whole of the
source file being compiled.

You can also use a pragma to allow finer-grained control of rounding.
The pragmas are:

• #pragma FX_ROUNDING_MODE TRUNCATION

• #pragma FX_ROUNDING_MODE BIASED

• #pragma FX_ROUNDING_MODE UNBIASED

Using Native Fixed-Point Types

1-112 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

If one of these pragmas is applied at file scope, it applies until the end of
the translation unit or until another pragma at file scope changes the
rounding mode.

If one of these pragmas is applied within a compound statement (that is,
within a block enclosed by braces), the pragma applies to the end of the
compound statement where it is specified. The rounding mode will return
to the outer scope rounding mode on exit from the compound statement.
An example of how to use these pragmas is given in Listing 1-1.

Listing 1-1. Use of #pragma FX_ROUNDING_MODE to Control
Rounding of Arithmetic on Fixed-Point Types

#include <stdfix.h>

#pragma FX_ROUNDING_MODE BIASED

fract my_func(void) {

// rounding mode here is biased

{

#pragma FX_ROUNDING_MODE UNBIASED

// rounding mode here is unbiased

}

// rounding mode here is biased

}

#pragma FX_ROUNDING_MODE TRUNCATION

fract my_func2(void) {

// rounding mode here is truncation

}

For more information, see “#pragma FX_ROUNDING_MODE {TRUN-
CATION|BIASED|UNBIASED}” on page 1-227.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-113
for SHARC Processors

Compiler

Language Standards Compliance
The compiler supports code that adheres to the ISO/IEC 9899:1990 C
standard, ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003
C++ standard.

The compiler’s level of conformance to the applicable ISO/IEC standards
is validated using commercial test-suites from Plum Hall, Perennial and
Dinkumware.

C Mode
The compiler shall compile any program that adheres to a hosted imple-
mentation of the ISO/IEC 9899:1990 C standard, but it does not prohibit
the use of language extensions (“C/C++ Compiler Language Extensions”
on page 1-128) that are compatible with the correct translation of stan-
dard-conforming programs. This is the default mode; it can be explicitly
enabled by using the -c89 switch (“-c89” on page 1-20).

The compiler shall compile any program that adheres to a freestanding
implementation of the ISO/IEC 9899:1999 C standard, but it does not
prohibit the use of language extensions (“C/C++ Compiler Language
Extensions” on page 1-128) that are compatible with the correct transla-
tion of standard-conforming programs. The compiler does not support
the C99 keywords _Complex and _Imaginary. The ISO/IEC 9899:1990 C
standard library provided in C89 mode is used in C99 mode. To enable
this mode, use the -c99 switch (“-c99” on page 1-20).

In C mode, the best standard conformance is achieved using the default
switches and the following non-default switches:

• -const-strings (See “-const-strings” on page 1-26)

• -double-size-64 (See “-double-size[-32|-64]” on page 1-27)

• -enum-is-int (See “-enum-is-int” on page 1-30)

Language Standards Compliance

1-114 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The language extensions cannot be disabled to ensure strict compliance to
the language standards. However, when compiling for MISRA-C
(“MISRA-C Compiler” on page 1-115) compliance checking, language
extensions are disabled.

When the -c89 switch is enabled (the default mode), these extensions
already include many of the ISO/IEC 9899:1999 standard features. The
following features are only available in C99 mode.

• Type qualifiers may appear more than once in the same
specifier-qualifier-list.

• Universal character names (\u and \U) are accepted.

• The use of function declarations with non-prototyped parameter
lists are faulted.

• The first statement of a for-loop can be a declaration, not just
restricted to an expression.

• Type qualifiers and static are allowed in parameter array
declarators.

C++ Mode
The compiler shall compile any program that adheres to a freestanding
implementation of the ISO/IEC 14882:2003 C++ standard, but it does
not prohibit the use of language extensions (“C/C++ Compiler Language
Extensions” on page 1-128) that are compatible with the correct transla-
tion of standard-conforming programs. The Library provided in C++
mode is a proper subset of the full Standard C++ Library and is designed
specifically for the needs of the embedded market.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-115
for SHARC Processors

Compiler

In C++ mode, the best possible standard conformance is achieved using
the following non-default switches:

• -no-friend-injection (“-no-friend-injection” on page 1-76)

• -no-anach (“-no-anach” on page 1-75)

• -no-implicit-inclusion (“-no-implicit-inclusion” on page 1-76)

• -std-templates (“-std-templates” on page 1-77)

• -eh (“-eh” on page 1-29)

• -extern-inline (“-extern-inline” on page 1-74)

• -const-strings (“-const-strings” on page 1-26)

• -double-size-64 (“-double-size[-32|-64]” on page 1-27)

• -rtti (“-rtti” on page 1-76)

MISRA-C Compiler
This section provides an overview of MISRA-C compiler and MISRA-C
2004 Guidelines.

MISRA-C Compiler Overview
The Motor Industry Software Reliability Association (MISRA) in 1998
published a set of guidelines for the C programming language to promote
best practice in developing safety related electronic systems in road vehi-
cles and other embedded systems. The latest release of MISRA-C:2004 has
addressed many issues raised in the original guidelines specified in
MISRA-C:1998. Complex rules are now split into component parts.
There are 121 mandatory and 20 advisory rules. The compiler issues a dis-
cretionary error for mandatory rules and a warning for advisory rules.

MISRA-C Compiler

1-116 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

More information on MISRA-C can be obtained at
http://www.misra.org.uk/.

The compiler detects violations of the MISRA-C rules at compile-time,
link-time and runtime. It has full support for the MISRA-C 2004 Guide-
lines. The majority of MISRA-C rules are easy to interpret. Those that
require further explanation can be found in “Rules Descriptions” on
page 1-120.

As a documented extension, the compiler supports the type qualifiers __pm
and __dm (see “Dual Memory Support Keywords (pm dm)” on
page 1-166) and the integral types long long and unsigned long long.
No other language extensions are supported when MISRA checking is
enabled. Common extensions, such as the keywords section and inline,
are not allowed in the MISRA-C mode, but the same effects can be
achieved by using pragmas “#pragma section/#pragma default_section” on
page 1-238 and “#pragma inline” on page 1-230. Rules can be suppressed
by the use of command-line switches or the MISRA-C extensions to
“Diagnostic Control Pragmas” (see on page 1-243).

 The run-time checking that is used for validating a number of rules
should not be used in production code. The cost of detecting these
violations is expensive in both run-time performance and code size.

Refer to Table 1-4 on page 1-18 for the list of MISRA-C command-line
switches.

MISRA-C Compliance
The MISRA-C:2004 Guidelines Forum (visit http://www.misra.org.uk/)
is an essential reference for ensuring that code developed or requiring
modification complies to these guidelines. A rigorous checking tool such
as his compiler makes achieving compliance a lot easier than using a less
capable tool or simply relying on manual reviews of the code. The
MISRA-C:2004 Guidelines Forum describes a compliance matrix that a
developer uses to ensure that each rule has a method of detecting the rule

http://www.misra.org.uk
http://www.misra.org.uk

VisualDSP++ 5.0 C/C++ Compiler Manual 1-117
for SHARC Processors

Compiler

violation. A compliance checking tool is a vital component in detecting
rule violations. It is recognized in the guidelines document that in some
circumstances it may be necessary to deviate from the given rules. A for-
mal procedure has to be used to authorize these deviations rather than an
individual programmer having to deviate at will.

Using the Compiler to Achieve Compliance

The VisualDSP++ compiler is one of the most comprehensive
MISRA-C:2004 compliance checking tools available. The compiler has
various command-line switches and “Diagnostic Control Pragmas” (see
on page 1-243) to enable you to achieve MISRA-C:2004 compliance.

During development, it is recommended that the application is built with
maximum compliance enabled.

Use the -misra-strict command-line switch to detect the maximum
number of rule violations at compile-time. However, if existing code is
being modified, using -misra-strict may result in a lot of errors and
warnings. The majority are usually common rule violations that are
mainly advisory and typically found in header files as a result of macro
expansion. These can be suppressed using the -misra command-line
switch. This has the potential benefit of focussing change on individual
source file violations, before changing headers that may be shared by more
than one project.

The -misra-no-cross-module command-line switch disables checking
rule violations that occur across source modules. During development,
some external variables may not be fully utilized and rather than add in
artificial uses to avoid rule violations, use this switch.

The -misra-no-runtime command-line switch disables the additional
run-time overheads imposed by some rules. During development these
checks are essential in ensuring code executes as expected. Use this switch
in release mode to disable the run-time overheads.

MISRA-C Compiler

1-118 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

You can use the -misra-testing command-line switch during develop-
ment to record the behavior of executable code. Although the
MISRA-C:2004 Guidelines do not allow library functions, such as those
that are defined in header <stdio.h>, it is recognized that they are an
essential part of validating the development process.

During development, it is likely that you will encounter areas where some
rule violations are unavoidable. In such circumstances you should follow
the procedure regarding rule deviations described in the MISRA-C:2004
Guidelines Forum. Use the -Wmis_suppress and -Wmis_warn switches to
control the detection of rule violations for whole source files. Finer con-
trol control is provided by the diagnostic control pragmas. These pragmas
allow you to suppress the detection of specified rule violations for any
number of C statements and declarations.

Example

#include <misra_types.h>

#include <def21061.h>

#include "proto.h" /* prototype for func_state and my_state */

int32_t func_state(int32_t state)

{

return state & TIMOD1;

/* both operands signed, violates rule 12.7 */

}

#define my_flag 1

int32_t my_state(int32_t state)

{

return state & my_flag;

/* both operands signed, violates rule 12.7 */

}

In the above example, <def21061.h> uses signed masks and signed literal
values for register values. The code is meaningful and trusted in this

VisualDSP++ 5.0 C/C++ Compiler Manual 1-119
for SHARC Processors

Compiler

context. You may suppress this rule and document the deviation in the
code. For code violating the rule that is not from the system header, you
may wish to rewrite the code:

#include <misra_types.h>

#include <def21061.h>

#include "proto.h" /* prototype for func_state and my_state */

#ifdef _MISRA_RULES

#pragma diag(push)

#pragma diag(suppress:misra_rule_12_7:"Using the def file is

a safe and justified deviation for rule 12.7")

#endif /* _MISRA_RULES */

int32_t func_state(int32_t state)

{

return state & TIMOD11;

/* both operands signed, violates rule 12.7 */

}

#ifdef _MISRA_RULES

 #pragma diag(pop)

/* allow violations of 12.7 to be detected again */

#endif /* _MISRA_RULES */

#define my_flag 1u

uint32_t my_state(uint32_t state)

{

return state & my_flag;/* o.k both unsigned */

}

MISRA-C Compiler

1-120 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Rules Descriptions
The following are brief explanations of how some of the MISRA-C rules
are supported and interpreted in this VisualDSP++ release due to the fact
that some rules are handled in a nonstandard way, or some are not han-
dled at all:

 Since the data types char, short and int are all represented as
32-bit integers on the SHARC architecture, MISRA rules relating
to the size of variables may not be issued.

• Rule 1.4 (required): The compiler/linker shall be checked to
ensure that 31 character significance and case sensitivity are sup-
ported for external identifiers.
The compiler and linker fully support this requirement.

• Rule 1.5 (required): Floating-point implementations should com-
ply with a defined floating-point standard.
Refer to “Floating-Point Data Types” on page 1-80.

• Rule 2.4 (advisory): Sections of code should not be “commented
out”.
A diagnostic is reported if one of the following is encountered
inside of a comment.
- character ‘{‘ or ‘}’

- character ‘;’ followed by a new-line character

• Rule 5.1 (required): Identifiers (internal and external) shall not
rely on the significance of more than 31 characters.
This rule is only enforced when the -misra-strict compiler switch
is enabled (on page 1-71).

• Rule 5.5 (advisory): No object or function identifier with static
storage duration should be reused.
This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that

VisualDSP++ 5.0 C/C++ Compiler Manual 1-121
for SHARC Processors

Compiler

the same identifier is not used at file-scope within another module.
This rule is not enforced if the -misra-no-cross-module compiler
switch is specified (on page 1-70).

• Rule 5.7 (advisory): No identifier shall be reused.
This rule is limited to a single source file. The rule is only enforced
when the -misra-strict compiler switch is enabled
(on page 1-71).

• Rule 6.3 (advisory): typedefs that indicate size and signedness
should be used in place of basic types.
The typedefs for the basic types are provided by the system header
files <misra_types.h> and <stdbool.h>. The rule is only enforced
when the -misra-strict compiler switch is enabled
(on page 1-71).

Rule 6.4 (advisory): Bit fields shall only be defined to be of type
unsigned int or signed int.
The rule regarding the use of plain int is only enforced when the
-misra-strict compiler switch is enabled (on page 1-71).

• Rule 8.1 (required): Functions shall have prototype declarations
and the prototype shall be visible at both the function definition
and the call.
For static and inline functions this rule is only enforced when the
-misra-strict compiler switch is enabled (on page 1-71).

• Rule 8.5 (required): There shall be no definitions of objects or
functions in a header file.
This rule does not apply to inline functions.

• Rule 8.8 (required): An external object or function shall be
declared in one and only one file.
This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that
the global is used in another file. The rule is not enforced if the
-misra-no-cross-module switch is enabled (on page 1-70).

MISRA-C Compiler

1-122 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• Rule 8.10 (required): All declarations and definitions of objects or
functions at file scope shall have internal linkage unless external
linkage is required.
This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that
the global is used in another file. The rule is not enforced if the
-misra-no-cross-module switch is enabled (on page 1-70).

• Rule 9.1 (required): All automatic variables shall have been
assigned a value before being used.
The compiler attempts to detect some instances of violations of this
rule at compile-time. There is additional code added at run-time to
detect unassigned scalar variables. The additional Integral types
with a size less than an int are not checked by the additional
run-time code. The run-time code is not added if the
-misra-no-runtime compiler switch is enabled (on page 1-71).

• Rule 10.5 (required): If the bitwise operators ~ and << are applied
to an operand of underlying type unsigned char or unsigned
short, the result shall be immediately cast to the underlying type
of the operand.
When constant-expressions violate this rule, they are only detected
when the -misra-strict compiler switch is enabled
(on page 1-71).

• Rule 11.3 (advisory): A cast shall not be performed between a
pointer type and an integral type.
The compiler always allows a constant of integral type to be cast to
a pointer to a volatile type.
volatile int32_t *n;

n = (volatile int32_t *)10;

There is only one case where this rule is not applied.
int32_t *n;

n = (int32_t *)10;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-123
for SHARC Processors

Compiler

• Rule 12.4 (required): The right-hand operand of a logical && or
|| operator shall not contain side-effects.
A function call used as the right-hand operand will not be faulted if
it is declared with an associated #pragma pure directive.

• Rule 12.7 (required): Bitwise operators shall not be applied to
operands whose underlying type is signed.
The compiler will not enforce this rule if the two operands are
constants.

• Rule 12.8 (required): The right-hand operand of a shift operator
shall lie between zero and one less than the width in bits of the
underlying type of the left-hand operand.
If the right-hand operand is not a constant expression, the viola-
tion will be checked by additional run-time code when
-misra-no-runtime is not enabled. If both operands are constants,
the rule is only enforced when the -misra-strict compiler switch
is enabled (on page 1-71).

• Rule 12.12 (required): The underlying bit representations of
floating-point values shall not be used.
MISRA-C rules such as 11.4 prevent casting of bit-patterns to
floating-point values. Hexadecimal floating-point constants are
also not allowed when MISRA-C switches are enabled.

• Rule 13.2 (advisory): Tests of a value against zero should be made
explicit, unless the operand is effectively Boolean.
The compiler treats variables which use the type bool (a typedef is
declared in <stdbool.h>) as “Effectively Boolean” and will not raise
an error when these are implicitly tested as zero, as follows:
bool b = 1;

if(bool)

…;

MISRA-C Compiler

1-124 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• Rule 13.7 (required): Boolean operations whose results are invari-
ant shall not be used.
The compiler does not detect cases where there is a reliance on
more than one conditional statement. Constant expressions violat-
ing the rule are only detected when the -misra-strict compiler
switch is enabled (on page 1-71).

• Rule 16.2 (required): Functions shall not call themselves, either
directly or indirectly.
A compile-time check is performed for a single file. Run-time code
is added to ensure that functions do not call themselves directly or
indirectly, but this code is not generated if the -misra-no-runtime
compiler switch is enabled (on page 1-71).

• Rule 16.4 (required): The identifiers used in the declaration and
definition of a function shall be identical.
A declaration of a parameter name may have one leading under-
score that the definition does not contain. This is to prevent name
clashing. If the -misra-strict compiler switch is enabled
(on page 1-71), the underscore is significant and results in the vio-
lation of this rule.

• Rule 16.5 (required): Functions with no parameters shall be
declared and defined with parameter type void.
Function main shall only be reported as violating this rule if the
-misra-strict compiler switch is enabled (on page 1-71).

• Rule 16.10 (required): If a function returns error information,
then the error information shall be tested.
A function declared with return type bool, which is a typedef
declared in header file <stdbool.h> will be faulted if the result of
the call is not used.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-125
for SHARC Processors

Compiler

• Rule 17.1 (required): Pointer arithmetic shall only be applied to
pointers that address an array or array element.
Checking is performed at run-time. A run-time function looks at
the value of the pointer and checks to see whether it violates this
rule.

• Rule 17.2 (required): Pointer subtraction shall only be applied to
pointers that address elements of the same array.
Checking is performed at runtime. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

• Rule 17.3 (required): >, >=, <, <= shall not be applied to pointers
that address elements of different arrays.
Checking is performed at run-time. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

• Rule 17.4 (required): Array indexing shall be the only allowed
form of pointer arithmetic.
Checking is performed at runtime to ensure the object being
indexed is an array. A run-time function looks at the value of the
pointers and checks to see whether it violates this rule.

All other forms of pointer arithmetic are reported at compile-time
as violations of this rule.

• Rule 17.6 (required): The address of an object with automatic
storage shall not be assigned to another object that may persist
after the first object has ceased to exist.
Rule is not enforced under the following circumstances: if the
address of a local variable is passed as a parameter to another func-
tion, the compiler cannot detect whether that address has been
assigned to a global object.

MISRA-C Compiler

1-126 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• Rule 18.2 (required): An object shall not be assigned to an over-
lapping object.
The rule is not enforced by the compiler.

• Rule 18.3 (required): An area of memory shall not be reused for
unrelated purposes.
The rule is not enforced by the compiler.

• Rule 19.4 (required): C macros shall only expand to a braced ini-
tializer, a constant, a string literal, a parenthesized expression, a
type qualifier, a storage class specifier, or a do-while-zero con-
struct.
Use of #pragma diag(suppress:misra_rule_19_4) will suppress
violations of this rule for any macro expansion during the scope of
the suppression. If a macro is defined within the scope of the sup-
pression, then the macro expansion will not be detected for
violation of rule 19.4 even if the expansion point does not suppress
the rule.“Diagnostic Control Pragmas” on page 1-243

• Rule 19.7 (advisory): A function shall be used in preference to a
function-like macro.
The rule is only enforced when the compiler option -misra-strict
is enabled (on page 1-71).

• Rule 19.15 (required): Precautions shall be taken in order to pre-
vent the contents of a header file being included twice.
The compiler will report this violation if a header file is included
more than once and does not prevent re-declarations of types, vari-
ables or functions.

• Rule 20.3 (required): The validity of values passed to library
functions shall be checked.
This is not enforced by the compiler. The rule puts the responsibil-
ity on the programmer.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-127
for SHARC Processors

Compiler

• Rule 20.4 (required): Dynamic heap memory allocation shall not
be used.
Prototype declarations for functions performing heap allocation
should be declared with an associated #pragma misra_func(heap)
directive. This directive allows the compiler to detect violations of
this rule when these functions are used.

• Rule 20.7 (required): The setjmp macro and longjmp function
shall not be used.
Prototype declarations for these should be declared with an associ-
ated #pragma misra_func(jmp) directive. This directive allows the
compiler to detect violations of this rule when these functions are
used.

• Rule 20.8 (required): The signal handling facilities of <signal.h>
shall not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(handler) direc-
tive. This directive allows the compiler to detect violations of this
rule when these functions are used.

• Rule 20.9 (required): The input/output library <stdio.h> shall
not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(io) directive.
This directive allows the compiler to detect violations of this rule
when these functions are used.

• Rule 20.10 (required): The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(string_conv) directive. This
directive allows the compiler to detect violations of this rule when
these functions are used.

C/C++ Compiler Language Extensions

1-128 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• Rule 20.11 (required): The library functions abort, exit, getenv
and system from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(system) directive. This direc-
tive allows the compiler to detect violations of this rule when these
functions are used.

• Rule 20.12 (required): The time handling functions of library
<time.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(time) directive. This directive
allows the compiler to detect violations of this rule when these
functions are used.

• Rule 21.1 (required): Minimization of run-time failures shall be
ensured by the use of at least one of: (a) static analysis tools/tech-
niques; (b) dynamic analysis tools/techniques; (c) explicit coding
of checks to handle run-time faults.
The compiler performs some static checks on uses of unassigned
variables before conditional code and use of constant expressions.
The compiler performs run-time checks for arithmetic errors, such
as division by zero, array bound errors, unassigned variable check-
ing and pointer de-referencing. Run-time checking has a negative
effect on code performance. The -misra-no-runtime compiler
switch turns off the run-time checking (on page 1-71).

C/C++ Compiler Language Extensions
The compiler supports a set of extensions to the ANSI standards for the C
and C++ languages. These extensions add support for DSP hardware and
allow some C++ programming features when compiling in C mode. Most
extensions are also available when compiling in C++ mode.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-129
for SHARC Processors

Compiler

This section contains information on ISO/IEC 9899:1999 standard fea-
tures that are supported in C89 mode:

• “Function Inlining” on page 1-133

• “Variable Argument Macros” on page 1-138

• “Restricted Pointers” on page 1-138

• “Variable-Length Array Support” on page 1-139

• “Non-Constant Initializer Support” on page 1-141

• “Designated Initializers” on page 1-142

• “Hexadecimal Floating-Point Numbers” on page 1-144

• “Declarations Mixed With Code” on page 1-145

• “Compound Literals” on page 1-146

• “C++ Style Comments” on page 1-147

• “Enumeration Constants That Are Not int Type” on page 1-147

• “Boolean Type Support Keywords (bool, true, false)” on
page 1-147

This section also contains information on other language extensions:

• “The fract Native Fixed-Point Type” on page 1-148

• “Inline Assembly Language Support Keyword (asm)” on
page 1-148

• “Dual Memory Support Keywords (pm dm)” on page 1-166

• “Bank Type Qualifiers” on page 1-173

• “Placement Support Keyword (section)” on page 1-174

C/C++ Compiler Language Extensions

1-130 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• “Placement of Compiler-Generated Code and Data” on
page 1-175

• “Long Identifiers” on page 1-176

• “Preprocessor Generated Warnings” on page 1-176

• “Compiler Built-In Functions” on page 1-177

• “Pragmas” on page 1-187

• “GCC Compatibility Extensions” on page 1-256

• “C++ Fractional Type Support” on page 1-264

• “Saturated Arithmetic” on page 1-266

• “SIMD Support” on page 1-271

• “Accessing External Memory on ADSP-2126x and ADSP-2136x
Processors” on page 1-275

• “Support for Interrupts” on page 1-276

• “Migrating .ldf Files From Previous VisualDSP++ Installations” on
page 1-284

The additional keywords that are part of the C/C++ extensions do not
conflict with any ANSI C/C++ keywords. The formal definitions of these
extension keywords are prefixed with a leading double underscore (__).
Unless the -no-extra-keywords command-line switch (on page 1-44) is
used, the compiler defines the shorter form of the keyword extension that
omits the leading underscores.

This section describes only the shorter forms of the keyword extensions,
but in most cases you can use either form in your code. For example, all
references to the inline keyword in this text appear without the leading
double underscores, but you can interchange inline and __inline in your
code.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-131
for SHARC Processors

Compiler

You might need to use the longer form (such as __inline) exclusively if
porting a program that uses the extra Analog Devices keywords as identifi-
ers. For example, a program might declare local variables, such as pm or dm.
In this case, use the -no-extra-keywords switch, and if you need to
declare a function as inline, or allocate variables to memory spaces, you
can use __inline or __pm/__dm respectively.

Table 1-17 provides a brief description of each keyword extension and
directs you to sections of this chapter that document the extensions in
more detail. Table 1-18 provides a brief description of each operational
extension and directs you to sections that document these extensions in
more detail.

Table 1-17. Keyword Extensions

Keyword extensions Description

inline Directs the compiler to integrate the function code into the code of
the calling function(s). For more information, see “Function Inlin-
ing” on page 1-133.

asm() Places ADSP-21xxx assembly language instructions directly in your
C/C++ program. For more information, see “Inline Assembly Lan-
guage Support Keyword (asm)” on page 1-148.

dm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Data Memory (DM).
For more information, see “Dual Memory Support Keywords (pm
dm)” on page 1-166.

pm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Program Memory (PM).
For more information, see “Dual Memory Support Keywords (pm
dm)” on page 1-166.

section("string") Specifies the section in which an object or function is placed. The
section keyword has replaced the segment keyword of the previous
releases of the compiler software. For more information, see “Place-
ment Support Keyword (section)” on page 1-174.

C/C++ Compiler Language Extensions

1-132 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

bool, true, false A boolean type.
For more information, see “Boolean Type Support Keywords (bool,
true, false)” on page 1-147.

restrict keyword Specifies restricted pointer features. For more information, see
“Restricted Pointers” on page 1-138.

Table 1-18. Operational Extensions

Operation extensions Description

Variable-length arrays Support for variable-length arrays lets you use arrays whose length is
not known until run time. For more information, see “Vari-
able-Length Array Support” on page 1-139.

Long identifiers Supports identifiers of up to 1022 characters in length. For more
information, see “Long Identifiers” on page 1-176.

Non-constant initializers Support for non-constant initializers lets you use non-constants as
elements of aggregate initializers for automatic variables. For more
information, see “Non-Constant Initializer Support” on page 1-141.

Indexed initializers Support for indexed initializers lets you specify elements of an aggre-
gate initializer in arbitrary order. For more information, see “Desig-
nated Initializers” on page 1-142.

Compound literals Support for compound literals lets you create an aggregate array or
structure value from component values within an expression.
For more information, see “Compound Literals” on page 1-146.

fract data type
(C++ mode)

Support for the fractional data type, fractional and saturated arithme-
tic. For more information, see “C++ Fractional Type Support” on
page 1-264.

Preprocessor-generated
warnings

Lets you generate warning messages from the preprocessor.
For more information, see “Preprocessor Generated Warnings” on
page 1-176.

C++ style comments Allows for “//” C++ style comments in C programs.
For more information, see “C++ Style Comments” on page 1-147.

Table 1-17. Keyword Extensions (Cont’d)

Keyword extensions Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-133
for SHARC Processors

Compiler

Function Inlining
The inline keyword directs the compiler to integrate the code for the
function you declare as inline into the code of its callers. Inline function
support and the inline keyword is a standard feature of C++ and the
ISO/IEC 9899:1999 C standard; the compiler provides this keyword as a
C extension in C89 mode. (For more information, see “-c89” on
page 1-20.)

This keyword eliminates the function call overhead and increases the
speed of your program’s execution. Argument values that are constant and
that have known values may permit simplifications at compile time so that
not all of the inline function’s code needs to be included.

The following example shows a function definition that uses the inline
keyword.

inline int max3 (int a, int b, int c) {

return max (a, max(b, c));

}

The compiler can decide not to inline a particular function declared with
the inline keyword, with a diagnostic remark cc1462 issued if the com-
piler chooses to do this. The diagnostic can be raised to a warning by use
of the -Wwarn switch. For more information, see “-W” on page 1-66.

Function inlining can also occur by use of the -Oa (automatic function
inlining) switch (For more information, see “-Oa” on page 1-49.), which
enables the inline expansion of C/C++ functions that are not necessarily
declared inline in the source code. The amount of auto-inlining the com-
piler performs is controlled using the –Ov (optimize for speed versus size)
switch.

C/C++ Compiler Language Extensions

1-134 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The compiler follows a specific order of precedence when determining
whether a call can be inlined. The order is:

1. If the definition of the function is not available (for example, it is a
call to an external function), the compiler cannot inline the call.

2. If the -never-inline switch has been specified (on page 1-41), the
compiler will not inline the call. If the call is to a function that has
#pragma always_inline specified (see “Inline Control Pragmas” on
page 1-229), a warning will also be issued.

3. If the call is to a function that has #pragma never_inline specified,
the call will not be inlined.

4. If the call is via a pointer-to-function, the call will not be inlined
unless the compiler can prove that the pointer will always point to
the same function definition.

5. If the call is to a function that has a variable number of arguments,
the call will not be inlined.

6. If the module contains asm statements at global scope (outside
function definitions), the call may not be inlined because the asm
statement restricts the compiler’s ability to reorder the resulting
assembly output.

7. If the call is to a function that has #pragma always_inline speci-
fied, the call is inlined. If the call exceeds the current speed/space
ratio limits, the compiler will issue a warning, but will still inline
the call.

8. If the call is to a function that has the inline qualifier, or has
#pragma inline specified, and the -always-inline switch
(on page 1-24) has been specified, the compiler will inline the call.
If the call exceeds the current speed/space ratio limits, the compiler
will issue a warning, but will still inline the call.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-135
for SHARC Processors

Compiler

9. If the caller and callee are mapped to different code sections, the
call will not be inlined unless the callee has the inline qualifier or
has #pragma inline specified.

10.If the call is to a function that has the inline qualifier or has
#pragma inline specified and optimization is enabled, the called
function will be compared against the current speed/size ratio lim-
its for code size and stack size. The calling function will also be
examined against these limits. Depending on the limits and the rel-
ative sizes of the caller and callee, the inlining may be rejected.

11.If the call is to a function that does not have the inline qualifier or
#pragma inline, and does not have #pragma weak_entry, then if
the -Oa switch has been specified to enable automatic inlining, the
called function will be considered as a possible candidate for inlin-
ing, according to the current speed/size ratio limits, as if the inline
qualifier were present.

The compiler bases its code-related speed/size comparisons on the -Ov
switch. When -Ov is in the range 1...100, the compiler performs a calcula-
tion upon the size of the generated code using the -Ov value, and this will
determine whether the generated code is “too large” for inlining to occur.
When -Ov has the value 1, only very small functions are considered small
enough to inline; when -Ov has the value 100, larger functions are more
likely to be considered suitable as well.

When -Ov has the value 0, the compiler is optimizing for space. The
speed/space calculation will only accept a call for inlining if it appears that
the inlining is likely to result in less code than the call itself would
(although this is an approximation, since the inlining process is a
high-level optimization process, before actual machine instructions have
been selected).

The inlining process also considers the required stack size while inlining.
A function that has a local array of 20 integers needs such an array for each
inlined invocation, and if inlined many times, the cumulative effect on

C/C++ Compiler Language Extensions

1-136 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

overall stack requirements can be significant. Consequently, the compiler
considers both the stack space required by the called function, and the
total stack space required by the caller; either may reach a limit at which
the compiler determines that inlining the call would not be beneficial.
The stack size analysis is not subject to the -Ov switch.

Inlining and Optimization

The inlining process operates regardless of whether optimization has been
selected (although if optimization is not enabled, then inlining will only
happen when forced by #pragma always_inline or the -always-inline
switch). The speed/size calculation still has an effect, although an opti-
mized function is likely to have a different size from a non-optimized one,
which is smaller (and therefore more likely to be inlined) and is dependent
on the kind of optimization done.

A non-optimized function has loads and stores to temporary values which
are optimized away in the optimized version, but an optimized function
may have unrolled or vectorized loops with multiple variants, selected at
run-time for the most efficient loop kernel, so an optimized function may
run faster, but not be smaller.

Given that the optimization emphasis may be changed within a module –
or even turned off completely – by the optimization pragmas, it is possible
for either, both, or neither of the caller and callee to be optimized. The
inlining process still operates, and is only affected by this in as far as the
speed/size ratios of the resulting functions are concerned.

Inlining and Out-of-Line Copies

If a function is static (that is, private to the module being compiled) and
all calls to that function are inlined, then there are no calls remaining that
are not inline. Consequently, the compiler does not generate an
out-of-line copy for the function, thus reducing the size of the resulting
application.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-137
for SHARC Processors

Compiler

If the address of the function is taken, it is possible that the function could
be called through that derived pointer, so the compiler cannot guarantee
that all calls have been accounted for. In such cases, an out-of-line copy
will always be generated.

A function declared inline must be defined (its body must be included)
in every file in which the function is used. This is normally done by plac-
ing the inline definition in a header file. Usually it is also declared static.

Inlining and Global asm Statements

Inlining imposes a particular ordering on functions. If functions A and B
are both marked as inline, and each calls the other, only one of the inline
qualifiers can be followed. Depending on which the compiler chooses to
apply, either A will be generated with inline versions of B, or B will be
generated with inline versions of A. Either case may result in no
out-of-line copy of the inlined function being generated. The compiler
reorders the functions within a module to get the best inlining result.
Functionally, the code is the same, but this affects the resulting assembly
file.

When global asm statements are used with the module, between the func-
tion definitions, the compiler cannot do this reordering process, because
the asm statement might be affecting the behavior of the assembly code
that is generated from the following C function definitions. Because of
this, global asm statements can greatly reduce the compiler’s ability to
inline a function call.

Inlining and Sections

Before inlining, the compiler checks any section directives or pragmas on
the function definitions. For example,

section("secA") inline int add(int a, int b) { return a + b; }

section("secB") int times_two(int a) { return add(a, a); }

C/C++ Compiler Language Extensions

1-138 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Since add() and times_two() are to be generated into different code sec-
tions, this call is ignored during the inlining process, so the call is not
inlined. If the callee is marked with #pragma always_inline
(on page 1-229), however, or the -always-inline switch (on page 1-24) is
in force, the compiler will inline the call despite the mismatch in sections.

Variable Argument Macros
This ISO/IEC 9899:1999 C standard feature is enabled as an extension in
C89 mode and in C++ mode. The final parameter in a macro declaration
may be ... to indicate the parameter stands for a variable number of
arguments.

For example:

#define trace(file,line,...) \

 logmsg(file,line,__VA_ARGS__)

can be used with differing numbers of arguments:

trace("a.c", 22, "Got here!\n”);

trace("b.c", 99, "i = %d\n", i);

trace("c.c", 72, "x = %f, y = %f\n", x, y);

 This variable argument macro syntax comes from the ISO/IEC
9899:1999 C standard. The compiler supports both GCC and
C99 variable argument macro formats in C89, C99 and C++
modes. (For more information, see “GCC Variable Argument
Macros” on page 1-260.)

Restricted Pointers
The restrict keyword is a standard feature of the ISO/IEC 9899:1999 C
standard, and is available as an extension in C89 and C++ modes.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-139
for SHARC Processors

Compiler

The use of restrict is limited to the declaration of a pointer and specifies
that the pointer provides exclusive initial access to the object to which it
points. More simply, restrict is a way that you can identify that a
pointer does not create an alias. Also, two different restricted pointers can-
not designate the same object, and therefore, they are not aliases.

The compiler is free to use the information about restricted pointers and
aliasing to better optimize C/C++ code that uses pointers. The keyword is
most useful when applied to function parameters about which the com-
piler would otherwise have little information.

For example,

void fir(short *in, short *c, short *restrict out, int n)

The behavior of a program is undefined if it contains an assignment
between two restricted pointers, except for the following cases:

• A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

• A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

If you have a program that uses a restricted pointer in a way that it does
not uniquely refer to storage, then the behavior of the program is
undefined.

Variable-Length Array Support
The compiler supports variable-length automatic arrays. This ISO/IEC
9899:1999 standard feature is also allowed as an extension in C89 mode.
(For more information, see “-c89” on page 1-20.) Variable-length arrays
are not supported in C++ mode.

C/C++ Compiler Language Extensions

1-140 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Unlike other automatic arrays, variable-length arrays are declared with a
non-constant length. This means that the space is allocated when the array
is declared, and deallocated when the brace-level is exited.

The compiler does not allow jumping into the brace-level of the array, and
produces a compile time error message if this is attempted. The compiler
does allow breaking or jumping out of the brace-level, and it deallocates
the array when this occurs.

You can use variable-length arrays as function arguments, such as:

struct entry

tester (int len, char data[len][len])

{

…

}

The compiler calculates the length of an array at the time of allocation. It
then remembers the array length until the brace-level is exited and can
return it as the result of the sizeof() function performed on the array.

Because variable-length arrays must be stored on the stack, it is impossible
to have variable-length arrays in Program Memory. The compiler issues an
error if an attempt is made to use a variable-length array in pm.

As an example, if you were to implement a routine for computation of a
product of three matrices, you need to allocate a temporary matrix of the
same size as the input matrices. Declaring an automatic variable size
matrix is much easier then explicitly allocating it in a heap.

The expression declares an array with a size that is computed at run time.
The length of the array is computed on entry to the block and saved in
case the sizeof() operator is used to determine the size of the array. For
multidimensional arrays, the boundaries are also saved for address

VisualDSP++ 5.0 C/C++ Compiler Manual 1-141
for SHARC Processors

Compiler

computation. After leaving the block, all the space allocated for the array
is deallocated. For example, the following program prints 10, not 50.

main ()

{

foo(10);

}

void foo (int n)

{

char c[n];

n = 50;

printf("%d", sizeof(c));

}

Non-Constant Initializer Support
The compiler does not require the elements of an aggregate initializer for
an automatic variable to be constant expressions. This is a standard feature
of the ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003
C++ standard. The compiler supports it as an extension in C89 mode.

The following example shows an initializer with elements that vary at run
time.

void initializer (float a, float b)

{

float the_array[2] = { a-b, a+b };

}

void foo (float f, float g)

{

float beat_freqs[2] = { f-g, f+g };

}

C/C++ Compiler Language Extensions

1-142 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Designated Initializers
This is a standard feature of the ISO/IEC 9899:1999 C standard. The
compiler supports it as an extension in C89 and C++ modes.

This feature lets you specify the elements of an array or structure initial-
izer in any order by specifying their designators — the array indices or
structure field names to which they apply. All designators must be con-
stant expressions, even in automatic arrays.

For an array initializer, the syntax [INDEX] appearing before an initializer
element value specifies the index initialized by that value. Subsequent ini-
tializer elements are then applied to the sequentially following elements of
the array, unless another use of the [INDEX] syntax appears. The index val-
ues must be constant expressions, even when the array being initialized is
automatic.

The following example shows equivalent array initializers—the first in
C89 form (without using the extension) and the second in C99 form,
using the designators. Note that the [INDEX] designator precedes the value
being assigned to that element.

/* Example 1 C Array Initializer */

/* C89 array initializer (no designators) */

int a[6] = { 0, 0, 15, 0, 29, 0 };

/* Equivalent C99 array initializer (with designators) */

int a[6] = { [4] 29, [2] 15 };

You can combine this technique of designated elements with initialization
of successive non-designated elements. The two instructions below are
equivalent. Note that any non-designated initial value is assigned to the
next consecutive element of the structure or array.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-143
for SHARC Processors

Compiler

/* Example 2 Mixed Array Initializer */

/* C89 array initializer (no designators) */

int a[6] = { 0, v1, v2, 0, v4, 0 };

/* Equivalent C99 array initializer (with designators) */

 int a[6] = { [1] v1, v2, [4] v4 };

The following example shows how to label the array initializer elements
when the designators are characters or enum type.

/* Example 3 C Array Initializer With enum Type Indices */

/* C99 C array initializer (with designators) */

int whitespace[256] =

{

[' '] 1, ['\t'] 1, ['\v'] 1, ['\f'] 1, ['\n'] 1, ['\r'] 1

};

enum { e_ftp = 21, e_telnet = 23, e_smtp = 25, e_http = 80, e_nntp

= 119 };

char *names[] = {

[e_ftp] "ftp",

[e_http] "http",

[e_nntp] "nntp",

[e_smtp] "smtp",

[e_telnet] "telnet"

};

In a structure initializer, specify the name of the field to initialize with
fieldname: before the element value. The C89 and C99 struct initializers
in the example below are equivalent.

/* Example 4 struct Initializer */

/* C89 struct Initializer (no designators) */

C/C++ Compiler Language Extensions

1-144 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

struct point {int x, y;};

struct point p = {xvalue, yvalue};

/* Equivalent C99 struct Initializer (with designators) */

struct point {int x, y;};

struct point p = {y: yvalue, x: xvalue};

Hexadecimal Floating-Point Numbers
This is a standard feature of the ISO/IEC:9899 1999 C standard. The
compiler supports this as an extension in C89 mode and in C++ mode.

Hexadecimal floating-point numbers have the following syntax.

hexadecimal-floating-constant:

{0x|0X} hex-significand binary-exponent-part [floating-suffix

]

hex-significand: hex-digits [. [hex-digits]]

binary-exponent-part: {p|P} [+|-] decimal-digits

floating-suffix: { f | l | F | L }

The hex-significand is interpreted as a hexadecimal rational number.
The digit sequence in the exponent part is interpreted as a decimal integer.
The exponent indicates the power of two by which the significand is to be
scaled. The floating suffix has the same meaning that it has for decimal
floating constants: a constant with no suffix is of type double, a constant
with suffix F is of type float, and a constant with suffix L is of type long
double.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-145
for SHARC Processors

Compiler

Hexadecimal floating constants enable the programmer to specify the
exact bit pattern required for a floating-point constant. For example, the
declaration

float f = 0x1p-126f;

causes f to be initialized with the value 0x800000.

Declarations Mixed With Code
In C89 mode, the compiler accepts declarations placed in the middle of
code. This allows the declaration of local variables to be placed at the
point where they are required. Therefore, the declaration can be combined
with initialization of the variable. This is a standard feature of the
ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003 C++
standard.

For example, in the following function:

void func(Key k) {

Node *p = list;

while (p && p->key != k)

p = p->next;

if (!p)

return;

Data *d = p->data;

while (*d)

process(*d++);

}

the declaration of d is delayed until its initial value is available, so that no
variable is uninitialized at any point in the function.

C/C++ Compiler Language Extensions

1-146 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Compound Literals
This is a standard feature of the ISO/IEC:9899 1999 standard. The com-
piler supports it as an extension in C89 mode. It is not allowed in C++
mode.

The following example shows an ISO/IEC 9899:1990 standard C struct
usage, followed by an equivalent ISO/IEC 9899:1999 standard C code
that has been simplified using a compound literal.

/* C89/C++ Constructor struct */

/* Standard C struct */

struct foo {int a; char b[2];};

struct foo make_foo(int x, char *s)

{

 struct foo temp;

 temp.a = x;

 temp.b[0] = s[0];

 if (s[0] != '\0')

 temp.b[1] = s[1];

 else

 temp.b[1] = '\0';

 return temp;

}

/* Equivalent C99 constructor struct */

struct foo make_foo(int x, char *s)

{

return((struct foo) {x, {s[0], s[0] ? s[1] : '\0'}});

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-147
for SHARC Processors

Compiler

C++ Style Comments
The compiler accepts C++ style comments in C programs, beginning with
// and ending at the end of the line. This is essentially compatible with
standard C, except for the following case.

a = b

//* highly unusual */ c

;

which a standard C compiler processes as:

a = b / c;

Enumeration Constants That Are Not int Type
The VisualDSP++ compiler allows enumeration constants to be integer
types other than int, such as unsigned int, long long or unsigned long
long, if the enumeration constant has a value outside the range of int.

Boolean Type Support Keywords (bool, true, false)
The compiler supports a Boolean data type bool, with values true and
false. This is a standard feature of the ISO/IEC 14882:2003 C++ stan-
dard, and is available as a standard feature in the ISO/IEC 9899:1999 C
standard when the stdbool.h header is included. It is supported as an
extension in C89 mode, and as an extension in C99 mode when the std-
bool.h header has not been included.

The bool keyword is a unique signed integral type. There are two built-in
constants of this type: true and false. When converting a numeric or
pointer value to bool, a zero value becomes false, and a nonzero value
becomes true. A bool value may be converted to int by promotion,
taking true to one and false to zero. A numeric or pointer value is con-
verted automatically to bool when needed.

C/C++ Compiler Language Extensions

1-148 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The fract Native Fixed-Point Type
The compiler has support for the native fixed-point type fract, as defined
by Chapter 4 of the “Extensions to support embedded processors” ISO/IEC
draft technical report TR 18037. This support is available for the C lan-
guage only. A discussion of how to use this support is given in “Using
Native Fixed-Point Types” on page 1-90.

Inline Assembly Language Support Keyword (asm)
The cc21k asm() construct is used to code ADSP-21xxx assembly language
instructions within a C/C++ function. The asm() construct is useful for
expressing assembly language statements that cannot be expressed easily or
efficiently with C/C++ constructs.

Using asm(), you can code complete assembly language instructions and
specify the operands of the instruction using C/C++ expressions. When
specifying operands with a C/C++ expression, you do not need to know
which registers or memory locations contain C/C++ variables.

 The compiler does not analyze code defined with the asm() con-
struct; it passes this code directly to the assembler. The compiler
does perform substitutions for operands of the formats %0
through %9; however, it passes everything else through to the
assembler without reading or analyzing it. This means that the
compiler cannot apply any enabled workarounds for silicon errata
that may be triggered either by the contents of the asm construct,
or by the sequence of instructions formed by the asm() construct
and the surrounding code produced by the compiler.

 asm() constructs with inputs, outputs or affected register, are exe-
cutable statements, and as such, may not appear before declarations
within C/C++ functions. The asm() constructs may also be used at
global scope, outside function declarations. Such asm() constructs

VisualDSP++ 5.0 C/C++ Compiler Manual 1-149
for SHARC Processors

Compiler

are used to pass declarations and directives directly to the assem-
bler. They are not executable constructs, and may not have any
inputs or outputs, or affect any registers.

 When optimizing, the compiler sometimes changes the order in
which generated functions appear in the output assembly file.
However, if global-scope asm constructs are placed between two
function definitions, the compiler ensures that the function order
is retained in the generated assembly file. Consequently, function
inlining may be inhibited.

An asm() construct without operands takes the form as shown below.

asm("nop;");

The complete assembly language instruction, enclosed in quotes, is the
argument to asm().

 The compiler generates a label before and after inline assembly
instructions when generating debug code (the -g switch
on page 1-33). These labels are used to generate the debug line
information used by the debugger. If the inline assembler inserts
conditionally assembled code, an undefined symbol error is likely
to occur at link time. For example, the following code could cause
undefined symbols if MACRO is undefined:

asm("#ifdef MACRO");

asm(" // assembly statements");

asm("#endif");

If the inline assembler changes the current section and thereby causes the
compiler labels to be placed in another section, such as a data section
(instead of the default code section), then the debug line information is
incorrect for these lines.

C/C++ Compiler Language Extensions

1-150 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using asm() constructs with operands requires some additional syntax
described in the following sections.

• “asm() Construct Syntax” on page 1-150

• “Assembly Construct Operand Description” on page 1-154

• “Assembly Constructs With Multiple Instructions” on page 1-161

• “Assembly Construct Reordering and Optimization” on
page 1-162

• “Assembly Constructs With Input and Output Operands” on
page 1-163

• “Assembly Constructs With Compile-Time Constants” on
page 1-164

• “Assembly Constructs and Flow Control” on page 1-165

• “Guidelines on the Use of asm() Statements” on page 1-165

asm() Construct Syntax

Using asm() constructs, you can specify the operands of the assembly
instruction using C/C++ expressions. You do not need to know which reg-
isters or memory locations contain C/C++ variables. Use the following
general syntax for your asm() constructs.

asm [volatile] (

template

[:[constraint(output operand)[,constraint(output operand)…]]

[:[constraint(input operand)[,constraint(input operand)…]]

[:clobber string]]]

);

VisualDSP++ 5.0 C/C++ Compiler Manual 1-151
for SHARC Processors

Compiler

The syntax elements are defined as:

• template
The template is a string containing the assembly instruction(s) with
%number indicating where the compiler should substitute the oper-
ands. Operands are numbered in order of appearance from left to
right, starting at 0. Separate multiple instructions with a
semicolon, and enclose the entire string within double quotes. For
more information on templates containing multiple instructions,
see “Assembly Constructs With Multiple Instructions” on
page 1-161.

• constraint
The constraint string directs the compiler to use certain groups of
registers for the input and output operands. Enclose the constraint
string within double quotes. For more information on operand
constraints, see “Assembly Construct Operand Description” on
page 1-154.

• output operand
The output operands are the names of C/C++ variables that receive
output from corresponding operands in the assembly instructions.

• input operand
The input operand is a C/C++ expression that provides an input to
a corresponding operand in the assembly instruction.

• clobber string
The clobber string notifies the compiler that a list of registers are
overwritten by the assembly instructions. Use lowercase characters
to name clobbered registers. Enclose each name within double
quotes, and separate each quoted register name with a comma. The
input and output operands are guaranteed not to use any of the
clobbered registers, so you can read and write the clobbered regis-
ters as often as you like. See Table 1-20 on page 1-159.

C/C++ Compiler Language Extensions

1-152 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

It is vital that any register overwritten by an assembly instruction
and not allocated by the constraints is included in the clobber list.
The list must include memory if an assembly instruction writes to
memory.

asm() Construct Syntax Rules

These rules apply to assembly construct template syntax.

• The template is the only mandatory argument to asm(). All other
arguments are optional.

• An operand constraint string followed by a C/C++ expression in
parentheses describes each operand. For output operands, it must
be possible to assign to the expression; that is, the expression must
be legal on the left side of an assignment statement.

• A colon separates:

• The template from the first output operand

• The last output operand from the first input operand

• The last input operand from the clobbered registers

• A space must be added between adjacent colon field delimiters in
order to avoid a clash with the C++ “::” reserved global resolution
operator.

• A comma separates operands and registers within arguments.

• The number of operands in arguments must match the number of
operands in your template.

• The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).

VisualDSP++ 5.0 C/C++ Compiler Manual 1-153
for SHARC Processors

Compiler

 The compiler cannot check whether the operands have data types
that are reasonable for the instruction being executed. The com-
piler does not parse the assembler instruction template, does not
interpret the template, and does not verify whether the template
contains valid input for the assembler.

asm() Construct Template Example

The following example shows how to apply the asm() construct template
to the SHARC assembly language assignment instruction.

{

int result, x;

asm (

"%0= %1;" :

"=d" (result) :

"d" (x)

);

}

In the above example, note:

• The template is "%0= %1;". The %0 is replaced with operand zero
(result), the %1 is replaced with operand one (x).

• The output operand is the C/C++ variable result. The letter d is
the operand constraint for the variable. This constrains the output
to a data register R{0-15}. The compiler generates code to copy the
output from the R register to the variable result, if necessary. The
= in =d indicates that the operand is an output.

• The input operand is the C/C++ variable x. The letter d in the
operand constraint position for this variable constrains x to a data
register R{0-15}. If x is stored in a different kind of register or in
memory, the compiler generates code to copy the value into an R
register before the asm() construct uses it.

C/C++ Compiler Language Extensions

1-154 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the oper-
ands in the assembly language template. Several pieces of information
must be conveyed for the compiler to know how to assign registers to
operands. This information is conveyed with an operand constraint. The
compiler needs to know what kind of registers the assembly instructions
can operate on, so it can allocate the correct register type.

You convey this information with a letter in the operand constraint string
that describes the class of allowable registers.

Table 1-19 on page 1-158 describes the correspondence between con-
straint letters and register classes.

 The use of any letter not listed in Table 1-19 on page 1-158 results
in unspecified behavior. The compiler does not check the validity
of the code by using the constraint letter.

To assign registers to the operands, cc21k must also be informed which
operands in an assembly language instruction are inputs, which are out-
puts, and which outputs may not overlap inputs.

The compiler is told this in three ways, such as:

• The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and always follow the out-
put operands.

• The operand constraints (Table 1-19 on page 1-158) describe
which registers are modified by an assembly language instruction.
The “=” in =constraint indicates that the operand is an output; all
output operand constraints must use =. Operands that are
input-outputs must use “+”. (See below.)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-155
for SHARC Processors

Compiler

• The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output or input operand
has the =& constraint modifier. This is because cc21k assumes that
the inputs are consumed before the outputs are produced. This
assumption may be false if the assembler code actually consists of
more than one instruction. In such a case, use =& for each output
operand that must not overlap an input.

Operand constraints indicate what kind of operand they describe by
means of preceding symbols. The possible preceding symbols are: no sym-
bol, =, +, &, ?, and #.

• (no symbol)
The operand is an input. It must appear as part of the third argu-
ment to the asm() construct. The allocated register is loaded with
the value of the C/C++ expression before the asm() template is
executed. Its C/C++ expression is not modified by the asm(), and
its value may be a constant or literal.
Example: d

• = symbol
The operand is an output. It must appear as part of the second
argument to the asm() construct. Once the asm() template has
been executed, the value in the allocated register is stored into the
location indicated by its C/C++ expression; therefore, the expres-
sion must be one that would be valid as the left-hand side of an
assignment.
Example: =d

• + symbol
The operand is both an input and an output. It must appear as part
of the second argument to the asm() construct. The allocated regis-
ter is loaded with the C/C++ expression value, the asm() template
is executed, and then the allocated register’s new value is stored
back into the C/C++ expression. Therefore, as with pure outputs,

C/C++ Compiler Language Extensions

1-156 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

the C/C++ expression must be one that is valid on the left-hand
side of an assignment.
Example: +d

• ? symbol
The operand is temporary. It must appear as part of the third argu-
ment to the asm() construct. A register is allocated as working
space for the duration of the asm() template execution. The regis-
ter’s initial value is undefined, and the register’s final value is
discarded. The corresponding C/C++ expression is not loaded into
the register, but must be present. This expression is normally speci-
fied using a literal zero.
Example: ?d

• & symbol
This operand constraint may be applied to inputs and outputs. It
indicates that the register allocated to the input (or output) may
not be one of the registers that are allocated to the outputs (or
inputs). This operand constraint is used when one or more output
registers are set while one or more inputs are still to be referenced.
(This situation sometimes occurs if the asm() template contains
more than one instruction.)
Example: &d

• # symbol
The operand is an input, but the register's value is clobbered by the
asm() template execution. The compiler may make no assumptions
about the register’s final value. An input operand with this con-
straint will not be allocated the same register as any other input or
output operand of the asm(). The operand must appear as part of
the second argument to the asm() construct.
Example: #d

VisualDSP++ 5.0 C/C++ Compiler Manual 1-157
for SHARC Processors

Compiler

Table 1-19 on page 1-158 lists the registers that may be allocated for each
register constraint letter. The use of any letter not listed in the “Con-
straint” column of this table results in unspecified behavior. The compiler
does not check the validity of the code by using the constraint letter.
Table 1-20 on page 1-159 lists the registers that may be named as part of
the clobber list

It is also possible to claim registers directly, instead of requesting a register
from a certain class using the constraint letters. You can claim the registers
directly by simply naming the register in the location where the class letter
would be. The register names are the same as those used to specify the
clobber list, as shown in Table 1-20 on page 1-159.

For example,

asm("%0 = %1 * %2;"

:"=r13"(result) /* output */

:"r14"(x),"r15"(y) /* input */

);

would load x into r14, load y into r15, execute the operation, and then
store the total from r13 back into result.

 Naming the registers in this way allows the asm() construct to
specify several registers that must be related, such as the DAG reg-
isters for a circular buffer. This also allows the use of registers not
covered by the register classes accepted by the asm() construct. The
clobber string can be any of the registers recognized by the
compiler.

C/C++ Compiler Language Extensions

1-158 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Table 1-19. asm() Operand Constraints

Constraint1 Register type Registers

a DAG2 B registers b8 — b15

b Q2 R registers r4 — r7

c Q3 R registers r8 — r11

d All R registers r0 — r15

e DAG2 L registers l8 — l15

F Floating-point registers F0 — F15

f Accumulator register mrf, mrb

h DAG1 B registers b0 — b7

I Pairs of R registers (r0-r1), (r2-r3), (r4-r5), (r6-r7),
(r8-r9), (r10-r11), (r12-r13), (r14-r15)

j DAG1 L registers l0 — l7

k Q1 R registers r0 - r3

l Q4 R registers r12 - r15

r All general registers r0 — r15, i0 — i15, l0 — l15,
m0 — m15, b0 — b15, ustat1, ustat2

u User registers ustat1, ustat2 (also ustat3, ustat4 on
ADSP-211xx, ADSP-212xx,
ADSP-213xx, and ADSP-214xx proces-
sors)

w DAG1 I registers I0 — I7

x DAG1 M registers M0 — M7

y DAG2 I registers I8 — I15

z DAG2 M registers M8 — M15

n None
(For more information, see “Assembly Constructs With Compile-Time
Constants” on page 1-164.)

=&constraint Indicates that the constraint is applied to an output operand that may not
overlap an input operand

=constraint Indicates that the constraint is applied to an output operand

VisualDSP++ 5.0 C/C++ Compiler Manual 1-159
for SHARC Processors

Compiler

&constraint Indicates the constraint is applied to an input operand that may not be
overlapped with an output operand

?constraint Indicates the constraint is temporary

+constraint Indicates the constraint is both an input and output operand

#constraint Indicates that the constraint is an input operand whose value is changed

1 The use of any letter not listed in Table 1-19 results in unspecified behavior. The compiler does
not check the validity of the code by using the constraint letter.

Table 1-20. Register Names for asm() Constructs

Clobber String Meaning

"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14",
"r15"

General data registers

"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12, "f13, "f14",
"f15"

Floating point data registers

"i0", "i1", "i2", "i3", "i4", "i5", "i8", "i9",
"i10", "i11", "i12", "i13", "i14", "i15"

Index registers

"m0", "m1", "m2", "m3", "m4", "m8", "m9",
"m10", "m11", "m12"

Modifier registers

"b0", "b1", "b2", "b3", "b4", "b7", "b8", "b9",
"b10", "b11", "b12", "b13", "b14", "b15",

Base registers

"l0", "l1", "l2", "l3", "l4", "l5", "l8", "l9",
"l10", "l11", "l12", "l13", "l14", "l15"

Length registers

"mrf", "mrb" Multiplier result registers

"astat", "acc", "mcc", "scc", "btf" Condition registers

"lcntr" Loop counter register

"PX" PX register

"ustat1", "ustat2" User-defined status registers

Table 1-19. asm() Operand Constraints (Cont’d)

Constraint1 Register type Registers

C/C++ Compiler Language Extensions

1-160 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using long long Types in asm Constraints

It is possible to use an asm() constraint to specify a long long value, in
which case the compiler will claim a valid register pair. The syntax for
operands within the template is extended to allow the suffix “H” for the
high-numbered register of the register pair, and the suffix “L” for the
low-numbered register of the pair. A long long type is represented by the
constraint letter “I”. Note that the high-numbered register contains the
least-significant bits of the long long value, while the low-numbered reg-
ister contains the most-significant bits.

For example,

long long int res;

int main(void) {

long long result64, x64 = 123;

asm(

"%0H = %1H; %0L = %1L;" :

"=I" (result64) :

"I" (x64)

);

"memory" Unspecified memory locations

The following registers are available on ADSP-211xx/212xx/213xx/214xx processors:

"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"s8", "s9", "s10", "s11", "s12", "s13", "s14",
"s15"

Shadow data registers

"smrf", "smrb" Shadow multiplier result registers

"sacc", "smcc", "sscc", "sbtf" Shadow condition registers

"ustat3", "ustat4" User-defined status registers

Table 1-20. Register Names for asm() Constructs (Cont’d)

Clobber String Meaning

VisualDSP++ 5.0 C/C++ Compiler Manual 1-161
for SHARC Processors

Compiler

res = result64;

}

In this example, the template is “%0H=%1H; %0L=%1L;”. The %0H is replaced
with the register containing the least-significant 32 bits of operand zero
(result64), and %0L is replaced with the register containing the most-sig-
nificant 32 bits of operand zero (result64). Similarly, %1H and %1L are
replaced with the registers containing the least-significant 32 bits and
most-significant 32 bits, respectively, of operand one (x64).

Assembly Constructs With Multiple Instructions

There can be many assembly instructions in one template. Normal rules
for line-breaking apply. In particular, the statement may spread over mul-
tiple lines. You are recommended not to split a string over more than one
line, but to use the C language’s string concatenation feature. If you are
placing the inline assembly statement in a preprocessor macro, see “Com-
pound Macros” on page 1-297.

The following listing is an example of multiple instructions in a template.

/* (pseudo code) r7 = x; r6 = y; result = x + y; */

asm (“r7=%1;”

"r6=%2;"

"%0=r6+r7;"

: "=d" (result) /* output*/

: "d" (x), "d" (y) /* input */

: "r7", "r6"); /* clobbers */

Do not attempt to produce multiple-instruction asm constructs via a
sequence of single-instruction asm constructs, as the compiler is not guar-
anteed to maintain the ordering.

C/C++ Compiler Language Extensions

1-162 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

For example, the following should be avoided:

/* BAD EXAMPLE: Do not use sequences of single-instruction

** asms. Use a single multiple-instruction asm instead. */

asm("r7=%0;" : : "d" (x) : "r7");

asm("r6=%0;" : : "d" (y) : "r6");

asm("%0=r6+r7;" : "=d" (result));

Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands. This
does not mean that you cannot use instructions with side effects, but be
careful to notify the compiler that you are using them by using the clobber
specifiers.

The compiler may eliminate supplied assembly instructions if the output
operands are not used, move them out of loops, or reorder them with
respect to other statements, where there is no visible data dependency.
Also, if your instruction does have a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later if
it happens to be found in a register.

Use the keyword volatile to prevent an asm() instruction from being
moved or deleted. For example,

asm volatile("idle;");

A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use only one asm volatile() construct, or
use the output of the asm() construct in a C/C++ statement.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-163
for SHARC Processors

Compiler

Assembly Constructs With Input and Output Operands

When an asm construct has both inputs and outputs, there are two aspects
to consider:

• Whether a value read from an input variable will be written back to
the same variable or a different variable on output.

• Whether the input and output values will reside in the same regis-
ter or different registers.

The most common case is when both input and output variables and
input and output registers are different. In this case, the asm construct
reads from one variable into a register, performs an operation which leaves
the result in a different register, and writes that result from the register
into a different output variable:

asm("%0 = %1;" : "=d" (newptr) : "d" (oldptr));

When the input and output variables are the same, it is usual that the
input and output registers are also the same. In this case, you use the “+”
constraint:

asm("%0 += 4;" : "+d" (sameptr));

When the input and output variables are different, but the input and out-
put registers have to be the same (usually because of requirements of the
assembly instructions), you indicate this to the compiler by using a differ-
ent syntax for the input’s constraint. Instead of specifying the register or
class to be used, you specify the output to which the input must be
matched.

For example,

asm("modify(%0,m7);"

:"=w" (newptr) // an output, given an I register,

// stored into newptr.

C/C++ Compiler Language Extensions

1-164 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

:"0" (oldptr)); // an input, given same reg as %0,

// initialized from oldptr

This specifies that the input oldptr has 0 (zero) as its constraint string,
which means it must be assigned the same register as %0 (newptr).

Assembly Constructs With Compile-Time Constants

The n input constraint informs the compiler that the corresponding input
operand should not have its value loaded into a register. Instead, the com-
piler is to evaluate the operand, and then insert the operand’s value into
the assembly command as a literal numeric value. The operand must be a
compile-time constant expression. For example,

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "d" (sizeof(arr))); // "d" constraint

produces code like

R0 = 100 (X); // compiler loads value into register

R1 = R0; // compiler replaces %1 with register

whereas:

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "n" (sizeof(arr))); // "n" constraint

produces code like

R1 = 100; // compiler replaces %1 with value

If the expression is not a compile-time constant, the compiler gives an
error:

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "n" (arr)); // error: operand

// for "n" constraint

// must be a compile-time constant

VisualDSP++ 5.0 C/C++ Compiler Manual 1-165
for SHARC Processors

Compiler

Assembly Constructs and Flow Control

 Do not place flow control operations within an asm() construct
that “leaves” the asm() construct functions, such as calling a proce-
dure or performing a jump, to another piece of code that is not
within the asm() construct itself. Such operations are invisible to
the compiler, may result in multiple-defined symbols, and may vio-
late assumptions made by the compiler.

For example, the compiler is careful to adhere to the calling conventions
for preserved registers when making a procedure call. If an asm() construct
calls a procedure, the asm() construct must also ensure that all conven-
tions are obeyed, or the called procedure may corrupt the state used by the
function containing the asm() construct.

It is also inadvisable to use labels in asm() statements, especially when
function inlining is enabled. If a function containing such asm statements
is inlined more than once in a file, there will be multiple definitions of the
label, resulting in an assembler error. If possible, use PC-relative jumps in
asm statements.

Guidelines on the Use of asm() Statements

There are certain operations that are performed more efficiently using
other compiler features, and result in source code that is clearer and easier
to read.

Accessing System Registers

System registers are accessed most efficiently using the functions in
sysreg.h instead of using asm() statements. For example, the following
asm() statement:

asm("R0 = 0; bit tst MODE1 IRPTEN; if TF r0 = r0 + 1; %0 = r0;"

: "=d"(test) : : "r0");

C/C++ Compiler Language Extensions

1-166 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

can be written as:

#include <sysreg.h>

#include <def21060.h>

test = sysreg_bit_tst(sysreg_MODE1, IRPTEN);

Refer to “Access to System Registers” on page 1-177 for more
information.

Accessing Memory-Mapped Registers (MMRs)

MMRs can be accessed using the macros in the Cdef*.h files (for example,
Cdef21060.h) that are supplied with VisualDSP++.

For example, IOSTAT can be accessed using asm() statements, such as:

asm("R0 = 0x1234567; dm(IOSTAT) = R0;" : : : "r0");

This can be written more cleanly and efficiently as:

#include <Cdef21060.h>

...

*pIOSTAT = 0x1234567;

Dual Memory Support Keywords (pm dm)
This section describes cc21k language extension keywords to C and C++
that support the dual-memory space, modified Harvard architecture of the
ADSP-21xxx processors. There are two keywords used to designate
memory space: dm and pm. They can be used to specify the location of a
static or global variable or to qualify a pointer declaration.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-167
for SHARC Processors

Compiler

The following rules apply to dual memory support keywords:

• The memory space keyword (dm or pm) refers to the expression to
the right of the keyword.

• You can specify a memory space for each level of pointer. This cor-
responds to one memory space for each * in the declaration.

• The compiler uses Data Memory (DM) as the default memory
space for all variables. All undeclared spaces for data are Data
Memory spaces.

• The compiler always uses Program Memory (PM) as the memory
space for functions. Function pointers always point to Program
Memory.

• You cannot assign memory spaces to automatic variables. All auto-
matic variables reside on the stack, which is always in Data
Memory.

• Literal character strings always reside in Data Memory.

The following listing shows examples of dual memory keyword syntax.

int pm buf[100];

/* declares an array buf with 100 elements in Program Memory */

int dm samples[100];

/* declares an array samples with 100 elements in Data Memory */

int points[100];

/* declares an array points with 100 elements in Data Memory */

int pm * pm xy;

/* declares xy to be a pointer which resides in Program

Memory and points to a Program Memory integer */

int dm * dm xy;

/* declares xy to be a pointer which resides in Data Memory and

points to a Data Memory integer */

int *xy;

C/C++ Compiler Language Extensions

1-168 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

/* declares xy to be a pointer which resides in Data Memory

and points to a Data Memory integer */

int pm * dm datp;

/* declares datp to be a pointer which resides in Data Memory

and points to a Program Memory integer */

int pm * datp;

/* declares datp to be a pointer which resides in Data Memory

and points to a Program Memory integer */

int dm * pm progd;

/* declares progd to be a pointer which resides in Program

Memory and points to a Data Memory integer */

int * pm progd;

/* declares progd to be a pointer which resides in Program

Memory and points to a Data Memory integer */

float pm * dm * pm xp;

/* declares xp as a pointer in Program Memory,

that points to a pointer in Data Memory,
which in turn points to a float back in Program Memory */

Memory space specification keywords cannot qualify type names and
structure tags, but you can use them in pointer declarations. The follow-
ing shows examples of memory space specification keywords in typedef
and struct statements.

/* Dual Memory Support Keyword typedef & struct Examples */

typedef float pm * PFLOATP;

/* PFLOATP defines a type which is a pointer to */

/* a float which resides in pm.*/

struct s {int x; int y; int z;};

static pm struct s mystruct={10,9,8};

/* Note that the pm specification is not used in */

/* the structure definition. The pm specification */

/* is used when defining the variable mystruct */

VisualDSP++ 5.0 C/C++ Compiler Manual 1-169
for SHARC Processors

Compiler

Memory Keywords and Assignments/Type Conversions

When building for the ADSP-21020 part, the compiler does not allow any
mixing of dm and pm pointer assignments. This is because the ADSP-21020
part has partitioned PM and DM memory spaces. For all other SHARC
parts, dm and pm pointers can access the same memory albeit in different
ways.

For the non-21020 parts, the compiler allows pm pointers to be assigned
using dm pointer type variables, as any subsequent access of the assigned
variable will be valid and no data will be lost when the pointer is derefer-
enced. The compiler issues an error for assignments of pm pointers to dm
pointer type variables unless the -compatible-pm-dm switch is used. The
rationale for an error in this case is that the DM load and store instruc-
tions that will eventually be used might not be what you intended.

One potential problem occurs if a multi-issue instruction ends up access-
ing the same memory. The behavior of the processor in this situation is
well defined. A memory access conflict occurs resulting in an extra stall
cycle. The DM bus access completes first and the PM bus access completes
in the following (extra) cycle.

So reading data is not a problem, it just results in a stall cycle. However,
writes could end up being done in a different order from how they are
written in C or C++ source because of the way the buses arbitrate the
conflict.

For example, say you have two stores in C and the pointers are for the
same address:

*pm_ptr = v1;

*dm_ptr = v2;

The compiler could create the following dual store multi-issue instruction:

dm(i4,m4)=r12, pm(i12,m12)=r2;

C/C++ Compiler Language Extensions

1-170 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

And this would result in the DM v2 store occurring before the v1 PM
store and not as in the source if the pointers were the same address.

The following listings show a code segment with variables in different
memory spaces being assigned and a code segment with illegal mixing of
memory space assignments.

/* Legal Dual Memory Space Variable Assignment Example */

int pm x;

int dm y;

x = y; /* Legal code */

/* Illegal Dual Memory Space Type Cast Example */

int pm *x;

int dm *y;

int dm a;

x = y; /* Compiler will flag error */

x = &a; /* Compiler will flag error */

Memory Keywords and Function Declarations/Pointers

Functions always reside in Program Memory. Pointers to functions always
point to Program Memory. The following listing shows some sample
function declarations with pointers.

/* Dual Memory Support Keyword Function Declaration (With Point-

ers) Syntax Examples */

int * y(); /* function y resides in */

/* pm and returns a */

/* pointer to an integer */

/* which resides in dm */

int pm * y(); /* function y resides in */

/* pm and returns a */

/* pointer to an integer */

/* which resides in pm */

VisualDSP++ 5.0 C/C++ Compiler Manual 1-171
for SHARC Processors

Compiler

int dm * y(); /* function y resides in */

/* pm and returns a */

/* pointer to an integer */

/* which resides in dm */

int * pm * y(); /* function y resides in */

/* pm and returns a */

/* pointer to a pointer */

/* residing in pm that */

/* points to an integer */

/* which resides in dm */

Memory Keywords and Function Arguments

The compiler checks calls to prototyped functions for memory space spec-
ifications consistent with the function prototype. The following listing
shows sample code that cc21k flags as inconsistent use of memory spaces
between a function prototype and a call to the function.

/* Illegal Dual Memory Support Keywords & Calls To Prototyped

Functions */

extern int foo(int pm*);

/* declare function foo() which expects a pointer to an int

residing in pm as its argument and which returns an int */

int x; /* define int x in dm */

foo(&x); /* call function foo() */

/* using pm pointer (location of x) as the */

/* argument. cc21k FLAGS AS AN ERROR; this is an */

/* inconsistency between the function’s */

/* declared memory space argument and function */

/* call memory space argument */

C/C++ Compiler Language Extensions

1-172 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Memory Keywords and Macros

Using macros when making memory space specification for variables or
pointers can make your code easier to maintain. If you must change the
definition of a variable or pointer (moving it to another memory space),
declarations that depend on the definition may need to be changed to
ensure consistency between different declarations of the same variable or
pointer.

To make changes of this type easier, you can use C/C++ preprocessor mac-
ros to define common memory spaces that must be coordinated. The
following listing shows two code segments that are equivalent after pre-
processing. The code segment guarded by EASILY_CHANGED lets you
redefine the memory space specifications by redefining the macros SPACE1
and SPACE2, and making it easy to redefine the memory space specifica-
tions at compile-time.

/* Dual Memory Support Keywords & Macros */

#ifdef EASILY_CHANGED

/* pm and dm can be easily changed at compile-time. */

#define SPACE1 pm

#define SPACE2 dm

char SPACE1 * foo (char SPACE2 *);

char SPACE1 * x;

char SPACE2 y;

x = foo(&y);

#else

/* not so easily changed. */

char pm * foo (char dm *);

char pm * x;

char dm y;

x = foo(&y);

#endif

VisualDSP++ 5.0 C/C++ Compiler Manual 1-173
for SHARC Processors

Compiler

Bank Type Qualifiers
Bank qualifiers can be attached to data declarations to indicate that the
data resides in particular memory banks. For example,

int bank("blue") *ptr1;

int bank("green") *ptr2;

The bank qualifier assists the optimizer because the compiler assumes that
if two data items are in different banks, they can be accessed together
without conflict. The bank name string literals have no significance,
except to differentiate between banks. There is no interpretation of the
names attached to banks, which can be any arbitrary string. There is a cur-
rent implementation limit of ten different banks.

For any given function, three banks are automatically defined. These are:

• The default bank for global data.
The “static” or “extern” data that is not explicitly placed into
another bank is assumed to be within this bank. Normally, this
bank is called “__data“, although a different bank can be selected
with #pragma data_bank(bankname).

• The default bank for local data.
Local variables of “auto” storage class that are not explicitly placed
into another bank are assumed to be within this bank. Normally,
this bank is called “__stack”, although a different bank can be
selected with #pragma stack_bank(bankname).

• The default bank for the function’s instructions.
The function itself is placed into this bank. Normally, it is called
“__code”, although a different bank can be selected with
#pragma code_bank(bankname).

C/C++ Compiler Language Extensions

1-174 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Each memory bank can have different performance characteristics. For
more information on memory bank attributes, see “Memory Bank Prag-
mas” on page 1-246.

Placement Support Keyword (section)
The section keyword directs the compiler to place an object or function
in an assembly .SECTION of the compiler’s intermediate output file. You
name the assembly .SECTION directive with the section()’s string literal
parameter. If you do not specify a section() for an object or function
declaration, the compiler uses a default section. For information on the
default sections, see “Memory Usage” on page 1-302.

Applying section() is meaningful only when the data item is something
that the compiler can place in the named section. Apply section() only to
top-level, named objects that have a static duration, are explicitly static,
or are given as external-object definitions.

The following example shows the declaration of a static variable that is
placed in the section called bingo.

static section("bingo") int x;

The section() keyword has the limitation that section initialization qual-
ifiers cannot be used within the section name string. The compiler may
generate labels containing this string, which will result in assembly syntax
errors. Additionally, the keyword is not compatible with any pragmas that
precede the object or function. For finer control over section placement
and compatibility with other pragmas, use #pragma section.

Refer to “#pragma section/#pragma default_section” on page 1-238 for
more information.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-175
for SHARC Processors

Compiler

 Note that section has replaced the segment keyword in earlier
releases of the compiler. Although the segment() keyword is sup-
ported by the compiler of the current release, we recommend that
you revise the legacy code.

Placement of Compiler-Generated Code and
Data

If the section() keyword (“Placement Support Keyword (section)”) is not
used, the compiler emits code and data into default sections. The -sec-
tion switch (on page 1-60) can be used to specify alternatives for these
defaults on the command-line, and the default_section pragma
(on page 1-238) can be used to specify alternatives for some of them
within the source file.

In addition, when using certain features of C/C++, the compiler may be
required to produce internal data structures. The -section switch and the
default_section pragma allow you to override the default location where
the data would be placed. For example,

cc21k -section vtbl=vtbl_data test.cpp -c++

would instruct the compiler to place all the C++ virtual function look-up
tables into the section vtbl_data, rather than the default vtbl section. It
is the user’s responsibility to ensure that appropriately named sections
exist in the .ldf file.

The compiler currently supports the following section identifiers:

code Controls placement of machine instructions
Default is seg_pmco

data Controls placement of initialized variable data
Default is seg_dmda

pm_data Controls placement of initialized data declared with the _pm keyword

constdata Controls placement of constant data

C/C++ Compiler Language Extensions

1-176 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

When both -section switches and default_section pragmas are used, the
default_section pragmas take priority.

Long Identifiers
The compiler supports C identifiers of up to 1022 characters in length;
C++ identifiers typically have a slightly shorter limit, as the limit applies
to the identifier after name mangling is used to transform it into a suitable
symbol for linking, and for C++, some of the symbol space is required to
represent the identifier’s type.

Preprocessor Generated Warnings
The preprocessor directive #warning causes the preprocessor to generate a
warning and continue preprocessing. The text on the remainder of the line
that follows #warning is used as the warning message.

pm_constdata Controls placement of constant data declared with the _pm keyword

bsz Controls placement of zero-initialized variable data
Default is .bss

sti Controls placement of the static C++ class constructor “start” functions
Default is seg_pmco
For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-313.

switch Controls placement of jump-tables used to implement C/C++ switch
statements

strings Controls placement of string literals

vtbl Controls placement of the C++ virtual lookup tables
Default is seg_vtbl

vtable Synonym for vtbl

autoinit Controls placement of data used to initialize aggregate autos

alldata Controls placement of data, constdata, bss, strings and autoinit
all at once

VisualDSP++ 5.0 C/C++ Compiler Manual 1-177
for SHARC Processors

Compiler

Compiler Built-In Functions
The compiler supports intrinsic (built-in) functions that enable efficient
use of hardware resources. Knowledge of these functions is built into the
cc21k compiler. Your program uses them via normal function call syntax.
The compiler notices the invocation and generates one or more machine
instructions, just as it does for normal operators, such as + and *.

Built-in functions have names which begin with __builtin_. Note that
identifiers beginning with double underlines (__) are reserved by the C
standard, so these names do not conflict with user program identifiers.
The header files also define more readable names for the built-in functions
without the __builtin_ prefix. These additional names are disabled if the
-no-builtin option is used.

This section describes:

• “Access to System Registers” on page 1-177

• “Circular Buffer Built-In Functions” on page 1-180

• “Compiler Performance Built-In Functions” on page 1-182

• “Fractional Built-In Functions” on page 1-185

The cc21k compiler provides built-in versions of some C library functions
as described in section “Using Compiler Built-In C Library Functions” of
the VisualDSP++ 5.0 Run-Time Library Manual for SHARC Processors.

Access to System Registers

The sysreg.h header file defines a set of functions that provide efficient
system access to registers, modes, and addresses not normally accessible
from C source. These functions are specific to individual architectures.

This section describes the functions that provide access to system registers.
These functions are based on underlying hardware capabilities of the
ADSP-21xxx processors. The functions are defined in the header file

C/C++ Compiler Language Extensions

1-178 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

sysreg.h. They allow direct read and write access, as well as the testing
and modifying of bit sets.

The functions are:

• int sysreg_read (const int SR_number);

sysreg_read reads the value of the designated register and
returns it.

• void sysreg_write (const int SR_number, const int

new_value);

sysreg_write stores the specified value in the nominated
system register.

• void sysreg_write_nop (const int SR_number, const int

new_value);

sysreg_write_nop stores the specified value in the nomi-
nated system register, but also places a ‘NOP;’ after the
instruction.

• void sysreg_bit_clr (const int SR_number, const int

bit_mask);

sysreg_bit_clr clears all the bits of the nominated system
register that are set in the supplied bit mask.

• void sysreg_bit_clr_nop (const int SR_number, const int

bit_mask);

sysreg_bit_clr_nop clears all the bits of the nominated
system register that are set in the supplied bit mask, but also
places ‘NOP;’ after the instruction.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-179
for SHARC Processors

Compiler

• void sysreg_bit_set (const int SR_number, const int

bit_mask);

sysreg_bit_set sets all the bits of the nominated system
register that are also set in the supplied bit mask.

• void sysreg_bit_set_nop (const int SR_number, const int

bit_mask);

sysreg_bit_set_nop sets all the bits of the nominated sys-
tem register that are also set in the supplied bit mask, but
also places ‘NOP;’ after the instruction.

• void sysreg_bit_tgl (const int SR_number, const int

bit_mask);

sysreg_bit_tgl toggles all the bits of the nominated system
register that are set in the supplied bit mask.

• void sysreg_bit_tgl_nop (const int SR_number, const int

bit_mask);

sysreg_bit_tgl_nop toggles all the bits of the nominated
system register that are set in the supplied bit mask, but also
places ‘NOP;’ after the instruction.

• int sysreg_bit_tst (const int SR_number, const int

bit_mask);

sysreg_bit_tst returns a non-zero value if all the bits set in
bit_mask are also set in the nominated system register.

• int sysreg_tst (const int SR_number, const int value);

sysreg_tst returns a non-zero value if the contents of the
nominated system register are equal to the supplied value.

C/C++ Compiler Language Extensions

1-180 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

 The SR_number parameters must be compile-time constants; sys-
reg.h defines suitable macros. The effect of using the incorrect
function for the size of the register or using an undefined register
number is undefined.

On all ADSP-21xxx processors, the system registers are:

sysreg_IMASK sysreg_IMASKP

sysreg_ASTAT sysreg_STKY

sysreg_USTAT1 sysreg_USTAT2

sysreg_MODE1 sysreg_MODE2

sysreg_IRPTL sysreg_ASTATX

In addition, ADSP-211xx, ADSP-212xx, ADSP-213xx, and ADSP-214xx
processors have the following system registers:

sysreg_LIRPTL sysreg_MMASK

sysreg_ASTATY sysreg_FLAGS

sysreg_STKYY sysreg_USTAT3

sysreg_USTAT4

Header files specific to each processor provide symbolic names for the
individual bits in the processor’s system registers—for example,
def21160.h for the ADSP-21160 processor, and def21469.h for the
ADSP-21469 processor. Including the header platform_include.h will
automatically include the def21xxx.h header for the processor for which
the application is being compiled.

Circular Buffer Built-In Functions

The C/C++ compiler provides the following two built-in functions for
using the SHARC circular buffer mechanisms.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-181
for SHARC Processors

Compiler

Circular Buffer Increment of an Index

The following operation performs a circular buffer increment of an index:

ptrdiff_t circindex(ptrdiff_t ptr, ptrdiff_t incr, size_t buflen)

The equivalent operation is:

index +=incr;

if (index <0)index +=nitems;

else if (index >=nitems)index -=nitems;

Circular Buffer Increment of a Pointer

The following operation provides a circular buffer increment of an
pointer.

void *circptr(const void *ptr, ptrdiff_t incr,

 const void *base, size_t buflen)

The equivalent operation is:

ptr +=incr;

if (ptr <base)ptr +=buflen;

else if (ptr >=(base+buflen))ptr -=buflen;

For more information on circindex and circptr library functions, refer
to VisualDSP++ 5.0 Run-Time Library Manual for SHARC Processors.

The compiler also attempts to generate circular buffer increments for
modulus array references, such as array[index %nitems]. For this to
happen, the compiler must be able to determine that the starting value for
index is within the range 0...(nitems-1). When the -force-circbuf
switch (on page 1-32) is specified, the compiler always treats array refer-
ences of the form [i%n] as a circular buffer operation on the array.

C/C++ Compiler Language Extensions

1-182 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Compiler Performance Built-In Functions

The following functions provide the compiler with additional information
which can help in the optimization process.

Expected Behavior

The expected_true and expected_false functions provide the compiler
with information about the expected behavior of the program. You can
use these built-in functions to tell the compiler which parts of the pro-
gram are most likely to be executed; the compiler can then arrange for the
most common cases to be those that execute most efficiently.

#include <processor_include.h>

int expected_true(int cond);

int expected_false(int cond);

For example, consider the code

extern int func(int);

int example(int call_the_function, int value)

{

int r = 0;

if (call_the_function)

r = func(value);

return r;

}

If you expect that parameter call_the_function to be true in the majority
of cases, you can write the function in the following manner:

extern int func(int);

int example(int call_the_function, int value)

{

int r = 0;

if (expected_true(call_the_function))

// indicate most likely true

VisualDSP++ 5.0 C/C++ Compiler Manual 1-183
for SHARC Processors

Compiler

r = func(value);

return r;

}

This indicates to the compiler that you expect call_the_function to be
true in most cases, so the compiler arranges for the default case to be to
call function func(). If, on the other hand, you were to write the function
as:

extern int func(int);

int example(int call_the_function, int value)

{

int r = 0;

if (expected_false(call_the_function))

// indicate most likely false

r = func(value);

return r;

}

then the compiler arranges for the generated code to default to the oppo-
site case, of not calling function func().

These built-in functions do not change the operation of the generated
code, which will still evaluate the boolean expression as normal. Instead,
they indicate to the compiler which flow of control is most likely, helping
the compiler to ensure that the most commonly-executed path is the one
that uses the most efficient instruction sequence.

The expected_true and expected_false built-in functions only take
effect when optimization is enabled in the compiler. They are only sup-
ported in conditional expressions.

C/C++ Compiler Language Extensions

1-184 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Known Values

The __builtin_assert() function provides the compiler with informa-
tion about the values of variables which it may not be able to deduce from
the context. For example, consider the code

int example(int value, int loop_count)

{

int r = 0;

int i;

for (i = 0; i < loop_count; i++) {

r += value;

}

return r;

}

The compiler has no way of knowing what values may be passed in to the
function. If you know that the loop count will always be greater than four,
you can allow the optimizer to make use of that knowledge using
__builtin_assert():

int example(int value, int loop_count)

{

int r = 0;

int i;

__builtin_assert(loop_count > 4);

for (i = 0; i < loop_count; i++) {

r += value;

}

return r;

}

The optimizer can now omit the jump over the loop body it would other-
wise have to emit to cover loop_count == 0. In more complicated code,
further optimizations may be possible when bounds for variables are
known.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-185
for SHARC Processors

Compiler

Fractional Built-In Functions

The SHARC compiler provides a set of fractional built-in functions to
support the C++ implementation provided in the header file. These
built-in functions are:

• float __builtin_conv_RtoF(int __a);

Converts a fractional value to floating point representation. This
function is implemented by a FLOAT instruction. Conversion from a
fractional value to a floating-point value may result in some preci-
sion loss.

An alternative way to generate the same code is to use the fract
native fixed-point type. In this case, we can cast the fract-typed
argument to float type without the need to use a built-in function.

• int __builtin_conv_FtoR(float __a);

Converts a floating point value to a fractional representation. This
function is implemented by a FIX instruction and does not satu-
rate. Conversion of a floating point value that cannot be
represented as a fractional value will return 0xFFFFFFFF.

Similar functionality is provided by the fract native fixed-point
type. In this case, we can simply cast the float-typed argument to
fract type without the need to use a built-in function. The behav-
ior of this cast differs from the built-in in that it does not depend
on the rounding mode specified in the MODE1 register.

• int __builtin_RxR(int __a, int __b);

Multiplies two fractional values, returning a fractional value. This
function is implemented by a multiply instruction followed by a
SAT instruction. The function will saturate. The operation (-1)*(-1)
will return 0x7FFFFFFF.

C/C++ Compiler Language Extensions

1-186 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

An alternative way to generate the same code is to use the fract
native fixed-point type. In this case, we multiply two fract-typed
arguments directly using the unbiased rounding mode, without the
need to use a built-in function.

• int __builtin_RxItoI(int __a, int __b);

Multiplies a fractional value with an integral value, returning an
integral value. This function is implemented as a multiply instruc-
tion followed by a SAT instruction.

Similar functionality is provided by the fract native fixed-point
type through use of the mulir function (see “mulifx” on
page 1-107). The behavior of this function differs from the built-in
in that it rounds towards zero and does not saturate.

• int __builtin_RxItoR(int __a, int __b);

Multiplies a fractional value with an integral value, returning a
fractional value. This function is implemented by a multiply
instruction followed by a SAT instruction. This function will
saturate. Any negative number that cannot be represented by fract
will return 0x80000000, and any positive number that cannot be
represented will return 0x7FFFFFFF.

An alternative way to generate the same code is to use the fract
native fixed-point type. In this case, we multiply a fract-typed and
an int-typed argument directly without the need to use a built-in
function.

For additional fractional support for SHARC, refer to the section “C++
Fractional Type Support” on page 1-264 and “Using Native Fixed-Point
Types” on page 1-90.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-187
for SHARC Processors

Compiler

Miscellaneous Built-In Function

The compiler also provides a miscellaneous built-in function.

int funcsize(const void *func)

The funcsize built-in function returns the size of function in instruction
words. The result is calculated from the difference between the start and
end labels for the function operand. The compiler creates these labels for
all C/C++ functions.

The start label is the mangled name of the function. The end label used is
a dot (“.”) followed by the start label followed by “.end”. For example,
for C function foo, these labels are “_foo:” and “._foo.end:”.

When using the funcsize built-in for assembly functions, the start and
end labels need to be correctly defined for it to work.

 The funcsize built-in does not work for functions defined in dif-
ferent modules than it is used, because end labels are not usually
externally visible.

Pragmas
The compiler supports a number of pragmas. Pragmas are implementa-
tion-specific directives that modify the compiler’s behavior. There are two
types of pragma usage: pragma directives and pragma operators.

Pragma directives have the following syntax:

#pragma pragma-directive pragma-directive-operands new-line

Pragma operators have the following syntax:

_Pragma (string-literal)

C/C++ Compiler Language Extensions

1-188 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

When processing a pragma operator, the compiler effectively turns it into
a pragma directive using a non-string version of string-literal. This
means that the following pragma directive

#pragma linkage_name mylinkname

can also be equivalently be expressed using the following pragma operator

_Pragma ("linkage_name mylinkname")

The examples in this manual use the directive form.

The C compiler supports pragmas for:

• Arranging alignment of data

• Defining functions that can act as interrupt handlers

• Changing the optimization level, midway through a module

• Changing how an externally visible function is linked

• Header file configurations and properties

• Giving additional information about loop usage to improve
optimizations

The following sections describe the pragmas that support these features:

• “Data Alignment Pragmas” on page 1-189

• “Interrupt Handler Pragmas” on page 1-193

• “Loop Optimization Pragmas” on page 1-198

• “General Optimization Pragmas” on page 1-204

• “Function Side-Effect Pragmas” on page 1-205

• “Class Conversion Optimization Pragmas” on page 1-218

VisualDSP++ 5.0 C/C++ Compiler Manual 1-189
for SHARC Processors

Compiler

• “Template Instantiation Pragmas” on page 1-221

• “Header File Control Pragmas” on page 1-223

• “Fixed-Point Arithmetic Pragmas” on page 1-226

• “Inline Control Pragmas” on page 1-229

• “Linking Control Pragmas” on page 1-231

• “Diagnostic Control Pragmas” on page 1-243

• “Code Generation Pragmas” on page 1-253

• “Exceptions Table Pragma” on page 1-254

The compiler issues a warning when it encounters an unrecognized
pragma directive or pragma operator. Refer to Chapter 2, “Achieving
Optimal Performance From C/C++ Source Code”, on how to use pragmas
for code optimization.

Data Alignment Pragmas

The data alignment pragmas include align, alignment_region, pack and
pad pragmas. Alignments specified using these pragmas must be a power
of two. The compiler rejects uses of those pragmas that specify alignments
that are not powers of 2.

#pragma align num

This pragma may be used before variable declarations and field declara-
tions. It applies to the variable or field declaration that immediately
follows the pragma.

C/C++ Compiler Language Extensions

1-190 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The pragma’s effect is that the next variable or field declaration should be
forced to be aligned on a boundary specified by num.

• If the pragma is being applied to a local variable (since local vari-
ables are stored on the stack), the alignment of the variable will
only be changed when num is not greater than the stack alignment
(that is, 2 words). If num is greater than the stack alignment, then a
warning is given that the pragma is being ignored.

• If num is greater than the alignment normally required by the fol-
lowing variable or field declaration, then the variable or field
declaration’s alignment is changed to num.

• If num is less than the alignment normally required, then the vari-
able or field declaration’s alignment is changed to num, and a
warning is given that the alignment has been reduced.

For example,

typedef struct {

#pragma align 4

int foo;

int bar;

#pragma align 4

int baz;

} aligned_ints;

The pragma also allows the following keywords as allowable alignment
specifications:

_WORD – Specifies a 32-bit alignment

_LONG – Specifies a 64-bit alignment

_QUAD – Specifies a 128-bit alignment

VisualDSP++ 5.0 C/C++ Compiler Manual 1-191
for SHARC Processors

Compiler

 The align pragma only applies to the immediately-following defi-
nition, even if that definition is part of a list. For example,

#pragma align 8

int i1, i2, i3; // pragma only applies to i1

#pragma alignment_region (alignopt)

Sometimes it is desirable to specify an alignment for a number of consecu-
tive data items rather than individually. This can be done using the
alignment_region and alignment_region_end pragmas:

• #pragma alignment_region sets the alignment for all following
data symbols up to the corresponding alignment_region_end
pragma.

• #pragma alignment_region_end removes the effect of the active
alignment region and restores the default alignment rules for data
symbols.

The rules concerning the argument are the same as for #pragma align.
The compiler faults an invalid alignment (such as an alignment that is not
a power of two). The compiler warns if the alignment of a data symbol
within the control of an alignment_region is reduced below its natural
alignment (as for #pragma align).

Use of the align pragma overrides the region alignment specified by the
currently active alignment_region pragma (if there is one). The currently
active alignment_region does not affect the alignment of fields.

Example:

#pragma align 4

int aa; /* alignment 4 */

int bb; /* alignment 1 */

C/C++ Compiler Language Extensions

1-192 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

#pragma alignment_region (2)

int cc; /* alignment 2 */

int dd; /* alignment 2 */

int ee; /* alignment 2 */

#pragma align 4

int ff; /* alignment 4 */

int gg; /* alignment 2 */

int hh; /* alignment 2 */

#pragma alignment_region_end

int ii; /* alignment 1 */

#pragma alignment_region (3)

long double kk; /* the compiler faults this, alignment is not

a power of two */

#pragma alignment_region_end

#pragma pack (alignopt)

This pragma may be applied to struct definitions. It applies to all struct
definitions that follow, until the default alignment is restored by omitting
alignopt; for example, by #pragma pack() with empty parentheses.

The pragma is used to reduce the default alignment of the struct to be
aligned. If there are fields within the struct that have a default alignment
greater than align, their alignment is reduced to be alignopt. If there are
fields within the struct that have alignment less than align, their align-
ment is unchanged.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-193
for SHARC Processors

Compiler

If alignopt is specified, it is illegal to invoke #pragma pad until the default
alignment is restored. The compiler generates an error if the pad and pack
pragmas are used in a manner that conflicts.

#pragma pad (alignopt)

This pragma may be applied to struct definitions. It applies to all struct
definitions that follow, until the default alignment is restored by omitting
alignopt. This pragma is effectively shorthand for placing #pragma align
before every field within the struct definition. Like the #pragma pack, it
reduces the alignment of fields that default to an alignment greater than
alignopt. However, unlike the #pragma pack, it also increases the align-
ment of fields that default to an alignment less than alignopt.

If alignopt is specified, it is illegal to invoke #pragma pad until default
alignment is restored.

 While #pragma pack (alignopt) generates a warning if a field
alignment is reduced, #pragma pad (alignopt) does not. If
alignopt is specified, it is illegal to invoke #pragma pack, until
default alignment is restored.

The following example shows how to use #pragma pad().

#pragma pad(4)

struct {

int i;

int j;

} s = {1,2};

#pragma pad()

Interrupt Handler Pragmas

The interrupt pragmas provide a method by which the user can write
interrupt service routines in C and install them directly into the interrupt
vector table, bypassing the dispatcher provided with the C run-time
library.

C/C++ Compiler Language Extensions

1-194 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

#pragma implicit_push_sts_handler

When this pragma is applied to an interrupt handler, the compiler does
not generate an explicit PUSH and POP of STS. This pragma applies only
when compiling for ADSP-211xx, ADSP-212xx, ADSP-213xx, and
ADSP-214xx SHARC processors. When compiling for pre-ADSP-211xx
SHARC processors, the pragma is silently ignored.

The pragma takes effect only when it is used in conjunction with one of
the interrupt pragmas for ADSP-211xx, ADSP-212xx, ADSP-213xx, and
ADSP-214xx SHARC processors (for example, interrupt_complete),
otherwise an error message will be issued.

The compiler can’t determine whether the handler for the pragma is
applied as a handler for the VIRPT, IRQ, or timer interrupts. The user must
determine whether or not the pragma should be used.

#pragma interrupt

The #pragma interrupt pragma may be used before a function declaration
or definition. It applies to the function declaration or definition that
immediately follows this pragma.

The interrupt pragma indicates that the compiler should ensure that all
used registers (including scratch registers) are restored at the end of the
function. The compiler also ensures that, if an I register is used in the
function, the corresponding L register is set to zero, so that circular buffer-
ing is not inadvertently invoked.

The #pragma interrupt pragma should be used for interrupt handlers that
are enabled with the interruptss() or signalss() family of interrupt
functions, as these functions ensure that the correct dispatcher is called.
For maximum benefit, #pragma interrupt should be used for leaf routines
only (that is, functions which do not call any other functions). This is
because the interrupt handler ensures that L registers are zeroed for the I
registers used in the function. If a function call is present, the handler

VisualDSP++ 5.0 C/C++ Compiler Manual 1-195
for SHARC Processors

Compiler

must ensure that all appropriate L registers are set to zero. This adds con-
siderably to the execution time of the handler.

#pragma interrupt_complete_nesting

The #pragma interrupt_complete_nesting pragma is used before a func-
tion definition, which is to be used as an interrupt handler that can be
called directly from the interrupt vector table. Like #pragma interrupt, it
saves and restores all registers used by the function. However, on the
ADSP-211xx, ADSP-212xx, ADSP-213xx, and ADSP-214xx processors,
it also performs a PUSH STS instruction at the start of the function to save
the status and MODE1 registers.

Since this instruction disables nested interrupts, and this pragma can be
used with nested interrupts, it re-enables interrupts by way of the BIT SET
MODE1 0x1000; instruction. At the end of the function, it performs a POP
STS instruction to restore the status and MODE1 registers.

On ADSP-2106x processors, there is not enough space on the status stack
to perform the PUSH STS and POP STS instructions so the compiler gener-
ates code that (apart from storing and restoring all the registers used by
the function) also does the following:

• At the start of the function, MODE1 and ASTAT are stored on the
stack. Bits BR0 and BR8 are cleared and bit RND32 is set.

• Note that the FLAGS registers and ASTAT are located on the same
register. At the end of the function, the compiler generates the fol-
lowing code to ensure that any changes to the FLAGS registers are
preserved:

1. Reads the new ASTAT

2. Reads the FLAGS registers from it

3. Reads the original ASTAT

C/C++ Compiler Language Extensions

1-196 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

4. Clears the FLAGS registers on it

5. ORs the new FLAGS registers onto the original ASTAT

By default, this pragma saves and restores only the top 32 bits of each data
register. See “#pragma save_restore_40_bits” and “#pragma
save_restore_simd_40_bits (SIMD SHARCs Only)” for information on
saving all 40 bits of the data registers.

#pragma interrupt_complete

The #pragma interrupt_complete pragma is similar to the #pragma
interrupt_complete_nesting pragma, except that it does not re-enable
interrupts. (It is for non-nested interrupt handlers.) On the ADSP-211xx,
ADSP-212xx, ADSP-213xx, and ADSP-214xx processors, this is done by
not modifying the MODE1 register. On the ADSP-2106x processor, this is
done by disabling interrupts at the start of the function, and then
re-enabling them at the end of the function.

By default, this pragma saves and restores only the top 32 bits of each data
register. See “#pragma save_restore_40_bits” and “#pragma
save_restore_simd_40_bits (SIMD SHARCs Only)” for information on
saving all 40 bits of the data registers.

#pragma save_restore_40_bits

The #pragma save_restore_40_bits pragma is used along with #pragma
interrupt_complete and pragma interrupt_complete_nesting to save
and restore all 40 bits of the data registers (“Dregs”) used by the handler.
This ensures that any routines using 40-bit arithmetic that are interrupted
do not suffer accuracy problems. For leaf routines (that is, routines that do
not call any other functions), the compiler saves and restores only the reg-
isters that are used. For non-leaf routines, the compiler saves and restores
40 bits of all Dregs. Note that saving and restoring each Dreg requires 6
instructions.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-197
for SHARC Processors

Compiler

#pragma save_restore_simd_40_bits (SIMD SHARCs Only)

The #pragma save_restore_simd_40_bits pragma is used along with
#pragma interrupt_complete and pragma interrupt_complete_nesting
to save and restore all 40 bits of any PEx data registers (“Dregs”) and PEy
data registers (“Sregs”) that are used by the handler. This ensures that any
routines using 40-bit arithmetic and SIMD mode that are interrupted do
not suffer accuracy problems. For leaf routines (that is, routines that do
not call any other functions), the compiler saves and restores only the reg-
isters that are used. For non-leaf routines, the compiler saves and restores
40 bits of all Dregs and Sregs. Note that saving and restoring each Dreg
and Sreg requires 6 instructions.

 Only one run-time library routine (cfft_mag()) uses 40-bit arith-
metic and SIMD mode.

Interrupt Pragmas and the Interrupt Vector Table

Since the interrupt handlers created by the #pragma
interrupt_complete_nesting and #pragma interrupt_complete pragmas
are called directly from the interrupt vector table, the calls to these
handlers have to be placed directly into the interrupt vector table. For
example, if the following interrupt handler is defined in this code:

#pragma interrupt_complete_nesting

void foo(void) {

....

}

Then for the handler foo to be called, the crt file must be modified.
Change the code:

___lib_SFT0I: INT(USR0);

to
___lib_SFT0I: jump(PC,_foo); nop; nop; nop;

C/C++ Compiler Language Extensions

1-198 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

This modified crt file must be included in the project so that it is built
and linked in.

For more information on using interrupts, see “Support for Interrupts” on
page 1-276.

 When rebuilding the CRT for parts that support VISA execution,
take care to ensure the interrupt vector table is placed in normal
word code memory. Do this by building it with the -nwc (or
-normal-word-code) compiler switch enabled. You can also use the
.SECTION/PM/NW seg_rth; directive.

Loop Optimization Pragmas

Loop optimization pragmas give the compiler additional information
about usage within a particular loop, which allows the compiler to per-
form more aggressive optimization. The pragmas are placed before the
loop statement, and apply to the statement that immediately follows,
which must be a for, while or do statement to have effect. In general, it is
most effective to apply loop pragmas to inner-most loops, since the com-
piler can achieve the most savings there.

The optimizer always attempts to vectorize loops when it is safe to do so.
The optimizer exploits the information generated by the interprocedural
analysis (“Interprocedural Analysis” on page 1-84) to increase the cases
where it knows it is safe to do so.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-199
for SHARC Processors

Compiler

#pragma SIMD_for

This pragma is used with ADSP-211xx, ADSP-212xx, ADSP-213xx, and
ADSP-214xx processors. It must precede a for, while or do..while loop
construct, and informs the compiler that the loop fulfils these conditions:

• Memory accesses are suitably aligned.

• There are no memory accesses that rely on data stored during the
previous iteration of the loop.

• There are no memory accesses that alias each other.

See “SIMD Support” on page 1-271 for more details.

#pragma all_aligned

This pragma applies to the subsequent loop. This pragma tells that com-
piler that all pointer-induction variables in the loop are initially aligned to
the maximum permitted alignment of the processor architecture. For
ADSP-2106x processors, it is word-aligned; for ADSP-211xx,
ADSP-212xx, ADSP-213xx, and ADSP-214xx processors, it is dou-
ble-word aligned.

The variable takes an optional argument (n) which can specify that the
pointers are aligned after n iterations. Therefore, #pragma all_aligned(1)
says that after one iteration, all the pointer induction variables of the loop
are so aligned. In other words, the default argument is zero.

#pragma no_vectorization

This pragma is used with ADSP-211xx, ADSP-212xx, ADSP-213xx, and
ADSP-214xx processors. It ensures the compiler does not generate vector-
ized SIMD code for the loop on which it is specified.

C/C++ Compiler Language Extensions

1-200 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

#pragma loop_count (min, max, modulo)

This pragma appears just before the loop it describes. It asserts that the
loop iterates at least min times, no more than max times, and a multiple of
modulo times. This information enables the optimizer to omit loop guards
and to decide whether the loop is worth completely unrolling and whether
code needs to be generated for odd iterations. Any of the parameters of the
pragma that are unknown may be left blank.

For example,

int i;

#pragma loop_count(24, 48, 8)

for (i=0; i < n; i++)

#pragma loop_unroll N

The loop_unroll pragma can be used only before a for, while or do..
while loop. The pragma takes exactly one positive integer argument, N,
and it instructs the compiler to unroll the loop N times prior to further
transforming the code.

In the most general case, the effect of:

#pragma loop_unroll N

for (init statements; condition; increment code) {

loop_body

}

is equivalent to transforming the loop to:

for (init statements; condition; increment code) {

loop_body /* copy 1 */

increment_code

if (!condition)

break;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-201
for SHARC Processors

Compiler

loop_body /* copy 2 */

increment_code

if (!condition)

break;

...

loop_body /* copy N-1 */

increment_code

if (!condition)

break;

loop_body /* copy N */

}

Similarly, the effect of

#pragma loop_unroll N

while (condition) {

loop_body

}

is equivalent to transforming the loop to:

while (condition) {

loop_body /* copy 1 */

if (!condition)

break;

loop_body /* copy 2 */

if (!condition)

break;

...

C/C++ Compiler Language Extensions

1-202 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

loop_body /* copy N-1 */

if (!condition)

break;

loop_body /* copy N */

}

and the effect of:

#pragma loop_unroll N

do {

loop_body

} while (condition)

is equivalent to transforming the loop to:

do {

loop_body /* copy 1 */

if (!condition)

break;

loop_body /* copy 2 */

if (!condition)

break;

...

loop_body /* copy N-1 */

if (!condition)

break;

loop_body /* copy N */

} while (condition)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-203
for SHARC Processors

Compiler

#pragma no_alias

Use this pragma to tell the compiler that the following loop has no loads
or stores that conflict. When the compiler finds memory accesses that
potentially refer to the same location through different pointers, known as
“aliases”, the compiler is restricted in how it may reorder or vectorize the
loop, because all the accesses from earlier iterations must be complete
before the compiler can arrange for the next iteration to start.

In the example,

void vadd(int *a, int *b, int *out, int n) {

int i;

#pragma no_alias

for (i=0; i < n; i++)

out[i] = a[i] + b[i];

}

the use of no_alias pragma just before the loop informs the compiler that
the pointers a, b and out point to different arrays, so no load from b or a is
using the same address as any store to out. Therefore, a[i] or b[i] is
never an alias for out[i].

Using the no_alias pragma can lead to better code because it allows the
loads and stores to be reordered and any number of iterations to be per-
formed concurrently, thus providing better software pipelining by the
optimizer.

#pragma vector_for

This pragma tells the compiler that all iterations of the loop may be run in
parallel with each other and that data accessed in the loop are aligned suit-
ably for SIMD operation. The vector_for pragma does not force the
compiler to vectorize the loop. The optimizer checks various properties of
the loop and does not vectorize it if it believes it is unsafe or if it cannot
deduce that the various properties necessary for the vectorization transfor-
mation are valid.

C/C++ Compiler Language Extensions

1-204 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The pragma has two effects:

• It asserts to the compiler that data accesses are suitably aligned for
SIMD operation.

• It disables checking for loop-carried dependencies.

void copy(short *a, short *b) {

int i;

#pragma vector_for

for (i=0; i<100; i++)

a[i] = b[i];

}

In cases where vectorization is impossible (for example, if array a were
aligned on a word boundary but array b was not), the information given in
the assertion made by vector_for may still be put to good use in aiding
other optimizations.

General Optimization Pragmas

The compiler supports several pragmas which can change the optimization
level while a given module is being compiled. These pragmas must be used
globally, immediately prior to a function definition. The pragmas do not
just apply to the immediately following function; they remain in effect
until the end of the compilation, or until superseded by one of the follow-
ing optimize_ pragmas.

• #pragma optimize_off

This pragma turns off the optimizer, if it was enabled, meaning it
has the same effect as compiling with no optimization enabled.

• #pragma optimize_for_space

This pragma turns the optimizer back on, if it was disabled, or sets
the focus to give reduced code size a higher priority than high per-
formance, where these conflict.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-205
for SHARC Processors

Compiler

• #pragma optimize_for_speed

This pragma turns the optimizer back on, if it was disabled, or sets
the focus to give high performance a higher priority than reduced
code size, where these conflict.

• #pragma optimize_as_cmd_line

This pragma resets the optimization settings to be those specified
on the cc21k command line when the compiler was invoked.

These are code examples for the optimize_ pragmas.

#pragma optimize_off

void non_op() { /* non-optimized code */ }

#pragma optimize_for_space

void op_for_si() { /* code optimized for size */ }

#pragma optimize_for_speed

void op_for_sp() { /* code optimized for speed */ }

/* subsequent functions declarations optimized for speed */

Function Side-Effect Pragmas

The function side-effect pragmas (alloc, pure, const, regs_clobbered,
overlay and result_alignment) are used before a function declaration to
give the compiler additional information about the function in order to
enable it to improve the code surrounding the function call. These prag-
mas should be placed before a function declaration and should apply to
that function. For example,

#pragma pure

long dot(short*, short*, int);

C/C++ Compiler Language Extensions

1-206 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

#pragma alloc

The alloc pragma tells the compiler that the function behaves like the
library function “malloc”, returning a pointer to a newly allocated object.
An important property of these functions is that the pointer returned by
the function does not point at any other object in the context of the call.
In the example,

#define N 100

#pragma alloc

int *new_buf(void);

int *vmul(int *a, int *b) {

int i;

int *out = new_buf();

for (i = 0; i < N; ++i)

out[i] = a[i] * b[i];

return out;

}

the compiler can reorder the iterations of the loop because the #pragma
alloc tells it that a and b cannot overlap out.

The GNU attribute malloc is also supported with the same meaning.

#pragma const

The const pragma is a more restrictive form of the pure pragma. The
pragma tells the compiler that the function does not read from global vari-
ables as well as not writing to them or reading or writing volatile variables.
The result of the function is therefore a function of its parameters. If any
of the parameters are pointers, the function may not even read the data
they point at.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-207
for SHARC Processors

Compiler

#pragma misra_func(arg)

The misra_func(arg) pragma is placed before a function prototype. It is
used to support MISRA-C rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and
20.12. The arg indicates the type of function with respect to the
MISRA-C Rule. Functions following Rule 20.4 would take arg heap, 20.7
arg jmp, 20.8 arg handler, 20.9 arg io, 20.10 arg string_conv, 20.11 arg
system and 20.12 arg time.

#pragma noreturn

The noreturn pragma can be placed before a function prototype or defini-
tion. The pragma tells the compiler that the function to which it applies
will never return to its caller. For example, a function such as the standard
C function “exit” never returns.

The use of this pragma allows the compiler to treat all code following a
call to a function declared with the pragma as unreachable and hence
removable.

#pragma noreturn

void func() {

while(1);

}

main() {

func();

/* any code here will be removed */

}

#pragma pgo_ignore

The pgo_ignore pragma tells the compiler that no profile should be gener-
ated for this function, when using profile-guided optimization. This is
useful when the function is concerned with error checking or diagnostics.

C/C++ Compiler Language Extensions

1-208 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

extern const short *x, *y;

int dotprod(void) {

int i, sum = 0;

for (i = 0; i < 100; i++)

sum += x[i] * y[i];

return sum;

}

#pragma pgo_ignore

int check_dotprod(void) {

/* The compiler will not profile this comparison */

return dotprod() == 100;

}

#pragma pure

This pragma tells the compiler that the function does not write to any
global variables, and does not read or write any volatile variables. Its
result, therefore, is a function of its parameters or of global variables. If
any of the parameters are pointers, the function may read the data they
point at but it may not write it.

As this means the function call has the same effect every time it is called,
between assignments to global variables, the compiler does not need to
generate the code for every call.

Therefore, in this example,

#pragma pure

long sdot(short *, short *, int);

long tendots(short *a, short *b, int n) {

int i;

long s = 0;

for (i = 1; i < 10; ++i)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-209
for SHARC Processors

Compiler

s += sdot(a, b, n); // call can get hoisted out of loop

return s;}

the compiler can replace the ten calls to sdot with a single call made
before the loop.

#pragma regs_clobbered string

This pragma may be used with a function declaration or definition to
specify which registers are modified (or clobbered) by that function. The
string contains a list of registers and is case-insensitive.

When used with an external function declaration, this pragma acts as an
assertion telling the compiler something it would not be able to discover
for itself. In the example,

#pragma regs_clobbered "r4 r8 i4"

void f(void);

the compiler knows that only registers r4, r8 and i4 may be modified by
the call to f, so it may keep local variables in other registers across that
call.

The regs_clobbered pragma may also be used with a function definition,
or a declaration preceding a definition (when it acts as a command to the
compiler to generate register saves, and restores on entry and exit from the
function) to ensure it only modifies the registers in string.

For example,

#pragma regs_clobbered "r3 m4 r5 i12"

// Function "g" will only clobber r3, m4, r5, and i12

int g(int a) {

return a+3;

}

C/C++ Compiler Language Extensions

1-210 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

 The regs_clobbered pragma may not be used in conjunction with
#pragma interrupt. If both are specified, a warning is issued and
the regs_clobbered pragma is ignored.

To obtain optimum results with the pragma, it is best to restrict the clob-
bered set to be a subset of the default scratch registers. When considering
when to apply the regs_clobbered pragma, it may be useful to look at the
output of the compiler to see how many scratch registers were used.
Restricting the volatile set to these registers will produce no impact on the
code produced for the function but may free up registers for the caller to
allocate across the call site.

 The regs_clobbered pragma cannot be used in any way with
pointers to functions. A function pointer cannot be declared to
have a customized clobber set, and it cannot take the address of a
function which has a customized clobber set. The compiler raises
an error if either of these actions are attempted.

String Syntax

A regs_clobbered string consists of a list of registers, register ranges, or
register sets that are clobbered (Table 1-21). The list is separated by
spaces, commas, or semicolons.

A register is a single register name, which is the same as that which may
be used in an assembly file.

A register range consists of start and end registers which both reside in
the same register class, separated by a hyphen. All registers between the
two (inclusive) are clobbered.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-211
for SHARC Processors

Compiler

A register set is a name for a specific set of commonly clobbered regis-
ters that is predefined by the compiler. Table 1-21 shows defined
clobbered register sets.

When the compiler detects an illegal string, a warning is issued and the
default volatile set as defined in this compiler manual is used instead.

Unclobberable and Must Clobber Registers

There are certain caveats as to what registers may or must be placed in the
clobbered set (Table 1-21). On SHARC processors, certain registers may
not be specified in the clobbered set, as the correct operation of the func-
tion call requires their value to be preserved.

If the user specifies these registers in the clobbered set, a warning is issued
and they are removed from the specified clobbered set.

I6, I7, B6, B7, L6, L7

Table 1-21. Clobbered Register Sets

Set Registers

CCset ASTAT, ASTATy (ADSP-211xx, ADSP-2126x, ADSP-213xx, and
ADSP-214xx processors only)

SHADOWset All S regs, all Shadow MR regs, ASTATy. Always clobbered whether speci-
fied or not.

MRset MRF, MRB; shadow MRF, shadow MRB (ADSP-211xx, ADSP-2126x,
ADSP-213xx, and ADSP-214xx processors only)

DAG1scratch Members of DAG1 I, M, B and L-registers that are scratch by default

DAG2scratch Members of DAG2 I, M, B and L-registers that are scratch by default

DAGscratch All members of DAG1scratch and DAG2scratch

Dscratch All D-registers that are scratch by default, ASTAT

ALLscratch Entire default scratch register set

C/C++ Compiler Language Extensions

1-212 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Registers from these classes,

D, I, B, USTAT, LCNTR, PX, MR

may be specified in the clobbered set and code is generated to save them as
necessary.

The L-registers are required to be set to zero on entry and exit from a
function. A user may specify that a function clobbers the L-registers. If it
is a compiler-generated function, then it leaves the L-registers at zero at
the end of the function. If it is an assembly function, then it may clobber
the L-registers. In that case, the L-registers are re-zeroed after any call to
that function. The soft-wired registers M5,M6,M7 and M13,M14,M15 are reset
in an analogous manner.

The registers R2 and I12 are always clobbered. If the user specifies a func-
tion definition with the regs_clobbered pragma that does not contain
these registers, a warning is issued and these registers are added to the
clobbered set.

User-Reserved Registers

User-reserved registers, which are indicated via the -reserve switch
(on page 1-58), are never preserved in the function wrappers whether in
the clobbered set or not.

Function Parameters

Function calling conventions are visible to the caller and do not affect the
clobbered set that may be used on a function. For example,

#pragma regs_clobbered ""// clobbers nothing

void f(int a, int b);

void g() {

f(2,3);

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-213
for SHARC Processors

Compiler

The parameters a and b are passed in registers R4 and R8, respectively. No
matter what happens in function f, after the call returns, the values of R4
and R8 are still set to 2 and 3, respectively.

Function Results

The registers in which a function returns its result must always be clob-
bered by the callee and retain their new value in the caller. They may
appear in the clobbered set of the callee but it makes no difference to the
generated code—the return registers are not saved and restored. Only the
return registers used by the particular function return type is special.
Return registers used by different return types are treated in the clobbered
list in the conventional way.

For example,

typedef struct { int x; int y; } Point;

typedef struct { int x[10]; } Big;

int f(); // Result in R0. R1 may be preserved across call

Point g();// Result in R0 and R1

Big f(); // Result pointer in R0, R1 may be preserved

across call.

#pragma regs_clobbered_call string

This pragma may be applied to a statement to indicate that the call within
the statement uses a modified volatile register set. The pragma is closely
related to #pragma regs_clobbered, but avoids some of the restrictions
that relate to that pragma.

These restrictions arise because the regs_clobbered pragma applies to a
function’s declaration—when the call is made, the clobber set is retrieved
from the declaration automatically. This is not possible when the

C/C++ Compiler Language Extensions

1-214 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

declaration is not available, because the function being called is not
directly tied to a declaration of a specific function. This affects:

• pointers to functions

• class methods

• pointers to class methods

• virtual functions

In such cases, the regs_clobbered_call pragma can be used at the call site
to inform the compiler directly of the volatile register set to be used dur-
ing the call.

The pragma’s syntax is as follows:

#pragma regs_clobbered_call clobber_string
statement

where clobber_string follows the same format as for the regs_clobbered
pragma and statement is the C statement containing the call expression.

There must be only a single call within the statement; otherwise, the state-
ment is ambiguous. For example,

#pragma regs_clobbered "r0 r1 r2 i12"

int func(int arg) { /* some code */ }

int (*fnptr)(int) = func;

int caller(int value) {

int r;

#pragma regs_clobbered_call "r0 r1 r2 i12"

r = (*fnptr)(value);

return r;

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-215
for SHARC Processors

Compiler

 When you use the regs_clobbered_call pragma, you must ensure
that the called function does indeed only modify the registers listed
in the clobber set for the call—the compiler does not check this for
you. It is valid for the callee to clobber less than is listed in the
call’s clobber set. It is also valid for the callee to modify registers
outside of the call’s clobber set, as long as the callee saves the values
first and restores them before returning to the caller.

The following examples show this.

Example 1:

#pragma regs_clobbered "r0 r1 r2 i12"

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1 r2 i12"

callee(); // Okay - clobber sets match

Example 2:

#pragma regs_clobbered "r0 r2 i12"

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1 r2 i12"

callee(); // Okay - callee clobber set is a subset

// of call's set

Example 3:

#pragma regs_clobbered "r0 r1 r2 i12"

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r2 i12"

callee(); // Error - callee clobbers more than

// indicated by call.

C/C++ Compiler Language Extensions

1-216 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Example 4:

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1 r2 i12"

callee(); // Error - callee uses default set larger

// than indicated by call.

Limitations

Pragma regs_clobbered_call may not be used on constructors or
destructors of C++ classes.

The pragma only applies to the call in the immediately-following state-
ment. If the immediately-following line contains more than one
statement, the pragma only applies to the first statement on the line:

#pragma regs_clobbered "r0 r1 r2 i12"

x = foo(); y = bar();// only "x = foo();" is affected by

// the pragma.

Similarly, if the immediately-following line is a sequence of declarations
that use calls to initialize the variables, then only the first declaration is
affected:

#pragma regs_clobbered "r0 r1 r2 i12"

int x = foo(), y = bar();// only "x = foo()" is affected

// by the pragma.

Moreover, if the declaration with the call-based initializer is not the first
in the declaration list, the pragma will have no effect:

#pragma regs_clobbered "r0 r1 r2 i12"

int w = 4, x = foo(); y = bar();// pragma has no effect

// on "w = 4".

The pragma has no effect on function calls that get inlined. Once a func-
tion call is inlined, the inlined code obeys the clobber set of the function

VisualDSP++ 5.0 C/C++ Compiler Manual 1-217
for SHARC Processors

Compiler

into which it has been inlined. It does not continue to obey the clobber set
that will be used if an out-of-line copy is required.

#pragma overlay

When compiling code which involves one function calling another in the
same source file, the compiler optimizer can propagate register informa-
tion between the functions. This means that it can record which scratch
registers are clobbered over the function call. This can cause problems
when compiling overlaid functions, as the compiler may assume that cer-
tain scratch registers are not clobbered over the function call, but they are
clobbered by the overlay manager. The #pragma overlay, when placed on
the definition of a function, will disable this propagation of register infor-
mation to the function’s callers.

For example,

#pragma overlay

int add(int a, int b)

{

// callers of function add() assume it clobbers

// all scratch registers

return a+b;

}

#pragma result_alignment (n)

This pragma asserts that the pointer or integer returned by the function
has a value that is a multiple of n.

The pragma is often used in conjunction with the #pragma alloc of
custom-allocation functions that return pointers that are more strictly
aligned than could be deduced from their type. The following example
shows a use of the pragma. Note that this pragma will not change the

C/C++ Compiler Language Extensions

1-218 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

alignment of data returned by the declared function. It is a guideline to
the compiler.

#pragma result_alignment(8)

int * alloc_align8_data(unsigned long size);

Class Conversion Optimization Pragmas

The class conversion optimization pragmas (param_never_null,
suppress_null_check) allow the compiler to generate more efficient code
when converting class pointers from a pointer-to-derived-class to a
pointer-to-base-class, by asserting that the pointer to be converted will
never be a null pointer. This allows the compiler to omit the null check
during conversion.

#pragma param_never_null param_name [...]

This pragma must immediately precede a function definition. It specifies a
name or a list of space-separated names, which must correspond to the
parameter names declared in the function definition. It checks that the
named parameter is a class pointer type. Using this information it will
generate more efficient code for a conversion from a pointer to a derived
class to a pointer to a base class. It removes the need to check for the null
pointer during the conversion.

For example,

#include <iostream>

using namespace std;

class A {

int a;

};

class B {

int b;

};

class C: public A, public B {

VisualDSP++ 5.0 C/C++ Compiler Manual 1-219
for SHARC Processors

Compiler

int c;

};

C obj;

B *bpart = &obj;

bool fail = false;

#pragma param_never_null pc

void func(C *pc)

{

B *pb;

pb = pc; /* without pragma the code generated has to

check for NULL */

if (pb != bpart)

fail = true;

}

int main(void)

{

func(&obj);

if (fail)

cout << "Test failed" << endl;

else

cout << "Test passed" << endl;

return 0;

}

#pragma suppress_null_check

This pragma must immediately precede an assignment of two pointers or a
declaration list.

If the pragma precedes an assignment it indicates that the second operand
pointer is not null and generates more efficient code for a conversion from

C/C++ Compiler Language Extensions

1-220 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

a pointer to a derived class to a pointer to a base class. It removes the need
to check for the null pointer before assignment.

On a declaration list it marks all variables as not being the null pointer. If
the declaration contains an initialization expression, that expression is not
checked for null.

For example,

#include <iostream>

using namespace std;

class A {

int a;

};

class B {

int b;

};

class C: public A, public B {

int c;

};

C obj;

B *bpart = &obj;

bool fail = false;

void func(C *pc)

{

B *pb;

#pragma suppress_null_check

pb = pc; /* without pragma the code generated has to

check for NULL */

if (pb != bpart)

fail = true;

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-221
for SHARC Processors

Compiler

void func2(C *pc)

{

#pragma suppress_null_check

B *pb = pc, *pb2 = pc; /* pragma means these initializations

need not check for NULL. It also marks pb and

pb2

as never being NULL, so the compiler will not

generate NULL checks in class conversions using

these pointers. */

if (pb != bpart || pb2 != bpart)

fail = true;

}

int main(void)

{

func(&obj);

func2(&obj);

if (fail)

cout << "Test failed" << endl;

else

cout << "Test passed" << endl;

return 0;

}

Template Instantiation Pragmas

The template instantiation pragmas (instantiate, do_not_instantiate
and can_instantiate) give fine-grain control over where (that is, in which
object file) the individual instances of template functions, and member
functions and static members of template classes are created. The creation
of these instances from a template is called instantiation. As templates are
a feature of C++, these pragmas are allowed only in -c++ mode.

Refer to “Compiler C++ Template Support” on page 1-381 for more
information on how the compiler handles templates.

C/C++ Compiler Language Extensions

1-222 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

These pragmas take the name of an instance as a parameter, as shown in
Table 1-22.

If instantiation pragmas are not used, the compiler chooses object files in
which to instantiate all required instances automatically during the
pre-linking process.

#pragma instantiate instance

This pragma requests the compiler to instantiate instance in the current
compilation.

For example,

#pragma instantiate class Stack<int>

causes all static members and member functions for the int instance of a
template class Stack to be instantiated, whether they are required in this
compilation or not. The example,

#pragma instantiate void Stack<int>::push(int)

causes only the individual member function Stack<int>::push(int) to be
instantiated.

Table 1-22. Instance Names

Name Parameter

a template class name A<int>

a template class declaration class A<int>

a member function name A<int>::f

a static data member name A<int>::I

a static data declaration int A<int>::I

a member function declaration void A<int>::f(int, char)

a template function declaration char* f(int, float)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-223
for SHARC Processors

Compiler

#pragma do_not_instantiate instance

This pragma directs the compiler not to instantiate instance in the cur-
rent compilation. For example,

#pragma do_not_instantiate int Stack<float>::use_count

prevents the compiler from instantiating the static data member
Stack<float>::use_count in the current compilation.

#pragma can_instantiate instance

This pragma tells the compiler that if instance is required anywhere in
the program, it should be instantiated in this compilation.

 Currently, this pragma forces the instantiation even if it is not
required anywhere in the program. Therefore, it has the same effect
as #pragma instantiate.

Header File Control Pragmas

The header file control pragmas (hdrstop, no_implicit_inclusion,
no_pch, once, and system_header) help the compiler to handle header
files.

#pragma hdrstop

This pragma is used with the -pch (precompiled header) switch
(on page 1-54.) The switch tells the compiler to look for a precompiled
header (.pch file), and, if it cannot find one, to generate a file for use on a
later compilation. The .pch file contains a snapshot of all the code preced-
ing the header stop point.

By default, the header stop point is the first non-preprocessing token in
the primary source file. The #pragma hdrstop can be used to set the point
earlier in the source file.

C/C++ Compiler Language Extensions

1-224 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

In the example,

#include "standard_defs.h"

#include "common_data.h"

#include "frequently_changing_data.h"

int i;

the default header stop point is start of the declaration of i. This might
not be a good choice, as in this example, “frequently_changing_data.h”
might change frequently, causing the .pch file to be regenerated often,
and, therefore, losing the benefit of precompiled headers. The hdrstop
pragma can be used to move the header stop to a more appropriate place.

For the following example,

#include "standard_defs.h"

#include "common_data.h"

#pragma hdrstop

#include "frequently_changing_data.h"

int i;

the precompiled header file would not include the contents of
frequently_changing_data.h, as it is included after the hdrstop pragma,
and so the precompiled header file would not need to be regenerated each
time frequently_changing_data.h was modified.

#pragma no_implicit_inclusion

When the -c++ switch (on page 1-20) is used for each included .h file, the
compiler attempts to include the corresponding .c or .cpp file. This is
called implicit inclusion.

If #pragma no_implicit_inclusion is placed in an .h file, the compiler
does not implicitly include the corresponding .c or .cpp file with the -c++

VisualDSP++ 5.0 C/C++ Compiler Manual 1-225
for SHARC Processors

Compiler

switch. This behavior only affects the .h file with #pragma
no_implicit_inclusion within it and the corresponding .c or .cpp files.

For example, if there are the following files

t.c

which contains

#include "m.h"

and m.h and m.c are both empty, then

cc21k -c++ t.c -M

shows the following dependencies for t.c:

t.doj: t.c

t.doj: m.h

t.doj: m.c

If the following line is added to m.h,

#pragma no_implicit_inclusion

running the compiler as before would not show m.c in the dependencies
list, such as:

t.doj: t.c

t.doj: m.h

#pragma no_pch

This pragma overrides the -pch (precompiled headers) switch
(on page 1-54) for a particular source file. It directs the compiler not to
look for a .pch file and not to generate one for the specified source file.

C/C++ Compiler Language Extensions

1-226 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

#pragma once

This pragma, which should appear at the beginning of a header file, tells
the compiler that the header is written in such a way that including it sev-
eral times has the same effect as including it once. For example,

#pragma once

#ifndef FILE_H

#define FILE_H

... contents of header file ...

#endif

 In this example, the #pragma once is actually optional because the
compiler recognizes the #ifndef/#define/#endif idiom and does
not reopen a header that uses it.

#pragma system_header

This pragma identifies an include file as a file supplied with Visu-
alDSP++. The VisualDSP++ compiler makes use of this information to
help optimize uses of the supplied library functions and inline functions
that these files define. The pragma should not be used in user application
source.

Fixed-Point Arithmetic Pragmas

The compiler supports several pragmas which can change the semantics of
arithmetic on the native fixed-point type, fract. These are #pragma
FX_CONTRACT {ON|OFF} and #pragma FX_ROUNDING_MODE {TRUNCA-
TION|BIASED|UNBIASED}. In addition, #pragma STDC FX_FULL_PRECISION
{ON|OFF|DEFAULT} and #pragma STDC FX_FRACT_OVERFLOW {SAT|DEFAULT}
are accepted by the compiler but have no effect on generated code.

These pragmas may be used at file scope, in which case they apply to all
following functions until another pragma is respecified to change the
pragma state. Alternatively, they may be specified in a { } delimited scope

VisualDSP++ 5.0 C/C++ Compiler Manual 1-227
for SHARC Processors

Compiler

(or compound statement), where they will temporarily override the
current setting of the pragma’s state until the end of the scope.

#pragma FX_CONTRACT {ON|OFF}

The FX_CONTRACT {ON|OFF} pragma may be used to control the precision
of intermediate results of calculations on the native fixed-point type
fract. If FX_CONTRACT is ON, where an intermediate result is not stored
back to a named variable, the compiler may choose to keep the intermedi-
ate result in greater precision than that mandated by the ISO/IEC C
Technical Report 18037. It will do this where maintaining the higher pre-
cision allows more efficient code to be generated.

When FX_CONTRACT is OFF, the compiler will adhere strictly to the
ISO/IEC Technical Report 18037 and will convert all intermediate results
to the type dictated in this standard before use.

The following example shows the use of this pragma.

fract mulsu(fract f1, unsigned fract f2) {

#pragma FX_CONTRACT ON

return f1 * f2; /* creates signed-unsigned multiply */

}

The default state of the FX_CONTRACT pragma is ON.

#pragma FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED}

The FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED} pragma may be
used to control the rounding mode used during calculations on the native
fixed-point type fract.

When FX_ROUNDING_MODE is set to TRUNCATION, the exact mathematical
result of a computation is rounded by truncating the least significant bits
beyond the precision of the result type. This is equivalent to rounding
towards negative infinity.

C/C++ Compiler Language Extensions

1-228 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

When FX_ROUNDING_MODE is set to BIASED, the exact mathematical result of
a computation is rounded to the nearest value that fits in the result type. If
the exact result lies exactly half-way between two consecutive values in the
result type, the result is rounded up to the higher one.

When FX_ROUNDING_MODE is set to UNBIASED, the exact mathematical result
of a computation is rounded to the nearest value that fits in the result
type. If the exact result lies exactly half-way between two consecutive val-
ues in the result type, the result is rounded to the even value.

The following example shows the use of this pragma.

fract divide_biased(fract f1, fract f2) {

#pragma FX_ROUNDING_MODE BIASED

return f1 / f2; /* creates divide with biased rounding */

}

The default state of the FX_ROUNDING_MODE pragma is TRUNCATION.

#pragma STDC FX_FULL_PRECISION {ON|OFF|DEFAULT}

The STDC FX_FULL_PRECISION {ON|OFF|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to gener-
ate faster code for fixed-point arithmetic, but produce lower-accuracy
results.

The VisualDSP++ compiler always produces full-accuracy results. There-
fore, although the pragma is accepted by the compiler, the code generated
will be the same regardless of the state of FX_FULL_PRECISION.

#pragma STDC FX_FRACT_OVERFLOW {SAT|DEFAULT}

The STDC FX_FRACT_OVERFLOW {SAT|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate code that does not saturate fract-typed results on overflow.

fract arithmetic with the VisualDSP++ compiler always saturates on
overflow. Therefore, although the pragma is accepted by the compiler,

VisualDSP++ 5.0 C/C++ Compiler Manual 1-229
for SHARC Processors

Compiler

the code generated will be the same regardless of the state of
FX_FRACT_OVERFLOW.

Inline Control Pragmas

The compiler supports two pragmas to control the inlining of code. These
pragmas are #pragma always_inline, #pragma inline and #pragma
never_inline.

#pragma always_inline

This pragma may be applied to a function definition to indicate to the
compiler that the function should always be inlined, and never called “out
of line”. The pragma may only be applied to function definitions with the
inline qualifier, and may not be used on functions with variable-length
argument lists. It is invalid for function definitions that have interrupt-
related pragmas associated with them.

If the function in question has its address taken, the compiler cannot guar-
antee that all calls are inlined, so a warning is issued.

See “Function Inlining” on page 1-133 for details of pragma precedence
during inlining.

The following are examples of the always_inline pragma.

int func1(int a) { // only consider inlining

return a + 1; // if -Oa switch is on

}

inline int func2(int b) {// probably inlined, if optimizing

return b + 2;

}

#pragma always_inline

inline int func3(int c) {// always inline, even unoptimized

return c + 3;

C/C++ Compiler Language Extensions

1-230 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

}

#pragma always_inline

int func4(int d) {// error: not an inline function

return d + 4;

}

#pragma inline

This pragma instructs the compiler to inline the function if it is consid-
ered desirable. The pragma is equivalent to specifying the inline
keyword, but may be applied when the inline keyword is not allowed
(such as when compiling in MISRA-C mode). For more information, see
“MISRA-C Compiler” on page 1-115.

#pragma inline

int func5(int a, int b) { /* can be inlined */

return a / b;

}

#pragma never_inline

This pragma may be applied to a function definition to indicate to the
compiler that function should always be called “out of line”, and that the
function’s body should never be inlined.

This pragma may not be used on function definitions that have the inline
qualifier. See “Function Inlining” on page 1-133 for details of pragma
precedence during inlining.

These are code examples for the never_inline pragma.

#pragma never_inline

int func5(int e) {// never inlined, even with -Oa switch

return e + 5;

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-231
for SHARC Processors

Compiler

#pragma never_inline

inline int func5(int f) {// error: inline function

return f + 6;

}

Linking Control Pragmas

Linking pragmas (linkage_name, core, section and weak_entry) change
how a given global function or variable is viewed during the linking stage.

#pragma linkage_name identifier

This pragma associates the identifier with the next external function decla-
ration. It ensures that the identifier is used as the external reference,
instead of following the compiler’s usual conventions. For example,

_Pragma("linkage_name __realfuncname")

void funcname ();

#pragma core

When building a project that targets multiple processors or multiple cores
on a processor, a link stage may produce executables for more than one
core or processor. The interprocedural analysis (IPA) framework requires
that some conventions be adhered to in order to successfully perform its
analyses for such projects.

Because the IPA framework collects information about the whole pro-
gram, including information on references which may be to definitions
outside the current translation unit, the IPA framework must be able to
distinguish these definitions and their references without ambiguity.

If any confusion were allowed about which definition a reference refers to,
then the IPA framework could potentially cause bad code to be generated,
or could cause translation units in the project to be continually recom-
piled ad infinitum. It is the global symbols that are really relevant in this
respect. The IPA framework will correctly handle locals and static symbols

C/C++ Compiler Language Extensions

1-232 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

because multiple definitions are not possible within the same file, so there
can be no ambiguity.

In order to disambiguate all references and the definitions to which they
refer, it is necessary to have a unique name for each definition within a
given project. It is illegal to define two different functions or variables
with the same name. This is illegal in single-core projects because this
would lead to multiple definitions of a symbol and the link would fail. In
multi-core projects, however, it may be possible to link a project with
multiple definitions because one definition could be linked into each link
project, resulting in a valid link. Without detailed knowledge of what
actions the linker had performed, however, the IPA framework would not
be able to disambiguate such multiple definitions. For this reason, to use
the IPA framework, it is up to you to ensure unique names even in proj-
ects targeting multiple cores or processors.

There are a few cases for which it is not possible to ensure unique names
in multi-core or multi-processor projects. One such case is main. Each pro-
cessor or core will have its own main function, and these need to be
disambiguated for the IPA framework to be able to function correctly.
Another case is where a library (or the C run-time startup) references a
symbol which the user may wish to define differently for each core.

For this reason, VisualDSP++ 5.0 supports the #pragma core(corename).

This pragma can be provided immediately prior to a definition or a decla-
ration. This pragma allows you to give a unique identifier to each
definition. It also allows you to indicate to which definition each reference
refers. The IPA framework will use this core identifier to distinguish all
instances of symbols with the same name and will therefore be able to
carry out its analyses correctly.

 Note that the corename specified should only consist of alphanu-
meric characters. Also note that the corename is case sensitive.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-233
for SHARC Processors

Compiler

The pragma should be used:

• On every definition (not in a library) for which there needs to be a
distinct definition for each core.

• On every declaration of a symbol (not in a library) for which the
relevant definition includes the use of #pragma core. The core
specified for a declaration must agree with the core specified for the
definition.

It should be noted that the IPA framework will not need to be informed of
any distinction if there are two identical copies of the same function or
data with the same name. Functions or data that come from objects and
that are duplicated in memory local to each core, for example, will not
need to be distinguished. The IPA framework does not need to know
exactly which instance each reference will get linked to because the infor-
mation processed by the framework is identical for each copy. Essentially,
the pragma only needs to be specified on items where there will be differ-
ent functions or data with the same name incorporated into the executable
for each core.

Here is an example of #pragma core usage to distinguish two different
main functions:

/* foo.c */

#pragma core("coreA")

int main(void) {

/* Code to be executed by core A */

}

/* bar.c */

#pragma core("coreB")

int main(void) {

/* Code to be executed by core B */

}

C/C++ Compiler Language Extensions

1-234 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Omitting either instance of the pragma will cause the IPA framework to
issue a fatal error indicating that the pragma has been omitted on at least
one definition.

Here is an example that will cause an error to be issued because the name
contains a non-alphanumeric character:

#pragma core("core/A")

int main(void) {

/* Code to executed on core A */

}

Here is an example where the pragma needs to be specified on a declara-
tion as well as the definitions. There is a library which contains a reference
to a symbol which is expected to be defined for each core. Two more mod-
ules define the main functions for the two cores. Two further modules,
each only used by one of the cores, makes a reference to this symbol, and
therefore requires use of the pragma. For example,

/* libc.c */

#include <stdio.h>

extern int core_number;

void print_core_number(void) {

printf("Core %d\n", core_number);

}

/* maina.c */

extern void fooa(void)

#pragma core("coreA")

int core_number = 1;

#pragma core("coreA")

int main(void) {

/* Code to be executed by core A */

print_core_number();

fooa();

}

/* mainb.c */

VisualDSP++ 5.0 C/C++ Compiler Manual 1-235
for SHARC Processors

Compiler

extern void foob(void)

#pragma core("coreB")

int core_number = 2;

#pragma core("coreB")

int main(void) {

/* Code to be executed by core B */

print_core_number();

foob();

}

/* fooa.c */

#include <stdio.h>

#pragma core("coreA")

extern int core_number;

void fooa(void) {

printf("Core: is core%c\n", ‘A’ - 1 + core_number);

}

/* foob.c */

#include <stdio.h>

#pragma core("coreB")

extern int core_number;

void fooa(void) {

printf("Core: is core%c\n", ‘A’ - 1 + core_number);

}

In general, it will only be necessary to use #pragma core in this manner
when there is a reference from outside the application (in a library, for
example) where there is expected to be a distinct definition provided for
each core, and where there are other modules that also require access to
their respective definition. Notice also that the declaration of core_number
in lib.c does not require use of the pragma because it is part of a transla-
tion unit to be included in a library.

A project that includes more than one definition of main will undergo
some extra checking to catch problems that would otherwise occur in the
IPA framework. For any non-template symbol that has more than one

C/C++ Compiler Language Extensions

1-236 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

definition, the tool chain will fault any definitions that are outside librar-
ies that do not specify a core name with the pragma. This check does not
affect the normal behavior of the prelinker with respect to templates and
in particular the resolution of multiple template instantiations.

To clarify:

Inside a library, #pragma core is not required on declarations or defini-
tions of symbols that are defined more than once. However, a library can
be responsible for forcing the application to define a symbol more than
once (that is, once for each core). In this case, the definitions and declara-
tions require the pragma to be used outside the library to distinguish the
multiple instances.

It should be noted that the tool chain cannot check that uses of #pragma
core are consistent. If you use the pragma inconsistently or ambiguously
then the IPA framework may end up causing incorrect code to be gener-
ated or causing continual recompilation of the application’s files.

It is also important to note that the pragma does not change the linkage
name of the symbol it is applied to in any way.

For more information on IPA, see “Interprocedural Analysis” on
page 1-84.

 #pragma retain_name

This pragma indicates that the function or variable declaration that fol-
lows the pragma is not removed even though it apparently has no uses.
Normally, when Interprocedural Analysis or linker elimination are
enabled, the VisualDSP++ tools will identify unused functions and vari-
ables, and will eliminate them from the resulting executable to reduce
memory requirements. The retain_name pragma instructs the tools to
retain the specified symbol, regardless.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-237
for SHARC Processors

Compiler

The following example shows how to use this pragma.

int delete_me(int x) {

return x-2;

}

#pragma retain_name

int keep_me(int y) {

return y+2;

}

int main(void) {

return 0;

}

Since the program has no uses for either delete_me() or keep_me(), the
compiler removes delete_me(), but keeps keep_me() because of the
pragma. You do not need to specify retain_name for main().

The pragma is only valid for global symbols. It is not valid for the follow-
ing kinds of symbols:

• Symbols with static storage class

• Function parameters

• Symbols with auto storage class (locals). These are allocated on the
stack at run-time.

• Members/fields within structs/unions/classes

• Type declarations

For more information on IPA, see “Interprocedural Analysis” on
page 1-84.

C/C++ Compiler Language Extensions

1-238 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

#pragma section/#pragma default_section

The section pragmas provide greater control over the sections in which the
compiler places symbols.

The section(SECTSTRING [, QUALIFIER, ...]) pragma is used to over-
ride the target section for any global or static symbol immediately
following it. The pragma allows greater control over section qualifiers
compared to the section keyword.

The default_section(SECTKIND [, SECTSTRING [, QUALIFIER, ...]])
pragma is used to override the default sections in which the compiler is
placing its symbols.

The default sections fall into the categories listed under SECTKIND. Except
for the STI category, this pragma remains in force for a section category
until its next use with that particular category, or the end of the file. The
STI is an exception, in that only one STI default_section can be specified
and its scope is the entire file scope, not just the part following the use of
STI. A warning is issued if several STI sections are specified in the same
file.

The omission of a section name results in the default section being reset to
be the section that was in use at the start of the file, which can be either a
compiler default value, or a value set by the user through the -section
command line switch (for example, -section SECTKIND=SECTSTRING).

In all cases (including STI), the default_section pragma overwrites the
value specified with the -section command line switch.

#pragma default_section(DATA, "NEW_DATA1")

int x;

#pragma default_section(DATA, "NEW_DATA2")

int x=5;

#pragma default_section(DATA, "NEW_DATA3")

int x;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-239
for SHARC Processors

Compiler

In this case x is placed in NEW_DATA2, because the definition of x is within
its scope.

A default_section pragma can only be used at global scope, where global
variables are allowed.

SECTKIND can be one of the keywords found in Table 1-23.

SECTSTRING is the double-quoted string containing the section name,
exactly as it appears in the assembler file.

Changing one section kind has no effect on other section kinds. For
instance, even though STRINGS and CONSTDATA are by default placed by the
compiler in the same section, if CONSTDATA default_section is changed,
the change has no effect on the STRINGS data.

Table 1-23. SECTKIND Keywords

Keyword Description

CODE Section is used to contain procedures and functions

ALLDATA Shorthand notation for DATA, CONSTDATA, BSS, STRINGS and AUTOINIT

DATA Section is used to contain “normal data”

CONSTDATA Section is used to contain read-only data

BSZ Section is used to contain uninitialized data

SWITCH Section is used to contain jump-tables to implement C/C++ switch state-
ments

VTABLE Section is used to contain C++ virtual-function tables

STI Section that contains code required to be executed by C++ initializations.
For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-313.

STRINGS Section that stores string literals

AUTOINIT Contains data used to initialize aggregate autos.

PM_DATA Section is used to contain normal data declared with _pm keyword

PM_CONSTDATA Section is used to contain read-only data declared with _pm keyword

C/C++ Compiler Language Extensions

1-240 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Please note that ALLDATA is not a real section, but a rather pseudo-kind
that stands for DATA, CONSTDATA, STRINGS, AUTOINIT and BSZ, and changing
ALLDATA is equivalent to changing all of these section kinds. Therefore,

#pragma default_section(ALLDATA, params)

is equivalent with the sequence:

#pragma default_section(DATA, params)

#pragma default_section(CONSTDATA, params)

#pragma default_section(STRINGS, params)

#pragma default_section(AUTOINIT, params)

#pragma default_section(BSZ, params)

QUALIFIER can be one of the keywords found in Table 1-24.

Table 1-24. QUALIFIER Keywords

Keyword Description

PM Section is located in program memory

DM Section is located in data memory

ZERO_INIT Section is zero-initialized at program startup

NO_INIT Section is not initialized at program startup

RUNTIME_INIT Section is user-initialized at program startup

DOUBLE32 Section may contain 32-bit but not 64-bit doubles

DOUBLE64 Section may contain 64-bit but not 32-bit doubles

DOUBLEANY Section may contain either 32-bit or 64-bit doubles

SW Code is short-word (ADSP-214xx only).

NW Code is normal-word (ADSP-214xx only).

DMAONLY Section is located in memory that can only be accessed by DMA. On
ADSP-2126x and certain ADSP-2136x processors, this keyword applies
to external memory.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-241
for SHARC Processors

Compiler

There may be any number of comma-separated section qualifiers within
such pragmas, but they must not conflict with one another. Qualifiers
must also be consistent across pragmas for identical section names, and
omission of qualifiers is not allowed even if at least one such qualifier has
appeared in a previous pragma for the same section. If any qualifiers have
not been specified for a particular section by the end of the translation
unit, the compiler uses default qualifiers appropriate for the target proces-
sor. The following specifies that f() should be placed in a section "foo",
which is DOUBLEANY qualified:

#pragma section("foo", DOUBLEANY)

void f() {}

The compiler always tries to honor the section pragma as its highest pri-
ority, and the default_section pragma is always the lowest priority.

For example, the following code results in function f being placed in sec-
tion foo:

#pragma default_section(CODE, "bar")

#pragma section("foo")

void f() {}

The following code results in x being placed in section zeromem:

#pragma default_section(BSZ, "zeromem")

int x;

However, the following example does not result in the variable a being
placed in section onion because it was declared with the __pm qualifier and
therefore is placed in the PM data section:

#pragma default_section(DATA, "onion")
__pm int a = 4;

C/C++ Compiler Language Extensions

1-242 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

If the PM data is explicitly set as in this example,

#pragma default_section(PM_DATA, "pm_onion")

#pragma default_section(DATA, "onion")

__pm int a = 4;

then the variable a gets placed in the pm_onion section.

The following code results in code in section "foo" being compiled as
short-word code (ADSP-214xx processors only):

#pragma section("foo", SW)

The following results in code in section "foo2" being compiled as normal
word code (ADSP-214xx processors only):

#pragma default_section(CODE,"foo2", NW)

 In cases where a C++ STL object must be placed in a specific mem-
ory section, using #pragma section/default_section won't work.
Instead, a non-default heap must be used, as explained in “Allocat-
ing C++ STL Objects to a Non-Default Heap”.

#pragma file_attr(“name[=value]” [, “name[=value]” [...]])

This pragma directs the compiler to emit the specified attributes when it
compiles a file containing the pragma. Multiple #pragma file_attr direc-
tives are allowed in one file.

If “=value” is omitted, the default value of “1” will be used.

 The value of an attribute is all the characters after the '=' symbol
and before the closing '”' symbol, including spaces. A warning will
be emitted by the compiler if you have a preceding or trailing space
as an attribute value, as this is likely to be a mistake.

See “File Attributes” on page 1-387 for more information on using
attributes.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-243
for SHARC Processors

Compiler

 #pragma weak_entry

This pragma may be used before a static variable or function declaration
or definition. It applies to the function/variable declaration or definition
that immediately follows the pragma. Use of this pragma causes the com-
piler to generate the function or variable definition with weak linkage.

The following are example uses of the pragma weak_entry directive.

#pragma weak_entry

int w_var = 0;

#pragma weak_entry

void w_func(){}

 When a symbol definition is weak, it may be discarded by the
linker in favor of another definition of the same symbol. Therefore,
if any modules in the application make use of the weak_entry
pragma, interprocedural analysis is disabled because it would be
unsafe for the compiler to predict which definition will be selected
by the linker. For more information, see “Interprocedural Analysis”
on page 1-84.

Diagnostic Control Pragmas

The compiler supports #pragma diag which allows selective modification
of the severity of compiler diagnostic messages.

The directive has three forms:

• Modify the severity of specific diagnostics

• Modify the behavior of an entire class of diagnostics

• Save or restore the current behavior of all diagnostics

C/C++ Compiler Language Extensions

1-244 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Modifying the Severity of Specific Diagnostics

This form of the directive has the following syntax:

#pragma diag(ACTION: DIAG [, DIAG ...][: STRING])

The action: qualifier can be one of the keywords found in Table 1-25.

If not in MISRA-C mode, the diag qualifier can be one or more
comma-separated compiler diagnostic numbers without the preceding
“cc” or zeros. The choice of error numbers is limited to those that may
have their severity overridden (such as those that are displayed with a
“{D}” in the error message).

In addition, some diagnostics are global (for example, diagnostics emitted
by the compiler back-end after lexical analysis and parsing, or before pars-
ing begins), and these global diagnostics cannot have their severity
overridden by the diagnostic control pragmas. To modify the severity of
global diagnostics, use the diagnostic control switches. For more informa-
tion, see “-W” on page 1-66.

In MISRA-C mode, the diag qualifier is a list of MISRA-C rule numbers
in the form misra_rule_number_6_3 and misra_rule_number_19_4 for
rules 6.3 and 19.4, and so on. Special cases are rules 10.1 and 10.2, which
are both split into four distinct rule checks. For example, 10.1(c) should
be stated as misra_rule_10_1_c.

Table 1-25. Keywords for Action Qualifier

Keyword Action

suppress Suppresses all instances of the diagnostic

remark Changes the severity of the diagnostic to a remark.

warning Changes the severity of the diagnostic to a warning.

error Changes the severity of the diagnostic to an error.

restore Restores the severity of the diagnostic to what it was originally at the start
of compilation after all command-line options were processed.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-245
for SHARC Processors

Compiler

The third optional argument is a string-literal to insert a comment regard-
ing the use of the #pragma diag.

Modifying the Behavior of an Entire Class of Diagnostics

This form of the directive has the following syntax, which is not allowed
when in MISRA-C mode:

#pragma diag(ACTION)

The effects are as follows:

• #pragma diag(errors)

This pragma can be used to inhibit all subsequent warnings and
remarks (equivalent to the -w switch option).

• #pragma diag(remarks)

This pragma can be used to enable all subsequent remarks and
warnings (equivalent to the -Wremarks switch option.

• #pragma diag(warnings)

This pragma can be used to restore the default behavior when nei-
ther -w or -Wremarks is specified, which is to display warnings but
inhibit remarks.

Saving or Restoring the Current Behavior of All Diagnostics

This form has the following syntax:

#pragma diag(ACTION)

The effects are as follows:

• #pragma diag(push)

This pragma may be used to store the current state of the severity
of all diagnostic error messages.

C/C++ Compiler Language Extensions

1-246 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• #pragma diag(pop)

This pragma restores all diagnostic error messages that was previ-
ously saved with the most recent push.

All #pragma diag(push) directives must be matched with the same num-
ber of #pragma diag(pop) directives in the overall translation unit, but
need not be matched within individual source files, unless in MISRA-C
mode. Note that the error threshold (set by the remarks, warnings or
errors keywords) is also saved and restored with these directives.

The duration of such modifications to diagnostic severity are from the
next line following the pragma to either the end of the translation unit,
the next #pragma diag(pop) directive, or the next overriding #pragma
diag() directive with the same error number. These pragmas may be used
anywhere and are not affected by normal scoping rules.

All command-line overrides to diagnostic severity are processed first and
any subsequent #pragma diag() directives will take precedence, with the
restore action changing the severity back to that at the start of compilation
after processing the command-line switch overrides.

 Note that the directives to modify specific diagnostics are singular
(for example, “error”), and the directives to modify classes of diag-
nostics are plural (for example, “errors”).

Memory Bank Pragmas

The memory bank pragmas provide additional performance characteristics
for the memory areas used to hold code and data for the function.

By default, the compiler assumes that there are no external costs associated
with memory accesses. This strategy allows optimal performance when the
code and data are placed into high-performance internal memory. In cases
where the performance characteristics of memory are known in advance,
the compiler can exploit this knowledge to improve the scheduling of gen-
erated code.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-247
for SHARC Processors

Compiler

Note that memory banks are different from sections in the following ways:

• Section is a “hard” placement, using a name that is meaningful to
the linker. If the .ldf file does not map the named section, a linker
error occurs.

• A memory bank is a “soft” placement, using a name that is not vis-
ible to the linker. The compiler uses optimization to take
advantage of the bank’s performance characteristics. However, if
the .ldf file maps the code or data to memory that performs differ-
ently, the application still functions (albeit with a possible
reduction in performance).

#pragma code_bank(bankname)

This pragma informs the compiler that the instructions for the immedi-
ately-following function are placed in a memory bank called bankname.
Without this pragma, the compiler assumes that the instructions are
placed into a bank called “__code”. When optimizing the function, the
compiler takes note of attributes of memory bank bankname, and deter-
mines how long it takes to fetch each instruction from the memory bank.

In the example,

#pragma code_bank(slowmem)

int add_slowly(int x, int y) { return x + y; }

int add_quickly(int a, int b) { return a + b; }

the add_slowly() function is placed into the bank “slowmem”, which may
have different performance characteristics from the “__code” bank, into
which add_quickly() is placed.

#pragma data_bank(bankname)

This pragma informs the compiler that the immediately-following func-
tion uses the memory bank bankname as the model for memory accesses for
non-local data that does not otherwise specify a memory bank. Without

C/C++ Compiler Language Extensions

1-248 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

this pragma, the compiler assumes that non-local data should use the bank
“__data” for behavioral characteristics.

In the example,

#pragma data_bank(green)

int green_func(void)

{

extern int arr1[32];

extern int bank("blue") i;

i &= 31;

return arr1[i++];

}

int blue_func(void)

{

extern int arr2[32];

extern int bank("blue") i;

i &= 31;

return arr2[i++];

}

In both green_func() and blue_func(), i is associated with the memory
bank “blue”, and the retrieval and update of i are optimized to use the
performance characteristics associated with memory bank “blue”.

The array arr1 does not have an explicit memory bank in its declaration.
Therefore, it is associated with the memory bank “green”, because
green_func() has a specific default data bank. In contrast, arr2 is associ-
ated with the memory bank “__data”, because blue_func() does not have
a #pragma data_bank preceding it.

#pragma stack_bank(bankname)

This pragma informs the compiler that all locals for the immediately-fol-
lowing function are to be associated with memory bank bankname, unless
they explicitly identify a different memory bank. Without this pragma, all

VisualDSP++ 5.0 C/C++ Compiler Manual 1-249
for SHARC Processors

Compiler

locals are assumed to be associated with the memory bank “__stack”. In
the example,

#pragma stack_bank(mystack)

short dotprod(int n, const short *x, const short *y)

{

int sum = 0;

int i = 0;

for (i = 0; i < n; i++)

sum += *x++ * *y++;

return sum;

}

int fib(int n)

{

int r;

if (n < 2) {

r = 1;

} else {

int a = fib(n-1);

int b = fib(n-2);

r = a + b;

}

return r;

}

#pragma interrupt

#pragma stack_bank(sysstack)

void count_ticks(void)

{

extern int ticks;

ticks++;

}

The dotprod() function places the sum and i values into the memory bank
“mystack”, while fib() places r, a and b into the memory bank “__stack”,
because there is no stack_bank pragma. The count_ticks() function does

C/C++ Compiler Language Extensions

1-250 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

not declare any local data, but any compiler-generated local storage make
use of the “sysstack” memory bank’s performance characteristics.

#pragma bank_memory_kind(bankname, kind)

This pragma informs the compiler what kind of memory the memory
bank bankname is. The following kinds of memory are allowed by the
compiler:

• Internal – the memory bank is high-speed in-core memory

• External – the memory bank is external to the processor

 The pragma must appear at global scope, outside any function defini-
tions, but need not immediately precede a function definition.

In the example,

#pragma bank_memory_kind(blue, internal)

int sum_list(bank("blue") const int *data, int n)

{

int sum = 0;

while (n--)

sum += data[n];

return sum;

}

the compiler knows that all accesses to the data[] array are to the “blue”
memory bank, and hence to internal, in-core memory.

#pragma bank_read_cycles(bankname, cycles)

This pragma tells the compiler that each read operation on the memory
bank bankname requires the cycles cycles before the resulting data is avail-
able. This allows the compiler to schedule sufficient code between the
initiation of the read and the use of its results, to prevent unnecessary
stalls.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-251
for SHARC Processors

Compiler

In the example,

#pragma bank_read_cycles(slowmem, 20)

int dotprod(int n, const int *x, bank("slowmem") const int *y)

{

int i, sum;

for (i=sum=0; i < n; i++)

sum += *x++ * *y++;

return sum;

}

the compiler assumes that a read from *x takes a single cycle, as this is the
default read time, but that a read from *y takes twenty cycles, because of
the pragma.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

#pragma bank_write_cycles(bankname, cycles)

This pragma tells the compiler that each write operation on memory bank
bankname requires the cycles cycles before it completes. This allows the
compiler to schedule sufficient code between the initiation of the write
and a subsequent read or write to the same location, to prevent unneces-
sary stalls.

In the following example,

void write_buf(int n, const char *buf)

{

volatile bank("output") char *ptr = REG_ADDR;

while (n--)

*ptr = *buf++;

}

#pragma bank_write_cycles(output, 6)

C/C++ Compiler Language Extensions

1-252 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

the compiler knows that each write through ptr to the “output” memory
bank takes six cycles to complete.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

#pragma bank_optimal_width(bankname, width)

This pragma informs the compiler that width is the optimal number of
bits to transfer to/from memory bank bankname in a single cycle. This can
be used to indicate to the compiler that some memories can benefit from
vectorization and similar strategies more than others. The width parameter
must be 8, 16, 24 or 32.

In the example,

void memcpy_simple(char *dst, const char *src, size_t n)

{

while (n--)

*dst++ = *src++;

}

#pragma bank_optimal_width(__code, 16)

the compiler knows that the instructions for the generated function would
be best fetched in multiples of 16 bits, and so can select instructions
accordingly.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-253
for SHARC Processors

Compiler

Code Generation Pragmas

The code generation pragmas are described below in the following
sections.

#pragma avoid_anomaly_45 {on | off}

When executing code from external SDRAM on the ADSP-21161 proces-
sor, conditional instructions containing a DAG1 data access may not be
performed correctly.

These pragmas, #pragma avoid_anomaly_45 on and #pragma
avoid_anomaly_45 off, allow you to initiate (or avoid) the generation of
such instructions on a function-by-function basis. The pragmas should be
used before a function definition and remain in effect until another vari-
ant of the pragma is seen.

#pragma no_db_return

This pragma is used immediately before a function definition and will
cause the compiler to ensure that non-delayed-branch instructions are
used to return from the function. The pragma may be applied to both
interrupt and non-interrupt function definitions. Applying the pragma to
an interrupt function can be used as a workaround for ADSP-213xx sili-
con anomalies 02000069, 04000068, 06000028, 07000021, 08000026,
and 09000015, “Incorrect Popping of stacks possible when exiting
IRQx/Timer interrupts with DB modifiers.”

If the pragma does not appear immediately before a function definition
then a compiler error message is issued.

C/C++ Compiler Language Extensions

1-254 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The following examples show uses of this pragma:

Example 1

#pragma no_db_return

int max(int x, int y)

{

if (y > x)

return y;

else

return x;

}

Example 2

#pragma no_db_return

#pragma interrupt_complete_nesting

void foo(void) {

. . .

}

Example 3

#pragma no_db_return

int i; /* INVALID - not a function definition, causes compiler

error cc1943 */

Exceptions Table Pragma

The following is an exceptions table pragma.

#pragma generate_exceptions_tables

This pragma may be applied to a C function definition to request the
compiler to generate tables which enable C++ exceptions to be thrown
through executions of this function.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-255
for SHARC Processors

Compiler

The following example consists of two source files. The first is a C file
which contains the pragma applied to the definition of function
call_a_call_back.

#pragma generate_exceptions_tables

void call_a_call_back(void pfn(void)) {

pfn();/* without pragma program terminates when

throw_an_int throws an exception */

}

The second source file contains C++ code. The function main calls
call_a_call_back, from the C file listed above, which in turn calls
throw_an_int. The exception thrown by throw_an_int will be caught by
the catch handler in main because use of the pragma ensured the compiler
generated an exceptions table for call_a_call_back.

#include <iostream>

extern "C" void call_a_call_back(void pfn());

static void throw_an_int() {

throw 3;

}

int main() {

try {

call_a_call_back(throw_an_int);

} catch (int i) {

if (i == 3) std::cout << "Test passed\n";

}

}

An alternative to using #pragma generate_exceptions_tables is to com-
pile C files with the -eh (enable exception handling) switch
(on page 1-29) which, for C files, is equivalent to using the pragma before
every function definition.

C/C++ Compiler Language Extensions

1-256 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

GCC Compatibility Extensions
The compiler provides compatibility with many features of the C dialect
accepted by version 3.4 of the GNU C Compiler. Many of these features
are available in the ISO/IEC 9899:1999 standard. A brief description of
the extensions is included in this section. For more information, refer to
the following web address,

http://gcc.gnu.org/onlined-

ocs/gcc-3.4.6/gcc/index.html#toc_C-Extensions

 The GCC compatibility extensions are only available in C89 and
C99 modes. They are not accepted in C++ dialect mode.

Statement Expressions

A statement expression is a compound statement enclosed in parentheses.
A compound statement itself is enclosed in braces { }, so this construct is
enclosed in parentheses-brace pairs ({ }).

The value computed by a statement expression is the value of the last
statement which should be an expression statement. The statement expres-
sion may be used where expressions of its result type may be used. But
they are not allowed in constant expressions.

Statement expressions are useful in the definition of macros as they allow
the declaration of variables local to the macro. In the following example,

#define min(a,b) ({ \

short __x=(a),__y=(b),__res;\

if (__x > __y) \

__res = __y; \

else \

__res = __x; \

__res; \

})

gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions
http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions
http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions

VisualDSP++ 5.0 C/C++ Compiler Manual 1-257
for SHARC Processors

Compiler

int use_min() {

return min(foo(), thing()) + 2;

}

The foo() and thing() statements get called once each because they are
assigned to the variables __x and __y which are local to the statement
expression that min expands to and min() can be used freely within a larger
expression because it expands to an expression.

Labels local to a statement expression can be declared with the __label__
keyword. For example,

#define checker(p) ({ \

__label__ exit; \

int i; \

for (i=0; p[i]; ++i) { \

int d = get(p[i]); \

if (!check(d)) goto exit; \

process(d); \

} \

exit: \

i; \

})

extern int g_p[100];

int checkit() {

int local_i = checker(g_p);

return local_i;

}

 Statement expressions are not supported in C++ mode. Also, state-
ment expressions are an extension to C originally implemented in
the GCC compiler. Analog Devices support the extension primar-
ily to aid porting code written for that compiler. When writing

C/C++ Compiler Language Extensions

1-258 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

new code, consider using inline functions, which are compatible
with ANSI/ISO standard C++ and C99, and are as efficient as mac-
ros when optimization is enabled.

Type Reference Support Keyword (Typeof)

The typeof(expression) construct can be used as a name for the type
of expression without actually knowing what that type is. It is useful for
making source code that is interpreted more than once such as macros or
include files more generic.

The typeof keyword may be used where ever a typedef name is permitted
such as in declarations and in casts. For example,

#define abs(a) ({ \

typeof(a) __a = a; \

if (__a < 0) __a = - __a; \

__a; \

})

shows typeof used in conjunction with a statement expression to define a
“generic” macro with a local variable declaration.

The argument to typeof may also be a type name. Because typeof itself is
a type name, it may be used in another typeof(type-name) construct.
This can be used to restructure the C type declaration syntax.

For example,

#define pointer(T) typeof(T *)

#define array(T, N) typeof(T [N])

array (pointer (char), 4) y;

declares y to be an array of four pointers to char.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-259
for SHARC Processors

Compiler

 The typeof keyword is not supported in C++ mode.
The typeof keyword is an extension to C originally implemented
in the GCC compiler. It should be used with caution because it is
not compatible with other dialects of C/C++ and has not been
adopted by the more recent C99 standard.

GCC Generalized Lvalues

A cast is an lvalue (may appear on the left hand side of an assignment) if
its operand is an lvalue. This is an extension to C, provided for compati-
bility with GCC. It is not allowed in C++ mode.

A comma operator is an lvalue if its right operand is an lvalue. This is an
extension to C, provided for compatibility with GCC. It is a standard fea-
ture of C++.

A conditional operator is an lvalue if its last two operands are lvalues of
the same type. This is an extension to C, provided for compatibility with
GCC. It is a standard feature of C++.

Conditional Expressions with Missing Operands

The middle operand of a conditional operator can be left out. If the con-
dition is non-zero (true), then the condition itself is the result of the
expression. This can be used for testing and substituting a different value
when a pointer is NULL. The condition is only evaluated once; therefore,
repeated side effects can be avoided. For example,

printf("name = %s\n", lookup(key)?:"-");

calls lookup() once, and substitutes the string “-” if it returns NULL. This
is an extension to C, provided for compatibility with GCC. It is not
allowed in C++ mode.

C/C++ Compiler Language Extensions

1-260 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Zero-Length Arrays

Arrays may be declared with zero length. This is an anachronism sup-
ported to provide compatibility with GCC. Use variable length array
members instead.

GCC Variable Argument Macros

The final parameter in a macro declaration may be followed by ... to indi-
cate the parameter stands for a variable number of arguments.

For example,

#define trace(file,line,msg ...) \

 logmsg(file,line, ## msg);

can be used with differing numbers of arguments,

trace("a.c", 22, "Got here!\n”);

trace("b.c", 99, "i = %d\n", i);

trace("c.c", 72, "x = %f, y = %f\n", x, y);

The ## operator has a special meaning when used in a macro definition
before the parameter that expands the variable number of arguments: if
the parameter expands to nothing, then it removes the preceding comma.

 The variable argument macro syntax comes from GCC. The com-
piler supports both GCC and C99 variable argument macro
formats in C89, C99 and C++ modes. (For more information, see
“Variable Argument Macros” on page 1-138.)

Line Breaks in String Literals

String literals may span many lines. The line breaks do not need to be
escaped in any way. They are replaced by the character \n in the generated
string. This extension is not supported in C++ mode. The extension is not

VisualDSP++ 5.0 C/C++ Compiler Manual 1-261
for SHARC Processors

Compiler

compatible with many dialects of C, including ANSI/ISO C89 and C99.
However, it is useful in asm statements, which are intrinsically
non-portable.

This extension may be disabled via the -no-multiline switch
on page 1-45.

Arithmetic on Pointers to Void and Pointers to Functions

Addition and subtraction is allowed on pointers to void and pointers to
functions. The result is as if the operands had been cast to pointers to
char. The sizeof() operator returns one for void and function types.

Cast to Union

A type cast can be used to create a value of a union type, by casting a value
of one of the unions’ member’s types.

Ranges in Case Labels

A consecutive range of values can be specified in a single case by separating
the first and last values of the range with

For example,

case 200 ... 300:

Escape Character Constant

The character escape '\e' may be used in character and string literals and
maps to the ASCII Escape code, 27.

Alignment Inquiry Keyword (__alignof__)

The __alignof__ (type-name) construct evaluates to the alignment
required for an object of a type. The __alignof__ expression construct

C/C++ Compiler Language Extensions

1-262 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

can also be used to give the alignment required for an object of the
expression type.

If expression is an lvalue (may appear on the left hand side of an assign-
ment), the alignment returned takes into account alignment requested by
pragmas and the default variable allocation rules.

Keyword for Specifying Names in Generated Assembler
(asm)

The asm keyword can be used to direct the compiler to use a different
name for a global variable or function. (See also “#pragma linkage_name
identifier” on page 1-231.) For example,

int N asm("C11045");

tells the compiler to use the label C11045 in the assembly code it gener-
ates wherever it needs to access the source level variable N. By default, the
compiler would use the label _N.

The asm keyword can also be used in function declarations but not func-
tion definitions. However, a definition preceded by a declaration has the
desired effect.

For example,

extern int f(int, int) asm("func");

int f(int a, int b) {

. . .

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-263
for SHARC Processors

Compiler

Function, Variable and Type Attribute Keyword (__attribute__)

The __attribute__ keyword can be used to specify attributes of functions,
variables and types, as in these examples,

void func(void) __attribute__ ((section("fred")));

int a __attribute__ ((aligned (8)));

typedef struct {int a[4];} __attribute__((aligned (4))) Q;

The __attribute__ keyword is supported, and therefore code, written for
GCC, can be ported. All attributes accepted by GCC on ix86 are
accepted. The ones that are actually interpreted by the cc21k compiler are
described in the sections of this manual describing the corresponding
pragmas. (See “Pragmas” on page 1-187.)

Unnamed struct/union Fields Within struct/unions

The compiler allows you to define a structure or union that contains, as
fields, structures and unions without names. For example:

struct {

int field1;

union {

int field2;

int field3;

};

int field4;

} myvar;

This allows the user to access the members of the unnamed union as
though they were members of the enclosing struct; for example,
myvar.field2.

C/C++ Compiler Language Extensions

1-264 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

C++ Fractional Type Support
This section discusses the fract data type available in C++ available from
the <fract> header file. For discussion of the native fixed point types, also
called fract, which are available for use in C code, refer to “Using Native
Fixed-Point Types” on page 1-90.

While in C++ mode, the cc21k compiler supports fractional (fixed-point)
arithmetic that provides a way of computing with non-integral values
within the confines of the fixed-point representation. Hardware support
for the 32-bit fractional arithmetic is available on the ADSP-21xxx
processors.

Fractional values are declared with the fract data type. Ensure that your
program includes the <fract> header file. The fract data type is a C++
class that supports a set of standard arithmetic operators used in arithme-
tic expressions. Fractional values are represented as signed values in a
range of [–1 .. 1) with a binary point immediately after the sign bit.

Other value ranges are obtained by scaling or shifting. In addition to the
arithmetic, assignment, and shift operations, fract provides several
type-conversion operations.

For more information about supported fractional arithmetic operators, see
“Fractional Arithmetic Operations”. For sample programs demonstrating
the use of the fract type, see Listing 1-5 on page 1-363.

 The current release of the software does not provide for automatic
scaling of fractional values.

Format of Fractional Literals

Fractional literals use the floating-point representation with an “r” suffix
to distinguish them from floating-point literals, for example, 0.5r. The
cc21k compiler validates fractional literal values at compile-time to ensure
they reside within the valid range of values.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-265
for SHARC Processors

Compiler

Fractional literals are written with the “r” suffix to avoid certain precision
loss. Literals without an “r” are of the type double, and are implicitly con-
verted to fract as needed. After the conversion of a 32-bit double literal
to a fract literal, the value of the latter may retain only 25 bits of preci-
sion compared with the full 31 bits for a fractional literal with the “r”
suffix.

Conversions Involving Fractional Values

The following notes apply to type-conversion operations:

• Conversion between a fractional value and a floating value is sup-
ported. The conversion to the floating-point type may result in
some precision loss.

• Conversion between a fractional value and an integer value is sup-
ported. The conversion is not recommended because the only
common values are 0 and –1.

• Conversion between a fractional value and a long double value is
supported via float and may result in some precision loss.

Fractional Arithmetic Operations

The following notes summarize information about fractional arithmetic
operators supported by the cc21k compiler:

• Standard arithmetic operations on two fract items include addi-
tion, subtraction, and multiplication.

• Assignment operations include +=, -=, and *=.

• Shift operations include left and right shifts. A left shift is imple-
mented as a logical shift and a right shift is an arithmetic shift.
Shifting left by a negative amount is not recommended.

• Comparison operations are supported between two fract items.

C/C++ Compiler Language Extensions

1-266 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• Mixed-mode arithmetic has a preference for fract. For more infor-
mation about the mixed-mode arithmetic, see “Mixed Mode
Operations”.

• Multiplication of a fractional and an integer produces an integer
result or a fractional result. The program context determines which
type of result is generated following the conversion algorithm of
C++. When the compiler does not have enough context, it gener-
ates an ambiguous operator message, for example:
error: more than one operator "*" matches these operands:

...

You should cast the result of the multiply operation if the error
occurs.

Mixed Mode Operations

Most operations supported for fractional values are supported for mixed
fractional/float or fractional/double arithmetic expressions. At run time, a
floating-point value is converted to a fractional value, and the operation is
completed using fractional arithmetic.

The assignment operations, such as +=, are the exception to the rule. The
logic of an assignment operation is defined by the type of a variable posi-
tioned on the left side of the expression.

Floating-point operations require an explicit cast of a fractional value to
the desired floating type.

Saturated Arithmetic
The cc21k compiler supports saturated arithmetic for fractional data in
the saturated arithmetic mode.

Whenever a calculation results in a bigger value than the fract data type
represents, the result is truncated (wrapped around). An overflow flag is
set to warn the program that the value has exceeded its limits. To prevent

VisualDSP++ 5.0 C/C++ Compiler Manual 1-267
for SHARC Processors

Compiler

the overflow and to get the result as the maximum representable value
when processing signal data, use saturated arithmetic. Saturated arithmetic
forces an overflow value to become the maximum representable value.

The run-time environment does not change the saturation mode of the
processor during initialization. The default mode (typically no saturation)
is set by the DSP hardware at reset. (Consult the hardware reference
manual of an appropriate processor for the reset state.) The mode can be
changed by using set_saturate_mode() and reset_saturate_mode()
functions. Each arithmetic operator has its corresponding variant effected
in the saturated mode.

For example, add_sat, sub_sat, neg_sat, and so on.

Support for 40-bit Arithmetic
The SHARC family of processors support 40-bit, floating-point arithme-
tic. Although this feature is not supported by the compiler, it is used by
some run-time library functions and compiler support functions, and
there is support for it in some of the supplied interrupt handling func-
tions. This section provides information on the following topics:

• The implications of using 40-bit arithmetic in C/C++ code

• Library functions that use 40-bit arithmetic (directly or indirectly)

• How to ensure that all 40 bits are saved and restored properly when
an interrupt is handled

C/C++ Compiler Language Extensions

1-268 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using 40-bit Arithmetic in Compiled Code

Although 40-bit arithmetic can be enabled in C/C++ code (by clearing the
RND32 bit on the MODE1 register), there are a number of factors that
mean that arithmetic operations can produce inconsistent results:

• Where possible, the compiler will attempt to perform constant
folding (the simplification of constant expressions at compile
time). The results of floating-point constant folding may be differ-
ent from the results generated by performing the same calculation
using the SHARC processor’s 40-bit arithmetic.

• The compiler will sometimes use the integer PASS instruction ("Rx
= PASS Ry;") to copy a floating-point value from one register to
another. This operation will result in a 40-bit value being trun-
cated to a 32-bit value. It is not possible to predict whether the
compiler will use this instruction—it depends on many factors,
such as the code sequence being compiled and whether optimiza-
tion has been enabled.

• By default, data memory (including the stack) is configured as 32
bits wide, so any data stored to memory will be truncated from 40
bits to 32 bits. It is not possible to anticipate exactly when the
compiler will place data in memory (especially when the optimizer
has been enabled), meaning that it is not possible to guarantee that
all 40 bits of a calculation will be preserved. For example, when
preserving the value of a local variable across a function call, the
compiler can either store the variable on the stack (which truncates
it) or store it in a preserved register (for example, R3 which will pre-
serve all 40 bits). As before, the behavior in depends on many
factors such as the code sequence and optimization.

For these reasons, it is recommended that 40-bit arithmetic is not used in
C/C++ code.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-269
for SHARC Processors

Compiler

Run-Time Library Functions That Use 40-bit Arithmetic

The following run-time library functions use 40-bit arithmetic:

The compiler support functions for the following operations use 40-bit
arithmetic:

A number of library functions do not themselves use 40-bit arithmetic but
they invoke one or more of the above functions and may therefore gener-
ate less accurate results if they are interrupted:

If the switch -double-size-64 has not been specified, then the following
functions are also affected:

cfft_mag cosf div fir (the scalar-valued
version from the header
file filters.h)

iir (the scalar-valued
version from the header
file filters.h)

ldiv fmodf rfft_mag

rsqrtf sinf sqrtf

modulus operator integer division

acosf asinf cabsf cartesianf

cexpf normf polarf gen_blackman

gen_hamming gen_hanning gen_harris gen_kaiser

rmsf twidfftf twiffft

acos asin cabs cartesian

cexp cos fmod norm

polar rms rsqrt sin

sqrt

C/C++ Compiler Language Extensions

1-270 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Interrupt Support

Some of the interrupt handling functions have been adapted to ensure that
40-bit library and support functions are not affected by interrupts. If you
are using any of the functions listed above, it is recommended that you use
one of the methods given below to handle interrupts.

• The interrupt() and interruptcb() dispatchers save and restore
40 bits of the following registers, which are used by the compiler
support functions and library functions listed above:

• There are two pragmas that can be used in conjunction with
#pragma interrupt_complete:

• #pragma save_restore_40_bits

#pragma save_restore_40_bits will save and restore all 40
bits of any data registers (Dregs) that are used by the
handler.

• #pragma save_restore_simd_40_bits

On SIMD-capable SHARC processors, #pragma
save_restore_simd_40_bits will save and restore all 40 bits
of any PEx data registers (Dregs) and PEy data registers
(Sregs) that are used by the handler.

See “Interrupt Handler Pragmas” on page 1-193 for more information on
using interrupt pragmas.

RO R3 R4 R7

R8 R9 R11 R12

S0 S4 S9 S11

S12

VisualDSP++ 5.0 C/C++ Compiler Manual 1-271
for SHARC Processors

Compiler

SIMD Support
The ADSP-211xx, ADSP-212xx, ADSP-213xx and ADSP-214xx proces-
sors support Single-Instruction, Multiple-Data (SIMD) execution, which
can provide double the computational throughput compared to the
ADSP-2106x processors. When optimizing, the compiler can automati-
cally exploit SIMD mode, subject to certain constraints being met. If the
compiler is unable to automatically exploit SIMD mode, it will generate
normal code (Single-Instruction, Single-Data, “SISD”). You can also use
pragmas and other facilities to inform the compiler when SIMD mode is
appropriate.

This section contains:

• “A Brief Introduction to SIMD Mode” on page 1-271.

• “What the Compiler Can Do Automatically” on page 1-272.

• “What Prevents the Compiler From Automatically Exploiting
SIMD Mode” on page 1-273.

• “How to Help the Compiler Exploit SIMD Mode” on page 1-274.

• “How to Prevent SIMD Code Generation” on page 1-275.

A Brief Introduction to SIMD Mode

This brief discussion is only concerned with aspects of SIMD architecture
as they relate to the compiler. For full details on SIMD mode, refer to
your processor’s Hardware Reference manual.

In SIMD mode, the processor uses an additional computation unit operat-
ing in parallel with the first computation unit. This additional unit has its
own register file. Whereas in SISD mode, only the first unit fetches values
from memory, performs operations on them and stores the results back in
memory, in SIMD mode, both units do this at once. The two units access
adjacent memory locations, so that if the first unit accesses location M, the

C/C++ Compiler Language Extensions

1-272 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

second unit will access location M+1. The operation performed in both
units will be the same, but each unit will be performing the operation on
its own data.

Because the processor is performing two operations in parallel, SIMD
mode can provide double the computational throughput of SISD mode.
However, because SIMD mode accesses adjacent memory locations, the
compiler can only exploit SIMD mode when the source code being com-
piled supports such access patterns.

SIMD is a processor mode. For a given compute instruction I, if the pro-
cessor is in SISD mode, the processor will execute I as a SISD instruction,
on the first computation unit. In SIMD mode, the processor will execute
the same instruction I as a SIMD instruction, executing it on both com-
putation units. (Not all instructions behave differently in SISD and SIMD
modes; for example, address arithmetic will always execute only on the
first computation unit regardless of the processor mode.)

What the Compiler Can Do Automatically

To exploit SIMD mode, you must enable the compiler optimizer.

No C/C++ language extensions are necessary for SIMD use; rather, the
compiler can automatically generate SIMD code from standard C/C++ as
long as there is sufficient information to indicate that the transformation
does not alter the semantics of the source code.

There is a cost associated with switching between SISD and SIMD modes,
so the compiler will generate code that exploits SIMD mode when it can
determine that the source code meets the appropriate constraints and that
the improvement in performance is likely to outweigh the cost of switch-
ing the modes.

Because of the cost of switching between modes, the compiler is most
likely to generate SIMD code within loops, as the time spent within the
loop in SIMD mode generally outweighs the mode-switching costs outside

VisualDSP++ 5.0 C/C++ Compiler Manual 1-273
for SHARC Processors

Compiler

the loop. In contrast, SIMD mode is relatively rare in linear code, as the
access patterns typically do not allow for many operations in a given mode
before the mode must be switched again.

What Prevents the Compiler From Automatically Exploiting
SIMD Mode

The compiler will verify that the source code is suitable for SIMD mode
before transforming it. There are a number of reasons why a given piece of
source code may not be suitable for SIMD mode, including:

• The memory access patterns are not suitable, for example, they do
not access adjacent memory locations.

• The number of consecutive operations that can exploit SIMD
mode are insufficient to justify the cost of switch into SIMD and
back to SISD.

• Some of the code is conditional, and the compiler cannot imple-
ment them with conditional instructions

• The code contains function calls that cannot be inlined.

• The code is a loop that contains dependencies between successive
iterations, for example, there is an operation in iteration N+1 that
depends on the result of an operation in iteration N.

• The code accesses memory locations that are not double-word
aligned.

• The compiler cannot be certain that input and output buffer point-
ers do not point to the same array.

When the compiler detects such problems, it automatically avoids using
SIMD mode, and generates normal SISD mode code. The compiler will
not generate SIMD code for source code where the compiler can

C/C++ Compiler Language Extensions

1-274 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

determine that the resulting SIMD code would not be a valid representa-
tion of the source.

If the compiler determines that the only reason why the code is not suit-
able for SIMD mode is because the data in question is not appropriately
aligned, it also issues a warning to that effect; you may be able to modify
your source code so that the compiler can see that the data is suitably
aligned, in which case SIMD mode code will be possible. For more infor-
mation, see “How to Help the Compiler Exploit SIMD Mode” on
page 1-274.

If the compiler can neither prove that your code is suitable for SIMD nor
prove that it is not, the compiler will take the conservative approach, and
will generate SISD code.

How to Help the Compiler Exploit SIMD Mode

“Achieving Optimal Performance From C/C++ Source Code” on page 2-1
contains a great deal of advice on how you can write your source code so
that the compiler can obtain the information it needs to verify that SIMD
mode is safe for your application.

In circumstances where your application is suitable for SIMD, but the
compiler cannot prove this, the compiler will default to generating SISD
code. In such cases, you can use #pragma SIMD_for (on page 1-199). This
pragma is used before a loop construct, and tells the compiler that for all
memory accesses, you have verified that:

• the accesses are suitably aligned.

• there are no accesses that rely on data stored during the previous
iteration of the loop.

• the accesses do not alias each other.

The pragma will not force the compiler to generate SIMD code if the
compiler can prove that the source code is not suitable for SIMD mode,

VisualDSP++ 5.0 C/C++ Compiler Manual 1-275
for SHARC Processors

Compiler

but where the compiler is unable to resolve the matter either way, #pragma
SIMD_for tells the compiler that it is safe to proceed with SIMD mode
code generation.

How to Prevent SIMD Code Generation

On occasion, you may need to prevent SIMD mode use. For example,
some processors in the SHARC family do not support SIMD access to
external memory. When you are compiling code for such processors that
involves external memory accesses, you must ensure that the compiler does
not generate code that uses SIMD mode. To do this, use one of the
following:

• The -no-simd switch (on page 1-46)

• #pragma no_vectorization (on page 1-199)

Accessing External Memory on ADSP-2126x and
ADSP-2136x Processors

On ADSP-2126x and some ADSP-2136x processors, it is not possible to
access external memory directly from the processor core. The compiler
provides some facilities to allow access to variables in external memory
from C/C++ code, and to reduce the possibility of errors due to incorrect
data placement.

Link-Time Checking of Data Placement

Data which is placed in external memory on ADSP-2126x and 2136x pro-
cessors must be defined using the DMAONLY qualifier of the section or
default_section pragmas (on page 1-238). For example:

#pragma section("seg_extmem1", DMAONLY)

int extmem1[100];

C/C++ Compiler Language Extensions

1-276 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The linker will perform additional checks to ensure that data marked as
DMAONLY is not placed in internal memory, and that “normal” data is not
placed in external memory. If data is placed incorrectly, the linker will
issue an error.

Refer to the VisualDSP++ 5.0 Linker and Utilities Manual for additional
information on LDF changes.

Inline Functions for External Memory Access

Two inline functions, read_extmem and write_extmem, are provided to
transfer data between internal and external memory. A full description of
these functions is provided in the VisualDSP++ 5.0 Run-Time Library
Manual for SHARC Processors.

Support for Interrupts
The SHARC compiler and run-time libraries provide support for inter-
rupts used by the SHARC processor. The supported interrupt dispatchers
are listed below, along with important performance information, features
and limitations. This section describes:

• “Interrupt Dispatchers” on page 1-277

• “Interrupts and Circular Buffering” on page 1-281

• “Avoiding Self-Modifying Code” on page 1-281

• “Interrupt Nesting Restrictions on ADSP-211xx/212xx/
213xx/214xx Processors” on page 1-282

• “Restriction on Use of Super-Fast Dispatcher on ADSP-2106x
Processors” on page 1-282

For more information on writing interrupt handler routines that do not
require a dispatcher (that is, those that can be called directly from the

VisualDSP++ 5.0 C/C++ Compiler Manual 1-277
for SHARC Processors

Compiler

interrupt vector table), see “#pragma interrupt_complete” on page 1-196
and “#pragma interrupt_complete_nesting” on page 1-195.

Interrupt Dispatchers

There are five types of the interrupt dispatcher, each providing different
levels of functionality and performance. Each of the dispatchers is dis-
cussed in turn, starting with the slowest and most comprehensive. Note
that for each dispatcher, two variants of the set-up functions are available,
one which uses self-modifying code and one which does not. The
non-self-modifying variants are discussed at the end of this section. The
USTAT registers are regarded as user-modifiable registers and will not be
saved and restored by any of the dispatchers.

For the circular buffer interrupt dispatcher, use the interruptcb() or
signalcb() functions to set up the interrupt. This dispatcher provides the
following services:

• Saves all data registers, index registers, modify registers; saves all
relevant Length registers and zeroes them before calling the ISR
(Interrupt Service Routine); saves the volatile base registers. On
platforms with a second processing element (ADSP-211xx,
ADSP-212xx, ADSP-213xx and ADSP-214xx processors), the S
registers are also saved.

• Saves and restores all 40 bits of any data registers used for 40-bit
arithmetic in the run-time libraries. Only 32 bits of the other data
registers are preserved. See “Support for 40-bit Arithmetic” on
page 1-267 for more information on the use of 40-bit arithmetic in
VisualDSP++.

• On ADSP-21020, ADSP-2106x, ADSP-2116x and ADSP-2126x
processors, saves the contents of the loop counter stack, meaning
that DO loops can be used safely in the ISR.

• Sends the interrupt number to the ISR as a parameter.

C/C++ Compiler Language Extensions

1-278 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• On ADSP-2106x processors, requires approximately 185 cycles
before calling the dispatcher and 114 cycles to return to the inter-
rupted code; on ADSP-211xx/212xx/2136x/2137x processors,
requires approximately 229 cycles before calling the dispatcher and
139 cycles to return to the interrupted code.

• Interrupt nesting is allowed.

For the normal interrupt dispatcher, use the interrupt() or signal()
functions to set up the interrupt. This dispatcher provides the following
services:

• Saves all data registers, index registers, modify registers; saves the
volatile base registers. On platforms with a second processing ele-
ment (ADSP-211xx, ADSP-212xx, ADSP-213xx, and
ADSP-214xx processors), the S registers are also saved.

• Saves and restores all 40 bits of any data registers used for 40-bit
arithmetic in the run-time libraries. Only 32 bits of the other data
registers are preserved. See “Support for 40-bit Arithmetic” on
page 1-267 for more information on the use of 40-bit arithmetic in
VisualDSP++.

• On ADSP-21020, ADSP-2106x, ADSP-2116x and ADSP-2126x
processors, save the contents of the loop counter stack, meaning
that DO loops can be used safely in the ISR.

• On ADSP-2106x processors, requires approximately 156 cycles
before calling the dispatcher and 97 cycles to return to the inter-
rupted code; on ADSP-211xx/212xx/2136x/2137x processors,
requires approximately 200 cycles before calling the dispatcher and
127 cycles to return to the interrupted code.

• Sends the interrupt number type to the ISR as a parameter

• Interrupt nesting is allowed.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-279
for SHARC Processors

Compiler

For the fast interrupt dispatcher, use the interruptf() or signalf()
functions. This dispatcher provides the following services:

• Saves all PEx scratch registers. On platforms with a second process-
ing element, the S registers are not saved. Does not save the loop
stack, therefore DO loop handling is restricted to 6 levels in total
(specified in hardware). If the ISR uses one level of nesting, your
code must not use more than five levels. The -restrict-hard-
ware-loops switch (on page 1-59) controls the level of loop nesting
that a function is using.

• Saves and restores only the top 32 bits of each data register.

• Interrupt nesting is allowed.

• Does not send the interrupt number type to the ISR as a
parameter.

• On ADSP-2106x processors, requires approximately 45 cycles
before calling the dispatcher and 36 cycles to return to the inter-
rupted code; on ADSP-211xx/212xx/213xx/214xx processors,
requires approximately 40 cycles before calling the dispatcher and
26 cycles to return to the interrupted code.

For the super-fast interrupt dispatcher, use the interrupts() or
signals() functions. This dispatcher provides the following services:

• Does not save the loop stack, therefore DO loop handling is
restricted to six levels (specified in hardware). Interrupt nesting is
disabled.

• Does not preserve changes to the FLAGS bits on the ASTAT register.
Therefore, any changes to these bits by the interrupt handler will
be lost when the interrupt is completed.

• Does not send the interrupt number type to the ISR as a
parameter.

C/C++ Compiler Language Extensions

1-280 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• Uses the alternate register set. As a result, interrupt nesting is dis-
abled while the dispatcher and ISR are being executed.

• On ADSP-2106x processors, requires approximately 36 cycles
before calling the dispatcher and 11 cycles to return to the inter-
rupted code; on ADSP-211xx/212xx/213xx/214xx processors,
requires approximately 34 cycles before calling the dispatcher and
10 cycles to return to the interrupted code.

The pragma interrupt dispatcher is intended for use with user-written
assembly functions or C functions that have been compiled using
“#pragma interrupt”. (See “Interrupt Handler Pragmas” on page 1-193.)
Use the interruptss() or signalss() function to utilize this dispatcher.
This dispatcher provides the following services:

• Relies on the compiler (or assembly routine) to save and restore all
appropriate registers.

• Saves and restores only the top 32 bits of each data register.

• Does not save the loop stack, therefore DO loop handling is
restricted to six levels (specified in hardware).

• Does not send the interrupt number type to the ISR as a
parameter.

• Interrupt nesting is allowed.

• On ADSP-2106x processors, requires approximately 29 cycles
before calling the dispatcher and 24 cycles to return to the inter-
rupted code; on ADSP-211xx/212xx/213xx/214xx processors,
requires approximately 24 cycles before calling the dispatcher and
15 cycles to return to the interrupted code.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-281
for SHARC Processors

Compiler

Interrupts and Circular Buffering

Only the circular buffer interrupt dispatcher and pragma interrupt dis-
patcher ensure that all Length registers are zeroed at the start of the
interrupt handler. Since the compiler can generate circular buffer code
automatically, you should ensure that you choose the correct dispatcher
for your application. (Refer to “Interrupt Dispatchers” on page 1-277.)
The -no-circbuf switch (on page 1-43) can be used to disable the auto-
matic circular buffer code generation feature.

Table 1-26 details the run-time library functions that use circular buffer-
ing and therefore will require use of the circular buffering interrupt
dispatcher.

Avoiding Self-Modifying Code

The interrupt set-up functions (for example, interruptf()) use self-mod-
ifying code to set up the interrupts as this offers savings in execution time
and code size. Non-self-modifying variants of all these functions are sup-
plied and are suffixed with “nsm”. For example, to utilize the fast interrupt
dispatcher, use the interruptfnsm() or signalfnsm() functions. The
choice of a non-self-modifying function has no effect on the dispatcher
used and no effect on the overall interrupt handling performance.

Table 1-26. Functions Using Circular Buffering

biquad cfft

cfftN cmatmmlt

convolve fir_decima

fir_interp fir_vec

ifft ifftN

iir_vec matmul

rfft rfftN

strtodf transpm

C/C++ Compiler Language Extensions

1-282 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Interrupt Nesting Restrictions on ADSP-211xx/212xx/
213xx/214xx Processors

For ADSP-211xx/212xx/213xx/214xx processors, the following restric-
tions exist.

On these platforms, the interrupt vector code explicitly saves the ASTATx,
ASTATy and MODE1 registers on the status stack using a PUSH STS instruc-
tion. For the timer, VIRPT and IRQ0-2 interrupts, the save occurs in
addition to the automatic save of these registers. This has the effect of
reducing the maximum depth of nested interrupts to between 10 and 15
levels, depending on whether the timer, VIRPT and IRQ0-2 interrupts are
used.

Restriction on Use of Super-Fast Dispatcher on ADSP-2106x
Processors

One of the interrupt dispatchers supplied with VisualDSP++,
interrupts(), relies on the use of the alternate register set. Therefore, it is
not possible to service another interrupt while the current interrupt is
being serviced. To ensure this action, the interrupt enable bit (IRPTEN) is
cleared by the interrupts() dispatcher while it is servicing an interrupt,
and restored afterwards.

Under certain, unusual circumstances on the ADSP-2106x processors, the
interrupt enable bit can be set while the interrupts() dispatcher is being
executed. A nested interrupt can result, possibly causing data corruption
or other problems in user code.

The problem occurs when a lower priority interrupt (LPI) occurs and
then, immediately afterwards, a higher priority interrupt (HPI) occurs.
The problem only appears if the LPI is being serviced using interrupts().
When the LPI occurs, the processor jumps to the appropriate point in the
interrupt vector table and executes the relevant code. In the default vector
table, the first instruction disables the IRPTEN register, stopping any fur-
ther interrupts from being serviced. If, however, a HPI occurs

VisualDSP++ 5.0 C/C++ Compiler Manual 1-283
for SHARC Processors

Compiler

“immediately” after the LPI (before IRPTEN is disabled), the service routine
of the higher priority is executed. There is a 1-cycle delay to allow the first
instruction of the lower-priority service routine (the clearing of IRPTEN) to
be executed. When the HPI completes, it sets IRPTEN and returns control
to the LPI. The LPI executes, the IRPTEN bit is set, and nested interrupts
are able to take place. Here is a brief summary of the sequence of events
which can cause this problem:

1. Lower priority interrupt (LPI) occurs.

2. Higher priority interrupt (HPI) occurs.

3. First instruction of LPI is executed and clears IRPTEN.

4. HPI is executed:

• Clear the IRPTEN register.

• Execute handler and set the IRPTEN register.

5. LPI is executed:

• The IRPTEN register was reset after HPI and is now set.

• Problems may appear.

 Note that this is a problem on ADSP-2106x processors only.

C/C++ Compiler Language Extensions

1-284 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Restrictions on Using Normal and Circular Buffer Interrupt
Dispatchers on ADSP-2136x Processors

Hardware restrictions on ADSP-2136x processors mean that it is poten-
tially unsafe to use the “circular buffer” interrupt dispatcher and “normal”
interrupt dispatcher in applications that use certain arithmetic-based
loops. The types of loops that are unsafe are:

• Single instruction arithmetic loops

• Arithmetic loops where the last but one instruction of the loop is a
branching instruction (that is, a CALL or JUMP instruction)

• Arithmetic loops where the first instruction is a CALL instruction

An arithmetic loop takes the following form:

DO end_label UNTIL EQ; // Or any other arithmetic condition

// Some code

end_label:

// Some code

The compiler supplied with VisualDSP++ will only generate coun-
ter-based loops, not arithmetic loops, and the VisualDSP++ run-time
libraries have been checked to ensure they do not contain unsafe forms of
arithmetic loops. The restrictions on the dispatchers therefore only apply
to user-written assembly code or third-party code.

Migrating .ldf Files From Previous VisualDSP++
Installations

The .ldf files which have been used in VisualDSP++ 4.5 projects require
updating before they can be used in VisualDSP++ 5.0.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-285
for SHARC Processors

Compiler

The changes are described in:

• “C++ Support Tables (ctor, gdt)” on page 1-285

• “ADSP-21375 Memory Map” on page 1-287

• “C++ Run-Time Libraries Rationalization” on page 1-288

• “Fixed-Point I/O Support” on page 1-288

Files for versions of VisualDSP++ prior to VisualDSP++ 4.5 will need to
be updated according to the release notes for each intervening release.

C++ Support Tables (ctor, gdt)

Note that this change described below is required.

Linker changes in VisualDSP++ 5.0 make it possible for non-contiguous
placement of highly-aligned data. This means that order of mapping in
output memory sections is not necessarily maintained. This will result in
linker warning li2040 which can be avoided by using the
FORCE_CONTIGUITY directive when contiguous placement is required, and
NO_FORCE_CONTIGUITY otherwise.

The C++ static constructor mechanism (seg_ctdm/seg_ctdml) and excep-
tions handling support (.gdt/.gdtl) use table inputs which are
terminated using the sections ending in “l”. This requires contiguous
placement of these sections, so use of FORCE_CONTIGUITY is recommended.

For example, replace:

#ifdef __cplusplus

dxe_ctdm

{

 __ctors = .;/* points to start of the section*/

INPUT_SECTIONS($OBJECTS(seg_ctdm) $LIBRARIES(seg_ctdm))

INPUT_SECTIONS($OBJECTS(seg_ctdml)$LIBRARIES(seg_ctdml))

C/C++ Compiler Language Extensions

1-286 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

} > mem_ctdm

#endif

...

seg_dmda

{

RESERVE(heaps_and_stack, heaps_and_stack_length = 32K,2)

INPUT_SECTIONS($OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))

#ifdef __cplusplus

INPUT_SECTIONS($OBJECTS(.gdt) $LIBRARIES(.gdt))

INPUT_SECTIONS($OBJECTS(.gdtl) $LIBRARIES(.gdtl))

INPUT_SECTIONS($OBJECTS(.frt) $LIBRARIES(.frt))

INPUT_SECTIONS($OBJECTS(.rtti) $LIBRARIES(.rtti))

INPUT_SECTIONS($OBJECTS(.cht) $LIBRARIES(.cht))

INPUT_SECTIONS($OBJECTS(.edt) $LIBRARIES(.edt))

INPUT_SECTIONS($OBJECTS(seg_vtbl) $LIBRARIES(seg_vtbl))

#endif

with:

#ifdef __cplusplus

dxe_ctdm

{

FORCE_CONTIGUITY

__ctors = .; /* points to start of the section */

INPUT_SECTIONS($OBJECTS(seg_ctdm) $LIBRARIES(seg_ctdm))

INPUT_SECTIONS($OBJECTS(seg_ctdml)$LIBRARIES(seg_ctdml))

} > mem_ctdm

#endif

...

#ifdef __cplusplus

dxe_gdt

{

FORCE_CONTIGUITY

INPUT_SECTIONS($OBJECTS(.gdt) $LIBRARIES(.gdt))

INPUT_SECTIONS($OBJECTS(.gdtl) $LIBRARIES(.gdtl))

VisualDSP++ 5.0 C/C++ Compiler Manual 1-287
for SHARC Processors

Compiler

} > seg_dmda

#endif

seg_dmda

{

RESERVE(heaps_and_stack, heaps_and_stack_length = 32K, 2)

INPUT_SECTIONS($OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))

#ifdef __cplusplus

INPUT_SECTIONS($OBJECTS(.frt) $LIBRARIES(.frt))

INPUT_SECTIONS($OBJECTS(.rtti) $LIBRARIES(.rtti))

INPUT_SECTIONS($OBJECTS(.cht) $LIBRARIES(.cht))

INPUT_SECTIONS($OBJECTS(.edt) $LIBRARIES(.edt))

INPUT_SECTIONS($OBJECTS(seg_vtbl) $LIBRARIES(seg_vtbl))

#endif

For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-313.

ADSP-21375 Memory Map

Note that this change is required for any ADSP-21375 project.

In VisualDSP++ 4.5, the tools used an incorrect memory map for the
ADSP-21375 processor. Affected sections are:

• seg_pmco

• seg_pmda

• seg_dmda

• seg_stak

• seg_flash

Refer to the MEMORY declaration of the 213xx/ldf/ADSP-21375.ldf in your
VisualDSP++ installation for the correct memory ranges.

C/C++ Compiler Language Extensions

1-288 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

C++ Run-Time Libraries Rationalization

Note that the following change is optional.

In previous versions of VisualDSP++, it was necessary to link against
libcpp*.dlb, libcpprt*.dlb and libx*.dlb when C++ exceptions sup-
port was required. In VisualDSP++ 5.0, it is only necessary to link against
the libcpp*.dlb library. Therefore, it is possible to simplify your .ldf file
by removing references to libx*.dlb and libcpprt*.dlb libraries.

Fixed-Point I/O Support

This change is only required if your application requires formatted-I/O
support for fixed-point types.

As of VisualDSP++ 5.0 Update 9, fixed-point types are natively supported
by the compiler, and formatted-I/O support is optionally available, when
the __LIBIO_FX macro is defined at link time. This is achieved by linking
against a different I/O library when the macro is defined. For example,
ADSP-21362.ldf in VisualDSP++ 5.0 Update 8 contains the following
definitions:

#ifdef __LIBIO_LITE

define LIBIO libio_lite.dlb

define LIBIOMT libio_litemt.dlb

#else

define LIBIO libio.dlb

define LIBIOMT libiomt.dlb

#endif

VisualDSP++ 5.0 C/C++ Compiler Manual 1-289
for SHARC Processors

Compiler

To add fixed-point I/O support, change these definitions in your .ldf file
as follows:

#ifdef __LIBIO_LITE

define LIBIO libio_lite.dlb

define LIBIOMT libio_litemt.dlb
#elif defined(__LIBIO_FX)
define LIBIO libio_fx.dlb
define LIBIOMT libio_fxmt.dlb
#else
define LIBIO libio.dlb

define LIBIOMT libiomt.dlb

#endif

Preprocessor Features
Several features of the C/C++ preprocessor are used by VisualDSP++
to control the programming environment. The cc21k compiler provides
standard preprocessor functionality, as described in any C text. The fol-
lowing extensions to standard C are also supported:

// end of line (C++ style) commands

#warning directive

For more information about these extensions, see “Preprocessor Generated
Warnings” on page 1-176 and “C++ Style Comments” on page 1-147. For
ways to write macros, refer to “Writing Macros” on page 1-297.

Preprocessor Features

1-290 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Predefined Preprocessor Macros
Table 1-27 describes the predefined preprocessor macros.

Table 1-27. Predefined Preprocessor Macro Listing

Macro Function

__2106x__ When compiling for the ADSP-21060, ADSP-21061,
ADSP-21062, or the ADSP-21065L processors, cc21k
defines __ADSP2106x__ as 1.

__2116x__ When compiling for the ADSP-21160 or ADSP-21161 pro-
cessors, cc21k defines __2116x__ as 1.

__2126x__ When compiling for the ADSP-21261, ADSP-21262,
ADSP-21266 or ADSP-21267 processors, cc21k defines
__2126x__ as 1.

__213xx__ When compiling for the ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365, ADSP-21366, ADSP-21367,
ADSP-21368, ADSP-21369, ADSP-21371 or ADSP-21375
processors, cc21k defines __213xx__ as 1.

__2136x__ When compiling for the ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365, ADSP-21366, ADSP-21367,
ADSP-21368, or ADSP-21369 processors, cc21k defines
__2136x__ as 1.

__2137x__ When compiling for the ADSP-21371 and ADSP-21375 pro-
cessors, cc21k defines __2137x__ as 1.

__214xx__ When compiling for the ADSP-2146x, ADSP-2147x, or
ADSP-2148x processors, cc21k defines __214xx__ as 1.

__2146x__ When compiling for the ADSP-21462, ADSP-21465,
ADSP-21467, or ADSP-21469 processors, cc21k defines
__2146x__ as 1.

__2147x__ When compiling for the ADSP-21471, ADSP-21472,
ADSP-21475, ADSP-21478, or ADSP-21479 processors,
cc21k defines __2147x__ as 1.

__2148x__ When compiling for the ADSP-21481, ADSP-21482,
ADSP-21483, ADSP-21485, ADSP-21486, ADSP-21487,
ADSP-21488, or ADSP-21489 processors, cc21k defines
__2148x__ as 1.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-291
for SHARC Processors

Compiler

__ADSP21000__ cc21k always defines __ADSP21000__ as 1.

__ADSP21020__ cc21k defines __ADSP21020__ as 1 when you compile with
the -proc ADSP-21020 command-line switch.

__ADSP21060__ cc21k defines __ADSP21060__ as 1 when you compile with
the -proc ADSP-21060 command-line switch.

__ADSP21061__ cc21k defines __ADSP21061__ as 1 when you compile with
the -proc ADSP-21061 command-line switch.

__ADSP21062__ cc21k defines __ADSP21062__ as 1 when you compile with
the -proc ADSP-21062 command-line switch.

__ADSP21065L__ cc21k defines __ADSP21065L__ as 1 when you compile with
the -proc ADSP-21065L command-line switch.
When compiling for ADSP-2106x processors, two additional
macros are defined as 1: __ADSP21000__ and __2106x__.

__ADSP21160__ cc21k defines __ADSP21160__ as 1 when you compile with
the -proc ADSP-21160 command-line switch.

__ADSP21161__ cc21k defines __ADSP21161__ as 1 when you compile with
the -proc ADSP-21161 command-line switch.
When compiling for ADSP-2116x processors, three addi-
tional macros are defined as 1: __ADSP21000__, __2116x__
and __SIMDSHARC__.

__ADSP21261__ cc21k defines __ADSP21261__ as 1 when you compile with
the -proc ADSP-21261 command-line switch.

__ADSP21262__ cc21k defines __ADSP21262__ as 1 when you compile with
the -proc ADSP-21262 command-line switch.

__ADSP21266__ cc21k defines __ADSP21266__ as 1 when you compile with
the -proc ADSP-21266 command-line switch.

__ADSP21267__ cc21k defines __ADSP21267__ as 1 when you compile with
the -proc ADSP-21267 command-line switch.
When compiling for ADSP-2126x processors, three addi-
tional macros are defined as 1: __ADSP21000__, __2126x__
and __SIMDSHARC__.

__ADSP21362__ cc21k defines __ADSP21362__ as 1 when you compile with
the -proc ADSP-21362 command-line switch.

Table 1-27. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

Preprocessor Features

1-292 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

__ADSP21363__ cc21k defines __ADSP21363__ as 1 when you compile with
the -proc ADSP-21363 command-line switch.

__ADSP21364__ cc21k defines __ADSP21364__ as 1 when you compile with
the -proc ADSP-21364 command-line switch.

__ADSP21365__ cc21k defines __ADSP21365__ as 1 when you compile with
the -proc ADSP-21365 command-line switch.

__ADSP21366__ cc21k defines __ADSP21366__ as 1 when you compile with
the -proc ADSP-21366 command-line switch.

__ADSP21367__ cc21k defines __ADSP21367__ as 1 when you compile with
the -proc ADSP-21367 command-line switch.

__ADSP21368__ cc21k defines __ADSP21368__ as 1 when you compile with
the -proc ADSP-21368 command-line switch.

__ADSP21369__ cc21k defines __ADSP21369__ as 1 when you compile with
the -proc ADSP-21369 command-line switch.
When compiling for ADSP-2136x processors, four additional
macros are defined as 1: __ADSP21000__, __2136x__,
__213xx__ and __SIMDSHARC__.

__ADSP21371__ cc21k defines __ADSP21371__ as 1 when you compile with
the -proc ADSP-21371 command-line switch.

__ADSP21375__ cc21k defines __ADSP21375__ as 1 when you compile with
the -proc ADSP-21375 command-line switch.
When compiling for ADSP-2137x processors, four additional
macros are defined as 1: __ADSP21000__, __2137x__,
__213xx__ and __SIMDSHARC__.

__ADSP21462__ cc21k defines __ADSP21462__ as 1 when you compile with
the -proc ADSP-21462 command-line switch.

__ADSP21465__ cc21k defines __ADSP21465__ as 1 when you compile with
the -proc ADSP-21465 command-line switch.

__ADSP21467__ cc21k defines __ADSP21467__ as 1 when you compile with
the -proc ADSP-21467 command-line switch.

Table 1-27. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

VisualDSP++ 5.0 C/C++ Compiler Manual 1-293
for SHARC Processors

Compiler

__ADSP21469__ cc21k defines __ADSP21469__ as 1 when you compile with
the -proc ADSP-21469 command-line switch.
When compiling for ADSP-2146x processors, four additional
macros are defined as 1: __ADSP21000__, __2146x__,
__214xx__ and __SIMDSHARC__.

__ADSP21471__ cc21k defines __ADSP21471__ as 1 when you compile with
the -proc ADSP-21471 command-line switch.
When compiling for ADSP-2147x processors, four additional
macros are defined as 1: __ADSP21000__, __2147x__,
__214xx__ and __SIMDSHARC__.

__ADSP21472__ cc21k defines __ADSP21472__ as 1 when you compile with
the -proc ADSP-21472 command-line switch.
When compiling for ADSP-2147x processors, four additional
macros are defined as 1: __ADSP21000__, __2147x__,
__214xx__ and __SIMDSHARC__.

__ADSP21475__ cc21k defines __ADSP21475__ as 1 when you compile with
the -proc ADSP-21475 command-line switch.
When compiling for ADSP-2147x processors, four additional
macros are defined as 1: __ADSP21000__, __2147x__,
__214xx__ and __SIMDSHARC__.

__ADSP21478__ cc21k defines __ADSP21478__ as 1 when you compile with
the -proc ADSP-21478 command-line switch.
When compiling for ADSP-2147x processors, four additional
macros are defined as 1: __ADSP21000__, __2147x__,
__214xx__ and __SIMDSHARC__.

__ADSP21479__ cc21k defines __ADSP21479__ as 1 when you compile with
the -proc ADSP-21479 command-line switch.
When compiling for ADSP-2147x processors, four additional
macros are defined as 1: __ADSP21000__, __2147x__,
__214xx__ and __SIMDSHARC__.

__ADSP21481__ cc21k defines __ADSP21481__ as 1 when you compile with
the -proc ADSP-21481 command-line switch.
When compiling for ADSP-2148x processors, four additional
macros are defined as 1: __ADSP21000__, __2148x__,
__214xx__ and __SIMDSHARC__.

Table 1-27. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

Preprocessor Features

1-294 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

__ADSP21482__ cc21k defines __ADSP21482__ as 1 when you compile with
the -proc ADSP-21482 command-line switch.
When compiling for ADSP-2148x processors, four additional
macros are defined as 1: __ADSP21000__, __2148x__,
__214xx__ and __SIMDSHARC__.

__ADSP21483__ cc21k defines __ADSP21483__ as 1 when you compile with
the -proc ADSP-21483 command-line switch.
When compiling for ADSP-2148x processors, four additional
macros are defined as 1: __ADSP21000__, __2148x__,
__214xx__ and __SIMDSHARC__.

__ADSP21485__ cc21k defines __ADSP21485__ as 1 when you compile with
the -proc ADSP-21485 command-line switch.
When compiling for ADSP-2148x processors, four additional
macros are defined as 1: __ADSP21000__, __2148x__,
__214xx__ and __SIMDSHARC__.

__ADSP21486__ cc21k defines __ADSP21486__ as 1 when you compile with
the -proc ADSP-21486 command-line switch.
When compiling for ADSP-2148x processors, four additional
macros are defined as 1: __ADSP21000__, __2148x__,
__214xx__ and __SIMDSHARC__.

__ADSP21487__ cc21k defines __ADSP21487__ as 1 when you compile with
the -proc ADSP-21487 command-line switch.
When compiling for ADSP-2148x processors, four additional
macros are defined as 1: __ADSP21000__, __2148x__,
__214xx__ and __SIMDSHARC__.

__ADSP21488__ cc21k defines __ADSP21488__ as 1 when you compile with
the -proc ADSP-21488 command-line switch.
When compiling for ADSP-2148x processors, four additional
macros are defined as 1: __ADSP21000__, __2148x__,
__214xx__ and __SIMDSHARC__.

__ADSP21489__ cc21k defines __ADSP21489__ as 1 when you compile with
the -proc ADSP-21489 command-line switch.
When compiling for ADSP-2148x processors, four additional
macros are defined as 1: __ADSP21000__, __2148x__,
__214xx__ and __SIMDSHARC__.

Table 1-27. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

VisualDSP++ 5.0 C/C++ Compiler Manual 1-295
for SHARC Processors

Compiler

__ANALOG_EXTENSIONS__ cc21k defines __ANALOG_EXTENSIONS__ as 1. If MISRA
compliance checking is enabled, this macro will not be
defined.

__cplusplus cc21k defines __cplusplus as 199711L when compiling in
C++ mode.

__DATE__ The preprocessor expands this macro into the preprocessing
date as a string constant. The date string constant takes the
form Mmm dd yyyy. (ANSI standard).

__DOUBLES_ARE_FLOATS__ cc21k defines __DOUBLES_ARE_FLOATS__ as 1 when the size
of the double type is the same as the single-precision float
type. When the -double-size-64 compiler switch is used
(on page 1-27), the macro is not defined.

__ECC__ cc21k always defines __ECC__ as 1.

__EDG__ cc21k always defines __EDG__ as 1. This signifies that an
Edison Design Group front-end is being used.

__EDG_VERSION__ cc21k always defines __EDG_VERSION__ as an integral value
representing the version of the compiler’s front-end.

__EXCEPTIONS cc21k defines __EXCEPTIONS as 1 when C++ exception han-
dling is enabled (using the -eh command-line switch
on page 1-29).

__FILE__ The preprocessor expands this macro into the current input
file name as a string constant. The string matches the name of
the file specified on the compiler’s command-line or in a pre-
processor #include command (ANSI standard).

_LANGUAGE_C cc21k always defines _LANGUAGE_C as 1.

__LINE__ The preprocessor expands this macro into the current input
line number as a decimal integer constant (ANSI standard).

_LONG_LONG cc21k always defines _LONG_LONG as 1.

_MISRA_RULES cc21k defines _MISRA_RULES as 1 when compiling in
MISRA-C mode.

__NO_BUILTIN cc21k defines __NO_BUILTIN as 1 when you compile with
the -no-builtin command-line switch (on page 1-42).

Table 1-27. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

Preprocessor Features

1-296 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

__NOSIMD__ cc21k defines __NOSIMD__ as 1 when SIMD code generation
is disabled (using the -no-simd command-line switch,
on page 1-46). The macro is checked by the system header
files to ensure that non-SIMD variants of library routines are
called.

__NORMAL_WORD_CODE__ When compiling for ADSP-214xx processors, cc21k defines
__NORMAL_WORD_CODE__ as 1, when compiling in nor-
mal-word mode.

__NUM_CORES__ cc21k always defines __NUM_CORES__ as 1.

__RTTI cc21k defines __RTTI as 1 when C++ run-time type informa-
tion is enabled (using the -rtti command-line switch
on page 1-76).

__SHORT_WORD_CODE__ When compiling for ADSP-214xx processors, cc21k defines
__SHORT_WORD_CODE__ as 1, when compiling in short-word
mode. This is the default when compiling for ADSP-214xx
processors.

__SIGNED_CHARS__ cc21k defines __SIGNED_CHARS__ as 1. The macro is
defined by default,

__SIMDSHARC__ When compiling for ADSP-211xx, ADSP-212xx,
ADSP-213xx, and ADSP-214xx processors, cc21k defines
__SIMDSHARC__ as 1. The __SIMDSHARC__ define is used to
identify processors that are capable of executing SIMD code.

__STDC__ cc21k always defines __STDC__ as 1.

__STDC_VERSION__ cc21k defines __STD_VERSION__ as 199409L when compil-
ing in C89 mode, and as 199901L when compiling in C99
mode.

__TIME__ The preprocessor expands this macro into the preprocessing
time as a string constant. The date string constant takes the
form hh:mm:ss (ANSI standard).

__VERSION__ The preprocessor expands this macro into a string constant
containing the current compiler version.

Table 1-27. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

VisualDSP++ 5.0 C/C++ Compiler Manual 1-297
for SHARC Processors

Compiler

Writing Macros
A macro is a name standing for a block of text that the preprocessor sub-
stitutes. Use the #define preprocessor command to create a macro
definition. When the macro definition has arguments, the block of text
the preprocessor substitutes can vary with each new set of arguments.

Compound Macros

Whenever possible, use inline functions rather than compound macros. If
compound macros are necessary, define such macros to allow invocation
like function calls. This will make your source code easier to read and

__VERSIONNUM__ The preprocessor defines __VERSIONNUM__ as a numeric vari-
ant of __VERSION__ constructed from the version number of
the compiler. Eight bits are used for each component in the
version number and the most significant byte of the value
represents the most significant version component. As an
example, a compiler with version 7.1.0.0 defines
__VERSIONNUM__ as 0x07010000 and 7.1.1.10 would define
__VERSIONNUM__ to be 0x0701010A.

__VISUALDSPVERSION__ The preprocessor defines this macro to be an eight-digit hexa-
decimal representation of the VisualDSP++ release, in the
form 0xMMmmuurr, where:
– MM is the major release number
– mm is the minor release number
– uu is the update number
– rr is “00”, and reserved for future use
For example, VisualDSP++5.0 Update 1 would be
0x05000100.

__WORKAROUNDS_ENABLED cc21k defines this macro to be 1 if any hardware work-
arounds are implemented by the compiler. This macro is set if
the -si-revision switch (on page 1-61) has a value other
than “none” or if any specific workaround is selected by
means of the -workaround compiler switch (on page 1-68).

Table 1-27. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

Preprocessor Features

1-298 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

maintain. If you want your macro to extend over more than one line, you
must escape the newlines with backslashes.

The following two code segments define two versions of the macro
SKIP_SPACES:

/* SKIP_SPACES, regular macro */

#define SKIP_SPACES(p,limit) { \

char *lim = (limit); \

while (p != lim) { \

if (*(p)++ != ' ') { \

(p)--; \

break; \

} \

} \

} \

/* SKIP_SPACES, enclosed macro */

#define SKIP_SPACES(p,limit) \

do { \

char *lim = (limit); \

while ((p) != lim) { \

if (*(p)++ != ' ') { \

(p)--; \

break; \

} \

} \

} while (0)

Enclosing the first definition within the do {…} while (0) pair changes
the macro from expanding to a compound statement to expanding to a
single statement. With the macro expanding to a compound statement,
you sometimes need to omit the semicolon after the macro call in order to
have a legal program. This leads to a need to remember whether a function
or macro is being invoked for each call and whether the macro needs a

VisualDSP++ 5.0 C/C++ Compiler Manual 1-299
for SHARC Processors

Compiler

trailing semicolon or not. With the do {…} while (0) construct, you can
pretend that the macro is a function and always put the semicolon after it.

For example,

/* SKIP_SPACES, enclosed macro, ends without ‘;’ */

if (*p != 0)

SKIP_SPACES (p, lim);

else …

This expands to:

if (*p != 0)

do {

…

} while (0);/* semicolon from SKIP_SPACES (…); */

else …

Without the do {…} while (0) construct, the expansion would be:

if (*p != 0)

{

 …

}

;/* semicolon from SKIP_SPACES (…); */

else

C/C++ Run-Time Model and Environment

1-300 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

C/C++ Run-Time Model and
Environment

This section describes the conventions that you must follow as you write
assembly code that can be linked with C/C++ code. The description of
how C/C++ constructs appear in assembly language are also useful for
low-level program analysis and debugging.

This section provides a full description of the ADSP-21xxx run-time
model, including the layout of the stack, data access, and call/entry
sequence.

This section describes:

• “C/C++ Run-Time Environment” on page 1-300

• “Constructors and Destructors of Global Class Instances” on
page 1-313

• “Support for argv/argc” on page 1-315

• “Using Multiple Heaps” on page 1-316

• “Compiler Registers” on page 1-327

This model applies to the compiler-generated code. Assembly program-
mers are encouraged to maintain stack conventions.

C/C++ Run-Time Environment
The C/C++ run-time environment is a set of conventions that C and C++
programs follow to run on ADSP-21xxx processors. Assembly routines
that you link to C/C++ routines must follow these conventions.

Figure 1-2 on page 1-302 shows an overview of the run-time environment
issues that you must consider as you write assembly routines that link with
C/C++ routines.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-301
for SHARC Processors

Compiler

These issues include:

• Register usage conventions:

“Compiler Registers” on page 1-327

“Miscellaneous Information About Registers” on
page 1-327

“User Registers” on page 1-328

“Call Preserved Registers” on page 1-329

“Scratch Registers” on page 1-330

“Stack Registers” on page 1-331

• Memory usage conventions:

“Memory Usage” on page 1-302

“Memory Allocation for Stack and Heap on ADSP-2106x,
ADSP-2116x, and ADSP-2126x Processors” on page 1-310

“Measuring the Performance of the Compiler” on
page 1-312

“Using Data Storage Formats” on page 1-341

• Program control conventions.

“Managing the Stack” on page 1-332

“Transferring Function Arguments and Return Value” on
page 1-338

“Passing a C++ Class Instance” on page 1-341

“Using the Run-Time Header” on page 1-346

C/C++ Run-Time Model and Environment

1-302 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Memory Usage

The cc21k C/C++ run-time environment requires that a specific set of
memory section names be used for placing code and data in memory. In
assembly language files, these names are used as labels for the .SECTION
directive. In the Linker Description File (.ldf), these names are used as
labels for the output section names within the SECTIONS{} command. For
information on how to control the sections used by the compiler, see
“#pragma section/#pragma default_section” on page 1-238.

Figure 1-2. Assembly Language Interfacing Overview

Required
Memory

Compiler
Registers

User
Registers

Stack
Register

Scratch
Registers

Call
Preserved
Registers Assembly

Routine

Stack
Usage

Argument
Transfer

Function
Address

Data
Storage

C/C++
Run-Time

Header

Interface
Macros

C/C++

VisualDSP++ 5.0 C/C++ Compiler Manual 1-303
for SHARC Processors

Compiler

For information on syntax for the Linker Description File and other infor-
mation on the linker, see the VisualDSP++ 5.0 Linker and Utilities
Manual. Table 1-28 lists the memory section and output section names.

Because the compiler and linker must know the processor type to create
code for the correct memory model, you must specify the processor for
which you are developing. If you are using the VisualDSP++ IDDE, you
specify the processor in the Project Options dialog box. If you are running
the compiler from the command line, you specify the processor with a
compiler switch. For more information on processor selection switches,
see “C/C++ Compiler Common Switch Descriptions” on page 1-21.

Table 1-28. Memory .SECTION and SECTION{} Names

Names Usage Description

seg_pmco This section must be in Program Memory (PM), holds code, and is
required by some functions in the C/C++ run-time library. For more infor-
mation, see “Program Memory Code Storage” on page 1-304.

seg_swco This section contains short-word instructions for targets that support
VISA (variable instruction set) execution. It is used by the compiler and by
functions in the short-word variants of the C/C++ run-time libraries. For
more information, see “Program Memory Code Storage” on page 1-304.

seg_dmda This section must be in Data Memory (DM), is the default location for
global and static variables and string literals, and is required by some func-
tions in the C/C++ run-time library. For more information, see “Data
Memory Data Storage” on page 1-305.

seg_pmda This section must be in PM, holds PM data variables, and is required by
some functions in the C/C++ run-time library. For more information, see
“Program Memory Data Storage” on page 1-305.

seg_stak This section must be in DM, holds the run-time stack, and is required by
the C/C++ run-time environment. For more information, see “Run-Time
Stack Storage” on page 1-306.

seg_heap This section must be in DM, holds the default run-time heap, and is
required by the C/C++ run-time environment. For more information, see
“Run-Time Heap Storage” on page 1-306.

C/C++ Run-Time Model and Environment

1-304 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Program Memory Code Storage

For processors that do not support VISA execution, seg_pmco is the loca-
tion where the compiler puts all the instructions that it generates when
you compile your program. When linking, use your .ldf file to map this
section to a Program Memory (PM) segment.

On processors that support VISA execution, the compiler puts all the
instructions that it generates into seg_swco by default. When linking, use
your .ldf file to map this section to an SW-qualified memory output sec-
tion. When -nwc or -normal-word-code is used, the compiler puts all
instructions into seg_pmco. When linking, use your .ldf file to map this
section to a PM-qualified output section.

If you are assembling legacy assembly files and are using VISA execution
support in your executable, use your .ldf file to map the input sections to
an SW-qualified output section.

seg_init This section must be in PM, holds system initialization data, and is
required for system initialization. For more information, see “Initialization
Data Storage” on page 1-307.

seg_rth This section must be in the interrupt table area of PM, holds system ini-
tialization code and interrupt service routines, and is required for system
initialization. For more information, see “Run-Time Header Storage”
on page 1-308.

seg_int_code This section must always be located in internal memory. It contains library
code that modifies the interrupt latch registers (IMASKP and IRPTL). A
hardware anomaly on a number of SHARC processors means that it is
unsafe for code located in external memory to modify these registers. This
section is used to locate the affected library code in internal memory with-
out restricting the location of the rest of the library code.

seg_int_code_sw This section is for targets that support VISA execution. It contains
short-word instructions that must be run from internal memory. It is used
by some functions in the short-word variants of the C/C++ run-time
libraries.

Table 1-28. Memory .SECTION and SECTION{} Names (Cont’d)

Names Usage Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-305
for SHARC Processors

Compiler

Data Memory Data Storage

The Data Memory data section, seg_dmda, is where the compiler puts
global and static data and, for ADSP-210xx, 2116x and 2126x processors,
the run-time stack and heap. When linking, use your .ldf file to map this
section to DM space.

By default, the compiler places static and global variables in the Data
Memory data section. The compiler’s dm and pm keywords (memory type
qualifiers) let you override this default. If a memory type qualifier is not
specified, the compiler places static and global variables in Data Memory.
For more information on type qualifiers, see “Dual Memory Support Key-
words (pm dm)” on page 1-166. The following example allocates an array
of 10 integers in the DM data section.

static int data [10];

Program Memory Data Storage

The Program Memory data section, seg_pmda, is where the compiler puts
global and static data in Program Memory. When linking, use your .ldf
file to map this section to PM space.

By default, the compiler places static and global variables in the Data
Memory data section. The compiler’s pm keyword (memory type qualifier)
lets you override this default and place variables in the Program Memory
data section. If a memory type qualifier is not specified, the compiler
places static and global variables in Data Memory. For more information
on type qualifiers, see “Dual Memory Support Keywords (pm dm)” on
page 1-166. The following example allocates an array of 10 integers in the
PM data section.

static int pm coeffs[10];

C/C++ Run-Time Model and Environment

1-306 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Run-Time Stack Storage

On ADSP-2106x, 2116x and 2126x processors, the run-time stack mem-
ory is allocated from seg_dmda. On ADSP-213xx and ADSP-214xx
processors, the run-time stack is placed in seg_stak. Because the run-time
environment cannot function without a stack, you must define one DM
space. A typical size for the run-time stack is 4K 32-bit words of data
memory.

The run-time stack is a 32-bit wide structure, growing from high memory
to low memory. The compiler uses the run-time stack as the storage area
for local variables and return addresses.

During a function call, the calling function pushes the return address onto
the stack. (See “Managing the Stack” on page 1-332.) For more informa-
tion on configuring the run-time stack in the .ldf file, see “Memory
Allocation for Stack and Heap on ADSP-2106x, ADSP-2116x, and
ADSP-2126x Processors” on page 1-310.

Run-Time Heap Storage

On ADSP-2106x, 2116x and 2126x processors, the run-time heap mem-
ory is allocated from seg_dmda. On ADSP-213xx and ADSP-214xx
processors, the heap is placed in seg_heap.

To dynamically allocate and deallocate memory at run-time, the C/C++
run-time library includes several functions: malloc, calloc, realloc and
free. These functions allocate memory from the run-time heap by default.

The run-time library also provides support for multiple heaps, which
allow dynamically allocated memory to be located in different blocks. See
“Using Multiple Heaps” on page 1-316 for more information on the use
of multiple heaps. For more information on configuring the run-time
heap in the .ldf file, see “Memory Allocation for Stack and Heap on
ADSP-2106x, ADSP-2116x, and ADSP-2126x Processors” on
page 1-310.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-307
for SHARC Processors

Compiler

 The Linker Description File requires the seg_heap declaration for
every DSP project whether a program dynamically allocates mem-
ory at run-time or not.

Initialization Data Storage

The initialization section, seg_init, is where the compiler puts the initial-
ization data in Program Memory. When linking, use your Linker
Description File to map this section to Program Memory space.

The initialization section may be processed by two different utility pro-
grams: mem21k or elfloader.

• If you are producing boot-loadable executable file for your proces-
sor system, you should use the elfloader utility to process your
executable. The elfloader utility processes your executable file,
producing an ADSP-2106x boot-loadable file which you can use to
boot a target hardware system and initialize its memory.

The boot loader, elfloader, operates on the executable file pro-
duced by the linker. When you run elfloader as part of the
compilation process (using the -no-mem switch), the linker (by
default) creates a *.dxe file for processing with elfloader.

When preparing files for the elfloader loader, the system configu-
ration file’s seg_init section needs only 16 slots/locations of space.

• If producing an executable file that is not going to be boot-loaded
into the processor, you may use the mem21k utility to process your
executable. The mem21k utility processes your executable file, pro-
ducing an optimized executable file in which all RAM memory
initialization is stored in the seg_init PM ROM section. This
optimization has the advantage of initializing all RAM to its proper
value before the call to main() and reducing the size of an execut-
able file by combining contiguous, identical initializations into a
single block.

C/C++ Run-Time Model and Environment

1-308 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The memory initializer, mem21k, operates on the executable file pro-
duced by the linker. When running mem21k as part of the
compilation process, the linker (by default) creates a *.dxe file for
processing with mem21k.

The mem21k utility processes all the PROGBITS and ZERO_INIT sec-
tions except the initialization section (seg_init), the run-time
header section (seg_rth), and the code section (seg_pmco). These
sections contain the initialization routines and data.

The C run-time header reads the seg_init section, generated by
mem21k, to determine which memory locations should be initialized
to what values. This process occurs during the
__lib_setup_processor routine that is called from the run-time
header.

Run-Time Header Storage

The run-time header section, seg_rth, is where the compiler puts the sys-
tem initialization code and interrupt table in Program Memory. When
linking, use your .ldf file to map this section to the interrupt vector table
area of Program Memory space.

If a run-time header file is not specified, the compiler uses a default
run-time header from the appropriate ...lib directory. Table 1-29 lists
these header files.

Table 1-29. Header Files for Particular Targets

TARGET HEADER FILE

ADSP-21020 21k\lib\020_hdr.doj

ADSP-21060 21k\lib\060_hdr.doj

ADSP-21061 21k\lib\061_hdr.doj

ADSP-21062 21k\lib\060_hdr.doj

ADSP-21065L 21k\lib\065L_hdr.doj

VisualDSP++ 5.0 C/C++ Compiler Manual 1-309
for SHARC Processors

Compiler

ADSP-21160 211xx\lib\160_hdr.doj

ADSP-21161 211xx\lib\161_hdr.doj

ADSP-21261 212xx\lib\261_hdr.doj

ADSP-21262 212xx\lib\262_hdr.doj

ADSP-21266 212xx\lib\266_hdr.doj

ADSP-21267 212xx\lib\267_hdr.doj

ADSP-21362 213xx\lib\362_hdr.doj

ADSP-21363 213xx\lib\363_hdr.doj

ADSP-21364 213xx\lib\364_hdr.doj

ADSP-21365 213xx\lib\365_hdr.doj

ADSP-21366 213xx\lib\366_hdr.doj

ADSP-21367 213xx\lib\367_hdr.doj

ADSP-21368 213xx\lib\368_hdr.doj

ADSP-21369 213xx\lib\369_hdr.doj

ADSP-21371 213xx\lib\371_hdr.doj

ADSP-21375 213xx\lib\375_hdr.doj

ADSP-21462 214xx\lib\21462_hdr.doj

ADSP-21465 214xx\lib\21465_hdr.doj

ADSP-21467 214xx\lib\21467_hdr.doj

ADSP-21469 214xx\lib\21469_hdr.doj

ADSP-21479 214xx\lib\21479_hdr.doj

ADSP-21483 214xx\lib\21483_hdr.doj

ADSP-21486 214xx\lib\21486_hdr.doj

ADSP-21487 214xx\lib\21487_hdr.doj

ADSP-21488 214xx\lib\21488_hdr.doj

ADSP-21489 214xx\lib\21489_hdr.doj

Table 1-29. Header Files for Particular Targets (Cont’d)

TARGET HEADER FILE

C/C++ Run-Time Model and Environment

1-310 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Note that if the compiler finds a copy of xxx_hdr.obj in the current direc-
tory, the compiler uses this copy instead of the file from the default
directory.

The source files for many run-time header files (including 060_hdr.asm
and 160_hdr.asm) come with the development tools package. Keep the
following points in mind if you prefer to write your own interrupt han-
dlers in C/C++. Note that:

• The library functions signal, raise, interrupt, and their variants
are based on the run-time header used.

• On the ADSP-21020 processor only, each interrupt is allocated
eight words; on all other SHARC processors, each interrupt is allo-
cated four words.

Memory Allocation for Stack and Heap on ADSP-2106x,
ADSP-2116x, and ADSP-2126x Processors

In previous releases of VisualDSP++, the default stack and heap were allo-
cated separate memory sections in the LDFs. In VisualDSP++ 5.0, for
ADSP-210xx, 2116x and 2126x processors, the allocation of memory for
stacks and heaps is performed by the linker at link-time, resulting in more
efficient memory use. (For ADSP-213xx processors, the stack and heap
allocation remains the same because of the increased number of memory
blocks.)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-311
for SHARC Processors

Compiler

The memory for the stack and heap is allocated as follows:

• An area of memory in one of the default memory areas (for exam-
ple, seg_dmda) is reserved for the stack and heap, using the
RESERVE() command.

• Memory is allocated to data that must be placed in this section (for
example, global variables and static variables).

• The RESERVE_EXPAND() command is used to claim any unused
space in the default memory area and allocate it to the stack and
heap. The ratio of memory allocated to the stack and heap can be
adjusted if necessary.

Example of Heap/Stack Memory Allocation

Listing 1-2 shows how the RESERVE() command can be used to allocate
memory for a heap and a stack in the .ldf file.

Listing 1-2. Heap/Stack Memory Allocation in LDFs

seg_dmda

{

// Reserve a minimum of 32K for the stack and heap

RESERVE(heaps_and_stack, heaps_and_stack_length = 32K)

// Allocate space as necessary for libs and object files

INPUT_SECTIONS($OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))

// Expand the stack and heap space to fill the available

// memory

RESERVE_EXPAND(heaps_and_stack, heaps_and_stack_length)

// Place the start and end markers for the stack. The

// stack is allocated 25% (8K/32K) of the remaining space

ldf_stack_space = heaps_and_stack;

C/C++ Run-Time Model and Environment

1-312 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

ldf_stack_end = ldf_stack_space +

((heaps_and_stack_length * 8K) /32K);

ldf_stack_length = ldf_stack_end - ldf_stack_space;

// Place the start and end markers for the heap. The

// heap is allocated 75% (24K/32K) of the remaining space

ldf_heap_space = ldf_stack_end;

ldf_heap_end = ldf_heap_space +

((heaps_and_stack_length * 24K) / 32K);

ldf_heap_length = ldf_heap_end - ldf_heap_space;

} > seg_dmda

 The following list contains the symbols that are used by the
run-time libraries to create and manage the stack and heap. (These
symbols must be defined in the .ldf file.)

Measuring the Performance of the Compiler

Benchmarking is done to measure the performance of a C compiler, or to
understand how many processor clock cycles a specific section of code
usually takes. Once the number of clock cycles is known, the amount of
time that function takes to execute can be quickly calculated using the
instruction rate of that processor. For more information, see “Measuring
Cycle Counts” in Chapter 1 of the VisualDSP++ Run-Time Library Man-
ual for SHARC Processors.

ldf_stack_space ldf_stack_end ldf_stack_length

ldf_heap_space ldf_heap_end ldf_heap_length

VisualDSP++ 5.0 C/C++ Compiler Manual 1-313
for SHARC Processors

Compiler

Constructors and Destructors of Global Class
Instances

Constructors for global class instances are invoked by the C/C++ run-time
header during start-up. There are several components that allow this to
happen:

• The associated data space for the instance

• The associated constructor (and destructor, if one exists) for the
class

• A compiler-generated “start” routine

• A compiler-generated table of such “start” routines

• A compiler-constructed linked-list of destructor routines

• The run-time header itself

The interaction of these components is as follows.

The compiler generates a “start” routine for each module that contains
globally-scoped class instances that need constructing or destructing.
There is at most one “start” routine per module; it handles all the glob-
ally-scoped class instances in the module:

• For each such instance, it invokes the instance’s constructor. This
may be a direct call, or it may be inlined by the compiler optimizer.

• If the instance requires destruction, the “start” routine registers this
fact for later, by including pointers to the instance and its destruc-
tor into a linked list.

The start routine is named after the first such instance encountered,
though the classes are not guaranteed to be constructed or destructed in
any particular order (with the exception that destructors are called in the
reverse order of the constructors). Such instances should not have any

C/C++ Run-Time Model and Environment

1-314 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

dependency on construction order; the -check-init-order switch
(on page 1-73) is useful for verifying this during system development, as it
plants additional code to detect uses of unconstructed objects during
initialization.

A pointer to the “start” routine is placed into the ctdm section of the gen-
erated object file. When the application is linked, all ctdm sections are
mapped into the same ctdm output section, forming a table of pointers to
the “start” routines. An additional ctdml object is appended to the end of
the table; this contains a terminating NULL pointer.

When the run-time header is invoked, it calls _ctor_loop(), which walks
the table of ctdm sections, calling each pointed-to “start” function until it
reaches the NULL pointer from ctdml. In this manner, the run-time
header calls each global class instance’s constructor, indirectly through the
pointers to “start” functions.

When the program reaches exit(), either by calling it directly or by
returning from main(), the exit() routine follows the normal process of
invoking the list of functions registered through the atexit() interface.
One of these is a function that walks the list of destructors, invoking each
in turn (in reverse order from the constructors).

This function is registered with atexit() during the run-time header,
before main() is called.

 Functions registered with atexit() may not make reference to
global class instances, as the destructor for the instance may be
invoked before the reference is used.

Constructors, Destructors and Memory Placement

By default, the compiler places the code for constructors and destructors
into the same section as any other function’s code. This can be changed
either by specifying the section specifically for the constructor or destruc-
tor (see “#pragma section/#pragma default_section” on page 1-238 and

VisualDSP++ 5.0 C/C++ Compiler Manual 1-315
for SHARC Processors

Compiler

“Placement Support Keyword (section)” on page 1-174), or by altering
the default destination section for generated code (see “#pragma sec-
tion/#pragma default_section” on page 1-238 and “-section” on
page 1-60).

While normal compiler-generated code is placed into the CODE area, the
“start” routine is placed into the STI area. Both CODE and STI default to
the same section, but may be changed separately using #pragma
default_section or the -section switch (as the “start” function is an
internal function generated by the compiler, its placement cannot be
affected by #pragma section).

The pointer to the “start” routine is placed into the ctdm section. This is
not configurable, as the invocation process relies on all of the “start” rou-
tine pointers being in the same section during linking, so that they form a
table. It is essential that all relevant ctdm sections are mapped during link-
ing; if a ctdm section is omitted, the associated constructor will not be
invoked during start-up, and run-time behavior will be incorrect.

If destructors are required, the compiler generates data structures pointing
to the class instance and destructor. These structures are placed into the
default variable-data section (the DATA area).

Support for argv/argc
By default, the facility to specify arguments that are passed to your main()
(argv/argc) at run-time is enabled. However, to correctly set up argc and
argv requires additional configuration by the user. Modify your applica-
tion as follows:

• Define your command-line arguments in C by defining a variable
called “__argv_string”. When linked, your new definition over-
rides the default zero definition otherwise found in the C run-time
library.

C/C++ Run-Time Model and Environment

1-316 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

For example,

extern const char __argv_string[] = "-in x.gif -out

y.jpeg";

The following optional step may also have to be performed:

• To use command-line arguments as part of profile-guided optimi-
zation (PGO), it is necessary to define __argv_string within a
memory section called MEM_ARGV. Therefore, define a memory sec-
tion called MEM_ARGV in your .ldf file and include the definition of
__argv_string in it if you are using PGO. The default .ldf files do
this for you if macro IDDE_ARGS is defined at link-time.

Using Multiple Heaps
The SHARC C/C++ run-time library supports the standard heap manage-
ment functions calloc, free, malloc, and realloc. By default, these
functions access the default heap, which is defined in the standard Linker
Description File and the run-time header.

User written code can define any number of additional heaps, which can
be located in any of the SHARC processor memory blocks. These addi-
tional heaps can be accessed either by the standard calloc, free, malloc,
and realloc functions, or via the Analog Devices extensions heap_calloc,
heap_free, heap_malloc, and heap_realloc.

The primary use of alternate heaps is to allow dynamic memory allocation
from more than one memory block. The ADSP-21xxx architecture allows
two data accesses per cycle (in addition to a code access) if the memory
locations are in different banks.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-317
for SHARC Processors

Compiler

Declaring a Heap

Each heap must be declared with a .VAR directive in the seg_init.asm file
and the .ldf file must declare memory and section placement for the
heaps. The default seg_init.asm file declares one heap, seg_heap. The
following customized seg_init.asm file shows how to declare two heaps:
seg_heap and seg_heaq.

To use a custom seg_init.asm, assemble it and use it to replace the
default seg_init.doj that is a member of the libc.dlb archive. For infor-
mation on how to modify an archive file, see the VisualDSP++ 5.0 Linker
and Utilities Manual.

For example,

#if defined(__SHORT_WORD_CODE__)

.section/nw seg_init;

#else

.section/pm seg_init;

#endif

/*

 * The following initializations rely on several values being

 * established externally, typically by the linker

 * description file.

 */

.extern ldf_stack_space; /* The base of the stack */

.extern ldf_stack_length; /* The length of the stack */

.extern ldf_heap_space; /* The base of a primary DM heap

"seg_heap" */

.extern ldf_heap_length; /* The length of heap "seg_heap"

*/

.extern ldf_heaq_space; /* Base of a DM heap "seg_heaq" */

.extern ldf_heaq_length; /* Length of heap "seg_heaq" */

C/C++ Run-Time Model and Environment

1-318 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

/* The first two 48-bit words represent the heap name and the

heap location.The heap name must be exactly 8 characters long,

and the heap location should be either FFFFFFFF for DM or

00000001 for PM locations. The next 3 words set the heap's ini-

tialization value, size and length.The size and length are set

with macros whose values are calculated according the information

in the project's .ldf file. */

.___lib_heap_descriptions:

.global ___lib_heap_space;

.var ___lib_heap_space[5] =

 0x7365675F6865, /* 'seg_he' */

 0x6170FFFFFFFF, /* 'ap', heap location DM */

 0,

 ldf_heap_space,

 ldf_heap_length;

/* Add more heap descriptions here */

.global ___lib_heaq_space;

.var ___lib_heaq_space[5] =

 0x7365675F6865, /* 'seg_he' */

 0x6171FFFFFFFF, /* 'aq', heap location DM */

 0,

 ldf_heaq_space,

 ldf_heaq_length;

.global ___lib_end_of_heap_descriptions;

.var ___lib_end_of_heap_descriptions = 0; /* Zero for end of list

*/

.___lib_heap_descriptions.end:

VisualDSP++ 5.0 C/C++ Compiler Manual 1-319
for SHARC Processors

Compiler

As noted above, the calculation for a heap’s size and length occur in the
project’s Linker Description File. When linking, the linker handles substi-
tution of values to resolve the heap’s definition (the .VAR directive in the
seg_init.asm file).

Listing 1-2 on page 1-311 shows how the .ldf file is used to define the
symbols ldf_heap_space and ldf_heap_length for the default heap. The
same mechanism would be used to define ldf_heaq_space and
ldf_heaq_length for the additional heap.

Heap Identifiers

All heaps have two identifiers:

• Primary heap ID is the index of the descriptor for that heap in the
heap descriptor table (in seg_init.asm). The primary heap ID of
the default heap is always 0, and the primary IDs of user-defined
heaps are set to 1, 2, 3, and so on.

• Each heap also has a unique 8-letter name associated with it. The
heap ID can be obtained by calling the function heap_lookup_name
with this name as its parameter. The name must be exactly eight
characters long.

Allocating C++ STL Objects to a Non-Default Heap

C++ STL objects can be placed in a non-default heap through use of a
custom allocator. To do this, you must first create your custom allocator.
Below is an example custom allocator that you can use as a basis for your
own. The most important part of customalloc.h in most cases is the
allocate function, where memory is allocated to the STL object.

Currently, the pertinent line of code assigns to the default heap (0):

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

C/C++ Run-Time Model and Environment

1-320 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

By changing the first parameter of heap_malloc(), you can allocate to a
different heap. Therefore:

• 0 would be the default heap

• 1, the first user heap

• 2, the second user heap

and so on.

Once you have created your custom allocator, you must inform your STL
object to use it. Note that the standard definition for “list”:

list<int> a;

is the same as writing:

list<int, allocator<int> > a;

where “allocator” is the default allocator. Therefore, we can tell list “a” to
use our custom allocator as follows:

list<int, customallocator<int> > a;

Once created, the list “a” can be used as normal. Also, example.cpp
(below) is a simple example that shows the custom allocator being used.

customalloc.h

template <class Ty>

class customallocator {

public:

typedef Ty value_type;

typedef Ty* pointer;

typedef Ty& reference;

typedef const Ty* const_pointer;

typedef const Ty& const_reference;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-321
for SHARC Processors

Compiler

typedef size_t size_type;

typedef ptrdiff_t difference_type;

template <class Other>

struct rebind { typedef customallocator<Other> other; };

pointer address(reference val) const { return &val; }

const_pointer address(const_reference val)

const { return &val; }

customallocator(){}

customallocator(const customallocator<Ty>&){}

template <class Other>

customallocator(const customallocator<Other>&) {}

template <class Other>

customallocator<Ty>& operator=(const customallocator&)

{ return (*this); }

pointer allocate(size_type n, const void * = 0) {

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

cout << "Allocating 0x" << ty << endl;

return ty;

}

void deallocate(void* p, size_type) {

cout << "Deallocating 0x" << p << endl;

if (p) free(p);

}

void construct(pointer p, const Ty& val)

{ new((void*)p)Ty(val); }

void destroy(pointer p) { p->~Ty(); }

size_type max_size() const { return size_t(-1); } };

C/C++ Run-Time Model and Environment

1-322 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

example.cpp

#include <iostream>

#include <list>

#include <customalloc.h> // include your custom allocator

using namespace std;

main(){

cout << "creating list" << endl;

list <int, customallocator<int> > a;

 // create list with custom allocator

cout.setf(ios_base::hex,ios_base::basefield);

cout << "pushing some items on the back" << endl;

a.push_back(0xaaaaaaaa); // push items as usual

a.push_back(0xbbbbbbbb);

while(!a.empty()){

cout << "popping:0x" << a.front() << endl;

//read item as usual

a.pop_front(); //pop items as usual

}

cout << "finished." << endl;

}

Using Alternate Heaps With the Standard Interface

Alternate heaps can be accessed by the standard functions calloc, free,
malloc, and realloc. The run-time library keeps track of a current heap,
which initially is the default heap. The current heap can be changed any
number of times at runtime by calling the function set_alloc_type with
the new heap name as a parameter, or by calling heap_switch with the
heap ID as a parameter.

The standard functions calloc and malloc always allocate a new object
from the current heap. If realloc is called with a null pointer, it also allo-
cates a new object from the current heap.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-323
for SHARC Processors

Compiler

Previously allocated objects can be deallocated with free or realloc, or
resized by realloc, even if the current heap is now different from when
the object was originally allocated. When a previously allocated object is
resized with realloc, the returned object is always in the same heap as the
original object.

 Multithreaded programs (using VDK) cannot use set_alloc_type
or heap_switch to change the current heap from the default. Such
programs can access alternate heaps through the alternate interface
described in the next section.

Using the Alternate Heap Interface

The C run-time library provides the alternate heap interface functions
heap_calloc, heap_free, heap_malloc, and heap_realloc. These routines
work exactly the same as the corresponding standard functions without
the “heap_” prefix, except that they take an additional argument that spec-
ifies the heap ID. These functions are completely independent of the
current heap setting.

Objects allocated with the alternate interface functions can be freed with
either the free or heap_free (or realloc or heap_realloc) functions. The
heap_free function is a little faster than free since it does not have to
search for the proper heap. However, it is essential that the heap_free or
heap_realloc functions be called with the same heap ID that was used to
allocate the object being freed. If it is called with the wrong heap ID, the
object would not be freed or reallocated.

The actual entry point names for the alternate heap interface routines have
an initial underscore; they are _heap_calloc, _heap_free, _heap_lookup,
_heap_malloc, _heap_realloc and_heap_switch. The stdlib.h standard
header file defines macro equivalents without the leading underscores.

C/C++ Run-Time Model and Environment

1-324 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

C++ Run-Time Support for the Alternate Heap Interface

The C++ run-time library provides support for allocation and release of
memory from an alternative heap via the new and delete operators.

Heaps should be initialized with the C run-time functions as described.
These heaps can then be used via the new and delete mechanism by simply
passing the heap ID to the new operator. There is no need to pass the heap
ID to the delete operator as the information is not required when the
memory is released.

The routines are used as in the example below.

#include <heapnew>

char *alloc_string(int size, int heapID)

{

char *retVal = new(heapID) char[size];

return retVal;

}

void free_string(char *aString)

{

delete aString;

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-325
for SHARC Processors

Compiler

Example C Programs

The C programs below show how to allocate and initialize two types of
heap interfaces.

Standard Heap Interface

// Example program using the standard heap interface

// Assumes that the user has created an additional heap,

// "seg_heaq", which is located in PM memory

#include <stdlib.h>

#include <stdio.h>

void func(int * a, int pm * b);

main()

{

int * x;

int pm * y;

int loop;

x = malloc(1000); // get 1K words of DM heap space

set_alloc_type("seg_heaq"); // Set the current heap to

"seg_heaq"

y = (int pm *)malloc(1000); // get 1K words of PM heap space

set_alloc_type("seg_heap"); // Reset the current heap to

// "seg_heap" in case it is

referred

// to elsewhere

for (loop = 0; loop < 1000; loop++)

x[loop] = y[loop] = loop;

func(x, y); // Do something with x and y

}

C/C++ Run-Time Model and Environment

1-326 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Alternate Heap Interface

// Example function using the alternate heap interface

// Assumes that the user has created an additional heap,

"seg_heaq",

// which is located in PM memory

#include <stdlib.h>

void func(int * a, int pm * b);

main()

{

int * x;

int pm * y;

int loop, pm_heapID;

pm_heapID = heap_lookup_name("seg_heaq");

x = heap_malloc(0, 1000); // get 1K words of DM heap space

y = (int pm *)heap_malloc(pm_heapID, 1000);

// get 1K words of PM heap space

for (loop = 0; loop < 1000; loop++)

x[loop] = y[loop] = loop;

func(x, y); // Do something with x and y

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-327
for SHARC Processors

Compiler

Compiler Registers
The cc21k C/C++ run-time environment reserves a set of registers for its
own use. Table 1-30 lists these registers and the values the C/C++
run-time environment expects to be in them. Do not modify these regis-
ters, except as noted in the table.

Miscellaneous Information About Registers

The following is some miscellaneous information that C/C++ and assem-
bly programmers might find helpful in understanding register
functionality:

• All of the L registers, except L6 and L7, are required to be zero at
any call/return point.

• When programming in assembly, any modified L registers must be
reset to zero before calling another function or returning to a call-
ing function. (The compiler will handle this automatically for
C/C++ code).

Table 1-30. Compiler Registers

Register Value Modification Rules

m5, m13 0 Do not modify

m6, m14, 1 Do not modify

m7, m15 -1 Do not modify

b6, b7 stack base Do not modify

l6, l7 stack length Do not modify

l0, l1, l2, l3, l4, l5, l8, l9,
l10, l11, l12, l13, l14, l15

0 Modify circular buffer length registers for
temporary use, restore when done

MMASK
(ADSP-2116x/26x/3xx/4xx
processors only)

0xE03003 Do not modify if you are using the interrupt
dispatchers supplied with VisualDSP++.

C/C++ Run-Time Model and Environment

1-328 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• Interrupt routines must save and set to zero the L register before
using its corresponding I register for any modify instruction or
post-modify memory access.

• The MMASK register ensures that MODE1 is set to the correct value
before the interrupt dispatcher code is executed. It ensures that the
following bits are cleared: BR0, BR8, IRPTEN, ALUSAT, PEYEN, BDCST1,
BDCST9.

User Registers

The -reserve command-line switch lets you reserve registers for your
inline assembly code or assembly language routines. If reserving an L regis-
ter, you must reserve the corresponding I register; reserving an L register
without reserving the corresponding I register can result in execution
problems.

You must reserve the same list of registers in all linked files; the whole
project must use the same -reserve option. Table 1-31 lists these regis-
ters. Note that the C run-time library does not use these registers.

 Reserving registers can negatively influence the efficiency of com-
piled C/C++ code; use this option sparingly.

Table 1-31. User Registers

Register Value Modification Rule

i0, b0, l0, m0,
i1, b1, l1, m1,
i8, b8, l8, m8,
i9, b9, l9, m9,
mrb, ustat1, ustat2, ustat3, ustat4

user defined If not reserved, modify for
temporary use, restore when
done
If reserved, usage is not lim-
ited

VisualDSP++ 5.0 C/C++ Compiler Manual 1-329
for SHARC Processors

Compiler

Call Preserved Registers

The cc21k C/C++ run-time environment specifies a set of registers whose
contents must be saved and restored. Your assembly function must save
these registers during the function’s prologue and restore the registers as
part of the function’s epilogue. These registers must be saved and restored
if they are modified within the assembly function; if a function does not
change a particular register, it does not need to save and restore the
register.

Table 1-32 lists these registers.

Many functions in the C/C++ run-time library expect the processor to be
in a specific mode and may not operate correctly if the processor is in a
different mode. If you need to change processor modes, save the old values
in the mode1 and mode2 registers and restore these registers before calling
or returning to calling functions.

Table 1-32. Call Preserved Registers1

1 If you use a call preserved I register in an assembler routine called from an assem-
bler routine, you must save and zero (clear) the corresponding L register as part
of the function prologue. Then, restore the L register as part of the function epi-
logue.

b0 b1 b2 b3 b5 b8

b9 b10 b11 b14 b15

i0 i1 i2 i3 i5 i8

i9 i10 i11 i14 i15 mode1

mode2 mrb mrf m0 m1 m2

m3 m8 m9 m10 m11 r3

r5 r6 r7 r9 r10 r11

r13 r14 r15

C/C++ Run-Time Model and Environment

1-330 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The C/C++ run-time environment:

• Uses default bit order for DAG operations (no bit reversal)

• Uses the primary register set (not background set)

• Uses .PRECISION=32 (32-bit floating-point) and .ROUND_NEAREST
(round-to-nearest value) assembly directives

• Disables ALU saturation (MODE1 register, ALUSAT bit = 0)

• Uses default FIX instruction rounding to nearest (MODE1 register,
TRUNCATE=0)

• Enables circular buffering on ADSP-211xx, ADSP-212xx,
ADSP-213xx and ADSP-214xx processors by setting CBUFEN on
MODE1

Scratch Registers

The cc21k C/C++ run-time environment specifies a set of registers whose
contents do not need to be saved and restored. Note that the contents of
these registers are not preserved across function calls. Table 1-33 lists
these registers.

Table 1-33. Scratch Registers

b4 b12 b13 r0 r1 r2 r4 r8 r12

i4 i12 m4 m12 i13 PX USTAT1 USTAT2

VisualDSP++ 5.0 C/C++ Compiler Manual 1-331
for SHARC Processors

Compiler

In addition, for ADSP-2116x, ADSP-2126x, ADSP-213xx and
ADSP-214xx processors, the PEy data registers are all scratch registers.
Table 1-34 lists these registers.

 The USTAT registers are now treated as scratch registers.

Stack Registers

The cc21k C/C++ run-time environment reserves a set of registers for con-
trolling the run-time stack. These registers may be modified for stack
management, but they must be saved and restored. Table 1-35 lists these
registers.

Alternate Registers

With the exception of the background multiplier register MRB, which is vis-
ible at the same time as the foreground register MRF, the C/C++ run-time
environment model does not use any of the alternate registers. These regis-
ters are available for use in assembly language only. To use these registers,
several aspects of the C/C++ run-time model must be understood.

Table 1-34. Additional Scratch Registers

s0 s1 s2 s3 s4 s5 s6 s7 s8

s9 s10 s11 s12 s13 s14 s15 USTAT3 USTAT4

ASTATy STKy

Table 1-35. Pointer Registers

Register Value Modification Rules

i7 Stack pointer Modify for stack management, restore when done

i6 Frame pointer Modify for stack management, restore when done

i12 Return address Load with function call return address on function
exit

C/C++ Run-Time Model and Environment

1-332 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The C/C++ run-time model uses register I6 as the frame pointer and regis-
ter I7 as the stack pointer. Setting the DAG register that contains I6 and I7
from a background register to an active register directly affects the stack
operation. The C/C++ run-time model does not have an understanding of
background registers.

If the background I6 and I7 registers are active and an interrupt occurs,
the C/C++ run-time model still uses I6 and I7 to update the stack. This
results in faulty stack handling.

 The background register set containing DAG registers I6 and I7
should only be used in assembly routines if interrupts are not
enabled.

The super-fast interrupt dispatcher uses context switching rather than sav-
ing registers on the run-time stack. To ensure no register conflicts, do not
use the super fast interrupt dispatcher or disable interrupts when using
secondary registers in an assembly routine.

Managing the Stack

The cc21k C/C++ run-time environment uses the run-time stack for stor-
age of automatic variables and return addresses. The stack is managed by a
frame pointer (FP) and a stack pointer (SP) and grows downward in mem-
ory, moving from higher to lower addresses.

A stack frame is a section of the stack used to hold information about the
current context of the C/C++ program. Information in the frame includes
local variables, compiler temporaries, and parameters for the next
function.

The frame pointer serves as a base for accessing memory in the stack
frame. Routines refer to locals, temporaries, and parameters by their offset
from the frame pointer.

Figure 1-3 on page 1-334 shows an example section of a run-time stack.
In the figure, the currently executing routine, Current(), was called by

VisualDSP++ 5.0 C/C++ Compiler Manual 1-333
for SHARC Processors

Compiler

Previous(), and Current() in turn calls Next(). The state of the stack is
as if Current() has pushed all the arguments for Next() onto the stack
and is just about to call Next().

 Stack usage for passing any or all of a function’s arguments
depends on the number and types of parameters to the function.

The prototypes for the functions in Figure 1-3 on page 1-334 are:

void Current(int a, int b, int c, int d, int e);

void Next(int v, int w, int x, int y, int z);

In generating code for a function call, the compiler produces the following
operations to create the called function’s new stack frame:

• Loads the r2 register with the frame pointer (in the i6 register)

• Sets the FP, i6 register, equal to the SP (in the i7 register)

• Uses the delayed-branch instruction to pass control to the called
function

• Pushes the FP, r2, onto the run-time stack during the first branch
delay slot

• Pushes the return address, pc, onto the run-time stack during the
second delay-branch slot

For the ADSP-21020 processor, the following instructions create a new
stack frame.

r2=i6;

i6=i7;

jump my_function (DB);

/* where my_function is the called function */

dm(i7, m7) = r2;

dm(i7, m7) = .label-1;

C/C++ Run-Time Model and Environment

1-334 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Figure 1-3. Example Run-Time Stack

.

.

.

Second (and last) word of
Current()'s stack parameters;

argument e to Current()

First word of Current()'s stack
parameters; argument d to

Current()

Frame pointer (i6) saved
from Previous()

Return address

Local variables and saved
registers for Current()

...
Last word of Next()'s stack
parameters; argument z to

Next()

Second-to-last word of
Next()'s stack parameters;

argument y to Next()

Empty (will hold stack pointer (i7))

Previous()'s Frame

Current()'s Frame

Next()'s Frame

...

VisualDSP++ 5.0 C/C++ Compiler Manual 1-335
for SHARC Processors

Compiler

For ADSP-211xx/212xx/213xx/214xx processors, the following instruc-
tions create a new stack frame. Note how the two initial register moves are
incorporated into the cjump instruction.

cjump my_function (DB);

/* where my_function is the called function */

dm(i7, m7) = r2;

dm(i7, m7) = PC;

 For ADSP-214xx processors in short-word mode, .label-1 is used
instead of PC.

As you write assembly routines, note that the operations to create a stack
frame are the responsibility of the called function, and you can use the
entry or leaf_entry macros to perform these operations. For more infor-
mation on these macros, see “Using Mixed C/C++ and Assembly Support
Macros” on page 1-353.

In generating code for a function return, the compiler uses the following
operations to restore the calling function’s stack frame.

• Pops the return address off the run-time stack and loads it into the
i12 register

• Uses the delayed-branch instruction to pass control to the calling
function and jumps to the return address (i12 + 1)

• Restores the caller’s stack pointer, i7 register, by setting it equal to
FP, i6 register, during the first branch delay slot

• Restores the caller’s frame pointer, i6 register, by popping the pre-
viously saved FP off the run-time stack and loading the value into
i6 during the second delay-branch slot

C/C++ Run-Time Model and Environment

1-336 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

For ADSP-2106x/2116x/212xx/213xx/214xx processors, the following
instructions return from the function and restore the stack and frame
pointers. Note that the restoring of SP and FP are incorporated into the
rframe instruction.

i12 = dm(-1, i6);

jump (m14, i12) (DB);

nop;

rframe;

As you write assembly routines, note that the operations to restore stack
and frame pointers are the responsibility of the called function, and you
can use the exit or leaf_exit macros to perform these operations. For
more information on these macros, see “Using Mixed C/C++ and Assem-
bly Support Macros” on page 1-353.

In the following code examples (Listing 1-3 and Listing 1-4), observe how
the function calls in the C code translate to stack management tasks in the
compiled (assembly) version of the code. The comments have been added
to the compiled code to indicate the function prologue and function
epilogue.

Listing 1-3. Stack Management, Example C Code

/* Stack management — C code */

int my_func(int, int);

int arg_a, return_c;

main()

{

static int arg_b;

arg_b = 0;

return_c = my_func(arg_a, arg_b);

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-337
for SHARC Processors

Compiler

int my_func(int arg_1, int arg_2)

{

return (arg_1 + arg_2)/2;

}

Listing 1-4. Stack Management, Example ADSP-2106x Assembly Code

/* Stack management — C compiled (2106x assembly) code */

.section /pm seg_pmco;

.global _main;

_main:

r4=dm(_arg_a);

/* r4, the first argument register, which is arg_a */

r8=0;

/* r8, the second argument register, which is arg_b */

dm(_arg_b)=r8;

/* The next three lines are the function call sequence */

cjump (pc,_my_func) (DB);

dm(i7,m7)=r2;

dm(i7,m7)=pc;

dm(_return_c)=r0;

/* The next four lines are main’s function epilogue */

i12=dm(-1,i6);

jump (m14, i12) (DB);

nop;

rframe;

.global _my_func;

_my_func:

r0=(r4+r8)/2;

C/C++ Run-Time Model and Environment

1-338 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

/* The next four lines are my_func’s function epilogue */

i12=dm(-1,i6);

jump (m14, i12) (DB);

nop;

rframe;

The next two sections, “Transferring Function Arguments and Return
Value” on page 1-338 and “Using Macros to Manage the Stack” on
page 1-367, provide additional detail on function call requirements.

Transferring Function Arguments and Return Value

The C/C++ run-time environment uses a set of registers and the run-time
stack to transfer function parameters to assembly routines. Your assembly
language functions must follow these conventions when they call or when
they are called by C/C++ functions.

Because it is most efficient to use registers for passing parameters, the
run-time environment attempts to pass the first three parameters in a
function call using registers; it then passes any remaining parameters on
the run-time stack.

The convention is to pass the function’s first parameter in r4, the second
parameter in r8, and the third parameter in r12. The following exceptions
apply to this convention:

• If any parameter is larger then a single 32-bit word, then that
parameter and all subsequent parameters are passed on the stack.

• If the function is declared to take a variable number of arguments
(has … in its prototype), then the last named parameter and any
subsequent parameters are passed on the stack.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-339
for SHARC Processors

Compiler

Table 1-36 lists the rules that cc21k uses for passing parameters in regis-
ters to functions and the rules that your assembly code must use for
returns.

Consider the following function prototype example.

pass(int a, float b, char c, float d);

The first three arguments, a, b, and c are passed in registers r4, r8, and
r12, respectively. The fourth argument, d, is passed on the stack.

This next example illustrates the effects of passing long double
arguments.

count(int w, long double x, char y, float z);

The first argument, w, is passed in r4. Because the second argument, x, is a
multi-word argument, x is passed on the stack. As a result, the remaining
arguments, y and z, are also passed on the stack.

Table 1-36. Parameter and Return Value Transfer Registers

Register Parameter Type Passed Or Returned

r4 Pass first 32-bit data type parameter

r8 Pass second 32-bit data type parameter

r12 Pass third 32-bit data type parameter

stack Pass fourth and remaining parameters; see exceptions to this rule on this page.

r0 Return int, long, char, float, short, pointer, and one-word structure
parameters

r0, r1 Return long double, long long, unsigned long long and two-word structure
parameters. Place MSW in r0 and LSW in r1

r1 Return the address of results that are longer than two words; r1 contains the first
location in the block of memory containing the results

C/C++ Run-Time Model and Environment

1-340 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The following example illustrates the effects of variable arguments on
parameter passing.

compute(float k, int l, char m,…);

Here, the first two arguments, k and l, are passed in registers r4 and r8.
Because m is the last named argument, m is passed on the stack, as are all
remaining variable arguments.

When arguments are placed on the stack, they are pushed on from right to
left. The right-most argument is at a higher address than the left-most
argument passed on the stack.

The following example shows how to access parameters passed on the
stack.

tab(int a, char b, float c, int d, int e, long double f);

Parameters a, b, and c are passed in registers because they are single-word
parameters. The remaining parameters, d, e, and f, are passed on the
stack.

All parameters passed on the stack are accessed relative to the frame
pointer, register i6. The first parameter passed on the stack, d, is at
address i6 + 1. To access it, you could use this assembly language
statement.

r3=dm(1,i6);

The second parameter passed on the stack, e, is at i6 + 2 and can be
accessed by the statement

r3=dm(2,i6);

The third parameter passed on the stack, f, is a long double that has its
most significant word at i6 + 3 and its least significant word at i6 + 4.
The most significant word of f can be accessed by the statement

r3=dm(3,i6);

VisualDSP++ 5.0 C/C++ Compiler Manual 1-341
for SHARC Processors

Compiler

Passing a C++ Class Instance

A C++ class instance function parameter is always passed by reference
when a copy constructor has been defined for the C++ class. If a copy
constructor has not been defined for the C++ class then the C++ class
instance function parameter is passed by value.

Consider the following example.

class fr {

public:

int v;

fr () {}

fr (const fr& rc1) : v(rc1.v) {}

};

extern int fn(fr x);

fr Y;

int main() {

return fn (Y);

}

The function call fn (Y) in main will pass the C++ class instance Y by ref-
erence because a copy constructor for that C++ class has been defined by
fr (const fr& rc1) : v(rc1.v) {}. If this copy constructor were
removed, then Y would be passed by value.

Using Data Storage Formats

The C/C++ run-time environment uses the data formats that appear in the
Table 1-37 on page 1-342, Table 1-38 on page 1-343, Figure 1-4 on
page 1-343, and Figure 1-5 on page 1-344. Note that the native
fixed-point data types based on fract are only available in C mode. For
more information, see “Using Native Fixed-Point Types” on page 1-90.

C/C++ Run-Time Model and Environment

1-342 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Table 1-37. Data Storage Formats and Data Type Sizes

Applied Type Number Representation

int 32-bit two’s complement

long int 32-bit two’s complement

long long int 64-bit two’s complement

short int 32-bit two’s complement

unsigned int 32-bit unsigned magnitude

unsigned long int 32-bit unsigned magnitude

unsigned long long
int

64-bit unsigned magnitude

bool 32-bit two’s complement

char 32-bit two’s complement

unsigned char 32-bit unsigned magnitude

short fract 32-bit fractional, s1.31

fract 32-bit fractional, s1.31

long fract 32-bit fractional, s1.31

unsigned short fract 32-bit fractional, 0.32

unsigned fract 32-bit fractional, 0.32

unsigned long fract 32-bit fractional, 0.32

float 32-bit IEEE single-precision

double 32-bit IEEE single-precision
or 64-bit IEEE double-precision if you compile with the
-double-size-64 switch

long double 64-bit IEEE double-precision

VisualDSP++ 5.0 C/C++ Compiler Manual 1-343
for SHARC Processors

Compiler

In Figure 1-4 above, the single word (32-bit) data storage format equates
to:

where

• Sign – Comes from the sign bit.

• Mantissa – Represents the fractional part of the mantissa 23 bits.
(The “1.” is assumed in this format.)

• Exponent – Represents the 8-bit exponent.

Table 1-38. Data Storage Formats and Data Storage

Data Big Endian Storage Format

long long Writes 64-bit two’s complement data with the most significant word
closer to address 0x0000, proceeds toward the top of memory with
the rest.

unsigned long long Writes 64-bit magnitude data with the most significant word closer
to address 0x0000, proceeds toward the top of memory with the rest.

long double Writes 64-bit IEEE double-precision data with the most significant
word closer to address 0x0000, proceeds toward the top of memory
with the rest. (See Figure 1-5 for details.)

Figure 1-4. Data Storage Format for Float and Double Types

Single Word (32 bits)

Sign Bit

2223 031

8-Bit Exponent
Biased by +127

Mantissa

1Sign 1.Mantissa 2 Exponent 127–()××–

C/C++ Run-Time Model and Environment

1-344 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

In Figure 1-5 above, the two-word (64-bit) data storage format equates to:

where

• Sign – Comes from the sign bit.

• Mantissa – Represents the fractional part of the mantissa 52 bits.
(The “1.” is assumed in this format.)

• Exponent – Represents the 11-bit exponent.

fract Data Representation

The fract types are native fixed-point types that can be used to write code
using saturating, fixed-point arithmetic. The native fixed-point types are
discussed in “Using Native Fixed-Point Types” on page 1-90.

The short fract, fract and long fract type represent a 32-bit signed
fractional value. All types have the range [-1.0,+1.0).

Figure 1-5. Double-Precision IEEE Format

Most Significant Word (32 bits)
at Memory Address N

Sign Bit

52 062

11-Bit Exponent
Biased by +1023

Mantissa

5163

Least Significant Word (32 bits)
at Memory Address N+1

31

1Sign 1.Mantissa 2 Exponent 1023–()××–

VisualDSP++ 5.0 C/C++ Compiler Manual 1-345
for SHARC Processors

Compiler

The short fract, fract, and long fract data representations are shown
in Figure 1-6.

Therefore, to represent 0.25 in fract, the HEX representation would be
0x20000000 (2-2). For -1, the HEX representation in fract is 0x80000000.
short fract, fract, and long fract cannot represent +1 exactly, but they
get quite close with 0x7fffffff.

The unsigned short fract, unsigned fract and unsigned long fract
types represent a 32-bit unsigned fractional value. All types have the range
[0.0,+1.0).

The unsigned short fract, unsigned fract and unsigned long fract
data representations are shown in Figure 1-7.

Figure 1-6. Data Storage Format for short fract, fract, and long fract

Figure 1-7. Data Storage Format for unsigned short fract, unsigned
fract, and unsigned long fract

Bit

Weight

31 30 29 2 1 0

2-29 2-30 2-31(-1) 2-1 2-2

Bit

Weight

31 30 29 2 1 0

2-1 2-2 2-3 2-30 2-31 2-32

C/C++ Run-Time Model and Environment

1-346 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Therefore, to represent 0.25 in unsigned fract, the HEX representation
would be 0x40000000 (2-2). unsigned short fract, unsigned fract and
unsigned long fract cannot represent +1 exactly, but they get quite close
with 0xffffffff.

Using the Run-Time Header

The run-time header is an assembly language procedure that initializes the
processor and sets up processor features to support the C/C++ run-time
environment. The source code for the default run-time headers is in:

• 020_hdr.asm for ADSP-21020 processors

• 06x_hdr.asm for ADSP-2106x processors

• 16x_hdr.asm for ADSP-2116x processors

• 26x_hdr.asm for ADSP-2126x processors

• 36x_hdr.asm for ADSP-2136x processors

• 37x_hdr.asm for ADSP-2137x processors

• 214xx_hdr.asm for ADSP-214xx processors

This run-time header performs the following operations:

• Initializes the C/C++ run-time environment

• Sets up the interrupt table

• Calls your main() routine

VisualDSP++ 5.0 C/C++ Compiler Manual 1-347
for SHARC Processors

Compiler

C/C++ and Assembly Interface
This section describes how to call assembly language subroutines from
within C/C++ programs and how to call C/C++ functions from within
assembly language programs.

 Before attempting to do either of these calls, be sure to familiarize
yourself with the information about the C/C++ run-time model
(including details about the stack, data types, and how arguments
are handled) in “C/C++ Run-Time Environment” on page 1-300.
At the end of this reference, a series of examples demonstrate how
to mix C/C++ and assembly code.

This section includes:

• “Calling Assembly Subroutines From C/C++ Programs” on
page 1-347

• “Calling C/C++ Functions From Assembly Programs” on
page 1-350

• “C++ Programming Examples” on page 1-362

• “Mixed C/C++/Assembly Programming Examples” on page 1-365

• “Exceptions Tables in Assembly Routines” on page 1-378

Calling Assembly Subroutines From C/C++
Programs

Before calling an assembly language subroutine from a C/C++ program,
create a prototype to define the arguments for the assembly language sub-
routine and the interface from the C/C++ program to the assembly
language subroutine. Even though it is legal to use a function without a
prototype in C/C++, prototypes are a strongly-recommended practice for
good software engineering. When the prototype is omitted, the compiler

C/C++ and Assembly Interface

1-348 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

cannot perform argument-type checking and assumes that the return value
is of type integer and uses K&R promotion rules instead of ANSI promo-
tion rules.

The compiler prefaces the name of any external entry point with an
underscore. You should either declare your assembly language subrou-
tine’s name with a leading underscore or define it within an
'extern "asm" {}' format to tell the compiler that it is an assembly lan-
guage subroutine.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated registers. The scratch registers can be used within
the assembly language program without worrying about their previous
contents. If more registers are needed (or you work with existing code and
wish to use the preserved registers), you must first save their contents and
then restore those contents before returning. Do not use the dedicated
registers for other than their intended purpose; the compiler, libraries,
debugger, and interrupt routines all depend on having a stack available as
defined by those registers.

The compiler also assumes that the machine state does not change during
execution of the assembly language subroutine.

 Do not change any machine modes; for example, the machine may
have an integer/fractional mode, or it may use certain registers to
indicate circular buffering when those register values are non-zero.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer.

A good way to explore how arguments are passed between a C/C++ pro-
gram and an assembly language subroutine is to write a dummy function
in C/C++ and compile it with the -save-temps command-line switch. The

VisualDSP++ 5.0 C/C++ Compiler Manual 1-349
for SHARC Processors

Compiler

following example includes the global volatile variable assignments to
indicate where the arguments can be found upon entry to asmfunc.

// Sample file for exploring compiler interface …

// global variables … assign arguments there just so

// we can track which registers were used

// (type of each variable corresponds to one of arguments):

int global_a;

float global_b;

int * global_p;

// the function itself:

int asmfunc(int a, float b, int * p)

{

// do some assignments so .s file will show where args are:

global_a = a;

global_b = b;

global_p = p;

// value gets loaded into the return register:

return 12345;

}

C/C++ and Assembly Interface

1-350 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

When compiled with the switches -save-temps -O0 -no-annotate, this
produces the following code.

_asmfunc;

.LN_asmfunc:

modify(i7,-3);

dm(-8,i6)=r12;

dm(-3,i6)=r8;

dm(-4,i6)=r4;

dm(_global_a)=r4;

dm(_global_b)=r8;

dm(_global_p)=r12;

r0=12345;

i12=dm(m7,i6);

jump (m14,i12) (db); rframe; nop;

.LN._asmfunc.end;

._asmfunc.end;

Calling C/C++ Functions From Assembly Programs
You may want to call C/C++-callable library and other functions from
within an assembly language program. As discussed in “Calling Assembly
Subroutines From C/C++ Programs” on page 1-347, you may wish to cre-
ate a test function to do this in C/C++, and then use the code generated by
the compiler as a reference when creating your assembly language program
and the argument setup. Using volatile global variables may help clarify
the essential code in your test function.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated. The contents of the scratch registers may be
changed without warning by the called C/C++ function; if the assembly
language program needs the contents of any of those registers, you must
first save their contents before the call to the C/C++ function and then
restore those contents after returning from the call.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-351
for SHARC Processors

Compiler

 Do not use the dedicated registers for other than their intended
purpose; the compiler, libraries, debugger and interrupt routines all
depend on having a stack available as defined by those registers.

Preserved registers can be used; their contents are not changed by calling a
C/C++ function. The function always saves and restores the contents of
preserved registers if they are going to change.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. You can explore how arguments are passed
between an assembly language program and a function by writing a
dummy function in C/C++ and compiling it with the save temporary
files option (the -save-temps command-line switch). By examining the
contents of volatile global variables in *.s file, you can determine how the
C/C++ function passes arguments and then duplicate that argument setup
process in the assembly language program.

The stack must be set up correctly before calling a C/C++-callable func-
tion. If you call other functions, maintaining the basic stack model also
facilitates the use of the debugger. The easiest way to do this is to define a
C/C++ main program to initialize the run-time system; hold the stack
until it is needed by the C/C++ function being called from the assembly
language program; and then hold that stack until it is needed to call back
into C/C++, making sure the dedicated registers are correct. You do not
need to set the FP prior to the call; the caller’s FP is never used by the
callee.

The following example demonstrates the features described in this section.
Because so many different features are combined into a single example,
this procedure as a whole should not be viewed as an example of good
assembly programming.

// PROCEDURE: memalloc

.global _memalloc;

_memalloc:

r5=0xffff; // Assign a value to preserved reg r5

C/C++ and Assembly Interface

1-352 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

r8=0xffff; // Assign a value to scratch reg r8

r0=dm(-3,i6); // Read a value from the stack

r4=r0; // Put this value in a parameter register

// Save value of scratch register prior to function call

r7=r8;

// Call the C function malloc()

r2=i6;

i6=i7;

jump _malloc (DB);

dm(i7,m7)=r2;

dm(i7,m7)=-1;

// Check the result of the function call

r0=pass r0;

if eq jump(pc,_error);

// Check that the preserved register did not change over

// the function call

r4=0xffff;

comp(r4,r5);

if ne jump(pc, _error);

// Restore value of scratch register after function call

r8=r7;

i6 = 0x123; // PROGRAMMING ERROR! Do not change

// dedicated registers

rts;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-353
for SHARC Processors

Compiler

Using Mixed C/C++ and Assembly Support Macros

This section lists C/C++ and assembly interface support macros in the
asm_sprt.h system header file. Use these macros for interfacing assembly
language modules with C/C++ functions. Table 1-39 lists the macros.

 Although the syntax for each macro does not change, the listing of
asm_sprt.h in this section may not be the most recent version. To
see the current version, check the asm_sprt.h file that came with
your software package.

Table 1-39 provides the descriptions and the syntax for the C/C++ and
assembly interface support macros.

entry

The entry macro expands into the function prologue for non-leaf func-
tions. This macro should be the first line of any non-leaf assembly routine.
Note that this macro is currently null, but it should be used for future
compatibility.

exit

The exit macro expands into the function epilogue for non-leaf func-
tions. This macro should be the last line of any non-leaf assembly routine.
Exit is responsible for restoring the caller’s stack and frame pointers and
jumping to the return address. Note that this macro is currently mapped
to the leaf_exit macro, but it should be used for future compatibility.

Table 1-39. Interface Support Macro Summary

entry exit leaf_entry leaf_exit

ccall(x) reads(x) puts gets(x)

alter(x) save_reg restore_reg

C/C++ and Assembly Interface

1-354 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

leaf_entry

The leaf_entry macro expands into the function prologue for leaf func-
tions. This macro should be the first line of any non-leaf assembly routine.
Note that this macro is currently null, but it should be used for future
compatibility.

leaf_exit

The leaf_exit macro expands into the function epilogue for leaf func-
tions. This macro should be the last line of any leaf assembly routine.
leaf_exit is responsible for restoring the caller’s stack and frame pointers
and jumping to the return address.

ccall(x)

The ccall macro expands into a series of instructions that save the caller’s
stack and frame pointers and then jump to function x().

reads(x)

The reads macro expands into an instruction that reads a value off the
stack and puts the value in the indicated register.

puts=x

The puts macro expands into an instruction that pushes the value in regis-
ter x onto the stack.

gets(x)

The gets macro expands into an instruction that reads a value off the
stack and puts the value in the indicated register.

register = gets(x);

The value is located at an offset x from the stack pointer.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-355
for SHARC Processors

Compiler

alter(x)

The alter macro expands into an instruction that adjusts the stack
pointer by adding the immediate value x. With a positive value for x,
alter pops x words from the top of the stack. You could use alter to clear
x number of parameters off the stack after a call.

save_reg

The save_reg macro expands into a series of instructions that push the
register file registers (r0–r15) onto the run-time stack.

restore_reg

The restore_reg macro expands into a series of instructions that pop the
register file registers (r0–r15) off the run-time stack.

The following code example shows the asm_sprt.h used for defining
C/C++/assembly interface support macros.

/* asm_sprt.h — C/C++/Assembly Interface Support Macros */

/* asm_sprt.h - $Date: 10/09/97 6:28p $ */

#ifndef __ASM_SPRT_DEFINED

#define __ASM_SPRT_DEFINED

#define entry /* nothing */

#define leaf_entry /* nothing */

#ifdef __ADSP21020__

#define ccall(x) \

r2=i6; i6=i7; \

jump (pc, x) (db); \

dm(i7,m7)=r2; \

dm(i7,m7)=PC;

#define leaf_exit \

i12=dm(m7,i6); \

C/C++ and Assembly Interface

1-356 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

jump (m14,i12) (db); \

i7=i6; i6=dm(0,I6);

#define exit leaf_exit

#else

#define ccall(x) \

cjump (x) (DB); \

dm(i7,m7)=r2; \

dm(i7,m7)=-1;

#define leaf_exit \

i12=dm(m7,i6); \

jump (m14,i12) (db); \

nop; \

RFRAME

#define exit leaf_exit

#endif

#define reads(x)dm(x, i6)

#define putsdm(i7, m7)

#define gets(x)dm(x, i7)

#define alter(x)modify(i7, x)

#define save_reg \

puts=r0;\

puts=r1;\

puts=r2;\

puts=r3;\

puts=r4;\

puts=r5;\

puts=r6;\

puts=r7;\

puts=r8;\

puts=r9;\

puts=r10;\

VisualDSP++ 5.0 C/C++ Compiler Manual 1-357
for SHARC Processors

Compiler

puts=r11;\

puts=r12;\

puts=r13;\

puts=r14;\

puts=r15;

#define restore_reg \

r15=gets(1);\

r14=gets(2);\

r13=gets(3);\

r12=gets(4);\

r11=gets(5);\

r10=gets(6);\

r9 =gets(7);\

r8 =gets(8);\

r7 =gets(9);\

r6 =gets(10);\

r5 =gets(11);\

r4 =gets(12);\

r3 =gets(13);\

r2 =gets(14);\

r1 =gets(15);\

r0 =gets(16);\

alter(16);

#endif

Using Mixed C/C++ and Assembly Naming Conventions

It is necessary to be able to use C/C++ symbols (function or variable
names) in assembly routines and use assembly symbols in C/C++ code.
This section describes how to name and use C/C++ and assembly symbols.

To name an assembly symbol that corresponds to a C/C++ symbol, add an
underscore prefix to the C/C++ symbol name when declaring the symbol

C/C++ and Assembly Interface

1-358 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

in assembly. For example, the C/C++ symbol main becomes the assembly
symbol _main.

To use a C function or variable in an assembly routine, declare it as global
in the C program. Import the symbol into the assembly routine by declar-
ing the symbol with the .EXTERN assembler directive.

The external name of a C++ function encodes information about its type
and parameters. Function “signature” enables the overloading of functions
and operators that the C++ language supports. To reference a function in
a C++ module, declare it with the extern “C” specifier in order to use the
naming convention of C. Note that C++ data symbols use the same con-
vention as C.

To use an assembly function or variable in your C program, declare the
symbol with the .GLOBAL assembler directive in the assembly routine and
import the symbol by declaring the symbol as extern in the C program.

To use an assembly function in your C++ module, declare the symbol with
the .GLOBAL assembler directive in the assembly routine and import the
symbol by declaring the symbol as extern “C” in the C++ program. For
example, to reference the _funcmult assembly routine from a C++ pro-
gram, you declare it as extern “C” int funcmult(int a, int b) in the
C++ program.

Table 1-40 shows several examples of the C/Assembly interface naming
conventions. Each row shows how assembler code can reference the corre-
sponding C item.

Table 1-40. C Naming Conventions For Symbols

In the C Program In the Assembly Subroutine

int c_var; /*declared global*/ .extern _c_var;

void c_func(){...} .extern _c_func;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-359
for SHARC Processors

Compiler

Table 1-41 shows several examples of the C++/Assembly interface naming
conventions. Each row shows how assembler code can reference the corre-
sponding C++ item.

Implementing C++ Member Functions in Assembly Language

If an assembly language implementation is desired for a C++ member
function, the simplest way is to use C++ to provide the proper interface
between C++ and assembly.

In the class definition, write a simple member function to call the assem-
bly-implemented function (subroutine). This call can establish any
interface between C++ and assembly, including passing a pointer to the
class instance. Since the call to the assembly subroutine resides in the class
definition, the compiler inlines the call (inlining adds no overhead to
compiler performance). From an efficiency point of view, the assembly
language function is called directly from the user code.

extern int asm_var; .global _asm_var;

extern void asm_func(); .global _asm_func;
_asm_func:

Table 1-41. C++ Naming Conventions for Symbols

In the C++ Program In the Assembly Subroutine

extern "C" { int c_var; } /*declared global*/ .extern _c_var;

extern "C" void c_func(void){...} .extern _c_func;

extern "C" int asm_var; .global _asm_var;

extern "C" void asm_func(void); .global _asm_func;
_asm_func:

Table 1-40. C Naming Conventions For Symbols (Cont’d)

In the C Program In the Assembly Subroutine

C/C++ and Assembly Interface

1-360 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

As for any C++ function, ensure that a prototype for the assembly-imple-
mented function is included in your program. As discussed in “Using
Mixed C/C++ and Assembly Naming Conventions” on page 1-357, you
declare your assembly language subroutine’s name with the .GLOBAL direc-
tive in the assembly portion and import the symbol by declaring it as
extern “C” in the C++ portion of the code.

Note that using this method you avoid name mangling—you choose your
own identifier for the external function. Access to internal class informa-
tion can be done either in the C++ portion or in the assembly portion. If
the assembly subroutine needs only limited access to the class members, it
is easier to select those in the C++ code and pass them as explicit argu-
ments. This way the assembly code does not need to know how data is
allocated within a class instance.

#include <stdio.h>

/* Prototype for external assembly routine: */

/* C linkage does not have name mangling */

extern "C" int cc_array(int);

class CC {

private:

int av;

public:

CC(){};

CC(int v) : av(v){};

int a() {return av;};

/* Assembly routine call: */

int array() {return cc_array(av);};

};

int main()

{

CC samples(11);

CC points;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-361
for SHARC Processors

Compiler

points = CC(22);

int j, k;

j = samples.a();

k = points.array(); // Test asm call

printf ("Val is %d\n", j);

printf ("Array is %d\n", k);

return 1;

}

/* In a separate assembly file: */

.section /pm seg_pmco;

.global _cc_array;

_cc_array:

modify(i7,-3);

dm(-4,i6)=r3;

dm(-2,i6)=r4;

r3=r4;

r0=r3+r3;

r3=dm(-4,i6);

i12=dm(m7,i6);

jump(m14,i12)(DB);

rframe;

nop;

Writing C/C++ Callable SIMD Subroutines

You can write assembly subroutines that use SIMD mode for the
ADSP-211xx, ADSP-212xx, ADSP-213xx, ADSP-214xx processors and
call them from your C programs. The routine may use SIMD mode
(PEYEN bit=1) for all code between the function prologue and epilogue,
placing the chip in SISD mode (PEYEN bit=0) before the function epilogue
or returning from the function.

C/C++ and Assembly Interface

1-362 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

 While it is possible to write subroutines that can be called in SIMD
mode (the chip is in SIMD mode before the call and after the
return), the compiler does not support a SIMD call interface at this
time. For example, trying to call a subroutine from a
#pragma SIMD_for loop prevents the compiler from executing the
loop in SIMD mode because the compiler does not support SIMD
mode calls.

Because transfers between memory and data registers are doubled in
SIMD mode (each explicit transfer has a matching implicit transfer), it is
recommended that you access the stack in SISD mode to prevent corrupt-
ing the stack. For more information on SIMD mode memory accesses, see
the Memory chapter in the hardware reference for the appropriate
ADSP-211xx, ADSP-212xx, ADSP-213xx, or ADSP-214xx processor.

If you are using SIMD subroutines, your interrupt handler must provide
additional support. This support in the interrupt service routine entails
saving-restoring the PEYEN bit and placing the processor in the mode
(SISD or SIMD) that the interrupt service routine needs. Interrupt han-
dlers often use the MMASK register to expedite these mode changes.

C++ Programming Examples
This section provides the following examples for C++-specific features:

• “Using Fract Support” on page 1-363

• “Using Complex Support” on page 1-364

Note that the cc21k compiler runs in C mode by default. To run the com-
piler in C++ mode, select the corresponding option on the command line,
or check it in the Project Options dialog box of the VisualDSP++
environment.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-363
for SHARC Processors

Compiler

For example, the following command line

cc21k -c++ fdot.c -T060.ldf

runs cc21k with:

Using Fract Support

Listing 1-5 demonstrates the compiler support for the fract type and
associated arithmetic operators, such as + and *. The dot product algo-
rithm is expressed using the standard arithmetic operators. The code
demonstrates how two variable-length arrays are initialized with fractional
literals.

For more information about the fractional data type and arithmetic, see
“C++ Fractional Type Support” on page 1-264.

Listing 1-5. Dot Product Using Fract Arithmetic Example — C++ Code

#include <saturate.h>

#include <fract>

#define N 50

fract fdot (int array_size, fract *x, fract *y)

{

int j;

fract s;

s = 0;

for (j=0; j < array_size; j++)

{

s += x[j] * y[j];

-c++ Specifies that the following source file is written in ANSI/ISO standard
C++ extended with the Analog Devices keywords.

fdot.c Specifies the source file for your program.

-T 060.ldf Specifies the Linker Description File for the ADSP-21060 processors.

C/C++ and Assembly Interface

1-364 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

}

return s;

}

extern fract a[N],b[N];

int main(void)

{

set_saturate_mode();

fdot (N,a,b);

}

Using Complex Support

The Mandelbrot fractal set is defined by the following iteration on com-
plex numbers:

z := z * z + c

The c values belong to the set for which the above iteration does not
diverge to infinity. The canonical set is defined when z starts from zero.

Listing 1-6 demonstrates the Mandelbrot generator expressed in a simple
algorithm using the C++ library complex class.

Listing 1-6. Mandelbrot Generator Example — C++ code

#include <complex>

int iterate (complex<double> c, complex<double> z, int max)

{

int n;

for (n = 0; n<max && abs(z)<2.0; n++)

{

z = z * z + c;

}

return (n == max ? 0 : n);

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-365
for SHARC Processors

Compiler

Listing 1-7 shows a C version of the inner computational function of the
Mandelbrot generator, which extracts performance and programming
penalties (compared with the C++ version).

Listing 1-7. Mandelbrot Generator Example — C code

int iterate (double creal, double cimag,

double zreal, double zimag, int max)

{

double real, imag;

int n;

real = zreal * zreal;

imag = zimag * zimag;

for (n = 0; n<max && (real+imag)<5.0; n++)

{

zimag = 2.0 * zreal * zimag + cimag;

zreal = real - imag + creal;

real = zreal * zreal;

imag = zimag * zimag;

}

return (n == max ? 0 : n);

}

Mixed C/C++/Assembly Programming Examples
This section shows examples of types of mixed C/C++/assembly program-
ming in order of increasing complexity. The examples in this section are as
follows:

• “Using Inline Assembly (Add)” on page 1-367

• “Using Macros to Manage the Stack” on page 1-367

• “Using Scratch Registers (Dot Product)” on page 1-369

• “Using Void Functions (Delay)” on page 1-370

C/C++ and Assembly Interface

1-366 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• “Using the Stack for Arguments (Add 5)” on page 1-372

• “Using Registers for Arguments and Return (Add 2)” on
page 1-373

• “Using Non-Leaf Routines That Make Calls (RMS)” on
page 1-374

• “Using Call Preserved Registers (Pass Array)” on page 1-376

Note that leaf assembly routines are routines that return without making
any calls. Non-leaf assembly routines call other routines before returning
to the caller.

Note that you can use cc21k to compile your C/C++ program and assem-
ble your assembly language modules. This ensures that the assembly of
your modules complies with the C/C++ run-time environment.

For example, the following cc21k command line

cc21k my_prog.c my_sub1.asm -T 062.ldf -Wremarks

runs cc21k with the following modules listed in Table 1-42.

Table 1-42. Modules for Running cc21k

Module Description

my_prog.c Selects a C language source file for your program

my_sub1.asm Selects an assembly language module to be assembled and linked
with your program

-T 062.ldf Selects a Linker Description File describing your system

-Wremarks Selects diagnostic compiler warnings

VisualDSP++ 5.0 C/C++ Compiler Manual 1-367
for SHARC Processors

Compiler

Using Inline Assembly (Add)

The following example shows how to write a simple routine in
ADSP-21xxx assembly code that properly interfaces to the C/C++
environment. It uses the asm() construct to pass inline assembly code to
the compiler.

int add(int x, int y, int z)

{

int res;

asm("%0=%2+%1; %0=%0+%3":
"=d"(res):"d"(x),"d"(y),"d"(z));

return res;

}

Using Macros to Manage the Stack

Listing 1-8 and Listing 1-9 on page 1-368 show how macros can simplify
function calls between C, C++, and assembly functions. The assembly
function uses the entry, exit, and ccall macros to keep track of return
addresses and manage the run-time stack. For more information, see
“Managing the Stack” on page 1-332.

Listing 1-8. Subroutine Return Address Example — C Code

/* Subroutine Return Address Example—C code: */

/* assembly and c functions prototyped here */

void asm_func(void);

void c_func(void);

/* c_var defined here as a global */

/* used in .asm file as _c_var */

int c_var=10;

/* asm_var defined in .asm file as _asm_var */

C/C++ and Assembly Interface

1-368 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

extern int asm_var;

main ()

{

asm_func(); /* call to assembly function */

}

/* this function gets called from asm file */

void c_func(void)

{

if (c_var != asm_var)

exit(1);

else

exit(0);

}

Listing 1-9. Subroutine Return Address Example — Assembly Code

/* Subroutine Return Address Example—Assembly code: */

#include <asm_sprt.h>

.section/dm seg_dmda;

.var _asm_var=0; /* asm_var is defined here */

.global _asm_var; /* global for the C function */

.section/pm seg_pmco;

.global _asm_func; /* _asm_func is defined here */

.extern _c_func; /* c_func from the C file */

.extern _c_var; /* c_var from the C file */

_asm_func:

entry; /* entry macro from asm_sprt */

r8=dm(_c_var); /* access the global C var */

dm(_asm_var)=r8; /* set _asm_var to _c_var) */

VisualDSP++ 5.0 C/C++ Compiler Manual 1-369
for SHARC Processors

Compiler

ccall(_c_func); /* call the C function */

exit; /* exit macro from asm_sprt */

Using Scratch Registers (Dot Product)

To write assembly functions that can be called from a C/C++ program,
your assembly code must follow the conventions of the C/C++ run-time
environment and use the conventions for naming functions. The dot()
assembly function described below demonstrates how to comply with
these specifications.

This function computes the dot product of two vectors. The two vectors
and their lengths are passed as arguments. Because the function uses only
scratch registers (as defined by the run-time environment) for
intermediate values and takes advantage of indirect addressing, the func-
tion does not need to save or restore any registers.

/* dot(int n, dm float *x, pm float *y);

Computes the dot product of two floating-point vectors of length

n. One is stored in dm and the other in pm. Length n must be

greater than 2.*/

#include <asm_sprt.h>

.section/pm seg_pmco;

/* By convention, the assembly function name is the C function

name with a leading underscore; "dot()" in C becomes "_dot" in

assembly */

.global _dot;

_dot:

leaf_entry;

C/C++ and Assembly Interface

1-370 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

r0=r4-1,i4=r8;

/* Load first vector address into I register, and load r0 with

length -1 */

r0=r0-1,i12=r12;

/* Load second vector address into I register and load r0 with

length-2 (because the 2 iterations outside feed and drain the

pipe */

f12=f12-f12,f2=dm(i4,m6),f4=pm(i12,m14);

/* Zero the register that will hold the result and start

feeding pipe */

f8=f2*f4, f2=dm(i4,m6),f4=pm(i12,m14);

/* Second data set into pipeline, also do first multiply */

lcntr=r0, do dot_loop until lce;

/* Loop length-2 times, three-stage pipeline: read, mult, add */

dot_loop:

f8=f2*f4, f12=f8+f12,f2=dm(i4,m6),f4=pm(i12,m14);

f8=f2*f4, f12=f8+f12;

f0=f8+f12;

/* drain the pipe and end with the result in r0, where it’ll be

returned */

leaf_exit;

/* restore the old frame pointer and return */

Using Void Functions (Delay)

The simplest kind of assembly routine is one with no arguments and no
return value, which corresponds to C/C++ functions prototyped as void
my_function(void). Such routines could be used to monitor an external
event or used to perform an operation on a global variable.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-371
for SHARC Processors

Compiler

It is important when writing such assembly routines to pay close attention
to register usage. If the routine uses any call-preserved or compiler
reserved registers (as defined in the run-time environment), the routine
must save the register and restore it before returning. Because the follow-
ing example does not need many registers, this routine uses only scratch
registers (also defined in the run-time environment) that do not need to
be saved.

Note that in the example all symbols that need to be accessed from C/C++
contain a leading underscore. Because the assembly routine name _delay
and the global variable _del_cycle must both be available to C and C++
programs, they contain a leading underscore in the assembly code.

/* Simple Assembly Routines Example — _delay */

/* void delay (void);

An assembly language subroutine to delay N cycles, where N is

the value of the global variable del_cycle */

#include <asm_sprt.h>;

.section/pm seg_pmco;

.extern _del_cycle;

.global _delay;

_delay:

leaf_entry; /* first line of any leaf func */

R4 = DM (_del_cycle);

/* Here, register r4 is used because it is a scratch register

and does not need to be preserved */

LCNTR = R4, DO d_loop UNTIL LCE;

d_loop:

nop;

leaf_exit; /* last line of any leaf func */

C/C++ and Assembly Interface

1-372 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using the Stack for Arguments (Add 5)

A more complicated kind of routine is one that has parameters but no
return values. The following example adds together the five integers
passed as parameters to the function.

/* Assembly Routines With Parameters Example — _add5 */

/* void add5 (int a, int b, int c, int d, int e);

An assembly language subroutine that adds 5 numbers */

#include <asm_sprt.h>

.section/pm seg_pmco;

.extern _sum_of_5; /* variable where sum will be stored */

.global _add5;

_add5:

leaf_entry;

/* the calling routine passes the first three parameters in

registers r4, r8, r12 */

r4 = r4 + r8; /* add the first and second parameter */

r4 = r4 + r12; /* adds the third parameter */

/* the calling routine places the remaining parameters

(fourth/fifth) on the run-time stack; these parameters can be

accessed using the reads() macro */

r8 = reads(1); /* put the fourth parameter in r8 */

r4 = r4 + r8; /* adds the fourth parameter */

r8 = reads(2); /* put the fifth parameter in r8 */

r4 = r4 + r8; /* adds the fifth parameter */

VisualDSP++ 5.0 C/C++ Compiler Manual 1-373
for SHARC Processors

Compiler

dm(_sum_of_5) = r4;

/* place the answer in the global variable */

leaf_exit;

Using Registers for Arguments and Return (Add 2)

There is another class of assembly routines in which the routines have
both parameters and return values. The following example of such a rou-
tine adds two numbers and returns the sum. Note that this routine follows
the run-time environment specification for passing function parameters
(in registers r4 and r8) and passing the return value (in register r0).

/* Routine With Parameters & Return Value —add2_ */

/* int add2 (int a, int b);

An assembly language subroutine that adds two numbers and returns

the sum */

#include <asm_sprt.h>

.section/pm seg_pmco;

.global _add2;

_add2:

leaf_entry;

/* per the run-time environment, the calling routine passes the

first two parameters passed in registers r4 and r8; the return

value goes in register r0 */

r0 = r4 + r8;

/* add the first and second parameter, store in r0*/

leaf_exit;

C/C++ and Assembly Interface

1-374 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using Non-Leaf Routines That Make Calls (RMS)

A more complicated example, which calls another routine, computes the
root mean square of two floating-point numbers, such as

Although it is straight forward to develop your own function that calcu-
lates a square-root in ADSP-21xxx assembly language, the following
example demonstrates how to call the square root function from the
C/C++ run-time library, sqrtf. In addition to demonstrating a C
run-time library call, this example shows some useful calling macros.

/* Non-Leaf Assembly Routines Example — _rms */

/* float rms(float x, float y); An assembly language subroutine

to return the rms z = (x^2 + y^2)^(1/2) */

#include <asm_sprt.h>

.section/pm seg_pmco;

.extern _sqrtf;

.global _rms;

_rms:

entry; /* first line of non-leaf routine */

f4 = f4 * f4;

f8 = f8 * f8;

f4 = f4 + f8;

/* f4 contains argument to be passed to sqrtf function */

ccall (_sqrtf);

z 2x 2y+=

VisualDSP++ 5.0 C/C++ Compiler Manual 1-375
for SHARC Processors

Compiler

/* use the ccall() macro to make a function call in a C

environment; f0 contains the result returned by the _sqrtf

function. In turn, _rms returns the result to its caller in f0

(and it is already there) */

exit; /* last line of non-leaf routine */

If a called function takes more than three single word parameters, the
remaining parameters must be pushed on to the stack and popped off the
stack after the function call. The following function could call the _add5
routine shown in “Using the Stack for Arguments (Add 5)” on
page 1-372. Note that the last parameter must be pushed on the stack
first.

/* Non-Leaf Assembly Routines Example — _calladd5 */

/* int calladd5 (void); An assembly language subroutine that
calls another routine with more than 3 parameters.

This example adds the numbers 1, 2, 3, 4, and 5. */

#include <asm_sprt.h>

.section/pm seg_pmco;

.extern _add5;

.extern _sum_of_5;

.global _calladd5;

_calladd5:

entry;

r4 = 5;

/* the fifth parameter is stored in r4 for pushing onto stack */

puts=r4; /* put fifth parameter in stack */

r4 = 4;

C/C++ and Assembly Interface

1-376 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

/* the fourth parameter is stored in r4 for pushing onto stack */

puts=r4; /* put fourth parameter in stack */

r4 = 1; /* the first parameter is sent in r4 */

r8 = 2; /* the second parameter is sent in r8 */

r12 = 3; /* the third parameter is sent in r12 */

ccall (_add5);

/* use the ccall macro to make a function call in a C environment

*/

alter(2);

/* call the alter() macro to remove the two arguments from

the stack */

r0 = dm(_sum_of_5);

/* _sum_of_5 is where add5 stored its result */

exit;

Using Call Preserved Registers (Pass Array)

Some functions need to make use of registers that the run-time environ-
ment defines as call preserved registers. These registers, whose contents are
preserved across function calls, are useful for variables whose lifetime
spans a function call. The following example performs an operation on the
elements of a C array using call preserved registers.

/* Non-Leaf Assembly Routines Example — _pass_array */

/* void pass_array(

float function(float),

float *array,

int length);

An assembly language routine that operates on a C array */

VisualDSP++ 5.0 C/C++ Compiler Manual 1-377
for SHARC Processors

Compiler

#include <asm_sprt.h>

.section/pm seg_pmco;

.global _pass_array;

_pass_array:

entry;

puts = i8;

/* This function uses a call preserved register, i8, because

it could be used by multiple functions, and this way it does

not have to be stored for every function call */

r0 = i1;

puts = r0; /* i1 is also call preserved */

i8 = r4;

/* read the first argument, the address of the function to call

*/

i1 = r8;

/* read the second argument, the C array containing the data

to be processed */

r0 = r12;

/* read third argument, the number of data points in the array */

lcntr=r0, do pass_array_loop until lce;

/* loop through data points */

f4=dm(i1,m5);

/* get data point from array, store it in f4 as a parameter for

the function call */

r2=i6;

i6=i7;

jump (m13,i8) (DB);

C/C++ and Assembly Interface

1-378 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

dm(i7,m7)=r2;

dm(i7,m7)=PC;

pass_array_loop:

dm(i1,m6)=f0;

/* store the return value back in the array */

i1 = gets(1); /* restore the value of i1 */

i8 = gets(2); /* restore the value of i8 */

exit;

Exceptions Tables in Assembly Routines
Assembly routines that both call C++ functions and are called by C++
functions, and require exceptions thrown by callees to be caught by callers
need to be provided with a “function exceptions table” to enable the
run-time library to restore registers to the values they held on entry to the
routine.

The assembly routine must allocate a stack frame using FP and SP as
described in “Managing the Stack” on page 1-332. On entry to the assem-
bly routine, call preserved registers (on page 1-329) that are modified in
the routine should be saved into a contiguous region within the stack
frame, called the save area. Registers are saved at ascending addresses in
the save area in the order given in Table 1-44 on page 1-379.

A word in the .gdt section must be initialized with the address of the
function exceptions table, and the function exceptions table itself must be
initialized as illustrated in Table 1-43 on page 1-379.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-379
for SHARC Processors

Compiler

The bit set field of the function exceptions table contains a bit for each
register. The bits corresponding to registers saved in the save area must be
set to one and the other bits set to zero. The bit numbers corresponding
to each register are given in Table 1-44, where bit 0 is the least significant
bit of the lowest addressed word, bit 31 the most significant bit of that
word, bit 32 the least significant bit of the second lowest addressed word
and so on.

Bit numbering may best be explained by the C code to test bit number,

int wrd = r/32;

int bit = lu << (r%32);

if (bitset[wrd] & bit)

/* register r was saved */

Table 1-43. Function Exceptions Table

Offset Size Meaning

0 1 Start address of the routine

1 1 First address after end of routine

2 1 Signed offset from FP of register save area

3 4 Bit set indicating which registers are saved

8 1 Always zero. Indicates this is not C++ code

Table 1-44. Function Exception Table Register Numbers

Register Bit Number Words Taken in Save Area if Saved

ASTAT 0 1

ASTATY 1 1

R0 - R15 2 - 17 1

S0 - S15 18 -33 1

M0 - M15 34 - 49 1

B0 - B15 50 - 65 1

C/C++ and Assembly Interface

1-380 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

This example shows an assembly routine with function exceptions table.

.section/pm seg_pmco;

_asmfunc:

.LN._asmfunc:

modify(i7,-6); // allocate stack frame

// save area at I6-7

dm(-7,i6)=r5; // save_area[0] = r5

dm(-6,i6)=r6; // save_area[1] = r6

dm(-5,i6)=r7; // save_area[2] = r7

r2=i0; dm(-4,i6)=r2; // save_area[3] = i0

r2=i1; dm(-3,i6)=r2; // save_area[4] = i1

r2=i2; dm(-2,i6)=r2; // save_area[5] = i2

// use R5,R6,R7,I0,I1,I2, call a C++ function

i0=dm(-4,i6);

i1=dm(-3,i6);

i2=dm(-2,i6);

r5=dm(-7,i6);

r6=dm(-6,i6);

r7=dm(-5,i6);

i12=dm(m7,i6);

I0 - I15 66 - 81 1

L0 - L15 82 - 97 1

MRF 98 3

SMRF 99 3

MRB 100 3

SMRB 101 3

PX1, PX2 102 - 103 1

USTAT1 - USTAT4 104 - 107 1

Table 1-44. Function Exception Table Register Numbers (Cont’d)

Register Bit Number Words Taken in Save Area if Saved

VisualDSP++ 5.0 C/C++ Compiler Manual 1-381
for SHARC Processors

Compiler

i12=dm(m7,i6);

jump (m14,i12) (db); rframe; nop;

.LN._asmfunc.end:

._asmfunc.end:

.global _asmfunc;

.type _asmfunc, STT_FUNC;

.section/dm .edt; // conventionally function exceptions

// tables go in .edt

.var .function_exceptions_table[8] =

.LN._asmfunc, // first address of _asmfunc

.LN._asmfunc.end, // first address after _asmfunc

-7, // offset of save area from I6

0x00000380, 0, 0x0000001c, 0,

// bit set, bits 7=R5,8=R6,9=R7,66=I0,67=I1,68=I2

0; // always zero for non-c++

.section/dm .gdt;

.align 4;

.fet_index:

.var = .function_exceptions_table;

// address of table in .gdt

.retain_name .fet_index;

Compiler C++ Template Support
The compiler provides template support C++ templates as defined in the
ISO/IEC 14882:2003 C++ standard.

Template Instantiation
Templates are instantiated automatically during compilation using a
linker feedback mechanism. This involves compiling files, determining
any required template instantiations, and then recompiling those files
making the appropriate instantiations. The process repeats until all

Compiler C++ Template Support

1-382 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

required instantiations have been made. Multiple recompilations may be
required in the case when a template instantiation is made that requires
another template instantiation to be made.

Implicit Instantiation

The compiler uses a method called implicit instantiation, which is com-
mon practice. It results in having both the specification and definition
available at point of instantiation.

 Implicit instantiation does not conform to the ISO/IEC
14882:2003 C++ standard, and does not work with exported tem-
plates. Implicit instantiation is enabled by default. It can be
disabled via the -no-implicit-inclusion switch on page 1-76.

Implicit instantiation involves placing template specifications in a header
(for example, .h) file and the definitions in a source (for example, .cpp)
file. Any file being compiled that includes a header file containing tem-
plate specifications will instruct the compiler to implicitly include the
corresponding .cpp file containing the definitions of the template.

For example, you may have the header file tp.h
template <typename A> void func(A var)

and source file tp.cpp

template <typename A> void func(A var)

{

...code...

}

Two files file1.cpp and “file2.cpp that include tp.h will have file
tp.cpp included implicitly to make the template definitions available to
the compilation.

When generating dependencies, the compiler will only parse each implic-
itly included .cpp file once. This parsing avoids excessive compilation

VisualDSP++ 5.0 C/C++ Compiler Manual 1-383
for SHARC Processors

Compiler

times in situations where a header file that implicitly includes a source file
is included several times. If the .cpp file should be included implicitly
more than once, the -full-dependency-inclusion switch (on page 1-74)
can be used. (For example, the file may contain macro guarded sections of
code.) This may result in more time required to generate dependencies.

Exported Templates

The compiler supports the export keyword, which provides an alternative
implementation for templates. An exported template does not need to be
present in a translation unit that uses the template. For example, the fol-
lowing is a valid C++ program consisting of two translation units:

// File 1

#include <iostream>

static void print(void) { std::cout << "File 1" << std::endl;}

export template <class T> T const &maxii(T const &a, T const &b);

int main()

{

print();

return maxii(7,8);

}

// File 2

#include <iostream>

static void print(void) { std::cout << "File 2" << std::endl;}

export template <class T> T const &maxii(T const &a, T const &b)

{

print();

return (a>b) ? a : b;

}

Compiler C++ Template Support

1-384 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The two files are separate translation units. One is not included in the
other. This allows the two functions print() to coexist (with external
linkage).

The automatic instantiation of exported templates is similar to that of reg-
ular (included) templates. An instantiation of an exported template
involves at least two translation units: one which requires the instantia-
tion, and one which contains the template definition.

When a file containing a definition of an exported template is compiled, a
file with a .et suffix is created and some extra information is included in
the associated .ti file. The .et files are used by the compiler to find the
translation units that define a given exported template.

Generated Template Files

Regardless of whether implicit instantiation is used or not, the compila-
tion process involves compiling one or more source files and generating a
.ti file corresponding to the source files being compiled. These .ti files
are then used by the prelinker to determine the templates to be instanti-
ated. The prelinker creates a .ii file and recompiles one or more of the
files instantiating the required templates.

The prelinker ensures that only one instantiation of a particular template
is generated across all objects. For example, the prelinker ensures that if
both file1.cpp and file2.cpp invoked the template function with an
int, that the resulting instantiation would be generated in just one of the
objects.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-385
for SHARC Processors

Compiler

Identifying Un-Instantiated Templates

If the prelinker is unable to instantiate all the templates required for a par-
ticular link, a link error will occur. For example:

[Error li1021] The following symbols referenced in processor 'P0'

could not be resolved:

'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]

[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]' refer-

enced from '.\Debug\main.doj'

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]

[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'

referenced from '.\Debug\main.doj'

'T1 Complex<T1>::_getReal() const [with T1=short]

[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from

'.\Debug\main.doj'

Linker finished with 1 error

Careful examination of the linker errors reveals which instantiations have
not been made. Below are some examples.

Missing instantiation:

Complex<short> Complex<short>::conjugate()

Linker Text:

'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]

[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]'

referenced from '.\Debug\main.doj'

Missing instantiation:

Complex<short> *Buffer<Complex<short>>::getAddress()

Linker Text:

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]

[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'

referenced from '.\Debug\main.doj'

Compiler C++ Template Support

1-386 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Missing instantiation:

Short Complex<short>::getReal()

Linker Text:

'T1 Complex<T1>::_getReal() const [with T1=short]

[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from

'.\Debug\main.doj'

There could be many reasons for the prelinker being unable to instantiate
these templates, but the most common is that the .ti and .ii files associ-
ated with an object file have been removed. Only source files that can
contain instantiated templates will have associated .ti and .ii files, and
without this information, the prelinker may not be able to complete its
task. Removing the object file and recompiling will normally fix this
problem.

Another possible reason for un-instantiated templates at link time is when
implicit inclusion (described above) is disabled but the source code has
been written to require it. Explicitly compiling the .cpp files that would
normally have been implicitly included and adding them to the final link
is normally all that is needed to fix this.

Another likely reason for seeing the linker errors above is invoking the
linker directly. It is the compiler’s responsibility to instantiate C++ tem-
plates, and this is done automatically if the final link is performed via the
compiler driver. The linker itself contains no support for instantiating
templates.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-387
for SHARC Processors

Compiler

File Attributes
A file attribute is a name-value pair that is associated with a binary object,
whether in an object file (.doj) or in a library file (.dlb). One attribute
name can have multiple values associated with it. Attribute names and val-
ues are strings. A valid attribute name consists of one or more characters
matching the following pattern:

[a-zA-Z_][a-zA-Z_0-9]*

An attribute value is a non-empty character sequence containing any char-
acters apart from NUL.

Attributes help with the placement of run-time library functions. All of
the runtime library objects contain attributes which allow you to place
time-critical library objects into internal (fast) memory. Using attribute
filters in the LDF, you can place run-time library objects into internal or
external (slow) memory, either individually or in groups.

This section describes:

• “Automatically-Applied Attributes” on page 1-388

• “Default LDF Placement” on page 1-390

• “Sections Versus Attributes” on page 1-391

• “Using Attributes” on page 1-393

File Attributes

1-388 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Automatically-Applied Attributes
By default, the compiler automatically applies a number of attributes
when compiling a C/C++ file. Figure 1-8 shows a content attribute tree.

For example, it applies the Content and FuncName, and Encoding attri-
butes. These automatically-applied attributes can be disabled using the
-no-auto-attrs switch (on page 1-42).

Figure 1-8. Content Attributes

CodeData

DataCode

InitDataZeroData

ConstDataVarData

Empty

VisualDSP++ 5.0 C/C++ Compiler Manual 1-389
for SHARC Processors

Compiler

Content Attributes

The Content attributes can be used to map binary objects according to
their kind of content, as show by Table 1-45.

FuncName Attributes

The FuncName attributes are multi-valued attributes whose values are all
the assembler linkage names of the defined names in obj.

Table 1-45. Values of the Content Attribute

Value Description

CodeData This is the most general value, indicating that the binary object contains a mix of
content types.

Code The binary object does not contain any global data, only executable code. This can
be used to map binary objects into program memory, or into read-only memory.

Data The binary object does not contain any executable code. The binary object may
not be mapped into dedicated program memory. The kinds of data used in the
binary object vary.

ZeroData The binary object contains only zero-initialized data. Its contents must be mapped
into a memory section with the ZERO_INIT qualifier, to ensure correct initializa-
tion.

InitData The binary object contains only initialized global data. The contents may not be
mapped into a memory section that has the ZERO_INIT qualifier.

VarData The binary object contains initialized variable data. It must be mapped into
read-write memory, and may not be mapped into a memory section with the
ZERO_INIT qualifier.

ConstData The binary object contains only constant data (data declared with the C const
qualifier). The data may be mapped into read-only memory (but see also the
-const-read-write switch (on page 1-25) and its effects).

Empty The binary object contains neither functions nor global data.

File Attributes

1-390 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Encoding Attributes

The Encoding attributes can be used to map binary objects according to
the encoding of code they contain, as shown by Table 1-46.

Default LDF Placement
The default .ldf file is written so that the order of preference for putting
an object in section seg_dmda or seg_pmco depends on the value of the
prefersMem attribute. Precedence is given in the following order:

1. Highest priority is given to binary objects that have a prefersMem
attribute with a value of internal.

2. Next priority is given to binary objects that have no prefersMem
attribute, or a prefersMem attribute with a value that is neither
internal nor external.

3. Lowest priority is given to binary objects with a prefersMem attri-
bute with the value external.

Although the default .ldf files only reference the values internal and
external, prefersMem may have other values. For example, an object using
a value such as L2 will be given second priority, as the value is neither
internal nor external. You may modify your .ldf file to assign appropriate
priority to any value you choose, by mapping objects with higher-priority
before objects with lower-priority values.

Table 1-46. Values of the Encoding Attribute

Value Description

SW The binary object contains only short-word code (ADSP-214xx processors only).

NW The binary object contains only normal-word code.

Mixed The binary object contains a mixture of short-word and normal-word code
(ADSP-214xx processors only).

VisualDSP++ 5.0 C/C++ Compiler Manual 1-391
for SHARC Processors

Compiler

The prefersMemNum attribute is similar to the prefersMem attribute, but is
given numerical values instead of textual values. This makes it easier to
assign priority when there are many different levels, because you can use
relational comparisons in the .ldf file instead of just equalities and
inequalities. Table 1-47 shows the numerical values used by the run-time
library for each corresponding prefersMem attribute value.

Sections Versus Attributes
File attributes and section qualifiers (on page 1-387) can be thought of as
being somewhat similar, since they can both affect how the application is
linked. There are important differences, however. These differences will
affect whether you choose to use sections or file attributes to control the
placement of code and data.

Granularity

Individual components – global variables and functions – in a binary
object can be assigned different sections, then those section assignments
can be used to map each component of the binary object differently. In
contrast, an attribute applies to the whole binary object. This means you
do not have as fine control over individual components using attributes as
when using sections.

Table 1-47. Values for prefersMemNum attribute

prefersMem attribute value prefersMemNum attribute value

internal 30

any 50

external 70

File Attributes

1-392 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

“Hard” Versus “Soft”

A section qualifier is a hard constraint: when the linker maps the object
file into memory, it must obey all the section qualifiers in the object file,
according to instructions in the .LDF file. If this cannot be done, or if the
.LDF file does not give sufficient information to map a section from the
object file, the linker will report an error.

With attributes, the mapping is soft: the default LDFs use the prefersMem
attribute as a guide to give a better mapping in memory, but if this cannot
be done, the linker will not report an error. For example, if there are more
objects with prefersMem=internal than will fit into internal memory, the
remaining objects will spill over into external memory. Likewise, if there
are less objects with the attribute prefersMem!=external than are needed
to fill internal memory, some objects with the prefersMem=external attri-
bute may get mapped to internal memory.

Section qualifiers are rules that must be obeyed, while attributes are guide-
lines, defined by convention, that can be used if convenient and ignored if
inconvenient. The Content attribute is an example: you can use the
Content attribute to map Code and ConstData binary objects into
read-only memory, if this is a convenient partitioning of your application.
However, you need not do so if you choose to map your application
differently.

Number of Values

Any given element of an object file is assigned exactly one section quali-
fier, to determine into which section it should be mapped. In contrast, an
object file may have many attributes (or even none), and each attribute
may have many different values. Since attributes are optional and act as
guidelines, you need only pay attention to the attributes that are relevant
to your application.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-393
for SHARC Processors

Compiler

Using Attributes
You can add attributes to a file in two ways:

• Use #pragma file_attr (on page 1-242).

• Use the -file-attr switch (on page 1-31).

Refer to “Example 1” and “Example 2” on the use of attributes.

The run-time libraries have attributes associated with the objects in them.
For more information on the attributes in run-time library objects, see
“Library Attributes” in the VisualDSP++ 5.0 Run-Time Library Manual
for SHARC Processors.

Example 1

This example demonstrates how to use attributes to encourage the place-
ment of library functions in internal memory.

Suppose the file test.c exists, as shown below:

#define MANY_ITERATIONS 500

void main(void) {

int i;

for (i = 0; i < MANY_ITERATIONS; i++) {

fft_lib_function();

frequently_called_lib_function();

}

rarely_called_lib_function();

}

File Attributes

1-394 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Also suppose:

• The objects containing frequently_called_lib_function and
rarely_called_lib_function are both in the standard library, and
have the attribute prefersMem=any.

• There is only enough internal memory to map fft_lib_function
(which has prefersMem=internal) and one other library function
into internal memory.

• The linker chooses to map rarely_called_lib_function to inter-
nal memory.

For optimal performance in this example,
frequently_called_lib_function should be mapped to the internal
memory in preference to rarely_called_lib_function.

The .ldf file defines the following macro $OBJS_LIBS_INTERNAL to store
all the objects that the linker should try to map to internal memory:

$OBJS_LIBS_INTERNAL =

$OBJECTS{prefersMem("internal")},

$LIBRARIES{prefersMem("internal")};

If they do not all fit in internal memory, the remainder get placed in exter-
nal memory – no linker error will occur. You must add the object that
contains frequently_called_lib_function to this macro. Add a line to
the LDF after the initial setting of this variable:

$OBJS_LIBS_INTERNAL =

$OBJS_LIBS_INTERNAL

$OBJECTS{ libFunc("frequently_called_lib_function") };

This ensures that the binary object that defines
frequently_called_lib_function is among those to which the linker
gives highest priority when mapping binary objects to internal memory.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-395
for SHARC Processors

Compiler

Note that it is not necessary for you to know which binary object defines
frequently_called_lib_function (or even which library). The binary
objects in the run-time libraries all define the libFunc attribute so that
you can select the binary objects for particular functions without needing
to know exactly where in the libraries a function is defined.

The modified line uses this attribute to select the binary object(s) for
frequently_called_lib_function and append them to the
$OBJS_LIBS_INTERNAL macro. The .ldf file maps objects in
$OBJS_LIBS_INTERNAL to internal memory in preference to other objects.
Therefore, frequently_called_lib_function gets mapped to L1.

Example 2

Suppose you want the contents of test.c to get mapped to external mem-
ory by preference. You can do this by adding the following pragma to the
top of test.c:

#pragma file_attr("prefersMem=external")

or use the -file-attr switch on the following command line:

cc21k -file-attr prefersMem=external test.c

Both of these methods will mean that the resulting object file will have the
attribute prefersMem=external. The .ldf files give objects with this attri-
bute the lowest priority when mapping objects into internal memory, so
the object is less likely to consume valuable internal memory space which
could be more usefully allocated to another function.

 File attributes are used as guidelines rather than rules. If space is
available in internal memory after higher-priority objects have been
mapped, it is permissible for objects with prefersMem=external to
be mapped into internal memory.

File Attributes

1-396 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

VisualDSP++ 5.0 C/C++ Compiler Manual 2-1
for SHARC Processors

2 ACHIEVING OPTIMAL
PERFORMANCE FROM
C/C++ SOURCE CODE

This chapter provides guidance on tuning your application to achieve the
best possible code from the compiler. Since implementation choices are
available when coding an algorithm, understanding their impact is crucial
to attaining optimal performance.

This chapter contains:

• “General Guidelines” on page 2-2

• “Improving Conditional Code” on page 2-27

• “Loop Guidelines” on page 2-28

• “Using Built-In Functions in Code Optimization” on page 2-38

• “Smaller Applications: Optimizing for Code Size” on page 2-42

• “Using Pragmas for Optimization” on page 2-43

• “Useful Optimization Switches” on page 2-53

• “How Loop Optimization Works” on page 2-54

• “Assembly Optimizer Annotations” on page 2-80

• “Analyzing Your Application” on page 2-111

This chapter helps you get maximal code performance from the compiler.
Most of these guidelines also apply when optimizing for minimum code
size, although some techniques specific to that goal are also discussed.

General Guidelines

2-2 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The first section looks at some general principles, and explains how the
compiler can help your optimization effort. Optimal coding styles are
then considered in detail. Special features such as compiler switches,
built-in functions, and pragmas are also discussed. The chapter ends with
a short example to demonstrate how the optimizer works.

Small examples are included throughout this chapter to demonstrate
points being made. Some show recommended coding styles, while others
identify styles to be avoided or code that it may be possible to improve.
These are commented in the code as “GOOD” and “BAD” respectively.

General Guidelines
This section contains:

• “How the Compiler Can Help” on page 2-3

• “Data Types” on page 2-13

• “Getting the Most From IPA” on page 2-15

• “Indexed Arrays Versus Pointers” on page 2-22

• “Using Function Inlining” on page 2-23

• “Using Inline asm Statements” on page 2-24

• “Memory Usage” on page 2-25

Remember the following strategy when writing an application:

1. Choose the language as appropriate.
Your first decision is whether to implement your application in C
or C++. Performance considerations may influence this decision.
C++ code using only C features has very similar performance to

VisualDSP++ 5.0 C/C++ Compiler Manual 2-3
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

pure C code. Many higher level C++ features (for example, those
resolved at compilation, such as namespaces, overloaded functions
and also inheritance) have no performance cost.

However, use of some other features may degrade performance.
Carefully weigh performance loss against the richness of expression
available in C++ (such as virtual functions or classes used to imple-
ment basic data types).

2. Choose an algorithm suited to the architecture being targeted. For
example, the target architecture will influence any trade-off
between memory usage and algorithm complexity.

3. Code the algorithm in a simple, high-level generic form. Keep the
target in mind, especially when choosing data types.

4. Tune critical code sections. After your application is complete,
identify the most critical sections. Carefully consider the strengths
of the target processor and make non-portable changes where nec-
essary to improve performance.

How the Compiler Can Help
The compiler provides many facilities to help the programmer to achieve
optimal performance, including the compiler optimizer, statistical pro-
filer, Profile-Guided Optimizer (PGO), and interprocedural optimizers.

This section contains:

• “Using the Compiler Optimizer” on page 2-4

• “Using Compiler Diagnostics” on page 2-4

• “Using the Statistical Profiler” on page 2-7

• “Using Profile-Guided Optimization” on page 2-8

• “Using Interprocedural Optimization” on page 2-12

General Guidelines

2-4 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using the Compiler Optimizer

There is a vast difference in performance between code compiled opti-
mized and code compiled non-optimized. In some cases, optimized code
can run ten or twenty times faster. Always use optimization when measur-
ing performance or shipping code as product.

The optimizer in the C/C++ compiler is designed to generate efficient
code from source that has been written in a straightforward manner. The
basic strategy for tuning a program is to present the algorithm in a way
that gives the optimizer the best possible visibility of the operations and
data, and hence the greatest freedom to safely manipulate the code. Future
releases of the compiler will continue to enhance the optimizer. Express-
ing algorithms simply will provide the best chance of benefiting from such
enhancements.

Note that the default setting (or “debug” mode within the VisualDSP++
IDDE) is for non-optimized compilation in order to assist programmers
in diagnosing problems with their initial coding. The optimizer is enabled
in VisualDSP++ by checking the Enable optimization checkbox under the
Project Options ->Compile tab or by using the -O switch (on page 1-48).
A “release” build from within VisualDSP++ automatically enables
optimization.

Using Compiler Diagnostics

There are many features of the C and C++ languages that, while legal,
often indicate programming errors. There are also aspects that are valid
but may be relatively expensive for an embedded environment. The com-
piler can provide the following diagnostics, which may save time and
effort in characterizing source-related problems:

• Warnings and remarks

• Assembly annotations

VisualDSP++ 5.0 C/C++ Compiler Manual 2-5
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

These diagnostics are particularly important for obtaining high-perfor-
mance code, since the optimizer aggressively transforms the application to
get the best performance, discarding unused or redundant code; if this
code is redundant because of a programming error (such as omitting an
essential volatile qualifier from a declaration), then the code will behave
differently from a non-optimized version. Using the compiler’s diagnostics
may help you identify such situations before they become problems.

Warnings and Remarks

By default, the compiler emits warnings to the standard error stream at
compile-time when it detects a problem with the source code. Warnings
can be disabled individually, with the -Wsuppress switch (on page 1-66)
or as a class, with the -w switch (on page 1-67), disabling all warnings and
remarks. However, disabling warnings is inadvisable until each instance
has been investigated for problems.

A typical warning involves a variable being used before its value has been
set.

Remarks are diagnostics that are less severe than warnings. Like warnings,
they are produced at compile-time to the standard error stream, but unlike
warnings, remarks are suppressed by default. Remarks are typically for sit-
uations that are probably correct, but less than ideal. Remarks may be
enabled as a class with the -Wremarks switch (on page 1-67) or the Enable
remarks option.

A typical remark involves a variable being declared, but never used.

General Guidelines

2-6 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

A remark may be promoted to a warning through the -Wwarn switch
(on page 1-66). Remarks and warnings may be promoted to an error
through the -Werror switch (on page 1-66). Here is a procedure for
improving overall code quality:

1. Enable remarks and build the application. Gather all warnings and
remarks generated.

2. Examine the generated diagnostics, and choose those message types
that you consider most important. For example, you might select
just cc0223, a remark that identifies implicitly-declared functions.

3. Promote those remarks and warnings to errors, using the -Werror
switch (for example, “-Werror 0223”), and rebuild the application.
The compiler will now fault such cases as errors, so you will have to
fix the source to address the issues before your application will
build.

4. Once your application rebuilds, repeat the process for the next
most important diagnostics.

Diagnostics you might typically consider first include:

• cc0223: function declared implicitly

• cc0549: variable used before its value is set

• cc1665: variable is possibly used before its value is set, in a loop

• cc0187: use of “=” where “==” may have been intended

• cc1045: missing return statement at the end of non-void function

• cc0111: statement is unreachable

If you have particular cases that are correct for your application, do not let
them prevent your application from building because you have raised the
diagnostic to an error. For such cases, temporarily lower the severity again
within the source file in question by using #pragma diag (on page 1-189).

VisualDSP++ 5.0 C/C++ Compiler Manual 2-7
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Assembly Annotations

By default, the compiler emits annotations that are embedded in the gen-
erated assembly code. Annotations can be used to find out why the
compiler has generated code in a particular manner.

For more information, see “Assembly Optimizer Annotations” on
page 2-80.

Using the Statistical Profiler

Tuning an application begins with identifying the areas of the application
that are most frequently executed and therefore where improvements
would provide the largest gains. The VisualDSP++ statistical profiler pro-
vides an easy way to find these areas. VisualDSP++ 5.0 User’s Guide
explains how to use the profiler in detail.

The advantage of statistical profiling is that it is completely unobtrusive.
Other forms of profiling insert instrumentation into the code, disturbing
the original optimization, code size, and register allocation.

The best methodology is usually to compile with both optimization and
debug information generation enabled. You can then obtain a profile of
the optimized code while retaining function names and line number infor-
mation. This gives you accurate results that correspond directly to the
C/C++ source. Note that the compiler optimizer may have moved code
between lines.

If you build your application optimized but without debug information
generation, the profile will obtain statistics that relate directly to the
assembly code. This kind of profile provides the most precise view of your
application but not usually the easiest to use because you must relate
assembly lines to the original source. Do not strip out function names
when linking, since keeping function names means you can scroll through
the assembly window to instructions of interest.

General Guidelines

2-8 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

In complex code, you can locate the exact source lines by counting the
loops, unless they are unrolled. Looking at the line numbers in the assem-
bly file may also help. (Use the -save-temps switch to retain compiler
generated assembly files, which will have the .s filename extension.) The
compiler optimizer may have moved code around so that it does not
appear in the same order as in your original source.

Using Profile-Guided Optimization

Profile-guided optimization (PGO) is an excellent way to tune the com-
piler’s optimization strategy for the typical run-time behavior of a
program. There are many program characteristics that cannot be known
statically at compile-time but can be provided through PGO. The com-
piler can use this knowledge to improve its code generation. The benefits
include more accurate branch prediction, improved loop transformations,
and reduced code size. The technique is most relevant where the behavior
of the application over different data sets is expected to be very similar.

 PGO is supported in the simulator only.

Using Profile-Guided Optimization With a Simulator

The PGO process is illustrated in Figure 2-1 on page 2-9.

1. First compile the application with the -pguide switch
(on page 1-55) or Prepare application to create new profile
option. This creates an executable file containing the necessary
instrumentation for gathering profile data. For best results, use the
Enable optimization option/-O switch (on page 1-48) or Interpro-
cedural analysis option/-ipa (on page 1-37) switch.

2. Gather the profile. Currently, this can only be done using a simula-
tor. Run the executable with one or more training data sets. These
training data sets should be representative of the data that you
expect the application to process in the field. Note that

VisualDSP++ 5.0 C/C++ Compiler Manual 2-9
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

unrepresentative training data sets can cause performance degrada-
tions when the application is used on real data. The profile is
stored in a file with the extension .pgo.

3. Recompile the application using this gathered profile data. Place
the .pgo file on the command line. Optimization should also be
enabled at this stage.

 When C/C++ source files are specified in a compiler command
line, any .pgo files also specified will be used to guide their compi-
lation. However, any recompilation due to .doj files provided on
the command line will reread the same .pgo file as when the source
was previously compiled. For example, prof2.pgo is ignored in the
following commands:

cc21k -O f2.c -o f2.doj prof1.pgo

cc21k -o prog.dxe f1.asm f2.doj prof2.pgo

Figure 2-1. PGO Process

Compile –O -
pguide

Profile with
simulator

Compile –Ov
num

.dxe .pgo .dxe

Source files

Data

General Guidelines

2-10 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using Profile-Guided Optimization With Non-Simulatable Applications

It may not be possible to run a complex application in its entirety in a
simulation session (for example, if peripherals not modeled by the simula-
tor are used). It may, however, still be possible to use PGO as follows.

1. If the application is structured in a modular fashion, it will be pos-
sible to extract the core performance-critical algorithm from the
application.

2. Create a “wrapper” project, which can be run under simulation
that drives input values into the core algorithm, replacing the por-
tions of the application that can not be run under simulation. This
project can be used to generate PGO information, which can sub-
sequently be used to optimize the full application. As described
earlier, it is essential that the input values are representative of real
data to achieve best performance.

3. Leave as much of the core algorithm unmodified as possible, keep-
ing file and function names the same. The .pgo files generated
from execution of the wrapper project can then be used to optimize
the same functions in the full application by including the .pgo
files in the full application build.

 When compiling with a .pgo file, the compiler emits a warning and
ignores the data for a function if it detects the function has
changed from when the PGO data was generated. Therefore, any
functions that you do modify to get the algorithm to work properly
outside the application will not benefit from the profile
information.

Profile-Guided Optimization and Multiple Source Uses

In some applications, it is convenient to build the same source file in more
than one way within the same application. For example, a source file
might be conditionally compiled with different macro settings. Alterna-
tively, the same file might be compiled once, but linked more than once

VisualDSP++ 5.0 C/C++ Compiler Manual 2-11
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

into the same application, in a multi-core or multi-processor environ-
ment. In such circumstances, the typical behaviors of each instance in the
application might differ. You should identify the separate instances so that
they can be profiled separately and optimized accordingly.

The -pgo-session switch (on page 1-54) (or PGO session name option)
is used to separate profiles in such cases. It is used during both stage 1,
where the compiler instruments the generated code for profiling, and dur-
ing stage 3, where the compiler makes use of gathered profiles to guide the
optimization.

During stage 1, when the compiler instruments the generated code, if the
-pgo-session switch is used, then the compiler marks the instrumentation
as belonging to the session’s session-id.

During stage 3, when the compiler reads gathered profiles, if the
-pgo-session switch is used, then the compiler ignores all profile data not
generated from code that was marked with the same session-id.

Therefore, the compiler can optimize each variant of the source’s build
according to how the variant is used, rather than according to an average
of all uses.

Profile-Guided Optimization and the -Ov Switch

Note that when a .pgo file is placed on the command line, the -O optimi-
zation switch by default tries to balance between code performance and
code-size considerations. It is equivalent to using the -Ov 50 switch. To
optimize solely for performance while using PGO, the switch -Ov 100
should be used. The -Ov n switch (on page 1-49) is discussed further
along with optimization for space in “Smaller Applications: Optimizing
for Code Size” on page 2-42.

Profile-Guided Optimization and Multiple PGO Data Sets

When using profile-guided optimization with an executable constructed
from multiple source files, using multiple PGO data sets will result in the

General Guidelines

2-12 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

creation of a temporary PGO information file (.pgi file). The file is used
by the compiler and pre-linker to ensure that temporary PGO files can be
recreated and to identify cases where objects and PGO data sets are
invalid.

The compiler reports an error if any of the PGO data files have been mod-
ified in between initial compilation of an object and any recompilation
that occurs at the final link stage. To avoid this error, perform a full
recompilation after running the application to generate .pgo data files.

When to Use Profile-Guided Optimization

PGO should always be performed as the last optimization step. If the
application source code is changed after gathering profile data, this profile
data becomes invalid. The compiler does not use profile data when it can
detect that it is inaccurate. However, it is possible to change source code
in a way that is not detectable to the compiler (for example, by changing
constants). The programmer should ensure that the profile data used for
optimization remains accurate.

For more details on PGO, refer to “Optimization Control” on page 1-81.

Using Interprocedural Optimization

To obtain the best performance, the optimizer often requires information
that can only be determined by looking outside the function that it is
optimizing. For example, it helps to know what data can be referenced by
pointer parameters or if a variable actually has a constant value. The -ipa
compiler switch (on page 1-37) enables interprocedural analysis (IPA),
which can make this information available. When this switch is used, the
compiler is called again from the link phase to recompile the program
using additional information obtained during previous compilations.

This gathered information is stored within the object file generated during
initial compilation. IPA retrieves the gathered information from the object
file during linking, and uses it to recompile available source files where

VisualDSP++ 5.0 C/C++ Compiler Manual 2-13
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

beneficial. Because recompilation is necessary, IPA-built modules in
libraries can contribute to the optimization of application sources, but do
not themselves benefit from IPA, as their source is not available for
recompilation.

Because it only operates at link time, the effects of IPA are not seen if you
compile with the -S switch (on page 1-59). To see the assembly file when
IPA is enabled, use the -save-temps switch (on page 1-59), and look at
the .s file produced after your program has been built.

As an alternative to IPA, you can achieve many of the same benefits by
adding pragma directives and other declarations such as
__builtin_aligned to provide information to the compiler about how
each function interacts with the rest of the program.

These directives are further described in “Using __builtin_aligned” on
page 2-18 and “Using Pragmas for Optimization” on page 2-43.

Data Types
Table 2-1 shows the scalar data types supported by the compiler.

Table 2-1. Scalar Data Types

Data Types Arithmetic

Single-Word Fixed-Point Native

char 32-bit signed integer

unsigned char 32-bit unsigned integer

short 32-bit signed integer

unsigned short 32-bit unsigned integer

int 32-bit signed integer

unsigned int 32-bit unsigned integer

long 32-bit signed integer

unsigned long 32-bit unsigned integer

General Guidelines

2-14 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

To use the fixed-point fract data types in C mode, include the stdfix.h
header file.

Avoiding Emulated Arithmetic

Arithmetic operations for some data types are implemented by library
functions because the processor hardware does not directly support these
types. Consequently, operations for these types are far slower than native

Double-Word Fixed-Point Data Types: Emulated Arithmetic

long long 64-bit signed integer

unsigned long long 64-bit unsigned integer

Single-Word Fixed-Point Native

fract (C only) 32-bit signed fractional

unsigned fract (C only) 32-bit unsigned fractional

short fract (C only) 32-bit signed fractional

unsigned short fract (C only) 32-bit unsigned fractional

long fract (C only) 32-bit signed fractional

unsigned long fract (C only) 32-bit unsigned fractional

Floating-Point Native

float 32-bit floating point

double 32-bit floating point
Note: Default when the Double size option is set to 32 bits,
or the -double-size-32 switch is used.

Floating-Point Emulated

double 64-bit floating-point
Note: Default when the Double size option is set to 64 bits,
or the -double-size-64 switch is used.

long double 64-bit floating-point

Table 2-1. Scalar Data Types (Cont’d)

Data Types Arithmetic

VisualDSP++ 5.0 C/C++ Compiler Manual 2-15
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

operations (sometimes by a factor of a hundred) and also produce larger
code. These types are marked as “Emulated Arithmetic” in “Data Types”
on page 2-13.

The hardware does not provide direct support for division, so division and
modulus operations are almost always multi-cycle operations, even on
integral type inputs. If the compiler has to issue a full-division operation,
it usually needs to call a library function. One instance in which a library
call is avoided is for integer division when the divisor is a compile-time
constant and is a power of two. In that case, the compiler generates a shift
instruction. Even then, a few fix-up instructions are needed after the shift
if the types are signed. If you have a signed division by a power of two,
consider whether you can change it to unsigned in order to obtain a sin-
gle-instruction operation.

When the compiler has to generate a call to a library function for one of
the arithmetic operators that are not supported by the hardware, perfor-
mance suffers not only because the operation takes multiple cycles, but
also because the effectiveness of the compiler optimizer is reduced.

For example, calling the library to perform the required operation can
change values held in scratch registers before the call, so the compiler has
to generate more stores and loads from the data stack to keep values
required after the call returns. Emulated arithmetic operators should
therefore be avoided where possible, especially in loops.

Getting the Most From IPA
Interprocedural analysis (IPA) is designed to try to propagate information
about the program to parts of the optimizer that can use it. This section
looks at what information is useful, and how to structure your code to
make this information easily accessible for analysis.

General Guidelines

2-16 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The performance features are:

• “Initialize Constants Statically” on page 2-16

• “Dual Word-Aligning Your Data” on page 2-17

• “Using __builtin_aligned” on page 2-18

• “Avoiding Aliases” on page 2-20

Initialize Constants Statically

IPA identifies variables that have only one value and replaces them with
constants, resulting in a host of benefits for the optimizer’s analysis. For
this to happen a variable must have a single value throughout the pro-
gram. If the variable is statically initialized to zero, as all global variables
are by default, and is subsequently assigned some other value at another
point in the program, then the analysis sees two values and does not con-
sider the variable to have a constant value.

For example,

// BAD: IPA cannot see that val is a constant

#include <stdio.h>

int val; // initialized to zero

void init() {

val = 3; // re-assigned

}

void func() {

printf("val %d",val);

}

int main() {

init();

VisualDSP++ 5.0 C/C++ Compiler Manual 2-17
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

func();

}

The code is better written as

// GOOD: IPA knows val is 3.

#include <stdio.h>

const int val = 3; // initialized once

void init() {

}

void func() {

printf("val %d",val);

}

int main() {

init();

func();

}

Dual Word-Aligning Your Data

This section applies to the dual compute-block architecture found in the
ADSP-211xx, ADSP-212xx, ADSP-213xx, and ADSP-214xx processors.

To make most efficient use of the hardware, it must be kept fed with data.
In many algorithms, the balance of data accesses to computations is such
that, to keep the hardware fully utilized, data must be fetched with loads
wider than 32 bits.

For external data, the ADSP-2116x chips require that dual-word memory
accesses reference dual-word-aligned addresses. Therefore, for the most
efficient code generation, ensure that your data buffers are
dual-word-aligned.

General Guidelines

2-18 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The compiler helps to establish the alignment of array data. Top-level
arrays are allocated at dual-word-aligned addresses, regardless of their data
types. In order to do this for local arrays, the compiler also ensures that
stack frames are kept dual-word-aligned. However, arrays within struc-
tures are not aligned beyond the required alignment for their type. It may
be worth using the #pragma align 2 directive to force the alignment of
arrays in this case.

If you write programs that pass only the address of the first element of an
array as a parameter, and loop that process through these input arrays, an
element at a time (starting at element zero), then IPA should be able to
establish that the alignment is suitable for full-width accesses.

Where an inner loop processes a single row of a multi-dimensional array,
try to ensure that each row begins on a two-word boundary. In particular,
two-dimensional arrays should be defined in a single block of memory
rather than as an array of pointers to rows all separately allocated with
malloc. It is difficult for the compiler to keep track of the alignment of the
pointers in the latter case. It may also be necessary to insert dummy data
at the end of each row to make the row length a multiple of two words.

Using __builtin_aligned

This section applies to the dual compute-block architecture found in the
ADSP-211xx, ADSP-212xx, ADSP-213xx, and ADSP-214xx processors.

To avoid the need to use IPA to propagate alignment, and for situations
when IPA cannot guarantee the alignment (but you can), use the
__builtin_aligned function to assert the alignment of important point-
ers, meaning that the pointer points to data that is aligned. Remember
when adding this declaration that you are responsible for making sure it is
valid, and that if the assertion is not true, the code produced by the com-
piler is likely to malfunction.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-19
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

The assertion is particularly useful for function parameters, although you
may assert that any pointer is aligned. For example, when compiling the
function:

// BAD: without IPA, compiler doesn't know the alignment of a and

b.

void copy(char *a, char *b) {

int i;

for (i=0; i<100; i++)

a[i] = b[i];

}

the compiler does not know the alignment of pointers a and b if IPA is not
being used. However, by modifying the function to:

// GOOD: both pointer parameters are known to be aligned.

void copy(char *a, char *b) {

int i;

__builtin_aligned(a, 2);

__builtin_aligned(b, 2);

for (i=0; i<100; i++)

a[i] = b[i];

}

the compiler can be told that the pointers are aligned on dual-word
boundaries. To assert instead that both pointers are always aligned one
char before a dual-word boundary, use:

// GOOD: both pointer parameters are known to be misaligned.

void copy(char *a, char *b) {

int i;

__builtin_aligned(a+1, 2);

__builtin_aligned(b+1, 2);

for (i=0; i<100; i++)

a[i] = b[i];

}

General Guidelines

2-20 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The expression used as the first parameter to the built-in function obeys
the usual C rules for pointer arithmetic. The second parameter should give
the alignment in words as a literal constant.

Avoiding Aliases

It may seem that the iterations can be performed in any order in the fol-
lowing loop:

// BAD: a and b may alias each other.

void fn(char a[], char b[], int n) {

int i;

for (i = 0; i < n; ++i)

a[i] = b[i];

}

but a and b are both parameters, and, although they are declared with [],
they are pointers that may point to the same array. When the same data
may be reachable through two pointers, they are said to alias each other.

If IPA is enabled, the compiler looks at the call sites of fn and tries to
determine whether a and b can ever point to the same array.

Even with IPA, it is easy to create what appears to the compiler as an alias.
The analysis works by associating pointers with sets of variables that they
may refer to some point in the program. If the sets for two pointers inter-
sect, then both pointers are assumed to point to the union of the two sets.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-21
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

If fn above were called only in two places, with global arrays as arguments,
then IPA would have the results shown below:

// GOOD: sets for a and b do not intersect: a and b are not

aliases.

fn(glob1, glob2, N);

fn(glob1, glob2, N);

// GOOD: sets for a and b do not intersect: a and b are not

aliases.

fn(glob1, glob2, N);

fn(glob3, glob4, N);

// BAD: sets intersect - both a and b may access glob1;

// a and b may be aliases.

fn(glob1, glob2, N);

fn(glob3, glob1, N);

The third case arises because IPA considers the union of all calls at once,
rather than considering each call individually, when determining whether
there is a risk of aliasing. If each call were considered individually, IPA
would have to take flow control into account and the number of permuta-
tions would significantly lengthen compilation time.

The lack of control flow analysis can also create problems when a single
pointer is used in multiple contexts. For example, it is better to write

// GOOD: p and q do not alias.

int *p = a;

int *q = b;

// some use of p

// some use of q

than

// BAD: uses of p in different contexts may alias.

int *p = a;

General Guidelines

2-22 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

// some use of p

p = b;

// some use of p

because the latter may cause extra apparent aliases between the two uses.

Indexed Arrays Versus Pointers
The C language allows a program to access data from an array in two ways:
either by indexing from an invariant base pointer, or by incrementing a
pointer. The following two versions of vector addition illustrate the two
styles:

Style 1: using indexed arrays (indexing from a base pointer)

void va_ind(const short a[], const short b[], short out[], int n)

{

int i;

for (i = 0; i < n; ++i)

out[i] = a[i] + b[i];

}

Style 2: incrementing a pointer

void va_ptr(const short a[], const short b[], short out[], int n)

{

int i;

short *pout = out;

const short *pa = a, *pb = b;

for (i = 0; i < n; ++i)

*pout++ = *pa++ + *pb++;

}

VisualDSP++ 5.0 C/C++ Compiler Manual 2-23
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Trying Pointer and Indexed Styles

One might hope that the chosen style would not make any difference to
the generated code, but this is not always the case. Sometimes, one version
of an algorithm generates better optimized code than the other, but it is
not always the same style that is better.

 Try both pointer and index styles.

The pointer style introduces additional variables that compete with the
surrounding code for resources during the compiler optimizer’s analysis.
Array accesses, on the other hand, must be transformed to pointers by the
compiler, and sometimes this is accomplished better by hand.

The best strategy is to start with array notation. If the generated code
looks unsatisfactory, try using pointers. Outside the critical loops, use the
indexed style, since it is easier to understand.

Using Function Inlining
Function inlining may be used in two ways:

• By annotating functions in the source code with the inline key-
word. In this case, function inlining is performed only when
optimization is enabled.

• By turning on automatic inlining with the -Oa switch
(on page 1-49) or the Inlining -> Automatic option, automatically
enabling optimization.

 Inline small, frequently executed functions.

You can use the compiler’s inline keyword to indicate that functions
should have code generated inline at the point of call. Doing this avoids
various costs such as program flow latencies, function entry and exit
instructions and parameter passing overheads.

General Guidelines

2-24 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using an inline function also has the advantage that the compiler can
optimize through the inline code and does not have to assume that scratch
registers and condition states are modified by the call. Prime candidates
for inlining are small, frequently-used functions because they cause the
least code-size increase while giving most performance benefit.

As an example of the usage of the inline keyword, the function below
sums two input parameters and returns the result.

// GOOD: use of the inline keyword.

inline int add(int a, int b) {

return (a+b);

}

Inlining has a code-size-to-performance trade-off that should be consid-
ered. With -Oa, the compiler automatically inlines small functions where
possible. If the application has a tight upper code-size limit, the resulting
code-size expansion may be too great. Consider using automatic inlining
in conjunction with the -Ov num switch (on page 1-49) or the Optimize
for code speed/size slider to restrict inlining (and other optimizations
with a code-size cost) to parts of the application that are performance-crit-
ical. It is discussed in more detail later in this chapter.

Using Inline asm Statements
The compiler allows use of inline asm statements to insert small sections of
assembly into C code.

 Avoid the use of inline asm statements where built-in functions
may be used instead.

The compiler does not intensively optimize code that contains inline asm
statements because it has little understanding about what the code in the
statement does. In particular, use of an asm statement in a loop may
inhibit useful transformations.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-25
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

The compiler has a large number of built-in functions that generate spe-
cific hardware instructions. These are designed to allow the programmer
to more finely tune the code produced by the compiler, or to allow access
to system support functions. A complete list of compiler’s built-in func-
tions is given in “Compiler Built-In Functions” on page 1-177.

Use of these built-in functions is much preferred to using inline asm state-
ments. Since the compiler knows what each built-in function does, it can
easily optimize around them. Conversely, since the compiler does not
parse asm statements, it does not know what they do, and so is hindered in
optimizing code that uses them. Note also that errors in the text string of
an asm statement are caught by the assembler and not by the compiler.

Examples of efficient use of built-in functions are given in “Using System
Support Built-In Functions” on page 2-38.

Memory Usage
The compiler, in conjunction with the use of the linker description file
(.ldf), allows the programmer control over where data is placed in mem-
ory. This section describes how to best lay out data for maximum
performance.

 Try to put arrays into different memory sections.

The processor hardware can support two memory operations on a single
instruction line, combined with a compute instruction. However, two
memory operations complete in one cycle only if the two addresses are sit-
uated in different memory blocks. If both access the same block, the
processor stalls.

General Guidelines

2-26 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Consider the dot product loop below. Because data is loaded from both
array a and array b in every iteration of the loop, it may be useful to ensure
that these arrays are located in different blocks.

// BAD: compiler assumes that two memory accesses together may

give a stall.

for (i=0; i<100; i++)

sum += a[i] * b[i];

The “Dual Memory Support Language Keywords” compiler extension (see
“Dual Memory Support Keywords (pm dm)” on page 1-166) can improve
the compiler’s use of the memory system. Placing a pm qualifier before the
type definition tells the compiler that the array is located in what is refer-
enced as “Program Memory” (pm).

The memory of the SHARC processor is in one unified address space
(except for the ADSP-21020 processor) and there is no restriction on
where in memory program code or data can be placed. However, the
default .ldf files ensure that pm-qualified data is placed in a different
memory block than non-qualified (or dm-qualified) data, thus allowing
two accesses to occur simultaneously without incurring a stall. The mem-
ory block used for pm-qualified data in the default .ldf files is the same
memory block as is used for the program code, hence the name “Program
Memory”.

To allow simultaneous accesses to the two buffers, modify the array decla-
ration of either a or b program by adding the pm qualifier. Also add the pm
qualifier to the declarations of any pointers that point to the pm buffer.

For example,

pm int a[100];

and any pointers to the buffer a become, for example,

pm int *p = a;

VisualDSP++ 5.0 C/C++ Compiler Manual 2-27
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Note that only global or static data can be explicitly placed in Program
Memory.

Improving Conditional Code
When compiling conditional statements, the compiler attempts to predict
whether the condition will usually evaluate to true or to false, and will
arrange for the most efficient path of execution to be that which is
expected to be most commonly executed.

You can use the expected_true and expected_false built-in functions to
control the compiler’s optimization of conditional branches. By using
these functions, you can tell the compiler which way a condition is most
likely to evaluate, and so influence the default flow of execution. For
example,

if (buffer_valid(data_buffer))

if (send_msg(data_buffer))

system_failure();

shows two nested conditional statements. If it was known that
buffer_valid() would usually return true, but that send_msg() would
rarely do so, the code could be written as

if (expected_true(buffer_valid(data_buffer)))

if (expected_false(send_msg(data_buffer)))

system_failure();

See “Compiler Performance Built-In Functions” on page 1-182 (on
expected_true and expected_false functions) for more information.

The compiler can also determine the most commonly-executed branches
automatically, using profile-guided optimization. See “Optimization Con-
trol” on page 1-81 for more details.

Loop Guidelines

2-28 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Loop Guidelines
Loops are where an application ordinarily spends the majority of its time.
It is therefore useful to look in detail at how to help the compiler to pro-
duce the most efficient code.

This section describes:

• “Keeping Loops Short” on page 2-28

• “Avoiding Unrolling Loops” on page 2-29

• “Avoiding Loop-Carried Dependencies” on page 2-29

• “Avoiding Loop Rotation by Hand” on page 2-30

• “Avoiding Complex Array Indexing” on page 2-32

• “Inner Loops vs. Outer Loops” on page 2-32

• “Avoiding Conditional Code in Loops” on page 2-33

• “Avoiding Placing Function Calls in Loops” on page 2-34

• “Avoiding Non-Unit Strides” on page 2-34

• “Loop Control” on page 2-35

• “Using the Restrict Qualifier” on page 2-36

• “Avoiding Long Latencies” on page 2-37

Keeping Loops Short
For best code efficiency, loops should be short. Large loop bodies are usu-
ally more complex and difficult to optimize. Large loops may also require
register data to be stored in memory, which decreases code density and
execution performance.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-29
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Avoiding Unrolling Loops
Do not unroll loops yourself. Not only does loop unrolling make the pro-
gram harder to read but it also prevents optimization by complicating the
code for the compiler.

// GOOD: the compiler unrolls if it helps.

void va1(const short a[], const short b[], short c[], int n) {

int i;

for (i = 0; i < n; ++i) {

c[i] = b[i] + a[i];

}

}

// BAD: harder for the compiler to optimize.

void va2(const short a[], const short b[], short c[], int n) {

short xa, xb, xc, ya, yb, yc;

int i;

for (i = 0; i < n; i+=2) {

xb = b[i]; yb = b[i+1];

xa = a[i]; ya = a[i+1];

xc = xa + xb; yc = ya + yb;

c[i] = xc; c[i+1] = yc;

}

}

Avoiding Loop-Carried Dependencies
A loop-carried dependency exists when a computation in a given iteration
of a loop cannot be completed without knowledge of values calculated in
earlier iterations. When a loop has such dependencies, the compiler can-
not overlap loop iterations. Some dependencies are caused by scalar
variables that are used before they are defined in a single iteration.

Loop Guidelines

2-30 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

However, if the loop-carried dependency is part of a reduction computa-
tion, the optimizer can reorder iterations. Reductions are loop
computations that reduce a vector of values to a scalar value using an asso-
ciative and commutative operator. A multiply and accumulate in a loop is
a common example of a reduction.

// BAD: loop-carried dependence in variable x.

for (i = 0; i < n; ++i)

x = a[i] - x;

// GOOD: loop-carried dependence is a reduction.

for (i = 0; i < n; ++i)

x += a[i] * b[i];

In the first case, the scalar dependency is the subtraction operation. The
variable x is modified in a manner that would give different results if the
iterations were performed out of order. In contrast, in the second case,
because the addition operator is associative and commutative, the com-
piler can perform the iterations in any order and still get the same result.
Other examples of reductions are bitwise and/or and min/max operators.
The existence of loop-carried dependencies that are not reductions
prevents the compiler from vectorizing a loop—that is, executing more
than one iteration concurrently.

Floating-point addition is by default treated as associative and as a reduc-
tion operator. However, strictly speaking, rounding effects can change the
result when the order of summation is varied. Use the -no-fp-associa-
tive compiler switch (on page 1-44) to ensure floating-point operations
are executed in the same order as in the source code.

Avoiding Loop Rotation by Hand
Do not rotate loops by hand. Programmers are often tempted to “rotate”
loops in DSP code by hand, attempting to execute loads and stores from
earlier or future iterations at the same time as computation from the cur-
rent iteration. This technique introduces loop-carried dependencies that

VisualDSP++ 5.0 C/C++ Compiler Manual 2-31
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

prevent the compiler from rearranging the code effectively. It is better to
give the compiler a simpler version, and leave the rotation to the compiler.

For example,

// GOOD: is rotated by the compiler.

int ss(short *a, short *b, int n) {

int sum = 0;

int i;

for (i = 0; i < n; i++) {

sum += a[i] + b[i];

}

return sum;

}

// BAD: rotated by hand: hard for the compiler to optimize.

int ss(short *a, short *b, int n) {

short ta, tb;

int sum = 0;

int i = 0;

ta = a[i]; tb = b[i];

for (i = 1; i < n; i++) {

sum += ta + tb;

ta = a[i]; tb = b[i];

}

sum += ta + tb;

return sum;

}

Rotating the loop required adding the scalar variables ta and tb and intro-
ducing loop-carried dependencies.

Loop Guidelines

2-32 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Avoiding Complex Array Indexing
Other dependencies can be caused by writes to array elements. In the fol-
lowing loop, the optimizer cannot determine whether the load from a
reads a value defined on a previous iteration or one that is overwritten in a
subsequent iteration.

// BAD: has array dependency.

for (i = 0; i < n; ++i)

a[i] = b[i] * a[c[i]];

The optimizer can resolve access patterns where the addresses are expres-
sions that vary by a fixed amount on each iteration. These are known as
“induction variables”.

// GOOD: uses induction variables.

for (i = 0; i < n; ++i)

a[i+4] = b[i] * a[i];

Inner Loops vs. Outer Loops
Inner loops should iterate more than outer loops.

The optimizer focuses on improving the performance of inner loops
because this is where most programs spend the majority of their time. It is
considered a good trade-off for an optimization to slow down the code
before and after a loop to make the loop body run faster. Therefore, try to
make sure that your algorithm also spends most of its time in the inner
loop; otherwise it may actually run slower after optimization. If you have
nested loops where the outer loop runs many times and the inner loop
runs a small number of times, try to rewrite the loops so that the outer
loop has fewer iterations.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-33
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Avoiding Conditional Code in Loops
If a loop contains conditional code, control-flow latencies may incur large
penalties if the compiler has to generate conditional jumps within the
loop. In some cases, the compiler is able to convert if-then-else and ?:
constructs into conditional instructions. In other cases, it can evaluate the
expression entirely outside of the loop. However, for important loops, lin-
ear code should be written where possible.

There are several techniques for removing conditional code. For example,
there is hardware support for min and max. The compiler usually succeeds
in transforming conditional code equivalent to min or max into the single
instruction. With particularly convoluted code the transformation may be
missed, in which case it is better to use min or max in the source code.

The compiler can sometimes perform the loop transformation that inter-
changes conditional code and loop structures. Nevertheless, instead of
writing

// BAD: loop contains conditional code.

for (i=0; i<100; i++) {

if (mult_by_b)

sum1 += a[i] * b[i];

else

sum1 += a[i] * c[i];

}

it is better to write

// GOOD: two simple loops can be optimized well.

if (mult_by_b) {

for (i=0; i<100; i++)

sum1 += a[i] * b[i];

} else {

for (i=0; i<100; i++)

Loop Guidelines

2-34 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

sum1 += a[i] * c[i];

}

if this is an important loop.

Avoiding Placing Function Calls in Loops
The compiler usually is unable to generate a hardware loop if the loop
contains a function call due to the expense of saving and restoring the con-
text of a hardware loop. In addition, operations such as division, modulus,
and some type coercions may implicitly call library functions. These are
expensive operations which you should try to avoid in inner loops. For
more details, see “Data Types” on page 2-13.

Avoiding Non-Unit Strides
If you write a loop, such as

// BAD: non-unit stride means division may be required.

for (i=0; i<n; i+=3) {

// some code

}

then for the compiler to turn this into a hardware loop, it needs to work
out the loop trip count. To do so, it must divide n by 3. The compiler may
decide that this is worthwhile as it speeds up the loop, but division is an
expensive operation. Try to avoid creating loop control variables with
strides other than 1 or -1.

In addition, try to keep memory accesses in consecutive iterations of an
inner loop contiguous. This is particularly applicable to multi-dimen-
sional arrays.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-35
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Therefore,

// GOOD: memory accesses contiguous in inner loop

for (i=0; i<100; i++)

for (j=0; j<100; j++)

sum += a[i][j];

is likely to be better than

// BAD: loop cannot be unrolled to use wide loads.

for (i=0; i<100; i++)

for (j=0; j<100; j++)

sum += a[j][i];

as the former is more amenable to vectorization.

Loop Control
Use int types for loop control variables and array indices.For loop control
variables and array indices, it is always better to use signed ints rather
than any other integral type. For other integral types, the C standard
requires various type promotions and standard conversions that compli-
cate the code for the compiler optimizer. Frequently, the compiler is still
able to deal with such code and create hardware loops and pointer induc-
tion variables. However, it does make it more difficult for the compiler to
optimize and may occasionally result in under-optimized code.

The same advice goes for using automatic (local) variables for loop con-
trol. Use automatic variables for loop control and loop exit test. It is easy
for a compiler to see that an automatic scalar whose address is not taken
may be held in a register during a loop. But it is not as easy when the vari-
able is a global or a function static.

Loop Guidelines

2-36 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Therefore, code such as

// BAD: may need to reload globvar on every iteration.

for (i=0; i<globvar; i++)

a[i] = a[i] + 1;

may not create a hardware loop if the compiler cannot be sure that the
write into the array a does not change the value of the global variable. The
globvar must be reloaded each time around the loop before performing
the exit test.

In this circumstance, the programmer can make the compiler’s job easier
by writing:

// GOOD: easily becomes a hardware loop.

int upper_bound = globvar;

for (i=0; i<upper_bound; i++)

a[i] = a[i] + 1;

Using the Restrict Qualifier
The restrict qualifier provides one way to help the compiler resolve
pointer aliasing ambiguities. Accesses from distinct restricted pointers do
not interfere with each other. The loads and stores in the following loop

// BAD: possible alias of arrays a and b

void copy(short *a, short *b) {

int i;

for (i=0; i<100; i++)

a[i] = b[i];

}

 may be disambiguated by writing

// GOOD: restrict qualifier tells compiler that memory

// accesses do not alias

VisualDSP++ 5.0 C/C++ Compiler Manual 2-37
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

void copy(short * restrict a, short * restrict b) {

int i;

for (i=0; i<100; i++)

a[i] = b[i];

}

The restrict keyword is particularly useful on function parameters. but
it can be used on any variable declaration. For example, the copy function
may also be written as:

void copy(short *a, short *b) {

int i;

short * restrict p = a;

short * restrict q = b;

for (i=0; i<100; i++)

*p++ = *q++;

}

Avoiding Long Latencies
All pipelined machines introduce stall cycles when you cannot execute the
current instruction until a prior instruction has exited the pipeline. For
example, the SHARC processor stalls for three cycles on a table lookup.
a[b[i]] takes three cycles more than you would expect.

If a stall is seen empirically, but it is not obvious to you exactly why it is
occurring, a good way to learn about the cause is the Pipeline Viewer.
This can be accessed through Debug Windows -> Pipeline Viewer in the
VisualDSP++ 5.0 IDDE. By single-stepping through the program, you
can see where the stall occurs. Note that the Pipeline Viewer is only avail-
able within a simulator session.

Using Built-In Functions in Code Optimization

2-38 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using Built-In Functions in Code
Optimization

Built-in functions, also known as compiler intrinsics, provide a method
for the programmer to efficiently use low-level features of the processor
hardware while programming in C. Although this section does not cover
all the built-in functions available, it presents some code examples where
implementation choices are available to the programmer. For more infor-
mation, refer to “Compiler Built-In Functions” on page 1-177.

Using System Support Built-In Functions
Built-in functions are also provided to perform low-level system manage-
ment, in particular for the manipulation of system registers (defined in
sysreg.h). It is usually better to use these built-in functions rather than
inline asm statements.

The built-in functions cause the compiler to generate efficient inline
instructions and their use often results in better optimization of the sur-
rounding code at the point where they are used. Using the built-in
functions also usually results in improved code readability.

For more information on supported built-in functions, refer to “Compiler
Built-In Functions” on page 1-177.

Examples of the two styles are:

// BAD: uses inline asm statement

asm("#include <def21060.h>");

// Bit definitions for the registers

void func_no_interrupts(void){

// Check if interrupts are enabled.

// If so, disable them, call the function, then re-enable.

int enabled;

VisualDSP++ 5.0 C/C++ Compiler Manual 2-39
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

asm("r0=0; bit tst MODE1 IRPTEN; if tf r0=r0+1; %0 = r0;"

: "=d"(enabled) : : "r0");

if (enabled)

asm("bit clr mode1 IRPTEN;"); // Disable interrupts

func(); // Do something

if (enabled)

asm("bit set mode1 IRPTEN;"); // Re-enable interrupts

}

// GOOD: uses sysreg.h

#include <sysreg.h> // Sysreg functions

#include <def21060.h> // Bit definitions for the registers

void func_no_interrupts(void){

// Check if interrupts are enabled.

// If so, disable them, call the function, then re-enable.

int enabled = sysreg_bit_tst(sysreg_MODE1, IRPTEN);

if (enabled)

sysreg_bit_clr(sysreg_MODE1, IRPTEN); // Disable

interrupts

func(); // Do something

if (enabled)

sysreg_bit_set(sysreg_MODE1, IRPTEN);

// Re-enable interrupts

}

This example calls a function with interrupts disabled.

Using Built-In Functions in Code Optimization

2-40 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Using Circular Buffers
Circular buffers are useful in DSP-style code. They can be used in several
ways. Consider the C code:

// GOOD: the compiler knows that b is accessed as a circular

buffer

for (i=0; i<1000; i++) {

sum += a[i] * b[i%20];

}

Clearly the access to array b is a circular buffer. When optimization is
enabled, the compiler produces a hardware circular buffer instruction for
this access.

Consider this more complex example.

// BAD: may not be able to use circular buffer to access b

for (i=0; i<1000; i+=n) {

sum += a[i] * b[i%20];

}

In this case, the compiler does not know if n is positive and less than 20. If
it is, then the access may be correctly implemented as a hardware circular
buffer. On the other hand, if it is greater than 20, a circular buffer incre-
ment may not yield the same results as the C code.

The programmer has two options here.

The first option is to compile with the -force-circbuf switch. This tells
the compiler that any access of the form a[i%n] should be considered as a
circular buffer. Before using this switch, you should check that this
assumption is valid for your application.

• The value of i must be positive.

• The value of n must be constant across the loop, and greater than
zero (as the length of the buffer).

VisualDSP++ 5.0 C/C++ Compiler Manual 2-41
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• The value of a must be a constant across the loop (as the base
address of the circular buffer).

• The initial value of i must be such that a[i] refers a valid position
within the circular buffer. This is because the circular buffer opera-
tions will take effect when advancing from position a[i] to either
a[i+m] or a[i-m], by addition or subtraction, respectively. If a[i]
is not initially valid, then any access before the first advancement
will not access the buffer, and a[i+m] and a[i-m] will not be guar-
anteed to reference the buffer after advancement.

 Circular buffer operations (which add or subtract the buffer length
to a pointer) are semantically different from a[i%n] (which per-
forms a modulo operation on an index, and then adds the result to
a base pointer). If you use the -force-circbuf switch when the
above conditions are not true, the compiler generates code that
does not have the intended effect.

The second, and preferred, option, is to use built-in functions to perform
the circular buffering. Two functions (__builtin_circindex and
__builtin_circptr) are provided for this purpose.

To make it clear to the compiler that a circular buffer should be used, you
may write either:

// GOOD: explicit use of circular buffer via __builtin_circindex

for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * b[j];

j = __builtin_circindex(j, n, 20);

}

or

// GOOD: explicit use of circular buffer via __builtin_circptr

int *p = b;

for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * (*p);

Smaller Applications: Optimizing for Code Size

2-42 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

p = __builtin_circptr(p, n, b, 20);

}

For more information, refer to “Compiler Built-In Functions” on
page 1-177).

Smaller Applications: Optimizing for
Code Size

The same ethos for producing fast code also applies to producing small
code. You should present the algorithm in a way that gives the optimizer
clear visibility of the operations and data, and hence the greatest freedom
to safely manipulate the code to produce small applications.

Once the program is presented in this way, the optimization strategy
depends on the code-size constraint that the program must obey. The first
step should be to optimize the application for full performance, using -O
or -ipa switches. If this obeys the code-size constraints, then no more
need be done.

The “optimize for space” switch -Os (on page 1-49), which may be used in
conjunction with IPA, performs every performance-enhancing transfor-
mation except those that increase code size. In addition, the -e linker
switch (-flags-link -e if used from the compiler command line) may be
helpful (see on page 1-31). This operation performs section elimination in
the linker to remove unneeded data and code. If the code produced with
the -Os and -flags-link -e switches does not meet the code-size con-
straint, some analysis of the source code is required to try to reduce the
code size further.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-43
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Note that loop transformations such as unrolling and software pipelining
increase code size. But it is these loop transformations that also give the
greatest performance benefit. Therefore, in many cases compiling for
minimum code size produces significantly slower code than optimizing for
speed.

The compiler provides a way to balance between the two extremes of -O
and -Os. This is the sliding-scale -Ov num switch (adjustable using the
optimization slider bar under Project Options in the VisualDSP++
IDDE), described on page 1-49. The num parameter is a value between 0
and 100, where the lower value corresponds to minimum code size and
the upper to maximum performance. A value in-between is used to opti-
mize the frequently-executed regions of code for maximum performance,
while keeping the infrequently-executed parts as small as possible. The
switch is most reliable when using profile-guided optimization (see “Opti-
mization Control” on page 1-81) since the execution counts of the various
code regions have been measured experimentally. Without PGO, the exe-
cution counts are estimated, based on the depth of loop nesting.

 Avoid the use of inline code.

Avoid using the inline keyword to inline code for functions that are used
a number of times, especially if they not very small. The -Os switch does
not have any effect on the use of the inline keyword. It does, however,
prevent automatic inlining (using the -Oa switch) from increasing the code
size. Macro functions can also cause code expansion and should be used
with care.

Using Pragmas for Optimization
Pragmas can assist optimization by allowing the programmer to make
assertions or suggestions to the compiler. This section looks at how they
can be used to finely tune source code.

Using Pragmas for Optimization

2-44 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Refer to “Pragmas” on page 1-187 for full details of how each pragma
works; the emphasis here is in considering under what circumstances they
are useful during the optimization process.

In most cases the pragmas serve to give the compiler information which it
is unable to deduce for itself. It must be emphasized that the programmer
is responsible for making sure that the information given by the pragma is
valid in the context in which it is used. Use of a pragma to assert that a
function or loop has a quality that it does not in fact have is likely to result
in incorrect code and hence a malfunctioning application.

An advantage of the use of pragmas is that they allow code to remain por-
table, since they are normally ignored by a compiler that does not
recognize them.

Function Pragmas
Function pragmas include #pragma alloc, #pragma const, #pragma pure,
#pragma result_alignment, and #pragma regs_clobbered. The pragma
#pragma optimize_{off|for_speed|for_space|as_cmd_line} is also use-
ful to control the optimization strategy for specific functions in the source
file.

#pragma alloc

This pragma asserts that the function behaves like the malloc library func-
tion. In particular, it returns a pointer to new memory that cannot alias
any pre-existing buffers. In the following code,

// GOOD: uses #pragma alloc to disambiguate out from a and b

#pragma alloc

int *new_buf(void);

int *vmul(int *a, int *b) {

int i;

int *out = new_buf();

for (i=0; i<100; i++)

VisualDSP++ 5.0 C/C++ Compiler Manual 2-45
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

out[i] = a[i] * b[i];

}

the use of the pragma allows the compiler to be sure that the write into
buffer out does not modify either of the two input buffers a or b, and
therefore the iterations of the loop may be reordered.

#pragma const

This pragma asserts to the compiler that a function does not have any side
effects (such as modifying global variables or data buffers), and the result
returned is only a function of the parameter values. The pragma may be
applied to a function prototype or definition. It helps the compiler since
two calls to the function with identical parameters always yield the same
result. In this way, calls to #pragma const functions may be hoisted out of
loops if their parameters are loop independent.

#pragma pure

Like #pragma const, this pragma asserts to the compiler that a function
does not have any side effects (such as modifying global variables or data
buffers). However, the result returned may be a function of both the
parameter values and any global variables. The pragma may be applied to a
function prototype or definition. Two calls to the function with identical
parameters always yield the same result provided that no global variables
have been modified between the calls. Hence, calls to #pragma pure func-
tions may be hoisted out of loops if their parameters are loop independent
and no global variables are modified in the loop.

#pragma result_alignment

This pragma may be used on functions that have either pointer or integer
results. When a function returns a pointer, the pragma is used to assert
that the return result always has some specified alignment. Therefore, the
above example might further be refined if it is known that the new_buf

Using Pragmas for Optimization

2-46 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

function always returns buffers which are aligned on a dual-word
boundary.

// GOOD: uses pragma result_alignment to specify that out has

// strict alignment

#pragma alloc

#pragma result_alignment (2)

int *new_buf(void);

int *vmul(int *a, int *b) {

int i;

int *out = new_buf();

for (i=0; i<100; i++)

out[i] = a[i] * b[i];

}

Further details on this pragma may be found in “#pragma
result_alignment (n)” on page 1-217. Another more laborious way to
achieve the same effect would be to use __builtin_aligned at every call
site to assert the alignment of the returned result.

#pragma regs_clobbered

This pragma is a useful way to improve the performance of code that
makes function calls. The best use of the pragma is to increase the number
of call-preserved registers available across a function call. There are two
complementary ways in which this may be done.

First of all, suppose that you have a function written in assembly that you
wish to call from C source code. The regs_clobbered pragma may be
applied to the function prototype to specify which registers are “clob-
bered” by the assembly function, that is, which registers may have
different values before and after the function call. Consider for example a

VisualDSP++ 5.0 C/C++ Compiler Manual 2-47
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

simple assembly function to add two integers and mask the result to fit
into 8 bits:

_add_mask:

modify(i7,-3);

r2=255;

r8=r8+r4;

r0=r8 and r2;

i12=dm(m7,i6);;

jump(m14,i12)(DB); rframe; nop;

._add_mask.end

Clearly the function does not modify the majority of the scratch registers
available and thus these could instead be used as call-preserved registers.
In this way fewer spills to the stack would be needed in the caller function.
Using the following prototype,

// GOOD: uses regs_clobbered to increase call-preserved register

set.

#pragma regs_clobbered "r0, r2, r8, i12, ASTAT"

int add_mask(int, int);

the compiler is told which registers are modified by a call to the add_mask
function. The registers not specified by the pragma are assumed to pre-
serve their values across such a call and the compiler may use these spare
registers to its advantage when optimizing the call sites.

The pragma is also powerful when all of the source code is written in C. In
the above example, a C implementation might be:

// BAD: function thought to clobber entire volatile register set

int add_mask(int a, int b) {

return ((a+b)&255);

}

Using Pragmas for Optimization

2-48 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Since this function does not need many registers when compiled, it can be
defined using:

// GOOD: function compiled to preserve most registers

#pragma regs_clobbered "r0, r2, i12, CCset"

int add_mask(int a, int b) {

return ((a+b)&255);

}

to ensure that any other registers aside from r0, r2, i12 and the condi-
tion codes are not modified by the function. If any other registers are used
in the compilation of the function, they are saved and restored during the
function prologue and epilogue.

In general, it is not very helpful to specify any of the condition codes as
call-preserved as they are difficult to save and restore and are usually clob-
bered by any function. Moreover, it is usually of limited benefit to be able
to keep them live across a function call. Therefore, it is better to use CCset
(all condition codes) rather than ASTAT in the clobbered set above. For
more information, refer to “#pragma regs_clobbered string” on
page 1-209.

#pragma optimize_{off|for_speed|for_space|as_cmd_line}

The optimize_ pragmas may be used to change the optimization setting
on a function-by-function basis. In particular, it may be useful to optimize
functions that are rarely called (for example, error handling code) for
space (using #pragma optimize_for_space), whereas functions critical to
performance should be compiled for maximum speed (using #pragma
optimize_for_speed). The #pragma optimize_off is useful for debugging
specific functions without increasing the size or decreasing the perfor-
mance of the overall application unnecessarily.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-49
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

 The #pragma optimize_as_cmd_line resets the optimization set-
tings to be those specified on the cc21k command line when the
compiler was invoked. Refer to “General Optimization Pragmas”
on page 1-204 for more information.

Loop Optimization Pragmas
Many pragmas are targeted towards helping to produce optimal code for
inner loops. These are the loop_count, no_vectorization, vector_for,
all_aligned, and no_alias pragmas.

#pragma loop_count

The loop_count pragma enables the programmer to inform the compiler
about a loop’s iteration count. The compiler is able to make more reliable
decisions about the optimization strategy for a loop if it knows the
iteration count range. If you know that the loop count is always a multiple
of some constant, this can also be useful as it allows a loop to be partially
unrolled or vectorized without the need for conditionally-executed itera-
tions. Knowledge of the minimum trip count may allow the compiler to
omit the guards that are usually required after software pipelining. (A
“guard” is code generated by the compiler to test a condition at run-time
rather than at compile-time.) Any of the parameters of the pragma that are
unknown may be left blank.

An example of the use of the loop_count pragma might be:

// GOOD: the loop_count pragma gives compiler helpful information

// to assist optimization)

#pragma loop_count(/*minimum*/ 40, /*maximum*/ 100, /*modulo*/ 4)

for (i=0; i<n; i++)

a[i] = b[i];

For more information, refer to “#pragma loop_count (min, max, mod-
ulo)” on page 1-200.

Using Pragmas for Optimization

2-50 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

#pragma no_vectorization

Vectorization (executing more than one iteration of a loop in parallel) can
slow down loops with very small iteration counts since a loop prologue
and epilogue are required. The no_vectorization pragma can be used
directly above a for or do loop to tell the compiler not to vectorize the
loop.

#pragma vector_for

The vector_for pragma is used to help the compiler to resolve dependen-
cies that would normally prevent it from vectorizing a loop. It tells the
compiler that all iterations of the loop may be run in parallel with each
other, subject to rearrangement of reduction expressions in the loop. In
other words, there are no loop-carried dependencies except reductions. An
optional parameter, n, may be given in parentheses to say that only n
iterations of the loop may be run in parallel. The parameter must be a lit-
eral value. For example,

// BAD:cannot be vectorized due to possible alias between a and b

for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

cannot be vectorized if the compiler cannot tell that the array b does not
alias array a. But the pragma may be added to tell the compiler that in this
case four iterations may be executed concurrently.

// GOOD: pragma vector_for disambiguates alias

#pragma vector_for (4)

for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

Note that this pragma does not force the compiler to vectorize the loop.
The optimizer checks various properties of the loop and does not vectorize
it if it believes that it is unsafe or it is not possible to deduce information
necessary to carry out the vectorization transformation. The pragma

VisualDSP++ 5.0 C/C++ Compiler Manual 2-51
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

assures the compiler that there are no loop-carried dependencies, but there
may be other properties of the loop that prevent vectorization.

In cases where vectorization is impossible, the information given in the
assertion made by vector_for may still be put to good use in aiding other
optimizations.

For more information, refer to “#pragma vector_for” on page 1-203.

#pragma SIMD_for

The SIMD_for pragma is similar to the vector_for pragma but makes the
weaker assertion that only two iterations may be issued in parallel. Further
details are given in “#pragma SIMD_for” on page 1-199.

#pragma all_aligned

The all_aligned pragma is used as shorthand for multiple
__builtin_aligned assertions. By prefixing a for loop with the pragma, it
is asserted that every pointer variable in the loop is aligned on a word
boundary at the beginning of the first iteration.

Therefore, adding the pragma to the following loop

// GOOD: uses all_aligned to inform compiler of alignment of a

and b

#pragma all_aligned

for (i=0; i<100; i++)

a[i] = b[i];

is equivalent to writing

// GOOD: uses __builtin_aligned to give alignment of a and b

__builtin_aligned(a, 2);

__builtin_aligned(b, 2);

for (i=0; i<100; i++)

a[i] = b[i];

Using Pragmas for Optimization

2-52 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

In addition, the all_aligned pragma may take an optional literal integer
argument n in parentheses. This tells the compiler that all pointer vari-
ables are aligned on a word boundary at the beginning of the nth iteration.
Note that the iteration count begins at zero. Therefore,

// GOOD: uses all_aligned to inform compiler of alignment of a

and b

#pragma all_aligned (1)

for (i=99; i>=0; i--)

a[i] = b[i];

is equivalent to

// GOOD: uses __builtin_aligned to give alignment of a and b

__builtin_aligned(a+98, 2);

__builtin_aligned(b+98, 2);

for (i=99; i>=0; i--)

a[i] = b[i];

For more information, refer to “#pragma all_aligned” on page 1-199 and
“Using __builtin_aligned” on page 2-18.

#pragma no_alias

When immediately preceding a loop, the no_alias pragma asserts that no
load or store in the loop accesses the same memory as any other. This
helps to produce shorter loop kernels as it permits instructions in the loop
to be rearranged more freely. See “#pragma no_alias” on page 1-203 for
more information.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-53
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Useful Optimization Switches
Table 2-2 lists the compiler switches useful during the optimization
process.

Table 2-2. C/C++ Compiler Optimization Switches

Switch Name Description

-const-read-write
(on page 1-25)

Specifies that data accessed via a pointer to const data may be modi-
fied elsewhere

-flags-link -e
(on page 1-31)

Specifies linker section elimination

-force-circbuf
(on page 1-32)

Treats array references of the form array[i%n] as circular buffer
operations

-ipa
(on page 1-37)

Turns on inter-procedural optimization. Implies use of -O.
May be used in conjunction with -Os or -Ov.

-no-fp-associative
(on page 1-44)

Does not treat floating-point multiply and addition as an associative

-no-saturation
(on page 1-46)

Does not turn non-saturating operations into saturating ones

-O
(on page 1-48)

Enables code optimizations and optimizes the file for speed

-Os
(on page 1-49)

Optimizes the file for size

-Ov num
(on page 1-49)

Controls speed vs. size optimizations (sliding scale)

-pguide
(on page 1-55)

Adds instrumentation for the gathering of a profile as the first stage of
performing profile-guided optimization

-save-temps
(on page 1-59)

Saves intermediate files (for example, .s)

How Loop Optimization Works

2-54 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

How Loop Optimization Works
Loop optimization is important to overall application performance,
because any performance gain achieved within the body of a loop reaps a
benefit for every iteration of that loop. This section provides an introduc-
tion to some of the concepts used in loop optimization, helping you to use
the compiler features in this chapter.

This section contains:

• “Terminology” on page 2-54

• “Loop Optimization Concepts” on page 2-57

• “A Worked Example” on page 2-77

Terminology
This section describes terms that have particular meanings for compiler
behavior.

Clobbered Register

A register is “clobbered” if its value is changed so that the compiler cannot
usefully make assumptions about its new contents.

For example, when the compiler generates a call to an external function,
the compiler considers all caller-preserved registers to be clobbered by the
called function. Once the called function returns, the compiler cannot
make any assumptions about the values of those registers. This is why they
are called “caller-preserved.” If the caller needs the values in those regis-
ters, the caller must preserve them itself.

The set of registers clobbered by a function can be changed using #pragma
regs_clobbered, and the set of registers changed by a gnu asm statement is
determined by the clobber part of the asm statement.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-55
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Live Register

A register is “live” if it contains a value needed by the compiler, and thus
cannot be overwritten by a new assignment to that register. For example,
to do "A = B + C", the compiler might produce:

reg1 = load B // reg1 becomes live

reg2 = load C // reg2 becomes live

reg1 = reg1 + reg2 // reg2 ceases to be live;

// reg1 still live, but with a different

// value

store reg1 to A // reg1 ceases to be live

Liveness determines which registers the compiler may use. In this exam-
ple, since reg1 is used to load B, and that register must maintain its value
until the addition, reg1 cannot also be used to load the value of C, unless
the value in reg1 is first stored elsewhere.

Spill

When a compiler needs to store a value in a register, and all usable regis-
ters are already live, the compiler must store the value of one of the
registers to temporary storage (the stack). This “spilling” process prevents
the loss of a necessary value.

Scheduling

“Scheduling” is the process of reordering the program instructions to
increase the efficiency of the generated code but without changing the
program’s behavior. The compiler attempts to produce the most efficient
schedule.

How Loop Optimization Works

2-56 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Loop Kernel

The “loop kernel” is the body of code that is executed once per iteration of
the loop. It excludes any code required to set up the loop or to finalize it
after completion.

Loop Prolog

A “loop prolog” is a sequence of code required to set the machine into a
state whereby the loop kernel can execute. For example, the prolog may
pre-load some values into registers ready for use in the loop kernel. Not all
loops need a prolog.

Loop Epilog

A “loop epilog” is a sequence of code responsible for finalizing the execu-
tion of a loop. After each iteration of the loop kernel, the machine will be
in a state where the next iteration can begin efficiently. The epilog moves
values from the final iteration to where they need to be for the rest of the
function to execute. For example, the epilog might save values to memory.
Not all loops need an epilog.

Loop Invariant

A “loop invariant” is an expression that has the same value for all itera-
tions of a loop. For example:

int i, n = 10;

for (i = 0; i < n; i++) {

val += i;

}

The variable n is a loop invariant. Its value is not changed during the body
of the loop, so n will have the value 10 for every iteration of the loop.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-57
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Hoisting

When the optimizer determines that some part of a loop is computing a
value that is actually a loop invariant, it may move that computation to
before the loop. This prevents the same value from being recomputed for
every iteration. This is called “hoisting.”

Sinking

When the optimizer determines that some part of a loop is computing a
value that is not used until the loop terminates, the compiler may move
that computation to after the loop. This “sinking” process ensures the
value is only computed using the values from the final iteration.

Loop Optimization Concepts
The compiler optimizer focuses considerable attention on program loops,
as any gain in the loop’s performance reaps the benefits on every iteration
of the loop. The applied transformations can produce code that appears to
be substantially different from the structure of the original source code.
This section provides an introduction to the compiler’s loop optimization,
to help you understand why the code might be different.

This section describes:

• “Software Pipelining” on page 2-58

• “Loop Rotation” on page 2-59

• “Loop Vectorization” on page 2-61

• “Modulo Scheduling” on page 2-63

The following examples are presented in terms of a hypothetical machine.
This machine is capable of issuing up to two instructions in parallel, pro-
vided one instruction is an arithmetic instruction, and the other is a load

How Loop Optimization Works

2-58 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

or a store. Two arithmetic instructions may not be issued at once, nor may
two memory accesses:

t0 = t0 + t1; // valid: single arithmetic

t2 = [p0]; // valid: single memory access

[p1] = t2; // valid: single memory access

t2 = t1 + 4, t1 = [p0]; // valid: arithmetic and memory

t5 += 1, t6 -= 1; // invalid: two arithmetic

[p3] = t2, t4 = [p5]; // invalid: two memory

The machine can use the old value of a register and assign a new value to it
in the same cycle, for example:

t2 = t1 + 4, t1 = [p0]; // valid: arithmetic and memory

The value of t1 on entry to the instruction is the value used in the addi-
tion. On completion of the instruction, t1 contains the value loaded via
the p0 register.

The examples will show “START LOOP N” and “END LOOP”, to indicate the
boundaries of a loop that iterates N times. (The mechanisms of the loop
entry and exit are not relevant).

Software Pipelining

“Software pipelining” is analogous to hardware pipelining used in some
processors. Whereas hardware pipelining allows a processor to start pro-
cessing one instruction before the preceding instruction has completed,
software pipelining allows the generated code to begin processing the next
iteration of the original source-code loop before the preceding iteration is
complete.

Software pipelining makes use of a processor’s ability to multi-issue
instructions. Regarding known delays between instructions, it schedules
instructions from later iterations where there is spare capacity.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-59
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Loop Rotation

“Loop rotation” is a common technique of achieving software pipelining.
It changes the logical start and end positions of the loop within the overall
instruction sequence, to allow a better schedule within the loop itself. For
example, this loop:

START LOOP N

A

B

C

D

E

END LOOP

could be rotated to produce the following loop:

A

B

C

START LOOP N-1

D

E

A

B

C

END LOOP

D

E

The order of instructions in the loop kernel is now different. It still circles
from instruction E back to instruction A, but now it starts at D, rather than
A. The loop also has a prolog and epilog added, to preserve the intended
order of instructions. Since the combined prolog and epilog make up a
complete iteration of the loop, the kernel is now executing N-1 iterations,
instead of N.

How Loop Optimization Works

2-60 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

In this example, consider the following loop:

START LOOP N

t0 += 1

[p0++] = t0

END LOOP

This loop has a two-cycle kernel. While the machine could execute the
two instructions in a single cycle—an arithmetic instruction and a mem-
ory access instruction—to do so would be invalid, because the second
instruction depends upon the value computed in the first instruction.

However, if the loop is rotated, we get:

t0 += 1

START LOOP N-1

[p0++] = t0

t0 += 1

END LOOP

[p0++] = t0

The value being stored is computed in the previous iteration (or before the
loop starts, in the prolog). This allows the two instructions to be executed
in a single cycle:

t0 += 1

START LOOP N-1

[p0++] = t0, t0 += 1

END LOOP

[p0++] = t0

Rotating the loop has presented an opportunity by which the kth iteration
of the original loop is starting (t0 += 1) while the (k-1)th iteration is
completing ([p0++] = t0), so rotation has achieved software pipelining,
and the performance of the loop is doubled.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-61
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Notice that this process has changed the structure of the program slightly:
suppose that the loop construct always executes the loop at least once; that
is, it is a 1..N count. Then if N==1, changing the loop to be N-1 would be
problematic. In this example, the compiler inserts a guard: a conditional
jump around the loop construct for the circumstances where the compiler
cannot guarantee that N > 1:

t0 += 1

IF N == 1 JUMP L1;

START LOOP N-1

[p0++] = t0, t0 += 1

END LOOP

L1:

[p0++] = t0

Loop Vectorization

“Loop vectorization” is another transformation that allows the generated
code to execute more than one iteration in parallel. However, vectoriza-
tion is different from software pipelining. Where software pipelining uses
a different ordering of instructions to get better performance,
vectorization uses a different set of instructions. These vector instructions
act on multiple data elements concurrently to replace multiple executions
of each original instruction.

For example, consider this dot-product loop:

int i, sum = 0;

for (i = 0; i < n; i++) {

sum += x[i] * y[i];

}

How Loop Optimization Works

2-62 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

This loop walks two arrays, reading consecutive values from each, multi-
plying them and adding the result to the on-going sum. This loop has
these important characteristics:

• Successive iterations of the loop read from adjacent locations in the
arrays.

• The dependency between successive iterations is the summation, a
commutative operation.

• Operations such as load, multiply and add are often available in
parallel versions on embedded processors.

These characteristics allow the optimizer to vectorize the loop so that two
elements are read from each array per load, two multiplies are done, and
two totals maintained.

The vectorized loop would be:

t0 = t1 = 0

START LOOP N/2

t2 = [p0++] (Wide) // load x[i] and x[i+1]

t3 = [p1++] (Wide) // load y[i] and y[i+1]

t0 += t2 * t3 (Low), t1 += t2 * t3 (High) // vector mulacc

END LOOP

t0 = t0 + t1 // combine totals for low and high

Vectorization is most efficient when all the operations in the loop can be
expressed in terms of parallel operations. Loops with conditional con-
structs in them are rarely vectorizable, because the compiler cannot
guarantee that the condition will evaluate in the same way for all the itera-
tions being executed in parallel.

Vectorization is also affected by data alignment constraints and data access
patterns. Data alignment affects vectorization because processors often
constrain loads and stores to be aligned on certain boundaries. While the
unvectorized version will guarantee this, the vectorized version imposes a

VisualDSP++ 5.0 C/C++ Compiler Manual 2-63
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

greater constraint that may not be guaranteed. Data access patterns affect
vectorization because memory accesses must be contiguous. If a loop
accessed every tenth element, for example, then the compiler would not be
able to combine the two loads for successive iterations into a single access.

Vectorization divides the generated iteration count by the number of iter-
ations being processed in parallel. If the trip count of the original loop is
unknown, the compiler will have to conditionally execute some iterations
of the loop.

 Vectorization and software pipelining are not mutually exclusive:
the compiler may vectorize a loop and then use software pipeling to
obtain better performance.

Modulo Scheduling

Loop rotation, as described earlier, is a simple software-pipelining method
that can often improve loop performance, but more complex examples
require a more advanced approach. The compiler uses a popular technique
known as “Modulo Scheduling” which can produce more efficient sched-
ules for loops than simple loop rotation.

Modulo scheduling is used to schedule innermost loops without control
flow. A modulo-scheduled loop is described using the following
parameters:

• Initiation interval (II): the number of cycles between initiating two
successive iterations of the original loop.

• Minimum initiation interval due to resources (res MII): a lower
limit for the initiation interval (II); an II lower than this would
mean at least one of the resources being used at greater capacity
than the machine allows.

How Loop Optimization Works

2-64 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• Minimum initiation interval due to recurrences (rec MII): an
instruction cannot be executed until earlier instructions on which
it depends have also been executed. These earlier instructions may
belong to a previous loop iteration. A cycle of such dependencies (a
recurrence) imposes a minimum number of cycles for the loop.

• Stage count (SC): the number of initiation intervals until the first
iteration of the loop has completed. This is also the number of iter-
ations in progress at any time within the kernel.

• Modulo variable expansion unroll factor (MVE unroll): the num-
ber of times the loop has to be unrolled to generate the schedule
without overlapping register lifetimes.

• Trip count: the number of times the loop kernel iterates.

• Trip modulo: a number that is known to divide the trip count.

• Trip maximum: an upper limit for the trip count.

• Trip minimum: a lower limit for the trip count.

Understanding these parameters will allow you to interpret the generated
code more easily. The compiler's assembly annotations use these terms, so
you can examine the source code and the generated instructions, to see
how the scheduling relates to the original source. See “Assembly Opti-
mizer Annotations” on page 2-80 for more information.

Modulo scheduling performs software pipelining by:

• Ordering the original instructions in a sequence (for simplicity
referred to as the “base schedule”) that can be repeated after an
interval known as the “initiation interval” (“II”);

• Issuing parts of the base schedule belonging to successive iterations
of the original loop, in parallel.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-65
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

For the purposes of this discussion, all instructions will be assumed to
require only a single cycle to execute; on a real processor, stalls affect the
initiation interval, so a loop that executes in II cycles may have fewer than
II instructions.

Initiation Interval (II) and the Kernel

Consider the loop:

 START LOOP N
A

B

C

D

E

F

G

H

END LOOP

Now consider that the compiler finds a new order for A,B,C,D,E,F,G,H
grouping; some of them on the same cycle so that a new instance of the
sequence can be started every two cycles. Say this base schedule is given in
Table 2-3 on page 2-66 where I1,I2,...,I8 are A,B,...,H reordered.
Albeit a valid schedule for the original loop, the base schedule is not the
final modulo schedule; it may not even the shortest schedule of the origi-
nal loop.

However, the base schedule is used to obtain the modulo schedule, by
being able to initiate it every II=2 cycles, as seen in Table 2-4 on
page 2-66.

How Loop Optimization Works

2-66 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Table 2-3. Base Schedule

Cycle Instructions

1 I1

2 I2, I3

3 I4, I5

4 I6

5 I7

6 I8

Table 2-4. Obtaining the Modulo Schedule by Repeating the Base
Schedule every II=2 Cycles

Cycle Iteration 1 Iteration 2 Iteration 3 Iteration 4

1 I1

2 I2, I3

3 I4, I5 I1

4 I6 I2, I3

5 I7 I4, I5 I1

6 I8 I6 I2, I3

7 I7 I4, I5 I1

8 I8 I6 I2, I3

9 I7 I4, I5

10 I8 I6

VisualDSP++ 5.0 C/C++ Compiler Manual 2-67
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Starting at cycle 5, the pattern in Table 2-5 keeps repeating every 2 cycles.
This repeating pattern is the kernel, and it represents the modulo sched-
uled loop.

The initiation interval has the value II=2, because iteration i+1 can start
two cycles after the cycle on which iteration i starts. This way, one itera-
tion of the original loop is initiated every II cycles, running in parallel
with previous, unfinished iterations.

The initiation interval of the loop indicates several important characteris-
tics of the schedule for the loop:

• The loop kernel will be II cycles in length.

• A new iteration of the original loop will start every II cycles.
An iteration of the original loop will end every II cycles.

• The same instruction will execute on cycle c and on cycle c+II
(hence the name modulo schedule).

Finding a modulo schedule implies finding a base schedule and an II such
that the base schedule can be initiated every II cycles.

Table 2-5. Loop Kernel, N>=3

Cycle Iteration N-2
(last stage)

Iteration N-1
(2nd stage)

Iteration N
(1st stage)

II*N-1 I7 I4, I5 I1

II*N I8 I6 I2, I3

How Loop Optimization Works

2-68 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

If the compiler can reduce the value for II, it can start the next iteration
sooner, and thus increase the performance of the loop: The lower the II,
the more efficient the schedule. However the II is limited by a number of
factors, including:

• The machine resources required by the instructions in the loop.

• The data dependencies and stalls between instructions.

We’ll examine each of these limiting factors.

Minimum Initiation Interval Due to Resources (Res MII)

The first factor that limits II is machine resource usage. Let’s start with the
simple observation that the kernel of a modulo scheduled loop contains
the same set of instructions as the original loop.

Assume a machine that can execute up to four instructions in parallel. If
the loop has 8 instructions, then it requires a minimum of 2 lines in the
kernel, since there can be at most 4 instructions on a line. This implies II
has to be at least 2, and we can tell this without having found a base
schedule for the loop, or even knowing what the specific instructions are.

Consider another example where the original loop contains 3 memory
accesses to be scheduled on a machine that supports at most 2 memory
accesses per cycle. This implies at least 2 cycles in the kernel, regardless of
the rest of the instructions.

Given a set of instructions in a loop, we can determine a lower bound for
the II of any modulo schedule for that loop based on resources required.
This lower bound is called the “Resource-based Minimum Initiation
Interval” (Res MII).

Minimum Initiation Interval Due to Recurrences (Rec MII)

A less obvious limitation for finding a low II are cycles in the data depen-
dencies between instructions.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-69
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Assume that the loop to be scheduled contains (among others) the
instructions:

i3: t3=t1+t5; // t5 carried from the previous iteration

i5: t5=t1+t3;

Assume each line of instructions takes 1 cycle. If i3 is executed at cycle c
then t3 is available at cycle c+1 and t5 cannot be computed earlier than
c+1 (because it depends on t3), and similarly the next time we compute t3
cannot be earlier than c+2. Thus if we execute i3 at cycle c, the next time
we can execute i3 again cannot be earlier than c+2. But for any modulo
schedule, if an instruction is executed at cycle c, the next iteration will
execute the same instruction at cycle c+II. Therefore, II has to be at least
2 due to the circular data dependency path t3->t5->t3.

This lower bound for II, given by circular data dependencies (recurrences)
is called the “Minimum Initiation Interval Due to Recurrences” (Rec
MII), and the data dependency path is called “loop carry path”. There can
be any number of loop carry paths in a loop, including none, and they are
not necessarily disjoint.

Stage Count (SC)

The kernel in Table 2-5 on page 2-67 is formed of instructions which
belong to 3 distinct iterations of the original loop: {I7,I8} end the “old-
est” iteration—in other words they belong to the iteration started the
longest time before the current cycle; {I4,I5,I6} belong to the next oldest
initiated iteration, and so on. {I1,I2,I3} are the beginning of the young-
est iteration.

The number of iterations of the original loop in progress at any time
within the kernel is called the “Stage Count” (SC). This is also the num-
ber of initiation intervals until the first iteration of the loop completes. In
our example SC=3.

The final schedule requires peeling a few instructions (the prolog) from
the beginning of the first iteration and a few instructions (the epilog) from

How Loop Optimization Works

2-70 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

the end of the last iteration in order to preserve the structure of the kernel.
This reduces the trip count from N to N-(SC-1):

I1; // prolog

I2,I3; // prolog

I4,I5, I1; // prolog

I6, I2,I3; // prolog

LOOP N-2 // i.e. N-(SC-1), where SC=3

I7, I4,I5, I1; // kernel

I8, I6, I2,I3; // kernel

END LOOP

I7, I4, I5; // epilog

I8, I6; // epilog

I7; // epilog

I8; // epilog

Another way of viewing the modulo schedule is to group instructions into
stages as in Table 2-6, where each stage is viewed as a vector of height II=2
of instruction lists (that represent parts of instruction lines).

Table 2-6. Instructions Grouped into Stages

StageCount Instructions

SC0 I1,
I2, I3

SC1 I4, I5,
I6

SC2 I7,
I8

VisualDSP++ 5.0 C/C++ Compiler Manual 2-71
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Now the schedule can be viewed as:

SC0 // prolog

SC1 SC0 // prolog

LOOP (N-2) // That is N-(SC-1), where SC=3

SC2 SC1 SC0 // kernel

END LOOP

SC2 SC1 // epilog

SC2 // epilog

where, for example, SC2 SC1 is the 2 line vector obtained from concate-
nating the lists in SC2 and SC1.

Variable Expansion and MVE Unroll

There is one more issue to address for modulo schedule correctness.

Consider the sequence of instructions in Table 2-7. Table 2-8 on
page 2-72 shows the base schedule that is an instance of the one in
Table 2-3 on page 2-66, and Table 2-9 on page 2-72 shows the corre-
sponding modulo schedule with II=2.

Table 2-7. Problematic Instance

Generic Instruction Specific Instance

I1 t1=[p1++]

I2 t2=[p2++]

I3 t3=t1+t5

I4 t4=t2+1

I5 t5=t1+t3

I6 t6=t4*t5

I7 t7=t6*t3

I8 [p8++]=t7

How Loop Optimization Works

2-72 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

However, there is a problem with the schedule in Table 2-9: t3 defined in
the fourth cycle (second column in the table) is used on the fifth cycle
(first column); however, the intended use was of the value defined on the
second cycle (first column). In general, the value of t3 used by t7=t6*t3
in the kernel will be the one defined in the previous cycle, instead of the
one defined 3 cycles earlier, as intended. Thus, if the compiler were to use
this schedule as-is, it would be clobbering the live value in t3. The lifetime

Table 2-8. Base Schedule From Table 2-3 Applied to the Instances in
Table 2-7

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3

4 t6=t4*t5

5 t7=t6*t3

6 [p8++]=t7

Table 2-9. Modulo Schedule Broken by Overlapping Lifetimes of t3

Iteration 1 Iteration 2 Iteration 3 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3=t1+t5

5 t7=t6*t3 t4=t2+1,t5=t1+t3 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3 t4=t2+1,t5=t1+t3

8 [p8++]=t7 t6=t4*t5

9 t7=t6*t3

10 [p8++]=t7

VisualDSP++ 5.0 C/C++ Compiler Manual 2-73
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

of each value loaded into t3 is 3 cycles, but the loop's initiation interval is
only 2, so the lifetimes of t3 from different iterations overlap.

The compiler fixes this by duplicating the kernel as many times as needed
to exceed the longest lifetime in the base schedule, then renaming the vari-
ables that clash – in this case, just t3. In Table 2-10, we see that the length
of the new loop body is 4, greater than the lifetimes of the values in the
loop.

Table 2-10. Modulo Schedule Corrected by Variable Expansion: t3 and
t3_2

Iteration 1 Iteration 2 Iteration 3 Iteration 4 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3_2=t1+t
5

5 t7=t6*t3 t4=t2+1,t5=t1+t3_2 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3_2 t4=t2+1,t5=t1+t3 t1=[p1++]

8 [p8++]=t7 t6=t4*t5 t2=[p2++],t3_2=t1+t5

9 t7=t6*t3 t4=t2+1,t5=t1+t3_2

10 [p8++]=t7 t6=t4*t5

11 t7=t6*t3_2

12 [p8++]=t7

How Loop Optimization Works

2-74 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

So the loop becomes:

t1=[p1++];
t2=[p2++],t3=t1+t5;
t4=t2+1,t5=t1+t3, t1=[p1++];
t6=t4*t5, t2=[p2++],t3_2=t1+t5;
LOOP (N-2)/2
t7=t6*t3, t4=t2+1,t5=t1+t3_2, t1=[p1++];
[p8++]=t7, t6=t4*t5, t2=[p2++],t3=t1+t5;

t7=t6*t3_2, t4=t2+1,t5=t1+t3, t1=[p1++];
[p8++]=t7, t6=t4*t5,t2=[p2++],t3_2=t1+t5;

END LOOP
t7=t6*t3, t4=t2+1,t5=t1+t3_2;

[p8++]=t7, t6=t4*t5;
t7=t6*t3_2;
[p8++]=t7;

This process of duplicating the kernel and renaming colliding variables is
called variable expansion, and the number of times the compiler dupli-
cates the kernel is referred to as the modulo variable expansion factor
(MVE). Conceptually we use different set of names, “register sets”, for
successive iterations of the original loop in progress in the unrolled kernel
(in practice we rename just the conflicting variables, see Table 2-11 on
page 2-75). In terms of reading the code, this means that a single iteration
of the loop generated by the compiler will be processing more than one
iteration of the original loop. Also, the compiler will be using more regis-
ters to allow the iterations of the original loop to overlap without
clobbering the live values.

In terms of stages:
SC0 // prolog

SC1 SC0_2 // prolog

LOOP (N-2)/2 // That is N-(SC-1)/MVE, where SC=3, MVE=2

SC2 SC1_2 SC0 // kernel

SC2_2 SC1 SC0_2 // kernel

END LOOP

SC2 SC1_2 // epilog

SC2_2 // epilog

VisualDSP++ 5.0 C/C++ Compiler Manual 2-75
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

where SCN_2 is SCN subject to renaming; in our case only occurrences of
t3 are renamed as t3_2 in SCN_2.

In terms of instructions:
I1; // prolog

I2,I3; // prolog

I4,I5, I1_2; // prolog

I6, I2_2,I3_2; // prolog

LOOP(N-2)/2 // That is N-(SC-1)/MVE, where SC=3, MVE=2

I7, I4_2,I5_2, I1; // kernel

I8, I6_2, I2,I3; // kernel

I7_2, I4,I5, I1_2; // kernel

I8_2, I6, I2_2,I3_2; // kernel

END LOOP

I7, I4_2,I5_2; // epilog

I8, I6_2; // epilog

I7_2; // epilog

I8_2; // epilog

where IN_2 is IN subject to renaming, in our case only occurrences of t3
are renamed as t3_2 in all IN_2, as seen in Table 2-11.

Table 2-11. Instructions After Modulo Variable Expansion

Generic Instruction Specific Instance

I1 and I1_2 t1=[p1++]

I2 and I2_2 t2=[p2++]

I3 t3=t1+t5

I3_2 t3_2=t1+t5

I4 and I4_2 t4=t2+1

I5 t5=t1+t3

I5_2 t5=t1+t3_2

I6 and I6_2 t6=t4*t5

How Loop Optimization Works

2-76 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Trip Count

Notice that as the modulo scheduler expands the loop kernel to add in the
extra variable sets, the iteration count of the generated loop changes from
(N-SC) to (N-SC)/MVE. This is because each iteration of the generated loop
is now doing more than one iteration of the original loop, so fewer gener-
ated iterations are required.

However, this also relies on the compiler knowing that it can divide the
loop count in this manner. For example, if the compiler produces a loop
with MVE=2 so that the count should be (N-SC)/2, an odd value of
(N-SC) causes problems. In these cases, the compiler generates additional
“peeled” iterations of the original loop to handle the remaining iteration.
As with rotation, if the compiler cannot determine the value of N, it will
make parts of the loop—the kernel or peeled iterations—conditional so
that they are executed only for the appropriate values of N.

The number of times the generated loop iterates is called the “trip count”.
As explained above, sometimes knowing the trip count is important for
efficient scheduling. However, the trip count is not always available.
Lacking it, additional information may be inferred, or passed to the com-
piler through the loop_count pragma, specifying:

• “Trip modulo”: a number known to divide the trip count

• “Trip minimum”: a lower bound for the trip count

• “Trip maximum”: an upper bound for the trip count

I7 t7=t6*t3

I7_2 t7=t6*t3_2

I8 and I8_2 [p8++]=t7

Table 2-11. Instructions After Modulo Variable Expansion (Cont’d)

Generic Instruction Specific Instance

VisualDSP++ 5.0 C/C++ Compiler Manual 2-77
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

A Worked Example
The following floating-point scalar product loop are used to show how the
compiler optimizer works.

Example: C source Code for Floating-Point Scalar Product

float sp(float *a, float *b, int n) {

int i;

float sum=0;

__builtin_aligned(a, 2);

__builtin_aligned(b, 2);

for (i=0; i<n; i++) {

sum+=a[i]*b[i];

}

return sum;

}

After code generation and conventional scalar optimizations, the compiler
generates a loop that resembles the following example.

Example: Initial Code Generated for Floating-Point Scalar Product

lcntr = r3, do(pc, .P1L10-1)until lce;

.P1L9:

r4 = dm(i1, m6);

r2 = dm(i0, m6);

f12 = f2 * f4;

f10 = f10 + f12;

// end_loop .P1L9;

.P1L10:

The loop exit test has been moved to the bottom and the loop counter
rewritten to count down to zero. This enables a zero-overhead hardware
loop to be created. (r3 is initialized with the loop count.) sum is being
accumulated in r10. i0 and i1 hold pointers that are initialized with the
parameters a and b and incremented on each iteration.

How Loop Optimization Works

2-78 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

The ADSP-211xx, ADSP-212xx, ADSP-213xx, and ADSP-214xx proces-
sors have two compute units that may perform computations
simultaneously. To use both these compute blocks, the optimizer unrolls
the loop to run two iterations in parallel. sum is now being accumulated in
r10 and s10, which must be added together after the loop to produce the
final result. To use the dual-word loads needed for the loop to be as effi-
cient as this, the compiler has to know that i0 and i1 have initial values
that are even. This is done in the above example by use of
__builtin_aligned, although it could also be propagated with IPA.

Note also that unless the compiler knows that original loop was executed
an even number of times, a conditionally-executed odd iteration must be
inserted outside the loop. r3 is now initialized with half the value of the
original loop.

Example: Code Generated for Floating-Point Scalar Product After
Vectorization Transformation

bit set mode1 0x200000; nop; // enter SIMD mode

m4 = 2;

lcntr = r3, do(pc, .P1L10-1)until lce;

.P1L9:

r4 = dm(i1, m4);

r2 = dm(i0, m4);

f12 = f2 * f4;

f10 = f10 + f12;

// end_loop .P1L9;

.P1L10:

bit clr mode1 0x200000; nop; // exit SIMD mode

Finally, the optimizer rotates the loop, unrolling and overlapping itera-
tions to obtain highest possible use of functional units. Code similar to
the following is generated, if it were known that the loop was executed at
least four times and the loop count was a multiple of two.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-79
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Example: Code Generated for Floating-Point Scalar Product After
Software Pipelining

bit set mode1 0x200000; nop; // enter SIMD mode

m4 = 2;

r4 = dm(i1, m4);

r2 = dm(i0, m4);

lcntr = r3, do(pc, .P1L10-1)until lce;

.P1L9:

f12 = f2 * f4, r4 = dm(i1, m4);

f10 = f10 + f12, r2 = dm(i0, m4);

// end_loop .P1L9;

.P1L10:

f12 = f2 * f4;

f10 = f10 + f12;

bit clr mode1 0x200000; nop; // exit SIMD mode

If the original source code is amended to declare one of the pointers with
the pm qualifier, the following optimal code is produced for the loop
kernel.

Example: Code Generated for Floating-Point Scalar Product When One
Buffer Placed in PM

bit set mode1 0x200000; nop; // enter SIMD mode

m4 = 2;

r5 = pm(i1, m4);

r2 = dm(i0, m4);

r4 = pm(i1, m4);

f12 = f2 * f5, r2 = dm(i0, m4);

lcntr = r3, do(pc, .P1L10-1)until lce;

.P1L9:

f12 = f2 * f4, f10 = f10 + f12, r2 = dm(i0, m4), r4 = pm(i1,

m4);

// end_loop .P1L9;

.P1L10:

Assembly Optimizer Annotations

2-80 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

f12 = f2 * f4, f10 = f10 + f12;

f10 = f10 + f12;

bit clr mode1 0x200000; nop; // exit SIMD mode

Assembly Optimizer Annotations
When the compiler optimizations are enabled, the compiler can perform a
large number of optimizations to generate the resultant assembly code.
The decisions taken by the compiler as to whether certain optimizations
are safe or worthwhile are generally invisible to a programmer. However,
it could be beneficial to get feedback from the compiler regarding the
decisions made during optimization. The intention of the information
provided is to give a programmer an understanding of how close to opti-
mal a program is and what more could possibly be done to improve the
generated code.

The feedback from the compiler optimizer is provided by means of anno-
tations made to the assembly file generated by the compiler. The assembly
file generated by the compiler can be kept by specifying the -S switch
(on page 1-59), the -save-temps switch (on page 1-59) or by checking
the Project Options->Compile->General->Save temporary files option in
VisualDSP++ IDDE.

The assembly code generated by the compiler optimizer is annotated with
the following information:

• “Global Information” on page 2-81

• “Procedure Statistics” on page 2-83

• “Instruction Annotations” on page 2-88

• “Loop Identification” on page 2-88

• “Vectorization” on page 2-96

VisualDSP++ 5.0 C/C++ Compiler Manual 2-81
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• “Modulo Scheduling Information” on page 2-101

• “Warnings, Failure Messages and Advice” on page 2-107

The assembly annotations provide information in several areas that you
can use to assist the compiler’s evaluation of your source code. In turn,
this improves the generated code. For example, annotations could provide
indications of resource usage or the absence of a particular optimization
from the resultant code. Annotations which note the absence of optimiza-
tion can often be more important than those noting its presence. Assembly
code annotations give the programmer insight into why the compiler
enables and disables certain optimizations for a specific code sequence.

The assembly output for the examples in this chapter may differ based on
optimization flags and the version of the compiler. As a result, you may
not be able to reproduce these results exactly.

Global Information
For each compilation unit, the assembly output is annotated with:

• The time of the compilation

• The options used during that compilation.

• The architecture for which the file was compiled.

• The silicon revision used during the compilation

Assembly Optimizer Annotations

2-82 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• A summary of the workarounds associated with the specified archi-
tecture and silicon revision. These workarounds are divided into:

• Disabled: the workarounds that were not applied

• Enabled: the workarounds that were applied during the
compilation.

• Always on: the workarounds that are always applied and
that cannot be disabled, not even by using the -si-revision
none compiler switch.

For instance, if the file hello.c is compiled at 11am, on June 28 using the
following command line:

cc21k -O -S hello.c

then the hello.s file will show:

.file "hello.c";

//Compilation time: Thu Jun 28 11:00:00 2007

//Compiler options: -O -S

//Architecture: ADSP-21060

//Silicon revision: 3.1

//Anomalies summary:

// Disabled:w_anomaly_45,w_rframe,w_swfa, ...

// Always on: w_end_of_loop

VisualDSP++ 5.0 C/C++ Compiler Manual 2-83
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Procedure Statistics
For each function, the following is reported:

• Frame size: size of stack frame.

• Registers used. Since function calls tend to implicitly clobber regis-
ters, there are several sets:

• The first set is composed of the scratch registers changed by
the current function. This does not count the registers that
are implicitly clobbered by the functions called from the
current function.

• The second set are the call-preserved registers changed by
the current function. This does not count the registers that
are implicitly clobbered by the functions called from the
current function.

• The third set are the registers clobbered by the inner func-
tion calls.

• Inlined Functions – if inlining happens, then the header of the
caller function reports which functions were inlined inside it and
where. Each inlined function is reported using the position of the
inlined call. All the functions inlined inside the inlined function
are reported as well, generating a tree of inlined calls. Each node,
except the root, has the form:

file_name:line:column’function_name

where:

• function_name is the name of the function inlined.

• line is the line number of the call to function_name, in the
source file.

Assembly Optimizer Annotations

2-84 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• column is the column number of the call to function_name,
in the source file.

• file_name is the name of the source file calling
function_name.

Example A (Procedure Statistics)

Consider the following program:

struct str {

int x1, x2;

};

int func1(struct str*, int *);

int func2(struct str s);

int foo(int in)

{

int sum = 0;

int local;

struct str l_str;

sum += func1(&l_str, &local);

sum += func2(l_str);

return sum;

}

The procedure statistics for foo are:

_foo:

.LN_foo:

//--

// Procedure statistics:

// Frame size = 7 words

// Scratch registers used:{r0,r2,r4,r8,i12,acc}

// Call preserved registers used:{r15,i5,i7}

// Registers that could be clobbered by function

calls:{r0-r2,r4,r8,r12,i4,i12-i13,b4,b12-b13,m4,m12,acc,mcc,scc,

VisualDSP++ 5.0 C/C++ Compiler Manual 2-85
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

btf,stky,lcntr,px1-px2}

//---

// line "ExampleA.c":7

r2=i5;

// line 11

i5=i6;

// -- stall --

modify(i5,-4);

r4=i5;

// line 7

modify(i7,-5);

// line 11

modify(i5,2);

// line 7

dm(-6,i6)=r15;

dm(-5,i6)=r2;

// line 11

r8=i5;

cjump _func1 (db); dm(i7,m7)=r2; dm(i7,m7)=-1;

// line 12

r15=pass r0, modify(i5,m7);

r2=dm(i5,m5);

dm(i7,m7)=r2;

r2=dm(m7,i5);

dm(i7,m7)=r2;

cjump _func2 (db); dm(i7,m7)=r2; dm(i7,m7)=-1;

modify(i7,2);

r0=r15+r0, i12=dm(m7,i6);

// line 13

i5=dm(-5,i6);

// -- stall --

r15=dm(-6,i6);

jump (m14,i12) (db); rframe; nop;

.LN._foo.end:

Assembly Optimizer Annotations

2-86 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Notes:

The following notes apply to procedure statistics:

• The frame size is 7 words, indicating how much space is allocated
on the stack by the function. The frame size includes:

• one word for the old frame pointer

• one word for the return address

• the space allocated by the compiler, for local variables (3
words: one for local, 2 for l_str)

• space required to save any callee-preserved registers (one
word for each of R15, i5)

• space required for parameters being passed to functions
called by this one (none in this case)

• The set of scratch registers modified is {r0,r2,r4,r8,i12,acc}
because, except for the func1 and func2 function calls, these are the
only scratch registers changed by foo.

• The set of call preserved registers used is {r15,i5,i7} because these
are the only call preserved registers used by foo.

• The set of registers clobbered by function calls contains the set of
registers potentially changed by the calls to func1 and func2.

Example B (Inlining Summary)

This is an example of inlined function reporting.

 1 void f4(int n);

 2 __inline void f3(int n)

 3 {

 4 f4(n);

 5 }

VisualDSP++ 5.0 C/C++ Compiler Manual 2-87
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

 6

 7 __inline void f2(int n)

 8 {

 9 while (n--) {

10 f3(n);

11 f3(2*n);

12 }

13 }

14 void f1(volatile unsigned int i)

15 {

16 f2(30);

17 }

f1 inlines the call of f2, which inlines the call of f3 in two places. The
procedure statistics for f1 reports these inlined calls:

_f1:

//---

// Procedure statistics

.

// Inlined in _f1:

// ExampleB.c:16:7’_f2

// ExampleB.c:11:11’_f3

// ExampleB.c:10:11’_f3

//---

.

f1 reports that f2 was inlined at line 16 (column 7) and, implicitly, f1 also
inlined the two calls of f3 inside f2.

Assembly Optimizer Annotations

2-88 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Instruction Annotations
Sometimes the compiler annotates certain assembly instructions. It does
so in order to point to possible inefficiencies in the original source code,
or when the -annotate-loop-instr compiler switch (on page 1-24) is
used to annotate the instructions related to modulo scheduled loops.

The format of an assembly line containing several instructions is changed.
Instructions issued in parallel are no longer shown all on the same assem-
bly line; each is shown on a separate assembly line, so that the instruction
annotations can be placed after the corresponding instructions. Thus

instruction_1, instruction_2, instruction_3;

is displayed as:

 instruction_1, // {annotations for instruction_1}

instruction_2, // {annotations for instruction_2}

instruction_3; // {annotations for instruction_3}

Loop Identification
One useful annotation is loop identification—that is, showing the rela-
tionship between the source program loops and the generated assembly
code. This is not easy due to the various loop optimizations. Some of the
original loops may not be present, because they are unrolled. Other loops
get merged, making it difficult to describe what has happened to them.

The assembly code generated by the compiler optimizer is annotated with
the following loop information:

• “Loop Identification Annotations” on page 2-89

• “File Position” on page 2-93

VisualDSP++ 5.0 C/C++ Compiler Manual 2-89
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Finally, the assembly code may contain compiler-generated loops that do
not correspond to any loop in the user program, but rather represent con-
structs such as structure assignment or calls to memcpy.

Loop Identification Annotations

Loop identification annotation rules are:

• Annotate only the loops that originate from the C looping con-
structs do, while, and for. Therefore, any goto defined loop is not
accounted for.

• A loop is identified by the position of the corresponding keyword
(do, while, for) in the source file.

• Account for all such loops in the original user program.

• Generally, loop bodies are delimited between the Lx: Loop at <file
position> and End Loop Lx assembly annotation. The former
annotation follows the label of the first block in the loop. The later
annotation follows the jump back to the beginning of the loop.
However, there are cases in which the code corresponding to a user
loop cannot be entirely represented between such two markers. In
such cases the assembly code contains blocks that belong to a loop,
but are not contained between that loop’s end markers. Such
blocks are annotated with a comment identifying the innermost
loop they belong to, Part of Loop Lx.

• Sometimes a loop in the original program does not show up in the
assembly file, because it was either transformed or deleted. In either
case, a short description of what happened to the loop is given at
the beginning of the function.

Assembly Optimizer Annotations

2-90 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• A program’s innermost loops are those loops that do not contain
other loops. In addition to regular loop information, the innermost
loops with no control flow and no function calls are annotated with
additional information such as:

• Cycle count. The number of cycles needed to execute one
iteration of the loop, including the stalls.

• Resource usage. The resources used during one iteration of
the loop. For each resource we show how many of that
resource are used, how many are available and the percent-
age of utilization during the entire loop. Resources are
shown in decreasing order of utilization. Note that 100%
utilization means that the corresponding resource is used at
its full capacity and represents a bottleneck for the loop.

• Register usage. If the -annotate-loop-instr compilation
switch is used, then the register usage table is shown. This
table has one column for every register that is defined or
used inside the loop. The header of the table shows the
names of the registers, written on the vertical, top down.
The registers that are not accessed do not show up. The col-
umns are grouped on data registers, pointer registers and all
other registers. For every cycle in a loop (including stalls),
there is a row in the array. The entry for a register has a ‘*’
on that row if the register is either live or being defined at
that cycle.

If the code executes in parallel (in a SIMD region), access-
ing a D register usually means accessing its corresponding
shadow register in parallel. In these cases, the name of the
register is prefixed with 2x. For instance, 2xr2.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-91
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• Optimizations. Some loops are subject to optimizations
such as vectorization or modulo scheduling. These loops
receive additional annotations as described in the vectoriza-
tion and modulo scheduling paragraphs.

• Sometimes the compiler generates additional loops that may or
may not be directly associated with the loops in the user program.
Whenever possible, the compiler annotations try to show the rela-
tion between such compiler-generated loops and the original source
code.

Example C (Loop Identification, for ADSP-21060 Processor)

Consider the following example:

1int bar(int a[10000])

2{

3 int i, sum = 0;

4 for (i = 0; i < 9999; ++i)

5 sum += (sum + 1);

6 while (i-- < 9999) /* this loop doesn't get executed */

7 a[i] = 2*i;

8 return sum;

9 }

The two loops are accounted for as follows:

_bar:

.LN_bar:

//---

............... procedure statistics

//---

// Original Loop at "ExampleC.c" line 6 col 3 -- loop structure

removed due to constant propagation.

//---

Assembly Optimizer Annotations

2-92 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

r0=m5;

// line "ExampleC.c":4

lcntr=9999, do (pc,.P34L13-1) until lce;

.P34L2:

//---

// Loop at "ExampleC.c" line 4 col 3

//---

.............. loop annotations

//---

// line 5

r2=r0+1;

r0=r2+r0;

// line 4

// end loop .P34L2;

//---

// End Loop L2

//---

.P34L13:

//---

// Part of top level (no loop)

//---

// line 8

i12=dm(m7,i6);

jump (m14,i12) (db); rframe; nop;

.LN._bar.end:

VisualDSP++ 5.0 C/C++ Compiler Manual 2-93
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Notes:

The following notes apply to loop identification annotations:

• The keywords identifying the two loops are:

• for – located at line 4, column 3

• while – located at line 6, column 3

• Immediately after the procedure statistics, a message states that the
loop at line 6 in the user program was removed. The compiler rec-
ognized that the value of i after the first loop is 9999 and that the
second loop is not executed.

• The start of the loop at line 4 is marked in the assembly by the
‘Loop at "ExampleC.c" line 4 col 3’ annotation. This annota-
tion follows the loop label .P34L2 which is used to identify the end
of the loop "End Loop L2".

File Position

As seen in Example C (in “Loop Identification Annotations” on
page 2-89), a file position is given, using the file name, line number and
the column number in that file as "ExampleC.c" " line 4 col 5.

This scheme uniquely identifies a source code position, unless inlining is
involved. In presence of inlining, a piece of code from a certain file posi-
tion can be inlined at several places, which in turn can be inlined at other
places. Since inlining can happen an unspecified number of times, a recur-
sive scheme is used to describe a general file position.

Therefore, a <general file position> is <file position> inlined from
<general file position>.

Assembly Optimizer Annotations

2-94 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Example D (Inlining Locations)

Consider the following source code:

5 void f2(int n);

6 inline void f3(int n)

7 {

8 while(n--)

9 f4();

10 if (n == 7)

11 f2(3*n);

12 }

13

14 inline void f2(int n)

15 {

16 while(n--) {

17 f3(n);

18 f3(2*n);

19 }

20 }

21 void f1(volatile unsigned int i)

22 {

23 f2(30);

24 }

Here is some of the code generated for function f1:

_f1:

.LN_f1:

//--

.............. procedure statistics

//Inlined in _f1:

// ExampleD.c:23:5'_f2

// ExampleD.c:18:7'_f3

// ExampleD.c:17:7'_f3

VisualDSP++ 5.0 C/C++ Compiler Manual 2-95
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

//--

.............. code

.P36L4:

//--

// Loop at "ExampleD.c" line 16 col 3 inlined at "ExampleD.c"

line 23 col 5

//--

.............. loop L4 code

.P36L7:

//--

// Loop at "ExampleD.c" line 8 col 3 inlined at "ExampleD.c"

line 17 col 7 inlined at "ExampleD.c" line 23 col 5

.............. loop L7 annotations

//--

.............. loop L7 body

//--

// End Loop L7

//--

.............. loop L4 code

.P36L15:

//--

// Loop at "ExampleD.c" line 8 col 3 inlined at "ExampleD.c"

line 18 col 7 inlined at "ExampleD.c" line 23 col 5

.............. loop L15 annotations

//--

............... loop L15 body

//--

// End Loop L15

//--

.............. loop L4 code

//--

// End Loop L4

//---

Assembly Optimizer Annotations

2-96 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Vectorization
The trip count of a loop is the number of times the loop goes around.

Under certain conditions, the compiler is able to take two operations from
consecutive iterations of a loop and execute them in a single, more power-
ful SIMD instruction giving a loop with a smaller trip count. The
transformation in which operations from two subsequent iterations are
executed in one SIMD operation is called “vectorization”.

For instance, the original loop may start with a trip count of 1000.

for(i=0; i< 1000; ++i)

a[i] = b[i] + c[i];

and, after the optimization, end up with the vectorized loop with a final
trip count of 500. The vectorization factor is the number of operations in
the original loop that are executed at once in the transformed loop. It is
illustrated using some pseudo code below.

for(i=0; i< 1000; i+=2)

(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1]);

In the above example, the vectorization factor is 2.

If the trip count is not a multiple of the vectorization factor, some itera-
tions need to be peeled off and executed unvectorized. Thus, if in the
previous example, the trip count of the original loop was 1001, then the
vectorized code would be:

for(i=0; i< 1000; i+=2)

(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1]);

a[1000] = b[1000] + c[1000];

// This is one iteration peeled from

// the back of the loop.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-97
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

In the above examples the trip count is known and the amount of peeling
is also known. If the trip count is not known (it is a variable), the number
of peeled iterations depends on the trip count, and in such cases, the opti-
mized code contains peeled iterations that are executed conditionally.

Loop Flattening

Another transformation, related to vectorization, is loop flattening. The
loop flattening operation takes two nested loops that run N1 and N2 times
respectively and transforms them into a single loop that runs N1*N2 times.
For instance, the following function

void copy_v(int a[][100], int b[][100]) {

int i,j;

for (i=0; i< 30; ++i)

#pragma SIMD_for

#pragma no_alias

for (j=0; j < 100; ++j)

a[i][j] = b[i][j];

}

is transformed into

void copy_v(int a[][100], int b[][100]) {

int i,j;

int *p_a = &a[0][0];

int *p_b = &b[0][0];

for (i=0; i< 3000; ++i)

p_a[i] = p_b[i];

}

This may further facilitate the vectorization process:

void copy_v(int a[][100], int b[][100]) {

int i,j;

int *p_a = &a[0][0];

Assembly Optimizer Annotations

2-98 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

int *p_b = &b[0][0];

for (i=0; i< 3000; i+=2)

(p_a[i], p_a[i+1]) = (p_b[i], p_b[i+1]);

}

Example E (Loop Flattening)

The assembly output for the loop flattening example is:

_copy_v:

//---

.................... Procedure statistics

//---

// Original Loop at "ExampleE.c" line 3 col 3 -- loop flattened

into loop at "ExampleE.c" line 6 col 5

//---

...................... procedure code

.P1L1:

//---

// Loop at "ExampleE.c" line 6 col 5

.................... loop annotations

//---

.................... loop body

//---

// End Loop L1

//---

VisualDSP++ 5.0 C/C++ Compiler Manual 2-99
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Vectorization Annotations

For every loop that is vectorized, the following information is provided:

• The vectorization factor

• The number of peeled iterations

• The position of the peeled iterations (front or back of the loop)

• Information about whether peeled iterations are conditionally or
unconditionally executed

For every loop pair subject to loop flattening, the following information is
provided:

• The loop that is lost

• The remaining loop that it was merged with

Example F (Vectorization, for ADSP-21160 Processor)

Consider the test program:

void add(int *a, int *b, int* c, int dim) {

int i;

#pragma no_alias

#pragma SIMD_for

for (i = 0 ; i < dim; ++i)

a[i] = b[i] + c[i];

}

for which the vectorization information is:

bit set mode1 0x200000; nop;

...

.P34L22:

//---

// Loop at "ExampleF.c" line 5 col 3

Assembly Optimizer Annotations

2-100 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

//---

// This loop executes 2 iterations of the original loop in

estimated 3 cycles.

.................... other loop annotations

//--

// Loop was vectorized by a factor of 2.

//--

// Vectorization peeled 1 conditional iteration from the

// back of the loop because of an unknown trip count,

// possibly not a multiple of 2.

//

// Consider using pragma loop_count to specify the trip count

// or trip modulo in order to avoid conditional peeling,

//--

r2=r2+r1, r1=dm(i3,2);

dm(i4,2)=r2;

r2=dm(i5,2);

// end loop .P34L22;

//--

// End Kernel for Loop L22

//--

...

bit clr mode1 0x200000; nop;

...

In this example, the vectorization factor is 2. Since the trip count “dim” is
unknown, one conditional iteration is peeled from the back of the loop,
corresponding to the case where “dim” is 2k+1. Note that peeling could be
avoided, if additional information about the loop count was provided and
the compiler advice “Consider using pragma loop_count to specify
the trip count or trip modulo, in order to avoid conditional

peeling” informs the user of this.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-101
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Modulo Scheduling Information
For every modulo scheduled loop (see also “Modulo Scheduling” on
page 2-63), in addition to regular loop annotations, the following infor-
mation is provided:

• The initiation interval (II)

• The final trip count if it is known: the trip count of the loop as it
ends up in the assembly code

• A cycle count representing the time to run one iteration of the
pipelined loop

• The minimum trip count, if it is known and the trip count is
unknown

• The maximum trip count, if it is known and the trip count is
unknown

• The trip modulo, if it is known and the trip count is unknown

• The stage count (iterations in parallel)

• The MVE unroll factor

• The resource usage

• The minimum initiation interval due to resources (res MII)

• The minimum initiation interval due to dependency cycles (rec
MII)

Annotations for Modulo Scheduled Instructions

The -annotate-loop-instr compiler switch (on page 1-24) can be used to
produce additional annotation information for the instructions that
belong to the prolog, kernel or epilog of the modulo scheduled loop.

Assembly Optimizer Annotations

2-102 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Consider the example whose schedule is in Table 2-10 on page 2-73.
Remember that this does not use a real DSP-architecture, but rather a the-
oretical one able to schedule four instructions on a line, and each line
takes one cycle to execute. We can view the instructions involved in mod-
ulo scheduling as in Table 2-12.

Due to variable expansion, the body of the modulo scheduled loop con-
tains MVE=2 unrolled instances of the kernel, and the loop body contains
instructions from 4 iterations of the original loop. The iterations in prog-
ress in the kernel are shown in the table heading, starting with Iteration
0 which is the oldest iteration in progress (in its final stage). This example
uses two register sets, shown in the table heading.

Table 2-12. Modulo Scheduled Instructions

Part Iteration 0 Iteration 1 Iteration 2 Iteration 3 ...

Register Set 0 Register Set 1 Register Set 0 Register Set 1

1 prolog I1

2 prolog I2, I3

3 prolog I4, I5 I1_2

4 prolog I6 I2_2, I3_2

5 L: Loop ...

6 kernel I7 I4_2, I5_2 I1

7 kernel I8 I6_2 I2, I3

8 kernel I7_2 I4, I5 I1_2

9 kernel I8_2 I6 I2_2, I3_2

10 END Loop

11 epilog I7 I4_2, I5_2

12 epilog I8 I6_2

13 epilog I7_2

14 epilog I8_2

VisualDSP++ 5.0 C/C++ Compiler Manual 2-103
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

The instruction annotations contain the following information:

• The part of the modulo scheduled loop (prolog, kernel or epilog)

• The loop label. This is required since prolog and epilog instruc-
tions appear outside of the loop body and are subject to being
scheduled with other instructions.

• ID: a unique number associated with the original instruction in the
unscheduled loop that generates the current instruction. It is useful
because a single instruction in the original loop can expand into
multiple instructions in a modulo scheduled loop. In our example
the annotations for all instances of I1 and I1_2 have the same id,
meaning they all originate from the same instruction (I1) in the
unscheduled loop. The IDs are assigned in the order the
instructions appear in the kernel and they might repeat for MVE
unroll > 1.

• Loop-carry path, if any. If an instruction belongs to the loop-carry
path, its annotation will contain a ‘*’. If several such paths exist,
‘*2’ is used for the second one, ‘*3’ for the third one, etc.

• sn: the stage count the instruction belongs to.

• rs: the register set used for the current instruction (useful when
MVE unroll > 1, in which case rs can be 0,1,...mve-1). If the
loop has an MVE of 1, the instruction’s rs is not shown.

• In addition to the above, the instructions in the kernel are anno-
tated with:

• Iteration. Iter: specifies the iteration of the original loop an
instruction is on in the schedule.

• In a modulo scheduled kernel, there are instructions from
(SC+MVE-1) iterations of the original loop. Iter=0 denotes
instructions from the earliest iteration of the original loop,
with higher numbers denoting later iterations.

Assembly Optimizer Annotations

2-104 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Thus, the instructions corresponding to the schedule in Table 2-12 on
page 2-102 for a hypothetical machine are annotated as follows:

1 : I1; // {L10 prolog:id=1,sn=0,rs=0}

2 : I2, // {L10 prolog:id=2,sn=0,rs=0}

3 : I3; // {L10 prolog:id=3,sn=0,rs=0}

4 : I4, // {L10 prolog:id=4,sn=1,rs=0}

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}

6 : I1_2; // {L10 prolog:id=1,sn=0,rs=1}

7 : I6, // {L10 prolog:id=6,sn=1,rs=0}

8 : I2_2, // {L10 prolog:id=2,sn=0,rs=1}

9 : I3_2; // {L10 prolog:id=3,sn=0,rs=1}

10: //--

11: // Loop at ...

12: //--

13: // This loop executes 2 iterations of the original loop in

estimated 4 cycles.

14:

//---

15: // Unknown Trip Count

16: // Successfully found modulo schedule with:

17: // Initiation Interval (II) = 2

18: // Stage Count (SC) = 3

19: // MVE Unroll Factor = 2

20: // Minimum initiation interval due to recurrences

(rec MII) = 2

21: // Minimum initiation interval due to resources

(res MII) = 2.00

22://---

23:L10:

23:LOOP (N-2)/2;

25: I7, // {kernel:id=7,sn=2,rs=0,iter=0}

26: I4_2, // {kernel:id=4,sn=1,rs=1,iter=1}

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

VisualDSP++ 5.0 C/C++ Compiler Manual 2-105
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

28: I1; // {kernel:id=1,sn=0,rs=0,iter=2}

29: I8, // {kernel:id=8,sn=2,rs=0,iter=0}

30: I6_2, // {kernel:id=6,sn=1,rs=1,iter=1}

31: I2, // {kernel:id=2,sn=0,rs=0,iter=2}

32: I3; // {kernel:id=3,sn=0,rs=0,iter=2,*}

33: I7_2, // {kernel:id=7,sn=2,rs=1,iter=1}

34: I4, // {kernel:id=4,sn=1,rs=0,iter=2}

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

36: I1_2; // {kernel:id=1,sn=0,rs=1,iter=3}

37: I8_2, // {kernel:id=8,sn=2,rs=1,iter=1}

38: I6, // {kernel:id=6,sn=1,rs=0,iter=2}

39: I2_2, // {kernel:id=2,sn=0,rs=1,iter=3}

40: I3_2; // {kernel:id=3,sn=0,rs=1,iter=3,*}

41:END LOOP

42:

43: I7, // {L10 epilog:id=7,sn=2,rs=0}

44: I4_2, // {L10 epilog:id=4,sn=1,rs=1}

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

46: I8, // {L10 epilog:id=8,sn=2,rs=0}

47: I6_2; // {L10 epilog:id=6,sn=1,rs=1}

48: I7_2; // {L10 epilog:id=7,sn=2,rs=1}

49: I8_2; // {L10 epilog:id=8,sn=2,rs=1}

Lines 10-22 define the kernel information: loop name and modulo sched-
ule parameters: II, stage count, and so on.

Lines 25-40 show the kernel.

Each instruction in the kernel has an annotation between {}, inside a
comment following the instruction. If several instructions are executed in
parallel, each gets its own annotation.

For instance, line 27 looks like:

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

Assembly Optimizer Annotations

2-106 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

This annotation indicates:

• That this instruction belongs to the kernel of the loop starting at
L10.

• That this and the other three instructions that have ID=5 originate
from the same original instruction in the unscheduled loop:

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}

\...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

...

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

• sn=1 shows that this instruction belongs to stage count 1.

• rs=1 shows that this instruction uses register set 1.

• Iter=1 specifies that this instruction belongs to the second itera-
tion of the original loop (Iter numbers are zero-based).

• The ‘*’ indicates that this is part of a loop carry path for the loop.
In the original, unscheduled loop, that path is I5->I3->I5. Due to
unrolling, in the scheduled loop the “unrolled” path is
I5_2->I3->I5->I3_2->I5_2.

The prolog and epilog are not clearly delimited in blocks by themselves,
but their corresponding instructions are annotated like the ones in the
kernel except that they do not have an Iter field and that they are pre-
ceded by a tag specifying to which loop prolog or epilog they belong:

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}

...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

...

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

VisualDSP++ 5.0 C/C++ Compiler Manual 2-107
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

Note that the prolog/epilog instructions may mix with other instructions
on the same line.

This situation does not occur in this example; however, in a different
example it might have:

I5_2, // {L10 epilog:id=5,sn=1,rs=1}

I20;

This shows a line with two instructions. The second instruction I20 is
unrelated to modulo scheduling, and therefore it has no annotation.

Warnings, Failure Messages and Advice
There are innocuous programming constructs that have a negative effect
on performance. Since you may not be aware of the hidden problems, the
compiler annotations try to give warnings when such situations occur.
Also, if a program construct keeps the compiler from performing a certain
optimization, the compiler gives the reason why that optimization was
precluded.

In some cases, the compiler assumes it could do a better job if you would
change your code in certain ways. In these cases, the compiler offers advice
on the potentially beneficial code changes. However, take this cautiously.
While it is likely that making the suggested change will improve the per-
formance, there is no guarantee that it will actually do so.

Assembly Optimizer Annotations

2-108 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

Some of the messages are:

• This loop was not modulo scheduled because it was optimized for
space
When a loop is modulo scheduled, it often produces code that has
to precede the scheduled loop (the prolog) and follow the sched-
uled loop (the epilog). This almost always increases the size of the
code. That is why, if you specify an optimization that minimizes
the space requirements, the compiler doesn't attempt modulo
scheduling of a loop.

• This loop was not modulo scheduled because it contains calls or
volatile operations
Due to the restrictions imposed by calls and volatile memory
accesses, the compiler does not try to modulo schedule loops con-
taining such instructions.

• This loop was not modulo scheduled because it contains too
many instructions
The compiler does not try to modulo schedule loops that contain
many instructions, because the potential for gain is not worth the
increased compilation time.

• This loop was not modulo scheduled because it contains jump
instructions
Only single block loops are modulo scheduled. You can attempt to
restructure your code and use single block loops.

• This loop would vectorize if alignment were known
The loop was not vectorized because of unknown pointer
alignment.

• Consider using pragma loop_count to specify the trip count or
trip modulo
This information may help vectorization.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-109
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• Consider using pragma loop_count to specify the trip count or
trip modulo, in order to prevent peeling
When a loop is vectorized, but the trip count is not known, some
iterations are peeled from the loop and executed conditionally
(based on the run-time value of the trip count). This can be
avoided if the trip count is known to be divisible by the number of
iterations executed in parallel as a result of vectorization.

• operation of this size is implemented as a library call
This message is issued when a source code operation results in a
library call, due to lack of hardware support for performing that
operation on operands of that size.

• operation is implemented as a library call
This message is issued when a source code operation results in a
library call, due to lack of direct hardware support. For instance, an
integer division results in a library call.

• MIN operation could not be generated because of unsigned oper-
ands
This message is issued when the compiler detects a MIN operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MIN instruction, which requires
signed values.

• MAX operation could not be generated because of unsigned oper-
ands
This message is issued when the compiler detects a MAX operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MAX instruction, which requires
signed values.

• Use of volatile in loops precludes optimizations
In general, volatile variables hinder optimizations. They cannot be
promoted to registers, because each access to a volatile variable
requires accessing the corresponding memory location. The

Assembly Optimizer Annotations

2-110 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

negative effect on performance is amplified if volatile variables are
used inside loops. However, there are legitimate cases when you
have to use a volatile variable exactly because of this special treat-
ment by the optimizer. One example would be a loop polling if a
certain asynchronous condition occurs. This message does not dis-
courage the use of volatile variables, it just stresses the implications
of such a decision.

• Jumps out of this loop prevent efficient hardware loop generation
Due to the presence of jumps out of a loop, the compiler either
cannot generate a hardware loop, or was forced to generate one that
has a conditional exit.

• There are N more instructions related to this call
Certain operations are implemented as library calls. In those cases
the call instruction in the assembly code is annotated explaining
that the user operation was implemented as a call. However the
cost of the operation may be slightly larger than the cost of the call
itself, due to additional overhead required to pass the parameters
and to obtain the result. This message gives an estimate of the
number of instructions in such an overhead associated with a
library call.

• This function calls the “alloca” function which may increase the
frame size
The assembly annotations try to estimate the frame size for a given
function. However, if the function makes explicit use of alloca
then this increases the frame size beyond the original reported
estimate.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-111
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Analyzing Your Application
The compiler and run-time libraries provide several features for analyzing
the run-time behavior of your application. These features allow you to
better debug errors and fine tune the program. Features discussed in this
chapter are:

• “Stack Overflow Detection” on page 2-111 details how to use the
stack overflow feature to determine when an application has
exceeded its maximum stack size.

As well as providing compiler instrumented profiling, VisualDSP++ also
provides statistical profiling. For more information, see “Using the Statis-
tical Profiler” on page 2-7.

Stack Overflow Detection
A stack overflow is caused by the stack not being large enough for the
application. The effects of a stack overflow are undefined. The effects vary
from data corruption to a catastrophic software crash.

The stack overflows when the stack pointer (i7) is modified to point past
the end of the memory reserved for the stack and the stack is written to
using the stack pointer or frame pointer (i6).

 A stack overflow is different from stack corruption caused by a bug
in your program code.

There are many reasons why a stack overflow can occur. For example:

• A function defines a very large local array.

• A function defines a very large variable-length array (“Vari-
able-Length Array Support” on page 1-139).

Analyzing Your Application

2-112 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

• A function uses the alloca() function, with an exceedingly large
value as its parameter, to allocate space in the stack frame of the
caller.

• The LDF has insufficient space set aside for the stack.

• A function calls itself recursively too many times.

• A function’s call tree is too deep.

• A re-entrant interrupt handler is called too many times before the
interrupt is fully serviced.

Debugging a stack overflow is not easy. It involves setting breakpoints or
adding tracing statements at various places in your application. A stack
overflow might also not become apparent if you are building your applica-
tion in a release configuration, when optimizations are enabled. A stack
overflow might not reveal itself until your application is built in a debug
configuration, when optimizations are not enabled.

The timing of interrupts also mask a stack overflow. If nested interrupts
are enabled and the time taken to service the interrupts is insufficient
before another interrupt is raised and serviced, then a stack overflow can
occur.

Once it has been identified that a stack overflow is the cause of your appli-
cation failure, then correcting the problem can be as simple as increasing
the amount of memory reserved for your stack. Do this by manually edit-
ing your custom LDF.

If, due to hardware memory restrictions, you are unable to increase the
amount of memory used for the stack, then conduct a review of your
application. Examine your use of local arrays, function calling, and other
program code that leads to a stack overflow.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-113
for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

The Stack Overflow Detection Facility

The stack is implemented as a circular buffer using i7, with the corre-
sponding circular buffer overflow interrupt (cb7) enabled. If the stack
overflows, the interrupt is triggered and transfers control to a function
called adi_stack_overflowed. The IDDE places a breakpoint on this
function automatically, by default. Examine the PC Stack register to
determine the instruction that triggered the overflow.

Analyzing Your Application

2-114 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

VisualDSP++ 5.0 C/C++ Compiler Manual I-1
for SHARC Processors

I INDEX

Numerics
128-bit alignment, 1-190
__2106x__ macro, 1-290, 1-291
__2116x__ macro, 1-290
__2126x__ macro, 1-290, 1-291
__2136x__ macro, 1-290, 1-292
__2137x__ macro, 1-290, 1-292, 1-293
__213xx__ macro, 1-290, 1-292
__2146x__ macro, 1-290
2146x processors

generating normal word size, 1-48
generating short word size, 1-61, 1-63

__2147x__ macro, 1-290, 1-293, 1-294
__2148x__ macro, 1-290, 1-294
__214xx__ macro, 1-290
32-bit alignment, 1-190
32-bit floating-point arithmetic, 1-80
32-bit IEEE single-precision format, 1-27
40-bit arithmetic, 1-267

implications of using in C/C++ code,
1-268

interrupt support, 1-270
run-time library functions, 1-269

64-bit alignment, 1-190
64-bit floating-point arithmetic, 1-80

A
-A (assert) compiler switch, 1-21
absfx (absolute value) function, 1-108
_Accum, 1-91
accum, 1-91, 1-148, 1-344

action qualifier keywords, for use with
#pragma diag, 1-244

-add-debug-libpaths compiler switch, 1-22
__ADI_LIBEH__ macro, 1-29
__ADSP21000__ macro, 1-56, 1-291,

1-292
__ADSP21020__ macro, 1-291
ADSP-21020 processor, stack frame, 1-333
__ADSP21060__ macro, 1-291
__ADSP21061__ macro, 1-291
__ADSP21062__ macro, 1-291
__ADSP21065L__ macro, 1-291
ADSP-2106x/2116x/2126x/2136x

processors, stack frame, 1-335
ADSP-2106x processors, data corruption in

use code, 1-282
ADSP-210xx/2116x/2126x processors,

stack and heap memory allocation,
1-310

__ADSP21160__ macro, 1-291
__ADSP21161__ macro, 1-291
ADSP-21161 processor

anomaly #45, 1-88
executing code from external SDRAM,

1-253
__ADSP21261__ macro, 1-291
__ADSP21262__ macro, 1-291
__ADSP21266__ macro, 1-291
__ADSP21267__ macro, 1-291

Index

I-2 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

ADSP-2126x/2136x processors
data placement, 1-275
data transfer between internal and

external memory, 1-276
__ADSP21363__ macro, 1-291, 1-292
__ADSP21364__ macro, 1-292
__ADSP21365__ macro, 1-292
__ADSP21366__ macro, 1-292
__ADSP21367__ macro, 1-292
__ADSP21368__ macro, 1-292
__ADSP21369__ macro, 1-292
__ADSP21371__ macro, 1-292
__ADSP21375__ macro, 1-292
ADSP-21375 memory map change, 1-287
ADSP-213xx processors, stack and heap

memory allocation, 1-310
__ADSP21462__ macro, 1-292
__ADSP21465__ macro, 1-292
__ADSP21467__ macro, 1-292
__ADSP21469__ macro, 1-293
__ADSP21471__ macro, 1-293
__ADSP21472__ macro, 1-293
__ADSP21475__ macro, 1-293
__ADSP21478__ macro, 1-293
__ADSP21479__ macro, 1-293
__ADSP21481__ macro, 1-293
__ADSP21482__ macro, 1-294
__ADSP21483__ macro, 1-294
__ADSP21485__ macro, 1-294
__ADSP21486__ macro, 1-294
__ADSP21487__ macro, 1-294
__ADSP21488__ macro, 1-294
__ADSP21489__ macro, 1-294
aggregate assignment support (compiler),

1-146
aggregate constructor expression, 1-146
alias, avoiding, 2-20
-aligned-stack compiler switch, 1-23
alignment inquiry keyword, 1-262
__alignof__ (type-name) construct, 1-261

alldata section identifier, 1-60, 1-176
alter macro, 1-355
alternate

heaps, accessed with standard interface,
1-322

keywords, 1-44
registers, 1-327, 1-331

alternate heap interface functions
C++ run-time support for, 1-324
entry point names, 1-323
list of, 1-323

alternative
operator keywords, 1-23
tokens, disabling, 1-23
tokens, enabling, 1-23
tokens in C, 1-23

-alttok (alternative tokens) compiler switch,
1-23

ALU saturation, disabling, 1-330
-always-inline compiler switch, 1-24, 1-134
-anach (enable C++ anachronisms) C++

mode compiler switch, 1-72
anachronisms

default C++ mode, 1-72
disabling in C++ mode, 1-75

__ANALOG_EXTENSIONS__ macro,
1-295

-annotate (enable assembly annotaitons)
compiler switch, 1-24

-annotate-loop-instr compiler switch, 1-24,
2-90

annotation information, instrumental,
1-24

annotations
assembly code, 2-80
assembly source code position, 2-93
disabling, 1-24, 1-41
embedded, 2-7
enabling, 1-59
loop identification, 2-88

VisualDSP++ 5.0 C/C++ Compiler Manual I-3
for SHARC Processors

Index

annotations (continued)
modulo scheduling, information

provided, 2-101
modulo scheduling, parameters, 2-63
source and assembly, 2-7
vectorization, 2-99

anomalies
IDs, 1-88
workaround management, 1-86
workarounds, 1-88

ANSI standard, compiler, 1-30
archiver, 1-3
argc

support, 1-315
arguments and return transfer, 1-338
argv

support, 1-315
argv/argc arguments, 1-315
__argv_string variable, defining, 1-316
arithmetic operators for fixed-point types,

1-97
array

storage, 1-341
zero length, 1-260

arrays
initializer, 1-142

asm
compiler keyword, 1-131, 1-148
construct template operands, 1-154
keyword, 1-148, 1-262
statement, 1-261, 2-24
workarounds not applied, 1-86, 1-148

asm() construct
described, 1-148, 1-162
flow control, 1-165
input operand, 1-151
optimizing, 1-162
reordering, 1-162
syntax, elements, 1-151
syntax, rules, 1-152

asm() construct (continued)
template, 1-150
with compile-time constant, 1-164
with multiple instructions in atemplate,

1-161
asm() operand constraints, 1-157

specifying a long long value, 1-160
asm_sprt.h system header file, 1-353
asm() statement, using, 1-165
asm volatile() construct, 1-162
assembler, for SHARC processors, 1-3
assembly

code annotations, 2-80
instruction operands, 1-150
support keyword (asm), 1-367

assembly construct
flow control, 1-165
operand description, 1-154
reordering and optimization, 1-162
syntax, 1-150
with multiple instructions, 1-161

assembly language support keyword (asm)
constructs with multiple instructions,

1-161
assembly optimizer

annotations, 2-80
file position, 2-93
global information, 2-81
loop flattening, 2-97
loop identification annotation, 2-89
messages and warnings, 2-108
modulo scheduling, 2-63, 2-101
procedure statistics, 2-83
vectorization, annotations, 2-99
vectorization, example, 2-96

assembly output annotations
disabling, 1-24, 1-41
disabling via IDDE, 1-24, 1-41
enabling annotations, 1-24
enabling via IDDE, 1-24, 1-41

Index

I-4 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

assembly output annotations (continued)
failure messages, 2-107
file position, 2-93
global information, 2-81
in saved assembly file, 2-80
loop flattening, 2-97
loop identification, 2-88
modulo scheduling, 2-63, 2-101
procedure statistics, 2-83
selecting, 2-80
vectorization, defined, 2-96
warnings, 2-107

assembly routine, exceptions table in, 1-378
assembly routines with parameters example,

1-372
assembly subroutine, calling from C/C++

program, 1-347
atexit() library routine, 1-314
__attribute__ keyword, 1-263
attributes

adding to a file, 1-393
file, 1-25, 1-31, 1-42, 1-387
functions, variables and types, 1-263
names, 1-387
usage examples, 1-393
value, 1-387

attributes, automatically applied, 1-388
-auto-attrs compiler switch, 1-25
autoinit section identifier, 1-60, 1-176
automatic

attributes, disabling, 1-42
attributes, enabling, 1-25
function inlining, 1-49
inlining, 1-83, 1-133, 2-23
inlining, controlled with the - Ov num

switch, 1-51
loop control variables, 2-35
variables, 1-167

automatically-applied attributes, 1-388

automatic attributes
disabling, 1-42
enabling, 1-25

B
background registers, 1-327, 1-331
bank qualifier, 1-173
biased round-to-nearest rounding, 1-111
binary object granularity, 1-391
bit-fields

signed, 1-62
unsigned, 1-65
values, 1-65

bitsfx (bitwise fixed-point to integer
conversion) function, 1-96

Blackfin-specific functionality, argv/argc
arguments, 1-315

Boolean type support keywords (bool, true,
false), 1-147

boot loader, 1-307
bsz section identifier, 1-60, 1-176
-build-lib (build library) compiler switch,

1-25
build tools, 1-31
__builtin_aligned function, 2-13, 2-18,

2-51
__builtin_assert() function, 1-184
__builtin_circindex function, 2-41
__builtin_circptr function, 2-41
built-in functions

circular buffer, 1-180
defined, 1-177
expected_false, 1-182
expected_true, 1-182
funcsize, 1-187
ignoring, 1-42
in code optimization, 2-38
system support, 2-38

VisualDSP++ 5.0 C/C++ Compiler Manual I-5
for SHARC Processors

Index

C
C

tokens in, 1-23
variable-length arrays, 1-139

C++
alternative tokens in, 1-23
class constructor functions, 1-60, 1-176
class instance function, 1-341
compiler switches, 1-72
constructors and destructors, 1-313
exceptions, 1-254
fractional arithmetic, 1-264
gcc compatibility features not supported,

1-256
language extension, fract data type,

1-132
member functions in assembly language,

1-359
programming examples, complex

support, 1-364
programming examples, fract support,

1-363
programming examples, running tips,

1-362
run-time libraries rationalization, 1-288
style comments, 1-147
support tables (ctor, gdt), 1-285
template inclusion control pragma,

1-224
templates, 1-381
virtual lookup tables, 1-60, 1-176

-c89 (ISO/IEC 9899
1990 standard) compiler switch, 1-20

-c99 (ISO/IEC 9899
1990 standard) compiler switch, 1-20

calling
assembly language subroutine, 1-348
assembly language subroutines from

C/C++ programs, 1-347
C/C++ functions from assembly

language programs, 1-350
calloc heap function, 1-316
call preserved registers, 1-329
call preserved registers (pass array), 1-376
C++ anachronisms

disabling, 1-75
enabling, 1-72

C/C++
callable subroutines in SIMD mode,

1-361
code optimization, 2-2
data types, 1-78
functions, calling from assembly

program, 1-350
preprocessor features, 1-289
switch statements, 1-60, 1-176

cc21k compiler
See also compiler
defined, 1-1
overview, 1-3
running from command line, 1-6

ccall macro, 1-354, 1-367
C/C++ assembly interface. See mixed

C/C++ assembly programming
C/C++ compiler, overview, 1-3
C/C++ language extensions

aggregate assignments, 1-132
asm keyword, 1-148
bool keyword, 1-132
dm keyword, 1-166
false keyword, 1-132
indexed initializers, 1-132
inline, 1-133
inline keyword, 1-133
long identifiers, 1-132

Index

I-6 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

C/C++ language extensions (continued)
non-constant initializers, 1-132
pm keyword, 1-166
section keyword, 1-131
table describing, 1-131
true keyword, 1-132
variable length arrays, 1-132

-c++ (C++ mode) compiler switch, 1-20
C/C++ mode selection switches

-c89, 1-20
-c++ (C++ mode), 1-20

-C (comments) compiler switch, 1-25
-c (compile only) compiler switch, 1-25
C compiler

benchmarking performance of, 1-312
overview, 1-115
switches, 1-70

C/C++ run-time environment, 1-300
See also mixed C/C++/assembly

programming
char storage, 1-342
-check-init-order C++ mode compiler

switch, 1-74
-check-init-order C++ mode compiler

switch, 1-73, 1-314
circular buffer code, disabling automatic

generation of, 1-43
circular buffers

__builtin_circindex function, 2-41
__builtin_circptr function, 2-41
built-in functions, 1-180
enabling by setting CBUFEN, 1-330
enabling for use, 1-32
increment of index, 1-181
increment of pointer, 1-181
increments for modulus array references,

1-181
interrupt dispatchers, described, 1-277
interrupt dispatchers, saving data, index,

modify, length registers, 1-277

circular buffers (continued)
interrupt dispatchers, zeroing Length

registers, 1-281
used in DSP-style code, 2-40
used with the -force-circbuf compiler

switch, 2-40
cjump instruction, 1-335
C language extensions

C++ style comments, 1-132
preprocessor generated warnings, 1-132

class conversion optimization pragmas,
1-218

classes, initializing global instances, 1-313
class pointers, converting, 1-218
clobber, of asm() construct, 1-151
clobbered

register definition, 2-54
registers, 1-209, 1-211

C++ mode, compiling in, 1-20
C mode compiler switches

-misra, 1-70
-misra-linkdir, 1-70
-misra-no-cross-module, 1-70
-misra-no-runtime, 1-71
-misra-strict, 1-71
-misra-suppress-advisory, 1-71
-misra-suppress-testing, 1-71
-Wmis_suppress, 1-71
-Wmis_warn rule_number, 1-72

C++ mode compiler switches
-anach (enable C++ anachronisms), 1-72
-check-init-order, 1-73, 1-74, 1-314
-eh (enable exception handling), 1-29
-full-dependency-inclusion, 1-74
-ignore-std, 1-75
-no-anach (disable C++ anachronisms),

1-75
-no-eh (disable exception handling),

1-43
-no-implicit-inclusion, 1-75, 1-76

VisualDSP++ 5.0 C/C++ Compiler Manual I-7
for SHARC Processors

Index

C++ mode compiler switches (continued)
-no-rtti (disable run-time type

identification), 1-76
-no-std-templates, 1-76
-rtti (enable run-time type

identification), 1-76
-std-templates, 1-77

code generation pragmas, 1-253
code inlining, controlling, 1-229
CODE memory area, 1-315
code optimization

built-in functions, 2-38
controlling, 2-4
enabling, 1-48
for maximum performance, 2-43
for size, 1-49, 2-42
for speed, 1-49
using function pragmas, 2-44
using loop optimization pragmas, 2-49
using pragmas for, 2-43
using pragmas in, 2-44
with PGO, 2-8

code section identifier, 1-60, 1-175
command-line

interface, 1-5
syntax, 1-6

comma-separated section qualifiers, 1-241
-compatible-pm-dm compiler switch, 1-25
compilation time, indicating with the

-no-progress-rep-timeout compiler
switch, 1-45

compiler
building for a specific hardware revision,

1-61, 1-87
built-in functions, 1-177
C/C++ extensions, 1-128, 1-131
code generator workarounds, 1-88
code optimization, 1-81, 2-2
command-line interface, overview, 1-5
command-line switch summaries, 1-7

compiler (continued)
command-line syntax, 1-6
diagnostic messages, 1-243
diagnostics, 2-5
disabling GNU compatibility mode,

1-45
disabling hardware anomaly

workarounds, 1-48
enabling GNU compatibility mode, 1-40
enabling hardware anomaly

workarounds, 1-68, 1-88
generating a label, 1-149
keywords, not recognzed, 1-44
optimizer, 2-4
overview, 1-3
prelinker, 1-84
producing processor-specified code, 1-56
progress feedback, 1-57
registers, 1-327
selecting specified compilation tool, 1-53
starting a new optimization pass, 1-57
stopping after compilation, 1-59
undefining macros, 1-64

compiler common switches
-fx-contract (performance and accuracy),

1-33
-fx-rounding-mode-biased, 1-33
-fx-rounding-mode-truncation, 1-33
-fx-rounding-mode-unbiased, 1-33
-no-fx-contract, 1-44
-workaround workaround_id, 1-88

compiler driver, 1-88
compile-time constant, 1-164
complex support, example, 1-364
compound macros, 1-297
compound statement., 1-297
conditional code

avoiding in loops, 2-33
improving, 2-27

Index

I-8 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

conditional expressions, with missing
operands, 1-259

const, pointers, 1-26
constants

accessed as read-write data, 1-25
initializing statically, 2-16

constdata section identifier, 1-60, 1-175
constraint, of asm() construct, 1-151
-const-read-write compiler switch, 1-25
constructors, C++ classes, 1-313, 1-314
constructors and destructors

and memory placement, 1-314
for global class instances, 1-313
start routine, 1-313

constructs
flow control, 1-165
input and output operands, 1-163
with compile-time constant, 1-164

-const-string compiler switch, 1-26
content attributes, to map binary objects,

1-389, 1-390
continuation characters, 1-40, 1-45
controlling code inlining, 1-229
conversion

fixed-point types, 1-94
core algorithm, unmodified, 2-10
countlsfx (count leading sign or zero bits)

function, 1-109
count_ticks() function, 1-249
__cplusplus macro, 1-295
cross-reference listing information, 1-69
C++ STL objects, 1-319
ctdm memory section, 1-314
__ctor_loop function, 1-314
custom allocator, 1-319
customer support, xxxiii

D
DAG registers, 1-157
data

alignment pragmas, 1-189
dual-word-aligned, 2-17
fetching with 32-bit loads, 2-17
memory storage, 1-305
storage formats, 1-341
transfer between internal and external

memory, 1-276
word alignment, 2-18

DATA memory area, 1-315
data placement

compiler-controlled, 1-60
controlled by the -section id compiler

switch, 1-175
link-time checking of, 1-276

data section identifier, 1-60, 1-175
data storage formats, 1-341
data storage initialization, 1-307
data types

bit sizes, 1-78
double, 1-80
fixed-point, 1-90
float, 1-80
fract, 1-79, 1-264
int, 1-80
long, 1-80
long double, 1-80
scalar, 2-13

__DATE__ macro, 1-295
-D (define macro) compiler switch, 1-26,

1-64
debugger, generating debug line

information, 1-149
debugging, source-level, 1-34

VisualDSP++ 5.0 C/C++ Compiler Manual I-9
for SHARC Processors

Index

debugging information
debug optimization level, 1-81
for header file, 1-26
generating, 1-33
lightweight, 1-34
preserving, 1-49
removing, 1-59
with the -g switch, 1-33

Debug subdirectory, 1-22
-debug-types compiler switch, 1-26
declarations, mixed with code, 1-145
default

LDF placement, 1-390
names, controlling, 1-60, 1-175
preprocessor macros, disabling, 1-43
run-time header file, 1-308
sections, 1-238
target processor, 1-56

default_section pragma, 1-175
#define preprocessor command, 1-297
definition, unique identifier to, 1-232
delayed branches, disabled, 1-43
delete operator, with multiple heaps, 1-324
dependent name processing

disabling, 1-76
enabling, 1-77

destructors
C++ classes, 1-313, 1-314

diagnostic messages
modifying behavior, 1-245
restoring behavior, 1-245
saving behavior, 1-245
severity of, 1-243, 1-244

diagnostics
annotations, 2-7
control pragma, 1-243
described, 2-4
remarks, 2-5
warnings, 2-5

diagnostic warnings, enabling, 1-67

divifx (division of integer by fixed-point)
function, 1-104

dmaonly keyword, 1-240
DMAONLY qualifier, 1-275
DM qualifier, 1-240
dm. See dual memory support keywords

(pm, dm)
double

32-bit data type, 1-27
64-bit data type, 1-27
data type formats, 1-27
storage format, 1-342

DOUBLE32 qualifier, 1-240
DOUBLE64 qualifier, 1-240
DOUBLEANY qualifier, 1-240
__DOUBLES_ARE_FLOATS__ macro,

1-28, 1-295
-double-size-32 (single-precision double)

compiler switch, 1-27
-double-size-64 (double-precision double)

compiler switch, 1-27
-double-size-any compiler switch, 1-28
driver I/O

pipe, enabling, 1-69
redirection, enabling, 1-68

-dry-run (verbose dry-run) compiler switch,
1-28

-dry (terse -dry-run) compiler switch, 1-28
dual compute-block architectures, 2-17,

2-18
dual-memory support keywords (pm dm),

1-166
dual-word-aligned addresses, 2-17
dual-word boundary, 2-19
dynamic_cast run-time type identification,

1-76

E
easm21k assembler, 1-3
__ECC__ macro, 1-295

Index

I-10 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

__EDG__ macro, 1-295
__EDG_VERSION__ macro, 1-295
-ED (run after preprocessing to file)

compiler switch, 1-29
-EE (run after preprocessing) compiler

switch, 1-29
-eh (enable exception handling) C++ mode

compiler switch, 1-29
elfar archive library, 1-3
elfloader utility, 1-307
emulated arithmetic, avoiding, 2-14
EngineerZone, xxxvi
entry macro, 1-335, 1-353
enumeration types, 1-30
-enum-is-int compiler switch, 1-30
environment variables

ADI_DSP, 1-78
CC21K_IGNORE_ENV, 1-78
CC21K_OPTIONS, 1-78
PATH, 1-77
TEMP, 1-78
TMP, 1-77

errata workarounds, 1-87
error keyword, 1-244
error messages

control pragma, 1-243
overriding, 1-66

escape character, 1-261
-E (stop after preprocessing) compiler

switch, 1-29
examples

fixed-point dot product, 1-93
exception handler

disabling, 1-43
enabling, 1-29

__EXCEPTIONS macro, 1-29, 1-295
exceptions table, 1-254, 1-378
exit() library routine, 1-314
exit macro, 1-336, 1-353

expected_false built-in function, 1-182,
2-27

expected_true built-in function, 1-182,
2-27

external memory
accessing from processor core, 1-275
accessing with inline functions, 1-276
using the dmaonly keyword with, 1-240

.EXTERN assembler directive, 1-358
-extra-keywords (not quite -analog)

compiler switch, 1-30

F
faster operations, disabling, 1-46
fast hardware floating-point instructions,

1-27
fast interrupt dispatcher

described, 1-279
saving scratch registers, 1-279

file
annotation position, 2-93
attributes, 1-387
attributes, adding, 1-31
attributes, automatically-applied, 1-388
attributes, disabling, 1-42
automatic attributes, 1-25
extensions, 1-6
multiple attributes, 1-31

-file-attr (file attribute) compiler switch,
1-31

__FILE__ macro, 1-295
file name

description, 1-21
reading from, 1-21
to be processed, 1-21

-@ filename (command file) compiler
switch, 1-21

file-to-device stream, 1-82

VisualDSP++ 5.0 C/C++ Compiler Manual I-11
for SHARC Processors

Index

fixed-point arithmetic
pragmas, 1-226
semantics, 1-94

fixed-point arithmetic pragmas, 1-226
fixed-point constants, 1-92
fixed-point types

arithmetic operators, 1-97
conversion, 1-94
using, 1-90

FIX instruction, 1-330
-flags (command line input) compiler

switch, 1-31
FLAGS registers, 1-195
floating-point

data types, 1-80
hexadecimal constants, 1-144
underflow, avoiding, 1-32

floating-point multiplication and addition
as associative operations, 1-32
not as associative operations, 1-44

float storage format, 1-27, 1-342
-float-to-int compiler switch, 1-32
float to integer conversion, 1-32
flow control operations, 1-165
-force-circbuf (circular buffer) compiler

switch, 1-32, 2-40
FORCE_CONTIGUITY linker directive,

1-285
-fp-associative (floating-point associative

operation) compiler switch, 1-32
_Fract, 1-91
fract, 1-91, 1-148, 1-344
fract data type, 1-79, 1-264
fractional

arithmetic in C++ mode, 1-264
arithmetic operators, 1-265
literals, 1-265
saturated arithmetic, 1-266

fract support, example, 1-363
frame pointer, 1-332

free heap function, 1-316
-full-dependency-inclusion C++ mode

compiler switch, 1-74
-full-version (display versions) compiler

switch, 1-32
FuncName attributes, 1-389
funcsize built-in function, 1-187
function

-always-inline switch, 1-24
arguments/return value transfer, 1-338
calling in loop, 2-34
call return address, 1-367
declarations with pointers, 1-170
entry (prologue), 1-332, 1-367
exit (epilogue), 1-332, 1-367
inlining, about, 1-133
out-of-line copy, 1-136

function call
in loops, 2-34
reported statistics for, 2-83

function inlining
global asm statements, 1-137
how to use, 2-23
ignoring section directives, 1-137
optimization, 1-136
out-of-line copies, 1-136

functions
functsize, 1-187
obtaining size in bits, 1-187

function side-effect pragmas
for code optimization, 2-44
listed with example, 1-205

fxbits (bitwise integer to fixed-point
conversion) function, 1-96

FX_CONTRACT
behavior, 1-99

-fx-contract compiler switch, 1-33
FX_CONTRACT pragma, 1-227
fxdivi (division of integer by integer)

function, 1-106

Index

I-12 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-fx-rounding-mode-biased compiler
switch, 1-33

FX_ROUNDING_MODE pragma,
1-227

-fx-rounding-mode-truncation compiler
switch, 1-33

-fx-rounding-mode-unbiased compiler
switch, 1-33

G
GCC compatibility extensions, 1-256
general optimization pragmas, 1-204
gets macro, 1-354
-g (generate debug information) compiler

switch, 1-33
-glite (lightweight debugging) compiler

switch, 1-34
global asm statements, and inlining, 1-137
.GLOBAL assembler directive, 1-358
global data, 1-305
global information, 2-81
global variable debugging, 1-34
globvar global variable, 2-36
GNU C compiler, 1-256
GNU compatibility mode

disabling, 1-45
enabling, 1-40

granularity, 1-391
guard, 2-49

H
hardware

loops, nested, 1-59
pipelining, 2-58

hardware revision, building project for,
1-61, 1-87

header
precompiled, 1-54
stop point, 1-223

header file control pragmas, 1-223
heap

allocation and initialization example,
1-325

alternate, 1-322, 1-323
C program examples, 1-325
declaring, 1-317
identifiers, 1-319
interface with alternate heaps, 1-324
memory allocation, 1-310
standard functions, 1-316

heap_calloc function, 1-316, 1-323
heap_free function, 1-316, 1-323
heap_lookup_name function, 1-319
heap_malloc function, 1-316, 1-323
heap_realloc function, 1-316, 1-323
heaps, non-default, 1-319
heap_switch function, 1-322
-help (command-line help) compiler

switch, 1-35
hexadecimal floating-point constants,

1-144
-HH (list headers and compile) compiler

switch, 1-35
-H (list headers) compiler switch, 1-34
hoisting, 2-57
__HOSTNAME__ macro, 1-63

I
IDDE_ARGS macro, 1-316
identifier, long, 1-176
idivfx (division of fixed-point by

fixed-point) function, 1-105
IEEE single-/double-precision formats,

1-341
-ignore-std C++ mode compiler switch,

1-75
-I (include search directory) compiler

switch, 1-35, 1-47
-i (less includes) compiler switch, 1-36

VisualDSP++ 5.0 C/C++ Compiler Manual I-13
for SHARC Processors

Index

IMASKP interrupt latch register, 1-304
implicit inclusion

defined, 1-224
disabling, 1-76
enabling, 1-74
of .cpp files, 1-74

implicit instantiation method, 1-382
implicit pointer conversion, 1-36
-implicit-pointers compiler switch, 1-36
include directory list, 1-36
include files, searching, 1-35
-include (include file) compiler switch,

1-37
incomplete function prototype, 1-68
index, starting value for, 1-181
indexed

array, 2-22
style, 2-23

indexed initializers, 1-142
induction variables, 2-32
initialization

data, 1-307
data storage, 1-307
memory, 1-40
order, 1-74
section, processing of, 1-307

initializer
memory, 1-40
non-constant, 1-141

initializers
indexed, 1-142

initiation interval
described, 2-63
kernel, 2-65

inline
asm statements, 2-24
assembly language support keyword

(asm), 1-148, 1-150, 1-162
automatic, 2-23
code, avoiding, 2-43

inline (continued)
constructs, 1-161
control pragmas, 1-229
expansion of C/C++ functions, 1-49
file position, 2-93
function, 2-23
function support keyword, example,

1-133
function support keyword, inline, 1-131
keyword, avoiding use of, 2-43
keyword, described, 1-133
keyword, using, 2-23
qualifier, 1-134, 1-229

inline assembly (add) example, 1-367
inline keyword, 1-230
inline qualifier

enabling, 1-24
ignoring, 1-41

inlining, with #pragma inline, 1-134,
1-135, 1-230

inner loops
improving performance of, 2-32
producing optimal code for, 2-49

input operands, 1-151, 1-163
installation location, 1-53
instantiation, template functions, 1-221
integer data types, 1-80
interface support macros

alter, 1-355
ccall, 1-354
C/C++ and assembly, 1-353
entry, 1-353
exit, 1-353
gets, 1-354
leaf_entry, 1-354
leaf_exit, 1-354
puts, 1-354
reads, 1-354
restore_reg, 1-355
save_reg, 1-355

Index

I-14 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

interface support macros, described, 1-357
interfacing C/C++ and assembly. See mixed

C/C++/assembly programming
intermediate files, saving, 1-59
interprocedural analysis (IPA)

code optimization with, 1-84
defined, 1-84
enabling, 1-37, 1-83, 2-12
framework, 1-231
generating usage information, 1-85
identifying variables, 2-16
-ipa compiler switch for, 1-37, 1-84,

2-12
#pragma core used with, 1-231

interprocedural optimizations
described, 1-83
when to use, 2-12

interrupt
circular buffering, 1-281
dispatchers, 1-277
handler, use of, 1-194
handler pragmas, 1-193, 1-197
IRPTEN enable bit, 1-282
length (in words), 1-310
nesting, allowed, 1-278, 1-280
nesting, disabled, 1-280
nesting, restrictions on

ADSP-2116x/2126x/2136x chips,
1-282

pragmas, 1-197
self-modifying code, 1-281
set-up functions, 1-281
table, 1-346
using non-self-modifying function,

1-281
vector table, 1-308

interruptcb() function, 1-277
interrupt dispatchers

circular buffer, 1-281
described, 1-277

interrupt dispatchers (continued)
fast, 1-279
normal, 1-278
pragma, 1-280, 1-281
super-fast, 1-279

interruptf() function, 1-279
interruptfnsm() function, 1-281
interrupt() function, 1-278
interrupt service routines. See ISRs
interrupts() function, 1-279, 1-282
interruptss() function, 1-280
interrupt vector table, 1-197
intrinsic (built-in) functions, 1-177
int storage format, 1-342
I/O conversion specifiers, 1-109
IPA. See interprocedural analysis (IPA)
IPA framework, and #pragma core, 1-231
-ipa (interprocedural analysis) compiler

switch, 1-37, 1-84, 2-12
IRPTEN (interrupt enable) bit, 1-282
IRPTL interrupt latch register, 1-304
iso646.h header file, 1-23
ISRs

called by interrupt dispatcher, 1-277
in seg_rth memory section, 1-304
receiving interrupt number, 1-277
writing in C, 1-193

-I (start include directory) compiler switch,
1-36

iteration interval, 2-64

K
keywords

alternate, 1-44
compiler, 1-130, 1-131
extensions, not recognzed, 1-44
extensions, recognized, 1-130

keywords (compiler). See compiler C/C++
extensions

VisualDSP++ 5.0 C/C++ Compiler Manual I-15
for SHARC Processors

Index

L
_LANGUAGE_C macro, 1-295
language extensions (compiler). See

compiler C/C++ extensions)
LDF, migrating from previous

VisualDSP++ versions, 1-284
LDF (linker description file) symbols,

1-310
for managing stack and heap, 1-312
ldf_heap_end, 1-312
ldf_heap_length, 1-312
ldf_heap_space, 1-312
ldf_stack_end, 1-312
ldf_stack_length, 1-312
ldf_stack_space, 1-312

leaf assembly routines, 1-366
leaf_entry macro, 1-335, 1-354
leaf_exit macro, 1-336, 1-354
legacy code, 1-175
library

building with elfar, 1-25
optimization, 1-85
searching for functions and global

variables when linking, 1-38
library file, producing with elfar, 1-25
__lib_setup_processor routine, 1-308
lightweight debugging information, 1-34
line breaks, in string literals, 1-260
line debugging, 1-34
__LINE__ macro, 1-295
linkage_name pragma, 1-227
linker description file (.ldf file), 1-63
linking pragmas, 1-231
link library, 1-38
-list-workarounds (supported errata

workarounds) compiler switch, 1-39
live register, 2-55
-L (library search directory) compiler

switch, 1-38
-l (link library) compiler switch, 1-38

long
identifier, 1-176
latencies, avoiding, 2-37
storage format, 1-342

long file names, handling with the
-write-files switch, 1-68

_LONG keyword, 1-190
long long

storage format, 1-342
loop

annotations, 2-101
avoiding array writes, 2-32
avoiding conditional code in, 2-33
avoiding function calls in, 2-34
avoiding non-unit strides, 2-34
control variables, 2-35
cycle count, 2-90
epilog, 2-56
exit test, 2-35
flattening, 2-97
identification, 2-88
identification annotation, 2-89
inner vs. outer, 2-32
invariant, 2-56
iteration count, 2-49
kernel, 2-56
optimization, concepts, 2-57
optimization, explained, 2-54
optimization, pragmas, 1-198, 2-49
optimization, terminology, 2-54
parallel processing, 1-203
prolog, 2-56
register usage, 2-90, 2-91
resource usage, 2-90
rotation, defined, 2-59
rotation by hand, 2-30
short, 2-28
trip count, 2-34, 2-96
unrolling, 2-29
vectorization, 1-198, 2-50, 2-61

Index

I-16 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

loop annotation information
disabling, 1-42
enabling, 1-24

loop-carried dependency
avoiding, 2-29
avoiding loop rotation by hand, 2-30

loop optimization pragmas, 2-49
L registers, 1-212, 1-327
-L (search library) compiler switch, 1-47
lvalue

GCC generalized, 1-259
generalized, 1-259

M
macros

ccall, 1-367
compound statements as, 1-297
defining, 1-26
expanding to a compound statement,

1-298
__HOSTNAME__, 1-63
interface support, 1-357
mixed C/C++ assembly support, 1-353
predefined preprocessor, 1-290
__RTTI, 1-77
SKIP_SPACES, 1-298
stack management, 1-367
__SYSTEM__, 1-63
__USERNAME__, 1-63
variable argument, 1-138, 1-260
writing, 1-297

make rules only, 1-39
malloc (allocate uninitialized memory)

function, 1-316
map files, .XML files, 1-40
-map (generate a memory map) compiler

switch, 1-40
maximum performance, 2-43
-MD (make and compile) compiler switch,

1-39

mem21k initializer
disabling, 1-45
not invoking after linking, 1-45
processing executable file, 1-307, 1-308
processing PROGBITS sections, 1-308
processing seg_init initialization section,

1-307
processing ZERO_INIT sections, 1-308
running, 1-40

MEM_ARGV memory section, 1-316
-mem (enable memory initialization)

compiler switch, 1-40
memmove (move memory range) function,

1-62
memory

allocation, for stacks and heaps, 1-310
bank pragmas, 1-246
data placement in, 2-25
initialization, 1-40, 1-307
map file, 1-40
maximum performance, 2-25
placing code in, 1-302
section names, 1-302
space assignments, 1-170
used for placing code in, 1-302

memory code storage, 1-304
memory data storage, 1-305
memory initialization

disabling, 1-45
enabling, 1-40

memory initializer. See mem21k initializer
memory keywords

assignments with type conversions,
1-169

function arguments and, 1-171
function declarations with pointers,

1-170
macros and, 1-172

memory map, generating, 1-40

VisualDSP++ 5.0 C/C++ Compiler Manual I-17
for SHARC Processors

Index

memory-mapped registers (MMR),
accessing using macros, 1-166

minimum code size, compiling for, 2-43
MISRA C

compiler, 1-115
compliance, 1-116
rule 10.5 (required), 1-122
rule 12.12 (required), 1-123
rule 12.4 (required), 1-123
rule 12.8 (required), 1-123
rule 13.2 (advisory), 1-123
rule 13.7 (required), 1-124
rule 1.4 (required), 1-120
rule 1.5 (required), 1-120
rule 16.10 (required), 1-124
rule 16.2 (required), 1-124
rule 16.4 (required), 1-124
rule 17.1 (required), 1-125
rule 17.2 (required), 1-125
rule 17.3 (required), 1-125
rule 17.4 (required), 1-125
rule 17.6 (required), 1-125
rule 18.2 (required), 1-126
rule 19.15 (advisory), 1-126
rule 19.7 (advisory), 1-126
rule 20.10 (required), 1-127, 1-128
rule 20.11 (required), 1-128
rule 20.3 (required), 1-126
rule 20.4 (required), 1-127
rule 20.7 (required), 1-127
rule 20.8 (required), 1-127
rule 20.9 (required), 1-127
rule 21.1 (required), 1-128
rule 2.4 (advisory), 1-120
rule 5.1 (required), 1-120
rule 5.5 (advisory), 1-120
rule 5.7 (advisory), 1-121
rule 6.3 (advisory), 1-121
rule 6.4 (advisory), 1-121
rule 8.10 (required), 1-122

MISRA C (continued)
rule 8.1 (required), 1-121
rule 8.5 (required), 1-121
rule 8.8 (required), 1-121
rule 9.1 (required), 1-122
rule clarifications, 1-116
rules, 1-120

-misra C compiler switch, 1-70
MISRA C switches, 1-70
.misra extension files, 1-120
.misra files, 1-70, 1-121, 1-122
-misra-linkdir C compiler switch, 1-70
-misra-no-cross-module C compiler switch,

1-70
-misra-no-runtime C compiler switch, 1-71
MISRARepository directory, 1-70
_MISRA_RULES macro, 1-295
-misra-strict C compiler switch, 1-71
-misra-suppress-advisory C compiler

switch, 1-71
-misra-suppress-testing C compiler switch,

1-71
misra_types.h header file, 1-123
missing operands, in conditional

expressions, 1-259
mixed C/C++ assembly naming

conventions, 1-357
mixed C/C++ assembly programming

arguments and return, 1-338
asm() constructs, 1-148, 1-150, 1-154,

1-161
call preserved registers, 1-329
compiler registers, 1-327
data storage and type sizes, 1-341
examples, 1-365
return address, 1-367
scratch registers, 1-330
stack registers, 1-331
stack usage, 1-332
user registers, 1-328

Index

I-18 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

mixed C/C++assembly programming
calling assembler subroutines, 1-347

mixed C/C++ assembly support, macros,
1-353

-M (make only) compiler switch, 1-39
MMASK register, 1-327
-MM (make rules and compile) compiler

switch, 1-39
MODE1 register, 1-195, 1-196, 1-330
modulo, variable expansion unroll factor,

2-64
modulo scheduled loop, 2-101
modulo scheduling, 2-63, 2-64

producing scheduled loops with, 2-63,
2-101

modulo scheduling information, 2-101
modulo variable expansion factor, 2-74
modulus array references, 1-181
-Mo (processor output file) compiler

switch, 1-40
-Mt filename (output make rule) compiler

switch, 1-40
mulifx (multiplication of integer by

fixed-point) function, 1-107
multicore support, 1-231
multi-line asm() C program constructs,

1-161
-multiline compiler switch, 1-40
multiple

attributes, 1-31
heaps, 1-316, 1-324
lines, spanning, 1-40

multi-statement macros, 1-297

N
namespace std, 1-75
naming conventions

assembly and C, 1-358
assembly and C/C ++, 1-357

native fixed-point constants, 1-92

native fixed-point types
fract and accum, 1-148

native fixed-point types fract and accum,
1-148

nested hardware loops, restrictions, 1-59
-never-inline compiler switch, 1-41
newline, in string literals, 1-40, 1-45
new operator, with multiple heaps, 1-324
-no-aligned-stack (do not align stack)

compiler switch, 1-41
-no-alttok (disable tokens) C++ mode

compiler switch, 1-41
-no-anach (disable C++ anachronisms)

compiler switch, 1-75
-no-annotate (disable assembly

annotations) compiler common
switch, 1-41

-no-annotate-loop-instr compiler common
switch, 1-42

-no-auto-attrs compiler switch, 1-42
__NO_BUILTIN macro, 1-42, 1-295
-no-builtin (no built-in functions) compiler

switch, 1-42
-no-builtin (no built-in functions switch,

1-42
-no-circbuf (no circular buffer) compiler

switch, 1-43
-no-const-strings compiler switch, 1-43
-no-db (no delayed branches) compiler

switch, 1-43
-no-def (disable definitions) compiler

switch, 1-43
-no-eh (disable exception handling) C++

mode compiler switch, 1-43
-no-extra-keywords (not quite -ansi)

compiler switch, 1-44
-no-fp-associative compiler switch, 1-44
-no-fx-contract compiler switch, 1-44
no implicit inclusion, defined, 1-224

VisualDSP++ 5.0 C/C++ Compiler Manual I-19
for SHARC Processors

Index

-no-implicit-inclusion C++ mode compiler
switch, 1-75, 1-76

-no-implicit-inclusion C++ mode compiler
switch, 1-76

NO_INIT qualifier, 1-240
_NO_LONGLONG macro, 1-295
-no-mem (disable memory initialization)

compiler switch, 1-45
-no-multiline compiler switch, 1-45
non-constant initializer support (compiler),

1-141
non-default heap, 1-319
non-leaf

assembly routines, 1-366
routines to make calls (RMS), 1-374

non-temporary files location, 1-54
non-unit strides, avoiding in loops, 2-34
-no-progress-rep-timeout compiler switch,

1-45
normal interrupt dispatcher

described, 1-278
saving data, index, modify, base registers,

1-278
-normal-word-code compiler switch, 1-48
__NORMAL_WORD_CODE__ macro,

1-296
-no-rtti (disable run-time type

identification) C++ mode compiler
switch, 1-76

-no-sat-associative compiler switch, 1-45
-no-saturation (no faster operations)

compiler switch, 1-46
-no-shift-to-add compiler switch, 1-46
-no-simd (disable SIMD mode) compiler

switch, 1-46
__NOSIMD__ macro, 1-296
-no-std-ass (disable standard assertions)

compiler switch, 1-47
-no-std-def (disable standard definitions)

compiler switch, 1-47

-no-std-inc (disable standard include
search) compiler switch, 1-47

-no-std-lib (disable standard library search)
compiler switch, 1-47

-no-std-templates C++ mode compiler
switch, 1-76

-no-threads (disable thread-safe build)
compiler switch, 1-47

-no-workaround (workaround id) compiler
switch, 1-48

__NUM_CORES__ macro, 1-296
num variable, 1-50
-nwc compiler switch, 1-48

O
-Oa (automatic function inlining) compiler

switch, 1-49
$OBJS_LIBS_INTERNAL macro, 1-394
-O (enable optimization) compiler switch,

1-48
-Og (optimize while preserving debugging

information) compiler switch, 1-49
-o (output) compiler switch, 1-51
operand constraints, 1-155
operation extensions, 1-132
optimization

code size, 1-49, 1-50, 2-42
compiler, 2-4
configurations (or levels), 1-81
controlling, 1-81
debug information generation enabled,

2-7
default, 1-82
disabling, 1-48
enabling, 1-48, 1-84
for code size, 2-43
for maximum performance, 2-43
inlining process and, 1-136
inner loop, 2-32
interprocedural analysis (IPA), 1-84

Index

I-20 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

optimization (continued)
library, 1-85
loops, 1-198
pragmas used in, 2-44
preserving debugging information, 1-49
reporting progress in, 1-57
sliding scale for, 1-50, 1-51
speed, 1-50, 2-43
speed versus size, 1-49
switches, 1-48, 2-53
with interprocedural analysis (IPA), 1-84

optimization and debugging, enabling,
1-49

optimization levels
automatic inlining, 1-83
debug, 1-81
default, 1-82
interprocedural optimizations, 1-83
PGO, 1-82
procedural optimizations, 1-82

-Os (optimize for size) compiler switch,
1-49

outer loops, 2-32
out-of-line copy, 1-137
output operand, of asm() construct, 1-151,

1-163
-overlay-clobbers compiler switch, 1-52
overlay pragma, 1-217
-overlay (program may use overlays)

compiler switch, 1-52
overlays, registers clobbered by overlay

manager, 1-52
overlays, using in program, 1-52
-Ov num (optimize for speed versus size)

compiler switch, 1-49

P
passing

arguments to driver, 1-61
function parameters, 1-338

-path-install (installation location)
compiler switch, 1-53

-path-output (non-temporary files
location) compiler switch, 1-54

-path-temp (temporary files location)
compiler switch, 1-54

-path- (tool location) compiler switch, 1-53
-pchdir (locate PCHRepository) compiler

switch, 1-54
-pch (precompiled header) compiler switch,

1-54
PCHRepository directory, 1-54
peeled iterations, 2-97
per-file optimizations, 1-82, 1-83
performance optimization, 1-49
.pgi file, 2-11
PGO

See also profile-guided optimization
(PGO)

collecting data, 1-82
data sets, 2-11
data sets, multiple, 2-11
operation via menu selection, 1-83
session identifier, 1-54
supported in the simulator only, 1-82,

2-8
.pgo file

defined, 1-82
from wrapper project, 2-10
gathering data with the -pguide switch,

1-55
in PGO process, 1-54, 1-82, 2-9
-session-id identifier, 1-54

-pgo-session session-id compiler switch
reference page, 1-54
used to separate profiles, 2-11

-pguide (profile-guided optimization)
compiler switch, 1-55

pipeline viewer, 2-37

VisualDSP++ 5.0 C/C++ Compiler Manual I-21
for SHARC Processors

Index

placement
all data, 1-60, 1-176
constant data, 1-60, 1-175
constant data declared with _pm

keyword, 1-60, 1-176
C++ virtual lookup table, 1-60, 1-176
data, 1-60, 1-175
initialized data declared with _pm

keyword, 1-60, 1-175
initialized variable data, 1-60, 1-175
initializing aggregate autos, 1-60, 1-176
jump-tables used to implement C/C++

switch statements, 1-60, 1-176
machine instructions, 1-60, 1-175
of run-time library functions, 1-387
static C++ class constructor functions,

1-60, 1-176
string literals, 1-60, 1-176
zero-initialized variable data, 1-60, 1-176

placement support keyword (section),
1-174

pm_constdata section identifier, 1-60,
1-176

pm_data section identifier, 1-60, 1-175
PM qualifier, 1-240
pm. See dual memory support keywords

(pm,dm)
pointer

aligned on dual-word boundaries, 2-19
and index styles, 2-23
arithmetic action on, 1-261
class support keyword (restrict), 1-132,

1-138
incrementing, 2-22
induction variable, 1-199
resolving aliasing, 2-36
to data that is aligned, 2-18

pointer-induction variables, 1-199
pointer registers, 1-331

-P (omit line numbers and compile)
compiler switch, 1-53

POP STS instruction, 1-194, 1-195
-pplist (preprocessor listing) compiler

switch, 1-55
#pragma alignment_region, 1-191
#pragma alignment_region_end, 1-191
#pragma align num, 1-189, 1-199, 2-18
#pragma all_aligned, 2-51
#pragma alloc, 1-206, 2-44
#pragma always_inline, 1-24, 1-134, 1-229
#pragma avoid_anomaly_45, 1-253
#pragma bank_memory_kind, 1-250
#pragma bank_optimal_width, 1-252
#pragma bank_read_cycles, 1-250
#pragma bank_write_cycles, 1-251
#pragma can_instantiate instance, 1-223
#pragma code_bank, 1-247
#pragma compiler support, 1-198
#pragma const, 1-206, 2-45
#pragma core, 1-231
#pragma data_bank, 1-247
#pragma default_section, 1-238, 1-275,

1-315
#pragma diag, 1-243, 2-6
#pragma diag(errors), 1-245
#pragma diag(pop), 1-246
#pragma diag(push), 1-245
#pragma diag(remarks), 1-245
#pragma diag(warnings), 1-245
#pragma do_not_instantiate instance,

1-223
#pragma file_attr, 1-242
#pragma generate_exceptions_tables,

1-254
#pragma hdrstop, 1-223
#pragma inline, 1-134, 1-135, 1-230
#pragma instantiate, 1-381
#pragma instantiate instance, 1-222
#pragma interrupt, 1-194

Index

I-22 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

#pragma interrupt_complete, 1-196
#pragma interrupt_complete_nesting,

1-195
pragma interrupt dispatcher

described, 1-280
zeroing Length registers, 1-281

#pragma linkage_name, 1-227, 1-231
#pragma loop_count(min, max, modulo),

1-200, 2-49
#pragma loop_unroll N, 1-200
#pragma misra_func, 1-207
#pragma no_alias, 1-203, 2-52
#pragma no_implicit_inclusion, 1-224
#pragma no_pch, 1-225
#pragma noreturn, 1-207
#pragma no_vectorization, 1-199, 2-50
#pragma once, 1-226
#pragma optimize_as_cmd_line, 1-205
#pragma optimize_for_space, 1-204,

1-230, 2-48
#pragma optimize_for_speed, 1-205, 2-48
#pragma optimize_off, 1-204, 2-48
#pragma overlay, 1-217
#pragma pack (alignopt), 1-192
#pragma pad (alignopt), 1-193
#pragma param_never_null, 1-218
#pragma pgo_ignore, 1-207
#pragma pure, 1-208, 2-45
#pragma regs_clobbered, 1-209, 2-46
#pragma regs_clobbered_call, 1-213
#pragma result_alignment, 1-217, 2-45
#pragma retain_name, 1-236
pragmas

alignment_region, 1-191
alignment_region_end, 1-191
align num, 1-189, 1-199
alloc, 1-206
always_inline, 1-229
avoid_anomaly_45, 1-253
bank_memory_kind, 1-250

pragmas (continued)
bank_optimal_width, 1-252
bank_read_cycles, 1-250
bank_write_cycles, 1-251
can_instantiate instance, 1-223
code_bank, 1-247
const, 1-206
core, 1-231
data alignment, 1-189
data_bank, 1-247
default_section, 1-238, 1-315
diag, 1-243
do_not_instantiate instance, 1-223
file_attr, 1-242
fixed-point arithmetic, 1-226
function side-effect, 1-205
FX_CONTRACT, 1-99, 1-227
FX_ROUNDING_MODE, 1-111,

1-227
generate_exceptions_tables, 1-254
hdrstop, 1-223
header file control, 1-223
inline, 1-134, 1-135, 1-230
inlining, 1-135
instantiate instance, 1-222
interrupt, 1-194
interrupt_complete, 1-196
interrupt_complete_nesting, 1-195
interrupt handler, 1-193
interrupt vector table, 1-197
linkage_name, 1-227, 1-231
linking, 1-231
linking control, 1-231
loop_count (min, max, modulo), 1-200
loop optimization, 1-198, 2-49
loop_unroll N, 1-200
memory bank, 1-246
misra_func, 1-207
never_inline, 1-230
no_alias, 1-203

VisualDSP++ 5.0 C/C++ Compiler Manual I-23
for SHARC Processors

Index

pragmas (continued)
no_implicit_inclusion, 1-224
no_pch, 1-225
noreturn, 1-207
no_vectorization, 1-199
once, 1-226
optimize_as_cmd_line, 1-205, 1-246
optimize_for_space, 1-204, 1-245
optimize_off, 1-204
overlay, 1-217
pack (alignopt), 1-192
pad (alignopt), 1-193
param_never_null, 1-218
pgo_ignore, 1-207
pure, 1-208
regs_clobbered_call, 1-213
regs_clobbered string, 1-209
result_alignment, 1-217
retain_name, 1-236
save_restore_40_bits, 1-196
save_restore_simd_40_bits, 1-197
section, 1-238, 1-315
SIMD_for, 1-199
stack_bank, 1-248
STDC FX_FRACT_OVERFLOW,

1-228
STDC FX_FULL_PRECISION, 1-228
STDC STDC FX_FULL_PRECISION,

1-228
suppress_null_check, 1-219
syntax, 1-187
system_header, 1-226
template instantiation, 1-221
used for code optimization, 2-43
vector_for, 1-203
weak_entry, 1-243

#pragma save_restore_40_bits, 1-196
#pragma save_restore_simd_40_bits,

1-197

#pragma section, 1-174, 1-238, 1-275,
1-315

#pragma SIMD_for, 1-199, 2-51
#pragma stack_bank, 1-248
#pragma suppress_null_check, 1-219
#pragma system_header, 1-226
#pragma vector_for, 1-203, 2-50
#pragma weak_entry, 1-243
precompiled header files, generating and

use, 1-54
precompiled header repository, locating,

1-54
predefined macros

_MISRA_RULES, 1-70, 1-295
predefined preprocessor macros, 1-290
prefersMem attribute, 1-390, 1-391
prefersMemNum attribute, 1-391
prelinker, 1-84

MISRA C compiler, 1-121, 1-122
profile-guided optimization, 2-12

prelinker, generating template files, 1-384
preprocessor

listing file, 1-55
predefined macros, 1-290
program, 1-289
warnings, 1-176

primary register set, 1-330
procedural optimizations, 1-82
procedure statistics, 2-83
processor selection, 1-56
processor support options

EngineerZone, xxxvi
LinkedIn, xxxvii
Twitter, xxxvii

-proc processor (target processor) compiler
switch, 1-56

profile-guided optimization (PGO)
adding instrumentation, 1-55
command-line arguments in, 1-316
common scenario, 1-82

Index

I-24 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

profile-guided optimization (continued)
described briefly, 1-82
multiple PGO data sets, 2-11
multiple source uses, 2-10
non-simulatable applications, 2-10
operation via menu selection, 1-83
-Ov num switch, 1-51, 2-11, 2-43
PGO session identifier, 1-54
-pgo-session id switch, 1-54
#pragma pgo_ignore, 1-207
profile instrumentation, 1-55
run-time behavior, 2-8
simulator, 2-8
when not used, 1-51
when to use, 2-8, 2-12

PROGBITS section, 1-308
-progress-rep-func compiler switch, 1-57
-progress-rep-opt compiler switch, 1-57
progress reporting, 1-57
-progress-rep-timeout compiler switch,

1-57
-progress-rep-timeout-secs compiler switch,

1-57
prototype, incomplete, 1-68
PUSH STS instruction, 1-194, 1-195,

1-282
puts macro, 1-354

Q
_QUAD keyword, 1-190
QUALIFIER keywords, for section

pragma, 1-240

R
RAM, initializing, 1-307
-R- (disable source path) compiler switch,

1-58
read_extmem function, 1-276
reads macro, 1-354

realloc heap function, 1-316
reductions, 2-30
ref-code characters, 1-69
register information, disabling propagation

of, 1-52, 1-217
registers

alternate, 1-331
asm() constructs, 1-154
assigning to operands, 1-154
call preserved, 1-329
clobbered by overlay manager, 1-52
clobbered register sets table, 1-209,

1-211
compiler, 1-327
live, 2-55
performance, 1-327
pointer, 1-331
reserved, 1-58
reserving, 1-328
return, 1-213
scratch, 1-330
soft-wired, 1-212
stack, 1-331
transfer, 1-339
unclobbered, 1-211
user, 1-328
user-reserved, 1-212

registers for arguments and return (add 2)
example, 1-373

register usage. See mixed C/C++ assembly
programming

regs_clobbered string, 1-210
remark keyword, 1-244
remarks

control pragma, 1-243
using in diagnostics, 2-5

RESERVE_EXPAND() LDF command,
1-311

RESERVE() LDF command, 1-311

VisualDSP++ 5.0 C/C++ Compiler Manual I-25
for SHARC Processors

Index

-reserve (reserve register) compiler switch,
1-58, 1-328

reset_saturate_mode function, 1-267
restore keyword, 1-244
restore_reg macro, 1-355
restrict

See also pointer class support keyword
keyword, 2-37
operator keyword, 1-138
qualifier, 2-36

restricted pointer, 2-36
-restrict-hardware-loops compiler switch,

1-59
return address transfer, 1-367
return registers, 1-213
return value transfer, 1-338
rframe instruction, 1-336
roundfx (round fixed-point value)

function, 1-108
rounding, 1-111

biased round-to-nearest, 1-111
setting mode, 1-111
unbiased round-to-nearest, 1-111

-R (search for source files) compiler switch,
1-57

-rtti (enable run-time type identification)
C++ mode compiler switch, 1-76

__RTTI macro, 1-76, 1-77, 1-296
run-time

C/C++ environment. See mixed C/C++
assembly programming

C header, 1-308
checking, 1-128
default header file, 1-308
disabling type identification, 1-76
dynamically allocate/deallocate memory,

1-306
enabling type identification, 1-76
header, default, 1-346
header, source code for, 1-346

run-time (continued)
header storage, 1-308
heap memory, 1-306
stack, 1-331
stack memory, 1-306

RUNTIME_INIT qualifier, 1-240

S
_Sat, 1-92
sat, 1-92
-sat-associative compiler switch, 1-59
saturated arithmetic, 1-266
saturation

disabling, 1-46
disabling associativity, 1-45
enabling associativity, 1-59

save_reg macro, 1-355
-save-temps compiler switch, 1-85
-save-temps (save intermediate files)

compiler switch, 1-59
scalar variables, 2-29
scheduling, of program instructions, 2-55
-S compiler switch, 1-85
scratch registers, 1-330
scratch registers (dot oroduct) example,

1-369
search path

for include files, 1-35
for library files, 1-38
for library files when linking, 1-38

secondary registers, 1-327, 1-331
section

elimination, 2-42
keyword, 1-131, 1-174, 1-302
names, 1-302
placing symbols in, 1-238
qualifiers, 1-238

.SECTION assembler directive, 1-174,
1-302

Index

I-26 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

-section id (data placement) compiler
switch, 1-60, 1-175, 1-315

section identifiers, compiler-controlled,
1-60, 1-175

section pragmas, 1-238
SECTKIND keywords, 1-239
SECTSTRING double-quoted string,

1-239
seg_dmda data section, 1-305, 1-306
seg_dmda memory section, 1-303
seg_heap declaration, 1-307
seg_heap heap, 1-317
seg_heap memory section, 1-303
seg_heap section, 1-306
seg_heaq heap, 1-317
seg_init.asm file, 1-317
seg_init.doj file, 1-317
seg_init initialization section, 1-307
seg_init memory section, 1-304
seg_int_code memory section, 1-304
seg_int_code_sw memory section, 1-304
segment

See also placement support keyword
(section)

keyword. See section keyword
legacy keyword, 1-175

seg_pmco code section, 1-304
seg_pmco memory section, 1-303
seg_pmda data section, 1-305
seg_pmda memory section, 1-303
seg_rth memory section, 1-304
seg_rth run-time header section, 1-308
seg_stak memory section, 1-303
seg_stak section, 1-306
seg_swco memory section, 1-303
self-modifying code, avoiding, 1-281
set_alloc_type function, 1-322
set_saturate_mode function, 1-267
shift-to-add conversion,disabling, 1-46

short-form keywords
disabling, 1-44
enabling, 1-30

short storage format, 1-342
-short-word-code compiler switch, 1-61
__SHORT_WORD_CODE__ macro,

1-296
-show (display command line) compiler

switch, 1-61
signalcb() function, 1-277
signalf() function, 1-279
signalfnsm() function, 1-281
signal() function, 1-278
signals() function, 1-279
signalss() function, 1-280
-signed-bitfield (make plain bit-fields

signed) compiler switch, 1-62
__SIGNED_CHARS__ macro, 1-296
silicon revision

management, 1-86
version setting, 1-87

silicon revision, specifying, 1-61, 1-87
__SILICON_REVISION__ macro, 1-87
SIMD_for pragma, 1-199
SIMD mode

C/C++ callable subroutines, 1-361
disabling, 1-46
subroutines, 1-362

__SIMDSHARC__ macro, 1-291, 1-292,
1-296

simulator, used with PGO, 1-82, 2-8
single case range, 1-261
sinking process, 2-57
-si-revision (silicon revision) compiler

switch, 1-61, 1-87
sizeof() operator, 1-140, 1-261
SKIP_SPACES macro, 1-298
sliding scale, between 0 and 100, 1-50
slow floating-point emulation software,

1-28

VisualDSP++ 5.0 C/C++ Compiler Manual I-27
for SHARC Processors

Index

small applications, producing, 2-42
social networking

Twitter and LinkedIn, xxxvii
software pipelining, 2-58, 2-59, 2-61
source code, checking for syntax errors,

1-63
source directory, adding, 1-57
source path, disabling, 1-58
spill, to the stack, 2-55
-S (stop after compilation) compiler switch,

1-59
-s (strip debug information) compiler

switch, 1-59
stack

frame, ADSP-21020 processor, 1-333
frame,

ADSP-2106x/2116x/2126x/2136x
processors, 1-335

frame, defined, 1-332
managing in memory, 1-332
managing routines, 1-332
managing with macros, 1-367
memory allocation, 1-310
overflow detection, 2-111
pointer, 1-332
registers, 1-331

stack alignment
disabling, 1-41
enabling, 1-23

stack for arguments and return (add 5)
example, 1-372

stack overflow
cause, 2-111
debugging, 2-112
detecting, 2-113

stage count (SC), 2-64, 2-69

standard
heap management functions, 1-316
include search, disabling, 1-47
interface, using with alternate heaps,

1-322
library search, disabling, 1-47
macro definitions, disabling, 1-47
optimizations, 1-34

standard assertions
disabling, 1-47
enabling, 1-21

standard functions
accessing alternate heaps by, 1-322
list of, 1-316

statement expression, 1-256
static data, 1-305
statistical profiling, 2-7
status register, saving data in, 1-195
STDC FX_FRACT_OVERFLOW

pragma, 1-228
__STDC__ macro, 1-296
STDC STDC FX_FULL_PRECISION

pragma, 1-228
__STDC_VERSION__ macro, 1-296
std namespace, 1-75
-std-templates C++ mode compiler switch,

1-77
STI memory area, 1-315
sti section identifier, 1-60, 1-176
string, literals with line breaks, 1-260
string concatenation feature, 1-161
string literals

marking as const-qualified, 1-26
multiline, 1-40
no-multiline, 1-45
not making const-qualified, 1-43

strtofxfx (convert string to fixed-point)
function, 1-109

Index

I-28 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

struct
assignment, 1-62
copying, 1-62

-structs-do-not-overlap compiler switch,
1-62

struct/unions, 1-263
structures

initializing, 1-142
subroutine return address, example, 1-367
super-fast interrupt dispatcher

ADSP-2106x restriction, 1-282
context switching, 1-332
described, 1-279

suppress keyword, 1-244
-swc compiler switch, 1-63
switches

-A (assert) compiler switch, 1-21
-add-debug-libpaths, 1-22
-aligned-stack (align stack), 1-23
-alttok (alternative tokens), 1-23
-always-inline, 1-24
-annotate (enable assembly annotaitons),

1-24
-annotate-loop-instr, 1-24
-auto-attrs (automatic attributes), 1-25
-build-lib (build library), 1-25
-C (comments), 1-25
-c (compile only), 1-25
-compatible-pm-dm, 1-25
-const-read-write, 1-25
-const-strings, 1-26
-D (define macro), 1-26
-debug-types, 1-26
-double-size-32|64, 1-27
-double-size-any, 1-28
-dryrun (terse dry-run), 1-28
-dry (verbose dry-run), 1-28
-ED (run after preprocessing to file),

1-29
-EE (run after preprocessing), 1-29

switches (continued)
-enum-is-int, 1-30
-E (stop after preprocessing), 1-29
-extra-keywords (enable short-form

keywords), 1-30
-file-attr name, 1-31
-@filename (command file), 1-21
-flags (command-line input), 1-31
-float-to-int, 1-32
-force-circbuf, 1-32
-fp-associative (floating-point associative

operation), 1-32
-full-version (display versions), 1-32
-g (generate debug information), 1-33
-glite (lightweight debugging), 1-34
-help (command-line help), 1-35
-HH (list headers and compile), 1-35
-H (list headers), 1-34
-I directory (include search directory),

1-35
-i (less includes), 1-36
-implicit-pointers, 1-36
-include (include file), 1-37
-ipa (interprocedural analysis), 1-37
-I (start include directory), 1-36
-list-workarounds (supported errata

workarounds), 1-39
-L (library search directory), 1-38
-l (link library), 1-38
-map filename (generate a memory map),

1-40
-MD (generate make rules and compile),

1-39
-mem (enable memory initialization),

1-40
-M (generate make rules only), 1-39
-MM (generate make rules and compile),

1-39
-Mo (processor output file), 1-40
-Mt filename (output make rule), 1-40

VisualDSP++ 5.0 C/C++ Compiler Manual I-29
for SHARC Processors

Index

switches (continued)
-multiline, 1-40
-never-inline, 1-41
-no-aligned-stack (disable stack

alignment), 1-41
-no-alttok (disable alternative tokens),

1-41
-no-annotate (disable alternative tokens),

1-41
-no-annotate-loop-instr, 1-42
-no-builtin (no built-in functions, 1-42
-no-circbuf (no circular buffer), 1-43
-no-const-strings, 1-43
-no-db (no delayed branches), 1-43
-no-defs (disable defaults), 1-43
-no-extra-keywords (disable short-form

keywords), 1-44
-no-fp-associative, 1-44
-no-mem (disable memory

initialization), 1-45
-no-multiline, 1-45
-no-progress-rep-timeout, 1-45
-normal-word-code, 1-48
-no-sat-associative, 1-45
-no-saturation (no faster operations),

1-46
-no-shift-to-add, 1-46
-no-simd (disable SIMD mode), 1-46
-no-std-ass (disable standard assertions),

1-47
-no-std-def (disable standard macro

definitions), 1-47
-no-std-inc (disable standard include

search), 1-47
-no-std-lib (disable standard library

search), 1-47
-no-threads (disable thread-safe build),

1-47
-no-workaround (workaround id), 1-48
-nwc, 1-48

switches (continued)
-Oa (automatic function inlining), 1-49
-O (enable optimizations), 1-48
-Og (optimize while preserving

debugging information), 1-49
-o (output file), 1-51
-Os (optimize for size), 1-49
-overlay, 1-52
-overlay-clobbers, 1-52
-Ov num (optimize for speed vs. size),

1-49
-path-install (installation location), 1-53
-path-output (non-temporary files

location), 1-54
-path-temp (temporary files location),

1-54
-path- (tool location), 1-53
-pchdir (locate PCHRepository), 1-54
-pch (precompiled header), 1-54
-pgo-session session-id, 1-54
-pguide (profile-guided optimization),

1-55
-P (omit line numbers and compile),

1-53
-pplist (preprocessor listing), 1-55
-PP (omit line numbers and compile),

1-53
-proc processor, 1-56
-progress-rep-func, 1-57
-progress-rep-opt, 1-57
-progress-rep-timeout, 1-57
-progress-rep-timeout-secs, 1-57
-R (add source directory), 1-57
-R- (disable source path), 1-58
-reserve (reserve register), 1-58
-restrict-hardware-loops, 1-59
-S, 1-85
-sat-associative, 1-59
-save-temps, 1-85

Index

I-30 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

switches (continued)
-save-temps (save intermediate files),

1-59
-section id (data placement), 1-60
-short-word-code, 1-61
-show (display command line), 1-61
-signed-bitfield (make plain bit-fields

signed), 1-62
-si-revision version (silicon revision),

1-61, 1-87
sourcefile (parameter), 1-21
-S (stop after compilation), 1-59
-s (strip debug information), 1-59
-structs-do-not-overlap, 1-62
-swc, 1-63
-syntax-only (check syntax only), 1-63
-syntax-only (system definitions), 1-63
-T filename (.ldf file), 1-63
-threads (enable thread-safe build), 1-64
-time (tell time), 1-64
-unsigned-bitfield (make plain bit-fields

unsigned), 1-65
-U (undefine macro), 1-64
-verbose, 1-66
-version (display version), 1-66
-v (version and verbose), 1-65
-warn-protos (warn if incomplete

prototype), 1-68
-w (disable all warnings), 1-67
-Werror-limit (maximum compiler

errors), 1-67
-Werror-warnings (treat warnings as

errors), 1-67
-W{...} number (override error message),

1-66
-workaround workaround_id, 1-68
-Wremarks (enable diagnostic warnings),

1-67
-write-files (enable driver I/O

redirection), 1-68

switches (continued)
-write-opts (user options), 1-69
-Wterse (enable terse warnings), 1-67
-xref (cross-reference list), 1-69

switch section identifier, 1-60, 1-176
symbols, placing in sections, 1-238
-syntax-only (check syntax only) compiler

switch, 1-63
-sysdef (system definitions) compiler

switch, 1-63
sysreg_bit_tgl function, 1-179
sysreg.h header file, 1-177, 1-178, 2-38
sysreg_read function, 1-178
sysreg_write function, 1-178
system initialization code, 1-304
__SYSTEM__ macro, 1-63
system macros, defined, 1-63
system registers

accessing, 1-165, 1-177
handling, 2-38
list of, 1-180

T
target processor, specifying, 1-56
technical support forum, xxxvi
template

class, 1-381
control pragma, 1-224
function, 1-381
instantiation pragmas, 1-221
support in C++, 1-381
un-instantiated, 1-385

template, of asm() construct, 1-151
template instantiation, 1-381, 1-383
temporary files location, 1-54
-T filename (linker description file)

compiler switch, 1-63
thread-safe

code, 1-64
libraries, using with VDK, 1-64

VisualDSP++ 5.0 C/C++ Compiler Manual I-31
for SHARC Processors

Index

thread-safe build
disabling, 1-47
enabling, 1-64

__TIME__ macro, 1-296
-time (tell time) compiler switch, 1-64
transfer registers, 1-339
transferring

function arguments and return value,
1-338

function parameters to assembly
routines, 1-338

trip
count, 2-64
loop count, 2-96
maximum, 2-64
minimum, 2-64
modulo, 2-64

trip count, 2-76
truncation, 1-111
type cast, 1-261
typeof keyword, 1-258
type sizes, data, 1-341

U
unbiased round-to-nearest rounding, 1-111
unclobbered registers, 1-211, 1-212
unnamed struct/union fields, 1-263
-unsigned-bitfield (make plain bit-fields

unsigned) compiler switch, 1-65
unsigned long long

storage format, 1-342
__USERNAME__ macro, 1-63
user options, passing to main driver, 1-69
user registers, 1-328
USTAT registers, 1-331
-U (undefine macro) compiler switch, 1-26,

1-64

V
.VAR directive, declaring heap with, 1-317
variable

argument macros, 1-138, 1-260
length array, 1-139, 1-260
name length, 1-176
statically initialized, 2-16

variable expansion and MVE unroll, 2-71
VDK

project support selected, 1-64
using thread-safe C/C++ run-time

libraries with, 1-64
vectorization

annotations, 2-99
avoiding, 2-50
defined, 2-96
factor, 2-96
loop, 2-50, 2-61
transformation, 2-50

-verbose (display command line) compiler
switch, 1-66

-version (display version) compiler switch,
1-66

version information, displaying, 1-32
__VERSION__ macro, 1-296
__VERSIONNUM__ macro, 1-297
virtual function lookup tables, 1-60, 1-175
VisualDSP++

debugger, 1-34
IDDE, 1-4
running compiler from command line,

1-3, 1-6
__VISUALDSPVERSION__ macro,

1-297
void functions (delay) examples, 1-370
volatile

C program constructs, 1-162
declarations, 2-5
register set, 1-213

vtable section identifier, 1-60, 1-176

Index

I-32 VisualDSP++ 5.0 C/C++ Compiler Manual
for SHARC Processors

vtbl section identifier, 1-60, 1-175, 1-176
-v (version and verbose) compiler switch,

1-65

W
warning keyword, 1-244
warning messages

control pragma, 1-243
described, 2-5
diagnostic, 2-5
disabling, 2-5
disabling all, 1-67
errors, 1-67
#warning directive, 1-176

-Warn-protos (warn if incomplete
prototype) compiler switch, 1-68

-w (disable all warnings) compiler switch,
1-67, 2-5

-Werror-limit (maximum compiler errors)
compiler switch, 1-67

-Werror-warnings compiler switch, 1-67
-Wmis_suppress C compiler switch, 1-71
-Wmis_warn rule_number C compiler

switch, 1-72
-W{...} number (override error message)

compiler switch, 1-66, 2-5, 2-6
_WORD keyword, 1-190
workarounds

anomaly management, 1-86, 1-88
enabling, 1-88
errata, 1-87
interaction between -si-revision,

-workaround and -no-workaround,
1-89

list of valid workarounds, 1-88
not applied in asm(), 1-86
-no-workaround switch, 1-89
use of the -workaround switch, 1-88
valid workarounds list, 1-88
-workaround switch, 1-88

workarounds, not applied in asm(), 1-148
__WORKAROUNDS_ENABLED

macro, 1-88, 1-90, 1-297
-workaround workaround_id compiler

switch, 1-68, 1-88
wrapper project, 2-10
-Wremarks (enable diagnostic warnings)

compiler switch, 1-67, 2-5
write_extmem function, 1-276
-write-files (enable driver I/O pipe)

compiler switch, 1-68
-write-opts (user options) compiler switch,

1-69
writes, array element, 2-32
-Wterse (enable terse warnings) compiler

switch, 1-67

X
.XML files, 1-40
-xref (cross-reference list) compiler switch,

1-69

Z
ZERO_INIT qualifier, 1-240, 1-389
ZERO_INIT section, 1-308
zero length arrays, 1-260

	VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC Processors, Revision 1.5, January 2011
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	VisualDSP++ Online Documentation
	Technical Library CD
	EngineerZone
	Social Networking Web Sites

	Notation Conventions

	1 Compiler
	C/C++ Compiler Overview
	Compiler Command-Line Interface
	Running the Compiler
	Compiler Command-Line Switches
	C/C++ Compiler Switch Summaries
	C/C++ Mode Selection Switch Descriptions
	-c89
	-c99
	-c++

	C/C++ Compiler Common Switch Descriptions
	sourcefile
	-@ filename
	-A name[tokens]
	-add-debug-libpaths
	-aligned-stack
	-alttok
	-always-inline
	-annotate
	-annotate-loop-instr
	-auto-attrs
	-build-lib
	-C
	-c
	-compatible-pm-dm
	-const-read-write
	-const-strings
	-D
	-debug-types
	-double-size[-32|-64]
	-double-size-any
	-dry
	-dryrun
	-E
	-ED
	-EE
	-eh
	-enum-is-int
	-extra-keywords
	-file-attr name[=value]
	-flags
	-float-to-int
	-force-circbuf
	-fp-associative
	-full-version
	-fx-contract
	-fx-rounding-mode-biased
	-fx-rounding-mode-truncation
	-fx-rounding-mode-unbiased
	-g
	-glite
	-H
	-HH
	-h[elp]
	-I
	-I-
	-i
	-implicit-pointers
	-include
	-ipa
	-L
	-l
	-list-workarounds
	-M
	-MD
	-MM
	-Mo
	-Mt
	-map
	-mem
	-multiline
	-never-inline
	-no-aligned-stack
	-no-alttok
	-no-annotate
	-no-annotate-loop-instr
	-no-auto-attrs
	-no-builtin
	-no-circbuf
	-no-const-strings
	-no-db
	-no-defs
	-no-eh
	-no-extra-keywords
	-no-fp-associative
	-no-fx-contract
	-no-mem
	-no-multiline
	-no-progress-rep-timeout
	-no-sat-associative
	-no-saturation
	-no-shift-to-add
	-no-simd
	-no-std-ass
	-no-std-def
	-no-std-inc
	-no-std-lib
	-no-threads
	-no-workaround
	-normal-word-code
	-nwc
	-O[0|1]
	-Oa
	-Og
	-Os
	-Ov
	-o
	-overlay
	-overlay-clobbers
	-P
	-PP
	-path-{ asm | compiler | lib | link }
	-path-install
	-path-output
	-path-temp
	-pch
	-pchdir
	-pgo-session
	-pguide
	-pplist
	-proc processor
	-progress-rep-func
	-progress-rep-opt
	-progress-rep-timeout
	-progress-rep-timeout-secs secs
	-R
	-R-
	-reserve
	-restrict-hardware-loops
	-S
	-s
	-sat-associative
	-save-temps
	-section
	-short-word-code
	-show
	-si-revision
	-signed-bitfield
	-structs-do-not-overlap
	-swc
	-syntax-only
	-sysdefs
	-T
	-threads
	-time
	-U
	-unsigned-bitfield
	-v
	-verbose
	-version
	-W
	-Werror-limit number
	-Werror-warnings
	-Wremarks
	-Wterse
	-w
	-warn-protos
	-workaround
	-write-files
	-write-opts
	-xref filename

	C Mode (MISRA) Compiler Switch Descriptions
	-misra
	-misra-linkdir
	-misra-no-cross-module
	-misra-no-runtime
	-misra-strict
	-misra-suppress-advisory
	-misra-testing
	-Wmis_suppress
	-Wmis_warn

	C++ Mode Compiler Switch Descriptions
	-anach
	-check-init-order
	-extern-inline
	-friend-injection
	-full-dependency-inclusion
	-ignore-std
	-no-anach
	-no-extern-inline
	-no-friend-injection
	-no-implicit-inclusion
	-no-rtti
	-no-std-templates
	-rtti
	-std-templates

	Environment Variables Used by the Compiler
	Data Type and Data Type Sizes
	Integer Data Types
	Floating-Point Data Types

	Optimization Control
	Optimization Levels
	Interprocedural Analysis
	Interaction With Libraries

	Controlling Silicon Revision and Anomaly Workarounds Within the Compiler
	Using the -si-revision Switch
	Using the -workaround Switch
	Using the -no-workaround Switch
	Interactions Between the Silicon Revision and Workaround Switches

	Using Native Fixed-Point Types
	Fixed-Point Type Support
	Native Fixed-Point Types
	Native Fixed-Point Constants
	A Motivating Example
	Fixed-Point Arithmetic Semantics
	Data Type Conversions and Fixed-Point Types
	Bit-Pattern Conversion Functions: bitsfx and fxbits
	Arithmetic Operators for Fixed-Point Types
	FX_CONTRACT
	Rounding Behavior
	Arithmetic Library Functions
	divifx
	idivfx
	fxdivi
	mulifx
	absfx
	roundfx
	countlsfx
	strtofxfx

	Fixed-Point I/O Conversion Specifiers
	Setting the Rounding Mode

	Language Standards Compliance
	C Mode
	C++ Mode

	MISRA-C Compiler
	MISRA-C Compiler Overview
	MISRA-C Compliance
	Using the Compiler to Achieve Compliance

	Rules Descriptions

	C/C++ Compiler Language Extensions
	Function Inlining
	Inlining and Optimization
	Inlining and Out-of-Line Copies
	Inlining and Global asm Statements
	Inlining and Sections

	Variable Argument Macros
	Restricted Pointers
	Variable-Length Array Support
	Non-Constant Initializer Support
	Designated Initializers
	Hexadecimal Floating-Point Numbers
	Declarations Mixed With Code
	Compound Literals
	C++ Style Comments
	Enumeration Constants That Are Not int Type
	Boolean Type Support Keywords (bool, true, false)
	The fract Native Fixed-Point Type
	Inline Assembly Language Support Keyword (asm)
	asm() Construct Syntax
	asm() Construct Syntax Rules
	asm() Construct Template Example

	Assembly Construct Operand Description
	Using long long Types in asm Constraints
	Assembly Constructs With Multiple Instructions
	Assembly Construct Reordering and Optimization
	Assembly Constructs With Input and Output Operands
	Assembly Constructs With Compile-Time Constants
	Assembly Constructs and Flow Control
	Guidelines on the Use of asm() Statements

	Dual Memory Support Keywords (pm dm)
	Memory Keywords and Assignments/Type Conversions
	Memory Keywords and Function Declarations/Pointers
	Memory Keywords and Function Arguments
	Memory Keywords and Macros

	Bank Type Qualifiers
	Placement Support Keyword (section)
	Placement of Compiler-Generated Code and Data
	Long Identifiers
	Preprocessor Generated Warnings
	Compiler Built-In Functions
	Access to System Registers
	Circular Buffer Built-In Functions
	Circular Buffer Increment of an Index
	Circular Buffer Increment of a Pointer

	Compiler Performance Built-In Functions
	Expected Behavior
	Known Values

	Fractional Built-In Functions
	Miscellaneous Built-In Function

	Pragmas
	Data Alignment Pragmas
	#pragma align num
	#pragma alignment_region (alignopt)
	#pragma pack (alignopt)
	#pragma pad (alignopt)

	Interrupt Handler Pragmas
	#pragma implicit_push_sts_handler
	#pragma interrupt
	#pragma interrupt_complete_nesting
	#pragma interrupt_complete
	#pragma save_restore_40_bits
	#pragma save_restore_simd_40_bits (SIMD SHARCs Only)
	Interrupt Pragmas and the Interrupt Vector Table

	Loop Optimization Pragmas
	#pragma SIMD_for
	#pragma all_aligned
	#pragma no_vectorization
	#pragma loop_count (min, max, modulo)
	#pragma loop_unroll N
	#pragma no_alias
	#pragma vector_for

	General Optimization Pragmas
	Function Side-Effect Pragmas
	#pragma alloc
	#pragma const
	#pragma misra_func(arg)
	#pragma noreturn
	#pragma pgo_ignore
	#pragma pure
	#pragma regs_clobbered string
	#pragma regs_clobbered_call string
	#pragma overlay
	#pragma result_alignment (n)

	Class Conversion Optimization Pragmas
	#pragma param_never_null param_name [...]
	#pragma suppress_null_check

	Template Instantiation Pragmas
	#pragma instantiate instance
	#pragma do_not_instantiate instance
	#pragma can_instantiate instance

	Header File Control Pragmas
	#pragma hdrstop
	#pragma no_implicit_inclusion
	#pragma no_pch
	#pragma once
	#pragma system_header

	Fixed-Point Arithmetic Pragmas
	#pragma FX_CONTRACT {ON|OFF}
	#pragma FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED}
	#pragma STDC FX_FULL_PRECISION {ON|OFF|DEFAULT}
	#pragma STDC FX_FRACT_OVERFLOW {SAT|DEFAULT}

	Inline Control Pragmas
	#pragma always_inline
	#pragma inline
	#pragma never_inline

	Linking Control Pragmas
	#pragma linkage_name identifier
	#pragma core
	#pragma retain_name
	#pragma section/#pragma default_section
	#pragma file_attr(“name[=value]” [, “name[=value]” [...]])
	#pragma weak_entry

	Diagnostic Control Pragmas
	Modifying the Severity of Specific Diagnostics
	Modifying the Behavior of an Entire Class of Diagnostics
	Saving or Restoring the Current Behavior of All Diagnostics

	Memory Bank Pragmas
	#pragma code_bank(bankname)
	#pragma data_bank(bankname)
	#pragma stack_bank(bankname)
	#pragma bank_memory_kind(bankname, kind)
	#pragma bank_read_cycles(bankname, cycles)
	#pragma bank_write_cycles(bankname, cycles)
	#pragma bank_optimal_width(bankname, width)

	Code Generation Pragmas
	#pragma avoid_anomaly_45 {on | off}
	#pragma no_db_return

	Exceptions Table Pragma
	#pragma generate_exceptions_tables

	GCC Compatibility Extensions
	Statement Expressions
	Type Reference Support Keyword (Typeof)
	GCC Generalized Lvalues
	Conditional Expressions with Missing Operands
	Zero-Length Arrays
	GCC Variable Argument Macros
	Line Breaks in String Literals
	Arithmetic on Pointers to Void and Pointers to Functions
	Cast to Union
	Ranges in Case Labels
	Escape Character Constant
	Alignment Inquiry Keyword (__alignof__)
	Keyword for Specifying Names in Generated Assembler (asm)
	Function, Variable and Type Attribute Keyword (__attribute__)
	Unnamed struct/union Fields Within struct/unions

	C++ Fractional Type Support
	Format of Fractional Literals
	Conversions Involving Fractional Values
	Fractional Arithmetic Operations
	Mixed Mode Operations

	Saturated Arithmetic
	Support for 40-bit Arithmetic
	Using 40-bit Arithmetic in Compiled Code
	Run-Time Library Functions That Use 40-bit Arithmetic
	Interrupt Support

	SIMD Support
	A Brief Introduction to SIMD Mode
	What the Compiler Can Do Automatically
	What Prevents the Compiler From Automatically Exploiting SIMD Mode
	How to Help the Compiler Exploit SIMD Mode
	How to Prevent SIMD Code Generation

	Accessing External Memory on ADSP-2126x and ADSP-2136x Processors
	Link-Time Checking of Data Placement
	Inline Functions for External Memory Access

	Support for Interrupts
	Interrupt Dispatchers
	Interrupts and Circular Buffering
	Avoiding Self-Modifying Code
	Interrupt Nesting Restrictions on ADSP-211xx/212xx/ 213xx/214xx Processors
	Restriction on Use of Super-Fast Dispatcher on ADSP-2106x Processors
	Restrictions on Using Normal and Circular Buffer Interrupt Dispatchers on ADSP-2136x Processors

	Migrating .ldf Files From Previous VisualDSP++ Installations
	C++ Support Tables (ctor, gdt)
	ADSP-21375 Memory Map
	C++ Run-Time Libraries Rationalization
	Fixed-Point I/O Support

	Preprocessor Features
	Predefined Preprocessor Macros
	Writing Macros
	Compound Macros

	C/C++ Run-Time Model and Environment
	C/C++ Run-Time Environment
	Memory Usage
	Program Memory Code Storage
	Data Memory Data Storage
	Program Memory Data Storage
	Run-Time Stack Storage
	Run-Time Heap Storage
	Initialization Data Storage
	Run-Time Header Storage

	Memory Allocation for Stack and Heap on ADSP-2106x, ADSP-2116x, and ADSP-2126x Processors
	Example of Heap/Stack Memory Allocation

	Measuring the Performance of the Compiler

	Constructors and Destructors of Global Class Instances
	Constructors, Destructors and Memory Placement

	Support for argv/argc
	Using Multiple Heaps
	Declaring a Heap
	Heap Identifiers
	Allocating C++ STL Objects to a Non-Default Heap
	Using Alternate Heaps With the Standard Interface
	Using the Alternate Heap Interface
	C++ Run-Time Support for the Alternate Heap Interface

	Example C Programs

	Compiler Registers
	Miscellaneous Information About Registers
	User Registers
	Call Preserved Registers
	Scratch Registers
	Stack Registers
	Alternate Registers
	Managing the Stack
	Transferring Function Arguments and Return Value
	Passing a C++ Class Instance
	Using Data Storage Formats
	fract Data Representation
	Using the Run-Time Header

	C/C++ and Assembly Interface
	Calling Assembly Subroutines From C/C++ Programs
	Calling C/C++ Functions From Assembly Programs
	Using Mixed C/C++ and Assembly Support Macros
	entry
	exit
	leaf_entry
	leaf_exit
	ccall(x)
	reads(x)
	puts=x
	gets(x)
	alter(x)
	save_reg
	restore_reg

	Using Mixed C/C++ and Assembly Naming Conventions
	Implementing C++ Member Functions in Assembly Language
	Writing C/C++ Callable SIMD Subroutines

	C++ Programming Examples
	Using Fract Support
	Using Complex Support

	Mixed C/C++/Assembly Programming Examples
	Using Inline Assembly (Add)
	Using Macros to Manage the Stack
	Using Scratch Registers (Dot Product)
	Using Void Functions (Delay)
	Using the Stack for Arguments (Add 5)
	Using Registers for Arguments and Return (Add 2)
	Using Non-Leaf Routines That Make Calls (RMS)
	Using Call Preserved Registers (Pass Array)

	Exceptions Tables in Assembly Routines

	Compiler C++ Template Support
	Template Instantiation
	Implicit Instantiation
	Exported Templates
	Generated Template Files
	Identifying Un-Instantiated Templates

	File Attributes
	Automatically-Applied Attributes
	Content Attributes
	FuncName Attributes
	Encoding Attributes

	Default LDF Placement
	Sections Versus Attributes
	Granularity
	“Hard” Versus “Soft”
	Number of Values

	Using Attributes
	Example 1
	Example 2

	2 Achieving Optimal Performance From C/C++ Source Code
	General Guidelines
	How the Compiler Can Help
	Using the Compiler Optimizer
	Using Compiler Diagnostics
	Warnings and Remarks
	Assembly Annotations

	Using the Statistical Profiler
	Using Profile-Guided Optimization
	Using Profile-Guided Optimization With a Simulator
	Using Profile-Guided Optimization With Non-Simulatable Applications
	Profile-Guided Optimization and Multiple Source Uses
	Profile-Guided Optimization and the -Ov Switch
	Profile-Guided Optimization and Multiple PGO Data Sets
	When to Use Profile-Guided Optimization

	Using Interprocedural Optimization

	Data Types
	Avoiding Emulated Arithmetic

	Getting the Most From IPA
	Initialize Constants Statically
	Dual Word-Aligning Your Data
	Using __builtin_aligned
	Avoiding Aliases

	Indexed Arrays Versus Pointers
	Trying Pointer and Indexed Styles

	Using Function Inlining
	Using Inline asm Statements
	Memory Usage

	Improving Conditional Code
	Loop Guidelines
	Keeping Loops Short
	Avoiding Unrolling Loops
	Avoiding Loop-Carried Dependencies
	Avoiding Loop Rotation by Hand
	Avoiding Complex Array Indexing
	Inner Loops vs. Outer Loops
	Avoiding Conditional Code in Loops
	Avoiding Placing Function Calls in Loops
	Avoiding Non-Unit Strides
	Loop Control
	Using the Restrict Qualifier
	Avoiding Long Latencies

	Using Built-In Functions in Code Optimization
	Using System Support Built-In Functions
	Using Circular Buffers

	Smaller Applications: Optimizing for Code Size
	Using Pragmas for Optimization
	Function Pragmas
	#pragma alloc
	#pragma const
	#pragma pure
	#pragma result_alignment
	#pragma regs_clobbered
	#pragma optimize_{off|for_speed|for_space|as_cmd_line}

	Loop Optimization Pragmas
	#pragma loop_count
	#pragma no_vectorization
	#pragma vector_for
	#pragma SIMD_for
	#pragma all_aligned
	#pragma no_alias

	Useful Optimization Switches
	How Loop Optimization Works
	Terminology
	Clobbered Register
	Live Register
	Spill
	Scheduling
	Loop Kernel
	Loop Prolog
	Loop Epilog
	Loop Invariant
	Hoisting
	Sinking

	Loop Optimization Concepts
	Software Pipelining
	Loop Rotation
	Loop Vectorization
	Modulo Scheduling
	Initiation Interval (II) and the Kernel
	Minimum Initiation Interval Due to Resources (Res MII)
	Minimum Initiation Interval Due to Recurrences (Rec MII)
	Stage Count (SC)
	Variable Expansion and MVE Unroll
	Trip Count

	A Worked Example

	Assembly Optimizer Annotations
	Global Information
	Procedure Statistics
	Instruction Annotations
	Loop Identification
	Loop Identification Annotations
	File Position

	Vectorization
	Loop Flattening
	Vectorization Annotations

	Modulo Scheduling Information
	Annotations for Modulo Scheduled Instructions

	Warnings, Failure Messages and Advice

	Analyzing Your Application
	Stack Overflow Detection
	The Stack Overflow Detection Facility

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

