
a

ADSP-BF60x Blackfin® Processor
 Hardware Reference

Preliminary Revision 0.5, February 2013

Part Number
82-100113-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be repro-
duced in any form without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without prior notice. Infor-
mation furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use; nor for any infringement of patents
or other rights of third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, SHARC, EngineerZone, VisualDSP++, CrossCore
Embedded Studio, EZ-KIT Lite, and EZ-Board are registered trademarks of Analog
Devices, Inc.

All other brand and product names are trademarks or service marks of their respective
owners.

CONTENTS
Contents

Contents

Preface

Purpose of This Manual .. lxxvii

Intended Audience ... lxxvii

Manual Contents .. lxxvii

What's New in This Manual ... lxxx

Technical or Customer Support ... lxxx

Supported Processors .. lxxxi

Product Information .. lxxxi

Analog Devices Web Site .. lxxxi

 EngineerZone ... lxxxii

Notation Conventions .. lxxxii

Register Documentation Conventions ... lxxxiii

Introduction

Blackfin Processor Core ... 1-2

Instruction Set Description ... 1-4

Processor Safety Features ... 1-5

Dual Core Supervision ... 1-5

Fault Management ... 1-5

System Protection .. 1-6

Bandwidth Monitor .. 1-6

Private (to each Core) Memory .. 1-6
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE iii

CONTENTS
Shared (by both Cores) Memory ... 1-6

I/O Memory Space ... 1-7

Memory Protection .. 1-7

Multi-Parity-Bit-Protected L1 Memories .. 1-7

ECC-Protected L2 Memory ... 1-7

CRC-Protected Memories .. 1-7

Watchpoint Protection ... 1-8

Pin Multiplexing .. 1-8

Processor Infrastructure .. 1-8

System Crossbar (SCB) ... 1-8

Clock Generation ... 1-8

Crystal Oscillator (SYS_XTAL) .. 1-9

Clock Out/External Clock ... 1-9

System Protection Unit (SPU) ... 1-10

Dynamic Power Management (DPM) ... 1-10

Core Timers ... 1-11

Event Handling ... 1-11

Core Event Controller (CEC) .. 1-11

System Event Controller (SEC) ... 1-11

Trigger Routing Unit (TRU) .. 1-12

Pin Interrupts .. 1-12

Memory Architecture .. 1-12

Static Memory Controller (SMC) .. 1-13

L2 Memory Controller ... 1-13

Dynamic Memory Controller (DMC) .. 1-13

Cyclic Redundancy Check (CRC) ... 1-14

Direct Memory Access (DMA) ... 1-14

On Chip Peripherals .. 1-15

General-Purpose I/O (GPIO) ... 1-16

General-Purpose Timers .. 1-16
 iv ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Watchdog Timers ... 1-16

General-Purpose Counters ... 1-17

Pulsewidth Modulator (PWM) ... 1-17

Universal Asynchronous Receiver/Transmitter (UART) .. 1-18

2-Wire Interface (TWI) .. 1-19

Controller Area Network (CAN) ... 1-19

Universal Serial Bus (USB) ... 1-20

Ethernet Media Access Controller (MAC) .. 1-20

Removable Storage Interface (RSI) ... 1-22

Serial Peripheral Interface (SPI) .. 1-22

Serial Port (SPORT) .. 1-22

ADC Control Module (ACM) .. 1-23

Link Port (LP) .. 1-24

Video Sub-System and Pixel Pipeline (PxP) ... 1-24

Pipelined Vision Processor (PVP) ... 1-24

Parallel Peripheral Interface (PPI) ... 1-25

Pixel Compositor (PIXC) ... 1-26

Reset Control Unit (RCU) ... 1-27

Booting .. 1-28

System Debug Unit ... 1-28

System Watchpoint Unit ... 1-28

System Crossbars (SCB)

SCB Features .. 2-1

SCB Functional Description ... 2-1

ADSP-BF60x SCB Register List ... 2-1

SCB Definitions ... 2-2

SCB Block Diagram .. 2-2

SCB Hierarchy Block Diagram ... 2-3

ADSP-BF60x SCB Block Diagram .. 2-3

ADSP-BF60x SCB Bus Master IDs .. 2-6
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE v

CONTENTS
ADSP-BF60x SCB Arbitration Tables .. 2-9

SCB Units, Master Interfaces, and Arbitration Types .. 2-9

SCB0 Slots and Masters ... 2-10

SCB1 Slots and Masters ... 2-16

SCB2 Slots and Masters ... 2-17

SCB3 Slots and Masters ... 2-17

SCB4 Slots and Masters ... 2-18

SCB5 Slots and Masters ... 2-18

SCB6 Slots and Masters ... 2-19

SCB7 Slots and Masters ... 2-19

SCB8 Slots and Masters ... 2-19

SCB9 Slots and Masters ... 2-20

SCB Programming Model .. 2-20

Reading Arbitration Settings ... 2-21

Writing Arbitration Settings .. 2-21

SCB Programming Concepts ... 2-21

ADSP-BF60x SCB Register Descriptions ... 2-21

Arbitration Read Channel Master Interface n Register ... 2-22

Arbitration Write Channel Master Interface n Register .. 2-23

Slave Interfaces Number Register .. 2-23

Master Interfaces Number Register .. 2-24

Clock Generation Unit (CGU)

CGU Features ... 3-1

CGU Functional Description .. 3-2

ADSP-BF60x CGU Register List .. 3-2

ADSP-BF60x CGU Interrupt List ... 3-2

ADSP-BF60x CGU Trigger List ... 3-3

CGU Definitions .. 3-3

CGU PLL Block Diagram ... 3-4

CGU Operating Modes ... 3-5
 vi ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
CGU Event Control ... 3-6

CGU Event .. 3-6

CGU Error ... 3-6

CGU Generated Bus Errors .. 3-6

CGU Programming Model .. 3-7

CGU Mode Configuration ... 3-7

Changing the PLL Clock Frequency .. 3-7

Changing the CCLKn, SYSCLK, or SCLKn frequency Without Modifying the PLLCLK Frequency .. 3-8

Changing the DCLK Clock Frequency ... 3-8

Changing the OUTCLK Frequency .. 3-9

Aligning All Clocks .. 3-10

ADSP-BF60x Valid Clock Multiplier Settings ... 3-10

ADSP-BF60x CGU Register Descriptions .. 3-10

Control Register .. 3-11

Status Register .. 3-12

Clocks Divisor Register .. 3-16

CLKOUT Select Register ... 3-19

System Protection Unit (SPU)

SPU Features ... 4-1

SPU Functional Description ... 4-1

ADSP-BF60x SPU Register List ... 4-4

SPU Definitions .. 4-4

SPU Block Diagram ... 4-4

SPU Architectural Concepts .. 4-5

SPU Event Control .. 4-5

SPU Programming Model ... 4-6

SPU Mode Configuration .. 4-6

Locking Write-Protect Registers ... 4-6

Protecting a Peripheral ... 4-7

ADSP-BF60x SPU Register Descriptions ... 4-7
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE vii

CONTENTS
Control Register .. 4-7

Status Register .. 4-8

Write Protect Register n .. 4-9

ADSP-BF60x SPU_WPn Additional Information ... 4-10

Dynamic Power Management (DPM)

DPM Features ... 5-1

DPM Functional Description .. 5-1

ADSP-BF60x DPM Register List .. 5-1

ADSP-BF60x DPM Interrupt List ... 5-2

DPM Definitions .. 5-2

DPM Operating Modes ... 5-3

Reset State .. 5-4

Full-on Mode ... 5-5

Active Mode .. 5-5

ACTIVE with PLL Disabled ... 5-5

Deep Sleep Mode ... 5-5

Hibernate Mode ... 5-6

DPM Event Control .. 5-7

DPM Events .. 5-7

DPM Errors .. 5-7

DPM Programming Model ... 5-7

Ensuring Internal Logic Supply is Restored Before Booting .. 5-8

Using the PG Counter to Check Internal Logic Supply is Restored ... 5-8

Using the PG Input to Check Internal Logic Supply is Restored ... 5-9

Configuring Deep Sleep Mode .. 5-10

Configuring Hibernate Mode ... 5-10

ADSP-BF60x Wake-Up Sources ... 5-11

ADSP-BF60x Clock Buffer Disable Bit Assignments ... 5-12

ADSP-BF60x Hibernate Disable Bit Assignments ... 5-12

ADSP-BF60x DPM Register Descriptions .. 5-13
 viii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Control Register .. 5-13

Status Register .. 5-15

Core Clock Buffer Disable Register ... 5-18

Core Clock Buffer Enable Register .. 5-18

Core Clock Buffer Status Register .. 5-19

Core Clock Buffer Status Sticky Register .. 5-20

System Clock Buffer Disable Register ... 5-21

Wakeup Enable Register ... 5-22

Wakeup Polarity Register ... 5-23

Wakeup Status Register .. 5-24

Hibernate Disable Register ... 5-25

Power Good Counter Register .. 5-26

Restore Registers .. 5-27

Core Timer (TMR)

TMR Features ... 6-1

TMR Functional Description .. 6-1

ADSP-BF60x TMR Register List .. 6-1

TMR Block Diagram ... 6-2

External Interfaces .. 6-2

Internal Interfaces ... 6-2

TMR Operation ... 6-3

Interrupt Processing ... 6-3

ADSP-BF60x TMR Register Descriptions .. 6-3

Timer Control Register ... 6-4

Timer Period Register ... 6-5

Timer Scale Register ... 6-6

Timer Count Register .. 6-6

System Event Controller (SEC)

SEC Features ... 7-1
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE ix

CONTENTS
SEC Functional Description ... 7-1

ADSP-BF60x SEC Register List ... 7-1

ADSP-BF60x Interrupt List ... 7-3

ADSP-BF60x SEC Trigger List .. 7-8

SEC Definitions ... 7-8

SEC Block Diagram ... 7-9

SFI Block Diagram ... 7-10

SCI Block Diagram ... 7-11

SSI Block Diagram ... 7-11

SEC Architectural Concepts .. 7-12

System Interrupt Acknowledge .. 7-12

System Interrupt Groups ... 7-12

System Interrupt Flow .. 7-12

System Interrupt Priorities .. 7-14

SEC Error .. 7-14

SEC Programming Model ... 7-14

Programming Concepts .. 7-14

Programming Examples ... 7-15

Configuring a System Source to Interrupt a Core ... 7-15

Configuring a System Source as a Fault ... 7-15

ADSP-BF60x SEC Register Descriptions ... 7-15

SCI Control Register n .. 7-16

SCI Status Register n .. 7-18

Core Pending Register n ... 7-20

SCI Active Register n ... 7-21

SCI Priority Mask Register n .. 7-22

SCI Group Mask Register n .. 7-22

SCI Priority Level Register n .. 7-23

SCI Source ID Register n .. 7-24

Fault Control Register ... 7-25
 x ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Fault Status Register ... 7-27

Fault Source ID Register ... 7-30

Fault End Register .. 7-30

Fault Delay Register ... 7-31

Fault Delay Current Register .. 7-32

Fault System Reset Delay Register ... 7-33

Fault System Reset Delay Current Register ... 7-33

Fault COP Period Register .. 7-34

Fault COP Period Current Register .. 7-35

Global Control Register .. 7-35

Global Status Register .. 7-36

Global Raise Register ... 7-38

Global End Register .. 7-39

Source Control Register n ... 7-39

Source Status Register n ... 7-42

Trigger Routing Unit (TRU)

TRU Features .. 8-1

TRU Functional Description .. 8-1

ADSP-BF60x TRU Register List .. 8-1

ADSP-BF60x TRU Interrupt List .. 8-2

ADSP-BF60x Trigger List ... 8-2

TRU Definitions .. 8-9

TRU Block Diagram .. 8-9

TRU Architectural Concepts ... 8-10

TRU Programming Model .. 8-10

Programming Concepts .. 8-11

Programming Example .. 8-11

TRU Event Control ... 8-11

TRU Status and Error Signals .. 8-11

ADSP-BF60x TRU Register Descriptions .. 8-11
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xi

CONTENTS
Slave Select Register .. 8-12

Master Trigger Register .. 8-13

Error Address Register .. 8-13

Status Information Register .. 8-14

Global Control Register .. 8-15

Static Memory Controller (SMC)

SMC Features ... 9-1

SMC Functional Description .. 9-1

ADSP-BF60x SMC Register List .. 9-2

SMC Definitions .. 9-3

SMC Architectural Concepts ... 9-5

Avoiding Bus Contention ... 9-5

ARDY Input Control .. 9-6

Bus Request and Bus Grant .. 9-7

Bank-Off Bus Grant .. 9-7

Bus Request and Bus Grant Protocol Timing ... 9-7

Disabling Bus Grant to External Memory Controllers ... 9-8

SMC Operating Modes ... 9-8

Asynchronous Flash Mode .. 9-9

Synchronous Burst Mode ... 9-9

Asynchronous Page Mode ... 9-9

SMC Event Control .. 9-10

SMC Programmable Timing Characteristics .. 9-10

Asynchronous SRAM Reads and Writes ... 9-10

Asynchronous SRAM Reads with IDLE Transition Cycles Inserted .. 9-11

High Speed Asynchronous SRAM Read Burst ... 9-12

High Speed Asynchronous SRAM Writes ... 9-13

Asynchronous SRAM Reads with ARDY ... 9-14

Asynchronous Flash Reads .. 9-16

Asynchronous Flash Writes ... 9-17
 xii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Asynchronous Flash Page Mode Reads ... 9-18

Synchronous Burst Mode Reads .. 9-19

Asynchronous FIFO Reads and Writes .. 9-21

SMC Programming Model .. 9-22

ADSP-BF60x SMC Register Descriptions .. 9-23

Grant Control Register .. 9-24

Grant Status Register .. 9-25

Bank 0 Control Register ... 9-26

Bank 0 Timing Register .. 9-29

Bank 0 Extended Timing Register .. 9-31

Bank 1 Control Register ... 9-33

Bank 1 Timing Register .. 9-36

Bank 1 Extended Timing Register .. 9-38

Bank 2 Control Register ... 9-40

Bank 2 Timing Register .. 9-43

Bank 2 Extended Timing Register .. 9-45

Bank 3 Control Register ... 9-47

Bank 3 Timing Register .. 9-50

Bank 3 Extended Timing Register .. 9-52

L2 Memory Controller (L2CTL)

L2 Memory Controller Features ... 10-1

L2 Memory Controller Functional Description .. 10-1

ADSP-BF60x L2CTL Register List .. 10-2

ADSP-BF60x L2CTL Interrupt List .. 10-3

L2 Memory Controller Block Diagram ... 10-4

L2 Memory Controller Architectural Concepts ... 10-4

Access Characteristics .. 10-5

Read/Write Latency and Throughput ... 10-5

Arbitration and Priority ... 10-5

Data Integrity .. 10-7
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xiii

CONTENTS
ECC Hardware Control .. 10-7

ECC Error Management .. 10-8

Memory Refresh .. 10-8

Access Control .. 10-9

L2 Memory Controller Event Control .. 10-9

ADSP-BF60x L2CTL Register Descriptions .. 10-10

Control Register .. 10-11

Access Control Core 0 Register .. 10-14

Access Control Core 1 Register .. 10-16

Access Control System Register ... 10-19

Status Register .. 10-21

Read Priority Count Register .. 10-23

Write Priority Count Register ... 10-24

Refresh Address Register .. 10-25

ECC Error Address 0 Register .. 10-26

ECC Error Address 1 Register .. 10-27

ECC Error Address 2 Register .. 10-27

ECC Error Address 3 Register .. 10-28

ECC Error Address 4 Register .. 10-29

ECC Error Address 5 Register .. 10-29

ECC Error Address 6 Register .. 10-30

ECC Error Address 7 Register .. 10-31

Error Type 0 Register ... 10-31

Error Type 0 Address Register ... 10-33

Error Type 1 Register ... 10-33

Error Type 1 Address Register ... 10-35

ADSP-BF60x Processor-Specific Information ... 10-35

ADSP-BF60x L2 Memory Controller Throughput ... 10-36

Dynamic Memory Controller (DMC)

DMC Features ... 11-1
 xiv ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Feature Exclusions ... 11-2

Functional Description ... 11-3

ADSP-BF60x DMC Register List ... 11-3

DMC Protocol Controller .. 11-4

DMC Efficiency Controller ... 11-4

Read/Write Turnaround .. 11-4

Closed Page Per Bank ... 11-6

SCB ID Based Priority .. 11-6

Delaying up to Eight Auto-Refresh Commands ... 11-7

Page Interleaving and Bank Interleaving ... 11-7

System Crossbar Slave Interface ... 11-7

Read/Write Command and Data Buffers .. 11-8

Peripheral Bus Slave Interface .. 11-8

Architectural Concepts .. 11-8

DMC Clocking .. 11-9

DMC DMA ... 11-9

DMC Event Control .. 11-9

DMC Programming Model ... 11-9

Configuring the DMC .. 11-10

Saving Power with the DMC .. 11-12

ADSP-BF60x DMC Register Descriptions ... 11-13

Control Register .. 11-14

Status Register .. 11-17

Efficiency Control Register .. 11-19

Priority ID Register ... 11-23

Priority ID Mask Register ... 11-24

Configuration Register .. 11-25

Timing 0 Register ... 11-26

Timing 1 Register ... 11-28

Timing 2 Register ... 11-29
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xv

CONTENTS
Mask (Mode Register Shadow) Register .. 11-30

Shadow MR Register .. 11-32

Shadow EMR1 Register .. 11-34

Shadow EMR2 Register .. 11-36

Shadow EMR3 Register .. 11-38

DLL Control Register ... 11-39

PHY Control 1 Register .. 11-40

PHY Control 3 Register .. 11-41

PAD Control Register ... 11-43

ADSP-BF60x Specific Register/Bit Settings .. 11-46

Cyclic Redundancy Check (CRC)

CRC Features .. 12-1

CRC Functional Description ... 12-2

ADSP-BF60x CRC Register List .. 12-3

ADSP-BF60x CRC Interrupt List .. 12-4

CRC Definitions .. 12-4

CRC Block Diagram .. 12-5

Peripheral DMA Bus .. 12-6

MMR Access Bus ... 12-6

Mirror Block ... 12-7

Data FIFO ... 12-7

DMA Request Generator .. 12-7

CRC Engine .. 12-7

Compare Logic ... 12-7

CRC Architectural Concepts ... 12-7

Lookup Table .. 12-8

Data Mirroring .. 12-8

FIFO Status and Data Requests .. 12-9

CRC Operating Modes .. 12-10

Data Transfer Modes .. 12-10
 xvi ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Memory Scan Compute and Compare .. 12-11

Memory Scan Data Verify .. 12-12

Memory Transfer Compute and Compare .. 12-12

Memory Transfer Data Fill Mode ... 12-12

CRC Event Control ... 12-13

Interrupt Signals ... 12-13

CRC Programming Model .. 12-14

CRC Mode Configuration .. 12-14

Look-Up Table Generation ... 12-14

Core Driven Memory Scan Compute Compare Mode ... 12-15

DMA Driven Memory Scan Compute Compare Mode .. 12-16

Core Driven Memory Scan Data Verify Mode ... 12-18

DMA Driven Memory Scan Data Verify Mode ... 12-20

Core Driven Memory Transfer Compute Compare Mode .. 12-21

DMA Driven Memory Transfer Compute Compare Mode .. 12-23

DMA Driven Memory Transfer Data Fill Mode .. 12-25

CRC Peripheral and DMA Channel List .. 12-26

ADSP-BF60x CRC Register Descriptions .. 12-27

Control Register .. 12-28

Data Word Count Register .. 12-31

Data Word Count Reload Register ... 12-32

Data Compare Register ... 12-32

Fill Value Register .. 12-33

Data FIFO Register ... 12-34

Interrupt Enable Register .. 12-34

Interrupt Enable Set Register .. 12-35

Interrupt Enable Clear Register .. 12-36

Polynomial Register .. 12-37

Status Register .. 12-38

Data Count Capture Register .. 12-40
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xvii

CONTENTS
CRC Final Result Register .. 12-41

CRC Current Result Register .. 12-42

Direct Memory Access (DMA)

DMA Channel Features .. 13-1

DMA Channel Functional Description ... 13-2

ADSP-BF60x DMA Register List ... 13-3

DMA Definitions ... 13-4

Block Diagram ... 13-6

SCB Interface Signals .. 13-8

DMA Channel Peripheral DMA Bus .. 13-8

DMA Channel MMR Access Bus .. 13-9

Event Signals .. 13-9

Architectural Concepts .. 13-10

DMA Channel SCB Interface ... 13-10

SCB Interface Signals ... 13-10

SCB Burst Transfers ... 13-11

Data Address Alignment .. 13-11

Descriptor Set Address Alignment ... 13-12

DMA Channel Peripheral DMA Bus .. 13-12

Peripheral Control Commands ... 13-13

Peripheral Control Command Restrictions .. 13-15

Memory DMA and Triggering ... 13-16

DMA Channel MMR Access Bus .. 13-19

DMA Channel Operation Flow ... 13-19

Startup .. 13-19

Refresh ... 13-21

Work Unit Transitions ... 13-22

Transfer Termination and Shutdown ... 13-24

DMA Channel Errors .. 13-26

Status and Debug ... 13-26
 xviii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
DMA Configuration Register Errors .. 13-27

Illegal Register Write During Run ... 13-27

Address Alignment Error ... 13-27

Memory Access Error ... 13-27

Trigger Overrun Error ... 13-27

Bandwidth Monitor Error ... 13-28

Control Interface Error .. 13-28

DMA Operating Modes .. 13-28

Register Based Flow Modes ... 13-28

Stop Mode ... 13-29

Autobuffer Mode .. 13-29

Descriptor Based Flow Modes .. 13-29

Descriptor Array Mode ... 13-30

Descriptor List Mode .. 13-30

Descriptor Sets ... 13-30

Minimum Startup Requirements .. 13-31

Descriptor On-Demand Modes ... 13-31

Data Transfer Modes .. 13-32

Two-Dimensional DMA ... 13-32

DMA Channel Event Control ... 13-33

Event Signals ... 13-34

Work Unit State Events .. 13-34

Peripheral Interrupt Request Events ... 13-35

Peripheral Data Request Events ... 13-35

DMA Channel Triggers .. 13-35

Issuing Triggers .. 13-36

Waiting For Triggers .. 13-36

DMA Channel Programming Model .. 13-37

Mode Configuration ... 13-37

Register Based Linear Buffer Stop Flow Mode ... 13-38
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xix

CONTENTS
Register Based Autobuffer Flow Mode ... 13-39

Descriptor Array Flow Mode .. 13-40

Descriptor List Flow Mode ... 13-41

Register Based Memory-to-Memory Transfer in Stop Flow Mode .. 13-42

Programming Concepts .. 13-43

Synchronization of Software and DMA ... 13-43

Interrupt and Trigger Event Based Synchronization ... 13-44

Register Polling Based Synchronization .. 13-44

Descriptor Queues ... 13-44

Queues Using Event Generation for Every Descriptor Set .. 13-45

Queues Using Minimal Events .. 13-46

ADSP-BF60x DMA Register Descriptions ... 13-47

Pointer to Next Initial Descriptor .. 13-48

Start Address of Current Buffer .. 13-49

Configuration Register .. 13-49

Inner Loop Count Start Value ... 13-59

Inner Loop Address Increment ... 13-60

Outer Loop Count Start Value (2D only) ... 13-61

Outer Loop Address Increment (2D only) .. 13-61

Current Descriptor Pointer .. 13-62

Previous Initial Descriptor Pointer ... 13-63

Current Address .. 13-64

Status Register .. 13-65

Current Count(1D) or intra-row XCNT (2D) ... 13-68

Current Row Count (2D only) .. 13-69

Bandwidth Limit Count .. 13-70

Bandwidth Limit Count Current ... 13-70

Bandwidth Monitor Count .. 13-71

Bandwidth Monitor Count Current ... 13-72

DMA Channel List for ADSP-BF60x .. 13-72
 xx ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
General-Purpose Ports (PORT)

PORT Features .. 14-2

PORT Functional Description .. 14-2

ADSP-BF60x PORT Register List .. 14-2

ADSP-BF60x PINT Register List .. 14-3

ADSP-BF60x PINT Interrupt List ... 14-4

ADSP-BF60x PINT Trigger List ... 14-5

ADSP-BF60x PADS Register List .. 14-5

PORT Definitions .. 14-5

PORT Architectural Concepts ... 14-6

Internal Interfaces .. 14-6

External Interfaces .. 14-6

GPIO Functionality ... 14-6

Input Mode ... 14-6

Output Mode ... 14-7

Open-Drain Mode ... 14-7

Port Multiplexing Control ... 14-7

ADSP-BF60x Multiplexing Scheme .. 14-8

PORT Event Control ... 14-10

PORT Interrupt Signals ... 14-11

PORT Programming Model .. 14-13

ADSP-BF60x PORT Register Descriptions .. 14-16

Port x Function Enable Register ... 14-17

Port x Function Enable Set Register ... 14-20

Port x Function Enable Clear Register ... 14-23

Port x GPIO Data Register .. 14-26

Port x GPIO Data Set Register ... 14-29

Port x GPIO Data Clear Register .. 14-33

Port x GPIO Direction Register .. 14-37

Port x GPIO Direction Set Register .. 14-41
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxi

CONTENTS
Port x GPIO Direction Clear Register .. 14-44

Port x GPIO Input Enable Register ... 14-47

Port x GPIO Input Enable Set Register .. 14-50

Port x GPIO Input Enable Clear Register ... 14-53

Port x Multiplexer Control Register ... 14-56

Port x GPIO Input Enable Toggle Register .. 14-58

Port x GPIO Polarity Invert Register .. 14-61

Port x GPIO Polarity Invert Set Register .. 14-65

Port x GPIO Polarity Invert Clear Register .. 14-68

Port x GPIO Lock Register ... 14-71

ADSP-BF60x PINT Register Descriptions .. 14-73

Pint Mask Set Register .. 14-74

Pint Mask Clear Register .. 14-77

Pint Request Register .. 14-80

Pint Assign Register .. 14-84

Pint Edge Set Register .. 14-86

Pint Edge Clear Register ... 14-89

Pint Invert Set Register ... 14-92

Pint Invert Clear Register ... 14-95

Pint Pinstate Register .. 14-98

Pint Latch Register .. 14-102

ADSP-BF60x PADS Register Descriptions .. 14-106

EMAC and PTP Clock Select Register ... 14-107

TWI Voltage Selection ... 14-108

GPIO Pin Hysteresis Enable Register ... 14-109

General-Purpose Timer (TIMER)

GP Timer Features .. 15-1

ADSP-BF60x TIMER Register List ... 15-2

ADSP-BF60x TIMER Interrupt List .. 15-3

ADSP-BF60x TIMER Trigger List .. 15-3
 xxii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
GP Timer Internal Interface ... 15-4

GP Timer External Interface .. 15-4

GP Timer General Operation .. 15-5

Period, Width and Delay Register Interaction .. 15-5

GP Timer Programming Concepts .. 15-7

Setting Up Constantly Changing Timer Conditions ... 15-7

Configuring, Enabling and Disabling One or More Timers .. 15-7

Configuring Timer Data and Status Interrupts ... 15-8

Using the Timer Broadcast Feature .. 15-8

Single-Pulse PWMOUT Mode ... 15-8

Timer Continuous PWMOUT Mode ... 15-9

TIMER Width Capture (WIDCAP) Mode .. 15-10

GP Timer Width Capture Mode Overflow .. 15-14

Windowed Watchdog (WATCHDOG) Modes .. 15-16

Timer Windowed Watchdog Width Mode ... 15-17

Timer Windowed Watchdog Period Mode .. 15-18

Pin Interrupt (PININT) Mode ... 15-20

TIMER External Clock (EXTCLK) Mode .. 15-21

Timer Illegal States .. 15-22

Continuous PWMOUT Mode .. 15-23

Single Pulse PWMOUT Mode .. 15-24

WID CAP Mode .. 15-24

EXTCLK Mode ... 15-25

WATCHDOG Events .. 15-25

ADSP-BF60x TIMER Register Descriptions .. 15-26

Run Register ... 15-27

Run Set Register ... 15-28

Run Clear Register .. 15-29

Stop Configuration Register ... 15-30

Stop Configuration Set Register ... 15-31
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxiii

CONTENTS
Stop Configuration Clear Register .. 15-32

Data Interrupt Mask Register .. 15-33

Status Interrupt Mask Register ... 15-34

Trigger Master Mask Register .. 15-35

Trigger Slave Enable Register .. 15-36

Data Interrupt Latch Register .. 15-36

Status Interrupt Latch Register ... 15-37

Error Type Status Register .. 15-38

Broadcast Period Register ... 15-40

Broadcast Width Register ... 15-41

Broadcast Delay Register .. 15-42

Timer n Configuration Register .. 15-42

Timer n Counter Register ... 15-46

Timer n Period Register .. 15-47

Timer n Width Register .. 15-47

Timer n Delay Register ... 15-48

Watchdog Timer (WDOG)

WDOG Features ... 16-1

Watchdog Timer Functional Description ... 16-1

ADSP-BF60x WDOG Register List .. 16-2

ADSP-BF60x WDOG Interrupt List ... 16-2

WDOG Block Diagram ... 16-2

Internal Interface ... 16-3

External Interface .. 16-3

WDOG Configuration ... 16-3

ADSP-BF60x WDOG Register Descriptions .. 16-4

Control Register .. 16-4

Count Register .. 16-5

Watchdog Timer Status Register .. 16-5
 xxiv ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
General-Purpose Counter (CNT)

GP Counter Features ... 17-1

CNT Functional Description ... 17-1

ADSP-BF60x CNT Register List .. 17-2

ADSP-BF60x CNT Interrupt List .. 17-3

ADSP-BF60x CNT Trigger List .. 17-3

GP Counter Operating Modes ... 17-4

Quadrature Encoder Mode ... 17-4

Binary Encoder Mode .. 17-4

Up/Down Counter Mode ... 17-5

Direction Counter Mode .. 17-5

Timed Direction Mode ... 17-5

CNT Event Control ... 17-6

Illegal Gray/Binary Code Events ... 17-6

Up/Down Count Events ... 17-6

Zero-Count Events ... 17-6

Overflow Events ... 17-7

Boundary Match Events ... 17-7

Zero Marker Events ... 17-7

GP Counter Programming Model ... 17-7

CNT General Programming Flow .. 17-7

CNT Mode Configuration .. 17-8

Configuring GP Counter Push-Button Operation ... 17-8

Configuring Zero-Marker-Zeros-Counter Mode .. 17-8

Configuring Zero-Marker-Error Mode ... 17-9

Configuring Zero-Once Mode .. 17-9

Configuring Boundary Auto-Extend Mode .. 17-9

Configuring Boundary Capture Mode .. 17-10

Configuring Boundary Compare and Boundary Zero Modes ... 17-10

Configuring GP Counter Push-Button Operation ... 17-11
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxv

CONTENTS
GP Counter Programming Concepts .. 17-11

CNT Input Noise Filtering ... 17-11

Capturing Counter Interval and CNT_CNTR Read Timing ... 17-12

Capturing Time Interval Between Successive Counter Events .. 17-14

ADSP-BF60x CNT Register Descriptions .. 17-15

Configuration Register .. 17-15

Interrupt Mask Register .. 17-18

Status Register .. 17-20

Command Register ... 17-21

Debounce Register .. 17-23

Counter Register ... 17-24

Maximum Count Register ... 17-25

Minimum Count Register ... 17-26

Pulse-Width Modulator (PWM)

PWM Features ... 18-1

Functional Description ... 18-1

ADSP-BF60x PWM Register List ... 18-2

ADSP-BF60x PWM Interrupt List .. 18-4

ADSP-BF60x PWM Trigger List .. 18-5

Architectural Concepts ... 18-5

Block Diagram ... 18-5

Timer Units .. 18-6

PWM Switching Frequency (PWM_TM) Register .. 18-7

Timer Unit Operation .. 18-7

Phase Offset Control ... 18-9

Channel Timing Control Unit .. 18-13

Channel Control .. 18-13

Pulse Positioning and Duty Cycle Registers ... 18-14

Duty Cycle and Pulse Positioning Control ... 18-14

Channel Low Side Output Dependent Operation Mode and Dead-Time ... 18-15
 xxvi ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Channel High Side and Low Side Outputs, Independent Operation Mode .. 18-17

Switched Reluctance Motors Application ... 18-19

Switching Dead Time (PWM_DT) Register .. 18-20

Duty Cycle with Dead-Time Control: Calculations for PULSEMODE 00 .. 18-20

Special Consideration for PWM Operation in Over-Modulation ... 18-22

Output Disable and Cross-Over Functions .. 18-23

Brushless DC Motor (Electronically Commutated Motor) Control ... 18-24

Gate Drive Unit ... 18-25

Output Control Feature Precedence ... 18-26

Sync Operation ... 18-26

Internal PWM SYNC Generation ... 18-27

External PWM SYNC Generation ... 18-27

Event Control ... 18-27

Trip Control Unit .. 18-28

Programming Model .. 18-30

Programming Model for 3-Phase AC Motor Control .. 18-30

System Parameters ... 18-31

System State Sequencing ... 18-32

PWM Initialization for Motor Control .. 18-32

PWM Enable for Motor Control ... 18-35

PWM Response to Sync Interrupt for Motor Control ... 18-36

PWM Disable (and Stop the Motor) for Motor Control ... 18-37

ADSP-BF60x PWM Register Descriptions ... 18-38

Control Register .. 18-39

Channel Config Register ... 18-42

Trip Config Register ... 18-48

Status Register .. 18-52

Interrupt Mask Register .. 18-57

Interrupt Latch Register .. 18-59

Chop Configuration Register .. 18-61
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxvii

CONTENTS
Dead Time Register .. 18-62

Sync Pulse Width Register ... 18-63

Timer 0 Period Register .. 18-64

Timer 1 Period Register .. 18-65

Timer 2 Period Register .. 18-65

Timer 3 Period Register .. 18-66

Timer 4 Period Register .. 18-67

Channel A Delay Register .. 18-68

Channel B Delay Register ... 18-69

Channel C Delay Register ... 18-69

Channel D Delay Register .. 18-70

Channel A Control Register .. 18-71

Channel A-High Duty-0 Register ... 18-73

Channel A-High Duty-1 Register ... 18-74

Channel A-Low Duty-0 Register .. 18-75

Channel A-Low Duty-1 Register .. 18-76

Channel B Control Register .. 18-77

Channel B-High Duty-0 Register ... 18-79

Channel B-High Duty-1 Register ... 18-80

Channel B-Low Duty-0 Register .. 18-81

Channel B-Low Duty-1 Register .. 18-82

Channel C Control Register .. 18-83

Channel C-High Pulse Duty Register 0 .. 18-85

Channel C-High Pulse Duty Register 1 .. 18-86

Channel C-Low Pulse Duty Register 0 ... 18-87

Channel C-Low Duty-1 Register .. 18-88

Channel D Control Register .. 18-89

Channel D-High Duty-0 Register ... 18-91

Channel D-High Pulse Duty Register 1 .. 18-92

Channel D-Low Pulse Duty Register 0 ... 18-92
 xxviii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Channel D-Low Pulse Duty Register 1 ... 18-93

Universal Asynchronous Receiver/Transmitter (UART)

UART Features ... 19-1

UART Functional Description .. 19-2

ADSP-BF60x UART Register List .. 19-2

ADSP-BF60x UART Interrupt List ... 19-3

ADSP-BF60x UART Trigger List ... 19-4

ADSP-BF60x UART DMA List .. 19-4

UART Block Diagram ... 19-5

UART Architectural Concepts ... 19-5

Internal Interface ... 19-5

External Interface .. 19-6

Hardware Flow Control .. 19-6

UART Bit Rate Generation ... 19-7

Autobaud Detection .. 19-8

UART Debug Features ... 19-9

UART Operating Modes ... 19-10

UART Mode .. 19-10

IrDA SIR Mode ... 19-11

Multi-Drop Bus Mode ... 19-11

UART Data Transfer Modes .. 19-13

UART Mode Transmit Operation (Core) ... 19-13

UART Mode LIN Break Command ... 19-13

UART Mode Receive Operation (Core) ... 19-14

IrDA Transmit Operation .. 19-15

IrDA Receive Operation ... 19-15

MDB Transmit Operation ... 19-17

MDB Receive Operation .. 19-17

DMA Mode ... 19-17

Mixing DMA and Core Modes ... 19-18
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxix

CONTENTS
Setting Up Hardware Flow Control .. 19-19

UART Event Control .. 19-19

Interrupt Masks .. 19-19

Interrupt Servicing ... 19-20

Transmit Interrupts .. 19-20

Receive Interrupts .. 19-21

Status Interrupts ... 19-23

Multi-Drop Bus Events .. 19-23

UART Programming Model ... 19-24

Detecting Autobaud ... 19-24

Using Common Initialization Steps ... 19-24

Using Core Transfers ... 19-25

Using DMA Transfers ... 19-25

Using Interrupts ... 19-25

Setting Up Hardware Flow Control ... 19-25

ADSP-BF60x UART Register Descriptions .. 19-25

Control Register .. 19-26

Status Register .. 19-33

Scratch Register .. 19-38

Clock Rate Register .. 19-38

Interrupt Mask Register .. 19-39

Interrupt Mask Set Register .. 19-43

Interrupt Mask Clear Register ... 19-45

Receive Buffer Register .. 19-47

Transmit Hold Register ... 19-48

Transmit Address/Insert Pulse Register .. 19-48

Transmit Shift Register ... 19-49

Receive Shift Register .. 19-50

Transmit Counter Register .. 19-51

Receive Counter Register ... 19-51
 xxx ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
2-Wire Interface (TWI)

TWI Features .. 20-1

TWI Functional Description ... 20-2

ADSP-BF60x TWI Register List ... 20-2

ADSP-BF60x TWI Interrupt List .. 20-3

TWI Block Diagram .. 20-3

External Interface ... 20-4

Serial Clock Signal (SCL) .. 20-4

Serial Data Signal (SDA) .. 20-5

Internal Interface .. 20-5

TWI Architectural Concepts .. 20-5

TWI Protocol .. 20-5

Clock Generation and Synchronization ... 20-6

Bus Arbitration ... 20-7

Start and Stop Conditions ... 20-7

General Call Support .. 20-8

Fast Mode ... 20-8

TWI Operating Modes .. 20-8

Repeated Start .. 20-9

Transmit Receive Repeated Start ... 20-9

Receive Transmit Repeated Start ... 20-9

Clock Stretching .. 20-10

Clock Stretching During FIFO Underflow ... 20-11

Clock Stretching During FIFO Overflow ... 20-11

Clock Stretching During Repeated Start ... 20-12

TWI Programming Model .. 20-13

General Setup ... 20-13

Slave Mode .. 20-14

Master Mode Program Flow .. 20-15

Master Mode Clock Setup ... 20-16
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxxi

CONTENTS
Master Mode Transmit ... 20-17

Master Mode Receive .. 20-18

ADSP-BF60x TWI Register Descriptions ... 20-18

SCL Clock Divider Register ... 20-19

Control Register .. 20-20

Slave Mode Control Register .. 20-22

Slave Mode Status Register .. 20-23

Slave Mode Address Register ... 20-24

Master Mode Control Registers .. 20-25

Master Mode Status Register .. 20-27

Master Mode Address Register ... 20-30

Interrupt Status Register ... 20-31

Interrupt Mask Register .. 20-34

FIFO Control Register .. 20-36

FIFO Status Register ... 20-37

Tx Data Single-Byte Register ... 20-39

Tx Data Double-Byte Register ... 20-40

Rx Data Single-Byte Register ... 20-40

Rx Data Double-Byte Register ... 20-41

Controller Area Network (CAN)

CAN Features ... 21-1

CAN Functional Description .. 21-2

ADSP-BF60x CAN Register List .. 21-2

ADSP-BF60x CAN Interrupt List ... 21-4

External Interface ... 21-5

ADSP-BF60x Specific External Interface .. 21-5

Architectural Concepts .. 21-5

Block Diagram .. 21-7

Mailbox Control .. 21-7

Protocol Fundamentals ... 21-8
 xxxii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Data Transfer Modes .. 21-9

Transmit Operations ... 21-9

Retransmission ... 21-11

Single-Shot Transmission .. 21-11

Auto-Transmission ... 21-11

Receive Operation .. 21-12

Data Acceptance Filtering ... 21-14

Watchdog Mode ... 21-15

Time Stamps ... 21-15

Remote Frame Handling .. 21-16

Temporarily Disabling CAN Mailbox ... 21-16

CAN Operating Modes ... 21-17

Bit Timing .. 21-17

CAN Low Power Features .. 21-19

Built-In Suspend Mode .. 21-19

Built-In Sleep Mode ... 21-19

Wake-Up From Hibernate State ... 21-20

Soft Reset ... 21-20

CAN Event Control .. 21-20

CAN Interrupt Signals ... 21-20

Mailbox Interrupts .. 21-21

Global Interrupt ... 21-21

Event Counter .. 21-23

CAN Warnings and Errors ... 21-23

Programmable Warning Limits .. 21-23

Error Handling .. 21-24

Error Frames ... 21-24

Error Levels .. 21-25

CAN Debug and Test Modes ... 21-27

ADSP-BF60x CAN Register Descriptions .. 21-29
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxxiii

CONTENTS
Mailbox Configuration 1 Register .. 21-31

Mailbox Direction 1 Register ... 21-32

Transmission Request Set 1 Register .. 21-33

Transmission Request Reset 1 Register .. 21-34

Transmission Acknowledge 1 Register .. 21-35

Abort Acknowledge 1 Register ... 21-36

Receive Message Pending 1 Register ... 21-37

Receive Message Lost 1 Register ... 21-38

Mailbox Transmit Interrupt Flag 1 Register ... 21-39

Mailbox Receive Interrupt Flag 1 Register ... 21-40

Mailbox Interrupt Mask 1 Register ... 21-41

Remote Frame Handling 1 Register .. 21-42

Overwrite Protection/Single Shot Transmission 1 Register ... 21-44

Mailbox Configuration 2 Register .. 21-45

Mailbox Direction 2 Register ... 21-46

Transmission Request Set 2 Register .. 21-47

Transmission Request Reset 2 Register .. 21-48

Transmission Acknowledge 2 Register .. 21-48

Abort Acknowledge 2 Register ... 21-49

Receive Message Pending 2 Register ... 21-50

Receive Message Lost 2 Register ... 21-51

Mailbox Transmit Interrupt Flag 2 Register ... 21-52

Mailbox Receive Interrupt Flag 2 Register ... 21-53

Mailbox Interrupt Mask 2 Register ... 21-54

Remote Frame Handling 2 Register .. 21-55

Overwrite Protection/Single Shot Transmission 2 Register ... 21-57

Clock Register ... 21-58

Timing Register .. 21-58

Debug Register ... 21-59

Status Register .. 21-61
 xxxiv ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Error Counter Register .. 21-64

Global CAN Interrupt Status Register .. 21-64

Global CAN Interrupt Mask Register ... 21-68

Global CAN Interrupt Flag Register ... 21-70

CAN Master Control Register .. 21-72

Interrupt Pending Register .. 21-74

Temporary Mailbox Disable Register ... 21-76

Error Counter Warning Level Register ... 21-77

Error Status Register ... 21-78

Universal Counter Register ... 21-79

Universal Counter Reload/Capture Register ... 21-80

Universal Counter Configuration Mode Register ... 21-81

Acceptance Mask (L) Register .. 21-82

Acceptance Mask (H) Register ... 21-83

Mailbox Word 0 Register ... 21-84

Mailbox Word 1 Register ... 21-85

Mailbox Word 2 Register ... 21-85

Mailbox Word 3 Register ... 21-86

Mailbox Length Register .. 21-87

Mailbox Timestamp Register .. 21-87

Mailbox ID 0 Register .. 21-88

Mailbox ID 1 Register .. 21-88

Universal Serial Bus (USB)

USB Features .. 22-1

USB Functional Description ... 22-2

USB Architectural Concepts .. 22-2

Multi-Point Support .. 22-3

On-Chip Bus Interfaces .. 22-3

FIFO Configuration .. 22-4

Clocking .. 22-4
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxxv

CONTENTS
UTMI Interface ... 22-5

ADSP-BF60x USB Register List ... 22-5

ADSP-BF60x USB Interrupt List .. 22-8

ADSP-BF60x USB Trigger List .. 22-9

USB Block Diagram .. 22-9

USB Definitions ... 22-10

USB References ... 22-12

USB Operating Modes .. 22-12

Peripheral Mode ... 22-13

Endpoint Setup .. 22-13

IN Transactions as a Peripheral ... 22-14

OUT Transactions as a Peripheral .. 22-15

High-Bandwidth Isochronous/Interrupt Transactions ... 22-16

High Bandwidth Isochronous/Interrupt IN Endpoints .. 22-17

High Bandwidth Isochronous/Interrupt OUT Endpoints .. 22-18

Peripheral Transfer Work Flows ... 22-19

Control Transactions as a Peripheral ... 22-20

Write Requests ... 22-20

Read Requests .. 22-21

Zero Data Requests .. 22-22

ENDPOINT 0 States .. 22-22

Endpoint 0 Service Routine as Peripheral ... 22-24

Peripheral Mode, Bulk IN, Transfer Size Known .. 22-28

Peripheral Mode, Bulk IN, Transfer Size Unknown .. 22-29

Peripheral Mode, ISO IN, Small MaxPktSize ... 22-29

Peripheral Mode, ISO IN, Large MaxPktSize .. 22-30

Peripheral Mode, Bulk OUT, Transfer Size Known .. 22-30

Peripheral Mode, Bulk OUT, Transfer Size Unknown .. 22-31

Peripheral Mode, ISO OUT, Small MaxPktSize ... 22-31

Peripheral Mode, ISO OUT, Large MaxPktSize ... 22-32
 xxxvi ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Peripheral Mode Suspend ... 22-32

Start-of-frame (SOF) Packets ... 22-32

Soft Connect/Soft Disconnect ... 22-33

Error Handling As a Peripheral ... 22-33

Stalls Issued to Control Transfers ... 22-34

Zero Length OUT Data Packets in Control Transfers .. 22-34

Host Mode .. 22-34

Transaction Scheduling ... 22-35

Endpoint Setup and Data Transfer .. 22-35

Control Transaction as a Host ... 22-35

Setup Phase as a Host ... 22-36

IN Data Phase as a Host .. 22-37

OUT Data as a Host (Control) .. 22-37

IN Status Phase as a Host (Following SETUP Phase or OUT Data Phase) ... 22-38

OUT Status Phase as a Host (Following IN Data Phase) ... 22-39

Host IN Transactions .. 22-39

Host OUT Transactions .. 22-40

Multi-Point Support ... 22-40

Allocating Devices to Endpoints ... 22-40

Multi-Point Operation ... 22-41

Multi-Point Bandwidth Considerations ... 22-42

Babble Interrupt .. 22-42

VBUS Events .. 22-43

Actions as an “A” Device .. 22-43

Actions as a “B” Device .. 22-44

Host Mode Reset ... 22-44

Host Mode Suspend .. 22-44

Suspending and Resuming the Controller .. 22-45

Suspend/Resume by Inactivity on the USB Bus (L0 to L2 State) in Peripheral Mode 22-45

Suspend/Resume By Inactivity On The USB Bus (L0 To L2 State) In Host Mode 22-46
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxxvii

CONTENTS
Suspend/Resume By an LPM Transaction (L0 To L1 State) In Peripheral Mode 22-47

Suspend/Resume by an LPM Transaction (L0 to L1 State) in Host Mode 22-48

USB Event Control ... 22-49

Interrupt Signals .. 22-49

Interrupt Handling .. 22-50

Reset Signals .. 22-52

Reset in Peripheral Mode .. 22-52

USB Reset in Host Mode .. 22-52

USB Programming Model .. 22-53

Peripheral Mode Flow Charts .. 22-53

Host Mode Flow Charts ... 22-61

DMA Mode Flow Charts ... 22-70

OTG Session Request .. 22-75

Starting a Session .. 22-76

Detecting Activity ... 22-76

Host Negotiation Protocol ... 22-77

Wakeup from Hibernate State .. 22-77

Data Transfer ... 22-78

Loading/Unloading Packets from Endpoints ... 22-79

DMA Master Channels .. 22-79

DMA Bus Cycles ... 22-80

Transferring Packets Using DMA ... 22-82

Individual RX Endpoint Packet .. 22-82

Individual TX Endpoint Packet ... 22-82

Multiple RX Endpoint Packets ... 22-83

Multiple TX Endpoint Packets ... 22-84

ADSP-BF60x USB Register Descriptions ... 22-84

Function Address Register .. 22-87

Power and Device Control Register .. 22-88

Transmit Interrupt Register ... 22-90
 xxxviii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Receive Interrupt Register .. 22-93

Transmit Interrupt Enable Register ... 22-95

Receive Interrupt Enable Register .. 22-97

Common Interrupts Register ... 22-99

Common Interrupts Enable Register ... 22-101

Frame Number Register .. 22-102

Index Register ... 22-103

Testmode Register .. 22-104

FIFO Byte (8-Bit) Register ... 22-105

FIFO Half-Word (16-Bit) Register ... 22-105

FIFO Word (32-Bit) Register ... 22-106

Device Control Register .. 22-107

Transmit FIFO Size Register .. 22-109

Receive FIFO Size Register .. 22-110

Transmit FIFO Address Register .. 22-111

Receive FIFO Address Register ... 22-112

Endpoint Information Register ... 22-113

RAM Information Register ... 22-113

Link Information Register .. 22-114

VBUS Pulse Length Register ... 22-115

High-Speed EOF 1 Register ... 22-115

Full-Speed EOF 1 Register ... 22-116

Low-Speed EOF 1 Register .. 22-117

Software Reset Register .. 22-117

MPn Transmit Function Address Register .. 22-118

MPn Transmit Hub Address Register ... 22-119

MPn Transmit Hub Port Register ... 22-119

MPn Receive Function Address Register ... 22-120

MPn Receive Hub Address Register .. 22-120

MPn Receive Hub Port Register ... 22-121
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xxxix

CONTENTS
EPn Transmit Maximum Packet Length Register .. 22-122

EP0 Configuration and Status (Host) Register ... 22-123

EP0 Configuration and Status (Peripheral) Register .. 22-125

EPn Transmit Configuration and Status (Host) Register .. 22-128

EPn Transmit Configuration and Status (Peripheral) Register ... 22-131

EPn Receive Maximum Packet Length Register .. 22-134

EPn Receive Configuration and Status (Host) Register ... 22-135

EPn Receive Configuration and Status (Peripheral) Register ... 22-140

EP0 Number of Received Bytes Register ... 22-143

EPn Number of Bytes Received Register ... 22-144

EPn Transmit Type Register ... 22-145

EP0 Connection Type Register ... 22-146

EP0 NAK Limit Register .. 22-147

EPn Transmit Polling Interval Register .. 22-147

EPn Receive Type Register .. 22-148

EPn Receive Polling Interval Register .. 22-150

EP0 Configuration Information Register .. 22-151

DMA Interrupt Register .. 22-153

DMA Channel n Control Register .. 22-155

DMA Channel n Address Register ... 22-157

DMA Channel n Count Register ... 22-158

EPn Request Packet Count Register ... 22-158

Chirp Timeout Register .. 22-159

Host High Speed Return to Normal Register .. 22-160

High Speed Timeout Register ... 22-160

LPM Attribute Register .. 22-161

LPM Control Register ... 22-162

LPM Interrupt Enable Register ... 22-164

LPM Interrupt Status Register .. 22-165

LPM Function Address Register ... 22-167
 xl ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
VBUS Control Register .. 22-168

Battery Charging Control Register ... 22-168

PHY Control Register ... 22-169

PLL and Oscillator Control Register .. 22-170

Ethernet Media Access Controller (EMAC)

EMAC Features .. 23-1

EMAC Functional Description ... 23-2

ADSP-BF60x EMAC Register List ... 23-2

ADSP-BF60x EMAC Interrupt List .. 23-9

ADSP-BF60x EMAC Trigger List .. 23-9

EMAC Definitions ... 23-9

EMAC Block Diagram and Interfaces ... 23-10

EMAC CORE Sub-Blocks .. 23-12

EMAC PHY Interface ... 23-14

Clock Sources ... 23-15

EMAC Architectural Concepts .. 23-15

EMAC System Crossbar Interface (EMAC SCB) .. 23-16

Priority of SCB Requests .. 23-17

SCB Interface Programming Options ... 23-17

DMA Bursts Using the SCB Interface .. 23-19

SCB Bus Transaction Status .. 23-20

Fatal Bus Error ... 23-20

DMA Controller (EMAC DMA) .. 23-20

DMA Related Registers ... 23-22

DMA Descriptors ... 23-23

OWN Bit (Ownership) Semaphore ... 23-39

Application Data Buffer Alignment .. 23-40

Buffer Size Calculations ... 23-40

EMAC FIFO Layer (EMAC MFL) .. 23-41

FIFO Size ... 23-41
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xli

CONTENTS
FIFO Layer Transmit Path ... 23-41

FIFO Layer Receive Path .. 23-42

EMAC CORE .. 23-43

EMAC CORE Transmission Engine ... 23-45

EMAC CORE Reception Engine ... 23-50

EMAC Station Management Interface (SMI) ... 23-56

MDC Clock Frequency .. 23-57

SMI Write Operation ... 23-59

SMI Read Operation .. 23-59

EMAC Management Counters (MMC) .. 23-60

MMC Receive Interrupt Register ... 23-61

MMC Transmit Interrupt Register .. 23-61

MMC Receive Checksum Offload Interrupt Register .. 23-62

EMAC Precision Time Protocol (PTP) Engine .. 23-62

IEEE1588 and the PTP Engine .. 23-62

Block Diagram .. 23-67

PTP Module Clock ... 23-68

Timestamp Module .. 23-69

EMAC Event Control ... 23-82

EMAC Interrupt Signals .. 23-82

PHYINT Interrupt Signal ... 23-84

EMAC Programming Model .. 23-85

EMAC Programming Steps ... 23-85

DMA Initialization .. 23-85

EMAC CORE Initialization .. 23-86

Performing Normal Transmit and Receive Operations .. 23-87

Stopping and Starting Transfers ... 23-87

Interrupts and Interrupt Service Routines .. 23-88

Enabling Checksum for Transmit and Receive ... 23-89

Programming the System Time Module ... 23-90
 xlii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Programming The PTP for Frame Detection and Timestamping ... 23-91

Programming for Auxiliary Timestamps ... 23-91

Programming Fixed Pulse-Per-Second Output ... 23-92

Programming Flexible Pulse-Per-Second Output ... 23-92

EMAC Programming Concepts .. 23-93

IEEE 802.3 Ethernet Packet Structure ... 23-93

Frame Size Statistics for Application Software ... 23-94

Software Visualization of Programmable Packet Size .. 23-94

Ethernet Packet Structure in C ... 23-95

DMA Descriptor Implementation in C .. 23-95

PTP Header Structure in C ... 23-96

ADSP-BF60x EMAC Register Descriptions ... 23-96

MAC Configuration Register .. 23-102

MAC Rx Frame Filter Register .. 23-107

Hash Table High Register ... 23-110

Hash Table Low Register ... 23-110

SMI Address Register ... 23-111

SMI Data Register .. 23-113

FLow Control Register ... 23-113

VLAN Tag Register .. 23-115

Debug Register ... 23-116

Interrupt Status Register ... 23-119

Interrupt Mask Register .. 23-121

MAC Address 0 High Register ... 23-121

MAC Address 0 Low Register .. 23-122

MMC Control Register ... 23-123

MMC Rx Interrupt Register .. 23-125

MMC Tx Interrupt Register .. 23-128

MMC Rx Interrupt Mask Register .. 23-131

MMC TX Interrupt Mask Register ... 23-134
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xliii

CONTENTS
Tx OCT Count (Good/Bad) Register .. 23-138

Tx Frame Count (Good/Bad) Register .. 23-138

Tx Broadcast Frames (Good) Register ... 23-139

Tx Multicast Frames (Good) Register .. 23-140

Tx 64-Byte Frames (Good/Bad) Register ... 23-140

Tx 65- to 127-Byte Frames (Good/Bad) Register .. 23-141

Tx 128- to 255-Byte Frames (Good/Bad) Register .. 23-141

Tx 256- to 511-Byte Frames (Good/Bad) Register .. 23-142

Tx 512- to 1023-Byte Frames (Good/Bad) Register .. 23-143

Tx 1024- to Max-Byte Frames (Good/Bad) Register ... 23-143

Tx Unicast Frames (Good/Bad) Register .. 23-144

Tx Multicast Frames (Good/Bad) Register ... 23-145

Tx Broadcast Frames (Good/Bad) Register .. 23-145

Tx Underflow Error Register .. 23-146

Tx Single Collision (Good) Register .. 23-147

Tx Multiple Collision (Good) Register ... 23-147

Tx Deferred Register ... 23-148

Tx Late Collision Register .. 23-149

Tx Excess Collision Register .. 23-149

Tx Carrier Error Register .. 23-150

Tx Octet Count (Good) Register ... 23-151

Tx Frame Count (Good) Register ... 23-151

Tx Excess Deferral Register ... 23-152

Tx Pause Frame Register .. 23-153

Tx VLAN Frames (Good) Register .. 23-153

Rx Frame Count (Good/Bad) Register ... 23-154

Rx Octet Count (Good/Bad) Register ... 23-155

Rx Octet Count (Good) Register .. 23-155

Rx Broadcast Frames (Good) Register ... 23-156

Rx Multicast Frames (Good) Register .. 23-156
 xliv ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Rx CRC Error Register ... 23-157

Rx alignment Error Register ... 23-158

Rx Runt Error Register ... 23-158

Rx Jab Error Register .. 23-159

Rx Undersize (Good) Register .. 23-159

Rx Oversize (Good) Register .. 23-160

Rx 64-Byte Frames (Good/Bad) Register ... 23-161

Rx 65- to 127-Byte Frames (Good/Bad) Register .. 23-161

Rx 128- to 255-Byte Frames (Good/Bad) Register .. 23-162

Rx 256- to 511-Byte Frames (Good/Bad) Register .. 23-163

Rx 512- to 1023-Byte Frames (Good/Bad) Register .. 23-163

Rx 1024- to Max-Byte Frames (Good/Bad) Register ... 23-164

Rx Unicast Frames (Good) Register ... 23-165

Rx Length Error Register .. 23-165

Rx Out Of Range Type Register ... 23-166

Rx Pause Frames Register .. 23-167

Rx FIFO Overflow Register ... 23-167

Rx VLAN Frames (Good/Bad) Register .. 23-168

Rx Watch Dog Error Register ... 23-169

MMC IPC Rx Interrupt Mask Register ... 23-169

MMC IPC Rx Interrupt Register .. 23-174

Rx IPv4 Datagrams (Good) Register .. 23-179

Rx IPv4 Datagrams Header Errors Register ... 23-179

Rx IPv4 Datagrams No Payload Frame Register .. 23-180

Rx IPv4 Datagrams Fragmented Frames Register .. 23-181

Rx IPv4 UDP Disabled Frames Register .. 23-181

Rx IPv6 Datagrams Good Frames Register .. 23-182

Rx IPv6 Datagrams Header Error Frames Register .. 23-183

Rx IPv6 Datagrams No Payload Frames Register .. 23-183

Rx UDP Good Frames Register .. 23-184
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xlv

CONTENTS
Rx UDP Error Frames Register .. 23-185

Rx TCP Good Frames Register .. 23-185

Rx TCP Error Frames Register ... 23-186

Rx ICMP Good Frames Register .. 23-187

Rx ICMP Error Frames Register .. 23-187

Rx IPv4 Datagrams Good Octets Register ... 23-188

Rx IPv4 Datagrams Header Errors Register ... 23-189

Rx IPv4 Datagrams No Payload Octets Register .. 23-189

Rx IPv4 Datagrams Fragmented Octets Register ... 23-190

Rx IPv4 UDP Disabled Octets Register ... 23-191

Rx IPv6 Good Octets Register .. 23-191

Rx IPv6 Header Errors Register ... 23-192

Rx IPv6 No Payload Octets Register .. 23-193

Rx UDP Good Octets Register ... 23-193

Rx UDP Error Octets Register .. 23-194

Rx TCP Good Octets Register .. 23-195

Rx TCP Error Octets Register .. 23-195

Rx ICMP Good Octets Register .. 23-196

Rx ICMP Error Octets Register .. 23-197

Time Stamp Control Register ... 23-197

Time Stamp Sub Second Increment Register ... 23-202

Time Stamp Low Seconds Register .. 23-203

Time Stamp Nanoseconds Register .. 23-204

Time Stamp Seconds Update Register .. 23-204

Time Stamp Nanoseconds Update Register .. 23-205

Time Stamp Addend Register ... 23-206

Time Stamp Target Time Seconds Register ... 23-207

Time Stamp Target Time Nanoseconds Register ... 23-207

Time Stamp High Second Register ... 23-208

Time Stamp Status Register .. 23-209
 xlvi ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
PPS Control Register .. 23-210

Time Stamp Auxiliary TS Nano Seconds Register .. 23-213

Time Stamp Auxiliary TM Seconds Register ... 23-214

Time Stamp PPS Interval Register ... 23-215

PPS Width Register .. 23-215

DMA Bus Mode Register ... 23-216

DMA Tx Poll Demand Register ... 23-219

DMA Rx Poll Demand register .. 23-220

DMA Rx Descriptor List Address Register .. 23-221

DMA Tx Descriptor List Address Register .. 23-222

DMA Status Register .. 23-223

DMA Operation Mode Register ... 23-227

DMA Interrupt Enable Register .. 23-231

DMA Missed Frame Register ... 23-234

DMA Rx Interrupt Watch Dog Register ... 23-235

DMA SCB Bus Mode Register ... 23-236

DMA SCB Status Register ... 23-238

DMA Tx Descriptor Current Register .. 23-238

DMA Rx Descriptor Current Register .. 23-239

DMA Tx Buffer Current Register ... 23-239

DMA Rx Buffer Current Register .. 23-240

Removable Storage Interface (RSI)

RSI Features .. 24-1

RSI Functional Description .. 24-2

ADSP-BF60x RSI Register List .. 24-2

ADSP-BF60x RSI Interrupt List .. 24-4

ADSP-BF60x RSI Trigger List .. 24-4

RSI Block Diagram .. 24-4

RSI Architectural Concepts ... 24-5

Signal Descriptions ... 24-6
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xlvii

CONTENTS
Clock Configuration .. 24-8

Interface Configuration .. 24-8

Card Detection ... 24-9

Power Saving Configuration ... 24-10

RSI Command-Response Interface ... 24-11

IDLE State ... 24-14

PEND State .. 24-15

SEND State .. 24-15

WAIT State .. 24-15

RECEIVE State .. 24-15

Command Path CRC ... 24-16

RSI Data Interface ... 24-16

RSI Data Transmit Path ... 24-18

RSI Data Receive Path ... 24-19

Data Path CRC .. 24-20

RSI Data FIFO ... 24-20

Card Busy/Ready Detection .. 24-21

SDIO Support ... 24-22

RSI Operating Modes ... 24-23

Card Identification Mode .. 24-23

Data Transfer Mode ... 24-23

DMA Data Transfers .. 24-24

Core Data Transfers ... 24-24

Boot Mode .. 24-24

Normal Boot Mode .. 24-24

Alternate Boot Mode .. 24-26

Sleep Mode ... 24-28

RSI Event Control ... 24-29

RSI Interrupt Signals ... 24-29

RSI Status and Error Signals ... 24-29
 xlviii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
RSI Programming Model .. 24-29

Card Identification .. 24-29

SD Card Identification .. 24-30

MMC Card Identification Procedure ... 24-31

Data Transfer .. 24-32

Single Block Writes ... 24-32

Single Block Core Write .. 24-32

Single Block DMA Writes ... 24-33

Single Block Reads .. 24-34

Single Block Core Reads .. 24-35

Single Block DMA Reads ... 24-36

Multiple Block Writes ... 24-38

Multiple Block Core Write ... 24-38

Multiple Block DMA Writes .. 24-39

Multiple Block Read .. 24-41

Multiple Block Core Reads ... 24-41

Multiple Block DMA Reads ... 24-42

RSI Programming Concepts .. 24-44

Disabling CRC check ... 24-44

Data End Interrupt ... 24-44

Miscellaneous Programming Guidelines ... 24-44

ADSP-BF60x RSI Register Descriptions .. 24-44

Control Register .. 24-46

Argument Register .. 24-48

Command Register ... 24-49

Response Command Register ... 24-51

Response 0 Register .. 24-52

Response 1 Register .. 24-53

Response 2 Register .. 24-53

Response 3 Register .. 24-54
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE xlix

CONTENTS
Data Timer Register .. 24-55

Data Length Register .. 24-56

Data Control Register ... 24-56

Data Count Register .. 24-57

Transfer Status Register .. 24-58

Transfer Status Clear Register .. 24-61

Transfer Interrupt 0 Mask Register ... 24-63

Transfer Interrupt 1 Mask Register ... 24-66

FIFO Counter Register .. 24-70

Boot Timing Counter Register .. 24-70

Boot Acknowledge Timeout Register ... 24-71

Sleep Wakeup Timeout Register .. 24-72

Block Size Register ... 24-73

Data FIFO Register ... 24-74

Exception Status Register ... 24-74

Exception Mask Register .. 24-78

Configuration Register .. 24-80

Read Wait Enable Register ... 24-82

Peripheral ID 0 Register ... 24-83

Peripheral ID 1 Register ... 24-84

Peripheral ID 2 Register ... 24-84

Peripheral ID 3 Register ... 24-85

Serial Peripheral Interface (SPI)

SPI Features .. 25-1

SPI Functional Description ... 25-1

ADSP-BF60x SPI Register List ... 25-2

ADSP-BF60x SPI Interrupt List .. 25-3

ADSP-BF60x SPI Trigger List .. 25-4

SPI Block Diagram .. 25-4

Transfer Protocol ... 25-5
 l ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
SPI Clock Considerations ... 25-7

Controlling Delay Between Frames ... 25-7

SPI Flow Control .. 25-9

Slave Select Operation .. 25-10

Beginning and Ending a Non-DMA SPI Transfer .. 25-11

Transmit Operation in Non-DMA Mode .. 25-12

Receive Operation in Non-DMA Mode .. 25-12

Dual I/O Mode ... 25-13

Quad I/O Mode ... 25-14

Fast Mode ... 25-15

SPI Interrupt Signals ... 25-16

Data Interrupts ... 25-16

Status Interrupts ... 25-17

Error Conditions .. 25-18

SPI Programming Concepts .. 25-18

Programming Guidelines ... 25-19

Master Operation in Non-DMA Modes ... 25-19

Slave Operation in Non-DMA Modes ... 25-20

Configuring DMA Master Mode ... 25-20

Configuring DMA Slave Mode Operation .. 25-22

ADSP-BF60x SPI Register Descriptions ... 25-23

Control Register .. 25-24

Receive Control Register .. 25-31

Transmit Control Register .. 25-33

Clock Rate Register .. 25-36

Delay Register ... 25-37

Slave Select Register .. 25-38

Received Word Count Register .. 25-41

Received Word Count Reload Register .. 25-42

Transmitted Word Count Register .. 25-42
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE li

CONTENTS
Transmitted Word Count Reload Register .. 25-43

Interrupt Mask Register .. 25-44

Interrupt Mask Clear Register ... 25-45

Interrupt Mask Set Register .. 25-47

Status Register .. 25-48

Masked Interrupt Condition Register ... 25-53

Masked Interrupt Clear Register ... 25-54

Receive FIFO Data Register ... 25-56

Transmit FIFO Data Register ... 25-57

Serial Port (SPORT)

Features ... 26-2

Signal Descriptions ... 26-3

Serial Clock .. 26-4

Frame Sync .. 26-5

Data Signals ... 26-6

Transmit Data Valid Signal ... 26-7

Functional Description .. 26-7

ADSP-BF60x SPORT Register List .. 26-7

ADSP-BF60x SPORT Interrupt List ... 26-9

ADSP-BF60x SPORT Trigger List ... 26-9

ADSP-BF60x SPORT DMA List .. 26-10

Block Diagram ... 26-10

Architectural Concepts .. 26-11

Multiplexer Logic ... 26-13

Data Types and Companding ... 26-15

Companding as a Function ... 26-16

Transmit Path ... 26-16

Receive Path .. 26-17

Sampling Edge .. 26-18

Premature Frame Sync Error Detection .. 26-19
 lii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Support for Edge-Detected and Level-Sensitive Frame Syncs ... 26-20

Serial Word Length ... 26-21

Operating Modes ... 26-22

Mode Selection .. 26-23

Standard Serial Mode ... 26-24

Timing Control Bits .. 26-24

Clocking Options .. 26-25

Frame Sync Options .. 26-25

Data-Dependent Versus Data-Independent Frame Sync ... 26-25

Early Versus Late Frame Syncs ... 26-26

Framed Versus Unframed Frame Syncs .. 26-27

Logic Level .. 26-27

Stereo Modes ... 26-28

Channel Order First .. 26-28

I2S Mode ... 26-28

Protocol Configuration Options ... 26-28

Serial Clock and Frame Sync Rates ... 26-29

Left-Justified Mode ... 26-29

Protocol Configuration Options ... 26-30

Serial Clock and Frame Sync Rates ... 26-30

Right-Justified Mode .. 26-31

Timing Control Bits ... 26-32

Serial Clock and Frame Sync Rates ... 26-33

Multichannel Mode .. 26-33

Protocol Configuration Options .. 26-34

Clocking Options .. 26-34

Frame Sync Options .. 26-34

Transmit Data Valid (TDV) .. 26-35

Active Channel Selection Registers (SPORT_CS0_A) .. 26-36

Multichannel Frame Delay (MFD) ... 26-36
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE liii

CONTENTS
Number of Multichannel Slots (WSIZE) .. 26-37

Window Offset (WOFFSET) .. 26-37

Companding Selection .. 26-37

Multichannel DMA Data Packing (MCPDE) ... 26-37

Multichannel Frame .. 26-38

Packed I2S Mode ... 26-38

Protocol Configuration Options .. 26-39

Clocking Options .. 26-40

Frame Sync Options .. 26-40

Gated Clock Mode .. 26-40

Data Transfers ... 26-41

Data Buffers ... 26-41

Transmit Data Buffers (SPORT_TXPRI_A and SPORT_TXSEC_A) ... 26-42

Receive Data Buffers (SPORT_RXPRI_A and SPORT_RXSEC_A) ... 26-42

Data Buffer Status ... 26-43

Data Buffer Packing ... 26-43

Single Word (Core) Transfers .. 26-44

DMA Transfers .. 26-44

Error Detection .. 26-45

Interrupts .. 26-46

Internal Transfer Completion .. 26-46

Transfer Finish Interrupt (TFI) ... 26-47

ADSP-BF60x SPORT Register Descriptions .. 26-47

Half SPORT 'A' Control Register ... 26-48

Half SPORT 'A' Divisor Register ... 26-57

Half SPORT 'A' Multi-channel Control Register ... 26-58

Half SPORT 'A' Multi-channel 0-31 Select Register .. 26-60

Half SPORT 'A' Multi-channel 32-63 Select Register .. 26-61

Half SPORT 'A' Multi-channel 64-95 Select Register .. 26-62

Half SPORT 'A' Multi-channel 96-127 Select Register .. 26-62
 liv ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Half SPORT 'A' Error Register ... 26-63

Half SPORT 'A' Multi-channel Status Register .. 26-65

Half SPORT 'A' Control 2 Register .. 26-66

Half SPORT 'A' Tx Buffer (Primary) Register ... 26-67

Half SPORT 'A' Rx Buffer (Primary) Register ... 26-68

Half SPORT 'A' Tx Buffer (Secondary) Register ... 26-69

Half SPORT 'A' Rx Buffer (Secondary) Register ... 26-70

Half SPORT 'B' Control Register ... 26-71

Half SPORT 'B' Divisor Register ... 26-81

Half SPORT 'B' Multi-channel Control Register .. 26-82

Half SPORT 'B' Multi-channel 0-31 Select Register .. 26-84

Half SPORT 'B' Multi-channel 32-63 Select Register .. 26-85

Half SPORT 'B' Multichannel 64-95 Select Register ... 26-86

Half SPORT 'B' Multichannel 96-127 Select Register ... 26-86

Half SPORT 'B' Error Register ... 26-87

Half SPORT 'B' Multi-channel Status Register .. 26-89

Half SPORT 'B' Control 2 Register .. 26-90

Half SPORT 'B' Tx Buffer (Primary) Register ... 26-91

Half SPORT 'B' Rx Buffer (Primary) Register ... 26-92

Half SPORT 'B' Tx Buffer (Secondary) Register ... 26-93

Half SPORT 'B' Rx Buffer (Secondary) Register ... 26-94

ADC Control Module (ACM)

ACM Features ... 27-2

ACM Functional Description .. 27-3

ADSP-BF60x ACM Register List ... 27-5

ADSP-BF60x ACM Interrupt List ... 27-6

ADSP-BF60x ACM Trigger List ... 27-6

ACM Event Handling Latency .. 27-6

ACM Timing Specifications .. 27-8

ACM External Pin Timing ... 27-9
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lv

CONTENTS
Case 1—Chip Select Asserted During the High Phase of ACLK (CLKPOL=0) 27-10

Case 2—Chip Select Asserted During the Low Phase of ACLK (CLKPOL=0) 27-10

Case 3—Chip Select Asserted Right Before the Falling Edge of ACLK (CLKPOL=1) 27-11

Case 4—Chip Select Asserted Right Before the Rising Edge of ACLK (CLKPOL=0) 27-11

Case 5—ACLK Polarity Set to 1 (CLKPOL=1) ... 27-12

ACM Architectural Concepts .. 27-12

ACM Block Diagram .. 27-12

ACM Trigger Inputs ... 27-14

ACM Timers ... 27-16

Event Register Pairs .. 27-16

Event Comparators Unit ... 27-17

Timing Generation Unit .. 27-18

Status Flags and Interrupts .. 27-18

Event Order Registers ... 27-19

ACM Programming Concepts .. 27-20

Emulation Mode Use Case .. 27-21

Single-Shot Sequencing Mode Emulation .. 27-21

Continuous Sequencing Mode Emulation ... 27-22

ADSP-BF60x ACM Register Descriptions ... 27-24

Control Register .. 27-25

Timing Configuration 0 Register .. 27-28

Timing Configuration 1 Register .. 27-29

Status Register .. 27-30

Event Complete Status Register ... 27-31

Event Complete Interrupt Mask Register ... 27-36

Missed Event Status Register ... 27-39

Missed Event Interrupt Mask Register ... 27-43

Event N Control Register .. 27-46

Event N Time Register ... 27-47

Event N Order Register ... 27-48
 lvi ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Timer 0 Register ... 27-49

Timer 1 Register ... 27-50

Link Port (LP)

LP Features ... 28-1

LP Functional Description .. 28-1

ADSP-BF60x LP Register List .. 28-1

ADSP-BF60x LP Interrupt List ... 28-2

ADSP-BF60x LP Trigger List ... 28-2

ADSP-BF60x LP DMA List .. 28-3

Block Diagram ... 28-3

External Connections .. 28-4

Internal Blocks .. 28-5

Architectural Concepts .. 28-5

Link Port Protocol ... 28-5

FIFO Buffers .. 28-8

Handshake for Link Port Enable Process .. 28-10

Clocking ... 28-10

Multi-Processor Connectivity .. 28-11

LP Operating Modes .. 28-13

LP Data Transfer Modes .. 28-13

Core Data Transfers .. 28-13

DMA Data Transfers ... 28-13

LP Event Control .. 28-13

Interrupt Signals .. 28-14

Enabling Link Port Interrupts .. 28-14

Status and Error Signals ... 28-15

LP Programming Model ... 28-15

Setting Up a DMA Transmit Operation ... 28-15

Setting Up a DMA Receive Operation .. 28-16

Setting Up a Core Transmit Operation .. 28-17
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lvii

CONTENTS
Setting Up a Core Receive Operation .. 28-17

ADSP-BF60x LP Register Descriptions .. 28-18

Control Register .. 28-18

Status Register .. 28-20

Clock Divider Value ... 28-22

Transmit Buffer ... 28-23

Receive Buffer .. 28-24

Shadow Input Transmit Buffer ... 28-25

Shadow Output Transmit Buffer ... 28-25

Video Subsystem (VID)

VID Features ... 29-1

VID Functional Description .. 29-1

ADSP-BF60x VID Register List ... 29-2

VID Block Diagram ... 29-2

VID Architectural Concepts .. 29-3

VID Status and Error Signals .. 29-3

VID Programming Model ... 29-4

VID Performance .. 29-4

ADSP-BF60x VID Register Descriptions ... 29-4

Video Subsystem Connect Register .. 29-5

Pipelined Vision Processor (PVP)

PVP Features ... 30-1

PVP Functional Description ... 30-2

ADSP-BF60x PVP Register List ... 30-2

ADSP-BF60x PVP Interrupt List .. 30-8

ADSP-BF60x PVP Trigger List .. 30-9

ADSP-BF60x PVP DMA List ... 30-10

PVP Block Diagram ... 30-11

PVP Definitions ... 30-11
 lviii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Input Formatters (IPFn) ... 30-12

Input Formatters with Odd/Even Outputs ... 30-14

Input Formatters with Windowing .. 30-14

Input Formatters Receiving Packed Data ... 30-15

Input Formatters Receiving Unsigned Data .. 30-16

Input Formatters with Color Extraction .. 30-16

Input Formatters with Color Separation ... 30-21

Input Formatters Using PPI and PVP ... 30-22

Input Formatters and Pipe Mastering .. 30-33

Output Formatters (OPFn) ... 30-34

OPFn Data Packing ... 30-35

OPFn Output FIFOs .. 30-37

Threshold-Histogram-Compression (THCn) ... 30-38

THCn Threshold Unit ... 30-40

THCn Histogram Unit .. 30-42

THCn Compression Unit .. 30-42

THCn Windowing ... 30-43

Convolution (CNVn) ... 30-43

Red Pixel Substitution .. 30-47

Polar Magnitude and Angle Block (PMA) .. 30-49

Arithmetic Control Unit (ACU) ... 30-52

Pixel Edge Classifier (PEC) ... 30-57

PEC 1st Derivative Mode (PEC-1) ... 30-59

PEC 2nd Derivative Mode (PEC-2) .. 30-63

Integral Image Block (IIMn) .. 30-67

IIMn Data Types ... 30-68

IIMn Bandwidth Usage ... 30-69

IIMn Integral Row (IR) Mode .. 30-70

IIMn Summed Area Table (SAT) Mode ... 30-70

IIMn Rotated Summed Area Table (RSAT) Mode ... 30-71
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lix

CONTENTS
IIMn SAT/RSAT Map Usage ... 30-72

Up Down Scaler (UDS) ... 30-73

PVP Architectural Concepts .. 30-74

Operating Modes ... 30-75

Thresholds and Histograms ... 30-76

Sobel with 3x3 or 5x5 Matrix Operation ... 30-77

Sobel Output Formats .. 30-78

Canny with PEC in 1st-Derivative Mode .. 30-79

LoG with PEC in 2nd-Derivative Mode .. 30-81

DoG with PEC in 2nd-Derivative Mode .. 30-82

Integral of Input Pixels .. 30-83

Integral of Binary Edge Map ... 30-84

Integral of Variance ... 30-85

Histogram of Gradients (HoG) .. 30-86

Event Control .. 30-86

Interrupt Signals ... 30-87

Status and Error Signals ... 30-88

Finish Commands .. 30-89

Programming Model ... 30-90

Configuring Pipe Structure .. 30-90

Configuring with Register-Based Method (Camera Pipe) ... 30-95

Configuring with DMA-Based Method ... 30-96

Fetching the Initial Configuration .. 30-97

Configuring with Descriptor-Based Method (Memory Pipe) .. 30-98

Configuring with Dynamic (on-the-fly) Method ... 30-98

Working with Pipe Latency (Data Buffering) ... 30-101

Configuring with Daisy Chain Method ... 30-102

Working with DMA Job Lists ... 30-103

Static DMA Job List Operation .. 30-105

Dynamic DMA Job List Operation ... 30-108
 lx ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Working with Status (Histogram) Reports .. 30-116

Status Word Counters ... 30-117

Block Status Structure .. 30-118

ADSP-BF60x PVP Register Descriptions ... 30-119

Control .. 30-124

Interrupt Mask n .. 30-125

Status ... 30-129

Interrupt Latch Status n ... 30-135

Interrupt Request n .. 30-140

OPFn (Camera Pipe) Configuration ... 30-142

OPFn (Camera Pipe) Control .. 30-144

OPF3 (Memory Pipe) Configuration .. 30-146

OPF3 (Memory Pipe) Control .. 30-148

PEC Configuration .. 30-149

PEC Control .. 30-150

PEC Lower Hysteresis Threshold ... 30-152

PEC Upper Hysteresis Threshold ... 30-152

PEC Weak Zero Crossing Threshold .. 30-153

PEC Strong Zero Crossing Threshold .. 30-154

IIMn Configuration ... 30-154

IIMn Control ... 30-156

IIMn Scaling Values ... 30-157

IIMn Signed Overflow Status ... 30-157

IIMn Unsigned Overflow Status ... 30-158

ACU Configuration ... 30-159

ACU Control ... 30-161

ACU SUM Constant ... 30-163

ACU PROD Constant ... 30-164

ACU Shift Constant .. 30-165

ACU Lower Sat Threshold Min .. 30-165
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxi

CONTENTS
ACU Upper Sat Threshold Max ... 30-166

UDS Configuration ... 30-167

UDS Control ... 30-168

UDS Output HCNT .. 30-168

UDS Output VCNT .. 30-169

UDS HAVG .. 30-169

UDS VAVG .. 30-170

IPF0 (Camera Pipe) Configuration ... 30-171

IPFn (Camera/Memory Pipe) Pipe Control .. 30-171

IPFn (Camera/Memory Pipe) Control .. 30-172

IPFn (Camera/Memory Pipe) TAG Value .. 30-178

IPFn (Camera/Memory Pipe) Frame Count .. 30-179

IPFn (Camera/Memory Pipe) Horizontal Count ... 30-179

IPFn (Camera/Memory Pipe) Vertical Count ... 30-180

IPF0 (Camera Pipe) Horizontal Position .. 30-180

IPF0 (Camera Pipe) Vertical Position .. 30-181

IPFn (Camera/Memory Pipe) TAG Status .. 30-182

IPF1 (Memory Pipe) Configuration .. 30-182

CNVn Configuration ... 30-183

CNVn Control ... 30-184

CNVn Coefficients 0,0 and 0,1 ... 30-186

CNVn Coefficients 0,2 and 0,3 ... 30-187

CNVn Coefficient 0,4 ... 30-188

CNVn Coefficients 1,0 and 1,1 ... 30-188

CNVn Coefficients 1,2 and 1,3 ... 30-189

CNVn Coefficient 1,4 ... 30-190

CNVn Coefficients 2,0 and 2,1 ... 30-190

CNVn Coefficients 2,2 and 2,3 ... 30-191

CNVn Coefficient 2,4 ... 30-192

CNVn Coefficients 3,0 and 3,1 ... 30-192
 lxii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
CNVn Coefficients 3,2 and 3,3 ... 30-193

CNVn Coefficient 3,4 ... 30-194

CNVn Coefficients 4,0 and 4,1 ... 30-194

CNVn Coefficients 4,2 and 4,3 ... 30-195

CNVn Coefficient 4,4 ... 30-196

CNVn Scaling Factor .. 30-196

THCn Configuration ... 30-197

THCn Control ... 30-199

THCn Histogram Frame Count ... 30-202

THCn Max RLE Reports .. 30-202

THCn Min Clip Value .. 30-203

THCn Clip Min Threshold .. 30-204

THCn Clip Max Threshold ... 30-204

THCn Max Clip Value .. 30-205

THCn Threshold Value 0 .. 30-206

THCn Threshold Value 1 .. 30-206

THCn Threshold Value 2 .. 30-207

THCn Threshold Value 3 .. 30-208

THCn Threshold Value 4 .. 30-208

THCn Threshold Value 5 .. 30-209

THCn Threshold Value 6 .. 30-210

THCn Threshold Value 7 .. 30-210

THCn Threshold Value 8 .. 30-211

THCn Threshold Value 9 .. 30-212

THCn Threshold Value 10 .. 30-212

THCn Threshold Value 11 .. 30-213

THCn Threshold Value 12 .. 30-214

THCn Threshold Value 13 .. 30-214

THCn Threshold Value 14 .. 30-215

THCn Threshold Value 15 .. 30-216
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxiii

CONTENTS
THCn Histogram Horizontal Position .. 30-216

THCn Histogram Vertical Position ... 30-217

THCn Histogram Horizontal Count .. 30-218

THCn Histogram Vertical Count .. 30-218

THCn RLE Horizontal Position .. 30-219

THCn RLE Vertical Position .. 30-220

THCn RLE Horizontal Count ... 30-220

THCn RLE Vertical Count ... 30-221

THCn Histogram Frame Count Status .. 30-222

THCn Histogram Counter Value 0 ... 30-222

THCn Histogram Counter Value 1 ... 30-223

THCn Histogram Counter Value 2 ... 30-224

THCn Histogram Counter Value 3 ... 30-224

THCn Histogram Counter Value 4 ... 30-225

THCn Histogram Counter Value 5 ... 30-226

THCn Histogram Counter Value 6 ... 30-226

THCn Histogram Counter Value 7 ... 30-227

THCn Histogram Counter Value 8 ... 30-228

THCn Histogram Counter Value 9 ... 30-228

THCn Histogram Counter Value 10 ... 30-229

THCn Histogram Counter Value 11 ... 30-230

THCn Histogram Counter Value 12 ... 30-230

THCn Histogram Counter Value 13 ... 30-231

THCn Histogram Counter Value 14 ... 30-232

THCn Histogram Counter Value 15 ... 30-232

THCn Number of RLE Reports .. 30-233

PMA Configuration .. 30-234

Enhanced Parallel Peripheral Interface (EPPI)

EPPI Features .. 31-1

EPPI Functional Description .. 31-2
 lxiv ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
ADSP-BF60x EPPI Register List .. 31-2

ADSP-BF60x EPPI Interrupt List .. 31-3

ADSP-BF60x EPPI Trigger List .. 31-4

ADSP-BF60x EPPI DMA List .. 31-4

RGB Data Formats ... 31-5

Data Clipping ... 31-5

Data Mirroring ... 31-6

Windowing ... 31-7

Preamble, Blanking and Stripping Support ... 31-7

EPPI Definitions .. 31-8

EPPI Block Diagram .. 31-9

EPPI Architectural Concepts ... 31-9

EPPI Interface ... 31-10

Reset Operation ... 31-11

Frame Sync Polarity and Sampling Edge ... 31-11

Direct Memory Access (DMA) .. 31-12

Pixel Pipe Interface (PxP) ... 31-13

EPPI Clock .. 31-16

EPPI Operating Modes ... 31-17

ITU-R 656 Modes .. 31-17

ITU-R 656 Background .. 31-17

ITU-R 656 Input Modes ... 31-22

Entire Field .. 31-23

Active Video .. 31-23

Vertical Blanking Interval (VBI) ... 31-23

ITU-R 656 Output in General-Purpose Transmit Modes ... 31-24

Frame Synchronization in ITU-R 656 Modes ... 31-25

General-Purpose EPPI Modes ... 31-26

General-Purpose 0 Frame Sync Mode .. 31-26

General-Purpose 1 Frame Sync Mode .. 31-27
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxv

CONTENTS
General-Purpose 2 Frame Sync Mode .. 31-27

Data Enable in General-Purpose 2 Frame Sync Transmit Mode .. 31-27

General-Purpose 3 Frame Sync Mode .. 31-28

Supported Data Formats ... 31-28

Receive Data Formats ... 31-28

Transmit Data Formats ... 31-31

Data Transfer Modes .. 31-32

Data Packing for Receive Modes .. 31-32

Data Packing for Transmit Modes .. 31-33

Sign-Extension and Zero-Filling .. 31-33

Split Receive Modes ... 31-34

Split Transmit Modes .. 31-34

Clock Gating ... 31-34

Support for Delayed Start of EPPI Frame Syncs .. 31-35

Ignoring Premature External Frame Syncs for Data Consistency .. 31-35

EPPI Event Control ... 31-36

EPPI Status, Error and Interrupt Signals ... 31-36

PxP Errors ... 31-36

Frame and Line Track Errors .. 31-37

Line Track Errors ... 31-37

Frame Track Errors .. 31-37

Preamble Error Not Corrected Error ... 31-37

EPPI Programming Model .. 31-38

Receiving ITU-R 656 Frames ... 31-38

Transmitting ITU-R 656 Frames in GP Transmit Modes .. 31-38

Configuring Transfers in GP 0 FS Mode .. 31-39

Configuring Transfers in GP 1 FS Mode .. 31-39

Configuring Transfers in GP 2 FS Mode .. 31-40

Configuring Transfers in GP 3 FS Mode .. 31-41

Configuring the EPPI to Use the Windowing Feature ... 31-41
 lxvi ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
EPPI Mode Configuration ... 31-42

Configuring 8-Bit Receive Mode ... 31-42

Configuring 10/12/14-Bit Receive Modes .. 31-43

Configuring 16-Bit Receive Mode ... 31-45

Configuring 18-Bit Receive Mode ... 31-46

Configuring 24-Bit Receive Mode ... 31-47

Configuring 8-Bit Split Receive Mode ... 31-48

Configuring 10/12/14/16-Bit Split Receive Mode with SPLTWRD=0 .. 31-51

Configuring 16-Bit Split Receive Mode with SPLTWRD=1 ... 31-52

Configuring 8-Bit Transmit Mode .. 31-53

Configuring 10/12/14-Bit Transmit Modes .. 31-54

Configuring 16-Bit Transmit Mode .. 31-54

Configuring 18-Bit Transmit Mode .. 31-55

Configuring 24-Bit Transmit Mode .. 31-56

Configuring 8-Bit Split Transmit Mode ... 31-56

Configuring 10/12/14/16-Bit Transmit Mode with SPLTWRD=0 ... 31-59

Configuring 16-Bit Split Transmit Mode with SPLTWRD=1 ... 31-61

EPPI Programming Concepts .. 31-62

SMPTE Modes Programming ... 31-62

ADSP-BF60x EPPI Register Descriptions .. 31-63

Status Register .. 31-64

Horizontal Transfer Count Register .. 31-66

Horizontal Delay Count Register .. 31-67

Vertical Transfer Count Register .. 31-68

Vertical Delay Count Register .. 31-68

Lines Per Frame Register .. 31-69

Samples Per Line Register .. 31-70

Clock Divide Register ... 31-70

Control Register .. 31-71

FS1 Width Register / EPPI Horizontal Blanking Samples Per Line Register .. 31-80
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxvii

CONTENTS
FS1 Period Register / EPPI Active Samples Per Line Register .. 31-81

FS2 Width Register / EPPI Lines Of Vertical Blanking Register .. 31-81

FS2 Period Register / EPPI Active Lines Per Field Register ... 31-82

Interrupt Mask Register .. 31-83

Clipping Register for ODD (Chroma) Data .. 31-85

Clipping Register for EVEN (Luma) Data ... 31-86

Frame Sync 1 Delay Value ... 31-87

Frame Sync 2 Delay Value ... 31-88

Control Register 2 ... 31-89

Pixel Compositor (PIXC)

PIXC Features ... 32-2

PIXC Functional Description .. 32-2

ADSP-BF60x PIXC Register List ... 32-2

ADSP-BF60x PIXC Interrupt List ... 32-3

ADSP-BF60x PIXC Trigger List ... 32-4

ADSP-BF60x PIXC DMA List ... 32-4

PIXC Definitions ... 32-4

PIXC Block Diagram ... 32-5

PIXC Architectural Concepts .. 32-6

Pixel Pipe (PxP) Interface .. 32-7

Start Synchronization in PxP Input Mode .. 32-7

DMA Interface .. 32-7

PIXC Data Overlay .. 32-8

PIXC Transparency Control .. 32-11

PIXC Transparency Color ... 32-12

Color Space Conversion .. 32-13

PIXC Operating Modes .. 32-15

PIXC Mode Case 1 - Image/Overlay in the Same Format ... 32-15

PIXC Mode Case 2 - Image/Overlay in Different Formats ... 32-16

PIXC Mode Case 3 - Color Space Conversion Only ... 32-17
 lxviii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Image/Overlay/Format Actions ... 32-18

Image/Overlay/Format Recommendations .. 32-18

PIXC Image/Overlay/Format Special Use Cases .. 32-19

Example 1 - YUV 4:2:2 to YUV 4:4:4 or LCD/RGB .. 32-19

Example 2 - YUV 4:4:4 to YUV 4:4:4 or YUV 4:2:2 .. 32-19

Example 3 - YUV 4:2:2/4:4:4 to YUV 4:4:4 or YUV 4:2:2 .. 32-20

Example 4 - YUV 4:4:4 to YUV 4:2:2 ... 32-21

Color Space Conversion Matrix Equations ... 32-21

Color Space Converter Output Thresholds .. 32-22

YUV Re-Sampling ... 32-23

Supported Data Formats ... 32-24

Operation in YUV 4:2:2 Format ... 32-24

Operation in RGB888 Format .. 32-25

Operation in RGB565 Format .. 32-26

Operation in RGB666 Format .. 32-26

Operation with RGB656 and RGB666 Formats ... 32-27

PIXC Event Control .. 32-27

PIXC Programming Model ... 32-28

Mode Configuration ... 32-28

Performing Data Overlay .. 32-28

Performing Color Space Conversion Only .. 32-28

ADSP-BF60x PIXC Register Descriptions ... 32-29

Control Register .. 32-30

Pixels Per Line Register .. 32-32

Line Per Frame Register ... 32-33

Overlay A Horizontal Start Register ... 32-33

Overlay A Horizontal End Register .. 32-34

Overlay A Vertical Start Register ... 32-34

Overlay A Vertical End Register .. 32-35

Overlay A Transparency Ratio Register ... 32-35
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxix

CONTENTS
Overlay B Horizontal Start Register ... 32-36

Overlay B Horizontal End Register .. 32-36

Overlay B Vertical Start Register ... 32-37

Overlay B Vertical End Register .. 32-37

Overlay B Transparency Ratio Register ... 32-38

Interrupt Status Register ... 32-38

RY Conversion Component Register ... 32-39

GU Conversion Component Register ... 32-40

BV Conversion Component Register ... 32-41

Conversion Bias Register .. 32-42

Transparency Color Register .. 32-42

Reset Control Unit (RCU)

RCU Features .. 33-1

RCU Functional Description .. 33-1

ADSP-BF60x RCU Register List .. 33-2

ADSP-BF60x RCU Trigger List .. 33-2

RCU Definitions .. 33-3

RCU Architectural Concepts ... 33-3

RCU Status and Error Signals .. 33-5

Resetting a Core .. 33-5

ADSP-BF60x Specific Information .. 33-6

ADSP-BF60x RCU Register Descriptions .. 33-6

Control Register .. 33-7

Status Register .. 33-8

Core Reset Control Register ... 33-10

Core Reset Status Register .. 33-11

System Interface Disable Register .. 33-12

System Interface Status Register .. 33-12

SVECT Lock Register .. 33-13

Boot Code Register ... 33-14
 lxx ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Software Vector Register 0 ... 33-15

Software Vector Register 1 ... 33-15

 Boot ROM and Booting the Processor

Boot Loader Stream .. 34-1

Block Structure .. 34-3

Block Code .. 34-3

TARGET_ADDRESS ... 34-4

BYTE_COUNT ... 34-4

ARGUMENT ... 34-5

Block Types ... 34-5

Normal Block .. 34-5

First Block ... 34-5

Final Block .. 34-6

Indirect Block ... 34-6

Ignore Block ... 34-7

Init Block .. 34-7

Callback Block .. 34-8

Callback Block Used in Conjunction with Indirect Block ... 34-9

Quick Boot Block ... 34-10

Save Block .. 34-10

Forward Block .. 34-11

Forwarding to SPI ... 34-12

Forwarding to the Link Ports .. 34-13

Multi-DXE Boot Streams ... 34-14

Single-Block Boot Streams ... 34-15

Direct Code Execution .. 34-16

Boot Modes .. 34-17

No-Boot Mode ... 34-17

Memory Boot Mode ... 34-17

Padding Memory ... 34-19
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxxi

CONTENTS
Auto Detection .. 34-19

Default Static Memory Controller (SMC) settings ... 34-20

Run-time API .. 34-20

RSI Master Boot Mode .. 34-21

PageMode Customization ... 34-21

Callback Customization .. 34-22

RSI Code ... 34-22

Run-Time API ... 34-22

Notes on eMMC .. 34-24

SPI Master Boot Mode .. 34-24

SPI Device Detection Routine .. 34-25

Run-time API .. 34-27

SPI Slave Boot Mode ... 34-27

Run-Time API ... 34-31

Link Port Slave Boot Mode ... 34-31

Run-time API .. 34-32

UART Slave Boot Mode .. 34-33

Autobaud Detection .. 34-34

Run-time API .. 34-35

Boot Programming Model ... 34-36

Load Functions ... 34-36

 Page Mode ... 34-37

 Changing Settings at Run Time .. 34-38

CRC32 Protection ... 34-38

Error Handler .. 34-38

Fault Management ... 34-39

Callable API Overview ... 34-40

System Control ... 34-40

Functional Description ... 34-40

Boot Kernel ... 34-43
 lxxii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Boot Kernel .. 34-43

Boot Routine ... 34-43

CRC 32 Polynomial .. 34-44

CRC Initcode .. 34-44

ECC Protection ... 34-44

Execute .. 34-45

Forward Config ... 34-47

Get Address ... 34-47

Functional Description ... 34-47

Mem Compare .. 34-48

Memory Copy ... 34-48

Memory CRC .. 34-49

Memory Fill .. 34-49

Software Built-in Self Test ... 34-49

Booting Data Structures .. 34-50

STRUCT_ROM_SYSCTRL .. 34-51

STRUCT_ROM_BOOT_BUFFER .. 34-51

STRUCT_ROM_BOOT_CONFIG .. 34-52

STRUCT_ROM_BOOT_HEADER ... 34-54

STRUCT_ROM_BOOT_SPI ... 34-54

Wakeup From Hibernate .. 34-54

CGU Initialization after Wakeup .. 34-55

DDR Controller Initialization after Wakeup ... 34-55

BFLAG_WAKEUP and BFLAG_QUICKBOOT .. 34-56

ADSP-BF60x DPM Register List ... 34-56

DPM Restore ... 34-57

Reset and Power-up ... 34-59

Reset Vector .. 34-60

Servicing Reset Interrupts ... 34-60

NMI and RESOUT .. 34-60
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxxiii

CONTENTS
Program Flow - Main Routine .. 34-60

Core 0 ... 34-61

Core 1 ... 34-61

Core 1 Default Application ... 34-61

 Memory Initialization .. 34-61

 Boot Debug .. 34-62

Boot ROM Revision Control .. 34-63

Boot ROM Revision Control ... 34-63

Booting Register Reference ... 34-63

Status Register .. 34-64

Software Vector Register 0 ... 34-66

Software Vector Register 1 ... 34-66

Boot Code Register ... 34-67

RCU BCODE Register Definition ... 34-68

System Debug Unit (SDU)

SDU Features .. 35-1

SDU Functional Description ... 35-1

ADSP-BF60x SDU Register List .. 35-2

ADSP-BF60x SDU Interrupt List .. 35-3

ADSP-BF60x SDU Trigger List .. 35-3

ADSP-BF60x SDU DMA List .. 35-3

Definitions ... 35-3

Block Diagram ... 35-4

JTAG TAP Controller (JTC) Block Diagram .. 35-4

JTC Core Emulation .. 35-5

JTC Instruction Register (IR) ... 35-6

Memory Access Controller (MAC) .. 35-7

MAC Direct Access ... 35-7

MAC DMA Access .. 35-7

Group Halt .. 35-8
 lxxiv ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CONTENTS
Group Halt Status ... 35-8

Group Halt Masters .. 35-9

Group Halt Slaves .. 35-9

SDU Programming Concepts .. 35-9

Core Control .. 35-10

Memory and Register Access .. 35-10

Statistical Profiling .. 35-10

Power Management Support .. 35-10

Security Support .. 35-11

System Reset Support .. 35-11

ADSP-BF60x SDU Register Descriptions .. 35-11

ID Code Register .. 35-12

Control Register .. 35-13

Status Register .. 35-14

Memory Access Control Register ... 35-19

Memory Access Address Register .. 35-20

Memory Access Data Register .. 35-21

DMA Read Data Register ... 35-22

DMA Write Data Register .. 35-22

Message Register .. 35-23

Message Set Register .. 35-24

Message Clear Register .. 35-25

Group Halt Register .. 35-26

System Watchpoint Unit (SWU)

SWU Features ... 36-1

SWU Functional Description .. 36-1

ADSP-BF60x SWU Register List .. 36-1

ADSP-BF60x SWU Interrupt List ... 36-2

ADSP-BF60x SWU Trigger List ... 36-3

SWU Definitions ... 36-3
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxxv

CONTENTS
SWU Architectural Concepts ... 36-3

SWU Flow Diagram ... 36-4

SCB Interface .. 36-4

SWU Block Diagram ... 36-5

System Crossbar Block .. 36-5

MMR Block ... 36-5

SWU Operating Modes ... 36-5

Bandwidth Mode .. 36-5

Watchpoint Mode .. 36-6

Match Block .. 36-6

SWU Event Control .. 36-6

SWU Interrupts .. 36-6

SWU Status and Errors .. 36-6

Triggers .. 36-7

SWU Programming Model ... 36-7

SWU Mode Configuration ... 36-7

Configuring the SWU for Bandwidth Mode ... 36-7

Configuring the SWU for Watchpoint Mode .. 36-8

ADSP-BF60x SWU Register Descriptions .. 36-9

Global Control Register .. 36-9

Global Status Register .. 36-10

Control Register n ... 36-14

Lower Address Register n ... 36-19

Upper Address Register n ... 36-20

ID Register n ... 36-20

Count Register n ... 36-21

Target Register n ... 36-22

Bandwidth History Register n ... 36-23

Current Register n ... 36-23

Index
 lxxvi ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxxvii

 Preface

Thank you for purchasing and developing systems using an enhanced Blackfin processor from Analog
Devices, Inc.

Purpose of This Manual
The ADSP-BF60x Blackfin Processor Hardware Reference provides architectural information about the
ADSP-BF60x processors. This hardware reference provides the main architectural information about
these processors. The architectural descriptions cover functional blocks, buses, and ports, including all
features and processes that they support. For programming information, see the Blackfin Processor
Programming Reference. For timing, electrical, and package specifications, see the ADSP-BF60x Blackfin
Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar with Analog Devices processors.
The manual assumes the audience has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices processors can use this manual, but
should supplement it with other texts, such as programming reference books and data sheets, that describe
their target architecture.

Manual Contents
This manual consists of the following chapters:

• Preface

• Introduction — Provides a high level overview of the processor, including peripherals, power manage-
ment, and development tools.

• System Cross Bar (SCB) — Describes on-chip buses, including how data moves through the system.

• Clock Generation Unit (CGU) — Describes the phase locked loop (PLL), PLL control unit (PCU), and
CGU, which generate on-chip clocks.

• System Protection Unit (SPU) — Describes the system protection and how the SPU protects system
resources from errant writes.

PREFACE
MANUAL CONTENTS

 lxxviii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Dynamic Power Management (DPM) — Describes the clocking, including the PLL, and the dynamic
power management controller.

• Core Timers (TMR) — Each processor core has its own dedicated timer. The core timer is clocked by
the internal processor clock and is typically used as a system tick clock for generating periodic oper-
ating system interrupts.

• System Event Controller (SEC) — Describes the system peripheral interrupts, including setup and
clearing of interrupt requests.

• Trigger Routing Unit (TRU) — Describes TRU operations providing system-level sequence control
without core intervention.

• Static Memory Controller (SMC) — Describes the static (SRAM) memory controller of the processor
and the asynchronous memory interface.

• L2 Memory Controller (L2CTL) — Describes the memory controller and its operation.

• Dynamic Memory Controller (DMC) — Describes the dynamic (DDR2) memory controller of the
processor, related registers, configuration, and commands.

• Cyclic Redundancy Check (CRC) — Describes the CRC operations on blocks of data presented to the
peripheral.

• DMA Channel (DMA) — Describes the peripheral DMA and Memory DMA controllers, including
topics such as performance, software management of DMA, and DMA errors.

• General-Purpose Ports (PORTS) — Describes the general-purpose I/O ports, including the structure
of each port, multiplexing, configuring the pins, and generating interrupts.

• Pin Interrupts (PINT) — Describes operation of port pins on the processor, which can request inter-
rupts in either an edge-sensitive or a level-sensitive manner with programmable polarity.

• General-Purpose Timer (TIMER) — Describes the general-purpose timers that can be configured in
any of three modes; the core timer that can generate periodic interrupts for a variety of timing func-
tions; and the watchdog timer that can implement software watchdog functions, such as generating
events to the Blackfin processor core.

• Watchdog Timer (WDOG) — Describes the watchdog timer.

• General-Purpose Counter (CNT) — Describes the Rotary (up/down) Counter. This counter provides
support for manually controlled rotary controllers, such as the volume wheel on a radio device. This
unit also supports industrial or motor-control type of wheels.

• Pulsewidth Modulator (PWM) — Describes the The PWM controller—a flexible, programmable,
three-phase PWM waveform generator that can be programmed to generate the required switching
patterns to drive a three-phase voltage source inverter for ac induction motor (ACIM) or permanent
magnet synchronous motor (PMSM) control.

PREFACE
MANUAL CONTENTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxxix

• Universal Async Rx/Tx (UART) — Describes the Universal Asynchronous Receiver/Transmitter port
that converts data between serial and parallel formats. The UART supports the half-duplex IrDA SIR
protocol as a mode-enabled feature.

• Two Wire Interface (TWI) — Describes the Two Wire Interface (TWI) controller, which allows a
device to interface to an Inter IC bus as specified by the Philips I2 C Bus Specification version 2.1 dated
January 2000.

• Controller Area Network (CAN) — Describes the CAN module, a low bit rate serial interface intended
for use in applications where bit rates are typically up to 1Mbit/s.

• Universal Serial Bus (USB) — Describes the USB OTG interface of the processor. This interface
provides a low-cost connectivity solution for consumer mobile devices such as cell phones, digital still
cameras and MP3 players, allowing these devices to transfer data via a point-to-point USB connection
without the need for a PC host.

• 10/100 Ethernet MAC (EMAC) — Describes the Ethernet Media Access Controller (MAC) peripheral
that provides a 10/100M bit/s Ethernet interface, compliant to IEEE Std. 802.3-2002, between an MII
(Media Independent Interface) and the Blackfin peripheral subsystem. Also, describes the IEEE 1588
engine module and the module’s operation.

• Removable Storage Interface (RSI) — Describes the RSI interface for multimedia cards (MMC), secure
digital memory cards (SD) and secure digital input/output cards (SDIO).

• Serial Peripheral Interface (SPI) — Describes the Serial Peripheral Interface (SPI) port that provides an
I/O interface to a variety of SPI compatible peripheral devices.

• Serial Port (SPORT) — Describes the independent, synchronous Serial Port Controller which provides
an I/O interface to a variety of serial peripheral devices.

• ADC Control Module (ACM) — Describes the ADC control module (ACM), which provides an inter-
face to synchronize the controls between the processor and an analog-to-digital converter (ADC)
module.

• Link Port (LP) — Describes the two bidirectional 8-bit wide link ports, which can connect to other
processor or peripheral link ports.

• Video Subsystem (VID) — Describes the subsystem's connectivity matrix that interconnects the video
related peripherals.

• Pipelined Vision Processor (PVP) — Describes the PVP's support for co-processing and pre-
processing of monochrome video frames in ADAS applications, robotic systems, and other machine
applications.

• Parallel Peripheral Interface (PPI) — Describes the Parallel Peripheral Interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to 16 bits of data and is used for digital
video and data converter applications.

PREFACE
WHAT'S NEW IN THIS MANUAL

 lxxx ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Pixel Compositor (PIXC) — Describes the PIXC, which provides data overlay, transparent color, and
color space conversion support for active (TFT) flat-panel digital color/monochrome LCD displays or
analog NTSC/PAL video output.

• Reset Control Unit (RCU)

• Booting — Describes the booting methods, booting process and specific boot modes for the processor.

• Test Features — Describes test features for the processor, discusses the JTAG standard, boundary-scan
architecture, instruction and boundary registers, and public instructions.

– System Debug Unit (SDU)

– System Watchpoint Unit (SWU)

What's New in This Manual
This revision (0.5) is a preliminary revision of the ADSP-BF60x Blackfin Processor Hardware Reference.
This revision revises register information for the ACM and RSI chapters. Register name, bit name, and pin
name usage has been updated for consistent usage in all chapters. Also, this revision adds supplementary
information and corrections throughout the text.

Technical or Customer Support
You can reach customer and technical support for processors from Analog Devices in the following ways:

• Post your questions in the processors and DSP support community at EngineerZone:

http://ez.analog.com/community/dsp

• Submit your questions to technical support at Connect with ADI Specialists:

http://www.analog.com/support

• E-mail your questions about software/hardware development tools to:

processor.tools.support@analog.com

• E-mail your questions about processors and DSPs to:

processor.support@analog.com (world wide support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD (USA only)

• Contact your Analog Devices sales office or authorized distributor. Locate one at:

http://www.analog.com/adi-sales

http://ez.analog.com/community/dsp
http://www.analog.com/support
http://mailto:processor.tools.support@analog.com
http://mailto:processor.support@analog.com
http://mailto:processor.china@analog.com
http://www.analog.com/adi-sales

PREFACE
SUPPORTED PROCESSORS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxxxi

• Send questions by mail to:

Analog Devices, Inc.
 One Technology Way
 P.O. Box 9106
 Norwood, MA 02062-9106 USA

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in CrossCore Embedded Studio®
development tools.

Blackfin (ADSP-BFxxx) Processors
The name Blackfin refers to a family of 16-bit, embedded processors. CrossCore Embedded Studio currently
supports the following Blackfin families ADSP-BF50x, ADSP-BF51x, ADSP-BF52x, ADSP-BF53x, ADSP-
BF54x, ADSP-BF59x, ADSP-BF561, and ADSP-BF60x processors.

SHARC® (ADSP-21xxx) Processors
The name SHARC refers to a family of high-performance, 32-bit, floating-point processors that can be used
in speech, sound, graphics, and imaging applications. CrossCore Embedded Studio currently supports the
following SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x, ADSP-2136x, and ADSP-214xx.

Product Information
Product information can be obtained from the Analog Devices Web site and CrossCore Embedded Studio
online Help system.

Analog Devices Web Site

The Analog Devices Web site, http://www.analog.com, provides information about a broad range of prod-
ucts—analog integrated circuits, amplifiers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to: http://www.analog.com/proces-
sors/technical_library The manuals selection opens a list of current manuals related to the product as well
as a link to the previous revisions of the manuals. When locating your manual title, note a possible errata
check mark next to the title that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site that allows customization of a
Web page to display only the latest information about products you are interested in. You can choose to
receive weekly e-mail notifications containing updates to the Web pages that meet your interests,
including documentation errata against all manuals. MyAnalog.com provides access to books, application
notes, data sheets, code examples, and more.

http://www.analog.com
http://www.analog.com/processors/technical_library
http://www.analog.com/processors/technical_library
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx

PREFACE
NOTATION CONVENTIONS

 lxxxii ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail
address.

 EngineerZone

EngineerZone is a technical support forum from Analog Devices. It allows you direct access to ADI tech-
nical support engineers. You can search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also
use this open forum to share knowledge and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

Notation Conventions
Text conventions used in this manual are identified and described as follows. Additional conventions,
which apply only to specific chapters, may appear throughout this document.

Example Description

Close command (File menu) Titles in reference sections indicate the location of an
item within the CrossCore Embedded Studio IDE's
menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions
appear within curly brackets and separated by vertical
bars; read the example as this or that. One or the
other is required.

[this | that] Optional items in syntax descriptions appear within
brackets and separated by vertical bars; read the
example as an optional this or that.

[this,] Optional item lists in syntax descriptions appear
within brackets delimited by commas and terminated
with an ellipse; read the example as an optional
comma-separated list of this.

. SECTION Commands, directives, keywords, and feature names
are in text with letter gothic font.

filename Non-keyword placeholders appear in text with italic
style format.

https://registration.analog.com/Registration/login/login.aspx
http://ez.analog.com/welcome
http://ez.analog.com

PREFACE
NOTATION CONVENTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE lxxxiii

Register Documentation Conventions

Register diagrams use the following conventions:

• The descriptive name of the register appears at the top with the short form of the name.

• If a bit has a short name, the short name appears first in the bit description, followed by the long name.

• The reset value appears in binary in the individual bits and in hexadecimal to the left of the register.

• Bits marked X have an unknown reset value. Consequently, the reset value of registers that contain such
bits is undefined or dependent on pin values at reset.

• Shaded bits are reserved.

NOTE: To ensure upward compatibility with future implementations, write back the value that is read for
reserved bits in a register, unless otherwise specified.

Register description tables use the following conventions:

• Each bit's or bit field's access type appears beneath the bit number in the table in the form (read-access/
write-access). The access types include:

– R = read, RC = read clear, RS = read set, R0 = read zero, R1 = read one, Rx = read undefined

– W = write, NW = no write, W1C = write one to clear, W1S = write one to set, W0C = write zero to
clear, W0S = write zero to set, WS = write to set, WC = write to clear, W1A = write one action

Note: For correct operation, ... A Note provides
supplementary information on a related topic. In the
online version of this book, the word Note appears
instead of this symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ... A Caution
identifies conditions or inappropriate usage of the
product that could lead to undesirable results or
product damage. In the online version of this book,
the word Caution appears instead of this symbol.

Danger: Injury to device users may result if ... A
Danger identifies conditions or inappropriate usage
of the product that could lead to conditions that are
potentially hazardous for the devices users. In the
online version of this book, the word Danger appears
instead of this symbol.

Example Description

PREFACE
NOTATION CONVENTIONS

 lxxxiv ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Many bit and bit field descriptions include enumerations, identifying bit values and related function-
ality. Unless otherwise indicated (with a prefix), these enumerations are decimal values.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–1

1 Introduction

The ADSP-BF60x processors are members of the Blackfin family of products, incorporating the Analog
Devices/Intel Micro Signal Architecture (MSA). Blackfin processors combine a dual-MAC state-of-the-art
signal processing engine, the advantages of a clean, orthogonal RISC-like microprocessor instruction set,
and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set archi-
tecture.

The processor offers high performance, as well as low static power consumption. Produced with a low-
power and low-voltage design methodology, they provide world-class power management and perfor-
mance.

As shown in the block diagram figure, by integrating a rich set of industry-leading system peripherals and
memory, Blackfin processors are the platform of choice for next-generation applications that require
RISC-like programmability, multimedia support, and leading-edge signal processing in one integrated
package. These applications span a wide array of markets, from automotive systems to embedded indus-
trial, instrumentation and power/motor control applications.

INTRODUCTION
BLACKFIN PROCESSOR CORE

1–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 1-1: ADSP-BF60x Functional Block Diagram

Blackfin Processor Core
As shown in the Introduction, the processor integrates two Blackfin processor cores. Each core, shown in
Blackfin Processor Core, contains two 16-bit multipliers, two 40-bit accumulators, two 40-bit ALUs, four
video ALUs, and a 40-bit shifter. The computation units process 8-, 16-, or 32-bit data from the register
file.

The compute register file contains eight 32-bit registers. When performing compute operations on 16-bit
operand data, the register file operates as 16 independent 16-bit registers. All operands for compute oper-
ations come from the multiported register file and instruction constant fields.

Each MAC can perform a 16-bit by 16-bit multiply in each cycle, accumulating the results into the 40-bit
accumulators. Signed and unsigned formats, rounding, and saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations on 16-bit or 32-bit data. In addi-
tion, many special instructions are included to accelerate various signal processing tasks. These include bit
operations such as field extract and population count, modulo 2 32 multiply, divide primitives, saturation
and rounding, and sign/exponent detection. The set of video instructions include byte alignment and
packing operations, 16-bit and 8-bit adds with clipping, 8-bit average operations, and 8-bit subtract/abso-

INTRODUCTION
BLACKFIN PROCESSOR CORE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–3

lute value/accumulate (SAA) operations. Also provided are the compare/select and vector search instruc-
tions.

For certain instructions, two 16-bit ALU operations can be performed simultaneously on register pairs (a
16-bit high half and 16-bit low half of a compute register). If the second ALU is used, quad 16-bit opera-
tions are possible.

The 40-bit shifter can perform shifts and rotates and is used to support normalization, field extract, and
field deposit instructions.

The program sequencer controls the flow of instruction execution, including instruction alignment and
decoding. For program flow control, the sequencer supports PC relative and indirect conditional jumps
(with static branch prediction), and subroutine calls. Hardware supports zero-overhead looping. The
architecture is fully interlocked, meaning that the programmer need not manage the pipeline when
executing instructions with data dependencies.

The address arithmetic unit provides two addresses for simultaneous dual fetches from memory. It
contains a multiported register file consisting of four sets of 32-bit index, modify, length, and base registers
(for circular buffering), and eight additional 32-bit pointer registers (for C-style indexed stack manipula-
tion).

Blackfin processors support a modified Harvard architecture in combination with a hierarchical memory
structure. Level 1 (L1) memories are those that typically operate at the full processor speed with little or no
latency. At the L1 level, the instruction memory holds instructions only. The data memory holds data, and
a dedicated scratchpad data memory stores stack and local variable information.

In addition, multiple L1 memory blocks are provided, offering a configurable mix of SRAM and cache. The
memory management unit (MMU) provides memory protection for individual tasks that may be oper-
ating on the core and can protect system registers from unintended access.

The architecture provides three modes of operation: user mode, supervisor mode, and emulation mode.
User mode has restricted access to certain system resources, thus providing a protected software environ-
ment, while supervisor mode has unrestricted access to the system and core resources.

INTRODUCTION
INSTRUCTION SET DESCRIPTION

1–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 1-2: Blackfin Processor Core

Instruction Set Description
The Blackfin processor instruction set has been optimized so that 16-bit opcodes represent the most
frequently used instructions, resulting in excellent compiled code density. Complex DSP instructions are
encoded into 32-bit opcodes, representing fully featured multifunction instructions. Blackfin processors
support a limited multi-issue capability, where a 32-bit instruction can be issued in parallel with two 16-
bit instructions, allowing the programmer to use many of the core resources in a single instruction cycle.

The Blackfin processor family assembly language instruction set employs an algebraic syntax designed for
ease of coding and readability. The instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size. The instruction set also provides
fully featured multifunction instructions that allow the programmer to use many of the processor core
resources in a single instruction. Coupled with many features more often seen on micro controllers, this
instruction set is very efficient when compiling C and C++ source code. In addition, the architecture
supports both user (algorithm/application code) and supervisor (O/S kernel, device drivers, debuggers,
ISRs) modes of operation, allowing multiple levels of access to core processor resources.

INTRODUCTION
PROCESSOR SAFETY FEATURES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–5

The assembly language, which takes advantage of the processor's unique architecture, offers the following
advantages:

• Seamlessly integrated DSP/MCU features are optimized for both 8-bit and 16-bit operations.

• A multi-issue load/store modified-Harvard architecture, which supports two 16-bit MAC or four 8-bit
ALU + two load/store + two pointer updates per cycle.

• All registers, I/O, and memory are mapped into a unified 4G byte memory space, providing a simplified
programming model.

• Control of all asynchronous and synchronous events to the processor is handled by two subsystems:
the Core Event Controller (CEC) and the System Event Controller (SEC).

• Micro controller features, such as arbitrary bit and bit-field manipulation, insertion, and extraction;
integer operations on 8-, 16-, and 32-bit data-types; and separate user and supervisor stack pointers.

• Code density enhancements, which include intermixing of 16-bit and 32-bit instructions (no mode
switching, no code segregation). Frequently used instructions are encoded in 16 bits.

NOTE: For more information about the Blackfin instruction set, see the Blackfin Programming Reference.

Processor Safety Features
The ADSP-BF60x processor has been designed for functional safety applications. While the level of safety
is mainly dominated by the system concept, the following primitives are provided by the devices to build
a robust safety concept.

Dual Core Supervision

The processor has been implemented as dual-core devices to separate critical tasks to large independency.
Software models support mutual supervision of the cores in symmetrical fashion.

Fault Management

The fault management unit is part of the system event controller (SEC). Any system event, whether a dual-
bit uncorrectable ECC error, or any peripheral status interrupt, can be defined as being a "fault". Addition-
ally, the system events can be defined as an interrupt to the cores. If defined as such, the SEC forwards the
event to the fault management unit which may automatically reset the entire device for reboot, or simply
toggle the SYS_FAULT output pins to signal off-chip hardware. Optionally, the fault management unit can
delay the action taken via a keyed sequence, to provide a final chance for the Blackfin cores to resolve the
crisis and to prevent the fault action from being taken.

INTRODUCTION
PROCESSOR SAFETY FEATURES

1–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

System Protection

All system resources and L2 memory banks can be controlled by either the processor cores, memory-to-
memory DMA, or the system debug unit (SDU). A system protection unit (SPU) enables write accesses to
specific resources that are locked to any of four masters: Core 0, Core 1, Memory DMA, and the System
Debug Unit. System protection is enabled in greater granularity for some modules (L2, SEC and GPIO
controllers) through a global lock concept.

Bandwidth Monitor

All DMA channels that operate in memory-to-memory mode (Memory DMA, PVP Memory Pipe DMA,
PIXC DMA) are equipped with a bandwidth monitor mechanism. They can signal a system event or fault
when transactions tend to starve because system buses are fully loaded with higher-priority traffic.

Private (to each Core) Memory

The L1 memory system is the highest-performance memory available to the Blackfin processor cores.

Each core has its own private L1 memory. The modified Harvard architecture supports two concurrent 32-
bit data accesses along with an instruction fetch at full processor speed which provides high bandwidth
processor performance. Two separate 64K-byte of data memory blocks partner with an 80K-byte memory
block for instruction storage. Each block is multi banked for efficient data exchange through DMA and can
be configured as SRAM. Alternatively, 16K bytes of each block can be configured in L1 cache mode. The
four-way set-associative instruction cache and the 2 two-way set-associative data caches greatly accelerate
memory access performance, especially when accessing external memories.

The L1 memory domain also features a 4K-byte scratchpad SRAM block which is ideal for storing local
variables and the software stack. All L1 memory is protected by a multi-parity bit concept, regardless of
whether the memory is operating in SRAM or cache mode.

Shared (by both Cores) Memory

Outside of the L1 domain, L2 and L3 memories are arranged using a Von Neumann topology. The L2
memory domain is a unified instruction and data memory and can hold any mixture of code and data
required by the system design. The L2 memory domain is accessible by both Blackfin cores through a dedi-
cated 64-bit interface. It operates at half the frequency of the cores. The processor features 256K bytes of
L2 SRAM which is ECC-protected and organized in eight banks. Individual banks can be made private to
any of the cores or the DMA subsystem. There is also a 32K-byte single-bank ROM in the L2 domain. It
contains boot code and safety functions.

INTRODUCTION
PROCESSOR SAFETY FEATURES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–7

I/O Memory Space

The processor does not define a separate I/O space. All resources are mapped through the flat 32-bit
address space. On-chip I/O devices have their control registers mapped into memory-mapped registers
(MMRs) at addresses near the top of the 4G byte address space. These are separated into two smaller
blocks, one which contains the control MMRs for all core functions, and the other which contains the
registers needed for setup and control of the on-chip peripherals outside of the core. The MMRs are acces-
sible only in supervisor mode and appear as reserved space to on-chip peripherals.

Memory Protection

The Blackfin cores feature a memory protection concept, which grants data and/or instruction accesses
from enabled memory regions only. A supervisor mode vs. user mode programming model supports
dynamically varying access rights. Increased flexibility in memory page size options supports a simple
method of static memory partitioning.

Multi-Parity-Bit-Protected L1 Memories

In the processor's L1 memory space, whether SRAM or cache, each word is protected by multiple parity
bits to detect the single event upsets that occur in all RAMs. This applies both to L1 instruction and data
memory spaces.

ECC-Protected L2 Memory

Error correcting codes (ECC) are used to correct single event upsets. The L2 memory is protected with a
Single Error Correct-Double Error Detect (SEC-DED) code. By default ECC is enabled, but it can be
disabled on a per-bank basis. Single-bit errors are transparently corrected. Dual-bit errors can issue a
system event or fault if enabled. ECC protection is fully transparent to the user, even if L2 memory is read
or written by 8-bit or 16-bit entities.

CRC-Protected Memories

While parity bit and ECC protection mainly protect against random soft errors in L1 and L2 memory cells,
the CRC engines can be used to protect against systematic errors (pointer errors) and static content
(instruction code) of L1, L2 and even L3 memories (DDR2, LPDDR). The processors feature two CRC
engines which are embedded in the memory-to-memory DMA controllers. CRC check sums can be calcu-
lated or compared on the fly during memory transfers, or one or multiple memory regions can be contin-
uously scrubbed by single DMA work unit as per DMA descriptor chain instructions. The CRC engine also
protects data loaded during the boot process.

INTRODUCTION
PROCESSOR INFRASTRUCTURE

1–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Watchpoint Protection

The primary purpose of watchpoints and hardware breakpoints is to serve emulator needs. When enabled,
they signal an emulator event whenever user-defined system resources are accessed or a core executes from
user-defined addresses. Watchdog events can be configured such that they signal the events to the other
Blackfin core or to the fault management unit.

Pin Multiplexing

The processor supports a flexible multiplexing scheme that multiplexes the GPIO pins with various
peripherals. A maximum of 4 peripherals plus GPIO functionality is shared by each GPIO pin. All GPIO
pins have a bypass path feature - that is, when the output enable and the input enable of a GPIO pin are
both active, the data signal before the pad driver is looped back to the receive path for the same GPIO pin.

Processor Infrastructure
The ADSP-BF60x Functional Block Diagram shows a number of system control blocks. Some of these
blocks provide system control operations, such as event handling and managing the memory sub-system
interface. Other of these blocks provide processor core integration (infrastructure), such as bus arbitration,
clock generation, and dynamic power management. The following sections provide information on the
primary infrastructure components of the ADSP-BF60x processors.

System Crossbar (SCB)

The system crossbars (SCB) appear as buses in the ADSP-BF60x Functional Block Diagram. These buses
constitute a switch fabric, providing concurrent data access between on-chip bus master and slave memory
spaces. Each piece of fabric consists of a matrix for each of master interfaces, and each matrix has a number
of slave interfaces. Each matrix with programmable round robin arbitration has a matching number of
master slots. Arbitration may be programmed by writing each slot register with a corresponding slave
value.

Clock Generation

The clock generation unit (CGU) includes the phase locked loop (PLL) and the PLL control unit (PCU).
The PLL generates a clock that runs at a frequency that is multiple times the CLKIN input clock frequency.
It also generates all on-chip clocks and synchronization signals. The PCU allows the application software
to control the PLL module operation.

Multiplication factors are programmed to the PLLs to define the PLLCLK frequency. Programmable
values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks (SYSCLK, SCLK
or SCLK0/1 for multi-core products), the LPDDR or DDR2 clock (DCLK) and the output clock (OCLK).
This is illustrated in the Clock Relationships and Divider Values figure.

C:/Users/dskolni/My Docs in Repositories/easyDITA/BF60x_hwr_rev_0-5/Front_Matter/introduction/c_dpm_Overview.dita

INTRODUCTION
PROCESSOR INFRASTRUCTURE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–9

Writing to the CGU control registers does not affect the behavior of the PLL immediately. Registers are
first programmed with a new value, and the PLL logic executes the changes so that it transitions smoothly
from the current conditions to the new ones.

The SYS_CLKIN pin oscillations start when power is applied to the VDD_EXT pins. The rising edge of SYS_
HWRST can be applied as soon as all voltage supplies are within specifications, and SYS_CLKIN oscillations
are stable.

A SYS_CLKOUT output pin has programmable options to output divided-down versions of the on-chip
clocks. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_CLKIN input. Clock generation
faults (for example PLL unlock) may trigger a reset by hardware.

Crystal Oscillator (SYS_XTAL)

The processor can be clocked by an external crystal, a sine wave input, or a buffered, shaped clock derived
from an external clock oscillator. If an external clock is used, it should be a TTL compatible signal and must
not be halted, changed, or operated below the specified frequency during normal operation. This signal is
connected to the processor's SYS_CLKIN pin. When an external clock is used, the SYS_XTAL pin must be
left unconnected. Alternatively, because the processor includes an on-chip oscillator circuit, an external
crystal may be used.

Clock Out/External Clock

The SYS_CLKOUT pin can be used to output one of several different clocks used on the processor. The clocks
shown in Clock Sources and Dividers can be outputs from SYS_CLKOUT.

NOTE: In the following table SCLK0 and SCLK1 are used. However these clocks are referred to as SCLK in
this manual.

Table 1-1: Clock Sources and Dividers

Clock Source Divider

CCLK (core clock) By 4
SYSCLK (System clock) By 2
SCLK0 (system clock for PVP, all peripherals not
covered by SCLK1)

None

SCLK1 (system clock for SPORTS, SPI, ACM) None
DCLK (LPDDR/DDR2 clock) By 2
OCLK (output clock) Programmable
CLKBUF None, direct from SYS_CLKIN

INTRODUCTION
PROCESSOR INFRASTRUCTURE

1–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

System Protection Unit (SPU)

The system protection unit (SPU) provides features that let you protect system resources from errant
writes. A number of protection categories (types of registers to protect) are available.

Dynamic Power Management (DPM)

The dynamic power management (DPM) feature of the processor lets you control the processor's core
clock frequency (fCCLK) dynamically.

As shown in clock relationships and divider values figure, the processor supports four different power
domains, which maximizes flexibility while maintaining compliance with industry standards and conven-
tions. By isolating the internal logic of the processor into its own power domain, separate from other I/O,
the processor can take advantage of dynamic power management without affecting the other I/O devices.

Figure 1-3: Clock Relationships and Divider Values

There are no sequencing requirements for the various power domains, but all domains must be powered
according to the appropriate Power Domains and Ranges table for processor operating conditions; even if
the feature/peripheral is not used.

The power dissipated by a processor is largely a function of its clock frequency and the square of the oper-
ating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic
power dissipation.

Table 1-2: Power Domains and Ranges

Power Domain VDD Range

All internal logic VDD_INT

DDR2/LPDDR VDD_DDR

USB VDD_USB

All other I/O VDD_EXT

INTRODUCTION
EVENT HANDLING

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–11

Core Timers

Each processor core has its own dedicated timer. The core timer is clocked by the internal processor clock
and is typically used as a system tick clock for generating periodic operating system interrupts.

Event Handling
The processor provides event handling that supports both nesting and prioritization. Nesting allows
multiple event service routines to be active simultaneously. Prioritization ensures that servicing of a
higher-priority event takes precedence over servicing of a lower-priority event. The processor provides
support for five different types of events:

• Emulation - An emulation event causes the processor to enter emulation mode, allowing command
and control of the processor via the JTAG interface.

• Reset - This event resets the processor.

• Non maskable Interrupt (NMI) - The NMI event can be generated either by the software watchdog
timer, by the NMI input signal to the processor, or by software. The NMI event is frequently used as a
power-down indicator to initiate an orderly shutdown of the system.

• Exceptions - Events that occur synchronously to program flow (in other words, the exception is taken
before the instruction is allowed to complete). Conditions such as data alignment violations and unde-
fined instructions cause exceptions.

• Interrupts - Events that occur asynchronously to program flow. They are caused by input signals,
timers, and other peripherals, as well as by an explicit software instruction.

The ADSP-BF60x Functional Block Diagram shows a number of system control blocks. Some of these
blocks provide system control operations, such as event handling and managing the memory sub-system
interface. The following sections provide information on the event handling components of the ADSP-
BF60x processors.

Core Event Controller (CEC)

The CEC supports nine general-purpose interrupts (IVG15-7), in addition to the dedicated interrupt and
exception events. Of these general-purpose interrupts, the two lowest-priority interrupts (IVG15-14) are
recommended to be reserved for software interrupt handlers. For more information about general-
purpose interrupts, see the Blackfin Processor Programmer's Reference.

System Event Controller (SEC)

The SEC manages the enabling, prioritization, and routing of events from each system interrupt or fault
source. Additionally, it provides notification and identification of the highest priority active system inter-
rupt request to each core and routes system fault sources to its integrated fault management unit.

INTRODUCTION
MEMORY ARCHITECTURE

1–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Trigger Routing Unit (TRU)

The TRU provides system-level sequence control without core intervention. The TRU maps trigger
masters (generators of triggers) to trigger slaves (receivers of triggers). Slave endpoints can be configured
to respond to triggers in various ways. Common applications enabled by the TRU include:

• Automatically triggering the start of a DMA sequence after a sequence from another DMA channel
completes

• Software triggering

• Synchronization of concurrent activities

Pin Interrupts

Every port pin on the processor can request interrupts in either an edge-sensitive or a level-sensitive
manner with programmable polarity. Interrupt functionality is decoupled from GPIO operation. Six
system-level interrupt channels (PINT0-5) are reserved for this purpose. Each of these interrupt channels
can manage up to 32 interrupt pins. The assignment from pin to interrupt is not performed on a pin-by-
pin basis. Rather, groups of eight pins (half ports) can be flexibly assigned to interrupt channels.

Every pin interrupt channel features a special set of 32-bit memory-mapped registers that enable half-port
assignment and interrupt management. This includes masking, identification, and clearing of requests.
These registers also enable access to the respective pin states and use of the interrupt latches, regardless of
whether the interrupt is masked or not. Most control registers feature multiple MMR address entries to
write-one-to-set or write-one-to-clear them individually.

Memory Architecture
The ADSP-BF60x processor views memory as a single unified 4G byte address space, using 32-bit
addresses. All resources, including internal memory, external memory, and I/O control registers, occupy
separate sections of this common address space. The memory portions of this address space are arranged
in a hierarchical structure to provide a good cost/performance balance of some very fast, low-latency core-
accessible memory as cache or SRAM, and larger, lower-cost and performance interface-accessible
memory systems.

The processor block diagram shows a number of system control blocks. Some of these blocks provide
system control operations, such as event handling and managing the memory sub-system interface. The
following sections provide information on managing the memory sub-system interface of the ADSP-
BF60x processors.

See the product specific data sheet for the proper external and internal memory configurations.

INTRODUCTION
MEMORY ARCHITECTURE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–13

Static Memory Controller (SMC)

The static memory controller (SMC) is a protocol converter and data transfer interface between the
internal processor bus and the external L3 memory.

The SMC can be programmed to control up to four banks of external memories or memory-mapped
devices, with very flexible timing parameters. Each bank occupies a 64M byte segment regardless of the
size of the device used, so that these banks are only contiguous if each is fully populated with 64M bytes of
memory.

SMC acts as an SCB slave and accesses to SMC are arbitrated by the processor SCB interconnect fabric. On
the chip boundary, the SMC is connected to a 25-bit external memory address bus, a 16-bit data bus and
memory control signal pins (read, write) including four chip selects via the chip pads. The SMC can
support 64 MB of external memory connected to four different banks—each bank is controlled by the chip
select signal.

L2 Memory Controller

The L2 memory controller is an SCB slave with multiple SCB ports that access banks of RAM and/or ROM.
These interfaces and the memory subsystem run at theL2CLK frequency. The L2 memory controller also
has a bus interface to provide access to the L2 controller’s control and status registers. Each bank of L2
memory is protected by ECC (error correction and control) logic which ensures that single bit errors can
be corrected and multi-bit errors can be detected. For each 32KB bank, a 4Kx14 bits ECC RAM stores the
parity bits.

Dynamic Memory Controller (DMC)

The dynamic memory controller (DMC) provides a glue-less interface between DDR2/LPDDR SDRAMs
and the system crossbar interface (SCB) on-chip interconnect. This controller supports JESD79-2E
compatible double data rate (DDR2) SDRAM and JESD209A low power DDR (LPDDR) SDRAM devices.
The DMC enables execution of instructions from (as well as transfer of data to-and-from) external DDR2
SDRAM and external LPDDR SDRAM.

The DMC supports access to the external memory by core and DMA accesses. The external memory
address space is divided in to four banks.

The DMC is partitioned in a manner that allows con figuration and maintainability. The memory access
protocol state machine along with JEDEC standard specific logic is embedded in the protocol controller.
An access and operation re-ordering mechanism is incorporated as an efficiency controller. An SCB slave
interface is provided to interface with the on-chip interconnect. This interface results in an efficient slave
implementation owing to its out-of-order transaction capabilities. The control and status registers present
in the DMC controller can be accessed using the MMR access bus.

INTRODUCTION
MEMORY ARCHITECTURE

1–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Cyclic Redundancy Check (CRC)

The cyclic redundancy check (CRC) peripheral performs the CRC operation of the block of data that is
presented to the peripheral. The peripheral provides a means to periodically verify the integrity of the
system memory, the contents of memory-mapped registers (MMRs), or communication message objects.

The CRC is a hardware module based on a CRC32 engine that computes the CRC value of the 32-bit data
words presented to it. Data is provided by the source channel of the memory-to-memory DMA (in
memory scan mode) and is optionally forwarded to the destination channel (memory transfer mode). The
main features of the CRC peripheral are:

• Memory scan, memory transfer, data verify, and data fill modes

• User-programmable CRC32 polynomial

• Bit/byte mirroring option (endianness)

• Fault/error interrupt mechanisms

• 1D and 2D fill block to initialize array with constants.

• 32-bit CRC signature of a block of a memory or MMR block.

The dedicated hardware compares the calculated signature of the operation to a pre-loaded expected
signature and if the two fail to match, the peripheral generates an error.

Data may be provided by the source channel of the memory-to-memory DMA channels and optionally
forwarded to memory via the destination DMA channel. Alternatively, the peripheral also supports data
presented by core write transactions.

The CRC peripheral implements a reduced table-lookup algorithm to compute the signature of the data.
A programmable 32-bit CRC polynomial is used to automatically generate the lookup table (LUT)
contents.

Additional CRC peripheral modes allow for initializing large memory sections with a constant value, or
for verifying that sections of memory are equal to a constant value.

The two CRC protection modules allow system software to periodically calculate the signature of code
and/or data in memory, the content of memory-mapped registers, or communication message objects.
Dedicated hardware circuitry compares the signature with pre calculated values and triggers appropriate
fault events.

Direct Memory Access (DMA)

The direct memory access (DMA) channels are dispersed throughout the infrastructure and may be clus-
tered together over SCBs, sharing a single interface with the main system crossbar.

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–15

The processor uses DMA to transfer data within memory spaces or between a memory space and a periph-
eral. The processor can specify data transfer operations and return to normal processing while the fully
integrated DMA controller carries out the data transfers independent of processor activity.

The DMA channels can perform transfers between memory and a peripheral or between one memory and
another memory. Two DMA channels are required for memory to memory DMA transfers (MDMA). One
channel is the source channel, and the second, the destination channel.

The DMA channel does not connect external memories and devices directly. Rather, data is passed
through an external memory interface port. Any kind of device that is supported by the external memory
interface can also be accessed by DMA operation. This is typically flash memory, SRAM, DDR SDRAM,
FIFOs, or memory-mapped peripheral devices.

All DMAs can transport data to and from all on-chip and off-chip memories. Programs can use two types
of DMA transfers, descriptor-based or register-based. Register-based DMA allows the processor to directly
program DMA control registers to initiate a DMA transfer. On completion, the control registers may be
automatically updated with their original setup values for continuous transfer. Descriptor-based DMA
transfers require a set of parameters stored within memory to initiate a DMA sequence. Descriptor-based
DMA transfers allow multiple DMA sequences to be chained together and a DMA channel can be
programmed to automatically set up and start another DMA transfer after the current sequence completes.

The DMA controller supports the following DMA operations.

• A single linear buffer that stops on completion.

• A linear buffer with negative, positive or zero stride length.

• A circular, auto-refreshing buffer that interrupts when each buffer becomes full.

• A similar buffer that interrupts on fractional buffers (for example, 1/2, 1/4).

• 1D DMA - uses a set of identical ping-pong buffers defined by a linked ring of two-word descriptor sets,
each containing a link pointer and an address.

• 1D DMA - uses a linked list of 4 word descriptor sets containing a link pointer, an address, a length,
and a configuration.

• 2D DMA - uses an array of one-word descriptor sets, specifying only the base DMA address.

• 2D DMA - uses a linked list of multi-word descriptor sets, specifying everything.

On Chip Peripherals
The processor contains a set of on chip peripherals connected to the core over several high-bandwidth
buses. These system interface peripherals provide flexibility in system configuration and system perfor-
mance (see the ADSP-BF60x Functional Block Diagram). The following sections describe the on chip
peripherals that provide the system interface.

INTRODUCTION
ON CHIP PERIPHERALS

1–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

General-Purpose I/O (GPIO)

The general-purpose I/O (GPIO) ports provide the following functions.

• Pin multiplexing scheme

• GPIO functionality

• Pin interrupts

The GPIO port pins can be individually controlled using the port control, status, and interrupt registers.
These register let you:

• Specify the direction of each individual GPIO pin as input or output

• Use the "write one to modify" mechanism modify any combination of individual GPIO pins in a single
instruction, without affecting the level of any other GPIO pins.

• Treat each individual GPIO pin as an interrupt to the processor; GPIO pins defined as inputs can be
configured to generate hardware interrupts, while output pins can be triggered by software interrupts

• Specify whether individual pins are level- or edge-sensitive and specify (if edge-sensitive) whether just
the rising edge or both the rising and falling edges of the signal are significant

General-Purpose Timers

The general-purpose timer provides eight general-purpose programmable timers. Each timer has an
external pin that can be configured either as a pulse width modulator (PWM) or timer output, as an input
to clock the timer, or as a mechanism for measuring pulse widths and periods of external events. These
timers can be synchronized to an external clock input on theTMRx pins, an external clockTMRCLK input pin,
or to the internal SCLK.

Additionally, a variety of interrupts can be generated upon completion of timer events. Moreover, GP
timers can act both as trigger masters and trigger slaves.

The timer units can be used in conjunction with the UARTs and the CAN controller to measure the width
of the pulses in the data stream to provide a software auto-baud detect function for the respective serial
channels.

Watchdog Timers

Each core includes a 32-bit timer, which may be used to implement a software watchdog function. A soft-
ware watchdog can improve system availability by forcing the processor to a known state, via generation
of a hardware reset, non maskable interrupt (NMI), or general-purpose interrupt, if the timer expires
before being reset by software. The programmer initializes the count value of the timer, enables the appro-
priate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts
to zero from the programmed value. This protects the system from remaining in an unknown state where

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–17

software, which would normally reset the timer, has stopped running due to an external noise condition
or software error.

After a reset, software can determine if the watchdog was the source of the hardware reset by interrogating
a status bit in the timer control register, which is set only upon a watchdog generated reset.

General-Purpose Counters

A 32-bit counter is provided that can operate in general-purpose up/down count modes and can sense 2-
bit quadrature or binary codes as typically emitted by industrial drives or manual thumbwheels. Count
direction is either controlled by a level-sensitive input pin or by two edge detectors.

A third counter input can provide flexible zero marker support and can alternatively be used to input the
push-button signal of thumb wheels. All three pins have a programmable debouncing circuit.

Internal signals forwarded to each general-purpose timer enable these timers to measure the intervals
between count events. Boundary registers enable auto-zero operation or simple system warning by inter-
rupts when programmable count values are exceeded.

Using this feature, you can convert pulses from incremental position encoders into data that is represen-
tative of the actual position by integrating (counting) pulses on one or two inputs. Because integration
provides relative position, some devices also feature a zero position input (zero marker) that can be used
to establish a reference point to verify that the acquired position does not drift over time. The incremental
position information also can be used to determine speed, if the time intervals are measured. The GP
counter provides flexible ways to establish position information. When used in conjunction with the GP
timer block, the GP counter lets you acquire coherent position and time-stamp information that enables
speed calculation.

Pulsewidth Modulator (PWM)

Each pulsewidth modulator (PWM) block integrates a flexible and programmable 3-phase PWM wave-
form generator that can be programmed to generate the required switching patterns to drive a 3-phase
voltage source inverter for ac induction motor (ACIM) or permanent magnet synchronous motor
(PMSM) control. In addition, the PWM block contains special functions that considerably simplify the
generation of the required PWM switching patterns for control of the electronically commutated motor
(ECM) or brushless dc motor (BDCM). Software can enable a special mode for switched reluctance motors
(SRM). The two 3-phase PWM generation units each feature:

• 16-bit center-based PWM generation unit

• Programmable PWM pulse width

• Single/double update modes

• Programmable dead time and switching frequency

• Twos-complement implementation which permits smooth transition to full ON and full OFF states

INTRODUCTION
ON CHIP PERIPHERALS

1–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Dedicated asynchronous PWM shutdown signal

The eight PWM output signals (per PWM unit) consist of four high-side drive signals and four low-side
drive signals. The polarity of a generated PWM signal can be set with software, so that either active HI or
active LO PWM patterns can be produced.

Pulses synchronous to the switching frequency can be generated internally and output on the PWM_
SYNC pin. The PWM unit can also accept externally generated synchronization pulses through PWM_
SYNC.

Each PWM unit features a dedicated asynchronous shutdown pin which (when brought low) instanta-
neously places all six PWM outputs in the OFF state.

Universal Asynchronous Receiver/Transmitter (UART)

The processors provide two full-duplex universal asynchronous receiver/transmitter (UART) ports, which
are fully compatible with PC-standard UARTs. Each UART port provides a simplified UART interface to
other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data.

A UART port includes support for five to eight data bits, and none, even, or odd parity. Optionally, an
additional address bit can be transferred to interrupt only addressed nodes in multi-drop bus (MDB)
systems. A frame is terminates by one, one and a half, two or two and a half stop bits. The UARTs also
include interrupt-handling hardware. Interrupts can be generated from multiple events.

The UARTs are logically compliant to EIA-232E, EIA-422, EIA-485 and LIN standards, but usually require
external transceiver devices to meet electrical requirements. In IrDA (Infrared Data Association) mode,
the UARTs meet the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol. In multi-drop bus mode, the
UARTs meet the full-duplex MDB/ICP v2.0 protocol.

Partial modem status and control functionality is supported by the UART module to allow for hardware
flow control. The UART ports support automatic hardware flow control through the Clear To Send (CTS)
input and Request To Send (RTS) output with programmable assertion FIFO levels.

To help support the Local Interconnect Network (LIN) protocols, a special command causes the trans-
mitter to queue a break command of programmable bit length into the transmit buffer. Similarly, the
number of stop bits can be extended by a programmable inter-frame space.

The capabilities of the UARTs are further extended with support for the Infrared Data Association (IrDA)
serial infrared physical layer link specification (SIR) protocol.

The UARTs are DMA-capable peripherals with support for separate transmit and receive DMA master
channels. They can be used in either DMA or programmed core mode of operation. The core mode
requires software management of the data flow using either interrupts or polling. The DMA method
requires minimal software intervention as the DMA engine itself moves the data. Each UART has its own
separate transmit and receive DMA channels.

One of the peripheral timers can be used to provide a hardware-assisted auto-baud detection mechanism
for use with the UART. The timers are external to the UART.

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–19

2-Wire Interface (TWI)

The processors include a 2-wire interface (TWI), providing a simple exchange method of control data
between multiple devices. The TWI module is compatible with the widely used I2C bus standard. The TWI
module offers the capabilities of simultaneous master and slave operation and support for both 7-bit
addressing and multimedia data arbitration. The TWI interface utilizes two pins for transferring clock
(TWI_SCL) and data (TWI_SDA) and supports the protocol at speeds up to 400k bits/sec. The TWI inter-
face pins are compatible with 5 V logic levels.

Additionally, the TWI module is fully compatible with serial camera control bus (SCCB) functionality for
easier control of various CMOS camera sensor devices.

To preserve processor bandwidth, the TWI module can be set up with transfer initiated interrupts only to
service FIFO buffer data reads and writes. Protocol related interrupts are optional. The TWI externally
moves 8-bit data while maintaining compliance with the I2C bus protocol.

Controller Area Network (CAN)

The processor includes a controller area network (CAN) module, which implements the CAN 2.0B
(active) protocol. This protocol is an asynchronous communications protocol used in both industrial and
automotive control systems. The CAN protocol is well suited for control applications due to its capability
to communicate reliably over a network. This is because the protocol incorporates CRC checking, message
error tracking, and fault node confinement.

NOTE: This document assumes reader familiarity with the CAN standard. For more information, refer to
Version 2.0 of the CAN Specification from Robert Bosch GmbH.

The CAN module provides the following features:

• 32 mailboxes (8 receive only, 8 transmit only, 16 configurable for receive or transmit)

• Dedicated acceptance masks for each mailbox

• Additional data filtering on first two bytes.

• Support for both the standard (11-bit) and extended (29-bit) identifier (ID) message formats

• Support for remote frames

• Active or passive network support

• CAN wakeup from hibernation mode (lowest static power consumption mode)

• Interrupts, including: TX complete, RX complete, error and global

NOTE: An additional crystal is not required to supply the CAN clock, as the CAN clock is derived from a
system clock through a programmable divider.

INTRODUCTION
ON CHIP PERIPHERALS

1–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Universal Serial Bus (USB)

The processor’s universal serial bus (USB) module is a USB 2.0 compliant, dual-role device controller. This
interface provides a low-cost connectivity solution for the growing adoption of this bus standard in indus-
trial applications and consumer mobile devices, such as cell phones, digital still cameras, and MP3 players.
The USB module lets these devices transfer data using a point-to-point USB connection without the need
for a PC host.

The USB controller can operate in a traditional USB peripheral-only mode as well as the host mode
presented in the on-the-go (OTG) supplement1to the USB 2.0 Specification2. In host mode, the USB
module supports transfers at high-speed (480Mbps), full-speed (12Mbps), and low-speed (1.5Mbps) rates.
Peripheral mode supports the high- and full-speed transfer rates.

The USB controller uses a slave bus interface to access its control and status registers as well as read and
write to the endpoint packet buffers. Data is transferred to and from the USB controller through any of the
transmit and receive endpoint FIFOs. A DMA bus master interface provides numerous DMA channels to
provide a more efficient means of transferring large amounts of data between the controller and the
Blackfin processor's memory map.

The USB clock (USB_CLKIN) is provided through a dedicated external crystal or crystal oscillator. Using
an included phase locked loop with programmable multipliers, the USB on-the-go dual-role device
controller generates the necessary internal clocking frequency for USB.

Ethernet Media Access Controller (MAC)

The processor can directly connect to a network by way of an embedded fast Ethernet media access
controller (MAC) that supports both 10-BaseT (10M bits/sec) and 100-BaseT (100M bits/sec) operation.
The 10/100 Ethernet MAC peripheral on the processor is fully compliant to the IEEE 802.3-2002 standard
and it provides programmable features designed to minimize supervision, bus use, or message processing
by the rest of the processor system.

Some standard Ethernet MAC features are:

• Support and RMII protocols for external PHYs

• Full duplex and half duplex modes

• Media access management (in half-duplex operation)

• Flow control

• Station management: generation of MDC/MDIO frames for read-write access to PHY registers

1.On-The-Go Supplement to the USB 2.0 Specification, Rev 1.0a; June 24, 2003; USB-IF
2.Universal Serial Bus Specification 2.0

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–21

Some advanced Ethernet MAC features are:

• Automatic checksum computation of IP header and IP payload fields of Rx frames

• Independent 32-bit descriptor-driven receive and transmit DMA channels

• Frame status delivery to memory through DMA, including frame completion semaphores for efficient
buffer queue management in software

• Tx DMA support for separate descriptors for MAC header and payload to eliminate buffer copy oper-
ations

• Convenient frame alignment modes

• 47 MAC management statistics counters with selectable clear-on-read behavior and programmable
interrupts on half maximum value

• Advanced power management

• Magic packet detection and wakeup frame filtering

• Support for 802.3Q tagged VLAN frames

• Programmable MDC clock rate and preamble suppression

The Ethernet MAC includes support for the IEEE 1588 standard. This standard is a precision clock
synchronization protocol for networked measurement and control systems. The processor includes hard-
ware support for IEEE 1588 with an integrated precision time protocol synchronization engine (PTP_
TSYNC). This engine provides hardware assisted time stamping to improve the accuracy of clock synchro-
nization between PTP nodes.

The main IEEE 1588 standard features of the engine are:

• Support for both IEEE 1588-2002 and IEEE 1588-2008 protocol standards

• Hardware assisted time stamping capable of up to 12.5 ns resolution

• Lock adjustment

• Automatic detection of IPv4 and IPv6 packets, as well as PTP messages

• Multiple input clock sources (SCLK, RMII clock, external clock)

• Programmable pulse per second (PPS) output

• Auxiliary snapshot to time stamp external events

INTRODUCTION
ON CHIP PERIPHERALS

1–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Removable Storage Interface (RSI)

The removable storage interface (RSI) controller acts as the host interface for multimedia cards (MMC),
secure digital memory cards (SD) and secure digital input/output cards (SDIO). The following list
describes the main features of the RSI controller.

• Support for a single MMC, SD memory or SDIO card

• Support for 1-bit and 4-bit SD modes

• Support for 1-bit, 4-bit, and 8-bit MMC modes

• Support for eMMC 4.3 embedded NAND flash devices

• A ten-signal external interface with clock, command, and up to eight data lines

• Card interface clock generation from SCLK

• SDIO interrupt and read wait features

Serial Peripheral Interface (SPI)

The processors have two serial peripheral interface (SPI) compatible ports that allow the processor to
communicate with multiple SPI compatible devices.

In its simplest mode, the SPI interface uses three pins for transferring data: two data pins (Master Output-
Slave Input, MOSI, and Master Input-Slave Output, MISO) and a clock pin (serial clock, SCK). An SPI chip
select input pin (SPISS) lets other SPI devices select the processor, and seven SPI chip select output pins
(SPISEL7-1) let the processor select other SPI devices. The SPI select pins are reconfigured general-
purpose I/O pins. Using these pins, the SPI port provides a full-duplex, synchronous serial interface, which
supports both master/slave modes and multi master environments.

The SPI port's baud rate and clock phase/polarities are programmable, and it has integrated DMA chan-
nels for both transmit and receive data streams.

Serial Port (SPORT)

The processor includes three synchronous serial ports (SPORTs) that provide an inexpensive interface to
a wide variety of digital and mixed-signal peripheral devices such as the AD183x family of audio CODECs,
ADCs, and DACs from Analog Devices. The SPORTs consist of two data lines, a clock, and frame sync.
The data lines can be programmed to either transmit or receive and each data line has a dedicated DMA
channel.

SPORT data can be automatically transferred to and from on-chip memory/external memory over dedi-
cated DMA channels. Each of the SPORTs can work in conjunction with another SPORT to provide TDM
support. In this configuration, one SPORT provides two transmit signals while the other SPORT provides
the two receive signals. The frame sync and clock are shared.

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–23

Serial ports may operate in any of the following modes:

• Standard DSP serial mode

• Multichannel (TDM) mode

• I2S mode

• Packed I2S mode

• Left-justified mode

ADC Control Module (ACM)

The processor includes an ADC control module (ACM) that provides an interface that synchronizes the
controls between the processor and an analog-to-digital converter (ADC). The analog-to-digital conver-
sions are initiated by the processor, based on external or internal events.

The ACM permits flexible scheduling of sampling instants and provides precise sampling signals to the
ADC.

The ADC, ACM, and SPORT Connections diagram shows how to connect an external ADC to the ACM
and one of the three SPORTs.

The ACM synchronizes the ADC conversion process, generating the ADC controls, the ADC conversion
start signal, and other signals. The actual data acquisition from the ADC is done by a peripheral, such as a
SPORT or a SPI.

The processor interfaces directly to many ADCs without any glue logic required.

Figure 1-4: ADC, ACM, and SPORT Connections

INTRODUCTION
ON CHIP PERIPHERALS

1–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Link Port (LP)

Four DMA-enabled, 8-bit-wide link ports can connect to the link ports of other Blackfin processors or
other link-enabled processors. Link ports are bi-directional ports with eight data lines, an acknowledge
line, and a clock line.

Video Sub-System and Pixel Pipeline (PxP)

The processor’s video sub-system provides a connectivity matrix that interconnects the video related
peripherals. The pixel pipeline (PxP) protocol is used for data transfer among these video peripherals.

• Three enhanced parallel peripheral interface (PPI) ports

• The pixel compositor (PIXC)

• The pipelined vision processor (PVP)

• The video interconnect (bus) and pixel pipeline (PxP)

• 18 DMA channels

The PPIs can operate in video input and video output modes, and also support several general-purpose
modes of operation. These parallel ports are aware of video frame synchronization, blanking concepts and
color formats. They can receive up to 16-bit video data directly from video sensors (cameras) and also
directly control displays on the output.

The PIXC supports color space conversion and alpha blending for video overlays.

The PVP provides a framework for various vision processing elements, which are targeting mainly edge
and object detection strategies.

The video interconnect is a local, distributed bus system, which interconnects the PPI ports, the PIXC, and
the PVP.

Pipelined Vision Processor (PVP)

The pipelined vision processor (PVP) provides hardware implementation of signal and image processing
algorithms that are required for co-processing and pre-processing of monochrome video frames in ADAS
applications, robotic systems, and other machine applications.

The PVP works in conjunction with the Blackfin cores. It is optimized for convolution and wavelet based
object detection and classification, and tracking and verification algorithms. The PVP has the following
processing blocks.

• Four 5x5 16-bit convolution blocks optionally followed by downscaling

• A 16-bit cartesian-to-polar coordinate conversion block

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–25

• A pixel edge classifier that supports 1st and 2nd derivative modes

• An arithmetic unit with 32-bit addition, multiply and divide

• A 32-bit threshold block with 16 thresholds, a histogram, and run-length encoding

• Two 32-bit integral blocks that support regular and diagonal integrals

• An up- and down-scaling unit with independent scaling ratios for horizontal and vertical components

• Input and output formatters for compatibility with many data formats, including Bayer input format

The PVP can form a pipe of all the constituent algorithmic modules and is dynamically configurable to
form different pipeline structures.

The PVP supports the simultaneous processing of up to four data streams. The memory pipe stream oper-
ates on data received by DMA from any L1, L2, or L3 memory. The three camera pipe streams operate on
a common input received directly from any of the three PPI inputs. Optionally, the PIXC can convert color
data received by the PPI and forward luma values to the PVP's monochrome engine. Each stream has a
dedicated DMA output. This preprocessing concept ensures careful use of available power and bandwidth
budgets and frees up the processor cores for other tasks.

The PVP provides for direct core MMR access to all control/status registers. Two hardware interrupts
interface to the system event controller. For optimal performance, the PVP allows register programming
through its control DMA interface, as well as outputting selected status registers through the status DMA
interface. This mechanism enables the PVP to automatically process job lists completely independent of
the Blackfin cores.

Parallel Peripheral Interface (PPI)

The enhanced parallel peripheral interface (PPI) is a half-duplex, bidirectional port with a dedicated clock
pin and three frame sync (FS) pins. It can support direct connections to active TFT LCD, parallel A/D and
D/A converters, video encoders and decoders, image sensor modules and other general-purpose periph-
erals. Each PPI has a DMA channel associated with it. Moreover, in some modes, a PPI may use an addi-
tional DMA channel.

The processor provides up to three parallel peripheral interfaces (PPIs), supporting data widths up to 24
bits. The PPI supports direct connection to TFT LCD panels, parallel analog-to-digital and digital-to-
analog converters, video encoders and decoders, image sensor modules and other general-purpose periph-
erals.

The following features are supported in the PPI module:

• Programmable data length: 8 bits, 10 bits, 12 bits, 14 bits, 16 bits, 18 bits, and 24 bits per clock.

• Various framed, non-framed, and general-purpose operating modes. Frame syncs can be generated
internally or can be supplied by an external device.

INTRODUCTION
ON CHIP PERIPHERALS

1–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• ITU-656 status word error detection and correction for ITU-656 receive modes and ITU-656 preamble
and status word decode.

• Optional packing and unpacking of data to/from 32 bits from/to 8 bits, 16 bits and 24 bits. If packing/
unpacking is enabled, endianness can be configured to change the order of packing/unpacking of bytes/
words.

• RGB888 can be converted to RGB666 or RGB565 for transmit modes.

• Various de-interleaving/interleaving modes for receiving/transmitting 4:2:2 YCrCb data.

• Configurable LCD data enable (DEN) output available on Frame Sync 3.

Pixel Compositor (PIXC)

The pixel compositor (PIXC) provides data overlay, transparent color, and color space conversion
support. This allows for supporting different video outputs including active (TFT) flat-panel digital color/
monochrome LCD displays and analog NTSC/PAL. The color space conversion and text/graphic overlay
capabilities, along with visual effect controls, such as transparency control, shorten the processing time on
an image data stream, reduce power consumption and save system board space by removing the need for
external glue logic.

The PIXC is used to combine and format the data streams required by a wide variety of digital LCD panels
and NTSC/PAL analog encoders. It provides all the control needed to allow two data streams from two
separate data buffers to be combined and converted into appropriate formats for both LCD panels and
video output displays. The main image buffer provides the basic background image presented in the data
stream. The overlay image buffer allows the user to add foreground text and graphics on top of the main
image data stream. This feature is useful for printing additional graphical or textual information on the
screen, such as symbols or a menu, while showing the main image in the background.

Overlay is an option and can be enabled or disabled. If it is disabled, the blender/compositor is bypassed
and the data stream from the main image buffer goes directly to memory with optional color space conver-
sion.

Transparent color is just a special case of blending, masking off the blend operation on a pixel-by-pixel
basis. In other words, the overlay region consists of sub-regions in any particular color convenient to the
programmer and then, if the color data for a given overlay pixel matches the specified transparent color,
the overlay function is masked for that pixel and its data is taken solely from the main image buffer, which
is stored in memory in either YUV 4:2:2 interleaved format or RGB888 format

Regardless of the data format or buffer structure, each color element is 8 bits wide. If overlay is enabled, a
graphics/text overlay data buffer is defined in memory. The color space converter can switch positions
among any of the three locations; it can be in the image data path, the overlay data path, or after the
blender. The exact position of the color space converter depends on the input and output data formats.

Since the end display may be a TV (NTSC/PAL) or an LCD panel, and since the image/overlay input
buffers may be in either RGB888 or YUV4:2:2 format, a color space conversion may be needed. The color

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 1–27

space conversion is selected according to the input data stream format of the PIXC. A YUV-to-RGB format
conversion is necessary if the end display is an LCD and if either of the PIXC input data streams is in YUV
4:2:2 format. Similarly, an RGB-to-YUV format conversion is necessary if the end display is a TV and if
either of the PIXC input data streams is in RGB888 format.

If the final display device is an LCD, the output RGB data stream is always packed in RGB 8-bit serial
format when transferring back to memory. Similarly, if the final display device is a TV, the YUV data
stream is always packed in YUV 4:2:2 interleaved format when transferring back to memory.

Reset Control Unit (RCU)

Reset is the initial state of the whole processor or one of the cores and is the result of a hardware or software
triggered event. In this state, all control registers are set to their default values and functional units are idle.
Exiting a full system reset starts with Core-0 only being ready to boot. Exiting a Core-n only reset starts
with this Core-n being ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in func-
tional requirements and clocking constraints define how reset signals are generated. Programs must guar-
antee that none of the reset functions puts the system into an undefined state or causes resources to stall.
This is particularly important when only one of the cores is reset (programs must ensure that there is no
pending system activity involving the core that is being reset).

From a system perspective reset is defined by both the reset target and the reset source as described below.

Target defined:

• Hardware Reset - All functional units are set to their default states without exception. History is lost.

• System Reset - All functional units except the RCU are set to their default states.

• Core-n only Reset - Affects Core-n only. The system software should guarantee that the core in reset
state is not accessed by any bus master.

Source defined:

• Hardware Reset - TheSYS_HWRSTinput signal is asserted active (pulled down).

• System Reset - May be triggered by software (writing to the RCU_CTL register) or by another func-
tional unit such as the dynamic power management (DPM) unit (Hibernate) or any of the system event
controller (SEC), trigger routing unit (TRU), or emulator. inputs.

• Core-n-only reset - Triggered by software.

• Trigger request (peripheral).

INTRODUCTION
BOOTING

1–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Booting
The processor has several mechanisms for automatically loading internal and external memory after a
reset. The boot mode is defined by theSYS_BMODE input pins dedicated for this purpose. There are two
categories of boot modes. In master boot modes, the processor actively loads data from parallel or serial
memories. In slave boot modes, the processor receives data from external host devices.

The boot modes are shown in the SYS_BMODE Selections and Boot Modes table. These modes are imple-
mented by the SYS_BMODE bits of the reset configuration register and are sampled during power-on
resets and software-initiated resets.

System Debug Unit
The System Debug Unit (SDU) provides IEEE-1149.1 support through its JTAG interface. In addition to
traditional JTAG features, present in legacy Blackfin products, the SDU adds more features for debugging
the chip without halting the core processors.

System Watchpoint Unit
The System Watchpoint Unit (SWU) is a single module which connects to a single system bus and
provides for transaction monitoring. One SWU is attached to the bus going to each system slave. The SWU
provides ports for all system bus address channel signals. Each SWU contains four match groups of regis-
ters with associated hardware. These four SWU match groups operate independently, but share common
event (interrupt, trigger, etc.) outputs.

Table 1-3: SYS_BMODE Selections and Boot Modes

SYS_BMODE Setting Boot Mode

000 No boot/Idle
001 Flash
010 RSI0 Master
011 SPI0 Master
100 SPI0 Slave
101 Reserved
110 LP0 Slave
111 UART0 Slave

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–1

2 System Crossbars (SCB)

The System Crossbars (SCB) are the fundamental building blocks of a switch-fabric style for (on-chip)
system bus interconnection. The SCBs connect system bus masters to system bus slaves, providing concur-
rent data transfer between multiple bus masters and multiple bus slaves. A hierarchical model---built from
multiple SCBs---provides a power and area efficient system interconnect, which satisfies the performance
and flexibility requirements of a specific system.

SCB Features
The SCBs provide the following features:

• Highly efficient, pipelined bus transfer protocol for sustained throughput

• Full-duplex bus operation for flexibility and reduced latency

• Concurrent bus transfer support to allow multiple bus masters to access bus slaves simultaneously

• Protection model (privileged/secure) support for selective bus interconnect protection

• Programmable bus arbitration model for bandwidth and latency management

SCB Functional Description
The following sections provide a functional description of the SCB:

• ADSP-BF60x SCB Register List

• SCB Definitions

• SCB Block Diagram

ADSP-BF60x SCB Register List

The system cross bar (SCB), which is often referred to as the system interconnect fabric, is a collection of
interconnection units connecting system masters to slave memory spaces. Each unit in the fabric consists
of a matrix of master interfaces (MIn). Each of these matrices has a number of slave interfaces (SIn). The
SCBs (units in the fabric) with multiple SI for each MI have programmable round-robin arbitration to
manage access to slots. A set of registers govern SCB operations. For more information on SCB function-
ality, see the SCB register descriptions.

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

2–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCB Definitions

To make the best use of the SCB, it is useful to understand the following terms.

MI (Master Interface)

 SCB master interface connected to system bus interconnect slave (for example, L2, sMMR, SCB, and
others).

SI (Slave Interface)

 SCB slave interface connected to system bus interconnect master (for example, Core, DDE, SCB, and
others).

SCB Block Diagram

The SCB architectural model is illustrated in the following figure. This figure shows a high-level overview
of the SCB and associated connections to system masters and slaves. A variable number of masters may be
connected to a variable number of slaves in each SCB. In this example, all SIs are connected to all MIs as
indicated by the lines connecting them.

Figure 2-1: SCB Overview

Table 2-1: ADSP-BF60x SCB Register List

Name Description

SCB_ARBRn Arbitration Read Channel Master Interface n Register

SCB_ARBWn Arbitration Write Channel Master Interface n Register

SCB_SLAVES Slave Interfaces Number Register

SCB_MASTERS Master Interfaces Number Register

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–3

NOTE: For an overall diagram of all SCB interconnections, see the ADSP-BF60x SCB Block Diagram.

SCB Hierarchy Block Diagram

A system interconnect built from multiple SCBs in a hierarchical model is illustrated in the following
figure. The system master node level SCBs master multiple SIs to a single MI, which in turn connects to an
SI of the system slave level node SCB. In this example, all SIs are connected to all MIs.

Figure 2-2: SCB Hierarchy Overview

NOTE: For an overall diagram of all SCB interconnections, see the ADSP-BF60x SCB Block Diagram.

ADSP-BF60x SCB Block Diagram

The following figure shows the SCB block diagram for the ADSP-BF60x processors.

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

2–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 2-3: ADSP-BF60x SCB Block Diagram

While this figure is useful just for the overview it provides, it is also useful to observe the following rela-
tionships that are highlighted.

• The hierarchy of SCBs manages system bus interconnections, multiplexing, and arbitration among the
cores and peripherals on the processor.

• The SCBs connections support DMA channels for some peripherals, support dedicated connections for
others (such as USB), and support memory mapped register access for internal memory (L1 and L2)
and for external memory (DDR, FLASH, and others).

• The peripherals (and their SCBs) are in the SCLK0 clock domain; except the SPORT and SPI periph-
erals (and their SCBs), which are in the SCLK1 clock domain. SCB0 and SCB10 are in the SYSCLK

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–5

domain. The processor cores are each in their own clock domain. Synchronization across clock
domains affect SCB performance.

• Each peripheral has a latency for access across the SCB. The latency varies with the nature of the
peripheral. Also, the number of active peripherals (especially for cases where multiple peripherals are
active on a shared SCB) affects SCB performance.

The following definitions of acronyms (appearing in the figure) may be helpful:

DMA0-DMA46
These indicate DMA channels for peripherals supporting DMA transfers.

SCB0-SCB10
These indicate SCB interfaces, connecting the system bus masters and slaves.

SCLK0, SYSCLK, CCLK0, CCLK1
These indicate clock domains in which the specific SCBs operate. For more information on clock domains,
see the Clock Generation Unit chapter and the product data sheet.

L1, L2
These indicate on-core (L1) internal memory and off-core (L2) internal memory.

C0, C1
These indicate processor core 0 (C0) and core 1 (C1).

SMC, L2CTL, DMC
These indicate the static memory controller (SMC), off-core (L2) memory controller, and dynamic memory
controller (DMC) interfaces.

PPI0, PPI1, PPI2 - F0/F1
These indicate the parallel peripheral port interfaces, using either internal or external frame sync.

SPORT0, SPORT1, SPORT2 - Half A/B
These indicate the serial port interfaces and their full-duplex halves.

SPI0, SPI1 - RX/TX
These indicate the serial peripheral interfaces ports with receive or transmit paths.

RSI
This indicates the removable storage interface (RSI) interface.

SDU
This indicates the system debug unit (SDU) interface.

SPU
This indicates the system protection unit (SPU).

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

2–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC0, EMAC1
These indicate the Ethernet MAC 0 and 1 interfaces.

MDMA0, MDMA1, MDMA2, MDMA3
These indicate memory DMA 0 through 3 interfaces.

CRC0, CRC1
These indicate the cyclic redundancy check (CRC) 0 and 1 interfaces.

PIXC0, PIXC1
These indicate the pixel compositor (PIXC) 0 and 1 interfaces

CPCI, CPCO, CPDOC, CPDOB, CPDOA
These indicate the PVP Camera Pipe Control I/O and Camera Pipe Data output A/B/C interfaces.

MPCI, MPCO, MPDI, MPDO
These indicate the PVP Memory Pipe Control I/O and Memory Pipe Data I/O interfaces.

USB
This indicates the universal serial bus (USB) interface.

SMMR
This indicates the system memory-mapped register interface.

ADSP-BF60x SCB Bus Master IDs

The SCB bus master ID indicates which SCB is the current master of a particular bus. While this informa-
tion is useful for some advanced debugging of SCB arbitration programming, it is deemed to provide too
much insight into proprietary design methodology to make publicly available.

Note the following about bus master IDs:

• MMR0 and MMR1 IDs are only seen on the SMMR bus.

• The CL2 bus only has IDs from C0 and C1.

• Non-CL2 C0 and C1 IDs are only seen on the DDR and SMC buses. SCB1, SCB3, SCB5, SCB6, SCB7,
SCB8, SCB9 and SCB2 (except for SDU) IDs are seen on DDR, SMC, DL2, L1C0, L1C1.

• SCB4 and SCB2 (SDU and SDU DMA) IDs are seen on DDR, SMC, DL2, L1C0, L1C1, and SMMR.

NOTE: For an overall diagram of all SCB interconnections, see the ADSP-BF60x SCB Block Diagram.

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–7

Table 2-2: ADSP-BF60x Bus IDs at the slaves (DDR, SMC, CL2, DL2, L1C0, L1C1, SMMR)

Ports Masters Hex ID Values Visible on CL2 Bus

SCB1 sp0 hs-A 0x009,0x109
sp0 hs-B 0x019,0x119
sp1 hs-A 0x029,0x129
sp1 hs-B 0x039,0x139
sp2 hs-A 0x049,0x149
sp2 hs-B 0x059,0x159
spi0 tx 0x069,0x169
spi0 rx 0x079,0x179
spi1 tx 0x089,0x189
spi1 rx 0x099,0x199

SCB2 RSI 0x00a,0x08a
SDU DMA 0x01a,0x09a
SDU 0x02a
EMAC0 0x03a,0x0ba
EMAC1 0x04a,0x0ca

SCB3 LP0 0x00b,0x08b
LP1 0x01b,0x09b
LP2 0x02b,0x0ab
LP3 0x03b,0x0bb
uart0 tx 0x04b,0x0cb
uart0 rx 0x05b,0x0db
uart1 tx 0x06b,0x0eb
uart1 rx 0x07b,0x0fb

SCB4 DMA21 0x00c,0x08c
DMA22 0x01c,0x09c
DMA23 0x02c,0x0ac
DMA24 0x03c,0x0bc
DMA25 0x04c,0x0cc
DMA26 0x05c,0x0dc
DMA27 0x06c,0x0ec
DMA28 0x07c,0x0fc

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

2–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCB5 ppi0 0x005,0x045
ppi0 0x015,0x055
ppi2 0x025,0x065
ppi2 0x035,0x075

SCB6 ppi1 0x006,0x026
ppi1 0x016,0x036

SCB7 PIXC0 0x008,0x048
PIXC1 0x018,0x058
PIXC2 0x028,0x068

SCB8 cpdoB 0x007,0x047
cpdoC 0x017,0x057
cpco 0x027,0x067
cpci 0x037,0x077

SCB9 mpdo/uddo 0x004,0x084
mpdi/uddi 0x014,0x094
mpco/upco 0x024,0x0a4
mpci/upci 0x034,0x0b4
cpdoA 0x044,0x0c4

USB 0x00d
C0 0x000,0x020,0x040,0x060,0x080,0

x0a0,0x0c0,0x0e0
MMR0 0x001
C1 0x012,0x032,0x052,0x072,0x092,0

x0b2,0x0d2,0x0f2
MMR1 0x003

Table 2-3: ADSP-BF60x Bus IDs at the slaves (DDR, SMC, CL2, DL2, L1C0, L1C1, SMMR)

Ports Masters Hex ID Values Visible on CL2 Bus

C0 0x000,0x002,0x004,0x006,
0x008,0x00a,0x00c,0x00e

Table 2-2: ADSP-BF60x Bus IDs at the slaves (DDR, SMC, CL2, DL2, L1C0, L1C1, SMMR) (Continued)

Ports Masters Hex ID Values Visible on CL2 Bus

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–9

ADSP-BF60x SCB Arbitration Tables

The SCB uses round robin arbitration to prioritize each slave’s interface to masters (Master Interface) and
each master’s interface to slaves (Slave Interface). This section provides reference information about these
interfaces.

NOTE: For an overall diagram of all SCB interconnections, see the ADSP-BF60x SCB Block Diagram.

For SCB programing information, see the SCB Programming Model.

SCB Units, Master Interfaces, and Arbitration Types

C1 0x001,0x003,0x005,0x007,
0x009,0x00b,0x00d,0x00f

Table 2-4: SCB Units, Master Interfaces, and Arbitration Types

SCB Master Interface No. Arbitration Type Programmable Slots

SCB0 MI0 (DDR) Prog Round Robin 32
MI1 (SMC) Prog Round Robin 32
MI2 (DL2) Prog Round Robin 32
MI3 (L1C0) Prog Round Robin 32
MI4 (L1C1) Prog Round Robin 32
MI5 (SMMR) Prog Round Robin 16

SCB1 MI0 (SCB0) Prog Round Robin 20
SCB2 MI0 (SCB0) Prog Round Robin 10
SCB3 MI0 (SCB0) Prog Round Robin 16
SCB4 MI0 (SCB0) Prog Round Robin 16
SCB5 MI0 (SCB0) Prog Round Robin 8
SCB6 MI0 (SCB0) Prog Round Robin 4
SCB7 MI0 (SCB0) Prog Round Robin 6
SCB8 MI0 (SCB0) Prog Round Robin 8
SCB9 MI0 (SCB0) Prog Round Robin 10
SCB10 MI0 (CL2) Prog Round Robin 16

MI1 (C02Sys) Fixed Round Robin 0
MI2 (C12Sys) Fixed Round Robin 0

Table 2-3: ADSP-BF60x Bus IDs at the slaves (DDR, SMC, CL2, DL2, L1C0, L1C1, SMMR) (Continued)

Ports Masters Hex ID Values Visible on CL2 Bus

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

2–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCB0 Slots and Masters

Table 2-5: SCB0 Arbitration Default Settings for MI0 (DDR)

Slot Master

0 SI0 (C0)
1 SI2 (C1)
2 SI4 (SCB9)
3 SI5 (SCB5)
4 SI6 (SCB6)
5 SI7 (SCB8)
6 SI8 (SCB7)
7 SI9 (SCB1)
8 SI10 (SCB2)
9 SI11 (SCB3)
10 SI13 (USB)
11 SI12 (SCB4)
12 SI0 (C0)
13 SI2 (C1)
14 SI4 (SCB9)
15 SI5 (SCB5)
16 SI6 (SCB6)
17 SI7 (SCB8)
18 SI8 (SCB7)
19 SI9 (SCB1)
20 SI10 (SCB2)
21 SI11 (SCB3)
22 SI13 (USB)
23 SI12 (SCB4)
24 SI0 (C0)
25 SI2 (C1)
26 SI4 (SCB9)
27 SI5 (SCB5)
28 SI6 (SCB6)

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–11

29 SI7 (SCB8)
30 SI8 (SCB7)
31 SI13 (USB)

Table 2-6: SCB0 Arbitration Default Settings for MI1 (SMC)

Slot Master

0 SI0 (C0)
1 SI2 (C1)
2 SI4 (SCB9)
3 SI5 (SCB5)
4 SI6 (SCB6)
5 SI7 (SCB8)
6 SI8 (SCB7)
7 SI9 (SCB1)
8 SI10 (SCB2)
9 SI11 (SCB3)
10 SI13 (USB)
11 SI12 (SCB4)
12 SI0 (C0)
13 SI2 (C1)
14 SI4 (SCB9)
15 SI5 (SCB5)
16 SI6 (SCB6)
17 SI7 (SCB8)
18 SI8 (SCB7)
19 SI9 (SCB1)
20 SI10 (SCB2)
21 SI11 (SCB3)
22 SI13 (USB)
23 SI12 (SCB4)
24 SI0 (C0)

Table 2-5: SCB0 Arbitration Default Settings for MI0 (DDR) (Continued)

Slot Master

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

2–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

25 SI2 (C1)
26 SI4 (SCB9)
27 SI5 (SCB5)
28 SI6 (SCB6)
29 SI7 (SCB8)
30 SI8 (SCB7)
31 SI13 (USB)

Table 2-7: SCB0 Arbitration Default Settings for MI2 (DL2)

Slot Master

0 SI4 (SCB9)
1 SI5 (SCB5)
2 SI6 (SCB6)
3 SI7 (SCB8)
4 SI8 (SCB7)
5 SI9 (SCB1)
6 SI10 (SCB2
7 SI11 (SCB3)
8 SI13 (USB)
9 SI12 (SCB4)
10 SI4 (SCB9)
11 SI5 (SCB5)
12 SI6 (SCB6)
13 SI7 (SCB8)
14 SI8 (SCB7)
15 SI9 (SCB1)
16 SI10 (SCB2)
17 SI11 (SCB3)
18 SI13 (USB)
19 SI12 (SCB4)
20 SI4 (SCB9)

Table 2-6: SCB0 Arbitration Default Settings for MI1 (SMC) (Continued)

Slot Master

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–13

21 SI5 (SCB5)
22 SI6 (SCB6)
23 SI7 (SCB8)
24 SI8 (SCB7)
25 SI9 (SCB1)
26 SI10 (SCB2)
27 SI11 (SCB3)
28 SI13 (USB)
29 SI12 (SCB4)
30 SI4 (SCB9)
31 SI7 (SCB8)

Table 2-8: MI3 (L1A)

Slot Master

0 SI4 (SCB9)
1 SI5 (SCB5)
2 SI6 (SCB6)
3 SI7 (SCB8)
4 SI8 (SCB7)
5 SI9 (SCB1)
6 SI10 (SCB2)
7 SI11 (SCB3)
8 SI13 (USB)
9 SI12 (SCB4)
10 SI4 (SCB9)
11 SI5 (SCB5)
12 SI6 (SCB6)
13 SI7 (SCB8)
14 SI8 (SCB7)
15 SI9 (SCB1)
16 SI10 (SCB2)

Table 2-7: SCB0 Arbitration Default Settings for MI2 (DL2) (Continued)

Slot Master

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

2–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

17 SI11 (SCB3)
18 SI13 (USB)
19 SI12 (SCB4)
20 SI4 (SCB9)
21 SI5 (SCB5)
22 SI6 (SCB6)
23 SI7 (SCB8)
24 SI8 (SCB7)
25 SI9 (SCB1)
26 SI10 (SCB2)
27 SI11 (SCB3)
28 SI13 (USB)
29 SI12 (SCB4)
30 SI4 (SCB9)
31 SI7 (SCB8)

Table 2-9: MI4 (L1B)

Slot Master

0 SI4 (SCB9)
1 SI5 (SCB5)
2 SI6 (SCB6)
3 SI7 (SCB8)
4 SI8 (SCB7)
5 SI9 (SCB1)
6 SI10 (SCB2)
7 SI11 (SCB3)
8 SI13 (USB)
9 SI12 (SCB4)
10 SI4 (SCB9)
11 SI5 (SCB5)
12 SI6 (SCB6)

Table 2-8: MI3 (L1A) (Continued)

Slot Master

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–15

13 SI7 (SCB8)
14 SI8 (SCB7)
15 SI9 (SCB1)
16 SI10 (SCB2)
17 SI11 (SCB3)
18 SI13 (USB)
19 SI12 (SCB4)
20 SI4 (SCB9)
21 SI5 (SCB5)
22 SI6 (SCB6)
23 SI7 (SCB8)
24 SI8 (SCB7)
25 SI9 (SCB1)
26 SI10 (SCB2)
27 SI11 (SCB3)
28 SI13 (USB)
29 SI12 (SCB4)
30 SI4 (SCB9)
31 SI7 (SCB8)

Table 2-10: MI5 (SMMR)

Slot Master

0 SI1 (MMR0)
1 SI3 (MMR1)
2 SI10 (SCB2)
3 SI12 (SCB4)
4 SI1 (MMR0)
5 SI3 (MMR1)
6 SI10 (SCB2)
7 SI12 (SCB4)
8 SI1 (MMR0)

Table 2-9: MI4 (L1B) (Continued)

Slot Master

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

2–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCB1 Slots and Masters

9 SI3 (MMR1)
10 SI10 (SCB2)
11 SI12 (SCB4)
12 SI1 (MMR0)
13 SI3 (MMR1)
14 SI10 (SCB2)
15 SI12 (SCB4)

Table 2-11: MI0 (SCB1)

Slot Master

0 SI0 (SPORT0A)
1 SI1 (SPORT0B)
2 SI2 (SPORT1A)
3 SI3 (SPORT1B)
4 SI4 (SPORT2A)
5 SI5 (SPORT2B)
6 SI6 (SPI0TX)
7 SI7 (SPI0RX)
8 SI8 (SPI1TX)
9 SI9 (SPI1RX)
10 SI0 (SPORT0A)
11 SI1 (SPORT0B)
12 SI2 (SPORT1A)
13 SI3 (SPORT1B)
14 SI4 (SPORT2A)
15 SI5 (SPORT2B)
16 SI6 (SPI0TX)
17 SI7 (SPI0RX)
18 SI8 (SPI1TX)
19 SI9 (SPI1RX)

Table 2-10: MI5 (SMMR) (Continued)

Slot Master

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–17

SCB2 Slots and Masters

SCB3 Slots and Masters

Table 2-12: MI0 (SCB2)

Slot Master

0 SI0 (RSI)
1 SI1 (SDU DMA)
2 SI2 (SDU)
3 SI3 (EMAC0)
4 SI4 (EMAC1)
5 SI0 (RSI)
6 SI1 (SDU DMA)
7 SI2 (SDU)
8 SI3 (EMAC0)
9 SI4 (EMAC1)

Table 2-13: MI0 (SCB3)

Slot Master

0 SI0 (LP0)
1 SI1 (LP1)
2 SI2 (LP2)
3 SI3 (LP3)
4 SI4 (UART0TX)
5 SI5 (UART0RX)
6 SI6 (UART1TX)
7 SI7 (UART1RX)
8 SI0 (LP0)
9 SI1 (LP1)
10 SI2 (LP2)
11 SI3 (LP3)
12 SI4 (UART0TX)
13 SI5 (UART0RX)
14 SI6 (UART1TX)

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

2–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCB4 Slots and Masters

SCB5 Slots and Masters

15 SI7 (UART1RX)

Table 2-14: MI0 (SCB4)

Slot Master

0 SI0 (DMA21)
1 SI1 (DMA22)
2 SI2 (DMA23)
3 SI3 (DMA24)
4 SI4 (DMA25)
5 SI5 (DMA26)
6 SI6 (DMA27)
7 SI7 (DMA28)
8 SI0 (DMA21)
9 SI1 (DMA22)
10 SI2 (DMA23)
11 SI3 (DMA24)
12 SI4 (DMA25)
13 SI5 (DMA26)
14 SI6 (DMA27)
15 SI7 (DMA28)

Table 2-15: MI0 (SCB5)

Slot Master

0 SI0 (PPI0 -- DMA29)
1 SI1 (PPI0 -- DMA30)
2 SI2 (PPI2 -- DMA31)
3 SI3 (PPI2 -- DMA32)
4 SI0 (PPI0 -- DMA29)

Table 2-13: MI0 (SCB3) (Continued)

Slot Master

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–19

SCB6 Slots and Masters

SCB7 Slots and Masters

SCB8 Slots and Masters

5 SI1 (PPI0 -- DMA30)
6 SI2 (PPI2 -- DMA31)
7 SI3 (PPI2 -- DMA32)

Table 2-16: MI0 (SCB6)

Slot Master

0 SI0 (PPI1 -- DMA33)
1 SI1 (PPI1 -- DMA34)
2 SI0 (PPI1 -- DMA33)
3 SI1 (PPI1 -- DMA34)

Table 2-17: MI0 (SCB7)

Slot Master

0 SI0 (PIXC0)
1 SI1 (PIXC1)
2 SI2 (PIXC2)
3 SI0 (PIXC0)
4 SI1 (PIXC1)
5 SI2 (PIXC2)

Table 2-18: MI0 (SCB8)

Slot Master

0 SI0 (PVP CPDOB)
1 SI1 (PVP CPDOC)
2 SI2 (PVP CPCO)
3 SI3 (PVP CPCI)
4 SI0 (PVP CPDOB)

Table 2-15: MI0 (SCB5) (Continued)

Slot Master

SYSTEM CROSSBARS (SCB)
SCB PROGRAMMING MODEL

2–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCB9 Slots and Masters

SCB Programming Model
The SCB arbitration model is programmable. Before modifying the default read or write arbitration
settings, it is important to know and follow the following SCB register access restrictions:

1. Do not attempt to access reserved or unused address locations. Attempting to access these locations can
result in unpredictable behavior of the SCB.

2. Unless otherwise stated in the accompanying text:

• Do not modify undefined register bits.

• Ignore undefined register bits on reads.

• All register bits are reset to a logic 0 by a system reset.

NOTE: No protection is imposed when you program the slots in the arbitration scheme. It is possible to
remove an SI from all the slots (making the SI inaccessible).

5 SI1 (PVP CPDOC)
6 SI2 (PVP CPCO)
7 SI3 (PVP CPCI)

Table 2-19: MI0 (SCB9)

Slot Master

0 SI0 (PVP MPDO/UDDO)
1 SI1 (PVP MPDI/UDDI)
2 SI2 (PVP MPCO/UPCO)
3 SI3 (PVP MPCI/UPCI)
4 SI4 (PVP CPDOA)
5 SI0 (PVP MPDO/UDDO)
6 SI1 (PVP MPDI/UDDI)
7 SI2 (PVP MPCO/UPCO)
8 SI3 (PVP MPCI/UPCI)
9 SI4 (PVP CPDOA)

Table 2-18: MI0 (SCB8) (Continued)

Slot Master

SYSTEM CROSSBARS (SCB)
ADSP-BF60X SCB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–21

For information about the SCBs in the processor and their slot numbers (for modifying read/write arbi-
tration settings), see the ADSP-BF60x SCB Arbitration Tables.

Reading Arbitration Settings

To read arbitration parameter data (for example, get the identity of the SI assigned to an arbitration slot),
use a write-followed-by-read process with bits 31-24 set to FF:

1. Write SCB_ARBWn with the value 0xFF0000mm (where mm is the slot index for the following read).

2. Read the value in SCB_ARBWn, the value is 0x000000nn (where nn is identity of the SI assigned to slot
mm).

Writing Arbitration Settings

To write arbitration parameter data (for example, assign an SI to an SCB slot), use a write with bits 31-24
set to the slot number.

SCB Programming Concepts

The SCB arbitration model is programmable. Through register configuration, the arbitration model can
be adjusted for the specific bandwidth and latency requirements. The arbitration model is programmable
round robin with the following features:

• Each MI has its own set of arbitration slots.

• The total number of arbitration slots is specific to the SCB and fixed in hardware.

• Arbitration slot priority rotates each cycle.

• SIs are assigned to each slot. (See ADSP-BF60x SCB Arbitration Tables.)

• Transactions are granted to highest priority requesting master each cycle.

ADSP-BF60x SCB Register Descriptions
System Cross Bar (SCB) contains the following registers.

Table 2-20: ADSP-BF60x SCB Register List

Name Description

SCB_ARBRn Arbitration Read Channel Master Interface n Register

SYSTEM CROSSBARS (SCB)
ADSP-BF60X SCB REGISTER DESCRIPTIONS

2–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Arbitration Read Channel Master Interface n Register

Each master interface (MI) of an SCB has an SCB_ARBRn register, providing indexed access to the read arbi-
tration parameters of the slave interfaces (SIn) connected to that MI.

Figure 2-4: SCB_ARBRn Register Diagram

SCB_ARBWn Arbitration Write Channel Master Interface n Register

SCB_SLAVES Slave Interfaces Number Register

SCB_MASTERS Master Interfaces Number Register

Table 2-21: SCB_ARBRn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R0/W)

SLOT Slot Number.
The SCB_ARBRn.SLOT bits either hold the SCB slot number (for
writing arbitration data) or hold the value FF (for write-followed-by-
read of arbitration data). For a list of slot numbers for specific SCBs,
see the SCB function description.

7:0
(R/W)

SLAVE Slave Interface.
The SCB_ARBRn.SLAVE bits either hold the SCB slave interface (SI) to
be assigned to the slot number in SCB_ARBRn.SLOT (for writing
arbitration data) or hold the slot number (for write-followed-by-read
of arbitration data). For a list of slot numbers of specific SCBs, see the
SCB functional description.

Table 2-20: ADSP-BF60x SCB Register List (Continued)

Name Description

SYSTEM CROSSBARS (SCB)
ADSP-BF60X SCB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 2–23

Arbitration Write Channel Master Interface n Register

Each master interface (MI) SCB has an SCB_ARBWn register, providing indexed access to the write arbitra-
tion parameters of the slave interfaces (SIn) connected to that MI.

Figure 2-5: SCB_ARBWn Register Diagram

Slave Interfaces Number Register

The SCB_SLAVES register holds the number of slave interfaces (SI) connected to the SCB.

Table 2-22: SCB_ARBWn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R0/W)

SLOT Slot Number.
The SCB_ARBWn.SLOT bits either hold the SCB slot number (for
writing arbitration data) or hold the value FF (for write-followed-by-
read of arbitration data). For a list of slot numbers for specific SCBs,
see the SCB function description.

7:0
(R/W)

SLAVE Slave Interface.
The SCB_ARBWn.SLAVE bits either hold the SCB slave interface (SI) to
be assigned to the slot number in SCB_ARBWn.SLOT (for writing
arbitration data) or hold the slot number (for write-followed-by-read
of arbitration data). For a list of slot numbers of specific SCBs, see the
SCB functional description.

SYSTEM CROSSBARS (SCB)
ADSP-BF60X SCB REGISTER DESCRIPTIONS

2–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 2-6: SCB_SLAVES Register Diagram

Master Interfaces Number Register

The SCB_MASTERS register holds the number of master interfaces (SI) connected to the SCB.

Figure 2-7: SCB_MASTERS Register Diagram

Table 2-23: SCB_SLAVES Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

SI Slave Interface Value.
The SCB_SLAVES.SI bits hold the number of slave interfaces
connected to the SCB.

Table 2-24: SCB_MASTERS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

MI Master Interface Value.
The SCB_MASTERS.MI bits hold the number of master interfaces
connected to the SCB.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–1

3 Clock Generation Unit (CGU)

The Clock Generation Unit (CGU) includes the phase locked loop (PLL) and the PLL control unit (PCU).
The PLL generates a clock that runs at a frequency that is a multiple of the CLKIN input clock frequency.
It also generates all on-chip clocks and synchronization signals. The PCU allows the application software
to control the PLL module operation.

CGU Features
The following features are supported in the CGU module:

• Generates all on-chip clocks and synchronization signals; programmable values divide the PLL clock
frequency to generate the core clock (CCLK), the system clocks (SYSCLK, SCLK0 and SCLK1), the
LPDDR or DDR2 clock (DCLK) and the output clock (OCLK)

• Provides smooth transitions from current clock condition to new condition with PLL logic, executes
the changes to clocks due to register programming

• Supports programmable options for the SYS_CLKOUT output, which may output divided-down versions
of the on-chip clocks; by default, the SYS_CLKOUT pin drives a buffered version of the SYS_CLKIN input

• Provides PLL and clock domain status reporting for event management

• Maximizes power management flexibility in conjunction with the DPM

• Manages power dynamically, allowing the processor’s core clock frequency (fCCLK) to be dynamically
controlled

• Provides clock generation support for multiple operating/sleep modes to permit a custom power usage
model; modes include full-on mode, active mode, deep sleep mode, and hibernate mode

NOTE: For more information about processor specific CGU features, see the processor data sheet.

For more information about CGU/DPM integrated features, see the Dynamic Power Management
(DPM) chapter.

CLOCK GENERATION UNIT (CGU)
CGU FUNCTIONAL DESCRIPTION

3–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CGU Functional Description
The CGU (clock generation unit) generates all on-chip clocks and synchronization signals based on the
programmed PLL multiplication factor and dividers. The following sections describe the CGU features:

• ADSP-BF60x CGU Register List

• ADSP-BF60x CGU Interrupt List

• ADSP-BF60x CGU Trigger List

• CGU Definitions

• CGU PLL Block Diagram

ADSP-BF60x CGU Register List

The clock generation unit (CGU) includes the phase locked loop (PLL) and the PLL control unit (PCU).
The PLL generates a clock, running at a frequency that is a multiple of the CLKIN input clock's frequency.
The CGU also generates all on-chip clocks and synchronization signals. The PCU permits application soft-
ware control of the PLL's operation. A set of registers govern CGU operations. For more information on
CGU functionality, see the CGU register descriptions.

ADSP-BF60x CGU Interrupt List

Table 3-1: ADSP-BF60x CGU Register List

Name Description

CGU_CTL Control Register

CGU_STAT Status Register

CGU_DIV Clocks Divisor Register

CGU_CLKOUTSEL CLKOUT Select Register

Table 3-2: ADSP-BF60x CGU Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

CGU0 Event 1 PULSE/EDGE
CGU0 Error 129 LEVEL

CLOCK GENERATION UNIT (CGU)
CGU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–3

ADSP-BF60x CGU Trigger List

CGU Definitions

DPM

The dynamic power management (DPM) works with the CGU to provide flexible power disssapation
models for the processor.

PCU

The PLL control unit (PCU) in the CGU controls PLL operations.

PLL

The phase-locked loop (PLL) operates within the CGU.

RCU

The reset control unit (RCU) provides input to the CGU to manage clocks during processor reset.

CGU

The clock generation unit (CGU) is comprised of the PLL and PCU. The CGU generates the clocks listed
in the table.

Table 3-3: ADSP-BF60x CGU Trigger List Trigger Masters

Description Trigger ID Sensitivity

CGU0 Event 1 PULSE/EDGE

Table 3-4: ADSP-BF60x CGU Trigger List Trigger Slaves

Description Trigger ID Sensitivity

None

Table 3-5: Clock Descriptions

Clock Description

PLLCLK Phase-locked loop clock provides the source from which all clocks below
are derived from unless the PLL is bypassed

CCLK0 Core Clock 0
CCLK1 Core Clock 1

CLOCK GENERATION UNIT (CGU)
CGU FUNCTIONAL DESCRIPTION

3–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CGU PLL Block Diagram

The CGU PLL block diagram provides a top level block diagram of the phase locked loop (PLL). The main
blocks of the PLL are the phase frequency detector (PFD), the charge pump, the loop filter, and the voltage
controlled oscillator (VCO) which multiplies the SYS_CLKINinput to a higher frequency.

Figure 3-1: CGU PLL Block Diagram

 The output of these blocks is called PLLCLK. The PLLCLKis divided to form CCLK0, CCLK1, SYSCLK,
DCLK, and OCLK. The SYSCLK is further divided to form SCLK0 and SCLK1.

SYSCLK Clock for system buses and provides the source from which SCLK0 and
SCLK1 are derived

SCLK0 PVP and all other peripherals not clocked by SCLK1
SCLK1 SPORT, SPI, and ACM peripherals clock
DCLK Dynamic memory clock
OCLK Output clock is a possible source for SYS_CLKOUT

Table 3-5: Clock Descriptions (Continued)

Clock Description

CLOCK GENERATION UNIT (CGU)
CGU OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–5

The OCLK (shown in the CGU PLL block diagram) is routed to the CLKOUT block (shown in the SYS_
CLKOUTgeneration figure), so OCLK can be selected as one of the SYS_CLKOUTsources.

The SYS_CLKOUTgeneration figure is a conceptual representation of the CLKOUT module. As shown in
the CGU PLL block diagram, many clocks are available on the SYS_CLKOUToutput pin. The selection of
which clock outputs on the SYS_CLKOUTpin is controlled by CGU_CLKOUTSEL.CLKOUTSEL.

Figure 3-2: SYS_CLKOUT Generation

CGU Operating Modes
The CGU does not have configurable operating modes, but CGU operations affect the operating modes of
other modules. Some CGU operation issues that affect operation of other modules include the following:

• The CGU’s PLL operates in either normal mode (CGU clock divisors applied) or bypass mode (CGU
PLL is bypassed and clock divisors ignored).

• The SCB uses the CGU for clock synchronization across clock domains, For more information, see the
System Crossbars (SCB) chapter.

• The DPM uses the CGU for clock management as power state transitions occur. For more information,
see the Dynamic Power Management (DPM) chapter.

CLOCK GENERATION UNIT (CGU)
CGU EVENT CONTROL

3–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CGU Event Control
The CGU is capable of generating a CGU Event or CGU Error for several different causes.

CGU Event

The CGU event interrupt is used for different purposes. After a frequency change, a CGU event indicates
that the PLL has locked and clocks are synchronized. The CGU event interrupt can be used to break a core
idle if a core was idled while changing frequencies. While in active mode, a CGU event indicates that the
PLL has locked.

CGU Error

If the PLL fails to lock, the PLL is disabled, and a CGU error is triggered. In addition, CGU_STAT.PLOCKERR
is set. The PLL resets itself when it is disabled. If the lock error happens during reset, system reset will be
exited and a CGU event is triggered. If the failed lock occurs during a frequency change, the cores exit idle.
In order to clear the CGU event in an interrupt service routine, write to CGU_CTL.MSEL or CGU_CTL.DF.
This write makes the PLL exit the error state (the CGU_STAT.PLOCKERR bit is cleared and the CGU_EVENT
signal is de-asserted) and re-lock. This PLL operation occurs even if the new values for the CGU_CTL.MSEL
field and the CGU_CTL.DF field are the same as the previous values. The CGU_CTL.LOCK bit and the CGU_
CTL.WFI bit settings still apply. If the PLL lock error occurred during a hardware or software triggered
system reset, after out of reset, the system is functional and can boot. If the PLL lock error occurs during a
PLL frequency change, the CGU event interrupt makes the cores exit idle, as in the non error case.

The CGU_STAT.WDIVERR bit indicates a write access to the CGU_DIV register (to trigger an alignment
sequence or to change CGU_DIV.CSEL, CGU_DIV.SYSSEL, CGU_DIV.S0SEL, CGU_DIV.S1SEL, or CGU_DIV.
DSEL) while the PLL is locked, but still aligning the clocks. This condition generates a CGU error. If this
error occurs, it should be cleared and the desired values should be written to the CGU_DIV register again.

The CGU_STAT.WDFMSERR bit indicates a write access to the CGU_CTL register to change the CGU_CTL.DF
field or the CGU_CTL.MSEL field while the PLL is locking. This condition generates a CGU error. If this
error occurs, wait until the PLL has finished locking, clear the error, and write again the desired value
change to the CGU_CTL.DF field or the CGU_CTL.MSEL field.

The CGU_STAT.DIVERR indicates a clock divisor value error, occurring when a CCLK divisor is greater than
the SYSCLK divisor, as in: CGU_DIV.CSEL> CGU_DIV.SYSSEL. The CGU issues a CGU error for this condi-
tion. If this error occurs, it should be cleared and the new values should be written to the CGU_DIV register,
such that the CGU_DIV.CSEL field value is less than or equal to the CGU_DIV.SYSSEL field value.

CGU Generated Bus Errors

The CGU generates a bus error if a read or write transaction is attempted to an unused address within the
CGU address range or if a misaligned access is made to a CGU register. In addition to the bus error, the

CLOCK GENERATION UNIT (CGU)
CGU PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–7

CGU_STAT.ADDRERR bit is set. If a write to a write protected CGU register is attempted, a bus error also is
generated. In addition, the CGU_STAT.LWERR bit is set.

CGU Programming Model
This section describes the programming concepts and mode configuration techniques for the CGU.

CGU Mode Configuration

This section provides procedures related to clock and PLL configuration.

Changing the PLL Clock Frequency

To change the phase-locked loop clock (PLLCLK) frequency, write new values to the CGU_CTL.MSEL field
or CGU_CTL.DF field. Any time the PLL re locks, all core and system clocks are aligned.

1. Read CGU_STAT register and verify that:

a. The CGU_STAT.PLLEN bit =1 (PLL enabled).

b. The CGU_STAT.PLOCK bit =1 (PLL is not locking), or the CGU_STAT.PLOCKERR bit =1 (PLL lock
error, the PLL failed to lock).

c. The CGU_STAT.CLKSALGN bit =0 (clocks aligned).

2. Write the desired values to the CGU_DIV register’s clock divisor select (SEL) fields with the CGU_DIV.
UPDT bit =0.

3. Write the desired values to the CGU_CTL.DF and CGU_CTL.MSEL fields.

a. To change the PLL frequency while the cores are idle, write to the CGU_CTL register with the CGU_
CTL.WFI bit =1.

b. To change the PLL frequency while the cores are active, write to the CGU_CTL register with the CGU_
CTL.WFI bit =0.

AFTER COMPLETING THIS TASK:

This sequence updates the corresponding CGU registers; bypasses the PLL; makes the PLL lock to the new
values in the CGU_CTL.MSEL or CGU_CTL.DF fields; changes the clock frequencies; and exits PLL bypass
with all clocks aligned. When exiting the PLL bypass state, a CGU event occurs.

The CGU_STAT register exits this sequence with the CGU_STAT.PLLEN bit =1, the CGU_STAT.PLOCK bit =1,
the CGU_STAT.PLLBP bit =0, and the CGU_STAT.CLKSALGN bit =0. The CGU_STAT.PLOCK bit, CGU_STAT.
PLLBP bit, and CGU_STAT.CLKSALGN bit may be polled to discover when the PLL is locked and the clocks
are aligned.

CLOCK GENERATION UNIT (CGU)
CGU PROGRAMMING MODEL

3–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Changing the PLL's frequency is allowed while the PLL is bypassed but the new PLLCLK frequency is not
used until the PLL is no longer bypassed.

CAUTION: Changing the PLL frequency causes the DCLK frequency to change. Either accessing dynamic
memory (for example, DDR) or accessing the dynamic memory controller (DMC) registers
while PLL and/or clock frequency changes are in progress may have unpredictable results.

Changing the CCLKn, SYSCLK, or SCLKn frequency Without Modifying the PLLCLK
Frequency

To change the clock frequencies is done by writing new CGU_DIV.CnSEL, CGU_DIV.SYSSEL, or CGU_DIV.
SnSELvalues. The frequency change occurs only when the PLL is not bypassed. Any time the CCLKn,
SYSCLK, or SCLKn clock frequencies is changed, they all exit the frequency change sequence aligned. The
CGU_SYSDCLK_ALGN is not asserted even if the SYSCLK and the DCLK frequencies are equal.

1. Read the CGU_STAT register. Verify that CLKSALGN = 0 (clocks aligned)

2. Write the desired CSEL, S0SEL, SYSSEL, S1SEL, DSELand OSEL values to the CGU0_DIV registers with the
UPDT bit = 1.

ADDITIONAL INFORMATION: This write updates the CGU_DIV register and changes the CCLKn, SYSCLK or
SCLKn frequencies and aligns these clocks. When the clocks are aligned a CGU Event occurs.

AFTER COMPLETING THIS TASK:

The CGU_STAT register exits this sequence with the CLKSALGN bit cleared. The CLKSALGN bit can be polled
to discover when the clocks are aligned. Any write to the CGU_DIV register intended to change an xSEL field
while the CLKSALGN bit = 1 (clocks alignment in progress) triggers a bus error and the CGU_DIV register is
not modified.

Programming the SYSCLK frequency to a higher value than CCLKn also triggers an MMR access bus error
and the CGU_DIV register is not modified.

Writing to the CGU_DIV register is allowed while the processor is in active (PLL bypassed) mode but the
effect of the write is visible only after the transition to full-on (PLL not bypassed) mode.

Accessing the DDR memory while changing the SYSCLK frequency is not supported and may have unpre-
dictable results.

Changing the DCLK Clock Frequency

To change the DCLK clock frequency write a new CGU_DIV.DSEL value. The frequency change occurs only
when the PLL is not bypassed. Any time DCLK clock frequency is changed, DCLK, CCLKn, SYSCLK and
SCLKn clocks exit the frequency change sequence aligned. The CGU_SYSDCLK_ALGN bit = 1 if the SYSCLK
and the DCLK frequencies are equal.

1. Read the CGU0_STAT register. Verify that CLKSALGN = 0 (clocks aligned)

CLOCK GENERATION UNIT (CGU)
CGU PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–9

2. Write the desired DSEL value to the CGU0_DIV register, with the UPDT bit = 1.

ADDITIONAL INFORMATION: This write updates the CGU_DIV register, changes the DCLK frequency, and
aligns all clocks except OUTCLK.

AFTER COMPLETING THIS TASK:

The CGU_STAT register exits this sequence with the CLKSALGN bit = 0. The CLKSALGN bit can be polled to
discover when the clocks are aligned. Any write to the CGU_DIV register intended to change the DSEL field
while CLKSALGN is = 1 (clocks alignment in progress) triggers an MMR access bus error and the CGU_DIV
register is not modified. When clocks are aligned a CGU event occurs.

Writing to CGU0_DIV.DSEL is allowed while the processor is in active (PLL bypassed) mode but the effect
of the write is visible only after the transition to full-on (PLL not bypassed) mode.

Accessing the DDR memory, or the DDR memory controller’s registers while changing the DCLK
frequency is not supported and may have unpredictable results.

Changing the OUTCLK Frequency

To change the OUTCLK clock frequency, write a new CGU_DIV.OSEL value. Any time OUTCLK clock
frequency is changed, the OUTCLK, CCLKn, SYSCLK and SCLKn clocks exit the frequency change sequence
aligned. The CGU_SYSDCLK_ALGN signal is not modified.

1. Read CGU_STAT register. Verify that CLKSALGN = 0 (clocks aligned)

2. Write desired OSEL value with the UPDT bit 1 to the CGU0_DIV register.

ADDITIONAL INFORMATION: This write updates the CGU_DIV register, changes the DCLK frequency, and
aligns all clocks except OUTCLK.

AFTER COMPLETING THIS TASK:

The CGU_STAT register exits this sequence with the CLKSALGN bit = 0. The CLKSALGN bit can be polled to
discover when the clocks are aligned. Any write to the CGU_DIV register intended to change the DSEL field
while CLKSALGN = 1 (clock alignment in progress) triggers an MMR access bus error and the CGU_DIV
register is not modified. When clocks are aligned a CGU event occurs.

Writing to the OSEL field in the CGU_DIV register is allowed while the processor is in active (PLL bypassed)
mode but the effect of the write is visible only after the transition to full-on (PLL not bypassed) mode.

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

3–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Aligning All Clocks

To align CCLKn, SYSCLK, SCLKn, DCLK and OUTCLK clocks write 1 to CGU0_DIV.ALGN. The CSEL, SYSSEL,
SnSEL, DSEL or OSEL may be changed if a frequency change is also required. The CGU_SYSDCLK_ALGN is
asserted if SYSCLK and DCLK frequencies are equal.

1. Read the CGU_STAT register. Verify that CLKSALGN = 0 (clocks aligned).

2. Write 1 to the ALGN bit in CGU_DIV register. All other fields may or may not change.

ADDITIONAL INFORMATION: This write does not alter the CGU_DIV register unless any of the xSEL fields is
modified. When clocks are aligned a CGU event occurs.

AFTER COMPLETING THIS TASK:

The CGU_STAT register exits this sequence with the CLKSALGN bit = 0. The CLKSALGN bit can be polled to
discover when the clocks are aligned. Any write to the CGU0_DIV register intended to align clocks or to
change an xSEL field while CLKSALGN = 1 (clocks alignment in progress) triggers an MMR access bus error
and the CGU0_DIV register is not modified.

Writing 1 to CGU0_DIV.ALGN has no effect while the processor is in active (PLL bypassed) mode. Accessing
the DDR memory while changing the DCLK or SYSCLK frequencies is not supported and may have unpre-
dictable results.

ADSP-BF60x Valid Clock Multiplier Settings

Processor operations depend on valid settings in the CGU_CTL and CGU_DIVregisters. These registers
control clock multiplier and divisor values. These registers must be set such that the minimum and
maximum clock specified in the data sheet are not violated. All other clock specifications in the data sheet
must also be adhered to for correct operation of the part.

ADSP-BF60x CGU Register Descriptions
Clock Generation Unit (CGU) contains the following registers.

Table 3-6: ADSP-BF60x CGU Register List

Name Description

CGU_CTL Control Register

CGU_STAT Status Register

CGU_DIV Clocks Divisor Register

CGU_CLKOUTSEL CLKOUT Select Register

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–11

Control Register

The CGU_CTL controls the clock generation divisors for SYS_CLKIN and the PLL. Read after write accesses
to the CGU_CTL register returns the new value even if the clock's frequency change is still in progress.

Figure 3-3: CGU_CTL Register Diagram

Table 3-7: CGU_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the CGU_CTL.
LOCK bit is set, the CGU_CTL register is read only (locked).
0 Unlock
1 Lock

30
(R/W)

WFI Wait For Idle.
Modifying the PLL multiplier requires the PLL to re-lock and once
the PLL locks, clocks have to be synchronized. Changes to the CGU_
CTL.MSEL and the CGU_CTL.DF result in bypassing the PLL. The CGU_
CTL.WFI force the PLL to wait for all processor cores to be in an idle
or reset state before changing frequencies as a result of change to the
CGU_CTL.MSEL or CGU_CTL.DF fields. Write accesses to CGU_CTL to
change CGU_CTL.DF or CGU_CTL.MSEL while the PLL is locking sets
the CGU_STAT.WDFMSERR bit.
0 Update Immediately
1 Wait for Idle

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

3–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Status Register

The CGU_STAT register reflects the PLL status and errors detected during the PLL configuration. This
register may be cleared asynchronously by a reset signal from the RCU module. All bits---except those
defined as W1C (write-1-to-clear)---are read only.

14:8
(R/W)

MSEL Multiplier Select.
The CGU_CTL.MSEL selects the multiplier in the PLLCLK equation:
PLLCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL
Where the value of MSEL may be between 1 and 127. Note that
supported MSEL values are product specific. See the product specific
section of the CGU for additional notes.
xxxxxxx MSEL = 1 to 127
0 Reserved

0
(R/W)

DF Divide Frequency.
The CGU_CTL.DF selects whether or not the SYS_CLKIN input is
divided by two before being passed to the PLL.
0 Pass OSC_CLKIN to PLL
1 Pass OSC_CLKIN/2 to PLL

Table 3-7: CGU_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–13

Figure 3-4: CGU_STAT Register Diagram

Table 3-8: CGU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

21
(R/W1C)

PLOCKERR PLL Lock Error.
The CGU_STAT.PLOCKERR indicates that the PLL failed to lock.
0 No Error
1 PLL Lock Error

20
(R/W1C)

WDIVERR Write to DIV Error.
The CGU_STAT.WDIVERR indicates a write access to the CGU_DIV
register (to trigger an alignment sequence or to change CGU_DIV.
CSEL, CGU_DIV.SYSSEL, CGU_DIV.S0SEL, CGU_DIV.S1SEL, or CGU_
DIV.DSEL) while the PLL is locked, but still aligning the clocks. Read
after write accesses to the CGU_STAT and CGU_DIV registers return the
new value even if the clock frequency change is still in progress.
0 No Error
1 Write DIV Error

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

3–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

19
(R/W1C)

WDFMSERR Write to DF or MSEL Error.
The CGU_STAT.WDFMSERR indicates a write access to the CGU_CTL
register to change CGU_CTL.DF or CGU_CTL.MSEL while the PLL is
locking.
0 No Error
1 Write DF/MSEL Error

18
(R/W1C)

DIVERR DIV Error.
The CGU_STAT.DIVERR indicates a clock divisor value error,
occurring when the CCLK clock divisor is greater than the SYSCLK
clock divisor, as in:
CGU_DIV.CSEL> CGU_DIV.SYSSEL
The CGU issues a CGU error for this condition.
0 No Error
1 DIV Error

17
(R/W1C)

LWERR Lock Write Error.
The CGU_STAT.LWERR indicates an attempt to write to write-
protected (locked) CGU registers. The CGU issues a bus error for
this condition.
0 No Error
1 Lock Write Error

16
(R/W1C)

ADDRERR Address Error.
The CGU_STAT.ADDRERR indicates an attempt to make a read or write
access to unimplemented addresses or accesses are non-aligned. The
CGU issues a bus error for this condition.
0 No Error
1 Address Error

9
(R/NW)

OCBF OUTCLK Buffer Status.
The CGU_STAT.OCBF indicates whether the OUTCLK buffer is
enabled.
0 Disabled
1 Enabled

8
(R/NW)

DCBF DCLK Buffer Status.
The CGU_STAT.DCBF indicates whether the DCLK buffer is enabled.
0 Disabled
1 Enabled

Table 3-8: CGU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–15

7
(R/NW)

SCBF1 SCLK1 Buffer Status.
The CGU_STAT.SCBF1 indicates whether the SCLK1 buffer is enabled.
0 Disabled
1 Enabled

6
(R/NW)

SCBF0 SCLK0 Buffer Status.
The CGU_STAT.SCBF0 indicates whether the SCLK0 buffer is enabled.
0 Disabled
1 Enabled

5
(R/NW)

CCBF1 CCLK1 Buffer Status.
The CGU_STAT.CCBF1 indicates whether the CCLK1 buffer is
enabled.
0 Disabled
1 Enabled

4
(R/NW)

CCBF0 CCLK0 Buffer Status.
The CGU_STAT.CCBF0 indicates whether the CCLK0 buffer is
enabled.
0 Disabled
1 Enabled

3
(R/NW)

CLKSALGN Clock Alignment.
The CGU_STAT.CLKSALGN indicates whether a clock alignment
sequence is in progress. This bit is set when clocks alignment is
required by changes to CGU_DIV.CSEL, CGU_DIV.S0SEL, CGU_DIV.
S1SEL, CGU_DIV.DSEL, or CGU_DIV.OSEL. The CGU_STAT.CLKSALGN
bit is cleared when clocks are aligned.
Note that (after a PLL frequency change in active state) the CGU_
STAT.CLKSALGN bit may indicate that clocks are not aligned even
though the clocks are aligned (all clocks are aligned and running at
the SCLKIN frequency).
0 Clocks are Aligned
1 Clocks not Aligned (alignment in progress)

Table 3-8: CGU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

3–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Clocks Divisor Register

The CGU_DIV register controls clock divisors for core clocks, system clocks, external (off core) memory
clocks, and output clock. Read after write accesses to the CGU_DIV register returns the new value even if the
clock's frequency change is still in progress.

2
(R/NW)

PLOCK PLL Lock.
The CGU_STAT.PLOCK indicates whether the PLL is locked. This bit is
set when the PLL locks (PLL lock counter end-of-count). The CGU_
STAT.PLOCK bit is cleared when requested PLL frequency change (for
PLL reset, PLL disable-to-enable transition, or change to CGU_CTL.
MSEL or CGU_CTL.DF) is in progress.
0 PLL not Locked (PLL frequency change in

progress)
1 PLL Locked

1
(R/NW)

PLLBP PLL Bypass.
The CGU_STAT.PLLBP indicates whether the PLL is bypassed. The
default value for CGU_STAT.PLLBP is determined by the PLL bypass
state.
0 PLL not Bypassed
1 PLL Bypassed

0
(R/NW)

PLLEN PLL Enable.
The CGU_STAT.PLLEN indicates whether the PLL is enabled.
0 Disabled
1 Enabled

Table 3-8: CGU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–17

Figure 3-5: CGU_DIV Register Diagram

Table 3-9: CGU_DIV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the CGU_DIV.
LOCK bit is set, the CGU_DIV register is read only (locked).
0 Unlock
1 Lock

30
(R/W)

UPDT Update Clock Divisors.
The CGU_DIV.UPDT controls whether the CGU drives new CGU_DIV.
CSEL, CGU_DIV.SYSSEL, CGU_DIV.S0SEL, CGU_DIV.S1SEL, CGU_
DIV.DSEL, and CGU_DIV.OSEL values to PLL after CGU_DIV register
update.
0 No PLL Update
1 Drive Updated SEL Values to PLL

29
(R0/W1A)

ALGN Align.
The CGU_DIV.ALGN directs the CGU to align the PLL-based clocks.
The divisor selections (CGU_DIV.CSEL, CGU_DIV.SYSSEL, CGU_DIV.
S0SEL, CGU_DIV.S1SEL, CGU_DIV.DSEL, and/or CGU_DIV.OSEL) do
not have to change.
0 No Action
1 Align PLL Clocks

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

3–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

28:22
(R/W)

OSEL OUTCLK Divisor.
The CGU_DIV.OSEL selects the divisor in the OUTCLK equation:
OUTCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL /
CGU_DIV.OSEL
Where the value of CGU_DIV.OSEL is between 1 and 127.
xxxxxxx OSEL = 1 to 127
0 Reserved

20:16
(R/W)

DSEL DCLK Divisor.
The CGU_DIV.DSEL selects the divisor in the DCLK equation:
DCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL / CGU_
DIV.DSEL
Where the value of CGU_DIV.DSEL is between 1 and 31.
0 Reserved
xxxxx DSEL = 1 to 31

15:13
(R/W)

S1SEL SCLK 1 Divisor.
The CGU_DIV.S1SEL selects the divisor in the SCLK1 equation:
SCLK1 frequency = (SYSCLK frequency) / CGU_DIV.S1SEL
Where the value of CGU_DIV.S1SEL is between 1 and 7.
0 Reserved
xxx S1SEL = 1 to 7

12:8
(R/W)

SYSSEL SYSCLK Divisor.
The CGU_DIV.SYSSEL selects the divisor in the SYSCLK equation:
SYSCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL /
CGU_DIV.SYSSEL
Where the value of CGU_DIV.SYSSEL is between 1 and 31.
0 Reserved
xxxxx SYSSEL = 1 to 31

7:5
(R/W)

S0SEL SCLK 0 Divisor.
The CGU_DIV.S0SEL selects the divisor in the SCLK0 equation:
SCLK0 frequency = (SYSCLK frequency) / CGU_DIV.S0SEL
Where the value of CGU_DIV.S0SEL is between 1 and 7.
0 Reserved
xxx S0SEL = 1 to 7

Table 3-9: CGU_DIV Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 3–19

CLKOUT Select Register

The CGU_CLKOUTSEL selects the signal that the CGU drives through the CLKOUT multiplexer.

Figure 3-6: CGU_CLKOUTSEL Register Diagram

4:0
(R/W)

CSEL CCLK Divisor.
The CGU_DIV.CSEL selects the divisor in the CCLK equation:
CCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL / CGU_
DIV.CSEL
Where the value of CGU_DIV.CSEL is between 1 and 31.
0 Reserved
xxxxx CSEL= 1 to 31

Table 3-10: CGU_CLKOUTSEL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the CGU_
CLKOUTSEL.LOCK bit is set, the CGU_CLKOUTSEL register is read only
(locked).
0 Unlock
1 Lock

Table 3-9: CGU_DIV Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CLOCK GENERATION UNIT (CGU)
ADSP-BF60X CGU REGISTER DESCRIPTIONS

3–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

3:0
(R/W)

CLKOUTSEL CLKOUT Select.
The CGU_CLKOUTSEL.CLKOUTSEL selects the signal that the CGU
drives through the CLKOUT pin multiplexer.
0 CLKIN
1 CCLKn/4
2 SYSCLK/2
3 SCLK0
4 SCLK1
5 DCLK/2
6 Reserved
7 OUTCLK
8 Reserved
9 Reserved
10 Reserved
11 GND (Disable OUTCLK)
11xx Reserved

Table 3-10: CGU_CLKOUTSEL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 4–1

4 System Protection Unit (SPU)

The system protection unit (SPU) provides features that let you protect system resources from errant
writes. A number of protection categories (types of registers to protect) are available.

In a system with multiple system MMR masters, configurations of peripherals can be changed uninten-
tionally leading to bad data or even system malfunctions. The peripherals are shared resources in the
system. The SPU lets the user restrict access to certain MMRs, similar to the functionality of a semaphore.

SPU Features
The System Protection Unit has the following features.

• Write-protect system MMR from certain system masters.

• Simultaneously lock multiple peripheral configuration registers.

• Write-protect and block access to its own write-protection registers from other system masters.

SPU Functional Description
The SPU has a register associated with each peripheral. Each of these write-protection registers has the
exact same bits that correspond to a particular SMMR master (Core 0, Core 1, MDMA, for example).
When the bits are set, the corresponding SMMR masters are locked out of accessing the associated periph-
eral’s register address space. The bits in the register can be cleared to allow access to the peripheral's regis-
ters again. Any writes that are in progress when write-protection is initiated are completed before
subsequent writes are blocked.

In the following figure, each write-protect register in the SPU is associated with a particular peripheral.

SYSTEM PROTECTION UNIT (SPU)
SPU FUNCTIONAL DESCRIPTION

4–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 4-1: SPU Write Protect Registers

The SPU also has global locking capability. When enabled, a system-wide global lock signal is active. Some
peripherals have a lock enable bit in their control register. When this bit is set, the peripheral recognizes
the global lock signal and blocks further write-accesses to its own control register. Access to the periph-
eral’s configuration register is re-enabled when global lock is turned off in the SPU.

The following figure is a conceptual diagram where a peripheral blocks any write attempts to its control
register if the global lock signal from the SPU is active AND the global lock enable bit is set in the periph-
eral’s control register.

SYSTEM PROTECTION UNIT (SPU)
SPU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 4–3

Figure 4-2: Global Locking

The SPU can write protect its own registers. When the write protection register lock bit is set and global
locking is enabled, accesses to the SPU write-protection registers are blocked. To re-enable write access to
the write-protection registers in the SPU, global locking must be disabled.

In the following figure a write-protect register in the SPU blocks write-attempts to the associated periph-
eral’s MMR space. The bits in the write-protect register specify which masters to block write-access from.

Figure 4-3: SPU Write-Protect Register Blocking Access from System Master 0 and Core Master 1

SYSTEM PROTECTION UNIT (SPU)
SPU FUNCTIONAL DESCRIPTION

4–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x SPU Register List

The system protection unit (SPU) provides a set of registers that allow you to protect system resources
from errant writes. The protection categories are global lock (protects configuration registers) and write
protect register lock (protects the write protect register). For more information on SPU functionality, see
the SPU register descriptions.

SPU Definitions

Write-Protect Register

Memory mapped registers in the SPU. Each register correlates to a specific peripheral instance. It controls
the write access to the peripheral's register set.

Global Locking

SPU's ability to prevent write access to multiple peripheral's control register at once.

SPU Block Diagram

The figure below shows a system level block diagram of where the SPU is in the system. It sits in between
the SMMR interface and the system crossbar. Depending on the configuration of the SPU write-protect
registers, it can block access to certain peripherals from certain SMMR masters.

Table 4-1: ADSP-BF60x SPU Register List

Name Description

SPU_CTL Control Register

SPU_STAT Status Register

SPU_WPn Write Protect Register n

SYSTEM PROTECTION UNIT (SPU)
SPU EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 4–5

Figure 4-4: SPU System Level Block Diagram

SPU Architectural Concepts

As shown in the block diagram, the SPU sits between the System Crossbar (SCB) and the SMMR interface
to the peripherals. Any MMR access to any peripheral from any master comes through the SCB and is
gated by the SPU. Depending on the configuration of the write-protection registers in the SPU, the SPU
may or may not allow the MMR write to go through.

SPU Event Control
The system protection unit provides write protection against a peripheral's MMRs and its own write-
protect registers. If a write attempt is made to any peripheral's MMR and was locked, the SPU will block
the write and generate a bus error to the master that attempted the write. That master may or may not
generate an event based upon the returned error. The SPU does not generate an event for blocked write
attempts.

The SPU can also lock its own registers from write attempts. If a write-attempt was made to a locked
register in the SPU, the SPU blocks it and records it as an error in SPU_STAT.LWERR. Again, the SPU gener-
ates a bus error to the master that attempted the write. The master may or may not generate an event based
upon the returned error. The SPU does not generate an event for a blocked write access to an SPU register.

SYSTEM PROTECTION UNIT (SPU)
SPU PROGRAMMING MODEL

4–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SPU Programming Model
The system protection unit (SPU) consists of write-protect registers. Each one corresponds to a different
peripheral instance. Bits in the write-protect registers correspond to system masters that can modify the
MMR contents of the peripherals. By writing to these write-protect registers, the corresponding periph-
eral's memory-mapped registers are write protected against masters whose bits in the write-protect register
have been set.

Another capability of the SPU is to globally lock peripherals' control register. Peripherals that support this
feature have a lock enable bit in their control register. When the global lock signal is active from the SPU
and the peripheral’s lock enable bit is set, the peripheral blocks any more write attempts to its control
register from any master. If the lock enable bit of a peripheral is not set and the global lock signal is active,
access to that peripheral’s control register is still allowed. To grant access again, the global lock signal from
the SPU must be disabled by writing the value 0xAD into the SPU_CTL.GLCK bit field.

Another protection mechanism that the SPU offers is write protection against the write-protection regis-
ters. If the write protect register lock bit (SPU_CTL.WPLCK) is set and the global lock signal is active, writes
to the SPU’s write-protect registers will be blocked. To re-enable access to the write-protect registers in the
SPU, the global lock signal must be deactivated by writing 0xAD into the SPU_CTL.GLCK bit field.

SPU Mode Configuration

The SPU can provide address range wide protection by write-protecting the peripherals MMR address
range from system MMR masters. It can also provide register wide protection by using Global Locking.
Peripherals that support this feature can enable it their respective configuration register. When the SPU
enables the Global Lock signal, all subsequent writes to the peripheral's configuration register are blocked
until the Global Lock signal is deasserted. Similarly, the SPU's own write-protection registers can be write
protected using the Global Lock signal as well. All these modes of operation can be used in conjunction.

Locking Write-Protect Registers

Use the following steps to lock (write protect) a register.

1. Set the SPU_CTL.WPLCK bit and configure the SPU_CTL.GLCK field to something other than 0xAD.

RESULT:

The SPU write-protect registers are blocked from further write accesses.

SYSTEM PROTECTION UNIT (SPU)
ADSP-BF60X SPU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 4–7

Protecting a Peripheral

Use the following procedure to protect a peripheral

1. Determine which peripheral needs protection and locate the corresponding write-protect register in
the SPU.

2. Determine which SMMR master(s) the peripheral needs to be protected from and set the corre-
sponding bit(s) in the write-protect register for the peripheral in the SPU.

RESULT:

After setting the write-protect register for the particular peripheral, the SMMR master(s) will be blocked
from writing to any MMR in the peripheral's address space until the bits in the write-protect register are
cleared.

ADSP-BF60x SPU Register Descriptions
System Protection Unit (SPU) contains the following registers.

Control Register

The SPU control register (SPU_CTL) provides a global lock for configuration registers and write protection
for registers.

Table 4-2: ADSP-BF60x SPU Register List

Name Description

SPU_CTL Control Register

SPU_STAT Status Register

SPU_WPn Write Protect Register n

SYSTEM PROTECTION UNIT (SPU)
ADSP-BF60X SPU REGISTER DESCRIPTIONS

4–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 4-5: SPU_CTL Register Diagram

Status Register

The SPU_STAT register indicates the error and lock status for the SPU.

Table 4-3: SPU_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W)

WPLCK Write Protect Register Lock.
The SPU_CTL.WPLCK works with the SPU_CTL.GLCK field. If the write
protect register lock is enabled (SPU_CTL.WPLCK bit =1) and the
global lock is enabled, writes to the SPU_WPn register are disabled
(locked out).
0 Disable
1 Enable

7:0
(R/W)

GLCK Global Lock Disable.
The SPU_CTL.GLCK controls the global lock of configuration
registers. Writing 0xAD to this field disables the lock, and writing any
other value enables the lock.

SYSTEM PROTECTION UNIT (SPU)
ADSP-BF60X SPU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 4–9

Figure 4-6: SPU_STAT Register Diagram

Write Protect Register n

In the system, each SPU_WPn register is assigned to a specific MMR address range associated with one
peripheral. When the appropriate bits are set, writes to the peripheral from a specific master are blocked
and an error is returned to the master. For more information, see the processor specific additional infor-
mation for the SPU_WPn register.

Table 4-4: SPU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

LWERR Lock Write Error.
The SPU_STAT.LWERR is write-1-to-clear and indicates whether there
has been an attempted write to a register with its LOCK bit set while
SPU_CTL.GLCK was asserted.
0 Inactive
1 Active

30
(R/W1C)

ADDRERR Address Error.
The SPU_STAT.ADDRERR is write-1-to-clear and indicates whether
there has been an attempted write to a read-only register or an access
an invalid address.
0 Inactive
1 Active

0
(R/NW)

GLCK Global Lock Status.
The SPU_STAT.GLCK indicates whether the global lock is enabled or
disabled.
0 Disabled (global_lock=0)
1 Enabled (global_lock=1)

SYSTEM PROTECTION UNIT (SPU)
ADSP-BF60X SPU_WPN ADDITIONAL INFORMATION

4–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 4-7: SPU_WPn Register Diagram

ADSP-BF60x SPU_WPn Additional Information
The SPU consists of a collection of Write Protect Registers each of which are associated with a specific
peripheral or slave. The table gives the Write Protect Register number for each of the peripherals that are
provided with write protection through the SPU. The SPU for ADSP-BF60x is configured with 86 Write
Protect Registers.

For each processor, there will be different number of masters that will be able to access the SMMR space.
Accordingly the bit definitions for the Write Protect Registers will be different for each processor. The
ADSP-BF60x processor has four masters that can access the SMMR space. The table below shows which
bits enable the protection against which master.

Table 4-5: SPU_WPn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

17:16
(R/W)

SMn System Master x Write Protect Enable.

1:0
(R/W)

CMn Core Master x Write Protect Enable.

Table 4-6: SPU_WPn.CMn and SPU_WPn.SMn Bits

Bit Number Bit Name Description

0 CM0_WP (Core Master 0) CoreA
1 CM1_WP (Core Master 1) CoreB
16 SM0_WP (System Master 0) SDU
17 SM1_WP (System Master 1) MDMA

SYSTEM PROTECTION UNIT (SPU)
ADSP-BF60X SPU_WPN ADDITIONAL INFORMATION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 4–11

For each peripheral, there will be a corresponding write-protect register, SPU_WPn. The table shows the
Write Protect Register number for each peripheral.

Table 4-7: SPU_WPn Registers and Related Peripherals

Write Protect Register Number (n) Peripheral

0 Counter
1 RSI
2 CAN
3 LP0
4 LP1
5 LP2
6 LP3
7 TIM
8 CRC0
9 CRC1
10 TWI0
11 TWI1
12 UART0
13 UART1
14 PORTA/B
15 PORTC/D
16 PORTE/F
17 PORTG
18 PINT0
19 PINT1
20 PINT2
21 PINT3
22 PINT4
23 PINT5
24 SCB2
25 SCB2_ARB
26 SCB3
27 SCB3_ARB
28 SCB4

SYSTEM PROTECTION UNIT (SPU)
ADSP-BF60X SPU_WPN ADDITIONAL INFORMATION

4–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

29 SCB4_ARB
30 SCB5
31 SCB5_ARB
32 SCB6
33 SCB6_ARB
34 SCB7
35 SCB7_ARB
36 SCB8
37 SCB8_ARB
38 SCB9
39 SCB9_ARB
40 SMC
41 WDT0
42 WDT1
43 EPPI0
44 EPPI1
45 EPPI2
46 PIXC
47 PVP
48 EPWM0
49 EPWM1
50 VSS_Crossbar
51 SWU 0 (SMC)
52 SDU
53 EMAC0
54 EMAC1
55 SPORT0_A
56 SPORT0_B
57 SPORT1_A
58 SPORT1_B
59 SPORT2_A

Table 4-7: SPU_WPn Registers and Related Peripherals (Continued)

Write Protect Register Number (n) Peripheral

SYSTEM PROTECTION UNIT (SPU)
ADSP-BF60X SPU_WPN ADDITIONAL INFORMATION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 4–13

60 SPORT2_B
61 SPI0
62 SPI1
63 SCB1
64 SCB1_ARB
65 ACM
66 DDR2
67 SCB12_ARB
68 SWU6 (DDR2)
69 SCB11_ARB
70 SCB10_ARB
71 SCB0_ARB
72 L2
73 SEC
74 TRU
75 RCU
76 SPU
77 PCU
78 DPM
79 SWU1 (L2_S)
80 SWU2 (L2_C)
81 SWU3 (Core0)
82 SWU4 (Core1)
83 SWU5 (SMMR)
85 USB

Table 4-7: SPU_WPn Registers and Related Peripherals (Continued)

Write Protect Register Number (n) Peripheral

SYSTEM PROTECTION UNIT (SPU)
ADSP-BF60X SPU_WPN ADDITIONAL INFORMATION

4–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–1

5 Dynamic Power Management (DPM)

The dynamic power management (DPM) unit of the processor controls transitions between different
power saving modes. The DPM also allows individual clock domains to be enabled and disabled.

DPM Features
The DPM allows programs to control the processor's power mode as follows.

• Provides capability to shut off individual clock domains to save power

• Supports capability to bypass the PLL for power savings

• Aids power savings through hibernate mode, which allows VDD_INT supply to be shut off

• Permits operation of multiple, external wake-up sources

DPM Functional Description
The processor supports a number of power domains, which maximizes flexibility while maintaining
compliance with industry standards and conventions. By isolating the internal logic of the processor into
its own power domain, separate from other I/O, the processor can take advantage of dynamic power
management without affecting the other I/O devices. There are no sequencing requirements for the
various power domains, but all domains must be powered according to the appropriate specifications, even
if the feature/peripheral is not used. For more information on power domains, see the processor data sheet.

The dynamic power management feature of the processor allows the processor's core clock frequency
(fCCLK) to be dynamically controlled.

ADSP-BF60x DPM Register List

The dynamic power management (DPM) unit includes the phase locked loop (PLL) enable/disable
features, deep sleep and hibernate mode controls, and clock domain enable/disable features. The combi-
nation of these features and controls provide selective and flexible power management. A set of registers
govern DPM operations. For more information on DPM functionality, see the DPM register descriptions.

DYNAMIC POWER MANAGEMENT (DPM)
DPM FUNCTIONAL DESCRIPTION

5–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x DPM Interrupt List

DPM Definitions

To make the best use of the DPM, it is useful to understand the following terms.

Table 5-1: ADSP-BF60x DPM Register List

Name Description

DPM_CTL Control Register

DPM_STAT Status Register

DPM_CCBF_DIS Core Clock Buffer Disable Register

DPM_CCBF_EN Core Clock Buffer Enable Register

DPM_CCBF_STAT Core Clock Buffer Status Register

DPM_CCBF_STAT_STKY Core Clock Buffer Status Sticky Register

DPM_SCBF_DIS System Clock Buffer Disable Register

DPM_WAKE_EN Wakeup Enable Register

DPM_WAKE_POL Wakeup Polarity Register

DPM_WAKE_STAT Wakeup Status Register

DPM_HIB_DIS Hibernate Disable Register

DPM_PGCNTR Power Good Counter Register

DPM_RESTOREn Restore Registers

Table 5-2: ADSP-BF60x DPM Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

DPM0 Event 131 LEVEL

DYNAMIC POWER MANAGEMENT (DPM)
DPM OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–3

Active mode

A power saving mode in which the PLL is bypassed but still enabled.

Active mode with PLL disabled

A power saving mode in which the PLL is bypassed and disabled.

CGU

Acronym for the clock generation unit (CGU), which is comprised of the PLL and PCU

Deep sleep mode

A power saving mode in which all CCLKs are gated.

DPM

Acronym for the dynamic power management (DPM) controller.

Full-on mode

The normal operating mode in which all clock domains are derived from the PLL.

Hibernate mode

A power saving mode in which the VDD_INT supply can be shut off, and the contents of on-chip memory
are not retained.

PCU

Acronym for the PLL control unit (PCU).

PLL

Acronym for the phase-locked loop (PLL).

RCU

Acronym for the reset control unit (RCU).

DPM Operating Modes
The DPM includes several operating modes. The modes are:

• RESET

• FULL-ON

• ACTIVE

• ACTIVE with PLL Disabled

DYNAMIC POWER MANAGEMENT (DPM)
DPM OPERATING MODES

5–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• DEEP SLEEP

• HIBERNATE

The operating modes and transitions figure shows the relationships between DPM modes for the ADSP-
BF60x processor.

Figure 5-1: Operating Modes and Transitions

Reset State

Reset is the initial state of the processor and is the result of a hardware or software triggered event. Entering
reset is not triggered by the DPM itself, but by the external SYS_HWRST pin or by the RCU. The DPM
responds to reset by transitioning to its default state.

Certain registers (see HIBERNATE) are exceptions to this return to default state and are preserved if the
DMP is returning from hibernate mode.

From RESET, the DPM always transitions to FULL-ON.

DYNAMIC POWER MANAGEMENT (DPM)
DPM OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–5

Full-on Mode

Full-on mode is the DPM’s default state after RESET.

In full-on mode, the processor can reach its maximum clock rate and power dissipation can be at its
highest. The DPM transitions from full-on mode to:

• Active mode if DPM_CTL. PLLBPST is set

• Deep sleep mode if DPM_CTL. DEEPSLEEP is set

• Hibernate mode if DPM_CTL. HIBERNATE is set

Active Mode

In active mode, power dissipation is reduced on the VDD_INT power domain (compared to full-on mode)
by bypassing the PLL and running clock domains at the SYS_CLKIN pin frequency. The processor is fully
functional. The DPM transitions from active mode to:

• Full-on mode if DPM_CTL. PLLBPCL is set

• Active with PLL disabled mode if DPM_CTL. PLLDIS is set

• Deep sleep mode if DPM_CTL. DEEPSLEEP is set

• Hibernate mode if DPM_CTL. HIBERNATE is set

ACTIVE with PLL Disabled

In active with PLL disabled mode, power dissipation is reduced on the VDD_INT power domain (compared
to active mode) by disabling the PLL in addition to running all units at the at the SYS_CLKIN pin frequency.
The processor is fully functional. The DPM transitions from active with PLL disabled mode to:

• Active mode if DPM_CTL.PLLDIS is cleared

• Deep sleep mode if DPM_CTL.DEEPSLEEP is set

• Hibernate mode if DPM_CTL.HIBERNATE is set

Deep Sleep Mode

To enter deep sleep mode, the processor sets the DPM_CTL.DEEPSLEEP bit, and all processor cores are in
idle state. It is the programs responsibility in software to guarantee that system transfers including DMA
are stopped before each processor core goes into idle state and the processor enters deep sleep mode. In
this state, power dissipation on the VDD_INT power domain is reduced (compared to active mode or gated
active mode) by gating all the core and system clocks and by disabling the PLL.

DYNAMIC POWER MANAGEMENT (DPM)
DPM OPERATING MODES

5–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The enabled hardware wake-up signals or a hardware reset signal can make the processor exit deep sleep
mode. The DPM_WAKE_EN.WSn bits and DPM_WAKE_POL.WSn bits work together to determine which hard-
ware wake-up signals are enabled and the signals’ polarity. Wake-up signal assertion is latched only when
the signal is enabled. The enabled wake-up signal assertion occurring first is recorded in the DPM_WAKE_
STAT register.

NOTE: To see which wake-up sources your processor reports, see ADSP-BF60x Wake-Up Sources.

When a wake-up occurs, the DPM does the following:

• Signals a DPM event interrupt to the SEC

• Transitions to ACTIVE mode

• Enables all clocks domains that are not disabled in the DPM_SCBF_DIS register

The DPM event interrupt will stay active until the user clears any bits that are set in DPM_WAKE_STAT. The
DPM event interrupt is the first indication that the processor has exited DEEP SLEEP.

One option for waking up the core is to enable the CGU event interrupt, which asserts after the PLL locks.

Another option is to use the enable in the SEC to make a core exit idle and to enable the corresponding
core clock buffer.

Hibernate Mode

In hibernate mode, there is no power dissipation on the VDD_INT power domain as long as the voltage
regulator powering VDD_INT is shut off. If state information, data, or code needs to be preserved, it can be
stored in the DPM_RESTOREn registers or in external memory. If dynamic memory is used the memory
device needs to be placed into self-refresh mode before going to hibernate.

Hibernate mode is entered by setting the DPM_CTL.HIBERNATE bit. It is the programs responsibility in soft-
ware to guarantee that system transfers including DMA are stopped before entering hibernate mode.

After the DPM_CTL.HIBERNATE bit has been set, the DPM preserves the state of the DPM_WAKE_EN, DPM_
WAKE_POL, DPM_HIB_DIS, DPM_PGCNTR, and all of the DPM_RESTOREn registers in the DPM-HV, which is
powered by the VDD_EXT power domain. All other registers (with the exception of those mentioned in the
RCU chapter) and on-chip memory are erased when the VDD_INT supply is powered down. After the
contents of the registers listed above are moved to storage on the VDD_EXT power domain, the SYS_
EXTWAKE signal is de-asserted to indicate that it is safe to shut off the regulator providing the VDD_INT
supply.

Enabled hardware wake-ups or a hardware reset can begin the process of exiting hibernate mode. The DPM_
WAKE_EN.WSn bits and DPM_WAKE_POL.WSn bit determine which hardware wake ups are enabled and select
their signal polarity. Wake-up assertions are latched only if they are enabled. The enabled wake-up asser-
tion that occurs first is recorded in the DPM_WAKE_STAT register. After a wake-up source assertion is latched
by the processor, the SYS_EXTWAKE signal is asserted to indicate that the regulator for the VDD_INT supply
should begin to ramp up. The DPM waits for assertion of the SYS_PWRGD signal and waits for expiration of

DYNAMIC POWER MANAGEMENT (DPM)
DPM EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–7

the DPM_PGCNTR.CNT counter. These conditions indicate that the VDD_INT supply has been restored within
the operating conditions specified in the data sheet. For more information, see Ensuring Internal Logic
Supply is Restored Before Booting.

After the VDD_INT supply is restored, the SYS_PWRGD signal is asserted, and the DPM_PGCNTR.CNT is
expired; the processor exits hibernate mode, goes into reset state, and the PLL begins locking. While the
PLL is locking, the DPM_WAKE_EN, DPM_WAKE_POL, DPM_HIB_DIS, DPM_PGCNTR, and all of the DPM_
RESTOREn registers are restored from the DPM-HV. After coming out of reset mode and locking the PLL,
the processor begins executing the boot code. Some processors support memory boot when returning
from hibernate (instead of the boot mode selected by the SYS_BMODE signals). For more information see
the booting chapter.

DPM Event Control
The DPM event is triggered when an enabled wake-up is asserted. DPM bus errors are generated when a
misaligned access to a registers occurs or when an attempt is made to access unused DPM address space
or a write protected register.

DPM Events

The DPM event interrupt is triggered when any bit in the DPM_WAKE_STAT register is set. This indicates
that an enabled wake-up was asserted. The DPM event interrupt will stay active until the user clears any
bits that are set in the DPM_WAKE_STAT register.

DPM Errors

The DPM generates a bus error if a read or write transaction is attempted to an unused address within the
DPM address range or if a misaligned access is made to a DPM register. In addition to the bus error, the
DPM sets the DPM_STAT.ADDRERR bit.

If a write to a write protected DPM register is attempted, the DPM generates a bus error. In addition, the
DPM sets the DPM_STAT.LWERR bit.

DPM Programming Model
The following sections describe programming techniques, including verifying restoration of power
supplies, managing power modes, and selecting wake-up sources.

• Ensuring Internal Logic Supply is Restored Before Booting

• Configuring Deep Sleep Mode

• Configuring Hibernate Mode

DYNAMIC POWER MANAGEMENT (DPM)
DPM PROGRAMMING MODEL

5–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• ADSP-BF60x Wake-Up Sources

• ADSP-BF60x Clock Buffer Disable Bit Assignments

• ADSP-BF60x Hibernate Disable Bit Assignments

Ensuring Internal Logic Supply is Restored Before Booting

Before the processor boots after returning from hibernate mode, the internal logic supply (VDD_INT power
domain) must be restored. This topic discusses methods for signalling the processor that the VDD_INT
power domain has been restored.

After a wake-up occurrence is latched by the DPM while in hibernate mode, the DPM power good counter
will begin decrementing and the SYS_EXTWAKE signal will be asserted to indicate to the regulator supplying
the VDD_INT pins that it should begin to ramp up. It is the user's responsibility to then signal the DPM
through software (the DPM power good counter in the DPM_PGCNTR register) or hardware (the SYS_PWRGD
signal) that it is safe to begin the boot process. Note that the DPM does not start the boot process until SYS_
PWRGD is asserted and the DPM_PGCNTR.CNT value is expired.

Using the PG Counter to Check Internal Logic Supply is Restored

In order to use the software approach, which utilizes the DPM power good counter in the DPM_PGCNTR
register, it is suggested that SYS_PWRGD be pulled up to the VDD_EXT voltage. The DPM will then have to
wait only for the DPM power good counter to expire before kicking off the boot process. It is the user's
responsibility to select the appropriate setting for DPM_PGCNTR.CNT value such that when the counter
expires, the VDD_INT power domain has been restored to within the operating conditions specified in the
data sheet. The amount of time that the counter takes to expire is dependent on both the DPM_PGCNTR.CNT
value and the SYS_CLKIN frequency according to this equation:

Expiration Time [ms] = Cycle Count * 16 * SYS_CLKIN period [ms]

The text in brackets indicates that both the expiration time and SYS_CLKIN period are expressed in milli-
seconds. To determine the cycle count, refer to the following table which shows cycle counts for the
different DPM_PGCNTR.CNT value selections.

Table 5-3: Cycle Counts for DPM_PGCNTR.CNT Settings

DPM_PGCNTR.CNT Values Cycle Count

0x0004 128 (Default)
0x0080 4,096
0x0100 8,192
0x0200 16,384
0x0400 32,768
0x0800 65,536

DYNAMIC POWER MANAGEMENT (DPM)
DPM PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–9

The following table shows examples of different SYS_CLKIN frequencies and DPM_PGCNTR.CNT values and
the resulting power good counter expiration times. Note that these are example calculations only and that
the SYS_CLKIN frequency selected must be within the range allowed by the data sheet for your processor.

Using the PG Input to Check Internal Logic Supply is Restored

Voltage regulators commonly have a power good output, which can be directly connected to the SYS_
PWRGD input of the processor. It is the user's responsibility to make sure that when the power good output
of the regulator is asserted, the VDD_INT power domain has been restored to within the operating condi-
tions specified in the processor's data sheet. If the regulator's power good output asserts before the VDD_
INT power domain has been restored to within the operating conditions specified in the processor's data
sheet, then the power good counter must be used to ensure that the VDD_INT power domain has been
restored to within specifications.

When the SYS_PWRGD signal is used to indicate the VDD_INT power domain is restored, it is suggested that
the DPM_PGCNTR.CNT value be left at its default setting. The DPM then waits until the default DPM_PGCNTR.
CNT value is expired and the SYS_PWRGD signal is asserted before kicking off the boot process.

0x1000 131,072
0x2000 262,144
0x4000 524,288
0x8000 1,048,576
All other values not listed above Reserved

Table 5-4: Example DPM Counter Expiration Time Calculations

DPM_PGCNTR.CNT
Setting Cycle Count (Cycles)

SYS_CLKIN
Frequency (MHz)

SYS_CLKIN Period
(ms) Expiration Time (ms)

0x0400 32,768 50 0.00002 10.45696
0x0800 65,536 40 0.000025 26.2144
0x4000 524,288 25 0.00004 335.54432

Table 5-3: Cycle Counts for DPM_PGCNTR.CNT Settings (Continued)

DPM_PGCNTR.CNT Values Cycle Count

DYNAMIC POWER MANAGEMENT (DPM)
DPM PROGRAMMING MODEL

5–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuring Deep Sleep Mode

The deep sleep mode gates all core and system clocks in order to save power.

PREREQUISITE:

The deep sleep mode can be entered from any state in which software can run. Reading the DPM_STAT.
CURMODE field reveals the current power mode. Clocks do not stop immediately after entry to deep sleep
mode is requested, but no further action is needed to guarantee that the mode transition occurs.

The processor cores need to be idle before the clocks are shut down.

1. If the DPM_STAT.CURMODE indicates full-on mode, wait for the CGU_STAT.PLLBP bit =0, the CGU_STAT.
PLOCK bit =1, and the CGU_STAT.CLKSALGN bit =0.

2. If DPM_STAT.CURMODE indicates active mode with PLL disabled, wait for the CGU_STAT.PLLEN bit =0.

3. Enable the DPM event interrupt to wake up the desired core, directing exit from idle after exit from
deep sleep mode.

4. Set the polarity of wake-up sources as needed with the DPM_WAKE_POL.WSn bits.

5. Enable the wake-up sources as needed with the DPM_WAKE_EN.WSn bits.

6. Set the DPM_CTL.DEEPSLEEP bit.

7. Clear all pending core transactions (for example, on Blackfin processors, use an SSYNC instruction),
DMA transactions, and interrupts.

8. Place all processor cores in idle state.

RESULT:

The processor is now in deep sleep mode. To wake the processor, assert any of the enabled wake-up
sources.

Configuring Hibernate Mode

The hibernate mode permits the VDD_INT supply to be shut off to reduce power dissipation.

PREREQUISITE:

The hibernate mode can be entered from any DPM state in which software can be run. Reading the DPM_
STAT.CURMODE reveals the current power mode. Make sure to save any data that needs to be preserved to
the DPM_RESTOREn registers or to external memory before placing the processor into hibernate mode.

DYNAMIC POWER MANAGEMENT (DPM)
DPM PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–11

The following steps should be performed in code running from L1 memory on Blackfin processors.

1. Set the polarity of wake-up sources as needed with the DPM_WAKE_POL.WSn bits.

2. Enable the wake-up sources as needed with the DPM_WAKE_EN.WSn bits.

3. Write to the DPM_HIB_DIS register if any blocks not on the VDD_INT domain need to be disabled.

ADDITIONAL INFORMATION: The DPM_HIB_DIS register may not exist on your processor if there are no
blocks on domains other than VDD_INT that are capable of being disabled during hibernate.

4. Write the power good count value to the DPM_PGCNTR.CNT field.

5. Clear all pending core transactions (this is done with an SSYNC instruction in Blackfin), DMA trans-
actions, and interrupts.

6. Set the DPM_CTL.HIBERNATE bit

RESULT:

The DPM is now configured to hibernate mode.

ADSP-BF60x Wake-Up Sources

The table shows the hibernate mode and deep sleep mode wake-up sources for the ADSP-BF60x processor.

The first column shows which wake-up source bit (WSn) is used in the DPM_WAKE_EN, DPM_WAKE_POL
register and the DPM_WAKE_STAT register. The Assigned Source column shows which peripheral or pin
source is assigned to the WSn bit. Peripherals in parentheses indicate that the source can either be used as
a general-purpose I/O wake-up or used as the specific peripheral wake-up listed. The Deep Sleep Mode
column indicates whether or not the wake-up source can wake the processor from deep sleep mode. The
Hibernate Mode column indicates whether or not the wake-up source can wake the processor from hiber-
nate mode.

Table 5-5: ADSP-BF60x HIBERNATE and DEEP SLEEP Wake-up Sources

DPM_WAKE_EN.WSn, DPM_
WAKE_POL.WSn, and DPM_
WAKE_STAT.WSn bits Assigned Source Deep Sleep Mode? Hibernate Mode?

WS0 PA_15 Yes Yes
WS1 PB_15 Yes Yes
WS2 PC_15 Yes Yes
WS3 PD_06 Yes Yes
WS4 PE_12 Yes Yes
WS5 PG_04 (CAN0_RX) Yes Yes

DYNAMIC POWER MANAGEMENT (DPM)
DPM PROGRAMMING MODEL

5–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x Clock Buffer Disable Bit Assignments

The table shows the clock buffers that may be disabled on the ADSP-BF60x processor.

The first column shows which system clock buffer disable bits (DPM_SCBF_DIS.SCBFn). The Assigned
Clock column shows which clock buffer is assigned to each DPM_SCBF_DIS.SCBFn bit.

ADSP-BF60x Hibernate Disable Bit Assignments

The table shows the functional units that may be disabled during hibernate on the ADSP-BF60x proces-
sors.

The first column shows which hibernate disable bits (DPM_HIB_DIS.HDn). The Functional Unit column
shows which functional unit is assigned to each DPM_HIB_DIS.HDn bit, permitting disable on entering
hibernate mode.

WS6 PG_13 Yes Yes
WS7 USB (DPM_WAKE_POL.

WS7 must =1 for USB)
No Yes

WS30: WS8 RESERVED NA NA

Table 5-6: ADSP-BF60x Bit Assignments for DPM_SCBF_DIS.SCBFn

DPM_SCBF_DIS.SCBFn Bits Assigned Clock

SCBF0 SCLK0
SCBF1 SCLK1
SCBF2 DCLK
SCBF3 OCLK

Table 5-7: ADSP-BF60x Bit Assignments for DPM_HIB_DIS.HDn

DPM_HIB_DIS.HDn Bits Functional Unit

HD0 System crystal oscillator
HD7:HD1 Reserved

Table 5-5: ADSP-BF60x HIBERNATE and DEEP SLEEP Wake-up Sources (Continued)

DPM_WAKE_EN.WSn, DPM_
WAKE_POL.WSn, and DPM_
WAKE_STAT.WSn bits Assigned Source Deep Sleep Mode? Hibernate Mode?

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–13

ADSP-BF60x DPM Register Descriptions
Dynamic Power Management (DPM) contains the following registers.

Control Register

The DPM_CTL register controls sleep modes selections and PLL operations of the DPM. A write protect
feature permits locking out changes to this register.

Table 5-8: ADSP-BF60x DPM Register List

Name Description

DPM_CTL Control Register

DPM_STAT Status Register

DPM_CCBF_DIS Core Clock Buffer Disable Register

DPM_CCBF_EN Core Clock Buffer Enable Register

DPM_CCBF_STAT Core Clock Buffer Status Register

DPM_CCBF_STAT_STKY Core Clock Buffer Status Sticky Register

DPM_SCBF_DIS System Clock Buffer Disable Register

DPM_WAKE_EN Wakeup Enable Register

DPM_WAKE_POL Wakeup Polarity Register

DPM_WAKE_STAT Wakeup Status Register

DPM_HIB_DIS Hibernate Disable Register

DPM_PGCNTR Power Good Counter Register

DPM_RESTOREn Restore Registers

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

5–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 5-2: DPM_CTL Register Diagram

Table 5-9: DPM_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_CTL.
LOCK bit is set, the DPM_CTL register is read only (locked).
0 Unlock
1 Lock

4
(R0/W1A)

HIBERNATE Hibernate.
The DPM_CTL.HIBERNATE bit puts the DPM into hibernate mode.
The DPM stays in this mode until a wakeup event or reset occurs. For
more information about DPM modes, see the operating modes.
0 No Action
1 Hibernate

3
(R0/W1A)

DEEPSLEEP Deep Sleep.
The DPM_CTL.DEEPSLEEP bit puts the DPM into deep sleep mode.
The DPM stays in this mode until a wakeup event occurs. For more
information about DPM modes, see the functional description.
0 No Action
1 Deep Sleep

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–15

Status Register

The DPM_STAT register indicates error status for DPM operations and indicates the current and previous
DPM modes.

2
(R/W)

PLLDIS PLL Disable.
While the DPM is in active mode, it is possible to disable the PLL
with the DPM_CTL.PLLDIS bit, keeping the DPM active and running
with lower power consumption. For more information about DPM
modes, see the operating modes.
0 Enable
1 Disable

1
(R0/W1A)

PLLBPCL PLL Bypass Clear.
While the DPM is in active mode, it is possible to disable the PLL
bypass with the DPM_CTL.PLLBPCL bit, transitioning to DPM to full-
on mode. For more information about DPM modes, see the
operating modes.
0 No action
1 Disable PLL Bypass

0
(R0/W1A)

PLLBPST PLL Bypass Set.
While the DPM is in full on mode, it is possible to enable the PLL
bypass with the DPM_CTL.PLLBPST bit, transitioning the DPM to
active mode. For more information about DPM modes, see the
operating modes.
0 No action
1 Enable PLL Bypass

Table 5-9: DPM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

5–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 5-3: DPM_STAT Register Diagram

Table 5-10: DPM_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19
(R/W1C)

PLLCFGERR PLL Configuration Error.
The DPM_STAT.PLLCFGERR bit indicates that either the DPM_CTL.
PLLBPST bit and DPM_CTL.PLLBPCL bit have been set (=1)
simultaneously or the DPM_CTL.PLLBPST has been set while the DPM
is in full on mode or while the DPM is entering full on mode (DPM_
CTL.PLLBPCL =1).
0 No Status
1 PLL Configuration Error

18
(R/W1C)

HVBSYERR HV Busy Error.
The DPM_STAT.HVBSYERR bit indicates that a read access of DPM_
WAKE_STAT or DPM_RESTOREn occurred during restore of DPM LV
from DPM HV
0 No Status
1 HV Busy Error

17
(R/W1C)

LWERR Lock Write Error.
The DPM_STAT.LWERR bit indicates an attempt to write to a locked
DPM register while the global lock bit is set (SPU_CTL_GLCK bit =1).
0 No Status
1 Lock Write Error

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–17

16
(R/W1C)

ADDRERR Address Error.
The DPM_STAT.ADDRERR bit indicates either an attempted read or
write access to an address in the DPM MMR space that are not
implemented addresses, an attempted write access to a DPM read
only register, or a read or write access to a non aligned address in the
DPM MMR space.
0 No Status
1 Address Error

9
(R/NW)

HVBSY HV Busy.
The DPM_STAT.HVBSY bit indicates whether the DPM HV unit is
ready (has completed all transactions) or is busy (transfers from HV
have not yet completed).
0 Ready
1 Busy

8
(R/NW)

CCLKDIS Core Clock(s) Disabled.
The DPM_STAT.CCLKDIS bit indicates whether or not one or more of
the core clocks is disabled.
0 No Status
1 Clock (1 or more) Disabled

7:4
(R/NW)

PRVMODE Previous Mode.
The DPM_STAT.PRVMODE bits indicate the previous DPM mode of
operation. All values not shown are reserved.
0 Reset
1 Full-On
2 Active
3 Active with PLL disabled
4 Deep Sleep
5 Hibernate

3:0
(R/NW)

CURMODE Current Mode.
The DPM_STAT.CURMODE bits indicate the current DPM mode of
operation. All values not shown are reserved.
1 Full-On
2 Active
3 Active with PLL disabled

Table 5-10: DPM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

5–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Core Clock Buffer Disable Register

The DPM_CCBF_DIS register controls the core n clock buffers. The number of clocks varies with the
processor design, with bit 0 corresponding to CCLK0, bit 1 corresponding to CCLK1, and so on. This
register includes a write protection lock.

Figure 5-4: DPM_CCBF_DIS Register Diagram

Core Clock Buffer Enable Register

The DPM_CCBF_EN register controls the core n clock buffers. The number of clocks varies with the
processor design, with bit 0 corresponding to CCLK0, bit 1 corresponding to CCLK1, and so on. This
register includes a write protection lock.

Table 5-11: DPM_CCBF_DIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
0 Unlock
1 Lock

1:0
(R0/W1A)

CCBFn Core Clock Buffer n Disable.
The DPM_CCBF_DIS.CCBFn bits provide a core clock buffer disable for
each core on the processor with bit 0 corresponding to CCLK0, bit 1
corresponding to CCLK1, and so on.
0 No Action
1 Disable Buffer

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–19

Figure 5-5: DPM_CCBF_EN Register Diagram

Core Clock Buffer Status Register

The DPM_CCBF_STAT register indicates core clock buffer enable or disable status for each core on the
processor, with bit 0 corresponding to CCLK0, bit 1 corresponding to CCLK1, and so on.

Table 5-12: DPM_CCBF_EN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_CCBF_
EN.LOCK bit is set, the DPM_CCBF_EN register is read only (locked).
0 Unlock
1 Lock

1:0
(R0/W1A)

CCBFn Core Clock Buffer n Enable.
The DPM_CCBF_EN.CCBFn bits provide a core clock buffer enable for
each core on the processor with bit 0 corresponding to CCLK0, bit 1
corresponding to CCLK1, and so on.
0 No Action
1 Enable Buffer

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

5–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 5-6: DPM_CCBF_STAT Register Diagram

Core Clock Buffer Status Sticky Register

The DPM_CCBF_STAT_STKY register indicates core n clock buffer enable or disable sticky status for each
core on the processor, with bit 0 corresponding to CCLK0, bit 1 corresponding to CCLK1, and so on.

Figure 5-7: DPM_CCBF_STAT_STKY Register Diagram

Table 5-13: DPM_CCBF_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1:0
(R/NW)

CCBFn Core Clock Buffer n Status.
The DPM_CCBF_STAT.CCBFn bits indicates core clock buffer enabled
or disabled status for each core on the processor with bit 0
corresponding to CCLK0, bit 1 corresponding to CCLK1, and so on.
0 Buffer Enabled
1 Buffer Disabled

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–21

System Clock Buffer Disable Register

The DPM_SCBF_DIS register controls the system n clock buffers. The number of clocks varies with the
processor design. See the Clock Buffer Disable Bit Assignments topic for the bit assignments of this
processor.

Figure 5-8: DPM_SCBF_DIS Register Diagram

Table 5-14: DPM_CCBF_STAT_STKY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1:0
(R/W1C)

CCBFn Core Clock Buffer n Status - Sticky.
The DPM_CCBF_STAT_STKY.CCBFn bits indicates core clock buffer
enabled or disabled sticky status for each core on the processor with
bit 0 corresponding to CCLK0, bit 1 corresponding to CCLK1, and so
on. The sticky status shows that the status was set since the last time
the bit was cleared with a W1A or reset.
0 Buffer Enabled - Sticky
1 Buffer Disabled - Sticky

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

5–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Wakeup Enable Register

The DPM_WAKE_EN register enables the wakeup event sources for exiting deep sleep mode. The number of
wakeup sources varies with the processor design, with bit 0 corresponding to wakeup source 0, bit 1 corre-
sponding to wakeup source 1, and so on. This register includes a write protection lock. For information
about wakeup source assignments, see the DPM Wakeup Sources topic.

Figure 5-9: DPM_WAKE_EN Register Diagram

Table 5-15: DPM_SCBF_DIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_SCBF_
DIS.LOCK bit is set, the DPM_SCBF_DIS register is read only (locked).
0 Unlock
1 Lock

3:0
(R/W)

SCBFn System Clock Buffer n Disable.
The DPM_SCBF_DIS.SCBFn bits provide a system clock buffer enable
for each system clock domain on the processor. See the Clock Buffer
Disable Bit Assignments topic for the bit assignments of this
processor.
0 Enable Buffer
1 Disable Buffer

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–23

Wakeup Polarity Register

The DPM_WAKE_POL register select polarity (active high or low) of the wakeup event sources for exiting deep
sleep mode. The number of wakeup sources varies with the processor design, with bit 0 corresponding to
wakeup source 0, bit 1 corresponding to wakeup source 1, and so on. This register includes a write protec-
tion lock. For information about wakeup source assignments, see the DPM Wakeup Sources topic.

Figure 5-10: DPM_WAKE_POL Register Diagram

Table 5-16: DPM_WAKE_EN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_WAKE_
EN.LOCK bit is set, the DPM_WAKE_EN register is read only (locked).
0 Unlock
1 Lock

7:0
(R/W)

WSn Wakeup Source n Enable.
The DPM_WAKE_EN.WSn bits enable wakeup sources for exiting deep
sleep mode, with bit 0 corresponding to wakeup source 0, bit 1
corresponding to wakeup source 1, and so on. For information about
wakeup source assignments, see the DPM Wakeup Sources topic.
0 Disable Wakeup Source
1 Enable Wakeup Source

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

5–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Wakeup Status Register

The DPM_WAKE_STAT register indicates the enabled and active status of the wakeup event sources for exiting
deep sleep mode. The number of wakeup sources varies with the processor design, with bit 0 corre-
sponding to wakeup source 0, bit 1 corresponding to wakeup source 1, and so on. For information about
wakeup source assignments, see the DPM Wakeup Sources topic.

Figure 5-11: DPM_WAKE_STAT Register Diagram

Table 5-17: DPM_WAKE_POL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_WAKE_
POL.LOCK bit is set, the DPM_WAKE_POL register is read only (locked).
0 Unlock
1 Lock

7:0
(R/W)

WSn Wakeup Source n Polarity.
The DPM_WAKE_POL.WSn bits select polarity (active high or low) of
wakeup sources for exiting deep sleep mode, with bit 0
corresponding to wakeup source 0, bit 1 corresponding to wakeup
source 1, and so on. For information about wakeup source
assignments, see the DPM Wakeup Sources topic.
0 Low Active Wakeup
1 High Active Wakeup

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–25

Hibernate Disable Register

Figure 5-12: DPM_HIB_DIS Register Diagram

Table 5-18: DPM_WAKE_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W1C)

WSn Wakeup Source n Status.
The DPM_WAKE_STAT.WSn bits indicate the enabled and active status
of wakeup sources for exiting deep sleep mode, with bit 0
corresponding to wakeup source 0, bit 1 corresponding to wakeup
source 1, and so on. For information about wakeup source
assignments, see the DPM Wakeup Sources topic.
0 No Status
1 Enabled and Active

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

5–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Power Good Counter Register

The DPM_PGCNTR register selects the count of CLKIN cycles the DPM waits for the VDDINT power supply
to reach the specified value. This register includes a write protection lock.

Figure 5-13: DPM_PGCNTR Register Diagram

Table 5-19: DPM_HIB_DIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_HIB_
DIS.LOCK bit is set, the DPM_HIB_DIS register is read only (locked).
0 Unlock
1 Lock

7:0
(R/W)

HDn Hibernate Disable.
The DPM_HIB_DIS register controls which functional units on the
VDD_EXT domain are disabled during hibernate. For the bit
assignments of this processor, see the DPM Hibernate Disable Bit
Assignments topic.
0 Enable External Wakeup Source
1 Disable Functional Unit During Hibernate

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 5–27

Restore Registers

The DPM_RESTOREn registers are general-purpose registers that the DPM preserves during hibernate mode
and restores on exit from hibernate. The usage of these registers is application specific and does not affect
DPM operations. For more information about using the DPM_RESTOREn registers, see the programming
model.

Table 5-20: DPM_PGCNTR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_
PGCNTR.LOCK bit is set, the DPM_PGCNTR register is read only (locked).
0 Unlock
1 Lock

15:0
(R/W)

CNT Power Good Count.
The DPM_PGCNTR.CNT bits select the count that the DPM uses to
determine that the VDDINT supply has reached the specified value.
All values other than those shown are reserved.
4 128 cycles
128 4K cycles
256 8K cycles
512 16K cycles
1024 32K cycles
2048 64K cycles
4096 128K cycles
8192 256K cycles
16384 512K cycles
32768 1M cycles

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-BF60X DPM REGISTER DESCRIPTIONS

5–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 5-14: DPM_RESTOREn Register Diagram

Table 5-21: DPM_RESTOREn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Restore Data.
The DPM_RESTOREn.VALUE data is stored during hibernate mode and
restored by the DPM on exit from hibernate.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 6–1

6 Core Timer (TMR)

Each processor core has its own dedicated timer. The core timer is clocked by the internal processor clock
and is typically used as a system tick clock for generating periodic operating system interrupts.

NOTE: The core timer stops counting when there is an emulation event. The emulation event is controlled
by the SDU (System Debug Unit). For more information, see the SDU chapter.

TMR Features
The core timer is a programmable 32-bit interval timer which can generate periodic interrupts. Unlike
other peripherals, the core timer resides inside the Blackfin core and runs at the core clock (CCLK) rate.
Core timer features include:

• 32-bit timer with 8-bit prescaler

• Operates at core clock (CCLK) rate

• Dedicated high-priority interrupt channel

• Single-shot or continuous operation

TMR Functional Description
The TMR (core timer) is a programmable 32-bit interval timer in each processor core. The following
sections describe the TMR features:

• ADSP-BF60x TMR Register List

• TMR Block Diagram

ADSP-BF60x TMR Register List

The core timer (TMR) is a programmable 32-bit interval timer, which can generate periodic interrupts.
Unlike other peripherals, the core timer resides inside the processor core and runs at the core clock
(CCLK) rate. A set of registers govern TMR operations. For more information on TMR functionality, see
the TMR register descriptions.

CORE TIMER (TMR)
TMR FUNCTIONAL DESCRIPTION

6–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

TMR Block Diagram

The following figure shows the core timer block diagram.

Figure 6-1: Core Timer Block Diagram

External Interfaces

The core timer does not directly interact with any pins of the chip.

Internal Interfaces

The core timer is accessed through the 32-bit register access bus. The module is clocked by the core clock
CCLK. The timer’s dedicated interrupt request is a higher priority than requests from all other peripherals.

Table 6-1: ADSP-BF60x TMR Register List

Name Description

TCNTL Timer Control Register

TPERIOD Timer Period Register

TSCALE Timer Scale Register

TCOUNT Timer Count Register

CORE TIMER (TMR)
TMR OPERATION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 6–3

TMR Operation
The software should initialize the TCOUNT register before the timer is enabled. The TCOUNT register can be
written directly, but writes to the TPERIOD register are also passed through to TCOUNT.

When the timer is enabled by setting the TCNTL.EN bit, the TCOUNT register is decremented once every time
the prescaler register (TSCALE) expires, that is, every TSCALE + 1 number of CCLK clock cycles. When the
value of the TCOUNT register reaches 0, an interrupt is generated and the TCNTL.INT bit is set.

If the TCNTL.AUTORLD bit is set, then the TCOUNT register is reloaded with the contents of the TPERIOD
register and the count begins again. If the TCNTL.AUTORLD bit is not set, the timer stops operation.

The core timer can be put into low power mode by clearing the TCNTL.PWR bit. Before using the timer, set
the TCNTL.PWR bit. This restores clocks to the timer unit. When TCNTL.PWR is set, the core timer may then
be enabled by setting the TCNTL.EN bit.

NOTE: Hardware behavior is undefined if TCNTL.EN is set when TCNTL.PWR=0.

Interrupt Processing

The timer’s dedicated interrupt request is a higher priority than requests from all other peripherals. The
request goes directly to the core event controller (CEC) and does not pass through the system event
controller (SEC). Therefore, the interrupt processing is also completely in the CCLK domain.

NOTE: The core timer interrupt request is edge-sensitive and cleared by hardware automatically as soon
as the interrupt is serviced.

The TCNTL.INT bit indicates that an interrupt has been generated and programs need to write a 0 (not
W1C) to clear it (the write is optional). The core time module doesn’t provide any further interrupt enable
bit. When the timer is enabled, interrupts can be masked in the CEC controller.

ADSP-BF60x TMR Register Descriptions
Core Timer (TMR) contains the following registers.

Table 6-2: ADSP-BF60x TMR Register List

Name Description

TCNTL Timer Control Register

TPERIOD Timer Period Register

TSCALE Timer Scale Register

CORE TIMER (TMR)
ADSP-BF60X TMR REGISTER DESCRIPTIONS

6–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timer Control Register

The TCNTL register functions as the TMR control and status register.

Figure 6-2: TCNTL Register Diagram

TCOUNT Timer Count Register

Table 6-3: TCNTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

INT Interrupt Status (sticky).
The TCNTL.INT bit indicates the status of the timer generated
interrupt, which is generated when the TCOUNT value decrements to
0. This bit is sticky, remaining set until cleared.
0 No Interrupt Pending
1 Pending Interrupt

2
(R/W)

AUTORLD Auto Reload Enable.
The TCNTL.AUTORLD bit enables the TMR to automatically reload the
TCOUNT register from the TPERIOD register when the count expires. If
disabled, the timer stops operation when the count expires.
0 Disable Auto Reload
1 Enable Auto Reload

Table 6-2: ADSP-BF60x TMR Register List (Continued)

Name Description

CORE TIMER (TMR)
ADSP-BF60X TMR REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 6–5

Timer Period Register

The TPERIOD register holds the timer period. When the processor writes the TPERIOD register, the TMR
automatically writes the value to the TCOUNT register also. When count auto reload is enabled (TCNTL.
AUTORLD =1), the TMR automatically reloads the TCOUNT register with the value in TPERIOD when the
counter expires. Note that writes to TPERIOD are ignored when the timer is running.

Figure 6-3: TPERIOD Register Diagram

1
(R/W)

EN Timer Enable.
The TCNTL.EN bit enables TMR operation, starting the count at the
value in the TCOUNT register and decrementing this value each time
the prescaler (TSCALE) time expires.
0 Disable Timer
1 Enable Timer

0
(R/W)

PWR Low Power Mode Select.
The TCNTL.PWR bit selects active mode or low power mode for TMR
operation. When in low power mode, clocks to the TMR are disabled,
Before enabling the timer (TCNTL.EN =1), put the timer in active
mode (restoring clocks to the TMR).
0 Low Power Mode
1 Active Mode

Table 6-3: TCNTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CORE TIMER (TMR)
ADSP-BF60X TMR REGISTER DESCRIPTIONS

6–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timer Scale Register

The TSCALE register stores the scaling value that is one core clock (CCLK) cycle less than the number of
cycles between each decrement of the timer count (TCOUNT). For example, if the value in the TSCALE
register is 0, the TCOUNT register decrements once for every CCLK cycle. If the TSCALE value is 1, the
TCOUNT decrements once every two CCLK cycles.

Figure 6-4: TSCALE Register Diagram

Timer Count Register

The TCOUNT register holds the current count for the TMR. Typically, this count is initially load with a write
to the TPERIOD register, because the TMR automatically copies the value written to the TPERIOD register
and writes the value to the TCOUNT register. The TCOUNT register can be written directly. When the timer is
running, the TCOUNT value decrements once every TSCALE + 1 core clock (CCLK) cycles. When the value
in TCOUNT reaches 0, the TMR generates an interrupt and sets the TCNTL.INT bit. Note that writes to
TCOUNT are ignored when the timer is running.

Table 6-4: TPERIOD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

PERIOD Timer Period Value.
The TPERIOD.PERIOD bits hold the timer period value.

Table 6-5: TSCALE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

SCALE Timer Scaling Value.
The TSCALE.SCALE bits hold a scaling factor, relating CCLK cycles to
the rate that the count decrements.

CORE TIMER (TMR)
ADSP-BF60X TMR REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 6–7

Figure 6-5: TCOUNT Register Diagram

Table 6-6: TCOUNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

CNT Timer Count.
The TCOUNT.CNT bits hold the current timer count value.

CORE TIMER (TMR)
ADSP-BF60X TMR REGISTER DESCRIPTIONS

6–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–1

7 System Event Controller (SEC)

System event management is the responsibility of the system event controller (SEC). The SEC manages the
configuration of all system event sources as well as the propagation of system events to all connected cores
and the system fault interface.

SEC Features
The following list describes the system event controller features.

• Comprehensive system event source management including interrupt enable, fault enable, priority,
core mapping and source grouping.

• Fault management including fault action configuration, time out, external indication, and system reset.

• Determinism where all system events have the same propagation delay and provide unique identifica-
tion of a specific system event source.

• Distributed programming model where each system event source control and all status fields are
completely independent of all others.

• Slave Control Port which provides access to all SEC registers for configuration, status, and interrupt/
fault service model.

• Global locking supports a register level protection model to prevent writes to “locked” registers.

SEC Functional Description
The following sections provide a functional description of the SEC.

ADSP-BF60x SEC Register List

The system event controller (SEC) manages the system interrupt and system fault sources. The SEC also
provides all system interrupt and fault sources control features, such as enable/disable, prioritization, and
active/pending source status. On multi-core processors, the SEC provides connected core(s) and fault
management with source pending and active indication. For more information on SEC functionality, see
the SEC register descriptions.

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 7-1: ADSP-BF60x SEC Register List

Name Description

SEC_CCTLn SCI Control Register n

SEC_CSTATn SCI Status Register n

SEC_CPNDn Core Pending Register n

SEC_CACTn SCI Active Register n

SEC_CPMSKn SCI Priority Mask Register n

SEC_CGMSKn SCI Group Mask Register n

SEC_CPLVLn SCI Priority Level Register n

SEC_CSIDn SCI Source ID Register n

SEC_FCTL Fault Control Register

SEC_FSTAT Fault Status Register

SEC_FSID Fault Source ID Register

SEC_FEND Fault End Register

SEC_FDLY Fault Delay Register

SEC_FDLY_CUR Fault Delay Current Register

SEC_FSRDLY Fault System Reset Delay Register

SEC_FSRDLY_CUR Fault System Reset Delay Current Register

SEC_FCOPP Fault COP Period Register

SEC_FCOPP_CUR Fault COP Period Current Register

SEC_GCTL Global Control Register

SEC_GSTAT Global Status Register

SEC_RAISE Global Raise Register

SEC_END Global End Register

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–3

ADSP-BF60x Interrupt List

SEC_SCTLn Source Control Register n

SEC_SSTATn Source Status Register n

Table 7-2: ADSP-BF60x Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

SEC0 Error 0 LEVEL
CGU0 Event 1 PULSE/EDGE
WDOG0 Expiration 2 LEVEL
WDOG1 Expiration 3 LEVEL
L2CTL0 ECC Error 4 LEVEL
 Core 0 Double Fault 6 PULSE/EDGE
 Core 1 Double Fault 7 PULSE/EDGE
 Core 0 Hardware Error 8 PULSE/EDGE
 Core 1 Hardware Error 9 PULSE/EDGE
 Core 0 Unhandled NMI or
L1 Memory Parity Error

10 PULSE/EDGE

 Core 1 Unhandled NMI or
L1 Memory Parity Error

11 PULSE/EDGE

TIMER0 Timer 0 12 LEVEL
TIMER0 Timer 1 13 LEVEL
TIMER0 Timer 2 14 LEVEL
TIMER0 Timer 3 15 LEVEL
TIMER0 Timer 4 16 LEVEL
TIMER0 Timer 5 17 LEVEL
TIMER0 Timer 6 18 LEVEL
TIMER0 Timer 7 19 LEVEL
TIMER0 Status 20 LEVEL
PINT0 Pin Interrupt Block 21 LEVEL
PINT1 Pin Interrupt Block 22 LEVEL

Table 7-1: ADSP-BF60x SEC Register List (Continued)

Name Description

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PINT2 Pin Interrupt Block 23 LEVEL
PINT3 Pin Interrupt Block 24 LEVEL
PINT4 Pin Interrupt Block 25 LEVEL
PINT5 Pin Interrupt Block 26 LEVEL
CNT0 Status 27 LEVEL
PWM0 PWMTMR Group 28 LEVEL
PWM0 Trip 29 LEVEL
PWM1 PWMTMR Group 30 LEVEL
PWM1 Trip 31 LEVEL
TWI0 Data Interrupt 32 LEVEL
TWI1 Data Interrupt 33 LEVEL
 Software-driven Interrupt
0

34 PULSE/EDGE

 Software-driven Interrupt
1

35 PULSE/EDGE

 Software-driven Interrupt
2

36 PULSE/EDGE

 Software-driven Interrupt
3

37 PULSE/EDGE

ACM0 Event Miss 38 LEVEL
ACM0 Event Complete 39 LEVEL
CAN0 Receive 40 LEVEL
CAN0 Transmit 41 LEVEL
CAN0 Status 42 LEVEL
SPORT0 Channel A DMA 43 0 LEVEL
SPORT0 Channel A Status 44 LEVEL
SPORT0 Channel B DMA 45 1 LEVEL
SPORT0 Channel B Status 46 LEVEL
SPORT1 Channel A DMA 47 2 LEVEL
SPORT1 Channel A Status 48 LEVEL
SPORT1 Channel B DMA 49 3 LEVEL
SPORT1 Channel B Status 50 LEVEL

Table 7-2: ADSP-BF60x Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–5

SPORT2 Channel A DMA 51 4 LEVEL
SPORT2 Channel A Status 52 LEVEL
SPORT2 Channel B DMA 53 5 LEVEL
SPORT2 Channel B Status 54 LEVEL
SPI0 TX DMA Channel 55 6 LEVEL
SPI0 RX DMA Channel 56 7 LEVEL
SPI0 Status 57 LEVEL
SPI1 TX DMA Channel 58 8 LEVEL
SPI1 RX DMA Channel 59 9 LEVEL
SPI1 Status 60 LEVEL
RSI0 DMA Channel 61 10 LEVEL
RSI0 Interrupt 0 62 LEVEL
RSI0 Interrupt 1 63 LEVEL
SDU0 DMA 64 11 LEVEL
 Reserved 65
 Reserved 66
 Reserved 67
EMAC0 Status 68 LEVEL
 Reserved 69
EMAC1 Status 70 LEVEL
 Reserved 71
LP0 DMA Channel 72 13 LEVEL
LP0 Status 73 LEVEL
LP1 DMA Channel 74 14 LEVEL
LP1 Status 75 LEVEL
LP2 DMA Channel 76 15 LEVEL
LP2 Status 77 LEVEL
LP3 DMA Channel 78 16 LEVEL
LP3 Status 79 LEVEL
UART0 Transmit DMA 80 17 LEVEL
UART0 Receive DMA 81 18 LEVEL

Table 7-2: ADSP-BF60x Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

UART0 Status 82 LEVEL
UART1 Transmit DMA 83 19 LEVEL
UART1 Receive DMA 84 20 LEVEL
UART1 Status 85 LEVEL
 Memory DMA Stream 0
Source / CRC0 Input
Channel

86 21 LEVEL

 Memory DMA Stream 0
Destination / CRC0 Output
Channel

87 22 LEVEL

CRC0 Datacount
expiration

88 LEVEL

CRC0 Error 89 LEVEL
 Memory DMA Stream 1
Source / CRC1 Input
Channel

90 23 LEVEL

 Memory DMA Stream 1
Destination / CRC1 Output
Channel

91 24 LEVEL

CRC1 Datacount
expiration

92 LEVEL

CRC1 Error 93 LEVEL
 Memory DMA Stream 2
Source Channel

94 25 LEVEL

 Memory DMA Stream 2
Destination Channel

95 26 LEVEL

 Memory DMA Stream 3
Source Channel

96 27 LEVEL

 Memory DMA Stream 3
Destination Channel

97 28 LEVEL

EPPI0 Channel 0 DMA 98 29 LEVEL
EPPI0 Channel 1 DMA 99 30 LEVEL
EPPI0 Status 100 LEVEL
EPPI2 Channel 0 DMA 101 31 LEVEL
EPPI2 Channel 1 DMA 102 32 LEVEL

Table 7-2: ADSP-BF60x Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–7

EPPI2 Status 103 LEVEL
EPPI1 Channel 0 DMA 104 33 LEVEL
EPPI1 Channel 1 DMA 105 34 LEVEL
EPPI1 Status 106 LEVEL
PIXC0 Channel 0 DMA 107 35 LEVEL
PIXC0 Channel 1 DMA 108 36 LEVEL
PIXC0 Channel 2 DMA 109 37 LEVEL
PIXC0 Status 110 LEVEL
PVP0 Camera Pipe Data
Out B DMA Channel

111 38 LEVEL

PVP0 Camera Pipe Data
Out C DMA Channel

112 39 LEVEL

PVP0 Camera Pipe Status
Out DMA Channel

113 40 LEVEL

PVP0 Camera Pipe Control
In DMA Channel

114 41 LEVEL

PVP0 Status 0 115 LEVEL
PVP0 Memory Pipe Data
Out DMA Channel

116 42 LEVEL

PVP0 Memory Pipe Data
In DMA Channel

117 43 LEVEL

PVP0 Memory Pipe Status
Out DMA Channel

118 44 LEVEL

PVP0 Memory Pipe
Control In DMA Channel

119 45 LEVEL

PVP0 Camera Pipe Data
Out A DMA Channel

120 46 LEVEL

PVP0 Status 1 121 LEVEL
USB0 Status/FIFO Data
Ready

122 LEVEL

USB0 DMA Status/
Transfer Complete

123 LEVEL

TRU0 Interrupt 0 124 PULSE/EDGE
TRU0 Interrupt 1 125 PULSE/EDGE

Table 7-2: ADSP-BF60x Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x SEC Trigger List

SEC Definitions

The following definitions are used in describing the event controller.

TRU0 Interrupt 2 126 PULSE/EDGE
TRU0 Interrupt 3 127 PULSE/EDGE
 DMA Controller Error 128 LEVEL
CGU0 Error 129 LEVEL
 Reserved 130
DPM0 Event 131 LEVEL
 Reserved 132
SWU0 Event 133 LEVEL
SWU1 Event 134 LEVEL
SWU2 Event 135 LEVEL
SWU3 Event 136 LEVEL
SWU4 Event 137 LEVEL
SWU5 Event 138 LEVEL
SWU6 Event 139 LEVEL

Table 7-3: ADSP-BF60x SEC Trigger List Trigger Masters

Description Trigger ID Sensitivity

SEC0 Fault 71 PULSE/EDGE

Table 7-4: ADSP-BF60x SEC Trigger List Trigger Slaves

Description Trigger ID Sensitivity

None

Table 7-2: ADSP-BF60x Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–9

System Events

System source indications including interrupts and faults

System Source

Point of origin of system event

SID (Identification, unique)

Source numeric identifier for each system source connected to the SEC

SSI

SEC Source Interface, system event source control and status sub-block of the SEC

SCI

SEC Core Interface, core interface sub-block of the SEC

SPR

SEC prioritizer determines the highest priority pending interrupt and the highest priority active interrupt
and provides them in the appropriate registers of the SCI for the priority and nesting model of the SCI

SFI

SEC Fault Interface, fault management sub-block of the SEC

SEC Block Diagram

System sources connect to the SEC through the SSI. Each core has a dedicated SCI. The SFI provides fault
action connections to the rest of the system.

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 7-1: System Even Controller Block Diagram

SFI Block Diagram

The SFI manages fault events and associated actions. The fault management support provided in the SEC
is intended to help satisfy the safety requirements of various applications. The SSI provides the highest
priority pending source that is enabled as a fault. The SFI captures this value and enables a countdown and,
once the countdown expires, the prescribed action is taken.

Figure 7-2: SFI Overview Block Diagram

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–11

SCI Block Diagram

The SCI manages communication between the corresponding core and the SEC. The SPR of the SCI
receives pending, active, and priority information from the SSI for each system event source assigned to
this SCI. The SPR determines the highest priority pending system event and the SCI determines whether
it will propagate to the core. The SCI maintains the coherency for the system event service model imple-
mented on the connected core.

Figure 7-3: SCI Overview Block Diagram

SSI Block Diagram

The SSI manages all of the system event sources. The status of each source is maintained in the corre-
sponding SEC_SSTATn register and the control of each source is managed by the corresponding SEC_SCTLn
register. A pending and enabled event passes its indication and priority to the SCI to which it is assigned
for further processing.

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 7-4: SSI Overview Block Diagram

SEC Architectural Concepts

The following sections describe SEC architectural features supporting interrupt acknowledge, priority
levels, grouping, flow, and error management.

System Interrupt Acknowledge

A system interrupt acknowledge occurs when the core provides an indication that it has acquired the SID
of the interrupt last issued by the SEC. The SEC core interface option allows for this to be generated by
either of the following.

• A slave port write to the SEC_CSIDn register.

• The assertion of an input acknowledge signal (generated by the connected core).

System Interrupt Groups

System sources can be assigned to groups using the SEC_SCTLn.GRP bit field. Source groups allow fast
context switching for system interrupts at each SCI. The SEC_CGMSKn register allows quick masking of
interrupt groups of unlimited size with a single write operation.

System Interrupt Flow

An enabled and asserted system interrupt source is latched at the SSI and routed to the appropriate SCI
based on the core target select (SEC_SCTLn.CTG) bit field setting. The SEC prioritizer determines the
highest priority pending system interrupt and the SCI updates the SEC_CPNDn.SID and SEC_CACTn.PRIO
bit field values. The SCI compares the SEC_CPNDn register value against the highest priority active source
in the SEC_CACTn register).

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–13

The priority level register (SEC_CPLVLn) determines how many of the MSBs are used in the comparison
while the priority mask register (SEC_CPMSKn) and the group mask register (SEC_CGMSKn) determines
which pending interrupt sources participate. If the SEC_CPNDn register value is a higher priority (lower
value) than that of the SEC_CACTn register from the comparison based on SEC_CPLVLn register, the system
interrupt output is asserted and the source ID register (SEC_CSIDn) is updated with the SEC_CPNDn.SID
bit field value and forwarded to the connected core.

After the core provides an interrupt acknowledgment (MMR write of the SEC_CSIDn register or the core
version of the SEC_CSIDn register), the interrupt source is set active (SEC_SSTATn.ACT==1) until the
service is complete by a write of the same value to the SEC_END.SID bit field.

The following sequence shows the example flow for a single interrupt.

1. The SEC compares the SEC_CPNDn register value to the SEC_CACTn register value, if the interrupt in the
SEC_CPNDn register is higher priority, continue.

2. The SEC copies the SEC_CPNDn register value to the SEC_CSIDn register and asserts the interrupt signal.

3. The core reads the SEC_CSIDn register (or core version).

4. The core writes to the SEC_CSIDn register (or core version, asserts the acknowledge signal).

5. The SEC de-asserts the interrupt signal and clears the SEC_SSTATn.PND bit and sets the SEC_SSTATn.
ACT bit of the source going active.

6. The core writes the SEC_CSIDn of the active interrupt to the SEC_END register.

7. The SEC clears theSEC_SSTATn.ACT bit of the source being ended.

The following sequence shows the example flow for interrupt nesting where interrupt A is lower priority
and occurs earlier than interrupt B.

1. The SEC compares the SEC_CPNDn (A) register value to the SEC_CACTn register and if the interrupt in
the SEC_CPNDn register is a higher priority, continue.

2. The SEC copies SEC_CPNDn (A) register to the SEC_CSIDn register and asserts the interrupt signal.

3. The core reads the SEC_CSIDn (A) register (or core version).

4. The core writes to the SEC_CSIDn register (or core version, asserts the acknowledge signal).

5. The SEC de-asserts the INT signal and clears the SEC_SSTATn.PND bit and sets the SEC_SSTATn.ACT bit
of the source (A) going active.

6. The SEC compares the SEC_CPNDn (B) register value to the SEC_CACTn (A) register value. If the SEC_
CACTn (A) register value is a higher priority, continue.

7. The SEC copies the SEC_CPNDn (B) register value to SEC_CSIDn register and asserts the interrupt signal.

8. The core reads the SEC_CSIDn (B) register (or core version).

9. The core writes to the SEC_CSIDn register (or core version, asserts the acknowledge signal).

SYSTEM EVENT CONTROLLER (SEC)
SEC PROGRAMMING MODEL

7–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

10. The SEC de-asserts the INT signal and clears the SEC_SSTATn.PND bit and sets the SEC_SSTATn.ACT bit
of the source (B) going active.

11. The core writes the SEC_CSIDn of the active interrupt (B) to the SEC_END register.

12. The SEC clears the SEC_SSTATn.ACT bit of the source (B) being ended.

13. The core writes the SEC_CSIDn of the active interrupt (A) to the SEC_END register.

14. The SEC clears the SEC_SSTATn.ACT bit of the source (A) being ended.

System Interrupt Priorities

Each system interrupt source has its own programmable priority level which is configured using the SEC_
SCTLn.PRIO bit field. The SCI evaluates the priority of all pending sources to determine the highest
priority pending system interrupt source for forwarding to the attached core. If more than one pending
system interrupt source has the same priority setting, the SCI chooses the one with the lowest SID. For
example, if SID 0, SID 1, and SID 2 are all pending and have the same priority setting, the SCI chooses SID
0 as the highest priority pending system interrupt source.

SEC Error

A SEC error (SEC_GSTAT.ERR) is included as a system source input to the SEC to allow for handling the
error as an interrupt or fault.

SEC Programming Model
Implementing a system interrupt service model using the SEC requires, at a minimum, proper configura-
tion of a system interrupt source (for example a peripheral or DMA), core interrupt/event service model,
and the SEC. The core must be configured for response to system interrupts from the SEC. The SEC must
be configured to enable and map the system interrupt source to the correct SCI and to forward interrupts
to the connected core.

The system interrupt source must be configured to generate interrupt assertions. Alternatively, software
triggering may be used for interrupt assertion. Software driven interrupts are generated by writing the
source ID of the interrupt to be triggered to the SEC_RAISE register.

Programming Concepts

The following list provides the basic programming concepts necessary for configuring the system event
controller.

• Configuring an SSI as a system interrupt for a specific core.

• Configuring an SCI to provide system interrupts to the connected core.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–15

• Configuring an SSI as a system fault.

• Configuring the SFI to manage system faults.

Programming Examples

This section provides example programming tasks that are typical for SEC usage.

Configuring a System Source to Interrupt a Core

1. Write to the SEC_GCTL register to enable the SEC.

2. Write to the SEC_CCTLn register of the specific SCI to enable interrupts to be sent to core.

3. Write to the SEC_SCTLn register of specific source to enable the source as an interrupt and set the core
target field to map the source to the appropriate SCI.

Configuring a System Source as a Fault

1. Write to the SEC_GCTL register to enable the SEC.

2. Write to the SEC_FCTL register to configure specific fault actions.

3. Optionally write to the SEC_FDLY bit field to specify fault delay.

4. Write to the control register of a specific source to enable the source as a fault.

ADSP-BF60x SEC Register Descriptions
System Event Controller (SEC) contains the following registers.

Table 7-5: ADSP-BF60x SEC Register List

Name Description

SEC_CCTLn SCI Control Register n

SEC_CSTATn SCI Status Register n

SEC_CPNDn Core Pending Register n

SEC_CACTn SCI Active Register n

SEC_CPMSKn SCI Priority Mask Register n

SEC_CGMSKn SCI Group Mask Register n

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCI Control Register n

The SEC control register (SEC_CCTLn) contains SCI control bits for all system sources.

SEC_CPLVLn SCI Priority Level Register n

SEC_CSIDn SCI Source ID Register n

SEC_FCTL Fault Control Register

SEC_FSTAT Fault Status Register

SEC_FSID Fault Source ID Register

SEC_FEND Fault End Register

SEC_FDLY Fault Delay Register

SEC_FDLY_CUR Fault Delay Current Register

SEC_FSRDLY Fault System Reset Delay Register

SEC_FSRDLY_CUR Fault System Reset Delay Current Register

SEC_FCOPP Fault COP Period Register

SEC_FCOPP_CUR Fault COP Period Current Register

SEC_GCTL Global Control Register

SEC_GSTAT Global Status Register

SEC_RAISE Global Raise Register

SEC_END Global End Register

SEC_SCTLn Source Control Register n

SEC_SSTATn Source Status Register n

Table 7-5: ADSP-BF60x SEC Register List (Continued)

Name Description

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–17

Figure 7-5: SEC_CCTLn Register Diagram

Table 7-6: SEC_CCTLn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_
CCTLn.LOCK bit is enabled, the SEC_CCTLn register is read only.
0 Unlock
1 Lock

16
(R/W)

NMIEN NMI Enable.
The SEC_CCTLn.NMIEN bit controls NMI propagation to the core.
When the SEC_CCTLn.NMIEN bit is enabled, the SCI allows NMIs to
propagate to the core for servicing.
0 Disable
1 Enable

12
(R0/W1A)

WFI Wait For Idle.
When set, the SEC_CCTLn.WFI bit forces the SCI to wait for
indication of core idle before the SCI resumes activity.
0 No Action
1 Wait for Idle

1
(R0/W1A)

RESET Reset.
When set, the SEC_CCTLn.RESET bit resets all SCI registers to their
default values.
0 No Action
1 Reset

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCI Status Register n

The SCI status register (SEC_CSTATn) contains status bits, indicating the operational status of the SCI.

Figure 7-6: SEC_CSTATn Register Diagram

0
(R/W)

EN Enable.
The SEC_CCTLn.EN bit controls operation of the SCI. Clearing the
SEC_CCTLn.EN bit halts the execution of the SCI without resetting
status registers. (The INT signal to a core is not affected.) Setting the
SEC_CCTLn.EN bit enables the SCI to begin or resume operation with
the current configuration and status.
0 Disable
1 Enable

Table 7-7: SEC_CSTATn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W1C)

NMI NMI.
The SEC_CSTATn.NMI bit indicates whether an NMI has occurred
since the bit was last cleared.
0 No NMI Occured
1 NMI Occurred

Table 7-6: SEC_CCTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–19

12
(R/W1C)

WFI Wait For Idle.
The SEC_CSTATn.WFI bit indicates (if set) that the SCI is temporarily
disabled, pending a core idle indication. This bit is set when SEC_
CCTLn.WFI is set.
0 Not Waiting
1 Waiting

10
(R/NW)

SIDV SID Valid.
The SEC_CSTATn.SIDV bit indicates (if set) that the current value in
the SEC_CSIDn register is valid. The SCI sets the SEC_CSTATn.SIDV
bit when the updating the SEC_CSIDn register with a new value. The
SEC_CSTATn.SIDV bit is cleared when the SEC_CSIDn register is
written. This status indication may be used to extract all pending
interrupts in a single interrupt service routine.
0 Invalid
1 Valid

9
(R/NW)

ACTV ACT Valid.
The SEC_CSTATn.ACTV bit indicates (if set) that the current value in
the SEC_CACTn register is valid. The SCI sets the SEC_CSTATn.ACTV
bit when updating the SEC_CACTn registers with a new value. The
SEC_CSTATn.ACTV bit is cleared when the SEC_CSIDn register is
written.
0 Invalid
1 Valid

8
(R/NW)

PNDV PND Valid.
The SEC_CSTATn.PNDV bit indicates (if set) that the current value in
the SEC_CPNDn register is valid. The SCI sets the SEC_CSTATn.PNDV
bit when updating the SEC_CPNDn register with a new value. The
SEC_CSTATn.PNDV bit is cleared when the SEC_CSIDn register is
written.
0 Invalid
1 Valid

Table 7-7: SEC_CSTATn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Core Pending Register n

The SCI pending interrupt register (SEC_CPNDn) contains the source ID and priority of the highest priority
pending interrupt detected by the SEC prioritizer.

Figure 7-7: SEC_CPNDn Register Diagram

5:4
(R/NW)

ERRC Error Cause.
The SEC_CSTATn.ERRC bits are updated on assertion of the SEC_
CSTATn.ERR bit to indicate the SCI error type. SEC_CSTATn.ERRC is
only updated on the assertion of SEC_CSTATn.ERR. Subsequent
errors while SEC_CSTATn.ERR is asserted do not update SEC_
CSTATn.ERRC.
0 Reserved
1 Acknowledge Error

SCI has received an acknowledge without a
pending, unacknowledged interrupt present.

2 Reserved
3 Reserved

1
(R/W1C)

ERR Error.
The SEC_CSTATn.ERR bit indicates that an error has occurred in the
SCI. When SEC_CSTATn.ERR is set, the SCI updates the SEC_
CSTATn.ERRC field to the value of the corresponding error cause.
0 No Error
1 Error Occurred

Table 7-7: SEC_CSTATn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–21

SCI Active Register n

The SEC SCI active interrupt register (SEC_CACTn) contains the source ID and priority of the highest
priority active interrupt detected by the SEC prioritizer.

Figure 7-8: SEC_CACTn Register Diagram

Table 7-8: SEC_CPNDn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/NW)

PRIO Highest Pending IRQ Priority.
The SEC_CPNDn.PRIO indicates the priority value of the highest
priority pending interrupt for core n.

7:0
(R/NW)

SID Highest Pending IRQ Source ID.
The SEC_CPNDn.SID identifies the source ID value of the highest
priority pending interrupt for core n.

Table 7-9: SEC_CACTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/NW)

PRIO Highest Active IRQ Priority.
The SEC_CACTn.PRIO indicates the priority value of the highest
priority active interrupt for core n.

7:0
(R/NW)

SID Highest Active IRQ Source ID.
The SEC_CACTn.SID identifies the source ID value of the highest
priority active interrupt for core n.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCI Priority Mask Register n

The SEC SCI priority mask register (SEC_CPMSKn) contains the SCI priority mask for core n and includes
a register lock.

Figure 7-9: SEC_CPMSKn Register Diagram

SCI Group Mask Register n

The SEC SCI group mask register (SEC_CGMSKn) contains selections for a group mask, an ungroup mask,
and a register lock. This register contains the system interrupt group masks for the connected core. The
core uses the SEC_CGMSKn.UGRP and SEC_CGMSKn.GRP fields to mask (disable) interrupts from the speci-
fied groups.

Table 7-10: SEC_CPMSKn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_
CPMSKn.LOCK bit is enabled, the SEC_CPMSKn register is read only.
0 Unlock
1 Lock

7:0
(R/W)

PRIO IRQ Priority Mask.
The SEC_CPMSKn.PRIO contains the system interrupt priority mask
for core n. The core uses the SEC_CPMSKn.PRIO field to mask (block)
interrupts below the specified level.
0b11111111 = Priority Level 255 (lowest)
...
0b00000000 = Priority Level 0 (highest)

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–23

Figure 7-10: SEC_CGMSKn Register Diagram

SCI Priority Level Register n

The SEC SCI priority level register (SEC_CPLVLn) contains selections for priority levels and a register lock.
This register is used to divide the total number of priority levels into sub-levels. The sub-level priority reso-
lution provides the tie breaker for simultaneously pending interrupts assigned to the same level.

Table 7-11: SEC_CGMSKn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_
CGMSKn.LOCK bit is enabled, the SEC_CGMSKn register is read only.
0 Unlock
1 Lock

8
(R/W)

UGRP Ungrouped Mask.
The SEC_CGMSKn.UGRP bit masks interrupts (if set) for the
ungrouped interrupt sources for core n.
0 Unmask Ungrouped Sources
1 Mask Ungrouped Sources

3:0
(R/W)

GRP Grouped Mask.
The SEC_CGMSKn.GRP field selects a group of interrupt sources to
mask for core n. (For more information about interrupt source
groups, see the SEC_SCTLn register description.)
1111 = Mask group 0, 1, 2, 3
...
0001 = Mask group 0
0000 = No groups masked

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 7-11: SEC_CPLVLn Register Diagram

SCI Source ID Register n

The SCI source ID register (SEC_CSIDn) contains the source ID of the interrupt last issued to core n. The
SEC_CSIDn register value is loaded by the SCI when a system interrupt indication is sent to core n. The SCI
does not change the SEC_CSIDn until after the interface receives an interrupt acknowledge from core n.

Table 7-12: SEC_CPLVLn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_
CPLVLn.LOCK bit is enabled, the SEC_CPLVLn register is read only.
0 Unlock
1 Lock

2:0
(R/W)

PLVL Priority Levels.
The SEC_CPLVLn.PLVL field serves to divide the total number of
interrupt priority levels into sub-levels. The sub-level priority
resolution provides the tie breaker for simultaneously pending
interrupts assigned to the same intrrupt level. The sub-level priority
value specifies the number of MSBs (minus 1) designated to interrupt
levels, while the remaining LSBs are designated for sub-level
specification. For example, if the SEC_CPLVLn.PLVL field is set to
two, the result is four priority levels are specified, because only the
two MSBs are used for preemption evaluation. The remaining bits of
the priority setting are used for sub-level prioritization.
000 = 1 MSB (2 priority levels)
...
111 = 8 MSBs (256 priority levels)

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–25

Writing to the SEC_CSIDn register generates an interrupt acknowledge, but does not update the value in
the register.

Figure 7-12: SEC_CSIDn Register Diagram

Fault Control Register

The SEC fault control register (SEC_FCTL) contains fault control bits for all SEC channels. This register
controls the operation of the System Fault Management Interface (SFI).

Figure 7-13: SEC_FCTL Register Diagram

Table 7-13: SEC_CSIDn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

SID Source ID.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 7-14: SEC_FCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_
FCTL.LOCK bit is enabled, the SEC_FCTL register is read only.
0 UnLock
1 Lock

13
(R/W)

TES Trigger Event Select.
The SEC_FCTL.TES bit selects the event that directs the SEC to assert
trigger output. In fault pending mode, the SEC asserts trigger output
when a fault is pending. In fault active mode, the SEC asserts trigger
output when a fault is active.
0 Fault Active Mode
1 Fault Pending Mode

12
(R/W)

CMS COP Mode Select.
The SEC_FCTL.CMS selects the SEC mode for handling fault input. In
COP mode, the SEC toggles the COP pin to indicate that no fault is
active and ceases toggling the pin to indicate that a fault is active. In
fault mode, the SEC deasserts the fault pin (=0) and fault_b pin (=1)
when no fault is active and asserts the fault pin (=1) and fault_b pin
(=0) when a fault is active.
0 Fault Mode
1 COP Mode

7
(R/W)

FIEN Fault Input Enable.
The SEC_FCTL.FIEN bit enables the SEC the to sample fault input. If
SEC_FCTL.FIEN is set (=1), a fault indication from an external device
sets the SEC_FSTAT.ACT bit and SEC_FSID.FEXT bit.
0 Disable
1 Enable

6
(R/W)

SREN System Reset Enable.
The SEC_FCTL.SREN bit enables the SEC to issue a system reset
request when a fault becomes active.
0 Disable
1 Enable

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–27

Fault Status Register

The SEC fault status register (SEC_FSTAT) indicates the operational status of the SFI.

5
(R/W)

TOEN Trigger Output Enable.
The SEC_FCTL.TOEN bit enables the SEC to produce trigger output
when a fault becomes active.
0 Disable
1 Enable

4
(R/W)

FOEN Fault Output Enable.
The SEC_FCTL.FOEN bit enables the SEC to indicate fault status,
according to the SEC_FCTL.CMS bit configuration.
0 Disable
1 Enable

1
(R0/W1A)

RESET Reset.
Setting the SEC_FCTL.RESET bit resets ALL SEC registers to their
default values.
0 No Action
1 Reset

0
(R/W)

EN Enable.
The SEC_FCTL.EN bit controls the operational state of the SEC.
Clearing the SEC_FCTL.EN bit halts the execution of the SEC without
resetting status registers. Setting the SEC_FCTL.EN bit enables the
SEC to begin or resume operation with the current configuration and
status.
0 Disable
1 Enable

Table 7-14: SEC_FCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 7-14: SEC_FSTAT Register Diagram

Table 7-15: SEC_FSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/NW)

NPND Next Pending Fault.
The SEC_FSTAT.NPND bit indicates that one or more sources have
signalled fault assertion, but the input has not yet triggered the fault
pending detection in the SEC fault interace. The SEC sets the SEC_
FSTAT.NPND bit when the fault interface detects assertion of any
enabled fault source input, while either SEC_FSTAT.PND or SEC_
FSTAT.ACT bits are set. The SEC clears the SEC_FSTAT.NPND bit
when there are no fault sources waiting.
0 Not Pending
1 Pending

9
(R/NW)

ACT Fault Active.
The SEC_FSTAT.ACT bit indicates that the SEC has received a fault
source input, the current fault delay count (in the SEC_FDLY_CUR
register) has expired, and the fault actions are enabled. The SEC also
sets the SEC_FSTAT.ACT bit on fault input detection if the SEC_FCTL.
FIEN bit is set. The SEC_FSTAT.ACT bit is cleared by writing the SEC_
END.SID value of the asserted fault from SEC_FSID register to the
SEC_FEND register.
0 No Fault
1 Active Fault

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–29

8
(R/NW)

PND Pending Fault.
The SEC_FSTAT.PND bit indicates a fault source has signalled a fault
assertion to the SEC, but the SEC has not yet triggered the event
actions due to the delay selected with the SEC_FDLY register. The SEC
fault interface sets the SEC_FSTAT.PND bit when the SEC_FSID is
updated on assertion of a fault source input. The SEC_FSTAT.PND bit
is only set when the SEC_FSTAT.ACT bit is cleared. The SEC updates
the SEC_FSID register with the SID value when the SEC_FSTAT.PND
bit is set. The SEC_FSTAT.PND bit is cleared either by the SEC fault
interface when the current delay count in the SEC_FDLY_CUR register
expires or by writing the SEC_FSID.SID field value (which indicates
the ID of the asserted fault) to the SEC_FEND register.
0 Not Pending
1 Pending

5:4
(R/NW)

ERRC Error Cause.
When the SEC updates the SEC_FSTAT.ERR bit, the SEC updates the
SEC_FSTAT.ERRC bits to indicate the error type. When the error
status is End Error, the status indicates two possible error scenarios.
Either, the SEC received a write to SEC_FEND while neither the
pending fault bit (SEC_FSTAT.PND) nor fault active bit (SEC_FSTAT.
ACT) were set, or the SEC detected that the SID written to SEC_FEND.
SID does not match the fault source indicated in the SEC_FSID.SID
field.
0 Reserved
1 Reserved
2 End Error
3 Reserved

1
(R/W1C)

ERR Error.
The SEC_FSTAT.ERR bit indicates an SEC fault interface error. When
SEC_FSTAT.ERR is set, the SEC updates the SEC_FSTAT.ERRC field to
indicate the corresponding error cause. When multiple errors occur,
the SEC_FSTAT register captures the status for the first error and does
not capture subsequent errors until the status is cleared.
0 No Error
1 Error Occurred

Table 7-15: SEC_FSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Fault Source ID Register

The SEC fault source ID register (SEC_FSID) contains a fault source ID and internal/external fields.

Figure 7-15: SEC_FSID Register Diagram

Fault End Register

The SEC fault end register (SEC_FEND) contains fault source ID and internal/external fields. This register
receives fault end indication from a core.

Table 7-16: SEC_FSID Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/NW)

FEXT Fault External.
The SEC_FSID.FEXT bit indicates that the last active fault was
asserted by an external device. The SEC sets the SEC_FSID.FEXT bit
when the SEC_FSTAT register's SEC_FSTAT.ACT bit is set by the fault
input pins. The SEC_FSID.FEXT bit is cleared when the SEC_FSTAT.
ACT bit is set by an internal fault or when the external fault is ended.
When the SEC_FSID.FEXT bit is set, the SEC_FSID.SID is cleared.
0 Fault Internal
1 Fault External

7:0
(R/NW)

SID Source ID.
The SEC_FSID.SID identifies the fault assertion detected by the SEC
fault interface. The SEC loads the SEC_FSID.SID field value when a
system fault indication is asserted. The SEC fault interface does not
change the SEC_FSID.SID value until the fault is no longer pending
or active, as indicated by the SEC_FSTAT.PND bit and SEC_FSTAT.
ACT bit being cleared in the SEC_FSTAT register.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–31

Figure 7-16: SEC_FEND Register Diagram

Fault Delay Register

The SEC fault delay register (SEC_FDLY) contains the number (SEC_FDLY.COUNT field) of (SEC) clock
periods to delay from fault pending to fault active, when actions are enabled.

Table 7-17: SEC_FEND Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W)

FEXT Fault External.
Setting the SEC_FEND.FEXT bit, when the SEC_FEND.SID field is
cleared, clears an active fault from an external source.
0 Fault Internal
1 Fault External

7:0
(R/W)

SID Source ID.
The SEC_FEND.SID identifies a fault to be ended as indicated to the
SEC by the core. The core loads the SEC_FEND.SID field value. If the
SEC_FEND.SID value matches the SEC_FSID.SID value, the SEC_
FSTAT.PND bit and SEC_FSTAT.ACT bit are cleared.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 7-17: SEC_FDLY Register Diagram

Fault Delay Current Register

The SEC fault delay current register (SEC_FDLY_CUR) contains the active count (SEC_FDLY_CUR.COUNT
field) in (SEC) clock periods for the delay from fault pending to fault active, when actions are enabled. The
count is loaded from the SEC_FDLY register when a fault becomes pending (SEC_FSTAT.PND bit is set). The
SEC decrements the value in SEC_FDLY_CUR each (SEC) clock cycle while the SEC_FSTAT.PND bit is set.

Figure 7-18: SEC_FDLY_CUR Register Diagram

Table 7-18: SEC_FDLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

COUNT Fault Delay.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–33

Fault System Reset Delay Register

The SEC fault system reset delay register (SEC_FSRDLY) contains the number (SEC_FSRDLY.COUNT field)
of (SEC) clock periods for the delay from a fault becoming active to system reset request assertion, if
enabled.

Figure 7-19: SEC_FSRDLY Register Diagram

Fault System Reset Delay Current Register

The SEC fault system reset delay current register (SEC_FSRDLY_CUR) contains the active count (SEC_
FSRDLY_CUR.COUNT field) in (SEC) clock periods for the delay from fault active to system reset assertion,
if enabled. The count is loaded from the SEC_FSRDLY register when a fault becomes active (SEC_FSTAT.
ACT bit is set). The SEC decrements the value in SEC_FSRDLY_CUR each (SEC) clock cycle while the SEC_
FSTAT.ACT bit is set.

Table 7-19: SEC_FDLY_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

COUNT Fault Delay.

Table 7-20: SEC_FSRDLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

COUNT Fault System Reset Delay.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 7-20: SEC_FSRDLY_CUR Register Diagram

Fault COP Period Register

The SEC fault COP period register (SEC_FCOPP) contains the width value (count in (SEC) clock cycles) for
the high and low phase of the computer operating properly (COP) toggled output on the COP pin. Note
that the actual high/low phase is value is the SEC_FCOPP.COUNT programmed value plus 1.

Figure 7-21: SEC_FCOPP Register Diagram

Table 7-21: SEC_FSRDLY_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

COUNT Fault System Reset Delay.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–35

Fault COP Period Current Register

The SEC fault COP period current register (SEC_FCOPP_CUR) contains the active count (in (SEC) clock
periods) for the current phase (high or low) of the computer operating properly (COP) toggled output on
the COP pin. The SEC loads the SEC_FCOPP_CUR register from the SEC_FCOPP register when the SEC_
FCOPP_CUR.COUNT field is cleared and the SEC is in COP mode (SEC_FCTL.CMS bit =1). The SEC decre-
ments the SEC_FCOPP_CUR count each (SEC) clock cycle while SEC_FCTL.CMS is set and the SEC_FSTAT.
ACT bit is not set.

Figure 7-22: SEC_FCOPP_CUR Register Diagram

Global Control Register

The SEC global control register (SEC_GCTL) provides register locking, reset, and enable for the SEC
module.

Table 7-22: SEC_FCOPP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

COUNT Fault COP Period.

Table 7-23: SEC_FCOPP_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

COUNT Fault COP Period.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 7-23: SEC_GCTL Register Diagram

Global Status Register

The SEC global status register (SEC_GSTAT) contains global status bits for the SEC.

Table 7-24: SEC_GCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_
GCTL.LOCK bit is enabled, the SEC_GCTL register is read only.
0 Unlock
1 Lock

1
(R0/W1A)

RESET Reset.
The SEC_GCTL.RESET bit is write-1-action and triggers a soft reset to
all SEC registers.
0 No Action
1 Reset

0
(R/W)

EN Enable.
The SEC_GCTL.EN bit is read/write and must be set for the SEC to
begin/resume SEC operation with the current configuration and
status. Clearing SEC_GCTL.EN bit halts the execution of the SEC core
interface (SCI). All SEC fault interfaces (SFI) and SEC source
interfaces (SSI) remain active along with all error detection without
resetting status registers.
0 Disable
1 Enable

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–37

Figure 7-24: SEC_GSTAT Register Diagram

Table 7-25: SEC_GSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

LWERR Lock Write Error.
The SEC_GSTAT.LWERR bit indicates (when set) there was an
attempted write to an SEC register while the SEC_GCTL.LOCK bit was
set and while the global lock bit was enabled (SPU_CTL_GLCK bit =1).
This status bit is sticky; write-1-to-clear it.
0 No Error
1 Error Occurred

30
(R/W1C)

ADRERR Address Error.
The SEC_GSTAT.ADRERR bit indicates that the SEC generated and
address error. This status bit is sticky; write-1-to-clear it.
0 No Error
1 Error Occurred

23:16
(R/NW)

SID Source ID for SSI Error.
The SEC_GSTAT.SID bits indicate the source ID that generated the
last SSI Error conveyed in the SEC_GSTAT.ERRC field.

11:8
(R/NW)

SCI SCI ID for SCI Error.
The SEC_GSTAT.SCI bits indicate the number for the specific SCI
that generated the last SCI error conveyed in the SEC_GSTAT.ERRC
field.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Global Raise Register

The SEC global raise register (SEC_RAISE) contains a source ID interrupt set to pending field (SEC_RAISE.
SID). When a source ID value is written to this field, the SEC raises the source's interrupt to pending.

Figure 7-25: SEC_RAISE Register Diagram

5:4
(R/NW)

ERRC Error Cause.
When the SEC updates the SEC_GSTAT.ERR bit, the SEC updates the
SEC_GSTAT.ERRC bits to indicate the error type. Note that for SCI
errors the error status represents an OR of all the errors from each
SCI. Note that for SSI errors the error status indicates an error is
active for any SSI input. This error is an OR of all the interrupt source
errors.
0 SFI Error
1 SCI Error
2 SSI Error
3 Reserved

1
(R/W1C)

ERR Error.
The SEC_GSTAT.ERR bit indicates an error has occurred in the SEC.
When the SEC asserts this bit (=1), the SEC updates the SEC_GSTAT.
ERRC field to indicate the corresponding error cause. Even if multiple
errors occur, only the first error is captured on assertion of this bit.
This status bit is sticky; write-1-to-clear it.
0 No Error
1 Error Occurred

Table 7-25: SEC_GSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–39

Global End Register

The SEC global end register (SEC_END) contains a source ID interrupt service end field (SEC_END.SID).
When a core has finished servicing an interrupt, the core writes the SEC_END.SID field in the SEC_END
register. This write causes the SEC to clear the SEC_SSTATn.ACT bit in the SEC_SSTATn register of the
corresponding interrupt.

Figure 7-26: SEC_END Register Diagram

Source Control Register n

The SEC source control register (SEC_SCTLn) contains control bits to configure the SEC interrupt sources.
This register controls the configuration of the corresponding SEC interrupt source.

Table 7-26: SEC_RAISE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

SID Source ID IRQ Set to Pending.

Table 7-27: SEC_END Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

SID Source ID IRQ to End.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 7-27: SEC_SCTLn Register Diagram

Table 7-28: SEC_SCTLn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_
SCTLn.LOCK bit is enabled, the SEC_SCTLn register is read only.
0 Unlock
1 Lock

27:24
(R/W)

CTG Core Target Select.
The SEC_SCTLn.CTG bits selects the specific SEC core interface to
which the interrupt is mapped. Each system interrupt is mapped
uniquely to one specific SEC core interface and (as a result) to a
specific core.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–41

19:16
(R/W)

GRP Group Select.
The SEC_SCTLn.GRP bits each select a specific group for the
interrupt. Each system interrupt can be assigned to any combination
of groups supported by the SEC_SCTLn.GRP field.
For example, consider the situation where SEC_SCTLn.GRP0
represents interrupt group 0, SEC_SCTLn.GRP1 represents interrupt
group 1, and so on. One group might be used for all enabled
interrupts (for example, group 0) and an additional group might be
used for all wakeup interrupts (for example, group 1). This approach
supports a model of all interrupts and just the wakeup subset.
Before going to idle or sleep, all non-wakeup interrupts can be
masked off to allow only wakeup interrupts to be enabled for service.
Selecting no group (all SEC_SCTLn.GRP bits = 0) places the interrupt
source in the category of "ungrouped".

15:8
(R/W)

PRIO Priority Level Select.
The SEC_SCTLn.PRIO bits sets the relative priority for an interrupt
request. A pending interrupt request forwards its SEC_SCTLn.PRIO
value to the SEC core interface.

4
(R/W)

ERREN Error Enable.
The SEC_SCTLn.ERREN bit permits the SEC_SSTATn.ERR status bit to
be set on error detection. If SEC_SCTLn.ERREN is cleared, no errors
are detected.
0 Disable
1 Enable

3
(R/W)

ES Edge Select.
The SEC_SCTLn.ES bit selects the operational and sensitivity mode of
the SEC source interface input.
0 Level Sensitive
1 Edge Sensitive

2
(R/W)

SEN Source (signal) Enable.
The SEC_SCTLn.SEN bit controls whether the system interrupt source
input signal may affect the pending status of the source. Clearing
SEC_SCTLn.SEN disables the source input signal from affecting
pending. Setting SEC_SCTLn.SEN enables the source input signal to
affect pending.
0 Disable
1 Enable

Table 7-28: SEC_SCTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Source Status Register n

The SEC interrupt source status register (SEC_SSTATn) contains bits indicating the status of the corre-
sponding interrupt source n. An interrupt source may be: pending, active, active and pending, or neither
pending nor active.

Figure 7-28: SEC_SSTATn Register Diagram

1
(R/W)

FEN Fault Enable.
The SEC_SCTLn.FEN bit controls whether the SEC may forward an
interrupt request to the SEC fault interface as a fault source. This bit
does not affect the ability of an interrupt source to set an interrupt as
pending. The SEC_SCTLn.FEN bit only affects whether the pending
request may be forwarded to the SEC fault interface.
0 Disable
1 Enable

0
(R/W)

IEN Interrupt Enable.
The SEC_SCTLn.IEN bit controls whether the SEC may forward an
interrupt request to a core for servicing. This bit does not affect the
ability of an interrupt source to set an interrupt as pending.
0 Disable
1 Enable

Table 7-28: SEC_SCTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 7–43

Table 7-29: SEC_SSTATn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:16
(R/NW)

CHID Channel ID.
The SEC_SSTATn.CHID bits indicate the ID of the specific source
(from a set of sources sharing one SEC source interface input) that
asserted the SEC source interface input. An SEC source interface
input may support multiple system sources, in which case the
assertion must be qualified by an identifier to determine the channel
that generated the assertion. The SEC_SSTATn.CHID field provides
this value in the form of a numeric reference that is mapped to a
specific interrupt source. The prioritization for simultaneously
asserted sources is according to ID, with 0 being the highest priority.
The SEC_SSTATn.CHID is captured when the SEC source interface
input is acknowledged.

9
(R/W1C)

ACT Active Source.
The SEC_SSTATn.ACT bit indicates the source has been accepted by a
core for servicing, but the service is not yet complete. An SEC_
SSTATn.ACT bit is set by the SEC when the specific system interrupt
is acknowledged by the core through the SEC core interface. An SEC_
SSTATn.ACT bit is cleared by the SEC when the core provides
interrupt service end indication for the specific system interrupt
through the SEC core interface.
0 No Source
1 Active Source

8
(R/W1C)

PND Pending Source.
The SEC_SSTATn.PND bit indicates the source has signalled an
interrupt request assertion, but the request has not yet been accepted
by a core for servicing. A SEC_SSTATn.PND bit is set by the SEC on
detection of an assertion of the corresponding system interrupt
input. A SEC_SSTATn.PND bit is cleared by the SEC when the specific
system interrupt is acknowledged by the core through the SEC core
interface.
0 Not Pending
1 Pending

SYSTEM EVENT CONTROLLER (SEC)
ADSP-BF60X SEC REGISTER DESCRIPTIONS

7–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

5:4
(R/NW)

ERRC Error Cause.
When the SEC_SSTATn.ERR bit is asserted, the SEC updates SEC_
SSTATn.ERRC field to convey the interrupt source error type. When
the error type is source overflow, the status indicates that a source
signal assertion occurred or an SEC raise operation was attempted
while pending was already set. The source overflow is detected when
the source is set for edge only. When the error type is end error, the
status indicates that an end was received for a source while the SEC_
SSTATn.ACT bit was not set.
0 Source Overflow Error
1 Reserved
2 End Error
3 Reserved

1
(R/W1C)

ERR Error.
The SEC_SSTATn.ERR bit indicates an error for a specific system
interrupt source. When the SEC_SSTATn.ERR bit is set, the SEC
updates the SEC_SSTATn.ERRC field to the value of the
corresponding error cause. Even if multiple errors occur, only the
first error is captured on assertion of the SEC_SSTATn.ERR bit.
0 No Error
1 Error Occurred

Table 7-29: SEC_SSTATn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 8–1

8 Trigger Routing Unit (TRU)

The TRU provides system-level sequence control without core intervention. The TRU maps trigger
masters (generators of triggers) to trigger slaves (receivers of triggers). Slave endpoints can be configured
to respond to triggers in various ways. Common applications enabled by the TRU include:

• Automatically triggering the start of a DMA sequence after a sequence from another DMA channel
completes

• Software triggering

• Synchronization of concurrent activities

TRU Features
The TRU supports the following features.

• Trigger routing of any trigger master to any trigger slave.

• Software generation of any trigger master ID.

• Configuration protection through register level lock bits and global lock indication.

TRU Functional Description
The following sections provide a function description of the TRU.

ADSP-BF60x TRU Register List

The trigger routing unit (TRU) provides simple sequence control of distributed modules without the
penalties associated with core intervention (for example, interrupt overhead). The TRU resides in the
SYSCLK domain and receives trigger inputs from all master trigger inputs (MTI) and the TRU master
trigger register (TRU_MTR). Based on these inputs, the TRU logic generates trigger outputs that initiate slave
operations in the processor core and peripherals. A set of registers govern TRU operations. For more infor-
mation on TRU functionality, see the TRU register descriptions.

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

8–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x TRU Interrupt List

ADSP-BF60x Trigger List

Table 8-1: ADSP-BF60x TRU Register List

Name Description

TRU_SSRn Slave Select Register

TRU_MTR Master Trigger Register

TRU_ERRADDR Error Address Register

TRU_STAT Status Information Register

TRU_GCTL Global Control Register

Table 8-2: ADSP-BF60x TRU Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

TRU0 Interrupt 0 124 PULSE/EDGE
TRU0 Interrupt 1 125 PULSE/EDGE
TRU0 Interrupt 2 126 PULSE/EDGE
TRU0 Interrupt 3 127 PULSE/EDGE

Table 8-3: ADSP-BF60x Trigger List Trigger Masters

Description Trigger ID Sensitivity

 Reserved 0
CGU0 Event 1 PULSE/EDGE
TIMER0 Timer 0 2 PULSE/EDGE
TIMER0 Timer 1 3 PULSE/EDGE
TIMER0 Timer 2 4 PULSE/EDGE
TIMER0 Timer 3 5 PULSE/EDGE
TIMER0 Timer 4 6 PULSE/EDGE
TIMER0 Timer 5 7 PULSE/EDGE
TIMER0 Timer 6 8 PULSE/EDGE

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 8–3

TIMER0 Timer 7 9 PULSE/EDGE
PINT0 Pin Interrupt Block 10 LEVEL
PINT1 Pin Interrupt Block 11 LEVEL
PINT2 Pin Interrupt Block 12 LEVEL
PINT3 Pin Interrupt Block 13 LEVEL
PINT4 Pin Interrupt Block 14 LEVEL
PINT5 Pin Interrupt Block 15 LEVEL
CNT0 Status 16 LEVEL
PWM0 PWMTMR Group 17 LEVEL
PWM1 PWMTMR Group 18 LEVEL
ACM0 Event Complete 19 LEVEL
SPORT0 Channel A DMA 20 PULSE/EDGE
SPORT0 Channel B DMA 21 PULSE/EDGE
SPORT1 Channel A DMA 22 PULSE/EDGE
SPORT1 Channel B DMA 23 PULSE/EDGE
SPORT2 Channel A DMA 24 PULSE/EDGE
SPORT2 Channel B DMA 25 PULSE/EDGE
SPI0 TX DMA Channel 26 PULSE/EDGE
SPI0 RX DMA Channel 27 PULSE/EDGE
SPI1 TX DMA Channel 28 PULSE/EDGE
SPI1 RX DMA Channel 29 PULSE/EDGE
RSI0 DMA Channel 30 PULSE/EDGE
SDU0 DMA 31 PULSE/EDGE
 Reserved 32
EMAC0 Status 33 LEVEL
EMAC1 Status 34 LEVEL
LP0 DMA Channel 35 PULSE/EDGE
LP1 DMA Channel 36 PULSE/EDGE
LP2 DMA Channel 37 PULSE/EDGE
LP3 DMA Channel 38 PULSE/EDGE
UART0 Transmit DMA 39 PULSE/EDGE

Table 8-3: ADSP-BF60x Trigger List Trigger Masters (Continued)

Description Trigger ID Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

8–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

UART0 Receive DMA 40 PULSE/EDGE
UART1 Transmit DMA 41 PULSE/EDGE
UART1 Receive DMA 42 PULSE/EDGE
 Memory DMA Stream 0 Source /
CRC0 Input Channel

43 PULSE/EDGE

 Memory DMA Stream 0
Destination / CRC0 Output
Channel

44 PULSE/EDGE

 Memory DMA Stream 1 Source /
CRC1 Input Channel

45 PULSE/EDGE

 Memory DMA Stream 1
Destination / CRC1 Output
Channel

46 PULSE/EDGE

 Memory DMA Stream 2 Source
Channel

47 PULSE/EDGE

 Memory DMA Stream 2
Destination Channel

48 PULSE/EDGE

 Memory DMA Stream 3 Source
Channel

49 PULSE/EDGE

 Memory DMA Stream 3
Destination Channel

50 PULSE/EDGE

EPPI0 Channel 0 DMA 51 PULSE/EDGE
EPPI0 Channel 1 DMA 52 PULSE/EDGE
EPPI2 Channel 0 DMA 53 PULSE/EDGE
EPPI2 Channel 1 DMA 54 PULSE/EDGE
EPPI1 Channel 0 DMA 55 PULSE/EDGE
EPPI1 Channel 1 DMA 56 PULSE/EDGE
PIXC0 Channel 0 DMA 57 PULSE/EDGE
PIXC0 Channel 1 DMA 58 PULSE/EDGE
PIXC0 Channel 2 DMA 59 PULSE/EDGE
PVP0 Camera Pipe Data Out B
DMA Channel

60 PULSE/EDGE

PVP0 Camera Pipe Data Out C
DMA Channel

61 PULSE/EDGE

Table 8-3: ADSP-BF60x Trigger List Trigger Masters (Continued)

Description Trigger ID Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 8–5

PVP0 Camera Pipe Status Out
DMA Channel

62 PULSE/EDGE

PVP0 Camera Pipe Control In
DMA Channel

63 PULSE/EDGE

PVP0 Memory Pipe Data Out
DMA Channel

64 PULSE/EDGE

PVP0 Memory Pipe Data In DMA
Channel

65 PULSE/EDGE

PVP0 Memory Pipe Status Out
DMA Channel

66 PULSE/EDGE

PVP0 Memory Pipe Control In
DMA Channel

67 PULSE/EDGE

PVP0 Camera Pipe Data Out A
DMA Channel

68 PULSE/EDGE

USB0 DMA Status/Transfer
Complete

69 LEVEL

 Reserved 70
SEC0 Fault 71 PULSE/EDGE
 Software-driven Trigger 0 72 PULSE/EDGE
 Software-driven Trigger 1 73 PULSE/EDGE
 Software-driven Trigger 2 74 PULSE/EDGE
 Software-driven Trigger 3 75 PULSE/EDGE
 Software-driven Trigger 4 76 PULSE/EDGE
 Software-driven Trigger 5 77 PULSE/EDGE
PVP0 Status 0 78 LEVEL
PVP0 Status 1 79 LEVEL
SWU0 Event 80 PULSE/EDGE
SWU1 Event 81 PULSE/EDGE
SWU2 Event 82 PULSE/EDGE
SWU3 Event 83 PULSE/EDGE
SWU4 Event 84 PULSE/EDGE
SWU5 Event 85 PULSE/EDGE
SWU6 Event 86 PULSE/EDGE

Table 8-3: ADSP-BF60x Trigger List Trigger Masters (Continued)

Description Trigger ID Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

8–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 8-4: ADSP-BF60x Trigger List Trigger Slaves

Description Trigger ID Sensitivity

RCU0 System Reset 0 0
RCU0 System Reset 1 1
TIMER0 Timer 0 2
TIMER0 Timer 1 3
TIMER0 Timer 2 4
TIMER0 Timer 3 5
TIMER0 Timer 4 6
TIMER0 Timer 5 7
TIMER0 Timer 6 8
TIMER0 Timer 7 9
 Reserved 10
 Reserved 11
 NMI (Core 0) Slave 0 12
 NMI (Core 0) Slave 1 13
 NMI (Core 1) Slave 0 14
 NMI (Core 1) Slave 1 15
TRU0 Interrupt Request 0 16
TRU0 Interrupt Request 1 17
TRU0 Interrupt Request 2 18
TRU0 Interrupt Request 3 19
SPORT0 Channel A DMA 20
SPORT0 Channel B DMA 21
SPORT1 Channel A DMA 22
SPORT1 Channel B DMA 23
SPORT2 Channel A DMA 24
SPORT2 Channel B DMA 25
SPI0 TX DMA Channel 26
SPI0 RX DMA Channel 27
SPI1 TX DMA Channel 28
SPI1 RX DMA Channel 29

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 8–7

RSI0 DMA Channel 30
SDU0 DMA 31
 Reserved 32
ACM0 Trigger Input 2 33
ACM0 Trigger Input 3 34
LP0 DMA Channel 35
LP1 DMA Channel 36
LP2 DMA Channel 37
LP3 DMA Channel 38
UART0 Transmit DMA 39
UART0 Receive DMA 40
UART1 Transmit DMA 41
UART1 Receive DMA 42
 Memory DMA Stream 0 Source /
CRC0 Input Channel

43

 Memory DMA Stream 0
Destination / CRC0 Output
Channel

44

 Memory DMA Stream 1 Source /
CRC1 Input Channel

45

 Memory DMA Stream 1
Destination / CRC1 Output
Channel

46

 Memory DMA Stream 2 Source
Channel

47

 Memory DMA Stream 2
Destination Channel

48

 Memory DMA Stream 3 Source
Channel

49

 Memory DMA Stream 3
Destination Channel

50

EPPI0 Channel 0 DMA 51
EPPI0 Channel 1 DMA 52
EPPI2 Channel 0 DMA 53

Table 8-4: ADSP-BF60x Trigger List Trigger Slaves (Continued)

Description Trigger ID Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

8–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EPPI2 Channel 1 DMA 54
EPPI1 Channel 0 DMA 55
EPPI1 Channel 1 DMA 56
PIXC0 Channel 0 DMA 57
PIXC0 Channel 1 DMA 58
PIXC0 Channel 2 DMA 59
PVP0 Camera Pipe Data Out B
DMA Channel

60

PVP0 Camera Pipe Data Out C
DMA Channel

61

PVP0 Camera Pipe Status Out
DMA Channel

62

PVP0 Camera Pipe Control In
DMA Channel

63

PVP0 Memory Pipe Data Out
DMA Channel

64

PVP0 Memory Pipe Data In DMA
Channel

65

PVP0 Memory Pipe Status Out
DMA Channel

66

PVP0 Memory Pipe Control In
DMA Channel

67

PVP0 Camera Pipe Data Out A
DMA Channel

68

SDU0 Slave Trigger 69
 Reserved 70
 Core 0 Wakeup Input 0 71
 Core 0 Wakeup Input 1 72
 Core 0 Wakeup Input 2 73
 Core 0 Wakeup Input 3 74
 Core 1 Wakeup Input 0 75
 Core 1 Wakeup Input 1 76
 Core 1 Wakeup Input 2 77
 Core 1 Wakeup Input 3 78

Table 8-4: ADSP-BF60x Trigger List Trigger Slaves (Continued)

Description Trigger ID Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 8–9

TRU Definitions

Trigger Master

A trigger master is any system module that provides trigger event indication to the TRU. Trigger events
and conditions for assertion are defined by trigger master modules.

Trigger Master ID

Trigger masters are assigned a unique numeric ID according to their physical connection to the TRU.
Trigger master ID 0 is reserved and defined as null.

Trigger Slave

A trigger slave is any system module that receives a trigger event indication from the TRU. A trigger event
response is defined by the trigger slave modules.

TRU Block Diagram

Trigger masters and the master trigger register (MTR) generate trigger assertions. Each trigger slave has a
dedicated slave select register (SSR) that specifies the unique trigger master from which it receives the
trigger indication.

 Reserved 79
SWU0 Event 80
SWU1 Event 81
SWU2 Event 82
SWU3 Event 83
SWU4 Event 84
SWU5 Event 85
SWU6 Event 86

Table 8-4: ADSP-BF60x Trigger List Trigger Slaves (Continued)

Description Trigger ID Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU PROGRAMMING MODEL

8–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 8-1: TRU Block Diagram

TRU Architectural Concepts

The TRU supports a simple trigger-in/trigger-out model for modules that comply with the triggering func-
tional model. The TRU is the controller of the trigger system. Trigger outputs from trigger masters are
mapped to trigger inputs of trigger slaves through a set of programmable registers (TRU_SSRn).

System modules may be trigger master only, trigger slave only, or trigger master and trigger slave.

All of the trigger input and output signals are connected to a Trigger Routing Unit (TRU) which manages
the connections of triggers between modules.

TRU Programming Model
Implementing sequence control using the TRU requires, at a minimum, proper configuration of a trigger
slave, a trigger master, and the TRU module itself. The only requirement for the configuration procedure
is that the trigger master should be configured and enable as the last step.

The other steps that must be completed are:

• The trigger slave must be configured for response to triggers.

• The TRU must be configured to map the trigger master to the trigger slave through the TRU_SSRn regis-
ters.

• The trigger master must be configured to generate trigger assertions.

• Alternatively, software triggering may be used for trigger assertion. Software triggers are generated by
writing the trigger master ID to the MTR register.

TRIGGER ROUTING UNIT (TRU)
TRU EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 8–11

Programming Concepts

The following concepts will aid in programming the TRU.

• Trigger Sequence Configuration. A simple sequence may consist of one trigger master and one trigger
slave. More complex trigger sequences may consist of several trigger slaves functioning as trigger slave
and trigger master. Additionally, trigger sequences may loop back to the original master forming a
perpetual sequence.

• Software Triggering. Writing a trigger master ID to the MTR generates a trigger within the TRU from
the trigger master ID specified.

• Synchronization. The TRU can be used to coarsely synchronize events by mapping multiple trigger
slaves to the same trigger master and/or by generating multiple trigger master assertions simultane-
ously through the MTR.

• Configuration Protection. The TRU_SSRn.LOCK bit and the TRU_GCTL.LOCK bit enable register level
write protection when global lock is asserted in the SPU.

Programming Example

The following example shows the steps to create a simple trigger.

1. Write to the TRU_GCTL register to enable the TRU.

2. Write to the TRU_SSRn register of a specific trigger slave to assign it to a specific trigger master.

3. Enable the trigger slave to wait for and accept a trigger.

4. Enable the trigger master to generate a trigger.

TRU Event Control
The TRU is a major part of event control solutions. It is the center of the trigger functional model and may
be extended to support the interrupt and fault management models as well.

TRU Status and Error Signals

The TRU does not have dedicated status and error output signals other than the MMR interface. Slave
errors are reported to the master over the standard bus protocol.

ADSP-BF60x TRU Register Descriptions
Trigger Routing Unit (TRU) contains the following registers.

TRIGGER ROUTING UNIT (TRU)
ADSP-BF60X TRU REGISTER DESCRIPTIONS

8–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Slave Select Register

The TRU slave select registers (TRU_SSRn) each provide slave selection and register locking.

Figure 8-2: TRU_SSRn Register Diagram

Table 8-5: ADSP-BF60x TRU Register List

Name Description

TRU_SSRn Slave Select Register

TRU_MTR Master Trigger Register

TRU_ERRADDR Error Address Register

TRU_STAT Status Information Register

TRU_GCTL Global Control Register

Table 8-6: TRU_SSRn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK SSRn Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the TRU_
SSRn.LOCK bit is enabled, the TRU_SSRn register is read only.

7:0
(R/W)

SSR SSRn Slave Select.
The TRU_SSRn register selects the trigger master ID to which the
trigger slave responds. For example, when a TRU_SSRn register is set
to respond to trigger master ID n, a trigger that is generated by
trigger master ID n results in a trigger out to the slave.

TRIGGER ROUTING UNIT (TRU)
ADSP-BF60X TRU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 8–13

Master Trigger Register

The TRU master trigger register (TRU_MTR) permits trigger generation through software by writing a
trigger master ID value to one of the four fields in the TRU_MTR register. If the global lock is enabled SPU_
CTL_GLCK bit =1) and the TRU_GCTL.LOCK bit is set, the TRU_MTR register is read only.

Figure 8-3: TRU_MTR Register Diagram

Error Address Register

The TRU error address register (TRU_ERRADDR) holds the address from the memory mapped register
access generating an access error of TRU registers.

Table 8-7: TRU_MTR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

MTR3 Master Trigger Register 3.

23:16
(R/W)

MTR2 Master Trigger Register 2.

15:8
(R/W)

MTR1 Master Trigger Register 1.

7:0
(R/W)

MTR0 Master Trigger Register 0.

TRIGGER ROUTING UNIT (TRU)
ADSP-BF60X TRU REGISTER DESCRIPTIONS

8–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 8-4: TRU_ERRADDR Register Diagram

Status Information Register

The TRU status register (TRU_STAT) contains the status of TRU_MTR and TRU_SSRn register writes and
status of bus read/write errors.

Table 8-8: TRU_ERRADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:0
(R/W)

ADDR Error Address.
The TRU_ERRADDR.ADDR holds the address from the memory
mapped register access generating an access error of TRU registers.
These errors occur on access to the TRU_SSRn or TRU_MTR registers
when these registers are locked or on access to an invalid address.
See the TRU_SSRn and TRU_MTR register descriptions for more
information about locking. The TRU_ERRADDR register holds the
address of the first error to occur. In the event of multiple errors
occurring, the TRU_ERRADDR register contains the address of the first
error. To re-enable the TRU_ERRADDR register for update, both status
bits (TRU_STAT.LWERR and TRU_STAT.ADDRERR) in the TRU_STAT
register must be cleared.

TRIGGER ROUTING UNIT (TRU)
ADSP-BF60X TRU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 8–15

Figure 8-5: TRU_STAT Register Diagram

Global Control Register

The TRU global control register (TRU_GCTL) provides register locking, TRU reset, and TRU enable.

Figure 8-6: TRU_GCTL Register Diagram

Table 8-9: TRU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W1C)

ADDRERR Address Error Status.
The TRU_STAT.ADDRERR bit is set when an invalid address is
provided for an MMR access while the TRU is selected. Writing a one
to this bit clears the error indication. The TRU_ERRADDR register also
is updated when an address error occurs during an MMR access
while the TRU is selected.

0
(R/W1C)

LWERR Lock Write Error Status.
If TRU_STAT.LWERR is set, a lock write error has occurred. Writing a
one to this bit clears the error indication.

TRIGGER ROUTING UNIT (TRU)
ADSP-BF60X TRU REGISTER DESCRIPTIONS

8–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 8-10: TRU_GCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK GCTL Lock Bit.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the TRU_
GCTL.LOCK bit is enabled, the TRU_GCTL register is read only.

2
(R/W)

MTRL MTR Lock Bit.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the TRU_
GCTL.MTRL bit is enabled, the TRU_MTR register is read only.

1
(R/W)

RESET Soft Reset.
The TRU_GCTL.RESET bit is write-1-action and triggers a soft reset to
all TRU registers.

0
(R/W)

EN Non-MMR Enable.
The TRU_GCTL.EN bit is read/write and must be set for the TRU to
propagate trigger events. All TRU register read/write operations
continue to operate independent of the TRU_GCTL.EN bit.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–1

9 Static Memory Controller (SMC)

The static memory controller is a protocol converter and data transfer interface between the internal
processor bus and the external L3 memory. It provides a glueless interface to a variety of external memories
and peripheral devices, including SRAM, ROM, EPROM, NOR flash memory, and FPGA/ASIC devices.

The SMC acts as an SCB slave, and accesses to the SMC are arbitrated by the processor SCB interconnect
fabric. On the chip boundary, the SMC is connected to an address bus, a data bus, and memory control
signal pins (such as read, write, output enable, and memory select lines).

SMC Features
SMC features include:

• 16-bit I/O width

• Provides flexible timing control through extended timing parameters

• Supports asynchronous access extension (SMC_ARDY pin)

• Supports 8-bit data masking writes

• Supports bus request/grant arbitration

• Supports burst read with programmable burst length of 4, 8 and 16

SMC Functional Description
The SMC contains memory-mapped registers that control the access characteristics for each asynchronous
memory bank. Different banks can be programmed in different modes, independently controlled using the
functional and cycle time bit settings for each bank.

The SMC_GCTL register controls the bus grant feature of the controller. There is only one programmable bit
in this register which if set (=1) disables the bus grant feature of SMC. It is cleared at reset which means
that bus grant is enabled by default.

The SMC_GSTAT register indicates the status of the SMC_BG, SMC_BR, and SMC_BGH pins. There are three bits
in this register to reflect the status of these pins.

The SMC provides separate sets of registers, SMC_B0CTL – SMC_B3CTL(control), SMC_B0TIM – SMC_
B3TIM(timing) and SMC_B0ETIM – SMC_B3ETIM(extended timing) to control the mode and timing charac-

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

9–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

teristic of each bank independently. The control registers contain bits for enabling the bank and bits for
selecting mode of operation.

The control registers also include bits to configure use of SMC_ARDY feature and bits for flash page size.

The control registers also contain bits to control the type of bank select control signal. External FIFO
devices often do not have a separate chip select pin. As a result, for a read, the FIFO’s output enable (SMC_
AOE) pin must be connected to the OR (negative AND) of the SMC_AMS0 and the SMC_ARE. Similarly, the
write case requires an OR between SMC_AMS0 and SMC_AWE. The SMC provides this function so that an
external OR gate is not required. The appropriate AMS function can be selected for each memory bank
region using the SMC_B0CTL.SELCTRL bits.

Finally, the control registers also contain bits for synchronous burst and selecting NOR clock frequency.

The following sections provide additional functional descriptions of the SMC.

• SMC Definitions

• SMC Architectural Concepts

ADSP-BF60x SMC Register List

The static memory controller SMC is a protocol converter and data transfer interface between the internal
processor bus and the external L3 memory. The SMC acts as a bus slave and accesses to SMC are arbitrated
by the module's system crossbar. On the chip boundary, the SMC is connected to a 25 bit external memory
address bus, a 16-bit data bus and memory control signal pins (read, write) including 4 chip selects. This
memory interface can support 64MB of external memory connected to 4 different banks, each bank being
controlled by the chip select signal. A set of registers govern SMC operations. For more information on
SMC functionality, see the SMC register descriptions.

Table 9-1: ADSP-BF60x SMC Register List

Name Description

SMC_GCTL Grant Control Register

SMC_GSTAT Grant Status Register

SMC_B0CTL Bank 0 Control Register

SMC_B0TIM Bank 0 Timing Register

SMC_B0ETIM Bank 0 Extended Timing Register

SMC_B1CTL Bank 1 Control Register

SMC_B1TIM Bank 1 Timing Register

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–3

SMC Definitions

The timing registers contain bits to program the setup time, hold time and access time for read and write
access to each bank separately. The SMC allows for totally different setup/hold/access times for reads and
writes. The SMC_B0TIM – SMC_B3TIMregisters control the timing characteristics of the asynchronous
memory interface using the following parameter definitions. Each of these parameters can be programmed
in terms of SCLK clock cycles.

SMC_B1ETIM Bank 1 Extended Timing Register

SMC_B2CTL Bank 2 Control Register

SMC_B2TIM Bank 2 Timing Register

SMC_B2ETIM Bank 2 Extended Timing Register

SMC_B3CTL Bank 3 Control Register

SMC_B3TIM Bank 3 Timing Register

SMC_B3ETIM Bank 3 Extended Timing Register

Table 9-1: ADSP-BF60x SMC Register List (Continued)

Name Description

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

9–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Read setup time

The time between the beginning of a memory cycle (SMC_AMS0low) and the read-enable assertion (SMC_
ARElow).

Read hold time

The time between read-enable deassertion (SMC_AREhigh) and the end of the memory cycle (SMC_
AMS0high).

Read access

The time between read-enable assertion (SMC_ARElow) and deassertion (SMC_AREhigh).

Write setup time

The time between the beginning of a memory cycle (SMC_AMS0low) and the write-enable assertion (SMC_
AWElow).

Write hold time

The time between write-enable deassertion (SMC_AWEhigh) and the end of the memory cycle (SMC_
AMS0high).

Write access

The time between write-enable assertion (SMC_AWElow) and deassertion (SMC_AWEhigh).

The SMC provides another register for defining additional timing characteristics of control signals by
programming the extended timing registers SMC_B0TIM – SMC_B3TIM. These registers contain bits to
program following timing characteristics.

Pre-setup time

The number of cycles SMC_AMS0 is asserted before SMC_AOE is asserted.

Pre-access time

The number of cycles inserted after SMC_AOE/SMC_NORDVis de-asserted, before SMC_ARE is asserted for the
next access.

Memory idle time

The number of bus idle cycles between SMC_AMS0 de-asserting edge and next asserting edge.

Memory transition time

The number of bus idle cycles extending the Idle time cycles in case of the subsequent access has a different
data direction or is to different bank.

Additional useful definitions are provided below.

Bus contention

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–5

State of the bus in which more than one device on the bus attempts to place values on the bus at the same
time. For more information see Avoiding Bus Contention.

ARDY signal

The SMC_ARDY signal is used to insert wait states for slower asynchronous memories. There is no upper
limit to how many wait states the ARDY signal can enter. As long as its held, the processor waits for the
access to the asynchronous memory. Once asserted, the processor accesses the memory according to the
timing diagrams. For more information see ARDY Input Control.

SMC Architectural Concepts

The SMC can support connection to multiple different external banks, with each bank controlled by an
SMC_AMSn chip select signal. Check the processor data sheet for details on the bank address ranges and
configurations.

NOTE: The address range allocated to each bank is shown in the processor data sheet. Not all of an enabled
memory bank need to be populated.

The processor does not directly support 8-bit accesses to the external memories. So, the SMC address lines
start from SMC_A01; there is no SMC_A0pin.

The SMC does indirectly support 8-bit accesses through the additional byte enable signals SMC_ABE0 and
SMC_ABE1. Some 16-bit memory systems allow the processor to perform 8-bit reads and writes, which are
selected through the SMC_ABE0 and SMC_ABE1 signals.

The byte enable pins are both low during all asynchronous reads and 16-bit asynchronous writes. When
an asynchronous write is made to the upper byte of a 16-bit memory, SMC_ABE1=0 and SMC_ABE0=1. When
an asynchronous write is made to the lower byte of a 16-bit memory, SMC_ABE1=1 and SMC_ABE0=0.

Avoiding Bus Contention

Bus contention occurs during the time one device is getting off the bus and another is getting on. If the first
device is slow to three-state and the second device is quick to drive, the devices contend. Bus contention
causes excessive power dissipation and can lead to device failure.

There are two cases where contention can occur.

• In reads followed by writes to the same memory space, the data bus drivers can potentially contend with
those of the memory device addressed by the read.

• In back-to-back reads from two different memory spaces, the two memory devices addressed by the
two reads can contend at the transition between the two read operations.

To avoid contention, program the turnaround time appropriately in the extended time registers (SMC_
B0ETIM – SMC_B3ETIM), setting the number of clock cycles between these types of accesses on a bank-by-
bank basis.

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

9–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The idle time bit (SMC_B0ETIM.IT) applies to similar back to back access types on the same bank. The tran-
sition time bit (SMC_B0ETIM.TT) applies to the SMC_B0ETIM.ITbit. For actual turnaround situations, idle
time and transition time function in an accumulated fashion. The sequence of access types and times are
shown below.

• A write followed by write to same bank – SMC_B0ETIM.IT

• A read followed by read to same bank – SMC_B0ETIM.IT

• A write followed by read to same bank – SMC_B0ETIM.IT + SMC_B0ETIM.TT

• A read followed by write to same bank – SMC_B0ETIM.IT + SMC_B0ETIM.TT

• Any access to a given bank followed by any access to a different bank – SMC_B0ETIM.IT + SMC_B0ETIM.
TT

The reset value of turnaround transition time is 2 cycles. Program the SMC_B0ETIM.TTbit to a value either
greater than or equal to 2 cycles, depending on memory AC-timing specifications. It is important to be
aware that the SMC_B0ETIM.TTbit may be programmed to 0 only when:

• There are no SMC banks programmed to operate in synchronous burst mode.

• There are either only read accesses or only write accesses possible to external memory devices for the
current device configuration/processor operation situation.

ARDY Input Control

Each bank can be programmed to sample the SMC_ARDY input after the read or write access timer has
counted down or to ignore this input’s signal. If enabled and disabled at the sample window, SMC_ARDY can
be used to extend the access time as required.

The SMC_ARDY input is treated as an asynchronous input, however it must reach the desired value (either
asserted or deasserted) more than two SCLK cycles before the completion of access time (scheduled rising
edge of SMC_AWE or SMC_ARE). This determines whether the access is extended by the assertion of SMC_
ARDYor not. Once SMC_ARDY(asserted by the memory device), is sampled high the total delay between SMC_
ARDY going high at the pads and SMC_ARE being de-asserted at the pads can be a maximum of 5 SCLKcycles.

Asynchronous SRAM writes are also possible with the SMC_ARDY signal enabled. In asynchronous SRAM
writes, the write access is extended beyond the programmed write access cycles depending on the SMC_
ARDY signal state. Once SMC_ARDY is sampled asserted, the SMC_AWE signal is deasserted after 2 CLKOUT
cycles and the write access ends.

The polarity of SMC_ARDY is programmable on a per-bank basis. Since SMC_ARDY is not sampled until an
access is in progress to a bank in which the SMC_ARDY enable is asserted, it does not need to be driven by
default. When using flash memory, the WAIT input should be connected to SMC_ARDY.

To avoid stalls in case of erroneous SMC_ARDYbehavior, set the SMC_B0CTL.RDYABTEN bit to enable the
SMC_ARDY abort counter. When the abort counter is enabled, it starts counting down as soon as the
programmed read/write access cycles expire, and times out (generating an error) if the SMC_ARDY signal is

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–7

not sampled as asserted within 64 cycles. This ensures that the processor does not hang if SMC_ARDY is not
sampled correctly.

Bus Request and Bus Grant

The SMC can relinquish control of the data and address buses to an external device, using the bus request
and bus grant protocol. SMC three states it's memory interface to allow an external controller to access
either external asynchronous or synchronous memory parts.

When an external controller requires access to the static memory bus, it asserts the bus request (SMC_BR)
signal. If no internal SMC request is pending, and if the SMC is in the IDLE state, the SMC grants the
external bus request. A bus grant is initiated by the following.

• Three-stating the data and address buses and the memory control signals.

• Asserting the bus grant (SMC_BG) signal.

When the static memory bus is granted to an external controller, the SMC stalls all accesses, including
instruction fetches and data reads/writes, that address the SMC memory space. Bus grant status may be
checked through examination of the SMC_GSTAT.BGSTAT bit. This bit can be used by software to check the
bus grant status prior to initiating transactions that would be delayed by the external bus grant. When the
SMC is ready to perform an access, but is held off because the bus is granted, it asserts the bus grant hang
(SMC_BGH) pin. When the external controller releases (SMC_BR), the SMC de-asserts (SMC_BG) and
continues servicing access requests.

Bank-Off Bus Grant

The SMC bus is granted during system reset and after system reset before any one of the SMC banks is
enabled. Since all SMC banks are disabled at reset, including bank 0, the SMC bus is granted by default.
This bank-off bus grant state does not depend on the status of the external bus request signal. During this
bank-off bus grant state, the SMC_BG signal is asserted low and the SMC_BGH signal is unchanged since
internal requests are not possible when all SMC banks are disabled. The state of SMC_GCTL.BGDISbit has
no effect during the bank-off bus grant state.

When an SMC bank is enabled, it transitions from the bank-off bus grant state to the active state, during
which bus grant depends on external bus request (SMC_BR), on internal access requests, and on SMC
settings (for example the SMC_GCTL.BGDISbit). If after SMC operation all SMC banks are disabled, the
SMC transitions to the bank-off bus grant state, during which the SMC bus is granted irrespective of
external bus request status.

Bus Request and Bus Grant Protocol Timing

Fig. shows the bus cycles for the bus request and bus grant protocol. The external device bus request signal
(SMC_BR) is latched on the rising edge of SCLK. If the SMC is in the idle state (no access requests pending),
the bus grant (SMC_BG) signal is asserted 3.5 cycles later on the falling edge of CLKOUT. The SMC transi-
tions to the bus grant state, three-stating all SMC buses (address, data, memory select).

STATIC MEMORY CONTROLLER (SMC)
SMC OPERATING MODES

9–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

If an internal access request is issued while the SMC has the bus granted, the bus grant hang (SMC_BGH)
signal is asserted 1.5 cycles later on the falling edge of CLKOUT.

When the (SMC_BR) signal is de-asserted by the external memory controller, signaling that the external
device is relinquishing control of the bus, the SMC latches the state of (SMC_BR) on the rising edge of SCLK,
and 3.5 cycles later, de-asserts (SMC_BG) and (SMC_BGH) on the falling edge of CLKOUT, transitions from
the bus grant state into the active state and resumes processing pending access requests.

NOTE: When asserting SMC_BR low the external host must wait for 3.5 more SYSCLKcycles before
sampling SMC_BG, where a single SMC_BGsample is used to initiate multi-cycle bus use.

Figure 9-1: SMC Bus Request Bus Grant Protocol

Disabling Bus Grant to External Memory Controllers

By default, the bus grant feature of the SMC is enabled. To configure the SMC to ignore bus requests and
the status of the SMC_BR pin, set the SMC_GCTL.BGDISbit.

If the SMC_GCTL.BGDISbit is set while the bus is granted to an external memory controller, the current bus
grant status is not affected. The bus continues to be granted until the external memory controller relin-
quishes control of the bus. At that point, subsequent bus requests are ignored.

SMC Operating Modes
The SMC supports the following operating modes.

• Asynchronous Flash Mode

• Synchronous Burst Mode

• Asynchronous Page Mode

STATIC MEMORY CONTROLLER (SMC)
SMC OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–9

Asynchronous Flash Mode

When the access selected mode is asynchronous flash (SMC_B0CTL.MODE=01), external bank accesses
operate exactly the same as in standard asynchronous mode, except for the pin configuration. This mode
should be used when accessing burst devices in non-read array modes.

Synchronous Burst Mode

When synchronous mode access is selected (SMC_B0CTL.MODE=11), synchronous reads are enabled. The
burst clock frequency can be configured for SCLK, SCLK/2, SCLK/3 or SCLK/4. This is the frequency of
the clock output and determines the frequency of latching data for subsequent beats of a burst. It does not
affect any of the other timing parameters which are still determined by the SMC_B0TIM and SMC_
B0ETIMtiming registers. During the entire setup time of an access, the SMC_AOE/SMC_NORDVsignal is
asserted and the burst clock begins running. The first rising edge of the burst clock signal (SMC_NORCLK)
coincides with the fall of CLKOUT at the assertion of the SMC_AOE/SMC_NORDVsignal.

Once the address is latched, the initial burst access occurs based on the read access timing for that bank.
The strobe time is then extended by a burst clock duration for each subsequent beat of the burst. Any access
in the burst may be extended by connecting the flash WAIT signal to the SMC_ARDY signal and the flash
device must be configured to deassert the SMC_ARDY signal at the same time that data is valid.

There are cases when the SMC_NORWTsignal is asserted by the flash device in the middle of a read burst (for
page crosses). In such cases, read data latching halts until the SMC_NORWTsignal is again deasserted by the
flash device, after which data is latched on every rising edge of SMC_NORCLK.

The synchronous read may be burst or single mode, depending on the type of transfer requested. Burst
access is only supported for back-to-back reads, such as cache line fills (16 words), 64-bit instruction reads
(4 words), and DMA reads. Write accesses in synchronous flash burst mode are processed as simple asyn-
chronous flash writes. This allows easy programming and re-programming of flash configuration registers
while the bank is programmed in synchronous burst mode.

Asynchronous Page Mode

When asynchronous page mode access is selected (SMC_B0CTL.MODE=10), asynchronous page reads are
enabled. Page sizes of 4, 8 and 16 words are supported. When performing a page mode read, the first access
in the page proceeds according to the read access time configured in SMC_B0TIMregister. This opens the
page and the subsequent reads in that page have a period equal to the page wait states programmed in the
SMC_B0ETIMregister. Besides the start of the setup phase, the read address is incremented at the start of
every page cycle.

Page mode access is only supported for back-to-back accesses, such as cache line fills (16 words), 64-bit
instruction reads (4 words) and DMA reads. Write accesses in asynchronous page mode are treated as
simple asynchronous flash write accesses.

STATIC MEMORY CONTROLLER (SMC)
SMC EVENT CONTROL

9–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SMC Event Control
SMC event control consists of recording status of SMC errors. Accesses to reserved locations and writes to
read only registers result in bus errors. Bus errors are translated into internal SCB crossbar errors which in
turn get translated into interrupts. To report errors occurring in the slave memory devices (for both this
memory interface and the MMR interface as well), the core combines the SCB crossbar response signals to
generate a combined error signal indication which is routed to the fault management unit.

SMC Programmable Timing Characteristics
This section describes the programmable timing characteristics for the SMC. Timing relationships depend
on the programming of the SMC bank registers, whether initiation is from the core or from DMA, and the
sequence of transactions (read followed by read, read followed by write, and others).

NOTE: All memory control, address and data signals are driven out of chip with regard to the falling edge
of the CLKOUT signal, except for burst clock. The CLKOUT signal is SCLK on the chip pins (pad
delayed).

Asynchronous SRAM Reads and Writes

The following figure shows a basic single write and read operation to an external device with SMC
programmed in asynchronous SRAM mode.

Figure 9-2: Basic Asynchronous SRAM Write Followed by Read

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–11

For the current bank, the programmed time cycles are:

• write setup time=2 cycles

• write access time=4 cycles

• write hold time is=2 cycles

• read setup time=3 cycles

• read access time=5 cycles

• read hold time=1 cycle

• turnaround transition time=2 cycles

• idle transition time=0 cycles

The asynchronous SRAM bus cycles proceed as follows.

1. At the start of the write setup period, the chip select signal (SMC_AMSn) for the target bank asserts. The
write data (WD0), address (AW0) and byte enables become valid.

2. At the end of the setup phase and at the start of the write access period, the write enable (SMC_AWE)
asserts.

3. At the end of the programmed write access, the SMC_AWE signal de-asserts. The target device is assumed
to have captured the write data before SMC_AWE de-asserts.

4. At the end of the write hold period, the SMC_AWE signal de-asserts because the pending access is a read
access, and the turnaround transition time cycles start. The write data and byte enables become invalid
within 1 cycle of the SMC_AMS0 signal de-asserting.

5. At the end of turnaround transition time, the read setup period starts with the assertion of the SMC_
AMS0 and SMC_AOE signals and a new read address (AR0) presented on the address bus.

6. At the start of the read access period, the read enable signal, SMC_ARE asserts.

7. At the end of the read access period the SMC_ARE signal de-asserts and the read hold period starts. Read
data is latched along with SMC_ARE de-asserting.

8. At the end of the read hold period, the SMC_AMSn signal is pulled high and turnaround transition cycles
are appended unless there is a pending read request to the same bank.

Asynchronous SRAM Reads with IDLE Transition Cycles Inserted

The following figure shows two consecutive asynchronous SRAM mode reads to the same bank separated
by programmed IDLE transition time cycles.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 9-3: Asynchronous SRAM Read with IDLE Transition

Programmed cycle times are:

• SMC_B0TIM.RST=2cycles

• SMC_B0TIM.RAT=4 cycles

• SMC_B0TIM.RHT=1 cycle

• IDLE transition time=2 cycles

At the start of the IDLE transition cycle, SMC_AMSnand SMC_AOEsignal are de-asserted. The setup period of
the second read starts at the end of the IDLE transition cycle with the assertion of the SMC_AMSnand SMC_
AOEsignals and a new address on the address bus.

High Speed Asynchronous SRAM Read Burst

The following figure shows a high speed asynchronous SRAM read bus cycle. This is typical for SRAM
devices with small access times being access through SCB read bursts, especially for boot purposes.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–13

Figure 9-4: Fast Asynchronous SRAM Reads, Burst of Four Word

In this case, the target SMC bank has been programmed with:

• read setup time=1 cycle

• read access time=2 cycles

• read hold time=0

• SMC_B0ETIM.PREAT=0

• SMC_B0ETIM.PREST=0

• IDLE transition time=0

The SMC_AMSn signal asserts at the start of the setup cycle of the first read out of the burst. Since the hold
time and the IDLE transition time have been programmed to 0, the SMC_AMSn signal does not de-assert
until the entire set of reads concludes. Only the SMC_ARE signal de-asserts periodically for 1 cycle for the
setup period. The read address changes to the next address at the start of each individual setup cycle. Read
data words are latched at the end of each individual read access period.

High Speed Asynchronous SRAM Writes

High speed asynchronous SRAM writes are similar to the high speed read accesses. The bus protocol is
shown in the following figure for a write burst of 4 words. Here, the write setup time is 1 cycle and the write
access time has been programmed to 2 cycles. Write hold time, pre access time, pre-setup time and idle
transition time are programmed to 0.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The chip select signal, SMC_AMSn, asserts at the start of the entire write burst and de-asserts only at the end
of the last individual write access period. Write address, byte enables and write data for each individual
write access are presented onto the bus at the start of each individual write setup cycle. The SMC_AWE signal
asserts for the write access period and de-asserts during the setup period for each individual data write.

Figure 9-5: Fast Asynchronous SRAM Writes

Asynchronous SRAM Reads with ARDY

The following figure shows an extended asynchronous SRAM read bus cycle with SMC_ARDYenabled.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–15

Figure 9-6: Asynchronous SRAM Read with ARDY

The programmed SMC bank control parameters are:

• Pre-Setup Time=1 cycle

• Read Setup Time=3 Cycles

• Read Access Time=6 Cycles

• Read Hold Time=2 Cycles,

• SMC_B0CTL.RDYPOL=1 (memory is ready when SMC_ARDY=1)

The bus cycles proceed as follows:

• At the start of the pre-setup phase, SMC_AMSn asserts, and read address SMC_A01 is presented on the
address bus.

• At the start of the setup period, SMC_AOE asserts.

• At the start of the read access, SMC_ARE asserts.

• The CLKOUT signal is SCLK which is driven out of the pads. The CLKOUT signal falling edge can be
delayed from the internal SCLK falling edge. See the data sheet for the specification related to this delay.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

All output signals out of the pads, for example SMC_ARE and SMC_AOE, are driven with regard to the
falling edge of CLKOUT.

• The SMC starts sampling the SMC_ARDYsignal on every rising edge of internal SCLK 2 cycles before the
programmed number of read access cycles expires. The read access is extended (SMC_ARE is kept
asserted) until SMC_ARDY is sampled high.

• Once the SMC_ARDY signal (asserted by memory device), is sampled high in SCLK, the read signal is
pulled off internally in the SCLK domain. The total delay between the SMC_ARDY signal going high at
the pads and the de-assertion of the SMC_ARE signal at the pads can be a maximum of 5 SCLK cycles.

• Read data is latched at the falling edge of CLKOUT on the same edge where SMC_ARE is deasserted.

• Hold bus cycles start after the SMC_ARE signal is de-asserted.

• At the end of the hold period, the SMC_AMSn and SMC_AOE signals de-assert and the SMC goes into the
transition state.

Asynchronous Flash Reads

The following figure illustrates a single asynchronous flash mode read bus cycle.

Figure 9-7: Asynchronous Flash Read with Pre-Setup and Pre-Access Cycles

 In this case, the target SMC bank has been programmed with:

• pre-setup time=1 cycle

• read setup time=2 cycles

• pre-access time=1 cycle

• read access time=5 cycles

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–17

• read hold time=2 cycles.

The read bus cycle is almost identical to the asynchronous SRAM read bus cycle. The only difference is the
behavior of the SMC_AOE signal which is used as the flash address valid SMC_NORDV signal. The SMC_NORDV
signal asserts at the start of the setup cycle and de-asserts at the end of the setup cycle.

The pre-access cycle inserts 1 cycle gap between the de-assertion of SMC_NORDV and the assertion of the
flash read strobe NOR_OE at the start of read access. asynchronous flash reads can also be used with SMC_
ARDY enabled for flash devices which use SMC_NORWT in asynchronous mode. In that case, the read bus cycle
operation is identical to the asynchronous SRAM with SMC_ARDY enabled except for the SMC_AOE/SMC_
NORDV signal behavior.

The following figure shows a 32-bit read access to a flash device in asynchronous mode which is split into
two 16-bit external memory accesses. For this bank, read setup and read hold are programmed as 2 cycles
whereas the read access time is 5 cycles. Note that the flash device chip select signal (NOR_CE) remains
asserted for the entire duration of both read accesses, and is de-asserted at the end of the hold period of the
second read access. The SMC_NORDV signal is asserted during the setup phase of both read accesses. Read
data is latched at the end of the read access period.

Figure 9-8: 32-bit Asynchronous Flash Read

Asynchronous Flash Writes

The following figure shows a single asynchronous flash write bus cycle.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 9-9: Asynchronous Flash Write Operation

 For this example, the SMC has been programmed with:

• pre-setup time=1 cycle

• write setup time=2 cycles

• write access time=6 cycles

• write hold time=2 cycles

• pre-access time=0

The asynchronous flash write bus cycle is again almost identical to the asynchronous SRAM write. The
SMC_AWE pin is connected to flash write enable signal (NOR_WE). However, in asynchronous flash writes, the
SMC_AOE signal is used as the address valid signal (SMC_NORDV) and asserts for the duration of the setup
period, unlike in asynchronous SRAM writes where the SMC_AOE signal never asserts.

Asynchronous Flash Page Mode Reads

The following figure shows an asynchronous page mode bus read cycle for a burst of 5 reads which are split
into 4 reads followed by a single read.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–19

Figure 9-10: Asynchronous Page Mode Read Bus Cycle

The programmed bank parameters are:

• read setup time=2 cycles

• read access time=6 cycles

• page wait=2 cycles

• hold time=2 cycles

The maximum number of read bursts in a total page access depends on the bank SMC_B0CTL.PGSZ bits
(00=4 words, 01=8 words, 1x=16 words). The first read access is extended for three more page-read cycles
whose period is equal to the page wait states. Besides the start of the setup phase, the read address is incre-
mented at the start of every page cycle. Read data is latched with the falling edge of CLKOUT the end of
the read access period, and also at the end of the page cycles.

Synchronous Burst Mode Reads

The following figure shows a synchronous burst mode read operation for a four word burst. The Xlatency
in the flash device has been programmed to three, and the burst clock division value is 2.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 9-11: Synchronous Burst Mode Read Operation, Burst of 4 Words, DIV = 2, XLAT = 3

The computed read cycle parameters are:

• read setup time=2 cycles

• read access time=5 cycles

• read hold time=1 cycle

The SMC bus cycles proceed as follows:

• At the start of the read setup period, the NOR_CE and SMC_NORDV signals assert and the read address is
presented on the NOR_A bus. The first rising edge of the burst clock signal (SMC_NORCLK) coincides with
the fall of CLKOUT at this edge.

• At the end of the read setup period, which is exactly 1 SMC_NORCLK signal wide, the SMC_NORDV signal
de-asserts, and a read access starts with NOR_OE being asserted.

• Flash de-asserts the SMC_NORWT signal after 2 SMC_NORCLK cycles after NOR_OE is asserted, because
Xlatency has been fixed at 3. (Here, the SMC_NORWT signal is programmed to active low in flash)

• The read access period ends after 5 CLKOUT cycles, after which the SMC_NORWT signal is sampled at
every rising edge of SMC_NORCLK.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–21

• After the SMC_NORWT signal has been sampled high, read data words are latched on subsequent rising
edges of SMC_NORCLK, and the read access is extended for 10 CLKOUT cycles, after which the SMC deas-
serts NOR_OE, terminating the 4 word burst.

• At the end of the hold period, NOR_CE de-asserts, and transition cycles begin.

• SMC_NORCLK toggle stops with the end of the read access. The last rising edge of SMC_NORCLK occurs
before NOR_OE rises.

Asynchronous FIFO Reads and Writes

The following figure shows read bus cycles for an asynchronous FIFO device. The SMC bank has been
programmed in asynchronous SRAM mode, with SMC_B0CTL.SELCTRL =01 (SMC_AMSnis OR-ed with
SMC_ARE).

Figure 9-12: Asynchronous FIFO Read Bus Cycles

Other settings are:

• read setup time=1 cycle

• read access time=3 cycles

• read hold time=1 cycle

• idle transition time=0 cycles

• turnaround transition time=2 cycles

The SMC_AMSnsignal is connected to the read enable (RE) of the FIFO device, and the data bus is connected
to the output data bus (DQ) of the FIFO. The SMC_AMSnsignal or the FIFO read strobe asserts only for the
duration of the read access. Read data is latched at the falling edge of CLKOUT at the end of the read access,
when SMC_AMSnis deasserted.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMING MODEL

9–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The following figure illustrates write bus cycles for an asynchronous FIFO device. The SMC bank has been
programmed in asynchronous SRAM mode, with SMC_B0CTL.SELCTRL = 10 (SMC_AMSnis OR-ed with
SMC_AWE). Other settings are:

• write setup time=1 cycle

• write access time=3 cycles

• write hold time=1 cycle

• idle transition time=0

• turnaround transition time=2 cycles

The SMC_AMSnsignal is connected to the write enable (WE) of the FIFO device, and data bus is connected to
the input data bus (DIN) of the FIFO. The SMC_AMSnsignal or the FIFO write strobe asserts only for the
duration of the write access. However, write data is asserted at the start of the setup cycle and is taken off
at the end of the hold period for each individual write access.

Figure 9-13: Asynchronous FIFO Write Bus Cycles

SMC Programming Model
Following are general guidelines for configuring and enabling the SMC interface. Failure to follow these
guidelines can lead to erroneous behavior.

• In asynchronous page mode, the SMC_B0CTL.RDYEN bit should always be 0.

• The ARDY abort counter should be enabled (the SMC_B0CTL.RDYABTEN bit =1) whenever the SMC_
ARDY signal is enabled (the SMC_B0CTL.RDYEN is set to 1). Doing so ensures that the interface does not
hang due to erroneous SMC_ARDY signal behavior or erroneous sampling of the SMC_ARDY signal.

• Read access time (SMC_B0TIM.RAT), write access time (SMC_B0TIM.WAT), read setup time (SMC_B0TIM.
RST), and write setup time (SMC_B0TIM.WST) should not be programmed to zero.

• Page mode wait states (SMC_B0ETIM.PGWS) should never be programmed to 0 or 1.

• Program the burst type (SMC_B0CTL.BTYPE) and the page size bits (SMC_B0CTL.PGSZ) to match the
configurations of the flash device that is being connected to the SMC interface.

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–23

• The SMC_B0CTL.RDYPOL bit should be selected to be the complement of the WAIT polarity that is config-
ured in the flash device.

• In asynchronous SRAM and asynchronous flash modes with SMC_ARDY enabled and where SMC_
B0TIM.RHT, SMC_B0TIM.WHT, SMC_B0TIM.RAT, SMC_B0TIM.WAT are the read and write hold and access
times and SMC_B0ETIM.IT and SMC_B0ETIM.TT are the idle and transition times ensure that:

– SMC_B0TIM.RHT + SMC_B0ETIM.IT + SMC_B0ETIM.TT>= 2

– SMC_B0TIM.WHT + SMC_B0ETIM.IT + SMC_B0ETIM.TT>= 2

– SMC_B0TIM.RAT>= 5

– SMC_B0TIM.WAT>= 5

In synchronous burst mode, program:

• SMC_B0TIM.RST = m × (BCLKDIV + 1); where BCLKDIV is the value programmed in the SMC_B0CTL.
BCLK bit field, and m = 1, 2, 3, ...

• SMC_B0ETIM.PREAT = n × (BCLKDIV + 1); where BCLKDIV is the value programmed in the SMC_
B0CTL.BCLK bit field, and n = 0, 1, 2, …

• SMC_B0TIM.RAT = XLAT × (BCLKDIV + 1) + 1 – SMC_B0ETIM.PREAT – SMC_B0TIM.RST; where XLAT
is the X latency value programmed in the synchronous burst flash device.

• SMC_B0TIM.RHT = BCLKDIV

Also in synchronous burst mode ensure that:

• SMC_B0ETIM.IT + SMC_B0ETIM.TT>= 2

• SMC_B0CTL.RDYEN should always be 1

ADSP-BF60x SMC Register Descriptions
Static Memory Controller (SMC) contains the following registers.

Table 9-2: ADSP-BF60x SMC Register List

Name Description

SMC_GCTL Grant Control Register

SMC_GSTAT Grant Status Register

SMC_B0CTL Bank 0 Control Register

SMC_B0TIM Bank 0 Timing Register

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Grant Control Register

The SMC_GCTL register controls SMC's bus request operation.

Figure 9-14: SMC_GCTL Register Diagram

SMC_B0ETIM Bank 0 Extended Timing Register

SMC_B1CTL Bank 1 Control Register

SMC_B1TIM Bank 1 Timing Register

SMC_B1ETIM Bank 1 Extended Timing Register

SMC_B2CTL Bank 2 Control Register

SMC_B2TIM Bank 2 Timing Register

SMC_B2ETIM Bank 2 Extended Timing Register

SMC_B3CTL Bank 3 Control Register

SMC_B3TIM Bank 3 Timing Register

SMC_B3ETIM Bank 3 Extended Timing Register

Table 9-2: ADSP-BF60x SMC Register List (Continued)

Name Description

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–25

Grant Status Register

The SMC_GSTAT register indicates the status of the SMC_BG, SMC_BR, and SMC_BGH pins.

Figure 9-15: SMC_GSTAT Register Diagram

Table 9-3: SMC_GCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

BGDIS Bus Grant Disable.
The SMC_GCTL.BGDIS bit disables the SMCs bus request feature,
disabling operation of the SMC_BG, SMC_BR, and SMC_BGH pins.
0 Enable
1 Disable

Table 9-4: SMC_GSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

2
(R/NW)

BGHSTAT Bus Grant Hold Status.
The SMC_GSTAT.BGHSTAT bit indicates the SMC_BGH pin status. This
pin is active when a memory transaction is pending (held) while the
bus is granted for another transaction.
0 Inactive BGH
1 Active BGH (transaction pending)

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bank 0 Control Register

The SMC_B0CTL register enables bank 0 accesses and configures the memory access features for this bank.

Figure 9-16: SMC_B0CTL Register Diagram

1
(R/NW)

BRQSTAT Bus Request Status.
The SMC_GSTAT.BRQSTAT bit indicates the SMC_BR pin status. This
pin is active when the bus is requested for a transaction.
0 Inactive BR
1 Active BR (bus requested)

0
(R/NW)

BGSTAT Bus Grant Status.
The SMC_GSTAT.BGSTAT bit indicates the SMC_BG pin status. This pin
is active when bus is granted for a transaction.
0 Inactive BG
1 Active BG (bus granted)

Table 9-4: SMC_GSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–27

Table 9-5: SMC_B0CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

26
(R/W)

BTYPE Burst Type for Flash.
The SMC_B0CTL.BTYPE bit selects the burst type that the SMC uses
for accesses using sync burst flash protocol.
0 Wrap
1 Sequential

25:24
(R/W)

BCLK Burst Clock Frequency Divisor.
The SMC_B0CTL.BCLK bits select the divisor that the SMC uses to
determine the clock frequency for accesses using sync burst flash
protocol.
0 Burst clock = SCLK ÷ 1
1 Burst clock = SCLK ÷ 2
2 Burst clock = SCLK ÷ 3
3 Burst clock = SCLK ÷ 4

21:20
(R/W)

PGSZ Flash Page Size.
The SMC_B0CTL.PGSZ bits select the flash page size, if page flash or
sync burst flash protocol has been enabled (SMC_B0CTL.MODE> 1).
Note that the SMC_B0CTL.PGSZ bits must be set to match the flash
protocol of the external flash memory device in the system. The
typical SMC_B0CTL.PGSZ selection for external devices supporting
async flash or async flash page protocols is 4 or 8 words. The typical
SMC_B0CTL.PGSZ selection for external devices supporting sync burst
flash protocol is 16 words.
0 4 words
1 8 words
2 16 words
3 16 words

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

14
(R/W)

RDYABTEN ARDY Abort Enable.
The SMC_B0CTL.RDYABTEN bit enables the abort counter for the SMC_
ARDY pin, if enabled (SMC_B0CTL.RDYEN =1). After SMC_B0TIM.RAT
or SMC_B0TIM.WAT cycles, the SMC starts sampling the SMC_ARDY pin
and starts the abort down counter (if enabled). The abort count is 64
cycles of SCLK. If the SMC detects that SMC_ARDY remains de-
asserted when the counter expires, the SMC aborts the access and
returns an error response back on the system bus.
0 Disable abort counter
1 Enable abort counter

13
(R/W)

RDYPOL ARDY Polarity.
The SMC_B0CTL.RDYPOL bit selects the polarity (active high or low)
for the SMC_ARDY pin, if enabled (SMC_B0CTL.RDYEN =1). When the
SMC samples the SMC_ARDY pin in the selective active state, the
transaction completes.
0 Low active ARDY
1 High active ARDY

12
(R/W)

RDYEN ARDY Enable.
The SMC_B0CTL.RDYEN bit enables SMC_ARDY pin operation for bank
0 accesses. When enabled, the SMC uses SMC_ARDY (after the access
time countdown) to determine completion of access to this memory
bank. When disabled, the SMC ignores SMC_ARDY for accesses to this
memory bank.
0 Disable ARDY
1 Enable ARDY

9:8
(R/W)

SELCTRL Select Control.
The SMC_B0CTL.SELCTRL bits select the handling of the SMC_AMSn,
SMC_ARE, SMC_AOE, and SMC_AWE pins for memory access control.
0 AMS0 only
1 AMS0 ored with ARE
2 AMS0 ored with AOE
3 AMS0 ored with AWE

Table 9-5: SMC_B0CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–29

Bank 0 Timing Register

The SMC_B0TIM register configures bank 0 read and write access, setup, and hold timing for this bank. Note
that read and write timing configurations are independent and may differ.

Figure 9-17: SMC_B0TIM Register Diagram

5:4
(R/W)

MODE Memory Access Mode.
The SMC_B0CTL.MODE bits select the protocol the SMC uses for static
memory read/write access. Note that the write protocol for async
flash, async flash page, and sync burst flash are all similar; only the
read protocols differ for these modes.
0 Async SRAM protocol
1 Async flash protocol
2 Async flash page protocol
3 Sync burst flash protocol

0
(R/W)

EN Bank 0 Enable.
The SMC_B0CTL.EN bit enables accesses to the memory in bank 0.
When this bit is disabled, accesses to bank 0 return an error response.
0 Disable access
1 Enable access

Table 9-5: SMC_B0CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 9-6: SMC_B0TIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:24
(R/W)

RAT Read Access Time.
The SMC_B0TIM.RAT bits select the access time (in SCLK cycles) that
the SMC asserts the SMC_ARE pin for a read access. The access time is
from 1 to 63 SCLK cycles.
0 Not supported
1 1 SCLK clock cycle
63 63 SCLK clock cycles

22:20
(R/W)

RHT Read Hold Time.
The SMC_B0TIM.RHT bits select the hold time (in SCLK cycles) that
the SMC waits after de-asserting the SMC_ARE pin before asserting the
SMC_AOE pin for the next access. The hold time is from 0 to 7 SCLK
cycles.
0 0 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

18:16
(R/W)

RST Read Setup Time.
The SMC_B0TIM.RST bits select the setup time (in SCLK cycles) that
the SMC asserts the SMC_AOE pin before asserting the SMC_ARE pin
for an access. The setup time is from 1 to 8 SCLK cycles.
0 8 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

13:8
(R/W)

WAT Write Access Time.
The SMC_B0TIM.WAT bits select the access time (in SCLK cycles) that
the SMC asserts the SMC_AWE pin for a write access. The access time is
from 1 to 63 SCLK cycles.
0 Not supported
1 1 SCLK clock cycle
63 63 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–31

Bank 0 Extended Timing Register

The SMC_B0ETIM register configures extensions to access times and idle times, augmenting the setup, hold,
and access times configured with the SMC_B0TIM register.

Figure 9-18: SMC_B0ETIM Register Diagram

6:4
(R/W)

WHT Write Hold Time.
The SMC_B0TIM.WHT bits select the hold time (in SCLK cycles) that
the SMC waits after de-asserting the SMC_AWE pin before de-asserting
the SMC_AOE pin for the current access. The hold time is from 0 to 7
SCLK cycles.
0 0 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

2:0
(R/W)

WST Write Setup Time.
The SMC_B0TIM.WST bits select the setup time (in SCLK cycles) that
the SMC asserts the SMC_AOE pin before asserting the SMC_AWE pin
for a write access. The setup time is from 1 to 8 SCLK cycles.
0 8 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

Table 9-6: SMC_B0TIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 9-7: SMC_B0ETIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

PGWS Page Wait States.
The SMC_B0ETIM.PGWS bits select a page access extension time (in
SCLK cycles) that the SMC waits during read accesses when
configured for flash page protocol (SMC_B0CTL.MODE =2). The wait
time is from 1 to 15 SCLK cycles.
0 Not supported
1 1 SCLK clock cycles
15 15 SCLK clock cycles

14:12
(R/W)

IT Idle Time.
The SMC_B0ETIM.IT bits select a bus idle time (in SCLK cycles) that
the SMC waits between de-asserting the SMC_AMSn pin and asserting
the SMC_AMSn pin for the next access. Note that the SMC_B0ETIM.IT
period may be extended using the SMC_B0ETIM.TT selection. The idle
time is from 0 to 7 SCLK cycles.
0 0 SCLK clock cycles
7 7 SCLK clock cycles

10:8
(R/W)

TT Transition Time.
The SMC_B0ETIM.TT bits select a bus idle time (in SCLK cycles) that
the SMC extends the SMC_B0ETIM.IT to allow for the subsequent
access either using a different transfer direction or accessing a
different bank. The transition time is from 1 to 7 SCLK cycles.
0 No bank transition
1 1 SCLK clock cycle
7 7 SCLK clock cycles

5:4
(R/W)

PREAT Pre Access Time.
The SMC_B0ETIM.PREAT bits select the pre-access time (in SCLK
cycles) that the SMC waits after de-asserting the SMC_AOE/ADV pin
before asserting the SMC_ARE/SMC_AWE pin for the current access. The
pre-access time is from 0 to 3 SCLK cycles.
0 0 SCLK clock cycles
3 3 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–33

Bank 1 Control Register

The SMC_B1CTL register enables bank 1 accesses and configures the memory access features for this bank.

Figure 9-19: SMC_B1CTL Register Diagram

1:0
(R/W)

PREST Pre Setup Time.
The SMC_B0ETIM.PREST bits select the pre-setup time (in SCLK
cycles) that the SMC asserts the SMC_AMSn pin before asserting the
SMC_AOE/ADV pin for an access. The pre-setup time is from 0 to 3
SCLK cycles.
0 0 SCLK clock cycles
3 3 SCLK clock cycles

Table 9-7: SMC_B0ETIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 9-8: SMC_B1CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

26
(R/W)

BTYPE Burst Type for Flash.
The SMC_B1CTL.BTYPE bit selects the burst type that the SMC uses
for accesses using sync burst flash protocol.
0 Wrap
1 Sequential

25:24
(R/W)

BCLK Burst Clock Frequency Divisor.
The SMC_B1CTL.BCLK bits select the divisor that the SMC uses to
determine the clock frequency for accesses using sync burst flash
protocol.
0 Burst clock = SCLK ÷ 1
1 Burst clock = SCLK ÷ 2
2 Burst clock = SCLK ÷ 3
3 Burst clock = SCLK ÷ 4

21:20
(R/W)

PGSZ Flash Page Size.
The SMC_B1CTL.PGSZ bits select the flash page size, if page flash or
sync burst flash protocol has been enabled (SMC_B1CTL.MODE> 1).
Note that the SMC_B1CTL.PGSZ bits must be set to match the flash
protocol of the external flash memory device in the system. The
typical SMC_B1CTL.PGSZ selection for external devices supporting
async flash or async flash page protocols is 4 or 8 words. The typical
SMC_B1CTL.PGSZ selection for external devices supporting sync burst
flash protocol is 16 words.
0 4 words
1 8 words
2 16 words
3 16 words

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–35

14
(R/W)

RDYABTEN ARDY Abort Enable.
The SMC_B1CTL.RDYABTEN bit enables the abort counter for the SMC_
ARDY pin, if enabled (SMC_B1CTL.RDYEN =1). After SMC_B1TIM.RAT
or SMC_B1TIM.WAT cycles, the SMC starts sampling the SMC_ARDY pin
and starts the abort down counter (if enabled). The abort count is 64
cycles of SCLK. If the SMC detects that SMC_ARDY remains de-
asserted when the counter expires, the SMC aborts the access and
returns an error response back on the system bus.
0 Disable abort counter
1 Enable abort counter

13
(R/W)

RDYPOL ARDY Polarity.
The SMC_B1CTL.RDYPOL bit selects the polarity (active high or low)
for the SMC_ARDY pin, if enabled (SMC_B1CTL.RDYEN =1). When the
SMC samples the SMC_ARDY pin in the selective active state, the
transaction completes.
0 Low active ARDY
1 High active ARDY

12
(R/W)

RDYEN ARDY Enable.
The SMC_B1CTL.RDYEN bit enables SMC_ARDY pin operation for bank
1 accesses. When enabled, the SMC uses SMC_ARDY (after the access
time countdown) to determine completion of access to this memory
bank. When disabled, the SMC ignores SMC_ARDY for accesses to this
memory bank.
0 Disable ARDY
1 Enable ARDY

9:8
(R/W)

SELCTRL Select Control.
The SMC_B1CTL.SELCTRL bits select the handling of the SMC_AMSn,
SMC_ARE, SMC_AOE, and SMC_AWE pins for memory access control.
0 AMS1 only
1 AMS1 ored with ARE
2 AMS1 ored with AOE
3 AMS1 ored with AWE

Table 9-8: SMC_B1CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bank 1 Timing Register

The SMC_B1TIM register configures bank 1 read and write access, setup, and hold timing for this bank. Note
that read and write timing configurations are independent and may differ.

Figure 9-20: SMC_B1TIM Register Diagram

5:4
(R/W)

MODE Memory Access Mode.
The SMC_B1CTL.MODE bits select the protocol the SMC uses for static
memory read/write access. Note that the write protocol for async
flash, async flash page, and sync burst flash are all similar; only the
read protocols differ for these modes.
0 Async SRAM protocol
1 Async flash protocol
2 Async flash page protocol
3 Sync burst flash protocol

0
(R/W)

EN Bank 1 Enable.
The SMC_B1CTL.EN bit enables accesses to the memory in bank 1.
When this bit is disabled, accesses to bank 1 return an error response.
0 Disable access
1 Enable access

Table 9-8: SMC_B1CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–37

Table 9-9: SMC_B1TIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:24
(R/W)

RAT Read Access Time.
The SMC_B1TIM.RAT bits select the access time (in SCLK cycles) that
the SMC asserts the SMC_ARE pin for a read access. The access time is
from 1 to 63 SCLK cycles.
0 Not supported
1 1 SCLK clock cycle
63 63 SCLK clock cycles

22:20
(R/W)

RHT Read Hold Time.
The SMC_B1TIM.RHT bits select the hold time (in SCLK cycles) that
the SMC waits after de-asserting the SMC_ARE pin before asserting the
SMC_AOE pin for the next access. The hold time is from 0 to 7 SCLK
cycles.
0 0 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

18:16
(R/W)

RST Read Setup Time.
The SMC_B1TIM.RST bits select the setup time (in SCLK cycles) that
the SMC asserts the SMC_AOE pin before asserting the SMC_ARE pin
for an access. The setup time is from 1 to 8 SCLK cycles.
0 8 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

13:8
(R/W)

WAT Write Access Time.
The SMC_B1TIM.WAT bits select the access time (in SCLK cycles) that
the SMC asserts the SMC_AWE pin for a write access. The access time is
from 1 to 63 SCLK cycles.
0 Not supported
1 1 SCLK clock cycle
63 63 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bank 1 Extended Timing Register

The SMC_B1ETIM register configures extensions to access times and idle times, augmenting the setup, hold,
and access times configured with the SMC_B1TIM register.

Figure 9-21: SMC_B1ETIM Register Diagram

6:4
(R/W)

WHT Write Hold Time.
The SMC_B1TIM.WHT bits select the hold time (in SCLK cycles) that
the SMC waits after de-asserting the SMC_AWE pin before de-asserting
the SMC_AOE pin for the current access. The hold time is from 0 to 7
SCLK cycles.
0 0 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

2:0
(R/W)

WST Write Setup Time.
The SMC_B1TIM.WST bits select the setup time (in SCLK cycles) that
the SMC asserts the SMC_AOE pin before asserting the SMC_AWE pin
for a write access. The setup time is from 1 to 8 SCLK cycles.
0 8 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

Table 9-9: SMC_B1TIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–39

Table 9-10: SMC_B1ETIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

PGWS Page Wait States.
The SMC_B1ETIM.PGWS bits select a page access extension time (in
SCLK cycles) that the SMC waits during read accesses when
configured for flash page protocol (SMC_B1CTL.MODE =2). The wait
time is from 1 to 15 SCLK cycles.
0 Not supported
1 1 SCLK clock cycles
15 15 SCLK clock cycles

14:12
(R/W)

IT Idle Time.
The SMC_B1ETIM.IT bits select a bus idle time (in SCLK cycles) that
the SMC waits between de-asserting the SMC_AMSn pin and asserting
the SMC_AMSn pin for the next access. Note that the SMC_B1ETIM.IT
period may be extended using the SMC_B1ETIM.TT selection. The idle
time is from 0 to 7 SCLK cycles.
0 0 SCLK clock cycles
7 7 SCLK clock cycles

10:8
(R/W)

TT Transition Time.
The SMC_B1ETIM.TT bits select a bus idle time (in SCLK cycles) that
the SMC extends the SMC_B1ETIM.IT to allow for the subsequent
access either using a different transfer direction or accessing a
different bank. The transition time is from 1 to 7 SCLK cycles.
0 No bank transition
1 1 SCLK clock cycle
7 7 SCLK clock cycles

5:4
(R/W)

PREAT Pre Access Time.
The SMC_B1ETIM.PREAT bits select the pre-access time (in SCLK
cycles) that the SMC waits after de-asserting the SMC_AOE/ADV pin
before asserting the SMC_ARE/SMC_AWE pin for the current access. The
pre-access time is from 0 to 3 SCLK cycles.
0 0 SCLK clock cycles
3 3 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bank 2 Control Register

The SMC_B2CTL register enables bank 2 accesses and configures the memory access features for this bank.

Figure 9-22: SMC_B2CTL Register Diagram

1:0
(R/W)

PREST Pre Setup Time.
The SMC_B1ETIM.PREST bits select the pre-setup time (in SCLK
cycles) that the SMC asserts the SMC_AMSn pin before asserting the
SMC_AOE/ADV pin for an access. The pre-setup time is from 0 to 3
SCLK cycles.
0 0 SCLK clock cycles
3 3 SCLK clock cycles

Table 9-10: SMC_B1ETIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–41

Table 9-11: SMC_B2CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

26
(R/W)

BTYPE Burst Type for Flash.
The SMC_B2CTL.BTYPE bit selects the burst type that the SMC uses
for accesses using sync burst flash protocol.
0 Wrap
1 Sequential

25:24
(R/W)

BCLK Burst Clock Frequency Divisor.
The SMC_B2CTL.BCLK bits select the divisor that the SMC uses to
determine the clock frequency for accesses using sync burst flash
protocol.
0 Burst clock = SCLK ÷ 1
1 Burst clock = SCLK ÷ 2
2 Burst clock = SCLK ÷ 3
3 Burst clock = SCLK ÷ 4

21:20
(R/W)

PGSZ Flash Page Size.
The SMC_B2CTL.PGSZ bits select the flash page size, if page flash or
sync burst flash protocol has been enabled (SMC_B2CTL.MODE> 1).
Note that the SMC_B2CTL.PGSZ bits must be set to match the flash
protocol of the external flash memory device in the system. The
typical SMC_B2CTL.PGSZ selection for external devices supporting
async flash or async flash page protocols is 4 or 8 words. The typical
SMC_B2CTL.PGSZ selection for external devices supporting sync burst
flash protocol is 16 words.
0 4 words
1 8 words
2 16 words
3 16 words

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

14
(R/W)

RDYABTEN ARDY Abort Enable.
The SMC_B2CTL.RDYABTEN bit enables the abort counter for the SMC_
ARDY pin, if enabled (SMC_B2CTL.RDYEN =1). After SMC_B2TIM.RAT
or SMC_B2TIM.WAT cycles, the SMC starts sampling the SMC_ARDY pin
and starts the abort down counter (if enabled). The abort count is 64
cycles of SCLK. If the SMC detects that SMC_ARDY remains de-
asserted when the counter expires, the SMC aborts the access and
returns an error response back on the system bus.
0 Disable abort counter
1 Enable abort counter

13
(R/W)

RDYPOL ARDY Polarity.
The SMC_B2CTL.RDYPOL bit selects the polarity (active high or low)
for the SMC_ARDY pin, if enabled (SMC_B2CTL.RDYEN =1). When the
SMC samples the SMC_ARDY pin in the selective active state, the
transaction completes.
0 Low active ARDY
1 High active ARDY

12
(R/W)

RDYEN ARDY Enable.
The SMC_B2CTL.RDYEN bit enables SMC_ARDY pin operation for bank
2 accesses. When enabled, the SMC uses SMC_ARDY (after the access
time countdown) to determine completion of access to this memory
bank. When disabled, the SMC ignores SMC_ARDY for accesses to this
memory bank.
0 Disable ARDY
1 Enable ARDY

9:8
(R/W)

SELCTRL Select Control.
The SMC_B2CTL.SELCTRL bits select the handling of the SMC_AMSn,
SMC_ARE, SMC_AOE, and SMC_AWE pins for memory access control.
0 AMS2 only
1 AMS2 ored with ARE
2 AMS2 ored with AOE
3 AMS2 ored with AWE

Table 9-11: SMC_B2CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–43

Bank 2 Timing Register

The SMC_B2TIM register configures bank 2 read and write access, setup, and hold timing for this bank. Note
that read and write timing configurations are independent and may differ.

Figure 9-23: SMC_B2TIM Register Diagram

5:4
(R/W)

MODE Memory Access Mode.
The SMC_B2CTL.MODE bits select the protocol the SMC uses for static
memory read/write access. Note that the write protocol for async
flash, async flash page, and sync burst flash are all similar; only the
read protocols differ for these modes.
0 Async SRAM protocol
1 Async flash protocol
2 Async flash page protocol
3 Sync burst flash protocol

0
(R/W)

EN Bank 2 Enable.
The SMC_B2CTL.EN bit enables accesses to the memory in bank 2.
When this bit is disabled, accesses to bank 2 return an error response.
0 Disable access
1 Enable access

Table 9-11: SMC_B2CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 9-12: SMC_B2TIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:24
(R/W)

RAT Read Access Time.
The SMC_B2TIM.RAT bits select the access time (in SCLK cycles) that
the SMC asserts the SMC_ARE pin for a read access. The access time is
from 1 to 63 SCLK cycles.
0 Not supported
1 1 SCLK clock cycle
63 63 SCLK clock cycles

22:20
(R/W)

RHT Read Hold Time.
The SMC_B2TIM.RHT bits select the hold time (in SCLK cycles) that
the SMC waits after de-asserting the SMC_ARE pin before asserting the
SMC_AOE pin for the next access. The hold time is from 0 to 7 SCLK
cycles.
0 0 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

18:16
(R/W)

RST Read Setup Time.
The SMC_B2TIM.RST bits select the setup time (in SCLK cycles) that
the SMC asserts the SMC_AOE pin before asserting the SMC_ARE pin
for an access. The setup time is from 1 to 8 SCLK cycles.
0 8 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

13:8
(R/W)

WAT Write Access Time.
The SMC_B2TIM.WAT bits select the access time (in SCLK cycles) that
the SMC asserts the SMC_AWE pin for a write access. The access time is
from 1 to 63 SCLK cycles.
0 Not supported
1 1 SCLK clock cycle
63 63 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–45

Bank 2 Extended Timing Register

The SMC_B2ETIM register configures extensions to access times and idle times, augmenting the setup, hold,
and access times configured with the SMC_B2TIM register.

Figure 9-24: SMC_B2ETIM Register Diagram

6:4
(R/W)

WHT Write Hold Time.
The SMC_B2TIM.WHT bits select the hold time (in SCLK cycles) that
the SMC waits after de-asserting the SMC_AWE pin before de-asserting
the SMC_AOE pin for the current access. The hold time is from 0 to 7
SCLK cycles.
0 0 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

2:0
(R/W)

WST Write Setup Time.
The SMC_B2TIM.WST bits select the setup time (in SCLK cycles) that
the SMC asserts the SMC_AOE pin before asserting the SMC_AWE pin
for a write access. The setup time is from 1 to 8 SCLK cycles.
0 8 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

Table 9-12: SMC_B2TIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 9-13: SMC_B2ETIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

PGWS Page Wait States.
The SMC_B2ETIM.PGWS bits select a page access extension time (in
SCLK cycles) that the SMC waits during read accesses when
configured for flash page protocol (SMC_B2CTL.MODE =2). The wait
time is from 1 to 15 SCLK cycles.
0 Not supported
1 1 SCLK clock cycles
15 15 SCLK clock cycles

14:12
(R/W)

IT Idle Time.
The SMC_B2ETIM.IT bits select a bus idle time (in SCLK cycles) that
the SMC waits between de-asserting the SMC_AMSn pin and asserting
the SMC_AMSn pin for the next access. Note that the SMC_B2ETIM.IT
period may be extended using the SMC_B2ETIM.TT selection. The idle
time is from 0 to 7 SCLK cycles.
0 0 SCLK clock cycles
7 7 SCLK clock cycles

10:8
(R/W)

TT Transition Time.
The SMC_B2ETIM.TT bits select a bus idle time (in SCLK cycles) that
the SMC extends the SMC_B2ETIM.IT to allow for the subsequent
access either using a different transfer direction or accessing a
different bank. The transition time is from 1 to 7 SCLK cycles.
0 No bank transition
1 1 SCLK clock cycle
7 7 SCLK clock cycles

5:4
(R/W)

PREAT Pre Access Time.
The SMC_B2ETIM.PREAT bits select the pre-access time (in SCLK
cycles) that the SMC waits after de-asserting the SMC_AOE/ADV pin
before asserting the SMC_ARE/SMC_AWE pin for the current access. The
pre-access time is from 0 to 3 SCLK cycles.
0 0 SCLK clock cycles
3 3 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–47

Bank 3 Control Register

The SMC_B3CTL register enables bank 3 accesses and configures the memory access features for this bank.

Figure 9-25: SMC_B3CTL Register Diagram

1:0
(R/W)

PREST Pre Setup Time.
The SMC_B2ETIM.PREST bits select the pre-setup time (in SCLK
cycles) that the SMC asserts the SMC_AMSn pin before asserting the
SMC_AOE/ADV pin for an access. The pre-setup time is from 0 to 3
SCLK cycles.
0 0 SCLK clock cycles
3 3 SCLK clock cycles

Table 9-13: SMC_B2ETIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 9-14: SMC_B3CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

26
(R/W)

BTYPE Burst Type for Flash.
The SMC_B3CTL.BTYPE bit selects the burst type that the SMC uses
for accesses using sync burst flash protocol.
0 Wrap
1 Sequential

25:24
(R/W)

BCLK Burst Clock Frequency Divisor.
The SMC_B3CTL.BCLK bits select the divisor that the SMC uses to
determine the clock frequency for accesses using sync burst flash
protocol.
0 Burst clock = SCLK ÷ 1
1 Burst clock = SCLK ÷ 2
2 Burst clock = SCLK ÷ 3
3 Burst clock = SCLK ÷ 4

21:20
(R/W)

PGSZ Flash Page Size.
The SMC_B3CTL.PGSZ bits select the flash page size, if page flash or
sync burst flash protocol has been enabled (SMC_B3CTL.MODE> 1).
Note that the SMC_B3CTL.PGSZ bits must be set to match the flash
protocol of the external flash memory device in the system. The
typical SMC_B3CTL.PGSZ selection for external devices supporting
async flash or async flash page protocols is 4 or 8 words. The typical
SMC_B3CTL.PGSZ selection for external devices supporting sync burst
flash protocol is 16 words.
0 4 words
1 8 words
2 16 words
3 16 words

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–49

14
(R/W)

RDYABTEN ARDY Abort Enable.
The SMC_B3CTL.RDYABTEN bit enables the abort counter for the SMC_
ARDY pin, if enabled (SMC_B3CTL.RDYEN =1). After SMC_B3TIM.RAT
or SMC_B3TIM.WAT cycles, the SMC starts sampling the SMC_ARDY pin
and starts the abort down counter (if enabled). The abort count is 64
cycles of SCLK. If the SMC detects that SMC_ARDY remains de-
asserted when the counter expires, the SMC aborts the access and
returns an error response back on the system bus.
0 Disable abort counter
1 Enable abort counter

13
(R/W)

RDYPOL ARDY Polarity.
The SMC_B3CTL.RDYPOL bit selects the polarity (active high or low)
for the SMC_ARDY pin, if enabled (SMC_B3CTL.RDYEN =1). When the
SMC samples the SMC_ARDY pin in the selective active state, the
transaction completes.
0 Low active ARDY
1 High active ARDY

12
(R/W)

RDYEN ARDY Enable.
The SMC_B3CTL.RDYEN bit enables SMC_ARDY pin operation for bank
3 accesses. When enabled, the SMC uses SMC_ARDY (after the access
time countdown) to determine completion of access to this memory
bank. When disabled, the SMC ignores SMC_ARDY for accesses to this
memory bank.
0 Disable ARDY
1 Enable ARDY

9:8
(R/W)

SELCTRL Select Control.
The SMC_B3CTL.SELCTRL bits select the handling of the SMC_AMSn,
SMC_ARE, SMC_AOE, and SMC_AWE pins for memory access control.
0 AMS3 only
1 AMS3 ored with ARE
2 AMS3 ored with AOE
3 AMS3 ored with AWE

Table 9-14: SMC_B3CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bank 3 Timing Register

The SMC_B3TIM register configures bank 3 read and write access, setup, and hold timing for this bank. Note
that read and write timing configurations are independent and may differ.

Figure 9-26: SMC_B3TIM Register Diagram

5:4
(R/W)

MODE Memory Access Mode.
The SMC_B3CTL.MODE bits select the protocol the SMC uses for static
memory read/write access. Note that the write protocol for async
flash, async flash page, and sync burst flash are all similar; only the
read protocols differ for these modes.
0 Async SRAM protocol
1 Async flash protocol
2 Async flash page protocol
3 Sync burst flash protocol

0
(R/W)

EN Bank 3 Enable.
The SMC_B3CTL.EN bit enables accesses to the memory in bank 3.
When this bit is disabled, accesses to bank 3 return an error response.
0 Disable access
1 Enable access

Table 9-14: SMC_B3CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–51

Table 9-15: SMC_B3TIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:24
(R/W)

RAT Read Access Time.
The SMC_B3TIM.RAT bits select the access time (in SCLK cycles) that
the SMC asserts the SMC_ARE pin for a read access. The access time is
from 1 to 63 SCLK cycles.
0 Not supported
1 1 SCLK clock cycle
63 63 SCLK clock cycles

22:20
(R/W)

RHT Read Hold Time.
The SMC_B3TIM.RHT bits select the hold time (in SCLK cycles) that
the SMC waits after de-asserting the SMC_ARE pin before asserting the
SMC_AOE pin for the next access. The hold time is from 0 to 7 SCLK
cycles.
0 0 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

18:16
(R/W)

RST Read Setup Time.
The SMC_B3TIM.RST bits select the setup time (in SCLK cycles) that
the SMC asserts the SMC_AOE pin before asserting the SMC_ARE pin
for an access. The setup time is from 1 to 8 SCLK cycles.
0 8 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

13:8
(R/W)

WAT Write Access Time.
The SMC_B3TIM.WAT bits select the access time (in SCLK cycles) that
the SMC asserts the SMC_AWE pin for a write access. The access time is
from 1 to 63 SCLK cycles.
0 Not supported
1 1 SCLK clock cycle
63 63 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bank 3 Extended Timing Register

The SMC_B3ETIM register configures extensions to access times and idle times, augmenting the setup, hold,
and access times configured with the SMC_B3TIM register.

Figure 9-27: SMC_B3ETIM Register Diagram

6:4
(R/W)

WHT Write Hold Time.
The SMC_B3TIM.WHT bits select the hold time (in SCLK cycles) that
the SMC waits after de-asserting the SMC_AWE pin before de-asserting
the SMC_AOE pin for the current access. The hold time is from 0 to 7
SCLK cycles.
0 0 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

2:0
(R/W)

WST Write Setup Time.
The SMC_B3TIM.WST bits select the setup time (in SCLK cycles) that
the SMC asserts the SMC_AOE pin before asserting the SMC_AWE pin
for a write access. The setup time is from 1 to 8 SCLK cycles.
0 8 SCLK clock cycles
1 1 SCLK clock cycle
7 7 SCLK clock cycles

Table 9-15: SMC_B3TIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 9–53

Table 9-16: SMC_B3ETIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

PGWS Page Wait States.
The SMC_B3ETIM.PGWS bits select a page access extension time (in
SCLK cycles) that the SMC waits during read accesses when
configured for flash page protocol (SMC_B3CTL.MODE =2). The wait
time is from 1 to 15 SCLK cycles.
0 Not supported
1 1 SCLK clock cycles
15 15 SCLK clock cycles

14:12
(R/W)

IT Idle Time.
The SMC_B3ETIM.IT bits select a bus idle time (in SCLK cycles) that
the SMC waits between de-asserting the SMC_AMSn pin and asserting
the SMC_AMSn pin for the next access. Note that the SMC_B3ETIM.IT
period may be extended using the SMC_B3ETIM.TT selection. The idle
time is from 0 to 7 SCLK cycles.
0 0 SCLK clock cycles
7 7 SCLK clock cycles

10:8
(R/W)

TT Transition Time.
The SMC_B3ETIM.TT bits select a bus idle time (in SCLK cycles) that
the SMC extends the SMC_B3ETIM.IT to allow for the subsequent
access either using a different transfer direction or accessing a
different bank. The transition time is from 1 to 7 SCLK cycles.
0 No bank transition
1 1 SCLK clock cycle
7 7 SCLK clock cycles

5:4
(R/W)

PREAT Pre Access Time.
The SMC_B3ETIM.PREAT bits select the pre-access time (in SCLK
cycles) that the SMC waits after de-asserting the SMC_AOE/ADV pin
before asserting the SMC_ARE/SMC_AWE pin for the current access. The
pre-access time is from 0 to 3 SCLK cycles.
0 0 SCLK clock cycles
3 3 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-BF60X SMC REGISTER DESCRIPTIONS

9–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

1:0
(R/W)

PREST Pre Setup Time.
The SMC_B3ETIM.PREST bits select the pre-setup time (in SCLK
cycles) that the SMC asserts the SMC_AMSn pin before asserting the
SMC_AOE/ADV pin for an access. The pre-setup time is from 0 to 3
SCLK cycles.
0 0 SCLK clock cycles
3 3 SCLK clock cycles

Table 9-16: SMC_B3ETIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–1

10 L2 Memory Controller (L2CTL)

The L2 memory controller manages L2 SRAM and ROM memories and provides the interface between
these memories and the system crossbar. The L2 memory is shared resource. For example, on multi-core
processors, L2 can be accessed by both processor cores, by DMA controllers, and the system debug unit
(SDU).

L2 memories have significant bandwidth for core accesses, but it is important to note that L2 responds
slower to core accesses than L1 memories. L2 SRAM is the ideal storage for multiple processor cores to
share data and instruction resources, such as semaphores, shared buffers, and code libraries. Due to
sophisticated data integrity protection and write protection, L2 SRAM is also ideal for data and instruc-
tions critical for safe operation of the application.

L2 Memory Controller Features
The L2 memory features include:

• Operation at SYSCLK frequency

• Write protection of SRAM banks

• ECC protection of SRAM area

• ECC memory refresh

• 256K byte of SRAM grouped into eight banks, 32K bytes each

• 32K byte of ROM featuring the boot code

• Full-duplex 64-bit port dedicated to data transfers to/from the one or more processor cores

• Full-duplex 32-bit port dedicated to DMA transfers and system debug

• Support for locked TESTSET operation for semaphore handling

L2 Memory Controller Functional Description
All L2 SRAM and ROM memory banks are managed by the L2 memory controller (L2CTL). The controller
interfaces the memories to the system, arbitrates competing accesses and write protection, and ensures
SRAM data integrity. The L2 memory domain is a unified instruction and data memory and can hold any
mixture of code and data required by the system design.

The table shows the L2 memory map for the ADSP-BF60x processor.

L2 MEMORY CONTROLLER (L2CTL)
L2 MEMORY CONTROLLER FUNCTIONAL DESCRIPTION

10–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The following sections provide a functional description of the L2CTL:

• ADSP-BF60x L2CTL Register List

• ADSP-BF60x L2CTL Interrupt List

• L2 Memory Controller Block Diagram

• L2 Memory Controller Architectural Concepts

ADSP-BF60x L2CTL Register List

The internal L2 memory controller (L2CTL) includes the controls to manage each L2 memory bank inde-
pendently. This controller supports ECC and non-ECC operation with support for error tracking (by
address or bus ID) and support for error type determination. A set of registers govern L2CTL operations.
For more information on L2CTL functionality, see the L2CTL register descriptions.

Table 10-1: ADSP-BF60x Processor - L2 Memory Address Mapping

Start Address End Address Description

0xC8000000 0xC8007FFF L2 Bank 0 ROM (32KB)
0xC8080000 0xC8087FFF L2 Bank 0 RAM (32KB)
0xC8088000 0xC808FFFF L2 Bank 1 RAM (32KB)
0xC8090000 0xC8097FFF L2 Bank 2 RAM (32KB)
0xC8098000 0xC809FFFF L2 Bank 3 RAM (32KB)
0xC80A0000 0xC80A7FFF L2 Bank 4 RAM (32KB)
0xC80A8000 0xC80AFFFF L2 Bank 5 RAM (32KB)
0xC80B0000 0xC80B7FFF L2 Bank 6 RAM (32KB)
0xC80B8000 0xC80BFFFF L2 Bank 7 RAM (32KB)

Table 10-2: ADSP-BF60x L2CTL Register List

Name Description

L2CTL_CTL Control Register

L2CTL_ACTL_C0 Access Control Core 0 Register

L2CTL_ACTL_C1 Access Control Core 1 Register

L2CTL_ACTL_SYS Access Control System Register

L2 MEMORY CONTROLLER (L2CTL)
L2 MEMORY CONTROLLER FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–3

ADSP-BF60x L2CTL Interrupt List

L2CTL_STAT Status Register

L2CTL_RPCR Read Priority Count Register

L2CTL_WPCR Write Priority Count Register

L2CTL_RFA Refresh Address Register

L2CTL_ERRADDR0 ECC Error Address 0 Register

L2CTL_ERRADDR1 ECC Error Address 1 Register

L2CTL_ERRADDR2 ECC Error Address 2 Register

L2CTL_ERRADDR3 ECC Error Address 3 Register

L2CTL_ERRADDR4 ECC Error Address 4 Register

L2CTL_ERRADDR5 ECC Error Address 5 Register

L2CTL_ERRADDR6 ECC Error Address 6 Register

L2CTL_ERRADDR7 ECC Error Address 7 Register

L2CTL_ET0 Error Type 0 Register

L2CTL_EADDR0 Error Type 0 Address Register

L2CTL_ET1 Error Type 1 Register

L2CTL_EADDR1 Error Type 1 Address Register

Table 10-3: ADSP-BF60x L2CTL Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

L2CTL0 ECC Error 4 LEVEL

Table 10-2: ADSP-BF60x L2CTL Register List (Continued)

Name Description

L2 MEMORY CONTROLLER (L2CTL)
L2 MEMORY CONTROLLER FUNCTIONAL DESCRIPTION

10–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

L2 Memory Controller Block Diagram

As shown in the following figure, the L2 controller has two ports that interface to system crossbars. Port 0
is a 64-bit interface that is dedicated to core traffic, and port 1 is a 32-bit interface that connects through
DMA access. Each port has a read channel and a write channel.

Figure 10-1: L2 Memory Controller Block Diagram

The SRAM is organized in multiple banks, and each bank has 32K Bytes of data. Within each bank, data is
organized into 4096 words, with each word comprising 64 bits of data and 14 bits of ECC checksum. ROM
memory is not protected by the ECC scheme. When the L2 controller accesses RAM and ROM cells, it
always reads and writes whole 64-bit words. Despite this, the L2 controller supports 8-, 16-, and 32-bit
reads and writes from cores and system by applying respective data masks.

L2 Memory Controller Architectural Concepts

The following sections describe L2 memory controller architecture features.

• Access Ordering

• Read/Write Latency and Throughput

• Arbitration and Priority

L2 MEMORY CONTROLLER (L2CTL)
L2 MEMORY CONTROLLER FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–5

Access Characteristics

The L2 controller interface converts all 8-, 16- and 32-bit accesses to 64-bit accesses. Additionally, 8-, 16-
and 32-bit bursts are converted to an equivalent internal 64-bit access. For example, a 64-bit address-
aligned burst of 8-bit accesses of burst length 8 are converted to a single 64-bit access.

The L2 controller supports restriction of both core and DMA write accesses to a particular memory bank.
The write access by a port to a particular RAM bank can be disabled by setting the appropriate bank write
disable bit in that port’s L2CTL_ACTL_C0 and L2CTL_ACTL_C1 registers. Illegal access attempts generate an
error response.

Read/Write Latency and Throughput

The L2 memory design is optimized for burst accesses at the crossbar interface. Write data of 8/16/32-bit
is buffered and converted to an equivalent 64-bit access. This conversion creates modulo-32-bit writes if
the starting addresses are 32-bit aligned. A single 8- or 16-bit access, or a non-32-bit address-aligned 8-bit
or 16-bit burst access to an ECC-enabled bank creates an additional latency of two L2CLK cycles. No extra
latency is seen if the ECC is disabled.

NOTE: Continuous 8/16-bit core access to an ECC-enabled L2 bank is not recommended from a
throughput perspective.

If two cores simultaneously try to access L2 for the same kind of access (both read or both write), even to
different banks, only one core access is allowed at a time, as there is only one read port and one write port
shared between the cores. However, if one core issues a write and the other issues a read, then access can
proceed simultaneously, and inside L2 there is no extra latency, as long as the accesses are to different
banks (assuming pending DMA traffic is also to a non-conflicting bank).

If a core and DMA both access the same bank, then the best access rate that DMA can achieve is one 64-
bit access in every three L2CLK cycles during the conflict period. This is achieved by programming the read
priority count register (L2CTL_RPCR.RPC0) bit and the write priority count register (L2CTL_WPCR.WPC0)
bit to 0, while programming the L2CTL_RPCR.RPC1 and the L2CTL_WPCR.WPC1 bits to 1.

Arbitration and Priority

Each bank of L2 RAM/ROM has an arbiter which receives requests from the two crossbar ports.

Each arbiter follows a fixed priority scheme for giving grants when more than one channel requests the
same bank. The arbiter also supports priority elevation through urgent priority requests.

The following table shows the priority for fixed priority mode (with urgent priority disabled) for each SCB
channel.

L2 MEMORY CONTROLLER (L2CTL)
L2 MEMORY CONTROLLER FUNCTIONAL DESCRIPTION

10–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The arbiters also support priority elevation for a particular channel that has been starved of grants for a
very large number of L2CLK cycles. If a channel does not get a grant for N cycles after its request, then that
channel can elevate the priority of its request by issuing an urgent priority request. This causes that partic-
ular channel to become the highest priority master for the next grant cycle (this is pipelined arbitration for
urgent priority). The number of cycles N, after which the priority is elevated, can be programmed for each
channel separately using the L2CTL_RPCR and L2CTL_WPCR registers.

If there is an access conflict between the core and DMA to the same memory bank in the fixed priority arbi-
tration scheme, with core activity always prioritized over DMA activity, and with the pipelined implemen-
tation of urgent priority, the best grant rate DMA can achieve is 1 in 3 L2CLK cycles during the conflict
period. This can be achieved by programming the bits in the L2CTL_RPCR and L2CTL_WPCR registers appro-
priately.

Urgent priority requests can be disabled by setting the L2CTL_CTL.DISURP bit. This disables the urgent
priority requests for all port channels. Each channel can also be prevented from raising the urgent priority
request through the priority count register for the specific channel. However, there is no support for
disabling urgent priority for a specific memory bank arbiter.

The following table provides the various priority levels for the L2 controller.

Table 10-4: Fixed Priority

Channel Priority Level

L2 Refresh Request 5 (highest)
Port 0 Read Channel 4
Port 0 Write Channel 3
Port 1 Read Channel 2
Port 1 Write Channel 1 (lowest)

Table 10-5: Fixed Priority With Priority Elevation

Channel Priority Level

L2 Refresh Request 9 (highest)
Port 0 Read Channel Urgent Request 8
Port 0 Write Channel Urgent Request 7
Port 1 Read Channel Urgent Request 6
Port 1 Write Channel Urgent Request 5
Port 0 Read Channel Normal Request 4
Port 0 Write Channel Normal Request 3
Port 1 Read Channel Normal Request 2
Port 1 Write Channel Normal Request 1 (lowest)

L2 MEMORY CONTROLLER (L2CTL)
L2 MEMORY CONTROLLER FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–7

Data Integrity

To ensure data integrity, all L2 SRAM is protected with an error-correcting code (ECC). The ROM is not
protected. Each 32-bit SRAM entity is protected by a 7-bit ECC checksum. If the L2 controller detects a
single bit error at read time, the controller identifies the failing bit and auto-corrects the value outputted
to the system. Also, the L2 controller can detect 2-bit errors safely and can detect a large range of multi-bit
errors. This scheme is often referred to as (39,32) single-error correction, dual-error detection (SECDED)
checksum protection.

ECC Hardware Control

After reset, ECC protection is enabled. The boot code initializes all L2 SRAM data and checksum cells.
ECC protection adds some cycle penalty when L2 memory is written by 8-bit and 16-bit values. ECC
protection can be disabled for individual SRAM banks by setting the L2CTL_CTL.BK0EDIS through
L2CTL_CTL.BK7EDIS disable bits. Due to caching mechanisms of the processor core(s) and data bursting
of the DMA channels, 8- and 16-bit write accesses are rather uncommon, and these writes are typically
triggered only by 2-dimensional DMA operation or un-cached 8- and 16-bit store instructions.

For system integrity testing, the L2 controller also provides a method for accessing the ECC checksum area
directly. The L2CTL_CTL.ECCMAP0 through L2CTL_CTL.ECCMAP7 bits map the ECC checksum values into
the address space of the data bits. This feature can be activated per SRAM bank. In this mode, only 32-bit
accesses are allowed. 32-bit reads return the checksum value in the lower seven bits while the upper bits
read zero. Any 32-bit write overwrites the checksum. The upper bits are ignored.

Using this checksum mapping feature, safety critical applications can verify the ECC hardware during boot
up sequence or even at run time. It is not required to explicitly set the L2CTL_CTL.BK0EDIS through
L2CTL_CTL.BK7EDIS disable bits. To test the ECC hardware, use the following steps:

1. Write data values to L2 SRAM destination (preferable an even number of 32-bit words)

2. If data cache enabled, make sure it flushes data out

3. Execute SSYNC instruction

4. Set L2CTL_CTL.ECCMAP7—L2CTL_CTL.ECCMAP0 bits of interest

5. Execute SSYNC instruction

6. Write checksum values using 32-bit store instructions

7. If data cache enabled, make sure it flushes checksum values out

8. Execute SSYNC instruction

9. Clear L2CTL_CTL.ECCMAP7—L2CTL_CTL.ECCMAP0 bits

10. Execute SSYNC instruction

11. Read data values back

L2 MEMORY CONTROLLER (L2CTL)
L2 MEMORY CONTROLLER FUNCTIONAL DESCRIPTION

10–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ECC Error Management

The L2 controller flags two- and multi-bit errors to the system by:

• Raising the ECC_ERR interrupt,

• Reporting a read error to the system bus,

• Setting the sticky L2CTL_STAT.ECCERR7—L2CTL_STAT.ECCERR0 status flag, and

• Latching the address of the failing operation into the respective L2CTL_ERRADDR7—L2CTL_ERRADDR0
register.

There is one error status bit and one error address register per L2 SRAM bank.

Typically, the user declares ECC_ERR events as system faults in the system event controller (SEC).
Whether or not these are reported, the interrupt service routine can consult L2CTL_STAT register and the
L2CTL_ERRADDR0 through L2CTL_ERRADDR7 registers to determine whether the data at the failing L2
address was critical enough to require an immediate reboot of the system or whether the data at the failing
L2 address was less critical or can be restored. The L2CTL_STAT.ECCERR0 through L2CTL_STAT.ECCERR7
flags need to be cleared with a W1C operation.

Memory Refresh

If data in L2 SRAM contains single-bit errors, the data is corrected on its way to the system buses. The
corrected value is not written back to the SRAM location. To prevent any risk of accumulation of single-
bit errors over time and to minimize likelihood of multi-bit errors, the L2 controller provides a special
memory refresh mechanism.

Software can initiate a memory refresh cycle of a 64-bit SRAM entity by writing the address of interest into
the refresh address register, L2CTL_RFA. The write triggers an atomic operation. In this operation, the L2
controller reads a 64-bit entity from the targeted memory, applies an ECC algorithm to the two 32-bit
words, and writes the corrected data back to memory. In case of dual- or multi-bit errors, the ECC_ERR
interrupt is raised, and data is not written back to memory.

While the atomic refresh operation is ongoing, other accesses to the same SRAM bank are locked out. An
ongoing refresh operation is signaled by the L2CTL_STAT.RFRS status bit. The bit is cleared by hardware
after the operation has finished. The content of the L2CTL_RFA register must not change while the refresh
operation is ongoing.

In safety critical applications, software may refresh all L2 SRAM by periodically writing to the L2CTL_RFA
register with values, incrementing by a value of 8 until all SRAM locations have been refreshed.

Memory refresh operation is meaningless when L2CTL_CTL.BK0EDIS through L2CTL_CTL.BK7EDIS
disable bits are set.

L2 MEMORY CONTROLLER (L2CTL)
L2 MEMORY CONTROLLER EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–9

Access Control

The L2 controller provides write protection, which prevents unauthorized data sources from (over)
writing individual SRAM banks. By default, write protection is disabled, permitting the processor cores,
DMA controller, and system debug unit (SDU) write access to every SRAM bank. Using L2 controller
features, programs may selectively disable write privileges for the processor core(s) and/or the DMA
controller to any number of L2 SRAM banks.

The following bits disable L2 SRAM bank access:

• The L2CTL_ACTL_C0.BK0WDIS - L2CTL_ACTL_C0.BK7WDIS bits disable core 0 write privileges to L2
SRAM banks 0-7.

• The L2CTL_ACTL_C1.BK0WDIS - L2CTL_ACTL_C1.BK7WDIS bits disable core 1write privileges to L2
SRAM banks 0-7.

• The L2CTL_ACTL_SYS.BK0WDIS - L2CTL_ACTL_SYS.BK7WDIS bits disable DMA controller write privi-
leges to L2 SRAM banks 0-7.

When an unauthorized write is detected, the L2 controller generates an error response to the system buses.
At any time, any master may read all SRAM locations, because read privileges are not controlled.

NOTE: Note that the TESTSET instruction (for semaphore handling) requires full write access.

Another level of protection is available with the LOCK bit available in the L2CTL_CTL, L2CTL_ACTL_C0,
L2CTL_ACTL_C1, and L2CTL_ACTL_SYS registers. When this bit is set and global locking is enabled with the
system protection unit (SPU), these control registers become write protected (locked).

By using the combination of the write disable bits for banks and the lock bits for control registers, systems
can ensure that multiple steps are required before any data source can accidentally overwrite protected
data.

L2 Memory Controller Event Control
The following sections describe L2 memory controller event control features, such as error response.

A bus error is signaled under any of the following conditions.

• A write access to ROM address space

• A read/write access to reserved address space

• A write access (including a TESTSET) to a restricted memory bank

• An ECC multi-bit error in an ECC enabled bank. A non-modulo32-bit write to an ECC enabled bank
can also potentially create a bus error response due to an ECC multi-bit error. This is because the L2
controller implements a 32-bit ECC, and therefore a non-modulo32-bit write results in a read. This
read may create multi-bit errors even if the memory was initialized.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bus error notifications are stored in the L2CTL_STAT register, and addresses that generated the error on a
given port are stored in that port’s L2CTL_EADDR0/L2CTL_EADDR1 register. The details of the error are
stored in a port’s L2CTL_ET0/L2CTL_ET1 register.

ADSP-BF60x L2CTL Register Descriptions
L2 Memory Controller (L2CTL) contains the following registers.

Table 10-6: ADSP-BF60x L2CTL Register List

Name Description

L2CTL_CTL Control Register

L2CTL_ACTL_C0 Access Control Core 0 Register

L2CTL_ACTL_C1 Access Control Core 1 Register

L2CTL_ACTL_SYS Access Control System Register

L2CTL_STAT Status Register

L2CTL_RPCR Read Priority Count Register

L2CTL_WPCR Write Priority Count Register

L2CTL_RFA Refresh Address Register

L2CTL_ERRADDR0 ECC Error Address 0 Register

L2CTL_ERRADDR1 ECC Error Address 1 Register

L2CTL_ERRADDR2 ECC Error Address 2 Register

L2CTL_ERRADDR3 ECC Error Address 3 Register

L2CTL_ERRADDR4 ECC Error Address 4 Register

L2CTL_ERRADDR5 ECC Error Address 5 Register

L2CTL_ERRADDR6 ECC Error Address 6 Register

L2CTL_ERRADDR7 ECC Error Address 7 Register

L2CTL_ET0 Error Type 0 Register

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–11

Control Register

The L2CTL_CTL register includes a write protection bit, enables L2 banks, and selects mapping of banks (as
ECC RAM or data RAM).

Figure 10-2: L2CTL_CTL Register Diagram

L2CTL_EADDR0 Error Type 0 Address Register

L2CTL_ET1 Error Type 1 Register

L2CTL_EADDR1 Error Type 1 Address Register

Table 10-6: ADSP-BF60x L2CTL Register List (Continued)

Name Description

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 10-7: L2CTL_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the L2CTL_
CTL.LOCK bit is set, the L2CTL_CTL register is read only (locked).
0 Unlock
1 Lock

16
(R/W)

DISURP Disable Urgent Request Priority.
The L2CTL_CTL.DISURP disables urgent request priority mode for all
L2 banks.
0 Enable URP
1 Disable URP

15
(R/W)

ECCMAP7 ECC Map Bank 7.
The L2CTL_CTL.ECCMAP7 bit selects whether L2 bank 7 addresses
ECC RAM or data RAM.
0 Data RAM
1 ECC RAM

14
(R/W)

ECCMAP6 ECC Map Bank 6.
The L2CTL_CTL.ECCMAP6 bit selects whether L2 bank 6 addresses
ECC RAM or data RAM.
0 Data RAM
1 ECC RAM

13
(R/W)

ECCMAP5 ECC Map Bank 5.
The L2CTL_CTL.ECCMAP5 bit selects whether L2 bank 5 addresses
ECC RAM or data RAM.
0 Data RAM
1 ECC RAM

12
(R/W)

ECCMAP4 ECC Map Bank 4.
The L2CTL_CTL.ECCMAP4 bit selects whether L2 bank 4 addresses
ECC RAM or data RAM.
0 Data RAM
1 ECC RAM

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–13

11
(R/W)

ECCMAP3 ECC Map Bank 3.
The L2CTL_CTL.ECCMAP3 bit selects whether L2 bank 3 addresses
ECC RAM or data RAM.
0 Data RAM
1 ECC RAM

10
(R/W)

ECCMAP2 ECC Map Bank 2.
The L2CTL_CTL.ECCMAP2 bit selects whether L2 bank 2 addresses
ECC RAM or data RAM.
0 Data RAM
1 ECC RAM

9
(R/W)

ECCMAP1 ECC Map Bank 1.
The L2CTL_CTL.ECCMAP1 bit selects whether L2 bank 1 addresses
ECC RAM or data RAM.
0 Data RAM
1 ECC RAM

8
(R/W)

ECCMAP0 ECC Map Bank 0.
The L2CTL_CTL.ECCMAP0 bit selects whether L2 bank 0 addresses
ECC RAM or data RAM.
0 Data RAM
1 ECC RAM

7
(R/W)

BK7EDIS Bank 7 ECC Disable.
The L2CTL_CTL.BK7EDIS bit disables L2 bank 7 ECC operation.
0 Enable ECC
1 Disable ECC

6
(R/W)

BK6EDIS Bank 6 ECC Disable.
The L2CTL_CTL.BK6EDIS bit disables L2 bank 6 ECC operation.
0 Enable ECC
1 Disable ECC

5
(R/W)

BK5EDIS Bank 5 ECC Disable.
The L2CTL_CTL.BK5EDIS bit disables L2 bank 5 ECC operation.
0 Enable ECC
1 Disable ECC

Table 10-7: L2CTL_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Access Control Core 0 Register

The L2CTL_ACTL_C0 register includes a write protection bit and enables core 0 write access for L2 banks.

4
(R/W)

BK4EDIS Bank 4 ECC Disable.
The L2CTL_CTL.BK4EDIS bit disables L2 bank 4 ECC operation.
0 Enable ECC
1 Disable ECC

3
(R/W)

BK3EDIS Bank 3 ECC Disable.
The L2CTL_CTL.BK3EDIS bit disables L2 bank 3 ECC operation.
0 Enable ECC
1 Disable ECC

2
(R/W)

BK2EDIS Bank 2 ECC Disable.
The L2CTL_CTL.BK2EDIS bit disables L2 bank 2 ECC operation.
0 Enable ECC
1 Disable ECC

1
(R/W)

BK1EDIS Bank 1 ECC Disable.
The L2CTL_CTL.BK1EDIS bit disables L2 bank 1 ECC operation.
0 Enable ECC
1 Disable ECC

0
(R/W)

BK0EDIS Bank 0 ECC Disable.
The L2CTL_CTL.BK0EDIS bit disables L2 bank 0 ECC operation.
0 Enable ECC
1 Disable ECC

Table 10-7: L2CTL_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–15

Figure 10-3: L2CTL_ACTL_C0 Register Diagram

Table 10-8: L2CTL_ACTL_C0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the L2CTL_
ACTL_C0.LOCK bit is set, the L2CTL_ACTL_C0 register is read only
(locked).
0 Unlock
1 Lock

7
(R/W)

BK7WDIS Bank 7 Write Disable.
The L2CTL_ACTL_C0.BK7WDIS bit disables core 0 writes to L2 bank 7
RAM.
0 Enable Write
1 Disable Write

6
(R/W)

BK6WDIS Bank 6 Write Disable.
The L2CTL_ACTL_C0.BK6WDIS bit disables core 0 writes to L2 bank 6
RAM.
0 Enable Write
1 Disable Write

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Access Control Core 1 Register

The L2CTL_ACTL_C1 register includes a write protection bit and enables core 1 write access for L2 banks.

5
(R/W)

BK5WDIS Bank 5 Write Disable.
The L2CTL_ACTL_C0.BK5WDIS bit disables core 0 writes to L2 bank 5
RAM.
0 Enable Write
1 Disable Write

4
(R/W)

BK4WDIS Bank 4 Write Disable.
The L2CTL_ACTL_C0.BK4WDIS bit disables core 0 writes to L2 bank 4
RAM.
0 Enable Write
1 Disable Write

3
(R/W)

BK3WDIS Bank 3 Write Disable.
The L2CTL_ACTL_C0.BK3WDIS bit disables core 0 writes to L2 bank 3
RAM.
0 Enable Write
1 Disable Write

2
(R/W)

BK2WDIS Bank 2 Write Disable.
The L2CTL_ACTL_C0.BK2WDIS bit disables core 0 writes to L2 bank 2
RAM.
0 Enable Write
1 Disable Write

1
(R/W)

BK1WDIS Bank 1 Write Disable.
The L2CTL_ACTL_C0.BK1WDIS bit disables core 0 writes to L2 bank 1
RAM.
0 Enable Write
1 Disable Write

0
(R/W)

BK0WDIS Bank 0 Write Disable.
The L2CTL_ACTL_C0.BK0WDIS bit disables core 0 writes to L2 bank 0
RAM.
0 Enable Write
1 Disable Write

Table 10-8: L2CTL_ACTL_C0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–17

Figure 10-4: L2CTL_ACTL_C1 Register Diagram

Table 10-9: L2CTL_ACTL_C1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the L2CTL_
ACTL_C1.LOCK bit is set, the L2CTL_ACTL_C1 register is read only
(locked).
0 Unlock
1 Lock

7
(R/W)

BK7WDIS Bank 7 Write Disable.
The L2CTL_ACTL_C1.BK7WDIS bit disables core 1 writes to L2 bank 7
RAM.
0 Enable Write
1 Disable Write

6
(R/W)

BK6WDIS Bank 6 Write Disable.
The L2CTL_ACTL_C1.BK6WDIS bit disables core 1 writes to L2 bank 6
RAM.
0 Enable Write
1 Disable Write

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

5
(R/W)

BK5WDIS Bank 5 Write Disable.
The L2CTL_ACTL_C1.BK5WDIS bit disables core 1 writes to L2 bank 5
RAM.
0 Enable Write
1 Disable Write

4
(R/W)

BK4WDIS Bank 4 Write Disable.
The L2CTL_ACTL_C1.BK4WDIS bit disables core 1 writes to L2 bank 4
RAM.
0 Enable Write
1 Disable Write

3
(R/W)

BK3WDIS Bank 3 Write Disable.
The L2CTL_ACTL_C1.BK3WDIS bit disables core 1 writes to L2 bank 3
RAM.
0 Enable Write
1 Disable Write

2
(R/W)

BK2WDIS Bank 2 Write Disable.
The L2CTL_ACTL_C1.BK2WDIS bit disables core 1 writes to L2 bank 2
RAM.
0 Enable Write
1 Disable Write

1
(R/W)

BK1WDIS Bank 1 Write Disable.
The L2CTL_ACTL_C1.BK1WDIS bit disables core 1 writes to L2 bank 1
RAM.
0 Enable Write
1 Disable Write

0
(R/W)

BK0WDIS Bank 0 Write Disable.
The L2CTL_ACTL_C1.BK0WDIS bit disables core 1 writes to L2 bank 0
RAM.
0 Enable Write
1 Disable Write

Table 10-9: L2CTL_ACTL_C1 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–19

Access Control System Register

The L2CTL_ACTL_SYS register includes a write protection bit and enables system and DMA write access
for L2 banks.

Figure 10-5: L2CTL_ACTL_SYS Register Diagram

Table 10-10: L2CTL_ACTL_SYS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the L2CTL_
ACTL_SYS.LOCK bit is set, the L2CTL_ACTL_SYS register is read only
(locked).
0 Unlock
1 Lock

7
(R/W)

BK7WDIS Bank 7 Write Disable.
The L2CTL_ACTL_SYS.BK7WDIS bit disables system or DMA writes to
L2 bank 7 RAM.
0 Enable Write
1 Disable Write

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

6
(R/W)

BK6WDIS Bank 6 Write Disable.
The L2CTL_ACTL_SYS.BK6WDIS bit disables system or DMA writes to
L2 bank 6 RAM.
0 Enable Write
1 Disable Write

5
(R/W)

BK5WDIS Bank 5 Write Disable.
The L2CTL_ACTL_SYS.BK5WDIS bit disables system or DMA writes to
L2 bank 5 RAM.
0 Enable Write
1 Disable Write

4
(R/W)

BK4WDIS Bank 4 Write Disable.
The L2CTL_ACTL_SYS.BK4WDIS bit disables system or DMA writes to
L2 bank 4 RAM.
0 Enable Write
1 Disable Write

3
(R/W)

BK3WDIS Bank 3 Write Disable.
The L2CTL_ACTL_SYS.BK3WDIS bit disables system or DMA writes to
L2 bank 3 RAM.
0 Enable Write
1 Disable Write

2
(R/W)

BK2WDIS Bank 2 Write Disable.
The L2CTL_ACTL_SYS.BK2WDIS bit disables system or DMA writes to
L2 bank 2 RAM.
0 Enable Write
1 Disable Write

1
(R/W)

BK1WDIS Bank 1 Write Disable.
The L2CTL_ACTL_SYS.BK1WDIS bit disables system or DMA writes to
L2 bank 1 RAM.
0 Enable Write
1 Disable Write

Table 10-10: L2CTL_ACTL_SYS Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–21

Status Register

The L2CTL_STAT register indicates ECC error status, refresh register status, and bus error status.

Figure 10-6: L2CTL_STAT Register Diagram

0
(R/W)

BK0WDIS Bank 0 Write Disable.
The L2CTL_ACTL_SYS.BK0WDIS bit disables system or DMA writes to
L2 bank 0 RAM.
0 Enable Write
1 Disable Write

Table 10-10: L2CTL_ACTL_SYS Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 10-11: L2CTL_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

ECCERR7 ECC Error Bank 7.
The L2CTL_STAT.ECCERR7 bit indicates that an ECC double bit error
occurred inside L2 bank 7.
0 No Status
1 ECC Double Bit Error

14
(R/W1C)

ECCERR6 ECC Error Bank 6.
The L2CTL_STAT.ECCERR6 bit indicates that an ECC double bit error
occurred inside L2 bank 6.
0 No Status
1 ECC Double Bit Error

13
(R/W1C)

ECCERR5 ECC Error Bank 5.
The L2CTL_STAT.ECCERR5 bit indicates that an ECC double bit error
occurred inside L2 bank 5.
0 No Status
1 ECC Double Bit Error

12
(R/W1C)

ECCERR4 ECC Error Bank 4.
The L2CTL_STAT.ECCERR4 bit indicates that an ECC double bit error
occurred inside L2 bank 4.
0 No Status
1 ECC Double Bit Error

11
(R/W1C)

ECCERR3 ECC Error Bank 3.
The L2CTL_STAT.ECCERR3 bit indicates that an ECC double bit error
occurred inside L2 bank 3.
0 No Status
1 ECC Double Bit Error

10
(R/W1C)

ECCERR2 ECC Error Bank 2.
The L2CTL_STAT.ECCERR2 bit indicates that an ECC double bit error
occurred inside L2 bank 2.
0 No Status
1 ECC Double Bit Error

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–23

Read Priority Count Register

The L2CTL_RPCR register stores the count value to be used for priority elevation for bus read channels. If
a bus channel is not granted access from the bank arbiter, the channel waits for the programmed number
of L2CLK cycles, before the request is elevated to a high priority request. If a priority count value is
programmed as zero for a channel, that channel does not raise the urgent priority request.

This is a read/write register, but a new value in the corresponding field must be written only when there
are no outstanding transactions on the corresponding bus read channel. A best practice is to program this
register before initiating an L2 access.

9
(R/W1C)

ECCERR1 ECC Error Bank 1.
The L2CTL_STAT.ECCERR1 bit indicates that an ECC double bit error
occurred inside L2 bank 1.
0 No Status
1 ECC Double Bit Error

8
(R/W1C)

ECCERR0 ECC Error Bank 0.
The L2CTL_STAT.ECCERR0 bit indicates that an ECC double bit error
occurred inside L2 bank 0.
0 No Status
1 ECC Double Bit Error

4
(R/NW)

RFRS Refresh Register Status.
The L2CTL_STAT.RFRS bit indicates whether a refresh request is
pending (in progress) or that there are no pending requests.
0 No Pending Requests
1 Request Pending (Refresh in Progress)

1
(R/W1C)

ERR1 Error Port 1.
The L2CTL_STAT.ERR1 indicates whether the L2CTL has detected a
bus access error on L2s bus port 1.
0 No Error
1 Bus Access Error

0
(R/W1C)

ERR0 Error Port 0.
The L2CTL_STAT.ERR0 indicates whether the L2CTL has detected a
bus access error on L2s bus port 0.
0 No Error
1 Bus Access Error

Table 10-11: L2CTL_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 10-7: L2CTL_RPCR Register Diagram

Write Priority Count Register

The L2CTL_WPCR register stores the count value to be used for priority elevation for bus write channels. If
a bus channel is not granted access from the bank arbiter, the channel waits for the programmed number
of L2CLK cycles, before the request is elevated to a high priority request. If a priority count value is
programmed as zero for a channel, that channel does not raise the urgent priority request.

This is a read/write register, but a new value in the corresponding field must be written only when there
are no outstanding transactions on the corresponding bus write channel. A best practice is to program this
register before initiating an L2 access.

Table 10-12: L2CTL_RPCR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

RPC1 Read Priority Count 1.
The L2CTL_RPCR.RPC1 bits hold the priority count for L2 bus read
channel 1.

7:0
(R/W)

RPC0 Read Priority Count 0.
The L2CTL_RPCR.RPC0 bits hold the priority count for L2 bus read
channel 0.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–25

Figure 10-8: L2CTL_WPCR Register Diagram

Refresh Address Register

The L2CTL_RFA register stores the refresh address value. When this register is written, L2 initiates an
atomic read-write operation to the address value written into the register. This is a read/write register, but
a new value in the corresponding field has to be written only when there are no outstanding refresh request
pending (L2CTL_STAT.RFRS =0). If a write occurs while a request is pending, the L2CTL generates a bus
error, and the write does not take effect.

Figure 10-9: L2CTL_RFA Register Diagram

Table 10-13: L2CTL_WPCR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

WPC1 Write Priority Count 1.
The L2CTL_WPCR.WPC1 bits hold the priority count for L2 bus write
channel 0.

7:0
(R/W)

WPC0 Write Priority Count 0.
The L2CTL_WPCR.WPC0 bits hold the priority count for L2 bus write
channel 1.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ECC Error Address 0 Register

The L2CTL_ERRADDR0 register holds the address containing an ECC multi-bit error for the corresponding
bank. The L2CTL updates this register only if the bank's status bit (L2CTL_STAT.ECCERR0) is cleared. After
the bank's status bit is set for an error, further errors in the same bank are not detected until a W1C clears
the status bit.

Figure 10-10: L2CTL_ERRADDR0 Register Diagram

Table 10-14: L2CTL_RFA Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/NW)

ADDRHI Address High.
The L2CTL_RFA.ADDRHI bits hold the high 16-bits of the L2 refresh
address. Note that the upper 14 bits are hard-coded to the upper bits
of the L2 address map.

15:0
(R/W)

ADDRLO Address Low.
The L2CTL_RFA.ADDRLO bits hold the low 16-bits of the L2 refresh
address. Note that the lowest three bits are do not care.

Table 10-15: L2CTL_ERRADDR0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_ERRADDR0.VALUE bits hold the address containing the
ECC double bit error.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–27

ECC Error Address 1 Register

The L2CTL_ERRADDR1 register holds the address containing an ECC multi-bit error for the corresponding
bank. The L2CTL updates this register only if the bank's status bit (L2CTL_STAT.ECCERR1) is cleared. After
the bank's status bit is set for an error, further errors in the same bank are not detected until a W1C clears
the status bit.

Figure 10-11: L2CTL_ERRADDR1 Register Diagram

ECC Error Address 2 Register

The L2CTL_ERRADDR2 register holds the address containing an ECC multi-bit error for the corresponding
bank. The L2CTL updates this register only if the bank's status bit (L2CTL_STAT.ECCERR2) is cleared. After
the bank's status bit is set for an error, further errors in the same bank are not detected until a W1C clears
the status bit.

Table 10-16: L2CTL_ERRADDR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_ERRADDR1.VALUE bits hold the address containing the
ECC double bit error.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 10-12: L2CTL_ERRADDR2 Register Diagram

ECC Error Address 3 Register

The L2CTL_ERRADDR3 register holds the address containing an ECC multi-bit error for the corresponding
bank. The L2CTL updates this register only if the bank's status bit (L2CTL_STAT.ECCERR3) is cleared. After
the bank's status bit is set for an error, further errors in the same bank are not detected until a W1C clears
the status bit.

Figure 10-13: L2CTL_ERRADDR3 Register Diagram

Table 10-17: L2CTL_ERRADDR2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_ERRADDR2.VALUE bits hold the address containing the
ECC double bit error.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–29

ECC Error Address 4 Register

The L2CTL_ERRADDR4 register holds the address containing an ECC multi-bit error for the corresponding
bank. The L2CTL updates this register only if the bank's status bit (L2CTL_STAT.ECCERR4) is cleared. After
the bank's status bit is set for an error, further errors in the same bank are not detected until a W1C clears
the status bit.

Figure 10-14: L2CTL_ERRADDR4 Register Diagram

ECC Error Address 5 Register

The L2CTL_ERRADDR5 register holds the address containing an ECC multi-bit error for the corresponding
bank. The L2CTL updates this register only if the bank's status bit (L2CTL_STAT.ECCERR5) is cleared. After
the bank's status bit is set for an error, further errors in the same bank are not detected until a W1C clears
the status bit.

Table 10-18: L2CTL_ERRADDR3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_ERRADDR3.VALUE bits hold the address containing the
ECC double bit error.

Table 10-19: L2CTL_ERRADDR4 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_ERRADDR4.VALUE bits hold the address containing the
ECC double bit error.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 10-15: L2CTL_ERRADDR5 Register Diagram

ECC Error Address 6 Register

The L2CTL_ERRADDR6 register holds the address containing an ECC multi-bit error for the corresponding
bank. The L2CTL updates this register only if the bank's status bit (L2CTL_STAT.ECCERR6) is cleared. After
the bank's status bit is set for an error, further errors in the same bank are not detected until a W1C clears
the status bit.

Figure 10-16: L2CTL_ERRADDR6 Register Diagram

Table 10-20: L2CTL_ERRADDR5 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_ERRADDR5.VALUE bits hold the address containing the
ECC double bit error.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–31

ECC Error Address 7 Register

The L2CTL_ERRADDR7 register holds the address containing an ECC multi-bit error for the corresponding
bank. The L2CTL updates this register only if the bank's status bit (L2CTL_STAT.ECCERR7) is cleared. After
the bank's status bit is set for an error, further errors in the same bank are not detected until a W1C clears
the status bit.

Figure 10-17: L2CTL_ERRADDR7 Register Diagram

Error Type 0 Register

The L2CTL_ET0 register holds information about the error transaction that has occurred on the bus for the
corresponding L2 bus port. This register is updated only if the corresponding error status bit L2CTL_STAT.
ERR0 is cleared. After the status bit is set for an error, further errors do not update the L2CTL_ET0 register
until a W1C clears the corresponding status bit. If read and write access errors occur simultaneously, the

Table 10-21: L2CTL_ERRADDR6 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_ERRADDR6.VALUE bits hold the address containing the
ECC double bit error.

Table 10-22: L2CTL_ERRADDR7 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_ERRADDR7.VALUE bits hold the address containing the
ECC double bit error.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

L2CTL_ET0 captures the write access error, keeping in sync with the error address register (L2CTL_
EADDR0).

Figure 10-18: L2CTL_ET0 Register Diagram

Table 10-23: L2CTL_ET0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/NW)

ID Error ID.
The L2CTL_ET0.ID bits hold the bus master ID of the access that
caused error.

4
(R/NW)

RDWR Read/Write Error.
The L2CTL_ET0.RDWR bit indicates whether a read or write access
caused error.
0 Read Access created Error
1 Write Access created Error

3
(R/NW)

ECCERR ECC Error.
The L2CTL_ET0.ECCERR bit indicates whether the access had an ECC
double bit error.

2
(R/NW)

ACCERR Access Error.
The L2CTL_ET0.ACCERR bit indicates whether the access went to a
restricted bank.

1
(R/NW)

RSVERR Reserved Error.
The L2CTL_ET0.RSVERR bit indicates whether the access went to a
reserved location.

0
(R/NW)

ROMERR ROM Error.
The L2CTL_ET0.ROMERR bit indicates whether a write access went to
a ROM area.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–33

Error Type 0 Address Register

The L2CTL_EADDR0 register holds the address that created an access error on the L2 port 0 bus interface.
This register is be updated only if the corresponding error status bit (L2CTL_STAT.ERR0) is cleared. After
the status bit is set for an error, further errors do not update the L2CTL_EADDR0 register until a W1C clears
the corresponding status bit. If read and write access errors occur simultaneously, the register captures the
write access error address.

Figure 10-19: L2CTL_EADDR0 Register Diagram

Error Type 1 Register

The L2CTL_ET1 register holds information about the error transaction that has occurred on the bus for the
corresponding L2 bus port. This register is updated only if the corresponding error status bit L2CTL_STAT.
ERR1 is cleared. After the status bit is set for an error, further errors do not update the L2CTL_ET1 register
until a W1C clears the corresponding status bit. If read and write access errors occur simultaneously, the
L2CTL_ET1 captures the write access error, keeping in sync with the error address register (L2CTL_
EADDR1).

Table 10-24: L2CTL_EADDR0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_EADDR0.VALUE bits hold the address causing the bus
error.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X L2CTL REGISTER DESCRIPTIONS

10–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 10-20: L2CTL_ET1 Register Diagram

Table 10-25: L2CTL_ET1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/NW)

ID Error ID.
The L2CTL_ET1.ID bits hold the bus master ID of the access that
caused error.

4
(R/NW)

RDWR Read/Write Error.
The L2CTL_ET1.RDWR bit indicates whether a read or write access
caused error.
0 Read Access created Error
1 Write Access created Error

3
(R/NW)

ECCERR ECC Error.
The L2CTL_ET1.ECCERR bit indicates whether the access had an ECC
double bit error.

2
(R/NW)

ACCERR Access Error.
The L2CTL_ET1.ACCERR bit indicates whether the access went to a
restricted bank.

1
(R/NW)

RSVERR Reserved Error.
The L2CTL_ET1.RSVERR bit indicates whether the access went to a
reserved location.

0
(R/NW)

ROMERR ROM Error.
The L2CTL_ET1.ROMERR bit indicates whether a write access went to
a ROM area.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X PROCESSOR-SPECIFIC INFORMATION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–35

Error Type 1 Address Register

The L2CTL_EADDR1 register holds the address that created an access error on the L2 port 0 bus interface.
This register is be updated only if the corresponding error status bit (L2CTL_STAT.ERR1) is cleared. After
the status bit is set for an error, further errors do not update the L2CTL_EADDR1 register until a W1C clears
the corresponding status bit. If read and write access errors occur simultaneously, the register captures the
write access error address.

Figure 10-21: L2CTL_EADDR1 Register Diagram

ADSP-BF60x Processor-Specific Information
The L2CLK runs at the same rate as SYSCLK.

The L2 memory subsystem has 2 SCB ports accessing 256 KB of RAM in 8 banks and 32 KB of ROM in a
single bank.

Table 10-26: L2CTL_EADDR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE ERRADDR Value.
The L2CTL_EADDR1.VALUE bits hold the address causing the bus
error.

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X PROCESSOR-SPECIFIC INFORMATION

10–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x L2 Memory Controller Throughput

Table 10-27: ADSP-BF60x Throughput

Master Condition
Core Throughput

(MBPS

DMA
Throughput

(MBPS

Core Read Data Cache – burst read (cache fill) single core, data
cache enabled. Instruction execution is from L1. Cache
fill results in L2 burst access.

540 N/A

Core Read Data Cache – dual burst read single core (with port
preference) (cache fill).

940 N/A

Core Read Instruction Cache – burst read, single core. Execution
from L2 with instruction caching enabled.

550 N/A

Core Read Instruction Cache and data cache enabled – burst read,
single core. Execution from L2 with data access also
from L2. Here the instruction and data use must be
aligned in such a way that an instruction miss is
immediately followed by a data cache miss in the same
instruction. This results in back-to-back burst read
access to L2.

666 N/A

Core Write Data Cache – burst write (write back), single core,
cache enabled

1028 N/A

Core Write Non data cache – single write, cache disabled, single
writes to L2, single core.
(1000 MBPS achieved by running in higher interrupt
level)

800, 1000 N/A

DMA Read No conflict in the memory bank, multiple DMAs
initiated to use the same bank, DDE burst length = 8

N/A 880

DMA Read No conflict in the memory bank, multiple DMAs
initiated to use the same bank, DDE burst length = 4

N/A 800

DMA Read No conflict in the memory bank, multiple DMAs
initiated to use the same bank, DDE burst length = 2

N/A 666

DMA Write No conflict in the memory bank, multiple DMAs
initiated to use the same bank, DDE burst length = 8

N/A 880

DMA Write No conflict in the memory bank, multiple DMAs
initiated to use the same bank, DDE burst length = 4

N/A 800

DMA Write No conflict in the memory bank, multiple DMAs
initiated to use the same bank, DDE burst length = 2

N/A 666

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X PROCESSOR-SPECIFIC INFORMATION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 10–37

Core/DMA Core and DMA reading from the same memory bank
with RPC0/WPC0 = 0 and RPC1/WPC1 = 1, DDE
burst length = 8

1070 885

Core/DMA Core and DMA writing to the same memory bank with
RPC0/WPC0 = 0 and RPC1/WPC1 = 1, DDE burst
length = 8

1340 670

Table 10-27: ADSP-BF60x Throughput (Continued)

Master Condition
Core Throughput

(MBPS

DMA
Throughput

(MBPS

L2 MEMORY CONTROLLER (L2CTL)
ADSP-BF60X PROCESSOR-SPECIFIC INFORMATION

10–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–1

11 Dynamic Memory Controller (DMC)

The dynamic memory controller (DMC) provides a glueless interface between DDR2/LPDDR SDRAMs
and the system crossbar interface (SCB). The DMC enables execution of instructions from, as well as
transfer of data to and from, DDR2 SDRAM or LPDDR SDRAM respectively.

The DMC is partitioned in a manner that allows reconfiguration and maintainability. The memory access
protocol state machine along with JEDEC standard specific logic is embedded in the “protocol controller”.
An access and operation re-ordering mechanism is incorporated as an “efficiency controller”. An SCB
slave interface is provided to interface with the on-chip interconnect. This interface results in an efficient
slave implementation owing to its out-of-order transaction capabilities. The control and status registers
present in the DMC controller can be accessed using the MMR access bus.

The DMC supports access to the external memory by core and DMA accesses. The external memory
address space is divided into four banks.

DMC Features
The DMC includes a protocol controller that supports JESD79-2E compatible double data rate (DDR2)
SDRAM and JESD209A low power DDR (LPDDR) SDRAM devices.

The dynamic memory controller features are listed below.

• Provides 16-bit data interface to SDRAM devices

• Supports a single external rank (one chip select)

• Supports burst lengths of 4 and 8 words

• Provides page hit detection to support multiple column accesses to the same row

• User specified active, precharge and refresh commands.

• Programmable SDRAM access timing parameters

• Enables automatic refresh generation with programmable refresh intervals.

• Self-refresh mode to reduce system power consumption.

The DDR2 features are:

• 256M bit to 2G bit device sizes

• SDRAM data width of 16 (x16 devices only)

DYNAMIC MEMORY CONTROLLER (DMC)
DMC FEATURES

11–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Support for additive latency

• Support for ODT

The LPDDR features are:

• 64M bit to 2G bit device sizes

• SDRAM data width of 16 (x16 devices only)

• Support for deep power down mode

• PHY DLL calibration block

• DDR2 MEMIO I/O buffers

• Efficient transaction processing to improve throughput and bandwidth using:

– Software programmable SCB IDs to allow SCB ID based priority

– The ability to postpone up to eight auto-refresh commands

– Software selectable closed page scheme on a per bank basis

– Simple transaction scheduling mechanism to reduce read – write turnaround frequency on the
memory bus

– Accesses with the same SCB ID are scheduled back to back to take advantage of same page access in
SDRAM

• Create parameters in the SCB slave interface with integrated buffers that support out of order transac-
tion processing

•

Feature Exclusions

The DMC exclusions are as follows:

For DDR2:

• 4-bit and 8-bit wide DDR2 DRAM memories are not supported.

• OCD is not supported.

• Burst interleaved accesses are not supported.

For LPDDR:

• 32-bit wide LPDDR memory devices are not supported.

• Status register read (SRR) is not supported

DYNAMIC MEMORY CONTROLLER (DMC)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–3

• Sampling the optional Temperature output (TQ) signal is not supported.

• Clock Stop mode is not supported

• Bursts of 2 and 16 words are not supported.

• No support for BURST_TERMINATE command.

• Dual-die, two CS# and two CKE packages are not supported.

Functional Description
The Dynamic Memory Controller consists of master and slave interfaces, a protocol controller, and an effi-
ciency controller. These function of these interfaces and controllers are described in the following sections.

ADSP-BF60x DMC Register List

The double data rate-synchronous DRAM (DMC) module provides an interface to external SDRAM. This
interface support DDR2 and LPDDR operations. A set of registers govern DMC operations. For more
information on DMC functionality, see the DMC register descriptions.

Table 11-1: ADSP-BF60x DMC Register List

Name Description

DMC_CTL Control Register

DMC_STAT Status Register

DMC_EFFCTL Efficiency Control Register

DMC_PRIO Priority ID Register

DMC_PRIOMSK Priority ID Mask Register

DMC_CFG Configuration Register

DMC_TR0 Timing 0 Register

DMC_TR1 Timing 1 Register

DMC_TR2 Timing 2 Register

DMC_MSK Mask (Mode Register Shadow) Register

DMC_MR Shadow MR Register

DYNAMIC MEMORY CONTROLLER (DMC)
FUNCTIONAL DESCRIPTION

11–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMC Protocol Controller

The DDR2/LPDDR SDRAM protocol controller translates memory access requests from the SCB (system
crossbar) interface to JEDEC protocol specific transactions used by DDR2/LPDDR SDRAM devices.

The protocol controller ensures that the various timing parameters are met before reading and writing the
SDRAM. The controller also performs the SDRAM initialization sequence as mandated by the standard.
The protocol controller is capable of issuing reads and writes and it can precharge a row in a bank, activate
a row in a bank, and also put the SDRAM devices in self refresh and power down.

The protocol controller takes mode register writes from the MMR interface and translates them into mode
register writes to SDRAM. Writing into the mode register is restricted via a mask register.

DMC Efficiency Controller

The efficiency controller controls the ordering of transfers buffered in the read and write command
buffers. It attempts to order transfers to optimize the available memory bandwidth. A number of schemes
can be used to increase the throughput.

Read/Write Turnaround

Read/Write turnaround reduces read – write turnaround on the memory bus and is the default method for
optimizing bandwidth.

If read and write commands are outstanding in their respective buffers, the state of the efficiency controller
determines the direction of the next transfer. When the controller is in the read state, and if both read and
write commands are pending, write commands are given priority. Similarly, if the controller is in the write

DMC_EMR1 Shadow EMR1 Register

DMC_EMR2 Shadow EMR2 Register

DMC_EMR3 Shadow EMR3 Register

DMC_DLLCTL DLL Control Register

DMC_PHY_CTL1 PHY Control 1 Register

DMC_PHY_CTL3 PHY Control 3 Register

DMC_PADCTL PAD Control Register

Table 11-1: ADSP-BF60x DMC Register List (Continued)

Name Description

DYNAMIC MEMORY CONTROLLER (DMC)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–5

state, and if both read and write commands are pending, read commands are given priority. This ensures
that the DMC does not perform transfers in a single direction continuously.

If read commands are outstanding in the read command buffer, a snapshot of the entries is taken.
Commands that have the same SCB ID are scheduled in the order in which they were received. When the
transfers complete, they are removed from the snapshot. The remaining transfers are scheduled in the
order in which they appear in the buffer (0, 1, 2, and 3). After all transactions in the snapshot are complete,
the controller moves to the write command buffer.

If write commands are outstanding, a snapshot of all valid entries is taken. A valid write entry is one that
has the required amount of data available in the write buffer. Commands are scheduled in the order in
which they appear in the buffer (0, 1, 2, and 3). After all transactions in the snapshot are complete they are
moved to the read command buffer.

For writes and reads that have a SCB burst that is larger than the DDR2 burst length, one SCB burst is
divided into several DDR2 bursts. As soon as the required amount of data is available for a DDR2 burst, a
write command is scheduled at the protocol controller. Because of write data interleaving, subsequent SCB
data continues to be buffered. If data for the next DDR2 burst is not available for an entry in the snapshot
after the first pass is complete, the controller does not wait for the data to become available and moves on
to the read snapshot.

For example assume that addresses RD1 and RD2 are present the in read buffer and WR1 and WR2 are
present in the write buffer. Each of these addresses has a different SCB ID and the efficiency controller is
in the write state.

1. The efficiency controller looks into the read buffer, takes a snapshot of all the commands and prepares
to send the commands RD1 and RD2 to the protocol controller.

2. The efficiency controller remembers the location in the buffer where these transactions reside (assume
locations 1 and 3). It picks location 1 (RD1) to start transfers at the protocol controller.

3. While this transfer happens, if RD3 arrived at location 2, it is ignored for the current snapshot.

4. After RD1 is finished, the controller moves to location 3 (RD2). Once RD2 completes, the controller
moves to the write buffers.

5. While the reads occur, WR3 arrives in the WR address buffer. However, since the interleaving depth is
only two, WR1 and WR2 data arrive but WR3's data is still being buffered and the required amount of
data is not available. In this case, WR1 and WR2 make it to the snapshot as they are valid and have data
ready to be sent. Even though WR3 data may arrive during the transfer of WR1 and WR2, it is only
considered in the next snapshot.

6. After WR1 and WR2 are complete, the controller moves to the read buffer.

7. Finally, if WR1 requires two bursts through DDR2 and WR2 requires only one, if all data for WR1 is
available, the two DDR2 bursts of WR1 are performed back-to-back before completing WR2. However,
if only one DDR2 burst of data is available for WR1, the first DDR2 burst of WR1 is performed,
followed by WR2. Then the efficiency controller returns to finish the rest of WR1. If WR1 data is not
available, the controller does not wait in the write state and moves to the read buffer.

DYNAMIC MEMORY CONTROLLER (DMC)
FUNCTIONAL DESCRIPTION

11–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Closed Page Per Bank

The DER_EFFCTL register provides per-bank granularity for closing pages. If software determines that
most accesses to a given bank in memory always result in a missed page, the PREC_BANK bit corresponding
to the required bank can be set to close the row after every transfer. This proactive step may result in
reduced thrashing and increases memory throughput.

SCB ID Based Priority

The primary goal of the dynamic memory controller is to improve sustainable memory system bandwidth
so that the average request service time can be reduced. However, to service critical requests from any
master in the system, a mechanism to elevate priority of a given access is provided. The DMC priority ID
register (DMC_PRIO) can be programmed with up to two SCB IDs whose priority is elevated in the default
setup described in Read/Write Turnaround.

After every access in a snapshot, the command buffers are searched to determine whether a commands ID
matches with the ID programmed in the DMC_PRIO register. If a match occurs and the direction of the
access (for example write) is the same as the direction of the snapshot (write), then the priority SCB ID
access is sent before sending the subsequent access in the snapshot.

As an alternative to providing priority to a specific SCB ID, if a number of IDs from the same master
require priority, the DMC priority mask ID register (DMC_PRIOMSK) can be programmed so that the corre-
sponding bits are 0. A combination of the DMC_PRIO register and the DMC_PRIOMSK register can then be
used to elevate the priority of a select few or all IDs that belong to a master (by default, none of the IDs are
prioritized).

The following are a few possibilities

• The PRIO_ID1_MASK field of the DMC_PRIOMSK register is set to 0000. If a single ID (7234) needs
priority, the PRIO_ID1_MASK field should be set to FFFF and the PRIO_ID1 field of the DMC_PRIO
register is set to 7234

• If the PRIO_ID1_MASK field is set to FFFE, the SCB IDs 7234 and 7235 are given priority.

• If the PRIO_ID1_MASK field is set to FFFC, the SCB IDs 7234, 7235, 7236 and 7237 are given priority.

• f two transactions with priority are outstanding with one being a read and the other being a write, the
priority transaction that does not change the direction of the DMC access gets priority.

• The other priority transaction is handled at the beginning of the next snapshot. For example, if a write
snapshot is in progress, the write priority transaction is sent. The read priority transaction is sent at the
beginning of the next read snapshot.

NOTE: SCB-ID-based priority should be used judiciously because it can significantly reduce the
throughput of the DMC.

DYNAMIC MEMORY CONTROLLER (DMC)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–7

Delaying up to Eight Auto-Refresh Commands

This method is used to ensure that auto-refresh does not come in the way of any critical data transfers. Up
to eight auto-refresh commands can be accumulated in the DMC and the exact number of auto-refresh
commands can be programmed using the NUM_REF bit in the DMC efficiency control register.

After the first refresh command is accumulated, the DMC constantly looks for an opportunity to schedule
a refresh command. When the SCB read and write command buffers become empty (which implies that
no access is outstanding) for the programmed number of clock cycles (IDLE_CYCLES) in the DMC effi-
ciency control register, the accumulated number of refresh commands are sent back to back to the DRAM.

After every refresh, the SCB command buffers are checked to ensure they stay empty. However, if the SCB
command buffers are always filled, once the programmed number of refresh commands gets accumulated,
the refresh operation is elevated to urgent priority and one refresh command is sent immediately. After
this, the DMC continues to wait for an opportunity to send out refresh commands. If self-refresh is
enabled, all pending refresh commands are given out only after that DMC enters into self-refresh.

Page Interleaving and Bank Interleaving

In this method, the DMC provides a way to allow consecutive row accesses to fall into the same bank (bank
interleaving) or into different bank (page interleaving). The ADDR_MODE bit in the DMC_CTL register indi-
cates the interleaving option that the DMC is working on. By default, the DMC uses bank interleaving. If
the ADDR_MODE bit is 1, the DMC uses page interleaving. Page misses in one addressing mode result in hits
in the other addressing mode.

System Crossbar Slave Interface

The system crossbar slave interface is used to move all data. The system crossbar interface accepts inter-
leaved write transactions and is capable of sending out of order response. The read and write interfaces
consist of buffers for address, data and control information transferred to/from the system crossbar bus.

The system crossbar interface transactions are sent to the SDRAM only after the SDRAM has been initial-
ized. However if transactions arrive before or during initialization, they will be accumulated in the system
crossbar interface and sent out to protocol controller once the initialization completes.

To increase throughput, system crossbar write response is sent out as soon as the final DDR2 burst is
scheduled to be transferred into the SDRAM. However, if an auto-refresh needs to be performed, the
scheduled write data will be sent only after the auto-refresh. There is a possibility of a delay of a maximum
of 64 clock cycles from the moment write response is sent on system crossbar to the actual write of the data
into SDRAM.

The system crossbar interface performs the following operations.

• Buffers read/write command requests from system crossbar bus.

• Processes the requests by converting them to protocol controller user interface transfers.

DYNAMIC MEMORY CONTROLLER (DMC)
FUNCTIONAL DESCRIPTION

11–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Sends and receives data to/from the protocol controller.

• Creates suitable read/write response and sends read data back to the system crossbar bus.

The system crossbar slave interface supports the following:

• all burst lengths (1 – 16)

• incremental and wrap bursts

• data transfer sizes of 8, 16 or 32-bits

• arrival of write data before write address

• generation of error responses which includes

– any access to un-implemented region of the external memory space

– any access when the SDRAM is in self-refresh, power-down or deep power down (in case of
LPDDR)

– any access when the direct command interface is in operation

Read/Write Command and Data Buffers

The system crossbar interface comprises of a four deep read command buffer and a four deep write
command buffer. Up to four write commands and four read commands can be waiting for access to the
SDRAM. The system crossbar write buffer is 32 deep. It can support write data interleaving of two. The
system crossbar read buffer is 32 deep.

Peripheral Bus Slave Interface

The peripheral bus slave interface connects the dynamic memory controller to the peripheral bus and
provides a host controller with access to the registers. The peripheral bus slave interface supports the
following features:

• read and write word accesses

• 32-bit data bus

• Ability to extend a transfer using PREADY

• Generation of PSLVERR when unimplemented registers are accessed or when read-only registers are
written.

Architectural Concepts

The following sections provide information on the architecture of the interface.

DYNAMIC MEMORY CONTROLLER (DMC)
DMC EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–9

DMC Clocking

The DMC controller uses a divided down version of the PLLCLK (PLL clock) to generate an internal clock
used to clock the DMC block and interface. The specific value of the DCLK frequency is programmed in
the CGU_DIV register, and the procedure is highlighted under the section “Changing the DCLK Clock
Frequency”.

The maximum clock frequency is 250 MHz if interfacing to DDR2 SDRAM, and 200 MHz if interfacing
to LPDDR SDRAM.

DMC DMA

The DMC controller supports DMA-based transfers to and from external DDR2/LPDDR memory and
internal memory.

The DMC DMA controller, part of the Distributed DMA Engines (DDE) that are dispersed through the
infrastructure, connects to the system crossbar fabric.

Two DDEs are used for memory-to-memory DMA (MemDMA). One channel is the source channel, and
the second, the destination channel.

DMA transfers on the processor can be descriptor-based or register-based. Register-based DMA allows the
processor to directly program DMA control registers to initiate a DMA transfer. On completion, the
control registers may be automatically updated with their original setup values for continuous transfer, if
needed. Descriptor-based DMA transfers require a set of parameters stored within memory to initiate a
DMA sequence. This sort of transfer allows the chaining together of multiple DMA sequences. In
descriptor-based DMA operations, a DMA channel can be programmed to automatically set up and start
another DMA transfer after the current sequence completes.

Please refer to the DDE chapter for further details.

DMC Event Control
The DMC has no related interrupt or trigger event information.

DMC Programming Model
The dynamic memory controller contains five groups of memory mapped registers. These registers are
accessed using the MMR access bus and are described below.

• Control and status registers. These registers control the various operation modes of the dynamic
memory controller and also provide status.

• Timing parameter registers. The value programmed in these registers depends on the speed grade of
DDR2 SDRAM device used.

DYNAMIC MEMORY CONTROLLER (DMC)
DMC PROGRAMMING MODEL

11–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Mode register mirror registers - These shadow registers are copies of the mode registers residing in the
SDRAM device.

• PHY control and status registers – These registers are used to control the operation of the PHY.

• PAD control registers – These registers are used to control the various aspects of the I/O pads.

The DMC control registers contain sensitive timing parameters and settings for the DDR SDRAM. These
registers are programmed with values that are in the operating range of the DDR used.

Writing to reserved fields or writing any reserved values in register bits may cause the dynamic memory
controller to function erroneously.

Configuring the DMC

PREREQUISITE:

After a processor’s hardware or software reset, the DMC clocks are enabled. However the DMC must be
configured and initialized before any data transfer can take place. Before programming the DMC and
executing the power up (initialization) sequence, ensure that the clock to the SDRAM is enabled after the
power has stabilized for the proper amount of time (as specified by the SDRAM specification).

1. Check to first ensure that the DMC is idle and not in the midst of any activity.

2. Please the DMC in self-refresh mode.

3. Program the PLL frequency to a new value (if required).

4. Wait the appropriate number of core cycles to ensure that the DLL has locked.

5. Bring the DMC out of self-refresh mode.

6. Program the DMC_CFG, DMC_CTL, DMC_TR0,-DMC_TR2DMC_MR, DMC_PHY_CTL1 and DMC_PHY_CTL3 regis-
ters to the appropriate values, to set proper SDRAM cycle timing options (for example tRAS, tRC, tRP,
tRCD, tWR, tFAW are some of the parameters).

7. Program the shadow registers DMC_EMR1-DMC_EMR3, with the required burst length, CAS latency, addi-
tive latency and other parameters.

8. Finally, after these registers are programmed, write the INIT bit to the DMC control register (0x0004)
to begin the power-up initialization sequence.

9. Wait for the SDRAM initialization sequence to complete.

10. Write the DMC_PADCTL register with values that reflect the type of SDRAM connected to the processor.
Specific bit fields within this register determine if the pad is operating in LPDDR mode or DDR2 mode.
The drive strengths required at the pads can also be programmed in this register.

DYNAMIC MEMORY CONTROLLER (DMC)
DMC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–11

Figure 11-1: DMC Initialization Flow

System crossbar transactions that occur during or before initialization are accumulated by the DMC and
sent to SDRAM once the SDRAM initialization and/or DLL calibration is complete.

DLL Initialization

When initializing the DLL for the first time, it is important to follow the following steps:

1) Check for (MEMINITDONE & DLLCALDONE) in the DMC_STAT register

2) If this is NOT set, set init bit in DMC_CTL register and wait for (MEMINITDONE & DLLCALDONE)
bits to be set in the DMC_STAT register

3) If this is set:

DYNAMIC MEMORY CONTROLLER (DMC)
DMC PROGRAMMING MODEL

11–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 a) Enter into self-refresh

b) Change the clock frequency, as required

c) Wait for DLL lock

d) Exit self refresh

e) Write new control register values

f) Set init bit in DMC_CTL register and poll the MEMINITDONE and DLLCALDONE bits within the
DMC_STAT register

g) Write to the DMC_DLLCTL register.

Note that for cases where the DDR2 interface has already been initialized (whether it is via an XML file
loaded in during a debug session, or through code executed during the booting process), the user needs to
perform second-time initialization as described above.

Saving Power with the DMC

This section discusses the suggested flow to enter and exit DDR self-refresh before and after the processor
enters the HIBERNATE state.

For this procedure, the system is in normal operation and the EXT_WAKE signal is high.

1. Put the SDRAM in self-refresh mode by setting the DMC_CTL.SRREQ bit.

STEP RESULT: The DDR goes through the self-refresh entry sequence and enters the Self Refresh state.

STEP RESULT: The DMC_STAT.SRACK bit is set.

STEP RESULT: The CKE pin is driven low by the controller when the DDR has entered Self-Refresh.

2. Read the DMC_DLLCTL register to get the current DLL tap and calibration settings. This can be used later
to quickly lock and start normal DDR operation. The values read are stored in the DPM registers.

3. Initialize the Power-On Reset Delay register to the appropriate values to count off the time required
for core V DD to reach a safe value when exiting the Hibernate state.

4. Enter the Hibernate state by following the procedure detailed in the DPM chapter. Hibernate is indi-
cated by the EXT_WAKE signal going low.

5. When EXT_WAKE goes low, the part enters Hibernate state and remains here until brought out by this
state through SYS_PWRGD pin/counter expiry.

6. When a wake-up event occurs, first the EXT_WAKE signal goes high.

ADDITIONAL INFORMATION: When core V DD power reaches a proper value, the Core domain logic is reset.
The DDR controller drives the input of the CKE pad low. When this counter reaches 0 a Counter

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–13

Expiry signal is generated and Core V DD is deemed to have reached a safe value. Now, the CKE pin
which is driven by the DDR controller is released, so whatever is driven by the DDR controller (at this
time driven to 0) at its input pin is driven out to the pads.

7. The DDR controller acts as if it has just come out of reset. The software should now program the DMC_
CTL.SRREQ bit to write a 1. The DMC_CTL.INIT bit should not be set during this write, because starting
an INIT sequence is not desired.

ADDITIONAL INFORMATION: The controller interprets this Self-Refresh request as a command to directly
jump to the Self-Refresh state in the state machine.

ADDITIONAL INFORMATION: Once the DDR state machine goes to the Self-Refresh state, it should set up all
the state variables and status indications to appropriate values. It should appear as though the state
machine just entered a Self-Refresh state (as in step 2 above).

ADDITIONAL INFORMATION: Further, the INIT_DONE bit is now set to 1 (programs should not be
performing an INIT now because it was already done before Hibernate) and also the SRACK bit is set to
1.

8. Software retrieves the DLL data stored in the HV domain and programs the DMC_DLLCTL register. This
acts as a guess value for the DLL lock and DLL calibration and shortens the time taken to achieve DLL
lock.

9. The software should poll for DLL lock status to go high and then clear the SRREQ bit in the DDR control
register which kick starts a Self-Refresh exit process.

10. After Self-Refresh exit (indicated by the DMC_STAT.SRACK bit), start DLL calibration by writing into the
DMC_CTL.DLLCAL bit. The number of reads required for calibration this time are less than normal
power up (cold start) calibration, since the guess value for this has been programmed in the DMC_
DLLCTL register.

RESULT:

Once the calibration process is complete, the DMC_STAT.DLLCALDONE bit is set. Normal operations to DDR
memory can now start.

ADSP-BF60x DMC Register Descriptions
DDR (DMC) contains the following registers.

Table 11-2: ADSP-BF60x DMC Register List

Name Description

DMC_CTL Control Register

DMC_STAT Status Register

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Control Register

The DMC_CTL register controls DMC modes, DLL calibration, and DRAM initialization.

DMC_EFFCTL Efficiency Control Register

DMC_PRIO Priority ID Register

DMC_PRIOMSK Priority ID Mask Register

DMC_CFG Configuration Register

DMC_TR0 Timing 0 Register

DMC_TR1 Timing 1 Register

DMC_TR2 Timing 2 Register

DMC_MSK Mask (Mode Register Shadow) Register

DMC_MR Shadow MR Register

DMC_EMR1 Shadow EMR1 Register

DMC_EMR2 Shadow EMR2 Register

DMC_EMR3 Shadow EMR3 Register

DMC_DLLCTL DLL Control Register

DMC_PHY_CTL1 PHY Control 1 Register

DMC_PHY_CTL3 PHY Control 3 Register

DMC_PADCTL PAD Control Register

Table 11-2: ADSP-BF60x DMC Register List (Continued)

Name Description

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–15

Figure 11-2: DMC_CTL Register Diagram

Table 11-3: DMC_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

13
(R0/W)

DLLCAL DLL Calibration Start.
The DMC_CTL.DLLCAL bit starts the PHY DLL calibration sequence.
Note that this bit always reads as 0.
0 No Effect
1 Start PHY DLL Calibration

12
(R/W)

PPREF Postpone Refresh.
The DMC_CTL.PPREF bit enables postponing the DMCs sending of
auto-refresh commands. When enabled, the DMC accumulates
refresh commands. The DMC_EFFCTL.NUMREF field selects the
number of refresh commands that the DMC may accumulate. When
disabled, the DMC_TR1.TREF field selects the interval for auto-refresh
command distribution.
0 Disable Postpone Refresh
1 Enable Postpone Refresh

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

11:9
(R/W)

RDTOWR Read-to-Write Cycle.
The DMC_CTL.RDTOWR bits select the number of cycles that the DMC
adds when a write operation follows a read operation. Note that
values 101 through 111 are reserved.
0 0 Cycles Added
1 1 Cycle Added
2 2 Cycles Added
3 3 Cycles Added
4 4 Cycles Added

8
(R/W)

ADDRMODE Addressing (Page/Bank) Mode.
The DMC_CTL.ADDRMODE bit selects whether the DMC uses page or
bank interleaving for addressing. When using page interleaving, the
bank address bits follow the most significant column address bits.
When using bank interleaving, the bank address bits follow the most
significant row address bits.
0 Bank Interleaving
1 Page Interleaving

6
(R/W)

PREC Precharge.
The DMC_CTL.PREC bit enables pre-charge, which closes DRAM rows
immediately after access. When disabled, all accesses result in the
respective DRAM rows remaining open, until the DMC needs to
close them.
0 No Effect
1 Enable Precharge

5
(R/W)

DPDREQ Deep Power Down Request.
The DMC_CTL.DPDREQ bit enables deep powerdown mode if low
power DMC operation is enabled (DMC_CTL.LPDDR =1}). When the
processor does not require the data stored in SDRAM (assume reset
state of SDRAM), the DMC may put the SDRAM in deep powerdown
mode. When the DMC is in deep powerdown, any data accesses
cause the DMC to generate a bus error.
0 Disable Deep Powerdown
1 Enable Deep Powerdown

Table 11-3: DMC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–17

Status Register

The DMC_STAT register indicates status for modes selected with the DMC_CTL register and indicates status
DMC operations.

4
(R/W)

PDREQ Power Down Request.
The DMC_CTL.PDREQ bit enables powerdown mode. When the DMC
is in powerdown, any data accesses cause the DMC to generate a bus
error.
0 Disable Powerdown
1 Enable Powerdown

3
(R/W)

SRREQ Self Refresh Request.
The DMC_CTL.SRREQ bit enables self refresh mode. When the DMC is
in self-refresh, any data accesses cause the DMC to generate a bus
error.
0 Disable Self Refresh
1 Enable Self Refresh

2
(R0/W)

INIT Initialize DRAM Start.
The DMC_CTL.INIT bit starts the power up DRAM initialization
sequence and DLL calibration sequence. Note that this bit always
reads as 0.
0 No Effect
1 Start DRAM Initialization

1
(R/W)

LPDDR Low Power DDR Mode.
The DMC_CTL.LPDDR bit selects whether the DMC operates in low
power DDR mode or DDR2 mode.
0 DDR2 mode
1 LPDDR mode

Table 11-3: DMC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 11-3: DMC_STAT Register Diagram

Table 11-4: DMC_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:20
(R/NW)

PHYRDPHASE PHY Read Phase.
The DMC_STAT.PHYRDPHASE bits indicate the latency after which the
DMC may read from the PHY. Taking round trip delay into account,
the DLL indicates the exact number of clock cycles after which the
controller needs to read data. Values other than those shown are
reserved.
2 2 Clock Cycles Latency
3 3 Clock Cycles Latency
4 4 Clock Cycles Latency
5 5 Clock Cycles Latency

19:16
(R/NW)

PENDREF Pending Refresh.
The DMC_STAT.PENDREF bits indicate the number of pending auto-
refresh commands. When the DMC is in low power DDR mode
(DMC_CTL.LPDDR =1), the maximum value for DMC_STAT.PENDREF is
3.

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–19

Efficiency Control Register

The DMC_EFFCTL register control DMC features that improve throughput efficiency. These include
features such as auto-refresh management, pre-charge options, and write data options.

13
(R/NW)

DLLCALDONE DLL Calibration Done.
The DMC_STAT.DLLCALDONE indicates that the PHY DLL calibration
sequence is complete.
0 No Status
1 Completed PHY DLL Calibration

5
(R/NW)

DPDACK Deep Powerdown Acknowledge.
The DMC_STAT.DPDACK bit indicates that deep powerdown mode is
active. Note that this status is available in low power DDR mode
(DMC_CTL.LPDDR =1) only.
0 Not in Deep Powerdown Mode
1 Deep Powerdown Mode Active

4
(R/NW)

PDACK Power Down Acknowledge.
The DMC_STAT.PDACK bit indicates that powerdown mode is active.
0 Not in Powerdown Mode
1 Powerdown Mode Active

3
(R/NW)

SRACK Self Refresh Acknowledge.
The DMC_STAT.SRACK bit indicates that self refresh mode is active.
0 Not in Self Refresh Mode
1 Self Refresh Mode Active

1
(R/NW)

MEMINITDONE Memory Initialization Done.
0 Init not done
1 Init complete

0
(R/NW)

IDLE Idle State.
The DMC_STAT.IDLE bit indicates whether the DMC is idle or busy.
0 Busy
1 Idle

Table 11-4: DMC_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 11-4: DMC_EFFCTL Register Diagram

Table 11-5: DMC_EFFCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:20
(R/W)

IDLECYC Idle Cycle.
The DMC_EFFCTL.IDLECYC bits select the number of cycles after
which the DMC issues any accumulated auto-refresh commands if
postpone refresh is enabled (DMC_CTL.PPREF =1). When DMC_
EFFCTL.IDLECYC is set to 0, the DMC ignores the DMC_CTL.PPREF
selection and does not accumulate/postpone periodic auto refresh
commands.
xxxx Idle Cycles to Postpone Refresh Commands

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–21

19:16
(R/W)

NUMREF Number of Refresh Commands.
The DMC_EFFCTL.NUMREF bits select the number of auto-refresh
commands that the DMC may accumulate if postpone refresh is
enabled (DMC_CTL.PPREF =1). The number of auto-refresh
commands that may be accumulated depends on whether the DMC
is in DDR2 or LPDDR mode as selected by the DMC_CTL.LPDDR bit.
In LPDDR mode, the DMC may accumulate up to four auto-refresh
commands. In DDR2 mode, the DMC may accumulate up to eight
auto-refresh commands.
0 No Refresh Commands Accumulate
1 1 Refresh Command May Accumulate
2 2 Refresh Commands May Accumulate
3 3 Refresh Commands May Accumulate
4 4 Refresh Commands May Accumulate
5 5 Refresh Commands May Accumulate
6 6 Refresh Commands May Accumulate
7 7 Refresh Commands May Accumulate
8 8 Refresh Commands May Accumulate

15
(R/W)

PRECBANK7 Precharge Bank 7.
The DMC_EFFCTL.PRECBANK7 bit enables precharge (closes the page)
of bank 7 after each transfer if the DMC precharge feature is enabled
(DMC_CTL.PREC =1).
0 Disable Precharge Bank 7
1 Enable Precharge Bank 7

14
(R/W)

PRECBANK6 Precharge Bank 6.
The DMC_EFFCTL.PRECBANK6 bit enables precharge (closes the page)
of bank 6 after each transfer if the DMC precharge feature is enabled
(DMC_CTL.PREC =1).
0 Disable Precharge Bank 6
1 Enable Precharge Bank 6

Table 11-5: DMC_EFFCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

13
(R/W)

PRECBANK5 Precharge Bank 5.
The DMC_EFFCTL.PRECBANK5 bit enables precharge (closes the page)
of bank 5 after each transfer if the DMC precharge feature is enabled
(DMC_CTL.PREC =1).
0 Disable Precharge Bank 5
1 Enable Precharge Bank 5

12
(R/W)

PRECBANK4 Precharge Bank 4.
The DMC_EFFCTL.PRECBANK4 bit enables precharge (closes the page)
of bank 4 after each transfer if the DMC precharge feature is enabled
(DMC_CTL.PREC =1).
0 Disable Precharge Bank 4
1 Enable Precharge Bank 4

11
(R/W)

PRECBANK3 Precharge Bank 3.
The DMC_EFFCTL.PRECBANK3 bit enables precharge (closes the page)
of bank 3 after each transfer if the DMC precharge feature is enabled
(DMC_CTL.PREC =1).
0 Disable Precharge Bank 3
1 Enable Precharge Bank 3

10
(R/W)

PRECBANK2 Precharge Bank 2.
The DMC_EFFCTL.PRECBANK2 bit enables precharge (closes the page)
of bank 2 after each transfer if the DMC precharge feature is enabled
(DMC_CTL.PREC =1)
0 Disable Precharge Bank 2
1 Enable Precharge Bank 2

9
(R/W)

PRECBANK1 Precharge Bank 1.
The DMC_EFFCTL.PRECBANK1 bit enables precharge (closes the page)
of bank 1 after each transfer if the DMC precharge feature is enabled
(DMC_CTL.PREC =1).
0 Disable Precharge Bank 1
1 Enable Precharge Bank 1

Table 11-5: DMC_EFFCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–23

Priority ID Register

The DMC_PRIO register selects up to two internal bus master IDs for banks to receive elevated access
priority by the DMC efficiency controller.

8
(R/W)

PRECBANK0 Precharge Bank 0.
The DMC_EFFCTL.PRECBANK0 bit enables precharge (closes the page)
of bank 0 after each transfer if the DMC precharge feature is enabled
(DMC_CTL.PREC =1).
0 Disable Precharge Bank 0
1 Enable Precharge Bank 0

7
(R/W)

WAITWRDATA Wait in Write Data Snapshot.
The DMC_EFFCTL.WAITWRDATA bit enables waiting in write snapshot
if the DDR2 or LPDDR burst is not available for the transfer. If
disabled, the DMC does not wait in write snapshot when the burst is
unavailable.
0 Disable Wait for Burst
1 Enable Wait for Burst

6
(R/W)

FULLWRDATA Wait for Full Write Data.
The DMC_EFFCTL.FULLWRDATA bit enables waiting until all data is
available from the bus to start the DMC transfer. If disabled, the
DMC does to wait for full write data, instead the DMC starts the
transfer when DDR2 or LPDDR burst becomes available.
0 Disable Wait for Full Data
1 Enable Wait for Full Data

Table 11-5: DMC_EFFCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 11-5: DMC_PRIO Register Diagram

Priority ID Mask Register

The DMC_PRIOMSK register permits masking portions of up to two internal bus master IDs for banks to
receive elevated access priority by the DMC efficiency controller. This masking provides for elevating the
access priority of either a single ID or a range of IDs.

Figure 11-6: DMC_PRIOMSK Register Diagram

Table 11-6: DMC_PRIO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

ID2 ID2 Requiring Elevated Priority.

15:0
(R/W)

ID1 ID1 Requiring Elevated Priority.

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–25

Configuration Register

The DMC_CFGregister selects SDRAM device specific parameters and selects the SDRAM interface width.

Figure 11-7: DMC_CFG Register Diagram

Table 11-7: DMC_PRIOMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

ID2MSK Mask for ID2.

15:0
(R/W)

ID1MSK Mask for ID1.

Table 11-8: DMC_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:12
(R/W)

EXTBANK External Banks.
The DMC_CFG.EXTBANK bits select the number of external banks
connected to the DMC. Note that all values other than those shown
are reserved.
0 1 External Bank

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timing 0 Register

The DMC_TR0 register selects timing parameters for DMC operation to corresponding with parameters of
the SDRAM device that is used in the system. The timing registers must be programmed to match the
device for correct operation of the SDRAM and must be programmed before initializing the SDRAM. Note
that all values for bit fields in DMC_TR0 are in increments of clock cycle time (tCK).

11:8
(R/W)

SDRSIZE SDRAM Size.
The DMC_CFG.SDRSIZE bits select the size of individual SDRAM
connected to the DMC. Note that all values other than those shown
are reserved.
0 64M Bit SDRAM (LPDDR Only)
1 128M Bit SDRAM (LPDDR Only)
2 256M Bit SDRAM
3 512M Bit SDRAM
4 1G Bit SDRAM
5 2G Bit SDRAM

7:4
(R/W)

SDRWID SDRAM Width.
The DMC_CFG.SDRWID bits select the width of the individual SDRAM
connected to the DMC. Note that all values other than those shown
are reserved.
2 16-Bit Wide SDRAM

3:0
(R/W)

IFWID Interface Width.
The DMC_CFG.IFWID bits select the width of the interface between the
DMC and SDRAM. Note that all values other than those shown are
reserved.
2 16-Bit Wide Interface

All Other Values: Reserved This field
specifies the interface width between the
controller and the SDRAM.

Table 11-8: DMC_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–27

Figure 11-8: DMC_TR0 Register Diagram

Table 11-9: DMC_TR0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:28
(R/W)

TMRD Timing Mode Register Delay.
The DMC_TR0.TMRD field selects the set-to-active timing parameter
(tMRD), which is the number of clock cycles that occur after the mode
registers in the SDRAM are set and before the next command is
issued.

25:20
(R/W)

TRC Timing Row Cycle.
The DMC_TR0.TRC field selects the active-to-active time (tRC), which
is the minimum number of clock cycles that occur from an active
command to the next active command in the same bank.

16:12
(R/W)

TRAS Timing Row Active Time.
The DMC_TR0.TRAS field selects the active-to-precharge time (tRAS),
which is the number of clock cycles that occur from an active
command until a precharge command is allowed.

11:8
(R/W)

TRP Timing RAS Precharge..
The DMC_TR0.TRP field selects the precharge-to-active time (tRP),
which is the number of clock cycles that occur while the SDRAM
recovers from a precharge command and becomes ready to accept
the next active command.

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timing 1 Register

The DMC_TR1 register selects timing parameters for DMC operation to corresponding with parameters of
the SDRAM device that is used in the system. The timing registers must be programmed to match the
device for correct operation of the SDRAM and must be programmed before initializing the SDRAM. Note
that all values for bit fields in DMC_TR1 are in increments of clock cycle time (tCK).

Figure 11-9: DMC_TR1 Register Diagram

7:4
(R/W)

TWTR Timing Write to Read.
The DMC_TR0.TWTR field selects the write-to-read delay time (tWTR),
which is the number of clock cycles that occur from the last write
data to the next read command.

3:0
(R/W)

TRCD Timing RAS to CAS Delay.
The DMC_TR0.TRCD field selects the RAS to CAS delay time (tRCD),
which is the number of clock cycles that occur from an active
command to a read/write assertion.

Table 11-10: DMC_TR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30:28
(R/W)

TRRD Timing Read-Read Delay.
The DMC_TR1.TRRD field selects the active-to-active time (tRRD),
which is the minimum number of clock cycles occurring from a bank
x active command to a bank y active command.

Table 11-9: DMC_TR0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–29

Timing 2 Register

The DMC_TR2 register selects timing parameters for DMC operation to corresponding with parameters of
the SDRAM device that is used in the system. The timing registers must be programmed to match the
device for correct operation of the SDRAM and must be programmed before initializing the SDRAM Note
that all values for bit fields in DMC_TR2 are in increments of clock cycle time (tCK).

Figure 11-10: DMC_TR2 Register Diagram

23:16
(R/W)

TRFC Timing Refresh-to-Command.
The DMC_TR1.TRFC field selects the refresh-to-active command delay
(tRFC), which is the number of clock cycles required for the SDRAM
to recover from a refresh signal to be ready to take the next
command. It is also the number of clock cycles needed for the
SDRAM to recover from executing one active command and ready to
accept the next active command.

13:0
(R/W)

TREF Timing Refresh Interval.
The DMC_TR1.TREF field selects the refresh interval time (tREF),
which is the number of clock cycles occurring from one refresh
command to the next refresh command. The actual timing of issuing
a precharge command may be delayed by if the SDRAM is processing
a normal access. However, the delay is not accumulative so there is no
need to shorten the refresh interval to account for the memory access
time. The non-accumulative refresh delay typically increases
memory bandwidth by a few percentage points.

Table 11-10: DMC_TR1 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Mask (Mode Register Shadow) Register

The DMC_MSK register permits masking (disabling) writes to the MR and EMRn registers in the SDRAM.
When masked, writes to these registers go instead to shadow copies of these registers (DMC_MR, DMC_EMR1,
DMC_EMR2, and DMC_EMR3), which are maintained within the DMC. When a shadow register's corre-
sponding bit is unmasked (enabled), the DMC generates the MRS or EMRS command to transfer the
contents of the shadow register (in the DMC) to the actual register (in the SDRAM).

Figure 11-11: DMC_MSK Register Diagram

Table 11-11: DMC_TR2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:20
(R/W)

TCKE Timing Clock Enable.
The DMC_TR2.TCKE field selects the CKE minimum pulsewidth
(tCKE).

19:16
(R/W)

TXP Timing Exit Powerdown.
The DMC_TR2.TXP field selects the exit powerdown to next valid
command time (tXP).

15:12
(R/W)

TWR Timing Write Recovery.
The DMC_TR2.TWR field selects the write recovery time (tWR). Note
that this parameter applies to LPDDR only.

11:8
(R/W)

TRTP Timing Read-to-Precharge.
The DMC_TR2.TRTP field selects the internal read to precharge time
(tRTP).

4:0
(R/W)

TFAW Timing Four-Activated-Window.
The DMC_TR2.TFAW field selects the four-banks-activated window
time (tFAW). No more than four SDRAM banks should be activated
within this window.

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–31

Table 11-12: DMC_MSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W)

EMR3 Shadow EMR3 Unmask.
The DMC_MSK.EMR3 bit masks or unmasks writes to the EMR3
register (in DDR2) in the SDRAM. When masked, writes to this
register instead go to the DMC_EMR3 register. When unmasked, the
DMC writes the DMC_EMR3 value to the EMR3 register (in DDR2) in
the SDRAM. After completing the write, the DMC clears this bit.
Note that this bit must not be enabled when in LPDDR mode (DMC_
CTL.LPDDR =1).
0 Mask (Disable) Write to EMR3
1 Unmask (Enable) Write to EMR3

10
(R/W)

EMR2 Shadow EMR2 Unmask.
The DMC_MSK.EMR2 bit masks or unmasks writes to the EMR2
register (in DDR2) or the EMR register (in LPDDR) in the SDRAM.
When masked, writes to this register instead go to the DMC_EMR2
register. When unmasked, the DMC writes the DMC_EMR2 value to the
EMR2 register (in DDR2) or the EMR register (in LPDDR) in the
SDRAM. After completing the write, the DMC clears this bit.
0 Mask (Disable) Write to EMR2
1 Unmask (Enable) Write to EMR2

9
(R/W)

EMR1 Shadow EMR1 Unmask.
The DMC_MSK.EMR1 bit masks or unmasks writes to the EMR1
register in the SDRAM. When masked, writes to this register instead
go to the DMC_EMR1 register. When unmasked, the DMC writes the
DMC_EMR1 value to the EMR1 register in the SDRAM. After
completing the write, the DMC clears this bit. Note that this bit must
not be enabled when in LPDDR mode (DMC_CTL.LPDDR =1).
0 Mask (Disable) Write to EMR1
1 Unmask (Enable) Write to EMR1

8
(R/W)

MR Shadow MR Unmask.
The DMC_MSK.MR bit masks or unmasks writes to the MR register in
the SDRAM. When masked, writes to this register instead go to the
DMC_MR register. When unmasked, the DMC writes the DMC_MR value
to the MR register in the SDRAM. After completing the write, the
DMC clears this bit.
0 Mask (Disable) Write to MR
1 Unmask (Enable) Write to MR

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Shadow MR Register

The DMC_MR register in the DMC shadows the MR register in the SDRAM when the DMC is in DDR2 mode
or LPDDR mode (DMC_CTL.LPDDR =0 or =1). If unmasked by the corresponding bit in the shadow mask
register (DMC_MSK.MR =1), a write to DMC_MR triggers a "mode register set" command on the memory inter-
face. If masked, a write to DMC_MR only updates the register in the DMC, not the register in the SDRAM.

Figure 11-12: DMC_MR Register Diagram

Table 11-13: DMC_MR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12
(R/W)

PD Active Powerdown Mode.
The DMC_MR.PD bit selects the active powerdown mode. Note that
this parameter applies only for DDR2 mode and is reserved for
LPDDR mode. For more information about this mode, see the data
sheet for the SDRAM being used in your system.
0 Fast exit (normal)
1 Slow exit (low power)

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–33

11:9
(R/W)

WRRECOV Write Recovery.
The DMC_MR.WRRECOV bit selects the write recovery time in terms of
clock cycles (tCK). Note that this parameter applies only for DDR2
mode and is reserved for LPDDR mode. For more information about
this mode, see the data sheet for the SDRAM being used in your
system.
1 2 Clock Cycles
2 3 Clock Cycles
3 4 Clock Cycles
4 5 Clock Cycles
5 6 Clock Cycles
6 7 Clock Cycles
7 8 Clock Cycles

8
(R/W)

DLLRST DLL Reset.
The DMC_MR.DLLRST bit initiates a DLL reset on the SDRAM. Note
that this parameter applies only for DDR2 mode and is reserved for
LPDDR mode. For more information about this operation, see the
data sheet for the SDRAM being used in your system.
0 Normal Operation
1 Reset DLL

6:4
(R/W)

CL CAS Latency.
The DMC_MR.CL bits select latency from the assertion of a read/write
signal to the SDRAM until the first valid data on the output from the
SDRAM in terms of clock cycles (tCK). For more information about
this operation, see the data sheet for the SDRAM being used in your
system.
2 2 clock cycle latency
3 3 clock cycle latency
4 4 clock cycle latency (DDR2)
5 5 clock cycle latency (DDR2)
6 6 clock cycle latency (DDR2)

Table 11-13: DMC_MR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Shadow EMR1 Register

The DMC_EMR1 register in the DMC shadows the EMR1 register in the SDRAM when the DMC is in DDR2
mode (DMC_CTL.LPDDR =0). Note that this register must not be used when the DMC is in LPDDR mode
(DMC_CTL.LPDDR =1). If unmasked by the corresponding bit in the shadow mask register (DMC_MSK.EMR1
=1), a write to DMC_EMR1 triggers an extended "mode register set" command on the memory interface. If
masked, a write to DMC_EMR1 only updates the register in the DMC, not the register in the SDRAM.

Figure 11-13: DMC_EMR1 Register Diagram

2:0
(R/W)

BLEN Burst Length.
The DMC_MR.BLEN bits select burst length for transfers. For more
information about this operation, see the data sheet for the SDRAM
being used in your system. Note that values other than those shown
are not supported.
2 4-Bit Burst Length
3 8-Bit Burst Length

Table 11-13: DMC_MR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–35

Table 11-14: DMC_EMR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12
(R/W)

QOFF Output Buffer Enable.
The DMC_EMR1.QOFF bit enables the SDRAM output pins. For more
information about this operation, see the data sheet for the SDRAM
being used in your system.
0 Enable
1 Disable

10
(R/W)

DQS DQS Enable.
The DMC_EMR1.DQS bit enables operation of the DQS pin. For more
information about this operation, see the data sheet for the SDRAM
being used in your system.
0 Enable
1 Disable

6
(R/W)

RTT1 Termination Resistance 1.
The DMC_EMR1.RTT1 bit combines with the DMC_EMR1.RTT0 bit to set
the termination resistance. See the DMC_EMR1.RTT0 bit description
for more information.
0 Disable RTT1
1 Enable RTT1

5:3
(R/W)

AL Additive Latency.
The DMC_EMR1.AL bits select a number of added latency time for CAS
operations in terms of clock cycles (tCK). For more information about
this operation, see the data sheet for the SDRAM being used in your
system.
0 0 Clock Cylces Added
1 1 Clock Cylce Added
2 2 Clock Cylces Added
3 3 Clock Cylces Added
4 4 Clock Cylces Added
5 5 Clock Cylces Added

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Shadow EMR2 Register

The DMC_EMR2 register in the DMC shadows the EMR2 register in the SDRAM when the DMC is in DDR2
mode (DMC_CTL.LPDDR =0) and shadows the EMR register in the SDRAM when the DMC is in LPDDR
mode (DMC_CTL.LPDDR =1). If unmasked by the corresponding bit in the shadow mask register (DMC_MSK.
EMR2 =1), a write to DMC_EMR2 triggers an extended "mode register set" command on the memory interface.
If masked, a write to DMC_EMR2 only updates the register in the DMC, not the register in the SDRAM.

2
(R/W)

RTT0 Termination Resistance 0..
The DMC_EMR1.RTT0 bit and the DMC_EMR1.RTT1 bits select the
SDRAM termination resistance.
RTT1=0, RTT0=0 : No ODT at memory device
RTT1=0, RTT0=1 : 75 Ohm ODT at memory device
RTT1=1, RTT0=0 : 150 Ohm ODT at memory device
RTT1=1, RTT0=1 : 50 Ohm ODT at memory device
For more information about this operation, see the data sheet for the
SDRAM being used in your system.
0 Disable RTT0
1 Enable RTT0

1
(R/W)

DIC Output Driver Impedance Control.
The DMC_EMR1.DIC bit selects the drive strength mode for the
SDRAM. For more information about this operation, see the data
sheet for the SDRAM being used in your system.
0 Full Strength
1 Reduced Strength

0
(R/W)

DLLEN DLL Enable.
The DMC_EMR1.DLLEN bit enables the DLL in the SDRAM. For more
information about this operation, see the data sheet for the SDRAM
being used in your system.
0 Enable DLL (Normal Operation)
1 Disable DLL (Test/Debug Operation)

Table 11-14: DMC_EMR1 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–37

Figure 11-14: DMC_EMR2 Register Diagram

Table 11-15: DMC_EMR2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

SRF High Temp. Self Refresh.
The DMC_EMR2.SRF bit enables the SDRAM's high temperature self
refresh rate feature when the DMC is in DDR2 mode. (This bit is
reserved in LPDDR mode.) For more information about this
operation, see the data sheet for the SDRAM being used in your
system.
0 1x Refresh Rate (0C to 85C)
1 2x Refresh Rate (>85C)

6:5
(R/W)

DS Drive Strength.
The DMC_EMR2.DS bits select the drive strength value when the DMC
is in LPDDR mode. (These bits are reserved when the DMC is in
DDR2 mode.) Note that all values other than those shown are
reserved. For more information about this operation, see the data
sheet for the SDRAM being used in your system.
0 Full Drive Strength
1 1/2 Drive Strength
2 1/4 Drive Strength
3 3/4 Drive Strength

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Shadow EMR3 Register

The DMC_EMR3 register in the DMC shadows the EMR3 register in the SDRAM when the DMC is in DDR2
mode (DMC_CTL.LPDDR =0). Note that this register must not be used when the DMC is in LPDDR mode
(DMC_CTL.LPDDR =1). If unmasked by the corresponding bit in the shadow mask register (DMC_MSK.EMR3
=1), a write to DMC_EMR3 triggers an extended "mode register set" command on the memory interface. If
masked, a write to DMC_EMR3 only updates the register in the DMC, not the register in the SDRAM.

4:3
(R/W)

TCSR Temp. Comp. Self Refresh.
The DMC_EMR2.TCSR bits select the temperature for applying
temperature compensated self refresh when the DMC is in LPDDR
mode. (These bits are reserved when the DMC is in DDR2 mode.)
For more information about this operation, see the data sheet for the
SDRAM being used in your system.
0 70 degree C (in LPDDR Mode)
1 45 degree C
2 15 degree C
3 85 degree C

2:0
(R/W)

PASR Partial Array Self Refresh.
The DMC_EMR2.PASR bits select the amount of memory to be
refreshed during self refresh. For more information about this
operation, see the data sheet for the SDRAM being used in your
system.
0 Full Array (in LPDDR Mode)
1 1/2 Array
2 1/4 Array
3 Reserved
4 Reserved
5 1/8 Array
6 1/16 Array
7 Reserved

Table 11-15: DMC_EMR2 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–39

Figure 11-15: DMC_EMR3 Register Diagram

DLL Control Register

The DMC_DLLCTL register holds the programmable parameters associated with the DLLs within the DMC
PHY.

Figure 11-16: DMC_DLLCTL Register Diagram

Table 11-16: DMC_EMR3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

RESERVED Reserved.
All bits the DMC_EMR3 register are reserved.

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PHY Control 1 Register

The DMC_PHY_CTL1 register controls programmable PHY features.

Table 11-17: DMC_DLLCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:8
(R/W)

DATACYC Data Cycles.
The DMC_DLLCTL.DATACYC bits select the latency after which the
DMC reads data from the PHY. This field must be written with the
value indicated in the DMC_STAT.PHYRDPHASE field, or data
corruption occurs on all SDRAM reads.
Taking round trip delay into account, the DLL indicates whether a
latency of 2 cycles is supported by means of status bits.
2 2 Clock Cycles Latency
3 3 Clock Cycles Latency
4 4 Clock Cycles Latency
5 5 Clock Cycles Latency

7:0
(R/W)

DLLCALRDCNT DLL Calibration RD Count.
The DMC_DLLCTL.DLLCALRDCNT field selects the number of read
operations that the PHY uses for DLL calibration.

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–41

Figure 11-17: DMC_PHY_CTL1 Register Diagram

PHY Control 3 Register

The DMC_PHY_CTL3 register controls programmable PHY features.

Table 11-18: DMC_PHY_CTL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19
(R/W)

CONTODTVAL Select ODT value on controller.
The DMC_PHY_CTL1.CONTODTVAL bit selects the output drive
termination (ODT) value.
0 75 Ohms Termination
1 150 Ohms Termination

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 11-18: DMC_PHY_CTL3 Register Diagram

Table 11-19: DMC_PHY_CTL3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

26
(R/W)

OFST1 Offset Parameter 1.
Controls latching of data by the controller. . See HW Reference for
proper setting. Needs to be set to 1 for BF609.

24
(R/W)

OFST0 Offset Parameter 0.
Controls latching of data by the controller. See section on product
specific register and bit settings for more information. (For example,
this bit needs to =1 for the ADSP-BF609 Blackfin processor.)

10
(R/W)

ENODTDQS Enables controller ODT on read of DQS.
The DMC_PHY_CTL3.ENODTDQS bit enables ODT for DQS pads.
0 Disable
1 Enable

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–43

PAD Control Register

This register allows programming control parameters associated with the DQ and DQS pads of the
SDRAM memory interface. This register also allows programming control parameters associated with CK,
CKE and CMD pads (RAS_b, CAS_b, WE_b, CS_b, ODT, CS_b, A and BA) of the SDRAM memory inter-
face.

Figure 11-19: DMC_PADCTL Register Diagram

7
(R/W)

TMG1 Timing Parameter 1.
Controls latching of data by the controller. Needs to be set to 1 for
BF609.

6
(R/W)

TMG0 Timing Parameter 0.
Controls latching of data by the controller. Needs to be set to 1 for
BF609.

2
(R/W)

ENODTDQ Enables controller ODT on read of DQ.
The DMC_PHY_CTL3.ENODTDQ bit enables ODT for DQ pads.
0 Disable
1 Enable

Table 11-19: DMC_PHY_CTL3 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

11–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 11-20: DMC_PADCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19
(R/W)

CKEOE CKE Output Enable.
The DMC_PADCTL.CKEOE bit selects the CKE pad output enable value.
0 Active OE value
1 Inactive OE value

18
(R/W)

CKEPWD CKE pad receiver power down..
0 Pad Receiver Powered Up
1 Pad Receiver Powered Down

17:16
(R/W)

CKEODS CKE Output Drive Strength.
The DMC_PADCTL.CKEODS bits select the CKE pads output drive
strength.
0 SSTL18 full drive / LPDDR 10mA
1 SSTL 18 half drive / LPDDR 4mA
2 LPDDR 8mA Reserved for DDR2 mode
3 LPDDR 2mA Reserved for DDR2 mode

15
(R/W)

CMDOE CMD Output Enable.
The DMC_PADCTL.CMDOE bit selects the CMD pads output enable
value.
0 Active OE Value
1 Inactive OE Value

14
(R/W)

CMDPWD CMD Powerdown.
The DMC_PADCTL.CMDPWD bit selects whether the command, address,
and control signal pads receiver is powered up or down.
0 Pad Receiver Powered up
1 Pad Receive Powered down

13:12
(R/W)

CMDODS CMD Output Drive Strength.
The DMC_PADCTL.CMDODS bits select the command, address, and
control signal drive strength.
0 SSTL18 full drive / LPDDR 10mA
1 SSTL18 half drive / LPDDR 4mA
2 LPDDR 8 mA
3 LPDDR 2 mA

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X DMC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 11–45

11
(R/W)

CLKOE CLK Output Enable.
The DMC_PADCTL.CLKOE bit selects the CLK pads output enable
value.
0 Actvie OE Value
1 Inactive OE Value

10
(R/W)

CLKPWD CLK Powerdown.
The DMC_PADCTL.CLKPWD bit selects whether the CLK pads receiver
is powered up or down.
0 Pad Receiver Powered Up
1 Pad Receiver Powered Down

9:8
(R/W)

CLKODS Clock Output Drive Strength.
The DMC_PADCTL.CLKODS bits select clock pad output drive strength.
0 SSTL18 full drive / LPDDR 10mA
1 SSTL 18 half drive / LPDDR 4mA
2 LPDDR 8 mA
3 LPDDR 2 mA

6
(R/W)

DQSPWD DQ/DQS Powerdown.
The DMC_PADCTL.DQSPWD bit selects whether the DQ and DQS pads
receiver is powered up or down.
0 Pad Receiver Powered Up
1 Pad Receiver Powered Down

5:4
(R/W)

DQSODS DQS Output Drive Strength.
The DMC_PADCTL.DQSODS bits select the DQS pads output drive
strength. Note that DMC_PADCTL.DQSODS[3] is connected to S1 of
PAD, and DMC_PADCTL.DQSODS[4] is connected to S0 of PAD.
0 SSTL18 full drive / LPDDR 10mA
1 SSTL 18 half drive / LPDDR 4mA
2 LPDDR 8mA Reserved for DDR2 mode
3 LPDDR 2mA

2
(R/W)

DQPWD DQ Powerdown..
The DMC_PADCTL.DQPWD bit selects whether the DQ pads receiver is
powered up or down.
0 Pad Receiver Powered Up
1 Pad Receiver Powered Down

Table 11-20: DMC_PADCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC MEMORY CONTROLLER (DMC)
ADSP-BF60X SPECIFIC REGISTER/BIT SETTINGS

11–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x Specific Register/Bit Settings
1. Bits 6, 7, 24, and 26 of the DMC_PHY_CTL3 register all need to be set to 1.

2. DMC_DLLCTL register needs to be set to 0x54B. This keeps the default reset values and programs
DATACYC to a value of 5.

1:0
(R/W)

DQODS DQ Output Drive Strength.
The DMC_PADCTL.DQODS bits select the output drive strength for the
DQ pads. Note that DMC_PADCTL.DQODS[0] is connected to A2 of
PAD, and DMC_PADCTL.DQODS[1] is connected to A6 of PAD.
0 ODT Disable
1 75 Ohm
2 150 Ohm

Table 11-20: DMC_PADCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–1

12 Cyclic Redundancy Check (CRC)

The CRC peripheral is used to perform the Cyclic Redundancy Check (CRC) of the block of data that is
presented to the peripheral. The peripheral provides a means to periodically verify the integrity of the
system memory, the contents of memory-mapped registers (MMRs), or communication message objects,
and it is based on a CRC32 engine that computes the signature of 32-bit data presented to the peripheral.

The dedicated hardware compares the calculated signature of the operation to a pre-loaded expected
signature and if the two fail to match, the peripheral generates an error.

Data may be provided by the source channel of the memory-to-memory DMA channels and optionally
forwarded to memory via the destination DMA channel. Alternatively, the peripheral also supports data
presented by core write transactions.

The CRC peripheral implements a reduced table-lookup algorithm to compute the signature of the data.
A programmable 32-bit CRC polynomial is used to automatically generate the lookup table (LUT)
contents.

Additional CRC peripheral modes allow for initializing large memory sections with a constant value, or
for verifying that sections of memory are equal to a constant value.

CRC Features
The CRC peripheral supports a number of key features, including memory scan modes for memory veri-
fication, memory transfer modes for on-the-fly CRC calculations while transferring data from one
memory to another, a programmable 32-bit CRC polynomial with automatic LUT generation, and data
mirroring options.

The CRC module includes the following features.

• CRC checksum computation and comparison modes

• 32-bit programmable CRC polynomial with bit reverse option

• Automatic look up table (LUT) generation

• Data mirroring options for endian and reflected polynomial cases

• Automatic clear and preset of results

• Fault and error interrupt reporting

• DMA and MMR based operation

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

12–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Because the CRC module is closely tied to memory-to-memory DMA (MDMA) channel pairs, the use
cases include the following features.

• Memory scan with CRC compute or compare

• Memory transfer with CRC compute or compare

• Memory fill with 32-bit data patterns

• Memory verify

• MMR write access to FIFO of destination DMA

• MMR read access to FIFO of source DMA

• Profiting from advanced DMA features, like descriptor mode and bandwidth control/monitor

CRC Functional Description
The CRC peripheral supports a number of modes of operation that allows for the initialization and verifi-
cation of regions of memory. The peripheral supports efficient memory fill and verification operations on
regions of memory with or against a constant value. These modes of operation do not require the CRC
engine to calculate a signature. Other modes of operation allow for the CRC signature to be calculated and
verified for a memory region and also allow for on the fly CRC calculation when performing memory-to-
memory DMA transfers from one memory region to another.

To minimize the need for core accesses, the peripheral interfaces with one or more (depending on
processor features) memory-to memory DMA (MDMA) channels. This connectivity permits flexible
configuration, in which data may be written-to or read-from the peripheral using DMA transactions, core
transactions, or a combination of both.

Two DMA channels are supported, providing both a data input and data output. CRC0 is connected to the
MDMA0 channel pair and CRC1 is connected to the MDMA1 channel pair.

Figure 12-1: Memory Flow

The following sections describe in further detail the functional operation of the CRC peripheral:

• ADSP-BF60x CRC Register List

• CRC Definitions

• CRC Block Diagram

• CRC Architectural Concepts

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–3

ADSP-BF60x CRC Register List

The cyclic redundancy check (CRC) unit includes the data comparison, polynomial operation, and look
up table generation features needed for CRC operation. The CRC provides CRC protection as specified by
the ASIL (Automobile Safety Integrity Level) requirements for the ADAS (Advanced Driver Assistance
System) segment. This unit meets the requirements that the system software should be able to periodically
check the correctness of the code/data available in the memory. A set of registers govern CRC operations.
For more information on CRC functionality, see the CRC register descriptions.

Table 12-1: ADSP-BF60x CRC Register List

Name Description

CRC_CTL Control Register

CRC_DCNT Data Word Count Register

CRC_DCNTRLD Data Word Count Reload Register

CRC_COMP Data Compare Register

CRC_FILLVAL Fill Value Register

CRC_DFIFO Data FIFO Register

CRC_INEN Interrupt Enable Register

CRC_INEN_SET Interrupt Enable Set Register

CRC_INEN_CLR Interrupt Enable Clear Register

CRC_POLY Polynomial Register

CRC_STAT Status Register

CRC_DCNTCAP Data Count Capture Register

CRC_RESULT_FIN CRC Final Result Register

CRC_RESULT_CUR CRC Current Result Register

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

12–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x CRC Interrupt List

CRC Definitions

To make the best use of the CRC, it is useful to understand the following terms.

Table 12-2: ADSP-BF60x CRC Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

CRC0 Datacount
expiration

88 LEVEL

CRC0 Error 89 LEVEL
CRC1 Datacount
expiration

92 LEVEL

CRC1 Error 93 LEVEL

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–5

CRC

Acronym for Cyclic Redundancy Check. An error detection code that is capable of detecting changes
within a block of data.

CRC Polynomial

The 32-bit polynomial used by the CRC engine to generate the Look-Up-Table required for the CRC
implementation

LUT

Acronym for the Look-Up-Table. The Look-Up-Table is automatically generated from the supplied 32-bit
CRC polynomial.

DMA

Acronym for Direct Memory Access. Used to describe a data transfer that takes place via a DMA channel
allowing data to be distributed around a system without intervention from the core.

MDMA

Acronym for Memory-To-Memory DMA transfer that often requires the use of two DMA channels to
transfer data from one memory region to another memory region. One DMA channel is configured as a
source channel and the second as a destination channel.

CRC Block Diagram

The following figure shows the functional block diagram of the CRC. The following sections describe the
blocks.

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

12–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 12-2: CRC Block Diagram

Peripheral DMA Bus

The CRC peripheral provides both an incoming and outgoing data path to the Peripheral DMA bus. The
MDMA source channel is interfaced to the incoming data path providing data to the CRC peripheral. For
memory transfer and data fill modes, the MDMA destination channel is used to either output the data
from the CRC FIFO or the data to be used for the fill operation.

MMR Access Bus

The MMR access bus is used by the core to access all the memory-mapped registers of the peripheral for
configuration, status and debug purposes. The core may also use the MMR access bus to feed data to the

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–7

CRC peripheral or read data from the FIFO of the CRC peripheral as an alternative to the operation being
performed by the DMA channels.

Data received by MMR writes can transfer to destination DMA. Similarly, data received by source DMA
can be output through the MMR interface. Optionally, intermediate results can be made available to the
MMR interface.

Mirror Block

The mirror block individually controls bit reversing of the polynomial, the computation results and the
expected result. Endian and reflection of processed data can be controlled by bit mirroring, byte mirroring,
word swapping and any combination of these operations.

Data FIFO

The CRC data FIFO is a 32-bit-wide 4-entry FIFO. The FIFO is accessible to both the Peripheral DMA bus
and the MMR Access bus. The FIFO status is accessible from the CRC_STAT register.

DMA Request Generator

The DMA Request Generator is responsible for granting incoming DMA requests from the source DMA
channel and issuing outgoing DMA requests to the destination DMA channel.

CRC Engine

The CRC Engine is a 32-bit CRC engine that implements the Reduced Table Lookup scheme. The CRC
engine provides support for a user-programmable 32-bit polynomial that is used to load the lookup table
parameters required for the CRC calculation. The CRC engine is a 2-cycle implementation operating on
16 bits of data per cycle.

Compare Logic

The compare logic takes the final CRC signature and compares this to the expected CRC signature, gener-
ating a CRC compare error if the signatures do not match. A compare error can flag a system fault.

CRC Architectural Concepts

The CRC peripheral includes a 32-bit CRC engine that implements the reduced table lookup scheme oper-
ating on 16 bits of data per cycle, resulting in a 2-cycle implementation for each 32 bits of data written to
the peripheral. The upper 16 bits of the data are processed in the first cycle, followed by the lower 16 bits.

A 32-bit polynomial is required before calculation of the CRC signature can occur. The polynomial is used
to generate the contents of an internal lookup table that is required by the reduced table lookup implemen-

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

12–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

tation. The lookup table that is automatically generated when the polynomial is written must be initialized
prior to any operation that requires the use of the CRC engine.

The data presented to the CRC engine may be manipulated by the mirror block logic before being used in
the calculation of the CRC signature. The data mirror operation is configurable to allow for bit reversing,
byte reversing and 16-bit word swapping operations to be applied to the incoming data. For memory
transfer compute and compare operations, programs may configure the peripheral to output the data in
the same form in which it was received, or output the mirrored data in the same manner that it is presented
to the CRC engine.

While the CRC peripheral is in operation, the status of the FIFO is continually updated and reflected in the
CRC_STAT register. The FIFO status is required for core-based accesses to the CRC peripheral. The status
indicates when the CRC peripheral is capable of receiving data, when data is available to be read from the
FIFO and when the result of the CRC_RESULT_CUR register has been updated, indicating that the current
CRC calculation has completed and the result is available.

Lookup Table

The lookup table consists of a set of 16 32-bit registers that are automatically populated by hardware when
a write access takes place to the CRC_POLYregister. 16 clock cycles are required to generate all 16 look up
table entries. The status of the lookup table generation process is reflected in CRC_STAT.LUTDONE allowing
for software to poll on the completion of the event or for generation of an interrupt.

NOTE: The lookup table must be populated before any operation requiring the use of the CRC peripheral
can take place, even if the operation does not require the use of the CRC engine. The peripheral will
not issue any data requests until the table generation process has completed. In addition, the CRC_
STAT.IBR field that indicates the input buffer status as required for core-based transfers is only
valid upon completion of the lookup table generation process.

Data Mirroring

The data mirror block may be configured to manipulate the incoming data before the data is passed on to
the CRC engine and, optionally, to the FIFO. This allows the peripheral to handle various forms of endi-
anness and to function with reflected polynomials.

There are three configuration bits that control the data mirroring process: CRC_CTL.BITMIRR, CRC_CTL.
BYTMIRR and CRC_CTL.W16SWP. The following table details how these options affect the incoming data and
the output that is generated by the mirror block.

Table 12-3: Data Mirroring Options

W16SWP BYTMIRR BITMIRR Output Data

0 0 0 Dout[31:0] = Din[31:0]
0 0 1 Dout[31:0] = Din[24:31],Din[16:23],Din[8:15],Din[0:7]
0 1 0 Dout[31:0] = Din[7:0],Din[15:8],Din[23:16],Din[31:24]

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–9

When the CRC is configured to operate in the memory transfer compute and compare mode, the bit-
reversed output data may be written to the FIFO. This feature is controlled via the CRC_CTL.FDSELfield.

In addition to providing bit swapping and mirror options to the incoming data, the CRC peripheral also
supports bit mirroring on the following registers.

• CRC_RESULT_CUR and CRC_RESULT_FIN, controlled via the CRC_CTL.RSLTMIRR field. When mirroring
is enabled, the values to be written to these registers are fully bit-reversed before being written.

• CRC_POLY, controlled via the CRC_CTL.POLYMIRR field. When mirroring is enabled, the 32-bit polyno-
mial is fully bit-reversed before being written to the register.

• CRC_COMP, controlled via the CRC_CTL.CMPMIRR field. When mirroring is enabled, the contents to be
loaded to this register are fully bit-reversed before being written.

FIFO Status and Data Requests

The CRC peripheral provides input and output buffer status indication via CRC_STAT.IBR and CRC_STAT.
OBR respectively. For core-based operations, software is required to monitor these status fields prior to
writing to or reading from the CRC FIFO. No write to the CRC FIFO should occur while CRC_STAT.IBR
indicates that the buffer is not ready to accept data. Similarly, the CRC FIFO should not be read until CRC_
STAT.OBR indicates that data is available.

The memory scan modes of operation only require the monitoring of the input buffer status, whereas the
memory transfer compute and compare mode is required to use both input and output buffer status. If at
any point the current result of the CRC computation is required, then software must verify that the current
operation has completed and that the intermediate result is ready, as indicated by CRC_STAT.IRR.

NOTE: The memory transfer fill mode of operation requires the use of a DMA channel. Core reads from
the CRC FIFO for this mode of operations are not supported.

Memory transfer compute and compare mode makes use of burst transactions in order to make the most
efficient use of the available resources. In this mode, when the FIFO is initially empty and the peripheral
is enabled, the CRC_STAT.IBR bit indicates that the CRC is ready to accept data, and the peripheral gener-
ates data requests to the source DMA channel (if DMA is used). As long as the number of words remaining
in the CRC_DCNT register is greater than the FIFO depth, the peripheral issues data requests or accepts
incoming data in bursts until the CRC FIFO becomes full.

0 1 1 Dout[31:0] = Din[0:7],Din[8:15],Din[16:23],Din[24:31]
1 0 0 Dout[31:0] = Din[15:0], D[31:16]
1 0 1 Dout[31:0] = Din[8:15],Din[0:7], Din[24:31],Din[16:23]
1 1 0 Dout[31:0] = Din[23:16],Din[31:24], Din[7:0],Din[15:8]
1 1 1 Dout[31:0] = Din[16:23],Din[24:31], Din[0:7],Din[8:15]

Table 12-3: Data Mirroring Options (Continued)

W16SWP BYTMIRR BITMIRR Output Data

CYCLIC REDUNDANCY CHECK (CRC)
CRC OPERATING MODES

12–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Once full, the CRC_STAT.IBR and CRC_STAT.OBR bits are updated accordingly, and then outgoing data
requests are issued. Only when the FIFO is empty can the peripheral accept further incoming data, and the
CRC_STAT.IBR and CRC_STAT.OBR bits are updated once again.

Once CRC_DCNT is decremented such that the number of words remaining to be processed is less than the
number of words required to fill the FIFO, the burst mode of operation is disabled and incoming data is
accepted as long as the FIFO is not full and outgoing data is available as long the FIFO is not empty. There-
fore, there are no restrictions requiring the word count to be a multiple of the FIFO depth.

All other CRC modes of operation indicate that incoming data may be accepted as long as the FIFO is not
full, and that outgoing data is available as long the FIFO is not empty.

The way in which data requests and the status bits are generated is additionally influenced by the CRC_CTL.
OBRSTALL and CRC_CTL.IRRSTALL bit configurations described below.

• The CRC_CTL.OBRSTALL bit may be configured such that the CRC peripheral stalls as soon as there is
output data available in the FIFO. This mode of operation should only be used in memory transfer
compute and compare mode. This results in the processing of a single 32-bit word at a time. The
peripheral does not request or accept incoming data until the current value being processed is read
from the peripheral.

• The CRC_CTL.IRRSTALL bit may be configured so that the CRC peripheral stalls all further incoming
data requests until the CRC_RESULT_CUR register is read after being updated. This mode of operation is
only used for modes that result in CRC signature generation. It is not applicable to memory transfer
data fill or memory scan data verify modes of operation.

CRC Operating Modes
The following sections describe the various operating modes of the CRC interface.

Data Transfer Modes

The CRC peripheral supports two main categories of operation involving data transfers:

• Memory Scan mode

• Memory Transfer mode

Memory scan modes are read-only operations that allow the contents of memory to be read into the
peripheral and verified for correctness. There are two forms of memory scan mode:

• CRC Compute and Compare performs a CRC calculation on data presented to the peripheral and
compares the CRC result with a pre-determined and pre-loaded result. An error is generated if the
results differ.

• Data Verify compares each 32-bit data word presented to the CRC peripheral to a pre-loaded 32-bit
value and generates an error if the data is found to be different.

CYCLIC REDUNDANCY CHECK (CRC)
CRC OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–11

Both of these modes of operation require, at the very most, a single DMA channel to read the data from
memory into the peripheral. No data is forwarded to data output or destination DMA. Core-driven trans-
fers may also be used for either of these modes of operation.

The memory transfer modes involve memory write or memory read and write operations allowing for
memory to be initialized or transferred from one region of memory to another. There are two forms of
memory transfer mode:

• CRC Compute and Compare performs a full data transfer from one memory region to another memory
region. A CRC signature is generated on the data presented to the peripheral and compared with a pre-
determined and pre-loaded result. An error is generated if the results differ.

• Data Fill initializes a region of memory with a pre-loaded 32-bit constant value.

The CRC compute and compare mode of operation requires both incoming and outgoing data channels
either in the form of DMA channels, core driven write/read operations to/from the FIFO or a combination
of both. The data fill mode of operation requires only a memory write DMA destination channel—this
mode does not support core driven operations.

Memory Scan Compute and Compare

In this mode of operation the CRC Engine of the peripheral is enabled. The mode is configured through
the CRC_CTL.OPMODE field and the CRC engine performs a 32-bit CRC operation on the incoming data
stream.

The length of the data stream is configured via the CRC_DCNT register. The accumulated result of the CRC
operation is contained in the CRC_RESULT_CUR register. Upon each 32-bit word being processed by the
CRC engine the CRC_DCNT register is decremented and CRC_RESULT_CUR is updated.

Once CRC_DCNT decrements to zero, the contents of the CRC_RESULT_CUR register are copied to CRC_
RESULT_FIN and CRC_STAT.DCNTEXP is updated accordingly. The CRC_COMP register is used to store the
expected result of the CRC operation. Upon completion of the CRC calculation, CRC_COMP is compared
with CRC_RESULT_FIN and CRC_STAT.CMPERR is updated to reflect the status of the compare operation.
CRC_STAT.CMPERR is required to be cleared before the next CRC operation is performed.

The CRC peripheral also contains CRC_DCNTRLD register. This register is used to reload CRC_DCNT upon
completion of the CRC operation in preparation for the next transfer.

The initial seed of the CRC computation may be configured via CRC_CTL.AUTOCLRZ and CRC_CTL.
AUTOCLRF. This provides a means to reset CRC_RESULT_CUR to 0x00000000, 0xFFFFFFFF or to leave the
current register contents untouched for the next operation.

The peripheral may be configured to allow for the compare error and data expiration events to generate
an interrupt.

CYCLIC REDUNDANCY CHECK (CRC)
CRC OPERATING MODES

12–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Memory Scan Data Verify

In this mode of operation the CRC engine of the peripheral is not required. The mode is enabled through
the CRC_CTL.OPMODE field. Each 32-bit word of the data stream is compared with a constant value that is
stored in the CRC_COMP register. The CRC_DCNT register contains the number of words that are to be
compared. The CRC_DCNT register is decremented upon receiving a new 32-bit word from the data stream.
If at any point the compare operation should fail the CRC_STAT.CMPERR bit updated accordingly and the
contents of CRC_DCNT are captured in the CRC_DCNTCAP register. This may be used in order to identify the
location in the data stream where the error occurred. The CRC_STAT.CMPERR field should be cleared in
order to re-enable capturing of further errors.

Once CRC_DCNT decrements to zero, CRC_STAT.DCNTEXP is updated accordingly to signal the end of the
operation. The peripheral may be configured to allow for the compare error and data expiration events to
generate an interrupt.

Memory Transfer Compute and Compare

In this mode of operation the CRC Engine of the peripheral is enabled. The mode is configured through
the CRC_CTL.OPMODE field and the CRC engine performs a 32-bit CRC operation on the incoming data
stream.

The length of the data stream is configured via the CRC_DCNT register. The accumulated result of the CRC
operation is contained in the CRC_RESULT_CUR register. Upon each 32-bit word being processed by the
CRC engine the CRC_DCNT register is decremented and CRC_RESULT_CUR is updated.

Once CRC_DCNT decrements to zero, the contents of the CRC_RESULT_CUR register are copied to CRC_
RESULT_FIN and CRC_STAT.DCNTEXP is updated accordingly. The CRC_COMP register is used to store the
expected result of the CRC operation. Upon completion of the CRC calculation, CRC_COMP is compared
with CRC_RESULT_FIN and CRC_STAT.CMPERR is updated to reflect the status of the compare operation.
CRC_STAT.CMPERR is required to be cleared before the next CRC operation is performed.

The CRC peripheral also contains CRC_DCNTRLD register. This register is used to reload CRC_DCNTupon
completion of the CRC operation in preparation for the next transfer.

The initial seed of the CRC computation may be configured via CRC_CTL.AUTOCLRZ and CRC_CTL.
AUTOCLRF. This provides a means to reset CRC_RESULT_CUR to 0x00000000, 0xFFFFFFFF or to leave the
current register contents untouched for the next operation.

The peripheral may be configured to allow for the compare error and data expiration events to generate
an interrupt.

Memory Transfer Data Fill Mode

In this mode of operation the CRC engine of the peripheral is not required. The mode is enabled through
the CRC_CTL.OPMODE field. The CRC_FILLVAL register is written with a 32-bit value. This value is used to
initialize a block memory via the Memory-to-Memory DMA Destination channel. When the CRC periph-
eral and the DMA destination channel are enabled, the contents of the CRC_FILLVAL register is written to

CYCLIC REDUNDANCY CHECK (CRC)
CRC EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–13

the DMA channel to initialize the memory region. The CRC_DCNT register contains the number of words
that are to be written.

Once CRC_DCNTdecrements to zero, CRC_STAT.DCNTEXP is updated accordingly to signal the end of the
operation. The peripheral may be configured to allow for the this data expiration event to generate an
interrupt.

CRC Event Control
The CRC peripheral can enable certain CRC status operations to generate an interrupt event to the System
Event Controller. There, a CRC error can be qualified as a system fault.

Interrupt Signals

The CRC peripheral is capable of generating two interrupts that may optionally be enabled within the
System Event Controller. One is a CRC status interrupt and the other a CRC error interrupt.

The CRC_STAT.CMPERR status bit may be configured as an interrupt and is signalled via the CRC error
interrupt signal. The CRC_STAT.CMPERR status field is set whenever a compare operation performed by the
CRC peripheral fails. This may be as the result of a failed memory scan data verify operation that compares
the contents of a memory range with a constant 32-bit value. Or it may be as a result of the CRC signature
calculated for a memory region not matching the expected pre-programmed result for a memory scan or
memory transfer compute compare operation.

The CRC_STAT.DCNTEXP status bit is set when the CRC_DCNT register has decremented to zero indicating
that the CRC peripheral has now processed all the data that was requested for the current CRC operation.
This signal may also be used to generate an interrupt. The interrupt is signalled on the CRC status interrupt
signal.

Both these status bits may be configured to generate and interrupt via the CRC_INEN register. The CRC_
INEN register also has bit set, CRC_INEN_SET, and bit clear CRC_INEN_CLR equivalent registers that may be
used for the enabling and disabling of these interrupt sources.

The CRC_STAT register has two write one to clear (W1C) fields for clearing the two interrupt sources.

NOTE: Disabling the CRC peripheral via CRC_CTL.BLKEN does not result in the interrupt sources being
cleared. The interrupt sources must be cleared via a W1C operation to CRC_STAT.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

12–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CRC Programming Model
It is important to note the following restrictions when using the CRC peripheral in conjunction with the
DMA channels:

1. When enabling the CRC peripheral and the DMA channels, the CRC peripheral should be enabled
prior to enabling the DMA channels.

2. When disabling the CRC peripheral and the DMA channels, the DMA channels should be disabled
prior to disabling the CRC peripheral.

CRC Mode Configuration

Describes a number of tasks showing the various operation modes of the CRC peripheral.

• Look-Up Table Generation

• Core Driven Memory Scan Compute Compare Mode

• DMA Driven Memory Scan Compute Compare Mode

• Core Driven Memory Scan Data Verify Mode

• DMA Driven Memory Scan Data Verify Mode

• Core Driven Memory Transfer Compute Compare Mode

• DMA Driven Memory Transfer Compute Compare Mode

• DMA Driven Memory Transfer Data Fill Mode

Look-Up Table Generation

Describes the steps required to initialize the CRC peripheral LUT.

1. Write the 32-bit CRC polynomial of choice to CRC_POLY

ADDITIONAL INFORMATION: This operation results in the CRC peripheral starting the LUT initialization
process. CRC_STAT.LUTDONE is updated to reflect the operation is in progress.

2. Poll CRC_STAT.LUTDONE until the status bit indicates that the operation is completed.

RESULT:

The CRC peripheral has completed initialization of all the LUT registers and is now ready for data opera-
tions. The CRC_STAT.LUTDONE field remains in the current state until CRC_POLY is written again, or the
peripheral or processor are reset.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–15

Core Driven Memory Scan Compute Compare Mode

Performs CRC signature calculation and verification for a region of memory using core transactions. The
CRC peripheral is configured such that it operates in the burst mode of operation due to the stalling
options configured via CRC_CTL being disabled.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, that all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per CRC_CTL.
BLKEN.

1. Initialize CRC_DCNT.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize CRC_DCNTRLD.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize CRC_RESULT_CUR.

ADDITIONAL INFORMATION: This register may be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize CRC_COMP.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that is used in the final compare operation.

5. Initialize CRC_INEN.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

6. Initialize CRC_CTLwith CRC_CTL.OPMODE set to Memory Scan Compute Compare Mode and CRC_CTL.
BLKEN configured to enable the CRC peripheral.

• CRC_CTL.OBRSTALL and CRC_CTL.IRRSTALL options must be disabled for this task example.

• All mirroring and bit reversal options should also be configured.

• CRC auto clear options should also be configured.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

12–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

7. Write memory region data to the CRC peripheral.

a. While CRC_STAT.IBR indicates input buffer is ready, write the CRC_DFIFO with 32-bit data.
ADDITIONAL INFORMATION: This step is repeated until all required data has been written.

8. Poll CRC_STAT.DCNTEXP if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

9. Poll CRC_STAT.CMPERR if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: This step is only required if the compare error interrupt is not enabled.

10. Write CRC_STAT to clear both CRC_STAT.DCNTEXP and CRC_STAT.CMPERR.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC compute compare operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The integrity check of the memory via the expected CRC signature has completed and the final result is
indicated via CRC_STAT.CMPERR and the corresponding interrupt if it was enabled.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing additional CRC operations.

DMA Driven Memory Scan Compute Compare Mode

Performs CRC signature calculation and verification for a region of memory using DMA transactions. The
CRC peripheral is configured such that it operates in the burst mode of operation due to the stalling
options configured via CRC_CTL being disabled.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per CRC_CTL.
BLKEN.

1. Initialize CRC_DCNT.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–17

2. Initialize CRC_DCNTRLD.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize CRC_RESULT_CUR.

ADDITIONAL INFORMATION: This register may be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize CRC_COMP.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that is used in the final compare operation.

5. Initialize CRC_INEN.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

6. Initialize CRC_CTL with CRC_CTL.OPMODE set to memory scan compute compare mode and CRC_CTL.
BLKEN configured to enable the CRC peripheral.

• CRC_CTL.OBRSTALL and CRC_CTL.IRRSTALL options must be disabled for this task example.

• All mirroring and bit reversal options should also be configured.

• CRC auto clear options should also be configured.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

7. Configure and enable the memory-to-memory source DMA channel for memory read STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer from the memory region and writes the data
to the CRC peripheral.

8. Poll CRC_STAT.DCNTEXP if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

9. Poll CRC_STAT.CMPERR if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: This step is only required if the compare error interrupt is not enabled.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

12–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

10. Write CRC_STAT to clear both CRC_STAT.DCNTEXP and CRC_STAT.CMPERR.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC compute compare operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The integrity check of the memory via the expected CRC signature has completed and the final result indi-
cated is via CRC_STAT.CMPERR and the corresponding interrupt if it were enabled.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing a further CRC operation. Any W1C status
bits of the memory-to-memory source DMA channel should also be cleared before the next CRC opera-
tion.

Core Driven Memory Scan Data Verify Mode

Reads a region of memory using core transactions and performs a compare operation on each 32-bit word
against a single pre-loaded 32-bit constant. The compare error interrupt is enabled to capture and log the
location of any compare errors.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per CRC_CTL.
BLKEN. The interrupt service routine for the compare error interrupt should read and store the contents of
CRC_DCNTCAP to a buffer before clearing the compare error interrupt.

1. Initialize CRC_DCNT.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize CRC_DCNTRLD.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize CRC_COMP.

ADDITIONAL INFORMATION: This register contains the 32-bit constant that the memory region is expected
to be filled with. Each 32-bit of data presented to the peripheral will be compared with this value.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–19

4. Initialize CRC_INEN.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

5. Initialize CRC_CTL with CRC_CTL.OPMODE set to memory scan data verify mode and CRC_CTL.BLKEN
configured to enable the CRC peripheral.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

6. Write memory region data to the CRC peripheral.

a. Poll CRC_STAT.IBR until input buffer is ready.

b. Write CRC_DFIFO with 32-bit data.
ADDITIONAL INFORMATION: These two steps are repeated until the entire memory region has been written to the
CRC peripheral.

7. Poll CRC_INEN_SET.DCNTEXP if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

8. Check if the buffer used to capture the CRC_DCNTCAP register upon a compare error has any new entries.

ADDITIONAL INFORMATION: The values captures in the buffer provide a means to locate where in the
memory region the failures occurred.

9. Write CRC_STAT to clear both CRC_INEN_SET.DCNTEXP and CRC_INEN.CMPERR.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC memory scan verify operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The result of the integrity check of the memory with the 32-bit constant is indicated via CRC_INEN.CMPERR
and the corresponding interrupt if it were enabled. Each comparison error is traceable due to the logging
of CRC_DCNTCAP from within the compare error interrupt handler.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing a further CRC operation.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

12–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA Driven Memory Scan Data Verify Mode

Reads a region of memory using DMA transactions and performs a compare operation on each 32-bit
word against a single pre-loaded 32-bit constant. The compare error interrupt is enabled to capture and
log the location of any compare errors.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per CRC_CTL.
BLKEN. The interrupt service routine for the compare error interrupt should read and store the contents of
CRC_DCNTCAP to a buffer before clearing the compare error interrupt.

1. Initialize CRC_DCNT.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize CRC_DCNTRLD.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize CRC_COMP.

ADDITIONAL INFORMATION: This register contains the 32-bit constant that the memory region is expected
to be filled with. Each 32-bit of data presented to the peripheral will be compared with this value.

4. Initialize CRC_INEN.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

5. Initialize CRC_CTL with CRC_CTL.OPMODE set to memory scan data verify mode and CRC_CTL.BLKEN
configured to enable the CRC peripheral.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

6. Configure and enable the memory-to-memory source DMA channel for memory read STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer from the memory region and writes the data
to the CRC peripheral.

7. Poll CRC_STAT.DCNTEXP if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–21

8. Check if the buffer used to capture the CRC_DCNTCAP register upon a compare error has any new entries.

ADDITIONAL INFORMATION: The values captures in the buffer provide a means to locate where in the
memory region the failures occurred.

9. Write CRC_STAT to clear both CRC_STAT.DCNTEXP and CRC_STAT.CMPERR.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC memory scan verify operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The result of the integrity check of the memory with the 32-bit constant is indicated via CRC_STAT.CMPERR
and the corresponding interrupt if it were enabled. Each comparison error is traceable due to the logging
of CRC_DCNTCAP from within the compare error interrupt handler.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits and DMA status bits are cleared before performing a further CRC oper-
ation.

Core Driven Memory Transfer Compute Compare Mode

Performs CRC signature calculation and verification for a region of memory using core transactions while
copying the contents to another memory region. The CRC peripheral is configured such that it operates
in the burst mode of operation due to the stalling options configured via CRC_CTL being disabled.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per CRC_CTL.
BLKEN.

1. Initialize CRC_DCNT.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize CRC_DCNTRLD.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

12–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

3. Initialize CRC_RESULT_CUR.

ADDITIONAL INFORMATION: This register may be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize CRC_COMP.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that is used in the final compare operation.

5. Initialize CRC_INEN.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

6. Initialize CRC_CTL with CRC_CTL.OPMODE set to memory scan compute compare mode and CRC_CTL.
BLKEN configured to enable the CRC peripheral.

• CRC_CTL.OBRSTALL and CRC_CTL.IRRSTALL options must be disabled for this task example.

• All mirroring and bit reversal options should also be configured.

• CRC auto clear options should also be configured.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

7. Write memory region data to the CRC peripheral and read it back to the new destination.

a. While CRC_STAT.IBR indicates input buffer is ready, write CRC_DFIFO with 32-bit data.

b. While CRC_STAT.OBR indicates output buffer is ready, read CRC_DFIFO and store data to new desti-
nation.

ADDITIONAL INFORMATION: These two steps are repeated until all required data has been processed through the
CRC peripheral and copied to the new destination.

8. Poll CRC_STAT.DCNTEXP if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if the counter expired interrupt is disabled. Polling
is required to ensure all the data has been processed.

9. Poll CRC_STAT.CMPERR if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: This step is only required if the compare error interrupt is not enabled.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–23

10. Write CRC_STAT to clear both CRC_STAT.DCNTEXP and CRC_STAT.CMPERR.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC compute and compare operation is now complete and the CRC peripheral is
ready to be configured for the next CRC operation. The memory region has also been copied to its new
destination.

RESULT:

The memory region has been copied to a new location and an integrity check of the memory via the
expected CRC signature has also completed and the final result is indicated via CRC_STAT.CMPERR and the
corresponding interrupt if it were enabled.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing a further CRC operation.

DMA Driven Memory Transfer Compute Compare Mode

Performs CRC signature calculation and verification for a region of memory using DMA transactions. The
memory region is also copied to another memory region via the use of Memory-to-Memory DMA trans-
fers. The CRC peripheral is configured such that it operates in the burst mode of operation due to the
stalling options configured via CRC_CTL being disabled.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per CRC_CTL.
BLKEN.

1. Initialize CRC_DCNT.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize CRC_DCNTRLD.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize CRC_RESULT_CUR.

ADDITIONAL INFORMATION: This register may be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

12–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

4. Initialize CRC_COMP.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that is used in the final compare operation.

5. Initialize CRC_INEN.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

6. Initialize CRC_CTL with CRC_CTL.OPMODE set to memory scan compute compare mode and CRC_CTL.
BLKEN configured to enable the CRC peripheral.

• CRC_CTL.OBRSTALL and CRC_CTL.IRRSTALL options must be disabled for this task example.

• All mirroring and bit reversal options should also be configured.

• CRC auto clear options should also be configured.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

7. Configure and enable the memory-to-memory source DMA channel for memory read STOP mode and
destination DMA channel for memory write STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer from one memory region to another via the
memory-to-memory DMA channels and the CRC peripheral.

8. Poll CRC_STAT.DCNTEXP if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

9. Poll CRC_STAT.CMPERR if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: This step is only required if the compare error interrupt is not enabled.

10. Write CRC_STAT to clear both CRC_STAT.DCNTEXP and CRC_STAT.CMPERR.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC compute and compare operation is now complete and the CRC peripheral is
ready to be configured for the next CRC operation. The memory region has also been copied to its new
destination.

RESULT:

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–25

The integrity check of the memory via the expected CRC signature has completed and the final result is
indicated via CRC_STAT.CMPERR and the corresponding interrupt if it were enabled. The memory region
has also been copied to its final destination.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing a further CRC operation. Any W1C status
bits of the memory-to-memory source and destination DMA channels should also be cleared before the
next CRC operation.

DMA Driven Memory Transfer Data Fill Mode

Initializes a region of memory to a constant 32-bit value using DMA transactions.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per CRC_CTL.
BLKEN.

1. Initialize CRC_DCNT.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize CRC_DCNTRLD.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize CRC_FILLVAL.

ADDITIONAL INFORMATION: This register contains the 32-bit constant that is used to fill the memory
region.

4. Initialize CRC_INEN.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of block completion. Configure these interrupts as required. If enabled ensure the corre-
sponding interrupt handlers are also configured.

5. Initialize CRC_CTL with CRC_CTL.OPMODE set to memory transfer fill mode and CRC_CTL.BLKEN config-
ured to enable the CRC peripheral.

STEP RESULT: The CRC peripheral is now enabled and is ready for data to be written by the DMA channel

CYCLIC REDUNDANCY CHECK (CRC)
CRC PERIPHERAL AND DMA CHANNEL LIST

12–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

6. Configure and enable the memory-to-memory destination DMA channel for memory write STOP
mode.

ADDITIONAL INFORMATION: This step starts the data transfer taking the constant 32-bit value from the CRC
peripheral and writing the data to the DMA channel.

7. Poll CRC_STAT.DCNTEXP if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

8. Write CRC_STAT to clear CRC_STAT.DCNTEXP.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of this status bit should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC memory transfer fill operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The memory region is now filled with the constant data and the CRC peripheral is ready to be configured
for a new operation.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits and DMA status bits are cleared before performing a further CRC oper-
ation.

CRC Peripheral and DMA Channel List

Table 12-4: CRC DMA Channels

DMA Channel Peripheral FIFO Depth (Bytes) Bandwidth Limit/Monitor Support

DMA21 CRC0 Receive 128 Yes
DMA22 CRC0 Transmit 64 Yes
DMA23 CRC1 Receive 64 Yes
DMA24 CRC1 Transmit 64 Yes

Table 12-5: CRC DMA Channels (Continued)

DMA Channel
Memory Bus

Width Peripheral Bus Width Max Outstanding Reads Max Outstanding Writes

DMA21 32-bit 32-bit 8 7
DMA22 32-bit 32-bit 8 4

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–27

ADSP-BF60x CRC Register Descriptions
Cyclic Redundancy Check Unit (CRC) contains the following registers.

DMA23 32-bit 32-bit 8 4
DMA24 32-bit 32-bit 8 4

Table 12-6: ADSP-BF60x CRC Register List

Name Description

CRC_CTL Control Register

CRC_DCNT Data Word Count Register

CRC_DCNTRLD Data Word Count Reload Register

CRC_COMP Data Compare Register

CRC_FILLVAL Fill Value Register

CRC_DFIFO Data FIFO Register

CRC_INEN Interrupt Enable Register

CRC_INEN_SET Interrupt Enable Set Register

CRC_INEN_CLR Interrupt Enable Clear Register

CRC_POLY Polynomial Register

CRC_STAT Status Register

CRC_DCNTCAP Data Count Capture Register

CRC_RESULT_FIN CRC Final Result Register

CRC_RESULT_CUR CRC Current Result Register

Table 12-5: CRC DMA Channels (Continued) (Continued)

DMA Channel
Memory Bus

Width Peripheral Bus Width Max Outstanding Reads Max Outstanding Writes

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

12–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Control Register

The CRC_CTL configures the operation modes and settings for the CRC.

Figure 12-3: CRC_CTL Register Diagram

Table 12-7: CRC_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

22
(R/W)

CMPMIRR COMPARE Register Mirroring.
The CRC_CTL.CMPMIRR enables data mirroring for the CRC_COMP
compare register. When enabled, the 32-bit value in this register is
fully bit mirrored (reversed). The bit-reversed value is used for
comparison with the CRC_RESULT_FIN register.
0 Disable compare mirroring
1 Enable compare mirroring

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–29

21
(R/W)

POLYMIRR Polynomial Register Mirroring.
The CRC_CTL.POLYMIRR enables data mirroring for the CRC_POLY
polynomial register. When enabled, the 32-bit value in this register is
fully bit mirrored (reversed). The bit-reversed value is used for CRC
computations.
0 Disable polynomial mirroring
1 Enable polynomial mirroring

20
(R/W)

RSLTMIRR Result Register Mirroring.
The CRC_CTL.RSLTMIRR enables data mirroring for the CRC_
RESULT_CUR and CRC_RESULT_FIN result registers. When enabled,
the 32-bit values is these registers are fully bit mirrored (reversed).
0 Disable result mirroring
1 Enable result mirroring

19
(R/W)

FDSEL FIFO Data Select.
The CRC_CTL.FDSEL selects whether the CRC writes modified or
unmodified data to the FIFO in memory transfer mode. If enabled,
the data written is affected by the state of the data mirroring
selections (CRC_CTL.BITMIRR, CRC_CTL.BYTMIRR, and CRC_CTL.
W16SWP) before being written to the FIFO.
0 Write unmodified data to FIFO
1 Write modified data to FIFO

18
(R/W)

W16SWP Word16 Swapping.
The CRC_CTL.W16SWP enables the CRC's data mirror block to swap
the upper and lower 16-bit words within the 32-bit input data, before
further processing.
0 Disable word16 swapping
1 Enable word16 swapping

17
(R/W)

BYTMIRR Byte Mirroring.
The CRC_CTL.BYTMIRR enables the CRC's data mirror block to
mirror the bytes within the 32-bit input data, before further
processing.
0 Disable byte mirroring
1 Enable byte mirroring

Table 12-7: CRC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

12–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

16
(R/W)

BITMIRR Bit Mirroring.
The CRC_CTL.BITMIRR enables the CRC's data mirror block to
mirror the bits within each byte of the 32-bit input data, before
further processing.
0 Disable bit mirroring
1 Enable bit mirroring

13
(R/W)

IRRSTALL Intermediate Result Ready Stall.
The CRC_CTL.IRRSTALL enables stalling the state machine for input
data when there is a valid intermediate result to be read in CRC_
RESULT_CUR. This feature should be used only in CRC computation
modes (for example, CRC_CTL.OPMODE =1 or =3).
0 Do not stall
1 Stall on IRR

12
(R/W)

OBRSTALL Output Buffer Ready Stall.
The CRC_CTL.OBRSTALL enables stalling the state machine for input
data when there is a valid data in the output buffer. This feature
should be used only in memory-to-memory transfer modes (for
example, CRC_CTL.OPMODE =1).
0 Do not stall
1 Stall on OBR

9
(R/W)

AUTOCLRF Auto Clear to One.
The CRC_CTL.AUTOCLRF enables auto clear to one when the CRC is
in intermediate results ready stall mode (CRC_CTL.IRRSTALL=1) and
the CRC data count expires (CRC_DCNT=0). Note that CRC_CTL.
AUTOCLRZ must be disabled, or the CRC_CTL.AUTOCLRF has no effect.
0 No auto clear
1 Auto clear

8
(R/W)

AUTOCLRZ Auto Clear to Zero.
The CRC_CTL.AUTOCLRZ enables auto clear to zero when the CRC is
in intermediate results ready stall mode (CRC_CTL.IRRSTALL=1) and
the CRC data count expires (CRC_DCNT=0). Note that CRC_CTL.
AUTOCLRF must be disabled, or the CRC_CTL.AUTOCLRZ has no effect.
0 No auto clear
1 Auto clear

Table 12-7: CRC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–31

Data Word Count Register

The CRC_DCNT holds the word count that is used for the CRC operation. On transfer of every 32-bit word,
the CRC decrements by 1 the content of this register. When the count decrements to zero, this event trig-
gers a CRC compare action, and CRC_DCNT is automatically loaded from the CRC_DCNTRLD for the next
CRC operation. Note that the initial value programmed into CRC_DCNT may be different from what is
programmed in the CRC_DCNTRLD.

Figure 12-4: CRC_DCNT Register Diagram

7:4
(R/W)

OPMODE Operation Mode.
The CRC_CTL.OPMODE selects the memory transfer or scan mode.
0 Reserved
1 CRC compute/compare memory transfer
2 Data fill memory transfer
3 CRC compute/compare memory scan
4 Data verify memory scan

0
(R/W)

BLKEN Block Enable.
The CRC_CTL.BLKEN enables/disables CRC operation.
0 Disable
1 Enable

Table 12-7: CRC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

12–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Data Word Count Reload Register

The CRC_DCNTRLD holds the value that the CRC automatically loads into CRC_DCNT when the CRC_DCNT
decrements to 0. At startup, the value programmed in CRC_DCNT and CRC_DCNTRLD could be different. So,
for the first iteration, the CRC operation happens for the count initially programmed in the CRC_DCNT
register. While for subsequent CRC operations, the count is taken from the CRC_DCNTRLD register.

Figure 12-5: CRC_DCNTRLD Register Diagram

Data Compare Register

The CRC_COMP contains the value corresponding to the expected CRC result or signature for the current
data stream. At the end of the operation, the content of this register is used to compare against the result
produced by the CRC operation. In data verify mode, each incoming data value is compared with the
content of this register.

Table 12-8: CRC_DCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Data Word Count.

Table 12-9: CRC_DCNTRLD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Reload Value.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–33

Figure 12-6: CRC_COMP Register Diagram

Fill Value Register

The CRC_FILLVAL holds the value that the CRC uses for the memory fill operation. In data fill mode, the
value programmed in this register is used for the memory fill operation.

Figure 12-7: CRC_FILLVAL Register Diagram

Table 12-10: CRC_COMP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Expected CRC Result Value.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

12–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Data FIFO Register

In memory transfer mode (non-data fill mode), the data from the DMA or processor core buses is written
into the CRC_DFIFO on each input data grant (DMA grant or core write). Data is read from this FIFO on
each output data grant (DMA grant or core read). FIFO status information is available in the CRC_STAT
register. Whenever, the FIFO has valid data, output data requests are generated.

Note that---in non-memory transfer mode and in data fill mode---the input data actually does not get
written into this FIFO. So, this register should not be read in these modes.

Figure 12-8: CRC_DFIFO Register Diagram

Interrupt Enable Register

The CRC_INEN unmasks (enables) or masks (disables) interrupt requests generated in the CRC from going
to the processor core. Note that CRC interrupts are not disabled when the CRC is disabled (CRC_CTL.
BLKEN =0).

Table 12-11: CRC_FILLVAL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Memory Fill Value.

Table 12-12: CRC_DFIFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Data FIFO Value.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–35

Figure 12-9: CRC_INEN Register Diagram

Interrupt Enable Set Register

The CRC_INEN_SET permits setting individual bits in the CRC_INEN register without affecting other bits in
the register.

Table 12-13: CRC_INEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

DCNTEXP Data Count Expired (Status) Interrupt Enable.
The CRC_INEN.DCNTEXP enables (unmasks) the data count expired
(CRC status) interrupt.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

1
(R/W)

CMPERR Compare Error Interrupt Enable.
The CRC_INEN.CMPERR enables (unmasks) the data compare
interrupt, which is generated when CRC data comparison fails.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

12–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 12-10: CRC_INEN_SET Register Diagram

Interrupt Enable Clear Register

The CRC_INEN_CLR permits clearing individual bits in the CRC_INEN register without affecting other bits
in the register.

Table 12-14: CRC_INEN_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R0/WS)

DCNTEXP Data Count Expired (Status) Interrupt Enable Set.
0 No Effect
1 Set Bit

1
(R0/WS)

CMPERR Compare Error Interrupt Enable Set.
0 No Effect
1 Set Bit

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–37

Figure 12-11: CRC_INEN_CLR Register Diagram

Polynomial Register

The CRC_POLY holds a 32-bit polynomial for CRC operations. Bit 31 corresponds to coefficient of x31 of
the CRC polynomial, bit 30 corresponds to coefficient of x30, and so on through to bit 0. Coefficient of x32
is assumed to be "1" for any polynomial that is selected. Based on the polynomial in CRC_POLY, the CRC
generates a look-up table (LUT), which is used to compute the CRC of the incoming data stream.

Table 12-15: CRC_INEN_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R0/WC)

DCNTEXP Data Count Expired (Status) Interrupt Enable Clear.
0 No Effect
1 Clear Bit

1
(R0/WC)

CMPERR Compare Error Interrupt Enable Clear.
0 No Effect
1 Clear Bit

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

12–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 12-12: CRC_POLY Register Diagram

Status Register

The CRC_STAT indicates status for CRC operations and interrupt generation.

Figure 12-13: CRC_STAT Register Diagram

Table 12-16: CRC_POLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE CRC Polynomial Value.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–39

Table 12-17: CRC_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

22:20
(R/NW)

FSTAT FIFO Status.
The CRC_STAT.FSTAT indicates the current FIFO status. This field is
read-only.
0 FIFO Empty
1 FIFO has 1 data
2 FIFO has 2 data
3 FIFO has 3 data
4 FIFO has 4 data (Full)

19
(R/NW)

LUTDONE Look Up Table Done.
The CRC_STAT.LUTDONE indicates that the CRC has generated the
look up table for the current polynomial. This read-only bit is cleared
at reset and cleared when the CRC_POLY is written.
0 No Status
1 LUT Generation Done

18
(R/NW)

IRR Intermediate Result Ready.
The CRC_STAT.IRR indicates that the CRC has updated the CRC_
RESULT_CUR register with intermediate CRC results for the new data
written to the CRC. The processor core should read from the CRC_
RESULT_CUR register only after detecting CRC_STAT.IRR =1. This
read-only bit is cleared by CRC hardware and is valid when CRC_
CTL.IRRSTALL is enabled.
0 No Status
1 Intermediate Results Ready

17
(R/NW)

OBR Output Buffer Ready.
The CRC_STAT.OBR indicates that the CRC has data ready for the
processor core to read. The processor core should read from the CRC
only after detecting CRC_STAT.OBR =1. This read-only bit is cleared
by CRC hardware.
0 No Status
1 Output Buffer Ready

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

12–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Data Count Capture Register

The CRC_DCNTCAP captures the CRC_DCNT value when a compare operation fails in data verify mode. This
capture can be used to track the position of error in the data stream. Capture operation is enabled only if
the CRC_STAT.CMPERR indicates no compare error. After an error occurs and data count is captured, no
further errors are logged until the CRC_STAT.CMPERR bit is cleared. To obtain the position of error in the
data stream, subtract the CRC_DCNTCAP value from the initial CRC_DCNT.

16
(R/NW)

IBR Input Buffer Ready.
The CRC_STAT.IBR indicates that the CRC is ready to accept a
processor core write. The processor core should write to the input
register only after detecting that CRC_STAT.IBR =1. This read-only
bit is cleared by CRC hardware.
0 No Status
1 Input Buffer Ready

4
(R/W1C)

DCNTEXP Data Count Expired.
The CRC_STAT.DCNTEXP indicates that the CRC_DCNT has expired.
This W1C bit is not automatically cleared when the CRC is disabled
(CRC_CTL.BLKEN =0). When the CRC sets this bit on CRC_DCNT
expiry, the CRC generates the CRC_INEN.DCNTEXP interrupt.
0 No Status
1 Data Counter Expired

1
(R/W1C)

CMPERR Compare Error.
The CRC_STAT.CMPERR indicates that a CRC mismatch or data
mismatch has been detected. This W1C bit is not automatically
cleared when the CRC is disabled (CRC_CTL.BLKEN =0). When the
CRC sets this bit on detecting a mismatch, the CRC generates the
CRC_INEN.CMPERR interrupt. While this bit is set, the CRC_DCNTCAP is
disabled from capturing the data count values.
0 No Status
1 Compare Error

Table 12-17: CRC_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 12–41

Figure 12-14: CRC_DCNTCAP Register Diagram

CRC Final Result Register

The CRC_RESULT_FIN holds the final CRC computed for a data stream. A data stream is a DMA of CRC_
DCNT number of words into the CRC. When CRC_DCNT decrements to zero for each datastream, the CRC
loads CRC_RESULT_FIN with the value from CRC_RESULT_CUR.

Figure 12-15: CRC_RESULT_FIN Register Diagram

Table 12-18: CRC_DCNTCAP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Data Count Capture Value.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-BF60X CRC REGISTER DESCRIPTIONS

12–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CRC Current Result Register

The CRC_RESULT_CUR holds the current or intermediate CRC result and is updated when new data is
written into the CRC. Each time the CRC_DCNT expires, the CRC loads the value from this register into the
CRC_RESULT_FIN. The CRC_RESULT_CUR may be set to auto clear to zero or auto clear to ones when CRC_
DCNT expires by configuring the CRC_CTL.AUTOCLRZ and CRC_CTL.AUTOCLRF bits. Before starting a CRC
operation, the CRC_RESULT_CUR should be programmed to the desired value. Note that this register can be
read by the processor core at any time.

Figure 12-16: CRC_RESULT_CUR Register Diagram

Table 12-19: CRC_RESULT_FIN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Computed CRC.

Table 12-20: CRC_RESULT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Intermediate CRC Result.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–1

13 Direct Memory Access (DMA)

The DMA channels are dispersed throughout the infrastructure and may be clustered together via system
crossbars (SCB) so as to share a single interface with the main system crossbar.

The DMA channels can perform transfers between memory and a peripheral or between one memory and
another memory. Two DMA channels are required for memory to memory DMA transfers (MDMA). One
channel is the source channel, and the second, the destination channel.

All DMA channels can transport data to and from virtually all on-chip and off-chip memories.

DMA transfers on the processor can be descriptor-based or register-based. Register-based DMA allows the
processor to directly program DMA controller registers to initiate a DMA transfer. On completion, the
controller registers may be automatically updated with their original setup values for continuous transfer,
if needed. Descriptor-based DMA transfers require a set of parameters stored within memory to initiate a
DMA sequence. Descriptor-based transfers allow the chaining together of multiple DMA sequences. In
Descriptor-based DMA operations, a DMA channel can be programmed to automatically set up and start
another DMA transfer after the current sequence completes.

The DMA channel does not connect external memories and devices directly. Rather, data is passed
through an external memory interface port. Any kind of device that is supported by the external memory
interface can also be accessed by DMA operations. This is typically flash memory, SRAM, DDR SDRAM,
FIFOs, or memory-mapped peripheral devices.

DMA Channel Features
The processor uses Direct Memory Access (DMA) to transfer data within memory spaces or between a
memory space and a peripheral. The processor can specify data transfer operations and return to normal
processing while the fully integrated DMA channel carries out the data transfers independent of processor
activity. The DMA channels are dispersed throughout the infrastructure and interface with the system
crossbar unit (SCB).

The following is a list of DMA interface features.

• Supports integer byte strides including byte strides of 0 and negative byte strides

• Register based configuration

– Core writes DMA configuration

– Supports automatic reloading for continuous operation

• Flexible descriptor based configuration

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

– DMA descriptors are fetched from memory

– Support for variable descriptor sizes

• Flexible flow control – Transitions between the various descriptor based modes and for DMA termi-
nation

• Orthogonal transfers

– Support for three transfer dimensions

– 1-D and 2-D transfers supported per descriptor set

– 3-D support provided by chained descriptor sets

• Configurable memory and peripheral transfer word sizes

– Memory interface supports 8, 16, 32, 64, 128 and 256-bit transfers

– Peripheral interface supports for 8, 16, and 32-bit transfers

• Interrupt notification

– Row or work unit completion

– Error conditions

• Incoming and outgoing trigger support

– Trigger generation for row or work unit completion

– Work unit can wait for incoming trigger

• MMR access bus – Provides access to memory mapped registers for configuration, monitoring and
debug

• SCB crossbar interface connects the DMA channel to the system crossbar

• Peripheral DMA bus – Interfaces the DMA channel to a peripheral or another DMA channel

• Peripheral data request interrupt support

• Bandwidth monitoring and limiting

DMA Channel Functional Description
This section provides a functional description of the DMA channel interface.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–3

ADSP-BF60x DMA Register List

The DMA channel (DMA) supports data transfers within memory spaces or between a memory space and
a peripheral. The processor can specify data transfer operations and return to normal processing while the
fully integrated DMA channel carries out the data transfers independent of processor activity. The DMA
channels are dispersed throughout the infrastructure, as DMAs. A set of registers govern DMA operations.
For more information on DMA functionality, see the DMA register descriptions.

Table 13-1: ADSP-BF60x DMA Register List

Name Description

DMA_DSCPTR_NXT Pointer to Next Initial Descriptor

DMA_ADDRSTART Start Address of Current Buffer

DMA_CFG Configuration Register

DMA_XCNT Inner Loop Count Start Value

DMA_XMOD Inner Loop Address Increment

DMA_YCNT Outer Loop Count Start Value (2D only)

DMA_YMOD Outer Loop Address Increment (2D only)

DMA_DSCPTR_CUR Current Descriptor Pointer

DMA_DSCPTR_PRV Previous Initial Descriptor Pointer

DMA_ADDR_CUR Current Address

DMA_STAT Status Register

DMA_XCNT_CUR Current Count(1D) or intra-row XCNT (2D)

DMA_YCNT_CUR Current Row Count (2D only)

DMA_BWLCNT Bandwidth Limit Count

DMA_BWLCNT_CUR Bandwidth Limit Count Current

DMA_BWMCNT Bandwidth Monitor Count

DMA_BWMCNT_CUR Bandwidth Monitor Count Current

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA Definitions

To make the best use of the DMA channel, it is useful to understand the following terms.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–5

Descriptor

An individual configuration fetched from memory that maps to a single register within a DMA channel.

Descriptor Fetch

The action of retrieving descriptors from memory through memory read operations and loading then into
the DMA channel registers upon their read return.

Descriptor Set

A group of descriptors associated with a single work unit.

Disabled State

The channel is disabled because the enable bit = 0 or as a result of an error.

DMAC

An acronym used for a DMA cluster.

DMA Channel

A single DMA engine that has all the capabilities and registers as defined for a given processor. A DMA
channel or engine is connected to a single peripheral.

DMA Cluster

A grouping of multiple DMA channels with a shared SCB crossbar interface, controller and arbiter. Also
known as a DMAC.

Initial Descriptor

The first descriptor in the descriptor set.

MDMA

Memory-to-Memory DMA Data transfer. Two DMA channels are paired to perform a memory read from
one address location and a memory write of that data to another address location.

Stop State

A time where the channel is enabled but not currently programmed to perform a data transfer. Program-
ming the flow to STOP causes the channel to enter Stop State at the end of the work unit.

User

Any person, debug, emulator, software routine or action taken by the core that accesses the MMR registers
of the DMA channel or peripherals, or sets up data and descriptors in memory.

Wait State

If instructed to wait for a trigger, the channel enters this state once it has completed a work unit. The

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

channel remains in this state until a trigger occurs. If a trigger came in before reaching the wait state, the
channel will skip over the Wait State upon completion of the work unit.

Work Unit

A single data transaction or series of data transactions performed based on the configuration of the DMA
channel. In the case of autobuffer mode, a new work unit is defined at the time all current count registers
are initialized to start values. Once all the current count registers count down to zero, the work unit has
completed.

Work Unit Chain

A single work unit or a series or work units separated by a stop or disabled state. The work units in the
chain are programmed to another descriptor flow. The last work unit in the chain is programmed to a flow
of STOP or AUTO. STOP stops the state at the end of that work unit. AUTO is required to be disabled by
disabling the DMA channel. A work unit chain is also known as a descriptor chain.

Block Diagram

The figure shows the functional blocks within the DMA interface.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–7

Figure 13-1: DMA Channel Block Diagram

For more information on the interfaces shown in the block diagram, see:

• DMA Channel Peripheral DMA Bus

• DMA Channel MMR Access Bus

• DMA Channel Event Control

• DMA Channel SCB Interface

• DMA Channel List for ADSP-BF60x

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SCB Interface Signals

The DMA channel operates at SCLK frequency as does the SCB interface. The SCB crossbar handles the
internal arbitration of the transfer requests of all the masters interfaced to the SCB crossbar instance (see
the following table.

DMA Channel Peripheral DMA Bus

The peripheral DMA bus connects the DMA channel to a peripheral or another DMA channel.

The DMA channel connects to peripherals or other DMA channels via the peripheral DMA bus. This is a
dedicated point-to-point interface supporting data bus widths of 8, 16, 32 or 64 bits. The data bus widths
for a given DMA channel on a particular processor may vary and are not configurable. The assigned bus
width can be determined by reading the DMA_STAT.PBWID field.

The DMA channel operates at SCLK frequency as does the peripheral DMA bus. The following table
provides descriptions of the peripheral DMA bus signals.

Table 13-2: SCB Interface Signals

Signal Width (bits) Description

SCB_WRITE_DATA 16/32/64/128 Data bus used for write operations. The width
of the bus can be determined from DMA_STAT.
MBWID

SCB_WRITE_ADDRESS 32 Write address bus. Provides the address of the
first transfer in a burst transaction

SCB_READ_DATA 16/32/64/128 Data bus used for read operations. The width
of the bus can be determined from DMA_STAT.
MBWID

SCB_READ_ADDRESS 32 Read address bus. Provides the address of the
first transfer in a burst transaction

Table 13-3: Peripheral DMA Bus Signals

Signal Width (bits) Description

PDMA_WRITE_DATA 8/16/32/64 Data bus used for write operations. The width of the bus
can be determined from DMA_STAT.PBWID

PDMA_READ_DATA 8/16/32/64 Data bus used for read operations. The width of the bus
can be determined from DMA_STAT.PBWID

PDMA_DMA_GRANT Control signals to indicate that data is valid for DMA
channel read operations (peripheral transmit) and that the
DMA channel is ready to receive data for write operations
(peripheral receive)

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–9

DMA Channel MMR Access Bus

The MMR access bus provides access to all the DMA channels memory-mapped registers for DMA
channel configuration, monitoring and debug. The interface has a fixed 32-bit data bus for read and write
accesses.

The following table provides descriptions of the MMR access bus signals.

Event Signals

The following table provides descriptions of DMA channel events.

PDMA_CMD 3 Used by the peripheral for issuing DMA channel control
commands

PDMA_CTRL The control signals used by the peripheral to send various
commands to the DMA channel and control the direction
of flow

Table 13-4: MMR Access Bus Signals

Signal Width (bits) Description

 MMR_WRITE_DATA 32 Data bus used for write operations to the MMRs
from the core.

 MMR_READ_DATA 32 Data bus used to return read data from the MMRs
 MMR_READ_ADDR 7 Address that is used to select the MMR to access

Table 13-5: Event Signals

Signal Width (bits) Description

DMA_ERROR 1 Used to signal an error condition in the DMA channel. The source of the
error can be determined by reading the DMA_STAT.ERRC bit.

DONE_PIRQ_INT 1 Signal used to indicate DMA completions events, PIRQ events and also
for forwarding PDR events based on configuration. The source of the
event may be determined by reading the corresponding fields in DMA_
STAT.

DMA_TRIG_OUT 1 Trigger output that gets routed to the TRU and can be configured to
provide notification on row or work unit completion.

DMA_TRIG_IN 1 Trigger input from the TRU that can be used to control the start of a
work unit.

Table 13-3: Peripheral DMA Bus Signals (Continued)

Signal Width (bits) Description

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Architectural Concepts

The DMA channel provides a means to transfer data between memory spaces or between memory and a
peripheral using a number of system interfaces. The DMA channel provides an efficient means of distrib-
uting data throughout the system, freeing up the processor core for other operations. Each peripheral that
supports DMA transfers has its own dedicated DMA channel or channels with its own register set that
configures and controls the operating modes of the DMA transfers.

DMA Channel SCB Interface

The SCB interface connects the DMA channel to the SCB crossbar allowing for transfers to and from the
processors internal memory and other suitable system resources.

The DMA channel connects to the system interconnect through the SCB interface so that the DMA
channel can perform work unit data transfers with memories such as L1, internal L2 and external L3. In
addition to work unit data transfers, the SCB interface is also used for fetching descriptor sets for all the
descriptor based transfer modes.

The DMA channel is capable of supporting data bus widths of 16, 32, 64 or 128-bits. The data bus widths
for a given DMA channel on a specific processor may vary and are not configurable. The assigned bus
widths can be determined by reading the DMA_STAT.MBWID field.

SCB Interface Signals

The DMA channel operates at SCLK frequency as does the SCB interface. The SCB crossbar handles the
internal arbitration of the transfer requests of all the masters interfaced to the SCB crossbar instance (see
the following table.

Table 13-6: SCB Interface Signals

Signal Width (bits) Description

SCB_WRITE_DATA 16/32/64/128 Data bus used for write operations. The width
of the bus can be determined from DMA_STAT.
MBWID

SCB_WRITE_ADDRESS 32 Write address bus. Provides the address of the
first transfer in a burst transaction

SCB_READ_DATA 16/32/64/128 Data bus used for read operations. The width
of the bus can be determined from DMA_STAT.
MBWID

SCB_READ_ADDRESS 32 Read address bus. Provides the address of the
first transfer in a burst transaction

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–11

SCB Burst Transfers

The SCB interface supports burst transfers for memory read and write operations. The burst length is a
function of the DMA channel’s configurable memory size for the work unit and the fixed bus width of the
DMA channel’s SCB data bus.

• If the DMA channel is configured such that the memory transfer size is less than or equal to the DMA
channels bus width, then the burst length is always 1.

• If the configured memory size is greater then the SCB interface bus width, then the burst length is suffi-
cient to transfer a transaction as specified by the configured memory size.

Data Address Alignment

In order to prevent addressing errors and maximize bandwidth of the SCB interface to the DMA channel,
data addresses must be aligned to be a multiple of the programmable memory size of the DMA channels
configuration as shown in Descriptor Set Address Alignment.

There are situations in which entire work units cannot be transferred at the maximum configurable
memory size. In this case the entire work unit may be fulfilled by reducing the configured memory size at
the expense of bus bandwidth. Through the use of descriptor sets:

• The first descriptor set can be configured to transfer data until the larger memory size alignments are
met.

• A second descriptor set with a larger memory size configuration may then be used to transfer a bulk of
the data in the work unit.

• Finally a third descriptor set may be used with a smaller memory size in order to complete any final
data transfers that may not meet the alignment requirements of the previous descriptor set configura-
tion.

Table 13-7: DMA Channel SCB Burst Lengths

 Configured Memory
Size Burst Length

16-bit Bus 32-bit Bus 64-Bit Bus 128-bit Bus
1 Bytes 1 1 1 1
2 Bytes 1 1 1 1
4 Bytes 2 1 1 1
8 Bytes 4 2 1 1

16 Bytes 8 4 2 1
32 Bytes 16 8 4 2

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Descriptor Set Address Alignment

All descriptor set addresses and descriptors within a descriptor set must be aligned to a 32-bit address. The
memory size of the DMA channel’s configuration is ignored for descriptor set fetches, which avoids the
need to align descriptor sets based on the previous descriptor set’s memory width configuration.

For descriptor sets containing only a single descriptor the transfer takes place as a single 32-bit transfer.
For descriptor sets containing multiple descriptors, each 32-bit descriptor is fetched individually and
treated as multiple 32-bit transfers.

DMA Channel Peripheral DMA Bus

The peripheral DMA bus connects the DMA channel to a peripheral or another DMA channel.

The DMA channel connects to peripherals or other DMA channels via the peripheral DMA bus. This is a
dedicated point-to-point interface supporting data bus widths of 8, 16, 32 or 64 bits. The data bus widths
for a given DMA channel on a particular processor may vary and are not configurable. The assigned bus
width can be determined by reading the DMA_STAT.PBWID field.

The DMA channel operates at SCLK frequency as does the peripheral DMA bus. The following table
provides descriptions of the peripheral DMA bus signals.

Table 13-8: DMA Channel Address Alignment Requirements

Configured Memory Size Address Restriction

1 Byte No restriction
2 Bytes ADDR[0] == 0
4 Bytes ADDR[1:0] == 0
8 Bytes ADDR[2:0] == 0
16 Bytes ADDR[3:0] == 0
32 Bytes ADDR[4:0] == 0

Table 13-9: Peripheral DMA Bus Signals

Signal Width (bits) Description

PDMA_WRITE_DATA 8/16/32/64 Data bus used for write operations. The width of the bus
can be determined from DMA_STAT.PBWID

PDMA_READ_DATA 8/16/32/64 Data bus used for read operations. The width of the bus
can be determined from DMA_STAT.PBWID

PDMA_DMA_GRANT Control signals to indicate that data is valid for DMA
channel read operations (peripheral transmit) and that the
DMA channel is ready to receive data for write operations
(peripheral receive)

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–13

Peripheral Control Commands

The peripheral DMA bus of the DMA channel provides a means for peripherals on the processor to issue
commands to the DMA channel to provide greater control over the DMA channel operation. This control
improves real-time performance and relieves control and interrupt demands on the core. Peripherals may
send commands to the DMA controller over the 3-bit PERI_CMD bus. The DMA control commands
extend the set of operations available to the peripheral beyond the simple “request data” command used
by peripherals in general. Refer to the appropriate peripheral chapter for a description on how that periph-
eral uses DMA control commands.

While these DMA control commands (see the following table) are not visible to or controlled by the
program, their use by a peripheral has implications for the structure of the DMA transfers which that
peripheral can support. It is important that application software be written to comply with certain restric-
tions regarding work units and descriptor chains so that the peripheral operates properly whenever it
issues DMA control commands.

The following table describes the commands that are given by the DMA controller. These commands are
described in more detail in the following sections.

PDMA_CMD 3 Used by the peripheral for issuing DMA channel control
commands

PDMA_CTRL The control signals used by the peripheral to send various
commands to the DMA channel and control the direction
of flow

Table 13-10: PDMA_CMD Peripheral DMA Control Commands

Command Name Description

b#000 NOP No operation
b#001 Restart Restarts the current work unit from the beginning
b#010 Finish Finishes the current work unit and starts the next
b#011 Interrupt Immediately sets the DMA completion interrupt in

the DMA channel
b#100 Request Data Typical DMA data request
b#101 Request Data Urgent Urgent DMA data request
b#110 Reserved Reserved
b#111 Reserved Reserved

Table 13-9: Peripheral DMA Bus Signals (Continued)

Signal Width (bits) Description

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Idle Command

This command is driven by the DMA channel when the peripheral is enabled and no data requests are
required.

Restart Command

This command causes the current work unit to interrupt processing and star again, using the addresses and
count values from the DMA_ADDRSTART, DMA_XCNT and DMA_YCNT registers. No interrupt is signalled when
the work unit terminates.

If a channel programmed to transmit (memory read) receives a restart command, the channel momen-
tarily pauses while any pending memory reads initiated prior to the Restart command are completed.
During this period of time, the channel does not grant DMA requests. Once all pending reads have been
flushed from the channel’s pipelines, the channel resets its counters and FIFO, and starts pre fetch reads
from memory. DMA data requests from the peripheral are granted as soon as new pre fetched data is avail-
able in the DMA FIFO. In this case the peripheral can use the Restart command to reattempt a failed trans-
mission of a work unit.

If a channel programmed to receive (memory write) receives a restart command, the channel stops writing
to memory, discards any data held in its DMA FIFO, and resets its counters and FIFO. As soon as this
initialization is complete, the channel again grants DMA write requests from the peripheral. In this case
the peripheral can use the restart command to abort the transfer of received data into a work unit, and
reuse the memory buffer for a later data transfer.

The restart control command request is not granted/acknowledged. The request is always accepted by the
DMA controller.

Finish Command

The finish command causes the current work unit to terminate processing and move on to the next work
unit. An interrupt/trigger event is signalled as usual, (if enabled within the DMA_CFG register). The periph-
eral can then use the finish command to partition the DMA stream into work units on its own, perhaps as
a result of parsing the data currently passing though its supported communication channel, without direct
real-time control by the processor.

If a channel is programmed to transmit (memory read) operation and receives a finish command, the
channel momentarily pauses while any pending memory reads initiated prior to the finish command are
completed. During this period of time, the channel does not grant DMA requests. Once all pending reads
have been flushed from the channel’s pipelines, the channel signals an interrupt/trigger (if enabled), and
begins fetching the next descriptor (if any). DMA data requests from the peripheral are granted as soon as
new pre fetched data is available in the DMA FIFO.

If a channel programmed to receive (memory write) receives a finish command, the channel stops granting
new DMA requests while it drains its FIFO. Any DMA data received by the DMA channel prior to the
finish command is written to memory. When the FIFO reaches an empty state, the channel signals an
interrupt/trigger (if enabled) and begins fetching the next descriptor (if any). Once the next descriptor has

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–15

been fetched, the channel initializes its FIFO, and then resumes granting DMA requests from the periph-
eral.

The finish command request is not granted/acknowledged. The request is always accepted by the DMA
channel.

Interrupt Command

The interrupt command causes the DMA channel to generate an interrupt. When programming the
channel to support this command, the DMA_CFG.INT bit field must be configured to PIRQ mode so that
the channel does not generate interrupts based on work unit state, but instead generates interrupts only
when it receives the interrupt command from the peripheral. When the interrupt command is received,
the event is indicated in the DMA_STAT.PIRQ bit if all of the following conditions are satisfied.

• The DMA channel is enabled as per the DMA_CFG.EN bit.

• The DMA channel is in the stop state.

• The interrupt in DMA_CFG.INT is configured for PIRQ mode.

The peripheral only issues the interrupt command in response to the last grant command being received
from the DMA channel which indicates that the transfer is the last transfer in the work unit.

Request Data Command

The request data command is a request for data transfers between the DMA channel and the peripheral.
The request is held by the peripheral until granted/acknowledged by the DMA channel.

Request Data Urgent Command

The request data urgent command behaves identically to the request data command, except that while it
is asserted the DMA channel performs its memory accesses with urgent priority. This includes both data
and descriptor fetch memory accesses. A DMA management capable peripheral might use this control
command if, for example, an internal FIFO is approaching a critical condition.

The request is held by the peripheral until granted/acknowledged by the DMA channel.

Peripheral Control Command Restrictions

The proper operation of the DMA channel FIFO leads to certain restrictions in the sequence of DMA
peripheral control commands issued by a peripheral. These restrictions are described in the following
sections.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Transmit Restart or Finish

No restart or finish control command may be issued by a peripheral to a channel configured for memory
read unless all the following conditions are met.

• The peripheral has already performed at least one DMA transfer in the current work unit.

• The current work unit has (FIFO_SIZE/DMA_CFG.MSIZE) + 1 memory transfers remaining.

The first item ensures that the work unit has started. The second item ensures that the work unit has not
completed. The second item is sufficiently large that it is always at least five more than the maximum data
count prior to any restart or finish command. This implies that any work unit which might be managed by
restart or finish commands must have DMA_XCNT_CUR and DMA_YCNT_CUR register values representing at
least five data items.

The second item can be satisfied by ensuring that the number of memory transfers described by the
descriptor is (FIFO_SIZE/DMA_CFG.MSIZE) + 1 larger than the maximum number of memory transfers
expected.

Receive Restart or Finish

No restart or finish control command may be issued by a peripheral to a channel configured for memory
write unless either of the following conditions is met.

• The number of peripheral transfers completed is less than (DMA_CFG.MSIZE/DMA_CFG.PSIZE) × (trans-
fers described by descriptor)

In addition to either of the above two conditions, one of the following two conditions must also be met.

• The previous work unit was terminated by a finish command AND the peripheral has done at least one
transfer in the current work unit.

• The peripheral has done (FIFO_SIZE/DMA_CFG.PSIZE) + 1 transfers in the current work unit.

The first set of conditions ensures that the descriptor is still active while the second set ensures that data
from the previous descriptor has left the FIFO and that the current descriptor has started.

Finish Only

The peripheral has completed exactly (DMA_CFG.MSIZE/DMA_CFG.PSIZE) × (transfers described by
descriptor) and gives the restart/finish command immediately in the next cycle following the last data
transfer.

Memory DMA and Triggering

A memory DMA (MDMA) channel provides a means of doing memory-to-memory DMA transfers
among the various memory spaces that have DMA support.

Memory DMA (MDMA) channels are implemented by interfacing two DMA channels via the peripheral
DMA bus interface. One DMA channel is used for memory read operations and the second is used for

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–17

memory writes. Depending on the processor, a memory DMA channel may have an additional peripheral,
such as a CRC peripheral, inserted into the peripheral DMA bus that may optionally be enabled.

MDMA channel configurations that do not involve an additional peripheral impose no restrictions on
which of the DMA channels is to be used for the read operation and which is to be used for the write oper-
ation so long as both are not configured for the same transfer direction. For MDMA channel configura-
tions that enable a peripheral between the read and write channels, restrictions may be imposed on which
channel may be used for a given transfer direction.

Figure 13-2: MDMA Channel Dedicated Pair

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 13-3: MDMA Channel Pair with Peripheral

A memory-to-memory transfer always requires the source and destination channels to be enabled. Because
the channels are interfaced through the peripheral DMA bus, and because the channel may have an addi-
tional peripheral inserted into the peripheral DMA bus, programs must ensure that the DMA_CFG.PSIZE
of both the source and destination channels are set to the same values.

The memory DMA channels support the full range of DMA_CFG.MSIZE options for the DMA transfers to
and from the memories.

As the MDMA channel consists of two DMA channels, the entire MDMA channel has two sets of FIFOs,
one in the read channel and one in the write channel. This allows for more efficient bursting of both read
and write transactions in order to make use of the available bandwidth. While the DMA_CFG.PSIZE config-
uration must be identical for both source and destination DMA channels, this restriction is not imposed
for the DMA_CFG.MSIZE configuration.

The independent source and destination DMA channels also have their own dedicated interrupt and
trigger events, and while it is normal practice to only have event generation performed at destination DMA
completion, programs are not restricted to this means of interrupt generation.

Configuration of an MDMA transfer is done in a similar manner to peripheral DMA transfers with the
exception of writing two DMA channel registers instead of one.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–19

To control the pace of data transfers, triggers may be used on either the memory read or the memory write
channel pair used in an MDMA operation. Enabling DMA_CFG.TWAIT in the memory read channel will
prevent both channels from transferring data before the system is ready. However, only configuring the
memory write channel to wait for a trigger will allow for data to be fetched from the memory in anticipa-
tion of the memory write operation.

DMA Channel MMR Access Bus

The MMR access bus provides access to all the DMA channels memory-mapped registers for DMA
channel configuration, monitoring and debug. The interface has a fixed 32-bit data bus for read and write
accesses.

The following table provides descriptions of the MMR access bus signals.

DMA Channel Operation Flow

The flow of operation of the DMA channel is described in the following topics:

• Startup

• Refresh

• DMA Operating Modes

• Stop Mode

• DMA Channel Errors

Startup

In order to enable a DMA operation on a given channel, some or all of the DMA parameter registers must
first be written directly. The minimum set of register required to be initialized is dependent upon the
desired mode of operation as described in the following sections.

Table 13-11: MMR Access Bus Signals

Signal Width (bits) Description

 MMR_WRITE_DATA 32 Data bus used for write operations to the MMRs
from the core.

 MMR_READ_DATA 32 Data bus used to return read data from the MMRs
 MMR_READ_ADDR 7 Address that is used to select the MMR to access

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Minimum Enable Requirements

To start a DMA operation on a given channel, some or all of the DMA parameter registers must first be
initialized and configured to the DMA channels desired operating mode.

• For descriptor array based flow modes – At a minimum the DMA_DSCPTR_CUR register must be written
prior to writing to the DMA_CFG register, which is the special action required to start the DMA channel.

• For descriptor list based flow modes – At a minimum the DMA_DSCPTR_NXT register must be written
prior to writing to the DMA_CFG register, which is the special action required to start the DMA channel.

• For non descriptor based flow modes – The DMA_ADDRSTART, DMA_XCNT and DMA_XMOD registers must
be written prior to the DMA_CFG register.

Programs can write other registers that might remain static throughout the course of the DMA activity.
The DMA operation begins once the DMA_CFG register is written.

ATTENTION: When the DMA_CFG register is written directly by software, the DMA controller recognizes
this as the special startup condition that occurs when starting DMA for the first time on this
channel or after the DMA channel is stopped. It is possible for a DMA error condition to be
flagged regardless of the DMA_CFG.EN bit setting.

Startup Operation

When the DMA_CFG register is written directly by software, the DMA channel recognizes this as the special
startup condition that occurs when starting DMA for the first time on this channel or after the channel has
entered to the stop state.

When the descriptor fetch is complete and the DMA channel is enabled, the DMA_CFG descriptor element
that was read into the DMA_CFG register assumes control. Before this point, the direct write to the DMA_CFG
register had control.

At startup, the selected flow mode and the and descriptor size determine the course of the DMA initializa-
tion process. The DMA_CFG.FLOW field determines whether to load more current registers from descriptor
sets in memory, while the DMA_CFG.NDSIZE field details how many descriptor elements to fetch before
starting the DMA. DMA registers not included in the descriptor are not modified from their prior values.

For descriptor list flow modes, the DMA_DSCPTR_NXT register is copied into the DMA_DSCPTR_CUR register.
Then, fetches of new descriptor elements from memory are performed, indexed by the DMA_DSCPTR_CUR
register, which is incremented after each fetch. After completion of the descriptor fetch, the DMA_DSCPTR_
CUR register points to the next 32-bit word in memory past the end of the descriptor.

If the descriptor fetch is for a descriptor array mode transfer, then the DMA_DSCPTR_NXT register is not
copied into the DMA_DSCPTR_CUR register. Instead the descriptor fetch indexing begins with the value in
the DMA_DSCPTR_CUR register.

If DMA_CFG is not part of the fetched descriptor set, then the previous value, (originally as written on
startup) controls the work unit operation. If the DMA_CFG register is part of the fetched descriptor set, then
the value programmed by the MMR access controls only the loading of the first descriptor fetched from

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–21

memory. The subsequent DMA work units are controlled by the configuration of the DMA_CFG register of
the fetched descriptor set.

Once the descriptor fetch is complete, or if the flow was originally configured for one of the register based
flow modes, then the DMA operation begins. The DMA channel immediately fills its FIFO. For a memory
write operation the DMA channel begins accepting data from its peripheral. For a memory read operation
the DMA channel begins memory reads when the DMA channel is granted access to the SCB bus.

When the DMA channel performs its first data memory access, its address and count computations take
their input operands from the start registers (DMA_ADDRSTART, DMA_XCNT and DMA_YCNT if required), and
writes results back to the current registers (DMA_ADDR_CUR, DMA_XCNT_CUR and DMA_YCNT_CUR). Note also
that the current registers are not valid until the first memory access is performed, which may be some time
after the channel is started by the write to the DMA_CFG register. The current registers are loaded automat-
ically from the appropriate descriptor elements, overwriting their previous contents, as follows:

• DMA_ADDRSTART is copied to DMA_ADDR_CUR

• DMA_XCNT is copied to DMA_XCNT_CUR

• DMA_YCNT is copied to DMA_YCNT_CUR

Refresh

When a work unit has been processed (is complete), the DMA channel performs the following operations:

• Completes the transfer of all data between memory and the DMA channel.

• If the DMA channel is configured for a memory read operation with the DMA_CFG.SYNC bit enabled,
then a synchronized transition takes place. The DMA channel transfers all data to the peripheral before
continuing.

• If interrupts/triggers are enabled, then the signals are forwarded from the DMA channel and the DMA_
STAT register is updated to indicate the interrupt/trigger events.

• If the flow was set to stop mode, the DMA operation stops by setting the DMA_STAT.RUN bit field to indi-
cate the channel is no longer running. Any remaining data in the DMA channel’s FIFO is transferred
to the peripheral.

• For descriptor array mode – Loads a new descriptor from memory into the DMA registers by way of
the contents of the DMA_DSCPTR_CUR register, while incrementing the DMA_DSCPTR_CUR register. The
descriptor size is taken from the DMA_CFG.NDSIZE value prior to the fetch.

• For descriptor list mode – Copies the DMA_DSCPTR_NXT register into the DMA_DSCPTR_CUR register.
Next, the DMA channel fetches the descriptor from the new contents of the DMA_DSCPTR_CURregister
and places these contents into the DMA registers while incrementing the DMA_DSCPTR_CUR register.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• For descriptor on demand array mode – Checks to see if an incoming trigger event has been detected.

If a trigger event has been detected, then the DMA channel loads a new descriptor from memory into
the DMA registers from the contents of the DMA_DSCPTR_CUR register, while incrementing the DMA_
DSCPTR_CUR register. The descriptor size is taken from the DMA_CFG.NDSIZE value prior to the fetch.

If a trigger event was not detected then the DMA channel begins the next work unit by reloading the
current registers as described below.

• For descriptor on demand list mode – Checks to see if an incoming trigger event has been detected.

– If a trigger event was detected, then the DMA channel copies the DMA_DSCPTR_NXT register into the
DMA_DSCPTR_CUR register. Next, the DMA channel fetches the descriptor memory from the new
contents of the DMA_DSCPTR_CUR register and places these contents into the DMA registers while
incrementing the DMA_DSCPTR_CUR register.

– If a trigger event was not detected then the DMA channel begins the next work unit by reloading
the current registers as described in the step below.

• If flow was configured for anything other than stop mode then the DMA channel begins the next work
unit by reloading the current registers (DMA_ADDR_CUR, DMA_XCNT_CUR and DMA_YCNT_CUR) from their
descriptor registers (DMA_ADDRSTART, DMA_XCNT and DMA_YCNT).

Work Unit Transitions

Transitions from one work unit to the next are controlled by DMA_CFG.SYNC bit for a given work unit. In
general, continuous transitions have lower latency at the cost of restrictions on changes of data format or
addressed memory space in the two work units. These latency gains and data restrictions arise from the
way the DMA FIFO pipeline is handled while the next descriptor is fetched.

In continuous transitions where synchronization is disabled, the DMA FIFO pipeline continues to transfer
data to and from the peripheral or destination memory during the descriptor fetch and/or when the DMA
channel is paused between descriptor chains. On the other hand, synchronized transitions provide better
real-time synchronization of interrupts and triggers with a given peripheral state. Synchronized transitions
also provide greater flexibility in the data formats and memory spaces of the two work units, at the cost of
higher latency in the transition. In synchronized transitions, the DMA FIFO pipeline is drained to the
destination or flushed (received data discarded) between work units.

NOTE: Work unit transitions for MDMA streams are controlled by the DMA_CFG.SYNC bit of the MDMA
source channel. The DMA_CFG.SYNC bit of the MDMA destination channel is reserved and must be
set to disabled state. In transmit (memory read) channels, the DMA_CFG.SYNC bit of the last
descriptor prior to the transition controls the transition behavior. In contrast, in receive channels,
the DMA_CFG.SYNC bit of the first descriptor of the next descriptor chain controls the transition.

Transmit and MDMA Source Transitions

In DMA transmit (memory read) and MDMA source channels, the DMA_CFG.SYNC bit controls the inter-
rupt timing at the end of the work unit and the handling of the DMA FIFO between the current and the
next work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–23

If the DMA_CFG.SYNC bit is configured to disable synchronization, a continuous transition is selected. In a
continuous transition, just after the last data item is read from memory, these four operations all start in
parallel.

• The interrupt/trigger (if any) is signalled.

• The DMA_STAT register is updated to indicate DMA status is completed.

• The next descriptor begins to be fetched.

• The final data items are delivered from the DMA FIFO to the destination memory or peripheral.

This allows the DMA channel to provide data from the FIFO to the peripheral continuously during the
descriptor fetch latency period.

When synchronization is disabled, the final interrupt/trigger (if enabled) occurs when the last data is read
from memory. This event occurs at the earliest time that the output memory buffer may safely be modified
without affecting the previous data transmission. There may be a number of data items still remaining in
the FIFO and not yet at the peripheral. This number is dependent on the FIFO depth of the DMA channel.
Therefore, in this configuration, the DMA interrupt should not be used as the sole means of synchronizing
the shutdown or re configuration of the peripheral following a transmission.

NOTE: If continuous transition is selected on a transmit (memory read) descriptor, the next descriptor is
required to have the same peripheral transfer size (DMA_CFG.PSIZE), read/write direction, and
source memory (internal versus external) as the current descriptor.

Disabling synchronization, to select continuous transition on a work unit that is configured for stop flow
mode with interrupts/triggers enabled, can result in the event service routine being executed while the final
data is still draining from the FIFO to the peripheral. This is indicated by the DMA channels DMA_STAT.
RUN bits—if the channel is still running then the FIFO is not yet empty. Do not start a new work unit with
different peripheral transfer size or direction while the channel is still running. Further, if the channel is
disabled via the DMA_CFG.EN bit, the data in the FIFO is lost.

A synchronized transition allows the DMA FIFO to first be drained to the destination memory or periph-
eral before any interrupt is signalled, and before any subsequent descriptor or data is fetched. This incurs
greater latency, but provides direct synchronization between the DMA interrupt and the state of the data
at the peripheral.

For example, if synchronization is enabled and interrupts are enabled on the last descriptor in a work unit,
the interrupt occurs when the final data is transferred to the peripheral. This allows the service routine to
properly switch to non-DMA transmit operation. When the interrupt service routine is invoked, the DMA
channel FIFO is empty and the DMA channel is not running as indicated by the DMA_STAT.RUN bits.

A synchronized transition also allows greater flexibility in the format of the DMA descriptor chain. When
enabled, the next descriptor may have any DMA_CFG.PSIZE configuration or read/write direction
supported by the peripheral and may come from either memory space (internal as opposed to external).
This can be useful in managing MDMA work unit queues, since it is no longer necessary to interrupt the
queue between dissimilar work units.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Work Unit Receive and MDMA Destination Transitions

In DMA receive (memory write) channels, the DMA_CFG.SYNC bit controls the handling of the DMA FIFO
between descriptor chains (not individual descriptor sets), when the DMA channel is paused. The DMA
channel pauses after descriptor sets configured with stop flow mode complete, and the channel may be
restarted (for example, after an interrupt) by writing the channel’s DMA_CFG register with a value that
enables the DMA channel. If the synchronization is disabled in the new work unit’s DMA_CFG value, a
continuous transition is selected. In this mode, any data items received into the DMA FIFO while the
channel was paused are retained, and they are the first items written to memory in the new work unit. This
mode of operation provides lower latency at work unit transitions and ensures that no data items are
dropped during a DMA pause, at the cost of certain restrictions on the DMA descriptors.

NOTE: If the DMA_CFG.SYNC bit is configured to disable synchronization on the first descriptor of a
descriptor chain after a DMA pause, the DMA_CFG.PSIZE field of the new chain must not change
from the configuration of the previous descriptor chain that was active before the pause, unless the
DMA channel is reset between chains by disabling and then re-enabling the DMA channel.

A synchronized transition is selected if the DMA_CFG.SYNC bit is configured to enable synchronization. In
this mode, only the data received from the peripheral by the DMA channel after the write to the DMA_CFG
register is delivered to memory. Any prior data items transferred from the peripheral to the DMA FIFO
before this register write are discarded. This provides direct synchronization between the data stream
received from the peripheral and the timing of the channel restart (when the DMA_CFG register is written).

For receive DMA operations, the synchronization has no effect in transitions between work units in the
same descriptor chain (that is, when the previous descriptor’s flow mode was not stop, so that the DMA
channel did not pause).

If a descriptor chain begins with synchronization enabled, there is no restriction on the DMA_CFG.PSIZE
of the new chain in comparison to the previous chain.

NOTE: The peripheral transfer size (DMA_CFG.PSIZE) must not change between one descriptor and the
next in any DMA receive (memory write) channel within a single descriptor chain, regardless of
the DMA_CFG.SYNC bit setting. In other words, all memory write descriptor sets in a descriptor
chain must have the same DMA_CFG.PSIZE value. For any DMA receive (memory write) channel,
there is no restriction on changes of peripheral transfer size (internal versus external) between
descriptors or descriptor chains.

Transfer Termination and Shutdown

This section describes channel transfer termination and shutdown in stop flow mode and in autobuffer
flow mode.

Stop Flow Mode

In stop flow mode, the DMA channel stops automatically after the work unit is complete. If a list or array
of descriptors is used to control DMA transfers, and if every descriptor contains a DMA_CFG descriptor
element, then the final DMA_CFG descriptor element should have the flow configured to stop mode setting
to gracefully stop the channel. Upon completion the DMA channel remains in the stop state. This state

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–25

should not be confused with the disabled state which occurs either due to a DMA error or by configuring
the DMA_CFG.EN bit so as to disable the DMA channel.

Disabling the DMA channel via a write to the DMA_CFG.EN bit is intended to shut down the DMA channel
and enter the disabled state. All memory and peripheral data transfers cease and only peripheral interrupts
are passed through the DMA channels interrupt signals. However, the DMA channel maintains the DMA_
STAT.RUN bits. Therefore, in the case of a memory write operation, the outstanding memory transaction
counter keeps track of returning memory write acknowledgements and updates as required.

In the case of memory read operations, the outstanding memory transaction counter also keeps track of
returning memory reads. However, the memory reads are not written into the FIFO. The counter is
updated to reflect the completion of the transaction, but the data is ignored. The DMA_STAT.RUN bits
remain in the waiting for write ACK/FIFO drain to peripheral state and do not change to stop/idle state until
all outstanding transactions have returned.

When the DMA channel is enabled again via the DMA_CFG.EN bit, a full reset is performed and all counters
are cleared. If an outstanding memory transaction returns an acknowledgement or read data after this
event, then a memory transaction error has occurred and an error is generated. Programs must ensure that
all outstanding memory transactions have been completed before re configuring the DMA channel. One
method programs may use is to poll the DMA_STAT.RUN bits to return to the stop/idle state before
proceeding.

Autobuffer Flow Mode

In the case of Autobuffer flow modes, the only way to cease operations is to disable the DMA channel via
the DMA_CFG.EN bit. Therefore, one method of changing to a new work unit would be to disable the DMA
channel, set up all the registers (and descriptors in memory, if used) except for DMA_CFG, then poll DMA_
STAT.RUN to wait for the status to reflect stop/idle state, and finally write DMA_CFG to the new configuration
to begin the next work unit.

In autobuffer flow mode, or if a list or array of descriptor sets without DMA_CFG descriptors, then the DMA
transfer process must be terminated by an MMR write to the DMA_CFG register with a value whose DMA_
CFG.EN bit is configured to disable the DMA channel.

CAUTION: Interrupt logic based on work unit transitions are disabled when the DMA channel is disabled.
Programmers should be aware of their environment and current actions so that additional
interrupts are not required from the DMA channel.

CAUTION: The DMA channel completes any transactions that have begun and avoids generating bus
errors if disabled through DMA_CFG.EN in the middle of a transaction. However, the action of
re-enabling the DMA is considered a hard reset for all internal DMA channel components.
Therefore, programmers must pay special attention to that particular action in order to avoid
unexpected results.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

13–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA Channel Errors

When an error occurs, the DMA channel maintains all the state and register values which allows programs
to diagnose error causes more thoroughly. The greatest benefit to the programmer is to know exactly what
operational state the DMA channel was in at the exact moment the error occurred.

It is the responsibility of the programmer to take special care to ensure the root cause of the error is
addressed, whether the problem originated in the DMA channel or not. If not properly resolved, the error
could result in an additional error shortly after operations resume. The problem may have caused other
errors elsewhere in the DMA channel or associated modules and circuitry, therefore care must be taken to
address those potential problems also. Finally, the programmer must ensure that all outstanding memory
reads and writes are complete, or cleared, before resuming DMA channel operation.

Once all issues have been addressed and all side effects of any error are neutralized, the programmer may
clear the DMA_STAT.ERRC status field and restart the DMA channel by disabling then re-enabling the DMA
channel through the DMA_CFG.EN bit.

The error types are described in the following sections.

Status and Debug

DMA channel error conditions can cause the DMA process to end abnormally. DMA error detection is
provided as a tool for system development and debug, as a way to detect DMA related programming
errors. When the DMA channel detects and error, the channel is immediately stopped and any memory
read transactions that are returned are discarded. The DMA channels DMA_STAT.RUN field is set to indicate
idle state, once all outstanding memory transactions are acknowledged. In addition, an error interrupt is
asserted and theDMA_STAT.IRQERR is updated to reflect this. Also the error cause of the first detected error
is updated in the DMA_STAT.ERRC field. Unless the error occurs at the exact moment that register values
are being modified, the registers will contain their values.

It is possible for error interrupt signals to be combined. Combined error signals requires that the DMA_STAT
register of each DMA channel associated with a combined error interrupt be read to determine the DMA
channel responsible for the generation of the interrupt.

The DMA channel error interrupt handler is required to perform the following actions:

• Read each DMA channel’s DMA_STAT register to look for a channel with the DMA_STAT.IRQERR set to
indicate an error.

• Read the DMA channel’s DMA_STAT.ERRC field to determine the cause of the error.

• Clear the problem with the DMA channel, for example fix the register values.

• Clear the error in the DMA channel via a write 1 to clear operation to the DMA_STAT.IRQERR bit.

If any error other than a bandwidth monitor error is already flagged and is not cleared, no other error is
reported. If a bandwidth monitor error was reported and not cleared, any newly detected error would be
in the updated DMA_STAT.ERRC field.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–27

DMA Configuration Register Errors

These errors are only flagged when the DMA channel is enabled via the DMA_CFG.EN bit.

• Reserved setting was used

• DMA_CFG.TWAIT enabled in Descriptor On Demand Flow mode

• Illegal DMA_CFG.NDSIZE

• Illegal DMA_CFG.MSIZE

• DMA_CFG.MSIZE exceeds the DMA channel's FIFO size

• Illegal DMA_CFG.PSIZE

• DMA_CFG.PSIZE exceeds the FIFO size

• DMA_CFG.PSIZE exceeds the bus width

• Memory read (transmit operation), cannot change to receive unless properly synced in the previous
work unit, or if first work unit in a new chain

• Memory read (transmit operation), cannot change DMA_CFG.PSIZE unless properly synced in previous
work unit, or if first work unit in a new chain

• Memory write (receive operation), cannot change to transmit during a descriptor chain. Can only
change from receive to transmit if new transmit is synced and first work unit

• Memory write (receive operation), cannot change DMA_CFG.PSIZE unless first work unit with DMA_
CFG.SYNC enabled

Illegal Register Write During Run

Writes to writable registers when the DMA channel is enabled and running are blocked and generate an
error. The DMA_STAT, DMA_BWLCNT and DMA_BWMCNT registers are exempt from this behavior.

Address Alignment Error

An address alignment error is generated when a descriptor address is not aligned to a 32-bit boundary or
a transfer address is not aligned for the current DMA_CFG.MSIZE configuration.

Memory Access Error

A memory access error is generated when an attempt was made to access an address not populated, defined
as cache, or there was a security violation. This error is triggered by an error returned from the memory.

Trigger Overrun Error

A trigger overrun error is generated when a new trigger input occurred while an outstanding trigger is
waiting. This error is only generated if DMA_CFG.TOVEN is enabled.

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

13–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bandwidth Monitor Error

This error is generated when the bandwidth monitor count expired. This is not a fatal error and the DMA
channel continues operation.

Control Interface Error

Control interface errors are reported as bus errors to the bus master. This can be as a result of:

• An address error

• Write to a read-only register

DMA Operating Modes
The DMA channel supports a number of different flow modes that control how the DMA channel
progresses from one work unit to the next.

The flow mode of a DMA channel is not a global setting. A DMA descriptor set may include the descriptor
responsible for configuring the flow of the work unit and there is no restriction that the flow must be
configured the same for the entire descriptor chain. If the descriptor chain is not endless then the last
descriptor set configures the flow to stop mode which results in termination of the descriptor chain after
work unit completion. Another example for mixing flow modes is to create an endless descriptor array.
The last descriptor set in the array is configured for list mode and the next descriptor pointer of this
descriptor set points to the first descriptor in the array.

Register Based Flow Modes

Register-based DMA operations require configuration by directly writing to the DMA channel’s memory-
mapped registers.

Register-based DMA is the traditional method of DMA operation. Software writes all of the DMA
channel’s configuration into the memory-mapped registers. This includes information such as the source
or destination address and length of the data to be transferred. The DMA controller then starts channel
operation. The DMA channel supports the following register-based flow modes.

• Stop Mode

• Autobuffer Mode

The DMA channel supports variable descriptor set sizes within the configuration. The size of a descriptor
set can contain as little as a single descriptor. The supported descriptor set sizes can differ between the
various descriptor based flow modes. In addition to the descriptor set size being configurable, descriptor
based DMA also allows for the flow mode of the next descriptor set to be altered allowing for the transition
from descriptor array mode to descriptor list mode, in addition to configuring the flow to stop or auto-
buffer mode.

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–29

Stop Mode

In stop mode, the DMA operation is executed only once. If started, the DMA channel transfers the desired
number of data words and stops itself again when finished. If the DMA channel is no longer used, software
configures the enable bit to disable a paused channel. Interrupts and triggers may also be generated for
each row/work unit completion, depending on the desired operation.

Autobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If all data words have been trans-
ferred, the address pointer (DMA_ADDR_CUR) is reloaded automatically with the DMA_ADDRSTART value. An
interrupt may also be generated.

Autobuffer mode is enabled via the DMA_CFG.FLOW field. The DMA_CFG.NDSIZE field must be configured
such that the next descriptor size is zero.

Descriptor Based Flow Modes

Descriptor based DMA operations fetch descriptor sets from memory allowing for autonomous loading of
work units on other work units. Software is not required to set up the DMA sequences directly by writing
into the DMA controller registers. Rather, software keeps DMA descriptor sets in memory.

Descriptor based DMA operations have the following additional attributes.

• The DMA controller autonomously loads the descriptor set from memory to the affected DMA
controller registers on demand.

• The descriptor sets can be fetched from any memory space that supports DMA read operations.

• The descriptor set describes the next operation to be performed by the DMA controller.

• The descriptor set may include information such as the DMA configuration word as well as data
source/destination address, transfer count, and address modify values.

A descriptor set describes a single work unit. However some values from one descriptor set may be reused
in the next work unit if they are not overwritten in the subsequent descriptor set fetches and the work unit
requires the use of this descriptor.

The DMA channel supports the following flow modes with descriptor based operations.

• Descriptor Array Mode

• Descriptor List Mode

• Descriptor On-Demand Modes

The DMA channel supports variable descriptor set sizes within the configuration. The size of a descriptor
set can contain as little as a single descriptor and the supported descriptor set sizes can differ between the
various descriptor based flow modes. In addition to configurable descriptor set size, descriptor based DMA

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

13–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

also allows for the flow mode of the next descriptor set to be altered. Programs can transition from one
descriptor based mode to another descriptor based mode and can also transition to any of the register
based flow modes.

Descriptor Array Mode

When configured in this mode, the descriptor sets do not contain further descriptor pointers. The initial
descriptor pointer value is written by software and points to an array of descriptors. The individual
descriptors are assumed to reside next to each other and, therefore, their address is known.

The following table illustrates how a descriptor set must be structured in memory. Note that descriptor sets
must reside in a contiguous block or memory in the format shown in the table. That is to say that the first
descriptor of the next descriptor set must be located in the memory location immediately following the last
descriptor of the current descriptor set. The values have the same order as the corresponding MMR offset
addresses.

All other DMA channel registers not loaded as a result of the descriptor set fetch retain their previous
values. All of the current registers are reloaded between the descriptor set fetch and the start of the DMA
operation for the work unit.

NOTE: At a minimum the DMA_DSCPTR_CUR register must be written prior to writing to the DMA_CFG
register, which is the special action required to start the DMA channel.

Descriptor List Mode

In this flow mode, multiple descriptors form a chained list in which each descriptor set contains a pointer
to the next descriptor set, allowing greater flexibility in memory layout options. When the descriptor set is
fetched, this pointer value is loaded into the DMA channels next descriptor pointer register.

Descriptor Sets

The Descriptor List Mode Parameter and Descriptor Offsets illustrates how a descriptor set must be struc-
tured in memory. Note that while the descriptor sets can be dispersed throughout memory and reside in
different memory blocks, each descriptor of the descriptor set must reside in a contiguous section of

Table 13-12: Descriptor Array Mode Parameter and Descriptor Offsets

Descriptor Offset Parameter Register

0x00 DMA_ADDRSTART
0x04 DMA_CFG
0x08 DMA_XCNT
0x0C DMA_XMOD
0x10 DMA_YCNT
0x14 DMA_YMOD

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–31

memory in the format shown in the table. The values have the same order as the corresponding MMR
offset addresses.

All other DMA channel registers not loaded as a result of the descriptor set fetch retain their previous
values. All of the register's current values are reloaded between the descriptor set fetch and the start of the
DMA operation for the work unit.

Minimum Startup Requirements

At a minimum the DMA_DSCPTR_NXT register must be written prior to write to the DMA_CFG register which
is the special action required to start the DMA channel.

Descriptor On-Demand Modes

The Descriptor Array Mode and Descriptor List Mode each have an on demand mode of operation

In on-demand mode, at the end of the work unit, if the DMA channel has not detected an incoming trigger
event, the current work unit is repeated. If the DMA channel receives an incoming trigger before comple-
tion of the work unit, a new descriptor set is fetched.

The following tables illustrate how each descriptor set must be structured in memory.

Table 13-13: Descriptor List Mode Parameter and Descriptor Offsets

Descriptor Offset Parameter Register

0x00 DMA_DSCPTR_NXT
0x04 DMA_ADDRSTART
0x08 DMA_CFG
0x0C DMA_XCNT
0x10 DMA_XMOD
0x14 DMA_YCNT
0x18 DMA_YMOD

Table 13-14: Descriptor Array Mode Parameter and Descriptor Offsets

Descriptor Offset Parameter Register

0x00 DMA_ADDRSTART
0x04 DMA_CFG
0x08 DMA_XCNT
0x0C DMA_XMOD
0x10 DMA_YCNT
0x14 DMA_YMOD

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

13–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: For descriptor list mode, at a minimum the DMA_DSCPTR_NXT register must be written prior to
write to the DMA_CFG register, which is the special action required to start the DMA channel.

NOTE: For descriptor array mode, at a minimum the DMA_DSCPTR_CUR register must be written prior to
writing to the DMA_CFG register, which is the special action required to start the DMA channel.

Data Transfer Modes

In addition to supporting basic one-dimensional DMA transfers, the DMA channel also supports two-
dimensional functionality.

Two-Dimensional DMA

Register-based and descriptor-based DMA flow modes support two-dimensional data transfers.

In two-dimensional (2D) mode the X directional count and modifier (DMA_XCNT and DMA_XMOD) registers
are accompanied by the Y directional count and modifier (DMA_YCNT and DMA_YMOD) registers, supporting
arbitrary row and column sizes. Furthermore, modify values can be negative, allowing implementation of
interleaved data streams. DMA_XCNT and DMA_YCNT specify the row and column sizes respectively, where
the DMA_XCNT must be 2 or greater.

The DMA start address (DMA_ADDRSTART) register, along with DMA_XMOD and DMA_YMOD registers, are all
specified in bytes, and they must be aligned to a multiple of the DMA transfer word size as configured by
the DMA_CFG.MSIZE bit. Misalignment results in a DMA channel error.

The DMA_XMOD register value is the byte-address increment that is applied after each transfer that decre-
ments the DMA_XCNT register. The DMA_XCNT register is not applied when the inner loop count is ended by
the DMA_XCNT_CUR register decrementing to 0 from 1, except that it is applied on the final transfer when
the DMA_YCNT register is 1 and the DMA_XCNT register decrements from 1 to 0.

Table 13-15: Descriptor List Mode Parameter and Descriptor Offsets

Descriptor Offset Parameter Register

0x00 DMA_DSCPTR_NXT
0x04 DMA_ADDRSTART
0x08 DMA_CFG
0x0C DMA_XCNT
0x10 DMA_XMOD
0x14 DMA_YCNT
0x18 DMA_YMOD

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–33

The DMA_YMOD register value is the byte-address increment that is applied after each decrement of the value
in the DMA_YCNT_CUR register. However, the DMA_YMOD value is not applied to the last item in the array on
which the outer loop count (DMA_YCNT_CUR) also expires by decrementing from 1 to 0.

After the last transfer completes, DMA_YCNT_CUR is 1 and the DMA_XCNT_CUR register is 0. The DMA chan-
nels current address points to the last items address plus the DMA_XMOD register value. Note that if the DMA
channel is programmed to refresh automatically such as in autobuffer mode, then both the DMA_XCNT_CUR
and DMA_YCNT_CUR registers and the DMA current address (DMA_ADDR_CUR) are reloaded for the first data
transfer of the next work unit.

Interrupt notification is configurable for end of row or end of work unit completion.

DMA Channel Event Control
The DMA channel supports a number of events that provide notification of work unit state, peripheral
data request, peripheral data request and completion events, and DMA channel error conditions. In addi-
tion to flexible interrupt configuration, the DMA channel also supports incoming and outgoing triggers
which are useful in synchronizing the DMA channel with other system resources.

The DMA channel has two interrupt signals for support of a number of events such as work unit state
events, peripheral interrupt request (PIRQ) events, peripheral data request (PDR) events and DMA
channel errors. DMA channel errors are reported on a dedicated interrupt signal while all other interrupt
sources share the same interrupt signal. In addition to flexible interrupt configuration, the DMA channel
also supports incoming and outgoing triggers which are useful in synchronizing the DMA channel with
other system resources.

DMA channel events can be signaled to the processor using status information and optional interrupt
requests. These events may be used for data transfer progress updates and to request intervention from the
processor core. A majority of DMA channel interrupts are configured using bits in the DMA_CFG register.
Dedicated bits in the DMA_STAT register are used to report the occurrence of various events. Interrupt
requests are cleared by write-one-to-clear (W1C) operations to the status register.

NOTE: Hardware does not clear the interrupt status bits automatically even if the DMA channel is disabled
then re-enabled. In this situation the interrupt signal from the DMA channel is de-asserted once
the DMA channel is disabled, but the status bit remains set until the DMA channel is enabled again
or cleared by software.

The DMA channel supports the following categories of events on the interrupt signals.

• Work unit state events are used to generate interrupts on row or on work unit DMA completion.

• Peripheral interrupt request (PIRQ) events are signaled by the peripheral when it has completed the
transfer of all data.

• Peripheral data request (PDR) events for when the DMA channel is disabled or idle and the peripheral
is requesting data from the DMA channel.

• Error events due to a failure in the work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL EVENT CONTROL

13–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ATTENTION: The DMA channel does not generate an interrupt to the processor for a work unit state event,
PIRQ event or forward a PDR event while in an error state.

Event Signals

The following table provides descriptions of DMA channel events.

Work Unit State Events

Work unit state events are generated as a result of a row or a work unit completion. In order for either of
these events to result in the generation of an interrupt, the interrupt of the DMA channel must be config-
ured for one of the available work unit completion modes.

• Current X count reaching 0 for row completion or 1-D DMA work unit completion.

• Current Y count reaching 0 for work unit completion of 2-D DMA.

NOTE: For 1-D DMA, configuring the interrupt to be generated on the current Y counter reaching 0
results in a DMA channel configuration error.

The DMA channel issues the last memory read or write transaction for the row or work unit and then
pauses until the read or write acknowledge is returned. Once the transfer has been acknowledged success-
fully, the DMA channel issues the interrupt and continues to process the next row or work unit.

Waiting for the memory access to be acknowledged results in a delay. However, programs can read or
modify data in the memory without adversely affecting, or being affected by, the DMA transfer.

NOTE: While the DMA channel may be paused waiting for the memory transfer to be acknowledged, the
DMA channel is still capable of fetching the next descriptor set in order to be ready to process the
next work unit as soon as the memory access completes.

Table 13-16: Event Signals

Signal Width (bits) Description

DMA_ERROR 1 Used to signal an error condition in the DMA channel. The source of the
error can be determined by reading the DMA_STAT.ERRC bit.

DONE_PIRQ_INT 1 Signal used to indicate DMA completions events, PIRQ events and also
for forwarding PDR events based on configuration. The source of the
event may be determined by reading the corresponding fields in DMA_
STAT.

DMA_TRIG_OUT 1 Trigger output that gets routed to the TRU and can be configured to
provide notification on row or work unit completion.

DMA_TRIG_IN 1 Trigger input from the TRU that can be used to control the start of a
work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–35

The interrupt timing is also affected by the synchronization feature of the DMA channel’s configuration.
For memory read operations with synchronization enabled, the interrupt is delayed further until the last
transfer from the DMA channel’s FIFO to the peripheral completes. The interrupt timing for memory
write operations is not affected by the synchronization feature.

Peripheral Interrupt Request Events

Peripheral interrupt request (PIRQ) events may be used by a peripheral connected to the DMA channel to
indicate, in the case of a peripheral transmit operation, that data has not only left the FIFO of the DMA
channel, but that the peripheral has also completed the transfer.

In order to support PIRQ interrupts the DMA channel’s interrupt must be configured correctly. This
disables the generation of interrupts based on work unit state and instead results in generating an interrupt
when the DMA channel receives the command from the peripheral.

The interrupt is only generated if the following conditions are satisfied.

• The DMA channel is enabled.

• The DMA channel is in the stop state.

• The DMA channel’s interrupt is configured for PIRQ operation .

Peripheral Data Request Events

Peripheral data request (PDR) events occur when an interfaced peripheral requests data from the DMA
channel and the DMA channel is either disabled or enabled and in the stop state.

When the DMA channel is disabled and a peripheral sends a command to the DMA channel to request
data, the DMA channel generates an interrupt to the System Event Controller (SEC). There is no status
information reported about this event in the DMA channel’s status register. Instead, the PDR event is iden-
tified by the fact that the DMA channel generated an interrupt when it was disabled. Further confirmation
can be obtained by verifying the status of the peripheral interfaced to the DMA channel.

In addition to requests for data being forwarded as interrupts when the DMA channel is in the disabled
state, the DMA channel is also able to forward PDR events as an interrupt when the DMA channel is in the
stop state after completion of a work unit. The forwarding of this interrupt when the DMA channel is in
the stop state is optional and configured by the program during DMA channel configuration.

DMA Channel Triggers

DMA channel triggers are useful for synchronizing the DMA channel with other events in the system.
Channel triggers can be used in combination with each other in order to create ping-pong buffers or when
combined with interrupts to notify the processor that a particular milestone has been reached and that

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL EVENT CONTROL

13–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

service is required. Triggers may also be used to enforce a handshake DMA operation in which the trigger
acts as a signal for a DMA request.

NOTE: Using the trigger to control the pace of data transfers, such as in the case of a handshake DMA,
requires that all the data for the entire work unit is ready for transfer.

The DMA channel has a single incoming trigger that can be used to control the pace of the data transfers
performed by the DMA channel. The DMA channel can be configured to wait for the incoming trigger
before starting the work unit transfer or fetching a descriptor set from memory.

The DMA channel also has a single outgoing trigger signal that may be configured to signal the end of row
or an entire work unit. The DMA channel issues the last memory read or memory write transaction for the
row or work unit, and then pauses until the transfer acknowledge is returned. Once the transfer has been
acknowledged, the DMA channel issues the trigger before processing the next row or work unit.

Issuing Triggers

The DMA channel can be configured to generate an outgoing trigger signal at the end of row or the end of
a work unit. The DMA channel issues the last memory read or memory write transaction for the row or
work unit, and then pauses until the transfer acknowledge is returned. Once the transfer has been acknowl-
edged the DMA channel issues the trigger before processing the next row or work unit.

NOTE: While the DMA channel may be paused while waiting for the memory transfer to be acknowl-
edged, the DMA channel is still capable of fetching the next descriptor set in order to be ready to
process the next work unit as soon as the memory access completes.

Waiting For Triggers

Triggering may be used to control the pace of data transfers performed by the DMA channel. If the DMA_
CFG.TWAIT bit is enabled and a trigger has been received since the last time the DMA channel left the wait
state or since transition from disabled to enabled, then the DMA channel enters a wait state before begin-
ning the next work unit. In this state the DMA channel also does not perform a descriptor fetch. Once a
trigger is received, the DMA channel leaves the wait state and begins the next work unit or fetches the next
descriptor if configured for a descriptor based mode of operation.

If the DMA channel is programmed through a memory mapped register write operation with stop flow
mode enabled, the DMA_CFG.TWAIT bit enabled, and no trigger having already been received, then the
DMA channel enters a wait state before performing the data transfer. Upon receiving the trigger, the DMA
channel begins the data transfer portion of the work unit. Once the data transfer is complete, the DMA
channel enters the stop state.

If the DMA channel is programmed through a memory-mapped register write operation with the flow
mode configured to one of the descriptor based modes, then the DMA channel enters the wait state before
performing the descriptor fetch. Once the descriptor fetch is complete, the DMA channel immediately
proceeds to the data transfer, regardless of the value of the DMA_CFG.TWAIT bit. If the descriptor fetch is

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–37

followed by another descriptor fetch, then the DMA channel enters a wait state before fetching the next
descriptor.

If the descriptor fetch returns a descriptor with stop flow mode then the DMA_CFG.TWAIT value for that
descriptor does not affect the DMA as the DMA channel enters the stop state once the data transfer is
completed. The DMA channel only enters the wait state based on DMA_CFG.TWAIT before the next work
unit or descriptor fetch.

If the descriptor fetch returns a descriptor configured for autobuffer flow mode, then DMA_CFG.TWAIT for
that descriptor does not affect the DMA for the first work unit of the autobuffer transfer. Once the first
work unit is completed and another trigger has not been received, then the DMA channel enters the wait
state before re-initializing its counters and address registers (if not configured for current addressing). The
next work unit is performed once the trigger is received.

The incoming trigger does not have to be issued after the DMA channel has entered the wait state, and can
be issued while the DMA channel is executing a work unit, descriptor fetch or even when in the stop state.
The trigger is held internally, and once the work unit is complete, the DMA channel skips the wait state
and proceeds directly to executing the following work unit. If the DMA_CFG.TWAIT bit is not enabled, the
DMA channel also skips the wait state. However, the trigger is held internally and used the next time DMA_
CFG.TWAIT is enabled. This allows programs to enable the DMA_CFG.TWAIT functionality several work
units apart and not be concerned with losing a trigger. The DMA channels trigger overrun enable func-
tionality may be enabled in all work units to ensure multiple triggers do not occur between the work units
with the DMA_CFG.TWAIT bit enabled.

DMA Channel Programming Model
Several synchronization and control methods are available for use in development of software tasks which
manage peripheral DMA and memory DMA. Such software needs to be able to accept requests for new
DMA transfers from other software tasks, integrate these transfers into existing transfer queues, and reli-
ably notify other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory DMA stream to be managed by a
separate task or to be managed together with any other stream. Each DMA channel has independent,
orthogonal control registers, resources, and interrupts, so that the selection of the control scheme for one
channel does not affect the choice of control scheme on other channels. For example, one peripheral can
use a linked-descriptor-list, interrupt-driven scheme while another peripheral can simultaneously use a
demand-driven, buffer-at-a-time scheme synchronized by polling DMA events.

The topics that follow describe the steps required to configure the DMA channel for the various modes in
addition to the programming concepts required for software synchronization.

Mode Configuration

Use the step-by-step directions that follow to set up the DMA channel for operating modes.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

13–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Register Based Linear Buffer Stop Flow Mode

Configures a peripheral’s DMA channel to read data from internal memory and send it to the peripheral
for transmission.

PREREQUISITE:

The peripheral is assumed to be in a state where it is ready to transmit data received from the DMA
channel.

The task involves writing to a number of DMA channel MMR registers in order to configure a DMA
channel to read data from internal memory and send it to a peripheral connected to the peripheral DMA
bus. On DMA completion the DMA channel enters the idle state until either disabled or reconfigured for
a new transfer.

1. Write the DMA_ADDRSTART register.

ADDITIONAL INFORMATION: The address may be used to calculate the most optimum DMA_CFG.MSIZE
possible.

2. Calculate most optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes
in work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected DMA_
CFG.MSIZE and the start address alignment must also be considered.

3. Write the DMA_XCNT register based on the calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: The DMA_XCNT value is the number of DMA_CFG.MSIZE transfers required to
make up the entire work unit.

4. Write the DMA_XMOD register.

ADDITIONAL INFORMATION: For a completely linear buffer transfer, DMA_XMOD is determined by the selected
DMA_CFG.MSIZE. This register is always specified in the number of bytes.

5. Write the DMA_CFG register with DMA_CFG.EN configured to enable the DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for STOP mode, DMA_CFG.WNR must be configured
for memory read operation and DMA_CFG.PSIZE must be configured to a value no larger than the
supported bus width of the peripheral DMA bus.

• The DMA_CFG.SYNC bit may be configured to control DMA completion notification timing.

• Interrupts and triggers may also be configured at this step depending on requirements.

RESULT:

The DMA channel is now enabled and the buffer is transferred. The DMA channel enters the IDLE state
upon completion of the work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–39

Register Based Autobuffer Flow Mode

Configures a peripheral’s DMA channel to read data from internal memory and send it to the peripheral
for transmission. The transmission of the buffer is repeated endlessly.

PREREQUISITE:

The peripheral is assumed to be in a state where it is ready to transmit data received from the DMA
channel.

The task involves writing to a number of DMA channel MMR registers in order to configure a DMA
channel to read data from internal memory and send it to a peripheral connected to the peripheral DMA
bus. On DMA completion the DMA channel starts the DMA operation over again creating an endless
circular buffer transfer.

1. Write the DMA_ADDRSTART register.

ADDITIONAL INFORMATION: The address may be used to calculate the most optimum DMA_CFG.MSIZE
possible.

2. Calculate most optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes
in work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected DMA_
CFG.MSIZE and the start address alignment must also be considered.

3. Write the DMA_XCNT register based on calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: DMA_XCNT is the number of DMA_CFG.MSIZE transfers required to make up the
entire work unit.

4. Write the DMA_XMOD register.

ADDITIONAL INFORMATION: For a completely linear buffer transfer, DMA_XMOD is determined by the selected
DMA_CFG.MSIZE. This register is always specified in the number of bytes.

5. Write the DMA_CFG register with DMA_CFG.EN configured to enable the DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for AUTOBUFFER mode, DMA_CFG.WNR must be
configured for memory read operation and DMA_CFG.PSIZE must be configured to a value no larger
than the supported bus width of the peripheral DMA bus.

• DMA_CFG.SYNC may be configured to control DMA completion notification timing.

• Interrupts and triggers may also be configured at this step depending on requirements.

RESULT:

The DMA channel is now enabled and the buffer is transferred until the DMA channel is disabled.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

13–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Descriptor Array Flow Mode

Configures a peripheral’s DMA channel to read data from memory as described by the descriptor sets in
the array and send it to the peripheral for transmission. Descriptor sets are read from an array in memory
to configure the individual work units.

PREREQUISITE:

The peripheral is assumed to be in a state where it is ready to transmit data received from the DMA
channel. The array of descriptors is assumed to be initialized with the last descriptor set configured for
STOP flow mode.

The task involves writing to a number of DMA channel MMR registers in order to configure a DMA
channel to read the first descriptor set from the array in memory that is responsible for the configuring the
DMA channel to retrieve and send the data to a peripheral connected to the peripheral DMA bus. Upon
DMA completion the DMA channel enters the idle state until either disabled or reconfigured for a new
transfer.

1. Write the DMA_DSCPTR_CUR register with the address of the array in which the descriptor sets are stored.

ADDITIONAL INFORMATION: The array address must meet any processor alignments restrictions imposed
by descriptor fetches.

2. Write the DMA_CFG register with DMA_CFG.EN configured to enable the DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for DESCRIPTOR ARRAY mode, DMA_CFG.
NDSIZE must be configured to describe the number of descriptor elements contained within the first
descriptor set. DMA_CFG.WNR must be configured for memory read operation and DMA_CFG.PSIZE must
be configured to a value no larger than the supported bus width of the peripheral DMA bus.

• DMA_CFG.SYNC configuration is controlled by the descriptor set that is to be fetched as are interrupt
and trigger configurations

STEP RESULT: The first descriptor set is fetched from memory location provided by DMA_DSCPTR_CUR
and loaded to the DMA channel’s MMR registers.

RESULT:

The DMA channel is now processing all the work units provided in the descriptor array. The DMA
channel enters the IDLE state upon completion of the final work unit that was configured for STOP flow
mode.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–41

Descriptor List Flow Mode

Configures a peripheral’s DMA channel to read data from memory as described by the descriptor sets in
the list and send it to the peripheral for transmission. Descriptor sets are read from a list of descriptors in
which each descriptor set has a descriptor that points to the next descriptor set location in memory.

PREREQUISITE:

The peripheral is assumed to be in a state where it is ready to transmit data received from the DMA
channel. The list of descriptors is assumed to be initialized with the last descriptor set in the list configured
for STOP flow mode.

The task involves writing to a number of DMA channel MMR registers in order to configure a DMA
channel to read the first descriptor set from the list in memory that is responsible for the configuring the
DMA channel to retrieve and send the data to a peripheral connected to the peripheral DMA bus. Upon
DMA completion the DMA channel enters the idle state until either disabled or reconfigured for a new
transfer.

1. Write the DMA_DSCPTR_NXT register with the address of the first descriptor in the list to be processed.

ADDITIONAL INFORMATION: The array address must meet any processor alignments restrictions imposed
by descriptor fetches.

2. Write the DMA_CFG register with the DMA_CFG.EN configured to enable the DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for DESCRIPTOR LIST mode, and the DMA_CFG.
NDSIZE bit must be configured to describe the number of descriptor elements contained within the first
descriptor set. The DMA_CFG.WNR bit must be configured for memory read operation and the DMA_CFG.
PSIZE bit must be configured to a value no larger than the supported bus width of the peripheral DMA
bus.

• DMA_CFG.SYNC configuration is controlled by the descriptor set that is to be fetched as are interrupt
and trigger configurations.

STEP RESULT: The first descriptor set is fetched from the memory location provided by DMA_DSCPTR_NXT
and loaded to the DMA channel’s MMR registers.

RESULT:

The DMA channel is now processing all the work units provided in the descriptor list. The DMA channel
enters the IDLE state when the final work unit that was configured for STOP flow mode is complete.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

13–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Register Based Memory-to-Memory Transfer in Stop Flow Mode

Configures a memory DMA channel pair in STOP flow mode. One DMA channel is configured for
memory read operations while the other is configured for memory write.

PREREQUISITE:

The task involves writing to a number of DMA channels on two DMA channels that create a memory
DMA pair. Upon DMA completion the DMA channel enters the idle state until either disabled or recon-
figured for a new transfer.

1. Write the DMA_ADDRSTART register of the source DMA channel.

ADDITIONAL INFORMATION: The address may be used to calculate the most optimum DMA_CFG.MSIZE
possible.

2. Calculate most optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes
in work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected DMA_
CFG.MSIZE and the start address alignment must also be considered.

3. Write the DMA_XCNT register of the source DMA channel based on calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: DMA_XCNT is the number of DMA_CFG.MSIZE transfers required to make up the
entire work unit.

4. Write the DMA_XMOD register of the source DMA channel.

ADDITIONAL INFORMATION: For a completely linear buffer transfer, DMA_XMOD is determined by the selected
DMA_CFG.MSIZE. This register is always specified in the number of bytes.

5. Write the DMA_ADDRSTART register of the destination DMA channel.

ADDITIONAL INFORMATION: The address may be used to calculate the most optimum DMA_CFG.MSIZE
possible.

6. Calculate most optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes
in work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected DMA_
CFG.MSIZE and the start address alignment must also be considered.

7. Write the DMA_XCNT register of the destination DMA channel based on calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: DMA_XCNT is the number of DMA_CFG.MSIZE transfers required to make up the
entire work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–43

8. Write the DMA_XMOD register of the destination DMA channel.

ADDITIONAL INFORMATION: For a completely linear buffer transfer, DMA_XMOD is determined by the selected
DMA_CFG.MSIZE. This register is always specified in the number of bytes.

9. Write the DMA_CFG register of the source DMA channel with DMA_CFG.EN configured to enable the
DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for STOP mode, DMA_CFG.WNR must be configured
for memory read operation and DMA_CFG.PSIZE must be configured to a value no larger than the
supported bus width of the peripheral DMA bus.

• DMA_CFG.SYNC may be configured to control DMA completion notification timing.

• Interrupts and triggers may also be configured at this step depending on requirements, generally
however they would be enabled within the destination DMA channel configuration.

STEP RESULT: The memory read DMA transfer begins.

10. Write the DMA_CFG register of the destination DMA channel with DMA_CFG.EN configured to enable the
DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for STOP mode, DMA_CFG.WNR must be configured
for memory write operation and DMA_CFG.PSIZE must be configured to a value no larger than the
supported bus width of the peripheral DMA bus. This must also match the value written for the source
DMA channel configuration.

• Interrupts and triggers may also be configured at this step depending on requirements.

STEP RESULT: The memory write DMA transfer begins.

RESULT:

Both memory DMA channels are now running and the data is transferred from the source address to the
destination address. The DMA channel enters the IDLE state upon completion of the work unit.

Programming Concepts

Using the features, operating modes, and event control for the DMA channel to their greatest potential
requires an understanding of some DMA channel related concepts.

Synchronization of Software and DMA

A critical element of software DMA management is synchronization of DMA work unit completion with
the software. This can best be achieved using DMA channel interrupt and trigger events, or through
polling of these event’s status bits within the DMA channel registers, or a combination of both. Polling for
address or count can only provide synchronization within loose tolerances comparable to pipeline lengths.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

13–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Interrupt and Trigger Event Based Synchronization

Interrupt and trigger based synchronization methods must avoid interrupt/trigger overrun, or the failure
to invoke a DMA channel’s event handler for every event due to excessive latency in processing of events.
Generally, the system design must either ensure that only one event per channel is scheduled (for example,
at the end of a descriptor list), or that generated events are spaced sufficiently far apart in time that system
processing budgets can guarantee every event is serviced.

When the DMA channel issues an interrupt/trigger event or changes event status bits in the DMA_
STATregister, it guarantees that the last memory operation of the work unit is complete. For memory read
DMA transactions, this means that the final memory read data has been safely received in the DMA
channel’s FIFO. For memory write DMA transactions, this means that the DMA channel has received an
acknowledge that the last write transfer of the work unit is complete.

Register Polling Based Synchronization

Polling of DMA channel registers such as the DMA_ADDR_CUR, DMA_DSCPTR_CUR, or the DMA_XCNT_CUR/
DMA_YCNT_CUR registers is not recommended as a method of precisely synchronizing DMA with data
processing due to the DMA channel FIFOs and DMA/memory pipelining. The current address, pointer,
and count registers change several cycles in advance of the completion of the corresponding memory oper-
ation, as measured by the time at which the results of the operation are first visible to the core by memory
read or write instructions.

For example, in a DMA channel memory write operation to external memory, assume a DMA channel
write operation is initiated by DMA channel A. This causes the DDR SDRAM to perform a page open
operation which takes many system clock cycles. Meanwhile, another DMA channel (channel B) which
does not in itself incur latency, initiates a transfer that is stalled behind the slow operation of channel A.
Software monitoring channel B could not safely conclude whether the memory location pointed to by
channel B’s DMA_ADDR_CUR register has or has not been written, based solely on this register’s contents.

Polling of the current address, pointer, and count registers can permit loose synchronization of DMA with
software if allowances are made for the lengths of the DMA/memory pipeline. Further, the length of the
DMA FIFO for a particular peripheral needs to be taken into consideration. The DMA channel does not
advance current address/pointer/count registers if these FIFOs are filled with incomplete work (including
reads that have been started but not yet finished).

Additionally, the length of the pipelines to the destination memory needs to be taken into consideration.
If the DMA FIFO length and the DMA channel’s memory pipeline length are added, an estimate can be
made of the maximum number of incomplete memory operations in progress at one time.

NOTE: The estimate would be a maximum, as the DMA/memory pipeline may include traffic from other
DMA channels.

Descriptor Queues

A system designer might want to write a DMA manager facility which accepts DMA requests from other
software. The DMA manager software does not know in advance when new work requests are received or
what these requests might contain. The software could manage these transfers using a circular linked list

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–45

of DMA descriptors, where each descriptor sets the DMA_DSCPTR_NXT descriptor which points to the next
descriptor set, and the last descriptor set points to the first.

The code that writes into this descriptor list could use the processor’s circular addressing modes, so that it
does not need to use comparison and conditional instructions to manage the circular structure. In this
case, the DMA_DSCPTR_NXT descriptor of each descriptor set could even be written once at startup, and
skipped over as each descriptor’s new contents are written.

The recommended method for synchronization of a descriptor queue is through the use of an interrupt or
trigger. The descriptor queue is structured so that (at least) the final valid descriptor set is always
programmed to generate an interrupt or trigger event upon completion. More detail is provided in the
following sections.

• Queues Using Event Generation for Every Descriptor Set

• Queues Using Minimal Events

Queues Using Event Generation for Every Descriptor Set

In this system, the DMA manager software synchronizes with the DMA channel by enabling an interrupt
or trigger on every descriptor set. This method should only be used if the system design can guarantee that
each work unit completion event is serviced separately (no interrupt or trigger overrun).

To maintain synchronization of the descriptor set queue, the non-interrupt software maintains a count of
descriptor sets added to the queue, while the event handler (either interrupt or trigger) maintains a count
of completed descriptor sets removed from the queue. The counts are equal only when the DMA channel
is paused after having processed all the descriptor sets.

When each new work unit event is received, the DMA manager software initializes a new descriptor set,
taking care to set the flow to STOP mode. Next, the software compares the descriptor set counts to deter-
mine if the DMA channel is running or not. If the DMA channel is paused (counts equal), the software
increments its count and then starts the DMA channel by writing the new descriptor set’s DMA_CFG
descriptor.

If the counts are unequal, the software instead modifies the next-to-last descriptor set’s DMA_CFG descriptor
so that it now describes the newly-queued descriptor set. This operation does not disrupt the DMA
channel provided the rest of the descriptor set’s descriptors are initialized in advance. It is necessary,
however, to synchronize the software to the DMA to correctly determine whether the new or the old DMA_
CFG value was read by the DMA channel.

The synchronization operation should be performed in the event handler. First, when an event is detected,
the handler should read the channel’s DMA_STAT register. If the DMA_STAT.RUN bit indicates the DMA
channel is running, then the channel has moved on to processing another descriptor, and the event handler
may increment its count and exit. If the DMA_STAT.RUN bit indicates the channel is not running, then the
channel is paused, either because there are no more descriptor sets to process, or because the last descriptor
set was queued too late (that is, the modification of the next-to-last descriptor set’s DMA_CFG descriptor
occurred after that descriptor was read into the DMA channel). In this case, the event handler writes the

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

13–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA_CFG value appropriate for the last descriptor set to the DMA channel’s DMA_CFG register, increments
the completed descriptor count, and exits.

Again, this system can fail if the system’s event latencies are large enough to cause any of the channel’s
DMA events to be dropped. An event handler capable of safely synchronizing multiple descriptor set inter-
rupts is complex, performing several MMR accesses to ensure robust operation. In such a system environ-
ment a minimal event synchronization method is preferred.

Queues Using Minimal Events

In this system, only one DMA interrupt or trigger event is generated in the queue at any time. The DMA
event handler for this system can also be extremely short. Here, the descriptor queue is organized into an
active and a waiting portion, where events are enabled only on the last descriptor set in each portion.

When each new DMA request is processed, the software fills in a new descriptor set’s contents and adds it
to the waiting portion of the queue. The descriptor set’s DMA_CFG descriptor should have the flow set to
stop mode. If more than one request is received before the DMA queue completion event occurs, the non-
interrupt code queues later descriptor sets, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA channel. In other words, all but the last
active descriptor sets contain FLOW values for a descriptor based mode and have no event enable set.

The last active descriptor set has the stop flow mode and an event generation enabled. Also, all but the last
waiting descriptor sets are configured for descriptor based flow modes with no event generation. Only the
last waiting descriptor set is configured for stop flow mode and event generation enabled. This ensures that
the DMA channel can automatically process the whole active queue before then issuing one event. Also,
this arrangement makes it easy to start the waiting queue within the event handler by a single DMA_CFG
register write.

After queuing a new waiting descriptor, the non-interrupt software leaves a message for its interrupt
handler in a memory mailbox location containing the desired DMA_CFG value to use to start the first waiting
descriptor set in the waiting queue (or 0 to indicate no descriptors are waiting).

It is critical that the software not modify the contents of the active descriptor set queue directly, once
processing by the DMA channel has started, unless careful synchronization measures are taken. In the
most straightforward implementation of a descriptor set queue, the DMA manager software never modi-
fies descriptors on the active queue. Instead, the DMA manager waits until the DMA queue completion
event indicates the processing of the entire active queue is complete.

When a DMA queue completion event is received, the event handler reads the mailbox from the non-inter-
rupt software and writes the value to the DMA channel’s DMA_CFG register. This single register write
restarts the queue, effectively transforming the waiting queue to an active queue. The event handler then
passes a message back to the non-interrupt software indicating the location of the last descriptor set
accepted into the active queue.

If, on the other hand, the event handler reads its mailbox and finds a DMA_CFG value of zero, indicating
there is no more work to perform, then it passes an appropriate message back to the non-interrupt software
indicating that the queue has stopped.

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–47

The non-interrupt software which accepts new DMA work unit requests needs to synchronize the activa-
tion of a new work unit with the interrupt handler. If the queue has stopped (that is, if the mailbox from
the event handler is zero), the non-interrupt software is responsible for starting the queue (writing the first
descriptor sets DMA_CFG value to the channel’s DMA_CFG register). If the queue is not stopped, the non-
interrupt software must not write the DMA_CFG register (which would cause a DMA error), but instead it
should queue the descriptor onto the waiting queue and update its mailbox directed to the event handler.

ADSP-BF60x DMA Register Descriptions
DMA Channel (DMA) contains the following registers.

Table 13-17: ADSP-BF60x DMA Register List

Name Description

DMA_DSCPTR_NXT Pointer to Next Initial Descriptor

DMA_ADDRSTART Start Address of Current Buffer

DMA_CFG Configuration Register

DMA_XCNT Inner Loop Count Start Value

DMA_XMOD Inner Loop Address Increment

DMA_YCNT Outer Loop Count Start Value (2D only)

DMA_YMOD Outer Loop Address Increment (2D only)

DMA_DSCPTR_CUR Current Descriptor Pointer

DMA_DSCPTR_PRV Previous Initial Descriptor Pointer

DMA_ADDR_CUR Current Address

DMA_STAT Status Register

DMA_XCNT_CUR Current Count(1D) or intra-row XCNT (2D)

DMA_YCNT_CUR Current Row Count (2D only)

DMA_BWLCNT Bandwidth Limit Count

DMA_BWLCNT_CUR Bandwidth Limit Count Current

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pointer to Next Initial Descriptor

The DMA_DSCPTR_NXT register specifies the start location of the next descriptor set, which begins when the
DMA activity specified by the current descriptor set completes. This register is read/write prior to enabling
the channel, but is read-only after enabling channel.

The DMA_DSCPTR_NXT register is only used in descriptor list mode. At the start of a descriptor fetch in this
mode, the DMA_DSCPTR_NXT register is copied into the DMA_DSCPTR_CUR register. During descriptor fetch,
the DMA increments the DMA_DSCPTR_CUR register value after reading each element of the descriptor set.

In descriptor list mode, the DMA_DSCPTR_NXT register (not the DMA_DSCPTR_CUR register) must be
programmed directly through MMR access, before the DMA operation is started. In descriptor array
mode, the DMA disregards the DMA_DSCPTR_NXT register and uses the DMA_DSCPTR_CUR register to control
descriptor fetch.

Figure 13-4: DMA_DSCPTR_NXT Register Diagram

DMA_BWMCNT Bandwidth Monitor Count

DMA_BWMCNT_CUR Bandwidth Monitor Count Current

Table 13-18: DMA_DSCPTR_NXT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Pointer To Next Descriptor Set.

Table 13-17: ADSP-BF60x DMA Register List (Continued)

Name Description

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–49

Start Address of Current Buffer

The DMA_ADDRSTART register contains the start address of the Work Unit currently targeted for DMA. This
register is read/write prior to enabling the channel, but is read-only after enabling channel.

Figure 13-5: DMA_ADDRSTART Register Diagram

Configuration Register

The DMA_CFG sets up DMA parameters and operation modes. Other than clearing the DMA_CFG.EN bit,
writing to the DMA_CFG register while a DMA process is already running cause a DMA error.

Table 13-19: DMA_ADDRSTART Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Work Unit address start value.

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 13-6: DMA_CFG Register Diagram

Table 13-20: DMA_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

28
(R/W)

PDRF Peripheral Data Request Forward.
The DMA_CFG.PDRF defines how the DMA handles data requests
from the peripheral while in idle state after a stop mode or memory
read work unit. If set, the DMA forwards the peripheral data request
as an interrupt.
Note that the peripheral data request forward selection applies only
to DMA_CFG.FLOW bits set for stop and DMA_CFG.WNR bits set for
memory read.
0 Peripheral Data Request Not Forwarded
1 Peripheral Data Request Forwarded

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–51

26
(R/W)

TWOD Two Dimension Addressing Enable.
The DMA_CFG.TWOD selects whether the DMA addressing involves
only DMA_XCNT and DMA_XMOD (one-dimensional DMA) or also
involves DMA_YCNT and DMA_YMOD (two-dimensional DMA).
0 One-Dimensional Addressing
1 Two-Dimensional Addressing

25
(R/W)

DESCIDCPY Descriptor ID Copy Control.
The DMA_CFG.DESCIDCPY specifies when to copy the initial
descriptor pointer to the DMA_DSCPTR_PRV register.
Note that a bus write to DMA_CFG to clear the DMA_CFG.EN bit cause
the DMA to use the new value of DMA_CFG.DESCIDCPY immediately.
To preserve consistency (if required by application), the new value of
DMA_CFG.DESCIDCPY should match the previous value.
0 Never Copy
1 Copy on Work Unit Complete

24
(R/W)

TOVEN Trigger Overrun Error Enable.
A trigger overrun occurs if more than one trigger was received before
the DMA reached the trigger wait state. If DMA_CFG.TOVEN is set, a
trigger overrun causes the DMA to flag an error. In cases where a
trigger overrun is not a problem, clearing DMA_CFG.TOVEN prevents
the overrun from causing an error and halting the DMA. The DMA_
CFG.TOVEN operates independently of the DMA_CFG.TWAIT bit
selection.
0 Ignore Trigger Overrun
1 Error on Trigger Overrun

Table 13-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

23:22
(R/W)

TRIG Generate Outgoing Trigger.
The DMA_CFG.TRIG selects whether the DMA issues an outgoing
trigger, based on the work unit counter values. In one-dimensional
mode, the only options are to trigger at the end of the whole Work
Unit (trigger when DMA_XCNT_CUR reaches 0) or not to trigger at all. If
in one-dimensional addressing mode, programming DMA_CFG.TRIG
to trigger when DMA_YCNT_CUR reaches 0 (or to reserved) cause the
DMA to flag a configuration error.
If in two-dimensional addressing mode, the options are to trigger at
the end of each row of the inner loop (when DMA_XCNT_CUR reaches
0), to trigger only after completing the whole work unit (when DMA_
YCNT_CURreaches 0), or not to trigger at all. If in two-dimensional
mode and set to trigger when DMA_XCNT_CUR reaches 0, the DMA
also issues a trigger at the end of the work unit. If in two-dimensional
addressing mode, programming DMA_CFG.TRIG to reserved causes
the DMA to flag a configuration error.
If DMA_CFG.TRIG is non-zero and the peripheral issues a finish
command, the DMA issues a trigger after the finish procedure is
complete.
For more information about trigger generation timing, see the trigger
section of the DMA functional description.
0 Never assert Trigger
1 Trigger when XCNTCUR reaches 0
2 Trigger when YCNTCUR reaches 0
3 Reserved

Table 13-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–53

21:20
(R/W)

INT Generate Interrupt.
The DMA_CFG.INT selects whether an interrupt is sent to the core
based on work unit status or peripheral interrupt request.
For one-dimensional mode, setting DMA_CFG.INT for interrupt when
DMA_YCNT_CUR reaches 0 causes the DMA to flag a configuration
error.
The peripheral interrupt setting enables the DMA to generate the last
grant indication and to accept/forward the peripheral interrupt
command.
Note that the peripheral interrupt selection applies only to DMA_CFG.
FLOW bits set for stop and DMA_CFG.WNR bits set for memory read.
If DMA_CFG.INT is set for interrupt on count completion (DMA_XCNT_
CUR or DMA_YCNT_CUR reach 0) and the peripheral issues a finish
command, the DMA issues an interrupt after the finish procedure is
complete.
For more information see the sections on interrupt generation and
peripheral control in the DMA functional description.
0 Never assert Interrupt
1 Interrupt when X Count Expires
2 Interrupt when Y Count Expires
3 Peripheral Interrupt

18:16
(R/W)

NDSIZE Next Descriptor Set Size.
The DMA_CFG.NDSIZE specifies the number of descriptor elements in
memory to load during the next descriptor fetch. The DMA loads the
descriptors in a specific order. The descriptor set may or may not
have the next descriptor pointer, depending on whether it is a
descriptor list or descriptor array.
0 Fetch one Descriptor Element
1 Fetch two Descriptor Elements
2 Fetch three Descriptor Elements
3 Fetch four Descriptor Elements
4 Fetch five Descriptor Elements
5 Fetch six Descriptor Elements
6 Fetch seven Descriptor Elements
7 Reserved

Table 13-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

15
(R/W)

TWAIT Wait for Trigger.
The DMA_CFG.TWAIT controls whether the DMA waits for a incoming
trigger from another channel or user. If DMA_CFG.TWAIT is set, the
DMA enters the wait state before starting the next work unit,
including descriptor fetch if in descriptor mode. Using the wait for
trigger control is not allowed for descriptor-on-demand mode, and
using this control in that mode causes an error. For more
information, see the trigger section of the DMA functional
description.
0 Begin Work Unit Automatically (No Wait)
1 Wait for Trigger (Halt before Work Unit)

Table 13-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–55

14:12
(R/W)

FLOW Next Operation.
The DMA_CFG.FLOW selects descriptor handling options.
0 STOP - Stop

When the current work unit completes, the
DMA channel stops automatically, after
signaling an interrupt (if selected). The DMA_
STAT.RUN status bit changes to idle, while
DMA_CFG.EN bit is unchanged. In this state,
the channel is stopped. Peripheral interrupts
are still filtered out by the DMA. The
channel may be restarted simply by another
write (with the DMA_CFG.EN set) to the DMA_
CFG register specifying the next work unit.

1 AUTO - Autobuffer
In this mode, no descriptors in memory are
used. Instead, DMA is performed in a
continuous circular buffer fashion based on
user programmed DMA MMR settings. On
completion of the work unit, the parameter
registers are reloaded into the current
registers, and DMA resumes immediately
with zero overhead. This mode is considered
to be a succession of automatically restarted
work units. Autobuffer mode is stopped by a
user write of 0 to the DMA_CFG.EN bit.

2 Reserved
3 Reserved
4 DSCL - Descriptor List

This mode fetches a descriptor Set from
memory that includes DMA_DSCPTR_NXT,
allowing maximum flexibility in locating
descriptors in memory.

Table 13-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

5 DSCA - Descriptor Array
This mode fetches a descriptor set from
memory that does not include the DMA_
DSCPTR_NXT element. Because the
descriptor set does not contain a next
descriptor pointer entry, the DMA defaults
to using the DMA_DSCPTR_CUR register to
step through descriptors, allowing a group
of descriptors sets to follow one another in
memory as an array.

6 Descriptor On Demand List
This mode fetches a descriptor set from
memory that includes DMA_DSCPTR_NXT. At
the end of the work unit, if the channel has
not been triggered, the work unit is
repeated. But, if the channel has been
triggered before the end of the work unit,
the DMA fetches a new descriptor set.

7 Descriptor On Demand Array
This mode fetches a descriptor set from
memory that does not include DMA_DSCPTR_
NXT. At the end of the work unit, if the
channel has not been triggered, the work
unit is repeated. But, if the channel has been
triggered before the end of the work unit,
the DMA fetches a new descriptor set is
fetched. Because the descriptor set does not
contain a next descriptor pointer entry, the
DMA defaults to using the DMA_DSCPTR_CUR
register to step through descriptors,
allowing a group of descriptors sets to follow
one another in memory as an array.

Table 13-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–57

10:8
(R/W)

MSIZE Memory Transfer Word Size.
The DMA_CFG.MSIZE bits select memory transfer sizes of 8-, 16-, 32-,
64-, 128-, or 256-bit words. Note that the transfer start address (DMA_
ADDRSTART) and transfer increment values (DMA_XMOD, and if needed
DMA_YMOD) must be a multiple of the memory transfer unit size.
0 1 Byte
1 2 Bytes
2 4 Bytes
3 8 Bytes
4 16 Bytes
5 32 Bytes

6:4
(R/W)

PSIZE Peripheral Transfer Word Size.
The DMA_CFG.PSIZE bits select peripheral transfer sizes as 8, 16, 32,
or 64 bits wide. Each request/grant results in a single peripheral
access. There is no bursting on the peripheral bus, so the DMA_CFG.
PSIZE selection must be less than, or equal to, the width of the bus. If
the selection is greater than the bus width, a configuration error
occurs. Note that the processor's peripheral bus is dedicated to DMA
and peripheral accesses.
0 1 Byte
1 2 Bytes
2 4 Bytes
3 8 Bytes

3
(R/W)

CADDR Use Current Address.
If the DMA_CFG.CADDR bit is cleared, the DMA loads the DMA_
ADDRSTART register on the first access of the work unit. If the DMA_
CFG.CADDR bit is set, the DMA uses the DMA_ADDR_CUR register value
for the starting address for the work unit and writes the same value to
the DMA_ADDRSTART register.
This operation permits continuation of a previous work unit. If this
mode is used at the end of a descriptor list or array, the DMA ignores
the start address value that is fetched as part of the descriptor set.
0 Load Starting Address
1 Use Current Address

Table 13-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

2
(R/W)

SYNC Synchronize Work Unit Transitions.
Setting the DMA_CFG.SYNC bit clears the DMA FIFO and pointers
before starting the first Work Unit of a Work Unit Chain.
When the transfer direction is memory read/transmit (DMA_CFG.WNR
=0), the DMA waits until all data has been transmitted to peripheral
before moving on to next Work Unit, clearing the FIFO and pointers.
When the transfer direction is memory write/receive (DMA_CFG.WNR
=1), the DMA ignores the DMA_CFG.SYNC bit value after processing
the first Work Unit of a Work Unit Chain. Because the channel is
allowed to receive data when turned on but idling, there could be
data in the FIFO that was put in by the peripheral before the channel
was programmed. With DMA_CFG.SYNC set at the beginning of a work
unit chain (during the first work unit), the DMA clears the FIFO,
erasing the data put in to the FIFO while the channel was idling.
Syncing lets you change the DMA_CFG.PSIZE between individual
work units and (in some cases) work unit chains. The sync resets the
pointers in the FIFO, preventing misaligned FIFO access.
The DMA_CFG.MSIZE may be changed between consecutive work
units, independent of the DMA_CFG.SYNC bit setting.
Syncing also permits changes to transfer direction. And, because the
data in the FIFO is eliminated, the data that went into the FIFO from
one direction (transmit or receive) is not sent back in the other
direction after the direction change.
0 No Synchronization
1 Synchronize Channel

1
(R/W)

WNR Write/Read Channel Direction.
The DMA_CFG.WNR selects receive (write to memory) or transmit
(read from memory) channel direction.
0 Transmit (Read from memory)
1 Receive (Write to memory)

Table 13-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–59

Inner Loop Count Start Value

For 2D DMA, the DMA_XCNT contains the inner loop count. This value selects the number of DMA_CFG.
MSIZE size data transfers to make up the length of a row. For 1D DMA, DMA_XCNT specifies the number of
DMA_CFG.MSIZE size data transfers for the entire work unit. The DMA_XCNT register is read/write prior to
enabling the channel, but is read-only after enabling channel. Note that the DMA generates a configura-
tion error if DMA_XCNT is 0x0 when a work unit begins.

Figure 13-7: DMA_XCNT Register Diagram

0
(R/W)

EN DMA Channel Enable.
The DMA_CFG.EN enables the selected DMA Channel.
When a peripheral DMA channel is enabled, data requests from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral data request and passes it directly to
the system event controller.
To avoid unexpected results, take care to enable the DMA channel
before enabling the peripheral, and to disable the peripheral before
disabling the DMA channel.
A transition of DMA_CFG.EN from 0 to 1 creates a hard reset of all
internal counters and state, including the DMA_STAT register. (All
other register values remain unaffected.) A transition from 1 to 0
maintains all counters and registers for the user to read and analyze.
If a descriptor is loaded (see DMA_CFG.FLOW field) with DMA_CFG.EN
cleared, the DMA goes to off/idle state after the descriptor load is
complete.
0 Disable
1 Enable

Table 13-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Inner Loop Address Increment

The DMA_XMOD contains a signed, two's-complement byte address increment. In 1D DMA, this increment
is the stride that is applied after each DMA_CFG.MSIZE size data transfer. The DMA_XMOD register is read/
write prior to enabling the channel, but is read-only after enabling channel.

The DMA_XMOD value is specified in bytes, regardless of the work unit size. In 2D DMA, this increment is
applied after each DMA_CFG.MSIZE size data transfer in the inner loop, up to but not including the last DMA_
CFG.MSIZE size data transfer in each inner loop. After the last DMA_CFG.MSIZE size data transfer in each
inner loop, the DMA_YMOD register is applied instead, including the last DMA_CFG.MSIZE size data transfer
of a work unit.

The DMA_XMOD field may be set to 0. In this case, DMA is performed repeatedly to or from the same address.
This approach can be useful for transferring data between a data register and an external memory-mapped
peripheral.

Figure 13-8: DMA_XMOD Register Diagram

Table 13-21: DMA_XCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Work Unit Inner Loop Counter Start Value.

Table 13-22: DMA_XMOD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Inner Loop Address Increment in Bytes.

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–61

Outer Loop Count Start Value (2D only)

For 2D DMA, the DMA_YCNT contains the outer loop count. This register is not used in 1D DMA mode.
The DMA_YCNT register specifies the number of rows in the outer loop of a 2D DMA sequence. The DMA_
YCNT register is read/write prior to enabling the channel, but is read-only after enabling channel. Note that
the DMA generates a configuration error if DMA_YCNT is 0x0 when a work unit begins.

Figure 13-9: DMA_YCNT Register Diagram

Outer Loop Address Increment (2D only)

The DMA_YMOD contains a signed, two's-complement value. This byte address increment is applied after
each decrement of the DMA_YCNT_CUR register. The value is the offset between the last word of one row and
the first word of the next row. Note that DMA_YMOD is specified in bytes, regardless of the work unit size.
The DMA_YMOD register is read/write prior to enabling the channel, but is read-only after enabling channel.

Table 13-23: DMA_YCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Work Unit Inner Loop Counter Current Value.

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 13-10: DMA_YMOD Register Diagram

Current Descriptor Pointer

The DMA_DSCPTR_CUR contains the memory address for the next descriptor to be loaded. The DMA_
DSCPTR_CUR register is read/write prior to enabling the channel, but is read-only after enabling channel.
For DMA_CFG.FLOW mode settings that involve descriptor fetches, this register is used to read descriptors
into appropriate MMRs before a work unit begins. For descriptor list mode, the DMA_DSCPTR_CUR is initial-
ized from the DMA_DSCPTR_NXT register before fetching each descriptor set. Then, the address in the DMA_
DSCPTR_CUR register increments as each descriptor is read in.

When the entire descriptor set has been read, the DMA_DSCPTR_CUR register contains this value:

DMA_DSCPTR_CUR = Descriptor Start Address + Descriptor Size (# of elements)

For descriptor array mode, the DMA_DSCPTR_CUR register, and not the DMA_DSCPTR_NXT register, must be
programmed by MMR access before starting DMA operation.

Table 13-24: DMA_YMOD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Outer Loop Address Increment in Bytes.

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–63

Figure 13-11: DMA_DSCPTR_CUR Register Diagram

Previous Initial Descriptor Pointer

The DMA_DSCPTR_PRV contains the initial descriptor pointer for the previous work unit. If DMA_CFG.
DESCIDCPY is set, the DMA copies the initial descriptor pointer to DMA_DSCPTR_PRV after the work unit
completes. Otherwise, the value is not updated.

To indicate an overrun, bit 0 of DMA_DSCPTR_PRV is used as a previous descriptor pointer overrun (PDPO)
status bit. Due to aligned addressing combined with all descriptors being 32 bits in width, bits 0 and 1 of
all descriptor pointers must be zero. Otherwise, an alignment error would occur when used for descriptor
fetches. As a result, bit 1 and 0 of DMA_DSCPTR_PRV may be used for status. For more information, see the
section on descriptor pointer capture in the DMA functional description.

Table 13-25: DMA_DSCPTR_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Pointer for Current Descriptor Element.

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 13-12: DMA_DSCPTR_PRV Register Diagram

Current Address

The DMA_ADDR_CUR contains the present memory transfer address for a given work unit. At the start of a
work unit, the DMA_ADDR_CUR is loaded from the DMA_ADDRSTART register, and DMA_ADDR_CUR is incre-
mented as each transfer occurs. The DMA_ADDR_CUR register is read/write prior to enabling the channel, but
is read-only after enabling channel.

Figure 13-13: DMA_ADDR_CUR Register Diagram

Table 13-26: DMA_DSCPTR_PRV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:2
(R/NW)

DESCPPREV Pointer for Previous Descriptor Element.

0
(R/NW)

PDPO Previous Descriptor Pointer Overrun.

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–65

Status Register

The DMA_STAT indicates status of DMA work units, FIFO, errors, interrupts, and triggers.

Figure 13-14: DMA_STAT Register Diagram

Table 13-27: DMA_ADDR_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Work Unit current address value.

Table 13-28: DMA_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

20
(R/NW)

TWAIT Trigger Wait Status.
The DMA_STAT.TWAIT indicates whether the DMA has or has not
received a trigger. This bit is set until it reaches the next wait state. At
that point, the bit is cleared, the DMA stops processing that work
unit, and the following work unit is processed. The DMA does not
distinguish between one or more triggers received.
0 No trigger received
1 Trigger received

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

18:16
(R/NW)

FIFOFILL FIFO Fill Status.
The DMA_STAT.FIFOFILL reports the quantity of data in the FIFO
relative to available space.
0 Empty
1 Empty < FIFO = 1/4 Full
2 1/4 Full < FIFO = 1/2 Full
3 1/2 Full < FIFO = 3/4 Full
4 3/4 Full < FIFO = Full
5 Reserved
6 Reserved
7 Full

15:14
(R/NW)

MBWID Memory Bus Width.
The DMA_STAT.MBWID indicates the width of the memory bus
connected to this DMA.
0 2 Bytes
1 4 Bytes
2 8 Bytes
3 16 Bytes

13:12
(R/NW)

PBWID Peripheral Bus Width.
The DMA_STAT.PBWID indicates the width of the peripheral bus
connected to this DMA.
0 1 Byte
1 2 Bytes
2 4 Bytes
3 8 Bytes

Table 13-28: DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–67

10:8
(R/NW)

RUN Run Status.
The DMA_STAT.RUN reports the DMA's current operational state. If
the DMA is in idle or stop state, the DMA_CFG.EN bit may be either 0
or 1. Note that the DMA_STAT.RUN is not cleared by a transition of the
DMA_CFG.EN bit from 0 to 1. The DMA_STAT.RUN is automatically
cleared when the DMA completes.
0 Idle/Stop State
1 Descriptor Fetch
2 Data Transfer
3 Waiting for Trigger
4 Waiting for Write ACK/FIFO Drain to

Peripheral
5 Reserved
6 Reserved
7 Reserved

6:4
(R/NW)

ERRC Error Cause.
When an interrupt request error occurs (DMA_STAT.IRQERR), the
DMA updates DMA_STAT.ERRC to identify the type of error. For more
information, see the errors section of the DMA functional
description.
0 Configuration Error
1 Illegal Write Occurred While Channel

Running
2 Address Alignment Error
3 Memory Access/Fabric Error
4 Reserved
5 Trigger Overrun
6 Bandwidth Monitor Error
7 Reserved

Table 13-28: DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Current Count(1D) or intra-row XCNT (2D)

For 1D DMA, the DMA loads the DMA_XCNT_CUR from the DMA_XCNT register at the beginning of each work
unit. For 2D DMA, the DMA loads DMA_XCNT_CUR from the DMA_XCNT register after the end of each row.
The DMA decrements the value in DMA_XCNT_CUR each time a DMA_CFG.MSIZE size data transfer occurs.

2
(R/W1C)

PIRQ Peripheral Interrupt Request.
The DMA_STAT.PIRQ indicates an interrupt has been caused by the
peripheral. Programmers can use the DMA_STAT.PIRQ status to help
determine which DMA asserted the interrupt and to help distinguish
between an interrupt caused based on the state of the work unit and
an interrupt made by the peripheral.
0 No Interrupt
1 Interrupt Signaled by Peripheral

1
(R/W1C)

IRQERR Error Interrupt.
The DMA_STAT.IRQERR indicates that the DMA has detected a
documented rule violations during DMA programming or operation.
The DMA cannot, however, flag all possible programming or
operation issues to indicate errors. Programmers can use DMA_STAT.
IRQERR to help determine which DMA issued the error interrupt.
Note that the DMA_STAT.IRQERR is not cleared by a transition of the
DMA_CFG.EN bit from 0 to 1. The DMA_STAT.IRQERR must be cleared
with a write-1-to-clear operation prior to the DMA_CFG.EN transition
for the fields to be reset.
0 No Error
1 Error Occurred

0
(R/W1C)

IRQDONE Work Unit/Row Done Interrupt.
The DMA_STAT.IRQDONE indicates the DMA has detected the
completion of a work unit or row (inner loop count) and has issued
an interrupt. Programmers can use the DMA_STAT.IRQDONE status to
help determine which DMA asserted the interrupt and to help
distinguish between an interrupt caused based on the state of the
work unit and an interrupt made by the peripheral. For more
information, see the interrupts section of the DMA functional
description.
0 Inactive
1 Active

Table 13-28: DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–69

When the count in DMA_XCNT_CUR expires, the work unit is complete. In 2D DMA, the DMA_XCNT_CUR
value is 0 only when the entire transfer is complete.

Figure 13-15: DMA_XCNT_CUR Register Diagram

Current Row Count (2D only)

For 2D DMA, the DMA loads the DMA_YCNT_CUR from the DMA_YCNT register at the beginning of each 2D
DMA session. The DMA_YCNT_CUR is not used for 1D DMA. The DMA decrements DMA_YCNT_CUR each
time the DMA_XCNT_CUR expires during 2D DMA operation, signifying completion of an entire row
transfer.

Figure 13-16: DMA_YCNT_CUR Register Diagram

Table 13-29: DMA_XCNT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Work Unit outer loop counter start value.

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

13–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bandwidth Limit Count

The DMA_BWLCNT contains a count that determines how often the DMA issues memory transactions. The
DMA loads the value from DMA_BWLCNT into DMA_BWLCNT_CUR and decrements the current value each
SCLK cycle. When DMA_BWLCNT_CUR reaches 0x0000, the next request is issued, and the DMA reloads DMA_
BWLCNT_CUR. This bandwidth limit functionality is not applied to descriptor fetch requests. Programming
0x0000 allows the DMA to request as often as possible. 0xFFFF is a special case and causes requests to stop.

Figure 13-17: DMA_BWLCNT Register Diagram

Bandwidth Limit Count Current

The DMA_BWLCNT_CUR contains the number of SCLK count cycles remaining before the next request is
issued.

Table 13-30: DMA_YCNT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Work Unit outer loop counter current value.

Table 13-31: DMA_BWLCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Bandwidth Limit Count.

DIRECT MEMORY ACCESS (DMA)
ADSP-BF60X DMA REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–71

Figure 13-18: DMA_BWLCNT_CUR Register Diagram

Bandwidth Monitor Count

The DMA_BWMCNT contains the maximum number of SCLK cycles allowed for a work unit to complete. Each
time the DMA_CFG register is written (MMR access only), a work unit ends, or an autobuffer wraps, the
DMA loads the value in DMA_BWMCNT into DMA_BWMCNT_CUR. The DMA decrements DMA_BWMCNT_CUR
every SCLK a work unit is active. If DMA_BWMCNT_CUR reaches 0x0000_0000, the DMA_STAT.IRQERR bit is
set, and the DMA_STAT.ERRC is set to 0x6. The DMA_BWMCNT_CUR remains at 0x0000_0000 until it is reloaded
when the work unit completes. Unlike other error causes, a bandwidth monitor error does not stop work
unit processing. Programming 0x0000_0000 disables bandwidth monitor functionality.

Figure 13-19: DMA_BWMCNT Register Diagram

Table 13-32: DMA_BWLCNT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

VALUE Bandwidth Limit Count Current.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL LIST FOR ADSP-BF60X

13–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Bandwidth Monitor Count Current

The DMA_BWMCNT_CUR contains the number of cycles remaining for the current descriptor to complete.

Figure 13-20: DMA_BWMCNT_CUR Register Diagram

DMA Channel List for ADSP-BF60x
The following tables provide DMA channel assignment and channel parametric information for the
ADSP-BF60x processors.

Table 13-33: DMA_BWMCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Bandwidth Monitor Count.

Table 13-34: DMA_BWMCNT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Bandwidth Monitor Count Current.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL LIST FOR ADSP-BF60X

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–73

Table 13-35: SPORT DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MBWID)

Peripheral
Bus Width

(DMA_
STAT.
PBWID)

Max
Outstanding

Reads

Max
Outstanding

Writes

DMA0 SPORT0
Channel A

64 No 32-bit 32-bit 4 4

DMA1 SPORT0
Channel B

64 No 32-bit 32-bit 4 4

DMA2 SPORT1
Channel A

64 No 32-bit 32-bit 4 4

DMA3 SPORT1
Channel B

64 No 32-bit 32-bit 4 4

DMA4 SPORT2
Channel A

64 No 32-bit 32-bit 4 4

DMA5 SPORT2
Channel B

64 No 32-bit 32-bit 4 4

Table 13-36: SPI DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstanding

Reads

Max
Outstanding

Writes

DMA6 SPI0 Transmit 64 No 32 bit 32-bit 4 4
DMA7 SPI0 Receive 64 No 32 bit 32-bit 4 4
DMA8 SPI1 Transmit 64 No 32 bit 32-bit 4 4
DMA9 SPI1 Receive 64 No 32 bit 32-bit 4 4

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL LIST FOR ADSP-BF60X

13–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 13-37: RSI DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory Bus
Width
(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstanding

Reads

Max
Outstanding

Writes

DMA10 RSI0 64 No 32 bit 32-bit 4 4

Table 13-38: SDU DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory Bus
Width
(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstanding

Reads

Max
Outstanding

Writes

DMA11 SDU0 64 No 32 bit 32-bit 4 4

Table 13-39: Link Port DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstanding

Reads

Max
Outstanding

Writes

DMA13 Linkport0 64 No 32 bit 32-bit 4 4
DMA14 Linkport1 64 No 32 bit 32-bit 4 4
DMA15 Linkport2 64 No 32 bit 32-bit 4 4
DMA16 Linkport3 64 No 32 bit 32-bit 4 4

Table 13-40: UART DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstanding

Reads

Max
Outstanding

Writes

DMA17 UART0
Transmit

64 No 32-bit 32-bit 4 4

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL LIST FOR ADSP-BF60X

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–75

DMA18 UART0
Receive

64 No 32-bit 32-bit 4 4

DMA19 UART1
Transmit

64 No 32-bit 32-bit 4 4

DMA20 UART1
Receive

64 No 32-bit 32-bit 4 4

Table 13-41: MDMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstandin

g Reads

Max
Outstandin

g Writes

DMA21 MDMA0
Source/
Destination

128 Yes 32-bit 32-bit 8 7

DMA22 MDMA0
Destination/
Source

64 Yes 32-bit 32-bit 8 4

DMA23 MDMA1
Source/
Destination

64 Yes 32-bit 32-bit 8 4

DMA24 MDMA1
Destination/
Source

64 Yes 32-bit 32-bit 8 4

DMA25 MDMA2
Source/
Destination

128 Yes 32-bit 32-bit 8 7

DMA26 MDMA2
Destination/
Source

64 Yes 32-bit 32-bit 8 4

DMA27 MDMA3
Source/
Destination

64 Yes 32-bit 32-bit 8 4

Table 13-40: UART DMA Channels (Continued)

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstanding

Reads

Max
Outstanding

Writes

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL LIST FOR ADSP-BF60X

13–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA28 MDMA3
Destination/
Source

64 Yes 32-bit 32-bit 8 4

Table 13-42: CRC DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstanding

Reads

Max
Outstanding

Writes

DMA21 CRC0 Receive 128 Yes 32-bit 32-bit 8 7
DMA22 CRC0

Transmit
64 Yes 32-bit 32-bit 8 4

DMA23 CRC1 Receive 64 Yes 32-bit 32-bit 8 4
DMA24 CRC1

Transmit
64 Yes 32-bit 32-bit 8 4

Table 13-43: EPPI DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstandin

g Reads

Max
Outstandin

g Writes

DMA29 EPPI0 Luma/
Pixel Pipe Data

128 No 32-bit 32-bit 8 7

DMA30 EPPI0
Chrominance
Data

128 No 32-bit 32-bit 8 7

DMA31 EPPI2 Luma/
Pixel Pipe Data

128 No 32-bit 32-bit 8 7

Table 13-41: MDMA Channels (Continued)

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstandin

g Reads

Max
Outstandin

g Writes

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL LIST FOR ADSP-BF60X

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 13–77

DMA32 EPPI2
Chrominance
Data

128 No 32-bit 32-bit 8 7

DMA33 EPPI1 Luma/
Pixel Pipe Data

128 No 32-bit 32-bit 8 7

DMA34 EPPI1
Chrominance
Data

128 No 32-bit 32-bit 8 7

Table 13-44: PIXC DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstanding

Reads

Max
Outstanding

Writes

DMA35 PIXC Input
Channel A

128 Yes 32-bit 32-bit 8 7

DMA36 PIXC Input
Channel B

128 Yes 32-bit 32-bit 8 7

DMA37 PIXC Output 128 Yes 32-bit 32-bit 8 7

Table 13-45: PVP DMA Channels

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstandin

g Reads

Max
Outstandin

g Writes

DMA38 PVP0 Camera
Pipe Data
Output Port 1

128 No 32-bit 32-bit 8 7

Table 13-43: EPPI DMA Channels (Continued)

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstandin

g Reads

Max
Outstandin

g Writes

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL LIST FOR ADSP-BF60X

13–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA39 PVP0 Camera
Pipe Data
Output Port 2

128 No 32-bit 32-bit 8 7

DMA40 PVP0 Camera
Pipe Status
Output

64 No 32-bit 32-bit 8 7

DMA41 PVP0 Camera
Pipe
Configuration
Input

64 Yes 32-bit 32-bit 8 7

DMA42 PVP0 Memory
Pipe Data
Output

128 Yes 32-bit 32-bit 8 7

DMA43 PVP0 Memory
Pipe Data Input

128 Yes 32-bit 32-bit 8 7

DMA44 PVP0 Memory
Pipe Status
Output

64 No 32-bit 32-bit 8 7

DMA45 PVP0 Memory
Pipe
Configuration
Input

64 Yes 32-bit 32-bit 8 7

DMA46 PVP0 Camera
Pipe Data
Output Port 0

128 No 32-bit 32-bit 8 7

Table 13-45: PVP DMA Channels (Continued)

DMA
Channel Peripheral

FIFO Depth
(Bytes)

Bandwidth
Limit/

Monitor
Support

 Memory
Bus Width

(DMA_
STAT.
MSIZE)

Peripheral
Bus Width

(DMA_
STAT.
PSIZE)

Max
Outstandin

g Reads

Max
Outstandin

g Writes

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–1

14 General-Purpose Ports (PORT)

This section describes general-purpose ports, pin multiplexing, general-purpose input/output (GPIO)
functionality, and pin interrupts.

The general-purpose ports provide the following three functions.

• Pin multiplexing scheme

• GPIO functionality

• Pin interrupts

Figure 14-1: Simplified GPIO and Pin Interrupt Signal Flow

GENERAL-PURPOSE PORTS (PORT)
PORT FEATURES

14–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PORT Features
The PORTs include the following features:

• Up to 112 general-purpose I/O (GPIO) pins

• Input mode, output mode, and open-drain mode of GPIO operation

• Port multiplexing controlled by individual pin-per-pin base

• No glue hardware required for unused pins

• Six interrupt channels dedicated to pin interrupts

• All port pins provide interrupt functionality

• Byte-wide pin-to-interrupt assignment

PORT Functional Description
Every port pin can operate in GPIO mode. This is the default after reset and is controlled by the port-
specific PORTx_FER enable register. Every port has a dedicated set of MMR registers that control the GPIO
functionality. Every bit in these registers represents a certain GPIO pin of the specific port. The following
sections provide functional descriptions for PORT features:

• ADSP-BF60x PORT Register List

• ADSP-BF60x PINT Register List

• ADSP-BF60x PINT Interrupt List

• ADSP-BF60x PINT Trigger List

• ADSP-BF60x PADS Register List

• PORT Definitions

• PORT Architectural Concepts

ADSP-BF60x PORT Register List

Every port pin can operate in general-purpose I/O (GPIO) mode. This operation is the default after
processor reset and is controlled by a set of registers that control GPIO functionality. Every bit in these
registers represents a certain GPIO pin of a specific port. For more information on PORT functionality,
see the PORT register descriptions.

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–3

ADSP-BF60x PINT Register List

The pin-interrupt assignment (PINT) module controls the pin-to-interrupt assignment in a byte-wide
manner. The pin-interrupt assignment registers do not consist of 32 individual bits. They consist of four
control bytes, each functioning as a multiplexer control.

Table 14-1: ADSP-BF60x PORT Register List

Name Description

PORT_FER Port x Function Enable Register

PORT_FER_SET Port x Function Enable Set Register

PORT_FER_CLR Port x Function Enable Clear Register

PORT_DATA Port x GPIO Data Register

PORT_DATA_SET Port x GPIO Data Set Register

PORT_DATA_CLR Port x GPIO Data Clear Register

PORT_DIR Port x GPIO Direction Register

PORT_DIR_SET Port x GPIO Direction Set Register

PORT_DIR_CLR Port x GPIO Direction Clear Register

PORT_INEN Port x GPIO Input Enable Register

PORT_INEN_SET Port x GPIO Input Enable Set Register

PORT_INEN_CLR Port x GPIO Input Enable Clear Register

PORT_MUX Port x Multiplexer Control Register

PORT_DATA_TGL Port x GPIO Input Enable Toggle Register

PORT_POL Port x GPIO Polarity Invert Register

PORT_POL_SET Port x GPIO Polarity Invert Set Register

PORT_POL_CLR Port x GPIO Polarity Invert Clear Register

PORT_LOCK Port x GPIO Lock Register

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

14–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

All PINT registers are 32 bits wide and can be accessed by 32-bit load/store instructions. They also support
16-bit operation where the upper 16 bits are ignored and the application uses the lower 16 bits only. Conse-
quently, all PINT registers support 32-bit accesses as well as 16-bit accesses for the lower half words. Appli-
cations may use faster 16-bit accesses as long as they do not require functionality of upper register halves.

ADSP-BF60x PINT Interrupt List

Table 14-2: ADSP-BF60x PINT Register List

Name Description

PINT_MSK_SET Pint Mask Set Register

PINT_MSK_CLR Pint Mask Clear Register

PINT_REQ Pint Request Register

PINT_ASSIGN Pint Assign Register

PINT_EDGE_SET Pint Edge Set Register

PINT_EDGE_CLR Pint Edge Clear Register

PINT_INV_SET Pint Invert Set Register

PINT_INV_CLR Pint Invert Clear Register

PINT_PINSTATE Pint Pinstate Register

PINT_LATCH Pint Latch Register

Table 14-3: ADSP-BF60x PINT Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

PINT0 Pin Interrupt Block 21 LEVEL
PINT1 Pin Interrupt Block 22 LEVEL
PINT2 Pin Interrupt Block 23 LEVEL
PINT3 Pin Interrupt Block 24 LEVEL
PINT4 Pin Interrupt Block 25 LEVEL
PINT5 Pin Interrupt Block 26 LEVEL

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–5

ADSP-BF60x PINT Trigger List

ADSP-BF60x PADS Register List

The PADS controls signal hysteresis and other system interface signal features for a number of module
interfaces.

PORT Definitions

This section provides definitions relating to the GPIO ports.

Table 14-4: ADSP-BF60x PINT Trigger List Trigger Masters

Description Trigger ID Sensitivity

PINT0 Pin Interrupt Block 10 LEVEL
PINT1 Pin Interrupt Block 11 LEVEL
PINT2 Pin Interrupt Block 12 LEVEL
PINT3 Pin Interrupt Block 13 LEVEL
PINT4 Pin Interrupt Block 14 LEVEL
PINT5 Pin Interrupt Block 15 LEVEL

Table 14-5: ADSP-BF60x PINT Trigger List Trigger Slaves

Description Trigger ID Sensitivity

None

Table 14-6: ADSP-BF60x PADS Register List

Name Description

PADS_EMAC_PTP_CLKSEL EMAC and PTP Clock Select Register

PADS_TWI_VSEL TWI Voltage Selection

PADS_PORTS_HYST GPIO Pin Hysteresis Enable Register

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

14–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

x (PORTx)

The naming convention for bits uses a lowercase "x" to represent one of the existing ports alphabetically
named beginning with A,B,C,... For example, the name PORTx_REG represents any one or all of PORTA_REG,
PORTB_REG, PORTC_REG, and so on. The bit name Px0 represents PA0, PB0, and so on.

PORT Architectural Concepts

This section describes architectural concepts relating to the GPIO ports and signals, including the
following interfaces and functionality:

• Internal Interfaces

• External Interfaces

• GPIO Functionality

• Port Multiplexing Control

Internal Interfaces

All MMR registers of the pin multiplexing, GPIO and pin interrupt control blocks can be accessed through
the MMR bus. There is no DMA support. Every one of the pin interrupt modules has its own and dedicated
interrupt request output signal that connects directly to the SIC controller.

External Interfaces

The pin multiplexing hardware can be seen as a layer between the on-chip peripherals and the pads of the
silicon. All port groups are controlled by this unit.

GPIO Functionality

By default, every GPIO is set to input mode. The input drivers are not enabled, which avoids the need for
unnecessary current sinks and the external pulling of resistors on unused or do not care pins.

Input Mode

The default mode of every GPIO pin after reset is input mode, but the input drivers are not enabled. To
enable any GPIO input drivers, set the corresponding bits in the input enable register PORTx_INEN. When
enabled, a read from the PORTx register returns the logical state of the input pin. The input signal does not
overwrite the state of the flip-flop used for the output case. That state can only be altered by software. If
the input driver is enabled, a write to the PORTxregister can alter the state of the flip-flop, but the change
cannot be read back.

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–7

Output Mode

Any GPIO pin can be configured for output mode. The GPIO output drivers are enabled by setting the
corresponding bits in the direction registers. Direction registers are implemented as a pair of write-1-to-
set (W1S) and write-1-to-clear (W1C) MMRs, called PORTx_DIR_SETand PORTx_DIR_CLEAR. This way,
the direction of the signal flow of individual GPIO pins can be altered by separate software threads without
mutually impacting other GPIOs on the same port.

Both PORTx_DIR_SETand PORTx_DIR_CLEARregisters return the same value when read and a logical 1 indi-
cates an enabled output. The state of output pins is controlled by the PORTx registers. A logical 0 drives the
output low while a logical 1 drives the output high.

While the PORTx register can be written to alter all GPIOs of a specific port at once, there is also a pair of
W1S and W1C MMRs, called PORTx_SETand PORTx_CLEARthat enable manipulation of individual GPIO
outputs. The state of the outputs can be obtained by reading the PORTx registers. Because the state of the
GPIO output can already be controlled before the output driver is enabled, it is recommended to first set
or clear the flip-flop to avoid any volatile levels on the output.

Open-Drain Mode

Every GPIO can also be used in open-drain mode. To accomplish this, first, clear the respective bit in the
PORTxor PORTx_CLEARregister then set the one bit in the PORTx_INENregister. Read from the PORTxregister
then return the status from the pin and do not return the state of the internal flip-flop.

By toggling the output driver through the PORTx_DIR_SETand PORTx_DIR_CLEARregister pair, the output
signal can be pulled low or three-stated as required. Note that the polarity of the driven signal can be
inverted when the internal flip-flop is set. When a GPIO port is used in open-drain mode, care must be
taken not to exceed the VIH operating condition associated with the respective pins.

Port Multiplexing Control

To configure pins properly, it is necessary to determine which bits in the PORT_FER and PORT_MUX register
map to the pin of interest, and set them appropriately according to the desired function.

By default, after reset, all port pins are in GPIO input mode with their output and input drivers disabled.
As a result, all unused port pins can be left unconnected. Disabled pins appear in high-impedance mode
to external circuits and are pulled low to internal logic.

Each port has two dedicated MMRs that control the port multiplexing, the 16-bit Function Enable (PORT_
FER) registers and the 32-bit Port Multiplexing (PORT_MUX) registers.

NOTE: In this chapter, the naming convention for registers and bits omits the alphabetic group enumera-
tion to refer to all/any of the port groups. For example PORT_FER represents PORTA_FER, PORTB_
FER, and so on. Likewise P1 represents PA1, PB1, and so on.

The Function Enable register specifies whether the pin is being used as a GPIO pin, or another function,
but does not specifies what that other function is. Each bit in the 16-bit PORT_FER register represents one

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

14–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

port pin. For example, bit 1 of the PORT_FER register set the PA1 pin to GPIO operations mode when
cleared. When set, one of the available peripheral functions becomes active.

Every pair of bits in the PORT_MUX register controls the multiplexing between the peripheral functions
available to a pin. This is a 2-bit bit field because some pins provide up to four options. The truth table of
the bit field is identical to all family derivatives, regardless all options are available on the specific part.

Refer to the Signal Muxing table in the data sheet for the specific PORT_MUX settings.

ADSP-BF60x Multiplexing Scheme

ADSP-BF60x Blackfin processors feature a rich set of on-chip peripherals. Each set of peripherals has a
combination of input and output signals associated with them. In total, there are many more signals than
pins available on the processors. Therefore, a powerful pin multiplexing scheme provides best flexibility to
external application space.

The General-Purpose and Special Function Signals table shows all peripheral signals that are accessible
off the chip through the general-purpose ports. The processor does not feature all the listed peripherals at
the same time. Note that some signals are optional and are not necessarily required in all operating modes.

Table 14-7: General-Purpose and Special Function Signals

Module Signals Ports

SMC0 All A, B
Address(23) A, B
Bus (2) B
Memory Select(3) B
Miscellaneous (3) B

PPI0 All D, E, F
Data D, E, F
Frame Sync E
CLK E

PPI1 All B, C, D
Data C, D
Frame Sync B, D
CLK B

PPI2 All A, B
Data A
Frame Sync B
CLK B

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–9

LP0 All A, B
Data A
CLK B
ACK B

LP1 All B, C
Data B
CLK C
ACK C

LP2 All E, F
Data F
CLK E
ACK E

LP3 All E, F
Data F
CLK E
ACK E

TM0 All B, D, E, G
Timers E, G
CLKs B, D, G
Alternate Capture Input (ACI) B, D, G

SPT0 All B
SPT1 All D, E

Channel A Data D
Miscellaneous E

SPT2 All E, G
SPT2_ATDV E
Miscellaneous G

ETH0 All B, C, D
Data C
ETH0_PHYINT D
Miscellaneous B, C

Table 14-7: General-Purpose and Special Function Signals (Continued)

Module Signals Ports

GENERAL-PURPOSE PORTS (PORT)
PORT EVENT CONTROL

14–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PORT Event Control
The following sections describe event generation in the PORT module.

ETH1 All C, E, G
Data E, G
ETH1_PTPPPS C
Miscellaneous E, G

SPI0 All C, D
SEL 4,6,7 C
Miscellaneous D

SPI1 All C, D, E
SEL7 C
D2, D3, RDY E
Miscellaneous D

UART0 All D
UART1 All G
RSI0 All E, G

Data 3-7 E
Miscellaneous G

PWM0 All E, F
SYNC/TRIP0 E
Miscellaneous F

PWM1 All E, G
Channel C, D, B E
Miscellaneous G

ACM0 All F, G, E
Address F
T1 G
Miscellaneous E

GPIOS All All

Table 14-7: General-Purpose and Special Function Signals (Continued)

Module Signals Ports

GENERAL-PURPOSE PORTS (PORT)
PORT EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–11

PORT Interrupt Signals

The pin interrupts are completely decoupled from GPIO functionality which has the following advantages.

• Flexible mapping scheme enables pins from up to four different ports to be grouped into one common
interrupt scheme.

• Interrupts work on input and output pins regardless of whether in GPIO or functional mode.

The ADSP-BF60x Blackfin processors have a number of interrupt channels dedicated to pin interrupts.
These channels are managed by a set of hardware blocks named PINTx. Every PINTx block can sense up
to 32 GPIO pins as described in the following list and shown in the figure below.

• PINT0 can sense pins of PORTA and PORTB

• PINT1 can sense pins of PORTB and PORTC

• PINT2 can sense pins from PORTC and PORTD

• PINT3 can sense pins from PORTD and PORTE

• PINT4 can sense pins from PORTE and PORTF

• PINT5 can sense pins from PORTF and PORTG

Both 32-bit and 16-bit peripheral bus accesses to PINTx registers are supported.

Figure 14-2: GPIO to PINTx Assignment

Pins are connected to the PINTx module and then to the system event controller. Special attention is
required with regard to how the pins are assigned to the PINTx modules as shown in the PINTx block
diagram below.

GENERAL-PURPOSE PORTS (PORT)
PORT EVENT CONTROL

14–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-3: PINTx Block Diagram

The ports are subdivided into 8-bit half ports, with lower and upper half 8-bit units. The PINTx_ASSIGN
registers control the 8-bit multiplexers shown in the Block Diagram. Lower half units of eight pins can be
forwarded to either byte 0 or byte 2 of either associated PINTx block. Upper half units can be forwarded
to either byte 1 or byte 3 of the pin interrupts blocks, without further restrictions.

When a half port is assigned to a byte in any PINTx block, the state of the eight pins (regardless of GPIO
or function, input or output) can be seen in the PINTx_PINSTATE register. When neither input nor output
drivers of the pin are enabled, the pin state is read as zero. The PINTx_PINSTATE register reports the
inverted state of the pin if the signal inverter is activated by the PINTx_INVERT_SET register. The inverter
can be enabled on a individual bit by bit basis. Every bit in the PINTx_INVERT_SET/ PINTx_INVERT_
CLEAR register pair represents a pin signal.

An interrupt can be generated on an active high level of the signal or a rising edge of the signal. The default
behavior is level sensitivity. The PINTx_EDGE_SET register can be used to change the behavior to edge
sensitivity. By enabling the inverter using the PINTx_INVERT_SET register, the interrupt behavior can be
altered to trigger on active-low signals or falling edges.

The PINTx modules also assist if both signals are required to generate interrupts. If two different interrupt
requests are required, the PINTx_ASSIGN registers can route a signal to two different PINTx blocks, where
one block inverts the signal and the other one does not. If both signal edges can report over the same inter-
rupt, every signal can be routed through to different bit positions within a single PINTx block, where the
inverted signal should be enabled for either one. The servicing software routine can then tell from the
PINTx_LATCH register whether a falling, a rising, or both edges have occurred.

Regardless of whether using level-sensitive or edge-sensitive mode, an interrupt is always latched by the
hardware. Latched signals can be read from the PINTx_LATCH registers. Latches can only be cleared by a
software or a hardware reset. To clear, W1C the PINTx_REQUEST or the PINTx_LATCH register. If the pin
state does not change by the time the interrupt service routine returns, the interrupt is requested again
when in level-sensitive mode.

GENERAL-PURPOSE PORTS (PORT)
PORT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–13

Because every PINTx block groups up to 32 pin signals, the PINTx_MASK_SET/ PINTx_INVERT_CLEAR
register pair can control which of the signals can request an interrupt at the system level. Software may
interrogate the PINTx_REQUEST register for signaling pins. The PINTx_REQUEST bits represent a logical
AND between the mask and the latch. When any of these bits is set, an interrupt is forwarded to the SIC
controller.

All MMR registers in the pin interrupt module are 32 bits wide. Individual bits of the PINTx registers repre-
sent the associated pins. Nevertheless, the 32 bits can also be seen as four groups of eight pins. Each group
can manage up to eight pins out of either the lower or an upper half of any associated port.

PORT Programming Model
The following sections description of the overall program model of the general purpose ports.

GPIO Programming Model Flow (Part 1), GPIO Programming Model Flow (Part 2), and GPIO
Programming Model Flow (Part 3) show the programming model of the general-purpose ports. This
includes the GPIO input and output operation, open-drain mode, and the pin interrupt PINTx modules.

NOTE: These process flow diagrams connect where callout letters appear. For example, callout "A" on the
GPIO Programming Model Flow (Part 1) diagram connects to callout "A" on the GPIO
Programming Model Flow (Part 2) diagram.

The following flow charts describe the processes for setting up pins for different available functionality.
Begin the process from the GPIO Programming Model Flow (Part 1) chart. The first decision effect the
value of the PORT_FER register, shown at "1", for peripheral functions this should be set. For more infor-
mation on setting up for peripheral functions refer to the Port Multiplexing Control

If the pin is to be a GPIO pin, a series of decisions then need to be made. There are several configuration
registers that need to be considered: PORT_DATA, PORT_INV, PORT_DIR, and PORT_INEN. Depending on the
type of GPIO pin desired, the configurations may or may not be applicable, and can have different mean-
ings. The following paragraphs describe in brief the function of the different settings for each of the pin
functions in GPIO mode: Input, Output, and Open-drain. For all registers the SET/CLR versions of the
register are recommended to be used. For more detailed descriptions of the configurations, see ADSP-
BF60x PORT Register Descriptions.

For Output mode, all the pins should always first be made low using PORT_DATAregister. The PORT_DIR
register is used to define the direction of each pin (output). In this mode, the other registers aren't of any
consequence. This flow can be seen starting at label "2" in GPIO Programming Model Flow (Part 1) chart.

GENERAL-PURPOSE PORTS (PORT)
PORT PROGRAMMING MODEL

14–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-4: GPIO Programming Model Flow (Part 1)

For Input mode, the the polarity must be first decided for each pin using the PINT_INV register. The PORT_
DIR register of course must be set to define the appropriate pins for input. If interrupts are desireable a
serious of steps must be taken to configure the PINT module according. These steps are shown starting at
"B" in the GPIO Programming Model Flow (Part 3) chart. Finally, the PORT_INEN register used to enable
the associated input drivers. This entire flow can be seen starting at "3" in the GPIO Programming Model
Flow (Part 2) chart.

For Open Drain mode, all the pins should always be first made low using PORT_DATA. PORT_INENshould
then be used to enable the appropriate input drivers. PORT_DIR should be set in this mode to indicate
whether the pin is in active state or not (active being 0). This flow can be seen starting at "4" in the GPIO
Programming Model Flow (Part 2) chart.

GENERAL-PURPOSE PORTS (PORT)
PORT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–15

Figure 14-5: GPIO Programming Model Flow (Part 2)

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-6: GPIO Programming Model Flow (Part 3)

ADSP-BF60x PORT Register Descriptions
General Purpose Input/Output (PORT) contains the following registers.

Table 14-8: ADSP-BF60x PORT Register List

Name Description

PORT_FER Port x Function Enable Register

PORT_FER_SET Port x Function Enable Set Register

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–17

Port x Function Enable Register

The PORT_FER register bits indicate each port bit's operating mode: general purpose I/O mode or periph-
eral mode. After reset, all pins default to GPIO mode. Setting a bit in the PORT_FER registers enables a
peripheral module to take ownership of the pin. The function enable bits impact output control only.
Regardless of the setting of the function enable bits, both GPIO and peripherals can still sense the pin
input. After a function is enabled, it is up to the PORT_MUX registers as to which peripheral takes control.

PORT_FER_CLR Port x Function Enable Clear Register

PORT_DATA Port x GPIO Data Register

PORT_DATA_SET Port x GPIO Data Set Register

PORT_DATA_CLR Port x GPIO Data Clear Register

PORT_DIR Port x GPIO Direction Register

PORT_DIR_SET Port x GPIO Direction Set Register

PORT_DIR_CLR Port x GPIO Direction Clear Register

PORT_INEN Port x GPIO Input Enable Register

PORT_INEN_SET Port x GPIO Input Enable Set Register

PORT_INEN_CLR Port x GPIO Input Enable Clear Register

PORT_MUX Port x Multiplexer Control Register

PORT_DATA_TGL Port x GPIO Input Enable Toggle Register

PORT_POL Port x GPIO Polarity Invert Register

PORT_POL_SET Port x GPIO Polarity Invert Set Register

PORT_POL_CLR Port x GPIO Polarity Invert Clear Register

PORT_LOCK Port x GPIO Lock Register

Table 14-8: ADSP-BF60x PORT Register List (Continued)

Name Description

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-7: PORT_FER Register Diagram

Table 14-9: PORT_FER Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Mode.
0 GPIO Mode
1 Peripheral Mode

14
(R/W)

PX14 Port x Bit 14 Mode.
0 GPIO Mode
1 Peripheral Mode

13
(R/W)

PX13 Port x Bit 13 Mode.
0 GPIO Mode
1 Peripheral Mode

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–19

12
(R/W)

PX12 Port x Bit 12 Mode.
0 GPIO Mode
1 Peripheral Mode

11
(R/W)

PX11 Port x Bit 11 Mode.
0 GPIO Mode
1 Peripheral Mode

10
(R/W)

PX10 Port x Bit 10 Mode.
0 GPIO Mode
1 Peripheral Mode

9
(R/W)

PX9 Port x Bit 9 Mode.
0 GPIO Mode
1 Peripheral Mode

8
(R/W)

PX8 Port x Bit 8 Mode.
0 GPIO Mode
1 Peripheral Mode

7
(R/W)

PX7 Port x Bit 7 Mode.
0 GPIO Mode
1 Peripheral Mode

6
(R/W)

PX6 Port x Bit 6 Mode.
0 GPIO Mode
1 Peripheral Mode

5
(R/W)

PX5 Port x Bit 5 Mode.
0 GPIO Mode
1 Peripheral Mode

4
(R/W)

PX4 Port x Bit 4 Mode.
0 GPIO Mode
1 Peripheral Mode

3
(R/W)

PX3 Port x Bit 3 Mode.
0 GPIO Mode
1 Peripheral Mode

Table 14-9: PORT_FER Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Port x Function Enable Set Register

The PORT_FER_SET register permits enabling peripheral mode for each bit and corresponding GPIO pin.
Writing 1 to a bit in PORT_FER_SET enables peripheral mode for the corresponding pin.

2
(R/W)

PX2 Port x Bit 2 Mode.
0 GPIO Mode
1 Peripheral Mode

1
(R/W)

PX1 Port x Bit 1 Mode.
0 GPIO Mode
1 Peripheral Mode

0
(R/W)

PX0 Port x Bit 0 Mode.
0 GPIO Mode
1 Peripheral Mode

Table 14-9: PORT_FER Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–21

Figure 14-8: PORT_FER_SET Register Diagram

Table 14-10: PORT_FER_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

14
(R/W1S)

PX14 Port x Bit 14 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

13
(R/W1S)

PX13 Port x Bit 13 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

12
(R/W1S)

PX12 Port x Bit 12 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

11
(R/W1S)

PX11 Port x Bit 11 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

10
(R/W1S)

PX10 Port x Bit 10 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

9
(R/W1S)

PX9 Port x Bit 9 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

8
(R/W1S)

PX8 Port x Bit 8 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

7
(R/W1S)

PX7 Port x Bit 7 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

6
(R/W1S)

PX6 Port x Bit 6 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

5
(R/W1S)

PX5 Port x Bit 5 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

4
(R/W1S)

PX4 Port x Bit 4 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

3
(R/W1S)

PX3 Port x Bit 3 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

Table 14-10: PORT_FER_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–23

Port x Function Enable Clear Register

The PORT_FER_CLR register permits enabling GPIO mode for each bit and corresponding GPIO pin.
Writing 1 to a bit in PORT_FER_CLR enables GPIO mode for the corresponding pin.

2
(R/W1S)

PX2 Port x Bit 2 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

1
(R/W1S)

PX1 Port x Bit 1 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

0
(R/W1S)

PX0 Port x Bit 0 Mode Set.
0 No Effect
1 Set Bit for Peripheral Mode

Table 14-10: PORT_FER_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-9: PORT_FER_CLR Register Diagram

Table 14-11: PORT_FER_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

14
(R/W1C)

PX14 Port x Bit 14 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

13
(R/W1C)

PX13 Port x Bit 13 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–25

12
(R/W1C)

PX12 Port x Bit 12 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

11
(R/W1C)

PX11 Port x Bit 11 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

10
(R/W1C)

PX10 Port x Bit 10 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

9
(R/W1C)

PX9 Port x Bit 9 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

8
(R/W1C)

PX8 Port x Bit 8 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

7
(R/W1C)

PX7 Port x Bit 7 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

6
(R/W1C)

PX6 Port x Bit 6 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

5
(R/W1C)

PX5 Port x Bit 5 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

4
(R/W1C)

PX4 Port x Bit 4 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

3
(R/W1C)

PX3 Port x Bit 3 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

Table 14-11: PORT_FER_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Port x GPIO Data Register

The PORT_DATA register operates differently for port bits/pins, depending on whether the bit/pin is in
output mode or input mode. In both modes, a set bit in the PORT_DATA register corresponds to a signal high
on a GPIO pin, and a cleared bit in the PORT_DATA register corresponds to a signal low on a GPIO pin.

The PORT_DATA, PORT_DATA_SET, and PORT_DATA_CLR registers control the state of GPIO pins in output
mode. To enable output mode (and output drivers), use the PORT_DIR_SET and PORT_DIR_CLR registers.

Writes to the PORT_DATA register affect the state of all pins of the port that are in output mode. To set or
clear specific pins without impacting other pins of the port, use the PORT_DATA_SET and PORT_DATA_CLR
registers.

When the GPIO pins are in input mode (input driver is enabled with the PORT_INEN register), reads from
the PORT_DATA, PORT_DATA_SET, and PORT_DATA_CLR registers return the state of the respective GPIO
pins.

Note that when the input driver is not enabled, reads from the PORT_DATA, PORT_DATA_SET, and PORT_
DATA_CLR registers return the value previously written to the registers.

2
(R/W1C)

PX2 Port x Bit 2 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

1
(R/W1C)

PX1 Port x Bit 1 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

0
(R/W1C)

PX0 Port x Bit 0 Mode Clear.
0 No Effect
1 Set Bit for GPIO Mode

Table 14-11: PORT_FER_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–27

Figure 14-10: PORT_DATA Register Diagram

Table 14-12: PORT_DATA Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Data.
0 Signal Low
1 Signal High

14
(R/W)

PX14 Port x Bit 14 Data.
0 Signal Low
1 Signal High

13
(R/W)

PX13 Port x Bit 13 Data.
0 Signal Low
1 Signal High

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

12
(R/W)

PX12 Port x Bit 12 Data.
0 Signal Low
1 Signal High

11
(R/W)

PX11 Port x Bit 11 Data.
0 Signal Low
1 Signal High

10
(R/W)

PX10 Port x Bit 10 Data.
0 Signal Low
1 Signal High

9
(R/W)

PX9 Port x Bit 9 Data.
0 Signal Low
1 Signal High

8
(R/W)

PX8 Port x Bit 8 Data.
0 Signal Low
1 Signal High

7
(R/W)

PX7 Port x Bit 7 Data.
0 Signal Low
1 Signal High

6
(R/W)

PX6 Port x Bit 6 Data.
0 Signal Low
1 Signal High

5
(R/W)

PX5 Port x Bit 5 Data.
0 Signal Low
1 Signal High

4
(R/W)

PX4 Port x Bit 4 Data.
0 Signal Low
1 Signal High

3
(R/W)

PX3 Port x Bit 3 Data.
0 Signal Low
1 Signal High

Table 14-12: PORT_DATA Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–29

Port x GPIO Data Set Register

The PORT_DATA_SET register operates differently for port bits/pins, depending on whether the bit/pin is
output mode or input mode. For more information, see the PORT_DATA register description.

2
(R/W)

PX2 Port x Bit 2 Data.
0 Signal Low
1 Signal High

1
(R/W)

PX1 Port x Bit 1 Data.
0 Signal Low
1 Signal High

0
(R/W)

PX0 Port x Bit 0 Data.
0 Signal Low
1 Signal High

Table 14-12: PORT_DATA Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-11: PORT_DATA_SET Register Diagram

Table 14-13: PORT_DATA_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
14
(R/W1S)

PX14 Port x Bit 14 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–31

13
(R/W1S)

PX13 Port x Bit 13 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
12
(R/W1S)

PX12 Port x Bit 12 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.Write
1 for signal high in output mode.

11
(R/W1S)

PX11 Port x Bit 11 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

10
(R/W1S)

PX10 Port x Bit 10 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
9
(R/W1S)

PX9 Port x Bit 9 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
8
(R/W1S)

PX8 Port x Bit 8 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.

Table 14-13: PORT_DATA_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

7
(R/W1S)

PX7 Port x Bit 7 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
6
(R/W1S)

PX6 Port x Bit 6 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
5
(R/W1S)

PX5 Port x Bit 5 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
4
(R/W1S)

PX4 Port x Bit 4 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
3
(R/W1S)

PX3 Port x Bit 3 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
2
(R/W1S)

PX2 Port x Bit 2 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.

Table 14-13: PORT_DATA_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–33

Port x GPIO Data Clear Register

The PORT_DATA_CLR register operates differently for port bits/pins, depending on whether the bit/pin is
output mode or input mode. For more information, see the PORT_DATA register description.

1
(R/W1S)

PX1 Port x Bit 1 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.
0
(R/W1S)

PX0 Port x Bit 0 Data Set.
0 No Effect

Write 0 has no effect in output mode.
1 Set Bit

Write 1 for signal high in output mode.

Table 14-13: PORT_DATA_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-12: PORT_DATA_CLR Register Diagram

Table 14-14: PORT_DATA_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Data Clear.
0 No Effect
1 Clear Bit

Write 1 for signal low in output mode.
14
(R/W1C)

PX14 Port x Bit 14 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–35

13
(R/W1C)

PX13 Port x Bit 13 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.
12
(R/W1C)

PX12 Port x Bit 12 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.
11
(R/W1C)

PX11 Port x Bit 11 Data Clear.
0 No Effect
1 Clear Bit

Write 1 for signal low in output mode.
10
(R/W1C)

PX10 Port x Bit 10 Data Clear.
0 No Effect

Write 0 has no effect in output mode.Write 0
has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

9
(R/W1C)

PX9 Port x Bit 9 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.
8
(R/W1C)

PX8 Port x Bit 8 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.

Table 14-14: PORT_DATA_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

7
(R/W1C)

PX7 Port x Bit 7 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.
6
(R/W1C)

PX6 Port x Bit 6 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.
5
(R/W1C)

PX5 Port x Bit 5 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.
4
(R/W1C)

PX4 Port x Bit 4 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.
3
(R/W1C)

PX3 Port x Bit 3 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.
2
(R/W1C)

PX2 Port x Bit 2 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.

Table 14-14: PORT_DATA_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–37

Port x GPIO Direction Register

The PORT_DIR, PORT_DIR_SET, and PORT_DIR_CLR registers select output or input mode for GPIO pins
and enable output drivers. Use the PORT_INEN, PORT_INEN_SET, and PORT_INEN_CLR registers to enable
or disable input drivers.

Writes to the PORT_DIR register affect the state of all pins of the port. To select direction for specific pins
without impacting other pins of the port, use the PORT_DIR_SET and PORT_DIR_CLR registers.

Setting a bit in the PORT_DIR register enables output mode on the corresponding a GPIO pin, and a
clearing a bit in the PORT_DIR register disables output mode on the corresponding GPIO pin.

Input Mode - The default mode of every GPIO pin after reset is input mode, but the input drivers are not
enabled. To enable any GPIO input drivers, set the corresponding bits in PORT_INEN register. When
enabled, a read from the PORT_DATA register returns the logical state of the input pin. The input signal does
not overwrite the state of the bit used for the output case. That state can only be altered by software. If the
input driver is enabled, a write to the PORT_DATA register can alter the state of the bit, but the change cannot
be read back.

Output Mode - Any GPIO pin can be configured for output mode. The GPIO output drivers are enabled
by setting the corresponding bits in the PORT_DIR, PORT_DIR_SET, or PORT_DIR_CLR registers. By using
the PORT_DIR_SET and PORT_DIR_CLR registers, direction of the signal flow of individual GPIO pins can
be altered by separate software threads without mutually impacting other GPIOs on the same port. Both
registers return the same value when read. Because the state of the GPIO output can already be controlled
before the output driver is enabled, it is recommended to first set or clear the bit (using the PORT_DATA,
PORT_DATA_SET, or PORT_DATA_CLR registers) to avoid any volatile levels on the output.

Open-Drain Mode- Every GPIO can also be used in open-drain mode. To accomplish this, first, clear the
respective bit in the PORT_DATA or PORT_DATA_CLR register then set the one bit in the PORT_INEN register.
Reads from the PORT_DATA register then return the status from the pin and do not return the state of the

1
(R/W1C)

PX1 Port x Bit 1 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.
0
(R/W1C)

PX0 Port x Bit 0 Data Clear.
0 No Effect

Write 0 has no effect in output mode.
1 Clear Bit

Write 1 for signal low in output mode.

Table 14-14: PORT_DATA_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

internal flip-flop. By toggling the output driver through the PORT_DIR_SET and PORT_DIR_CLR register
pair, the output signal can be pulled low or three-stated as required. Note that the polarity of the driven
signal can be inverted when the internal flip-flop is set instead. When a GPIO port is used in open-drain
mode, care must be taken not to exceed the VIH operating condition associated with the respective pin.

Figure 14-13: PORT_DIR Register Diagram

Table 14-15: PORT_DIR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–39

14
(R/W)

PX14 Port x Bit 14 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
13
(R/W)

PX13 Port x Bit 13 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
12
(R/W)

PX12 Port x Bit 12 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
11
(R/W)

PX11 Port x Bit 11 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
10
(R/W)

PX10 Port x Bit 10 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
9
(R/W)

PX9 Port x Bit 9 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.

Table 14-15: PORT_DIR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

8
(R/W)

PX8 Port x Bit 8 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
7
(R/W)

PX7 Port x Bit 7 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
6
(R/W)

PX6 Port x Bit 6 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
5
(R/W)

PX5 Port x Bit 5 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
4
(R/W)

PX4 Port x Bit 4 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
3
(R/W)

PX3 Port x Bit 3 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.

Table 14-15: PORT_DIR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–41

Port x GPIO Direction Set Register

The PORT_DIR_SET register enable output mode and enables output drivers for GPIO pins. For more
information, see the PORT_DIR register description.

2
(R/W)

PX2 Port x Bit 2 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
1
(R/W)

PX1 Port x Bit 1 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.
0
(R/W)

PX0 Port x Bit 0 Direction.
0 Input mode

Output driver disabled.
1 Output mode

Output driver enabled.

Table 14-15: PORT_DIR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-14: PORT_DIR_SET Register Diagram

Table 14-16: PORT_DIR_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
14
(R/W1S)

PX14 Port x Bit 14 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–43

13
(R/W1S)

PX13 Port x Bit 13 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
12
(R/W1S)

PX12 Port x Bit 12 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
11
(R/W1S)

PX11 Port x Bit 11 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
10
(R/W1S)

PX10 Port x Bit 10 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
9
(R/W1S)

PX9 Port x Bit 9 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
8
(R/W1S)

PX8 Port x Bit 8 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
7
(R/W1S)

PX7 Port x Bit 7 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
6
(R/W1S)

PX6 Port x Bit 6 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.

Table 14-16: PORT_DIR_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Port x GPIO Direction Clear Register

The PORT_DIR_CLR register disables output mode and disables output drivers for GPIO pins. For more
information, see the PORT_DIR register description.

5
(R/W1S)

PX5 Port x Bit 5 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
4
(R/W1S)

PX4 Port x Bit 4 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
3
(R/W1S)

PX3 Port x Bit 3 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
2
(R/W1S)

PX2 Port x Bit 2 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
1
(R/W1S)

PX1 Port x Bit 1 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.
0
(R/W1S)

PX0 Port x Bit 0 Direction Set.
0 No Effect
1 Set Bit

Set to enable output mode/driver.

Table 14-16: PORT_DIR_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–45

Figure 14-15: PORT_DIR_CLR Register Diagram

Table 14-17: PORT_DIR_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
14
(R/W1C)

PX14 Port x Bit 14 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

13
(R/W1C)

PX13 Port x Bit 13 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
12
(R/W1C)

PX12 Port x Bit 12 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
11
(R/W1C)

PX11 Port x Bit 11 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
10
(R/W1C)

PX10 Port x Bit 10 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
9
(R/W1C)

PX9 Port x Bit 9 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
8
(R/W1C)

PX8 Port x Bit 8 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
7
(R/W1C)

PX7 Port x Bit 7 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
6
(R/W1C)

PX6 Port x Bit 6 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.

Table 14-17: PORT_DIR_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–47

Port x GPIO Input Enable Register

The PORT_INEN, PORT_INEN_SET, and PORT_INEN_CLR registers enable or disable input drivers, which are
required for using a GPIO pin in input mode.

Writes to the PORT_INEN register affect the input drivers for all pins of the port. To set or clear specific pin
drivers without impacting other pin drivers of the port, use the PORT_INEN_SET and PORT_INEN_CLR regis-
ters.

5
(R/W1C)

PX5 Port x Bit 5 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
4
(R/W1C)

PX4 Port x Bit 4 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
3
(R/W1C)

PX3 Port x Bit 3 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
2
(R/W1C)

PX2 Port x Bit 2 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
1
(R/W1C)

PX1 Port x Bit 1 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.
0
(R/W1C)

PX0 Port x Bit 0 Direction Clear.
0 No Effect
1 Clear Bit

Set to disable output mode/driver.

Table 14-17: PORT_DIR_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

If the input is enabled, reads from the PORT_DATA, PORT_DATA_SET, or PORT_DATA_CLR registers return the
state of the pins. However, the state of the output is not overwritten by the input. It is altered by software
writes only. Input and output drivers can be enabled at the same time. In this case, a read of the data
register returns the true value of the data register and not the pin state.

For more information see the PORT_DATA register description and the PORT_DIR register description.

Figure 14-16: PORT_INEN Register Diagram

Table 14-18: PORT_INEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–49

14
(R/W)

PX14 Port x Bit 14 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

13
(R/W)

PX13 Port x Bit 13 Input Enable.
0 Input disabled
1 Enable Input Driver

12
(R/W)

PX12 Port x Bit 12 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

11
(R/W)

PX11 Port x Bit 11 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

10
(R/W)

PX10 Port x Bit 10 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

9
(R/W)

PX9 Port x Bit 9 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

8
(R/W)

PX8 Port x Bit 8 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

7
(R/W)

PX7 Port x Bit 7 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

6
(R/W)

PX6 Port x Bit 6 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

5
(R/W)

PX5 Port x Bit 5 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

Table 14-18: PORT_INEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Port x GPIO Input Enable Set Register

The PORT_INEN_SET register enables input drivers for GPIO pins. For more information, see the PORT_
INEN register description.

4
(R/W)

PX4 Port x Bit 4 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

3
(R/W)

PX3 Port x Bit 3 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

2
(R/W)

PX2 Port x Bit 2 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

1
(R/W)

PX1 Port x Bit 1 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

0
(R/W)

PX0 Port x Bit 0 Input Enable.
0 Disable Input Driver
1 Enable Input Driver

Table 14-18: PORT_INEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–51

Figure 14-17: PORT_INEN_SET Register Diagram

Table 14-19: PORT_INEN_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
14
(R/W1S)

PX14 Port x Bit 14 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

13
(R/W1S)

PX13 Port x Bit 13 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
12
(R/W1S)

PX12 Port x Bit 12 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
11
(R/W1S)

PX11 Port x Bit 11 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
10
(R/W1S)

PX10 Port x Bit 10 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
9
(R/W1S)

PX9 Port x Bit 9 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
8
(R/W1S)

PX8 Port x Bit 8 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
7
(R/W1S)

PX7 Port x Bit 7 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
6
(R/W1S)

PX6 Port x Bit 6 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.

Table 14-19: PORT_INEN_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–53

Port x GPIO Input Enable Clear Register

The PORT_INEN_CLR register disables input drivers for GPIO pins. For more information, see the PORT_
INEN register description.

5
(R/W1S)

PX5 Port x Bit 5 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
4
(R/W1S)

PX4 Port x Bit 4 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
3
(R/W1S)

PX3 Port x Bit 3 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
2
(R/W1S)

PX2 Port x Bit 2 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
1
(R/W1S)

PX1 Port x Bit 1 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.
0
(R/W1S)

PX0 Port x Bit 0 Input Enable Set.
0 No Effect
1 Set Bit

Set to enable input driver.

Table 14-19: PORT_INEN_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-18: PORT_INEN_CLR Register Diagram

Table 14-20: PORT_INEN_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
14
(R/W1C)

PX14 Port x Bit 14 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–55

13
(R/W1C)

PX13 Port x Bit 13 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
12
(R/W1C)

PX12 Port x Bit 12 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
11
(R/W1C)

PX11 Port x Bit 11 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
10
(R/W1C)

PX10 Port x Bit 10 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
9
(R/W1C)

PX9 Port x Bit 9 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
8
(R/W1C)

PX8 Port x Bit 8 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
7
(R/W1C)

PX7 Port x Bit 7 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
6
(R/W1C)

PX6 Port x Bit 6 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.

Table 14-20: PORT_INEN_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Port x Multiplexer Control Register

When a pin is in peripheral mode (not GPIO mode), the PORT_MUX register controls which peripheral takes
ownership of a pin. Ports may have multiple, different peripheral functions. Two bits are required to
describe every multiplexer on an individual pin-by-pin scheme. For example, Bit 0 and Bit 1 of the PORT_
MUX register control the multiplexer of Pin 0, Bit 2 and Bit 3 of PORT_MUX control the multiplexer of Pin 1,
and so on. The value of any PORT_MUX bit has no effect on the port pins when the associated bit in the PORT_
FER register is 0 (selects GPIO mode). Even if a port has only one function, the PORT_MUX register is still
present. For single function ports (no multiplexing is needed), leave the PORT_MUX bits at 0 (default). For

5
(R/W1C)

PX5 Port x Bit 5 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
4
(R/W1C)

PX4 Port x Bit 4 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
3
(R/W1C)

PX3 Port x Bit 3 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
2
(R/W1C)

PX2 Port x Bit 2 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
1
(R/W1C)

PX1 Port x Bit 1 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.
0
(R/W1C)

PX0 Port x Bit 0 Input Enable Clear.
0 No Effect
1 Clear Bit

Set to disable input driver.

Table 14-20: PORT_INEN_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–57

all PORT_MUX bit fields: 00 = default/reset peripheral option, 01 = first alternate peripheral option, 10 =
second alternate peripheral option, and 11 = third alternate peripheral option.

Figure 14-19: PORT_MUX Register Diagram

Table 14-21: PORT_MUX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:30
(R/W)

MUX15 Mux for Port x Bit 15.
Multiplexer control for Port x bit 15.

29:28
(R/W)

MUX14 Mux for Port x Bit 14.
Multiplexer control for Port x bit 14.

27:26
(R/W)

MUX13 Mux for Port x Bit 13.
Multiplexer control for Port x bit 13.

25:24
(R/W)

MUX12 Mux for Port x Bit 12.
Multiplexer control for Port x bit 12.

23:22
(R/W)

MUX11 Mux for Port x Bit 11.
Multiplexer control for Port x bit 11.

21:20
(R/W)

MUX10 Mux for Port x Bit 10.
Multiplexer control for Port x bit 10.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Port x GPIO Input Enable Toggle Register

The PORT_DATA_TGL register permits toggling the state of output GPIO pins. Setting bits in the PORT_
DATA_TGL register affects the state of specific pins without impacting other pins of the port.

Reading the PORT_DATA_TGL returns the state of the PORT_DATA register output pin state, but does not
return the input pin/signal state.

19:18
(R/W)

MUX9 Mux for Port x Bit 9.
Multiplexer control for Port x bit 9.

17:16
(R/W)

MUX8 Mux for Port x Bit 8.
Multiplexer control for Port x bit 8.

15:14
(R/W)

MUX7 Mux for Port x Bit 7.
Multiplexer control for Port x bit 7.

13:12
(R/W)

MUX6 Mux for Port x Bit 6.
Multiplexer control for Port x bit 6.

11:10
(R/W)

MUX5 Mux for Port x Bit 5.
Multiplexer control for Port x bit 5.

9:8
(R/W)

MUX4 Mux for Port x Bit 4.
Multiplexer control for Port x bit 4.

7:6
(R/W)

MUX3 Mux for Port x Bit 3.
Multiplexer control for Port x bit 3.

5:4
(R/W)

MUX2 Mux for Port x Bit 2.
Multiplexer control for Port x bit 2.

3:2
(R/W)

MUX1 Mux for Port x Bit 1.
Multiplexer control for Port x bit 1.

1:0
(R/W)

MUX0 Mux for Port x Bit 0.
Multiplexer control for Port x bit 0.

Table 14-21: PORT_MUX Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–59

Figure 14-20: PORT_DATA_TGL Register Diagram

Table 14-22: PORT_DATA_TGL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1A)

PX15 Port x Bit 15 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
14
(R/W1A)

PX14 Port x Bit 14 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

13
(R/W1A)

PX13 Port x Bit 13 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
12
(R/W1A)

PX12 Port x Bit 12 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
11
(R/W1A)

PX11 Port x Bit 11 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
10
(R/W1A)

PX10 Port x Bit 10 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
9
(R/W1A)

PX9 Port x Bit 9 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
8
(R/W1A)

PX8 Port x Bit 8 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
7
(R/W1A)

PX7 Port x Bit 7 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
6
(R/W1A)

PX6 Port x Bit 6 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.

Table 14-22: PORT_DATA_TGL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–61

Port x GPIO Polarity Invert Register

The PORT_POL, PORT_POL_SET, and PORT_POL_CLR registers enable or disable inverting polarity of GPIO
signals. To invert polarity of peripheral signals, use the inversion selection programming in the signal's
corresponding module.

Writes to the PORT_POL register affect the polarity inversion selection of all pins of the port. To enable or
disable polarity inversion for specific pins without impacting other pins of the port, use the PORT_POL_SET
and PORT_POL_CLR registers.

5
(R/W1A)

PX5 Port x Bit 5 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
4
(R/W1A)

PX4 Port x Bit 4 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
3
(R/W1A)

PX3 Port x Bit 3 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
2
(R/W1A)

PX2 Port x Bit 2 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
1
(R/W1A)

PX1 Port x Bit 1 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.
0
(R/W1A)

PX0 Port x Bit 0 Toggle.
0 No Effect
1 Toggle Bit

Set to toggle output GPIO bit/pin state.

Table 14-22: PORT_DATA_TGL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Setting a bit in the PORT_POL register enables polarity inversion on the corresponding inversion GPIO pin,
making the pin active-low or falling-edge sensitive. Clearing a bit in the PORT_POL register disables polarity
(default state) on the corresponding GPIO pin, making it active-high or rising-edge sensitive.

Figure 14-21: PORT_POL Register Diagram

Table 14-23: PORT_POL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–63

14
(R/W)

PX14 Port x Bit 14 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
13
(R/W)

PX13 Port x Bit 13 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
12
(R/W)

PX12 Port x Bit 12 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
11
(R/W)

PX11 Port x Bit 11 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
10
(R/W)

PX10 Port x Bit 10 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
9
(R/W)

PX9 Port x Bit 9 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.

Table 14-23: PORT_POL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

8
(R/W)

PX8 Port x Bit 8 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
7
(R/W)

PX7 Port x Bit 7 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
6
(R/W)

PX6 Port x Bit 6 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
5
(R/W)

PX5 Port x Bit 5 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
4
(R/W)

PX4 Port x Bit 4 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
3
(R/W)

PX3 Port x Bit 3 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.

Table 14-23: PORT_POL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–65

Port x GPIO Polarity Invert Set Register

The PORT_POL_SET register enables polarity inversion for GPIO pins. For more information, see the PORT_
POL register description.

2
(R/W)

PX2 Port x Bit 2 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
1
(R/W)

PX1 Port x Bit 1 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.
0
(R/W)

PX0 Port x Bit 0 Polarity Invert.
0 No Invert

GPIO is active high or rising edge sensitive.
1 Invert

GPIO is active low or falling edge sensitive.

Table 14-23: PORT_POL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-22: PORT_POL_SET Register Diagram

Table 14-24: PORT_POL_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
14
(R/W1S)

PX14 Port x Bit 14 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–67

13
(R/W1S)

PX13 Port x Bit 13 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
12
(R/W1S)

PX12 Port x Bit 12 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
11
(R/W1S)

PX11 Port x Bit 11 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
10
(R/W1S)

PX10 Port x Bit 10 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
9
(R/W1S)

PX9 Port x Bit 9 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
8
(R/W1S)

PX8 Port x Bit 8 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
7
(R/W1S)

PX7 Port x Bit 7 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
6
(R/W1S)

PX6 Port x Bit 6 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.

Table 14-24: PORT_POL_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Port x GPIO Polarity Invert Clear Register

The PORT_POL_CLR register disables polarity inversion for GPIO pins. For more information, see the
PORT_POL register description.

5
(R/W1S)

PX5 Port x Bit 5 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
4
(R/W1S)

PX4 Port x Bit 4 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
3
(R/W1S)

PX3 Port x Bit 3 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
2
(R/W1S)

PX2 Port x Bit 2 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
1
(R/W1S)

PX1 Port x Bit 1 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.
0
(R/W1S)

PX0 Port x Bit 0 Polarity Invert Set.
0 No Effect
1 Set Bit

Set to enable GPIO pin polarity invert.

Table 14-24: PORT_POL_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–69

Figure 14-23: PORT_POL_CLR Register Diagram

Table 14-25: PORT_POL_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

14
(R/W1C)

PX14 Port x Bit 14 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
13
(R/W1C)

PX13 Port x Bit 13 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
12
(R/W1C)

PX12 Port x Bit 12 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
11
(R/W1C)

PX11 Port x Bit 11 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
10
(R/W1C)

PX10 Port x Bit 10 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
9
(R/W1C)

PX9 Port x Bit 9 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
8
(R/W1C)

PX8 Port x Bit 8 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
7
(R/W1C)

PX7 Port x Bit 7 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.

Table 14-25: PORT_POL_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–71

Port x GPIO Lock Register

The PORT_LOCK register enables (unlocks) or disables (locks) write access selectively for the PORT control
registers.

6
(R/W1C)

PX6 Port x Bit 6 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
5
(R/W1C)

PX5 Port x Bit 5 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
4
(R/W1C)

PX4 Port x Bit 4 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
3
(R/W1C)

PX3 Port x Bit 3 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
2
(R/W1C)

PX2 Port x Bit 2 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
1
(R/W1C)

PX1 Port x Bit 1 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.
0
(R/W1C)

PX0 Port x Bit 0 Polarity Invert Clear.
0 No Effect
1 Clear Bit

Set to disable GPIO pin polarity invert.

Table 14-25: PORT_POL_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PORT REGISTER DESCRIPTIONS

14–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-24: PORT_LOCK Register Diagram

Table 14-26: PORT_LOCK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the PORT_
LOCK.LOCK bit is set, the PORT_LOCK register is read only (locked).
0 Unlock
1 Lock

5
(R/W)

POLAR Polarity Lock.
The PORT_LOCK.POLAR disables write access to the PORT_POL, PORT_
POL_SET, and PORT_POL_CLR registers.
0 Unlock POL
1 Lock POL

4
(R/W)

INEN Input Enable Lock.
The PORT_LOCK.INEN disables write access to the PORT_INEN, PORT_
INEN_SET, and PORT_INEN_CLR registers.
0 Unlock INEN
1 Lock INEN

3
(R/W)

DIR Direction Lock.
The PORT_LOCK.DIR disables write access to the PORT_DIR, PORT_
DIR_SET, PORT_DIR_CLR registers.
0 Lock DIR
1 Unlock DIR

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–73

ADSP-BF60x PINT Register Descriptions
PINT (PINT) contains the following registers.

2
(R/W)

DATA Data Lock.
The PORT_LOCK.DATA disables write access to the PORT_DATA, PORT_
DATA_SET, PORT_DATA_CLR, and PORT_DATA_TGL registers.
0 Unlock DATA
1 Lock DATA

1
(R/W)

MUX Function Multiplexer Lock.
The PORT_LOCK.MUX disables write accesses to the PORT_MUX register.
0 Unlock MUX
1 Lock MUX

0
(R/W)

FER Function Enable Lock.
The PORT_LOCK.FER disables write access to the PORT_FER, PORT_
FER_SET, and PORT_FER_CLR registers.
0 Unlock FER
1 Lock FER

Table 14-27: ADSP-BF60x PINT Register List

Name Description

PINT_MSK_SET Pint Mask Set Register

PINT_MSK_CLR Pint Mask Clear Register

PINT_REQ Pint Request Register

PINT_ASSIGN Pint Assign Register

PINT_EDGE_SET Pint Edge Set Register

PINT_EDGE_CLR Pint Edge Clear Register

PINT_INV_SET Pint Invert Set Register

PINT_INV_CLR Pint Invert Clear Register

Table 14-26: PORT_LOCK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pint Mask Set Register

The PINT_MSK_SET register permits unmasking (enabling) of interrupts. Writing 1 to a bit in PINT_MSK_
SET unmasks the corresponding pin interrupt.

PINT_PINSTATE Pint Pinstate Register

PINT_LATCH Pint Latch Register

Table 14-27: ADSP-BF60x PINT Register List (Continued)

Name Description

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–75

Figure 14-25: PINT_MSK_SET Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 14-28: PINT_MSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1S)

PIQ31 Pin Interrupt 31 Unmask.
Set to enable interrupt.

30
(R/W1S)

PIQ30 Pin Interrupt 30 Unmask.
Set to enable interrupt.

29
(R/W1S)

PIQ29 Pin Interrupt 29 Unmask.
Set to enable interrupt.

28
(R/W1S)

PIQ28 Pin Interrupt 28 Unmask.
Set to enable interrupt.

27
(R/W1S)

PIQ27 Pin Interrupt 27 Unmask.
Set to enable interrupt.

26
(R/W1S)

PIQ26 Pin Interrupt 26 Unmask.
Set to enable interrupt.

25
(R/W1S)

PIQ25 Pin Interrupt 25 Unmask.
Set to enable interrupt.

24
(R/W1S)

PIQ24 Pin Interrupt 24 Unmask.
Set to enable interrupt.

23
(R/W1S)

PIQ23 Pin Interrupt 23 Unmask.
Set to enable interrupt.

22
(R/W1S)

PIQ22 Pin Interrupt 22 Unmask.
Set to enable interrupt.

21
(R/W1S)

PIQ21 Pin Interrupt 21 Unmask.
Set to enable interrupt.

20
(R/W1S)

PIQ20 Pin Interrupt 20 Unmask.
Set to enable interrupt.

19
(R/W1S)

PIQ19 Pin Interrupt 19 Unmask.
Set to enable interrupt.

18
(R/W1S)

PIQ18 Pin Interrupt 18 Unmask.
Set to enable interrupt.

17
(R/W1S)

PIQ17 Pin Interrupt 17 Unmask.
Set to enable interrupt.

16
(R/W1S)

PIQ16 Pin Interrupt 16 Unmask.
Set to enable interrupt.

15
(R/W1S)

PIQ15 Pin Interrupt 15 Unmask.
Set to enable interrupt.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–77

Pint Mask Clear Register

The PINT_MSK_CLR register permits masking (disabling) of interrupts. Writing 1 to a bit in PINT_MSK_CLR
masks the corresponding pin interrupt.

14
(R/W1S)

PIQ14 Pin Interrupt 14 Unmask.
Set to enable interrupt.

13
(R/W1S)

PIQ13 Pin Interrupt 13 Unmask.
Set to enable interrupt.

12
(R/W1S)

PIQ12 Pin Interrupt 12 Unmask.
Set to enable interrupt.

11
(R/W1S)

PIQ11 Pin Interrupt 11 Unmask.
Set to enable interrupt.

10
(R/W1S)

PIQ10 Pin Interrupt 10 Unmask.
Set to enable interrupt.

9
(R/W1S)

PIQ9 Pin Interrupt 9 Unmask.
Set to enable interrupt.

8
(R/W1S)

PIQ8 Pin Interrupt 8 Unmask.
Set to enable interrupt.

7
(R/W1S)

PIQ7 Pin Interrupt 7 Unmask.
Set to enable interrupt.

6
(R/W1S)

PIQ6 Pin Interrupt 6 Unmask.
Set to enable interrupt.

5
(R/W1S)

PIQ5 Pin Interrupt 5 Unmask.
Set to enable interrupt.

4
(R/W1S)

PIQ4 Pin Interrupt 4 Unmask.
Set to enable interrupt.

3
(R/W1S)

PIQ3 Pin Interrupt 3 Unmask.
Set to enable interrupt.

2
(R/W1S)

PIQ2 Pin Interrupt 2 Unmask.
Set to enable interrupt.

1
(R/W1S)

PIQ1 Pin Interrupt 1 Unmask.
Set to enable interrupt.

0
(R/W1S)

PIQ0 Pin Interrupt 0 Unmask.
Set to enable interrupt.

Table 14-28: PINT_MSK_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-26: PINT_MSK_CLR Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–79

Table 14-29: PINT_MSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 Mask.
Set to disable interrupt.

30
(R/W1C)

PIQ30 Pin Interrupt 30 Mask.
Set to disable interrupt.

29
(R/W1C)

PIQ29 Pin Interrupt 29 Mask.
Set to disable interrupt.

28
(R/W1C)

PIQ28 Pin Interrupt 28 Mask.
Set to disable interrupt.

27
(R/W1C)

PIQ27 Pin Interrupt 27 Mask.
Set to disable interrupt.

26
(R/W1C)

PIQ26 Pin Interrupt 26 Mask.
Set to disable interrupt.

25
(R/W1C)

PIQ25 Pin Interrupt 25 Mask.
Set to disable interrupt.

24
(R/W1C)

PIQ24 Pin Interrupt 24 Mask.
Set to disable interrupt.

23
(R/W1C)

PIQ23 Pin Interrupt 23 Mask.
Set to disable interrupt.

22
(R/W1C)

PIQ22 Pin Interrupt 22 Mask.
Set to disable interrupt.

21
(R/W1C)

PIQ21 Pin Interrupt 21 Mask.
Set to disable interrupt.

20
(R/W1C)

PIQ20 Pin Interrupt 20 Mask.
Set to disable interrupt.

19
(R/W1C)

PIQ19 Pin Interrupt 19 Mask.
Set to disable interrupt.

18
(R/W1C)

PIQ18 Pin Interrupt 18 Mask.
Set to disable interrupt.

17
(R/W1C)

PIQ17 Pin Interrupt 17 Mask.
Set to disable interrupt.

16
(R/W1C)

PIQ16 Pin Interrupt 16 Mask.
Set to disable interrupt.

15
(R/W1C)

PIQ15 Pin Interrupt 15 Mask.
Set to disable interrupt.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–80 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pint Request Register

The PINT_REQ register indicates interrupt request status for pin interrupts. When set, an interrupt request
is pending. When cleared, there is no interrupt request pending.

14
(R/W1C)

PIQ14 Pin Interrupt 14 Mask.
Set to disable interrupt.

13
(R/W1C)

PIQ13 Pin Interrupt 13 Mask.
Set to disable interrupt.

12
(R/W1C)

PIQ12 Pin Interrupt 12 Mask.
Set to disable interrupt.

11
(R/W1C)

PIQ11 Pin Interrupt 11 Mask.
Set to disable interrupt.

10
(R/W1C)

PIQ10 Pin Interrupt 10 Mask.
Set to disable interrupt.

9
(R/W1C)

PIQ9 Pin Interrupt 9 Mask.
Set to disable interrupt.

8
(R/W1C)

PIQ8 Pin Interrupt 8 Mask.
Set to disable interrupt.

7
(R/W1C)

PIQ7 Pin Interrupt 7 Mask.
Set to disable interrupt.

6
(R/W1C)

PIQ6 Pin Interrupt 6 Mask.
Set to disable interrupt.

5
(R/W1C)

PIQ5 Pin Interrupt 5 Mask.
Set to disable interrupt.

4
(R/W1C)

PIQ4 Pin Interrupt 4 Mask.
Set to disable interrupt.

3
(R/W1C)

PIQ3 Pin Interrupt 3 Mask.
Set to disable interrupt.

2
(R/W1C)

PIQ2 Pin Interrupt 2 Mask.
Set to disable interrupt.

1
(R/W1C)

PIQ1 Pin Interrupt 1 Mask.
Set to disable interrupt.

0
(R/W1C)

PIQ0 Pin Interrupt 0 Mask.
Set to disable interrupt.

Table 14-29: PINT_MSK_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–81

Both the PINT_REQ and PINT_LATCH registers indicate whether an interrupt request is latched on the
respective pin. The PINT_LATCH register is a latch that operates regardless of the interrupt masks. Bits of
the PINT_REQ register depend on the mask register. The PINT_REQ register is a logical AND of the PINT_
LATCH register and the interrupt mask.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–82 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-27: PINT_REQ Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–83

Table 14-30: PINT_REQ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 Request.
If set, request pending.

30
(R/W1C)

PIQ30 Pin Interrupt 30 Request.
If set, request pending.

29
(R/W1C)

PIQ29 Pin Interrupt 29 Request.
If set, request pending.

28
(R/W1C)

PIQ28 Pin Interrupt 28 Request.
If set, request pending.

27
(R/W1C)

PIQ27 Pin Interrupt 27 Request.
If set, request pending.

26
(R/W1C)

PIQ26 Pin Interrupt 26 Request.
If set, request pending.

25
(R/W1C)

PIQ25 Pin Interrupt 25 Request.
If set, request pending.

24
(R/W1C)

PIQ24 Pin Interrupt 24 Request.
If set, request pending.

23
(R/W1C)

PIQ23 Pin Interrupt 23 Request.
If set, request pending.

22
(R/W1C)

PIQ22 Pin Interrupt 22 Request.
If set, request pending.

21
(R/W1C)

PIQ21 Pin Interrupt 21 Request.
If set, request pending.

20
(R/W1C)

PIQ20 Pin Interrupt 20 Request.
If set, request pending.

19
(R/W1C)

PIQ19 Pin Interrupt 19 Request.
If set, request pending.

18
(R/W1C)

PIQ18 Pin Interrupt 18 Request.
If set, request pending.

17
(R/W1C)

PIQ17 Pin Interrupt 17 Request.
If set, request pending.

16
(R/W1C)

PIQ16 Pin Interrupt 16 Request.
If set, request pending.

15
(R/W1C)

PIQ15 Pin Interrupt 15 Request.
If set, request pending.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–84 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pint Assign Register

The PINT_ASSIGN register controls the pin-to-interrupt assignment in a byte-wide manner. This register
consists of four control bytes that each function as a multiplexer control.

14
(R/W1C)

PIQ14 Pin Interrupt 14 Request.
If set, request pending.

13
(R/W1C)

PIQ13 Pin Interrupt 13 Request.
If set, request pending.

12
(R/W1C)

PIQ12 Pin Interrupt 12 Request.
If set, request pending.

11
(R/W1C)

PIQ11 Pin Interrupt 11 Request.
If set, request pending.

10
(R/W1C)

PIQ10 Pin Interrupt 10 Request.
If set, request pending.

9
(R/W1C)

PIQ9 Pin Interrupt 9 Request.
If set, request pending.

8
(R/W1C)

PIQ8 Pin Interrupt 8 Request.
If set, request pending.

7
(R/W1C)

PIQ7 Pin Interrupt 7 Request.
If set, request pending.

6
(R/W1C)

PIQ6 Pin Interrupt 6 Request.
If set, request pending.

5
(R/W1C)

PIQ5 Pin Interrupt 5 Request.
If set, request pending.

4
(R/W1C)

PIQ4 Pin Interrupt 4 Request.
If set, request pending.

3
(R/W1C)

PIQ3 Pin Interrupt 3 Request.
If set, request pending.

2
(R/W1C)

PIQ2 Pin Interrupt 2 Request.
If set, request pending.

1
(R/W1C)

PIQ1 Pin Interrupt 1 Request.
If set, request pending.

0
(R/W1C)

PIQ0 Pin Interrupt 0 Request.
If set, request pending.

Table 14-30: PINT_REQ Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–85

The PINT ports are subdivided into 8-bit half ports, resulting in lower and upper half 8-bit units. Using
the multiplexers controlled by the PINT_ASSIGN register, the lower half units of eight pins can be
forwarded to either byte 0 or byte 2 of either associated PINT block, and the upper half units can be
forwarded to either byte 1 or byte 3 of the PINT block, without further restrictions.

Figure 14-28: PINT_ASSIGN Register Diagram

Table 14-31: PINT_ASSIGN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

B3MAP Byte 3 Mapping.
0 B3MAP_PAH

Byte 3 = PA.H
1 B3MAP_PBH

Byte 3 = PB.H
23:16
(R/W)

B2MAP Byte 2 Mapping.
0 B2MAP_PAL

Byte 2 = PA.L
1 B2MAP_PBL

Byte 2 = PB.L
15:8
(R/W)

B1MAP Byte 1 Mapping.
0 B1MAP_PAH

Byte 1 = PA.H
1 B1MAP_PBH

Byte 1 = PB.H

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–86 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pint Edge Set Register

The PINT_EDGE_SET register permits selecting edge-sensitive interrupts. Writing 1 to a bit in PINT_EDGE_
SET enables edge sensitivity for the corresponding pin interrupt.

7:0
(R/W)

B0MAP Byte 0 Mapping.
0 B0MAP_PAL

Byte 0 = PA.L
1 B0MAP_PBL

Byte 0 = PB.L

Table 14-31: PINT_ASSIGN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–87

Figure 14-29: PINT_EDGE_SET Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–88 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 14-32: PINT_EDGE_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1S)

PIQ31 Pin Interrupt 31 Edge.
Set to enable edge sensitivity.

30
(R/W1S)

PIQ30 Pin Interrupt 30 Edge.
Set to enable edge sensitivity.

29
(R/W1S)

PIQ29 Pin Interrupt 29 Edge.
Set to enable edge sensitivity.

28
(R/W1S)

PIQ28 Pin Interrupt 28 Edge.
Set to enable edge sensitivity.

27
(R/W1S)

PIQ27 Pin Interrupt 27 Edge.
Set to enable edge sensitivity.

26
(R/W1S)

PIQ26 Pin Interrupt 26 Edge.
Set to enable edge sensitivity.

25
(R/W1S)

PIQ25 Pin Interrupt 25 Edge.
Set to enable edge sensitivity.

24
(R/W1S)

PIQ24 Pin Interrupt 24 Edge.
Set to enable edge sensitivity.

23
(R/W1S)

PIQ23 Pin Interrupt 23 Edge.
Set to enable edge sensitivity.

22
(R/W1S)

PIQ22 Pin Interrupt 22 Edge.
Set to enable edge sensitivity.

21
(R/W1S)

PIQ21 Pin Interrupt 21 Edge.
Set to enable edge sensitivity.

20
(R/W1S)

PIQ20 Pin Interrupt 20 Edge.
Set to enable edge sensitivity.

19
(R/W1S)

PIQ19 Pin Interrupt 19 Edge.
Set to enable edge sensitivity.

18
(R/W1S)

PIQ18 Pin Interrupt 18 Edge.
Set to enable edge sensitivity.

17
(R/W1S)

PIQ17 Pin Interrupt 17 Edge.
Set to enable edge sensitivity.

16
(R/W1S)

PIQ16 Pin Interrupt 16 Edge.
Set to enable edge sensitivity.

15
(R/W1S)

PIQ15 Pin Interrupt 15 Edge.
Set to enable edge sensitivity.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–89

Pint Edge Clear Register

The PINT_EDGE_CLR register permits selecting level-sensitive interrupts. Writing 1 to a bit in PINT_EDGE_
CLR enables level sensitivity for the corresponding pin interrupt.

14
(R/W1S)

PIQ14 Pin Interrupt 14 Edge.
Set to enable edge sensitivity.

13
(R/W1S)

PIQ13 Pin Interrupt 13 Edge.
Set to enable edge sensitivity.

12
(R/W1S)

PIQ12 Pin Interrupt 12 Edge.
Set to enable edge sensitivity.

11
(R/W1S)

PIQ11 Pin Interrupt 11 Edge.
Set to enable edge sensitivity.

10
(R/W1S)

PIQ10 Pin Interrupt 10 Edge.
Set to enable edge sensitivity.

9
(R/W1S)

PIQ9 Pin Interrupt 9 Edge.
Set to enable edge sensitivity.

8
(R/W1S)

PIQ8 Pin Interrupt 8 Edge.
Set to enable edge sensitivity.

7
(R/W1S)

PIQ7 Pin Interrupt 7 Edge.
Set to enable edge sensitivity.

6
(R/W1S)

PIQ6 Pin Interrupt 6 Edge.
Set to enable edge sensitivity.

5
(R/W1S)

PIQ5 Pin Interrupt 5 Edge.
Set to enable edge sensitivity.

4
(R/W1S)

PIQ4 Pin Interrupt 4 Edge.
Set to enable edge sensitivity.

3
(R/W1S)

PIQ3 Pin Interrupt 3 Edge.
Set to enable edge sensitivity.

2
(R/W1S)

PIQ2 Pin Interrupt 2 Edge.
Set to enable edge sensitivity.

1
(R/W1S)

PIQ1 Pin Interrupt 1 Edge.
Set to enable edge sensitivity.

0
(R/W1S)

PIQ0 Pin Interrupt 0 Edge.
Set to enable edge sensitivity.

Table 14-32: PINT_EDGE_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–90 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-30: PINT_EDGE_CLR Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–91

Table 14-33: PINT_EDGE_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 Level.
Set to enable level sensitivity.

30
(R/W1C)

PIQ30 Pin Interrupt 30 Level.
Set to enable level sensitivity.

29
(R/W1C)

PIQ29 Pin Interrupt 29 Level.
Set to enable level sensitivity.

28
(R/W1C)

PIQ28 Pin Interrupt 28 Level.
Set to enable level sensitivity.

27
(R/W1C)

PIQ27 Pin Interrupt 27 Level.
Set to enable level sensitivity.

26
(R/W1C)

PIQ26 Pin Interrupt 26 Level.
Set to enable level sensitivity.

25
(R/W1C)

PIQ25 Pin Interrupt 25 Level.
Set to enable level sensitivity.

24
(R/W1C)

PIQ24 Pin Interrupt 24 Level.
Set to enable level sensitivity.

23
(R/W1C)

PIQ23 Pin Interrupt 23 Level.
Set to enable level sensitivity.

22
(R/W1C)

PIQ22 Pin Interrupt 22 Level.
Set to enable level sensitivity.

21
(R/W1C)

PIQ21 Pin Interrupt 21 Level.
Set to enable level sensitivity.

20
(R/W1C)

PIQ20 Pin Interrupt 20 Level.
Set to enable level sensitivity.

19
(R/W1C)

PIQ19 Pin Interrupt 19 Level.
Set to enable level sensitivity.

18
(R/W1C)

PIQ18 Pin Interrupt 18 Level.
Set to enable level sensitivity.

17
(R/W1C)

PIQ17 Pin Interrupt 17 Level.
Set to enable level sensitivity.

16
(R/W1C)

PIQ16 Pin Interrupt 16 Level.
Set to enable level sensitivity.

15
(R/W1C)

PIQ15 Pin Interrupt 15 Level.
Set to enable level sensitivity.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–92 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pint Invert Set Register

The PINT_INV_SET register enables inverting input polarity. Writing 1 to a bit in PINT_INV_SET enables
an inverter for input on the corresponding pin.

14
(R/W1C)

PIQ14 Pin Interrupt 14 Level.
Set to enable level sensitivity.

13
(R/W1C)

PIQ13 Pin Interrupt 13 Level.
Set to enable level sensitivity.

12
(R/W1C)

PIQ12 Pin Interrupt 12 Level.
Set to enable level sensitivity.

11
(R/W1C)

PIQ11 Pin Interrupt 11 Level.
Set to enable level sensitivity.

10
(R/W1C)

PIQ10 Pin Interrupt 10 Level.
Set to enable level sensitivity.

9
(R/W1C)

PIQ9 Pin Interrupt 9 Level.
Set to enable level sensitivity.

8
(R/W1C)

PIQ8 Pin Interrupt 8 Level.
Set to enable level sensitivity.

7
(R/W1C)

PIQ7 Pin Interrupt 7 Level.
Set to enable level sensitivity.

6
(R/W1C)

PIQ6 Pin Interrupt 6 Level.
Set to enable level sensitivity.

5
(R/W1C)

PIQ5 Pin Interrupt 5 Level.
Set to enable level sensitivity.

4
(R/W1C)

PIQ4 Pin Interrupt 4 Level.
Set to enable level sensitivity.

3
(R/W1C)

PIQ3 Pin Interrupt 3 Level.
Set to enable level sensitivity.

2
(R/W1C)

PIQ2 Pin Interrupt 2 Level.
Set to enable level sensitivity.

1
(R/W1C)

PIQ1 Pin Interrupt 1 Level.
Set to enable level sensitivity.

0
(R/W1C)

PIQ0 Pin Interrupt 0 Level.
Set to enable level sensitivity.

Table 14-33: PINT_EDGE_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–93

Figure 14-31: PINT_INV_SET Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–94 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 14-34: PINT_INV_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1S)

PIQ31 Pin Interrupt 31 Invert.
Set to enable inverted input.

30
(R/W1S)

PIQ30 Pin Interrupt 30 Invert.
Set to enable inverted input.

29
(R/W1S)

PIQ29 Pin Interrupt 29 Invert.
Set to enable inverted input.

28
(R/W1S)

PIQ28 Pin Interrupt 28 Invert.
Set to enable inverted input.

27
(R/W1S)

PIQ27 Pin Interrupt 27 Invert.
Set to enable inverted input.

26
(R/W1S)

PIQ26 Pin Interrupt 26 Invert.
Set to enable inverted input.

25
(R/W1S)

PIQ25 Pin Interrupt 25 Invert.
Set to enable inverted input.

24
(R/W1S)

PIQ24 Pin Interrupt 24 Invert.
Set to enable inverted input.

23
(R/W1S)

PIQ23 Pin Interrupt 23 Invert.
Set to enable inverted input.

22
(R/W1S)

PIQ22 Pin Interrupt 22 Invert.
Set to enable inverted input.

21
(R/W1S)

PIQ21 Pin Interrupt 21 Invert.
Set to enable inverted input.

20
(R/W1S)

PIQ20 Pin Interrupt 20 Invert.
Set to enable inverted input.

19
(R/W1S)

PIQ19 Pin Interrupt 19 Invert.
Set to enable inverted input.

18
(R/W1S)

PIQ18 Pin Interrupt 18 Invert.
Set to enable inverted input.

17
(R/W1S)

PIQ17 Pin Interrupt 17 Invert.
Set to enable inverted input.

16
(R/W1S)

PIQ16 Pin Interrupt 16 Invert.
Set to enable inverted input.

15
(R/W1S)

PIQ15 Pin Interrupt 15 Invert.
Set to enable inverted input.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–95

Pint Invert Clear Register

The PINT_INV_CLR register disables inverting input polarity. Writing 1 to a bit in PINT_INV_CLR disables
an inverter for input on the corresponding pin.

14
(R/W1S)

PIQ14 Pin Interrupt 14 Invert.
Set to enable inverted input.

13
(R/W1S)

PIQ13 Pin Interrupt 13 Invert.
Set to enable inverted input.

12
(R/W1S)

PIQ12 Pin Interrupt 12 Invert.
Set to enable inverted input.

11
(R/W1S)

PIQ11 Pin Interrupt 11 Invert.
Set to enable inverted input.

10
(R/W1S)

PIQ10 Pin Interrupt 10 Invert.
Set to enable inverted input.

9
(R/W1S)

PIQ9 Pin Interrupt 9 Invert.
Set to enable inverted input.

8
(R/W1S)

PIQ8 Pin Interrupt 8 Invert.
Set to enable inverted input.

7
(R/W1S)

PIQ7 Pin Interrupt 7 Invert.
Set to enable inverted input.

6
(R/W1S)

PIQ6 Pin Interrupt 6 Invert.
Set to enable inverted input.

5
(R/W1S)

PIQ5 Pin Interrupt 5 Invert.
Set to enable inverted input.

4
(R/W1S)

PIQ4 Pin Interrupt 4 Invert.
Set to enable inverted input.

3
(R/W1S)

PIQ3 Pin Interrupt 3 Invert.
Set to enable inverted input.

2
(R/W1S)

PIQ2 Pin Interrupt 2 Invert.
Set to enable inverted input.

1
(R/W1S)

PIQ1 Pin Interrupt 1 Invert.
Set to enable inverted input.

0
(R/W1S)

PIQ0 Pin Interrupt 0 Invert.
Set to enable inverted input.

Table 14-34: PINT_INV_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–96 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-32: PINT_INV_CLR Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–97

Table 14-35: PINT_INV_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 No Invert.
Set to disable inverted input.

30
(R/W1C)

PIQ30 Pin Interrupt 30 No Invert.
Set to disable inverted input.

29
(R/W1C)

PIQ29 Pin Interrupt 29 No Invert.
Set to disable inverted input.

28
(R/W1C)

PIQ28 Pin Interrupt 28 No Invert.
Set to disable inverted input.

27
(R/W1C)

PIQ27 Pin Interrupt 27 No Invert.
Set to disable inverted input.

26
(R/W1C)

PIQ26 Pin Interrupt 26 No Invert.
Set to disable inverted input.

25
(R/W1C)

PIQ25 Pin Interrupt 25 No Invert.
Set to disable inverted input.

24
(R/W1C)

PIQ24 Pin Interrupt 24 No Invert.
Set to disable inverted input.

23
(R/W1C)

PIQ23 Pin Interrupt 23 No Invert.
Set to disable inverted input.

22
(R/W1C)

PIQ22 Pin Interrupt 22 No Invert.
Set to disable inverted input.

21
(R/W1C)

PIQ21 Pin Interrupt 21 No Invert.
Set to disable inverted input.

20
(R/W1C)

PIQ20 Pin Interrupt 20 No Invert.
Set to disable inverted input.

19
(R/W1C)

PIQ19 Pin Interrupt 19 No Invert.
Set to disable inverted input.

18
(R/W1C)

PIQ18 Pin Interrupt 18 No Invert.
Set to disable inverted input.

17
(R/W1C)

PIQ17 Pin Interrupt 17 No Invert.
Set to disable inverted input.

16
(R/W1C)

PIQ16 Pin Interrupt 16 No Invert.
Set to disable inverted input.

15
(R/W1C)

PIQ15 Pin Interrupt 15 No Invert.
Set to disable inverted input.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–98 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pint Pinstate Register

When a half port is assigned to a byte in any PINT block, the state of the eight pins (regardless of GPIO or
function, input or output) can be seen in the PINT_PINSTATE register. While neither input nor output
drivers of the pin are enabled, reads of the pin state in PINT_PINSTATE return zero. The PINT_PINSTATE

14
(R/W1C)

PIQ14 Pin Interrupt 14 No Invert.
Set to disable inverted input.

13
(R/W1C)

PIQ13 Pin Interrupt 13 No Invert.
Set to disable inverted input.

12
(R/W1C)

PIQ12 Pin Interrupt 12 No Invert.
Set to disable inverted input.

11
(R/W1C)

PIQ11 Pin Interrupt 11 No Invert.
Set to disable inverted input.

10
(R/W1C)

PIQ10 Pin Interrupt 10 No Invert.
Set to disable inverted input.

9
(R/W1C)

PIQ9 Pin Interrupt 9 No Invert.
Set to disable inverted input.

8
(R/W1C)

PIQ8 Pin Interrupt 8 No Invert.
Set to disable inverted input.

7
(R/W1C)

PIQ7 Pin Interrupt 7 No Invert.
Set to disable inverted input.

6
(R/W1C)

PIQ6 Pin Interrupt 6 No Invert.
Set to disable inverted input.

5
(R/W1C)

PIQ5 Pin Interrupt 5 No Invert.
Set to disable inverted input.

4
(R/W1C)

PIQ4 Pin Interrupt 4 No Invert.
Set to disable inverted input.

3
(R/W1C)

PIQ3 Pin Interrupt 3 No Invert.
Set to disable inverted input.

2
(R/W1C)

PIQ2 Pin Interrupt 2 No Invert.
Set to disable inverted input.

1
(R/W1C)

PIQ1 Pin Interrupt 1 No Invert.
Set to disable inverted input.

0
(R/W1C)

PIQ0 Pin Interrupt 0 No Invert.
Set to disable inverted input.

Table 14-35: PINT_INV_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–99

register reports the inverted state of the pin if the signal inverter is activated by the PINT_INV_SETregister.
The inverter can be enabled on a individual bit by bit basis. Every bit in the PINT_INV_SET and PINT_INV_
CLR register pair represents a pin signal.

The pin interrupt pin state registers enable the service routine to read the current state of the pin without
reading from GPIO space. If there was an edge-sensitive interrupt, the service routine can check whether
the state of the pin is still high or turned low.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–100 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-33: PINT_PINSTATE Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–101

Table 14-36: PINT_PINSTATE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/NW)

PIQ31 Pin Interrupt 31 State.
Read returns pin state.

30
(R/NW)

PIQ30 Pin Interrupt 30 State.
Read returns pin state.

29
(R/NW)

PIQ29 Pin Interrupt 29 State.
Read returns pin state.

28
(R/NW)

PIQ28 Pin Interrupt 28 State.
Read returns pin state.

27
(R/NW)

PIQ27 Pin Interrupt 27 State.
Read returns pin state.

26
(R/NW)

PIQ26 Pin Interrupt 26 State.
Read returns pin state.

25
(R/NW)

PIQ25 Pin Interrupt 25 State.
Read returns pin state.

24
(R/NW)

PIQ24 Pin Interrupt 24 State.
Read returns pin state.

23
(R/NW)

PIQ23 Pin Interrupt 23 State.
Read returns pin state.

22
(R/NW)

PIQ22 Pin Interrupt 22 State.
Read returns pin state.

21
(R/NW)

PIQ21 Pin Interrupt 21 State.
Read returns pin state.

20
(R/NW)

PIQ20 Pin Interrupt 20 State.
Read returns pin state.

19
(R/NW)

PIQ19 Pin Interrupt 19 State.
Read returns pin state.

18
(R/NW)

PIQ18 Pin Interrupt 18 State.
Read returns pin state.

17
(R/NW)

PIQ17 Pin Interrupt 17 State.
Read returns pin state.

16
(R/NW)

PIQ16 Pin Interrupt 16 State.
Read returns pin state.

15
(R/NW)

PIQ15 Pin Interrupt 15 State.
Read returns pin state.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–102 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pint Latch Register

The PINT_LATCH register indicates interrupt latch status for pin interrupts. When set, an interrupt request
is latched. When cleared, there is no interrupt request latched.

14
(R/NW)

PIQ14 Pin Interrupt 14 State.
Read returns pin state.

13
(R/NW)

PIQ13 Pin Interrupt 13 State.
Read returns pin state.

12
(R/NW)

PIQ12 Pin Interrupt 12 State.
Read returns pin state.

11
(R/NW)

PIQ11 Pin Interrupt 11 State.
Read returns pin state.

10
(R/NW)

PIQ10 Pin Interrupt 10 State.
Read returns pin state.

9
(R/NW)

PIQ9 Pin Interrupt 9 State.
Read returns pin state.

8
(R/NW)

PIQ8 Pin Interrupt 8 State.
Read returns pin state.

7
(R/NW)

PIQ7 Pin Interrupt 7 State.
Read returns pin state.

6
(R/NW)

PIQ6 Pin Interrupt 6 State.
Read returns pin state.

5
(R/NW)

PIQ5 Pin Interrupt 5 State.
Read returns pin state.

4
(R/NW)

PIQ4 Pin Interrupt 4 State.
Read returns pin state.

3
(R/NW)

PIQ3 Pin Interrupt 3 State.
Read returns pin state.

2
(R/NW)

PIQ2 Pin Interrupt 2 State.
Read returns pin state.

1
(R/NW)

PIQ1 Pin Interrupt 1 State.
Read returns pin state.

0
(R/NW)

PIQ0 Pin Interrupt 0 State.
Read returns pin state.

Table 14-36: PINT_PINSTATE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–103

Both the PINT_REQ and PINT_LATCH registers indicate whether an interrupt request is latched on the
respective pin. The PINT_LATCH register is a latch that operates regardless of the interrupt masks. Bits of
the PINT_REQ register depend on the mask register. The PINT_REQ register is a logical AND of the PINT_
LATCH register and the interrupt mask.

Having two separate registers here enables the user to interrogate certain pins in polling mode while others
work in interrupt mode. The PINT_LATCH registers can be used for edge detection or pin activity detection.

Both registers have W1C behavior. Writing a 1 to either clears respective bits in both registers. For inter-
rupt operation, the user may prefer to W1C the PINT_REQ register (address still loaded in Px pointer). In
polling mode it might be cleaner to W1C the PINT_LATCH register.

Regardless whether in edge-sensitive mode or level-sensitive mode, PINT_LATCH bits are never cleared by
hardware except at system reset. Even in level-sensitive mode, the PINT_LATCH register functions as latch.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

14–104 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-34: PINT_LATCH Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PINT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–105

Table 14-37: PINT_LATCH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 Latch.
If set, request latched.

30
(R/W1C)

PIQ30 Pin Interrupt 30 Latch.
If set, request latched.

29
(R/W1C)

PIQ29 Pin Interrupt 29 Latch.
If set, request latched.

28
(R/W1C)

PIQ28 Pin Interrupt 28 Latch.
If set, request latched.

27
(R/W1C)

PIQ27 Pin Interrupt 27 Latch.
If set, request latched.

26
(R/W1C)

PIQ26 Pin Interrupt 26 Latch.
If set, request latched.

25
(R/W1C)

PIQ25 Pin Interrupt 25 Latch.
If set, request latched.

24
(R/W1C)

PIQ24 Pin Interrupt 24 Latch.
If set, request latched.

23
(R/W1C)

PIQ23 Pin Interrupt 23 Latch.
If set, request latched.

22
(R/W1C)

PIQ22 Pin Interrupt 22 Latch.
If set, request latched.

21
(R/W1C)

PIQ21 Pin Interrupt 21 Latch.
If set, request latched.

20
(R/W1C)

PIQ20 Pin Interrupt 20 Latch.
If set, request latched.

19
(R/W1C)

PIQ19 Pin Interrupt 19 Latch.
If set, request latched.

18
(R/W1C)

PIQ18 Pin Interrupt 18 Latch.
If set, request latched.

17
(R/W1C)

PIQ17 Pin Interrupt 17 Latch.
If set, request latched.

16
(R/W1C)

PIQ16 Pin Interrupt 16 Latch.
If set, request latched.

15
(R/W1C)

PIQ15 Pin Interrupt 15 Latch.
If set, request latched.

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PADS REGISTER DESCRIPTIONS

14–106 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x PADS Register Descriptions
Pads Controller (PADS) contains the following registers.

14
(R/W1C)

PIQ14 Pin Interrupt 14 Latch.
If set, request latched.

13
(R/W1C)

PIQ13 Pin Interrupt 13 Latch.
If set, request latched.

12
(R/W1C)

PIQ12 Pin Interrupt 12 Latch.
If set, request latched.

11
(R/W1C)

PIQ11 Pin Interrupt 11 Latch.
If set, request latched.

10
(R/W1C)

PIQ10 Pin Interrupt 10 Latch.
If set, request latched.

9
(R/W1C)

PIQ9 Pin Interrupt 9 Latch.
If set, request latched.

8
(R/W1C)

PIQ8 Pin Interrupt 8 Latch.
If set, request latched.

7
(R/W1C)

PIQ7 Pin Interrupt 7 Latch.
If set, request latched.

6
(R/W1C)

PIQ6 Pin Interrupt 6 Latch.
If set, request latched.

5
(R/W1C)

PIQ5 Pin Interrupt 5 Latch.
If set, request latched.

4
(R/W1C)

PIQ4 Pin Interrupt 4 Latch.
If set, request latched.

3
(R/W1C)

PIQ3 Pin Interrupt 3 Latch.
If set, request latched.

2
(R/W1C)

PIQ2 Pin Interrupt 2 Latch.
If set, request latched.

1
(R/W1C)

PIQ1 Pin Interrupt 1 Latch.
If set, request latched.

0
(R/W1C)

PIQ0 Pin Interrupt 0 Latch.
If set, request latched.

Table 14-37: PINT_LATCH Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PADS REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–107

EMAC and PTP Clock Select Register

The PADS_EMAC_PTP_CLKSEL register selects the clock source for the EMAC module's PTP signal. The
external clock (from pads) input is same for both EMAC0 and EMAC1.

Figure 14-35: PADS_EMAC_PTP_CLKSEL Register Diagram

Table 14-38: ADSP-BF60x PADS Register List

Name Description

PADS_EMAC_PTP_CLKSEL EMAC and PTP Clock Select Register

PADS_TWI_VSEL TWI Voltage Selection

PADS_PORTS_HYST GPIO Pin Hysteresis Enable Register

Table 14-39: PADS_EMAC_PTP_CLKSEL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:2
(R/W)

EMAC1 PTP Clock Source 1.
The PADS_EMAC_PTP_CLKSEL.EMAC1 selects the clock source for the
PTP Block in EMAC1.
0 EMAC1_RMII CLK
1 SCLK
2 External Clock
3 SCLK

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PADS REGISTER DESCRIPTIONS

14–108 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

TWI Voltage Selection

The PADS_TWI_VSEL register sets the voltage requirements for the TWI signals.

Figure 14-36: PADS_TWI_VSEL Register Diagram

1:0
(R/W)

EMAC0 PTP Clock Source 0.
The PADS_EMAC_PTP_CLKSEL.EMAC0 selects the clock source for the
PTP Block in EMAC0.
0 EMAC0_RMII CLK
1 SCLK
2 External Clock
3 SCLK

Table 14-39: PADS_EMAC_PTP_CLKSEL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PADS REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–109

GPIO Pin Hysteresis Enable Register

The PADS_PORTS_HYST register configures hysteresis for the PORT inputs. The hysteresis enable can be set
only for pin groups, classified by the PORT pin multiplexing controls. For each controlled group of pins,
setting the corresponding bit enables hysteresis, and clearing the bit disables hysteresis.

Table 14-40: PADS_TWI_VSEL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:4
(R/W)

TWI1 TWI Voltage Select 1.
The PADS_TWI_VSEL.TWI1 sets the voltage requirements for the TWI_
SCL and TWI_SDA pins on TWI1.
0 VDD_EXT=3.3V, VBUS_TWI=3.3V
1 VDD_EXT=1.8V, VBUS_TWI=1.8V
2 Reserved
3 VDD_EXT=1.8V, VBUS_TWI=3.3V
4 VDD_EXT=3.3V, VBUS_TWI=5V
5 Reserved
7 Reserved

2:0
(R/W)

TWI0 TWI Voltage Select 0.
The PADS_TWI_VSEL.TWI0 sets the voltage requirements for the TWI_
SCL and TWI_SDA pins on TWI0.
0 VDD_EXT=3.3V, VBUS_TWI=3.3V
1 VDD_EXT=1.8V, VBUS_TWI=1.8V
2 Reserved
3 VDD_EXT=1.8V, VBUS_TWI=3.3V
4 VDD_EXT=3.3V, VBUS_TWI=5V
5 Reserved
7 Reserved

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PADS REGISTER DESCRIPTIONS

14–110 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 14-37: PADS_PORTS_HYST Register Diagram

Table 14-41: PADS_PORTS_HYST Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6
(R/W)

G Port G Hysteresis.
0 Disable
1 Enable

5
(R/W)

F Port F Hysteresis.
0 Disable
1 Enable

4
(R/W)

E Port E Hysteresis.
0 Disable
1 Enable

3
(R/W)

D Port D Hysteresis.
0 Disable
1 Enable

2
(R/W)

C Port C Hysteresis.
0 Disable
1 Enable

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PADS REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 14–111

1
(R/W)

B Port B Hysteresis.
0 Disable
1 Enable

0
(R/W)

A Port A Hysteresis.
0 Disable
1 Enable

Table 14-41: PADS_PORTS_HYST Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-BF60X PADS REGISTER DESCRIPTIONS

14–112 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–1

15 General-Purpose Timer (TIMER)

The general-purpose timer (GP Timer) module serves as a collection of system timers that support various
system-level functions. These functions include synchronized PWM waveform output capability, external
signal capture, external event count, and general time base functionality. Additionally, a variety of inter-
rupts can be generated upon completion of timer events. Moreover, GP timers can act both as trigger
masters and trigger slaves.

GP Timer Features
Each timer can be individually configured in any of these modes:

• Pin interrupt capture mode

• Windowed Watchdog mode

• Pulse-width Count and Capture (WDTH_CAP) mode

• External Event (EXT_CLK) mode

• Pulse-width Modulation (PWM_OUT) mode

Other features include:

• Synchronous operation

• Consistent management of period and pulse width values

• Autobaud detection for UART module (where available)

• Graceful bit pattern termination when stopping

• Support for center-aligned PWM patterns

• Error detection on implausible pattern values

• All read and write accesses to 32-bit registers are atomic

• Every timer has its dedicated interrupt request output

• Unused timers can function as edge-sensitive pin interrupts

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER LIST

15–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE:

Each timer has a EMURUN bit in its TIMER_TMRn_CFG register which controls whether to run or stop the
timer during emulation. The emulation event is controlled by the SDU (System Debug Unit). Please
refer to the SDU chapter for more details on generation of an emulation event.

ADSP-BF60x TIMER Register List

Table 15-1: ADSP-BF60x TIMER Register List

Name Description

TIMER_RUN Run Register

TIMER_RUN_SET Run Set Register

TIMER_RUN_CLR Run Clear Register

TIMER_STOP_CFG Stop Configuration Register

TIMER_STOP_CFG_SET Stop Configuration Set Register

TIMER_STOP_CFG_CLR Stop Configuration Clear Register

TIMER_DATA_IMSK Data Interrupt Mask Register

TIMER_STAT_IMSK Status Interrupt Mask Register

TIMER_TRG_MSK Trigger Master Mask Register

TIMER_TRG_IE Trigger Slave Enable Register

TIMER_DATA_ILAT Data Interrupt Latch Register

TIMER_STAT_ILAT Status Interrupt Latch Register

TIMER_ERR_TYPE Error Type Status Register

TIMER_BCAST_PER Broadcast Period Register

TIMER_BCAST_WID Broadcast Width Register

TIMER_BCAST_DLY Broadcast Delay Register

TIMER_TMRn_CFG Timer n Configuration Register

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER INTERRUPT LIST

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–3

ADSP-BF60x TIMER Interrupt List

ADSP-BF60x TIMER Trigger List

TIMER_TMRn_CNT Timer n Counter Register

TIMER_TMRn_PER Timer n Period Register

TIMER_TMRn_WID Timer n Width Register

TIMER_TMRn_DLY Timer n Delay Register

Table 15-2: ADSP-BF60x TIMER Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

TIMER0 Timer 0 12 LEVEL
TIMER0 Timer 1 13 LEVEL
TIMER0 Timer 2 14 LEVEL
TIMER0 Timer 3 15 LEVEL
TIMER0 Timer 4 16 LEVEL
TIMER0 Timer 5 17 LEVEL
TIMER0 Timer 6 18 LEVEL
TIMER0 Timer 7 19 LEVEL
TIMER0 Status 20 LEVEL

Table 15-3: ADSP-BF60x TIMER Trigger List Trigger Masters

Description Trigger ID Sensitivity

TIMER0 Timer 0 2 PULSE/EDGE
TIMER0 Timer 1 3 PULSE/EDGE
TIMER0 Timer 2 4 PULSE/EDGE
TIMER0 Timer 3 5 PULSE/EDGE
TIMER0 Timer 4 6 PULSE/EDGE
TIMER0 Timer 5 7 PULSE/EDGE

Table 15-1: ADSP-BF60x TIMER Register List (Continued)

Name Description

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER INTERNAL INTERFACE

15–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

GP Timer Internal Interface
Timer registers are always accessed by the processor core through the MMR access bus. Hardware ensures
that all read and write operations from and to 32-bit timer registers are atomic. Every timer has its dedi-
cated data interrupt request. There is also one common timer status/error interrupt request output that
connects to the System Event Controller. Whenever a data interrupt is generated, a data Trigger Master
pulse is also driven out, if enabled. Each timer has an individual trigger input line, and each timer can be
either started or stopped as a Trigger Slave.

In total, the GP timer module can have up to (N + 1) interrupt output lines and N data trigger lines.

GP Timer External Interface
Each GP timer module can support up to 16 individual timers. However, most processors have less than
this number. The exact number of timers available on a given processor is available in that processor’s data
sheet.

Every timer has one main input/output signal (TMRx) and, usually, one auxiliary input pin, used as an alter-
nate capture input (TM_ACIx). Each TMR can either run with a time base of SCLK or can reference an
external clock on one of two TMR_ALT_CLKx pins. The TMR_ALT_CLK0signal maps to individual alternate
clock (TM_ACLKx) pins for one or more timers. For instance, a TM_ACLK3 pin would provide an alternate
site to supply an external signal that would serve as TMR3’s reference clock. Likewise, the TMR_ALT_

TIMER0 Timer 6 8 PULSE/EDGE
TIMER0 Timer 7 9 PULSE/EDGE

Table 15-4: ADSP-BF60x TIMER Trigger List Trigger Slaves

Description Trigger ID Sensitivity

TIMER0 Timer 0 2
TIMER0 Timer 1 3
TIMER0 Timer 2 4
TIMER0 Timer 3 5
TIMER0 Timer 4 6
TIMER0 Timer 5 7
TIMER0 Timer 6 8
TIMER0 Timer 7 9

Table 15-3: ADSP-BF60x TIMER Trigger List Trigger Masters (Continued)

Description Trigger ID Sensitivity

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER GENERAL OPERATION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–5

CLK1signal from each timer unit is connected together internally to provide a single global timer clock pin
(TM_CLK) for the GP timer module, for use as an additional time base.

When clocked internally from SCLK, the maximum period for the timer count is ((232)-1) / SCLK (in
MHz)). The TM_ACLK and TM_ACI capture input pins are sampled every SCLK cycle. The duration of every
low or high state must be slightly more than one SCLK cycle. Therefore the maximum allowed frequency
of timer input signals is slightly less than SCLK/2. For exact timing requirements, please refer to the
processor's data sheet).

GP Timer General Operation
The core of every timer is a 32-bit counter that can be interrogated through the read-only TIMER_TMR_CNT
register. Once a timer has been enabled, its TIMER_TMR_CNT register is loaded with a starting value.

A timer can operate in one of several different modes, configured through the TIMER_TMR_CFG register for
that timer. These modes are known as PWMOUT, EXTCLK, WIDCAP, WATCHDOG, PININT and
IDLE, and are summarized in the following table.

Period, Width and Delay Register Interaction

When the timer is started, writes to the buffer registers are immediately copied through to the period,
pulsewidth, and delay registers. Therefore, these values are ready for use in the first timer period. When a
timer is already running, software can write new values to the TIMER_TMR_PER, TIMER_TMR_WID and
TIMER_TMR_DLY registers. The written values are buffered and do not update into the registers until the end
of the current period (when the value in TIMER_TMR_CNT equals the value in TIMER_TMR_PER).

If new values are not written to these registers, the value from the previous period is re-used. Writes to
these registers are atomic; it is not possible for the high word to be written without the low word also being
written.All three registers are double buffered. Values written to the period, pulsewidth, and delay registers

Table 15-5: Timer Mode Descriptions

Timer Mode Description

PWMOUT Generates single or continuous PWM waveforms with programmable pulse
width, period and delay

EXTCLK Counts “clock ticks” from the system clock (SCLK) or an externally applied
waveform

WIDCAP Captures pulse width or period of an externally applied waveform
WATCHDOG Monitors pulse width or period of an external signal and compares against a

window of acceptable values, optionally generating an interrupt if it falls
inside or outside of that window

PININT Can generate an interrupt on an active edge applied to a timer pin.
IDLE Idle; no activity

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER GENERAL OPERATION

15–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

are always stored in the buffer registers. Reads from the same register always return the current, active
value of period, pulse width or delay value. Written values are not read back until they become active.

The usage of the TIMER_TMR_PER, TIMER_TMR_WID and TIMER_TMR_DLY registers varies, depending on the
mode of the timer and is specified by TIMER_TMR_CFG.TMODE bits. See the table below for more informa-
tion.

NOTE: It is important to note that, if in a particular timer mode any of these three registers is not used,
then software is not allowed to write into the unused one(s). For example, in WIDCAP mode, delay
registers are not used. Therefore, software is not allowed to write any value to TIMER_TMR_DLY. The
software must program TIMER_TMR_CFG.TMODE bits before programming these 3 registers, in
order to prevent undesired operation.

Also, if software is changing TIMER_TMR_CFG.TMODE bits such that these registers change configu-
ration from status register to writable register (for example for PWMOUT mode), hardware does
not clear these registers. These values are automatically overwritten by new values specified by soft-
ware.

In PWM_OUT mode with very small periods, there may not be enough time between updates from
the buffer registers to write these registers; the next period may use one old value and one new

Table 15-6: Usage of the Period, Width and Delay Registers in Different Timer Modes

Timer Mode Period Width DELAY

IDLE Not writable Not writable Not writable
WATCHDOG Can be updated on-the-fly.

New value takes effect
either upon timer start or
when an asserting edge on
the input signal is sensed.

Read-only. Retains value of
last measured width or
period of the input signal.

Can be updated on-the-fly.
New value takes effect either
upon timer start or when an
asserting edge on the input
signal is sensed.

WIDCAP Read-only. Period value
captured at the appropriate
time and updated from its
buffer register
simultaneously with the
Width register.

Read-only. Width value
captured at the appropriate
time and updated from its
buffer register
simultaneously with the
Period register.

Not used

PWMOUT Can be updated on-the-fly.
New value takes effect
either upon timer start or at
the end of the current
period. A write followed by
immediate read returns the
current operating values.

Can be updated on-the-fly.
New value takes effect
either upon timer start or at
the end of the current
period. A write followed by
immediate read returns the
current operating values.

Can be updated on-the-fly.
New value takes effect either
upon timer start or at the end
of the current period. A write
followed by immediate read
returns the current operating
values.

EXTCLK Can be updated on-the-fly. Not used Not used
PININT Not used Not used Not used

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER PROGRAMMING CONCEPTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–7

value. In order to prevent (width + pulse delay) > period errors, write the width and delay registers
before the period register when decreasing the values, and write the period register before the width
and delay registers when increasing the value.

GP Timer Programming Concepts
Using the features, operating modes, and event control for the GP timer to their greatest potential requires
an understanding of some GP Timer related concepts.

Setting Up Constantly Changing Timer Conditions

This task shows how to use different period, pulse width, and/or delay settings for each of the first three
timer periods after the timer is started.

1. Program the first set of period, width and delay register values.

2. Enable the timer.

3. Immediately program the second set of register values, as needed.

4. Wait for the first timer interrupt.

5. Program the third set of register values.

RESULT:

Each new setting is then programmed when the preceding timer interrupt is received.

Configuring, Enabling and Disabling One or More Timers

1. Configure the relevant timer(s) for the operating mode and other properties through the TIMER_TMR_
CFG register.

2. Write a 1 to the representative TIMER_RUN bit(s) or, alternately, use the TIMER_RUN_SET register to
avoid disturbing the settings of other timers not being presently configured.

STEP RESULT: The timer(s) should now be enabled and operating.

3. To stop one or more timers, first program the TIMER_STOP_CFG register to determine whether to stop
immediately or gracefully upon receiving a stop command.

ADDITIONAL INFORMATION: Note that PWMOUT modes are the only modes where a timer can be config-
ured for graceful termination.

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER PROGRAMMING CONCEPTS

15–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

4. Write a 0 to the representative TIMER_RUN bit(s) to stop the timer(s) according to their TIMER_STOP_
CFG settings. Alternately, write a 1 to the appropriate TIMER_RUN_CLR bits to avoid disturbing the
settings of other timers not being presently stopped.

STEP RESULT: The timer(s) should now be stopped.

Configuring Timer Data and Status Interrupts

1. Program the proper value in the TIMER_TMR_IRQMODE field, according to the desired interrupt proper-
ties.

2. Unmask the interrupt source at the system event controller.

3. To poll the timer's TIMER_DATA_ILAT bit without generating an interrupt, set the IRQMODE field but
leave the interrupt masked at the system level.

4. If enabled by the TIMER_STAT_IMSK register, interrupt requests are also generated by overflow or error
conditions (wrong programming values), as reported by the TMR_STAT_ILAT bits, provided that the
timer status interrupt source is unmasked at the system event controller.

5. To poll the timer's TIMER_STAT_ILAT bit without generating an interrupt, the corresponding bit must
be unmasked in the TIMER_STAT_IMASK register but leave the interrupt masked at the system level.

Using the Timer Broadcast Feature

The broadcast feature provides a means to update period, width and/or delay registers simultaneously
across more than one timer.

1. Enable the appropriate broadcast bits (BPEREN, BWIDEN, BDLYEN) in the TIMER_TMR_CFG registers for
the timers involved in the broadcast. The broadcast bits use depend on which TIMER_BCAST registers
are involved.

2. Program the TIMER_BCAST_PER register (for instance), assuming you want to broadcast the period
setting across the multiple timers enabled above.

STEP RESULT: This causes only those timers enabled above to load their TIMER_TMR_PER registers with
the value specified in the TIMER_BCAST_PER register.

3. Repeat Step 2 as needed for TIMER_BCAST_WID and TIMER_BCAST_DLY settings.

Single-Pulse PWMOUT Mode

In single-pulse PWMOUT mode, the timer generates a single pulse on the TMR pin. This mode is frequently
used to implement a precise delay, often in conjunction with generation of an output trigger. The assertion
of a pulse is controlled by the value in TIMER_TMR_DLY, and pulse width is defined by the TIMER_TMR_WID
value. TIMER_TMR_PER is not used and cannot be written in this mode. After completion of the pulse the

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER PROGRAMMING CONCEPTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–9

timer is stopped automatically, optionally generating an interrupt, if configured to do so. Pulse polarity is
controlled through the TIMER_TMR_CFG.PULSEHI bit.

If configured as such, the timer can generate a data interrupt upon satisfying various conditions specified
by the TIMER_TMR_CFG.IRQMODE bits.

It is not necessary to clear the relevant TIMER_RUN bit in order to stop the timer cleanly. At the end of the
pulse, the timer stops automatically and the corresponding TIMER_RUN is cleared. To generate multiple
discrete pulses (as opposed to a continuous PWM waveform), write a 1 to the appropriate TIMER_RUN bit,
wait for the timer to stop, and then write another 1 to the same TIMER_RUN bit.

Timer Continuous PWMOUT Mode

In continuous PWMOUT mode, the timer generates repetitive pulses with well-defined period, duty cycle
and pulse position. The TIMER_TMR_DLY, TIMER_TMR_PER and TIMER_TMR_WID registers are programmed
with the values of the required PWM pulse. After the timer is started, the counter counts towards the value
programmed in TIMER_TMR_PER. Initially, the TMR pin remains in a de-asserted state. It toggles to an
asserted state when TIMER_TMR_CNT=TIMER_TMR_DLY. The assertion sense of the TMR pin can be
controlled with the TIMER_TMR_CFG.PULSEHI bit. The TMR pin holds this value for the number of clock
cycles specified in TIMER_TMR_WID, after which it de-asserts and holds this value until the completion of
the programmed period. The same waveform is generated repeatedly until the timer is disabled.

If configured as such, the timer can generate a data interrupt upon satisfying any of various conditions
specified by the TIMER_TMR_CFG.IRQMODE bits.

It is important to guarantee that the programmed Period >= (Width+Delay). Similarly, delay must be less
than period. Violating either of these criteria will result in an unpredictable waveform on the TMR pin until
the situation is rectified by writing proper values to these registers.

The maximum frequency possible to generate on the TMR pin is achieved by setting TIMER_TMR_PER to 2
and TIMER_TMR_WID to 1. This makes the TMR pin toggle each SCLK clock cycle (assuming the timer is
configured to clock internally), producing a duty cycle of 50%.

When a timer’s TIMER_STOP_CFG bit is 0, the timer treats a stop operation as a stop is pending condition.
When terminated with this setting, the timer automatically completes the current waveform and then
stops cleanly, remaining in a deasserted state. This prevents truncation of the current pulse and unwanted
PWM patterns at the TMR pin. The processor can determine when the timer stops running by polling the
corresponding TIMER_RUN bit until it reads as read 0 or by waiting for the last interrupt (if enabled).

GENERAL-PURPOSE TIMER (TIMER)
TIMER WIDTH CAPTURE (WIDCAP) MODE

15–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 15-1: Signal Generation in Continuous PWMOUT Mode

Note that the TIMER_TMR_CFG register cannot be reconfigured until after the timer stops and TIMER_RUN
reads 0.

If required, the software can force a timer to stop immediately in PWM_OUT mode by writing a 1 into
TIMER_STOP_CFG followed by writing a 1 to TIMER_RUN_CLR (or by writing a 0 to the appropriate TIMER_
RUN bit). This stops the timer whether the pending stop was waiting for the end of the current period or
the end of the current pulse width. This feature may be used to regain immediate control of a timer during
an error recovery sequence.

Use this feature carefully, because it may corrupt the PWM pattern generated at the TMR pin, though after
such a stop the pin deasserts automatically. Each timer samples its TIMER_RUN bit at the end of each period.
It stops cleanly at the end of the first period after TIMER_RUN is low. This implies that a timer that is disabled
and then re-started, all before the end of the current period, will continue to run as if nothing happened.
Typically, software should disable a PWMOUT timer and then wait for it to stop itself.

TIMER Width Capture (WIDCAP) Mode
The WIDCAP mode, often simply called capture mode, is used to measure pulse widths on the TMR or TMR_
AUX_IN inputs. The polarity (active high/low) of the input signal can be selected with the TIMER_TMR_CFG.
PULSEHI bit. The figure below shows the control signal flow for WIDCAP_CAP mode.

GENERAL-PURPOSE TIMER (TIMER)
TIMER WIDTH CAPTURE (WIDCAP) MODE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–11

Figure 15-2: Timer Signal Flow in Width Capture Mode

In this mode, the TIMER_TMR_CFG.TINSEL bit selects between the TMR or TMR_AUX_IN input. The internally
clocked timer is used to determine the period and pulse width of the externally applied rectangular wave-
forms.

When a timer is enabled in this mode, the timer resets the count in its TIMER_TMR_CNT register to 0x0000
0001 and does not start counting until it detects a leading edge on the selected input pin.

When the timer detects the first leading edge, it starts incrementing. When it detects a trailing edge of a
waveform, it captures the current 32-bit value of its TMR_CNT register into its width buffer register. At the
next leading edge, the timer transfers the current 32-bit value of its TMR_CNT register into its period buffer
register. The TMR_CNT register is reset to 0x0000 0001 again, and the timer continues counting and
capturing until it is disabled.

In this mode, software can measure both the pulse width and the pulse period of a waveform. The TMR_DLY
register is not used in this mode. The TIMER_TMR_CFG.PULSEHI bit controls the definition of leading edge
and trailing edge of the TMR/TMR_AUX_IN pin.

In WIDCAP mode, the following events always occur at the same time as one unit:

1. The TIMER_TMR_PER register is updated from the period buffer register.

2. The TIMER_TMR_WIDTH register is updated from the width buffer register.

3. The TIMER_DATA_ILAT bit gets set (if enabled).

GENERAL-PURPOSE TIMER (TIMER)
TIMER WIDTH CAPTURE (WIDCAP) MODE

15–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

4. A timer data trigger pulse is generated (if enabled).

The TIMER_TMR_CFG.TMODE [0] bit controls the point in time at which this set of events is executed.
Taken together, these four events are called a measurement report. The TMR_STAT_ILAT register does not
get set at a measurement report. A measurement report occurs, at most, once per input signal period. The
current TMR_CNT value is always copied to the width buffer and period buffer registers at the trailing and
leading edges of the input signal, respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the timer interrupt to signal that
TMR_PER and TMR_WID are ready to be read.

When TMODE=b#1011, the measurement report occurs just after the width buffer register captures its value
(at a falling edge). Subsequently, the TMR_WID register reports the pulse width measured in the pulse that
has just ended, but the TMR_PER register reports the pulse period measured at the end of the previous
period. This is because, if only the first trailing edge occurred, then the first period value has not yet been
measured at the first measurement report, so the period value is not valid. A read of the TMR_PER value in
this case returns 0. See the following figure for more information.

Figure 15-3: Example of Width Capture Deasserted Mode (TMODE=b#1011)

GENERAL-PURPOSE TIMER (TIMER)
TIMER WIDTH CAPTURE (WIDCAP) MODE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–13

When TMODE=b#1010, the measurement report occurs just after the period buffer register captures its value
(at a leading edge). Subsequently, the TMR_PER and TMR_WID registers report the pulse period and pulse
width is measured in the period that has just ended. Refer to the following figure for more information.

Figure 15-4: Example of Width Capture Asserted Mode (TMODE=b#1010)

To measure the pulse width of a waveform that has only one leading edge and one trailing edge, set TMODE
= b#1011. If TMODE = b#1010 for this case, no period value is captured in the period buffer register. Instead,
an error report interrupt is generated (if enabled) when the TMR_CNT range is exceeded and the counter
wraps around. In this case, both TMR_WID and TMR_PER read 0 (because no measurement report occurred
to copy the value captured in the width buffer register to TMR_WID).

If using the TMODE = b#1010 mode to measure the width of a single pulse, it is recommended to disable the
timer after taking the interrupt that ends the measurement interval. If desired, the timer can then be
restarted as appropriate in preparation for another measurement. This procedure prevents the timer from
free-running after the width measurement and logging errors generated by the timer count overflowing.

GENERAL-PURPOSE TIMER (TIMER)
TIMER WIDTH CAPTURE (WIDCAP) MODE

15–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

GP Timer Width Capture Mode Overflow

A timer status interrupt (if enabled) is generated if the TMR_CNT register wraps around from 0xFFFF FFFF
to 0 in the absence of a leading edge. At that point, the timer's TIMER_STAT_ILAT bit gets set and the
TIMER_ERR_TYP bits change appropriately, indicating a count overflow due to a period greater than the
counter's range. This is called an error report. A data interrupt in WIDCAP mode indicates a new
measurement is ready to be read (a measurement report). Similarly, an interrupt on the timer status inter-
rupt line (shared interrupt for all timers) indicates an overflow if generated in WIDCAP mode.

The TMR_PER and TMR_WID registers are never updated at the time an overflow is signaled. If the timer over-
flowed and TMODE=b#1010, neither the TMR_PER nor the TMR_WID register were updated. If the timer over-
flowed and TMODE=b#1011, the TMR_PER and TMR_WID registers were updated only if a trailing edge was
detected at a previous measurement report.

Software can count the number of error reports between measurement report interrupts to measure input
signal periods longer than 0xFFFF FFFF. Each error report interrupt adds a full 232SCLK counts to the total
for the period, but the width is ambiguous. Make sure that, if only the status interrupt is monitored by soft-
ware in this case, then status interrupts from all other timers are masked.

For example, in the following figure, the period is 0x1 0000 0004, but the pulse width could be either 0x0
0000 0002 or 0x1 0000 0002.

GENERAL-PURPOSE TIMER (TIMER)
TIMER WIDTH CAPTURE (WIDCAP) MODE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–15

Figure 15-5: Example Timing for Width Capture Followed by Period Overflow (TMR_CFG.TMODE=b#1010)

The waveform applied to the TMR (or TMR_AUX_IN) pin is not required to have a 50% duty cycle, but the
minimum input low time is little more than one SCLK period and the minimum input high time is little
more than one SCLK period (refer to the product data sheet for details). This implies the maximum TMR
input frequency is somewhat less than SCLK/2, with a 50% duty cycle. Under these conditions, the
WIDCAP mode timer would measure Period = 2 and Pulse Width = 1.

GENERAL-PURPOSE TIMER (TIMER)
WINDOWED WATCHDOG (WATCHDOG) MODES

15–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 15-6: Example Timing for Width Capture Followed by Period Overflow (TMR_CFG.TMODE=b#1011)

Windowed Watchdog (WATCHDOG) Modes
In windowed watchdog (WATCHDOG) modes, a timer can take inputs from either the TMR pin or the
TMR_AUX_IN pin. With this mode, the timer can monitor pulse width (width watchdog mode) or pulse
period (period watchdog mode) on the input line. It also compares the measured value against a minimum
required value and maximum allowed value and generates an interrupt appropriately. Polarity selection of
the input signal is performed by the TIMER_TMR_CFG.PULSEHI bit.

The waveform applied to the input pin in watchdog mode is not required to have a 50% duty cycle, but the
minimum input pulse low time is slightly more than one SCLK period, and the minimum input pulse high
time is slightly more than one SCLK period (refer to the product data sheet for details). This implies the
maximum input frequency is somewhat less than SCLK/2 in this mode.

GENERAL-PURPOSE TIMER (TIMER)
WINDOWED WATCHDOG (WATCHDOG) MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–17

Timer Windowed Watchdog Width Mode

In this mode, the timer counter monitors the pulse width of an input signal on either the TMR pin or TMR_
ALT_CLK pin. Software needs to program the minimum pulse width (Pmin) in the TIMER_TMR_DLY register
and the maximum pulse width (Pmax) in the TIMER_TMR_PER register. Both values are programmed in
terms of number of clock cycles (SCLK or TMR_ALT_CLKx). The timer can generate an interrupt if the deas-
serting pulse edge occurs inside the window (Pmin < Pulse Width =< Pmax) or outside the window (Pulse
Width =< Pmin or Pulse Width > Pmax).

After enabling the timer in this mode, it always starts counting at the asserting edge of the input signal.
This means any pulse that is already active when the timer is enabled is ignored.

With TIMER_TMR_CFG.IRQMODE=b#11, the timer generates an interrupt (if enabled) if the timed pulse
width exceeds Pmax, or if the pulse width is less than Pmin. After attaining Pmax, the pulse still remains
at an active level, and the counter keeps on counting until it sees a deasserting edge. When the input pulse
is not active, the counter holds its current value until it again sees an asserting edge, or it restarts. An inter-
rupt can also be generated for when the pulse occurs within the specified window condition, by setting
TIMER_TMR_CFG.IRQMODE=b#10.

In this mode, a trailing edge on the input pin triggers capturing of pulse width into the TIMER_TMR_WID
register. During the inactive portion of the input signal, the internal counter does not increment. Refer to
the figure below for signal flow in this mode.

Figure 15-7: Watchdog Width Mode Timing

If it is required to check only the upper limit on pulse width (Pmax but not Pmin) then Pmin must be
programmed as 0 or 1. In such a case, it is better to use IRQ_MODE =b#11. With IRQ_MODE = b#10, a pulse
width of 1 clock cycle will result in an interrupt. For details see the table below.

GENERAL-PURPOSE TIMER (TIMER)
WINDOWED WATCHDOG (WATCHDOG) MODES

15–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timer Windowed Watchdog Period Mode

In this mode, the timer monitors the number of clock cycles between two consecutive rising/falling edges
of an input signal on either the TMR pin or TMR_AUX_IN pin. Software needs to program the required

Table 15-7: Windowed Watchdog Width Mode Interpretation

Timer Delay Timer Period
Incoming Pulse

Width IRQMODE= b#10 IRQMODE= b#11 Error Interrupt?

 0 or 1 Anything >= 1 PW = 1 Interrupt at
deasserting
edge of input
signal

No Interrupt No Error
Interrupt

PW =< TMR_
PER

Interrupt at
deasserting
edge of input
signal

No Interrupt No Error
Interrupt

PW > TMR_
PER

No Interrupt Interrupt when
Pulse with
exceeds Pmax
(Period
Register) Value

No Error
Interrupt

> 1 but <=
(Period -1)

Anything > 1 PW =< TMR_
DLY

No Interrupt Interrupt at De-
asserting edge
of input Signal

No Error
Interrupt

TMR_DLY <
PW<= TMR_
PER

Interrupt at
deasserting
edge of input
signal

No Interrupt No Error
Interrupt

PW > TMR_
PER

No Interrupt Interrupt when
Pulse with
exceeds Pmax
(Period
Register) Value

No Error
Interrupt

>= Period - PW <= TMR_
PER

Undefined Undefined No Error
Interrupt

- PW > TMR_
PER

Undefined Undefined b#11 Error Type

 - 0 - Undefined Undefined b#10 Error Type

GENERAL-PURPOSE TIMER (TIMER)
WINDOWED WATCHDOG (WATCHDOG) MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–19

minimum number of clock cycles (Tmin) in the TIMER_TMR_DLY register and the required maximum
allowed number of clock cycles (Tmax) in the TIMER_TMR_PER register. Both values are programmed in
terms of number of clock cycles (SCLK or TMR_ALT_CLKx). The timer can generate an interrupt if two
consecutive occurrences of an active edge are within a specified window (Tmin < Pulse Period <=Tmax)
or outside (Pulse Width<=Tmin or Tmax < Pulse Width) a specified window.

With TIMER_TMR_CFG.IRQMODE=b#11, if the pulse period ever exceeds Tmax or if it is less than or equal
to Tmin, the timer generates an interrupt if unmasked. After attaining the Tmax value, the counter keeps
on counting until it sees an active edge on the input line. An interrupt can also be generated for when the
pulse occurs within the specified window condition, by setting TIMER_TMR_CFG.IRQMODE=b#10. Refer to
the figure below for timer functionality in period watchdog mode.

Figure 15-8: Watchdog Period Mode Timing

If it is required to check only the upper limit on period (Tmax value but not Tmin value) then Tmin can
be programmed as 0 or 1 in this mode. For details refer to the table below.

GENERAL-PURPOSE TIMER (TIMER)
PIN INTERRUPT (PININT) MODE

15–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pin Interrupt (PININT) Mode
In PININT mode, any active edges on either the TMR pin or the TMR_AUX_IN pin (whichever is selected
by TIMER_TMR_CFG.TINSEL) can cause an edge-based interrupt if enabled. The event on the input pin can
set the TIMER_DATA_ILAT bit and issue a system interrupt request. Active edge polarity can be changed by
programming the TIMER_TMR_CFG.PULSEHI bit.

Since the interrupt is generated in the SCLK clock domain, the width of the input signal must be more than
one SCLK period. Along with generating the interrupt, the timer will also generate a trigger pulse if it is
enabled in the TIMER_TRG_MSK register. Due to configuration of polarity, glitches at the input may cause

Table 15-8: Windowed Watchdog Period Mode Interpretation

Timer Delay Timer Period
Incoming Pulse

Width IRQMODE=b#10 IRQMODE =b#11 Error Interrupt?

 0 or 1 Anything >= 2 Pulse Period =<
TMR_PER

 Interrupt at
deasserting
edge of input
signal

No Interrupt No Error
Interrupt

Pulse Period >
TMR_PER

 No Interrupt Interrupt when
pulse period
crosses Pmax
(Period
Register) value

No Error
Interrupt

>= 1 but =<
Period -1

Anything >= 2 Pulse Period =<
TMR_DLY

 No Interrupt Interrupt at
deasserting
edge of input
signal

No Error
Interrupt

TMR_DLY <
Pulse Period =<
TMR_PER

Interrupt at
deasserting
edge of input
signal

No Interrupt No Error
Interrupt

Pulse Period >
TMR_PER

 No Interrupt Interrupt when
pulse width
exceeds Pmax
(Period
Register) value

No Error
Interrupt

>= Period - Pulse Period <
TMR_PER

 Undefined Undefined No Error
Interrupt

Pulse Period >=
TMR_PER

Undefined Undefined b#11 Error Type

 - 0 or 1 - Undefined Undefined b#10 Error Type

GENERAL-PURPOSE TIMER (TIMER)
TIMER EXTERNAL CLOCK (EXTCLK) MODE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–21

an undesired interrupt to be generated. To avoid this, software must ensure that interrupts are unmasked
only after configuring desired polarity.

TIMER External Clock (EXTCLK) Mode
Use the EXTCLK mode, sometimes referred to as the counter mode, to count external events, that is, signal
edges on either the TMR or TMR_AUX_IN input pin. The timer works as a counter clocked by an external
source (the signal at the pin), which can be asynchronous to SCLK. The current count in TIMER_TMR_CNT
represents the number of leading edge events detected. The TIMER_TMR_PER register is programmed with
the value of the maximum timer external count desired before stopping and/or issuing an interrupt or
trigger.

The TIMER_TMR_CFG.PULSEHI bit determines the polarity of the leading edge on the input pin. The
TIMER_TMR_CFG.TINSEL bit selects whether event is counted on TMR pin or on the TMR_AUX_IN pin. The
TIMER_STAT_ILAT and TIMER_ERR_TYP bits are set if TIMER_TMR_CNT wraps around from 0xFFFF FFFF
to 0 or if the period = 0 at startup or when TIMER_TMR_CNT rolls over (from count = period to count = 0x1).
The TIMER_TMR_WID and TIMER_TMR_DLY registers are unused in this mode.

The figure below shows a flow diagram for EXTCLK mode.

Figure 15-9: EXTCLK Mode Control Flow

The waveform applied to the input pin is not required to have a 50% duty cycle, but the minimum input
low time and input high time are both slightly more than one SCLK period, (refer to the product data sheet
for details). This implies the maximum input frequency is slightly less than SCLK/2. The period may be
programmed to any value from 1 to (232 – 1), inclusive.

After the timer has started, it resets TIMER_TMR_CNT to 0x0 and then waits for the first leading edge on the
input pin. This edge causes TMR_CNT to be incremented to the value 0x1, and every subsequent leading edge
increments it by one. After TMR_CNT reaches the value programmed in TIMER_TMR_PER, the corresponding

GENERAL-PURPOSE TIMER (TIMER)
TIMER ILLEGAL STATES

15–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

TIMER_DATA_ILAT bit is set, and an interrupt and trigger are both generated (if enabled). The next leading
edge reloads the TMR_CNT again with 0x1, and the timer continues counting until it is disabled.

Timer Illegal States
These definitions are used in the table below:

• Startup. The first clock period during which the timer counter is running after the timer is started by
writing the TIMER_RUN register.

• Rollover. The time when the current count in TMR_CNT matches the value in TMR_PER and the counter
is reloaded with the value 1.

• Overflow. The timer counter was incremented instead of doing a rollover when it was holding the
maximum possible count value of 0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value of 0x0000 0000.

• Unchanged. No new error.

When ERR_TYPE is designated unchanged, it displays the previously reported error code orb# 00 if there
has been no error since this timer was enabled.

When TIMER_STAT_ILAT is unchanged, it reads 0 if there has been no error or overflow since this timer
was enabled, or if software has performed a W1C to clear any previous error. If a previous error has not
been acknowledged by software, STAT_ILAT reads 1. Software should read STAT_ILAT to check for an
error. If a particular timer's bit is set there, software can then read TIMER_ERR_TYPE for more information.
Once detected, software should W1C the appropriate STAT_ILAT bit to acknowledge the error.

The following tables can be read as:

• In mode __ at event __,

• if TMR_PER is __ and TMR_WID is __ and TMR_DLY is __,

• then TIMER_ERR_TYPE is __ and TIMER_STAT_ILAT is __.

Startup error conditions do not prevent the timer from starting. Similarly, overflow and rollover error
conditions do not stop the timer. Illegal cases may cause unwanted behavior of the TMR pin.

NOTE: For PININT mode error functionality is not used.

GENERAL-PURPOSE TIMER (TIMER)
TIMER ILLEGAL STATES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–23

Continuous PWMOUT Mode

Table 15-9: Startup Event

 TMR_PER TMR_DLY MR_WID
TMR_WID +

TMR_DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

=< 1 Anything other
than period[8]

Anything Anything b#10 Set

>= 2 Anything including
0, excluding TMR_
PER value

Anything
including 0

=< PERIOD Unchanged Unchanged

Anything including
0

Anything
including 0

> PERIOD Unchanged[9]
(Detected at
rollover)

Unchanged (Detected
at rollover)

Anything Anything > 232 - 1 b#11 Set

=Period =0 =Period No error Unchanged (Detected
at rollover)

Table 15-10: Rollover Event

 TMR_PER TMR_DLY TMR_WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_

ILAT (if enabled)

=<1 Anything Anything Anything b#10[timer
running at SCLK]
b#11 [timer
running at ALT_
CLKx]

Set

>= 2 Anything including
0, excluding TMR_
PER value

Anything
including 0

=<PERIOD Unchanged Unchanged

Anything including
0, excluding TMR_
PER value

Anything >0 >PERIOD b#11 Set

Anything Anything > 232- 1 b#11 Set

= Period[10] =0 =Period b#11 Set
>Period =0 >Period Unchanged Unchanged

GENERAL-PURPOSE TIMER (TIMER)
TIMER ILLEGAL STATES

15–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Single Pulse PWMOUT Mode

For Single Pulse PWMOUT mode, there are no rollover events.

WID CAP Mode

For WID CAP mode, the TMR_PER and TMR_WID registers are read-only and the TMR_DLY register is not
used. Therefore no startup or rollover errors are possible.

Table 15-11: Overflow Event (On TMR_PER Register Programming Error Only)

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
 TIMER_STAT_ILAT (if

enabled)

Anything Anything Anything Anything b#01 Set

Table 15-12: Startup Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY

ERR_TYPE
TIMER_

STAT_ILAT (if
enabled)

NA Anything == 0 Anything b#11[11] Set
NA Anything

including 0
>=1 > 232 -1 Unchanged Unchanged

NA Anything
including 0

>=1 > 232 -1 b#11 Set

Table 16: Overflow Event (On another error, such as DELAY + WIDTH >= 232 -1)

 TMR_PER TMR_DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STA_ILAT (if

enabled)

Anything Anything Anything Anything b#01 Set

Table 15-1: Overflow Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

Anything NA Anything NA b#01 Set

GENERAL-PURPOSE TIMER (TIMER)
TIMER ILLEGAL STATES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–25

EXTCLK Mode

WATCHDOG Events

Table 15-2: Startup Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

=0 NA NA NA b#01 Set
>=1 NA NA NA Unchanged Unchanged

Table 15-3: Rollover Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

=0 NA NA NA b#01 Set
>=1 NA NA NA Unchanged Unchanged

Table 15-4: Overflow Event (On TMR_PER Register = 0 Only)

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

Anything NA NA NA b#01 Set

Table 15-5: Startup Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID

+ TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

=< Allowed
MIN[12]

Anything <
PERIOD

NA NA b#01 Set

> Allowed MIN Anything <
PERIOD

NA NA Unchanged Unchanged

> Allowed MIN Anything >=
PERIOD

Refer to WATCHDOG Mode tables

Table 15-6: Rollover Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

=< Allowed
MIN[10]

Anything <
PERIOD

NA NA b#01 Set

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x TIMER Register Descriptions
General Purpose Timer Block (TIMER) contains the following registers.

> Allowed MIN Anything NA NA Unchanged Unchanged
> Allowed MIN Anything >=

PERIOD
Refer to WATCHDOG Mode tables

Table 15-7: Overflow Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

Anything Anything NA NA b#01 Set

Table 15-8: ADSP-BF60x TIMER Register List

Name Description

TIMER_RUN Run Register

TIMER_RUN_SET Run Set Register

TIMER_RUN_CLR Run Clear Register

TIMER_STOP_CFG Stop Configuration Register

TIMER_STOP_CFG_SET Stop Configuration Set Register

TIMER_STOP_CFG_CLR Stop Configuration Clear Register

TIMER_DATA_IMSK Data Interrupt Mask Register

TIMER_STAT_IMSK Status Interrupt Mask Register

TIMER_TRG_MSK Trigger Master Mask Register

TIMER_TRG_IE Trigger Slave Enable Register

TIMER_DATA_ILAT Data Interrupt Latch Register

TIMER_STAT_ILAT Status Interrupt Latch Register

Table 15-6: Rollover Event (Continued)

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–27

Run Register

The TIMER_RUN allows all timers to be enabled simultaneously, permitting them to run synchronously. For
each timer, there is a single start/stop control bit. Writing a 1 to this bit starts the corresponding timer;
writing a 0 stops the timer with mechanism specified in the timer stop configuration TIMER_STOP_CFG
register.

The start/stop control bits can be set/reset individually or in any combination. While starting or stopping
one particular timer directly with this register, software must perform a read-modify write, so the bits
corresponding to other timers remain unchanged. To avoid this need, software can use the TIMER_RUN_
CLR register.

Reading the TIMER_RUN register shows the start status for the corresponding timer. A 1 indicates that the
timer is running.

If a timer is in run state (corresponding run bit is =1), a software write of 1 in this bit does not have any
effect on the timer state. The write does not result in restarting the timer.

Note that the TIMER_RUN register is not used in PININT mode. PININT mode starts as soon as the TIMER_
TMRn_CFG.TMODE bits are set to 111.

TIMER_ERR_TYPE Error Type Status Register

TIMER_BCAST_PER Broadcast Period Register

TIMER_BCAST_WID Broadcast Width Register

TIMER_BCAST_DLY Broadcast Delay Register

TIMER_TMRn_CFG Timer n Configuration Register

TIMER_TMRn_CNT Timer n Counter Register

TIMER_TMRn_PER Timer n Period Register

TIMER_TMRn_WID Timer n Width Register

TIMER_TMRn_DLY Timer n Delay Register

Table 15-8: ADSP-BF60x TIMER Register List (Continued)

Name Description

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 15-10: TIMER_RUN Register Diagram

Run Set Register

The TIMER_RUN_SET register is an alias register, providing a mechanism to set a specific start/stop bit in
the TIMER_RUN register without affecting other bits in TIMER_RUN. To start a particular timer, software
must write a 1 into the corresponding TIMER_RUN_SET bit. Writing a zero has no effect. For an example,
to start timer 3 without affecting any other timer, write 0x0008 into TIMER_RUN_SET. Because TIMER_RUN_
SET is a write-only register, the result of any write to this register must be checked by reading the TIMER_
RUN register. A read of the TIMER_RUN_SET returns 0x0000.

Table 15-9: TIMER_RUN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Start/Stop Timer n.
For all TIMER_RUN.TMRnn bits, write =0 for stop, and write =1 for
start. Read =1 when timer is running.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–29

Figure 15-11: TIMER_RUN_SET Register Diagram

Run Clear Register

The TIMER_RUN_CLR register is an alias register, providing a mechanism to clear a specific start/stop bit in
the TIMER_RUN register without affecting other bits in TIMER_RUN. To stop a particular timer, software
must write a 1 into the corresponding TIMER_RUN_CLR bit. Writing a 0 has no effect. Because TIMER_RUN_
CLR is a write-only register, the result of any write to this register must be checked by reading the TIMER_
RUN register. A read of the TIMER_RUN_CLR returns 0x0000.

Note that the stopping mechanism of a timer may be abrupt or graceful (after completion of current wave-
form period) depending on the selection in the TIMER_STOP_CFG register.

Table 15-10: TIMER_RUN_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W1S)

TMRnn RUN Set Alias.
For all TIMER_RUN_SET.TMRnn bits, write =0 has no effect, and write
=1 for start (setting the corresponding start/stop bit in the TIMER_
RUN register). Using TIMER_RUN_SET to set start/stop bits permits
starting specific timers without influencing the run status of other
timers.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 15-12: TIMER_RUN_CLR Register Diagram

Stop Configuration Register

The TIMER_STOP_CFG selects the stop mode for each timer. Timers may be stopped abruptly (immediate
halt - all modes) or gracefully in PWMOUT modes (single pulse and continuous). The halt is achieved
through either a write =0 to the corresponding bit in TIMER_RUN or a write =1 to the corresponding bit in
TIMER_RUN_CLR. A read of TIMER_STOP_CFG returns the last value written.

Table 15-11: TIMER_RUN_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W1C)

TMRnn RUN Clear Alias.
For all TIMER_RUN_CLR.TMRnn bits, write =0 has no effect, and write
=1 for stop (clearing the corresponding in start/stop bit in the TIMER_
RUN register). Using TIMER_RUN_CLR to clear start/stop bits permits
stopping specific timers without influencing run status of other
timers.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–31

Figure 15-13: TIMER_STOP_CFG Register Diagram

Stop Configuration Set Register

This is an alias register, providing a mechanism to set a specific bit in the TIMER_STOP_CFG register without
affecting other bits in TIMER_STOP_CFG. To set a bit in TIMER_STOP_CFG, software must write a 1 to the
corresponding bit of TIMER_STOP_CFG_SET. Writing a zero has no effect. Because TIMER_STOP_CFG_SET
is a write-only register, the result of any write to this register must be checked by reading the TIMER_STOP_
CFG register. A read of the TIMER_STOP_CFG_SET returns 0x0000.

Table 15-12: TIMER_STOP_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Stop Mode Select.
For all TIMER_STOP_CFG.TMRnn bits, write =0 for graceful
termination (PWMOUT modes only), and write =1 for abrupt
(immediate halt) on stop.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 15-14: TIMER_STOP_CFG_SET Register Diagram

Stop Configuration Clear Register

This is an alias register, providing a mechanism to clear a specific bit in the TIMER_STOP_CFG register
without affecting other bits in TIMER_STOP_CFG. To clear a bit in TIMER_STOP_CFG, software must write a
1 to the corresponding bit of TIMER_STOP_CFG_CLR. Writing a zero has no effect. Because TIMER_STOP_
CFG_CLR is a write-only register, the result of any write to this register must be checked by reading the
TIMER_STOP_CFG register. A read of the TIMER_STOP_CFG_CLR returns 0x0000.

Table 15-13: TIMER_STOP_CFG_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W1S)

TMRnn STOP_CFG Set Alias.
For all TIMER_STOP_CFG_SET.TMRnn bits, write =0 has no effect, and
write =1 for abrupt stop (setting the corresponding stop mode select
bit in the TIMER_STOP_CFG register). Using TIMER_STOP_CFG_SET to
set stop mode bits permits configuring specific timers without
influencing the stop mode configuration of other timers.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–33

Figure 15-15: TIMER_STOP_CFG_CLR Register Diagram

Data Interrupt Mask Register

Each timer may generate a unique processor data interrupt request signal. The TIMER_DATA_IMSK contains
an interrupt mask for these requests, masking (disabling) or unmasking (enabling) the interrupts as
programmed. The reset value of the TIMER_DATA_IMSK register is 0xFFFF, masking these interrupts after
reset.

Table 15-14: TIMER_STOP_CFG_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W1C)

TMRnn STOP_CFG Clear Alias.
For all TIMER_STOP_CFG_CLR.TMRnn bits, write =0 has no effect, and
write =1 for graceful stop in PWMOUT modes (clearing the
corresponding stop mode select bit in the TIMER_STOP_CFG register).
Using TIMER_STOP_CFG_CLR to clear stop mode bits permits
configuring specific timers without influencing the stop mode
configuration of other timers.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 15-16: TIMER_DATA_IMSK Register Diagram

Status Interrupt Mask Register

While each timer may generate a status interrupt request, these requests are OR'ed to generate a single
status interrupt signal to the System Event Controller. The TIMER_STAT_IMSK contains an interrupt mask
for these requests, masking (disabling) or unmasking (enabling) the interrupts as programmed. The reset
value of the TIMER_STAT_IMSK register is 0xFFFF, masking these interrupts after reset.

Table 15-15: TIMER_DATA_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Data Interrupt Mask.
For all TIMER_DATA_IMSK.TMRnn bits, write =0 unmasks (enables)
the corresponding data interrupt request, and write =1 masks
(disables) the corresponding data interrupt request.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–35

Figure 15-17: TIMER_STAT_IMSK Register Diagram

Trigger Master Mask Register

As a trigger master, each timer can generate a unique data trigger pulse signal. The TIMER_TRG_MSK
contains a trigger mask for these outputs, masking (disabling) or unmasking (enabling) the triggers as
programmed. The reset value of the TIMER_TRG_MSK register is 0xFFFF, masking these triggers after reset.

Figure 15-18: TIMER_TRG_MSK Register Diagram

Table 15-16: TIMER_STAT_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Status Interrupt Mask.
For all TIMER_STAT_IMSK.TMRnn bits, write =0 unmasks (enables)
the corresponding status interrupt request, and write =1 masks
(disables) the corresponding status interrupt request.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Trigger Slave Enable Register

As a trigger slave, each timer can generate a unique data trigger pulse signal. The TIMER_TRG_IE contains
trigger input enable bits for these signals, disabling or enabling the triggers as programmed. The reset value
of the TIMER_TRG_IE register is 0xFFFF, masking these triggers after reset.

Figure 15-19: TIMER_TRG_IE Register Diagram

Data Interrupt Latch Register

The TIMER_DATA_ILAT holds the latched interrupt status for interrupt requests that have been unmasked
(enabled) by the TIMER_DATA_IMSK register and generated according to the conditions selected by the

Table 15-17: TIMER_TRG_MSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Trigger Output Mask.
For all TIMER_TRG_MSK.TMRnn bits, write =0 unmasks (enables) the
corresponding data trigger output, and write =1 masks (disables) the
corresponding data trigger output.

Table 15-18: TIMER_TRG_IE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Trigger Input Enable.
For all TIMER_TRG_IE.TMRnn bits, write =0 disables the
corresponding trigger input, and write =1 enables the corresponding
trigger input.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–37

TIMER_TMRn_CFG.IRQMODE bits. If a bit in TIMER_DATA_ILAT is already set and the corresponding inter-
rupt is masked in TIMER_DATA_IMSK, the latch holds its old value, leaving the interrupt asserted until it is
reset by software with a W1C operation.

Note that interrupt service routines (ISRs) should clear the appropriate bits in TIMER_DATA_ILAT before
returning from the ISR, to ensure that the interrupt is not re-issued. To make sure that no timer event is
missed, the latch should be reset at the very beginning of the ISR when in EXTCLK mode.

Figure 15-20: TIMER_DATA_ILAT Register Diagram

Status Interrupt Latch Register

The TIMER_STAT_ILAT holds the latched interrupt status for error interrupts, indicating a timer overflow
condition or indicating that prohibited programming has occurred for a timer. These interrupt status bits
are sticky and are W1C. The bits in the TIMER_STAT_ILAT register provide information regarding each
timer interrupt source.

Table 15-19: TIMER_DATA_ILAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W1C)

TMRnn Data Interrupt Latch.
For all TIMER_DATA_ILAT.TMRnn bits, status of =0 indicates no
interrupt is latched, and status of =1 indicates a latched interrupt
(indicating an unmasked interrupt request from a timer with a
condition matching the one selected with corresponding TIMER_
TMRn_CFG.IRQMODE bit has occurred).

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 15-21: TIMER_STAT_ILAT Register Diagram

Error Type Status Register

The TIMER_ERR_TYPE contains Error Type status bits for each timer. These bits indicate the type of error
(if any) in a running timer. This register is read-only. These status bits are cleared at reset and when a
particular timer is enabled.

Each time an error interrupt is latched in TIMER_STAT_ILAT, the corresponding TERRx bits in TIMER_
ERR_TYPE are loaded with a code that identifies the type of error that was detected. This status value is held
until the next error or until a particular timer is restarted. No bus error is generated if a write is performed
on TIMER_ERR_TYPE.

Table 15-20: TIMER_STAT_ILAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W1C)

TMRnn Status Interrupt Latch.
For all TIMER_STAT_ILAT.TMRnn bits, status of 0 indicates no error
interrupt is latched, and status of 1 indicates a timer counter overflow
or programming error interrupt is latched.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–39

Figure 15-22: TIMER_ERR_TYPE Register Diagram

Table 15-21: TIMER_ERR_TYPE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:14
(R/NW)

TERR7 Error type for Timer 7.
0 No Error
1 Counter Overflow Error
2 PER Register Programming Error
3 WID or DLY Register Programming Error

13:12
(R/NW)

TERR6 Error type for Timer 6.
0 No Error
1 Counter Overflow Error
2 PER Register Programming Error
3 WID or DLY Register Programming Error

11:10
(R/NW)

TERR5 Error type for Timer 5.
0 No Error
1 Counter Overflow Error
2 PER Register Programming Error
3 WID or DLY Register Programming Error

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Broadcast Period Register

For timers with TIMER_TMRn_CFG.BPEREN enabled, a write to TIMER_BCAST_PER concurrently updates the
period (TIMER_TMRn_PER) registers of only those timers. A read of TIMER_BCAST_PER returns 0x00000000,
and no bus error is generated. To read back a written value, read that TMR's TIMER_TMRn_PER register.

9:8
(R/NW)

TERR4 Error type for Timer 4.
0 No Error
1 Counter Overflow Error
2 PER Register Programming Error
3 WID or DLY Register Programming Error

7:6
(R/NW)

TERR3 Error type for Timer 3.
0 No Error
1 Counter Overflow Error
2 PER Register Programming Error
3 WID or DLY Register Programming Error

5:4
(R/NW)

TERR2 Error type for Timer 2.
0 No Error
1 Counter Overflow Error
2 PER Register Programming Error
3 WID or DLY Register Programming Error

3:2
(R/NW)

TERR1 Error type for Timer 1.
0 No Error
1 Counter Overflow Error
2 PER Register Programming Error
3 WID or DLY Register Programming Error

1:0
(R/NW)

TERR0 Error type for Timer 0.
0 No Error
1 Counter Overflow Error
2 PER Register Programming Error
3 WID or DLY Register Programming Error

Table 15-21: TIMER_ERR_TYPE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–41

Figure 15-23: TIMER_BCAST_PER Register Diagram

Broadcast Width Register

For timers with TIMER_TMRn_CFG.BWIDEN enabled, a write to TIMER_BCAST_WID concurrently updates the'
width (TIMER_TMRn_WID) registers of only those timers. A read of TIMER_BCAST_WID returns 0x00000000,
and no bus error is generated. To read back a written value, read that TMR's TIMER_TMRn_WID register.

Figure 15-24: TIMER_BCAST_WID Register Diagram

Table 15-22: TIMER_BCAST_PER Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R0/W)

VALUE Broadcast Period Value.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Broadcast Delay Register

For timers with TIMER_TMRn_CFG.BDLYEN enabled, a write to TIMER_BCAST_DLY concurrently updates the
delay (TIMER_TMRn_DLY) registers of only those timers. A read of TIMER_BCAST_DLY returns 0x00000000,
and no bus error is generated. To read back a written value, read that TMR's TIMER_TMRn_DLY register.

Figure 15-25: TIMER_BCAST_DLY Register Diagram

Timer n Configuration Register

Each timer has a TIMER_TMRn_CFG register that specifies its operating mode. Only write to a TIMER_TMRn_
CFG register when the corresponding timer is not running.

After disabling a timer operating in PWMOUT mode, verify that the timer has stopped running by
checking the start/stop status of the timer in the TIMER_RUN register before writing to the timer's TIMER_
TMRn_CFG register.

Note that a timer's TIMER_TMRn_CFG register may be read at any time.

Table 15-23: TIMER_BCAST_WID Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R0/W)

VALUE Broadcast Width Value.

Table 15-24: TIMER_BCAST_DLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R0/W)

VALUE Broadcast Delay Value.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–43

Figure 15-26: TIMER_TMRn_CFG Register Diagram

Table 15-25: TIMER_TMRn_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

EMURUN Run Timer (Counter) During Emulation.
0 Stop Timer During Emulation
1 Run Timer During Emulation

14
(R/W)

BPEREN Broadcast Period Enable.
0 Disable Broadcast to PER Register
1 Enable Broadcast to PER Register

13
(R/W)

BWIDEN Broadcast Width Enable.
0 Disable Broadcast to WID Register
1 Enable Broadcast to WID Register

12
(R/W)

BDLYEN Broadcast Delay Enable.
0 Disable Broadcast to DLY Register
1 Enable Broadcast to DLY Register

11
(R/W)

OUTDIS Output Disable.
0 Enable TMR pin output buffer
1 Disable TMR pin output buffer

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

10
(R/W)

TINSEL Timer Input Select (for WIDCAP, WATCHDOG, PININT modes).
0 Use TMR pin input
1 Use TMR Alternate Capture Input

9:8
(R/W)

CLKSEL Clock Select.
0 Use SCLK
1 Use TMR_ALT_CLK0 as the TMR clock
3 Use TMR_ALT_CLK1 as the TMR clock

7
(R/W)

PULSEHI Polarity Response Select.
0 Negative Response/Pulse

Negative Edge Response on TMR pin or
Alternate Capture pin causes interrupt
(PININT, EXTCLK modes) Negative Action
Pulse on TMR pin or Alternate Capture pin
causes interrupt (PWMOUT,
WATCHDOG, WIDCAP modes)

1 Positive Response/Pulse
Positive Edge Response on TMR pin or
Alternate Capture pin causes interrupt
(PININT, EXTCLK modes) Positive Action
Pulse on TMR pin or Alternate Capture pin
causes interrupt (PWMOUT,
WATCHDOG, WIDCAP modes)

6
(R/W)

SLAVETRIG Slave Trigger Response.
Note that the trigger pulse has no effect (to stop or start the timer) if
the timer is already in the requested state.
0 Pulse stops timer if it is running
1 Pulse starts timer if it is stopped

Table 15-25: TIMER_TMRn_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–45

5:4
(R/W)

IRQMODE Interrupt Modes.
The TIMER_TMRn_CFG.IRQMODE selects the interrupt request mode.
Note that any mismatched combination of TIMER_TMRn_CFG.
IRQMODE and TIMER_TMRn_CFG.TMODE results in no interrupt being
generated.
Also note that in WIDCAP modes, the position of the interrupt is
controlled with the TIMER_TMRn_CFG.TMODE bit, and the TIMER_
TMRn_CFG.IRQMODE bit is ignored.
0 Active Edge Mode

The timer generates an interrupt at every
active edge. The active edge polarity
depends on the state of the TIMER_TMRn_
CFG.PULSEHI bit). Valid for PININT mode
only.

1 Delay Expired Mode
The timer generates an interrupt when the
TIMER_TMRn_CNT value reaches the value in
the TIMER_TMRn_DLY register. This mode is
valid for all PWMOUT modes.

2 Width Plus Delay Expired Mode
The timer generates an interrupt when the
TIMER_TMRn_CNT value reaches the value in
the TIMER_TMRn_WID register plus the value
in the TIMER_TMRn_DLY register.
(PWMOUT modes only).
The timer generates an interrupt if the de-
asserting edge is within the specified
window. (WATCHDOG modes only.)

3 Period Expired Mode
The timer generates an interrupt when the
TIMER_TMRn_CNT value reaches the value in
the TIMER_TMRn_PER register. (Continuous
PWMOUT and EXTCLK modes only.)
The timer generates an interrupt if the de-
asserting edge is outside the specified
window.(WATCHDOG modes only.)

Table 15-25: TIMER_TMRn_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timer n Counter Register

The TIMER_TMRn_CNT holds the current timer count. After enabling, the count is re-initialized to either 0x0
or 0x1, depending on the configuration and mode. The TIMER_TMRn_CNT is read only and may be read at
any time (whether the timer is running or stopped). Reading TIMER_TMRn_CNT returns an atomic 32-bit
value.

Depending on the timer operation mode, the counter increment can be clocked by a number of sources,
including SCLK, the TMR or Alternate Capture input pins, TMR_ALT_CLK0, or TMR_ALT_CLK1. The
counter retains its value after the timer is disabled.

Figure 15-27: TIMER_TMRn_CNT Register Diagram

3:0
(R/W)

TMODE Timer Mode Select.
0000 - 0111 Idle Mode
8 Period Watchdog Mode
9 Width Watchdog Mode
10 Width Capture Asserted Mode

Measurement report at asserting edge of
waveform

11 Width Capture Deasserted Mode
Measurement report at de-asserting edge of
waveform

12 Continuous PWMOUT mode
13 Single pulse PWMOUT mode
14 EXTCLK mode
15 PININT (pin interrupt) mode

Table 15-25: TIMER_TMRn_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–47

Timer n Period Register

The TIMER_TMRn_PER holds the period value for the corresponding timer. Has different uses depending
on the timer mode.

Figure 15-28: TIMER_TMRn_PER Register Diagram

Timer n Width Register

The TIMER_TMRn_WID holds the width value for the corresponding timer. Has different uses depending on
the timer mode.

Table 15-26: TIMER_TMRn_CNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Counter Value.

Table 15-27: TIMER_TMRn_PER Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Period Value.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 15-29: TIMER_TMRn_WID Register Diagram

Timer n Delay Register

The TIMER_TMRn_DLY holds the delay value for the corresponding timer. Has different uses depending on
the timer mode.

Figure 15-30: TIMER_TMRn_DLY Register Diagram

Table 15-28: TIMER_TMRn_WID Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Width Value.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 15–49

Table 15-29: TIMER_TMRn_DLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Delay Value.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-BF60X TIMER REGISTER DESCRIPTIONS

15–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 16–1

16 Watchdog Timer (WDOG)

The processor includes a 32-bit timer for each core that can be used to implement a software watchdog
function. A software watchdog can improve system reliability by generating an event to the processor core
if the watchdog expires before being updated by software. The watchdog timers are clocked by the system
clock (SCLK).

WDOG Features
The watchdog timer has the following features.

• Two identical 32-bit watchdog timers

• 8-bit disable bit pattern

• Can generate a general-purpose event for the core

Typically, the watchdog timer is used to supervise stability of the system software. When used in this way,
software reloads the watchdog timer in a regular manner so that the downward counting timer never
expires (never becomes 0). An expiring timer then indicates that system software might be out of control.
At this point, based on the GP event generated by the WDOG, it is often better to reset and reboot the
system using the Reset Control Unit.

For easier debugging, the watchdog timer does not decrement (even if enabled) when the processor is in
emulation mode.

NOTE: The emulation event is controlled by the SDU (System Debug Unit). Please refer to the SDU
chapter for more details.

Watchdog Timer Functional Description
When enabled, the 32-bit watchdog timer counts downward every SCLK cycle. When the count becomes
0, the expiry event is generated. This generates an GP event to the processor. When the event is generated,
the core and the peripherals need to be reset using the software. The counter value can be read through the
32-bit WDOG_STAT register. The WDOG_STAT register cannot, however, be written directly. Rather, software
writes the watchdog period value into the 32-bit WDOG_CNT register before the watchdog is enabled. Once
the watchdog is started, the period value cannot be altered.

WATCHDOG TIMER (WDOG)
WATCHDOG TIMER FUNCTIONAL DESCRIPTION

16–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x WDOG Register List

ADSP-BF60x WDOG Interrupt List

WDOG Block Diagram

The following figure shows the detailed watchdog timer block diagram.

Figure 16-1: Watchdog Timer Block Diagram

Table 16-1: ADSP-BF60x WDOG Register List

Name Description

WDOG_CTL Control Register

WDOG_CNT Count Register

WDOG_STAT Watchdog Timer Status Register

Table 16-2: ADSP-BF60x WDOG Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

WDOG0 Expiration 2 LEVEL
WDOG1 Expiration 3 LEVEL

WATCHDOG TIMER (WDOG)
WDOG CONFIGURATION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 16–3

Internal Interface

The watchdog timer does not directly interact with any pins of the chip.

External Interface

The watchdog timer is clocked by the system clock (SCLK) and its registers are accessed through the 16-
bit peripheral MMR access bus. The 32-bit WDOG_CNT and WDOG_STAT registers must always be accessed by
32-bit read/write operations. Hardware ensures that those accesses are atomic. When the counter expires,
the GP expiration event is generated.

WDOG Configuration

PREREQUISITE:

To start the watchdog timer, use the following procedure.

1. Set the count value for the watchdog timer by writing the count value into the watchdog count register
(WDOG_CNT). Note that loading the WDOG_CNT register while the timer is not enabled also pre-loads the
WDOG_STAT register.

2. Enable the watchdog timer by writing to the WDOG_CTL.WDEN bit field. The watchdog timer then begins
counting down, decrementing the value in the WDOG_STAT register. When the WDOG_STAT reaches 0, the
expiration event is generated.

ADDITIONAL INFORMATION: To prevent the event from being generated, software must reload the count
value from the WDOG_CNT register to the WDOG_STAT register by executing a write (of any value) to the
WDOG_STAT register, or must disable the watchdog timer in the WDOG_CTL register before the watchdog
timer expires.

a. If software does not serve the watchdog in time, the WDOG_STAT register continues decrementing
until it reaches 0 at which point it generates a GP interrupt (if enabled) and the software can
perform a core and/or a system reset.

ADDITIONAL INFORMATION: Once the counter reaches 0, it stops decrementing and remains at 0. Addition-
ally, the WDOG_CTL.WDRO bit is set.

b. If the watchdog is enabled with a zero value loaded to the counter and the WDOG_CTL.WDRO bit was
cleared, the WDOG_CTL.WDRO bit of the watchdog control register is set immediately and the counter
remains at zero without further decrements. If, however, the WDOG_CTL.WDRO bit was set by the time
the watchdog is enabled, the counter decrements to 0xFFFF FFFF and continues operation.

ADDITIONAL INFORMATION: Software can disable the watchdog timer only by writing a 0xAD value to the
WDOG_CTL.WDEN bit field.

WATCHDOG TIMER (WDOG)
ADSP-BF60X WDOG REGISTER DESCRIPTIONS

16–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x WDOG Register Descriptions
Watch Dog Timer Unit (WDOG) contains the following registers.

Control Register

The WDOG_CTL register controls the watch dog timer. This register supports enabling/disabling the watch
dog timer and supports checking the timer rollover status. Note that when the processor is in emulation
mode, the watch dog timer counter will not decrement even if it is enabled.

Figure 16-2: WDOG_CTL Register Diagram

Table 16-3: ADSP-BF60x WDOG Register List

Name Description

WDOG_CTL Control Register

WDOG_CNT Count Register

WDOG_STAT Watchdog Timer Status Register

Table 16-4: WDOG_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

WDRO Watch Dog Rollover.
Software can determine whether the timer has rolled over by
interrogating the WDOG_CTL.WDRO status bit. This is a sticky bit that is
set whenever the watch dog timer count reaches 0 and cleared only
by disabling the watch dog timer and then writing a 1 to the bit.
0 WDT has not expired
1 WDT has expired

WATCHDOG TIMER (WDOG)
ADSP-BF60X WDOG REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 16–5

Count Register

The WDOG_CNT register holds the programmable, unsigned count value. A valid write to this register also
pre-loads the WDOG counter. For added safety, the WDOG_CNT register can be updated only when the
WDOG timer is disabled. A write to the WDOG_CNT register while the timer is enabled does not modify the
contents of this register. This register must be accessed with 32-bit read/writes only.

Figure 16-3: WDOG_CNT Register Diagram

Watchdog Timer Status Register

The WDOG_STAT contains the current count value of the watch dog timer. Reads of this register return the
current count value. When the watch dog timer is enabled, WDOG_STAT is decremented by 1 on each SCLK

11:4
(R/W)

WDEN Watch Dog Enable.
The WDOG_CTL.WDEN field is used to enable and disable the watch dog
timer. Writing any value other than the disable value into this field
enables the watch dog timer. This multi-bit disable key minimizes the
chance of inadvertently disabling the watch dog timer.
173 Counter Disabled

All other values - counter enabled

Table 16-5: WDOG_CNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Count Value.

Table 16-4: WDOG_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

WATCHDOG TIMER (WDOG)
ADSP-BF60X WDOG REGISTER DESCRIPTIONS

16–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

cycle. When count value reaches 0, the watch dog timer stops counting, and the expiry event is generated.
WDOG_STAT is a 32-bit unsigned system MMR that must be accessed with 32-bit reads and writes.

Values cannot be stored directly in WDOG_STAT, but are instead copied from the WDOG_CNT register. This
copy process can happen in two ways:

• While the watch dog timer is disabled, writing the WDOG_CNT register pre-loads the WDOG_STAT register.

• While the watch dog timer is enabled, writing the WDOG_STAT register loads it with the value in WDOG_
CNT.

When the processor executes a write (of an arbitrary value) to WDOG_STAT, the value in WDOG_CNT is copied
into WDOG_STAT. Typically, software sets the value of WDOG_CNT at initialization, then periodically writes to
WDOG_STAT before the watch dog timer expires. This reloads the watch dog timer with the value from
WDOG_CNT and prevents generation of the expiry event.

If the user does not reload the counter before SCLK*Count register cycles, an expiry event is generated,
and the WDOG_CTL.WDRO bit is set. When this happens, the counter will stop decrementing and will remain
at zero.If the counter is enabled with a zero loaded to the counter, the WDOG_CTL.WDRO bit is set immedi-
ately and the counter remains at zero and does not decrement.

Figure 16-4: WDOG_STAT Register Diagram

Table 16-6: WDOG_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Current Count Value (Status).

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–1

17 General-Purpose Counter (CNT)

The GP counter converts pulses from incremental position encoders into data that is representative of the
actual position of the pulse. This is done by integrating (counting) pulses on one or two inputs. Since inte-
gration provides relative position, some devices also feature a zero position input (zero marker) that can
be used to establish a reference point to verify that the acquired position does not drift over time. In addi-
tion, the incremental position information can be used to determine speed, if the time intervals are
measured.

The GP counter provides flexible ways to establish position information. When used in conjunction with
the GP timer block, the GP counter may allow for the acquisition of coherent position/time-stamp infor-
mation that enables speed calculation.

GP Counter Features
The GP Counter includes the following features:

• 32-bit up/down counter

• Quadrature encode mode (Gray code)

• Binary encoder mode

• Alternative frequency-direction mode

• Timed direction and up/down counting modes

• Zero marker/push button support

• Capture event timing in association with GP Timer

• Boundary comparison and boundary setting features

CNT Functional Description
A block diagram of the GP counter is shown below. The CNT_UD and CNT_DG pins accept various forms of
incremental inputs and are processed by the 32-bit counter, while the CNT_ZM pin can be used to sense the
pressing of a push button.

NOTE: When enabled, the GP counter requires 3 SCLK cycles of initialization before recognizing valid
toggles on its input pins.

The three input pins may be filtered (debounced) before being evaluated by the GP counter.

GENERAL-PURPOSE COUNTER (CNT)
CNT FUNCTIONAL DESCRIPTION

17–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The GP counter also features a flexible boundary comparison. In all of the operating modes, the counter
can be compared to an upper and lower limit. A variety of actions can be taken when these limits are
reached.

The module can optionally generate an interrupt request to the system through its IRQ line. On many
processors, there is also an output that can be used by a GP timer module to generate timestamps on
certain events.

Figure 17-1: GP Timer Block Diagram

ADSP-BF60x CNT Register List

The counter (CNT) provides support for manually controlled rotary controllers, such as the volume wheel
on a radio device. This unit also supports industrial encoders.

The CNT converts pulses from incremental position encoders into data that is representative of the actual
position. To complete this task, the CNT integrates (counting) pulses on one or two inputs. Because inte-
gration provides relative position, some devices also feature a zero position input (zero marker) that estab-
lishes a reference point, verifying that the acquired position does not drift over time. The incremental
position information may also be used to determine speed, if the time intervals are measured. The CNT
provides flexible ways to establish position information. When used in with the TIMER, the CNT allows
acquisition of coherent position/time-stamp information, enabling speed calculation.

A set of registers govern CNT operations. For more information on CNT functionality, see the CNT
register descriptions.

GENERAL-PURPOSE COUNTER (CNT)
CNT FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–3

ADSP-BF60x CNT Interrupt List

ADSP-BF60x CNT Trigger List

Table 17-1: ADSP-BF60x CNT Register List

Name Description

CNT_CFG Configuration Register

CNT_IMSK Interrupt Mask Register

CNT_STAT Status Register

CNT_CMD Command Register

CNT_DEBNCE Debounce Register

CNT_CNTR Counter Register

CNT_MAX Maximum Count Register

CNT_MIN Minimum Count Register

Table 17-2: ADSP-BF60x CNT Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

CNT0 Status 27 LEVEL

Table 17-3: ADSP-BF60x CNT Trigger List Trigger Masters

Description Trigger ID Sensitivity

CNT0 Status 16 LEVEL

Table 17-4: ADSP-BF60x CNT Trigger List Trigger Slaves

Description Trigger ID Sensitivity

None

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER OPERATING MODES

17–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

GP Counter Operating Modes
The GP counter has the following five modes of operation.

1. Quadrature Encoder

2. Binary Encoder

3. Up/Down Counter

4. Direction Counter

5. Timed Direction

With the exception of the timed direction mode, the GP counter can operate with the GP timer block to
capture additional timing information (time-stamps) associated with events detected by this block.

Quadrature Encoder Mode

In this mode, the CNT_UD and CNT_DG inputs expect a quadrature-encoded signal that is interpreted as a
two-bit Gray code. The order of transitions of the CNT_UD and CNT_DG inputs determines whether the
counter increments or decrements. The CNT_CNTR register contains the number of transitions that have
occurred as shown in the table below. Optionally, an interrupt is generated if both inputs change within
one SCLK cycle. Such transitions are not allowed by Gray coding. Therefore, the CNT_CNTR register remains
unchanged, and an error condition is signaled.

It is possible to reverse the count direction of the Gray coded signal by enabling the polarity inverter of
either the CNT_UD pin or the CNT_DG pin. Inverting both pins does not alter the behavior. This feature can
be enabled with the CNT_CFG.CDGINV and CNT_CFG.CUDINV bits.

As an example, if the CNT_DG and CNT_UD inputs are 00 and the next transition is to 01. This normally
increments the counter as is shown in the table. If the CNT_UD polarity is inverted, this generates a received
input of 01 followed by 00. This results in a decrement of the counter, altering the behavior of the
connected hardware.

Binary Encoder Mode

This mode is almost identical to quadrature encoder mode, with the exception that the CNT_UD: CNT_DG
inputs expect a binary-encoded signal. The order of transitions of the CNT_UD and CNT_DG inputs deter-
mines whether the counter increments or decrements. The CNT_CNTR register contains the number of tran-

Table 17-5: Quadrature Events and Counting Mechanism

CNT_COUNTER
Register Value -4 -3 -2 -1 0 +1 +2 +3 +4

CDG, CUD Inputs 00 01 11 10 00 01 11 10 00

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–5

sitions that have occurred as shown in the following table. Optionally, an interrupt is generated if the
detected code steps by more than 1 (in binary arithmetic) within one SCLK cycle. Such transitions are
considered erroneous. Therefore, the CNT_CNTR register remains unchanged, and an error condition is
signaled.

Reversing the CNT_UD and CNT_DG pin polarity has a different effect in binary encoder mode than for the
quadrature encoder mode. Inverting the polarity of the CNT_UD pin only, or inverting both the CNT_UD and
CNT_DG pins, results in reversing the count direction.

Up/Down Counter Mode

In this mode, the counter is incremented or decremented at every active edge of the input pins. The active
edge can be selected by the CNT_CFG.CUDINV bit and has the following results.

• If an active edge is detected at the CNT_UD input, the counter increments.

• If an active edge is detected at the CNT_DG input, the counter decrements.

• If simultaneous edges occur on the CNT_DG and CNT_UD pins, the counter remains unchanged, and both
up-count and down-count events are signaled in the CNT_STAT register.

Direction Counter Mode

In this mode, the counter is incremented or decremented at every active edge of the CNT_DG input pin. The
state of the CNT_UD input determines whether the counter increments or decrements and the polarity is
selected by the CNT_CFG.CUDINV bit.

If an active edge is detected at the CNT_DGand the active edge is selected by the CNT_CFG.CDGINV

Timed Direction Mode

In this mode, the counter is incremented or decremented at each SCLK cycle. The state of the CNT_UD input
determines whether the counter increments or decrements. The polarity can be selected by the CNT_CFG.
CUDINV bit. The CNT_DG pin can be used to gate the clock. The polarity can be selected by the CNT_CFG.
CDGINV bit.

Table 17-6: Binary Events and Counting Mechanism

CNT_COUNTER Register Value -4 -3 -2 -1 0 +1 +2 +3 +4

CDG:CUD Inputs 00 01 10 11 00 01 10 11 00

GENERAL-PURPOSE COUNTER (CNT)
CNT EVENT CONTROL

17–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CNT Event Control
Eleven events can be signaled to the processor using status information and optional interrupt requests.
The interrupts are enabled by the respective bits in the CNT_IMSK register. Dedicated bits in the CNT_STAT
register report events. When an interrupt from the GP counter is acknowledged, the application software
is responsible for correct interpretation of the events. It is recommended to logically AND the content of
the CNT_IMSK and CNT_STAT registers to identify pending interrupts.

Interrupt requests are cleared by write-one-to-clear (W1C) operations to the CNT_STAT register. Hardware
does not clear the status bits automatically, unless the counter module is disabled.

The following sections describe the events associated with the GP counter.

Illegal Gray/Binary Code Events

When illegal transitions occur in quadrature encoder or binary encoder modes, the CNT_STAT.IC bit is set.
If enabled by the CNT_STAT.IC bit, an interrupt request is generated. The CNT_STAT.IC bit should only be
set in the quadrature encoder or binary encoder modes.

Up/Down Count Events

The CNT_STAT.UC bit indicates whether the counter has been incremented. Similarly, the CNT_STAT.DC bit
reports decrements. The two events are independent. For instance, if the counter first increments by one
and then decrements by two, both bits remain set, even though the resulting counter value shows a decre-
ment by one.

In up/down counter mode, hardware may detect simultaneous active edges on the CNT_UD and CNT_DG
inputs. In that case, the CNT_CNTR remains unchanged, but both the CNT_STAT.UC and CNT_STAT.DC bits
are set. Interrupt requests for these events may be enabled through the CNT_IMSK.UC and CNT_IMSK.DC
bits. This feature should be used carefully when the counter is clocked at high rates. This is especially crit-
ical when the counter operates in DIR_TMR mode, as interrupts are generated every SCLK cycle.

These events can also be used for additional push buttons, if GP counter features are not needed. When
up/down counter mode is enabled, these count events can be used to report interrupts from push buttons
that connect to the CNT_UD and CNT_DG inputs.

Zero-Count Events

The CNT_STAT.CZERO status bit indicates that the CNT_CNTR has reached a value equal to 0x0000 0000 after
an increment or decrement. This bit is not set when the counter value is set to zero by a write to CNT_CNTR
or by setting the CNT_CMD.W1LCNTZERO bit. If enabled by the CNT_IMSK.CZERO bit, an interrupt request is
generated.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–7

Overflow Events

There are two status bits that indicate whether the signed counter register has overflowed from a positive
to a negative value or vice versa. The CNT_STAT.COV31 bit reports that the 32-bit CNT_CNTR register has
either incremented from 0x7FFF FFFF to 0x8000 0000, or decremented from 0x8000 0000 to 0x7FFF FFFF.

If enabled by the CNT_IMSK.COV31 bit, an interrupt request is generated. Similarly, in applications where
only the lower 16 bits of the counter are of interest, the CNT_STAT.COV15 status bit reports counter transi-
tions from 0xXXXX 7FFF to 0xXXXX 8000, or from 0xXXXX 8000 to 0xXXXX 7FFF. If enabled by the
CNT_IMSK.COV15 bit, an interrupt request is generated.

Boundary Match Events

The CNT_STAT.MINC and CNT_STAT.MAXC status bits report boundary events as described in Configuring
Boundary Capture Mode. These bits are not set if the CNT_CNTR, CNT_MAX, or CNT_MIN registers are updated
by software or the CNT_CMD register is written to. The CNT_IMSK.MINC and CNT_IMSK.MAXC bits enable
interrupt generation on boundary events.

Zero Marker Events

The CNT_STAT.CZM, CNT_STAT.CZME and CNT_STAT.CZMZ bits are associated with zero marker events, as
described in Configuring GP Counter Push-Button Operation. Each of these events can optionally generate
an interrupt request, if enabled by the corresponding CNT_IMSK.CZM, CNT_IMSK.CZME and CNT_IMSK.
CZMZ bits.

GP Counter Programming Model
The following sections provide information used to assist in programming the interface.

CNT General Programming Flow

The following are general guidelines for configuring and enabling the GP counter.

1. Initialize (but do not enable) the GP Counter for the desired mode and settings via the CNT_CFG
register.

2. Usually, events of interest are processed using interrupts rather than by polling status bits. If this is the
case, clear all status bits and activate the interrupt generation requests with the CNT_IMSK register.

3. Configure interrupts at the system level to insure desired interrupt signalling to the system event
controller.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

17–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

4. If timing information is required, set up the relevant GP Timer in width capture mode.

5. Finally, enable interrupts and the GP Counter itself using the CNT_IMSK and CNT_CFG registers, respec-
tively.

CNT Mode Configuration

The CNT_ZM input pin can be used to sense the zero marker output of a rotary device or to detect the
pressing of a push button. There are four programming schemes, which are functional in all counter
modes: push button mode, zero-marker-zeros-counter mode, zero-marker-error mode, and zero-once
mode.

Configuring GP Counter Push-Button Operation

Use the following procedure to configure push-button operation

1. Set CNT_IMSK.CZME to enable (unmask) the zero marker error interrupt.

2. Select the active edge polarity through the CNT_CFG.CZMINV bit.

3. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

An active edge at the CNT_ZM input sets the CNT_STAT.CZME bit.

Configuring Zero-Marker-Zeros-Counter Mode

The following provides information on configuring Zero-Marker-Zeros-Counter mode for the GP
Counter.

1. Set CNT_IMSK.CZMZ to enable CNT_CNTR to be zeroed by a Zero Marker interrupt.

2. Set CNT_CFG.ZMZC to enable ZMZC mode.

3. Select the active edge polarity through the CNT_CFG.CZMINV bit.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

This causes an active level at the CNT_ZM pin to clear the CNT_CNTR register and keep it cleared until the
CNT_ZM pin is deactivated. In addition, the CNT_STAT.CZMZ bit is set.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–9

Configuring Zero-Marker-Error Mode

This mode is used to detect discrepancies between counter value and the zero marker output of certain
rotary encoder devices.

1. Set the CNT_STAT.CZME bit to enable this mode.

2. Select the active edge of the CNT_ZM pin through the CNT_CFG.CZMINV bit.

3. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

When an active edge is detected at the CNT_ZM input pin, the four LSBs of the CNT_CNTR register are
compared to zero. If they are not zero, a mismatch is signaled using the CNT_STAT.CZME bit.

Configuring Zero-Once Mode

This mode is used to perform an initial reset of the counter value when an active zero marker is detected.
After that, the zero marker is ignored (the counter is no longer reset).

1. Set the CNT_CMD.W1ZMONCE bit to enable this mode.

2. Select the active edge of the CNT_ZM pin through the CNT_CFG.CZMINV bit.

3. Ensure that at least one of the following bits is enabled: CNT_IMSK.CZM, CNT_IMSK.CZME, CNT_IMSK.
CZMZ.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

The CNT_CNTR register and the CNT_CMD.W1ZMONCE bit are cleared on the next active edge of the CNT_ZM
pin. Now the CNT_CMD.W1ZMONCE bit can be read to check whether the event has already occurred.

Configuring Boundary Auto-Extend Mode

In this mode, the boundary registers (CNT_MIN and CNT_MAX) are modified by hardware whenever the CNT_
CNTR value reaches either of them. This mode can be used to keep track of the widest angle a thumb wheel
even if the software did not generate interrupts.

1. Initialize CNT_CNTR with the desired value.

2. Set both CNT_MIN and CNT_MAX to this same value.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

17–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

3. Configure the CNT_CFG.BNDMODE field for auto extend mode.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

The CNT_MAX register is loaded with the current CNT_CNTR value if the latter increments beyond the CNT_
MAX value. Similarly, the CNT_MIN register is loaded with the CNT_CNTR value if the latter decrements below
the CNT_MIN value. The CNT_STAT.MAXC and CNT_STAT.MINC status bits are set when the CNT_CNTR value
matches the respective boundary register value.

Configuring Boundary Capture Mode

In this mode, the CNT_CNTR value is latched into the CNT_MIN register at one detected edge of the CNT_ZM
input pin, and latched into the CNT_MAX boundary register at the opposite edge.

1. To capture the CNT_ZM pin rising edge into CNT_MIN and the falling edge into CNT_MAX, program CNT_
CFG.CZMINV for active high polarity. Conversely, to capture the CNT_ZM pin falling edge into CNT_MIN
and the rising edge into CNT_MAX, program CNT_CFG.CZMINV for active low polarity.

2. Program the CNT_IMSK.MAXC and CNT_IMSK.MINC interrupt mask bits according to interrupt genera-
tion requirements.

3. Configure the CNT_CFG.BNDMODE field for boundary capture mode.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

The CNT_STAT.MAXC and CNT_STAT.MINC status bits report the capture event, depending on how interrupt
masks are configured.

Configuring Boundary Compare and Boundary Zero Modes

In these modes, the two boundary registers (CNT_MAX and CNT_MIN) are compared to the value in the CNT_
CNTR register.

1. Program CNT_MAX and CNT_MIN registers with appropriate upper and lower range values.

2. Program the CNT_IMSK.MAXC and CNT_IMSK.MINC interrupt mask bits according to interrupt genera-
tion requirements.

3. Configure the CNT_CFG.BNDMODE field for boundary compare mode.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–11

If after incrementing, CNT_CNTR = CNT_MAX, then the CNT_STAT.MAXC bit is set. Similarly if after decre-
menting, CNT_CNTR = CNT_MIN, then the CNT_STAT.MINC bit is set.

Additionally, for boundary zero mode, the counter value in CNT_CNTR is set to zero. Note that the CNT_
STAT.MAXC and CNT_STAT.MINC bits are not set if the CNT_MAX and/or CNT_MIN registers are updated by
software.

Configuring GP Counter Push-Button Operation

Use the following procedure to configure push-button operation

1. Set CNT_IMSK.CZME to enable (unmask) the zero marker error interrupt.

2. Select the active edge polarity through the CNT_CFG.CZMINV bit.

3. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

An active edge at the CNT_ZM input sets the CNT_STAT.CZME bit.

GP Counter Programming Concepts

Using the features, operating modes, and event control for the GP Counter to their greatest potential
requires an understanding of some GP Counter-related concepts. Some key aspects to consider are input
noise filtering and capturing timing information.

CNT Input Noise Filtering

In all modes, the three input pins can be filtered to present clean signals to the GP counter logic. This
filtering can be enabled or disabled by the CNT_CFG.DEBEN bit. The following figure shows the filtering
operation for the CNT_UD pin.

Figure 17-2: Programmable Noise Filtering

The filtering mechanism is implemented using counters for each GP counter pin, where each counter is
initialized from the CNT_DEBNCE.DPRESCALE field. When a transition is detected on a pin, the corre-
sponding counter starts counting up to the programmed number of SCLK cycles. The state of the pin is
latched after time tfilter and passed on to the GP counter logic.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

17–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The time tfilter is determined, given SCLK and the CNT_DEBNCE.DPRESCALE value, by the following formula,
where lower values of CNT_DEBNCE.DPRESCALE result in shorter debounce delays:

 tfilter = 128 × (2 DPRESCALE × SCLK)

Capturing Counter Interval and CNT_CNTR Read Timing

When the count speed is very low, it is often useful to capture the time elapsed since the last count event.
In order to do this, program the associated GP Timer’s TIMER_TMRn_CFG register in a width capture mode
with the following bit settings.

• TIMER_TMRn_CFG.PULSEHI = 0

• TIMER_TMRn_CFG.TMODE = b#1011

• TIMER_TMRn_CFG.TINSEL = 1

The following figure shows and the following list describes operation of the GP counter and the GP timer
in this mode.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–13

Figure 17-3: Capture Intervals

1. The CNT_TO signal generates a pulse every time a count event occurs. In addition, when the processor
reads the CNT_CNTR register, the CNT_TO signal presents a pulse which is extended (high) until the next
count event.

2. The GP timer updates its TIMER_TMRn_PER register with the period (measured from falling edge to
falling edge, because TIMER_TMRn_CFG.PULSEHI = 0) of the CNT_TO signal.

3. The TIMER_TMRn_WID register is updated with the pulse width (the portion where CNT_TO is low, again
because TIMER_TMRn_CFG.PULSEHI = 0).

4. Both registers are updated at every rising edge of the CNT_TO signal (because TIMER_TMRn_CFG.TMODE=
b#011).

Therefore, the TIMER_TMRn_PER register contains the period between the last two count events, and the
TIMER_TMRn_WID register contains the time since the last count event and the read of the CNT_CNTR
register, both measured in SCLK cycles.

Read the CNT_CNTR register to latch the two time measurements, providing a coherent triplet of informa-
tion to calculate speed and position.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

17–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: Speed restrictions apply to the use of the CNT_TO signal. Therefore, programs must not operate at
very high count event rates. For instance, if CNT_CNTR is incremented/decremented every SCLK
cycle (timed direction mode), the CNT_TO signal will not be valid.

Capturing Time Interval Between Successive Counter Events

When the required timing information is the interval between successive count events, the associated
timer should be programmed in a width capture mode with TIMER_TMRn_CFG bit settings of TIMER_TMRn_
CFG.PULSEHI = 1, TIMER_TMRn_CFG.TMODE = b#1010 and TIMER_TMRn_CFG.TINSEL = 1. Typically, this
information is sufficient if the speed of GP counter events does not to reach very low values.

The following figure shows the operation of the GP counter and the GP timer in this mode.

Figure 17-4: Period Register Timing

The CNT_TO signal generates a pulse every time a count event occurs. The GP timer updates its TIMER_
TMRn_PER register with the period (measured from rising edge to rising edge) of the CNT_TO signal. The
TIMER_TMRn_PER register is updated at every rising edge of the CNT_TO signal and contains the number of
SCLK cycles that have elapsed since the previous rising edge.

Incidentally, the TIMER_TMRn_WID register is also updated at the same time, but is generally of no interest
in this mode of operation. If no reads of the CNT_CNTR register occur between counter events, the TIMER_
TMRn_WID register only contains the width of the CNT_TO pulse. If a read of CNT_CNTR has occurred between
events, the TIMER_TMRn_WID register contains the time between the read of CNT_CNTR and the next event.

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–15

This mode can also be used with TIMER_TMRn_CFG.PULSEHI = 0. In this case, the period of CNT_TO is
measured between falling edges. It results in the same values as in the previous case, only the latching
occurs one SCLK cycle later.

ADSP-BF60x CNT Register Descriptions
CNT (CNT) contains the following registers.

Configuration Register

The CNT_CFG register configures counter modes, configures input pins, and enable the CNT.

Table 17-7: ADSP-BF60x CNT Register List

Name Description

CNT_CFG Configuration Register

CNT_IMSK Interrupt Mask Register

CNT_STAT Status Register

CNT_CMD Command Register

CNT_DEBNCE Debounce Register

CNT_CNTR Counter Register

CNT_MAX Maximum Count Register

CNT_MIN Minimum Count Register

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

17–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 17-5: CNT_CFG Register Diagram

Table 17-8: CNT_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

INPDIS CUD and CDG Pin Input Disable.
The CNT_CFG.INPDIS disables or enables the CNT_UD input pin and
the CNT_DG pin.
0 Enable
1 Pin Input Disable

13:12
(R/W)

BNDMODE Boundary Register Mode.
The CNT_CFG.BNDMODE selects the mode for the CNT_MIN and CNT_
MAX boundary registers.
0 BND_COMP

Boundary compare mode
1 BIN_ENC

Binary encoder mode
2 BND_CAPT

Boundary capture mode
3 BND_AEXT

Boundary auto-extend mode
11
(R/W)

ZMZC CZM Zeroes Counter Enable.
The CNT_CFG.ZMZC enables or disables level sensitive - Active CNT_ZM
pin operation to zero the CNT_CNTR.
0 Disable
1 Enable

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–17

10:8
(R/W)

CNTMODE Counter Operating Mode.
The CNT_CFG.CNTMODE selects the operating mode for the CNT_UD
input pin and the CNT_DG pin.
0 QUAD_ENC

Quadrature encoder mode
1 BIN_ENC

Binary encoder mode
2 UD_CNT

Rotary counter mode
4 DIR_CNT

Direction counter mode
5 DIR_TMR

Direction timer mode
6
(R/W)

CZMINV CZM Pin Polarity Invert.
The CNT_CFG.CZMINV selects the polarity for the CNT_ZM pin. This
polarity must be configured before the counter is enabled. It must not
change on-the-fly while the counter is enabled.
0 Active High, Rising Edge
1 Active Low, Falling Edge

5
(R/W)

CUDINV CUD Pin Polarity Invert.
The CNT_CFG.CUDINV selects the polarity for the CNT_UD pin. This
polarity must be configured before the counter is enabled. It must not
change on-the-fly while the counter is enabled.
0 Active High, Rising Edge
1 Active Low, Falling Edge

4
(R/W)

CDGINV CDG Pin Polarity Invert.
The CNT_CFG.CDGINV selects the polarity for the CNT_DG pin. This
polarity must be configured before the counter is enabled. It must not
change on-the-fly while the counter is enabled.
0 Active High, Rising Edge
1 Active Low, Falling Edge

Table 17-8: CNT_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

17–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Interrupt Mask Register

The CNT_IMSK register supports enabling (unmasking) interrupt request generation from each of the CNT
events.

All bits in CNT_IMSK either disable/mask an interrupt (if bit cleared) or enable/unmask an interrupt (if bit
set).

Figure 17-6: CNT_IMSK Register Diagram

1
(R/W)

DEBEN Debounce Enable.
The CNT_CFG.DEBEN enables or disables CNT input debounce
filtering operation selected with the CNT_DEBNCE register.
0 Disable
1 Enable

0
(R/W)

EN Counter Enable.
The CNT_CFG.EN enables or disables CNT operation.
0 Counter Disable
1 Counter Enable

Table 17-8: CNT_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–19

Table 17-9: CNT_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/W)

CZMZ Counter Zeroed by Zero Marker Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

9
(R/W)

CZME Zero Marker Error Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

8
(R/W)

CZM CZM Pin / Pushbutton Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

7
(R/W)

CZERO CNT_CNTR Counts To Zero Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

6
(R/W)

COV15 Bit 15 Overflow Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

5
(R/W)

COV31 Bit 31 Overflow Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

4
(R/W)

MAXC Max Count Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

3
(R/W)

MINC Min Count Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

2
(R/W)

DC Downcount Interrupt enable.
0 Mask Interrupt
1 Unmask Interrupt

1
(R/W)

UC Upcount Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

17–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Status Register

The CNT_STAT register provides status information for each of the CNT events. When a CNT event is
detected, the corresponding bit in this register is set. It remains set until either software writes a "1" to the
bit (write-1-to-clear) or the CNT is disabled.

All bits in CNT_STAT indicate either no interrupt pending (if bit cleared) or an interrupt pending (if bit set).

Figure 17-7: CNT_STAT Register Diagram

0
(R/W)

IC Illegal Gray/Binary Code Interrupt Enable.
0 Mask Interrupt
1 Unmask Interrupt

Table 17-10: CNT_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/W1C)

CZMZ Counter Zeroed By Zero Marker interrupt.

9
(R/W1C)

CZME Zero Marker Error interrupt.

Table 17-9: CNT_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–21

Command Register

The CNT_CMD register configures the CNT, enabling operations such as zeroing a counter register and
copying or swapping boundary registers. These actions are taken by setting the appropriate bit.

Read operations from this register do not return meaningful values, with the exception of the CNT_CMD.
W1ZMONCE bit, where a set bit indicates that:

the bit has been set by software before, but

no zero marker event has been detected on the CNT_ZM pin yet.

For more information, see the CNT functional description.

The CNT_CNTR, CNT_MIN, and CNT_MAX registers can be initialized to zero by setting the CNT_CMD.
W1LCNTZERO, CNT_CMD.W1LMINZERO, and CNT_CMD.W1LMAXZERO bits. In addition to clearing registers,
CNT_CMD permits modifying the CNT_MIN and CNT_MAX boundary registers in a number of ways. The
current counter value in CNT_CNTR can be captured and loaded into either of the two boundary registers
to create new boundary limits. This operation is performed by setting the CNT_CMD.W1LMAXCNT and CNT_
CMD.W1LMINCNT bits. Alternatively, the counter can be loaded from CNT_MAX or CNT_MIN using the CNT_

8
(R/W1C)

CZM CZM Pin/Pushbutton interrupt.

7
(R/W1C)

CZERO CNT_CNTR Counts To Zero interrupt.

6
(R/W1C)

COV15 Bit 15 overflow interrupt.

5
(R/W1C)

COV31 Bit 31 overflow interrupt.

4
(R/W1C)

MAXC Max interrupt.

3
(R/W1C)

MINC Min interrupt.

2
(R/W1C)

DC Downcount interrupt.

1
(R/W1C)

UC Upcount interrupt.

0
(R/W1C)

IC Illegal gray/binary code interrupt.

Table 17-10: CNT_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

17–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CMD.W1LCNTMAX and CNT_CMD.W1LCNTMIN bits. It is also possible to transfer the current CNT_MAX value
into CNT_MIN (or vice versa) through the CNT_CMD.W1LMINMAX and CNT_CMD.W1LMAXMIN bits.

Another counter operation is the ability to only have the zero marker clear the CNT_CNTR register once. For
more information, see the CNT functional description.

It is possible for multiple actions to be performed simultaneously by setting multiple bits in the CNT_CMD
register, but there are restrictions. The bits associated with each command have been grouped together
such that all bits that involve a write to the CNT_CNTR, CNT_MAX, or CNT_MIN are located within bits 4-bit
groups of the CNT_CMD register.

Note that a maximum of three commands can be issued at any one time, excluding the CNT_CMD.W1ZMONCE
command. Also note that CNT_CMD.W1LCNTMIN, CNT_CMD.W1LCNTMAX, and CNT_CMD.W1LCNTZERO bits
have to be used exclusively. Never set more than one of them at the same time.

Figure 17-8: CNT_CMD Register Diagram

Table 17-11: CNT_CMD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12
(R/W1A)

W1ZMONCE Write 1 Zero Marker Clear Once Enable.
The CNT_CMD.W1ZMONCE enables a single zero marker clear of CNT_
CNTR. Reading a 1 in this bit indicates that the bit has been set by
software before, but no zero marker event has been detected on the
CNT_ZM pin yet.

10
(R0/W1A)

W1LMAXMIN Write 1 MAX copy from MIN.

9
(R0/W1A)

W1LMAXCNT Write 1 MAX capture from CNTR.

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–23

Debounce Register

The CNT_DEBNCE register selects the noise filtering characteristic of the three input pins according to the
formula:

tfilter = 128 x (2DPRESCALE / SCLK)

Figure 17-9: CNT_DEBNCE Register Diagram

8
(R0/W1A)

W1LMAXZERO Write 1 MAX to zero.

7
(R0/W1A)

W1LMINMAX Write 1 MIN copy from MAX.

5
(R0/W1A)

W1LMINCNT Write 1 MIN capture from CNTR.

4
(R0/W1A)

W1LMINZERO Write 1 MIN to zero.

3
(R0/W1A)

W1LCNTMAX Write 1 CNTR load from MAX.

2
(R0/W1A)

W1LCNTMIN Write 1 CNTR load from MIN.

0
(R0/W1A)

W1LCNTZERO Write 1 CNTR to zero.

Table 17-11: CNT_CMD Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

17–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Counter Register

The CNT_CNTR register holds the 32-bit, twos-complement count value. It can be read and written at any
time. Hardware ensures that reads and write are atomic, by providing respective shadow registers. This
register can be accessed with either 32-bit or 16-bit operations. This allows use of the CNTas a 16-bit
counter if sufficient for the application.

Table 17-12: CNT_DEBNCE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4:0
(R/W)

DPRESCALE Debounce Prescale.
The CNT_DEBNCE.DPRESCALE selects the desired number of input
filtering cycles (and resulting input debounce time) in multiples of
SCLK.
0 1x cycles = 128 SCLK cycles
1 2x cycles
2 4x cycles
3 8x cycles
4 16x cycles
5 32x cycles
6 64x cycles
7 128x cycles
8 256x cycles
9 512x cycles
10 1024x cycles
11 2048x cycles
12 4096x cycles
13 8192x cycles
14 16384x cycles
15 32768x cycles
16 65536x cycles
17 131072x cycles
18 Reserved from this value

10010 - 11111: Reserved
31 Reserved till this value

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 17–25

Figure 17-10: CNT_CNTR Register Diagram

Maximum Count Register

The CNT_MAX register holds the 32-bit, twos-complement, higher boundary value. It can be read and
written at any time. Hardware ensures that reads and write are atomic, by providing respective shadow
registers. This register can be accessed with either 32-bit or 16-bit operations. This allows for using the
CNT as a 16-bit counter if sufficient for the application.

Figure 17-11: CNT_MAX Register Diagram

Table 17-13: CNT_CNTR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE CNTR Value.

GENERAL-PURPOSE COUNTER (CNT)
ADSP-BF60X CNT REGISTER DESCRIPTIONS

17–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Minimum Count Register

The CNT_MIN register holds the 32-bit, twos-complement, lower boundary value. It can be read and written
at any time. Hardware ensures that reads and write are atomic, by providing respective shadow registers.
This register can be accessed with either 32-bit or 16-bit operations. This allows for using the CNT as a 16-
bit counter if sufficient for the application.

Figure 17-12: CNT_MIN Register Diagram

Table 17-14: CNT_MAX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE MAX Value.

Table 17-15: CNT_MIN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE MIN Value.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–1

18 Pulse-Width Modulator (PWM)

The Pulse Width Modulator (PWM) module is a flexible and programmable waveform generator. With
minimal CPU intervention the PWM peripheral is capable of generating complex waveforms for motor
control, Pulse Coded Modulation (PCM), Digital to Analog Conversion (DAC) functionality, power
switching and power conversion. The PWM module has 4 PWM pairs capable of 3-phase PWM genera-
tion for source inverters for AC induction and DC brush less motors.

PWM Features
The two 3-phase PWM generation units each feature:

• 16-bit center-based PWM generation unit

• Programmable PWM pulse width

• Single/double update modes

• Programmable dead time and switching frequency

• Twos-complement implementation which permits smooth transition to full ON and full OFF states

• Dedicated asynchronous PWM shutdown signal

Functional Description
Each PWM Module has 4 PWM pairs with 2 outputs: a high and a low side signal.

During initialization, the PWM_TM0 register is written to define the PWM period, and the Channel Pulse
Duty registers are written to define the initial channel pulse widths. The PWM_CTL and PWM_CHANCFG regis-
ters are written, depending on the system configuration and modes. The PWM_STAT register can be read to
determine polarity, and whether switched reluctance (SR) mode (PWM_SR bit) is enabled, and whether
an external trip situation is preventing the correct start-up of the PWM Controller. An active external trip
event must be resolved prior to PWM startup. The PWM_CTLregister is then written to define the major
operating mode and to enable the PWM outputs and PWM sync pulse.

During the PWM_SYNCINT interrupt driven control loop, only the PWM_AH0.DUTY values are updated
typically.

Typically the PWMx_TMR interrupt is used to periodically execute an Interrupt Service Routine (ISR), to
update the PWM channel control and duty registers according to a control algorithm based on expected

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

operation and sampled existing operation. The PWMx_TMR interrupt also can trigger an ADC to sample
data for use during the ISR.

During processor boot the PWM is initialized and the program flow enters a wait loop. When a PWM_
SYNC interrupt occurs, the ADC samples data, the data is algorithmically interpreted, and new PWM
channel duties are calculated and written to the PWM. More sophisticated implementations include
different startup, runtime, and shutdown algorithms to determine PWM channel duties based on expected
behavior and further features.

During initialization, the PWM_TM0 registers are written to define the PWM periods of different timers. The
PWM_DLYA registers are written to define the initial phase difference between the main timer and the other
timers. The PWM_CHANCFG and PWM_ACTL registers are written to define the initial pulse configuration. The
Channel x High/Low Duty registers are programmed to define the initial duty values. The requisite dead-
time must be written into the PWM_DT register. The PWM_CTL register is written in the end with the final
configurations and enable bit for the entire PWM (PWM_CTL.GLOBEN).

The PWM_SYNC interrupt is assigned to one of the core's user interrupts. During the PWM_SYNC inter-
rupt driven control loop, only the PWM_DLYA, the duty registers and channel C high pulse duty register
values are typically updated. To see programming limitations on the PWM registers, see the Register
Descriptions section.

During any external trip event (if not disabled), the PWM outputs will be turned off. When a PWM output
is turned off, it means that the output level is held at a polarity opposite that given in the PWM_CHANCFG.
POLDH bits in the PWM_CHANCFG register. The PWM sync pulse will continue to operate if it is already
enabled. A PWMTRIP interrupt occurs if unmasked, to notify the software of this event.

Note that even if the clock to the PWM is damaged, an external trip event will turn off the PWM outputs,
but the PWMTRIP interrupt may not occur.

ADSP-BF60x PWM Register List

The pulse-width modulator (PWM) includes multiple timers (providing period flexibility) and channels
(provide mode, interrupt, and pulse shape flexibility), permitting a wide variety of PWM output options
for motor control and other applications. A set of registers govern PWM operations. For more information
on PWM functionality, see the PWM register descriptions.

Table 18-1: ADSP-BF60x PWM Register List

Name Description

PWM_CTL Control Register

PWM_CHANCFG Channel Config Register

PWM_TRIPCFG Trip Config Register

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–3

PWM_STAT Status Register

PWM_IMSK Interrupt Mask Register

PWM_ILAT Interrupt Latch Register

PWM_CHOPCFG Chop Configuration Register

PWM_DT Dead Time Register

PWM_SYNC_WID Sync Pulse Width Register

PWM_TM0 Timer 0 Period Register

PWM_TM1 Timer 1 Period Register

PWM_TM2 Timer 2 Period Register

PWM_TM3 Timer 3 Period Register

PWM_TM4 Timer 4 Period Register

PWM_DLYA Channel A Delay Register

PWM_DLYB Channel B Delay Register

PWM_DLYC Channel C Delay Register

PWM_DLYD Channel D Delay Register

PWM_ACTL Channel A Control Register

PWM_AH0 Channel A-High Duty-0 Register

PWM_AH1 Channel A-High Duty-1 Register

PWM_AL0 Channel A-Low Duty-0 Register

PWM_AL1 Channel A-Low Duty-1 Register

PWM_BCTL Channel B Control Register

PWM_BH0 Channel B-High Duty-0 Register

Table 18-1: ADSP-BF60x PWM Register List (Continued)

Name Description

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x PWM Interrupt List

PWM_BH1 Channel B-High Duty-1 Register

PWM_BL0 Channel B-Low Duty-0 Register

PWM_BL1 Channel B-Low Duty-1 Register

PWM_CCTL Channel C Control Register

PWM_CH0 Channel C-High Pulse Duty Register 0

PWM_CH1 Channel C-High Pulse Duty Register 1

PWM_CL0 Channel C-Low Pulse Duty Register 0

PWM_CL1 Channel C-Low Duty-1 Register

PWM_DCTL Channel D Control Register

PWM_DH0 Channel D-High Duty-0 Register

PWM_DH1 Channel D-High Pulse Duty Register 1

PWM_DL0 Channel D-Low Pulse Duty Register 0

PWM_DL1 Channel D-Low Pulse Duty Register 1

Table 18-2: ADSP-BF60x PWM Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

PWM0 PWMTMR Group 28 LEVEL
PWM0 Trip 29 LEVEL
PWM1 PWMTMR Group 30 LEVEL
PWM1 Trip 31 LEVEL

Table 18-1: ADSP-BF60x PWM Register List (Continued)

Name Description

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–5

ADSP-BF60x PWM Trigger List

Architectural Concepts

The PWM Controller is driven by a clock, whose period is tSCLK. The PWM generator produces four pairs
(four high-side and four low-side) of PWM signals on the eight PWM output pins. Each high and low pair
constitutes a channel. For example PWM_AL/PWM_AH make up channel A, and PWM_BLPWM_BH make up
channel B and so on. Each pair of channel outputs can be produced with reference to either a main timer
or to an independent timer. These timers operate on a switching frequency determined by the PWM_TM0
registers. There are 2 duty registers for every PWM output, which enable generation of symmetrical or
asymmetrical waveforms that produce lower harmonic distortion in three-phase PWM inverters, with
minimal CPU intervention.

Block Diagram

The following figure shows a block diagram that represents the main functional blocks of the PWM
controller.

Table 18-3: ADSP-BF60x PWM Trigger List Trigger Masters

Description Trigger ID Sensitivity

PWM0 PWMTMR Group 17 LEVEL
PWM1 PWMTMR Group 18 LEVEL

Table 18-4: ADSP-BF60x PWM Trigger List Trigger Slaves

Description Trigger ID Sensitivity

None

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-1: PWM Block Diagram

The primary blocks are described below.

• Each pair of PWM signals is referenced either to the main timer or to the independent timer.

• PWMTMR0 is the main timer and can trigger the delayed start of the other timers.

• Timing Control Units, one for each channel, which together form the core of the PWM, generate the
required complex waveforms on the high side and low side outputs for the respective channel.

• Dead Time insertion is done after the ideal PWM output pair is generated.

• The Gate Drive Unit generates the high-frequency chopping signal and subsequently mixes it with the
requisite PWM output signals.

• The PWM Shutdown and Interrupt Controller manages the various PWM shutdown modes for the
timing unit and generates the requisite interrupt signals.

• The PWM Sync Pulse Control Unit generates the internal PWM_SYNC pulse and also controls
whether the external PWM_SYNC input pulse is used.

Timer Units

Five timers make up the time base for the PWM module. The main timer, PWMTMR0 operates at a
switching frequency determined by the period register PWM_TM0. The four remaining timers PWMTMR1,

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–7

PWMTMR2, PWMTMR3 and PWMTMR4 can operate at independent switching frequencies determined
by their respective registers.

These four timers can be programmed to work at a multiple of the main timer’s frequency by program-
ming respective PWM_TMx appropriately. In this case, the PWM_DLYA registers can be used to provide for
lead-lag phase control of a given timer with respect to the main timer PWMTMR0.

NOTE: When delayed operation of a timer is enabled, its register value must either be equal to the PWM_
TM0 register value or PWM_TM0 must be an integer multiple of each timers register to ensure proper
function. Non-integer multiples are not allowed.

PWM Switching Frequency (PWM_TM) Register

The 16-bit read/write PWM period register controls the PWM switching frequency. The fundamental
timing unit of the PWM Controller is tSCLK. Therefore, for a 100 MHz system clock (SCLK), fSCLK, the
fundamental time increment (tSCLK) is 10 ns. The value written to a timer's register is effectively the
number of tSCLK clock increments in half a PWM period. The required timer register value as a function
of the desired PWM switching frequency (fPWM) is given by:

PWM_TM = fSCLK/2 × fPWM

Therefore, the PWM switching period (Ts) can be written as:

Ts = 2 × PWM_TM × tSCLK

For example, for an f SCLK of 100 MHz and a desired PWM switching frequency (f PWM) of 10 kHz (T s =
100 ms), the correct value to load into the timer register is:

PWM_TM = 100 × 106 ÷ 2 × 10 × 103 = 5000

The largest value that can be written to the 16-bit timer register is 0xFFFF = 65,535, which, at an fSCLK of
100 MHz, corresponds to a minimum PWM switching frequency of:

fPWM(min) = 100 × 106 ÷ 2 x 65535 = 762 Hz

NOTE: Timer register values of 0 and 1 are not defined and should not be used when the PWM outputs or
PWM is enabled.

Timer Unit Operation

The PWM timer is an up-down counter operates on the peripheral clock of period tCK. The period of the
PWM timer is divided into two halves. In the first half, the timer roughly counts down from PWM_TMx/
2 to –PWM_TMx/2. During this half, the PWM_STAT.TMR0PHASE register is held at 0 In the second half of
the period, the timer roughly counts up from –PWM_TMx/2 to PWM_TMx/2. The PWM_STAT.
TMR0PHASE bit indicates a 1 during this half.

The actual partition of the periods varies slightly between odd and even values of the half-period, PWM_TMx.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When the timer register value is odd, for example 11, then that timer loads +5 at the beginning of the
period, counts down from +5 to –5 in the first half, reloads –5 at the midpoint and counts up from –5 to
+5 in the second half. The reload values at the period and mid-period boundaries are the same as the
previous count. It totally counts 2 × 11 = 22 counts in the entire period. This is shown in the figure below.
Note that both half-periods have a count of 11 each.

Figure 18-2: Operation of Timer for Odd Value of PWM_TM

When the timer register value is even, for example 12, then that timer loads +5 at the beginning of the
period, counts from +5 to –6 in the first half, reloads –5 at the midpoint and counts up from –5 to +6 in
the second half. The reload values at the period and mid-period boundaries are different from the previous
count. It totally counts 2 × 12 = 24 counts in the entire period. This is shown in the figure below. Note that
both half-periods have a count of 12 each.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–9

Figure 18-3: Operation of Timer for Even Value of PWM_TM

Note that in the operation discussed in this section, double buffering of all channel registers and the timer
registers take place at the period boundary of the respective timers.

Phase Offset Control

The PWM timers (PWMTMR1 through PWMTMR4) can operate with a programmable phase lag with
respect to the main timer, PWMTMR0. Using DLY x delay counter in conjunction with PWMTMR0 and
setting the PWM_CTL.DLYAEN bit implements this feature for a given channel.

If this feature is enabled for channel A (and channel A is using PWMTMR1 for generating duty cycle),
when PWMTMR0 reaches its period boundary, it triggers, DLY A, which counts out SCLK cycles equal in
number to the value programmed in the PWM_DLYA register. At the end of this count, DLY x sends out a
trigger to PWMTMR1. Thus PWMTMR1 receives a synchronization pulse in every period of PWMTMR0
at a point delayed from its period boundary by the value in PWM_DLYA register. For more information on
how channels can reference different timers for their outputs, see "Channel Timing Control Unit"

NOTE: The following conditions must be satisfied when this feature is used on PWMTMRy for channel Y
with respect to PWMTMRx.

• The PWM_DLYA register must be programmed to a value less than 2 × TMy

• PWM_TM0 = N × PWM_TMy where N is an integer.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The function of PWMTMRy (PWMTMR1 in the example above) differs in cases where PWM_TM0 = PWM_
TM1 from cases where PWM_TM0 = N × PWM_TM1. Both cases are examined below.

Case 1: PWM_TM0 = PWM_TMy

In this case every period of PWMTMRy starts its period again, on reception of the synchronization pulse
from DLY-x. If the trigger from DLY-x is late, it holds its count till the trigger comes. If the trigger is a bit
early, it reloads without regard to whether it has completed its current period. Thus PWMTMRy is re-
synced with PWMTMR0 with a phase lag as programmed in PWM_DLYA register, in every one of its
periods.

Note that in this case the expiration of the DLY x counter is the period boundary of PWMTMRy. There-
fore, this is the point of update of all the double buffered registers related to the given channel (except the
delay registers which are double buffered at the period boundary of PWMTMR0).

Phase Offset Control Using DELAY shows an example where:

• PWM_TM0, PWM_TM1 and PWM_TM2 are programmed with the same value.

• PWM_DLYA and PWM_DLYB are programmed values DELAY1 and DELAY2 respectively, such that
DELAY2 > DELAY1.

• Channel A's outputs are referenced to TMR1 and Channel B's outputs to PWMTMR2.

The delay registers are double buffered and the new value of delay is reloaded at the period boundary of
PWMTMR0. The two options described below exist if the new value is different from the older one. The
behavior of PWMTMRy in both these cases is discussed, in conjunction with Impact of New DELAY Value
on Timer Count for Equal TM. It is assumed that channel B references its outputs to PWMTMR0 and
channel A references its outputs to PWMTMR1.

1. The new delay value is higher than the previous value. Therefore, the corresponding PWMTMRy is
allowed more than one period's time between consecutive triggers from the DLY-x counter. In this
case, after reaching its period boundary, PWMTMRy holds its count at the period boundary and waits
for the trigger from DLY-x. This is shown in CASE A in Impact of New DELAY Value on Timer Count
for Equal TM.

2. The next delay value programmed is smaller than the previous value. In this case, the corresponding
PWMTMRy is allowed only less than one period’s time between consecutive triggers from the DLY-x
counter. Though the trigger comes earlier in this case, before PWMTMRy has counted out one full
period, it reloads and starts its period again. This is shown in CASE B in Impact of New DELAY Value
on Timer Count for Equal TM.

Therefore, PWMTMR1 waits and obeys a synchronization pulse from DLY A in every one of its periods.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–11

Figure 18-4: Phase Offset Control Using DELAY

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-5: Impact of New DELAY Value on Timer Count for Equal TM

Case 2: PWM_TM0 = N x PWM_TMy

In this case, within a single period of PWMTMR0 a program can fit multiple periods (N) of PWMTMRy.
Additionally, the DLY-x counter is triggered only once every N periods of PWMTMRy.

The operation is as follows: Every Nth period of PWMTMRy, it expects a synchronization pulse from
DLY-x counter. When it counts out that period if the trigger hasn't yet arrived yet, it waits at the end of the
period for the trigger, and starts counting down once it arrives. If the trigger comes earlier than that, it
restarts immediately without waiting to complete its period count.

In the intervening periods, PWMTMRy operates independently. As the period ends, it reloads and starts
the next period without intervention from the delay counter.

Impact of DELAY Value Change for the Multiple TM gives an example with N = 2. Note that PWMTMRy
syncs up with PWMTMR0 every 2nd period, and is free running across every odd period boundary.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–13

Figure 18-6: Impact of DELAY Value Change for the Multiple TM

Channel Timing Control Unit

The channel timing control unit is the core of the PWM. There are four separate channels, each channel
controlling a pair of output signals – the high side output and the low side output.

Channel Control

The PWM_CHANCFG register controls the static configuration of all the channels and is to be initialized once
before the beginning of the operation.

NOTE: The PWM_CHANCFG register is not double buffered and the contents of it must not be changed once
the PWM is enabled.

Each channel works off a reference timer base. The time base can be either the main timer PWMTMR0 or
the appropriate PWMTMRx as given below. This can be configured with the PWM_CHANCFG.REFTMRA bit
field.

• Channel A can work off PWMTMR0 or PWMTMR1

• Channel B can work off PWMTMR0 or PWMTMR2

• Channel C can work off PWMTMR0 or PWMTMR3

• Channel D can work off PWMTMR0 or PWMTMR4

The PWM_xCTL registers contain bits which control the dynamic pulse behavior of the channel outputs and
this register is double buffered. This register has bits which control enable/disable and pulse positioning of
the outputs. The impact of these is explained in the following sections.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pulse Positioning and Duty Cycle Registers

The PWM_ACTL.PULSEMODEHI[1:0] and PWM_ACTL.PULSEMODELO[1:0] fields define the region within the
timer period where the output pulses should be positioned. When the PWM_CHANCFG.MODELSC bit is 0, the
PWM_ACTL.PULSEMODEHIfield specifies the pulse positioning for both the high-side and low-side outputs
of the channel. When the bit is 1, PWM_ACTL.PULSEMODELO defines the pulse positioning for the low side
channel output, while PWM_ACTL.PULSEMODEHI continues to do serve this purpose for the high side
channel output.

Two Duty-Cycle registers are provided for each channel output: PWM_AH0 and PWM_AH1 for the high side
output, and PWM_AL0 and PWM_AL1 for the low side output. These registers determine the width of the
output pulses. When the PWM_CHANCFG.MODELSC bit is 0, the high side Duty-Cycle registers are used for
the low side output pulse width determination as well. The duty cycle range that can be programmed into
these registers is between –PWMTMx/2 and +PWMTMx/2 when dead-time is not considered.

When dead-time is considered, for PULSEMODE 00 and 01, the programmed duty is modified for use by the
PWM in such a way that the range is limited between the values [–PWMTMx/2 + PWM_DT] to
[+PWMTMx/2 + PWMDT] considering the high-side output. Dead-time is explained in detail in a later
section. For PULSEMODEs 10 and 11, the high-side Duty-Cycle registers are limited between [PWM_
TMx/2 + PWM_DT] and [–PWM_TMx/2 – PWM_DT].

NOTE: Values programmed into these registers that fall outside these limits result in over/under modula-
tion.

Duty Cycle and Pulse Positioning Control

The PWM_ACTL.PULSEMODEHI and PWM_ACTL.PULSEMODELO fields control how the Duty cycle registers
modify the waveform of the high and low side outputs. (ThePWM_ACTL.PULSEMODEHI and PWM_ACTL.
PULSEMODELO fields are referred to as PULSEMODE in the subsequent discussion.)

• PULSEMODE = 00 – Allows symmetrical pulse waveform around the center of the PWM period. In
this mode, only one of the Duty Cycle registers is used for an output—for example, for the AH output,
only the PWM_AH0 register is used. Note that in this mode, the values in the duty cycle registers are scaled
such that a value of 0 produces 50% duty.

• PULSEMODE = 01 – Allows asymmetrical pulse waveform around the center of the PWM period. In
this mode both the Duty Cycle registers are used. For example for the AH output, PWM_AH0 and PWM_
AH1 registers are used. In this mode, if PWM_AH1 is programmed with the same value as PWM_AH0, the
obtained output is identical to that in the PULSEMODE = 00 case.

• PULSEMODE = 10 or 11 – Allow pulse waveforms to be produced either on the first half or the second
half of the PWM period respectively, and both PWM_AH0 and PWM_AH1 registers are used.

NOTE: In PULSEMODE = 10 the condition PWM_AH0> PWM_AH1. If the low side is working off the low side
Duty-Cycle registers, the condition PWM_AL0> PWM_AL1 should be strictly adhered to.

NOTE: In PULSEMODE = 11 the condition PWM_AH0< PWM_AH1. If the low side is working off the low side
Duty-Cycle registers, the condition PWM_AL0< PWM_AL1 should be strictly adhered to.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–15

The following figure shows the pulse positioning modes as described above for PWM_AH. In the figure,
DUTY0 is assumed to be the value in PWM_AL0 register and DUTY1, the value in PWM_AH1 register. The step
signal, count, indicates the output of the timer that Channel A is working off. Also, in the example, the
signal is assumed to be configured as active high, and dead-time is assumed to be zero.

Figure 18-7: Pulse Positioning Modes

Channel Low Side Output Dependent Operation Mode and Dead-Time

The low-side output waveform can be programmed to be dependent on the high side output waveform or
be totally independent. This is controlled using the PWM_CHANCFG.MODELSC bit.

For example, the channel A produces the high side output PWM_AH and the low side output PWM_AL.
When PWM_CHANCFG.MODELSC = 0, the low-side output is also generated using the high-side duty-cycle
registers for pulse width, PWM_ACTL.PULSEMODEHI bits for pulse positioning and the PWM_CHANCFG.POLAH
bit for polarity. If PWM_DT is programmed to 0, the low-side output is an inverted version of the high-side
output.

When PWM_DT is programmed with a non-zero value, both the high-side and low-side outputs are shrunk
symmetrically about the points of transition in the zero dead-time case by an amount PWM_DT.

The high and low-side outputs for the case with zero and non-zero dead-time for PWM_ACTL.PULSEMODEHI
= 00 and 01 are shown in the following figure. In the figure, DUTY0 is the value programmed into the PWM_

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

AH0 register and DUTY1 is the value programmed into the PWM_AH1 register. PWM_CHANCFG.POLAH is 1
indicating that both signals are active high. PWM_DT holds the value DT.

Figure 18-8: Channel Outputs in Dependent Mode for PULSEMODE = 00, 01

The high and low-side outputs for the case with zero and non-zero dead-time for PWM_ACTL.PULSEMODEHI
= 10 and 11 are shown in the following figure. In the figure, DUTY0 is the value programmed into PWM_
AH0 register and DUTY1 is the value programmed into the PWM_AH1 register. PWM_CHANCFG.POLAH is 1
indicating that both signals are active high. PWM_DT holds the value DT.

NOTE: Bringing dead-time into the picture, the guidelines for programming the Duty-Cycle registers in
PULSEMODEs 10 and 11 given in “PWM Duty Cycle and Pulse Positioning Control” are modified
as follows:

PULSEMODE 10: PWM_xH0 – DT > PWM_xH1 + DT

PULSEMODE 11: PWM_xH0 + DT < PWM_xH1 – DT

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–17

Figure 18-9: Channel Outputs in Dependent Mode for PULSEMODE = 10, 11

Channel High Side and Low Side Outputs, Independent Operation Mode

Independent control of the channel outputs, PWM_AH0 and PWM_AL0 is possible by setting the PWM_
CHANCFG.MODELSA bit to 1. In this case, PWM_AH is generated using PWM_AH0, PWM_AH1 for pulse width, PWM_
ACTL.PULSEMODEHI for pulse position, and PWM_CHANCFG.POLAH for polarity. PWM_AL is generated using
PWM_AL0, PWM_AL1 for pulse width, PWM_ACTL.PULSEMODELO for pulse position and PWM_CHANCFG.POLAL
for polarity.

NOTE: In the independent mode, the dead-time insertion is not applicable and the dead-time is forced to
zero by the hardware.

The following figure shows an example of the independent mode of operation where PWM_AH and PWM_AL
work off different register bits.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-10: PWM_AH and PWM_AL in Independent Operation Mode

Note that PWM_AH and PWM_AL can be positioned in the timer period with a given phase difference between
them. This is achieved by having PULSEMODEHI and PULSEMODELO bits programmed to different values.
This is shown in the next figure.

Figure 18-11: Channel Outputs Controlled Independently

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–19

Switched Reluctance Motors Application

In the typical power converter configuration for switched or variable reluctance motors, the motor
winding is connected between the two power switches of a given inverter leg. Therefore, to allow for a
complete circuit in the motor winding, it is necessary to turn on both switches at the same time.

Switched reluctance motors are used in the following configurations: Hard Chop, Alternate Chop, Soft
Chop—Bottom On, and Soft Chop—Top On.

The following figure shows the four SR mode types as active high PWM output signals.

Hard Chop mode contains independently programmed rising edges of a channel’s high and low signals in
the same PWM half cycle and both contain independently programmed falling edges in the next PWM half
cycle. The PWM_CHANCFG.POLAH and PWM_CHANCFG.POLAL are programmed to same values.

Alternate Chop mode is similar to normal PWM operation but the PWM channel high and low signal
edges are always opposite and are independently programmed. The PWM_CHANCFG.POLAH and PWM_
CHANCFG.POLAL are programmed to opposite values. The Low Side Invert is the only difference between
Hard Chop mode and Alternate Chop mode.

Soft Chop—Bottom On uses a 100% duty on the low side of the channel and Soft Chop—Top On uses a
100% duty on the high side of the channel. Similar to Hard Chop mode the PWM_AH0 duty register is used
for the high channel and PWM_AL0duty register is used for the low channel.

Figure 18-12: Four SR Mode Types, Active High PWM Output Signals

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Switching Dead Time (PWM_DT) Register

The second important parameter that must be set up in the initial configuration of the PWM Controller is
the switching dead time. This is a short delay introduced between turning off one PWM signal (for
example, AH) and turning on the complementary signal (for example, AL). This short time delay permits
the power switch being turned off (AH in this case) to completely recover its blocking capability before the
complementary switch is turned on. This time delay prevents a potentially destructive short-circuit condi-
tion from developing across the dc link capacitor of a typical voltage source inverter.

The 10-bit, read/write PWM_DT register controls the dead time. This register controls the dead time inserted
into the three pairs of PWM output signals. Dead time (Td) is related to the value in the PWM_DT register by:

Td = PWM_DT × 2 × tSCLK

Therefore, a PWM_DT value of 0x00A introduces a 200 ns delay (for a SCLK of 100 MHz) between turning
off any PWM signal (for example, AH) and then turning on its complementary signal (for example, AL).
The length of the dead time can therefore be programmed in increments of 2 × tSCLK (or 20 ns for an SCLK
of 100 MHz). The PWM_DT register is a 10-bit register whose maximum value of 0x3FF (1023 decimal)
corresponds to a maximum programmed dead time of:

Td(max) = 1023 × 2 × tSCLK = 1023 × 2 × 10 × 10-9 = 20.5 μs

for an fSCLK rate of 100 MHz. The dead time can be programmed to be zero by writing 0 to the PWM_DT
register.

Duty Cycle with Dead-Time Control: Calculations for PULSEMODE 00

The duty cycle registers are scaled such that a value of 0 represents a 50% PWM duty, cycle. The switching
signals produced are also adjusted to incorporate the programmed dead time value in the PWM_DT register.
The unit in this case produces active low signals so that a low level corresponds to a command to turn on
the associated power device.

A typical pair of PWM outputs, PWM_AH and PWM_AL, is shown in the following figure. The time values in
the figure indicate the integer value in the associated register and can be converted to time by multiplying
by the fundamental time increment, tCK. In the example channel A is working off of PWMTMR0.

Because PULSEMODE is set to 00, the switching patterns are perfectly symmetrical about the mid-point
of the switching period. The dead time is incorporated by moving the switching instants of both PWM
signals away from the instant set by the PWM_AH0 register. Both switching edges are moved by an equal
amount (PWMDT × tCK) to preserve the symmetrical output patterns. Also shown is the PWM_SYNC_OUT
pulse whose rising edge denotes the beginning of the switching period, and the PWM_STAT.TMR0PHASE bit.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–21

Figure 18-13: Dead-Time Between Outputs in Dependent Mode

The resulting on-times (active low) of the PWM signals over the full PWM period (two half-periods)
produced by the PWM timing unit and illustrated in the figure above, may be written as shown in the
following equation.

TAH = (PWM_TM0 + 2 × (PWM_AH0 - PWM_DT)) × tCK;

Range of TAH is [0:2 × PWM_TM0 × tCK]

TAL = (PWM_TM0 - 2 × (PWM_AH0 + PWM_DT)) × tCK;

Range of TAL is [0:2 × PWM_TM0 × tCK]

The corresponding duty cycles are shown in the following equations.

The negative values of TAH and TAL are not permitted and the minimum permissible value is zero, corre-
sponding to a 0% duty cycle. In a similar fashion, the maximum value is Ts, the PWM switching period,
corresponding to a 100% duty cycle. Calculation of duty for other PULSEMODEs can be similarly carried
out.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Special Consideration for PWM Operation in Over-Modulation

The PWM Timing Unit is capable of producing PWM signals with variable duty cycle values at the PWM
output pins. In PULSEMODEs 00 and 01, at the extremities of the modulation process, we have 0% and
100%. IN PULSEMODEs 01 and 10, at the extremities the modulation process, we have 0% and 50%. The
modulation is called FULL OFF when the lower extremity of modulation is set for any PWM timer period
for the corresponding channel. The modulation is called FULL ON when the higher extremity of modula-
tion is set for any PWM timer period for the corresponding channel. In between, for other duty cycle
values, the operation is termed NORMAL MODULATION.

• Full On Modulation. In PULSEMODEs 00 and 01, a PWM channel is said to be in FULL ON modula-
tion if the high-side output of that channel is asserted for the whole duration of the period of the PWM
timer that channel is referencing. Condition for FULL ON MODULATION: PWM_xH0 - DT >
PWM_TMy/2 for PULSEMODE 00 and the additional condition that PWM_xH1 - DT > PWM_TMy/
2 as well.

In PULSEMODE 10, a PWM channel is said to be in FULL ON modulation if the high-side output of
that channel is asserted for the whole duration of the first half period of the PWM timer that the
channel is referencing. Condition for FULL ON MODULATION: PWM_xH0 - DT > PWM_TMy/2
and PWM_xH1 + DT < -PWM_TMy/2.

In PULSEMODE 11, a PWM channel is said to be in FULL ON modulation if the high-side output of
that channel is asserted for the whole duration of the second half period of the PWM timer that the
channel is referencing. Condition for FULL_ON MODULATION: PWM_xH0 + DT < -PWM_TMy/
2 and PWM_xH1 - DT > PWM_TMy/2.

• Full Off Modulation. In PULSEMODEs 00 and 01, a PWM channel is said to be in FULL OFF modu-
lation if the high-side output of that channel is de-asserted for the whole duration of the period of the
PWM timer that channel is referencing. Condition for FULL OFF MODULATION: PWM_xH0 - DT
< -PWM_TMy/2 for PULSEMODE 00 and the additional condition that PWM_xH1 - DT < -PWM_
TMy/2 as well.

In PULSEMODE 10, a PWM channel is said to be in FULL OFF modulation if the high-side output of
that channel is de-asserted for the whole duration of the first half period of the PWM timer that the
channel is referencing (In the second half-period it is anyway de-asserted). Condition for FULL OFF
MODULATION: PWM_xH0 - DT < -PWM_TMy/2 and PWM_xH1 + DT < PWM_xH0 - DT.

In PULSEMODE 11, a PWM channel is said to be in FULL OFF modulation if the high-side output of
that channel is de-asserted for the whole duration of the second half period of the PWM timer that the
channel is referencing (In the first half of the period it is anyway de-asserted). Condition for FULL OFF
MODULATION: PWM_xH0 + DT > PWM_TMy/2 and PWM_xH1 - DT > PWM_xH0 + DT.

• Normal Modulation. All other cases of modulation fall under this category.

There are certain situations, on transition either into or out of either FULL ON or FULL OFF modulation,
where it is necessary to insert additional emergency dead time delays to prevent potential shoot through
conditions in the inverter. Disable/Enable usage (related to DISHI and DISLO bits in PWM_CTL register)
also can potentially cause outputs to violate shoot through condition criteria. Another case is when the

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–23

phase delay of a PWM timer is varied by large values. These transitions are detected automatically and if
appropriate for safety, an emergency dead-time is inserted to prevent shoot through conditions.

The insertion of the additional emergency dead time into one of the PWM signals of a given pair during
these transitions is only needed if otherwise both PWM signals would be required not to toggle within a
dead time of each other. The additional emergency dead time delay is inserted into the PWM signal that is
toggling into the ON state. In effect the turn ON of this signal is delayed by an amount (2 x PWMDT x tCK)
from the rising edge of the opposite output. After this delay, the PWM signal is allowed to turn ON
provided the desired output is still scheduled to be in the ON state after the emergency dead time delay.

The following figure illustrates two example of such a transition. Here POLHI is kept at 1. PWM_AH has
been in FULL ON modulation for sometime, and during the current period, its PULSEMODE is changed
to 10 keeping the FULL ON condition. At the half-period boundary it is forced to transition to a de-
asserted state due to this being PULSEMODE 10. It can be seen that an emergency dead-time is inserted
on the low-side output.

Figure 18-14: Over Modulation Transition Scenarios

Output Disable and Cross-Over Functions

Each PWM_ACTL channel control register contains separate enable bits for the high and low side signals. For
example, the PWM_ACTL.DISHI and PWM_ACTL.DISLO bits in the channel A control register control the
enable/disable of the AH and AL outputs respectively. If the disable bit is set (= 1), then the corresponding
PWM output is disabled, irrespective of the value of the corresponding duty cycle register. This PWM
output signal remains in the OFF state as long as the corresponding enable/disable bit is set.

The PWM_ACTL.XOVR bit, or the cross-over bit allows programs to send the low-side output through the
high-side output pin and the high-side output through the low side output pin.

For example, PWM_AH0 is programmed to zero with PWM_CHANCFG.MODELSA = 0. With PWM_ACTL.DISLO =
1 and PWM_ACTL.XOVR = 1 the low-side is being toggled even though the output is disabled, but nothing is
toggling on the high-side pins. What is happening is that the high-side output is now coming out through
the low-side (and vice versa). What is toggling on the low-side pin is the 50% duty high side output pulse
(less the dead-time if any).

 The following figure shows this example. In case 1 PWM_ACTL.XOVR = 0 and in case 2 PWM_ACTL.XOVR = 1.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-15: XOVR and DISHI/DISLO Functionality

Brushless DC Motor (Electronically Commutated Motor) Control

In the control of an electronically commutated motor (ECM), only two inverter legs are switched at any
time. Often, the high-side device in one leg must be switched on at the same time as the low-side driver in
a second leg. Therefore, by programming identical duty cycles values for two PWM channels (for example,
PWM_CHA = PWM_CHB) and setting the PWM_BCTL.XOVR bit to crossover the BH/BL pair if PWM
signals, it is possible to turn on the high-side switch of phase A and the low-side switch of phase B at the
same time.

To control ECM, normally the third inverter leg (phase C in this example) is disabled for a number of
PWM cycles. To implement this function, both the PWM_CH and PWM_CL outputs are disabled by setting the
PWM_CCTL.DISHI and PWM_CCTL.DISLO bits.

In normal ECM operation, each inverter leg is disabled for certain time periods so that the PWM channel
registers change based on the position of the rotor shaft (motor commutation).

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–25

Figure 18-16: ECM Control

For the situation illustrated in the figure, an appropriate value for the PWM_SEG register is 0x00A7. In
normal ECM operation, each inverter leg is disabled for certain lengths of time, such that the PWM_SEG
register is changed, based upon the position of the rotor shaft (motor commutation).

Gate Drive Unit

The Gate Drive Unit of the PWM adds features that simplify the design of isolated gate drive circuits for
PWM inverters. If a transformer coupled power device gate drive amplifier is used then the active PWM
signal must be chopped at a high frequency. The PWM_CHOPCFG register allows the programming of this
high frequency chopping mode. The chopped active PWM signals may be required for the high-side
drivers only, for the low-side drivers only or for both the high-side and low-side switches. Therefore, inde-
pendent control of this mode for both high and low-side switches is included with two separate control bits
in the PWM_CHANCFG register.

Typical PWM output signals with high-frequency chopping enabled on both high-side and low-side
signals are shown in the figure below. Chopping of the PWM outputs is enabled by setting bits in PWM_
CHANCFG register. The high frequency chopping frequency is controlled by the 8-bit PWM_CHOPCFG.VALUE
value in the PWM_CHOPCFG register. The period of this high frequency carrier is then given by,

Tchop = [4 × (CHOPDIV + 1)] × tCK

and the chopping frequency is therefore an integral subdivision of the peripheral clock frequency:

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

18–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

fchop = fCK/[4 × (CHOPDIV + 1)]

The PWM_CHOPCFG.VALUE value may range from 0 to 255, corresponding to a programmable chopping
frequency rate from 122 kHz to 31.25 MHz for a 125 MHz, fCK rate. The gate drive features must be
programmed before operation of the PWM controller and are not changed during normal operation of the
PWM controller. Following a reset, all bits of the PWM_CHANCFG register are cleared so that high frequency
chopping is disabled, by default.

Figure 18-17: Hi-Side and Lo-Side Outputs With Gate Chop Enabled

Output Control Feature Precedence

It is important to understand the order in which output control features are applied to the PWM signal.
The following hierarchy indicates the order (from most important to least important) in which signal
features are applied to the PWM output signal.

1. Channel duty generation

2. Channel Crossover

3. High-side/Low-side disable

4. Emergency dead time insertion

5. Gate drive chopping

6. Polarity

Sync Operation

The PWM_SYNC signal can be internally generated as a function of PWM_TM0.VALUE and PWM_SYNC_WID.
VALUE or can be input externally. Multiple PWM configurations can be established with each PWM oper-
ating with its own independent PWM_SYNC or from its own or shared external PWM_SYNC signal. The external
PWM_SYNC can be synchronous to the internal clock as in the case of a primary PWM generating an internal

PULSE-WIDTH MODULATOR (PWM)
EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–27

PWM_SYNC signal which drives the secondary PWM_SYNC_IN pin. The external PWM_SYNC can also be asyn-
chronous to the internal clock as is typically the case of an off-chip PWM_SYNC signal used to drive each
PWM’s PWM_SYNC_IN pin.

Internal PWM SYNC Generation

The PWM controller produces an output PWM synchronization pulse at a rate equal to period of a selected
PWM timer. Programming the PWM_CTL.INTSYNCREF field controls this selection.

Further, if the other timers are running with a non-zero DELAY offset in relation to PWMTMR0 and the
PWM_SYNC pulse is referenced to any of these timers, then the PWM_SYNC pulses are generated at their respec-
tive period boundaries which has the lag-lead offset compared to PWMTMR0.

This pulse is available for external use at the PWM_SYNC_OUT pin. The width of the PWM_SYNC pulse is
programmable by the 10-bit read/write PWM_SYNC_WID register. The width of the PWM_SYNC pulse, TPWM_
SYNC, is given by the following equation.

tPWMSYNC = tSCLK× (PWMSYNCWT + 1)

The width of the pulse is programmable from tCK to 1024tCK (corresponding to 8 ns to 8.19 μs for a fCK
rate of 125 MHz). Following a reset, the PWM_SYNC_WID register contains 0x3FF (1023 decimal) so that the
default PWM_SYNC width is 8.19 μs, for a 125 MHz fCK.

External PWM SYNC Generation

By setting the PWM_CTL.EXTSYNC bit, the PWM is set up in a mode to expect an external PWM_SYNC on the
PWM_SYNC_IN pin. The external PWM_SYNC only determines the operation of the main timer PWMTMR0.

The external sync should be synchronized by setting the PWM_CTL.EXTSYNCSEL bit to 0 (assumes the
external PWM_SYNC selected is asynchronous).

The external PWM_SYNC period is expected to be an integer multiple of the value of the PWM_TM0 period
register. When the rising edge of the external PWM_SYNC is detected, the PWMTMR0 timer is restarted at
the beginning of its period. If the external PWM_SYNC period is not exactly an integer multiple of the internal
PWM_SYNC, the behavior of the PWM channel outputs which are referenced to PWMTMR0 are clipped.

The effect latency from PWM_SYNC_IN to the PWM outputs is about three clock cycles in synchronous
mode, and five clock cycles in asynchronous mode.

Event Control
The PWM output signals can be shut-off in a number of different ways. Two trip inputs pwm_trip0b, and
pwm_trip1b are provided, each of which can be mapped to provide either a temporary or permanent shut-
down on any pair of channel outputs. This shutdown mechanism is asynchronous so that the associated
PWM output disable circuitry does not go through any clocked logic, ensuring correct PWM shutdown

PULSE-WIDTH MODULATOR (PWM)
EVENT CONTROL

18–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

even in the event of a loss of the processor clock. In addition to the hardware shutdown features, the PWM
system may be shutdown in software by means of the PWM_CTL.SWTRIP bit.

Status information about the PWM is available to the user in the PWM_STAT register, which stores all status
bits, including raw interrupt status bits. In particular, the period boundary of each timer is available, as well
as status bits that indicate whether the operation is in the first half or the second half of the timer. Addi-
tionally the TRIP status is also available.

The PWM_IMSK and PWM_ILAT registers allow masking and show masked interrupt status bits respectively.
The interrupt bits are latched and held on the interrupt event and the software must write a 1 to clear the
interrupt bit, usually during the Interrupt Service routine.

Trip Control Unit

The PWM Trip unit processes hardware or software fault conditions and shuts down the PWM channel
outputs immediately on the occurrence of these conditions. This shut down mechanism can be enabled
separately for each channel. The design also allows for a self-restart mechanism to be enabled on a channel.
Self-restart re-enables the channel outputs following the fault condition (allowed only on hardware trips)
when the PWMTMR-y that the channel is using reaches its period boundary.

There are 2 external hardware sources that can indicate a hardware fault condition:

1. PWMTRIP0 input pin

2. PWMTRIP1 input pin

These are active low inputs where a falling edge on either of these pins indicates a fault condition.

To enable the trip unit to shut down a particular channel's output in response to the fault event on either
of these PWM_TRIPn pins, program the PWM_TRIPCFG.EN0A bit corresponding to that channel.

The PWM_TRIPCFG.MODE0A bits must be programmed to specify the restart mechanism for a channel that
has been tripped.

1. If PWM_TRIPCFG.MODE0A = 0, once tripped, a trip condition is registered on this channel in the PWM_
STAT.FLTTRIPA bit and the outputs of that channel are immediately shut down. This is called a FAULT
TRIP condition. To resume channel output when a FAULT TRIP occurs, clear the PWM_STAT.
FLTTRIPA bit by writing a 1 to it. Note that the bit cannot be cleared by a processor write if the trip
condition is still active. The RAW trip status is available for both the pins in the PWM_STAT.RAWTRIP0
register bits.

2. If PWM_TRIPCFG.MODE0A = 1, once tripped, a trip condition is registered on this channel in the PWM_
STAT.SRTRIPA bit and the outputs of that channel are immediately shut down. This is called a self-
restart trip condition. At the next period boundary of the PWMTMR-y that the channel is using, if the
tripping condition is not active, the design clears the status register bit and restores the outputs.

The trip input pins should have an external pull-down resistor on the chip pin, so that if the pin becomes
unconnected the PWM will be disabled.

PULSE-WIDTH MODULATOR (PWM)
EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–29

In addition to the hardware trip conditions, a global software trip bit in the PWM_CTL register allows for a
software forced FAULT TRIP condition. When the global software trip bit is set to 1, irrespective of the
values in the PWM_TRIPCFG register, it sets all the PWM_STAT.FLTTRIPA bits in the PWM_STAT register and
also gates the channel outputs. To remove the trip condition from the channel, a W1C should be
performed on the particular channel's PWM_STAT.FLTTRIPA bit.

If the PWM_TRIPCFG.EN0A bit is set to 1 to, for any channel, then the occurrence of a fault condition on the
PWMTRIPy bit is logged in the PWM_STAT.FLTTRIPA register bit. If the corresponding PWM_IMSK.TRIP0 bit
= 1, then an interrupt is generated. Note that tripping a channel output doesn't interfere with PWM_SYNC
generation.

The following figure shows a scenario where PWMTRIP0 is enabled on channel A as SELF RESTART
TRIP. Channel A works with PWM_CHANCFG.POLAH = 1. Note that in Period 2, PWM_AH is full ON modu-
lated, and tries to rise at the period boundary itself where the self-restart occurs for the channel. However,
since the low-side output of the channel was only recently removed due to a trip, the rise edge on PWM_AH
is delayed until the emergency dead-time period is over. PWMTRIP1 is enabled on channel B as FAULT
TRIP. Channel B works with PWM_CHANCFG.POLAH = 0. PWMTRIP1 stays low for a long time, and because of
this the first processor write to re-enable the channel output fails. The second one passes since the fault-
condition has gone away.

Figure 18-18: Operation Under Hardware Fault Conditions

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

18–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE:

Dead-time is ensured on re-enabling the channel outputs after trip.

NOTE:

Programs should not allow changes in the configuration/enable bits of PWM_TRIPCFG register (which select
between trip enable and disable) within ± 10 clock cycles of the toggling of external trip pulse. If this time
frame is not followed, then unexpected behavior occurs.

Programming Model
The following sections provide general (and some application specific) programming steps for configuring
and using the PWM module.

• Programming Model for 3-Phase AC Motor Control

Programming Model for 3-Phase AC Motor Control

The PWM Module and Interaction with System figure shows how the PWM unit (green) interfaces to both
software (blue) and hardware (yellow). The software configures the unit, calculates duty cycles (Duty A,
Duty B, Duty C), and services the interrupts generated by the module (PWM Sync IRQ, TRIP IRQ). The
hardware applies the gate signals (AH, AL, BH, BL, CH, CL) to the inverter and provides an overcurrent
trip signal back to the unit (TRIP0).

The typical 3-phase AC motor configuration shown in the PWM Module and Interaction with System
figure applies for both permanent magnet and induction motor types.

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–31

Figure 18-19: PWM Module and Interaction with System

System Parameters

The following system parameters (characteristics) influence the module configuration for this application.
This example system has/uses:

• One 3-phase AC machine

• B6 inverter

• SVPWM, including both linear- and over-modulation

• Switching frequency of 20 kHz

• Dead time of 1us

• Trip signal generated by hardware

• Active high level gate drive

• Core frequency of 200 MHz

• Peripheral clock of 100 MHz

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

18–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

System State Sequencing

Managing the system state and sequence of states is critically important when programming the PWM
module. The PWM System States figure provides an overview of these states.

Figure 18-20: PWM System States

As shown in this state diagram, the module configuration is updated on state transitions (indicated by the
arrows). The transitions are initialization, motor start, PWM sync interrupt (on each), and motor stop.
These transitions are discussed in detail in the following sections.

• PWM Initialization for Motor Control

• PWM Enable for Motor Control

• PWM Response to Sync Interrupt for Motor Control

• PWM Disable (and Stop the Motor) for Motor Control

PWM Initialization for Motor Control

The processor should do the following programming at power up and repeat this programming whenever
the PWM and system must be brought into a known (safe) state.

1. Place the PWM module in a safe state and set up synchronization of the module.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_CTL and PWM_CHANCFG register
accomplish this PWM state:

PWM_CTL &= 0xFFE0FF08
PWM_CTL |= 0x20000

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–33

PWM_CHANCFG &= 0x80808080
PWM_CHANCFG |= 0x24242424

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Disable PWM (PWM_CTL.GLOBEN = 0)

• All phases must run with same phase, disable delay for channels A, B, C, D (PWM_CTL.DLYAEN
through PWM_CTL.DLYDEN =0)

• Use internal synchronization by timer TMR0 (PWM_CTL.EXTSYNC =0, PWM_CTL.EXTSYNCSEL =1)

• All phases must be synchronized by the same timer, TMR0 (PWM_CTL.INTSYNCREF = b#000)

• Low side is always the inverse of High side (PWM_CHANCFG.POLAL through PWM_CHANCFG.POLDL =
1)

• System uses active high gate driver (PWM_CHANCFG.ENCHOPAH throughPWM_CHANCFG.ENCHOPDH =1)

• Pulse transformer is not used: disable gate chopping (PWM_CHANCFG.ENCHOPAL through PWM_
CHANCFG.ENCHOPDL =0)

2. Set up the trip and associated interrupts.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_TRIPCFG and PWM_ILAT register
accomplish this PWM state:

PWM_TRIPCFG &= 0xF0F0F0F0
PWM_TRIPCFG |= 0x1010101

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

18–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PWM_ILAT &= 0xFFE0FFFC
PWM_ILAT |= 0x1

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• All phases must shut down simultaneously in case of fault: (PWM_TRIPCFG.EN0A through PWM_

TRIPCFG.EN0D =0, PWM_TRIPCFG.MODE0A through PWM_TRIPCFG.MODE0D =0, PWM_TRIPCFG.EN1A
through PWM_TRIPCFG.EN1D =0, PWM_TRIPCFG.MODE1A through PWM_TRIPCFG.MODE1D =0)

• Enable TRIP0 as fault trigger for all channels. (PWM_TRIPCFG.EN0A through PWM_TRIPCFG.MODE1D
=1)

• For thermal control and synchronization, SW intervention is needed at trip. Do not use automatic
restart of any channels

• Generate an interrupt at trip on TRIP0. (PWM_ILAT.TMR0PER = 1)

3. Configure the PWM channels.

ADDITIONAL INFORMATION:

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_TRIPCFG and PWM_ILAT register
accomplish this PWM state:

PWM_DT = 0x32
PWM_TM0 =0x9C4
PWM_ACTL &= 0xFFFFF0000
PWM_BCTL &= 0xFFFFF0000
PWM_CCTL& = 0xFFFFF0000
PWM_AH0 = 0x0

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–35

PWM_BH0 = 0x0
PWM_CH0 = 0x0

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Configure a dead time of 1 μs (PWM_DT = 0x32).

• Configure a PWM frequency of 20 kHz (PWM_TM0 = 0x9C4).

• Disable all outputs (PWM_ACTL.DISHI- PWM_CCTL.DISHI = 0, PWM_ACTL.DISLO through PWM_CCTL.
DISLO = 0)

• Use conventional PWM, disable crossover (PWM_ACTL.XOVR through PWM_CCTL.XOVR = 0)

• Use symmetrical pulse position on all outputs (PWM_ACTL.PULSEMODEHI through PWM_CCTL.
PULSEMODEHI = 0, PWM_ACTL.PULSEMODELO through PWM_CCTL.PULSEMODELO = 0)

• Set an initial duty-cycle of 50% (PWM_AH0 through PWM_CH0 = 0x0)

PWM Enable for Motor Control

The processor must do the following programming to enable the PWM before starting the motor.

1. Start the PWM timer TMR0.

ADDITIONAL INFORMATION: The following bitwise operation on the PWM_CTL register accomplishes this
PWM state:

PWM_CTL |= 0x1

ADDITIONAL INFORMATION: This operation achieves the following bit setting:
• Ensable PWM (PWM_CTL.GLOBEN =1)

2. Enable six PWM outputs.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_ACTL through PWM_CCTL regis-
ters accomplish this PWM state:

PWM_ACTL| = 0x3
PWM_BCTL| = 0x3
PWM_CCTL| = 0x3

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Enable high and low side channel outputs (PWM_ACTL.DISHI through PWM_CCTL.DISHI = 1, PWM_

ACTL.DISLO through PWM_CCTL.DISLO = 1)

3. Enable the PWM TRIP0 interrupt.

ADDITIONAL INFORMATION: The following bitwise operation on the PWM_ILAT register accomplishes this
PWM state:

PWM_ILAT |= 0x1

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

18–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Enable PWM TRIP0 interrupt (PWM_ILAT.TRIP0 =1)

PWM Response to Sync Interrupt for Motor Control

When the PWM sync interrupt occurs, the processor may need to update to the PWM duty cycle with a
value calculated by the motor control algorithm. This application uses symmetric pulses position and uses
dependent High and Low side outputs, so only one register needs to be updated for each phase.

1. Write new duty cycle value (calculated by motor control algorithm) to the timer when the sync inter-
rupt occurs.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_AH0 through PWM_CH0 registers
accomplish this PWM state:

PWM_AH0 = Duty_A_mc_algorithm_current_value

ADDITIONAL INFORMATION:
PWM_BH0 = Duty_B_mc_algorithm_current_value

ADDITIONAL INFORMATION:
PWM_CH0 = Duty_C_mc_algorithm_current_value

ADDITIONAL INFORMATION:

ADDITIONAL INFORMATION: These operations achieve the following bit settings:

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–37

PWM Disable (and Stop the Motor) for Motor Control

The processor should do the following programming to stop the motor, disable the PWM, and disable
PWM interrupts. These actions place the PWM and system in a safe, passive state.

1. Disable the PWM timer.

ADDITIONAL INFORMATION: The following bitwise operation on the PWM_CTL register accomplish this
PWM state:

PWM_CTL &= 0xFFFFFFFE

ADDITIONAL INFORMATION: This operation achieves the following bit setting:
• Disable PWM (PWM_CTL.GLOBEN =0)

2. Disable all PWM outputs.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_ACTL through PWM_CCTL regis-
ters accomplish this PWM state:

PWM_ACTL &= 0xFFFFFFFFC
PWM_BCTL &= 0xFFFFFFFFC
PWM_CCTL &= 0xFFFFFFFFC

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Disable PWM outputs PWM_ACTL.DISHI through PWM_CCTL.DISHI = 1, PWM_ACTL.DISLO through

PWM_CCTL.DISLO = 0)

3. Set the PWM duty-cycle to 50%.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_AH0 through PWM_CH0 registers
accomplish this PWM state:

PWM_AH0 = 0x0
PWM_BH0 = 0x0
PWM_CH0 = 0x0

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Set PWM duty cycle to 50%. (PWM_AH0.DUTY through PWM_CH0.DUTY = 0)

4. Disable the PWM TRIP0 interrupt.

ADDITIONAL INFORMATION: The following bitwise operation on the PWM_ILAT register accomplish this
PWM state:

PWM_ILAT &= 0xFFFFFFFE

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Disable PWM TRIP0 interrupt (PWM_ILAT.TRIP0 = 0)

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x PWM Register Descriptions
Pulse-Width Modulator (PWM) contains the following registers.

Table 18-5: ADSP-BF60x PWM Register List

Name Description

PWM_CTL Control Register

PWM_CHANCFG Channel Config Register

PWM_TRIPCFG Trip Config Register

PWM_STAT Status Register

PWM_IMSK Interrupt Mask Register

PWM_ILAT Interrupt Latch Register

PWM_CHOPCFG Chop Configuration Register

PWM_DT Dead Time Register

PWM_SYNC_WID Sync Pulse Width Register

PWM_TM0 Timer 0 Period Register

PWM_TM1 Timer 1 Period Register

PWM_TM2 Timer 2 Period Register

PWM_TM3 Timer 3 Period Register

PWM_TM4 Timer 4 Period Register

PWM_DLYA Channel A Delay Register

PWM_DLYB Channel B Delay Register

PWM_DLYC Channel C Delay Register

PWM_DLYD Channel D Delay Register

PWM_ACTL Channel A Control Register

PWM_AH0 Channel A-High Duty-0 Register

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–39

Control Register

The PWM_CTL register enables the PWM, enables delay counters for the channels, and configures sync
features. This register also provides support for tripping a PWM fault condition through software.

PWM_AH1 Channel A-High Duty-1 Register

PWM_AL0 Channel A-Low Duty-0 Register

PWM_AL1 Channel A-Low Duty-1 Register

PWM_BCTL Channel B Control Register

PWM_BH0 Channel B-High Duty-0 Register

PWM_BH1 Channel B-High Duty-1 Register

PWM_BL0 Channel B-Low Duty-0 Register

PWM_BL1 Channel B-Low Duty-1 Register

PWM_CCTL Channel C Control Register

PWM_CH0 Channel C-High Pulse Duty Register 0

PWM_CH1 Channel C-High Pulse Duty Register 1

PWM_CL0 Channel C-Low Pulse Duty Register 0

PWM_CL1 Channel C-Low Duty-1 Register

PWM_DCTL Channel D Control Register

PWM_DH0 Channel D-High Duty-0 Register

PWM_DH1 Channel D-High Pulse Duty Register 1

PWM_DL0 Channel D-Low Pulse Duty Register 0

PWM_DL1 Channel D-Low Pulse Duty Register 1

Table 18-5: ADSP-BF60x PWM Register List (Continued)

Name Description

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-21: PWM_CTL Register Diagram

Table 18-6: PWM_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

20:18
(R/W)

INTSYNCREF Timer reference for Internal Sync.
The PWM_CTL.INTSYNCREF bits select the timer reference for the
internal sync. Note that all other combinations reserved.
0 PWMTMR0 provides sync reference
1 PWMTMR1 provides sync reference
2 PWMTMR2 provides sync reference
3 PWMTMR3 provides sync reference
4 PWMTMR4 provides sync reference

17
(R/W)

EXTSYNCSEL External Sync Select.
The PWM_CTL.EXTSYNCSEL bit selects whether the external sync
signal is synchronous or asynchronous. Note that latency in PWM
sync response differs between asynchronous and synchronous
external sync modes. For more information, see the PWM functional
description.
0 Asynchronous External Sync
1 Synchronous External Sync

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–41

16
(R/W)

EXTSYNC External Sync.
The PWM_CTL.EXTSYNC bit selects whether the PWM uses an external
or internal sync signal for the main timer (PWMTMR0). Do not
change the value of the PWM_CTL.EXTSYNC bit while the PWM is
enabled (PWM_CTL.GLOBEN =1).
0 Internal sync used
1 External sync used

7
(R/W)

DLYDEN Enable Delay Counter for Channel D.
The PWM_CTL.DLYDEN bit enables the Channel D delay counter,
supporting phase-offset control. Do not change the value of the PWM_
CTL.DLYDEN bit while the PWM is enabled (PWM_CTL.GLOBEN =1).
0 Disable
1 Enable

6
(R/W)

DLYCEN Enable Delay Counter for Channel C.
The PWM_CTL.DLYCEN bit enables the Channel C delay counter,
supporting phase-offset control. Do not change the value of the PWM_
CTL.DLYCEN bit while the PWM is enabled (PWM_CTL.GLOBEN =1).
0 Disable
1 Enable

5
(R/W)

DLYBEN Enable Delay Counter for Channel B.
The PWM_CTL.DLYBEN bit enables the Channel B delay counter,
supporting phase-offset control. Do not change the value of the PWM_
CTL.DLYBEN bit while the PWM is enabled (PWM_CTL.GLOBEN =1).
0 Disable
1 Enable

4
(R/W)

DLYAEN Enable Delay Counter for Channel A.
The PWM_CTL.DLYAEN bit enables the Channel A delay counter,
supporting phase-offset control. Do not change the value of the PWM_
CTL.DLYAEN bit while the PWM is enabled (PWM_CTL.GLOBEN =1).
0 Disable
1 Enable

Table 18-6: PWM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Channel Config Register

The PWM_CHANCFG register configures Channel A, B, C, and D reference timer selection, high and low side
output features, and enables high frequency chopping operation. Do not change the value of any bits in the
PWM register while the PWM is enabled (PWM_CTL.GLOBEN =1).

2
(R0/W1A)

SWTRIP Software Trip.
The PWM_CTL.SWTRIP bit permits tripping a fault condition through
software, shutting down PWM output. This bit always read as 0. If the
PWM_CTL.SWTRIP bit and PWM_CTL.GLOBEN bit are set in the same
write, the write does not trip the fault condition.
1 Force a Fault Trip Condition

1
(R/W)

EMURUN Output Behavior During Emulation Mode.
The PWM_CTL.EMURUN bit selects PWM output behavior during
emulation mode.
0 Disable Outputs
1 Enable Outputs

0
(R/W)

GLOBEN Module Enable.
The PWM_CTL.GLOBEN bit enables the PWM, enabling all timers and
outputs. While this bit is enabled, processor code should not change
the value of the PWM_CTL.DLYAEN bit, PWM_CTL.DLYBEN bit, PWM_
CTL.DLYCEN bit, PWM_CTL.DLYDEN bit, PWM_CTL.EXTSYNCSEL bit, or
any bits in the PWM_CHANCFG register. Note that there is a latency
between PWM disable and the cessation of output waveforms. There
is also a latency between PWM enable and start of output waveforms.
For the latency description, see the PWM functional description.
0 Disable
1 Enable

Table 18-6: PWM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–43

Figure 18-22: PWM_CHANCFG Register Diagram

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 18-7: PWM_CHANCFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

ENCHOPDL Channel D Gate Chopping Enable Low Side.
The PWM_CHANCFG.ENCHOPDL bit enables mixing of the Channel D
low side output signals with a high-frequency chopping signal, which
is configured with the PWM_CHOPCFG register.
0 Disable Chopping Channel D Low Side
1 Enable Chopping Channel D Low Side

29
(R/W)

POLDL Channel D low side Polarity.
The PWM_CHANCFG.POLDL bit selects the Channel D low side output
polarity (active-high or active-low).
0 Active Low
1 Active High

27
(R/W)

ENCHOPDH Channel D Gate Chopping Enable High Side.
The PWM_CHANCFG.ENCHOPDH bit enables mixing of the Channel D
high side output signals with a high-frequency chopping signal,
which is configured with the PWM_CHOPCFG register.
0 Disable Chopping Channel D High Side
1 Enable Chopping Channel D High Side

26
(R/W)

POLDH Channel D High side Polarity.
The PWM_CHANCFG.POLDH bit selects the Channel D high side output
polarity (active-high or active-low).
0 Active Low
1 Active High

25
(R/W)

MODELSD Channel D Mode of low Side Output.
The PWM_CHANCFG.MODELSD bit selects whether the low side output
waveform is based on independent controls or whether the low side
output depends on the high side output controls. When PWM_
CHANCFG.MODELSD =0, the low side output is an inverted form of the
high side output, which is generated using the PWM_BH0 and PWM_BH1
registers for pulse width, using the PWM_BCTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLBH bits for polarity.
0 Invert of high output
1 Independent control

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–45

24
(R/W)

REFTMRD Channel D Timer Reference.
The PWM_CHANCFG.REFTMRD bit selects whether the PWM uses
PWMTMR1 or PWMTMR0 as the reference timer for Channel D
operation.
0 PWMTMR0 is Channel D reference
1 PWMTMR1 is Channel D reference

22
(R/W)

ENCHOPCL Channel C Gate Chopping Enable Low Side.
The PWM_CHANCFG.ENCHOPCL bit enables mixing of the Channel C
low side output signals with a high-frequency chopping signal, which
is configured with the PWM_CHOPCFG register.
0 Disable Chopping Channel C Low Side
1 Enable Chopping Channel C Low Side

21
(R/W)

POLCL Channel C low side Polarity.
The PWM_CHANCFG.POLCL bit selects the Channel C low side output
polarity (active-high or active-low).
0 Active Low
1 Active High

19
(R/W)

ENCHOPCH Channel C Gate Chopping Enable High Side.
The PWM_CHANCFG.ENCHOPCH bit enables mixing of the Channel C
high side output signals with a high-frequency chopping signal,
which is configured with the PWM_CHOPCFG register.
0 Disable Chopping Channel C High Side
1 Enable Chopping Channel C High Side

18
(R/W)

POLCH Channel C High side Polarity.
The PWM_CHANCFG.POLCH bit selects the Channel C high side output
polarity (active-high or active-low).
0 Active Low
1 Active High

Table 18-7: PWM_CHANCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

17
(R/W)

MODELSC Channel C Mode of low Side Output.
The PWM_CHANCFG.MODELSC bit selects whether the low side output
waveform is based on independent controls or whether the low side
output depends on the high side output controls. When PWM_
CHANCFG.MODELSC =0, the low side output is an inverted form of the
high side output, which is generated using the PWM_BH0 and PWM_BH1
registers for pulse width, using the PWM_BCTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLBH bits for polarity.
0 Invert of high output
1 Independent control

16
(R/W)

REFTMRC Channel C Timer Reference.
The PWM_CHANCFG.REFTMRC bit selects whether the PWM uses
PWMTMR1 or PWMTMR0 as the reference timer for Channel C
operation.
0 PWMTMR0 is Channel C reference
1 PWMTMR1 is Channel C reference

14
(R/W)

ENCHOPBL Channel B Gate Chopping Enable Low Side.
The PWM_CHANCFG.ENCHOPBL bit enables mixing of the Channel B
low side output signals with a high-frequency chopping signal, which
is configured with the PWM_CHOPCFG register.
0 Disable Chopping Channel B Low Side
1 Enable Chopping Channel B Low Side

13
(R/W)

POLBL Channel B low side Polarity.
The PWM_CHANCFG.POLBL bit selects the Channel B low side output
polarity (active-high or active-low).
0 Active Low
1 Active High

11
(R/W)

ENCHOPBH Channel B Gate Chopping Enable High Side.
The PWM_CHANCFG.ENCHOPBH bit enables mixing of the Channel B
high side output signals with a high-frequency chopping signal,
which is configured with the PWM_CHOPCFG register.
0 Disable Chopping Channel B High Side
1 Enable Chopping Channel B High Side

Table 18-7: PWM_CHANCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–47

10
(R/W)

POLBH Channel B High side Polarity.
The PWM_CHANCFG.POLBH bit selects the Channel B high side output
polarity (active-high or active-low).
0 Active Low
1 Active High

9
(R/W)

MODELSB Channel B Mode of low Side Output.
The PWM_CHANCFG.MODELSB bit selects whether the low side output
waveform is based on independent controls or whether the low side
output depends on the high side output controls. When PWM_
CHANCFG.MODELSB =0, the low side output is an inverted form of the
high side output, which is generated using the PWM_BH0 and PWM_BH1
registers for pulse width, using the PWM_BCTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLBH bits for polarity.
0 Invert of high output
1 Independent control

8
(R/W)

REFTMRB Channel B Timer Reference.
The PWM_CHANCFG.REFTMRB bit selects whether the PWM uses
PWMTMR1 or PWMTMR0 as the reference timer for Channel B
operation.
0 PWMTMR0 is Channel B reference
1 PWMTMR1 is Channel B reference

6
(R/W)

ENCHOPAL Channel A Gate Chopping Enable Low Side.
The PWM_CHANCFG.ENCHOPAL bit enables mixing of the Channel A
low side output signals with a high-frequency chopping signal, which
is configured with the PWM_CHOPCFG register.
0 Disable Chopping Channel A Low Side
1 Enable Chopping Channel A Low Side

5
(R/W)

POLAL Channel A low side Polarity.
The PWM_CHANCFG.POLAL bit selects the Channel A low side output
polarity (active-high or active-low).
0 Active Low
1 Active High

Table 18-7: PWM_CHANCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Trip Config Register

The PWM_TRIPCFG register configures Channel A, B, C, and D trip operation for trip inputs TRIP0 and
TRIP1.

3
(R/W)

ENCHOPAH Channel A Gate Chopping Enable High Side.
The PWM_CHANCFG.ENCHOPAH bit enables mixing of the Channel A
high side output signals with a high-frequency chopping signal,
which is configured with the PWM_CHOPCFG register.
0 Disable Chopping Channel A High Side
1 Enable Chopping Channel A High Side

2
(R/W)

POLAH Channel A High side Polarity.
The PWM_CHANCFG.POLAH bit selects the Channel A high side output
polarity (active-high or active-low).
0 Active Low
1 Active High

1
(R/W)

MODELSA Channel A Mode of low Side Output.
The PWM_CHANCFG.MODELSA bit selects whether the low side output
waveform is based on independent controls or whether the low side
output depends on the high side output controls. When PWM_
CHANCFG.MODELSA =0, the low side output is an inverted form of the
high side output, which is generated using the PWM_AH0 and PWM_AH1
registers for pulse width, using the PWM_ACTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLAH bits for polarity.
0 Invert of high output
1 Independent control

0
(R/W)

REFTMRA Channel A Timer Reference.
The PWM_CHANCFG.REFTMRA bit selects whether the PWM uses
PWMTMR1 or PWMTMR0 as the reference timer for Channel A
operation.
0 PWMTMR0 is Channel A reference
1 PWMTMR1 is Channel A reference

Table 18-7: PWM_CHANCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–49

Figure 18-23: PWM_TRIPCFG Register Diagram

Table 18-8: PWM_TRIPCFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27
(R/W)

MODE1D Mode of TRIP1 for Channel D.
The PWM_TRIPCFG.MODE1D bit selects the trip mode of TRIP1 for
Channel D. For more information, see the PWM_TRIPCFG.MODE0A bit
description.
0 Fault Trip on TRIP1 Input
1 Self Restart on TRIP1 Input

26
(R/W)

EN1D Enable TRIP1 as a trip source for Channel D.
The PWM_TRIPCFG.EN1D bit enables TRIP1 as a trip source for
Channel D.
0 Disable TRIP1 for Channel D
1 Enable TRIP1 for Channel D

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

25
(R/W)

MODE0D Mode of TRIP0 for Channel D.
The PWM_TRIPCFG.MODE0D bit selects the trip mode of TRIP0 for
Channel D. For more information, see the PWM_TRIPCFG.MODE0A bit
description.
0 Fault Trip on TRIP0 Input
1 Self Restart on TRIP0 Input

24
(R/W)

EN0D Enable TRIP0 as a trip source for Channel D.
The PWM_TRIPCFG.EN0D bit enables TRIP0 as a trip source for
Channel D.
0 Disable TRIP0 for Channel D
1 Enable TRIP0 for Channel D

19
(R/W)

MODE1C Mode of TRIP1 for Channel C.
The PWM_TRIPCFG.MODE1C bit selects the trip mode of TRIP1 for
Channel C. For more information, see the PWM_TRIPCFG.MODE0A bit
description.
0 Fault Trip on TRIP1 Input
1 Self Restart on TRIP1 Input

18
(R/W)

EN1C Enable TRIP1 as a trip source for Channel C.
The PWM_TRIPCFG.EN1C bit enables TRIP1 as a trip source for
Channel C.
0 Disable TRIP1 for Channel C
1 Enable TRIP1 for Channel C

17
(R/W)

MODE0C Mode of TRIP0 for Channel C.
The PWM_TRIPCFG.MODE0C bit selects the trip mode of TRIP0 for
Channel C. For more information, see the PWM_TRIPCFG.MODE0A bit
description.
0 Fault Trip on TRIP0 Input
1 Self Restart on TRIP0 Input

16
(R/W)

EN0C Enable TRIP0 as a trip source for Channel C.
The PWM_TRIPCFG.EN0C bit enables TRIP0 as a trip source for
Channel C.
0 Disable TRIP0 for Channel C
1 Enable TRIP0 for Channel C

Table 18-8: PWM_TRIPCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–51

11
(R/W)

MODE1B Mode of TRIP1 for Channel B.
The PWM_TRIPCFG.MODE1B bit selects the trip mode of TRIP1 for
Channel B. For more information, see the PWM_TRIPCFG.MODE0A bit
description.
0 Fault Trip on TRIP1 Input
1 Self Restart on TRIP1 Input

10
(R/W)

EN1B Enable TRIP1 as a trip source for Channel B.
The PWM_TRIPCFG.EN1B bit enables TRIP1 as a trip source for
Channel B.
0 Disable TRIP1 for Channel B
1 Enable TRIP1 for Channel B

9
(R/W)

MODE0B Mode of TRIP0 for Channel B.
The PWM_TRIPCFG.MODE0B bit selects the trip mode of TRIP0 for
Channel B. For more information, see the PWM_TRIPCFG.MODE0A bit
description.
0 Fault Trip on TRIP0 Input
1 Self Restart on TRIP0 Input

8
(R/W)

EN0B Enable TRIP0 as a trip source for Channel B.
The PWM_TRIPCFG.EN0B bit enables TRIP0 as a trip source for
Channel B.
0 Disable TRIP0 for Channel B
1 Enable TRIP0 for Channel B

3
(R/W)

MODE1A Mode of TRIP1 for Channel A.
The PWM_TRIPCFG.MODE1A bit selects the trip mode of TRIP1 for
Channel A. For more information, see the PWM_TRIPCFG.MODE0A bit
description.
0 Fault Trip on TRIP1 Input
1 Self Restart on TRIP1 Input

2
(R/W)

EN1A Enable TRIP1 as a trip source for Channel A.
The PWM_TRIPCFG.EN1A bit enables TRIP1 as a trip source for
Channel A.
0 Disable TRIP1 for Channel A
1 Enable TRIP1 for Channel A

Table 18-8: PWM_TRIPCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Status Register

The PWM_STAT register indicates the PWM PWMTRIP1-0 fault and input level status, indicates the
Channel A-D fault and self-restart status, and indicates the PWMTMR4-0 phase.

1
(R/W)

MODE0A Mode of TRIP0 for Channel A.
The PWM_TRIPCFG.MODE0A bit selects the trip mode of TRIP0 for
Channel A.
In fault-trip mode (PWM_TRIPCFG.MODE0A =0), after the input is
tripped, the trip status appears in the corresponding channels fault-
trip status bit (for example, PWM_STAT.FLTTRIPA), and the PWM
immediately shuts down outputs of that channel. After a fault trip
occurs, when the trip condition is no longer active, the processor may
cause channel outputs to resume by completing a write-1-to-clear the
corresponding fault-trip status bit. The raw (input level) trip input
state is available from the PWM_STAT.RAWTRIP0 and PWM_STAT.
RAWTRIP0 bits.
In self-restart mode (PWM_TRIPCFG.MODE0A =1), after the input is
tripped, the trip status appears in the corresponding channels self-
restart status bit (for example, PWM_STAT.SRTRIPA), and the PWM
immediately shuts down outputs of that channel. On the next timer
period boundary (of the PWMTMRx used by that channel), if the
trip condition is not active, the PWM clears the status and restarts the
channels output.
0 Fault Trip on TRIP0 Input
1 Self Restart on TRIP0 Input

0
(R/W)

EN0A Enable TRIP0 as a trip source for Channel A.
The PWM_TRIPCFG.EN0A bit enables TRIP0 as a trip source for
Channel A.
0 Disable TRIP0 for Channel A
1 Enable TRIP0 for Channel A

Table 18-8: PWM_TRIPCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–53

Figure 18-24: PWM_STAT Register Diagram

Table 18-9: PWM_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

28
(R/W1C)

TMR4PHASE PWMTMR4 Phase Status.
The PWM_STAT.TMR4PHASE bit indicates the current phase for the
PWMTMR4 waveform.
0 1st Half Phase
1 2nd Half Phase

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

27
(R/W1C)

TMR3PHASE PWMTMR3 Phase Status.
The PWM_STAT.TMR3PHASE bit indicates the current phase for the
PWMTMR3 waveform.
0 1st Half Phase
1 2nd Half Phase

26
(R/W1C)

TMR2PHASE PWMTMR2 Phase Status.
The PWM_STAT.TMR2PHASE bit indicates the current phase for the
PWMTMR2 waveform.
0 1st Half Phase
1 2nd Half Phase

25
(R/W1C)

TMR1PHASE PWMTMR1 Phase Status.
The PWM_STAT.TMR1PHASE bit indicates the current phase for the
PWMTMR1 waveform.
0 1st Half Phase
1 2nd Half Phase

24
(R/W1C)

TMR0PHASE PWMTMR0 Phase Status.
The PWM_STAT.TMR0PHASE bit indicates the current phase for the
PWMTMR0 waveform.
0 1st Half Phase
1 2nd Half Phase

20
(R/W1C)

TMR4PER PWMTMR4 Period Boundary Status.
The PWM_STAT.TMR4PER bit indicates whether or not the
PWMTMR4 period boundary has been reached.
0 PWMTMR4 period boundary not reached
1 PWMTMR4 period boundary reached

19
(R/W1C)

TMR3PER PWMTMR3 Period Boundary Status.
The PWM_STAT.TMR3PER bit indicates whether or not the
PWMTMR3 period boundary has been reached.
0 PWMTMR3 period boundary not reached
1 PWMTMR3 period boundary reached

Table 18-9: PWM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–55

18
(R/W1C)

TMR2PER PWMTMR2 Period Boundary Status.
The PWM_STAT.TMR2PER bit indicates whether or not the
PWMTMR2 period boundary has been reached.
0 PWMTMR2 period boundary not reached
1 PWMTMR2 period boundary reached

17
(R/W1C)

TMR1PER PWMTMR1 Period Boundary Status.
The PWM_STAT.TMR1PER bit indicates whether or not the
PWMTMR1 period boundary has been reached.
0 PWMTMR1 period boundary not reached
1 PWMTMR1 period boundary reached

16
(R/W1C)

TMR0PER PWMTMR0 Period Boundary Status.
The PWM_STAT.TMR0PER bit indicates whether or not the
PWMTMR0 period boundary has been reached.
0 PWMTMR0 period boundary not reached
1 PWMTMR0 period boundary reached

11
(R/NW)

SRTRIPD Self-Restart Trip Status for Channel D.
The PWM_STAT.SRTRIPD bit indicates whether the PWM Channel D
self-restart has been tripped. For more information, see the PWM_
TRIPCFG.MODE0A bit description.
0 Channel D Self-Restart Trip Status is "not

tripped"
1 Channel D Self-Restart Trip Status is

"tripped"
10
(R/W1C)

FLTTRIPD Fault Trip Status for Channel D.
The PWM_STAT.FLTTRIPD bit indicates whether the PWM Channel D
fault has been tripped. For more information, see the PWM_TRIPCFG.
MODE0A bit description.
0 Channel D Fault Trip Status is "not tripped"
1 Channel D Fault Trip Status is "tripped"

Table 18-9: PWM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

9
(R/NW)

SRTRIPC Self-Restart Trip Status for Channel C.
The PWM_STAT.SRTRIPC bit indicates whether the PWM Channel C
self-restart has been tripped. For more information, see the PWM_
TRIPCFG.MODE0A bit description.
0 Channel C Self-Restart Trip Status is "not

tripped"
1 Channel C Self-Restart Trip Status is

"tripped"
8
(R/W1C)

FLTTRIPC Fault Trip Status for Channel C.
The PWM_STAT.FLTTRIPC bit indicates whether the PWM Channel C
fault has been tripped. For more information, see the PWM_TRIPCFG.
MODE0A bit description.
0 Channel C Fault Trip Status is "not tripped"
1 Channel C Fault Trip Status is "tripped"

7
(R/NW)

SRTRIPB Self-Restart Trip Status for Channel B.
The PWM_STAT.SRTRIPB bit indicates whether the PWM Channel B
self-restart has been tripped. For more information, see the PWM_
TRIPCFG.MODE0A bit description.
0 Channel B Self-Restart Trip Status is "not

tripped"
1 Channel B Self-Restart Trip Status is

"tripped"
6
(R/W1C)

FLTTRIPB Fault Trip Status for Channel B.
The PWM_STAT.FLTTRIPB bit indicates whether the PWM Channel B
fault has been tripped. For more information, see the PWM_TRIPCFG.
MODE0A bit description.
0 Channel B Fault Trip Status is "not tripped"
1 Channel A Fault Trip Status is "tripped"

5
(R/NW)

SRTRIPA Self-Restart Trip Status for Channel A.
The PWM_STAT.SRTRIPA bit indicates whether the PWM Channel A
self-restart has been tripped. For more information, see the PWM_
TRIPCFG.MODE0A bit description.
0 Channel A Self-Restart Trip Status is "not

tripped"
1 Channel A Self-Restart Trip Status is

"tripped"

Table 18-9: PWM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–57

Interrupt Mask Register

The PWM_IMSK register masks (disables) or unmasks (enables) PWM interrupts. When an unmasked inter-
rupt occurs, the PWM latches the interrupt status in the PWM_ILAT register.

4
(R/W1C)

FLTTRIPA Fault Trip Status for Channel A.
The PWM_STAT.FLTTRIPA bit indicates whether the PWM Channel A
fault has been tripped. For more information, see the PWM_TRIPCFG.
MODE0A bit description.
0 Channel A Fault Trip Status is "not tripped"
1 Channel A Fault Trip Status is "tripped"

3
(R/NW)

RAWTRIP1 Raw Trip 1 Status.
The PWM_STAT.RAWTRIP1 bit indicates the raw input level for the
PWM TRIP1 input.
0 TRIP1 Level is Low
1 TRIP1 Level is High

2
(R/NW)

RAWTRIP0 Raw Trip 0 Status.
The PWM_STAT.RAWTRIP0 bit indicates the raw input level for the
PWM TRIP0 input.
0 TRIP0 Level is Low
1 TRIP0 Level is High

1
(R/W1C)

TRIP1 Status bit set when TRIP1 is active low.
The PWM_STAT.TRIP1 bit indicates whether the PWM TRIP1 fault
has been tripped with an active-low input.
0 TRIP1 status is "not tripped"
1 TRIP1 status is "tripped" (active low)

0
(R/W1C)

TRIP0 Status bit set when TRIP0 is active low.
The PWM_STAT.TRIP0 bit indicates whether the PWM TRIP0 fault
has been tripped with an active-low input.
0 TRIP0 status is "not tripped"
1 TRIP0 status is "tripped" (active low)

Table 18-9: PWM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-25: PWM_IMSK Register Diagram

Table 18-10: PWM_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

20
(R/W)

TMR4PER PWMTMR4 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR4PER bit enables (unmasks) the PWMTMR4
period boundary interrupt. This condition occurs when the timers
period boundary is reached (PWM_STAT.TMR4PER =1).
0 Mask PWMTMR4 Period Interrupt
1 Unmask PWMTMR4 Period Interrupt

19
(R/W)

TMR3PER PWMTMR3 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR3PER bit enables (unmasks) the PWMTMR3
period boundary interrupt. This condition occurs when the timers
period boundary is reached (PWM_STAT.TMR3PER =1).
0 Mask PWMTMR3 Period Interrupt
1 Unmask PWMTMR3 Period Interrupt

18
(R/W)

TMR2PER PWMTMR2 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR2PER bit enables (unmasks) the PWMTMR2
period boundary interrupt. This condition occurs when the timers
period boundary is reached (PWM_STAT.TMR2PER =1).
0 Mask PWMTMR2 Period Interrupt
1 Unmask PWMTMR2 Period Interrupt

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–59

Interrupt Latch Register

The PWM_ILAT register latches the occurrence of unmasked (enabled) PWM interrupts. These interrupts
are unmasked or masked with the PWM_IMSK register.

17
(R/W)

TMR1PER PWMTMR1 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR1PER bit enables (unmasks) the PWMTMR1
period boundary interrupt. This condition occurs when the timers
period boundary is reached (PWM_STAT.TMR1PER =1).
0 Mask PWMTMR1 Period Interrupt
1 Unmask PWMTMR1 Period Interrupt

16
(R/W)

TMR0PER PWMTMR0 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR0PER bit enables (unmasks) the PWMTMR0
period boundary interrupt. This condition occurs when the timers
period boundary is reached (PWM_STAT.TMR0PER =1).
0 Mask PWMTMR0 Period Interrupt
1 Unmask PWMTMR0 Period Interrupt

1
(R/W)

TRIP1 TRIP1 Interrupt Enable.
The PWM_IMSK.TRIP1 bit enables (unmasks) the TRIP1 interrupt.
This condition occurs when fault input is tripped (PWM_STAT.TRIP1
=1).
0 Mask TRIP1 Interrupt
1 Unmask TRIP1 Interrupt

0
(R/W)

TRIP0 TRIP0 Interrupt Enable.
The PWM_IMSK.TRIP0 bit enables (unmasks) the TRIP0 interrupt.
This condition occurs when fault input is tripped (PWM_STAT.TRIP0
=1).
0 Mask TRIP0 Interrupt
1 Unmask TRIP0 Interrupt

Table 18-10: PWM_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-26: PWM_ILAT Register Diagram

Table 18-11: PWM_ILAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

20
(R/W1C)

TMR4PER PWMTMR4 Period Latched Interrupt Status.
The PWM_ILAT.TMR4PER bit indicates the latched status of the
PWMTMR4 period boundary interrupt.
0 No Interrupt Latched
1 Interrupt Latched

19
(R/W1C)

TMR3PER PWMTMR3 Period Latched Interrupt Status.
The PWM_ILAT.TMR3PER bit indicates the latched status of the
PWMTMR3 period boundary interrupt.
0 No Interrupt Latched
1 Interrupt Latched

18
(R/W1C)

TMR2PER PWMTMR2 Period Latched Interrupt Status.
The PWM_ILAT.TMR2PER bit indicates the latched status of the
PWMTMR2 period boundary interrupt.
0 No Interrupt Latched
1 Interrupt Latched

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–61

Chop Configuration Register

The PWM_CHOPCFG register holds a divisor value that controls the chopping frequency. The PWM permits
a mixing of the output signals with a high-frequency chopping signal to aid with interfacing to pulse trans-
formers. Also note that high-frequency chopping may be independently enabled for each channel's high-
side and the low-side outputs using channel control bits. (For example, control chopping for Channel A
with the PWM_CHANCFG.ENCHOPAH and PWM_CHANCFG.ENCHOPAH bits.)

17
(R/W1C)

TMR1PER PWMTMR1 Period Latched Interrupt Status.
The PWM_ILAT.TMR1PER bit indicates the latched status of the
PWMTMR1 period boundary interrupt.
0 No Interrupt Latched
1 Interrupt Latched

16
(R/W1C)

TMR0PER PWMTMR0 Period Boundary Interrupt Latched Status.
The PWM_ILAT.TMR0PER bit indicates the latched status of the
PWMTMR0 period boundary interrupt.
0 No Interrupt Latched
1 Interrupt Latched

1
(R/W1C)

TRIP1 TRIP1 Interrupt Latched Status.
The PWM_ILAT.TRIP1 bit indicates the latched status of the TRIP1
interrupt.
0 No Interrupt Latched
1 Interrupt Latched

0
(R/W1C)

TRIP0 TRIP0 Interrupt Latched Status.
The PWM_ILAT.TRIP0 bit indicates the latched status of the TRIP0
interrupt.
0 No Interrupt Latched
1 Interrupt Latched

Table 18-11: PWM_ILAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-27: PWM_CHOPCFG Register Diagram

Dead Time Register

The PWM_DT register controls the dead time, which the PWM inserts into the pairs of output signals. Note
that each channel has its own version of a double buffered dead time register, the double buffering of which
depends on the period boundary of the PWMTMRx that the channel could be currently using. The dead
time, Td, is related to the value in the PWM_DT register by:

Td = PWM_DT x 2 x tCK

Note that the PWM holds the buffered PWM_DT value for a channel at 0 if the channel's low side mode is
independent (for example, PWM_CHANCFG.MODELSA =1). Also, note that the PWM_DT value must be less than
half the respective timer period (for example, PWM_TM0/2). For more information about applying dead time
to PWM output pairs, see the PWM Functional Description section.

Table 18-12: PWM_CHOPCFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Gate Chopping Divisor.
The PWM_CHOPCFG.VALUE bits provide the high frequency chopping
divisor. When the divisor value is changed, the new period takes
effect from the next edge of the chopping signal. The PWM_CHOPCFG.
VALUE value may be calculated using either of the following formulas:

CHOPDIV = [(TCHOP/TCK) / 4] - 1

CHOPDIV = [(fCK / fCHOP) / 4] - 1

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–63

Figure 18-28: PWM_DT Register Diagram

Sync Pulse Width Register

The PWM_SYNC_WID register selects the pulse width for the external sync pulse available on the PWM_SYNC
pin. The relation between the PWM_SYNC_WID register value and the pulse width (TPWM_SYNC) is give by
the formula:

PWM_SYNC_WID = (TPWM_SYNC / tCK) -1

For more information about applying the sync pulse width, see the PWM Functional Description section.
Note that if the pulse width is changed in between sync pulses, the PWM applies the changed width on the
next internal sync pulse. If, while the sync pulse is active, the chosen timer reaches its period boundary, the
changed pulse width takes effect on that period boundary.

Figure 18-29: PWM_SYNC_WID Register Diagram

Table 18-13: PWM_DT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/W)

VALUE Dead Time.
The PWM_DT.VALUE bits select the dead time that the PWM adds to
the timing of the output pairs.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timer 0 Period Register

The PWM_TM0 register controls the switch period (TSP of the PWMTMR0 timer. The PWM_TM0 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM0= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM0 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Figure 18-30: PWM_TM0 Register Diagram

Table 18-14: PWM_SYNC_WID Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/W)

VALUE Sync Pulse Width.
The PWM_SYNC_WID.VALUE bits select the pulse width for the external
sync pulse available on the PWM_SYNC pin.

Table 18-15: PWM_TM0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR0 Period Value.
The PWM_TM0.VALUE bits select the period for the PWMTMR0 timer.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–65

Timer 1 Period Register

The PWM_TM1 register controls the switch period (TSP of the PWMTMR1 timer. The PWM_TM1 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM1= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM1 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Figure 18-31: PWM_TM1 Register Diagram

Timer 2 Period Register

The PWM_TM2 register controls the switch period (TSP of the PWMTMR2 timer. The PWM_TM2 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM1= (TSP) / 2 x tCK

Table 18-16: PWM_TM1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR1 Period Value.
The PWM_TM1.VALUE bits select the period for the PWMTMR1 timer.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM2 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Figure 18-32: PWM_TM2 Register Diagram

Timer 3 Period Register

The PWM_TM3 register controls the switch period (TSP of the PWMTMR3 timer. The PWM_TM3 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM3= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM3 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Table 18-17: PWM_TM2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR2 Period Value.
The PWM_TM2.VALUE bits select the period for the PWMTMR2 timer.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–67

Figure 18-33: PWM_TM3 Register Diagram

Timer 4 Period Register

The PWM_TM4 register controls the switch period (TSP of the PWMTMR4 timer. The PWM_TM4 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM4= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM4 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Table 18-18: PWM_TM3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR3 Period Value.
The PWM_TM3.VALUE bits select the period for the PWMTMR3 timer.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-34: PWM_TM4 Register Diagram

Channel A Delay Register

The PWM_DLYA register controls a delay for the Channel A timer (only PWMTMR1, PWMTMR2,
PWMTMR3 or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the
delay must be enabled (PWM_CTL.DLYAEN =1}. For more information about applying the delay, see the
PWM Functional Description section. Note that the PWM_DLYA delay value must be less that less that twice
the period value of the timer being used for the channel (for example, if PWMTMR1 is used, PWM_DLYA
must be less than 2xPWMTMR1). Also, note that the period of the main timer must be an integer multiple
of the timer being used for the channel (for example, if PWMTMR1 is used, PWMTMR0 = NxPW-
MTMR1, where N is an integer).

Figure 18-35: PWM_DLYA Register Diagram

Table 18-19: PWM_TM4 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR4 Period Value.
The PWM_TM4.VALUE bits select the period for the PWMTMR4 timer.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–69

Channel B Delay Register

The PWM_DLYB register controls a delay for the Channel B timer (only PWMTMR1, PWMTMR2,
PWMTMR3 or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the
delay must be enabled (PWM_CTL.DLYBEN =1}. For more information about applying the delay, see the
PWM Functional Description section. Note that the PWM_DLYB delay value must be less that less that twice
the period value of the timer being used for the channel (for example, if PWMTMR1 is used, PWM_DLYB
must be less than 2xPWMTMR1). Also, note that the period of the main timer must be an integer multiple
of the timer being used for the channel (for example, if PWMTMR1 is used, PWMTMR0 = NxPW-
MTMR1, where N is an integer).

Figure 18-36: PWM_DLYB Register Diagram

Channel C Delay Register

The PWM_DLYC register controls a delay for the Channel C timer (only PWMTMR1, PWMTMR2,
PWMTMR3 or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the

Table 18-20: PWM_DLYA Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Channel A Delay Value.
The PWM_DLYA.VALUE bits select the phase delay between the main
timer (PWMTMR0) and the timer used for Channel A.

Table 18-21: PWM_DLYB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Channel B Delay Value.
The PWM_DLYB.VALUE bits select the phase delay between the main
timer (PWMTMR0) and the timer used for Channel B.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

delay must be enabled (PWM_CTL.DLYCEN =1}. For more information about applying the delay, see the
PWM Functional Description section. Note that the PWM_DLYC delay value must be less that less that twice
the period value of the timer being used for the channel (for example, if PWMTMR1 is used, PWM_DLYC
must be less than 2xPWMTMR1). Also, note that the period of the main timer must be an integer multiple
of the timer being used for the channel (for example, if PWMTMR1 is used, PWMTMR0 = NxPW-
MTMR1, where N is an integer).

Figure 18-37: PWM_DLYC Register Diagram

Channel D Delay Register

The PWM_DLYD register controls a delay for the Channel D timer (only PWMTMR1, PWMTMR2,
PWMTMR3 or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the
delay must be enabled (PWM_CTL.DLYDEN =1}. For more information about applying the delay, see the
PWM Functional Description section. Note that the PWM_DLYD delay value must be less that less that twice
the period value of the timer being used for the channel (for example, if PWMTMR1 is used, PWM_DLYD
must be less than 2xPWMTMR1). Also, note that the period of the main timer must be an integer multiple
of the timer being used for the channel (for example, if PWMTMR1 is used, PWMTMR0 = NxPW-
MTMR1, where N is an integer).

Table 18-22: PWM_DLYC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Channel C Delay Value.
The PWM_DLYC.VALUE bits select the phase delay between the main
timer (PWMTMR0) and the timer used for Channel C.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–71

Figure 18-38: PWM_DLYD Register Diagram

Channel A Control Register

The PWM_ACTL register selects the low and high side output pulse mode, enables low and high side output,
and enables low/high side output crossover.

Figure 18-39: PWM_ACTL Register Diagram

Table 18-23: PWM_DLYD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Channel D Delay Value.
The PWM_DLYD.VALUE bits select the phase delay between the main
timer (PWMTMR0) and the timer used for Channel D.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 18-24: PWM_ACTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:10
(R/W)

PULSEMODELO Low Side Output Pulse Position.
The PWM_ACTL.PULSEMODELO bits select the pulse position for
Channel A low side output. In symmetrical mode, the channel forms
a symmetrical pulse waveform around the centre of the PWM period.
Only one of the duty cycle registers is used for an output in
symmetrical mode. Note that in this mode, the values in the PWM_AL0
register is scaled, such that a value of 0 produces 50% duty. In
asymmetrical mode, the channel forms an asymmetrical pulse
waveform around the centre of the PWM period. This mode uses
both the duty-cycle registers (PWM_AL0 and PWM_AL1). In left half or
right half mode, the channel forms the pulse waveforms on either the
first half (left) or the second half (right) of the PWM period. This
mode uses both the duty-cycle registers (PWM_AL0 and PWM_AL1).
0 Symmetrical
1 Asymmetrical
2 Left Half
3 Right Half

9:8
(R/W)

PULSEMODEHI High Side Output Pulse Position.
The PWM_ACTL.PULSEMODEHI bits select the pulse position for
Channel A high side output. In symmetrical mode, the channel forms
a symmetrical pulse waveform around the centre of the PWM period.
Only one of the duty cycle registers is used for an output in
symmetrical mode. Note that in this mode, the values in the PWM_AH0
register is scaled, such that a value of 0 produces 50% duty. In
asymmetrical mode, the channel forms an asymmetrical pulse
waveform around the centre of the PWM period. This mode uses
both the duty-cycle registers (PWM_AH0 and PWM_AH1). In left half or
right half mode, the channel forms the pulse waveforms on either the
first half (left) or the second half (right) of the PWM period. This
mode uses both the duty-cycle registers (PWM_AH0 and PWM_AH1).
0 Symmetrical
1 Asymmetrical
2 Left Half
3 Right Half

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–73

Channel A-High Duty-0 Register

The PWM_AH0 and PWM_AH1 registers determine the width for the high side output pulses. The values in
these registers select the assertion count (in terms of tCK) of the high side output pulses for the Channel A
duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_ACTL.
PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_AH0 register
to determine the assertion and de-assertion count for the high side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel A high pulse output for count less than
PWM_AH0 and de-asserts this output for count greater than PWM_AH1.

The value range for the PWM_AH0 and PWM_AH1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
AH0 and PWM_AH1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

2
(R/W)

XOVR high-low Crossover Enable.
The PWM_ACTL.XOVR bit enables crossover between the channels high
and low side outputs. When enabled, this bit directs the PWM to
send the low-side output through the high-side output pin and the
high-side output through the low side output pin.
0 Disable Crossover
1 Enable Crossover

1
(R/W)

DISLO Channel Low Side Output Disable.
The PWM_ACTL.DISLO bit enables the channels low side output.
0 Disable Low Side Output
1 Enable Low Side Output

0
(R/W)

DISHI Channel High Side Output Disable.
The PWM_ACTL.DISHI bit enables the channels high side output.
0 Disable High Side Output
1 Enable High Side Output

Table 18-24: PWM_ACTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Note that using values in the PWM_AH0 or PWM_AH1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 18-40: PWM_AH0 Register Diagram

Channel A-High Duty-1 Register

The PWM_AH0 and PWM_AH1 registers determine the width for the high side output pulses. For more infor-
mation, see the PWM_AH0 register description.

Figure 18-41: PWM_AH1 Register Diagram

Table 18-25: PWM_AH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_AH0.DUTY bits select the duty cycle asserted count for
Channel A high side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–75

Channel A-Low Duty-0 Register

The PWM_AL0 and PWM_AL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the Channel A duty
cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_ACTL.
PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_AL0 register
to determine the assertion and de-assertion count for the low side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel A low pulse output for count less than PWM_
AL0 and de-asserts this output for count greater than PWM_AL1.

The value range for the PWM_AL0 and PWM_AL1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
AL0 and PWM_AL1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_AL0 or PWM_AL1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Table 18-26: PWM_AH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_AH1.DUTY bits select the duty cycle de-asserted count for
Channel A high side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-42: PWM_AL0 Register Diagram

Channel A-Low Duty-1 Register

The PWM_AL0 and PWM_AL1 registers determine the width for the low side output pulses. For more infor-
mation, see the PWM_AL0 register description.

Figure 18-43: PWM_AL1 Register Diagram

Table 18-27: PWM_AL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_AL0.DUTY bits select the duty cycle asserted count for
Channel A low side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–77

Channel B Control Register

The PWM_BCTL register selects the low and high side output pulse mode, enables low and high side output,
and enables low/high side output crossover.

Figure 18-44: PWM_BCTL Register Diagram

Table 18-28: PWM_AL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_AL1.DUTY bits select the duty cycle de-asserted count for
Channel A low side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 18-29: PWM_BCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:10
(R/W)

PULSEMODELO Low Side Output Pulse Position.
The PWM_BCTL.PULSEMODELO bits select the pulse position for
Channel B low side output. In symmetrical mode, the channel forms
a symmetrical pulse waveform around the centre of the PWM period.
Only one of the duty cycle registers is used for an output in
symmetrical mode. Note that in this mode, the values in the PWM_BL0
register is scaled, such that a value of 0 produces 50% duty. In
asymmetrical mode, the channel forms an asymmetrical pulse
waveform around the centre of the PWM period. This mode uses
both the duty-cycle registers (PWM_BL0 and PWM_BL1). In left half or
right half mode, the channel forms the pulse waveforms on either the
first half (left) or the second half (right) of the PWM period. This
mode uses both the duty-cycle registers (PWM_BL0 and PWM_BL1).
0 Symmetrical
1 Asymmetrical
2 Left Half
3 Right Half

9:8
(R/W)

PULSEMODEHI High Side Output Pulse Position.
The PWM_BCTL.PULSEMODEHI bits select the pulse position for
Channel B high side output. In symmetrical mode, the channel forms
a symmetrical pulse waveform around the centre of the PWM period.
Only one of the duty cycle registers is used for an output in
symmetrical mode. Note that in this mode, the values in the PWM_BH0
register is scaled, such that a value of 0 produces 50% duty. In
asymmetrical mode, the channel forms an asymmetrical pulse
waveform around the centre of the PWM period. This mode uses
both the duty-cycle registers (PWM_BH0 and PWM_BH1). In left half or
right half mode, the channel forms the pulse waveforms on either the
first half (left) or the second half (right) of the PWM period. This
mode uses both the duty-cycle registers (PWM_BH0 and PWM_BH1).
0 Symmetrical
1 Asymmetrical
2 Left Half
3 Right Half

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–79

Channel B-High Duty-0 Register

The PWM_BH0 and PWM_BH1 registers determine the width for the high side output pulses. The values in
these registers select the assertion count (in terms of tCK) of the high side output pulses for the Channel B
duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_BCTL.
PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_BH0 register
to determine the assertion and de-assertion count for the high side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel B high pulse output for count less than PWM_
BH0 and de-asserts this output for count greater than PWM_BH1.

The value range for the PWM_BH0 and PWM_BH1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
BH0 and PWM_BH1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

2
(R/W)

XOVR high-low Crossover Enable.
The PWM_BCTL.XOVR bit enables crossover between the channels high
and low side outputs. When enabled, this bit directs the PWM to
send the low-side output through the high-side output pin and the
high-side output through the low side output pin.
0 Disable Crossover
1 Enable Crossover

1
(R/W)

DISLO Channel Low Side Output Disable.
The PWM_BCTL.DISLO bit enables the channels low side output.
0 Disable Low Side Output
1 Enable Low Side Output

0
(R/W)

DISHI Channel High Side Output Disable.
The PWM_BCTL.DISHI bit enables the channels high side output.
0 Disable High Side Output
1 Enable High Side Output

Table 18-29: PWM_BCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–80 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Note that using values in the PWM_BH0 or PWM_BH1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 18-45: PWM_BH0 Register Diagram

Channel B-High Duty-1 Register

The PWM_BH0 and PWM_BH1 registers determine the width for the high side output pulses. For more infor-
mation, see the PWM_BH0 register description.

Figure 18-46: PWM_BH1 Register Diagram

Table 18-30: PWM_BH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–81

Channel B-Low Duty-0 Register

The PWM_BL0 and PWM_BL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the Channel B duty
cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_BCTL.
PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_BL0 register
to determine the assertion and de-assertion count for the low side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel B low pulse output for count less than PWM_
BL0 and de-asserts this output for count greater than PWM_BL1.

The value range for the PWM_BL0 and PWM_BL1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
BL0 and PWM_BL1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_BL0 or PWM_BL1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Table 18-31: PWM_BH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–82 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-47: PWM_BL0 Register Diagram

Channel B-Low Duty-1 Register

The PWM_BL0 and PWM_BL1 registers determine the width for the low side output pulses. For more infor-
mation, see the PWM_BL0 register description.

Figure 18-48: PWM_BL1 Register Diagram

Table 18-32: PWM_BL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_BL0.DUTY bits select the duty cycle asserted count for
Channel B low side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–83

Channel C Control Register

The PWM_CCTL register selects the low and high side output pulse mode, enables low and high side output,
and enables low/high side output crossover.

Figure 18-49: PWM_CCTL Register Diagram

Table 18-33: PWM_BL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_BL1.DUTY bits select the duty cycle de-asserted count for
Channel B low side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–84 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 18-34: PWM_CCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:10
(R/W)

PULSEMODELO Low Side Output Pulse Position.
The PWM_CCTL.PULSEMODELO bits select the pulse position for
Channel C low side output. In symmetrical mode, the channel forms
a symmetrical pulse waveform around the centre of the PWM period.
Only one of the duty cycle registers is used for an output in
symmetrical mode. Note that in this mode, the values in the PWM_CL0
register is scaled, such that a value of 0 produces 50% duty. In
asymmetrical mode, the channel forms an asymmetrical pulse
waveform around the centre of the PWM period. This mode uses
both the duty-cycle registers (PWM_CL0 and PWM_CL1). In left half or
right half mode, the channel forms the pulse waveforms on either the
first half (left) or the second half (right) of the PWM period. This
mode uses both the duty-cycle registers (PWM_CL0 and PWM_CL1).
0 Symmetrical
1 Asymmetrical
2 Left Half
3 Right Half

9:8
(R/W)

PULSEMODEHI High Side Output Pulse Position.
The PWM_CCTL.PULSEMODEHI bits select the pulse position for
Channel C high side output. In symmetrical mode, the channel forms
a symmetrical pulse waveform around the centre of the PWM period.
Only one of the duty cycle registers is used for an output in
symmetrical mode. Note that in this mode, the values in the PWM_CH0
register is scaled, such that a value of 0 produces 50% duty. In
asymmetrical mode, the channel forms an asymmetrical pulse
waveform around the centre of the PWM period. This mode uses
both the duty-cycle registers (PWM_CH0 and PWM_CH1). In left half or
right half mode, the channel forms the pulse waveforms on either the
first half (left) or the second half (right) of the PWM period. This
mode uses both the duty-cycle registers (PWM_CH0 and PWM_CH1).
0 Symmetrical
1 Asymmetrical
2 Left Half
3 Right Half

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–85

Channel C-High Pulse Duty Register 0

The PWM_CH0 and PWM_CH1 registers determine the width for the high side output pulses. The values in
these registers select the assertion count (in terms of tCK) of the high side output pulses for the Channel C
duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_CCTL.
PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_CH0 register
to determine the assertion and de-assertion count for the high side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel C high pulse output for count less than
PWM_CH0 and de-asserts this output for count greater than PWM_CH1.

The value range for the PWM_CH0 and PWM_CH1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
CH0 and PWM_CH1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

2
(R/W)

XOVR high-low Crossover Enable.
The PWM_CCTL.XOVR bit enables crossover between the channels high
and low side outputs. When enabled, this bit directs the PWM to
send the low-side output through the high-side output pin and the
high-side output through the low side output pin.
0 Disable Crossover
1 Enable Crossover

1
(R/W)

DISLO Channel Low Side Output Disable.
The PWM_CCTL.DISLO bit enables the channels low side output.
0 Disable Low Side Output
1 Enable Low Side Output

0
(R/W)

DISHI Channel High Side Output Disable.
The PWM_CCTL.DISHI bit enables the channels high side output.
0 Disable High Side Output
1 Enable High Side Output

Table 18-34: PWM_CCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–86 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Note that using values in the PWM_CH0 or PWM_CH1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 18-50: PWM_CH0 Register Diagram

Channel C-High Pulse Duty Register 1

The PWM_CH0 and PWM_CH1 registers determine the width for the high side output pulses. For more infor-
mation, see the PWM_CH0 register description.

Figure 18-51: PWM_CH1 Register Diagram

Table 18-35: PWM_CH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_CH0.DUTY bits select the duty cycle asserted count for
Channel C high side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–87

Channel C-Low Pulse Duty Register 0

The PWM_CL0 and PWM_CL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the Channel C duty
cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_CCTL.
PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_CL0 register
to determine the assertion and de-assertion count for the low side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel C low pulse output for count less than PWM_
CL0 and de-asserts this output for count greater than PWM_CL1.

The value range for the PWM_CL0 and PWM_CL1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
CL0 and PWM_CL1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_CL0 or PWM_CL1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Table 18-36: PWM_CH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_CH1.DUTY bits select the duty cycle de-asserted count for
Channel C high side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–88 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-52: PWM_CL0 Register Diagram

Channel C-Low Duty-1 Register

Figure 18-53: PWM_CL1 Register Diagram

Table 18-37: PWM_CL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_CL0.DUTY bits select the duty cycle asserted count for
Channel C low side output.

Table 18-38: PWM_CL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–89

Channel D Control Register

The PWM_DCTL register selects the low and high side output pulse mode, enables low and high side output,
and enables low/high side output crossover.

Figure 18-54: PWM_DCTL Register Diagram

Table 18-39: PWM_DCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:10
(R/W)

PULSEMODELO Low Side Output Pulse Position.
The PWM_DCTL.PULSEMODELO bits select the pulse position for
Channel D low side output. In symmetrical mode, the channel forms
a symmetrical pulse waveform around the centre of the PWM period.
Only one of the duty cycle registers is used for an output in
symmetrical mode. Note that in this mode, the values in the PWM_DL0
register is scaled, such that a value of 0 produces 50% duty. In
asymmetrical mode, the channel forms an asymmetrical pulse
waveform around the centre of the PWM period. This mode uses
both the duty-cycle registers (PWM_DL0 and PWM_DL1). In left half or
right half mode, the channel forms the pulse waveforms on either the
first half (left) or the second half (right) of the PWM period. This
mode uses both the duty-cycle registers (PWM_DL0 and PWM_DL1).
0 Symmetrical
1 Asymmetrical
2 Left Half
3 Right Half

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–90 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

9:8
(R/W)

PULSEMODEHI High Side Output Pulse Position.
The PWM_DCTL.PULSEMODEHI bits select the pulse position for
Channel D high side output. In symmetrical mode, the channel
forms a symmetrical pulse waveform around the centre of the PWM
period. Only one of the duty cycle registers is used for an output in
symmetrical mode. Note that in this mode, the values in the PWM_DH0
register is scaled, such that a value of 0 produces 50% duty. In
asymmetrical mode, the channel forms an asymmetrical pulse
waveform around the centre of the PWM period. This mode uses
both the duty-cycle registers (PWM_DH0 and PWM_DH1). In left half or
right half mode, the channel forms the pulse waveforms on either the
first half (left) or the second half (right) of the PWM period. This
mode uses both the duty-cycle registers (PWM_DH0 and PWM_DH1).
0 Symmetrical
1 Asymmetrical
2 Left Half
3 Right Half

2
(R/W)

XOVR high-low Crossover Enable.
The PWM_DCTL.XOVR bit enables crossover between the channels high
and low side outputs. When enabled, this bit directs the PWM to
send the low-side output through the high-side output pin and the
high-side output through the low side output pin.
0 Disable Crossover
1 Enable Crossover

1
(R/W)

DISLO Channel Low Side Output Disable.
The PWM_DCTL.DISLO bit enables the channels low side output.
0 Disable Low Side Output
1 Enable Low Side Output

0
(R/W)

DISHI Channel High Side Output Disable.
The PWM_DCTL.DISHI bit enables the channels high side output.
0 Disable High Side Output
1 Enable High Side Output

Table 18-39: PWM_DCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–91

Channel D-High Duty-0 Register

The PWM_DH0 and PWM_DH1 registers determine the width for the high side output pulses. The values in
these registers select the assertion count (in terms of tCK) of the high side output pulses for the Channel D
duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_DCTL.
PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_DH0 register
to determine the assertion and de-assertion count for the high side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel D high pulse output for count less than
PWM_DH0 and de-asserts this output for count greater than PWM_DH1.

The value range for the PWM_DH0 and PWM_DH1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
DH0 and PWM_DH1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_DH0 or PWM_DH1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 18-55: PWM_DH0 Register Diagram

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–92 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Channel D-High Pulse Duty Register 1

The PWM_DH0 and PWM_DH1 registers determine the width for the high side output pulses. For more infor-
mation, see the PWM_DH0 register description.

Figure 18-56: PWM_DH1 Register Diagram

Channel D-Low Pulse Duty Register 0

The PWM_DL0 and PWM_DL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the Channel D duty
cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_DCTL.
PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_DL0 register
to determine the assertion and de-assertion count for the low side output pulses. When the pulse mode is

Table 18-40: PWM_DH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_DH0.DUTY bits select the duty cycle asserted count for
Channel D high side output.

Table 18-41: PWM_DH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_DH1.DUTY bits select the duty cycle de-asserted count for
Channel D high side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 18–93

asymmetrical, left half, or right half, the PWM asserts Channel D low pulse output for count less than PWM_
DL0 and de-asserts this output for count greater than PWM_DL1.

The value range for the PWM_DL0 and PWM_DL1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
DL0 and PWM_DL1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_DL0 or PWM_DL1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 18-57: PWM_DL0 Register Diagram

Channel D-Low Pulse Duty Register 1

The PWM_DL0 and PWM_DL1 registers determine the width for the low side output pulses. For more infor-
mation, see the PWM_DL0 register description.

Table 18-42: PWM_DL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_DL0.DUTY bits select the duty cycle asserted count for
Channel D low side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-BF60X PWM REGISTER DESCRIPTIONS

18–94 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 18-58: PWM_DL1 Register Diagram

Table 18-43: PWM_DL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_DL1.DUTY bits select the duty cycle de-asserted count for
Channel D low side output.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–1

19 Universal Asynchronous Receiver/Transmitter
(UART)

The UART module is a full-duplex peripheral compatible with PC-style industry-standard UARTs. The
UART converts data between serial and parallel formats. The serial communication follows an asynchro-
nous protocol that supports various word lengths, stop bits, bit rates and parity generation options. The
UART includes interrupt-handling hardware. Interrupts can be generated from multiple events.

The UART is logically compliant to EIA-232E, EIA-422, EIA-485 and LIN standards, but usually requires
external transceiver devices to meet electrical requirements. In IrDA (Infrared Data Association) mode,
the UART meets the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol. In multi-drop bus mode, the
UART meets the full-duplex MDB/ICP v2.0 protocol.

Partial modem status and control functionality is supported by the UART module to allow for hardware
flow control.

The UART is a DMA-capable peripheral with separate transmit and receive DMA master channels. The
use of DMA requires minimal software intervention as the DMA engine moves the data. The UART can
also use a programmed core mode of operation. The core mode requires software management of the data
flow using either interrupts or polling.

One of the peripheral timers can be used to provide a hardware-assisted auto-baud detection mechanism
for use with the UART. The timers are external to the UART.

UART Features
Each UART includes the following features.

• 5–8 data bits

• Programmable extra stop bit and programmable extra half-stop bit

• Even, odd, and sticky parity bit options

• Additional 8-stage receive FIFO with programmable threshold interrupt

• Flexible transmit and receive interrupt timing

• 3 interrupt outputs for receive, transmit, and status

• Independent DMA operation for receive and transmit

• Programmable automatic request to send (RTS)/clear to send (CTS) hardware flow control

• False start bit detection

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

19–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• SIR IrDA operation mode

• MDB/ICP v2.0 operation mode

• Internal loop back

• Improved bit rate granularity

• LIN break command/Inter-frame gap transmission support

UART Functional Description
The following sections provide details on the UARTs functionality.

ADSP-BF60x UART Register List

The universal asynchronous receiver/transmitter (UART) module is a full-duplex peripheral compatible
with PC-style industry-standard UARTs. The UARTs convert data between serial and parallel formats.
The serial communication follows an asynchronous protocol that supports various word length, stop bits,
and parity generation options. The UARTs include interrupt-handling hardware. Interrupts can be gener-

Table 19-1: UART Specifications

Feature Availability

Protocol
Master-Capable Yes
Slave-Capable Yes
Transmission Simplex Yes
Transmission Half-Duplex Yes
Transmission Full-Duplex Yes
Access Type
Data Buffer Yes
Core Data Access Yes
DMA Data Access Yes
DMA Channels 2 (per UART Port)
DMA Descriptor Yes
Boot Capable Yes (Slave Mode)
Local Memory No
Clock Operation SCLK/16

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–3

ated from multiple events. A set of registers govern UART operations. For more information on UART
functionality, see the UART register descriptions.

ADSP-BF60x UART Interrupt List

Table 19-2: ADSP-BF60x UART Register List

Name Description

UART_CTL Control Register

UART_STAT Status Register

UART_SCR Scratch Register

UART_CLK Clock Rate Register

UART_IMSK Interrupt Mask Register

UART_IMSK_SET Interrupt Mask Set Register

UART_IMSK_CLR Interrupt Mask Clear Register

UART_RBR Receive Buffer Register

UART_THR Transmit Hold Register

UART_TAIP Transmit Address/Insert Pulse Register

UART_TSR Transmit Shift Register

UART_RSR Receive Shift Register

UART_TXCNT Transmit Counter Register

UART_RXCNT Receive Counter Register

Table 19-3: ADSP-BF60x UART Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

UART0 Transmit DMA 80 17 LEVEL
UART0 Receive DMA 81 18 LEVEL
UART0 Status 82 LEVEL
UART1 Transmit DMA 83 19 LEVEL

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

19–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x UART Trigger List

ADSP-BF60x UART DMA List

UART1 Receive DMA 84 20 LEVEL
UART1 Status 85 LEVEL

Table 19-4: ADSP-BF60x UART Trigger List Trigger Masters

Description Trigger ID Sensitivity

UART0 Transmit DMA 39 PULSE/EDGE
UART0 Receive DMA 40 PULSE/EDGE
UART1 Transmit DMA 41 PULSE/EDGE
UART1 Receive DMA 42 PULSE/EDGE

Table 19-5: ADSP-BF60x UART Trigger List Trigger Slaves

Description Trigger ID Sensitivity

UART0 Transmit DMA 39
UART0 Receive DMA 40
UART1 Transmit DMA 41
UART1 Receive DMA 42

Table 19-6: ADSP-BF60x UART DMA List DMA Channel List

Description DMA Channel

UART0 Transmit DMA DMA17
UART0 Receive DMA DMA18
UART1 Transmit DMA DMA19
UART1 Receive DMA DMA20

Table 19-3: ADSP-BF60x UART Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–5

UART Block Diagram

The following figure shows a simplified block diagram of one UART module and how it interconnects to
the processor system.

Figure 19-1: UART Block Diagram

UART Architectural Concepts

The following sections provide information about the UART architecture.

Internal Interface

The UART is a DMA-capable peripheral with support for separate transmit and receive DMA master
channels. It can be used in either DMA or programmed core modes of operation. The core mode requires
software management of the data flow using either interrupts or polling. The DMA method requires
minimal software intervention, as the DMA engine itself moves the data. The UART_RBR and UART_THR
registers also connect to one of the peripheral DMA buses (8-bit data width).

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

19–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

All UART registers are 32 bits wide and the registers connect to the peripheral MMR bus. Not all MMRs
may be used and unused bits are zero-filled. The UART has three interrupt outputs described below.

• The transmit request and receive request outputs can function as DMA requests and connect to the
DMA controller. Therefore, if the DMA is not enabled, the DMA controller simply forwards the
request to the system event controller (SEC).

• The status interrupt output connects directly to the SEC. On many processors, the UART_RX pin is also
sensed by the alternative capture input (TIMER_ACIn) of one of the GP timers. When configured in
capture mode, the GP timer can then be used to detect the bit rate of the received signal.

External Interface

Each UART features an UART_RX (receive) and an UART_TX (transmit) pin available through the general-
purpose ports. These two pins usually connect to an external transceiver device that meets the electrical
requirements of full duplex (for example, EIA-232, EIA-422, 4-wire EIA-485) or half duplex (for example,
2-wire EIA-485, LIN) standards. Additionally, the UART features a pair of clear to send, input pins (UART_
CTS) and request to send, output pins (UART_RTS) for hardware flow control. UART signals are usually
multiplexed with other functions at the pin level.

Hardware Flow Control

To prevent the UART transmitter from sending data while the receiving counterpart is not ready, a UART_
RTS/UART_CTS hardware flow control mechanism is supported. The UART_RTS signal is an output that
connects to the communication partner’s UART_CTS input. If data transfer is bidirectional, the handshake
is as shown in the figure below.

Figure 19-2: UART Hardware Flow

The receiver can de-assert the UART_RTS signal to indicate that its receive buffer is getting full in both DMA
and core mode because continued data transfers may cause an overrun error. Consequently, the trans-
mitter pauses when the UART_CTS input is in a de-asserted state. In this state the transmitter completes
transmission of the data currently held in the transmit shift register (UART_TSR) but it does not continue

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–7

with the data in the transmit hold register (UART_THR). If the UART_CTS pin is asserted again, the trans-
mitter resumes and loads the content of UART_THR register into the UART_TSR register.

UART Bit Rate Generation

The sample clock is characterized by the peripheral clock (SCLK) and the 16-bit divisor in the UART_
CLKregister. The UART clock is enabled by the UART_CTL.ENbit. By default every serial bit is oversampled
16 times. The bit clock is 1/16th of the sample clock. If not in IrDA mode, the bit clock can equal the sample
clock if the UART_CLK.EDBObit is set, so that the following equation applies:

Bit Rate = SCLK/16 (1-EDBO) × Divisor

ADSP-BF60x Processor Example

The following table provides example divide factors required to support standard baud rates at a SCLK of
125 MHz.

NOTE: Careful selection of SCLKfrequencies—that is, even multiples of desired bit rates— can result in
lower error percentages.

Setting the bit clock equal to the sample clock (UART_CLK.EDBO=1) improves bit rate granularity
and enables the bit clock to more closely match the bit rate of the communication partner. The
disadvantage to this configuration is that the power dissipation is higher and the sample points may
not be as accurate. Therefore, it is recommended to use UART_CLK.EDBO=1 mode only when bit
rate accuracy is not acceptable in UART_CLK.EDBO=0 mode.

Table 19-7: UART Bit Rate Examples With 125 MHz SCLK0

Bit Rate

D factor = 16 D factor = 1

DL Actual % Error DL Actual % Error

2,400 3,255 2,400.15 0.006 52,083 2,400.02 0.001
4,800 1,628 4,798.83 0.024 26,042 4,799.94 0.001
9,600 814 9,597.67 0.024 13,021 9,599.88 0.001
19,200 407 19,195.33 0.024 6,510 19,201.23 0.006
38,400 203 38,485.22 0.022 3,255 38,402.46 0.006
57,600 136 57,444.85 0.269 2,170 57,603.69 0.006
115,200 68 114,889.71 0.269 1,085 115,207.37 0.006
921,600 8 976,562.50 5.964 136 919,117.65 0.269
1,500,000 5 1,562,500.00 4.167 83 1,516,021.10 0.402
3,000,000 3 2,604,166.67 13.194 42 2,976,190.48 0.794
6,250,000 1 7,812,500.00 25.000 20 6,250,000.00 0.000

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

19–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The UART_CLK.EDBO=1 mode is not intended to increase operation speed beyond the electrical
limitations of the UART transfer protocol.

Autobaud Detection

At the chip level, the UART_RX pin is usually routed to an alternate capture input (TIMER_ACIn) of a
general-purpose timer. When working in width capture mode, this general-purpose timer can be used to
automatically detect the bit rate applied to the UART_RX pin by an external device. The capture capabilities
of the timer are often used to supervise the bit rate at runtime. If the UART was communicating with any
device supplied by a weak clock oscillator that drifts over time, the processor can then readjust its UART
bit rate dynamically as required.

Often, autobaud detection is used for initial bit rate negotiations where the processor is most likely a slave
device waiting for the host to send a predefined autobaud character. This is a common situation for UART
booting. The UART_CTL.EN bit should not be enabled while autobaud detection is performed, to prevent
the UART from starting a receive operation with incorrect bit rate matching. Alternatively, the UART can
be disconnected from its UART_RX pin by setting the UART_CTL.LOOP_EN bit.

A software routine can detect the pulse widths of serial stream bit cells. Because the sample base of the
timer is synchronous with the UART operation (all derived from the same SCLK) the pulse widths can be
used to calculate the bit rate divider for the UART by using the following formula.

A software routine can detect the pulse widths of serial stream bit cells. Because the sample base of the
timer is synchronous with the UART operation—all derived from the same SCLK—the pulse widths can
be used to calculate the bit rate divider for the UART by using the following formula.

Divisor = TIMER_TMRn_WID/16(1–EDBO) × Number of captured UART bits

In order to increase the number of timer counts and therefore the resolution of the captured signal, it is
recommended not to measure just the pulse width of a single bit, but to enlarge the pulse of interest over
more bits. Traditionally, a NULL character (ASCII 0x00) is used in autobaud detection, as shown below.

Figure 19-3: Autobaud Detection

Because the example frame encloses 8 data bits and 1 start bit, apply the following formula.

Divisor = TIMER_TMRn_WID/16(1–EDBO) × 9

Real receive signals often have asymmetrical falling and rising edges, and the sampling logic level is not
exactly in the middle of the signal voltage range. At higher bit rates, such pulse-width-based autobaud

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–9

detection might not return adequate results without additional analog signal conditioning. Measuring
signal periods works around this issue and is strongly recommended.

For example, predefine ASCII character “@” (0x40) as the autobaud detection character and measure the
period between two subsequent falling edges. As shown in the figure below, measure the period between
the falling edge of the start bit and the falling edge after bit 6. Since this period encloses 8 bits, apply the
following formula.

Divisor = TIMER_TMRn_PER/16(1–EDBO) × 8

Or:

• Divisor = TIMER_TMRn_PER>> 7 if UART_CLK.EDBO=0

• Divisor = TIMER_TMRn_PER>> 3 if UART_CLK.EDBO=1

The following figure shows the ASCII “@” (0x40) detection character.

Figure 19-4: Autobaud Detection Character 0x40

UART Debug Features

The UART has the option to automatically calculate and transmit a parity bit. The following table summa-
rizes parity behavior assuming 8-bit data words (UART_CTL.WLS=b#11).

Table 19-8: UART Parity

PEN STP EPS Data (hex)
Data (binary, LSB

first) Parity

0 x x x x None
1 0 0 0x60 0000 0110 1
1 0 0 0x57 1110 1010 0
1 0 1 0x60 0000 0110 0
1 0 1 0x57 1110 1010 1
1 1 0 x x 1

1 1 1 x x 0

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

19–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The two force error bits, UART_CTL.FPE and UART_CTL.FFE, are intended for test purposes. They are
useful for debugging software, especially in loop back mode.

The UART can be set to internal loop back mode (UART_CTL.LOOP_EN=1). Loop back mode disconnects
the receiver’s input from the receive pin and internally redirects the transmit output to the receiver. The
transmit pin remains active and continues to transmit data externally as well. Loop back mode also forces
the UART_RTS pin to de-assert, disconnects the UART_STAT.CTS bit from the UART_CTS input pin, and
connects the internal version of UART_RTS to the UART_STAT.CTS bit.

Additionally, the UART_TX pin can be forced to zero asynchronously using the UART_CTL.SB bit.

UART Operating Modes
The UART’s main operating modes are described in the following sections.

• UART Mode

• IrDA SIR Mode

• Multi-Drop Bus Mode

UART Mode

The UART Mode follows an asynchronous serial communication protocol with these options:

• 1 start bit

• 5-8 data bits

• Address bit (available in MDB mode only)

• None, even, odd or sticky parity

• 1, 1½, or 2 stop bits (1½ stop bits valid only in 5-bit word length)

The format of received and transmitted character frames is controlled by the UART_CTL register. Data is
always transmitted and received with the least significant bit (LSB) first.

The following figure shows a typical physical bit stream measured on a UART_TX pin.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–11

Figure 19-5: Bit Stream on a UART TX Pin Transmitting an “S” Character (0x53)

IrDA SIR Mode

The UART also supports serial data communication by way of infrared signals, according to the recom-
mendations of the Infrared Data Association (IrDA). The physical layer known as IrDA SIR (9.6/115.2
Kbps rate) is based on return-to-zero-inverted (RZI) modulation. Pulse position modulation is not
supported.

Using the 16x data rate clock, RZI modulation is achieved by inverting and modulating the non-return-to-
zero (NRZ) code normally transmitted by the UART. On the receive side, the 16x clock is used to deter-
mine an IrDA pulse sample window, from which the RZI modulated NRZ code is recovered.

NOTE: The UART_CLK.EDBO bit is not valid in IrDA mode—this bit should be cleared (=0) in this mode.

Multi-Drop Bus Mode

The UART protocol is not only used for point-to-point connections (defined in the EIA-232 standard),
but also in networks where the EIA-485 standard is a popular representative of UART-based bus systems.
In such networks node addressing is important.

In a multidrop bus (MDB) network for example, the UART frame is enhanced by an address bit. The
address bit is inserted between the data bits and the optional parity bit. To configure the UART for MDB
mode, the mode of operation bits (UART_CTL.MOD [5:4]) should be set to 01.

By convention the address bit is transmitted low for regular data bytes. If set it marks special address bytes
that require the attention of all nodes on the network.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

19–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 19-6: UART Frame with Address Bit

All transmit operations are processed through the transmit buffer register (UART_THR), so all DMA data
transmissions clear the address bit. If data is written to the transmit address/insert pulse register (UART_
TAIP) instead, the same transmit operation is initiated with the only exception that the address bit is sent
high.

The receiver’s UART_STAT.ADDR bit signals whether the frame that was just received had the address bit set
or not. It is updated by hardware every time a new frame has been received. When the enable address word
interrupt bit (UART_IMSK.EAWI) is set, the reception of an address byte triggers a special status interrupt.

The address sticky bit (UART_STAT.ASTKY) is the sticky version of the UART_STAT.ADDR bit. It is set by
hardware whenever the UART_STAT.ADDR bit is set. The UART_STAT.ASTKY bit can only be cleared by soft-
ware with a W1C operation.

In MDB mode, only address bytes progress to the receive FIFO by default. Data bytes are gated unless the
UART_STAT.ASTKY bit is set. The receiver ignores all traffic on the UART bus. This way, the processor can
go into low power mode and is not loaded by interrupt activity every time a frame is transmitted on the
UART bus. If, however, an address frame is transmitted, the receiver immediately samples all further
traffic. A software routine can analyze the received data, decide whether it was of relevance for the local
network node, and W1C the UART_STAT.ASTKY bit if it was not.

Software can overrule hardware address frame detection by setting the UART_STAT.ADDR bit and (indi-
rectly) the UART_STAT.ASTKY bit with a W1S operation.

The MDB mode follows an asynchronous serial communication protocol with the following options.

• 1 start bit

• 5-8 data bits

• Address bit

• None, even, odd or sticky parity

• 1, 1½, or 2 stop bits (1½ stop bits valid only in 5-bit word length)

NOTE: If the address bit and parity bit are both enabled, the parity check and generation includes the
address bit in its parity calculation.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–13

UART Data Transfer Modes

The UART is capable of transferring data using both the core and DMA. Receive and transmit paths
operate completely independently except that the bit rate and the frame format are identical for both
transfer directions. Transmit and receive channels are both buffered. The UART_THR register buffers the
transmit shift register (UART_TSR) and the UART_RBR register buffers the receive shift register (UART_RSR).

UART Mode Transmit Operation (Core)

In core mode, data is moved to and from the UART by the processor core. A write to the UART_THR register
initiates the transmit operation. If no former operation is pending, the data is immediately passed from the
UART_THR register to the UART_TSR register. There, it is shifted out at the bit rate characterized by the UART_
CTL register, with start, stop, and parity bits appended as defined by the UART_CTL register.

The UART_THR register and the UART_TSR register can be modeled as a two-stage transmit buffer. The least
significant bit (LSB) is always transmitted first. This is bit 0 of the value written to the UART_THR register.

UART Mode LIN Break Command

Some UART-based protocols demand synchronization methods that are not native to standard UART
implementations. For example, the Local Interconnect Network (LIN) protocol requires a low-pulse of
well-defined length to be transmitted as a prologue to every multi-byte message. It length needs to be at
least 13 bit times.

With previous UARTs there were two options to implement this protocol: either a null byte is transmitted
with a temporarily lowered bit rate, or the period is generated by a software counter and the transmit pin
is pulled low through the asynchronous set break (SB) mechanisms. Since both methods have their disad-
vantages, the newer UART introduces a new inter-frame gap technique.

The feature is not available in MDB or IrDA operating modes, but when in standard UART mode bits
(UART_CTL.MOD [5:4]=00) a write to the UART_TAIP register initiates the transmission of an inter-frame
pulse. If the transmit buffer is not empty, the UART first transmits all bytes in the queue and only initiates
with pulse generation after the last stop bit of the last byte has been shifted out.

The value written into the UART_TAIP register defines the nature and the duration of the transmitted pulse.
Bits [6:0] control the duration in bit times and bit [7] controls the value (duration = UART_TAIP[6:0] /
UART_CLK[15:0]). If UART_TAIP[7] is set, and an active high pulse is issued, the number of stop bits is
extended. If UART_TAIP[7] is cleared a low pulse is generated. Note that polarity can be inverted using the
UART_CTL.FCPOL bit. Writing a value of 13 into the UART_TAIP register generates the break command as
required by the LIN protocol.

NOTE: If the UART_CTL.TPOLC bit is enabled, an inverted most-significant bit may be transmitted.

NOTE: If another transmission is pending (in the UART_TSR register), the UART_TAIP initiated pulse is
queued until after all pending operations have finished and all stop bits are transmitted.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

19–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The transmission of break command/inter-frame gap is followed by transmission of the number of stop
bits as set in the UART_CTL.STB and UART_CTL.STBH bit fields.

The UART receiver can detect break commands through the break indicator (UART_STAT.BI) flag. This
flag reports that an entire UART frame has been received in low state. It does not report whether the dura-
tion of the received low pulse was exact or at least 13 bit times as LIN masters transmit. Typically, the break
indicator meets LIN requirements. If however the pulse width needs to be determined more precisely, the
GP timers can be used.

On ADSP-BF60x processors each UART_RX pin is also routed to any of the GP timers through their alter-
nate capture input (TACI). This is not only useful for bit rate detection (autobaud) but also helps to
precisely measure the pulse widths on the UART_RX input. Additionally, the new windowed watchdog
width mode of the GP timers can issue an interrupt or a fault condition if the received pulse width is
shorter than a bit time or longer than the worst case break condition.

UART Mode Receive Operation (Core)

The receive operation uses the same data format as the transmit configuration, except that one valid stop
bit is always sufficient; that is, the UART_CTL.STB and UART_CTL.STBH bits have no impact to the receiver.

The UART receiver senses the falling edges of the receive input. When an edge is detected, the receiver
starts sampling the input according to settings in the UART_CLK register. The start bit is sampled (majority
sampling) close to its midpoint. If sampled low, a valid start condition is assumed. Otherwise, the detected
falling edge is discarded.

After detection of the start bit, the received word is shifted into the UART_RSR register.

After the corresponding stop bit is received, the content of the UART_RSR register is transferred to the 8-
deep receive FIFO and is accessible by reading the UART_RBR register.

The receive FIFOs and the UART_RBR register can be seen as a 9-stage receive buffer. If the stop bit of the
9th word is received before software reads the UART_RBR register, an overrun error is reported. Overruns
protect data in the UART_RBR register and the receive FIFO from being overwritten by further data until
the UART_STAT.OE bit is cleared by software. However, the data in the UART_RSR register is immediately
destroyed as soon as the overrun occurs.

The sampling clock is 16 times faster than the bit clock. The receiver over samples every bit 16 times and
makes a majority decision based on the middle three samples. This improves immunity against noise and
hazards on the line. Spurious pulses of less than two times the sampling clock period are disregarded.

Normally, every incoming bit is sampled at exactly the 7th, 8th and 9th sample clock. If, however, the
UART_CLK.EDBO bit is set to 1 to achieve better bit rate granularity and accuracy as required at high oper-
ation speeds, the bits are one roughly sampled at 7/16th, 8/16th and 9/16th of their period. Hardware
design should ensure that the incoming signal is stable between 6/16th and 10/16th of the nominal bit
period.

Reception starts when a falling edge is detected on the UART_RX input pin. The receiver attempts to see a
start bit. The data is shifted into the UART_RSR register. After the 9th sample of the first stop bit is

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–15

processed, the received data is copied to the 8-stage receive FIFO and the UART_RSR recovers for further
data reception.

The receiver samples data bits close to their midpoint. Because the receiver clock is usually asynchronous
to the transmitter's data rate, the sampling point may drift relative to the center of the data bits. The
sampling point is synchronized again with each start bit, so the error accumulates only over the length of
a single word. The polarity of received data is selectable, using the UART_CTL.RPOLC bit.

NOTE: The receiver checks for only a single stop bit. After the third sample of the first stop bit has been
received (at time 9/16th of the stop bit duration), the receiver immediately takes action (status
update) and prepares itself for new falling edge detection (start detection).

IrDA Transmit Operation

To generate the IrDA pulse transmitted by the UART, the normal NRZ output of the transmitter is first
inverted if the UART_CTL.TPOLC bit is configured for active-low operation, such that a 0 is transmitted as
a high pulse of 16 UART clock periods and a 1 is transmitted as a low pulse for 16 UART clock periods.
The leading edge of the pulse is then delayed by six UART clock periods. Similarly, the trailing edge of the
pulse is truncated by eight UART clock periods. For a 16-cycle UART clock period, this results in the final
representation of the original 0 as a high pulse of only 3/16 clock periods. The pulse is centered around the
middle of the bit time, as shown in the figure below. The final IrDA pulse is fed to the off-chip infrared
driver.

This modulation approach ensures a pulse width output from the UART of three cycles high out of every
16 UART clock cycles. As shown in the figure below, the error terms associated with the bit rate generator
are very small and well within the tolerance of most infrared transceiver specifications.

NOTE: In IrDA mode, writes to the UART_TAIP register are equivalent to writes to the UART_THR register.

Figure 19-7: IrDA Transmit Pulse

IrDA Receive Operation

The IrDA receiver function is more complex than the transmit function. The receiver must discriminate
the IrDA pulse and reject noise. To do this, the receiver looks for the IrDA pulse in a narrow window
centered around the middle of the expected pulse.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

19–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Glitch filtering is accomplished by counting 16 system clocks from the time an initial pulse is seen. If the
pulse is absent when the counter expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This
is acceptable because glitches originating from on-chip capacitive cross-coupling typically do not last for
more than a fraction of the system clock (SCLK) period. Sources outside of the chip and not part of the
transmitter can be avoided by appropriate shielding. The only other source of a glitch is the transmitter
itself. The processor relies on the transmitter to perform within specification. If the transmitter violates the
specification, unpredictable results may occur. The 4-bit counter adds an extra level of protection at a
minimal cost.

NOTE: Because SCLK can change across systems, the longest glitch tolerated is inversely proportional to
the SCLK frequency.

The receive sampling window is determined by a counter that is clocked at the 16x bit-time sample clock.
The sampling window is re-synchronized with each start bit by centering the sampling window around the
start bit.

The polarity of receive data is selectable, using the UART_CTL.RPOLC bit. The following figure provides
examples of each polarity type.

Figure 19-8: IrDA Receiver Pulse Detection

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–17

MDB Transmit Operation

In MDB mode, receive and transmit paths operate completely independently from each other, except for
sharing bit rate and frame formats for both transfer directions.

Transmit operation is initiated by writing the UART_THR or UART_TAIP registers. A write to the UART_THR
register transmits the written word with the appending address bit set low, a write to the UART_TAIP
register transmits the written word with the appended address bit set high. The data is moved into the
UART_TSR register, where it is shifted out at the bit rate programmed by the UART_CLK register, with start,
stop, address, and parity bits appended as required.

If DMA is enabled, the DMA engine always writes the data into the UART_THR register, and the written
word is transmitted with the appending address bit set low.

The polarity of transmit data is selectable, using the UART_CTL.TPOLC bit.

MDB Receive Operation

Receive operations use the same data format as the transmit configuration, except that the number of stop
bits is always assumed to be 1. After detection of the start bit, the received word is shifted into the UART_
RSR register at the programmed bit.

Normally, every incoming bit is sampled at exactly the 7th, 8th and 9th sample clock. If, however, the
UART_CLK.EDBO bit is set to achieve better bit rate granularity and accuracy as required at high operation
speeds, the bits are roughly sampled at 7/16th, 8/16th and 9/16th of their period. Hardware design should
ensure that the incoming signal is stable between 6/16th and 10/16th of the nominal bit period.

After the appropriate number of bits (including address, parity, and stop bits) is received, the UART_RSR
register is transferred to the receive FIFO and accessible through the UART_RBR register.

The polarity of receive data is selectable, using the UART_CTL.RPOLC bit.

DMA Mode

In DMA mode, separate receive and transmit DMA channels move data between the UART and memory.
The software does not have to move data; it just has to set up the appropriate transfers either through the
descriptor mechanism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabilities of 6 words at the transmit side
and 9 words at the receive side. In DMA mode, the latency is determined by the bus activity and arbitration
mechanism and not by the processor loading and interrupt priorities.

To enable UART DMA, first set up the system DMA control registers and then enable the UART_IMSK.
ERBFI and/or UART_IMSK.ETBEI interrupts. This is necessary because these interrupt request lines double
as DMA request lines. With DMA enabled, once these requests are received, the DMA control unit gener-
ates a direct memory access. If DMA is not enabled, the UART interrupt is passed on to the system inter-
rupt handling unit.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

19–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: The UART’s status interrupt goes directly to the system event controller (SEC), bypassing the
DMA unit completely.

For transmit DMA, programs should set the DMA_CFG.SYNC bit. With this bit set, interrupt generation is
delayed until the entire DMA FIFO is drained to the UART module. The UART transmit DMA interrupt
service routine is allowed to disable the DMA or to clear the UART_IMSK.ETBEI control bit only when the
DMA_CFG.SYNC bit is set, otherwise up to four data bytes might be lost.

When the UART_IMSK.ETBEI bit is set, an initial transmit DMA request is issued immediately. The
program should then clear the UART_IMSK.ETBEI bit through the DMA service routine.

In DMA transmit mode, the UART_IMSK.ETBEI bit enables the peripheral request to the DMA FIFO. The
strobe on the memory side is still enabled by the DMA_CFG.EN bit. If the DMA count is less than the DMA
FIFO depth, which is 4, then the DMA interrupt might be requested before the UART_IMSK.ETBEI bit is
set. If this is behavior not wanted, set the DMA_CFG.SYNC bit.

Regardless of the DMA_CFG.SYNC setting, the DMA stream has not left the UART transmitter completely
at the time the interrupt is generated. Transmission may abort in the middle of the stream, causing data
loss, if the UART clock was disabled without additional synchronization with the UART_STAT.TEMT bit.

The UART provides functionality to avoid resource consuming polling of the UART_STAT.TEMT bit. The
UART_IMSK_SET.EDTPTI bit enables the UART_STAT.TEMT bit to trigger a DMA interrupt. To delay the
DMA completion interrupt until the last data word of a STOP DMA has left the UART, keep the DMA_CFG.
DI_EN bit cleared and set the UART_IMSK_SET.EDTPTI bit instead. Then, the normal DMA completion
interrupt is suppressed. Later, the UART_STAT.TEMT event triggers a DMA interrupt after the DMA’s last
word has left the UART transmit buffers. If DI_EN and UART_IMSK.EDTPTI are set, when finishing STOP
mode, the DMA requests two interrupts.

The UART’s DMA supports 8-bit and 16-bit operation, but not 32-bit operation. Sign extension is also not
supported.

Mixing DMA and Core Modes

Switching from DMA mode to core operation on the fly requires some consideration, especially for
transmit operations. By default, the interrupt timing of the DMA is synchronized with the memory side of
the DMA FIFOs. Normally, the transmit DMA completion interrupt is generated after the last byte is
copied from the memory into the DMA FIFO. The transmit DMA interrupt service routine is not yet
permitted to disable the DMA_CFG.EN bit. The interrupt is requested by the time the DMA_STAT.IRQDONE
bit is set. The DMA_STAT.RUN bit, however, remains set until the data has completely left the transmit DMA
FIFO.

Therefore, when planning to switch from a DMA to the core mode, always set the DMA_CFG.SYNC bit in the
word of the last descriptor or work unit before handing over control to core mode. Then, after the interrupt
occurs, software can write new data into the UART_THR register as soon as the UART_STAT.THRE bit permits.
If the DMA_CFG.SYNC bit cannot be set, software can poll the DMA_STAT.RUN bit instead. Alternatively, using
the UART_IMSK.EDTPTI bit can avoid expensive status bit polling.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–19

When switching from core to DMA operation, ensure that the very first DMA request is issued properly.
If the DMA is enabled while the UART is still transmitting, no precaution is required. If, however, the
DMA is enabled after the UART_STAT.TEMT bit is high, the UART_IMSK.ETBEI bit should be pulsed to
initiate DMA transmission.

Setting Up Hardware Flow Control

Use the following steps to setup UART hardware flow control.

1. Configure automatic or manual hardware flow control for the receiver through the UART_CTL.ARTS bit,
and/or the transmitter through the UART_CTL.ACTS bit.

2. Configure UART_CTS and UART_RTS polarity through the UART_CTL.FCPOL bit.

AFTER COMPLETING THIS TASK:

On reset, when the UART is not yet enabled and the port multiplexing has not been programmed, the
UART_RTS pin is not driven. Some applications may require the UART_RTS signal to be pulled to either state
by a resistor during reset.

UART Event Control
Status flags in the UART_STAT register are available to signal data reception, parity, and error conditions, if
required.

Interrupt Masks

Each UART features a set of interrupt mask registers: UART_IMSK, UART_IMSK_SET, and UART_IMSK_CLR.
The UART_IMSK register supports read/write operations. Writing ones to the UART_IMSK_SET register
enables interrupts, writing ones to the UART_IMSK_CLR register disables them. Reads from either register
return the enabled bits. This way, different interrupt service routines can control transmit, receive, and
status interrupts independently and easily.

The UART_IMSK registers are used to enable requests for system handling of empty or full states of UART
data registers. Unless polling is used as a means of action, the UART_IMSK.ERBFI and/or UART_IMSK.
ETBEI bits in this register are normally set.

Each UART module has three interrupt outputs. One is dedicated for transmission, one for reception, and
the third is used to report status events. Transmit and receive requests are routed through the DMA
controller. The status request goes directly to the system event controller (SEC).

If the associated DMA channel is enabled, the request functions as a DMA request. If the DMA channel is
disabled, it simply forwards the request to the SEC. Note that a DMA channel must be associated with the
UART module to enable transmit and receive interrupts. Otherwise, transmit and receive requests cannot
be forwarded.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

19–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: To operate in interrupt mode without using DMA channels, set the UART_IMSK.ELSI bit. This
redirects receive and transmit requests to the status interrupt output. The status interrupt goes
directly to the SEC without being routed through the DMA controller

Interrupt Servicing

UART writes and reads can be accomplished through interrupt service routines (ISRs). Separate interrupt
lines are provided for transmit, receive, and status. The independent interrupts can be enabled individually
by the UART_IMSK register group. The UART_CTL.EN bit must be set to enable UART transmit interrupts.

The ISRs can evaluate the status bits in the UART_STAT register to determine the signaling interrupt source.
Interrupts must also be assigned and unmasked by the processor's system event controller. The ISRs must
clear the interrupt latches explicitly. To reduce interrupt frequency on the receive side in core mode, the
UART_IMSK.ERFCI status interrupt may be used as an alternative to the regular UART_IMSK.ERBFI receive
interrupt. Hardware must ensure that at least two (if UART_CTL.RFIT=0) or four (if UART_CTL.RFIT=1)
words are available in the receive buffer by the time the interrupt is requested.

Transmit Interrupts

Transmit interrupts are enabled by the UART_IMSK_SET.ETBEI bit.

The UART_THR and UART_TAIP registers are the same physical register, and both affect the signaling of the
UART_STAT.TEMT, UART_STAT.TFI, and UART_STAT.THRE bits similarly.

Figure 19-9: Transmit Interrupts

The transmit request is asserted along with the UART_STAT.THRE bit, indicating that the transmit buffer is
ready for new data. Note that the UART_STAT.THRE bit resets to 1. When the UART_IMSK_SET.ETBEI bit is
set, the UART module immediately issues an interrupt or DMA request. This way, no special handling of
the first character is required when transmission of a string is initiated. Set the UART_IMSK_SET.ETBEI bit
and let the interrupt service routine load the first character from memory and write it to the UART_THR

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–21

register in the normal manner. Accordingly, the UART_IMSK.ETBEI bit can be cleared through the UART_
IMSK_CLR register if the string transmission has completed.

The UART_STAT.THRE bit is cleared by hardware when new data is written to the UART_THR register. These
writes also clear the transmit interrupt request. However, they also initiate further transmission. If
continued transmission is not desired, the transmit request can alternatively be cleared through the UART_
IMSK_CLR.ETBEI bit register. Transfers of data from the UART_THR register to the UART_TSR register re-set
this status flag in the UART_STAT register.

The UART_STAT.TEMT bit can be interrogated to discover any ongoing transmission. The UART_STAT.TEMT
bit’s sticky counterpart, UART_STAT.TFI, indicates if the transmit buffer has drained and can trigger a
status interrupt, if required. When data is pending in either one of these registers, the UART_STAT.TEMT
flag is low. As soon as all data has left the UART_TSR register, the UART_STAT.TEMT bit goes high again and
indicates that all pending transmit operations (including stop bits) have finished. At that time it is safe to
disable the UART_CTL.EN bit or to three-state off-chip line drivers. By this time an interrupt can be gener-
ated either through the status interrupt channel when the UART_IMSK.ETFI bit is set, or through the DMA
controller when enabled by the UART_IMSK.EDTPTI bit.

When enabled by the UART_IMSK.ETBEI bit, the UART_STAT.THRE flag requests data along the peripheral
command lines to the DMA controller (hereafter referred to as TXREQ). This signal is routed through the
DMA controller. If the associated DMA channel is enabled, the TXREQ signal functions as a DMA request,
otherwise the DMA controller simply forwards it to the SEC. Alternatively the UART_IMSK.ETXS bit can
redirect the transmit interrupts to the UART status interrupt.

With interrupts disabled, these status flags can be polled to determine when data is ready to move. Note
that because polling is processor intensive, it is not typically used in real-time signal processing environ-
ments. Since read operations from UART_STAT registers have no side effects, different software threads can
interrogate these registers without mutual impacts. Polling the SEC_SSTATn register without enabling the
interrupts by the SEC_CCTLn register is an alternate method of operation to consider. Software can write
up to two words into the UART_THR register before enabling the UART clock. As soon as the UART_CTL.EN
bit is set, those two words are sent.

Receive Interrupts

Receive interrupts are enabled by the UART_IMSK_SET.ERBFI bit. If set, the UART_STAT.DR flag requests an
interrupt on the dedicated RXREQ output, indicating that new data is available in the UART_RBR register.
This signal is routed through the DMA controller. If the associated DMA channel is enabled, the RXREQ
signal functions as a DMA request; otherwise the DMA controller simply forwards it to the SEC. Alterna-
tively, if no DMA channel is assigned to the UART, the UART_IMSK.ERXS bit can redirect the receive inter-
rupts to the UART status interrupt. When software reads the UART_RBR register, hardware clears the UART_
STAT.DR bit again, which, in turn, clears the receive interrupt request.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

19–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 19-10: Receive Interrupts

The UART_STAT.DR, UART_STAT.ADDR, UART_STAT.ASTKY, UART_STAT.PE, UART_STAT.FE, and UART_
STAT.BI bits are updated along with UART_RBR register. The UART_STAT.OE bit updated as soon as an over-
flow condition occurs (for example when a frame’s stop bit is received and the receive FIFO is full). When
the UART_RBR register is not read in time, the received data is protected from being overwritten by new data
until the UART_STAT.OE bit is cleared by software. Only the content of the UART_RSR register can be over-
written in the overrun case.

The state of the 8-deep receive FIFO can be monitored by the UART_STAT.RFCS bit. The buffer’s behavior
is controlled by the UART_CTL.RFIT bit. If UART_CTL.RFIT is zero, the UART_STAT.RFCS bit is set when the
receive buffer holds four or more words. If UART_CTL.RFIT is set, the UART_STAT.RFCS bit is set when the
receive buffer holds seven or more words. The UART_STAT.RFCS bit is cleared by hardware when a core or
DMA reads the UART_RBR register and when the buffer is flushed below the level of four (UART_CTL.
RFIT=0) or seven (UART_CTL.RFIT=1). If the associated interrupt bit UART_IMSK.ERFCI is enabled, a
status interrupt is reported when the UART_STAT.RFCS bit is set.

If errors are detected during reception, an interrupt can be requested from the status interrupt output. This
status interrupt request goes directly to the SEC. Status interrupt requests are enabled by the bit.

The controller detects the following error conditions, shown with their associated bits in the UART_STAT
register.

• Overrun error (UART_STAT.OE bit)

• Parity error (UART_STAT.PE bit)

• Framing error/invalid stop bit (UART_STAT.FE bit)

• Break indicator (UART_STAT.BI bit)

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–23

Status Interrupts

The UART status interrupt channels are used for the following purposes.

• Line status interrupts

• Flow control interrupts

• Receive FIFO threshold interrupts

• Transmission finished interrupt

Line status interrupts are enabled by the UART_IMSK.ELSI bit. If set, the status interrupt request is asserted
with any of the UART_STAT.BI, UART_STAT.FE, UART_STAT.PE, or UART_STAT.OE receive errors bits. The
error bits in the UART_STAT register are cleared by W1C operation. Once all error conditions are cleared,
the interrupt request de-asserts.

The receive FIFO count interrupt is enabled by the UART_IMSK_SET.ERFCI bit. If set, a status interrupt is
generated when the UART_STAT.RFCS is active. The UART_STAT.RFCS bit indicates a receive buffer
threshold level. If the UART_CTL.RFITbit is cleared, software can safely read two words out of the UART_
RBRregister by the time the UART_STAT.RFCS interrupt occurs.

If the UART_CTL.RFIT bit is set, software can safely read four words. The interrupt and the UART_STAT.
RFCS bit clear when the UART_RBR is read a sufficient number of times, so that the receive buffer drains
below the threshold of two (UART_CTL.RFIT=0) or four (UART_CTL.RFIT=1). Because in DMA mode a
status service routine may not be permitted to read UART_RBR, this interrupt is only recommended in core
mode. In DMA mode, use this functionality for error recovery only.

The flow control interrupts are enabled by the UART_IMSK_SET.EDSSI bit. If active, a status interrupt is
generated when the sticky UART_STAT.SCTS bit register is set, indicating that the transmitter's UART_CTS
input been re-asserted. A W1C operation to the SCTS bit clears the interrupt request.

A transmission finished interrupt is enabled by the UART_IMSK_SET.ETFI bit. If active, a status interrupt
request is asserted when the UART_STAT.TFI bit is set. The UART_STAT.TFI is the sticky version of the
UART_STAT.TEMT bit, indicating that a byte that started transmission has completely finished. The inter-
rupt request is cleared by a W1C operation to the UART_STAT.TFI bit.

Multi-Drop Bus Events

Several status bits and interrupt features in the UART_STAT and UART_IMSK registers facilitate efficient data
handling in multi-drop bus mode. These include the address (UART_STAT.ADDR) bit, address sticky (UART_
STAT.ASTKY) bit and enable address word interrupt (UART_IMSK.EAWI). One of the key features of the
multi-drop bus protocol is its address bit, which signifies to the slaves that the master is transmitting an
address word (to be read by all) or a data word (to be read by the addressed slave only). The UART hard-
ware provides for an efficient method of handling the situation described above with the use of UART_
STAT.ASTKY bit.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART PROGRAMMING MODEL

19–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: The UART_STAT.ASTKY bit is used in multi-drop bus mode to indicate if a peripheral is currently
being addressed. The UART_STAT.ASTKY bit is a sticky version of the UART_STAT.ADDR bit and is
set by hardware whenever the UART_STAT.ADDR bit is set. It can only be cleared by software with a
W1C operation. With the ASTKY bit set, words are received irrespective of the mode bit/address bit
setting. With the UART_STAT.ASTKY bit cleared, only address words (mode bit=1) are received and
words with mode bit=0 is ignored (not moved from the UART_RSR to the Receive FIFO) in MDB
mode. This bit does not affect reception in non-MDB modes.

UART Programming Model
The following sections provide basic procedures for configuring various UART operations.

Detecting Autobaud

Please refer to Autobaud Detection for more information. The required steps are:

1. Ensure that the timer is disabled.

2. Configure the following bits: UART_CTL.MOD=00, UART_CTL.LOOP_EN=1, UART_CTL.WLS=11 (8-bit
data), and UART_CTL.EN=1

3. Configure the following bits: TIMER_TMRn_CFG.TMODE=1101, TIMER_TMRn_CFG.OUTDIS=1, TIMER_
TMRn_CFG.IRQMODE=10 and enable the timer.

4. Send test data through the host device and wait for the timer interrupt and disable the timer.

STEP RESULT: The bit rate can be derived from the timer period register value according to the formula
provided in the Autobaud Detection section.

Using Common Initialization Steps

Certain steps are common to all UART modes, regardless of using the core or the DMA running the trans-
fers.

1. All UART signals are multiplexed and compete with other functions at pin level. First, the port registers
need to be programmed according to the guidelines in the PORTs chapter.

2. Program the UART_CLK register. Refer to UART Bit Rate Generation.

3. Program the UART_CTL register and enable the UART clock.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–25

Using Core Transfers

A core transmit operation is accomplished by writing data into the UART_THR register, when the UART_
STAT.THRE bit is set. If the UART_STAT.DR bit is set, received data can be read from the UART_RBR register.

Using DMA Transfers

1. Make sure that the UART_IMSK.ETBEI or the UART_IMSK.ERBFI bits are cleared before configuring the
DMA.

2. Configure the dedicated DMA channel.

3. Set the UART_IMSK.ETBEI or UART_IMSK.ERBFI bits to start the transfer.

Using Interrupts

Each UART features three interrupt signal outputs.

1. Enable individual interrupts in the system event controller (SEC).

2. Register IRQ handlers.

3. Use the interrupts mask registers to enable specific IRQ events.

Setting Up Hardware Flow Control

1. Configure automatic or manual hardware flow control for the receiver through the UART_CTL.ARTS bit,
and/or the transmitter through the UART_CTL.ACTS bit.

2. Configure UART_CTS and UART_RTS polarity through the UART_CTL.FCPOL bit.

ADSP-BF60x UART Register Descriptions
UART (UART) contains the following registers.

Table 19-9: ADSP-BF60x UART Register List

Name Description

UART_CTL Control Register

UART_STAT Status Register

UART_SCR Scratch Register

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Control Register

The UART_CTL register provides enable/disable control for internal UART and for the IrDA mode of oper-
ation. This register also provides UART line control, permitting selection of the format of received and
transmitted character frames. Modem feature control also is available from this register, including partial
modem functionality to allow for hardware flow control and loopback mode.

UART_CLK Clock Rate Register

UART_IMSK Interrupt Mask Register

UART_IMSK_SET Interrupt Mask Set Register

UART_IMSK_CLR Interrupt Mask Clear Register

UART_RBR Receive Buffer Register

UART_THR Transmit Hold Register

UART_TAIP Transmit Address/Insert Pulse Register

UART_TSR Transmit Shift Register

UART_RSR Receive Shift Register

UART_TXCNT Transmit Counter Register

UART_RXCNT Receive Counter Register

Table 19-9: ADSP-BF60x UART Register List (Continued)

Name Description

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–27

Figure 19-11: UART_CTL Register Diagram

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 19-10: UART_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

RFRT Receive FIFO RTS Threshold.
The UART_CTL.RFRT bit controls UART_RTS pin assertion and de-
assertion timing. This bit is ignored if UART_CTL.ARTS is cleared. If
set, the UART_RTS pin is de-asserted when the receive buffer already
holds seven words and an eighth start bit is detected. It is re-asserted
when the FIFO contains seven words or less. If cleared, de-assert
UART_RTS pin when the RX buffer already holds four words and a
fifth start bit is detected. The UART_RTS pin is re-asserted when the
RX buffer contains no more than 4 words.
0 De-assert RTS if RX FIFO word count > 4;

assert if <= 4
1 De-assert RTS if RX FIFO word count > 7;

assert if <= 7
29
(R/W)

RFIT Receive FIFO IRQ Threshold.
The UART_CTL.RFIT bit controls the timing of the UART_STAT.RFCS
bit. If UART_CTL.RFIT is cleared, the receive threshold is two. If
UART_CTL.RFIT is set, the threshold is four words in the receive
buffer.
0 Set RFCS=1 if RX FIFO count >= 4
1 Set RFCS=1 if RX FIFO count >= 7

28
(R/W)

ACTS Automatic CTS.
The UART_CTL.ACTS bit must be set to enable the UART_CTS input
pin for UART_TX handshaking. If enabled, the UART_STAT.CTS bit
holds the value (if UART_CTL.FCPOL is set) or complement value (if
UART_CTL.FCPOL is cleared) of the UART_CTS input pin. The UART_
STAT.CTS bit can be used to determine whether the external device is
ready to receive data (if UART_STAT.CTS set) or whether it is busy (if
UART_STAT.CTS cleared). If UART_CTL.ACTS is cleared, the UART_TX
handshaking protocol is disabled, and the UART_TX line transmits
data whenever there is data to send, regardless of the value of UART_
CTS. Software can pause ongoing transmission by setting the UART_
CTL.XOFF bit.
0 Disable TX handshaking protocol
1 Enable TX handshaking protocol

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–29

27
(R/W)

ARTS Automatic RTS.
The UART_CTL.ARTS bit must be set to enable the UART_RTS input
pin for UART_TX handshaking.If set, hardware guarantees minimal
UART_RTS pin de-assertion pulse width of at least the number of data
bits defined by the UART_CTL.WLS bit field. If cleared, the UART_RTS
pin is not generated automatically by hardware. The UART_RTS pin
can still be manually controlled by the UART_CTL.MRTS bit, and
software is responsible for UART_RTS pulse width control (if needed).
0 Disable RX handshaking protocol.
1 Enable RX handshaking protocol.

26
(R/W)

XOFF Transmitter off.
The UART_CTL.XOFF bit (if set) turns off transmission (XOFF) by
preventing the content of THR from being continued to TSR. When
set, this bit turns on transmission (XON). The state of the UART_CTL.
XOFF bit is ignored if the UART_CTL.ACTS bit is set.
0 Transmission ON, if ACTS=0
1 Transmission OFF, if ACTS=0

25
(R/W)

MRTS Manual Request to Send.
The UART_CTL.MRTS bit controls the state of the UART_RTS output pin
when the UART_CTL.ARTS bit is cleared. When UART_CTL.MRTS is
cleared, the UART de-asserts the UART_RTS pin, signaling to the
external device that the UART is not ready to receive. When UART_
CTL.MRTS is set, the UART asserts the UART_RTS pin, signaling to the
external device that the UART is ready to receive.
0 De-assert RTS pin when ARTS=0
1 Assert RTS pin when ARTS=0

24
(R/W)

TPOLC IrDA TX Polarity Change.
The UART_CTL.TPOLC bit selects the active low/high polarity for
IrDA communications. This bit only is effective in IrDA mode. If set,
in IrDA mode, the UART_TX pin idles high. In UART or MDB mode,
it is inverted-NRZ. If cleared, in IrDA mode, the UART_TX pin idles
low. In UART or MDB mode, it is NRZ.
0 Active-low TX polarity setting
1 Active-high TX polarity setting

Table 19-10: UART_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

23
(R/W)

RPOLC IrDA RX Polarity Change.
The UART_CTL.RPOLC bit selects the active low/high polarity for
IrDA communications. This bit only is effective in IrDA mode. If set,
in IrDA mode, the UART_RX pin idles high. In UART or MDB mode,
it is inverted-NRZ. If cleared, in IrDA mode, the UART_RX pin idles
low. In UART or MDB mode, it is NRZ.
0 Active-low RX polarity setting
1 Active-high RX polarity setting

22
(R/W)

FCPOL Flow Control Pin Polarity.
The UART_CTL.FCPOL select the polarities of the UART_CTS and
UART_RTS pins. When UART_CTL.FCPOL is cleared, the UART_RTS and
UART_CTS pins are active low, and UART is halted when the UART_
RTS and UART_CTS pin state is high. When UART_CTL.FCPOL is set,
the UART_RTS and UART_CTS pins are active high, and UART is halted
when the UART_RTS and UART_CTS pin state is low.
0 Active low CTS/RTS
1 Active high CTS/RTS

19
(R/W)

SB Set Break.
If set, the UART_CTL.SB bit forces the UART_TX pin to low
asynchronously, regardless of whether or not data is currently
transmitted. This bit functions even when the UART clock is
disabled. Because the UART_TX pin normally drives high, it can be
used as a flag output pin, if the UART is not used. (For example, if
UART_CTL.TPOLC is cleared, drive UART_TX pin low; or if UART_CTL.
TPOLC is set, drive UART_TX pin high.)
0 No force
1 Force TX pin to 0

18
(R/W)

FFE Force Framing Error on Transmit.
The UART_CTL.FFE bit is intended for test purposes. This bit is useful
for debugging software, especially in loopback mode.
0 Normal operation
1 Force error

Table 19-10: UART_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–31

17
(R/W)

FPE Force Parity Error on Transmit.
The UART_CTL.FPE bit is intended for test purposes. This bit is useful
for debugging software, especially in loopback mode.
0 Normal operation
1 Force parity error

16
(R/W)

STP Sticky Parity.
The UART_CTL.STP bit controls whether the parity is generated by
hardware based on the data bits or whether it is set to a fixed value. If
this bit is cleared, the hardware calculates the parity bit value based
on the data bits. Then, the EPS bit determines whether odd or even
parity mode is chosen. If this bit is set, odd parity is used. That means
that the total count of logical-1 data bits including the parity bit must
be an odd value. Even parity is chosen by UART_CTL.STP cleared and
UART_CTL.EPS set. Then, the count of logical-1 bits must be a even
value. If the UART_CTL.STP bit is set, hardware parity calculation is
disabled. In this case, the sent and received parity equals the inverted
UART_CTL.EPS bit.
0 No Forced Parity
1 Force (Stick) Parity to Defined Value (if

PEN=1)
15
(R/W)

EPS Even Parity Select.
0 Odd parity
1 Even parity

14
(R/W)

PEN Parity Enable.
The UART_CTL.PEN enables parity transmission and parity check.
The UART_CTL.PEN bit inserts one additional bit between the most
significant data bit and the first stop bit. The polarity of this so-called
parity bit depends on data and the UART_CTL.STP and UART_CTL.
EPS control bits. Both transmitter and receiver calculate the parity
value. The receiver compares the received parity bit with the expected
value and issues a parity error if they dont match. If UART_CTL.PEN is
cleared, the UART_CTL.STP and the UART_CTL.EPS bits are ignored.
0 Disable
1 Enable parity transmit and check

Table 19-10: UART_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

13
(R/W)

STBH Stop Bits (Half Bit Time).
0 0 half-bit-time stop bit
1 1 half-bit-time stop bit

12
(R/W)

STB Stop Bits.
The UART_CTL.STB bit controls how many stop bits are appended to
transmitted data.
0 1 stop bit
1 2 stop bits

9:8
(R/W)

WLS Word Length Select.
The UART_CTL.WLS field determines whether the transmitted and
received UART word consists of 5, 6, 7, or 8 data bits.
0 5-bit Word
1 6-bit Word
2 7-bit Word
3 8-bit Word

5:4
(R/W)

MOD Mode of Operation.
The UART_CTL.MOD selects the UART operation mode (UMOD).
0 UART Mode
1 MDB Mode
2 IrDA SIR Mode

1
(R/W)

LOOP_EN Loopback Enable.
The UART_CTL.LOOP_EN enables UART loopback mode. When set,
this bit disconnects the receivers input from the UART_RX pin, and
internally redirects the transmit output to the receiver. The UART_TX
pin remains active and continues to transmit data externally as well.
Loopback mode also forces the UART_RTS pin to its de-assertive state,
disconnects the UART_CTS bit from the UART_CTS input pin, and
directly connects the UART_CTL.MRTS bit to the UART_STAT.CTS bit.
In loopback mode, setting the UART_CTL.MRTS bit sets the UART_
STAT.CTS bit and enables the UARTs transmitter. Clearing to the
UART_CTL.MRTS bit clears the UART_STAT.CTS bit and disables the
UARTs transmitter.
0 Disable
1 Enable

Table 19-10: UART_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–33

Status Register

The UART_STAT register contains the UART line status and UART modem status, as indicated by the
current states of the UART's UART_CTS pin and internal receive buffers. Writes to this register can perform
write-one-to-clear (W1C) operations on most status bits. Reading this register has no side effects.

Figure 19-12: UART_STAT Register Diagram

0
(R/W)

EN Enable UART.
The UART_CTL.EN enables UART clocks. This bit also resets the state
machine and control registers when cleared. Using this bit to disable
the UART -- when not used -- reduces power consumption.
0 Disable
1 Enable

Table 19-10: UART_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 19-11: UART_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

17
(R/NW)

RFCS Receive FIFO Count Status.
The UART_STAT.RFCS bit is set when the receive buffer holds more or
equal entries than a certain threshold. The threshold is controlled by
the UART_CTL.RFIT bit. If UART_CTL.RFIT is cleared, the threshold is
four entries. If UART_CTL.RFIT is set, the threshold is seven entries.
The UART_STAT.RFCS bit is cleared when the UART_RBR register is
read sufficient times until the buffer is drained below the threshold.
The UART_STAT.RFCS bit can trigger a status interrupt if enabled by
the UART_IMSK_SET.ERFCI bit.
0 RX FIFO has less than 4 (7) entries when

RFIT=0 (1)
1 RX FIFO has at least 4 (7) entries when

RFIT=0 (1)
16
(R/NW)

CTS Clear to Send.
The UART_STAT.CTS bit holds the value (if UART_CTL.FCPOL set) or
the complement value (if UART_CTL.FCPOL cleared) of the UART_CTS
input pin. The UART_CTL.ACTS bit must be set to enable this feature.
The core can read the value of the UART_STAT.CTS bit to determine
whether the external device is ready to receive (UART_STAT.CTS set)
or if it is busy (UART_STAT.CTS cleared). If UART_CTL.ACTS is
cleared, the UART_TX handshaking protocol is disabled, and the
UART transmits data as long as there is data to transmit, regardless of
the value of UART_STAT.CTS. When UART_CTL.ACTS is cleared, the
software can pause transmission temporarily by setting the XOFF bit.
Note that in loopback mode (UART_CTL.LOOP_EN set), the UART_
STAT.CTS bit is disconnected from the UART_CTS input pin. Instead,
the bit is directly connected to the UART_CTL.MRTS bit.
0 Not clear to send (External device not ready

to receive)
1 Clear to send (External device ready to

receive)
12
(R/W1C)

SCTS Sticky CTS.
The UART_STAT.SCTS bit is a sticky bit that is set when UART_STAT.
CTS transitions from 0 to 1. The UART_STAT.SCTS bit is cleared by
software with a W1C operation. This bit can trigger a line status
interrupt if enabled by the UART_IMSK_SET.EDSSI bit.
0 CTS has not transitioned from low to high
1 CTS has transitioned from low to high

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–35

11
(R/NW)

RO Reception On-going.
0 No data reception in progress
1 Data reception in progress

10
(R/W1S)

ADDR Address Bit Status.
The UART_STAT.ADDR bit is used to mirror the address bit of the word
in UART_RBR in multi-drop bus protocol, and is enabled only in MDB
mode. The UART_STAT.ADDR bit is updated by hardware upon
detecting a received word with the address bit in UART_RBR set or
cleared. Additionally, software can set the ADDR bit with a write-1-
to-set (W1S) operation.
0 Address bit is low
1 Address bit is high

9
(R/W1C)

ASTKY Address Sticky.
The UART_STAT.ASTKY bit is used in multi-drop bus mode to
indicate whether a peripheral is currently being addressed. This bit is
a sticky version of the UART_STAT.ADDR bit and is set by hardware
when setting the UART_STAT.ADDR bit. The UART_STAT.ASTKY bit
can only be cleared by software with a write-one-to-clear (W1C)
operation. With the UART_STAT.ASTKY bit set, words will be received
irrespective of the UART_CTL.MOD bit or UART_STAT.ADDR bit
selection. With the UART_STAT.ASTKY bit cleared, only address words
(UART_CTL.MOD bit set) will be received and words with UART_CTL.
MOD bit cleared are ignored (not moved from the RSR to the RX
FIFO) in MDB mode. The UART_STAT.ASTKY bit does not affect
reception in non-MDB modes.
0 ADDR bit has not been set
1 ADDR bit has been set

8
(R/W1C)

TFI Transmission Finished Indicator.
The UART_STAT.TFI bit is a sticky version of the UART_STAT.TEMT
bit. While UART_STAT.TEMT is automatically cleared by hardware
when new data is written to the UART_THR register, the sticky UART_
STAT.TFI bit remains set, until it is cleared by software (W1C). The
UART_STAT.TFI bit enables more flexible transmit interrupt timing.
0 TEMT did not transition from 0 to 1
1 TEMT transition from 0 to 1

Table 19-11: UART_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

7
(R/NW)

TEMT TSR and THR Empty.
The UART_STAT.TEMT bit indicates that the UART_THR and UART_
TAIP registers and the UART_TSR register are empty. In this case, the
program is permitted to write to the UART_THR and UART_TAIP
registers twice without losing data. The UART_STAT.TEMT bit can also
be used as indicator that pending UART transmission is completed.
At that time, it is safe to disable the UART_CTL.EN bit or to three-state
the off-chip line driver.
0 Not empty TSR/THR
1 TSR/THR Empty

5
(R/NW)

THRE Transmit Hold Register Empty.
The UART_STAT.THRE bit indicates that the UART transmit channel
is ready for new data and software can write to the UART_THR and
UART_TAIP registers. Writes to the UART_THR and UART_TAIP
registers clear the UART_STAT.THRE. The bit is set again when the
UART_THR and UART_TAIP registers are empty and ready to accept
data.
0 Not empty THR/TAIP
1 Empty THR/TAIP

4
(R/W1C)

BI Break Indicator.
The UART_STAT.BI bit indicates that the first stop bit is sampled low
and the entire data word, including parity bit, consists of low bits
only. (This condition indicates that UART_RX was held low for more
than the maximum word length.) The UART_STAT.BI bit is updated
simultaneously with the UART_STAT.DR bit, that is, by the time the
first stop bit is received or when data is loaded from the receive FIFO
to the UART_RBR register. The bit is sticky and can be cleared by W1C
operations.
0 No break interrupt
1 Break interrupt

this indicates UARTxRX was held
low(RPOLC=0) / high (RPOLC=1) for more
than the maximum word length

Table 19-11: UART_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–37

3
(R/W1C)

FE Framing Error.
The UART_STAT.FE bit indicates that the first stop bit is sampled.
This bit is updated simultaneously with the UART_STAT.DR bit, that
is, by the time the first stop bit is received or when data is loaded
from the receive FIFO to the UART_RBR register. The UART_STAT.FE
bit is sticky and can be cleared by W1C operations. Note that invalid
stop bits can be simulated by setting the UART_CTL.FFE bit.
0 No error
1 Invalid stop bit error

2
(R/W1C)

PE Parity Error.
The UART_STAT.PE bit indicates that the received parity bit does not
match the expected value. This bit is updated simultaneously with the
UART_STAT.DR bit, that is, by the time the first stop bit is received or
when data is loaded from the receive FIFO to the UART_RBR register.
The UART_STAT.PE bit is sticky and can be cleared by W1C
operations. Note that invalid parity bits can be simulated by setting
the UART_CTL.FPE bit.
0 No parity error
1 Parity error

1
(R/W1C)

OE Overrun Error.
The UART_STAT.OE bit indicates that further data is received while
the internal receive buffer was full. This bit is set when sampling the
stop bit of the sixth data word. To avoid overruns, read the UART_RBR
register in time. In DMA receive mode, overruns are very unlikely to
happen ever. After an overrun occurs, the UART_RBR and receive
FIFO are protected from being overwritten by new data until the
UART_STAT.OE bit is cleared by software. The content of the UART_
RSR register is lost as soon as the overrun occurs. The UART_STAT.OE
bit is sticky and can be cleared by W1C operations.
0 No overrun
1 Overrun error

Table 19-11: UART_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Scratch Register

The UART_SCR registers contain 8-bit scratch pad data. These registers are used for general purpose data
storage and do not control the UART hardware in any way.

Figure 19-13: UART_SCR Register Diagram

Clock Rate Register

The UART_CLK register divides the system clock (SCLK) down to the bit clock.

0
(R/NW)

DR Data Ready.
The UART_STAT.DR bit indicates that data is available in the receiver
and can be read from the UART_RBR register. The bit is set by
hardware when the receiver detects the first valid stop bit. The bit is
cleared by hardware when the UART_RBR register is read.
0 No new data
1 New data in RBR

Table 19-12: UART_SCR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Stored 8-bit Data.

Table 19-11: UART_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–39

Figure 19-14: UART_CLK Register Diagram

Interrupt Mask Register

The UART_IMSK indicates interrupt mask status (unmasked if set, masked if cleared) of UART status inter-
rupts. This register is not a data register. Instead it is controlled by the UART_IMSK_SET and UART_IMSK_
CLR register pair. Writing ones to UART_IMSK_SET enables (unmasks) interrupts, and writing ones to
UART_IMSK_CLR disables (masks) them. Reads from either register return the enabled bits.

The UART_IMSK register is used to enable requests for system handling of empty or full states of UART data
registers. Unless polling is used as a means of action, the UART_IMSK.ERBFI and/or UART_IMSK.ETBEI bits
are normally set. Setting this register without enabling system DMA causes the UART to notify the
processor of data inventory state by means of interrupts. For proper operation in this mode, system inter-
rupts must be enabled, and appropriate interrupt handling routines must be present.

Table 19-13: UART_CLK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

EDBO Enable Divide By One.
The UART_CLK.EDBO bit enables bypassing of the divide-by-16
prescaler in bit clock generation. This improves bit rate granularity,
especially at high bit rates. Do not set this bit in IrDA mode.
0 Bit clock prescaler = 16
1 Bit clock prescaler = 1

15:0
(R/W)

DIV Divisor.
The UART_CLK.DIV provides the divisor for the UART's clock bit rate
calculation.
The bit rate is defined by:
Bit Rate = SCLK / (16(1-EDBo) x UART_CLK.DIV)

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Each UART features three separate interrupt channels to handle data transmit, data receive, and line status
events independently, regardless whether DMA is enabled or not. If no DMA channels are assigned to the
UART, set the UART_IMSK.ELSI bit to reroute transmit and receive interrupts to the status interrupt
output.

With system DMA enabled, the UART uses DMA to transfer data to or from the processor. Dedicated
DMA channels are available to receive and transmit operation. Line error handling can be configured
completely independently from the receive/transmit setup.

The UART's DMA is enabled by first setting up the system DMA control registers and then enabling the
UART_IMSK.ERBFI and/or UART_IMSK.ETBEI interrupts. This is because the interrupt request lines double
as DMA request lines. Depending on whether DMA is enabled or not, upon receiving these requests, the
DMA control unit either generates a direct memory access or passes the UART interrupt on to the system
interrupt handling unit. However, UART's error interrupt goes directly to the system interrupt handling
unit, bypassing the DMA unit completely.

Figure 19-15: UART_IMSK Register Diagram

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–41

Table 19-14: UART_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W)

ETXS Enable TX to Status Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ETXS bit indicates re-
direction of the TX interrupts to status interrupt output. If cleared,
TX interrupts are routed to normal interrupt outputs.
0 Interrupt is masked
1 Interrupt is unmasked

8
(R/W)

ERXS Enable RX to Status Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ERXS bit indicates re-
direction of RX interrupts to status interrupt output. If cleared, RX
interrupts are routed to normal interrupt outputs.
0 Interrupt is masked
1 Interrupt is unmasked

7
(R/W)

EAWI Enable Address Word Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.EAWI bit indicates
generation of a status interrupt when an Address word in MDB-
mode is present in the UART_RBR. A received word is an address word
if the UART_STAT.ADDR bit is set.
0 Interrupt is masked
1 Interrupt is unmasked

6
(R/W)

ERFCI Enable Receive FIFO Count Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ERFCI bit indicates
enabling of the receive buffer threshold interrupt if signaled by the
UART_STAT.RFCS bit. Read the UART_RBR register sufficient times to
clear the interrupt request.
0 Interrupt is masked
1 Interrupt is unmasked

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

5
(R/W)

ETFI Enable Transmission Finished Interrupt Mask Status.
If set (interrupt unmasked) the UART_IMSK.ETFI bit indicates
enabling of interrupt generation on the status interrupt channel when
the transmit buffer register, the transmit address register, and the
transmit shift register are all empty as indicated by the UART_STAT.
TFI. The UART_IMSK.ETFI interrupt can be used to avoid expensive
polling of the UART_STAT.TEMT bit, when the UART clock or line
drivers should be disabled after transmission has completed. W1C
the UART_STAT.TFI bit to clear the interrupt request. In DMA
operation, the UART_IMSK.ETFI bits functionality might be
preferred.
0 Interrupt is masked
1 Interrupt is unmasked

4
(R/W)

EDTPTI Enable DMA TX Peripheral Trigerred Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.EDTPTI bit indicates
enabling of the DMA completion interrupt to be delayed until the
data has left the UART completely. This bit is required for DMA
transmit operation only. If set, the UART can generate a DMA
interrupt by the time the UART_STAT.TEMT bit goes high after the last
DMA data word is transmitted.
When UART_IMSK.EDTPTI is set, usually the DDE_CFG_INT field is
cleared to 00 in a STOP mode DMA. This set up suppresses the
normal completion interrupt, and the UART_STAT.TEMT event is
signaled through the DMA controller and triggers the DMA
interrupt. If both (DDE_CFG_INT not 00 and UART_IMSK.EDTPTI set),
two interrupts are requested at the end of a STOP mode DMA.
0 Interrupt is masked
1 Interrupt is unmasked

3
(R/W)

EDSSI Enable Modem Status Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.EDSSI bit indicates
enabling of a modem status interrupt on the same status interrupt
channel when the UART_STAT.SCTS bit is set. This indicates UART_
CTS pin re-assertion. Write-1-to-clear (W1C) the UART_STAT.SCTS
bit to clear the interrupt request.
0 Interrupt is masked
1 Interrupt is unmasked

Table 19-14: UART_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–43

Interrupt Mask Set Register

The UART_IMSK indicates interrupt mask status (unmasked if set, masked if cleared) of UART status inter-
rupts. This register is not a data register. Instead it is controlled by the UART_IMSK_SET and UART_IMSK_
CLR register pair. Writing ones to UART_IMSK_SET enables (unmasks) interrupts, and writing ones to
UART_IMSK_CLR disables (masks) them. Reads from either register return the enabled bits. For more infor-
mation, see the UART_IMSK register description.

2
(R/W)

ELSI Enable Line Status Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ELSI bit indicates that
redirection of TX and RX interrupt requests to the status interrupt
output of the UART by OR'ing them with the UART_STAT.OE, UART_
STAT.PE, UART_STAT.FE, and UART_STAT.BI interrupt requests. Set
this bit when no DMA channel is associated with the UART.
Enabling UART_IMSK.ELSI disables the RX/TX interrupt channels
and negates the UART_IMSK.EDTPTI bit.
0 Interrupt is masked
1 Interrupt is unmasked

1
(R/W)

ETBEI Enable Transmit Buffer Empty Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ETBEI bit indicates
generation of a TX interrupt if the UART_STAT.THRE bit is set.
0 Interrupt is masked
1 Interrupt is unmasked

0
(R/W)

ERBFI Enable Receive Buffer Full Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ERBFI indicates
generation of an RX interrupt if the UART_STAT.DR bit is set.
0 Interrupt is masked
1 Interrupt is unmasked

Table 19-14: UART_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 19-16: UART_IMSK_SET Register Diagram

Table 19-15: UART_IMSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W1S)

ETXS Enable TX to Status Interrupt Mask Set.
0 No action
1 Unmask interrupt

8
(R/W1S)

ERXS Enable RX to Status Interrupt Mask Set.
0 No action
1 Unmask interrupt

7
(R/W1S)

EAWI Enable Address Word Interrupt Mask Set.
0 No action
1 Unmask interrupt

6
(R/W1S)

ERFCI Enable Receive FIFO Count Interrupt Mask Set.
0 No action
1 Unmask interrupt

5
(R/W1S)

ETFI Enable Transmission Finished Interrupt Mask Set.
0 No action
1 Unmask interrupt

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–45

Interrupt Mask Clear Register

The UART_IMSK indicates interrupt mask status (unmasked if set, masked if cleared) of UART status inter-
rupts. This register is not a data register. Instead it is controlled by the UART_IMSK_SET and UART_IMSK_
CLR register pair. Writing ones to UART_IMSK_SET enables (unmasks) interrupts, and writing ones to
UART_IMSK_CLR disables (masks) them. Reads from either register return the enabled bits. For more infor-
mation, see the UART_IMSK register description.

4
(R/W1S)

EDTPTI Enable DMA TX Peripheral Triggered Interrupt Mask Set.
0 No action
1 Unmask interrupt

3
(R/W1S)

EDSSI Enable Modem Status Interrupt Mask Set.
0 No action
1 Unmask interrupt

2
(R/W1S)

ELSI Enable Line Status Interrupt Mask Set.
0 No action
1 Unmask interrupt

1
(R/W1S)

ETBEI Enable Transmit Buffer Empty Interrupt Mask Set.
0 No action
1 Unmask interrupt

0
(R/W1S)

ERBFI Enable Receive Buffer Full Interrupt Mask Set.
0 No action
1 Unmask interrupt

Table 19-15: UART_IMSK_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 19-17: UART_IMSK_CLR Register Diagram

Table 19-16: UART_IMSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W1C)

ETXS Enable TX to Status Interrupt Mask Clear.
0 No action
1 Mask interrupt

8
(R/W1C)

ERXS Enable RX to Status Interrupt Mask Clear.
0 No action
1 Mask interrupt

7
(R/W1C)

EAWI Enable Address Word Interrupt Mask Clear.
0 No action
1 Mask interrupt

6
(R/W1C)

ERFCI Enable Receive FIFO Count Interrupt Mask Clear.
0 No action
1 Mask interrupt

5
(R/W1C)

ETFI Enable Transmission Finished Interrupt Mask Clear.
0 No action
1 Mask interrupt

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–47

Receive Buffer Register

The read-only UART_RBR register is the UART's receive buffer. It is updated when there is pending data in
the receive FIFO. Newly available data is signaled by the UART_STAT.DR bit.

Figure 19-18: UART_RBR Register Diagram

4
(R/W1C)

EDTPTI Enable DMA TX Peripheral Triggered Interrupt Mask Clear.
0 No action
1 Mask interrupt

3
(R/W1C)

EDSSI Enable Modem Status Interrupt Mask Clear.
0 No action
1 Mask interrupt

2
(R/W1C)

ELSI Enable Line Status Interrupt Mask Clear.
0 No action
1 Mask interrupt

1
(R/W1C)

ETBEI Enable Transmit Buffer Empty Interrupt Mask Clear.
0 No action
1 Mask interrupt

0
(R/W1C)

ERBFI Enable Receive Buffer Full Interrupt Mask Clear.
0 No action
1 Mask interrupt

Table 19-16: UART_IMSK_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Transmit Hold Register

The write-only UART_THR register is the UART's transmit buffer. The UART_STAT.THRE bit indicates
whether data can be written to UART_THR. Writes to this register automatically propagate to the internal
UART_TSR register as soon as UART_TSR is ready. Then, transmit operation is initiated immediately.

Figure 19-19: UART_THR Register Diagram

Transmit Address/Insert Pulse Register

The UART_TAIP register and the UART_THR register share the same physical register, but UART_TAIP has
different effect than the UART_THR register when UART_TAIP is written to in MDB and UART modes.

In MDB mode, data written to the UART_TAIP register is transmitted as an address frame (as with the
UART_CTL.MOD bit set).

In UART mode, a write to UART_TAIP causes a pulse of value UART_TAIP [7] for a duration of UART_TAIP
[6:0] x bit time. (There is additional inversion if the UART_CTL.TPOLC bit is set).

Table 19-17: UART_RBR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

VALUE 8-bit data.

Table 19-18: UART_THR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE 8 bit data.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–49

Bit time is defined by the UART_CLK register. The transmission of the pulse is followed by stop bit trans-
mission as specified by the UART_CTL.STB and UART_CTL.STBH bits. This could be used for supporting line
break command and inter-frame gap.

In IrDA mode, writes to UART_TAIP is treated the same as writes to UART_THR.

Accesses to the UART_TAIP register have the same affects as the UART_THR register with respect to the UART_
STAT.THRE, UART_STAT.TEMT, and UART_STAT.TFI flags.

Figure 19-20: UART_TAIP Register Diagram

Transmit Shift Register

The read only UART_TSR register which returns the content of the UART's transmit shift register.

Figure 19-21: UART_TSR Register Diagram

Table 19-19: UART_TAIP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE 8-bit data.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Receive Shift Register

The read only UART_RSR register which returns the content of the UART's receive shift register.

The frame data is moved into this shift register after polarity inversion, if any (including the native polarity
inversion in the IrDA case).

In the case of the longest frame (MDB, with parity mode, and 8 bit data word-length), the start bit may be
shifted out and not available for reading at the end of the frame reception. This register is NOT reset at the
start of frame. If read, in the middle of a frame reception, data corresponding the previous frame may not
have entirely shifted out (for example, the read data that have been read may NOT correspond entirely to
the frame being received).

Because the UART is receiving only 1 stop bit, the UART_RSR contains only 1 stop bit even if more than one
stop bit is present in the actual transfer. This register may be considered as storing the 10 most recently
received bits (taking into consideration the stop bit receive limitation above).

Figure 19-22: UART_RSR Register Diagram

Table 19-20: UART_TSR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10:0
(R/NW)

VALUE Contents of TSR.

Table 19-21: UART_RSR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/NW)

VALUE Contents of RSR.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 19–51

Transmit Counter Register

The UART_TXCNT read only register returns the content of 16-bit counter in the UART transmitter. This
count is used for baud rate clock generation (the lower [15:0] is the count data).

Figure 19-23: UART_TXCNT Register Diagram

Receive Counter Register

The UART_RXCNT register returns the content of 16-bit counter in the UART receiver. This count is used
for baud rate clock generation (the lower [15:0] is the count data).

Figure 19-24: UART_RXCNT Register Diagram

Table 19-22: UART_TXCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

VALUE 16-bit Counter Value.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-BF60X UART REGISTER DESCRIPTIONS

19–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 19-23: UART_RXCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

VALUE 16-bit Counter Value.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–1

20 2-Wire Interface (TWI)

The processor has a 2-wire interface (TWI), that provides a simple exchange method of control data
between multiple devices. The TWI module is compatible with the widely used I2C bus standard. Addi-
tionally, the TWI module is fully compatible with serial camera control bus (SCCB) functionality for easier
control of various CMOS camera sensor devices.

The TWI module offers the capabilities of simultaneous master and slave operation and support for both
7-bit addressing and multimedia data arbitration. The TWI interface uses two pins for transferring clock
(TWI_SCL) and data (TWI_SDA) and supports the protocol at speeds up to 400K bits/sec. The TWI interface
pins are compatible with 5 V logic levels.

To preserve processor bandwidth, the TWI module can be set up with transfer initiated interrupts to only
service FIFO buffer data reads and writes. Protocol related interrupts are optional. The TWI externally
moves 8-bit data while maintaining compliance with the I2C bus protocol.

TWI Features
The TWI is fully compatible with the widely used I2C bus standard.

The TWI controller includes the following features.

• Simultaneous master and slave operation on multiple device systems

• Support for multi-master bus arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in the OmniVision Serial Camera Control Bus (SCCB)
Functional Specification

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

20–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

TWI Functional Description
The TWI interface is a shift register that serially transmits and receives data bits, one bit at a time at the
SCL rate, to and from other TWI devices. The SCL signal synchronizes the shifting and sampling of the
data on the serial data pin.

ADSP-BF60x TWI Register List

The 2-wire interface TWI controller allows a device to interface to an inter IC bus as specified by the
Philips I2C Bus Specification version 2.1 dated January 2000. A set of registers govern TWI operations. For
more information on TWI functionality, see the TWI register descriptions.

Table 20-1: ADSP-BF60x TWI Register List

Name Description

TWI_CLKDIV SCL Clock Divider Register

TWI_CTL Control Register

TWI_SLVCTL Slave Mode Control Register

TWI_SLVSTAT Slave Mode Status Register

TWI_SLVADDR Slave Mode Address Register

TWI_MSTRCTL Master Mode Control Registers

TWI_MSTRSTAT Master Mode Status Register

TWI_MSTRADDR Master Mode Address Register

TWI_ISTAT Interrupt Status Register

TWI_IMSK Interrupt Mask Register

TWI_FIFOCTL FIFO Control Register

TWI_FIFOSTAT FIFO Status Register

TWI_TXDATA8 Tx Data Single-Byte Register

TWI_TXDATA16 Tx Data Double-Byte Register

TWI_RXDATA8 Rx Data Single-Byte Register

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–3

ADSP-BF60x TWI Interrupt List

TWI Block Diagram

The following figure shows the basic blocks of the TWI interface.

Figure 20-1: TWI Block Diagram

TWI_RXDATA16 Rx Data Double-Byte Register

Table 20-2: ADSP-BF60x TWI Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

TWI0 Data Interrupt 32 LEVEL
TWI1 Data Interrupt 33 LEVEL

Table 20-1: ADSP-BF60x TWI Register List (Continued)

Name Description

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

20–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

External Interface

The TWI_SDA (serial data) and TWI_SCL (serial clock) signals are open drain and require pull-up resistors.
These bidirectional signals externally interface the TWI controller to the I2C bus and no other external
connections or logic are required.

Serial Clock Signal (SCL)

The serial clock signal (TWI_SCL) is an input in slave mode. In master mode the TWI controller must set
this signal to the desired frequency.

The TWI controller supports the standard mode of operation (up to 100 kHz) or fast mode (up to 400
kHz). The TWI control register (TWI_CTL) is used to set the TWI_CTL.PRESCALE value which sets the rela-
tionship between the system clock (SCLK) and the TWI controller’s internally timed events. The internal
time reference is derived from SCLK using a prescaled value. The prescale value is the number of SCLK
periods used in the generation of one internal time reference. The value of prescale must be set to create
an internal time reference with a period of 10 MHz. It is represented as a 7-bit binary value as shown below.

PRESCALE = f SCLK/10MHz

NOTE: It is not always possible to achieve 10 MHz accuracy. In such cases, it is safe to round up the PRES-
CALE value to the next highest integer. For example, if SCLK is 100 MHz, the PRESCALE value is
calculated as 100 MHz/10 MHz = 10. A prescale value of 14 in this case ensures that all timing
requirements are met.

During master mode operation, the TWI_CLKDIV register values are used to create the minimum TWI_
CLKDIV.CLKHI and TWI_CLKDIV.CLKLO durations of the TWI_SCL signal. The TWI_CLKDIV.CLKHI field
specifies the minimum number of 10 MHz time reference periods (represented as an 8-bit binary value)
the TWI_SCL waits before a new clock low period begins, assuming a single master. The TWI_CLKDIV.
CLKLO field specifies the minimum number of internal time reference periods (represented as an 8-bit
binary value) the TWI_SCL signal is held low.

Serial clock frequencies can vary from 400 kHz to less than 20 kHz. The resolution of the clock generated
is 1/10 MHz or 100 ns as shown below.

TWI_CLKDIV = TWI_SCL period/10 MHz time reference.

For example, for an TWI_SCL of 400 kHz (period = 1/400 kHz = 2500 ns) and an internal time reference of
10 MHz (period = 100 ns) the following equation is used:

TWI_CLKDIV = 2500 ns/100 ns = 25

Therefore, a TWI_SCL signal with a 30% duty cycle has TWI_CLKDIV.CLKLO=17 and TWI_CLKDIV.CLKHI=8.
Note that TWI_CLKDIV.CLKLO and TWI_CLKDIV.CLKHI add up to TWI_CLKDIV.

NOTE: The TWI_CLKDIV.CLKHI and TWI_CLKDIV.CLKLO fields are not intended to guarantee a certain
frequency. Rather, they guarantee a certain minimum high and low duration for the TWI_SCL
signal. Falling edges are controlled by slew rate, and rising edges are governed by the RC time

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–5

constant formed by the pull-up resistor and the TWI_SCL capacitance. See the “Register Descrip-
tions” section for more details.

Serial Data Signal (SDA)

This is a bidirectional signal on which serial data is transmitted or received depending on the direction of
the transfer.

Internal Interface

The peripheral bus interface supports the transfer of 16-bit wide data and is used by the processor in the
support of register and FIFO buffer reads and writes. The TWI internal interface is comprised of the blocks
described below.

Register block. Contains all control and status bits and reflects what can be written or read as outlined by
the programming model. Status bits can be updated by their respective functional blocks.

FIFO buffer. Configured as a1-byte-wide 2-deep transmit FIFO buffer and a 1-byte-wide 2-deep receive
FIFO buffer.

Transmit shift register. Serially shifts its data out externally off chip. The output can be controlled for
generation of acknowledgments or it can be manually overwritten.

Receive shift register. Receives its data serially from off chip. The receive shift register is 1 byte wide and
data received can either be transferred to the FIFO buffer or used in an address comparison.

Address compare block. Supports address comparison in the event the TWI controller module is accessed
as a slave.

Prescaler block. Must be programmed to generate a 10 MHz time reference relative to the system clock.
This time base is used for filtering of data and timing events specified by the electrical data sheet (See the
Philips specification), as well as for TWI_SCL clock generation.

Clock generation module. Generates an external TWI_SCL clock when in master mode. It includes the
logic necessary for synchronization in a multi-master clock configuration and clock stretching when
configured in slave mode.

TWI Architectural Concepts

The TWI controller follows the transfer protocol of the Philips I2C Bus Specification version 2.1 dated
January 2000.

TWI Protocol

The following figure shows a simple complete transfer.

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

20–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 20-2: Data Transfer

To better understand the mapping of TWI controller register contents to a basic transfer, The following
figure details the same transfer from the figure above noting the corresponding TWI controller bit names.
In this illustration, the TWI controller successfully transmits one byte of data. The slave has acknowledged
both address and data.

Figure 20-3: Data Transfer with Bit Illustration

Clock Generation and Synchronization

The TWI controller implementation only issues a clock during master mode operation and only at the time
a transfer has been initiated. If arbitration for the bus is lost, the serial clock output immediately three-
states. If multiple clocks attempt to drive the serial clock line, the TWI controller synchronizes its clock
with the other remaining clocks. This is shown in the figure below.

Figure 20-4: Clock Synchronization

The TWI controller serial clock (TWI_SCL) output follows these rules:

• Once the clock high (TWI_CLKDIV.CLKHI) count is complete, the serial clock output is driven low and
the clock low (TWI_CLKDIV.CLKLO) count begins.

• Once the clock low count is complete, the serial clock line is three-stated, allowing the external pull-up
resistor to pull the TWI_SCL signal high, and the clock synchronization logic enters into a delay mode

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–7

(shaded area) until the TWI_SCL signal is detected at logic 1 level. At this time the clock high count
begins.

Bus Arbitration

The TWI controller initiates a master mode transmission only when the bus is idle. If the bus is idle and
two masters initiate a transfer, arbitration for the bus begins. This is shown in the figure below.

Figure 20-5: Bus Arbitration

The TWI controller monitors the serial data bus (SDA) while the TWI_SCL signal is high and if the TWI_
SDA signal is determined to be an active logic 0 level while the TWI controller’s data is a logic 1 level, the
TWI controller has lost arbitration and stops generating the clock and data signals. Note that arbitration
is not only performed at the serial clock edges, but also during the entire time the TWI_SCL signal is high.

Start and Stop Conditions

Start and stop conditions involve serial data transitions while the serial clock is a logic 1 level. The TWI
controller generates and recognizes these transitions. Typically start and stop conditions occur at the
beginning and at the conclusion of a transmission with the exception of repeated start combined transfers,
as shown in the figure below.

Figure 20-6: Start and Stop Conditions

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

20–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The TWI controller's special case start and stop conditions include the following.

• Controller addressed as a slave-receiver. If the master asserts a stop condition during the data phase of
a transfer, the TWI controller concludes the transfer (TWI_ISTAT.SCOMP).

• Controller addressed as a slave-transmitter. If the master asserts a stop condition during the data phase
of a transfer, the TWI controller concludes the transfer (TWI_ISTAT.SCOMP) and indicates a slave
transfer error (TWI_ISTAT.SERR).

• Controller as a master-transmitter or master-receiver. If the stop bit (TWI_MSTRCTL.STOP) is set during
an active master transfer, the TWI controller issues a stop condition as soon as possible avoiding any
error conditions (as if data transfer count had been reached).

General Call Support

The TWI controller always decodes and acknowledges a general call address if it is enabled as a slave and
if general call is enabled. General call addressing (0x00) is configured using the TWI_SLVCTL.GEN bit and
only when the TWI controller is a slave-receiver.

If the data associated with the transfer is to be NAK’ed, the TWI_SLVCTL.NAK bit can be set. If the TWI
controller is to issue a general call as a master-transmitter the appropriate address (TWI_MSTRADDR
register) and transfer direction (TWI_MSTRCTL.DIR bit) can be set along with loading transmit FIFO data.

NOTE: The byte following the General Call address usually defines what action needs to be taken by the
slaves in response to the call. The command in the second byte is interpreted based on the value of
its LSB. For a TWI slave device, this is not applicable, and the bytes received after the general call
address are considered data.

Fast Mode

Fast mode essentially uses the same mechanics as the standard mode of operation. It is the electrical spec-
ifications and timing that are most affected. When fast mode is enabled (FAST) timing is modified to meet
the electrical requirements as described below.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition set-up time from serial clock to serial data (tSUSTO)

• Bus free time between a stop and start condition (tBUF)

TWI Operating Modes
The TWI has two modes of operation, repeated start and clock stretching. These are described in the
following sections.

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–9

Repeated Start

A repeated start condition is the absence of a stop condition between two transfers. The two transfers can
be of any direction type. Examples include a transmit followed by a receive, or a receive followed by a
transmit. The following sections guide the programmer in developing a service routine.

Transmit Receive Repeated Start

The following figure shows a repeated start followed by a data receive sequence. The shading in the figure
indicates that the slave has control of the bus.

Figure 20-7: Repeated Start Followed by Data Receive

The following tasks are performed at each interrupt.

• Transmit FIFO service (TWI_ISTAT.TXSERV) interrupt. This interrupt is generated due to a FIFO
access. Since this is the last byte of this transfer, the TWI_FIFOSTAT register indicates the transmit FIFO
is empty. When read, TWI_MSTRCTL.DCNT bit field=0. Set the TWI_MSTRCTL.RSTART bit to indicate a
repeated start and set the TWI_MSTRCTL.DIR bit if the following transfer will be a data receive.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. This interrupt is generated when all data has
been transferred (TWI_MSTRCTL.DCNT bit field=0). If no errors are generated, a start condition is initi-
ated. Clear the TWI_MSTRCTL.RSTART bit and program the TWI_MSTRCTL.DCNT bits with the desired
number of bytes to receive.

• Receive FIFO service (TWI_ISTAT.RXSERV) interrupt. This interrupt is generated due to the arrival of
a byte in the receive FIFO. Simple data handling is all that is required.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. The transfer is complete.

Receive Transmit Repeated Start

The following figure illustrates a repeated start data receive followed by a data transmit sequence. The
shading in the figure indicates that the slave has control of the bus.

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

20–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 20-8: Repeated Start Data Receive Followed by Data Transmit

The tasks performed at each interrupt are:

• Receive FIFO service (TWI_ISTAT.RXSERV) interrupt. This interrupt is generated due to the arrival of
a data byte in the receive FIFO. Set the TWI_MSTRCTL.RSTART bit to indicate a repeated start and clear
the TWI_MSTRCTL.DIR bit if the following transfer will be a data transmit.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. This interrupt has occurred due to the
completion of the data receive transfer. If no errors were generated, a start condition is initiated. Clear
the TWI_MSTRCTL.RSTART bit and program the TWI_MSTRCTL.DCNT bits with the desired number of
bytes to transmit.

• Transmit FIFO service (TWI_ISTAT.TXSERV) interrupt. This interrupt is generated due to a FIFO
access. Simple data handling is all that is required.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. The transfer is complete.

NOTE: There is no timing constraint to meet the above conditions—program the bits as required. Refer to
Clock Stretching During Repeated Start section for more on how the controller stretches the clock
during repeated start transfers.

Clock Stretching

Clock stretching is an added function of the TWI controller in master mode operation. This behavior uses
self-induced stretching of the I 2C clock while waiting to service interrupts. Stretching is done automati-
cally by the hardware and no programming is required. The TWI controller as a master supports three
modes of clock stretching:

• Clock Stretching During FIFO Underflow

• Clock Stretching During FIFO Overflow

• Clock Stretching During Repeated Start

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–11

Clock Stretching During FIFO Underflow

During a master mode transmit, an interrupt is generated the instant the transmit FIFO becomes empty.
At this time, the most recent byte begins transmission. If the TWI_ISTAT.TXSERV interrupt is not serviced,
the concluding acknowledge phase of the transfer is stretched.

Stretching of the clock continues until new data bytes are written to the transmit FIFO (TWI_TXDATA8 or
TWI_TXDATA16registers). No other action is required to release the clock and continue the transmission.
This behavior continues until the transmission is complete (TWI_MSTRCTL.DCNT=0) at which time the
transmission is concluded (TWI_ISTAT.MCOMP) as shown in the following figure and table.

Figure 20-9: Clock Stretching during FIFO Underflow

Clock Stretching During FIFO Overflow

During a master mode receive, an interrupt is generated at the instant the receive FIFO becomes full. It is
during the acknowledge phase of this received byte that clock stretching begins. No attempt is made to
initiate the reception of an additional byte. Stretching of the clock continues until the data bytes previously
received are read from the receive FIFO buffer (TWI_RXDATA8 or TWI_RXDATA16registers). No other action
is required to release the clock and continue the reception of data. This behavior continues until the recep-

TWI Controller Processor

Interrupt: XMTSERV – Transmit FIFO buffer is
empty.

Acknowledge: Clear interrupt source bits. Write
transmit FIFO buffer.

... ...
Interrupt: MCOMP – Master transmit complete
(DCNT= 0x00).

Acknowledge: Clear interrupt source bits.

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

20–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

tion is complete (TWI_MSTRCTL.DCNT=0) at which time the reception is concluded (TWI_ISTAT.MCOMP) as
shown in the following figure and table.

Figure 20-10: Clock Stretching During FIFO Overflow

Clock Stretching During Repeated Start

The repeated start feature in I2C protocol requires a transition between two subsequent transfers. With the
use of clock stretching, the task of managing transitions becomes simpler and becomes common to all
transfer types.

Once an initial TWI master transfer has completed (transmit or receive) the clock initiates a stretch during
the repeated start phase between transfers. Concurrent with this event the initial transfer generates aTWI_
ISTAT.MCOMP interrupt to signify the initial transfer has completed (TWI_MSTRCTL.DCNT=0). This initial
transfer is handled without any special bit setting sequences or timing.

The clock stretching logic described above applies here. With no system related timing constraints the
subsequent transfer (receive or transmit) is setup and activated. This sequence can be repeated as many
times as required to string a series of repeated start transfers together. This is shown in the following figure
and table.

TWI Controller Processor

Interrupt: RCVSERV – Receive FIFO buffer is full. Acknowledge: Clear interrupt source bits. Read
receive FIFO buffer.

... ...
Acknowledge: Clear interrupt source bits. Interrupt: MCOMP – Master receive complete.

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–13

Figure 20-11: Clock Stretching during Repeated Start Condition

TWI Programming Model
The topics in this section provide information on the basic programming steps required to set up and run
the two wire interface.

The following sections provide general setup, and master and slave mode programming steps.

General Setup

General setup refers to register writes that are required for both slave mode and master mode operations.

TWI Controller Processor

Interrupt: MCOMP – Initial transmit has completed
and DCNT = 0x00. Note: transfer in progress,
RSTART previously set.

Acknowledge: Clear interrupt source bits. Write
TWIx_MASTER_CTL, setting MDIR (receive),
clearing RSTART, and setting new DCNT value
(nonzero).

Interrupt: RCVSERV – Receive FIFO is full. Acknowledge: Clear interrupt source bits. Read
receive FIFO buffer.

... ...
Interrupt: MCOMP – Master receive complete Acknowledge: Clear interrupt source bits.

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

20–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

General setup should be performed before either the master or slave enable bits are set.

1. Program the TWI_CTL.EN bit to enable the TWI controller and set the prescale value (TWI_CTL.
PRESCALE bit).

2. Program the prescale value to the binary representation of fSCLK/10 MHz. All values should be rounded
up to the next whole number.

3. Set the TWI_CTL.EN bit to enable the controller.

RESULT:

Once the TWI controller is enabled a bus busy condition may be detected. This condition should clear after
tBUF has expired assuming no additional bus activity has been detected.

Slave Mode

When enabled, slave mode operation supports both receive and transmit data transfers.

It is not possible to enable only one data transfer direction and not acknowledge (NAK) the other. This is
reflected in the following setup.

1. Program the TWI_SLVADDR register. The appropriate 7 bits are used in determining a match during the
address phase of the transfer.

2. Program the TWI_TXDATA8.VALUE or TWI_TXDATA16 registers. These are the initial data values to be
transmitted in the event the slave is addressed and a transmit is required. This is an optional step. If no
data is written and the slave is addressed and a transmit is required, the serial clock (TWI_SCL) is
stretched and an interrupt is generated until data is written to the transmit FIFO.

3. Program the TWI_IMSK register. Enable bits are associated with the desired interrupt sources. As an
example, programming the value 0x000F results in an interrupt output to the processor in the event
that a valid address match is detected, a valid slave transfer completes, a slave transfer has an error, or
a subsequent transfer has begun yet the previous transfer has not been serviced.

4. Program the TWI_SLVCTL register. This prepares and enables slave mode operation. As an example,
programming the value 0x0005 enables slave mode operation, requires 7-bit addressing, and indicates
that data in the transmit FIFO buffer is intended for slave mode transmission.

RESULT:

The following table and flow diagram shows what the interaction between the TWI controller and the
processor might look like using this example.

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–15

Figure 20-12: TWI Slave Mode Program Flow

Master Mode Program Flow

The following figure shows the program for the TWI in master mode.

Table 20-3: Slave Mode Interaction

TWI Controller Processor

Interrupt: SINIT – Slave transfer in progress. Acknowledge: Clear interrupt source bits.
Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear interrupt source bits. Read

TWIx_FIFO_STAT. Read receive FIFO buffer.
... ...
Interrupt: SCOMP – Slave transfer complete. Acknowledge: Clear interrupt source bits. Read

receive FIFO buffer.

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

20–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 20-13: Master Mode Program Flow

Master Mode Clock Setup

Master mode operation is set up and executed on a per-transfer basis.

An example of programming steps for a receive and for a transmit are given separately in following
sections. The clock setup programming step listed here is common to both transfer types.

1. Program the TWI_CLKDIV register to define the minimum clock high duration and minimum clock low
duration.

RESULT:

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–17

The TWI_CLKDIV.CLKHI and TWI_CLKDIV.CLKLO fields are not intended to guarantee a certain frequency.
Rather, they guarantee a certain minimum high and low duration for TWI_SCL. Falling edges are controlled
by the slew rate, and rising edges are governed by the RC time constant formed by the pull-up resistor and
the SCL capacitance. See the “Register Descriptions” section for more details.

Master Mode Transmit

Follow these programming steps for a single master mode transmit:

1. Program the TWI_MSTRADDR register. This defines the address transmitted during the address phase of
the transfer.

2. Program the TWI_TXDATA8 or TWI_TXDATA16 register. This is the initial data transmitted. It is consid-
ered an error to complete the address phase of the transfer and not have data available in the transmit
FIFO buffer.

3. Program the TWI_FIFOCTL register. Indicate if the transmit FIFO buffer interrupts should occur with
each byte transmitted (8-bits) or with each two bytes transmitted (16-bits).

4. Program the TWI_IMSK register. Enable the bits associated with the desired interrupt sources. As an
example, programming the value 0x0030 results in an interrupt output to the processor in the event
that the master transfer completes, and the master transfer has an error.

5. Program the TWI_MSTRCTL register. This prepares and enables master mode operation. As an example,
programming the value 0x0201 enables master mode operation, generates a 7-bit address, sets the
direction to master-transmit, uses standard mode timing, and transmits 8 data bytes before generating
a Stop condition.

RESULT:

The following table shows what the interaction between the TWI controller and the processor might look
like using this example.

Table 20-4: Master Mode Transmit Setup Interaction

TWI Controller Processor

Interrupt: XMTSERV – Transmit buffer is empty. Acknowledge: Clear interrupt source bits. Write
transmit FIFO buffer.

... ...
Interrupt: MCOMP – Master transfer complete. Acknowledge: Clear interrupt source bits.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Master Mode Receive

Follow these programming steps for a single master mode receive.

1. Program the TWI_MSTRADDR register. This defines the address transmitted during the address phase of
the transfer.

2. Program the TWI_FIFOCTL register. Indicate if receive FIFO buffer interrupts should occur with each
byte received (8-bits) or with each two bytes received (16-bits).

3. Program the TWI_IMSK register. Enable bits associated with the desired interrupt sources. For example,
programming the value 0x0030 results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

4. Program the TWI_MSTRCTL register. This prepares and enables master mode operation. As an example,
programming the value 0x0205 enables master mode operation, generates a 7-bit address, sets the
direction to master-receive, uses standard mode timing, and receives 8 data bytes before generating a
Stop condition.

RESULT:

The following table shows what the interaction between the TWI controller and the processor might look
like using this example.

NOTE: After the TWI_DCNT bit is decremented to zero, the TWI Master device sends a NAK to indicate
to the slave transmitter that the bus should be released. This allows the master to send the STOP
signal to terminate the transfer.”

ADSP-BF60x TWI Register Descriptions
2-Wire Interface (TWI) contains the following registers.

Table 20-5: Master Mode Receive Setup Interaction

TWI Controller Processor

Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear interrupt source bits. Read
receive FIFO buffer.

... ...
Interrupt: MCOMP – Master transfer complete. Acknowledge: Clear interrupt source bits. Read

receive FIFO buffer.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–19

SCL Clock Divider Register

During master mode operation, the TWI_CLKDIV holds values, which the TWI uses to create the high and
low durations of the serial clock (SCL). The clock signal SCL is an output in master mode and an input in
slave mode. The values in the TWI_CLKDIV.CLKLO and TWI_CLKDIV.CLKHI fields add up to the CLKDIV
value the following equation.

CLKDIV = TWI SCL period / 10 MHz time reference

Table 20-6: ADSP-BF60x TWI Register List

Name Description

TWI_CLKDIV SCL Clock Divider Register

TWI_CTL Control Register

TWI_SLVCTL Slave Mode Control Register

TWI_SLVSTAT Slave Mode Status Register

TWI_SLVADDR Slave Mode Address Register

TWI_MSTRCTL Master Mode Control Registers

TWI_MSTRSTAT Master Mode Status Register

TWI_MSTRADDR Master Mode Address Register

TWI_ISTAT Interrupt Status Register

TWI_IMSK Interrupt Mask Register

TWI_FIFOCTL FIFO Control Register

TWI_FIFOSTAT FIFO Status Register

TWI_TXDATA8 Tx Data Single-Byte Register

TWI_TXDATA16 Tx Data Double-Byte Register

TWI_RXDATA8 Rx Data Single-Byte Register

TWI_RXDATA16 Rx Data Double-Byte Register

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Serial clock frequencies can vary from 400 KHz to less than 20 KHz. The resolution of the clock generated
is 1/10 MHz or 100 ns. For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns) and an internal
time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, use TWI_CLKDIV.CLKLO = 17 and TWI_CLKDIV.CLKHI = 8.

Figure 20-14: TWI_CLKDIV Register Diagram

Control Register

The TWI_CTL enables the TWI, establishes a relationship between the system clock (SCLK) and the TWI
controller's internally timed events, and enables SCCB compatibility.

Figure 20-15: TWI_CTL Register Diagram

Table 20-7: TWI_CLKDIV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

CLKHI SCL Clock High Periods.
The TWI_CLKDIV.CLKHI specifies the number of 10 MHz time
reference periods the serial clock (SCL) waits before a new clock low
period begins, assuming a single master.

7:0
(R/W)

CLKLO SCL Clock Low Periods.
The TWI_CLKDIV.CLKLO specifies the number of internal time
reference periods the serial clock (SCL) is held low.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–21

Table 20-8: TWI_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W)

SCCB SCCB Compatibility.
The TWI_CTL.SCCB enables SCCB compatible operation for the TWI.
SCCB compatibility is an optional feature and should not be used in
an I2C bus system. When this feature is enabled, all slave asserted
acknowledgement bits are ignored by this master. This feature is valid
only during transfers where the TWI is mastering an SCCB bus. Slave
mode transfers should be avoided when this feature is enabled
because the TWI controller always generates an acknowledge in slave
mode.
0 Disable SCCB compatibility

When disabled, Master transfers are not
SCCB compatible.

1 Enable SCCB compatibility
When enabled, Master transfers are SCCB
compatible. All slave-asserted
acknowledgement bits are ignored by this
master.

7
(R/W)

EN Enable Module.
The TWI_CTL.EN enables TWI controller operation for either master
and/or slave mode of operation. It is recommended that this bit be set
at the time TWI_CTL.PRESCALE is initialized and remain set. This
method guarantees accurate operation of bus busy detection logic.
0 Disable
1 Enable

6:0
(R/W)

PRESCALE SCLK Prescale Value.
The TWI_CTL.PRESCALE holds the pre-scaled value for the TWI
internal time reference. This reference is derived from SCLK
according to the formula:
TWI_CTL.PRESCALE = fSCLK/10MHz
The TWI_CTL.PRESCALE specifies the number of system clock
(SCLK) periods used in the generation of one internal time reference.
The value of TWI_CTL.PRESCALE must be set to create an internal
time reference with a period of 10 MHz. It is represented as a 7-bit
binary value.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Slave Mode Control Register

The TWI_SLVCTL controls the logic associated with slave mode operation. Settings in this register do not
affect master mode operation and should not be modified to control master mode functionality.

Figure 20-16: TWI_SLVCTL Register Diagram

Table 20-9: TWI_SLVCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

GEN General Call Enable.
The TWI_SLVCTL.GEN enables general call address matching. When
enabled, a general call slave receive transfer is accepted. All status and
interrupt source bits associated with transfers are updated. Note that
general call address detection is available only when slave mode is
enabled.
0 Disable General Call Matching
1 Enable General Call Matching

3
(R/W)

NAK Not Acknowledge.
The TWI_SLVCTL.NAK directs the TWI to generate a NAK (if set) or
an ACK (if cleared) at the conclusion of data transfer for slave receive.
For NAK, the slave is still considered to be addressed at the
conclusion of transfer.
0 Generate ACK
1 Generate NAK

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–23

Slave Mode Status Register

During and at the conclusion of register slave mode transfers, the TWI_SLVSTAT holds information on the
current transfer. Generally slave mode status bits are not associated with the generation of interrupts.
Master mode operation does not affect slave mode status bits.

Figure 20-17: TWI_SLVSTAT Register Diagram

2
(R/W)

TDVAL Transmit Data Valid for Slave.
The TWI_SLVCTL.TDVAL selects whether the data in the transmit
FIFO is available (valid) for slave transmission (TWI_SLVCTL.TDVAL
set). If the FIFO data is not available (invalid) for slave transmission
(TWI_SLVCTL.TDVAL cleared), the data in the transmit FIFO is for
master mode transmits, and the data is not allowed to be used during
a slave transmit; the transmit FIFO is treated as if it is empty.
0 Data Invalid for Slave Tx
1 Data Valid for Slave Tx

0
(R/W)

EN Enable Slave Mode.
The TWI_SLVCTL.EN enables slave operation. Enabling slave and
master modes of operation concurrently is allowed. If disabled, no
attempt is made to identify a valid address. If TWI_SLVCTL.EN is
cleared during a valid transfer, clock stretching ceases, the serial data
line is released, and the current byte is not acknowledged.
0 Disable
1 Enable

Table 20-9: TWI_SLVCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Slave Mode Address Register

The TWI_SLVADDR holds the slave mode address, which is the valid address to which the slave-enabled TWI
controller responds. The TWI controller compares this value with the received address during the
addressing phase of a transfer.

Figure 20-18: TWI_SLVADDR Register Diagram

Table 20-10: TWI_SLVSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/NW)

GCALL General Call.
The TWI_SLVSTAT.GCALL indicates whether or not--at the time of
addressing--the address was determined to be a general call. This bit
self clears if slave mode is disabled (TWI_SLVCTL.EN =0).
0 Not a General Call Address
1 General Call Address

0
(R/NW)

DIR Transfer Direction for Slave.
The TWI_SLVSTAT.DIR indicates whether--at the time of addressing-
-the transfer direction was determined to be slave transmit or receive.
This bit self clears if slave mode is disabled (TWI_SLVCTL.EN =0).
0 Slave Receive
1 Slave Transmit

Table 20-11: TWI_SLVADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

ADDR Slave Mode Address.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–25

Master Mode Control Registers

The TWI_MSTRCTL controls the logic associated with master mode operation. Bits in this register do not
affect slave mode operation and should not be modified to control slave mode functionality.

Figure 20-19: TWI_MSTRCTL Register Diagram

Table 20-12: TWI_MSTRCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

SCLOVR Serial Clock Override.
The TWI_MSTRCTL.SCLOVR provides direct control of the serial clock
line when required. Normal master and slave mode operation should
not require override operation. When TWI_MSTRCTL.SCLOVR is set,
the TWI overrides normal serial clock output, driving it to an active 0
level and overriding all other logic. This state is held until this bit is
cleared. When TWI_MSTRCTL.SCLOVR is cleared, the TWI permits
normal serial clock operation under the control of master mode clock
generation and slave mode clock stretching logic.
0 Permit Normal SCL Operation
1 Override Normal SCL Operation

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

14
(R/W)

SDAOVR Serial Data Override.
The TWI_MSTRCTL.SDAOVR provides direct control of the serial data
line when required. Normal master and slave mode operation should
not require override operation. When TWI_MSTRCTL.SDAOVR is set,
the TWI overrides normal serial data operation under the control of
the transmit shift register and acknowledge logic, driving serial data
output to an active 0 level and overriding all other logic. This state is
held until this bit is cleared. When TWI_MSTRCTL.SDAOVR is cleared,
the TWI permits normal serial data operation.
0 Permit Normal SDA Operation
1 Override Normal SDA Operation

13:6
(R/W)

DCNT Data Transfer Count.
The TWI_MSTRCTL.DCNT indicates the number of data bytes to
transfer. As each data word is transferred, the TWI decrements this
counter. When TWI_MSTRCTL.DCNT decrements to 0, a stop condition
is generated. Setting TWI_MSTRCTL.DCNT to 0xFF disables the
counter. In this transfer mode, data continues to be transferred until
it is concluded by setting the TWI_MSTRCTL.STOP bit. In the event a
master transmit is aborted due to a slave data NAK, the value of TWI_
MSTRCTL.DCNT equals the number of bytes not sent. The byte which
was NAK'ed by the slave is counted as a sent byte.

5
(R/W)

RSTART Repeat Start.
The TWI_MSTRCTL.RSTART enables the TWI to issue a repeat start
condition at the conclusion of the current transfer (TWI_MSTRCTL.
DCNT =0) and begin the next transfer. The current transfer concludes
with updates to the appropriate status and interrupt bits. If errors
occurred during the previous transfer, a repeat start does not occur.
In the absence of any errors, master enable (TWI_MSTRCTL.EN) does
not self clear on a repeat start.
0 Disable Repeat Start
1 Enable Repeat Start

4
(R/W)

STOP Issue Stop Condition.
The TWI_MSTRCTL.STOP directs the TWI to issue a stop condition.
The transfer concludes as soon as possible avoiding any error
conditions (as if data transfer count had been reached). At that time,
the TWI_IMSK is updated along with any associated status bits.
0 Permit Normal Operation
1 Issue Stop

Table 20-12: TWI_MSTRCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–27

Master Mode Status Register

The TWI_MSTRSTAT holds information during master mode transfers and at their conclusion. Generally,
master mode status bits are not directly associated with the generation of interrupts, but these bits offer
information on the current transfer. Slave mode operation does not affect master mode status bits.

Note that while TWI_MSTRSTAT.SCLSEN is set (this condition could be due to having no pull-up resistor on
TWI_SCL or another agent is driving TWI_SCL low), the acknowledge bits (TWI_MSTRSTAT.ANAK and TWI_
MSTRSTAT.DNAK) do not update. This result occurs because the acknowledge conditions are sampled
during the high phase of TWI_SCL.

3
(R/W)

FAST Fast Mode.
The TWI_MSTRCTL.FAST selects whether the TWI operates in fast
mode or standard mode. In fast mode, the TWI uses timing
specifications for transfers at up to 400K bits/s. In standard mode, the
TWI uses timing specifications for transfers at up to 100K bits/s.
0 Select Standard Mode
1 Select Fast Mode

2
(R/W)

DIR Transfer Direction for Master.
The TWI_MSTRCTL.DIR selects the transfer direction for the TWI as
master initiated receive or transmit.
0 Master Transmit
1 Master Receive

0
(R/W)

EN Enable Master Mode.
The TWI_MSTRCTL.EN enables master mode functionality. A start
condition is generated if the bus is idle. This bit self clears at the
completion of a transfer, including transfers terminated due to errors.
If disabled (bit cleared) during operation, the transfer is aborted, and
all logic associated with master mode transfers are reset. Serial data
and serial clock (SDA, SCL) are no longer driven. Write-1-to-clear
status bits are not affected.
0 Disable
1 Enable

Table 20-12: TWI_MSTRCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 20-20: TWI_MSTRSTAT Register Diagram

Table 20-13: TWI_MSTRSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

8
(R/NW)

BUSBUSY Bus Busy.
The TWI_MSTRSTAT.BUSBUSY indicates whether the bus is currently
busy or free. This indication is not limited to only this device but is
for all devices. On a start condition, the setting of the register value is
delayed due to the input filtering. On a stop condition the clearing of
the register value occurs after tBUF.

0 Bus Free
The bus is free. The clock and data bus
signals have been inactive for the
appropriate bus free time.

1 Bus Busy
The bus is busy. Clock or data activity has
been detected.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–29

7
(R/NW)

SCLSEN Serial Clock Sense.
The TWI_MSTRSTAT.SCLSEN indicates the active or inactive state of
the serial clock. Use this status bit when direct sensing of the serial
clock line is required. The register value is delayed due to the input
filter (nominally 50 ns). Normal master and slave mode operation
should not require this feature.
0 SCL Inactive "One"

An inactive "one" is being sensed on the
serial clock.

1 SCL Active "Zero"
An active "zero" is being sensed on the serial
clock. The source of the active driver is not
known and can be internal or external.

6
(R/NW)

SDASEN Serial Data Sense.
The TWI_MSTRSTAT.SDASEN indicates the active or inactive status of
the serial data. Use this status bit when direct sensing of the serial
data line is required. The register value is delayed due to the input
filter (nominally 50 ns). Normal master and slave mode operation
should not require this feature.
0 SDA Inactive "One"

An inactive "one" is currently being sensed
on the serial data line.

1 SDA Active "Zero"
An active "zero" is currently being sensed on
the serial data line. The source of the active
driver is not known and can be internal or
external.

5
(R/W1C)

BUFWRERR Buffer Write Error.
The TWI_MSTRSTAT.BUFWRERR indicates whether the current master
transfer was aborted due to a receive buffer write error. The receive
buffer and receive shift register were both full at the same time. This
bit is W1C.
0 No Status
1 Buffer Write Error

Table 20-13: TWI_MSTRSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Master Mode Address Register

During the addressing phase of a transfer, the TWI controller, with its master enabled, transmits the
contents of TWI_MSTRADDR. When programming this register, omit the read/write bit. That is, only the

4
(R/W1C)

BUFRDERR Buffer Read Error.
The TWI_MSTRSTAT.BUFRDERR indicates whether the current master
transfer was aborted due to the detection of a NAK during data
transmission. This bit is W1C.
0 No Status
1 Buffer Read Error

3
(R/W1C)

DNAK Data Not Acknowledged.
The TWI_MSTRSTAT.DNAK indicates whether the current master
transfer was aborted due to the detection of a NAK during data
transmission. This bit is W1C.
0 No Status
1 Data NAK

2
(R/W1C)

ANAK Address Not Acknowledged.
The TWI_MSTRSTAT.ANAK indicates whether the current master
transfer was aborted due to the detection of a NAK during the
address phase of the transfer. This bit is W1C.
0 No Status
1 Address NAK

1
(R/W1C)

LOSTARB Lost Arbitration.
The TWI_MSTRSTAT.LOSTARB indicates whether the current transfer
was aborted due to the loss of arbitration with another master. This
bit is W1C.
0 No Status
1 Lost Arbitration

0
(R/NW)

MPROG Master Transfer in Progress.
The TWI_MSTRSTAT.MPROG indicates whether or not a master transfer
is in progress. If clear (TWI_MSTRSTAT.MPROG =0), currently no
transfer is taking place. This can occur after a transfer is complete or
while an enabled master is waiting for an idle bus.
0 No Status
1 Master Transfer in Progress

Table 20-13: TWI_MSTRSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–31

upper 7 bits that make up the slave address should be written to this register. For example, if the slave
address is b#1010000X, where X is the read/write bit, the TWI_MSTRADDR is programmed with b#1010000,
which corresponds to 0x50. When sending out the address on the bus, the TWI controller appends the
read/write bit as appropriate based on the state of the TWI_MSTRCTL.DIR bit.

Figure 20-21: TWI_MSTRADDR Register Diagram

Interrupt Status Register

The TWI_ISTAT contains information about functional areas requiring servicing. Many of the bits serve as
an indicator to further read and service various status registers. After servicing the interrupt source asso-
ciated with a bit, the user must clear that interrupt source bit by writing a 1 to it.

Figure 20-22: TWI_ISTAT Register Diagram

Table 20-14: TWI_MSTRADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

ADDR Master Mode Address.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 20-15: TWI_ISTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

SCLI Serial Clock Interrupt.
If the TWI is enabled (TWI_CTL.EN), SCLI is set on a high-to-low
transition of the serial clock pin (SCLx). Normally, this bit is not
required for I2C bus transfers. It will be initially set on an I2C transfer
and does not require clearing.
0 No Interrupt

No transition was detected on the SCLx pin.
1 Interrupt Detected

A high-to-low transition was detected on
the SCLx pin. This bit is W1C.

14
(R/W1C)

SDAI Serial Data Interrupt.
If the TWI is enabled (TWI_CTL.EN), SDAI is set on a high-to-low
transition of the serial data pin (SDAx). Normally, this bit is not
required for I2C bus transfers. It will be initially set on an I2C transfer
and does not require clearing.
0 No Interrupt

No transition was detected on the SDAx pin.
1 Interrupt Detected

A high-to-low transition was detected on
the SDAx pin. This bit is W1C.

7
(R/W1C)

RXSERV Rx FIFO Service.
If TWI_FIFOCTL.RXILEN =0, the TWI_ISTAT.RXSERV is set each time
the TWI_FIFOSTAT.RXSTAT field is updated to either 01 or 11. If TWI_
FIFOCTL.RXILEN =1, the TWI_ISTAT.RXSERV is set each time TWI_
FIFOSTAT.RXSTAT is updated to 11.
0 No Interrupt

The FIFO does not require servicing, or the
TWI_FIFOSTAT.RXSTAT field has not
changed since this bit was last cleared.

1 Interrupt Detected
The receive FIFO buffer has one or two 8-bit
words of data available to be read.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–33

6
(R/W1C)

TXSERV Tx FIFO Service.
If TWI_FIFOCTL.TXILEN =0, the TWI_ISTAT.TXSERV is set each time
the TWI_FIFOSTAT.TXSTAT field is updated to either 01 or 00. If TWI_
FIFOCTL.TXILEN =1, the TWI_ISTAT.TXSERV is set each time TWI_
FIFOSTAT.TXSTAT is updated to 00.
0 No Interrupt

FIFO does not require servicing, or the TWI_
FIFOSTAT.TXSTAT field has not changed
since this bit was last cleared.

1 Interrupt Detected
The transmit FIFO buffer has one or two 8-
bit locations available to be written.

5
(R/W1C)

MERR Master Transfer Error.
The TWI_ISTAT.MERR indicates that a master error has occurred. The
conditions surrounding the error are indicated by the master status
register (TWI_MSTRSTAT).
0 No Interrupt
1 Interrupt Detected

4
(R/W1C)

MCOMP Master Transfer Complete.
The TWI_ISTAT.MCOMP indicates that the initiated master transfer
has completed. In the absence of a repeat start, the bus has been
released.
0 No Interrupt
1 Interrupt Detected

3
(R/W1C)

SOVF Slave Overflow.
The TWI_ISTAT.SOVF indicates that the TWI_ISTAT.SCOMP bit was
set at the time a subsequent transfer has acknowledged an address
phase. The transfer continues, however, it may be difficult to
delineate data of one transfer from another.
0 No Interrupt
1 Interrupt Detected

Table 20-15: TWI_ISTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Interrupt Mask Register

The TWI_IMSK enables interrupt sources to assert the interrupt output. Each mask bit corresponds with
one interrupt source bit in TWI_ISTAT. Reading and writing TWI_IMSK does not affect the contents of the
TWI_ISTAT.

2
(R/W1C)

SERR Slave Transfer Error.
The TWI_ISTAT.SERR indicates that a slave error has occurred. A
restart or stop condition has occurred during the data receive phase
of a transfer.
0 No Interrupt
1 Interrupt Detected

1
(R/W1C)

SCOMP Slave Transfer Complete.
The TWI_ISTAT.SCOMP indicates that the transfer is complete and
either a stop, or a restart was detected.
0 No Interrupt
1 Interrupt Detected

0
(R/W1C)

SINIT Slave Transfer Initiated.
The TWI_ISTAT.SINIT indicates whether or not a slave transfer is in
progress.
0 No Interrupt

A transfer is not in progress, or an address
match has not occurred since the last time
this bit was cleared.

1 Interrupt Detected
The slave has detected an address match,
and a transfer has been initiated.

Table 20-15: TWI_ISTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–35

Figure 20-23: TWI_IMSK Register Diagram

Table 20-16: TWI_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

SCLI Serial Clock Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

14
(R/W)

SDAI Serial Data Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

7
(R/W)

RXSERV Rx FIFO Service Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

6
(R/W)

TXSERV Tx FIFO Service Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

5
(R/W)

MERR Master Transfer Error Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

FIFO Control Register

The TWI_FIFOCTL control bits affect only the FIFO and are not tied in any way with master or slave mode
operation.

Figure 20-24: TWI_FIFOCTL Register Diagram

4
(R/W)

MCOMP Master Transfer Complete Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

3
(R/W)

SOVF Slave Overflow Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

2
(R/W)

SERR Slave Transfer Error Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

1
(R/W)

SCOMP Slave Transfer Complete Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

0
(R/W)

SINIT Slave Transfer Initiated Interrupt Mask.
0 Mask (Disable) Interrupt
1 Unmask (Enable) Interrupt

Table 20-16: TWI_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–37

FIFO Status Register

The TWI_FIFOSTAT fields indicate the state of the FIFO buffers' receive and transmit contents. The FIFO
buffers do not discriminate between master data and slave data. By using the status and control bits
provided, the FIFO can be managed to allow simultaneous master and slave operation.

Table 20-17: TWI_FIFOCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

RXILEN Rx Buffer Interrupt Length.
The TWI_FIFOCTL.RXILEN determines the rate at which receive
buffer interrupts are to be generated. Interrupts may be generated
with each byte received or after two bytes are received. Interrupt
status is available in TWI_FIFOSTAT.RXSTAT.
0 RXSERVI on 1 or 2 Bytes in FIFO
1 RXSERVI on 2 Bytes in FIFO

2
(R/W)

TXILEN Tx Buffer Interrupt Length.
The TWI_FIFOCTL.TXILEN determines the rate at which transmit
buffer interrupts are to be generated. Interrupts may be generated
with each byte transmitted or after two bytes are transmitted.
Interrupt status is available in TWI_FIFOSTAT.TXSTAT.
0 TXSERVI on 1 Byte of FIFO Empty
1 TXSERVI on 2 Bytes of FIFO Empty

1
(R/W)

RXFLUSH Rx Buffer Flush.
The TWI_FIFOCTL.RXFLUSH directs the TWI to flush the contents of
the receive buffer and update TWI_FIFOSTAT.RXSTAT to indicate the
buffer is empty. This state is held until this bit is cleared. During an
active receive, the receive buffer in this state responds to the receive
logic as if it is full.
0 Normal Operation of Rx Buffer
1 Flush Rx Buffer

0
(R/W)

TXFLUSH Tx Buffer Flush.
The TWI_FIFOCTL.TXFLUSH directs the TWI to flush the contents of
the transmit buffer and update TWI_FIFOSTAT.TXSTAT to indicate
the buffer is empty. This state is held until this bit is cleared. During
an active transmit, the transmit buffer in this state responds to the
transmit logic as if it is empty.
0 Normal Operation of Tx Buffer
1 Flush Tx Buffer

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 20-25: TWI_FIFOSTAT Register Diagram

Table 20-18: TWI_FIFOSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:2
(R/NW)

RXSTAT Rx FIFO Status.
The read-only TWI_FIFOSTAT.RXSTAT indicates the number of valid
data bytes in the receive FIFO buffer. The status is updated with each
FIFO buffer read using the peripheral data bus or write access by the
receive shift register. Simultaneous accesses are allowed.
0 Empty

The FIFO is empty.
1 Contains 1 Byte

The FIFO contains one byte of data. A single
byte peripheral read of the FIFO is allowed.

2 Reserved
3 Full

The FIFO is full and contains two bytes of
data. Either a single or double byte
peripheral read of the FIFO is allowed.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–39

Tx Data Single-Byte Register

The TWI_TXDATA8 holds an 8-bit data value written into the FIFO buffer. Transmit data is entered into the
corresponding transmit buffer in a first-in first-out order. For 16-bit peripheral bus writes, a write access
to TWI_TXDATA8 adds only one transmit data byte to the FIFO buffer. With each access, the transmit status
(TWI_FIFOSTAT.TXSTAT) field is updated. If an access is performed while the FIFO buffer is full, the write
is ignored and the existing FIFO buffer data and its status remains unchanged.

Figure 20-26: TWI_TXDATA8 Register Diagram

1:0
(R/NW)

TXSTAT Tx FIFO Status.
The read-only TWI_FIFOSTAT.TXSTAT field indicates the number of
valid data bytes in the FIFO buffer. The status is updated with each
FIFO buffer write using the peripheral data bus or read access by the
transmit shift register. Simultaneous accesses are allowed.
0 Empty

The FIFO is empty. Either a single or double
byte peripheral write of the FIFO is allowed.

1 Contains 1 Byte
The FIFO contains one byte of data. A single
byte peripheral write of the FIFO is allowed.

2 Reserved
3 Full

The FIFO is full and contains two bytes of
data.

Table 20-19: TWI_TXDATA8 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W)

VALUE Tx Data 8-Bit Value.

Table 20-18: TWI_FIFOSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Tx Data Double-Byte Register

The TWI_TXDATA16 holds a 16-bit data value written into the FIFO buffer. To reduce interrupt output rates
and peripheral bus access times, a double byte transfer data access can be done. Two data bytes can be
written, effectively filling the transmit FIFO buffer with a single access.

The data is written in little endian byte order, where byte 0 is the first byte to be transferred and byte 1 is
the second byte to be transferred. With each access, the transmit status (TWI_FIFOSTAT.TXSTAT) field is
updated. If an access is performed while the FIFO buffer is not empty, the write is ignored and the existing
FIFO buffer data and its status remains unchanged.

Figure 20-27: TWI_TXDATA16 Register Diagram

Rx Data Single-Byte Register

The TWI_RXDATA8 holds an 8-bit data value read from the FIFO buffer. Receive data is read from the corre-
sponding receive buffer in a first-in first-out order. Although peripheral bus reads are 16 bits, a read access
to TWI_RXDATA8 accesses only one transmit data byte from the FIFO buffer. With each access, the receive
status (TWI_FIFOSTAT.RXSTAT) field is updated. If an access is performed while the FIFO buffer is empty,
the data is unknown and the FIFO buffer status remains indicating it is empty.

Figure 20-28: TWI_RXDATA8 Register Diagram

Table 20-20: TWI_TXDATA16 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R0/W)

VALUE Tx Data 16-Bit Value.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 20–41

Rx Data Double-Byte Register

The TWI_RXDATA16 holds a 16-bit data value read from the FIFO buffer. To reduce interrupt output rates
and peripheral bus access times, a double byte receive data access can be performed. Two data bytes can
be read, effectively emptying the receive FIFO buffer with a single access.

The data is read in little endian byte order, where byte 0 is the first byte received and byte 1 is the second
byte received. With each access, the receive status (TWI_FIFOSTAT.RXSTAT) field is updated to indicate it
is empty. If an access is performed while the FIFO buffer is not full, the read data is unknown and the
existing FIFO buffer data and its status remains unchanged.

Figure 20-29: TWI_RXDATA16 Register Diagram

Table 20-21: TWI_RXDATA8 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W)

VALUE Rx Data 8-Bit Value.

Table 20-22: TWI_RXDATA16 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R0/W)

VALUE Rx Data 16-Bit Value.

2-WIRE INTERFACE (TWI)
ADSP-BF60X TWI REGISTER DESCRIPTIONS

20–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–1

21 Controller Area Network (CAN)

The processor contains a controller area network (CAN) module based on the CAN 2.0B (active) protocol.
This protocol is an asynchronous communications protocol used in both industrial and automotive
control systems. The CAN protocol is well suited for control applications because it can communicate reli-
ably over a network and incorporates CRC checking, message error tracking, and fault node confinement.

NOTE: This document assumes familiarity with the CAN standard. For more information, refer to
Version 2.0 of the CAN Specification from Robert Bosch GmbH.

CAN Features
Key features of the CAN module include:

• Conformity to the CAN 2.0B (active) standard

• Dedicated acceptance mask for each mailbox

• Support for data rates of up to 1M bit/s

• Support for standard (11-bit) and extended (29-bit) identifiers

• 32 mailboxes (8 transmit, 8 receive, 16 configurable)

• Data filtering (first 2 bytes) can be used for acceptance filtering (DeviceNetTM mode)

• Error status and warning registers

• Universal counter module

• Readable receive and transmit pin values

• Support for remote frames

• Active or passive network support

• Interrupts, including transmit/receive complete, error, and global

• Clock derived from SCLK through a programmable divider, eliminating the need for an additional
crystal

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

21–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CAN Functional Description
The following sections provide information on the functional operation of the CAN module. This section
also provides listings of the CAN registers and interrupts.

ADSP-BF60x CAN Register List

The controller area network (CAN) module implements the CAN 2.0B (active) protocol. This protocol is
an asynchronous communications protocol used in both industrial and automotive control systems. A set
of registers govern CAN operations. For more information on CAN functionality, see the CAN register
descriptions.

Table 21-1: ADSP-BF60x CAN Register List

Name Description

CAN_MC1 Mailbox Configuration 1 Register

CAN_MD1 Mailbox Direction 1 Register

CAN_TRS1 Transmission Request Set 1 Register

CAN_TRR1 Transmission Request Reset 1 Register

CAN_TA1 Transmission Acknowledge 1 Register

CAN_AA1 Abort Acknowledge 1 Register

CAN_RMP1 Receive Message Pending 1 Register

CAN_RML1 Receive Message Lost 1 Register

CAN_MBTIF1 Mailbox Transmit Interrupt Flag 1 Register

CAN_MBRIF1 Mailbox Receive Interrupt Flag 1 Register

CAN_MBIM1 Mailbox Interrupt Mask 1 Register

CAN_RFH1 Remote Frame Handling 1 Register

CAN_OPSS1 Overwrite Protection/Single Shot Transmission 1 Register

CAN_MC2 Mailbox Configuration 2 Register

CAN_MD2 Mailbox Direction 2 Register

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–3

CAN_TRS2 Transmission Request Set 2 Register

CAN_TRR2 Transmission Request Reset 2 Register

CAN_TA2 Transmission Acknowledge 2 Register

CAN_AA2 Abort Acknowledge 2 Register

CAN_RMP2 Receive Message Pending 2 Register

CAN_RML2 Receive Message Lost 2 Register

CAN_MBTIF2 Mailbox Transmit Interrupt Flag 2 Register

CAN_MBRIF2 Mailbox Receive Interrupt Flag 2 Register

CAN_MBIM2 Mailbox Interrupt Mask 2 Register

CAN_RFH2 Remote Frame Handling 2 Register

CAN_OPSS2 Overwrite Protection/Single Shot Transmission 2 Register

CAN_CLK Clock Register

CAN_TIMING Timing Register

CAN_DBG Debug Register

CAN_STAT Status Register

CAN_CEC Error Counter Register

CAN_GIS Global CAN Interrupt Status Register

CAN_GIM Global CAN Interrupt Mask Register

CAN_GIF Global CAN Interrupt Flag Register

CAN_CTL CAN Master Control Register

CAN_INT Interrupt Pending Register

CAN_MBTD Temporary Mailbox Disable Register

Table 21-1: ADSP-BF60x CAN Register List (Continued)

Name Description

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

21–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x CAN Interrupt List

CAN_EWR Error Counter Warning Level Register

CAN_ESR Error Status Register

CAN_UCCNT Universal Counter Register

CAN_UCRC Universal Counter Reload/Capture Register

CAN_UCCNF Universal Counter Configuration Mode Register

CAN_AMnnL Acceptance Mask (L) Register

CAN_AMnnH Acceptance Mask (H) Register

CAN_MBnn_DATA0 Mailbox Word 0 Register

CAN_MBnn_DATA1 Mailbox Word 1 Register

CAN_MBnn_DATA2 Mailbox Word 2 Register

CAN_MBnn_DATA3 Mailbox Word 3 Register

CAN_MBnn_LENGTH Mailbox Length Register

CAN_MBnn_TIMESTAMP Mailbox Timestamp Register

CAN_MBnn_ID0 Mailbox ID 0 Register

CAN_MBnn_ID1 Mailbox ID 1 Register

Table 21-2: ADSP-BF60x CAN Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

CAN0 Receive 40 LEVEL
CAN0 Transmit 41 LEVEL
CAN0 Status 42 LEVEL

Table 21-1: ADSP-BF60x CAN Register List (Continued)

Name Description

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–5

External Interface

The interface to the CAN bus is a simple two-wire line. The following figure shows a symbolic representa-
tion of the CAN transceiver interconnection. Typically, the processor’s CAN_TX output and CAN_RX input
pins are connected to an external CAN transceiver’s CAN_TX and CAN_RX pins (respectively). The CAN_TX
and CAN_RX pins operate with TTL levels and are appropriate for operation with CAN bus transceivers
according to ISO/DIS 11898.

Figure 21-1: Representation of CAN Transceiver Interconnection

CAN data is defined to be either dominant (logic 0) or recessive (logic 1). The default state of the CAN_TX
output is recessive.

ADSP-BF60x Specific External Interface

The CAN_TX and CAN_RX signals can be found on GPIO port G, pins PA_01 and PA_04 respectively. By
default, these pins are in GPIO mode. The SPORT_2A and the timer signals are also multiplexed on this
pin. To enable CAN functionality, the appropriate bits must be set in the PORT_FER and PORT_MUX regis-
ters.

The PA_04 pin (CAN_RX input pin) is also internally routed to the alternate capture input TACI2 of GP
timer 2. This way, GP timer 2 can be used to auto-detect or adjust the bit rate on the CAN bus.

NOTE: The CAN pad does not support 5V operation.

Architectural Concepts

The full-CAN controller features 32 message buffers, which are called mailboxes. Eight mailboxes are dedi-
cated for message transmission, eight are for reception, and 16 are programmable in direction.

The CAN module architecture is based around a 32-entry mailbox RAM. The mailbox is accessed sequen-
tially by the CAN serial interface or the Blackfin core. Each mailbox consists of eight 16-bit control and
data registers and two optional 16-bit acceptance mask registers, all of which must be configured before
the mailbox itself is enabled.

Since the mailbox area (shown in the following figure) is implemented as RAM, the reset values of these
registers are undefined. The data is divided into fields, which includes a message identifier, a time stamp,
a byte count, up to 8 bytes of data, and several control bits

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

21–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-2: CAN Mailbox Area

The CAN mailbox identification (CAN_MBnn_ID0/1) register pair includes:

• The 29 bit identifier (base part CAN_AMnnH.BASEID plus extended part CAN_AMnnL.EXTID/CAN_AMnnH.
EXTID)

• The acceptance mask enable bit (CAN_MBnn_ID1.AME)

• The remote transmission request bit (CAN_MBnn_ID1.RTR)

• The identifier extension bit (CAN_MBnn_ID1.IDE)

NOTE: Do not write to the identifier of a message object while the mailbox is enabled for the CAN module
(the corresponding bit in CAN_MC1 is set).

The other mailbox area registers/bits are:

• The data length code bit (CAN_MBnn_LENGTH.DLC). The upper 12 bits of this register of each mailbox
are marked as reserved. These 12 bits should always be set to 0.

• The mailbox word registers (CAN_MBnn_DATA0/1/2/3) supply up to eight bytes for the data field, sent
MSB first from based on the number of bytes defined in the CAN_MBnn_LENGTH.DLC bit. For example,
if only one byte is transmitted or received (CAN_MBnn_LENGTH.DLC=1), then it is stored in the most
significant byte of the CAN_MBnn_DATA3 register.

• The time stamp value bits (CAN_MBnn_TIMESTAMP.TSV).

The final registers in the mailbox area are the acceptance mask registers (CAN_AMnnH and CAN_AMnnL). The
acceptance mask is enabled when the CAN_MBnn_ID1.AME bit is set.

The filtering on data field option can be enabled by setting the CAN_CTL.DNM and CAN_AMnnH.FDF bits.
When enabled, the CAN_MBnn_ID0.EXTID[15:0] bits are reused as acceptance code (DFC) for the data field
filtering.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–7

Block Diagram

The following figure shows a block diagram of the CAN module.

Figure 21-3: CAN Controller Block Diagram

Mailbox Control

Mailbox control memory-mapped registers (MMRs) function as control and status registers for the 32
mailboxes. Each bit in these registers represents one specific mailbox. Since CAN MMRs are all 16 bits
wide, pairs of registers are required to manage certain functionality for all 32 individual mailboxes. Mail-
boxes 0–15 are configured/monitored in registers with a suffix of 1. Similarly, mailboxes 16–31 use the
same named register with a suffix of 2. For example, the CAN mailbox direction registers (CAN_MD1/ CAN_
MD2) control mailboxes as shown in the figure below.The Mailbox Control registers are shown in ADSP-
BF60x CAN Register List.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

21–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-4: CAN Mailbox Register Pair

Since mailboxes 24–31 support transmit operation only and mailboxes 0–7 are receive-only mailboxes, the
lower eight bits in the 1 registers and the upper eight bits in the 2 registers are sometimes reserved or are
restricted in their use.

Protocol Fundamentals

Although the CAN_RX and CAN_TX pins are TTL-compliant signals, the CAN signals beyond the transceiver
have asymmetric drivers. A low state on the CAN_TX pin activates strong drivers while a high state is driven
weakly. Consequently, the active low is called the dominant state and the active high is the recessive state.
If the CAN module is passive, the CAN_TX pin is always high. If two CAN nodes transmit at the same time,
dominant bits overwrite recessive bits.

The CAN protocol specifies that all nodes trying to send a message on the CAN bus attempt to send a frame
(shown in the figure below) once the CAN bus becomes available. The start of frame indicator (SOF)
signals the beginning of a new frame. Each CAN node then begins transmitting its message starting with
the message ID.

Figure 21-5: Standard CAN Frame

While transmitting, the CAN controller samples the CAN_RX pin to verify that the logic level being driven
is the value it just placed on the CAN_TX pin. This is where the names for the logic levels apply. If a trans-

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–9

mitting node places a recessive 1 on the CAN_TX pin and detects a dominant 0 on the CAN_RX pin, it knows
that another node has placed a dominant bit on the bus, which means another node is a higher priority.

Therefore, if the value sensed on the CAN_RX pin is the value driven on the CAN_TX pin, transmission
continues, otherwise the CAN controller senses that it has lost arbitration and module configuration deter-
mines the next course of action.

The figure above shows a basic 11-bit identifier frame. After the SOF and identifier is the CAN_MBnn_ID1.
RTR bit, which indicates whether the frame contains data (data frame) or is a request for data associated
with the message identifier in the frame being sent (remote frame).

NOTE: In the CAN protocol, a dominant bit in the CAN_MBnn_ID1.RTR field wins arbitration against a
remote frame request (CAN_MBnn_ID1.RTR=1) for the same message ID. This allows a remote
request to be a lower priority than a data frame.

The next field of interest in the frame is the CAN_MBnn_ID1.IDE bit. When set, it indicates that the message
is an extended frame with a 29-bit identifier instead of an 11-bit identifier. In an extended frame, the first
part of the message resembles the following figure.

Figure 21-6: Extended CAN Frame

Therefore a dominant bit in the CAN_MBnn_ID1.IDE field wins arbitration against an extended frame with
the same lower 11-bits and standard frames are higher priority than extended frames.

The substitute remote request (SRR, always sent as recessive), the reserved bits r0 and r1 (always sent as
dominant), and the checksum (CRC) are generated automatically by the internal logic.

Data Transfer Modes

The following sections provide information on the data transfer modes supported by the CAN controller.

Transmit Operations

The following figure shows the CAN transmit operation. Mailboxes 24–31 are dedicated transmitters.
Mailboxes 8–23 can be configured as transmitters by writing 0 to the corresponding bit in the CAN_MD1/
CAN_MD2registers. After writing the data and the identifier into the mailbox area, the message is sent after
mailbox n is enabled (CAN_MC1.MB=1) and, subsequently, the corresponding transmit request bit is set
(CAN_TRS1.MB=1).

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

21–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-7: CAN Transmit Operation Flow Chart

When a transmission completes, the corresponding bits in the CAN_TRS1/CAN_TRS2 and CAN_TRR1/CAN_
TRR2registers are cleared. If the transmission was successful, the corresponding bit in the CAN_TA1/CAN_
TA2register is set. If the transmission was aborted due to lost arbitration or a CAN error, the corresponding
bit in the CAN_AA1/CAN_AA2register is set. A requested transmission can also be manually aborted by
setting the corresponding bit in the CAN_TRR1/CAN_TRR2register.

Multiple CAN_TRS1.MB bits can be set simultaneously by software, and these bits are reset after either a
successful or an aborted transmission.

These bits are also set by the CAN hardware in the following cases:

• When using the auto-transmit mode of the universal counter,

• When a message loses arbitration and the single-shot CAN_OPSS1.MB bit is not set, or

• In the event of a remote frame request (only possible for receive/transmit mail-boxes if the automatic
remote frame handling feature is enabled (CAN_RFH1.MB=1).

NOTE: Special care should be given to mailbox area management when a CAN_TRS1/CAN_TRS2 bit is set.
Write access to the mailbox is permissible with a bit set, but changing data in such a mailbox may
lead to unexpected data during transmission.

Enabling and disabling mailboxes has an impact on transmit requests. Setting the CAN_TRS1/CAN_TRS2 bit
associated with a disabled mailbox may result in erroneous behavior. Similarly, disabling a mailbox before
the associated CAN_TRS1/CAN_TRS2 bit is reset by the internal logic can cause unpredictable results.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–11

Retransmission

Normally, the current message object is resent after arbitration is lost or an error frame is detected on the
CAN bus line. If there is more than one transmit message object pending, the message object with the
highest mailbox is sent first (see figure below). The currently aborted transmission is restarted after any
messages with higher priority are sent.

Figure 21-8: Transmit Flow

A message which is currently under preparation is not replaced by another message which is written into
the mailbox. The message under preparation is one that is copied into the temporary transmit buffer when
the internal transmit request for the CAN core module is set. The message in the buffer is not replaced until
it is sent successfully, the arbitration on the CAN bus line is lost, or there is an error frame on the CAN bus
line.

Single-Shot Transmission

If the single shot transmission feature is used (CAN_OPSS1.MB=1), the corresponding CAN_TRS1 bit is
cleared after the message is successfully sent or even if the transmission is aborted due to a lost arbitration
or an error frame on the CAN bus line. Therefore, there is no further attempt to transmit the message again
if the initial try failed, and the Abort error is reported (CAN_AA1.MB=1).

Auto-Transmission

In Auto-Transmit mode, the message in mailbox 11 (MB11) can be sent periodically using the universal
counter. This mode is often used to broadcast heartbeats to all CAN nodes. Accordingly, messages sent this
way usually have high priority.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

21–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The period value is written to the CAN_UCRC register. The Auto-Transmission mode is enabled by setting
the CAN_UCCNF.UCCNF field to 0x03. When enabled, the counter CAN_UCCNT is loaded with the value in the
CAN_UCRC register. The counter decrements to 0 at the CAN bit clock rate and is then reloaded from CAN_
UCRC. Each time the counter reaches a value of 0, the CAN_TRS1.MB bit is automatically set by internal logic,
and the corresponding message from mailbox 11 is sent.

For proper auto-transmit operation, mailbox 11 must be configured as a transmit mailbox and must
contain valid data (identifier, control bits, and data) before the counter first expires after this mode is
enabled.

Receive Operation

The CAN hardware autonomously receives messages and discards invalid messages. Once a valid message
is successfully received, the receive logic interrogates all enabled receive mailboxes sequentially, from
mailbox 23 down to mailbox 0, whether the message is of interest to the local node or not.

Each incoming data frame is compared to all identifiers stored in active receive mailboxes (respective
mailbox indices of CAN_MD1 and CAN_MC1 registers set to 1) and to all active transmit mailboxes with the
remote frame handling feature enabled (=1). The message identifier of the received message, along with
the identifier extension (CAN_MBnn_ID1.IDE) and remote transmission request (CAN_MBnn_ID1.RTR) bits,
are compared against each mailbox’s register settings. In standard mode, the message is compared to the
content of the CAN_MBnn_ID1register. In extended mode, the content of the CAN_MBnn_ID0register must
also match.

If the acceptance mask enable CAN_MBnn_ID1.AME bit is not set, a match is signaled only if CAN_MBnn_ID1.
IDE, CAN_MBnn_ID1.RTR, and all (11 or 29) identifier bits are exact. If, however, the CAN_MBnn_ID1.AME
bit is set, the acceptance mask registers (CAN_AMnnH/L) determine which of the CAN_MBnn_ID1.IDE and
CAN_MBnn_ID1.RTR bits need to match.

The following logic applies:

[(Received Message ID) XNOR (CAN_MBnn_ID0/1)] OR [(CAN_MBnn_ID1.AME) AND (CAN_AMnnH/L)].

This logic appears graphically in the figure below.

Figure 21-9: CAN Message Receive Logic

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–13

A one (1) at the respective bit position in the CAN_AMnnH/CAN_AMnnL mask registers means that the bit does
not need to match when CAN_MBnn_ID1.AME=1. This way, a mailbox can accept a group of messages.

If the acceptance filter finds a matching identifier, the content of the received data frame is stored in that
mailbox. A received message is stored only once, even if multiple receive mailboxes match its identifier. If
the current identifier does not match any mailbox, the message is not stored.

The figure below illustrates the decision tree of the receive logic when processing the individual mailboxes.

If a message is received for a mailbox and that mailbox still contains unread data (CAN_RMP1.MB), then the
program has to decide whether the old message should be overwritten or not. If the CAN_OPSS1.MB bit is
cleared, the corresponding CAN_RML1.MB bit is set, and the stored message is overwritten. This results in
the receive message lost interrupt being raised (CAN_GIS.RMLIS is set). If, however, the CAN_OPSS1.MB bit
is set, the next mailboxes are checked for another matching identifier. If no match is found, the message is
discarded, and the next message is checked.

NOTE: If a receive mailbox is disabled, an ongoing receive message for that mailbox is lost even if a second
mailbox is configured to receive the same identifier.

Table 21-3: Mailbox Used for Acceptance Filtering

MCn MDn RFHn Mailbox n Comment

0 X X Ignored Mailbox n disabled
1 0 0 Ignored Mailbox n enabled, Mailbox n configured for

transmit, Remote frame handling disabled
1 0 1 Used Mailbox n enabled, Mailbox n configured for

transmit, Remote frame handling enabled
1 1 X Used Mailbox n enabled, Mailbox n configured for

receive

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

21–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-10: CAN Receive Operation Flow Chart

Data Acceptance Filtering

If DeviceNet mode is enabled (CAN_CTL.DNM = 1) and the mailbox is set up for filtering on data field, the
filtering is done on the standard ID of the message and data fields. The data field filtering can be
programmed for either the first byte only or the first two bytes, as shown the table below.

If the CAN_AMnnH.FDFbit is set, the corresponding CAN_AMnnLregister holds the data field mask (DFM bits
15–0]). If the CAN_AMnnH.FDFbit is cleared, the corresponding CAN_AMnnLregister holds the extended iden-
tifier mask (CAN_AMnnH.EXTIDbits 15–0).

Table 21-4: Data Field Filtering

FDF (Filter on
Data Field)

FMD (Full Mask
Data Field) Description

0 0 Do not allow filtering on the data field
0 1 Not allowed. FMF must be 0 if FDF is 0
1 0 Filter on first data byte only
1 1 Filter on first two data bytes

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–15

Watchdog Mode

Watchdog mode is used to ensure that messages are received periodically. It is often used to observe
whether or not a certain node on the network is alive and functioning properly, and, if not, to detect and
manage its failure case accordingly.

This mode can be enabled by programming the universal counter to watchdog mode by setting theCAN_
UCCNF.UCCNF to 0x2. Once enabled, the CAN_UCCNT register is loaded with the predefined value contained
in CAN_UCRC. This counter then decrements at the CAN bit rate.

If the CAN_UCCNF.UCCT and CAN_UCCNF.UCRC bits are set and a message is received in mailbox 4 before the
counter counts down to 0, the counter is reloaded with the CAN_UCRC contents. If the counter has counted
down to 0 without receiving a message in mailbox 4, then the CAN_GIS.UCEIS bit is set, and the counter is
automatically reloaded with the contents of the CAN_UCRC register. If an interrupt is desired for this event,
the CAN_GIM.UCEIM bit must also be set. With the mask bit set, when a watchdog interrupt occurs, the CAN_
GIF.UCEIF bit is also set.

The counter can be reloaded with the contents of CAN_UCRC or disabled by writing to the CAN_UCCNF
register.

The time period it takes for the watchdog interrupt to occur is controlled by the value written into the CAN_
UCRC register.

Time Stamps

To get an indication of the time of the receive or transmit time for each message, program the CAN
universal counter to Time Stamp mode. This mode can be enabled by setting the CAN_UCCNF.UCCNF field
to 0x01.

If enabled, the value of the 16-bit free-running counter (CAN_UCCNT) is written into the CAN_MBnn_
TIMESTAMP register of the corresponding mailbox when a received message is stored or a message is trans-
mitted.

The time stamp value is captured at the sample point of the Start Of Frame (SOF) bit of each incoming or
outgoing message. Afterwards, this time stamp value is copied to the CAN_MBnn_TIMESTAMP register of the
corresponding mailbox.

If the mailbox is configured for automatic remote frame handling (CAN_RFH1.MB = 1), the time stamp
value is written for transmission of a data frame (mailbox configured as transmit) or the reception of the
requested data frame (mailbox configured as receive).

The counter can be cleared by setting the CAN_UCCNF.UCRC bit to 1, or disabled by clearing the CAN_UCCNF.
UCE bit. The counter can also be loaded with a value by writing to the CAN_UCCNT register itself.

It is also possible to clear the counter (CAN_UCCNT) by reception of a message in mailbox number 4
(synchronization of all time stamp counters in the system). This is accomplished by setting the CAN_
UCCNF.UCCT bit.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

21–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

An overflow of the counter sets the CAN_GIS.UCEIS bit. A global CAN interrupt can optionally occur by
unmasking the CAN_GIM.UCEIM bit. If the interrupt source is unmasked, the CAN_GIF.UCEIF bit is also set.

Remote Frame Handling

Automatic handling of remote frames can be enabled for a transmit mailbox by setting the corresponding
CAN_RFH1.MB bit of a transmit mailbox.

Remote frames are data frames with no data field and the CAN_MBnn_ID1.RTR bit set. The data length code
(DLC) of the responding data frame is overruled by the DLC of the requesting remote frame. A DLC can
be programmed with values in the range of 0 to 15, but DLC values greater than 8 are considered as 8.

A remote frame contains:

• The identifier bits

• The control field DLC (data length count)

• The remote transmission request (CAN_MBnn_ID1.RTR) bit

Only configurable mailboxes, MB8–MB23, can process remote frames, but all mailboxes can receive and
transmit remote frame requests. When setup for automatic remote frame handling, the CAN_OPSS1 register
has no effect. All content of a mailbox is always overwritten by an incoming message.

NOTE: If a remote frame is received, the DLC of the corresponding mailbox is overwritten with the
received value.

Erroneous behavior may result when the CAN_RFH1.MB bit is changed while the corresponding mailbox is
currently being processed. To avoid the risk of inconsistent messages, programs should temporarily
disable the mailbox while its data registers are updated.

Temporarily Disabling CAN Mailbox

If a mailbox is enabled and configured to transmit, write accesses to the data field should be guarded to
avoid transmitting inconsistent messages. Special care must be taken if the mailbox is transmitting (or
attempting to transmit) repeatedly. Also, if this mailbox is used for Automatic remote frame handling, the
data field must be updated without losing an incoming remote request frame and without sending incon-
sistent data. Therefore, the CAN controller allows for temporary disabling the mailbox using the mailbox
temporary disable register (CAN_MBTD).

The pointer to the requested mailbox must be written to the CAN_MBTD.TDPTR field, and the CAN_MBTD.
TDR bit must be set. The corresponding CAN_MBTD.TDA flag is subsequently set by the internal logic.

If a mailbox is configured as transmit (CAN_MD1 = 0) and the CAN_MBTD.TDA bit is set, the content of the
data field of that mailbox can be updated. If there is an incoming remote Request Frame while the mailbox
is temporarily disabled, the corresponding transmit request set bit (CAN_TRS1.MB) is set by the internal
logic and the data length code (DLC) of the incoming message is written to the corresponding mailbox.
However, the message being requested is not sent until the CAN_MBTD.TDR bit is cleared. Similarly, all
transmit requests for temporarily disabled mailboxes are ignored until the CAN_MBTD.TDR bit is cleared.

CONTROLLER AREA NETWORK (CAN)
CAN OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–17

Additionally, transmission of a message is immediately aborted if the mailbox is temporarily disabled and
the corresponding transmission request reset (CAN_TRR1.MB) bit for this mailbox is set.

If a mailbox is configured to receive (CAN_MD1 = 1), then after issuing a temporary disable request, the CAN_
MBTD.TDA flag is set, and the mailbox is not processed. If there is an incoming message for a mailbox being
temporarily disabled, the internal logic waits until the reception is complete or there is an error on the
CAN bus before setting CAN_MBTD.TDA. Once this flag is set, the mailbox can then be completely disabled
(CAN_MC1 = 0) without the risk of losing an incoming frame. The CAN_MBTD.TDR bit must then be reset as
soon as possible.

When the CAN_MBTD.TDA flag is set for a given mailbox, only the data field of that mailbox can be updated.
Accesses to the control bits and the identifier are denied.

CAN Operating Modes
The CAN controller is in configuration mode when coming out of processor reset or hibernate. It is only
when the CAN is in configuration mode that hardware behavior can be altered. Before initializing the
mailboxes themselves, the CAN bit timing must be set up to work on the CAN bus to which the controller
is expected to connect.

Bit Timing

The CAN controller does not have a dedicated clock. Instead, the CAN clock is derived from the system
clock based on a configurable number of time quanta. The Time Quantum (TQ) is derived from the
formula:

TQ = (BRP + 1)/SCLK,

where BRP is the 10-bit bit rate prescaler field in the CAN_CLK register.

Although the CAN_CLK.BRP field can be set to any value, it is recommended that the value be greater than
or equal to 4, as restrictions apply to the bit timing configuration when BRP is less than 4.

The CAN_CLK register defines the TQ value, and multiple time quanta make up the duration of a CAN bit
on the bus. The CAN_TIMING register controls the nominal bit time and the sample point of the individual
bits in the CAN protocol. The figure below shows the three phases of a CAN bit—the synchronization
segment, the segment before the sample point, and the segment after the sample point.

Figure 21-11: Three Phases of a CAN Bit

CONTROLLER AREA NETWORK (CAN)
CAN OPERATING MODES

21–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The synchronization segment is fixed to one TQ. It is required to synchronize the nodes on the bus. All
signal edges are expected to occur within this segment.

The CAN_TIMING.TSEG1 and CAN_TIMING.TSEG2 fields control how many TQs the CAN bits consist of,
resulting in the CAN bit rate. The nominal bit time is given by the following formula.

tBIT = TQ × [1 + (1 + TSEG1) + (1 + TSEG2)]

For safe receive operations on given physical networks, the sample point is programmable by the CAN_
TIMING.TSEG1 field. The CAN_TIMING.TSEG2 field holds the number of TQs needed to complete the bit
time. Often, best sample reliability is achieved with sample points in the high 80% range of the bit time.
Never use sample points lower than 50%. Therefore, CAN_TIMING.TSEG1 should always be greater than or
equal to CAN_TIMING.TSEG2.

The CAN module does not distinguish between the Propagation Segment and the phase segment-1 as
defined by the standard. The CAN_TIMING.TSEG1 value is intended to cover both of them. The CAN_
TIMING.TSEG2 value represents the phase segment-2.

If the CAN module detects a recessive-to-dominant edge outside the synchronization segment, it can auto-
matically move the sampling point such that the CAN bit is still handled properly. The synchronization
jump width (CAN_TIMING.SJW) field specifies the maximum number of TQs, ranging from 1 to 4 (SJW +
1), allowed for such a re-synchronization attempt. The SJW value should not exceed CAN_TIMING.TSEG2
or CAN_TIMING.TSEG1. Therefore, the fundamental rule for writing CAN_TIMING is:

SJW ≤ TSEG2 ≤ TSEG1

In addition to this fundamental rule, CAN_TIMING.TSEG2 must also be greater than or equal to the infor-
mation processing time (IPT). This is the time required by the logic to sample the CAN_RX input, which is
3 system clock cycles.

Because of this, restrictions apply to the minimal value of CAN_TIMING.TSEG2 if CAN_CLK.BRP is lower
than 2. If CAN_CLK.BRP is set to 0, the CAN_TIMING.TSEG2 field must be greater than or equal to 2. If CAN_
CLK.BRP is set to 1, the minimum CAN_TIMING.TSEG2 value is 1.

NOTE: All nodes on a CAN bus should use the same nominal bit rate.

With all the timing parameters set, the final consideration is how sampling is performed. The default
behavior of the CAN controller is to sample the CAN bit once at the sampling point described by the CAN_
TIMING register, controlled by the CAN_TIMING.SAM bit. If this bit is set, however, the input signal is over-
sampled three times at the system clock rate. The resulting value is generated by a majority decision of the
three sample values. Always keep the CAN_TIMING.SAM bit cleared if the BRP value is less than 4.

Do not modify the CAN_CLK and CAN_TIMING registers during normal operation. Always enter configura-
tion mode first. Writes to these registers have no effect if not in configuration or debug mode. If not
coming out of processor reset or hibernate, enter configuration mode by setting the CAN_CTL.CCR bit and
poll the CAN_STAT register until CAN_STAT.CCA is set.

NOTE: If the CAN_TIMING.TSEG1 field is programmed to 0, the module doesn't leave the configuration
mode.

CONTROLLER AREA NETWORK (CAN)
CAN OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–19

During configuration mode, the module is not active on the CAN bus line. The CAN_TX output pin remains
recessive and the module does not receive/transmit messages or error frames. After leaving the configura-
tion mode, all CAN internal core registers and the CAN error counters are set to their initial values.

A soft reset does not change the values of CAN_CLK and CAN_TIMING. Therefore, an ongoing transfer
through the CAN bus cannot be corrupted by changing the bit timing parameter or initiating the soft reset
(by setting the CAN_CTL.SRS bit).

CAN Low Power Features

The CAN module includes built-in sleep and suspend modes to save power.

It also responds to the hibernate power state on processors that support that state.

The behavior of the CAN module in these modes is described in the following sections.

Built-In Suspend Mode

The most modest of power savings mode is the suspend mode. This mode is entered by setting the CAN_
CTL.CSR bit. The module enters the suspend mode after the current operation of the CAN bus is finished,
at which point the internal logic sets the CAN_STAT.CSA bit. Once this mode is entered, the module is no
longer active on the CAN bus line, slightly reducing power consumption.

In suspend mode the CAN_TX output pin remains in a recessive state, and the module does not receive/
transmit messages or error frames. The content of the CAN_CEC register remains unchanged. Suspend
mode can subsequently be exited by clearing CAN_CTL.CSR.

The only differences between suspend mode and configuration mode are that writes to the CAN_CLK and
CAN_TIMING registers are locked in suspend mode, and the CAN_CTL and CAN_STAT registers are not reset
when exiting suspend mode.

Built-In Sleep Mode

The next level of power savings can be realized by using the module's built-in sleep mode. This mode is
entered by setting the CAN_CTL.SMR bit. The module enters the sleep mode after the current operation of
the CAN bus is finished. Once this mode is entered, many of the internal CAN module clocks are shut off,
reducing power consumption, and the CAN_INT.SMACK bit is set.

When the CAN module is in sleep mode, all register reads return the contents of CAN_INT instead of the
usual contents. All register writes, except to CAN_INT, are ignored in sleep mode. A small part of the
module is clocked continuously to allow for wake up out of sleep mode.

A write to the CAN_INT register ends sleep mode. If the CAN_CTL.WBA bit is set before entering sleep mode,
a dominant bit on the CAN_RX pin also ends sleep mode. When software sets the CAN_CTL.SMR bit, hard-
ware sets the CAN_CTL.CSR bit as well, making sleep mode a super set of suspend mode. When the
controller wakes up from sleep mode, hardware automatically clears CAN_CTL.SMR and CAN_CTL.CSR. If,

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

21–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

however, the controller never enters sleep mode because the wake-up condition was met before CAN_INT.
SMACK bit turns to one, the CAN_CTL.SMR and CAN_CTL.CSR bits may not be automatically cleared. There-
fore, it is good programming practice to always clear those two bits by software when returning from sleep
mode.

Wake-Up From Hibernate State

Many processors provide a hibernate state, where the internal voltage regulator shuts off the internal
power supply to the chip, turning off the core and system clocks in the process. In this mode, the only
power drawn is that used by the regulator circuitry awaiting any of the possible hibernate wake-up events.
One such event is a wake-up due to CAN bus activity.

After hibernation, the CAN module must be re-initialized. For low power designs, the external CAN bus
transceiver is typically put into standby mode through one of the processor's general purpose I/O pins.
While in standby mode, the CAN transceiver continually drives the recessive logic 1 level onto the CAN_RX
pin. If the transceiver then senses CAN bus activity, it drives the CAN_RX pin to the dominant logic 0 level.
This signals the processor that CAN bus activity is detected. If the internal voltage regulator is
programmed to recognize CAN bus activity as an event to exit the hibernate state, the part responds appro-
priately. Otherwise, the activity on the CAN_RX pin has no effect on the processor state.

Soft Reset

The CAN controller features a build-in reset mechanism called Soft Reset. Soft reset is entered immediately
after software has set the CAN_CTL.SRSbit. Soft reset brings all control registers to a defined state and
mailbox and error registers remain unaffected. Soft reset does not alter the CAN_TIMING and CAN_
CLKregisters and does not disturb the on-going transmission of a currently pending message, acknowledge
bit or error frame. However, when recovering from soft reset, software may lose track of transmission or
reception reports and interrupts.

CAN Event Control
The following is a description of how CAN events are generated and controlled.

CAN Interrupt Signals

The CAN module provides three independent interrupts: two mailbox interrupts (mailbox receive inter-
rupt (MBRIRQ) and mailbox transmit interrupt (MBTIRQ) and a global CAN status interrupt (GIRQ).
The values of these three interrupts can also be read back through the CAN_GISregisters.

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–21

Mailbox Interrupts

Each of the 32 mailboxes in the CAN module may generate a receive or transmit interrupt, depending on
the mailbox configuration. To enable a mailbox to generate an interrupt, set the corresponding CAN_MBIM1
bit.

If a mailbox is configured as a receive mailbox, the corresponding CAN_MBRIF1 bit and CAN_RMP1 bit are
set after a received message is stored in mailbox n. If the automatic remote frame handling feature is used
(CAN_RFH1=1), the receive interrupt flag is set after the requested data frame is stored in the mailbox.

If any CAN_MBRIF1 bits are set, the CAN_INT.MBRIRQ interrupt is generated. In order to clear the CAN_INT.
MBRIRQ interrupt request, all of the set CAN_MBRIF1 bits must be cleared by software by writing a 1 to those
set bit locations in CAN_MBRIF1. Prior to this, the corresponding CAN_RMP1 bit must also be cleared by soft-
ware.

If a mailbox is configured as a transmit mailbox, the corresponding CAN_MBTIF1 bit in the transmit inter-
rupt flag is set after the message in mailbox n is sent correctly, and the corresponding CAN_TA1 bit also gets
set. The CAN_TA1 bits maintain their state even after the corresponding mailbox n is disabled (CAN_MC1=0).
If the automatic remote frame handling feature is used, then transmit interrupt flag is set after the
requested data frame is sent from the mailbox.

If any CAN_MBTIF1.MB, bits are set the MBTIRQ interrupt output is raised in the CAN_INT register. In order
to clear the MBTIRQ interrupt request, all of the bits set in the CAN_MBTIF1 register must be cleared by
software by writing a 1 to those set bit locations. Additionally, software must clear the associated CAN_TA1
bit or set the associated CAN_TRS1 bit to clear the interrupt source that asserts the CAN_MBTIF1 bit.

Global Interrupt

The global CAN interrupt logic is implemented with three registers:

• The CAN_GIMregister, where each interrupt source can be enabled or disabled separately

• The CAN_GIS register

• The CAN_GIF register

The interrupt mask bits only affect the content of the CAN_GIF register. If the mask bit is not set in the CAN_
GIM register, the corresponding flag bit is not set when the event occurs. The interrupt status bits in the
CAN_GIS register, however, are always set if the corresponding interrupt event occurs, independent of the
mask bits. Thus, the interrupt status bits can be used for polling of interrupt events.

The CAN_INT.GIRQbit is only asserted if a bit in the CAN_GIFregister is set. The read-only CAN_INT.GIRQbit
remains set as long as at least one bit in CAN_GIF is set. All bits in the interrupt status and interrupt flag
registers remain set until cleared by software or a soft reset has occurred.

NOTE: The CAN_GIF register is read-only (RO). In the global CAN interrupt ISR, the interrupt latch
should be cleared by writing to 1 to the corresponding bit of the CAN_GIS register, which clears the
related bits of the CAN_GIS and CAN_GIF registers, as well as the CAN_INT.GIRQ bit.

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

21–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

There are several interrupt events that can activate this GIRQ interrupt:

• Access denied interrupt (CAN_GIM.ADIM, CAN_GIS.ADIS, CAN_GIF.ADIF): At least one access to the
mailbox RAM occurred during a data update by internal logic.

• Universal counter exceeded interrupt (CAN_GIM.UCEIM, CAN_GIS.UCEIS, CAN_GIF.UCEIF): There was
an overflow of the universal counter (in Time Stamp mode or Event Counter mode) or the counter has
reached the value 0x0000 (in Watchdog mode).

• Receive message lost interrupt (CAN_GIM.RMLIM, CAN_GIS.RMLIS, CAN_GIF.RMLIF): A message is
received for a mailbox that currently contains unread data. At least one bit in the CAN_RMLn register is
set. If the bit in CAN_GIS and CAN_GIF registers is cleared and there is at least one bit in CAN_RML1 still
set, then the bit in the CAN_GIS and CAN_GIF registers is not set again. The internal interrupt source
signal is only active if a new bit in CAN_RML1 is set.

• Abort acknowledge interrupt (CAN_GIM.AAIM, CAN_GIS.AAIS, CAN_GIF.AAIF): At least one CAN_AA1.
MB bit in the CAN_AA1 registers is set. If the bit in the CAN_GIS and CAN_GIF registers is cleared and there
is at least one bit in CAN_AA1 still set, then the bit in the CAN_GIS and CAN_GIF registers is not set again.
The internal interrupt source signal is only active if a new bit in CAN_AA1 is set. The CAN_AA1.MB bits
maintain state even after the corresponding mailbox n is disabled (CAN_MC1 = 0).

• Access to un implemented address interrupt (CAN_GIM.UIAIM, CAN_GIS.UIAIS, CAN_GIF.UIAIF):
There was a CPU access to an address which is not implemented in the controller module.

• Wake-up interrupt (CAN_GIM.WUIM, CAN_GIS.WUIS, CAN_GIF.WUIF): The CAN module has left the
sleep mode because of detected activity on the CAN bus line.

• Bus-Off interrupt (CAN_GIM.BOIM, CAN_GIS.BOIS, CAN_GIF.BOIF): The CAN module has entered the
bus-off state. This interrupt source is active if the status of the CAN core changes from normal opera-
tion mode to the bus-off mode. If the bit in the CAN_GIS and CAN_GIF registers is cleared and the bus-
off mode is still active, then this bit is not set again. If the module leaves the bus-off mode, the bit in the
CAN_GIS and CAN_GIF registers remains set, if not explicitly cleared.

• Error-passive interrupt (CAN_GIM.EPIM, CAN_GIS.EPIS, CAN_GIF.EPIF): The CAN module has
entered the error-passive state. This interrupt source is active if the status of the CAN module changes
from the error-active mode to the error-passive mode. If the bit in the CAN_GIS and CAN_GIF registers
is cleared and the error-passive mode is still active, then this bit is not set again. If the module leaves
the error-passive mode, the bit in the CAN_GIS and CAN_GIF registers remains set, if not explicitly
cleared.

• Error warning receive interrupt (CAN_GIM.EWRIM, CAN_GIS.EWRIS, CAN_GIF.EWRIF): The CAN
receive error counter (CAN_CEC.RXECNT) has reached the warning limit. If the bit in the CAN_GIS and
CAN_GIF registers) is cleared and the error warning mode is still active, this bit is not set again. If the
module leaves the error warning mode, the bit in the CAN_GIS and CAN_GIF registers remains set, if not
explicitly cleared.

• Error warning transmit interrupt (CAN_GIM.EWTIM, CAN_GIS.EWTIS, CAN_GIF.EWTIF): The CAN
transmit error counter (CAN_CEC.TXECNT) has reached the warning limit. If the bit in the CAN_GIS and
CAN_GIF registers is cleared and the error warning mode is still active, this bit is not set again. If the

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–23

module leaves the error warning mode, the bit in the CAN_GIS and CAN_GIF registers remains set, if not
explicitly cleared.

Event Counter

For diagnostic functions, it is possible to use the universal counter as an event counter. The counter can be
programmed in the CAN_UCCNF[3:0] field to increment on one of these conditions:

• 0x6 – CAN error frame. Counter is incremented if there is an error frame on the CAN bus line.

• 0x7 – CAN overload frame. Counter is incremented if there is an overload frame on the CAN bus line.

• 0x8 – Lost arbitration. Counter is incremented every time arbitration on the CAN line is lost during
transmission.

• 0x9 – Transmission aborted. Counter is incremented every time arbitration is lost or a transmit request
is canceled (CAN_AA1 is set).

• 0xA – Transmission succeeded. Counter is incremented every time a message sends without detected
errors (CAN_TA1 is set).

• 0xB – Receive message rejected. Counter is incremented every time a message is received without
detected errors but not stored in a mailbox because there is no matching identifier found.

• 0xC – Receive message lost. Counter is incremented every time a message is received without detected
errors but not stored in a mailbox because the mailbox contains unread data (CAN_RML1 is set).

• 0xD – Message received. Counter is incremented every time a message is received without detected
errors, whether the received message is rejected or stored in a mailbox.

• 0xE – Message stored. Counter is incremented every time a message is received without detected errors,
has an identifier that matches an enabled receive mailbox, and is stored in the receive mailbox (CAN_
RMP1 is set).

• 0xF – Valid message. Counter is incremented every time a valid transmit or receive message is detected
on the CAN bus line.

CAN Warnings and Errors

CAN warnings and errors are controlled using the error counter (CAN_CEC) register, the error status (CAN_
ESR) register, and the error counter warning level (CAN_EWR) register. Error handling is described in the
following sections.

Programmable Warning Limits

Programs can set the warning level for CAN_GIS.EWTISand CAN_GIS.EWRISseparately by writing to the
CAN_EWR.EWLRECand CAN_EWR.EWLTECfields. After power-on reset, the CAN_EWRregister is set to the

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

21–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

default warning level of 96 for both error counters. After a soft reset, the contents of this register remain
unchanged.

Error Handling

Error management is an integral part of the CAN standard. Five different kinds of bus errors may occur
during transmissions:

• Bit error – This error is only detected by the transmitting node. Whenever a node is transmitting, it
continuously monitors its receive pin (CAN_RX) and compares the received bit with the transmitted bit.
During the arbitration phase, the node postpones the transmission if the received and transmitted bits
do not match. However, after the arbitration phase (that is, once the CAN_MBnn_ID1.RTR bit is sent
successfully), a bit error is signaled any time the value on CAN_RX does not equal what is being trans-
mitted on the CAN_TX pin.

• Form error – Occurs any time a fixed-form bit position in the CAN frame contains one or more illegal
bits--that is, when a dominant bit is detected at a delimiter or end-of-frame bit position.

• Acknowledge error – Occurs whenever a message is sent and no receivers drive an acknowledge bit.

• CRC error – Occurs whenever a receiver calculates the CRC on the data it received and finds it different
than the CRC that was transmitted on the bus itself.

• Stuff error – The CAN specification requires the transmitter to insert an extra stuff bit of opposite value
after 5 bits have been transmitted with the same value. The receiver disregards the value of these stuff
bits. However, it takes advantage of the signal edge to re-synchronize itself. A stuff error occurs on
receiving nodes whenever the 6th consecutive bit value is the same as the previous five bits.

Once the CAN module detects any of the above errors, it updates the CAN_ESR and CAN_CEC registers. In
addition to the standard errors, the CAN_ESR.SAO flag signals when the CAN_RX pin sticks at dominant
level, indicating a possibility of shorted wires.

Error Frames

It is very important that all nodes on the CAN bus ignore data frames that any single node failed to receive.
To accomplish this, every node sends an error frame as soon as it has detected an error as shown in the
figure below.

A device has detected an error still completes the ongoing bit and initiates an error frame by sending six
dominant and eight recessive bits to the bus. Since this is a violation of the bit stuffing rule, all nodes are
informed that the ongoing frame needs to be discarded. (All receivers that did not detect the transmission
error in the first instance now detect a stuff bit error.)

The transmitter may detect a normal bit error sooner. It aborts the transmission of the ongoing frame and
tries resending it later.

When all nodes on the bus have detected the error, they also send 6 dominant and 8 recessive bits to the
bus. The resulting error frame consists of two different fields. The first field is given by the superposition

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–25

of error flags contributed from the different stations, which is a sequence of 6 to 12 dominant bits. The
second field is the error delimiter and consists of 8 recessive bits indicating the end of frame.

Figure 21-12: CAN Error Example

For CRC errors, the error frame is initiated at the end of the frame, rather than immediately after the failing
bit.

After having received 8 recessive bits, every node knows that the error condition is resolved and, if
messages are pending, starts transmission. The transmitter that had to abort its operation must win the
new arbitration again; otherwise its message is delayed as determined by priority.

Because the transmission of an error frame destroys the frame under transmission, a faulty node errone-
ously detecting an error can block the bus. Because of this, there are two node states which determine a
nodes right to signal an error—error-active and error-passive.

• Error-active nodes are those which have an error detection rate below a certain limit. These nodes drive
an Active Error Flag of 6 dominant bits.

• Error-passive nodes have a higher error detection rate and are suspected of having a local problem and
therefore have a limited right to signal errors. These nodes drive a passive error flag consisting of 6
recessive bits. Therefore an error-passive transmitting node is still able to inform the other nodes about
the aborting of a self-transmitted frame, but it is no longer able to destroy correctly received frames of
other nodes.

Error Levels

The CAN specification requires each node in the system to operate in one of three levels which are shown
in the table below. This prevents nodes with high error rates from blocking the entire network, as the errors
may be caused by local hardware. The CAN module provides an error counter for transmit (TEC) and an
error counter for receive (REC). The CAN_CEC register contains each of these 8-bit counters.

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

21–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

After initialization, both the TEC and the REC counters are 0. Each time a bus error occurs, one of the
counters is incremented by either 1 or 8, depending on the error situation (documented in Version 2.0 of
the CAN Specification). Successful transmit or receive operations decrement the respective counter by 1.

If either of the error counters exceeds 127, the CAN module goes into an error-passive state and the CAN_
STAT.EP bit is set. Once this occurs, the module is not allowed to send any more active error frames.
However, the module is still allowed to transmit messages and to signal passive error frames in case the
transmission fails due to bit errors.

If one of the counters exceeds 255 (that is, when an 8-bit counter overflows), the CAN module is discon-
nected from the bus and it goes into bus-off mode. In this mode the CAN_STAT.EBO bit is set. Software
intervention is required to recover from this state, unless the CAN_CTL.ABO bit is enabled, which puts the
module into active mode after the bus-off recovery sequence.

In addition to the three levels in the table, the CAN module also generates separate transmit and receive
warnings (CAN specification enhancement). By default, when one of the error counters exceeds 96, a
warning is signaled and is reported in the CAN_STAT register. The CAN receive warning flag (CAN_STAT.
WR) bit is set when CAN_CEC.RXECNT exceeds 96. The CAN transmit warning flag (CAN_STAT.WT) bit is set
when CAN_CEC.TXECNT exceeds 96. The error warning level can be programmed using the error warning
register (CAN_EWR).

Additionally, interrupts can occur for all of these levels by unmasking them in the global CAN interrupt
mask register (CAN_GIM). These interrupts include the bus-off interrupt (CAN_GIM.BOIM), the Error-
Passive interrupt (CAN_GIM.EPIM), the error warning receive interrupt (CAN_GIM.EWRIM), and the Error
Warning Transmit interrupt (CAN_GIM.EWTIM).

During the bus-off recovery sequence, the configuration mode request CAN_CTL.CCR bit is set by the
internal logic, and the CAN core module does not automatically come out of the bus-off mode. The CAN_
CTL.CCR bit cannot be reset until the bus-off recovery sequence has completed.

NOTE: This behavior can be overridden by setting the CAN_CTL.ABO bit. After exiting the bus-off or
configuration modes, the CAN error counters are reset.

Table 21-5: CAN Error Level Description

Level Condition Description

Error active Transmit and receive error
counters <128

This is the initial condition level. As long as errors
stay below 128, the node will drive active error
flags during error frames.

Error passive Transmit or receive error counter
value between 128 and 255,
inclusive

Errors have accumulated to a level that requires
the node to drive passive error flags during error
frames.

Bus off Transmit or receive error counters
greater than 255

CAN module goes into bus-off mode

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–27

CAN Debug and Test Modes

The CAN module contains test mode features that aid in the debugging of the CAN software and system.

NOTE: When these features are used, the CAN module may not be compliant to the CAN specification.
All test modes should be enabled or disabled only when the module is in Configuration mode
(CAN_STAT.CCA=1) or in Suspend mode (CAN_STAT.CSA=1).

The CAN_DBG.CDE bit is used to gain access to all of the debug features. This bit must be set to enable the
test mode, and it must be written first before any other writes to the CAN_DBG register. When the CAN_DBG.
CDE bit is cleared, all debug features are disabled.

When the CAN_DBG.CDE bit is set, it enables writes to the other bits of the CAN_DBG register. It also enables
these features, which are not compliant with the CAN standard:

• Bit timing registers can be changed anytime, not only during configuration mode. This includes the
CAN_CLK and CAN_TIMING registers.

• Write access is allowed to the normally read-only CAN_CEC register.

The other bits in the debug register are described below.

• The CAN_DBG.MRB bit is used to enable the read back mode. In this mode, a message transmitted on the
CAN bus (or through an internal loop back mode) is received back directly to the internal receive
buffer. After a correct transmission, the internal logic treats this as a normal receive message. This
feature allows the user to test most of the CAN features without an external device.

• The CAN_DBG.MAA bit allows the CAN module to generate its own acknowledge during the ACK slot of
the CAN frame. No external devices or connections are necessary to read back a transmit message. In
this mode, the message that is sent is automatically stored in the internal receive buffer. In Auto
Acknowledge mode, the module itself transmits the acknowledge. This acknowledge can be
programmed to appear on the CAN_TX pin if CAN_DBG.DIL=1 and CAN_DBG.DTO= 0. If the acknowledge
is only going to be used internally, then these test mode bits should be set to CAN_DBG.DIL= 0 and CAN_
DBG.DTO=1.

• The CAN_DBG.DIL bit is used to internally enable the transmit output to be routed back to the receive
input.

• The CAN_DBG.DTO bit is used to disable the CAN_TX output pin. When this bit is set, the CAN_TX pin
continuously drives recessive bits.

• The CAN_DBG.DRI bit is used to disable the CAN_RX input. When set, the internal logic receives recessive
bits or receives the internally generated transmit value in the case of the internal loop enabled (CAN_
DBG.DIL= 0). In either case, the value on the CAN_RX input pin is ignored.

• The CAN_DBG.DEC bit is used to disable the transmit and receive error counters in the CAN_CEC register.
When this bit is set, the CAN_CEC holds its current contents and is not allowed to increment or decre-
ment the error counters. This mode does not conform to the CAN specification.

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

21–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: Writes to the error counter registers should be performed in debug mode only. Write access during
reception may lead to undefined values. The maximum value which can be written into the error
counters is 255. Therefore, the error counter value of 256, which forces the module into the bus off
state, cannot be written into the error counter registers.

Table 21-6: Common CAN Test Mode Bit Combinations

MRB MAA DIL DTO DRI CDE Functional Description

X X X X X 0 Normal mode, not debug mode
0 X X X X X No readback of transmit message
1 0 1 0 0 1 Normal transmission on CAN bus line.

Read back.
External acknowledge from external device required.

1 1 1 0 0 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are transmitted on
CAN bus line.
CAN_RX input is enabled.

1 1 0 0 0 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are transmitted on
CAN bus line.
CAN_RX input and internal loop are enabled (internal OR
of TX and RX)

1 1 0 0 1 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are transmitted on
CAN bus line.
CAN_RX input is ignored.
Internal loop is enabled.

1 1 0 1 1 1 No transmission on CAN bus line.
Read back.
No external acknowledge required.
Nether transmit message nor acknowledge are
transmitted on CAN_TX.
CAN_RX input is ignored.
Internal loop is enabled.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–29

ADSP-BF60x CAN Register Descriptions
Controller Area Network (CAN) contains the following registers.

Table 21-7: ADSP-BF60x CAN Register List

Name Description

CAN_MC1 Mailbox Configuration 1 Register

CAN_MD1 Mailbox Direction 1 Register

CAN_TRS1 Transmission Request Set 1 Register

CAN_TRR1 Transmission Request Reset 1 Register

CAN_TA1 Transmission Acknowledge 1 Register

CAN_AA1 Abort Acknowledge 1 Register

CAN_RMP1 Receive Message Pending 1 Register

CAN_RML1 Receive Message Lost 1 Register

CAN_MBTIF1 Mailbox Transmit Interrupt Flag 1 Register

CAN_MBRIF1 Mailbox Receive Interrupt Flag 1 Register

CAN_MBIM1 Mailbox Interrupt Mask 1 Register

CAN_RFH1 Remote Frame Handling 1 Register

CAN_OPSS1 Overwrite Protection/Single Shot Transmission 1 Register

CAN_MC2 Mailbox Configuration 2 Register

CAN_MD2 Mailbox Direction 2 Register

CAN_TRS2 Transmission Request Set 2 Register

CAN_TRR2 Transmission Request Reset 2 Register

CAN_TA2 Transmission Acknowledge 2 Register

CAN_AA2 Abort Acknowledge 2 Register

CAN_RMP2 Receive Message Pending 2 Register

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CAN_RML2 Receive Message Lost 2 Register

CAN_MBTIF2 Mailbox Transmit Interrupt Flag 2 Register

CAN_MBRIF2 Mailbox Receive Interrupt Flag 2 Register

CAN_MBIM2 Mailbox Interrupt Mask 2 Register

CAN_RFH2 Remote Frame Handling 2 Register

CAN_OPSS2 Overwrite Protection/Single Shot Transmission 2 Register

CAN_CLK Clock Register

CAN_TIMING Timing Register

CAN_DBG Debug Register

CAN_STAT Status Register

CAN_CEC Error Counter Register

CAN_GIS Global CAN Interrupt Status Register

CAN_GIM Global CAN Interrupt Mask Register

CAN_GIF Global CAN Interrupt Flag Register

CAN_CTL CAN Master Control Register

CAN_INT Interrupt Pending Register

CAN_MBTD Temporary Mailbox Disable Register

CAN_EWR Error Counter Warning Level Register

CAN_ESR Error Status Register

CAN_UCCNT Universal Counter Register

CAN_UCRC Universal Counter Reload/Capture Register

CAN_UCCNF Universal Counter Configuration Mode Register

Table 21-7: ADSP-BF60x CAN Register List (Continued)

Name Description

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–31

Mailbox Configuration 1 Register

The CAN_MC1 register enables mailboxes 0 through 15. Each bit in this register enables or disables the corre-
sponding mailbox. For all bits, set the bit (=1) to enable the mailbox, and clear the bit (=0) to disable the
mailbox.

Enabling and disabling mailboxes has an impact on transmit requests. Setting the CAN_TRS1 bit associated
with a disabled mailbox may result in erroneous behavior. Similarly, disabling a mailbox before the asso-
ciated CAN_TRS1 bit is reset by the internal logic can cause unpredictable results.

CAN_AMnnL Acceptance Mask (L) Register

CAN_AMnnH Acceptance Mask (H) Register

CAN_MBnn_DATA0 Mailbox Word 0 Register

CAN_MBnn_DATA1 Mailbox Word 1 Register

CAN_MBnn_DATA2 Mailbox Word 2 Register

CAN_MBnn_DATA3 Mailbox Word 3 Register

CAN_MBnn_LENGTH Mailbox Length Register

CAN_MBnn_TIMESTAMP Mailbox Timestamp Register

CAN_MBnn_ID0 Mailbox ID 0 Register

CAN_MBnn_ID1 Mailbox ID 1 Register

Table 21-7: ADSP-BF60x CAN Register List (Continued)

Name Description

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-13: CAN_MC1 Register Diagram

Mailbox Direction 1 Register

The CAN_MD1 register selects the data transfer direction for mailboxes 0 through 15. Each bit in this register
selects receive mode or transmit mode for the corresponding mailbox. For all bits, set the bit (=1) for
receive mode from the mailbox, and clear the bit (=0) for transmit mode to the mailbox. Bits 0 through 7
are read-only, as the corresponding mailboxes are receive-only mailboxes.

Table 21-8: CAN_MC1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Enable/Disable.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–33

Figure 21-14: CAN_MD1 Register Diagram

Transmission Request Set 1 Register

The CAN_TRS1 register requests transmit for mailboxes 8 through 15. Bits in this register request transmit
for the corresponding mailbox when set (=1). After writing the data and the identifier into the mailbox
area, the message is sent after mailbox n is enabled (with the corresponding bit in CAN_MC1 = 1}, and
(subsequently) the corresponding transmit request bit is set (in CAN_TRS1). When a transmission
completes, the corresponding bits in CAN_TRS1 and in the transmit request reset register (CAN_TRR1) are
cleared. Bits 0 through 7 are read-only, as the corresponding mailboxes are receive-only mailboxes.

Table 21-9: CAN_MD1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

MB Mailbox n Transmit/Receive.

7:0
(R/NW)

MB Mailbox n Transmit/Receive.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-15: CAN_TRS1 Register Diagram

Transmission Request Reset 1 Register

The CAN_TRR1 register requests transmit abort for mailboxes 8 through 15. Bits in this register request
transmit abort for the corresponding mailbox when set (=1). When a transmission completes, the corre-
sponding bits in the transmit request set register (CAN_TRS1) and in the CAN_TRR1 are cleared. Bits 0
through 7 are read-only, as the corresponding mailboxes are receive-only mailboxes.

Table 21-10: CAN_TRS1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

MB Mailbox n Transmit Request.

7:0
(R/NW)

MB Mailbox n Transmit Request.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–35

Figure 21-16: CAN_TRR1 Register Diagram

Transmission Acknowledge 1 Register

The CAN_TA1 register indicates transmission success for mailboxes 8 through 15. Each bit in this register
indicates transmission success for the corresponding mailbox when set (=1). Bits 0 through 7 are read-
only, as the corresponding mailboxes are receive-only mailboxes.

Table 21-11: CAN_TRR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

MB Mailbox n Transmit Abort.

7:0
(R/NW)

MB Mailbox n Transmit Abort.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-17: CAN_TA1 Register Diagram

Abort Acknowledge 1 Register

The CAN_AA1 register indicates transmission abort (due to lost arbitration or a CAN error) for mailboxes
8 through 15. Each bit in this register indicates transmission abort for the corresponding mailbox when set
(=1). Bits 0 through 7 are read-only, as the corresponding mailboxes are receive-only mailboxes.

Table 21-12: CAN_TA1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W1C)

MB Mailbox n Transmit Acknowledge.

7:0
(R/NW)

MB Mailbox n Transmit Acknowledge.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–37

Figure 21-18: CAN_AA1 Register Diagram

Receive Message Pending 1 Register

The CAN_RMP1 register indicates when a message is pending (unread data) for mailboxes 0 through 15.
Each bit in this register indicates the message pending status for the corresponding mailbox when set (=1).

Table 21-13: CAN_AA1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W1C)

MB Mailbox n Abort Acknowledge.

7:0
(R/NW)

MB Mailbox n Abort Acknowledge.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-19: CAN_RMP1 Register Diagram

Receive Message Lost 1 Register

The CAN_RML1 register indicates when a message is lost---due to a message coming while there is pending
data (corresponding CAN_RMP1 bit set) and overwrite protection is disabled (CAN_OPSS1 bit cleared)---for
mailboxes 0 through 15. Each bit in this register indicates the message lost status for the corresponding
mailbox when set (=1).

Table 21-14: CAN_RMP1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Message Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–39

Figure 21-20: CAN_RML1 Register Diagram

Mailbox Transmit Interrupt Flag 1 Register

The CAN_MBTIF1 register indicates when a transmit interrupt is pending---due to successful transmission
(corresponding CAN_TA1 bit set) and the interrupt is enabled (corresponding CAN_MBIM1 bit set)---for
mailboxes 8 through 15. Each bit in this register indicates the transmit interrupt pending status for the
corresponding mailbox when set (=1). When any bit in CAN_MBTIF1 is set, the CAN transmit interrupt
request is raised (CAN_INT.MBTIRQ bit set). To clear the interrupt request, all of the set bits in CAN_MBTIF1
must be cleared by software (W1C). Also, software must clear the associated bits set in CAN_TA1 or set the
associated bits in CAN_TRS1 bit to clear the interrupt source asserting the bits in CAN_MBTIF1. Bits 0
through 7 are read-only, as the corresponding mailboxes are receive-only mailboxes.

Table 21-15: CAN_RML1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

MB Mailbox n Message Lost.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-21: CAN_MBTIF1 Register Diagram

Mailbox Receive Interrupt Flag 1 Register

The CAN_MBRIF1 register indicates when a receive interrupt is pending---due to successful reception
(corresponding CAN_RMP1 bit set) and the interrupt is enabled (corresponding CAN_MBIM1 bit set)---for
mailboxes 0 through 15. Each bit in this register indicates the receive interrupt pending status for the corre-

Table 21-16: CAN_MBTIF1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W1C)

MB Mailbox n Transmit Interrupt Pending.

7:0
(R/NW)

MB Mailbox n Transmit Interrupt Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–41

sponding mailbox when set (=1). When any bit in CAN_MBRIF1 is set, the CAN receive interrupt request is
raised (CAN_INT.MBRIRQ bit set). To clear the interrupt request, all of the set bits in CAN_RMP1 must be
cleared by software, then the associated bits set in CAN_MBRIF1 must be cleared (W1C).

Figure 21-22: CAN_MBRIF1 Register Diagram

Mailbox Interrupt Mask 1 Register

The CAN_MBIM1 register enables transmit and receive interrupts for mailboxes 0 through 15. Each bit in
this register requests enables the transmit or receive interrupt for the corresponding mailbox when set
(=1).

Table 21-17: CAN_MBRIF1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Receive Interrupt Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-23: CAN_MBIM1 Register Diagram

Remote Frame Handling 1 Register

The CAN_RFH1 register enables remote frame handling for mailboxes 8 through 15. Each bit in this register
enables remote frame handling for the corresponding mailbox when set (=1). Note that enabling this bit
affects transmit and receive operations for mailboxes. For more information about remote frame handling,

Table 21-18: CAN_MBIM1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Transmit and Receive Interrupt Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–43

see the CAN Operating Modes sections, describing transmit and receive operations. Bits 0 through 7 are
read-only, as the corresponding mailboxes are receive-only mailboxes.

Figure 21-24: CAN_RFH1 Register Diagram

Table 21-19: CAN_RFH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

MB Mailbox n Remote Frame Handling Enable.

7:0
(R/NW)

MB Mailbox n Remote Frame Handling Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Overwrite Protection/Single Shot Transmission 1 Register

The CAN_OPSS1 register enables overwrite protection for mailboxes 0 through 15. Each bit in this register
enables overwrite protection for the corresponding mailbox when set (=1). Note that enabling this bit
affects transmit and receive operations for mailboxes. For more information about remote overwrite
protection, see the detailed feature description in the CAN Functional Description section. For more infor-
mation about how this feature affects transmit and receive operations, see the CAN Operating Modes
sections, describing transmit and receive operations.

Figure 21-25: CAN_OPSS1 Register Diagram

Table 21-20: CAN_OPSS1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Overwrite Protection Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–45

Mailbox Configuration 2 Register

The CAN_MC2 register enables mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this register enables or
disables the corresponding mailbox. For all bits, set the bit (=1) to enable the mailbox, and clear the bit (=0)
to disable the mailbox.

Enabling and disabling mailboxes has an impact on transmit requests. Setting the CAN_TRS2 bit associated
with a disabled mailbox may result in erroneous behavior. Similarly, disabling a mailbox before the asso-
ciated CAN_TRS2 bit is reset by the internal logic can cause unpredictable results.

Figure 21-26: CAN_MC2 Register Diagram

Table 21-21: CAN_MC2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Enable/Disable.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Mailbox Direction 2 Register

The CAN_MD2 register selects the data transfer direction for mailboxes 16 (bit 0) through 23 (bit 7). Each bit
in this register selects receive mode or transmit mode for the corresponding mailbox. For all bits, set the
bit (=1) for receive mode from the mailbox, and clear the bit (=0) for transmit mode to the mailbox. Bits 8
through 15 are read-only, as the corresponding mailboxes (24 through 31) are transmit-only mailboxes.

Figure 21-27: CAN_MD2 Register Diagram

Table 21-22: CAN_MD2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/NW)

MB Mailbox n Transmit/Receive.

7:0
(R/W)

MB Mailbox n Transmit/Receive.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–47

Transmission Request Set 2 Register

The CAN_TRS2 register requests transmit for mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this
register requests transmit for the corresponding mailbox when set (=1). After writing the data and the
identifier into the mailbox area, the message is sent after mailbox n is enabled (with the corresponding bit
in CAN_MC2 = 1}, and (subsequently) the corresponding transmit request bit is set (in CAN_TRS2). When a
transmission completes, the corresponding bits in CAN_TRS2 and in the transmit request reset register
(CAN_TRR2) are cleared.

Figure 21-28: CAN_TRS2 Register Diagram

Table 21-23: CAN_TRS2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Transmit Request.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Transmission Request Reset 2 Register

The CAN_TRR2 register requests transmit abort for mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this
register requests transmit abort for the corresponding mailbox when set (=1). When a transmission
completes, the corresponding bits in the transmit request set register (CAN_TRS2) and in the CAN_TRR2 are
cleared.

Figure 21-29: CAN_TRR2 Register Diagram

Transmission Acknowledge 2 Register

The CAN_TA2 register indicates transmission success for mailboxes 16 (bit 0) through 31 (bit 15). Each bit
in this register indicates transmission success for the corresponding mailbox when set (=1).

Table 21-24: CAN_TRR2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Transmit Abort.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–49

Figure 21-30: CAN_TA2 Register Diagram

Abort Acknowledge 2 Register

The CAN_AA2 register indicates transmission abort (due to lost arbitration or a CAN error) for mailboxes
16 (bit 0) through 31 (bit 15). Each bit in this register indicates transmission abort for the corresponding
mailbox when set (=1).

Table 21-25: CAN_TA2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Transmit Acknowledge.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-31: CAN_AA2 Register Diagram

Receive Message Pending 2 Register

The CAN_RMP2 register indicates when a message is pending (unread data) for mailboxes 16 (bit 0) through
23 (bit 7). Each bit in this register indicates the message pending status for the corresponding mailbox
when set (=1). Bits 8 through 15 are reserved, as the corresponding mailboxes (24 through 31) are
transmit-only mailboxes.

Table 21-26: CAN_AA2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Abort Acknowledge.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–51

Figure 21-32: CAN_RMP2 Register Diagram

Receive Message Lost 2 Register

The CAN_RML2 register indicates when a message is lost---due to a message coming while there is pending
data (corresponding CAN_RMP2 bit set) and overwrite protection is disabled (CAN_OPSS2 bit cleared)---for
mailboxes 16 (bit 0) through 23 (bit 7). Each bit in this register indicates the message lost status for the
corresponding mailbox when set (=1). Bits 8 through 15 are reserved, as the corresponding mailboxes (24
through 31) are transmit-only mailboxes.

Figure 21-33: CAN_RML2 Register Diagram

Table 21-27: CAN_RMP2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W1C)

MB Mailbox n Message Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Mailbox Transmit Interrupt Flag 2 Register

The CAN_MBTIF2 register indicates when a transmit interrupt is pending---due to successful transmission
(corresponding CAN_TA2 bit set) and the interrupt is enabled (corresponding CAN_MBIM2 bit set)---for
mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this register indicates the transmit interrupt pending
status for the corresponding mailbox when set (=1). When any bit in CAN_MBTIF2 is set, the CAN transmit
interrupt request is raised (CAN_INT.MBTIRQ bit set). To clear the interrupt request, all of the set bits in
CAN_MBTIF2 must be cleared by software (W1C). Also, software must clear the associated bits set in CAN_
TA2 or set the associated bits in CAN_TRS2 bit to clear the interrupt source asserting the bits in CAN_MBTIF2.

Table 21-28: CAN_RML2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

MB Mailbox n Message Lost.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–53

Figure 21-34: CAN_MBTIF2 Register Diagram

Mailbox Receive Interrupt Flag 2 Register

The CAN_MBRIF2 register indicates when a receive interrupt is pending---due to successful reception
(corresponding CAN_RMP2 bit set) and the interrupt is enabled (corresponding CAN_MBIM2 bit set)---for
mailboxes 16 (bit 0) through 23 (bit 7). Each bit in this register indicates the receive interrupt pending
status for the corresponding mailbox when set (=1). When any bit in CAN_MBRIF2 is set, the CAN receive
interrupt request is raised (CAN_INT.MBRIRQ bit set). To clear the interrupt request, all of the set bits in

Table 21-29: CAN_MBTIF2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Transmit Interrupt Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CAN_RMP2 must be cleared by software, then the associated bits set in CAN_MBRIF2 must be cleared (W1C).
Bits 8 through 15 are reserved and read-only, as the corresponding mailboxes (24 through 31) are
transmit-only mailboxes.

Figure 21-35: CAN_MBRIF2 Register Diagram

Mailbox Interrupt Mask 2 Register

The CAN_MBIM2 register enables transmit and receive interrupts for mailboxes 16 (bit 0) through 31 (bit
15). Each bit in this register requests enables the transmit or receive interrupt for the corresponding
mailbox when set (=1).

Table 21-30: CAN_MBRIF2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W1C)

MB Mailbox n Receive Interrupt Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–55

Figure 21-36: CAN_MBIM2 Register Diagram

Remote Frame Handling 2 Register

The CAN_RFH2 register enables remote frame handling for mailboxes 16 (bit 0) through 31 (bit 15). Each
bit in this register enables remote frame handling for the corresponding mailbox when set (=1). Note that

Table 21-31: CAN_MBIM2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Transmit and Receive Interrupt Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

enabling this bit affects transmit and receive operations for mailboxes. For more information about remote
frame handling, see the CAN Operating Modes sections, describing transmit and receive operations.

Figure 21-37: CAN_RFH2 Register Diagram

Table 21-32: CAN_RFH2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Remote Frame Handling Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–57

Overwrite Protection/Single Shot Transmission 2 Register

The CAN_OPSS2 register enables overwrite protection for mailboxes 16 (bit 0) through 31 (bit 15). Each bit
in this register enables overwrite protection for the corresponding mailbox when set (=1). Note that
enabling this bit affects transmit and receive operations for mailboxes. For more information about remote
overwrite protection, see the detailed feature description in the CAN Functional Description section. For
more information about how this feature affects transmit and receive operations, see the CAN Operating
Modes sections, describing transmit and receive operations.

Figure 21-38: CAN_OPSS2 Register Diagram

Table 21-33: CAN_OPSS2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Overwrite Protection Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Clock Register

The CAN_CLK register select the bit rate prescaler for calculating the time quantum (TQ), which is used to
derive the CAN clock from the system clock (SCLK). For more information about bit timing and clock
operation, see the CAN Operating Modes section.

Figure 21-39: CAN_CLK Register Diagram

Timing Register

The CAN_TIMING register select the time segments, sampling, and synchronization for CAN bit timing. For
more information about bit timing and clock operation, see the CAN Operating Modes section.

Figure 21-40: CAN_TIMING Register Diagram

Table 21-34: CAN_CLK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/W)

BRP Bit Rate Prescaler.
The CAN_CLK.BRP bits select the bit rate prescaler value, which is
used to calculate the time quantum for CAN bit timing. The formula
using CAN_CLK.BRP to calculate the time quantum is:
TQ = (BRP+1) / SCLK
Note that it is recommended that the CAN_CLK.BRP value be greater
than or equal to 4. For more information about bit timing, see the
Operating Modes section.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–59

Debug Register

The CAN_DBG register controls CAN debug modes, including CAN_TX and CAN_RX pin enable/disable.

Table 21-35: CAN_TIMING Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:8
(R/W)

SJW Synchronization Jump Width.
The CAN_TIMING.SJW bits select the maximum number of time
quanta, ranging from 1 to 4(SJW + 1). This selection allows for a re-
synchronization attempt when the CAN detects a recessive-to-
dominant edge outside the synchronization segment. The re-
synchronization automatically moves the sampling point such that
the CAN bit is still handled properly. Note that the CAN_TIMING.SJW
value should not exceed CAN_TIMING.TSEG2 or CAN_TIMING.TSEG1.

7
(R/W)

SAM Sampling.
The CAN_TIMING.SAM bit selects whether the CAN performs normal
sampling (once at the sampling point described by the CAN_TIMING
register) or performs over sampling. If CAN_TIMING.SAM is set, the
CAN over samples the input signal at three times at the SCLK rate.
The resulting value is generated by a majority decision of the three
sample values. Note that the CAN_TIMING.SAM bit should always be
cleared if the CAN_CLK.BRP value is less than 4.

6:4
(R/W)

TSEG2 Time Segment 2.
The CAN_TIMING.TSEG2 bits and CAN_TIMING.TSEG1 bits control
how many time quanta of which the CAN bits consist, resulting in
the CAN bit rate. For more information about bit timing and clock
operation, see the CAN Operating Modes section. Note that the CAN_
TIMING.TSEG1 value should always be greater than or equal to the
CAN_TIMING.TSEG2 value.

3:0
(R/W)

TSEG1 Time Segment 1.
The CAN_TIMING.TSEG1 bits and CAN_TIMING.TSEG2 bits control
how many time quanta of which the CAN bits consist, resulting in
the CAN bit rate. For more information about bit timing and clock
operation, see the CAN Operating Modes section. Note that the CAN_
TIMING.TSEG1 value should always be greater than or equal to the
CAN_TIMING.TSEG2 value.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-41: CAN_DBG Register Diagram

Table 21-36: CAN_DBG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

CDE CAN Debug Mode Enable.
The CAN_DBG.CDE bit enables debug mode. This bit must be written
first before subsequent writes to the CAN_DBG register. When the CAN_
DBG.CDE bit is cleared, all CAN debug features are disabled.
0 Disable Debug Mode
1 Enable Debug Mode

5
(R/W)

MRB Mode Read Back.
The CAN_DBG.MRB bit enables read back mode. When enabled, a
message transmitted on the CAN bus or through an internal loop
back mode is received back directly to the internal receive buffer.
0 Disable Read Back Mode
1 Enable Read Back Mode

4
(R/W)

MAA Mode Auto Acknowledge.
The CAN_DBG.MAA bit enables mode auto acknowledge, allowing the
CAN to generate its own acknowledge during the ACK slot of the
CAN frame. The CAN_DBG.MAA acknowledge appears on the CAN_TX
pin if CAN_DBG.DIL =1 and CAN_DBG.DTO =0. If the acknowledge is
only going to be used internally, these test mode bits should be set to
CAN_DBG.DIL = 0 and CAN_DBG.DTO =1.
0 Disable Auto Acknowledge Mode
1 Enable Auto Acknowledge Mode

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–61

Status Register

The CAN_STAT register indicates status for CAN modes and error conditions.

3
(R/W)

DIL Disable Internal Loop.
The CAN_DBG.DIL bit disables internal loop mode, which routes the
transmit output to the receive input.
0 Enable Internal Loop
1 Disable Internal Loop

2
(R/W)

DTO Disable Tx Output Pin.
The CAN_DBG.DTO bit disables the CAN_TX pin.
0 Enable Tx Output Pin
1 Disable Tx Output Pin, Drive Recessive

1
(R/W)

DRI Disable Receive Input Pin.
The CAN_DBG.DRI bit disables the CAN_RX pin.
0 Enable Rx Input Pin
1 Disable Rx Input Pin, Drive Recessive

Internally
0
(R/W)

DEC Disable Transmit and Receive Error Counters.
The CAN_DBG.DEC bit disables the transmit and receive error counters
in the CAN_CEC register. When set, the CAN_CEC holds its current
contents and is not allowed to increment or decrement the error
counters. Note that this mode does not conform to the CAN
specification.
0 Enable CEC Tx and Rx Error Counters
1 Disable CEC Tx and Rx Error Counters

Table 21-36: CAN_DBG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-42: CAN_STAT Register Diagram

Table 21-37: CAN_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/NW)

REC Receive Mode.
The CAN_STAT.REC bit indicates whether the CAN is in receive
mode.
0 Not in Receive Mode
1 Receive Mode

14
(R/NW)

TRM Transmit Mode.
The CAN_STAT.TRM bit indicates whether the CAN is in transmit
mode.
0 Not in Transmit Mode
1 Transmit Mode

12:8
(R/NW)

MBPTR Mailbox Pointer.
The CAN_STAT.MBPTR bits represent the mailbox number of the
current transmit message. After a successful transmission, these bits
remain unchanged.
0 Processing Mailbox 0 Message
... ...
31 Processing Mailbox 31 Message

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–63

7
(R/NW)

CCA CAN Configuration Mode Acknowledge.
The CAN_STAT.CCA bit indicates whether the CAN is in
configuration mode.
0 Not in Configuration Mode
1 Configuration mode

6
(R/NW)

CSA CAN Suspend Mode Acknowledge.
The CAN_STAT.CSA bit indicates whether the CAN is in suspend
mode.
0 Not in Suspend Mode
1 Suspend mode

3
(R/NW)

EBO CAN Error Bus Off Mode.
The CAN_STAT.EBO bit indicates whether the CAN is in error bus off
mode.
0 TXECNT Below 256
1 TXECNT Above Bus Off Limit

2
(R/NW)

EP CAN Error Passive Mode.
The CAN_STAT.EP bit indicates whether the CAN is in error passive
mode.
0 TXECNT and RXECNT Below 128
1 TXECNT or RXECNT Above EP Level

1
(R/NW)

WR CAN Receive Warning Flag.
The CAN_STAT.WR bit indicates whether the CAN has detected a
receive warning flag condition.
0 RXECNT Below Limit
1 RXECNT at Limit

0
(R/NW)

WT CAN Transmit Warning Flag.
The CAN_STAT.WT bit indicates whether the CAN detected a transmit
warning flag condition.
0 TXECNT Below Limit
1 TXECNT at Limit

Table 21-37: CAN_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Error Counter Register

The CAN_CEC register , CAN_ESR register, and CAN_EWR register control CAN warnings and errors. For
detailed information about error and warning operations, see the Event Control section.

The CAN_CEC register holds an error counter for transmit (CAN_CEC.TXECNT) and an error counter for
receive (CAN_CEC.RXECNT). After initialization, both counters are 0. Each time a bus error occurs, one of
the counters is incremented by either 1 or 8, depending on the error situation (documented in Version 2.
0 of CAN Specification). Successful transmit and receive operations decrement the respective counter by 1.

Figure 21-43: CAN_CEC Register Diagram

Global CAN Interrupt Status Register

The CAN_GIS register, CAN_GIF register, and CAN_GIM register control CAN interrupts. For detailed infor-
mation about interrupt operations, see the Event Control section.

The CAN_GIS register holds the interrupt status. All bits in this register are W1C.

Table 21-38: CAN_CEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

TXECNT Transmit Error Counter.
The CAN_CEC.TXECNT bits hold the transmit error counter, which is
incremented for errors (by either 1 or 8) and is decremented (by 1)
for successful transmit operations.

7:0
(R/W)

RXECNT Receive Error Counter.
The CAN_CEC.RXECNT bits hold the receive error counter, which is
incremented for errors (by either 1 or 8) and is decremented (by 1)
for successful receive operations.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–65

Figure 21-44: CAN_GIS Register Diagram

Table 21-39: CAN_GIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/W1C)

ADIS Access Denied Interrupt Status.
The CAN_GIS.ADIS bit indicates when at least one access to the
mailbox RAM occurred during a data update by internal logic.
0 No Interrupt Pending
1 Interrupt Pending

8
(R/W1C)

UCEIS Universal Counter Exceeded Interrupt Status.
The CAN_GIS.UCEIS bit indicates when there has been an overflow of
the universal counter (in time stamp mode or event counter mode) or
the counter has reached the value 0x0000 (in watchdog mode).
0 No Interrupt Pending
1 Interrupt Pending

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

7
(R/W1C)

RMLIS Receive Message Lost Interrupt Status.
The CAN_GIS.RMLIS bit indicates when a message is received for a
mailbox that currently contains unread data. At least one bit in the
receive message lost register (CAN_RML1 or CAN_RML2) is set. If the bit
in CAN_GIS (and CAN_GIF) is reset and there is at least one bit in CAN_
RML1 or CAN_RML2 still set, the bit in CAN_GIF (and CAN_GIF) is not
set again. The internal interrupt source signal is only active if a new
bit in CAN_RML1 or CAN_RML2 is set.
0 No Interrupt Pending
1 Interrupt Pending

6
(R/W1C)

AAIS Abort Acknowledge Interrupt Status.
The CAN_GIS.AAIS bit indicates when At least one abort
acknowledge bit is set in the CAN_AA1 or the CAN_AA2 registers. If the
bit in CAN_GIS (and CAN_GIF) is reset and there is at least one bit in
CAN_AA1 or CAN_AA2 still set, the bit in CAN_GIS (and CAN_GIF) is not
set again. The internal interrupt source signal is only active if a new
bit in CAN_AA1 or CAN_AA2 is set. The abort acknowledge bits
maintain state even after the corresponding mailbox n is disabled.
0 No Interrupt Pending
1 Interrupt Pending

5
(R/W1C)

UIAIS Unimplemented Address Interrupt Status.
The CAN_GIS.UIAIS bit indicates when there was a processor core
access to an address that is not implemented in the CAN.
0 No Interrupt Pending
1 Interrupt Pending

4
(R/W1C)

WUIS Wake Up Interrupt Status.
The CAN_GIS.WUIS bit indicates when the CAN has left the sleep
mode because of detected activity on the CAN bus line.
0 No Interrupt Pending
1 Interrupt Pending

Table 21-39: CAN_GIS Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–67

3
(R/W1C)

BOIS Bus Off Interrupt Status.
The CAN_GIS.BOIS bit indicates when the CAN has entered the bus-
off state. This interrupt source is active if the status of the CAN
changes from normal operation mode to the bus-off mode. If the bit
in CAN_GIS (and CAN_GIF) is reset and the bus-off mode is still active,
this bit is not set again. If the module leaves the bus-off mode, the bit
inCAN_GIS (and CAN_GIF) remains set.
0 No Interrupt Pending
1 Interrupt Pending

2
(R/W1C)

EPIS Error Passive Interrupt Status.
The CAN_GIS.EPIS bit indicates when the CAN has entered the error
passive state. This interrupt source is active if the status of the CAN
changes from the error active mode to the error passive mode. If the
bit in CAN_GIS (and CAN_GIF) is reset and the error passive mode is
still active, this bit is not set again. If the CAN leaves the error passive
mode, the bit in CAN_GIS (and CAN_GIF) remains set.
0 No Interrupt Pending
1 Interrupt Pending

1
(R/W1C)

EWRIS Error Warning Receive Interrupt Status.
The CAN_GIS.EWRIS bit indicates when the CAN_CEC.RXECNT has
reached the warning limit. If the bit in CAN_GIS (and CAN_GIF) is
reset and the error warning mode is still active, this bit is not set
again. If the CAN leaves the error warning mode, the bit in CAN_GIS
(and CAN_GIF) remains set.
0 No Interrupt Pending
1 Interrupt Pending

0
(R/W1C)

EWTIS Error Warning Transmit Interrupt Status.
The CAN_GIS.EWTIS bit indicates when the CAN_CEC.TXECNT has
reached the warning limit. If the bit in CAN_GIS (and CAN_GIF) is
reset and the error warning mode is still active, this bit is not set
again. If the CAN leaves the error warning mode, the bit in CAN_GIS
(and CAN_GIF) remains set.
0 No Interrupt Pending
1 Interrupt Pending

Table 21-39: CAN_GIS Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Global CAN Interrupt Mask Register

The CAN_GIM register, CAN_GIF register, and CAN_GIF register control CAN interrupts. For detailed infor-
mation about interrupt operations, see the Event Control section.

The CAN_GIM register holds the interrupt mask. The interrupt mask bits only affect the content of the CAN_
GIF register. If the mask bit is not set (enabled/unmasked), the corresponding flag bit is not set when the
event occurs.

Figure 21-45: CAN_GIM Register Diagram

Table 21-40: CAN_GIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/W)

ADIM Access Denied Interrupt Mask.
The CAN_GIM.ADIM bit enables (unmasks) the access denied
interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

8
(R/W)

UCEIM Universal Counter Exceeded Interrupt Mask.
The CAN_GIM.UCEIM bit enables (unmasks) the universal counter
exceeded interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–69

7
(R/W)

RMLIM Receive Message Lost Interrupt Mask.
The CAN_GIM.RMLIM bit enables (unmasks) the receive message lost
interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

6
(R/W)

AAIM Abort Acknowledge Interrupt Mask.
The CAN_GIM.AAIM bit enables (unmasks) the abort acknowledge
interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

5
(R/W)

UIAIM Unimplemented Address Interrupt Mask.
The CAN_GIM.UIAIM bit enables (unmasks) the unimplemented
address interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

4
(R/W)

WUIM Wake Up Interrupt Mask.
The CAN_GIM.WUIM bit enables (unmasks) the wake up interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

3
(R/W)

BOIM Bus Off Interrupt Mask.
The CAN_GIM.BOIM bit enables (unmasks) the bus off interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

2
(R/W)

EPIM Error Passive Interrupt Mask.
The CAN_GIM.EPIM bit enables (unmasks) the error passive mode
interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

1
(R/W)

EWRIM Error Warning Receive Interrupt Mask.
The CAN_GIM.EWRIM bit enables (unmasks) the error warning receive
interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

Table 21-40: CAN_GIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Global CAN Interrupt Flag Register

The CAN_GIF register, CAN_GIF register, and CAN_GIM register control CAN interrupts. For detailed infor-
mation about interrupt operations, see the Event Control section.

The CAN_GIF register holds the interrupt flag. The CAN_INT.GIRQ bit is only asserted if a bit in the CAN_
GIF is set. The CAN_INT.GIRQ bit remains set as long as at least one bit in the CAN_GIF register is set.All
bits in this register are W1C.

Figure 21-46: CAN_GIF Register Diagram

0
(R/W)

EWTIM Error Warning Transmit Interrupt Mask.
The CAN_GIM.EWTIM bit enables (unmasks) the error warning
transmit interrupt.
0 Disable Interrupt (Mask)
1 Enable Interrupt (Unmask)

Table 21-40: CAN_GIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–71

Table 21-41: CAN_GIF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/NW)

ADIF Access Denied Interrupt Flag.
The CAN_GIF.ADIF bit indicates the access denied interrupt flag is set
(latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

8
(R/NW)

UCEIF Universal Counter Exceeded Interrupt Flag.
The CAN_GIF.UCEIF bit indicates the universal counter exceeded
interrupt flag is set (latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

7
(R/NW)

RMLIF Receive Message Lost Interrupt Flag.
The CAN_GIF.RMLIF bit indicates the receive message lost interrupt
flag is set (latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

6
(R/NW)

AAIF Abort Acknowledge Interrupt Flag.
The CAN_GIF.AAIF bit indicates the abort acknowledge interrupt flag
is set (latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

5
(R/NW)

UIAIF Unimplemented Address Interrupt Flag.
The CAN_GIF.UIAIF bit indicates the unimplemented address
interrupt flag is set (latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

4
(R/NW)

WUIF Wake Up Interrupt Flag.
The CAN_GIF.WUIF bit indicates the wake up interrupt flag is set
(latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CAN Master Control Register

The CAN_CTL register controls CAN mode requests, including soft reset.

3
(R/NW)

BOIF Bus Off Interrupt Flag.
The CAN_GIF.BOIF bit indicates the bus off interrupt flag is set
(latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

2
(R/NW)

EPIF Error Passive Interrupt Flag.
The CAN_GIF.EPIF bit indicates the error passive mode interrupt flag
is set (latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

1
(R/NW)

EWRIF Error Warning Receive Interrupt Flag.
The CAN_GIF.EWRIF bit indicates the error warning receive interrupt
flag is set (latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

0
(R/NW)

EWTIF Error Warning Transmit Interrupt Flag.
The CAN_GIF.EWTIF bit indicates the error warning transmit
interrupt flag is set (latched).
0 No Interrupt Flag
1 Interrupt Flag Set (Latched)

Table 21-41: CAN_GIF Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–73

Figure 21-47: CAN_CTL Register Diagram

Table 21-42: CAN_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

CCR CAN Configuration Mode Request.
The CAN_CTL.CCR bit requests that the CAN enter configuration
mode. Note that the CAN should always be put in configuration
mode before modifying the CAN_CLK or CAN_TIMING registers.
0 No Request (Exit Configuration Mode)
1 Request Configuration Mode

6
(R/W)

CSR CAN Suspend Mode Request.
The CAN_CTL.CSR bit requests that the CAN enter suspend mode.
The CAN enters suspend mode after the current operation of the
CAN bus is finished.
0 No Request (Exit Suspend Mode)
1 Request Suspend Mode

5
(R/W)

SMR Sleep Mode Request.
The CAN_CTL.SMR bit requests that the CAN enter sleep mode. The
CAN enters sleep mode after the current operation of the CAN bus is
finished.
0 No Request (Exit Sleep Mode)
1 Request Sleep Mode

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Interrupt Pending Register

The CAN_INT register indicates the status of pending CAN interrupts and indicates the state of the CAN_RX
and CAN_TX pins. Though this register is read-only, a write is allowed to exit the built-in sleep mode of the
module on processors supporting this feature.

4
(R/W)

WBA Wake Up on CAN Bus Activity.
The CAN_CTL.WBA bit enables wake on CAN bus activity. When
enabled, a dominant bit on the CAN_RX pin ends sleep mode (in
addition the default wake up condition of a write to the CAN_INT
register).
0 Disable Wake on Bus Activity
1 Enable Wake on Bus Activity

2
(R/W)

ABO Auto Bus On.
The CAN_CTL.ABO bit selects whether (if enabled) the CAN enters
active mode after the BusOff recovery sequence or (if disabled) the
CAN enters configuration mode after the BusOff recovery sequence.
0 Disable Auto Bus On
1 Enable Auto Bus On

1
(R/W)

DNM Device Net Mode.
The CAN_CTL.DNM bit enables mailbox filtering on a data field. The
filtering is done on the standard ID of the message and data fields.
For more information, see the CAN_AMnnH.FDF bit description.
0 Disable Device Net Mode
1 Enable Device Net Mode

0
(R/W)

SRS Software Reset.
The CAN_CTL.SRS bit resets the CAN, bringing all control registers to
a defined state. Soft reset is entered immediately after software has set
the CAN_CTL.SRS bit.
0 No Action
1 Reset CAN

Table 21-42: CAN_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–75

Figure 21-48: CAN_INT Register Diagram

Table 21-43: CAN_INT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/NW)

CANRX Serial Input From Transceiver.
The CAN_INT.CANRX bit indicates the logic value that the CAN
detects on the CAN_RX pin. Note that the reset/default value for CAN_
INT.CANRX is dependent on pin values.
0 Dominant Value (Low Active)
1 Recessive Value (High Active)

6
(R/NW)

CANTX Serial Input To Transceiver.
The CAN_INT.CANTX bit indicates the logic value that the CAN
detects on the CAN_TX pin. Note that the reset/default value for CAN_
INT.CANTX is dependent on pin values.
0 Dominant Value (Low Active)
1 Recessive Value (High Active)

3
(R/W)

SMACK Sleep Mode Acknowledge.
The CAN_INT.SMACK bit indicates when the CAN has entered sleep
mode.
0 Not in Sleep Mode
1 Sleep Mode

2
(R/W)

GIRQ Global CAN Interrupt Output.
The CAN_INT.GIRQ bit indicates when at least one bit is set in the
CAN_GIF register, indicating at least one unmasked CAN is flagged
(latched). The CAN_INT.GIRQ bit remains set as long as at least one
bit is set in the CAN_GIF register.
0 No CAN Global Interrupt Flag Set
1 CAN Global Interrupt Flag (1 or More) Set

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Temporary Mailbox Disable Register

The CAN_MBTD register supports temporarily and selectively disabling CAN mailboxes. For more informa-
tion about this feature, see the Operating Modes section.

Figure 21-49: CAN_MBTD Register Diagram

1
(R/W)

MBTIRQ Mailbox Transmit Interrupt Output.
The CAN_INT.MBTIRQ bit indicates when any bits are set in the CAN_
MBTIF1 register or CAN_MBTIF2 register, indicating transmit.
0 No CAN Transmit Flags Set
1 CAN Transmit Flags Set (1 or More)

0
(R/W)

MBRIRQ Mailbox Receive Interrupt Output.
The CAN_INT.MBRIRQ bit indicates when any bits are set in the CAN_
MBRIF1 register or CAN_MBRIF2 register, indicating receive.
0 No CAN Receive Flags Set
1 CAN Receive Flags Set (1 or More)

Table 21-44: CAN_MBTD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

TDR Temporary Disable Request.
The CAN_MBTD.TDR bit hold the pointer to mailbox, which is disabled
when the CAN_MBTD.TDR bit is set.
0 No Request
1 Request Temporary Mailbox Disable

Table 21-43: CAN_INT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–77

Error Counter Warning Level Register

The CAN_EWR register, CAN_CEC register, and CAN_ESR register control CAN warnings and errors. For
detailed information about error and warning operations, see the Operating Modes section.

Figure 21-50: CAN_EWR Register Diagram

6
(R/NW)

TDA Temporary Disable Acknowledge.
The CAN_MBTD.TDA bit indicates when the mailbox (to which the
CAN_MBTD.TDPTR bit point) is disabled. When this bit is set for a
mailbox, only the data field of that mailbox may be updated. Accesses
that mailboxs control bits and the identifier are denied.
0 No Acknowledge
1 Acknowledge Temporary Mailbox Disable

4:0
(R/W)

TDPTR Temporary Disable Pointer.
The CAN_MBTD.TDPTR bits hold the pointer to mailbox, which is
disabled when the CAN_MBTD.TDR bit is set.

Table 21-45: CAN_EWR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

EWLTEC Transmit Error Warning Limit.
The CAN_EWR.EWLTEC bits select the transmit error warning limit,
which is used as a condition for the CAN_GIS.EWTIS interrupt.

7:0
(R/W)

EWLREC Receive Error Warning Limit.
The CAN_EWR.EWLREC bits select the receive error warning limit,
which is used as a condition for the CAN_GIS.EWRIS interrupt.

Table 21-44: CAN_MBTD Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Error Status Register

The CAN_ESR register, CAN_CEC register, and CAN_EWR register control CAN warnings and errors. All bits
in the CAN_ESR are W1C. Note that the CAN updates the CAN_CEC register when error status is detected in
the CAN_ESR register. For detailed information about error and warning operations, see the Operating
Modes section.

Figure 21-51: CAN_ESR Register Diagram

Table 21-46: CAN_ESR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W1C)

FER Form Error.
The CAN_ESR.FER bit indicates when a form error occurs, indicating
that a fixed-form bit position in the CAN frame contains one or more
illegal bits. This occurs when a dominant bit is detected at a delimiter
or end-of-frame bit position.
0 No Status
1 Form Error

6
(R/W1C)

BEF Bit Error Flag.
The CAN_ESR.BEF bit bit indicates (detected by the transmitting node
only) the value on the CAN_RX pin does not equal what is being
transmitted on the CAN_TX pin.
When a node is transmitting, it continuously monitors its receive pin
(CAN_RX) and compares the received data with the transmitted data.
The node postpones the transmission (during the arbitration phase)
if the received and transmitted data do not match. After the
arbitration phase (CAN_MBnn_ID1.RTR bit sent successfully), a bit
error is signaled when the value on the CAN_RX pin does not equal
what is being transmitted on the CAN_TX pin.
0 No Status
1 Bit Error Flag

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–79

Universal Counter Register

The CAN_UCCNT register holds the current universal count. This register is re-loaded from the CAN_UCRC
register when the decrements to zero in auto-transmit mode.

5
(R/W1C)

SAO Stuck at Dominant.
The CAN_ESR.SAO bit indicates when the CAN_RX pin sticks at
dominant level, indicating that shorted wires are likely.
0 No Status
1 Stuck At Dominant

4
(R/W1C)

CRCE CRC Error.
The CAN_ESR.CRCE bit indicates when a CRC error occurs. This error
may occur when a receiver calculates the CRC on the data it received
and finds the value different than the CRC that was transmitted on
the bus.
0 No Status
1 CRC Error

3
(R/W1C)

SER Stuff Bit Error.
The CAN_ESR.SER bit indicates when a stuff bit error (stuffed 6th
consecutive bit value is the same as the previous five bits) occurs.
The CAN specification requires that the transmitter insert an extra
stuff bit of opposite value after 5 bits have been transmitted with the
same value. The receiver disregards the value of these stuff bits. The
receiver takes advantage of the signal edge to re-synchronize itself. A
stuff bit error occurs on receiving nodes when the 6th consecutive bit
value is the same as the previous five bits.
0 No Status
1 Stuff Bit Error Receive

2
(R/W1C)

ACKE Acknowledge Error.
The CAN_ESR.ACKE bit indicates when an acknowledge error occurs,
indicating that a message is sent and no receivers drive an
acknowledge bit.
0 No Status
1 Acknowledge Error

Table 21-46: CAN_ESR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–80 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-52: CAN_UCCNT Register Diagram

Universal Counter Reload/Capture Register

The CAN_UCRC register holds the period value (universal count), which is used in auto-transmit mode as
the period for sending the message in mailbox 11 (broadcast heartbeat) to all CAN nodes. Accordingly,
messages sent this way usually have high priority.

The period value is written to the CAN_UCRC register. When auto-transmit mode is enabled (CAN_UCCNF.
UCCNF = 0x3), the CAN loads the counter with the value in CAN_UCRC. The counter decrements to 0 at the
CAN bit clock rate, then is reloaded. Each time the counter decrements to 0, the CAN sets the CAN_TRS1.
MB bit for mailbox 11 and sends the corresponding message from mailbox 11.

Note that for auto-transmit mode, mailbox 11 must be configured as a transmit mailbox and must contain
valid data (identifier, control bits, and data). This setup must occur before the counter first expires after
this mode is enabled.

Figure 21-53: CAN_UCRC Register Diagram

Table 21-47: CAN_UCCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

COUNT Count Value.
The CAN_UCCNT.COUNT bits hold the current universal count value.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–81

Universal Counter Configuration Mode Register

The CAN_UCCNF register controls the operation of the universal counter, including counter enable and
counter mode selection.

Figure 21-54: CAN_UCCNF Register Diagram

Table 21-48: CAN_UCRC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

UCVAL Universal Counter Value.
The CAN_UCRC.UCVAL bits hold the value for the universal count
period, which is used in auto-transmit mode.

Table 21-49: CAN_UCCNF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

UCE Universal Counter Enable.
The CAN_UCCNF.UCE bit enables universal counter operation in the
mode selected by the CAN_UCCNF.UCCNF bits.
0 Disable Counter
1 Enable Counter

6
(R/W)

UCCT Universal Counter CAN Trigger.
The CAN_UCCNF.UCCT bit enables the universal counter trigger,
directing the CAN to re-load the counter on mailbox 4 reception in
watchdog mode and clear the counter on mailbox 4 reception in time
stamp mode. This bit has no effect in all other modes.
0 Disable Trigger
1 Enable Trigger

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–82 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Acceptance Mask (L) Register

The CAN_AMnnL register and CAN_AMnnH register manage acceptance mask operation. For information
about acceptance mask operation, see the Receive Operation section.

5
(R/W)

UCRC Universal Counter Reload/Clear.
The CAN_UCCNF.UCRC bit re-loads or clears the universal counter,
depending on the counter mode. In watchdog mode, setting this bit
directs the CAN to re-load the counter. In all other modes, setting
this bit directs the CAN to clear the counter.
0 No Action
1 Re-load or Clear the Counter

3:0
(R/W)

UCCNF Universal Counter Configuration.
The CAN_UCCNF.UCCNF bits select the universal counter operating
mode. For more information about these modes, see the Operating
Modes section.
0 Reserved
1 Time Stamp Mode
2 Watchdog Mode
3 Auto-transmit Mode
4 Reserved
5 Reserved
6 Count Error Frames
7 Count Overload Frames
8 Count Arbitration Lost
9 Count Aborted Transmissions
10 Count Successful Transmissions
11 Count Rejected Receive Messages
12 Count Receive Message Lost
13 Count Successful Receptions
14 Count Stored Receptions
15 Count Valid Messages

Table 21-49: CAN_UCCNF Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–83

Figure 21-55: CAN_AMnnL Register Diagram

Acceptance Mask (H) Register

The CAN_AMnnH register and CAN_AMnnL register manage acceptance mask operation. For information
about acceptance mask operation, see the Receive Operation section.

Figure 21-56: CAN_AMnnH Register Diagram

Table 21-50: CAN_AMnnL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

EXTID Extended Identifier/Data Field Mask.
The CAN_AMnnL.EXTID bits hold the extended ID (lower 16 bits) for
data field mask in acceptance mask operations.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–84 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Mailbox Word 0 Register

The CAN_MBnn_DATA0 register holds mailbox data bytes.

Figure 21-57: CAN_MBnn_DATA0 Register Diagram

Table 21-51: CAN_AMnnH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

FDF Filter on Delay Field.
The CAN_AMnnH.FDF bit selects the operation of the CAN_AMnnH
register and CAN_AMnnL register when the CAN_CTL.DNM bit is
enabled.
If the CAN_AMnnH.FDF bit is set, the corresponding CAN_AMnnL.
EXTID bits hold the data field mask. If the CAN_AMnnH.FDF bit is
cleared, the corresponding CAN_AMnnL.EXTID bits hold the high bits
of the extended identifier mask.

14
(R/W)

FMD Full Mask Data.
The CAN_AMnnH.FMD bit works with the CAN_AMnnH.FDF bit to
determine data field filtering. For information about data field
filtering, see the Receive Operation section.

13
(R/W)

AMIDE Acceptance Mask Identifier Extension.
The CAN_AMnnH.AMIDE bit enables the comparison of the received
message ID to the value in the CAN_AMnnH.EXTID and CAN_AMnnL.
EXTID bits.

12:2
(R/W)

BASEID Base Identifier.
The CAN_AMnnH.BASEID bits hold the base ID for acceptance mask
operations.

1:0
(R/W)

EXTID Extended Identifier.
The CAN_AMnnH.EXTID bits hold the extended ID (upper two bits) for
acceptance mask operations.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–85

Mailbox Word 1 Register

The CAN_MBnn_DATA1 register holds mailbox data bytes.

Figure 21-58: CAN_MBnn_DATA1 Register Diagram

Mailbox Word 2 Register

The CAN_MBnn_DATA2 register holds mailbox data bytes.

Table 21-52: CAN_MBnn_DATA0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

DFB6 Data Field Byte 6.
The CAN_MBnn_DATA0.DFB6 bits hold mailbox data.

7:0
(R/W)

DFB7 Data Field Byte 7.
The CAN_MBnn_DATA0.DFB7 bits hold mailbox data.

Table 21-53: CAN_MBnn_DATA1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

DFB4 Data Field Byte 4.
The CAN_MBnn_DATA1.DFB4 bits hold mailbox data.

7:0
(R/W)

DFB5 Data Field Byte 5.
The CAN_MBnn_DATA1.DFB5 bits hold mailbox data.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–86 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 21-59: CAN_MBnn_DATA2 Register Diagram

Mailbox Word 3 Register

The CAN_MBnn_DATA3 register holds mailbox data bytes.

Figure 21-60: CAN_MBnn_DATA3 Register Diagram

Table 21-54: CAN_MBnn_DATA2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

DFB2 Data Field Byte 2.
The CAN_MBnn_DATA2.DFB2 bits hold mailbox data.

7:0
(R/W)

DFB3 Data Field Byte 3.
The CAN_MBnn_DATA2.DFB3 bits hold mailbox data.

Table 21-55: CAN_MBnn_DATA3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

DFB0 Data Field Byte 0.
The CAN_MBnn_DATA3.DFB0 bits hold mailbox data.

7:0
(R/W)

DFB1 Data Field Byte 1.
The CAN_MBnn_DATA3.DFB1 bits hold mailbox data.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–87

Mailbox Length Register

The CAN_MBnn_LENGTH register holds the data length code for the received remote frame. For more infor-
mation about remote frames, see the Remote Frame Handling section.

Figure 21-61: CAN_MBnn_LENGTH Register Diagram

Mailbox Timestamp Register

The CAN_MBnn_TIMESTAMP register holds an indication of the time of reception or transmission for each
message, when the universal counter is in time stamp mode (CAN_UCCNF.UCCNF =0x1). In this mode, the
CAN writes the value of the counter (CAN_UCCNT) to the CAN_MBnn_TIMESTAMP register when a received
message is stored or a message is transmitted. For more information about timestamps, see the Time
Stamps section.

Figure 21-62: CAN_MBnn_TIMESTAMP Register Diagram

Table 21-56: CAN_MBnn_LENGTH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

DLC Data Length Code.
The CAN_MBnn_LENGTH.DLC bits hold the DLC value of the received
remote frame. The received value overwrites any previous value.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–88 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Mailbox ID 0 Register

The CAN_MBnn_ID0 register contains the lower 16 bits of the 18-bit extended identifier.

Figure 21-63: CAN_MBnn_ID0 Register Diagram

Mailbox ID 1 Register

The CAN_MBnn_ID1 register contains the identifier bits of mailbox. The 11-bit BASE_ID is mapped to The
CAN_MBnn_ID1.BASEID field. It also enables the extended identification and contains upper two bits of 18-
bit extended identifier. This register also enables the acceptance mask operations. For information about
acceptance mask operation, see the Receive Operation section.

Table 21-57: CAN_MBnn_TIMESTAMP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

TSV Time Stamp Value.
The CAN_MBnn_TIMESTAMP.TSV bits hold the message timestamp
value.

Table 21-58: CAN_MBnn_ID0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

EXTID Extended Identifier/Data Field Acceptance Code.
The CAN_MBnn_ID0.EXTID bits hold the lower 16 bits of the 18-bit
extended ID.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 21–89

Figure 21-64: CAN_MBnn_ID1 Register Diagram

Table 21-59: CAN_MBnn_ID1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AME Acceptance Mask Enable.
The CAN_MBnn_ID1.AME bit enables acceptance mask operations if
the mailbox is configured as receiver. When enabled (=1), only those
bits that have the corresponding mask bit cleared are compared to the
received message ID. A bit position that is set in the mask register
does not need to match. This bit should be set to 0 when the mailbox
is configured in transmit mode.

14
(R/W)

RTR Remote Transmission Request.
The CAN_MBnn_ID1.RTR bit selects whether the frame contains data
(data frame) or contains a request for data associated with the
message identifier in the frame being sent (remote frame).

13
(R/W)

IDE Identifier Extension.
The CAN_MBnn_ID1.IDE bit enables the comparison of the received
message ID to the value in the CAN_MBnn_ID1.EXTID and CAN_MBnn_
ID0.EXTID bits. When configured as transmitter, it sends the
extended identifier in addition to the base identifier.

12:2
(R/W)

BASEID Base Identifier.
The CAN_MBnn_ID1.BASEID bits hold the base identifier for
acceptance mask operations.

1:0
(R/W)

EXTID Extended Identifier.
The CAN_MBnn_ID1.EXTID bits hold the upper two bits of 18-bit
extended identifier.

CONTROLLER AREA NETWORK (CAN)
ADSP-BF60X CAN REGISTER DESCRIPTIONS

21–90 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–1

22 Universal Serial Bus (USB)

The USB OTG controller provides a low-cost connectivity solution for consumer mobile devices such as
cell phones, digital still cameras and MP3 players, allowing these devices to transfer data using a
point-to-point USB connection without the need for a personal computer host.

The USB controller can operate in a traditional USB peripheral-only mode as well as the host mode
presented in the On-The-Go (OTG) supplement1 to the USB 2.0 Specification2The USB module supports:

• Host mode transfers at high-speed (480 Mbp/sec) rate

• Host mode transfers at full-speed (12 Mbp/sec) rate

• Host mode transfers at low-speed (1.5 Mbp/sec) rates

• Peripheral mode transfers at high-speed (480 Mbp/sec) rate

• Peripheral mode transfers at full-speed (12 Mbp/sec) rate

The USB controller uses a peripheral bus slave interface to access its control and status registers as well as
read and write to the endpoint packet buffers. Data is transferred to and from the USB controller through
any of the 11 transmit and 11 receive endpoint FIFOs (EP1 – EP11), providing a total of 22 data endpoints.

USB Features
The USB controller provides the following features:

• Low speed, full speed, high speed rates supported

• One bidirectional control endpoint

• Eleven transmit and eleven receive unidirectional endpoints

• 16 KB dynamically configured FIFO RAM

• Eight DMA master channels

• Two top-level maskable general purpose interrupts

• Low power wakeup on activity

• VBUS control interrupts for external analog VBUS control

1.On-The-Go Supplement to the USB 2.0 Specification, Rev 1.0a; June 24, 2003; USB-IF
2.Universal Serial Bus Specification 2.0.

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

22–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Session request protocol (SRP) and host negotiation protocol (HNP) capability

• Host transaction scheduling in hardware

• Soft connect/disconnect feature

• Full- and high-speed physical layer UTMI+ level 3 interface for on-chip PHY

• Backwards compatible with existing USB 1.1 hosts

• Support for Battery Charging Specification Revision 1.1

The number of active endpoints at one time is only limited by device requirements or system bandwidth,
because each endpoint operates independently from the next. Software determines the type of transfer for
each endpoint individually and also the manner in which it is transferred between the USB controller and
memory (DMA or interrupt-based). Endpoint zero is used solely for receive and transmit control transfers,
which are used for device configuration and information gathering.

USB Functional Description
The following sections describe the function of the USB OTG interface.

USB Architectural Concepts

The USB controller operates in either of two USB operation modes (peripheral or host mode) at a given
time.

In peripheral mode, the USB controller encodes, decodes, checks, and directs all USB packets sent and
received, responding appropriately to host requests. Data is transferred from the processor core memory
into the device's TX FIFOs to be transmitted onto USB as IN packets. In the other direction USB OUT
packets are received into the RX FIFOs (having been sent from the host) and transferred to system memory
for processing or storage. In peripheral mode, the USB controller acts as a slave device to another USB host;
either a personal computer or another OTG host controller.

When operating in host mode, the USB controller uses simple hosting capabilities to master point-to-point
connections with another USB peripheral, initiating transfers on the bus for the peripheral to respond.
USB IN packets are received into the RX FIFOs to be moved into the processor core memory, and data
written into TX FIFOs is transmitted onto the bus as USB OUT packets. In this mode, the USB controller
encodes, decodes, and checks USB packets sent and received. The controller automatically schedules
isochronous and interrupt transfers from the endpoint buffers such that one transaction is performed
every n frames, where n represents the polling interval programmed for the endpoint.

Any of the endpoints can be programmed to be written to or read from using the DMA master channels
to provide the most efficient means of transferring data between the controller and on-chip memory. USB
endpoints 0 through 11 have DMA interrupt lines (USB_DMA_IRQ) providing a total of eight DMA request
lines. Two top-level maskable interrupts are provided, each of which can be sourced from any or all of

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–3

transmit endpoint status, receive endpoint status or global USB status. Details of these can be found in
Interrupt Signals .

The USB controller's RAM interface supports a single block of synchronous single-port RAM used to
buffer the USB packets. 16K bytes of SRAM are available.

The UTMI+ level 3 PHY interface provides a means of connecting a selection of high- or full-speed PHYs
to the controller, from device-only PHYs through full OTG compliant PHYs. The details of the PHY inter-
face can be found in UTMI Interface.

ATTENTION: Check the processor data sheet for requirements regarding minimum system clock
frequency needed for proper USB operation.

The USB controller is configured as either a USB OTG A device or B device depending on the type of plug
inserted into its USB receptacle. This is determined by the state of the USB_ID (connector ID) pin.

The asynchronous wakeup circuit is used to detect when another B device is asserting its D+ pull-up to
initiate the SRP (session request protocol) when all other clocks are off. This circuit requires a slow clock
(for example, 32 kHz). This slow clock is derived from SCLK and enabled using the USB_PHY_CTL.EN bit.

Use of the controller for OTG functionality requires the capability to drive VBUS (as a default A device
powering the bus), to discharge VBUS (speeding up the time for VBUS to fall below the SessionEnd
threshold as a B device checking initial conditions), and to charge VBUS to 2.1 V (when initiating SRP as
a B device). These controls are driven from the UTMI interface, but the controller also provides a separate
interrupt register, USB_VBUS_CTL, which represents the drive VBUS, discharge VBUS, and charge VBUS
signaling. See the register section for more information on these controls.

Multi-Point Support

The USB controller has the facility, when operating in host mode, to act as the host to a range of USB
peripheral devices – high-speed, full-speed or low-speed – where these devices are connected to the USB
controller via a USB hub. The key feature of the controller's support for multiple devices is its facility to
allow the functions of the target devices to be individually allocated to the different Rx and Tx endpoints
implemented. Furthermore, this allocation can be made dynamically, allowing the devices from the
targeted peripheral list to be used in different combinations. The combinations of peripheral devices that
may be used together are limited by the numbers of Tx and Rx endpoints implemented in the controller.
Further devices can only be added where the endpoints they require remain available.

On-Chip Bus Interfaces

The USB controller uses two 32-bit wide independent bus interfaces, a master and a slave, to communicate
with a processor-based subsystem. The slave interface allows the processor core to access the control and
status registers (including DMA master registers) and the endpoint FIFOs. The master interface is used by
the integrated DMA to drive data into or out of the endpoint FIFOs with minimal processor core interac-
tion. For more information, see USB Block Diagram.

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

22–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

FIFO Configuration

Each bidirectional endpoint (provided as two unidirectional endpoints) has its own endpoint number (0
for control, 1 on up for data transfer). Although two endpoints might use the same number, the endpoints
may support different transfer types. Each of these bidirectional endpoints has a fixed region of the SRAM
in the USB controller to which it has access, and this feature dictates to some extent the types of transfers
that may be used for that particular endpoint. This restriction follows from the maximum size of USB
packets, which varies with each transfer type. The following table lists the endpoint FIFO configuration,
with an indication of the transfer types possible for that particular buffer size.

Each endpoint FIFO can buffer one or two packets (in double-buffered mode). Double-buffering is recom-
mended for most applications to improve efficiency by reducing the frequency with which each endpoint
needs to be serviced.

Double-buffering bulk transactions means that data transfers over the USB are not slowed if packets can
be loaded/unloaded from the FIFO in the time it takes to transfer a packet over the bus. Double-buffering
isochronous transactions also allows more time to load/unload the FIFO, but in addition, it also allows the
SOF interrupt to be used to service the endpoint rather than the endpoint interrupt. This has the following
advantages:

• Easy detection of lost packets

• Regular interrupt timing (making it easier to source/sink the data)

• If more than one isochronous endpoint is used, they can all be serviced with one interrupt.

Clocking

The USB controller uses the system clock SCLK to generate an internal clock (CLK) used to clock the USB
registers. For proper operation, the system clock, SCLK, must be greater than 30MHz. The transceiver
clock (XCLK) is a 60 MHz clock sourced from the UTMI PHY and is used by the PHY interface logic and
USB engine.

The USB clock (USB_CLKIN) is provided through a dedicated external crystal or crystal oscillator. Using
the integrated USB phase locked loop, USB PLL, with programmable multipliers, the USB on-the-go
dual-role device controller generates the necessary internal clocking frequency for USB.

Table 22-1: FIFO Sizes and Transfer Types

Bidirectional Endpoint
 (RX and TX)

FIFO Size
(each direction) USB Transfer Types

0 64 bytes Size fixed for control transfers

1–4 Dynamically configured in powers of 2
from 8 to 8192 bytes

Bulk, Interrupt, Isochronous

1–11 Dynamically configured in powers of 2
from 8 to 8192 bytes

Bulk, Interrupt, Isochronous

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–5

NOTE: For best performance, (for best signal integrity), follow the guidelines in the data sheet for selecting
an input clock frequency.

When the controller is in the SUSPEND state and when no session is active, the clock to much of the USB
controller is stopped to reduce power consumption. The clock becomes operational again when RESUME
signaling is detected on the USB lines.

UTMI Interface

The interface to the on-chip PHY uses the industry-standard UTMI+ (universal transceiver macro inter-
face) level 3.

This provides full- and high-speed device and OTG functionality and supports communication to a hub.

The PHY is a mixed-signal block and includes the following:

• Full-speed and high-speed drivers and receivers (single-ended and differential)

• Full-speed and high-speed CDR

• Full-speed/high-speed shift registers, NRZI encode/decode and bit-stuff encode/decode

• Data line pull-up and pull-down resistors

• VBUS and USB_ID level detection

• Host disconnect detection

Although the UTMI specification indicates that VBUS charging, driving and discharging be done inside
the PHY, for process-restricting and power reasons, these functions need to be implemented off-chip in a
separate USB charge-pump chip.

ADSP-BF60x USB Register List

The universal serial bus (USB) controller is a multipoint high-speed dual role USB 2,0 compliant
controller. The USB controller can operate in a traditional USB peripheral-only mode as well as the host
mode presented in the on-the-go (OTG) supplement to the USB 2.0 Specification, Rev 1.0a; June 24, 2003;
USB-IF. A set of registers govern USB controller operations. For more information on USB controller
functionality, see the USB controller register descriptions.

Table 22-2: ADSP-BF60x USB Register List

Name Description

USB_FADDR Function Address Register

USB_POWER Power and Device Control Register

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

22–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

USB_INTRTX Transmit Interrupt Register

USB_INTRRX Receive Interrupt Register

USB_INTRTXE Transmit Interrupt Enable Register

USB_INTRRXE Receive Interrupt Enable Register

USB_IRQ Common Interrupts Register

USB_IEN Common Interrupts Enable Register

USB_FRAME Frame Number Register

USB_INDEX Index Register

USB_TESTMODE Testmode Register

USB_FIFOBn FIFO Byte (8-Bit) Register

USB_FIFOHn FIFO Half-Word (16-Bit) Register

USB_FIFOn FIFO Word (32-Bit) Register

USB_DEV_CTL Device Control Register

USB_TXFIFOSZ Transmit FIFO Size Register

USB_RXFIFOSZ Receive FIFO Size Register

USB_TXFIFOADDR Transmit FIFO Address Register

USB_RXFIFOADDR Receive FIFO Address Register

USB_EPINFO Endpoint Information Register

USB_RAMINFO RAM Information Register

USB_LINKINFO Link Information Register

USB_VPLEN VBUS Pulse Length Register

USB_HS_EOF1 High-Speed EOF 1 Register

USB_FS_EOF1 Full-Speed EOF 1 Register

USB_LS_EOF1 Low-Speed EOF 1 Register

Table 22-2: ADSP-BF60x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–7

USB_SOFT_RST Software Reset Register

USB_MPn_TXFUNCADDR MPn Transmit Function Address Register

USB_MPn_TXHUBADDR MPn Transmit Hub Address Register

USB_MPn_TXHUBPORT MPn Transmit Hub Port Register

USB_MPn_RXFUNCADDR MPn Receive Function Address Register

USB_MPn_RXHUBADDR MPn Receive Hub Address Register

USB_MPn_RXHUBPORT MPn Receive Hub Port Register

USB_EPn_TXMAXP EPn Transmit Maximum Packet Length Register

USB_EP0_CSRn_H EP0 Configuration and Status (Host) Register

USB_EP0_CSRn_P EP0 Configuration and Status (Peripheral) Register

USB_EPn_TXCSR_H EPn Transmit Configuration and Status (Host) Register

USB_EPn_TXCSR_P EPn Transmit Configuration and Status (Peripheral) Register

USB_EPn_RXMAXP EPn Receive Maximum Packet Length Register

USB_EPn_RXCSR_H EPn Receive Configuration and Status (Host) Register

USB_EPn_RXCSR_P EPn Receive Configuration and Status (Peripheral) Register

USB_EP0_CNTn EP0 Number of Received Bytes Register

USB_EPn_RXCNT EPn Number of Bytes Received Register

USB_EPn_TXTYPE EPn Transmit Type Register

USB_EP0_TYPEn EP0 Connection Type Register

USB_EP0_NAKLIMITn EP0 NAK Limit Register

USB_EPn_TXINTERVAL EPn Transmit Polling Interval Register

USB_EPn_RXTYPE EPn Receive Type Register

USB_EPn_RXINTERVAL EPn Receive Polling Interval Register

USB_EP0_CFGDATAn EP0 Configuration Information Register

Table 22-2: ADSP-BF60x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

22–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x USB Interrupt List

USB_DMA_IRQ DMA Interrupt Register

USB_DMAn_CTL DMA Channel n Control Register

USB_DMAn_ADDR DMA Channel n Address Register

USB_DMAn_CNT DMA Channel n Count Register

USB_RQPKTCNTn EPn Request Packet Count Register

USB_CT_UCH Chirp Timeout Register

USB_CT_HHSRTN Host High Speed Return to Normal Register

USB_CT_HSBT High Speed Timeout Register

USB_LPM_ATTR LPM Attribute Register

USB_LPM_CTL LPM Control Register

USB_LPM_IEN LPM Interrupt Enable Register

USB_LPM_IRQ LPM Interrupt Status Register

USB_LPM_FADDR LPM Function Address Register

USB_VBUS_CTL VBUS Control Register

USB_BAT_CHG Battery Charging Control Register

USB_PHY_CTL PHY Control Register

USB_PLL_OSC PLL and Oscillator Control Register

Table 22-3: ADSP-BF60x USB Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

USB0 Status/FIFO Data Ready 122 LEVEL

USB0 DMA Status/Transfer
Complete

123 LEVEL

Table 22-2: ADSP-BF60x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–9

ADSP-BF60x USB Trigger List

USB Block Diagram

The USB block diagram shows the functional blocks within the USB. For more information about the
blocks, see the USB Functional Description.

Table 22-4: ADSP-BF60x USB Trigger List Trigger Masters

Description Trigger ID Sensitivity

USB0 DMA Status/Transfer Complete 69 LEVEL

Table 22-5: ADSP-BF60x USB Trigger List Trigger Slaves

Description Trigger ID Sensitivity

None

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

22–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-1: USB OTG Controller Block Diagram

USB Definitions

A list of common USB terms and their definitions as used in this specification and with respect to the USB
controller follows:

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–11

'A' Device

The USB device with a mini-A plug inserted into its receptacle. The 'A' device always supplies power to
VBUS.

'B' Device

The USB device with a standard-B or mini-B plug inserted into its receptacle. The B device starts a session
as the peripheral.

Bi-directional endpoint

An endpoint that can concurrently support receive and transfer packets.

Control endpoint

An endpoint that is solely used for transfer of USB control packets for setup and configuration. In all USB
devices, the control endpoint refers to the bi-directional endpoint 0.

Dual role device

A USB device that can operate either as the USB host in an OTG session or as a traditional USB peripheral.

Endpoint

A single physical communication channel for USB, implemented as a FIFO and control logic for that
endpoint. Each endpoint has an associated USB transfer type, maximum packet size, bandwidth require-
ment, endpoint number, and (often) a fixed transfer direction.

Frame

A regular, fixed 1ms time slot that can contain several transactions. The transfer type determines what
transactions are permitted for a given endpoint.

HNP

Host negotiation protocol. Part of the USB OTG Supplement that allows the host function to be trans-
ferred between two connected dual role devices.

Packet

The lowest level of data exchange on USB. The size is determined by the transfer type and buffer size of the
USB peripheral.

PHY

The PHY is a transceiver circuit that implements the physical layer of USB. For full speed USB OTG this
includes line drivers and receivers, pull-up/pull-down resistors as well as device ID and VBUS level detec-
tion.

Session

A period during which USB transfers take place within an OTG connection. This can be initiated by the

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

'A' device (by driving VBUS) or 'B' device (by initiating SRP). VBUS is powered during a session.

SRP

Session request protocol. Part of the USB OTG Supplement that allows a 'B' device to turn on VBUS and
initiate a USB session.

Transaction

Collection of one or more packets in sequence

Transfer

 Collection of one or more transfers in sequence

Unidirectional endpoint

Endpoint with its direction fixed in a single direction (for example, it can only receive packets from the
USB) in both host and peripheral modes.

USB References

The following references provide further information regarding the USB.

• On-The-Go Supplement to the USB 2.0 Specification, Rev 1.0a, June 24, 2003, USB-IF

• Universal Serial Bus Specification 2.0

USB Operating Modes
The USB OTG interface may operate in peripheral mode or host mode.

When the USB controller is operating in peripheral mode, the controller may be attached to a conventional
host (such as a personal computer) or another OTG device operating in host mode. The second device can
be high-speed or full-speed. When linked to another peripheral device, the USB controller can also act as
the host, and if the other device is also a dual role controller, the two devices can switch roles as required.

The role taken by the USB controller depends on the way the devices are cabled together. Each USB cable
has an A and a B device end. If the A end of the cable is plugged into the device containing the USB
controller, the USB controller takes the role of the host device and goes into host mode (in this case the
USB_DEV_CTL.HOSTMODE bit is set to 1). If the B of the cable is plugged in, the USB controller goes instead
into peripheral mode (and the USB_DEV_CTL.HOSTMODE bit remains at 0).

When both devices contain dual role controllers, signaling may be used to switch the roles of the two
devices, without switching the cable connecting the two devices. The conditions under which the USB
controller may switch between peripheral and host mode are detailed in Host Negotiation Protocol.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–13

NOTE: The USB controller’s multi-point capability is associated with a range of registers recording the
allocation of device functions to individual USB controller's endpoints and device function char-
acteristics such as endpoint number, operating speed and transaction type on an
endpoint-by-endpoint basis. Although principally associated with the use of the USB controller as
the host to a number of devices, these registers also need to be set when the core is used as the host
for a single target device.

To enable the USB:

1. Configure the USB PLL multiplier settings in the USB PLL control register. Check the processor data
sheet for the input clock frequency requirements.

2. Enable the USB PHY by setting the USB_PHY_CTL.EN bit.

3. Poll the bit in the USB PLL control register to ensure that the USB PLL has locked to the new frequency.

Peripheral Mode

USB OTG interface operations for the peripheral mode differ from host mode in a number of ways. The
following sections describe peripheral mode operations.

Endpoint Setup

In peripheral mode, there are a few endpoint-specific configuration bits that are used when setting up an
endpoint for transfer for all types of peripheral transfer. They determine how the processor core interacts
with the endpoint FIFO.

One key parameter required before transfer can occur through an endpoint is the maximum USB packet
size that the endpoint can support. This value is set by the software and depends on a variety of system
constraints. These include the size of hardware FIFO available and system latencies as well as the USB
transfer type and class being used. The USB_EPn_TXMAXP or USB_EPn_RXMAXP registers define the
maximum amount of data that can be transferred to the selected endpoint in a single frame, and the value
must match the programmed maximum individual packet size (MaxPktSize) of the standard endpoint
descriptor for the endpoint.

For transmit endpoints, the maximum packet size is programmed using the USB_EPn_TXMAXP. For receive
endpoints, the USB_EPn_RXMAXP register is used. The maximum packet size must not exceed the actual
hardware endpoint FIFO size. The sizes of the transmit/receive FIFOs, as well as, single or double buffered
mode for Endpoints 1 to 11 are determined by the settings in the corresponding USB_RXFIFOSZ or USB_
TXFIFOSZ register. Because the USB controller uses a 32-bit interface, the value chosen for MaxPktSize
should be an even number, as this selection simplifies transferring data between FIFOs and the processor
core.

Additional setup parameters are configured using the USB_EPn_TXCSR_H or USB_EPn_RXCSR_H register
(depending on whether the endpoint in question is receive or transmit). The USB_EPn_RXCSR_
H.DMAREQEN bit in this register is used to enable the assertion of the appropriate DMA request whenever
the endpoint is able to receive or transmit another packet. The USB_EPn_RXCSR_H.AUTOCLR and USB_EPn_

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

RXCSR_H.AUTOREQ bits can be used to automatically set the FIFO ready triggers (USB_EPn_RXCSR_
H.RXPKTRDY and USB_EPn_TXCSR_H.TXPKTRDY) whenever a packet is transferred to streamline DMA
operation for transfers that span multiple packets. Note, however, that USB_EPn_RXCSR_H.AUTOCLR and
USB_EPn_RXCSR_H.AUTOREQ cannot be used with high-bandwidth endpoints. Refer to the “Register
Descriptions” section for more details on the endpoint control and status registers.

IN Transactions as a Peripheral

When the USB controller is operating in peripheral mode, data for IN transactions is handled through the
transmit FIFOs. The maximum size of data packet that may be placed in a transmit endpoint’s FIFO for
transmission is programmable and (where applicable) is determined by the value written to the USB_EPn_
TXMAXP register for that endpoint (maximum payload multiplied by the number of transactions per
micro-frame).

Note that the maximum packet size set for any endpoint must not exceed the FIFO size. (See FIFO Config-
uration.)

ATTENTION: Do not write to the USB_EPn_TXMAXP register while there is data in the FIFO, as unexpected
results may occur.

The two types packet buffering sued for IN transactions are described below.

Single packet buffering. Set the USB_EPn_TXCSR_P.TXPKTRDY bit as each packet to be sent is loaded into
the transmit FIFO. If the USB_EPn_TXCSR_P.AUTOSET bit is set, the USB_EPn_TXCSR_P.TXPKTRDY bit is
automatically set when a maximum-sized packet is loaded into the FIFO. For packet sizes less than the
maximum, and where auto set may not be used (high-bandwidth isochronous/interrupt transactions)
always set the USB_EPn_TXCSR_P.TXPKTRDY bit manually (for example by the processor core).

When the USB_EPn_TXCSR_P.TXPKTRDY bit is set, either manually or automatically, the USB_EPn_TXCSR_
P.NEFIFO bit is also set and the packet is ready to be sent. When the packet is successfully sent, both the
USB_EPn_TXCSR_P.TXPKTRDY and USB_EPn_TXCSR_P.NEFIFO bits are cleared and the appropriate
transmit endpoint interrupt is generated (if enabled). The next packet can then be loaded into the FIFO.

Double packet buffering. Set the USB_EPn_TXCSR_P.TXPKTRDY bit as each packet to be sent is loaded into
the transmit FIFO. If the USB_EPn_TXCSR_P.AUTOSET bit is set, the USB_EPn_TXCSR_P.TXPKTRDY bit is
automatically set when a maximum-sized packet is loaded into the FIFO. For packet sizes less than the
maximum, the USB_EPn_TXCSR_P.TXPKTRDY bit always has to be set manually (for example, set by the
processor core).

When the USB_EPn_TXCSR_P.TXPKTRDY bit is set, either manually or automatically, the USB_EPn_TXCSR_
P.NEFIFO bit also is set. The USB_EPn_TXCSR_P.TXPKTRDY bit is then immediately cleared (and an inter-
rupt generated, if enabled). A second packet can now be loaded into the transmit FIFO and the USB_EPn_
TXCSR_P.TXPKTRDY bit is set again (either manually or automatically if the packet is the maximum size).
Both packets are now ready to be sent.

When the first packet is successfully sent, the USB_EPn_TXCSR_P.TXPKTRDY bit is cleared and the appro-
priate transmit endpoint interrupt is generated (if enabled) to signal that another packet can now be loaded
into the transmit FIFO. The state of the USB_EPn_TXCSR_P.NEFIFO bit at this point indicates how many

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–15

packets may be loaded. If the USB_EPn_TXCSR_P.NEFIFO bit is set then there is another packet in the FIFO
and only one more packet can be loaded. If the USB_EPn_TXCSR_P.NEFIFO bit is cleared then there are no
packets in the FIFO and two more packets can be loaded.

OUT Transactions as a Peripheral

When the USB controller is operating in peripheral mode, data for OUT transactions are handled through
the USB controller’s receive FIFOs.

The maximum amount of data received by a receive endpoint in any frame or micro-frame (in high-speed
mode) is programmable and is determined by the value written to the USB_EPn_RXMAXP register for that
endpoint. This is the maximum payload multiplied by the number of transactions per micro-frame (where
applicable). The maximum packet size must not exceed the FIFO size.

If the size of the receive endpoint FIFO is less than twice the maximum packet size for this endpoint (as set
in the USB_EPn_RXMAXP register), only one data packet can be buffered in the FIFO and single buffering is
selected. When a packet is received and placed in the receive FIFO, the USB_EPn_RXCSR_P.RXPKTRDY bit
and the USB_EPn_RXCSR_P.FIFOFULL bit are set and the appropriate receive endpoint interrupt is gener-
ated (if enabled) to signal that a packet can now be unloaded from the FIFO. After the packet is unloaded,
clear the USB_EPn_RXCSR_P.RXPKTRDY bit to allow further packets to be received. If the USB_EPn_RXCSR_
P.AUTOCLR bit i is set and a maximum-sized packet is unloaded from the FIFO, the USB_EPn_RXCSR_
P.RXPKTRDY bit is cleared automatically. The USB_EPn_RXCSR_P.FIFOFULL bit is also cleared. For packet
sizes less than the maximum, clear the USB_EPn_RXCSR_P.RXPKTRDY bit manually (for example by the
processor core).

If double packet buffering is enabled, then two data packets can be buffered. When the first packet to be
received is loaded into the receive FIFO, the USB_EPn_RXCSR_P.RXPKTRDY bit is set and the appropriate
receive endpoint interrupt is generated (if enabled) to signal that a packet can now be unloaded from the
FIFO. Note that the USB_EPn_RXCSR_P.FIFOFULL bit is not set at this point. This bit is only set if a second
packet is received and loaded into the receive FIFO.

After the first packet is unloaded, clear the USB_EPn_RXCSR_P.RXPKTRDY bit to allow further packets to be
received. If the USB_EPn_RXCSR_P.AUTOCLR bit is set and a maximum-sized packet is unloaded from the
FIFO, the USB_EPn_RXCSR_P.RXPKTRDY bit is cleared automatically. For packet sizes less than the
maximum, clear the USB_EPn_RXCSR_P.RXPKTRDY bit manually (for example by the processor core).

If the USB_EPn_RXCSR_P.FIFOFULL bit was set to 1 when USB_EPn_RXCSR_P.RXPKTRDY is cleared, the
USB controller first clears the USB_EPn_RXCSR_P.FIFOFULL bit. The controller then sets the USB_EPn_
RXCSR_P.RXPKTRDY bit again, indicating that there is another packet waiting in the FIFO to be unloaded.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

High-Bandwidth Isochronous/Interrupt Transactions

High-bandwidth isochronous/interrupt transactions use much the same protocol as other isochronous/
interrupt transactions. There are, however, some special features to conducting high-bandwidth transac-
tions.

• When setting the maximum packet size handled by the endpoint in the USB_EPn_TXMAXP/USB_EPn_
RXMAXP registers, the maximum number of transactions per micro-frame also needs to be set via the
USB_EPn_TXMAXP.MULTM1 and USB_EPn_RXMAXP.MULTM1 bits of these registers.

This maximum number of transactions (2 or 3) also represents the maximum number of sections in
which any single high-bandwidth packet can be transferred, which in turn sets the maximum size of
the packet to 2 or 3 times the maximum payload specified for the endpoint in the same register.

NOTE:

The maximum payload that can be sent in any transaction is 1K byte.

NOTE:

• When sending packets, set the USB_EPn_TXCSR_P.TXPKTRDY bit using the application software. Simi-
larly, when unloading packets from the receive endpoint FIFO, clear the USB_EPn_RXCSR_P.RXPKTRDY
bit using the application software.

CAUTION:

The AutoSet and AutoClear functions cannot be used to set and clear these bits in high-bandwidth
transactions.

CAUTION:

• The transmission of packets as a number of sections introduces a further type of error – the transmis-
sion of incomplete packets.

For transmit endpoints, transmitting incomplete packets principally applies when the interface is in
peripheral mode and occurs when the transmission fails to receive enough IN tokens from the host to
send all the parts of the data packet. It can also apply to high-bandwidth interrupt transactions in host
mode where the core does not receive any response from the device to which the packet is being sent.
In both cases, the USB_EPn_TXCSR_P.INCOMPTX bit is set.

For receive endpoints, the incomplete packet issue occurs when the PIDs of the received parts of the
data packet show that one or more parts of the data packet have not been received. When this happens,
the USB_EPn_RXCSR_P.INCOMPRX bit is set. Usually this bit is set in peripheral mode. However it can
also be set in host mode (using the USB_EPn_RXCSR_H.INCOMPRX bit) only if the device that the USB is
communicating with fails to respond in accordance with the USB protocol.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–17

High Bandwidth Isochronous/Interrupt IN Endpoints

In high-speed mode, transmit endpoints set up for high-bandwidth isochronous/interrupt transactions
can transmit up to three USB packets in any micro-frame, with a payload of up to 1024 bytes in each
packet, corresponding to a data transfer rate of up to 3072 bytes per micro-frame.

The High Bandwidth IN Endpoints figure provides an overview of high-bandwidth IN endpoints in USB.

Figure 22-2: High Bandwidth IN Endpoints

The USB controller supports these transfers by permitting the loading of data packets with up to three
times the normal packet size into the associated FIFO in a single transaction. From the point of view of the
software in the processor core, the operation is then exactly as described above for single or double packet
buffering (as appropriate) except that the USB_EPn_TXCSR_P.TXPKTRDY bit always needs to be set manu-
ally (for example by the processor core) as the auto set feature does not operate with high-bandwidth
isochronous transfers.

Any data packet loaded into the FIFO that is larger than the maximum payload is automatically split into
USB packets of the maximum payload, or smaller, for transmission over the USB. The number of USB
packets transmitted per micro-frame and the maximum payload in each packet is defined using the USB_
EPn_TXMAXP.MAXPAYbits to set the maximum payload in any USB packet and the USB_EPn_

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

TXMAXP.MULTM1 bits to set the maximum number of such packets that can be sent in one micro-frame (2
or 3). Together, these set the maximum size of packet that can be loaded into the FIFO.

At least one USB packet always is sent. The number of further USB packets sent in the same micro-frame
depends on the amount of data loaded into the FIFO. The USB_EPn_TXCSR_P.TXPKTRDY bit is cleared and
an interrupt is generated only when all the packets have been sent. Each USB packet is sent in response to
an IN token. If, at the end of a micro-frame, the USB controller has not received enough IN tokens to send
all the USB packets (for example, because one of the IN tokens received was corrupted), the remaining data
is flushed from the FIFO. The USB_EPn_TXCSR_P.TXPKTRDY bit is cleared and the USB_EPn_TXCSR_
P.INCOMPTX bit is set to indicate that not all of the data loaded into the FIFO was sent.

High Bandwidth Isochronous/Interrupt OUT Endpoints

In high-speed mode, isochronous receive endpoints can receive up to three USB packets in any
micro-frame, with a payload of up to 1024 bytes in each packet, corresponding to a data transfer rate of up
to 3072 bytes per micro-frame. High-bandwidth interrupt transactions can similarly be received in host
mode, but there is no support for high-bandwidth interrupt transactions in peripheral mode.

The High Bandwidth OUT Endpoints figure shows an overview of high-bandwidth OUT endpoints.

The USB controller supports this rate by automatically combining all the USB packets received during a
micro-frame into a single packet of up to 3 normal packets in size within the receive FIFO. From the point
of view of the software in the processor core, the operation is then exactly as described as for single or
double packet buffering (as appropriate), except the USB_EPn_RXCSR_P.RXPKTRDY bit always needs to be
cleared manually (for example by the processor core) because the auto-clear function does not operate
with high-bandwidth isochronous transfers.

The maximum number of USB packets that may be received in any micro-frame and the maximum
payload of these packets are configured using the USB_EPn_RXMAXP.MAXPAY bits to set the maximum
payload in any USB packet and the USB_EPn_RXMAXP.MULTM1 bits to set the maximum number of these
packets that may be received in a micro-frame (2 or 3).

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–19

Figure 22-3: High Bandwidth OUT Endpoints

The number of USB packets sent in any micro-frame depends on the amount of data to be transferred, and
is indicated through the PIDs used for the individual packets. If the indicated number of packets have not
been received by the end of a micro-frame, the USB_EPn_RXCSR_P.INCOMPRX bit is set to indicate that the
data in the FIFO is incomplete. An interrupt is still generated to allow the data that has been received to be
read from the FIFO.

Peripheral Transfer Work Flows

The USB transfer types (control, bulk, isochronous and interrupt transfers) each have significantly
different system requirements as well as individual USB transfer-specific features. This dictates that they
are each dealt with slightly differently in software. For these reasons, there is no uniform way of doing
transfers across all transfer types using the USB controller.

The following sections provide some guidelines for peripheral mode transfer flows for each of the transfer
types, in both IN (transmit) and OUT (receive) directions. In the case of bulk endpoints, the optimal
transfer flow differs depending on whether the final size of the transfer is known or unknown. Whether
the transfer size is known or not depends on the USB driver class being used. Some define the complete
transfer size, and others operate on a packet-by-packet basis using a short packet (a packet of less than the

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

value configured in the USB_EPn_TXMAXP register or less than the value configured in the USB_EPn_RXMAXP
register) to denote the end of a transfer.

Each of the work flows use the following common steps.

1. Configure the endpoint control and status registers and the USB_EPn_TXMAXP or USB_EPn_RXMAXP
value.

2. Configure the appropriate data transfer mechanism (DMA or interrupt setup).

3. Data transfer occurs.

The work flows do not describe the USB controller’s actions immediately preceding the endpoint setup
(for example, the reception of an IN/OUT token from the host, token validity checking, or NAK genera-
tion, among others). Note also that there is currently no error-handling contained in the work flows (for
example, checking the USB_EPn_RXCSR_P.FIFOFULL bit before writing data).

The terms packets, frames and transfers are used in the proceeding sections with their strict USB defini-
tions (see USB Definitions).

Control Transactions as a Peripheral

Endpoint 0 is the main control endpoint of the USB controller. As such, the routines required to service
Endpoint 0 are more complicated than those required to service other endpoints.

The software is required to handle all the standard device requests that may be sent or received through
Endpoint 0. These are described in Universal Serial Bus Specification, Revision 2.0, Chapter 9. The protocol
for these device requests involves different numbers and types of transactions per transfer. To accommo-
date this, the processor needs to take a state machine approach to command decoding and handling.

The standard device requests received by a USB peripheral can be divided into three categories: zero data
requests (in which all the information is included in the command), write requests (in which the command
will be followed by additional data), and read requests (in which the device is required to send data back
to the host).

This following sections describe the sequence of actions that the software must perform to process these
different types of device request.

Write Requests

Write requests involve an additional packet (or packets) of data being sent from the host after the 8-byte
command. An example of a write standard device request is SET_DESCRIPTOR.

As with all requests, the sequence of events begins when the software receives an endpoint 0 interrupt. The
USB_EPn_RXCSR_P.RXPKTRDY bit is also set. The 8-byte command should then be read from the endpoint
0 FIFO and decoded.

As with a zero data request, the USB_EP0_CSRn_P register should then be written to set the USB_EP0_CSRn_
P.SPKTRDY bit (indicating that the command is read from the FIFO) but in this case the USB_EP0_CSRn_
P.DATAEND bit should not be set (indicating that more data is expected).

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–21

When a second endpoint 0 interrupt is received, the USB_EP0_CSRn_P register is read to check the
endpoint status. The USB_EP0_CSRn_P.RXPKTRDY bit is set to indicate that a data packet is received. The
USB_EP0_CNTn register should then be read to determine the size of this data packet. The data packet can
then be read from the endpoint 0 FIFO.

If the length of the data associated with the request (indicated by the WLENGTH field in the command)
is greater than the maximum packet size for endpoint 0, further data packets are sent. In this case, the USB_
EP0_CSRn_P.SPKTRDY bit is set, but the USB_EP0_CSRn_P.DATAEND bit should not be set.

When all the expected data packets have been received, the USB_EP0_CSRn_P register is written to set the
USB_EP0_CSRn_P.SPKTRDY bit and to set the USB_EP0_CSRn_P.DATAEND bit (indicating that no more data
is expected).

When the host moves to the status stage of the request, another endpoint 0 interrupt is generated to indi-
cate that the request has completed. No further action is required from the software—the interrupt is just
a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the USB_EP0_CSRn_P register should be written to set the USB_EP0_CSRn_P.SPKTRDY
bit and to set the USB_EP0_CSRn_P.SENDSTALL bit. When the host sends more data, the USB controller
will send a stall to tell the host that the request was not executed. An endpoint 0 interrupt is generated and
the USB_EP0_CSRn_P.SENTSTALL bit is set.

If the host sends more data after the USB_EP0_CSRn_P.DATAEND has been set, then the USB controller
sends a stall. An endpoint 0 interrupt is generated and the USB_EP0_CSRn_P.SENTSTALL bit is set.

Read Requests

Read requests have a packet (or packets) of data sent from the function to the host after the 8-byte
command. Examples of standard device requests for read are: GET_CONFIGURATION, GET_INTER-
FACE, GET_DESCRIPTOR, GET_STATUS, and SYNCH_FRAME.

As with all requests, the sequence of events will begin when the software receives an endpoint 0 interrupt.
The USB_EPn_RXCSR_P.RXPKTRDY bit is also set. The 8-byte command should then be read from the
endpoint 0 FIFO and decoded. Write the USB_EP0_CSRn_P.SPKTRDY bit (indicating that the command has
read from the FIFO).

The data to be sent to the host should then be written to the endpoint 0 FIFO. If the data to be sent is greater
than the maximum packet size for endpoint 0, only the maximum packet size should be written to the
FIFO. The USB_EP0_CSRn_P.TXPKTRDY bit should then be set (indicating that there is a packet in the FIFO
to be sent). When the packet has been sent to the host, another endpoint 0 interrupt is generated and the
next data packet can be written to the FIFO.

When the last data packet has been written to the FIFO, the USB_EP0_CSRn_P register should be written to
set the USB_EP0_CSRn_P.TXPKTRDY bit and to set the USB_EP0_CSRn_P.DATAEND bit (indicating that there
is no more data after this packet).

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When the host moves to the status stage of the request, another endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software-the interrupt is
just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the USB_EP0_CSRn_P register should be written to set the USB_EP0_CSRn_P.SPKTRDY
bit and to set the USB_EP0_CSRn_P.SENDSTALL bit. When the host requests data, the USB controller will
send a stall to tell the host that the request was not executed. An endpoint 0 interrupt will be generated and
the USB_EP0_CSRn_P.SENTSTALL bit is set.

If the host requests more data after USB_EP0_CSRn_P.DATAEND has been set, then the USB controller sends
a stall. An endpoint 0 interrupt is generated and the USB_EP0_CSRn_P.SENTSTALL bit is set.

Zero Data Requests

Zero data requests have all their information included in the 8-byte command and require no additional
data to be transferred.

Examples of zero data standard device requests are: SET_FEATURE, CLEAR_FEATURE, SET_
ADDRESS, SET_CONFIGURATION, and SET_INTERFACE.

As with all requests, the sequence of events begins when the software receives an endpoint 0 interrupt. The
USB_EP0_CSRn_P.RXPKTRDY bit will also have been set. The 8-byte command should then be read from
the endpoint 0 FIFO, decoded and the appropriate action taken. For example if the command is SET_
ADDRESS, the 7-bit address value contained in the command is written to the USB_FADDR register.

The USB_EP0_CSRn_P.SPKTRDY bit should be set (indicating that the command is read from the FIFO) and
the USB_EP0_CSRn_P.DATAEND bit should be set (indicating that no further data is expected for this
request).

When the host moves to the status stage of the request, a second endpoint 0 interrupt is generated, indi-
cating that the request has completed. No further action is required from the software—the second inter-
rupt is just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
is decoded, the USB_EP0_CSRn_P.SPKTRDY bit is set which sets the USB_EP0_CSRn_P.SENDSTALL bit.
When the host moves to the status stage of the request, the USB controller sends a stall to tell the host that
the request was not executed. A second endpoint 0 interrupt is generated and the USB_EP0_CSRn_
P.SENTSTALL bit is set.

If the host sends more data after the USB_EP0_CSRn_P.DATAEND bit is set, then the USB controller sends a
stall. An endpoint 0 interrupt is generated and the USB_EP0_CSRn_P.SENTSTALL bit is set.

ENDPOINT 0 States

When the USB is operating as a peripheral, the Endpoint 0 control needs three modes (IDLE, TX and RX)
corresponding to the different phases of the control transfer and the states Endpoint 0 enters for the
different phases of the transfer. (See Endpoint 0 Service Routine as Peripheral.)

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–23

The default mode on power-up or reset should be IDLE. The RxPktRdy bit becoming set when Endpoint
0 is in IDLE state indicates a new device request. Once the device request is unloaded from the FIFO, the
USB decodes the descriptor to find whether there is a data phase and, if so, the direction of the data phase
of the control transfer (in order to set the FIFO direction).

Depending on the direction of the data phase, Endpoint 0 goes into either TX state or RX state. If there is
no data phase, Endpoint 0 remains in IDLE state to accept the next device request.

The processor needs to take different actions at the different phases of the possible transfers (for example,
"Loading the FIFO", "Setting TxPktRdy") are indicated in the Endpoint 0 Control States figure. Note that
the USB changes the FIFO direction depending on the direction of the data phase, independently of the
processor.

Figure 22-4: Endpoint 0 Control States

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Endpoint 0 Service Routine as Peripheral

An endpoint 0 interrupt is generated:

• When the USB controller sets the USB_EP0_CSRn_P.RXPKTRDY bit after a valid token has been received
and data has been written to the FIFO.

• When the USB controller clears the USB_EP0_CSRn_P.TXPKTRDY bit after the data packet in the FIFO
has been successfully transmitted to the host.

• When the USB controller sets the USB_EP0_CSRn_P.SENTSTALL bit after a control transaction is ended
due to a protocol violation.

• When the USB controller sets the USB_EP0_CSRn_P.SETUPEND bit because a control transfer has ended
before USB_EP0_CSRn_P.DATAEND is set.

Whenever the endpoint 0 service routine is entered, the firmware must first check whether the current
control transfer has been ended due to either a stall condition or a premature end-of-control transfer. If
the control transfer ends due to a stall condition, the USB_EP0_CSRn_P.SENTSTALL bit is set. If the control
transfer ends due to a premature end-of-control transfer, the USB_EP0_CSRn_P.SETUPEND is be set. In
either case, the firmware should abort processing the current control transfer and set the state to IDLE.

Once the firmware has determined that the interrupt was not generated by an illegal bus state, the next
action depends on the endpoint state.

If endpoint 0 is in IDLE state, the only valid reason an interrupt can be generated is as a result of the core
receiving data from the USB bus. The service routine must check for this by testing the USB_EP0_CSRn_
P.RXPKTRDY bit. If this bit is set, then the core has received a SETUP packet. This must be unloaded from
the FIFO and decoded to determine the action the core must take. Depending on the command contained
within the SETUP packet, endpoint 0 enters one of the following three states.

• If the command is a single packet transaction (SET_ADDRESS, SET_INTERFACE and the others)
without a data phase, the endpoint remains in the IDLE state.

• If the command has an OUT data phase (SET_DESCRIPTOR and others), the endpoint enter the RX
state.

• If the command has an IN data phase (GET_DESCRIPTOR and others), the endpoint enters the TX
state.

If the endpoint is in TX state, the interrupt indicates that the core has received an IN token and data from
the FIFO has been sent. The firmware must respond to this either by placing more data in the FIFO if the
host is still expecting more data1 or by setting the USB_EP0_CSRn_P.DATAEND bit to indicate that the data
phase is complete. Once the data phase of the transaction has been completed, endpoint 0 should be
returned to the IDLE state to await the next control transaction.

If the endpoint is in the RX state, the interrupt indicates that a data packet has been received. The firmware
must respond by unloading the received data from the FIFO. The firmware must then determine whether

1.Command transactions all include a field that indicates the amount of data the host expects to receive or is going to send.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–25

it has received all of the expected data. If it has, the firmware should set the USB_EP0_CSRn_P.DATAEND bit
and return endpoint 0 to IDLE state. If more data is expected, the firmware should set the USB_EP0_CSRn_
P.SPKTRDY bit to indicate that it has read the data in the FIFO and leave the endpoint in the RX state.

Figure 22-5: Endpoint 0 Service Routine

Idle Mode

The endpoint 0 control must select the IDLE mode at power-on or reset. The endpoint 0 control should
return to this mode when the RX and TX modes are terminated.

And, as shown in the Endpoint 0 Idle Mode (Setup Phase) figure, this is also the mode in which the
SETUP phase of control transfer is handled.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-6: Endpoint 0 Idle Mode (Setup Phase)

TX Mode

As shown in the Endpoint 0 TX Mode figure when the endpoint is in TX state, all arriving IN tokens need
to be treated as part of a data phase until the required amount of data has been sent to the host. If either a
SETUP or an OUT token is received while the endpoint is in the TX state, a USB_EP0_CSRn_P.SETUPEND
condition occurs since the core expects only IN tokens.

Three events can cause the TX mode to terminate before the expected amount of data has been sent:

• The host sends an invalid token which sets the USB_EP0_CSRn_P.SETUPEND bit.

• The firmware sends a packet containing less than the maximum packet size for endpoint 0.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–27

• The firmware sends an empty data packet.

Until the transaction is terminated, when the firmware receives an interrupt which indicates that a packet
has been sent from the FIFO, it simply loads the FIFO. An interrupt is generated when USB_EP0_CSRn_
P.TXPKTRDY is cleared.

When the firmware forces the termination of a transfer (by sending a short or empty data packet), it should
set the USB_EP0_CSRn_P.DATAEND bit to indicate to the core that the data phase is complete and that the
core should receive an acknowledge packet next.

Figure 22-7: Endpoint 0 TX Mode

RX Mode

As shown in the Endpoint 0 RX Mode figure, In RX mode, all arriving data should be treated as part of a
data phase until the expected amount of data has been received. If either a SETUP or an IN token is
received while the endpoint is in RX state, a USB_EP0_CSRn_P.SETUPEND condition occurs since the core
expects only OUT tokens.

Three events can cause the RX mode to terminate before the expected amount of data has been received:

• The host sends an invalid token causing a USB_EP0_CSRn_P.SETUPEND bit set.

• The host sends a packet which contains less than the maximum packet size for Endpoint 0.

• The host sends an empty data packet.

Until the transaction is terminated, when the firmware receives an interrupt which indicates that new data
has arrived (USB_EP0_CSRn_P.RXPKTRDY bit set), it simply needs to unload the FIFO and clear USB_EP0_
CSRn_P.RXPKTRDY by setting the USB_EP0_CSRn_P.SPKTRDY bit.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When the firmware detects the termination of a transfer (by receiving either the expected amount of data
or an empty data packet), it should set the USB_EP0_CSRn_P.DATAEND bit to indicate to the core that the
data phase is complete and that the core should receive an acknowledge packet next.

Figure 22-8: Endpoint 0 RX Mode

Peripheral Mode, Bulk IN, Transfer Size Known

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes and the complete transfer size
(TxferSize) in bytes, must be known.

1. Load MaxPktSize into USB_TXMAXPn.

2. Set DMA_ENA = 1, AUTOSET_T = 1, ISO_T = 0, FRCDATATOG = 0 in USB_TXCSR.

3. Load TxferSize into USB_DMA_CNTn.

4. Configure the DMA controller to write the data into the corresponding TX FIFO address.

5. On each USB_DMAxINT transition, the DMA controller writes a new packet into the FIFO. TXPKTRDY is
automatically set when each new packet is written.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–29

6. Step 5 is repeated for each full packet of the transfer.

7. Even if the final packet is a short packet, the packet automatically is detected by the USB controller
because TXPKTRDY is set.

Peripheral Mode, Bulk IN, Transfer Size Unknown

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is assumed to be an even
number of bytes.

1. Load MaxPktSize into USB_TXMAXPn.

2. Set DMA_ENA = 1, AUTOSET_T = 1, ISO_T = 0, FRCDATATOG = 0 in USB_TXCSR.

3. Configure the DMA controller to write MaxPktSize/2 half words into the corresponding TX FIFO
address on each USB_DMAxINT.

4. Set up an ISR, sensitive to the DMA work-block-complete interrupt, that writes a remaining short
packet into the TX FIFO using processor core DMA. Then set TXPKTRDY or simply send a zero-length
packet by toggling TXPKTRDY.

5. On each USB_DMAxINT transition, the DMA controller writes a new packet into the FIFO. TXPKTRDY
automatically is set when each new packet is written.

6. Step 5 is repeated for each full packet of the transfer.

7. The final short/zero-length packet is managed by the ISR from step 4.

Peripheral Mode, ISO IN, Small MaxPktSize

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is less than 128 bytes and is an
even number of bytes. Double buffering is assumed to be enabled, and the auto set feature unused (because
packets are often less than MaxPktSize).

1. Load MaxPktSize into USB_TXMAXPn.

2. Set ISO_T = 1 in USB_TXCSR.

3. Preload the first two packets into the endpoint TX FIFO and set TXPKTRDY.

4. Set up an ISR, sensitive to the SOF_B interrupt, which writes a new packet into the TX FIFO and sets
TXPKTRDY.

5. Set SOF_B = 1 in USB_INTRUSBE to generate an interrupt on each start-of-frame.

6. Step 5 is repeated for each ISO packet.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Peripheral Mode, ISO IN, Large MaxPktSize

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is greater than 128 bytes and
is an even number of bytes. Double buffering is assumed to be enabled, and the auto set feature unused
(because packets are often less than MaxPktSize).

1. Load MaxPktSize into USB_TXMAXPn.

2. Set ISO_T = 1 in USB_TXCSR.

3. Set ISO_UPDATE = 1 in USB_POWER to prevent initial packet loaded into the FIFO from being trans-
mitted on USB until the next 1ms frame.

4. Load the total number of bytes for the first two packets into USB_DMA_CNTn.

5. Configure the DMA controller to pre-load the two packets into the corresponding TX FIFO address.
Set TXPKTRDY.

6. Set up an ISR, sensitive to the SOF_B interrupt, which writes a new packet into the TX FIFO by config-
uring the DMA controller to load the packet.

7. Set SOF_B = 1 in USB_INTRUSBE to generate an interrupt on each start-of-frame.

8. Step 7 is repeated for each ISO packet.

Peripheral Mode, Bulk OUT, Transfer Size Known

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes and the complete transfer size
(TxferSize) in bytes must be known.

1. Load MaxPktSize into USB_RXMAXPn.

2. Set DMA_ENA = 1, AUTOCLEAR_R = 1, ISO_R = 0, FRCDATATOG = 0, DMAREQMODE_R = 0 in USB_RXCSR.

3. Configure the DMA controller to read the full TxferSize/2 half words from the corresponding RX FIFO
address.

4. On each USB_DMAxINT transition, the DMA controller reads another packet from the FIFO. RXPKTRDY
is automatically cleared by the USB controller when each new packet is read.

5. Step 5 is repeated for each full packet of the transfer.

6. If TxferSize is not an exact multiple of MaxPktSize, the final USB_DMAxINT transition causes the DMA
controller to read out only the short packet that remains.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–31

Peripheral Mode, Bulk OUT, Transfer Size Unknown

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes must be known.

1. Load MaxPktSize into USB_RXMAXPn.

2. Set DMA_ENA = 1, AUTOCLEAR_R = 1, ISO_R = 0, FRCDATATOG = 0, DMAREQMODE_R = 1 in USB_RXCSR.

3. Set the appropriate EPx_RX_E bit in USB_INTRRXE.

4. Configure the DMA controller to read MaxPktSize/2 half words from the corresponding RX FIFO
address on each USB_DMAxINT transition.

5. Set up an ISR, sensitive to the RX interrupt, which reads USB_RXCOUNT and then transfers USB_RXCOUNT
bytes (in half words) from the RX FIFO to the processor core. Depending on the number of bytes in the
FIFO, this can be performed by configuring the DMA to read the data, or by reading it with the
processor core.

6. On each USB_DMAxINT transition, the DMA controller reads a packet from the FIFO. RXPKTRDY is auto-
matically cleared by the USB controller when each new packet is read.

7. Step 5 is repeated for each full packet of the transfer.

8. If a packet is received that is less than MaxPktSize, the RX interrupt goes high, and the ISR from step 5
reads out the remaining short packet.

Peripheral Mode, ISO OUT, Small MaxPktSize

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is less than 128 bytes, and
double buffering is assumed to be enabled.

1. Load MaxPktSize into USB_RXMAXPn.

2. Set ISO_R = 1 in USB_RXCSR.

3. Set up an ISR, sensitive to the SOF_B interrupt, that reads the FIFO_FULL bit, reads the USB_RXCOUNT
status register, and finally removes one or two packets (equal to the USB_RXCOUNT number of bytes)
from the FIFO then clears RXPKTRDY.

4. Set SOF_B = 1 in USB_INTRUSBE to generate an interrupt on each start-of-frame.

5. Step 4 is repeated for each ISO packet.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Peripheral Mode, ISO OUT, Large MaxPktSize

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is greater than 128 bytes, and
double buffering is assumed to be enabled.

1. Load MaxPktSize into the USB_RXMAXPn register.

2. Set the ISO_R = 1 in the USB_RXCSR register.

3. Set up an ISR, (sensitive to the SOF_B interrupt), that reads the FIFO_FULL bit, reads the USB_RXCOUNT
status register, and finally configures the DMA controller to remove one or two packets (equal to the
USB_RXCOUNT number of bytes) from the FIFO.

4. Set up an ISR, sensitive to the DMA work-block-complete interrupt to clear RXPKTRDY.

5. Set SOF_B = 1 in the USB_INTRUSBE register to generate an interrupt on each start-of-frame.

6. Step 5 is repeated for each ISO packet.

Peripheral Mode Suspend

When no activity has occurred on the USB for 3 ms, the USB controller enters suspend mode. If the
suspend interrupt (USB_IRQ.SUSPEND) is enabled, an interrupt is generated at this time.

When resume signaling is detected, the USB controller exits suspend mode. If the USB_IRQ.RESUME inter-
rupt is enabled, an interrupt is generated. The processor core can also force the USB controller to exit
suspend mode by setting the USB_POWER.RESUME bit. This initiates a remote wakeup. When this bit is set,
the USB controller exits suspend mode and drives resume signaling onto the bus. The processor core
should clear this bit after 10 ms (a maximum of 15 ms) to end resume signaling.

NOTE: The USB_IRQ.RESUME interrupt is not generated when suspend mode is exited by the processor
core, nor is this interrupt generated when the software initiates remote wakeup.

Start-of-frame (SOF) Packets

When the USB controller is operating in peripheral mode, it should receive a start-of-frame packet from
the host every millisecond when in full-speed mode, or every 125 microseconds when in high-speed mode.

When the SOF packet is received, the 11-bit frame number contained in the packet is written into the USB_
FRAME register and an output pulse, lasting one USB clock bit period, is generated. A start-of-frame inter-
rupt is also generated (if enabled by the USB_IRQ.SOF bit).

After the USB controller has started to receive SOF packets, the controller expects one every millisecond
(or 125 ms when in high-speed mode). If no SOF packet is received after 1.00358 ms (or 125.125 ms), it is
assumed that the packet is lost. A start-of-frame pulse (together with a USB_IRQ.SOF interrupt) is still
generated even though the USB_FRAME register is not updated. The USB controller continues to generate a

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–33

SOF pulse every millisecond (or 125 ms) and re-synchronizes these pulses to the received SOF packets
when these packets are successfully received again.

Soft Connect/Soft Disconnect

In peripheral mode, the USB controller can be programmed to switch between normal mode and
non-driving mode by setting or clearing the USB_POWER.SOFTCONN bit. When USB_POWER.SOFTCONN=1,
the USB controller is placed in its normal mode and the D+/D– lines of the USB bus are enabled. When
the USB_POWER.SOFTCONN=0, the PHY is put into non-driving mode and D+ and D– are three-stated. The
USB controller appears to have been disconnected from the USB bus.

After system reset, USB_POWER.SOFTCONN=0. From that point, the USB controller appears disconnected
until the software has set USB_POWER.SOFTCONN =1. The application software can then choose when to set
the PHY to its normal mode. Systems with a lengthy initialization procedure may use this to ensure that
initialization is complete and the system is ready to perform enumeration before connecting to the USB.
Once the USB_POWER.SOFTCONN bit has been set to 1, the software can also simulate a disconnect by
clearing this bit to 0.

Error Handling As a Peripheral

A control transfer may be aborted due to a protocol error on the USB, the host prematurely ending the
transfer, or if the function controller software wishes to abort the transfer (for example, because it cannot
process the command).

The USB controller automatically detects protocol errors and sends a stall packet to the host under the
following conditions.

1. The host sends more data during the OUT data phase of a write request than was specified in the
command. This condition is detected when the host sends an OUT token after the USB_EP0_CSRn_
P.DATAEND bit is set.

2. The host requests more data during the IN data phase of a read request than was specified in the
command. This condition is detected when the host sends an IN token after the USB_EP0_CSRn_
P.DATAEND bit is set.

3. The host sends more than MaxPktSize data bytes in an OUT data packet.

4. The host sends a non-zero length DATA1 packet during the status phase of a read request.

When the USB controller has sent the stall packet, it sets the USB_EP0_CSRn_P.SENTSTALL bit and gener-
ates an interrupt. When the software receives an Endpoint 0 interrupt with the USB_EP0_CSRn_
P.SENTSTALL bit set, it should abort the current transfer, clear the USB_EP0_CSRn_P.SENTSTALL bit, and
return to the IDLE state.

If the host prematurely ends a transfer by entering the status phase before all the data for the request is
transferred, or by sending a new SETUP packet before completing the current transfer, then the USB_EP0_
CSRn_P.SETUPEND bit is set and an Endpoint 0 interrupt generated. When the software receives an
Endpoint 0 interrupt with the USB_EP0_CSRn_P.SETUPEND bit set, it should abort the current transfer, set

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

the USB_EP0_CSRn_P.SSETUPEND bit, and return to the IDLE state. If the USB_EP0_CSRn_P.RXPKTRDY bit
is set, this indicates that the host has sent another SETUP packet and the software should then process this
command.

If the software wants to abort the current transfer, because it cannot process the command or has some
other internal error, then it should set the USB_EP0_CSRn_P.SENTSTALL bit. The USB controller then
sends a stall packet to the host, set the USB_EP0_CSRn_P.SENTSTALL bit and generate an Endpoint 0 inter-
rupt.

Stalls Issued to Control Transfers

In peripheral mode, the USB controller automatically issues a stall handshake to a control transfer under
the following conditions:

1. The host sends more data during an OUT data phase of a control transfer than was specified in the
device request during the SETUP phase. This condition is detected by the USB controller when the host
sends an OUT token (instead of an IN token) after the processor core has unloaded the last OUT packet
and set the USB_EP0_CSRn_P.DATAEND bit.

2. The host requests more data during an IN data phase of a control transfer than was specified in the
device request during the SETUP phase. This condition is detected by the USB controller when the host
sends an IN token (instead of an OUT token) after the processor core has cleared USB_EPn_TXCSR_
P.TXPKTRDY and set USB_EP0_CSRn_P.DATAEND in response to the ACK issued by the host to what
should have been the last packet.

3. The host sends more than MaxPktSize data with an OUT data token.

4. The host sends the wrong PID (packet identifier) for the OUT status phase of a control transfer.

5. The host sends more than a zero length data packet for the OUT status phase.

Zero Length OUT Data Packets in Control Transfers

A zero-length OUT data packet is used to indicate the end of a control transfer. In normal operation, such
packets should only be received after the entire length of the device request is transferred (for example,
after the processor core has set the USB_EP0_CSRn_P.DATAEND bit). If the host sends a zero-length OUT
data packet before the entire length of device request is transferred, this packet signals the premature end
of the transfer. In this case, the USB controller automatically flushes any IN token loaded by processor core
ready for the data phase from the FIFO and sets the USB_EP0_CSRn_P.SETUPEND bit.

Host Mode

USB OTG interface operations in host mode differ from peripheral mode in a number of ways. The
following sections describe host mode operations.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–35

Transaction Scheduling

When operating as a host, the USB controller maintains a frame counter. If the target function is a
full-speed device, the USB controller automatically sends an SOF packet at the start of each frame or
micro-frame. If the target function is a low-speed device, a K state is transmitted on the bus to act as a
keep-alive to stop the low-speed device from going into suspend mode.

After the SOF packet is transmitted, the USB controller cycles through all the endpoints looking for active
transactions. An active transaction is defined as an RX endpoint for which the USB_EPn_RXCSR_H.REQPKT
bit is set or a TX endpoint for which the USB_EPn_TXCSR_H.TXPKTRDY bit is set.

An active isochronous or interrupt transaction will only start if it is found on the first transaction scheduler
cycle of a frame and if the interval counter for that endpoint has counted down to zero. This ensures that
only one interrupt or isochronous transaction occurs per endpoint per n frames/micro frames (or up to
three if high-bandwidth support is selected) where n is the interval set in the USB_EPn_TXINTERVAL or
USB_EPn_RXINTERVAL register for that endpoint.

An active bulk transaction is started immediately, provided there is sufficient time left in the frame to
complete the transaction before the next SOF packet is due. If the transaction needs to be retried (for
example, because a NAK was received or the target function did not respond) then the transaction is not
retried until the transaction scheduler has checked all the other endpoints for active transactions first. This
check ensures that an endpoint that is sending a lot of NAKs does not block other transactions on the bus.
The USB controller lets you specify a limit (USB_EPn_TXINTERVAL or USB_EPn_RXINTERVAL registers) to
the length of time in which NAKs may be received from a particular target before the endpoint is timed
out.

Endpoint Setup and Data Transfer

When the HOST_MODE bit is set to 1, the USB controller operates as a host for point-to-point communica-
tions with another USB device or, when attached to a hub, for communication with a whole range of
devices in a multi-point set-up. High-speed, full-speed and low-speed USB functions are supported, both
for point-to-point communication and for operation through a hub. (Where necessary, the core automat-
ically carries out the necessary transaction translation needed to allow a low-speed or full-speed device to
be used with a USB 2.0 hub.)

Control, Bulk, Isochronous or Interrupt transactions are supported.

Transfers between the subsystem and endpoint FIFOs in host mode are similar to peripheral mode. With
this in mind, see many of the descriptions of processor core to FIFO data transfer in Peripheral Mode.

Control Transaction as a Host

Host control transactions are conducted through Endpoint 0. The software is required to handle all the
Standard Device Requests that may be sent or received through Endpoint 0 (as described in Universal
Serial Bus Specification, Revision 2.0, Chapter 9).

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

For a USB peripheral, there are three categories of standard device requests:

• Zero data requests. Comprise a SETUP command followed by an IN status phase. All the information
is included in the command.

• Write requests. Comprised of a SETUP command, followed by an OUT data phase followed by an IN
status phase. The command is followed by additional data.

• Read requests comprise a SETUP command, followed by an IN data phase followed by an OUT status
phase. The device is required to send data back to the host.

A timeout may be set to limit the length of time during which the USB controller w retries a transaction
that is continually NAKed by the target. This limit can be between 2 and 215 frames/micro frames and is
set through the USB_EP0_NAKLIMITn register.

The following sections look at the steps in different phases of a control transaction to describe the actions
of the core in issuing standard device requests.

Setup Phase as a Host

The processor core driving the host device performs the following actions for the SETUP phase of a control
transaction.

1. Load the eight bytes of the required device request command into the Endpoint 0 FIFO.

2. Set the USB_EP0_CSRn_H.SETUPPKT bit and USB_EP0_CSRn_H.TXPKTRDY bit. These bits must be set
together.

The USB controller then sends a SETUP token followed by the 8-byte command to Endpoint 0 of the
addressed device, retrying as necessary.

3. At the end of the attempt to send the data, the USB controller generates an Endpoint 0 interrupt (for
example, set USB_INTRTXE.EP0). The processor core should then read the USB_EP0_CSRn_H register to
establish whether the USB_EP0_CSRn_H.RXSTALL, USB_EP0_CSRn_H.TOERR or the USB_EP0_CSRn_
H.NAKTO bits are set.

If USB_EP0_CSRn_H.RXSTALL=1, the target did not accept the command (for example, because it is not
supported by the target device) and so has issued a stall response.

If USB_EP0_CSRn_H.TOERR=1, the USB controller has tried to send the SETUP packet and the following
data packet three times without getting a response.

If USB_EP0_CSRn_H.NAKTO=1, the USB controller has received a NAK response to each attempt to send
the SETUP packet, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller
can then be directed either to continue trying this transaction (until it times out again) by clearing the
USB_EP0_CSRn_H.NAKTO bit or to abort the transaction by flushing the FIFO before clearing the USB_
EP0_CSRn_H.NAKTO bit.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–37

4. If none of USB_EP0_CSRn_H.RXSTALL, USB_EP0_CSRn_H.TOERR or USB_EP0_CSRn_H.NAKTO bits are
set, the SETUP phase is correctly acknowledged and the processor core should proceed to the following
IN data phase, OUT data phase or IN status phase specified for the particular standard device request.

IN Data Phase as a Host

The processor core driving the host device performs the following actions for the IN data phase of a control
transaction.

1. Set the USB_EP0_CSRn_H.REQPKT bit.

2. Wait while the USB controller sends the IN token and then receives the required data back.

3. When the USB controller generates the Endpoint 0 interrupt (for example, by setting the USB_
INTRTXE.EP0 bit), read the USB_EP0_CSRn_H register to establish whether the USB_EP0_CSRn_
H.RXSTALL bit, the USB_EP0_CSRn_H.TOERR bit, the USB_EP0_CSRn_H.NAKTO bit or the USB_EP0_
CSRn_H.RXPKTRDY bit is set.

If USB_EP0_CSRn_H.RXSTALL=1, the target has issued a stall response.

If USB_EP0_CSRn_H.TOERR=1, the USB controller has tried to send the required IN token three times
without getting a response.

If USB_EP0_CSRn_H.NAKTO=1, the USB controller has received a NAK response to each attempt to send
the IN token, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller can
then be directed either to continue trying this transaction (until it times out again) by clearing the USB_
EP0_CSRn_H.NAKTO bit; or to abort the transaction by clearing USB_EP0_CSRn_H.REQPKT before
clearing the USB_EP0_CSRn_H.NAKTO bit.

4. If the USB_EP0_CSRn_H.RXPKTRDY bit is set, the processor core should read the data from the Endpoint
0 FIFO, then clear USB_EP0_CSRn_H.RXPKTRDY.

5. If further data is expected, the processor core should repeat the previous steps.

When all the data is successfully received, the processor core should proceed to the OUT status phase
of the control transaction.

OUT Data as a Host (Control)

The processor core driving the host device performs the following actions for the OUT data phase of a
control transaction.

1. Load the data to be sent into the Endpoint 0 FIFO

2. Set the USB_EP0_CSRn_H.TXPKTRDY bit.

The USB controller sends an OUT token followed by the data from the FIFO to Endpoint 0 of the
addressed device, retrying as necessary.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

3. At the end of the attempt to send the data, the USB controller generates an Endpoint 0 interrupt (for
example by setting the USB_INTRTX.EP0 bit). The processor core should then read the USB_EP0_CSRn_
H to establish whether the USB_EP0_CSRn_H.RXSTALL bit, the USB_EP0_CSRn_H.TOERR bit, or the USB_
EP0_CSRn_H.NAKTO bit is set.

If USB_EP0_CSRn_H.RXSTALL=1, the target has issued a stall response.

If USB_EP0_CSRn_H.TOERR=1 the USB controller has tried to send the OUT token and the following
data packet three times without getting a response.

If USB_EP0_CSRn_H.NAKTO=1, the USB controller has received a NAK response to each attempt to send
the OUT token, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller
can then be directed either to continue trying this transaction (until it times out again) by clearing the
USB_EP0_CSRn_H.NAKTO bit; or to abort the transaction by flushing the FIFO before clearing the USB_
EP0_CSRn_H.NAKTO bit.

If none of the USB_EP0_CSRn_H.RXSTALL, USB_EP0_CSRn_H.TOERR, or USB_EP0_CSRn_H.NAKTO bits
are set, the OUT data is correctly acknowledged.

4. If further data needs to be sent, the processor core should repeat the previous steps.

When all the data is successfully sent, the processor core should proceed to the IN status phase of the
control transaction.

IN Status Phase as a Host (Following SETUP Phase or OUT Data Phase)

The processor core driving the host device performs the following actions for the IN status phase of a
control transaction.

1. Set the USB_EP0_CSRn_H.STATUSPKT and USB_EP0_CSRn_H.REQPKT bits. These bits must be set
together.

2. Wait while the USB controller both sends an IN token and receives a response from the USB peripheral.

3. When the USB controller generates the Endpoint 0 interrupt (for example, sets the USB_INTRTX.EP0
bit), read the USB_EP0_CSRn_H register to establish whether the USB_EP0_CSRn_H.RXSTALL, USB_EP0_
CSRn_H.TOERR, USB_EP0_CSRn_H.NAKTO, or the USB_EP0_CSRn_H.RXPKTRDY bits are set.

If USB_EP0_CSRn_H.RXSTALL=1 the target could not complete the command and so has issued a stall
response.

If USB_EP0_CSRn_H.TOERR=1the USB controller has tried to send the required IN token three times
without getting a response.

If USB_EP0_CSRn_H.NAKTO=1 the USB controller has received a NAK response to each attempt to send
the IN token, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller can
then be directed either to continue trying this transaction (until it times out again) by clearing the USB_
EP0_CSRn_H.NAKTO bit or to abort the transaction by clearing USB_EP0_CSRn_H.REQPKT and USB_
EP0_CSRn_H.STATUSPKT before clearing the USB_EP0_CSRn_H.NAKTO bit.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–39

4. If the USB_EP0_CSRn_H.RXPKTRDY bit is set, the processor core should clear it.

OUT Status Phase as a Host (Following IN Data Phase)

The processor core driving the host device performs the following actions for the OUT status phase of a
control transaction.

1. Set USB_EP0_CSRn_H.STATUSPKT and USB_EP0_CSRn_H.TXPKTRDY bits. These bits must be set
together.

2. Wait while the USB controller both sends the OUT token and a zero-length DATA1 packet.

3. At the end of the attempt to send the data, the USB controller generates an Endpoint 0 interrupt. The
processor core should then read the USB_EP0_CSRn_H register to discover if the USB_EP0_CSRn_
H.RXSTALL, USB_EP0_CSRn_H.TOERR, or USB_EP0_CSRn_H.NAKTO bits are set.

If USB_EP0_CSRn_H.RXSTALL=1 the target could not complete the command and so has issued a stall
response.

If USB_EP0_CSRn_H.TOERR=1 the USB controller has tried to send the STATUS packet and the
following data packet three times without getting a response.

If USB_EP0_CSRn_H.NAKTO=1 the USB controller has received a NAK response to each attempt to send
the IN token, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller can
then be directed either to continue trying this transaction (until it times out again) by clearing the USB_
EP0_CSRn_H.NAKTO bit or to abort the transaction by flushing the FIFO before clearing the USB_EP0_
CSRn_H.NAKTO bit.

4. If none of the USB_EP0_CSRn_H.RXSTALL, USB_EP0_CSRn_H.TOERR, or USB_EP0_CSRn_H.NAKTO bits
are set, the status phase is correctly acknowledged.

Host IN Transactions

When the USB controller operates as a host, IN transactions are handled like OUT transactions are
handled when the USB controller is operating as a peripheral. But the transaction must first be initiated by
setting the USB_EPn_RXCSR_H.REQPKT bit. This bit indicates to the transaction scheduler that there is an
active transaction on this endpoint. The transaction scheduler then sends an IN token to the target func-
tion.

When the packet is received and placed in the RX FIFO, the USB_EPn_RXCSR_H.RXPKTRDY bit is set, and
the appropriate RX endpoint interrupt is generated (if enabled) to signal that a packet can now be unloaded
from the FIFO. When the packet is unloaded, USB_EPn_RXCSR_H.RXPKTRDY is cleared. The USB_EPn_
RXCSR_H.AUTOCLR bit can be used to automatically clear the USB_EPn_RXCSR_H.RXPKTRDY bit when a
maximum sized packet is unloaded from the FIFO. There is also an USB_EPn_RXCSR_H.AUTOREQ bit that
automatically sets the USB_EPn_RXCSR_H.REQPKT bit when the USB_EPn_RXCSR_H.RXPKTRDY bit is
cleared. The USB_EPn_RXCSR_H.AUTOCLR and USB_EPn_RXCSR_H.AUTOREQ bits can be used with an
external DMA controller to perform complete bulk transfers without processor core intervention.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

If the target function responds to a bulk or interrupt IN token with a NAK, the USB controller keeps
retrying the transaction until the NAK limit set in the USB_EP0_NAKLIMITn register) is reached. If the
target function responds with a stall, the USB controller does not retry the transaction, but interrupts the
processor core by setting the USB_EPn_RXCSR_H.RXSTALL bit. If the target function does not respond to
the IN token within the required time (or there was a CRC or bit-stuff error in the packet), the USB
controller retries the transaction. If after three attempts the target function still has not responded, the USB
controller clears the USB_EPn_RXCSR_H.REQPKT bit and interrupts the processor core with the DATAER-
ROR_R bit in USB_RXCSR set.

Host OUT Transactions

When the USB controller operates as a host, OUT transactions are handled in a similar manner to the way
IN transactions are handled when the USB controller operates as a peripheral.

The USB_EPn_TXCSR_H.TXPKTRDY bit needs to be set as each packet is loaded into the TX FIFO and the
USB_EPn_TXCSR_H.AUTOSET bit can be used to cause the USB_EPn_TXCSR_H.TXPKTRDY bit to be automat-
ically set when a maximum sized packet is loaded into the FIFO. The USB_EPn_TXCSR_H.AUTOSET bit can
be used with an external DMA controller to perform complete bulk transfers without processor core inter-
vention.

If the target function responds to the OUT token with a NAK, the USB controller keeps retrying the trans-
action until the NAK limit set in the USB_EP0_NAKLIMITn register is reached. If the target function
responds with a stall, the USB controller does not retry the transaction, but interrupts the processor core
by setting the USB_EPn_TXCSR_H.RXSTALL bit. If the target function does not respond to the OUT token
within the required time (or there was a CRC or bit-stuff error in the packet), the USB controller retries
the transaction. If after three attempts the target function still has not responded, the USB controller
flushes the FIFO and interrupts the processor core by setting the USB_EPn_TXCSR_H.TXTOERR bit.

Multi-Point Support

The following sections describe the controller’s multi-point support.

• Allocating Devices to Endpoints

• Multi-Point Operation

• Multi-Point Bandwidth Considerations

Allocating Devices to Endpoints

The separate functions of the connected devices are allocated to the endpoints within the USB controller
through a group of three registers, which are associated with each implemented Rx or Tx endpoint
(including Endpoint 0).

The registers are USB_MPn_TXFUNCADDR/ USB_MPn_RXFUNCADDR, USB_MPn_TXHUBADDR/ USB_MPn_
RXHUBADDR and USB_MPn_TXHUBPORT/ USB_MPn_RXHUBPORT. Note that the location of these registers
depends on which of the endpoints is being addressed.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–41

The information that needs to be recorded in the transmit and receive function address registers is the
address of the target function that is to be accessed through the selected endpoint. This information needs
to be recorded separately for each Tx and Rx endpoint that is used. In particular, both USB_MPn_
TXFUNCADDR and USB_MPn_RXFUNCADDR need to be set for Endpoint 0.

The transmit and receive hub address and hub port registers are used when a full- or low-speed device is
connected to the USB controller via a high-speed USB 2.0 hub, which carries out the required transaction
translation between high-speed transmission and low-/full-speed transmission. In this situation, the USB_
MPn_TXHUBADDR/ USB_MPn_RXHUBADDR and USB_MPn_TXHUBPORT/ USB_MPn_RXHUBPORT registers need to
record the address of the hub that carries out the transaction translation and the port of that hub through
which the associated Tx/Rx endpoint needs to access the device.

Note that if Endpoint 0 is connected to a hub, then both the Tx and the Rx versions of these registers need
to be set for this endpoint. The hub address registers are also used to record whether the hub offers multiple
transaction translators or just a single transaction translator. This has a significant effect on the overall
bandwidth that can be achieved.

In addition to recording the address of the target function through these three registers, the endpoint
number and operating speed of the target device and the type of transaction that is executed need to be
recorded. For a Tx endpoint, this information needs to be set in the USB_EPn_TXTYPE register when the
index register is set to select the required endpoint. For an Rx endpoint, this information needs to be set
in the USB_EPn_RXTYPE register when the index register is set to select the required endpoint. In both cases,
the endpoint number is recorded in bits 3–0, the transaction type is selected through bits 5–4, and the
operating speed is selected through bits 7–6.

Only the speed needs to be set for Endpoint 0 because endpoint 0 only has the facilities to handle control
transactions and therefore is always associated with a device Endpoint 0. This speed setting is made
through bits 7–6 of the Type 0 register, which is located at address 0x1A when the index register is set to 0.

Multi-Point Operation

Once the allocation of functions to endpoints has been made and the operating speed of the target device
recorded, most operations in a multi-point set-up are no different from those for the equivalent actions
where the core is attached to a single other device.

However, additional steps are required

• When the option of dynamically switching the allocation of functions to endpoints is taken (for
example to allow a wider range of devices to be supported)

• When the control packets normally associated with Endpoint 0 are handled through a different
endpoint.

If dynamic allocation is used, it is essential for the program to keep track of the current data toggle state
associated with the endpoint and with each of the devices that are allocated to that endpoint. Knowledge
of this state is necessary to allow the program to select the correct data toggle state when the switch is made
between one device and the other. (This action is the programs responsibility because the core cannot
determine what data toggle state is expected when a function is being switched in and out of use.)

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The data toggle state can be switched from its current state by writing to the appropriate USB_EPn_TXCSR_
H or USB_EPn_RXCSR_H register to set the data toggle write enable and data toggle bits that are included in
these registers when the core is in host mode.

Data toggle write enable and data toggle bits are also included in the USB_EP0_CSRn_H register. However,
control operations carried out through the core’s Endpoint 0 should normally always leave the data toggle
in the expected state.

Where control packets are handled through an endpoint other than Endpoint 0, programs need to prompt
for each setup token to be sent. This involves setting the USB_EPn_TXCSR_H.SETUPPKT bit when the core
is operating in host mode, alongside the USB_EPn_TXCSR_H.TXPKTRDY bit. If the USB_EPn_TXCSR_
H.SETUPPKT bit is not set, an OUT token is sent.

Overall, the recommendation is to use the controller’s Endpoint 0 to handle control packets for all of the
devices attached to the controller, and to switch the allocation of this endpoint as appropriate. Sending the
correct token is ensured, as is ensuring that the data toggle is correctly set for this endpoint.

Using a different endpoint for this function is possible, as described above, but there are further points to
note:

• The control function must be allocated to an Rx/Tx endpoint pair (with the same endpoint number).

• The chosen endpoints must each be associated with FIFOs that can accommodate the packet size asso-
ciated with EP0 transactions at the chosen operating speed which can be a minimum of 8 bytes for low-
or full-speed transactions but 64 bytes for high-speed transactions.

Multi-Point Bandwidth Considerations

The ability of a multi-point system to cope with isochronous transactions, in particular, is determined by
the available bandwidth.

Once an endpoint has been set up, all scheduling is handled in hardware. However, as with PC-based
EHCI/OHCI/UHCI hosts, before opening a periodic pipe (for use by isochronous or interrupt traffic),
software must determine that there is sufficient bandwidth available.

Further, if the periodic pipe is opened to a full-speed device through a high-speed hub, software must
confirm that sufficient bandwidth is available both on the local high-speed bus and the full-speed bus
generated by the transaction translator in the hub. The bandwidth required for different transactions can
be determined using similar algorithms to those used in connection with PC-based hosts (detailed in
Section 5.11.3 of the USB 2.0 Specification).

Note that the available bandwidth is greater where the hub used supports multiple transaction translators.

Babble Interrupt

If the bus is still active at the end of a frame, the USB controller assumes that the function it is connected
to has malfunctioned, suspends all transactions, and generates a babble interrupt (USB_IRQ.RSTBABBLE).
The USB controller does not start a transaction until the bus is inactive for at least the minimum

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–43

inter-packet delay. The controller also does not start a transaction unless it can be finished before the end
of the frame.

To recover from a babble error condition, the processor must take the following actions inside the inter-
rupt service routine.

1. Turn off VBUS. Wait until the VBUS level indicator reads b#01.

2. Turn on VBUS. Wait until the VBUS level indicator reads b#11.

3. Set the USB_IRQ.SESSREQ bit

The VBUS level indicator is the USB_DEV_CTL.VBUS bit field

NOTE:

Because VBUS is sourced external to the processor, make sure that the hardware design connects
a GPIO or the dedicated USB_VBUS signal to the external source so that you can use software to turn
VBUS on and off.

NOTE:

VBUS Events

The USB On-The-Go specification defines a series of thresholds to which the devices involved in
point-to-point communications are required to respond.

• VBUS Valid (between 4.4 V and 4.75 V)

• Session Valid for A device (between 0.8 V and 2.1 V)

• Session End (between 0.2 V and 0.8 V)

Which thresholds are critical and the processor response depends on whether the device is an A device or
a B device and the circumstances of the event. These actions are described below.

Actions as an “A” Device

VBUS >VBUS Valid with session initiated by USB controller. VBUS level indicator = b#11 and session
bit is set. When VBUS is greater than VBUS valid, the USB controller selects host mode and waits for a
device to be connected. It then generates a connect interrupt. The processor resets and enumerates the
connected B device.

VBUS > Session Valid with session initiated by B device. VBUS level indicator = b#10 and session bit is
clear. When VBUS is greater than session valid, the USB controller generates a session request interrupt.
The processor sets the session bit and the USB controller either stays in Host mode or changes to Periph-
eral mode, depending upon the state of the pull-up resistor on the B device. For more information, refer
to the host negotiation protocol of the OTG specification. The selected mode is indicated by the state of
the Host Mode bit.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

VBUS below VBUS Valid while the Session bit remains set. VBUS level indicator b#11 and session bit is
set. This indicates a problem with the VBUS power level. For example, the battery power may have
dropped too low to sustain VBUS valid. Or, the B device may be drawing more current than the A device
can provide. In either case, the USB controller will automatically terminate the session and generate a
VBUS error interrupt.

To recover from this VBUS error condition, the processor must take the following actions inside the VBUS
error interrupt handler.

• Turn off VBUS wait until the USB_DEV_CTL.VBUS reads b#01.

• Turn on VBUS wait until the USB_DEV_CTL.VBUS reads b#11.

• Set the USB_DEV_CTL.SESSION bit

The VBUS level indicator the USB_DEV_CTL.VBUS bit field.

NOTE: Because VBUS is sourced external to the processor, make sure that the hardware design connects
a GPIO or the dedicated DrvVBUS signal to the external source so that software can be used to turn
VBUS on and off.

Actions as a “B” Device

 VBUS > Session Valid. VBUS level indicator = b#10 and session bit is clear. This indicates activity from
the A device. The USB controller sets the session bit and disconnects the pull down resistor on the D+ line.

 VBUS < Session Valid. while the session bit remains set VBUS level indicator = b#01 and session bit is
set. This indicates that the A device has lost power (or become disconnected). The USB controller clears
the session bit and generates a disconnect interrupt. The processor ends the session.

 VBUS < Session End. VBUS level indicator = b#00. This is the condition under which a B device can
initiate a session request. If the session bit is set, then after 2 ms of SE0 on the bus, the USB controller starts
SRP by first pulsing the data line, then pulsing the USB_VBUS signal.

Host Mode Reset

If the USB_POWER.RESET is set while the USB controller is in host mode, the USB controller generates reset
signaling on the bus. The processor core should keep this bit set for 20 ms to ensure correct resetting of the
target device. After the processor core has cleared the bit, the USB controller starts its frame counter and
transaction scheduler.

Host Mode Suspend

The controller has a suspend mode that allows power savings for the processor. The mode operates as
described below.

 Entry into Suspend mode. When operating as a host, the USB controller can be prompted to go into
Suspend mode by setting the USB_POWER.SUSPEND bit. When this bit is set, the USB controller completes
the current transaction then stops the transaction scheduler and frame counter. No further transactions

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–45

are started and no SOF packets are generated. If the USB_POWER.SUSPEND bit is set, the UTMI+ PHY goes
into low-power mode when the USB controller goes into suspend mode and stops the clock.

 Sending Resume Signaling. When the application requires the USB controller to leave suspend mode, it
needs to clear then set the USB_POWER.RESUME bit, and leave it set for 20 ms. While the USB_POWER.RESUME
bit is high, the USB controller generates resume signaling on the bus. After 20 ms, the processor core
should clear the USB_POWER.RESUME bit, at which point the frame counter and transaction scheduler are
started.

 Responding to Remote Wake-up. If resume signaling is detected from the target while the USB controller
is in suspend mode, the UTMI+ PHY is brought out of low-power mode and the clock restarts. The USB
controller then exits suspend mode and automatically sets the USB_POWER.RESUME bit to take over gener-
ating the resume signaling from the target. If the USB_IRQ.RESUMEbit=1, an interrupt is generated.

Suspending and Resuming the Controller

With the introduction of link power management, there are two basic methods for the USB controller to
be suspended and resumed. These two methods are demonstrated in the basic LPM transaction diagram
shown below.

Figure 22-9: Basic LPM Transaction

The procedure in which the USB controller is suspended and resumed depends on whether the core is
operating as a device or a host and the method of suspend desired. These options are described in the
following sections.

Suspend/Resume by Inactivity on the USB Bus (L0 to L2 State) in Peripheral Mode

The following steps occur in this mode.

1. Entry into suspend mode. When operating as a peripheral, the USB controller monitors activity on the
USB and when no activity has occurred for 3 ms, the controller goes into suspend mode. If the USB_

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

IRQ.SUSPEND interrupt has been enabled, an interrupt is generated at this time. The USB_IRQ.SUSPEND
output also goes low (if enabled).

At this point, the POWERDWN signal is also asserted to indicate that the application may save power
by stopping USB_CLKIn. POWERDWN then remains asserted until either power is removed from the
bus (indicating that the device has been disconnected) or resume signaling or reset signaling is detected
on the bus.

2. When resume signaling occurs on the bus, the USB_CLKIn must be restarted if necessary. The USB
controller then automatically exits suspend mode. If the USB_IRQ.RESUME interrupt is enabled, an
interrupt is generated.

3. Initiating a remote wakeup. To initiate a remote wakeup while the controller is in suspend mode, set
the USB_POWER.RESUME bit=1. (Note: If USB_CLKIn has been stopped, it will need to be restarted before
this write can occur.) The software should leave then this bit set for approximately 10 ms (minimum of
2 ms, a maximum of 15 ms) before resetting it to 0. By this time the hub should have taken over driving
Resume signaling on the USB.

NOTE:

The USB_IRQ.RESUME interrupt is not generated when the software initiates a remote wakeup.

NOTE:

Suspend/Resume By Inactivity On The USB Bus (L0 To L2 State) In Host Mode

The following steps occur in this mode.

1. Entry into suspend mode. When operating as a host, the USB controller can be prompted to go into
suspend mode by setting the USB_POWER.SUSPEND bit. When this bit is set, the USB controller
completes the current transaction then stops the transaction scheduler and frame counter. No further
transactions are started and no SOF packets are generated. If the USB_POWER.SUSEN bit is set, the
UTMI+ PHY goes into low-power mode when the controller goes into suspend mode and stop USB_
CLKIn.

2. Sending resume signaling. When the application requires the controller to leave suspend mode, it clears
the USB_POWER.SUSPEND bit, sets the USB_POWER.RESUME bit and leaves it set for 20 ms. While the USB_
POWER.RESUME bit is high, the controller generates Resume signaling on the bus. After 20 ms, the
processor core should clear the USB_POWER.RESUME bit, at which point the frame counter and transac-
tion scheduler are started.

3. Responding to remote wake-up. If resume signaling is detected from the target while the USB
controller is in suspend mode, the UTMI+ PHY is brought out of low-power mode and restart USB_
CLKIn. The controller then exits suspend mode and automatically sets the USB_POWER.RESUME bit to 1
to take over generating the resume signaling from the target. If the USB_IRQ.RESUME interrupt is
enabled, an interrupt is generated.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–47

Suspend/Resume By an LPM Transaction (L0 To L1 State) In Peripheral Mode

The following steps occur in this mode.

1. Entry into suspend mode. When operating as a peripheral, the controller never initiates an LPM
suspend (transition from the L0 state to the L1 state). Rather, the controller only suspends at the request
of the host. However, for this to occur, the LPM feature must be enabled by setting up the USB_LPM_
CTL register appropriately. The register field USB_LPM_CTL.EN bit is used to enable and support
extended and LPM transactions. The USB_LPM_CTL.TX field is used instruct the hardware that it is
ready to suspend and to respond to the next LPM transaction with an ACK. In this case, the controller
responds to the next LPM transaction with an ACK if all other conditions are met. The response to an
LPM transaction by the controller is summarized in the table below.

For all cases shown above in which the controller responds (no timeout occurs), an LPM interrupt is
generated in the USB_LPM_IRQ register. Note that the controller responds with an ACK only if there is
no data pending in any of the TX Endpoint FIFOs. If there is data pending, the USB controller responds
with a NYET.

Once an LPM transaction is successfully received three events occur:

a. The USB_LPM_ATTR register is updated with values received in the LPM transaction just
received. See the “Register Descriptions” section of this chapter for complete information on
this register.

b. The controller suspend 9 μs after transmitting the ACK. Resume signaling can be driven by the
host or the controller 50 μs after this event. During this 9 μs interval, the host may continue to
transmit the LPM transaction. The controller responds with an ACK in this case regardless of
the USB_LPM_CTL.TX bit value.

c. An interrupt is generated informing software of the response (an ACK in this case). An ACK
response is the indication to software that the controller has suspended.

Since the primary purpose of LPM is to save power, the software reads the USB_LPM_ATTR
register to determine the attributes of the suspend. Software must make a determination based

Table 22-6: Response to LPM Transaction

LPMXMT LPMCNTRL
Data Pending (Resides in Tx

FIFOs)
Response to Next LPM

Transaction

1’b0,
1’b0
1’b1
1’b1

2’b00,
2’b10
2’b00
2’b10

Don’t Care Timeout

1’b0,
1’b1

2’b01 Don’t Care STALL

1’b0 2’b11 Don’t Care NYET

1’b1 2’b11 Yes NYET

1’b1 2’b11 No ACK

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

22–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

on these attributes whether additional power savings in the system can be found. In making this
determination note that if the host initiates the resume signaling, the controller is required to
respond to packet transmissions within the time specified by USB_LPM_ATTR.HIRD + 10 μs.

2. When resume signaling occurs on the bus. When the host resumes the bus, it drives resume signaling
for a minimum time specified by the host initiated resume duration bit field (USB_LPM_ATTR.HIRD).
The controller must be able to respond to traffic within the time HIRD + 10 μs. The controller transi-
tions to a normal operating state automatically and a resume interrupt is generated in the USB_LPM_IRQ
register.

However for this to occur, the inputs CLK and XCLK must be available. To facilitate the resume timing
requirement, a negative ACK (NAK) is provided using the USB_LPM_CTL.NAK bit. If this bit is set to
1'b1, all endpoints respond to any transaction (other then an LPM) with a NAK. This bit only takes
effect after the controller has suspended LPM. Typically, this bit is asserted when the USB_LPM_CTL.TX
field is also asserted. Using this feature may simplify the resume timing requirement because only
XCLK is needed for the controller to respond (with a NAK) to traffic. Software can continue to restore
the system to normal operation while the controller responds to all transactions with a NAK. After the
system has been completely restored, software can then clear the USB_LPM_CTL.NAK bit.

3. Initiating remote wakeup. To initiate a remote wakeup while the controller is in suspend mode, it write
a 1'b1 to theUSB_LPM_CTL.RESUME bit. This bit is self clearing. Writing a 1'b1 drives resume signaling
on the bus for 50 μs. The host responds by driving resume for 60 μs to 990 μs. 10 μs after the host stops
driving resume, the controller transitions to its normal operational state and is ready for packet trans-
mission. A resume interrupt is generated in the USB_LPM_IRQ register.

Suspend/Resume by an LPM Transaction (L0 to L1 State) in Host Mode

The following steps occur in this mode.

1. Entry into suspend mode. When operating as a host, the controller initiates an LPM suspend (transi-
tion from the L0 state to the L1 state) by initiating an LPM transaction as follows.

a. Software sets up the desired attributes of the suspend in the USB_LPM_ATTR register. Enabling
remote wakeup and a large HIRD gives the peripheral more opportunity to conserve power.

b. All LPM interrupts should be enabled in the USB_LPM_IEN register.

c. Software should initiate the transaction by writing a 0x01 to the USB_LPM_CTL register.

d. An interrupt is generated to inform software of the response to the LPM transaction. If an ACK
was received, then the controller suspends automatically within 8 μs. This is the indication that
the controller has suspended.

If the response from the device has a bit stuff error or a PID error, then an USB_LPM_IRQ.LPMERR inter-
rupt is generated. The hardware immediately attempts the LPM transaction two more times. The
device does not suspend for 8 μs after the initial LPM so it can respond to either of these subsequent
LPM transactions. If a LPM timeout has occurred three times, the USB_LPM_IRQ.LPMNC and the USB_
LPM_IRQ.LPMERR interrupts are set. At this time, software is unaware of the device state and must
deduce it by other means.

UNIVERSAL SERIAL BUS (USB)
USB EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–49

2. Sending resume signaling. Resume signaling should be generated by software as follows.

a. All LPM interrupts should be enabled in the USB_LPM_IEN register.

b. Software should write the USB_LPM_CTL.RESUME bit which is self-clearing. This causes resume
signaling to be generated on the bus for the time that is currently specified in the USB_LPM_
ATTR.HIRD bit field. It is assumed by hardware that this value was used in the last LPM transac-
tion that caused the suspend.

c. After HIRD + 10 μs, the controller transitions to its normal operational state and is ready for
packet transmission and a USB_LPM_IRQ.LPMRES interrupt is generated.

NOTE: Prior to resuming, software must ensure that the system is completely restored from a low power
state and that the inputs CLK and XCLK are available.

3. Responding to remote wake-up. If the remote wakeup feature is enabled in the LPM transaction that
caused the suspend, then the device may drive resume signaling on the bus. When this occurs, the
device drives resume signaling BUS for 50 μs. The controller will immediately begin driving resume
signaling on the BUS and will do so for 60 μs. 10 μs after completion of the resume signaling, the
controller transitions to its normal operating state and is ready for packet transmission. At this time,
the USB_LPM_IRQ.LPMRES interrupt is generated.

USB Event Control
The following sections provide information on the use of interrupts, reset and the reporting of errors and
interface status.

Interrupt Signals

The two interrupts generated from the USB controller are shown in ADSP-BF60x USB Interrupt List.

Interrupts can be generated from control endpoint zero under the following conditions

• When a control transaction ends before the end of the data is transferred.

• When a data packet is sent or received from the endpoint 0 FIFOs.

Interrupts can be generated from transmit endpoints (USB_INTRTX) under the following conditions:

• packet sent from the TX FIFO (host and peripheral mode)

• after three attempts at transmitting a packet with no valid handshake packet received (host mode)

Interrupts can be generated from receive endpoints (USB_INTRRX) under the following conditions:

• packet received into the RX FIFO (host and peripheral mode)

• when a stall handshake is received (host mode)

UNIVERSAL SERIAL BUS (USB)
USB EVENT CONTROL

22–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• After three attempts at receiving a packet and no data packet is received (host mode).

Interrupts can be generated from the USB status (USB_IRQ) under the following conditions:

• When VBUS drops below the VBUS valid threshold during a session (A device only).

• When SRP signaling is detected (A device only).

• When device disconnect is detected (host mode).

• When a session ends (peripheral mode).

• Device connection detected (host mode).

• Start-of-frame (SOF)

• Reset signaling detected on USB (peripheral mode).

• Babble detected (host mode).

• In suspend mode when resume signaling detected on USB.

• When suspend signaling is detected (peripheral mode).

Interrupts are generated for the following VBUS control requests by the USB controller:

• drive VBUS greater than 4.4 V (default A device)

• stop driving VBUS

• start charging VBUS (peripheral mode)

• stop charging VBUS

• start discharging VBUS (peripheral mode)

• stop discharging VBUS

Interrupt Handling

When the processor core is interrupted with a USB interrupt, it needs to read the interrupt status register
to determine which endpoint(s) have caused the interrupt and jump to the appropriate routine. If multiple
endpoints have caused the interrupt, Endpoint 0 should be serviced first, followed by the other endpoints.
A flowchart for the USB interrupt service routine is shown in the USB Interrupt Service Routine figure.

UNIVERSAL SERIAL BUS (USB)
USB EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–51

Figure 22-10: USB Interrupt Service Routine

UNIVERSAL SERIAL BUS (USB)
USB EVENT CONTROL

22–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Reset Signals

The USB controller includes an active-high synchronous hardware reset sourced from the processor core.
Another source of peripheral reset is through the USB, when USB reset signaling is detected on the I/O
lines. As dictated by the USB 2.0 Specification, this state is entered when both the D+ and D- inputs are
driven low for a period of 2.5 ms or more (though the reset itself is held for typically greater than 10 ms by
the USB host).

Reset in Peripheral Mode

When a USB reset is detected, the USB controller performs the following actions:

• USB_FADDR register set to zero

• USB_INDEX register set to zero

• all endpoint FIFOs flushed

• all control and status registers cleared

• all interrupts enabled

• reset interrupt generated

The USB_IRQ and USB_VBUS_CTL, registers are not affected by the USB controller reset. These registers are
only reset (along with those listed above) during a system reset.

If the USB_POWER.HSEN bit was set, the USB controller also tries to negotiate for high-speed operation.
Whether high-speed operation is selected is indicated by the USB_POWER.HSMODE bit.

When the application software receives a reset interrupt, it should close any open pipes and wait for bus
enumeration to begin.

USB Reset in Host Mode

If the USB_POWER.RESET bit=1 while the USB controller is in host mode, the controller generates reset
signaling on the bus. If the USB_POWER.HSEN bit =1, the controller also tries to negotiate for high-speed
operation.

The processor core should keep the USB_POWER.RESET bit set for at least 20 ms to ensure correct resetting
of the target device. After the processor core has cleared the bit, the USB controller starts its frame counter
and transaction scheduler.

High-speed operation is selected by the USB_POWER.HSMODE bit

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–53

USB Programming Model
The following sections describe the USB OTG programming model.

Peripheral Mode Flow Charts

Figure 22-11: USB Control Setup Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-12: Control In Data Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–55

Figure 22-13: Control In Data Status Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-14: Control Out Data Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–57

Figure 22-15: Control Out Data Status Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-16: Bulk/Low Bandwidth Interrupt In Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–59

Figure 22-17: Bulk/Low Bandwidth Interrupt Out Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-18: Full-speed/Low Bandwidth Isochronous In Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–61

Figure 22-19: Full-speed/Low Bandwidth Isochronous Out Transaction

Host Mode Flow Charts

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-20: USB Control Setup Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–63

Figure 22-21: Control In Data Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-22: Control In Data Status Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–65

Figure 22-23: Control Out Data Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-24: Control Out Data Status Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–67

Figure 22-25: Bulk/Low Bandwidth Interrupt In Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-26: Bulk/Low Bandwidth Interrupt Out Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–69

Figure 22-27: Full-speed/Low Bandwidth Isochronous In Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-28: Full-speed/Low Bandwidth Isochronous Out Transaction

DMA Mode Flow Charts

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–71

Figure 22-29: Single Packet Transmit During DMA Operation

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-30: Single Packet Receive During DMA Operation

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–73

Figure 22-31: Multiple Packet Transmit During DMA Operation

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-32: Multiple Packet Receive During DMA Operation (Data Size Known)

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–75

Figure 22-33: Multiple Packet Receive During DMA Operation (Data Size Not-known)

OTG Session Request

In order to conserve power, the USB on-the-go supplement allows VBUS to only be powered up when
required and to be turned off when the bus is not in use.

VBUS is always supplied by the A device on the bus. The USB controller determines whether it is the A
device or the B device by sampling the USB_ID input from the PHY. This signal is pulled low when an
A-type plug is sensed (signifying that the USB controller is the A device), but the input is taken high when
a B-type plug is sensed (signifying that the USB controller is the B device).

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Starting a Session

When the device containing the USB controller wants to start a session, the processor core must set the
USB_DEV_CTL.SESSION bit. The USB controller then enables ID pin sensing. This results in the USB_ID
input either being taken low if an A-type connection is detected or high if a B-type connection is detected.
The USB_DEV_CTL.BDEVICE bit is also set to indicate whether the USB controller has adopted the role of
the A device or the B device.

 The USB controller is the A device. The USB controller then enters host mode (the A device is always the
default host), and waits for VBUS to go above the VBUS valid threshold, as indicated when the USB_DEV_
CTL.VBUS bits go to 11.

The USB controller then waits for a peripheral to be connected. When a peripheral is detected, a connect
interrupt (USB_IRQ.CON bit) is generated (if enabled) and either the USB_DEV_CTL.FSDEV or USB_DEV_
CTL.LSDEV bits is set, depending on whether a full-speed peripheral or a low-speed peripheral was
detected. The processor core should then reset this peripheral. To end the session, the processor core
should clear the USB_DEV_CTL.SESSION bit.

 The USB controller is the B device. The USB controller requests a session using the session request
protocol defined in the USB on-the-go supplement. This is accomplished by setting the USB_DEV_
CTL.SESSION bit.

At the end of the session, the USB_DEV_CTL.SESSION bit is cleared—usually by the USB controller but it
can also be cleared by the processor core if the application software wishes to perform a software discon-
nect. For more information, see the description of the USB_DEV_CTL register. The USB controller switches
on the pull-up resistor on D+. This signals to the A device to end the session.

Detecting Activity

When the other device of the OTG set-up wants to start a session, it either raises VBUS above the session
valid threshold (if it is the A device as indicated by the USB_DEV_CTL.VBUS bits=10), or (if it is the B device)
first pulses the data line then pulses VBUS. Depending on which of these actions happens, the USB
controller can determine whether it is the A device or the B device in the current set-up and act accord-
ingly.

 If VBUS is raised above the session valid threshold, the USB controller is the B device. The USB controller
sets the USB_DEV_CTL.SESSION bit. When reset signaling is detected on the bus, a reset interrupt (USB_
IRQ.RSTBABBLE=1) is generated (if enabled) that the processor core should interpret as the start of a
session. The USB controller is in peripheral mode at this point as the B device is the default peripheral.

At the end of the session, the A device turns off the power to VBUS. When VBUS drops below the session
valid threshold (as indicated by the USB_DEV_CTL.VBUS bits=01), the USB controller detects this and clears
the USB_DEV_CTL.SESSION bit to indicate that the session has ended. A disconnect interrupt (USB_
IRQ.DISCON bit) is also generated (if enabled).

 If data line/VBUS pulsing is detected, the USB controller is the A device. The controller generates a USB_
IRQ.SESSREQ interrupt to indicate that the B device is requesting a session. The processor core should then
start a session by setting the USB_DEV_CTL.SESSION bit.

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–77

Host Negotiation Protocol

When the USB controller is the A device (USB_ID low, USB_DEV_CTL.BDEVICE=0), the controller automat-
ically enters host mode when a session starts.

When the USB controller is the B device (USB_ID high, USB_DEV_CTL.BDEVICE=1), the controller auto-
matically enters peripheral mode when a session starts. The processor core can request that the USB
controller become the host by setting the USB_DEV_CTL.HOSTREQ bit. This bit can be set either when
requesting a session start by setting the USB_DEV_CTL.SESSION bit or at any time after a session has started.

When the USB controller next enters suspend mode (no activity on the bus for 3 ms), and assuming the
USB_DEV_CTL.HOSTREQ bit remains set, the controller enters host mode and begins host negotiation (as
specified in the USB OTG supplement), causing the PHY to disconnect the pull-up resistor on the D+ line.
This should cause the A device to switch to peripheral mode and to connect its own pull-up resistor. When
the USB controller detects this, it generates a connect interrupt (USB_IRQ.CON bit). The controller also sets
the USB_POWER.RESET bit to begin resetting the A device. (The USB controller begins this reset sequence
automatically to ensure that reset is started as required within 1 ms of the A device connecting its pull-up
resistor). The processor core should wait at least 20 ms, then clear the USB_POWER.RESET bit and
enumerate the A device.

When the USB controller-based B device has finished using the bus, the processor core should put it into
suspend mode by setting the USB_POWER.SUSPEND. The A device should detect this and either terminate
the session or revert to host mode. If the A device is USB controller-based, it generates a disconnect inter-
rupt (USB_IRQ.DISCON bit) if enabled.

Wakeup from Hibernate State

To conserve power when the chip is idle, systems often uses power-down modes to shut down power and
clocks to various parts of the chip. Hibernate state saves the most power (core clock, peripherals clocks,
and internal power are off; only external power is on).

During the course of normal operation, the software can decide that the chip has been idle for a long
enough period that there is no immediate need for the clocks to be active and the chip can be put into a
power-down mode such as hibernate. This period of inactivity occurs when there is a USB suspend state
(idle on the bus for greater than 3 ms) or if no OTG session is valid. The USB_POWER.SUSPEND bit and USB_
DEV_CTL.VBUS status bits are used to indicate these states.

Before the system software (driver) pushes processor into the hibernate state, the software has to make sure
that the USB_PHY_CTL.HIBER bit is set. Setting this bit activates the non-idle activity detection logic in the
PHY. Any non-idle activity on the USB bus is detected by the non-idle activity detection logic in the analog
PHY. This logic wakes up the processor and generates a low to high transition on the SYS_EXTWAKEpin.

To use non-idle activity detection logic as a wakeup source for the processor, enable the USB wakeup
source by programming the appropriate bits in the DPM wakeup enable register (DPM_WAKE_EN). After the
processor wakes up, USB is listed as the wakeup source in the DPM wakeup status (DPM_WAKE_STAT)
register. The SYS_EXTWAKEpin can be used by the external power-up sequence chip to power up SDRAM

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

or an other external peripheral. The processor typically goes through these steps when it comes out of
hibernate state.

After the chip comes out of hibernate state, the software has to make sure that theUSB_PHY_CTL.RESTORE
bit is set. This setting deactivates the non-idle activity detection logic and ensures proper USB function-
ality.

Figure 22-34: Timing Diagram of EXT_WAKE Pin

The interrupt will be asserted when either of the following events occur:

• Non-idle signaling occurs during the USB suspend state (including USB reset signaling)

• VBUS falls below the session valid threshold

Data Transfer

Regardless of whether the USB controller is operating in host or peripheral mode, data is channeled
through the endpoint FIFOs to construct packets that are sent or received over the USB. The RX FIFOs are
used to receive OUT packets when in peripheral mode and IN packets when operating in host mode. Simi-
larly, the TX FIFOs are used to transmit IN packets when in peripheral mode and OUT packets as a host.

Data may be moved between the FIFOs and memory using either DMA or core accesses. Each endpoint
FIFO has its own individually programmable options so that each can be set up separately. Different
transfer types must be treated differently by the system. Data transfers of significant size almost certainly

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–79

require DMA to move the data around; but smaller packet sizes might be handled completely by the
processor.

Each data endpoint supports both double and single-buffering modes. In single-buffered operation, FIFOs
are unloaded and loaded on a packet-by-packet basis. Double-buffering imposes less burden on the system
by allowing two packets to be buffered in a FIFO before it is necessary to use DMA/interrupts to service
the FIFO. Double-buffering mode is automatically enabled when a MaxPktSize is set for an endpoint that
is equal to or less than half the size in bytes of that FIFO.

Loading/Unloading Packets from Endpoints

Transfers to and from the FIFOs can be 32-bit, 16-bit, or 8-bit. When using core accesses, the same width
must be used for transfers associated with one data packet, so that data is consistently byte, half-word or
word aligned. The last transfer may, however, contain fewer bytes than the previous transfers in order to
complete an 8-bit or 16-bit transfer.

When using the DMA to access the FIFOs, the only requirement is that the starting DMA address be word
aligned, or aligned on a 32-bit boundary. The packet transfer starts with a word transfer, but half-word
and/or byte transfers may be added at the end to handle any left overs.

DMA Master Channels

The USB controller provides eight DMA master channels to provide a more efficient transfer of larger
amounts of data between the FIFOs and the processor core; and to free up the processor core for other
tasks. Each of these channels is configured and controlled using the DMA control registers.

Each DMA controller can operate in one of two DMA modes: 0 or 1. When operating in mode 0, the DMA
controller only can be programmed to load or unload one packet, so processor intervention is required for
each packet transferred over the USB. This mode can be used with any endpoint, whether it uses control,
bulk, isochronous, or interrupt transactions.

When operating in DMA mode 1, the DMA controller can only be programmed to load/unload a complete
bulk transfer, which can be many packets. After set up, the DMA controller loads or unloads the packets,
interrupting the processor only when the transfer has completed. DMA mode 1 can only be used with
endpoints that use bulk transactions and is most valuable where large blocks of data are transferred to a
bulk endpoint. The USB protocol requires such packets to be split into a series of packets of MaxPktSize
for the endpoint.

Mode 1 can be used to avoid the overhead of having to interrupt the processor after each individual packet
because the processor is only interrupted after the transfer has completed. In some cases, the block of data
transferred comprises a predefined number of these packets that the controlling software counts through
the transfer process. In other cases, the last packet in the series may be less than the maximum packet size
and the receiver may use this short packet to signal the end of the transfer. If the total size of the transfer
is an exact multiple of the maximum packet size, the transmitting software should send a null packet for
the receiver to detect.

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–80 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE:

Each channel can be independently programmed for the selected operating mode.

NOTE:

For bulk OUT transfers using DMA mode 1, the DMA request line is asserted only when there is an edge
transition of the state of the USB_EPn_RXCSR_H.RXPKTRDY and a payload of MaxPktSize has been received.
If a data packet has been sitting in the FIFO prior to setting the DMA request mode bits (USB_EPn_RXCSR_
H.DMAREQMODE or USB_EPn_RXCSR_P.DMAREQMODE), the DMA request line is not asserted when the DMA
is enabled using the USB_DMAn_CTL.EN bit. This causes the data to not be read from the RX FIFO, resulting
in a DMA hang. However, since the packet arrived before DMA request mode and DMA request enable
bits (USB_EPn_RXCSR_H.DMAREQEN or USB_EPn_RXCSR_P.DMAREQEN) were enabled, an RX interrupt is
generated for the corresponding endpoint. Therefore, the software should set the DMA request mode to
request mode 0 to unload the pre-received packet. The RX interrupt service routine may be similar to the
following.

If USB_EPn_RXCNT == MaxPktSize

Switch to DMA mode 0 and unload the packet (in mode 0, the DMA request enable is always asserted
whenever there is data in the FIFO)

Set the USB_EPn_RXCNT to MaxPktSize so as to unload only one packet

If USB_EPn_RXCSR_H.AUTOCLR is set, USB_EPn_RXCSR_H.RXPKTRDY does not need to be cleared manually.

Switch back to DMA Mode 1 and set the count to

(Total_Count – MaxPktSize)

Else

Handle as normal for case of short packet

DMA transfers may be 8-bit, 16-bit, or 32-bit. All transfers associated with one packet (with the exception
of the last) must be of the same width, so that the data is consistently byte-aligned or word-aligned. The
last transfer may contain fewer bytes than the previous transfers in order to complete an odd-byte or
odd-word transfer.

DMA Bus Cycles

The DMA controller uses incrementing bursts of an unspecified length on the peripheral DMA bus. The
controller starts a new burst when it is first granted bus mastership (whether at the start of a USB packet
or when regaining the bus after losing it after a partial packet) and when the peripheral address starts a new
1K byte block.

When unloading packets from the FIFOs, the DMA controller requests ahead to the USB controller.
Although it starts the transfer with two BUSY cycles while it is getting the first word from the FIFO, all
subsequent words of the packet are immediately available and no further BUSY cycles are required. The

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–81

DMA controller is associated with a two-word buffer, so no data is lost if it loses bus mastership in the
middle of unloading a packet. When bus mastership is regained, it can continue unloading the packet
without adding any BUSY cycles.

The DMA start address (written to the USB_DMAn_ADDR register) must be word aligned. Split transactions
and retries are supported.

The DMA request lines are individually enabled using the appropriate DMA request enable bit (there are
four options: TX peripheral and host and RX peripheral and host) and operate in two modes, referred to
as DMA request mode 0 and DMA request mode 1. The operating mode is configured using the appro-
priate DMA request mode bit (there are four options: TX peripheral and host and RX peripheral and host).

NOTE: When operating in host mode, if either the USB_EPn_TXCSR_H.RXSTALL bit or the USB_EPn_
TXCSR_H.TXTOERR is set following three failed attempts to transmit a packet, the DMA request line
is disabled until the bits have been cleared.

The mode selected also affects the generation of Endpoint interrupts (if enabled). In DMA request mode
0, no interrupt is generated when packets are received but the appropriate Endpoint interrupt is generated
to prompt the loading of all packets. In DMA request mode 1, the Endpoint interrupt is suppressed except
following the receipt of a short packet (one less than USB_EPn_RXMAXP bytes).

NOTE: The USB_EPn_TXMAXP/USB_EPn_RXMAXP registers must be set to an even number of bytes for
proper interrupt generation in DMA mode 1.

DMA transfers may be 8-bit, 16-bit, or 32-bit as required. However, all transfers associated with one packet
(with the exception of the last) must be of the same width so that the data is consistently byte-, word- or
double-word-aligned. The last transfer may contain fewer bytes than the previous transfers in order to
complete an odd-byte or odd-word transfer.

NOTE: DMA requests should be disabled before the DMA request mode bit is changed. In particular, the
USB_EPn_TXCSR_H.DMAREQMODE bit should not be set to zero either before or in the same cycle as
the corresponding USB_EPn_TXCSR_H.DMAREQEN bit is cleared to zero.

Table 22-7: Endpoint Interrupt Associated with the Receive Packet Ready Bit=1

DMAReqEnab DMAReqMode EP Interrupt Generated?

0 X YES

1 0 NO

1 1 Only is short packet

Table 22-8: Endpoint Interrupt Associated with the Receive Packet Ready Bit=0

DMAReqEnab DMAReqMode EP Interrupt Generated?

0 X YES

1 0 YES

1 1 NO

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

22–82 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Transferring Packets Using DMA

Use of the DMA master channels to access the USB controller FIFOs requires that both the appropriate
channel and the endpoint be programmed appropriately. Many variations are possible. The following
sections detail the standard set ups used for the basic actions of transferring individual and multiple
packets.

Individual RX Endpoint Packet

The transfer of individual packets is normally carried out using DMA mode 0. The USB controller RX
endpoint is programmed as follows.

1. The relevant bit in the USB_INTRRXE register is set to 1.

2. The DMA enable bit of the appropriate USB_EPn_RXCSR_H.DMAREQEN/USB_EPn_RXCSR_P.DMAREQEN
register is set to 0. (There is no need to set the USB controller to support DMA for this operation.)

3. When a packet is received by the USB controller, it generates the appropriate endpoint interrupt (using
the USB_INTRRXE register). The processor should then program the appropriate DMA master channel
as follows.

• Configure the USB_DMAn_ADDR register with the memory address to store the packet

• Configure the USB_DMAn_CNT register with the size of packet (determined by reading the USB
controller USB_RQPKTCNTn register)

• Configure the USB_DMAn_CTL register using the following bit settings:USB_DMAn_CTL.IE=1
USB_DMAn_CTL.EN=1, USB_DMAn_CTL.DIR=0, USB_DMAn_CTL.MODE=0

The DMA controller then requests bus mastership and transfers the packet to memory. It interrupts the
processor when it has completed the transfer. The processor should then clear the USB_EPn_RXCSR_
H.RXPKTRDY bit.

Individual TX Endpoint Packet

Using DMA mode 0, a USB controller TX endpoint is programmed as follows.

1. The relevant bit in the USB_INTRTXE register is set to 1.

2. The DMA enable bit of the appropriate USB_EPn_TXCSR_H.DMAREQEN/USB_EPn_TXCSR_P.DMAREQEN
register is set to 0. (There is no need to set the USB controller to support DMA for this operation.)

3. When the FIFO can accommodate data, the USB controller interrupts the processor with the appro-
priate TX endpoint interrupt. The processor should then program the DMA channel as follows:

• Configure the USB_DMAn_ADDR register with the memory address to store the packet

• Configure the USB_DMAn_CNT register with the size of packet

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–83

• Configure the USB_DMAn_CTL register using the following bit settings: USB_DMAn_CTL.IE=1
USB_DMAn_CTL.EN=1, USB_DMAn_CTL.DIR=1, USB_DMAn_CTL.MODE=0

The DMA controller then requests bus mastership and transfers the packet to the USB controller FIFO.
When it has completed the transfer, it generates a DMA interrupt. The processor should then set the USB_
EPn_TXCSR_H.TXPKTRDY bit.

Multiple RX Endpoint Packets

Multiple packets normally are transferred using DMA mode 1. The DMA controller is programmed using
the DMA registers:

• Configure the USB_DMAn_ADDR register with the memory address of data block to send

• Configure the USB_DMAn_CNT register with the maximum size of data buffer

• Configure the USB_DMAn_CTL register using the following bit settings: USB_DMAn_CTL.EN=1, USB_
DMAn_CTL.IE=1, USB_DMAn_CTL.DIR=0, USB_DMAn_CTL.MODE=1

The USB controller RX endpoint should now be programmed as follows:

1. The relevant bit in the USB_INTRRX register is set to 1.

2. The USB_EPn_RXCSR_H.AUTOCLR, USB_EPn_RXCSR_H.DMAREQEN and USB_EPn_RXCSR_H.DMAREQMODE
bits of the appropriate receive control and status register (host or peripheral) register is set to 1. In host
mode, the USB_EPn_RXCSR_H.AUTOREQ and USB_EPn_RXCSR_H.DMAREQMODE bits should also be set to
1.

As each packet is received by the USB controller, the DMA master channel requests bus mastership and
transfers the packet to memory. With USB_EPn_RXCSR_H.AUTOCLR set, the USB controller automatically
clears its USB_EPn_RXCSR_H.RXPKTRDY bit. This process continues automatically until the USB controller
receives a short packet (one of less than the maximum packet size for the endpoint) signifying the end of
the transfer. This short packet is not transferred by the DMA controller: instead the USB controller inter-
rupts the processor by generating the appropriate endpoint interrupt. The processor can then read the
USB_EPn_RXCNTregister to see the size of the short packet and either unload it manually or reprogram the
DMA controller in mode 0 to unload the packet.

The USB_DMAn_ADDR register is incremented as the packets are unloaded, so the processor can determine
the size of the transfer by comparing the current value of USB_DMAn_ADDR with the start address of the
memory buffer.

If the size of the transfer exceeds the data buffer size, the DMA controller stops unloading the FIFO and
interrupts the processor.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–84 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Multiple TX Endpoint Packets

Using DMA mode 1 for a TX endpoint, the DMA controller is programmed as follows:

• Configure the USB_DMAn_ADDR register with the memory address of data block to send

• Configure the USB_DMAn_CNT register with the size of the data block

• Configure the USB_DMAn_CTL register using the following bit settings: USB_DMAn_CTL.EN=1, USB_
DMAn_CTL.IE=1 USB_DMAn_CTL.DIR=1, USB_DMAn_CTL.MODE=1

The USB controller TX endpoint is programmed as follows:

1. The relevant bit in the USB_INTRTXE register is set to 1.

2. The USB_EPn_TXCSR_H.AUTOSET and USB_EPn_TXCSR_H.DMAREQEN bits of the appropriate transmit
control and status register (host or peripheral) is set to 1.

When the FIFO in the USB controller becomes available, the DMA controller requests bus mastership and
transfers a packet to the FIFO. With USB_EPn_TXCSR_H.AUTOSET set, the USB controller automatically
sets the USB_EPn_TXCSR_H.TXPKTRDY bit. This process continues until the entire data block is transferred
to the USB controller.

The DMA controller then interrupts the processor by taking the appropriate USB_DMA_IRQ register bit low.
Note that:

• If the last packet loaded was less than the maximum packet size for the endpoint, the USB_EPn_TXCSR_
H.TXPKTRDY bit is not set for this packet. The processor should respond to the DMA interrupt by
setting the USB_EPn_TXCSR_H.TXPKTRDY bit to allow the last short packet to be sent.

• If the last packet loaded was of the maximum packet size, then the action to take depends on whether
the transfer is under the control of an application such as the mass storage software on Windows system
that keeps count of the individual packets sent.

• If the transfer is not under such control, the processor should respond to the DMA interrupt by setting
the USB_EPn_TXCSR_H.TXPKTRDY bit. This has the effect of sending a null packet for the receiving soft-
ware to interpret as indicating the end of the transfer.

ADSP-BF60x USB Register Descriptions
Universal Serial Bus Controller (USB) contains the following registers.

Table 22-9: ADSP-BF60x USB Register List

Name Description

USB_FADDR Function Address Register

USB_POWER Power and Device Control Register

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–85

USB_INTRTX Transmit Interrupt Register

USB_INTRRX Receive Interrupt Register

USB_INTRTXE Transmit Interrupt Enable Register

USB_INTRRXE Receive Interrupt Enable Register

USB_IRQ Common Interrupts Register

USB_IEN Common Interrupts Enable Register

USB_FRAME Frame Number Register

USB_INDEX Index Register

USB_TESTMODE Testmode Register

USB_FIFOBn FIFO Byte (8-Bit) Register

USB_FIFOHn FIFO Half-Word (16-Bit) Register

USB_FIFOn FIFO Word (32-Bit) Register

USB_DEV_CTL Device Control Register

USB_TXFIFOSZ Transmit FIFO Size Register

USB_RXFIFOSZ Receive FIFO Size Register

USB_TXFIFOADDR Transmit FIFO Address Register

USB_RXFIFOADDR Receive FIFO Address Register

USB_EPINFO Endpoint Information Register

USB_RAMINFO RAM Information Register

USB_LINKINFO Link Information Register

USB_VPLEN VBUS Pulse Length Register

USB_HS_EOF1 High-Speed EOF 1 Register

USB_FS_EOF1 Full-Speed EOF 1 Register

USB_LS_EOF1 Low-Speed EOF 1 Register

Table 22-9: ADSP-BF60x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–86 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

USB_SOFT_RST Software Reset Register

USB_MPn_TXFUNCADDR MPn Transmit Function Address Register

USB_MPn_TXHUBADDR MPn Transmit Hub Address Register

USB_MPn_TXHUBPORT MPn Transmit Hub Port Register

USB_MPn_RXFUNCADDR MPn Receive Function Address Register

USB_MPn_RXHUBADDR MPn Receive Hub Address Register

USB_MPn_RXHUBPORT MPn Receive Hub Port Register

USB_EPn_TXMAXP EPn Transmit Maximum Packet Length Register

USB_EP0_CSRn_H EP0 Configuration and Status (Host) Register

USB_EP0_CSRn_P EP0 Configuration and Status (Peripheral) Register

USB_EPn_TXCSR_H EPn Transmit Configuration and Status (Host) Register

USB_EPn_TXCSR_P EPn Transmit Configuration and Status (Peripheral) Register

USB_EPn_RXMAXP EPn Receive Maximum Packet Length Register

USB_EPn_RXCSR_H EPn Receive Configuration and Status (Host) Register

USB_EPn_RXCSR_P EPn Receive Configuration and Status (Peripheral) Register

USB_EP0_CNTn EP0 Number of Received Bytes Register

USB_EPn_RXCNT EPn Number of Bytes Received Register

USB_EPn_TXTYPE EPn Transmit Type Register

USB_EP0_TYPEn EP0 Connection Type Register

USB_EP0_NAKLIMITn EP0 NAK Limit Register

USB_EPn_TXINTERVAL EPn Transmit Polling Interval Register

USB_EPn_RXTYPE EPn Receive Type Register

USB_EPn_RXINTERVAL EPn Receive Polling Interval Register

USB_EP0_CFGDATAn EP0 Configuration Information Register

Table 22-9: ADSP-BF60x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–87

Function Address Register

The USB_FADDR register contains the device address used in peripheral mode. The processor writes this
register with the address received through a SET_ADDRESS command from the host.

USB_DMA_IRQ DMA Interrupt Register

USB_DMAn_CTL DMA Channel n Control Register

USB_DMAn_ADDR DMA Channel n Address Register

USB_DMAn_CNT DMA Channel n Count Register

USB_RQPKTCNTn EPn Request Packet Count Register

USB_CT_UCH Chirp Timeout Register

USB_CT_HHSRTN Host High Speed Return to Normal Register

USB_CT_HSBT High Speed Timeout Register

USB_LPM_ATTR LPM Attribute Register

USB_LPM_CTL LPM Control Register

USB_LPM_IEN LPM Interrupt Enable Register

USB_LPM_IRQ LPM Interrupt Status Register

USB_LPM_FADDR LPM Function Address Register

USB_VBUS_CTL VBUS Control Register

USB_BAT_CHG Battery Charging Control Register

USB_PHY_CTL PHY Control Register

USB_PLL_OSC PLL and Oscillator Control Register

Table 22-9: ADSP-BF60x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–88 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-35: USB_FADDR Register Diagram

Power and Device Control Register

The USB_POWER register controls suspend and resume signaling and controls some operational aspects of
the USB controller.

Figure 22-36: USB_POWER Register Diagram

Table 22-10: USB_FADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Function Address Value.
The USB_FADDR.VALUE bits contain the address of the peripheral part of the
transaction.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–89

Table 22-11: USB_POWER Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

ISOUPDT ISO Update Enable.
The USB_POWER.ISOUPDT bit directs the USB controller to waits for an SOF
token from the time TXPKTRDY is set before sending the packet. If an IN token is
received before an SOF token, the USB controller send a zero length data packet. This
USB_POWER.ISOUPDT bit only affects endpoints performing isochronous
transfers. This bit only is valid in peripheral mode (USB_DEV_CTL.HOSTMODE =
0).

0 Disable ISO Update

1 Enable ISO Update

6
(R/W)

SOFTCONN Soft Connect/Disconnect Enable.
In peripheral mode, the D+/- lines default to disconnected. Setting this bit will enable
the D+/- termination resistors. This bit is automatically set when the DevCtl.Session
bit is written with '1'. The USB_POWER.SOFTCONN bit enables USB controller soft
connect/disconnect, enabling the termination resistors for USB_DP (Data +) and
USB_DM (Data -) pins. When disabled, these pins are three-stated. Note that USB_
POWER.SOFTCONN only is valid in peripheral mode (USB_DEV_CTL.HOSTMODE
= 0).

0 Disable Soft Connect/Disconnect

1 Enable Soft Connect/Disconnect

5
(R/W)

HSEN High Speed Mode Enable.
The USB_POWER.HSEN bit enables USB controller negotiation for high speed when
the device is reset by the hub/host. If disabled, the USB controller only operates in
full-speed mode.

0 Disable Negotiation for HS Mode

1 Enable Negotiation for HS Mode

4
(R/NW)

HSMODE High Speed Mode.
The USB_POWER.HSMODE bit indicates whether or not the USB controller
successfully negotiated high-speed mode during a USB controller reset. In peripheral
mode (USB_DEV_CTL.HOSTMODE = 0), this bit has valid data when the USB
controller completes reset. In host mode (USB_DEV_CTL.HOSTMODE = 1), this bit
has valid data when the USB_IRQ.RSTBABBLE bit is cleared, remaining valid for
the duration of the session.

0 Full Speed Mode (HS fail during reset)

1 High Speed Mode (HS success during reset)

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–90 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Transmit Interrupt Register

The USB_INTRTX register indicates which interrupts are currently active for endpoint 0 and the transmit
(Tx) endpoints. Note that the USB controller automatically clears this register when it is read.

3
(R/W)

RESET Reset USB.
The USB_POWER.RESET bit indicates (in both host and peripheral modes) that the
USB controller has detected that reset signaling is present on the bus. In peripheral
mode (USB_DEV_CTL.HOSTMODE = 0), this bit is read only, but in host mode
(USB_DEV_CTL.HOSTMODE = 1), this bit is read/write, permitting the processor
core to set the bit and initiate a USB controller reset.

0 No Reset

1 Reset USB

2
(R/W)

RESUME Resume Mode.
The USB_POWER.RESUME bit directs the USB controller to generate resume
signaling when the function is in suspend mode (USB_POWER.SUSPEND =1). The
processor core should clear this bit after 10 ms (a maximum of 15 ms) to end resume
signaling. When the USB controller is in host mode (USB_DEV_CTL.HOSTMODE =
1), the USB controller automatically sets the USB_POWER.RESUME bit when
resume signaling from the target is detected while the USB controller is suspended.

0 Disable Resume Signaling

1 Enable Resume Signaling

1
(R/W1S)

SUSPEND Suspend Mode.
When the USB controller is in host mode (USB_DEV_CTL.HOSTMODE = 1), the
USB_POWER.SUSPEND bit enables suspend mode. When the USB controller is in
peripheral mode (USB_DEV_CTL.HOSTMODE = 0), the USB controller sets the
USB_POWER.SUSPEND bit on entry to suspend mode and clears the bit when the
processor reads the USB_IRQ register. Note that the USB controller automatically
clears this bit if the USB_POWER.RESUME bit is set.

0 Disable Suspend Mode (Host)

1 Enable Suspend Mode (Host)

0
(R/W)

SUSEN SUSPENDM Output Enable.
The USB_POWER.SUSEN bit enables the SUSPENDM output (internal USB
controller signal). When enabled, the SUSPENDM output signal is used by the USB
controller PHY to power-down its drivers when the USB controller is not active.

0 Disable SUSPENDM Output

1 Enable SUSPENDM Output

Table 22-11: USB_POWER Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–91

Figure 22-37: USB_INTRTX Register Diagram

Table 22-12: USB_INTRTX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(RC/NW)

EP11 End Point 11 Tx Interrupt.
The USB_INTRTX.EP11 bit indicates whether or not a transmit interrupt is
pending for this endpoint.

0 No Interrupt

1 Interrupt Pending

10
(RC/NW)

EP10 End Point 10 Tx Interrupt.
The USB_INTRTX.EP10 bit indicates whether or not a transmit interrupt is
pending for this endpoint.

0 No Interrupt

1 Interrupt Pending

9
(RC/NW)

EP9 End Point 9 Tx Interrupt.
The USB_INTRTX.EP9 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

8
(RC/NW)

EP8 End Point 8 Tx Interrupt.
The USB_INTRTX.EP8 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–92 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

7
(RC/NW)

EP7 End Point 7 Tx Interrupt.
The USB_INTRTX.EP7 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

6
(RC/NW)

EP6 End Point 6 Tx Interrupt.
The USB_INTRTX.EP6 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

5
(RC/NW)

EP5 End Point 5 Tx Interrupt.
The USB_INTRTX.EP5 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

4
(RC/NW)

EP4 End Point 4 Tx Interrupt.
The USB_INTRTX.EP4 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

3
(RC/NW)

EP3 End Point 3 Tx Interrupt.
The USB_INTRTX.EP3 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

2
(RC/NW)

EP2 End Point 2 Tx Interrupt.
The USB_INTRTX.EP2 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

1
(RC/NW)

EP1 End Point 1 Tx Interrupt.
The USB_INTRTX.EP1 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

Table 22-12: USB_INTRTX Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–93

Receive Interrupt Register

The USB_INTRRX register indicates which interrupts are currently active for the receive (Rx) endpoints.
Note that the USB controller automatically clears this register when it is read.

Figure 22-38: USB_INTRRX Register Diagram

0
(RC/NW)

EP0 End Point 0 Tx Interrupt.
The USB_INTRTX.EP0 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

Table 22-13: USB_INTRRX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(RC/NW)

EP11 End Point 11 Rx Interrupt..
The USB_INTRRX.EP11 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

Table 22-12: USB_INTRTX Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–94 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

10
(RC/NW)

EP10 End Point 10 Rx Interrupt..
The USB_INTRRX.EP10 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

9
(RC/NW)

EP9 End Point 9 Rx Interrupt..
The USB_INTRRX.EP9 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

8
(RC/NW)

EP8 End Point 8 Rx Interrupt..
The USB_INTRRX.EP8 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

7
(RC/NW)

EP7 End Point 7 Rx Interrupt..
The USB_INTRRX.EP7 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

6
(RC/NW)

EP6 End Point 6 Rx Interrupt..
The USB_INTRRX.EP6 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

5
(RC/NW)

EP5 End Point 5 Rx Interrupt..
The USB_INTRRX.EP5 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

4
(RC/NW)

EP4 End Point 4 Rx Interrupt..
The USB_INTRRX.EP4 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

Table 22-13: USB_INTRRX Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–95

Transmit Interrupt Enable Register

The USB_INTRTXE register enables interrupts for endpoint 0 and the transmit (Tx) endpoints. Enabling an
interrupt in this register directs the USB controller to generate an interrupt if the corresponding interrupt
pending bit in the USB_INTRTX register is set.

Figure 22-39: USB_INTRTXE Register Diagram

3
(RC/NW)

EP3 End Point 3 Rx Interrupt..
The USB_INTRRX.EP3 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

2
(RC/NW)

EP2 End Point 2 Rx Interrupt..
The USB_INTRRX.EP2 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

1
(RC/NW)

EP1 End Point 1 Rx Interrupt..
The USB_INTRRX.EP1 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

Table 22-13: USB_INTRRX Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–96 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 22-14: USB_INTRTXE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W)

EP11 End Point 11 Tx Interrupt Enable.
The USB_INTRTXE.EP11 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

10
(R/W)

EP10 End Point 10 Tx Interrupt Enable.
The USB_INTRTXE.EP10 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

9
(R/W)

EP9 End Point 9 Tx Interrupt Enable.
The USB_INTRTXE.EP9 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

8
(R/W)

EP8 End Point 8 Tx Interrupt Enable.
The USB_INTRTXE.EP8 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

7
(R/W)

EP7 End Point 7 Tx Interrupt Enable.
The USB_INTRTXE.EP7 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

6
(R/W)

EP6 End Point 6 Tx Interrupt Enable.
The USB_INTRTXE.EP6 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

5
(R/W)

EP5 End Point 5 Tx Interrupt Enable.
The USB_INTRTXE.EP5 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

4
(R/W)

EP4 End Point 4 Tx Interrupt Enable.
The USB_INTRTXE.EP4 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

3
(R/W)

EP3 End Point 3 Tx Interrupt Enable.
The USB_INTRTXE.EP3 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–97

Receive Interrupt Enable Register

The USB_INTRRXE register enables interrupts for the receive (Rx) endpoints. Enabling an interrupt in this
register directs the USB controller to generate an interrupt if the corresponding interrupt pending bit in
the USB_INTRRX register is set.

Figure 22-40: USB_INTRRXE Register Diagram

2
(R/W)

EP2 End Point 2 Tx Interrupt Enable.
The USB_INTRTXE.EP2 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

1
(R/W)

EP1 End Point 1 Tx Interrupt Enable.
The USB_INTRTXE.EP1 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

0
(R/W)

EP0 End Point 0 Tx Interrupt Enable.
The USB_INTRTXE.EP0 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

Table 22-14: USB_INTRTXE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–98 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 22-15: USB_INTRRXE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W)

EP11 End Point 11 Rx Interrupt Enable.
The USB_INTRRXE.EP11 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

10
(R/W)

EP10 End Point 10 Rx Interrupt Enable.
The USB_INTRRXE.EP10 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

9
(R/W)

EP9 End Point 9 Rx Interrupt Enable.
The USB_INTRRXE.EP9 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

8
(R/W)

EP8 End Point 8 Rx Interrupt Enable.
The USB_INTRRXE.EP8 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

7
(R/W)

EP7 End Point 7 Rx Interrupt Enable.
The USB_INTRRXE.EP7 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

6
(R/W)

EP6 End Point 6 Rx Interrupt Enable.
The USB_INTRRXE.EP6 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

5
(R/W)

EP5 End Point 5 Rx Interrupt Enable.
The USB_INTRRXE.EP5 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

4
(R/W)

EP4 End Point 4 Rx Interrupt Enable.
The USB_INTRRXE.EP4 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

3
(R/W)

EP3 End Point 3 Rx Interrupt Enable.
The USB_INTRRXE.EP3 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–99

Common Interrupts Register

The USB_IRQ register indicates which interrupts are currently active for USB controller system sources.
Note that the USB controller automatically clears this register when it is read.

Figure 22-41: USB_IRQ Register Diagram

2
(R/W)

EP2 End Point 2 Rx Interrupt Enable.
The USB_INTRRXE.EP2 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

1
(R/W)

EP1 End Point 1 Rx Interrupt Enable.
The USB_INTRRXE.EP1 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

Table 22-16: USB_IRQ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(RC/NW)

VBUSERR VBUS Threshold Indicator.
The USB_IRQ.VBUSERR bit indicates whether the USB controller has detected that
the VBUS is below the VBUS valid threshold. This bit is valid only when the USB
controller is an A device. Note that the USB_IRQ.VBUSERR bit and the USB_
VBUS_CTL.DRVINT bit share an interrupt source line.

0 No Interrupt

1 Interrupt Pending

Table 22-15: USB_INTRRXE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–100 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

6
(RC/NW)

SESSREQ Session Request Indicator.
The USB_IRQ.SESSREQ bit indicates whether the USB controller has detected a
session request signal. This bit is valid only when the USB controller is an A device.

0 No Interrupt

1 Interrupt Pending

5
(RC/NW)

DISCON Disconnect Indicator.
The USB_IRQ.DISCON bit indicates whether the USB controller has detected a
device disconnect (host mode) or has detected a session end (peripheral mode).

0 No Interrupt

1 Interrupt Pending

4
(RC/NW)

CON Connection Indicator.
The USB_IRQ.CON bit indicates whether the USB controller has detected a device
connection. This bit is valid only in host mode.

0 No Interrupt

1 Interrupt Pending

3
(RC/NW)

SOF Start-of-frame Indicator.
The USB_IRQ.SOF bit indicates whether the USB controller has detected a start of
frame.

0 No Interrupt

1 Interrupt Pending

2
(RC/NW)

RSTBABBLE Reset/Babble Indicator.
The USB_IRQ.RSTBABBLE bit indicates whether the USB controller has detected
reset signalling on the bus. In host mode, the USB controller also indicates when the
USB controller detects babble. Note that the USB_IRQ.RSTBABBLE bit is only
active after the first SOF has been sent.

0 No Interrupt

1 Interrupt Pending

1
(RC/NW)

RESUME Resume Indicator.
The USB_IRQ.RESUME bit indicates whether the USB controller has detected
resume signaling on the bus while the USB controller is in suspend mode.

0 No Interrupt

1 Interrupt Pending

0
(RC/NW)

SUSPEND Suspend Indicator.
The USB_IRQ.SUSPEND bit indicates whether the USB controller has detected
suspend signalling on the bus. This bit is valid only in peripheral mode.

0 No Interrupt

1 Interrupt Pending

Table 22-16: USB_IRQ Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–101

Common Interrupts Enable Register

The USB_IEN register enables interrupts for USB controller system sources. Enabling an interrupt in this
register directs the USB controller to generate an interrupt if the corresponding interrupt pending bit in
the USB_IRQ register is set.

Figure 22-42: USB_IEN Register Diagram

Table 22-17: USB_IEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

VBUSERR VBUS Threshold Indicator Interrupt Enable.
The USB_IEN.VBUSERR bit enables the USB_IRQ.VBUSERR interrupt.

0 Disable Interrupt

1 Enable Interrupt

6
(R/W)

SESSREQ Session Request Indicator Interrupt Enable.
The USB_IEN.SESSREQ bit enables the USB_IRQ.SESSREQ interrupt.

0 Disable Interrupt

1 Enable Interrupt

5
(R/W)

DISCON Disconnect Indicator Interrupt Enable.
The USB_IEN.DISCON bit enables the USB_IRQ.DISCON interrupt.

0 Disable Interrupt

1 Enable Interrupt

4
(R/W)

CON Connection Indicator Interrupt Enable.
The USB_IEN.CON bit enables the USB_IRQ.CON interrupt.

0 Disable Interrupt

1 Enable Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–102 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Frame Number Register

The USB_FRAME register contains the frame number of the last received frame. The data in this register has
bit 10 as the MSB and bit 0 as the LSB.

Figure 22-43: USB_FRAME Register Diagram

3
(R/W)

SOF Start-of-frame Indicator Interrupt Enable.
The USB_IEN.SOF bit enables the USB_IRQ.SOF interrupt.

0 Disable Interrupt

1 Enable Interrupt

2
(R/W)

RSTBABBLE Reset/Babble Indicator Interrupt Enable.
The USB_IEN.RSTBABBLE bit enables the USB_IRQ.RSTBABBLE interrupt.

0 Disable Interrupt

1 Enable Interrupt

1
(R/W)

RESUME Resume Indicator Interrupt Enable.
The USB_IEN.RESUME bit enables the USB_IRQ.RESUME interrupt.

0 Disable Interrupt

1 Enable Interrupt

0
(R/W)

SUSPEND Suspend Indicator Interrupt Enable.
The USB_IEN.SUSPEND bit enables the USB_IRQ.SUSPEND interrupt.

0 Disable Interrupt

1 Enable Interrupt

Table 22-18: USB_FRAME Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10:0
(R/NW)

VALUE Frame Number Value.
The USB_FRAME.VALUE bits contains the frame number of the last received frame.
The data in this field has bit 10 as the MSB and bit 0 as the LSB.

Table 22-17: USB_IEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–103

Index Register

The USB_INDEX register contains an index value for mirrored addressing of USB controller endpoint
control and status registers.

There is one set of registers, but they are mirrored at two address locations if the endpoint is selected by
the USB_INDEX register. An endpoint's register set only appears in the indexed location if the USB_INDEX
register is written with that endpoint number. You can read/write an endpoint's register in either the
directly mapped location which is always visible, or in the indexed location which is only visible if the USB_
INDEX register is written with the endpoint number. The USB_INDEX register and indexed address locations
only affect address decoding. For example, loading a 0 into the USB_INDEX register selects endpoint 0
access.

The USB_INDEX register can be used for indexed access of the directly mapped control/status registers from
USB controller address offset 0x100-0x1FF. For products supporting the dynamic FIFO size feature, the
endpoint Tx/Rx size and address registers always use the USB_INDEX register, there is no direct mapping
for these endpoint specific registers. The multipoint USB_MPn_TXFUNCADDR, USB_MPn_TXHUBADDR, USB_
MPn_TXHUBPORT, USB_MPn_RXFUNCADDR, USB_MPn_RXHUBADDR, and USB_MPn_RXHUBPORT register only
have direct mapping, no indexed mapping.

Before accessing an endpoint's control/status registers using the indexed range, write the endpoint number
to the USB_INDEX register to ensure that the correct control/status registers appear in the indexed range of
the memory map.

Figure 22-44: USB_INDEX Register Diagram

Table 22-19: USB_INDEX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

EP Endpoint Index.
The USB_INDEX.EP bits selects mirrored access for an endpoints indexed control
and status registers. Valid values for this bit field are 0-11.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–104 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Testmode Register

The USB_TESTMODE register places the USB controller into test mode state and can also put the USB
controller into one of the test modes for high-speed operation. For more information about these modes,
see the USB 2.0 specification.

Note that the USB_TESTMODE register is not used in normal operation. Only one of the test mode (bits 0-6)
selection bits may be set at a time.

Figure 22-45: USB_TESTMODE Register Diagram

Table 22-20: USB_TESTMODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6
(R/W1A)

FIFOACCESS FIFO Access.
The USB_TESTMODE bit directs the USB controller to transfer the packet in the
endpoint 0 Tx FIFO to the endpoint 0 Rx FIFO. The bit is cleared automatically.

3
(R/W)

TESTPACKET Test_Packet Mode.
The USB_TESTMODE.TESTPACKET bit selects Test_Packet test mode, which
applies only when the USB controller in high speed mode. In this mode, the USB
controller repetitively transmits on the bus a 53-byte test packet, whose form is
defined in the USB 2.0 Specification, Section 7.1.20. Note that the test packet has a
fixed format and must be loaded into the endpoint 0 FIFO before this test mode is
entered.

2
(R/W)

TESTK Test_K Mode.
The USB_TESTMODE.TESTK bit selects Test_K test mode. In this mode, the USB
controller transmits a continuous K on the bus.

1
(R/W)

TESTJ Test_J Mode.
The USB_TESTMODE.TESTJ bit selects Test_J test mode. In this mode, the USB
controller transmits a continuous J on the bus.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–105

FIFO Byte (8-Bit) Register

Writes to the USB_FIFOBn register go to the endpoint Tx FIFO and reads from the USB_FIFOBn register
come from the endpoint Rx FIFO. The USB_FIFOBn, USB_FIFOHn, and USB_FIFOn registers are one and
the same. These registers exist at the same address. Typically, programs should load and unload the FIFO
using word (USB_FIFOn register) writes and reads, which are more efficient. Only if the USB packet is a
non-word (4-byte) size should the program use a half-word (USB_FIFOHn register) or byte (USB_FIFOBn
register) read or write at the end when loading or unloading the FIFO.

Note that (for correct USB controller operation) programs should not mix byte, half-word, or word
accesses, except for the last few bytes if the size of the packet is odd (not a multiple of the size they were
using).

Figure 22-46: USB_FIFOBn Register Diagram

FIFO Half-Word (16-Bit) Register

Writes to the USB_FIFOHn register go to the endpoint Tx FIFO and reads from the USB_FIFOHn register
come from the endpoint Rx FIFO. The USB_FIFOBn, USB_FIFOHn, and USB_FIFOn registers are one and
the same. These registers exist at the same address. Typically, programs should load and unload the FIFO

0
(R/W)

TESTSE0NAK Test SE0 NAK.
The USB_TESTMODE.TESTSE0NAK bit selects Test_SE0_NAK test mode, which
applies only when the USB controller in high speed mode. In this mode, the USB
controller remains in high-speed mode, but responds to any valid IN token with a
NAK.

Table 22-21: USB_FIFOBn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

FIFO FIFO Byte Data.
The USB_FIFOBn.FIFO bits provide byte access to the USB Tx and Rx endpoint
FIFOs.

Table 22-20: USB_TESTMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–106 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

using word (USB_FIFOn register) writes and reads, which are more efficient. Only if the USB packet is a
non-word (4-byte) size should the program use a half-word (USB_FIFOHn register) or byte (USB_FIFOBn
register) read or write at the end when loading or unloading the FIFO.

Note that (for correct USB controller operation) programs should not mix byte, half-word, or word
accesses, except for the last few bytes if the size of the packet is odd (not a multiple of the size they were
using).

Figure 22-47: USB_FIFOHn Register Diagram

FIFO Word (32-Bit) Register

Writes to the USB_FIFOn register go to the endpoint Tx FIFO and reads from the USB_FIFOn register come
from the endpoint Rx FIFO. The USB_FIFOBn, USB_FIFOHn, and USB_FIFOn registers are one and the
same. These registers exist at the same address. Typically, programs should load and unload the FIFO
using word (USB_FIFOn register) writes and reads, which are more efficient. Only if the USB packet is a
non-word (4-byte) size should the program use a half-word (USB_FIFOHn register) or byte (USB_FIFOBn
register) read or write at the end when loading or unloading the FIFO.

Note that (for correct USB controller operation) programs should not mix byte, half-word, or word
accesses, except for the last few bytes if the size of the packet is odd (not a multiple of the size they were
using).

Table 22-22: USB_FIFOHn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

FIFO FIFO Half-Word Data.
The USB_FIFOHn.FIFO bits provide half-word access to the USB Tx and Rx
endpoint FIFOs.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–107

Figure 22-48: USB_FIFOn Register Diagram

Device Control Register

The USB_DEV_CTL register selects whether the USB controller is operating in peripheral mode or in host
mode and is used for controlling and monitoring the VBUS line.

Figure 22-49: USB_DEV_CTL Register Diagram

Table 22-23: USB_FIFOn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE FIFO Word Data.
The USB_FIFOn.VALUE bits provide word access to the USB Tx and Rx endpoint
FIFOs.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–108 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 22-24: USB_DEV_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/NW)

BDEVICE A or B Devices Indicator.
The USB_DEV_CTL.BDEVICE bit indicates whether the USB controller is
operating as the A device or the B device. This bit is only valid while a session is in
progress.

0 A Device Detected

1 B Device Detected

6
(R/NW)

FSDEV Full or High-Speed Indicator.
The USB_DEV_CTL.FSDEV bit is set when a full-speed or high-speed device is
detected being connected to the port. High speed devices are distinguished from
full-speed by checking for high-speed chirps when the device detects a USB
controller reset. This bit is only valid in host mode.

0 Not Detected

1 Full or High Speed Detected

5
(R/NW)

LSDEV Low-Speed Indicator.
The USB_DEV_CTL.LSDEV bit is set when a low-speed device is detected being
connected to the port. This bit is only valid in host mode.

0 Not Detected

1 Low Speed Detected

4:3
(R/NW)

VBUS VBUS Level Indicator.
The USB_DEV_CTL.VBUS bits indicated the current VBUS level.

0 Below SessionEnd

1 Above SessionEnd, below AValid

2 Above AValid, below VBUSValid

3 Above VBUSValid

2
(R/NW)

HOSTMODE Host Mode Indicator.
The USB_DEV_CTL.HOSTMODE bit is set when the USB controller is acting as a
host.

0 Peripheral Mode

1 Host Mode

1
(R/W)

HOSTREQ Host Negotiation Request.
When the USB_DEV_CTL.HOSTREQ bit is set, the USB controller initiates the host
negotiation when Suspend mode is entered. This bit is cleared when host negotiation
is completed. The USB_DEV_CTL.HOSTREQ bit applies when the USB controller is
operating as a B device only.

0 No Request

1 Place Request

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–109

Transmit FIFO Size Register

The USB_TXFIFOSZ register defines the maximum amount of data that can be transferred through the
selected transmit endpoint in a single frame. When setting this value, you must consider the constraints
placed by the USB specification on packet sizes for bulk, interrupt and isochronous transactions in
full-speed operations. This register provides indexed access to the FIFO (packet) size selection for each Tx
endpoint (except endpoint 0).

Figure 22-50: USB_TXFIFOSZ Register Diagram

0
(R/W)

SESSION Session Indicator.
When operating as an A device, the USB_DEV_CTL.SESSION is set or cleared by
the processor core to start or end a session. When operating as a B device, the USB_
DEV_CTL.SESSION bit is set or cleared by the USB controller when a session starts
or ends. This bit is also set by the processor core to initiate the session request
protocol. When the USB controller is in Suspend mode, the bit may be cleared by the
processor core to perform a software disconnect.

0 Not Detected

1 Detected Session

Table 22-25: USB_TXFIFOSZ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

DPB Double Packet Buffering Enable.
The USB_TXFIFOSZ.DPB bit enables double packet buffering, doubling the FIFO
(packet) size selected with the USB_TXFIFOSZ.SZ field.

0 Single Packet Buffering

1 Double Packet Buffering

Table 22-24: USB_DEV_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–110 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Receive FIFO Size Register

The USB_RXFIFOSZ register defines the maximum amount of data that can be transferred through the
selected receive endpoint in a single frame. When setting this value, you must consider the constraints
placed by the USB specification on packet sizes for bulk, interrupt and isochronous transactions in
full-speed operations. This register provides indexed access to the FIFO (packet) size selection for each Rx
endpoint (except endpoint 0).

Note that a value greater than the maximum allowed of 1023 for full-speed USB controller operation
produces unpredictable results.

Also note that the value written to this register should match the programmed maximum individual packet
size (MaxPktSize) of the standard endpoint descriptor for the associated endpoint (see Universal Serial Bus
Specification Revision 2.0, Chapter 9). A mismatch could cause unexpected results. The total amount of
data represented by the value written to this register must not exceed the Rx FIFO size, and should not
exceed half the FIFO size if double-buffering is required.

3:0
(R/W)

SZ Maximum Packet Size.
The USB_TXFIFOSZ.SZ bits select the maximum FIFO (packet) size according to
the formula:
FIFOSZ= 2(SZ+3)
. If the USB_TXFIFOSZ.DPB is cleared, the FIFO size is FIFOSZ from this formula.
If the USB_TXFIFOSZ.DPB is set, the FIFO is twice this size.
For each enumeration value, the enumerations descriptions show the packet size
(PktSz=), the FIFO size if DPB=0 (DPB0=), and the FIFO size if DPB=1 (DPB1=);
these values are in bytes.

0 PktSz=8, DPB0=8, DPB1=16

1 PktSz=16, DPB0=16, DPB1=32

2 PktSz=32, DPB0=32, DPB1=64

3 PktSz=64, DPB0=64, DPB1=128

4 PktSz=128, DPB0=128, DPB1=256

5 PktSz=256, DPB0=256, DPB1=512

6 PktSz=512, DPB0=512, DPB1=1024

7 PktSz=1024, DPB0=1024, DPB1=2048

8 PktSz=2048, DPB0=2048, DPB1=4096

9 PktSz=4096, DPB0=4096, DPB1=8192

Table 22-25: USB_TXFIFOSZ Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–111

Figure 22-51: USB_RXFIFOSZ Register Diagram

Transmit FIFO Address Register

The USB_TXFIFOADDR sets the start address for the selected Tx FIFO for endpoints 1-11. There is one
transmit FIFO address register for each endpoint, except endpoint 0. The USB_TXFIFOADDR register is

Table 22-26: USB_RXFIFOSZ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

DPB Double Packet Buffering Enable.
The USB_RXFIFOSZ.DPB bit enables double packet buffering, doubling the FIFO
(packet) size selected with the USB_RXFIFOSZ.SZ field.

0 Single Packet Buffering

1 Double Packet Buffering

3:0
(R/W)

SZ Maximum Packet Size.
The USB_RXFIFOSZ.SZ bits select the maximum FIFO (packet) size according to
the formula:
FIFOSZ= 2(SZ+3)
. If the USB_RXFIFOSZ.DPB is cleared, the FIFO size is FIFOSZ from this formula.
If the USB_RXFIFOSZ.DPB is set, the FIFO is twice this size.
For each enumeration value, the enumerations descriptions show the packet size
(PktSz=), the FIFO size if DPB=0 (DPB0=), and the FIFO size if DPB=1 (DPB1=);
these values are in bytes.

0 PktSz=8, DPB0=8, DPB1=16

1 PktSz=16, DPB0=16, DPB1=32

2 PktSz=32, DPB0=32, DPB1=64

3 PktSz=64, DPB0=64, DPB1=128

4 PktSz=128, DPB0=128, DPB1=256

5 PktSz=256, DPB0=256, DPB1=512

6 PktSz=512, DPB0=512, DPB1=1024

7 PktSz=1024, DPB0=1024, DPB1=2048

8 PktSz=2048, DPB0=2048, DPB1=4096

9 PktSz=4096, DPB0=4096, DPB1=8192

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–112 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

indexed and selected by the USB_INDEX register. Note that the endpoint 0 FIFO has a fixed 64-byte size and
is always located at address 0.

Figure 22-52: USB_TXFIFOADDR Register Diagram

Receive FIFO Address Register

The USB_RXFIFOADDR sets the start address for the selected Rx FIFO for endpoints 1-11. There is one
receive FIFO address register for each endpoint, except endpoint 0. The USB_RXFIFOADDR register is
indexed and selected by the USB_INDEX register. Note that the endpoint 0 FIFO has a fixed 64-byte size and
is always located at address 0.

Figure 22-53: USB_RXFIFOADDR Register Diagram

Table 22-27: USB_TXFIFOADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12:0
(R/W)

VALUE Tx FIFO Start Address.
The USB_TXFIFOADDR.VALUE bits hold the start address of the selected endpoint
FIFO (selected with the USB_INDEX register) in units of 8 bytes, according to the
formula:
FIFO address = USB_TXFIFOADDR.VALUE * 8

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–113

Endpoint Information Register

The USB_EPINFO register allows read-back of the number of Tx and Rx endpoints available

Figure 22-54: USB_EPINFO Register Diagram

RAM Information Register

The USB_RAMINFO register provides information about the width of the USB controller RAM.

Table 22-28: USB_RXFIFOADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:0
(R/W)

VALUE Rx FIFO Start Address.
The USB_RXFIFOADDR.VALUE bits hold the start address of the selected endpoint
FIFO (selected with the USB_INDEX register) in units of 8 bytes, according to the
formula:
FIFO address = USB_RXFIFOADDR.VALUE * 8

Table 22-29: USB_EPINFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/NW)

RXEP Rx Endpoints.
The USB_EPINFO.RXEP bits indicate the number of receive endpoints. excluding
EP0.

3:0
(R/NW)

TXEP Tx Endpoints.
The USB_EPINFO.TXEP bits indicate the number of transmit endpoints, excluding
EP0.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–114 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-55: USB_RAMINFO Register Diagram

Link Information Register

The USB_LINKINFO register specifies the PHY-related delays.

Figure 22-56: USB_LINKINFO Register Diagram

Table 22-30: USB_RAMINFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/NW)

DMACHANS DMA Channels.
The USB_RAMINFO.DMACHANS bits indicate the number of DMA channels.

3:0
(R/NW)

RAMBITS RAM Address Bits.
The USB_RAMINFO.RAMBITS bits indicate the number of RAM address bits. The
USB controller FIFO RAM is 32-bits wide. The number of bytes in the FIFO RAM
may be calculated from the formula:
RAM_bytes = 2(RAM_Bits+2)

Table 22-31: USB_LINKINFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/W)

WTCON Wait for Connect/Disconnect.
The USB_LINKINFO.WTCON bits set the wait to be applied to allow for the users
connect or disconnect filter in units of 533.3ns. The default settings corresponds to
2.667us

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–115

VBUS Pulse Length Register

The USB_VPLEN register defines the duration of the VBUS pulsing charge for SRP initiation.

Figure 22-57: USB_VPLEN Register Diagram

High-Speed EOF 1 Register

The USB_HS_EOF1 register defines the minimum time gap allowed between the start of the last transaction
and the end of frame for high-speed transactions.

3:0
(R/W)

WTID Wait from ID Pull-up.
The USB_LINKINFO.WTID bits set the delay to be applied from IDPULLUP being
asserted to IDDIG being considered valid in units of 4.3690ms. The default
corresponds to 52.43ms UTMI+ spec says 50ms min. OTG spec does not have timing
requirements (it doesn't assume a programmable pull-up that is only sampled during
session start). Micro-USB cable spec says that the ID pin is greater than 10 Ohms
when shorted and less than 100k Ohms when open.

Table 22-32: USB_VPLEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE VBUS Pulse Length Value.
The USB_VPLEN.VALUE bits sets the duration of the VBUS pulsing charge in units
of 546.1us. The default setting corresponds to 32.77ms. Note that VBUS pulsing was
removed in the OTG specification v2.0, section 5.1.4.

Table 22-31: USB_LINKINFO Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–116 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-58: USB_HS_EOF1 Register Diagram

Full-Speed EOF 1 Register

The USB_FS_EOF1 register defines the minimum time gap allowed between the start of the last transaction
and the end of frame for full-speed transactions.

Figure 22-59: USB_FS_EOF1 Register Diagram

Table 22-33: USB_HS_EOF1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE High-Speed EOF 1 Value.
The USB_HS_EOF1.VALUE sets the time before end of frame to stop beginning
new transactions (in units of 133.3ns) for high-speed transactions. The default
setting corresponds to 17.07us.

Table 22-34: USB_FS_EOF1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Full-Speed EOF 1 Value.
The USB_FS_EOF1.VALUE bits set the time before end of frame to stop beginning
new transactions (in units of 533.3ns) for full-speed transactions. The default setting
corresponds to 63.46us.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–117

Low-Speed EOF 1 Register

The USB_LS_EOF1 register defines the minimum time gap allowed between the start of the last transaction
and the end of frame for low-speed transactions.

Figure 22-60: USB_LS_EOF1 Register Diagram

Software Reset Register

The USB_SOFT_RST register provides reset controls for the USB controller CLK domain and XCLK
domain. The USB controller PHY operates in the controller's XCLK domain, and the USB controller inter-
face to the processor core operates in the controller's CLK domain. Note that for correct operation, both
of the reset control bits (USB_SOFT_RST.RST and USB_SOFT_RST.RSTX) should always be asserted simul-
taneously.

Figure 22-61: USB_SOFT_RST Register Diagram

Table 22-35: USB_LS_EOF1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Low-Speed EOF 1 Value.
The USB_LS_EOF1.VALUE bits set the time before end of frame to stop beginning
new transactions (in units of 1.067us) for low-speed transactions. The default setting
corresponds to 121.6us.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–118 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

MPn Transmit Function Address Register

The USB_MPn_TXFUNCADDR register specifies the transmit endpoint's target address in host mode. This
register is not used in device mode. Note that the USB_MPn_TXFUNCADDR register must be setup for EP0.
(The USB_MPn_RXFUNCADDR register does not exist for EP0.)

Figure 22-62: USB_MPn_TXFUNCADDR Register Diagram

Table 22-36: USB_SOFT_RST Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W1A)

RSTX Reset USB XCLK Domain.
The USB_SOFT_RST.RSTX bit resets logic in the USB XCLK domain. This bit is
self clearing. Note that this bit should always be asserted simultaneously with the
USB_SOFT_RST.RST bit.

0 No Reset

1 Reset USB XCLK Domain

0
(R/W1A)

RST Reset USB CLK Domain.
The USB_SOFT_RST.RST bit resets logic in the USB CLK domain. This bit is self
clearing. Note that this bit should always be asserted simultaneously with the USB_
SOFT_RST.RSTX bit.

0 No Reset

1 Reset USB CLK Domain

Table 22-37: USB_MPn_TXFUNCADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Tx Function Address Value.
The USB_MPn_TXFUNCADDR.VALUE bits hold the address of the target device for
this endpoint.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–119

MPn Transmit Hub Address Register

The USB_MPn_TXHUBADDR register specifies the hub address of the endpoint in host mode. This register is
not used in device mode. Note that this register only needs to be programmed when a full-speed or
low-speed device is connected to a high-speed hub, which carries out the necessary transaction translation.
Also note that EP0 only uses the USB_MPn_TXHUBADDR register. (The USB_MPn_RXHUBADDR register does
not exist for EP0.)

Figure 22-63: USB_MPn_TXHUBADDR Register Diagram

MPn Transmit Hub Port Register

The USB_MPn_TXHUBPORT register specifies the hub port for full-speed and low-speed endpoints in host
mode. This register is not used in device mode. The USB_MPn_TXHUBPORT register lets the USB controller
support SPLIT transactions. EP0 only uses the USB_MPn_TXHUBPORT register. (The USB_MPn_RXHUBPORT
register does not exist for EP0.)

Table 22-38: USB_MPn_TXHUBADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

MULTTRANS Multiple Transaction Translators.
The USB_MPn_TXHUBADDR.MULTTRANS bit should be set if the hub has multiple
transaction translators.

0 Single Transaction Translator

1 Multiple Transaction Translators

6:0
(R/W)

ADDR Hub Address Value.
The USB_MPn_TXHUBADDR.ADDR bits hold the address of the hub to which this
device is connected.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–120 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-64: USB_MPn_TXHUBPORT Register Diagram

MPn Receive Function Address Register

The USB_MPn_RXFUNCADDR register specifies the receive endpoint's target address in host mode. This
register is not used in device mode. Note that the USB_MPn_RXFUNCADDR register does not exist for EP0.

Figure 22-65: USB_MPn_RXFUNCADDR Register Diagram

MPn Receive Hub Address Register

The USB_MPn_RXHUBADDR register specifies the hub address of the endpoint in host mode. This register is
not used in device mode. Note that this register only needs to be programmed when a full-speed or

Table 22-39: USB_MPn_TXHUBPORT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Hub Port Value.
The USB_MPn_TXHUBPORT.VALUE bits hold the hub port value of the target
device for this endpoint.

Table 22-40: USB_MPn_RXFUNCADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Rx Function Address Value.
The USB_MPn_RXFUNCADDR.VALUE bits hold the address of the target device for
this endpoint.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–121

low-speed device is connected to a high-speed hub, which carries out the necessary transaction translation.
Note that the USB_MPn_RXHUBADDR register does not exist for EP0.

Figure 22-66: USB_MPn_RXHUBADDR Register Diagram

MPn Receive Hub Port Register

The USB_MPn_RXHUBPORT register specifies the hub port for full-speed and low-speed endpoints in host
mode. This register is not used in device mode. The USB_MPn_RXHUBPORT register lets the USB controller
support SPLIT transactions. Note that the USB_MPn_RXHUBPORT register does not exist for EP0.

Figure 22-67: USB_MPn_RXHUBPORT Register Diagram

Table 22-41: USB_MPn_RXHUBADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

MULTTRANS Multiple Transaction Translators.
The USB_MPn_RXHUBADDR.MULTTRANS bit should be set if the hub has multiple
transaction translators.

0 Single Transaction Translator

1 Multiple Transaction Translators

6:0
(R/W)

ADDR Hub Address Value.
The USB_MPn_RXHUBADDR.ADDR bits hold the address of the hub to which this
device is connected.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–122 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EPn Transmit Maximum Packet Length Register

The USB_EPn_TXMAXP register defines the maximum amount of data that can be transferred through the
selected transmit endpoint in a single frame. When setting this value, you must consider the constraints
placed by the USB specification on packet sizes for bulk, interrupt and isochronous transactions in
full-speed operations. The USB_EPn_TXMAXP register provides indexed access to the maximum packet
length register for each Tx endpoint, except endpoint 0.

Figure 22-68: USB_EPn_TXMAXP Register Diagram

Table 22-42: USB_MPn_RXHUBPORT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Hub Port Value.
The USB_MPn_RXHUBPORT.VALUE bits hold the hub port value of the target
device for this endpoint.

Table 22-43: USB_EPn_TXMAXP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12:11
(R/W)

MULTM1 Multi-Packets per Micro-frame.
The USB_EPn_TXMAXP.MULTM1 bits select the number of high-speed
high-bandwidth isochronous or interrupt packets that may be transferred in a
microframe. The valid number of packets per microframe is 1-3 which corresponds
to settings 0-2. If this field is not zero, the USB controller splits the FIFO data into
multiple packets less than or equal to the maximum payload size.

10:0
(R/W)

MAXPAY Maximum Payload.
The USB_EPn_TXMAXP.MAXPAY bits select the maximum number of bytes that
may be transferred per transaction. This field can be up to 1024 but is subject to
constraints by the USB specification based on endpoint mode and speed. This field
should not exceed the FIFO size for the endpoint, or half the FIFO size if double
buffering is used. This value should match the wMaxPacketSize field of the standard
endpoint descriptor (USB 2.0 spec, section 9). The USB_EPn_TXMAXP.MAXPAY
bits must be set to an even number of bytes for proper interrupt generation in DMA
mode 1.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–123

EP0 Configuration and Status (Host) Register

The USB_EP0_CSRn_H register provides control and status bits for endpoint 0 in host mode. Note that some
bits may be set to clear automatically.

Figure 22-69: USB_EP0_CSRn_H Register Diagram

Table 22-44: USB_EP0_CSRn_H Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W)

DISPING Disable Ping.
The USB_EP0_CSRn_H.DISPING bit disables (in host mode) high-speed PING
tokens for the data and status phases of a control transfer.

0 Issue PING tokens

1 Do not issue PING

10
(R/W1A)

DATGLEN Data Toggle Write Enable.
The USB_EP0_CSRn_H.DATGLEN bit enables (in host mode) the USB controller
to write the current state of the endpoint 0 USB_EP0_CSRn_H.DATGL bit. This bit
is automatically cleared once the new value is written.

0 Disable Write to DATGL

1 Enable Write to DATGL

9
(R/W)

DATGL Data Toggle.
The USB_EP0_CSRn_H.DATGL bit indicates (in host mode) the current state of
the endpoint 0 data toggle. If D10 is high, this bit may be written with the required
setting of the data toggle. If D10 is low, any value written to this bit is ignored. This
bit is only used in host mode.

0 DATA0 is Set

1 DATA1 is Set

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–124 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

8
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EP0_CSRn_H.FLUSHFIFO bit directs (in host mode) the USB
controller to flush data from the endpoint 0 FIFO and clear the USB_EP0_CSRn_
H.TXPKTRDY and USB_EP0_CSRn_H.RXPKTRDY bits. The USB_EP0_CSRn_
H.FLUSHFIFO bit should only be set if the USB_EP0_CSRn_H.TXPKTRDY and
USB_EP0_CSRn_H.RXPKTRDY bits are set. Note that setting this bit at other times
may cause data corruption.

0 No Flush

1 Flush Endpoint FIFO

7
(R/W0C)

NAKTO NAK Timeout.
The USB_EP0_CSRn_H.NAKTO bit indicates (in host mode) when endpoint 0 is
halted following the receipt of NAK responses for longer than the time set by the
USB_EP0_NAKLIMITn register. The processor core should clear this bit to allow
the endpoint to continue.

0 No Status

1 Endpoint Halted (NAK Timeout)

6
(R/W)

STATUSPKT Status Packet.
The USB_EP0_CSRn_H.STATUSPKT bit directs (in host mode) the USB
controller to perform a status stage transaction. This bit is set at the same time as the
USB_EP0_CSRn_H.TXPKTRDY USB_EP0_CSRn_H.RXPKTRDY. Setting this
bit ensures that the data toggle is set to 1 so that a DATA1 packet is used for the status
stage transaction.

0 No Request

1 Request Status Transaction

5
(R/W)

REQPKT Request Packet.
The USB_EP0_CSRn_H.REQPKT bit directs (in host mode) the USB controller to
request an IN transaction. This bit is cleared when USB_EP0_CSRn_
H.RXPKTRDY is set.

0 No Request

1 Send IN Tokens to Device

4
(R/W0C)

TOERR Timeout Error.
The USB_EP0_CSRn_H.TOERR bit indicates (in host mode) when three attempts
have been made to perform a transaction with no response from the peripheral. The
processor core should clear this bit. An interrupt is generated when this bit is set.

0 No Status

1 Timeout Error

Table 22-44: USB_EP0_CSRn_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–125

EP0 Configuration and Status (Peripheral) Register

The USB_EP0_CSRn_P register provides control and status bits for endpoint 0 in peripheral mode. Note
that some bits may be set to clear automatically.

3
(R/W1S)

SETUPPKT Setup Packet.
The USB_EP0_CSRn_H.SETUPPKT bit directs (in host mode) the USB controller
to send a SETUP token instead of an OUT token for the transaction. This bit is set at
the same time as the USB_EP0_CSRn_H.TXPKTRDY bit is set.

0 No Request

1 Send SETUP token

2
(R/W0C)

RXSTALL Rx Stall.
The USB_EP0_CSRn_H.RXSTALL bit indicates (in host mode) when a STALL
handshake is received. The processor core should clear this bit.

0 No Status

1 Stall Received from Device

1
(R/W1S)

TXPKTRDY Tx Packet Ready.
The USB_EP0_CSRn_H.TXPKTRDY bit should be set (in host mode) by the
processor core after loading a data packet into the FIFO. This bit is cleared
automatically when the data packet is transmitted. An interrupt is generated (if
enabled) when the bit is cleared.

0 No Tx Packet

1 Tx Packet in Endpoint FIFO

0
(R/W0C)

RXPKTRDY Rx Packet Ready.
The USB_EP0_CSRn_H.RXPKTRDY is set (in host mode) when a data packet is
received. An interrupt is generated (if enabled) when this bit is set. The processor
core should clear this bit when the packet is read from the FIFO.

0 No Rx Packet

1 Rx Packet in Endpoint FIFO

Table 22-44: USB_EP0_CSRn_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–126 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-70: USB_EP0_CSRn_P Register Diagram

Table 22-45: USB_EP0_CSRn_P Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

8
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EP0_CSRn_P.FLUSHFIFO bit directs (in peripheral mode) the USB
controller to flush data from the endpoint 0 FIFO and clear the USB_EP0_CSRn_
P.TXPKTRDY and USB_EP0_CSRn_P.RXPKTRDY bits. The USB_EP0_CSRn_
P.FLUSHFIFO bit should only be set if the USB_EP0_CSRn_P.TXPKTRDY and
USB_EP0_CSRn_P.RXPKTRDY bits are set. Note that setting this bit at other times
may cause data corruption.

0 No Flush

1 Flush Endpoint FIFO

7
(R/W1A)

SSETUPEND Service Setup End.
The USB_EP0_CSRn_P.SSETUPEND bit is set (in peripheral mode) by the
processor core to clear the USB_EP0_CSRn_P.SETUPEND. This bit is cleared
automatically.

0 No Action

1 Clear SETUPEND Bit

6
(R/W1A)

SPKTRDY Service Rx Packet Ready.
The USB_EP0_CSRn_P.SPKTRDY bit is set (in peripheral mode) by the processor
core to clear the USB_EP0_CSRn_P.RXPKTRDY bit. This bit is cleared
automatically.

0 No Action

1 Clear RXPKTRDY Bit

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–127

5
(R/W)

SENDSTALL Send Stall.
The USB_EP0_CSRn_P.SENDSTALL bit is set (in peripheral mode) by the
processor core to terminate the current transaction. The STALL handshake is
transmitted, then this bit automatically is cleared.

0 No Action

1 Terminate Current Transaction

4
(R/NW)

SETUPEND Setup End.
The USB_EP0_CSRn_P.SETUPEND bit indicates (in peripheral mode) when a
control transaction ends before the USB_EP0_CSRn_P.DATAEND bit is set. An
interrupt is generated and the FIFO is flushed at this time. This bit is cleared when
the processor core sets the USB_EP0_CSRn_P.SSETUPEND bit.

0 No Status

1 Setup Ended before DATAEND

3
(R/W1S)

DATAEND Data End.
The USB_EP0_CSRn_P.DATAEND bit is set (in peripheral mode) by the processor
core sets when the core:

• Sets the USB_EP0_CSRn_P.TXPKTRDY bit for the last data packet.
• Clears the USB_EP0_CSRn_P.RXPKTRDY bit after unloading the last

data packet.
• Sets the USB_EP0_CSRn_P.TXPKTRDY bit for a zero length data

packet.
The USB_EP0_CSRn_P.DATAEND bit is cleared automatically.

0 No Status

1 Data End Condition

2
(R/W0C)

SENTSTALL Sent Stall.
The USB_EP0_CSRn_P.SENTSTALL bit is set (in peripheral mode) when a
STALL handshake is transmitted. The processor core should clear this bit.

0 No Status

1 Transmitted STALL Handshake

1
(R/W1S)

TXPKTRDY Tx Packet Ready.
The USB_EP0_CSRn_P.TXPKTRDY bit should be set (in peripheral mode) by the
processor core after loading a data packet into the FIFO. This bit is cleared
automatically when the data packet is transmitted. An interrupt is generated (if
enabled) when the bit is cleared.

0

1 Set this bit after loading a data packet into the FIFO

Table 22-45: USB_EP0_CSRn_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–128 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EPn Transmit Configuration and Status (Host) Register

The USB_EPn_TXCSR_H register provides (in host mode) control and status bits for transfers through the
currently selected transmit endpoint.

Figure 22-71: USB_EPn_TXCSR_H Register Diagram

0
(R/W0C)

RXPKTRDY Rx Packet Ready.
The USB_EP0_CSRn_P.RXPKTRDY is set (in peripheral mode) when a data
packet is received. An interrupt is generated (if enabled) when this bit is set. The
processor core clears this bit by setting the USB_EP0_CSRn_P.SPKTRDY bit.

0 No Rx Packet

1 Rx Packet in Endpoint FIFO

Table 22-45: USB_EP0_CSRn_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–129

Table 22-46: USB_EPn_TXCSR_H Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AUTOSET TxPkRdy Autoset Enable.
The USB_EPn_TXCSR_H.AUTOSET bit enables (in host mode) automatic setting
of the USB_EPn_TXCSR_H.TXPKTRDY bit when the maximum data packet size
(USB_EPn_TXMAXP) is loaded into the transmit FIFO. The USB_EPn_TXMAXP
value must be a word (4-byte) multiple. If a packet less than the maximum packet size
is loaded, the USB_EPn_TXCSR_H.TXPKTRDY bit needs to be set manually. This
USB_EPn_TXCSR_H.AUTOSET bit should not be set for high bandwidth
endpoints (endpoints with USB_EPn_TXMAXP value greater than 1).

0 Disable Autoset

1 Enable Autoset

12
(R/W)

DMAREQEN DMA Request Enable Tx EP.
The USB_EPn_TXCSR_H.DMAREQEN bit enables (in host mode) DMA requests
for this transmit endpoint.

0 Disable DMA Request

1 Enable DMA Request

11
(R/W)

FRCDATATGL Force Data Toggle.
The USB_EPn_TXCSR_H.FRCDATATGL bit forces (in host mode) the endpoint
data toggle to switch and clears the data packet from the FIFO, regardless of whether
an ACK was received. This feature can be used by interrupt transmit endpoints that
are used to communicate rate feedback for isochronous endpoints.

0 No Action

1 Toggle Endpoint Data

10
(R/W)

DMAREQMODE DMA Mode Select.
The USB_EPn_TXCSR_H.DMAREQMODE bit selects (in host mode) between DMA
request mode 1 or 0. This bit must not be cleared the cycle before or the same cycle
that the USB_EPn_TXCSR_H.DMAREQEN bit is cleared. In DMA request mode 0,
the DMA is programmed to load one packet at a time. Processor intervention is
required for each packet. DMA mode 1 can be used with bulk endpoints to transmit
multiple packets without processor intervention.

0 DMA Request Mode 0

1 DMA Request Mode 1

9
(R/W1A)

DATGLEN Data Toggle Write Enable.
The USB_EPn_TXCSR_H.DATGLEN bit enables (in host mode) the USB controller
to write the current state of the endpoint USB_EPn_TXCSR_H.DATGL bit. This bit
is automatically cleared once the new value is written.

0 Disable Write to DATGL

1 Enable Write to DATGL

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–130 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

8
(R/W)

DATGL Data Toggle.
The USB_EPn_TXCSR_H.DATGL bit indicates (in host mode) the current state of
the endpoint data toggle. If D10 is high, this bit may be written with the required
setting of the data toggle. If D10 is low, any value written to this bit is ignored. This
bit is only used in host mode.

0 DATA0 is set

1 DATA1 is set

7
(R/W0C)

NAKTOINCMP NAK Timeout Incomplete.
The USB_EPn_TXCSR_H.NAKTOINCMP bit indicates (for bulk endpoints in host
mode) when the transmit endpoint is halted following the receipt of NAK responses
for longer than the time set in the USB_EPn_TXINTERVAL register. The processor
should clear this bit, allowing the endpoint to continue. For high-bandwidth
isochronous endpoints in host mode, this bit indicates when no response is received
from the device to which the packet is being sent.

0 No Status

1 NAK Timeout Over Maximum

6
(R/W1A)

CLRDATATGL Clear Endpoint Data Toggle.
The USB_EPn_TXCSR_H.CLRDATATGL bit is set (in host mode) by the processor
to reset the endpoint data toggle to 0.

0 No Action

1 Reset EP Data Toggle to 0

5
(R/W0C)

RXSTALL Rx STALL.
The USB_EPn_TXCSR_H.RXSTALL bit indicates (in host mode) when a STALL
handshake is received. The processor core should clear this bit.

0 No Status

1 Stall Received from Device

4
(R/W)

SETUPPKT Setup Packet.
The USB_EPn_TXCSR_H.SETUPPKT bit directs (in host mode) the USB
controller to send a SETUP token instead of an OUT token for the transaction. This
bit is set at the same time as the USB_EPn_TXCSR_H.TXPKTRDY bit is set.

0 No Request

1 Send SETUP Token

3
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EPn_TXCSR_H.FLUSHFIFO bit directs (in host mode) the USB
controller to flush data from the endpoint FIFO and clear the USB_EPn_TXCSR_
H.TXPKTRDY bit. The USB_EPn_TXCSR_H.FLUSHFIFO bit should only be set if
the USB_EPn_TXCSR_H.TXPKTRDY bit is set. Note that setting this bit at other
times may cause data corruption.

0 No Flush

1 Flush endpoint FIFO

Table 22-46: USB_EPn_TXCSR_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–131

EPn Transmit Configuration and Status (Peripheral) Register

The USB_EPn_TXCSR_P register provides (in peripheral mode) control and status bits for transfers through
the currently selected transmit endpoint.

2
(R/W0C)

TXTOERR Tx Timeout Error.
The USB_EPn_TXCSR_H.TXTOERR bit indicates (in host mode) when three
attempts have been made to send a packet and no handshake packet has been
received. The USB controller generates an interrupt for this condition, clears the
USB_EPn_TXCSR_H.TXPKTRDY bit, and flushes the FIFO. The processor should
clear this bit. Note that USB_EPn_TXCSR_H.TXTOERR is valid only when the
endpoint is operating in bulk or interrupt mode.

0 No Status

1 Tx Timeout Error

1
(R/NW)

NEFIFO Not Empty FIFO.
The USB_EPn_TXCSR_H.NEFIFO bit indicates (in host mode) when there is at
least one packet in the transmit FIFO. This bit is cleared automatically when a data
packet has been transmitted. If the endpoints transmit interrupt is enabled (in USB_
INTRTXE), the USB controller generates an interrupt for this condition. Note that
the USB_EPn_TXCSR_H.TXPKTRDY bit is also automatically cleared prior to
loading a second packet into a double-buffered FIFO.

0 FIFO Empty

1 FIFO Not Empty

0
(R/W1S)

TXPKTRDY Tx Packet Ready.
The USB_EPn_TXCSR_H.TXPKTRDY bit should be set (in host mode) by the
processor core after loading a data packet into the FIFO. This bit is cleared
automatically when the data packet is transmitted. An interrupt is generated (if
enabled) when the bit is cleared.

0 No Tx Packet

1 Tx Packet in Endpoint FIFO

Table 22-46: USB_EPn_TXCSR_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–132 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-72: USB_EPn_TXCSR_P Register Diagram

Table 22-47: USB_EPn_TXCSR_P Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AUTOSET TxPkRdy Autoset Enable.
The USB_EPn_TXCSR_P.AUTOSET bit enables (in peripheral mode) automatic
setting of the USB_EPn_TXCSR_P.TXPKTRDY bit when the maximum data
packet size (USB_EPn_TXMAXP) is loaded into the transmit FIFO. The USB_EPn_
TXMAXP value must be a word (4-byte) multiple. If a packet less than the maximum
packet size is loaded, the USB_EPn_TXCSR_P.TXPKTRDY bit needs to be set
manually. This USB_EPn_TXCSR_P.AUTOSET bit should not be set for high
bandwidth endpoints (endpoints with USB_EPn_TXMAXP value greater than 1).

0 Disable Autoset

1 Enable Autoset

14
(R/W)

ISO Isochronous Transfers Enable.
The USB_EPn_TXCSR_P.ISO bit enables (in peripheral mode) the transmit
endpoint for isochronous transfers. This bit should be disabled for bulk or interrupt
endpoints.

0 Disable Tx EP Isochronous Transfers

1 Enable Tx EP Isochronous Transfers

12
(R/W)

DMAREQEN DMA Request Enable Tx EP.
The USB_EPn_TXCSR_P.DMAREQEN bit enables (in peripheral mode) DMA
requests for this transmit endpoint.

0 Disable DMA Request

1 Enable DMA Request

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–133

11
(R/W)

FRCDATATGL Force Data Toggle.
The USB_EPn_TXCSR_P.FRCDATATGL bit forces (in peripheral mode) the
endpoint data toggle to switch and clears the data packet from the FIFO, regardless of
whether an ACK was received. This feature can be used by interrupt transmit
endpoints that are used to communicate rate feedback for isochronous endpoints.

0 No Action

1 Toggle Endpoint Data

10
(R/W)

DMAREQMODE DMA Mode Select.
The USB_EPn_TXCSR_P.DMAREQMODE bit selects (in peripheral mode) between
DMA request mode 1 or 0. This bit must not be cleared the cycle before or the same
cycle that the USB_EPn_TXCSR_P.DMAREQEN bit is cleared. In DMA request
mode 0, the DMA is programmed to load one packet at a time. Processor
intervention is required for each packet. DMA mode 1 can be used with bulk
endpoints to transmit multiple packets without processor intervention.

0 DMA Request Mode 0

1 DMA Request Mode 1

7
(R/W0C)

INCOMPTX Incomplete Tx.
The USB_EPn_TXCSR_P.INCOMPTX bit indicates (for high-bandwidth
isochronous endpoints in peripheral mode) when a large packet has been split into
two or three packets for transmission, but insufficient IN tokens have been received
to send all parts.

0 No Status

1 Incomplete Tx (Insufficient IN Tokens)

6
(R/W1A)

CLRDATATGL Clear Endpoint Data Toggle.
The USB_EPn_TXCSR_P.CLRDATATGL bit is set (in peripheral mode) by the
processor to reset the endpoint data toggle to 0.

0 No Action

1 Reset EP Data Toggle to 0

5
(R/W0C)

SENTSTALL Sent STALL.
The USB_EPn_TXCSR_P.SENTSTALL bit indicates (in peripheral mode) when
the USB controller transmits a STALL handshake. When this condition occurs, the
USB controller flushes the FIFO and clears the USB_EPn_TXCSR_P.TXPKTRDY
bit. The processor should clear this bit.

0 No Status

1 STALL Handshake Transmitted

4
(R/W)

SENDSTALL Send STALL.
The USB_EPn_TXCSR_P.SENDSTALL bit (in peripheral mode) is set by the
processor to issue a STALL handshake to an IN token. The processor clears this bit to
terminate the stall condition. This bit has no effect for isochronous transfers.

0 No Request

1 Request STALL Handshake Transmission

Table 22-47: USB_EPn_TXCSR_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–134 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EPn Receive Maximum Packet Length Register

The USB_EPn_RXMAXP register defines the maximum amount of data that can be transferred through the
selected receive endpoint in a single frame.

Note that a value greater than the maximum allowed of 1023 for full-speed USB operation produces unpre-
dictable results. Also note that the total amount of data represented by the value written to this register
must not exceed the receive FIFO size, and should not exceed half the FIFO size if double-buffering is
required.

3
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EPn_TXCSR_P.FLUSHFIFO bit directs (in peripheral mode) the USB
controller to flush data from the endpoint FIFO and clear the USB_EPn_TXCSR_
P.TXPKTRDY bit. The USB_EPn_TXCSR_P.FLUSHFIFO bit should only be set if
the USB_EPn_TXCSR_P.TXPKTRDY bit is set. Note that setting this bit at other
times may cause data corruption.

0 No Flush

1 Flush endpoint FIFO

2
(R/W0C)

URUNERR Underrun Error.
The USB_EPn_TXCSR_P.URUNERR bit indicates (in peripheral mode) when an
IN token is received while the USB_EPn_TXCSR_P.TXPKTRDY bit is not set. The
processor should clear this bit.

0 No Status

1 Underrun Error

1
(R/NW)

NEFIFO Not Empty FIFO.
The USB_EPn_TXCSR_P.NEFIFO bit indicates (in peripheral mode) when there
is at least one packet in the transmit FIFO. This bit is cleared automatically when a
data packet has been transmitted. If the endpoints transmit interrupt is enabled (in
USB_INTRTXE), the USB controller generates an interrupt for this condition. Note
that the USB_EPn_TXCSR_P.TXPKTRDY bit is also automatically cleared prior to
loading a second packet into a double-buffered FIFO.

0 FIFO Empty

1 FIFO Not Empty

0
(R/W1S)

TXPKTRDY Tx Packet Ready.
The USB_EPn_TXCSR_P.TXPKTRDY bit should be set (in peripheral mode) by
the processor core after loading a data packet into the FIFO. This bit is cleared
automatically when the data packet is transmitted. An interrupt is generated (if
enabled) when the bit is cleared.

0 No Tx Packet

1 Tx Packet in Endpoint FIFO

Table 22-47: USB_EPn_TXCSR_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–135

Figure 22-73: USB_EPn_RXMAXP Register Diagram

EPn Receive Configuration and Status (Host) Register

The USB_EPn_RXCSR_H register provides (in host mode) control and status bits for transfers through the
currently selected receive endpoint.

Table 22-48: USB_EPn_RXMAXP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12:11
(R/W)

MULTM1 Multi-Packets per Micro-frame.
The USB_EPn_RXMAXP.MULTM1 bits select the number of high-speed
high-bandwidth isochronous or interrupt packets that may be transferred in a
microframe. The valid number of packets per microframe is 1-3 which corresponds
to settings 0-2. If this field is not zero, the USB controller combines multiple packets
received within a microframe into a single packet in the FIFO.

10:0
(R/W)

MAXPAY Maximum Payload.
The USB_EPn_RXMAXP.MAXPAY bits select the maximum number of bytes that
may be transferred per transaction. This field can be up to 1024 but is subject to
constraints by the USB specification based on endpoint mode and speed. This field
should not exceed the FIFO size for the endpoint, or half the FIFO size if double
buffering is used. This value should match the wMaxPacketSize field of the standard
endpoint descriptor (USB 2.0 spec, section 9). The USB_EPn_RXMAXP.MAXPAY
bits must be set to an even number of bytes for proper interrupt generation in DMA
mode 1.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–136 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-74: USB_EPn_RXCSR_H Register Diagram

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–137

Table 22-49: USB_EPn_RXCSR_H Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AUTOCLR Auto Clear Enable.
The USB_EPn_RXCSR_H.AUTOCLR bit directs (in host mode) the USB controller
to automatically clear the USB_EPn_RXCSR_H.RXPKTRDY bit when a packet of
size USB_EPn_RXMAXP bytes has been unloaded from the receive FIFO. When
packets of less than the maximum packet size are unloaded, the processor must clear
USB_EPn_RXCSR_H.RXPKTRDY manually. When using the DMA to unload the
receive FIFO, data is read from the receive FIFO in four byte chunks, regardless of the
USB_EPn_RXMAXP value. The USB controller auto clears the USB_EPn_RXCSR_
H.RXPKTRDY bit as follows. (In the following: Remainder=(RxMaxP/4), and
PktSz-Clearing-RxPktRdy=Actual-Bytes-Read-Packet-Sizes-That-Clear-RxPktRdy.)

• Remainder=0, Bytes-Read=RxMaxP, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1, RxMaxP-2, RxMaxP-3

• Remainder=3, Bytes Read=RxMaxP+1, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1, RxMaxP-2

• Remainder=2, Bytes Read=RxMaxP+2, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1

• Remainder=1, Bytes Read=RxMaxP+3, PktSz-Clearing-RxPk-
tRdy=RxMaxP

Note that the USB_EPn_RXCSR_H.AUTOCLR bit should not be set for
high-bandwidth isochronous endpoints.

0 Disable Auto Clear

1 Enable Auto Clear

14
(R/W)

AUTOREQ Auto Request Clear Enable.
The USB_EPn_RXCSR_H.AUTOREQ bit directs (in host mode) the USB controller
to automatically clear the USB_EPn_RXCSR_H.REQPKT bit when USB_EPn_
RXCSR_H.RXPKTRDY bit is cleared. This bit is automatically cleared when a short
packet is received.

0 Disable Auto Request Clear

1 Enable Auto Request Clear

13
(R/W)

DMAREQEN DMA Request Enable Rx EP.
The USB_EPn_RXCSR_H.DMAREQEN bit enables (in host mode) DMA requests
for this receive endpoint.

0 Disable DMA Request

1 Enable DMA Request

12
(R/W0C)

PIDERR Packet ID Error.
The USB_EPn_RXCSR_H.PIDERR bit indicates (in host mode) when a PID error
occurs for isochronous transactions. This bit is ignored in host mode for bulk or
interrupt transactions.

0 No Status

1 PID Error

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–138 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

11
(R/W)

DMAREQMODE DMA Mode Select.
The USB_EPn_RXCSR_H.DMAREQMODE bit selects (in host mode) between DMA
request mode 1 or 0. This bit must not be cleared the cycle before or the same cycle
that the USB_EPn_RXCSR_H.DMAREQEN bit is cleared. In DMA request mode 0,
the DMA is programmed to load one packet at a time. Processor intervention is
required for each packet. DMA mode 1 can be used with bulk endpoints to transmit
multiple packets without processor intervention.

0 DMA Request Mode 0

1 DMA Request Mode 1

10
(R/W1A)

DATGLEN Data Toggle Write Enable.
The USB_EPn_RXCSR_H.DATGLEN bit enables (in host mode) the USB controller
to write the current state of the endpoint USB_EPn_RXCSR_H.DATGL bit. This bit
is automatically cleared once the new value is written.

0 Disable Write to DATGL

1 Enable Write to DATGL

9
(R/W)

DATGL Data Toggle.
The USB_EPn_RXCSR_H.DATGL bit indicates (in host mode) the current state of
the endpoint data toggle. If D10 is high, this bit may be written with the required
setting of the data toggle. If D10 is low, any value written to this bit is ignored. This
bit is only used in host mode.

0 DATA0 is Set

1 DATA1 is Set

8
(R/W)

INCOMPRX Incomplete Rx.
The USB_EPn_RXCSR_H.INCOMPRX bit indicates (in host mode for
high-bandwidth isochronous or interrupt transfers) when the received packet is
incomplete because parts of the packet were not received. This bit is cleared when
USB_EPn_RXCSR_H.RXPKTRDY is cleared. For all other modes, this bit is zero.

0 No Status

1 Incomplete Rx

7
(R/W1A)

CLRDATATGL Clear Endpoint Data Toggle.
The USB_EPn_RXCSR_H.CLRDATATGL bit is set (in host mode) by the processor
to reset the endpoint data toggle to 0.

0 No Action

1 Reset EP Data Toggle to 0

6
(R/W0C)

RXSTALL Rx STALL.
The USB_EPn_RXCSR_H.RXSTALL bit indicates (in host mode) when a STALL
handshake is received. The processor core should clear this bit.

0 No Status

1 Stall Received from Device

Table 22-49: USB_EPn_RXCSR_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–139

5
(R/W)

REQPKT Request Packet.
The USB_EPn_RXCSR_H.REQPKT bit directs (in host mode) the USB controller
to request an IN transaction. This bit is cleared when USB_EPn_RXCSR_
H.RXPKTRDY is set.

0 No Request

1 Send IN Tokens to Device

4
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EPn_RXCSR_H.FLUSHFIFO bit directs (in host mode) the USB
controller to flush data from the endpoint FIFO and clear the USB_EPn_RXCSR_
H.RXPKTRDY bit. The USB_EPn_RXCSR_H.FLUSHFIFO bit should only be set if
the USB_EPn_RXCSR_H.RXPKTRDY bit is set. Note that setting this bit at other
times may cause data corruption.

0 No Flush

1 Flush Endpoint FIFO

3
(R/W0C)

NAKTODERR NAK Timeout Data Error.
The USB_EPn_RXCSR_H.NAKTODERR bit indicates (in host mode for
isochronous transfers) a NAK timeout data error when the USB_EPn_RXCSR_
H.RXPKTRDY bit is set and the data packet has a CRC or bit-stuff error. This bit is
cleared when the USB_EPn_RXCSR_H.RXPKTRDY bit is cleared.
The USB_EPn_RXCSR_H.NAKTODERR bit indicates (in host mod for bulk
transfers) when a receive endpoint is halted following the receipt of NAK responses
greater than the limit set in the USB_EPn_RXINTERVAL register. The processor
should clear this bit to allow the endpoint to continue. If double packet buffering is
enabled, the USB_EPn_RXCSR_H.REQPKT bit should also be set in the same cycle
as this bit is cleared.

0 No Status

1 NAK Timeout Data Error

2
(R/W0C)

RXTOERR Rx Timeout Error.
The USB_EPn_RXCSR_H.RXTOERR bit indicates (in host mode) when three
attempts have been made to receive a packet and no data packet has been received.
The USB controller generates an interrupt for this condition. The processor should
clear this bit. Note that USB_EPn_RXCSR_H.RXTOERR is valid only when the
endpoint is operating in bulk or interrupt mode.

0 No Status

1 Rx Timeout Error

1
(R/NW)

FIFOFULL FIFO Full.
The USB_EPn_RXCSR_H.FIFOFULL bit indicates (in host mode) when no more
packets can be loaded into the receive FIFO.

0 No Status

1 FIFO Full

Table 22-49: USB_EPn_RXCSR_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–140 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EPn Receive Configuration and Status (Peripheral) Register

The USB_EPn_RXCSR_P register provides (in peripheral mode) control and status bits for transfers through
the currently selected receive endpoint.

Figure 22-75: USB_EPn_RXCSR_P Register Diagram

0
(R/W0C)

RXPKTRDY Rx Packet Ready.
The USB_EPn_RXCSR_H.RXPKTRDY is set (in host mode) when a data packet is
received. An interrupt is generated (if enabled) when this bit is set. The processor
core should clear this bit when the packet is read from the FIFO.

0 No Rx Packet

1 Rx Packet in Endpoint FIFO

Table 22-49: USB_EPn_RXCSR_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–141

Table 22-50: USB_EPn_RXCSR_P Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AUTOCLR Auto Clear Enable.
The USB_EPn_RXCSR_P.AUTOCLR bit directs (in peripheral mode) the USB
controller to automatically clear the USB_EPn_RXCSR_P.RXPKTRDY bit when a
packet of size USB_EPn_RXMAXP bytes has been unloaded from the receive FIFO.
When packets of less than the maximum packet size are unloaded, the processor
must clear USB_EPn_RXCSR_P.RXPKTRDY manually. When using the DMA to
unload the receive FIFO, data is read from the receive FIFO in four byte chunks,
regardless of the USB_EPn_RXMAXP value. The USB controller auto clears the
USB_EPn_RXCSR_P.RXPKTRDY bit as follows. (In the following:
Remainder=(RxMaxP/4), and
PktSz-Clearing-RxPktRdy=Actual-Bytes-Read-Packet-Sizes-That-Clear-RxPktRdy.)

• Remainder=0, Bytes-Read=RxMaxP, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1, RxMaxP-2, RxMaxP-3

• Remainder=3, Bytes Read=RxMaxP+1, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1, RxMaxP-2

• Remainder=2, Bytes Read=RxMaxP+2, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1

• Remainder=1, Bytes Read=RxMaxP+3, PktSz-Clearing-RxPk-
tRdy=RxMaxP

Note that the USB_EPn_RXCSR_P.AUTOCLR bit should not be set for
high-bandwidth isochronous endpoints.

0 Disable Auto Clear

1 Enable Auto Clear

14
(R/W)

ISO Isochronous Transfers.
The USB_EPn_RXCSR_P.ISO bit selects (in peripheral mode) between
isochronous transfers and bulk/interrupt transfers.

0 This bit should be cleared for bulk or interrupt
transfers.

1 This bit should be set for isochronous transfers.

13
(R/W)

DMAREQEN DMA Request Enable Rx EP.
The USB_EPn_RXCSR_P.DMAREQEN bit enables (in peripheral mode) DMA
requests for this receive endpoint.

0 Disable DMA Request

1 Enable DMA Request

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–142 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

12
(R/W)

DNYETPERR Disable NYET Handshake.
The USB_EPn_RXCSR_P.DNYETPERR bit disables (in peripheral mode for high
speed bulk/interrupt transactions) NYET handshakes. When this bit is set, all
successful receive packets are ACK'd, including the point at which the FIFO becomes
full. The USB_EPn_RXCSR_P.DNYETPERR bit must be set for all interrupt
endpoints in high speed mode.

0 Enable NYET Handshake

1 Disable NYET Handshake

11
(R/W)

DMAREQMODE DMA Mode Select.
The USB_EPn_RXCSR_P.DMAREQMODE bit selects (in peripheral mode) between
DMA request mode 1 or 0. This bit must not be cleared the cycle before or the same
cycle that the USB_EPn_RXCSR_P.DMAREQEN bit is cleared. In DMA request
mode 0, the DMA is programmed to load one packet at a time. Processor
intervention is required for each packet. DMA mode 1 can be used with bulk
endpoints to transmit multiple packets without processor intervention.

0 DMA Request Mode 0

1 DMA Request Mode 1

8
(R/W)

INCOMPRX Incomplete Rx.
The USB_EPn_RXCSR_P.INCOMPRX bit indicates (in peripheral mode for
high-bandwidth isochronous or interrupt transfers) when the received packet is
incomplete because parts of the packet were not received. This bit is cleared when
USB_EPn_RXCSR_P.RXPKTRDY is cleared. For all other modes, this bit is zero.

0 No Status

1 Incomplete Rx

7
(R/W1A)

CLRDATATGL Clear Endpoint Data Toggle.
The USB_EPn_RXCSR_P.CLRDATATGL bit is set (in peripheral mode) by the
processor to reset the endpoint data toggle to 0.

0 No Action

1 Reset EP Data Toggle to 0

6
(R/W0C)

SENTSTALL Sent STALL.
The USB_EPn_RXCSR_P.SENTSTALL bit indicates (in peripheral mode) when a
STALL handshake is transmitted. The processor should clear this bit.

0 No Status

1 STALL Handshake Transmitted

5
(R/W)

SENDSTALL Send STALL.
The USB_EPn_RXCSR_P.SENDSTALL bit is set (in peripheral mode) by the
processor to send a STALL handshake. The processor clears this bit to terminate the
stall condition. This bit has no effect for isochronous transfers.

0 No Action

1 Request STALL Handshake

Table 22-50: USB_EPn_RXCSR_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–143

EP0 Number of Received Bytes Register

The USB_EP0_CNTn register indicates the number of received data bytes in the endpoint 0 FIFO. The value
returned changes as the contents of the FIFO change and is only valid while the USB_EP0_CSRn_
H.RXPKTRDY bit or USB_EP0_CSRn_P.RXPKTRDY bit is set.

4
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EPn_RXCSR_P.FLUSHFIFO bit directs (in peripheral mode) the USB
controller to flush data from the endpoint FIFO and clear the USB_EPn_RXCSR_
P.RXPKTRDY bit. The USB_EPn_RXCSR_P.FLUSHFIFO bit should only be set if
the USB_EPn_RXCSR_P.RXPKTRDY bit is set. Note that setting this bit at other
times may cause data corruption.

0 No Flush

1 Flush Endpoint FIFO

3
(R/NW)

DATAERR Data Error.
The USB_EPn_RXCSR_P.DATAERR bit indicates (in peripheral mode for
isochronous transfers) when the USB_EPn_RXCSR_P.RXPKTRDY bit is set and
the data packet has a CRC or bit-stuff error. This bit is cleared when USB_EPn_
RXCSR_P.RXPKTRDY is cleared. The USB_EPn_RXCSR_P.DATAERR bit is
always zero for bulk endpoints in peripheral mode.

0 No Status

1 Data Error

2
(R/W0C)

ORUNERR OUT Run Error.
The USB_EPn_RXCSR_P.ORUNERR bit indicates (in peripheral mode for
isochronous transfers) when an OUT packet cannot be loaded into the receive FIFO.
The processor should clear this bit. The USB_EPn_RXCSR_P.ORUNERR bit always
returns zero in bulk mode.

0 No Status

1 OUT Run Error

1
(R/NW)

FIFOFULL FIFO Full.
The USB_EPn_RXCSR_P.FIFOFULL bit indicates (in peripheral mode) when no
more packets can be loaded into the receive FIFO.

0 No Status

1 FIFO Full

0
(R/W0C)

RXPKTRDY Rx Packet Ready.
The USB_EPn_RXCSR_P.RXPKTRDY is set (in peripheral mode) when a data
packet is received. An interrupt is generated (if enabled) when this bit is set. The
processor core should clear this bit when the packet is read from the FIFO.

0 No Rx Packet

1 Rx Packet in Endpoint FIFO

Table 22-50: USB_EPn_RXCSR_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–144 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-76: USB_EP0_CNTn Register Diagram

EPn Number of Bytes Received Register

The USB_EPn_RXCNT register indicates the number of received data bytes in the endpoint receive FIFO.
The value returned changes as the contents of the FIFO change and is only valid while the USB_EPn_
RXCSR_H.RXPKTRDY bit or USB_EPn_RXCSR_P.RXPKTRDY bit is set.

Figure 22-77: USB_EPn_RXCNT Register Diagram

Table 22-51: USB_EP0_CNTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/NW)

RXCNT Rx Byte Count Value.
The USB_EP0_CNTn.RXCNT bits holds the number of data bytes currently inline
ready to be read from the Rx FIFO. The value returned changes as the FIFO is
unloaded and is only valid while USB_EP0_CSRn_H.RXPKTRDY bit or USB_
EP0_CSRn_P.RXPKTRDY bit is set.

Table 22-52: USB_EPn_RXCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

13:0
(R/NW)

EPRXCNT EP Rx Count.
The USB_EPn_RXCNT.EPRXCNT bits hold the number of data bytes ready to be
read from the receive FIFO.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–145

EPn Transmit Type Register

The USB_EPn_TXTYPE register selects the endpoint number and transaction protocol to use for the
currently selected transmit endpoint. There is a USB_EPn_TXTYPE register for each transmit endpoint.
Note that this register is only used in host mode.

Figure 22-78: USB_EPn_TXTYPE Register Diagram

Table 22-53: USB_EPn_TXTYPE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

SPEED Speed of Operation Value.
The USB_EPn_TXTYPE.SPEED bits select the USB controller operating speed for
the endpoint when acting as a host connected to devices through a hub. In these
instances. the USB controller must issue split transactions under certain conditions.
If a device is directly connected (not through a hub), all endpoints use the same speed
as which the controller is connected. When not connected to devices through a hub,
program this field with 00.

0 Same Speed as the Core

1 High Speed

2 Full Speed

3 Low Speed

5:4
(R/W)

PROTOCOL Protocol for Transfer.
The USB_EPn_TXTYPE.PROTOCOL bits select the transfer protocol for the
endpoint.

0 Control

1 Isochronous

2 Bulk

3 Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–146 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EP0 Connection Type Register

The USB_EP0_TYPEn register selects the USB controller operating speed for endpoint 0 when acting as a
host connected to devices through a hub.

Figure 22-79: USB_EP0_TYPEn Register Diagram

3:0
(R/W)

TGTEP Target Endpoint Number.
The USB_EPn_TXTYPE.TGTEP bits select (for endpoints 1-11) the target
endpoint. This value should be set to the endpoint number contained in the transmit
endpoint descriptor returned during device enumeration. Endpoint 0 always uses
target endpoint number 0. (Enumeration values not shown are reserved.)

0 Endpoint 0

1 Endpoint 1

2 Endpoint 2

3 Endpoint 3

4 Endpoint 4

5 Endpoint 5

6 Endpoint 6

7 Endpoint 7

8 Endpoint 8

9 Endpoint 9

10 Endpoint 10

11 Endpoint 11

12 Endpoint 12

13 Endpoint 13

14 Endpoint 14

15 Endpoint 15

Table 22-53: USB_EPn_TXTYPE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–147

EP0 NAK Limit Register

The USB_EP0_NAKLIMITn register determines the number of frames/micro-frames after which endpoint 0
should timeout on receiving a stream of NAK responses for bulk endpoints.

Figure 22-80: USB_EP0_NAKLIMITn Register Diagram

EPn Transmit Polling Interval Register

The USB_EPn_TXINTERVAL register defines the polling interval for the currently selected transmit endpoint
for interrupt, isochronous, and bulk transfers. There is a USB_EPn_TXINTERVAL register for each config-

Table 22-54: USB_EP0_TYPEn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1:0
(R/W)

SPEED Speed of Operation Value.
The USB_EP0_TYPEn.SPEED bits select the USB controller operating speed for
endpoint 0 when acting as a host connected to devices through a hub. In these
instances. the USB controller must issue split transactions under certain conditions.
If a device is directly connected (not through a hub), all endpoints use the same speed
as which the controller is connected. When not connected to devices through a hub,
program this field with 00.

0 Same Speed as Processor Core

1 High Speed

2 Full Speed

3 Low Speed

Table 22-55: USB_EP0_NAKLIMITn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4:0
(R/W)

VALUE Endpoint 0 Timeout Value (in Frames).
The USB_EP0_NAKLIMITn.VALUE bits hold the endpoint 0 timeout value
(number of frames).

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–148 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ured transmit endpoint, except endpoint 0. The transfer types relate to speed, interval value, and interval
operation as follows:

• Interrupt: Speed=Low Speed or Full Speed, USB_EPn_TXINTERVAL=1-255, and Operation=Polling
interval is m frames.

• Interrupt: Speed=High Speed, USB_EPn_TXINTERVAL=1-16, and Operation=Polling interval is 2(m-1)
micro-frames.

• Isochronous: Speed=Full Speed or High Speed, USB_EPn_TXINTERVAL=1-16, and Operation=Polling
interval is 2(m-1) frames or micro-frames.

• Bulk: Speed=Full Speed or High Speed, USB_EPn_TXINTERVAL=2-16, and Operation=NAK Limit is
2(m-1) frames or micro-frames.

Note that a USB_EPn_TXINTERVAL value of 0 or 1 disables the NAK timeout function.

Figure 22-81: USB_EPn_TXINTERVAL Register Diagram

EPn Receive Type Register

The USB_EPn_RXTYPE register selects the endpoint number and transaction protocol to use for the
currently selected receive endpoint. There is a USB_EPn_RXTYPE register for each receive endpoint. Note
that this register is only used in host mode.

Table 22-56: USB_EPn_TXINTERVAL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Tx Polling Interval.
The USB_EPn_TXINTERVAL.VALUE bits define the polling interval value for
interrupt and isochronous transfers and select the number of frames/microframes
after which the endpoint should timeout on receiving a stream of NAK responses for
bulk and control endpoints. Note that the USB controller halts transfers to control
endpoints if the host receives NAK responses for more frames than the limit set by
this register.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–149

Figure 22-82: USB_EPn_RXTYPE Register Diagram

Table 22-57: USB_EPn_RXTYPE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

SPEED Speed of Operation Value.
The USB_EPn_RXTYPE.SPEED bits select the USB controller operating speed for
the endpoint when acting as a host connected to devices through a hub. In these
instances. the USB controller must issue split transactions under certain conditions.
If a device is directly connected (not through a hub), all endpoints use the same speed
as which the controller is connected. When not connected to devices through a hub,
program this field with 00.

0 Same Speed as the Core

1 High Speed

2 Full Speed

3 Low Speed

5:4
(R/W)

PROTOCOL Protocol for Transfer.
The USB_EPn_RXTYPE.PROTOCOL bits select the transfer protocol for the
endpoint.

0 Control

1 Isochronous

2 Bulk

3 Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–150 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EPn Receive Polling Interval Register

The USB_EPn_RXINTERVAL register defines the polling interval for the currently selected receive endpoint
for interrupt, isochronous, and bulk transfers. There is a USB_EPn_RXINTERVAL register for each config-
ured receive endpoint, except endpoint 0. The transfer types relate to speed, interval value, and interval
operation as follows:

• Interrupt: Speed=Low Speed or Full Speed, USB_EPn_RXINTERVAL=1-255, and Operation=Polling
interval is m frames.

• Interrupt: Speed=High Speed, USB_EPn_RXINTERVAL=1-16, and Operation=Polling interval is 2(m-1)
micro-frames.

• Isochronous: Speed=Full Speed or High Speed, USB_EPn_RXINTERVAL=1-16, and Operation=Polling
interval is 2(m-1) frames or micro-frames.

3:0
(R/W)

TGTEP Target Endpoint Number.
The USB_EPn_RXTYPE.TGTEP bits select (for endpoints 1-11) the target
endpoint. This value should be set to the endpoint number contained in the receive
endpoint descriptor returned during device enumeration. Endpoint 0 always uses
target endpoint number 0. (Enumeration values not shown are reserved.)

0 Endpoint 0

1 Endpoint 1

2 Endpoint 2

3 Endpoint 3

4 Endpoint 4

5 Endpoint 5

6 Endpoint 6

7 Endpoint 7

8 Endpoint 8

9 Endpoint 9

10 Endpoint 10

11 Endpoint 11

12 Endpoint 12

13 Endpoint 13

14 Endpoint 14

15 Endpoint 15

Table 22-57: USB_EPn_RXTYPE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–151

• Bulk: Speed=Full Speed or High Speed, USB_EPn_RXINTERVAL=2-16, and Operation=NAK Limit is
2(m-1) frames or micro-frames.

Note that a USB_EPn_RXINTERVAL value of 0 or 1 disables the NAK timeout function.

Figure 22-83: USB_EPn_RXINTERVAL Register Diagram

EP0 Configuration Information Register

The USB_EP0_CFGDATAn register describes the USB controller hardware configuration. This register only
exists for endpoint 0.

Table 22-58: USB_EPn_RXINTERVAL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Rx Polling Interval.
The USB_EPn_RXINTERVAL.VALUE bits define the polling interval value for
interrupt and isochronous transfers and select the number of frames/microframes
after which the endpoint should timeout on receiving a stream of NAK responses for
bulk and control endpoints. Note that the USB controller halts transfers to control
endpoints if the host receives NAK responses for more frames than the limit set by
this register.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–152 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-84: USB_EP0_CFGDATAn Register Diagram

Table 22-59: USB_EP0_CFGDATAn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R0/NW)

MPRX Multi-Packet Aggregate for Rx Enable.
The USB_EP0_CFGDATAn.MPRX bit indicates whether the USB controller
aggregates receive packets into bulk packets before the processor core reads the data.

0 No Aggregate Rx Bulk Packets

1 Aggregate Rx Bulk Packets

6
(R0/NW)

MPTX Multi-Packet Split for Tx Enable.
The USB_EP0_CFGDATAn.MPTX bit indicates whether the USB controller permits
transmit of large packets through writing to bulk endpoints. The USB controller
splits the transmit data into packets, which are appropriately sized for transmit.

0 No Split Tx Bulk Packets

1 Split Tx Bulk Packets

5
(R0/NW)

BIGEND Big Endian Data.
The USB_EP0_CFGDATAn.BIGEND bit indicates whether the USB controller uses
big endian configuration or little endian configuration.

0 Little Endian Configuration

1 Big Endian Configuration

4
(R1/NW)

HBRX High Bandwidth Rx Enable.
The USB_EP0_CFGDATAn.HBRX bit indicates whether the USB controller
supports high-bandwidth receive ISO endpoint support.

0 No High Bandwidth Rx

1 High Bandwidth Rx

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–153

DMA Interrupt Register

The USB_DMA_IRQ register indicates which of the DMA master channels have a pending interrupt. The
USB controller generates the interrupt when the corresponding DMA count register (USB_DMAn_CNT)
reaches zero. The USB controller clears this register when it is read.

3
(R1/NW)

HBTX High Bandwidth Tx Enable.
The USB_EP0_CFGDATAn.HBTX bit indicates whether the USB controller
supports high bandwidth transmit ISO endpoint support.

0 No High Bandwidth Tx

1 High Bandwidth Tx

2
(R1/NW)

DYNFIFO Dynamic FIFO Size Enable.
The USB_EP0_CFGDATAn.DYNFIFO bit indicates whether the USB controller
uses dynamic FIFO size support (on products supporting this feature), enabling the
dynamic FIFO registers. These registers are accessed using the configuration set in
the endpoints indexed FIFO size and FIFO address registers, except for endpoint 0.

0 No Dynamic FIFO Size

1 Dynamic FIFO Size

1
(R1/NW)

SOFTCON Soft Connect Enable.
The USB_EP0_CFGDATAn.SOFTCON bit indicates whether the USB controller
uses soft connect.

0 No Soft Connect

1 Soft Connect

0
(R0/W)

UTMIWID UTMI Data Width.
The USB_EP0_CFGDATAn.UTMIWID bit indicates whether the USB controller
uses an 8-bit or 16-bit UTMI data width.

0 8-bit UTMI Data Width

1 16-bit UTMI Data Width

Table 22-59: USB_EP0_CFGDATAn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–154 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-85: USB_DMA_IRQ Register Diagram

Table 22-60: USB_DMA_IRQ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(RC/NW)

D7 DMA 7 Interrupt Pending Status.
The USB_DMA_IRQ.D7 indicates whether there is a DMA 7 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

6
(RC/NW)

D6 DMA 6 Interrupt Pending Status.
The USB_DMA_IRQ.D6 indicates whether there is a DMA 6 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

5
(RC/NW)

D5 DMA 5 Interrupt Pending Status.
The USB_DMA_IRQ.D5 indicates whether there is a DMA 5 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

4
(RC/NW)

D4 DMA 4 Interrupt Pending Status.
The USB_DMA_IRQ.D4 indicates whether there is a DMA 4 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–155

DMA Channel n Control Register

There is a USB_DMAn_CTL register for each DMA master channel. This register assigns, configures, and
controls each endpoint with a corresponding DMA master channel.

Figure 22-86: USB_DMAn_CTL Register Diagram

3
(RC/NW)

D3 DMA 3 Interrupt Pending Status.
The USB_DMA_IRQ.D3 indicates whether there is a DMA 3 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

2
(RC/NW)

D2 DMA 2 Interrupt Pending Status.
The USB_DMA_IRQ.D2 indicates whether there is a DMA 2 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

1
(RC/NW)

D1 DMA 1 Interrupt Pending Status.
The USB_DMA_IRQ.D1 indicates whether there is a DMA 1 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

0
(RC/NW)

D0 DMA 0 Interrupt Pending Status.
The USB_DMA_IRQ.D0 indicates whether there is a DMA 0 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

Table 22-60: USB_DMA_IRQ Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–156 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 22-61: USB_DMAn_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10:9
(R/W)

BRSTM Burst Mode.
The USB_DMAn_CTL.BRSTM bits select the type or length of burst transfer used by
the corresponding DMA channel to transfer data.

0 Unspecified Length

1 INCR4 or Unspecified Length

2 INCR8, INCR4, or Unspecified Length

3 INCR16, INCR8, INCR4, or Unspecified Length

8
(R/W)

ERR Bus Error.
The USB_DMAn_CTL.ERR bit indicates when a peripheral bus error has been
encountered by the master channel. This bit is cleared by software.

0 No Status

1 Bus Error

7:4
(R/W)

EP DMA Channel Endpoint Assignment.
The USB_DMAn_CTL.EP bits select the endpoint assignments for the DMA
channel. (Enumeration values not shown are reserved.)

0 Endpoint 0

1 Endpoint 1

2 Endpoint 2

3 Endpoint 3

4 Endpoint 4

5 Endpoint 5

6 Endpoint 6

7 Endpoint 7

8 Endpoint 8

9 Endpoint 9

10 Endpoint 10

11 Endpoint 11

12 Endpoint 12

13 Endpoint 13

14 Endpoint 14

15 Endpoint 15

3
(R/W)

IE DMA Interrupt Enable.
The USB_DMAn_CTL.IE bit enables DMA interrupts for the DMA channel,
enabling operation of the channels corresponding bit in the USB_DMA_IRQ register.

0 Disable Interrupt

1 Enable Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–157

DMA Channel n Address Register

The USB_DMAn_ADDR register indicates the location in on-chip memory where DMA data is written or read.
The address must be aligned to 32-bit words (The lower two address bits are always zero.) This register
increments as the DMA transfer progresses.

Figure 22-87: USB_DMAn_ADDR Register Diagram

2
(R/W)

MODE DMA Mode.
The USB_DMAn_CTL.MODE bit selects whether the DMA channel operates in
DMA mode 0 or operates in DMA mode 1. Note that DMA mode 1 may only be used
with bulk endpoints.

0 DMA Mode 0

1 DMA Mode 1

1
(R/W)

DIR DMA Transfer Direction.
The USB_DMAn_CTL.DIR bit selects the DMA channel transfer direction, which
must be selected for use with receive endpoints (DMA write=0) or transmit
endpoints (DMA read=1).

0 DMA Write (for Rx Endpoint)

1 DMA Read (for Tx Endpoint)

0
(R/W)

EN DMA Enable.
The USB_DMAn_CTL.EN bit enables the DMA channel starts the DMA transfer.

0 Disable DMA

1 Enable DMA (Start Transfer)

Table 22-61: USB_DMAn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–158 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA Channel n Count Register

The USB_DMAn_CNT register holds the DMA count, indicating the number of bytes to be transferred for a
given DMA work block. If this field is set to zero, no data is transferred, and an interrupt is generated.

Figure 22-88: USB_DMAn_CNT Register Diagram

EPn Request Packet Count Register

The USB_RQPKTCNTn register specifies (in host mode) the number of packets to request in a block transfer
of one or more bulk packets of size USB_EPn_RXMAXP from a receive endpoint. This register only applies
for receive endpoints 1 through 11 in host mode.

Table 22-62: USB_DMAn_ADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE DMA Address Value.
The USB_DMAn_ADDR.VALUE bits hold the address value for the location in
on-chip memory where DMA data is written or read.

Table 22-63: USB_DMAn_CNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE DMA Count Value.
The USB_DMAn_CNT.VALUE bits indicate the number of bytes to be transferred for
a given DMA work block.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–159

Figure 22-89: USB_RQPKTCNTn Register Diagram

Chirp Timeout Register

The USB_CT_UCH register selects chirp timeout value. The is value is multiplied by 4 times the XCLK period
(or 67ns). The default setting is 1.1ms.

Figure 22-90: USB_CT_UCH Register Diagram

Table 22-64: USB_RQPKTCNTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Request Packet Count Value.
The USB_RQPKTCNTn.VALUE bits specify the number of bulk packets to request
in a block transfer from a receive endpoint. This field is used in conjunction with
Auto Request feature (USB_EPn_RXCSR_H.AUTOREQ).

Table 22-65: USB_CT_UCH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14:0
(R/W)

VALUE Chirp Timeout Value.
The USB_CT_UCH.VALUE bits select the chirp timeout value.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–160 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Host High Speed Return to Normal Register

The USB_CT_HHSRTN register selects the delay from end of high speed resume signaling (acting as a host)
to return to normal mode operation. This value is multiplied by 4 times the XCLK period (or 16.7ns). The
default setting corresponds to a delay of 100us.

Figure 22-91: USB_CT_HHSRTN Register Diagram

High Speed Timeout Register

The USB_CT_HSBT register selects an amount of time to add to the minimum high speed timeout in units
of 64 bit times. The USB 2.0 specification section 7.1.19.2 states that the controller must not timeout less
than 736 bit times and must timeout after 816 bit times. The value in USB_CT_HSBT is multiplied by 64-bit
times and added to the minimum 736 bit times. Settings less than 1 violate the USB 2.0 specification,
making the controller non-compliant.

Figure 22-92: USB_CT_HSBT Register Diagram

Table 22-66: USB_CT_HHSRTN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14:0
(R/W)

VALUE Host High Speed Return to Normal Value.
The USB_CT_HHSRTN register selects the delay from end of high speed resume
signaling (acting as a host) to return to normal mode operation.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–161

LPM Attribute Register

The USB_LPM_ATTR register defines the link power management (LPM) attributes for LPM transactions
and sleep/wake operation. In peripheral mode, the USB_LPM_ATTR register contains values received in the
most recent, accepted (ACK'd) LPM transaction. In host mode, the USB_LPM_ATTR register contains values
(loaded by software) that set up the next LPM transaction. The USB controller inserts the LPM values
within the next LPM transaction.

Figure 22-93: USB_LPM_ATTR Register Diagram

Table 22-67: USB_CT_HSBT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE HS Timeout Adder.
The USB_CT_HSBT.VALUE bits selects an amount of time to add to the minimum
high speed timeout in units of 64 bit times.

0 HS Timeout = 736 (bit time)

1 HS Timeout = 800 (bit time)

2 HS Timeout = 864 (bit time)

Table 22-68: USB_LPM_ATTR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:12
(R/W)

EP Endpoint.
The USB_LPM_ATTR.EP bits select the endpoint in the token packet of the LPM
transaction.

8
(R/W)

RMTWAK Remote Wakeup Enable.
The USB_LPM_ATTR.RMTWAK bit enables remote wakeup. This bit is applied on a
temporary basis only and is only applied to the current suspend state. After the
current suspend cycle, the remote wakeup capability that was negotiated during
enumeration applies.

0 Disable Remote Wakeup

1 Enable Remote Wakeup

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–162 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

LPM Control Register

The USB_LPM_CTL register controls link power management (LPM) operations, including LPM enable,
NAK, resume, and mode transition.

Figure 22-94: USB_LPM_CTL Register Diagram

7:4
(R/W)

HIRD Host Initiated Resume Duration.
The USB_LPM_ATTR.HIRD bits select the host initiated resume duration. This
value is the minimum time that the host drives resume on the bus. The value in this
register corresponds to an actual resume time of:
Resume Time = 50us + HIRD*75us.
This equation produces results in a range of 50us to 1200us.

3:0
(R/W)

LINKSTATE Link State.
The USB_LPM_ATTR.LINKSTATE bits is value is provided by the host to the
peripheral to indicate what state the peripheral must transition to after the receipt
and acceptance of a LPM transaction. (Enumerations not shown are reserved.)

1 Sleep State (L1)

Table 22-69: USB_LPM_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

NAK LPM NAK Enable.
The USB_LPM_CTL.NAK bit enables (in peripheral mode) a NAK-all-non-LPM
transactions mode for all end points, forcing a NAK response to all transactions other
than an LPM transaction. This bit only takes effect after the controller has been LPM
suspended. In this case, the USB controller continues to NAK, until this bit has been
cleared by software.

0 Disable LPM NAK

1 Enable LPM NAK

Table 22-68: USB_LPM_ATTR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–163

3:2
(R/W)

EN LPM Enable.
The USB_LPM_CTL.EN bits enable (In peripheral mode) LPM operations. The
LPM operation may be enabled at different levels, which determine the response of
the USB controller to LPM transactions.

0 Disable LPM
LPM and extended transactions are not supported. The
USB controller does not respond to LPM transactions,
and these transaction timeout.

1 Disable LPM
LPM and extended transactions are not supported. The
USB controller does not respond to LPM transactions,
and these transaction timeout.

2 Enable Extended Transactions
LPM is not supported, but extended transactions are
supported. The USB controller responds to an LPM
transaction with a STALL.

3 Enable LPM and Extended Transactions
Both LPM and extended transactions are supported.
The USB controller responds with a NYET or an ACK
as determined by the value of LPMXMT and other
conditions.

1
(R/W)

RESUME LPM Resume (Remote Wakeup).
The USB_LPM_CTL.RESUME bit initiates resume (remote wakeup). This bits
operation differs from the USB_POWER.RESUME bit in that the LPM resume signal
timing is controlled by hardware. When set, the USB controller asserts resume
signaling for 50us in host mode or asserts resume signaling for the time specified by
the USB_LPM_ATTR.HIRD field in device mode. The USB_LPM_CTL.RESUME
bit is self clearing.

0 No Action

1 LPM Resume

Table 22-69: USB_LPM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–164 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

LPM Interrupt Enable Register

The USB_LPM_IEN register enables the link power management (LPM) related interrupts. When an inter-
rupt is enabled in this register and the corresponding interrupt is pending in USB_LPM_IRQ, the USB
controller generates the interrupt. When an interrupt is disabled in this register, the corresponding inter-
rupt may be pending in USB_LPM_IRQ, but the USB controller does not generate an interrupt.

Figure 22-95: USB_LPM_IEN Register Diagram

0
(R/W)

TX LPM Transmit.
The USB_LPM_CTL.TX bit puts the USB controller in LPM transmit mode, but this
mode has differing operations in host mode versus peripheral mode.
In peripheral mode, this bit is set by software to instruct the controller to transition to
the L1 state upon receipt of the next LPM transaction. This bit is only effective if LPM
enable (USB_LPM_CTL.EN) is set to 0x3. The LPM transmit enable bit can be set in
the same cycle as LPM enable. If USB_LPM_CTL.TX and USB_LPM_CTL.EN are
enabled, the USB controller can respond in the following ways:

• If no data is pending (all transmit FIFOs are empty), the USB controller
responds with an ACK, clears the USB_LPM_CTL.TX bit, and generates a
software interrupt.

• If data is pending (data resides in at least one transmit FIFO), the USB
controller responds with a NYET, does not clear the USB_LPM_CTL.TX bit, and
generates a software interrupt.

In host mode, this bit is set by software to transmit an LPM transaction. This bit is
self clearing. The USB controller clears this bit immediately on receipt of any token or
after three timeouts have occurred.

0 Disable LPM Tx

1 Enable LPM Tx

Table 22-69: USB_LPM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–165

LPM Interrupt Status Register

The USB_LPM_IRQ register indicates link power management (LPM) related interrupt status. The USB
controller clears this register when it is read.

Figure 22-96: USB_LPM_IRQ Register Diagram

Table 22-70: USB_LPM_IEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(R/W)

LPMERR LPM Error Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

4
(R/W)

LPMRES LPM Resume Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

3
(R/W)

LPMNC LPM NYET Control Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

2
(R/W)

LPMACK LPM ACK Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

1
(R/W)

LPMNY LPM NYET Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

0
(R/W)

LPMST LPM STALL Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–166 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 22-71: USB_LPM_IRQ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(RC/NW)

LPMERR LPM Error Interrupt.
The USB_LPM_IRQ.LPMERR bit indicates an LPM error interrupt condition, but
this interrupt has differing conditions for host mode versus peripheral mode.
In peripheral mode, this bit is set if an LPM transaction is received that has a
LinkState field that is not supported. The USB controller responds to the transaction
with a STALL. Note that the USB controller updates the USB_LPM_ATTR register, so
software can observe the non compliant LPM packet payload.
In host mode, this bit is set if the response to a LPM transaction is received with a bit
stuff or PID error. No suspend occurs and the state of the device is now unknown.

0 No Interrupt Pending

1 Interrupt Pending

4
(RC/NW)

LPMRES LPM Resume Interrupt.
The USB_LPM_IRQ.LPMRES bit indicates that the USB controller has been
resumed for any reason. This bit is mutually exclusive from the USB_
POWER.RESUME bit.

0 No Interrupt Pending

1 Interrupt Pending

3
(RC/NW)

LPMNC LPM NYET Control Interrupt.
The USB_LPM_IRQ.LPMNC bit indicates an LPM NYET control interrupt
condition, but this interrupt has differing conditions for host mode versus peripheral
mode.
In peripheral mode, this bit is set when an LPM transaction is received, and the USB
controller responds with a NYET due to data pending in the transmit FIFOs. This
interrupt may only occur when the USB_LPM_CTL.EN field is set to 11, the USB_
LPM_CTL.TX field is set to 1, and there is data pending in the transmit FIFOs.
In host mode, this bit is set when an LPM transaction has been transmitted, but has
failed to complete. The transaction failure must be because a timeout occurred or be
because there were bit errors in the response for three attempts.

0 No Interrupt Pending

1 Interrupt Pending

2
(RC/NW)

LPMACK LPM ACK Interrupt.
The USB_LPM_IRQ.LPMACK bit indicates an LPM ACK interrupt condition, but
this interrupt has differing conditions for host mode versus peripheral mode.
In peripheral mode, this bit is set when an LPM transaction is received, and the USB
controller responds with an ACK. This interrupt may only occur when the USB_
LPM_CTL.EN field is set to 11, the USB_LPM_CTL.TX field is set to 1, and there is
no data pending in the controller transmit FIFOs.
In host mode, this bit is set when an LPM transaction is transmitted, and the device
responds with an ACK.

0 No Interrupt Pending

1 Interrupt Pending

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–167

LPM Function Address Register

The USB_LPM_FADDR register selects the link power management (LPM) function address.

Figure 22-97: USB_LPM_FADDR Register Diagram

1
(RC/NW)

LPMNY LPM NYET Interrupt.
The USB_LPM_IRQ.LPMNY bit indicates an LPM NYET interrupt condition, but
this interrupt has differing conditions for host mode versus peripheral mode.
In peripheral mode, this bit is set when an LPM transaction is received, and the USB
controller responds with a NYET. This interrupt may only occur when the USB_
LPM_CTL.EN field is set to 11, and the USB_LPM_CTL.TX field is set to 0.
In host mode, this bit is set when an LPM transaction is transmitted and the device
responds with a NYET.

0 No Interrupt Pending

1 Interrupt Pending

0
(RC/NW)

LPMST LPM STALL Interrupt.
The USB_LPM_IRQ.LPMST bit indicates an LPM STALL interrupt condition, but
this interrupt has differing conditions for host mode versus peripheral mode.
This bit is set when an LPM transaction is received, and the USB controller responds
with a STALL. This interrupt may only occur when the USB_LPM_CTL.EN field is
set to 01.
In host mode, this bit is set when an LPM transaction is transmitted, and the device
responds with a STALL.

0 No Interrupt Pending

1 Interrupt Pending

Table 22-72: USB_LPM_FADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Function Address Value.
The USB_LPM_FADDR.VALUE bits hold the LPM function address value that the
USB controller places in the LPM payload.

Table 22-71: USB_LPM_IRQ Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–168 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

VBUS Control Register

The USB_VBUS_CTL controls USB controller VBUS related features.

Figure 22-98: USB_VBUS_CTL Register Diagram

Battery Charging Control Register

The USB_BAT_CHG controls USB controller battery changing related features.

Table 22-73: USB_VBUS_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/NW)

DRV VBUS Drive.
The USB_VBUS_CTL.DRV bit indicates the state of the UTMI+ DrvVBUS signal
from the USB controller.

3
(R/W1C)

DRVINT VBUS Drive Interrupt.
The USB_VBUS_CTL.DRVINT bit indicates the state of the DrvVBUSInt interrupt.

2
(R/W)

DRVIEN VBUS Drive Interrupt Enable.
The USB_VBUS_CTL.DRVIEN bit enables the DrvVBUS interrupt.

1
(R/W)

DRVOD VBUS Drive Open Drain.
The USB_VBUS_CTL.DRVOD selects whether the DrvVBUS output is open drain.

0
(R/W)

INVDRV VBUS Invert Drive.
The USB_VBUS_CTL.INVDRV bit selects whether the DrvVBUS output is
inverted.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–169

Figure 22-99: USB_BAT_CHG Register Diagram

PHY Control Register

The USB_PHY_CTL register provides access to PHY control features.

Table 22-74: USB_BAT_CHG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

DEDCHG Dedicated Charging Port.
The USB_BAT_CHG.DEDCHG bit is asserted if both D+ and D- are high. This can
be used to determine if the attached device is a dedicated charging port. This bit is the
decode of LineState[1] and LineState[0]. This bit is only valid when a session is
initiated, which enables a pullup on D+ when acting as a B-device.

3
(R/NW)

CHGDET Charging Port Detected.
The USB_BAT_CHG.CHGDET bit indicates when a charging port is detected. This
bit indicates that D+/- is above VDAT_REF and below VLGC.

2
(R/W)

SNSCHGDET Sense Charger Detection.
The USB_BAT_CHG.SNSCHGDET bit enables charger detection. Setting this bit
enables VD_SRC and ID_SINK.

1
(R/NW)

CONDET Connected Detected.
The USB_BAT_CHG.CONDET bit is valid when USB_BAT_CHG.SNSCONDET is
enabled. This bit reflects the inverse of D+ (!LineState[0]). If nothing is connected,
D+ is pulled high. If a charger or USB port is connected, D+ is pulled low.

0
(R/W)

SNSCONDET Sense Connection Detection.
The USB_BAT_CHG.SNSCONDET bit enables connection detection. Enabling this
bit enables IDP_SRC and RDM_DWN.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–170 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 22-100: USB_PHY_CTL Register Diagram

PLL and Oscillator Control Register

The USB_PLL_OSC register provides access to PLL and oscillator related control features.

Table 22-75: USB_PHY_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

EN PHY Enable.
The USB_PHY_CTL.EN bit enables the USB controller PHY. This bit enables the
schmitt-trigger inputs on D+ and D- to detect session request protocol. The bit also
enables the bias circuits and VBUS comparators to detect when a host is connected.
This bit should be set for all USB controller operations.

1
(R/W)

RESTORE Restore from Hibernate.
The USB_PHY_CTL.RESTORE bit causes the PHY to come out of hibernate and
release its latches.

0
(R/W)

HIBER Hibernate.
The USB_PHY_CTL.HIBER bit causes the PHY to prepare for hibernate. Latches
hold the pullup/pulldown state when the core power is removed.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 22–171

Figure 22-101: USB_PLL_OSC Register Diagram

.

Table 22-76: USB_PLL_OSC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

PLLMSEL PLL Multiplier Select.
The USB_PLL_OSC.PLLMSEL bit directs the PLL to use the PLL multiplier value is
stored the USB_PLL_OSC.PLLM bits.

6:1
(R/W)

PLLM PLL Multiplier Value.
PLL multiplier. This field should be set such that CLKIN * (USB_PLL_OSC.PLLM
value) = 480MHz.

0
(R/W)

DIVCLKIN Divide CLKIN.
The USB_PLL_OSC.DIVCLKIN bit enables a divide CLKIN by 2 function for the
PLL.

UNIVERSAL SERIAL BUS (USB)
ADSP-BF60X USB REGISTER DESCRIPTIONS

22–172 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–1

23 Ethernet Media Access Controller (EMAC)

The EMAC peripheral present in the processor enables network connectivity to applications via a 10/100M
bit/s Ethernet interface. The module is fully compliant to the following standards:

• Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications, Standard 802.3-2005, Institute of Electrical and Electronics Engineers (IEEE).

• Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems, Standard 1588-2008, Institute of Electrical and Electronics Engineers (IEEE).

• Reduced Media Independent Interface Specification, Revision 1.2, RMII Consortium.

NOTE: Copyright © 2010 Synopsys, Inc.; portions of this chapter are included with permission from
Synopsys, Inc.

The EMAC interface consists of the hardware for the Media Access Control protocol. This allows applica-
tions to support TCP/IP based network communication. At the system end, the module supports direct
connection with the System Crossbar bus for Memory/MMR transactions. It supports RMII (Reduced
Media Independent Interface) and SMI (Station Management Interface) for interfacing with the external
PHY chip.

The MAC also includes a built-in and dedicated DMA controller that performs both data and status trans-
fers between the application and the RMII interface. Internal transmit and receive FIFOs are used to buffer
and regulate the frames. A dedicated interrupt line connects the EMAC interrupt sources to the System
Event Controller (SEC).

The MAC Management Counters (MMC) block is an extended set of registers that collects various statis-
tics compliant with IEEE 802.3 definitions regarding the operation of the interface. The registers are
updated for each new transmitted or received frame when the condition to update the counter is met. The
EMAC provides a set of such counters, along with extended usage control.

The EMAC also includes a PTP (Precision Time Protocol) engine that provides hardware assistance for
the implementation of the IEEE 1588 Version 1 and Version 2 standards on Blackfin processors, which
allows time synchronization between systems.

EMAC Features
The Ethernet MAC's features include the following:

• Supports 10/100 Mbps data transfer rates with external PHY interfaced via RMII.

• Full-duplex and half-duplex support for Ethernet.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Dedicated DMA controller with independent read write channels.

• Supports dual-buffer (ring) or linked-list (chained) descriptor chaining.

• Direct interface with the System Crossbar bus.

• Provides support for CSMA/CD protocol for half-duplex operation.

• IEEE 802.3x flow control for full-duplex and half-duplex.

• Automatic network monitoring statistics with management counters.

• Flexible address filtering options for uni-cast/multi-cast/broadcast addresses.

• Support for Promiscuous mode in reception.

• Supports IEEE 802.1Q VLAN tag detection.

• Supports programmable Inter-frame Gap (IFG).

• Checksum Offload Engine for checking IPv4 header checksum and TCP/UDP/ICMP checksum encap-
sulated in IPv4 or IPv6 datagrams.

• Station Management Interface for PHY device configuration and management.

• Includes FIFOs for buffering: 256 bytes for transmit FIFO and 128 bytes for receive FIFO.

• Automatic CRC and pad generation controllable on a per-frame basis.

EMAC Functional Description
This section provides information on the function of Ethernet MAC peripheral and contains the following
topics.

• ADSP-BF60x EMAC Register List

• EMAC Definitions

• EMAC Block Diagram and Interfaces

• EMAC Architectural Concepts

ADSP-BF60x EMAC Register List

The ethernet MAC (EMAC) module provides a 10/100M bit/s Ethernet interface, compliant to IEEE Std.
802.3-2005, between an RMII (Reduced Media Independent Interface) and the Blackfin processor. A set
of registers govern EMAC operations. For more information on EMAC functionality, see the EMAC
register descriptions.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–3

Table 23-1: ADSP-BF60x EMAC Register List

Name Description

EMAC_MACCFG MAC Configuration Register

EMAC_MACFRMFILT MAC Rx Frame Filter Register

EMAC_HASHTBL_HI Hash Table High Register

EMAC_HASHTBL_LO Hash Table Low Register

EMAC_SMI_ADDR SMI Address Register

EMAC_SMI_DATA SMI Data Register

EMAC_FLOWCTL FLow Control Register

EMAC_VLANTAG VLAN Tag Register

EMAC_DBG Debug Register

EMAC_ISTAT Interrupt Status Register

EMAC_IMSK Interrupt Mask Register

EMAC_ADDR0_HI MAC Address 0 High Register

EMAC_ADDR0_LO MAC Address 0 Low Register

EMAC_MMC_CTL MMC Control Register

EMAC_MMC_RXINT MMC Rx Interrupt Register

EMAC_MMC_TXINT MMC Tx Interrupt Register

EMAC_MMC_RXIMSK MMC Rx Interrupt Mask Register

EMAC_MMC_TXIMSK MMC TX Interrupt Mask Register

EMAC_TXOCTCNT_GB Tx OCT Count (Good/Bad) Register

EMAC_TXFRMCNT_GB Tx Frame Count (Good/Bad) Register

EMAC_TXBCASTFRM_G Tx Broadcast Frames (Good) Register

EMAC_TXMCASTFRM_G Tx Multicast Frames (Good) Register

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC_TX64_GB Tx 64-Byte Frames (Good/Bad) Register

EMAC_TX65TO127_GB Tx 65- to 127-Byte Frames (Good/Bad) Register

EMAC_TX128TO255_GB Tx 128- to 255-Byte Frames (Good/Bad) Register

EMAC_TX256TO511_GB Tx 256- to 511-Byte Frames (Good/Bad) Register

EMAC_TX512TO1023_GB Tx 512- to 1023-Byte Frames (Good/Bad) Register

EMAC_TX1024TOMAX_GB Tx 1024- to Max-Byte Frames (Good/Bad) Register

EMAC_TXUCASTFRM_GB Tx Unicast Frames (Good/Bad) Register

EMAC_TXMCASTFRM_GB Tx Multicast Frames (Good/Bad) Register

EMAC_TXBCASTFRM_GB Tx Broadcast Frames (Good/Bad) Register

EMAC_TXUNDR_ERR Tx Underflow Error Register

EMAC_TXSNGCOL_G Tx Single Collision (Good) Register

EMAC_TXMULTCOL_G Tx Multiple Collision (Good) Register

EMAC_TXDEFERRED Tx Deferred Register

EMAC_TXLATECOL Tx Late Collision Register

EMAC_TXEXCESSCOL Tx Excess Collision Register

EMAC_TXCARR_ERR Tx Carrier Error Register

EMAC_TXOCTCNT_G Tx Octet Count (Good) Register

EMAC_TXFRMCNT_G Tx Frame Count (Good) Register

EMAC_TXEXCESSDEF Tx Excess Deferral Register

EMAC_TXPAUSEFRM Tx Pause Frame Register

EMAC_TXVLANFRM_G Tx VLAN Frames (Good) Register

EMAC_RXFRMCNT_GB Rx Frame Count (Good/Bad) Register

Table 23-1: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–5

EMAC_RXOCTCNT_GB Rx Octet Count (Good/Bad) Register

EMAC_RXOCTCNT_G Rx Octet Count (Good) Register

EMAC_RXBCASTFRM_G Rx Broadcast Frames (Good) Register

EMAC_RXMCASTFRM_G Rx Multicast Frames (Good) Register

EMAC_RXCRC_ERR Rx CRC Error Register

EMAC_RXALIGN_ERR Rx alignment Error Register

EMAC_RXRUNT_ERR Rx Runt Error Register

EMAC_RXJAB_ERR Rx Jab Error Register

EMAC_RXUSIZE_G Rx Undersize (Good) Register

EMAC_RXOSIZE_G Rx Oversize (Good) Register

EMAC_RX64_GB Rx 64-Byte Frames (Good/Bad) Register

EMAC_RX65TO127_GB Rx 65- to 127-Byte Frames (Good/Bad) Register

EMAC_RX128TO255_GB Rx 128- to 255-Byte Frames (Good/Bad) Register

EMAC_RX256TO511_GB Rx 256- to 511-Byte Frames (Good/Bad) Register

EMAC_RX512TO1023_GB Rx 512- to 1023-Byte Frames (Good/Bad) Register

EMAC_RX1024TOMAX_GB Rx 1024- to Max-Byte Frames (Good/Bad) Register

EMAC_RXUCASTFRM_G Rx Unicast Frames (Good) Register

EMAC_RXLEN_ERR Rx Length Error Register

EMAC_RXOORTYPE Rx Out Of Range Type Register

EMAC_RXPAUSEFRM Rx Pause Frames Register

EMAC_RXFIFO_OVF Rx FIFO Overflow Register

EMAC_RXVLANFRM_GB Rx VLAN Frames (Good/Bad) Register

Table 23-1: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC_RXWDOG_ERR Rx Watch Dog Error Register

EMAC_IPC_RXIMSK MMC IPC Rx Interrupt Mask Register

EMAC_IPC_RXINT MMC IPC Rx Interrupt Register

EMAC_RXIPV4_GD_FRM Rx IPv4 Datagrams (Good) Register

EMAC_RXIPV4_HDR_ERR_FRM Rx IPv4 Datagrams Header Errors Register

EMAC_RXIPV4_NOPAY_FRM Rx IPv4 Datagrams No Payload Frame Register

EMAC_RXIPV4_FRAG_FRM Rx IPv4 Datagrams Fragmented Frames Register

EMAC_RXIPV4_UDSBL_FRM Rx IPv4 UDP Disabled Frames Register

EMAC_RXIPV6_GD_FRM Rx IPv6 Datagrams Good Frames Register

EMAC_RXIPV6_HDR_ERR_FRM Rx IPv6 Datagrams Header Error Frames Register

EMAC_RXIPV6_NOPAY_FRM Rx IPv6 Datagrams No Payload Frames Register

EMAC_RXUDP_GD_FRM Rx UDP Good Frames Register

EMAC_RXUDP_ERR_FRM Rx UDP Error Frames Register

EMAC_RXTCP_GD_FRM Rx TCP Good Frames Register

EMAC_RXTCP_ERR_FRM Rx TCP Error Frames Register

EMAC_RXICMP_GD_FRM Rx ICMP Good Frames Register

EMAC_RXICMP_ERR_FRM Rx ICMP Error Frames Register

EMAC_RXIPV4_GD_OCT Rx IPv4 Datagrams Good Octets Register

EMAC_RXIPV4_HDR_ERR_OCT Rx IPv4 Datagrams Header Errors Register

EMAC_RXIPV4_NOPAY_OCT Rx IPv4 Datagrams No Payload Octets Register

EMAC_RXIPV4_FRAG_OCT Rx IPv4 Datagrams Fragmented Octets Register

EMAC_RXIPV4_UDSBL_OCT Rx IPv4 UDP Disabled Octets Register

Table 23-1: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–7

EMAC_RXIPV6_GD_OCT Rx IPv6 Good Octets Register

EMAC_RXIPV6_HDR_ERR_OCT Rx IPv6 Header Errors Register

EMAC_RXIPV6_NOPAY_OCT Rx IPv6 No Payload Octets Register

EMAC_RXUDP_GD_OCT Rx UDP Good Octets Register

EMAC_RXUDP_ERR_OCT Rx UDP Error Octets Register

EMAC_RXTCP_GD_OCT Rx TCP Good Octets Register

EMAC_RXTCP_ERR_OCT Rx TCP Error Octets Register

EMAC_RXICMP_GD_OCT Rx ICMP Good Octets Register

EMAC_RXICMP_ERR_OCT Rx ICMP Error Octets Register

EMAC_TM_CTL Time Stamp Control Register

EMAC_TM_SUBSEC Time Stamp Sub Second Increment Register

EMAC_TM_SEC Time Stamp Low Seconds Register

EMAC_TM_NSEC Time Stamp Nanoseconds Register

EMAC_TM_SECUPDT Time Stamp Seconds Update Register

EMAC_TM_NSECUPDT Time Stamp Nanoseconds Update Register

EMAC_TM_ADDEND Time Stamp Addend Register

EMAC_TM_TGTM Time Stamp Target Time Seconds Register

EMAC_TM_NTGTM Time Stamp Target Time Nanoseconds Register

EMAC_TM_HISEC Time Stamp High Second Register

EMAC_TM_STMPSTAT Time Stamp Status Register

EMAC_TM_PPSCTL PPS Control Register

EMAC_TM_AUXSTMP_NSEC Time Stamp Auxiliary TS Nano Seconds Register

Table 23-1: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC_TM_AUXSTMP_SEC Time Stamp Auxiliary TM Seconds Register

EMAC_TM_PPSINTVL Time Stamp PPS Interval Register

EMAC_TM_PPSWIDTH PPS Width Register

EMAC_DMA_BUSMODE DMA Bus Mode Register

EMAC_DMA_TXPOLL DMA Tx Poll Demand Register

EMAC_DMA_RXPOLL DMA Rx Poll Demand register

EMAC_DMA_RXDSC_ADDR DMA Rx Descriptor List Address Register

EMAC_DMA_TXDSC_ADDR DMA Tx Descriptor List Address Register

EMAC_DMA_STAT DMA Status Register

EMAC_DMA_OPMODE DMA Operation Mode Register

EMAC_DMA_IEN DMA Interrupt Enable Register

EMAC_DMA_MISS_FRM DMA Missed Frame Register

EMAC_DMA_RXIWDOG DMA Rx Interrupt Watch Dog Register

EMAC_DMA_BMMODE DMA SCB Bus Mode Register

EMAC_DMA_BMSTAT DMA SCB Status Register

EMAC_DMA_TXDSC_CUR DMA Tx Descriptor Current Register

EMAC_DMA_RXDSC_CUR DMA Rx Descriptor Current Register

EMAC_DMA_TXBUF_CUR DMA Tx Buffer Current Register

EMAC_DMA_RXBUF_CUR DMA Rx Buffer Current Register

Table 23-1: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–9

ADSP-BF60x EMAC Interrupt List

ADSP-BF60x EMAC Trigger List

EMAC Definitions

The following definitions aid with using the EMAC.

Table 23-2: ADSP-BF60x EMAC Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

EMAC0 Status 68 LEVEL
EMAC1 Status 70 LEVEL

Table 23-3: ADSP-BF60x EMAC Trigger List Trigger Masters

Description Trigger ID Sensitivity

EMAC0 Status 33 LEVEL
EMAC1 Status 34 LEVEL

Table 23-4: ADSP-BF60x EMAC Trigger List Trigger Slaves

Description Trigger ID Sensitivity

None

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC SCB

System Crossbar interface of EMAC

EMAC DMA

DMA Controller of EMAC

EMAC MFL

MAC FIFO Layer inside EMAC

EMAC CORE

CORE Layer inside EMAC which performs the actual Ethernet operations, including interface with PHY
via RMII.

MMC

MAC Management Counter

SMI

Station Management Interface that controls PHY via MDIO/MDC signals.

MII

Reduced Media Independent Interface

MAC

Media Access Control

PTP

Precision Time Protocol

EMAC Block Diagram and Interfaces

The following figure illustrates the overall functional architecture of the Ethernet MAC peripheral. The
EMAC module is comprised of four major layers, EMAC SCB, EMAC DMA, EMAC MFL and EMAC
CORE. Each of these layers (sub-blocks) are explained in depth in their respective sections in this chapter.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–11

Figure 23-1: EMAC Simplified Block Diagram

A more comprehensive block diagram is shown below. It includes most of the important blocks inside the
EMAC. The EMAC is connected to processor memory and the system crossbar via the System Crossbar
Bus Interface (SCB) and System Peripheral Bus Interface (SPB), which are part of the SCB Layer. The SPB
interface is connected to all modules that require MMR programming.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The DMA controller performs application data transfer frame by frame, through well defined descriptor
structures. A FIFO layer acts as a buffer between the DMA controller and the EMAC core. The EMAC core
is the most important block as it contains sub-blocks to support IEEE802.3 based communication with
external network interfaces of 10/100 Mbps speeds. It includes the PTP sub-block which assists applica-
tions requiring time synchronization and a MMC sub-block to generate packet transfer statistics. The
MAC is connected to the external PHY via the Reduced Media Independent Interface (RMII) and the
Station Management Interface (Serial Management IO).

Figure 23-2: EMAC Complete Block Diagram

EMAC CORE Sub-Blocks

The core transmit engine sub-blocks and their function are summarized in the below table. Please refer to
the EMAC core section for further explanation of each of these sub-blocks.

Table 23-5: Core Transmit Engine sub-blocks

CORE Transmit Engine Sub Block Function

Transmit Bus Interface Interface to the FIFO.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–13

The core receive engine sub-blocks and their function are summarized in the following table. Please refer
to the EMAC core section for more information on each of these sub-blocks.

Transmit Frame Controller –Appends Zero-PAD data if required, for short
frames.
–Appends CRC for Frame Check-Sum from the CRC
Generator.

Transmit Protocol Engine –Generates preamble and SFD, as per 802.3 protocol.
–Generates jam pattern in Half-Duplex mode, for
collisions.
–Jabber timeout, for excessively large frames.
–Flow control for Half-Duplex mode (back pressure).
–Generates transmit frame status.

Transmit Scheduler –Maintains the inter-frame gap between two
transmitted frames.
–Follows the Truncated Binary Exponential Back-off
algorithm for Half-Duplex mode.

Transmit CRC Generator Generate CRC for the Frame Check-Sum field of the
Ethernet frame.

 Transmit Flow Control Receives the Pause frame, appends the calculated
CRC, and sends the frame to the Protocol Engine
module.

Transmit Checksum Offload Engine Supports checksum calculation and insertion in the
transmit path, for IPV4/TCP/UDP/ICMP packets.

Table 23-6: Core Receive Engine Sub-Blocks

CORE Receive Engine sub block Functionality overview

Receive Protocol Engine –Strips the incoming preamble and SFD.
–Checks for correct Length/Type field.
–Performs internal loopback if required.
–Generates receive status.
–Supports watchdog of received frames.
–Supports Jumbo Frames.

Receive CRC Module Checks for CRC error, by comparing with FCS.

Table 23-5: Core Transmit Engine sub-blocks (Continued)

CORE Transmit Engine Sub Block Function

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC PHY Interface

The EMAC can interface to the PHY via the RMII interface standard. The tables below indicate the RMII
pins available in the EMAC in terms of their generic names. Please refer to the data sheet for exact pin
names.

Receive Frame Controller Module –Packs incoming 8-bit input stream to 32-bit data
internally.
–Performs Frame filtering, for uni-cast/multi-cast/
broadcast frames.
–Attaches the calculated IP Checksum input from
Checksum Offload Engine.
–Updates the Receive Status to Bus Interface.

Receive Flow Control Module –Detects the receiving Pause frame and pauses the
frame transmission for the delay specified within the
received Pause frame.
–Works in Full Duplex mode.

Receive IP Checksum Offload Engine –Calculates IPv4 header checksums and verify against
the received IPv4 header checksums.
–Identifies a TCP, UDP or ICMP payload in the
received IP datagrams.

Receive Bus Interface Unit Module Interface to the FIFO.
Address Filtering Module Performs Destination Address Filtering based on

Unicast/ Multi-cast/Broadcast frames.
–Provides CRC hash filtering.

Table 23-7: RMII Pins

Sl. No. Generic Signal Name (IEEE Standards) RMII Pin functionality.

1. TXD0 RMII transmit data pin D0 (di-bit lower)
2. TXD1 RMII transmit data pin D1 (di-bit higher)
3. RXD0 RMII receive data pin D0 (di-bit lower)
4. RXD1 RMII receive data pin D1 (di-bit higher)
5. RMII CLK RMII common clock (for Tx and Rx), also called

reference clock
6. TXEN RMII transmit enable pin (Tx valid)
7. CRS RMII Carrier Sense / receive data valid
8. MDC Serial management clock driven by EMAC

Table 23-6: Core Receive Engine Sub-Blocks (Continued)

CORE Receive Engine sub block Functionality overview

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–15

Figure 23-3: RMII Di-bit Data Transfer

Clock Sources

The Ethernet MAC is clocked internally from SCLK. Check the processor data sheet for the valid frequency
range of the appropriate SCLKsignal for Ethernet operation.

A 50 MHz clock should be sourced externally to operate the EMAC in RMII mode. This clock is the same
for both transmit and receive. The MDC Station Management Clock is derived from the SCLKand driven
from the MAC to the PHY, when accessing any PHY registers.

Figure 23-4: EMAC Clock Sources

EMAC Architectural Concepts

This section explains different architectural concepts relevant to EMAC peripheral, such as EMAC SCB,
EMAC DMA, EMAC MFL, EMAC CORE and others.

9. MDIO Serial management bi-directional data

Table 23-7: RMII Pins (Continued)

Sl. No. Generic Signal Name (IEEE Standards) RMII Pin functionality.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC System Crossbar Interface (EMAC SCB)

The EMAC SCB bus interface provides the bus connectivity to support highly effective data traffic
throughput. System bus use is maximized by allowing simultaneous read and write transfers initiated from
different DMA channels. The EMAC controller is directly connected to the SCB0 crossbar. The following
interfaces are available with the design.

• A 32-bit SCB master interface for reading/writing from/to application memory.

• A 32-bit SPB slave interface for register programming.

Please refer to the “System Crossbars (SCB)” chapter for more information on how the crossbar operates.
Only the EMAC specific information is detailed in this chapter.

The DMA write channel and read channel data paths and their connection to the system crossbar is shown
below.

Table 23-8: EMAC-SCB Interface Data Transfer Specifications with Crossbar

Specification Term Comments

1 beat in SCB SINGLE burst
BLEN4 bursts 4 beats in SCB
BLEN8 bursts 8 beats in SCB
BLEN16 bursts 16 beats in SCB
Bus size 32-bit fixed bus size; equals 1 beat
INCR bursts Incrementing Bursts
INCR ALIGNED bursts Incrementing aligned bursts
UNDEF bursts Undefined burst length
PBL Programmable Burst Length for DMA

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–17

Figure 23-5: EMAC DMA Read/Write channels with System Crossbar

NOTE: Transmit descriptor read and receive descriptor write-back (status update) operations can occur
simultaneously. However transmit descriptor read and transmit descriptor write-back operations
cannot occur simultaneously because transmit DMA (or receive DMA) does not initiate the next
transfer unless the previous one is complete.

Priority of SCB Requests

The descriptor transfers have higher priority than the data transfers. For example, if there are two bus
requests—a receive descriptor read and a transmit data read—the receive descriptor read has a higher
priority so that the next receive data write (subsequent to the receive descriptor read) need not wait for the
transmit data read transfer to complete.

If there are descriptor read requests from both DMA channels, they are serviced based on a first-come first-
serve. Receive DMA has higher priority if descriptor read requests are generated from both the DMA chan-
nels in the same clock cycle. Similarly, in the write channel, descriptor writes from DMA have higher
priority than the data-write transfers for the receive DMA.

SCB Interface Programming Options

The SCB bus interface supports the following programmable options for the EMAC module. These
options are available using the EMAC_DMA_BMMODE register with the EMAC_DMA_BUSMODE register.

• Outstanding transactions. The EMAC-SCB supports up to four outstanding read/write requests on
the SCB bus. This can also be controlled through software by programming the EMAC_DMA_BMMODE.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

WROSRLMT and EMAC_DMA_BMMODE.RDOSRLMT bits. Maximum outstanding requests=EMAC_DMA_
BMMODE.WROSRLMT + 1 (or) EMAC_DMA_BMMODE.RDOSRLMT + 1.

• Allowed burst sizes. The allowed burst sizes are 4 (EMAC_DMA_BMMODE.BLEN4), 8 (EMAC_DMA_BMMODE.
BLEN8), 16 (EMAC_DMA_BMMODE.BLEN16) and the SINGLE burst. Only those burst sizes configured by
the program (via the EMAC_DMA_BMMODEregister) are used for data transfer through the SCB bus.
However, SINGLE burst is available by default, when the EMAC_DMA_BMMODE.UNDEF bit in the is cleared.
Data transfers are restricted to the maximum burst size from this list of programmed burst sizes.

• Burst splitting and burst selection. The EMAC-SCB splits the DMA requests into multiple bursts on
the SCB system bus. Splitting is based on DMA count and software controllable burst enable bits
(shown in the Allowed burst sizes) as well as burst types (INCR and INCR_ALIGNED) which are also
controllable through the software. SINGLE burst is enabled when the EMAC_DMA_BMMODE.UNDEF bit is
not set. Burst length select priority is in the sequence: UNDEF, 16, 8, and 4.

• INCR burst type

– If the EMAC_DMA_BMMODE.UNDEF bit is set, then the EMAC-SCB always chooses the maximum
allowed burst length based on the EMAC_DMA_BMMODE.BLEN16, EMAC_DMA_BMMODE.BLEN8, EMAC_
DMA_BMMODE.BLEN4 bits. In cases where the DMA requests are not multiples of the maximum
allowed burst length, the SCB may also choose a burst-length of any value less than the maximum
enabled burst-length (all lesser burst-length enables are redundant). For example, when length bits
are enabled and the DMA requests a burst transfer size of 42 beats, then the SCB splits it into three
bursts of 16, 16 and 10 beats respectively.

– If EMAC_DMA_BMMODE.UNDEF is not enabled, then the burst length is based on the priority of the
enabled bits in the following order EMAC_DMA_BMMODE.BLEN16, EMAC_DMA_BMMODE.BLEN8, EMAC_
DMA_BMMODE.BLEN4. When the DMA requests a burst transfer, the SCB interface splits the
requested bursts into multiple transfers using only the enabled burst lengths. This splitting can
occur when the requested burst is not a multiple of the maximum enabled burst. If it cannot choose
any of the enabled burst lengths then it selects the burst length as 1.

For example, when EMAC_DMA_BMMODE.BLEN16, EMAC_DMA_BMMODE.BLEN8, EMAC_DMA_BMMODE.BLEN4
are enabled and the DMA requests a burst transfer of 42 beats, then the SCB interface splits it into
multiple bursts of size 16, 16, 8, 1 and 1 beats respectively (the sequence is in decreasing burst sizes).

• INCR_ALIGNED burst type. When the address-aligned burst-type is enabled (EMAC_DMA_BMMODE.
AAL), then in addition to the burst splitting conditions explained in the INCR Burst type, the SCB inter-
face splits the DMA requested bursts such that each burst-size is aligned to the least significant bits of
the start address. The SCB interface initially generates smaller bursts so that the remaining transfers can
be transferred with the maximum possible (enabled) fixed burst lengths.

For example, in the same setting as explained earlier for EMAC_DMA_BMMODE.UNDEF set (EMAC_DMA_
BMMODE.BLEN16, EMAC_DMA_BMMODE.BLEN8, and EMAC_DMA_BMMODE.BLEN4 are enabled), DMA
requests a burst size of 42 beats at the start address of 0x000003A4. The SCB starts the first transfer with

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–19

size 3 such that the address of the next burst is aligned (0x000003B0) for a burst of 16. Therefore, the
sequence of bursts is 3, 16, 16, and 7, respectively.

When EMAC_DMA_BMMODE.UNDEF is not set, then in the same situation (start address of 0x000003A4
with 42 beats), the sequence of burst transfers is 1, 1, 1, 16, 16, 4, and 3 respectively. The sequence of
smaller bursts at the beginning is to align the address to the next higher enabled burst-lengths
programmed in the register.

• Burst operations for DMA transactions. The EMAC_DMA_BUSMODE.PBL (programmable burst length)
field indicates the maximum number of beats to be transferred in one DMA transaction. This is also
the maximum value that is used in a single block read/write and is shown in the following table.

– For example, if EMAC_DMA_BUSMODE.PBL=32 and if EMAC_DMA_BMMODE.BLEN16 is enabled, the
DMA automatically splits 32 bursts in to 2 x 16 bursts. If EMAC_DMA_BUSMODE.PBL=8, and if EMAC_
DMA_BMMODE.BLEN16 and EMAC_DMA_BMMODE.BLEN8 are enabled, the maximum burst is limited to
EMAC_DMA_BMMODE.BLEN8. If the EMAC_DMA_BUSMODE.PBL8 bit is set, the programmed EMAC_DMA_
BUSMODE.PBL value is multiplied by 8 times internally. However, the result cannot be more than the
maximum limits specified above.

– The receive DMA burst length configuration can be made independent of transmit DMA configu-
ration, by setting the EMAC_DMA_BUSMODE.USP bit. If this bit is set, the EMAC_DMA_BUSMODE.RPBL
bits define the burst length of receive DMA. If the EMAC_DMA_BUSMODE.USP bit is not set, the EMAC_
DMA_BUSMODE.RPBL bits are used for both transmit and receive. Programs must ensure that the PBL
maximum limit is not violated.

– The receive and transmit descriptors are always accessed in the maximum possible burst-size
(limited by PBL maximum for transmit and receive) for the 16-bytes to be read.

DMA Bursts Using the SCB Interface

The transmit DMA initiates a data transfer only when sufficient space to accommodate the configured
burst is available in the transmit FIFO or the number of bytes until the end of frame (when it is less than
the configured burst-length). The DMA indicates the start address and the number of transfers required
to the SCB master interface. When the SCB interface is configured for fixed-length burst, then it transfers
data using the best combination of INCR4/8/16 and 1 beat transaction.

The receive DMA initiates a data transfer only when sufficient data to accommodate the configured burst
is available in the MTL receive FIFO or when the end of frame (when it is less than the configured burst-
length) is detected in the receive FIFO. The DMA indicates the start address and the number of transfers
required to the SCB master interface. When the SCB interface is configured for fixed-length burst, then it

Table 23-9: DMA PBL Max Limits

Burst Limit Max Term Definition

PBL-max limit (FIFO size/2)/4 words.
PBL-max limit (transmit) 256 bytes/2 /4 = 32 words.
PBL-max limit (receive) 128 bytes/2 /4 = 16 words.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

transfers data using the best combination of INCR 4/8/16 or 1 beat transaction. If the end-of frame is
reached before the fixed-burst ends on the SCB interface, then dummy transfers are performed in-order
to complete the fixed-burst. Otherwise (if EMAC_DMA_BUSMODE.FBis reset), it transfers data using INCR
(undefined length) transactions.

When the SCB interface is configured for address-aligned beats using the EMAC_DMA_BUSMODE.AAL bit,
both DMA engines ensure that the first burst transfer the SCB initiates is less than or equal to the size of
the configured PBL. Therefore, all subsequent beats start at an address that is aligned to the configured
PBL.

SCB Bus Transaction Status

The EMAC_DMA_BMSTAT.BUSRD and EMAC_DMA_BMSTAT.BUSWR bits indicate whether the channel is active
or not.

Fatal Bus Error

The EMAC SCB asserts the error interrupt (EMAC_DMA_STAT.FBI) when the corresponding fatal bus error
interrupt is enabled in the DMA interrupt enable register. The application has to reset the core to restart
the DMA.

DMA Controller (EMAC DMA)

The EMAC has an built-in DMA controller that performs reads and writes of application data and descrip-
tors via the SCB master interface.

The DMA controller has independent transmit and receive engines, and a CSR (control and status register)
space. The transmit engine transfers data from system memory to a FIFO, while the receive engine trans-
fers data from the FIFO to the system memory. The controller uses a descriptor chain based transfer mech-
anism to efficiently move data from source to destination with minimal processor core intervention. The
DMA is specially designed for packet-oriented data transfers such as Ethernet frames. The controller can
be programmed to interrupt the application for situations such as frame transmit and receive transfer
completion, and other normal or abnormal conditions.

The DMA and the application device driver communicate through two internal data structures:

1. DMA control and status registers (CSR).

2. Data buffers and descriptor lists. Descriptor list operate in ring mode and chain mode, as shown in the
following figure.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–21

Figure 23-6: EMAC DMA Descriptor Models

Descriptors that reside in the application memory act as pointers to receive and transmit buffers. Descrip-
tors have the following additional attributes.

• There are two descriptor lists, one for receive, and one for transmit. The base address of each list is
written into the receive descriptor list address register and transmit descriptor list address register,
respectively.

• A descriptor list is forward linked (either implicitly or explicitly). The last descriptor may point back to
the first entry to create a ring structure.

• Explicit chaining of descriptors is accomplished by setting the second address chained in both receive
and transmit descriptors.

• The descriptor lists reside in the application memory address space.

• Each descriptor can point to a maximum of two buffers. This enables two buffers to be used, physically
addressed, rather than contiguous buffers in memory.

A data buffer resides in the application physical memory space and consists of an entire frame or part of a
frame, but cannot exceed a single frame. Buffers may contain only data while buffer status is maintained
in the descriptor itself. Data chaining refers to frames that span multiple data buffers. However, a single
descriptor cannot span multiple frames. The DMA skips to the next frame buffer when the end-of-frame
is detected. Data chaining can be enabled or disabled.

NOTE: It is possible to define a skip length (in terms of N × 32-bit words) between two subsequent descrip-
tors, when using ring mode. The EMAC_DMA_BUSMODE.DSL field must be programmed to enable

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

this. With this option available, programs are not always restricted to a contiguous memory loca-
tion in ring mode.

DMA Related Registers

A summary of DMA registers relative to their function is provided in the table below. Please refer to the
“Register Descriptions” sections for complete bit descriptions of each of these registers.

Table 23-10: Summary of DMA Related Registers.

Register Name Description

Bus Mode1 Establishes the bus operating modes for the DMA with respect to the
SCB master interface.

Transmit Poll Demand Enables the transmit DMA to check whether or not the current
descriptor is owned by DMA. The transmit poll demand command is
given to wake up the TxDMA if it is in suspend mode. The TxDMA
can go into suspend mode because of an underflow error in a
transmitted frame or because of the unavailability of descriptors owned
by transmit DMA. This command can be issued anytime and the
TxDMA resets this command once it starts re-fetching the current
descriptor from host memory.

Receive Poll Demand Enables the receive DMA to check for new descriptors. This command
is given to wake-up the RxDMA from the SUSPEND state. The
RxDMA can go into SUSPEND state only because of the unavailability
of descriptors owned by it.

Receive Descriptor List Address Points to the start of the receive descriptor list. The descriptor lists
reside in the application memory space and must be word-aligned (32-
bit data bus). The DMA internally converts the descriptor list to a bus
width aligned address by making the corresponding LSBs low.

Transmit Descriptor List Address Points to the start of the transmit descriptor list. The descriptor lists
reside in the application memory space and must be word-aligned (for
32-bit data bus). The DMA internally converts it to bus width aligned
address by making the corresponding LSB to low.

DMA Status Contains all the status bits that the DMA reports to the application.
The software driver reads this register during an interrupt service
routine or during polling. Most of the fields in this register cause the
host to be interrupted.

Operation Mode Establishes the transmit and receive operating modes and commands.
The operation mode register should be the last control register to be
written as part of DMA initialization.

Interrupt Enable Enables the interrupts reported by DMA status register. After a
hardware or software reset, all interrupts are disabled.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–23

DMA Descriptors

The DMA module in the Ethernet subsystem transfers data based on a linked list of descriptors. The
descriptor addresses must be aligned to the 32-bit bus width. The descriptors can be either 4 x 32-bit words
(16 bytes) or 8 x 32-bit words (32 bytes). The controller needs to be configured for the appropriate word
length using the EMAC_DMA_BUSMODE register. Descriptor words are numbered from 0 to 7 for both the
transmit and receive engine.

Typical factors for deciding the descriptor word size are as follows.

• When the time-stamping or receive checksum engines are not enabled, the extended descriptors are
not required and the software can use descriptors with the default size of 16 bytes (4 words).

• When the time-stamping feature is enabled (to be used with the IEEE 1588 PTP engine), the software
needs to allocate 32-bytes (8 words) of memory for every descriptor.

Missed Frame and Buffer Overflow
Counter

The DMA maintains two counters to track the number of missed
frames during reception. This register reports the current value of the
counter, which is used for diagnostic purposes.

Receive Interrupt Watchdog Timer When written with non-zero value, enables the watchdog timer for
receive interrupt (RI) in the DMA status register.

SCB Bus Mode Controls the SCB interface master behavior. It is mainly used to control
the burst splitting and the number of outstanding requests.

SCB Status Provides the active status of the SCB interface read and write channels.
Current Host Transmit Descriptor Points to the start address of the current transmit descriptor read by

the DMA.
Current Host Receive Descriptor Points to the start address of the current receive descriptor read by the

DMA.
Current Host Transmit Buffer
Address

Points to the current transmit buffer address being read by the DMA.

Current Host Receive Buffer Address Points to the current receive buffer address being read by the DMA.

1.There should not be any further writes to the EMAC_DMA_BUSMODE registers until the first write is updated. Otherwise, the second write
operation will not get updated properly. For correct operation, the delay between two writes to the same register location should be at least 8
cycles of 50 MHz RMII REFCLK.

Table 23-11: DMA Registers with Consecutive Writes

Registers with Implications for Consecutive Writes

DMA Bus Mode

Table 23-10: Summary of DMA Related Registers. (Continued)

Register Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• When only the receive checksum off-load is enabled (time-stamping disabled) the software needs to
allocate 32-bytes (8 words) of memory for every descriptor, although in reality only word 4 of the
extended words (descriptors 4–7) contain the required status information. The rest of extended words
may be treated as reserved or dummy.

Transmit Descriptor

The transmit descriptor structure in memory is shown in the following figure. The application software
must program the TDES0 control bits during descriptor initialization. When the DMA updates the
descriptor, it writes back all the control bits except the OWN bit (which it clears) and updates the status bits.
The contents of the transmitter descriptor word 0 (TDES0) through word 7 (TDES7) are given in the
following tables.

Figure 23-7: Transmit Descriptor Words

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–25

Table 23-12: Transmit Descriptor Fields (TDES0)

Bit Name Description

31 OWN When set, this bit indicates that the descriptor is owned by the DMA. When
this bit is reset, it indicates that the descriptor is owned by the application.
The DMA clears this bit either when it completes the frame transmission or
when the buffers allocated in the descriptor are read completely. The
ownership bit of the frame’s first descriptor must be set after all subsequent
descriptors belonging to the same frame have been set. This avoids a possible
race condition between fetching a descriptor and the driver setting an
ownership bit.

30 IC Interrupt on Completion. When set, this bit sets the transmit interrupt (DMA
status register [0]) after the present frame has been transmitted.

29 LS Last Segment. When set, this bit indicates that the buffer contains the last
segment of the frame

28 FS First Segment. When set, this bit indicates that the buffer contains the first
segment of a frame.

27 DC Disable CRC. When this bit is set, the EMAC does not append a cyclic
redundancy check (CRC) to the end of the transmitted frame. This is valid
only when the first segment (TDES0[28]) is set.

26 DP Disable Pad. When set, the EMAC does not automatically add padding to a
frame shorter than 64 bytes. When this bit is reset, the DMA automatically
adds padding and CRC to a frame shorter than 64 bytes, and the CRC field is
added despite the state of the DC (TDES0[27]) bit. This is valid only when the
first segment (TDES0[28]) is set.

25 TTSE Transmit Time-Stamp Enable. When set, this bit enables IEEE1588 hardware
time-stamping for the transmit frame referenced by the descriptor. This field
is valid only when the first segment control bit (TDES0[28]) is set.

24 Reserved
23:22 CIC Checksum Insertion Control. These bits control the checksum calculation

and insertion. Bit encodings are shown below.
00 = Checksum Insertion Disabled.
01 = Only IP header checksum calculation and insertion are enabled.
10 = IP header checksum and payload checksum calculation and insertion are
enabled, but pseudo-header checksum is not calculated in hardware.
11 = IP Header checksum and payload checksum calculation and insertion
are enabled, and pseudo-header checksum is calculated in hardware.

21 TER Transmit End of Ring. When set, this bit indicates that the descriptor list
reached its final descriptor. The DMA returns to the base address of the list,
creating a descriptor ring.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

20 TCH Second Address Chained. When set, this bit indicates that the second address
in the descriptor is the next descriptor address rather than the second buffer
address. When TDES0[20] is set, TBS2 (TDES1[28:16]) is a don’t care value.
TDES0[21] takes precedence over TDES0[20].

19:18 Reserved
17 TTSS Transmit Time Stamp Status. This bit is used as a status bit to indicate that a

time-stamp was captured for the described transmit frame. When this bit is
set, TDES2 and TDES3 have a time-stamp value captured for the transmit
frame. This field is only valid when the descriptor's Last Segment control bit
(TDES0[29]) is set.

16 IHE IP Header Error. When set, this bit indicates that the EMAC transmitter
detected an error in the IP datagram header. The transmitter checks the
header length in the IPv4 packet against the number of header bytes received
from the application and indicates an error status if there is a mismatch. For
IPv6 frames, a header error is reported if the main header length is not 40
bytes. Furthermore, the Ethernet Length/Type field value for an IPv4 or IPv6
frame must match the IP header version received with the packet. For IPv4
frames, an error status is also indicated if the Header Length field has a value
less than 0x5.

15 ES Error Summary. Indicates the logical OR of the following bits.
TDES0[14] = Jabber Timeout
TDES0[13] = Frame Flush
TDES0[11] = Loss of Carrier
TDES0[10] = No Carrier
TDES0[9] = Late Collision
TDES0[8] = Excessive Collision
TDES0[2] = Excessive Deferral
TDES0[1] = Underflow Error
TDES0[16] = IP Header Error
TDES0[12] = IP Payload Error

14 JT Jabber Timeout. When set, this bit indicates the EMAC transmitter has
experienced a jabber time-out. This bit is only set when the EMAC
configuration register's JD bit is not set.

13 FF Frame Flushed. When set, this bit indicates that the DMA/MFL flushed the
frame due to a software Flush command given by the CPU.

12 IPE IP Payload Error. When set, this bit indicates that EMAC transmitter detected
an error in the TCP, UDP, or ICMP IP datagram payload.The transmitter
checks the payload length received in the IPv4 or IPv6 header against the
actual number of TCP, UDP, or ICMP packet bytes received from the
application and issues an error status in case of a mismatch.

Table 23-12: Transmit Descriptor Fields (TDES0) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–27

11 LC Loss of Carrier. When set, this bit indicates that a loss of carrier occurred
during frame transmission. This is valid only for the frames transmitted
without collision when the EMAC operates in Half-Duplex mode.

10 NC No Carrier. When set, this bit indicates that the Carrier Sense signal form the
PHY was not asserted during transmission.

9 LC Late Collision. When set, this bit indicates that frame transmission was
aborted due to a collision occurring after the collision window (64 byte-times,
including preamble). This bit is not valid if the Underflow Error bit is set.

8 EC Excessive Collision. When set, this bit indicates that the transmission was
aborted after 16 successive collisions while attempting to transmit the current
frame. If the DR (Disable Retry) bit in the EMAC configuration register is set,
this bit is set after the first collision, and the transmission of the frame is
aborted.

7 VF VLAN Frame. When set, this bit indicates that the transmitted frame was a
VLAN-type frame.

6:3 CC Collision Count. This 4-bit counter value indicates the number of collisions
occurring before the frame was transmitted. The count is not valid when the
Excessive Collisions bit (TDES0[8]) is set.

2 ED Excessive Deferral. When set, this bit indicates that the transmission has
ended because of excessive deferral of over 24,288 bit times (155,680 bits
times in 1,000-Mbps mode or if Jumbo Frame is enabled) if the Deferral
Check (DC) bit in the EMAC control register is set high.

1 UF Underflow Error. When set, this bit indicates that the EMAC aborted the
frame because data arrived late from the application memory. Underflow
Error indicates that the DMA encountered an empty transmit buffer while
transmitting the frame. The transmission process enters the suspended state
and sets both Transmit Underflow (register 5[5]) and Transmit Interrupt
(register 5[0]).

0 DB: Deferred
Bit

When set, this bit indicates that the EMAC defers before transmission
because of the presence of carrier. This bit is valid only in half-duplex mode.

Table 23-13: Transmit Descriptor Word 1 (TDES1)

Bit Name Description

31–29 Reserved
28–16 TBS2 Transmit Buffer 2 Size. These bits indicate the second data buffer size in

bytes. This field is not valid if TDES0[20] is set.
15–13 Reserved

Table 23-12: Transmit Descriptor Fields (TDES0) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

12–0 TBS1 Transmit Buffer 1 Size. These bits indicate the first data buffer byte size, in
bytes. If this field is 0, the DMA ignores this buffer and uses buffer 2 or the
next descriptor, depending on the value of TCH (TDES0[20]).

Table 23-14: Transmit Descriptor 2 (TDES2)

Bit Name Description

31–0 Buffer 1
Address
Pointer

These bits indicate the physical address of buffer 1. There is no limitation on
the buffer address alignment

Table 23-15: Transmit Descriptor 3 (TDES3)

Bit Name Description

31–0 Buffer 2
Address
Pointer (Next
Descriptor
Address)

Indicates the physical address of buffer 2 when a descriptor ring structure is
used. If the second address chained (TDES1[24]) bit is set, this address
contains the pointer to the physical memory where the next descriptor is
present. The buffer address pointer must be aligned to the bus width only
when TDES1[24] is set. (LSBs are ignored internally.)

Table 23-16: Transmit Descriptor 6 (TDES6)

Bit Name Description

31–0 TTSL Transmit Frame Time Stamp Low. This field is updated by DMA with the
least significant 32 bits of the time-stamp captured for the corresponding
transmit frame. This field has the time-stamp only if the Last Segment bit
(LS) in the descriptor is set and time-stamp status (TTSS) bit is set.

Table 23-17: Transmit Descriptor 7 (TDES7)

Bit Name Description

31–0 TTSH Transmit Frame Time Stamp High. This field is updated by DMA with the
most significant 32 bits of the time-stamp captured for the corresponding
receive frame. This field has the time-stamp only if the last segment bit (LS)
in the descriptor is set and time-stamp status (TTSS) bit is set.

Table 23-13: Transmit Descriptor Word 1 (TDES1) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–29

DMA Transmit Process

The following sections describe how the direct memory access transmit process works on the EMAC
controller.

• Default (Non-OSF) Mode

• OSF Mode Enabled

• Transmit Frame Processing

• Transmit Polling Suspended

Default (Non-OSF) Mode

The default process for DMA transmit works as follows:

1. The application sets up the transmit descriptor (using TDES0- TDES3) and sets the OWN bit (TDES0) after
setting up the corresponding data buffer(s) with Ethernet frame data.

2. Once the EMAC_DMA_OPMODE.ST bit is set, the DMA enters the run state.

3. While in the run state, the DMA polls the transmit descriptor list for frames requiring transmission.
After polling starts, it continues in either sequential descriptor ring order or chained order. If the DMA
detects a descriptor flagged as owned by the application, or if an error condition occurs, transmission
is suspended and both the transmit buffer unavailable (EMAC_DMA_STAT.TU) and normal interrupt
summary (EMAC_DMA_STAT.NIS) bits are set. The transmit engine proceeds to Step 9.

4. If the acquired descriptor is flagged as owned by DMA (TDES0 [31] = 1#b1), the DMA decodes the
transmit data buffer address from the acquired descriptor.

5. The DMA fetches the transmit data from the application memory and transfers the data to the MFL for
transmission.

6. If an Ethernet frame is stored over data buffers in multiple descriptors, the DMA closes the interme-
diate descriptor and fetches the next descriptor. Steps 3, 4, and 5 are repeated until the end-of-Ethernet-
frame data is transferred to the MFL.

7. When frame transmission is complete, if IEEE 1588 time-stamping was enabled for the frame (as indi-
cated in the transmit status) the time-stamp value obtained from MFL is written to the transmit
descriptor (TDES2 and TDES3) that contains the end-of-frame buffer. The status information is then
written to this transmit descriptor (TDES0). Because the OWN bit is cleared during this step, the appli-
cation now owns this descriptor. If time-stamping was not enabled for this frame, the DMA does not
alter the contents of TDES2 and TDES3.

8. Transmit interrupt (EMAC_DMA_STAT.TI) is set after completing transmission of a frame that has inter-
rupt on completion (TDES1 [31]) set in its last descriptor. The DMA engine then returns to Step 3.

9. In the suspend state, the DMA tries to re-acquire the descriptor (and thereby return to Step 3) when it
receives a transmit poll demand and the EMAC_DMA_STAT.UNF bit is cleared.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: If the EMAC_DMA_OPMODE.OSF bit is not set, the actual Inter Frame Gap (IFG) may be seen as more
than as programmed in the EMAC_MACCFG register.

OSF Mode Enabled

While in the run state, the transmit process can simultaneously acquire two frames without closing the
status descriptor of the first (if the EMAC_DMA_OPMODE.OSF bit is set). As the transmit process finishes
transferring the first frame, it immediately polls the transmit descriptor list for the second frame. If the
second frame is valid, the transmit process transfers this frame before writing the first frame status infor-
mation.

In OSF mode, the run state transmit DMA operates in the following sequence.

1. The DMA operates as described in steps 1–6 of Default (Non-OSF) Mode.

2. Without closing the previous frame’s last descriptor, the DMA fetches the next descriptor.

3. If the DMA owns the acquired descriptor, the DMA decodes the transmit buffer address in this
descriptor. If the DMA does not own the descriptor, the DMA goes into suspend mode and skips to
Step 7.

4. The DMA fetches the transmit frame from the application memory and transfers the frame to the MFL
until the End-of-Frame data is transferred, closing the intermediate descriptors if this frame is split
across multiple descriptors.

5. The DMA waits for the previous frame’s frame transmission status and time-stamp. Once the status is
available, the DMA writes the time-stamp to TDES2 and TDES3, if such time-stamp was captured (as
indicated by a status bit). The DMA then writes the status, with a cleared OWN bit, to the corresponding
TDES0, thus closing the descriptor. If time-stamping was not enabled for the previous frame, the DMA
does not alter the contents of TDES2 and TDES3.

6. If enabled, the transmit interrupt is set; the DMA fetches the next descriptor, and then proceeds to Step
3 (when status is normal). If the previous transmission status shows an underflow error, the DMA goes
into suspend mode (Step 7).

7. In suspend mode, if a pending status and time-stamp are received from the MFL, the DMA writes the
time-stamp (if enabled for the current frame) to TDES2 and TDES3, then writes the status to the corre-
sponding TDES0. It then sets relevant interrupts and returns to suspend mode.

8. The DMA can exit suspend mode and enter the run state (go to Step 1 or Step 2 depending on pending
status) only after receiving a transmit poll demand (EMAC_DMA_TXPOLL).

NOTE: If the EMAC_DMA_OPMODE.OSF bit is set, the DMA fetches the next descriptor in advance before
closing the current descriptor. Therefore the descriptor chain should have more than two different
descriptors for proper operation.

NOTE: If the EMAC_DMA_OPMODE.OSF bit is set, the DMA starts fetching the second frame immediately
after completing the transfer of the first frame to the FIFO. It does not wait for the status to be
updated. In the meantime the MFL receives the second frame into the FIFO while transmitting the
first frame. The difference in cycles are not seen for the first descriptor, because the time taken for

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–31

the complete descriptor processing remains the same whether EMAC_DMA_OPMODE.OSF is set or not.
The difference is seen only for the following descriptor as the processing of that descriptor is started
earlier.

Transmit Frame Processing

The transmit DMA engine expects that the data buffers contain complete Ethernet frames, excluding
preamble, pad bytes, and FCS fields. The destination address, source address, and type/length fields
contain valid data. If the transmit descriptor indicates that the EMAC CORE must disable CRC or PAD
insertion, the buffer must have complete Ethernet frames (excluding preamble), including the CRC bytes.

Frames can be data-chained and can span several buffers. Frames must be delimited by the first descriptor
(TDES1 [29]) and the last descriptor (TDES1 [30]), respectively.

As transmission starts, the first descriptor must have (TDES1 [29]) set. When this occurs, frame data trans-
fers from the application buffer to the transmit FIFO. Concurrently, if the current frame has the Last
Descriptor (TDES1 [30]) cleared, the transmit process attempts to acquire the next descriptor. The
transmit process expects this descriptor to have TDES1 [29] clear. If TDES1 [30] is clear, it indicates an
intermediary buffer. If TDES1 [30] is set, it indicates the last buffer of the frame.

After the last buffer of the frame has been transmitted, the DMA writes back the final status information
to the transmit descriptor 0 (TDES0) word of the descriptor that has the last segment set in transmit
descriptor 1 (TDES1 [30]). At this time, if interrupt on completion (TDES1 [31]) was set, transmit inter-
rupt (DMA_STAT [0]) is set, the next descriptor is fetched, and the process repeats.

Actual frame transmission begins after the MFL transmit FIFO has reached either a programmable
transmit threshold (EMAC_DMA_OPMODE.TTC), or a full frame is contained in the FIFO. There is also an
option for store and forward mode (EMAC_DMA_OPMODE.TSF). Descriptors are released (OWN bit TDES0
[31] clears) when the DMA finishes transferring the frame.

Transmit Polling Suspended

Transmit polling may be suspended by either of the following conditions.

1. The DMA detects a descriptor owned by the application (TDES0 [31] = 0).

2. A frame transmission is aborted when a transmit error due to underflow is detected. The appropriate
transmit descriptor 0 (TDES0) bit is set.

If the second condition occurs, both abnormal interrupt summary ([15]) and transmit underflow bits ([5])
are set and the information is written to transmit descriptor 0, causing the suspension. If the DMA goes
into SUSPEND state due to the first condition then both EMAC_DMA_STAT.NIS and EMAC_DMA_STAT.TU are
set.

In both cases, the position in the transmit list is retained. The retained position is that of the descriptor
following the last descriptor closed by the DMA.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The driver must explicitly issue a transmit poll demand command after rectifying the suspension cause. If
the first condition occurs, the driver must give descriptor ownership to the DMA and then issue a poll
demand command, in order to resume the transfer.

Receive Descriptor

The structure of the receive descriptor is shown below. It can have 32 bytes of descriptor data (8 DWORDs)
when advanced time-stamping or checksum is enabled.

Figure 23-8: Receive Descriptor words

Table 23-18: Receive Descriptor Fields (RDES0)

Bit Name Description

31 OWN Own. When set, this bit indicates that the descriptor is owned by the DMA of the
EMAC Subsystem. When this bit is reset, this bit indicates that the descriptor is
owned by the application. The DMA clears this bit either when it completes the
frame reception or when the buffers that are associated with this descriptor are
full.

30 AFM Destination Address Filter Fail. When set, this bit indicates a frame that failed in
the DA Filter in the EMAC CORE.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–33

29–16 FL Frame Length. These bits indicate the byte length of the received frame that was
transferred to application memory (including CRC). This field is valid when last
descriptor (RDES0[8]) is set and either the descriptor error (RDES0[14]) or
overflow error bits are reset. This field is valid when Last Descriptor (RDES0[8])
is set. When the last descriptor and error summary bits are not set, this field
indicates the accumulated number of bytes that have been transferred for the
current frame.

15 ES Error Summary. Indicates the logical OR of the following bits.
RDES0[1] = CRC Error
RDES0[4] = Watchdog Timeout
RDES0[6] = Late Collision
RDES0[7] = time-stamp Available
RDES4[4:3] = IP Header/Payload Error
RDES0[11] = Overflow Error
RDES0[14] = Descriptor Error. This field is valid only when the last descriptor
(RDES0[8]) is set.

14 DE Descriptor Error. When set, this bit indicates a frame truncation caused by a
frame that does not fit within the current descriptor buffers, and that the DMA
does not own the next descriptor. The frame is truncated. This field is valid only
when the last descriptor (RDES0[8]) is set.

13 Reserved
12 LE Length Error. When set, this bit indicates that the actual length of the frame

received and that the length/type field does not match. This bit is valid only
when the frame type (RDES0[5]) bit is reset.

11 OE Overflow Error. When set, this bit indicates that the received frame was
damaged due to buffer overflow in MFL.

10 VLAN VLAN Tag. When set, this bit indicates that the frame pointed to by this
descriptor is a VLAN frame tagged by the EMAC CORE.

9 FS First Descriptor. When set, this bit indicates that this descriptor contains the first
buffer of the frame. If the size of the first buffer is 0, the second buffer contains
the beginning of the frame. If the size of the second buffer is also 0, the next
descriptor contains the beginning of the frame.

8 LS Last Descriptor. When set, this bit indicates that the buffers pointed to by this
descriptor are the last buffers of the frame

7 time-stamp
Available

When set, this bit indicates that a snapshot of the timestamp is written in
descriptor words 6 (RDES6) and 7 (RDES7). This is valid only when the last
descriptor bit (RDES0[8]) is set

6 LC Late Collision. When set, this bit indicates that a late collision has occurred while
receiving the frame in half-duplex mode.

Table 23-18: Receive Descriptor Fields (RDES0) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

5 FT Frame Type. When set, this bit indicates that the receive frame is an Ethernet-
type frame (the LT field is greater than or equal to 16'h0600). When this bit is
reset, it indicates that the received frame is an IEEE802.3 frame. This bit is not
valid for Runt frames less than 14 bytes.

4 RWT Receive Watchdog Timeout. When set, this bit indicates that the receive
watchdog timer has expired while receiving the current frame and the current
frame is truncated after the watchdog timeout.

3 Reserved
2 DE Dribble Bit Error. When set, this bit indicates that the received frame has a non-

integer multiple of bytes (odd nibbles).
1 CE CRC Error. When set, this bit indicates that a Cyclic Redundancy Check (CRC)

Error occurred on the received frame. This field is valid only when the Last
Descriptor (RDES0[8]) is set.

0 Extended
Status
Available

When set, this bit indicates that the extended status is available in descriptor
word 4 (RDES4). This is valid only when the last descriptor bit (RDES0[8]) is set.

Table 23-19: Receive Descriptor Fields 1 (RDES1)

Bit Name Description

31 DIC Disable Interrupt on Completion. When set, this bit prevents setting the status
register’s EMAC_DMA_STAT.RI bit for the received frame ending in the buffer
indicated by this descriptor. This, in turn, disables the assertion of the interrupt
to the application due to RI for that frame.

30–29 Reserved
28–16 RBS2 Receive Buffer 2 Size. These bits indicate the second data buffer size, in bytes.

The buffer size must be a multiple of 4, (32-bit bus), even if the value of RDES3
(buffer2 address pointer) is not aligned to bus width. If the buffer size is not an
appropriate multiple of 4, 8, or 16, the resulting behavior is undefined. This field
is not valid if RDES1[14] is set.

15 RER Receive End of Ring. When set, this bit indicates that the descriptor list reached
its final descriptor. The DMA returns to the base address of the list, creating a
descriptor ring.

14 RCH Second Address Chained. When set, this bit indicates that the second address in
the descriptor is the next descriptor address rather than the second buffer
address. When this bit is set, RBS2 (RDES1[28:16]) is a don’t care value.
RDES1[15] takes precedence over RDES1[14].

13 Reserved

Table 23-18: Receive Descriptor Fields (RDES0) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–35

12–0 RBS1 Receive Buffer 1 Size. Indicates the first data buffer size in bytes. The buffer size
must be a multiple of 4 (32-bit bus), even if the value of RDES2 (buffer1 address
pointer) is not aligned. When the buffer size is not a multiple of 4 the resulting
behavior is undefined. If this field is 0, the DMA ignores this buffer and uses
buffer 2 or next descriptor depending on the value of RCH (Bit 14).

Table 23-20: Receive Descriptor Fields 2 (RDES2)

Bit Name Description

31–0 Buffer 1
Address
Pointer

These bits indicate the physical address of buffer 1. There are no limitations on
the buffer address alignment except for the following condition: The DMA uses
the configured value for its address generation when the RDES2 value is used to
store the start of frame. Note that the DMA performs a write operation with the
RDES2[1:0] bits as 0 during the transfer of the start of frame but the frame data
is shifted as per the actual buffer address pointer. The DMA ignores RDES2[1:0]
(corresponding to bus width of 32) if the address pointer is to a buffer where the
middle or last part of the frame is stored.

Table 23-21: Receive Descriptor Fields 3 (RDES3)

Bit Name Description

31–0 Buffer 2
Address
Pointer (Next
Descriptor
Address)

These bits indicate the physical address of buffer 2 when a descriptor ring
structure is used. If the second address chained (RDES1[24]) bit is set, this
address contains the pointer to the physical memory where the next descriptor
is present. If RDES1[24] is set, the buffer (next descriptor) address pointer
must be bus width-aligned (RDES3[1:0] = 0, corresponding to a bus width of
32. LSBs are ignored internally.) However, when RDES1[24] is reset, there are
no limitations on the RDES3 value, except for the following condition: The
DMA uses the configured value for its buffer address generation when the
RDES3 value is used to store the start of frame. The DMA ignores RDES3[1:0]
(corresponding to a bus width of 32) if the address pointer is to a buffer where
the middle or last part of the frame is stored.

Table 23-22: Receive Descriptor Fields 4 (RDES4)

Bit Name Description

31–14 Reserved
13 PTP Version When set, indicates that the received PTP message is having the IEEE 1588

version 2 format. When reset, it has the version 1 format. This is valid only if
the message type is non-zero.

Table 23-19: Receive Descriptor Fields 1 (RDES1) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

12 PTP Frame
Type

When set, this bit indicates that the PTP message is sent directly over Ethernet.
When this bit is not set and the message type is non-zero, it indicates that the
PTP message is sent over UDP-IPv4 or UDP-IPv6. The information on IPv4 or
IPv6 can be obtained from bits 6 and 7.

11–8 Message Type These bits are encoded to give the type of the message received.
0000 = No PTP message received 0001 = SYNC (all clock types)
0010 = Follow_Up (all clock types)
0011 = Delay_Req (all clock types)
0100 = Delay_Resp (all clock types)
0101 = Pdelay_Req (in peer-to-peer transparent clock) or Announce (in
ordinary or boundary clock)
0110 = Pdelay_Resp (in peer-to-peer transparent clock) or Management (in
ordinary or boundary clock)
0111 = Pdelay_Resp_Follow_Up (in peer-to-peer transparent clock) or
Signaling (for ordinary or boundary clock)
1xxx - Reserved

7 IPv6 Packet
Received

When set, this bit indicates that the received packet is an IPv6 packet.

6 IPv4 Packet
Received

When set, this bit indicates that the received packet is an IPv4 packet.

5 IP Checksum
Bypassed

When set, this bit indicates that the checksum off-load engine is bypassed.

4 IP Payload
Error

When set, this bit indicates that the 16-bit IP payload checksum (that is, the
TCP, UDP, or ICMP checksum) that the core calculated does not match the
corresponding checksum field in the received segment. It is also set when the
TCP, UDP, or ICMP segment length does not match the payload length value
in the IP Header field.

3 IP Header
Error

When set, this bit indicates either that the 16-bit IPv4 header checksum
calculated by the core does not match the received checksum bytes, or that the
IP datagram version is not consistent with the Ethernet Type value.

2–0 IP Payload
Type

These bits indicate the type of payload encapsulated in the IP datagram
processed by the receive checksum off-load engine (COE). The COE also sets
these bits to 2'b00 if it does not process the IP datagram's payload due to an IP
header error or fragmented IP.
000 = Unknown or did not process IP payload
001 = UDP
010 = TCP
011 = ICMP
1xx = Reserved

Table 23-22: Receive Descriptor Fields 4 (RDES4) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–37

EMAC DMA Receive Process

The following sections describe how the direct memory access receive process works on the EMAC
controller.

• Receive Frame Processing

• Receive Descriptor Acquisition

• Receive Process Suspended

The Receive DMA engine’s reception proceeds as follows:

1. The application sets up receive descriptors (RDES0–RDES3) and sets the OWN bit (RDES0 [31]).

2. Once the EMAC_DMA_OPMODE.SR bit is set, the DMA enters the run state. While in the run state, the
DMA attempts to acquire free descriptors by polling the receive descriptor list. If the fetched descriptor
is not free (is owned by the application), the DMA enters the suspend state and jumps to Step 9.

3. The DMA decodes the receive data buffer address from the acquired descriptors.

4. Incoming frames are processed and placed in the acquired descriptor’s data buffers.

5. When the buffer is full or the frame transfer is complete, the receive engine fetches the next descriptor.

6. If the current frame transfer is complete, the DMA proceeds to Step 7. If IEEE 1588 time-stamping is
enabled, the DMA writes the time-stamp (if available) to the current descriptor. If the DMA does not
own the next fetched descriptor and the frame transfer is not complete, the DMA sets the descriptor
error bit in the RDES0 (unless flushing is disabled). The DMA closes the current descriptor (clears the
OWN bit) and marks it as intermediate by clearing the last segment (LS) bit in the RDES0 value (marks
it as Last descriptor if flushing is not disabled), then proceeds to Step 8. If the DMA owns the next

Table 23-23: Receive Descriptor Fields 6 (RDES6)

Bit Name Description

31–0 RTSL Receive Frame Time-Stamp Low. This field is updated by DMA with the least
significant 32 bits of the time-stamp captured for the corresponding receive
frame. This field is updated by DMA only for the last descriptor of the receive
frame which is indicated by last descriptor status bit (RDES0[8]).

Table 23-24: Receive Descriptor Fields 7 (RDES7)

Bit Name Description

31–0 RTSH Receive Frame Time-Stamp High. This field is updated by DMA with the most
significant 32 bits of the time-stamp captured for the corresponding receive
frame. This field is updated by DMA only for the last descriptor of the receive
frame which is indicated by last descriptor status bit (RDES0[8]).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

descriptor but the current frame transfer is not complete, the DMA closes the current descriptor as
intermediate and reverts to Step 4.

7. If IEEE 1588 time-stamping is enabled, the DMA writes the time-stamp (if available) to the current
descriptor’s RDES2 and RDES3. It then takes the receive frame’s status from the MFL and writes the
status word to the current descriptor’s RDES0, with the OWN bit cleared and the last segment bit set.

8. The receive engine checks the latest descriptor’s OWN bit. If the host owns the descriptor (OWN bit is 0)
the EMAC_DMA_STAT.RU bit is set and the DMA receive engine enters the suspended state (Step 9). If the
DMA owns the descriptor, the engine returns to Step 4 and awaits the next frame.

9. Before the receive engine enters the suspend state, partial frames are flushed from the receive FIFO
(programs control flushing using the EMAC_DMA_OPMODE.DFF bit).

10. The receive DMA exits the suspend state when a receive poll demand is given or the start of next frame
is available from the MFL’s receive FIFO. The engine proceeds to Step 2 and re fetches the next
descriptor.

Receive Frame Processing

The EMAC transfers the received frames to the application memory only when the frame passes the
address filter sub-block and frame size is greater than or equal to configurable threshold bytes set for the
receive FIFO of MFL, or when the complete frame is written to the FIFO in Store-and-Forward mode.

If the frame fails the address filtering, it is dropped in the EMAC block itself (unless the EMAC_
MACFRMFILT.RA bit is set). Frames that are shorter than 64 bytes, because of collision or premature termi-
nation, can be purged from the receive FIFO.

After 64 bytes (configurable threshold) have been received, the MFL block requests the DMA block to
begin transferring the frame data to the receive buffer pointed to by the current descriptor. The DMA sets
first descriptor (RDES0 [9]) after the SCB becomes ready to receive the data (if DMA is not fetching
transmit data from the application). The descriptors are released when the OWN (RDES [31]) bit is reset to
0, either as the data buffer fills up or as the last segment of the frame is transferred to the receive buffer. If
the frame is contained in a single descriptor, both the last descriptor (RDES [8]) and the first descriptor
(RDES [9]) are set.

The DMA fetches the next descriptor, sets the last descriptor (RDES [8]) bit, and releases the RDES0 status
bits in the previous frame descriptor. Then the DMA sets the EMAC_DMA_STAT.RI bit. The same process
repeats unless the DMA encounters a descriptor flagged as being owned by the application. If this occurs,
the receive process sets the EMAC_DMA_STAT.RU bit and then enters the suspend state. The position in the
receive list is retained.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–39

Receive Descriptor Acquisition

The Receive engine always attempts to acquire an extra descriptor in anticipation of an incoming frame.
Descriptor acquisition is attempted if any of the following conditions is satisfied:

• TheEMAC_DMA_OPMODE.SR bit has been set immediately after being placed in the run state.

• The data buffer of current descriptor is full before the frame ends for the current transfer.

• The controller has completed frame reception, but the current receive descriptor is not yet closed.

• The receive process has been suspended because of an application-owned buffer (RDES0 [31] = 0) and
a new frame is received.

• A receive poll demand has been issued.

Receive Process Suspended

If a new receive frame arrives while the receive process is in suspend state, the DMA re-fetches the current
descriptor in the application memory. If the descriptor is now owned by the DMA, the receive process re-
enters the run state and starts frame reception. If the descriptor is still owned by the application, by default,
the DMA discards the current frame at the top of the receive FIFO and increments the missed frame
counter. If more than one frame is stored in the receive FIFO, the process repeats.

The discarding or flushing of the frame at the top of the receive FIFO can be avoided by setting the EMAC_
DMA_OPMODE.DFF bit. In such conditions, the receive process sets the receive buffer unavailable status and
returns to the suspend state.

OWN Bit (Ownership) Semaphore

Usage or ownership of the transmit/receive descriptor between application and EMAC is mutually exclu-
sive. While the EMAC is accessing the descriptor, the application cannot modify it. Conversely, while the
host is updating the descriptor, the EMAC cannot use the descriptor’s contents. This functionality is
implemented through the OWN bit in the transmit/receive descriptor, acting as a semaphore to prevent
multiple, simultaneous access to the descriptors.

The following example is based on a use case of 4 WORDs enabled for descriptors (which means the EMAC_
DMA_BUSMODE.ATDS bit is not set) and chain structure configuration is assumed. However, the explanation
of the OWN bit semaphore remains consistent irrespective of any particular mode of operation.

1. Transmit OWN Bit:

• TDES0 – TDES3 words implement the transmit descriptors. TDES0 [31] is defined as the OWN
bit. When TDES0 [31] is set to 0, this bit indicates that the descriptor is available for the appli-
cation to update. The application sets up the descriptors, including the buffer addresses, by
updating TDES0 through TDES3.

• To release ownership of the descriptor to the EMAC, the application sets the transmit OWN bit,
TDES0 [31], to 1. TDES0 [31] = 1 indicates that the descriptor is ready for use by the EMAC.
The DMA reads the descriptors, then fetches the data to be transmitted from the buffer loca-

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

tions pointed to by the transmit descriptors (TDES2 and TDES3). When either the last data
buffer is empty or the end-of-frame is reached, DMA clears the TDES0 [31] bit to 0. Now the
transmit descriptor is released to the application for updates.

2. Receive OWN Bit:

• RDES0 – RDES3 words implement the receive descriptors. RDES0 [31] is defined as the OWN bit.
When RDES0 [31] is set to 0, this bit indicates that the descriptor is available for the application
to update. The application sets up the descriptors, including the buffer locations for writing the
received data, by updating RDES0 through RDES3. To give ownership of the descriptor to the
EMAC, the host sets the receive OWN bit, RDES0 [31], to 1.

• RDES0 [31] = 1 indicates that the descriptor is ready for use by the EMAC. The EMAC's DMA
reads the descriptors, then writes the received data to the buffers with locations pointed to by
the receive descriptors (RDES2 and RDES3). When either the last data buffer is full or the end-
of-frame is reached, DMA clears the RDES0 [31] bit to 0. Now the receive descriptor is released
to the application for updates

Application Data Buffer Alignment

The transmit and receive data buffers do not have any restrictions on start address alignment; the start
address for the buffers can be aligned to any of the four bytes. However, the DMA always initiates transfers
with address aligned to the bus width with dummy data for the byte lanes not required. This typically
happens during the transfer of the beginning or end of an Ethernet frame.

Example for Buffer Read—If the transmit buffer address is 0xFF800002 and 15 bytes need to be trans-
ferred, then the DMA reads 5 full words (5 x 32-bit data) from address 0xFF800000. However, when trans-
ferring data to the EMAC transmit FIFO, the extra bytes (the first two bytes) are dropped or ignored.
Similarly, the last 3 bytes of the last transfer are also ignored. The DMA always ensures it transfers a full
32-bit data to the transmit FIFO, unless it is the end-of-frame.

Example for Buffer Write—If the receive buffer address is 0xFF800002 and 15 bytes of a received frame
need to be transferred, then the DMA writes 5 full words (5 x 32-bit data) to address 0xFF800000.
However, the first 2 bytes of first transfer and the last 3 bytes of the third transfer have dummy data.

Buffer Size Calculations

The DMA engines do not update the size fields in the transmit and receive descriptors alone. The DMA
updates only the status fields (RDES0 and TDES0) of the descriptors. The driver has to perform the size
calculations. The transmit DMA transfers the exact number of bytes (indicated by buffer size field of
TDES1) towards the EMAC CORE. If a descriptor is marked as first (FS bit of TDES1 is set), then the DMA
marks the first transfer from the buffer as the start of frame. If a descriptor is marked as last (LS bit of
TDES1), then the DMA marks the last transfer from that data buffer as the end-of frame to the EMAC.

The receive DMA transfers data to a buffer until the buffer is full or the end-of frame is received from the
MFL. If a descriptor is not marked as last (LS bit of RDES0), then the descriptor’s corresponding buffer(s)
are full and the amount of valid data in a buffer is accurately indicated by its buffer size field minus the data
buffer pointer offset when the FS bit of that descriptor is set. The offset is zero when the data buffer pointer

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–41

is aligned to the data bus width. If a descriptor is marked as last, then the buffer may not be full (as indi-
cated by the buffer size in RDES1). To compute the amount of valid data in this final buffer, the driver must
read the frame length (FL bits of RDES0[29:16]) and subtract the sum of the buffer sizes of the preceding
buffers in this frame. The receive DMA always transfers the start of next frame with a new descriptor.

EMAC FIFO Layer (EMAC MFL)

The MAC FIFO layer provides FIFO memory to buffer and regulates the frames between the application
system memory and the EMAC CORE. It also allows the data to be transferred between the application
clock domain and the EMAC clock domains. The MFL layer has transfer controllers for each direction,
called the transmit controller (TxFIFO) and the receive controller (RxFIFO). The data path for both direc-
tions is 32-bit wide and each controller has a dedicated FIFO.

FIFO Size

The transmit FIFO size is fixed and is 256 bytes. The receive FIFO sized is fixed and is 128 bytes.

FIFO Layer Transmit Path

The DMA Engine controls all transactions for the transmit path with the application. Ethernet frames read
from the system memory are pushed into the FIFO by the DMA. The frame is then popped out and trans-
ferred to the EMAC CORE when triggered. When the end-of-frame is transferred, the status of the trans-
mission is taken from the EMAC CORE and transferred back to the DMA. FIFO-fill level is indicated to
the DMA so that it can initiate a data fetch in required bursts from the system memory, through the SCB
interface.

When the EMAC_DMA_OPMODE.OSF bit is enabled, the MFL receives the second frame into the FIFO while
transmitting the first frame. As soon as the first frame has been transferred and the status is sent to DMA.
If the DMA has already completed sending the second packet to the MFL, it must wait for the status of the
first packet before proceeding to the next frame.

The following are the modes of operation for FIFO transactions.

1. Threshold mode – In this mode as soon as the number of bytes in the FIFO crosses the configured
threshold level (or when the end-of-frame is written before the threshold is crossed), the data is ready
to be popped out and forwarded to the EMAC core. The threshold level is configured using the TTC bits
of the DMA bus mode register.

2. Store-and-Forward mode – In this mode, the MFL pops the frame towards the EMAC core only after
a complete frame is stored in the FIFO. If the Tx FIFO size is smaller than the Ethernet frame to be
transmitted (such as a Jumbo frame), then the frame is forwarded when the Tx FIFO becomes almost
full or when the requested FIFO does not have space to accommodate the requested burst-length.
Therefore, the FIFO read controller never stalls in Store and Forward mode even if the Ethernet frame
length is bigger than the Tx FIFO depth.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Transmit FIFO and Half-Duplex Retransmissions

While a frame is being transferred from the FIFO a collision event can occur on the EMAC line interface
in half-duplex mode. The EMAC then indicates a retry attempt to the MFL by giving the status even before
the end-of-frame is transferred from MFL. Then the MFL enables the retransmission by popping out the
frame again from the FIFO.

After more than 96 bytes are popped out of FIFO, the FIFO controller frees up that space and makes it
available to the DMA to push in more data. This means that the retransmission is not possible after this
threshold is crossed or when the EMAC CORE indicates a late-collision event.

Transmit FIFO Flush Operation

The EMAC provides a control to the software to flush the transmit FIFO in the MFL layer through the use
of the EMAC_DMA_OPMODE.FTF bit. The flush operation is immediate and the MFL clears the transmit FIFO
and the corresponding pointers to the initial state even if it is in the middle of transferring a frame to the
EMAC CORE. The data which is already accepted by the MAC transmitter is not flushed. It is scheduled
for transmission and results in underflow as the transmit FIFO does not complete the transfer of rest of
the frame. As in all underflow conditions, a runt frame is transmitted and observed on the line. The status
of such a frame is marked with both underflow and frame flush events (TDES0 bits 13 and 1).

The MFL layer also stops accepting any data from the application (DMA) during the flush operation. It
generates and transfers transmit status words to the application for the number of frames that is flushed
inside the MFL (including partial frames). Frames that are completely flushed in the MFL have the frame
flush status bit (TDES0 bit 13) set. The MFL completes the flush operation when the application (DMA)
accepts all of the status words for the frames that were flushed, and then clears the transmit FIFO flush
control register bit. At this point, the MFL starts accepting new frames from the application (DMA).

FIFO Layer Receive Path

The receive controller operates in the following sequence.

1. When the EMAC core receives a frame, it pushes in data with the frame start and end indicators. The
MFL accepts the data and pushes it into the FIFO.

2. The receive controller takes the data out of the FIFO and sends it to the DMA.

• In the default threshold mode, when 64 bytes (configured using EMAC_DMA_OPMODE.RTC) or a
full packet of data are received into the FIFO, the receive controller pops out the data and indi-
cates its availability to the DMA. Some error frames may not be dropped, because the error
status is received at the end-of-frame, by which time the start of that frame has already been read
out of the FIFO.

• In Rx FIFO Store-and-Forward mode (configured using EMAC_DMA_OPMODE.RSF), a frame is
read out only after being written completely into the receive FIFO. In this mode, all error frames
are dropped (if the EMAC core is configured to do so) such that only valid frames are read out
and forwarded to the application.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–43

3. After the end-of-frame is transferred, the status word from EMAC core is also the pushed FIFO. When
the status of a partial frame due to overflow is given out, the frame length field in the status word is not
valid.

 Receive FIFO Multi-Frame Handling

Since the status is available immediately following the data, the MFL is capable of storing any number of
frames into the FIFO, as long as it is not full.

Receive FIFO Error Handling

If the MFL Rx FIFO is full before it receives the end-of-frame data from the EMAC, an overflow is declared,
the whole frame (including the status word) is dropped, and the overflow counter in the DMA (Over Flow
Counter register) is incremented. This is true even if the EMAC_DMA_OPMODE.FEF bit is set. If the start
address of such a frame has already been transferred, the rest of the frame is dropped and a dummy end-
of-frame is written to the FIFO along with the status word. The status indicates a partial frame due to over-
flow. In such frames, the frame length field is invalid.

The MFL receive control logic can filter error and undersized frames using the EMAC_DMA_OPMODE.FEF
and EMAC_DMA_OPMODE.FUF bits. If the start address of such a frame has already been transferred to the Rx
FIFO read controller, that frame is not filtered. The start address of the frame is transferred to the read
controller after the frame crosses the receive threshold (set by the EMAC_DMA_OPMODE.RTC bits).

If the MFL receive FIFO is configured to operate in Store-and-Forward mode, all error frames can be
filtered and dropped.

EMAC CORE

The EMAC CORE is the lowest block in the EMAC peripheral and it performs all operations with the
external world (PHY chip). It has independent transmit and receive modules that interact with the EMAC
FIFO layer at one end and the PHY chip via the RMII interface at the other end. Both the modules have
several sub blocks which are discussed in subsequent sections.

Transmission is initiated when the MFL (FIFO Layer) pushes in data with start-of-frame and the CORE
subsequently transmitting to the RMII. After the end-of-frame is transferred out, it gives out the status of
the transmission back to the MFL to be forwarded to the application via DMA.

A receive operation is initiated when the EMAC detects a SFD on the RMII. The CORE strips the preamble
and SFD before proceeding to process the frame. The header fields are checked for the filtering and the
FCS field used to verify the CRC for the frame. The frame is dropped in the core if it fails the address filter.

NOTE: The term CORE (written in capitals) is used refer to the internal block of Ethernet peripheral, and
should not be confused with the processor core.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 23-25: EMAC CORE Related Registers

Register Name Description

MAC Configuration1 Establishes receive and transmit operating modes including:
• Watchdog/Jabber/Jumbo frame sizes
• Inter Frame Gap
• Speed Control – 10/100 Mbps
• Full/Half Duplex
• Loopback Mode
• Checksum Offload
• Enabling TX/RX Engines

MAC Frame Filter Contains the filter controls for receiving frames. Some of the controls from
this register go to the address check block of the MAC, which performs the
first level of address filtering. The second level of filtering is performed on
the incoming frame, based on other controls such as pass bad frames and
pass control frames.

Hash Table High/Low1 A 64-bit hash table is used for group address filtering. For hash filtering, the
contents of the destination address in the incoming frame is passed through
the CRC logic, and the upper 6 bits of the CRC register are used to index the
contents of the hash table.

SMI Address1 Controls the management cycles to the external PHY through the Station
Management interface. The register also includes a field to program the
frequency of MDC.

SMI Data1 Stores write data to be written to the PHY register located at the address
specified in SMI Address register. This register also stores read data from
the PHY register located at the address specified by SMI address register.

Flow Control1 Controls the generation and reception of the control (pause command)
frames by the EMAC’s flow control module. The fields of the control frame
are selected as specified in the 802.3x specification, and the pause time value
from this register is used in the pause time field of the control frame. The
host must make sure that the activate bit is cleared before writing to the
register.

VLAN Tag1 Contains the IEEE 802.1Q VLAN tag to identify the VLAN frames. The
MAC compares the 13th and 14th bytes of the receiving frame (length/type)
with 16.h8100, and the following 2 bytes are compared with the VLAN tag.
If a match occurs, it sets the received VLAN bit in the receive frame status.
The legal length of the frame is increased from 1518 bytes to 1522 bytes.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–45

NOTE: Please refer to the “Register Description” section for the detailed bit-level explanation of the regis-
ters.

EMAC CORE Transmission Engine

The following modules constitute the transmission function (transmission engine components) of the
EMAC:

• Transmit Bus Interface Module (TBU)

• Transmit Frame Controller Module (TFC)

• Transmit Checksum Offload Engine (TCOE)

• Transmit Protocol Engine Module (TPE)

• Transmit Scheduler Module (STX)

• Transmit CRC Generator Module (CTX)

• Transmit Flow Control Module (FTX)

Transmit Bus Interface Module (TBU)

This module interfaces the transmit path of the EMAC CORE with the MAC Layer FIFO interface. This
module outputs the transmit status to the application at the end of normal transmission or collision.

Debug Provides the status of all main modules of the transmit and receive data-
paths and the FIFOs. An all-zero status indicates that the MAC core is in
idle state (and FIFOs are empty) and no activity is going on in the data-
paths.

Interrupt Status The contents of this register identify the events in the EMAC-CORE that
can generate MMC and PTP related interrupts.

Interrupt Mask Enables the program to mask the interrupt signal because of the
corresponding PTP event in the interrupt status register.

MAC Address0 High/Low1 Holds the upper/lower 16 bits of the MAC address of the station. Note that
the first DA byte that is received on the RMII interface corresponds to the
LS byte (bits [7:0]) of the MAC address low register. For example, if
0x112233445566 is received (0x11 is the first byte) on the RMII as the
destination address, then the macaddress0 register [47:0] is compared with
0x665544332211.

Operation Mode1

1.There should not be any further writes to these registers until the first write is updated. Otherwise, the second write operation is not updated
properly. For correct operation, the delay between two writes to the same register location should be at least 8 cycles of 50MHz RMII REFCLK.

Table 23-25: EMAC CORE Related Registers (Continued)

Register Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Transmit Frame Controller Module (TFC)

The transmit frame controller regulates frames as well as converts the 32-bit input data into an 8-bit
stream.

When the number of bytes received from the application falls below 60 (DA+SA+LT+DATA), the state
machine automatically appends zeros to the transmitting frame to make the data length exactly 46 bytes to
meet the minimum data field requirement of IEEE 802.3. The EMAC can also be programmed not to
append any padding.

The frame controller receives the computed CRC and appends it as the FCS field to the data being trans-
mitted out. When the EMAC is programmed to not append the CRC value to the end of Ethernet frames,
the TFC module ignores the computed CRC. An exception to this rule is that when the EMAC is
programmed to append pads for frames (DA+SA+LT+DATA) less than 60 bytes, then the CRC is always
appended at the end of padded frame.

Transmit Checksum Offload Engine (TCOE)

Communication protocols such as TCP and UDP implement checksum fields, which help determine the
integrity of data transmitted over a network. Because the most widespread use of Ethernet is to encapsulate
TCP and UDP over IP datagrams, the EMAC has a checksum offload engine (COE) to support checksum
calculation and insertion in the transmit path, and error detection in the receive path.

NOTE: The checksum for TCP, UDP, or ICMP is calculated over a complete frame, and then inserted into
its corresponding header field. Because of this requirement, this function is enabled only when the
transmit FIFO is configured for store-and-forward mode (that is, when the EMAC_DMA_OPMODE.
TSF bit is set. If the MAC is configured for threshold (cut-through) mode, the transmit COE is
bypassed.

NOTE: Programs must make sure that the transmit FIFO is deep enough to store a complete frame before
that frame is transferred to the EMAC CORE transmitter. The program must enable the checksum
insertion only in the frames that are less than the following number of bytes in size (even in the
store-and-forward mode): FIFO depth (256 bytes) – PBL – 3 FIFO locations, where PBL is the
programmed burst-length in the DMA bus mode register.

IP Header Checksum

In IPv4 datagrams, the integrity of the header fields is indicated by the 16-bit header checksum field (the
eleventh and twelfth bytes of the IPv4 datagram). The COE detects an IPv4 datagram when the Ethernet
frame’s type field has the value 0x0800 and the IP datagram’s version field has the value 0x4. The input
frame’s checksum field is ignored during calculation and replaced with the calculated value.

The result of this IP header checksum calculation is indicated by the IP header error status bit in transmit
descriptor word TDES0. This status bit is set whenever the values of the Ethernet type field and the IP
header’s version field are not consistent, or when the Ethernet frame does not have enough data, as indi-
cated by the IP header length field. In other words, this bit is set when an IP header error is asserted under
the following circumstances.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–47

For IPv4 datagrams:

• The received Ethernet type is 0x0800, but the IP header’s version field is not equal to 0x4.

• The IPv4 header length field indicates a value less than 0x5 (20 bytes).

• The total frame length is less than the value given in the IPv4 header length field.

For IPv6 datagrams:

• The Ethernet type is 0x86dd but the IP header version field is not equal to 0x6.

• The frame ends before the IPv6 header (40 bytes) or extension header (as given in the corresponding
Header Length field in an extension header) is completely received.

If the COE detects an IP header error, it still inserts an IPv4 header checksum if the Ethernet type field indi-
cates an IPv4 payload.

NOTE: IPv6 headers do not have a checksum field. Therefore, the COE does not modify the IPv6 header
fields.

TCP/UDP/ICMP Checksum

The TCP/UDP/ICMP checksum engine processes the IPv4 or IPv6 header (including extension headers)
and determines whether the encapsulated payload is TCP, UDP, or ICMP.

NOTE: See IETF specifications RFC 791, RFC 793, RFC 768, RFC 792, RFC 2460, and RFC 4443 for IPv4,
TCP, UDP, ICMP, IPv6, and ICMPv6 packet header specifications, respectively.

NOTE: For non-TCP/UDP/ICMP/ICMPv6 payloads, this checksum engine is bypassed and nothing
further is modified in the frame.

NOTE: For ICMP-over-IPv4 packets, the Checksum field in the ICMP packet must always be 0x0000 in
both modes, because pseudo-headers are not defined for such packets. If it does not equal 0x0000,
an incorrect checksum may be inserted into the packet.

NOTE: Fragmented IP frames (IPv4 or IPv6), IP frames with security features (such as an encapsulated
security payload), and IPv6 frames with routing headers are not processed by this engine. The
checksum engine bypasses the checksum insertion for such frames even if the checksum insertion
is enabled.

The checksum is calculated for the TCP, UDP, or ICMP payload and inserted into its corresponding field
in the header. This engine can work in the following two ways.

• The TCP, UDP, or ICMPv6 pseudo-header is not included in the checksum calculation and is assumed
to be present in the checksum field of the input frame. This engine includes the checksum field in the
checksum calculation, and then replaces the checksum field with the final calculated checksum.

• The engine ignores the checksum field, includes the TCP, UDP, or ICMPv6 pseudo-header data into
the checksum calculation, and overwrites the checksum field with the final calculated value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The result of this operation is indicated by the payload checksum error status bit in the transmit descriptor
word TDES0. The checksum engine sets the payload checksum error status bit when it detects that the
frame has been forwarded to the MAC transmitter engine in the store-and-forward mode without the end-
of-frame (EOF) being written to the FIFO, or when the packet ends before the number of bytes indicated
by the payload length field in the IP header is received. When the packet is longer than the indicated
payload length, the COE ignores them as stuff bytes, and no error is reported. When the engine detects the
first type of error, it does not modify the TCP, UDP, or ICMP header. For the second error type, it still
inserts the calculated checksum into the corresponding header field.

Transmit checksum offloading is enabled by setting the CIC bits [23:22] of TDES0 word in the transmit
descriptor.

Transmit Protocol Engine Module (TPE)

The transmit protocol engine consists of a state-machine that controls the protocol level operation of
Ethernet frame transmission. The module performs the following functions to meet the IEEE 802.3 spec-
ifications.

• Generates preamble and SFD

• Generates jam pattern in half-duplex mode

• Jabber timeout

• Flow control for half-duplex mode (back pressure)

• Generates transmit frame status

When a new frame transmission is requested, the protocol engine sends out the preamble and SFD,
followed by the data received. The preamble is defined as 7 bytes of 10101010 pattern and the SFD is
defined as 1 byte of 10101011 pattern.

The collision window is defined as 1 slot time (512 bit times for 10/100 Mbps). The jam pattern generation
is applicable only to half-duplex mode, not to full-duplex mode. If a collision occurs any time from the
beginning of the frame to the end of the CRC field, the state machine sends a 32-bit jam pattern of
0x55555555 on the RMII to inform all other stations that a collision has occurred. If the collision is seen
during the preamble transmission phase, it completes the transmission of preamble and SFD and then
sends the jam pattern. If the collision occurs after the collision window and before the end of the FCS field,
it sends a 32-bit jam pattern and sets the late collision bit in the transmit frame status.

The module maintains a jabber timer (in 10/100-Mbps) to cut off the transmission of Ethernet frames if
the TFC module transfers more than 2,048 (default) bytes. The time-out is changed to 10,240 bytes when
the jumbo frame is enabled.

The transmit state machine uses the deferral mechanism for the flow control (back pressure) in half-duplex
mode. When the application asks to stop receiving frames, the module sends a JAM pattern of 32 bytes
whenever it senses a reception of a frame, provided the transmit flow control is enabled. This results in a
collision and the remote station backs off.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–49

The application can request a flow control signal by setting the EMAC_FLOWCTL.FCBBPA bit. If the applica-
tion requests a frame to be transmitted, then it is scheduled and transmitted even when the back pressure
is activated. Note that if the back pressure is kept activated for a long time (and more than 16 consecutive
collision events occur) then the remote stations abort their transmissions due to excessive collisions.

Transmit Scheduler Module (STX)

The Transmit Scheduler is responsible for scheduling the frame transmission on the RMII. The two major
functions of this module are:

• Maintain the inter-frame gap between two transmitted frames.

• Follow the truncated binary exponential back-off algorithm for half-duplex mode.

The scheduler maintains an idle period of the configured inter-frame gap (EMAC_MACCFG.IFG bits)
between any two transmitted frames. The scheduler starts its IFG counter as soon as the carrier signal of
the RMII goes inactive. In half-duplex mode and when IFG is configured for 96 bit times, the scheduler
follows the rule of deference specified in Section 4.2.3.2.1 of the IEEE 802.3 specification. The module
resets its IFG counter if a carrier is detected during the first two-thirds (64-bit times for all IFG values) of
the IFG interval. If the carrier is detected during the final one third of the IFG interval, the scheduler
continues the IFG count and enables the transmitter after the IFG interval.

Transmit CRC Generator Module (CTX)

The transmit CRC generator module generates CRC for the FCS field of the Ethernet frame (DA + SA +
LT + DATA + PAD).

This module calculates the 32-bit CRC for the FCS field of the Ethernet frame. The encoding is defined by
the following polynomial:

G (x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1.

Transmit Flow Control Module (FTX)

The transmit flow control module generates pause frames and transmits them to the frame controller as
necessary, in full-duplex mode. The application can request the flow control module to send a pause frame
by setting the EMAC_FLOWCTL.FCBBPA bit.

If the application has requested for flow control, the flow control module generate and transmit a single
pause frame. The value of the pause time in the generated frame contains the programmed pause time
value configured using the EMAC_FLOWCTL.PT bit. To extend the pause or end the pause prior to the time
specified in the previously transmitted pause frame, the application must request another pause frame
transmission after programming the EMAC_FLOWCTL.PT bit with an appropriate value.

If the flow control signal goes inactive prior to the sampling time, the flow control module transmits a
pause frame with zero pause time to indicate to the remote end that the receive buffer is ready to receive
new data frames.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC CORE Reception Engine

The following are the functional blocks (reception engine components) in the receive path of the EMAC
core.

• Receive Protocol Engine Module (RPE)

• Receive CRC Module (CRX)

• Receive Frame Controller Module (RFC)

• Receive Flow Control Module (FRX)

• Receive Checksum Offload Engine (RCOE)

• Receive Bus Interface Unit Module (RBU)

• Address Filtering Module (AFM)

Receive Protocol Engine Module (RPE)

The receive protocol engine is a state-machine that strips the incoming preamble and SFD. Once the
receive data valid signal (ETH_CRS) signal of the RMII becomes active, the protocol engine begins hunting
for the SFD field from the receive modifier logic. Until then, the state machine drops the receiving pream-
bles. Once the SFD is detected, it begins sending the data of the Ethernet frame to the frame controller,
beginning with the first byte following the SFD (destination address).

NOTE: According to the IEEE 802.3 Ethernet specifications, the EMAC receiver need not look or check for
the preamble pattern. It has to wait only for the SFD pattern to identify the start of a frame. Then
the EMAC receiver accepts a frame even when no preamble is received before the SFD pattern.

The protocol engine also decodes the length/type field of the receiving Ethernet frame. If the length/type
field is less than 0x600 and if the MAC is programmed for the auto CRC/PAD stripping option, the state
machine sends the data of the frame up to the count specified in the length/type field, then starts dropping
bytes (including the FCS field).

If the length/type field is greater than or equal to 0x600, the protocol engine sends all received Ethernet
frame data to the frame controller, irrespective of the value on the programmed auto-CRC strip option.

The EMAC is programmed with the watchdog timer enabled (default setting). In this configuration frames
above 2,048 (10,240 if jumbo frame is enabled) bytes (DA + SA + LT + DATA + PAD + FCS) are cut off at
the protocol engine. This feature can be disabled by setting the EMAC_MACCFG.WD bit. However even if the
watchdog timer is disabled, frames greater than 16 KB in size are cut off and a watchdog time-out status is
issued.

The EMAC supports loopback of transmitted frames onto its receiver. By default, the EMAC loopback
function is disabled, but can be enabled by setting the EMAC_MACCFG.LM bit.

At the end of every received frame, the protocol engine generates received frame status and sends it to the
frame controller. Control, missed frame, and filter fail status are added to the receive status in the frame
controller.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–51

Receive CRC Module (CRX)

The receive CRC module checks for any CRC errors in the receiving frame.

This module calculates the 32-bit CRC for the received frame that includes the destination address field
through the FCS field (DA+SA+LT+DATA+PAD+FCS). The encoding is defined by the following gener-
ating polynomial.

G (x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Irrespective of the auto pad/CRC strip, the CRC module receives the entire frame to compute the CRC
check for received frame.

Receive Frame Controller Module (RFC)

The main functions of the frame controller are:

• Converting the 8-bit stream data to 32-bit data.

• Frame filtering.

• Attaching the calculated IP Checksum.

• Update the receive status.

If the EMAC_MACFRMFILT.RA bit is set, the RFC module initiates the data transfer as soon as possible. At the
end of the data transfer, the frame controller sends out the received frame status that includes the address
filtering pass/fail status.

If the EMAC_MACFRMFILT.RA bit is reset, the frame controller performs frame filtering based on the desti-
nation/source address (the application still needs to perform another level of filtering if it decides not to
receive any bad frames like runt, CRC error frames, for example). After receiving the destination/source
address bytes, the frame controller checks the filter-fail signal from the AFM module for an address match.
On detecting a filter-fail from AFB, the frame is dropped and not transferred to the application.

Receive Flow Control Module (FRX)

The receive flow controller detects the receiving pause frame and pauses the frame transmission for the
delay specified within the received pause frame. The flow controller is enabled only in full-duplex mode.
The pause frame detection function can be enabled or disabled with the EMAC_FLOWCTL.RFE bit.

Once the receive flow control is enabled, the flow controller begins monitoring the received frame desti-
nation address for any match with the multicast address of the control frame (0x0180C2000001). If a
match is detected, it indicates to the frame controller, that the destination address of the received frame
matches the reserved control frame destination address. The RFC module then decides whether or not to
transfer the received control frame to the application, based on the EMAC_MACFRMFILT.PCF bit setting.

The receive flow controller also decodes the type, op-code, and pause timer field of the receiving control
frame. If the byte count of the frame status indicates 64 bytes, and if there is no CRC error, the flow
controller requests the MAC transmitter to pause the transmission of any data frame for the duration of

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

the decoded pause time value, multiplied by the slot time (64 byte times). Meanwhile, if another pause
frame is detected with a zero pause time value, the module resets the pause time and gives another pause
request to the transmitter. If the received control frame matches neither the type field (0x8808), opcode
(0x00001), nor byte length (64 bytes), or if there is a CRC error, the module does not generate a pause
request to the transmitter.

In the case of a pause frame with a multicast destination address, the frame controller filters the frame
based on the address match from the flow controller. For a pause frame with a unicast destination address,
the filtering in the FRX module depends on whether the destination address matched the contents of the
MAC address register 0 (EMAC_ADDR0_HI/EMAC_ADDR0_LO) and the EMAC_FLOWCTL.UP bit is set (detecting
a pause frame even with a unicast destination address). The EMAC_MACFRMFILT.PCF bits control the
filtering for control frames in addition to the address filter module.

Receive Checksum Offload Engine (RCOE)

When checksum offloading is enabled, both IPv4 and IPv6 frames in the received Ethernet frames are
detected and processed for data integrity. Programs can enable this module by setting the EMAC_MACCFG.
IPC bit. The EMAC receiver identifies IPv4 or IPv6 frames by checking for value 0x0800 or 0x86DD,
respectively, in the received Ethernet frames’ type field. This identification applies to VLAN-tagged frames
as well. Extended descriptor mode (8 x32-bit words) must be enabled to get the IPC checksum engine status
in RDES4. Status can be checked by polling the bit 0 of RDES0 word of receive descriptor and then if this
bit is set, further parsing bits [7:0] of RDES4 word.

The receive checksum offload engine calculates IPv4 header checksums and checks if they match the
received IPv4 header checksums. The IP header error bit is set for any mismatch between the indicated
payload type (Ethernet type field) and the IP header version, or when the received frame does not have
enough bytes, as indicated by the IPv4 header’s length field (or when fewer than 20 bytes are available in
an IPv4 or IPv6 header).

This engine also identifies a TCP, UDP or ICMP payload in the received IP datagrams (IPv4 or IPv6) and
calculates the checksum of such payloads properly, as defined in the TCP, UDP, or ICMP specifications.
This engine includes the TCP/UDP/ICMPv6 pseudo-header bytes for checksum calculation and checks
whether the received checksum field matches the calculated value. The result of this operation is given as
a payload checksum error bit in the receive status word. This status bit is also set if the length of the TCP,
UDP, or ICMP payload does not tally to the expected payload length given in the IP header.

NOTE: The COE engine bypasses the payload of fragmented IP datagrams, IP datagrams with security
features, IPv6 routing headers, and payloads other than TCP, UDP or ICMP. This information
(whether the checksum engine is bypassed or not) is given in the receive status.

The meaning of checksum related errors can be understood using the table below which shows bit combi-
nation in receive descriptors (frame status with full checksum offload engine enabled and advanced time-
stamps not enabled).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–53

Receive Bus Interface Unit Module (RBU)

The receive bus interface unit (RBU) constructs the 32-bit data received from the frame controller into a
32-bit FIFO based protocol.

Address Filtering Module (AFM)

The address filtering (AFM) module performs the destination checking function on all received frames
and reports the address filtering status to the frame controller. The address checking is based on different
parameters (frame filter register, EMAC_MACFRMFILT) chosen by the application. These parameters are
inputs to the AFM module as control signals, and the AFM module reports the status of the address
filtering based on the combination of these inputs. The AFM module also reports whether the receiving
frame is a multicast frame or a broadcast frame, as well as the address filter status. The AFM module uses
the station’s physical (MAC) address and the multicast hash table for address checking.

• Hash or Perfect Address Filter. The destination address filter can be configured to pass a frame when
its destination address matches either the hash filter or the perfect filter by setting the EMAC_
MACFRMFILT.HPF bit and setting the corresponding EMAC_MACFRMFILT.HUC or EMAC_MACFRMFILT.HMC

Table 23-26: Checksum Error Status

IEEE802.3 Frame: bit
5 of RDES0

Header Checksum
Error: bit 3 of RDES4

Payload Checksum
Error: bit 4 of RDES4 Frame Status

0 0 0 The frame is an IEEE 802.3 frame (length
field value is less than 0x0600).

1 0 0 IPv4/IPv6 type frame in which no checksum
error is detected.

1 0 1 IPv4/IPv6 type frame in which a payload
checksum error (as described for PCE) is
detected

1 1 0 IPv4/IPv6 type frame in which IP header
checksum error (as described for IPC HCE)
is detected.

1 1 1 IPv4/IPv6 type frame in which both PCE
and IPC HCE is detected.

0 0 1 IPv4/IPv6 type frame in which there is no IP
HCE and the payload check is bypassed due
to unsupported payload.

0 1 1 Type frame which is neither IPv4 or IPv6
(COE bypasses the checksum check
completely)

0 1 0 Reserved

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

bits. This configuration applies to both unicast and multicast frames. If the EMAC_MACFRMFILT.HPF bit
is reset, only one of the filters (hash or perfect) is applied to the received frame.

NOTE: Hash filtering is not perfect filtering because a 48-bit MAC address is reduced to a 6-bit hash value.
Consequently, there may be instances where more than one address has the same hash value.

• Unicast Destination Address Filter.

– The AFM supports 1 MAC address for unicast perfect filtering. If perfect filtering is selected (EMAC_
MACFRMFILT.HUC bit is reset), the AFM compares all 48 bits of the received unicast address with the
programmed MAC address for any match.

– In hash filtering mode (When EMAC_MACFRMFILT.HUC bit is set), the AFM performs imperfect
filtering for unicast addresses using a 64-bit hash table. For hash filtering, the AFM uses the upper
6 bit CRC of the received destination address to index the content of the hash table. A value of
000000 selects bit 0 of the selected register, and a value of 111111 selects bit 63 of the hash table
register. If the corresponding bit (indicated by the 6-bit CRC) is set to 1, the unicast frame is said to
have passed the hash filter; otherwise, the frame has failed the hash filter.

• Multicast Destination Address Filter.

– The EMAC can be programmed to pass all multicast frames by setting the EMAC_MACFRMFILT.PM
bit. If the EMAC_MACFRMFILT.PM bit is reset, the AFM performs the filtering for multicast addresses
based on the EMAC_MACFRMFILT.HMC bit. In perfect filtering mode, the multicast address is
compared with the programmed MAC destination address register. Group address filtering is also
supported.

– In hash filtering mode, the AFM performs imperfect filtering using a 64-bit hash table. For hash
filtering, the AFM uses the upper 6 bit CRC of the received multicast address to index the content
of the hash table. A value of 000000 selects bit 0 of the selected register and a value of 111111 selects
bit 63 of the hash table register. If the corresponding bit is set to 1, then the multicast frame is said
to have passed the hash filter; otherwise, the frame has failed the hash filter.

• Broadcast Address Filter. The AFM doesn’t filter any broadcast frames in the default mode. However,
if the EMAC is programmed to reject all broadcast frames by setting the EMAC_MACFRMFILT.DBF bit,
the AFM asserts the filter fail signal, whenever a broadcast frame is received.

• Inverse Filtering Operation. There is an option to invert the filter-match result at the final output.
This is controlled by the EMAC_MACFRMFILT.DAIF bit. The this bit is applicable for both unicast and
multicast DA frames. The result of the unicast /multicast destination address filter is inverted in this
mode.

Destination Address Filtering

The following table provides various address filtering possibilities using the EMAC AFM module. The bits
are located in the MAC receive frame filter register (EMAC_MACFRMFILT).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–55

Table 23-27: Destination Address Filtering

Frame Type

Bit Setting (0 = Cleared, 1 = Set, X = Don’t Care)

DA Filter OperationPR HPF HUC HMC DAIF PM DBF

Broadcast 1 X X X X X X Pass
0 X X X X X 0 Pass
0 X X X X X 1 Fail

Unicast 1 X X X X X X Pass all frames
0 X 0 0 X X X Pass on Perfect/Group

filter match
0 X 0 1 X X X Fail on Perfect/Group

filter match
0 0 1 0 X X X Pass on Hash filter

match
0 0 1 1 X X X Fail on Hash filter

match
0 1 1 0 X X X Pass on Hash or

Perfect/Group filter
match

0 1 1 1 X X X Fail on Hash or
Perfect/Group filter
match

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC Station Management Interface (SMI)

The IEEE 802.3 MII station management interface (applicable for RMII as well), also known as the MDIO
management interface, allows the Blackfin processor to monitor and control one or more external
Ethernet physical-layer transceivers (commonly called PHYs). The management interface physically
consists of a 2-wire serial connection composed of the MDC (management data clock) output signal and
the MDIO (management data input/output) bidirectional data signal.

Multicast 1 X X X X X X Pass all frames
X X X X X 1 X Pass all frames
0 X X 0 0 0 X Pass on Perfect/Group

filter match and drop
PAUSE control frames
if PCF = 0x

0 0 X 0 1 0 X Pass on Hash filter
match and drop
PAUSE control frames
if PCF = 0x

0 1 X 0 1 0 X Pass on Hash or
Perfect/Group filter
match and drop
PAUSE control frames
if PCF = 0x

0 X X 1 0 0 X Fail on Perfect/Group
filter match and drop
PAUSE control frames
if PCF = 0x

0 0 X 1 1 0 X Fail on Hash filter
match and drop
PAUSE control frames
if PCF = 0x

0 1 X 1 1 0 X Fail on Hash or
Perfect/Group filter
match and drop
PAUSE control frames
if PCF = 0x

Table 23-27: Destination Address Filtering (Continued)

Frame Type

Bit Setting (0 = Cleared, 1 = Set, X = Don’t Care)

DA Filter OperationPR HPF HUC HMC DAIF PM DBF

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–57

The application can select one of the 32 PHYs and one of the 32 registers within any PHY and send control
data or receive status information. Only one register in one PHY can be addressed at any given time. All
the transfers are initiated by the EMAC CORE, and the PHY chip only acts as a slave device.

Standard PHY control and status registers typically provide device capability status bits (for example, auto-
negotiation, duplex modes, 10/100 speeds and protocols), device status bits (for example, auto-negotiation
complete, link status, remote fault), and device control bits (for example, reset, speed selection, loopback,
and auto-negotiation start). The features supported by the PHY may be determined at power-up by an
MDIO read access (at default rates) of device capabilities in PHY status registers.

The MII management logical interface specifies:

• A set of 16-bit device control/status registers within the PHYs, including both required registers with
standardized bit definitions as well as optional vendor-specified registers.

• A 5-bit device addressing scheme which allows the MAC to select one of up to 32 externally-connected
PHY devices.

• A 5-bit register addressing scheme for selecting the target register within the addressed device.

• A transfer frame protocol for 16-bit read and write accesses to PHY registers via the MDC and MDIO
signals under control of the MAC.

MDC Clock Frequency

The frequency of MDC is determined by the EMAC_SMI_ADDR.CR bit field as shown in the table below. The
clock range selection determines the frequency of the clock relative to the SCLK frequency. The suggested
range of SCLK frequency applicable for each value of the EMAC_SMI_ADDR.CR field is shown in the table
below. The programmability based on SCLK frequency range ensures that the MDC clock frequency range
is within the IEEE specifications of 1.0 MHz to 2.4 MHz. However, the EMAC MDC can also support
higher frequencies for PHY devices that support the frequencies.

Table 23-28: Station Management Interface pins

Station Management Interface Pins Pin Description

MDIO – Management Data IO A periodic clock that runs at a maximum period of
400 ns. Always driven by the EMAC to PHY.

MDC – Management Data Clock Data signal driven by EMAC or PHY, depending on
write or read access with respect to EMAC;
synchronous to MDC.

Table 23-29: MDC Clock Frequency Selection

EMAC_SMI_ADDR.CR
Selection

Programmed SCLK
Frequency Range Frequency of MDC

Min and Max MDC Freq
(Per Specifications)

0000 60–100 MHz SCLK/42 MIN = 1.43 MHz and
MAX = 2.39 MHz

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

MDIO data transfer parameters are provided in the table below. The write and read sequences provided in
the tables, MDIO Write Data Sequence and MDIO Read Data Sequence, are based on these parameters.

0001 100–125 MHz SCLK/62 MIN = 1.61 MHz and
MAX = 2.01 MHz

0010 20–35 MHz SCLK/16 MIN = 1.25 MHz and
MAX = 2.19MHz

0011 35–60 MHz SCLK/26 MIN = 1.35 MHz and
MAX = 2.31 MHz

Table 23-30: MDIO Frame Parameters

Parameter Description

IDLE The MDIO line is three-state (noted as Z in sequence); there is no clock
on MDC.

PREAMBLE 32 continuous bits, each of value 1.
START Start-of-frame is 01.
OPCODE 10 for read and 01 for write.
PHY ADDR 5-bit address select for one of 32 PHYs (noted as AAAAA in sequence).
REG ADDR Register address in the selected PHY (noted as RRRRR in sequence).
TA Turnaround is Z0 for read and 10 for write (Z = high impedance).
DATA Any 16-bit value. Driven by MAC or PHY based on direction (noted as

DDD...DDD).

Table 23-31: MDIO Write Data Sequence

IDLE PREAMBLE START OPCODE
PHY

ADDR
REG

ADDR TA DATA IDLE

Z 111...111 01 01 AAAAA RRRRR 10 DDD...
 DDD

Z

Table 23-32: MDIO Read Data Sequence

IDLE PREAMBLE START OPCODE
PHY

ADDR
REG

ADDR TA DATA IDLE

Z 111...111 01 10 AAAAA RRRRR Z0 DDD...
 DDD

Z

Table 23-29: MDC Clock Frequency Selection (Continued)

EMAC_SMI_ADDR.CR
Selection

Programmed SCLK
Frequency Range Frequency of MDC

Min and Max MDC Freq
(Per Specifications)

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–59

SMI Write Operation

When programs set the EMAC_SMI_ADDR.SMIW (write) and EMAC_SMI_ADDR.SMIB (busy) bits, the Station
Management Interface initiates a write operation into the PHY registers with the management frame
format (the PHY address, the register address in PHY, and the write data) specified in the IEEE specifica-
tions (Section 22.2.4.5 of IEEE standard). The application should not change the EMAC_SMI_ADDR register
contents or the EMAC_SMI_DATA register while the transaction is ongoing.

Write operations to the EMAC_SMI_ADDR register or the EMAC_SMI_DATA register during the transfer period
are ignored (while the EMAC_SMI_ADDR.SMIB bit is high), and the transaction is completed without any
error. After the write operation has completed, the SMI indicates the same by resetting the EMAC_SMI_
ADDR.SMIB bit. The EMAC drives the MDIO line for the complete duration of the frame as shown in the
following figure.

Figure 23-9: SMI Write Operation via MDIO/MDC Pins

SMI Read Operation

When programs set the EMAC_SMI_ADDR.SMIB bit with the EMAC_SMI_ADDR.SMIW bit cleared (=0), the
Station Management Interface transfers the PHY address and the register address in the PHY to the SMI
to initiate a read operation in the PHY registers. The application should not change the EMAC_SMI_ADDR
register contents or the EMAC_SMI_DATA register while the transaction is ongoing.

Write operations to the EMAC_SMI_ADDR register or the EMAC_SMI_DATA register during the transfer period
are ignored (while the EMAC_SMI_ADDR.SMIB bit is high) and the transaction is completed without any
error. After the read operation has completed, the SMI indicates this by resetting the EMAC_SMI_ADDR.
SMIB bit and updates the EMAC_SMI_DATA register with the data read from the PHY. The EMAC drives the
MDIO line for the complete duration of the frame except during the data fields when the PHY is driving
the MDIO line as shown in the following figure.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-10: SMI Read Operation via MDIO/MDC Pins

EMAC Management Counters (MMC)

The EMAC provides a comprehensive set of 32-bit MAC management counters. These counters are used
for gathering statistics on the received and transmitted frames. The MMC sub-block also includes a control
register (EMAC_MMC_CTL) for controlling the behavior of the counters, two 32-bit registers containing inter-
rupts generated (EMAC_MMC_RXINT and EMAC_MMC_TXINT), and two 32-bit registers containing masks for
the interrupt register (EMAC_MMC_RXIMSK and EMAC_MMC_TXIMSK).

The MMC receive counters are updated for frames that are passed by the address filtering sub-block in the
EMAC CORE. Statistics of frames that are dropped by the AFM module are not updated unless they are
runt frames of less than 6 bytes (destination address bytes are not received fully). The module is also
capable of gathering statistics on encapsulated IPv4, IPv6, and TCP, UDP, or ICMP payloads in received
Ethernet frames.

Please refer to the “Register Descriptions” section for all the statistical counters available in EMAC. The
MMC register naming conventions are as follows:

• TX as a prefix or suffix indicates counters associated with transmission.

• RX as a prefix or suffix indicates counters associated with reception.

• _G as a suffix indicates registers that count good frames only.

• _GB as a suffix indicates registers that count frames regardless of whether they are good or bad.

Transmitted frames are considered good if transmitted successfully. In other words, a transmitted frame is
good if the frame transmission is not aborted due to any of the following errors:

• Jabber Timeout

• No Carrier/Loss of Carrier

• Late Collision

• Frame Underflow

• Excessive Deferral

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–61

• Excessive Collision

Received frames are considered good if none of the following errors exists:

• CRC error

• Runt Frame (shorter than 64 bytes)

• Alignment error

• Length error (non-Type frames only)

• Out of Range (non-Type frames only, longer than maximum size)

The maximum frame size depends on the frame type, as follows:

• Untagged frame maxsize = 1518

• VLAN Frame maxsize = 1522

• Jumbo Frame maxsize = 9018

• Jumbo VLAN Frame maxsize = 9022

The EMAC_MMC_CTL register also contains bits that control preset, freeze and roll-over of counters. Addi-
tional configuration include EMAC_MMC_CTL.RDRST bit that enables an auto-reset feature whenever the
counters are read and the EMAC_MMC_CTL.RST bit for resetting all the counters.

The MMC can also trigger an interrupt when the corresponding bits are enabled in the transmit, receive
and IPC mask registers, and when the particular counter reaches half/full. The status is also updated in the
corresponding interrupt register.

MMC Receive Interrupt Register

The EMAC_MMC_RXINT register maintains the interrupts that are generated when receive statistic counters
reach half their maximum values (0x80000000), and when they cross their maximum values
(0xFFFFFFFF). When EMAC_MMC_CTL.NOROLL is set, then interrupts are set but the counter remains at all-
ones. The EMAC_MMC_RXINT register is a 32-bit wide register. An interrupt bit is cleared when the respective
MMC counter that caused the interrupt is read. The least significant byte lane (bits 7–0) of the respective
counter must be read in order to clear the interrupt bit.

MMC Transmit Interrupt Register

The EMAC_MMC_TXINT register maintains the interrupts generated when transmit statistic counters reach
half their maximum values (0x80000000), and when they cross their maximum values (0xFFFFFFFF).
When EMAC_MMC_CTL.NOROLL is set, then interrupts are set but the counter remains at all-ones. The EMAC_
MMC_TXINT register is a 32-bit wide register. An interrupt bit is cleared when the respective MMC counter
that caused the interrupt is read. The least significant byte lane (bits 7–0) of the respective counter must be
read in order to clear the interrupt bit.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

MMC Receive Checksum Offload Interrupt Register

The EMAC_MMC_RXINT.CRCERR register maintains the interrupts generated when receive IPC statistic
counters reach half their maximum values (0x80000000), and when they cross their maximum values
(0xFFFFFFFF). When EMAC_MMC_CTL.NOROLL is set, then interrupts are set but the counter remains at all-
ones. The EMAC_MMC_RXINT.CRCERR register is 32-bits wide. When the MMC IPC counter that caused the
interrupt is read, its corresponding interrupt bit is cleared. The counter’s least-significant byte lane (bits
7–0) must be read to clear the interrupt bit.

EMAC Precision Time Protocol (PTP) Engine

The following sections describe the Precision Time Protocol engine.

IEEE1588 and the PTP Engine

The Ethernet MAC peripheral includes a PTP Engine to assist applications requiring time synchroniza-
tion. The PTP module is tightly integrated with the EMAC CORE to aid hardware time stamping defined
in the IEEE1588 2002/2008 standards. Applications can make use of accurate hardware time stamps via
TCP/IP stacks (if using Network layer communication) or via Ethernet device drivers (if using MAC layer
communication), to exchange time information across devices connected over network.

PTP Engine

For calculation of drift in time between two Ethernet devices, the device should note down its system time
whenever a timing message is sent or received (IEEE 1588 protocol). Due to the indeterministic delay of a
node’s software system, the software is unable to capture an accurate time when the message is sent or
received. However, the hardware is capable of monitoring the signal on the communication media and get
accurate message arrival/departure time.

The PTP (Precision Time Protocol) module is closely integrated with the EMAC module and provides
hardware assistance to implement both the IEEE 1588-2002 and IEEE 1588-2008 standards on Ethernet
(IEEE 802.3). It takes one input clock signal as its PTP clock and maintains the timing information (called
system time) at the nanosecond level.

The PTP module includes hardware for clock and system time adjustment. The system time is physically
represented by Pulse -Per-Second (PPS) signal. PPS can be programmed to a fixed frequency or provide
flexibility to the signal in terms of pulse width, interval, start and stop time of the signal. The PTP module
can be programmed to trigger an alarm interrupt when system time reaches specified time.

The PTP module can be programmed to detect different types of received frames, capture the system time
and timestamp those frames with the captured system time. Programs can configure any frame so that the
PTP module capture the system time when it is transmitted. The PTP module can also capture the system
time when an event is detected on the Auxiliary Snapshot Trigger input pin (ETH_PTPAUXIn).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–63

IEEE1588 Standard

Many systems require two independent devices to operate in a time synchronized fashion. If each system
were to rely solely on its own oscillator, differences between the specific characteristics and operating
conditions of the individual oscillators would limit the ability of the clocks to operate synchronously. To
serve applications requiring synchronized clocks, a periodic correction mechanism is employed.

A simple way to synchronize multiple systems is to choose one system (with the best clock) as a master.
The system master broadcasts the clock and timing information to other systems (slaves) and then the
slaves adjust their clocks and timing according to that of master. However, this method has limitations
such as the master cannot broadcast the time at infinitesimal intervals, path delay (propagation delay)
exists between a master and a slave, and the delay varies between each slave and master.

IEEE 1588 (also known as Precision Time Protocol or PTP) standard specifies a protocol used to synchro-
nize the time and clock of multiple devices, dispersed but interconnected by any communication, for
example, Ethernet (IEEE 802.3). According to the protocol, timing messages are exchanged between two
devices (both devices should have the same representation of their system time), and then one of the device
calculates its drift from other device and corrects its system time. The protocol resolves path delay between
devices and also helps synchronize the clocks of multiple devices and all of the limitations mentioned
above are resolved.

IEEE 1588 was published in 2002 where four types of timing messages were defined: Sync, Follow_Up,
Delay_Req, and Delay_Resp. Here the protocol synchronizes two or more devices where one is a master
and others are slaves. The Sync, Follow_Up, and Delay_Resp messages are sent from the master device to
the slave device in the system, while the Delay_Req message is sent from a slave device to master device.
More information on IEEE 1588-2002 is provided in a following section.

In 2008 a newer version of IEEE 1588 was introduced which provides further mechanisms to measure the
peer-to-peer delay. Three additional timing messages (PdelayReq, PdelayResp, and PdelayRespFollowup)
were added to implement peer-to-peer synchronization. More information on IEEE 1588-2008 is provided
in a following section.

IEEE 1588-2002

The IEEE 1588-2002 standard defines the Precision Time Protocol (PTP) that allows precise synchroniza-
tion of clocks in measurement and control systems that use network communication, local computing, and
distributed objects. The protocol applies to systems that communicate by local area networks that support
multicast messaging, including (but not limited to) Ethernet. This protocol also allows heterogeneous
systems that include clocks of varying inherent precision, resolution, and stability to synchronize. The
protocol supports system-wide synchronization accuracy in the sub-microsecond range with minimal
network and local clock computing resources.

The PTP is transported over UDP/IP. The system or network is classified into master and slave nodes for
distributing the timing/clock information. The following figure shows the process that PTP uses for
synchronizing a slave node to a master node by exchanging PTP messages.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-11: IEEE 1588-2002 PTP Process

As shown in the figure, the PTP uses the following process:

1. The master broadcasts the PTP Sync messages to all its nodes. The Sync message contains the master’s
reference time information. The time at which this message leaves the master’s system is t1. This time
must be captured by the Master, for Ethernet ports, at RMII.

2. The slave receives the Sync message and also captures the exact time, t2, using its timing reference.

3. The master sends a Follow_up message to the slave, which contains t1 information for later use.

4. The slave sends a Delay_Req message to the master, noting the exact time, t3, at which this frame leaves
the RMII.

5. The master receives the message, capturing the exact time, t4, at which it enters its system.

6. The master sends the t4 information to the slave in the Delay_Resp message.

7. The slave uses the four values of t1, t2, t3, and t4 to synchronize its local timing reference to the master’s
timing reference.

Most of the PTP implementation is done in the software above the UDP layer. However, the hardware
support is required to capture the exact time when specific PTP packets enter or leave the Ethernet port at

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–65

the RMII. This timing information must be captured and returned to the software for the proper imple-
mentation of PTP with high accuracy.

IEEE 1588-2008 Advanced Timestamps

In addition to the basic timestamp features mentioned in IEEE 1588-2002 Timestamps, the EMAC
supports the following advanced timestamp features defined in the IEEE 1588-2008 standard.

• Support for the IEEE 1588-2008 (Version 2) timestamp format.

• Provides an option to take snapshot of all frames or only PTP type frames.

• Provides an option to take snapshot of only event messages.

• Provides an option to select the node to be a master or slave.

• Identifies the PTP message type, version, and PTP payload in frames sent directly over Ethernet and
sends the status.

• Provides an option to run nanoseconds time in digital or binary format.

Peer-to-Peer (P2P) PTP Message Support

The IEEE 1588-2008 version supports Peer-to-Peer PTP (Pdelay) message in addition to SYNC, Delay
Request, Follow-up, and Delay Response messages. Figure below shows the method to calculate the prop-
agation delay between nodes supporting peer-to-peer path correction.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-12: Propagation Delay Calculation between Nodes Supporting Peer-to-Peer Path Correction

As shown in Figure above, the propagation delay is calculated in the following way:

1. Port-1 issues a Pdelay_Req message and generates a timestamp, t1, for the Pdelay_Req message.

2. Port-2 receives the Pdelay_Req message and generates a timestamp, t2, for this message.

3. Port-2 returns a Pdelay_Resp message and generates a timestamp, t3, for this message. To minimize
errors because of any frequency offset between the two ports, Port-2 returns the Pdelay_Resp message
as quickly as possible after the receipt of the Pdelay_Req message. The Port-2 returns any one of the
following:

• The difference between the timestamps t2 and t3 in the Pdelay_Resp message.

• The difference between the timestamps t2 and t3 in the Pdelay_Resp_Follow_Up message.

• The timestamps t2 and t3 in the Pdelay_Resp and Pdelay_Resp_Follow_Up messages respec-
tively.

4. Port-1 generates a timestamp, t4, on receiving the Pdelay_Resp message.

Port-1 uses all four timestamps to compute the mean link delay.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–67

Block Diagram

The following figure shows the functional block diagram of PTP module.

Figure 23-13: PTP Block Diagram

A system time module is present which keeps the time of PTP module. It consists of hardware which can
be programmed for time initialization, time correction and clock correction.

The timestamp module is capable of capturing the time (provided by the system time module) at various
conditions such as when a frame is sent or received by the EMAC, or the rising edge of the auxiliary snap-
shot trigger (ETH_PTPAUXIn) pin. When system time is captured after detection of a frame, the timestamp
module automatically includes the time information in the frame descriptor. Time stamping on the detec-
tion of a frame can be programmed on a per frame basis.

The PTP module is driven by PTP clock. This clock can be selected from three different clock sources.

The Pulse per Second (PPS) module is used to generate a pulse or train of pulse on the PPS output pin,
(ETH_PTPPPS) and it is the physical representation of system time. PPS can be fixed (where only frequency
can be varied) or flexible (where width, interval, start time and stop time can be programmed).

The Target Time module acts as an alarm for the PTP module. Whenever system time reaches a value equal
to programmed target time, the target time trigger interrupt is generated. By appropriate programming,
The target time trigger can also be used to start or stop flexible PPS output at specific time.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PTP Module Clock

The PTP module clock features include Clock Source Selection and Clock Frequency Range.

Clock Source Selection

The PTP module can take one of three clock sources as its input clock — SCLK, RMII clock or PTP external
clock.

The PTP clock source can be selected using the PADS_EMAC_PTP_CLKSEL.EMAC0 or PADS_EMAC_PTP_
CLKSEL.EMAC1 field, as shown in table below.

Clock Frequency Range

The resolution, or granularity, of the reference time source determines the accuracy of the synchroniza-
tion. Therefore, a higher PTP clock frequency gives better system performance. The maximum PTP clock
frequency is limited by the timing constraints achievable for logic operating on the selected PTP clock
source.

The minimum PTP clock frequency depends on the time required between two consecutive frames.
Because the RMII clock frequency is fixed by the IEEE specification, the minimum PTP clock frequency
required for proper operation depends upon the operating mode and operating speed of the MAC as
shown in the following table.

A minimum delay required between two consecutive timestamp captures is 8 clock cycles of RMII and 3
clock cycles of PTP clocks. If the delay between two timestamp captures is less than this delay, the EMAC
does not take a timestamp snapshot for the second frame.

Table 23-33: PTP Clock Source Selection

PADS_EMAC_PTP_CLKSEL.
EMAC0 or PADS_EMAC_PTP_

CLKSEL.EMAC1 Field PTP Clock Source Clock Description

00 EMAC_RMII RMII reference clock
10 PTP External Clock Clock available on PTP_EXT_CLK pin
X1 SCLK Processor System Clock

Table 23-34: Minimum PTP Clock Frequency

Mode Minimum Gap Between Two Frames Minimum PTP Frequency

100-Mbps full-
duplex operation

336 RMII clocks
(256 clocks for a 64-byte frame + 48
clocks of min IFG + 32 clocks of
preamble)

(3 × PTP period) + (8 × RMII period) ≤ (336 ×
RMII period)
Maximum PTP period = (336 – 8) × 20 ns ÷ 3 =
2,186 ns
Minimum PTP frequency = 0.46 MHz

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–69

Timestamp Module

The timestamp module captures time in seconds and nanoseconds maintained as system time. The time-
stamp module also captures time when specific events occur. Events include detection of a frame trans-
mitted or received over the EMAC and a rising edge on the ETH_PTPAUXIn pin. The timestamp module
does not need to timestamp all of the transmitted or received frames over the EMAC. The PTP module can
be programmed to detect specific kinds of frames for timestamping.

This kind of frame detection is discussed in the following sections.

Frame Detection and Timestamping

The PTP module automatically monitors all received and transmitted IEEE 1588 event messages on the
Ethernet. If an event message is detected, the module takes a snapshot of the system time and stores its
value to the 64-bit fields in Transmit or receive descriptor. The timestamping is done at the EMAC RMII
interface when the module sees the start of frame of an event message packet.

Transmit Path Timestamping

The EMAC captures a timestamp when a frame is being sent on RMII. Timestamp capture is controllable
on a per-frame basis. In other words, each transmit frame can be marked to indicate whether a timestamp
should be captured for that frame or not.

Applications should extend the descriptor word length from 4 words to 8 words by setting the EMAC_DMA_
BUSMODE.ATDS bit. In order to enable the timestamp function, the TTSE (transmit timestamp enable) bit
in transmit descriptor word TDES0 should be set. When the PTP module captures a timestamp of a trans-
mitted frame, it notifies the application by setting the TTSS (transmit timestamp status) in TDES0.

The EMAC returns the timestamp to the software inside the corresponding transmit descriptor, automat-
ically connecting the timestamp to the specific frame. The 64-bit timestamp information is written to the
TDES6 and TDES7 fields. The TDES6 field holds the 32 LSBs of the timestamp (system time nanoseconds),
except as described in transmit timestamp field and TDES7 field holds the 32 MSBs (system time seconds).
After the PTP module timestamps the frame, the application can get the timestamp along with the transmit
status from the EMAC.

NOTE: The PTP module timestamps all the transmitting frames that has TTSE set in its TDES0. It does not
distinguish according to the type of transmitting frame.

Auxiliary Timestamp Snapshot

The auxiliary snapshot feature stores snapshots of the system time whenever a rising edge is detected on
the ETH_PTPAUXIn pin.

The PTP stores 64-bits of captured timestamp in a 4-deep FIFO. When a snapshot is stored, the PTP indi-
cates this to the EMAC with the auxiliary snapshot interrupt and the EMAC_TM_STMPSTAT.ATSTS bit is set.
The value of the snapshot is read through the EMAC_TM_AUXSTMP_SEC and EMAC_TM_AUXSTMP_NSEC regis-
ters. If the FIFO becomes full and an external trigger to take the snapshot is asserted, then the snapshot

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

trigger-missed status is set in the EMAC_TM_STMPSTAT.ATSSTM bit. The latest snapshot is not written to the
FIFO when it is full.

When a host reads the 64-bit timestamp from the FIFO through the EMAC_TM_AUXSTMP_SEC and EMAC_
TM_AUXSTMP_NSEC registers, the space becomes available to store the next snapshot.

NOTE: A space in the FIFO is created whenever the EMAC_TM_AUXSTMP_SEC register is read. Therefore the
EMAC_TM_AUXSTMP_NSEC register should be read before reading the EMAC_TM_AUXSTMP_SEC
register.

The program can clear the FIFO by setting the EMAC_TM_CTL.ATSFC bit. When multiple snapshots are
present in the FIFO, the count is indicated in the EMAC_TM_STMPSTAT.ATSNS bits.

NOTE: The minimum gap between two events on the ETH_PTPAUXIn pin must be 4 cycles of PTP_CLK +
3 cycles of SCLK). Otherwise, the rising-edge of the trigger is missed by the logic.

Receive Path Timestamping

The PTP module automatically monitors all received and transmitted IEEE 1588 event messages on the
Ethernet. If an event message is detected, the module takes a snapshot of the System Time and stores its
value to the 64-bit fields in transmit or receive descriptor. The timestamping is done at the EMAC RMII
interface when the module sees the start of frame of an event message packet.

PTP module captures the timestamp of received frames on the RMII. Timestamp capture is controllable
on a per-frame and per-type basis. In other words each received frame is timestamped according to the
frame type.

Applications should extend the descriptor word length from 4 words to 8 words by setting EMAC_DMA_
BUSMODE.ATDS to store timestamp and received message status. The PTP notifies the application of receive
time stamp availability when it sets bit 7 (timestamp available) in receive descriptor word RDES0.

When bit 0 (extended status available) is set in RDES0, it indicates that the extended status of the PTP
frame is provided in the RDES4 word. Extended status include PTP Version, PTP frame type and message
type. The EMAC returns the timestamp to the software inside the corresponding receive descriptor. The
64-bit timestamp information is written back to the RDES6 and RDES7 fields in memory. The RDES6
holds the 32 LSBs of the timestamp (system time nanoseconds), except as mentioned in receive timestamp
field and RDES7 field holds 32 MSBs (system time seconds).

The timestamp is written only to that receive descriptor for which the last descriptor status field has been
set to 1. When the timestamp is not available (for example, because of an RxFIFO overflow), an all-ones
pattern is written to the descriptors (RDES6 and RDES7), indicating that timestamp is not correct. RDES0
[7] indicates whether the time-stamp is updated in RDES6/7 or not.

Processing of received frames to identify valid PTP frames is done by the PTP module. The snapshot of the
time to be sent to the application can be controlled using the EMAC_TM_CTL register.

The PTP module can be programmed to detect all received frames or only some types of PTP frames,
according to bit settings in the EMAC_TM_CTL register. Refer to the following table.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–71

PTP Processing and Control

When the EMAC receives a frame, frame detection and timestamping by timestamp module of the PTP is
done on the basis of some of the PTP fields in the frame. The PTP Message Format (IEEE 1588-2008)
table shows the common message header for the PTP messages. This format is taken from IEEE standard
1588-2008. When the EMAC needs to send a PTP frame, the frame has to follow this format.

When a frame is received, PTP module compares these fields with standard values and finds out the type
of PTP frame and other information such as PTP version, IP version, and others. It then updates the related
fields in RDES4. When a frame is transmitted programs should ensure that all the fields are appropriate so
that a PTP module on the other end of a communication can correctly detect and decode the frame.

NOTE: (*) – controlField is used in version 1. For version 2, messageType field will be used for detecting
different message types.

Table 23-35: PTP Frame Type Selections

TSENALL (bit 8)
SNAPTYPSEL (bits

[17:16]) TSMSTRENA (bit 15) TSEVNTENA (bit 14) Frames

1 X X X All
0 00 X 0 Sync, Follow_Up,

Delay_Req, Delay_
Resp

0 00 0 1 Sync
0 00 1 1 Delay_Req
0 01 X 0 Sync, Follow_Up,

Delay_Req, Delay_
Resp, Pdelay_Req,
Pdelay_Resp,
Pdelay_Resp_
 Follow_Up

0 01 0 1 Sync, Pdelay_Req,
Pdelay_Resp

0 01 1 1 Delay_Req, Pdelay_
Req, Pdelay_Resp

0 10 X X Sync, Delay_Req
0 11 X X Pdelay_Req,

Pdelay_Resp

Table 23-36: PTP Message Format (IEEE 1588-2008)

Bits Octets Offset

7 6 5 4 3 2 1 0

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

There are some fields in the Ethernet payload that user can use to detect the PTP packet type and control
the snapshot to be taken. These fields are different for the following PTP frames:

• PTP Frames Over IPv4

• PTP Frames Over IPv6

• PTP Frames Over Ethernet

For any of the above PTP frames, EMAC does not consider the PTP version 1 messages as valid PTP
messages when frame consists of Peer delay multicast address as destination address (DA).

PTP Frame Over IPv4

The IPv4-UDP PTP Frame Fields Required for Control and Status table provides information about the
fields that are matched to control snapshot for the PTP packets sent over UDP over IPv4 for IEEE 1588
version 1 and 2. The octet positions for the tagged frames are offset by 4. This is based on IEEE 1588-2008
standards and the message format defined in the PTP Message Format (IEEE 1588-2008) table in the PTP
Processing and Control section.

NOTE: (*) - PTP event messages are SYNC, Delay_Req (IEEE 1588 version 1 and 2) or Pdelay_Req,
Pdelay_Resp (IEEE 1588 version 2 only)

transportSpecific messageType 1 0
Reserved versionPTP 1 1
messageLength 2 2
domainNumber 1 4
Reserved 1 5
flagField 2 6
correctionField 8 8
Reserved 4 16
sourcePortIdentity 10 20
sequenceId 2 30
controlField (*) 1 32
logMessageInterva 1 33

Table 23-37: IPv4-UDP PTP Frame Fields Required for Control and Status

Field Matched Octet Position Matched Value Description

MAC Frame type 12, 13 0x0800 IPv4 datagram

Table 23-36: PTP Message Format (IEEE 1588-2008) (Continued)

Bits Octets Offset

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–73

PTP Frame Over IPv6

The IPv6-UDP PTP Frame Fields Required for Control And Status table provides information about the
fields that are matched to control the snapshots for the PTP packets sent over UDP over IPv6 for IEEE 1588
version 1 and 2. The octet positions for the tagged frames are offset by 4. This is based on IEEE 1588-2008
standards and the message format defined in PTP Message Format (IEEE 1588-2008).

IP Version and Header
Length

14 0x45 IP version is IPv4

Layer 4 Protocol 23 0x11 UDP
IP Multicast Address
(IEEE 1588 Version 1)

30, 31, 32, 33 0xE0,0x00, 0x01,0x81 (or
0x82 or 0x83 or 0x84)

Multicast IPv4 addresses
allowed.
224.0.1.129
224.0.1.130
224.0.1.131
224.0.1.132

IP Multicast Address
(IEEE 1588 Version 2)

30, 31, 32, 33 0xE0, 0x00, 0x01, 0x81 (Hex)

0xE0, 0x00, 0x00, 0x6B (Hex)

PTP-Primary multicast address:
224.0.1.129
PTP-Peer delay multicast
address: 224.0.0.107

UDP Destination Port 36, 37 0x013F
0x0140

0x013F - PTP Event Messages (*)

0x0140 - PTP general messages
PTP Control Field
(IEEE version 1)

74 0x00/0x01/0x02/ 0x03/0x04 0x00 - SYNC
0x01 - Delay_Req
0x02 - Follow_Up
0x03 - Delay_Resp
0x04 - Management

PTP Message Type
Field (IEEE version 2)

42 (nibble) 0x0/0x1/0x2/0x3/0x8/0x9/
0xA/0xB/ 0xC/0xD

0x0 - SYNC
0x1 - Delay_Req
0x2 - Pdelay_Req
0x3 - Pdelay_Resp
0x8 - Follow_Up
0x9 - Delay_Resp
0xA - Pdelay_Resp_Follow_Up
0xB - Announce
0xC - Signaling
0xD - Management

PTP Version 43 (nibble) 0x1 or 0x2 0x1 - Supports PTP version 1
0x2 - Supports PTP version 2

Table 23-37: IPv4-UDP PTP Frame Fields Required for Control and Status (Continued)

Field Matched Octet Position Matched Value Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: (*) - IPv6 extension header is not defined for PTP packets.

PTP Frame Over Ethernet

The following table provides information about the fields that are matched to control the snapshots for the
PTP packets sent over Ethernet for IEEE 1588 version 1 and 2. The octet positions for the tagged frames
are offset by 4. This is based on IEEE 1588-2008 standards and the message format defined in the table.

NOTE: (*) - The address match of destination address (DA) programmed in MAC address 0 is used if the
EMAC_TM_CTL.TSENMACADDR bit is set.

Table 23-38: IPv6-UDP PTP Frame Fields Required for Control and Status

Field Matched Octet Position Matched Value Description

MAC Frame type 12, 13 0x86DD IP datagram
IP Version 14(bits [7:4]) 0x06 IP version is IPv6
Layer 4 Protocol 20 (*) 0x11 UDP
PTP Multicast Address 38–53 FF0x:0:0:0:0:0:0:0:0:181 (Hex)

FF02:0:0:0:0:0:0:0:0:6B (Hex)
PTP - primary multicast address:
FF0x:0:0:0:0:0:0:0:0:181 (Hex)
PTP - Peer delay multicast
address: FF02:0:0:0:0:0:0:0:0:6B
(Hex)

UDP Destination Port 56, 57 (*) 0x013F, 0x0140 0x013F - PTP event messages

0x0140 - PTP general messages
PTP Control Field
(IEEE 1588 version 1)

93 (*) 0x00/0x01/0x02/ 0x03/0x04 0x00 - SYNC
0x01 - Delay_Req
0x02 - Follow_Up
0x03 - Delay_Resp
0x04 - Management (version1)

PTP Message Type
Field (IEEE version 2)

74(*)(nibble) 0x0/0x1/0x2/0x3/0x8/0x9/
0xA/0xB/ 0xC/0xD

0x0 - SYNC
0x1 - Delay_Req
0x2 - Pdelay_Req
0x3 - Pdelay_Resp
0x8 - Follow_Up
0x9 - Delay_Resp
0xA - Pdelay_Resp_Follow_Up
0xB - Announce
0xC - Signaling
0xD - Management

PTP Version 75(nibble) 0x1 or 0x2 0x1 - Supports PTP version 1
0x2 - Supports PTP version 2

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–75

System Time

To get a snapshot of the time, the EMAC requires a reference time in 64-bit format as defined in the IEEE
1588 specification. The PTP module maintains 80-bit time, known as system time and it is updated using
the PTP clock.

The 80-bit timing reference is split into the following three registers:

• EMAC_TM_NSEC – 32-bit nanoseconds register which provides time in nanoseconds

• EMAC_TM_SEC – 32-bit seconds register which provides time in seconds

• EMAC_TM_HISEC – 16-bit high seconds register which provides time beyond the seconds register. This
register is not included in the IEEE 1588 standard, and its use is application specific.

The 64-bit system time (seconds and nanoseconds) is the source for taking timestamps for Ethernet frames
being transmitted or received at the RMII.

Table 23-39: Ethernet PTP Frame Fields Required for Control and Status

Field Matched Octet Position Matched value Description

MAC Destination
Multicast Address(*)

0–5 01-1B-19-00-00-00
01-80-C2-00-00-0E

All PTP messages can use any
of the following multicast
addresses:
01-1B-19-00-00-00
01-80-C2-00-00-0E

MAC Frame Type 12, 13 0x88F7 PTP Ethernet frame
PTP control field (IEEE
Version 1)

45 0x00/0x01/0x02/ 0x03/
0x04

0x00 - SYNC
0x01 - Delay_Req
0x02 - Follow_Up
0x03 - Delay_Resp
0x04 - Management

PTP Message Type
Field (IEEE version 2)

14(nibble) 0x0/0x1/0x2/0x3/0x8/
0x9/0xA/0xB/ 0xC/0xD

0x0 - SYNC
0x1 - Delay_Req
0x2 - Pdelay_Req
0x3 - Pdelay_Resp
0x8 - Follow_Up
0x9 - Delay_Resp
0xA - Pdelay_Resp_Follow_Up
0xB - Announce
0xC - Signaling
0xD - Management

PTP Version 15(nibble) 0x1 or 0x2 0x1 - Supports PTP version 1
0x2 - Supports PTP version 2

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Since the PTP clock frequency does not correspond to a 1 ns period, the EMAC_TM_NSEC register should be
incremented with a value equal to the PTP clock period for every PTP clock cycle. This is achieved by use
of EMAC_TM_SUBSEC register. The EMAC_TM_NSEC value is incremented with value programmed in EMAC_
TM_SUBSEC register every PTP clock cycle.

Whenever the EMAC_TM_SEC register overflows from 0xFFFFFFFF to 0x00000000, the seconds overflow
interrupt is triggered and indicated by the EMAC_TM_STMPSTAT.TSSOVF bit. After a seconds overflow the
EMAC_TM_HISEC register increments by one.

The system time module supports the following two types of rollover modes for the EMAC_TM_NSEC
register. digital rollover and binary rollover.

• Digital rollover mode. The maximum value in the nanoseconds field is 0x3B9AC9FF, that is, 109 nano-
seconds. After it reaches this value, the EMAC_TM_SEC register is incremented and the EMAC_TM_NSEC
register restarts counting from zero. Accuracy in digital rollover mode it is 1 ns per bit.

• Binary rollover mode. The nanoseconds field rolls over and increments the seconds field after the value
reaches 0x7FFFFFFF. Accuracy in binary rollover mode is ~0.466 ns per bit.

System Time Adjustment

The following sections describe the process for system time adjustment.

System Time Initialization

System time can be initialized with 64-bit time when the PTP module is enabled. The initial value is written
to the EMAC_TM_SECUPDT and EMAC_TM_NSECUPDT system time update registers. The system time counter
is written with the value in these registers when the EMAC_TM_CTL.TSINIT bit is set.

Coarse Correction Method

If slave system time has an offset with respect to the master’s system time, then it can be corrected using
the coarse correction method. The time offset value is written to the EMAC_TM_SECUPDT and EMAC_TM_
NSECUPDT registers. The offset value is then added to or subtracted from the system time when the EMAC_
TM_CTL.TSUPDT bit is set. Addition or subtraction can be chosen by using the EMAC_TM_NSECUPDT.ADDSUB
bit. System time correction is done in one clock cycle using the coarse correction method.

NOTE: During subtraction, the EMAC_TM_SECUPDT register value should be less than the value of the
EMAC_TM_SEC register. This should be checked prior to performing subtraction through coarse
correction.

Fine Correction Method

If a slave PTP clock’s frequency has a drift with respect to the master PTP clock (as defined in IEEE 1588),
then it can be corrected using the fine correction method. Using this method, system time is corrected over
a period of time (unlike coarse correction where it is done in one clock cycle). This helps maintain linear
time and does not introduce drastic changes (or a large jitter) in the reference time between PTP Sync
message intervals.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–77

Using this method, an accumulator sums the contents of the EMAC_TM_ADDEND register, as shown in the
algorithm illustrated in the figure below. The arithmetic carry that the accumulator generates is used as a
pulse to increment the system time counter. The accumulator and the addend are 32-bit registers. Here,
the accumulator acts as a high-precision frequency divider.

Figure 23-14: System Time Update, Fine Correction Method

Calculating Addend Value

This section describes the process for system time adjustment.

In this example, the master clock runs at 50 MHz and the slave clock has drifted to 66MHz. The goal is to
adjust the slave system time to 50 MHz, so that the slave PTP module is synchronized with the master.
Using the figure in Fine Correction Method, the nanoseconds increment signal should run at 50 MHz. The
nanoseconds increment is the carry from accumulator register, which is incremented by the addend value
at the rate of the slave clock (66 MHz).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The accumulator overflows and generates a carry every N addend values so N × Addend = 232.

The accumulator increments at 66 MHz. To bring the carry to 50 MHz N = 66/50 = 1.32.

Here the addend = 232/1.32 = 0xC1F07C1F.

Therefore, if addend is programmed with 0xC1F07C1F, the slave system time runs at 50 MHz which is
synchronized with the master.

In the Fine Correction Method figure, the sub second increment is the value programmed in the EMAC_TM_
SUBSEC register which increments the EMAC_TM_NSEC register according to the frequency of the nanosec-
onds increment signal.

In the example, the sub second increment should be 20 (for digital rollover) or 43 (for binary rollover).
This increments the EMAC_TM_NSEC register by 20 ns (1/50 MHz).

The software must calculate the drift in frequency and update the EMAC_TM_ADDEND register accordingly.

NOTE: The PTP reference clock is the clock at which the system time is updated.When the EMAC_TM_CTL.
TSCFUPDT bit is set to 0, this clock equals the PTP clock. Using fine correction, the PTP reference
clock is generated on the nanoseconds increment signal at which the system time is updated.

Target Time Trigger (Alarm)

The PTP module provides an alarm function by triggering an alarm at a preset time. It sets the EMAC_TM_
STMPSTAT.TSTARGT bit when the system time matches the value of the EMAC_TM_TGTM and EMAC_TM_
NTGTM registers. This trigger can be used to generate an interrupt and/or command the flexible PPS module
to start/stop PPS output, depending on value programmed in EMAC_TM_PPSCTL.TRGTMODSEL bits.

The trigger is enabled by setting EMAC_TM_CTL.TSTRIG bit. Once an alarm has occurred, if another alarm
is needed, the software must clear the status bit, reprogram the EMAC_TM_TGTM and EMAC_TM_NTGTM regis-
ters to a future value, and set the EMAC_TM_CTL.TSTRIG bit.

If the time programmed in the target time registers has elapsed, then a target time programming error is
indicated by setting the EMAC_TM_STMPSTAT.TSTRGTERR bit.

The alarm time is represented in absolute units, not relative units. For example, if the software needs to
generate an alarm after 10 seconds, it must read the current system time value, add the number corre-
sponding to 10 seconds, and write the result back to the target time registers.

Pulse-Per-Second (PPS)

Pulse-per-second (PPS) is a physical representation of system time. It is composed of a single pulse or train
of pulses. PPS can be used for additional synchronization or to monitor the synchronization performance
between clocks. With proper configuration, the PTP module can be programmed to generate PPS signals
that are output on the ETH_PTPPPS pin. The PTP supports two kinds of PPS output, fixed and flexible.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–79

Fixed Pulse-Per-Second Output

The EMAC supports fixed pulse-per-second (PPS) output that indicates 1 second intervals (default). The
frequency of the PPS output can be changed by configuring the EMAC_TM_PPSCTL.PPSCTL bits. The default
value for these bits is 0000, which configures a 1 Hz signal with a pulse width equal to the period of the PTP
clock.

The following table shows various PPS output frequencies.

In binary rollover mode, the PPS output has a duty cycle of 50% with these frequencies.

In digital rollover mode, the PPS output frequency is an average number. The actual clock is a different
frequency that is synchronized every second. PPS output pulses have different periods and duty cycles and
this behavior is because of the non-linear toggling of the bits in digital rollover mode. For example:

• When EMAC_TM_PPSCTL.PPSCTL = 0001, the PPS (1 Hz) has a low period of 537 ms and a high period
of 463 ms.

• When EMAC_TM_PPSCTL.PPSCTL = 0010, the PPS (2 Hz) is a sequence of:

• One clock of 50 percent duty cycle and 537 ms period

• Second clock of 463 ms period (268 ms low and 195 ms high).

• When EMAC_TM_PPSCTL.PPSCTL = 0011, the PPS (4 Hz) is a sequence of:

• Three clocks of 50 percent duty cycle and 268 ms period

• Fourth clock of 195 ms period (134 ms low and 61 ms high)

Flexible Pulse-Per-Second Output

The EMAC also provides the flexibility to program the start or stop time, width, and interval of the pulse
generated on the PPS output. This feature is called Flexible PPS and can be enabled by setting the EMAC_
TM_PPSCTL.PPSEN bit.

Table 23-40: PPS Output Frequencies

PPSCTL Bit Setting Binary Rollover Digital Rollover

0001 2 Hz 1 Hz
0010 4 Hz 2 Hz
0011 8 Hz 4 Hz
...
1111 32.768 kHz 16.384 kHz

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

23–80 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The Flexible PPS output options are:

• Supports programming the start point of the single pulse and start and stop points of the pulse train in
terms of system time. The target time registers are used to program the start and stop time.

• Supports programming the stop time in advance, that is, programs can configure the stop time before
the actual start time has elapsed.

• Supports programming the width, between the rising edge and corresponding falling edge of the PPS
signal output, in terms of number of units of sub-second increment. This value is configured in the
EMAC_TM_SUBSEC register.

• Supports programming the interval, between the rising edges of PPS signal, in terms of number of units
of sub-second increment. This value is configured in the EMAC_TM_SUBSEC register.

• Provides the option to cancel the programmed PPS start or stop request.

• Indicates error if the start or stop time being programmed has already elapsed.

PPS Start or Stop Time

Start time can initially be programmed in the target time registers. If required, the start or stop time can be
programmed again but it can be done only after the earlier programmed value is synchronized to the PTP
clock domain. The EMAC_TM_NTGTM.TSTRBUSY bit indicates the status of synchronization. This enables
programs to configure the start or stop time in advance, even before the earlier stop or start time has
elapsed.

The start or stop time should be programmed with advanced system time to ensure proper PPS signal
output. If the application programs a start or stop time that has already elapsed, then the EMAC sets the
EMAC_TM_STMPSTAT.TSTRGTERR bit, indicating the error. If enabled, the EMAC also sets the target time
trigger (alarm) interrupt event. The application can cancel the start or stop request only if the corre-
sponding start or stop time has not elapsed. If the time has elapsed, the cancel command has no effect.

PPS Width and Interval

The PPS width and interval are programmed in terms of granularity of system time, that is, the number of
the units of sub-second increment value. For example, with the PTP reference clock of 50MHz: for a PPS
pulse width of 40 ns and an interval of 100 ns, the width and interval should be programmed to values 2
and 5 respectively.

Smaller granularity can be achieved by using a faster PTP reference clock. Before giving the command to
trigger a pulse or pulse train on the PPS output, programs should configure or update the interval and
width of the PPS signal output.

PPS Command

When the PPS module is configured for flexible PPS output, the EMAC_TM_PPSCTL.PPSCTL bits can be used
to command the PPS module for using any of the flexible PPS features.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–81

Programming these bits with a non-zero value instructs the PPS module to initiate an event. Once the
command is transferred or synchronized to the PTP clock domain, these bits are cleared automatically.
Software should ensure that these bits are programmed only when they are all-zero.

The following table explains the different commands and their function.

PTP Interrupts

Interrupts from PTP module can be enabled by setting the EMAC_IMSK.TS bit. The status of the interrupt
is indicated on the EMAC_ISTAT.TS bit. The PTP supports the following three types of interrupts.

Auxiliary Snapshot Trigger

This interrupt is triggered when an external event occurs on ETH_PTPAUXIn pin and timestamp snapshot
occurs. This is indicated on EMAC_TM_STMPSTAT.ATSTS bit.

Target Time Reached

This interrupt is triggered when the system time becomes equal to the value written in the EMAC_TM_
TGTMand EMAC_TM_NTGTM registers. It can be enabled or disabled by using the EMAC_TM_CTL.TSTRIG and

Table 23-41: Flexible PPS Output Commands

PPSCTL (Bits 3–0) Command Description

0000 No Command
0001 Start Single Pulse Generates single pulse rising at start point defined in target time

registers and of duration defined in EMAC_TM_PPSWIDTH register.
0010 Start Pulse train Generates train of pulses rising at the start time configured in the

Target Time registers, of duration configured in the EMAC_TM_
PPSWIDTH register and repeated at interval configured in the EMAC_TM_
PPSINTVL register. By default, the PPS pulse train is free-running
unless stopped by stop pulse train at time or stop pulse train
immediately commands.

0011 Cancel Start Cancels the start single pulse and start pulse train commands if the
system time has not crossed the programmed start time.

0100 Stop Pulse train
at time

Stops the train of pulses initiated by the start pulse train command
after the time programmed in the target time registers elapses.

0101 Stop Pulse train
immediately

Immediately stops the train of pulses initiated by the Start Pulse train
command.

0110 Cancel Stop
Pulse train

Cancels the Stop Pulse train at time command if the programmed stop
time has not elapsed. The PPS pulse train becomes free-running on
the successful execution of this command.

0111-1111 Reserved

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC EVENT CONTROL

23–82 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC_TM_PPSCTL.TRGTMODSEL bits. This interrupt can be used as an alarm and is indicated on the EMAC_
TM_STMPSTAT.TSTARGT bit.

System Time Seconds Register Overflow

This interrupt is triggered when the EMAC_TM_SEC register overflows from 0xFFFF FFFF to 0x0000 0000.
This interrupt is indicated on the EMAC_TM_STMPSTAT.TSSOVF bit. As soon as EMAC_TM_SEC register over-
flows, the EMAC_TM_HISEC register increments by one.

EMAC Event Control
The EMAC has a dedicated interrupt signal registered with the processor System Event Controller (SEC).
Various interrupt sources within EMAC peripheral are shared through this interrupt line. Please refer to
the System Event Controller chapter for details on how interrupts work in this product and how to
configure them.

EMAC Interrupt Signals

Interrupts from the EMAC can be triggered from the EMAC DMA layer or the EMAC CORE layer. Inter-
rupts are triggered from EMAC DMA if a particular status bit is set in the EMAC_DMA_STAT register. An
interrupt line is asserted only when the corresponding bits are enabled in the DMA interrupt enable
register. Similarly, interrupts are triggered from the EMAC CORE if a particular MMC status bit or PTP
status bit is set in the interrupt status register.

An interrupt line is asserted only when the corresponding bits are enabled in the MMC mask registers in
case of MMC counters or the interrupt mask register in the case of PTP. Note that MMC interrupt status
is also reflected in the DMA status register. The two groups of interrupts in the DMA status register are
listed below.

NIS – Normal Interrupt source summary:

• Transmit Interrupt

• Transmit Buffer Unavailable

• Receive Interrupt

• Early Receive Interrupt

AIS – Abnormal Interrupt source summary:

• Transmit Process Stopped

• Transmit Jabber Timeout

• Receive FIFO Overflow

• Transmit Underflow

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–83

• Receive Buffer Unavailable

• Receive Process Stopped

• Receive Watchdog Timeout

• Early Transmit Interrupt

• Fatal Bus Error

An interrupt is generated only once for simultaneous, multiple events. The driver must read the EMAC_
DMA_STAT register for the cause of the interrupt. A new interrupt can be generated once the driver has
cleared the appropriate bit in DMA status register.

For example, the controller generates a receive interrupt (EMAC_DMA_STAT.RI bit) and the driver begins
reading the EMAC_DMA_STAT register. Next, a receive buffer unavailable interrupt (EMAC_DMA_STAT.RU bit)
occurs. The driver clears the EMAC_DMA_STAT.RI bit but the he internal interrupt signal is not de-asserted,
because of the active or pending rEMAC_DMA_STAT.RU interrupt. Additionally, the driver must scan all of
the descriptors, from the last recorded position to the first one owned by the DMA, in order to know which
descriptor has asserted the interrupt.

Interrupts are cleared by writing a 1 to the corresponding bit position in the EMAC_DMA_STAT register.
When all the enabled interrupts within a group are cleared, the corresponding summary bit is cleared.

An interrupt delay timer is provided (receive interrupt watchdog timer register) for flexible control of the
receive interrupt.

When the interrupt timer is programmed with a non-zero value, it is activated as soon as the RxDMA
completes a transfer of a received frame to system memory. This is done without asserting the receive
interrupt because this interrupt is not enabled in the corresponding receive descriptor (RDES1[31] in the
receive DMA descriptors).

When this timer runs out (per the programmed value), the EMAC_DMA_STAT.RI bit is set and the interrupt
is asserted if the corresponding EMAC_DMA_STAT.RI bit is enabled in the interrupt enable register. This
timer is disabled before it runs out, when a frame is transferred to memory and when the EMAC_DMA_STAT.
RI bit is set because it is enabled for that descriptor.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC EVENT CONTROL

23–84 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-15: EMAC Interrupt Flow Diagram

PHYINT Interrupt Signal

A PHY device can notify the EMAC when it detects changes to the link status, such as auto-negotiation or
a duplex-mode change. The external PHY chip typically includes an interrupt generation pin to aid this
status change notification to the MAC. This signal is typically called PHYINT and a failing/rising edge on
this signal can be used to detect a PHY interrupt at the EMAC.

In the ADSP-BF60x, any of the GPIO pin can be a used as a PHYINT signal. Use the following procedure
to configure a GPIO as a PHYINT signal.

1. Program the GPIO to detect a falling/rising edge sensitive interrupt.

2. Program the PHY to generate the interrupt on a signal status change.

3. If PHYINT is asserted, read the PHY status register via the Station Management Interface.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–85

NOTE: The PHYINT is not part of EMAC module, but rather any GPIO pin can be configured to interrupt
the processor when a rising edge generated by PHY is detected.

Please refer to GPIO chapter for more info on configuring GPIO pins for input.

EMAC Programming Model
This section provides the programming model of Ethernet MAC peripheral for developers.

EMAC Programming Steps

The following sections provide some general programming information

DMA Initialization

Use the following procedure to initialize DMA.

1. Perform a software reset by setting the EMAC_DMA_BUSMODE.SWR bit. This resets all of the EMAC
internal registers and logic.

2. Wait for the completion of the reset process by polling the EMAC_DMA_BUSMODE.SWR bit which is only
cleared (automatically) after the reset operation is completed.

3. Poll the EMAC_DMA_BMSTAT.BUSRD and EMAC_DMA_BMSTAT.BUSWR bits to confirm that all previously
initiated (before software-reset) or ongoing SCB transactions are complete.

4. Program the required fields in the EMAC_DMA_BMMODE register:

a. Address aligned bursts.

b. Fixed burst or undefined burst.

c. Burst length values and burst mode values.

d. Descriptor length (only valid if ring mode is used).

5. Program the SCB interface options in the EMAC_DMA_BMMODE register. If fixed burst-length is enabled,
then select the maximum burst-length possible on the SCB bus (bits EMAC_DMA_BMMODE.BLEN4, EMAC_
DMA_BMMODE.BLEN8, EMAC_DMA_BMMODE.BLEN16).

6. Create a proper descriptor chain for transmit and receive. In addition, ensure that the receive descrip-
tors are owned by DMA (the OWN bit of the descriptor should be set). When OSF mode is used, at least
two descriptors are required.

7. Ensure that the software creates three or more different transmit or receive descriptors in the chain
before reusing any of the descriptors.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

23–86 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

8. Initialize the EMAC_DMA_RXDSC_CUR and EMAC_DMA_TXDSC_CUR registers with the base address of the
receive and transmit descriptors respectively.

9. Program the required fields in the EMAC_DMA_OPMODE register to initialize the mode of operation as
follows:

a. Receive and transmit store and forward.

b. Receive and transmit threshold control.

c. Error Frame and undersized good frame forwarding enable.

d. OSF mode.

10. Clear the interrupt requests by writing to those bits of the EMAC_DMA_STAT register (interrupt bits only)
that are set. For example, by writing 1 into bit 16, the normal interrupt summary clears this bit.

11. Enable the interrupts by programming the EMAC_DMA_IEN register.

12. Start the receive and transmit DMA by setting the EMAC_DMA_OPMODE.SR and EMAC_DMA_OPMODE.ST
bits.

EMAC CORE Initialization

Use the following procedure to initialize the EMAC core.

1. Program the EMAC Management Address Register (EMAC_SMI_ADDR) for controlling the management
cycles for external PHY. For example, physical layer address (EMAC_SMI_ADDR.PA). In addition, set the
EMAC_SMI_ADDR.SMIB bit for writing into PHY and reading from PHY.

2. Read the 16-bit data of Management Data Register (EMAC_SMI_DATA) from the PHY for link up, speed
of operation, and mode of operation, by specifying the appropriate address value in the EMAC_SMI_
ADDR.PA bit field.

3. Program the MAC address in the EMAC_ADDR0_HI and EMAC_ADDR0_LO registers.

4. If hash filtering is used, program the hash table high and low registers register (EMAC_HASHTBL_HI,
EMAC_HASHTBL_LO).

5. Program the required fields to set the appropriate filters for the incoming frames in the MAC frame
filter register (EMAC_MACFRMFILT):

a. Receive all.

b. Promiscuous mode.

c. Hash or perfect filter.

d. Unicast, multicast, broadcast, and control frames filter settings.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–87

6. Program the required fields for proper flow control in flow control register (EMAC_FLOWCTL):

a. Pause time and other pause frame control bits.

b. Receive and transmit flow control bits.

c. Flow control busy/backpressure activate.

7. Program the EMAC interrupt mask register bits (EMAC_IMSK), as required.

8. Program the appropriate fields in MAC configuration register (EMAC_MACCFG). For example, inter-
frame gap while transmission and jabber disable. Based on the Auto-negotiation desired, set the Duplex
mode (EMAC_MACCFG.DM bit) or speed select (EMAC_MACCFG.FES bit).

9. Set the transmit enable (EMAC_MACCFG.TE) and receive enable (EMAC_MACCFG.RE) bits.

Performing Normal Transmit and Receive Operations

PREREQUISITE:

For normal transmit and receive interrupts, the program should first read the interrupt status.

1. Poll the descriptors, reading the status of the descriptor owned by the application (either transmit or
receive).

2. Set the appropriate values for the descriptors, ensuring that transmit and receive descriptors are owned
by the DMA to resume the transmission and reception of data.

ADDITIONAL INFORMATION: If the descriptors are not owned by the DMA (or no descriptor is available),
the DMA goes into SUSPEND state.

3. Write a 0 into the Tx/Rx poll demand registers (EMAC_DMA_TXPOLL and EMAC_DMA_RXPOLL).

STEP RESULT: This resumes transmit or receive operations by freeing the descriptors and issuing a poll
demand.

4. Read (for the debug process), the values of the current host transmitter or receiver descriptor address
pointer (EMAC_DMA_TXDSC_CUR, EMAC_DMA_RXDSC_CUR) registers.

5. Read (for the debug process), the values of the current host transmit buffer address pointer and receive
buffer address pointer (EMAC_DMA_TXBUF_CUR, EMAC_DMA_TXBUF_CUR) registers.

Stopping and Starting Transfers

Use the following procedure to stop and start EMAC transfers.

1. Disable the transmit DMA (if applicable), by clearing the EMAC_DMA_OPMODE.ST bit.

2. Wait for any previous frame transmissions to complete. Check this by reading the appropriate bits of
the debug register (EMAC_DBG).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

23–88 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

3. Disable the MAC transmitter and MAC receiver by clearing the EMAC_MACCFG.TE and EMAC_MACCFG.
RE bits.

4. Disable the receive DMA (if applicable), after ensuring that the data in the receive FIFO is transferred
to the system memory by reading the EMAC_DBG register.

5. Make sure that both the transmit and receive FIFOs are empty.

6. To re-start the operation, first start the DMA, and then enable the MAC transmitter and receiver.

Interrupts and Interrupt Service Routines

Specific steps for enabling interrupts and using their ISRs are described in the following procedure.

PREREQUISITE: This procedure is typically performed with EMAC and DMA initialization and operations.

1. Receive interrupts are enabled for descriptors by default. Transmit interrupts must be enabled for indi-
vidual descriptors by setting the IC bit (bit 30) in the TDES0 word of the transmit descriptor.

2. Enable the required bits in the DMA interrupt enable register (EMAC_DMA_IEN).

ADDITIONAL INFORMATION: Setting the EMAC_DMA_IEN.NIS or EMAC_DMA_IEN.AIS bits can turn on the
occurrence of all normal/abnormal interrupt conditions. Individual conditions may also be enabled on
using individual bits in the EMAC_DMA_IEN register.

3. Enable MMC overflow interrupts by setting appropriate bits in the EMAC_MMC_RXIMSK and EMAC_MMC_
TXIMSK registers.

4. Enable PTP interrupts by setting the EMAC_IMSK.TS bit.

5. Once an EMAC interrupt is asserted and the SEC branches execution to the EMAC ISR, the following
software program sequence is performed.

a. Read DMA status from the EMAC_DMA_STAT register.

b. Clear the interrupt source by writing 1 (W1C) to the bits that are set in the EMAC_DMA_STAT register.

c. Check for normal/abnormal/mmc/ptp interrupts by parsing the status bits read earlier, and call the
appropriate service function.

ADDITIONAL INFORMATION: Typical normal interrupt assertions include Transmit and Receive Interrupt. Typical
abnormal interrupt assertion include Receive Underflow.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–89

6. The MMC handler functions use the following sequence.

a. Read the EMAC_ISTAT register and parsing for the EMAC_ISTAT.MMCTX and EMAC_ISTAT.MMCRX bits
to determine if the interrupt is a transmit counter or receive counter interrupt.

b. Read the EMAC_MMC_RXINT or EMAC_MMC_TXINT registers to determine which of the counters have
triggered the interrupt.

c. Read the respective MMC counter that caused the interrupt to clear it.

7. PTP handler functions use the following sequence:

a. Read the EMAC_ISTAT.TS bit to determine if a PTP Interrupt occurred.

b. Read EMAC_TM_STMPSTAT register to determine the interrupt source by parsing the EMAC_TM_
STMPSTAT.ATSTS, EMAC_TM_STMPSTAT.TSTARGT, and EMAC_TM_STMPSTAT.TSSOVF bits.

c. Clear the interrupt source by reading the EMAC_TM_STMPSTAT register.

Enabling Checksum for Transmit and Receive

Use the following steps to enable transmit and receive checksums.

PREREQUISITE:

Enabling receive and transmit checksums is generally performed in conjunction with EMAC and DMA
initialization and operations. Note that transmit and receive checksum features are independent of each
other.

1. To enable transmit checksum insertion:

a. Enable store forward mode in the FIFO by setting the EMAC_DMA_OPMODE.TSF bit.

b. Ensure that the transmit frame can be contained within the 256 byte Tx FIFO conforming to the
size rule: FIFO Depth – PBL – 3 FIFO locations, where PBL is burst length.

c. Program the following required parameters for transmit checksum, by programming (CIC)
checksum insertion control in TDES0: IP header checksum, IP header checksum and payload
checksum, IP Header checksum, payload checksum and pseudo header checksum.

STEP RESULT: A higher layer such as the IP stack sends out the packet to the EMAC which inserts the
checksum as configured.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

23–90 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

2. To enable receive checksum verification:

a. Enable receive checksum off-load engine by setting the EMAC_MACCFG.IPC bit.

b. Enable 8 word descriptor (32 bytes), by setting the EMAC_DMA_BUSMODE.ATDS bit.

c. Provide a total of 8 x 32-bit word space for the receive descriptor.

d. Wait for the receive interrupt and check for extended status availability by parsing bit 0 in the
RDES0 word.

e. If extended status available, read RDES4 and pass to a higher layer such as the IP stack.
STEP RESULT: The higher software layer may check for IPv4/IPv6/payload type and checksum payload/header
errors.

Programming the System Time Module

Use the following procedure to configure the PTP module

1. Enable PTP module by setting the EMAC_TM_CTL.TSENA bit 0.

2. System Time Initialization

a. The time (seconds and nanoseconds) at which System Time should be initialized should be written
into EMAC_TM_SECUPDT and EMAC_TM_NSECUPDT registers.

b. Set EMAC_TM_CTL.TSINIT bit. System time is initialized and this bit clears automatically.

c. Configure binary or digital rollover of the EMAC_TM_NSEC register using the EMAC_TM_CTL.
TSCTRLSSR bit.

3. System Time Coarse Correction

a. Write the offset time (seconds and nanoseconds) to be added to or subtracted from the system time
using the EMAC_TM_SECUPDT and EMAC_TM_NSECUPDT registers.

b. Choose between add or subtract offset time using the EMAC_TM_NSECUPDT.ADDSUB bit.

c. Set the EMAC_TM_CTL.TSUPDT bit to correct system time with offset time. This bit clears automati-
cally.

4. System Time Fine Correction

a. Calculate the required addend value based on the input PTP clock frequency and the required
frequency. See Fine Correction Method.

b. Write the calculated addend value in EMAC_TM_ADDEND register and set the EMAC_TM_CTL.TSADDREG
bit to update the addend value. This bit is cleared automatically.

c. Configure the EMAC_TM_SUBSEC register based on new PTP frequency.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–91

5. Target Time Trigger (Alarm)

a. Set the EMAC_IMSK.TS bit to enable PTP interrupts.

b. Program the EMAC_TM_PPSCTL.TRGTMODSEL bit with 00 or 10 (for PPS start/stop time program-
ming).

c. Program the time when interrupt should be triggered using the EMAC_TM_TGTM and EMAC_TM_NTGTM
registers. The programmed time should be greater than the current system time.

ADDITIONAL INFORMATION: If the programmed time is not greater than the target time, a programming error
occurs and is indicated by the EMAC_TM_STMPSTAT.TSTRGTERR bit.

d. Set the EMAC_TM_CTL.TSTRIG bit to enable the target time trigger interrupt.
STEP RESULT: After the system time reaches the programmed target time (in step 2), the target time trigger
interrupt occurs and is indicated by the EMAC_TM_STMPSTAT.TSTARGT and EMAC_ISTAT.TS bits. The
EMAC_TM_CTL.TSTRIG bit is cleared automatically.

Programming The PTP for Frame Detection and Timestamping

Use the following procedure to configure the PTP module.

1. For timestamping a transmitting frame, set the TTSE bit in the TDES0 register of the corresponding
frame.

2. Extend the descriptor word length from 4 words to 8 words by setting the EMAC_DMA_BUSMODE.ATDS
bit.

3. Configure bi 18–10 in the EMAC_TM_CTL register so that the PTP module detects and/or timestamps
only specific types of received frames. Refer to the EMAC_TM_CTL register description for more informa-
tion.

4. Select the PTP clock source by programming the PADS_EMAC_PTP_CLKSEL register.

5. Enable the PTP module by setting the EMAC_TM_CTL.TSENA bit.

6. Initialize the system time.

7. Verify the RDES4 register for the status of the received frame and the RDES6 and RDES7 registers for
timestamp nanoseconds and seconds value.

Programming for Auxiliary Timestamps

1. Set the EMAC_IMSK.TS bit to enable PTP interrupts.

2. Set the EMAC_TM_CTL.TSENA bit to enable the PTP module.

3. Initialize system time.

ADDITIONAL INFORMATION: Whenever a rising edge on auxiliary timestamp trigger pin is detected, system
time seconds and nanoseconds are captured and stored into 4-deep auxiliary timestamp FIFO. An

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

23–92 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

auxiliary timestamp trigger interrupt occurs and is indicated by the EMAC_TM_STMPSTAT.ATSTS and the
EMAC_IMSK.TS bit.

4. The contents of the FIFO can be read one by one through EMAC_TM_AUXSTMP_SEC and EMAC_TM_
AUXSTMP_NSEC registers. One level of the FIFO is cleared when the EMAC_TM_AUXSTMP_SEC register is
read. Therefore read the EMAC_TM_AUXSTMP_NSEC register before the EMAC_TM_AUXSTMP_SEC register.

5. Set the EMAC_TM_CTL.ATSFC bit to clear the FIFO.

Programming Fixed Pulse-Per-Second Output

Use the following procedure to program PPS output fixed pulse-per-second output.

1. Enable the PTP module by setting the EMAC_TM_CTL.TSENA bit.

2. Configure the EMAC_TM_PPSCTL.PPSCTL bits and configure binary or digital rollover by configuring
the EMAC_TM_CTL.TSCTRLSSR bit, so as to output the required PPS waveform. See Fixed Pulse-Per-
Second Output.

Programming Flexible Pulse-Per-Second Output

Use the following procedure to program flexible PPS output.

1. Enable the PTP module by setting the EMAC_TM_CTL.TSENA bit.

2. Set the EMAC_TM_PPSCTL.PPSEN bit to enable flexible PPS output.

3. Program the EMAC_TM_PPSCTL.TRGTMODSEL bits with 11 or 10 (for target time trigger interrupt).

4. Program the start time value when the PPS output should start using the EMAC_TM_TGTM and EMAC_TM_
NTGTM registers. Ensure that the EMAC_TM_NTGTM.TSTRBUSY bit is reset before programming the target
time registers again.

5. Program the period of the PPS signal output using the EMAC_TM_PPSINTVL register for pulse train
output, and the width of the PPS signal output in the EMAC_TM_PPSWIDTH register for single pulse or
pulse train output.

6. Ensure that the EMAC_TM_PPSCTL.PPSCTL bits are cleared and then program the bits to 0001 to start
single pulse, or to 0010 to start pulse train at programmed start time (Step 4).

ADDITIONAL INFORMATION: The PPS pulse train is free-running unless stopped by a STOP pulse train at
time command (EMAC_TM_PPSCTL.PPSCTL = 0100) or STOP pulse train immediately command EMAC_
TM_PPSCTL.PPSCTL = 0101).

7. The start of pulse generation can be cancelled by giving the cancel start command (EMAC_TM_PPSCTL.
PPSCTL = 0011) before the programmed start time (Step 4) elapses.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING CONCEPTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–93

8. Program the stop time value when the PPS output should stop using the EMAC_TM_TGTM and EMAC_TM_
NTGTM registers. Ensure that the EMAC_TM_NTGTM.TSTRBUSY bit is reset before programming the target
time registers again.

9. Ensure that the EMAC_TM_PPSCTL.PPSCTL bits are cleared and then program them to 0100. This stops
the train of pulses on PPS signal output after the programmed stop time (Step 8) elapses.

ADDITIONAL INFORMATION: The pulse train can be stopped immediately by giving the STOP pulse train
immediately command (EMAC_TM_PPSCTL.PPSCTL = 0101). Similarly, the stop pulse train command
(given in Step 9) can be cancelled by programming the EMAC_TM_PPSCTL.PPSCTL bits to 0110 before
the programmed stop time (Step 8) elapses.

EMAC Programming Concepts
The following sections provide basic information and guidelines to assist in programming the EMAC
module.

IEEE 802.3 Ethernet Packet Structure

The typical frame format of an Ethernet packet is provided in the following table. Please refer to the IEEE
standards for detailed information on Ethernet packets and their format.

Table 23-42: IEEE 802.3 Frame Structure

Parameter Description

Position
in Ethernet

Packet Total Bytes

PREAMBLE This is a 56-bit (7-byte) pattern of alternating 1 and 0 bits
(#10101010), which allows devices on the network to detect a
new incoming frame for synchronization.

1 7

SFD The SFD (#10101011) is a 1-byte pattern designed to break
the preamble pattern, and signal the start of the actual frame.

2 1

DA 48-bit destination address. This can be a unicast, multicast or
broadcast address.

3 6

SA 48-bit long source address, typically a unicast, multicast or
broadcast address.

4 6

LT Typically this field is the length, in terms of the number of
bytes, and can be anywhere between 0 – 1500. When the value
is greater than or equal to 0x0600, this field is also used to
indicate the type of special payload carried by the frame.
Examples include 0x8808 for flow control and 0x0800 for
IPv4.

5 2

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING CONCEPTS

23–94 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Frame Size Statistics for Application Software

Software Visualization of Programmable Packet Size

The following table provides the byte sizes of packets with various configurations.

DATA Actual application data payload, usually between 0 – 1500. 6 0–1500
PAD This field compensates for data frames that are shorter than

64 bytes long, not including the preamble.
7 0–46

FCS The frame check sequence is a 32-bit cyclic redundancy check
that detects corrupted data within the entire frame. This is
generated from a CRC-32 polynomial code (CRC-32-IEEE):
G (x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 +
x7 + x5 + x4 + x2 + x + 1.

8 4

Table 23-43: Ethernet Frame Size Statistics

Frame size statistics
VLAN specific change

Comments

Information bytes/
Header

4 byte 802.1Q header inserted after Source
Address and before Type/LAN in 802.3
packets = 22 bytes.

6 x 2 + 2 + 4 = 18 bytes (DA+SA+LT+FCS)

Minimum Frame
Size (typical)

If DATA is NULL, 42 byte padding is done
to make 64 bytes (42 +22)

64 bytes. If DATA is NULL, 46 byte
padding is done to make 64 bytes (46 +18)

Maximum Frame
Size (typical)

1522 bytes 1518 bytes (1500 bytes DATA and 18 bytes
header)

Jumbo Frame Size 9022 bytes Typical industry standard Ethernet jumbo
frame size may be treated as 9018 bytes.

Table 23-44: Visualization of Programmable Packet Size

Size in Bytes Comments

16384 Receive watchdog and transmit jabber disabled, jumbo frames enabled.
10240 Receive watchdog and transmit jabber disabled, jumbo frames disabled.
2048 Receive Watchdog and Transmit Jabber enabled.

Table 23-42: IEEE 802.3 Frame Structure (Continued)

Parameter Description

Position
in Ethernet

Packet Total Bytes

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING CONCEPTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–95

Ethernet Packet Structure in C

The following is an example for Ethernet packet structure in the C language.

typedef struct ETHER_PACKET
{
 char dst_addr[6]; //destination address
 char src_addr[6]; //source address
 char length[2]; //length of actual data
 char data[DATA_SIZE]; //application data
 char fdlimit[DELIMIT_SIZE];//32-bit delimit (if manual appending)
 char fcs[4]; //crc frame checksum, used by RX buffer.
} ETHER_PACKET;

DMA Descriptor Implementation in C

The following code is a simple implementation of descriptors in ring and chain model in C language. Typi-
cally 4 WORDs (32-bit) are used for descriptors. Using checksum off load or the PTP engine requires 8
WORDs. Only high-level common functions across transmit and receive descriptors are considered here.

/* DMA Ring Descriptor */
typedef struct EMAC_DMADESC_RING
{
 unsigned int Status; //TDES0 OR RDES0
 unsigned int ControlDesc; //TDES1 OR RDES1
 unsigned int StartAddr1; //TDES2 OR RDES2
 unsigned int StartAddr2; //TDES3 OR RDES3
 #ifdef CHECKSUM_OFFLOAD
 struct EMAC_EXT_STAT ExtendedStat;
 #endif
} EMAC_DMADESC_RING;
/* DMA Chain Descriptor */
typedef struct EMAC_DMADESC_CHAIN
{
 unsigned int Status; //TDES0 OR RDES0
 unsigned int ControlDesc; //TDES1 OR RDES1
 unsigned int StartAddr; //TDES2 OR RDES2
 struct EMAC_DMADESC_CHAIN *pNextDesc; //TDES3 OR RDES3
 #ifdef CHECKSUM_OFFLOAD
 struct EMAC_EXT_STAT ExtendedStat;

1518 Typical max size of Ethernet frame. Receive watchdog and transmit
jabber enabled.

64 Typical minimum size of Ethernet frame.
< 64 Runt frames requiring Zero-PAD.

Table 23-44: Visualization of Programmable Packet Size (Continued)

Size in Bytes Comments

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–96 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 #endif
} EMAC_DMADESC_CHAIN;
/* Extended Status Descriptor with PTP not enabled*/
typedef struct EMAC_EXT_STAT
{
 #ifdef RX_DESC
 unsigned int CheckSumStat;//RDES4
 #ifdef TX_DESC
 unsigned int Reserved; //TDES4
 #endif
 unsigned int Reserved; //RDES5 OR TDES5
 unsigned int Reserved; //RDES6 OR TDES6
 unsigned int Reserved; //RDES7 OR TDES7
} EMAC_EXT_STAT;

PTP Header Structure in C

The following code is an example of the PTM message format.

/* PTP Message Format (Refer to PTP Frame Over IPv4)*/
 typedef struct EMAC_PTP_HEADER
 {
 unsigned charmessageType:4, //PTP Version 2 message type
 transportSpecific:4;
 unsigned charversionPTP; //PTP Version (1 or 2)
 unsigned shortmessageLength;
 unsigned chardomainNumber;
 unsigned charRESERVED1;
 unsigned shortflagField;
 unsigned charcorrectionField[8];
 unsigned charRESERVED2[4];
 unsigned charsourcePortIdentity[10];
 unsigned shortsequenceid;
 unsigned charcontrolField;//PTP Version 1 message type
 unsigned charlogMessageInterval;
 }EMAC_PTP_HEADER;

ADSP-BF60x EMAC Register Descriptions
Ethernet MAC (EMAC) contains the following registers.

Table 23-45: ADSP-BF60x EMAC Register List

Name Description

EMAC_MACCFG MAC Configuration Register

EMAC_MACFRMFILT MAC Rx Frame Filter Register

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–97

EMAC_HASHTBL_HI Hash Table High Register

EMAC_HASHTBL_LO Hash Table Low Register

EMAC_SMI_ADDR SMI Address Register

EMAC_SMI_DATA SMI Data Register

EMAC_FLOWCTL FLow Control Register

EMAC_VLANTAG VLAN Tag Register

EMAC_DBG Debug Register

EMAC_ISTAT Interrupt Status Register

EMAC_IMSK Interrupt Mask Register

EMAC_ADDR0_HI MAC Address 0 High Register

EMAC_ADDR0_LO MAC Address 0 Low Register

EMAC_MMC_CTL MMC Control Register

EMAC_MMC_RXINT MMC Rx Interrupt Register

EMAC_MMC_TXINT MMC Tx Interrupt Register

EMAC_MMC_RXIMSK MMC Rx Interrupt Mask Register

EMAC_MMC_TXIMSK MMC TX Interrupt Mask Register

EMAC_TXOCTCNT_GB Tx OCT Count (Good/Bad) Register

EMAC_TXFRMCNT_GB Tx Frame Count (Good/Bad) Register

EMAC_TXBCASTFRM_G Tx Broadcast Frames (Good) Register

EMAC_TXMCASTFRM_G Tx Multicast Frames (Good) Register

EMAC_TX64_GB Tx 64-Byte Frames (Good/Bad) Register

EMAC_TX65TO127_GB Tx 65- to 127-Byte Frames (Good/Bad) Register

Table 23-45: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–98 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC_TX128TO255_GB Tx 128- to 255-Byte Frames (Good/Bad) Register

EMAC_TX256TO511_GB Tx 256- to 511-Byte Frames (Good/Bad) Register

EMAC_TX512TO1023_GB Tx 512- to 1023-Byte Frames (Good/Bad) Register

EMAC_TX1024TOMAX_GB Tx 1024- to Max-Byte Frames (Good/Bad) Register

EMAC_TXUCASTFRM_GB Tx Unicast Frames (Good/Bad) Register

EMAC_TXMCASTFRM_GB Tx Multicast Frames (Good/Bad) Register

EMAC_TXBCASTFRM_GB Tx Broadcast Frames (Good/Bad) Register

EMAC_TXUNDR_ERR Tx Underflow Error Register

EMAC_TXSNGCOL_G Tx Single Collision (Good) Register

EMAC_TXMULTCOL_G Tx Multiple Collision (Good) Register

EMAC_TXDEFERRED Tx Deferred Register

EMAC_TXLATECOL Tx Late Collision Register

EMAC_TXEXCESSCOL Tx Excess Collision Register

EMAC_TXCARR_ERR Tx Carrier Error Register

EMAC_TXOCTCNT_G Tx Octet Count (Good) Register

EMAC_TXFRMCNT_G Tx Frame Count (Good) Register

EMAC_TXEXCESSDEF Tx Excess Deferral Register

EMAC_TXPAUSEFRM Tx Pause Frame Register

EMAC_TXVLANFRM_G Tx VLAN Frames (Good) Register

EMAC_RXFRMCNT_GB Rx Frame Count (Good/Bad) Register

EMAC_RXOCTCNT_GB Rx Octet Count (Good/Bad) Register

EMAC_RXOCTCNT_G Rx Octet Count (Good) Register

Table 23-45: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–99

EMAC_RXBCASTFRM_G Rx Broadcast Frames (Good) Register

EMAC_RXMCASTFRM_G Rx Multicast Frames (Good) Register

EMAC_RXCRC_ERR Rx CRC Error Register

EMAC_RXALIGN_ERR Rx alignment Error Register

EMAC_RXRUNT_ERR Rx Runt Error Register

EMAC_RXJAB_ERR Rx Jab Error Register

EMAC_RXUSIZE_G Rx Undersize (Good) Register

EMAC_RXOSIZE_G Rx Oversize (Good) Register

EMAC_RX64_GB Rx 64-Byte Frames (Good/Bad) Register

EMAC_RX65TO127_GB Rx 65- to 127-Byte Frames (Good/Bad) Register

EMAC_RX128TO255_GB Rx 128- to 255-Byte Frames (Good/Bad) Register

EMAC_RX256TO511_GB Rx 256- to 511-Byte Frames (Good/Bad) Register

EMAC_RX512TO1023_GB Rx 512- to 1023-Byte Frames (Good/Bad) Register

EMAC_RX1024TOMAX_GB Rx 1024- to Max-Byte Frames (Good/Bad) Register

EMAC_RXUCASTFRM_G Rx Unicast Frames (Good) Register

EMAC_RXLEN_ERR Rx Length Error Register

EMAC_RXOORTYPE Rx Out Of Range Type Register

EMAC_RXPAUSEFRM Rx Pause Frames Register

EMAC_RXFIFO_OVF Rx FIFO Overflow Register

EMAC_RXVLANFRM_GB Rx VLAN Frames (Good/Bad) Register

EMAC_RXWDOG_ERR Rx Watch Dog Error Register

EMAC_IPC_RXIMSK MMC IPC Rx Interrupt Mask Register

Table 23-45: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–100 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EMAC_IPC_RXINT MMC IPC Rx Interrupt Register

EMAC_RXIPV4_GD_FRM Rx IPv4 Datagrams (Good) Register

EMAC_RXIPV4_HDR_ERR_FRM Rx IPv4 Datagrams Header Errors Register

EMAC_RXIPV4_NOPAY_FRM Rx IPv4 Datagrams No Payload Frame Register

EMAC_RXIPV4_FRAG_FRM Rx IPv4 Datagrams Fragmented Frames Register

EMAC_RXIPV4_UDSBL_FRM Rx IPv4 UDP Disabled Frames Register

EMAC_RXIPV6_GD_FRM Rx IPv6 Datagrams Good Frames Register

EMAC_RXIPV6_HDR_ERR_FRM Rx IPv6 Datagrams Header Error Frames Register

EMAC_RXIPV6_NOPAY_FRM Rx IPv6 Datagrams No Payload Frames Register

EMAC_RXUDP_GD_FRM Rx UDP Good Frames Register

EMAC_RXUDP_ERR_FRM Rx UDP Error Frames Register

EMAC_RXTCP_GD_FRM Rx TCP Good Frames Register

EMAC_RXTCP_ERR_FRM Rx TCP Error Frames Register

EMAC_RXICMP_GD_FRM Rx ICMP Good Frames Register

EMAC_RXICMP_ERR_FRM Rx ICMP Error Frames Register

EMAC_RXIPV4_GD_OCT Rx IPv4 Datagrams Good Octets Register

EMAC_RXIPV4_HDR_ERR_OCT Rx IPv4 Datagrams Header Errors Register

EMAC_RXIPV4_NOPAY_OCT Rx IPv4 Datagrams No Payload Octets Register

EMAC_RXIPV4_FRAG_OCT Rx IPv4 Datagrams Fragmented Octets Register

EMAC_RXIPV4_UDSBL_OCT Rx IPv4 UDP Disabled Octets Register

EMAC_RXIPV6_GD_OCT Rx IPv6 Good Octets Register

EMAC_RXIPV6_HDR_ERR_OCT Rx IPv6 Header Errors Register

Table 23-45: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–101

EMAC_RXIPV6_NOPAY_OCT Rx IPv6 No Payload Octets Register

EMAC_RXUDP_GD_OCT Rx UDP Good Octets Register

EMAC_RXUDP_ERR_OCT Rx UDP Error Octets Register

EMAC_RXTCP_GD_OCT Rx TCP Good Octets Register

EMAC_RXTCP_ERR_OCT Rx TCP Error Octets Register

EMAC_RXICMP_GD_OCT Rx ICMP Good Octets Register

EMAC_RXICMP_ERR_OCT Rx ICMP Error Octets Register

EMAC_TM_CTL Time Stamp Control Register

EMAC_TM_SUBSEC Time Stamp Sub Second Increment Register

EMAC_TM_SEC Time Stamp Low Seconds Register

EMAC_TM_NSEC Time Stamp Nanoseconds Register

EMAC_TM_SECUPDT Time Stamp Seconds Update Register

EMAC_TM_NSECUPDT Time Stamp Nanoseconds Update Register

EMAC_TM_ADDEND Time Stamp Addend Register

EMAC_TM_TGTM Time Stamp Target Time Seconds Register

EMAC_TM_NTGTM Time Stamp Target Time Nanoseconds Register

EMAC_TM_HISEC Time Stamp High Second Register

EMAC_TM_STMPSTAT Time Stamp Status Register

EMAC_TM_PPSCTL PPS Control Register

EMAC_TM_AUXSTMP_NSEC Time Stamp Auxiliary TS Nano Seconds Register

EMAC_TM_AUXSTMP_SEC Time Stamp Auxiliary TM Seconds Register

EMAC_TM_PPSINTVL Time Stamp PPS Interval Register

Table 23-45: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–102 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

MAC Configuration Register

The EMAC_MACCFG register configures MAC features.

EMAC_TM_PPSWIDTH PPS Width Register

EMAC_DMA_BUSMODE DMA Bus Mode Register

EMAC_DMA_TXPOLL DMA Tx Poll Demand Register

EMAC_DMA_RXPOLL DMA Rx Poll Demand register

EMAC_DMA_RXDSC_ADDR DMA Rx Descriptor List Address Register

EMAC_DMA_TXDSC_ADDR DMA Tx Descriptor List Address Register

EMAC_DMA_STAT DMA Status Register

EMAC_DMA_OPMODE DMA Operation Mode Register

EMAC_DMA_IEN DMA Interrupt Enable Register

EMAC_DMA_MISS_FRM DMA Missed Frame Register

EMAC_DMA_RXIWDOG DMA Rx Interrupt Watch Dog Register

EMAC_DMA_BMMODE DMA SCB Bus Mode Register

EMAC_DMA_BMSTAT DMA SCB Status Register

EMAC_DMA_TXDSC_CUR DMA Tx Descriptor Current Register

EMAC_DMA_RXDSC_CUR DMA Rx Descriptor Current Register

EMAC_DMA_TXBUF_CUR DMA Tx Buffer Current Register

EMAC_DMA_RXBUF_CUR DMA Rx Buffer Current Register

Table 23-45: ADSP-BF60x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–103

Figure 23-16: EMAC_MACCFG Register Diagram

Table 23-46: EMAC_MACCFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25
(R/W)

CST CRC Stripping.
The EMAC_MACCFG.CST bit, when set, directs the MAC to strip the
last 4 bytes (FCS) of all frames of Ether type (Type field of frame
greater than 0x0600) and drop these bytes before forwarding the
frame to the application.

23
(R/W)

WD Watch Dog Disable.
The EMAC_MACCFG.WD bit, when set, disables the watchdog timer on
the receiver, and can receive frames of up to 16,384 bytes. When this
bit is reset, the MAC allows no more than 2,048 bytes (10,240 if
EMAC_MACCFG.JE is set high) of the frame being received and cuts off
any bytes received after that.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–104 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

22
(R/W)

JB Jabber Disable.
The EMAC_MACCFG.JB bit, when set, disables the jabber timer on the
transmitter, and can transfer frames of up to 16,384 bytes. When this
bit is reset, the MAC cuts off the transmitter if the application sends
out more than 2,048 bytes of data (10,240 if EMAC_MACCFG.JE is set
high) during transmission.

20
(R/W)

JE Jumbo Frame Enable.
The EMAC_MACCFG.JE bit, when set, directs the MAC to allow Jumbo
frames of 9,018 bytes (9,022 bytes for VLAN tagged frames).

19:17
(R/W)

IFG Inter-Frame Gap.
The EMAC_MACCFG.IFG bits control the minimum inter-frame gap
between frames during transmission. Note that in Half-Duplex
mode, the minimum gap can be configured for 64 bit times (EMAC_
MACCFG.IFG =100) only. Lower values are not considered.
0 96 bit times
1 88 bit times
2 80 bit times
3 72 bit times
4 64 bit times
5 56 bit times
6 48 bit times
7 40 bit times

16
(R/W)

DCRS Disable Carrier Sense.
The EMAC_MACCFG.DCRS bit, when set, makes the MAC transmitter
ignore the CRS signal during frame transmission in Half-Duplex
mode. This request results in no errors generated due to Loss of
Carrier or No Carrier during such transmission. When this bit is low,
the MAC transmitter generates such errors due to Carrier Sense and
will even abort the transmissions.

14
(R/W)

FES Speed of Operation.
The EMAC_MACCFG.FES bit indicates the Ethernet speed as 10 Mbps
(bit =0) or 100 Mbps (bit =1).

Table 23-46: EMAC_MACCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–105

13
(R/W)

DO Disable Receive Own.
The EMAC_MACCFG.DO bit, when set, disables MAC reception of
frames when MAC is transmitting in Half-Duplex mode. When this
bit is reset, the MAC receives all packets that are given by the PHY
while transmitting. This bit is not applicable if the MAC is operating
in Full-Duplex mode.

12
(R/W)

LM Loopback Mode.
The EMAC_MACCFG.LM bit, when set, directs the MAC to operate in
internal loop back mode. (The media independent interface pins are
not driven or sampled.)

11
(R/W)

DM Duplex Mode.
The EMAC_MACCFG.DM bit, when set, directs the MAC to operate in a
Full-Duplex mode where it can transmit and receive simultaneously.

10
(R/W)

IPC IP Checksum.
The EMAC_MACCFG.IPC bit, when set, directs the MAC to calculate
the 16-bit one's complement of the one's complement sum of all
received Ethernet frame payloads. It also checks whether the IPv4
Header checksum (assumed to be bytes 25-26 or 29-30 (VLAN-
tagged) of the received Ethernet frame) is correct for the received
frame and gives the status in the receive status word. The EMAC_
MACCFG.IPC bit, when set, enables IPv4 checksum checking for
received frame payloads' TCP/UDP/ICMP headers. When this bit is
reset, the Checksum Offload Engine function in the receiver is
disabled and the corresponding PCE and IP HCE status bits are
always cleared.

9
(R/W)

DR Disable Retry.
The EMAC_MACCFG.DR bit, when set, directs the MAC to attempt only
1 transmission. When a collision occurs on the media independent
interface, the MAC ignores the current frame transmission and
reports a Frame Abort with excessive collision error in the transmit
frame status. When the EMAC_MACCFG.DR bit is reset, the MAC
attempts retries based on the settings of BL. This bit is applicable only
to Half-Duplex mode.
0 Retry enabled
1 Retry disabled

Table 23-46: EMAC_MACCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–106 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

7
(R/W)

ACS Automatic Pad/CRC Stripping.
The EMAC_MACCFG.ACS bit, when set, directs the MAC to strip the
Pad/FCS field on incoming frames only if the length fields value is
less than or equal to 1,500 bytes. All received frames with length field
greater than or equal to 1,501 bytes are passed to the application
without stripping the Pad/FCS field. When the EMAC_MACCFG.ACS bit
is reset, the MAC passes all incoming frames to the Host unmodified.

6:5
(R/W)

BL Back Off Limit.
The EMAC_MACCFG.BL bit selects the back-off limit, determining the
random integer number (r) of slot time delays (4,096 bit times for
1000 Mbps and 512 bit times for 10/100 Mbps) the MAC waits before
rescheduling a transmission attempt during retries after a collision.
This bit is applicable only to Half-Duplex mode.The random integer r
takes the value in the range:
0 less-than-equal-to r less-than 2k

Where k is the minimum of n (number of transmission attempts) or a
limit value.
0 k = min (n, 10)
1 k = min (n, 8)
2 k = min (n, 4)
3 k = min (n, 1)

4
(R/W)

DC Deferral Check.
The EMAC_MACCFG.DC bit, when set, enables the deferral check
function in the MAC. The MAC issues a Frame Abort status, along
with the excessive deferral error bit set in the transmit frame status
when the transmit state machine is deferred for more than 24,288 bit
times in 10/100-Mbps mode. If the Jumbo frame mode is enabled in
10/100-Mbps mode, the threshold for deferral is 155,680 bits times.
Deferral begins when the transmitter is ready to transmit, but is
prevented because of an active CRS (carrier sense) signal. Defer time
is not cumulative. If the transmitter defers for 10,000 bit times, then
transmits, collides, backs off, and then has to defer again after
completion of back-off, the deferral timer resets to 0 and restarts.
When the EMAC_MACCFG.DC bit is reset, the deferral check function is
disabled and the MAC defers until the CRS signal goes inactive. This
bit is applicable only in Half-Duplex mode.

Table 23-46: EMAC_MACCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–107

MAC Rx Frame Filter Register

The EMAC_MACFRMFILT register controls receive frame filter features.

Figure 23-17: EMAC_MACFRMFILT Register Diagram

3
(R/W)

TE Transmitter Enable.
The EMAC_MACCFG.TE bit, when set, enables the transmit state
machine of the MAC for transmission. When this bit is reset, the
MAC transmit state machine is disabled after the completion of the
transmission of the current frame, and will not transmit any further
frames.

2
(R/W)

RE Receiver Enable.
The EMAC_MACCFG.RE bit, when set, enables the receiver state
machine of the MAC for receiving frames. When this bit is reset, the
MAC receive state machine is disabled after the completion of the
reception of the current frame, and does not receive any further
frames..

Table 23-46: EMAC_MACCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–108 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 23-47: EMAC_MACFRMFILT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

RA Receive All Frames.
The EMAC_MACFRMFILT.RA bit, when set, directs the MAC Receiver
module to pass to the Application all frames received irrespective of
whether they pass the address filter. The result of the DA filtering is
updated (pass or fail) in the corresponding bits in the Receive Status
Word. When this bit is reset, the Receiver module passes to the
Application only those frames that pass the DA address filter.

10
(R/W)

HPF Hash or Perfect Filter.
The EMAC_MACFRMFILT.HPF bit. when set, configures the address
filter to pass a frame if it matches either the perfect filtering or the
hash filtering as set by EMAC_MACFRMFILT.HMC or EMAC_
MACFRMFILT.HUC bits. When EMAC_MACFRMFILT.HPF is low and
either the EMAC_MACFRMFILT.HUC bit or EMAC_MACFRMFILT.HMC bit
is set, the frame is passed only if it matches the Hash filter.

7:6
(R/W)

PCF Pass Control Frames.
The EMAC_MACFRMFILT.PCF bits control the forwarding of all control
frames (including unicast and multicast PAUSE frames). Note that
the processing of PAUSE control frames depends only on the value of
the EMAC_FLOWCTL.RFE bit.
0 Pass no control frames

All control frames are filtered from reaching
the application.

1 Pass no PAUSE frames
All control frames are passed to the
application (even if the fail the address
filter), except for PAUSE frames.

2 Pass all control frames
All control frames are passed to the
application (even if the fail the address
filter).

3 Pass address filtered control frames
All control frames that pass the address filter
are passed to the application.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–109

5
(R/W)

DBF Disable Broadcast Frames.
The EMAC_MACFRMFILT.DBF bit, when set, directs the AFM module
to filter all incoming broadcast frames. When this bit is reset, the
AFM module passes all received broadcast frames.
0 AFM module passes all received broadcast

frames
1 AFM module filters all incoming broadcast

frames
4
(R/W)

PM Pass All Multicast Frames.
The EMAC_MACFRMFILT.PM bit, when set, indicates that all received
frames with a multicast destination address (first bit in the
destination address field is =1) are passed. When this bit is reset,
filtering of multicast frame depends on EMAC_MACFRMFILT.HMC bit.

3
(R/W)

DAIF Destination Address Inverse Filtering.
The EMAC_MACFRMFILT.DAIF bit, when set, directs the Address
Check block to operate in inverse filtering mode for the DA address
comparison for both unicast and multicast frames. When this bit is
reset, normal filtering of frames is performed.

2
(R/W)

HMC Hash Multicast.
The EMAC_MACFRMFILT.HMC bit, when set, directs the EMAC to
perform destination address filtering of received multicast frames
according to the hash table. When this bit is reset, the MAC performs
a perfect destination address filtering for multicast frames, that is, the
MAC compares the DA field with the values programmed in the
EMAC_ADDR0_HI and EMAC_ADDR0_LO address registers.

1
(R/W)

HUC Hash Unicast.
The EMAC_MACFRMFILT.HUC bit, when set, directs the EMAC to
perform destination address filtering of unicast frames according to
the hash table. When this bit is reset, the MAC performs a perfect
destination address filtering for unicast frames, that is, it compares
the DA field with the values programmed in the EMAC_ADDR0_HI and
EMAC_ADDR0_LO address registers.

0
(R/W)

PR Promiscuous Mode.
The EMAC_MACFRMFILT.PR bit, when set, directs the Address Filter
module to pass all incoming frames regardless of its destination or
source address. The DA Filter Fails status bits of the Receive Status
Word is always cleared when EMAC_MACFRMFILT.PR is set.

Table 23-47: EMAC_MACFRMFILT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–110 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Hash Table High Register

The EMAC_HASHTBL_HI register contains the upper 32 bits of the hash table.

Figure 23-18: EMAC_HASHTBL_HI Register Diagram

Hash Table Low Register

The EMAC_HASHTBL_LO register contains the lower 32 bits of the hash table.

Figure 23-19: EMAC_HASHTBL_LO Register Diagram

Table 23-48: EMAC_HASHTBL_HI Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Hash Table High.
The EMAC_HASHTBL_HI.VALUE bits contain the upper 32 bits of Hash
table.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–111

SMI Address Register

The EMAC_SMI_ADDR register contains the station management interface address and feature settings.

Figure 23-20: EMAC_SMI_ADDR Register Diagram

Table 23-49: EMAC_HASHTBL_LO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Hash Table Low.
The EMAC_HASHTBL_LO.VALUE bits contain the lower 32 bits of Hash
table.

Table 23-50: EMAC_SMI_ADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:11
(R/W)

PA Physical Layer Address.
The EMAC_SMI_ADDR.PA bits select the PHY. This field tells which of
the 32 possible PHY devices are being accessed.

10:6
(R/W)

SMIR SMI Register Address.
The EMAC_SMI_ADDR.SMIR bits select the desired Station
Management Interface register in the selected PHY device.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–112 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

5:2
(R/W)

CR Clock Range.
The EMAC_SMI_ADDR.CR bits select the Clock Range, determining the
frequency of the MDC clock as per the SCLK frequency. The
suggested range of SCLK frequency applicable for each value below
(when Bit[5] =0) ensures that the MDC clock is approximately
between the frequency range 1.0 MHz - 2.5 MHz. When the MSB of
this field is set, you can achieve MDC clock of frequency higher than
the IEEE 802.3 specified frequency limit of 2.5 MHz and program a
clock divider of lower value. For example, when SCLK=100 MHz and
you program these bits to b#1010, the resulting MDC clock is 12.5
MHz, which is outside the limit of IEEE 802.3 specified range. Use
the values shown only if the interface chips support faster MDC
clocks.
0 MDC Clock=SCLK/42

(for SCLK=60-100MHz)
1 MDC Clock= SCLK/62

(for SCLK=100-125 MHz)
2 MDC Clock= SCLK/16

(for SCLK=20-35 MHz)
3 MDC Clock= SCLK/26

(for SCLK=35-60 MHz)
8 MDC Clock=SCLK/4
9 MDC Clock=SCLK/6
10 MDC Clock=SCLK/8
11 MDC Clock=SCLK/10
12 MDC Clock=SCLK/12
13 MDC Clock=SCLK/14
14 MDC Clock=SCLK/16
15 MDC Clock=SCLK/18

1
(R/W)

SMIW SMI Write.
The EMAC_SMI_ADDR.SMIW bit, when set, tells the PHY this is a Write
operation using the Station Management Interface Data register. If
this bit is not set, this is a Read operation.

Table 23-50: EMAC_SMI_ADDR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–113

SMI Data Register

The EMAC_SMI_DATA register contains the station management interface data.

Figure 23-21: EMAC_SMI_DATA Register Diagram

FLow Control Register

The EMAC_FLOWCTL register controls EMAC flow control features.

0
(R/W1S)

SMIB SMI Busy.
The EMAC_SMI_ADDR.SMIB bit should read low (=0) before writing to
the EMAC_SMI_ADDR and EMAC_SMI_DATA registers. This bit must also
=0 during a Write to EMAC_SMI_ADDR. During a PHY register access,
this bit is set (=1) by the Application to indicate that a Read or Write
access is in progress. The EMAC_SMI_DATA register should be kept
valid until this bit is cleared by the MAC during a PHY Write
operation. EMAC_SMI_DATA is invalid until this bit is cleared by the
MAC during a PHY Read operation. The EMAC_SMI_ADDR should not
be written to until this bit is cleared.

Table 23-51: EMAC_SMI_DATA Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

SMID SMI Data.
The EMAC_SMI_DATA.SMID bits contain the 16-bit data value read
from the PHY after a Management Read operation or the 16-bit data
value to be written to the PHY before a Management Write
operation.

Table 23-50: EMAC_SMI_ADDR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–114 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-22: EMAC_FLOWCTL Register Diagram

Table 23-52: EMAC_FLOWCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

PT Pause Time.
The EMAC_FLOWCTL.PT bits hold the value to be used in the Pause
Time field in the transmit control frame.

3
(R/W)

UP Unicast Pause Frame Detect.
The EMAC_FLOWCTL.UP bit, when set, directs the MAC to detect the
Pause frames with the station's unicast address specified in EMAC_
ADDR0_HI and EMAC_ADDR0_LO address registers. This bit also directs
the MAC to the detect Pause frames with the unique multicast
address. When this bit is reset, the MAC will detect only a Pause
frame with the unique multicast address specified in the 802.3x
standard.

2
(R/W)

RFE Receive Flow Control Enable.
The EMAC_FLOWCTL.RFE bit, when set, directs the MAC to decode the
received Pause frame and disable its transmitter for a specified (Pause
Time) time. When this bit is reset, the decode function of the Pause
frame is disabled.

1
(R/W)

TFE Transmit Flow Control Enable.
In Full-Duplex mode, when the EMAC_FLOWCTL.TFE bit is set, the
MAC enables the flow control operation to transmit Pause frames.
When this bit is reset, the flow control operation in the MAC is
disabled, and the MAC does not transmit any Pause frames. In Half-
Duplex mode, when this bit is set, the MAC enables the back pressure
operation. When this bit is reset, the back pressure feature is disabled.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–115

VLAN Tag Register

The EMAC_VLANTAG register contains the VLAN tag.

Figure 23-23: EMAC_VLANTAG Register Diagram

0
(R/W1S)

FCBBPA Initiate Pause Control Frame.
The EMAC_FLOWCTL.FCBBPA bit initiates a Pause Control frame in
Full-Duplex mode and activates the back pressure function in Half-
Duplex mode if TFE bit is set. In Full-Duplex mode, this bit should
be read as =0 before writing to the EMAC_FLOWCTL register. To initiate
a Pause control frame, the Application must set this bit to =1. During
a transfer of the Control Frame, this bit continues to be set to signify
that a frame transmission is in progress. After the completion of
Pause control frame transmission, the MAC resets this bit to =0. The
EMAC_FLOWCTL register should not be written to until this bit is
cleared. In Half-Duplex mode, when this bit is set (and EMAC_
FLOWCTL.TFE is set), the back pressure is asserted by the MAC Core.
During back pressure, when the MAC receives a new frame, the
transmitter starts sending a JAM pattern resulting in a collision. The
EMAC_FLOWCTL.FCBBPA bit is logically OR'ed with the flow control
input signal for the back pressure function. When the MAC is
configured to Full-Duplex mode, the back pressure function is
automatically disabled.

Table 23-52: EMAC_FLOWCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–116 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Debug Register

The EMAC_DBG register contains EMAC debug status information.

Table 23-53: EMAC_VLANTAG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W)

ETV Enable Tag VLAN Comparison.
The EMAC_VLANTAG.ETV bit, when set, directs the EMAC to use a 12-
bit VLAN identifier, rather than the complete 16-bit VLAN tag, for
comparison and filtering. Bits[11:0] of the VLAN tag are compared
with the corresponding field in the received VLAN-tagged frame.
When this bit is reset, all 16 bits of the received VLAN frame's
fifteenth and sixteenth bytes are used for comparison.

15:0
(R/W)

VL VLAN Tag Id Receive Frames.
The EMAC_VLANTAG.VL bits contain the 802.1Q VLAN tag to identify
VLAN frames, and is compared to the fifteenth and sixteenth bytes of
the frames being received for VLAN frames. Bits[15:13] are the User
Priority, Bit[12] is the Canonical Format Indicator (CFI) and
bits[11:0] are the VLAN tag's VLAN Identifier (VID) field. When the
ETV bit is set, only the VID (Bits[11:0]) is used for comparison. If VL
(VL[11:0] if ETV is set) is all zeros, the MAC does not check the
fifteenth and sixteenth bytes for VLAN tag comparison, and declares
all frames with a Type field value of 0x8100 to be VLAN frames.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–117

Figure 23-24: EMAC_DBG Register Diagram

Table 23-54: EMAC_DBG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25
(R/NW)

TXFIFOFULL Tx FIFO Full.
The EMAC_DBG.TXFIFOFULL bit, when high, indicates that the MFL
TxStatus FIFO is full, and the MFL cannot accept any more frames
for transmission.

24
(R/NW)

TXFIFONE Tx FIFO Not Empty.
The EMAC_DBG.TXFIFONE bit, when high, indicates that the MFL
TxFIFO is not empty and has some data left for transmission.

22
(R/NW)

TXFIFOACT Tx FIFO Active.
The EMAC_DBG.TXFIFOACT bit, when high, indicates that the MFL
TxFIFO write controller is active and transferring data to the
TxFIFO.

21:20
(R/NW)

TXFIFOCTLST Tx FIFO Controller State.
The EMAC_DBG.TXFIFOCTLST bits indicate the state of the TxFIFO
read controller as: 00=IDLE state, 01=READ state (transferring data
to MAC transmitter), 10=Waiting for TxStatus from MAC
transmitter, and 11=Writing the received TxStatus or flushing the
TxFIFO

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–118 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

19
(R/NW)

TXPAUSE Tx Paused.
The EMAC_DBG.TXPAUSE bit, when high, indicates that the MAC
transmitter is in PAUSE condition (in full-duplex only) and does not
schedule any frame for transmission.

18:17
(R/NW)

TXFRCTL Tx Frame Controller State.
The EMAC_DBG.TXFRCTL bits indicate the state of the MAC transmit
frame controller module.
0 Idle

Frame controller is in idle state.
1 Wait

Frame controller is waiting for status of
previous frame or IFG/backoff period end.

2 Pause
Frame controller is generating and
transmitting a PAUSE control frame (in full
duplex mode).

3 Transmit
Frame controller is transferring input frame
for transmission.

16
(R/NW)

MMTEA MM Tx Engine Active.
The EMAC_DBG.MMTEA bit, when high, indicates that the MAC core
transmit protocol engine is actively transmitting data and is not in
IDLE state.

9:8
(R/NW)

RXFIFOST Rx FIFO State.
The EMAC_DBG.RXFIFOST bits give the status of the RxFIFO fill level
and indicate the relationship to the flow-control activation threshold.
0 Rx FIFO Empty
1 Rx FIFO Below De-activate FCT
2 Rx FIFO Above De-activate FCT
3 Rx FIFO Full

Table 23-54: EMAC_DBG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–119

Interrupt Status Register

The EMAC_ISTAT register indicates EMAC interrupt status.

6:5
(R/NW)

RXFIFOCTLST Rx FIFO Controller State.
The EMAC_DBG.RXFIFOCTLST bits give the state of the RxFIFO read
controller.
0 Idle

Read controller is in idle state.
1 Read Data

Read controller is reading frame data.
2 Read Status

Read controller is reading frame status or
time-stamp.

3 Flush
Read controller is flushing the frame data
and status.

4
(R/NW)

RXFIFOACT Rx FIFO Active.
The EMAC_DBG.RXFIFOACT bit, when high, indicates that the MFL
RxFIFO write controller is active and is transferring a received frame
to the FIFO.

2:1
(R/NW)

SFIFOST Small FIFO State.
The EMAC_DBG.SFIFOST bit, when high, indicates the active state of
the small FIFO read and write controllers respectively of the MAC
receive frame controller module.

0
(R/NW)

MMREA MM Rx Engine Active.
The EMAC_DBG.MMREA bit, when high, indicates that the MAC core
receive protocol engine is actively receiving data and is not in IDLE
state.

Table 23-54: EMAC_DBG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–120 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-25: EMAC_ISTAT Register Diagram

Table 23-55: EMAC_ISTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/NW)

TS Time Stamp Interrupt Status.
When Advanced Time Stamping feature is enabled, the EMAC_ISTAT.
TS bit is set when:
• The system time value equals or exceeds the value specified in the

EMAC_TM_TGTM and EMAC_TM_NTGTM registers, or
• There is an overflow in the EMAC_TM_SEC register, or
• When the EMAC_TM_STMPSTAT.ATSTS bit is asserted.
The EMAC_ISTAT.TS bit is cleared on reading the byte 0 of the EMAC_
TM_STMPSTAT register. Otherwise, when default Time-Stamping is
enabled, this bit, when set, indicates that the system time value equals
or exceeds the value specified in the EMAC_TM_TGTM and EMAC_TM_
NTGTM registers. In this mode, this bit is cleared after the completion
of the read of the EMAC_ISTAT register. In all other modes, this bit is
reserved.

7
(R/NW)

MMCRC MMC Receive Checksum Offload Interrupt Status.
The EMAC_ISTAT.MMCRC bit is set high whenever an interrupt is
generated in the EMAC_IPC_RXINT. This bit is cleared when all the
bits in this interrupt register are cleared.

6
(R/NW)

MMCTX MMC Transmit Interrupt Status.
The EMAC_ISTAT.MMCTX bit is set high whenever an interrupt is
generated in the EMAC_MMC_TXINT register. This bit is cleared when
all the bits in this interrupt register are cleared.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–121

Interrupt Mask Register

The EMAC_IMSK register enables (unmasks) EMAC interrupts.

Figure 23-26: EMAC_IMSK Register Diagram

MAC Address 0 High Register

The EMAC_ADDR0_HI register holds the address 0 high bits.

5
(R/NW)

MMCRX MMC Receive Interrupt Status.
The EMAC_ISTAT.MMCRX bit is set high whenever an interrupt is
generated in the EMAC_MMC_RXINT register. This bit is cleared when
all the bits in this interrupt register are cleared.

4
(R/NW)

MMC MMC Interrupt Status.
The EMAC_ISTAT.MMC bit is set high whenever any of EMAC_ISTAT
bits [7:5] is set (=1) and is cleared only when all of these bits are
cleared (=0).

Table 23-56: EMAC_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W)

TS Time Stamp Interrupt Mask.
The EMAC_IMSK.TS bit, when set, disables the assertion of the
interrupt signal, which is generated when the EMAC_ISTAT.TS bit is
set.

Table 23-55: EMAC_ISTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–122 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-27: EMAC_ADDR0_HI Register Diagram

MAC Address 0 Low Register

The EMAC_ADDR0_LO register holds the address 0 low bits.

Figure 23-28: EMAC_ADDR0_LO Register Diagram

Table 23-57: EMAC_ADDR0_HI Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

ADDR Address.
The EMAC_ADDR0_HI.ADDR bits contain the upper 16 bits (47:32) of
the 6-byte first MAC address. This address is used by the MAC for
filtering for received frames and for inserting the MAC address in the
Transmit Flow Control (PAUSE) Frames.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–123

MMC Control Register

The EMAC_MMC_CTL register selects the MMC operating mode.

Figure 23-29: EMAC_MMC_CTL Register Diagram

Table 23-58: EMAC_ADDR0_LO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

ADDR Address.
The EMAC_ADDR0_LO.ADDR bits contain the lower 32 bits of the 6-byte
first MAC address. This address is used by the MAC for filtering for
received frames and for inserting the MAC address in the Transmit
Flow Control (PAUSE) Frames.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–124 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 23-59: EMAC_MMC_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(R/W)

FULLPSET Full Preset.
The EMAC_MMC_CTL.FULLPSET bit, when =0 (and EMAC_MMC_CTL.
CNTRPSET =1), presets all MMC counters to almost-half value. All
octet counters get preset to 0x7FFF_F800 (half - 2KBytes) and all
frame-counters gets preset to 0x7FFF_FFF0 (half - 16). When EMAC_
MMC_CTL.FULLPSET =1 (and EMAC_MMC_CTL.CNTRPSET =1), all
MMC counters get preset to almost-full value. All octet counters get
preset to 0xFFFF_F800 (full - 2KBytes) and all frame-counters gets
preset to 0xFFFF_FFF0 (full - 16). For 16-bit counters, the almost-
half preset values are 0x7800 and 0x7FF0 for the respective octet and
frame counters. Similarly, the almost-full preset values for the 16-bit
counters are 0xF800 and 0xFFF0.

4
(R/W)

CNTRPSET Counter Reset/Preset.
The EMAC_MMC_CTL.CNTRPSET bit, when set, initializes all counters
or presets counters to almost full or almost half as per EMAC_MMC_
CTL.FULLPSET. The EMAC_MMC_CTL.CNTRPSET bit is cleared
automatically after 1 clock cycle. This bit along with bit5 is useful for
debugging and testing the assertion of interrupts because of MMC
counter becoming half-full or full.

3
(R/W)

CNTRFRZ Counter Freeze.
The EMAC_MMC_CTL.CNTRFRZ bit, when set, freezes all the MMC
counters to their current value. None of the MMC counters are
updated due to any transmitted or received frame, until this bit is
reset to 0. If any MMC counter is read with the EMAC_MMC_CTL.
RDRST bit set, then that counter is also cleared in this mode.

2
(R/W)

RDRST Read Reset.
The EMAC_MMC_CTL.RDRST bit, when set, resets the MMC counters to
zero after Read (self-clearing after reset). The counters are cleared
when the least significant byte lane (bits[7:0]) is read.

1
(R/W)

NOROLL No Rollover.
The EMAC_MMC_CTL.NOROLL bit, when set, prevents counter rolls over
to 0 after reaching max.

0
(R/W)

RST Reset.
The EMAC_MMC_CTL.RST bit, when set, resets all counters. This bit is
cleared automatically after 1 clock cycle

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–125

MMC Rx Interrupt Register

The EMAC_MMC_RXINT register indicates status of MMC receive interrupts.

Figure 23-30: EMAC_MMC_RXINT Register Diagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–126 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 23-60: EMAC_MMC_RXINT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23
(R/NW)

WDOGERR Rx Watch Dog Error Count Half/Full.
The EMAC_MMC_RXINT.WDOGERR bit is set when the EMAC_RXWDOG_
ERR counter reaches full or half.

22
(R/NW)

VLANFRGB Rx VLAN Frames (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.VLANFRGB bit is set when EMAC_RXVLANFRM_
GB counter reaches full or half.

21
(R/NW)

FIFOOVF Rx FIFO Overflow Count Half/Full.
The EMAC_MMC_RXINT.FIFOOVF bit is set when EMAC_RXFIFO_OVF
counter reaches full or half.

20
(R/NW)

PAUSEFR Rx Pause Frames Count Half/Full.
The EMAC_MMC_RXINT.PAUSEFR bit is set when EMAC_RXPAUSEFRM
counter reaches full or half.

19
(R/NW)

OUTRANGE Rx Out Of Range Type Count Half/Full.
The EMAC_MMC_RXINT.OUTRANGE bit is set when EMAC_RXOORTYPE
counter reaches full or half.

18
(R/NW)

LENERR Rx Length Error Count Half/Full.
The EMAC_MMC_RXINT.LENERR bit is set when EMAC_RXLEN_ERR
counter reaches full or half.

17
(R/NW)

UCASTG Rx Unicast Frames (Good) Count Half/Full.
The EMAC_MMC_RXINT.UCASTG bit is set when EMAC_RXUCASTFRM_G
counter reaches full or half.

16
(R/NW)

R1024TOMAX Rx 1024-to-max Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R1024TOMAX bit is set when EMAC_
RX1024TOMAX_GBcounter reaches full or half.

15
(R/NW)

R512TO1023 Rx 512-to-1023 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R512TO1023 bit is set when EMAC_
RX512TO1023_GB counter reaches full or half.

14
(R/NW)

R256TO511 Rx 255-to-511 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R256TO511 bit is set when EMAC_
RX256TO511_GB counter reaches full or half.

13
(R/NW)

R128TO255 Rx 128-to-255 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R128TO255 bit is set when EMAC_
RX128TO255_GB counter reaches full or half.

12
(R/NW)

R65TO127 Rx 65-to-127 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R65TO127 bit is set when EMAC_RX65TO127_
GB counter reaches full or half.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–127

11
(R/NW)

R64 Rx 64 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R64 bit is set when EMAC_RX64_GB counter
reaches full or half.

10
(R/NW)

OSIZEG Rx Oversize (Good) Count Half/Full.
The EMAC_MMC_RXINT.OSIZEG bit is set when EMAC_RXOSIZE_G
counter reaches full or half.

9
(R/NW)

USIZEG Rx Undersize (Good) Count Half/Full.
The EMAC_MMC_RXINT.USIZEG bit is set when EMAC_RXUSIZE_G
counter reaches full or half.

8
(R/NW)

JABERR Rx Jabber Error Count Half/Full.
The EMAC_MMC_RXINT.JABERR bit is set when EMAC_RXJAB_ERR
counter reaches full or half.

7
(R/NW)

RUNTERR Rx Runt Error Count Half/Full.
The EMAC_MMC_RXINT.RUNTERR bit is set when EMAC_RXRUNT_ERR
counter reaches full or half.

6
(R/NW)

ALIGNERR Rx Alignment Error Count Half/Full.
The EMAC_MMC_RXINT.ALIGNERR bit is set when EMAC_RXALIGN_ERR
counter reaches full or half

5
(R/NW)

CRCERR Rx CRC Error Counter Half/Full.
The EMAC_MMC_RXINT.CRCERR bit is set when EMAC_RXCRC_ERR
counter reaches full or half.

4
(R/NW)

MCASTG Rx Multicast Count (Good) Half/Full.
The EMAC_MMC_RXINT.MCASTG bit is set when EMAC_RXMCASTFRM_G
counter reaches full or half.

3
(R/NW)

BCASTG Rx Broadcast Count (Good) Half/Full.
The EMAC_MMC_RXINT.BCASTG bit is set when EMAC_RXBCASTFRM_G
counter reaches full or half.

2
(R/NW)

OCTCNTG Octet Count (Good) Half/Full.
The EMAC_MMC_RXINT.OCTCNTG bit is set when EMAC_RXOCTCNT_G
counter reaches full or half.

1
(R/NW)

OCTCNTGB Octet Count (Good/Bad) Half/Full.
The EMAC_MMC_RXINT.OCTCNTGB bit is set when EMAC_RXOCTCNT_GB
counter reaches half or full.

0
(R/NW)

FRCNTGB Frame Count (Good/Bad) Half/Full.
The EMAC_MMC_RXINT.FRCNTGB bit is set when EMAC_RXFRMCNT_GB
counter reaches half or full.

Table 23-60: EMAC_MMC_RXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–128 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

MMC Tx Interrupt Register

The EMAC_MMC_TXINT register indicates status of MMC transmit interrupts.

Figure 23-31: EMAC_MMC_TXINT Register Diagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–129

Table 23-61: EMAC_MMC_TXINT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/NW)

VLANFRGB Tx VLAN Frames (Good) Count Half/Full.
The EMAC_MMC_TXINT.VLANFRGB bit is set when EMAC_TXVLANFRM_G
counter reaches full or half.

23
(R/NW)

PAUSEFRM Tx Pause Frames Count Half/Full.
The EMAC_MMC_TXINT.PAUSEFRM bit is set when EMAC_TXPAUSEFRM
counter reaches full or half.

22
(R/NW)

EXCESSDEF Tx Excess Deferred Count Half/Full.
The EMAC_MMC_TXINT.EXCESSDEF bit is set when EMAC_
TXEXCESSDEF counter reaches full or half.

21
(R/NW)

FRCNTG Tx Frame Count (Good) Count Half/Full.
The EMAC_MMC_TXINT.FRCNTG bit is set when EMAC_TXFRMCNT_G
counter reaches full or half.

20
(R/NW)

OCTCNTG Tx Octet Count (Good) Count Half/Full.
The EMAC_MMC_TXINT.OCTCNTG bit is set when EMAC_TXOCTCNT_G
counter reaches full or half.

19
(R/NW)

CARRERR Tx Carrier Error Count Half/Full.
The EMAC_MMC_TXINT.CARRERR bit is set when EMAC_TXCARR_ERR
counter reaches full or half.

18
(R/NW)

EXCESSCOL Tx Exess Collision Count Half/Full.
The EMAC_MMC_TXINT.EXCESSCOL bit is set when EMAC_
TXEXCESSCOL counter reaches full or half.

17
(R/NW)

LATECOL Tx Late Collision Count Half/Full.
The EMAC_MMC_TXINT.LATECOL bit is set when EMAC_TXLATECOL
counter reaches full or half.

16
(R/NW)

DEFERRED Tx Deffered Count Half/Full.
The EMAC_MMC_TXINT.DEFERRED bit is set when EMAC_TXDEFERRED
counter reaches full or half.

15
(R/NW)

MULTCOLG Tx Multiple collision (Good) Count Half/Full.
The EMAC_MMC_TXINT.MULTCOLG bit is set when EMAC_TXMULTCOL_G
counter reaches full or half.

14
(R/NW)

SNGCOLG Tx Single Collision (Good) Count Half/Full.
The EMAC_MMC_TXINT.SNGCOLG bit is set when EMAC_TXSNGCOL_G
counter reaches full or half.

13
(R/NW)

UNDERR Tx Underflow Error Count Half/Full.
The EMAC_MMC_TXINT.UNDERR bit is set when EMAC_TXUNDR_ERR
counter reaches full or half.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–130 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

12
(R/NW)

BCASTGB Tx Broadcast Frames (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.BCASTGB bit is set when EMAC_TXBCASTFRM_
GB counter reaches full or half.

11
(R/NW)

MCASTGB Tx Multicast Frames (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.MCASTGB bit is set when EMAC_TXMCASTFRM_
GB counter reaches full or half.

10
(R/NW)

UCASTGB Tx Unicast Frames (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.UCASTGB bit is set when EMAC_TXUCASTFRM_
GB counter reaches full or half.

9
(R/NW)

T1024TOMAX Tx 1024-to-max Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T1024TOMAX bit is set when EMAC_
TX1024TOMAX_GB counter reaches full or half.

8
(R/NW)

T512TO1023 Tx 512-to-1023 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T512TO1023 bit is set when EMAC_
TX512TO1023_GB counter reaches full or half.

7
(R/NW)

T256TO511 Tx 256-to-511 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T256TO511 bit is set when EMAC_
TX256TO511_GB counter reaches full or half.

6
(R/NW)

T128TO255 Tx 128-to-255 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T128TO255 bit is set when EMAC_
TX128TO255_GB counter reaches full or half.

5
(R/NW)

T65TO127 Tx 65-to-127 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T65TO127 bit is set when EMAC_TX65TO127_
GB counter reaches full or half.

4
(R/NW)

T64 Tx 64 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T64 bit is set when EMAC_TX64_GB counter
reaches full or half.

3
(R/NW)

MCASTG Tx Multicast Frames (Good) Count Half/Full.
The EMAC_MMC_TXINT.MCASTG bit is set when EMAC_TXMCASTFRM_G
counter reaches full or half.

2
(R/NW)

BCASTG Tx Broadcast Frames (Good) Count Half/Full.
The EMAC_MMC_TXINT.BCASTG bit is set when EMAC_TXBCASTFRM_G
counter reaches full or half.

1
(R/NW)

FRCNTGB Tx Frame Count (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.FRCNTGB bit is set when EMAC_TXFRMCNT_GB
counter reaches full or half.

Table 23-61: EMAC_MMC_TXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–131

MMC Rx Interrupt Mask Register

The EMAC_MMC_RXIMSK register enables (unmasks) MMC receive interrupts.

0
(R/NW)

OCTCNTGB Tx Octet Count (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.OCTCNTGB bit is set when EMAC_TXOCTCNT_GB
counter reaches full or half.

Table 23-61: EMAC_MMC_TXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–132 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-32: EMAC_MMC_RXIMSK Register Diagram

Table 23-62: EMAC_MMC_RXIMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23
(R/W)

WATCHERR Rx Watch Dog Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.WATCHERR bit, when set, masks the interrupt
when EMAC_RXWDOG_ERR counter reaches full or half.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–133

22
(R/W)

VLANFRGB Rx VLAN Frames (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.VLANFRGB bit, when set, masks the interrupt
when EMAC_RXVLANFRM_GB counter reaches full or half.

21
(R/W)

FIFOOV Rx FIFO Overflow Count Half/Full Mask.
The EMAC_MMC_RXIMSK.FIFOOV bit, when set, masks the interrupt
when EMAC_RXFIFO_OVF counter reaches full or half.

20
(R/W)

PAUSEFRM Rx Pause Frames Count Half/Full Mask.
The EMAC_MMC_RXIMSK.PAUSEFRM bit, when set, masks the interrupt
when EMAC_RXPAUSEFRM counter reaches full or half.

19
(R/W)

OUTRANGE Rx Out Of Range Type Count Half/Full Mask.
The EMAC_MMC_RXIMSK.OUTRANGE bit, when set, masks the interrupt
when EMAC_RXOORTYPE counter reaches full or half.

18
(R/W)

LENERR Rx Length Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.LENERR bit, when set, masks the interrupt
when EMAC_RXLEN_ERR counter reaches full or half.

17
(R/W)

UCASTG Rx Unicast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.UCASTG bit, when set, masks the interrupt
when EMAC_RXUCASTFRM_G counter reaches full or half.

16
(R/W)

R1024TOMAX Rx 1024-to-max Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R1024TOMAX bit, when set, masks the
interrupt when EMAC_RX1024TOMAX_GB counter reaches full or half.

15
(R/W)

R512TO1023 Rx 512-to-1023 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R512TO1023 bit, when set, masks the
interrupt when EMAC_RX512TO1023_GB counter reaches full or half.

14
(R/W)

R256TO511 Rx 255-to-511 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R256TO511 bit, when set, masks the
interrupt when EMAC_RX256TO511_GB counter reaches full or half.

13
(R/W)

R128TO255 Rx 128-to-255 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R128TO255 bit, when set, masks the
interrupt when EMAC_RX128TO255_GB counter reaches full or half.

12
(R/W)

R65TO127 Rx 65-to-127 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R65TO127 bit, when set, masks the interrupt
when EMAC_RX65TO127_GB counter reaches full or half.

11
(R/W)

R64 Rx 64 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R64 bit, when set, masks the interrupt when
EMAC_RX64_GB counter reaches full or half.

Table 23-62: EMAC_MMC_RXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–134 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

MMC TX Interrupt Mask Register

The EMAC_MMC_TXIMSK register enables (unmasks) MMC transmit interrupts.

10
(R/W)

OSIZEG Rx Oversize (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.OSIZEG bit, when set, masks the interrupt
when EMAC_RXOSIZE_G counter reaches full or half.

9
(R/W)

USIZEG Rx Undersize (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.USIZEG bit, when set, masks the interrupt
when EMAC_RXUSIZE_G counter reaches full or half.

8
(R/W)

JABERR Rx Jabber Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.JABERR bit, when set, masks the interrupt
when EMAC_RXJAB_ERR counter reaches full or half.

7
(R/W)

RUNTERR Rx Runt Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.RUNTERR bit, when set, masks the interrupt
when EMAC_RXRUNT_ERR counter reaches full or half.

6
(R/W)

ALIGNERR Rx Alignment Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.ALIGNERR bit, when set, masks the interrupt
when EMAC_RXALIGN_ERR counter reaches full or half.

5
(R/W)

CRCERR Rx CRC Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.CRCERR bit, when set, masks the interrupt
when EMAC_RXCRC_ERR counter reaches full or half.

4
(R/W)

MCASTG Rx Multicast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.MCASTG bit, when set, masks the interrupt
when EMAC_RXMCASTFRM_G counter reaches full or half.

3
(R/W)

BCASTG Rx Broadcast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.BCASTG bit, when set, masks the interrupt
when EMAC_RXBCASTFRM_G counter reaches full or half.

2
(R/W)

OCTCNTG Rx Octet Count (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.OCTCNTG bit, when set, masks the interrupt
when EMAC_RXOCTCNT_G counter reaches full or half.

1
(R/W)

OCTCNTGB Rx Octet Count (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.OCTCNTGB bit, when set, masks the interrupt
when EMAC_RXOCTCNT_GB counter reaches half or full.

0
(R/W)

FRCNTGB Rx Frame Count (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.FRCNTGB bit, when set, masks the interrupt
when EMAC_RXFRMCNT_GB counter reaches half or full.

Table 23-62: EMAC_MMC_RXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–135

Figure 23-33: EMAC_MMC_TXIMSK Register Diagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–136 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 23-63: EMAC_MMC_TXIMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

VLANFRG Tx VLAN Frames (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.VLANFRG bit, when set, masks the interrupt
when EMAC_TXVLANFRM_G counter reaches full or half.

23
(R/W)

PAUSEFRM Tx Pause Frames Count Half/Full Mask.
The EMAC_MMC_TXIMSK.PAUSEFRM bit, when set, masks the interrupt
when EMAC_TXPAUSEFRM counter reaches full or half.

22
(R/W)

EXCESSDEF Tx Excess Deferred Count Half/Full Mask.
The EMAC_MMC_TXIMSK.EXCESSDEF bit, when set, masks the
interrupt when EMAC_TXEXCESSDEF counter reaches full or half.

21
(R/W)

FRCNTG Tx Frame Count (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.FRCNTG bit, when set, masks the interrupt
when EMAC_TXFRMCNT_G counter reaches full or half.

20
(R/W)

OCTCNTG Tx Octet Count (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.OCTCNTG bit, when set, masks the interrupt
when EMAC_TXOCTCNT_G counter reaches full or half.

19
(R/W)

CARRERR Tx Carrier Error Count Half/Full Mask.
The EMAC_MMC_TXIMSK.CARRERR bit, when set, masks the interrupt
when EMAC_TXCARR_ERR counter reaches full or half.

18
(R/W)

EXCESSCOL Tx Exess collision Count Half/Full Mask.
The EMAC_MMC_TXIMSK.EXCESSCOL bit, when set, masks the
interrupt when EMAC_TXEXCESSCOL counter reaches full or half.

17
(R/W)

LATECOL Tx Late Collision Count Half/Full Mask.
The EMAC_MMC_TXIMSK.LATECOL bit, when set, masks the interrupt
when EMAC_TXLATECOL counter reaches full or half.

16
(R/W)

DEFERRED Tx Deferred Count Half/Full Mask.
The EMAC_MMC_TXIMSK.DEFERRED bit, when set, masks the interrupt
when EMAC_TXDEFERRED counter reaches full or half.

15
(R/W)

MULTCOLG Tx Multiple Collisions (Good) Count Mask.
The EMAC_MMC_TXIMSK.MULTCOLG bit, when set, masks the interrupt
when EMAC_TXMULTCOL_G counter reaches full or half.

14
(R/W)

SNGCOLG Tx Single Collision (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.SNGCOLG bit, when set, masks the interrupt
when EMAC_TXSNGCOL_G counter reaches full or half.

13
(R/W)

UNDERR Tx Underflow Error Count Half/Full Mask.
The EMAC_MMC_TXIMSK.UNDERR bit, when set, masks the interrupt
when EMAC_TXUNDR_ERR counter reaches full or half.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–137

12
(R/W)

BCASTGB Tx Broadcast Frames (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.BCASTGB bit, when set, masks the interrupt
when EMAC_TXBCASTFRM_GB counter reaches full or half.

11
(R/W)

MCASTGB Tx Multicast Frames (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.MCASTGB bit, when set, masks the interrupt
when EMAC_TXMCASTFRM_GB counter reaches full or half.

10
(R/W)

UCASTGB Tx Unicast Frames (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.UCASTGB bit, when set, masks the interrupt
when EMAC_TXUCASTFRM_GB counter reaches full or half.

9
(R/W)

T1024TOMAX Tx 1024-to-max Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T1024TOMAX bit, when set, masks the
interrupt when EMAC_TX1024TOMAX_GB counter reaches full or half.

8
(R/W)

T512TO1023 Tx 512-to-1023 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T512TO1023 bit, when set, masks the
interrupt when EMAC_TX512TO1023_GB counter reaches full or half.

7
(R/W)

T256TO511 Tx 256-to-511 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T256TO511 bit, when set, masks the
interrupt when EMAC_TX256TO511_GB counter reaches full or half.

6
(R/W)

T128TO255 Tx 128-to-255 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T128TO255 bit, when set, masks the
interrupt when EMAC_TX128TO255_GB counter reaches full or half.

5
(R/W)

T65TO127 Tx 65-to-127 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T65TO127 bit, when set, masks the interrupt
when EMAC_TX65TO127_GB counter reaches full or half.

4
(R/W)

T64 Tx 64 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T64 bit, when set, masks the interrupt when
EMAC_TX64_GB counter reaches full or half.

3
(R/W)

MCASTG Tx Multicast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.MCASTG bit, when set, masks the interrupt
when EMAC_TXMCASTFRM_G counter reaches full or half.

2
(R/W)

BCASTG Tx Broadcast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.BCASTG bit, when set, masks the interrupt
when EMAC_TXBCASTFRM_G counter reaches full or half.

1
(R/W)

FRCNTGB Tx Frame Count (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.FRCNTGB bit, when set, masks the interrupt
when EMAC_TXFRMCNT_GB counter reaches full or half.

Table 23-63: EMAC_MMC_TXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–138 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Tx OCT Count (Good/Bad) Register

The EMAC_TXOCTCNT_GB register contains the count of the number of bytes transmitted, exclusive of the
preamble and retried bytes, in good and bad frames.

Figure 23-34: EMAC_TXOCTCNT_GB Register Diagram

Tx Frame Count (Good/Bad) Register

The EMAC_TXFRMCNT_GB register contains the count of the number of good and bad frames transmitted,
exclusive of retried frames.

0
(R/W)

OCTCNTGB Tx Octet Count (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.OCTCNTGB bit, when set, masks the interrupt
when EMAC_TXOCTCNT_GB counter reaches full or half.

Table 23-64: EMAC_TXOCTCNT_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-63: EMAC_MMC_TXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–139

Figure 23-35: EMAC_TXFRMCNT_GB Register Diagram

Tx Broadcast Frames (Good) Register

The EMAC_TXBCASTFRM_G register contains the count of the number of good broadcast frames transmitted.

Figure 23-36: EMAC_TXBCASTFRM_G Register Diagram

Table 23-65: EMAC_TXFRMCNT_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-66: EMAC_TXBCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–140 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Tx Multicast Frames (Good) Register

The EMAC_TXMCASTFRM_G register contains the count of the number of good multicast frames transmitted.

Figure 23-37: EMAC_TXMCASTFRM_G Register Diagram

Tx 64-Byte Frames (Good/Bad) Register

The EMAC_TX64_GB register contains the count of the number of good and bad frames transmitted with
length 64 bytes, exclusive of preamble and retried frames.

Figure 23-38: EMAC_TX64_GB Register Diagram

Table 23-67: EMAC_TXMCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–141

Tx 65- to 127-Byte Frames (Good/Bad) Register

The EMAC_TX65TO127_GB register contains the count of the number of good and bad frames transmitted
with length between 65 and 127 (inclusive) bytes, exclusive of preamble and retried frames.

Figure 23-39: EMAC_TX65TO127_GB Register Diagram

Tx 128- to 255-Byte Frames (Good/Bad) Register

The EMAC_TX128TO255_GB register contains the count of the number of good and bad frames transmitted
with length between 128 and 255 (inclusive) bytes, exclusive of preamble and retried frames.

Table 23-68: EMAC_TX64_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-69: EMAC_TX65TO127_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–142 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-40: EMAC_TX128TO255_GB Register Diagram

Tx 256- to 511-Byte Frames (Good/Bad) Register

The EMAC_TX256TO511_GB register contains the count of the number of good and bad frames transmitted
with length between 256 and 511 (inclusive) bytes, exclusive of preamble and retried frames.

Figure 23-41: EMAC_TX256TO511_GB Register Diagram

Table 23-70: EMAC_TX128TO255_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–143

Tx 512- to 1023-Byte Frames (Good/Bad) Register

The EMAC_TX512TO1023_GB register contains the count of the number of good and bad frames transmitted
with length between 512 and 1023 (inclusive) bytes, exclusive of preamble and retried frames.

Figure 23-42: EMAC_TX512TO1023_GB Register Diagram

Tx 1024- to Max-Byte Frames (Good/Bad) Register

The EMAC_TX1024TOMAX_GB register contains the count of the number of good and bad frames transmitted
with length between 1024 and maxsize (inclusive) bytes, exclusive of preamble and retried frames.

Table 23-71: EMAC_TX256TO511_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-72: EMAC_TX512TO1023_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–144 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-43: EMAC_TX1024TOMAX_GB Register Diagram

Tx Unicast Frames (Good/Bad) Register

The EMAC_TXUCASTFRM_GB register contains the count of the number of good and bad unicast frames
transmitted.

Figure 23-44: EMAC_TXUCASTFRM_GB Register Diagram

Table 23-73: EMAC_TX1024TOMAX_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–145

Tx Multicast Frames (Good/Bad) Register

The EMAC_TXMCASTFRM_GB register contains the count of the number of good and bad multicast frames
transmitted.

Figure 23-45: EMAC_TXMCASTFRM_GB Register Diagram

Tx Broadcast Frames (Good/Bad) Register

The EMAC_TXBCASTFRM_GB register contains the count of the number of good and bad broadcast frames
transmitted.

Table 23-74: EMAC_TXUCASTFRM_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-75: EMAC_TXMCASTFRM_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–146 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-46: EMAC_TXBCASTFRM_GB Register Diagram

Tx Underflow Error Register

The EMAC_TXUNDR_ERR register contains a count of the number of frames aborted due to frame underflow
error.

Figure 23-47: EMAC_TXUNDR_ERR Register Diagram

Table 23-76: EMAC_TXBCASTFRM_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–147

Tx Single Collision (Good) Register

The EMAC_TXSNGCOL_G register contains a count of the number of successfully transmitted frames after a
single collision in Half-duplex mode.

Figure 23-48: EMAC_TXSNGCOL_G Register Diagram

Tx Multiple Collision (Good) Register

The EMAC_TXMULTCOL_G register contains a count of the number of successfully transmitted frames after
more than a single collision in Half-duplex mode.

Table 23-77: EMAC_TXUNDR_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-78: EMAC_TXSNGCOL_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–148 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-49: EMAC_TXMULTCOL_G Register Diagram

Tx Deferred Register

The EMAC_TXDEFERRED register contains a count of the number of successfully transmitted frames after a
deferral in Half-duplex mode.

Figure 23-50: EMAC_TXDEFERRED Register Diagram

Table 23-79: EMAC_TXMULTCOL_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–149

Tx Late Collision Register

The EMAC_TXLATECOL register contains a count of the number of frames aborted due to late collision error.

Figure 23-51: EMAC_TXLATECOL Register Diagram

Tx Excess Collision Register

The EMAC_TXEXCESSCOL register contains a count of the number of frames aborted due to excessive (16)
collision errors.

Table 23-80: EMAC_TXDEFERRED Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-81: EMAC_TXLATECOL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–150 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-52: EMAC_TXEXCESSCOL Register Diagram

Tx Carrier Error Register

The EMAC_TXCARR_ERR register contains a count of the number of frames aborted due to carrier sense error
(no carrier or loss of carrier).

Figure 23-53: EMAC_TXCARR_ERR Register Diagram

Table 23-82: EMAC_TXEXCESSCOL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–151

Tx Octet Count (Good) Register

The EMAC_TXOCTCNT_G register contains a count of the number of bytes transmitted, exclusive of
preamble, in good frames only.

Figure 23-54: EMAC_TXOCTCNT_G Register Diagram

Tx Frame Count (Good) Register

The EMAC_TXFRMCNT_G register contains a count of the number of good frames transmitted.

Table 23-83: EMAC_TXCARR_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-84: EMAC_TXOCTCNT_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–152 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-55: EMAC_TXFRMCNT_G Register Diagram

Tx Excess Deferral Register

The EMAC_TXEXCESSDEF register contains a count of the number of frames aborted due to excessive
deferral error (deferred for more than two max-sized frame times).

Figure 23-56: EMAC_TXEXCESSDEF Register Diagram

Table 23-85: EMAC_TXFRMCNT_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–153

Tx Pause Frame Register

The EMAC_TXPAUSEFRM register contains a count of the number of good PAUSE frames transmitted.

Figure 23-57: EMAC_TXPAUSEFRM Register Diagram

Tx VLAN Frames (Good) Register

The EMAC_TXVLANFRM_G register contains a count of the number of good VLAN frames transmitted, exclu-
sive of retried frames.

Table 23-86: EMAC_TXEXCESSDEF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-87: EMAC_TXPAUSEFRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–154 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-58: EMAC_TXVLANFRM_G Register Diagram

Rx Frame Count (Good/Bad) Register

The EMAC_RXFRMCNT_GB register contains a count of the number of good and bad frames received.

Figure 23-59: EMAC_RXFRMCNT_GB Register Diagram

Table 23-88: EMAC_TXVLANFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-89: EMAC_RXFRMCNT_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–155

Rx Octet Count (Good/Bad) Register

The EMAC_RXOCTCNT_GB register contains a count of the number of bytes received, exclusive of preamble,
in good and bad frames.

Figure 23-60: EMAC_RXOCTCNT_GB Register Diagram

Rx Octet Count (Good) Register

The EMAC_RXOCTCNT_G register contains a count of the number of bytes received, exclusive of preamble,
only in good frames.

Figure 23-61: EMAC_RXOCTCNT_G Register Diagram

Table 23-90: EMAC_RXOCTCNT_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–156 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Rx Broadcast Frames (Good) Register

The EMAC_RXBCASTFRM_G register contains a count of the number of good broadcast frames received.

Figure 23-62: EMAC_RXBCASTFRM_G Register Diagram

Rx Multicast Frames (Good) Register

The EMAC_RXMCASTFRM_G register contains a count of the number of good multicast frames received.

Table 23-91: EMAC_RXOCTCNT_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-92: EMAC_RXBCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–157

Figure 23-63: EMAC_RXMCASTFRM_G Register Diagram

Rx CRC Error Register

The EMAC_RXCRC_ERR register contains a count of the number of frames received with CRC error.

Figure 23-64: EMAC_RXCRC_ERR Register Diagram

Table 23-93: EMAC_RXMCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-94: EMAC_RXCRC_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–158 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Rx alignment Error Register

The EMAC_RXALIGN_ERR register contains a count of the number of frames received with alignment
(dribble) error. Valid only in 10/100 mode.

Figure 23-65: EMAC_RXALIGN_ERR Register Diagram

Rx Runt Error Register

The EMAC_RXRUNT_ERR register contains a count of the number of frames received with runt error.

Figure 23-66: EMAC_RXRUNT_ERR Register Diagram

Table 23-95: EMAC_RXALIGN_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–159

Rx Jab Error Register

The EMAC_RXJAB_ERR register contains a count of the number of giant frames received with length greater
than 1,518 bytes and with CRC error.

Figure 23-67: EMAC_RXJAB_ERR Register Diagram

Rx Undersize (Good) Register

The EMAC_RXUSIZE_G register contains a count of the number of frames received with length less than 64
bytes, without any errors.

Table 23-96: EMAC_RXRUNT_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-97: EMAC_RXJAB_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–160 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-68: EMAC_RXUSIZE_G Register Diagram

Rx Oversize (Good) Register

The EMAC_RXOSIZE_G register contains a count of the number of frames received with length greater than
the maxsize, without errors.

Figure 23-69: EMAC_RXOSIZE_G Register Diagram

Table 23-98: EMAC_RXUSIZE_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–161

Rx 64-Byte Frames (Good/Bad) Register

The EMAC_RX64_GB register contains a count of the number of good and bad frames received with length
64 bytes, exclusive of preamble.

Figure 23-70: EMAC_RX64_GB Register Diagram

Rx 65- to 127-Byte Frames (Good/Bad) Register

The EMAC_RX65TO127_GB register contains a count of the number of good and bad frames received with
length between 65 and 127 (inclusive) bytes, exclusive of preamble.

Table 23-99: EMAC_RXOSIZE_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-100: EMAC_RX64_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–162 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-71: EMAC_RX65TO127_GB Register Diagram

Rx 128- to 255-Byte Frames (Good/Bad) Register

The EMAC_RX128TO255_GB register contains a count of the number of good and bad frames received with
length between 128 and 255 (inclusive) bytes, exclusive of preamble.

Figure 23-72: EMAC_RX128TO255_GB Register Diagram

Table 23-101: EMAC_RX65TO127_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–163

Rx 256- to 511-Byte Frames (Good/Bad) Register

The EMAC_RX256TO511_GB register contains a count of the number of good and bad frames received with
length between 256 and 511 (inclusive) bytes, exclusive of preamble.

Figure 23-73: EMAC_RX256TO511_GB Register Diagram

Rx 512- to 1023-Byte Frames (Good/Bad) Register

The EMAC_RX512TO1023_GB register contains a count of the number of good and bad frames received with
length between 512 and 1023 (inclusive) bytes, exclusive of preamble.

Table 23-102: EMAC_RX128TO255_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-103: EMAC_RX256TO511_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–164 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-74: EMAC_RX512TO1023_GB Register Diagram

Rx 1024- to Max-Byte Frames (Good/Bad) Register

The EMAC_RX1024TOMAX_GB register contains a count of the number of good and bad frames received with
length between 1024 and maxsize (inclusive) bytes, exclusive of preamble.

Figure 23-75: EMAC_RX1024TOMAX_GB Register Diagram

Table 23-104: EMAC_RX512TO1023_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–165

Rx Unicast Frames (Good) Register

The EMAC_RXUCASTFRM_G register contains a count of the number of good unicast frames received.

Figure 23-76: EMAC_RXUCASTFRM_G Register Diagram

Rx Length Error Register

The EMAC_RXLEN_ERR register contains a count of the number of frames received with length error (Length
type field frame size), for all frames with valid length field.

Table 23-105: EMAC_RX1024TOMAX_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-106: EMAC_RXUCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–166 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-77: EMAC_RXLEN_ERR Register Diagram

Rx Out Of Range Type Register

The EMAC_RXOORTYPE register contains a count of the number of frames received with length field not
equal to the valid frame size (greater than 1,500 but less than 1,536).

Figure 23-78: EMAC_RXOORTYPE Register Diagram

Table 23-107: EMAC_RXLEN_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–167

Rx Pause Frames Register

The EMAC_RXPAUSEFRM register contains a count of the number of good and valid PAUSE frames received.

Figure 23-79: EMAC_RXPAUSEFRM Register Diagram

Rx FIFO Overflow Register

The EMAC_RXFIFO_OVF register contains a count of the number of missed received frames due to FIFO
overflow.

Table 23-108: EMAC_RXOORTYPE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-109: EMAC_RXPAUSEFRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–168 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-80: EMAC_RXFIFO_OVF Register Diagram

Rx VLAN Frames (Good/Bad) Register

The EMAC_RXVLANFRM_GB register contains a count of the number of good and bad VLAN frames received.

Figure 23-81: EMAC_RXVLANFRM_GB Register Diagram

Table 23-110: EMAC_RXFIFO_OVF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-111: EMAC_RXVLANFRM_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–169

Rx Watch Dog Error Register

The EMAC_RXWDOG_ERR register contains a count of the number of frames received with error due to
watchdog timeout error (frames with a data load larger than 2,048 bytes).

Figure 23-82: EMAC_RXWDOG_ERR Register Diagram

MMC IPC Rx Interrupt Mask Register

The EMAC_IPC_RXIMSK register enables (unmasks) MMC IPC receive interrupts.

Table 23-112: EMAC_RXWDOG_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–170 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-83: EMAC_IPC_RXIMSK Register Diagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–171

Table 23-113: EMAC_IPC_RXIMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29
(R/W)

ICMPERROCT Rx ICMP Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.ICMPERROCT bit, when set, masks the
interrupt when the EMAC_RXICMP_ERR_OCT counter reaches half the
maximum value, and also when it reaches the maximum value.

28
(R/W)

ICMPGOCT Rx ICMP (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.ICMPGOCT bit, when set, masks the interrupt
when the EMAC_RXICMP_GD_OCT counter reaches half the maximum
value, and also when it reaches the maximum value.

27
(R/W)

TCPERROCT Rx TCP Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.TCPERROCT bit, when set, masks the
interrupt when the EMAC_RXTCP_ERR_OCT counter reaches half the
maximum value, and also when it reaches the maximum value.

26
(R/W)

TCPGOCT Rx TCP (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.TCPGOCT bit, when set, masks the interrupt
when the EMAC_RXTCP_GD_OCT counter reaches half the maximum
value, and also when it reaches the maximum value.

25
(R/W)

UDPERROCT Rx UDP Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.UDPERROCT bit, when set, masks the
interrupt when the EMAC_RXUDP_ERR_OCT counter reaches half the
maximum value, and also when it reaches the maximum value.

24
(R/W)

UDPGOCT Rx UDP (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.UDPGOCT bit, when set, masks the interrupt
when the EMAC_RXUDP_GD_OCT counter reaches half the maximum
value, and also when it reaches the maximum value.

23
(R/W)

V6NOPAYOCT Rx IPv6 No Payload Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6NOPAYOCT bit, when set, masks the
interrupt when the EMAC_RXIPV6_NOPAY_OCT counter reaches half
the maximum value, and also when it reaches the maximum value.

22
(R/W)

V6HDERROCT Rx IPv6 Header Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6HDERROCT bit, when set, masks the
interrupt when the EMAC_RXIPV6_HDR_ERR_OCT counter reaches half
the maximum value, and also when it reaches the maximum value.

21
(R/W)

V6GOCT Rx IPv6 (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6GOCT bit, when set, masks the interrupt
when the EMAC_RXIPV6_GD_OCT counter reaches half the maximum
value, and also when it reaches the maximum value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–172 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

20
(R/W)

V4UDSBLOCT Rx IPv4 UDS Disable Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4UDSBLOCT bit, when set, masks the
interrupt when the EMAC_RXIPV4_UDSBL_OCT counter reaches half
the maximum value, and also when it reaches the maximum value.

19
(R/W)

V4FRAGOCT Rx IPv4 Fragmented Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4FRAGOCT bit, when set, masks the
interrupt when the EMAC_RXIPV4_FRAG_OCT counter reaches half the
maximum value, and also when it reaches the maximum value.

18
(R/W)

V4NOPAYOCT Rx IPv4 No Payload Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4NOPAYOCT bit, when set, masks the
interrupt when the EMAC_RXIPV4_NOPAY_OCT counter reaches half
the maximum value, and also when it reaches the maximum value.

17
(R/W)

V4HDERROCT Rx IPv4 Header Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4HDERROCT bit, when set, masks the
interrupt when the EMAC_RXIPV4_HDR_ERR_OCT counter reaches half
the maximum value, and also when it reaches the maximum value.

16
(R/W)

V4GOCT Rx IPv4 (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4GOCT bit, when set, masks the interrupt
when the EMAC_RXIPV4_GD_OCT counter reaches half the maximum
value, and also when it reaches the maximum value.

13
(R/W)

ICMPERRFRM Rx ICMP Error Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.ICMPERRFRM bit, when set, masks the
interrupt when the EMAC_RXICMP_ERR_FRM counter reaches half the
maximum value, and also when it reaches the maximum value.

12
(R/W)

ICMPGFRM Rx ICMP (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.ICMPGFRM bit, when set, masks the interrupt
when the EMAC_RXICMP_GD_FRM counter reaches half the maximum
value, and also when it reaches the maximum value.

11
(R/W)

TCPERRFRM Rx TCP Error Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.TCPERRFRM bit, when set, masks the
interrupt when the EMAC_RXTCP_ERR_FRM counter reaches half the
maximum value, and also when it reaches the maximum value.

10
(R/W)

TCPGFRM Rx TCP (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.TCPGFRM bit, when set, masks the interrupt
when the EMAC_RXTCP_GD_FRM counter reaches half the maximum
value, and also when it reaches the maximum value.

Table 23-113: EMAC_IPC_RXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–173

9
(R/W)

UDPERRFRM Rx UDP Error Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.UDPERRFRM bit, when set, masks the
interrupt when the EMAC_RXUDP_ERR_FRM counter reaches half the
maximum value, and also when it reaches the maximum value.

8
(R/W)

UDPGFRM Rx UDP (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.UDPGFRM bit, when set, masks the interrupt
when the EMAC_RXUDP_GD_FRM counter reaches half the maximum
value, and also when it reaches the maximum value.

7
(R/W)

V6NOPAYFRM Rx IPv6 No Payload Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6NOPAYFRM bit, when set, masks the
interrupt when the EMAC_RXIPV6_NOPAY_FRM counter reaches half
the maximum value, and also when it reaches the maximum value.

6
(R/W)

V6HDERRFRM Rx IPv6 Header Error Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6HDERRFRM bit, when set, masks the
interrupt when the EMAC_RXIPV6_HDR_ERR_FRM counter reaches half
the maximum value, and also when it reaches the maximum value.

5
(R/W)

V6GFRM Rx IPv6 (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6GFRM bit, when set, masks the interrupt
when the EMAC_RXIPV6_GD_FRM counter reaches half the maximum
value, and also when it reaches the maximum value.

4
(R/W)

V4UDSBLFRM Rx IPv4 UDS Disable Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4UDSBLFRM bit, when set, masks the
interrupt when the EMAC_RXIPV4_UDSBL_FRM counter reaches half
the maximum value, and also when it reaches the maximum value.

3
(R/W)

V4FRAGFRM Rx IPv4 Fragmented Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4FRAGFRM bit, when set, masks the
interrupt when the EMAC_RXIPV4_FRAG_FRM counter reaches half the
maximum value, and also when it reaches the maximum value.

2
(R/W)

V4NOPAYFRM Rx IPv4 No Payload Frame Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4NOPAYFRM bit, when set, masks the
interrupt when the EMAC_RXIPV4_NOPAY_FRM counter reaches half
the maximum value, and also when it reaches the maximum value.

1
(R/W)

V4HDERRFRM Rx IPv4 Header Error Frame Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4HDERRFRM bit, when set, masks the
interrupt when the EMAC_RXIPV4_HDR_ERR_FRM counter reaches half
the maximum value, and also when it reaches the maximum value.

Table 23-113: EMAC_IPC_RXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–174 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

MMC IPC Rx Interrupt Register

The EMAC_IPC_RXINT register indicates status of MMC IPC receive interrupts.

0
(R/W)

V4GFRM Rx IPv4 (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4GFRM bit, when set, masks the interrupt
when the EMAC_RXIPV4_GD_FRM counter reaches half the maximum
value, and also when it reaches the maximum value.

Table 23-113: EMAC_IPC_RXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–175

Figure 23-84: EMAC_IPC_RXINT Register Diagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–176 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 23-114: EMAC_IPC_RXINT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29
(R/NW)

ICMPERROCT Rx ICMP Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.ICMPERROCT bit is set when the EMAC_
RXICMP_ERR_OCT counter reaches half the maximum value, and also
when it reaches the maximum value.

28
(R/NW)

ICMPGOCT Rx ICMP (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.ICMPGOCT bit is set when the EMAC_RXICMP_
GD_OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

27
(R/NW)

TCPERROCT Rx TCP Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.TCPERROCT bit is set when the EMAC_RXTCP_
ERR_OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

26
(R/NW)

TCPGOCT Rx TCP (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.TCPGOCT bit is set when the EMAC_RXTCP_GD_
OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

25
(R/NW)

UDPERROCT Rx UDP Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.UDPERROCT bit is set when the EMAC_RXUDP_
ERR_OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

24
(R/NW)

UDPGOCT Rx UDP (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.UDPGOCT bit is set when the EMAC_RXUDP_GD_
OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

23
(R/NW)

V6NOPAYOCT Rx IPv6 No Payload Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6NOPAYOCT bit is set when the EMAC_
RXIPV6_NOPAY_OCT counter reaches half the maximum value, and
also when it reaches the maximum value.

22
(R/NW)

V6HDERROCT Rx IPv6 Header Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6HDERROCT bit is set when the EMAC_
RXIPV6_HDR_ERR_OCT counter reaches half the maximum value, and
also when it reaches the maximum value.

21
(R/NW)

V6GOCT Rx IPv6 (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6GOCT bit is set when the EMAC_RXIPV6_GD_
OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–177

20
(R/NW)

V4UDSBLOCT Rx IPv4 UDS Disable Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4UDSBLOCT bit is set when the EMAC_
RXIPV4_UDSBL_OCT counter reaches half the maximum value, and
also when it reaches the maximum value.

19
(R/NW)

V4FRAGOCT Rx IPv4 Fragmented Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4FRAGOCT bit is set when the EMAC_RXIPV4_
FRAG_OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

18
(R/NW)

V4NOPAYOCT Rx IPv4 No Payload Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4NOPAYOCT bit set when the EMAC_RXIPV4_
NOPAY_OCT counter reaches half the maximum value, and also when
it reaches the maximum value.

17
(R/NW)

V4HDERROCT Rx IPv4 Header Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4HDERROCT bit is set when the EMAC_
RXIPV4_HDR_ERR_OCT counter reaches half the maximum value, and
also when it reaches the maximum value.

16
(R/NW)

V4GOCT Rx IPv4 (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4GOCT bit is set when the EMAC_RXIPV4_GD_
OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

13
(R/NW)

ICMPERRFRM Rx ICMP Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.ICMPERRFRM bit is set when the EMAC_
RXICMP_ERR_FRM counter reaches half the maximum value, and also
when it reaches the maximum value.

12
(R/NW)

ICMPGFRM Rx ICMP (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.ICMPGFRM bit is set when the EMAC_RXICMP_
GD_FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

11
(R/NW)

TCPERRFRM Rx TCP Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.TCPERRFRM bit is set when the EMAC_RXTCP_
ERR_FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

10
(R/NW)

TCPGFRM Rx TCP (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.TCPGFRM bit is set when the EMAC_RXTCP_GD_
FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

Table 23-114: EMAC_IPC_RXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–178 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

9
(R/NW)

UDPERRFRM Rx IDP Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.UDPERRFRM bit is set when the EMAC_RXUDP_
ERR_FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

8
(R/NW)

UDPGFRM Rx UDP (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.UDPGFRM bit is set when the EMAC_RXUDP_GD_
FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

7
(R/NW)

V6NOPAYFRM Rx IPv6 No Payload Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6NOPAYFRM bit is set when the EMAC_
RXIPV6_NOPAY_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

6
(R/NW)

V6HDERRFRM Rx IPv6 Header Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6HDERRFRM bit is set when the EMAC_
RXIPV6_HDR_ERR_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

5
(R/NW)

V6GFRM Rx IPv6 (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6GFRM bit is set when the EMAC_RXIPV6_GD_
FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

4
(R/NW)

V4UDSBLFRM Rx IPv4 UDS Disable Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4UDSBLFRM bit is set when the EMAC_
RXIPV4_UDSBL_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

3
(R/NW)

V4FRAGFRM Rx IPv4 Fragmented Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4FRAGFRM bit is set when the EMAC_RXIPV4_
FRAG_FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

2
(R/NW)

V4NOPAYFRM Rx IPv4 No Payload Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4NOPAYFRM bit is set when the EMAC_
RXIPV4_NOPAY_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

1
(R/NW)

V4HDERRFRM Rx IPv4 Header Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4HDERRFRM bit is set when the EMAC_
RXIPV4_HDR_ERR_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

Table 23-114: EMAC_IPC_RXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–179

Rx IPv4 Datagrams (Good) Register

The EMAC_RXIPV4_GD_FRM register contains a count of the number of good IPv4 datagrams received with
the TCP, UDP, or ICMP payload.

Figure 23-85: EMAC_RXIPV4_GD_FRM Register Diagram

Rx IPv4 Datagrams Header Errors Register

The EMAC_RXIPV4_HDR_ERR_FRM register contains a count of the number of IPv4 datagrams received with
header (checksum, length, or version mismatch) errors.

0
(R/NW)

V4GFRM Rx IPv4 (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4GFRM bit is set when the EMAC_RXIPV4_GD_
FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

Table 23-115: EMAC_RXIPV4_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-114: EMAC_IPC_RXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–180 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-86: EMAC_RXIPV4_HDR_ERR_FRM Register Diagram

Rx IPv4 Datagrams No Payload Frame Register

The EMAC_RXIPV4_NOPAY_FRM register contains a count of the number of IPv4 datagram frames received
that did not have a TCP, UDP, or ICMP payload processed by the Checksum engine.

Figure 23-87: EMAC_RXIPV4_NOPAY_FRM Register Diagram

Table 23-116: EMAC_RXIPV4_HDR_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–181

Rx IPv4 Datagrams Fragmented Frames Register

The EMAC_RXIPV4_FRAG_FRM register contains a count of the number of good IPv4 datagrams with frag-
mentation.

Figure 23-88: EMAC_RXIPV4_FRAG_FRM Register Diagram

Rx IPv4 UDP Disabled Frames Register

The EMAC_RXIPV4_UDSBL_FRM register contains a count of the number of good IPv4 datagrams received
that had a UDP payload with checksum disabled.

Table 23-117: EMAC_RXIPV4_NOPAY_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-118: EMAC_RXIPV4_FRAG_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–182 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-89: EMAC_RXIPV4_UDSBL_FRM Register Diagram

Rx IPv6 Datagrams Good Frames Register

The EMAC_RXIPV6_GD_FRM register contains a count of the number of good IPv6 datagrams received with
TCP, UDP, or ICMP payloads.

Figure 23-90: EMAC_RXIPV6_GD_FRM Register Diagram

Table 23-119: EMAC_RXIPV4_UDSBL_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–183

Rx IPv6 Datagrams Header Error Frames Register

The EMAC_RXIPV6_HDR_ERR_FRM register contains a count of the number of IPv6 datagrams received with
header errors (length or version mismatch).

Figure 23-91: EMAC_RXIPV6_HDR_ERR_FRM Register Diagram

Rx IPv6 Datagrams No Payload Frames Register

The EMAC_RXIPV6_NOPAY_FRM register contains a count of the number of IPv6 datagram frames received
that did not have a TCP, UDP, or ICMP payload. This includes all IPv6 datagrams with fragmentation or
security extension headers.

Table 23-120: EMAC_RXIPV6_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-121: EMAC_RXIPV6_HDR_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–184 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-92: EMAC_RXIPV6_NOPAY_FRM Register Diagram

Rx UDP Good Frames Register

The EMAC_RXUDP_GD_FRM register contains a count of the number of good IP datagrams with a good UDP
payload. This counter is not updated when the rxipv4_udsbl_frms counter is incremented.

Figure 23-93: EMAC_RXUDP_GD_FRM Register Diagram

Table 23-122: EMAC_RXIPV6_NOPAY_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–185

Rx UDP Error Frames Register

The EMAC_RXUDP_ERR_FRM register contains a count of the number of good IP datagrams whose UDP
payload has a checksum error.

Figure 23-94: EMAC_RXUDP_ERR_FRM Register Diagram

Rx TCP Good Frames Register

The EMAC_RXTCP_GD_FRM register contains a count of the number of good IP datagrams with a good TCP
payload.

Table 23-123: EMAC_RXUDP_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-124: EMAC_RXUDP_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–186 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-95: EMAC_RXTCP_GD_FRM Register Diagram

Rx TCP Error Frames Register

The EMAC_RXTCP_ERR_FRM register contains a count of the number of good IP datagrams whose TCP
payload has a checksum error.

Figure 23-96: EMAC_RXTCP_ERR_FRM Register Diagram

Table 23-125: EMAC_RXTCP_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–187

Rx ICMP Good Frames Register

The EMAC_RXICMP_GD_FRM register contains a count of the number of good IP datagrams with a good
ICMP payload.

Figure 23-97: EMAC_RXICMP_GD_FRM Register Diagram

Rx ICMP Error Frames Register

The EMAC_RXICMP_ERR_FRM register contains a count of the number of good IP datagrams whose ICMP
payload has a checksum error.

Table 23-126: EMAC_RXTCP_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-127: EMAC_RXICMP_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–188 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-98: EMAC_RXICMP_ERR_FRM Register Diagram

Rx IPv4 Datagrams Good Octets Register

The EMAC_RXIPV4_GD_OCT register contains a count of the number of bytes received in good IPv4 data-
grams encapsulating TCP, UDP, or ICMP data.

Figure 23-99: EMAC_RXIPV4_GD_OCT Register Diagram

Table 23-128: EMAC_RXICMP_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–189

Rx IPv4 Datagrams Header Errors Register

The EMAC_RXIPV4_HDR_ERR_OCT register contains a count of the number of bytes received in IPv4 data-
grams with header errors (checksum, length, version mismatch). The value in the Length field of IPv4
header is used to update this counter.

Figure 23-100: EMAC_RXIPV4_HDR_ERR_OCT Register Diagram

Rx IPv4 Datagrams No Payload Octets Register

The EMAC_RXIPV4_NOPAY_OCT register contains a count of the number of bytes received in IPv4 datagrams
that did not have a TCP, UDP, or ICMP payload. The value in the IPv4 headers Length field is used to
update this counter.

Table 23-129: EMAC_RXIPV4_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-130: EMAC_RXIPV4_HDR_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–190 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-101: EMAC_RXIPV4_NOPAY_OCT Register Diagram

Rx IPv4 Datagrams Fragmented Octets Register

The EMAC_RXIPV4_FRAG_OCT register contains a count of the number of bytes received in fragmented IPv4
datagrams. The value in the IPv4 headers Length field is used to update this counter.

Figure 23-102: EMAC_RXIPV4_FRAG_OCT Register Diagram

Table 23-131: EMAC_RXIPV4_NOPAY_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–191

Rx IPv4 UDP Disabled Octets Register

The EMAC_RXIPV4_UDSBL_OCT register contains a count of the number of bytes received in a UDP segment
that had the UDP checksum disabled. This counter does not count IP Header bytes.

Figure 23-103: EMAC_RXIPV4_UDSBL_OCT Register Diagram

Rx IPv6 Good Octets Register

The EMAC_RXIPV6_GD_OCT register contains a count of the number of bytes received in good IPv6 data-
grams encapsulating TCP, UDP or ICMPv6 data

Table 23-132: EMAC_RXIPV4_FRAG_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-133: EMAC_RXIPV4_UDSBL_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–192 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-104: EMAC_RXIPV6_GD_OCT Register Diagram

Rx IPv6 Header Errors Register

The EMAC_RXIPV6_HDR_ERR_OCT register contains a count of the number of bytes received in IPv6 data-
grams with header errors (length, version mismatch). The value in the IPv6 headers Length field is used to
update this counter.

Figure 23-105: EMAC_RXIPV6_HDR_ERR_OCT Register Diagram

Table 23-134: EMAC_RXIPV6_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–193

Rx IPv6 No Payload Octets Register

The EMAC_RXIPV6_NOPAY_OCT register contains a count of the number of bytes received in IPv6 datagrams
that did not have a TCP, UDP, or ICMP payload. The value in the IPv6 headers Length field is used to
update this counter.

Figure 23-106: EMAC_RXIPV6_NOPAY_OCT Register Diagram

Rx UDP Good Octets Register

The EMAC_RXUDP_GD_OCT register contains a count of the number of bytes received in a good UDP
segment. This counter (and the counters below) does not count IP header bytes.

Table 23-135: EMAC_RXIPV6_HDR_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-136: EMAC_RXIPV6_NOPAY_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–194 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-107: EMAC_RXUDP_GD_OCT Register Diagram

Rx UDP Error Octets Register

The EMAC_RXUDP_ERR_OCT register contains a count of the number of bytes received in a UDP segment
that had checksum errors.

Figure 23-108: EMAC_RXUDP_ERR_OCT Register Diagram

Table 23-137: EMAC_RXUDP_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–195

Rx TCP Good Octets Register

The EMAC_RXTCP_GD_OCT register contains a count of the number of bytes received in a good TCP
segment.

Figure 23-109: EMAC_RXTCP_GD_OCT Register Diagram

Rx TCP Error Octets Register

The EMAC_RXTCP_ERR_OCT register contains a count of the number of bytes received in a TCP segment
with checksum errors.

Table 23-138: EMAC_RXUDP_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-139: EMAC_RXTCP_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–196 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-110: EMAC_RXTCP_ERR_OCT Register Diagram

Rx ICMP Good Octets Register

The EMAC_RXICMP_GD_OCT register contains a count of the Number of bytes received in a good ICMP
segment.

Figure 23-111: EMAC_RXICMP_GD_OCT Register Diagram

Table 23-140: EMAC_RXTCP_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–197

Rx ICMP Error Octets Register

The EMAC_RXICMP_ERR_OCT register contains a count of the number of bytes received in an ICMP segment
with checksum errors.

Figure 23-112: EMAC_RXICMP_ERR_OCT Register Diagram

Time Stamp Control Register

The EMAC_TM_CTL register controls time stamp generation and update. The EMAC_TM_CTL.SNAPTYPSEL,
EMAC_TM_CTL.TSMSTRENA, and EMAC_TM_CTL.TSEVNTENA bits work together to decide the set of PTP
packet types for which snapshot needs to be taken. (Encoding shown in table.)

Table 23-141: EMAC_RXICMP_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-142: EMAC_RXICMP_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 23-143:

SNAPTYPSEL() TSMSTRENA TSEVNTENA Messages for which snapshot is taken

00 X 0 SYNC, Follow_Up, Delay_Req, Delay_Resp

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–198 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-113: EMAC_TM_CTL Register Diagram

00 0 1 SYNC
00 1 1 Delay_Req
01 X 0 SYNC, Follow_Up, Delay_Req, Delay_Resp, Pdelay_Req,

Pdelay_Resp, Pdelay_Resp_Follow_Up
01 0 1 SYNC, Pdelay_Req, Pdelay_Resp
01 1 1 Delay_Req, Pdelay_Req, Pdelay_Resp
10 X X SYNC, Delay_Req
11 X X Pdelay_Req, Pdelay_Resp

Table 23-143: (Continued)

SNAPTYPSEL() TSMSTRENA TSEVNTENA Messages for which snapshot is taken

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–199

Table 23-144: EMAC_TM_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

ATSFC Auxiliary Time Stamp FIFO Clear.
The EMAC_TM_CTL.ATSFC bit, when set, resets the pointers of the
Auxiliary Snapshot FIFO. This bit is cleared when the pointers are
reset and the FIFO is empty. When this bit is cleared, auxiliary
snapshots gets stored in the FIFO.

18
(R/W)

TSENMACADDR Time Stamp Enable MAC Address.
The EMAC_TM_CTL.TSENMACADDR bit, when set, uses the DA MAC
address (that matches the EMAC_ADDR0_LO and EMAC_ADDR0_HI
registers) to filter the PTP frames when PTP is sent directly over
Ethernet.
0 Disable PTP MAC address filter
1 Enable PTP MAC address filter

17:16
(R/W)

SNAPTYPSEL Snapshot Type Select.
The EMAC_TM_CTL.SNAPTYPSEL bits along with bit 15 and 14 decide
the set of PTP packet types for which snapshot needs to be taken.
(See the table in the EMAC_TM_CTL register description.)

15
(R/W)

TSMSTRENA Time Stamp Master (Frames) Enable.
The EMAC_TM_CTL.TSMSTRENA bit, when set, takes the snapshot for
messages relevant to master node only else snapshot is taken for PTP
messages relevant to slave node.
0 Enable Snapshot for Slave Messages
1 Enable Snapshot for Master Messages

14
(R/W)

TSEVNTENA Time Stamp Event (PTP Frames) Enable.
The EMAC_TM_CTL.TSEVNTENA bit, when set, takes the time stamp
snapshot for PTP event messages only (SYNC, Delay_Req, Pdelay_
Req, or Pdelay_Resp). When reset, the snapshot is taken for all PTP
messages except Announce, Management, and Signaling.
0 Enable Time Stamp for All Messages
1 Enable Time Stamp for Event Messages Only

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–200 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

13
(R/W)

TSIPV4ENA Time Stamp IPV4 (PTP Frames) Enable.
The EMAC_TM_CTL.TSIPV4ENA bit, when set, directs the EMAC
receiver to process the PTP packets encapsulated in UDP over IPv4
packets. When this bit is clear, the MAC ignores the PTP transported
over UDP-IPv4 packets. This bit is set by default.
0 Disable Time Stamp for PTP Over IPv4

Frames
1 Enable Time Stamp for PTP Over IPv4

Frames
12
(R/W)

TSIPV6ENA Time Stamp IPV6 (PTP Frames) Enable.
The EMAC_TM_CTL.TSIPV6ENA bit, when set, directs the EMAC
receiver to process PTP packets encapsulated in UDP over IPv6
packets. When this bit is clear, the MAC ignores the PTP transported
over UDP-IPv6 packets.
0 Disable Time Stamp for PTP Over IPv6

frames
1 Enable Time Stamp for PTP Over IPv6

Frames
11
(R/W)

TSIPENA Time Stamp IP Enable.
The EMAC_TM_CTL.TSIPENA bit, when set, directs the EMAC receiver
to process the PTP packets encapsulated directly in the Ethernet
frames. When this bit is clear, the MAC ignores PTP over Ethernet
packets.
0 Disable PTP Over Ethernet Frames
1 Enable PTP Over Ethernet Frames

10
(R/W)

TSVER2ENA Time Stamp VER2 (Snooping) Enable.
The EMAC_TM_CTL.TSVER2ENA bit, when set, processes the PTP
packets using the 1588 version 2 format (enables PTP packet
snooping for VER2) else processed using the version 1 format.
0 Disable packet snooping for V2 frames
1 Enable packet snooping for V2 frames

Table 23-144: EMAC_TM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–201

9
(R/W)

TSCTRLSSR Time Stamp Control Nanosecond Rollover.
The EMAC_TM_CTL.TSCTRLSSR bit, when set, rolls over the EMAC_TM_
NSEC register after 0x3B9A_C9FF value (109-1) and increments the
EMAC_TM_SEC register. When reset, the roll over value of EMAC_TM_
NSEC register is 0x7FFF_FFFF. The nanosecond increment has to be
programmed correctly depending on the PTP reference clock
frequency and this bit value.
0 Roll Over Nanosecond After 0x7FFFFFFF
1 Roll Over Nanosecond After 0x3B9AC9FF

8
(R/W)

TSENALL Time Stamp Enable All (Frames).
The EMAC_TM_CTL.TSENALL bit, when set, enables the time stamp
snapshot for all frames received by the core.
0 Disable timestamp for all frames
1 Enable timestamp for all frames

5
(R/W1S)

TSADDREG Time Stamp Addend Register Update.
The EMAC_TM_CTL.TSADDREG bit, when set, updates the contents of
the EMAC_TM_ADDEND register for fine correction. This bit is cleared
when the update is completed. This bit should be zero before setting
it.

4
(R/W1S)

TSTRIG Time Stamp (Target Time) Trigger Enable.
The EMAC_TM_CTL.TSTRIG bit, when set, generates the time stamp
interrupt when the System Time becomes greater than the value
written in EMAC_TM_TGTM register. This bit is reset after the
generation of the Time Stamp Trigger Interrupt.
1 Interrupt (TS) if system time is greater than

target time register
3
(R/W1S)

TSUPDT Time Stamp (System Time) Update.
The EMAC_TM_CTL.TSUPDT bit, when set, updates (adds/subtracts)
the system time with the value specified in the EMAC_TM_SECUPDT
register and EMAC_TM_NSECUPDT register. This bit should read =0
before updating it. This bit is reset when the update is completed in
hardware. The EMAC_TM_NSEC register is not updated.
1 System time updated with Time stamp

register values

Table 23-144: EMAC_TM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–202 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Time Stamp Sub Second Increment Register

The EMAC_TM_SUBSEC register contains the value by which the sub second is incremented.

2
(R/W1S)

TSINIT Time Stamp (System Time) Initialize.
The EMAC_TM_CTL.TSINIT bit, when set, initializes (over-writes) the
system time with the value specified in the EMAC_TM_SECUPDT
register and EMAC_TM_NSECUPDT register. This bit should read =0
before updating it. This bit is reset when the initialize is complete.
The EMAC_TM_NSEC register can only be initialized.
1 System time initialized with Time stamp

register values
1
(R/W)

TSCFUPDT Time Stamp (System Time) Fine/Coarse Update.
The EMAC_TM_CTL.TSCFUPDT bit, when set, indicates that the system
times update to be done using fine correction method. When reset, it
indicates the system time stamp correction to be done using Coarse
method.
0 Use Coarse Correction Method for System

Time Update
1 Use Fine Correction Method for System

Time Update
0
(R/W)

TSENA Time Stamp (PTP) Enable.
The EMAC_TM_CTL.TSENA bit, when set, enables PTP module for time
stamping transmitted and received frames. It also enables System
Time which will be used for time stamping the frames. User should
initialize the System Time after setting this bit.
0 Disable PTP Module
1 Enable PTP Module

Table 23-144: EMAC_TM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–203

Figure 23-114: EMAC_TM_SUBSEC Register Diagram

Time Stamp Low Seconds Register

The EMAC_TM_SEC register contains the lower 32 bits of the seconds field of the system time.

Figure 23-115: EMAC_TM_SEC Register Diagram

Table 23-145: EMAC_TM_SUBSEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

SSINC Sub-Second Increment Value.
The value in the EMAC_TM_SUBSEC.SSINC bits is accumulated every
PTP clock cycle with the contents of the nanosecond register. For
example, when PTP clock is 50 MHz (period is 20 ns), the processor
should program 20 (0x14) when the EMAC_TM_NSEC register has an
accuracy of 1 ns (EMAC_TM_CTL.TSCTRLSSR bit is set). When EMAC_
TM_CTL.TSCTRLSSR is clear, the EMAC_TM_NSEC register has a
resolution of ~0.465ns. In this case, the processor should program a
value of 43 (0x2B) that is derived by 20ns/0.465.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–204 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Time Stamp Nanoseconds Register

The EMAC_TM_NSEC register contains the nanoseconds field of the system time.

Figure 23-116: EMAC_TM_NSEC Register Diagram

Time Stamp Seconds Update Register

The EMAC_TM_SECUPDT register contains the low 32 bits to be added to, subtracted from, or written to the
seconds field of the system time.

Table 23-146: EMAC_TM_SEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

TSS Time Stamp Second.
The value in the EMAC_TM_SEC.TSS bit field indicates the current
value in seconds of the System Time maintained by the core.

Table 23-147: EMAC_TM_NSEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30:0
(R/NW)

TSSS Time Stamp Nanoseconds.
The value in the EMAC_TM_NSEC.TSSS bit field has the nanosecond
representation of time, with an accuracy of 0.46 nanosecond. (When
EMAC_TM_CTL.TSCTRLSSR is set, each bit represents 1 ns and the
maximum value will be 0x3B9A_C9FF, after which it rolls-over to
zero).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–205

Figure 23-117: EMAC_TM_SECUPDT Register Diagram

Time Stamp Nanoseconds Update Register

The EMAC_TM_NSECUPDT register contains the low 32 bits to be added to, subtracted from, or written to the
nanoseconds field of the system time.

Figure 23-118: EMAC_TM_NSECUPDT Register Diagram

Table 23-148: EMAC_TM_SECUPDT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TSS Time Stamp Second Initialize/Update.
The value in the EMAC_TM_SECUPDT.TSS bit field indicates the time,
in seconds, to be initialized or added to or subtracted from the
system time seconds.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–206 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Time Stamp Addend Register

The EMAC_TM_ADDEND register lets software adjust the clock frequency linearly to match the master clock
frequency.

Figure 23-119: EMAC_TM_ADDEND Register Diagram

Table 23-149: EMAC_TM_NSECUPDT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

ADDSUB Add or Subtract the Time.
The EMAC_TM_NSECUPDT.ADDSUB bit, when set, subtracts the time
value with the contents of the update registers. When this bit is reset,
the time value is added with the contents of the update registers.

30:0
(R/W)

TSSS Time Stamp Sub Second Initialize/Increment.
The value in the EMAC_TM_NSECUPDT.TSSS bit field indicates the
time, in nanoseconds, to be initialized or added to or subtracted from
the system time nanoseconds.

Table 23-150: EMAC_TM_ADDEND Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TSAR Time Stamp Addend Register.
The EMAC_TM_ADDEND.TSAR bits indicate the 32-bit time value to be
added to the Accumulator register to achieve time synchronization.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–207

Time Stamp Target Time Seconds Register

The EMAC_TM_TGTM register contains the high 32 bits of the target seconds field for comparison to the
corresponding system time field.

Figure 23-120: EMAC_TM_TGTM Register Diagram

Time Stamp Target Time Nanoseconds Register

The EMAC_TM_NTGTM register contains the high 32 bits of the target nanoseconds field for comparison to
the corresponding system time field.

Table 23-151: EMAC_TM_TGTM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TSTR Target Time Seconds Register.
The EMAC_TM_TGTM.TSTR bit field stores the time in seconds. When
the time stamp value matches or exceeds both EMAC_TM_TGTM and
EMAC_TM_NTGTM registers, based on the selection in the EMAC_TM_
PPSCTL.TRGTMODSEL bits, the MAC starts or stops the PPS signal
output and generates an interrupt (if enabled).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–208 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-121: EMAC_TM_NTGTM Register Diagram

Time Stamp High Second Register

The EMAC_TM_HISEC register contains the upper 32 bits of the seconds field of the system time.

Table 23-152: EMAC_TM_NTGTM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

TSTRBUSY Target Time Register Busy.
The EMAC_TM_NTGTM.TSTRBUSY bit is set when Flexible PPS is
enabled and the EMAC_TM_PPSCTL.PPSCTL field is programmed to
0001, 0010 or 0100. Programming the EMAC_TM_PPSCTL.PPSCTL
field to 0001, 0010 or 0100, instructs the core to synchronize the
EMAC_TM_TGTM and EMAC_TM_NTGTM registers to the PTP clock
domain. The EMAC clears this bit after synchronizing the EMAC_TM_
TGTM and EMAC_TM_NTGTM registers to the PTP clock domain The
application must not update the EMAC_TM_TGTM and EMAC_TM_NTGTM
registers when this bit is read as 1. Otherwise, the synchronization of
the previous programmed time gets corrupted.

30:0
(R/W)

TSTR Target Time Nano Seconds.
The EMAC_TM_NTGTM.TSTR bit field stores the time in (signed)
nanoseconds. When the value of the time stamp matches the both
EMAC_TM_TGTM and EMAC_TM_NTGTM registers, based on the EMAC_
TM_PPSCTL.TRGTMODSEL field, the MAC starts or stops the PPS
signal output and generates an interrupt (if enabled). This value
should not exceed 0x3B9A_C9FF when EMAC_TM_PPSCTL.
TRGTMODSEL is set. The actual start or stop time of the PPS signal
output may have an error margin up to one unit of sub-second
increment value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–209

Figure 23-122: EMAC_TM_HISEC Register Diagram

Time Stamp Status Register

The EMAC_TM_STMPSTAT register contains the PTP status.

Figure 23-123: EMAC_TM_STMPSTAT Register Diagram

Table 23-153: EMAC_TM_HISEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

TSHWR Time Stamp Higher Word Seconds Register.
The EMAC_TM_HISEC.TSHWR bit field contains the most significant
16-bits of the time stamp seconds value. The register is directly
written to initialize the value. This register is incremented when there
is an overflow from the 32-bits of the EMAC_TM_SEC register.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–210 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PPS Control Register

The EMAC_TM_PPSCTL register controls the interval of PPS output.

When the EMAC_TM_PPSCTL.PPSEN bit is disabled (=0, fixed PPS output), the EMAC_TM_PPSCTL.PPSCTL
bits control the behavior of the PPS output signal. The default value of PPSCTRL is 0000 and the PPS
output is 1 pulse every second. For other values of PPSCTRL, the PPS output becomes a generated clock.
(See bit enumerations for frequencies.) In the binary rollover mode, the PPS output has a duty cycle of 50
percent with these frequencies. In the digital rollover mode, the PPS output frequency is an average
number. The actual clock is of different frequency that gets synchronized every second. This behavior is

Table 23-154: EMAC_TM_STMPSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27:25
(R/NW)

ATSNS Auxiliary Time Stamp Number of Snapshots.
The EMAC_TM_STMPSTAT.ATSNS bits indicate the number of
Snapshots available in the FIFO. A value of 4 (100) indicates that the
Auxiliary Snapshot FIFO is full. These bits are cleared (to 000) when
the Auxiliary snapshot FIFO clear bit is set.

24
(RC/NW)

ATSSTM Auxiliary Time Stamp Snapshot Trigger Missed.
The EMAC_TM_STMPSTAT.ATSSTM bit is set when the Auxiliary time
stamp snapshot FIFO is full and external trigger was set. This
indicates that the latest snapshot was not stored in the FIFO.

3
(R/W)

TSTRGTERR Time Stamp Target Time Programming Error.
The EMAC_TM_STMPSTAT.TSTRGTERR bit is set when the target time,
which is being programmed in the EMAC_TM_SEC and EMAC_TM_NSEC
registers, has already elapsed. This bit is cleared when read by the
application.

2
(RC/NW)

ATSTS Auxiliary Time Stamp Trigger Snapshot.
The EMAC_TM_STMPSTAT.ATSTS bit is set high when the auxiliary
snapshot is written to the FIFO.

1
(RC/NW)

TSTARGT Time Stamp Target Time Reached.
The EMAC_TM_STMPSTAT.TSTARGT bit, when set, indicates the value
of system time has reached or passed the value specified in the EMAC_
TM_TGTM and EMAC_TM_NTGTM registers.

0
(RC/NW)

TSSOVF Time Stamp Seconds Overflow.
The EMAC_TM_STMPSTAT.TSSOVF bit, when set, indicates that the
seconds value of the time stamp (when supporting PTP version 2
format) has overflowed beyond 0xFFFF_FFFF.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–211

because of the non-linear toggling of the bits in the digital rollover mode in System Time - Nanoseconds
Register.

When the EMAC_TM_PPSCTL.PPSEN bit is enabled (=1, flexible PPS output), the EMAC_TM_PPSCTL.PPSCTL
bits function as PPSCMD. (See bit enumerations for commands.)Programming these bits with a non-zero
value instructs the core to initiate an event. After the command is transferred or synchronized to the PTP
clock domain, these bits gets cleared automatically. Software should ensure that these bits are programmed
only when they are "all-zero".

• EMAC_TM_PPSCTL.PPSCTL=0000 CMD=No Command (PPS output =1Hz)

• EMAC_TM_PPSCTL.PPSCTL=0001

(CMD=START Single; BR=2kHz; DR=1kHz) This PPS command generates single pulse rising at start
point defined in Target Time Registers and of duration defined in PPS Width Register. (Binary Rollover
= 2 kHz; Digital Rollover = 1 kHz.)

• EMAC_TM_PPSCTL.PPSCTL=0010

(CMD=START Pulse; BR=4kHz; DR=2kHz) This PPS command generates the train of pulses rising at
the start point defined in the Target Time Registers and of duration defined in the PPS Width Register
and repeated at interval defined in the PPS Interval Register. By default, the PPS pulse train is free-
running unless stopped by 'STOP Pulse train at time' or 'STOP Pulse Train immediately' commands.
(Binary Rollover = 4 kHz; Digital Rollover = 2 kHz.)

• EMAC_TM_PPSCTL.PPSCTL=0011

(CMD=Cancel START; BR=8kHz; DR=4kHz) This PPS command cancels the START Single Pulse and
START Pulse Train commands if the system time has not crossed the programmed start time. (Binary
Rollover = 4 kHz; Digital Rollover = 4 kHz.)

• EMAC_TM_PPSCTL.PPSCTL=0100

(CMD=STOP Pulse Time; BR=16kHz; DR=8kHz) This PPS command stops the train of pulses initi-
ated by the START Pulse Train command (PPSCMD = 0010) after the time programmed in the Target
Time registers elapses. (Binary Rollover = 16 kHz; Digital Rollover = 8 kHz.)

• EMAC_TM_PPSCTL.PPSCTL=0101

(CMD=STOP Pulse Now) This command immediately stops the train of pulses initiated by the START
Pulse Train command (PPSCMD = 0010).

• EMAC_TM_PPSCTL.PPSCTL=0110

(CMD=Cancel STOP Pulse) This PPS command cancels the STOP pulse train at time command if the
programmed stop time has not elapsed. The PPS pulse train becomes free-running on the successful
execution of this command.

All values not shown in the bit enumerations are reserved.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–212 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-124: EMAC_TM_PPSCTL Register Diagram

Table 23-155: EMAC_TM_PPSCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:5
(R/W)

TRGTMODSEL Target Time Register Mode.
The EMAC_TM_PPSCTL.TRGTMODSEL bits select the target time register
mode.
0 Interrupt Only

The Target Time registers are programmed
only for interrupt event generation.

1 Reserved
2 Interrupt and PPS Start/Stop

The Target Time registers are programmed
for interrupt event and for starting or
stopping the PPS output signal generation.

3 PPS Start/Stop Only
The Target Time registers are programmed
only for starting or stopping the PPS output
signal generation. No interrupt is asserted.

4
(R/W)

PPSEN Enable the flexible PPS output mode.
The EMAC_TM_PPSCTL.PPSEN bit enables PPS operation. When set
low, the EMAC_TM_PPSCTL.PPSCTL field controls frequency of Fixed
PPS output. When set high, EMAC_TM_PPSCTL.PPSCTL field is used to
command Flexible PPS output.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–213

Time Stamp Auxiliary TS Nano Seconds Register

The EMAC_TM_AUXSTMP_NSEC register contains the low 32 bits (nanoseconds field) of the auxiliary time
stamp.

3:0
(R/W)

PPSCTL PPS Frequency Control.
When the EMAC_TM_PPSCTL.PPSEN bit is disabled (=0, fixed PPS
output), the EMAC_TM_PPSCTL.PPSCTL bits control the behavior of
the PPS output signal. When the EMAC_TM_PPSCTL.PPSEN bit is
enabled (=1, flexible PPS output), the EMAC_TM_PPSCTL.PPSCTL bits
function as PPSCMD. (See bit enumerations for PPS output
frequency, rollover, and PPS commands.)Programming these bits
with a non-zero value instructs the core to initiate an event. After the
command is transferred or synchronized to the PTP clock domain,
these bits gets cleared automatically. Software should ensure that
these bits are programmed only when they are "all-zero". All values
not shown in the bit enumerations are reserved.

For more information about the EMAC_TM_PPSCTL.PPSCTL bits, see
the register description.
0 CMD=No Command
1 CMD=START Single; BR=2kHz; DR=1kHz

For more info, see register description.
2 CMD=START Pulse; BR=4kHz; DR=2kHz

For more info, see register description.
3 CMD=Cancel START; BR=8kHz; DR=4kHz

For more info, see register description.
4 CMD=STOP Pulse Time; BR=16kHz;

DR=8kHz
For more info, see register description.

5 CMD=STOP Pulse Now
For more info, see register description.

6 CMD=Cancel STOP Pulse
For more info, see register description.

Table 23-155: EMAC_TM_PPSCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–214 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-125: EMAC_TM_AUXSTMP_NSEC Register Diagram

Time Stamp Auxiliary TM Seconds Register

The EMAC_TM_AUXSTMP_SEC register contains the low 32 bits of the seconds field of the auxiliary time
stamp.

Figure 23-126: EMAC_TM_AUXSTMP_SEC Register Diagram

Table 23-156: EMAC_TM_AUXSTMP_NSEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Time Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–215

Time Stamp PPS Interval Register

The EMAC_TM_PPSINTVL register contains the interval value for the time between rising edges (period) of
PPS output.

Figure 23-127: EMAC_TM_PPSINTVL Register Diagram

PPS Width Register

The EMAC_TM_PPSWIDTH register contains the interval value for the time between a rising and the next
falling edge (width) of PPS output.

Table 23-157: EMAC_TM_AUXSTMP_SEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Time Value.

Table 23-158: EMAC_TM_PPSINTVL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

PPSINT PPS Output Signal Interval.
The EMAC_TM_PPSINTVL.PPSINT bits store the interval between the
rising edges of PPS signal output in terms of units of sub-second
increment value. You need to program one value less than the
required interval. For example, if the PTP reference clock is 50 MHz
(period of 20ns), and desired interval between rising edges of PPS
signal output is 100ns (that is, 5 units of sub-second increment
value), then you should program value 4 (5-1) in this register.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–216 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-128: EMAC_TM_PPSWIDTH Register Diagram

DMA Bus Mode Register

The EMAC_DMA_BUSMODE register selects the DMA bus operating modes for EMAC DMA.

Table 23-159: EMAC_TM_PPSWIDTH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

PPSINT PPS Output Signal Interval.
The EMAC_TM_PPSWIDTH.PPSINT bits store the interval between the
rising edges of PPS signal output in terms of units of sub-second
increment value. You need to program one value less than the
required interval. For example, if the PTP reference clock is 50 MHz
(period of 20ns), and desired interval between rising edges of PPS
signal output is 100ns (that is, 5 units of sub-second increment
value), then you should program value 4 (5-1) in this register.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–217

Figure 23-129: EMAC_DMA_BUSMODE Register Diagram

Table 23-160: EMAC_DMA_BUSMODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25
(R/W)

AAL Address Aligned Bursts.
The EMAC_DMA_BUSMODE.AAL bit, when set high and the FB bit equals
1, directs the SCB interface to generate all bursts aligned to the start
address LS bits. If the FB bit is equal to 0, the first burst (accessing the
data buffers start address) is not aligned, but subsequent bursts are
aligned to the address.

24
(R/W)

PBL8 PBL * 8.
The EMAC_DMA_BUSMODE.PBL8 bit, when set high, multiplies the PBL
value programmed (bits [22:17] and bits [13:8]) eight times.
Therefore, the DMA transfers the data in 8, 16, and 32 beats
depending on the PBL value.

23
(R/W)

USP Use Separate PBL.
The EMAC_DMA_BUSMODE.USP bit, when set high, configures the Rx
DMA to use the value configured in bits [22:17] as PBL while the PBL
value in bits [13:8] is applicable to Tx DMA operations only.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–218 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

22:17
(R/W)

RPBL Receive Programmable Burst Length.
The EMAC_DMA_BUSMODE.RPBL bits indicate the maximum number of
beats to be transferred in one Rx DMA transaction. This is the
maximum value that is used in a single block Read/Write. The Rx
DMA always attempts to burst as specified in RPBL every time it
starts a Burst transfer on the host bus. RPBL can be programmed
with permissible values of 1, 2, 4, 8, 16, and 32. Any other value
results in undefined behavior. These bits are valid and applicable only
when USP is set high.

16
(R/W)

FB Fixed Burst.
The EMAC_DMA_BUSMODE.FB bit controls whether the SCB Master
interface performs fixed burst transfers or not. See the EMAC_DMA_
BMMODE.UNDEF bit description for more information.

13:8
(R/W)

PBL Programmable Burst Length.
The EMAC_DMA_BUSMODE.PBL bits indicate the maximum number of
beats to be transferred in one DMA transaction. This is the
maximum value that is used in a single block Read/Write. The DMA
always attempts to burst as specified in PBL each time it starts a Burst
transfer on the host bus. Any other value results in undefined
behavior. When USP is set high, this PBL value is applicable for Tx
DMA transactions only.

PBL-max limit = (FIFO size / 2) / 4.
PBL-max limit (transmit) = 256 bytes / 2 /4 = 32.
PBL-max limit (receive) = 128 bytes / 2 /4 = 16.

Note that this PBL is at the DMA end. If PBL= 32 and if BLEN16 is
enabled, the DMA automatically splits 32 bursts in to 2 x 16 bursts. If
EMAC_DMA_BUSMODE.PBL =8, and if EMAC_DMA_BMMODE.BLEN16 is
enabled, the max burst is limited to EMAC_DMA_BMMODE.BLEN8. If
EMAC_DMA_BUSMODE.PBL8 bit is set, the programmed PBL value is
multiplied by 8 times internally. However, the result cannot be more
than the above maximum limits specified above.

Table 23-160: EMAC_DMA_BUSMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–219

DMA Tx Poll Demand Register

The EMAC_DMA_TXPOLL register directs the EMAC to poll the transmit descriptor list.

7
(R/W)

ATDS Alternate Descriptor Size.
The EMAC_DMA_BUSMODE.ATDS bit, when set, increases the size of the
alternate descriptor to 32 bytes (8 DWORDS). This is required when
the Advanced Time Stamp feature or Full IPC Offload Engine is
enabled in the receiver. When reset, the descriptor size reverts back
to 4 DWORDs (16 bytes). The enhanced descriptor is not required if
the Advanced Time Stamp and IPC Full Checksum Offload features
are not enabled. In such case, you can use the 16 bytes descriptor to
save 4 bytes of memory.

6:2
(R/W)

DSL Descriptor Skip Length.
The EMAC_DMA_BUSMODE.DSL bit specifies the number of 32-bit
words to skip between two unchained descriptors. The address
skipping starts from the end of current descriptor to the start of next
descriptor. When DSL value is equal to zero, then the descriptor table
is taken as contiguous by the DMA, in Ring mode.

0
(R/W1S)

SWR Software Reset.
The EMAC_DMA_BUSMODE.SWR bit, when set, directs the MAC DMA
Controller to reset all MAC Subsystem internal registers and logic. It
is cleared automatically after the reset operation has completed in all
of the core clock domains. Read a 0 value in this bit before re-
programming any register of the core. Note: The reset operation is
completed only when all the resets in all the active clock domains are
de-asserted. Therefore, it is essential that all the PHY inputs clocks
(applicable for the selected PHY interface) are present for software
reset completion.

Table 23-160: EMAC_DMA_BUSMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–220 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-130: EMAC_DMA_TXPOLL Register Diagram

DMA Rx Poll Demand register

The EMAC_DMA_RXPOLL register directs the EMAC to poll the receive descriptor list.

Figure 23-131: EMAC_DMA_RXPOLL Register Diagram

Table 23-161: EMAC_DMA_TXPOLL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

START Transmit Poll Demand.
The EMAC_DMA_TXPOLL.START bits, when written with any value,
cause the DMA to read the current descriptor pointed to by EMAC_
DMA_TXDSC_CUR register. If that descriptor is not available (owned by
application), transmission returns to the Suspend state, and the
EMAC_DMA_STAT.TU bit is asserted. If the descriptor is available,
transmission resumes.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–221

DMA Rx Descriptor List Address Register

The EMAC_DMA_RXDSC_ADDR register holds the address for the DMA receive descriptor list. Writing to this
Register is permitted only when reception is stopped. When stopped, this must be written to before the
receive Start command is given. The processor can write to EMAC_DMA_RXDSC_ADDR only when Rx DMA
has stopped (EMAC_DMA_OPMODE.SR bit =0). When stopped, it can be written with a new descriptor list
address. When the processor sets the EMAC_DMA_OPMODE.SR bit to 1, the DMA takes the newly
programmed descriptor base address. If this register is not changed when the EMAC_DMA_OPMODE.SR bit is
cleared to 0, the DMA takes the descriptor address where it was stopped earlier.

Figure 23-132: EMAC_DMA_RXDSC_ADDR Register Diagram

Table 23-162: EMAC_DMA_RXPOLL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

START Receive Poll Demand.
The EMAC_DMA_RXPOLL.START bits, when written with any value,
cause the DMA to read the current descriptor pointed to by the
EMAC_DMA_RXDSC_CUR register. If that descriptor is not available
(owned by application), reception returns to the Suspended state, and
the EMAC_DMA_STAT.RU bit is asserted. If the descriptor is available,
the Receive DMA returns to the active state.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–222 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA Tx Descriptor List Address Register

The EMAC_DMA_TXDSC_ADDR register holds the address for the DMA transmit descriptor list. The processor
can write to this Register only when Tx DMA has stopped (EMAC_DMA_OPMODE.ST bit =0). When stopped,
this can be written with a new descriptor list address. When the processor sets the EMAC_DMA_OPMODE.ST
bit to 1, the DMA takes the newly programmed descriptor base address. If this register is not changed when
the EMAC_DMA_OPMODE.ST bit is cleared to 0, then the DMA takes the descriptor address where it was
stopped earlier.

Figure 23-133: EMAC_DMA_TXDSC_ADDR Register Diagram

Table 23-163: EMAC_DMA_RXDSC_ADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Start of Receive List.
The EMAC_DMA_RXDSC_ADDR.VALUE bit field contains the base
address of the First Descriptor in the Receive Descriptor list. The LSB
bits [1:0] for the 32bit bus width are ignored and are taken as all-zero
by the DMA internally. Therefore, these LSB bits are Read-Only
(RO).

Table 23-164: EMAC_DMA_TXDSC_ADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Start of Transmit List.
The EMAC_DMA_TXDSC_ADDR.VALUE bit field contains the base
address of the First Descriptor in the Transmit Descriptor list. The
LSB bits [1:0] for 32bit bus width are ignored and are taken as all-zero
by the DMA internally. Therefore, these LSB bits are Read-Only
(RO).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–223

DMA Status Register

The EMAC_DMA_STAT register indicates EMAC DMA status.

Figure 23-134: EMAC_DMA_STAT Register Diagram

Table 23-165: EMAC_DMA_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29
(R/NW)

TTI Time Stamp Trigger Interrupt.
The EMAC_DMA_STAT.TTI bit indicates an interrupt event in the
MAC core's Time Stamp Generator block. The software must read the
corresponding registers in the MAC core to get the exact cause of
interrupt and clear its source to reset this bit to =0. When this bit is
high, the interrupt signal from the MAC is high.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–224 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

27
(R/NW)

MCI MAC MMC Interrupt.
The EMAC_DMA_STAT.MCI bit reflects an interrupt event in the MMC
module of the MAC core. The software must read the corresponding
registers in the MAC core to get the exact cause of interrupt and clear
the source of interrupt to make this bit as =0. The interrupt signal
from the MAC is high when this bit is high.

25:23
(R/NW)

EB Error Bits.
The EMAC_DMA_STAT.EB bits indicate the type of error that caused a
Bus Error (for example, error response on the SCB interface). These
bits are valid only when the EMAC_DMA_STAT.FBI bit is set. This field
does not generate an interrupt.
0 Error during data buffer access, write

transfer, Rx DMA
1 Error during data buffer access, write

transfer, Tx DMA
2 Error during data buffer access, read

transfer, Rx DMA
3 Error during data buffer access, read

transfer, Tx DMA
4 Error during descriptor access, write

transfer, Rx DMA
5 Error during descriptor access, write

transfer, Tx DMA
6 Error during descriptor access, read transfer,

Rx DMA
7 Error during descriptor access, read transfer,

Tx DMA

Table 23-165: EMAC_DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–225

22:20
(R/NW)

TS Tx Process State.
The EMAC_DMA_STAT.TS bits indicate the transmit DMA state. This
field does not generate an interrupt.
0 Stopped; Reset or Stop Tx Command Issued
1 Running; Fetching Tx Transfer Descriptor
2 Running; Waiting for Status
3 Reading Data from Host Memory Buffer

and Queuing It to Tx Buffer
4 TIME_STAMP Write State
5 Reserved
6 Suspended; Tx Descriptor Unavailable or Tx

Buffer Underflow
7 Closing Tx Descriptor

19:17
(R/NW)

RS Rx Process State.
The EMAC_DMA_STAT.RS bits indicate the receive DMA state. This
field does not generate an interrupt.
0 Stopped: Reset or Stop Rx Command Issued.
1 Running: Fetching Rx Transfer Descriptor.
2 Reserved
3 Running: Waiting for Rx Packet
4 Suspended: Rx Descriptor Unavailable
5 Running: Closing Rx Descriptor
6 TIME_STAMP Write State
7 Running: Transferring Rx Packet Data from

Rx Buffer to Host Memory
16
(R/W1C)

NIS Normal Interrupt Summary.
The value of the EMAC_DMA_STAT.NIS bit field is the logical OR of the
following when the corresponding interrupt bits are enabled in DMA
Interrupt Enable Register: EMAC_DMA_STAT.TI, EMAC_DMA_STAT.TU,
EMAC_DMA_STAT.RI, and EMAC_DMA_STAT.ERI. Only unmasked bits
affect the Normal Interrupt Summary bit. This is a sticky bit and
must be cleared (by writing a 1 to this bit) each time a corresponding
bit that causes EMAC_DMA_STAT.NIS to be set is cleared.

Table 23-165: EMAC_DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–226 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

15
(R/W1C)

AIS Abnormal Interrupt Summary.
The value of the EMAC_DMA_STAT.AIS bit field is the logical OR of the
following when the corresponding interrupt bits are enabled in DMA
Interrupt Enable Register: EMAC_DMA_IEN.TPS, EMAC_DMA_IEN.TJT,
EMAC_DMA_IEN.OVF, EMAC_DMA_IEN.UNF, EMAC_DMA_IEN.RU, EMAC_
DMA_IEN.RPS, EMAC_DMA_IEN.RWT, EMAC_DMA_IEN.ETI, and EMAC_
DMA_IEN.FBI. Only unmasked bits affect the Abnormal Interrupt
Summary bit. This is a sticky bit and must be cleared each time a
corresponding bit that causes EMAC_DMA_STAT.AIS to be set is
cleared.

14
(R/W1C)

ERI Early Receive Interrupt.
The EMAC_DMA_STAT.ERI bit indicates that the DMA had filled the
first data buffer of the packet. The EMAC_DMA_STAT.RI bit
automatically clears this bit.

13
(R/W1C)

FBI Fatal Bus Error Interrupt.
The EMAC_DMA_STAT.FBI bit indicates that a bus error occurred, as
detailed in the EMAC_DMA_STAT.EB field. When this bit is set, the
corresponding DMA engine disables all its bus accesses.

10
(R/W1C)

ETI Early Transmit Interrupt.
The EMAC_DMA_STAT.ETI bit indicates that the frame to be
transmitted was fully transferred to the MFL Transmit FIFO.

9
(R/W1C)

RWT Receive WatchDog Timeout.
The EMAC_DMA_STAT.RWT bit is asserted when a frame with a length
greater than 2,048 bytes is received (10, 240 when Jumbo Frame
mode is enabled).

8
(R/W1C)

RPS Receive Process Stopped.
The EMAC_DMA_STAT.RPS bit is asserted when the Receive Process
enters the Stopped state.

7
(R/W1C)

RU Receive Buffer Unavailable.
The EMAC_DMA_STAT.RU bit indicates that the Next Descriptor in the
Receive List is owned by the application and cannot be acquired by
the DMA. Receive Process is suspended. To resume processing
Receive descriptors, the application should change the ownership of
the descriptor and issue a Receive Poll Demand command. If no
Receive Poll Demand is issued, Receive Process resumes when the
next recognized incoming frame is received. This bit is set only when
the previous Receive Descriptor was owned by the DMA.

Table 23-165: EMAC_DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–227

DMA Operation Mode Register

The EMAC_DMA_OPMODE register selects receive and transmit DMA operating modes.

6
(R/W1C)

RI Receive Interrupt.
The EMAC_DMA_STAT.RI bit indicates the completion of frame
reception. Specific frame status information has been posted in the
descriptor. Reception remains in the Running state.

5
(R/W1C)

UNF Transmit Buffer Underflow.
The EMAC_DMA_STAT.UNF bit indicates that the Transmit Buffer had
an Underflow during frame transmission. Transmission is suspended
and an Underflow Error TDES0[1] is set.

4
(R/W1C)

OVF Receive Buffer Overflow.
The EMAC_DMA_STAT.OVF bit indicates that the Receive Buffer had an
Overflow during frame reception. If the partial frame is transferred
to application, the overflow status is set in RDES0[11].

3
(R/W1C)

TJT Transmit Jabber Timeout.
The EMAC_DMA_STAT.TJT bit indicates that the Transmit Jabber
Timer expired, meaning that the transmitter had been excessively
active. The transmission process is aborted and placed in the Stopped
state. This causes the Transmit Jabber Timeout TDES0[14] flag to
assert.

2
(R/W1C)

TU Transmit Buffer Unavailable.
The EMAC_DMA_STAT.TU bit indicates that the Next Descriptor in the
Transmit List is owned by the application and cannot be acquired by
the DMA. Transmission is suspended. The value in the EMAC_DMA_
STAT.TS bits explain the Transmit Process state transitions. To
resume processing transmit descriptors, the application should
change the ownership of the bit of the descriptor and then issue a
Transmit Poll Demand command.

1
(R/W1C)

TPS Transmit Process Stopped.
The EMAC_DMA_STAT.TPS bit is set when the transmission is stopped.

0
(R/W1C)

TI Transmit Interrupt.
The EMAC_DMA_STAT.TI bit indicates that frame transmission is
finished and TDES1[31] is set in the First Descriptor.

Table 23-165: EMAC_DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–228 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-135: EMAC_DMA_OPMODE Register Diagram

Table 23-166: EMAC_DMA_OPMODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

26
(R/W)

DT Disable Dropping TCP/IP Errors.
The EMAC_DMA_OPMODE.DT bit, when set, directs the core not to drop
frames that only have errors detected by the Receive Checksum
Offload engine. Such frames do not have any errors (including FCS
error) in the Ethernet frame received by the MAC but have errors in
the encapsulated payload only. When this bit is reset, all error frames
are dropped if the EMAC_DMA_OPMODE.FEF bit is reset.

25
(R/W)

RSF Receive Store and Forward.
The EMAC_DMA_OPMODE.RSF bit, when set, directs the MFL only to
read a frame from the Rx FIFO after the complete frame has been
written to it, ignoring the EMAC_DMA_OPMODE.RTC bits. When this bit
is reset, the Rx FIFO operates in threshold mode, subject to the
threshold specified by the EMAC_DMA_OPMODE.RTC bits.

24
(R/W)

DFF Disable Flushing of received Frames.
The EMAC_DMA_OPMODE.DFF bit, when set, directs the Rx DMA not to
flush any frames because of the unavailability of receive descriptors/
buffers as it does normally when this bit is reset.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–229

21
(R/W)

TSF Transmit Store and Forward.
The EMAC_DMA_OPMODE.TSF bit, when set, starts transmission when a
full frame resides in the MFL Transmit FIFO. When this bit is set, the
TTC values specified in Register 6[16:14] are ignored. This bit should
be changed only when transmission is stopped.

20
(R/W)

FTF Flush Transmit FIFO.
The EMAC_DMA_OPMODE.FTF bit, when set, directs the transmit FIFO
controller logic to reset to its default values and thus all data in the Tx
FIFO is lost/flushed. This bit is cleared internally when the flushing
operation is completed fully. The Operation Mode register should
not be written to until this bit is cleared. The data which is already
accepted by the MAC transmitter is not flushed. It is scheduled for
transmission and results in underflow and runt frame transmission.
Note: The flush operation completes only after emptying the Tx FIFO
of its contents and all the pending Transmit Status of the transmitted
frames are accepted by the host. In order to complete this flush
operation, the PHY transmit clock is required to be active.

16:14
(R/W)

TTC Transmit Threshold Control.
The EMAC_DMA_OPMODE.TTC bits control the threshold level of the
MFL Transmit FIFO. Transmission starts when the frame size within
the MFL Transmit FIFO is larger than the threshold. In addition, full
frames with a length less than the threshold are also transmitted.
These bits are used only when the EMAC_DMA_OPMODE.TSF bit is reset.
The value =011 is not used.
0 64
1 128
2 192
3 256
4 40
5 32
6 24
7 16

Table 23-166: EMAC_DMA_OPMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–230 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

13
(R/W)

ST Start/Stop Transmission.
The EMAC_DMA_OPMODE.ST bit, when set, places transmission in the
Running state, and the DMA checks the Transmit List at the current
position for a frame to be transmitted. Descriptor acquisition is
attempted either from the current position in the list, which is the
Transmit List Base Address set by Transmit Descriptor List Address,
or from the position retained when transmission was stopped
previously. If the current descriptor is not owned by the DMA,
transmission enters the Suspended state, and the EMAC_DMA_STAT.TU
bit is set.
The Start Transmission command is effective only when
transmission is stopped. If the command is issued before setting the
EMAC_DMA_TXDSC_CUR address register, then the DMA behavior is
unpredictable. When this bit is reset, the transmission process is
placed in the Stopped state after completing the transmission of the
current frame. The Next Descriptor position in the Transmit List is
saved, and becomes the current position when transmission is
restarted. The stop transmission command is effective only when the
transmission of the current frame is complete or the transmission is
in the Suspended state.

7
(R/W)

FEF Forward Error Frames.
The EMAC_DMA_OPMODE.FEF bit, when reset, directs the Rx FIFO to
drop frames with error status (CRC error, collision error, giant frame,
watchdog timeout, overflow). However, if the frames start byte
(write) pointer is already transferred to the read controller side (in
Threshold mode), then the frames are not dropped. When EMAC_
DMA_OPMODE.FEF bit is set, all frames except runt error frames are
forwarded to the DMA. But when Rx FIFO overflows when a partial
frame is written, then such frames are dropped even when EMAC_
DMA_OPMODE.FEF is set.

6
(R/W)

FUF Forward Undersized good Frames.
The EMAC_DMA_OPMODE.FUF bit, when set, directs the Rx FIFO to
forward Undersized frames (frames with no Error and length less
than 64 bytes) including pad-bytes and CRC). When reset, the Rx
FIFO drops all frames of less than 64 bytes, unless it is already
transferred because of lower value of Receive Threshold (for example,
EMAC_DMA_OPMODE.RTC =01).

Table 23-166: EMAC_DMA_OPMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–231

DMA Interrupt Enable Register

The EMAC_DMA_IEN register enables (unmasks) EMAC DMA interrupts.

4:3
(R/W)

RTC Receive Threshold Control.
The EMAC_DMA_OPMODE.RTC bits control the threshold level of the
MFL Receive FIFO. Transfer (request) to DMA starts when the frame
size within the MFL Receive FIFO is larger than the threshold. In
addition, full frames with a length less than the threshold are
transferred automatically. These bits are valid only when the EMAC_
DMA_OPMODE.RSF bit is zero, and are ignored when the EMAC_DMA_
OPMODE.RSF bit is set to 1. The value =11 is not used.
0 64
1 32
2 96
3 128

2
(R/W)

OSF Operate on Second Frame.
The EMAC_DMA_OPMODE.OSF bit, when set, instructs the DMA to
process a second frame of Transmit data even before status for first
frame is obtained.

1
(R/W)

SR Start/Stop Receive.
The EMAC_DMA_OPMODE.SR bit, when set, places the Receive process
in the Running state. The DMA attempts to acquire the descriptor
from the Receive list and processes incoming frames. Descriptor
acquisition is attempted from the current position in the list, which is
the address set by DMA Receive Descriptor List Address or the
position retained when the Receive process was previously stopped. If
no descriptor is owned by the DMA, reception is suspended, and the
EMAC_DMA_STAT.RU bit is set.
The Start Receive command is effective only when reception has
stopped. If the command was issued before setting EMAC_DMA_
RXDSC_CURaddress register, DMA behavior is unpredictable. When
this bit is cleared, Rx DMA operation is stopped after the transfer of
the current frame. The next descriptor position in the Receive list is
saved and becomes the current position after the Receive process is
restarted. The Stop Receive command is effective only when the
Receive process is in either the Running (waiting for receive packet)
or in the Suspended state.

Table 23-166: EMAC_DMA_OPMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–232 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-136: EMAC_DMA_IEN Register Diagram

Table 23-167: EMAC_DMA_IEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W)

NIS Normal Interrupt Summary Enable.
The EMAC_DMA_IEN.NIS bit, when set, enables a normal interrupt.
When this bit is reset, a normal interrupt is disabled. This bit enables
the following bits: EMAC_DMA_STAT.TI, EMAC_DMA_STAT.TU, EMAC_
DMA_STAT.RI, and EMAC_DMA_STAT.ERI.

15
(R/W)

AIS Abnormal Interrupt Summary Enable.
The EMAC_DMA_IEN.AIS bit, when set, enables an abnormal
interrupt. When this bit is reset, an Abnormal Interrupt is disabled.
This bit enables the following bits: EMAC_DMA_STAT.TPS, EMAC_DMA_
STAT.TJT, EMAC_DMA_STAT.OVF, EMAC_DMA_STAT.RU, EMAC_DMA_
STAT.RPS, EMAC_DMA_STAT.RWT, EMAC_DMA_STAT.ETI, and EMAC_
DMA_STAT.FBI.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–233

14
(R/W)

ERI Early Receive Interrupt Enable.
The EMAC_DMA_IEN.ERI bit, when set (and with EMAC_DMA_IEN.NIS
=1), enables the Early Receive Interrupt. When this bit is reset, Early
Receive Interrupt is disabled.

13
(R/W)

FBI Fatal Bus Error Enable.
The EMAC_DMA_IEN.FBI bit, when set (and with EMAC_DMA_IEN.AIS
=1), enables the Fatal Bus Error Interrupt. When this bit is reset, Fatal
Bus Error Enable Interrupt is disabled.

10
(R/W)

ETI Early Transmit Interrupt Enable.
The EMAC_DMA_IEN.ETI bit, when this bit is set (and with EMAC_DMA_
IEN.AIS =1), enables the Early Transmit Interrupt. When this bit is
reset, Early Transmit Interrupt is disabled.

9
(R/W)

RWT Receive WatchdogTimeout Enable.
The EMAC_DMA_IEN.RWT bit, when set (and with EMAC_DMA_IEN.AIS
=1), enables the Receive Watchdog Timeout Interrupt. When this bit
is reset, Receive Watchdog Timeout Interrupt is disabled.

8
(R/W)

RPS Receive Stopped Enable.
The EMAC_DMA_IEN.RPS bit, when set (and with EMAC_DMA_IEN.AIS
=1), enables the Receive Stopped Interrupt is enabled. When this bit
is reset, Receive Stopped Interrupt is disabled.

7
(R/W)

RU Receive Buffer Unavailable Enable.
The EMAC_DMA_IEN.RU bit, when set (and with EMAC_DMA_IEN.AIS
=1), enables the Receive Buffer Unavailable Interrupt. When this bit
is reset, the Receive Buffer Unavailable Interrupt is disabled.

6
(R/W)

RI Receive Interrupt Enable.
The EMAC_DMA_IEN.RI bit, when set (and with EMAC_DMA_IEN.NIS
=1), enables the Receive Interrupt. When this bit is reset, Receive
Interrupt is disabled.

5
(R/W)

UNF Underflow Interrupt Enable.
The EMAC_DMA_IEN.UNF bit, when set (and with EMAC_DMA_IEN.AIS
=1), enables the Transmit Underflow Interrupt. When this bit is reset,
Underflow Interrupt is disabled.

4
(R/W)

OVF Overflow Interrupt Enable.
The EMAC_DMA_IEN.OVF bit, when set (and with EMAC_DMA_IEN.AIS
=1), enables the Receive Overflow Interrupt. When this bit is reset,
Overflow Interrupt is disabled.

Table 23-167: EMAC_DMA_IEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–234 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA Missed Frame Register

The EMAC_DMA_MISS_FRM register contains counters for EMAC DMA missed frames and buffer overflows.

Figure 23-137: EMAC_DMA_MISS_FRM Register Diagram

3
(R/W)

TJT Transmit Jabber Timeout Enable.
The EMAC_DMA_IEN.TJT bit, when set (and with EMAC_DMA_IEN.AIS
=1), enables the Transmit Jabber Timeout Interrupt. When this bit is
reset, Transmit Jabber Timeout Interrupt is disabled.

2
(R/W)

TU Transmit Buffer Unavailable Enable.
The EMAC_DMA_IEN.TU bit, when set (and with EMAC_DMA_IEN.NIS
=1), enables the Transmit Buffer Unavailable Interrupt. When this bit
is reset, Transmit Buffer Unavailable Interrupt is disabled.

1
(R/W)

TPS Transmit Stopped Enable.
The EMAC_DMA_IEN.TPS bit, when set (and with EMAC_DMA_IEN.AIS
=1), enables the Transmission Stopped Interrupt. When this bit is
reset, Transmission Stopped Interrupt is disabled.

0
(R/W)

TI Transmit Interrupt Enable.
The EMAC_DMA_IEN.TI bit, when set (and with EMAC_DMA_IEN.NIS
=1), enables the Transmit Interrupt. When this bit is reset, Transmit
Interrupt is disabled.

Table 23-167: EMAC_DMA_IEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–235

DMA Rx Interrupt Watch Dog Register

The EMAC_DMA_RXIWDOG register contains the timeout value for the EMAC DMA receive interrupt watch
dog timer.

Figure 23-138: EMAC_DMA_RXIWDOG Register Diagram

Table 23-168: EMAC_DMA_MISS_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

28
(RC/NW)

OVFFIFO Overflow bit for FIFO Overflow Counter.
The EMAC_DMA_MISS_FRM.OVFFIFO bit holds the overflow bit for
FIFO Overflow Counter.

27:17
(RC/NW)

MISSFROV Missed Frames Buffer Overflow.
The EMAC_DMA_MISS_FRM.MISSFROV bits indicate the number of
frames missed by the application due to buffer overflow.

16
(RC/NW)

OVFMISS Overflow bit for Missed Frame Counter.
The EMAC_DMA_MISS_FRM.OVFMISS bit holds the overflow bit for the
Missed Frame Counter.

15:0
(RC/NW)

MISSFRUN Missed Frames Unavailable Buffer.
The EMAC_DMA_MISS_FRM.MISSFRUN bits indicate the number of
frames missed by the controller because of the Application Receive
Buffer being unavailable.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–236 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA SCB Bus Mode Register

The EMAC_DMA_BMMODE register selects EMAC DMA system cross bar bus mode features.

Figure 23-139: EMAC_DMA_BMMODE Register Diagram

Table 23-169: EMAC_DMA_RXIWDOG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

RIWT RI WatchDog Timer Count.
The EMAC_DMA_RXIWDOG.RIWT bit field indicates the number of
system clock cycles multiplied by 256 for which the watchdog timer is
set. The watchdog timer gets triggered with the programmed value
after the Rx DMA completes the transfer of a frame for which the RI
status bit is not set because of the setting in the corresponding
descriptor RDES1[31]. When the watch-dog timer runs out, the RI
bit is set and the timer is stopped. The watchdog timer is reset when
EMAC_DMA_STAT.RI bit is set high because of automatic setting of
EMAC_DMA_STAT.RI as per RDES1[31] of any received frame.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–237

Table 23-170: EMAC_DMA_BMMODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

22:20
(R/W)

WROSRLMT SCB Maximum Write Outstanding Request.
The EMAC_DMA_BMMODE.WROSRLMT bit field's value limits the
maximum outstanding request on the SCB write interface. Maximum
outstanding requests = WR_OSR_LMT+1. EMAC-SCB supports up
to 4 outstanding write requests.

18:16
(R/W)

RDOSRLMT SCB Maximum Read Outstanding Request.
The EMAC_DMA_BMMODE.RDOSRLMT bit field's value limits the
maximum outstanding request on the SCB read interface. Maximum
outstanding requests = RD_OSR_LMT+1. EMAC-SCB supports up
to 4 outstanding read requests.

12
(R/NW)

AAL Address Aligned Beats.
The EMAC_DMA_BMMODE.AAL bit (read-only) reflects the state of the
EMAC_DMA_BUSMODE.AAL bit. When this bit is set to 1, EMAC-SCB
performs address-aligned burst transfers on both read and write
channels.

3
(R/W)

BLEN16 SCB Burst Length 16.
The EMAC_DMA_BMMODE.BLEN16 bit, when set (or when EMAC_DMA_
BMMODE.UNDEF is set to 1), directs the EMAC-SCB to select a burst
length of 16 on the SCB master interface.

2
(R/W)

BLEN8 SCB Burst Length 8.
The EMAC_DMA_BMMODE.BLEN8 bit, when set (or when EMAC_DMA_
BMMODE.UNDEF is set to 1), directs the EMAC-SCB to select a burst
length of 8 on the SCB master interface.

1
(R/W)

BLEN4 SCB Burst Length 4.
The EMAC_DMA_BMMODE.BLEN4 bit, when set (or when EMAC_DMA_
BMMODE.UNDEF is set to 1), directs the EMAC-SCB to select a burst
length of 4 on the SCB master interface.

0
(R/NW)

UNDEF SCB Undefined Burst Length.
The EMAC_DMA_BMMODE.UNDEF bit (read-only) indicates the
complement (invert) value of EMAC_DMA_BUSMODE.FB bit . When this
bit is set to 1, the EMAC-SCB is allowed to perform any burst length
equal to or below the maximum allowed burst length as programmed
in bits[3:1]. When this bit is set to 0, the EMAC-SCB is allowed to
perform only fixed burst lengths as indicated by 16/8/4, or a burst
length of 1.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–238 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA SCB Status Register

The EMAC_DMA_BMSTAT register indicates EMAC DMA system cross bar status.

Figure 23-140: EMAC_DMA_BMSTAT Register Diagram

DMA Tx Descriptor Current Register

The EMAC_DMA_TXDSC_CUR register contains the current DMA transmit descriptor.

Figure 23-141: EMAC_DMA_TXDSC_CUR Register Diagram

Table 23-171: EMAC_DMA_BMSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/NW)

BUSRD Bus (SCB master) Read Active.
The EMAC_DMA_BMSTAT.BUSRD bit, when high, indicates that SCB
Master's read channel is active and transferring data.

0
(R/NW)

BUSWR Bus (SCB master) Write Active.
The EMAC_DMA_BMSTAT.BUSWR bit, when high, indicates that SCB
Master's write channel is active and transferring data.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–239

DMA Rx Descriptor Current Register

The EMAC_DMA_RXDSC_CUR register contains the current DMA receive descriptor.

Figure 23-142: EMAC_DMA_RXDSC_CUR Register Diagram

DMA Tx Buffer Current Register

The EMAC_DMA_TXBUF_CUR register holds the pointer to the current transmit DMA buffer.

Table 23-172: EMAC_DMA_TXDSC_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

ADDR Host Transmit Descriptor Address.
The EMAC_DMA_TXDSC_CUR.ADDR bit field points to the start address
of the current Transmit Descriptor read by the DMA. Pointer
updated by DMA during operation. Cleared on Reset.

Table 23-173: EMAC_DMA_RXDSC_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

ADDR Host Receive Current Descriptor Address.
The EMAC_DMA_RXDSC_CUR.ADDR bit field points to the start address
of the current Receive Descriptor read by the DMA. Pointer updated
by DMA during operation. Cleared on Reset.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–240 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 23-143: EMAC_DMA_TXBUF_CUR Register Diagram

DMA Rx Buffer Current Register

The EMAC_DMA_RXBUF_CUR register holds the pointer to the current receive DMA buffer.

Figure 23-144: EMAC_DMA_RXBUF_CUR Register Diagram

Table 23-174: EMAC_DMA_TXBUF_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

ADDR Host Transmit Current Buffer Address.
The EMAC_DMA_TXBUF_CUR.ADDR bit field points to the current
Transmit Buffer Address being read by the DMA. Pointer updated by
DMA during operation. Cleared on Reset.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 23–241

Table 23-175: EMAC_DMA_RXBUF_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

ADDR Host Receive Current Buffer Address.
The EMAC_DMA_RXBUF_CUR.ADDR bit field points to the current
Receive Buffer address being read by the DMA. Pointer updated by
DMA during operation. Cleared on Reset.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-BF60X EMAC REGISTER DESCRIPTIONS

23–242 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–1

24 Removable Storage Interface (RSI)

The removable storage interface (RSI) controller is a fast, synchronous peripheral that uses various proto-
cols to communicate with MMC, SD, and SDIO cards. The RSI is compatible with the following protocols.

• MMC (Multimedia Card) bus protocol

• SD (Secure Digital) bus protocol

• SDIO (Secure Digital Input Output) bus protocol

All of these storage solutions use similar interface protocols. The main difference between MMC and SD
support is the initialization sequence. The main difference between SD and SDIO support is the use of
interrupt and read wait signals for SDIO.

NOTE: The RSI does not support the SPI bus protocol

RSI Features
The RSI includes the following features.

• Support for a single SD or SDIO card

• Support for a single MMC device (removable or embedded)

• Support for 1- and 4-bit SD modes (SPI mode is not supported)

• Support for 1-, 4-, and 8-bit MMC modes (SPI mode is not supported)

• Programmable clock frequency generated from SCLK

• Card detection capabilities

• SDIO interrupt and read wait features

• High-capacity card support such as SDHC implemented within software

• 512-bit transmit/receive FIFO

• DMA channel with 32-bit DMA access bus

Table 24-1: RSI Specifications

Feature Availability

Protocol

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

RSI Functional Description
The following sections provide details on the RSI functionality.

ADSP-BF60x RSI Register List

The removable storage interface (RSI) provides an interface to multimedia cards (MMC), secure digital
memory cards (SD), secure digital input/output cards (SDIO). A set of registers govern RSI operations. For
more information on RSI functionality, see the RSI register descriptions.

Master-Capable Yes
Slave-Capable No
Transmission Simplex Yes
Transmission Half-Duplex Yes
Transmission Full-Duplex No
Access Type
Data Buffer Yes
Core Data Access Yes
DMA Data Access Yes
DMA Channels 1
DMA Descriptor Yes
Boot Capable Yes
Local Memory No
Clock Operation SCLK/2

Table 24-2: ADSP-BF60x RSI Register List

Name Description

RSI_CTL Control Register

RSI_ARG Argument Register

RSI_CMD Command Register

RSI_RESP_CMD Response Command Register

Table 24-1: RSI Specifications (Continued)

Feature Availability

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–3

RSI_RESP0 Response 0 Register

RSI_RESP1 Response 1 Register

RSI_RESP2 Response 2 Register

RSI_RESP3 Response 3 Register

RSI_DATA_TMR Data Timer Register

RSI_DATA_LEN Data Length Register

RSI_DATA_CTL Data Control Register

RSI_DATA_CNT Data Count Register

RSI_XFRSTAT Transfer Status Register

RSI_XFRSTAT_CLR Transfer Status Clear Register

RSI_XFR_IMSK0 Transfer Interrupt 0 Mask Register

RSI_XFR_IMSK1 Transfer Interrupt 1 Mask Register

RSI_FIFO_CNT FIFO Counter Register

RSI_BOOT_TCNTR Boot Timing Counter Register

RSI_BACK_TOUT Boot Acknowledge Timeout Register

RSI_SLP_WKUP_TOUT Sleep Wakeup Timeout Register

RSI_BLKSZ Block Size Register

RSI_FIFO Data FIFO Register

RSI_STAT0 Exception Status Register

RSI_IMSK0 Exception Mask Register

RSI_CFG Configuration Register

RSI_RD_WAIT Read Wait Enable Register

Table 24-2: ADSP-BF60x RSI Register List (Continued)

Name Description

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x RSI Interrupt List

ADSP-BF60x RSI Trigger List

RSI Block Diagram

 The figure shows the functional blocks within the RSI.

RSI_PID0 Peripheral ID 0 Register

RSI_PID1 Peripheral ID 1 Register

RSI_PID2 Peripheral ID 2 Register

RSI_PID3 Peripheral ID 3 Register

Table 24-3: ADSP-BF60x RSI Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

RSI0 DMA Channel 61 10 LEVEL
RSI0 Interrupt 0 62 LEVEL
RSI0 Interrupt 1 63 LEVEL

Table 24-4: ADSP-BF60x RSI Trigger List Trigger Masters

Description Trigger ID Sensitivity

RSI0 DMA Channel 30 PULSE/EDGE

Table 24-5: ADSP-BF60x RSI Trigger List Trigger Slaves

Description Trigger ID Sensitivity

RSI0 DMA Channel 30

Table 24-2: ADSP-BF60x RSI Register List (Continued)

Name Description

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–5

Figure 24-1: RSI Block Diagram

RSI Architectural Concepts

The following sections describe the functions and features of the RSI controller as well as the MMC, SD,
and SDIO protocols. For detailed information on timing parameters and protocol requirements, refer to
the corresponding processor data sheet and the following standards and specifications.

• MMCA System Specification

• JESD84 series of JEDEC standards

• SD Specifications Part 1 Physical Layer Specification

• SD Specifications Part 1 Physical Layer Simplified Specification

• SD Specifications Part E1 SDIO Specification

Communication is through a master and slave configuration, where the RSI is the master and the card is
the slave device. The RSI communicates with the device using a message-based bus protocol in which the
host sends commands serially using the RSI_CMD signal. Some commands require that the card provide a
response back to the host. This response is also sent serially by the RSI_CMD signal.

Data transfers, both to and from the card, occur using the data signals. The number of data lines used for
the data transfer can be configured to 1, 4, or 8 using RSI_D0, RSI_D3 – RSI_D0, or RSI_D7 – RSI_D0. All
RSI_CMD and RSI_D7 – RSI_D0 transfers are synchronous with RSI_CLK.

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Cyclic redundancy codes (CRC) are used to protect commands, responses and data transfers from trans-
mission errors. A CRC7 code is generated for every command sent by the host and for almost every
response returned by the card on the RSI_CMD signal. A CRC16 code is used on the RSI_D7 – RSI_D0
signals to protect block data transfers. In 4- and 8-bit bus configurations, CRC16 is calculated for each
individual data signal.

Signal Descriptions

The RSI is a 10 pin interface out of which one pin is used for clock, one pin for command and the rest of
the 8 pins are used for data. The table RSI Signal Descriptions (General) shows a general functional
description of various RSI signals.

Notes:

1. Although earlier revisions of the MMC specifications allowed for multiple MMC cards to be bused to a
single RSI interface, it is strongly recommended that only a single device be interfaced to any given RSI
interface. Multiple devices sharing a single command and data bus is now actively discouraged by the
device specifications.

The table RSI MMC Signal Descriptions and describes the functionality of these signals for the MMC
protocol and the table RSI Signal Descriptions (SD and SDIO) describes the functionality of these signals
for SD and SDIO protocols.

Table 24-6: RSI Signal Descriptions (General)

Signal Name Signal Description

RSI_CLK The clock signal applied to the card from the RSI. All command and data signal transfers
are synchronous to this clock. The frequency can vary between zero and the maximum
clock frequency. Refer to the respective processor data sheet for the maximum
supported clock frequency.

RSI_CMD A bi-directional command signal used for command transfer and card initialization.
The RSI uses this signal to send commands to the cards, and the card uses the signal to
send responses back to the RSI. This signal can be configured for both push-pull mode
and open-drain mode, but only MMC cards support the open-drain mode. The open-
drain mode allows for multiple MMC cards to share data and command signals on the
RSI interface and allows for the initialization sequence to take place on all cards1.

RSI_D7 – RSI_D0 These are the configurable bi-directional data channels used for all data transfers both to
and from the card. The data bus width can be configured as 1-, 4-, or 8-bit.

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–7

Table 24-7: RSI MMC Signal Descriptions

Signal Name
MMC

(1- bit)
MMC

(4 - bit)
MMC

(8 - bit) Direction

RSI_D7 Not Used Not Used Data7 Bi-directional
RSI_D6 Not Used Not Used Data6 Bi-directional
RSI_D5 Not Used Not Used Data5 Bi-directional
RSI_D4 Not Used Not Used Data4 Bi-directional
RSI_D3 Not Used Data3 Data3 Bi-directional
RSI_D2 Not Used Data2 Data2 Bi-directional
RSI_D1 Not Used Data1 Data1 Bi-directional
RSI_D0 Data0 Data0 Data0 Bi-directional
RSI_CMD Command/

Response
Command/
Response

Command/
Response

Bi-directional

RSI_CLK Clock Clock Clock Output

Table 24-8: RSI SD and SDIO Signal Descriptions

Signal Name
SD

(1- bit)
SD

(4 - bit)
SDIO

(1 - bit)
SDIO

(4 - bit) Direction

RSI_D7 Not Used Not Used Not Used Not Used Bi-directional
RSI_D6 Not Used Not Used Not Used Not Used Bi-directional
RSI_D5 Not Used Not Used Not Used Not Used Bi-directional
RSI_D4 Not Used Not Used Not Used Not Used Bi-directional
RSI_D3 Not Used/

Card Detect
Data3/
Card Detect

Not Used/
Card Detect

Data3/
Card Detect

Bi-directional

RSI_D2 Not Used Data2 Read Wait Data2/
Read Wait

Bi-directional

RSI_D1 Not Used Data1 Interrupt Data1/
Interrupt

Bi-directional

RSI_D0 Data0 Data0 Data0 Data0 Bi-directional
RSI_CMD Command/

Response
Command/
Response

Command/
Response

Command/
Response/
CCS/CCSD

Bi-directional

 RSI_CLK Clock Clock Clock Clock Output

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Clock Configuration

The RSI is a fast, synchronous peripheral with a programmable clock frequency that is supplied by the
RSI_CLK signal. The interface between the RSI and the internal buses operates at SCLK frequency.
Communication between the clock domain that is supplied externally from the RSI on the RSI_CLK signal
and the RSI access to the internal buses is accomplished using synchronizers in the RSI module. The RSI_
CLK frequency is configured by the 8-bit RSI_CTL.CLKDIV field and the RSI_CTL.BYPASS bit.

If RSI_CTL.BYPASS is set, the clock frequency driven on the RSI_CLK signal is derived directly from SCLK.
If RSI_CTL.BYPASS is cleared, the clock divider logic provides an RSI_CLK frequency as shown below,
where RSI_CTL.CLKDIV is an 8-bit value ranging between 0 and 255.

RSI_CLK=SCLK/2x(RSI_CTL.CLKDIV+1)

The RSI_CLK output is enabled or disabled by the RSI_CTL.CLKEN bit and a power save feature is imple-
mented by setting RSI_CTL.PWRSAVE, which disables the RSI_CLK output when there are no transfers
taking place on the RSI interface.

Interface Configuration

The RSI supports multiple card types under various protocols. Different card types may require slightly
different interface configurations.

The command signal on MMC cards operates in two different modes depending upon the operating mode
of the card. During the card identification mode, the command signal operates in open-drain configura-
tion. When the card enters data transfer mode, the signal is configured to push-pull mode.

NOTE: The internal pull-up resistor of the RSI_CMD signal is only intended to keep the signal from floating.
The internal pull-up resistor is not sufficient during the card identification phase when the MMC
card RSI_CMD signal is operating in open-drain mode. If support for MMC devices is required, an
external pull-up resistor should be added to the RSI_CMD signal as detailed in the JEDEC standard.

The bus width used for the data transfers is configurable to 1-bit, 4-bits, or 8-bits using the RSI_CTL.
BUSWID bit field.

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–9

To stop signals from floating when no card is inserted or during times when all card drivers are in a high-
impedance state, various pull-up and pull-down resistor configurations can be enabled on the RSI_D0 –
RSI_D7 signals. The RSI_CFG register provides the following options.

• Enable or disable a pull-up resistor on the RSI_D3 signal.

• Enable or disable pull-up resistors on the RSI_D7 through RSI_D4 and RSI_D2 through RSI_D0 signals.

Card Detection

The RSI allows for software to detect when a card is inserted into its slot. There are a number of ways that
this card detection can be performed.

• Using the data 3 signal. SD and SDIO cards use an internal pull-up resistor on the RSI_D3 line as a
card detect signal to indicate to the host that a card is present. In order to use the RSI_D3 signal for card
detection, an external pull down resistor should be added to the pin to pull the pin low during the time
a card is not inserted.

When a card is inserted into the slot, a rising edge is detected on the RSI_D3 signal and the RSI_STAT0.
SDCARD bit is set. Once the card has been correctly identified, the RSI_STAT0.SDCARD interrupt should
be cleared and disabled. Also disable the pull-up resistor in the SD card by issuing the SET_CLR_
CARD_DETECT command. When using the RSI_D3 signal for card detection with an external pull-
down resistor, do not enable the internal pull-up resistor (the RSI_CFG.DAT3PUP bit=0).

• Using the SD/MMC socket and GPIO interrupt. The recommended method of detecting the inser-
tion of a card is to use the card detect feature that is made available through most sockets. Sockets
supporting this feature can have the card detect pin de-bounced and connected to a GPIO pin in order
to allow not only interrupt driven card detection but also interrupt driven card removal.

This is the most reliable and efficient method of detecting the insertion and removal of a card as some
MMC devices may not implement the card detect pull-up resistor on the RSI_D3 signal. Once a card is
detected, the GPIO pin can have the interrupt level inverted to then generate an interrupt on card
removal.

• Using software polling. Software polls the slot periodically using the card identification commands for
the supported card types. Once a card is inserted, valid responses are sent back to the host. When the
card is removed, command and data timeout errors occur.

The following figure shows the circuits required for the card detection schemes discussed above.

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 24-2: RSI Socket Interface

Power Saving Configuration

The RSI requires two internal clock signals that are derived directly from SCLK. One of these clock signals
is routed to the clock divider and generates the RSI_CLK clock.

These clocks must be enabled by setting the RSI_CFG.CLKSEN bit for the RSI to function. Clearing this bit
disables the RSI regardless of other RSI clock configurations. The RSI_CLK signal can be enabled or
disabled using the RSI_CTL.CLKEN bit.

Additional power saving options can be implemented by setting the RSI_CTL.PWRSAVE bit which disables
the RSI_CLK output when there are no transfers taking place on the RSI interface. These configurations are
shown in RSI Power Saving Configurations.

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–11

1 The PWRON field of the RSI_CFG register must be set to 0x3. If PWRON is cleared, the clock will not output.

RSI Command-Response Interface

The RSI sends commands to and receives responses from the card using the RSI_CMD signal. The command
to be sent to the card is issued by writing to the RSI_CMD register. This register contains a 6-bit RSI_CMD.
IDX field that contains the command index to be sent to the card. The command index provides support
for a total of 64 commands—0 (CMD0) to 63 (CMD63).

Some commands require an argument to be sent along with the command, such as an address for a read
transaction. An argument is always sent with the command and it is the responsibility of the card to either
ignore or use the argument field based on the command that is received. The argument sent with the
command is provided using the RSI_ARG register.

All command transfers are protected by a 7-bit cyclic redundancy check (CRC) code, more commonly
referred to as a CRC7 checksum. This allows for transmission errors to be detected and for the command
to be re-issued to the card in the event of an error. All commands sent to the card are composed of 48-bits
as shown in the table below.

Table 24-9: RSI Power Saving Configurations

RSI_CFG.CLKSEN RSI_CTL.CLKEN RSI_CTL.PWRSAVE RSI State RSI_CLK Output

0 0 0 Disabled No clock
0 0 1 Disabled No clock
0 1 0 Disabled No clock
0 1 1 Disabled No clock
1 0 0 Enabled No clock
1 0 1 Enabled No clock
1 1 0 Enabled Continuous clock1
1 1 1 Enabled Clock only driven

during transfers1

Table 24-10: RSI Command Format

Bit Position Width Value Description

47 1 0 Start bit
46 1 1 Transmitter bit
[45:40] 6 — Command index
[39:8] 32 — Argument
[7:1] 7 — CRC7 checksum

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The RSI_CMD register also provides configuration information about whether a response is to be expected
back from the card and the type of response.

The RSI can be configured using the RSI_CMD.RSP and RSI_CMD.LRSP bit fields to expect no response, a
short response or a long response type as shown in the following tables.

Like the commands, all responses are sent on the RSI_CMD signal. A response always has a 0 start bit
followed by a 0 transmission bit to indicate the transfer is from card to the RSI. Unlike the commands
issued by the RSI, not all responses are protected by a CRC7 checksum. Refer to the appropriate specifica-
tion for full details on the response formats for a specific device and whether they are protected by a CRC7
checksum.

0 1 1 End bit

Table 24-11: RSI Short Response Format

Bit Position Width Value Description

47 1 0 Start bit
46 1 0 Transmitter bit
[45:40] 6 — Command index or check bits1

1.Responses that do not contain the command index have b#111111 in the check bits field.

[39:8] 32 — Card status, register contents or argument field
[7:1] 7 — CRC7 checksum or check bits2

2.Responses that do not contain a CRC7 check sum have b#111111 in the check bits field.

0 1 1 End bit

Table 24-12: RSI Long Response Format

Bit Position Width Value Description

135 1 0 Start bit
134 1 0 Transmitter bit
133:128 6 111111 Check bits1

1.Responses that do not contain the command index have b#111111 in t he check bits field.

127:1 127 — Register contents including internal CRC72

2.Responses that do not contain a CRC7 check sum have b#111111 in the check bits field.

0 1 1 End bit

Table 24-10: RSI Command Format (Continued)

Bit Position Width Value Description

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–13

When a short response is received, the response is broken down by the RSI. The 32-bit field containing bits
[39:8]is stored to RSI_RESP0, where bit 39 of the response corresponds to bit 31 of RSI_RESP0 and bit 8 of
the response to bit 0 of RSI_RESP0. Bits [45:40] of the response are stored to the RSI_RESP_CMD register.

For a long response, bits [127:1] of the response are stored in the RSI_RESP0, RSI_RESP1, RSI_RESP2 and
RSI_RESP3 registers. Bit 31 of RSI_RESP0 contains the most significant bit (bit 127) of the response and
bit 0 of RSI_RESP3 contains bit 1 of the response. Bit 31 of RSI_RESP3 is always zero.

The following figure shows the command path state machine. For the state machine to be active, the RSI
must be enabled through the RSI_CTL.CLKEN bit. Disabling the clocks to the RSI results in the state
machine returning to the IDLE state.

Figure 24-3: RSI Command Path State Machine

The command path state machine is responsible for setting and clearing a number of status flags in the
RSI_XFRSTAT register. The following table lists the status flags and exception flags that are affected by the
command path state machine.

Table 24-13: RSI Command Path Status Flags

RSI_XFRSTAT/RSI_STAT0 Flag Description State Flag Set in

RSI_XFRSTAT.CMDACT Command transfer is in progress WAIT_S
RSI_XFRSTAT.CMDSENT Command without response sent

successfully
SEND

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The command path operates in a half-duplex mode, so that commands and responses can either be sent
or received. If the state machine is not in the SEND state, the RSI_CMD output is in high impedance state.

The following figure describes a typical command and response transfer, the RSI_CMD signal is sampled by
the card and the host on the rising edge of RSI_CLK.

Figure 24-4: RSI Command Transfer

The following sections describes the RSI command path states.

IDLE State

The command path state machine remains in the IDLE state when it is not active and leaves the IDLE state
when the RSI_CMD.EN bit is set. The state transitions to the PEND state if the RSI_CMD.PNDEN bit set,
otherwise it enters the SEND state.

The state machine remains in the IDLE state for at least eight RSI_CLK cycles when the command path state
machine returns to the IDLE state from another state, and the return is not because the RSI was disabled
or reset. During this time, the RSI continues to drive the RSI_CLK signal even if the RSI_CTL.PWRSAVE bit
is set. This allows the card to complete the current operation. If enabled again, the state machine leaves the
IDLE state only after the eight RSI_CLK cycles have passed.

RSI_XFRSTAT.CMDTO Response timeout occurred (64
RSI_CLK cycles)

WAIT_S

RSI_XFRSTAT.CMDCRCFAIL Response CRC failure RECEIVE
RSI_XFRSTAT.RESPEND Response received successfully

(and CRC check passed if the
CRCDIS bit is cleared)

RECEIVE

Table 24-13: RSI Command Path Status Flags (Continued)

RSI_XFRSTAT/RSI_STAT0 Flag Description State Flag Set in

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–15

PEND State

The RSI enters the PEND state if the RSI_CMD.PNDEN bit is set. The state machine remains in the PEND
state until it is notified by the data path sub block that a data transfer has completed. This is indicated by
the RSI_XFRSTAT.DATEND flag being set when RSI_DATA_CNT decrements to zero. This mode allows for
the automatic transmission of the STOP_TRANSMISSION command after reading or writing the
required amount of data for stream-based transactions.

The RSI_CMD.PNDEN feature is not available for block-based transfers and cannot be used to automatically
issue the STOP_TRANSMISSION command for MULTIPLE_BLOCK_READ or MULTIPLE_BLOCK_
WRITE operations.

SEND State

During the SEND state, the RSI sets the RSI_XFRSTAT.CMDACT flag to indicate a transfer is in progress. The
behavior of the state machine after the command is sent depends upon whether the command expects a
response back from the card.

If no response is expected, the RSI clears the RSI_XFRSTAT.CMDACT flag and sets the RSI_XFRSTAT.
CMDSENT flag to indicate that a command operation without a response has been completed. The state then
goes to IDLE.

If a response is expected, the RSI enters the WAIT state.

WAIT State

In the WAIT state, the RSI waits to receive a response on the RSI_CMD signal. Upon entering this state, an
internal timer starts. If the response is not received within 64 RSI_CLK cycles, the RSI_XFRSTAT.CMDTO flag
is set and the RSI_XFRSTAT.CMDACT flag is cleared. The state machine then enters the IDLE state, awaiting
the next action.

A response, sent back from the card and indicated by the 0 start bit on the RSI_CMD signal, transitions the
RSI to the RECEIVE state to receive a 48-bit or 136-bit response.

The WAIT state can also detect card interrupts. This is an optional feature that applies only to MMC cards.
This feature is enabled by setting the RSI_CMD.IEN bit. When this bit is set, the timeout timer that is
normally started upon entry to the WAIT state is disabled. The RSI remains in this state until a card inter-
rupt is detected.

Cards that implement this feature may have functions with a delayed response that is triggered by an
internal event in the card. Once the event is triggered the card sends the response. The RSI then detects
this start bit of the response and proceeds to the RECEIVE state.

RECEIVE State

In the RECEIVE state the RSI reads the response on the RSI_CMD signal from the card. If the response
(short or long) passes the CRC check, the RSI_XFRSTAT.CMDACT flag is cleared and the RSI_XFRSTAT.

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

RESPEND flag is set. If the CRC check fails, the RSI_XFRSTAT.CMDCRCFAIL flag is set. In either case, the state
machine then transitions to the IDLE state.

Command Path CRC

The command CRC generator calculates the 7-bit CRC check-sum for all 40 bits preceding the CRC code
for both 48-bit commands and 48-bit responses. This includes the start bit, transmitter bit, command
index, and command argument (or card status).

The 7-bit CRC checksum is calculated for the first 120 bits of the register contents field for the long
response format. Note that the start bit, transmitter bit, and the six check bits are not used in the CRC
calculation for the long response. The command and response CRC checksum is a 7-bit value that is calcu-
lated as follows.

CRC[6:0] = Remainder (x7 × M(x))/G(x)

With: G(x) = x7 + x3 + 1

and for a short response:

M(x) = x39 × (start bit) + ... + x0 × (last bit before CRC)

or for a short response:

M(x) = x19 × (start bit) + ... + x0 × (last bit before CRC)

RSI Data Interface

Data transfers both to and from the RSI take place over the RSI data bus signals RSI_D0 –RSI_D7. The RSI
data bus width is configured by the RSI_CTL.BUSWID bit field. The default is 1-bit bus mode, where the
data is transferred over the RSI_D0 signal. 4-bit mode or 8-bit mode can be enabled after configuring the
card for 4-bit or 8-bit mode of operation, respectively.

The RSI data path state machine operates at RSI_CLK frequency. The state machine leaves the IDLE state
when the RSI_DATA_CTL.DATEN bit is set, enabling the data transfer. The state entered upon leaving the
IDLE state is determined by the RSI_DATA_CTL.DATDIR bit. The data path state machine is shown in the
following figure.

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–17

Figure 24-5: RSI Data Path State Machine

The data path status flags are shown in the following table.

Table 24-14: RSI_STATUS Flags

RSI_XFRSTAT Flag Description Status Flag Set In

TXACT Data transmit in progress WAIT_S
RSI_XFRSTAT.RXACT Data receive in progress WAIT_R
RSI_XFRSTAT.DATBLKEND Data Block sent successfully and CRC pass

token received
Data Bock received correctly and CRC
passed

BUSY (block transfer mode
only)
RECEIVE (block transfer
mode only)

RSI_XFRSTAT.DATCRCFAIL Data block CRC failed on transmit
Data block CRC failed on receive

SEND is transmitted data is not
a multiple of DATA_BLK_
LGTH
BUSY if CRC token indicates
failure

RSI_XFRSTAT.DATTO Transmit timeout occurred before card de-
asserted busy signal on RSI_DATA0
Receive timeout error occurred before
start bit of data detected

BUSY
WAIT_R

RSI_XFRSTAT.DATEND All data sent
All data received

SEND
RECEIVE

RSI_XFRSTAT.SBITERR Start bit not detected on all RSI_DATAx
signals

WAIT_R

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

RSI Data Transmit Path

The transmit path consists of the WAIT_S, SEND, and BUSY states. The RSI_BLKSZ, RSI_DATA_LEN and
RSI_DATA_TMR registers must be configured before enabling the data path state machine using the RSI_
DATA_CTL register. Upon leaving the IDLE state and entering the WAIT_S state, the RSI sets the RSI_
XFRSTAT.TXACT flag and copies the RSI_DATA_LEN register contents into the RSI_DATA_CNT register.

The behavior of the SEND state depends on which transfer mode is configured.

• Stream transfer mode - If the RSI is configured for stream transfer mode, it sends data to the card until
RSI_DATA_CNT expires, at which point the RSI_XFRSTAT.DATEND flag is set and the state machine
returns to the IDLE state.

Additionally, the transition of RSI_DATA_CNT to zero activates the command path state machine if it is
currently in the PEND state. If at any point during the stream transfer the transmit FIFO becomes
empty and data is not available in the FIFO by the time the next transfer is due to take place, the RSI_
XFRSTAT.TXUNDR flag is set before returning to the IDLE state.

• Block transfer mode - The RSI_BLKSZ bytes, as specified during the write to RSI_DATA_CTL, are trans-
mitted. Each byte transferred also decrements RSI_DATA_CNT.

On completion of the block transfer, the RSI appends an internally generated 16-bit CRC code and an
end bit to the data transferred over the RSI_D0 – RSI_D7 signals.

The RSI then waits for the card token response on the RSI_D0 line to indicate whether the data was
received correctly by the card or not. If the CRC response token sent by the card indicates the data was
received correctly, the RSI_XFRSTAT.DATBLKEND flag is set before moving to the BUSY state. If the data
was not received correctly, the RSI_XFRSTAT.DATCRCFAIL flag is set before returning to the IDLE state.

When RSI_DATA_CNT decrements to zero, the RSI_XFRSTAT.DATEND flag is set. If the total number of
bytes transmitted for the current block results in the RSI_DATA_CNT decrementing to zero and the

RSI_XFRSTAT.TXFIFOSTAT Transmit FIFO is half empty SEND
RSI_XFRSTAT.TXFIFOFULL Transmit FIFO is full SEND
RSI_XFRSTAT.TXFIFOZERO Transmit FIFO is empty SEND
RSI_XFRSTAT.TXUNDR Transmit FIFO under run error SEND
RSI_XFRSTAT.TXFIFORDY Valid data available in the transmit FIFO SEND
RSI_XFRSTAT.RXFIFOSTAT Receive FIFO is half empty RECEIVE
RSI_XFRSTAT.RXFIFOFULL Receive FIRO is full RECEIVE
RSI_XFRSTAT.RXFIFOZERO Receive FIFO is empty RECEIVE
RSI_XFRSTAT.RXOVER Receive FIFO over run error RECEIVE
RSI_XFRSTAT.RXFIFORDY Valid data is available in the receive FIFO RECEIVE

Table 24-14: RSI_STATUS Flags (Continued)

RSI_XFRSTAT Flag Description Status Flag Set In

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–19

number of bytes transferred is not equal to RSI_BLKSZ, the transmission stops and the RSI_XFRSTAT.
DATCRCFAIL flag is set.

The data path returns to the IDLE state. If at any point during the block transfer the transmit FIFO
becomes empty and data is not available in the FIFO by the time the next transfer is due to take place,
the RSI_XFRSTAT.TXUNDR flag is set before returning to the IDLE state.

During the BUSY state, the RSI continuously samples RSI_D0 which at this point is driven low by the card
to indicate that the card is busy. When a logic high state is detected, indicating that the card is no longer
busy, the state machine returns to the WAIT_S state. It then either returns to IDLE if all data has been sent
or moves back to the SEND state to start another block transfer.

On entry to the BUSY state, the RSI started decrementing the timeout value specified in the RSI_DATA_TMR
register. If the RSI timeout counter expires before the RSI_D0 signal is detected high, the RSI sets the RSI_
XFRSTAT.DATTO flag and returns to the IDLE state.

RSI Data Receive Path

The receive path consists of the WAIT_R and the RECEIVE states. RSI_BLKSZ, RSI_DATA_LEN and RSI_
DATA_TMR must be configured, before enabling the data path state machine withRSI_DATA_CTL. Upon
leaving the IDLE state and entering the WAIT_R state, the RSI sets the RSI_XFRSTAT.RXACT flag and
copies RSI_DATA_LEN into RSI_DATA_CNT. The behavior of the RECEIVE state is influenced by the
transfer mode.

Once the receive path has entered the WAIT_R state after being enabled for a receive transaction, the RSI
starts decrementing the timeout value supplied by the RSI_DATA_TMR.

If the RSI is configured for a 1-bit data bus, the RSI_XFRSTAT.DATTO flag is set if a start bit is not detected
on the RSI_D0 signal before the timeout counter reaches zero. The state machine then returns to the IDLE
state.

If the RSI is configured for 4-bit bus mode and the start bit is not detected on all four RSI_D0 – RSI_D3
signals before the timeout counter expires—the RSI_XFRSTAT.DATTO flag is set. The state machine returns
to the IDLE state. If a start bit is detected on some, but not all, of the RSI_D0 – RSI_D7 signals on the same
sampled clock cycle, then the RSI_XFRSTAT.SBITERR flag is set and the state machine returns to the IDLE
state. Upon correct detection of the start bit, the state machine moves into the RECEIVE state.

The behavior of the RECEIVE state differs for stream and block transfers.

• Stream transfer mode - For stream transfers, received data is packed into bytes and written to the data
FIFO. Data is continuously received and written to the data FIFO until RSI_DATA_CNT decrements to
zero.

When the counter reaches zero, the remaining data in the shift register is written into the FIFO, the
RSI_XFRSTAT.DATEND flag is set and the state machine transitions to the WAIT_R state.

When the receive FIFO is detected empty, the RSI_XFRSTAT.RXFIFOZERO flag is set and the state goes
to IDLE. If the data FIFO becomes full and data has not been read from the FIFO prior to the next byte

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

being written to the FIFO, then the RSI_XFRSTAT.RXOVER flag is set. The state then transitions to
WAIT_R then to IDLE.

• Block transfer mode - In block transfer mode, the received data is packed into bytes and written to the
data FIFO.

When RSI_BLKSZ bytes have been received, the RSI reads the 16-bit CRC check bits. If the received
CRC matches the internally calculated CRC, the RSI_XFRSTAT.DATBLKEND flag is set and the state tran-
sitions to WAIT_R.

If the RSI_DATA_CNT counter expires in alignment with the end of a RSI_BLKSZ block, the RSI_
XFRSTAT.DATEND and RSI_XFRSTAT.DATBLKEND flags are set, and the state transitions to WAIT_R.

When the receive FIFO is detected empty, the RSI_XFRSTAT.RXFIFOZERO flag is set and the state tran-
sitions to IDLE. If RSI_DATA_CNT expires before the end of a RSI_BLKSZ block, the RSI_XFRSTAT.
DATCRCFAIL flag is set. The state transitions to IDLE.

Data Path CRC

The data CRC generator calculates the 16-bit CRC checksum for all bits sent or received for a given block
transaction (stream based data transfers are not available). For a 1-bit bus configuration, the 16-bit CRC
is calculated for all data sent on the RSI_D0 signal. For a 4-bit-wide data bus, the 16-bit CRC is calculated
separately for each RSI_D0 – RSI_D7 signal. The data path CRC checksum is a 16-bit value calculated as
follows.

CRC[15:0] = Remainder (x16 × M(x))/G(x)

with:

G(x) = x16 + x12 + x5 + 1

where:

M(x) = x((8 × DTX_BLK_LGTH) – 1) × (first data bit) + ... + x0 × (last data bit)

RSI Data FIFO

The data FIFO is a 32-bit wide, 16-word deep data buffer with transmit and receive logic. The FIFO is
configuration depends on the state of the RSI_XFRSTAT.TXACT and RSI_XFRSTAT.RXACT flags. If the RSI_
XFRSTAT.TXACT is set, the FIFO operates as a transmit FIFO supplying data to the RSI for transfer to the
card. If the RSI_XFRSTAT.RXACT flag is set, the FIFO operates as a receive FIFO, where the RSI writes data
received from the card. If neither flags are set, then the FIFO is disabled.

When the transmit FIFO is disabled, all the transmit status flags are de-asserted and the transmit read and
write pointers are reset. The RSI asserts the RSI_XFRSTAT.TXACT flag upon starting a data transfer. During
the data transfer the transmit logic maintains the transmit FIFO status flags shown in the following table.

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–21

When the receive FIFO is disabled, all receive status flags are de-asserted and the receive read and write
pointers are reset. The RSI asserts the RXACT flag upon starting a data read transaction. During the data
transfer, the receive logic maintains the receive FIFO status flags shown in the following table.

Card Busy/Ready Detection

Some commands, like CMD6, may assert the busy signal by driving the RSI_D0 signal low two cycles after
the end bit of the command. Setting the RSI_CMD.CHKBUSY bit configures the RSI to check if the line is
busy. Note that the RSI_D0 – RSI_D7 lines are driven by the card though their values are not relevant.

If the RSI_CMD.CHKBUSY bit is enabled for a particular command, on the third cycle from the command’s
end bit, the RSI_D0 signal is checked to see if it is low. If RSI_D0 is low, the RSI_STAT0.BUSYMODE bit is
set. When the RSI_D0 line goes high, the RSI_STAT0.CARDRDY bit (W1C) is set, the RSI_STAT0.BUSYMODE
bit is cleared, and the card ready interrupt is generated.

If the RSI_D0 doesn’t go low at the third cycle from the command’s end bit, the card is considered not busy.
The RSI_STAT0.BUSYMODE bit of RSI exception status register isn’t set, the card ready interrupt is gener-
ated and the RSI_STAT0.CARDRDY bit is set. If the RSI_CMD.CHKBUSY bit is not enabled, the RSI_D0 signal
is not checked for the busy condition.

The RSI_STAT0.BUSYMODE bit is also updated during a data write operation if the RSI_D0 signal is pulled
low while the card is programming the data. The RSI_STAT0.CARDRDY bit and the card ready interrupt are
not updated in this case. The card busy timing is shown in the following figure.

Table 24-15: RSI Transmit FIFO Status Flags

RSI_XFRSTAT Flag Description

RSI_XFRSTAT.TXFIFOSTAT Transmit FIFO is half empty
RSI_XFRSTAT.TXFIFOFULL Transmit FIFO is full
RSI_XFRSTAT.TXFIFOZERO Transmit FIFO is empty
RSI_XFRSTAT.TXUNDR Transmit FIFO under run error
RSI_XFRSTAT.TXFIFORDY Valid data available in the transmit FIFO

Table 24-16: RSI Receive FIFO Status Flags

RSI_XFRSTAT Flag Description

RSI_XFRSTAT.RXFIFOSTAT Receive FIFO is half empty
RSI_XFRSTAT.RXFIFOFULL Receive FIFO is full
RSI_XFRSTAT.RXFIFOZERO Receive FIFO is empty
RSI_XFRSTAT.RXOVER Receive FIFO over run error
RSI_XFRSTAT.RXFIFORDY Valid data available in the receive FIFO

REMOVABLE STORAGE INTERFACE (RSI)
RSI FUNCTIONAL DESCRIPTION

24–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 24-6: Card Busy Operation

SDIO Support

Two additional RSI features implement SDIO functionality.

• Hardware interrupt support over the RSI_D0 pin

• Read wait request over the RSI_D2 pin

SDIO devices may have multiple interrupt sources that are mapped to a single interrupt line. The interrupt
is level-sensitive, allowing multiple functions to generate an interrupt simultaneously. Thus the interrupt
request will continually be asserted until all sources generating an interrupt are determined and cleared by
the RSI.

The sources of the interrupts are found by interrogating the SDIO device. The interrupts are cleared
through operations unique to each function.

The SDIO device sends an interrupt request to the RSI by asserting the RSI_D1 signal low. The interrupt
status is indicated by the RSI_STAT0.SDIOINT bit. The status can be configured to interrupt the processor
through the RSI_IMSK0.SDIOINT bit.

When the RSI is configured for 1-bit bus width, the interrupt is generated by the SDIO with no timing
constraints because the RSI_D1 signal acts as a dedicated IRQ signal. The RSI should be configured using
the RSI_CFG.DATPUP bits such that pull-up are enabled on all RSI_D0 – RSI_D7 signals. When the RSI
sampling RSI_D1 low, the RSI asserts the RSI_STAT0.SDIOINT flag. This flag is asserted until the RSI_D1
signal is sampled high again.

When the RSI is configured for 4-bit bus widths, the RSI_D1 signal is shared between the IRQ signal and
the RSI_D1 signal. In this configuration, the interrupt is only be recognized by the RSI within a specific
interrupt period.

REMOVABLE STORAGE INTERFACE (RSI)
RSI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–23

RSI Operating Modes
The following sections describe the functionality of the RSI module in various modes of operation.

Card Identification Mode

When a device connected to the RSI is first powered and detected by the host or has been reset, the device
must first be identified and initialized by the host. The software determines whether the device is compat-
ible with the RSI controller and the implemented software drivers. This phase in the procedure is known
commonly as the card identification mode.

When a device is in card identification mode, the host may be required to perform the following actions.

• Reset the device

• Validate the device operating voltage range

• Identify the device type

• Assign/request a relative card address (RCA)

All communications between the host and card during the card identification phase occur using the RSI_
CMD signal. The maximum clock frequency during the identification phase is typically far lower than the
maximum data transfer frequency for the card.

Data Transfer Mode

The card enters stand-by state, known as the data transfer mode, when it has been assigned an RCA. Data
transfers can only take place when the device has entered the data transfer mode.

Once the device is in data transfer mode, communication takes place through the RSI_CMD and the RSI_
D0 – RSI_D7 signals. The card is further interrogated to identify bus widths, maximum clock frequency,
and the device capacity. At this point the bus width can be altered and the clock frequency can be increased.

Data may be written to the device or read from the device using the following two methods.

• Stream reads and writes. Stream transfers produce a continuous stream of data until the RSI stops the
transfer by setting a specific command. For stream read and write operations, additional maximum
operating frequency limitations may be imposed by the device. Stream write operations may also have
restrictions that are dependent upon writable block boundaries.

• Block reads and writes. Block based transfers result in a block of a pre-configured size being transferred.
The block size depends on the device and is obtained by reading registers contained on the device
during the device detection procedure.

The data transfer between the RSI block and the processor’s internal memory can be performed in two
ways as described below.

REMOVABLE STORAGE INTERFACE (RSI)
RSI OPERATING MODES

24–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA Data Transfers

The RSI block has a dedicated DMA channel assigned. This DMA channel can be configured either to
transmit/receive the data from/to the RSI data FIFO without core intervention.

Core Data Transfers

If the RSI DMA channel is disabled, the RSI transmit/receive FIFO may be written or read by the processor
core as a memory-mapped register (RSI_FIFO). In order to avoid FIFO overflow or underflow, the core
should access the FIFO registers in one of the two following ways.

1. Unmask the transmit FIFO empty (RSI_XFR_IMSK0.TXFIFOZERO, RSI_XFR_IMSK1.TXFIFOZERO) or
receive FIFO full (RSI_XFR_IMSK0.RXFIFOFULL, RSI_XFR_IMSK1.RXFIFOFULL) interrupts. Write the
word to be sent to the transmit FIFO or read the received word from the receive FIFO inside the inter-
rupt service routine.

2. Poll the transmit FIFO empty (RSI_XFRSTAT.TXFIFOZERO) or receive FIFO full (RSI_XFRSTAT.
RXFIFOFULL) status bits. Write the word to be sent to the transmit FIFO or read the received word from
the receive FIFO after the corresponding status bit is detected as set.

Boot Mode

MultiMedia Cards (MMC) based on the MMCA specifications version 4.3 or later support a special mode
known as boot mode. In this mode, the MMC host can read boot data from the slave MMC device by
keeping RSI_CMD line low after power-on, or sending CMD0 with argument 0xFFFFFFFA (optional for
slave), before issuing CMD1. The data can be read from either a dedicated boot area or user area.

Normal Boot Mode

Before enabling normal boot mode, the boot timing counter bits (RSI_BOOT_TCNTR.SETUP and RSI_
BOOT_TCNTR.HOLD) and boot mode type bit (RSI_CFG.MMCBMODE=0) should be configured. Otherwise the
RSI uses the default values of 74 and 56 RSI_CLK cycles.

Program the RSI_DATA_TMR register to act as boot data timeout register. If the boot acknowledge bit (RSI_
CFG.BACKEN) is set, the boot acknowledge timeout register (RSI_BACK_TOUT) should also be configured.

REMOVABLE STORAGE INTERFACE (RSI)
RSI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–25

Figure 24-7: Normal Boot Mode Timing

When the RSI block is enabled for normal boot mode by setting the RSI_CFG.MMCBEN bit, the following
tasks are performed in the same cycle.

1. The RSI_CMD line is pulled low.

2. The Boot setup counter register (RSI_BOOT_TCNTR) starts decrementing.

3. The Boot acknowledge timeout counter register (RSI_BACK_TOUT) starts incrementing if the RSI_CFG.
BACKEN bit is set.

4. The boot data timeout counter register (RSI_DATA_TMR) starts incrementing.

When the boot setup counter expires, the boot setup time expire interrupt is generated, setting the RSI_
STAT0.BSETUPEXP bit. This interrupt indicates that card has entered the boot state. Clearing this bit also
clears this interrupt line.

NOTE: All bits in the RSI_STAT0 register are W1C (write-1-to-clear) bits.

If the boot acknowledge bit (RSI_CFG.BACKEN) is set, the RSI goes to the boot state and expects an
acknowledgment to be returned by the slave within the interval programmed in the boot acknowledge
counter register (RSI_BACK_TOUT). If the acknowledge is not received before the counter reaches this
value, the boot acknowledge timeout interrupt is generated and the boot acknowledge timeout bit (RSI_
STAT0.BACKTO) is set.

If the acknowledge is received, but its value is not 010, the boot acknowledge timeout interrupt (RSI_
STAT0.BACKTO) is generated and the boot ack received is corrupted bit (RSI_STAT0.BACKBAD) is set.

In either case the RSI enters the IDLE state. The core should terminate the boot operation by pulling the
RSI_CMD signal high by writing 0 to the MMC boot enable bit (RSI_CFG.MMCBEN). Now the boot hold
counter register (RSI_BOOT_TCNTR) starts decrementing. When the counter expires, the boot hold time
expired interrupt is generated and the RSI_STAT0.BHOLDEXP bit is set. The RSI can now start normal non
boot operation (even though the boot operation failed).

REMOVABLE STORAGE INTERFACE (RSI)
RSI OPERATING MODES

24–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When the data transfer is enabled by writing to the RSI_DATA_CTL register, if the acknowledge is received
before the RSI_BACK_TOUT counter expires, the RSI enters the WAIT_R state and waits for the start bit of
the data.

When the data transfer is enabled by writing to the RSI_DATA_CTL register, if the RSI_CFG.BACKEN bit is
cleared, then no acknowledgment is expected and the RSI enters the WAIT_R state.

The slave should start sending the boot data before boot data timeout counter register (RSI_DATA_TMR)
expires. If the counter expires while state machine is still in the WAIT_R state, the boot data timeout inter-
rupt is generated and its corresponding RSI_STAT0.BDATTO bit is set. After a timeout the RSI enters the
IDLE state.

When the entire boot data is received, the core can write 0 to the RSI_CFG.MMCBEN bit to the terminate the
boot operation. The boot hold counter register (RSI_BOOT_TCNTR) now starts decrementing. When the
counter expires, the boot hold time expired interrupt is generated and the RSI_STAT0.BHOLDEXP bit is set.
The RSI can now start normal non boot operation (even though the boot operation failed).

The slave is now ready for CMD1 operation. The master must start a normal MMC initialization sequence
by sending CMD1.

Alternate Boot Mode

Before enabling the alternate boot mode, program the boot timing counter bits (RSI_BOOT_TCNTR.SETUP
and RSI_BOOT_TCNTR.HOLD) and boot mode type bit (RSI_CFG.MMCBMODE=1). Otherwise the RSI uses the
default values of 74 and 56 RSI_CLK cycles. Program the RSI_DATA_TMR register to act as the boot data
timeout register. If the RSI_CFG.BACKEN bit is set, program the boot acknowledge timeout (RSI_BACK_
TOUT) register.

Figure 24-8: Alternate Boot Mode Timing

NOTE: All bits in the RSI_STAT0 register are W1C (write-1-to-clear) bits.

REMOVABLE STORAGE INTERFACE (RSI)
RSI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–27

When the RSI block is enabled for alternate boot mode by setting the MMC boot enable bit (RSI_CFG.
MMCBEN=0), the boot setup counter (RSI_BOOT_TCNTR) starts decrementing. When this counter expires,
the boot setup time expired interrupt is generated and the RSI_STAT0.BSETUPEXP bit is set.

After receiving the boot setup time expired interrupt, send CMD0 with the argument 0xFFFFFFFA to the
slave to start the boot operation. When the end bit of CMD0 is reached on the CMD line, the boot acknowl-
edge timeout counter register (RSI_BACK_TOUT) and the boot data timeout counter register (RSI_DATA_
TMR) start incrementing from zero.

If the boot acknowledge bit (RSI_CFG.BACKEN) is set, the RSI enters the boot state and expects an acknowl-
edgment to be returned by the slave within the interval programmed in the boot acknowledge counter
register (RSI_BACK_TOUT). If the acknowledge is not received before the counter expires, the boot
acknowledge interrupt is generated and the boot acknowledge timeout bit (RSI_STAT0.BACKTO) is set. If
the acknowledge is received, but its value is not 010, the boot acknowledge received is corrupted interrupt
is generated and the boot ack received is corrupted bit (RSI_STAT0.BACKBAD) is set. In both cases the RSI
goes back to the IDLE state.

The core can terminate the boot operation by first clearing the RSI_CFG.MMCBEN bit and then sending the
CMD0 command. At this point the boot hold counter register (RSI_BOOT_TCNTR) starts decrementing.
When the counter expires, the boot hold time expired interrupt is generated and the RSI_STAT0.
BHOLDEXP bit is set. The RSI can now start normal operation (non boot operation) even though boot oper-
ation failed.

If the acknowledge is received before the RSI_BACK_TOUT counter expires, the RSI enters the WAIT_R
state once the data transfer is enabled by writing to the RSI_DATA_CTL register and the RSI waits for the
start bit of the data.

If the RSI_CFG.BACKEN bit is 0, then no acknowledgment is expected and RSI is in WAIT_R state once the
data transfer is enabled by writing to the RSI_DATA_CTL register.

The slave should start sending the boot data before the RSI_DATA_TMR expires. If the counter expires while
the state machine is in the WAIT_R state, the boot data timeout interrupt is generated and the RSI_STAT0.
BDATTO flag is set. The RSI goes to the IDLE state after a timeout.

When the entire boot data is received, the core can terminate the boot operation by clearing RSI_CFG.
MMCBEN bit and sending the CMD0 command and the RSI_BOOT_TCNTR starts decrementing. Once the
counter expires, the boot hold time expired interrupt is generated and the RSI_STAT0.BHOLDEXP bit is set.
The RSI can now start normal operation (non boot operation) even though the boot operation failed.

The slave is now ready for the CMD1 operation and the master should initiate a normal MMC initializa-
tion sequence by sending CMD1.

NOTE: If booting is abruptly terminated for any reason, booting cannot be retried without powering off
and powering on the MMC card.

REMOVABLE STORAGE INTERFACE (RSI)
RSI OPERATING MODES

24–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Sleep Mode

MultiMedia cards (MMC) based on the MMCA specification version 4.3 or later support sleep mode. A
card may be switched between the sleep state and a standby state using the SLEEP/WAKEUP command
(CMD5).

In the sleep state, power consumption of the memory device is minimized. The SLEEP command is used
to initiate the state transition from the standby state to the sleep state. The memory device indicates the
transition phase is busy by pulling the RSI_D0 line low. The sleep state is reached when the memory device
stops pulling down the RSI_D0 line low (RSI_D0 goes high).

The WAKEUP command is used to initiate the state transition from sleep to standby. The memory device
indicates the transition phase busy by pulling down the RSI_D0 line low. The standby state is reached when
the memory device stops pulling down the RSI_D0 line low (RSI_D0 goes high).

Figure 24-9: Sleep Walk-up Operation

When in standby state, the card is allowed to go to sleep mode by sending the CMD5 with bit 15 set in the
argument. The RSI_SLP_WKUP_TOUT counter starts decrementing at the end bit of this command. The RSI
block now waits for a rising edge on the RSI_D0 line. If the rising edge is not detected on the RSI_D0 line
before the counter expires, the sleep walk-up timer expired interrupt is generated and the corresponding
RSI_STAT0.SLPWKPTOUT bit is set.

If a rising edge is detected on the RSI_D0 pin before the RSI_SLP_WKUP_TOUT counter expires, The card
entered sleep state interrupt is generated and the RSI_STAT0.SLPDONE and RSI_STAT0.SLPMODE bits are
set. This indicates that the card has successfully entered the sleep state. The RSI_STAT0.SLPDONE bit is a
W1C bit while the RSI_STAT0.SLPMODE bit is a read-only bit and can not be cleared by writing 1. At this
point the power supply for the card may be switched off. Ramp the power supply back up prior to initiating
the state transition (by sending the WAKEUP command) from sleep to standby.

REMOVABLE STORAGE INTERFACE (RSI)
RSI EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–29

When the WAKEUP command is issued by sending CMD5 with bit 15 as 0 in the argument, the RSI_SLP_
WKUP_TOUT counter starts decrementing. If a rising edge on the RSI_D0 line is not detected before the
counter expires, the sleep walk-up timer expired interrupt is generated and the corresponding RSI_STAT0.
SLPWKPTOUT bit is set.

If a rising edge is detected on RSI_D0 pin before the counter expires, the card entered standby state inter-
rupt is generated and the corresponding RSI_STAT0.WKPDONE bit is set and the RSI_STAT0.SLPMODE
register is cleared. This indicates that the card has successfully entered the standby state and normal oper-
ation can now be resumed.

A SLEEP command is recognized only if the card is in the standby state and the WAKEUP command is
recognized only when the card is in the sleep state.

RSI Event Control
This section provides details about various RSI interrupt, status, and error signals.

RSI Interrupt Signals

The RSI has interrupt signals that connect the module to the System Event Controller (SEC). For more
information, see the “ADSP-BF60x Interrupt List” section in the System Event Controller (SEC) chapter.

RSI Status and Error Signals

The RSI block has 22 individual status bits in the RSI_XFRSTAT register that can be configured to generate
an interrupt. The status bits can be mapped to either of the two interrupts RSI_INT0 or RSI_INT1. This
allows for greater flexibility in system configuration. To generate an interrupt on RSI_INT0, the interrupt
should be enabled by setting the corresponding bit in the RSI_XFR_IMSK0 register. Interrupts that are
required to be generated on RSI_INT1 are enabled by setting the corresponding bit in the RSI_XFR_IMSK1
register.

In addition the RSI_XFRSTAT register, each of the flags in the RSI_STAT0 register are also capable of gener-
ating an interrupt. Interrupts for the RSI_STAT0 flags are enabled by setting the corresponding bit in the
RSI_IMSK0 register. These interrupts are sent to the SEC through RSI_INT0 only.

RSI Programming Model
The following sections describe the RSI programming model for various RSI operating modes.

Card Identification

The following sections describe SD and MMC card identification.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

24–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SD Card Identification

Use the following procedure to identify a SD card.

1. Issue the IDLE command to the card using the RSI_CMD register.

2. Issue the SEND_IF command through the RSI_CMD register, supplying the host supply voltage and a
check pattern via the RSI_ARG register.

• If a valid response with a compatible voltage range and matching check pattern is received, the card
is compliant with SD veSDHon 2.00 or later.

• If a response is received with an incompatible voltage range the card cannot be used.

• If no response is received (indicated by the RSI_XFRSTAT.CMDTO bit), go to step 5.

STEP RESULT: The command expects an R7 response type.

3. Issue the RSI_SEND_OP_COND command through the RSI_CMD register, supplying the voltage
window supported and whether the host supports high capacity cards using the RSI_ARG register.

• If the card remains busy, or no valid responses have been received within one second, the card is
rejected.

• If the card returns a response indicating that it is busy, resend the RSI_SEND_OP_CMD until the
card indicates it is ready.

• If the host does not support the high capacity mode (as indicated by the HCS bit=0 of the argument),
the busy status bit is never cleared.

STEP RESULT: The RSI expects an R3 response to this command. The RSI can reject the card if the voltage
range is not compatible.

4. If the host supports high-capacity cards, verify whether the response in the RSI_RESP0 register indi-
cates if the card capacity status (CCS) bit is set.

• If CCS is set, an SD VeSDHon 2.00 or later high capacity SD memory card is present—proceed to
step 5.

• If the CCS bit is cleared, then the card is an SD VeSDHon 2.00 or later standard capacity memory
card— proceed to step 5.

a. Issue the RSI_SEND_OP_COND command via the RSI_CMD register, supplying the voltage
window supported and with the high-capacity support (HCS) bit set to 0 via the RSI_ARG register.

STEP RESULT: The RSI expects an R3 response to this command, at which time the card can be rejected if the
voltage range is not compatible.

b. If the card returns a response indicating that it is busy, resend the RSI_SEND_OP_CMD until the
card indicates that it is ready.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–31

STEP RESULT: The card should be identified within 1 second. If in that time frame the card is still busy or no
valid responses have been received, the card should be rejected. Once the response indicates that the card
is ready, the card type has been identified as an SD Version 1.x standard-capacity memory card.

5. Issue the ALL_SEND_CID command.

STEP RESULT: An R2 response type is expected. This results in the card sending the 128-bit card identi-
fication (CID) register and transitioning from ready to identification mode.

6. Issue the SEND_RELATIVE_ADDR command.

STEP RESULT: An R6 response type is expected. This results in the card issuing a new relative address
which must be used to select the card for future data transfers.

RESULT:

The card then moves into standby mode, completing the identification procedure.

MMC Card Identification Procedure

Use the following procedure to identify a MMC card.

1. Issue the IDLE command to the card using the RSI_CMD register.

2. Issue the SEND_OP_COND command to the card using the RSI_CMD register, supplying the operating
voltage window that the host is compatible with and the access mode that the host supports (byte or
sector) using the RSI_ARG register.

STEP RESULT: The RSI expects an R3 type response. This allows the host to reject the card if it is not
compatible with the supply voltage or if the access mode is not supported by the host software. If the
card returns an indication that it is busy, repeat this step until the card is either rejected or not busy.

3. Issue the ALL_SEND_CID command using the RSI_CMD register.

STEP RESULT: The RSI expects an R2 response to this command. This results in the card sending the 128-
bit card identification (CID) register and transitioning from ready to identification mode.

4. Issue the SET_RELATIVE_ADDR command, providing a 16-bit relative card address (RCA) using the
RSI_ARG register that is assigned to the card.

STEP RESULT: An R1 response type is expected for this command. This results in the card being assigned
with the RCA provided, which must be used to select the card for future data transfers.

RESULT:

The card moves into standby mode, completing the identification procedure.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

24–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Data Transfer

The following section describe how to program the RSI block for various data transfer scenarios in both
core and DMA modes.

Single Block Writes

Block write operations typically consist of 512 bytes of data per block. If the card is found to support other
block lengths or the default block length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the block length of the RSI must be
configured for the same block size at all times. The block length of the RSI is configured via the RSI_BLKSZ
register.

CAUTION: It is important to know when the data path state machine is enabled and when data is written
to the FIFO for transfer to the card. Write transactions require that data be written after the
response has completed for the WRITE_BLOCK command. If the data path state machine is
enabled before sending the WRITE_BLOCK command, data must not be written to the
transmit FIFO until after the response has been received as indicated by the RSI_XFRSTAT.
RESPEND bit. Failure to adhere to this procedure results in data being written to the card in
violation of the block write timing parameters, causing a data CRC failure.

Single Block Core Write

Use the following procedure to perform a single block core write.

1. Write the card’s RCA to the upper 16-bits of the RSI_ARG register.

2. Write the RSI_CMD register with the SELECT/DESELECT_CARD command and configure the
command path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing
the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1b.

3. Wait for the RSI_XFRSTAT.RESPEND bit to be set then W1C the RSI_XFRSTAT_CLR.RESPEND bit.

4. Use the RSI_RESP0 register to ensure that the device is not busy and no errors occurred.

5. Configure the number of bytes to be transferred to the RSI_DATA_LEN register.

ADDITIONAL INFORMATION: This is 512 bytes for a single block.

6. Write the appropriate timeout value for a write operation to the RSI_DATA_TMR register.

7. Write the destination start address to the RSI_ARG register.

ADDITIONAL INFORMATION: The address must be aligned to a 512 byte boundary if misaligned accesses are
not enabled and the card is not a high-capacity SD card or sector-addressable MMC card.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–33

8. Write the WRITE_BLOCK command to the RSI_CMD register, configuring the command path state
machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1.

9. Wait for the command response end indication in the RSI_XFRSTAT.RESPEND bit. When detected,
W1C the RSI_XFRSTAT_CLR.RESPEND bit.

10. Configure the RSI_BLKSZ register with the value set to 512 for a 512-byte block.

ADDITIONAL INFORMATION: All other fields of the RSI_DATA_CTL register should be zero.

11. Set the RSI_DATA_CTL.DATEN bit to enable the data path state machine.

12. Write data to the RSI_FIFO register until the FIFO becomes full as indicated by the RSI_XFRSTAT.
TXFIFOFULL bit.

a. Continue to write data to the FIFO as long as the FIFO is not full. Optionally programs can write
data in blocks of eight 32-bit words while the RSI_XFRSTAT.TXFIFOSTAT bit =1 (transmit FIFO is
half empty).

b. Continue until all 128 32-bit words (512 bytes) have been transferred.

13. Wait for the card to respond with the CRC token, indicated when the RSI_XFRSTAT.DATBLKEND bit =1.

ADDITIONAL INFORMATION: The RSI_XFRSTAT.DATEND bit is also set at this time if the RSI_DATA_LEN
register was configured for 512 bytes in step 5.

14. W1C the RSI_XFRSTAT_CLR.DATBLKEND and RSI_XFRSTAT_CLR.DATEND bits to clear the RSI_
XFRSTAT.DATBLKEND and RSI_XFRSTAT.DATEND bits.

Single Block DMA Writes

Use the following procedure to perform a single block DMA write.

1. Write the card’s RCA to the upper 16-bits of the RSI_ARG register.

2. Write the RSI_CMD register with the SELECT/DESELECT_CARD command, configuring the
command path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing
the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1b.

3. Wait for the RSI_XFRSTAT.RESPEND bit to be set then W1C the RSI_XFRSTAT_CLR.RESPEND bit.

4. Ensure that the device is not busy and no errors occurred by verifying the response contained in the
RSI_RESP0 register.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

24–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

5. Configure the DMA channel assigned to the RSI controller.

a. Configure the DMA_ADDRSTART register with the address of the first byte of data to be written to the
card.

b. Configure the DMA_XCNT register to 128, and the DMA_XMOD register to 4.

c. Set the DMA_CFG.EN=1 (DMA enable) and DMA_CFG.MSIZE=2 (word size of 32-bits).

6. Once the DMA channel has been configured and enabled, write the number of bytes to be transferred
to the RSI_DATA_LEN register.

ADDITIONAL INFORMATION: This is 512 bytes for a single block.

7. Write the appropriate timeout value for a write operation to the RSI_DATA_TMR register.

8. Write the destination start address to the RSI_ARG register.

ADDITIONAL INFORMATION: The address must be aligned to a 512-byte boundary if misaligned accesses are
not enabled and the card is not a high-capacity SD card or sector-addressable MMC card.

9. Write the WRITE_BLOCK command to the RSI_CMD register, configuring the command path state
machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1.

10. Wait for the command response end indication in the RSI_XFRSTAT.RESPEND bit and W1C the RSI_
XFRSTAT_CLR.RESPEND bit.

11. Configure the RSI_BLKSZ register with the value set to 512 for a 512-byte block.

ADDITIONAL INFORMATION: All other fields of the RSI_DATA_CTL register should be zero.

12. Set RSI_DATA_CTL.DATEN=1 (enable data path state machine), and RSI_DATA_CTL.DMAEN=1 (DMA
enabled).

13. Wait for the card to respond with the CRC token, indicated when the RSI_XFRSTAT.DATBLKEND bit =1.

ADDITIONAL INFORMATION: The RSI_XFRSTAT.DATEND bit is also set at this point if the RSI_DATA_LEN
register was set to 512 bytes in step 5.

14. W1C the RSI_XFRSTAT_CLR.DATBLKEND and RSI_XFRSTAT_CLR.DATEND to clear the RSI_XFRSTAT.
DATBLKEND and RSI_XFRSTAT.DATEND bits. Also clear the DMA_STAT.IRQDONE bit if applicable.

Single Block Reads

Block read operations typically consist of 512 bytes of data per block. If the card is found to support other
block lengths or the default block length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the block length of the RSI must be
configured for the same block size at all times. The block length of the RSI is configured using the RSI_
BLKSZ register.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–35

NOTE: For data transfers from the card to the RSI, it is important to know when the data path state
machine is enabled and when data is read from the receive FIFO. This is because read transactions
can occur on the RSI_D0 – RSI_D7 signals prior to the response of the command being received.
Therefore the data path state machine and DMA controller (if used) should be enabled either:

• Prior to issuing a command that involves a data read packet

• Immediately after the command has been issued but prior to pending on the RSI_XFRSTAT.RESPEND
flag

NOTE: If the core is being used to read the receive FIFO, it is advised not to depend on the command
response end (RSI_XFRSTAT.RESPEND) flag to determine in the command response end. This is
because data can be driven on the RSI_D0 – RSI_D7 signals two RSI_CLK cycles after the end bit of
the command. At a minimum, an additional 48 RSI_CLK cycles pass before the response is received,
during which time the receive buffer may potentially have received 24 bytes of data on a 4-bit bus
and approaches the half full state. Software should ensure that the receive buffer does not become
full prior to data being read from the receive FIFO.

Single Block Core Reads

Use the following procedure to perform a single block core read.

1. Write the card’s RCA to the upper 16-bits of the RSI_ARG register.

2. Write the RSI_CMD register with the SELECT/DESELECT_CARD command, configuring the
command path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing
the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1b.

3. Wait for the RSI_XFRSTAT.RESPEND bit to be set then W1C the RSI_XFRSTAT_CLR.RESPEND bit.

4. Ensure that the device is not busy and no errors occurred by verifying the response contained in the
RSI_RESP0 register.

5. Write the number of bytes to be transferred to the RSI_DATA_LEN register.

ADDITIONAL INFORMATION: This is 512 bytes for a single block.

6. Configure the RSI_DATA_TMR register with the appropriate timeout value for a read operation.

7. Write the destination start address to the RSI_ARG register.

ADDITIONAL INFORMATION: The address supplied must be aligned to a 512-byte boundary if misaligned
accesses are not enabled and the card is not a high-capacity SD card or sector-addressable MMC card.

8. Configure the RSI_DATA_CTL register with the RSI_BLKSZ register value configured to 512 for a 512-
byte block.

ADDITIONAL INFORMATION: All other fields of the RSI_DATA_CTL register should be zero.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

24–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

9. Set the RSI_DATA_CTL.DATEN bit to enable the data path state machine and the RSI_DATA_CTL.DATDIR
bit to configure the transfer direction from the card to the controller.

10. Write the READ_SINGLE_BLOCK command to the RSI_CMD register, configuring the command path
state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_CMD.
LRSP bit.

STEP RESULT: The response type is R1.

NOTE: In order to meet some timing restrictions related to block read operations, do not wait for the RSI_
XFRSTAT.RESPEND bit to be set—move immediately to the next step. Because the card can send data before
a response can be completed on the RSI_CMD signal, moving immediately to step 11 ensures a receive FIFO
overflow does not occur.

11. Poll the RSI_XFRSTAT.RXFIFORDY bit or the RSI_XFRSTAT.RXFIFOZERO bit which indicate the receive
FIFO has data available, or the receive FIFO is empty. As long as the receive FIFO is not empty, read
data from the RSI_FIFO register until all 512 bytes have been read.

12. Once all bytes have been read, wait for the RSI_XFRSTAT.DATBLKEND bit to indicate that the data was
received correctly and passed the CRC check. The RSI_XFRSTAT.DATEND bit may also be set, depending
on the value written to the RSI_DATA_LEN register.

13. W1C the RSI_XFRSTAT_CLR.DATBLKEND and RSI_XFRSTAT_CLR.DATEND bits to clear the RSI_
XFRSTAT.DATBLKEND and RSI_XFRSTAT.DATEND bits.

Single Block DMA Reads

Use the following procedure to perform a single block DMA read.

1. Write the card’s RCA to the upper 16-bits of the RSI_ARG register.

2. Write the RSI_CMD register with the SELECT/DESELECT_CARD command, configuring the
command path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing
the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1b.

3. Wait for the RSI_XFRSTAT.RESPEND bit to be set then W1C the RSI_XFRSTAT_CLR.RESPEND bit.

4. Ensure that the device is not busy and no errors occurred by verifying the response contained in the
RSI_RESP0 register.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–37

5. Configure the DMA channel assigned to the RSI controller.

a. Configure the DMA_ADDRSTART register with the address of the first byte of where the received data
is to be stored.

b. Configure the DMA_XCNT register to 128 and the DMA_XMOD register to 4.

c. Set DMA_CFG.EN=1 (DMA enable), DMA_CFG.MSIZE=2 (word size of 32-bits) and DMA_CFG.WNR=0
(memory write).

6. Write the number of bytes to be transferred to the RSI_DATA_LEN register.

ADDITIONAL INFORMATION: This is 512 bytes for a single block.

7. Write the appropriate timeout value for a read operation to the RSI_DATA_TMR register.

8. Write the source start address to the RSI_ARG register.

ADDITIONAL INFORMATION: The address must be aligned to a 512-byte boundary if misaligned accesses are
not enabled and the card is not a high-capacity SD card or sector-addressable MMC card.

9. Configure the RSI_BLKSZ register value to 512 for a 512-byte block.

ADDITIONAL INFORMATION: All other fields of the RSI_DATA_CTL register should be zero.

10. Set RSI_DATA_CTL.DATEN=1 (enable data path state machine), RSI_DATA_CTL.DATDIR=1 (transfer
direction from the card to the controller), and RSI_DATA_CTL.DMAEN=1 (DMA enabled).

11. Write the READ_SINGLE_BLOCK command to the RSI_CMD register, configuring the command path
state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_CMD.
LRSP bit.

STEP RESULT: The response type is R1.

12. Poll the RSI_XFRSTAT.RESPEND bit and W1C the RSI_XFRSTAT_CLR.RESPEND register when the
command response end is detected.

ADDITIONAL INFORMATION: Unlike core accesses, it is safe to perform this step. The DMA controller
(enabled in step 5) ensures that any data sent to the receive FIFO prior to the command response end
flag being set is received correctly.

13. Wait for the data block end flag to indicate that the data was received correctly and passed the CRC
check. The data end flag may also be set, depending on the value written to the RSI_DATA_LEN register.

14. W1C the RSI_XFRSTAT_CLR.DATBLKEND and RSI_XFRSTAT_CLR.DATEND bits to clear the RSI_
XFRSTAT.DATBLKEND and RSI_XFRSTAT.DATEND bits. Also clear the DMA_STAT.IRQDONE bit if appli-
cable.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

24–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Multiple Block Writes

Block write operations typically consist of 512 bytes of data per block. If the card is found to support other
block lengths or the default block length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the block length of the RSI must be
configured for the same block size at all times. The block length of the RSI is configured using the RSI_
BLKSZ register.

Multiple Block Core Write

1. Write the card’s RCA to the upper 16-bits of the RSI_ARG register.

2. Write the RSI_CMD register with the SELECT/DESELECT_CARD command, configuring the
command path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing
the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1b.

3. Wait for the RSI_XFRSTAT.RESPEND bit to be set then W1C the RSI_XFRSTAT_CLR.RESPEND bit.

4. Ensure that the device is not busy and no errors occurred by verifying the response contained in the
RSI_RESP0 register.

5. Write the number of bytes to be transferred to the RSI_DATA_LEN register.

ADDITIONAL INFORMATION: For example, write 4096 to write eight blocks of 512 bytes.

6. Write the appropriate timeout value for a write operation to the RSI_DATA_TMR register.

7. Write the destination start address to the RSI_ARG register.

ADDITIONAL INFORMATION: The supplied address must be aligned to a 512-byte boundary if misaligned
accesses are not enabled and the card is not a high-capacity SD card or a sector-addressable MMC card.

8. Write the WRITE_MULTIPLE_BLOCK command to the RSI_CMD register, configuring the command
path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_
CMD.LRSP bit.

STEP RESULT: The response type is R1.

9. Wait for the command response end indication in the RSI_XFRSTAT.RESPEND bit. When detected,
W1C the RSI_XFRSTAT_CLR.RESPEND bit.

10. Configure the RSI_BLKSZ register with the value set to 512 for a 512-byte block.

ADDITIONAL INFORMATION: All other fields of the RSI_DATA_CTL register should be zero.

11. Set the RSI_DATA_CTL.DATEN bit to enable the data path state machine.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–39

12. Write data to the RSI_FIFO register until the FIFO becomes full as indicated by the RSI_XFRSTAT.
TXFIFOFULL bit.

a. Continue to write data to the FIFO as long as the FIFO is not full. Optionally programs can write
data in blocks of eight 32-bit words while the RSI_XFRSTAT.TXFIFOSTAT bit =1 (transmit FIFO is
half empty).

b. Continue until all 128 32-bit words (512 bytes) have been transferred.

13. Wait for the card to respond with the CRC token, indicated when the RSI_XFRSTAT.DATBLKEND bit =1.

14. W1C the RSI_XFRSTAT_CLR.DATBLKEND bit to clear the RSI_XFRSTAT.DATBLKEND bit.

15. Repeat steps 11 to 13 for the number of blocks to be transferred or until the RSI_XFRSTAT.DATEND bit
is set.

16. Write the RSI_CMD register with the STOP_TRANSMISSION command, configuring the command
path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_
CMD.LRSP bit.

STEP RESULT: The response type is R1. 16.

17. W1C the RSI_XFRSTAT_CLR.DATBLKEND and RSI_XFRSTAT_CLR.DATEND bits to clear the RSI_
XFRSTAT.DATBLKEND and RSI_XFRSTAT.DATEND bits.

Multiple Block DMA Writes

Use the following procedure to perform a multiple block DMA write.

1. Write the card’s RCA to the upper 16-bits of the RSI_ARG register.

2. Write the RSI_CMD register with the SELECT/DESELECT_CARD command, configuring the
command path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing
the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1b.

3. Wait for the RSI_XFRSTAT.RESPEND bit to be set then W1C the RSI_XFRSTAT_CLR.RESPEND bit.

4. Ensure that the device is not busy and no errors occurred by verifying the response contained in the
RSI_RESP0 register.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

24–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

5. Configure the DMA channel assigned to the RSI controller.

a. Configure the DMA_ADDRSTART register with the address of the first byte of data to be written to the
card.

b. Configure the DMA_XCNT register to the overall number of 32-bit words to be written. For example,
write 1024 to transfer 4096 bytes.

c. Set the DMA_XMOD register to 4.

d. Set the DMA_CFG.EN=1 (DMA enable) and DMA_CFG.MSIZE=2 (word size of 32-bits).

6. Once the DMA channel has been configured and enabled, write the number of bytes to be transferred
to the RSI_DATA_LEN register.

ADDITIONAL INFORMATION: For example, write 4096 to write eight blocks of 512 bytes.

7. Write the appropriate timeout value for a write operation to the RSI_DATA_TMR register.

8. Write the destination start address to the RSI_ARG register.

ADDITIONAL INFORMATION: The supplied address must be aligned to a 512-byte boundary if misaligned
accesses are not enabled and the card is not a high-capacity SD card or sector addressable MMC card.

9. Write the WRITE_MULTIPLE_BLOCK command to the RSI_CMD register, configuring the command
path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_
CMD.LRSP bit.

STEP RESULT: The response type is R1.

10. Wait for the command response end indication in the RSI_XFRSTAT.RESPEND bit and W1C the RSI_
XFRSTAT_CLR.RESPEND bit.

11. Configure the RSI_BLKSZ register with the value set to 512 for a 512-byte block.

ADDITIONAL INFORMATION: All other fields of the RSI_DATA_CTL register should be zero.

12. Set RSI_DATA_CTL.DATEN=1 (enable data path state machine), and RSI_DATA_CTL.DMAEN=1 (DMA
enabled).

13. Poll the RSI_XFRSTAT.DATEND bit or alternatively poll for each instance of the RSI_XFRSTAT.
DATBLKEND bit that is set on successful completion of each block transfer.

ADDITIONAL INFORMATION: For a 4096 byte transfer, RSI_XFRSTAT.DATBLKEND is set eight times and
should be cleared after it is detected using the RSI_XFRSTAT_CLR.DATBLKEND bit.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–41

14. Write the RSI_CMD register with the STOP_TRANSMISSION command, configuring the command
path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_
CMD.LRSP bit.

STEP RESULT: The response type is R1.

15. W1C the RSI_XFRSTAT_CLR.DATBLKEND and RSI_XFRSTAT_CLR.DATEND to clear the RSI_XFRSTAT.
DATBLKEND and RSI_XFRSTAT.DATEND bits. Also clear the DMA_STAT.IRQDONE bit if applicable.

Multiple Block Read

Block read operations typically consist of 512 bytes of data per block. If the card is found to support other
block lengths or the default block length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the block length of the RSI must be
configured for the same block size at all times. The block length of the RSI is configured in the RSI_BLKSZ
register.

Multiple Block Core Reads

Use the following procedure to perform a multiple block core read.

1. Write the card’s RCA to the upper 16-bits of the RSI_ARG register.

2. Write the RSI_CMD register with the SELECT/DESELECT_CARD command, configuring the
command path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing
the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1b.

3. Wait for the RSI_XFRSTAT.RESPEND bit to be set then W1C the RSI_XFRSTAT_CLR.RESPEND bit.

4. Ensure that the device is not busy and no errors occurred by verifying the response contained in the
RSI_RESP0 register.

5. Write the number of bytes to be transferred to the RSI_DATA_LEN register.

ADDITIONAL INFORMATION: This is 512 bytes for a single block.

6. Write the appropriate timeout value for a read operation to the RSI_DATA_TMR register.

7. Write the destination start address to the RSI_ARG register.

ADDITIONAL INFORMATION: The address must be aligned to a 512-byte boundary if misaligned accesses are
not enabled and the card is not a high-capacity SD card or sector-addressable MMC card.

8. Configure the RSI_DATA_CTL register with the RSI_BLKSZ register value configured to 512 for a 512-
byte block.

ADDITIONAL INFORMATION: All other fields of the RSI_DATA_CTL register should be zero.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

24–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

9. Set the RSI_DATA_CTL.DATEN bit to enable the data path state machine and the RSI_DATA_CTL.DATDIR
bit to configure the transfer direction from the card to the controller.

10. Write the READ_MULTIPLE_BLOCK command to the RSI_CMD register, configuring the command
path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_
CMD.LRSP bit.

STEP RESULT: The response type is R1.

NOTE: In order to meet some timing restrictions related to block read operations, do not wait for the RSI_
XFRSTAT.RESPEND bit to be set—move immediately to the next step. Because the card can send data before
a response can be completed on the RSI_CMD signal, moving immediately to step 11 ensures a receive FIFO
overflow does not occur.

11. Poll the RSI_XFRSTAT.RXFIFORDY bit or the RSI_XFRSTAT.RXFIFOZERO bit which indicate the receive
FIFO has data available, or the receive FIFO is empty. As long as the receive FIFO is not empty, read
data from the RSI_FIFO register until all 512 bytes have been read.

12. Once the block has been read, wait for the RSI_XFRSTAT.DATBLKEND bit to be set indicating that the
data was received correctly and passed the CRC check the W1C the RSI_XFRSTAT_CLR.DATBLKEND bit.

13. Repeat steps 11 and 12 until the required number of blocks have been read or until the RSI_XFRSTAT.
DATEND bit has been set.

14. Write the RSI_CMD register with the STOP_TRANSMISSION command, configuring the command
path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_
CMD.LRSP bit.

STEP RESULT: The response type is R1.

15. W1C the RSI_XFRSTAT_CLR.DATBLKEND and RSI_XFRSTAT_CLR.DATEND bits to clear the RSI_
XFRSTAT.DATBLKEND and RSI_XFRSTAT.DATEND bits.

Multiple Block DMA Reads

Use the following procedure to perform a multiple block DMA read.

1. Write the card’s RCA to the upper 16-bits of the RSI_ARG register.

2. Write the RSI_CMD register with the SELECT/DESELECT_CARD command, configuring the
command path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing
the RSI_CMD.LRSP bit.

STEP RESULT: The response type is R1b.

3. Wait for the RSI_XFRSTAT.RESPEND bit to be set then W1Cthe RSI_XFRSTAT_CLR.RESPEND bit.

4. Ensure that the device is not busy and no errors occurred by verifying the response contained in the
RSI_RESP0 register.

REMOVABLE STORAGE INTERFACE (RSI)
RSI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–43

5. Configure the DMA channel assigned to the RSI controller.

a. Write the DMA_ADDRSTART register with the address of the first byte of where the received data is to
be stored.

b. Configure the DMA_XCNT register to the number of 32-bit words to be read, which is 1024 for a 4096
byte read transfer. Configure the DMA_XMOD register to 4.

c. Set DMA_CFG.EN=1 (DMA enable), DMA_CFG.MSIZE=2 (word size of 32-bits) and DMA_CFG.WNR=0
(memory write).

6. Write the number of bytes to be transferred to the RSI_DATA_LEN register.

ADDITIONAL INFORMATION: This is 4096 for eight blocks of 512 bytes.

7. Write the appropriate timeout value for a read operation to the RSI_DATA_TMR register.

8. Write the source start address to the RSI_ARG register.

ADDITIONAL INFORMATION: The address must be aligned to a 512-byte boundary if misaligned accesses are
not enabled and the card is not a high-capacity SD card or a sector-addressable MMC card.

9. Configure the RSI_BLKSZ register value to 512 for a 512-byte block.

ADDITIONAL INFORMATION: All other fields of the RSI_DATA_CTL register should be zero.

10. Set RSI_DATA_CTL.DATEN=1 (enable data path state machine), RSI_DATA_CTL.DATDIR=1 (transfer
direction from the card to the controller), and RSI_DATA_CTL.DMAEN=1 (DMA enabled).

11. Write the READ_MULTIPLE_BLOCK command to the RSI_CMD register, configuring the command
path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_
CMD.LRSP bit.

STEP RESULT: The response type is R1.

NOTE: Unlike core accesses, it is safe to poll on RSI_XFRSTAT.RESPEND indication and W1C the RSI_
XFRSTAT_CLR.RESPEND bit. The DMA controller ensures any data sent to the receive FIFO prior to the RSI_
XFRSTAT.RESPEND flag being set is received correctly.

12. Poll for the RSI_XFRSTAT.DATEND bit or alternatively poll for each instance of the RSI_XFRSTAT.
DATBLKEND bit that is set on successful completion of each block transfer. For a 4096-byte transfer, RSI_
XFRSTAT.DATBLKEND is set eight times and should be cleared after it is detected using a W1C operation
in the RSI_XFRSTAT_CLR.DATBLKEND bit.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

13. Write the RSI_CMD register with the STOP_TRANSMISSION command, configuring the command
path state machine to expect a short response by setting the RSI_CMD.RSP bit and clearing the RSI_
CMD.LRSP bit.

STEP RESULT: The response type is R1.

14. W1C the RSI_XFRSTAT_CLR.DATBLKEND and RSI_XFRSTAT_CLR.DATEND bits to clear the RSI_
XFRSTAT.DATBLKEND and RSI_XFRSTAT.DATEND bits. Also clear the DMA_STAT.IRQDONE bit if appli-
cable.

RSI Programming Concepts

This section provides details about some special programming considerations to effectively use the RSI
module.

Disabling CRC check

Some memory cards, such as eMMC and SDIO, (and others), do not send CRC status for some commands.
In earlier Blackfin processors the RSI took the stuffed bits coming from the card as CRC and generated a
CRC check failure interrupt. To disable CRC checking, set RSI_CMD.CRCDIS bit.

Data End Interrupt

In older RSI versions, the data end interrupt (RSI_XFRSTAT.DATEND bit is set) is generated when the Data
Counter reaches 0 (RSI_DATA_TMR register). In the new version of RSI this interrupt is delayed in data
write operations if the card indicates a busy condition by pulling the RSI_D0 line low. This interrupt is now
generated once the RSI_D0 line goes high.

Miscellaneous Programming Guidelines

• The PORTx_FER bit for the RSI_CLK should be set before the RSI_D3 pin is enabled.

• The RSI_CMD and RSI_D0 signals should always be used together. Therefore only one pull-up enable is
used for these two signals.

• Write 1 to clear the SD card detect interrupt status bit (RSI_STAT0.SDCARD) after a SDMMC reset is
issued.

• There is a 2.5 system clock cycle latency involved with a write to the RSI registers. Any action that needs
to be taken after the register write should be timed accordingly. This is especially important in situa-
tions where the system clock on which RSI operates is very slow compared to the core domain clock.

ADSP-BF60x RSI Register Descriptions
Removable Storage Interface (RSI) contains the following registers.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–45

Table 24-17: ADSP-BF60x RSI Register List

Name Description

RSI_CTL Control Register

RSI_ARG Argument Register

RSI_CMD Command Register

RSI_RESP_CMD Response Command Register

RSI_RESP0 Response 0 Register

RSI_RESP1 Response 1 Register

RSI_RESP2 Response 2 Register

RSI_RESP3 Response 3 Register

RSI_DATA_TMR Data Timer Register

RSI_DATA_LEN Data Length Register

RSI_DATA_CTL Data Control Register

RSI_DATA_CNT Data Count Register

RSI_XFRSTAT Transfer Status Register

RSI_XFRSTAT_CLR Transfer Status Clear Register

RSI_XFR_IMSK0 Transfer Interrupt 0 Mask Register

RSI_XFR_IMSK1 Transfer Interrupt 1 Mask Register

RSI_FIFO_CNT FIFO Counter Register

RSI_BOOT_TCNTR Boot Timing Counter Register

RSI_BACK_TOUT Boot Acknowledge Timeout Register

RSI_SLP_WKUP_TOUT Sleep Wakeup Timeout Register

RSI_BLKSZ Block Size Register

RSI_FIFO Data FIFO Register

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Control Register

The RSI_CTL register provides control functionality for the RSI_CLK (RSI clock pin). The RSI_CLK can be
derived directly from the SCLK signal by enabling RSI_CTL.BYPASS; otherwise, the RSI_CLK frequency is
determined from the current SCLK frequency and the RSI_CTL.CLKDIV field according to the formula:

RSI_CLK = (SCLK) / (2 x (CLKDIV +1))

In order to conserve power, the RSI_CLK can be disabled without disabling the entire RSI interface using
the RSI_CTL.CLKEN bit; additionally the RSI_CTL.PWRSAVE bit, when set, results in the RSI_CLK signal
only been driven when the RSI is performing a transfer either to or from the card. In addition to clock
control functionality, the data bus width of the RSI interface is also controlled from this register as well as
the type of device that has been identified as being interfaced to the RSI. Bits [13:15] are added to this
register. These bits indicate the type of card that is connected to the RSI. The RSI_CTL.CARDTYPE field can
be initialized by software to indicate the type of device identified. As a number of commands (such as
Sleep, Wakeup) use the RSI_CTL.CARDTYPE information, this field is required to be programmed before
the Sleep or Wakeup command is issued to the device.

RSI_STAT0 Exception Status Register

RSI_IMSK0 Exception Mask Register

RSI_CFG Configuration Register

RSI_RD_WAIT Read Wait Enable Register

RSI_PID0 Peripheral ID 0 Register

RSI_PID1 Peripheral ID 1 Register

RSI_PID2 Peripheral ID 2 Register

RSI_PID3 Peripheral ID 3 Register

Table 24-17: ADSP-BF60x RSI Register List (Continued)

Name Description

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–47

Figure 24-10: RSI_CTL Register Diagram

Table 24-18: RSI_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:13
(R/W)

CARDTYPE Card Type.
The RSI_CTL.CARDTYPE bits indicate the type of card connected to
the RSI.
0 SDIO
1 eMMC
2 SD Card
3 Reserved

12:11
(R/W)

BUSWID Bus Width/Mode Select.
The RSI_CTL.BUSWID bits select the RSI bus width and mode.
0 1-bit data bus (Std Bus Mode, uses RSI_D0)
1 4-bit data bus (Wide Bus Mode)
2 8-bit data bus (Byte Bus Mode)
3 Reserved

10
(R/W)

BYPASS Bypass Clock Divisor.
The RSI_CTL.BYPASS bit enables bypass of the RSI clock divisor.
0 Disable Bypass
1 Enable Bypass (SCLK drives RSI_CLK)

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Argument Register

The RSI_ARG register contains the 32-bit argument that is sent on the RSI_CMD pin as part of a command
message. If a command requires an argument, the argument must first be loaded into the RSI_ARG register
prior to writing and enabling the command in the RSI_CMD register. For more information about RSI
commands and responses, see the RSI functional description.

Figure 24-11: RSI_ARG Register Diagram

9
(R/W)

PWRSAVE Power Save Enable.
The RSI_CTL.PWRSAVE bit enables power save operation, which
enables RSI_CLK only when the bus is active. If this bit is disabled, the
RSI_CLK is always enabled when RSI_CTL.CLKEN is set, whether or
not the bus is active.
0 Disable Power Save
1 Enable Power Save

8
(R/W)

CLKEN Clock Enable.
The RSI_CTL.CLKEN bit enables the RSI_CLK bus clock.
0 Disable Clock
1 Enable Clock

7:0
(R/W)

CLKDIV Clock Divisor.
The RSI_CTL.CLKDIV bits apply a clock divisor to the RSI_CLK
frequency when bypass is disabled (RSI_CTL.BYPASS =0).

Table 24-18: RSI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–49

Command Register

The RSI_CMD register controls the command path state machine. The RSI_CMD.IDX field contains the
index of the command to be issued through the RSI as part of the command message. If the command
requires a response, this is indicated with the RSI_CMD.RSP bit.

The length of the response (short or long) is selected with the RSI_CMD.LRSP bit. The command path state
machine becomes active when the RSI_CMD.EN bit is set and is disabled if this bit is cleared.

NOTE: After a data write, data cannot be written to this register for three SYSCLK periods plus two BCLK
periods.

It is not required to manually clear the RSI_CMD.EN bit after the command sequence has completed. The
command path state machine automatically terminates and becomes idle after the operation has
completed.

Figure 24-12: RSI_CMD Register Diagram

Table 24-19: RSI_ARG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Command Argument Value.
The RSI_ARG.VALUE bits contain the 32-bit argument value that is
sent on the RSI_CMD pin as part of a command message.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 24-20: RSI_CMD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12
(R/W)

CHKBUSY Check Busy Condition.
The RSI_CMD.CHKBUSY bit directs the RSI to check for busy state on
the RSI_D0 pin.
0 No Check for Busy
1 Check for Busy

11
(R/W)

CRCDIS Disable CRC Check.
The RSI_CMD.CRCDIS bit disables the RSI CRC check operation.
0 Enable CRC Check
1 Disable CRC Check

10
(R/W)

EN Command Enable.
The RSI_CMD.EN bit enables the RSI command state machine
operation.
0 Disable Command Operation
1 Enable Command Operation

9
(R/W)

PNDEN Command Pending Enable.
The RSI_CMD.PNDEN bit directs the command state machine to waits
for command pending status (RSI_XFRSTAT.DATEND =1) before the
RSI starts sending a command. This feature is used only during
MMC Stream Mode.
0 Disable Command Pending
1 Enable Command Pending

8
(R/W)

IEN Command Interrupt Enable.
The RSI_CMD.IEN bit disables the timeout mechanism when waiting
for a response to be received from an MMC device and instead waits
until a card interrupt is detected.
0 Disable Command Interrupt
1 Enable Command Interrupt

7
(R/W)

LRSP Long Response.
The RSI_CMD.LRSP bit directs the command state machine to wait
for a 136-bit long response if a response is enabled (RSI_CMD.RSP
=1).
0 No Wait for Long Response
1 Wait for Long Response

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–51

Response Command Register

The RSI_RESP_CMD register contains the command index field of the last response received. If the
command response does not contain doe not contain a command index field (as is the case with a long
response), the contents of the RSI_RESP_CMD register would typically be ignored. In this situation, the
register likely contains the value 0x3F, which is the value of the reserved field of the response.

Figure 24-13: RSI_RESP_CMD Register Diagram

6
(R/W)

RSP Response.
The RSI_CMD.RSP bit directs the command state machine to wait for
a short response. When enabled, either a command response end flag
(RSI_XFRSTAT.RESPEND =1) or command CRC fail flag (RSI_
XFRSTAT.CMDCRCFAIL =1) is expected. When disabled, a command
sent flag (RSI_XFRSTAT.CMDSENT =1) is expected.
0 No Wait for Short Response
1 Wait for Short Response

5:0
(R/W)

IDX Command Index.
The RSI_CMD.IDX bits contain the command index (the command
number to be issued). For more information about RSI commands
and responses, see the RSI functional description.

Table 24-21: RSI_RESP_CMD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5:0
(R/NW)

VALUE Response Command Value.
The RSI_RESP_CMD.VALUE bits contain the command response value
from the last response received.

Table 24-20: RSI_CMD Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Response 0 Register

The response registers (RSI_RESP0, RSI_RESP1, RSI_RESP2, RSI_RESP3) contain the response informa-
tion received back from a card for a given command message. The received response may be 32 or 127 bits
in length, depending on whether the response type is short or long. The most significant bit of the response
is received first and is located in bit 31 of the RSI_RESP0 register. Bit 0 of RSI_RESP3 is always zero. The
table show two example responses (short versus long).

Note that bits 31:1 of the long response are stored in bits 30:0 of the RSI_RESP3 register.Bit 31 of the RSI_
RESP3 register is not used and is always zero.

Figure 24-14: RSI_RESP0 Register Diagram

Response Register Short Response Long Response

RSI_RESP0 Response bits [31:0] Response bits [127:96]
RSI_RESP1 Not used Response bits [95:64]
RSI_RESP2 Not used Response bits [63:32]
RSI_RESP3 Not used Response bits [31:1]

Table 24-22: RSI_RESP0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Response 0 Value.
The RSI_RESP0.VALUE bits contain card status bits [31:0] in a short
response and contain card status bits [127:96] in a long response.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–53

Response 1 Register

The response registers (RSI_RESP0, RSI_RESP1, RSI_RESP2, RSI_RESP3) contain the response informa-
tion received back from a card for a given command message. For more information, see the RSI_RESP0
register description.

Figure 24-15: RSI_RESP1 Register Diagram

Response 2 Register

The response registers (RSI_RESP0, RSI_RESP1, RSI_RESP2, RSI_RESP3) contain the response informa-
tion received back from a card for a given command message. For more information, see the RSI_RESP0
register description.

Table 24-23: RSI_RESP1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Response 1 Value.
The RSI_RESP1.VALUE bits contain card status bits [95:64] in a long
response.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 24-16: RSI_RESP2 Register Diagram

Response 3 Register

The response registers (RSI_RESP0, RSI_RESP1, RSI_RESP2, RSI_RESP3) contain the response informa-
tion received back from a card for a given command message. For more information, see the RSI_RESP0
register description.

Figure 24-17: RSI_RESP3 Register Diagram

Table 24-24: RSI_RESP2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Response 2 Value.
The RSI_RESP2.VALUE bits contain card status bits [63:32] in a long
response.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–55

Data Timer Register

The RSI_DATA_TMR register contains a 32-bit value for the data timeout period (in RSI_CLK cycles). An
internal counter loads the value from this register, and starts to decrement when the data path state
machine enters the WAIT_R or the BUSY states. If the timer decrements to zero while the data path state
machine is still in either of these two states, the RSI_XFRSTAT.DATTO flag is set. The RSI_DATA_TMR and
the RSI_DATA_LEN registers must both be written to prior to starting a data transfer through the RSI_
DATA_CTL register.

Figure 24-18: RSI_DATA_TMR Register Diagram

Table 24-25: RSI_RESP3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Response 3 Value.
The RSI_RESP3.VALUE bits contain card status bits [31:0] in a long
response. The most significant bit of the card status is received first.
The most significant bit of RSI_RESP3.VALUE is always zero.

Table 24-26: RSI_DATA_TMR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Data Timeout Value.
The RSI_DATA_TMR.VALUE bits hold the timeout value (which is used
in normal mode) and hold the boot data timeout value (which is used
in boot mode).

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Data Length Register

The RSI_DATA_LEN register contains a 16-bit value for the number of data bytes to be transferred before
setting the RSI_XFRSTAT.DATEND flag. The value loaded to this register is copied into the RSI_DATA_CNT
register when the data path state machine is enabled and starts the transfer.

Figure 24-19: RSI_DATA_LEN Register Diagram

Data Control Register

The RSI_DATA_CTL register largely controls the data path state machine. Data transfer starts when RSI_
DATA_CTL.DATEN is set (=1). Depending on the RSI_DATA_CTL.DATDIR bit, the data path state machine
moves to the WAIT_S or the WAIT_R state. There is no need to clear the RSI_DATA_CTL.DATEN bit after
data transfer. Note that, after a data write, data cannot be written to this register for three SYSCLK periods
plus two BCLK periods.

Figure 24-20: RSI_DATA_CTL Register Diagram

Table 24-27: RSI_DATA_LEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Data Length Value.
The RSI_DATA_LEN.VALUE bits hold the length value for the number
of data bytes to be transferred.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–57

Data Count Register

The RSI_DATA_CNT register is loaded from the RSI_DATA_LEN register when the data path state machine
becomes enabled and moves from the IDLE state to the WAIT_S or WAIT_R states. As the data is trans-
ferred, the counter decrements; upon decrementing to zero, the state machine then moves back to the
IDLE state and the RSI_XFRSTAT.DATEND flag is set.

Figure 24-21: RSI_DATA_CNT Register Diagram

Table 24-28: RSI_DATA_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

DMAEN Data Transfer DMA Enable.
The RSI_DATA_CTL.DMAEN bit enables RSI DMA transfers. If not
DMA is not enabled, the RSI FIFO is only accessible through the
processor core.
0 Disable DMA
1 Enable DMA

2
(R/W)

DATMODE Data Transfer Mode.
The RSI_DATA_CTL.DATMODE bit selects whether the RSI uses stream
or block data transfer mode.
0 Block Bata Transfer
1 Stream Data Transfer

1
(R/W)

DATDIR Data Transfer Direction.
The RSI_DATA_CTL.DATDIR bit selects the direction of the transfer.
0 Controller-to-Card Transfers
1 Card-to-Controller Transfers

0
(R/W)

DATEN Data Transfer Enable.
The RSI_DATA_CTL.DATEN bit enables the RSI state machine,
enabling RSI operation.
0 Disable Data Transfer
1 Enable Data Transfer

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Transfer Status Register

The RSI_XFRSTAT register contains both static and dynamic flags that indicate the status of the RSI. The
static flags (bits [10:0]) remain asserted and are required to be cleared by writing to the RSI_XFRSTAT_CLR
register. The dynamic flags (bits [21:11]) change state, depending on the state of the underlying logic. The
transmit and receive FIFO logic controls bits [21:12], which vary depending on the state of the FIFO and
depending on whether the FIFO is currently enabled for a transmit or receive operation.

Figure 24-22: RSI_XFRSTAT Register Diagram

Table 24-29: RSI_DATA_CNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Data Count Value.
The RSI_DATA_CNT.VALUE bits contain the current count of bytes
remaining in the data transfer.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–59

Table 24-30: RSI_XFRSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

21
(R/NW)

RXFIFORDY Rx FIFO Available.
0 No Status
1 Data Available in Rx FIFO

20
(R/NW)

TXFIFORDY Tx FIFO Available.
0 No Status
1 Data Available in Tx FIFO

19
(R/NW)

RXFIFOZERO Rx FIFO Empty.
0 No Status
1 Rx FIFO Empty

18
(R/NW)

TXFIFOZERO Tx FIFO Empty.
0 No Status
1 Tx FIFO Empty

17
(R/NW)

RXFIFOFULL Rx FIFO Full.
0 No Status
1 Rx FIFO Full

16
(R/NW)

TXFIFOFULL Tx FIFO Full.
0 No Status
1 Tx FIFO Full

15
(R/NW)

RXFIFOSTAT Rx FIFO Status.
0 No Status
1 Rx FIFO Half Full

14
(R/NW)

TXFIFOSTAT Tx FIFO Status.
0 No Status
1 Tx FIFO Half Empty

13
(R/NW)

RXACT Receive Active.
0 No Status
1 Data Receive in Progress

12
(R/NW)

TXACT Transmit Active.
0 No Status
1 Data Transmit in Progress

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

11
(R/NW)

CMDACT Command Active.
0 No Status
1 Command Transfer in Progress

10
(R/NW)

DATBLKEND Data Block End.
0 No Status
1 Data Block Sent/Rcvd (CRC Check Pass)

9
(R/NW)

SBITERR Start Bit Error.
0 No Status
1 Start Bit Not Detected on All Data Signal in

Wide Bus Mode
8
(R/NW)

DATEND Data End.
0 No Status
1 Data End (Data Counter is Zero)

7
(R/NW)

CMDSENT Command Sent.
0 No Status
1 Command Sent (No Response Required)

6
(R/NW)

RESPEND Command Response End.
0 No Status
1 Command Response Received (CRC Check

Passed)
5
(R/NW)

RXOVER Receive Over Run.
0 No Status
1 Rx FIFO Over Run Error

4
(R/NW)

TXUNDR Transmit Under Run.
0 No Status
1 Tx FIFO Under Run Error

3
(R/NW)

DATTO Data Timeout.
0 No Status
1 Data Timeout

Table 24-30: RSI_XFRSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–61

Transfer Status Clear Register

The RSI_XFRSTAT_CLR register is used to clear the static flags of the RSI_XFRSTAT register. Write a 1 to
any of the bits to clear the corresponding flag in the RSI_XFRSTAT register.

Figure 24-23: RSI_XFRSTAT_CLR Register Diagram

2
(R/NW)

CMDTO CMD Timeout.
0 No Status
1 Command Response Timeout

1
(R/NW)

DATCRCFAIL Data CRC Fail.
0 No Status
1 Data Block Sent/Rcvd (CRC Check Fail)

0
(R/NW)

CMDCRCFAIL CMD CRC Fail.
0 No Status
1 Command Response Rcvd (CRC Check

Fail)

Table 24-30: RSI_XFRSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 24-31: RSI_XFRSTAT_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/W1C)

DATBLKEND Data Block End Clear Status.
Set RSI_XFRSTAT_CLR.DATBLKEND to clear the corresponding status
bit in RSI_XFRSTAT.

9
(R/W1C)

STRTBITERR Start Bit Error Clear Status.
Set RSI_XFRSTAT_CLR.STRTBITERR to clear the corresponding status
bit in RSI_XFRSTAT.

8
(R/W1C)

DATEND Data End Clear Status.
Set RSI_XFRSTAT_CLR.DATEND to clear the corresponding status bit
in RSI_XFRSTAT.

7
(R/W1C)

CMDSENT Command Sent Clear Status.
Set RSI_XFRSTAT_CLR.CMDSENT to clear the corresponding status bit
in RSI_XFRSTAT.

6
(R/W1C)

RESPEND Command Response End Clear Status.
Set RSI_XFRSTAT_CLR.RESPEND to clear the corresponding status bit
in RSI_XFRSTAT.

5
(R/W1C)

RXOVER Receive Over Run Clear Status.
Set RSI_XFRSTAT_CLR.RXOVER to clear the corresponding status bit
in RSI_XFRSTAT.

4
(R/W1C)

TXUNDR Transmit Under Run Clear Status.
Set RSI_XFRSTAT_CLR.TXUNDR to clear the corresponding status bit
in RSI_XFRSTAT.

3
(R/W1C)

DATTO Data Timeout Clear Status.
Set RSI_XFRSTAT_CLR.DATTO to clear the corresponding status bit in
RSI_XFRSTAT.

2
(R/W1C)

CMDTO CMD Timeout Clear Status.
Set RSI_XFRSTAT_CLR.CMDTO to clear the corresponding status bit in
RSI_XFRSTAT.

1
(R/W1C)

DATCRCFAIL Data CRC Fail Clear Status.
Set RSI_XFRSTAT_CLR.DATCRCFAIL to clear the corresponding status
bit in RSI_XFRSTAT.

0
(R/W1C)

CMDCRCFAIL CMD CRC Fail Clear Status.
Set RSI_XFRSTAT_CLR.CMDCRCFAIL to clear the corresponding status
bit in RSI_XFRSTAT.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–63

Transfer Interrupt 0 Mask Register

The interrupt mask registers (RSI_XFR_IMSK0 and RSI_XFR_IMSK1) determine which of the static and
dynamic flags of the RSI_XFRSTAT register generate an interrupt request using one of the RSI interrupts.
An RSI interrupt is enabled by setting the corresponding bit in the interrupt mask register to 1. Interrupts
enabled in the RSI_XFR_IMSK0 register generate an interrupt using the RSI_INT0 signal of the RSI, and
interrupts enabled in the RSI_XFR_IMSK1 register generate an interrupt using the RSI_INT1 signal of the
RSI.

Figure 24-24: RSI_XFR_IMSK0 Register Diagram

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 24-32: RSI_XFR_IMSK0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

21
(R/W)

RXFIFORDY Rx FIFO Available Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

20
(R/W)

TXFIFORDY Tx FIFO Available Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

19
(R/W)

RXFIFOZERO Rx FIFO Empty Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

18
(R/W)

TXFIFOZERO Tx FIFO Empty Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

17
(R/W)

RXFIFOFULL Rx FIFO Full Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

16
(R/W)

TXFIFOFULL Tx FIFO Full Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

15
(R/W)

RXFIFOSTAT Rx FIFO Status Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

14
(R/W)

TXFIFOSTAT Tx FIFO Status Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

13
(R/W)

RXACT Receive Active Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

12
(R/W)

TXACT Transmit Active Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–65

11
(R/W)

CMDACT Command Active Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

10
(R/W)

DATBLKEND Data Block End Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

9
(R/W)

STRTBITERR Start Bit Error Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

8
(R/W)

DATEND Data End Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

7
(R/W)

CMDSENT Command Sent Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

6
(R/W)

RESPEND Command Response End Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

5
(R/W)

RXOVER Receive Over Run Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

4
(R/W)

TXUNDR Transmit Under Run Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

3
(R/W)

DATTO Data Timeout Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

2
(R/W)

CMDTO Command Timeout Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

Table 24-32: RSI_XFR_IMSK0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Transfer Interrupt 1 Mask Register

The interrupt mask registers (RSI_XFR_IMSK0 and RSI_XFR_IMSK1) determine which of the static and
dynamic flags of the RSI_XFRSTAT register generate an interrupt request using one of the RSI interrupts.
An RSI interrupt is enabled by setting the corresponding bit in the interrupt mask register to 1. Interrupts
enabled in the RSI_XFR_IMSK0 register generate an interrupt using the RSI_INT0 signal of the RSI, and
interrupts enabled in the RSI_XFR_IMSK1 register generate an interrupt using the RSI_INT1 signal of the
RSI.

1
(R/W)

DATCRCFAIL Data CRC Fail Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

0
(R/W)

CMDCRCFAIL Command CRC Fail Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

Table 24-32: RSI_XFR_IMSK0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–67

Figure 24-25: RSI_XFR_IMSK1 Register Diagram

Table 24-33: RSI_XFR_IMSK1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

21
(R/W)

RXFIFORDY Rx FIFO Available Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

20
(R/W)

TXFIFORDY Tx FIFO Available Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

19
(R/W)

RXFIFOZERO Rx FIFO Empty Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

18
(R/W)

TXFIFOZERO Tx FIFO Empty Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

17
(R/W)

RXFIFOFULL Rx FIFO Full Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

16
(R/W)

TXFIFOFULL Tx FIFO Full Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

15
(R/W)

RXFIFOSTAT Rx FIFO Status Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

14
(R/W)

TXFIFOSTAT Tx FIFO Status Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

13
(R/W)

RXACT Receive Active Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

12
(R/W)

TXACT Transmit Active Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

11
(R/W)

CMDACT Command Active Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

10
(R/W)

DATBLKEND Data Block End Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

Table 24-33: RSI_XFR_IMSK1 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–69

9
(R/W)

STRTBITERR Start Bit Error Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

8
(R/W)

DATEND Data End Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

7
(R/W)

CMDSENT Command Sent Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

6
(R/W)

RESPEND Command Response End Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

5
(R/W)

RXOVER Receive Over Run Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

4
(R/W)

TXUNDR Transmit Under Run Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

3
(R/W)

DATTO Data Timeout Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

2
(R/W)

CMDTO Command Timeout Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

1
(R/W)

DATCRCFAIL Data CRC Fail Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

0
(R/W)

CMDCRCFAIL Command CRC Fail Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

Table 24-33: RSI_XFR_IMSK1 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

FIFO Counter Register

The RSI_FIFO_CNT register contains a value indicating the number of 32-bit words still to be read from or
written to the FIFO. The RSI_FIFO_CNT is loaded from the RSI_DATA_LEN register when the RSI_DATA_
CTL.DATEN bit is set. If the data length is not word-aligned (multiple of 4), the remaining 1 to 3 bytes are
regarded as a word.

Figure 24-26: RSI_FIFO_CNT Register Diagram

Boot Timing Counter Register

The RSI_BOOT_TCNTR register selects the cycle count for normal and alternate boot signal timing. When
the RSI_BOOT_TCNTR.HOLD and RSI_BOOT_TCNTR.SETUP counters expire, the RSI sets the RSI_STAT0.
BSETUPEXP and RSI_STAT0.BHOLDEXP bits, raising the corresponding interrupts (if enabled/unmasked) in
the RSI_IMSK0 register.

Figure 24-27: RSI_BOOT_TCNTR Register Diagram

Table 24-34: RSI_FIFO_CNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14:0
(R/W)

VALUE FIFO Count Value.
The RSI_FIFO_CNT.VALUE bits contain the current count of 32-bit
words remaining to be read-from or written-to the FIFO.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–71

Boot Acknowledge Timeout Register

When the RSI_CFG.BACKEN bit =1, the value in the RSI_BACK_TOUT register is used to compute the boot
acknowledge timeout interval for the ACK from a slave. The RSI increments a counter (starts at zero) from
the RSI_CLK while waiting for the acknowledge. When this counter reaches the timeout value, the RSI sets
the RSI_STAT0.BACKTO bit, raising the corresponding interrupts (if enabled/unmasked) in the RSI_IMSK0
register. When the RSI_CFG.BACKEN bit =0, the RSI_BACK_TOUT register contents are not used.

The value to be programmed in the RSI_BACK_TOUT register is computed with the following formula,

Boot Acknowledge timeout = (Absolute time in seconds) * (RSI_CLK frequency)

= ((Absolute time) * SCLK)/ (2(RSI_CTL.CLKDIV + 1))

Where, RSI_CTL.CLKDIV holds the value, by which the SCLK is divided to generate RSI_CLK (RSI clock).

In bypass mode (clock divisor disabled), the formula is:

Boot Acknowledge timeout = (Absolute time in seconds) * SCLK

Table 24-35: RSI_BOOT_TCNTR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

HOLD Boot Hold Time.
In Normal Boot mode, The RSI_BOOT_TCNTR.HOLD bits select the
minimum number of cycles (RSI_CLK periods) required after pulling
RSI_CMD line high to resume normal operation. In Alternate Boot
mode, the RSI_BOOT_TCNTR.HOLD bits select the minimum number
of cycles (RSI_CLK periods) required after CMD0/Reset to resume
normal operation.

7:0
(R/W)

SETUP Boot Setup Time.
In Normal Boot mode, the RSI_BOOT_TCNTR.SETUP bits select the
minimum number of cycles (RSI_CLK periods) for which RSI_CMD
line pulled low to enable boot. In Alternate Boot mode, the RSI_
BOOT_TCNTR.SETUP bits select the minimum number of cycles (RSI_
CLK periods) for which RSI_CMD line is high before giving CMD0
with 0xFFFFFFFA.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 24-28: RSI_BACK_TOUT Register Diagram

Sleep Wakeup Timeout Register

The RSI_SLP_WKUP_TOUT register defines the maximum timeout value for state transitions from Standby
State to Sleep State and from Sleep State to Standby State. This value is loaded to Sleep/Wakeup Counter
when a Sleep or Wakeup command is sent. When the counter expires, the RSI sets the RSI_STAT0.
SLPWKPTOUT bit, raising the corresponding interrupts (if enabled/unmasked) in the RSI_IMSK0 register.
The formula to calculate the maximum timeout value is:

Sleep Wakeup Timeout = (Absolute time in seconds) * (RSI_CLK frequency)

= ((Absolute time in seconds) * SCLK)/(2(RSI_CTL.CLKDIV + 1))

Where RSI_CTL.CLKDIV holds the value by which the SCLK is divided to generate the RSI_CLK (RSI
clock).

In bypass mode (clock divisor disabled), the formula is:

Sleep Wakeup Timeout = (Absolute time in seconds) * SCLK

Table 24-36: RSI_BACK_TOUT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TIMEOUT Boot Acknowledge Timeout Value.
The RSI_BACK_TOUT.TIMEOUT bits hold the value used to compute
the boot acknowledge timeout interval for the ACK from a slave. This
timeout only is used when the RSI_CFG.BACKEN bit =1.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–73

Figure 24-29: RSI_SLP_WKUP_TOUT Register Diagram

Block Size Register

The RSI_BLKSZ register holds the size of each block in bytes. Only allowed block size values should be
programmed.

Figure 24-30: RSI_BLKSZ Register Diagram

Table 24-37: RSI_SLP_WKUP_TOUT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TIMEOUT Sleep WakeUp Timeout Value.
The RSI_SLP_WKUP_TOUT.TIMEOUT bits defines the maximum
timeout value for state transitions from Standby State to Sleep State
and from Sleep State to Standby State.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Data FIFO Register

The RSI_FIFO register provides access to the 16-entry transmit and receive FIFO. The register is accessed
as a 32-bit word.

Figure 24-31: RSI_FIFO Register Diagram

Exception Status Register

The RSI_STAT0 register contains exception status bits for SDIO cards and the card detection logic. This
register also contains exception status bits for Boot mode, Sleep mode and Card Busy status. These excep-

Table 24-38: RSI_BLKSZ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12:0
(R/W)

VALUE Block Size Value.
The RSI_BLKSZ.VALUE bits select the size of each block of data.
0x801 - 0x1FFF Reserved
0x003 - 0x7FF 3 to 2047 Bytes
1 1 Byte
2 2 Bytes
2048 2048 Bytes

Table 24-39: RSI_FIFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Rx/Tx FIFO Data..
The RSI_FIFO.VALUE bits hold FIFO data.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–75

tion status bits can be uses to generate an interrupt request through the RSI_INT0 signal by enabling
(unmasking) the corresponding exception interrupt in the RSI_IMSK0 register. All bits in this register are
write-1-to-clear bits.

Figure 24-32: RSI_STAT0 Register Diagram

Table 24-40: RSI_STAT0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

BUSYMODE Busy Mode Status.
The RSI_STAT0.BUSYMODE bit indicates when the card is in Busy
mode.
0 No Status
1 Busy Mode

30
(R/W)

SLPMODE Sleep Mode Status.
The RSI_STAT0.SLPMODE bit indicates when the card is in Sleep
Mode.
0 No Status
1 Sleep Mode

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

17
(R/W)

CARDRDY Card Ready Status.
The RSI_STAT0.CARDRDY bit indicates when the RSI_CMD.CHKBUSY
is set and the card comes out of busy state by pulling the RSI_D0 line
high.
0 No Status
1 Card Ready

16
(R/W)

SLPWKPTOUT Sleep Wakeup Timeout Status.
The RSI_STAT0.SLPWKPTOUT bit indicates when the card does not
change state between Standby and Sleep State before the timeout
counter expires.
0 No Status
1 Timeout

15
(R/W)

WKPDONE Wakeup Done Status.
The RSI_STAT0.WKPDONE bit indicates when the card successfully
entered Standby State from Sleep State.
0 No Status
1 Sleep-to-Standby State Transition Success

14
(R/W)

SLPDONE Sleep Done Status.
The RSI_STAT0.SLPDONE bit indicates when the card successfully
entered Sleep State from Standby State.
0 No Status
1 Standby-to-Sleep State Transition Success

13
(R/W)

BACKDONE Boot ACK Done Status.
The RSI_STAT0.BACKDONE bit indicates when the expected boot
ACK is received.
0 No Status
1 Correct Boot ACK Received

12
(R/W)

BACKBAD Boot ACK Bad Status.
The RSI_STAT0.BACKBAD bit indicates when the received boot ACK
is not =010 (bad).
0 No Status
1 Corrupted Boot ACK Received

Table 24-40: RSI_STAT0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–77

11
(R/W)

BACKTO Boot ACK Timeout Status..
The RSI_STAT0.BACKTO bit indicates when boot ACK is not received
before the boot ACK timeout counter expires. This status is only
available when the RSI_CFG.BACKEN bit is set.
0 No Status
1 Timeout

10
(R/W)

BDATTO Boot Data Timeout Status.
The RSI_STAT0.BDATTO bit indicates when boot data is not received
before the boot data timeout counter expires.
0 No Status
1 Timeout

9
(R/W)

BHOLDEXP Boot Hold Expired Status.
The RSI_STAT0.BHOLDEXP bit indicates when the boot hold time
counter expires.
0 No Status
1 Counter Expired

8
(R/W)

BSETUPEXP Boot Setup Expired Status.
The RSI_STAT0.BSETUPEXP bit indicates when the boot setup time
counter expires.
0 No Status
1 Counter Expired

4
(R/W)

SDCARD SD Card Detected Status.
The RSI_STAT0.SDCARD bit indicates that the RSI has detected a
rising edge on the RSI_D3 signal, which is intended for use with SD
devices that support card detection using this signal.
0 No SD Card Detected
1 SD Card Detected

1
(R/W)

SDIOINT SDIO Interrupt Status.
The RSI_STAT0.SDIOINT bit indicates that the RSI has detected an
interrupt generated by SDIO cards on the RSI_D0 signal.
0 No interrupt detected
1 Interrupt detected

Table 24-40: RSI_STAT0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Exception Mask Register

The interrupt mask bits in the RSI_IMSK0 register determine which of the flags of the RSI_STAT0 register
generate an interrupt request using the RSI_INT0 interrupt. The RSI_IMSK0 register contains mask bits for
the RSI_STAT0 status bits. Writing a "1" to the RSI_IMSK0 bit enables the interrupt for the corresponding
bit in the RSI_STAT0 register.

Figure 24-33: RSI_IMSK0 Register Diagram

Table 24-41: RSI_IMSK0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

17
(R/W)

CARDRDY Card Ready Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

16
(R/W)

SLPWKPTOUT Sleep Wakeup Timeout Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

15
(R/W)

WKPDONE Wakeup Done Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–79

14
(R/W)

SLPDONE Sleep Done Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

13
(R/W)

BACKDONE Boot ACK Done Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

12
(R/W)

BACKBAD Boot ACK Bad Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

11
(R/W)

BACKTO Boot ACK Timeout Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

10
(R/W)

BDATTO Boot Data Timeout Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

9
(R/W)

BHOLDEXP Boot Hold Expired Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

8
(R/W)

BSETUPEXP Boot Setup Expired Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

4
(R/W)

SDCARD SD Card Detected Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

1
(R/W)

SDIOINT SDIO Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

Table 24-41: RSI_IMSK0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–80 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuration Register

The RSI_CFG register controls bits that enable and disable portions of the RSI. The RSI_CFG.CLKSEN bit
must be set in order to enable the RSI for operation. If an external pull-down resistor is used for imple-
menting card detection on the RSI_D3 signal, the RSI_CFG.DAT3PUP should not be set. The pull-up and
pull-down resistors on the RSI_D0 through RSI_D7 signals (but not RSI_D3) become active only when the
corresponding GPIO pins are configured for RSI functionality with the pin multiplexing. For example, if
only the 4-bit data bus is enabled in the pin multiplexing, setting RSI_CFG.DATPUP enables only the pull-
up resistors on the signals that are configured for RSI use. The RSI_CFG register also provides additional
functionality for SDIO support. To enable SDIO 4-bit mode, in addition to setting the bus width to 4-bit
with the RSI_CTL.BUSWID field, the RSI_CFG.SD4EN should be set. The RSI_CFG.MWINEN bit, when set,
allows for SDIO interrupts to be detected outside the specified one-cycle window and is set when interrupt
support is required during multiple block read transactions from SDIO. The RSI can also be reset with the
RSI_CFG.RST bit. Writing this bit resets the RSI module and returns all registers to their default values.

Figure 24-34: RSI_CFG Register Diagram

Table 24-42: RSI_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14
(R/W)

BACKEN Boot ACK Enable.
The RSI_CFG.BACKEN bit directs the RSI to expect a boot ACK.
0 No Boot ACK Expected
1 Expect Boot ACK

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–81

13
(R/W)

MMCBMODE MMC Boot Mode Select.
The RSI_CFG.MMCBMODE bit selects the MCC boot mode.
0 Normal Boot Mode
1 Alternate Boot Mode

12
(R/W)

MMCBEN MMC Boot Enable.
The RSI_CFG.MMCBEN bit enables MCC boot operation.
0 Disable MMC Boot
1 Enable MMC Boot

11
(R/W)

OPENDRAIN MC_CMD Output Control.
The RSI_CFG.OPENDRAIN bit selects whether the MC_CMD output
control is an open drain output.
0 Not Open Drain
1 Open Drain

10:9
(R/W)

PWRON Power On.
The RSI_CFG.PWRON bits enable RSI operation. Field values other
than those shown are reserved.
0 Disable RSI
3 Enable RSI

8
(R/W)

IEBYPDIS Input Enable Bypass Disable.
The RSI_CFG.IEBYPDIS bit disables the input enable bypass.
0 Enable Bypass
1 Disable Bypass

6
(R/W)

DAT3PUP Data Pin 3 Pull-Up.
The RSI_CFG.DAT3PUP bit enables a pull-up resistor on the SD_
DAT3 line (RSI_D3).
0 Disable Pull-Up
1 Enable Pull-Up

5
(R/W)

DATPUP Data Pin Pull-Ups.
The RSI_CFG.DATPUP bit enables pull-up resistors on the SD_DAT
lines (RSI_D0 through RSI_D7 signals---but not RSI_D3---depending
on RSI_CTL.BUSWID selection).
0 Disable Pull-Ups
1 Enable Pull-Ups

Table 24-42: RSI_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–82 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Read Wait Enable Register

The RSI_RD_WAIT register contains the RSI_RD_WAIT.REQUEST bit that, when set, issues a read wait
request to an SDIO card. After software is ready to resume the data transfer, this bit must be cleared. The
functionality applies to both 1-bit and 4-bit SDIO modes.

Figure 24-35: RSI_RD_WAIT Register Diagram

4
(R/W1A)

RST SDMMC Reset.
The RSI_CFG.RST bit resets the SDMMC.
0 No Action
1 Reset SDMMC

3
(R/W)

MWINEN Moving Window Enable.
The RSI_CFG.MWINEN bit enables moving window operation.
0 Disable Moving Window
1 Enable Moving Window

2
(R/W)

SD4EN SDIO 4-Bit Enable.
The RSI_CFG.SD4EN bit enable SDIO 4-bit operation.
0 Disable SDIO 4-bit
1 Enable SDIO 4-bit

0
(R/W)

CLKSEN Clocks Enable.
The RSI_CFG.CLKSEN bit enable RSI clocks (both PCLK and MCLK).
0 Disable Clocks
1 Enable Clocks

Table 24-42: RSI_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–83

Peripheral ID 0 Register

The RSI_PIDx registers (RSI_PID0, RSI_PID1, RSI_PID2, RSI_PID3, RSI_PID4, RSI_PID5, RSI_PID6,
and RSI_PID7) contain a fixed value at reset and are used to identify the peripheral revision. There are a
total of four 16-bit identification registers of which the lower 8-bits are valid. The contents of these four
registers are:

The RSI identification registers are read-only. The values of the bits can be grouped into one 32-bit word-
-the word comprehends RSIPID [3:0] of value 0x00041180.

Figure 24-36: RSI_PID0 Register Diagram

Table 24-43: RSI_RD_WAIT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

0
(R/W)

REQUEST Read Wait Request.
The RSI_RD_WAIT.REQUEST bit directs the RSI to issue a read wait
request to the SDIO card.
0 Normal Operation
1 Read Wait Request Operation

RSI Peripheral ID Register RSI_PID Value

RSI_PID0 0x80
RSI_PID1 0x11
RSI_PID2 0x04
RSI_PID3 0x00

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–84 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Peripheral ID 1 Register

There are a total of four 16-bit identification registers of which the lower 8-bits are valid. For more infor-
mation, see the RSI_PID0 register description.

Figure 24-37: RSI_PID1 Register Diagram

Peripheral ID 2 Register

There are a total of four 16-bit identification registers of which the lower 8-bits are valid. For more infor-
mation, see the RSI_PID0 register description.

Table 24-44: RSI_PID0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

VALUE Peripheral ID 0 Value.
For more information, see the RSI_PID0 register description.

Table 24-45: RSI_PID1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

VALUE Peripheral ID 1 Value.
For more information, see the RSI_PID0 register description.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 24–85

Figure 24-38: RSI_PID2 Register Diagram

Peripheral ID 3 Register

There are a total of four 16-bit identification registers of which the lower 8-bits are valid. For more infor-
mation, see the RSI_PID0 register description.

Figure 24-39: RSI_PID3 Register Diagram

Table 24-46: RSI_PID2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

VALUE Peripheral ID 2 Value.
For more information, see the RSI_PID0 register description.

Table 24-47: RSI_PID3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

VALUE Peripheral ID 3 Value.
For more information, see the RSI_PID0 register description.

REMOVABLE STORAGE INTERFACE (RSI)
ADSP-BF60X RSI REGISTER DESCRIPTIONS

24–86 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–1

25 Serial Peripheral Interface (SPI)

The Serial Peripheral Interface is an industry-standard synchronous serial link that supports communica-
tion with multiple SPI compatible devices. The baseline SPI peripheral is a synchronous, four-wire inter-
face consisting of two data pins, one device select pin, and a gated clock pin. With the two data pins, it
allows for full-duplex operation to other SPI compatible devices. An additional two (optional) data pins
are provided to support quad SPI operation. Enhanced modes of operation such as flow control, Fast Mode
and dual-I/O mode (DIOM) are also supported. Moreover, a direct memory access (DMA) mode allows
for transferring several words with minimal CPU interaction.

The SPI interface includes programmable baud rates, clock phase, and clock polarity. It can operate in a
multi-master environment by interfacing with several other devices, acting as either a master device or a
slave device. In a multi-master environment, the SPI interface uses open drain outputs to avoid data bus
contention.

SPI Features
The SPI module supports the following features:

• Full-duplex, synchronous serial interface

• Supports 8, 16 and 32-bit word sizes

• Programmable baud rate, clock phase and polarity

• Programmable inter-frame latency

• Flow control

• Support for Fast, DIOM and Quad SPI enhanced modes

• Independent receive and transmit DMA channels

• Burst transfer mode for non-DMA write accesses

SPI Functional Description
The following sections provide functional descriptions of the SPI:

• ADSP-BF60x SPI Register List

• ADSP-BF60x SPI Interrupt List

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

25–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• ADSP-BF60x SPI Trigger List

• SPI Block Diagram

The SPI is essentially a shift register that serially transmits and receives data bits to/from other SPI devices.
During an SPI transfer, data is simultaneously transmitted (shifted out serially) and received (shifted in
serially). A serial clock line synchronizes shifting and sampling of the information on the two serial data
lines.

During a data transfer, one SPI system acts as the link master which controls the data flow, while the other
system acts as the slave, which has data shifted into and out of it by the master. Different devices can take
turn being masters, and one master may simultaneously shift data into multiple slaves (broadcast mode).
However, only one slave may drive its output to write data back to the master at any given time. This must
be enforced in the broadcast mode, where several slaves can be selected to receive data from the master,
but only one slave can be enabled to send data back to the master.

SPI supports enhanced modes of operation like Fast Mode, DIOM and Quad-SPI, as well as providing
optional flow control. In Fast Mode, received data is sampled on the transmit edge instead of the standard
receive edge, thus enabling a full-cycle path for the received data. In DIOM, both MOSI and MISO are
configured as input or output pins, and two bits are shifted in or out on each receive or transmit edge. In
Quad-SPI mode, SPI_D3:0 are configured as input or output pins and four bits are shifted in or out on each
receive or transmit edge. Flow control can be used by a slower slave to stall a faster master device.

The SPI can be used in a single master as well as multi-master environment. The SPI_MOSI, SPI_MISO, and
the SPI_CLK signals are all tied together in both configurations. SPI transmission and reception may be
enabled simultaneously or individually, depending on SPI_RXCTLand SPI_TXCTL settings. In Broadcast
mode, several slaves can be enabled to receive, but only one slaves must be in transmit mode and driving
the SPI_MISOline.

ADSP-BF60x SPI Register List

The serial peripheral interface SPI provides a full-duplex, synchronous serial interface, which supports
both master/slave modes and multi-master environments. The SPI's baud rate and clock phase/polarities
are programmable, and it has integrated DMA channels for both transmit and receive data streams. A set
of registers govern SPI operations. For more information on SPI functionality, see the SPI register descrip-
tions.

Table 25-1: ADSP-BF60x SPI Register List

Name Description

SPI_CTL Control Register

SPI_RXCTL Receive Control Register

SPI_TXCTL Transmit Control Register

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–3

ADSP-BF60x SPI Interrupt List

SPI_CLK Clock Rate Register

SPI_DLY Delay Register

SPI_SLVSEL Slave Select Register

SPI_RWC Received Word Count Register

SPI_RWCR Received Word Count Reload Register

SPI_TWC Transmitted Word Count Register

SPI_TWCR Transmitted Word Count Reload Register

SPI_IMSK Interrupt Mask Register

SPI_IMSK_CLR Interrupt Mask Clear Register

SPI_IMSK_SET Interrupt Mask Set Register

SPI_STAT Status Register

SPI_ILAT Masked Interrupt Condition Register

SPI_ILAT_CLR Masked Interrupt Clear Register

SPI_RFIFO Receive FIFO Data Register

SPI_TFIFO Transmit FIFO Data Register

Table 25-2: ADSP-BF60x SPI Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

SPI0 TX DMA Channel 55 6 LEVEL
SPI0 RX DMA Channel 56 7 LEVEL
SPI0 Status 57 LEVEL
SPI1 TX DMA Channel 58 8 LEVEL
SPI1 RX DMA Channel 59 9 LEVEL

Table 25-1: ADSP-BF60x SPI Register List (Continued)

Name Description

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

25–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x SPI Trigger List

SPI Block Diagram

The figure below illustrates the block diagram of the SPI module. The module is comprised of three
primary parts:

• SPI core contains the receive and transmit FIFOs and their associated shift registers.

• Control blocks contain the synchronizer and logic to control the data flow through the data pipelines.

• Register block.

SPI1 Status 60 LEVEL

Table 25-3: ADSP-BF60x SPI Trigger List Trigger Masters

Description Trigger ID Sensitivity

SPI0 TX DMA Channel 26 PULSE/EDGE
SPI0 RX DMA Channel 27 PULSE/EDGE
SPI1 TX DMA Channel 28 PULSE/EDGE
SPI1 RX DMA Channel 29 PULSE/EDGE

Table 25-4: ADSP-BF60x SPI Trigger List Trigger Slaves

Description Trigger ID Sensitivity

SPI0 TX DMA Channel 26
SPI0 RX DMA Channel 27
SPI1 TX DMA Channel 28
SPI1 RX DMA Channel 29

Table 25-2: ADSP-BF60x SPI Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–5

Figure 25-1: SPI Controller Block Diagram

Transfer Protocol

The SPI module implements two channels that are independent of each other. These channels are
controlled by the SPI_RXCTL and SPI_TXCTL dedicated control registers. Except in dual and quad modes,
both channels may be enabled and used simultaneously.

The SPI protocol supports four different combinations of serial clock phase and polarity. These combina-
tions are selected through the SPI_CTL.CPOL and SPI_CTL.CPHA bits.

The figures below demonstrate the two basic transfer formats as defined by the CPHA bit. Two waveforms
are shown for SPI_CLK—one for SPI_CTL.CPOL=0 and the other for SPI_CTL.CPOL=1. The diagrams may
be interpreted as master or slave timing diagrams since the SPI_CLK, SPI_MISO and SPI_MOSI pins are
directly connected between the master and the slave. The SPI_MISO signal is the output from the slave
(slave transmission), and the SPI_MOSI signal is the output from the master (master transmission). The
SPI_CLK signal is generated by the master, and the SPI_SS signal is the slave device select input to the slave
from the master. The diagrams represent an 8-bit transfer (SPI_CTL.SIZE=0) with the MSB first (SPI_

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

25–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CTL.LSBF=0). Any combination of the SPI_CTL.SIZE and SPI_CTL.LSBF bits is allowed. For example, a
16-bit transfer with the LSB first is another possible configuration.

The clock polarity and the clock phase should be identical for the master device and the slave device
involved in the communication link. The transfer format from the master may be changed between trans-
fers to adjust to various requirements of a slave device.

The SPI_CTL.ASSEL bit determines if the SPI_SS line is controlled by the SPI hardware or by software.
When SPI_CTL.ASSEL=1, the slave select line must be set to the polarity set in the SPI_CTL.SELST field
between each serial transfer. The actual behavior of SPI_SS also depends on the parameters programmed
into the SPI_DLY register. This is controlled automatically by the SPI hardware logic. When SPI_CTL.
ASSEL=0, SPI_SS may either remain active between successive transfers or be inactive. This must be
controlled by the software via manipulation of the SPI_SLVSEL register.

The figures below illustrate the case when ASSEL = 1 and the SPI_SS line is inactive between frames. If
ASSEL = 0, the SPI_SS line may remain active between frames; however, the first bit will only be driven
when an active transition of SPI_CLK occurs.

Figure 25-2: SPI Transfer Protocol for CPHA=0

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–7

Figure 25-3: SPI Transfer Protocol for CPHA=1

SPI Clock Considerations

The SPI_CLK signal is a gated clock that is only active during data transfers, for the duration of the trans-
ferred word. In normal mode, the number of active edges is equal to the number of bits to be transmitted
or received. In dual-I/O mode it is half of the number of bits to be transmitted or received, and in quad-
SPI mode it is one-fourth of the number. The clock rate can be as high as the SCLK rate, and both even and
odd dividers from SCLK are supported. For master devices, the clock rate is determined by the SPI_
CLKregister value, whereas this value is ignored for slave devices.

When the SPI controller is a master, SPI_CLK is an output signal. Conversely, when the SPI controller is a
slave, SPI_CLK is an input signal. Slave devices ignore the SPI clock if the slave select input is driven inac-
tive. The SPI_CLK signal is used to shift out and shift in the data driven onto the SPI_MISO and SPI_MOSI
lines. The data is always shifted out on one edge of the clock (the active edge) and sampled on the opposite
edge of the clock (the sampling edge). Clock polarity and clock phase relative to data are programmable
through the SPI_CTL register and define the transfer format.

Controlling Delay Between Frames

The figure below illustrates SPI timing with SPI_DLY.LEADX and SPI_DLY.LAGX programming. The LAGX
controls the timing between the Slave Select (SPI_SEL) assertion and the first SPI_CLK edge, while LEADX
controls the timing between the last SPI_CLK edge and deassertion of SPI_SEL. The lead and lag timing
can be extended by 1 SPI_CLK duration to ease timing restrictions on the slave device.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

25–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 25-4: SPI Timing with Lead and Lag Programming (independent of SPI_CTL.CPHA setting)

The figure below illustrates SPI timing with STOP programming which is used to insert multiples of SPI_
CLK period delays between transfers. The SPI_SEL line is deasserted for the duration specified in the SPI_
DLY.STOP field, assuming the SPI_CTL.SELST bit is configured for deassertion between transfers.

If SPI_DLY.STOP is programmed to zero, the master operates in a continuous mode, resulting in immediate
start of the second word after the last bit is transferred from the first word. During this mode of operation,
the slave select line is continuously asserted.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–9

Figure 25-5: SPI Timing with SPI_DLY.STOP Programming (Independent of SPI_CTL.CPHA Setting)

When SPI_DLY.STOP is zero and initial conditions for a transfer are not met, the interface pauses before
the next transfer. During this pause, the state of the slave select pin is determined by the SPI_CTL.SELST
bit, and the SPI_DLY.LEAD and SPI_DLY.LAG bits determine the timing between SPI_CLK edges and the
slave select line.

SPI Flow Control

In Master mode, the SPI_RDY pin acts as an input signal and should be driven by the slave device. SPI_RDY
can be deasserted by the slave to stop the master from initiating any new transfer. If SPI_RDY is deasserted
in the middle of a transfer, the current transfer will continue, and the next transfer will not start unless the
slave asserts the SPI_RDYsignal. Whenever the slave deasserts SPI_RDY and stalls the master, the SPI
controller goes into a waiting state, and the SPI_STAT.FCS bit is set. When the slave asserts SPI_RDY, the
SPI controller resumes operation, and the SPI_STAT.FCS bit is cleared.

In Slave mode, the SPI_RDY pin acts as an output signal. Flow control can be configured on either the TX
channel or the RX channel. This is controlled by the SPI_CTL.FCCH bit. If flow control is configured on
the TX channel, as the SPI_TFIFO status nears the empty condition, SPI_RDY is deasserted. If flow control
is configured on the RX channel, as the SPI_RFIFO status nears the full condition, SPI_RDY is deasserted.
The FIFO status at which SPI_RDY deassertion should take place can be controlled by the SPI_CTL.FCWM
bits. Note that flow control in Slave mode is purely based on the FIFO status and doesn't depend on the
word counters.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

25–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 25-6: SPI Flow Control Timing in Master Mode.

Slave Select Operation

If the SPI is in slave mode, SPI_SS acts as the slave select input. When SPI is enabled as a master, SPI_SS
can serve as an error detection input for the SPI in a multi-master environment. The SPI_CTL.PSSE bit
enables this feature. When SPI_CTL.PSSE=1, the SPI_SS input is the master mode error input. Otherwise,
SPI_SS is ignored.

The SPI_SS signal is an active-low signal and should be asserted during the transfer by the master. It can
be deasserted or remain asserted between transfers. When SPI_SS is deasserted, SPI_CLK and inputs are
ignored, and outputs are three-stated.

The slave select bits (SPI_SLVSEL.SSE1 – SPI_SLVSEL.SSEL7) are used in a multiple-slave SPI environ-
ment. For example, if there are eight SPI devices in the system including a processor master, the master

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–11

processor can support the SPI mode transactions across the other seven devices. This configuration
requires only one master processor in this multi-slave environment.

For example, assume that the processor's SPI is the master. The SPI_SLVSEL.SSE1 – SPI_SLVSEL.SSEL7
bits on the processor can be connected to the slave select pin of each slave device. In this configuration, the
slave select bits can be used in three ways. In cases 1 and 2, the processor is the master and the seven micro
controllers/peripherals with SPI interfaces are slaves. The processor can do one of the following:

1. Transmit to all seven SPI devices at the same time in a broadcast mode. Here, all slave select bits are set.

2. Receive and transmit from one SPI device by enabling only one slave SPI device at a time.

3. If all the slaves are also processors, then the requester can receive data from only one processor (enabled
by clearing the SPI_CTL.EMISO bit in the six other slave processors) at a time and transmit broadcast
data to all seven at the same time. This EMISO feature may be available in some other micro controllers.
Therefore, it is possible to use the EMISO feature with any other SPI device that includes this function-
ality.

Figure 25-7: Single-Master, Multiple-Slave Configuration

Beginning and Ending a Non-DMA SPI Transfer

The start and finish of a non-DMA SPI transfer depend on the following settings.

1. Whether the device is configured as a master or a slave.

2. The state of the SPI_CTL.ASSEL bit, which selects between hardware and software control over SPI_
SLVSEL.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

25–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When SPI_CTL.CPHA=0, the enabled slave select outputs are driven active. However, the SPI_CLK signal
remains inactive for the first half of the first cycle of SPI_CLK. For a slave with SPI_CTL.CPHA=0, the
transfer starts as soon as the SPI_SS input goes low.

When SPI_CTL.CPHA=1, a transfer starts with the first active edge of SPI_CLK for both slave and master
devices. For a master device, a transfer is considered finished after it sends the last data and simultaneously
receives the last data bit. A transfer for a slave device ends after the last sampling edge of SPI_CLK. If SPI_
CTL.ASSEL=0, the hardware maintains responsibility for toggling SPI_SS between frames. If SPI_CTL.
ASSEL=1, software controls the SPI_SS line and may keep it active between frames.

The SPI_STAT.RFE bit defines when the receive buffer can be read, indicating that SPI_RFIFO is not
empty. The SPI_STAT.TFF bit defines when the transmit buffer can be written, indicating that the SPI_
TFIFO is not full. The end of a single word transfer occurs when the SPI_STAT.RFE bit is cleared, indicating
that a new word has just been received and written into the receive FIFO. The SPI_STAT.RFE bit remains
cleared as long as the receive FIFO has valid data.

To maintain software compatibility with other SPI devices, the SPI_STAT.SPIF bit is also available for
polling. This bit may have a slightly different behavior from that of other commercially available devices.

In master mode with the SPI_CTL.ASSEL bit cleared, software should manually assert the required slave
select signal before starting the transaction. After all data has been transferred, software typically releases
the slave select line.

When the receive or transmit word counters are enabled in the SPI_TXCTL or SPI_RXCTL registers, a finish
interrupt is generated at the end of the transfer to signal the end of all transfers relating to that transaction.

Transmit Operation in Non-DMA Mode

Transmit operation on non-DMA mode is enabled through the SPI_TXCTL.TENbit. Transmit operation
can be enabled independently from receive operation, and the transmit channel can become the initiating
channel based on the SPI_TXCTL.TTIsetting.

Transmit underrun is not possible in this mode, as no new transfer would be initiated unless the transmit
FIFO is empty (in the case that SPI_TXCTL.TTI=1). A receive overflow is detected when data from a new
frame transfer replaces older data in a full receive FIFO. This can occur if SPI_TXCTL.TTI=1 and the
receive channel is enabled in a non-initiating capacity.

A SPI transmit interrupt is signalled once the transmit channel has been enabled and the transmit FIFO is
not full. The frequency of the interrupt is controlled by the SPI_TXCTL.TDR setting.

Receive Operation in Non-DMA Mode

Receive operation on non-DMA mode is enabled through the SPI_RXCTL.RENbit. Receive operation can
be enabled independently from transmit operation, and the receive channel can become the initiating
channel based on the SPI_RXCTL.RTIbit setting.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–13

Receive overflow is not possible in this mode, as no new transfer would be initiated when the receive FIFO
is full (in the case of SPI_RXCTL.RTI=1). A transmit underrun can occur (SPI_TXCTL.TDU bit) if no valid
data is in the SPI_TFIFO register when a transfer is initiated. This can occur if SPI_RXCTL.RTI=1 and the
transmit channel is enabled in a non-initiating capacity.

A SPI receive interrupt is signaled once the receive channel has been enabled and there is data waiting to
be read. The frequency of the interrupt is controlled by the SPI_RXCTL.RDRbit setting.

Dual I/O Mode

In dual I/O mode, the SPI_MISO and SPI_MOSI pins are configured to operate in the same direction which
doubles bandwidth. The order of bits on the pins are determined by the SPI_CTL.SOSI bit which, when
set, sends the first bit on the SPI_MOSI pin and the second bit on the SPI_MISO pin. If the SPI_CTL.SOSI
bit is cleared, the order is reversed. Since dual I/O mode uses both pins to transmit or receive data, only
one channel can be enabled, either transmit or receive. Flow control through the SPI_RDY pin is supported.
Interrupt generation is unaffected by dual I/O mode. However, the gap between successive interrupts is
reduced, since the individual transfer latency is halved.

Changing to Quad SPI mode should be done when the SPI is in a quiescent state.

Figure 25-8: Dual I/O Mode Transfer Protocol for CPHA=0, SOSI=1, 8-Bit Transfer, LSBF=0.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

25–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 25-9: Dual I/O Mode Transfer Protocol for CPHA=1, SOSI=0, 8-Bit Transfer, LSBF=0.

Quad I/O Mode

In quad SPI mode, the SPI_MISO and SPI_MOSI pins, in tandem with the SPI_D2 and SPI_D3 pins, are
configured to operate in the same direction. The order of bits on the pins are determined by the SPI_CTL.
SOSI bit which, when set, sends the first bit on the SPI_MOSI pin, the second bit on the SPI_MISO pin, the
third bit on the SPI_D2 pin and the fourth bit on the SPI_D3 pin. If the SPI_CTL.SOSI bit is cleared, the
order is reversed. Since quad SPI mode uses all four pins to transmit or receive data, only one channel can
be enabled, either transmit or receive. Flow control through the SPI_RDY pin is supported. Interrupt gener-
ation is unaffected by quad SPI mode.

Changing to quad SPI mode should be done when the SPI is in a quiescent state.

While using Dual or Quad I/O mode for communicating with SPI Flash devices, it is advised to program
the SPI_CTL.CPHAand the SPI_CTL.CPOLbits =1. This programming is to avoid bus contention during
read operations, because the SPI flash device starts driving out the bits immediately after dummy cycles in
read header.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–15

Figure 25-10: Quad Mode Timing for CPHA=0, SOSI=1, 16-Bit Transfer, LSBF=0.

NOTE: Quad SPI 8-bit transfer is not supported in Slave Continuous mode of operation with a SCLK:SPI_
CLK ratio less than 1:2. A minimum of 2 SCLK cycles is required between transfers in 8-bit quad SPI
slave mode with SCLK:SPI_CLK ratio less than 1:2.

Fast Mode

Fast Mode is similar to normal mode of operation when transmitting. When receiving, data is sampled at
the next transmit edge allowing a full cycle of timing in the receive direction. This mode is valid in master
mode operation only. When the SPI is operating in fast mode, the slave should drive the data for one full
cycle.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI INTERRUPT SIGNALS

25–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 25-11: SPI Transfer Protocol in Fast Mode for SPI_CTL.CPHA = 0

Figure 25-12: SPI Transfer Protocol in Fast Mode for SPI_CTL.CPHA = 1

SPI Interrupt Signals
The SPI controller supports three types of interrupt signals, corresponding to data, status, and error condi-
tions.

Data Interrupts

The SPI peripheral supports two data interrupt channels – receive and transmit. These interrupt signals
are multiplexed into the DMA request lines. Since the peripheral interfaces to independent read and write

SERIAL PERIPHERAL INTERFACE (SPI)
SPI INTERRUPT SIGNALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–17

interfaces with DMA, the read and write data interrupts are independent. When the DMA channel(s) are
not being used, the interrupts are routed directly to the system event controller, occupying the same inter-
rupt vector locations as the corresponding DMA channels do.

Each of the data interrupts can be individually controlled by programming the SPI_RXCTL.RDR and SPI_
TXCTL.TDR bit fields for receive and transmit, respectively. When receive is enabled, the RX interrupt is
issued whenever there is data available in the receive data path to be read (according to the SPI_RXCTL.
RDR bit setting). When transmit is enabled, the TX interrupt is issued whenever the transmit data path can
be written to (according to the SPI_TXCTL.TDR setting). DMA data interrupts are made compatible with
second generation DMA to incorporate urgent data request and transfer finish interrupt apart from usual
data request interrupt. Note that transmit interrupts operate independently from the word counter value
in the SPI_TWC register.

Status Interrupts

The SPI controller supports several status interrupts to indicate different conditions of the receiver and
transmitter. All status interrupts can be masked. Status interrupts are signaled directly through a single SPI
status IRQ line, which may or may not be combined with the SPI error IRQ line for a given processor. The
following table describes the status interrupts that are available for the SPI controller.

Table 25-5: SPI Status Interrupts

SPI_STAT Bit Description

SPI_STAT.RUWM Receive FIFO Urgent Watermark Interrupt. Issued when the level of the RFIFO
breaches the watermark set in the SPI_RXCTL.RUWM field. It is cleared when the level of
the RFIFO reaches the watermark set in the SPI_RXCTL.RRWM field. If the RX channel is
configured in DMA mode, RUWM is multiplexed with the data request.

SPI_STAT.TUWM Receive FIFO Urgent Watermark Interrupt. Issued when the level of the TFIFO
breaches the watermark set using the SPI_TXCTL.TUWM bit. It is cleared when the level
of the TFIFO reaches the watermark set in the SPI_TXCTL.TRWM field. If the TX channel
is configured in DMA mode, TUWM is multiplexed with the data request.

SPI_STAT.TS Transmit Start Interrupt. Issued when the start of a transmit burst is detected by loading
of the SPI_TWC register with the contents of the SPI_TWCR register.

SPI_STAT.RS Receive Start Interrupt. Issued when the start of a receive burst is detected by loading of
SPI_RWC with the contents of SPI_RWCR.

SPI_STAT.TF Transmit Finish Interrupt. Issued when a transmit burst completes (SPI_TWC
decrements to zero).

SPI_STAT.RF Receive Finish Interrupt. Issued when a receive burst completes (SPI_RWC decrements
to zero).

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

25–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Error Conditions

The SPI controller supports interrupts upon several different error conditions. All interrupts are maskable.
The individual interrupt indications combine into a single SPI error IRQ signal, which may be multiplexed
on some processors with the aggregated SPI status IRQ signal. The following table details the possible error
indications.

Error conditions and interrupts arise depending on which of the channels (transmit and/or receive) are
enabled. If a channel is disabled, all errors relating to it are ignored. When both channels are enabled,
errors and interrupts from both channels are enabled.

SPI Programming Concepts
The following sections provide general programming guidelines and procedures.

Table 25-6: SPI Error Interrupts

Bit Description

SPI_STAT.
MF

Mode Fault. Signalled when another device is also trying to be a master in a multi-master
system and drives the SPI_SS input low. This error is signalled in master mode operation.

SPI_STAT.
TUR

Transmission Error. Signalled when an underflow condition occurs on the transmit channel.
This occurs when a new transfer starts but SPI_TFIFO is empty. This error does not occur in
master transmit initiating mode since SPI_TFIFO Not Empty is one of the conditions for
transfer initiation.

SPI_STAT.
ROR

Reception Error. Signalled when an overflow condition occurs on the receive channel. This
occurs when a new data word is received, but the SPI_RFIFO is full. This error condition will
not occur in master receive initiating mode since SPI_RFIFO not full is one of the conditions for
transfer initiation.

SPI_STAT.
TC

Transmit Collision Error. Signalled when loading data to the transmit shift register happens
near the first transmitting edge of SPI_CLK. In Slave mode of operation, the SPI controller is
unaware of when the next transfer starts, so loading of data to the transmit shift register may
happen just after the transmitting edge. This will result in setup time not being met for the first
bit being transmitted, and thus the transmitted data will be corrupted. In SPI_CTL.CPHA - 1
mode, the first SPI_CLK edge is taken as first transmitting edge, whereas if SPI_CTL.CPHA=0
the last SPI_CLK edge of the last transmission (SPI_CTL.SELST=1) or slave select deassertion
(SPI_CTL.SELST=0) is taken as the first transmitting edge. This error is signalled only in Slave
mode of operation. In Master mode of operation, it is always ensured that loading of data
happens before the first transmitting edge of SPI_CLK.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–19

Programming Guidelines

It is acceptable to program SPI_RX_CTL and SPI_TX_CTLregisters after programming SPI_CTL, but the
initiating mode register and its counter register, if enabled, should be programmed after the non-initiating
mode register. For example, if Transmit is the initiating mode and Receive is the non-initiating mode, then
SPI_RX_CTL and SPI_RWC should be programmed before SPI_TX_CTL and SPI_TWC. If both transmit and
receive are to be enabled in initiating mode, SPI_CTL should be enabled after programming both SPI_RX_
CTL and SPI_TX_CTL.

These programming guidelines prevent SPI from starting a transfer when SPI registers are still being
programmed. Other ways of programming are also allowed as long as commencement of communication
is prevented by initiating conditions until all the utilized SPI registers are programmed.

Precautions must be taken to avoid data corruption when changing the SPI module configuration. The
configuration must not be changed during a data transfer. Additionally, the clock polarity should only be
changed when no slaves are selected. An exception to this is when a SPI communication link consists of a
single master and a single slave, SPI_CTL.ASSEL = 0, and the slave select input of the slave is permanently
tied low. In this case, the slave is always selected, and data corruption can be avoided by enabling the slave
only after both the master and slave devices are configured.

The module supports 8, 16 and 32-bit word sizes. To ensure correct operation, both the master and slave
must be configured with the same word size.

Master Operation in Non-DMA Modes

This section describes the operation of the SPI as a master in non-DMA mode.

1. Write to the SPI_SLVSEL register, setting one or more of the SPI select enable bits. This ensures that
the desired slaves are properly deselected while the master is configured.

2. The SPI_RXCTL.RTI and SPI_TXCTL.TTI bits determine the SPI initiating mode. The initiating mode
defines the primary transfer channel, and also the initiating condition for the transfer.

3. Write to the SPI_CLK, SPI_CTL, SPI_RXCTL and SPI_TXCTL registers, enabling the device as a master
and configuring the SPI system by specifying the transfer modes and channels, appropriate word
length, transfer format, baud rate, and other control information.

ADDITIONAL INFORMATION: If SPI_RXCTL.RTI is enabled and SPI_TXCTL.TTI is not, write to the SPI_
RXCTL register after writing into SPI_CTL, SPI_TXCTL and SPI_TFIFO registers to prevent a transmit
underrun for the first transfer.

4. If SPI_CTL.ASSEL=0, the user activates the desired slaves by clearing one or more of the SPI_SLVSEL
flag bits. Otherwise, the SPI hardware takes care of slave activation.

5. The SPI controller then generates the programmed clock pulses on SPI_CLK and simultaneously shifts
data out of SPI_MOSI while shifting data in from SPI_MISO. Before a shift, the shift register is loaded

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

25–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

with the contents of the SPI_TFIFO register. At the end of the transfer, the contents of the shift register
are loaded into SPI_RFIFO.

6. Whenever the initiating conditions are satisfied, the SPI continues to send and receive words. If the
transmit buffer remains empty or the receive buffer remains full, the device operates according to the
states of the SPI_TXCTL.TDU and SPI_RXCTL.RDO bits.

7. It is possible to program a secondary channel in addition to the initiating channel. This feature allows
the user to utilize the unused channel resources for receives or transmits simultaneously with the initi-
ating channel.

Slave Operation in Non-DMA Modes

When a device is enabled as a slave in a non-DMA mode, the start of a transfer is triggered by a transition
of the SPI_SS select signal to the active state (low), or by the first active edge of SPI_CLK, depending on the
state of SPI_CTL.CPHA bit. The interface operates in the following manner.

1. The core writes to the SPI_CTL, SPI_RXCTL and SPI_TXCTL registers to define the mode of the serial
link to be the same as the mode setup in the SPI master.

2. To prepare for the data transfer, the core writes data to be transmitted into SPI_TFIFO.

3. Once the SPI_SS falling edge is detected, the slave starts sending data on active SPI_CLK edges and
sampling data on inactive SPI_CLK edges.

4. Reception/transmission continues until SPI_SS is released or until the slave has received the proper
number of clock cycles.

5. The slave device continues to receive/transmit with each new falling edge transition on SPI_SS and/or
active SPI_CLK edge. If the transmit buffer remains empty or the receive buffer remains full, the device
operates according to the states of the SPI_TXCTL.TDU and SPI_RXCTL.RDO bits.

Configuring DMA Master Mode

The SPI interface supports a write DMA channel and a read DMA channel. These may be used individually
or in a lock-step manner in duplex mode (SPI_TXCTL.TTI= SPI_RXCTL.RTI=1)

1. Write to the appropriate DMA registers to enable the SPI DMA Channel and to configure the necessary
work units, access direction, word count, and so on.

2. Write to the SPI_SLVSEL register, setting one or more of the SPI flag select bits.

3. Write to the SPI_CLK and SPI_CTLregisters, enabling the device as a master and configuring the SPI
system by specifying the appropriate word length, transfer format, baud rate, etc.

4. Write to SPI_RXCTL to configure SPI master receive mode, and/or write to SPI_TXCTL to configure SPI
Master Transmit mode.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–21

5. Finally, write to the SPI_RXCTL.REN bit to enable the receive channel, and/or write to SPI_TXCTL.TEN
to enable the transmit channel.

6. If the SPI_RXCTL.RTI bit is enabled, a receive transfer is initiated upon enabling SPI_CTL.EN bit. If the
receive word counter is enabled (SPI_RXCTL.RWCEN, then the SPI_RWCregister must be non-zero for a
transfer to initiate.

ADDITIONAL INFORMATION: If enabling both receive and transmit DMA channels, but not enabling SPI_
TXCTL.TTI, write to the SPI_RXCTL register after writing the SPI_CTL and SPI_TXCTL registers so that
a transmit underrun can be prevented for the first transfer. Subsequent transfers are initiated as the SPI
reads data from the receive shift register and writes to the SPI receive FIFO. The SPI then requests a
DMA write to memory. Upon a DMA grant, the DMA engine reads a word from the SPI Receive FIFO
and writes to memory. New requests continue to be initiated as long as the receive FIFO does not fill
up, provided that SPI_RWC does not become zero while SPI_RXCTL.RWCEN=1.

7. If SPI_TXCTL.TTI is enabled, the SPI controller requests DMA reads from memory as long as there is
space for more data in the transmit pipe. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the transmit FIFO. As long as transmit data is available in the FIFO, and the SPI_
TWCregister is non-zero if SPI_TXCTL.TWCEN=1, the SPI continues to initiate transfers until disabled.

8. If both the SPI_TXCTL.TTI and SPI_RXCTL.RTI bits are enabled, the SPI controller requests a DMA
read from memory as long as there is space for more data in the transmit pipe and the number of words
written into the SPI is less than SPI_TWCif SPI_TXCTL.TWCEN=1. Upon a DMA grant, the DMA engine
reads a word from memory and writes to the transmit FIFO.

ADDITIONAL INFORMATION: As the SPI writes data from the transmit FIFO into the transmit shift register,
it initiates a transfer on the SPI link.

ADDITIONAL INFORMATION: Data received from the transfer is moved from the SPI receive shift register to
the receive FIFO.

ADDITIONAL INFORMATION: The SPI controller requests a DMA write to memory.

ADDITIONAL INFORMATION: Upon a DMA grant, the DMA engine reads a word from the receive FIFO and
writes to memory. Transfer continues to be initiated as long as both receives and transmits can accom-
modate new data

9. If the receive pipe fills up due to unavailability of DMA grants, the transmit pipe stalls until the pipe is
drained. If the transmit pipe fills up, the SPI stops requesting for DMA writes. If the value in SPI_
RWCexpires, further write requests to DMA stop. However, data already written into the transmit FIFO
is sent, and read requests to DMA continue until the receive data is read from the receive FIFO.

10. The SPI then generates the programmed clock pulses on SPI_CLK and simultaneously shifts data out
of SPI_MOSI while shifting data in from SPI_MISO. For receive transfers, the value in the shift register
is loaded into the SPI_RFIFO register at the end of the transfer. For transmit transfers, the value in the
SPI_TFIFO register is loaded into the shift register at the start of the transfer.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

25–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuring DMA Slave Mode Operation

When enabled as a slave with the DMA engine configured to transmit or receive data, the start of a transfer
is triggered by a transition of the SPI_SS signal to the active-low state or by the first active edge of SPI_
CLK, depending on the state of the SPI_CTL.CPHA bit. The following steps illustrate the SPI receive or
transmit DMA sequence in an SPI slave (in response to a master command). The SPI supports a receive
DMA channel and a transmit DMA channel.

1. Write to the appropriate DMA registers to enable the SPI DMA channel and configure the necessary
work units, access direction, word count, and so on.

2. Write to the SPI_CTL, SPI_RXCTL and SPI_TXCTL registers to define the mode of the serial link to be
the same as the mode configured in the SPI master.

3. If the receive channel is enabled (SPI_RXCTL.REN is asserted), the following actions occur:

a. Once the slave select input is active, the slave starts receiving and transmitting data on active SPI_
CLK edges.

b. The value in the shift register is loaded into the SPI_RFIFO register at the end of the transfer.

c. Once SPI_RFIFO has valid data, it requests a DMA write to memory.

d. Upon a DMA grant, the DMA engine reads a word from the receive FIFO and writes to memory.

e. As long as there is data in the receive FIFO, the SPI slave continues to request a DMA write to
memory. The DMA engine continues to read a word from the FIFO and writes to memory until the
SPI_RWC counts to zero. The SPI slave continues receiving words on active SPI_CLK edges as long
as the SPI_SS input is active.

f. If the data collected in the receive pipe breaches the level set according to the SPI_CTL.FCWM field,
and the DMA engine is unable to keep up with the receive rate, the slave may de-assert the SPI_RDY
signal, throttling the master. The signal is deasserted as the DMA drains the receive FIFO. Alterna-
tively, the SPI_RXCTL.RDO bit can decide if the incoming data is discarded or overwritten into the
receive FIFO (when SPI_CTL.FCEN is inactive).

4. If the transmit channel is enabled (SPI_TXCTL.TEN is asserted), the following actions occur:

a. The SPI requests a DMA read from memory.

b. Upon a DMA grant, the DMA engine reads a word from memory and writes to the transmit FIFO.

c. The SPI then reads DMA data from the transmit FIFO and writes to the transmit shift register,
awaiting the start of the next transfer.

d. Once the slave select input is active, the slave starts receiving and transmitting data on active SPI_
CLK edges.

e. As long as there is room in the transmit FIFO, the SPI slave continues to request a DMA read from
memory. The DMA engine continues to read a word from memory and write to the transmit FIFO

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–23

until the SPI_TWC register value counts down to 0. The SPI slave continues transmitting words on
active SPI_CLK edges as long as the SPI_SS input is active.

f. If the number of outstanding data entries waiting for transmission in the transmit pipe breaches the
level set according to the SPI_CTL.FCWM field and the DMA is unable to keep up with the transmit
rate, the slave may deassert the SPI_RDY signal, throttling the master. The signal is deasserted as the
DMA fills the transmit FIFO. Alternately the SPI_TXCTL.TDU bit decides the state of the transmit
data (when SPI_CTL.FCEN is deasserted).

5. If both receive and transmit channels are enabled, the following actions occur after the actions stated
above for each channel. Transfers will continue as long as both receives and transmits can accommo-
date new data.

a. If the receive pipe fills up due to unavailability of DMA grant, the SPI interface will stall the master
by asserting the SPI_RDY pin. This signal is deasserted as the DMA drains the receive FIFO. Alter-
nately, the SPI_RXCTL.RDO bit decides if the incoming data is discarded or overwritten into the
receive FIFO (when SPI_CTL.FCEN is deasserted).

b. If the transmit pipe fills up, the SPI will stop requesting for DMA writes until the pipe clears.

c. If there is an underflow problem in the transmit pipe, the slave will stall the master by deasserting
SPI_RDY while DMA fills the transmit FIFO. Alternately, the SPI_TXCTL.TDU bit decides the state
of the transmit data (when SPI_CTL.FCEN is deasserted).

ADSP-BF60x SPI Register Descriptions
Serial Peripheral Interface (SPI) contains the following registers.

Table 25-7: ADSP-BF60x SPI Register List

Name Description

SPI_CTL Control Register

SPI_RXCTL Receive Control Register

SPI_TXCTL Transmit Control Register

SPI_CLK Clock Rate Register

SPI_DLY Delay Register

SPI_SLVSEL Slave Select Register

SPI_RWC Received Word Count Register

SPI_RWCR Received Word Count Reload Register

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Control Register

The SPI_CTL register enables the SPI and configures settings for operating modes, communication proto-
cols, and buffer operations.

SPI_TWC Transmitted Word Count Register

SPI_TWCR Transmitted Word Count Reload Register

SPI_IMSK Interrupt Mask Register

SPI_IMSK_CLR Interrupt Mask Clear Register

SPI_IMSK_SET Interrupt Mask Set Register

SPI_STAT Status Register

SPI_ILAT Masked Interrupt Condition Register

SPI_ILAT_CLR Masked Interrupt Clear Register

SPI_RFIFO Receive FIFO Data Register

SPI_TFIFO Transmit FIFO Data Register

Table 25-7: ADSP-BF60x SPI Register List (Continued)

Name Description

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–25

Figure 25-13: SPI_CTL Register Diagram

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 25-8: SPI_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

22
(R/W)

SOSI Start on MOSI.
The SPI_CTL.SOSI bit is valid only when SPI_CTL.MIOM is enabled
for either DIOM or QIOM, and this bit selects the starting pin and
the bit placement on pins for these modes.
In DIOM, by default (SPI_CTL.SOSI =0) SPI sends first bit on the
SPI_MISO pin and second bit on the SPI_MOSI pin. In QIOM, by
default, the SPI sends first bit on the SPI_D3 pin, second bit on the
SPI_D2 pin, third bit on the SPI_MISO pin and fourth bit on the SPI_
MOSI pin. This order can be reversed by setting the SPI_CTL.SOSI
bit. When this bit is set, the SPI sends first bit on the SPI_MOSI pin.
The first bit referred to here depends on the SPI_CTL.LSBF bit
setting (MSB bit or LSB bit).
0 Start on MISO (DIOM) or start on SPIQ3

(QSPI)
1 Start on MOSI

21:20
(R/W)

MIOM Multiple I/O Mode.
The SPI_CTL.MIOM bits enable SPI operation in dual I/O mode
(DIOM) or quad I/O mode (QIOM).
These bits may only be changed when the SPI is disabled (SPI_CTL.
EN =0).
0 No MIOM (disabled)
1 DIOM operation
2 QIOM operation
3 Reserved

18
(R/W)

FMODE Fast-Mode Enable.
The SPI_CTL.FMODE bit enables fast mode operation for SPI receive
transfers. SPI transmit operations in fast mode are the same as
normal mode.
0 Disable
1 Enable

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–27

17:16
(R/W)

FCWM Flow Control Watermark.
The SPI_CTL.FCWM bits select the watermark level of the transmit
channel (SPI_TFIFO buffer) or receive channel (SPI_RFIFO buffer)
that triggers flow control operation. These bits are applicable only
when the SPI is a slave (SPI_CTL.MSTR = 0) and flow control is
enabled (SPI_CTL.FCEN =1). When the watermark condition is met,
the SPI slave de-asserts the SPI_RDY pin.
0 TFIFO empty or RFIFO full
1 TFIFO 75% or more empty, or RFIFO 75%

or more full
2 TFIFO 50% or more empty, or RFIFO 50%

or more full
3 Reserved

15
(R/W)

FCPL Flow Control Polarity.
The SPI_CTL.FCPL bit selects flow control polarity for the SPI_RDY
pin when flow control is enabled. When the SPI_RDY pin is active,
the SPI is indicating it's ready for data transfer.
0 Active-low RDY
1 Active-high RDY

14
(R/W)

FCCH Flow Control Channel Selection.
The SPI_CTL.FCCH bit selects whether the SPI applies flow control to
the transmit channel (SPI_TFIFO buffer) or receive channel (SPI_
RFIFO buffer). This bit is applicable only when the SPI is a slave and
flow control is enabled.
0 Flow control on RX buffer
1 Flow control on TX buffer

13
(R/W)

FCEN Flow Control Enable.
The SPI_CTL.FCEN bit enables SPI flow control operation, which
permits slow slave devices to interface with fast master devices. This
bit controls operation of the SPI_RDY pin. Note that options for flow
control operation are available using the SPI_CTL.FCCH, SPI_CTL.
FCPL, and SPI_CTL.FCWM bits.
0 Disable
1 Enable

Table 25-8: SPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

12
(R/W)

LSBF Least Significant Bit First.
The SPI_CTL.LSBF bit selects whether the SPI transmits/receives
data as LSB first (little endian) or MSB first (big endian). This bit
may only be changed when the SPI is disabled.
0 MSB sent/received first (big endian)
1 LSB sent/received first (little endian)

10:9
(R/W)

SIZE Word Transfer Size.
The SPI_CTL.SIZE bits select the SPI transfer word size as 8, 16 or 32
bits. To ensure correct operation, both the master and slave must be
configured with the same word size. This bit may only be changed
when the SPI is disabled (SPI_CTL.EN =0).
0 8-bit word
1 16-bit word
2 32-bit word
3 Reserved

8
(R/W)

EMISO Enable MISO.
The SPI_CTL.EMISO bit enables master-in-slave-out (MISO) mode.
This SPI mode is applicable only when the SPI is a slave.
0 Disable
1 Enable

7
(R/W)

SELST Slave Select Polarity Between Transfers.
The SPI_CTL.SELST bit selects the state (polarity) for the SPI_SELn
pin in-between SPI transfers when the SPI is a master and hardware
slave select assertion is enabled (SPI_CTL.ASSEL =1). In slave mode,
this bit affects the detection of both transmit collision (SPI_STAT.TC
and under-run (SPI_STAT.TUR) errors.
0 De-assert slave select (high)
1 Assert slave select (low)

Table 25-8: SPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–29

6
(R/W)

ASSEL Slave Select Pin Control.
The SPI_CTL.ASSEL bit selects whether the SPI hardware sets the
SPI_SELn pin output value (ignoring the slave select SPI_SLVSEL.
SSEL1 - SPI_SLVSEL.SSEL7 bits) or whether software control of the
slave select bits set the SPI_SELn pin output value. This feature is
applicable only when the SPI is a master.
When hardware control is enabled, the SPI_SELn pin output is
asserted during the transfers, and the pin polarity between transfers
is selected by the SPI_CTL.SELST bit.
When software control is enabled, the SPI_SELn pin output value is
set through software control of the slave select bits, and as such, the
pin may either remain asserted (low) or be deasserted between
transfers.
0 Software Slave Select Control
1 Hardware Slave Select Control

5
(R/W)

CPOL Clock Polarity.
The SPI_CTL.CPOL bit selects whether the SPI uses an active-low or
active-high signal for the SPI clock (SPI_CLK). This bit works with
the SPI_CTL.CPHA bit to select combinations of clock phase and
polarity for the SPI_CLK pin. This bit may only be changed when the
SPI is disabled.
0 Active-high SPI CLK
1 Active-low SPI CLK

4
(R/W)

CPHA Clock Phase.
The SPI_CTL.CPHA bit selects whether the SPI starts toggling the
signal for the SPI clock (SPI_CLK) from the start of the first data bit
or from the middle of the first data bit. The SPI_CTL.CPHA bit works
with the SPI_CTL.CPOL bit to select combinations of clock phase and
polarity for the SPI_CLK pin. This bit may only be changed when the
SPI is disabled.
0 SPI CLK toggles from middle
1 SPI CLK toggles from start

Table 25-8: SPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

3
(R/W)

ODM Open Drain Mode.
The SPI_CTL.ODM bit configures the data output pins (SPI_MOSI and
SPI_MISO) to behave as open drain outputs, which prevents
contention and possible damage to pin drivers in multi-master or
multi-slave SPI systems.
When SPI_CTL.ODM is enabled and the SPI is a master, the SPI three-
states the SPI_MOSI pin when the data driven out on MOSI is a logic-
high. The SPI does not three-state the SPI_MOSI pin when the driven
data is a logic-low.
When SPI_CTL.ODM is enabled and the SPI is a slave, the SPI three-
states the SPI_MISO pin when the data driven out on SPI_MISO is a
logic-high.
Note that an external pull-up resistor is required on both the SPI_
MOSI and SPI_MISO pins when SPI_CTL.ODM is enabled.
0 Disable
1 Enable

2
(R/W)

PSSE Protected Slave Select Enable.
The SPI_CTL.PSSE bit enables the SPI_SS pin to provide error
detection input in a multi-master environment when the SPI is in
master mode. If some other device in the system asserts the SPI_SS
pin while SPI is enabled as master (and SPI_CTL.PSSE is enabled),
this condition causes a mode fault error.
0 Disable
1 Enable

1
(R/W)

MSTR Master / Slave.
The SPI_CTL.MSTR bit toggles the SPI between master mode and
slave mode. This bit may only be changed when the SPI is disabled.
0 Slave
1 Master

0
(R/W)

EN Enable.
The SPI_CTL.EN bit enables SPI operation.
0 Disable SPI module
1 Enable

Table 25-8: SPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–31

Receive Control Register

The SPI_RXCTL register enables the SPI receive channel, initiates receive transfers, and configures SPI_
RFIFO buffer watermark settings.

Figure 25-14: SPI_RXCTL Register Diagram

Table 25-9: SPI_RXCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18:16
(R/W)

RUWM Receive FIFO Urgent Watermark.
The SPI_RXCTL.RUWM bits select the receive FIFO (SPI_RFIFO)
watermark level for urgent data bus requests. The SPI also uses this
watermark level for generation of the SPI_ILAT.RUWM interrupt.
When an urgent SPI_RFIFO watermark is enabled with SPI_RXCTL.
RUWM, the SPI_RXCTL.RRWM selection is used as the de-assertion
condition for any SPI_ILAT.RUWM interrupts that are latched.
0 Disabled
1 25% full RFIFO
2 50% full RFIFO
3 75% full RFIFO
4 Full RFIFO
5 Reserved
6 Reserved
7 Reserved

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

13:12
(R/W)

RRWM Receive FIFO Regular Watermark.
The SPI_RXCTL.RRWM bits select the receive FIFO (SPI_RFIFO)
watermark level for regular data bus requests. When an urgent SPI_
RFIFO watermark is enabled with SPI_RXCTL.RUWM, the SPI_RXCTL.
RRWM selection is used as the de-assertion condition for any SPI_
ILAT.RUWM interrupts that are latched.
0 Empty RFIFO
1 RFIFO less than 25% full
2 RFIFO less than 50% full
3 RFIFO less than 75% full

8
(R/W)

RDO Receive Data Overrun.
The SPI_RXCTL.RDO bit selects handling for receive data requests
when the receive buffer (SPI_RFIFO) is full. If enabled and SPI_
RFIFO is full, the SPI overwrites old data in the buffer with incoming
data. If disabled and SPI_RFIFO is full, the SPI keeps old data in the
buffer and discards incoming data.
0 Discard incoming data if SPI_RFIFO is full
1 Overwrite old data if SPI_RFIFO is full

6:4
(R/W)

RDR Receive Data Request.
The SPI_RXCTL.RDR bits select receive FIFO (SPI_RFIFO)
watermark conditions that direct the SPI to generate a receive data
request.
0 Disabled
1 Not empty RFIFO
2 25% full RFIFO
3 50% full RFIFO
4 75% full RFIFO
5 Full RFIFO
6 Reserved
7 Reserved

Table 25-9: SPI_RXCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–33

Transmit Control Register

The SPI_TXCTL register enables the SPI transmit channel, initiates transmit transfers, and configures SPI_
TFIFO buffer watermark settings.

3
(R/W)

RWCEN Receive Word Counter Enable.
The SPI_RXCTL.RWCEN bit enables the decrement of the SPI_RWC
register when the count is not zero and SPI_RXCTL.RTI is enabled.
Enabling SPI_RXCTL.RWCEN prevents receive overrun errors from
occurring. The SPI_RXCTL.RWCEN bit is valid only when the SPI is a
master.
0 Disable
1 Enable

2
(R/W)

RTI Receive Transfer Initiate.
The SPI_RXCTL.RTI bit enables initiation of receive transfers if the
receive FIFO (SPI_RFIFO) is not full. The bit also enables this
initiation if SPI_RWC is not zero when SPI_RXCTL.RWCEN is enabled.
Enabling SPI_RXCTL.RTI prevents receive overrun errors from
occurring. The SPI_RXCTL.RTI bit is valid only when the SPI is a
master.
0 Disable
1 Enable

0
(R/W)

REN Receive Enable.
The SPI_RXCTL.REN bit enables SPI receive channel operation.
0 Disable
1 Enable

Table 25-9: SPI_RXCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 25-15: SPI_TXCTL Register Diagram

Table 25-10: SPI_TXCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18:16
(R/W)

TUWM FIFO Urgent Watermark.
The SPI_TXCTL.TUWM bits select the transmit FIFO (SPI_TFIFO)
watermark level for urgent data bus requests. The SPI also uses this
watermark level for generation of the SPI_ILAT.TUWM interrupt.
When an urgent SPI_TFIFO watermark is enabled with SPI_TXCTL.
TUWM, the SPI_TXCTL.TRWM selection is used as the de-assertion
condition for any SPI_ILAT.TUWM interrupts that are latched.
0 Disabled
1 25% empty TFIFO
2 50% empty TFIFO
3 75% empty TFIFO
4 Empty TFIFO

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–35

13:12
(R/W)

TRWM FIFO Regular Watermark.
The SPI_TXCTL.TRWM bits select the transmit FIFO (SPI_TFIFO)
watermark level for regular data bus requests. When an urgent SPI_
TFIFO watermark is enabled with SPI_TXCTL.TUWM, the SPI_TXCTL.
TRWM selection is used as the de-assertion condition for any SPI_
ILAT.TUWM interrupts that are latched.
0 Full TFIFO
1 TFIFO less than 25% empty
2 TFIFO less than 50% empty
3 TFIFO less than 75% empty

8
(R/W)

TDU Transmit Data Under-run.
The SPI_TXCTL.TDU bit selects handling for transmit data requests
when the transmit buffer (SPI_TFIFO) is empty. If enabled and SPI_
TFIFO is empty, the SPI transmits zero as data. If disabled and SPI_
TFIFO is empty, the SPI transmits the last word in the buffer as data.
0 Send last word when SPI_TFIFO is empty
1 Send zeros when SPI_TFIFO is empty

6:4
(R/W)

TDR Transmit Data Request.
The SPI_TXCTL.TDR bits select transmit FIFO (SPI_TFIFO)
watermark conditions that direct the SPI to generate a transmit status
interrupt.
0 Disabled
1 Not full TFIFO
2 25% empty TFIFO
3 50% empty TFIFO
4 75% empty TFIFO
5 Empty TFIFO

3
(R/W)

TWCEN Transmit Word Counter Enable.
The SPI_TXCTL.TWCEN bit enables the decrement of the transmit
word count (SPI_TWC) register when the count is not zero and SPI_
TXCTL.TTI is enabled. Enabling SPI_TXCTL.TWCEN prevents
transmit under-run errors from occurring. The SPI_TXCTL.TWCEN
bit is valid only when the SPI is a master.
0 Disable
1 Enable

Table 25-10: SPI_TXCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Clock Rate Register

The SPI_CLK register selects the baud rate for SPI data transfers, relating this rate to the SPI serial clock
(SCK) and the system clock (SCLK).

Figure 25-16: SPI_CLK Register Diagram

2
(R/W)

TTI Transmit Transfer Initiate.
The SPI_TXCTL.TTI bit enables initiation of transmit transfers if the
transmit FIFO (SPI_TFIFO) is not empty. The bit also enables this
initiation if SPI_TWC is not zero when SPI_TXCTL.TWCEN is enabled.
Enabling SPI_TXCTL.TTI prevents transmit underrun errors from
occurring. The SPI_TXCTL.TTI bit is valid only when the SPI is a
master.
0 Disable
1 Enable

0
(R/W)

TEN Transmit Enable.
The SPI_TXCTL.TEN bit enables SPI transmit channel operation.
0 Disable
1 Enable

Table 25-11: SPI_CLK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

BAUD Baud Rate.
The SPI_CLK.BAUD bits set the SPI baud rate according to the
formula:
BAUD = (SCLK / SPI Clock) - 1

Table 25-10: SPI_TXCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–37

Delay Register

The SPI_DLY register selects a transfer delay and the lead/lag timing between slave select signals and SPI
clock edge assertion/de-assertion.

Figure 25-17: SPI_DLY Register Diagram

Table 25-12: SPI_DLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W)

LAGX Extended SPI Clock Lag Control.
The SPI_DLY.LAGX bit enables insertion of a 1-SPI_CLK cycle lag
(extend lag) in the timing between the slave select (SPI_SELn)
assertion and first SPI Clock edge.
0 Disable
1 Enable

8
(R/W)

LEADX Extended SPI Clock Lead Control.
The SPI_DLY.LEADX bit enables insertion of a 1-SPI_CLK cycle lead
(extend lead) in the timing between the slave select (SPI_SELn) de-
assertion and last SPI Clock edge.
0 Disable
1 Enable

7:0
(R/W)

STOP Transfer delay time in multiples of SPI clock period.
The SPI_DLY.STOP bits select a delay (number of stop bits in
multiples of SPI Clock duration) at the end of each SPI transfer. The
default delay is the minimum value required to comply with the SPI
protocol (1-bit duration). The SPI_DLY.STOP bits may be
programmed with smaller delay values, resulting in continuous
operation (for example, stop bits =0).

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Slave Select Register

The SPI_SLVSEL register enables the SPI_SELn pins for input and indicates the state (high or low) of these
pins when enabled.

Figure 25-18: SPI_SLVSEL Register Diagram

Table 25-13: SPI_SLVSEL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

SSEL7 Slave Select 7 Input.
The SPI_SLVSEL.SSEL7 bit state indicates the value on the related
SPI_SELn pin.
0 Low
1 High

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–39

14
(R/W)

SSEL6 Slave Select 6 Input.
The SPI_SLVSEL.SSEL6 bit state indicates the value on the related
SPI_SELn pin.
0 Low
1 High

13
(R/W)

SSEL5 Slave Select 5 Input.
The SPI_SLVSEL.SSEL5 bit state indicates the value on the related
SPI_SELn pin.
0 Low
1 High

12
(R/W)

SSEL4 Slave Select 4 Input.
The SPI_SLVSEL.SSEL4 bit state indicates the value on the related
SPI_SELn pin.
0 Low
1 High

11
(R/W)

SSEL3 Slave Select 3 Input.
The SPI_SLVSEL.SSEL3 bit state indicates the value on the related
SPI_SELn pin.
0 Low
1 High

10
(R/W)

SSEL2 Slave Select 2 Input.
The SPI_SLVSEL.SSEL2 bit state indicates the value on the related
SPI_SELn pin.
0 Low
1 High

9
(R/W)

SSEL1 Slave Select 1 Input.
The SPI_SLVSEL.SSEL1 bit state indicates the value on the related
SPI_SELn pin.
0 Low
1 High

Table 25-13: SPI_SLVSEL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

7
(R/W)

SSE7 Slave Select 7 Enable.
The SPI_SLVSEL.SSE7 bit enables the related SPI_SELn pin for
input. If disabled, the SPI three-states the related SPI_SELn pin.
When the SPI is a slave, the master (not the SPI) asserts the input
during the transfer. The input may be de-asserted or remain asserted
between transfers. While the input is de-asserted, the SPI ignores SPI
Clock, ignores inputs, and three-states outputs.
0 Disable
1 Enable

6
(R/W)

SSE6 Slave Select 6 Enable.
The SPI_SLVSEL.SSE6 bit enables the related SPI_SELn pin for
input. See the SPI_SLVSEL.SSE7 bit description for more
information.
0 Disable
1 Enable

5
(R/W)

SSE5 Slave Select 5 Enable.
The SPI_SLVSEL.SSE5 bit enables the related SPI_SELn pin for
input. See the SPI_SLVSEL.SSE7 bit description for more
information.
0 Disable
1 Enable

4
(R/W)

SSE4 Slave Select 4 Enable.
The SPI_SLVSEL.SSE4 bit enables the related SPI_SELn pin for
input. See the SPI_SLVSEL.SSE7 bit description for more
information.
0 Disable
1 Enable

3
(R/W)

SSE3 Slave Select 3 Enable.
The SPI_SLVSEL.SSE3 bit enables the related SPI_SELn pin for
input. See the SPI_SLVSEL.SSE7 bit description for more
information.
0 Disable
1 Enable

Table 25-13: SPI_SLVSEL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–41

Received Word Count Register

The SPI_RWC register holds a count of the number of words remaining to be received by the SPI. To start
the decrement of the word count in SPI_RWC, enable the receive word counter (SPI_RXCTL.RWCEN =1).
The SPI uses the word count to control the duration of transfers and to signal the completion of a burst of
transfers with the receive finish interrupt (SPI_ILAT.RF). In DMA mode, the SPI uses the SPI_RWC to
ensure that the number of frames received during a DMA transfer is equal to the number of words
programmed in the DMA channel controller. The values programmed into the SPI_RWC registers should
match the word count in the DMA configuration. The SPI_RWC maintains the number of frames to be
received in a transfer. The SPI_RWC should only be changed when the counter is disabled.

Figure 25-19: SPI_RWC Register Diagram

2
(R/W)

SSE2 Slave Select 2 Enable.
The SPI_SLVSEL.SSE2 bit enables the related SPI_SELn pin for
input. See the SPI_SLVSEL.SSE7 bit description for more
information.
0 Disable
1 Enable

1
(R/W)

SSE1 Slave Select 1 Enable.
The SPI_SLVSEL.SSE1 bit enables the related SPI_SELn pin for
input. See the SPI_SLVSEL.SSE7 bit description for more
information.
0 Disable
1 Enable

Table 25-13: SPI_SLVSEL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Received Word Count Reload Register

The SPI_RWCR register holds the receive word count value that the SPI loads into the SPI_RWC register
when the transfer count decrements to zero. To prevent the SPI from reloading the counter, use zero for
the reload count value. The SPI_RWCR should only be changed when the counter is disabled.

Figure 25-20: SPI_RWCR Register Diagram

Transmitted Word Count Register

The SPI_TWC register holds a count of the number of words remaining to be transmitted by the SPI. To
start the decrement of the word count in SPI_TWC, enable the transmit word counter (SPI_TXCTL.TWCEN
=1). The SPI uses the word count to control the duration of transfers and to signal the completion of a burst
of transfers with the transmit finish interrupt. In DMA mode, the SPI uses the SPI_TWC to ensure that the
number of frames transmitted during a DMA transfer is equal to the number of words programmed in the
DMA channel controller. The values programmed into the SPI_TWC registers should match the word
count in the DMA configuration. The SPI_TWC maintains the number of frames to be transmitted in a
transfer. The SPI_TWC should only be changed when the counter is disabled.

Table 25-14: SPI_RWC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Received Word Count.
The SPI_RWC.VALUE bits hold the receive transfer word count.

Table 25-15: SPI_RWCR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Received Word Count Reload.
The SPI_RWCR.VALUE bits hold the receive transfer word count
reload value.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–43

Figure 25-21: SPI_TWC Register Diagram

Transmitted Word Count Reload Register

The SPI_TWCR register holds the transmit word count value that the SPI loads into the SPI_TWC register
when the transfer count decrements to zero. To prevent the SPI from reloading the counter, use zero for
the reload count value. The SPI_TWCR should only be changed when the counter is disabled.

Figure 25-22: SPI_TWCR Register Diagram

Table 25-16: SPI_TWC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Transmitted Word Count.
The SPI_TWC.VALUE bits hold the transmit transfer word count.

Table 25-17: SPI_TWCR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Transmitted Word Count Reload.
The SPI_TWCR.VALUE bits hold the transmit transfer word count
reload value.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Interrupt Mask Register

The SPI_IMSK register unmasks (enables) or masks (disables) SPI interrupts. When a condition is indi-
cated by a bit in the SPI_STAT register and the corresponding interrupt is unmasked in SPI_IMSK, the SPI
latches the interrupt's bit in the SPI_ILAT register, queuing the interrupt for service.

Figure 25-23: SPI_IMSK Register Diagram

Table 25-18: SPI_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/NW)

TF Transmit Finish Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

10
(R/NW)

RF Receive Finish Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

9
(R/NW)

TS Transmit Start Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–45

Interrupt Mask Clear Register

The SPI_IMSK_CLR register permits clearing individual mask bits in the SPI_IMSK register without
affecting other bits in the register. Use write-1-to-clear on a bit in SPI_IMSK_CLR to clear the corre-
sponding bit in the SPI_IMSK register.

8
(R/NW)

RS Receive Start Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

7
(R/NW)

MF Mode Fault Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

6
(R/NW)

TC Transmit Collision Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

5
(R/NW)

TUR Transmit Underrun Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

4
(R/NW)

ROR Receive Overrun Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

2
(R/NW)

TUWM Transmit Urgent Watermark Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

1
(R/NW)

RUWM Receive Urgent Watermark Interrupt Mask.
0 Disable (mask) interrupt
1 Enable (unmask) interrupt

Table 25-18: SPI_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 25-24: SPI_IMSK_CLR Register Diagram

Table 25-19: SPI_IMSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W1C)

TF Clear Transmit Finish Interrupt Mask.

10
(R/W1C)

RF Clear Receive Finish Interrupt Mask.

9
(R/W1C)

TS Clear Transmit Start Interrupt Mask.

8
(R/W1C)

RS Clear Receive Start Interrupt Mask.

7
(R/W1C)

MF Clear Mode Fault Interrupt Mask.

6
(R/W1C)

TC Clear Transmit Collision Interrupt Mask.

5
(R/W1C)

TUR Clear Transmit Under-run Interrupt Mask.

4
(R/W1C)

ROR Clear Receive Overrun Interrupt Mask.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–47

Interrupt Mask Set Register

The SPI_IMSK_SET register permits setting individual mask bits in the SPI_IMSK register without affecting
other bits in the register. Use write-1-to-set on a bit in SPI_IMSK_SET to set the corresponding bit in the
SPI_IMSK register.

Figure 25-25: SPI_IMSK_SET Register Diagram

2
(R/W1C)

TUWM Clear Transmit Urgent Watermark Interrupt Mask.

1
(R/W1C)

RUWM Clear Receive Urgent Watermark Interrupt Mask.

Table 25-20: SPI_IMSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W1S)

TF Set Transmit Finish Interrupt Mask.

10
(R/W1S)

RF Set Receive Finish Interrupt Mask.

Table 25-19: SPI_IMSK_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Status Register

The SPI_STAT register indicates SPI status including FIFO status, error conditions, and interrupt condi-
tions. When an interrupt condition from this register is unmasked (enabled) by the corresponding bit in
the SPI_IMSK register, the interrupt is latched into the corresponding bit in the SPI_ILAT register.

9
(R/W1S)

TS Set Transmit Start Interrupt Mask.

8
(R/W1S)

RS Set Receive Start Interrupt Mask.

7
(R/W1S)

MF Set Mode Fault Interrupt Mask.

6
(R/W1S)

TC Set Transmit Collision Interrupt Mask.

5
(R/W1S)

TUR Set Transmit Under-run Interrupt Mask.

4
(R/W1S)

ROR Set Receive Overrun Interrupt Mask.

2
(R/W1S)

TUWM Set Transmit Urgent Watermark Interrupt Mask.

1
(R/W1S)

RUWM Set Receive Urgent Watermark Interrupt Mask.

Table 25-20: SPI_IMSK_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–49

Figure 25-26: SPI_STAT Register Diagram

Table 25-21: SPI_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23
(R/NW)

TFF SPI_TFIFO Full.
The SPI_STAT.TFF bit indicates whether the SPI_TFIFO is full or not
full.
0 Not full Tx FIFO
1 Full Tx FIFO

22
(R/NW)

RFE SPI_RFIFO Empty.
The SPI_STAT.RFE bit indicates whether the SPI_RFIFO is empty or
not empty.
0 RX FIFO not empty
1 RX FIFO empty

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

20
(R/NW)

FCS Flow Control Stall Indication.
The SPI_STAT.FCS bit indicates whether a slave has de-asserted the
SPI_RDY pin to stall the SPI master while the slave is unable to service
the SPI masters request. This bit is valid only when the SPI is a master
(SPI_CTL.MSTR =1 and flow control is enabled (SPI_CTL.FCEN =1).
0 No Stall (RDY pin asserted)
1 Stall (RDY pin de-asserted)

18:16
(R/NW)

TFS SPI_TFIFO Status.
The SPI_STAT.TFS bits indicate the status of the SPI_TFIFO. The SPI
uses this status when evaluating transmit watermark conditions.
0 Full TFIFO
1 25% empty TFIFO
2 50% empty TFIFO
3 75% empty TFIFO
4 Empty TFIFO

14:12
(R/NW)

RFS SPI_RFIFO Status.
The SPI_STAT.RFS bits indicate the status of the SPI_RFIFO. The SPI
uses this status when evaluating receive watermark conditions.
0 Empty RFIFO
1 25% full RFIFO
2 50% full RFIFO
3 75% full RFIFO
4 Full RFIFO

11
(R/W1C)

TF Transmit Finish Indication.
The SPI_STAT.TF bit indicates that the SPI has detected the finish of
a transmit burst transfer (the SPI_TWC count decrements to zero).
This condition can only occur when SPI_TXCTL.TTI and SPI_
TXCTL.TWCEN are enabled.
0 No status
1 Transmit finish detected

Table 25-21: SPI_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–51

10
(R/W1C)

RF Receive Finish Indication.
The SPI_STAT.RF bit indicates that the SPI has detected the finish of
a receive burst transfer (the SPI_RWC count decrements to zero). This
condition can only occur when SPI_RXCTL.RTI and SPI_RXCTL.
RWCEN are enabled.
0 No status
1 Receive finish detected

9
(R/W1C)

TS Transmit Start.
The SPI_STAT.TS bit indicates that the SPI has detected the start of a
transmit burst transfer. A transmit bursts starts with the load of SPI_
TWC from the SPI_TWCR. This condition can only occur when SPI_
TXCTL.TTI and SPI_TXCTL.TWCEN are enabled.
0 No status
1 Transmit start detected

8
(R/W1C)

RS Receive Start.
The SPI_STAT.RS bit indicates that the SPI has detected the start of a
receive burst transfer. A receive bursts starts with the load of SPI_RWC
from the SPI_RWCR. This condition can only occur when SPI_
RXCTL.RTI and SPI_RXCTL.RWCEN are enabled.
0 No status
1 Receive start detected

7
(R/W1C)

MF Mode Fault Indication.
The SPI_STAT.MF bit, when SPI is a master and SPI_CTL.PSSE is
enabled, indicates that multiple masters have asserted slave select
inputs.
0 No status
1 Mode fault occurred

6
(R/W1C)

TC Transmit Collision Indication.
The SPI_STAT.TC bit, when SPI is a slave, indicates that the load of
data into the shift register has occurred too close to the first
transmitting edge of the SPI Clock.
0 No status
1 Transmit collision occurred

Table 25-21: SPI_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

5
(R/W1C)

TUR Transmit Underrun Indication.
The SPI_STAT.TUR bit, when the transmit FIFO (SPI_TFIFO is
empty, indicates that the last word in the transmit FIFO has been re-
sent as transmit data. Alternately, it indicates that zero has been sent
as transmit data.
0 No status
1 Transmit underrun occurred

4
(R/W1C)

ROR Receive Overrun Indication.
The SPI_STAT.ROR bit, when the receive FIFO (SPI_RFIFO is full,
indicates that a word in the receive FIFO has been overwritten with
incoming receive data. Alternately, it indicates that incoming receive
data has been discarded.
0 No status
1 Receive overrun occurred

2
(R/NW)

TUWM Transmit Urgent Watermark Breached.
The SPI_STAT.TUWM bit indicates that the transmit urgent watermark
(SPI_TXCTL.TUWM) has been reached. This condition is cleared when
the transmit FIFO fills enough to reach the transmit regular
watermark (SPI_TXCTL.TRWM).
0 TX Regular Watermark reached
1 TX Urgent Watermark breached

1
(R/NW)

RUWM Receive Urgent Watermark Breached.
The SPI_STAT.RUWM bit indicates that the receive urgent watermark
(SPI_RXCTL.RUWM) has been reached. This condition is cleared when
the receive FIFO empties enough to reach the receive regular
watermark (SPI_RXCTL.RRWM).
0 RX Regular Watermark reached
1 RX Urgent Watermark breached

0
(R/NW)

SPIF SPI Finished.
The SPI_STAT.SPIF bit indicates that a single word transfer is
complete.
0 No status
1 Completed single-word transfer

Table 25-21: SPI_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–53

Masked Interrupt Condition Register

The SPI_ILAT register latches interrupts, queuing the interrupts for service. When a condition is indicated
by a bit in the SPI_STAT register and the corresponding interrupt is unmasked in SPI_IMSK, the SPI latches
the interrupt's bit in SPI_ILAT.

Figure 25-27: SPI_ILAT Register Diagram

Table 25-22: SPI_ILAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/NW)

TF Transmit Finish Interrupt Latch.
0 No interrupt
1 Latched interrupt

10
(R/NW)

RF Receive Finish Interrupt Latch.
0 No interrupt
1 Latched interrupt

9
(R/NW)

TS Transmit Start Interrupt Latch.
0 No interrupt
1 Latched interrupt

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Masked Interrupt Clear Register

The SPI_ILAT_CLR register permits clearing individual mask bits in the SPI_ILAT register without
affecting other bits in the register. Use write-1-to-clear on a bit in SPI_ILAT_CLR to clear the corre-
sponding bit in the SPI_ILAT register.

8
(R/NW)

RS Receive Start Interrupt Latch.
0 No interrupt
1 Latched interrupt

7
(R/NW)

MF Mode Fault Interrupt Latch.
0 No interrupt
1 Latched interrupt

6
(R/NW)

TC Transmit Collision Interrupt Latch.
0 No interrupt
1 Latched interrupt

5
(R/NW)

TUR Transmit Under-run Interrupt Latch.
0 No interrupt
1 Latched interrupt

4
(R/NW)

ROR Receive Overrun Interrupt Latch.
0 No interrupt
1 Latched interrupt

2
(R/NW)

TUWM Transmit Urgent Watermark Interrupt Latch.
0 No interrupt
1 Latched interrupt

1
(R/NW)

RUWM Receive Urgent Watermark Interrupt Latch.
0 No interrupt
1 Latched interrupt

Table 25-22: SPI_ILAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–55

Figure 25-28: SPI_ILAT_CLR Register Diagram

Table 25-23: SPI_ILAT_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W1C)

TF Clear Transmit Finish Interrupt Latch.

10
(R/W1C)

RF Clear Receive Finish Interrupt Latch.

9
(R/W1C)

TS Clear Transmit Start Interrupt Latch.

8
(R/W1C)

RS Clear Receive Start Interrupt Latch.

7
(R/W1C)

MF Clear Mode Fault Interrupt Latch.

6
(R/W1C)

TC Clear Transmit Collision Interrupt Latch.

5
(R/W1C)

TUR Clear Transmit Under-run Interrupt Latch.

4
(R/W1C)

ROR Clear Receive Overrun Interrupt Latch.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Receive FIFO Data Register

The SPI_RFIFO register has an interface to the receive shift register in the SPI and has an interface to the
processor's data buses. The top level of the buffer is visible to programs as the 32-bit SPI_RFIFO register,
but the size (number of word locations) of the receive FIFO is actually flexible with transfer word size. The
size of the receive FIFO is 8 if word size is 8-bit, or the size is 4 if word size is 16-bit, or the size is 2 if word
size is 32-bit.

Both masters and slaves may stop or stall receive transfers based on FIFO status. When the receive FIFO
is full, the SPI master stops initiating new transfers on the SPI if SPI_RXCTL.RTI is enabled. A slave may
stall the SPI interface when the content of the FIFO crosses the selected watermark. If data reception
continues after SPI_RFIFO is full, the data in the receive FIFO is invalid, and the SPI indicates this condi-
tion with receive overrun (SPI_STAT.ROR). This condition is possible when SPI_RXCTL.RTI =0 and SPI_
RXCTL.REN =1 for a master, or for a slave that does not exercise flow control.

Note that the receive FIFO is reset (cleared) when the SPI is disabled after being enabled.

Figure 25-29: SPI_RFIFO Register Diagram

2
(R/NW)

TUWM Clear Transmit Urgent Watermark Interrupt Latch.

1
(R/NW)

RUWM Clear Receive Urgent Watermark Interrupt Latch.

Table 25-24: SPI_RFIFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

DATA Receive FIFO Data.

Table 25-23: SPI_ILAT_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 25–57

Transmit FIFO Data Register

The SPI_TFIFO register has an interface to the transmit shift register in the SPI and has an interface to the
processor's data buses. The top level of the buffer is visible to programs as the 32-bit SPI_TFIFO register,
but the size (number of word locations) of the transmit FIFO is actually flexible with transfer word size.
The size of the transmit FIFO is 8 if word size is 8-bit, or the size is 4 if word size is 16-bit, or the size is 2
if word size is 32-bit.

Both masters and slaves may stop or stall transmit transfers based on FIFO status. When the transmit FIFO
is empty, the SPI master stops initiating new transfers on the SPI if SPI_TXCTL.TTI is enabled. A slave may
stall the SPI interface when the content of the FIFO crosses the selected watermark. If data transmit
requests continue after SPI_TFIFO is empty, the data sent from the transmit FIFO is invalid, and the SPI
indicates this condition with transmit underrun (SPI_STAT.TUR). This condition is possible when SPI_
TXCTL.TTI =0 and SPI_TXCTL.TEN =1 for a master, or for a slave that does not exercise flow control.

Note that the transmit FIFO is reset (cleared) when the SPI is disabled after being enabled.

Figure 25-30: SPI_TFIFO Register Diagram

Table 25-25: SPI_TFIFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

DATA Transmit FIFO Data.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-BF60X SPI REGISTER DESCRIPTIONS

25–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–1

26 Serial Port (SPORT)

Unlike the SPI interface, which has been designed for SPI-compatible communication only, the serial ports
(SPORTs) support a variety of serial data communication protocols. In addition, the SPORTs provide a
glueless hardware interface to many industry-standard data converters and codecs. With support for high
data rates and dual half-duplex data paths, the SPORT interface is a perfect choice for direct serial inter-
connection between two or more processors in a multiprocessor system. Many processors provide
compatible serial interfaces, including DSPs from Analog Devices and other manufacturers.

The SPORT top module comprises of two half SPORTs with identical functionality. Each SPORT half can
be independently configured as either a transmitter or receiver and can be coupled with the other HSPORT
within the same SPORT. Further, each SPORT half provides two synchronous half-duplex data lines to
double the total supported data streams.

Each SPORT half has the same capabilities and is programmed in the same way. The interface specifica-
tions of each SPORT half are shown in the following table.

Table 26-1: SPORT Specifications

Feature Availability

Connectivity

Multiplexed Pinout Yes
Internal connections between SPORT halves Yes. Only Clock and/or Frame Sync can be loopbacked

internally between paired SPORT halves.
Interrupt Control Yes
Protocol

Master Capable Yes
Slave Capable Yes
Transmission Simplex Yes
Transmission Half Duplex Yes
Transmission Full Duplex No. The paired SPORT halves can however, be effectively used

for full-duplex communication.
Access Type

Data Buffer Yes. Each SPORT half has its own set of control registers and
data buffers.

Core Data Access Yes

SERIAL PORT (SPORT)
FEATURES

26–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Features
An individual SPORT module consists of two independently configurable SPORT halves with identical
functionality. These SPORT halves offer the following features.

• Two bidirectional data lines—Primary (0) and Secondary (1) per SPORT half, configurable as either
transmitters or receivers. Therefore, each SPORT half can be configured for two transmitter or two
receiver channels, permitting two unidirectional streams into or out of the same SPORT half. This bidi-
rectional functionality provides greater flexibility for serial communications. Further, two SPORT
halves can be combined to enable full-duplex, dual-stream communications.

• Six operation modes

a. Standard DSP serial mode

b. I 2S mode

c. Left-Justified mode

d. Right-Justified Mode

e. Multichannel Mode

f. Packed mode

• Improved granularity for internal clock generation, allowing both even and odd SCLK to SPORT_CLK
ratios. If both data lines of a SPORT half are active, it can have a maximum throughput of 2 x SPORT_
CLK. The SPORTs can accept an input clock from an external source.

• Configurable rising or falling edge of the SPORT_CLK for driving or sampling data and frame sync.

• Gated clock mode support for both internal clock and external clock mode in DSP serial mode and
stereo modes (Left-justified and I 2S mode).

• Operates with or without a frame synchronization signal for each data word, with internally generated
or externally generated frame signals, with active high or active low frame signals, and with either of
two configurable pulse widths and frame signal timing.

DMA Data Access Yes
DMA Channels One per SPORT half
DMA Chaining Yes
Boot Capable No
Local Memory No
Clock Operation See data sheet

Table 26-1: SPORT Specifications (Continued)

Feature Availability

SERIAL PORT (SPORT)
SIGNAL DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–3

• Status flagging and optional interrupt generation for prematurely received external frame syncs.

• External frame sync signal can be configured as level-sensitive or edge-sensitive signal.

• Serial data words between 4 and 32 bits in length, either in most significant bit (MSB) first or in least
significant bit (LSB) first format. Optional sign-extension on received data.

• Optional 16-bit to 32-bit word packing when SPORT is configured as receiver and 32-bit to 16-bit word
unpacking when configured as Transmitter.

• When configured as transmitter, both primary and secondary data paths can have optional compress
engines enabled. Similarly, in receiver mode, both paths can have optional expand engines enabled. A-
law and μ-law compression/decompression hardware companding according to G.711 specification on
transmitted and received words in all operating modes.

• Status flagging and optional interrupt generation for Transmit under-run or Receive over-flow.

• Supports multichannel mode for TDM interfaces. Each SPORT half can transmit or receive data selec-
tively from a time-division-multiplexed serial bit stream on 128 contiguous channels from a stream of
up to 1024 total channels. This mode can be useful for H.100/H.110 and other telephony interfaces as
a network communication scheme for multiple processors.

• Performs interrupt-driven, single word transfers to and from on-chip or off-chip memory under
processor control.

• Dedicated DMA channel for each SPORT half. This DMA is common for both data lines and can be
configured for multiple work units such as auto-buffer based (for a repeated, identical range of trans-
fers) or descriptor-based (individual or repeated ranges of transfers with differing DMA parameters).

• SPORT DMA's can be programmed to accept the incoming trigger when configured as Trigger Slave
and are capable of generating outgoing trigger as well.

• When using DMA in transmit mode, a Transfer Finish Interrupt (TFI) can be used to make sure that
the last word of the transfer has been shifted out of the transmit shift register.

• SPMUX, a local multiplexing block integrated between the SPORT and the PinMux logic, provides the
ability to route and share the clocks and/or frame sync between the SPORT halves of the SPORT
module. The internal routing helps to reduce the total number of processor pins required for the inter-
face. This is especially efficient when a SPORT is used for full-duplex data transfers.

• Interface with the ADC Control Module (ACM) block. This allows the frame sync and clock signals
generated from ACM block to be routed internally to one of the SPORT halves of SPORT1.

Signal Descriptions
Each SPORT half module has five dedicated pins, as described in the following table. The actual pin name
varies with different SPORT halves. The individual SPORT half does not share any of its pins across the
pair. However, if required, clock and frame sync signals can be interconnected between the SPORT half
pair, as explained in SPORT pin MUX section.

SERIAL PORT (SPORT)
SIGNAL DESCRIPTIONS

26–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

All the SPORT signals are available on the GPIO pins and are multiplexed with other peripheral signals.
By default, these pins are in GPIO mode. To enable the pins for SPORT functionality, the appropriate bits
must be set in the PORTx_FER and PORTx_MUX registers. It is advised to configure PORTx_MUX register
before PORTx_FER.

The signals are known as Transmit signal when the serial port is configured in transmit mode (SPORT_
CTL_A.SPTRAN = 1); while are known as Receive signals when configured in receive mode (SPORT_CTL_A.
SPTRAN = 0). These SPORT signals are described in the sections below.

Serial Clock

The serial port clock (SPT_ACLK) signal is considered a Receive serial clock if the transfer direction is
configured as receiver; while it is considered a Transmit serial clock when configured as transmitter.

The serial clock (SPT_ACLK) is one of the control signal of serial port depending on which the data bits are
shifted-in or shifted-out serially based on the direction selected. The frame sync signal is also driven (in
internal frame sync mode) or sampled (in external frame sync mode) with respect to serial clock signal.
The serial clock can be internally generated from processor's system clock (SCLK1) or externally provided,
based on SPORT_CTL_A.ICLK bit setting. If a SPORT is configured in internal clock mode (SPORT_CTL_
A.ICLK = 1), then the SPORT_DIV_A.CLKDIV field specifies the divider to generate serial port clock signal
from its fundamental clock, SCLK. This divisor is a 16-bit value, allowing a wide range of serial clock rates.
Use the following equation to calculate the serial clock frequency:

SPT_ACLK = [SCLK ÷ (SPORT_DIV_A.CLKDIV + 1)]

Table 26-2: SPORT Pin Descriptions

Internal Node Direction Description

SPORT_CLK I/O Transmit/Receive Serial Clock. Data and Frame Sync are driven/sampled
with respect to this clock. This signal can be either internally or externally
generated.

SPORT_FS I/O Transmit/Receive Frame Sync. The frame sync pulse initiates shifting of
serial data. This signal is either generated internally or externally.

SPORT_D0 I/O Transmit/receive Primary Data channel. Bidirectional data pin. This signal
can be configured as an output to transmit serial data, or as an input to
receive serial data.

SPORT_D1 I/O Transmit/receive secondary Data channel. Bidirectional data pin. This
signal can be configured as an output to transmit serial data, or as an input
to receive serial data.

SPORT_TDV O Multichannel Transmit Data Valid. This signal is only active if SPORT is
configured in multichannel transmit mode. The signal is asserted during
enabled slots based on the channel selection registers (SPORT_CS0_A
through SPORT_CS3_B).

SERIAL PORT (SPORT)
SIGNAL DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–5

Use the following equation to determine the value of SPORT_DIV_A.CLKDIV, given the SCLK frequency
and desired serial port clock frequency:

SPORT_DIV_A.CLKDIV = [(SCLK ÷ SPT_ACLK) - 1]

This equation results in improved granularity for internal clock generation, allowing both odd and even
SCLK: SPT_ACLK ratios.

It also supports 1:1 SPT_ACLK to SCLK ratio, when CLKDIV field is programmed to zero, resulting in serial
port clock frequency equal to system clock. But caution must be exercised not to exceed the maximum
SPT_ACLK frequency specified in the data sheet. Therefore if SCLK is greater than the data sheet limit, SPT_
ACLK:SCLK ratio must be limited to 1:2. For other SCLK frequencies, this ratio can be programmed up to
1:1.

In certain operating modes, the serial port can be configured to generate gated clock which is active only
for the duration of valid data. In some applications, it can be used to generate a general-purpose clock in
the system. In this case the SPORT must be enabled with appropriate SPORT_DIV_A.CLKDIV divisor field
in internal clock mode.

If a SPORT is configured in external clock mode (SPORT_CTL_A.ICLK = 0), then serial clock is a input
signal making the SPORT to operate in slave mode. The SPORT_DIV_A.CLKDIV is ignored. The optional
loopback capability provided by SPMUX block, allows slave SPORT to use the serial clock from the neigh-
boring serial port.

Note that externally supplied serial clock need not be in synchronous with processor system clock. Further,
the external clock can be a gated clock but it must comply the requirements described in Gated Clock
Mode section. Please refer appropriate product data sheet for exact a.c. timing specifications.

Frame Sync

The serial port frame sync (SPT_AFS) signal is considered a Receive Frame Sync if the transfer direction is
configured as receiver; while it is considered a Transmit Frame Sync when configured as transmitter.

Frame sync is also a control signal, generally used to determine the start of new word or frame. Upon
detecting this signal, serial port starts shifting in or out the new data bits serially based on the direction
selected. The frame sync signal can be internally generated from its serial clock (SPT_ACLK) or externally
provided, based on the SPORT_CTL_A.IFS bit setting.

If SPORT is configured for internal frame sync mode (SPORT_CTL_A.IFS = 1), then the SPORT_DIV_A.
FSDIV field specifies the divider to generate SPT_AFS signal from the serial clock. This divisor is a 16-bit
value, allowing a wide range of frame sync rates to initiate periodic transfers. The serial clock may be inter-
nally generated or externally supplied and it is counted equal to divisor specified before a frame sync pulse
is generated. The formula for the number of cycles between frame sync pulses is:

Number of serial clocks between frame syncs = (SPORT_DIV_A.FSDIV + 1)

Use the following equation to determine the value of SPORT_DIV_A.FSDIV, given the serial clock frequency
and desired frame sync frequency:

SERIAL PORT (SPORT)
SIGNAL DESCRIPTIONS

26–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SPORT_DIV_A.FSDIV = [(SPT_ACLK ÷ SPT_AFS) – 1]

The frame sync is continuously active when SPORT_DIV_A.FSDIV = 0. The value of SPORT_DIV_A.FSDIV
should not be less than the serial word length minus one (the value of the SPORT_CTL_A.SLEN bit field), as
this may cause an external device to abort the current operation or cause other unpredictable results.

NOTE: After enabling the SPORT, the first internal frame sync appears after a delay of (SPORT_DIV_A.
FSDIV + 3) serial clocks.

If a SPORT is configured in external frame sync mode (SPORT_CTL_A.IFS = 0), then SPT_AFS is a input
signal and the SPORT_DIV_A.FSDIV field of the SPORT_DIV_A register is ignored. By default, this external
signal is level-sensitive, but can be configured as an edge-sensitive signal by setting SPORT_CTL_A.FSED bit.
The frame sync is expected to be synchronous with the serial clock. If not, it must meet the timing require-
ments that appear in the product specific data sheet.

The serial port can be used as a counter for dividing an external clock to generate periodic pulses or peri-
odic interrupts. The SPORT must be enabled with appropriate SPORT_DIV_A.FSDIV divisor field in
external clock, internal data-independent frame sync mode.

In some of the operating modes, the serial port can be programmed to treat the frame sync signal as an
optional signal by clearing the SPORT_CTL_A.FSR bit (it can be used to start the continuous transfers and
subsequently ignored). Characteristics of the frame sync depend on the settings in the SPORT control
registers and the SPORT's operating mode. For more information, refer to the SPORT control register bits
and respective operating mode details.

Data Signals

Each SPORT half has two bi-directional data lines known as the primary transmit or receive data channel
(SPT_AD0) and the secondary transmit or receive data channel (SPT_AD1). Both the data lines can be
configured as either transmitters or receivers using the SPORT_CTL_A.SPTRAN bit, permitting dual unidi-
rectional data streams to increase the data throughput of the serial port.

Both data lines can be individually enabled or disabled using the SPORT_CTL_A.SPENPRI and the SPORT_
CTL_A.SPENSEC bits. However, if using both, it is advised to enable or disable them concurrently. They do
not behave as totally separate SPORTs; rather, they operate in a synchronous manner (sharing a clock and
frame sync) but on separate data paths. All of the SPORT control settings are common for both channels
but the single DMA channel per serial half serves both primary and secondary data channels. Also, both
primary and secondary channels have separate data buffers, shift registers and optional companding logic
in their path.

When a serial port is configured in multichannel transmit mode, the data pins three-states during inactive
channel slots. This allows multiple serial port transmitters to operate on the same bus with different active
channels.

See the Architecture section for more details about data transfer operation.

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–7

Transmit Data Valid Signal

The Transmit Data Valid (SPT_ATDV) signal is available only in multichannel modes (including packed
mode) of a SPORT configured as a transmitter. This signal is active during transmission of enabled multi-
channel slots and remains in an inactive state for the disabled channels. In other words, the SPT_ATDV
signal is active whenever a serial port is driving the data pins and stays inactive when the data pins three-
states. Therefore the SPT_ATDV signal can serve as an output-enable signal for the data transmit pin.

Functional Description
The following section provides general information about functionality of the serial ports of processors.

• Architectural Concepts

• Data Types and Companding

• Transmit Path

• Receive Path

ADSP-BF60x SPORT Register List

The serial port (SPORT) controller, with its range of clock and frame synchronization options, supports a
variety of serial communication protocols and provides a glue-less hardware interface to many industry-
standard data converters and CODECs. Each SPORT has two independent halves (A and B), and each half
contains two channels (primary and secondary). A set of registers govern SPORT operations. For more
information on SPORT functionality, see the SPORT register descriptions.

Table 26-3: ADSP-BF60x SPORT Register List

Name Description

SPORT_CTL_A Half SPORT 'A' Control Register

SPORT_DIV_A Half SPORT 'A' Divisor Register

SPORT_MCTL_A Half SPORT 'A' Multi-channel Control Register

SPORT_CS0_A Half SPORT 'A' Multi-channel 0-31 Select Register

SPORT_CS1_A Half SPORT 'A' Multi-channel 32-63 Select Register

SPORT_CS2_A Half SPORT 'A' Multi-channel 64-95 Select Register

SPORT_CS3_A Half SPORT 'A' Multi-channel 96-127 Select Register

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

26–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SPORT_ERR_A Half SPORT 'A' Error Register

SPORT_MSTAT_A Half SPORT 'A' Multi-channel Status Register

SPORT_CTL2_A Half SPORT 'A' Control 2 Register

SPORT_TXPRI_A Half SPORT 'A' Tx Buffer (Primary) Register

SPORT_RXPRI_A Half SPORT 'A' Rx Buffer (Primary) Register

SPORT_TXSEC_A Half SPORT 'A' Tx Buffer (Secondary) Register

SPORT_RXSEC_A Half SPORT 'A' Rx Buffer (Secondary) Register

SPORT_CTL_B Half SPORT 'B' Control Register

SPORT_DIV_B Half SPORT 'B' Divisor Register

SPORT_MCTL_B Half SPORT 'B' Multi-channel Control Register

SPORT_CS0_B Half SPORT 'B' Multi-channel 0-31 Select Register

SPORT_CS1_B Half SPORT 'B' Multi-channel 32-63 Select Register

SPORT_CS2_B Half SPORT 'B' Multichannel 64-95 Select Register

SPORT_CS3_B Half SPORT 'B' Multichannel 96-127 Select Register

SPORT_ERR_B Half SPORT 'B' Error Register

SPORT_MSTAT_B Half SPORT 'B' Multi-channel Status Register

SPORT_CTL2_B Half SPORT 'B' Control 2 Register

SPORT_TXPRI_B Half SPORT 'B' Tx Buffer (Primary) Register

SPORT_RXPRI_B Half SPORT 'B' Rx Buffer (Primary) Register

SPORT_TXSEC_B Half SPORT 'B' Tx Buffer (Secondary) Register

SPORT_RXSEC_B Half SPORT 'B' Rx Buffer (Secondary) Register

Table 26-3: ADSP-BF60x SPORT Register List (Continued)

Name Description

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–9

ADSP-BF60x SPORT Interrupt List

ADSP-BF60x SPORT Trigger List

Table 26-4: ADSP-BF60x SPORT Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

SPORT0 Channel A DMA 43 0 LEVEL
SPORT0 Channel A Status 44 LEVEL
SPORT0 Channel B DMA 45 1 LEVEL
SPORT0 Channel B Status 46 LEVEL
SPORT1 Channel A DMA 47 2 LEVEL
SPORT1 Channel A Status 48 LEVEL
SPORT1 Channel B DMA 49 3 LEVEL
SPORT1 Channel B Status 50 LEVEL
SPORT2 Channel A DMA 51 4 LEVEL
SPORT2 Channel A Status 52 LEVEL
SPORT2 Channel B DMA 53 5 LEVEL
SPORT2 Channel B Status 54 LEVEL

Table 26-5: ADSP-BF60x SPORT Trigger List Trigger Masters

Description Trigger ID Sensitivity

SPORT0 Channel A DMA 20 PULSE/EDGE
SPORT0 Channel B DMA 21 PULSE/EDGE
SPORT1 Channel A DMA 22 PULSE/EDGE
SPORT1 Channel B DMA 23 PULSE/EDGE
SPORT2 Channel A DMA 24 PULSE/EDGE
SPORT2 Channel B DMA 25 PULSE/EDGE

Table 26-6: ADSP-BF60x SPORT Trigger List Trigger Slaves

Description Trigger ID Sensitivity

SPORT0 Channel A DMA 20
SPORT0 Channel B DMA 21

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

26–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x SPORT DMA List

Block Diagram

The serial port is configured in transmit mode, if SPORT_CTL_A.SPTRAN control bit is set. If this bit is
cleared, serial port configures in receive mode. If SPORT_CTL_A.SPENPRI control bit is set, then serial port
activates primary transmit/receive path. If SPORT_CTL_A.SPENSEC control bit is set, then it activates
secondary transmit/receive path. Both data channels can be enabled to allow synchronous dual-stream
communication. Each path optionally supports Hardware companding or expanding as well. Once a path
is activated, data is shifted in response to a frame sync at the rate of serial clock. Inactive data buffers are
not used and should not be accessed. An application program must use the appropriate data buffers.

These serial ports are not UARTs and cannot communicate with an RS-232 device or any other asynchro-
nous communications protocol. One way to implement RS-232 compatible communication with the
processor is to use two of the FLAG pins as asynchronous data receive and transmit signals.

The following figure shows a detailed block diagram of a SPORT half side.

SPORT1 Channel A DMA 22
SPORT1 Channel B DMA 23
SPORT2 Channel A DMA 24
SPORT2 Channel B DMA 25

Table 26-7: ADSP-BF60x SPORT DMA List DMA Channel List

Description DMA Channel

SPORT0 Channel A DMA DMA0
SPORT0 Channel B DMA DMA1
SPORT1 Channel A DMA DMA2
SPORT1 Channel B DMA DMA3
SPORT2 Channel A DMA DMA4
SPORT2 Channel B DMA DMA5

Table 26-6: ADSP-BF60x SPORT Trigger List Trigger Slaves (Continued)

Description Trigger ID Sensitivity

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–11

Figure 26-1: Serial Port Block Diagram

Architectural Concepts

Each SPORT module consists of two separate blocks, known as half-SPORT (HSPORT) A and B, with
identical functionality. These blocks can be independently configurable as either transmitter or receiver;
and optionally coupled together internally in a limited way. Each HSPORT also supports two synchronous
bidirectional data paths, referred as primary (D0) and secondary (D1) data lines, as shown in the following
figure.

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

26–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 26-2: Top Level SPORT Diagram

Each HSPORT can be configured as either transmitter or receiver, according to which the pair of data
signals transmit or receive data bits synchronously. The SPORT_CTL_A.SPTRAN bit controls the direction
for both data paths of the HSPORT. Each HSPORT has its own set of control registers and data buffers
grouped per SPORT module. The dual data signals of each HSPORT cannot transmit and receive the data
simultaneously for full-duplex operation. Two HSPORTs must be combined to achieve full-duplex oper-
ation.

Serial communications are synchronized to the serial clock signal. Every data bit must be accompanied by
a clock pulse. Each serial port can internally generate its own serial clock signal from the processor's system
clock using the divisor field of the SPORT_DIV_A.CLKDIV bit field. If programmed, serial ports can also
operate in external clock mode. Both primary and secondary data channels shift data based on SPORT_CLK
rate and the SPORT_CTL_A.CKRE bit

In addition to the serial clock signal, data may be signaled by a frame synchronization signal. The framing
signal can occur at the beginning of an individual word or at the beginning of a block of words. The config-
uration of frame sync signal depends upon the type of serial device connected to the processor. Each serial
port can generate its own frame sync signal (SPORT_FS) depending on the bit settings of SPORT control
register. An internally generated frame sync is derived from the SPORT clock using the divisor field of the
SPORT_DIV_A.FSDIV bit field. Serial ports can also accept external SPORT_FS signal. Both primary and
secondary data paths starts shifting data after detecting a valid frame sync signal according to control bit
settings and operating mode of serial port. A variety of serial data communication protocols can be

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–13

emulated according to the frame sync format. All frame sync options are available whether the signal is
generated internally or externally generated.

Multiplexer Logic

There is a local muxing block, known as SPMUX, that is integrated between the SPORT and the PinMux
logic of processor. It allows flexibility to route and share the clock and frame sync signals between the
SPORT half pair of a SPORT. This is where the two independent SPORT halves of a SPORT can be coupled
together. This feature can be used to reduce the total number of pins for the interface and is considered to
be efficient when the SPORT half pair is used for full-duplex operation.

 The SPORT_CTL2_A register is used to configure this loopback feature. The control bits of this register are
as described in the "Register Descriptions" section of this chapter.

The multiplexing depends on the SPORT_CTL_A.IFS and SPORT_CTL_A.ICLK bit settings and is controlled
further by the SPORT_CTL2_A.CKMUXSEL and SPORT_CTL2_A.FSMUXSEL bit settings of the SPORT half
pair. The following two tables show the valid combinations for the SPORT_CTL_A.IFS, SPORT_CTL_A.
ICLK, SPORT_CTL2_A.CKMUXSEL and SPORT_CTL2_A.FSMUXSEL bit settings. All other settings are consid-
ered to be illegal. The illegal settings, however, are not checked or prevented by hardware. Programs
should ensure that only legal combinations are used.

The table's Routing column uses the following abbreviations.

• HSx_FI = Frame sync input. It can be provided by external device or by the neighboring SPORT half.

• HSx_FO = Frame sync output. When SPORT is configured in internal frame sync mode.

• SPx_FS = signal appearing on frame sync pin of the SPORT half.

NOTE: In the tables, the Half-SPORT pair of a SPORT, A and B, are referred as HS0 and HS1 and are appli-
cable for all SPORTs.

Table 26-8: Frame Sync Combinations

FS Combination
ID HS0_IFS HS1_IFS FS0MUX FS1MUX Routing

1 0 0 0 0 Native FS Operation
2 0 1 0 0 Native FS Operation
3 1 0 0 0 Native FS Operation
4 1 1 0 0 Native FS Operation
5 0 0 1 0 HS0_FI ≤ SP1_FS;

HS1_FI ≤ SP1_FS
6 0 1 1 0 HS0_FI ≤ HS1_FO ≥ SP1_FS
7 0 0 0 1 HS1_FI ≤ SP0_FS;

HS0_FI ≤ SP0_FS

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

26–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 The table's Routing column uses the following abbreviations.

• HSx_CI = serial clock input. It can be provided by external device or by neighboring SPORT half.

• HSx_CO = serial clock output. When SPORT is configured in internal clock mode.

• SPx_CLK = signal appearing on serial clock pin of the SPORT half.

The following additional points on these combination settings should be noted.

• FS IDs 1–4 are supported with all CLK IDs 9–16.

• FS ID 5 is only supported with CLK ID 13 and vice-versa.

• FS ID 6 is only supported with CLK ID 14 and vice-versa.

• FS ID 7 is only supported with CLK ID 15 and vice-versa.

• FS ID 8 is only supported with CLK ID 16 and vice-versa.

• CLK IDs 9–12 are supported with all FS IDs 1–8.

NOTE: From these tables, one can note that a SPORT half can import serial clock signal from paired
HSPORT, only when it is configured in external clock mode similarly, it can import frame sync
signal, only when it is configured in external frame sync mode. The neighboring SPORT may be
master (generates it's own serial clock or frame sync signal) or slave (accepting external clock or

8 1 0 0 1 HS1_FI ≤ HS0_FO ≥ SP0_FS

Table 26-9: Clock Combinations

CLK Combination
ID HS0_ICLK HS1_ICLK CK0MUX CK1MUX Routing

9 0 0 0 0 Native CLK Operation
10 0 1 0 0 Native CLK Operation
11 1 0 0 0 Native CLK Operation
12 1 1 0 0 Native CLK Operation
13 0 0 1 0 HS0_CI ≤ SP1_CLK;

HS1_CI ≤ SP1_CLK
14 0 1 1 0 HS1_CI ≤ HS1_CO ≥ SP1_CLK
15 0 0 0 1 HS1_CI ≤ SP0_CLK;

HS0_CI ≤ SP0_CLK
16 1 0 0 1 HS1_CI ≤ HS0_FO ≥ SP0_CLK

Table 26-8: Frame Sync Combinations (Continued)

FS Combination
ID HS0_IFS HS1_IFS FS0MUX FS1MUX Routing

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–15

external frame sync). It can be also noticed that, SPORT_CTL2 register programming is required
only at the acceptor SPORT half side; and not required at the donor SPORT half side to enable this
sharing.

Note that Polarity bits such as SPORT_CTL_A.CKRE and SPORT_CTL_A.LFS should have identical
settings when using muxing between two SPORT halves.

NOTE: There are some limitations on use of SPMUX logic when a SPORT is interfaced with an ACM
module of the processor. Refer to the ACM chapter for more details.

Data Types and Companding

The Data Type select field SPORT_CTL_A.DTYPE bit specifies one of the four data formats supported by
serial ports. These formats can be used in any of the operating mode of serial port.

These formats are applied to data words loaded into the SPORT transmit or receive data buffers. The first
two data formats (00 and 01 values of SPORT_CTL_A.DTYPE) are applicable only when SPORT is config-
ured as receiver; as when configured as transmitter, only the significant bits are transmitted (as per the field
defined in control register). Therefore the transmit data buffers are not actually zero filled or sign
extended.

The other two data formats enable the companding logic on the transmit/receive path. Companding
(compressing or expanding) is the process of logarithmically encoding and decoding data to minimize the
number of bits to be sent. The processor's SPORTs support the two most widely used companding algo-
rithms, A-law and μ-law, which is performed according to the CCITT G.711 specification.

If selected, companding applies to both the enabled data channels. When enabled as SPORT transmitter,
writes to transmit buffer causes it's content compressed to eight bits (zero filled to the width of the transmit
word) according to algorithm selected. Similarly, if configured in receive mode, the received 8-bits in the
receive data buffers are expanded in right-justified, zero fill format as per the algorithm selected. If
companding is enabled in multichannel mode, it is applied to all the active channels.

The compression for transmit data requires a minimum word length of 8 for proper function. If SPORT_
CTL_A.SLEN is less than 7, then expansion may not work correctly. Also, if the data value is greater than
13-bit A-law or 14-bit μ-law maximum, it is automatically compressed to the maximum value.

Table 26-10: Data Type Bit Field Settings

DTYPE field SPORT Receiver SPORT Transmitter

00 Right-Justify, zero-fill unused MSB's Normal Operation
01 Right-Justify, sign-extend unused MSB's Reserved
10 Expand using u-law Compress using u-law
11 Expand using A-law Compress using A-law

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

26–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: The processor companding logic supports in-place companding feature. So, companding can be
used as debug feature without enabling SPORT. See 'Companding as a Function' section for more
details.

Companding as a Function

Since the values in the transmit and receive buffers are actually companded in place, the companding hard-
ware can be used without transmitting (or receiving) any data, for example during testing or debugging.
For companding to execute properly, program the SPORT registers prior to loading data values into the
SPORT buffers.

To compress data in place without transmitting use the following procedure.

1. Set the serial port as transmitter (SPORT_CTL_A.SPTRAN = 1) with both primary and secondary data
channels disabled (SPORT_CTL_A.SPENPRI = SPORT_CTL_A.SPENSEC= 0).

2. Enable companding in the SPORT_CTL_A.DTYPE field.

3. Write a 32-bit data word to the transmit buffer

4. Wait for two system clock cycles. Any instruction not accessing the transmit buffer can be used to cause
this delay. This allows the serial port companding hardware to reload the transmit buffer with the
companded value.

5. Read the 8-bit compressed value from the transmit buffer.

To expand data in place, use the same sequence of operations with the receive buffer instead of the transmit
buffer. When expanding data in this way, set the appropriate serial word length (SPORT_CTL_A.SLEN) bit.

Transmit Path

The SPORT_CTL_A.SPTRAN control bit, when set, configures the SPORT in transmit mode. It then enables
primary and/or secondary transmit paths, based on the SPORT_CTL_A.SPENPRI and SPORT_CTL_A.
SPENSEC bit settings. Both data paths, primary and secondary, are separate but identical and include
Transmit Data Buffer, optional companding logic and a Transmit Shift Register.

The data buffer on primary transmit path is known as Primary Transmit Data Buffer, or SPORT_TXPRI_A;
while the one on secondary transmit path is known as Secondary Transmit Data Buffer, or SPORT_TXSEC_
A. The transmit data buffer and output shift register forms a FIFO type of structure. When packing is
disabled (SPORT_CTL_A.PACK = 0), serial port can hold as many as 3 data; while if packing is enabled (
SPORT_CTL_A.PACK = 1), it can hold 2 packed data at any given time.

The data to be transmitted on primary and/or secondary channels is written to the SPORT_TXPRI_A and
SPORT_TXSEC_A transmit data buffers respectively. The transmit data buffers can be accessed in core mode
through peripheral bus or in DMA mode through DMA bus. The inactive data buffer must not be accessed.
This data is optionally compressed in hardware according to selected algorithm and then automatically
transferred to transmit shift register. The shift register, clocked by SPT_ACLK signal, then serially shifts out

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–17

this data on SPT_AD0 or SPT_AD1 pins, synchronously. If framing signal is used, the SPT_AFS signal indi-
cates the start of the serial word transmission.

When using DMA mode, a single DMA feeds the data buffers of the enabled channels (primary and or
secondary). When using both channels, it is required to interleave the data of these channels properly.

When SPORT is configured in non-multichannel mode as transmitter, the enabled SPORT data pins SPT_
AD0 and/or SPT_AD1 are always driven. When a SPORT channel is enabled, data from Transmit Data
Buffer is loaded into Transmit Shift register. The shift register then immediately latches the first bit of data
(either LSB or MSB based on the SPORT_CTL_A.LSBF bit setting) and not with respect to frame sync. Simi-
larly, if frame sync duration is greater than serial word length, then during inactive serial clock cycles
(clock cycles after data transmission in the current frame), the data pins drives first bit of next word to be
transmitted which is loaded into shift register. This does not cause any problem at the receiver end, as it
starts sampling the data pin only after detecting a valid frame sync. In multichannel mode, data pin always
three-states during inactive channel slots.

The serial port provides status of transmit data buffers and also error detection logic for transmit errors
such as under-run. Please see the "Error Detection" section for more details.

When a serial port is configured in transmit mode, the receive paths (and hence the Receive Data Buffers
and Receive Shift registers on those paths) are deactivated and do not respond to serial clock or frame sync
signals. So, reading from an empty Receive Data Buffer may cause core to hang indefinitely.

Receive Path

The SPORT_CTL_A.SPTRAN bit, when cleared, configures the SPORT in receive mode. It then enables
primary and/or secondary receive paths, based on the SPORT_CTL_A.SPENPRI and SPORT_CTL_A.
SPENSEC bit settings. Both data paths, primary and secondary, are separate but identical and include a
Receive Shift Register, optional companding logic and a Receive Data Buffer.

The data buffer on primary receive path is known as Primary Receive Data Buffer, or SPORT_RXPRI_A;
while the one on secondary receive path is known as Secondary receive Data Buffer, or SPORT_RXSEC_A.
The receive paths act like a 3-word deep (32-bit) FIFO because they have two data registers plus an input
shift register.

Upon enabling the serial port data channels, the input Shift register shifts in data bits on the SPT_AD0 and/
or SPT_AD1 pins, synchronous to the receive clock signal. If framing signal is used, the SPT_AFS signal indi-
cates the beginning of the serial word being received. When an entire word is shifted in on the primary and
secondary channels, the data is optionally expanded in hardware according to selected algorithm and then
automatically transferred to SPORT_RXPRI_A and SPORT_RXSEC_A.

The Receive Data Buffers can be read in core mode through peripheral bus or in DMA mode through
DMA bus. When DMA mode is used a single DMA reads the data buffers of enabled channels (primary
and or secondary). When using both channels, it is required to de-interleave the data of these channels
properly. The serial port provides the status of Receive Data buffers and also error detection logic for
receive errors such as overflow. See the “Error Detection” section for more details.

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

26–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When a serial port is configured in receive mode, the transmit paths (and the Transmit Data Buffers and
Transmit Shift registers on those paths) are deactivated and do not respond to serial clock or frame sync
signals. Therefore programs must not try to access them.

Sampling Edge

The serial port uses two control signals to sample or drive the serial data.

1. Serial clock (SPT_ACLK) applies the bit clock for each serial data

2. Frame sync (SPT_AFS) divides the incoming data stream into frames.

These control signals can be internally generated or externally provided, determined by theSPORT_CTL_A.
ICLK and SPORT_CTL_A.IFS bit settings.

Data and frame syncs can be sampled on the rising or falling edges of the serial port clock signals.
TheSPORT_CTL_A.CKRE bit controls the sampling edge. By default, when SPORT_CTL_A.CKRE = 0, the
processor selects the falling edge of SPT_ACLK signal for sampling receive data and external frame sync. The
receive data and frame sync are sampled on the rising edge of SPT_ACLK whenSPORT_CTL_A.CKRE = 1.

Note that transmit data and internal frame sync signals are driven (change their state) on the serial clock
edge that is not selected. By default, (SPORT_CTL_A.CKRE = 0) the SPORTs drive data and frame sync
signals on the rising edge of the SPT_ACLK signal and drives on falling edge when SPORT_CTL_A.CKRE = 1.

Therefore transmit and receive functions of any two serial ports connected together should always select
the same value for SPORT_CTL_A.CKRE so internally-generated signals are driven on one edge and received
signals are sampled on the opposite edge.

The serial port which drives serial clock and frame sync is usually called as master while the receiver of
clock and frame sync is referred as slave. The following figure shows the typical SPORT signals at two sides
of serial communication for SPORT_CTL_A.CKRE = 0. The SPORT configured as Transmitter also drives
the serial clock and Frame sync signals as a master device.

Figure 26-3: Frame Sync and Data Driven on Rising Edge

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–19

When slave samples the Frame Sync signal, the SPORT_CTL_A.SLEN word counter is reloaded to the
maximum setting. Each SPT_ACLK decrements the SPORT_CTL_A.SLEN counter until the full frame is
received.

Therefore, if the transmitter drives the internal frame sync and data on the rising edge of serial clock, the
falling edge should be used by receiver to sample the external frame sync and data, and vice versa.

Premature Frame Sync Error Detection

A SPORT framing signal is used to synchronize transmit or receive data. In external FS mode, any frame
sync received when an active frame is in progress is called premature and is invalid.

As an enhancement to processor's serial port, if a premature frame sync is received, the SPORT_ERR_A.
FSERRSTAT bit is flagged to indicate this framing error. An optional error interrupt can be generated for
this event by setting SPORT_ERR_A.FSERRMSK bit.

This feature is applicable in all the operating modes of serial port.

NOTE: The SPORT_ERR_A.FSERRSTAT bit is not set in the presence of uncleared underflow/overflow
errors.

In stereo or I2S mode, a premature frame sync may result in the SPORT receiving two consecutive left
channels or two consecutive right channels and cause channel swapping. In the processor's serial port,
swapping of channels due to a premature FS is avoided. If due to premature FS, one data gets corrupted,
data will always be dropped in pairs to avoid channel swapping. The premature FS flagging in the error
register will be done similarly.

As shown in the following figure, the frame sync error (which sets the error bit) is triggered when an early
frame sync occurs during data transfer (transmission or reception) or for late frame sync if the period of
the frame sync is smaller than the serial word length (SPORT_CTL_A.SLEN).

Figure 26-4: Frame Sync Error Detection

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

26–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When a serial port is receiving or transmitting, its bit count is set to a word length (for example 32 bits).
After each clock edge the bit count is decremented. After the word is received/ transmitted, the bit count
reaches zero, and on next frame sync it is set to 32. When active transmission or reception is occurring, the
bit count value is non-zero. When a frame sync with a bit count of non-zero is detected, a frame sync error
occurs.

Support for Edge-Detected and Level-Sensitive Frame Syncs

The frame sync signal of the SPORT module of earlier Blackfin processors is level-sensitive. Though the
level sensitive nature of frame sync will work fine in a noise free environment; but if noise corrupts the
signals coming into the SPORT, then there is a chance that the start of frame sync may be missed by the
internal logic either because clock getting corrupted or frame sync itself. The frame sync will be sampled
from the next clock edge onwards if the frame sync happens to last for more than a bit clock period.

The following figure describes a scenario when an external frame sync signal gets corrupted due to noise
and is sampled incorrectly by the slave SPORT module. Consider a frame sync, driven on the rising edge
of serial clock at tA and expected to be sampled by slave SPORT at the falling edge of serial clock at tB. But
due to the noise, the first edge of the FS is not seen by the SPORT and samples the FS only at tC as shown
in the figure. Subsequently the word length counter runs for a period equal to the SPORT_CTL_A.SLEN field
of the control register and expires at tE, instead of correctly at tD, receiving incorrect data. Further if a new
frame sync edge has come at time tD, in level sensitive mode, the SPORT samples this framing signal again
only at time tE. So, the frame sync sampling continues to be unaligned with the external data.

The enhanced SPORT module provides an option to configure the frame sync signal as edge-sensitive
signal. Edge sensitive frame sync detection looks for an edge in an external frame sync for considering it
as a valid framing signal. In active-high frame syncs, the rising edge of frame sync is considered valid; while
in active-low frame syncs, the falling edge is considered as valid. This optional feature can be activated by
programming SPORT_CTL_A.FSED (external Frame Sync Edge select) bit.

NOTE: SPORT_CTL_A.FSED is valid only in External frame sync mode. In internal frame sync mode, this
bit is a don't care.

In the example discussed above, consider frame sync configured as edge-sensitive frame sync. In this case,
frame sync will not be detected at tE because the edge of framing signal has already occurred in the previous
cycle (tD) and there is no edge to detect at tE. So the word length counter remains idle for this frame,
ignoring the incorrect data, and resumes the operation correctly at tF when a new edge detects.

This sets the SPORT_ERR_A.FSERRSTAT bit and optionally generates a premature FS error interrupt.

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–21

Figure 26-5: Level-Sensitive Frame Sync Vs. Edge Sensitive Frame Sync

Frame Sync edge detection is used by default for Stereo modes. MCM mode and DSP serial mode have an
option to choose between edge detection and normal mode of FS detection.

NOTE: When the SPORT is enabled, an already active externally applied frame sync is not allowed to start
operation. The SPORT waits for a valid state change from inactive to active for the external frame
sync to consider it valid.

Serial Word Length

The SPORT_CTL_A.SLEN field of serial port control register determines the word length of serial data to
transmit and receive. Each SPORT half can independently handle word lengths up to 32 bits. The
minimum allowable word length depends on operating mode selected. Words smaller than 32 bits are
right-justified in the transmit or receive buffers to least significant bit (LSB) position. However, data can
be shifted-in or out in MSB first or LSB first format according to SPORT_CTL_A.LSBF bit setting. Also, the
received word can be sign-extended while storing it in processor memory.

 The value of the SPORT_CTL_A.SLEN field can be calculated as:

SLEN = Serial port word length - 1

The range of valid word lengths in the operating modes of SPORT are as shown in the following table.

Table 26-11: Data Length Versus SPORT Operating Modes

Mode Serial Port word length (SLEN+1)

Standard DSP Serial 4–32

I2S 5–32

Left-Justified 5–32
Right-Justified 5–32

SERIAL PORT (SPORT)
OPERATING MODES

26–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: If the companding feature is enabled on the data path, it limits the word length settings. See Data
Types and Companding for more details about word lengths required for companding. If more than
32-bits per frame sync are required to transmit/receive, the multichannel mode can be used (by
enabling more than one channel).

Operating Modes
The SPORT has a number of operating modes:

• Standard serial mode

• I2S mode

• Left-justified mode

• Right-Justified mode

• Multichannel mode

• Packed I2S mode

The SPORT halves within a SPORT can be independently configured in any of these operating modes,
unless they are not coupled together using SPMUX logic. Each SPORT half has its own set of control and
data registers and are programmed similarly.

The main control register of serial port, SPORT_CTL_A, controls the operating modes of the SPORT. The
following table lists all the bits of the control register. The SPORT_CTL_A register is unique in that the bit
function may change depending on the operating mode selected. It should be noted that many bits in the
control registers, that control the function of the mode, are the same bit but have a different name
depending on the operating mode. The bits common across operating mode columns (for example SPORT_
CTL_A.SLEN) signifies that they function similarly across those operating modes. However, the bits divided
as per operating modes (for example SPORT_CTL_A.LFS) indicate different meaning depending on oper-
ating mode. Further, some bits are reserved depending on mode of operation (for example the SPORT_CTL_
A.FSR bit is reserved in I2S, left-justified sample pair, packed I2S and in multichannel mode).

NOTE: When changing operating modes, clear the serial port control register before the new mode is
written to the register.

Multichannel 5–32

Packed I2S 5–32

Table 26-11: Data Length Versus SPORT Operating Modes (Continued)

Mode Serial Port word length (SLEN+1)

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–23

Mode Selection

The serial port operating mode is configured in the SPORT_CTL_Aand the SPORT_MCTL_A registers. The
following table provides values for each of the bits in the SPORT serial control registers that must be set in

Table 26-12: Control Bits comparison for different operating modes

Bit (NAME) Standard Serial
I2S and Left-

Justified Right-Justified Multichannel Packed I2S

Control Bits
0 (SPENPRI) Yes
2–1 (DTYPE) Yes Reserved Yes
3 (LSBF) Yes Reserved Yes
8–4 (SLEN) Yes
9 (PACK) Yes
10 (ICLK) Yes
11 (OPMODE) Yes
12 (CKRE) Yes Reserved Yes
13 (FSR) Yes Reserved
14 (IFS) Yes Reserved Yes
15 (DIFS) Yes Reserved
16 (LFS) Yes Yes Yes Yes
17 (LAFS) Yes Reserved
18 (RJUST) Reserved Yes Reserved
19 (FSED) Yes Reserved Yes Reserved
20 (TFIEN) Yes
21 (GCLKEN) Yes Reserved
24 (SPENSEC) Yes
25 (SPTRAN) Yes
 Status Bits
26 (DERRSEC) Yes
28–27 (DXSSEC) Yes
29 (DERRPRI) Yes
31–30 (DXSPRI) Yes

SERIAL PORT (SPORT)
OPERATING MODES

26–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

order to configure a specific SPORT operation mode. The shaded columns indicate that the bits come from
different control registers.

The following sections provide detailed information on each operating mode available using the serial
ports.

Standard Serial Mode

The SPORT can be configured in standard DSP serial mode by clearing the SPORT_CTL_A.OPMODE and
SPORT_MCTL_A.MCE bits. The standard serial mode lets programs configure serial ports for use by a variety
of serial devices such as serial data converters and audio codecs. In order to connect to these devices, a
variety of clocking, framing, and data formatting options are available.

Timing Control Bits

Several bits in the serial port control register enable and configure standard serial mode operation.

• SLEN: serial word length select (4-32 bits)

• LSBF: little endian Vs big endian serial bit format

• ICLK: Internal clock generation Vs external clock mode

• CKRE: sampling edge as rising edge Vs falling edge

• IFS: Internal frame sync generation Vs external FS mode

• FSR: framed mode Vs unframed mode

• DIFS: Data-dependent frame sync Vs data-independent frame sync

Table 26-13: SPORT Operating Modes

Operating Modes OPMODE (11) LAFS (17) RJUST (18)

Multichannel Control
Register (SPORT_

MCTL_A)

Standard DSP
Serial

0 Valid 0 0

I2S 1 0 0 0
Left-Justified 1 1 0 0
Right-Justified 1 1 1 0
Multichannel 0 x 0 1

Packed I2S mode 1 x 0 1

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–25

• LFS: active-high FS Vs active-low FS

• LAFS: early frame sync Vs late frame sync

• PACK: 16-bit to 32-bit packing enable Vs packing disable

• GCLKEN: normal free-running clock Vs Gated clock mode

Clocking Options

In standard serial mode, the serial ports can either accept an external serial clock or generate it internally.
The SPORT_CTL_A.ICLK bit determines the selection of these options. For internally-generated serial
clocks (SPORT_CTL_A.ICLK = 1), the SPORT_DIV_A.CLKDIV field configures the serial clock rate from the
system clock.

In addition, the serial clock edge can be selected for the sampling or driving serial data and/or frame sync.
This selection is performed using the SPORT_CTL_A.CKRE bit.

• If SPORT_CTL_A.CKRE = 0, incoming data and/or frame sync signals are sampled with respect to falling
edge of serial clock; while data and/or frame sync output signals are driven at the rising edge of clock.

• If SPORT_CTL_A.CKRE = 1, incoming data and/or frame sync signals are sampled with respect to rising
edge of serial clock; while data and/or frame sync output signals are driven at the falling edge of clock.

• The SPORT_CTL_A.GCLKEN bit enables clock gating option, in which serial clock is active only during
the valid data bits.

Frame Sync Options

The following sections provide generic information about how frame sync signal is used by the serial port
in an operating mode. Note that SPORT halves within a SPORT are independently configurable. Addi-
tional information about frame syncs and data sampling that applies to a specific operating mode can be
found in Operating Modes.

Data-Dependent Versus Data-Independent Frame Sync

When a SPORT is configured as a transmitter (SPORT_CTL_A.SPTRAN = 1) and if data-independent frame
sync select (SPORT_CTL_A.DIFS) bit = 0, then an internally-generated transmit frame sync is only output
when a new data word has been loaded into the channel transmit buffer of the SPORT. In other words,
frame sync signal generation and therefore data transmission is data-dependent. This mode of operation
allows data to be transmitted only at specific times.

When SPORT is configured as receiver (SPORT_CTL_A.SPTRAN = 0) and if SPORT_CTL_A.DIFS = 0, then a
receive frame sync signal is generated only when receive data buffer status is not full.

The data-independent frame sync mode allows the continuous generation of the framing signal, regardless
of new data in the buffers. Setting SPORT_CTL_A.DIFS activates this mode. When SPORT_CTL_A.DIFS = 1,

SERIAL PORT (SPORT)
OPERATING MODES

26–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

a transmit frame sync signal is generated regardless of the transmit data buffer status (if SPORT_CTL_A.
SPTRAN = 1) or receive data buffer status (if SPORT_CTL_A.SPTRAN = 0).

Note that the SPORT DMA controller typically keeps the transmit buffer full. The application is respon-
sible for filling the transmit buffers with data.

Early Versus Late Frame Syncs

The frame sync signals can be early or late. Frame sync signals can occur during the first bit of each data
word (late) or during the serial clock cycle immediately preceding the first bit (early). The SPORT_CTL_A.
LAFS bit of the serial port control register configures this option.

By default, when SPORT_CTL_A.LAFS is cleared (=0), the frame sync signal is configured as early framing
signal. This is the normal mode of operation. In this mode, the first bit of the transmit data word is avail-
able (and the first bit of the receive data word is latched) in the serial clock cycle after the frame sync is
asserted. The frame sync is not checked again until the entire word has been transmitted (or received). In
multichannel operation, this is the case when the frame delay is one.

If data transmission is continuous in early framing mode (in other words, the last bit of each word is imme-
diately followed by the first bit of the next word), then frame sync signal occurs during the last bit of each
word. Internally-generated frame syncs are asserted for one clock cycle in early framing mode. This is not
an error condition, so the SPORT_ERR_A.FSERRSTAT bit is not flagged.

When SPORT_CTL_A.LAFS is set (=1), late frame syncs are configured; this is the alternate mode of opera-
tion. In this mode, the first bit of the transmit data word is available (and the first bit of the receive data
word is latched) in the same serial clock cycle that the frame sync is asserted. In multichannel operation,
this is the case when frame delay is zero. Receive data bits are latched by serial clock edges, but the frame
sync signal is checked only during the first bit of each word. Internally-generated frame syncs remain
asserted for the entire length of the data word in late framing mode. Externally-generated frame syncs are
only checked during the first bit. They do not need to be asserted after that time period.

Therefore, for early framing, the frame sync precedes data by one cycle; for late framing, the frame sync is
checked on the first bit only. The following figure illustrates the two modes of frame signal timing.

Figure 26-6: Normal Framing (Early Frame Sync) Versus Alternate Framing (Late Frame Sync)

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–27

Framed Versus Unframed Frame Syncs

The use of frame sync signal is optional in serial port communications. The SPORT_CTL_A.FSR (frame sync
required) bit determines whether framing signal is required.

When SPORT_CTL_A.FSR bit is set (=1), a frame sync signal is required for every data word. To allow
continuous transmission from the processor, each new data word must be loaded into the transmit buffer
before the previous word is shifted out and transmitted.

When SPORT_CTL_A.FSR is cleared (=0), the corresponding frame sync signal is not required. A single
frame sync is required to initiate communications but it is ignored after the first bit is transferred. Data
words are then transferred continuously in what is referred to as an unframed mode. Unframed mode is
appropriate for continuous reception. The following figure shows the framed vs unframed mode of serial
port operation.

NOTE: When DMA is enabled in a mode where frame syncs are not required, DMA requests may be held
off by chaining or may not be serviced frequently enough to guarantee continuous unframed data
flow. Monitor status bits or check for a SPORT Error interrupt to detect underflow or overflow of
data.

Figure 26-7: Framed Versus Unframed Data Stream

Logic Level

The framing signals may be active high or active low. The SPORT_CTL_A.LFS bit selects the logic level of
the frame sync signals.

• When SPORT_CTL_A.LFS = 0, the corresponding frame sync signal is active high.

• When SPORT_CTL_A.LFS = 1, the corresponding frame sync signal is active low.

 Active high is the default polarity of frame sync signal.

SERIAL PORT (SPORT)
OPERATING MODES

26–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Stereo Modes

The processor serial port support three widely used stereo modes, which are I2S mode, Left-Justified mode
and right-Justified mode. In these modes, the serial data stream consists of left and right channels. These
modes are described in the following sections.

Channel Order First

The active low frame sync (SPORT_CTL_A.LFS) bit, which determines the polarity of frame sync level in
DSP serial mode/multichannel mode, holds different meaning for stereo modes of SPORT operation. For
left-justified, I2S and packed I2S modes, the following table demonstrates which word is transmitted or
receive first depending on the SPORT_CTL_A.LFS bit setting.

I2S Mode

I2S mode is a very commonly used stereo mode. In this mode, for each frame sync cycle, two samples of
data are transmitted/received. One sample is transmitted/received on the low segment of the frame sync,
which is known as left channel. The other sample is transmitted/received on the high segment of the frame
sync, which is known as right channel.

The SPORT can be configured in I2S mode by setting SPORT_CTL_A.OPMODE = 1, SPORT_CTL_A.LFS = 0
and SPORT_MCTL_A.MCE = 0.

Protocol Configuration Options

 Several bits in the SPORT_CTL_A control register enable and configure I2S mode of operation:

• SLEN: serial word length select. For I2S mode, the range of allowable word length is 5-32 bits.

• LSBF: little endian or big endian serial bit format. For I2S mode, serial data should be in big endian
format (MSB bit is transmitted/received first). But, it can be changed depending on the user's prefer-
ence when emulating similar non-standard protocol

• ICLK: Internal bit clock generation or external bit clock mode

• IFS: Internal frame sync generation or external FS mode. In I2S mode, master serial port is the one
which generates bit clock and L/R clock (frame sync) internally for the serial communication. The serial
port which accepts these clocking signals is known as slave. So, in standard I2S mode, the SPORT_CTL_
A.IFS bit should depend (equal to) on SPORT_CTL_A.ICLK bit setting. However, as an enhancement,

Table 26-14: Channel Order First Bit Settings

OPMODE LFS=0 (Left Channel First, Default) LFS=1 (Right Channel First

Left-Justified Data first after rising edge Data first after falling edge

I2S Data first after falling edge Data first after rising edge

Packed I2S Data first after rising edge Data first after falling edge

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–29

the SPORT_CTL_A.IFS bit setting may be changed depending on the application when emulating a non-
standard protocol.

• LFS: left channel first or right channel first. This bit setting may be changed depending on user's pref-
erence to sample right channel first (LFS = 0) or left channel first (LFS = 1).

• CKRE: sampling edge as rising edge or falling edge.

• PACK: 16-bit to 32-bit packing enable or packing disable.

Serial Clock and Frame Sync Rates

The serial bit clock rate for internal clocks can be set using a SPORT_DIV_A.CLKDIV bit field; while the L/
R clock rate for internal frame sync can be set using the SPORT_DIV_A.FSDIV bit field in the same register,
depending on SPORT_CTL_A.ICLK and SPORT_CTL_A.IFS bit settings.

The following figure shows the timing in I2S mode. Note that in I2S mode, the data is delayed by one SCLK
cycle and the operation transfer starts on the left channel first.

Figure 26-8: Word Select Timing in I2S Mode

Unlike serial port of SHARC processor, the serial port of the processor does not generate a frame sync (L/
R clock) edge after the transmission of last word in the DMA (same as behavior in the earlier Blackfin
processors). Standard I2S receivers looks for the edge to latch and read data. Therefore I2S slave receivers
connected to Blackfin SPORT may not able to latch the last word of the TX DMA.

Left-Justified Mode

Left-justified mode is a stereo mode. In this mode, for each frame sync cycle, two samples of data are trans-
mitted/received. One sample is transmitted/received on the high segment of the frame sync, which is
known as left channel. The other sample is transmitted/received on the low segment of the frame sync,
which is known as right channel.

This operating mode is simply a subset of the I2S mode. The SPORT can be configured in Left-Justified
mode by setting the SPORT_CTL_A.OPMODE and SPORT_CTL_A.LAFS bits and clearing the SPORT_MCTL_A.
MCE bit.

SERIAL PORT (SPORT)
OPERATING MODES

26–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Protocol Configuration Options

 Several bits in the SPORT_CTL_A control register enable and configure the left-justified mode of operation:

• SLEN: serial word length select. For left-justified mode, the range of allowable word length is 5-32 bits.

• LSBF: little endian or big endian serial bit format. For left-justified mode, serial data should be in big
endian format (MSB bit is transmitted/received first). But, it can be changed depending on the user's
preference when emulating similar non-standard protocol

• ICLK: Internal bit clock generation or external bit clock mode

• IFS: Internal frame sync generation or external FS mode. In left-justified mode, master serial port is the
one which generates bit clock and L/R clock (frame sync) internally for the serial communication. The
serial port which accepts these clocking signals is known as slave. So, in standard left-justified mode,
the SPORT_CTL_A.IFS bit should depend (equal to) on SPORT_CTL_A.ICLK bit setting. However, as an
enhancement, the SPORT_CTL_A.IFS bit setting may be changed depending on the application when
emulating a non-standard protocol.

• LFS: left channel first or right channel first. In standard left-justified mode, left channel is sampled first
(corresponds to SPORT_CTL_A.LFS = 0). However, SPORT_CTL_A.LFS bit setting may be changed
depending on user's preference to sample right channel first (first data after rising edge of L/R clock).

• CKRE: sampling edge as rising edge or falling edge.

• PACK: 16-bit to 32-bit packing enable or packing disable.

Serial Clock and Frame Sync Rates

The serial bit clock rate for internal clocks can be set using a SPORT_DIV_A.CLKDIV field; while the L/R
clock rate for internal frame sync can be set using SPORT_DIV_A.FSDIV field, depending on SPORT_CTL_
A.ICLK and SPORT_CTL_A.IFS bit settings. The following figure shows the serial port timing in left-justi-
fied mode (it is shown in MSB bit first format, but LSB bit first format is also possible). As shown, the first
bit of a word is transmitted/received in the same clock cycle as the word select (SPORT_FS) signal changes.

Figure 26-9: Word Select Timing in Left-Justified Mode

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–31

Right-Justified Mode

Right-justified mode is a standard commonly available in most of the SPORT compatible devices such as
ADC and DACs. Right-justified mode requires that the design align the data to the end of the frame sync.
The SPORT_CTL_A.RJUST bit aligns the serial data to the end of the frame sync.

The following figure shows the SPORT timing in right-justified mode. As shown, the transmitter aligns the
data to be transmitted such that the last bit of the serial word is sent in the last clock cycle of the word select
(frame sync) signal marking the channels. The timing seems similar to left-justified mode (where the trans-
mitter sends the MSB bit of the serial word in the same clock cycle as the word select signal changes), but
data is shifted such that it aligns to end of the channel.

Figure 26-10: Word Select Timing in Right-Justified Mode

NOTE: For some SPORT compatible ADC or DACs (for example the AD1871) right-justified mode is
limited to some commonly used ratios such as 64 FS and 128 FS as the bit clock frequency (where
FS is the sampling frequency of ADC/DACs, known as L/R clock or the frame sync of the SPORT).

As an illustration, consider the SPORT timing for right-justified mode, as shown in the figure below. If the
L/R clock runs at the FS rate and the SPORT clock at the 64 FS rate, the frame sync width (either channel)
is limited to 32 SPORT clock periods or 32 bits per channel. If the data is confined to 24 bits, the SPORT
introduces a 32–24=8 bit clock delay before it starts to transmit/capture data.

SERIAL PORT (SPORT)
OPERATING MODES

26–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 26-11: Timing Comparison Between Different Stereo Modes

Similarly, if 128 FS bit clock frequency is to be supported, then the frame sync width becomes 64 serial
clock periods (bits) per channel. In this case, the delay can be a maximum of (64 – minimum serial data
length in right-justified mode) = 59 bits (the minimum SPORT_CTL_A.SLEN setting is 4). This implies that
a 6-bit counter is needed to set this delay.

Therefore, using this counter in right-justified mode, the starting point of the first bit is delayed so that the
serial data is aligned properly with the end of the channel. A 6-bit counter is added for this purpose in the
stereo mode. This counter is programmed by writing into the SPORT_MCTL_A 16-21 bit field. Note that
these bits are used to configure the window offset size in multichannel mode. But since stereo serial mode
and multichannel mode are mutually exclusive, the separation of role of this field in each mode is clearly
defined and implemented. The software has to configure this register with the appropriate delay keeping
in mind the word length (SPORT_CTL_A.SLEN) and the number of bit clocks in one channel (left/right).

Timing Control Bits

The following bits in the SPORT_CTL_A register enable and configure right-justified mode.

• SLEN: serial word length select. For right-justified mode, the range of allowable word length is 5-32
bits.

• LSBF: little endian or big endian serial bit format. For right-justified mode, serial data should be in big
endian format (MSB bit transmitted/received first). But, it can be changed depending on the applica-
tion when using non-standard protocol.

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–33

• ICLK: Internal bit clock generation or external bit clock mode

• IFS: Internal frame sync generation or external FS mode.

• LFS: left channel first or right channel first. In standard right-justified mode, the left channel is sampled
first (corresponds to SPORT_CTL_A.LFS = 0). However, the SPORT_CTL_A.LFS bit setting may be
changed depending on the application to sample the right channel first (first data after falling edge of
L/R clock).

• CKRE: sampling edge as rising edge or falling edge.

• PACK: 16-bit to 32-bit packing enable or packing disable.

• MCTL16-21: 6-bit counter depends on SPORT_CTL_A.SLEN and number of bit clocks in a channel.

Serial Clock and Frame Sync Rates

The serial bit clock rate for internal clocks can be set using the SPORT_DIV_A.CLKDIV; while the L/R clock
rate for internal frame sync can be set using the SPORT_DIV_A.FSDIV bit field in the same register,
depending on SPORT_CTL_A.ICLK and SPORT_CTL_A.IFS bit settings.

Multichannel Mode

The processor's SPORTs offer a multichannel mode of operation, which allows the SPORT to communi-
cate in a time division multiplexed (TDM) serial system. In multichannel communications, each data word
of the serial bit stream occupies a separate channel. Each word belongs to the next consecutive channel.
For example, a 24-word block of data contains one word for each of the 24 channels.

The multichannel mode of SPORT can be selected by setting SPORT_CTL_A.OPMODE = 0 and SPORT_MCTL_
A.MCE = 1.

Up to 128 channels are available for transmitting or receiving. The SPORT can automatically select some
words for particular channels while ignoring others. In other words, each SPORT can receive or transmit
data selectively from any of the 128 channels. These 128 channels can be any 128 out of the 1024 total chan-
nels in the system. The SPORT can do any of the following on each channel:

• Transmit data (SPORT_CTL_A.SPTRAN = 1)

• Receive data (SPORT_CTL_A.SPTRAN = 0)

• Do nothing during inactive channels

Optionally, data companding and DMA transfers can be used in multichannel mode on both primary and
secondary data lines.

The SPORT multichannel select registers (SPORT_CS0_A) must be programmed before enabling SPORT
operation for multichannel mode. This is especially important in DMA data unpacked mode, since the
SPORT data buffers begin operation immediately after the SPORT data lines are enabled. The SPORT_
MCTL_A.MCE must also be enabled prior to enabling SPORT operation.

SERIAL PORT (SPORT)
OPERATING MODES

26–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Multichannel mode operates completely independently and each SPORT uses its own serial clock and
frame sync signal either internally generated or externally provided.

Protocol Configuration Options

The following bits in the SPORT_CTL_A and SPORT_MCTL_A registers enable and configure multichannel
mode.

• SLEN: serial word length select

• LSBF: little endian or big endian serial bit format

• ICLK: Internal clock generation or external clock mode

• CKRE: sampling edge as rising edge or falling edge

• IFS: Internal frame sync generation or external FS mode

• LFS: active-high FS or active-low FS

• PACK: 16-bit to 32-bit packing enable or packing disable

• MFD: Multichannel frame delay

• WSIZE: Number of multichannel channels

• WOFFSET: window offset size

• MCPDE: Multichannel DMA packing enable

Clocking Options

In multichannel mode, the SPORTs can either accept an external serial clock or generate it internally. The
SPORT_CTL_A.ICLK bit determines the selection of these options. For internally-generated serial clock (
SPORT_CTL_A.ICLK = 1), the SPORT_DIV_A.CLKDIV bit field configures the serial clock from the system
clock.

In addition, the serial clock edge can be selected for the sampling or driving serial data and/or frame sync.
This selection is performed using the SPORT_CTL_A.CKRE bit.

• If SPORT_CTL_A.CKRE= 0, incoming data and/or frame sync signals are sampled with respect to falling
edge of serial clock; while data and/or frame sync output signals are driven at the rising edge of clock.

• If SPORT_CTL_A.CKRE = 1, incoming data and/or frame sync signals are sampled with respect to rising
edge of serial clock; while data and/or frame sync output signals are driven at the falling edge of clock.

Frame Sync Options

The frame sync signal synchronizes the channels and restarts each multichannel sequence. The SPORT_
FS signal initiates the start of the channel 0 data word. The frame sync period in multichannel is defined as:

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–35

FS period = [(SPORT_CTL_A.SLEN + 1) × number of channels] - 1

The frame sync can be configured in master or slave mode based on the setting of the SPORT_CTL_A.IFS
bit and its logic level can be changed using the SPORT_CTL_A.LFS bit.

In multichannel mode, frame sync timing is similar to late frame mode (though the SPORT_CTL_A.LAFS
bit is reserved in this mode)—the first bit of the transmit data word is available and the first bit of the
receive data word is sampled in the same serial clock cycle that the frame sync is asserted, provided that
multichannel frame delay (SPORT_MCTL_A.MFD) is set to 0.

The frame sync signal is used for the block or frame start reference, after which the word transfers are
performed continuously with no further frame sync signals required during the ongoing frame for
different channels. Therefore, internally generated frame syncs are always data independent (SPORT_CTL_
A.DIFS bit is reserved).

Transmit Data Valid (TDV)

Each serial port has its own Transmit Data Valid signal (SPT_ATDV) which is active during the transmis-
sion of enabled words. Because the serial port signals are three-stated when the time slot is not active, the
SPT_ATDVsignal specifies if the SPORT data is being driven by the processor. It serves as an output-enabled
signal for the data transmit pin. After the transmit data buffer is loaded, transmission begins and the
SPORT_TDV signal is asserted.

The polarity of this Transmit Data Valid signal is always active high in that SPT_ATDV is asserted high when
a data is transmitted during the active channel slot of serial port.

The following figure shows an example of timing for a multichannel transfer having following character-
istics.

• The half SPORT pair of SPORT0, A and B, is configured as a transmitter and receiver respectively;
while half SPORT A of SPORT1 is configured as transmitter.

• The serial clock and frame sync signals are input to all of these HSPORTs.

• Only primary channels of these SPORTs are enabled (0).

• Multichannel is configured to 8 channels.

• SPORT0_A drives data (on its primary data line) during slot 1–0 which asserts SPORT0_ATDV for 2
slots.

• SPORT1_A drives data (on its primary data line) during slot 3–2 which asserts SPORT1_ATDV for 2
slots.

• SPORT0_B receives data (from its primary data line) during slot 3–0.

SERIAL PORT (SPORT)
OPERATING MODES

26–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 26-12: Multichannel Timing

Active Channel Selection Registers (SPORT_CS0_A)

In multichannel mode, SPORT supports up to 128 channels for transmitting or receiving. It can receive or
transmit data selectively from any of the 128 channels. Specific channels can be individually enabled or
disabled, using multichannel selection registers (CSx), to select the words that are transmitted or received
during multichannel communications. Data words from the enabled channels are transmitted or received,
while disabled channel words are three-stated or ignored.

Each of the four multichannel selection registers is 32 bits in length. Therefore these registers provide
channel selection for 128 (0 to 127) channels. Setting a bit enables that channel so that the serial port selects
its word from the multiple-word block of data (for either receive or transmit). The 128 channels are
sequentially numbered from bit 0 in the CS0 register to bit 31 of SPORT_CS3_A register. As an example
setting bit 13 of the SPORT_CS1_A register enables channel number 45 (31+13+1); similarly setting bit 5 of
the SPORT_CS3_A register enables channel number 101 (31+32+32+5+1).

Multichannel Frame Delay (MFD)

The 4-bit multichannel frame delay (SPORT_MCTL_A.MFD) field in the multichannel control registers (
MCTL_x) specifies a delay between the frame sync pulse and the first data bit in frame. The value of SPORT_
MCTL_A.MFD is the number of serial clock cycles of the delay. This multichannel frame delay allows the
processor to work with different types of telephony interface devices.

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–37

A value of zero for SPORT_MCTL_A.MFD causes the frame sync to be concurrent with the first data bit. The
maximum value allowed for SPORT_MCTL_A.MFD is 15. If SPORT_MCTL_A.MFD>0, a new frame sync may
occur during the last channels of a previous frame, which is considers as valid frame sync signal.

NOTE: If more than 15 bits frame delay is required, the Window Offset field may be used to delay the start
of channel 0.

Number of Multichannel Slots (WSIZE)

Select the number of channels used in multichannel operation by using the 7-bit SPORT_MCTL_A.WSIZE
field in the multichannel control register. Set SPORT_MCTL_A.WSIZE to the actual number of channels
minus one (SPORT_MCTL_A.WSIZE = Number of channels - 1). So, the granularity of number of channels
selected is 1.

A 10-bit field in the multichannel mode status register, SPORT_MSTAT_A, holds the channel number which
is being serviced in the multichannel operation.

Window Offset (WOFFSET)

The window offset (SPORT_MCTL_A.WOFFSET) field register specifies where in the 1024-channel range to
place the start of the active window. A value of 0 specifies no offset and 896 (1024 – 128) is the largest value
that allows using all 128 channels.

As an example, a program could define an active window with 8 multichannel slots (SPORT_MCTL_A.WSIZE
= 7) and an offset of 93 (SPORT_MCTL_A.WOFFSET = 93). This 8-channel window then resides in the range
from 93 to 100.

Neither the window offset nor the number of multichannel slots (SPORT_MCTL_A.WSIZE) can be changed
while the SPORT is enabled. If the combination of the window size and the window offset would place any
portion of the window outside of the range of the channel counter, none of the out-of-range channels in
the frame are enabled.

Companding Selection

Like all other operating modes, companding logic can be applied to serial data. In transmit mode,
compression logic is applied to the data to be transmitted; while in receive mode, expansion logic can be
applied to received data. The two widely used companding algorithms, A-law and μ-law can be applied by
configuring SPORT_CTL_A.DTYPE field of the control register.

If companding is enabled, the companding algorithm is applied to both the data paths. In multichannel
mode, companding can be applied to either all or none of the enabled channels, (companding cannot be
selected on a per-channel basis).

Multichannel DMA Data Packing (MCPDE)

Multichannel DMA data packing and unpacking are specified with the SPORT_MCTL_A.MCPDE bit setting.

SERIAL PORT (SPORT)
OPERATING MODES

26–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

If the bits are set, indicating that data is packed, the SPORT expects the data contained by the DMA buffer
corresponds only to the enabled SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive words for each frame.

If the bits are cleared (the default, indicating that data is not packed), the SPORT expects the DMA buffer
to have a word for each of the channels in the active window, whether enabled or not, so the DMA buffer
size must be equal to the size of the window. For example, if only channel number 1 and 10 are enabled,
then DMA buffer size would have to be 10 words (unless the secondary side is enabled). The data to be
transmitted or received would be placed at addresses 1 and 10 of the buffer, and the rest of the words in
the DMA buffer would be ignored.

Multichannel Frame

A multichannel frame contains more than one channel, as specified by the SPORT_MCTL_A.WSIZE field and
window offset field of multichannel control register. A complete multichannel frame consists of 1–1024
channels, starting with channel 0. The particular channels of the multichannel frame that are selected for
the SPORT are a combination of the window offset, the window size, and the multichannel select registers.

The following figure illustrates the relationship between different parameters of multichannel timings.
Frame length is set by frame sync divider or external frame sync period

Figure 26-13: Relationships for Multichannel Parameter

Packed I2S Mode

A packed I2S mode is available in the SPORT and used for audio codec communications using multiples
channels. This mode allows applications to send more than the standard 32 bits per channel available

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–39

through standard I2S mode. Packed mode is implemented using standard multichannel mode (and is
therefore programmed similarly to multichannel mode).

The SPORT can be configured in packed I2S mode by setting the SPORT_CTL_A.OPMODE bit and the SPORT_
MCTL_A.MCE bit.

Similar to multichannel mode, packed I2S mode also supports the maximum of 128 channels as the
maximum of (128 x 32) bits per left or right channel.

As shown in the following figure, packed waveforms are the same as the wave forms used in multichannel
mode, except that the frame sync is toggled for every frame, and therefore emulates I2S mode. So it is a
hybrid between multichannel and I2S mode.

Figure 26-14: Packed I2S Mode 128 Operation

Protocol Configuration Options

Several bits in the SPORT_CTL_A and SPORT_MCTL_A registers enable and configure packed I2S mode.

• SLEN: serial word length select

• LSBF: little endian or big endian serial bit format

• ICLK: Internal clock generation or external clock mode

• CKRE: sampling edge as rising edge or falling edge

• IFS: Internal frame sync generation or external FS mode

• LFS: left-channel first or right channel first

• PACK: 16-bit to 32-bit packing enable or packing disable

SERIAL PORT (SPORT)
GATED CLOCK MODE

26–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• MFD: Multichannel frame delay

• WSIZE: Number of multichannel channels

• WOFFSET: window offset size

• MCPDE: Multichannel DMA packing enable

Clocking Options

In packed mode, the serial ports can either accept an external serial clock or generate it internally. The
SPORT_CTL_A.ICLK register determines the selection of these options. For internally-generated serial
clock (SPORT_CTL_A.ICLK = 1), the SPORT_DIV_A.CLKDIV bit field configures the serial clock rate from
the system clock.

The programs can also select the serial clock edge that is used for sampling or driving serial data and/or
frame syncs. This selection is performed using theSPORT_CTL_A.CKRE bit.

Frame Sync Options

The frame sync period in packed mode is defined as:

FS period = [(SPORT_CTL_A.SLEN + 1) × number of channels] - 1.

The frame sync can be configured in master or slave mode depending on the SPORT_CTL_A.IFS bit setting
of serial port control register. Moreover the logic level can be changed with the SPORT_CTL_A.LFS bit
setting.

Gated Clock Mode
Some of the ADC/DACs support the SPI compatible protocol for the interface. To communicate with such
ADC/DACs, the serial port must support the gated clock mode of operation, in which the data valid infor-
mation is embedded into the clock. Therefore, in gated clock mode, the clock should be active only when
active data is being transmitted or received.

The processor features the gated clock function. The SPORT_CTL_A.GCLKEN (Gated clock mode select)
control bit, is used to configure the serial port in gated clock mode. To enable gated clock mode of opera-
tion, SPORT must be programmed to comply with the following requirements.

• Gated clock mode feature is available in standard serial mode, left-justified and I2S mode of operation
only.

[Note that among the stereo modes, right justified mode cannot be operated in gated clock mode
because during the inactive period in a frame (the period between the leading edge of the frame sync
and the first active data bit), there is a delay counter running inside the serial port. The counter operates
on the serial clock and any interruption in clock makes the counter go out of sync].

• Gated clock mode has the following valid settings for other control bits.

SERIAL PORT (SPORT)
DATA TRANSFERS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–41

– Both serial clock and frame sync signals generated internally

– Both serial clock and frame sync signals provided externally

– Frame sync not required' mode (SPORT_CTL_A.FSR = 0) not supported

– SPORT_CTL_A.DIFS should be programmed as 0 in transmit mode; while it should be programmed
as 1 in receive mode.

• There are few necessary conditions to be satisfied when gated clock mode is enabled-

– Need at least 7 serial clock cycles between enabling the SPORT and first frame sync. If this require-
ment is not met, the SPORT may drop the first data. (For subsequent data this requirement is not
applicable).

– Frame sync should be in the inactive (deasserted) state when the SPORT is enabled. Else, one extra
cycle (in addition to the above mentioned) is needed before the frame sync can be applied. If this
requirement is not met, the SPORT may drop the first data.

– For edge detected frame sync, the frame sync should transition back to inactive state before the
current word transmission/reception is complete (or when the clock is still running). If this require-
ment is not met, the SPORT does not recognize the next valid frame sync and skips the channel. The
SPORT continues to skip the frame syncs until the frame sync transitions back to an inactive state
when the clock is active.

Data Transfers
Serial port data can be transferred to/from internal or external memory in two different methods:

• Core-driven single word transfers

• DMA-driven multiple words transfers, with multiple work units.

 DMA transfers can be set up to transfer a configurable number of serial words between the serial port
transmit or receive data buffers and internal memory automatically. Core-driven transfers use SPORT
interrupts to signal the processor core to perform single word transfers to/from the serial port data buffers.

The following sections provide information on core-driven and DMA-driven data transfers.

Data Buffers

When programming the serial port data channels (primary and/or secondary) as a transmitter by setting
SPORT_CTL_A.SPTRAN = 1, only the corresponding transmit data buffers (SPORT_TXPRI_A and SPORT_
TXSEC_A) become active while the receive data buffers (SPORT_RXPRI_A and SPORT_RXSEC_A) remain
inactive. Similarly, when the SPORT data channels are programmed for receive operation (SPORT_CTL_A.
SPTRAN = 0), then only corresponding receive data buffers (SPORT_RXPRI_A and SPORT_RXSEC_A) are acti-

SERIAL PORT (SPORT)
DATA TRANSFERS

26–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

vated. Do not attempt to read or write inactive data buffers. If the processor operates on the inactive
transmit or receive buffers while the SPORT is enabled, unpredictable results may occur.

Each of these buffers is 32-bit wide (corresponds to maximum serial data word length). When using word
lengths less than 32-bits for SPORT operation, the data in these buffers is automatically right-justified (the
LSB bit of data at the bit 0 location of the buffer). The upper unused bits may be zero-filled or sign-
extended depending on SPORT_CTL_A.DTYPE field.

Transmit Data Buffers (SPORT_TXPRI_A and SPORT_TXSEC_A)

When enabled as a transmitter (SPORT_CTL_A.SPTRAN = 1), each SPORT half has its own set of transmit
data buffers. The primary (0) and secondary (1) data paths of each SPORT half have separate data buffers,
referred to as SPORT_TXPRI_A and SPORT_TXSEC_A respectively.

These transmit data buffers are the 32 bits wide. These buffers must be loaded with the data to be trans-
mitted on the primary and secondary data channels. The data is loaded automatically by the DMA
controller or loaded manually by the program running on the processor core.

Together with the output shift register, transmit data buffers act like a two-location FIFO. If data packing
is disabled (SPORT_CTL_A.PACK = 0), the transmit path can hold as many as three data words. If data
packing is enabled (SPORT_CTL_A.PACK = 1), it can hold two packed data words at any given time.

When the transmit shift register becomes empty (transfer out all the bits of previous word), data in the
transmit data buffer is automatically loaded into it. An interrupt occurs when the output transmit shift
register has been loaded, signifying that the transmit data buffer is empty and ready to accept the next
word. This interrupt does not occur when serial port is operating in DMA mode or when the corre-
sponding interrupt enable mask bit is set.

If only the primary data path of a SPORT half is enabled, programs should not write to the inactive
secondary transmit data buffer and vice-a-versa. If the core keeps writing to the inactive buffer, the status
of that transmit buffer becomes full and this may cause the core to hang indefinitely since data is never
transmitted to the output shift register.

Receive Data Buffers (SPORT_RXPRI_A and SPORT_RXSEC_A)

When enabled as receiver (SPORT_CTL_A.SPTRAN = 0), each SPORT half has its own set of receive data
buffers. The primary (0) and secondary (1) data paths of each SPORT half have separate data buffers,
referred as SPORT_RXPRI_A and SPORT_RXSEC_A respectively. Together with input shift register, the
receive data buffers act like a three-location FIFO, as the receive path has two data registers.

These receive data buffers are the 32 bits wide. These buffers are automatically loaded from the receive shift
register when a complete word has been received into it. An interrupt occurs when the receive data buffer
is loaded, signifying that new data is available in the receive data buffer and is ready to read. This interrupt
does not occur when the serial port is operating in DMA mode or when the corresponding interrupt enable
mask bit is set.

SERIAL PORT (SPORT)
DATA TRANSFERS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–43

If only the primary data path of a SPORT half is enabled, programs should not read from the inactive
secondary receive data buffer and vice-a-versa. If the core keeps reading from the inactive buffer, the status
of that receive buffer becomes empty and this may cause the core to hang indefinitely since new data is
never received via the input shift register.

Data Buffer Status

Serial ports provide status information about data buffers via the SPORT_CTL_A.DXSPRI (primary channel
data buffer status) and SPORT_CTL_A.DXSSEC (secondary channel data buffer status) bits and error status
via SPORT_CTL_A.DERRPRI (primary channel error status) and SPORT_CTL_A.DERRSEC (secondary
channel error status) bits. Depending on the SPORT_CTL_A.SPTRAN bit setting, these bits reflect the status
of either SPORT_TXPRI_A and SPORT_TXSEC_A transmit data buffers or SPORT_RXPRI_A and SPORT_
RXSEC_A receive data buffers. These bits indicate whether the buffers are full, partially full or empty.

When attempting to read from an empty receive buffer or to write to a full transmit buffer, the access is
delayed until the buffer is ready. This delay is called a core processor hang. To avoid these conditions,
always check the buffer status to determine if the access can be made. The status bits in the SPORT_CTL_A
register are updated during reads and writes from the core processor even when the serial port is disabled.

Two complete 32-bit words can be stored in the receive buffer while a third word is being shifted in. There-
fore, almost three complete words can be received without the receive buffer being read before an overflow
occurs. After receiving the third word completely, a shift register contents overwrite the second word if the
first word has not been read out (by the processor core or the DMA controller). When this happens, the
receive overflow status is flagged through the error status bits of the SPORT_CTL_A register. The overflow
status is generated on the last bit of the third word. The SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DXSSEC
status bits are sticky read-only bits and are cleared by disabling the serial port.

NOTE: The status bits in the SPORT_CTL_A register are updated during reads and writes from the core
processor even when the serial port is disabled.

Data Buffer Packing

When the SPORT is configured as a receiver with a serial data word length of 16 or less, then received data
words may be packed into a 32-bit word. Similarly, if the SPORT is configured as transmitter with a serial
data word length of 16 or less, then 32-bit words being transmitted may be unpacked into 16-bit words.
This packing/unpacking feature is selected by the SPORT_CTL_A.PACK bit.

When SPORT_CTL_A.PACK = 1, two successive words received are packed into a single 32-bit word, or each
32-bit word is unpacked and transmitted as two 16-bit words. The first 16-bit (or smaller) word is right-
justified in bits 15–0 of the packed word, and the second 16-bit (or smaller) word is right-justified in bits
31–16. This applies to both receive (packing) and transmit (unpacking) operations. In this case, the
transmit and receive interrupts are generated for the 32-bit packed words, not for each 16-bit word.

Companding can be used with word packing or unpacking.

NOTE: When 16-bit received data is packed into 32-bit words and stored in normal word space in
processor internal memory, the 16-bit words can be read or written with short word space
addresses.

SERIAL PORT (SPORT)
DATA TRANSFERS

26–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Single Word (Core) Transfers

Individual data words may also be transmitted or received by the serial ports, with interrupts occurring as
each data word is transmitted or received. When a serial port is enabled and corresponding DMA is
disabled, the SPORT interrupts are generated whenever a complete word has been received in the receive
data buffer, or whenever the transmit data buffer is not full.

When performing core driven transfers, write to the buffer designated by the SPORT_CTL_A.SPTRAN bit
setting. For DMA driven transfers, the SPORT logic performs the data transfer from internal memory to/
from the appropriate buffer depending on the SPORT_CTL_A.SPTRAN bit setting. If the inactive SPORT
data buffers are read or written to by the core while the SPORT is being enabled, the core may hang. For
example, if a SPORT is programmed to be a transmitter, while at the same time the core reads from the
receive buffer of the same SPORT, the core may hang just as it would if it were reading an empty buffer
that is currently active and waits for the status to change. This may lock up the core until the SPORT is
reset.

To avoid hanging the processor core, check the status of appropriate data buffers when the processor core
tries to read a word from a serial port's receive buffer or writes a word to its transmit buffer. The full/empty
status can be read using the SPORT_CTL_A.DXSPRI and SPORT_CTL_A.DXSSEC bits.

DMA Transfers

Direct memory access (DMA) provides a mechanism for receiving or transmitting an entire block of serial
data before an interrupt is generated. When SPORT DMA is not enabled, the SPORT generates an inter-
rupt every time it receives or starts to transmit a data word. The processor's on-chip DMA controller
handles the DMA transfer, allowing the processor core to continue running until the entire block of data
is transmitted or received. Service routines can then operate on the block of data rather than on single
words, significantly reducing overhead.

Therefore, set the direction bit, DMA enable bit and the serial port enable bit before initiating any opera-
tions on the SPORT data buffers. Do not try to access data buffers when the associated DMA channel of
serial port is enabled. If the processor operates on the inactive transmit or receive buffers while the SPORT
is enabled, it can cause unpredictable results.

Each SPORT half has a dedicated DMA channel, which serves both primary and secondary data paths. In
transmit mode, the DMA channel alternatively writes to the primary transmit data buffer and the
secondary transmit data buffer. Software must interleave the data of primary and secondary channels into
the DMA's transmit buffer. Similarly, in receive mode, the DMA channel alternatively reads from the
primary receive data buffer and the secondary data buffer and software must de-interleave the data corre-
sponding to the primary and secondary channels from the DMA's receive buffer.

If the SPORT is configured in stereo mode, the same DMA channel drives/receives both the left and right
channels of the enabled data paths (primary and/or secondary). Therefore, in transmit mode, software
must interleave the left and right channels’ data (of the enabled data paths) into the DMA's transmit buffer.
Similarly in receive mode, software should de-interleave the left and right channel data (of the enabled
paths) from the DMA's receive buffer.

SERIAL PORT (SPORT)
DATA TRANSFERS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–45

Since both primary and secondary data paths share the single DMA channel, each SPORT half share a
common interrupt vector. Optionally the DMA controller can generate an interrupt at the end of the
completion of a DMA transfer and at the end of each work unit of DMA.

The SPORT DMA channels are assigned a higher priority than all other DMA channels (for example, the
SPI port) because of their relatively low service rate and their inability to hold off incoming data. Having
higher priority causes the SPORT DMA transfers to be performed first when multiple DMA requests occur
in the same cycle. The serial port DMA channels are numbered and prioritized in the processor's DMA
Channel List table in the DMA chapter.

Although the DMA transfers are performed with 32-bit words, the SPORTs can handle word sizes from 4
to 32 bits (as defined by SPORT_CTL_A.SLEN field). If serial data length is 16 bits or smaller, two data can
be packed into 32-bit words for each DMA transfer. This option is selected by setting the SPORT_CTL_A.
PACK bit. When serial port data packing is enabled (SPORT_CTL_A.PACK = 1), the transmit and receive
interrupts are generated for the 32-bit packed words, not for each 16-bit word. For more information, see
Data Buffer Status.

NOTE: The DMA channel of a SPORT can access both internal memory and external memory of the
processor without any core overhead.

Error Detection

When the serial port is configured as a transmitter, the SPORT_CTL_A.DERRPRI (primary channel error
status) and SPORT_CTL_A.DERRSEC (secondary channel error status) bits provide transmit data buffer
underflow status for the primary and secondary data paths respectively (it indicates that frame sync signal
occurred when the transmit data buffer was empty). The serial port transmits data whenever it detects a
framing signal.

• 0 = No frame sync signal occurred when TX data buffer is empty (no underflow).

• 1 = Framing signal occurred when TX buffer was empty (underflow).

Similarly, if SPORT configured as a receiver, the SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DERRSEC bits
provide receive overflow status of primary and secondary receive data buffers. In other words, the SPORT
indicates that a channel has received new data when the receive buffer is full, so new data overwrites
existing data. The serial port receives data whenever it detects a framing signal.

• 0 = No frame sync signal occurred when RX data buffer is full (no overflow).

• 1 = Frame sync signal occurred when RX data buffer was full (overflow).

Besides these status flagging for underflow and overflow errors, each SPORT half contains an error register
(SPORT_ERR_A) and a dedicated interrupt channel, known as status interrupt. This interrupt can be option-
ally triggered based on the error status of primary and secondary data lines as reflected in SPORT_ERR_A.
DERRPSTAT and SPORT_ERR_A.DERRSSTAT bits respectively. The SPORT_ERR_A.DERRPMSK (primary
channel data error interrupt enable) and SPORT_ERR_A.DERRSMSK (secondary channel data error interrupt
enable) bits can be used to unmask the status interrupt for primary and secondary data errors.

SERIAL PORT (SPORT)
DATA TRANSFERS

26–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

In addition to data underflow and data overflow errors, the status interrupt is also triggered optionally
when frame sync error is detected. The SPORT_ERR_A.FSERRMSK (frame sync error interrupt enable) bit
unmasks the status interrupt for this frame sync error. This frame sync error is generated because of
premature frame sync, as explained in "Premature Frame sync error detection" section.

Note that a frame sync error is not detected in following cases.

• When there is no active data transmit/receive and the frame sync pulse occurs due to noise in the input
signal.

• If there is an underflow or overflow error. SPORT error logic does not run (the bit count is not set and
decremented) if there is an underflow error. Therefore, frame sync errors cannot be detected.

• When the frame sync pulse > system clock period.

The channel error status bits, SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DERRSEC, in the control register
are sticky read-only bits, which can be cleared in two ways:

• By disabling the SPORT (for frame sync error) or disabling the corresponding channel by itself (for
SPORT_CTL_A.DERRPRI, SPORT_CTL_A.DERRSEC).

• By writing to R/W the SPORT_ERR_A.FSERRSTAT, SPORT_ERR_A.DERRPSTAT or SPORT_ERR_A.
DERRSSTAT status bits.

 When sticky bits are cleared, interrupts are also cleared.

Interrupts

This section describes the various scenarios in which an interrupt is generated. Both the core and DMA
are able to generate data interrupts for receive or transmit operations. Moreover, the SPORT modules
generate error conditions which have a separate status interrupt.

Internal Transfer Completion

Each SPORT half has an interrupt associated with it. Both primary and secondary data channels share the
same interrupt vector, regardless of whether they are configured as a transmitter or receiver. To determine
the source of an interrupt, applications should check the transmit or receive data buffer status (SPORT_
CTL_A.DXSPRI, SPORT_CTL_A.DXSSEC) bits. In core mode, this interrupt signifies that either the transmit
data buffer is empty (when SPORT_CTL_A.SPTRAN = 1) or new data is available in the receive data buffer
(when SPORT_CTL_A.SPTRAN = 0). When serial port data packing is enabled (SPORT_CTL_A.PACK = 1), the
transmit and receive interrupts are generated for 32-bit packed words, not for each 16-bit word.

The same interrupt can be used to indicate the completion of the transfer of a block of serial data when the
serial ports are configured for DMA. The count register of DMA must be initialized with a word count that
specifies the number of words to transfer. The count register decrements after each DMA transfer on the
channel. When the word count reaches zero (or if a work unit has finished), the DMA completion inter-
rupt is generated.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–47

Multiple interrupts can occur if both data channels of serial port transmit or receive data in the same cycle.
Any interrupt can be masked in the IMASK register.

Transfer Finish Interrupt (TFI)

When a serial port in DMA mode is configured as a transmitter (SPORT_CTL_A.SPTRAN = 1), the Transmit
Finish Interrupt feature can be used to signal the end of the transmission in a particular work unit. This
feature can be enabled by setting SPORT_CTL_A.TFIENbit. When DMA transfers the last word to the FIFO,
it also gives a signal to the SPORT indicating DMA has finished. The SPORT uses this information and
then waits until all the data in the FIFO is transmitted out (including the transmit shift register) and gener-
ates the Transmit Finish Interrupt. The Interrupt Type field in the DMA Configuration register should be
configured for Peripheral Interrupt.

ADSP-BF60x SPORT Register Descriptions
Serial Port (SPORT) contains the following registers.

Table 26-15: ADSP-BF60x SPORT Register List

Name Description

SPORT_CTL_A Half SPORT 'A' Control Register

SPORT_DIV_A Half SPORT 'A' Divisor Register

SPORT_MCTL_A Half SPORT 'A' Multi-channel Control Register

SPORT_CS0_A Half SPORT 'A' Multi-channel 0-31 Select Register

SPORT_CS1_A Half SPORT 'A' Multi-channel 32-63 Select Register

SPORT_CS2_A Half SPORT 'A' Multi-channel 64-95 Select Register

SPORT_CS3_A Half SPORT 'A' Multi-channel 96-127 Select Register

SPORT_ERR_A Half SPORT 'A' Error Register

SPORT_MSTAT_A Half SPORT 'A' Multi-channel Status Register

SPORT_CTL2_A Half SPORT 'A' Control 2 Register

SPORT_TXPRI_A Half SPORT 'A' Tx Buffer (Primary) Register

SPORT_RXPRI_A Half SPORT 'A' Rx Buffer (Primary) Register

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'A' Control Register

The SPORT_CTL_A contains transmit and receive control bits for SPORT half 'A', including serial port
mode selection for the half SPORT's primary and secondary channels. The function of some bits in SPORT_
CTL_A vary, depending on the SPORT's operating mode. For more information, see the SPORT operating
modes description. If reading reserved bits, the read value is the last written value to these bits or is the
reset value of these bits.

SPORT_TXSEC_A Half SPORT 'A' Tx Buffer (Secondary) Register

SPORT_RXSEC_A Half SPORT 'A' Rx Buffer (Secondary) Register

SPORT_CTL_B Half SPORT 'B' Control Register

SPORT_DIV_B Half SPORT 'B' Divisor Register

SPORT_MCTL_B Half SPORT 'B' Multi-channel Control Register

SPORT_CS0_B Half SPORT 'B' Multi-channel 0-31 Select Register

SPORT_CS1_B Half SPORT 'B' Multi-channel 32-63 Select Register

SPORT_CS2_B Half SPORT 'B' Multichannel 64-95 Select Register

SPORT_CS3_B Half SPORT 'B' Multichannel 96-127 Select Register

SPORT_ERR_B Half SPORT 'B' Error Register

SPORT_MSTAT_B Half SPORT 'B' Multi-channel Status Register

SPORT_CTL2_B Half SPORT 'B' Control 2 Register

SPORT_TXPRI_B Half SPORT 'B' Tx Buffer (Primary) Register

SPORT_RXPRI_B Half SPORT 'B' Rx Buffer (Primary) Register

SPORT_TXSEC_B Half SPORT 'B' Tx Buffer (Secondary) Register

SPORT_RXSEC_B Half SPORT 'B' Rx Buffer (Secondary) Register

Table 26-15: ADSP-BF60x SPORT Register List (Continued)

Name Description

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–49

Figure 26-15: SPORT_CTL_A Register Diagram

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 26-16: SPORT_CTL_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:30
(R/NW)

DXSPRI Data Transfer Buffer Status (Primary).
The SPORT_CTL_A.DXSPRI indicates the status of the half SPORT's
primary channel data buffer.
0 Empty
1 Reserved
2 Partially full
3 Full

29
(R/NW)

DERRPRI Data Error Status (Primary).
The SPORT_CTL_A.DERRPRI reports the half SPORT's primary
channel transmit underflow status or receive overflow status,
depending on the SPORT transfer direction.
If the SPORT_CTL_A.FSR bit =1, SPORT_CTL_A.DERRPRI indicates
whether the SPT_AFS signal (from an internal or external source)
occurred while the SPORT_TXPRI_A data buffer was empty (during
transmit) or the SPORT_RXPRI_A data buffer was full (during
receive). The SPORT transmits or receives data whenever it detects
the SPT_AFS signal. It is important to note that, as a receiver, the
SPORT_CTL_A.DERRPRI indicates when the channel has received new
data while the SPORT_RXPRI_A receive buffer is full. This new data
overwrites existing data.
If the SPORT_CTL_A.FSR bit =0, SPORT_CTL_A.DERRPRI is set
whenever the SPORT is required to transmit while the SPORT_
TXPRI_A transmit buffer is empty and is set whenever the SPORT is
required to receive while the SPORT_RXPRI_A receive buffer is full.
The SPORT clears the SPORT_CTL_A.DERRPRI bit if the SPORT_ERR_
A.DERRPSTAT bit is cleared.
0 No error
1 Error (Tx underflow or Rx overflow)

28:27
(R/NW)

DXSSEC Data Transfer Buffer Status (Secondary).
The SPORT_CTL_A.DXSSEC indicates the status of the half SPORT's
secondary channel data buffer.
0 Empty
1 Reserved
2 Partially full
3 Full

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–51

26
(R/NW)

DERRSEC Data Error Status (Secondary).
The SPORT_CTL_A.DERRSEC reports the half SPORT's secondary
channel transmit underflow status or receive overflow status,
depending on the SPORT transfer direction.
If the SPORT_CTL_A.FSR bit =1, SPORT_CTL_A.DERRSEC indicates
whether the SPT_AFS signal (from an internal or external source)
occurred while the SPORT_TXSEC_A data buffer was empty (during
transmit) or the SPORT_RXSEC_A data buffer was full (during
receive). The SPORT transmits or receives data whenever it detects
the SPT_AFS signal. It is important to note that, as a receiver, the
SPORT_CTL_A.DERRSEC indicates when the channel has received new
data while the SPORT_RXSEC_A receive buffer is full. This new data
overwrites existing data.
If the SPORT_CTL_A.FSR bit =0, SPORT_CTL_A.DERRSEC is set
whenever the SPORT is required to transmit while the SPORT_
TXSEC_A transmit buffer is empty and is set whenever the SPORT is
required to receive while the SPORT_RXSEC_A receive buffer is full.
The SPORT clears the SPORT_CTL_A.DERRSEC bit if the SPORT_ERR_
A.DERRSSTAT bit is cleared.
0 No error
1 Error (Tx underflow or Rx overflow)

25
(R/W)

SPTRAN Serial Port Transfer Direction.
The SPORT_CTL_A.SPTRAN bit selects the transfer direction (receive
or transmit) for the half SPORT's primary and secondary channels.
When the direction is receive, the half SPORT activates the receive
buffers, and the SPT_ACLK and SPT_AFS pins control the receive
buffers. The transmit buffers are inactive when the half SPORT's
transfer direction is receive.
When the direction is transmit, the half SPORT activates the transmit
buffers, and the SPT_ACLK and SPT_AFS pins control the transmit
shift registers. The receive buffers are inactive when the half SPORT's
transfer direction is transmit.
0 Receive
1 Transmit

Table 26-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

24
(R/W)

SPENSEC Serial Port Enable (Secondary).
The SPORT_CTL_A.SPENSEC bit enables the half SPORT's secondary
channel. When this bit is cleared (changes from =1 to =0), the half
SPORT automatically flushes the channel's data buffers.
0 Disable
1 Enable

21
(R/W)

GCLKEN Gated Clock Enable.
The SPORT_CTL_A.GCLKEN bit enables gated clock operation for the
half SPORT when in DSP serial mode or left-justified stereo modes
(SPORT_CTL_A.OPMODE = 0 or 1). This bit is ignored when the half
SPORT is in right-justified mode (SPORT_CTL_A.RJUST =1) or multi-
channel mode (SPORT_MCTL_A.MCE =1).
When SPORT_CTL_A.GCLKEN is enabled, the SPORT clock is active
when the SPORT is transferring data or when the frame sync changes
(transitions to active state).
0 Disable
1 Enable

20
(R/W)

TFIEN Transmit Finish Interrupt Enable.
The SPORT_CTL_A.TFIEN bit selects when the half SPORT issues its
transmission complete interrupt if a DMA complete interrupt is
enabled by the DDE_CFG_INT configuration. When enabled (SPORT_
CTL_A.TFIEN =1), the DMA complete peripheral interrupt is
generated when the last bit of last word in the DMA is shifted out.
When disabled (SPORT_CTL_A.TFIEN =0), the DMA interrupt is
generated when the DMA counter expires (the last word goes to the
transmit buffer).
0 Last word sent (DMA count done) interrupt
1 Last bit sent (Tx buffer done) interrupt

Table 26-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–53

19
(R/W)

FSED Frame Sync Edge Detect.
The SPORT_CTL_A.FSED bit enables the half SPORT to start
transmitting or receiving after detecting an active edge of an external
frame sync. The SPORT_CTL_A.FSED may be enabled even during an
active frame sync, and the half SPORT starts the transfer on the next
valid rising or falling edge of external frame sync. If disabled (SPORT_
CTL_A.FSED =0), the half SPORT operates in the standard level-
sensitive detection mode for external frame sync.
0 Level detect frame sync
1 Edge detect frame sync

18
(R/W)

RJUST Right-Justified Operation Mode.
The SPORT_CTL_A.RJUST bit enables the half SPORT (if SPORT_CTL_
A.OPMODE =1) to transfer data in right-justified operation mode. In
this mode, the half SPORT aligns data to the end of the frame sync,
rather than the start of the frame sync. When using right-justified
mode, systems should program an appropriate delay count to
introduce a clock delay before the half SPORT state machine starts to
capture data. This value is set in the DCNT field (right-justified
mode usage of the SPORT_MCTL_A.WOFFSET field). For information
about appropriate delay selections, see the SPORT operating modes
section.
0 Disable
1 Enable

17
(R/W)

LAFS Late Frame Sync / OPMODE2.
When the half SPORT is in DSP standard mode (SPORT_CTL_A.
OPMODE =0) or in right-justified mode (SPORT_CTL_A.RJUST =1), the
SPORT_CTL_A.LAFS bit selects whether the half SPORT generates a
late frame sync (SPT_AFS during first data bit) or generates an early
frame sync signal (SPT_AFS during serial clock cycle before first data
bit). When the half SPORT is in I2S / left-justified mode (SPORT_
CTL_A.OPMODE =1), the SPORT_CTL_A.LAFS bit acts as OPMODE2,
selecting whether the half SPORT is in left-justified mode or I2S
mode. When the half SPORT is in multi-channel mode (SPORT_
MCTL_A.MCE =1), the SPORT_CTL_A.LAFS bit is reserved.
0 Early frame sync

(or I2S mode)
1 Late frame sync

(or left-justified mode)

Table 26-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

16
(R/W)

LFS Active-Low Frame Sync / L_FIRST / PLFS.
When the half SPORT is in DSP standard mode and multichannel
mode (SPORT_CTL_A.OPMODE =0), the SPORT_CTL_A.LFS bit selects
whether the half SPORT uses active low or active high frame sync.
When the half SPORT is in I2S / packed / left-justified mode (SPORT_
CTL_A.OPMODE =1), the SPORT_CTL_A.LFS bit acts as L_FIRST,
selecting whether the half SPORT transfers data first for the left or
right channel.
0 Active high frame sync (DSP standard

mode)
or rising edge frame sync (multi-channel
mode)
or right channel first (I2S/packed mode)
or left channel first (left-justified mode)

1 Active low frame sync (DSP standard mode)
or falling edge frame sync (multi-channel
mode)
or left channel first (I2S/packed mode)
or right channel first (left-justified mode)

15
(R/W)

DIFS Data-Independent Frame Sync.
The SPORT_CTL_A.DIFS bit selects whether the half SPORT uses a
data-independent or data-dependent frame sync. When using a data-
independent frame sync, the half SPORT generates the sync at the
interval selected by SPORT_DIV_A.FSDIV. When using a data-
dependent frame sync, the half SPORT generates the sync on the
selected interval when the transmit buffer is not empty or when the
receive buffer is not full. Note that the SPORT_CTL_A.DIFS bit is
automatically set when the half SPORT is in packed or multichannel
modes.
0 Data-dependent frame sync
1 Data-independent frame sync

14
(R/W)

IFS Internal Frame Sync.
The SPORT_CTL_A.IFS bit selects whether the half SPORT uses an
internal frame sync or uses an external frame sync.
Note that the externally-generated frame sync does not need to be
synchronous with the processor's system clock.
0 External frame sync
1 Internal frame sync

Table 26-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–55

13
(R/W)

FSR Frame Sync Required.
The SPORT_CTL_A.FSR selects whether or not the half SPORT
requires frame sync for data transfer. This bit is automatically set
when the half SPORT is in I2S / packed / left-justified mode (SPORT_
CTL_A.OPMODE =1) or is in multi-channel mode (SPORT_MCTL_A.MCE
=1).
0 No frame sync required
1 Frame sync required

12
(R/W)

CKRE Clock Rising Edge.
The SPORT_CTL_A.CKRE selects the rising or falling edge of the SPT_
ACLK clock for the half SPORT to sample receive data and frame sync.
Note that the half SPORT changes the state of transmit data and
frame sync signals on the non-selected edge of the SPT_ACLK. Also
note that the transmit and receive related SPORT halves (A and B)
should be programmed with the same value for SPORT_CTL_A.CKRE.
This programming drives the internally-generated signals on one
edge of SPT_ACLK and samples the received signals on the opposite
edge.
0 Clock falling edge
1 Clock rising edge

11
(R/W)

OPMODE Operation mode.
The SPORT_CTL_A.OPMODE bit selects whether the half SPORT
operates in DSP standard / multi-channel mode or operates in I2S /
packed / left-justified mode. The mode selection affects the operation
of the SPORT_CTL_A.LAFS and SPORT_CTL_A.LFS bits. Also, the
SPORT_CTL_A.OPMODE bit enables or disables operation of the
SPORT_CTL_A.GCLKEN, SPORT_CTL_A.FSED, SPORT_CTL_A.RJUST,
SPORT_CTL_A.DIFS, SPORT_CTL_A.FSR, and SPORT_CTL_A.CKRE
bits.
0 DSP standard/multi-channel mode
1 I2S/packed/left-justified mode

Table 26-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

10
(R/W)

ICLK Internal Clock.
When the half SPORT is in DSP standard mode (SPORT_CTL_A.
OPMODE =0), the SPORT_CTL_A.ICLK bit selects whether the half
SPORT uses an internal or external clock. For internal clock enabled,
the half SPORT generates the SPT_ACLK clock signal, and the SPT_
ACLK is an output. The SPORT_DIV_A.CLKDIV serial clock divisor
value determines the clock frequency. For internal clock disabled, the
SPT_ACLK clock signal is an input, and the serial clock divisor is
ignored. Note that the externally-generated serial clock does not need
to be synchronous with the processor's system clock.
0 External clock
1 Internal clock

9
(R/W)

PACK Packing Enable.
The SPORT_CTL_A.PACK bit enables the half SPORT to perform 16-
to 32-bit packing on received data and to perform 32- to 16-bit
unpacking on transmitted data. The receive packing operation packs
two successive received words into a single 32-bit word. The transmit
unpacking operation unpacks each 32-bit word and transmits it as
two 16-bit words. The first 16-bit (or smaller) word is right-justified
in bits 15-0 of the packed word, and the second 16-bit (or smaller)
word is right-justified in bits 31-16. This format applies to both
receive (packing) and transmit (unpacking) operations. Companding
may be used with word packing or unpacking. The half SPORT
generates data transfer related interrupts when packing is enabled.
The transmit and receive interrupts are generated for the 32-bit
packed words, not for each 16-bit word.
0 Disable
1 Enable

8:4
(R/W)

SLEN Serial Word Length.
The SPORT_CTL_A.SLEN bits selects word length in bits for the half
SPORT's data transfers. Word may be from 4- to 32-bits in length.
The formula for selecting the word length in bits is:
SPORT_CTL_A.SLEN = (serial word length in bits) - 1
For DSP standard mode (SPORT_CTL_A.OPMODE =0), use SPORT_
CTL_A.SLEN of 3 to 31 bits.
For I2S / packed / left-justified mode (SPORT_CTL_A.OPMODE =1), use
SPORT_CTL_A.SLEN of 4 to 31 bits.

Table 26-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–57

Half SPORT 'A' Divisor Register

The SPORT_DIV_A contains divisor values that determine frequencies of internally-generated clocks and
frame syncs for half SPORT 'A'.

Figure 26-16: SPORT_DIV_A Register Diagram

3
(R/W)

LSBF Least-Significant Bit First.
The SPORT_CTL_A.LSBF bit selects whether the half SPORT
transmits or receives data LSB first or MSB first.
0 MSB first sent/received (big endian)
1 LSB first sent/received (little endian)

2:1
(R/W)

DTYPE Data Type.
The SPORT_CTL_A.DTYPE bits selects the data type formatting for the
half SPORT's data transfers in DSP standard mode (SPORT_CTL_A.
OPMODE =0).
0 Right-justify data, zero-fill unused MSBs
1 Right-justify data, sign-extend unused MSBs
2 μ-law compand data
3 A-law compand data

0
(R/W)

SPENPRI Serial Port Enable (Primary).
The SPORT_CTL_A.SPENPRI bit enables the half SPORT's primary
channel. When this bit is cleared (changes from =1 to =0), the half
SPORT automatically flushes the channel's data buffers.
0 Disable
1 Enable

Table 26-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'A' Multi-channel Control Register

The SPORT_MCTL_A register controls the half SPORT's multi-channel operations. This register enables
multi-channel operation, enables multi-channel data packing, selects the multi-channel frame delay,
selects the number of multi-channel slots, and selects the multi-channel window offset size.

Table 26-17: SPORT_DIV_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

FSDIV Frame Sync Divisor.
The SPORT_DIV_A.FSDIV bits select the number of transmit or
receive clock cycles that the half SPORT counts before generating a
frame sync pulse. The half SPORT counts serial clock cycles whether
these are from an internally- or an externally-generated serial clock.
The formula relating SPORT_DIV_A.FSDIV to the number of cycles
between frame sync pulses is:
SPORT_DIV_A.FSDIV = (number of serial clocks between frame
syncs) - 1
Use the following equation to determine the value of SPORT_DIV_A.
FSDIV, given the serial clock frequency and desired frame sync
frequency:
FSDIV = (SCLK ÷ FSCLK) - 1
Note that the frame sync is continuously active when SPORT_DIV_A.
FSDIV = 0. The value of SPORT_DIV_A.FSDIV should not be less than
the serial word length (SPORT_CTL_A.SLEN), as this may cause an
external device to abort the current operation or cause other
unpredictable results.

15:0
(R/W)

CLKDIV Clock Divisor.
The SPORT_DIV_A.CLKDIV bits select the divisor that the half SPORT
uses to calculate the serial clock (SPT_ACLK) from the processor
system clock (SCLK). The divisor is a 16-bit value, allowing a wide
range of serial clock rates. When configured for internal clock
(SPORT_CTL_A.ICLK =1), legal SPORT_DIV_A.CLKDIV values are 0 to
65535. Given the processor system clock frequency and desired serial
clock frequency, use the following formula to calculate the value of
SPORT_DIV_A.CLKDIV:
CLKDIV = (SCLK ÷ SPT_ACLK) - 1
For the maximum serial clock frequency, see the processor data
sheet.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–59

Figure 26-17: SPORT_MCTL_A Register Diagram

Table 26-18: SPORT_MCTL_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25:16
(R/W)

WOFFSET Window Offset.
The SPORT_MCTL_A.WOFFSET bits select the start location for the half
SPORT's active window of channels within the 1024-channel range.
A value of 0 specifies no offset and 896 is the largest value that
permits using all 128 channels. When multi-channel mode is
disabled (SPORT_MCTL_A.MCE =0)and right-justified mode is enabled
(SPORT_CTL_A.RJUST =1), the least significant 6 bits of SPORT_
MCTL_A.WOFFSET serve as the delay count (DCNT) field. These bits
introduce a clock delay before the half SPORT state machine starts to
capture data. For information about appropriate delay selections, see
the SPORT operating modes section.

14:8
(R/W)

WSIZE Window Size.
The SPORT_MCTL_A.WSIZE bits select the window size for the half
SPORT's active window of channels. Use the following formula to
calculate the window size value:
SPORT_MCTL_A.WSIZE = (number of channel slots) -1

7:4
(R/W)

MFD Multi-channel Frame Delay.
The SPORT_MCTL_A.MFD bits select the delay (in serial clock cycles)
between the half SPORT's multi-channel frame sync pulse and
channel 0. The 4-bit field allows selecting Multichannel Frame delay
of 0-15 serial clocks.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'A' Multi-channel 0-31 Select Register

The SPORT_CS0_A register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

2
(R/W)

MCPDE Multi-Channel Packing DMA Enable.
The SPORT_MCTL_A.MCPDE bit enables DMA data packing for
transmit and enables DMA data unpacking for the half SPORT's
multi-channel data transfers.
0 Disable
1 Enable

0
(R/W)

MCE Multichannel enable.
The SPORT_MCTL_A.MCE bit enables multi-channel operations for the
half SPORT. The Half SPORT is configured in normal multichannel
mode if SPORT_CTL_A.OPMODE=0; while it is configured in Packed
mode if SPORT_CTL_A.OPMODE=1. When Configuring in these
modes, the Multichannel Enable bit (SPORT_MCTL_A.MCE) should be
set before enabling SPORT data channel enable bits (SPORT_CTL_A.
SPENPRI and/or SPORT_CTL_A.SPENSEC). When these channel bits
transition from 1 to 0, note that the half SPORT's data transfer
buffers are cleared, and the SPORT_CTL_A.DERRPRI and SPORT_CTL_
A.DERRSEC bits are cleared.
0 Disable
1 Enable

Table 26-18: SPORT_MCTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–61

Figure 26-18: SPORT_CS0_A Register Diagram

Half SPORT 'A' Multi-channel 32-63 Select Register

The SPORT_CS1_A register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Figure 26-19: SPORT_CS1_A Register Diagram

Table 26-19: SPORT_CS0_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 0 Thru 31.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'A' Multi-channel 64-95 Select Register

The SPORT_CS2_A register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Figure 26-20: SPORT_CS2_A Register Diagram

Half SPORT 'A' Multi-channel 96-127 Select Register

The SPORT_CS3_A register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Table 26-20: SPORT_CS1_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 32 Thru 63.

Table 26-21: SPORT_CS2_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 64 Thru 95.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–63

Figure 26-21: SPORT_CS3_A Register Diagram

Half SPORT 'A' Error Register

The SPORT_ERR_A contains error status and error interrupt mask bits for SPORT half 'A', including error
handling bits for the half SPORT's primary and secondary channels and frame sync. Detected errors are
frame sync violations or buffer over/underflow conditions.

Figure 26-22: SPORT_ERR_A Register Diagram

Table 26-22: SPORT_CS3_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 96 Thru 127.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 26-23: SPORT_ERR_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6
(R/W)

FSERRSTAT Frame Sync Error Status.
The SPORT_ERR_A.FSERRSTAT bit indicates that the half SPORT has
detected a frame sync when the bit count (bits remaining in the
frame) is non-zero. When a half SPORT is receiving or transmitting,
its bit count is set to a word length (for example, SPORT_CTL_A.SLEN
= 32). After each serial clock edge, the half SPORT decrements the
transfer's bit count. After the word is received or transmitted, the
transfer's bit count reaches zero, and the half SPORT resets it (for
example, to 32) on next frame sync. Normal SPORT data transfers
always have a non-zero bit count value when active transmission or
reception is occurring. Normal SPORT frame syncs occur during a
zero bit count.
0 No error
1 Error (non-zero bit count at frame sync)

5
(R/W)

DERRSSTAT Data Error Secondary Status.
The SPORT_ERR_A.DERRSSTAT bit indicates the error status for the
half SPORT's secondary channel data buffers. During transmit
(SPORT_CTL_A.SPTRAN =1), SPORT_ERR_A.DERRSSTAT indicates
transmit underflow status. During receive (SPORT_CTL_A.SPTRAN
=0), SPORT_ERR_A.DERRSSTAT indicates receive overflow status. This
bit is used to clear the latch of SPORT status interrupt when triggered
by secondary Data Error. This bit can also be used to clear the read-
only SPORT_CTL_A.DERRSEC status bit.
0 No error
1 Error (transmit underflow or receive

overflow)
4
(R/W)

DERRPSTAT Data Error Primary Status.
The SPORT_ERR_A.DERRPSTAT bit indicates the error status for the
half SPORT's primary channel data buffers. During transmit (SPORT_
CTL_A.SPTRAN =1), SPORT_ERR_A.DERRPSTAT indicates transmit
underflow status. During receive (SPORT_CTL_A.SPTRAN =0),
SPORT_ERR_A.DERRPSTAT indicates receive overflow status. This bit
is used to clear the latch of SPORT status interrupt when triggered by
Primary Data Error. This bit can also be used to clear the read-only
SPORT_CTL_A.DERRPRI status bit.
0 No error
1 Error (transmit underflow or receive

overflow)

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–65

Half SPORT 'A' Multi-channel Status Register

The SPORT_MSTAT_A register indicates the current multi-channel being serviced among the half SPORT's
active channels in multi-channel mode. The half SPORT increments the value by one in this register as
each channel is serviced. The value in the SPORT_MSTAT_A register restarts at 0 at each frame sync.

Figure 26-23: SPORT_MSTAT_A Register Diagram

2
(R/W)

FSERRMSK Frame Sync Error (Interrupt) Mask.
The SPORT_ERR_A.FSERRMSK unmasks (enables) the half SPORT to
generate the frame sync error interrupt.
0 Mask (disable)
1 Unmask (enable)

1
(R/W)

DERRSMSK Data Error Secondary (Interrupt) Mask.
The SPORT_ERR_A.DERRSMSK unmasks (enables) the half SPORT to
generate the data error interrupt for the secondary channel.
0 Mask (disable)
1 Unmask (enable)

0
(R/W)

DERRPMSK Data Error Primary (Interrupt) Mask.
The SPORT_ERR_A.DERRPMSK unmasks (enables) the half SPORT to
generate the data error interrupt for the primary channel.
0 Mask (disable)
1 Unmask (enable)

Table 26-23: SPORT_ERR_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'A' Control 2 Register

The SPORT_CTL2_A register controls multiplexing options for sharing serial clock and frame sync signals
across the related half SPORTs.

Figure 26-24: SPORT_CTL2_A Register Diagram

Table 26-24: SPORT_MSTAT_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/NW)

CURCHAN Current Channel.
The SPORT_MSTAT_A.CURCHAN bits indicate the half SPORT's current
channel being serviced in multi-channel mode.

Table 26-25: SPORT_CTL2_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W)

CKMUXSEL Clock Multiplexer Select.
The SPORT_CTL2_A.CKMUXSEL bit enables multiplexing of the half
SPORT' serial clock. In this mode, the serial clock of the related half
SPORT is used instead of the half SPORT's own serial clock. For
example, if SPORT_CTL2_A.CKMUXSEL is enabled, half SPORT 'A' uses
SPT_BCLK instead of SPT_ACLK.
0 Disable serial clock multiplexing
1 Enable serial clock multiplexing

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–67

Half SPORT 'A' Tx Buffer (Primary) Register

The SPORT_TXPRI_A register buffers the half SPORT's primary channel transmit data. This register must
be loaded with the data to be transmitted if the half SPORT is configured to transmit on the primary
channel. Either a program running on the processor core may load the data into the buffer (word-by-word
process) or the DMA controller may automatically load the data into the buffer (DMA process).

The SPORT_TXPRI_A register acts as a three location buffer if SPORT data packing is disabled (SPORT_CTL_
A.PACK =0); while it acts as two location buffer when packing is enabled (SPORT_CTL_A.PACK =1). So
depending on PACK bit setting, two 32-bit words or three 32-bit words may be stored in the transmit
queue at any time. When the transmit register is loaded and any previous word has been transmitted, the
SPORT_TXPRI_A register contents are automatically loaded into the output shifter. The half SPORT may
issue an interrupt (transmit buffer is not full) when it has loaded the output transmit shifter, signifying that
the transmit buffer is ready to accept the next word. This interrupt does not occur when the half SPORT
is executing a DMA-based transfer.

Figure 26-25: SPORT_TXPRI_A Register Diagram

0
(R/W)

FSMUXSEL Frame Sync Multiplexer Select.
The SPORT_CTL2_A.FSMUXSEL bit enables multiplexing of the half
SPORT' frame sync. In this mode, the frame sync of the related half
SPORT is used instead of the half SPORT's own frame sync. For
example, if SPORT_CTL2_A.FSMUXSEL is enabled, half SPORT 'A' uses
SPT_BFS instead of SPT_AFS.
0 Disable frame sync multiplexing
1 Enable frame sync multiplexing

Table 26-25: SPORT_CTL2_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'A' Rx Buffer (Primary) Register

The SPORT_RXPRI_A register buffers the half SPORT's primary channel receive data. This buffer becomes
active when the half SPORT is configured to receive data on the primary channel. After a complete word
has been received in receive shifter, it is placed into the SPORT_RXPRI_A register. This data can be read in
core mode (in interrupt-based or polling-based mechanism) or directly DMA'd into processor memory
using DMA controller. With a data buffer and input shift register, the SPORT_RXPRI_A register acts as a
two-location buffer. So, the SPORT can keep Two 32-bit received words at max in any one time (indepen-
dent of the SPORT_CTL_A.PACK bit setting).

Figure 26-26: SPORT_RXPRI_A Register Diagram

Table 26-26: SPORT_TXPRI_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Transmit Buffer (Primary).
The SPORT_TXPRI_A.VALUE bits hold the half SPORT's primary
channel transmit data. Note that changes to the half SPORT
operation mode (for example, toggling the SPORT_MCTL_A.MCE)
empty the contents of this data buffer. For more information, see the
SPORT_CTL_A and SPORT_MCTL_A register descriptions.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–69

Half SPORT 'A' Tx Buffer (Secondary) Register

The SPORT_TXSEC_A register buffers the half SPORT's secondary channel transmit data. This register must
be loaded with the data to be transmitted if the half SPORT is configured to transmit on the secondary
channel. Either a program running on the processor core may load the data into the buffer (word-by-word
process) or the DMA controller may automatically load the data into the buffer (DMA process).

The SPORT_TXSEC_A register acts as a three location buffer if SPORT data packing is disabled (SPORT_CTL_
A.PACK =0); while it acts as two location buffer when packing is enabled (SPORT_CTL_A.PACK =1). So
depending on PACK bit setting, two 32-bit words or three 32-bit words may be stored in the transmit
queue at any time. When the transmit register is loaded and any previous word has been transmitted, the
SPORT_TXSEC_A register contents are automatically loaded into the output shifter. The half SPORT may
issue an interrupt (transmit buffer is not full) when it has loaded the output transmit shifter, signifying that
the transmit buffer is ready to accept the next word. This interrupt does not occur when the half SPORT
is executing a DMA-based transfer.

Figure 26-27: SPORT_TXSEC_A Register Diagram

Table 26-27: SPORT_RXPRI_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Receive Buffer (Primary).
The SPORT_RXPRI_A.VALUE bits hold the half SPORT's primary
channel receive data. Note that changes to the half SPORT operation
mode (for example, toggling the SPORT_MCTL_A.MCE) empty the
contents of this data buffer. For more information, see the SPORT_
CTL_A and SPORT_MCTL_A register descriptions.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'A' Rx Buffer (Secondary) Register

The SPORT_RXSEC_A register buffers the half SPORT's primary channel receive data. This buffer becomes
active when the half SPORT is configured to receive data on the primary channel. After a complete word
has been received in receive shifter, it is placed into the SPORT_RXSEC_A register. This data can be read in
core mode (in interrupt-based or polling-based mechanism) or directly DMA'd into processor memory
using DMA controller. With a data buffer and input shift register, the SPORT_RXSEC_A register acts as a
two-location buffer. So, the SPORT can keep Two 32-bit received words at max in any one time (indepen-
dent of the SPORT_CTL_A.PACK bit setting).

Figure 26-28: SPORT_RXSEC_A Register Diagram

Table 26-28: SPORT_TXSEC_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Transmit Buffer (Secondary).
The SPORT_TXSEC_A.VALUE bits hold the half SPORT's secondary
channel transmit data. Note that changes to the half SPORT
operation mode (for example, toggling the SPORT_MCTL_A.MCE)
empty the contents of this data buffer. For more information, see the
SPORT_CTL_A and SPORT_MCTL_A register descriptions.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–71

Half SPORT 'B' Control Register

The SPORT_CTL_B contains transmit and receive control bits for SPORT half 'B', including serial port mode
selection for the half SPORT's primary and secondary channels. The function of some bits in SPORT_CTL_
B vary, depending on the SPORT's operating mode. For more information, see the SPORT operating
modes description. If reading reserved bits, the read value is the last written value to these bits or is the
reset value of these bits.

Table 26-29: SPORT_RXSEC_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Receive Buffer (Secondary).
The SPORT_RXSEC_A.VALUE bits hold the half SPORT's secondary
channel receive data. Note that changes to the half SPORT operation
mode (for example, toggling the SPORT_MCTL_A.MCE) empty the
contents of this data buffer. For more information, see the SPORT_
CTL_A and SPORT_MCTL_A register descriptions.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 26-29: SPORT_CTL_B Register Diagram

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–73

Table 26-30: SPORT_CTL_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:30
(R/NW)

DXSPRI Data Transfer Buffer Status (Primary).
The SPORT_CTL_B.DXSPRI indicates the status of the half SPORT's
primary channel data buffer.
0 Empty
1 Reserved
2 Partially full
3 Full

29
(R/NW)

DERRPRI Data Error Status (Primary).
The SPORT_CTL_B.DERRPRI reports the half SPORT's primary
channel transmit underflow status or receive overflow status,
depending on the SPORT transfer direction.
If the SPORT_CTL_B.FSR bit =1, SPORT_CTL_B.DERRPRI indicates
whether the SPT_BFS signal (from an internal or external source)
occurred while the SPORT_TXPRI_B data buffer was empty (during
transmit) or the SPORT_RXPRI_B data buffer was full (during
receive). The SPORT transmits or receives data whenever it detects
the SPT_BFS signal. It is important to note that, as a receiver, the
SPORT_CTL_B.DERRPRI indicates when the channel has received new
data while the SPORT_RXPRI_B receive buffer is full. This new data
overwrites existing data.
If the SPORT_CTL_B.FSR bit =0, SPORT_CTL_B.DERRPRI is set
whenever the SPORT is required to transmit while the SPORT_
TXPRI_B transmit buffer is empty and is set whenever the SPORT is
required to receive while the SPORT_RXPRI_B receive buffer is full.
The SPORT clears the SPORT_CTL_B.DERRPRI bit if the SPORT_ERR_
B.DERRPSTAT bit is cleared.
0 No error
1 Error (Tx underflow or Rx overflow)

28:27
(R/NW)

DXSSEC Data Transfer Buffer Status (Secondary).
The SPORT_CTL_B.DXSSEC indicates the status of the half SPORT's
secondary channel data buffer.
0 Empty
1 Reserved
2 Partially full
3 Full

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

26
(R/NW)

DERRSEC Data Error Status (Secondary).
The SPORT_CTL_B.DERRSEC reports the half SPORT's secondary
channel transmit underflow status or receive overflow status,
depending on the SPORT transfer direction.
If the SPORT_CTL_B.FSR bit =1, SPORT_CTL_B.DERRSEC indicates
whether the SPT_BFS signal (from an internal or external source)
occurred while the SPORT_TXSEC_B data buffer was empty (during
transmit) or the SPORT_RXSEC_B data buffer was full (during
receive). The SPORT transmits or receives data whenever it detects
the SPT_BFS signal. It is important to note that, as a receiver, the
SPORT_CTL_B.DERRSEC indicates when the channel has received new
data while the SPORT_RXSEC_B receive buffer is full. This new data
overwrites existing data.
If the SPORT_CTL_B.FSR bit =0, SPORT_CTL_B.DERRSEC is set
whenever the SPORT is required to transmit while the SPORT_
TXSEC_B transmit buffer is empty and is set whenever the SPORT is
required to receive while the SPORT_RXSEC_B receive buffer is full.
The SPORT clears the SPORT_CTL_B.DERRSEC bit if the SPORT_ERR_
B.DERRSSTAT bit is cleared.
0 No error
1 Error (Tx underflow or Rx overflow)

25
(R/W)

SPTRAN Serial Port Transfer Direction.
The SPORT_CTL_B.SPTRAN bit selects the transfer direction (receive
or transmit) for the half SPORT's primary and secondary channels.
When the direction is receive, the half SPORT activates the receive
buffers, and the SPT_BCLK and SPT_BFS pins control the receive
buffers. The transmit buffers are inactive when the half SPORT's
transfer direction is receive.
When the direction is transmit, the half SPORT activates the transmit
buffers, and the SPT_BCLK and SPT_BFS pins control the transmit
shift registers. The receive buffers are inactive when the half SPORT's
transfer direction is transmit.
0 Receive
1 Transmit

Table 26-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–75

24
(R/W)

SPENSEC Serial Port Enable (Secondary).
The SPORT_CTL_B.SPENSEC bit enables the half SPORT's secondary
channel. When this bit is cleared (changes from =1 to =0), the half
SPORT automatically flushes the channel's data buffers.
0 Disable
1 Enable

21
(R/W)

GCLKEN Gated Clock Enable.
The SPORT_CTL_B.GCLKEN bit enables gated clock operation for the
half SPORT when in DSP serial mode or left-justified stereo modes
(SPORT_CTL_B.OPMODE = 0 or 1). This bit is ignored when the half
SPORT is in right-justified mode (SPORT_CTL_B.RJUST =1) or multi-
channel mode (SPORT_MCTL_B.MCE =1).
When SPORT_CTL_B.GCLKEN is enabled, the SPORT clock is active
when the SPORT is transferring data or when the frame sync changes
(transitions to active state).
0 Disable
1 Enable

20
(R/W)

TFIEN Transmit Finish Interrupt Enable.
The SPORT_CTL_B.TFIEN bit selects when the half SPORT issues its
transmission complete interrupt if a DMA complete interrupt is
enabled by the DDE_CFG_INT configuration. When enabled (SPORT_
CTL_B.TFIEN =1), the DMA complete peripheral interrupt is
generated when the last bit of last word in the DMA is shifted out.
When disabled (SPORT_CTL_B.TFIEN =0), the DMA interrupt is
generated when the DMA counter expires (the last word goes to the
transmit buffer).
0 Last word sent (DMA count done) interrupt
1 Last bit sent (Tx buffer done) interrupt

Table 26-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

19
(R/W)

FSED Frame Sync Edge Detect.
The SPORT_CTL_B.FSED bit enables the half SPORT to start
transmitting or receiving after detecting an active edge of an external
frame sync. The SPORT_CTL_B.FSED may be enabled even during an
active frame sync, and the half SPORT starts the transfer on the next
valid rising or falling edge of external frame sync. If disabled (SPORT_
CTL_B.FSED =0), the half SPORT operates in the standard level-
sensitive detection mode for external frame sync.
0 Level detect frame sync
1 Edge detect frame sync

18
(R/W)

RJUST Right-Justified Operation Mode.
The SPORT_CTL_B.RJUST bit enables the half SPORT (if SPORT_CTL_
B.OPMODE =1) to transfer data in right-justified operation mode. In
this mode, the half SPORT aligns data to the end of the frame sync,
rather than the start of the frame sync. When using right-justified
mode, systems should program an appropriate delay count to
introduce a clock delay before the half SPORT state machine starts to
capture data. This value is set in the DCNT field (right-justified
mode usage of the SPORT_MCTL_B.WOFFSET field). For information
about appropriate delay selections, see the SPORT operating modes
section.
0 Disable
1 Enable

Table 26-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–77

17
(R/W)

LAFS Late Frame Sync / OPMODE2.
When the half SPORT is in DSP standard mode (SPORT_CTL_B.
OPMODE =0) or in right-justified mode (SPORT_CTL_B.RJUST =1), the
SPORT_CTL_B.LAFS bit selects whether the half SPORT generates a
late frame sync (SPT_BFS during first data bit) or generates an early
frame sync signal (SPT_BFS during serial clock cycle before first data
bit).
When the half SPORT is in I2S / left-justified mode (SPORT_CTL_B.
OPMODE =1), the SPORT_CTL_B.LAFS bit acts as OPMODE2, selecting
whether the half SPORT is in left-justified mode or I2S mode.
When the half SPORT is in multi-channel mode (SPORT_MCTL_B.
MCE =1), the SPORT_CTL_B.LAFS bit is reserved.
0 Early frame sync

(or I2S mode)
1 Late frame sync

(or left-justified mode)
16
(R/W)

LFS Active-Low Frame Sync / L_FIRST / PLFS.
When the half SPORT is in DSP standard mode and multichannel
mode (SPORT_CTL_B.OPMODE =0), the SPORT_CTL_B.LFS bit selects
whether the half SPORT uses active low or active high frame sync.
When the half SPORT is in I2S / packed / left-justified mode (SPORT_
CTL_B.OPMODE =1), the SPORT_CTL_B.LFS bit acts as L_FIRST,
selecting whether the half SPORT transfers data first for the left or
right channel.
0 Active high frame sync (DSP standard

mode)
or rising edge frame sync (multi-channel
mode)
or right channel first (I2S/packed mode)
or left channel first (left-justified mode)

1 Active low frame sync (DSP standard mode)
or falling edge frame sync (multi-channel
mode)
or left channel first (I2S/packed mode)
or right channel first (left-justified mode)

Table 26-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

15
(R/W)

DIFS Data-Independent Frame Sync.
The SPORT_CTL_B.DIFS bit selects whether the half SPORT uses a
data-independent or data-dependent frame sync. When using a data-
independent frame sync, the half SPORT generates the sync at the
interval selected by SPORT_DIV_B.FSDIV. When using a data-
dependent frame sync, the half SPORT generates the sync on the
selected interval when the transmit buffer is not empty or when the
receive buffer is not full. Note that the SPORT_CTL_B.DIFS bit is
automatically set when the half SPORT is in packed or multichannel
modes.
0 Data-dependent frame sync
1 Data-independent frame sync

14
(R/W)

IFS Internal Frame Sync.
The SPORT_CTL_B.IFS bit selects whether the half SPORT uses an
internal frame sync or uses an external frame sync.
Note that the externally-generated frame sync does not need to be
synchronous with the processor's system clock.
0 External frame sync
1 Internal frame sync

13
(R/W)

FSR Frame Sync Required.
The SPORT_CTL_B.FSR selects whether or not the half SPORT
requires frame sync for data transfer. This bit is automatically set
when the half SPORT is in I2S / packed / left-justified mode (SPORT_
CTL_B.OPMODE =1) or is in multi-channel mode (SPORT_MCTL_B.MCE
=1).
0 No frame sync required
1 Frame sync required

Table 26-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–79

12
(R/W)

CKRE Clock Rising Edge.
The SPORT_CTL_B.CKRE selects the rising or falling edge of the SPT_
BCLK clock for the half SPORT to sample receive data and frame sync.
Note that the half SPORT changes the state of transmit data and
frame sync signals on the non-selected edge of the SPT_BCLK. Also
note that the transmit and receive related SPORT halves (A and B)
should be programmed with the same value for SPORT_CTL_B.CKRE.
This programming drives the internally-generated signals on one
edge of SPT_BCLK and samples the received signals on the opposite
edge.
0 Clock falling edge
1 Clock rising edge

11
(R/W)

OPMODE Operation mode.
The SPORT_CTL_B.OPMODE bit selects whether the half SPORT
operates in DSP standard / multi-channel mode or operates in I2S /
packed / left-justified mode. The mode selection affects the operation
of the SPORT_CTL_B.LAFS and SPORT_CTL_B.LFS bits. Also, the
SPORT_CTL_B.OPMODE bit enables or disables operation of the
SPORT_CTL_B.GCLKEN, SPORT_CTL_B.FSED, SPORT_CTL_B.RJUST,
SPORT_CTL_B.DIFS, SPORT_CTL_B.FSR, and SPORT_CTL_B.CKRE
bits.
0 DSP standard/multi-channel mode
1 I2S/packed/left-justified mode

10
(R/W)

ICLK Internal Clock.
When the half SPORT is in DSP standard mode (SPORT_CTL_B.
OPMODE =0), the SPORT_CTL_B.ICLK bit selects whether the half
SPORT uses an internal or external clock. For internal clock enabled,
the half SPORT generates the SPT_BCLK clock signal, and the SPT_
BCLK is an output. The SPORT_DIV_B.CLKDIV serial clock divisor
value determines the clock frequency. For internal clock disabled, the
SPT_BCLK clock signal is an input, and the serial clock divisor is
ignored. Note that the externally-generated serial clock does not need
to be synchronous with the processor's system clock.
0 External clock
1 Internal clock

Table 26-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–80 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

9
(R/W)

PACK Packing Enable.
The SPORT_CTL_B.PACK bit enables the half SPORT to perform 16-
to 32-bit packing on received data and to perform 32- to 16-bit
unpacking on transmitted data. The receive packing operation packs
two successive received words into a single 32-bit word. The transmit
unpacking operation unpacks each 32-bit word and transmits it as
two 16-bit words. The first 16-bit (or smaller) word is right-justified
in bits 15-0 of the packed word, and the second 16-bit (or smaller)
word is right-justified in bits 31-16. This format applies to both
receive (packing) and transmit (unpacking) operations. Companding
may be used with word packing or unpacking. The half SPORT
generates data transfer related interrupts when packing is enabled.
The transmit and receive interrupts are generated for the 32-bit
packed words, not for each 16-bit word.
0 Disable
1 Enable

8:4
(R/W)

SLEN Serial Word Length.
The SPORT_CTL_B.SLEN bits selects word length in bits for the half
SPORT's data transfers. Word may be from 4- to 32-bits in length.
The formula for selecting the word length in bits is:
SPORT_CTL_B.SLEN = (serial word length in bits) - 1
For DSP standard mode (SPORT_CTL_B.OPMODE =0), use SPORT_
CTL_B.SLEN of 3 to 31 bits.
For I2S / packed / left-justified mode (SPORT_CTL_B.OPMODE =1), use
SPORT_CTL_B.SLEN of 4 to 31 bits.

3
(R/W)

LSBF Least-Significant Bit First.
The SPORT_CTL_B.LSBF bit selects whether the half SPORT
transmits or receives data LSB first or MSB first.
0 MSB first sent/received (big endian)
1 LSB first sent/received (little endian)

Table 26-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–81

Half SPORT 'B' Divisor Register

The SPORT_DIV_B contains divisor values that determine frequencies of internally-generated clocks and
frame syncs for SPORT half 'B'.

Figure 26-30: SPORT_DIV_B Register Diagram

2:1
(R/W)

DTYPE Data Type.
The SPORT_CTL_B.DTYPE bits selects the data type formatting for the
half SPORT's data transfers in DSP standard mode (SPORT_CTL_B.
OPMODE =0).
0 Right-justify data, zero-fill unused MSBs
1 Right-justify data, sign-extend unused MSBs
2 μ-law compand data
3 A-law compand data

0
(R/W)

SPENPRI Serial Port Enable (Primary).
The SPORT_CTL_B.SPENPRI bit enables the half SPORT's primary
channel. When this bit is cleared (changes from =1 to =0), the half
SPORT automatically flushes the channel's data buffers.
0 Disable
1 Enable

Table 26-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–82 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'B' Multi-channel Control Register

The SPORT_MCTL_B register controls the half SPORT's multi-channel operations. This register enables
multi-channel operation, enables multi-channel data packing, selects the multi-channel frame delay,
selects the number of multi-channel slots, and selects the multi-channel window offset size.

Table 26-31: SPORT_DIV_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

FSDIV Frame Sync Divisor.
The SPORT_DIV_B.FSDIV bits select the number of transmit or
receive clock cycles that the half SPORT counts before generating a
frame sync pulse. The half SPORT counts serial clock cycles whether
these are from an internally- or an externally-generated serial clock.
The formula relating SPORT_DIV_B.FSDIV to the number of cycles
between frame sync pulses is:
SPORT_DIV_B.FSDIV = (number of serial clocks between frame
syncs) - 1
Use the following equation to determine the value of SPORT_DIV_B.
FSDIV, given the serial clock frequency and desired frame sync
frequency:
FSDIV = (SCLK ÷ FSCLK) - 1
Note that the frame sync is continuously active when SPORT_DIV_B.
FSDIV = 0. The value of SPORT_DIV_B.FSDIV should not be less than
the serial word length (SPORT_CTL_B.SLEN), as this may cause an
external device to abort the current operation or cause other
unpredictable results.

15:0
(R/W)

CLKDIV Clock Divisor.
The SPORT_DIV_B.CLKDIV bits select the divisor that the half SPORT
uses to calculate the serial clock (SPT_BCLK) from the processor
system clock (SCLK). The divisor is a 16-bit value, allowing a wide
range of serial clock rates. When configured for internal clock
(SPORT_CTL_B.ICLK =1), legal SPORT_DIV_B.CLKDIV values are 0 to
65535. Given the processor system clock frequency and desired serial
clock frequency, use the following formula to calculate the value of
SPORT_DIV_B.CLKDIV:
CLKDIV = (SCLK ÷ SPT_BCLK) - 1
For the maximum serial clock frequency, see the processor data
sheet.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–83

Figure 26-31: SPORT_MCTL_B Register Diagram

Table 26-32: SPORT_MCTL_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25:16
(R/W)

WOFFSET Window Offset.
The SPORT_MCTL_B.WOFFSET bits select the start location for the half
SPORT's active window of channels within the 1024-channel range.
A value of 0 specifies no offset and 896 is the largest value that
permits using all 128 channels. When multi-channel mode is
disabled (SPORT_MCTL_B.MCE =0)and right-justified mode is enabled
(SPORT_CTL_B.RJUST =1), the least significant 6 bits of SPORT_
MCTL_B.WOFFSET serve as the delay count (DCNT) field. These bits
introduce a clock delay before the half SPORT state machine starts to
capture data. For information about appropriate delay selections, see
the SPORT operating modes section.

14:8
(R/W)

WSIZE Window Size.
The SPORT_MCTL_B.WSIZE bits select the window size for the half
SPORT's active window of channels. Use the following formula to
calculate the window size value:
SPORT_MCTL_B.WSIZE = (number of channel slots) -1

7:4
(R/W)

MFD Multi-channel Frame Delay.
The SPORT_MCTL_B.MFD bits select the delay (in serial clock cycles)
between the half SPORT's multi-channel frame sync pulse and
channel 0. The 4-bit field allows selecting Multichannel Frame delay
of 0-15 serial clocks.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–84 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'B' Multi-channel 0-31 Select Register

The SPORT_CS0_B register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

2
(R/W)

MCPDE Multi-Channel Packing DMA Enable.
The SPORT_MCTL_B.MCPDE bit enables DMA data packing for
transmit and enables DMA data unpacking for the half SPORT's
multi-channel data transfers.
0 Disable
1 Enable

0
(R/W)

MCE Multi-Channel Enable.
The SPORT_MCTL_B.MCE bit enables multi-channel operations for the
half SPORT. The Half SPORT is configured in normal multichannel
mode if SPORT_CTL_B.OPMODE=0; while it is configured in Packed
mode if SPORT_CTL_B.OPMODE=1. When Configuring in these
modes, the Multichannel Enable bit (SPORT_MCTL_B.MCE) should be
set before enabling SPORT data channel enable bits (SPORT_CTL_B.
SPENPRI and/or SPORT_CTL_B.SPENSEC). When these channel bits
transition from 1 to 0, note that the half SPORT's data transfer
buffers are cleared, and the SPORT_CTL_B.DERRPRI and SPORT_CTL_
B.DERRSEC bits are cleared.
0 Disable
1 Enable

Table 26-32: SPORT_MCTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–85

Figure 26-32: SPORT_CS0_B Register Diagram

Half SPORT 'B' Multi-channel 32-63 Select Register

The SPORT_CS1_B register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Figure 26-33: SPORT_CS1_B Register Diagram

Table 26-33: SPORT_CS0_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 0 Thru 31.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–86 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'B' Multichannel 64-95 Select Register

The SPORT_CS2_B register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Figure 26-34: SPORT_CS2_B Register Diagram

Half SPORT 'B' Multichannel 96-127 Select Register

The SPORT_CS3_B register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Table 26-34: SPORT_CS1_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 32 Thru 63.

Table 26-35: SPORT_CS2_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 64 Thru 95.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–87

Figure 26-35: SPORT_CS3_B Register Diagram

Half SPORT 'B' Error Register

The SPORT_ERR_B contains error status and error interrupt mask bits for SPORT half 'B', including error
handling bits for the half SPORT's primary and secondary channels and frame sync. Detected errors are
frame sync violations or buffer over/underflow conditions.

Figure 26-36: SPORT_ERR_B Register Diagram

Table 26-36: SPORT_CS3_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 96 Thru 127.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–88 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 26-37: SPORT_ERR_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6
(R/W)

FSERRSTAT Frame Sync Error Status.
The SPORT_ERR_B.FSERRSTAT bit indicates that the half SPORT has
detected a frame sync when the bit count (bits remaining in the
frame) is non-zero. When a half SPORT is receiving or transmitting,
its bit count is set to a word length (for example, SPORT_CTL_B.SLEN
= 32). After each serial clock edge, the half SPORT decrements the
transfer's bit count. After the word is received or transmitted, the
transfer's bit count reaches zero, and the half SPORT resets it (for
example, to 32) on next frame sync. Normal SPORT data transfers
always have a non-zero bit count value when active transmission or
reception is occurring. Normal SPORT frame syncs occur during a
zero bit count.
0 No error
1 Error (non-zero bit count at frame sync)

5
(R/W)

DERRSSTAT Data Error Secondary Status.
The SPORT_ERR_B.DERRSSTAT bit indicates the error status for the
half SPORT's secondary channel data buffers. During transmit
(SPORT_CTL_B.SPTRAN =1), SPORT_ERR_B.DERRSSTAT indicates
transmit underflow status. During receive (SPORT_CTL_B.SPTRAN
=0), SPORT_ERR_B.DERRSSTAT indicates receive overflow status. This
bit is used to clear the latch of SPORT status interrupt when triggered
by secondary Data Error. This bit can also be used to clear the read-
only SPORT_CTL_B.DERRSEC status bit.
0 No error
1 Error (transmit underflow or receive

overflow)
4
(R/W)

DERRPSTAT Data Error Primary Status.
The SPORT_ERR_B.DERRPSTAT bit indicates the error status for the
half SPORT's primary channel data buffers. During transmit (SPORT_
CTL_B.SPTRAN =1), SPORT_ERR_B.DERRPSTAT indicates transmit
underflow status. During receive (SPORT_CTL_B.SPTRAN =0),
SPORT_ERR_B.DERRPSTAT indicates receive overflow status. This bit
is used to clear the latch of SPORT status interrupt when triggered by
Primary Data Error. This bit can also be used to clear the read-only
SPORT_CTL_B.DERRPRI status bit.
0 No error
1 Error (transmit underflow or receive

overflow)

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–89

Half SPORT 'B' Multi-channel Status Register

The SPORT_MSTAT_B register indicates the current multi-channel being serviced among the half SPORT's
active channels in multi-channel mode. The half SPORT increments the value by one in this register as
each channel is serviced. The value in the SPORT_MSTAT_B register restarts at 0 at each frame sync.

Figure 26-37: SPORT_MSTAT_B Register Diagram

2
(R/W)

FSERRMSK Frame Sync Error (Interrupt) Mask.
The SPORT_ERR_B.FSERRMSK unmasks (enables) the half SPORT to
generate the frame sync error interrupt.
0 Mask (disable)
1 Unmask (enable)

1
(R/W)

DERRSMSK Data Error Secondary (Interrupt) Mask.
The SPORT_ERR_B.DERRSMSK unmasks (enables) the half SPORT to
generate the data error interrupt for the secondary channel.
0 Mask (disable)
1 Unmask (enable)

0
(R/W)

DERRPMSK Data Error Primary (Interrupt) Mask.
The SPORT_ERR_B.DERRPMSK unmasks (enables) the half SPORT to
generate the data error interrupt for the primary channel.
0 Mask (disable)
1 Unmask (enable)

Table 26-37: SPORT_ERR_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–90 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'B' Control 2 Register

The SPORT_CTL2_B register controls multiplexing options for sharing serial clock and frame sync signals
across the related half SPORTs.

Figure 26-38: SPORT_CTL2_B Register Diagram

Table 26-38: SPORT_MSTAT_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/NW)

CURCHAN Current Channel.
The SPORT_MSTAT_B.CURCHAN bits indicate the half SPORT's current
channel being serviced in multi-channel mode.

Table 26-39: SPORT_CTL2_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W)

CKMUXSEL Clock Multiplexer Select.
The SPORT_CTL2_B.CKMUXSEL bit enables multiplexing of the half
SPORT' serial clock. In this mode, the serial clock of the related half
SPORT is used instead of the half SPORT's own serial clock. For
example, if SPORT_CTL2_B.CKMUXSEL is enabled, half SPORT 'B' uses
SPT_ACLK instead of SPT_BCLK.
0 Disable serial clock multiplexing
1 Enable serial clock multiplexing

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–91

Half SPORT 'B' Tx Buffer (Primary) Register

The SPORT_TXPRI_B register buffers the half SPORT's primary channel transmit data. This register must
be loaded with the data to be transmitted if the half SPORT is configured to transmit on the primary
channel. Either a program running on the processor core may load the data into the buffer (word-by-word
process) or the DMA controller may automatically load the data into the buffer (DMA process).

The SPORT_TXPRI_B register acts as a three location buffer if SPORT data packing is disabled (SPORT_CTL_
B.PACK =0); while it acts as two location buffer when packing is enabled (SPORT_CTL_B.PACK =1). So
depending on PACK bit setting, two 32-bit words or three 32-bit words may be stored in the transmit
queue at any time. When the transmit register is loaded and any previous word has been transmitted, the
SPORT_TXPRI_B register contents are automatically loaded into the output shifter. The half SPORT may
issue an interrupt (transmit buffer is not full) when it has loaded the output transmit shifter, signifying that
the transmit buffer is ready to accept the next word. This interrupt does not occur when the half SPORT
is executing a DMA-based transfer.

Figure 26-39: SPORT_TXPRI_B Register Diagram

0
(R/W)

FSMUXSEL Frame Sync Multiplexer Select.
The SPORT_CTL2_B.FSMUXSEL bit enables multiplexing of the half
SPORT' frame sync. In this mode, the frame sync of the related half
SPORT is used instead of the half SPORT's own frame sync. For
example, if SPORT_CTL2_B.FSMUXSEL is enabled, half SPORT 'B' uses
SPT_AFS instead of SPT_BFS.
0 Disable frame sync multiplexing
1 Enable frame sync multiplexing

Table 26-39: SPORT_CTL2_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–92 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'B' Rx Buffer (Primary) Register

The SPORT_RXPRI_B register buffers the half SPORT's primary channel receive data. This buffer becomes
active when the half SPORT is configured to receive data on the primary channel. After a complete word
has been received in receive shifter, it is placed into the SPORT_RXPRI_B register. This data can be read in
core mode (in interrupt-based or polling-based mechanism) or directly DMA'd into processor memory
using DMA controller. With a data buffer and input shift register, the SPORT_RXPRI_B register acts as a
two-location buffer. So, the SPORT can keep Two 32-bit received words at max in any one time (indepen-
dent of the SPORT_CTL_A.PACK bit setting).

Figure 26-40: SPORT_RXPRI_B Register Diagram

Table 26-40: SPORT_TXPRI_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Transmit Buffer (Primary).
The SPORT_TXPRI_B.VALUE bits hold the half SPORT's primary
channel transmit data. Note that changes to the half SPORT
operation mode (for example, toggling the SPORT_MCTL_B.MCE)
empty the contents of this data buffer. For more information, see the
SPORT_CTL_B and SPORT_MCTL_B register descriptions.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–93

Half SPORT 'B' Tx Buffer (Secondary) Register

The SPORT_TXSEC_B register buffers the half SPORT's secondary channel transmit data. This register must
be loaded with the data to be transmitted if the half SPORT is configured to transmit on the secondary
channel. Either a program running on the processor core may load the data into the buffer (word-by-word
process) or the DMA controller may automatically load the data into the buffer (DMA process).

The SPORT_TXSEC_B register acts as a three location buffer if SPORT data packing is disabled (SPORT_CTL_
B.PACK =0); while it acts as two location buffer when packing is enabled (SPORT_CTL_B.PACK =1). So
depending on PACK bit setting, two 32-bit words or three 32-bit words may be stored in the transmit
queue at any time. When the transmit register is loaded and any previous word has been transmitted, the
SPORT_TXSEC_B register contents are automatically loaded into the output shifter. The half SPORT may
issue an interrupt (transmit buffer is not full) when it has loaded the output transmit shifter, signifying that
the transmit buffer is ready to accept the next word. This interrupt does not occur when the half SPORT
is executing a DMA-based transfer.

Figure 26-41: SPORT_TXSEC_B Register Diagram

Table 26-41: SPORT_RXPRI_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Receive Buffer (Primary).
The SPORT_RXPRI_B.VALUE bits hold the half SPORT's primary
channel receive data. Note that changes to the half SPORT operation
mode (for example, toggling the SPORT_MCTL_B.MCE) empty the
contents of this data buffer. For more information, see the SPORT_
CTL_B and SPORT_MCTL_B register descriptions.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–94 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Half SPORT 'B' Rx Buffer (Secondary) Register

The SPORT_RXSEC_B register buffers the half SPORT's primary channel receive data. This buffer becomes
active when the half SPORT is configured to receive data on the primary channel. After a complete word
has been received in receive shifter, it is placed into the SPORT_RXSEC_B register. This data can be read in
core mode (in interrupt-based or polling-based mechanism) or directly DMA'd into processor memory
using DMA controller. With a data buffer and input shift register, the SPORT_RXSEC_B register acts as a
two-location buffer. So, the SPORT can keep Two 32-bit received words at max in any one time (indepen-
dent of the SPORT_CTL_A.PACK bit setting).

Figure 26-42: SPORT_RXSEC_B Register Diagram

Table 26-42: SPORT_TXSEC_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Transmit Buffer (Secondary).
The SPORT_TXSEC_B.VALUE bits hold the half SPORT's secondary
channel transmit data. Note that changes to the half SPORT
operation mode (for example, toggling the SPORT_MCTL_B.MCE)
empty the contents of this data buffer. For more information, see the
SPORT_CTL_B and SPORT_MCTL_B register descriptions.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 26–95

Table 26-43: SPORT_RXSEC_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Receive Buffer (Secondary).
The SPORT_RXSEC_B.VALUE bits hold the half SPORT's secondary
channel receive data. Note that changes to the half SPORT operation
mode (for example, toggling the SPORT_MCTL_B.MCE) empty the
contents of this data buffer. For more information, see the SPORT_
CTL_B and SPORT_MCTL_B register descriptions.

SERIAL PORT (SPORT)
ADSP-BF60X SPORT REGISTER DESCRIPTIONS

26–96 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–1

27 ADC Control Module (ACM)

The processor includes an ADC control module (ACM) that provides an interface that synchronizes the
controls between the processor and an Analog-to-Digital Converter (ADC). The analog-to-digital conver-
sions are initiated by the processor, based on either external or internal events.

Traditionally, ADC sampling uses processor interrupts (initiated by the events) and the interrupt service
routine programming of the appropriate peripheral (usually SPORT or SPI) for initiating the ADC conver-
sion process. This traditional approach has some limiting factors:

• The ADC sampling instances are not precisely controlled due to interrupt latencies (which can vary)
or due to variable instruction execution cycles

• Consumption of processor MIPS can be prohibitive, especially for high frequency of conversion related
events.

• If the ADC requires any control signals (such as channel select pins, ADC mode select, ADC Range pin)
with some specified Set-up, Hold or Zero time requirements with respect to sampling time, then
providing such signals with GP flags may be difficult to implement in the application.

 The ADC control module (ACM) answers the limitations of the traditional approach to sampling by
providing a dedicated hardware, which samples the events and provides sampling signals with required
timings to the ADC in real-time. It permits flexible scheduling of sampling instants and provides precise
sampling signals to the ADC. The ACM approach both saves processor bandwidth and provides precise
control for ADC sampling time. Furthermore, the processor can be interfaced directly to many ADCs
without any glue logic required.

The ACM synchronizes the ADC conversion process (by providing ADC clock, ADC conversion start
signal, and related ADC controls), but the actual data acquisition from the ADC is accomplished by other
peripheral such as SPORT. On the ADSP-BF60x processors, the ADC module can be used in conjunction
with either halves of SPORT1. The processor does not support ACM operation with the SPI. The following
figure shows how an ADC can be interfaced using ACM and SPORT peripherals of processor.

ADC CONTROL MODULE (ACM)
ACM FEATURES

27–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 27-1: ADC/SPORT Interface

NOTE: The ADSP-BF60x processor does not include an on-chip, internal ADC.

ACM Features
The ADC Control Module (ACM) offers following features and capabilities:

• Provides serial clock, chip select and five general-purpose control lines to control the ADC operations.
Internally routes clock and CS signals to selected serial port.

• ACM can accept four trigger inputs, based on which it can precisely initiate the ADC sampling events.
The Trigger inputs may be internally generated or externally supplied. Further, polarity of trigger
inputs is configurable.

• ACM can handle 16 ADC sampling events per valid trigger received. Each event can be independently
programmed to specify when to initiate ADC sampling with respect to trigger input.

• Two independent 32-bit ACM Timers can be used to divide 16 events into two groups of 8 events each.

• Automatically stops the ACM Timer after completion of associated events in order to save the power.

• Four-deep pending FIFO to queue the active events when ACM is busy.

• ACM can internally generate serial clock up to SCLK/2 rate. Improved granularity for internal clock
generation, allowing both odd and even SCLK:ACLK ratios.

• ACM clock can be gated (active only during enabled events) to interface it with SPI-compatible ADC’s.

• When initiating ADC sampling cycle, the width of chip select signal-which can be also used by ADC as
start of conversion-, can be configured from 1 ACLK to 256 ACLKs. Further the polarity of this signal
can be configured as active-high or active-low signal.

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–3

• Auto ACLK adjustment at the time of CS assertion. After assertion of CS signal, the first edge of ACLK
can be configured to be either rising edge or falling edge.

• The five general-purpose control lines provided by ACM can be programmed for required Set-up and
Hold time with respect to ADC sampling cycle. Additionally, Zero time can be inserted between two
successive sampling cycles.

• ACM provides 16 Event Order registers (one per each event) which indicates the order at which events
were handled. Optionally these registers can be automatically cleared by ACM’s trigger input.

• The ACM hardware flags the appropriate event completion status bit upon completion of an event. If
an event got missed, appropriate event missed status bit is flagged. Each event has separate bits. Option-
ally Event Completion Interrupt and Event Missed Interrupt can be triggered upon these respective
conditions.

• Predictable latency between the internal occurrence of an event and the assertion of a sampling event.

• ACM can operate as Trigger Master to provide signal to TRU upon completion of events.

ACM Functional Description
The ADC Control Module uses internal ACM timers and the event time register to create events. The user
has to enable one of the timer (or both timers) for the ACM operation. Appropriate event control register
and event time register values also have to be programmed. After receiving valid trigger on selected trigger
input, the timer starts counting. If at anytime the timer count matches with the time specified in the event
time register (ACM_ETx) of an enabled event (associated with that timer), the comparators generate an
active event signal to the timing generation unit to start the ADC access. The counter continues counting,
and for each matching with enabled event time, the ACM gives an event signal to the timing generation
unit.

Figure shows the ACM operation where only two events (Event0 and Event3) are enabled. The line
labeled “ADC Controls” depicts the timing of the ADC control signals: A[4:0].

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

27–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 27-2: ACM Operation, Two Events

Note that, this figure depicts a usage case in which ACM Event3 Time register is programmed with a count
value that is greater than that programmed in Event0. So, Event3 occurs after Event0. There are, however,
no restrictions on the order of the different events. Event0 time can be greater than, less then or equal to
Event3 time.

If value in Event0 Time register is less than the value in Event3 Time, Event3 occurs after Event0; while
if the value in Event0 is greater than the value in Event3, then Event3 occurs before Event0. Whereas if
Event0 time is equal to the Event3 time, the events are processed according to their priorities. Only the
highest priority event is processed, and other lower priority event is missed (even if there is a space in
pending event FIFO), as both events, are handled by same ACM Timer. Event0 has the highest priority.
So in this case, the timing generation unit processes Event0, while Event3 is missed. In this case, the
Event3 missed status bit (EM3) is set in the missed event status register (ACM_ MEVSTAT), and the Event
Missed bit (EMISS) is set in the ACM Status (ACM_STAT) register, indicating that an event has been missed.

If event times are not sufficiently spaced apart, an event could occur while a previous event is underway
(while the CS of the previous event is asserted). In this situation, the second event is queued in the pending
event FIFO. If the pending event FIFO is full, the event will not get queued and will be missed. This can
happen mostly when enabling both ACM Timers with different trigger inputs and the sources of these trig-
gers are not synchronized together. In this case, it is possible that the events controlled by the two timers
to overlap. It is therefore important to consider the possibility of events occurring either simultaneously
or being missed when enabling events on two asynchronously-triggered timers. It is programmer’s respon-
sibility to ensure that the values in the event time registers do not lead to event misses. The appropriate
event miss bit in the ACM_ MEVSTAT and ACM_STAT registers will be flagged, upon missing any event.

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–5

When both ACM timers are enabled, and if they triggered the events simultaneously, the event triggered
by ACMTMR0 is given higher priority. For example, when an ACMTMR0 event (one of events 0 through 7) and
ACMTMR1 event (one of events 8 through 15) occur simultaneously, the ACMTMR0 event is processed by the
timing generation unit or is queued in the pending event FIFO before the processing or the queuing of the
ACMTMR1 event.

When all the events enabled for a given ACM timer (ACMTMRx) are processed, the ACM timer stops incre-
menting. (Note that this timer action is not reflected in Figure). And corresponding Event Completion bit
(ECOMPx) in the ACM Status register is flagged. The same bit also reflects in Event Compilation Status
register (ACM_EVSTAT), which can optionally generate Event Completion interrupt if the corresponding
bit in the Event Completion Interrupt mask register (ACM_EVMSK) is set. Two separate bits are available,
one for each ACM Timer.

The ACM can be used to generate various sequences of ADC sampling events through appropriate
programming of event time registers, event control registers, and triggers. For more information, see the
usage cases described in Emulation Mode Use Case.

ADSP-BF60x ACM Register List

The ADC control module (ACM) provides an interface that synchronizes the controls between the
processor and an analog-to-digital converter (ADC). The analog-to-digital conversions are initiated by the
processor, based on external or internal events. A set of registers govern ACM operations. For more infor-
mation on ACM functionality, see the ACM register descriptions.

Table 27-1: ADSP-BF60x ACM Register List

Name Description

ACM_CTL Control Register

ACM_TC0 Timing Configuration 0 Register

ACM_TC1 Timing Configuration 1 Register

ACM_STAT Status Register

ACM_EVSTAT Event Complete Status Register

ACM_EVMSK Event Complete Interrupt Mask Register

ACM_MEVSTAT Missed Event Status Register

ACM_MEVMSK Missed Event Interrupt Mask Register

ACM_EVCTLn Event N Control Register

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

27–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x ACM Interrupt List

ADSP-BF60x ACM Trigger List

ACM Event Handling Latency

The ACM ensures a predictable latency between the internal occurrence of an event (event time value
matching the ACM timer count value) and the assertion of a sampling event by the timing generation unit
(the assertion of CS and other ACM signals as appropriate).

ACM_EVTIMEn Event N Time Register

ACM_EVORDn Event N Order Register

ACM_TMR0 Timer 0 Register

ACM_TMR1 Timer 1 Register

Table 27-2: ADSP-BF60x ACM Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

ACM0 Event Miss 38 LEVEL
ACM0 Event Complete 39 LEVEL

Table 27-3: ADSP-BF60x ACM Trigger List Trigger Masters

Description Trigger ID Sensitivity

ACM0 Event Complete 19 LEVEL

Table 27-4: ADSP-BF60x ACM Trigger List Trigger Slaves

Description Trigger ID Sensitivity

ACM0 Trigger Input 2 33
ACM0 Trigger Input 3 34

Table 27-1: ADSP-BF60x ACM Register List (Continued)

Name Description

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–7

Latency between occurrence of Event to CS assertion = (tS + tED) SCLK cycles, where:

• tS= ADC control setup cycles programmed in ACM_TC0 register

• tED = 1 SCLK cycle latency

This predictable latency is applicable only when events are generated when the Timing Generation Unit is
idle. If this Timing Generation Unit was processing a prior sampling event, then the new event is held in
the Pending Event FIFO, and the latency is increase by the duration that the new event is held in the
pending event FIFO.

If an external trigger input is selected as a trigger input of the ACM, then synchronization to this external
signal leads to a 3 SCLK cycle fixed delay and 1 SCLK cycle variability due to delays in latching asynchronous
external triggers. When the external trigger is synchronous to SCLK, the 1 SCLK cycle variability is elimi-
nated and the latency from the external trigger to the start of the count of an ACM timer becomes fixed at
3 SCLK cycles. This latency is denoted as tTRIG.

As a result, the total latency between an external trigger and the assertion of an ADC sampling event,
assuming that the sampling event does is not queued in the pending event FIFO, is:

Total Latency = tTRIG + tED + tPD + tS

The following figure shows latency details from the occurrence of external triggers to the assertion of ADC
sampling events.

In the following figure, observe the following timing definitions:

• tTRIG = trigger to timer start delay (3 to 4 SCLK)

• tPD = Event Time (programmed in ACM_ETx register of event).

• tED = internal event delay (1 SCLK)

• tS = set up time (programmed in ACM_TC0 register)

• tCSW = CS width (programmed in ACM_TC0 register)

• tH = hold time (programmed in ACM_TC1 register)

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

27–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 27-3: Latency of External Triggers to Assertion of ADC Sampling Events

ACM Timing Specifications

The AC timing of the ACM signals are specified in the ADSP-BF60x Embedded Processor Data Sheet.
When trigger sources external to the processor are used for triggering the ACM (for example, external
signals on the GPIO, timer or PWM sync pins), the minimum pulse-width for such trigger sources needs
to be greater than one SCLK period in order to detect it as a valid trigger by the ACM trigger logic.

• When the ACM is used in conjunction with the SPORT, the setup and hold timing requirements for
the SPORT data signals with respect to ACLK are different from those requirements with respect to
internally-generated or externally-supplied SPORT clock. Consult the ADSP-BF60x Embedded
Processor Data Sheet for information on these timing requirements.

When using Gated clock mode (ACM_CTL.CLKMOD=1), the interfaced serial mode should also be configured
in Gated clock mode (SPORT_CTL.GCLKEN=1). In this case, it is required to satisfy some conditions in order
to set-up the serial port in Gated clock mode. These conditions are:

• The serial port needs at least 7 serial clock cycles between enabling the SPORT and first frame sync. If
this requirement is not met, the SPORT may drop the first data. (For subsequent data this requirement
is not applicable).

• The frame sync should be in the inactive (de-asserted) state when the SPORT is enabled. Otherwise one
extra cycle (in addition to the above mentioned) is needed before the frame sync can be applied. If this
requirement is not met, the SPORT may drop the first data.

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–9

ACM External Pin Timing

The ACM clock (ACLK) is derived internally from SCLK clock using the CKDIV divider specified in the ACM_
TC0 register. The other output signals such as ADC control pins (ACM_A[4:0]) and CS are driven on the
rising edge of SCLKclock. As a result, these signals may not synchronous to ACLK. The setup, hold, and
other timing parameters of the ADC control signals, width of CS signal and the frequency of ACLK can be
configured in the ACM timing configuration registers (ACM_TCx). The polarity of CS and ACLK can be
configured in the ACM control register (ACM_CTL). The timing parameters of the ADC control pins (ACM_
A[4:0]) cannot be individually specified.

The inactive period of CS (tCSIW as shown in the following figure) is the sum of the three timing parameters
– Setup Time (ts), Zero Time (tz) and the Hold Time (t H):

tCSIW = tS + tZ + tH.

Figure 27-4: ACLK Timing Reference

Appropriate specification of values of these three parameters can yield the desired inactive period of CS.

In order to provide a predictable latency from the occurrence of an internal event to the assertion of an
external ADC sampling event, the ADC controls and CS must be driven on the rising edge of SCLK. There-
fore, the Setup Time (Ts) of these signals is specified in terms of SCLK. However, the hold-time and zero-
time are specified in terms of ACLK cycles.

To achieve accurate timing relationship between CS and ACLK (which is a normally a free running clock),
the ACLK signal is re-aligned with the active edge of CS. This realignment of ACLK ensures that the setup
time of the first active edge of ACLK, with respect to the active edge of CS, is at least 1 ACLK cycle.

The figures in the following sections show various scenarios of ACLK re-alignment. All of these figures
assume an ACLK:SCLK ratio of 1:4.

• Case 1—Chip Select Asserted during the High Phase of ACLK

• Case 2—Chip Select Asserted During the Low Phase of ACLK

• Case 3—Chip Select Asserted Right Before the Falling Edge of ACLK

• Case 4—Chip Select Asserted Right Before the Rising Edge of ACLK

• Case 5—ACLK Polarity Set to 1 (CLKPOL=1)

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

27–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Notice that re-alignment of ACM clock causes suppression or extension of clock edges, leading to duty
cycle variation. It is important to ensure that systems interfacing with the ACM can tolerate such duty cycle
variation.

The figures show both the ACM-generated CS signal, which is output externally onto the appropriate
ACM0FS pin, and the serial port receive frame sync (SPORT1_xFS) signal, which is an internal signal that is
routed to the frame sync input of the appropriate SPORT.

Please note that ACM clock polarity can be configured using the CLKPOL bit of ACM control register. After
assertion of CS signal, the first edge of ACLK can be configured to be either rising edge or falling edge. Also,
by default the clock is free running; it is possible to gate the ACM clock during inactive CS period using the
CLKMOD bit of the same register.

Case 1—Chip Select Asserted During the High Phase of ACLK (CLKPOL=0)

The following figure shows the realignment of ACLK when CS is asserted during the high phase of ACLK.
The first edge of ACLK after the assertion of CS is the falling edge.

The two reference clock signals (RefACLK1 and RefACLK2) are shown to illustrate how the ACLK signal can
be generated from a free running clock (RefACLK1) in order to meet the timing requirements between
ACLK and CS. RefACLK2 is based on the free running clock RefACLK1, but is adjusted such that its period is
immediately reset upon the assertion of CS. The resulting ACLK signal, shown in the figure, is such that the
time from the active edge of CS to the falling edge of ACLK is constant at a period of 1ACLK cycle.

Figure 27-5: Chip Select Asserted During the High Phase of ACLK

Case 2—Chip Select Asserted During the Low Phase of ACLK (CLKPOL=0)

When CS is asserted during the low phase of ACLK, as shown in the following figure, ACLK is immediately
pulled high causing a duty cycle variation. In this case, similar to Case 1, the time from the active edge of
CS to the falling edge of ACLK is 1ACLK period.

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–11

Figure 27-6: Chip Select Asserted During the Low Phase of ACLK

Case 3—Chip Select Asserted Right Before the Falling Edge of ACLK (CLKPOL=1)

When CS is asserted right before the falling edge of ACLK, the falling edge of ACLK is suppressed, as shown
in the figure. This ensures that the time from the active edge of CS to the falling edge of ACLK is constant at
a period of 1ACLK cycle.

Figure 27-7: Chip Select Asserted Right Before the Falling Edge of ACLK

Case 4—Chip Select Asserted Right Before the Rising Edge of ACLK (CLKPOL=0)

When CS is asserted right before the rising edge of ACLK, the high phase of ACLK is extended, as shown in
Figure. This extension ensures that the time from the active edge of CS to the falling edge of ACLK is
constant at a period of 1ACLK cycle.

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

27–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 27-8: Chip Select Asserted Right Before the Rising Edge of ACLK

Case 5—ACLK Polarity Set to 1 (CLKPOL=1)

When the ACLK polarity is set to 1 (bitCLKPOL is set to 1 in the ACM Control register), the first ACLK edge
after the assertion of CS is the rising edge. The ACM ensures that the time from the active edge of CS to the
rising edge of ACLK has a constant duration of 1 ACLK cycle. The figure shows an example diagram of the
case where CLKPOL=1.

Figure 27-9: ACLK Polarity Set to 1

ACM Architectural Concepts

The following sections provide information on the architecture of the ACM module.

ACM Block Diagram

The ADC Control Module consists of two independent 32-bit ACM Timers, 16 Event Register pairs, 16
Event Comparators and a Timing Generation Unit.

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–13

ACM can accept four trigger inputs (internal as well as external signals); and on receiving a valid trigger
on selected trigger input, the ACM timer/s start counting (based on the Mode of ACM). The trigger input
can be independently selected for each timer.

 Two sets of 8 event register pairs (total 16 event register pairs) determines the ADC controls for each ADC
sampling, and also determines when the sampling happens. The Event register pair consists of: Event
Control Register (ACM_ERx) and the Event Time Register (ACM_ETx). The Event Comaparators Unit,
compares the ACM Timer's count with Event Time of associated enabled events and, upon matching the
count, signals appropriately to Timing Generation Unit. The Timing Generation Unit starts handling the
events by driving the CS and ACM[4:0] signals accordingly.

The ACM Block Diagram shows the structure of the ACM. The following sections discuss these blocks in
detail.

Figure 27-10: ACM Block Diagram

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

27–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ACM Trigger Inputs

ACM can accept four trigger inputs, based on which ACM timers start running at SCLK rate. ACM
contains two 32-bit internal timers; each can be independently configured to use one of these trigger
input. The two separate fields, TRGSEL0 and TRGSEL1, of ACM Control register selects the trigger input for
ACMTIMER0 and ACMTIMER1 respectively.

Therefore, ACM uses two trigger inputs when both ACM timers are enabled for different trigger inputs.
However, it uses only one trigger if both ACM Timers are enabled for same trigger input or if single ACM
Timer is enabled. The non-selected trigger inputs are ‘don’t care’ for ACM. So, at most two and at least one
selected trigger input should be active in the system for ACM to start it’s operation.

The four possible trigger inputs are briefly described below:

• ACMTriggerinput0 (ACM_T0) – PE8:

Trigger input- 0 is sourced from PE8 pin of the PORTE (sometimes also referred as GPIO[72]). When
ACM is enabled, input tap on PE8 pin is enabled; so, ACM trigger input can be from any source
(internal or external) depending on PE8 pin configuration.

When PE8 pin is configured in GPIO mode (FER=0), the source of GPIO signal may be either internal
or external depending on the GPIO direction configured in PORTE_DIR register. When PE8 pin is
configured in function mode (FER=1), the trigger- 0 input is sourced in from peripheral signals based
on PORTE_MUX register setting for PE8 pin. For example the ACM can source this trigger input from
PWM0_SYNC signal (internally generated by PWM unit or externally provided), if MUX bits for PE8 pin
are set to b#00. Whereas, if MUX bits for PE8 are configured to b#01, trigger input is sourced from PPI0_
FS1 signal (internally generated by EPPI0 unit or externally-generated).

So, FER and MUX bits for PE8 pin must be programmed appropriately considering the source of trigger
input. Enabling input tap ensures that ACM operation would not interfere with module driving the PE8
pin.

• ACMTriggerinput1 (ACM_T1) – PG5:

Trigger input- 1 is sourced from PG5 pin of the PORTG (sometimes also referred as GPIO[101]). When
ACM is enabled, input tap on PG5 pin is enabled; so, ACM trigger input can be from any source
(internal or external) depending on PG5 pin configuration.

When PG5 pin is configured in GPIO mode (FER=0), the source of GPIO signal may be either internal
or external depending on the GPIO direction configured in PORTG_DIR register. When PG5 pin is
configured in function mode (FER=1), the trigger- 1 input can be sourced in from peripheral signals
based on PORTG_MUX register setting for PG5 pin. E.g. ACM can source this trigger input from PWM1_
SYNC signal (internally generated by PWM unit or externally generated), when MUX bits for PG5 pin are
set to b#10.

So, FER and MUX bits for PG5 pin must be programmed appropriately considering the source of trigger
input. Enabling input tap ensures that ACM operation would not interfere with module driving the PG5
pin.

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–15

• ACMTriggerinput2 (ACM_T2) – ACMSlaveTriggerID33:

The Trigger Routing Unit of processor provides system-level sequence control without core interven-
tion. When this trigger input mode is selected, ACM acts as Trigger Slave and accepts trigger through
Trigger Slave ID- 33. The ‘Slave Select’ (SSR) field of TRU_SSR33 register should be configured to
receive triggers from a specific trigger Master. In this way, ACM_T2 trigger input can accept triggers
asserted by that particular trigger Master or through software by writing ID of that trigger Master to
one of the four fields in the TRU_MTR register. The trigger response from selected master is internally
routed to ACM trigger input. This way, ACM slave trigger ID- 33 is capable of receiving any one of the
86 internal triggers available.

• ACMTriggerinput3 (ACM_T3) – A CMSlaveTriggerID34:

Similar to ACM_T2 input, ACMTriggerInput3 (ACM_T3) is internally provided by Trigger Routing Unit
of the processor. When this trigger input mode is selected, ACM acts as Trigger Slave and accepts
trigger through Trigger Slave ID- 34. The ‘Slave Select’ (SSR) field of TRU_SSR34 register should be
configured to receive triggers from a specific trigger Master. In this way, ACM slave trigger ID 34 can
accept triggers asserted by that particular trigger Master or through software by writing ID of that
trigger Master to one of the four fields in the TRU_MTR register. The trigger response from selected
master is internally routed to ACM trigger input. This way, ACM slave trigger ID 34 is capable of
receiving any one of the 86 internal triggers available.

Refer Trigger Routing Unit chapter for more details about Trigger slaves and Trigger masters.

For all trigger input signals, the active edge of the trigger is programmable in the ACM Control register as
either rising edge or falling edge trigger.

The following figure shows the detailed ACM trigger generation logic.

Figure 27-11: Detailed ACM Trigger Generation Logic

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

27–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When trigger sources external to the processor (for example ACM_T[1:0]) are used for triggering the ACM
Timers, the minimum pulse width for such trigger sources needs to be greater than one SCLK period.

NOTE: A latency of no more than four SCLK cycles exists between external trigger and ACM Timer starts
counting. Please refer to ACM Event Handling Latency section for further details.

ACM Timers

The ACM module has two independent 32-bit timers (ACMTMR0 and ACMTMR1) which start counting at
system clock (SCLK) rate upon detecting valid trigger on selected trigger input. The timers can be inde-
pendently enabled using the timer enable bits (ACMTMR0EN, ACMTMR1EN) in the ACM Control register; and
can be independently configured for one of the four trigger inputs with configurable polarity of the signal.
At least one ACM timer should be enabled for proper ACM operation.

By default, each ACM timer has 8 event associated with it. If both timers are enabled, the Event[7:0] are
associated with ACMTMR0; while the Event[15:8] are associated with ACMTMR1. However, if only one timer
is enabled, all of the event registers are associated with that particular timer. For example, if only ACMTMR1
is enabled, (if ACMTMR0EN=0 and ACMTMR1EN=1), all 16 events, Event[15:0], will be handled by ACMTMR1.

These timers start counting when a trigger input occurs that is selected for that particular timer. The timer
only stops counting under one of the following conditions:

1. A timer rollover occurs.

2. All the events associated with the trigger have completed.

Note that a timer rollover can never happen, unless the Event Time Register of an event is programmed at
some point after the trigger occurs; this is a practice that is contrary to ACM programming guidelines.

In the second case, the exact time at which the Timer stops counting depends on the FIFO state when the
last event occurred internally.

If a trigger occurs while the timer is counting, the time resets and starts counting again. In this case, some
of the events may miss resulting in flagging appropriate status bit and optionally an Event Missed inter-
rupt.

When an ACM timer is disabled or the ACM itself is disabled, the timer resets to zero.

Event Register Pairs

An Event, for the ACM, is a point in time where ADC sampling has to happen on a particular channel of
the ADC with the specified control settings of the ADC.

ACM can handle total 16 events which are grouped into two sets of 8 events. As explained in ACM Timer
sections, either 8 events can be assigned to each of the timers (if both timers are enabled) or all 16 events
can be assigned to one particular timer (if only one timer is enabled).

All events can be independently configured and enabled. The enabled events determine the ADC controls
and timing for each ADC sampling interval. Each event consist a register pair comprising an event control

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–17

register (ACM_ERx) and an event time register (ACM_ETx). The ACM_ERx register enables a particular event
and determines settings for the ADC control lines (ACM_A[4:0]) for that particular ADC conversion. The
ACM_ETx register determines the time offset from the corresponding ACM timer trigger input to the start
of that particular event (i.e. when the event has to occur w.r.t. trigger input). This time offset should be
specified in terms of system clock 1 of the processor.

At least one event, associated with enabled ACM Timer, should be enabled for ACM to execute ADC
sampling.

Event Comparators Unit

The Event Comparator block consists of 16 event time comparators which determine when an enabled
event should happen. After detecting valid trigger on selected trigger input, ACM timer starts running at
system clock 1 rate. The comparators compare the ACM timer count with the event time specified in the
ACM_ETx register of the enabled event. If the time value matches, the comparators indicate an active event
signal to the timing generation unit.

If an event happens when another event is ongoing, the occurred event is stored in the pending event FIFO
of Timing Generation Unit. If more than one event associated with a ACM Timer are active during the
same SCLK cycle, only the highest priority event is processed, and all other events are missed (even if there
was space in the pending event FIFO). However, if both Timers are enabled and if multiple events associ-
ated with both ACM Timers are active at the same SCLK cycle, then two events, one highest priority active
event per each timer, are signaled.

The priority of events is fixed; event with lowest event ID has higher priority compared other events.

When both ACM Timers are enabled, Event0 has the highest priority and Event7 has the lowest priority
in the Event[0:7] group associated with ACMTIMER0. Similarly Event8 has the highest priority and
Event15 has the lowest priority in the Event[8:15] group associated with ACMTIMER1. So if Event1 and
Event5 occur simultaneously, then Event5 is missed, even if there is space in the pending FIFO. But
between the Event[0:7] and Event[8:15] group, simultaneous events can be written into the FIFO. For
example, if Event0 and Event9 occur together, then both are written into the FIFO, Event[0:7] group
has higher priority, so the order of Events in the FIFO is Event0 first and then Event9. If Event1, Event5,
Event9, Event15 happened together, then Event5, and Event15 are missed and Event1 and Event9 are
put into the FIFO (Event1 first followed by Event9). When events that are triggered by both timers occur
simultaneously, the event triggered by ACMTMR0 is given higher priority.

When only single ACM Timer is enabled, then all 16 events, Event[0:15], are assigned to that timer. So,
Event0 has highest priority; while Event15 has lowest priority. So, in this case, if Event1, Event5, Event9,
Event15 happened together, then only Event1 will be placed in forwarded, while Event5, Event9 and
Event15 will be missed, even if there is space in the pending FIFO.

If an event is missed, the EMISS bit in the ACM Status register (ACM_STAT) and the corresponding bit in
the ACM Event Missed Status register (ACM_MEVSTAT) are set.

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

27–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timing Generation Unit

After event signaling from event comparators, the timing generation unit initiates an ADC sampling
interval as per settings of that particular event. It generates ADC control signals based on the Event param-
eter field of the ACM_ERx register setting. The timings of output signals (ACLK, CS, A[4:0]) are determined
by the ACM Timing registers (ACM_TCx) which contains the fields like Set-up time, Hold time and Zero
time for these signals in addition to ACM clock divider.

The Pending FIFO is part of Timing Generation Unit. If an event happens when ACM is busy with another
event, the occurred event is stored in the pending event FIFO. This pending event is serviced (for example,
the ACM starts an ADC conversion for the event that occurred), after completion of ongoing event.

The pending event FIFO has a depth of 4, so it can hold up to four pending events. If an event occurs when
the pending event FIFO is full, that event is missed. If an event is missed, the EMISS bit is set in the ACM_
STAT register and the corresponding bit in the ACM_MEVSTAT register also is set.

On disabling the ACM, all the pending entries in the pending FIFO are flushed.

Status Flags and Interrupts

The ACM provides a read-only Status register (ACM_STAT) to check the module activities such as which
event is currently being serviced, whether any event has been missed events or all the events has been
serviced for the current trigger.

In addition to this Status register, ACM also provides two general-purpose status registers, ACM Event
Completion Status register (ACM_EVSTAT) and ACM Missed Event Status register (ACM_MEVSTAT). The
ACM_EVSTAT register specifies servicing of which enabled events has completed for a particular trigger
cycle; while ACM_MEVSTAT register specifies which enabled event has been missed for that particular trigger
cycle. This information is provided for all the 16 events via individual bits.

Based on these status bits, ACM can generate two interrupts, event completed or event missed, for each
event. These interrupts can be selectively enabled for particular ACM events via ACM Completed Event
Interrupt Mask Register (ACM_EVMSK) and ACM Missed Event Interrupt Mask Register (ACM_MEVMSK)
registers.

The Event Completion interrupt is generated only after the entire event completes externally (for example,
when CS signal goes inactive, and Hold Time (TH), Zero Time (TZ) periods are completed for that partic-
ular event). The ACM_EVSTAT register provides the status of each event indicating which event has caused
the interrupt. It is also possible to generate this interrupt when all the events associated with an ACM
Timer are completed for an ACM trigger cycle. This interrupt can be cleared by writing to the relevant W1C
(write 1 to clear) bit in ACM_EVSTAT register.

The Event Missed Interrupt is generated when an enabled event is missed for a trigger cycle and the corre-
sponding mask bit of ACM_MEVMSK register is set. The event might be missed in Event comparator unit if
more than one event, related to same Timer, are active during the same SCLK cycle; or it can be missed in
Timing Generation Unit if an event occur when event pending FIFO is full. The ACM_MEVSTAT register
provides the status of each missed event indicating which event miss caused the interrupt. This interrupt
can be cleared by writing the relevant W1C bit in the ACM_MEVSTAT register.

ADC CONTROL MODULE (ACM)
ACM FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–19

NOTE: A Status bit set either in ACM_EVSTAT or ACM_MEVSTAT registers triggers an interrupt only if the
corresponding bit in the ACM_EVMSK or ACM_MEVMSK registers is enabled.

In addition to Event Completion interrupt (upon completion of particular event or all events),
ACM can also provide an trigger output to Trigger Routing Unit of the processor. This trigger
output can be used by Trigger slaves for their operations without requiring core intervention.

Event Order Registers

For debugging purpose, BF60x ACM hardware includes 16 Event Order registers-one per each event-
which indicates the order in which the events were completed externally.

These registers are denoted as ACM_EVORDx, where x stands for event ID, 0 to 15. The 8-bit EVT_ORDER field
of this register indicates in which order the ADC data has been captured corresponding to the event. This
field accumulates the order count every trigger cycle, unless it is cleared in the software. At each trigger
cycle, the values of the register will be updated, so it must be read at the end of the each trigger cycle (as it
will write the new order value of the event in the next trigger cycle). Thus, the 8-bit field can store the order
of 256 data captures at a stretch, after which it will start the order count from zero again.

All the event registers can be reset in software by setting ORDR_RST bit of the ACM control register. When
set, it clears all the Event Order Register value to zero. This bit auto-clears to 0 after all ACM_EVORDx regis-
ters are cleared. These registers can also be cleared automatically by selected trigger input of ACM Timers,
if AOREN bit is set. The OTSEL bit of the ACM Control register determines which trigger input to select for
this auto-clearing.

The Event Order functionality is explained below with an example where ACM has only three events
enabled (let it be Event1, Event7 and Event13). Following figure shows how the Order register value of
these events will be at different stages.

Figure 27-12:

ADC CONTROL MODULE (ACM)
ACM PROGRAMMING CONCEPTS

27–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ACM Programming Concepts
 Since ACM module is being used with the SPORT, PWM, GPTIMER and GPIO; the programming must comply
with the following guidelines for reliable operation of the ACM.

• ACM is control module and provides clock and chip select and control signals with required timing.
But for capturing the data from ADC, one of the halve of SPORT1 is used.

• The ACM should be enabled before enabling the SPORT. But SPORT can be configured before enabling
ACM. SPORT should be configured in slave mode [external clock (ICLK=0), external frame sync(IFS=0)]
as receiver.

The timings of external ADC decide the settings of LFS, LAFS, CKRE bits of SPORT Control register.
Generally SPORT is configured in DSP serial mode to receive the ADC samples, but other operating
mode (such as multichannel) may be possible.

If ACM is supposed to be programmed to gated clock mode (CLKMOD=1), the serial port should also be
set in gated clock mode(GCLKEN=1).

• DMA mode of SPORT operation is preferred, as it saves the processor MIPS when receiving chunk of
data. However, receiving ADC sample in core mode is also possible. So, when using DMA mode, DMA
registers of selected SPORT should be configured appropriately; and DMA must be enabled before
enabling SPORT. When using both primary and secondary channels of SPORT to receive data from
two ADC channels, the 2D feature of DMA can be effectively used to de-interleave the data from two
channels. When using Core mode of SPORT operation, core handler should be registered to handle the
data read requests from SPORT receiver.

• In addition to SPORT register settings, the PORT registers should also be set properly to enable SPORT
Data pins, ACM clock, CS and Control pins. When using either of the ACM_T[1:0] trigger inputs for
ACM Timers, FER and MUX bits of corresponding pins (PE8 or PG5) must be configured properly
according to source of trigger input.

• When using ACM_T[2:3] trigger inputs for ACM timers, the Trigger Routing Unit can be configured
and enabled at this step. The corresponding Slave Trigger ID should be programmed properly using
Slave Select Register to select the required master trigger. When using these trigger inputs, the Slave
select register must not be configured when ACM is enabled, as default value of this register zero and
Master Trigger ID-0 is system reserved.

• Before enabling the ACM (by setting the ACMEN bit), all the control bits of ACM Control register should
be programmed properly. These control bits includes ACM trigger selects (TRGSELx), trigger input
polarities (TRGPOLx), CS signal polarity (CSPOL), ACM clock polarity (CLKPOL), ACM clock mode
(CLKMOD) and Serial port unit selection, Event order register settings.

• Configure the ACM Timing Control registers to define the ACM clock frequency and setup, hold &
zero time of ACM control signals.

• The Timer Enabled (TMRENx) bits, however, should be programmed together only after ACM is enabled
but once the bits are programmed it should not be changed later. Modifying these enable bits in the
ACM Control register is not recommended while the ACM is in operation. Doing so can cause events

ADC CONTROL MODULE (ACM)
ACM PROGRAMMING CONCEPTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–21

to change dependency from one timer to the other and can cause the values in the ACM status registers
(ACM_EVSTAT and ACM_STAT) to be inaccurate. This means that if both timers are required for use, then
enable them together after ACM is being enabled. If one timer is already enabled, then disable ACM,
re-enable ACM and then program both timer enable bits together. Similarly when both timers are
running, they should disabled together.

• Once configuration peripherals are done, ACM should be enabled first and then SPORT module
(SPORT DMA should be enabled before enabling SPORT, can be in previous steps also). Ideally trigger
should not active when enabling the ACM.

• After enabling ACM, the event register pairs (Event Control and Event Time registers) should be
configured and enabled to create required events.

• It should be noted that ACLK is an external clock relative to the SPORT peripheral. Therefore, any
SPORT requirements around a minimum number of stable external clock cycles before assertion of the
first SPORT frame sync need to observed. The SPORT requires a minimum of 3 clock cycles before it
is able to recognize a frame sync. When SPORT is configured in gated clock mode, this requirement
becomes a minimum of 7 SPORT clock cycles. Therefore the required number of ACLK cycles should
elapse before first assertion of CS. This can be guaranteed by any of the following methods:

– Ensuring that ACM triggers are generated at least 3ACLK cycles after the ACM is enabled.

– Ensuring that the event time value (ACM_ETx) of the first active event is such that 3ACLK cycles would
elapse before the event is processed.

• When the minimum number of ACLK cycles before the assertion of CS is not observed, the SPORT may
miss the data of the first ADC sampling event. There can be a software workaround for fulfilling this
requirement. Program the ACM_TC0 register (CKDIV value) after enabling the SPORT (subsequently
after enabling ACM) but before the trigger is applied. Since the default value of CLKDIV is 1, the ACLK
frequency is higher.Therefore the SPORT may receive the required clock cycles within short period of
time (before the Frame Sync arrives).

• When using ACM_T[2:3] trigger inputs, the master can enabled at last (if it configured only to provide
triggers to ACM) to generate the triggers.

• While disabling the ACM system, the SPORT should be disabled first, then DMA and finally the ACM
should be disabled.

Emulation Mode Use Case

This section describes the usage modes of the ACM by illustrating how to implement various sequencing
ADC sampling modes.

Single-Shot Sequencing Mode Emulation

In single-shot sequencing mode, all enabled events are sequentially issued one after the other on the occur-
rence of an ACM trigger. The sequence of events is fixed, starting with Event0 and ending with Event15.

ADC CONTROL MODULE (ACM)
ACM PROGRAMMING CONCEPTS

27–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The following figure shows an example of single-shot sequencing mode where only Event0 and Event1
are enabled. ETIME0 is the value written into the ACM_ET0 register, and ACMTMR0 is enabled in this mode.
To emulate this mode of operation using the ACM.

Figure 27-13: Single Shot Sequencing

• Configure the appropriate trigger source for initiating ACM activity. Please refer to “Interface Over-
view” for information on signals that can trigger the ACM counters.

• Enable only one ACM timer (ACMTMR0)

• Enable events and program the event time values as: Event0 time = X, Event1 time = X + Y, Event2
time = X + 2Y where:

X = ETIME0, the initial time offset from trigger (if needed)

Y = tH + tCSW + tS + tZ, where tH is the hold time, tZ is the zero t time, and tS is the setup time for ACM
Control lines as specified in ACM Timing Registers. For more information, refer "ACM External Pin
Timing" section.

NOTE: Y has to be slightly less than the above value to ensure that the next event occurs before the first
event completes, so that the next event is in the pending FIFO and enables the transitions between events
without a break.

Continuous Sequencing Mode Emulation

Continuous sequencing mode is similar to single-shot sequencing mode, except in continuous sequencing
the event sequencing is continuously repeated. As in single-shot mode, the time offset is programmable in
continuous mode. The trigger in continuous mode is relevant only for the first time. Therefore, any subse-
quent triggers after the first active edge of the trigger are neglected.

The following figure shows an example of continuous sequencing mode with only two events – Event0,
Event1 enabled. To emulate continuous sequencing mode using ACM:

ADC CONTROL MODULE (ACM)
ACM PROGRAMMING CONCEPTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–23

Figure 27-14: Continuous Sequencing

• Enable only one ACM Timer (say ACMTIMER0). Select Timer trigger input as from TRU of processor i.
e. either of the ACM_T[3:2].

If ACM_T2 is selected, program ACM Slave Trigger ID-33 to select ACM Event Completion (whose
master Trigger ID is 19) as trigger input. If ACM_T3 is selected as trigger input, configure ACM Slave
Trigger ID-34.

• Configure rest of the settings required by programming ACM Control and Timing Registers.

• Enable ACM Events with required ACM Control lines settings.

Program the Event time registers as: Event0 time = X, Event1 time = X + Y, Event 2 time = X + 2Y
where:

X and Y values, in terms of SCLK, are as described in the single-shot case (Y can be slightly less than tH
+ tCSW + tS + tZ to avoid any break between Events)

• Configure and enable System event controller.

Also configure, map and enable the ACM Event Completion interrupt which will interrupt upon
completion of all enabled ACM Events for the current trigger. That means, set only ECOMP0 (or ECOMP1,
if using ACMTIMER1) bit of ACM Event Interrupt Mask (ACM_EVMSK) register.

• Enable ACM, SPORT and SPORT DMA as per the guidelines given in "Programming Concepts"
section.

• Since we have configured ACM Trigger input as ACM Event Completion trigger output, the first
trigger is necessary to start the ACM operation. We can provide this dummy trigger by writing Master
Trigger ID into Master Trigger register (TRU0_MTR).

So, write ACM Event Completion Trigger ID (19) into TRU0_MTR register. This will trigger the ACM
Timers and ACM will start handling the events.

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• After completing all events, ACM will provide Event Completion Trigger and corresponding interrupt
will be generated. The ACM Trigger output will be provided to ACM Timers which will reset it's
counter and start running from zero, which will cause ACM to re-handle all the enabled ACM events.
And this sequence continues.

However, in order to provide the Trigger outputs properly, the interrupt latch must be cleared in the
ISR by clearing ECOMP0S (or ECOMP1S, if using ACMTIMER1) bit of the ACM Event Completion Status
register (ACM_EVSTAT).

ADSP-BF60x ACM Register Descriptions
ADC Control Module (ACM) contains the following registers.

Table 27-5: ADSP-BF60x ACM Register List

Name Description

ACM_CTL Control Register

ACM_TC0 Timing Configuration 0 Register

ACM_TC1 Timing Configuration 1 Register

ACM_STAT Status Register

ACM_EVSTAT Event Complete Status Register

ACM_EVMSK Event Complete Interrupt Mask Register

ACM_MEVSTAT Missed Event Status Register

ACM_MEVMSK Missed Event Interrupt Mask Register

ACM_EVCTLn Event N Control Register

ACM_EVTIMEn Event N Time Register

ACM_EVORDn Event N Order Register

ACM_TMR0 Timer 0 Register

ACM_TMR1 Timer 1 Register

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–25

Control Register

The ACM_CTL register enables and selects the various modes of operation of the ACM.

Figure 27-15: ACM_CTL Register Diagram

Table 27-6: ACM_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

EPS External Peripheral Select.
The ACM_CTL.EPS bit selects whether the ACM interfaces to half
SPORT1 A or half SPORT1 B.
0 Half SPORT1 A Interfaces to ACM
1 Half SPORT1 B Interfaces to ACM

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

14
(R/W)

OTSEL Order Trigger Select.
The ACM_CTL.OTSEL bit selects whether TMR0 or TMR1 triggers a
reset of the event order (ACM_EVORDn) registers. This bit is applicable
only if the ACM_CTL.AOREN bit is set.
0 ACM TMR0 Triggers Reset of Order

Registers
1 ACM TMR1 Triggers Reset of Order

Registers
13
(R/W)

AOREN Automatic Order Reset Enable.
The ACM_CTL.AOREN bit enables automatic reset of the event order
(ACM_EVORDn) registers, based on the selected timer trigger. The ACM_
CTL.OTSEL bit selects the trigger.
0 Disable Automatic Order Reset
1 Enable Automatic Order Reset

12
(R/W)

ORST Order Register Reset.
The ACM_CTL.ORST bit resets the event order (ACM_EVORDn) registers'
value to 0. This bit auto-clears to 0 after the ACM_EVORDn registers are
cleared.

11
(R/W)

CLKMOD ADC Clock Mode.
The ACM_CTL.CLKMOD bit selects whether the ADC clock mode is
gated (ACM_CLK is gated when the ADC CS is inactive) or continuous
(ACM generates continuous ACM_CLK).
0 Continuous Clock Mode
1 Gated Clock Mode

10
(R/W)

CLKPOL Clock Polarity.
The ACM_CTL.CLKPOL bit selects whether the rising or falling edge of
ACM_CLK comes after ADC CS becomes active.
0 Falling Edge of Clock After CS
1 Rising Edge of Clock After CS

9
(R/W)

CSPOL Chip Select Polarity.
The ACM_CTL.CSPOL bit selects whether ADC CS is active high or
low.
0 Active Low CS
1 Active High CS

Table 27-6: ACM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–27

8
(R/W)

TRGPOL1 Trigger Polarity TMR1.
The ACM_CTL.TRGPOL1 bit selects whether the trigger polarity for
ACM TMR1 is falling or rising edge.
0 Rising Edge Trigger
1 Falling Edge Trigger

7
(R/W)

TRGPOL0 Trigger Polarity TMR0.
The ACM_CTL.TRGPOL0 bit selects whether the trigger polarity for
ACM TMR0 is falling or rising edge.
0 Rising Edge Trigger
1 Falling Edge Trigger

6:5
(R/W)

TRGSEL1 Trigger Select TMR1.
The ACM_CTL.TRGSEL1 bits selects the external trigger for ACM
TMR1.
0 Trigger 0 (ACM_T0 Pin)
1 Trigger 1 (ACM_T1 Pin)
2 Trigger 2 (Trigger Input 2 - TRU Slave)
3 Trigger 3 (Trigger Input 3 - TRU Slave)

4:3
(R/W)

TRGSEL0 Trigger Select TMR0.
The ACM_CTL.TRGSEL0 bits selects the external trigger for ACM
TMR0.
0 Trigger 0 (ACM_T0 Pin)
1 Trigger 1 (ACM_T1 Pin)
2 Trigger 2 (Trigger Input 2 - TRU Slave)
3 Trigger 3 (Trigger Input 3 - TRU Slave)

2
(R/W)

TMR1EN TMR1 Enable.
The ACM_CTL.TMR1EN bit enables ACM TMR1.
0 Disable ACM TMR1
1 Enable ACM TMR1

1
(R/W)

TMR0EN TMR0 Enable.
The ACM_CTL.TMR0EN bit enables ACM TMR0.
0 Disable ACM TMR0
1 Enable ACM TMR0

Table 27-6: ACM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timing Configuration 0 Register

The ACM_TC0 register determines the frequency of ACM_CLK (using the ACM_TC0.CKDIV field) and the setup
cycles (using the ACM_TC0.SC field) for the ADC controls. Note that the setup cycles are specified in terms
of SCLK.

Figure 27-16: ACM_TC0 Register Diagram

0
(R/W)

EN ACM Enable.
The ACM_CTL.EN bit enables ACM operation.
0 Disable ACM
1 Enable ACM

Table 27-7: ACM_TC0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27:16
(R/W)

SC Setup Cycle.
The ACM_TC0.SC bits select the ADC control (ACM_A0, ACM_A1, ACM_
A2, ACM_A3, and others) setup time in SCLK cycles with respect to
ADC CS active edge. The setup time may be calculated from:
Setup Time = ACM_TC0.SC + 1
The maximum setup cycle time is 4096*SCLK, and the minimum
setup cycle time is 1 SCLK.
0 1 SCLK Cycle Setup Time
1 2 SCLK Cycles Setup Time
4095 4096 SCLK Cycles Setup Time

Table 27-6: ACM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–29

Timing Configuration 1 Register

The ACM_TC1 register provides programmability for the active duration of chip select (TCSW), Hold Cycles
(TH), and Zero Cycles (TZ) for ADC controls.

Figure 27-17: ACM_TC1 Register Diagram

7:0
(R/W)

CKDIV Clock Divisor.
The ACM_TC0.CKDIV bits select the frequency of ACM_CLK as a
function of the system clock frequency (SCLK) and the value of the
CKDIV field according to the formula:
ACM_CLK frequency = (SCLK frequency)/(ACM_TC0.CKDIV + 1)
The maximum ACM_CLK frequency is SCLK/2, and the minimum
ACM_CLK frequency is SCLK/256. For example, for a 100 MHz SCLK,
the ACM_CLK frequency range is from 390 KHz to 50 MHz.
Note that the value ACM_TC0.CKDIV =0 is reserved.

Table 27-8: ACM_TC1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:12
(R/W)

ZC Zero Cycle.
The ACM_TC1.ZC bits select the ADC control zero duration. All ADC
controls are driven low for ACM_TC1.ZCACM_CLK cycles.
0 0 Zero Cycles
1 1 Zero Cycle
15 15 Zero Cycles

Table 27-7: ACM_TC0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Status Register

The ACM_STAT register indicates the ACM event currently being serviced, any pending events, any missed
events, and any missed triggers.

Figure 27-18: ACM_STAT Register Diagram

11:8
(R/W)

HC Hold Cycle.
The ACM_TC1.HC bits select the ADC control hold duration. All ADC
controls are held after the inactive edge of CS for ACM_TC1.HCACM_
CLK cycles.
0 0 Hold Cycles
1 1 Hold Cycle
15 15 Hold Cycles

7:0
(R/W)

CSW Chip Select Width.
The ACM_TC1.CSW bits select the active duration of CS. The CS is
active for ACM_TC1.CSWACM_CLK +1 cycles.
0 1 Active CS Cycle
1 2 Active CS Cycles
15 16 Active CS Cycles
255 256 Active CS Cycles

Table 27-8: ACM_TC1 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–31

Event Complete Status Register

The ACM_EVSTAT register identifies which enabled event has occurred for a particular trigger cycle. When
an ACM_EVSTAT bit is cleared (=0), this status indicates that the ACM has not begun or completed conver-

Table 27-9: ACM_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/NW)

CEVNT Current Event.
The ACM_STAT.CEVNT bits indicates to which event (0 through 15)
the ongoing access (current event, if any) corresponds.
0 Current Event Correspond to Event 0
1 Current Event Correspond to Event 1
15 Current Event Correspond to Event 15

3
(R/NW)

ECOM1 Event Completion 1.
The ACM_STAT.ECOM1 bit indicates TMR1 event completion for all
enabled ACM TMR1 events and the current trigger. The ACM clears
this bit with each trigger.
0 No Status
1 ACM TMR1 Events Complete

2
(R/NW)

ECOM0 Event Completion 0.
The ACM_STAT.ECOM0 bit indicates TMR0 event completion for all
enabled ACM TMR0 events and the current trigger. The ACM clears
this bit with each trigger.
0 No Status
1 ACM TMR0 Events Complete

1
(R/NW)

EMISS Event(s) Missed.
The ACM_STAT.EMISS bit indicates when an event is missed (any bits
in ACM_MEVSTAT set). This bit is cleared by writing into the ACM_
MEVSTAT register.
0 No Missed Event(s)
1 Missed Event(s)

0
(R/NW)

BSY Busy.
The ACM_STAT.BSY bit indicates when the ACM is busy (an external
sampling event in progress; CS is active or about to go active).
0 Idle
1 Busy

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

sion for the corresponding event (conversion not done). When an ACM_EVSTAT bit is set (=1), this status
indicates that the ACM has completed conversion for the corresponding event (conversion done).

Figure 27-19: ACM_EVSTAT Register Diagram

Table 27-10: ACM_EVSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

17
(R/W1C)

ECOM1S Event Complete 1 Status.
The ACM_EVSTAT.ECOM1S bit indicates the state of the ACM_STAT.
ECOM1 bit. If set and the corresponding bit in ACM_EVMSK is set
(interrupt enabled), the condition generates an interrupt. This bit is
W1C and is not cleared by trigger.
0 No Status
1 ACM_STAT.ECOM1 =1 Occurred

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–33

16
(R/W1C)

ECOM0S Event Complete 0 Status.
The ACM_EVSTAT.ECOM0S bit indicates the state of the ACM_STAT.
ECOM0 bit. If set and the corresponding bit in ACM_EVMSK is set
(interrupt enabled), the condition generates an interrupt. This bit is
W1C and is not cleared by trigger.
0 No Status
1 ACM_STAT.ECOM0 =1 Occurred

15
(R/W1C)

EV15 Event 15 Status.
The ACM_EVSTAT.EV15 bit indicates when the ACM has completed
the conversion for event 15. If set and the corresponding bit in ACM_
EVMSK is set (interrupt enabled), the condition generates an interrupt.
This bit is W1C.
0 No Event 15 Conversion
1 Event 15 Conversion Done

14
(R/W1C)

EV14 Event 14 Status.
The ACM_EVSTAT.EV14 bit indicates when the ACM has completed
the conversion for event 14. If set and the corresponding bit in ACM_
EVMSK is set (interrupt enabled), the condition generates an interrupt.
This bit is W1C.
0 No Event 14 Conversion
1 Event 14 Conversion Done

13
(R/W1C)

EV13 Event 13 Status.
The ACM_EVSTAT.EV13 bit indicates when the ACM has completed
the conversion for event 13. If set and the corresponding bit in ACM_
EVMSK is set (interrupt enabled), the condition generates an interrupt.
This bit is W1C.
0 No Event 13 Conversion
1 Event 13 Conversion Done

12
(R/W1C)

EV12 Event 12 Status.
The ACM_EVSTAT.EV12 bit indicates when the ACM has completed
the conversion for event 12. If set and the corresponding bit in ACM_
EVMSK is set (interrupt enabled), the condition generates an interrupt.
This bit is W1C.
0 No Event 12 Conversion
1 Event 12 Conversion Done

Table 27-10: ACM_EVSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

11
(R/W1C)

EV11 Event 11 Status.
The ACM_EVSTAT.EV11 bit indicates when the ACM has completed
the conversion for event 11. If set and the corresponding bit in ACM_
EVMSK is set (interrupt enabled), the condition generates an interrupt.
This bit is W1C.
0 No Event 11 Conversion
1 Event 11 Conversion Done

10
(R/W1C)

EV10 Event 10 Status.
The ACM_EVSTAT.EV10 bit indicates when the ACM has completed
the conversion for event 10. If set and the corresponding bit in ACM_
EVMSK is set (interrupt enabled), the condition generates an interrupt.
This bit is W1C.
0 No Event 10 Conversion
1 Event 10 Conversion Done

9
(R/W1C)

EV9 Event 9 Status.
The ACM_EVSTAT.EV9 bit indicates when the ACM has completed the
conversion for event 9. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 9 Conversion
1 Event 9 Conversion Done

8
(R/W1C)

EV8 Event 8 Status.
The ACM_EVSTAT.EV8 bit indicates when the ACM has completed the
conversion for event 8. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 8 Conversion
1 Event 8 Conversion Done

7
(R/W1C)

EV7 Event 7 Status.
The ACM_EVSTAT.EV7 bit indicates when the ACM has completed the
conversion for event 7. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 7 Conversion
1 Event 7 Conversion Done

Table 27-10: ACM_EVSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–35

6
(R/W1C)

EV6 Event 6 Status.
The ACM_EVSTAT.EV6 bit indicates when the ACM has completed the
conversion for event 6. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 6 Conversion
1 Event 6 Conversion Done

5
(R/W1C)

EV5 Event 5 Status.
The ACM_EVSTAT.EV5 bit indicates when the ACM has completed the
conversion for event 5. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 5 Conversion
1 Event 5 Conversion Done

4
(R/W1C)

EV4 Event 4 Status.
The ACM_EVSTAT.EV4 bit indicates when the ACM has completed the
conversion for event 4. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 4 Conversion
1 Event 4 Conversion Done

3
(R/W1C)

EV3 Event 3 Status.
The ACM_EVSTAT.EV3 bit indicates when the ACM has completed the
conversion for event 3. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 3 Conversion
1 Event 3 Conversion Done

2
(R/W1C)

EV2 Event 2 Status.
The ACM_EVSTAT.EV2 bit indicates when the ACM has completed the
conversion for event 2. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 2 Conversion
1 Event 2 Conversion Done

Table 27-10: ACM_EVSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Event Complete Interrupt Mask Register

The ACM_EVMSK register enables interrupts corresponding to status bits in the ACM_EVSTAT register. When
an ACM_EVMSK bit is set (=1), an interrupt is generated when the corresponding event complete bit is set
(bit in ACM_EVSTAT is set).

1
(R/W1C)

EV1 Event 1 Status.
The ACM_EVSTAT.EV1 bit indicates when the ACM has completed the
conversion for event 1. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 1 Conversion
1 Event 1 Conversion Done

0
(R/W1C)

EV0 Event 0 Status.
The ACM_EVSTAT.EV0 bit indicates when the ACM has completed the
conversion for event 0. If set and the corresponding bit in ACM_EVMSK
is set (interrupt enabled), the condition generates an interrupt. This
bit is W1C.
0 No Event 0 Conversion
1 Event 0 Conversion Done

Table 27-10: ACM_EVSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–37

Figure 27-20: ACM_EVMSK Register Diagram

Table 27-11: ACM_EVMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

17
(R/W)

IECOM1 Event Complete 1 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

16
(R/W)

IECOM0 Event Complete 0 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

15
(R/W)

EV15 Event 15 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

14
(R/W)

EV14 Event 14 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

13
(R/W)

EV13 Event 13 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

12
(R/W)

EV12 Event 12 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

11
(R/W)

EV11 Event 11 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

10
(R/W)

EV10 Event 10 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

9
(R/W)

EV9 Event 9 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

8
(R/W)

EV8 Event 8 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

7
(R/W)

EV7 Event 7 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

6
(R/W)

EV6 Event 6 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

Table 27-11: ACM_EVMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–39

Missed Event Status Register

The ACM_MEVSTAT register indicates which enabled event has been missed for a particular trigger cycle.
When an ACM_MEVSTAT bit is set (=1), this status indicates that corresponding event was missed. This
status generates an interrupt if the corresponding bit in the ACM_MEVMSK register is set.

5
(R/W)

EV5 Event 5 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

4
(R/W)

EV4 Event 4 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

3
(R/W)

EV3 Event 3 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

2
(R/W)

EV2 Event 2 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

1
(R/W)

EV1 Event 1 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

0
(R/W)

EV0 Event 0 Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

Table 27-11: ACM_EVMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 27-21: ACM_MEVSTAT Register Diagram

Table 27-12: ACM_MEVSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

EV15 Event 15 Missed.
The ACM_MEVSTAT.EV15 bit indicates when an instance of event 15
has been missed since the last trigger. If set and the corresponding bit
in ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 15 Missed Status
1 Event 15 Missed

14
(R/W1C)

EV14 Event 14 Missed.
The ACM_MEVSTAT.EV14 bit indicates when an instance of event 14
has been missed since the last trigger. If set and the corresponding bit
in ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 14 Missed Status
1 Event 14 Missed

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–41

13
(R/W1C)

EV13 Event 13 Missed.
The ACM_MEVSTAT.EV13 bit indicates when an instance of event 13
has been missed since the last trigger. If set and the corresponding bit
in ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 13 Missed Status
1 Event 13 Missed

12
(R/W1C)

EV12 Event 12 Missed.
The ACM_MEVSTAT.EV12 bit indicates when an instance of event 12
has been missed since the last trigger. If set and the corresponding bit
in ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 12 Missed Status
1 Event 12 Missed

11
(R/W1C)

EV11 Event 11 Missed.
The ACM_MEVSTAT.EV11 bit indicates when an instance of event 11
has been missed since the last trigger. If set and the corresponding bit
in ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 11 Missed Status
1 Event 11 Missed

10
(R/W1C)

EV10 Event 10 Missed.
The ACM_MEVSTAT.EV10 bit indicates when an instance of event 10
has been missed since the last trigger. If set and the corresponding bit
in ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 10 Missed Status
1 Event 10 Missed

9
(R/W1C)

EV9 Event 9 Missed.
The ACM_MEVSTAT.EV9 bit indicates when an instance of event 9 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 9 Missed Status
1 Event 9 Missed

Table 27-12: ACM_MEVSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

8
(R/W1C)

EV8 Event 8 Missed.
The ACM_MEVSTAT.EV8 bit indicates when an instance of event 8 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 8 Missed Status
1 Event 8 Missed

7
(R/W1C)

EV7 Event 7 Missed.
The ACM_MEVSTAT.EV7 bit indicates when an instance of event 7 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 7 Missed Status
1 Event 7 Missed

6
(R/W1C)

EV6 Event 6 Missed.
The ACM_MEVSTAT.EV6 bit indicates when an instance of event 6 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 6 Missed Status
1 Event 6 Missed

5
(R/W1C)

EV5 Event 5 Missed.
The ACM_MEVSTAT.EV5 bit indicates when an instance of event 5 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 5 Missed Status
1 Event 5 Missed

4
(R/W1C)

EV4 Event 4 Missed.
The ACM_MEVSTAT.EV4 bit indicates when an instance of event 4 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 4 Missed Status
1 Event 4 Missed

Table 27-12: ACM_MEVSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–43

Missed Event Interrupt Mask Register

The ACM_MEVMSK register enables interrupts corresponding to status bits in the ACM_MEVSTAT register.
When an ACM_MEVMSK bit is set (=1), an interrupt is generated when the corresponding event missed bit is
set (bit in ACM_MEVSTAT is set).

3
(R/W1C)

EV3 Event 3 Missed.
The ACM_MEVSTAT.EV3 bit indicates when an instance of event 3 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 3 Missed Status
1 Event 3 Missed

2
(R/W1C)

EV2 Event 2 Missed.
The ACM_MEVSTAT.EV2 bit indicates when an instance of event 2 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 2 Missed Status
1 Event 2 Missed

1
(R/W1C)

EV1 Event 1 Missed.
The ACM_MEVSTAT.EV1 bit indicates when an instance of event 1 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 1 Missed Status
1 Event 1 Missed

0
(R/W1C)

EV0 Event 0 Missed.
The ACM_MEVSTAT.EV0 bit indicates when an instance of event 0 has
been missed since the last trigger. If set and the corresponding bit in
ACM_MEVMSK is set (interrupt enabled), the condition generates an
interrupt. This bit is W1C.
0 No Event 0 Missed Status
1 Event 0 Missed

Table 27-12: ACM_MEVSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 27-22: ACM_MEVMSK Register Diagram

Table 27-13: ACM_MEVMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

EV15 Event 15 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

14
(R/W)

EV14 Event 14 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–45

13
(R/W)

EV13 Event 13 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

12
(R/W)

EV12 Event 12 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

11
(R/W)

EV11 Event 11 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

10
(R/W)

EV10 Event 10 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

9
(R/W)

EV9 Event 9 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

8
(R/W)

EV8 Event 8 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

7
(R/W)

EV7 Event 7 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

6
(R/W)

EV6 Event 6 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

5
(R/W)

EV5 Event 5 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

4
(R/W)

EV4 Event 4 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

Table 27-13: ACM_MEVMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Event N Control Register

The ACM_EVCTLn registers each hold the ADC control value corresponding to the event related to the
register. These registers each have an event enable bit, permitting selective enabling of a particular event.

Note that the ACM_EVCTLn register should not be programmed when an event is active. The register might
give incorrect results. The user should program this register before giving trigger and should re-program
the register after all the events are complete (ACM_STAT.ECOM1 or ACM_STAT.ECOM0 bit is set). Also note
that even if none of the events are enabled in the ACM_EVCTLn register (for example, all ACM_EVCTLn.ENAEV
=0), the ACM_STAT.ECOM0 or ACM_STAT.ECOM1 bit is set and an interrupt is raised (if unmasked) if a trigger
is applied with the Timer enabled.

Figure 27-23: ACM_EVCTLn Register Diagram

3
(R/W)

EV3 Event 3 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

2
(R/W)

EV2 Event 2 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

1
(R/W)

EV1 Event 1 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

0
(R/W)

EV0 Event 0 Missed Interrupt Enable.
0 Disable (Mask) Interrupt
1 Enable (Unmask) Interrupt

Table 27-13: ACM_MEVMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–47

Event N Time Register

The ACM_EVTIMEn registers each hold a 32-bit event time value. There are 16 event time registers: 8 are
assigned to each ACM timer, if both timers are enabled. If only one timer is enabled, all 16 of the ACM_
EVTIMEn registers are assigned to the enabled timer.

Note that the ACM_EVTIMEn register should not be programmed when an event is active. The register might
give incorrect results. The user should program this register before giving trigger and should re-program
the register after all the events are complete (ACM_STAT.ECOM1 or ACM_STAT.ECOM0 bit is set). Also note
that even if none of the events are enabled in the ACM_EVTIMEn register (for example, all ACM_EVCTLn.
ENAEV =0), the ACM_STAT.ECOM0 or ACM_STAT.ECOM1 bit is set and an interrupt is raised (if unmasked) if
a trigger is applied with the Timer enabled.

Table 27-14: ACM_EVCTLn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5:1
(R/W)

EPF Event Parameter Field.
The ACM_EVCTLn.EPF bits select values for the ADC control pins
(ACM_A0, ACM_A1, ACM_A2, and ACM_A3), which are output when the
enabled event occurs. Selection of ACM_EVCTLn.EPF values are based
on the type of ADC, usage mode, and other items. For more
information, see the operating modes section. Note that all ACM_
EVCTLn.EPF bits have the same external pin timing.

0
(R/W)

ENAEV Enable Event.
The ACM_EVCTLn.ENAEV bit causes a sampling event to occur to the
ADC with the ADC controls selected by the ACM_EVCTLn.EPF field
when an event (time comparison match or other external trigger)
occurs. If disabled, the corresponding event has no significance, and
the control values is not used.
0 Disable Event
1 Enable Event

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 27-24: ACM_EVTIMEn Register Diagram

Event N Order Register

The ACM_EVORDn registers hold the order in which ADC data has been captured corresponding to the
event. These registers can store the order of 256 data captures at a stretch. The ACM_EVORDn registers also
have status bits indicating whether the particular event is missed/completed in the trigger cycle.

Figure 27-25: ACM_EVORDn Register Diagram

Table 27-15: ACM_EVTIMEn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

ETIME Event Time Value.

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 27–49

Timer 0 Register

The ACM_TMR0 register contains the active count value for ACM timer 0. This read-only value may be
accessed at any time.

Figure 27-26: ACM_TMR0 Register Diagram

Table 27-16: ACM_EVORDn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

17
(R/NW)

EVSTAT Event Status.
The ACM_EVORDn.EVSTAT bit reflects the state of the corresponding
event's bit in the ACM_EVSTAT register.

16
(R/NW)

MEVSTAT Missed Event Status.
The ACM_EVORDn.MEVSTAT bit reflects the state of the corresponding
event's bit in the ACM_MEVSTAT register.

7:0
(R/NW)

ORD Order of Event Completion.
The ACM_EVORDn.ORD bits indicate the order of event completion
with 0 indicating the 1st event completed (after the ACM was
enabled or after the ACM_CTL.ORST bit was set) and with 255
indicating the 256th event completed.
0 1st Event Completed
1 2nd Event Completed
255 256th Event Completed

ADC CONTROL MODULE (ACM)
ADSP-BF60X ACM REGISTER DESCRIPTIONS

27–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Timer 1 Register

The ACM_TMR1 register contains the active count value for ACM timer 1. This read-only value may be
accessed at any time.

Figure 27-27: ACM_TMR1 Register Diagram

Table 27-17: ACM_TMR0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

TMRCNT Active TMR0 Count Value.

Table 27-18: ACM_TMR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

TMRCNT Active TMR1 Count Value.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–1

28 Link Port (LP)

Link ports allow the processor to connect to other processors or peripheral link ports using a simple
communication protocol for high-speed parallel data transfer. This peripheral allows a variety of I/O
peripheral interconnection schemes to I/O peripheral devices as well as co-processing and multiprocessing
schemes.

The processor’s link ports support 8-bit wide data transfers. The link port pins are multiplexed in the GPIO
ports. For information on processor multiplexing, see the processor specific data sheet.

Link ports can operate independently and simultaneously, allowing glueless high-speed connectivity of up
to four external processors.

LP Features
All link ports are identical in their design and have the following common features.

• Bidirectional ports with eight data signals (LP_D0 – LP_D7, an acknowledge signal (LP_ACK), and a clock
signal (LP_CLK).

• Provide high-speed, point-to-point data transfers to other processors, allowing different types of inter-
connections between multiple processors.

• Pack data into 32-bit words. This data can be directly read by the processor or transferred via DMA to
or from on-chip memory.

• Support for data buffering through a 2-deep FIFO for transmit and a 4-deep FIFO for receive.

• Programmable clock and acknowledge based handshake mechanism for efficient communication.

• A dedicated DMA channel.

LP Functional Description
This section provides a description of the link port, including a list of its registers and a functional block
diagram.

ADSP-BF60x LP Register List

The LP are 8-bit wide ports, which can connect to another processor or peripheral LP. These ports allow a
variety of interconnection schemes to I/O peripheral devices as well as co-processing and multiprocessing

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

28–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

schemes. A set of registers govern LP operations. For more information on LP functionality, see the LP
register descriptions.

ADSP-BF60x LP Interrupt List

ADSP-BF60x LP Trigger List

Table 28-1: ADSP-BF60x LP Register List

Name Description

LP_CTL Control Register

LP_STAT Status Register

LP_DIV Clock Divider Value

LP_TX Transmit Buffer

LP_RX Receive Buffer

LP_TXIN_SHDW Shadow Input Transmit Buffer

LP_TXOUT_SHDW Shadow Output Transmit Buffer

Table 28-2: ADSP-BF60x LP Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

LP0 DMA Channel 72 13 LEVEL
LP0 Status 73 LEVEL
LP1 DMA Channel 74 14 LEVEL
LP1 Status 75 LEVEL
LP2 DMA Channel 76 15 LEVEL
LP2 Status 77 LEVEL
LP3 DMA Channel 78 16 LEVEL
LP3 Status 79 LEVEL

Table 28-3: ADSP-BF60x LP Trigger List Trigger Masters

Description Trigger ID Sensitivity

LP0 DMA Channel 35 PULSE/EDGE

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–3

ADSP-BF60x LP DMA List

Block Diagram

The block diagram of a link port is shown in the following figure.

LP1 DMA Channel 36 PULSE/EDGE
LP2 DMA Channel 37 PULSE/EDGE
LP3 DMA Channel 38 PULSE/EDGE

Table 28-4: ADSP-BF60x LP Trigger List Trigger Slaves

Description Trigger ID Sensitivity

LP0 DMA Channel 35
LP1 DMA Channel 36
LP2 DMA Channel 37
LP3 DMA Channel 38

Table 28-5: ADSP-BF60x LP DMA List DMA Channel List

Description DMA Channel

LP0 DMA Channel DMA13
LP1 DMA Channel DMA14
LP2 DMA Channel DMA15
LP3 DMA Channel DMA16

Table 28-3: ADSP-BF60x LP Trigger List Trigger Masters (Continued)

Description Trigger ID Sensitivity

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

28–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 28-1: Link Port Block Diagram

External Connections

As shown in the following figure, a link port has eight data lines (LP_D0 – LP_D7,), a clock line (LP_CLK),
and an acknowledge line (LP_ACK). A link port can act as either a transmitter or a receiver but not both at
the same time.

Figure 28-2: Link Port Pin Connections

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–5

External pull-downs should be used for the LP_CLK and LP_ACK pins so that the transmitter and receiver
can be enabled, irrespective of the state of the other.

Internal Blocks

As shown in the block diagram, the link ports have independent modules for transmit and receive. If
enabled as transmitter, the link port uses a 2 deep 32-bit FIFO. If enabled as a receiver, the port uses a 4
deep 32-bit FIFO. These FIFOs can be accessed by the core MMR access bus as well as through the distrib-
uted DMA engines (DDE) through the system cross bar (SCB) interface. The LP_CTL.TRAN bit determines
whether the module is enabled for transmit or receive operation.

Architectural Concepts

This section describes the following link port architectural concepts.

• Link Port Protocol

• FIFO Buffers

• Handshake for Link Port Enable Process

• Clocking

• Multi-Processor Connectivity

Link Port Protocol

A link port transmitted word consists of 4 bytes and the communication proceeds as follows.

1. The transmitter asserts the link port clock (LP_CLK) with each byte of data. The falling edge of LP_CLK
driven by the transmitter is used by the receiver to latch the byte.

2. When the receiver is ready to accept another word in the receive buffer it asserts the acknowledge
signal, LP_ACK.

3. The transmitter samples LP_ACK driven by the receiver at the beginning of each word transmission. If
LP_ACK is de-asserted at that time, the transmitter does not transmit the next word.

4. The transmitter leaves LP_CLK high and continues to drive the first byte of the next word until LP_ACK
is asserted.

5. When this assertion occurs, LP_CLK is driven low by the transmitter and the transmission of the next
word starts. If the transmit buffer is empty, LP_CLK remains low until the buffer is refilled, regardless
of the state of LP_ACK.

The LP_ACK signal may de-assert when it anticipates that the buffer may fill. The LP_ACK signal is reas-
serted by the receiver as soon as the internal DMA grant signal has occurred or the core reads the receive
buffer. Either of these actions frees a buffer location.

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

28–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: The LP_ACK signal inhibits transmission of the next word and not of the current byte.

The LP_ACK signal provides a handshake between the receiver and transmitter in the following configura-
tions.

• When configured as a transmitter, the port drives both the data and the clock while LP_ACK is three-
stated. In this mode LP_CLK is always synchronous with SCLK.

• When configured as a receiver, the link port drives the acknowledge signal and the data and clock lines
are three-stated. In this case, the external LP_CLK signal can either be synchronous or asynchronous
with SCLK.

• When the link port is disabled the data, clock and acknowledge signals are three-stated.

Figure 28-3: Link Port Communication and Handshake Waveform

The following list describes the stages shown in the figure above.

1. LP_CLK stays high at byte 0 if LP_ACK is sampled low on the previous LP_CLK rising edge. LP_CLK high
indicates a stall.

2. The LP_ACK signal may de-assert after byte 0.

3. The LP_ACK signal reasserts as soon as the link buffer is not full (depending on RX FIFO conditions).

4. The transmitter samples LP_ACK to determine whether to transmit the next word.

5. The receiver accepts the remaining word even if LP_ACK is de-asserted. The transmitter does not send
the following word.

6. Transmission of data for next word is held until LP_ACK is asserted.

The LP_ACK signal is sampled by the transmitter and if it is high, the transmitter gives out the falling edges
of LP_CLK for data sampling. The LP_ACK signal is first sampled at the rising edge of SCLK, is further

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–7

synchronized by one more SCLK stage and then this synchronized signal is given to the subsequent logic.
The LP_CLK falling edge is aligned with SCLK falling edge in a 1:1 clock ratio mode and with the SCLK
rising edge for the rest of the clock ratios. The following figures explain how the synchronization is main-
tained between the LP_ACK and LP_CLK signals.

In the following figure synchronizing time is guaranteed to be 1.5 SCLK cycles.

Figure 28-4: LP_ACK Synchronization for SCLK:LP_CLK=1:1

In the following figure synchronizing time is guaranteed to be 2 SCLK cycles.

Figure 28-5: LP_ACK synchronization for SCLK: LP_CLK=1:2, 1:4 and Up

The frequency of the link port clock (LP_CLK) is determined by the value programmed in the LP_DIV
register at the transmitter. However, the signal appearing on the LP_CLK pin is also dependent on the status
of the LP_ACK pin driven by the receiver. The following figure shows this relationship.

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

28–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 28-6: Relationship Between Internal Link Port Clock and Link Port Clock at the Pins

FIFO Buffers

When a link port is configured as transmitter, a 2-deep FIFO buffer is used. A shift register unpacks the
single 32-bit word to four 8-bit data bytes. As the FIFO has space for more data, a new DMA request is
made. If the FIFO becomes empty, the LP_CLK signal is de-asserted. The core can access FIFO through the
LP_TX register.

Three writes (2 stage FIFO and 1 shift register) can be made to the transmit buffer by the core or DMA
before it signals a full condition. The status of the FIFO is reflected by the LP_STAT.FFST bit field but the
shift register full/empty condition is not provided. However, the program may poll the LP_STAT.LPBS bit
to discover the if link port is driving data from the shift register to the pins or not. The LP_STAT.LPBS bit
is also set when receiver has held off transmission by driving LP_ACK low.

NOTE: When the 2-deep FIFO and the output shift register overflows, any further write in to the link port
buffer overwrites the input stage of the FIFO.

NOTE: The transmit FIFO can also be read out by the core via the data LP_TX register.

NOTE: If the transmitter is disabled while performing writes to the transmit FIFO, a FIFO full condition
is signalled after two writes.

Shadow registers have been provided for the transmit buffer registers. Using these shadow registers, both
stages of the 2-deep FIFO may be read without updating the status registers. The LP_TXIN_SHDW register
corresponds to the input stage of the FIFO and the LP_TXOUT_SHDW register corresponds to the output
stage of the FIFO as shown in the following figure.

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–9

Figure 28-7: Transmit FIFO path

When a link port is configured as receiver, data is transferred to the core or DMA from the full 4-deep
receive FIFO. An internal packing register performs the packing of data to 32 bits. Four reads can occur
from the receive buffer by the core or DMA before it signals an empty condition. Status of the 4-deep read
buffer FIFO is reflected by the LP_STAT.FFST bits. The core can access this FIFO through the LP_RX
register.

NOTE: When receive FIFO overflows (LP_STAT.ROVF bit=1), any further data from the transmitter is lost
and only the data retained in the receive FIFO can be retrieved further.

The LP_ACK output signal is driven low by the receiver once the first byte of data for the last but one empty
slot (in the 4-deep FIFO) is received. This is to prevent data loss due to the transmitter starting transmis-
sion of the next word before the LP_ACK signal reaches the transmitter (due to the larger delay in synchro-
nization). This guarantees that even after allowing for the extra synchronization cycle in the transmitter
and receiver, there is no overflow in the receive FIFO. The following figure shows how FIFO slots influence
the acknowledge signal generation. The greyed sections show received data and the white sections show
empty locations where the decision to pull LP_ACK high is taken.

Figure 28-8: LACK Generation Based on Receive FIFO Status

NOTE: A 4-deep receive FIFO can be used only under a worst case situation as mentioned above. In all
other cases, the FIFO must be thought of having only a 3-deep stage because LP_ACK is pulled high
before the last stage of the FIFO.

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

28–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The link port has memory-mapped buffers for both receive and transmit operations. A JTAG based
emulator may read the FIFO which can cause unexpected problems in data transfers. This can only happen
during an emulation event (typically hitting a breakpoint or single-stepping), when the emulator issues
core reads via JTAG. To workaround for this issue, see the tools documentation for more information.

Handshake for Link Port Enable Process

In a link port based system, the transmitter and the receiver may be enabled at different times. External
pull-downs should be used for the LP_CLK and LP_ACK signals.

If the receiver is enabled before the transmitter, the LP_CLK signal of the transmitter is held low by the
external pull-down and the receiver is held off. The receiver can wait for a rising edge on the LP_CLK signal
to assert its receive service request interrupt. This rising edge occurs only when transmitter starts driving
the first data on to the bus, after it is enabled by the application.

If the transmitter is enabled before the receiver, LP_ACK signal of the receiver is held low by the external
pull-down and transmission is held off as shown in the figure below. The transmitter can wait for a rising
edge on the LP_ACK signal to assert its transmit service request interrupt. This rising edge is asserted as
soon as receiver is enabled with LP_ACK driven high subsequently by hardware.

Figure 28-9: Enable the Transmitter Before the Receiver

NOTE: Service request interrupts/status are asserted only when the link port (receiver or transmitter) is
disabled.

Clocking

The link port clock (LP_CLK) is derived from the internal system clock (SCLK). The link port clock to
system clock ratio can be configured in the LP_DIV register. This value applies to the transmitter only. The
receiver can operate at any asynchronous frequency up to the maximum frequency, independent of the
ratio programmed. The relationship between the link port clock frequency, the SCLK frequency, and the
LP_DIVvalue is expressed by the formula shown below.

• fLP_CLK = fSCLK< or = fLP_CLK-MAX if DIV = 0

• fLP_CLK = fSCLK/(2 × DIV) if DIV > 0

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–11

 Where: fLP_CLK = link clock frequency, fLP_CLK -MAX = link clock maximum frequency, and
fSCLK = system clock frequency.

While programming the LP_DIV register to select the clock ratio, ensure that the LP_CLK frequency does
not exceed the maximum frequency supported for the device. For example, if the SCLK frequency is 125
MHz and the limit for LP_CLK operation is 83 MHz, LP_DIV should be greater than or equal to 1, so that
the LP_CLK frequency is less than or equal to 83 MHz. For supported frequencies, see the product specific
data sheet.

Multi-Processor Connectivity

Link ports can operate independently, allowing glueless connection with external processors. Link ports
have dedicated DMA channels, allowing independent data transfers. The following figures show some
examples of different bus connection topology that can be used in multi-processor system design. The
inter-connection methods are not limited to these examples.

Figure 28-10: Central Processor Based Model

Figure 28-11: Link Port Full-duplex transfer Model

LINK PORT (LP)
LP FUNCTIONAL DESCRIPTION

28–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 28-12: Link Port Ring Model

The link port protocol doesn’t include built-in support for multiple masters, although there may be situa-
tions where multiple devices try to become the bus master at the same time. Multi-master conflicts may be
resolved using token passing. In token passing, the token is a software flag that passes between processors.

At reset, the token is set to reside in the link port of one device, making it the master and the transmitter.
When a receiver (slave) wants to become the master, it may assert its LP_ACK signal to get the master’s
attention. The master knows, through the software protocol, whether it is supposed to respond with actual
data or whether it is being asked for the token. If the master wishes to give up the token, it may send back
a user-defined token release word and thereafter clear its token flag.

Simultaneously, the slave sets its token and can thereafter transmit. The token release word can be any
user-defined value and because the transmitter and receiver are expecting a code word, this does not need
to be exclusive of normal data transmission. If the master wishes to give up the token, it may send back a
user-defined token release word and thereafter clear its token flag. Simultaneously, the slave examines the
data sent back and if it is the token release word, the slave sets its token, and can thereafter transmit.

The link port protocol includes handshake mechanism to inform the other end of transfer (transmit or
receive) of an enable instance. However, it does not support handshakes to inform a disable instance, while
a chunk of data is being transferred. The application must assume the disabled state of the other end, and
take appropriate action.

Similarly, in a multi-processing environment where the receiver did not read its full FIFO for an extended
time (owing to internal bus arbitrations for example), the transmitter may require software or a peripheral
timer based time out to inform the application that the LP_ACK signal is low for an extended time period.

LINK PORT (LP)
LP OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–13

LP Operating Modes
The link port does not have particular modes of operation, as the peripheral is based on a simple protocol.
The data transfer modes, using the core and using DMA are explained in the following sections.

• Core Data Transfers

• DMA Data Transfers

LP Data Transfer Modes

This section describes link port DMA and core data transfers.

Core Data Transfers

If DMA is disabled for a link port buffer, then the internal FIFO buffers may be written or read by the
processor core as a memory-mapped register through the MMR access bus. In order to avoid FIFO over-
flow or underflow, the core should access the FIFO registers in one of the two following ways.

1. Access link port registers using an interrupt service routine (ISR) mapped to the link port data request
interrupt. The link port interrupt request remains high only if the FIFO is accessible (if the FIFO is not
full in transmit mode and not empty in receive mode).

2. Poll the FIFO status bits of LP_STAT register. Write to the transmit FIFO if not full or read from the
receive FIFO if not empty.

DMA Data Transfers

Dedicated DMA channels are available for each link port. DMA related activity is explained below.

1. Data Receive – Once the DMA channel and link port module are configured and enabled, the external
device begins writing data to the FIFO through the link port data pins. The FIFO detects this and in
turn sends a DMA request. After the request is granted, the DMA transfer progresses until the FIFO is
empty.

2. Data Transmit – Once the DMA channel and link port module are configured and enabled, setting the
LP_CTL.EN bit automatically asserts a DMA request when the transmit FIFO is empty. After the request
is granted, DMA fills the FIFO. The external device begins reading data from the FIFO through the link
port data pins. The FIFO detects that there is room in the buffer and asserts another DMA request,
continuing the process.

LP Event Control
This section describes how interrupts and status signals are used with the link ports.

LINK PORT (LP)
LP EVENT CONTROL

28–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Interrupt Signals

Each link port has two dedicated interrupt lines registered with the System Event Controller—a data
request interrupt and a status interrupt. Data request interrupts are asserted with respect to FIFO condi-
tions for data transfer and status interrupts are asserted when a service request status or an overflow status
is set. Each of these interrupts are explained below.

• Data Request Interrupt. Asserted if the FIFO is not full in transmission mode and the FIFO is not
empty in reception mode. This serves as a core triggered interrupt in non-DMA mode and as the DMA
interrupt request in DMA mode. Generation of this interrupt is tied to the LP_STAT.FFST (link port
buffer status bit).

• Link Port Transmit Service Request Interrupt (LTRQ). Allow a disabled link port to generate an
interrupt when an external access is attempted. When a link port is configured as transmitter, the
transmit service request interrupt is enabled by setting the LP_CTL.TRQMSK bit. When set, an external
receiver can indicate to the disabled transmitter that it needs to receive data through the connected link
port. The receiver does so by driving a high level on the LP_ACK line. When the LP_ACK of the disabled
transmitter link port is detected high, a LP_STAT.LTRQ interrupt in is generated, and the transmitter
can enable itself for data transfer with the receiver. Note that a pull-down on LP_ACK is required for
proper function of this feature.

• Link Port Receive Service Request Interrupt (LRRQ). When a link port is configured as receiver, this
interrupt is enabled by setting the LP_CTL.RRQMSK bit. When set, an external transmitter can indicate
to the disabled receiver that it needs to receive data through the connected link port. The transmitter
does so by driving the first data out. When the LP_CLK of the disabled receiver link port is detected high,
a LP_STAT.LRRQ interrupt in is generated, and the receiver can further enable itself for data transfer
with the transmitter. Note that a pull-down on the LP_CLK signal is required for proper function of this
feature.

• Link Port Receive Overflow Interrupt (LPOVF). Generated when the receiver FIFO overflows and is
enabled by setting the LP_CTL.ROVFMSK bit. This may happen if the transmitter continues to transmit
data even though the receiver has de asserted LP_ACK signal causing the receive FIFO to overflow.

Enabling Link Port Interrupts

A data request interrupt is fed to the System Event Controller directly and can be controlled separately
from the application.

Service interrupts and the overflow interrupt can be masked by setting the corresponding mask bits in LP_
CTL register, as these are OR’ed and fed to the SIC as a single LP_STAT interrupt. These interrupts are
latched and stored in the associated bits of LP_STAT register. If an LP_STAT interrupt occurs, in the ISR,
programs should read the LP_STAT register bits to determine the type of interrupt. Note that these bits are
write-one-to-clear (W1C); writing one to the bit resets the bit and disables the corresponding interrupt.

LINK PORT (LP)
LP PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–15

Status and Error Signals

This section explains the various status signals in the LPSTAT register.

• Transfer Status signals. The link port bus status (LP_STAT.LPBS) gives the status of bus busy/idle
condition, when the link port is configured as transmitter. The LP_STAT.LPBS is kept high if data is
being driven by the link port in to the link port pins. Programs may poll this bit after polling the LP_
STAT.FFST bit to safely disable the link port.

The link buffer status (LP_STAT.FFST) field directly indicates the status of the FIFO (including empty/
full conditions) during data transfer. Software can poll this field in the LP_STAT register before writing
to the FIFO (in case of transmission) or reading from the FIFO (in case of reception). The LP_STAT.
FFST bit is automatically cleared when the link port is disabled.

• Transfer Request Status signals. The link port receive request status (LP_STAT.LRRQ) and link port
transmit request status (LP_STAT.LTRQ) bits indicate that an external receiver wants to receive data (in
case the link port is a disabled transmitter) or an external transmitter wants to send data (in case the
link port is a disabled receiver). Software can poll these bits to enable the transmitter or receiver accord-
ingly.

• Error Status signals. In receive mode 32-bit data is received in four chunks of 8-bit data. This is then
packed to a single 32-bit data before loading the FIFO. The link buffer error status (LP_STAT.LPACK)
bit is high during this packing process and goes low after packing.

The link port overflow status (LP_STAT.ROVF) bit is set when the receive FIFO overflows. This may
occur if the transmitter continues to transmit data even though the receiver has de asserted LP_ACK
causing the receiver FIFO to overflow.

LP Programming Model
The following sections provide information on configuring the operating mode and enabling the link
ports.

• Setting Up a DMA Transmit Operation

• Setting Up a DMA Receive Operation

• Setting Up a Core Transmit Operation

• Setting Up a Core Receive Operation

Setting Up a DMA Transmit Operation

This following procedure describe the typical steps for configuring the link ports in DMA transmit mode.

1. Enable the link port pins in the GPIO port mux using the appropriate PORT_FER and PORT_MUX regis-
ters.

LINK PORT (LP)
LP PROGRAMMING MODEL

28–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

2. Install interrupt handlers for DMA and for transfer status (service request interrupt).

3. Configure the link port to transmit by setting the LP_CTL bit and enable the transmit request interrupt
mask by setting the LP_CTL.TRQMSK bit.

4. Program the link port clock divider by writing a value to the LP_DIV register.

5. If using DMA stop mode/auto buffer mode, program the appropriate DMA registers.

ADDITIONAL INFORMATION: An example configuration is: DMA_ADDRSTART, DMA_XCNT, DMA_XMOD and DMA_
CFG registers (Stop/Auto, Psize=1, Msize=4, interrupt generation and memory read).

6. Wait for the link port receiver (connected externally) to be enabled. The application can wait for the
transmit service request interrupt to assert.

7. Clear the transmit service request interrupt status by writing 1 to the LP_STAT.LTRQ bit.

8. Enable DMA by setting the DMA_CFG.EN bit.

9. Enable the link port by setting the LP_CTL.EN bit.

10. Wait for DMA to assert a transfer completion interrupt.

11. Clear the DMA interrupt source by writing 1 to the DMA_STAT.IRQDONE bit.

Setting Up a DMA Receive Operation

This section describes the typical steps for using the link ports in DMA receive mode.

1. Enable the link port pins in GPIO port mux using the appropriate PORT_FER and PORT_MUX registers.

2. Install interrupt handlers for DMA and for transfer status (service request interrupt).

3. Configure the link port for reception (clear the LP_CTL.TRAN bit) and enable the receive request inter-
rupt mask by setting the LP_CTL.RRQMSK bit.

4. If using DMA stop mode/auto buffer mode, program the DMA registers.

ADDITIONAL INFORMATION: An example configuration is: DMA_ADDRSTART, DMA_XCNT, DMA_XMOD and DMA_
CFG registers (Stop/Auto, Psize=1, Msize=4, interrupt generation and memory write).

5. If using DMA array mode/list mode, create DMA configuration data structures filled with components.

ADDITIONAL INFORMATION: An example configuration is: DMA_ADDRSTART, DMA_XCNT, DMA_XMOD and DMA_
CFG registers (Array/List, Psize=1, Msize=4, Interrupt generation, memory write and fetch=4/5) and
DMA_DSCPTR_NXT register (if list mode). Further program DMA configuration register (Array/List,
Psize=1, Msize=4, Memory Write and Fetch=4/5) and program the DMA_DSCPTR_NXT register (if list
mode).

LINK PORT (LP)
LP PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–17

6. Wait for the link port transmitter (connected externally) to be enabled with subsequent data transmis-
sion. The application can wait for the receive service request interrupt to assert.

7. Clear the receive service request interrupt status by writing 1 to the LP_STAT.LRRQ bit.

8. Enable DMA by setting the DMA_CFG.EN bit.

9. Enable the link port by setting the LP_CTL.EN bit.

10. Wait for DMA to assert the transfer complete interrupt.

11. Clear the DMA interrupt source by writing 1 to the DMA_STAT.IRQDONE bit of the DMA status register.

Setting Up a Core Transmit Operation

This section describes the typical steps for using the link ports in processor core based transmission.

1. Enable the link port pins in the GPIO port mux using the appropriate PORT_FER and PORT_MUX regis-
ters.

2. Install interrupt handlers for data transfer and for transfer status (service request interrupt). The inter-
rupt handlers for data transfer are the same source/ID as the DMA interrupt line in the SEC.

3. Configure the link port for transmission by setting the LP_CTL.TRAN bit) and enable the transmit
request interrupt mask by setting the LP_CTL.TRQMSK bit).

4. Program the link port clock divider by writing a value in to the LP_DIV register.

5. Wait for the link port receiver (connected externally) to be enabled. The application can wait for a
transmit service request interrupt to assert.

6. Clear the transmit service request interrupt status by writing 1 to the LP_STAT.LTRQ bit.

7. Enable the link port by setting the LP_CTL.EN bit.

8. The data request interrupt is asserted whenever there is free space in the FIFO. The application can
write to theLP_TX register based on the FIFO conditions (half or empty) reflected in the LP_STAT.FFST
bit field.

Setting Up a Core Receive Operation

This section describes the typical steps for using the link ports in processor core based reception.

1. Enable the link port pins in the GPIO port mux using the appropriate PORT_FER and PORT_MUX regis-
ters.

2. Install interrupt handlers for data transfer and for transfer status (service request interrupt). The inter-
rupt handlers for data transfer are the same source/ID as the DMA interrupt line in the SEC).

LINK PORT (LP)
ADSP-BF60X LP REGISTER DESCRIPTIONS

28–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

3. Configure link port for reception (clear LP_CTL.TRAN bit) and enable receive request interrupt mask
(set LP_CTL.RRQMSK bit).

4. Wait for the link port transmit (connected externally) to be enabled with subsequent transmission of
data. Application can wait for receive service request interrupt to be asserted.

5. Clear the receive service request interrupt status by writing 1 to the LP_STAT.LRRQ bit.

6. Enable the link port by setting the LP_CTL.EN bit.

7. The data request interrupt is asserted whenever there is free space in the FIFO. The application can read
from the LP_RX register based on the FIFO conditions (1 or 2 or 3 data available) which is reflected in
the LP_STAT.FFST bit field.

ADSP-BF60x LP Register Descriptions
Link Port (LP) contains the following registers.

Control Register

The LP_CTL register provides LP interrupt masking, selection of transfer direction, and link port enable.

Table 28-6: ADSP-BF60x LP Register List

Name Description

LP_CTL Control Register

LP_STAT Status Register

LP_DIV Clock Divider Value

LP_TX Transmit Buffer

LP_RX Receive Buffer

LP_TXIN_SHDW Shadow Input Transmit Buffer

LP_TXOUT_SHDW Shadow Output Transmit Buffer

LINK PORT (LP)
ADSP-BF60X LP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–19

Figure 28-13: LP_CTL Register Diagram

Table 28-7: LP_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W)

ROVFMSK Receive FIFO Overflow Interrupt Mask.
Receive FIFO Overflow Interrupt Mask
0 Mask

Disable Receive FIFO Overflow Interrupt
1 Unmask

Enable Receive FIFO Overflow Interrupt
9
(R/W)

RRQMSK Receive Request Interrupt Mask.
Link Port Receive Request Mask
0 Mask

Disable Receive Request interrupt.
1 Unmask

Enable Receive Request interrupt.
8
(R/W)

TRQMSK Transmit Request Interrupt Mask.
Link Port Transmit Request Mask
0 Mask

Disable Transmit Request interrupt.
1 Unmask

Enable Transmit Request interrupt.

LINK PORT (LP)
ADSP-BF60X LP REGISTER DESCRIPTIONS

28–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Status Register

The LP_STAT register provides status information on link port interrupts, FIFO, buses, and receive/
transmit requests.

Figure 28-14: LP_STAT Register Diagram

3
(R/W)

TRAN Transfer Direction.
The LP_CTL.TRAN bit selects the transfer direction as transmit (if set)
or receive (if cleared) for link buffer.
0 Receive

Direction transfer is receive
1 Transmit

Direction transfer is transmit
0
(R/W)

EN Enable.
The LP_CTL.EN enables or disables the link port. When the processor
disables the port (LP_CTL.EN transitions from high to low), the
processor clears the corresponding LP_STAT bits.
0 Disable

Disable linkport
1 Enable linkport

Enable linkport

Table 28-7: LP_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

LINK PORT (LP)
ADSP-BF60X LP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–21

Table 28-8: LP_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

8
(R/NW)

LPBS Bus Status.
The LP_STAT.LPBS bit indicates the LPDAT bus status. LP_STAT.
LPBS is kept high if data is being driven by the link port into the LP_
Dn pins.
0 Bus is Idle

Link Port Bus is idle
1 Bus Busy

Link Port Bus is busy
7
(R/NW)

LPACK Buffer Pack Status.
The LP_STAT.LPACK bit indicates packing status.
In receive mode, 32-bit data is received in 4 blocks of 8-bit data.
Then, the data is packed to get a single 32-bit data before loading the
FIFO. The LP_STAT.LPACK bit is high during this packing process
and goes low after packing.
In transmit mode, 32-bit data in the FIFO is unpacked to 4 blocks of
8-bit data before sending. The LP_STAT.LPACK is high during
unpacking.
0 Packing Complete

Packing done
1 Packing Incomplete

Packing is in progress

LINK PORT (LP)
ADSP-BF60X LP REGISTER DESCRIPTIONS

28–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Clock Divider Value

The LP_DIV register selects the divisor for ratio between the internal LP clock (LCLK) and system clock
(SCLK). This programming is applicable only for the transmitter. The receiver can operate at any asyn-
chronous frequency up to the maximum frequency independent of the ratio programmed.

6:4
(R/NW)

FFST FIFO Status.
The LP_STAT.FFST bits indicate the FIFO status. These bits are
cleared when the LP is disabled.
0 TX - Empty; RX - Empty

Link buffer (TX OR RX) empty
1 TX - Reserved ; RX - Has 1 data word

RX has 1 word of data. TX reserved
2 TX - Reserved; RX - Has 2 data words

RX has 2 word of data. TX reserved.
3 TX - Reserved; RX - Has 3 data words

RX has 3 word of data. TX reserved.
4 TX - One Word; RX -Has 4 data words

RX has 4 word of data. TX 1 word of data.
5 TX - Reserved; RX - Reserved

RX reserved.. TX reserved.
6 TX - FIFO Full; RX - Reserved

RX reserved.. TX reserved.
7 TX - Reserved; RX - Reserved

RX reserved.. TX reserved.
3
(R/W1C)

ROVF Receive FIFO Overflow Interrupt.
This interrupt is generated when the receiver FIFO overflows. This
overflow may happen if the transmitter continues to transmit data
even though the receiver has de-asserted the LP_ACK pin.

1
(R/W1C)

LRRQ Receive Request.
The LP generates this interrupt when the LP_CLK pin of a disabled
link port (the receiver) is forced high by another link port (the
transmitter).

0
(R/W1C)

LTRQ Transmit Request.
The LP generates this interrupt when the LP_ACK pin of a disabled
link port (the transmitter) is forced high by another link port (the
receiver).

Table 28-8: LP_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

LINK PORT (LP)
ADSP-BF60X LP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–23

Figure 28-15: LP_DIV Register Diagram

Transmit Buffer

The LP_TX register buffers the transmit data flow through the LP. The transmit buffer is two words deep.
In the transmit buffer, the input stage of the FIFO is used to accept core data or DMA data from internal
memory, and the data is transferred to the link port interface from the output stage of the FIFO. The output
stage performs the unpacking in the transmit buffer. The least significant byte is transmitted first. As each
word is unpacked and transmitted, the next location in FIFO becomes available and a new DMA request
is made if DMA is enabled. If the register becomes empty, the LP asserts the LP_CLK signal. For more infor-
mation on LP buffer features and operations, see the LP functional description.

Table 28-9: LP_DIV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Divisor Value.
The LP_DIV.VALUE bits select the clock divider (relating the LP'
internally generated clock (LCLK) to the system clock (SCLK). The
LP_DIV.VALUE should be programmed prior to LP enable.
For LP_DIV.VALUE = 0, LCLK = SCLK
For LP_DIV.VALUE = xxxxxxxx, LCLK = SCLK / (2 x DIV)

LINK PORT (LP)
ADSP-BF60X LP REGISTER DESCRIPTIONS

28–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 28-16: LP_TX Register Diagram

Receive Buffer

The LP_RX register buffers the receive data flow through the LP. The receive buffer is a four-location deep
FIFO. In the receive buffer, data is transferred to the core or DMA from the receive FIFO where an internal
register does the packing. This packing register is not software accessible. For more information on LP
buffer features and operations, see the LP functional description.

Figure 28-17: LP_RX Register Diagram

Table 28-10: LP_TX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

DATA Transmit Data Buffer.

LINK PORT (LP)
ADSP-BF60X LP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 28–25

Shadow Input Transmit Buffer

The LP_TXIN_SHDW register contains the same data as the input stage of the transmit buffer. Read of this
shadow transmit buffer does not update the LP_STAT register.

Figure 28-18: LP_TXIN_SHDW Register Diagram

Shadow Output Transmit Buffer

The LP_TXOUT_SHDW register contains the same data as the output stage of the transmit buffer. Read of this
shadow transmit buffer does not update the LP_STAT register.

Table 28-11: LP_RX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

DATA Receive Buffer.

Table 28-12: LP_TXIN_SHDW Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

DATA Transmit Data Buffer Shadow Input Stage.

LINK PORT (LP)
ADSP-BF60X LP REGISTER DESCRIPTIONS

28–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 28-19: LP_TXOUT_SHDW Register Diagram

Table 28-13: LP_TXOUT_SHDW Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

DATA Transmit Data Output Shadow Register.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 29–1

29 Video Subsystem (VID)

The ADSP-BF60x processor features a sophisticated video subsystem (VID) consisting of the following
functional blocks.

• Three video ports (PPI)

• The pixel compositor (PIXC)

• The pipelined vision processor (PVP)

• The video interconnect

• 18 DMA channels

The enhanced parallel peripheral interfaces (EPPIs) can operate in video input and video output modes,
and also support several general-purpose modes of operation. The EPPIs are aware of video frame
synchronization, blanking concepts and color formats. They can receive up to 16-bit video data directly
from video sensors (cameras) and also directly control displays on the output.

The pixel compositor (PIXC) supports color space conversion and alpha blending for video overlays.

The pipelined vision processor (PVP) is a framework for various vision processing elements, which are
targeting mainly edge and object detection strategies.

The video interconnect is a local, distributed bus system, which interconnects the EPPI ports, the PIXC
and the PVP.

VID Features
The following is a brief list of the features of the video subsystem.

• Bandwidth-saving pre-processing and post-processing on video inputs and outputs

• Video analytics and color-space conversion during video reception

• Alpha blending during video transmission

• Concurrent memory-to memory co-processing

VID Functional Description
The following sections provide a functional description of the video subsystem.

VIDEO SUBSYSTEM (VID)
VID FUNCTIONAL DESCRIPTION

29–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x VID Register List

The VID selects connections for the PVP and PPI modules, configuring connections to use these periph-
erals for video operations. Also, the VID selects broadcast or non-broadcast mode for handling the receive
Y channel data. Note that these connections are static and have to be configured before enabling the PPI,
PIXC, and PVP blocks. A set of registers govern VID operations. For more information on VID function-
ality, see the VID register descriptions.

VID Block Diagram

The following figure shows an overview of the video subsystem including the PIXC, PVP, and EPPI.

Table 29-1: ADSP-BF60x VID Register List

Name Description

VID_CONN Video Subsystem Connect Register

VIDEO SUBSYSTEM (VID)
VID STATUS AND ERROR SIGNALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 29–3

Figure 29-1: VID Block Diagram

VID Architectural Concepts

Traditionally, the three EPPIs operate in DMA mode and as such mainly transport data between off-chip
and on-chip L1 and/or L2 SRAM or external L3 memories. Each EPPI interface contains two DMA chan-
nels. The primary channel is used for general data or for the luminance component only. The secondary
channel can optionally be used for chrominance.

VID Status and Error Signals
The video subsystem does not have dedicated status or error interrupts. However, the VID signals errors
to the associated EPPI peripheral when stall or overflow conditions occur. While the PVP has been
designed to never stall on the video interconnect, the PIXC may do so. This is reported by the EPPI_STAT.

VIDEO SUBSYSTEM (VID)
VID PROGRAMMING MODEL

29–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PXPERR flag. If the PIXC and the PVP are configured to receive data from the same EPPI input, the error
flag only signals the stalling condition of the PIXC and the PVP continues to get new data.

VID Programming Model
The video subsystem is typically configured in static or pseudo-static fashion. There is only one MMR, the
VID_CONN register, which needs to be written before the EPPI, PIXC and PVP can be enabled. When
programs must alter the VID_CONN register at run time, it is important that all impacted video blocks are
disabled.

The VID_CONN.PIXC0IN bit field controls whether the PIXC receives input from DMA or from a desig-
nated EPPI port. Similarly, the VID_CONN.PVP0IN bit field determines the data source of the PVP. When
altering the VID_CONN.PIXC0IN bit field, the PIXC and both the former and the newly selected EPPIs need
to be disabled. However, the other PPI and the PVP may continue operation without being disturbed.

For EPPIs operating in transmit mode, the three PPI transmit connectivity bit fields (VID_CONN.PPI0TX
through VID_CONN.PPI2TX) control whether the respective PPI module receives data from DMA channel
or from the PIXC. Only out of the PPIs or the PVP or the DMA can receive data from PIXC at a time.

For EPPIs operating in receive mode, the PPI broadcast bits (VID_CONN.PPI0BCAST through VID_CONN.
PPI2BCAST) enable broadcasting of the main (luminance) input data. The bits only need to be set (=1) if
received data is broadcast to both the video interconnect and DMA system. If not set (=0), the VID_CONN.
PIXC0IN and VID_CONN.PVP0IN bits determine whether data goes to either the video interconnect or to
the DMA system. Broadcasting only takes place if at least one of VID_CONN.PIXC0IN or VID_CONN.PVP0IN
bit fields instruct the modules to consume data from the respective EPPI.

Care must be taken to ensure that the configuration of the EPPIs, PIXC and PVP works with the VID
settings in a meaningful way. Also, if significant mode switching takes place on one module, the other
modules are temporarily disabled.

VID Performance
The maximum pixel clock frequency is 83 MHz. Assuming each clock contains a valid pixel, the maximum
pixel rate that can be processed by the PVP camer pipe is 83M Pixels/s. The same limitation also applies to
the PVP’s memory pipe. Unless the base clock (SCLK) is lower than 83 MHz, memory pipe throughput is
SCLK/2. The PIXC can operate at full SCLK speed in memory-to-memory mode.

The bandwidth consumed by memory-to-memory operations of the PVP and the PIXC can be controlled
via the bandwidth control functionality of the respective DMA channels. Similarly, the consumed band-
width can be monitored by the bandwidth monitor functionality of the DMA channels.

ADSP-BF60x VID Register Descriptions
Video Subsystem Registers (VID) contains the following registers.

VIDEO SUBSYSTEM (VID)
ADSP-BF60X VID REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 29–5

Video Subsystem Connect Register

The VID_CONN selects connections for the PVP and PPI modules, configuring connections to use these
peripherals for video operations. Also, the VID_CONN selects broadcast or non-broadcast mode for
handling the receive Y channel data. Note that these connections are static and have to be configured
before enabling the PPI, PIXC, and PVP blocks.

Figure 29-2: VID_CONN Register Diagram

Table 29-2: ADSP-BF60x VID Register List

Name Description

VID_CONN Video Subsystem Connect Register

Table 29-3: VID_CONN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23
(R/W)

PPI2BCAST PPI_2 Broadcast Mode.
The VID_CONN.PPI2BCAST selects broadcast or non-broadcast mode
for receive Y channel data. For more information, see the VID_CONN.
PPI0BCAST bit description.
0 Non-broadcast mode
1 Broadcast mode

VIDEO SUBSYSTEM (VID)
ADSP-BF60X VID REGISTER DESCRIPTIONS

29–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

22
(R/W)

PPI1BCAST PPI_1 Broadcast Mode.
The VID_CONN.PPI1BCAST selects broadcast or non-broadcast mode
for receive Y channel data. For more information, see the VID_CONN.
PPI0BCAST bit description.
0 Non-broadcast mode
1 Broadcast mode

21
(R/W)

PPI0BCAST PPI_0 Broadcast Mode.
The VID_CONN.PPI0BCAST selects broadcast or non-broadcast mode
for receive Y channel data. This bit is valid only when PPI_0 is in
receive mode, and either VID_CONN.PIXC0IN = 0x1 or VID_CONN.
PVP0IN = 0x1. In broadcast mode, the receive Y channel data is sent
to both the PxP interface and the PPI_0 DMA channel 0. In non-
broadcast mode, the receive Y channel data is sent to either the PxP
interface or the PPI_0 DMA channel based on the VID_CONN.
PIXC0IN and VID_CONN.PVP0IN bits programming.
0 Non-broadcast mode
1 Broadcast mode

19:16
(R/W)

PPI2TX PPI_2_TX Connectivity.
The VID_CONN.PPI2TX selects connection options for PPI_2 module
output. These bits are ignored when PPI_2 is not in transmit mode.
0 PPI_2_TX to PPI_DMA

PPI_2_TX is connected to the PPI DMA
engine (PPI_0 DMA Channel 0)

1 PPI_2_TX to PIXC
PPI_2_TX is connected to PIXC output via
PxP

15:12
(R/W)

PPI1TX PPI_1_TX Connectivity.
The VID_CONN.PPI1TX selects connection options for PPI_1 module
output. These bits are ignored when PPI_1 is not in transmit mode.
0 PPI_1_TX to PPI_DMA

PPI_1_TX is connected to the PPI DMA
engine (PPI_1 DMA Channel 0)

1 PPI_1_TX to PIXC
PPI_1_TX is connected to PIXC output via
PxP

Table 29-3: VID_CONN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

VIDEO SUBSYSTEM (VID)
ADSP-BF60X VID REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 29–7

11:8
(R/W)

PPI0TX PPI_0_TX Connectivity.
The VID_CONN.PPI0TX selects connection options for PPI_0 module
output. These bits are ignored when PPI_0 is not in transmit mode.
0 PPI_0_TX to PPI_DMA

PPI_0_TX is connected to the PPI DMA
engine (PPI_0 DMA Channel 0)

1 PPI_0_TX to PIXC
PPI_0_TX is connected to PIXC output via
PxP

7:4
(R/W)

PVP0IN PVP_IN Connectivity.
The VID_CONN.PVP0IN selects connection options for PVP module
input.
0 PVP_IN to PVP_DMA

PVP data input is connected to the PVP
DMA engine

1 PVP_IN to PPI_0_RX
PVP input is connected to PPI_0_RX via
PxP (valid only when PPI_0 is in receive
mode)

2 PVP_IN to PPI_1_RX
PVP input is connected to PPI_1_RX via
PxP (valid only when PPI_1 is in receive
mode)

3 PVP_IN to PPI_2_RX
PVP input is connected to PPI_2_RX via
PxP (valid only when PPI_2 is in receive
mode)

4 PVP_IN to PIXC_OUT
PVP input is connected to PIXC output via
PxP

Table 29-3: VID_CONN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

VIDEO SUBSYSTEM (VID)
ADSP-BF60X VID REGISTER DESCRIPTIONS

29–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

3:0
(R/W)

PIXC0IN PIXC_IN Connectivity.
The VID_CONN.PIXC0IN selects connection options for PIXC module
input.
0 PIXC_IN to PIXC_DMA

PIXC image input is connected to the PIXC
DMA IFIFO Channel (PIXC DMA channel
0)

1 PIXC_IN to PPI_0_RX
PIXC image input is connected to PPI_0_
RX via PxP (valid only when PPI_0 is in
receive mode)

2 PIXC_IN to PPI_1_RX
PIXC image input is connected to PPI_1_
RX via PxP (valid only when PPI_1 is in
receive mode)

3 PIXC_IN to PPI_2_RX
PIXC image input is connected to PPI_2_
RX via PxP (valid only when PPI_2 is in
receive mode)

Table 29-3: VID_CONN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–1

30 Pipelined Vision Processor (PVP)

The Pipelined Vision Processor (PVP) provides a set of 12 high-performance signal processing blocks that
can be flexibly combined to form streaming data processing pipes. These blocks are optimized for tasks
typical of video and image processing, analytics (for example advanced driver assistance systems),
robotics, and 2-dimensional vector applications. The PVP works in conjunction with the processor
core(s). It is optimized for convolution and wavelet-based object detection, classification, tracking, and
verification algorithms. The PVP bundles a set of processing blocks required for high-speed 2-dimensional
digital signal processing.

Most blocks are optimized for 2-dimensional video analytics operations and can be re-purposed for
general-purpose operations. Other blocks have general-purpose functionality and might be used in a
variety of applications outside of video processing.

PVP Features
The PVP contains a number of highly configurable blocks that provide a broad set of pixel processing
features:

• Variety of 1st-derivative and 2nd-derivative edge detection and classification methods

• Quad 5x5 convolution kernels with 8300 MMACS total

• Integral of pixels, variances, magnitudes and gradients

• Thresholds and histograms

• General-purpose 32-bit divider, multiplier, adder, and accumulator

• Up to 1280 x 960 pixel progressive video

• Up to 83M Pixels/second on each of up to four pipes

• Bandwidth-saving pre-processor architecture with data broadcasting to three “camera pipes”

• Memory-to-memory co-processing with autonomous sequencing of job lists

• Concurrent pre- and co-processing

• Autonomous update of coefficients at frame boundaries

Many of these features are influenced not just by individual PVP block features, but are also influenced by
the configurable pipeline interconnections between blocks. For more information on PVP blocks and
connections, see the PVP Block Diagram or see Configuring Pipe Structure.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PVP Functional Description
The PVP consists of signal processing blocks, input formatters, and output formatters. In combination and
for simplicity, these elements are referred to as PVP blocks.

The following sections describe the PVP blocks within the PVP. The descriptions provide details on the
PVP block operations and interactions with each other and the processor core(s).

• ADSP-BF60x PVP Register List

• ADSP-BF60x PVP Interrupt List

• ADSP-BF60x PVP Trigger List

• PVP Block Diagram

• PVP Definitions

• Input Formatters (IPFn)

• Output Formatters (OPFn)

• Threshold-Histogram-Compression (THCn)

• Convolution (CNVn)

• Polar Magnitude and Angle Block (PMA)

• Arithmetic Control Unit (ACU)

• Pixel Edge Classifier (PEC)

• Integral Image Block (IIMn)

• Up Down Scaler (UDS)

• PVP Architectural Concepts

ADSP-BF60x PVP Register List

The pipelined vision processor PVP implements the signal and image processing algorithms that are
required for pre-processing of video frames in advanced driver assistance systems (ADAS) applications. A
number of processing blocks contribute to PVP operations. These include:

• Convolution/Down-scaling engine (CNV)

• Pixel Magnitude and Angle computation unit (PMA)

• Threshold, Histogram and Compression engine (THC)

• Arithmetic Computation Unit (ACU)

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–3

• Pixel Edge Classifier (PEC)

• Integral Image computation (IIM)

• Up-Down Scaler (UDS)

In addition to these processing blocks, the PVP also has a number of blocks that permit interfacing to other
modules (DMA, EPPI) and provide control for PVP operations:

• Input data formatter (IPF)

• Output data formatter (OPF)

• Image pipe controller (IPC)

A set of registers govern PVP operations. For more information on PVP functionality, see the PVP register
descriptions.

Table 30-1: ADSP-BF60x PVP Register List

Name Description

PVP_CTL Control

PVP_IMSKn Interrupt Mask n

PVP_STAT Status

PVP_ILAT Interrupt Latch Status n

PVP_IREQn Interrupt Request n

PVP_OPFn_CFG OPFn (Camera Pipe) Configuration

PVP_OPFn_CTL OPFn (Camera Pipe) Control

PVP_OPF3_CFG OPF3 (Memory Pipe) Configuration

PVP_OPF3_CTL OPF3 (Memory Pipe) Control

PVP_PEC_CFG PEC Configuration

PVP_PEC_CTL PEC Control

PVP_PEC_D1TH0 PEC Lower Hysteresis Threshold

PVP_PEC_D1TH1 PEC Upper Hysteresis Threshold

PVP_PEC_D2TH0 PEC Weak Zero Crossing Threshold

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PVP_PEC_D2TH1 PEC Strong Zero Crossing Threshold

PVP_IIMn_CFG IIMn Configuration

PVP_IIMn_CTL IIMn Control

PVP_IIMn_SCALE IIMn Scaling Values

PVP_IIMn_SOVF_STAT IIMn Signed Overflow Status

PVP_IIMn_UOVF_STAT IIMn Unsigned Overflow Status

PVP_ACU_CFG ACU Configuration

PVP_ACU_CTL ACU Control

PVP_ACU_OFFSET ACU SUM Constant

PVP_ACU_FACTOR ACU PROD Constant

PVP_ACU_SHIFT ACU Shift Constant

PVP_ACU_MIN ACU Lower Sat Threshold Min

PVP_ACU_MAX ACU Upper Sat Threshold Max

PVP_UDS_CFG UDS Configuration

PVP_UDS_CTL UDS Control

PVP_UDS_OHCNT UDS Output HCNT

PVP_UDS_OVCNT UDS Output VCNT

PVP_UDS_HAVG UDS HAVG

PVP_UDS_VAVG UDS VAVG

PVP_IPF0_CFG IPF0 (Camera Pipe) Configuration

PVP_IPFn_PIPECTL IPFn (Camera/Memory Pipe) Pipe Control

PVP_IPFn_CTL IPFn (Camera/Memory Pipe) Control

Table 30-1: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–5

PVP_IPFn_TAG IPFn (Camera/Memory Pipe) TAG Value

PVP_IPFn_FCNT IPFn (Camera/Memory Pipe) Frame Count

PVP_IPFn_HCNT IPFn (Camera/Memory Pipe) Horizontal Count

PVP_IPFn_VCNT IPFn (Camera/Memory Pipe) Vertical Count

PVP_IPF0_HPOS IPF0 (Camera Pipe) Horizontal Position

PVP_IPF0_VPOS IPF0 (Camera Pipe) Vertical Position

PVP_IPFn_TAG_STAT IPFn (Camera/Memory Pipe) TAG Status

PVP_IPF1_CFG IPF1 (Memory Pipe) Configuration

PVP_CNVn_CFG CNVn Configuration

PVP_CNVn_CTL CNVn Control

PVP_CNVn_C00C01 CNVn Coefficients 0,0 and 0,1

PVP_CNVn_C02C03 CNVn Coefficients 0,2 and 0,3

PVP_CNVn_C04 CNVn Coefficient 0,4

PVP_CNVn_C10C11 CNVn Coefficients 1,0 and 1,1

PVP_CNVn_C12C13 CNVn Coefficients 1,2 and 1,3

PVP_CNVn_C14 CNVn Coefficient 1,4

PVP_CNVn_C20C21 CNVn Coefficients 2,0 and 2,1

PVP_CNVn_C22C23 CNVn Coefficients 2,2 and 2,3

PVP_CNVn_C24 CNVn Coefficient 2,4

PVP_CNVn_C30C31 CNVn Coefficients 3,0 and 3,1

PVP_CNVn_C32C33 CNVn Coefficients 3,2 and 3,3

PVP_CNVn_C34 CNVn Coefficient 3,4

Table 30-1: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PVP_CNVn_C40C41 CNVn Coefficients 4,0 and 4,1

PVP_CNVn_C42C43 CNVn Coefficients 4,2 and 4,3

PVP_CNVn_C44 CNVn Coefficient 4,4

PVP_CNVn_SCALE CNVn Scaling Factor

PVP_THCn_CFG THCn Configuration

PVP_THCn_CTL THCn Control

PVP_THCn_HFCNT THCn Histogram Frame Count

PVP_THCn_RMAXREP THCn Max RLE Reports

PVP_THCn_CMINVAL THCn Min Clip Value

PVP_THCn_CMINTH THCn Clip Min Threshold

PVP_THCn_CMAXTH THCn Clip Max Threshold

PVP_THCn_CMAXVAL THCn Max Clip Value

PVP_THCn_TH0 THCn Threshold Value 0

PVP_THCn_TH1 THCn Threshold Value 1

PVP_THCn_TH2 THCn Threshold Value 2

PVP_THCn_TH3 THCn Threshold Value 3

PVP_THCn_TH4 THCn Threshold Value 4

PVP_THCn_TH5 THCn Threshold Value 5

PVP_THCn_TH6 THCn Threshold Value 6

PVP_THCn_TH7 THCn Threshold Value 7

PVP_THCn_TH8 THCn Threshold Value 8

PVP_THCn_TH9 THCn Threshold Value 9

Table 30-1: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–7

PVP_THCn_TH10 THCn Threshold Value 10

PVP_THCn_TH11 THCn Threshold Value 11

PVP_THCn_TH12 THCn Threshold Value 12

PVP_THCn_TH13 THCn Threshold Value 13

PVP_THCn_TH14 THCn Threshold Value 14

PVP_THCn_TH15 THCn Threshold Value 15

PVP_THCn_HHPOS THCn Histogram Horizontal Position

PVP_THCn_HVPOS THCn Histogram Vertical Position

PVP_THCn_HHCNT THCn Histogram Horizontal Count

PVP_THCn_HVCNT THCn Histogram Vertical Count

PVP_THCn_RHPOS THCn RLE Horizontal Position

PVP_THCn_RVPOS THCn RLE Vertical Position

PVP_THCn_RHCNT THCn RLE Horizontal Count

PVP_THCn_RVCNT THCn RLE Vertical Count

PVP_THCn_HFCNT_STAT THCn Histogram Frame Count Status

PVP_THCn_HCNT0_STAT THCn Histogram Counter Value 0

PVP_THCn_HCNT1_STAT THCn Histogram Counter Value 1

PVP_THCn_HCNT2_STAT THCn Histogram Counter Value 2

PVP_THCn_HCNT3_STAT THCn Histogram Counter Value 3

PVP_THCn_HCNT4_STAT THCn Histogram Counter Value 4

PVP_THCn_HCNT5_STAT THCn Histogram Counter Value 5

PVP_THCn_HCNT6_STAT THCn Histogram Counter Value 6

Table 30-1: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x PVP Interrupt List

PVP_THCn_HCNT7_STAT THCn Histogram Counter Value 7

PVP_THCn_HCNT8_STAT THCn Histogram Counter Value 8

PVP_THCn_HCNT9_STAT THCn Histogram Counter Value 9

PVP_THCn_HCNT10_STAT THCn Histogram Counter Value 10

PVP_THCn_HCNT11_STAT THCn Histogram Counter Value 11

PVP_THCn_HCNT12_STAT THCn Histogram Counter Value 12

PVP_THCn_HCNT13_STAT THCn Histogram Counter Value 13

PVP_THCn_HCNT14_STAT THCn Histogram Counter Value 14

PVP_THCn_HCNT15_STAT THCn Histogram Counter Value 15

PVP_THCn_RREP_STAT THCn Number of RLE Reports

PVP_PMA_CFG PMA Configuration

Table 30-2: ADSP-BF60x PVP Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

PVP0 Camera Pipe Data
Out B DMA Channel

111 38 LEVEL

PVP0 Camera Pipe Data
Out C DMA Channel

112 39 LEVEL

PVP0 Camera Pipe Status
Out DMA Channel

113 40 LEVEL

PVP0 Camera Pipe Control
In DMA Channel

114 41 LEVEL

PVP0 Status 0 115 LEVEL
PVP0 Memory Pipe Data
Out DMA Channel

116 42 LEVEL

Table 30-1: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–9

ADSP-BF60x PVP Trigger List

PVP0 Memory Pipe Data
In DMA Channel

117 43 LEVEL

PVP0 Memory Pipe Status
Out DMA Channel

118 44 LEVEL

PVP0 Memory Pipe
Control In DMA Channel

119 45 LEVEL

PVP0 Camera Pipe Data
Out A DMA Channel

120 46 LEVEL

PVP0 Status 1 121 LEVEL

Table 30-3: ADSP-BF60x PVP Trigger List Trigger Masters

Description Trigger ID Sensitivity

PVP0 Camera Pipe Data Out B
DMA Channel

60 PULSE/EDGE

PVP0 Camera Pipe Data Out C
DMA Channel

61 PULSE/EDGE

PVP0 Camera Pipe Status Out
DMA Channel

62 PULSE/EDGE

PVP0 Camera Pipe Control In
DMA Channel

63 PULSE/EDGE

PVP0 Memory Pipe Data Out
DMA Channel

64 PULSE/EDGE

PVP0 Memory Pipe Data In DMA
Channel

65 PULSE/EDGE

PVP0 Memory Pipe Status Out
DMA Channel

66 PULSE/EDGE

PVP0 Memory Pipe Control In
DMA Channel

67 PULSE/EDGE

PVP0 Camera Pipe Data Out A
DMA Channel

68 PULSE/EDGE

PVP0 Status 0 78 LEVEL
PVP0 Status 1 79 LEVEL

Table 30-2: ADSP-BF60x PVP Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x PVP DMA List

Table 30-4: ADSP-BF60x PVP Trigger List Trigger Slaves

Description Trigger ID Sensitivity

PVP0 Camera Pipe Data Out B
DMA Channel

60

PVP0 Camera Pipe Data Out C
DMA Channel

61

PVP0 Camera Pipe Status Out
DMA Channel

62

PVP0 Camera Pipe Control In
DMA Channel

63

PVP0 Memory Pipe Data Out
DMA Channel

64

PVP0 Memory Pipe Data In DMA
Channel

65

PVP0 Memory Pipe Status Out
DMA Channel

66

PVP0 Memory Pipe Control In
DMA Channel

67

PVP0 Camera Pipe Data Out A
DMA Channel

68

Table 30-5: ADSP-BF60x PVP DMA List DMA Channel List

Description DMA Channel

PVP0 Camera Pipe Data Out B DMA Channel DMA38
PVP0 Camera Pipe Data Out C DMA Channel DMA39
PVP0 Camera Pipe Status Out DMA Channel DMA40
PVP0 Camera Pipe Control In DMA Channel DMA41
PVP0 Memory Pipe Data Out DMA Channel DMA42
PVP0 Memory Pipe Data In DMA Channel DMA43
PVP0 Memory Pipe Status Out DMA Channel DMA44
PVP0 Memory Pipe Control In DMA Channel DMA45
PVP0 Camera Pipe Data Out A DMA Channel DMA46

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–11

PVP Block Diagram

The following figure shows the PVP block diagram. For more information on parts of this diagram, see the
corresponding section of the PVP Functional Description or see PVP Architectural Concepts.

Figure 30-1: PVP High-Level Block Diagram

PVP Definitions

To make the best use of the PVP, it is useful to understand the following terms.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Cartesian to Polar Magnitude and Polar Angle Conversion

This conversion processes two 16-bit signed inputs as coordinates in the Cartesian form (x, y) and converts
them into Polar form (Magnitude, Angle φ).

Convolution

Convolution is a mathematical operation on two signals producing a third signal which is typically viewed
as a modified version of one of the original signals.

Integral Image Processing

The integral image blocks calculate a 2-dimensional integral over the input frame and outputs the summed
area table (SAT). Alternatively, these blocks can generate a rotated SAT (RSAT) or can integrate in hori-
zontal dimension only (integral row mode).

Pixel Edge Classification Block

The pixel edge classifier operates in either 1st derivative mode (PEC-1) or 2nd derivative mode (PEC-2).
In PEC-1 mode, the block expects the magnitude on the lower 16-bits and the angle information on the
upper 16-bits. In PEC-2 mode, the block generates 8-connected chain codes for contour tracing, using
output from second derivative edge detection methods such as Difference of Gaussian (DoG) and Lapla-
cian of Gaussian (LoG).

Threshold-Histogram-Compression Block

The threshold-histogram-compression blocks implement a collection of statistical and range reduction
signal processing functions. Using the PVP’s pipeline interconnection options, output from a variety of
other PVP blocks may serve as input to the threshold-histogram-compression blocks.

Up-Down Scaling Block

The up-down-scaling block expects 16-bit or 32-bit unsigned input data and drives 32-bit unsigned output
data. When an anti-aliasing or an averaging filter is enabled, the input must be 16 bits and correspondingly
the output is 16 bits presented in the lower 16 bits of the 32-bit output.

Input Formatters (IPFn)

The PVP features two input formatters. Input formatter 0 (IPF0) serves the camera pipe. Data for IPF0
comes to the PVP from the video subsystem. Input formatter 1 (IPF1) serves the memory pipe. Data for
IPF1 comes to the PVP through DMA. The input formatters are the masters of the data flow for the entire
pipeline that they serve. Data received by IPF0 can be broadcast and is sent to the DMA system through
the camera pipe output formatters (OPF0, OPF1, and OPF2). Data received by IPF1 is sent to the DMA
system through the memory pipe output formatter (OPF3). The input formatters are responsible for the
following tasks:

• Formatting input data

• Extracting color or luminance components

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–13

• Windowing

• Separating odd and even pixels

• Separating Bayer and RCCC color components

• Counting frames

• Reporting/controlling status

The following tables provide details for input formatter (IPF0 and IPF1) inputs and outputs. The IPF0 data
source is fixed to video subsystem, and the IPF1 data source is fixed to DMA. The data format is listed as
s16 for 16-bit signed data, u16 for 16-bit unsigned data, s32 for 32-bit signed data, and u32 for 32-bit
unsigned data. For a graphical overview of all PVP block interconnections, see Configuring Pipe Structure.

Both input formatters feature three 32-bit outputs, which can be individually enabled by the respective
PVP_IPFn_CTL.OPORT0EN, PVP_IPFn_CTL.OPORT1EN, and PVP_IPFn_CTL.OPORT2EN bits. All IPFn
outputs can operate in parallel. If enabled, IPFn output port 0 outputs all data words.

Output Ports that do not source a complete pipeline must be kept disabled. A pipeline is considered as
complete if it is terminated by an OPFn block or by a THCn block with histogram output.

Table 30-6: IPF0 Block (Camera Pipe) Connectivity

IPF0 Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input Port 0 s16, u16, s32, u32 Video Sub-System 0
 Input Port 1 n/a n/a n/a
 Output Port 0 s32 (Full Frame) CNV0, CNV1, CNV2,

CNV3, PMA, ACU, PEC,
THC0, THC1, IIM0,
IIM1. OPF0, OPF1,
OPF2

n/a
 Output Port 1 s32 (Odd/Window)
 Output Port 2 s32 (Even)

Table 30-7: IPF1 (Memory Pipe) Block Connectivity

IPF1 Block I/O Data Format PVP Block Connect Port Connect

 Input Port 0 s16, u16, s32, u32 DMA 0
 Input Port 1 n/a n/a n/a
 Output Port 0 s32 (Full Frame) CNV0, CNV1, CNV2,

CNV3, PMA, ACU, PEC,
THC0, THC1, IIM0,
IIM1, OPF3, UDS

n/a
 Output Port 1 s32 (Odd)
 Output Port 2 s32 (Even)

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Input Formatters with Odd/Even Outputs

IPFn output ports 1 and 2 can be set to partner such that all odd-indexed data words output from port 1
and all even-indexed data words output from port 2. In this mode, the even-indexed data words are
delayed by one clock cycle where a pair of even/odd words leaves the IPFn simultaneously. The following
figure shows an example memory pipe operation in which IPF1 uses this feature.

Figure 30-2: Separation of Odd and Even Data Words

In this memory pipe example, the arithmetic control unit (ACU) is configured to perform division oper-
ations in memory pipe mode. The ACU expects the numerator on its X input and expects the denominator
on its Y input. The memory pipe receives all data in a single DMA channel, which may operate in 2-dimen-
sional mode. The DMA may provide a series of interleaved numerator/denominator pairs. Using the odd/
even feature, IPF1 splits the data words as required. The resulting quotients are sent to DMA through the
memory pipe output formatter (OPF3).

Input Formatters with Windowing

IPF0 output port 1 (serving the camera pipe) can be set to output only selected pixels, which reside within
window coordinates as specified by the PVP_IPF0_HPOS, PVP_IPF0_VPOS, PVP_IPFn_HCNT, and PVP_
IPFn_VCNT registers. The figure shows how these coordinates work together to identify the pixel window
with a frame.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–15

Figure 30-3: Definition of Port 1 Window Coordinates

IPF1 (serving the memory pipe) uses a different technique to support window. For windowing on IPF1,
the PVP_IPFn_HCNT and PVP_IPFn_VCNT registers are not used. Rather, the window is described by DMA
registers. The PVP_IPFn_HCNT and PVP_IPFn_VCNT registers are required to match the XCNT, YCNT, and
MSIZE settings of the input data DMA. The PVP applies the window coordinates after color extraction. So,
be sure to consider the color format selected by the PVP_IPFn_CTL.CFRMT bit field when using IPF1 for
windowing operations.

Input Formatters Receiving Packed Data

The PVP has 32-bit wide data input. IPF0 receives data from the video subsystem (PPIs and PIXC), and
IPF1 receives 32-bit data words from the DMA. This capacity for input data is wider than typical video
data, because video pixels are typically represented by 16-bit data entities. To operate the PVP most effi-
ciently, the data source can pack pairs of 16-bit data words into 32-bit data input to the PVP. The DMA
controller enables 32-bit packing by setting the DMA_CFG.PSIZE(PPIs) and the pixel compositor (PIXC)
send packed color formats to the PVP. Or, the PPIs enable packing by setting the EPPI_CTL.
PACKENentities when the PVP_IPFn_CTL.UNPACK

The number of significant bits varies with the type of data. Monochrome data can have 8, 16, 24, or 32
significant bits. Note that, if the PPI receives 10-, 12- or 14-bit data it performs zero/sign-extension on the
data to 16 bits. In special color formats, the IPFn blocks also extend data from 5 or 6 significant bits.

Dimensions of a frame supplied to the IPFn blocks generally must be a multiple of four. Further restric-
tions may apply by specific PVP blocks, especially if the odd/even ports are used or complex color space
format is selected.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Input Formatters Receiving Unsigned Data

Typically, the IPFn blocks receive video data that is 8-, 10-, 12-, or 14-bits wide, which is zero extended to
16-bit values. This typical pixel data can always be positive values, whether the data is processed by signed-
or unsigned-computation engines. If the IPFn blocks receive data that is 16 bits wide (without extension)
or that is 32 bits wide, correct operation requires that the PVP blocks process the signed- or unsigned-data
input with operations that are appropriate for the data type.

Data processing related conflicts can occur when:

• The IPFn receives data is unsigned 16- or 32-bit data, AND

• The IPFn forwards the unsigned data to PVP blocks that can only operate on signed data.

The affected PVP blocks are:

• CNVn blocks and PMA block, which require signed 16-bit data

• ACU block, which requires signed 32-bit data

To avoid these conflicts, use the PVP_IPFn_CTL.QFRMT bit to instruct the IPFn to right shift the incoming
data by one bit position and to zero fill the most significant bit. This operation directs the PVP to interpret
the input as a positive value for the signed computation engines. The output formatter (OPFn) blocks
provide the counterpart functionality, which shifts the result back to the left by one bit position. This
approach avoids conflicts due to signed bits (at the cost of losing one bit of input accuracy).

Input Formatters with Color Extraction

The PVP blocks process data in monochrome format. Often, the IPFn blocks’ data inputs have to probe
color data streams. To support this data, the IPFn blocks include features for extracting luminance or chro-
matic values from composite colored data streams. These features include:

• Extraction of Y (luma) values out of YCrCb streams

• Extraction of G (green) values out of RGB streams

• Extraction of G (green) values out of Bayer streams

• Extraction of R (red) values out of Bayer streams

The PVP_IPFn_CTL.CFRMT bit field defines the color format being used by the incoming data. The mono-
chrome and color video formats table provides the overview of transfers operations, where each cell shows
two consecutive 32-bit words that follow the conventions shown below. This table refers to data sent by
the EPPI or PIXC in case of IPF0 and data stored in memory (and fetched by DMA) for IPF1.

1st word MS byte 1st word byte 2 1st word byte 1 1st word LS byte
2nd word MS byte 2nd word byte 2 2nd word byte 1 2nd word LS byte

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–17

NOTE: The video formats table uses YCrCb terminology for color formats, rather than the YUV termi-
nology used in the PPI and PIXC peripheral descriptions. Items marked with an asterisk (*) indi-
cate that multiple options are commonly used in industry standard, but there is no difference for
the PVP as the Cr components and the Cb components are discarded.

The IPFn blocks process all data words for the monochrome input format. For YCrCb formats, the IPFn
blocks discard the Cr and Cb color components, and only process the luminance values Y. With RGB
formats, the PVP_IPFn_CTL.EXTRED bit is used. If this bit is cleared, the IPFn blocks extract the green
components. If this bit is set, the IPFn blocks extract the red components.

Table 30-8: Supported Monochrome and Color Video Formats

PVP_IPFn_CTL.CFRMT PVP_IPFn_CTL.UNPACK = 0 PVP_IPFn_CTL.UNPACK = 1

0x1
B

32-bit
mono

0x1
A

24-bit
mono

0x19 16-bit
mono

0x18 8-bit
mono

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

0x14 16-bit
YCrCb
422

0x15 16-bit
YCrCb
422

0x16 16-bit
YCrCb
422

0x10
0x13

8-bit
YCrCb
422

0x11 8-bit
YCrCb
422

0x12 8-bit
YCrCb
422

Table 30-8: Supported Monochrome and Color Video Formats (Continued)

PVP_IPFn_CTL.CFRMT PVP_IPFn_CTL.UNPACK = 0 PVP_IPFn_CTL.UNPACK = 1

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–19

In addition to the streaming formats shown in the monochrome and color video formats table, the IPFn
blocks can also extract color components out of Bayer pattern matrices as shown in the following table.

0x04 16-bit
RGB

0x00 8-bit
RGB

0x01 8-bit
RGB

0x02 16-bit
RGB
565

0x03 24-bit
RGB
666

Table 30-8: Supported Monochrome and Color Video Formats (Continued)

PVP_IPFn_CTL.CFRMT PVP_IPFn_CTL.UNPACK = 0 PVP_IPFn_CTL.UNPACK = 1

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

If the PVP_IPFn_CTL.EXTRED bit =0, the IPFn blocks extract the green components of the Bayer matrix.
The output frame has half the horizontal resolution of the input frame. If the PVP_IPFn_CTL.EXTRED bit
=1, the IPFn blocks extract the red component, dividing horizontal and vertical resolution.

In Bayer extraction mode, the input values can be 10, 12, or 16 bits wide. An 8-bit format is not supported.
The PPI’s EPPI_CTL.SWAPEN bit must be cleared in this mode.

The Bayer concepts can also apply to red-clear-clear-clear (RCCC) data. This is similar to Bayer format,
except that the green and blue pixels have monochrome (clear filter) values. For extraction on RCCC data,
programs have the following options:

• Extract the red pixels as in Bayer extraction mode.

• Extract one clear pixel by swapping type 1 versus type 2 and setting the PVP_IPFn_CTL.EXTRED bit.

• Extract the diagonal clear pixels that correspond to the green pixels in Bayer format.

• Use the odd/even mechanism and only process the clear columns.

• Ignore the fact that red pixels are special and low-pass them using convolution blocks.

Table 30-9: Supported Bayer Patterns

PVP_IPFn_CTL.CFRMT Bayer Pattern Color Matrices

0x05 Bayer Type 1

0x06 Bayer Type 2

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–21

Input Formatters with Color Separation

Unlike color extraction (which is performed at the IPFn input ports), the PVP performs color separation
as an operation of the IPF0 output ports. Also, color separation only is available for IPF0 (camera pipe
operation) and is notsupported for IPF1 (memory pipe operation).

NOTE: Color separation operations require that the IPF0 input does not manipulate color components.
Also, color seperation only is supported for monochrome PVP_IPFn_CTL.CFRMT options (0x18,
0x19, 0x1A, 0x1B).

Color separation grants concurrent access to multiple color components. It is enabled with the PVP_IPFn_
CTL.BFRMT0 bit. Color separation mode supports two Bayer types, as controlled with the PVP_IPFn_CTL.
BFRMT1 bit. PVP hardware does not differentiate between Bayer and red-clear-clear-clear (RCCC) formats.
Data received from RCCC sources needs to be interpreted accordingly. (See the Color Separation for
Type 1 and 2 diagram.)

Figure 30-4: Color Separation for Type 1 and 2

In color separation mode, output port 2 outputs the red pixels, and output port 1 provides the green ones.
The green pixel next to the red one always is used. This pixel is delayed by one pixel clock, so it aligns with
the red pixel. The PVP processing elements with two inputs are allowed to do math operation on both
color components. For example, the ACU can output the sum of the red pixel plus the green pixel. The
other green pixel (the one next to the blue pixel) is suppressed.

Output port 0 may be configured to forward all input pixels (PVP_IPFn_CTL.BFRMT1 =0) or may be config-
ured to output only the blue pixels (PVP_IPFn_CTL.BFRMT1 =1). Neither configuration aligns this output
with green pixel output (port 1) and red pixel output (port 2), so the blue pixels and cannot be processed
along with the red/green pixels by ACU operations.

As shown is the Color Separation and Ports diagram, Color Separation leads to reduced frame resolution.
The resulting pixel rate is one fourth of the input data rate.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-5: Color Separation and Ports

Input Formatters Using PPI and PVP

If IPF0 is receiving data from any of the PPIs in camera pipe mode, the settings of the two modules need
to partner for reception of reasonable data formats. The following tables list the supported combinations
of settings for the PPI and PVP.

NOTE: An “X” entry for a field value in the table indicates that the control bit field is not used for the
described transfer.

Table 30-10: PPI and PVP Settings for RGB 8-Bit (YCbCr 4:4:4) with 8 Bits per PIXCLK

PPI/PVP Control Bit Fields Field Value (Description)

PPI
settings

EPPI_CTL.XFRTYPE 0x3 (Non-ITU656 Mode, GP Mode)
EPPI_CTL.DLEN 0x0 (8-bit data length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable) 0x1 (Enable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–23

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x00 (RGB 8-Bit)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking) 0x1 (Unpack Data)
Data Placement RGBRGB..., not packed on PxP RGBRGB..., packed on PxP

Table 30-11: RGB 888 (YCbCr 4:4:4) with 24 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x3 (Non-ITU656 Mode, GP Mode)
EPPI_CTL.DLEN 0x7 (24-bit data length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable) 0x1 (Enable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x01 (RGB 888)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking) 0x1 (Unpack Data)
Data Placement RGB…RGB, not packed on PxP RGB…RGB, packed on PxP

Table 30-10: PPI and PVP Settings for RGB 8-Bit (YCbCr 4:4:4) with 8 Bits per PIXCLK (Continued)

PPI/PVP Control Bit Fields Field Value (Description)

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-12: RGB 16-Bit (YCbCr 4:4:4) with 10, 12, or 16 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x3 (Non-ITU656 Mode, GP Mode)
EPPI_CTL.DLEN 0x1 (10-bit data length)

0x2 (12-bit data length
0x4 (16-bit data length)

EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable) 0x1 (Enable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x04 (RGB 16-Bit)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking) 0x1 (Unpack Data)
Data Placement RGBRGB..., not packed on PxP RGBRGB..., packed on PxP

Table 30-13: RGB 565 (YCbCr 4:4:4) with 16 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x3 (Non-ITU656 Mode, GP Mode)
EPPI_CTL.DLEN 0x4 (16-bit data length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable) 0x1 (Enable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–25

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x02 (RGB 565)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking) 0x1 (Unpack Data)
Data Placement RGB…RGB, not packed on PxP RGB…RGB, packed on PxP

Table 30-14: RGB 666 (YCbCr 4:4:4) with 18 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x3 (Non-ITU656 Mode, GP Mode)
EPPI_CTL.DLEN 0x5 (18-bit data length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable) 0x1 (Enable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x03 (RGB 666)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking) 0x1 (Unpack Data)
Data Placement RGB…RGB, not packed on PxP RGB…RGB, packed on PxP

Table 30-13: RGB 565 (YCbCr 4:4:4) with 16 Bits per PIXCLK (Continued)

PPI/PVP Setting Value/Information

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-15: Bayer Format Type-1 and Bayer Format Type-2

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x3 (Non-ITU656 Mode, GP Mode)
EPPI_CTL.DLEN 0x1 (10-bit data length), 0x2 (12-bit data length), or 0x4 (16-bit data

length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x1 (Enable) 0x1 (Enable)
EPPI_CTL.DMACFG

EPPI_CTL.SUBSPLTODD X
PVP
Settings

PVP_IPFn_CTL.CFRMT 0x05 (Bayer Type-1) 0x06 (Bayer Type-2)
PVP_IPFn_CTL.UNPACK 0x1 (Unpack Data) 0x1 (Unpack Data)
Data Placement

Table 30-16: YCbCr 4:2:2 8-Bit Type 1 (CrYCbY) with 8 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x0, 0x1, or 0x2 (ITU656 Modes); or 0x3 (Non-ITU656 Mode, GP
Mode)

EPPI_CTL.DLEN 0x0 (8-bit data length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable) 0x1 (Enable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–27

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x10 (YCbCr 4:2:2 8-Bit Type 1)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking) 0x1 (Unpack Data)
Data Placement CrYCbY..., not packed on PxP CrYCbY…, packed on PxP

Table 30-17: YCbCr 4:2:2 8-Bit Pair 16-bit (CrY...CbY) with 16 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x3 (Non-ITU656 Mode, GP Mode)
EPPI_CTL.DLEN 0x4 (16-bit data length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x1 (Enable)
EPPI_CTL.DMACFG 0x0 (PPI uses one DMA Channel)
EPPI_CTL.SUBSPLTODD 0x0 (Disable)

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x19 (YCbCr 4:2:2 8-Bit Pair 16-Bit)
PVP_IPFn_CTL.UNPACK 0x1 (Unpack Data)
Data Placement CrYCbY…, packed on PxP

Table 30-16: YCbCr 4:2:2 8-Bit Type 1 (CrYCbY) with 8 Bits per PIXCLK (Continued)

PPI/PVP Setting Value/Information

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-18: Y Alone 8-Bit (YYYY) with 8 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x0, 0x1, or 0x2 (ITU656 Modes); or 0x3 (Non-ITU656 Mode, GP
Mode)

EPPI_CTL.DLEN 0x0 (8-bit data length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable) 0x1 (Enable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x18 (Y Alone 8-Bit)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking) 0x1 (Unpack Data)
Data Placement YYYY..., not packed, All Ys on

PxP
YYYY..., packed on PxP, All Ys on
PxP

Table 30-19: YCbCr 4:2:2 8-Bit Type 1/2/3 (CbYCrY) with 8 Bits per PIXCLK

PPI/
PVP Setting Value/Information

PPI
setti
ngs

EPPI_CTL.XFRTYPE 0x0, 0x1, or 0x2 (ITU656 Modes); or 0x3 (Non-ITU656 Mode, GP Mode)
EPPI_CTL.DLEN 0x0 (8-bit data length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x1 (Split Even/Odd Samples)
EPPI_CTL.PACKEN X
EPPI_CTL.DMACFG 0x1 (PPI uses two DMA

Channels)
0x0 (PPI uses one DMA
Channel)

0x0 (PPI uses one DMA
Channel)

EPPI_CTL.
SUBSPLTODD

X 0x0 (Disable) 0x1 (Enable)

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–29

PVP
Setti
ngs

PVP_IPFn_CTL.
CFRMT

0x10 (YCbCr 4:2:2 8-bit
type1)

0x11 (YCbCr 4:2:2 8-bit
type2)

0x12 (YCbCr 4:2:2 8-bit
type3)

PVP_IPFn_CTL.
UNPACK

0x1 (Unpack Data)

Data Placement CrYCbY..., split, and
DMA separated, All Y
on PxP

CrYCbY..., split, CbCr
comes first, followed by
Y on PxP

CrYCbY..., split/
subsplit, Y comes first,
then CrCb on PxP

Table 30-20: SMPTE YCbCr 4:2:2 8-Bit Type 3 (CrY...CbY) with 16 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x0, 0x1, or 0x2 (ITU656 Modes); or 0x3 (Non-ITU656 Mode, GP
Mode)

EPPI_CTL.DLEN 0x4 (16-bit data length)
EPPI_CTL.SPLTWRD 0x1 (PPI_DATA contains 2 elements per word)
EPPI_CTL.SPLTEO 0x1 (Split Even/Odd Samples)
EPPI_CTL.PACKEN X
EPPI_CTL.DMACFG 0x0 (PPI uses one DMA

Channel)
EPPI_CTL.SUBSPLTODD 0x1 (Enable) 0x0 (Disable)

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x12 (YCbCr 4:2:2 8-bit type3)
PVP_IPFn_CTL.UNPACK 0x1 (Unpack Data)
Data Placement CrY...CbY, split & subsplit, Y

comes first, followed by CrCb on
PxP

CrY...CbY, split, Y comes first,
followed by CrCb on PxP

Table 30-19: YCbCr 4:2:2 8-Bit Type 1/2/3 (CbYCrY) with 8 Bits per PIXCLK (Continued)

PPI/
PVP Setting Value/Information

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-21: UCbCr 4:2:2 16-Bit Type 1 (CrYCbY) with 10 to 16 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x0, 0x1, or 0x2 (ITU656 Modes); or 0x3 (Non-ITU656 Mode, GP
Mode)

EPPI_CTL.DLEN 0x1 (10-bit data length), 0x2 (12-bit data length), 0x3 (14-bit data
length), or 0x4 (16-bit data length)

EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable) 0x1 (Enable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x14 (YCbCr 4:2:2 16-Bit Type 1)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking) 0x1 (Unpack Data)
Data Placement CrYCbY… sign/zero extended to

16 bits, not packed on PxP
CrYCbY… sign/zero extended to
16 bits, packed on PxP

Table 30-22: YCbCr 4:2:2 16-Bit Type 2/3, sub-split (CrYCbY) with 10 to 16 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x0, 0x1, or 0x2 (ITU656 Modes); or 0x3 (Non-ITU656 Mode, GP
Mode)

EPPI_CTL.DLEN 0x1 (10-bit data length), 0x2 (12-bit data length), 0x3 (14-bit data
length), or 0x4 (16-bit data length)

EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x1 (Split Even/Odd Samples)
EPPI_CTL.PACKEN X
EPPI_CTL.DMACFG 0x0 (PPI uses one DMA Channel)
EPPI_CTL.SUBSPLTODD 0x0 (Disable) 0x1 (Enable)

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–31

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x15 (YCbCr 4:2:2 16-Bit Type 2) 0x16 (YCbCr 4:2:2 16-Bit Type 3)
PVP_IPFn_CTL.UNPACK 0x1 (Unpack Data)
Data Placement CrYCbY..., sign/zero extended to

16 bits, split not sub-split, CrCb
comes first, followed by Y on PxP

CrY...CbY, sign/zero extended to
16 bits, split and sub-split, Y
comes first, followed by CrCb on
PxP

Table 30-23: SMPTE YCbCr 4:2:2 16-Bit Type 3, split (CrYCbY) with 20 to 24 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x0, 0x1, or 0x2 (ITU656 Modes); or 0x3 (Non-ITU656 Mode, GP
Mode)

EPPI_CTL.DLEN 0x6 (20-bit data length) or 0x7 (24-bit data length)
EPPI_CTL.SPLTWRD 0x1 (PPI_DATA contains 2 elements per word)
EPPI_CTL.SPLTEO 0x1 (Split Even/Odd Samples)
EPPI_CTL.PACKEN X
EPPI_CTL.DMACFG 0x0 (PPI uses one DMA Channel)
EPPI_CTL.SUBSPLTODD 0x1 (Enable) 0x0 (Disable)

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x16 (YCbCr 4:2:2 16-Bit Type 3)
PVP_IPFn_CTL.UNPACK 0x1 (Unpack Data)
Data Placement CrY...CbY, sign/zero extended to

16 bits, split and sub-split, Y
comes first, followed by CrCb on
PxP

CrY...CbY, sign/zero extended to
16 bits, split not sub-split, Y
comes first, followed by CrCb on
PxP

Table 30-22: YCbCr 4:2:2 16-Bit Type 2/3, sub-split (CrYCbY) with 10 to 16 Bits per PIXCLK (Continued)

PPI/PVP Setting Value/Information

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-24: Y Alone 16-Bit (YYYY) with 10 to 16 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x0, 0x1, or 0x2 (ITU656 Modes); or 0x3 (Non-ITU656 Mode, GP
Mode)

EPPI_CTL.DLEN 0x1 (10-bit data length), 0x2 (12-bit data length), 0x3 (14-bit data
length), or 0x4 (16-bit data length)

EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable) 0x1 (Enable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x19 (Y Alone 16-Bit)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking) 0x1 (Unpack Data)
Data Placement YYYY..., sign/zero extended to 16

bits, not packed, All Y on PxP
YYYY..., sign/zero extended to 16
bits, packed, All Y on PxP

Table 30-25: SMPTE Y Alone 16-Bit, split, sub-split (CrYCbY) with 20 to 24 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x0, 0x1, or 0x2 (ITU656 Modes); or 0x3 (Non-ITU656 Mode, GP
Mode)

EPPI_CTL.DLEN 0x6 (20-bit data length) or 0x7 (24-bit data length)
EPPI_CTL.SPLTWRD 0x1 (PPI_DATA contains 2 elements per word)
EPPI_CTL.SPLTEO 0x1 (Split Even/Odd Samples)
EPPI_CTL.PACKEN X
EPPI_CTL.DMACFG 0x1 (PPI uses two DMA Channels)
EPPI_CTL.SUBSPLTODD X

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–33

Input Formatters and Pipe Mastering

The IPFn blocks provide master control of the camera and memory pipelines. The IPFn blocks do not
accept any data on their data input until the pipe is fully configured and enabled. After the camera pipe has
been enabled (with the PVP_CTL.CPEN bit) or memory pipe has been enabled (with the PVP_CTL.MPEN bit),
the corresponding input formatter immediately requests a block control structure list (BCL) fetch from the
configuration DMA channel. If the configuration DMA does not grant the request because it is either not
ready or not enabled, the pipe engine stalls either until the pipe is configured by memory mapped register
(MMR) writes or until the DMA starts granting.

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x19 (Y Alone 16-Bit)
PVP_IPFn_CTL.UNPACK 0x1 (Unpack Data)
Data Placement CrY...CbY..., sign/zero extended to 16 bits, split and DMA separated,

All Y on PxP

Table 30-26: Y Alone 24-Bit (YYYY) with 24 Bits per PIXCLK

PPI/PVP Setting Value/Information

PPI
settings

EPPI_CTL.XFRTYPE 0x3 (Non-ITU656 Mode, GP Mode)
EPPI_CTL.DLEN 0x7 (24-bit data length)
EPPI_CTL.SPLTWRD 0x0 (PPI_DATA has DLEN-1 bits of Y or Cr or Cb)
EPPI_CTL.SPLTEO 0x0 (Do Not Split Samples)
EPPI_CTL.PACKEN 0x0 (Disable)
EPPI_CTL.DMACFG X
EPPI_CTL.SUBSPLTODD X

PVP
Settings

PVP_IPFn_CTL.CFRMT 0x1A (Y Alone 24-Bit)
PVP_IPFn_CTL.UNPACK 0x0 (No Unpacking)
Data Placement YYYY..., not packed, All Y on PxP

Table 30-25: SMPTE Y Alone 16-Bit, split, sub-split (CrYCbY) with 20 to 24 Bits per PIXCLK (Continued)

PPI/PVP Setting Value/Information

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When the configuration DMA is granted, the input formatters fetch BCL words until the PVP_IPF0_CFG.
START or PVP_IPF1_CFG.START bit is set. The PVP assumes that the BCL describes a valid pipe configu-
ration and writes a 1 to the PVP_xxx_CFG.START bits of all involved blocks. The START bit can be seen as
a self-clearing block enable bit. The self-clearing nature of this bit ensures that software does not need to
perform garbage collection at or after pipe re-configuration. Blocks that are no longer used are automati-
cally disabled.

The PVP_IPF0_CFG.START and PVP_IPF1_CFG.START bits of the input formatters have additional
purpose --- to enable the entire camera or memory pipe. While the order of BCSs inside a BCL does not
matter, only the very last BCS writes into the PVP_IPF1_CFG register.

After the PVP_IPF0_CFG.START or PVP_IPF1_CFG.START bit has been written, the IPF0 starts accepting
data from the video sub-system (PPIs or PIXC), and the camera pipe starts processing. Or, IPF1 starts
requesting data from data input DMA, and the memory pipe starts processing.

For a more detailed description of pipeline operations and functionality, see the Programming Model.

Output Formatters (OPFn)

The output formatters collect the data results of PVP processing blocks, apply final formatting, and
forward the results to the DMA channels. The OPF0, OPF1, and OPF2 formatters serve the camera pipes.
The OPF3 formatter serves the memory pipe. Each OPF is associated with a specific DMA channel. The
input to each output formatter is selectable from the output of the PVP blocks, as shown in the following
tables. For a graphical overview of PVP block connectivity, see Configuring Pipe Structure.

Table 30-27: OPF0, OPF1, and OPF2 (Camera Pipe) Block Connectivity

OPF0/1/2 Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s16, u16, s32, u32 IPF0
CNV0
CNV1
CNV2
CNV3
PMA
ACU
PEC
THC0
THC1
IIM0
IIM1

0, 1, 2
0
0
0
0
0, 1, 2
0
0
0
0
0
0

 Input 1 n/a n/a n/a
 Output 0 s16, u16, s32, u32 DMA n/a
 Output 1 n/a n/a n/a

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–35

OPFn Data Packing

To ensure efficient memory bandwidth use, the OPFn blocks support data packing. Ideally, the PVP results
are packed into 32-bit entities and forwarded to the DMA channel, which is also programmed to 32-bit
mode by setting PVP_OPFn_CTL.OSIZE =0 and by setting the DMA_CFG.PSIZE =2 for each respective DMA
channel.

The PVP_OPFn_CTL.OSIZE =0 setting instructs the OPFn block to accept a full 32-bit word from the data
source. In this case, packing is not possible, and PVP_OPFn_CTL.OSIZE =0 and DMA_CFG.PSIZE =2 are
mandatory settings.

The PVP_OPFn_CTL.ISIZE =1 setting instructs the OPFn block to accept 16-bit words from the data
source. In this case, there are multiple data packing options. To use data packing, set PVP_OPFn_CTL.
OSIZE =0 and set DMA_CFG.PSIZE =2. For no data packing, set PVP_OPFn_CTL.OSIZE =1 and set DMA_CFG.
PSIZE =1 for 16-bit transfers between the OPFn block and the corresponding DMA channel. The PVP_

 Output 2 n/a n/a n/a

Table 30-28: OPF3 (Memory Pipe) Block Connectivity

OPF3 Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s16, u16, s32, u32 IPF1
CNV0
CNV1
CNV2
CNV3
PMA
ACU
PEC
THC0
THC1
IIM0
IIM1
UDS

0, 1, 2
0
0
0
0
0, 1, 2
0
0
0
0
0
0
0

 Input 1 n/a n/a n/a
 Output 0 s16, u16, s32, u32 DMA n/a
 Output 1 n/a n/a n/a
 Output 2 n/a n/a n/a

Table 30-27: OPF0, OPF1, and OPF2 (Camera Pipe) Block Connectivity (Continued)

OPF0/1/2 Block I/O Data Format
PVP Block Connect

Selections Port Connect

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

OPFn_CTL.IUP16 bit determines whether the OPFn blocks latch the lower 16 bits or the upper 16 bits from
their 32-bit input.

The PVP_OPFn_CTL.ISIZE =2 setting instructs the OPFn block to accepts 8-bit bytes from the data source.
To pack values to a 32-bit output, set PVP_OPFn_CTL.OSIZE =0 and set DMA_CFG.PSIZE =2. To only pack
two values into a 16-bit output, set PVP_OPFn_CTL.OSIZE =1 and set DMA_CFG.PSIZE =1. To disable
packing, set PVP_OPFn_CTL.OSIZE =2 and set DMA_CFG.PSIZE = 0. The PVP_OPFn_CTL.IUP16 bit selects
between bits [7:0] and bits [23:16] on the inputs.

The PVP_OPFn_CTL.ISIZE =3 setting instructs the OPF to accept 4-bit nibbles from the data source.
Nibbles must always be packed to 8-, 16-, or 32-bit entities as described in the OPFn data packing options
table. This packing results in dual, quad or octal nibble groups per DMA transfer. The PVP_OPFn_CTL.
IUP16 bit selects between bits [3:0] and bits [19:16] on the inputs.

NOTE: Data packing has requirements for the horizontal size of data frames, which must be a multiple of
the packing ratio.

The following table summarizes the OPFn data packing options.

Table 30-29: OPFn Data Packing Options

PVP_OPFn_
CTL.ISIZE

PVP_OPFn_
CTL.OSIZE

DMA_CFG.
PSIZE

PVP_OPFn_
CTL.IUP16 32-bit DMA word

0 0 2 0 D0[31:0]
1 1 1 0 0, D0[15:0]

1 0, D0[31:16]
0 2 0 D1[15:0], D0[15:0]

1 D1[31:16], D0[31:16]
2 2 0 0 0, 0, 0, D0[7:0]

1 0, 0, 0, D0[23:16]
1 1 0 0, 0, D1[7:0], D0[7:0]

1 0, 0, D1[23:16], D0[23:16]
0 2 0 D3[7:0], D2[7:0], D1[7:0], D0[7:0]

1 D3[23:16], D2[23:16], D1[23:16], D0[23:16]

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–37

If the OPFn block is receiving unsigned data and its PVP_IPFn_CTL.QFRMT bit is set, it is helpful for the
OPFn block to correct the shift position back before transmitting the results to DMA. The PVP_IPFn_CTL.
QFRMT bit right shifts the input by one bit to keep data unsigned. The OPF corrects the right shift by the
IPF. For this purpose, the PVP_OPFn_CTL.QFRMT bit may be used to shift the results to the left by one bit
position.

OPFn Output FIFOs

To avoid data loss during cases of temporary peak loads on system buses, the OPFn blocks have local
FIFOs to supplement the DMA FIFOs. The width of the OPFn blocks’ FIFO vary with the PVP_OPFn_CTL.
OSIZE bit field settings. The individual OPFn blocks have different FIFO depths:

• OPF0: 380 entries x 32 bits or 960 x 16 bits or 1920 x 8 bits

• OPF1: 1024 entries x 32 bits or 2048 x 16 bits or 4196 x 8 bits

• OPF2: 512 entries x 32 bits or 1024 x16 bits or 2048 x 8 bits

• OPF3: 32 entries x 32 bits or 64 x 16 bits or 128 x 8 bits

It is important to note the capacities of the OPFn block FIFOs and use this information when configuring
camera and memory pipes. Be sure to assign OPF1 to the camera pipeline with the highest output data rate.
For example, it is best to route 32-bit results that come out of the CNVn blocks, the ACU block, or the IIMn
blocks (running at full input frame resolution) to OPF1. The OPF0 block should be used for the camera pipe
with the lowest output data rate. For example, it is best to route items that are subject to data reduction
(windowing, sub sampling, run-length encoding) or items that have small data widths (threshold index,
edge classes) to OPF1. The OPF2 block should be used for normal data rate throughput. Unexpected over-
flow status is reported by the PVP_STAT.OPF0OVF, PVP_STAT.OPF1OVF, and PVP_STAT.OPF2OVF bits, and
latched interrupts for overflow are indicated by the PVP_ILAT.OPF0OVF, PVP_ILAT.OPF1OVF, and PVP_
ILAT.OPF2OVF bits.

3 2 0 0 0, 0, 0, 0, 0, 0, D1[3:0], D0[3:0]
1 0, 0, 0, 0, 0, 0, D1[19:16], D0[19:16]

1 1 0 0, 0, 0, 0, D3[3:0], D2[3:0], D1[3:0], D0[3:0]
1 0, 0, 0, 0, D3[19:16], D2[19:16], D1[19:16],

D0[19:16]
0 2 0 D7[3:0], D6[3:0], D5[3:0], D4[3:0], D3[3:0],

D2[3:0], D1[3:0], D0[3:0]
1 D7[19:16], D6[19:16], D5[19:16], D4[19:16],

D3[19:16], D2[19:16], D1[19:16], D0[19:16]

Table 30-29: OPFn Data Packing Options (Continued)

PVP_OPFn_
CTL.ISIZE

PVP_OPFn_
CTL.OSIZE

DMA_CFG.
PSIZE

PVP_OPFn_
CTL.IUP16 32-bit DMA word

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: The OPF3 block has a relatively small FIFO, because the memory pipe has been designed to never
overflow.

The OPFn blocks support finish signaling to the DMA. For more information about this feature, see Finish
Commands.

Threshold-Histogram-Compression (THCn)

The PVP features two threshold-histogram-compression blocks. These blocks implement a collection of
statistical and range reduction signal processing functions. The input to the THC blocks can be one of the
following described in the following table. For a graphical overview of all PVP block interconnections, see
Configuring Pipe Structure.

The figure gives the detailed overview of a THCn block.

Table 30-30: THCn Block Connectivity

THC0/1 Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s32 IPF0
IPF1
PMA
CNV0
CNV1
CNV2
CNV3
ACU
PEC

0,1, 2
0, 1, 2
1, 2
0
0
0
0
0
2

 Input 1 n/a n/a n/a
 Output 0 s32 (result) IIM0, IIM1, OPF0, OPF1,

OPF2, OPF3
n/a

 Output 1 n/a n/a n/a
 Output 2 n/a n/a n/a

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–39

Figure 30-6: Threshold Histogram Compression Block Diagram

The PVP_THCn_CTL.ZEXT bit determines how the input data is handled. When set to 1, the lower 16-bits
of input data are zero extended to 32-bits and are used for further processing. The upper 16-bits are used
as an angle input. When the bit is cleared (= 0), the entire 32-bits of input data are used for further
processing. The angle input is set to 0.

The stages of THCn block operation are as follows.

• Threshold Unit

• Histogram Unit

• Compression Unit

The THCn overview figure shows how these stages contribute to THC operations.The details of each unit
are described in the sections that follow.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-7: THCn Overview

THCn Threshold Unit

The THCn threshold unit operates on the incoming pixels for the THCn block. The output of the threshold
unit is a 32-bit pixel out value and a 4-bit index value. This unit supports three modes of operation based
on the PVP_THCn_CTL.MODE bits.

• Clipping Mode — In this mode, the input pixel is classified in one of the three ranges. The input data is
first compared to the value in the PVP_THCn_CMINTH register. If this value less than the value
programmed in the register, the pixel out value is the PVP_THCn_CMINVAL register value, and the index
output is 0x0. If the input data is greater than the value programmed in the PVP_THCn_CMAXTH register,
the pixel out value is the PVP_THCn_CMAXVAL value, and the index output is 0x2. If the input data lies
between the two values the pixel out value is equal to the input data, and the index output is 0x1.

• Quantization Mode — In this mode, the input pixels are compared to the 16 threshold value registers
(PVP_THCn_TH0-PVP_THCn_TH15) and are classified as belonging to one of sixteen bins. The registers
must be programmed in ascending order from PVP_THCn_TH0 to PVP_THCn_TH15. The pixel out takes
one of these 16 threshold values based on floor logic. If the input is less than PVP_THCn_TH0, the pixel

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–41

out is the highest threshold value among the 16 threshold values. The index output is the number of the
threshold register that the pixel out takes.

• Hysteresis Mode — In this mode, the 16 threshold value registers (PVP_THCn_TH0-PVP_THCn_TH15) are
interpreted as eight pairs of threshold values, starting from PVP_THCn_TH0–PVP_THCn_TH1, then PVP_
THCn_TH2–PVP_THCn_TH3, and so on. The register pairs form a range. If the input pixel value falls in
this range, the pixel out depends on the previous output. The pixel out is the higher register in one of
the eight pairs of threshold registers. The index output is the number of the threshold register pair that
the pixel out takes.

The hysteresis example figure demonstrates hysteresis functionality. The rounded numbers are index
output when the input pixel falls in that region.

Figure 30-8: Hysteresis Example

If the pixel value falls in the gray region, the output index is computed based on the pseudo code below:

if (previous_bin == upper_bin)
index = upper_bin
else if (previous_bin = lower_bin)

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

index = lower_bin
else if (previous_bin > upper_bin)
index = upper_bin
else
index = lower_bin

THCn Histogram Unit

The THCn histogram unit has 16 histogram counters, with each counter corresponding to one index. The
counters run for the number of frames programmed in the PVP_THCn_HFCNT register. After the
programmed number of frames, the histogram counters are cleared and are restarted. The histogram
counters are moved to the PVP_THCn_HFCNT_STAT registers at every frame. The value of the current frame
count also is available in the PVP_THCn_HFCNT_STAT register.

When the threshold unit is operating in hysteresis mode, the index output ranges from 0 to 7, so only the
PVP_THCn_HCNT0_STAT to PVP_THCn_HCNT7_STAT registers contain valid data. When the threshold unit
is operating in clipping mode, the index output ranges from 0 to 2, and only the PVP_THCn_HCNT0_STAT
to PVP_THCn_HCNT2_STAT registers have valid data. Each of the histogram counters is 32 bits wide. If the
counter reaches the highest value of 0xFFFFFFFF before the expiration of the value in the PVP_THCn_
HFCNT register, the counter does not overflow. Rather, the counter saturates at that value.

The THCn histogram unit can be enabled or disabled using the PVP_THCn_CTL.HISTEN bit.

THCn Compression Unit

The THCn compression unit uses the run-length-encoding (RLE) technique to compress data. In most
cases, the output from the threshold unit has a lot of repetition. Converting the sequence of data values
into a report containing value and run-length count reduces throughput at the output of the THCn block.

The value and run-length are grouped into a single word based on the PVP_THCn_CTL.OFRMT bits. The run-
length indicates the actual number of pixels and not repetitions, so the minimum run-length value is 1.

If the PVP_THCn_CTL.RLEFRAME bit is 0, a report is generated at the end of a row and the run-length
counter is reset. If = 1, compression works across rows in the frame. Due to the nature of compression, a
variable number of reports are generated per row or per frame. The PVP_THCn_RREP_STAT register
contains the actual number of reports generated per frame. A value can be set in the PVP_THCn_RMAXREP
register to limit the number of reports generated per row or per frame. When the number of reports
reaches the limit, the last report’s run-length field is cleared.

Note that some formats (selectable with the PVP_THCn_CTL.OFRMT bits) disable compression. Also, some
formats use angle information to generate the final report.

A typical usage of compression unit is to set the maximum number of reports in PVP_THCn_RMAXREP
register. Program the output DMA to transfer the maximum number of reports. After all the reports are
generated for the frame, the compression unit sends a Finish Command to DMA. This command ensures
that the work unit moves to the next work unit despite the variable data per work unit. The actual number
of reports generated can be read from PVP_THCn_RREP_STAT status register.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–43

THCn Windowing

The THCn histogram and THCn compression units support windowing to filter incoming pixels.

The THCn histogram window supports filtering pixels either inside or outside the window. The THCn
window mode is selected with the PVP_THCn_CTL.HISTWM bits. The window coordinates are specified by
the PVP_THCn_HHPOS, PVP_THCn_HVPOS, PVP_THCn_HHCNT, and PVP_THCn_HVCNT registers.

The THCn compression window supports filtering pixels only inside the window. The THCn window
mode is selected with the PVP_THCn_CTL.RLEWM bits. The window coordinates are specified by the PVP_
THCn_RHPOS, PVP_THCn_RVPOS, PVP_THCn_RHCNT, and PVP_THCn_RVCNT registers. The minimum
supported window size is 16x16.

Figure 30-9: Definition of RLE and Histogram Windows

Convolution (CNVn)

Convolution is a mathematical operation on two signals producing a third signal which is typically viewed
as a modified version of one of the original signals. The PVP has four convolution blocks (CNVn).

The convolution block implements a 2D convolution of the input pixels with a 5x5 coefficient matrix. The
actual mathematical operation is described in the equation below.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

where:

• N = number of columns in the input data

• M = number of rows in the input data

• Y = MxN output data

• X = MxN input data

• C = 5x5 coefficient data

Note that the strict mathematical formula for convolution mirrors the coefficients in both directions
before the MAC operation. For CNV blocks, the coefficients are multiplied in place to simplify the opera-
tion (similar to Correlation). Programs can always put the 5x5 coefficients in different order to realize
either convolution or correlation.

Figure 30-10: CNVn Overview

The following figures and tables describe the data flow within the CNV block. For a graphical overview of
all PVP block interconnections, see Configuring Pipe Structure.

Figure 30-11: Convolution Block Connectivity

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–45

Table 30-31: CNV0 Block Connectivity

CNV0 Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s16 IPF0
IPF1
CNV1
CNV2
CNV3

0, 1, 2
0, 1, 2
0
0
0

 Input 1 n/a n/a n/a
 Output 0 s32 (Result) CNV1, CNV2, CNV3,

PMA, ACU, PEC, THC0,
THC1, IIM0, IIM1.
OPF0, OPF1, OPF2,
OPF3

n/a

 Output 1 n/a n/a n/a
 Output 2 n/a n/a n/a

Table 30-32: CNV1 Block Connectivity

CNV1 Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s16 IPF0
IPF1
CNV0
CNV2
CNV3

0, 1, 2
0, 1, 2
0
0
0

 Input 1 n/a n/a n/a
 Output 0 s32 (Result) CNV0, CNV2, CNV3,

PMA, ACU, PEC, THC0,
THC1, IIM0, IIM1.
OPF0, OPF1, OPF2,
OPF3

n/a

 Output 1 n/a n/a n/a
 Output 2 n/a n/a n/a

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-33: CNV2 Block Connectivity

CNV2 Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s16 IPF0
IPF1
CNV0
CNV1
CNV3

0, 1, 2
0, 1, 2
0
0
0

 Input 1 n/a n/a n/a
 Output 0 s32 (Result) CNV0, CNV1, CNV3,

PMA, ACU, PEC, THC0,
THC1, IIM0, IIM1.
OPF0, OPF1, OPF2,
OPF3

n/a

 Output 1 n/a n/a n/a
 Output 2 n/a n/a n/a

Table 30-34: CNV3 Block Connectivity

CNV3 Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s16 IPF0
IPF1
CNV0
CNV1
CNV2

0, 1, 2
0, 1, 2
0
0
0

 Input 1 n/a n/a n/a
 Output 0 s32 (Result) CNV0, CNV1, CNV2,

PMA, ACU, PEC, THC0,
THC1, IIM0, IIM1.
OPF0, OPF1, OPF2,
OPF3

n/a

 Output 1 n/a n/a n/a
 Output 2 n/a n/a n/a

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–47

The CNVn block expects 16-bit signed input data and drives 32-bit signed output data. The key features
of the CNVn block are:

• When the PVP_CNVn_CTL.SAT32 bit =0, the output is saturated to a 16-bit value and is sign extended
to drive the 32-bit output. When the bit =1, the output is saturated to a 32-bit value.

• The boundary pixels at the output require input pixels beyond the edges for computation. When the
PVP_CNVn_CTL.ZEROFILL bit =1, the input pixels outside the edges are considered to be 0. When the
bit =0, the edges are duplicated beyond the boundary of the input pixels.

• The PVP_CNVn_CTL.SHIFT bit controls output arithmetic right shift from 0 to 31 bits. This shift allows
the coefficients to be in fractional format with full control of the placement of the binary point.

• The CNVn block supports down scaling by dropping output pixels in both directions. The PVP_CNVn_
SCALE bits are used to set the horizontal downscale factor, and the PVP_CNVn_SCALE.VSCL bits are used
to set the vertical downscale factor. The CNVn block supports decimation in powers of 2. The
maximum horizontal downscale factor is 1024, and the vertical factor is 512. The value programmed in
these registers is one less than the actual scale factor. So, a scale factor of 0 disables down scaling.

The PVP_CNVn_SCALE.HSCL and PVP_CNVn_SCALE.VSCL field settings must not change on the fly if the
output of the down scaling CNVn block supplies another CNVn block. If so, the PVP_IPFn_PIPECTL.
DRAIN bit must be set for the new configuration.

• The CNVn block supports 5x5 convolution kernels. The block automatically supports any smaller 2D
kernels like 3x3 by centering the kernel in the 5x5 matrix and filing the surrounding values with zeros.
The coefficients for the yth row are set in the PVP_CNVn_C00C01, PVP_CNVn_C02C03, and PVP_CNVn_
C04 registers.

• The accumulator in the CNVn block is 37-bits wide—no overflow is possible during MAC operations.

NOTE: A down scaled CNVn must not dynamically change the scaling ratio when supplying another
CNVn block. A CVNn block may only drive another CNVx as long as it does not downscale or the
scaling ratio does not alter while the pipe is enabled.

Red Pixel Substitution

For the benefit of red-clear-clear-clear (RCCC) data processing, Convolution Block CNV1 provides a
unique feature called red pixel substitution. (This feature is not supported by the CNV0, CNV2 and CNV3
blocks). If paired with IPF0’s Color Separation mode, red pixel substitution can substitute the red pixels
by a mean value of the surrounding clear pixels.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-12: CNV RCCC Received From Sensor

When CNV1 receives a Bayer or a RCCC data stream, red pixel substitution performs convolution/
correlation, shift and saturate operation only on the red pixel. The blue and green pixels (the clear pixels)
are passed to the output without modification. In this mode, the PVP_CNVn_CTL.SAT32 control bit must
be set to zero. Only then can accumulation results saturate to 16 bits and match the data range of the
unmodified 16-bit clear pixels. All pixels are sign-extended to 32 bits on the output.

Figure 30-13: CNV RCCC Convolution Kernel Flow

The red pixel substitution mode is enabled by the PVP_CNVn_CTL.RFRMT0 bit. The PVP_CNVn_CTL.RFRMT1
bit distinguishes between Bayer Type 1 or Type 2 configuration.

There are multiple strategies for substituting the red pixel in an RCCC data stream. The CNV1 block
allows for many types of mean value generation that interpolate the missing clear value (in place of the red
pixel). The following figure provides an overview of the most prominent convolution kernels.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–49

Figure 30-14: CNV RCCC Filter Candidates

Polar Magnitude and Angle Block (PMA)

The PVP features one polar magnitude and angle block (PMA). The block takes two 16-bit signed inputs
as coordinates in the Cartesian form (x, y) and converts them into Polar form (Magnitude, Angle φ).

Figure 30-15: Cartesian versus Polar form

The PMA block applies the Pythagorean mathematical formulas to obtain magnitude and angle, as shown.

Figure 30-16: PMA Equations

The magnitude is output as a 16-bit unsigned value, ranging from 0 to the square root of 2. For x = y =
0x7FFF, the PMA block outputs 0xB503. For the special case of x = y = 0x8000, the PMA block outputs
0xB504.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The angle φ is calculated to five bits of resolution (11.25°) and an accuracy of ±0.25°. Mathematically, the
angle is a signed value. However, since the angle is always zero-extended when output to 16-bit or 32-bit
buses, it can also be interpret as an unsigned binning value.

Figure 30-17: PMA Angle Binning

The PMA sets the angle to 0x08 (+90°) if the x input value is 0 and the y input is a positive value and to
0x18 (-90°) if the y input is negative. If both, x and y are zero, the PMA outputs 0x1F by convention.

Other than data flow configuration, the PMA block does not have any control or status registers. Both of
its inputs can be individually configured to receive data from any of the convolution blocks or from either
input formatter.

NOTE: Care is required in that both inputs are timed consistently and are not subject to non-matching
latency in up front pipeline configuration.

The PMA block has three output ports. If PMA is enabled, all three 32-bit ports are always active as follows.

• Port 0 drives the 16-bit unsigned magnitude. The upper 16 bits are always driven as zeros.

• Port 1 drives the 5-bit angle value. The upper 27 bits are always driven as zeros.

• Port 2 drives a combined format. The lower 16 bits contain the magnitude, bits 16 to 20 drive the angle,
and the upper ones are always zero. The Port 2 signal is not only good for being streamed to system
memory. The PEC block and THCn blocks have special functionality to deal with this format.

The table and figure show the PMA block data flow and PVP block connections. For a graphical overview
of all PVP block interconnections, see Configuring Pipe Structure.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–51

Table 30-35: PMA Block Connectivity

PMA Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s16 IPF0
IPF1
CNV0
CNV1
CNV2
CNV3

0, 1, 2
0, 1, 2
0
0
0
0

 Input 1 s16 IPF0
IPF1
CNV0
CNV1
CNV2
CNV3

0, 1, 2
0, 1, 2
0
0
0
0

 Output 0 u32 PEC, THC0, THC1,
IIM0, IIM1, OPF0, OPF1,
OPF2, OPF3

0 (magnitude only)
1 (angle only)
2 (magnitude+angle)

 Output 1 n/a n/a n/a
 Output 2 n/a n/a n/a

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-18: PMA Connectivity

Arithmetic Control Unit (ACU)

The arithmetic control unit (ACU) provides basic 32-bit addition, subtraction, multiplication, and divi-
sion. This block also includes a 48-bit accumulator, which can normalize and saturate the output. While
the ACU is important building block in many video applications, this block also adds significant general-
purpose value to the processor.

The ACU block has two 32-bit inputs (x, y) and one 32-bit output (result). It features a number of registers
that hold constant operands. The offset value can be used for addition and subtraction. The factor value

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–53

can be used for multiplication and division. The shift value is used for normalization and the min and max
pair of registers control the saturation.

As shown in the ACU overview figure, the individual operation can also be combined. Multiple computes
can be performed in a single pass. For example, ((x+y) x 3)>>2 can be performed by setting the PVP_ACU_
FACTOR register to =3 and by setting the PVP_ACU_SHIFT register to =2.

Figure 30-19: ACU Overview

For combinations of computes, the individual operations need to be in the order shown above. For
example ((x>>2) x 3) +y) cannot be performed in a single pass. Similarly, not every operation can be
completed on every operand. The ACU block operations and operands table lists the options available by
individual math sub blocks.

Table 30-36: ACU Block Operations and Operands

RESULT OPERATIONS OPERANDS

SUM = + (32-bit signed add)
- (32-bit signed subtract)

X, Y
Y, X
X, OFFSET
OFFSET, X
Y, OFFSET
OFFSET, Y

PROD = x (32-bit signed multiply)
/ (32-bit signed divide)
% (32-bit signed modulo)

X, Y
Y, X
X, FACTOR
FACTOR, X
Y, FACTOR
FACTOR, Y
SUM, FACTOR
FACTOR, SUM

ACC = 48-bit accumulate over row
48-bit accumulate over frame

X
SUM
PROD

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

For divide-by-zero operations, the quotient is set to the enumerator’s value. The remainder is set to zero.
The event is reported by the PVP_STAT.ACUDIVERR status bit. The operation itself progresses normally.

The intermediate results SUM and PROD are 32-bit values. If the result exceeds 32-bit range, the data is
implicitly saturated to 0x7FFFFFFF for positive results and to 0x80000000 for negative results. The PVP_
STAT.ACUSUMSAT, and PVP_STAT.ACUPRODSAT status bits report the saturation events.

If accumulation is active (PVP_ACU_CTL.SFTINP =3), the ACU outputs only one value every video row
(PVP_ACU_CTL.ACCFRAME =0) or every frame (PVP_ACU_CTL.ACCFRAME =1). With every new row or
frame, the accumulator is cleared automatically. The 32-bit input values or the intermediate 32-bit SUM
or PROD results are summed up into the 48-bit accumulator. If intermediate accumulation results exceed
48 bits before the end of row/frame the accumulator silently overflows. It neither saturates nor generates
a status event.

The SHIFT and the SAT operations are not optional. Their functionality can be bypassed by leaving the
default zero value in the PVP_ACU_SHIFT register (no shift) and by setting the clipping values in the PVP_
ACU_MIN register to 0x80000000 and in the PVP_ACU_MAX register to 0x7FFFFFFF. Saturation events due
to MAX/MIN register method are reported by the PVP_ILAT.ACUOUTSAT status bit.

The ACU can receive data from either input formatter or any convolution block. Both inputs can be indi-
vidually configured. Care is required to properly time input data so that both inputs match. The ACU
block connectivity table and figure show the input and output options for this PVP block. For a graphical
overview of all PVP block interconnections, see Configuring Pipe Structure.

NORM = 48-bit arithmetic right shift X, SHIFT
SUM, SHIFT
PROD, SHIFT
ACC, SHIFT

RES = 32-bit signed saturation NORM, MIN, MAX

Table 30-37: ACU Block Connectivity

ACU Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s32 IPF0
IPF1
CNV0
CNV1
CNV2
CNV3

0, 1, 2
0, 1, 2
0
0
0
0

Table 30-36: ACU Block Operations and Operands (Continued)

RESULT OPERATIONS OPERANDS

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–55

 Input 1 s32 IPF0
IPF1
CNV0
CNV1
CNV2
CNV3

0, 1, 2
0, 1, 2
0
0
0
0

 Output 0 s32 PEC, THC0, THC1,
IIM0, IIM1, OPF0, OPF1,
OPF2, OPF3

 n/a

 Output 1 n/a n/a n/a
 Output 2 n/a n/a n/a

Table 30-37: ACU Block Connectivity (Continued)

ACU Block I/O Data Format
PVP Block Connect

Selections Port Connect

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-20: ACU Connectivity

If the X input does not influence the ACU output based on the PVP_ACU_CTL settings, the PVP_ACU_CFG.
IBLOCK0 bit must be set =0. Similarly, if Y is not used in the equation, the PVP_ACU_CFG.IBLOCK1 bit must
be =0.

Input values can be doubled using the adder, if X and Y inputs sense that same data. Similarly, input values
can be squared. The intermediate SUM result, cannot be squared.

The ACU block is useful in memory pipe mode when the supported operation needs to apply to all
elements in an array. If one operand is a constant value (as in res i = x i %c), the constant c value is best
written into the constant register, (the PVP_ACU_FACTOR register in the example). Input 0 (x) is typically
connected to port 0 of IPF1. If, the operation is applied to elements of two arrays (as in res i = x i /y i), input

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–57

0 (x) typically connects to port 1 of IPF1 and input 1 (y) connects to port 2. The IPF expects the input data
in interleaved manner, (x0, y0, x1, y1, x2, y2, and so on) If data is not already stored this way in memory,
the 2-dimensional feature of the DMA can perform the interleaving.

Pixel Edge Classifier (PEC)

The PEC block processes the edge information, enhancing vision processing. The PEC supports two
modes of operation—1st derivative mode (PEC-1) and 2nd derivative mode (PEC-2). These modes are
mutually exclusive, and the PEC block can operate in only one mode at a time. The PEC block takes 32-bit
input data and drives up to three streams of output data.

The PEC block supports back-to-back frame size change in output from CNV block. The PEC only
supports even sized frames and supports incoming frames with a decimation ratio of up to 256 (1, 2, 4, 8,
16, 32, 64, 128 and 256). The smallest frame size that the PEC can support is 16x16. Both PEC-1 mode and
PEC-2 mode output zeros for pixels on the frame boundaries. The PEC mode cannot change from frame
to frame. The block has to be disabled and enabled to change mode.

PEC-1 mode supports the subsequent stages after the Sobel filters for the first derivative Canny edge detec-
tion algorithm. The primary features of PEC-1 are:

• Edge thinning feature using non-maximum suppression

• Streaking elimination using hysteresis; 3-level threshold applied on the magnitude of the gradient

In PEC-1 mode, the PEC block expects the polar magnitude data on the lower 16 bits and expects the polar
angle information on the upper 16 bits. So, the PEC block either can receive data from PMA output port-
2 (which has the packed polar magnitude and polar angle) or can receive data from the IPFn ports
(assuming the IPFn port drives the packed magnitude and angle data).

In PEC-2 mode, the PEC block can generate 8-connected chain codes for contour tracing using output
from second derivative edge detection methods, such as Difference of Gaussian (DoG) and Laplacian of
Gaussian (LoG). The primary features of PEC-2 mode are:

• Detects zero-crossing points in the second derivative filter output

• Classifies edges based on the edge direction

• Computes location of the edge with half pixel resolution (sub-pixel interpolation)

In PEC-2 mode, the block expects 16-bit signed input data. Therefore, the PEC block can interface with
either the IPF ports, the ACU block (32-bit signed, but saturated to 16-bits) or any of the CNV blocks (32-
bit signed, but saturated to 16-bits). In this mode the PEC only operates on the lower 16 bits of the 32-bit
signed input. The PEC block connectivity table and figure show the high level connectivity of the PEC
block. For a graphical overview of all PVP block interconnections, see Configuring Pipe Structure.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-21: Pixel Edge Classifier Block Connectivity

Table 30-38: PEC Block Connectivity

PEC Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 s32 IPF0
IPF1
PMA
CNV0
CNV1
CNV2
CNV3
ACU

0, 1, 2
0, 1, 2
2
0
0
0
0
0

 Input 1 n/a n/a n/a
 Output 0 u8 (encoded result) THC0, THC1, IIM0,

IIM1. OPF0, OPF1,
OPF2

n/a
 Output 1 u32 (decoded result)
 Output 2 u32 (angle only result)

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–59

PEC 1st Derivative Mode (PEC-1)

This mode is selected by setting the PVP_PEC_CTL.MODE bit to 0. The PEC-1 mode works on 16-bit gradient
magnitude and 5-bit gradient angle from the PMA block. The functions in this mode are Angle Mapping,
Non-Maximum Suppression, Hysteresis Thresholding, and Output Format.

Angle Mapping

The angle is rounded to one of four angles representing the vertical, the horizontal, and the two diagonal
directions. The 5-bit angle bin output of the PMA is mapped to the four directions as shown in the PEC-
1 angle figure.

Figure 30-22: PMA Angle Bin Mapping to PEC-1 Angle

Non-Maximum Suppression

PEC-1 performs a search with the input magnitude gradient to determine if the magnitude assumes a local
maximum in the gradient direction so that thin edges are produced. This operation is referred to as Non-
Maximum Suppression.

The PEC-1 mode works on the 3x3 window with the center pixel as the pixel of interest and computes
whether the pixel is a local maximum or not a maximum. Consider a 3x3 window of magnitude gradients
as shown.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The pixel of interest (P22) in this example is maxima (M) if non-maximum suppression finds:

• P22’s rounded angle is 0 degrees, and P22’s intensity is greater than the intensity in the west (P21) and
is greater than the intensity in the east (P23) directions.

• P22’s rounded angle is 90 degrees, and P22’s intensity is greater than the intensity in the north (P12)
and is greater than the intensity in the south (P32) directions.

• P22’s rounded angle is 135 degrees, and P22’s intensity is greater than the intensity in the north west
(P11) and is greater than the intensity in the south east (P33) directions.

• P22’s rounded angle is 45 degrees, and P22’s intensity is greater than the intensity in the north east
(P13) and is greater than the intensity in the south west (P31) directions.

In cases where the gradient magnitude is the same for more than one pixel along the gradient direction
“equality” (E) information is also provided by PEC-1. Edge-tracing software uses M and E to find the exact
location of the edge. Consider the same 3x3 window as before.

The pixel of interest (P22) is equality (E) if non-maximum suppression finds:

• P22’s rounded angle is zero degrees, and P22’s intensity is greater than or equal to the intensity in the
west (P21) and is greater than or equal to the intensity in the east (P23) directions.

• P22’s rounded angle is 90 degrees, and P22’s intensity is greater than or equal to the intensity in the
north (P12) and is greater than or equal to the intensity in the south (P32) directions.

• P22’s rounded angle is 135 degrees, and P22’s intensity is greater than or equal to the intensity in the
north west (P11) and is greater than or equal to the intensity in the south east (P33) directions.

• P22’s rounded angle is 45 degrees, and P22’s intensity is greater than or equal to the intensity in the
north east (P13) and is greater than or equal to the intensity in the south west (P31) directions.

Hysteresis Threshold Application

PEC-1 mode’s Canny algorithm applies a hysteresis threshold. When a single threshold value is used, the
fluctuations of the gradient magnitude (due to noise) above and below the threshold value results in pixels
being classified as edges and non-edges. In such cases, the edge line appears broken. This phenomenon is
commonly referred to as streaking. PEC-1 mode eliminates streaking by comparing the magnitude against
two threshold registers, PVP_PEC_D1TH0 and PVP_PEC_D1TH1.

If the magnitude lies below PVP_PEC_D1TH0 (TL), the pixel is called no edge. If the magnitude lies above
PVP_PEC_D1TH1 (TH), the pixel is termed as strong edge. If the magnitude lies between TL and TH, the

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–61

pixel is termed as weak edge. The post-processing software can connect the weak edge to strong edge to
create a unbroken edge line. Note that TH must be programmed higher than TL for hysteresis.

Output Format

The PEC-1 mode produces differently formatted outputs on PEC block output ports 0, 1, and 2.

PEC-1 Output on Port 0

This output is primarily used for post-processing in software. Encoded 8-bit output is produced for every
input pixel as shown.

The 5-bit angle bin from the PMA or IPFn blocks is passed on to the 5 MSBs of the PEC-1 output if the
pixel magnitude is greater than or equal to TL. If the pixel magnitude is less than TL, the 5 MSBs are
suppressed to zeros. PEC-1 combines the maxima (M), equality (E), and hysteresis threshold value to
produce a 3-bit code output (forming the 3 LSBs of the PEC-1 output) whose bits are defined in the PEC-
1 code mapping table.

PEC-1 Output on Port 1

This output is 32 bits wide and is used primarily for the IIM block to accumulate the edge statistics. The
output can be either 8-bit bin size encoded or 16-bit bin size encoded, based on the setting of the PVP_PEC_

Table 30-39: PEC-1 Code Mapping

LSB of PEC Output Description

000 mag < TL
001 mag >= TL, mag < TH, M=0, E=0
010 mag >= TL, mag < TH, M=0, E=1
011 mag >= TL, mag < TH, M=1, E=1
100 reserved
101 mag >= TH, M=0, E=0
110 mag >= TH, M=0, E=1
111 mag >= TH, M=1, E=1

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CTL.OSIZE control bit. If bit is 0 (indicating 8-bit bin size), the 32-bit output represents four angle bins,
each having a strong/weak edge information as shown in the 8-bit bin size encoding table.

If the PVP_PEC_CTL.OSIZE bit is 1 (indicating 16-bit bin size), the 32-bit output represents two angle bins,
each having a strong/weak edge information as shown in the 16-bit bin size encoding table.

The strong or weak edge is determined from the threshold values programmed in the PVP_PEC_D1TH0 (TL)
and PVP_PEC_D1TH1 (TH) registers. The PVP_PEC_CTL.IGNTH1 bit supports masking the differences
between strong and weak edges. If this bit is 0, weak and strong edges are treated differently, and the output
is as per the 8- or 16-bit bin output encoding tables. If this bit is 1, all the edges are considered weak (irre-
spective of the TH value), and the output is encoded to represent a weak edge as per the 8- or 16-bit bin
output encoding tables.

PEC-1 Output on Port 2

This output is 5 bits wide and is used primarily for generating the angle histograms. The 5-bit angle bin
from the PMA or IPFn blocks is passed on to this port if the pixel magnitude is greater than or equal to the

Table 30-40: Output Encoding for 8-bit Bin Size

Angle Edge Encoding

Mag < TL No edge 00000000_00000000_00000000_00000000

0° or 180° Weak 00000000_00000000_00000000_00000001

0° or 180° Strong 00000000_00000000_00000000_00000010

45° or 225° Weak 00000000_00000000_00000001_00000000

45° or 225° Strong 00000000_00000000_00000010_00000000

90° or 270° Weak 00000000_00000001_00000000_00000000

90° or 270° Strong 00000000_00000010_00000000_00000000

135° or 315° Weak 00000001_00000000_00000000_00000000

135° or 315° Strong 00000010_00000000_00000000_00000000

Table 30-41: Output Encoding for 16-bit Bin Size

Angle Edge Encoding

Mag < TL No edge 0000000000000000_0000000000000000

0° or 180° or 90° or 270° Weak 0000000000000000_0000000000000001

0° or 180° or 90° or 270° Strong 0000000000000000_0000000000000010

45° or 225° or 135° or 315° Weak 0000000000000001_0000000000000000

45° or 225° or 135° or 315° Strong 0000000000000010_0000000000000000

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–63

PVP_PEC_D1TH0 register. If the center pixel magnitude is less than PVP_PEC_D1TH0, this output is
suppressed to zeros.

PEC 2nd Derivative Mode (PEC-2)

This mode is selected by setting the PVP_PEC_CTL.MODE bit to 1. The PEC-2 mode works on 16-bit signed
data from the second derivative filter output, such as DoG and LoG. The functions in this mode are Zero-
Crossing Detection, Sub-Pixel Interpolation, Angle Classification, and Output Format.

Zero-Crossing Detection

Edges lie on the zero crossing points (-ve to +ve and +ve to -ve transition points) in the 2nd derivative filter
output. The PEC-2 mode scans through the filtered image, determines zero crossings in horizontal (zH)
and vertical (zV) directions, and assigns pre-defined 3-bit zero crossing codes. The computations for the
zero crossing detection algorithm are shown in the zero crossing codes table.

Whenever there is a +ve to -ve or -ve to +ve in the filtered image, the pixel with +ve value in the image is
considered to be a valid zero-crossing point. Because a 2nd derivative filtered image is more prone to errors
due to noise, the PEC block uses a user-defined threshold to remove the noise during zero crossing detec-
tion. Zero crossings are considered valid only when:

• There is a sign change, and

• The difference between the 2nd derivative values of these two pixels is greater than the threshold in the
PVP_PEC_D2TH0 register

When the pixel of interest is has a value of zero, the pixel is considered as a valid zero-crossing point if the
two pixels on the left and right (for horizontal and top, bottom for vertical) are values with opposite signs,
(+ 0 -) or (- 0 +). The MSB of the 3-bit code is set if the difference between the pixels is greater than the
threshold in the PVP_PEC_D2TH1 register.

The zero crossing codes table shows the different combinations of 2nd derivative image values for the pixel
of interest, the pixel on the left and the pixel on the right, and the corresponding 3-bit zero-crossing codes
for horizontal direction (zH). The vertical zero-crossings (zV) are obtained by replacing left pixel with the
top pixel and by replacing the right pixel with the bottom pixel in the zero crossing codes table.

Table 30-42: Zero Crossing Codes

Left Center Right Computation zH (3-bit)

Don't care -ve Don't care n/a 000
+ve / 0 +ve +ve / 0 n/a 000
-ve / 0 0 0 / -ve n/a 000

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

-ve +ve +ve / 0 if (center-left >= Threshold_weak) &
(center-left < Threshold_strong)

else if (center-left >= Threshold_strong)

else

010

110

000

-ve +ve -ve if (center-left >= Threshold_weak) &
(center-left < Threshold_strong)

else if (center-left >= Threshold_strong)

else if (center-right >= Threshold_weak) &
 (center-right < Threshold_strong)

else if (center-right >= Threshold_strong)

else

010

110

001

101

000
+ve / 0 +ve -ve if (center-right >= Threshold_weak) &

(center-right < Threshold_strong)

else if (center-right >= Threshold_strong)
else

001

101

000
+ve / 0 0 +ve / 0 000
-ve 0 +ve if (right-left >= 2×Threshold_weak) &

(right-left < 2×Threshold_strong)

else if (right-left >= 2×Threshold_strong)

else

010

110

000
+ve 0 -ve if (left-right >= 2×Threshold_weak) &

 (left-right < 2×Threshold_strong)

else if (left-right >= 2×Threshold_strong)

else

001

101

000
-ve 0 -ve n/a 000

Table 30-42: Zero Crossing Codes (Continued)

Left Center Right Computation zH (3-bit)

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–65

Sub-Pixel Interpolation

PEC-2 mode performs a linear interpolation of the filtered image at the zero crossings to determine a more
precise location of the zero crossings. The values of (left, center, right) for horizontal direction and (top,
center, bottom) for vertical direction are compared for relative differences. Additionally, PEC-2 computes
edge location with half pixel resolution.

The sub-pixel computation table explains the different zero crossing codes, the pixel value sequences, and
the corresponding sub-pixel values (HSub, 2-bits). The vertical sub-pixel values (VSub, 2-bits) can be
computed using the same procedure, replacing left pixel with top pixel, right pixel with bottom pixel and
the 2 LSBs of zH with zV.

Angle Classification

The PEC-2 mode’s filtering of an image does not convey any information about the orientation of the
edges in the image. The PEC angle classification unit in PEC-2 mode extracts the angle information of the
edges from the zero crossing codes of pixels in the 3x3 window. The classifier uses only the two lower bits
of zH and zV, (both weak and strong zero crossings) and classifies the edges into eight basic directions (0°,
45°, 90°, 135°, 180°, 225°, 270° and 315°) if the PVP_PEC_CTL.ZCRSS bit is 0. The classifier outputs a 4-bit
angle index as described in the angle classification table.

The angle index (shown in the angle classification table) is considered a strong edge only if all the involved
zH or zV values used in the computation are strong (or have their MSB = 1). If the PVP_PEC_CTL.IGNTH1
bit is set, the strong/weak zero-crossing information (MSB of zH and zV) is ignored by the classifier.

Table 30-43: Sub-Pixel Computation

zH (2-bits) Left Center Right Computation

Sub-pixel
HSub (2-

bits)

00 Don't care Don't care Don't care - 00
10/01 Don't care 0 Don't care - 00
10 - + Don't care if (-left) <= center

else
10 00

01 Don't care + - if (-right) <= center
else

01
00

Table 30-44: Angle Classification

Priority Zero Crossing Code Combination Class
Angle Index

(4-bit)

1 zH(r,c) = 00 & zV(r,c) = 00 no edge 0000
2 Not matching any of the combination 4 to 11. no match 0001
3 Matching more than one combination in 4 to 11. multiple

match
0010

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Output Format

The PEC-2 mode produces differently formatted outputs on PEC block output ports 0, 1, and 2.

PEC-2 Output on Port 0

This output is used primarily for post-processing in software. The 8-bit encoded output is produced for
every input pixel as shown.

PEC-2 Output on Port 1

This output is 32 bits wide and is used primarily for the IIM block to accumulate the edge statistics. The
output is not valid when the PVP_PEC_CTL.ZCRSS bit =1, because the edges are not classified in this mode.
PEC-2 produces a 32-bit output which is exactly similar to the output generated by PEC-1. The angle is
computed as shown in the Angle Classification table. For priority 1, 2, and 3, the output is considered as
no edge, and all zeros are driven on the port.

PEC-2 Output on Port 2

This output is 5 bits wide and is used primarily for the THCn block to generate the angle histograms. PEC-
2 drives the 4-bit angle index described in the Angle Classification table. Zero is driven on the MSB of the

4 zV(r,c) = 01 & zV(r,c+1) = 01 0° 1000
5 (zH(r,c) = 01 || zV(r,c) = 01) & (zH(r-1,c+1) = 01 || zV(r-

1,c+1) = 01)
45° 1001

6 zH(r,c) = 01 & zH(r-1,c) = 01 90° 1010
7 (zH(r-1,c-1) = 01 || zV(r-1,c-1) = 10) 135° 1011
8 zV(r,c) = 10 & zV(r,c-1) = 10 180° 1100
9 (zH(r,c) = 10 || zV(r,c) = 10) & (zH(r+1,c-1) = 10 || zV(r+1,c-

1) = 10)
225° 1101

10 zH(r,c) = 10 & zH(r+1,c) = 10 270° 1110
11 (zH(r,c) = 10 || zV(r,c) = 01) & (zH(r+1,c+1) = 10 ||

zV(r+1,c+1) = 01)
315° 1111

Table 30-44: Angle Classification (Continued)

Priority Zero Crossing Code Combination Class
Angle Index

(4-bit)

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–67

5-bit port. For priority 1, 2, and 3, the output is considered as no edge, and all zeros are driven on the port.
The output is not valid when the PVP_PEC_CTL.ZCRSS bit =1, because the edges are not classified in this
mode.

Integral Image Block (IIMn)

The integral image blocks (IIMn) calculate a 2-dimensional integral over the input frame and outputs the
summed area table (SAT). Alternatively, the IIMn blocks can generate a rotated SAT (RSAT) or can inte-
grate in horizontal dimension only (integral row mode). The operating mode is controlled by the PVP_
IIMn_CTL.MODE bit field.

IIMn blocks can receive inputs from a number of PVP blocks. The IMMn blocks can build the integral on
raw data inputs when receiving data from the input formatters. Input data can optionally be filtered by
convolutions. Variances can be calculated by squaring the inputs by the ACU before building the integral.
If connected to the PMA blocks, integral of edge magnitude and gradients can be built. Histogram of gradi-
ents can be done by sensing port 1 of the PEC block. If connected to the THCn blocks, the integral of a
binary edge map can be generated, or data is clipped up front by the THCn blocks. The input to each IIMn
block is selectable from the output of the PVP blocks, as shown in the following tables. For a graphical
overview of PVP block connectivity, see Configuring Pipe Structure.

Table 30-45: IIM0 and IIM1 Block Connectivity

IIM0/1 Block I/O Data Format
PVP Block Connect

Selections Port Connect

 Input 0 1x s32,
1x u32,
2x s16,
2x u16,
4x s8,
4x u8

IPF0
IPF1
CNV0
CNV1
CNV2
CNV3
ACU
PEC
PMA
THC0
THC1

0, 1, 2
0, 1, 2
0
0
0
0
0
1
0, 1
0
0

 Input 1 n/a n/a n/a
 Output 0 1x s32,

1x u32,
2x s16,
2x u16,
4x s8,
4x u8

OPF0, OPF1, OPF2,
OPF3

n/a

 Output 1 n/a n/a n/a

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-23: IIMn Block Connectivity

IIMn Data Types

IIMn blocks feature a 33-bit adder to operate on 32-bit data. The 33rd bit is used for overflow management.
If the adder overflows, it does not saturate but continues normal operation. Software may post-analyze the

 Output 2 n/a n/a n/a

Table 30-45: IIM0 and IIM1 Block Connectivity (Continued)

IIM0/1 Block I/O Data Format
PVP Block Connect

Selections Port Connect

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–69

integral map to track overflows. The occurrence of an overflow depends on the input data format. For 10-
bit input data, the integral counter should never overflow over the region or even the full frame.

The occurrence of overflows can be controlled by reducing the resolution of the incoming data. The PVP_
IIMn_CTL.SHIFT control field instructs the IIMn block to arithmetically right shift input data. The shift
may be from 0 to 31 bit positions to the right.

The IIMn blocks can operate on signed and unsigned data. There is no control bit to distinguish between
signed and unsigned mode. Rather, there are two different sets of status reports. An unsigned-overflow
event is reported by the PVP_STAT.IIM0UOVF bit and by the PVP_STAT.IIM1UOVF bit. When flagged, the
PVP_IIMn_UOVF_STAT register latches the coordinates of the data that caused the overflow. Similarly, the
PVP_STAT.IIM0SOVF bit and PVP_STAT.IIM1SOVF bit report signed overflows, and the PVP_IIMn_SOVF_
STAT register latches the coordinates.

The adder can be configured to operate in dual 16-bit mode or to operate in quad 8-bit mode. This selec-
tion is controlled by the PVP_IIMn_CTL.WIDTH field. In these modes, each IIMn block can perform dual-
or quad-integral operations concurrently (at the risk increasing the likelihood of overflows). The overflow
reporting mechanism works the same it works in 32-bit mode where the mechanism monitors overflows
in the topmost word or byte. In dual 16-bit mode or in quad 8-bit mode, the input shifter performs an
unsigned right-shift operation, rather than performing an arithmetical operation (as is done in 3-bit
mode).

The quad 8-bit mode is most useful when the integral block connects to port 1 of the PEC block. In this
case, the IIMn block generates the integral over the 1st or 2nd derivative gradients. Dual 16-bit mode might
connect to port 2 of the PMA block. In this case, the lower part of the adder builds the integral over the
magnitude, while the upper half integrates the angle. Alternatively, port 2 of the PMA block might be
routed through one of the THCn blocks for quantization of the magnitude.

IIMn Bandwidth Usage

In many cases the IIMn blocks receive input data with a relatively low bit count. Regardless of the input
size, the output is always 32 bits wide. If not used with care, the IIMn blocks can be significant consumers
of system memory bandwidth. When 32-bit resolution is not required for the IIMn block output, the
connected output formatter may be configured to only take the upper or the lower 16 bits of the result. To
take the lower bits, set PVP_OPFn_CTL.ISIZE =1, and set PVP_OPFn_CTL.IUP16 =0. To take the upper bits,
set PVP_OPFn_CTL.ISIZE =1, and set PVP_OPFn_CTL.IUP16 =1. These bit settings---together with the
PVP_IIMn_CTL.SHIFT setting---permit the weight (or data throughput bandwidth) of the integral can be
controlled.

Another way to reduce the bandwidth used by the integral blocks is by scaling the IIMn output. The PVP_
IIMn_SCALE register can individually enable sub-sampling of rows or columns on the output in power-of-
2 steps as follows:

• If PVP_IIMn_SCALE.VSCL = 0, no vertical scaling is performed, and all rows are output.

• If PVP_IIMn_SCALE.VSCL =1, the IIMn outputs only every other row.

• If PVP_IIMn_SCALE.VSCL =3, the IIMn outputs only every 4th row.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• If PVP_IIMn_SCALE.HSCL =7, the IIMn outputs only every 8th column.

IIMn Integral Row (IR) Mode

In integral row mode, the IIMn blocks accumulate the input values over video rows. Unlike the ACU’s
accumulation mode, IIMn integral row mode outputs the integral every pixel. For every input data (InpI,J),
the IIMn blocks output is as shown in the equation.

The initial value of the integral is assumed to be zero. So, IROW0,J = Inp0,J. In the IROW output map, each
value contains the accumulated input values from the respective row's origin to the actual position, as
shown in the Illustration of Integral Row Mode figure.

Figure 30-24: Illustration of Integral Row Mode

IIMn Summed Area Table (SAT) Mode

In 2-dimensional summed area table (SAT) mode, the IIMn block performs the summation (see equation)
for every pixel.

As with integral row mode, the initial values of the integral are assumed to be zero—SAT-1,J = 0 and SATI,-
1 = 0. In the SAT output map, each value contains the accumulated input values from the frame's origin to
the actual position, as shown in the Illustration of SAT Mode figure.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–71

Figure 30-25: Illustration of SAT Mode

IIMn Rotated Summed Area Table (RSAT) Mode

In rotated summed area table (RSAT) mode, the IIMn block applies a -45° rotated view to the input coor-
dinates. Each element of the RSAT output map contains the integral of all elements in the pyramid headed
by the actual position. The IIMn block process according to the following equations.

First Column:

Last Column:

All others:

All values outside of the region are defined as zero—InpI,-1 = RSATI,-1 = RSATI,-2 = 0, as shown in the
Illustration of RSAT Mode figure.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-26: Illustration of RSAT Mode

IIMn SAT/RSAT Map Usage

The IIMn blocks generate an integral in which each position contains the sum of all input values between
the actual position and the frame origin. This integral is useful, but what is more useful is---with only a
small number of operations---post-processing software can determine the integral value of any rectan-
gular region of the frame. For regular rectangles, the SAT output can be used. For 45° rotated rectangles,
the RSAT output applies. This operation is illustrated in the Using SAT Maps figure.

Figure 30-27: Using SAT Maps

Rather than summing up all original values of a rectangular region of the frame, software can perform
simple math on the SAT output of the IIMn blocks. If the top-left corner of the rectangle was defined by
the coordinates I0 and J0 and the bottom-right corner by I1 and J1, the integral value of the region is
defined by the equation.

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–73

Similarly, the RSAT map can be used to quickly determine the integral of rotated regions as shown in the
Using the RSAT Map figure.

Figure 30-28: Using the RSAT Map

Up Down Scaler (UDS)

The up-down scaler (UDS) is an image resizing block. The UDS is the only block that cannot operate in
the camera pipe. The input to UDS comes from IPF1, and the output from the UDS drives OPF3 as shown
in the UDS Block Connections figure. For a graphical overview of PVP block connectivity, see Configuring
Pipe Structure.

Figure 30-29: UDS Block Connections

The UDS block expects 16-bit or 32-bit unsigned input data and drives 32-bit unsigned output data. When
an anti-aliasing or an averaging filter is enabled, the input must be 16 bits. Correspondingly, the output is
16 bits presented in the lower 16 bits of the 32-bit output.

The UDS Overview figure shows the data flow within the UDS block. The block performs horizontal
scaling followed by vertical scaling in two independent steps. The interpolation uses bilinear arithmetic.

Figure 30-30: UDS Overview

PIPELINED VISION PROCESSOR (PVP)
PVP FUNCTIONAL DESCRIPTION

30–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The key features of the UDS block are:

• Supports input frame sizes from 10x10 to 1280x960

The frame size is programmed in the PVP_IPFn_HCNT and PVP_IPFn_VCNT registers of IPF1.

• Supports independent scaling in both directions

The output frame size is selectable in steps of 16. The values supported are: 16 × n × 16 × m where
n,m=1,2,...,8. The output size is programmed in the PVP_UDS_OHCNT and PVP_UDS_OVCNT registers.

• Supports an optional anti-aliasing filter in the form of an averaging filter in both directions

The filter has an option to calculate the number of taps automatically or takes a user programmable
value. If the PVP_UDS_CTL.AAVG bit =1, the number of taps are selected automatically based on the
input and output frame size. If the bit = 0, the number of taps must be programmed in the PVP_UDS_
HAVG and PVP_UDS_VAVG registers. The UDS supports a maximum of 128 taps for horizontal direction
and 64 taps for vertical direction.

• Supports an averaging filter only for 16-bit input data

The averaging filter must be disabled for 32-bit input data by setting the PVP_UDS_CTL.AAVG bit =0, by
setting the PVP_UDS_HAVG.VALUE =1, and by setting the PVP_UDS_VAVG.VALUE bit =1. The filter is
bypassed when the number of taps is 1.

The number of taps for each direction in automatic mode is calculated as:

In user programmable mode, the number of taps is limited by the equation:

If an output pixel requires input pixels beyond the edges, the nearest pixel on the edge is used for
computation. In effect, edge pixels are duplicated from the nearest valid pixel.

PVP Architectural Concepts

The PVP unifies two architectural concepts, the camera pipes and the memory pipe. The camera pipes
serve the preprocessing requirements. Data is preprocessed on its way from the PPI input to the system
memory and can be broadcast from one single video source to up to three functional branches called
camera pipes. The memory pipe functions as a co-processor. This pipe loads input data from system
memory using DMA and stores results back to system memory using DMA.

Camera pipes and memory pipes can operate concurrently. The pipes have separate control mechanisms,
have separate data paths, and operate with independent timing. The camera and memory pipes do share

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–75

the signal processing blocks (PVP blocks). You have full flexibility to assign each of the PVP blocks to any
pipe. The one exception is the up/down-scaler block (UDS), which can only operate in memory pipe mode.
Each PVP block may be assigned only to one pipe at a time. But, there is support for dynamic re-configu-
ration of the pipe assignments. For a graphical overview of all PVP block interconnections, see Configuring
Pipe Structure.

The PVP blocks are:

• Two input formatters (IPFn, x=0, 1) supporting selection of input streams, gating pipeline processing
clock, extraction of color or luminance components, windowing region of interest, separation of odd
and even bit stream vectors (pixels) and frame counting. IPF0 receives input data from the video
subsystem and feeds data to the camera pipes. IPF1 receives data from memory via DMA and services
the Memory Pipe.

• Four convolution blocks (CNVn, x=0, 1, 2, 3) supporting 2-dimensional 5x5 convolution of data
streams and constant coefficients, vector down scaling, data shifting, and data normalization.

• One polar magnitude and angle block (PMA) supporting data conversion from Cartesian form (X, Y)
to a polar form (magnitude, angle).

• One pixel edge classifier (PEC) supporting edge detection in 2-dimensional data arrays using 2-dimen-
sional 1st or 2nd derivation.

• One arithmetic unit (ACU) supporting 32-bit arithmetic operations (product, sum, accumulation,
shift, maximum, minimum).

• Two threshold-histogram-compression cells (THCn, x=0, 1) supporting data formatting (clipping,
saturation), data quantization (binning), multi-level hysteresis and data compression.

• Two integral image blocks (IIMn, x=0, 1) supporting integrals of rows and diagonals.

• One Up-down scaler (UDS) supporting interpolation and extrapolation of 2-dimensional data arrays.

• Four output formatters (OPFn, x=0, 1, 2, 3) supporting selection of output streams, data packing, and
buffering (FIFO) output data streams. They collect the processing results and forward them to dedi-
cated DMA channels.

Operating Modes
The operating modes of the PVP can be used to implement typical vision-system operations. The following
sections provide operating mode examples:

• Thresholds and Histograms

• Sobel with 3x3 or 5x5 Matrix Operation

• Sobel Output Formats

• Canny with PEC in 1st-Derivative Mode

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

30–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• LoG with PEC in 2nd-Derivative Mode

• DoG with PEC in 2nd-Derivative Mode

• Integral of Input Pixels

• Integral of Binary Edge Map

• Integral of Variance

• Histogram of Gradients (HoG)

Thresholds and Histograms

The THCn block can be used for a variety of threshold and histogram purposes in vision processing. The
example in the computation of 16-level Histogram figure shows how the THCn block may be used to
reduce the input data range to 4-bits and compute a 16-level histogram.

Figure 30-31: Computation of 16-level Histogram

Some key points in this camera pipe example are:

• The IPF0 block receives data from the video subsystem (VSS).

• The CNV0 block receives data from port 0 of IPF0. The CNV0 block can do low pass filtering to elim-
inate noise and can optionally down scale the input for the THC0 block.

• The THC0 block operates in the quantization mode by setting the PVP_THCn_CTL.MODE bit =1. The
threshold values are set in the PVP_THCn_TH0 - PVP_THCn_TH15 (y = 0–15) registers. The THC0 block
is programmed to output a 4-bit index without any compression when the PVP_THCn_CTL.OFRMT bit
=2.The histogram function of THC0 is enabled by setting the PVP_THCn_CTL.HISTEN bit =1. The
number of frames used to perform the histogram operation is set in the PVP_THCn_HFCNT.VALUE bit
field.

• The OPF0 block is set to pack the 4-bit output from THC0 to a 32-bit word when the PVP_OPFn_CTL.
ISIZE bit =3 and the PVP_OPFn_CTL.OSIZE bit =0. The histogram values are read using the status
DMA channel. The values can also be read by directly by accessing the PVP_THCn_HCNT0_STAT - PVP_

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–77

THCn_HCNT15_STAT (y = 0–15) registers. The PVP_THCn_HFCNT_STAT register indicates the current
frame counter number to which the histogram values have been accumulated.

Sobel with 3x3 or 5x5 Matrix Operation

The Sobel algorithm is a standard algorithm used for edge detection applications. The example in the Sobel
data flow figure shows a simple Sobel shows how the CNVn and PMA blocks may be applied. One convo-
lution block determines the horizontal component of 1st-derivative edge gradients, and another convolu-
tion block determines the vertical component.

Figure 30-32: Sobel Data Flow

Some key points in this camera pipe example are:

• The IFP0 block receives input from the video subsystem (VSS).

• The CNVn blocks receive data from port 0 of input formatter IPF0.Traditional Sobel operators require
simple 3x3 convolution matrices. The 5x5 coefficient matrices of the convolution blocks might be filled
with 16-bit values as shown in the traditional 3x3 Sobel coefficients figure.

Figure 30-33: Traditional 3x3 Sobel Coefficients

Larger Sobel kernels can be realized using 5x5 operators. One option is shown in the example of 5x5
coefficients figure.

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

30–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-34: Example of 5x5 Coefficients

• The PMA block inputs are 16-bit signed data. The PMA block takes the 16-bit signed Cartesian values
from the two convolution operations. The PMA block converts the inputs to Polar values resulting in
magnitude and the angle of the resulting gradients. The magnitude is a 16-bit unsigned format, and the
angle is a 5-bit unsigned value.

Figure 30-35: PMA Operation

NOTE: Care is required in dealing with data formats and bit growth. If IPF0 receives 14-bit unsigned data
that is zero-extended to 16-bits, the 3x3 Sobel operation has a bit growth of 2 in each convolution
block's accumulator. Additionally, the result is signed, making it a 17-bit signed value. Therefore,
both convolution outputs need to be normalized by shifting two positions to the right (PVP_CNVn_
CTL.SHIFT =2). Alternatively, the accumulation results can be saturated to 16-bit signed values if
no shift is performed and the PVP_CNVn_CTL.SAT32 bit was kept clear. If the input formatter
receives 16-bit signed values and the above 5x5 coefficient matrix is used, then the accumulator
holds 22-bit signed values and a PVP_CNVn_CTL.SHIFT =6 setting is required.

Sobel Output Formats

The PVP blocks support a variety of output formats for the Sobel algorithm. The block configurations
permit selection of output types (magnitude and/or angle) and sizes (32-bit, 16-bit, or other).

The PMA block has three output ports. PMA port 0 outputs the 16-bit unsigned magnitude. PMA port 1
outputs the 5-bit angle. PMA port 2 outputs the combination of the magnitude and angle (the lower 16 bits
contain the magnitude and bits 20:16 contain the angle). All three PMA ports zero fill the upper bits, if
connected to 32-bit data sinks.

If a system is only requires the 16-bit magnitude values, one of the output formatters is programmed to
input data from PMA port 0 or from port 2. The output formatter uses 16-to-32-bit packing and sets PVP_
OPFn_CTL.ISIZE =1, PVP_OPFn_CTL.IUP16 =0, and PVP_OPFn_CTL.OSIZE =0.

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–79

If a system is only requires the 5-bit magnitude values, one of the output formatters is programmed to
input data from PMA port 1. The output formatter uses 8-to-32-bit packing and sets PVP_OPFn_CTL.
ISIZE =2, PVP_OPFn_CTL.IUP16 =0, and PVP_OPFn_CTL.OSIZE =0. Alternatively, the OPFn can take data
from port 2 and set PVP_OPFn_CTL.IUP16 =1.

If the system requires both magnitude and angle values, two output formatters can be used. It is recom-
mended (for best system resource usage) that this configuration only use one output formatter, which
inputs data from PMA port 2 in 32-bit mode where (PVP_OPFn_CTL.ISIZE =0).

Often, an application does not require 16 bits of magnitude resolution, needing only one bit (binary edge
map) or wanting only a few bits. The example in the thresholded edge map data flow figure shows how the
threshold blocks are used for this application.

Figure 30-36: Thresholded Edge Map Data Flow

Some key points in this camera pipe example are:

• A binary edge map can be generated by the THCn using quantization mode. The PVP_THCn_TH0
register is set to zero, and the PVP_THCn_TH1 register defines the threshold. If the output format is set
to the 4-bit floor value (PVP_THCn_CTL.OFRMT =1), a 4-bit magnitude value is sent. The connected
output formatter may perform 4-to-32-bit packing by the setting the PVP_OPFn_CTL.ISIZE bit = 3. All
16 thresholds can be configured to apply a non-linear quantization of the magnitude value. Alterna-
tively, hysteresis mode can be used. Clipping mode, when paired with PVP_THCn_CTL.OFRMT =0, can
be used to output user-programmable 32-bit values when the magnitude is above the threshold.

• On the input side, the THCn blocks provide multiple options: if they sense Port 0 of the PMA block,
they receive 16-bit values that are zero-extended to 32 bits. If they sense Port 2 instead, the 5-bits of
might be unwanted. Then, the PVP_THCn_CTL.ZEXT =1 setting helps masking the upper 16 bits. This
feature becomes most interesting when used with the PVP_THCn_CTL.OFRMT =4 option. This way, the
THC generates an output format that groups the 4-bit floor value of the magnitude with the four signif-
icant bits of the PMA angle. The Output Formatter is best set to PVP_OPFn_CTL.ISIZE =2 mode.

Canny with PEC in 1st-Derivative Mode

The Canny algorithm is a standard algorithm for edge detection applications. The input pixels are first low
pass filtered to remove noise by CNV0. One convolution block is used to determine the horizontal compo-

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

30–80 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

nent of 1st-derivative edge gradients, and another convolution blocks determines the vertical component
as in the Sobel case. The Canny data flow figure shows connections for PVP block for a Canny use case.

Figure 30-37: Canny Data Flow

Some key points in this camera pipe example are:

• The IPF0 block receives input from the video subsystem (VSS).

• The CNV0 block receives data from port 0 of IPF0. The fractional values are converted to 1.15 format
and are programmed into the coefficient registers of CNV0. The output is shifted right by 15 bits to
remove the fractional part by setting PVP_CNVn_CTL.SHIFT to 15. The low pass filtered output feeds
the two convolution blocks, which generate the gradients as described in the Sobel with 3x3 or 5x5
Matrix Operation example. The Gauss filter figure shows a 5x5 Gaussian kernel (Sigma = 1) for low pass
filtering.

Figure 30-38: Gauss Filter

• The PMA block takes the 16-bit signed Cartesian values from the two convolution operations. The
PMA block converts the inputs to polar values that result in magnitude and the angle of the resulting
gradients. The magnitude is in a 16-bit unsigned format, and the angle is a 5-bit unsigned value.

• The PEC block interfaces to PMA port 2, which has the magnitude and angle packed into a 32-bit word.
The PEC performs the non-maximum suppression to produce thin edges and hysteresis threshold to
allow software to reduce streaking. Because the PEC block works on the output from 1st-derivative
filters, the block should be configured for mode 1 by setting PVP_PEC_CTL.MODE =0. The threshold
values for magnitude comparison is set in the PVP_PEC_D1TH0 register (lower threshold) and is set in
the PVP_PEC_D1TH1 register (higher threshold). The hysteresis threshold feature can be selectively
disabled by setting PVP_PEC_CTL.IGNTH1 =1.

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–81

• The OPF0 block can be set to sense PEC port 0, which carries the 8-bit encoded output. The post-
processing software can use this output for edge tracing and further processing. The OPF0 block should
be configured to PVP_OPFn_CTL.ISIZE =2 and configured to PVP_OPFn_CTL.OSIZE =0.

LoG with PEC in 2nd-Derivative Mode

Laplacian on Gaussian (LoG) is an edge detection algorithm based on 2nd derivative filtering of an input
image. The LoG method produces thin edges, but the algorithm is sensitive to noise. To avoid noise, the
input image is filtered using a Gaussian kernel before convolving the input with the LoG kernel. The PEC
block produces the angle information, which is missing in the traditional LoG algorithm. The post-
processing software can use the class/angle information from the PEC to build contours for further anal-
ysis. The LoG data flow figure shows PVP block connections for this usage case.

Figure 30-39: LoG Data Flow

Some key points in this camera pipe example are:

• The IPF0 block receives input from the video subsystem (VSS).

• The CNV0 block receives data from port 0 of IPF0. The CNV0 use the same Gaussian kernel described
in the Canny with PEC in 1st-Derivative Mode example. The coefficients are programmed in 1.15
format in the CNV1 registers. The fractional part is eliminated in the output of CNV1 by setting PVP_
CNVn_CTL.SHIFT =15. The LoG kernel is shown in the LoG coefficients figure.

Figure 30-40: LoG Coefficients

• The PEC block interfaces to the CNV1 output. The PEC computes angle information and sub-pixel
location of the edges. Because the PEC block works on outputs from 2nd derivative filters, the block
should be configured to mode 2 by setting PVP_PEC_CTL.MODE =1. The threshold values for zero
crossing detection is set in the PVP_PEC_D2TH0 (lower threshold) and is set i the PVP_PEC_D2TH1
(higher threshold) registers. The strong/weak edge distinction can be selectively disabled by setting

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

30–82 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PVP_PEC_CTL.IGNTH1 =1. The PEC block can output either the zero-crossing codes (PVP_PEC_CTL.
ZCRSS =1) or can output the angle information (PVP_PEC_CTL.ZCRSS =0) from the classifier. In both
cases, the output on PEC port 0 is in 8-bit packed format. The output contains the sub-pixel location
in the upper 4-bits and contains either zero-cross code or angle index.

• The OPF0 block can be set to sense PEC port 0, which carries the 8-bit encoded output. The post-
processing software can use this output for building contours and further processing. The OPF0 block
should be configured to PVP_OPFn_CTL.ISIZE =2 and PVP_OPFn_CTL.OSIZE =0.

The concurrency of Sobel and LoG methods figure demonstrates how both 1st-derivative and 2nd-deriv-
ative edge detection methods can be realized concurrently in the PVP.

Figure 30-41: Concurrency of Sobel and LoG Methods

 In this example, the CNV2 performs the initial low-pass filtering to remove noise in the input data. The
output is broadcast to the three CNVn blocks. The lower signal pipe using CNV3-PEC realizes the 2nd-
derivative method of edge detection using the LoG method. The upper signal pipe realizes the 1st-deriva-
tive method of edge detection using the Sobel method. The outputs are captured using two OPFn blocks
concurrently.

DoG with PEC in 2nd-Derivative Mode

Difference of Gaussian (DoG) is an edge detection algorithm, which approximates the 2nd derivative
filtering of an input image. The input image is filtered by two Gaussian kernels with different sigma. The
resulting output is subtracted to produce an output similar to the filtering using LoG kernel. This output
is fed to PEC which works in the same manner as in LoG method. The post-processing software can use
the class/angle information from PEC to build contours for further analysis. The difference of Gaussian
data flow figure shows the data flow for the DoG method.

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–83

Figure 30-42: Difference of Gaussian Data Flow

Some key points in this camera pipe example are:

• The input data is first convolved with Gaussian kernel in CNV0. The output is convolved a second time
with a Gaussian kernel in CNV1. The resulting output is the result from convolving the original image
with a 9x9 Gaussian kernel of sum of sigmas of CNV0 and CNV1.

• The output from CNV0 can be subtracted from the output of CNV1 using the ACU. But, the two
outputs have to be matched for the delay to subtract the pixels at the right instant/location. This match
is achieved by inserting CNV2, which does not modify the data and does match the delay introduce by
CNV1. The kernel for bypassing the input to the output is shown in the bypass coefficients for CNV2
figure.

Figure 30-43: Bypass Coefficients for CNV2

• The PEC block and OPF0 block settings in this example are the same as shown in the LoG with PEC in
2nd-Derivative Mode example.

Integral of Input Pixels

The integral image of input pixels data flow figure shows how the IIMn block can be used to compute an
integral of input pixels.

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

30–84 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-44: Integral Image of Input Pixels Data Flow

Some key points in this camera pipe example are:

• The IPF0 block receives input from the video subsystem (VSS).

• The IIM0 block receives data from port 0 of the IPF0 block. The IIM0 can be used to compute sum-
area-table (SAT) features by setting PVP_IIMn_CTL.MODE =0. If rotated-sum-area-table (RSAT)
features are required, configure PVP_IIMn_CTL.MODE =1.

• Because the integral is computed on single pixels coming in from IPF0, the PVP_IIMn_CTL.WIDTH =0
(32-bit input). Note that IPF0 zero extends the incoming pixel values to 32-bits before placing on them
on port 0.

• To reduce overflow or underflow while performing the integral, the IIM block supports reducing the
input range by shifting the LSBs out of incoming data. The PVP_IIMn_CTL.SHIFT bits can be set to a
non-zero value to reduce the pixel data range. The IIM can optionally also scale down the output data
in horizontal and vertical directions independently. The PVP_IIMn_SCALE.HSCL and PVP_IIMn_
SCALE.VSCL fields can be used for setting the scale factors.

• The OPF0 block should be set to receive and transmit 32-bit data (for best operation) using the config-
uration: PVP_OPFn_CTL.ISIZE =0 and PVP_OPFn_CTL.OSIZE =0.

Integral of Binary Edge Map

The integral image of binary edge map data flow figure shows how the IIMn block can interface to the
THCn and other blocks to compute integral of edge map.

PIPELINED VISION PROCESSOR (PVP)
OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–85

Figure 30-45: Integral Image of Binary Edge Map Data Flow

Some key points in this camera pipe example are:

• The edge map is generated as described in the Sobel with 3x3 or 5x5 Matrix Operation example.

• The 4-bit index output from the THC0 block forms the input to the IIM0 block. By properly choosing
threshold registers (PVP_THCn_TH0 = 0, PVP_THCn_TH1 = threshold value, and PVP_THCn_TH2 through
PVP_THCn_TH15 = maximum of 16-bit value, 216–1), the output from the THC0 block is only 0 and 1,
a true binary edge map.

• The IIM0 block is configured in different modes as explained in the Integral of Input Pixels example.

Integral of Variance

The IIMn block can interface to the ACU block to compute integral of squared input values. The input data
from IPF0 can be fed to both inputs of the ACU as shown in the integral of squared input values data flow
figure.

Figure 30-46: Integral of Squared Input Values Data Flow

PIPELINED VISION PROCESSOR (PVP)
EVENT CONTROL

30–86 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Some key points in this camera pipe example are:

• The ACU is set to multiply the input operands (PVP_ACU_CTL.SFTINP =2, PVP_ACU_CTL.PRDINP =0,
PVP_ACU_CTL.PRDOP =0, PVP_ACU_SHIFT =0). The ACU also supports user programmable clipping
with values from the PVP_ACU_MIN and PVP_ACU_MAX registers.

• The IIM1 block is configured in different modes as explained in the Integral of Binary Edge Map
example.

Histogram of Gradients (HoG)

The IIMn block can be used to compute Histogram of Gradients (HoG) features by connecting IIMn block
output to PEC block (port 1) input as shown in the histogram of gradients data flow figure.

Figure 30-47: Histogram of Gradients Data Flow

Some key points in this camera pipe example are:

• The PEC block port 1 carries angle information in either 8-bit or 16-bit fields. This format is supported
in both modes (1st and 2nd derivative) of the PEC. Port 1 is not valid only when PVP_PEC_CTL.ZCRSS
=1 in 2nd derivative mode because the angle is not functional.

• When the PEC block is programmed to output 8-bits per angle bin, (PVP_PEC_CTL.OSIZE =0), there
are four angle bins in a 32-bit word output. The IIM0 block computes the integral of the individual bins,
and the IIM0 block must be set in quad 8-bit mode, (PVP_IIMn_CTL.WIDTH =3).

• When the PEC block is programmed to output 16-bits per angle bin, (PVP_PEC_CTL.OSIZE =1), there
are two angle bins in a 32-bit word output. The IIM0 block computes the integral of the individual bins,
and the IIM0 block must be set in dual 16-bit mode, (PVP_IIMn_CTL.WIDTH =1).

• For optimal operation, set the OPFn block to receive and transmit 32-bit data (PVP_OPFn_CTL.ISIZE
=0, PVP_OPFn_CTL.OSIZE =0).

Event Control
This section describes PVP event control issues, including interrupt signals, status/error signals, and finish
commands.

PIPELINED VISION PROCESSOR (PVP)
EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–87

Interrupt Signals

Although the PVP features two interrupt outputs, much of the software interaction occurs through the
interrupts of the associated DMA channels. For example, the PVP interrupt may signal that a frame has
been completely received and processed, but only the completion interrupt of the data output DMA can
indicate when all results are stored in system memory. For more information about specific PVP interrupts
and triggers, see the processor specific interrupts and triggers listed in the PVP Functional Description.

Figure 30-48: PVP Interrupt Flow

The PVP features a single, 32-bit wide event status register, PVP_STAT, as shown in the PVP interrupt flow
figure. The PVP_STAT register contains read-only status bits for camera pipe control, memory pipe control,
and individual processing blocks. All flags in this register are generated and cleared by hardware.

The PVP_ILAT register contains the latched counterparts of the status bits in the PVP_STAT register. If a
status bit toggles from 0 to 1 the respective latch bit is set automatically. The latches in the PVP_ILAT
register are cleared by software using the W1C method.

The PVP_IMSKn registers (one for each processor core) can unmask the interrupt behavior of the latches.
If the PVP_STAT.CPRDY bit (camera pipe ready) is set by hardware, the PVP sets the corresponding latch
bit, PVP_ILAT.CPRDY. By default, interrupts are not enabled (unmasked). If software sets the PVP_IMSKn.
CPRDY bit enabling (unmasking) the interrupt, the latched interrupt status causes an interrupt on the PVP
status output to the corresponding processor core.

PIPELINED VISION PROCESSOR (PVP)
EVENT CONTROL

30–88 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The PVP_IREQn registers (on for each processor core) can be read by software to determine which of the
interrupts enabled on a respective channel is pending. Interrupt request bits are a logical AND of mask and
latch bits. The interrupt outputs are the logical OR of all interrupt requests in the given PVP_IREQn register.

Software can acknowledge interrupts by a W1C operation to either the PVP_IREQn or the PVP_ILAT regis-
ters. Either operation clears the latches in the respective PVP_ILAT register.

Status and Error Signals

All PVP status and error events are reported by the PVP_STAT register. It is noted that further interrupts
and error signals out of PPI, PIXC and DMA channels are highly relevant to PVP operation.

The PVP_STAT register contains the following status and error bits for pipe control. There is always one
status bit for the camera pipe and one for the memory pipe:

• Daisy Chain Completion. The PVP_STAT.CPDC and PVP_STAT.MPDC bits signal whether a configuration
update is currently daisy chaining through the pipe. The bits are set along with the PVP_IPF0_CFG.
START or PVP_IPF1_CFG.START bit and are cleared if all blocks in the pipe have been updated.

• Write Error. The PVP_STAT.CPWRERR and PVP_STAT.MPWRERR bits are set when an MMR write is
attempted during ongoing daisy chaining of configuration and are cleared at the end of the daisy chain
operation.

• Completion of Drain operation. The PVP_STAT.CPDRN and PVP_STAT.MPDRN bits get set when the pipe
has finished draining in response to PVP_IPFn_PIPECTL.DRAIN bit. The bits are cleared when PVP_
IPF0_CFG.START or PVP_IPF1_CFG.START bit is set next time.

• Pipe Ready. The PVP_STAT.CPRDY and PVP_STAT.MPRDY bits indicate that the respective pipe is ready
for a new configuration. They are set along with the drain completion bits and cleared by daisy chain
completion.

The PVP_STAT register contains the following status bit for the data flow.

• Data Events. The PVP_STAT.CPOPFDAT and PVP_STAT.MPOPFDAT bits are set when all enabled output
formatters have processed the first data word. The bits are cleared with the next data row.

The PVP_STAT register contains the following error bits for signaling data transfer errors in camera pipe.
Since the memory pipe is designed to not overflow it does not need the following error flags.

• Output FIFO Overflow. The PVP_STAT.OPF0OVF, PVP_STAT.OPF1OVF, and PVP_STAT.OPF2OVF bits are
set when the FIFO overflows, which is fed by OPF outputs and drained by data output DMA. The bits
are cleared when the first data value of the next row is processed by the OPF.

• Status FIFO Overflow. The PVP_STAT.CPSTOVF flag is similar to OPFnOVF bits. It is set when the status
output FIFO overflows.

• Input Overflow. The PVP_STAT.CPIPFOVF flag is set when data overflows at IPF0. This flag can only be
cleared by a camera pipe disable (PVP_CTL.CPEN =0).

PIPELINED VISION PROCESSOR (PVP)
EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–89

The PVP_STAT register contains the following status and error bits to report the status of individual
processing blocks.

• Histogram Ready. The PVP_STAT.THC0RDY and PVP_STAT.THC1RDY bits indicate that the THC histo-
gram counters have been updated. Set at the end of a frame when PVP_IPFn_FCNT =0 or has counted
down to zero and PVP_IPFn_PIPECTL.STATEN =1.

• Integral Unsigned Overflow. The PVP_STAT.IIM0UOVF and PVP_STAT.IIM1UOVF bits are set when bit
31 of the integral counter in the IIM overflowed during an on-going frame.

• Integral Signed Overflow. The PVP_STAT.IIM0SOVF and PVP_STAT.IIM1SOVF bits are set when bit 30
of the integral counter in the IIM overflowed during an on-going frame

• Divide by Zero. The PVP_STAT.ACUDIVERR bit is set by the ACU when a divide-by-zero operation was
attempted during the on-going frame.

• ACU Output Saturation. The PVP_STAT.ACUOUTSAT bit is set when, during the on-going frame, data
was saturated due to the PVP_ACU_MIN/PVP_ACU_MAX mechanism.

• ACU Multiplication Saturation. The PVP_STAT.ACUPRODSAT bit is set when, during the on-going
frame, a multiplication product was saturated.

• ACU Addition Saturation. The PVP_STAT.ACUSUMSAT bit is set when, during the on-going frame, the
sum of an addition or subtraction was saturated.

Finish Commands

Output formatters (OPFn) are the blocks that drive data output DMA processes. These PVP blocks use a
special DMA feature that permit these blocks (on demand) to send a finish command to the DMA channel,
signaling that the work unit has completed.

The three camera pipe output formatters (OPF0, OPF1, OPF2) send a finish command when the FIFO
overflows. When an overflow occurs, the condition is reported to the PVP_STAT register, the FIFO is
cleared, and a finish command is sent to the DMA channel at the end of the corrupted frame. The PVP and
DMA automatically re synchronize with the next frame boundary. Due to the large depth of the data
output FIFO, multiple frames may stick in the FIFO by the time the error occurs. In case of very small
frames, software may not know whether the automatic recovery dropped one or multiple frames.

The Finish command is also used for signaling. The PVP_OPFn_CTL.FINISH bit configures this operation.
When set, the respective output formatter always issues a Finish command at the end of each frame. This
feature is valuable when the exact amount of transfers per frame is not known.

A good example applying the Finish command is run-length compression mode. In this mode, the number
of output reports generated depend on the incoming data. The DMA work unit is pre configured for a
certain number of transfers and is completed only if all transfers have taken place. Typically, the run-length
compression output DMA is set to the maximum value of reports a frame can generate. This value depends
on the PVP_THCn_RMAXREP register setting. If PVP_OPFn_CTL.FINISH =1, the output DMA can terminate
before all DMA transfers have occurred. The DMA can immediately progress to the next frame's opera-

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–90 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

tion. When using this feature, software needs to be aware that not all memory cells reserved for the oper-
ation might be filled with new value.

Programming Model
This section describes PVP programming techniques, including configuration for pipes, blocks, daisy
chains, job lists, and reports.

Configuring Pipe Structure

PVP processing blocks either have a single fixed output or have multiple outputs. Also, the PVP has some
inputs containing multiplexers. This pipe connectivity provides a number of ways to connect block output
as input to other blocks.

The block connectivity overview figure provides a block connectivity overview for the PVP blocks.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–91

Figure 30-49: Block Connectivity Overview

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–92 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The pipeline structure is composed by programming multiplexers from the output of PVP blocks to the
input of other PVP blocks. By definition, this connection programming starts with one of the OPFn blocks.
For example, if the input of OPF0 is connected to one of the three output ports of an empty camera pipe
on IPF0, a camera pipe without any mathematical mean has been created. Alternatively, if the input of
OPF0 is connected to the output of THC1, and the input of THC1 is connected to an output of IPF0, a
camera pipe with a single mathematical function has been created.

To continue the pipe connection example, one output of the IPF0 can perform 3-way data broadcasting
with the following configuration.

• OPF1 input is connected to the IIM0 output

• The IIM0 input is connected to the ACU output

• The ACU has two inputs and both inputs are connected to the same output of IPF0 and THC1

Similarly, to configure OPF2 to probe the PMA’s output use the following configuration.

• Connect the two PMA inputs to CNV1 and CNV2

• Connect these to CNV0’s output

• CNV0’s input finally receives data from a different port of IPF0

The pipe structure example configuration figure illustrates this example. Additionally, the figure shows the
UDS block configured in memory pipe between OPF3 and IPF1.

Figure 30-50: Pipe Structure Example Configuration

The next figure shows the data flows in the same example configuration. Note the broadcast at the IPF0
and CNV0 outputs. Also, note how threads are united by the ACU and PMA blocks.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–93

Figure 30-51: Data Flow in Example Configuration

Although the example shown has significant processing power, this pipe configuration does not use the
THC0, IIM1, CNV3, and PEC processing blocks.

To program the input multiplexers, each processing element features a pipe configuration register. The
PVP_OPFn_CFG.IBLOCK0, PVP_PEC_CFG.IBLOCK0, PVP_IIMn_CFG.IBLOCK0, PVP_ACU_CFG.IBLOCK0,
PVP_UDS_CFG.IBLOCK0, PVP_CNVn_CFG.IBLOCK0, PVP_THCn_CFG.IBLOCK0, and PVP_PMA_CFG.IBLOCK0
fields specify the identifier of the desired source block. The PVP_OPFn_CFG.IPORT0, PVP_PEC_CFG.
IPORT0, PVP_IIMn_CFG.IPORT0, PVP_ACU_CFG.IPORT0, PVP_UDS_CFG.IPORT0, PVP_CNVn_CFG.IPORT0,
PVP_THCn_CFG.IPORT0, and PVP_PMA_CFG.IPORT0 fields are used if the selected source block has multiple
outputs. Because the PMA and ACU have two inputs, their configuration register features include the PVP_
ACU_CFG.IBLOCK1, PVP_PMA_CFG.IBLOCK1, PVP_ACU_CFG.IPORT1, and PVP_PMA_CFG.IPORT1 fields.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–94 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-52: Input Port Selection

It is mandatory that all blocks that are used have their MPIPE bit (PVP_OPFn_CFG.MPIPE, PVP_PEC_CFG.
MPIPE, PVP_IIMn_CFG.MPIPE, PVP_ACU_CFG.MPIPE, PVP_UDS_CFG.MPIPE, PVP_CNVn_CFG.MPIPE, PVP_
THCn_CFG.MPIPE, and PVP_PMA_CFG.MPIPE) properly configured. All blocks that contribute to the OPF3
output, (all blocks operating in the memory pipe), must have their MPIPE bit set. For all non-contributor
blocks, their MPIPE bit must be cleared.

NOTE: It is user's responsibility to ensure that the MPIPE bit settings match with the assignments of OPF0
through OPF2 versus OPF3. Broadcasts and unions from the camera pipe to the memory pipe and
vice versa are absolutely forbidden.

A valid pipe always starts at the input formatter and ends at the output formatter with one exception. Pipes
can end at the THC blocks if the data output of the THC blocks is not of interest. Then, the THC blocks
can still operate in histogram mode, where the histogram is outputted to the status DMA. A limitation
applies in that such a histogram-only THC setup cannot partner with UDS block in memory pipe mode.

Table 30-46: PVP Block IDs

Block Block ID Block Block ID Block Block ID Block Block ID

OPF0 0x01 OPF1 0x02 OPF2 0x03 OPF3 0x04
IPF0 0x0C IPF1 0x0E THC0 0x20 THC1 0x28
CNV0 0x10 CNV1 0x14 CNV2 0x18 CNV3 0x1C
ACU 0x08 PMA 0x30 PEC 0x05 UDS 0x0A
IIM0 0x06 IIM1 0x07

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–95

Configuring with Register-Based Method (Camera Pipe)

To configure the camera pipe in the static way, use the register-based programming method. This method
programs all pipe control and processing blocks by writing configuration and coefficients into memory-
mapped registers (MMRs). The following procedure lists the typical steps for this method:

1. Disable all involved PVP blocks, all involved VSS elements and all involved DMA channels to ensure
that all data FIFOs are empty.

2. Configure video interconnect routing.

3. Configure pin muxing for PPI input operation.

4. Set the PVP_CTL.PVPEN and PVP_CTL.CPEN bits to enable camera pipe mode.

5. Configure and enable all output DMA processes using either the register-based or the descriptor-based
method.

6. Configure all camera pipe processing blocks starting from the output formatters to IPF0. Ensure that
the structure of the camera pipes are configured using the PVP_OPFn_CFG, PVP_PEC_CFG, PVP_IIMn_
CFG, PVP_ACU_CFG, PVP_UDS_CFG, PVP_CNVn_CFG, PVP_THCn_CFG, and PVP_PMA_CFG registers. Ensure
that the appropriate MPIPE bits are cleared, and ensure that the appropriate START bits are set.

7. Enable the IPF0 block. If continued camera pipe operation is desired, set PVP_IPF0_FCNT = 0. Finally,
setting the PVP_IPF0_CFG.START bit enables the entire camera pipe.

8. Configure PPI DMA processes.

9. Enable PPI and (optionally) PIXC operation.

After all PVP blocks are enabled, the PVP operation starts with the next vertical frame sync (VSYNC).

There is some flexibility in the order of above procedure. For example, the PVP camera pipe can be recon-
figured, while the PPI is kept enabled. The camera pipe starts operating with the next VSYNC. If frame
characteristics change (for example, as in the case of the PPI’s window feature), care is required to ensure
that the PVP output (2-dimensional) DMA processes match with the window settings every frame.

All block registers are double buffered. All coefficient registers can be written any time and are properly
synchronized with pipe progress by hardware. However, the PVP_OPFn_CFG, PVP_PEC_CFG, PVP_IIMn_
CFG, PVP_ACU_CFG, PVP_UDS_CFG, PVP_CNVn_CFG, PVP_THCn_CFG, and PVP_PMA_CFG registers must only
be written when a pipe re-configuration is desired for the next set of frames. Writes to the PVP_IPF0_CFG
or PVP_IPF1_CFG registers need to be synchronized with ongoing activity.

NOTE: Register writes during daisy chain load period are not allowed. Writes are ignored and error bits
are set. MMR reads incur 1 cycle of latency while writes incur no latency. Also, note that access to
holds/read only gives MMR error.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–96 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuring with DMA-Based Method

Instead of programming the PVP by directly writing to memory-mapped registers, the PVP can be config-
ured using DMA channels. This DMA-based method is derived from the descriptor-based programming
method of the DMA controllers themselves and works well with DMA programming.

The PVP features two configuration DMA inputs, one for camera pipe and one for memory pipe opera-
tion. These DMA processes enable on-the-fly re-configuration of the two pipes independently. Each pipe
can be configured or re-configured according to timing needs without core interaction.

The configuration DMA channels write to the memory mapped register (MMR) space. For the PVP
processing blocks, it does not make any difference whether a memory-mapped register has been written
by a core write or written by configuration DMA. Configuration DMA operation’s write timing is ensured
by hardware and not subject of interrupt latencies.

The block configuration structure (BCS) is a telegram loaded by either of the configuration DMA opera-
tions. The structure consists of a 32-bit block configuration header (BCH) which is followed by a number
of 32-bit configuration words that target memory-mapped registers.

Figure 30-53: Block Configuration Structure

When the configuration DMA fetches a BCS, the BCH specifies the MMR destination of the subsequent
configuration words. The 8-bit BCH.BLOCK field specifies to which PVP processing block the subsequent
configuration words belong. This field uses the same PVP block id scheme as listed in Configuring Pipe
Structure. The 8-bit BCH.WOFF field specifies the word offset versus that first register of the block's register
space. The 8-bit BCH.WCNT field specifies how many registers are to be written to the specified register
space. The BCH.RESERVED field must be filled with zeros.

Configuration DMA operations not limited to only fetching single BCSs. The configuration DMA opera-
tions also can fetch a series of BCSs at once. A series of BCHs is called block configuration list (BCL) and
is illustrated in the block configuration list example figure.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–97

Figure 30-54: Block Configuration List Example

The example block configuration list consists of two BCSs. The first BCS targets processing element CNV0.
This BCS contains three 32-bit configuration values to be written into three MMR registers that are contig-
uous in register space. The register space contains multiple registers dedicated to the CNV0 block. Because
the example BCS does not target the first three memory mapped registers (MMRs) in CNV0 space (rather
it targets the three from MMR2 on), the BCH.WOFF field is set to a value of 2. The second BCS targets CNV1.
This BCS only writes to a single register. And, because it is the first register in CNV1 space, the BCH.WOFF
field =0.

Fetching the Initial Configuration

After the camera pipe or memory pipe have been enabled by the PVP_CTL.PVPEN or PVP_CTL.CPEN bits,
the respective input formatter (IPFn) immediately requests a block control structure list (BCL) fetch from
the configuration DMA channel. If the configuration DMA does not grant the request because it is either
not ready or not enabled, the pipe engine stalls until either the pipe is configured by memory mapped
register (MMR) writes or the DMA starts granting. The IPFn blocks do not accept any data on their data
input, until the pipe is fully configured and enabled.

When the configuration DMA is granted, the input formatters fetch BCL words until the PVP_IPF0_CFG.
START or PVP_IPF1_CFG.START bit is set. The BCL is assumed to describe a valid pipe configuration and
to write a 1 to the PVP_xxx_CFG.START bits of all involved blocks. The START bit can be seen as a self-
clearing block enable bit. The self-clearing nature of this bit ensures that software does not need to perform
garbage collection at or after pipe re-configuration. Blocks that are no longer used are automatically
disabled.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–98 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The START bits of the input formatters have additional purpose also enable the entire camera or memory
pipe. Therefore, while the order of BCSs inside a BCL does not matter, only the very last BCS writes into
the PVP_IPF1_CFG register.

After the PVP_IPF0_CFG.START or PVP_IPF1_CFG.START bit has been written, the IPF0 starts accepting
data from the video subsystem or IPF1 starts requesting data from data input DMA and the pipe starts
processing.

Configuring with Descriptor-Based Method (Memory Pipe)

To enable memory pipe operation, set the PVP_CTL.PVPENand PVP_CTL.MPENbits. Additionally, the PVP_
CTL.CLKDIVmust be configured properly. While the camera pipe is clocked by the data clock of the
receiving PPI, the clock for the memory pipe is derived from system clock (SCLK). The PVP is designed
for maximum operating frequency of fPVPCLK_MAX MHz. For best performance:

• Clear PVP_CTL.CLKDIV if SCLK<= fPVPCLK_MAX MHz, so the memory pipe clock equals SCLK

• Set PVP_CTL.CLKDIV if SCLK> fPVPCLK_MAX MHz, so memory pipe clock equals SCLK/2

NOTE: Over clocking of memory pipe can lead to unpredictable behavior and thermal silicon defects. See
the processor data sheet for the fPVPCLK_MAX specification.

Before enabling a memory pipe job, configure the respective data input and data output DMA operations
and enabled them immediately. Typically, the completion interrupt of the data output DMA is also
enabled. This interrupt signals when the PVP memory pipe has completed the job and ensures that the
results have been written back to memory.

A BCL structure is expected somewhere in system memory. This BCL structure can be statically pre config-
ured or dynamically composed at run-time.

Finally, the configuration DMA is configured. The DMA_ADDRSTART registers point to the base address of
the BCL. When the configuration DMA is enabled, the operation takes place autonomously. IPF1 starts
requesting data from the data input DMA as soon as all BCL has been fetched (after the PVP_IPF1_CFG.
START bit has been set). Software is alerted by the completion interrupt of the data output DMA connected
to OPF3.

Configuring with Dynamic (on-the-fly) Method

To control how a pipe behaves after it has been initially configured, the input formatters use the frame
counter (PVP_IPFn_FCNT) registers. If the values in these registers =0, the respective pipe repeatedly oper-
ates in the same mode as long as it is not disabled by the PVP_CTL.CPEN or PVP_CTL.MPEN bit. If PVP_IPFn_
FCNT =1, the pipe operates on exactly one frame then stalls. If PVP_IPFn_FCNT is set to a value of N, exactly
N frames are processed.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–99

If PVP_IPFn_FCNT =0 or =1, the input formatters request a new BCL from configuration DMA every
frame. If PVP_IPFn_FCNT>1, a new BCL is only requested every Nth frame. Similarly, status reports can
only be transmitted at PVP_IPFn_FCNT frame boundaries.

Because the PVP is a pipelined engine, it takes X+D data clocks to process X data words, where D stands
for the depth of the pipeline. The PVP is clocked by data, so (after N frames have been processed) a number
of results (D) still stick in the pipe. These do not yet progress to the data output DMA channel because the
pipe is waiting for further BCL instructions. The first data clocks of the future operation, then data implic-
itly clocks the older results out.

To automatically drain the remaining result words, set PVP_IPFn_PIPECTL.DRAIN =1. This configuration
allows IPF0 (camera pipe) to pass further D data clocks into the pipe for this purpose. Keep Upstream PPI,
PIXC, and video source devices enabled, so they can provide the required clocks. The IPF1 block (memory
pipe) cannot rely on receiving further data clocks from data input DMA. Rather, if PVP_IPFn_PIPECTL.
DRAIN = 1, IPF1 generates the required clocks itself artificially.

The PVP_IPFn_FCNT register and PVP_IPFn_PIPECTL.DRAIN bit partner to instruct the input formatter on
how to control the pipe as shown in the operating modes by FCNT and DRAIN selections table.

Table 30-47: Operating Modes by FCNT and DRAIN Selections

FCNT DRAIN Mode

0 0 Mode 0: Continuous Frame Mode
Frames are continuously requested by the IPFn and feed the PVP pipe. The
Configuration DMA is constantly requesting BCL words every frame.
If new Configuration is granted by DMA or by MMR writes, it is applied on the
next frame boundary.
Processing Blocks do not auto-disable. New Configuration must not set PVP_xxx_
CFG.START bit of any block again.

>0 0 Mode 1: Back-to-Back Mode
FCNT frames are requested by the IPFn, and these feed the pipe. The last data
words get stuck in the pipe. The pipe stalls, and IPF x is requesting new instructions
from configuration DMA.
If a new configuration is granted by DMA or by MMR writes, the configuration is
applied for the next FCNT set of frames. The first data clocks of the new set push
the remaining words of the former set out to the data output DMA processes.
Only IPFn blocks auto-disable, other processing blocks do not. A new configuration
needs to reset START bit of IPFn, but must not set the START bit of the other blocks.
Ideally, writes to PVP_xxx_CFG registers of PVP blocks other than IPFn are avoided
altogether.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–100 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Mode 0 (continuous frame mode) is popular for camera pipe operation. Often, the camera pipe is enabled
statically, and updates to the coefficients are only required from time to time. On demand software may
enable the configuration DMA in stop mode to trigger the fetch of one single BCL. In this mode, the PVP_
IPFn_TAG register is useful to match status results with a respective configuration. The new BCL only
updates coefficients of processing blocks. The BCL does not alter the pipe configuration.

Mode 1 (back-to-back mode) is useful in camera pipe mode when coefficients have to change every Nth
frame. This mode supports on-the-fly reprogramming of coefficients, but it does not support on-the-fly
reprogramming of pipe configurations. The following settings must not change unless the DRAIN bit is set:

• Pipe structure (PVP_xxx_CFG registers)

• Fundamental operating modes (such as 1st-derivative to 2nd-derivative mode of PEC)

• Input format and OPORT configuration (PVP_IPFn_CTL registers)

• Horizontal size of input frame (HCNT)

If any of the above settings change on-the-fly, the PVP_IPFn_PIPECTL.DRAIN bit must be set for proper
operation to use Mode 2. In memory pipe mode, the PVP_IPFn_PIPECTL.DRAIN bit causes of few clock
cycles of overhead depending to pipeline depth. In camera pipe mode, the PVP_IPFn_PIPECTL.DRAIN bit
causes the loss of an entire frame. Operation stops after the pipe has been drained and resumes with the
next incoming VSYNC signal.

Whenever the next PVP job stalls until the completion event of the data output DMA is flagged either as
an interrupt or as a system trigger, setting the PVP_IPFn_PIPECTL.DRAIN bit is a requirement at the appli-
cation level. The data output DMA work unit does not complete as long as related data sticks in the pipe.
The data in the pipe does not progress until the configuration DMA and data source grant. Such deadlock
situations can be avoided by using Mode 2. Once a deadlock occurs, it can be resolved by Mode 3 opera-
tion.

Mode 3 (drain now instruction) is more similar to a one-time instruction than an operating mode. This
mode is used whenever software needs to respond to unpredictable events. For example, while the camera

>0 1 Mode 2: Auto-Completion Mode
FCNT frames are requested by the IPFn, and these feed the pipe. The last data
words are automatically pushed out, and the operation automatically completes.
If a new configuration is granted by DMA or by MMR writes, the configuration is
applied for the next FCNT set of frames.
All processing blocks auto-disable. A new configuration must set all wanted START
bits again.

0 1 Mode 3: Drain Now Instruction
This combination instructs the IPFn to flush all content out of the pipe.
All processing blocks auto-disable. A new configuration must set all wanted START
bits again.

Table 30-47: Operating Modes by FCNT and DRAIN Selections (Continued)

FCNT DRAIN Mode

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–101

pipe is operating in Mode 1, software notices that the future frames need to have alternating PVP_IPFn_
HCNT settings. If the pipe is already stalled waiting for new BCL instructions, a BCL containing a drain now
instruction can gracefully switch the pipe from Mode 1 into Mode 2. All pending results in the pipe are still
properly shifted out before the pipe resumes operation with the new PVP_IPFn_HCNT settings after the
subsequent BCL fetch.

The following list describes the difference between the modes in disabling the processing blocks after oper-
ation.

• In Mode 0, new configurations must not set the START bit of any block another time (not even the one
of the input formatters). If a new write to the PVP_xxx_CFG register cannot be avoided, write the START
bit to a zero value.

• In Mode 1, the hardware only disables the input formatters after PVP_IPFn_FCNT expires. All other
blocks remain enabled. In principle, only the PVP_IPF0_CFG or PVP_IPF1_CFG register needs to be
rewritten to set the START bit again to initiate another operation. New configurations must not set the
START bit of any other block another time. If a new write to the PVP_xxx_CFG register cannot be
avoided, the START bit shall be written by a zero value.

• In Mode 2 and Mode 3, all blocks are disabled by hardware after the drain operation. For future oper-
ation, re-write the PVP_xxx_CFG register of all included blocks to set the START bit again.

The PVP_STAT and PVP_ILAT registers report when the camera pipes (CPDRN bit) and the memory pipe
(MPDRN bit) are drained. The ready bit, PVP_STAT.CPRDY and PVP_STAT.MPRDY, report whether PVP_IPF0_
CFG.START and PVP_IPF1_CFG.STARTbits are ready to be set.

Working with Pipe Latency (Data Buffering)

Most of PVP processing blocks have internal data buffers, if not row buffers. Before a first result can be
generated, these buffers need to be filled with valid input data, so that the mathematical operation can be
performed. The amount of data buffering needed for the operation defines the latency that a block is
adding to the chain if that block is inserted into a pipe. This latency equals the number of artificial clocks
that need to be applied in the case of a drain operation. Due to their 2-dimensional nature, the CNVn, PEC,
and UDS blocks have local row buffers where they intermediately store one or multiple data rows. The
latency of these blocks is much higher than the latency of the IPFn, ACU, PMA, or OPFn blocks. The IIMn
block is a special case, in that (although it performs 2-dimensional operations) this block can generate
outputs early (because results do not depend on future data).

Table 30-48: Block Latencies

PVP Block Latency [Data Clocks]

IPFn 5
OPFn 1
THCn 3
CNVn 2x HCNT + 14

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–102 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuring with Daisy Chain Method

Configuration and coefficient memory mapped registers (MMRs) of all processing blocks are double buff-
ered. Whenever PVP_IPFn_FCNT is zero and the PVP_IPF0_CFG.START and PVP_IPF1_CFG.START bits =1,
the values are copied from MMR registers into application buffers at the frame boundary. Due to the pipe-
lined nature of the PVP, not all values are copied at the same time. Rather, the timing of value copying is
closely related to how the VSYNC of the next frame progresses through the pipe. New settings apply to the
first pixel of the new frame immediately after the last pixel of the old frame has been processed. The update
command is daisy chained through the pipe, starting from the IPFn blocks through to the OPFn blocks.

While sequencing through the daisy chain operation, hardware clears the PVP_xxx_CFG.START bits of all
involved processing blocks in MMR space. Write conflicts can occur if software attempts to write the PVP_
xxx_CFG registers during the daisy chain operation.

The PVP_STAT register provides two status bits that report whether a daisy chain operation is ongoing in
the camera pipes (PVP_STAT.CPDC) or in the memory pipe (PVP_STAT.MPDC). These bits are set along with
the PVP_IPF0_CFG.START or PVP_IPF1_CFG.START bit and are cleared if the output formatters have been
updated.

In camera pipe mode, the PVP_STAT.CPDC bit is cleared only after the daisy chain progresses through the
furthest of the enabled OPFn blocks. During this time, software should not write the PVP registers. If soft-
ware mistakenly does write to these registers, the event is reported by the PVP_STAT.CPWRERR and PVP_
STAT.MPWRERR flags. While all status bits in the PVP_STAT register are self clearing, the PVP_ILAT register
latches the events until cleared by a software handshake.

A PVP block which is enabled in either the camera pipe or memory pipe can be moved to the other pipe
only after the drain done command is received for the former pipe. This restriction ensures that the PVP
completely processes all the pixels in one pipe and disables the PVP block, before the PVP is enables the
PVP block for pixel processing in the next pipe.

NOTE: Camera pipes and memory pipes can be configured by MMR writes or BCL fetches. These are sepa-
rate control mechanisms and are not intended to be mixed for a given pipe during ongoing opera-
tion. Before switching from one method to the other, inspect the daisy chain and drain status bits
in the PVP_STAT register to ensure no operation from the other method is pending.

PMA 5
ACU 7
PEC 2x HCNT + 11 if 2nd derivative mode with ZCRSS=0, otherwise 1xHCNT + 6
IIMn 6
UDS varies with settings

Table 30-48: Block Latencies (Continued)

PVP Block Latency [Data Clocks]

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–103

Working with DMA Job Lists

The PVP memory pipe and camera pipe may be fed data continuously for sequential processing. The
advantages of using DMA job lists are:

• Sequential DMA processing requires minimal overhead for the core.

• This DMA method provides high PVP performance.

A number of programming consideration influence how systems set up and maintain job lists for the
multiple operations required for sequential processing. There are two approaches for operating these job
lists. These are described in Static DMA Job List Operation and Dynamic DMA Job List Operation.

Note that the techniques presented in these sections assume that the data to be processed within the PVP
memory pipe is completely stored in memory. This assumption is in contrast to typical camera pipe oper-
ation, in which the PVP processes data streams on the fly with data gated by an external (PIXEL) clock. In
that case, the processing data is not fully loaded into memory, and additional measures are required to
control the input data DMA to prevent running out of valid data. While this approach is technically
possible, the techniques required are not included in the Static DMA Job List Operation or Dynamic DMA
Job List Operation descriptions.

Also note that understanding and using these descriptions require basic knowledge of the processor’s
DMA functionality. It is especially useful to understand the application of linked list descriptors, 1-dimen-
sional DMA operations, and 2-dimensional DMA operations. For more information about DMA, see the
Direct Memory Access (DMA) chapter and the Trigger Routing Unit (TRU) chapter.

Whether static or dynamic, DMA job lists for PVP operations have some common features: Job List Setup,
Job List Global Trigger, and Job List Start.

• Job List Setup

To sequentially schedule multiple PVP memory pipe operations, correctly initiate and trigger the
following data flows (each handled by a different DMA move engine).

– DMA 45 moves the PVP memory pipe configuration (BCS block control structure list) of a specific
PVP memory pipe job from memory into the PVP, configuring the processing functionality of the
elements building the PVP memory pipe.

– DMA 43 moves the data set to be processed from memory into IPF1 using this specific PVP
memory pipe configuration.

– DMA 42 moves the results of the PVP memory pipe operation (OPF3) to a destination, usually to
memory.

The PVP can optionally generate an additional status (report) data stream originating from IPF1,
THC0, or THC1. This data stream also needs to be moved from the PVP memory pipe status output to
a destination, (usually to memory) using DMA 44.

To initiate the PVP memory pipe job list linked list, set up three DMA descriptors. Each linked
descriptor stores the DMA configuration parameters within memory to maintain the DMA sequences

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–104 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

to handle the three data flows, BCS, data IN, data OUT, and optionally status data OUT. If the descrip-
tors are all completed by the core, multiple PVP memory pipe jobs can be chained without any further
core intervention as the DMA operations run through the chained lists and handle the multiple data
flows autonomously. The following description assumes the memory pipe is inactive, (a non initialized
state PVP_CTL.MPEN =0).

To run a PVP memory pipe job from the PVP memory pipe job list, the PVP first loads the memory
pipe configuration into the respective shadow registers of the respective PCP elements to build the PVP
memory pipe. The configuration within the shadow register is activated (transferred from shadow
register to active register) using hardware triggers (staggered transfer). This configuration stream into
the shadow registers is handled by DMA 45 which is controlled by a linked descriptor list. The last valid
descriptor must contain a DMA_CFG.FLOW field =0 (STOP Mode) to gracefully stop the DMA 45 after
completing the PVP memory pipe job list and avoid loading non valid data into PVP memory pipe
configuration register. All DMA_CFG descriptor fields within the linked list have DMA_CFG.FLOW =6 or =7
(descriptor list mode) or alternatively DMA_CFG.FLOW =4 (descriptor array mode).

A 1-dimensional DMA operation is shown in the following figure. Note however, a 2-dimensional
DMA operation can also be used.

Figure 30-55: Static Linked Descriptor List for Configuration Data (BCL Data)

• Job List Global Trigger

After the first initialization of the linked descriptor list the parameter registers of DMA 45 have to be
initialized, particularly the DMA_DSCPTR_NXT and DMA_CFG register. The DMA 45 is started but then
stalls until the PVP memory pipe is enabled and the PVP_IPFn_FCNT =0.

To generate a unique synchronization signal that synchronizes the Data Out (DMA 42) and Data In
(DMA 43) stream, all DMA_CFG descriptor fields of DMA 45 should have the bit field DMA_CFG.TRIG =1.
This generates a trigger signal after a new configuration is loaded into the shadow registers.

• Job List Start

After setting up the three DMA linked lists, the memory pipe has to be activated (PVP_CTL.MPEN =1).

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–105

Static DMA Job List Operation

This section describes how to setup and use static DMA job lists with the PVP memory pipe. The
important points in this description are:

• Data out descriptor lists

• Data in descriptor lists

• Data flow in auto-completion mode

• Data flow in back-to-back mode

Data Out Descriptor Lists for Static Job Operation—After successfully setting up and starting the DMA
45 linked descriptor list for the configuration data of the PVP memory pipe, set up an additional DMA
(DMA 42) to move data out (result data) from the PVP memory pipe (out of OPF3) into memory. A
second linked descriptor list that handles the output data (result) is set up according to the previous
description of the DMA_45 linked description list. Optionally, set up DMA 44 using an additional linked
descriptor list that handles status data out. These data streams, the data out and the status data out, are
handled by dedicated DMA processes. DMA 42 handles the data out stream, and DMA 44 handles the
status data out stream.

NOTE: This setup for DMA job lists is described in Working with DMA Job Lists.

The data out streams are controlled by their respective linked descriptor list. The last valid descriptor of
each linked list must contain a DMA_CFG.FLOW field =0 (STOP mode) to gracefully stop the DMA 42 and
(optionally) DMA 45 after completing the PVP memory pipe job list. This graceful stop avoids loading non
valid data into PVP memory pipe configuration register. All DMA_CFG descriptor fields within the linked
list have DMA_CFG.FLOW =6 or =7 (descriptor mode) or alternatively DMA_CFG.FLOW =4 (descriptor array
mode). Configure the TRU to route the trigger of DMA 45 to the input trigger of DMA 42 and DMA 44.

Figure 30-56: Static Linked Descriptor List for Data OUT (Result Data) and Optionally Status Data Out

Data In Descriptor List for Static Job Operation—After successfully setting up and starting DMA 42,
DMA 45, and (optionally) DMA 44, set up the DMA 43 linked descriptor list for the input data (data in)
to be moved into IPF1. A third linked descriptor list that handles the data in is set up according to the
previous description of the DMA_42 linked description list. This data stream is handled by a dedicated
DMA (DMA 43), which is controlled by a linked descriptor list. The last valid descriptor of the linked list
must contain a DMA_CFG.FLOW field =0 (STOP mode) to gracefully stop the DMA 43 after completing the

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–106 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PVP memory pipe job List. This graceful stop avoids loading non valid data into PVP memory pipe config-
uration register. All DMA_CFG descriptor fields within the linked list have DMA_CFG.FLOW =6 or =7
(descriptor list mode) or alternatively DMA_CFG.FLOW =4 (descriptor array mode). Configure the TRU to
route the trigger of DMA 45 (back-to-back mode) or DMA 42 (auto-completion mode) to input trigger of
DMA 43. All DMA_CFG descriptor field must therefore have a DMA_CFG.TWAIT field =1.

Figure 30-57: Static Linked Descriptor List for Data IN

Data Flow in Auto-Completion Mode for Static Job Operation—The following figure and procedure
shows the data flow using a static job list and auto-completion mode.

1. DMA45 generates a trigger for DMA 43

2. DMA 43 generates a trigger for DMA 42

3. Software generates the first trigger for DMA 42

4. DMA45 is triggered when the memory pipe requests a new configuration. In this case the PVP memory
pipe is enabled and IPF1’s PVP_IPFn_FCNT field =0 (memory pipe request)

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–107

Figure 30-58: Static Job List Data Flow (Auto-Completion Mode)

Data Flow in Back-to-Back Mode for Static Job Operation—The following figure shows the data flow
using a static job list and back-to-back mode. The DMA45 generates a trigger for DMA 43 and DMA 42.
DMA45 in return is triggered by the memory pipe requesting a new configuration. In this case the PVP
memory pipe is enabled and IPF1’s PVP_IPFn_FCNTfield =0 (memory pipe request).

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–108 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-59: Static Job List Data Flow (Back-to-Back Mode)

Dynamic DMA Job List Operation

The setup for DMA job lists is described in Working with DMA Job Lists, and the DMA channel operations
for these job lists is described in Static DMA Job List Operation. This section builds on those concepts and
adds information for using dynamic operations. The important points in this description are:

• IPF1 mode selection

• Data in descriptor lists

• Data flow in auto-completion mode

• Data flow in back-to-back mode

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–109

IPF1 Mode Selection for Dynamic Job Operation—When the memory pipe job list is started before the
creation of the PVP memory pipe job list is completed by the core (dynamic creation of PVP memory pipe
jobs) the following issues must be considered.

• Use IPF1 mode 1 (back-to-back mode) is for maximum performance of the job list. This mode moves
data of a new job into the PVP memory pipe, while the data of the previous job has not been completely
moved out of the PVP memory pipe. This overlap is due to memory pipe latency and the output buffer
within OPF3. To avoid conflict, there must not be any data dependency between input and output data
(no recursive data processing). Further, the PVP memory pipe structure must not be modified, because
the staggered loading of the configuration may not work correctly. Yet another challenge related to this
mode is the fact that the last job cannot be completed. So, “dummy” data must be pushed explicitly into
the PVP memory pipe to shift out the last results.

• Using IPF1 mode 2 (auto-completion mode), a job list may alternatively use dummy data (bubbles)
that are implicitly (automatically) appended to every data set to entirely empty the PVP memory pipe
before the new data are processed. Due to the bubbles moving through the PVP memory pipe, this
mode decreases the performance of the PVP, but allows fully interlocked pipelined processing without
the need for special care of control conflicts. Mixing both modes is usually not possible, because it
requires dynamic modifications of the IPF1 configuration and DMA trigger configuration.

NOTE: Special care has to be exercised when using back-to-back mode if either the PVP memory pipe job
list has started before the creation of the PVP memory pipe job list has been completed by the core
or the data to be processed within the PVP memory pipe job list is not yet available in memory.
Auto-completion mode is the preferable mode in these cases.

NOTE: Special care has to be exercised when the BCS includes PVP_xxx_CFG register updates, (with excep-
tion of PVP_IPF1_CFG). This requires processing the PVP memory pipe job list in mode 2 (auto-
completion mode) as the staggered configuration load of the pipeline elements may no longer work
correctly because the position of an element within the pipeline may change. So, a different stag-
gering order may be required

Control Data Flow for Dynamic Job Operation—Support for dynamic job lists requires that the last valid
descriptor (descriptor n) must contain a DMA_CFG.TWAIT =1 (halt and wait for incoming trigger) instead
of containing DMA_CFG.FLOW =0 (stop mode) in order to pause and not stop the DMA channel and avoid
loading non valid data (job creation not finalized) into the PVP memory pipe configuration register. An
additional last descriptor (descriptor m) is reserved in memory, but only contains dummy values and a
STOP mode in the DMA_CFG field to handle erroneous descriptor overrun and enable dynamic memory allo-
cation.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–110 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-60: Linked Descriptor List for Configuration Data (BCL Data) Enabling Dynamic Extension

If adding an additional job to an existing PVP memory pipe job, this new job descriptor replaces the
DUMMY descriptor (descriptor m) in memory. This updated descriptor m must now link to a new
DUMMY descriptor (descriptor j).

Figure 30-61: Dynamic Extending Linked Descriptor List for Configuration Data (Job List)

After completing the descriptor m and the job list extension that handles data in and data out, modify
(clear) the DMA_CFG.TWAIT field of descriptor n. To grant a seamless DMA operation where:

• The DMA has already loaded the unmodified descriptor n.

• And, The DMA has already copied the DMA_CFG.TWAIT =1 descriptor (original descriptor n) into the
DMA_CFG register.

Generate a software generated trigger for DMA 45 (and DMA 43 if in back-to-back mode). Therefore if
DMA_CFG.TWAIT =1, a trigger is generated within the trigger routing unit (TRU) by software.

Additionally, to grant a seamless DMA operation using auto-completion mode where:

• DMA 42 has already loaded the unmodified descriptor n.

• And, DMA 42 has already copied the DMA_CFG.TWAIT = 1 descriptor (descriptor n) into the DMA_CFG
register.

Generate a software generated trigger for DMA 43. Therefore if DMA_CFG.TWAIT = 1, a trigger is generated
within the TRU by software.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–111

Take special care if writing the DMA_CFG.TWAIT field of the DMA_CFG field and if reading the DMA_CFG regis-
ters for DMA 45 and DMA 42 takes longer than the DMA operation loading the configuration data.

NOTE: Alternatively, instead of setting DMA_CFG.TWAIT =1, use DMA_CFG.FLOW =0 as a semaphore (STOP
mode). Set the DMA_CFG register (write operations) for DMA 45 to descriptor mode if the DMA
stopped.

Data Out Flow for Dynamic Job Operation—The following situations describe handling data out data
streams using back-to-back mode or auto-completion mode. Mixing modes is not possible because it
requires modifications of the IPF1 configuration and the DMA trigger configuration.

• Use mode 1 (back-to-back mode) for maximum performance. Note that this mode moves data to be
processed by a new job into the IPF1 while the resulting data processed by the previous job has not been
completely moved out of the PVP memory pipe. This is because there may not be any data dependency
between the input and output data (recursive data processing) in the output buffer within OPF3, as well
as PVP memory pipe latency. Further, the PVP memory pipe structure may not be modified because
the staggered loading of the configuration may not work correctly. A further challenge of this mode is
it requires “dummy” data to be pushed explicitly into the PVP memory pipe to shift out the last results
and therefore the last job cannot be completed.

• Use mode 2 (auto-completion mode) for fully interlocked pipelined processing without care for data
hazards (read after write hazard). This mode appends dummy data (bubbles) implicitly (automatically)
to every data set to empty the PVP memory pipe before the new data is processed in IPF1. Because the
bubbles move through the PVP memory pipe, this mode decreases the performance of the PVP.

Special care must be exercised when using back-to-back mode if the PVP memory pipe job list has been
started before the creation of the PVP memory pipe job list has been completed by the core, or if the data
to be processed within the PVP memory pipe job list is not yet available in memory. Auto-completion
mode should be used in these cases.

Data Out Flow for Dynamic Job Operation in Back-to-back Mode—Dynamic job lists require that the
last valid descriptor (descriptor n) for DMA 42 (and optionally DMA 44) to contain a DMA_CFG.TWAIT
field =1 (halt and wait for incoming trigger). This is so the DMA channel pauses instead of stops, and
avoids loading non valid data (job creation not finalized) into the PVP memory pipe configuration
register. An additional last descriptor (descriptor m) is reserved in memory which contains dummy values
and a DMA_CFG.FLOW =0 (STOP mode) to handle erroneous overrun.

If adding an additional job to an existing PVP memory pipe job, the new job descriptor replaces the
DUMMY descriptor (descriptor m) in memory. This updated descriptor m must now link to a new
DUMMY descriptor (descriptor j).

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–112 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-62: Linked Descriptor List for Data OUT (Results) Enabling Dynamic Extension (Back-to-Back Mode)

After completing the descriptor m and the job list extension to data in and data out, clear the DMA_CFG.
TWAIT field of descriptor n.

Figure 30-63: Dynamic Extending Linked Descriptor List for Data OUT (Job List) in Back-to-Back Mode

Data Out Flow for Dynamic Job Operation in Auto-Completion Mode—In auto-completion mode the
DMA handling the data out (DMA 42) triggers (synchronizes) the DMA handling the data in (DMA 43).
Therefore DMA 42 has to generate a respective trigger. Configure the TRU to route the trigger of DMA 42
to the input trigger of DMA 43.

All descriptors must have DMA_CFG.TRIG =1 to enable trigger generation. Only the last valid descriptor has
DMA_CFG.TRIG =0 which puts the DMA 43 into pause state.

Figure 30-64: Linked Descriptor List for Data OUT (Results) Enabling Dynamic Extension (Auto-Completion Mode)

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–113

If adding an additional job to an existing PVP memory pipe job, this new job descriptor replaces the
DUMMY descriptor (descriptor m) in memory. This updated descriptor m must now link to a new
DUMMY descriptor (descriptor j).

After completing the descriptor m and the job list extension to data in and data out, change the setting of
descriptor n to DMA_CFG.TRIG =1.

Figure 30-65: Dynamic Extending Linked Descriptor List for Data OUT (Job List) in Auto-Completion Mode

Data In Flow for Dynamic Job Operation—Dynamic job lists require that the last valid descriptor
(descriptor n) for DMA 43 contain a DMA_CFG.TWAIT field =1 (halt and wait for incoming trigger) instead
of DMA_CFG.FLOW =0 (STOP mode). This is so the DMA channel pauses instead of stops, and avoids
loading non valid data (job creation not finalized) into the PVP memory pipe configuration register. An
additional last descriptor (descriptor m) is reserved in memory which contains dummy values and a DMA_
CFG.FLOW =0 (STOP mode) to handle erroneous overruns.

Figure 30-66: Linked Descriptor List for Data IN Enabling Dynamic Extension

If adding an additional job to an existing PVP memory pipe job, this new job descriptor has to replace the
DUMMY descriptor (descriptor m) in memory. This updated descriptor m must now link to a new
DUMMY descriptor (descriptor j).

Auto-completion mode and back-to-back mode require identical Data Out descriptor list.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–114 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-67: Dynamic Extending Linked Descriptor List for Data IN

Data Flow for Dynamic Job Operation in Back-to-Back Mode—The following figure shows the data flow
using a dynamic job list and back-to-back mode. This figure illustrates that job creation processed by the
processor core when it is slower than the PVP. The PVP reaches the end of the valid job list before the
processor core generates a new job.

The software reads DMA_CFG.TWAIT of DMA45 and as a consequence generates a trigger by software to
start the new job in DMA45.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–115

Figure 30-68: Dynamic Job List Data Flow (Back-to-Back Mode)

Data Flow for Dynamic Job Operation in Auto-Completion—The following figure shows the data flow
using a dynamic job list and auto-completion mode. This figure and procedure demonstrate that job
creation processed by the CPU is slower than the PVP processing the valid job list. Therefore, the PVP
reaches the end of the valid job list before the processor core generates a new job.

1. The software reads DMA_CFG.TWAIT of DMA45 and as a consequence generates a trigger to start the
new job in DMA45.

2. The software then reads DMA_CFG.TWAIT of DMA43 and as a consequence generates a trigger to start
the new job in DMA42.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–116 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-69: Dynamic Job List Data Flow (Auto-Completion Mode)

Working with Status (Histogram) Reports

Beside the PVP_STAT register (which flags synchronization events and errors) the PVP also provides an
automatic method to output status reports (primarily to output the histogram results). The THCn blocks
latch the status of their histogram counters into memory mapped register (MMR) space every frame. Soft-
ware can rely on histogram ready events as signaled by the PVP_STAT.THC0RDY and PVP_STAT.THC1RDY
status flags, then manually collect the numerous MMR registers. To ensure consistency of the reports, the
MMR reads can be performed by an atomic procedure ensuring interrupts cannot interfere.

The PVP features two status output DMA channels that output the histogram reports more easily. After
the channels are configured and enabled, the status DMA operate independently from software. Report
consistency and proper read-out timing is ensured by hardware.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–117

One status DMA is associated with the camera pipe, and the other status DMA is associated with the
memory pipe. The feature is enabled by the PVP_IPFn_PIPECTL.STATEN control bits. If enabled, a status
report is sent every time PVP_IPFn_FCNT counts to zero. If PVP_IPFn_FCNT has been programmed to zero,
the report is sent after every frame.

If PVP configuration is frequently updated on the fly, system software might be exposed to risk to lose
track of which configuration a specific report belongs to. For this purpose the input formatters feature the
PVP_IPFn_TAG registers. At configuration time any 16-bit tag can be loaded into these registers. If PVP_
IPFn_FCNT expires, the tag value progresses to the PVP_IPFn_TAG_STAT counterpart register in the MMR
space. It can then optionally be stored via DMA paired with the histogram results.

Status Word Counters

When a report is sent to status output DMA the content of the report can be structured by the program.
Only the IPFn and THCn modules can contribute to the report as follows.

• IPF0 can send only to camera pipe status DMA

• IPF1 only can send to memory pipe status DMA

• THC0 and THC1 always send the status to the status DMA of the pipe they belong to

If the PVP_IPFn_PIPECTL.STATEN status enable bit is set, the PVP_IPF0_CFG.STATWCNT and PVP_IPF1_
CFG.STATWCNT fields control how many status words the respective input formatter sends to the status
channel. Since the input formatters feature only one status word contained in the PVP_IPFn_TAG_STAT
register, only two values are valid for the PVP_IPF0_CFG.STATWCNT or PVP_IPF1_CFG.STATWCNT fields. If
=0, the input formatter does not contribute to the status report. If =1, the input formatter sends one 32-bit
word, the 32-bit padded PVP_IPFn_TAG_STAT register to the status channel.

NOTE: Because the STATWCNT field resides in the PVP_IPFn_CFG register, its value cannot be altered
without setting the corresponding DRAIN bit =1. The STATEN bit resides in the same register as the
DRAIN bit. So, the structure of the status report must not change while DRAIN =0. STATWCNT is
allowed to alter the STATEN bit with every configuration, even when DRAIN =0.

The threshold blocks feature many more status registers. Each features a histogram frame counter register
(PVP_THCn_HFCNT_STAT), histogram counter registers (PVP_THCn_HCNT0_STAT to PVP_THCn_HCNT15_
STAT), and a run-length reports per frame register (PVP_THCn_RREP_STAT).

• If the PVP_THCn_CFG.STATWCNT field =0, the respective threshold block does not contribute to the
status report.

• If the PVP_THCn_CFG.STATWCNT field =1, only the PVP_THCn_HFCNT_STAT register is sent.

• If the PVP_THCn_CFG.STATWCNT field =9, the PVP_THCn_HFCNT_STAT and PVP_THCn_HCNT0_STAT to
PVP_THCn_HCNT7_STAT registers are sent.

• If the PVP_THCn_CFG.STATWCNT field =17, the PVP_THCn_HFCNT_STAT and PVP_THCn_HCNT0_STAT to
PVP_THCn_HCNT15_STAT registers are sent.

PIPELINED VISION PROCESSOR (PVP)
PROGRAMMING MODEL

30–118 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• If the PVP_THCn_CFG.STATWCNT field =18, the PVP_THCn_HFCNT_STAT and PVP_THCn_HCNT0_STAT to
PVP_THCn_HCNT15_STAT, and PVP_THCn_RREP_STAT registers are sent.

The STATWCNT field of all processing blocks other than IPFs and THCs are reserved and must be initialized
with zero values.

Status reports only output status registers. There is no programmable offset as in the case of block config-
uration.

Block Status Structure

When a processing block contributes to a status report, its data words are headed by a block status header
(BSH). The BSH is similar to the block configuration header (BCH). It consists of the block ID value and
also has a word count field. The latter mirrors the STATWCNT value as specified in the block configuration
register. Unlike BCHs the BSHs do not have an offset field. The entity of Block Status Header and respec-
tive status words is called Block Status Structure (BSS). A BSS always consists of STATWCNT+1 32-bit words.

A status report consists of a list of block status structures. Such a list is referred to as block status list (BSL).
An example is shown in the BSL example figure. This example assumes that both threshold blocks are
configured in camera pipe mode. IPF0 and THC0 blocks are configured to send status to the report. The
THC1 block is not configured to send status, so its PVP_THCn_CFG.STATWCNT field =0.

Figure 30-70: BSL Example

The input formatters make always the first entries in the block status list. If both threshold blocks are
enabled in the same pipe, the one that comes first is closer to the IPFn in the pipe arrangement. In case the
pipe configuration is not known, the block ID in the BSHs can be consulted.

Although it is not a hardware requirement, it is recommended that the work unit transfer count of the
DMA associated with the status output matches the number of 32-bit words in the BSL.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–119

ADSP-BF60x PVP Register Descriptions
PVP (PVP) contains the following registers.

Table 30-49: ADSP-BF60x PVP Register List

Name Description

PVP_CTL Control

PVP_IMSKn Interrupt Mask n

PVP_STAT Status

PVP_ILAT Interrupt Latch Status n

PVP_IREQn Interrupt Request n

PVP_OPFn_CFG OPFn (Camera Pipe) Configuration

PVP_OPFn_CTL OPFn (Camera Pipe) Control

PVP_OPF3_CFG OPF3 (Memory Pipe) Configuration

PVP_OPF3_CTL OPF3 (Memory Pipe) Control

PVP_PEC_CFG PEC Configuration

PVP_PEC_CTL PEC Control

PVP_PEC_D1TH0 PEC Lower Hysteresis Threshold

PVP_PEC_D1TH1 PEC Upper Hysteresis Threshold

PVP_PEC_D2TH0 PEC Weak Zero Crossing Threshold

PVP_PEC_D2TH1 PEC Strong Zero Crossing Threshold

PVP_IIMn_CFG IIMn Configuration

PVP_IIMn_CTL IIMn Control

PVP_IIMn_SCALE IIMn Scaling Values

PVP_IIMn_SOVF_STAT IIMn Signed Overflow Status

PVP_IIMn_UOVF_STAT IIMn Unsigned Overflow Status

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–120 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PVP_ACU_CFG ACU Configuration

PVP_ACU_CTL ACU Control

PVP_ACU_OFFSET ACU SUM Constant

PVP_ACU_FACTOR ACU PROD Constant

PVP_ACU_SHIFT ACU Shift Constant

PVP_ACU_MIN ACU Lower Sat Threshold Min

PVP_ACU_MAX ACU Upper Sat Threshold Max

PVP_UDS_CFG UDS Configuration

PVP_UDS_CTL UDS Control

PVP_UDS_OHCNT UDS Output HCNT

PVP_UDS_OVCNT UDS Output VCNT

PVP_UDS_HAVG UDS HAVG

PVP_UDS_VAVG UDS VAVG

PVP_IPF0_CFG IPF0 (Camera Pipe) Configuration

PVP_IPFn_PIPECTL IPFn (Camera/Memory Pipe) Pipe Control

PVP_IPFn_CTL IPFn (Camera/Memory Pipe) Control

PVP_IPFn_TAG IPFn (Camera/Memory Pipe) TAG Value

PVP_IPFn_FCNT IPFn (Camera/Memory Pipe) Frame Count

PVP_IPFn_HCNT IPFn (Camera/Memory Pipe) Horizontal Count

PVP_IPFn_VCNT IPFn (Camera/Memory Pipe) Vertical Count

PVP_IPF0_HPOS IPF0 (Camera Pipe) Horizontal Position

PVP_IPF0_VPOS IPF0 (Camera Pipe) Vertical Position

Table 30-49: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–121

PVP_IPFn_TAG_STAT IPFn (Camera/Memory Pipe) TAG Status

PVP_IPF1_CFG IPF1 (Memory Pipe) Configuration

PVP_CNVn_CFG CNVn Configuration

PVP_CNVn_CTL CNVn Control

PVP_CNVn_C00C01 CNVn Coefficients 0,0 and 0,1

PVP_CNVn_C02C03 CNVn Coefficients 0,2 and 0,3

PVP_CNVn_C04 CNVn Coefficient 0,4

PVP_CNVn_C10C11 CNVn Coefficients 1,0 and 1,1

PVP_CNVn_C12C13 CNVn Coefficients 1,2 and 1,3

PVP_CNVn_C14 CNVn Coefficient 1,4

PVP_CNVn_C20C21 CNVn Coefficients 2,0 and 2,1

PVP_CNVn_C22C23 CNVn Coefficients 2,2 and 2,3

PVP_CNVn_C24 CNVn Coefficient 2,4

PVP_CNVn_C30C31 CNVn Coefficients 3,0 and 3,1

PVP_CNVn_C32C33 CNVn Coefficients 3,2 and 3,3

PVP_CNVn_C34 CNVn Coefficient 3,4

PVP_CNVn_C40C41 CNVn Coefficients 4,0 and 4,1

PVP_CNVn_C42C43 CNVn Coefficients 4,2 and 4,3

PVP_CNVn_C44 CNVn Coefficient 4,4

PVP_CNVn_SCALE CNVn Scaling Factor

PVP_THCn_CFG THCn Configuration

PVP_THCn_CTL THCn Control

Table 30-49: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–122 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PVP_THCn_HFCNT THCn Histogram Frame Count

PVP_THCn_RMAXREP THCn Max RLE Reports

PVP_THCn_CMINVAL THCn Min Clip Value

PVP_THCn_CMINTH THCn Clip Min Threshold

PVP_THCn_CMAXTH THCn Clip Max Threshold

PVP_THCn_CMAXVAL THCn Max Clip Value

PVP_THCn_TH0 THCn Threshold Value 0

PVP_THCn_TH1 THCn Threshold Value 1

PVP_THCn_TH2 THCn Threshold Value 2

PVP_THCn_TH3 THCn Threshold Value 3

PVP_THCn_TH4 THCn Threshold Value 4

PVP_THCn_TH5 THCn Threshold Value 5

PVP_THCn_TH6 THCn Threshold Value 6

PVP_THCn_TH7 THCn Threshold Value 7

PVP_THCn_TH8 THCn Threshold Value 8

PVP_THCn_TH9 THCn Threshold Value 9

PVP_THCn_TH10 THCn Threshold Value 10

PVP_THCn_TH11 THCn Threshold Value 11

PVP_THCn_TH12 THCn Threshold Value 12

PVP_THCn_TH13 THCn Threshold Value 13

PVP_THCn_TH14 THCn Threshold Value 14

PVP_THCn_TH15 THCn Threshold Value 15

Table 30-49: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–123

PVP_THCn_HHPOS THCn Histogram Horizontal Position

PVP_THCn_HVPOS THCn Histogram Vertical Position

PVP_THCn_HHCNT THCn Histogram Horizontal Count

PVP_THCn_HVCNT THCn Histogram Vertical Count

PVP_THCn_RHPOS THCn RLE Horizontal Position

PVP_THCn_RVPOS THCn RLE Vertical Position

PVP_THCn_RHCNT THCn RLE Horizontal Count

PVP_THCn_RVCNT THCn RLE Vertical Count

PVP_THCn_HFCNT_STAT THCn Histogram Frame Count Status

PVP_THCn_HCNT0_STAT THCn Histogram Counter Value 0

PVP_THCn_HCNT1_STAT THCn Histogram Counter Value 1

PVP_THCn_HCNT2_STAT THCn Histogram Counter Value 2

PVP_THCn_HCNT3_STAT THCn Histogram Counter Value 3

PVP_THCn_HCNT4_STAT THCn Histogram Counter Value 4

PVP_THCn_HCNT5_STAT THCn Histogram Counter Value 5

PVP_THCn_HCNT6_STAT THCn Histogram Counter Value 6

PVP_THCn_HCNT7_STAT THCn Histogram Counter Value 7

PVP_THCn_HCNT8_STAT THCn Histogram Counter Value 8

PVP_THCn_HCNT9_STAT THCn Histogram Counter Value 9

PVP_THCn_HCNT10_STAT THCn Histogram Counter Value 10

PVP_THCn_HCNT11_STAT THCn Histogram Counter Value 11

PVP_THCn_HCNT12_STAT THCn Histogram Counter Value 12

Table 30-49: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–124 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Control

The PVP_CTL register enables the module, enables the memory pipe, enables the camera pipe, and selects
the SCLK-to-PVPCLK clock divisor. Note that PVP_CTL.PVPEN, PVP_CTL.MPEN, and/or PVP_CTL.CPEN
disable and re-enable MUST be followed by a fresh write of all required values in all shadow registers.

Figure 30-71: PVP_CTL Register Diagram

PVP_THCn_HCNT13_STAT THCn Histogram Counter Value 13

PVP_THCn_HCNT14_STAT THCn Histogram Counter Value 14

PVP_THCn_HCNT15_STAT THCn Histogram Counter Value 15

PVP_THCn_RREP_STAT THCn Number of RLE Reports

PVP_PMA_CFG PMA Configuration

Table 30-50: PVP_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

CLKDIV Clock Divisor.
The PVP_CTL.CLKDIV selects the SCLK-to-PVPCLK clock divisor as:
PVPCLK = SCLK / (2PVP_CTL.CLKDIV)
0 PVPCLK = SCLK
1 PVPCLK = SCLK/2

Table 30-49: ADSP-BF60x PVP Register List (Continued)

Name Description

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–125

Interrupt Mask n

The PVP_IMSKn register enables (unmasks) or disables (masks) status related interrupts for the PVP. For
all PVP_IMSKn bits, setting the bit enables the interrupt, and clearing the bit disables the interrupt.

2
(R/W)

CPEN Camera Pipe Enable.
The PVP_CTL.CPEN enables or disables all processing blocks in the
camera pipe.
0 Disable Camera Pipe
1 Enable Camera Pipe

1
(R/W)

MPEN Memory Pipe Enable.
The PVP_CTL.MPEN enables/disables all processing blocks in the
memory pipe.
0 Disable Memory Pipe
1 Enable Memory Pipe

0
(R/W)

PVPEN PVP Enable.
The PVP_CTL.PVPEN enables/disables the PVP.
0 Disable PVP
1 Enable PVP

Table 30-50: PVP_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–126 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-72: PVP_IMSKn Register Diagram

Table 30-51: PVP_IMSKn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27
(R/W)

ACUSUMSAT ACU SUM Saturate Unmask.
The PVP_IMSKn.ACUSUMSAT bit enables/disables the PVP_IMSKn.
ACUSUMSAT interrupt.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–127

26
(R/W)

ACUPRODSAT ACU PROD Saturate Unmask.
The PVP_IMSKn.ACUPRODSAT bit enables/disables the PVP_IMSKn.
ACUPRODSAT interrupt.

25
(R/W)

ACUOUTSAT ACU MIN/MAX Saturate Unmask.
The PVP_IMSKn.ACUOUTSAT bit enables/disables the PVP_IMSKn.
ACUOUTSAT interrupt.

24
(R/W)

ACUDIVERR ACU Divide By Zero Unmask.
The PVP_IMSKn.ACUDIVERR bit enables/disables the PVP_IMSKn.
ACUDIVERR interrupt.

23
(R/W)

IIM1SOVF IIM1 Signed Overflow Unmask.
The PVP_IMSKn.IIM1SOVF bit enables/disables the PVP_IMSKn.
IIM1SOVF interrupt.

22
(R/W)

IIM1UOVF IIM1 Unsigned Overflow Unmask.
The PVP_IMSKn.IIM1UOVF bit enables/disables the PVP_IMSKn.
IIM1UOVF interrupt.

21
(R/W)

IIM0SOVF IIM0 Signed Overflow Unmask.
The PVP_IMSKn.IIM0SOVF bit enables/disables the PVP_IMSKn.
IIM0SOVF interrupt.

20
(R/W)

IIM0UOVF IIM0 Unsigned Overflow Unmask.
The PVP_IMSKn.IIM0UOVF bit enables/disables the PVP_IMSKn.
IIM0UOVF interrupt.

18
(R/W)

THC1RDY THC1 Report Ready Unmask.
The PVP_IMSKn.THC1RDY bit enables/disables the PVP_IMSKn.
THC1RDY interrupt.

16
(R/W)

THC0RDY THC0 Report Ready Unmask.
The PVP_IMSKn.THC0RDY bit enables/disables the PVP_IMSKn.
THC0RDY interrupt.

15
(R/W)

MPRDY Memory Pipe Ready Unmask.
The PVP_IMSKn.MPRDY bit enables/disables the PVP_IMSKn.MPRDY
interrupt.

14
(R/W)

CPRDY Camera Pipe Ready Unmask.
The PVP_IMSKn.CPRDY bit enables/disables the PVP_IMSKn.CPRDY
interrupt.

13
(R/W)

MPDRN Memory Pipe Drain Done Unmask.
The PVP_IMSKn.MPDRN bit enables/disables the PVP_IMSKn.MPDRN
interrupt.

Table 30-51: PVP_IMSKn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–128 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

12
(R/W)

CPDRN Camera Pipe Drain Done Unmask.
The PVP_IMSKn.CPDRN bit enables/disables the PVP_IMSKn.CPDRN
interrupt.

10
(R/W)

CPIPFOVF Camera Pipe Pixel Overrun Unmask.
The PVP_IMSKn.CPIPFOVF bit enables/disables the PVP_IMSKn.
CPIPFOVF interrupt.

9
(R/W)

MPOPFDAT Memory Pipe First Pixel Unmask.
The PVP_IMSKn.MPOPFDAT bit enables/disables the PVP_IMSKn.
MPOPFDAT interrupt.

8
(R/W)

CPOPFDAT Camera Pipe First Pixel Unmask.
The PVP_IMSKn.CPOPFDAT bit enables/disables the PVP_IMSKn.
CPOPFDAT interrupt.

7
(R/W)

CPSTOVF Status DDE Stall Error Unmask.
The PVP_IMSKn.CPSTOVF bit enables/disables the PVP_IMSKn.
CPSTOVF interrupt.

6
(R/W)

OPF2OVF OPF2 DDE Stall Error Unmask.
The PVP_IMSKn.OPF2OVF bit enables/disables the PVP_IMSKn.
OPF2OVF interrupt.

5
(R/W)

OPF1OVF OPF1 DDE Stall Error Unmask.
The PVP_IMSKn.OPF1OVF bit enables/disables the PVP_IMSKn.
OPF1OVF interrupt.

4
(R/W)

OPF0OVF OPF0 DDE Stall Error Unmask.
The PVP_IMSKn.OPF0OVF bit enables/disables the PVP_IMSKn.
OPF0OVF interrupt.

3
(R/W)

MPWRERR Memory Pipe MMR Write Error Unmask.
The PVP_IMSKn.MPWRERR bit enables/disables the PVP_IMSKn.
MPWRERR interrupt.

2
(R/W)

CPWRERR Camera Pipe MMR Write Error Unmask.
The PVP_IMSKn.CPWRERR bit enables/disables the PVP_IMSKn.
CPWRERR interrupt.

1
(R/W)

MPDC Memory Pipe DC Unmask.
The PVP_IMSKn.MPDC bit enables/disables the PVP_IMSKn.MPDC
interrupt.

0
(R/W)

CPDC Camera Pipe DC Unmask.
The PVP_IMSKn.CPDC bit enables/disables the PVP_IMSKn.CPDC
interrupt.

Table 30-51: PVP_IMSKn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–129

Status

The PVP_STAT register indicates whether or not a PVP status related interrupts is pending. For all PVP_
STAT bits, a set bit indicates a pending interrupt, and a cleared bit indicates that no interrupt is pending.
The bits in this register are automatically set or cleared by changes to PVP status, and all bits are read-only.

Figure 30-73: PVP_STAT Register Diagram

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–130 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-52: PVP_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27
(R/NW)

ACUSUMSAT ACU SUM Saturate Status.
The PVP_STAT.ACUSUMSAT bit indicates whether or not the PVP_
STAT.ACUSUMSAT interrupt is pending. This interrupt is set by an
ACU on a frame boundary having sum saturation, and this interrupt
is cleared on the next frame boundary.
0 No Pending Interrupt
1 Pending Interrupt

26
(R/NW)

ACUPRODSAT ACU PROD Saturate Status.
The PVP_STAT.ACUPRODSAT bit indicates whether or not the PVP_
STAT.ACUPRODSAT interrupt is pending. This interrupt is set by an
ACU on a frame boundary having product saturation, and this
interrupt is cleared on the next frame boundary.
0 No Pending Interrupt
1 Pending Interrupt

25
(R/NW)

ACUOUTSAT ACU MIN/MAX Saturate Status.
The PVP_STAT.ACUOUTSAT bit indicates whether or not the PVP_
STAT.ACUOUTSAT interrupt is pending. This interrupt is set by an
ACU on a frame boundary having min or max saturation, and this
interrupt is cleared on the next frame boundary.
0 No Pending Interrupt
1 Pending Interrupt

24
(R/NW)

ACUDIVERR ACU Divide By Zero Status.
The PVP_STAT.ACUDIVERR bit indicates whether or not the PVP_
STAT.ACUDIVERR interrupt is pending. This interrupt is set by an
ACU on a frame boundary having divide by zero error, and this
interrupt is cleared on the next frame boundary.
0 No Pending Interrupt
1 Pending Interrupt

23
(R/NW)

IIM1SOVF IIM1 Signed Overflow Status.
The PVP_STAT.IIM1SOVF bit indicates whether or not the PVP_
STAT.IIM1SOVF interrupt is pending. This interrupt is set by an IIM
every frame boundary when signed saturation occurs, and this
interrupt is cleared on the next frame boundary.
0 No Pending Interrupt
1 Pending Interrupt

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–131

22
(R/NW)

IIM1UOVF IIM1 Unsigned Overflow Status.
The PVP_STAT.IIM1UOVF bit indicates whether or not the PVP_
STAT.IIM1UOVF interrupt is pending. This interrupt is set by an IIM
every frame boundary when unsigned saturation occurs, and this
interrupt is cleared on the next frame boundary.
0 No Pending Interrupt
1 Pending Interrupt

21
(R/NW)

IIM0SOVF IIM0 Signed Overflow Status.
The PVP_STAT.IIM0SOVF bit indicates whether or not the PVP_
STAT.IIM0SOVF interrupt is pending. This interrupt is set by an IIM
every frame boundary when signed saturation occurs, and this
interrupt is cleared on the next frame boundary.
0 No Pending Interrupt
1 Pending Interrupt

20
(R/NW)

IIM0UOVF IIM0 Unsigned Overflow Status.
The PVP_STAT.IIM0UOVF bit indicates whether or not the PVP_
STAT.IIM0UOVF interrupt is pending. This interrupt is set by an IIM
every frame boundary when unsigned saturation occurs, and this
interrupt is cleared on the next frame boundary.
0 No Pending Interrupt
1 Pending Interrupt

18
(R/NW)

THC1RDY THC1 Report Ready Status.
The PVP_STAT.THC1RDY bit indicates whether or not the PVP_STAT.
THC1RDY interrupt is pending. This interrupt is set by THC1 on every
HFCNT expiry boundary or when auto-disabled, and this interrupt is
cleared at the beginning of the next line of the next frame.
0 No Pending Interrupt
1 Pending Interrupt

16
(R/NW)

THC0RDY THC0 Report Ready Status.
The PVP_STAT.THC0RDY bit indicates whether or not the PVP_STAT.
THC0RDY interrupt is pending. This interrupt is set by THC0 on every
HFCNT expiry boundary or when auto-disabled, and this interrupt is
cleared at the beginning of the next line of the next frame.
0 No Pending Interrupt
1 Pending Interrupt

Table 30-52: PVP_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–132 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

15
(R/NW)

MPRDY Memory Pipe Ready Status.
The PVP_STAT.MPRDY bit indicates whether or not the PVP_STAT.
MPRDY interrupt is pending. This interrupt is set when the IPF1
application start bit is cleared, and this interrupt is cleared when the
IPF1 application start bit is set.
0 No Pending Interrupt
1 Pending Interrupt

14
(R/NW)

CPRDY Camera Pipe Ready Status.
The PVP_STAT.CPRDY bit indicates whether or not the PVP_STAT.
CPRDY interrupt is pending. This interrupt is set when the IPF0
application start bit is cleared, and this interrupt is cleared when the
IPF0 application start bit is set.
0 No Pending Interrupt
1 Pending Interrupt

13
(R/NW)

MPDRN Memory Pipe Drain Done Status.
The PVP_STAT.MPDRN bit indicates whether or not the PVP_STAT.
MPDRN interrupt is pending. This interrupt is set when the memory
pipes are drained and all memory pipe modules are disabled, and this
interrupt is cleared when the next memory pipe daisy chain load is
started.
0 No Pending Interrupt
1 Pending Interrupt

12
(R/NW)

CPDRN Camera Pipe Drain Done Status.
The PVP_STAT.CPDRN bit indicates whether or not the PVP_STAT.
CPDRN interrupt is pending. This interrupt is set when all three
camera pipes are drained and all camera pipe modules are disabled,
and this interrupt is cleared when the next camera pipe daisy chain
load is started.
0 No Pending Interrupt
1 Pending Interrupt

Table 30-52: PVP_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–133

10
(R/NW)

CPIPFOVF Camera Pipe Pixel Overrun Status.
The PVP_STAT.CPIPFOVF bit indicates whether or not the PVP_
STAT.CPIPFOVF interrupt is pending. This interrupt is set when pixel
overrun occurs in IPF0, and this interrupt is cleared when the first
pixel of the next line of that frame has entered memory pipe OPF.
0 No Pending Interrupt
1 Pending Interrupt

9
(R/NW)

MPOPFDAT Memory Pipe First Pixel Status.
The PVP_STAT.MPOPFDAT bit indicates whether or not the PVP_
STAT.MPOPFDAT interrupt is pending. This interrupt is set when the
first pixel of the frame has entered memory pipe OPF, and this
interrupt is cleared when the first pixel of the next line of that frame
has entered memory pipe OPF.
0 No Pending Interrupt
1 Pending Interrupt

8
(R/NW)

CPOPFDAT Camera Pipe First Pixel Status.
The PVP_STAT.CPOPFDAT bit indicates whether or not the PVP_
STAT.CPOPFDAT interrupt is pending. This interrupt is set when the
first pixel of the frame has entered all 3 camera pipe OPFs, and this
interrupt is cleared when the first pixel of the next line of that frame
has entered all 3 OPFs.
0 No Pending Interrupt
1 Pending Interrupt

7
(R/NW)

CPSTOVF Camera Pipe DDE Stall Error Status.
The PVP_STAT.CPSTOVF bit indicates whether or not the PVP_STAT.
CPSTOVF interrupt is pending. This interrupt is set when FIFO
overrun occurs in status DDE, and this interrupt is cleared when first
pixel of the next frame enters the FIFO.
0 No Pending Interrupt
1 Pending Interrupt

Table 30-52: PVP_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–134 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

6
(R/NW)

OPF2OVF OPF2 DDE Stall Error Status.
The PVP_STAT.OPF2OVF bit indicates whether or not the PVP_STAT.
OPF2OVF interrupt is pending. This interrupt is set when FIFO
overrun occurs in OPF2, and this interrupt is cleared when first pixel
of the next frame enters the FIFO.
0 No Pending Interrupt
1 Pending Interrupt

5
(R/NW)

OPF1OVF OPF1 DDE Stall Error Status.
The PVP_STAT.OPF1OVF bit indicates whether or not the PVP_STAT.
OPF1OVF interrupt is pending. This interrupt is set when FIFO
overrun occurs in OPF1, and this interrupt is cleared when first pixel
of the next frame enters the FIFO.
0 No Pending Interrupt
1 Pending Interrupt

4
(R/NW)

OPF0OVF OPF0 DDE Stall Error Status.
The PVP_STAT.OPF0OVF bit indicates whether or not the PVP_STAT.
OPF0OVF interrupt is pending. This interrupt is set when FIFO
overrun occurs in OPF0, and this interrupt is cleared when first pixel
of the next frame enters the FIFO.
0 No Pending Interrupt
1 Pending Interrupt

3
(R/NW)

MPWRERR Memory Pipe MMR Write Error Status.
The PVP_STAT.MPWRERR bit indicates whether or not the PVP_STAT.
MPWRERR interrupt is pending. This interrupt is set when a MMR
write was attempted to a memory pipe module during daisy chain
load, and this interrupt is cleared when daisy chain load is done.
0 No Pending Interrupt
1 Pending Interrupt

2
(R/NW)

CPWRERR Camera Pipe MMR Write Error Status.
The PVP_STAT.CPWRERR bit indicates whether or not the PVP_STAT.
CPWRERR interrupt is pending. This interrupt is set when a MMR
write was attempted to a camera pipe module during daisy chain
load, and this interrupt is cleared when daisy chain load is done.
0 No Pending Interrupt
1 Pending Interrupt

Table 30-52: PVP_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–135

Interrupt Latch Status n

The PVP_ILAT register indicates that latched status of interrupts for the PVP. For all PVP_ILAT bits, a set
the bit indicates that the interrupt has occurred, and cleared bit indicates that the interrupt has not
occurred. The bits in PVP_ILAT are set by PVP status, but are cleared with a write-1-to-clear operation.
Note that clearing a bit in PVP_ILAT clears the corresponding bit in the PVP_IREQn register.

1
(R/NW)

MPDC Memory Pipe DC Status.
The PVP_STAT.MPDC bit indicates whether or not the PVP_STAT.
MPDC interrupt is pending. This interrupt is set when memory pipe
daisy chain load status equals done, and this interrupt is cleared by
daisy chain load start.
0 No Pending Interrupt
1 Pending Interrupt

0
(R/NW)

CPDC Camera Pipe DC Status.
The PVP_STAT.CPDC bit indicates whether or not the PVP_STAT.
CPDC interrupt is pending. This interrupt is set when all camera pipes
daisy chain load equal done, and this interrupt is cleared by daisy
chain load start.
0 No Pending Interrupt
1 Pending Interrupt

Table 30-52: PVP_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–136 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-74: PVP_ILAT Register Diagram

Table 30-53: PVP_ILAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27
(R/W1C)

ACUSUMSAT ACU SUM Saturate Latch.
The PVP_ILAT.ACUSUMSAT bit indicates that the PVP_ILAT.
ACUSUMSAT has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–137

26
(R/W1C)

ACUPRODSAT ACU PROD Saturate Latch.
The PVP_ILAT.ACUPRODSAT bit indicates that the PVP_ILAT.
ACUPRODSAT has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

25
(R/W1C)

ACUOUTSAT ACU MIN/MAX Saturate Latch.
The PVP_ILAT.ACUOUTSAT bit indicates that the PVP_ILAT.
ACUOUTSAT has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

24
(R/W1C)

ACUDIVERR ACU Divide By Zero Latch.
The PVP_ILAT.ACUDIVERR bit indicates that the PVP_ILAT.
ACUDIVERR has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

23
(R/W1C)

IIM1SOVF IIM1 Signed Overflow Latch.
The PVP_ILAT.IIM1SOVF bit indicates that the PVP_ILAT.IIM1SOVF
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

22
(R/W1C)

IIM1UOVF IIM1 Unsigned Overflow Latch.
The PVP_ILAT.IIM1UOVF bit indicates that the PVP_ILAT.IIM1UOVF
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

21
(R/W1C)

IIM0SOVF IIM0 Signed Overflow Latch.
The PVP_ILAT.IIM0SOVF bit indicates that the PVP_ILAT.IIM0SOVF
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

20
(R/W1C)

IIM0UOVF IIM0 Unsigned Overflow Latch.
The PVP_ILAT.IIM0UOVF bit indicates that the PVP_ILAT.IIM0UOVF
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

18
(R/W1C)

THC1RDY THC1 Report Ready Latch.
The PVP_ILAT.THC1RDY bit indicates that the PVP_ILAT.THC1RDY
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

Table 30-53: PVP_ILAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–138 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

16
(R/W1C)

THC0RDY THC0 Report Ready Latch.
The PVP_ILAT.THC0RDY bit indicates that the PVP_ILAT.THC0RDY
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

15
(R/W1C)

MPRDY Memory Pipe Ready Latch.
The PVP_ILAT.MPRDY bit indicates that the PVP_ILAT.MPRDY has
occurred. Write 1 to clear this status bit.
1 Interrupt Latched

14
(R/W1C)

CPRDY Camera Pipe Ready Latch.
The PVP_ILAT.CPRDY bit indicates that the PVP_ILAT.CPRDY has
occurred. Write 1 to clear this status bit.
1 Interrupt Latched

13
(R/W1C)

MPDRN Memory Pipe Drain Done Latch.
The PVP_ILAT.MPDRN bit indicates that the PVP_ILAT.MPDRN has
occurred. Write 1 to clear this status bit.
1 Interrupt Latched

12
(R/W1C)

CPDRN Camera Pipe Drain Done Latch.
The PVP_ILAT.CPDRN bit indicates that the PVP_ILAT.CPDRN has
occurred. Write 1 to clear this status bit.
1 Interrupt Latched

10
(R/W1C)

CPIPFOVF Camera Pipe Pixel Overrun Latch.
The PVP_ILAT.CPIPFOVF bit indicates that the PVP_ILAT.CPIPFOVF
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

9
(R/W1C)

MPOPFDAT Memory Pipe First Pixel Latch.
The PVP_ILAT.MPOPFDAT bit indicates that the PVP_ILAT.MPOPFDAT
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

8
(R/W1C)

CPOPFDAT Camera Pipe First Pixel Latch.
The PVP_ILAT.CPOPFDAT bit indicates that the PVP_ILAT.CPOPFDAT
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

Table 30-53: PVP_ILAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–139

7
(R/W1C)

CPSTOVF Status DDE Stall Error Latch.
The PVP_ILAT.CPSTOVF bit indicates that the PVP_ILAT.CPSTOVF
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

6
(R/W1C)

OPF2OVF OPF2 DDE Stall Error Latch.
The PVP_ILAT.OPF2OVF bit indicates that the PVP_ILAT.OPF2OVF
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

5
(R/W1C)

OPF1OVF OPF1 DDE Stall Error Latch.
The PVP_ILAT.OPF1OVF bit indicates that the PVP_ILAT.OPF1OVF
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

4
(R/W1C)

OPF0OVF OPF0 DDE Stall Error Latch.
The PVP_ILAT.OPF0OVF bit indicates that the PVP_ILAT.OPF0OVF
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

3
(R/W1C)

MPWRERR Memory Pipe MMR Write Error Latch.
The PVP_ILAT.MPWRERR bit indicates that the PVP_ILAT.MPWRERR
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

2
(R/W1C)

CPWRERR Camera Pipe MMR Write Error Latch.
The PVP_ILAT.CPWRERR bit indicates that the PVP_ILAT.CPWRERR
has occurred. Write 1 to clear this status bit.
1 Interrupt Latched

1
(R/W1C)

MPDC Memory Pipe DC Mask.
The PVP_ILAT.MPDC bit indicates that the PVP_ILAT.MPDC has
occurred. Write 1 to clear this status bit.
1 Interrupt Latched

0
(R/W1C)

CPDC Camera Pipe DC Latch.
The PVP_ILAT.CPDC bit indicates that the PVP_ILAT.CPDC has
occurred. Write 1 to clear this status bit.
1 Interrupt Latched

Table 30-53: PVP_ILAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–140 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Interrupt Request n

The PVP_IREQn register contains the latched interrupt request status. These requests reflect the status of
interrupts that are latched in the PVP_ILAT register and are unmasked (enabled) in the PVP_IMSKn. The
PVP_IREQn bits are set by PVP status, but cleared through a write-1-to-clear operation. Note that clearing
a bit in PVP_IREQn clears the corresponding bit in the PVP_ILAT register.

Figure 30-75: PVP_IREQn Register Diagram

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–141

Table 30-54: PVP_IREQn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27
(R/W1C)

ACUSUMSAT ACU SUM Saturate Request.
1 Unmasked Int Req Latched

26
(R/W1C)

ACUPRODSAT ACU PROD Saturate Request.
1 Unmasked Int Req Latched

25
(R/W1C)

ACUOUTSAT ACU MIN/MAX Saturate Request.
1 Unmasked Int Req Latched

24
(R/W1C)

ACUDIVERR ACU Divide By Zero Request.
1 Unmasked Int Req Latched

23
(R/W1C)

IIM1SOVF IIM1 Signed Overflow Request.
1 Unmasked Int Req Latched

22
(R/W1C)

IIM1UOVF IIM1 Unsigned Overflow Request.
1 Unmasked Int Req Latched

21
(R/W1C)

IIM0SOVF IIM0 Signed Overflow Request.
1 Unmasked Int Req Latched

20
(R/W1C)

IIM0UOVF IIM0 Unsigned Overflow Request.
1 Unmasked Int Req Latched

18
(R/W1C)

THC1RDY THC1 Report Ready Request.
1 Unmasked Int Req Latched

16
(R/W1C)

THC0RDY THC0 Report Ready Request.
1 Unmasked Int Req Latched

15
(R/W1C)

MPRDY Memory Pipe Ready Request.
1 Unmasked Int Req Latched

14
(R/W1C)

CPRDY Camera Pipe Ready Request.
1 Unmasked Int Req Latched

13
(R/W1C)

MPDRN Memory Pipe Drain Done Request.
1 Unmasked Int Req Latched

12
(R/W1C)

CPDRN Camera Pipe Drain Done Request.
1 Unmasked Int Req Latched

10
(R/W1C)

CPIPFOVF Camera Pipe Pixel Overrun Request.
1 Unmasked Int Req Latched

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–142 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

OPFn (Camera Pipe) Configuration

The output data formatter (OPF) blocks house FIFOs that buffer data for a sustained peak bandwidth
output. The PVP_OPFn_CFG register enables the block's FIFO and configures blocks' connections within
thePVP.

9
(R/W1C)

MPOPFDAT Memory Pipe First Pixel Request.
1 Unmasked Int Req Latched

8
(R/W1C)

CPOPFDAT Camera Pipe First Pixel Request.
1 Unmasked Int Req Latched

7
(R/W1C)

CPSTOVF Status DDE Stall Error Request.
1 Unmasked Int Req Latched

6
(R/W1C)

OPF2OVF OPF2 DDE Stall Error Request.
1 Unmasked Int Req Latched

5
(R/W1C)

OPF1OVF OPF1 DDE Stall Error Request.
1 Unmasked Int Req Latched

4
(R/W1C)

OPF0OVF OPF0 DDE Stall Error Request.
1 Unmasked Int Req Latched

3
(R/W1C)

MPWRERR Memory Pipe MMR Write Error Request.
1 Unmasked Int Req Latched

2
(R/W1C)

CPWRERR Camera Pipe MMR Write Error Request.
1 Unmasked Int Req Latched

1
(R/W1C)

MPDC Memory Pipe DC Request.
1 Unmasked Int Req Latched

0
(R/W1C)

CPDC Camera Pipe DC Request.
1 Unmasked Int Req Latched

Table 30-54: PVP_IREQn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–143

Figure 30-76: PVP_OPFn_CFG Register Diagram

Table 30-55: PVP_OPFn_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

IBLOCK0 Input Block ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_OPFn_CFG.IBLOCK0 and PVP_OPFn_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s).
5 PEC
6 IIM0
7 IIM1
8 ACU
12 IPF0
16 CNV0
20 CNV1
24 CNV2
28 CNV3
32 THC0
40 THC1
48 PMA

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–144 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

OPFn (Camera Pipe) Control

The PVP_OPFn_CTL register controls the output data formatter (OPF) block's pipeline features, including
input and output data size.

Figure 30-77: PVP_OPFn_CTL Register Diagram

5:4
(R/W)

IPORT0 Input Port ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_OPFn_CFG.IBLOCK0 and PVP_OPFn_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

2
(R/NW)

MPIPE Memory Pipe.
The PVP_OPFn_CFG.MPIPE bit always reads as 0 (camera pipe).

0
(R/W)

START Start.
The PVP_OPFn_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Enable (W1A)

Table 30-55: PVP_OPFn_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–145

Table 30-56: PVP_OPFn_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12
(R/W)

FINISH Finish Enable.
The PVP_OPFn_CTL.FINISH enables the PVP to signal finished on
frame boundary.
0 Disable Finish Signal
1 Enable Finish Signal

9:8
(R/W)

OSIZE Output Data Size.
The PVP_OPFn_CTL.OSIZE selects the output data size. Note that the
PVP_OPFn_CTL.OSIZE selection should be equal to or more than that
of PVP_OPFn_CTL.ISIZE.
0 32-Bit Output Data Size
1 16-Bit Output Data Size
2 8-Bit Output Data Size

5
(R/W)

QFRMT Q Format Correction.
The PVP_OPFn_CTL.QFRMT enables Q format correction, converting
data to unsigned by 1 left shift.
0 Disable Q Format Correction
1 Enable Q Format Correction

4
(R/W)

IUP16 Input Upper 16-Bit Data.
The PVP_OPFn_CTL.IUP16 selects whether the input data word is the
upper or lower 16 bits (for input data sizes of less than 32 bits). Note
that for PVP_OPFn_CTL.ISIZE of 8 bit or 4 bit, the input data is in the
least significant bits of the lower 16 bits.
0 Lower 16 Bits
1 Upper 16 Bits

1:0
(R/W)

ISIZE Input Data Size.
The PVP_OPFn_CTL.ISIZE selects the input data size.
0 32-Bit Input Data Size
1 16-Bit Input Data Size
2 8-Bit Input Data Size
3 4-Bit Input Data Size

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–146 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

OPF3 (Memory Pipe) Configuration

The output data formatter (OPF) blocks house FIFOs that buffer data for a sustained peak bandwidth
output. The PVP_OPF3_CFG register enables the block's FIFO and configures blocks' connections within
thePVP.

Figure 30-78: PVP_OPF3_CFG Register Diagram

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–147

Table 30-57: PVP_OPF3_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

IBLOCK0 Input Block ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_OPF3_CFG.IBLOCK0 and PVP_OPF3_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s).
5 PEC
6 IIM0
7 IIM1
8 ACU
10 UDS
14 IPF1
16 CNV0
20 CNV1
24 CNV2
28 CNV3
32 THC0
40 THC1
48 PMA

5:4
(R/W)

IPORT0 Input Port ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_OPF3_CFG.IBLOCK0 and PVP_OPF3_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

2
(R/NW)

MPIPE Memory Pipe.
The PVP_OPF3_CFG.MPIPE bit always reads as 1 (memory pipe).

0
(R/W)

START Start.
The PVP_OPF3_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Enable (W1A)

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–148 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

OPF3 (Memory Pipe) Control

The PVP_OPF3_CTL register controls the OPF3 block's pipeline features, including input and output data
size.

Figure 30-79: PVP_OPF3_CTL Register Diagram

Table 30-58: PVP_OPF3_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12
(R/W)

FINISH Finish Enable.
The PVP_OPF3_CTL.FINISH enables the PVP to signal finished on
frame boundary.
0 Disable Finish Signal
1 Enable Finish Signal

9:8
(R/W)

OSIZE Output Data Size.
The PVP_OPF3_CTL.OSIZE selects the output data size. Note that the
PVP_OPF3_CTL.OSIZE selection should be equal to or more than that
of PVP_OPF3_CTL.ISIZE.
0 32-Bit Output Data Size
1 16-Bit Output Data Size
2 8-Bit Output Data Size

5
(R/W)

QFRMT Q Format Correction.
The PVP_OPF3_CTL.QFRMT enables Q format correction, converting
data to unsigned by 1 left shift.
0 Disable Q Format Correction
1 Enable Q Format Correction

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–149

PEC Configuration

The pixel edge classifier (PEC) block performs pre-processing for the first derivative canny edge detection
algorithm. The PVP_PEC_CFG register enables the block's FIFO and configures blocks' connections within
thePVP.

Figure 30-80: PVP_PEC_CFG Register Diagram

4
(R/W)

IUP16 Input Upper 16-Bit Data.
The PVP_OPF3_CTL.IUP16 selects whether the input data word is the
upper or lower 16 bits (for input data sizes of less than 32 bits). Note
that for PVP_OPF3_CTL.ISIZE of 8 bit or 4 bit, the input data is in the
least significant bits of the lower 16 bits.
0 Lower 16 Bits
1 Upper 16 Bits

1:0
(R/W)

ISIZE Input Data Size.
The PVP_OPF3_CTL.ISIZE selects the input data size.
0 32-Bit Input Data Size
1 16-Bit Input Data Size
2 8-Bit Input Data Size
3 4-Bit Input Data Size

Table 30-58: PVP_OPF3_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–150 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PEC Control

The PVP_PEC_CTL register selects operation modes for the pixel edge classifier (PEC) block, including 1st
derivative mode (PEC1) and 2nd derivative mode (PEC2).

Table 30-59: PVP_PEC_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

IBLOCK0 Input Block ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_PEC_CFG.IBLOCK0 and PVP_PEC_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s).
8 ACU
12 IPF0
14 IPF1
16 CNV0
20 CNV1
24 CNV2
28 CNV3
48 PMA

5:4
(R/W)

IPORT0 Input Port ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_PEC_CFG.IBLOCK0 and PVP_PEC_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

2
(R/W)

MPIPE Memory Pipe.
The PVP_PEC_CFG.MPIPE bit selects memory pipe or camera pipe.
0 Camera Pipe
1 Memory Pipe

0
(R/W)

START Start.
The PVP_PEC_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Enable (W1A)

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–151

Figure 30-81: PVP_PEC_CTL Register Diagram

Table 30-60: PVP_PEC_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

IGNTH1 Ignore TH1 Threshold for Encoding.
The PVP_PEC_CTL.IGNTH1 selects PEC encoding control for strong
and weak edges. This bit is valid in both 1st derivative and 2nd
derivative modes of PEC.
0 Different Strong/Weak Edge Encoding
1 Identical Strong/Weak Edge Encoding

2
(R/W)

OSIZE Output Data Size per Bin.
The PVP_PEC_CTL.OSIZE selects the output data size per bin. This bit
is valid in both 1st derivative and 2nd derivative modes of PEC.
0 8 Bits Per Bin PEC Output Data Size
1 16 Bits Per Bin PEC Output Data Size

1
(R/W)

ZCRSS Zero Cross.
The PVP_PEC_CTL.ZCRSS selects the sub-pixel value output to
include sub-pixel values and either zero crossing codes or classified
angle indices.
0 Angle Indices and Sub-Pixel Values
1 Zero Crossing Codes and Sub-Pixel Values

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–152 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PEC Lower Hysteresis Threshold

The PVP_PEC_D1TH0 provides the lower threshold value used by the Canny algorithm's hysteresis thresh-
olding for streaking elimination.

Figure 30-82: PVP_PEC_D1TH0 Register Diagram

PEC Upper Hysteresis Threshold

The PVP_PEC_D1TH1 provides the upper threshold value used by the Canny algorithm's hysteresis thresh-
olding for streaking elimination.

0
(R/W)

MODE Derivative Mode Select.
The PVP_PEC_CTL.MODE selects that derivative mode for the PEC.
Note that the PVP_PEC_CTL.MODE bits only can be changed when the
PVP_IPFn_PIPECTL.DRAIN bit is set. If set, the PVP works on 16-bit,
signed, 2nd derivative inputs. If cleared, the PVP works on 16-bit,
unsigned, gradient magnitude and 5-bit angle bin.
0 1st Derivative Mode
1 2nd Derivative Mode

Table 30-61: PVP_PEC_D1TH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Lower Hysteresis Threshold.

Table 30-60: PVP_PEC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–153

Figure 30-83: PVP_PEC_D1TH1 Register Diagram

PEC Weak Zero Crossing Threshold

The PVP_PEC_D2TH0 provides an upper threshold that the PEC uses to remove the noise during weak zero
crossing detection. Zero crossings are considered valid only if there is a sign change and id the difference
between the 2nd derivative values of these two pixels is greater than the threshold.

Figure 30-84: PVP_PEC_D2TH0 Register Diagram

Table 30-62: PVP_PEC_D1TH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Upper Hysteresis Threshold.

Table 30-63: PVP_PEC_D2TH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14:0
(R/W)

VALUE Weak Zero Crossing Threshold.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–154 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PEC Strong Zero Crossing Threshold

The PVP_PEC_D2TH1 provides an upper threshold that the PEC uses to remove the noise during strong zero
crossing detection. Zero crossings are considered valid only if there is a sign change and id the difference
between the 2nd derivative values of these two pixels is greater than the threshold.

Figure 30-85: PVP_PEC_D2TH1 Register Diagram

IIMn Configuration

The integral image computation (IIM) block computes the rectangular integral image algorithm. The PVP_
IIMn_CFG register enables the block's FIFO and configures blocks' connections within thePVP.

Figure 30-86: PVP_IIMn_CFG Register Diagram

Table 30-64: PVP_PEC_D2TH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14:0
(R/W)

VALUE Strong Zero Crossing Threshold.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–155

Table 30-65: PVP_IIMn_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

IBLOCK0 Input Block ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_IIMn_CFG.IBLOCK0 and PVP_IIMn_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s).
5 PEC
8 ACU
12 IPF0
14 IPF1
16 CNV0
20 CNV1
24 CNV2
28 CNV3
32 THC0
40 THC1
48 PMA

5:4
(R/W)

IPORT0 Input Port ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_IIMn_CFG.IBLOCK0 and PVP_IIMn_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

2
(R/W)

MPIPE Memory Pipe.
The PVP_IIMn_CFG.MPIPE bit selects memory pipe or camera pipe.
0 Camera Pipe
1 Memory Pipe

0
(R/W)

START Start.
The PVP_IIMn_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Enable (W1A)

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–156 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

IIMn Control

The PVP_IIMn_CTL register selects operation modes for the integral image computation (IIM) block,
including rectangular mode, diagonal mode, and row mode.

Figure 30-87: PVP_IIMn_CTL Register Diagram

Table 30-66: PVP_IIMn_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12:8
(R/W)

SHIFT Shift Select.
The PVP_IIMn_CTL.SHIFT selects the amount of arithmetic right
shift on input from 0 to 31 bits.

3:2
(R/W)

WIDTH Width Select.
The PVP_IIMn_CTL.WIDTH selects the input data width for
rectangular mode (SAT). This field is applicable only when PVP_
IIMn_CTL.MODE =00 and is invalid for other IIM modes.
0 Single 32 Bit
1 Dual 16 Bit
2 Reserved
3 Quad 8 Bit

1:0
(R/W)

MODE Mode Select.
The PVP_IIMn_CTL.MODE selects the IIM mode.
0 Rectangular Mode (SAT)
1 Diagonal Mode (RSAT -45)
2 Row Mode
3 Reserved

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–157

IIMn Scaling Values

The PVP_IIMn_SCALE holds the independently controlled scaling factors in each dimension for the
output's programmable downscaler.

Figure 30-88: PVP_IIMn_SCALE Register Diagram

IIMn Signed Overflow Status

The PVP_IIMn_SOVF_STAT holds the signed overflow status, which is determined considering addition of
32-bit signed numbers.

Table 30-67: PVP_IIMn_SCALE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24:16
(R/W)

VSCL Vertical Scaling Factor.
The PVP_IIMn_SCALE.VSCL holds the vertical scaling factor, which
can be selected to be any power of 2 from 1 to 512.

9:0
(R/W)

HSCL Horizontal Scaling Factor.
The PVP_IIMn_SCALE.HSCL holds the horizontal scaling factor,
which can be selected to be any power of 2 from 1 to 1024.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–158 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-89: PVP_IIMn_SOVF_STAT Register Diagram

IIMn Unsigned Overflow Status

The PVP_IIMn_UOVF_STAT holds the unsigned overflow status, which is determined considering addition
of 32-bit unsigned numbers.

Figure 30-90: PVP_IIMn_UOVF_STAT Register Diagram

Table 30-68: PVP_IIMn_SOVF_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25:16
(R/NW)

VPOS Vertical Pixel Coordinate.
The PVP_IIMn_SOVF_STAT.VPOS holds the vertical coordinate of the
pixel which resulted in signed saturation.

10:0
(R/NW)

HPOS Horizontal Pixel Coordinate.
The PVP_IIMn_SOVF_STAT.HPOS holds the horizontal coordinate of
the pixel which resulted in signed saturation.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–159

ACU Configuration

The arithmetic computation unit (ACU) block provides basic 32-bit math such as addition, subtraction,
multiplication, and division. This block also features a 48-bit accumulator and can normalize and saturate
on the output. The PVP_ACU_CFG register enables the block's FIFO and configures blocks' connections
within thePVP.

Figure 30-91: PVP_ACU_CFG Register Diagram

Table 30-69: PVP_IIMn_UOVF_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25:16
(R/NW)

VPOS Vertical Pixel Coordinate.
The PVP_IIMn_UOVF_STAT.VPOS holds the vertical coordinate of the
pixel which resulted in unsigned saturation.

10:0
(R/NW)

HPOS Horizontal Pixel Coordinate.
The PVP_IIMn_UOVF_STAT.HPOS holds the horizontal coordinate of
the pixel which resulted in unsigned saturation.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–160 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-70: PVP_ACU_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:16
(R/W)

IBLOCK1 Input Block 1 ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_ACU_CFG.IBLOCK1 and PVP_ACU_CFG.
IPORT1 fields determine which output port(s) are connected to the
input port(s).
12 IPF0
14 IPF1
16 CNV0
20 CNV1
24 CNV2
28 CNV3

15:8
(R/W)

IBLOCK0 Input Block 0 ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_ACU_CFG.IBLOCK0 and PVP_ACU_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s).
12 IPF0
14 IPF1
16 CNV0
20 CNV1
24 CNV2
28 CNV3

7:6
(R/W)

IPORT1 Input Port 1 ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_ACU_CFG.IBLOCK1 and PVP_ACU_CFG.
IPORT1 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

5:4
(R/W)

IPORT0 Input Port 0 ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_ACU_CFG.IBLOCK0 and PVP_ACU_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–161

ACU Control

The PVP_ACU_CTL register selects operation modes for the arithmetic computation unit (ACU), including
modes for sum, product, accumulate, and shift operations.

Figure 30-92: PVP_ACU_CTL Register Diagram

2
(R/W)

MPIPE Memory Pipe.
The PVP_ACU_CFG.MPIPE bit selects memory pipe or camera pipe.
0 Camera Pipe
1 Memory Pipe

0
(R/W)

START Start.
The PVP_ACU_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Write to Enable the Module

Enable (W1A)

Table 30-70: PVP_ACU_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–162 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-71: PVP_ACU_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

28
(R/W)

SUMOP Sum Operation.
The PVP_ACU_CTL.SUMOP selects add or subtract as the SUM
function.
0 Add
1 Subtract

27
(R/W)

SUMISW Sum Input Swap.
The PVP_ACU_CTL.SUMISW selects swapping of operands for the
SUM function. The swap is meaningful for subtract operations.
0 Do Not Swap Operands
1 Swap Operands

25:24
(R/W)

SUMINP Sum Inputs for Adder.
The PVP_ACU_CTL.SUMINP selects the inputs to the adder for the
SUM function.
0 X,Y Inputs
1 X,OFFSET Inputs
2 Y,OFFSET Inputs
3 Reserved

21:20
(R/W)

PRDOP Prod Operation.
The PVP_ACU_CTL.PRDOP selects multiply or divide as the PROD
operation.
0 Multiply
1 Divide with Quotient
2 Divide with Modulus
3 Reserved

19
(R/W)

PRDISW Prod Input Swap.
The PVP_ACU_CTL.PRDISW selects swapping of operands for the
PROD function. The swap is meaningful for division operations.
0 Do Not Swap Operands
1 Swap Operands

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–163

ACU SUM Constant

The PVP_ACU_OFFSET provides the constant value (offset) input for the ACU SUM operation when the
PVP_ACU_CTL.SUMINP field selects the offset as one of the inputs for the operation.

17:16
(R/W)

PRDINP Prod Inputs for Mult/Div.
The PVP_ACU_CTL.PRDINP selects the inputs to the multiplier/
divider for the PROD function.
0 X,Y Inputs
1 X,FACTOR Inputs
2 Y,FACTOR Inputs
3 SUM,FACTOR Inputs

15
(R/W)

ACCFRAME Accumulator Frame.
The PVP_ACU_CTL.ACCFRAME selects whether or not the accumulator
is output and cleared after each row or frame.
0 Clear ACC After Row
1 Clear ACC After Frame

9:8
(R/W)

ACCINP Accumulator Input.
The PVP_ACU_CTL.ACCINP selects the input to the accumulator for
accumulate operations.
0 X Input
1 SUM Input
2 PROD Input
3 Reserved

1:0
(R/W)

SFTINP Shift Input.
The PVP_ACU_CTL.SFTINP selects the input to the shifter for shift
operations.
0 X Input
1 SUM Result Input
2 PROD Result Input
3 ACC Result Input

Table 30-71: PVP_ACU_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–164 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-93: PVP_ACU_OFFSET Register Diagram

ACU PROD Constant

The PVP_ACU_FACTOR provides the constant value (factor) input for the ACU PROD operation when the
PVP_ACU_CTL.PRDINP field selects the factor as one of the inputs for the operation.

Figure 30-94: PVP_ACU_FACTOR Register Diagram

Table 30-72: PVP_ACU_OFFSET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE SUM Constant.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–165

ACU Shift Constant

The PVP_ACU_SHIFT provides the shift constant value (arithmetic right shift size in bits) for ACC SUM or
PROD operations or for 48-bit output from the accumulator. The shift size is from 0 to 31 bits and can be
bypassed by programming a value of 0 for the shift constant.

Figure 30-95: PVP_ACU_SHIFT Register Diagram

ACU Lower Sat Threshold Min

The PVP_ACU_MIN holds the lower threshold value for saturation of ACU shifter output.

Table 30-73: PVP_ACU_FACTOR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE PROD Constant.

Table 30-74: PVP_ACU_SHIFT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5:0
(R/W)

VALUE SHIFT Constant.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–166 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-96: PVP_ACU_MIN Register Diagram

ACU Upper Sat Threshold Max

The PVP_ACU_MAX holds the upper threshold value for saturation of ACU shifter output.

Figure 30-97: PVP_ACU_MAX Register Diagram

Table 30-75: PVP_ACU_MIN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Lower saturation threshold set to MIN.

Table 30-76: PVP_ACU_MAX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Upper saturation threshold set to MAX.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–167

UDS Configuration

The up-down scaler (UDS) block provides image resizing. The PVP_UDS_CFG register enables the block's
FIFO and configures blocks' connections within thePVP.

Figure 30-98: PVP_UDS_CFG Register Diagram

Table 30-77: PVP_UDS_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

IBLOCK0 Input Block ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_UDS_CFG.IBLOCK0 and PVP_UDS_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s).
14 IPF1

5:4
(R/W)

IPORT0 Input Port ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_UDS_CFG.IBLOCK0 and PVP_UDS_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

2
(R/NW)

MPIPE Memory Pipe.
The PVP_UDS_CFG.MPIPE bit always reads as 1 (memory pipe).

0
(R/W)

START Start.
The PVP_UDS_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Enable (W1A)

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–168 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

UDS Control

The PVP_UDS_CTL register selects operation modes for the up-down scaler (UDS) block, including filter
tap selection.

Figure 30-99: PVP_UDS_CTL Register Diagram

UDS Output HCNT

The PVP_UDS_OHCNT selects the horizontal dimension for the output frame. Legal values for the target
frame are: 16, 32, 64, 80, 96, 112, and 128.

Figure 30-100: PVP_UDS_OHCNT Register Diagram

Table 30-78: PVP_UDS_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

0
(R/W)

AAVG Automatic Averaging.
The PVP_UDS_CTL.AAVG selects automatic or manual filter tap
selection for the anti-aliasing filter.
0 Manual Filter Tap Selection
1 Auto Filter Tap Selection

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–169

UDS Output VCNT

The PVP_UDS_OVCNT selects the vertical dimension for the output frame. Legal values for the target frame
are: 16, 32, 64, 80, 96, 112, and 128.

Figure 30-101: PVP_UDS_OVCNT Register Diagram

UDS HAVG

The PVP_UDS_HAVG selects the UDS H taps. Legal values for PVP_UDS_HAVG are between 1 and 128.

Table 30-79: PVP_UDS_OHCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/W)

VALUE H Dimension of Output Frame.

Table 30-80: PVP_UDS_OVCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/W)

VALUE V Dimension of Output Frame.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–170 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-102: PVP_UDS_HAVG Register Diagram

UDS VAVG

The PVP_UDS_VAVG selects the UDS V taps. Legal values for PVP_UDS_VAVG are between 1 and 64.

Figure 30-103: PVP_UDS_VAVG Register Diagram

Table 30-81: PVP_UDS_HAVG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE H Filter Taps.

Table 30-82: PVP_UDS_VAVG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE V Filter Taps.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–171

IPF0 (Camera Pipe) Configuration

The input data formatter (IPF) blocks house FIFOs that buffer data for a sustained peak bandwidth output.
The PVP_IPF0_CFG register enables the block's FIFO and configures blocks' connections within thePVP.

Figure 30-104: PVP_IPF0_CFG Register Diagram

IPFn (Camera/Memory Pipe) Pipe Control

The PVP_IPFn_PIPECTL register controls the IPFn block's pipeline features, including status transmission
and drain operation.

Table 30-83: PVP_IPF0_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

STATWCNT Camera Pipe DMA Status.
The PVP_IPF0_CFG.STATWCNT selects whether or not tag status is
output on camera pipe status DMA channel. Note that all other
values are reserved.
0 No Status Output
1 Tag Status Output

2
(R/NW)

MPIPE Memory Pipe.
The PVP_IPF0_CFG.MPIPE bit always reads as 0 (camera pipe).

0
(R/W1C)

START Start.
The PVP_IPF0_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Enable (W1A)

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–172 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 30-105: PVP_IPFn_PIPECTL Register Diagram

IPFn (Camera/Memory Pipe) Control

The PVP_IPFn_CTL register controls the IPFn block's pipeline features, including color format, format
conversion, and output port selection.

Table 30-84: PVP_IPFn_PIPECTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

STATEN DMA Status Enable.
The PVP_IPFn_PIPECTL.STATEN enables the IPF to send status
DMA when PVP_IPFn_FCNT expires or every frame where PVP_
IPFn_FCNT equals zero.
0 Disable
1 Enable

0
(R/W)

DRAIN Drain Enable.
The PVP_IPFn_PIPECTL.DRAIN enables the IPF to flush frames
automatically in conjunction with PVP_IPFn_FCNT.
0 Disable
1 Enable

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–173

Figure 30-106: PVP_IPFn_CTL Register Diagram

Table 30-85: PVP_IPFn_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

BP0 Blue on Port 0.
The PVP_IPFn_CTL.BP0 bit enables B (blue) pixel extraction on Port
0. When enabled and PVP_IPFn_CTL.BFRMT1 =1, only blue pixels are
output on output PORT 0. When disabled, the full frame is output on
output PORT 0.

Note:
The PVP_IPFn_CTL.BP0 bit influences operation of Port 0 only
when the PVP_IPFn_CTL.CFRMT field is set to 0x18 or 0x19
(special Bayer mode) for the PVP_IPF0_CTL register. This bit
does not exist in other PVP_IPFn_CTL registers,

0 Disable
1 Enable

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–174 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

29
(R/W)

BFRMT1 Bayer special format, type select.
The PVP_IPFn_CTL.BFRMT1 bit selects whether Port 0, 1, and 2 use
Type-1 or Type-2 Bayer format.

Note:
The PVP_IPFn_CTL.BFRMT1 bit influences operation of Port 1
and 2 only when the PVP_IPFn_CTL.CFRMT field is set to 0x18 or
0x19 (special Bayer mode) for the PVP_IPF0_CTL register. This
bit does not exist in other PVP_IPFn_CTL registers,

0 Type-1 Bayer format
1 Type-2 Bayer format

28
(R/W)

BFRMT0 Bayer special format, extraction enable.
The PVP_IPFn_CTL.BFRMT0 bit enables special Bayer extraction
format on Port 1 and 2. When enabled, the R (red) pixels are sent out
on output Port 2, and the G (green) pixels (next to R) are sent out on
output Port 1. Depending on the value of the PVP_IPFn_CTL.BP0 bit,
either the full frame or only extracted B (blue) pixels are output on
output Port 0.

Note:
The PVP_IPFn_CTL.BFRMT0 bit influences operation of Port 1
and 2 only when the PVP_IPFn_CTL.CFRMT field is set to 0x18 or
0x19 (special Bayer mode) for the PVP_IPF0_CTL register. This
bit does not exist in other PVP_IPFn_CTL registers,

0 Disable
1 Enable

27
(R/W)

QFRMT Q Format Correction.
The PVP_IPFn_CTL.QFRMT enables Q format correction, converting
data to unsigned by 1 right shift.
0 Disable Q Format Correction
1 Enable Q Format Correction

Table 30-85: PVP_IPFn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–175

26
(R/W)

SIGNEXT Sign Extend.
The PVP_IPFn_CTL.SIGNEXT selects sign or zero extension for the
extracted 5-, 6-, 8-, 16-, or 24-bit value to 32-bit value.
0 Zero Extend
1 Sign Extend

25
(R/W)

EXTRED Extract Red/Green.
The PVP_IPFn_CTL.EXTRED selects red or green extraction from
RGB format. This selection does not apply for YUV format.
0 Extract Green
1 Extract Red

24
(R/W)

UNPACK Unpack Incoming.
The PVP_IPFn_CTL.UNPACK enables unpacking for incoming data.
0 No Unpacking
1 Unpack Data

Table 30-85: PVP_IPFn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–176 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

20:16
(R/W)

CFRMT Color Space Format.
The PVP_IPFn_CTL.CFRMT field selects the Color Space Format. Note
that all values other than those listed are reserved.
0 RGB 8-Bit
1 RGB 888
2 RGB 565
3 RGB 666
4 RGB 16-Bit
5 RGB Bayer Format Type-1
6 RGB Bayer Format Type-2
16 YUV 4:2:2 8-Bit Type 1
17 YUV 4:2:2 8-Bit Type 2

Includes with Color Split; this format is only
supported in packed mode.

18 YUV 4:2:2 8-Bit Type 3
Includes Color Split and Sub-Split; this
format is only supported in packed mode.

19 YUV 4:2:2 8-Bit Pair 16-Bit
20 YUV 4:2:2 16-Bit Type 1
21 YUV 4:2:2 16-Bit Type 2

Includes Color Split; this format is only
supported in packed mode.

22 YUV 4:2:2 16-Bit Type 3
Includes Color Split and Sub-Split; this
format is only supported in packed mode.

24 Y Alone 8-Bit
25 Y Alone 16-Bit
26 Y Alone 24-Bit
27 32 Bit

Table 30-85: PVP_IPFn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–177

12
(R/W)

OPORT2EN Output Port 2 Enable.
The PVP_IPFn_CTL.OPORT2EN bit enables output Port 2.

Note:
The PVP_IPFn_CTL.BP0, PVP_IPFn_CTL.BFRMT0, and PVP_
IPFn_CTL.BFRMT1 bits influence operation of this port only
when the PVP_IPFn_CTL.CFRMT field is set to 0x18 or 0x19
(special Bayer mode) for the PVP_IPF0_CTL register. These bits
do not exist in the other PVP_IPFn_CTL registers. See the PVP_
IPFn_CTL.BP0, PVP_IPFn_CTL.BFRMT0, and PVP_IPFn_CTL.
BFRMT1 bit descriptions for more information.

0 Disable OPORT2
1 Enable OPORT2 (full resolution)

9:8
(R/W)

OPORT1EN Output Port 1 Enable.
The PVP_IPFn_CTL.OPORT1EN bits enables output Port 1 and select
the port's resolution.

Note:
The PVP_IPFn_CTL.BP0, PVP_IPFn_CTL.BFRMT0, and PVP_
IPFn_CTL.BFRMT1 bits influence operation of this port only
when the PVP_IPFn_CTL.CFRMT field is set to 0x18 or 0x19
(special Bayer mode) for the PVP_IPF0_CTL register. These bits
do not exist in the other PVP_IPFn_CTL registers. See the PVP_
IPFn_CTL.BP0, PVP_IPFn_CTL.BFRMT0, and PVP_IPFn_CTL.
BFRMT1 bit descriptions for more information.

0 Disable OPORT1
1 Enable OPORT1 (full resolution)
2 Enable OPORT1 (windowed resolution)

Table 30-85: PVP_IPFn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–178 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

IPFn (Camera/Memory Pipe) TAG Value

The PVP_IPFn_TAG holds a unique, user-programmable tag value that indicates to which frame the values
were applied. If there are situations where the software does not need information about whether or not a
new control word was applied for a new frame, the tag need not be programmed.

Figure 30-107: PVP_IPFn_TAG Register Diagram

4
(R/W)

OPORT0EN Output Port 0 Enable.
The PVP_IPFn_CTL.OPORT0EN bit enables output Port 0.

Note:
The PVP_IPFn_CTL.BP0, PVP_IPFn_CTL.BFRMT0, and PVP_
IPFn_CTL.BFRMT1 bits influence operation of this port only
when the PVP_IPFn_CTL.CFRMT field is set to 0x18 or 0x19
(special Bayer mode) for the PVP_IPF0_CTL register. These bits
do not exist in the other PVP_IPFn_CTL registers. See the PVP_
IPFn_CTL.BP0, PVP_IPFn_CTL.BFRMT0, and PVP_IPFn_CTL.
BFRMT1 bit descriptions for more information.

0 Disable OPORT0
1 Enable OPORT0

Table 30-86: PVP_IPFn_TAG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE TAG Value.

Table 30-85: PVP_IPFn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–179

IPFn (Camera/Memory Pipe) Frame Count

The PVP_IPFn_FCNT whether a given block control structure list (BCL) applies to a set of frames or applies
for every new frame.

Figure 30-108: PVP_IPFn_FCNT Register Diagram

IPFn (Camera/Memory Pipe) Horizontal Count

The PVP_IPFn_HCNT contains the horizontal count (in pixels) for the region of interest (ROI) starting at
the PVP_IPF0_HPOS position.

Figure 30-109: PVP_IPFn_HCNT Register Diagram

Table 30-87: PVP_IPFn_FCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Frame or ROI Count.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–180 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

IPFn (Camera/Memory Pipe) Vertical Count

The PVP_IPFn_VCNT contains the vertical count (in pixels) for the region of interest (ROI) starting at the
PVP_IPF0_VPOS position.

Figure 30-110: PVP_IPFn_VCNT Register Diagram

IPF0 (Camera Pipe) Horizontal Position

The PVP_IPF0_HPOS contains the horizontal starting position (in pixels) for the region of interest (ROI).

Table 30-88: PVP_IPFn_HCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Effective Width of ROI.

Table 30-89: PVP_IPFn_VCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Effective Height of ROI.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–181

Figure 30-111: PVP_IPF0_HPOS Register Diagram

IPF0 (Camera Pipe) Vertical Position

The PVP_IPF0_VPOS contains the vertical starting position (in pixels) for the region of interest (ROI).

Figure 30-112: PVP_IPF0_VPOS Register Diagram

Table 30-90: PVP_IPF0_HPOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Horizontal Delay of ROI.

Table 30-91: PVP_IPF0_VPOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Vertical Delay of ROI.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–182 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

IPFn (Camera/Memory Pipe) TAG Status

After daisy chain load is completed, the value in PVP_IPFn_TAG is loaded to the PVP_IPFn_TAG_STAT. This
register is read-only register and may also be read through status read DMA. The PVP_IPFn_TAG_STAT
register is double buffered internally with the PVP_IPFn_TAG_STAT corresponding to previous PVP_IPFn_
FCNT entity is sent on status DMA.

Figure 30-113: PVP_IPFn_TAG_STAT Register Diagram

IPF1 (Memory Pipe) Configuration

The PVP_IPF1_CFG register controls the IPF1 block's pipeline features, including status transmission and
drain operation.

Figure 30-114: PVP_IPF1_CFG Register Diagram

Table 30-92: PVP_IPFn_TAG_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

VALUE TAG Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–183

CNVn Configuration

The PVP_CNVn_CFG register controls the convolution/down-scaler engine (CNV) block's pipeline features,
including status transmission and drain operation.

Figure 30-115: PVP_CNVn_CFG Register Diagram

Table 30-93: PVP_IPF1_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

STATWCNT Status Word Count.
The PVP_IPF1_CFG.STATWCNT select the camera pipe DMA status
information to be output on the memory pipe DMA channel. Note
that all other values are reserved.
0 No Status Output
1 Tag Status Output

2
(R/NW)

MPIPE Memory Pipe.
The PVP_IPF1_CFG.MPIPE bit always reads as 1 (memory pipe).

0
(R/W1C)

START Start.
The PVP_IPF1_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Enable (W1A)

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–184 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CNVn Control

The PVP_CNVn_CTL register controls the CNVn block's convolution features, including output saturation,
output right shift, and zero/data fill selection.

Table 30-94: PVP_CNVn_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

IBLOCK0 Input Block ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_CNVn_CFG.IBLOCK0 and PVP_CNVn_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s).
12 IPF0
14 IPF1
16 CNV0
20 CNV1
24 CNV2
28 CNV3

5:4
(R/W)

IPORT0 Input Port ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_CNVn_CFG.IBLOCK0 and PVP_CNVn_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

2
(R/W)

MPIPE Memory Pipe.
The PVP_CNVn_CFG.MPIPE bit selects memory pipe or camera pipe.
0 Camera Pipe
1 Memory Pipe

0
(R/W)

START Start.
The PVP_CNVn_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Enable (W1A)

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–185

Figure 30-116: PVP_CNVn_CTL Register Diagram

Table 30-95: PVP_CNVn_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

13
(R/W)

RFRMT1 RCCC format, Bayer type select.
The PVP_CNVn_CTL.RFRMT1 bit selects Bayer type-1 or Bayer type-2
specific convolution for the CNV1 block.

Note:
The PVP_CNVn_CTL.RFRMT1 bit influences operation of the
CNV1 block for the PVP_CNV1_CTL register. This bit does not
exist in other PVP_CNVn_CTL registers,

0 Type-1 Bayer format
1 Type-2 Bayer format

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–186 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CNVn Coefficients 0,0 and 0,1

The PVP_CNVn_C00C01 provides coefficients 0,0 and 0,1 for the convolution matrix.

12
(R/W)

RFRMT0 RCCC format, convolution enable.
The PVP_CNVn_CTL.RFRMT0 bit enables applying specific
convolution only on R (red) pixels of RCCC data. SHIFT bits do not
apply to the bypassed pixels and apply only to the convolved R pixels.
Scaling has to be disabled on CNV1 when this mode is enabled.
When PVP_CNVn_CTL.RFRMT0 is enabled, the PVP_CNVn_CTL.SAT32
bit must =0. The bypassed input pixels are sign extended to 32 bits,
while the convolved pixels are saturated to 16 bits and sign extended
to 32 bits.

Note:
The PVP_CNVn_CTL.RFRMT0 bit influences operation of the
CNV1 block for the PVP_CNV1_CTL register. This bit does not
exist in other PVP_CNVn_CTL registers,

0 Disable (CONV on all pixels)
1 Enable (CONV only on R pixels of RCCC)

8:4
(R/W)

SHIFT Shift Right.
The PVP_CNVn_CTL.SHIFT selects arithmetic right shift of output
from 0 to 31 bits.

1
(R/W)

ZEROFILL Zero Fill.
The PVP_CNVn_CTL.ZEROFILL select whether to fill edge data with
zeroes or with duplicated pixels.
0 Duplicated Data Fill
1 Zero Fill

0
(R/W)

SAT32 Saturate Output to 32 Bits.
The PVP_CNVn_CTL.SAT32 selects whether to saturate output to
highest 32-bit value or highest 16-bit value. For 16-bit saturate of
output, the value is driven on the lower 16 bits, and the upper 16 bits
are sign-extended.
0 16-Bit Saturate of Output
1 32-Bit Saturate of Output

Table 30-95: PVP_CNVn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–187

Figure 30-117: PVP_CNVn_C00C01 Register Diagram

CNVn Coefficients 0,2 and 0,3

The PVP_CNVn_C02C03 provides coefficients 0,2 and 0,3 for the convolution matrix.

Figure 30-118: PVP_CNVn_C02C03 Register Diagram

Table 30-96: PVP_CNVn_C00C01 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C01 Coefficient 0, 1.

15:0
(R/W)

C00 Coefficient 0, 0.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–188 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CNVn Coefficient 0,4

The PVP_CNVn_C04 provides coefficients 0,4 for the convolution matrix.

Figure 30-119: PVP_CNVn_C04 Register Diagram

CNVn Coefficients 1,0 and 1,1

The PVP_CNVn_C10C11 provides coefficients 1,0 and 1,1 for the convolution matrix.

Table 30-97: PVP_CNVn_C02C03 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C03 Coefficient 0, 3.

15:0
(R/W)

C02 Coefficient 0, 2.

Table 30-98: PVP_CNVn_C04 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

C04 Coefficient 0, 4.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–189

Figure 30-120: PVP_CNVn_C10C11 Register Diagram

CNVn Coefficients 1,2 and 1,3

The PVP_CNVn_C12C13 provides coefficients 1,2 and 1,3 for the convolution matrix.

Figure 30-121: PVP_CNVn_C12C13 Register Diagram

Table 30-99: PVP_CNVn_C10C11 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C11 Coefficient 1, 1.

15:0
(R/W)

C10 Coefficient 1, 0.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–190 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CNVn Coefficient 1,4

The PVP_CNVn_C14 provides coefficients 1,4 for the convolution matrix.

Figure 30-122: PVP_CNVn_C14 Register Diagram

CNVn Coefficients 2,0 and 2,1

The PVP_CNVn_C20C21 provides coefficients 2,0 and 2,1 for the convolution matrix.

Table 30-100: PVP_CNVn_C12C13 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C13 Coefficient 1, 3.

15:0
(R/W)

C12 Coefficient 1, 2.

Table 30-101: PVP_CNVn_C14 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

C14 Coefficient 1, 4.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–191

Figure 30-123: PVP_CNVn_C20C21 Register Diagram

CNVn Coefficients 2,2 and 2,3

The PVP_CNVn_C22C23 provides coefficients 2,2 and 2,3 for the convolution matrix.

Figure 30-124: PVP_CNVn_C22C23 Register Diagram

Table 30-102: PVP_CNVn_C20C21 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C21 Coefficient 2, 1.

15:0
(R/W)

C20 Coefficient 2, 0.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–192 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CNVn Coefficient 2,4

The PVP_CNVn_C24 provides coefficients 2,4 for the convolution matrix.

Figure 30-125: PVP_CNVn_C24 Register Diagram

CNVn Coefficients 3,0 and 3,1

The PVP_CNVn_C30C31 provides coefficients 3,0 and 3,1 for the convolution matrix.

Table 30-103: PVP_CNVn_C22C23 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C23 Coefficient 2, 3.

15:0
(R/W)

C22 Coefficient 2, 2.

Table 30-104: PVP_CNVn_C24 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

C24 Coefficient 2, 4.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–193

Figure 30-126: PVP_CNVn_C30C31 Register Diagram

CNVn Coefficients 3,2 and 3,3

The PVP_CNVn_C32C33 provides coefficients 3,2 and 3,3 for the convolution matrix.

Figure 30-127: PVP_CNVn_C32C33 Register Diagram

Table 30-105: PVP_CNVn_C30C31 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C31 Coefficient 3, 1.

15:0
(R/W)

C30 Coefficient 3, 0.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–194 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CNVn Coefficient 3,4

The PVP_CNVn_C34 provides coefficients 3,4 for the convolution matrix.

Figure 30-128: PVP_CNVn_C34 Register Diagram

CNVn Coefficients 4,0 and 4,1

The PVP_CNVn_C40C41 provides coefficients 4,0 and 4,1 for the convolution matrix.

Table 30-106: PVP_CNVn_C32C33 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C33 Coefficient 3, 3.

15:0
(R/W)

C32 Coefficient 3, 2.

Table 30-107: PVP_CNVn_C34 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

C34 Coefficient 3, 4.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–195

Figure 30-129: PVP_CNVn_C40C41 Register Diagram

CNVn Coefficients 4,2 and 4,3

The PVP_CNVn_C42C43 provides coefficients 4,2 and 4,3 for the convolution matrix.

Figure 30-130: PVP_CNVn_C42C43 Register Diagram

Table 30-108: PVP_CNVn_C40C41 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C41 Coefficient 4, 1.

15:0
(R/W)

C40 Coefficient 4, 0.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–196 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CNVn Coefficient 4,4

The PVP_CNVn_C44 provides coefficients 4,4 for the convolution matrix.

Figure 30-131: PVP_CNVn_C44 Register Diagram

CNVn Scaling Factor

The PVP_CNVn_SCALE holds the vertical and horizontal scaling factors for down scaling incoming frames
with decimation ratios of up to 256 (for example, 1, 2, 4, 8, 16, 32, 64, 128, or 256) in either direction.

Table 30-109: PVP_CNVn_C42C43 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

C43 Coefficient 4, 3.

15:0
(R/W)

C42 Coefficient 4, 2.

Table 30-110: PVP_CNVn_C44 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

C44 Coefficient 4, 4.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–197

Figure 30-132: PVP_CNVn_SCALE Register Diagram

THCn Configuration

The PVP_THCn_CFG register controls the threshold/histogram and compression engine (THC) block's
pipeline features, including status transmission, port selection, and block enable.

Figure 30-133: PVP_THCn_CFG Register Diagram

Table 30-111: PVP_CNVn_SCALE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24:16
(R/W)

VSCL Vertical Scaling factor.

9:0
(R/W)

HSCL Horizontal Scaling factor.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–198 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 30-112: PVP_THCn_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

STATWCNT Status Word Count.
The PVP_THCn_CFG.STATWCNT select the camera pipe status
information to be output on the memory pipe DMA channel. Note
that all other values are reserved.

15:8
(R/W)

IBLOCK0 Input Block ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_THCn_CFG.IBLOCK0 and PVP_THCn_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s).
5 PEC
8 ACU
12 IPF0
14 IPF1
16 CNV0
20 CNV1
24 CNV2
28 CNV3
48 PMA

5:4
(R/W)

IPORT0 Input Port ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_THCn_CFG.IBLOCK0 and PVP_THCn_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

2
(R/W)

MPIPE Memory Pipe.
The PVP_THCn_CFG.MPIPE bit selects memory pipe or camera pipe.
0 Camera Pipe
1 Memory Pipe

0
(R/W)

START Start.
The PVP_THCn_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Enable (W1A)

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–199

THCn Control

The PVP_THCn_CTL register controls the THCn block's threshold/histogram features, including histogram
window and counters, output format, and threshold mode selection.

Figure 30-134: PVP_THCn_CTL Register Diagram

Table 30-113: PVP_THCn_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W)

HISTEN Histogram Counters Enable.
The PVP_THCn_CTL.HISTEN enables histogram counters, enabling
the histogram operation.
0 Disable
1 Enable

12:11
(R/W)

RLEWM Run-length Encoding Window Mode.
The PVP_THCn_CTL.RLEWM selects the window mode for the
compression block, choosing either compression for pixels inside the
window or compression for pixels in the entire frame. Note that
values other than shown are invalid.
0 Frame Compression
1 Window Compression

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–200 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

10:9
(R/W)

HISTWM Histogram Window Mode.
The PVP_THCn_CTL.HISTWM selects window mode for the histogram
block, choosing either histogram for pixels inside the window, for
pixels outside the window, or for pixels in the entire frame.
0 Frame Histogram
1 Inside-Window Histogram
2 Outside-Window Histogram
3 Reserved

8
(R/W)

RLEFRAME Run-Length-Encode Frame.
The PVP_THCn_CTL.RLEFRAME selects the scope for run-length
compression as row or frame. When row is selected, the compression
block generates a report at the end of a row and the run-length
counter is reset. When frame is selected, compression works across
rows in the frame. Note that, due to the nature of compression, a
variable number of reports are generated per row or per frame.
0 Row (Line) Compression
1 Frame Compression

Table 30-113: PVP_THCn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–201

7:4
(R/W)

OFRMT Output Format.
The PVP_THCn_CTL.OFRMT selects the THC block's output format,
which controls how the compression value and run-length are
grouped into a single word. Note that values other than those shown
are invalid. Also note that, depending on the PVP_THCn_CTL.OFRMT
value , the appropriate number of MSBs are driven with zero value to
complete the 32 bit output.
0 32-Bit Word (No Compression)
1 Reserved
2 4-Bit Index (No Compression)
3 4-Bit Index / 4-Bit Run Length
4 4-Bit Index / 4-Bit angle (No Compression)
5 3-Bit Index / 5-Bit Run Length
6 4-Bit Index / 12-Bit Run Length
7 3-Bit Index / 13-Bit Run Length
8 4-Bit Index / 21-Bit Run Length
9 16-Bit Word / 16-Bit Run Length
10 Disable Output/RLE

No data is driven on the output port, and the
RLE block is switched off.

2
(R/W)

ZEXT Zero Extend.
The PVP_THCn_CTL.ZEXT directs the THC to zero extend the lower
16 bits of the input port to 32 bits for magnitude and to use the upper
16 bits as angle. If PVP_THCn_CTL.ZEXT is disabled, the THC uses the
entire 32 bits of the input port for magnitude and treats the angle as
all zeroes.
0 No Zero Extension
1 Zero Extend

Table 30-113: PVP_THCn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–202 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Histogram Frame Count

The PVP_THCn_HFCNT holds the number of frames for which the histogram counters accumulate. The PVP_
THCn_HFCNT_STAT register counts frames up to the value set in PVP_THCn_HFCNT for histogram operation.

Figure 30-135: PVP_THCn_HFCNT Register Diagram

THCn Max RLE Reports

This PVP_THCn_RMAXREP controls the maximum number of RLE reports per line or per frame.

1:0
(R/W)

MODE Mode.
The PVP_THCn_CTL.MODE selects the THC mode as clipping mode,
quantization mode, or hysteresis mode. For more information about
these modes, see the PVP architectural concepts section.
0 Clipping/Saturation Mode
1 Quantization Mode
2 Hysteresis Mode
3 Reserved

Table 30-114: PVP_THCn_HFCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE THCn HFCNT Value.

Table 30-113: PVP_THCn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–203

Figure 30-136: PVP_THCn_RMAXREP Register Diagram

THCn Min Clip Value

The PVP_THCn_CMINVAL holds the minimum clip value, which the THC uses in clipping/saturation mode.
For more information about this mode and the registers involved in its operation (PVP_THCn_CMINVAL,
PVP_THCn_CMINTH, PVP_THCn_CMAXTH,PVP_THCn_CMAXVAL), see the PVP functional description.

Figure 30-137: PVP_THCn_CMINVAL Register Diagram

Table 30-115: PVP_THCn_RMAXREP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE THCn Max RLE Reports Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–204 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Clip Min Threshold

The PVP_THCn_CMINTH holds the minimum clip value, which the THC uses in clipping/saturation mode.
For more information about this mode and the registers involved in its operation (PVP_THCn_CMINVAL,
PVP_THCn_CMINTH, PVP_THCn_CMAXTH,PVP_THCn_CMAXVAL), see the PVP functional description.

Figure 30-138: PVP_THCn_CMINTH Register Diagram

THCn Clip Max Threshold

The PVP_THCn_CMAXTH holds the minimum clip value, which the THC uses in clipping/saturation mode.
For more information about this mode and the registers involved in its operation (PVP_THCn_CMINVAL,
PVP_THCn_CMINTH, PVP_THCn_CMAXTH,PVP_THCn_CMAXVAL), see the PVP functional description.

Table 30-116: PVP_THCn_CMINVAL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Clip Min Value.

Table 30-117: PVP_THCn_CMINTH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Clip Min Threshold.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–205

Figure 30-139: PVP_THCn_CMAXTH Register Diagram

THCn Max Clip Value

The PVP_THCn_CMAXVAL holds the minimum clip value, which the THC uses in clipping/saturation mode.
For more information about this mode and the registers involved in its operation (PVP_THCn_CMINVAL,
PVP_THCn_CMINTH, PVP_THCn_CMAXTH,PVP_THCn_CMAXVAL), see the PVP functional description.

Figure 30-140: PVP_THCn_CMAXVAL Register Diagram

Table 30-118: PVP_THCn_CMAXTH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Clip Max Threshold.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–206 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Threshold Value 0

The PVP_THCn_TH0 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Figure 30-141: PVP_THCn_TH0 Register Diagram

THCn Threshold Value 1

The PVP_THCn_TH1 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Table 30-119: PVP_THCn_CMAXVAL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Clip Max Value.

Table 30-120: PVP_THCn_TH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–207

Figure 30-142: PVP_THCn_TH1 Register Diagram

THCn Threshold Value 2

The PVP_THCn_TH2 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Figure 30-143: PVP_THCn_TH2 Register Diagram

Table 30-121: PVP_THCn_TH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–208 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Threshold Value 3

The PVP_THCn_TH3 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Figure 30-144: PVP_THCn_TH3 Register Diagram

THCn Threshold Value 4

The PVP_THCn_TH4 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Table 30-122: PVP_THCn_TH2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

Table 30-123: PVP_THCn_TH3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–209

Figure 30-145: PVP_THCn_TH4 Register Diagram

THCn Threshold Value 5

The PVP_THCn_TH5 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Figure 30-146: PVP_THCn_TH5 Register Diagram

Table 30-124: PVP_THCn_TH4 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–210 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Threshold Value 6

The PVP_THCn_TH6 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Figure 30-147: PVP_THCn_TH6 Register Diagram

THCn Threshold Value 7

The PVP_THCn_TH7 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Table 30-125: PVP_THCn_TH5 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

Table 30-126: PVP_THCn_TH6 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–211

Figure 30-148: PVP_THCn_TH7 Register Diagram

THCn Threshold Value 8

The PVP_THCn_TH8 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Figure 30-149: PVP_THCn_TH8 Register Diagram

Table 30-127: PVP_THCn_TH7 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–212 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Threshold Value 9

The PVP_THCn_TH9 holds one of up to 16 threshold values, which the THC uses in quantization mode and
hysteresis mode. For more information about these modes and the registers involved in their operation,
see the PVP functional description.

Figure 30-150: PVP_THCn_TH9 Register Diagram

THCn Threshold Value 10

The PVP_THCn_TH10 holds one of up to 16 threshold values, which the THC uses in quantization mode
and hysteresis mode. For more information about these modes and the registers involved in their opera-
tion, see the PVP functional description.

Table 30-128: PVP_THCn_TH8 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

Table 30-129: PVP_THCn_TH9 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–213

Figure 30-151: PVP_THCn_TH10 Register Diagram

THCn Threshold Value 11

The PVP_THCn_TH11 holds one of up to 16 threshold values, which the THC uses in quantization mode
and hysteresis mode. For more information about these modes and the registers involved in their opera-
tion, see the PVP functional description.

Figure 30-152: PVP_THCn_TH11 Register Diagram

Table 30-130: PVP_THCn_TH10 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–214 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Threshold Value 12

The PVP_THCn_TH12 holds one of up to 16 threshold values, which the THC uses in quantization mode
and hysteresis mode. For more information about these modes and the registers involved in their opera-
tion, see the PVP functional description.

Figure 30-153: PVP_THCn_TH12 Register Diagram

THCn Threshold Value 13

The PVP_THCn_TH13 holds one of up to 16 threshold values, which the THC uses in quantization mode
and hysteresis mode. For more information about these modes and the registers involved in their opera-
tion, see the PVP functional description.

Table 30-131: PVP_THCn_TH11 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

Table 30-132: PVP_THCn_TH12 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–215

Figure 30-154: PVP_THCn_TH13 Register Diagram

THCn Threshold Value 14

The PVP_THCn_TH14 holds one of up to 16 threshold values, which the THC uses in quantization mode
and hysteresis mode. For more information about these modes and the registers involved in their opera-
tion, see the PVP functional description.

Figure 30-155: PVP_THCn_TH14 Register Diagram

Table 30-133: PVP_THCn_TH13 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–216 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Threshold Value 15

The PVP_THCn_TH15 holds one of up to 16 threshold values, which the THC uses in quantization mode
and hysteresis mode. For more information about these modes and the registers involved in their opera-
tion, see the PVP functional description.

Figure 30-156: PVP_THCn_TH15 Register Diagram

THCn Histogram Horizontal Position

The PVP_THCn_HHPOS provides RLE encoder window information that the PVP uses for RLE compression
operations.

Table 30-134: PVP_THCn_TH14 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

Table 30-135: PVP_THCn_TH15 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Threshold Value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–217

Figure 30-157: PVP_THCn_HHPOS Register Diagram

THCn Histogram Vertical Position

The PVP_THCn_HVPOS provides RLE encoder window information that the PVP uses for RLE compression
operations.

Figure 30-158: PVP_THCn_HVPOS Register Diagram

Table 30-136: PVP_THCn_HHPOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Histogram Window Horizontal Position.
The PVP_THCn_HHPOS.VALUE provides the histogram window start
X-coordinate position.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–218 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Histogram Horizontal Count

The PVP_THCn_HHCNT provides RLE encoder window information that the PVP uses for RLE compression
operations.

Figure 30-159: PVP_THCn_HHCNT Register Diagram

THCn Histogram Vertical Count

The PVP_THCn_HVCNT provides RLE encoder window information that the PVP uses for RLE compression
operations.

Table 30-137: PVP_THCn_HVPOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Histogram Window Vertical Position.
The PVP_THCn_HVPOS.VALUE provides the histogram window start
Y-coordinate position.

Table 30-138: PVP_THCn_HHCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Histogram Horizontal Count.
The PVP_THCn_HHCNT.VALUE provides the histogram window width
(count) in the X dimension.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–219

Figure 30-160: PVP_THCn_HVCNT Register Diagram

THCn RLE Horizontal Position

The PVP_THCn_RHPOS provides RLE encoder window information that the PVP uses for RLE compression
operations.

Figure 30-161: PVP_THCn_RHPOS Register Diagram

Table 30-139: PVP_THCn_HVCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Histogram Window Vertical Count.
The PVP_THCn_HVCNT.VALUE provides the histogram window width
in the Y dimension.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–220 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn RLE Vertical Position

The PVP_THCn_RVPOS provides RLE encoder window information that the PVP uses for RLE compression
operations.

Figure 30-162: PVP_THCn_RVPOS Register Diagram

THCn RLE Horizontal Count

The PVP_THCn_RHCNT provides RLE encoder window information that the PVP uses for RLE compression
operations.

Table 30-140: PVP_THCn_RHPOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE RLE Encoder Window Horizontal Position.
The PVP_THCn_RHPOS.VALUE provides the RLE encoder window
start X-coordinate position.

Table 30-141: PVP_THCn_RVPOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE RLE Encoder Window Vertical Position.
The PVP_THCn_RVPOS.VALUE provides the RLE encoder window
start Y-coordinate position.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–221

Figure 30-163: PVP_THCn_RHCNT Register Diagram

THCn RLE Vertical Count

The PVP_THCn_RVCNT provides RLE encoder window information that the PVP uses for RLE compression
operations.

Figure 30-164: PVP_THCn_RVCNT Register Diagram

Table 30-142: PVP_THCn_RHCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE RLE Encoder Window Horzontal Count.
The PVP_THCn_RHCNT.VALUE provides the RLE encoder window
width (count) in the X dimension.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–222 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Histogram Frame Count Status

The PVP_THCn_HFCNT_STAT indicates the current histogram frame count. The number of frames for which
the histogram counters operate is determined by the PVP_THCn_HFCNT register. On reaching this count,
the histogram counters are cleared and restart again.

Figure 30-165: PVP_THCn_HFCNT_STAT Register Diagram

THCn Histogram Counter Value 0

The PVP_THCn_HCNT0_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Table 30-143: PVP_THCn_RVCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE RLE Encoder Window Horizontal Count.
The PVP_THCn_RVCNT.VALUE provides the RLE encoder window
width (count) in the Y dimension.

Table 30-144: PVP_THCn_HFCNT_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Current Histogram Frame Counter.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–223

Figure 30-166: PVP_THCn_HCNT0_STAT Register Diagram

THCn Histogram Counter Value 1

The PVP_THCn_HCNT1_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-167: PVP_THCn_HCNT1_STAT Register Diagram

Table 30-145: PVP_THCn_HCNT0_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–224 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Histogram Counter Value 2

The PVP_THCn_HCNT2_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-168: PVP_THCn_HCNT2_STAT Register Diagram

THCn Histogram Counter Value 3

The PVP_THCn_HCNT3_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Table 30-146: PVP_THCn_HCNT1_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

Table 30-147: PVP_THCn_HCNT2_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–225

Figure 30-169: PVP_THCn_HCNT3_STAT Register Diagram

THCn Histogram Counter Value 4

The PVP_THCn_HCNT4_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-170: PVP_THCn_HCNT4_STAT Register Diagram

Table 30-148: PVP_THCn_HCNT3_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–226 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Histogram Counter Value 5

The PVP_THCn_HCNT5_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-171: PVP_THCn_HCNT5_STAT Register Diagram

THCn Histogram Counter Value 6

The PVP_THCn_HCNT6_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Table 30-149: PVP_THCn_HCNT4_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

Table 30-150: PVP_THCn_HCNT5_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–227

Figure 30-172: PVP_THCn_HCNT6_STAT Register Diagram

THCn Histogram Counter Value 7

The PVP_THCn_HCNT7_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-173: PVP_THCn_HCNT7_STAT Register Diagram

Table 30-151: PVP_THCn_HCNT6_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–228 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Histogram Counter Value 8

The PVP_THCn_HCNT8_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-174: PVP_THCn_HCNT8_STAT Register Diagram

THCn Histogram Counter Value 9

The PVP_THCn_HCNT9_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Table 30-152: PVP_THCn_HCNT7_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

Table 30-153: PVP_THCn_HCNT8_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–229

Figure 30-175: PVP_THCn_HCNT9_STAT Register Diagram

THCn Histogram Counter Value 10

The PVP_THCn_HCNT10_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-176: PVP_THCn_HCNT10_STAT Register Diagram

Table 30-154: PVP_THCn_HCNT9_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–230 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Histogram Counter Value 11

The PVP_THCn_HCNT11_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-177: PVP_THCn_HCNT11_STAT Register Diagram

THCn Histogram Counter Value 12

The PVP_THCn_HCNT12_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Table 30-155: PVP_THCn_HCNT10_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

Table 30-156: PVP_THCn_HCNT11_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–231

Figure 30-178: PVP_THCn_HCNT12_STAT Register Diagram

THCn Histogram Counter Value 13

The PVP_THCn_HCNT13_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-179: PVP_THCn_HCNT13_STAT Register Diagram

Table 30-157: PVP_THCn_HCNT12_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–232 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

THCn Histogram Counter Value 14

The PVP_THCn_HCNT14_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Figure 30-180: PVP_THCn_HCNT14_STAT Register Diagram

THCn Histogram Counter Value 15

The PVP_THCn_HCNT15_STAT holds the current value for one of the histogram counters. If a histogram
counter reaches the maximum value (0xFFFFFFFF) before expiry of histogram frame count (PVP_THCn_
HFCNT), the histogram counters do not overflow, but saturate at that value.

Table 30-158: PVP_THCn_HCNT13_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

Table 30-159: PVP_THCn_HCNT14_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–233

Figure 30-181: PVP_THCn_HCNT15_STAT Register Diagram

THCn Number of RLE Reports

The PVP_THCn_RREP_STAT holds the number of RLE reports. The PVP generates the run length reports at
the output of the module as soon as they are available. Note that there is a variable number of reports
generated per line or per frame, depending on the pixel patterns.

Figure 30-182: PVP_THCn_RREP_STAT Register Diagram

Table 30-160: PVP_THCn_HCNT15_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Histogram counter value.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–234 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PMA Configuration

The PVP_PMA_CFG register controls the pixel magnitude and angle computation unit (PMA) block's pipe-
line features, including port selection and block enable.

Figure 30-183: PVP_PMA_CFG Register Diagram

Table 30-161: PVP_THCn_RREP_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Number of RLE Reports.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 30–235

Table 30-162: PVP_PMA_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:16
(R/W)

IBLOCK1 Input Block 1 ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_PMA_CFG.IBLOCK1 and PVP_PMA_CFG.
IPORT1 fields determine which output port(s) are connected to the
input port(s).
12 IPF0
14 IPF1
16 CNV0
20 CNV1
24 CNV2
28 CNV3

15:8
(R/W)

IBLOCK0 Input Block 0 ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_PMA_CFG.IBLOCK0 and PVP_PMA_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s).
12 IPF0
14 IPF1
16 CNV0
20 CNV1
24 CNV2
28 CNV3

7:6
(R/W)

IPORT1 Input Port 1 ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_PMA_CFG.IBLOCK1 and PVP_PMA_CFG.
IPORT1 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

5:4
(R/W)

IPORT0 Input Port 0 ID.
The blocks comprising the PVP pipe may connect to one or more
output ports. The PVP_PMA_CFG.IBLOCK0 and PVP_PMA_CFG.
IPORT0 fields determine which output port(s) are connected to the
input port(s). For more information, see the connectivity tables for
each input block in the architectural concepts section.

PIPELINED VISION PROCESSOR (PVP)
ADSP-BF60X PVP REGISTER DESCRIPTIONS

30–236 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

2
(R/W)

MPIPE Memory Pipe.
The PVP_PMA_CFG.MPIPE bit selects memory pipe or camera pipe.
0 Camera Pipe
1 Memory Pipe

0
(R/W)

START Start.
The PVP_PMA_CFG.START enables the PVP. This bit reads 0 after the
pipe is drained.
1 Write to Enable the Module

Table 30-162: PVP_PMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–1

31 Enhanced Parallel Peripheral Interface (EPPI)

The enhanced parallel peripheral interface (EPPI) is a half-duplex, bidirectional port with a dedicated
clock pin and three frame sync (FS) pins. It can support direct connections to active TFT LCD, parallel A/
D and D/A converters, video encoders and decoders, image sensor modules and other general-purpose
peripherals. Each EPPI has two DMA channels associated with it. Moreover, in some modes, a EPPI may
use an additional DMA channel.

EPPI Features
The following features are supported in the EPPI module.

• Programmable data length: 8, 10, 12, 14, 16, 18 and 24 bits per clock cycle

• Bidirectional and half-duplex port

• Internal or external clock source

• Clock gating by an external device asserting the clock gating control signal

• Various framed and non-framed operating modes as well as internal or external frame syncs

• Various general-purpose modes with 1, 2, 3 and 0 frame sync modes for both receive and transmit

• Ignores premature external frame syncs for data consistency

• SMPTE274M and SMPTE 296M high definition format support

• ITU-656, SMPTE 296M and SMPTE 274M status word error detection and correction for ITU-656
receive modes

• ITU-656, SMPTE 296M and SMPTE 274M receive modes – active video only, vertical blanking only,
and entire field

• ITU-656, SMPTE 296M and SMPTE 274M preamble and status word decode

• Optional packing and unpacking of data to/from 32 bits from/to 8, 16 and 24 bits. If packing/unpacking
is enabled, endianness can be altered to change the order of packing/unpacking of bytes/words

• Optional sign extension or zero-fill and alternate even or odd data sample filter for receive modes

• RGB888 to RGB666 or RGB565 conversion for transmit modes

• 4:2:2 YCrCb data Tx/Rx interleaving/de-interleaving modes

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

31–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Configurable LCD data enable (DEN) output available on frame sync 3

• Supports delayed start of PPI frame syncs

• Data clipping and mirroring

• Horizontal and vertical windowing for general-purpose 2 and 3 frame sync modes

• Preamble, blanking and stripping support

• Multiplexing dual input

EPPI Functional Description
The following sections provide a functional descriptions of the EPPI.

• RGB Data Formats

• Data Clipping

• Data Mirroring

• Windowing

• Preamble, Blanking and Stripping Support

ADSP-BF60x EPPI Register List

The EPPI is a half-duplex, bidirectional port accommodating up to 16 bits of data. It has a dedicated clock
pin and three multiplexed frame sync pins. The highest system throughput is achieved with 8-bit data,
since two 8-bit data samples can be packed as a single 16-bit word. In such a case, the earlier sample is
placed in the 8 least significant bits (LSBs). For more information on EPPI functionality, see the EPPI
register descriptions.

Table 31-1: ADSP-BF60x EPPI Register List

Name Description

EPPI_STAT Status Register

EPPI_HCNT Horizontal Transfer Count Register

EPPI_HDLY Horizontal Delay Count Register

EPPI_VCNT Vertical Transfer Count Register

EPPI_VDLY Vertical Delay Count Register

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–3

ADSP-BF60x EPPI Interrupt List

EPPI_FRAME Lines Per Frame Register

EPPI_LINE Samples Per Line Register

EPPI_CLKDIV Clock Divide Register

EPPI_CTL Control Register

EPPI_FS1_WLHB FS1 Width Register / EPPI Horizontal Blanking Samples Per
Line Register

EPPI_FS1_PASPL FS1 Period Register / EPPI Active Samples Per Line Register

EPPI_FS2_WLVB FS2 Width Register / EPPI Lines Of Vertical Blanking Register

EPPI_FS2_PALPF FS2 Period Register / EPPI Active Lines Per Field Register

EPPI_IMSK Interrupt Mask Register

EPPI_ODDCLIP Clipping Register for ODD (Chroma) Data

EPPI_EVENCLIP Clipping Register for EVEN (Luma) Data

EPPI_FS1_DLY Frame Sync 1 Delay Value

EPPI_FS2_DLY Frame Sync 2 Delay Value

EPPI_CTL2 Control Register 2

Table 31-2: ADSP-BF60x EPPI Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

EPPI0 Channel 0 DMA 98 29 LEVEL
EPPI0 Channel 1 DMA 99 30 LEVEL
EPPI0 Status 100 LEVEL
EPPI2 Channel 0 DMA 101 31 LEVEL
EPPI2 Channel 1 DMA 102 32 LEVEL
EPPI2 Status 103 LEVEL

Table 31-1: ADSP-BF60x EPPI Register List (Continued)

Name Description

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

31–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x EPPI Trigger List

ADSP-BF60x EPPI DMA List

EPPI1 Channel 0 DMA 104 33 LEVEL
EPPI1 Channel 1 DMA 105 34 LEVEL
EPPI1 Status 106 LEVEL

Table 31-3: ADSP-BF60x EPPI Trigger List Trigger Masters

Description Trigger ID Sensitivity

EPPI0 Channel 0 DMA 51 PULSE/EDGE
EPPI0 Channel 1 DMA 52 PULSE/EDGE
EPPI2 Channel 0 DMA 53 PULSE/EDGE
EPPI2 Channel 1 DMA 54 PULSE/EDGE
EPPI1 Channel 0 DMA 55 PULSE/EDGE
EPPI1 Channel 1 DMA 56 PULSE/EDGE

Table 31-4: ADSP-BF60x EPPI Trigger List Trigger Slaves

Description Trigger ID Sensitivity

EPPI0 Channel 0 DMA 51
EPPI0 Channel 1 DMA 52
EPPI2 Channel 0 DMA 53
EPPI2 Channel 1 DMA 54
EPPI1 Channel 0 DMA 55
EPPI1 Channel 1 DMA 56

Table 31-5: ADSP-BF60x EPPI DMA List DMA Channel List

Description DMA Channel

EPPI0 Channel 0 DMA DMA29
EPPI0 Channel 1 DMA DMA30

Table 31-2: ADSP-BF60x EPPI Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–5

RGB Data Formats

For transmit modes, the EPPI can convert RGB888 data in memory to RGB666 at the output if the EPPI_
CTL.RGBFMTEN bit is set and if the EPPI_CTL.DLENvalue is equal to 18 bits. Similarly, the EPPI can convert
RGB888 data in memory to RGB565 at the output if the EPPI_CTL.RGBFMTEN bit is set and if EPPI_CTL.
DLENis equal to 16 bits.

This conversion is performed as follows:

• If EPPI_CTL.PACKEN=1, the EPPI first unpacks, according to the EPPI_CTL.SWAPEN bit settings, the
three 32-bit data words from the DMA into four 24-bit data words to be transmitted out as described
earlier.

• If EPPI_CTL.PACKEN=0, then the EPPI takes the lower 24 bits of the 32-bit DMA as the data to be trans-
mitted. Then the EPPI truncates this 24-bit data word to the required data width by removing the lower
2 bits of G and the lower 2 or 3 bits of R and B.

Data Clipping

The EPPI contains two registers to define the lower and upper limits for the Luma and Chroma compo-
nents. This is used for clipping data values during 8, 10, 12 or 16-bit transmit modes. All data values for
odd samples which are less than the value in the EPPI_ODDCLIP.LOWODD bit field are replaced with the
value in the EPPI_ODDCLIP.LOWODD field and all data values for even samples which are less than the value
in the EPPI_EVENCLIP.LOWEVEN field are replaced with the value in the EPPI_EVENCLIP.LOWEVEN field.

In the same manner, all data values for odd samples which are more than the value in the EPPI_ODDCLIP.
HIGHODD bit field are replaced with the value in the EPPI_ODDCLIP.HIGHODD field and all data values for
even samples which are more than the values in the EPPI_EVENCLIP.HIGHEVEN field are replaced with the
values in the EPPI_EVENCLIP.HIGHEVEN field.

Depending on the programmed EPPI length, only the corresponding bits (least aligned) are considered for
clipping. For example if the EPPI is programmed in 10-bit mode, bits 9–0 and bits 25–16 constitute the
clipping thresholds. The higher bits are ignored. The EPPI supports 8, 10, 12, and 16-bit clipping thresh-
olds.

For the 4:2:2 YCrCb color space, Luma and Chroma typically have different lower and upper thresholds,
which is why separate thresholds may be required for even and odd data samples. In the case of mono-

EPPI2 Channel 0 DMA DMA31
EPPI2 Channel 1 DMA DMA32
EPPI1 Channel 0 DMA DMA33
EPPI1 Channel 1 DMA DMA34

Table 31-5: ADSP-BF60x EPPI DMA List DMA Channel List (Continued)

Description DMA Channel

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

31–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

chrome (Y only) or some non-video clipping applications, the value in the EPPI_ODDCLIP.LOWODD field
should be the same as the value in the EPPI_EVENCLIP.LOWEVEN field, and the value in the EPPI_ODDCLIP.
HIGHODD field should be the same as the value in the EPPI_EVENCLIP.HIGHEVEN field.

In GP 0 FS mode with internal blanking generation, clipping is valid only for the active video part of the
transmitted data. ITU-R 656 preambles, status words and blanking data bypass the clipping logic.

If the EPPI is programmed in 16, 20 or 24-bit mode with the EPPI_CTL.SPLTWRD bit set, the YDATA (luma
data) gets the clipping threshold levels of the EPPI_EVENCLIP register and the CDATA (chroma data) gets
the clipping threshold levels of the EPPI_ODDCLIP register.

The clipping registers are ignored when the EPPI_CTL.RGBFMTEN bit is set.

Data Mirroring

To increase the pin multiplexing options with respect to the EPPI data pins, an additional data mirroring
feature is available which mirrors the EPPI data bits 15–0. The MMR bit (EPPI_CTL.DMIRR) if set, mirrors
the bits (default is EPPI_CTL.DMIRR=0, no mirror). The complete description of this bit is provided in
“Register Descriptions” section. This feature is available in both transmit and receive.

Figure 31-1: Data Mirroring Receive

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–7

Figure 31-2: Data Mirroring Transmit

Windowing

The EPPI supports windowing for general-purpose input modes. The module can be configured to bring
in a region of interest instead of the entire frame of data which helps reduce bandwidth.

Preamble, Blanking and Stripping Support

The EPPI supports embedding blanking information and clipping of active data to be transmitted. This is
available for single channel data, interleaved data and parallel data and supports data length (EPPI_CTL.
DLEN) equal to 16, 20 or 24 bits.

Support of preamble generation/detection and stripping of blanking information is also provided for
ITU656 as well as the two HD formats, SMPTE 274M and 296M. The SMPTE standards are shown below
in the table as a comparison with the ITU 656 modes. Preambles for SMPTE and ITU modes are identical.
Extension of preamble to 12 bits is also supported.

Table 31-6: Video Mode Comparison

Video Mode Frame Rate Frame Resolution
Active Video
Resolution

Sampling
Frequency (MHz) Remarks

ITU 656
(NTSC)

30 1716x525 720x480 27.2 Y-C interleaved

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

31–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The EPPI supports all SMPTE modes shown above which run at a sampling frequency not higher than 74.
25 MHz.

EPPI Definitions

ITU-R BT. 656

Description of a digital video protocol for interfaces and data stream format required to send uncom-
pressed PAL or NTSC standard definition TV (525 or 625 lines) signals.

YUV422

YUV is a color space where pixels are defined by a luminance (Y) component and chrominance (UV)
components. The suffix signifies how the chrominance components have been decimated as well as
formatting. In this case, the YUV422 format has the chrominance decimated by two, meaning only half of
each chrominance component are available. Typical YUV422 formatting interleaves the luminance and
chrominance as such as U1Y1V1Y2U2Y3V2Y4.

RGB888

RGB is a color space where pixels are defined by three color values; one red (R), one green (G) and one
blue (B). The suffix signifies the bit widths for these color components. In this case, RGB888 means that
each red, green and blue value is 8-bits each.

RGB565

RGB is a color space where pixels are defined by three color values; one red (R), one green (G) and one
blue (B). The suffix signifies the bit widths for these color components. In this case, RGB565 means that

ITU 656 (PAL) 25 1728x625 720x576 26.8 Y-C interleaved
SMPTE 296M 30 3300x750 1280x720 74.25 Y,C separate

60 1650x750 1280x720 74.25 Y,C separate
SMPTE 274M 30 2200x1125 1920x1080 74.25 Y,C separate

60 2200x1125 1920x1080 148.5 Y,C separate
25 2640x1125 1920x1080 74.25 Y,C separate
50 2640x1125 1920x1080 148.5 Y,C separate
24 2750x1125 1920x1080 74.25 Y,C separate

Table 31-6: Video Mode Comparison (Continued)

Video Mode Frame Rate Frame Resolution
Active Video
Resolution

Sampling
Frequency (MHz) Remarks

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–9

the red (R) and blue (B) are 5-bits each while the green (G) is 6-bits. When packed together, each RGB565
pixel can be represented in a 16-bit data word. This format is commonly used in LCD display panels.

SMPTE 274M

An HD standard defining the spatial resolution (image sample structure) and frame rates for 1920x1080.

SMPTE 296M

An HD standard for defining the spatial resolution (image sample structure) and frame rates fro 1280x720.

EPPI Block Diagram

 The figure shows the functional blocks within the EPPI.

Figure 31-3: EPPI Block Diagram

EPPI Architectural Concepts

The following architectural concepts are described in this section.

• EPPI Interface

• Reset Operation

• Frame Sync Polarity and Sampling Edge

• Direct Memory Access (DMA)

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

31–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Pixel Pipe Interface (PxP)

• EPPI Clock

EPPI Interface

The EPPI has a pixel pipe (PxP) interface in addition to the interface to the system crossbar. In transmit
mode the PxP interface is in the SCLK domain. In receive mode the PxP interface is in the EPPI clock
domain.

A block diagram of the architecture for the EPPI interface is shown below.

Figure 31-4: EPPI DMA and PxP Interface

In transmit operations the Y channel data path can take data from either the YFIFO or the PxP interface.
This option is configured using the EPPI_CTL.DMACFG bit. When configured to take data from the PxP
interface, the PxP data is transmitted on the EPPI pins in all modes. Additionally:

• Luma (and chroma) components should be made available only through the PxP interface.

• The video subsystem block informs the EPPI whether the DMA or PxP channel is available.

• When the EPPI is configured for PxP transmit, the incoming data and valid signals from the PxP are
sampled on SCLK and the outgoing ready signal is driven on SCLK.

In receive operations the EPPI data can be transferred to either the PxP interface, to the YFIFO or both.
When receiving data, only the data going to DMA channel 1 is sent to the PxP. This could be either the Y

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–11

data only (in split receive mode with EPPI_CTL.DMACFG = 1) or the full EPPI input pin data in any other
mode. Additionally:

• If the EPPI is connected to the pixel compositor (PIXC) via the PxP, the EPPI can be programmed in
single DMA mode (EPPI_CTL.DMACFG = 0) so that all of the data from the EPPI pins goes through the
YFIFO (DMA channel 1).

• The video subsystem block informs the EPPI whether the DMA channel, the PxP channel, or both
channels are available.

Reset Operation

On a hardware reset, the entire EPPI is reset. All MMRs return to their default values. EPPI interrupt and
DMA requests become inactive and internally generated PPI_CLK and frame syncs are aborted.

In software, the EPPI can be reset and re-configured by writing 0 to the EPPI_CTL.ENbit. When disabled
in this manner, only the EPPI_STATregister is cleared to its reset value. Interrupts and DMA requests
become inactive and internally generated clock and frame syncs are aborted.

Frame Sync Polarity and Sampling Edge

The EPPI_CTL.POLSand EPPI_CTL.POLCbits provide a mechanism to select the active level of the frame
syncs and the sampling/driving edge of the EPPI clock, respectively. This allows the EPPI to connect to
data sources and receivers with a wide array of control signal polarities. Often, the remote data source/
receiver also offers configurable signal polarities. In these cases, the EPPI_CTL.POLSand EPPI_CTL.
POLCbits add flexibility.

Table 31-7: Frame Sync Polarity Selections and Frame Sync Pin States

Bit Setting Frame Sync 2 Frame Sync 1

POLS = b#00 Active high/starts out low Active high/starts out low
POLS = b#01 Active high/starts out low Active low/starts out high
POLS = b#10 Active low/starts out high Active high/starts out low
POLS = b#11 Active low/starts out high Active low/starts out high

Table 31-8: Frame Clock Polarity Selections and Receive/Transmit Pin States

Bit Setting

Receive Transmit

Sample Data Sample/Drive Syncs Drive Data Sample/Drive Syncs

POLS = b#00 Falling edge Falling edge Rising edge Rising edge
POLS = b#01 Falling edge Rising edge Rising edge Falling edge
POLS = b#10 Rising edge Falling edge Falling edge Rising edge
POLS = b#11 Rising edge Rising edge Falling edge Falling edge

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

31–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Direct Memory Access (DMA)

The EPPI has a native DMA controller with two channels. A local arbiter arbitrates between these channels
and requests are forwarded to the system crossbar. The EPPI has one connection to the fabric.

Figure 31-5: EPPI DMA Interface

The EPPI must be used with DMA and configuring the EPPI DMA channels is a necessary step toward
using the EPPI interface. The channels can be configured for either transmit or receive operation, and have
a maximum throughput of (PPI_CLK) x (32 bits/transfer). In modes where data lengths permit, packing
may be possible in order to increase transfer bandwidth. The highest throughput is achieved with 8-bit
data and packing enabled.

The DMA engine generates interrupts at the completion of a row, frame, or partial-frame transfer. The
DMA engine also coordinates the source or destination point for the data that is transferred through the
EPPI.

The 2D DMA capability allows the processor to be interrupted at the end of a line or after a frame of video
is transferred, or if a DMA error occurs. The DMA_XCNT and DMA_YCNTregisters allow for flexible data inter-
rupt points. For example, assume the DMA_XMOD = DMA_YMOD = 1. If a data frame contains 320 × 240 bytes
(240 rows of 320 bytes each), the following conditions hold.

• Setting DMA_XCNT = 320, DMA_YCNT = 240, and DISEL = 1 (the DISEL bit is located in DMA_CFG register)
interrupts on every row transferred, for the entire frame.

• Setting DMA_XCNT = 320, DMA_YCNT = 240, and DISEL = 0 interrupts only on the completion of the frame
(when 240 rows of 320 bytes have been transferred).

• Setting DMA_XCNT = 38,400 (320 x 120), DMA_YCNT = 2, and DISEL =1 causes an interrupt when half of
the frame is transferred, and again when the whole frame is transferred.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–13

The following is the general procedure for setting up DMA operation with the EPPI.

1. Configure the DMA registers as appropriate for the desired DMA operating mode.

2. Enable the DMA channel for operation.

3. Configure appropriate EPPI registers.

4. Enable the EPPI by writing 1 to the EPPI_CTL.EN bit.

Pixel Pipe Interface (PxP)

The EPPI has a pixel pipe (PxP) interface in addition to the SCB interface to the fabric. In transmit, the PxP
interface is in the SCLK domain while in receive, the interface is in the EPPI clock domain.

If the EPPI is configured for transmit, the Y channel data path can take data from either the YFIFO or the
PxP crossbar. When configured to take the data from PxP crossbar (DMA_CFGregister = 0), the PxP data is
transmitted on the EPPI pins in all modes. Additionally:

• Luma (and Chroma) components should be made available only through PxP.

• The video subsystem blocks (VID) determine the control signals for deciding the channel (DMA or
PxP) from which the data is taken. Refer to the “Video Subsystem (VID)” chapter for details.

• When using PxP transmit, the incoming data and valid signal from the PxP are sampled on the SCLK
and the outgoing ready signal is driven on SCLK. This implies the PIXC has to drive out the data in
SCLK.

The EPPI block with the pixel pipe addition is shown below.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

31–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 31-6: EPPI Block with the Pixel Pipe Addition

For receive operations EPPI data is transferred to either the PxP crossbar, the YFIFO, or both and only the
data going to DMA channel 1 is sent to the PxP. This is either the Y data only (in split receive mode with
DMA_CFGregister = 1) or the full EPPI input pin data in any other mode. If the EPPI is connected to the
PIXC via the PxP, the EPPI can be programmed in single DMA mode (DMA_CFGregister = 0) so that all the
data from the EPPI pins goes through the Y FIFO (DMA channel 1).

The video subsystem block informs the EPPI whether the DMA channel, the PxP channel, or both chan-
nels are available.

The following figures describe the design level details of how the PxP interface is multiplexed with the
existing data path in transmit and receive case.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–15

Figure 31-7: Receive Data Path with PxP Interface Muxing

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI FUNCTIONAL DESCRIPTION

31–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 31-8: Transmit Data Path with PxP Interface Muxing

EPPI Clock

The EPPI can be supplied with an external clock, or the clock can be generated internally and supplied to
external devices. For information on the maximum PPI_CLK specification in internal and external clock
modes see the product specific data sheet.

When using an external PPI_CLK, there may be up to two cycles latency before valid data is received or
transmitted.

The internal clock can be generated from SCLK if the EPPI_CTL.ICLKGEN bit is set. The generated clock
frequency is then determined by the value in the EPPI_CLKDIVregister. The internally generated EPPI
clock frequency is:

fPCLK = fSCLK/(EPPI_CLKDIV + 1)

where:

fPCLK – frequency of internally generated EPPI clock

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–17

fSCLK – frequency of SCLK

EPPI_CLKDIV – Clock division value programmed in the EPPI_CLKDIVregister.

A few examples are given in the table below.

EPPI Operating Modes
The EPPI supports various receive and transmit modes of operation which include the detection and
generation of preamble data. Specifically, the EPPI supports data formats described in the specifications
ITU-656, SMPTE 274M and SMPTE 296M. In addition to these modes, the EPPI also supports general
purpose receive and transmit using up to three frame syncs (FS).

Most of the bits used for configuring operating modes are located in the control register (EPPI_CTL).
Complete descriptions of these bits can be found in the “Register Descriptions” section of this chapter.

ITU-R 656 Modes

The EPPI supports three input modes and one output mode for ITU-R 656 framed data. These modes are
described in this section.

ITU-R 656 Background

In ITU-R 656 (formerly known as CCIR-656) mode, the horizontal (H), vertical (V), and field (F) signals
are sent as an embedded part of the video data stream in a series of bytes that form a control word.

The letter H is used to distinguish between the start of active video (SAV) and end of active video (EAV)
signals, which indicate the beginning and end of active video data in each line. The SAV occurs on a 1-to-
0 transition of H, and EAV occurs on a 0-to-1 transition of H. The space between EAV and SAV is filled
with horizontal blanking data. Therefore H = 1 during the horizontal blanking portion of the data stream
and H = 0 during the active video portion of the data stream.

The letter V is used to denote the vertical blanking portion of the data stream. A transition in V can occur
only in the EAV sequence. When V = 1, the data stream contains vertical blanking data and when V = 0,
the data stream contains active video data.

Table 31-9: Relationship Between CLKDIV and the Ratio of SCLK to EPPI Clock

CLKDIV15–0 SCLK:EPPI Clock Ratio

0x0002 1:3
0x0003 1:4
0x0004 1:5
0x0005 1:6
... ...

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

31–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The letter F is used to distinguish Field 1 from Field 2. Interlaced video has two fields in a frame of data. It
requires each field to be handled uniquely, and alternate rows of each field combined to create the actual
video image.

For interlaced video, F = 0 represents Field 1 (Odd Field) and F = 1 represents Field 2 (Even Field). Progres-
sive video makes no distinction between Field 1 and Field 2, and F is always 0 for progressive video. Inter-
laced video requires each field to be handled uniquely, because alternate rows of each field combine to
create the actual video image.

An entire field of video is comprised of active video plus horizontal blanking (the space between an EAV
and SAV code) and vertical blanking (the space where V = 1). A field of video commences on a transition
of the F bit.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–19

Figure 31-9: Typical Video Frame Partitioning for NTSC/PAL Systems in Interlaced and Progressive ITU-R BT.656
Systems

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

31–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 31-10: ITU-R 656 8-Bit Parallel Data Stream fro NTSC (PAL) Systems

NOTE: As shown in the following table, there is a defined preamble of three data elements (for example,
in the case of 8-bit video: 0xFF, 0x00, 0x00), followed by the XY status word, which, aside from the
F (field), V (vertical blanking) and H (horizontal blanking) bits, contains four protection bits for
error detection and correction. F and V are only allowed to change as part of EAV sequences (that
is, transition from H = 0 to H = 1).

The bit definitions are as follows:

• F = 0 for field 1

• F = 1 for field 2

• V = 1 during vertical blanking

• V = 0 when not in vertical blanking

• H = 0 at SAV

• H = 1 at EAV

• P3 = V XOR H

• P2 = F XOR H

• P1 = F XOR V

• P0 = F XOR V XOR H

P3–P0 are protection bits and enable 1 and 2-bit errors to be detected, and 1-bit errors to be corrected, at
the receiver. The EPPI performs the correction if it detects 1-bit errors in F, V, or H. Errors in the protec-
tion bits themselves are detected but not corrected.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–21

The EPPI_STATregister contains two bits, EPPI_STAT.ERRDET and EPPI_STAT.ERRNCOR, that are used to
report the status of error detected and error not corrected, respectively.

The EPPI_STAT.ERRDET bit is set whenever an error is detected in the status word. However, this bit does
not generate an interrupt. The EPPI_STAT.ERRNCOR bit is set when more than a 1-bit error is detected in
the status word. An interrupt is generated when the EPPI_STAT.ERRNCOR bit is set. It can be cleared by
clearing the EPPI_STAT.ERRNCOR and EPPI_STAT.ERRDET bits. Both bits are sticky and W1C.

In many applications, video streams other than the standard NTSC/PAL formats (for example, CIF, QCIF)
can be employed. Because of this, the processor interface is flexible enough to accommodate different row
and field lengths. In general, as long as the incoming video has the proper EAV/SAV codes, the EPPI can
read it in. In other words, a CIF image could be formatted to be 656-compliant, where EAV and SAV
values define the range of the image for each line, and the V and F codes are used to delimit fields and
frames.

The following sections provide descriptions of EPPI operations.

Table 31-10: Control Sequences for 8-Bit and 10-Bit ITU-R 656 Video

8-Bit Data 10-Bit Data

D9 (MSB D8 D7 D6 D5 D4 D3 D2 D1 D0

Preamble 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Control Byte 1 F V H P3 P2 P1 P0 0 0

Table 31-11: Operating Modes and Generic EPPI Operation

How to configure Useful for
How to configure in
ITU R 656 TX Mode

ITU-R BT.656 RX Entire field DIR= 0
XFRTYPE = b#01

Active video DIR = 0
XFRTYPE = b#00

Blanking only DIR = 0
XFRTYPE = b#10

GP 0 FS TX DIR = 1
XFRTYPE = b#11
FSCFG = b#00

Applications where
periodic frame
syncs are not used
to frame the data

BLANKGEN = 1
DLEN = (b#000,
b#001 or b#100)

RX DIR = 0
XFRTYPE = b#11
FSCFG = b#00

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

31–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ITU-R 656 Input Modes

In the ITU-R 656 input modes, the clock is either provided by the video source or supplied externally by
the system.

As shown in the following figure and described in the following sections, there are three sub-modes
supported for ITU-R 656 inputs: entire field, active video only, and vertical blanking interval only.

Figure 31-11: ITU-R 656 Input Sub-modes

GP 1 FS TX DIR = 1
XFRTYPE = b#11
FSCFG =b#01

Interfacing with
ADCs, DACs and
other general-
purpose devices

BLANKGEN = 1
DLEN = (b#000,
b#001 or b#100)

RX DIR = 0
XFRTYPE = b#11
FSCFG = b#01

GP 2 FS TX DIR = 1
XFRTYPE = b#11
FSCFG = b#10

Video applications
that use two
hardware
synchronization
signals, HSYNC
and VSYNC

BLANKGEN = 1
DLEN = (b#000,
b#001 or b#100)

RX DIR = 0
XFRTYPE = b#11
FS_CFG = b#10

GP 3 FS TX DIR = 1
XFRTYPE = b#11
FSCFG = b#11

Video applications
that use three
hardware sync
signals, HSYNC,
VSYNC, and
FIELD

BLANKGEN = 1
DLEN = (b#000,
b#001 or b#100)

RX DIR = 0
XFRTYPE = b#11
FSCFG = b#11

Table 31-11: Operating Modes and Generic EPPI Operation (Continued)

How to configure Useful for
How to configure in
ITU R 656 TX Mode

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–23

Entire Field

In this mode, the entire incoming bit stream is read in through the EPPI. This includes active video as well
as control byte sequences and ancillary data that may be embedded in horizontal and vertical blanking
intervals.

Data transfer starts immediately after Field 1 synchronization occurs, but does not include the first EAV
code that contains the F = 0 assignment for interlaced video, or V = 0 assignment for progressive video.

Active Video

This mode is used when only the active video portion of a field is of interest, and not any of the blanking
intervals. The EPPI ignores (does not read in) all data between EAV and SAV, as well as all data present
when V = 1. Furthermore, the control byte sequences are not stored to memory, they are filtered out by
the EPPI. After the start of Field 1 synchronizes, the EPPI ignores incoming samples until it sees an SAV.

In active video mode, programs must specify the number of total (active plus vertical blanking) lines per
frame in the EPPI_FRAME register, and the number of total (active plus horizontal blanking plus 8) samples
per line in the EPPI_LINE register.

In this mode (as well as vertical blanking interval mode), any input data sequence that is considered part
of the preamble (for example in 8-bit ITU mode, 0xFF or 0x00 appearing in the input data stream are
considered part of the preamble) is not sent to memory, even if it appears individually, and is not tagged
along with the preamble sequence FF, 00, 00.

Vertical Blanking Interval (VBI)

In this mode, data transfer is only active while V = 1 is in the control byte sequence. This indicates that the
video source is in the midst of the vertical blanking interval (VBI), which is sometimes used for ancillary
data transmission. The ITU-R 656 recommendation specifies the format for these ancillary data packets,
but the EPPI is not equipped to decode the packets themselves. This task must be handled in software.
Horizontal blanking data is logged where it coincides with the rows of the VBI.

The VBI is split into two regions within each field. From the EPPI’s standpoint, it considers these two sepa-
rate regions as one contiguous space. However, keep in mind that frame synchronization begins at the start
of Field 1, which doesn’t necessarily correspond to the start of vertical blanking. For instance, in 525/60
systems, the start of Field 1 (F = 0) corresponds to line 4 of the VBI.

In VBI mode, the program must specify the number of total (active plus vertical blanking) lines per frame
in the EPPI_FRAME register, and the number of total (active plus horizontal blanking plus 8) samples per
line in the EPPI_LINE register.

In this mode (as well as active video mode), any input data sequence that is considered as part of the
preamble (for example in 8-bit ITU mode, if 0xFF or 0x00 appears in the input data stream these values
are considered part of the preamble) is not sent to memory, even if it appears individually, and is not
tagged along with the preamble sequence FF, 00, 00.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

31–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ITU-R 656 Output in General-Purpose Transmit Modes

In GP transmit mode, the EPPI provides the ability to frame an ITU-R 656 output stream with the proper
preambles and blanking intervals. This is done by setting the EPPI_CTL.BLANKGEN bit. The EPPI then only
needs to fetch active data from memory through the DMA channel, saving DMA bandwidth. The EPPI_
FS1_PASPL, EPPI_FS2_WLVB, EPPI_FS2_PALPF and EPPI_FS1_WLHB registers need to be programmed
correctly in order for the EPPI to internally generate and embed the proper preamble, status word (EAV
and SAV sequences) and blanking data along with the active video from memory. The EPPI can also drive
out the frame syncs based on the EPPI_CTL.FSCFG bit setting.

The figure below shows the bit stream format in 16-bit transmit modes with blanking generation (EPPI_
CTL.BLANKGEN enabled). Each 16-bit data sample consists of 8-bit luma (Y) and 8-bit chroma (Cr or Cb)
components. During transmission, the chroma data and the 0x80 blanking bytes are on the upper half
(MSBs) of the data lines while the luma data and the 0x10 blanking bytes are on the lower half (LSBs) of
the data lines.

Figure 31-12: 16-Bit Transmit with Internal Blanking Generation

The following figure shows the data transmitted by the EPPI in this mode. After the EPPI is enabled and
if the EPPI FIFO is not empty, the transmission starts by sending out a EAV sequence for a vertical
blanking line. For interlaced video, F starts at 1. For progressive video, F is always 0.

NOTE: Internal blanking generation functionality is valid only when the data length is 8, 10, or 16 bits and
when the EPPI is in GP transmit modes. The EPPI_CTL.BLANKGEN bit generates preambles even in
GP 2FS mode.

The ITU-R 656 output mode’s internal blanking generation functionality can also be bypassed (for
instance, if sending ancillary data in the blanking interval) by clearing the EPPI_CTL.BLANKGEN bit. The
EPPI_CTL.BLANKGEN bit generates preambles even in GP 2FS mode.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–25

Figure 31-13: Generated Blanking Preamble Sequence

Frame Synchronization in ITU-R 656 Modes

For interlaced video, the start of frame synchronization occurs when a high-to-low transition is detected
in F, the field indicator. For progressive video, the start of frame synchronization occurs when a high-to-
low transition is detected in V, the vertical blanking indicator. These transitions in F and V can occur only
in the EAV sequence. A start of line is detected on a low-to-high transition in H, the horizontal blanking
indicator, which occurs in the EAV sequence as well.

For interlaced video, the start of frame corresponds to the start of field 1. Consequently, up to two fields
may be ignored (for example, if field 1 started before the EPPI-to-camera channel was established) before
data is received into the EPPI. For progressive video, the start of frame corresponds to the start of active
video.

Because all H and V signaling is embedded in the data stream in ITU-R 656 modes, the count registers
(EPPI_HCNT, EPPI_VCNT) are ignored. However, the EPPI_FRAME register is still used to check for synchro-
nization errors. Therefore, this MMR must be programmed with the number of lines expected in each
frame of video.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

31–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The EPPI keeps track of the number of EAV-to-SAV transitions that occur from the start of a frame until
it decodes the end-of-frame condition (transition from F = 1 to F = 0 in the case of interlaced video and
transition from V = 1 to V = 0 in the case of progressive video).

At the end-of-frame condition, the actual number of lines processed is compared against the value in
EPPI_FRAME. If there is a mismatch, a frame track error is asserted in the EPPI_STAT register. For instance,
if an SAV transition was missed, the current field only has NUM_ROWS – 1 rows, but re synchronization
occurs at the start of the next frame. When the entire field is received, the field status bit is toggled in the
EPPI_STAT register. This way, an interrupt service routine (ISR) can discern which field was just read in.

General-Purpose EPPI Modes

The general-purpose (GP) EPPI modes are intended to suit a wide variety of data capture and transmission
applications.

Each EPPI has three bidirectional frame sync pins. Frame syncs can be generated internally by the EPPI,
or by an external device communicating with the EPPI.

GP modes can be distinguished based on the number of frame syncs used and the EPPI supports GP 0
FS—GP 3 FS modes.

All the GP modes, except 0 FS mode, support horizontal windowing. GP modes with 2 and 3 frame syncs
also support vertical windowing.

For GP transmit modes with internal clock or internal frame syncs, the EPPI starts generating the clock or
frame syncs only when the EPPI FIFO is full for the first time. For GP 0 FS transmit mode, the EPPI only
starts transmitting when the EPPI FIFO is full for the first time.

General-Purpose 0 Frame Sync Mode

This mode is useful for applications where periodic frame syncs are not used to frame the data.

After the initial trigger, the EPPI receives/transmits data samples on every clock cycle. However, if the
EPPI_CTL.SKIPEN bit is set for receive mode, the EPPI receives only alternate data samples.

The EPPI_LINE, EPPI_FRAME, EPPI_HCNT, EPPI_HDLY, EPPI_VCNT and EPPI_VDLY registers are not valid
for GP 0 FS mode. Therefore windowing is not possible in this mode. Also, line and frame track errors are
not applicable in this mode.

GP 0 FS receive mode is further divided into two sub-modes; internal trigger (EPPI_CTL.FLDSEL bit=1)
and external trigger (EPPI_CTL.FLDSEL bit=0), based on how data transmission/reception is initiated. GP
0 FS transmit mode is always internally triggered. All subsequent data manipulation is handled through
DMA.

• Frame synchronization in GP 0 FS external trigger mode. When the EPPI is programmed in external
trigger mode, it does not generate the PPI_FS1 signal and a trigger must be provided by the external

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–27

device. The EPPI starts receiving the data as soon as an PPI_FS1 signal assertion is detected. After that,
all subsequent data manipulation is handled by way of DMA and any activity on PPI_FS1 is ignored.

• Frame synchronization in GP 0 FS internal trigger mode. When the EPPI is programmed in internal
trigger mode, it starts receiving/transmitting data as soon as the EPPI clock is enabled and synchro-
nized. There may be up to two cycles latency before valid data is received or transmitted.

General-Purpose 1 Frame Sync Mode

This mode is useful for interfacing the EPPI with analog-to-digital converters (ADCs), digital-to-analog
converters (DACs) and other general-purpose devices. This mode works for both transmit and receive.

 The EPPI_FRAME, EPPI_VDLY and EPPI_VCNT registers have no effect in GP 1 FS mode. As a result, frame
track errors and vertical windowing are not available.

General-Purpose 2 Frame Sync Mode

This mode is useful for video applications that use two hardware synchronization signals, HSYNC and
VSYNC. The HSYNC signal can be connected to PPI_FS1and the VSYNC signal can be connected to PPI_
FS2.

Data Enable in General-Purpose 2 Frame Sync Transmit Mode

When configured in GP 2 FS transmit mode and for internal frame sync generation, with EPPI_CTL.
MUXSEL and EPPI_CTL.CLKGATEN bits not enabled, the PPI_FS3 pin functions as a data enable (DEN) pin.
The functionality of the DEN pin is described in the following two cases.

Case 1 – When blanking generation is configured using the EPPI_CTL.BLANKGEN bit and the EPPI data
length (EPPI_CTL.DLEN bit) is configured for 8, 10, or 16-bit transfers, the PPI_FS3 pin asserts during the
active data regions, aligned with PPI_CLK according to the clock polarity (EPPI_CTL.POLC bit) settings.
For this mode PPI_FS3 is driven based on the EPPI_CTL.POLC setting (PPI_FS3 is driven out on the same
EPPI clock edge that drives out data). The frame sync polarity (EPPI_CTL.POLS) setting does not apply
here—PPI_FS3 is always active high in this mode.

Case 2 – When blanking generation (EPPI_CTL.BLANKGEN=0) is disabled, or it is enabled but the EPPI data
length (EPPI_CTL.DLEN bit) is configured for a transfer size different from 8, 10, or 16-bits, the PPI_FS3
pin asserts at the start of the active data region on each line, aligned with PPI_CLK according to the EPPI_
CTL.POLC bit settings. For this mode PPI_FS3 is driven based on the EPPI_CTL.POLC setting (the PPI_FS3
signal is driven out on the same EPPI clock edge that drives out data).

The EPPI_CTL.POLS bit setting does not apply for case 2. The PPI_FS3 signal is always active high in this
mode. Once asserted, PPI_FS3 stays asserted for the number of clock cycles per line configured in the
EPPI_HCNT register, then it deasserts. This behavior on each line continues for the total number of lines
programmed in the EPPI_VCNT register per frame, and repeats at the start of subsequent video frames.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

31–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Also in case 2, if transmission of valid data is held off due to delays programmed in the EPPI_HDLY and/or
EPPI_VDLY registers, the assertion of PPI_FS3 is also held off accordingly, on a per-line and/or per-frame
basis.

General-Purpose 3 Frame Sync Mode

This mode is useful for video applications that use three hardware synchronization signals, HSYNC, VSYNC,
and FIELD. The HSYNC can be connected to the PPI_FS1 pin, VSYNC can be connected to the PPI_FS2 pin,
and FIELD can be connected to the PPI_FS3 pin.

GP 3 FS mode is similar in operation to GP 2 FS mode, except that the start of frame synchronization in
GP 3 FS mode also takes into account the PPI_FS3 pin. All the windowing register settings (EPPI_FRAME,
EPPI_LINE, EPPI_HDLY, EPPI_HCNT, EPPI_VDLY and EPPI_VCNTregisters), as well as data reception/trans-
mission and error generation are the same as for GP 2 FS mode. In addition, for GP 3 FS mode with
internal frame syncs, the EPPI_CTL.FLDSEL bit setting specifies the condition under which the transfer
begins.

The PPI_FS3signal is generated by the EPPI and toggles during every assertion of PPI_FS2 or a combina-
tion of PPI_FS2 and PPI_FS1(depending on the EPPI_CTL.FLDSEL bit setting). The EPPI skips an PPI_
FS2signal if the PPI_FS3value is high. Because of this condition, as a programming guideline, the PPI_
FS2period value should be half of the total number of pixels in the frame as in GP 3 FS mode. When in GP
2 FS mode, the PPI_FS2period should be programmed with the value equal to the number of pixels per
frame.

Supported Data Formats

The following sections describe EPPI receive and transmit data formats.

Receive Data Formats

The following table provides information about EPPI configuration for specific use models for receive
data.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–29

Table 31-12: EPPI Receive Data Formats

Input Data Width Use Model Splitting/Packing Options

8 NTSC/PAL data EPPI_CTL.SPLTEO=1
EPPI_CTL.SUBSPLTODD=1 if required to separate chroma
components

RGB sensor No splitting possible.
EPPI_CTL.PACKEN=1 – Four EPPI words are packed to 32-
bit DMA data.
EPPI_CTL.PACKEN=0 – Each EPPI word is sent as 8-bit
data on the 32-bit DMA bus. This consumes 4 times the
DMA bandwidth of the 8-bit case with EPPI_CTL.
PACKEN=1;

ADCs Gives I (in phase) and Q (quadrature) components.
EPPI_CTL.SPLTEO=1
EPPI_CTL.SUBSPLTODD=0 since there are only two
components.

10 NTSC/PAL data Each EPPI word is zero filled/sign extended to 16 bits.
EPPI_CTL.SPLTEO=1.
EPPI_CTL.SUBSPLTODD=1 if required to separate chroma
components.

RGB sensor No splitting possible.
EPPI_CTL.PACKEN=1. Two EPPI words are zero filled/sign
extended to 16 bits and packed to 32-bit DMA data.
EPPI_CTL.PACKEN=0. Each EPPI word may be zero filled/
sign extended to 16 bits and sent as a 16 bit data on the 32-
bit DMA bus. This consumes double the bandwidth of the
10-bit case with EPPI_CTL.PACKEN=1;

ADCs Each EPPI word is zero filled/sign extended to 16 bits.
EPPI_CTL.SPLTEO=1
SEPPI_CTL.SUBSPLTODD= 0 since there are only two
components.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

31–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

12 RGB sensor No splitting possible.
EPPI_CTL.PACKEN=1. Two EPPI words are zero filled/sign
extended to 16 bits and packed to 32-bit DMA data.
EPPI_CTL.PACKEN=0. Each EPPI word may be zero filled/
sign extended to 16 bits and sent as a 16 bit data on the 32-
bit DMA bus. This consumes double the bandwidth of the
12-bit case with EPPI_CTL.PACKEN=1;

ADCs Each EPPI word is zero filled/sign extended to 16 bits.
EPPI_CTL.SPLTEO=1
EPPI_CTL.SUBSPLTODD=0 since there are only two
components.

14 ADCs Each EPPI word is zero filled/sign extended to 16 bits.
EPPI_CTL.SPLTEO=1
EPPI_CTL.SUBSPLTODD=0 since there are only two
components.

16 8-bit luma/chroma pair for
NTSC or HD

EPPI_CTL.SPLTEO=1, EPPI_CTL.SPLTWRD=1, EPPI_CTL.
SUBSPLTODD=1 if required to separate chroma
components.

16-bit luma/chroma pair for
NTSC or HD

EPPI_CTL.SPLTEO=1, EPPI_CTL.SPLTWRD=0, EPPI_CTL.
SUBSPLTODD=1 if required to separate chroma
components.

RGB565 sensor No splitting possible.
EPPI_CTL.PACKEN=1. Two EPPI words are packed to a 32
bit DMA data. EPPI_CTL.RGBFMTEN is valid only in
transmit modes. So, RGB565 cannot be made byte aligned
in memory.
EPPI_CTL.PACKEN=0. Each EPPI word is sent as a 16 bit
data on the 32 bit DMA bus. This consumes double the
bandwidth of the 16 bit case with EPPI_CTL.PACKEN=1

8-bit ADCs
I/Q pair

EPPI_CTL.SPLTEO=1, EPPI_CTL.SPLTWRD=1, EPPI_CTL.
SUBSPLTODD=0.

16-bit ADCs
I/Q pair

EPPI_CTL.SPLTEO=1, EPPI_CTL.SPLTWRD=0, EPPI_CTL.
SUBSPLTODD=0.

20 10-bit luma/chroma pair for
NTSC or HD

No support for 20-bit mode.

Table 31-12: EPPI Receive Data Formats (Continued)

Input Data Width Use Model Splitting/Packing Options

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–31

Transmit Data Formats

The following table provides information about EPPI configuration for specific use models for transmit
data.

24 RGB888 sensor No splitting possible.
EPPI_CTL.PACKEN=1. Four EPPI words are packed to
three 32-bit DMA data.
EPPI_CTL.PACKEN=0. Each EPPI word is sent as a 24 bit
data on the 32 bit DMA bus.

Table 31-13: EPPI Transmit Data Formats

Output Data Width Use Model Splitting/Packing Options

8 NTSC/PAL data EPPI_CTL.SPLTEO=1
EPPI_CTL.SUBSPLTODD=1 if the chroma components (U
and V) come in separate DMA words.

Serial RGB for lower-
resolution LCDs

No splitting possible.
EPPI_CTL.PACKEN=1. The 32 bit DMA data is unpacked
to drive four EPPI words.
EPPI_CTL.PACKEN=0. The lowest 8 bits of the DMA data
is driven on the EPPI data and the rest of the 24 bits are
discarded. This consumes 4 times the DMA bandwidth of
the 8 bit case with EPPI_CTL.PACKEN=1.

10 NTSC/PAL data EPPI_CTL.SPLTEO=1
EPPI_CTL.SUBSPLTODD=1 if the chroma components (U
and V) come in separate DMA words.

DACs EPPI_CTL.SPLTEO=1, EPPI_CTL.SUBSPLTODD=0.
12 DACs EPPI_CTL.SPLTEO=1, EPPI_CTL.SUBSPLTODD=0.
14 DACs EPPI_CTL.SPLTEO=1, EPPI_CTL.SUBSPLTODD=0.

Table 31-12: EPPI Receive Data Formats (Continued)

Input Data Width Use Model Splitting/Packing Options

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

31–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Data Transfer Modes

The following sections describe EPPI data transfer modes, including receive/transmit data packing, sign
extension, zero fill, receive/transmit split modes, clock gating, delayed start, and data consistency manage-
ment.

Data Packing for Receive Modes

For receive modes, if the EPPI_CTL.PACKEN bit=1 and the DMA is 32 bits, the EPPI packs the incoming
data into 32-bit words based on the EPPI_CTL.DLENand EPPI_CTL.SWAPEN bit settings. When EPPI_CTL.
SWAPEN=0, the EPPI puts the first data in the least significant bits and when EPPI_CTL.SWAPEN=1, the EPPI

16 8-bit luma/chroma pair for
NTSC or HD

EPPI_CTL.SPLTEO=1, EPPI_CTL.SPLTWRD=1, EPPI_
CTL.SUBSPLTODD=1 if the chroma components (U and
V) come in separate DMA words.

16-bit luma/chroma pair
for NTSC or HD

EPPI_CTL.SPLTEO=1, EPPI_CTL.SPLTWRD=0, EPPI_
CTL.SUBSPLTODD=1 if the chroma components (U and
V) come in separate DMA words.

RGB565 LCD No splitting possible.
EPPI_CTL.RGBFMTEN=1. Takes RGB888 data from the
memory and drops the LSBs from each component to
drive out RGB565 data.

8-bit ADCs
I/Q pair

EPPI_CTL.SPLTEO=1, EPPI_CTL.SPLTWRD=1, EPPI_
CTL.SUBSPLTODD= 0

16-bit ADCs
I/Q pair

EPPI_CTL.SPLTEO=1, EPPI_CTL.SPLTWRD=0, EPPI_
CTL.SUBSPLTODD=1

18 RGB666 LCD No splitting possible.
EPPI_CTL.RGBFMTEN=1. Takes RGB888 data from the
memory and drops the 2 LSBs from each component to
drive out RGB666 data.

24 RGB888 LCD No splitting possible.
EPPI_CTL.RGBFMTEN=1. Takes three 32-bit DMA data
and drives out four 24-bit data on the EPPI pins.
EPPI_CTL.PACKEN=0. Takes the 32-bit DMA word, drops
the 8 MSBs and drives out the remaining 24 bits on the
EPPI pins

Table 31-13: EPPI Transmit Data Formats (Continued)

Output Data Width Use Model Splitting/Packing Options

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–33

puts the first data in the most significant bits. The packing options for the EPPI_CTL.DLENbits are as
follows.

• When EPPI_CTL.DLEN=8, four 8-bit words can be packed into one 32-bit word.

• When EPPI_CTL.DLEN=16, two 16-bit words can be packed into one 32-bit word.

• For EPPI_CTL.DLEN values that are more than 8 bits but less than 16 bits, two such words are either
sign-extended or zero-filled to 16 bits, and packed into one 32-bit word.

• When EPPI_CTL.DLEN=18, the EPPI sign-extends or zero-fills the 18-bit data to 24 bits and packs four
24-bit words into three 32-bit words.

• When EPPI_CTL.DLEN=24, the EPPI packs four 24-bit words into three 32-bit words.

When EPPI_CTL.PACKEN=0, the EPPI receives the incoming data and sends it on the bus as-is. If EPPI_
CTL.DLEN is less than or equal to 16 bits, the DMA is a 16-bit DMA; otherwise it is a 32-bit DMA.

Data Packing for Transmit Modes

For transmit modes, if the EPPI_CTL.DLENbit=1 and the DMA is a 32-bit DMA, the EPPI unpacks the 32-
bit word according to the EPPI_CTL.DLENand EPPI_CTL.SWAPEN bit settings.

If EPPI_CTL.SWAPEN=1, the EPPI transmits the most significant bits as the first data, and if EPPI_CTL.
SWAPEN=0, the EPPI transmits the least significant bits as the first data. The unpacking options for the
EPPI_CTL.DLEN bits are as follows.

• When EPPI_CTL.DLEN=8, the EPPI transmits one 32-bit word from memory as four 8-bit data words.

• For EPPI_CTL.DLEN values greater than 8 bits but less than or equal to 16 bits, the EPPI transmits one
32-bit word from memory as two 16-bit data words.

• When EPPI_CTL.DLEN=18 or 24, the EPPI transmits three 32-bit words from memory as four data
words.

Sign-Extension and Zero-Filling

The following list describes the bit settings and functionality for sign-extension and zero-fill.

• For EPPI_CTL.DLEN equal to 10, 12 or 14, data is zero-filled or sign-extended to 16 bits.

• For EPPI_CTL.DLEN equal to 18 bits, data is zero-filled or sign-extended to 24 bits if packing is enabled,
and zero-filled or sign-extended to 32 bits if packing is disabled.

• For EPPI_CTL.DLEN equal to 24 bits, data is zero-filled or sign-extended to 32 bits if packing is disabled.

• For EPPI_CTL.DLEN equal to 8 bits, data is zero-filled or sign-extended to 16 bits if packing is disabled.

• If EPPI_CTL.SIGNEXT=1, then the data is sign-extended, otherwise it is zero-filled.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

31–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Split Receive Modes

The control register has three control bits for split receive modes: EPPI_CTL.SPLTEO, EPPI_CTL.
SUBSPLTODD and EPPI_CTL.DMACFG. Packing is not valid in split modes.

• If EPPI_CTL.SPLTEO=1, the EPPI splits the incoming data stream into two sub-streams, an even stream
and an odd stream, and packs them separately.

• The EPPI_CTL.SUBSPLTODD bit is available only when EPPI_CTL.SPLTEO=1. When EPPI_CTL.
SUBSPLTODD=1, the EPPI sub-splits the odd sub-stream, and packs the streams separately.

• The EPPI_CTL.DMACFG bit is also available only if EPPI_CTL.SPLTEO=1. If EPPI_CTL.DMACFG=1, the
EPPI uses two DMA channels and if EPPI_CTL.DMACFG=0, the EPPI uses only one DMA channel.

Split Transmit Modes

The EPPI_CTL register has three control bits for split transmit modes: EPPI_CTL.SPLTEO, EPPI_CTL.
SUBSPLTODD and EPPI_CTL.DMACFG. The DMA is always a 32-bit DMA. Packing is not valid in split
modes.

• If EPPI_CTL.SPLTEO=1 the EPPI receives the Luma (Y3Y2Y1Y0) and interleaved Chroma
(Cr1Cb1Cr0Cb0) data as 32 bits from the DMA channel and interleaves the data to form a 4:2:2 YCrCb
data stream to transmit.

• The EPPI_CTL.SUBSPLTODD bit is available only when EPPI_CTL.SPLTEO=1. In this case if EPPI_CTL.
SUBSPLTODD=1, the EPPI receives the Luma (Y3Y2Y1Y0) and de-interleaved Chroma
(Cb3Cb2Cb1Cb0 and Cr3Cr2Cr1Cr0) and interleaves the data to form a 4:2:2 YCrCb data stream to
transmit. (Note that the EPPI does not decimate the chroma data when formatting it into 4:2:2).

• The EPPI_CTL.DMACFG bit is also valid only if EPPI_CTL.SPLTEO=1 If EPPI_CTL.DMACFG=1, the EPPI
uses two DMA channels and if EPPI_CTL.DMACFG=0, the EPPI uses only one DMA channel.

Clock Gating

In ITU-R BT.656 and GP 0/1/2 FS modes, PPI_FS3 becomes a clock-gating input. This is valid for both
internally and externally sourced PPI_CLK, in both receive and transmit modes. This clock gating signal
must be synchronous with PPI_CLK and must be driven by the external device on the rising edge of PPI_
CLK. Its function is to hold the sync and data lines in their current state until PPI_FS3 is driven low. There
are no additional latency cycles upon coming out of clock gating mode.

If clock gating is not required, the PPI_FS3 pin must either be tied to ground, or configured to operate as
another of its multiplexed functions.

In GP 2 FS transmit mode with internally generated frame syncs, the PPI_FS3 pin functions as a data
enable signal.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–35

Support for Delayed Start of EPPI Frame Syncs

The EPPI supports a delayed start of the PPI_FS1 and PPI_FS2frame syncs. The EPPI_FS1_DLYand EPPI_
FS2_DLYregisters are programmable registers corresponding to PPI_FS1(HSYNC) and PPI_
FS2(VSYNC). These registers are described below.

The first active edge of the internally generated frame sync is delayed by the amount programmed in these
registers starting from the first PPI_CLKedge. The delay counter (which is the period counter itself, since
they don’t run together) runs only for the first time and then shuts off until the EPPI is re-enabled. The
delay registers should be programmed prior to the first PPI_CLK edge (similar to the width and period
registers). The figure below shows the functioning of PPI_FS1 and PPI_FS2.

Figure 31-14: EPPI Delayed Frame Sync Generation

Ignoring Premature External Frame Syncs for Data Consistency

Once a frame has started with a VSYNC followed by a HSYNC (or both coming together), a line is tracked.
When the count expires, the state machine waits at the end of line for a HSYNC to come. With the arrival
of the HSYNC, the state machine starts tracking the next line and so on.

The number of lines tracked is counted separately and once the end of a frame is reached, the state machine
waits there for the next VSYNC/HSYNC combination and the next frame starts once they are sampled.
The problem with this scheme is that every incoming FS (VSYNC or HSYNC) resets the respective
counters and the tracking starts all over (even if the FS signals are premature). This results in incomplete
data (or frames) to enter into memory through the PxP interface.

To correct this problem, the EPPI waits for a frame/line completion before considering any incoming FS
as valid as described below.

• Single FS mode and line tracking in dual FS mode – When a line is in progress, if HSYNC is detected
prematurely, it is ignored. A line track underflow event is generated.

• Dual FS mode – If a VSYNC is received when a frame is in progress, it is ignored. A frame track under-
flow error (EPPI_STAT.FTERRUNDR) is generated.

Ignoring the FS ensures that once a frame starts, the amount of data that goes into the memory/PxP inter-
face exactly corresponds to the programmed data size in a frame.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI EVENT CONTROL

31–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

NOTE: Even if the premature FS is a valid FS, the state machine loses at most one frame and it recovers in
the subsequent FS. At all times the FS to number of data going into the memory relationship is
maintained as programmed.

When data underflow errors occur at the DMA interface, the EPPI does the following.

• If a premature line sync is detected, a LT underflow error is generated (EPPI_STAT.LTERRUNDR=1). All
further line track errors are ignored until a next valid line sync is detected by the EPPI.

• If a premature frame sync is detected, a FT underflow error is generated(EPPI_STAT.FTERRUNDR=1).
All further frame track and line track errors are ignored until a next valid frame sync is detected by the
EPPI.

EPPI Event Control
The following sections describe how events are used in EPPI management.

EPPI Status, Error and Interrupt Signals

The EPPI generates error interrupts (flagged in the EPPI_STAT register) if any one of the following error
conditions occur.

• EPPI_STAT.YFIFOERR (YFIFO underflow or overflow)

• EPPI_STAT.CFIFOERR (CFIFO underflow or overflow)

• EPPI_STAT.LTERROVR (line track overflow error)

• EPPI_STAT.LTERRUNDR (line track underflow error)

• EPPI_STAT.FTERROVR (frame track overflow error)

• EPPI_STAT.FTERRUNDR (frame track underflow error)

• EPPI_STAT.ERRNCOR (ITU preamble error not corrected)

These conditions are cleared by a W1C (write-1-to-clear) operation. Each of the individual conditions
which cause an EPPI error interrupt can be masked. The interrupt mask register (EPPI_IMSK) allows the
masking of individual conditions which cause error interrupts.

There is only one interrupt line from each EPPI so all interrupts are internally OR’ed and sent as a single
interrupt to the core. The EPPI_STAT register must then be read to discover specific errors. These errors
are described in detail in the following sections.

PxP Errors

The following are PxP generated errors.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–37

Receive mode – The receive data sent to the PxP is stalled by the destination in EPPI receive. In this situ-
ation the data is lost because the EPPI cannot hold off the incoming data. This condition is reported in the
EPPI_STAT.PXPERR bit. This bit is cleared by a W1C operation.

Transmit mode – The transmit data coming from the PxP interface goes through the FIFO. Data under-
flow errors are reported as EPPI_STAT.YFIFOERR if the FIFO underflows similar to the DMA transmit
mode.

Frame and Line Track Errors

When functioning in external frame sync mode, the line track error (EPPI_STAT.LTERROVR and EPPI_
STAT.LTERRUNDR) and frame track error (EPPI_STAT.FTERROVR and EPPI_STAT.FTERRUNDR) status bits
are used to keep track of the line and frame synchronization errors. They are updated when there is a
mismatch detected in the HSYNC and VSYNC as compared to the programmed values in EPPI_LINE and
EPPI_FRAMEcount registers.

Line Track Errors

The line track overflow (EPPI_STAT.LTERROVR) and underflow errors (EPPI_STAT.LTERRUNDR) generate
a maskable interrupt as soon as they are identified and not at the next frame sync.

• If the frame sync has not arrived when the EPPI_LINE counter expires, then the EPPI_STAT.LTERROVR
error is generated.

• When the EPPI_LINE counter is running and a frame sync is detected, the EPPI_STAT.LTERRUNDR
error is generated. Both interrupts are cleared by a W1C operation.

Frame Track Errors

The frame track overflow (EPPI_STAT.FTERROVR) and underflow errors (EPPI_STAT.FTERRUNDR)
generate a maskable interrupt as soon as they are identified. In the case of the EPPI_STAT.FTERROVR error,
when the EPPI_FRAME.VALUE counter expires, the error is reported before the next FS arrives.

When the EPPI_FRAME counter is running, if an FS is detected, then an EPPI_STAT.FTERRUNDR is reported.

Both errors generate an error interrupt and should be cleared by a W1C operation at their respective loca-
tions in the status register.

A premature frame sync results in a frame track under run error but the error is logged (register bit set)
only after the subsequent blanking period (if any) elapses.

Preamble Error Not Corrected Error

The EPPI supports data embedded frame syncs in ITU and SMPTE formats. In these formats, the module
can receive an erroneous preamble which is not correctable. The EPPI_STAT.ERRNCOR error signals when
this event occurs.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EPPI Programming Model
The following sections describe programming techniques, including receiving/transmitting ITU-R 656
frames; configuring transfers in GP0, GP1, GP2, and GP3 modes; and managing EPPI mode configura-
tions.

Receiving ITU-R 656 Frames

The EPPI supports the reception of ITU-R 656 compliant frames.

1. Configure the EPPI to receive either full ITU-R 656 frame, active video or blanking information by
configuring the EPPI_CTL.XFRTYPE bits.

2. In both active video mode and in VBI (vertical blanking information) mode, specify the number of total
(active plus vertical blanking) lines per frame in the EPPI_FRAME register, and the number of total
(active plus horizontal blanking plus 8) samples per line in the EPPI_LINE register.

3. Configure DMA descriptors to move the data to memory.

4. Enable DMA.

5. Enable the EPPI.

RESULT:

Depending on how the EPPI is configured, either the full ITU-R 656 frame is moved to memory or just the
active video or just the blanking information.

Transmitting ITU-R 656 Frames in GP Transmit Modes

The EPPI can take active video from memory and generate the proper preambles and blanking informa-
tion to produce valid ITU-R 656 video frames for transmission.

1. Provide active data frame in memory.

2. Set the EPPI_CTL.BLANKGEN bit so the EPPI generates blanking information.

3. Configure the EPPI_FS1_WLHB, EPPI_FS1_PASPL, EPPI_FS2_WLVB, EPPI_FS2_PALPF registers accord-
ingly.

4. Configure the rest of the EPPI settings.

5. Configure DMA to fetch active frame data from memory buffers.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–39

6. Enable DMA.

7. Enable the EPPI.

RESULT:

The EPPI takes the active data from memory, generates the blanking information and transmits an ITU-
R 656 frame

Configuring Transfers in GP 0 FS Mode

The EPPI can be configured so no periodic frame syncs are used to frame the data.

1. Configure the EPPI to operate in GP 0 FS mode by setting XFRTYPE = b#11 and FSCFG = b#00 in the
EPPI_CTL register.

2. When receiving, configure the EPPI to trigger on internally or externally by setting the FLDSEL field
appropriately in the EPPI_CTL register. When transmitting, the trigger will always be internally gener-
ated.

3. Configure DMA to move the data to or from memory.

4. Enable DMA.

5. Enable EPPI.

RESULT:

The data amount of data transferred will be controlled by the DMA descriptions and not by any frame
syncs from the EPPI.

Configuring Transfers in GP 1 FS Mode

The GP 1 FS mode is useful for interfacing the EPPI with analog-to-digital converters (ADCs), digital-to-
analog converters (DACs) and other general-purpose devices. This mode works for both transmit and
receive.

NOTE: The EPPI_FRAME, EPPI_VDLY and EPPI_VCNT registers have no effect in GP 1 FS mode. As a result,
frame track errors and vertical windowing are not possible in this mode.

1. Configure GP 1 FS mode by setting the EPPI_CTL.XFRTYPE bit=b#11 and the EPPI_CTL.FSCFG
bit=b#01. The frame syncs may be provided by an external device or they can be sourced by the EPPI
itself.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

2. Program the EPPI_LINE register to contain the number clock cycles expected between two assertions
of the PPI_FS1 signal to keep track of line track errors. The EPPI_LINE register must be programmed
before the EPPI_HCNT register.

3. Program the EPPI_HDLY register to contain the number of clock cycles to wait after the assertion of
PPI_FS1, for example the start of frame.

4. Program the EPPI_HCNT register to contain the number of data samples to receive or transmit for each
frame.

5. Configure DMA to move the data to or from memory.

6. Enable DMA.

7. Enable the EPPI.

RESULT:

Data moves in or out of memory and is framed by a frame sync for every line.

Configuring Transfers in GP 2 FS Mode

GP 2 FS mode is useful for video applications that use two hardware synchronization signals, HSYNC and
VSYNC. The HSYNC can be connected to the PPI_FS1signal and VSYNC can be connected to the PPI_
FS2signal.

1. Configure the EPPI to operate in GP 0 FS mode by setting the EPPI_CTL.XFRTYPE bit=b#11 and the
EPPI_CTL.FSCFG bit=b#10. The frame syncs may be provided by an external device or they can be
sourced by the EPPI itself.

2. Program the EPPI_FRAME register to contain the number of expected lines per frame. The value should
be equal to the number of PPI_FS1 signal assertions expected between the start of each frame sync and
is used to keep track of frame track errors. The EPPI_FRAME register must be programmed before the
EPPI_VCNT register.

3. Program the EPPI_LINE register to contain the number of clock cycles expected between two assertions
of the PPI_FS1 signal to keep track of line track errors. The EPPI_LINE register must be programmed
before the EPPI_HCNT register.

4. Program the EPPI_HDLY register to configure the number of clock cycles to wait after the assertion of
the PPI_FS1 signal, (for example the start of the line).

5. Program the EPPI_HCNT register to contain the number of data samples to receive or transmit for each
line.

6. Program the EPPI_VDLY register to contain the number of lines to wait after the start of frame is
detected.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–41

7. Program the EPPI_VCNT register to contain the number of lines to receive or transmit.

8. If setting up the EPPI for transmit, the data enable (DEN) pin behaves according to the enabling of the
blanking generation and the data length setting (DLEN). More detail can be found at Data Enable in
General-Purpose 2 Frame Sync Transmit Mode.

9. Enable DMA.

10. Enable the EPPI.

RESULT:

Data is moved in or out of memory and framed by a frame sync for every line and frame.

Configuring Transfers in GP 3 FS Mode

GP 3 FS mode is useful for video applications that use three hardware synchronization signals, HSYNC,
VSYNC, and FIELD. The HSYNC can be connected to PPI_FS1, VSYNC can be connected to PPI_FS2,
and FIELD can be connected to PPI_FS3.

1. Configure the EPPI to operate in GP 3 FS mode by setting the EPPI_CTL.XFRTYPE bit=b#11 and the
EPPI_CTL.FSCFG bit=b#11. The frame syncs may be provided by an external device or they can be
sourced by the EPPI itself.

2. Configure the windowing registers according to steps in GP 2 FS mode.

3. Enable DMA.

4. Enable the EPPI.

RESULT:

Data is moved in or out of memory and is framed by a frame sync for every line and frame. Operation and
result is similar to operation in GP 2 FS mode but the PPI_FS3 signal is also used.

Configuring the EPPI to Use the Windowing Feature

Windowing is a useful feature for applications where the region of interest is smaller than the active video
stream (for example, sensor calibration, auto-focusing, and others). It can result in significant DMA band-
width reduction. The EPPI supports windowing for GP Input modes.

1. Program the EPPI_FRAME register with the number of lines the frame contains.

2. Program the EPPI_LINE register with the number of samples per line in the frame.

3. Program the EPPI_VDLY register with the number of lines to wait after the start of a new frame before
starting to read/transmit data.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

4. Program the EPPI_VCNT register with the number of lines to read in or write out after EPPI_VDLY
number of lines from the start of the frame.

5. Program the EPPI_HDLY register with the number of clock cycles to delay after the assertion of PPI_FS1
is detected for the start of a new line.

6. Program the EPPI_HCNT register with the number of samples to read in or write out after EPPI_HDLY
number of cycles have expired since the assertion of PPI_FS1.

EPPI Mode Configuration

This section describes EPPI mode configurations, including support for all EPPI transmit and receive
modes.

Configuring 8-Bit Receive Mode

For 8-bit non-split receive mode, if EPPI_CTL.PACKEN=1, the EPPI packs four bytes of incoming data into
a 32-bit word. Alternate even or odd samples may be skipped based on the EPPI_CTL.SKIPEN and EPPI_
CTL.SKIPEO bits. The first incoming data can be placed either in the least significant bit positions or in the
most significant bit positions, based on the EPPI_CTL.SWAPEN bit setting.

Table 31-14: 8-Bit Receive Mode with Packing Enabled

Pin Data (8
bits)

DMA DATA
SKIPEN=0
SKIPEO =X
SWAPEN=0

SIGNEXT=X

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=1

SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=0
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=0
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=1
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=1
SIGNEXT=X

0x11
0x22
0x33
0x44 0x4433 2211 0x1122 3344
0x55
0x66
0x77 0x7755 3311 0x1133 5577
0x88 0x8877 6655 0x5566 7788 0x8866 4422 0x2244 6688
0x99
0xAA
0xBB
0xCC 0xCCBB

AA99
0x99AA
BBCC

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–43

If EPPI_CTL.PACKEN=0, the DMA is a 16-bit DMA and the EPPI either sign-extends or zero-fills the bytes
of incoming data into a 16-bit word. The EPPI_CTL.SWAPEN bit has no effect if EPPI_CTL.PACKEN=0.

Configuring 10/12/14-Bit Receive Modes

For 10, 12, or 14-bit non-split receive modes, the EPPI first either zero-fills or sign-extends the incoming
data (depending on the setting of the EPPI_CTL.SIGNEXT bit) into a 16-bit word. If EPPI_CTL.PACKEN=1,
the EPPI then packs two of these words into one 32-bit word. Alternate even or odd samples may be
skipped based on the EPPI_CTL.SKIPEN and EPPI_CTL.SKIPEO bits. The first incoming data can be placed
either in the least significant bit positions or in the most significant bit positions, based on the EPPI_CTL.
SWAPEN bit setting.

0xDD
0xEE
0xFF 0xFFDD

BB99
0x99BB
DDFF

0x00 0x00FF
EEDD

0xDDE
EFF00

0x00EE
CCAA

0xAACC
EE00

Table 31-15: 8-Bit Receive Mode with Packing Disabled

Pin Data (8 bits)

DMA DATA
SKIPEN=0
SKIPEO=X

SWAPEN=X
SIGNEXT=0

DMA DATA
SKIPEN=0
SKIPEO=X

SWAPEN=X
SIGNEXT=1

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=X
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=X
SIGNEXT=1

0x44 0x0044 0x0044 0x0044
0x55 0x0055 0x0055 0x0055
0x66 0x0066 0x0066 0x0066
0x77 0x0077 0x0077 0x0077
0x88 0x0088 0xFF88 0x0088
0x99 0x0099 0xFF99 0xFF99
0xAA 0x00AA 0xFFAA 0x00AA
0xBB 0x00BB 0xFFBB 0xFFBB

Table 31-14: 8-Bit Receive Mode with Packing Enabled (Continued)

Pin Data (8
bits)

DMA DATA
SKIPEN=0
SKIPEO =X
SWAPEN=0

SIGNEXT=X

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=1

SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=0
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=0
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=1
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=1
SIGNEXT=X

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 31-16: 10-Bit Receive Mode with Sign Extension, with Packing Enabled

Pin Data (10 bits) MSB

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=0
SIGNEXT=1

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=1
SIGNEXT=1

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=0
SIGNEXT=1

0x111 0
0x222 1 0xFE22 0111 0x0111 FE22
0x333 1 0xFF33 0111
0x044 0 0x0044 FF33 0xff33 0044
0x155 0
0x266 1 0xFE66 0155 0x0155 FE66
0x377 1 0xFF77 0155
0x088 0 0x0088 FF77 0xFF77 0088

Table 31-17: 10-Bit Receive Mode with Sign Extension, with Packing Enabled

Pin Data (10 bits) MSB

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=0
SIGNEXT=1

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=1
SIGNEXT=1

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=1
SIGNEXT=1

0x111 0
0x222 1
0x333 1 0x0011 FF33
0x044 0 0x0044 FE22 0xFE22 0044
0x155 0
0x266 1
0x377 1 0x0155 FF77
0x088 0 0x0088 FE66 0xFE66 0088

Table 31-18: 10-Bit Receive Mode, with Zero-Fill, with Packing Enabled

Pin Data (10
bits)

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=0
SIGNEXT=0

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=1
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=0
SIGNEXT=0

DMA DATA
SKIP_EN=1
SKIP_EO=0
SWAPEN=0
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=1
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=1
SIGNEXT=0

0x111

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–45

The following table shows a 10-bit receive mode example when EPPI_CTL.PACKEN=0:

Configuring 16-Bit Receive Mode

For 16-bit non-split receive mode, if EPPI_CTL.PACKEN=1, the EPPI packs two 16-bit incoming data into
one 32-bit word. Alternate even or odd samples may be skipped based on the EPPI_CTL.SKIPEN and
EPPI_CTL.SKIPEO bits. The first incoming data can be placed either in the least significant bit positions or
in the most significant bit positions, based on the EPPI_CTL.SWAPEN bit setting.

0x222 0x0222 0111 0x0111 0222
0x333 0x0333 0111 0x0011 0333
0x044 0x0044 0333 0x0333 0044 0x0044 0222 0x0222 0044
0x155
0x266 0x0266 0155 0x0155 0266
0x377 0x0377 0155 0x0155 0377
0x088 0x0088 0377 0x0377 0088 0x0088 0266 0x0266 0088

Table 31-19: 10-bit Receive Mode with Packing Disabled

Pin Data (10 bits) MSB

DMA DATA
SKIPEN=0
SKIPEO=X

SWAPEN=X
SIGNEXT=1

DMA DATA
SKIPEN=0
SKIPEO=X

SWAPEN=X
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=X
SIGNEXT=1

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=X
SIGNEXT=0

0x111 0 0x0111 0x0111 0x0111
0x222 1 0xFE22 0x0222 0x0222
0x333 1 0xFF33 0x0333 0xFF33
0x044 0 0x0044 0x0444 0x0444
0x155 0 0x0155 0x0155 0x0155
0x266 1 0xFE66 0x0266 0x0266
0x377 1 0xFF77 0x0377 0xFF77
0x088 0 0x0088 0x0088 0x088

Table 31-18: 10-Bit Receive Mode, with Zero-Fill, with Packing Enabled (Continued)

Pin Data (10
bits)

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=0
SIGNEXT=0

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=1
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=0
SIGNEXT=0

DMA DATA
SKIP_EN=1
SKIP_EO=0
SWAPEN=0
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=1
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=1
SIGNEXT=0

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuring 18-Bit Receive Mode

For 18-bit non-split receive mode, if EPPI_CTL.PACKEN=0, the EPPI zero-fills or sign-extends the
incoming data into a 32-bit word. If EPPI_CTL.PACKEN=1, the EPPI first zero-fills or sign-extends the
incoming data to 24 bits, and then packs four such 24-bit data words into three 32-bit words. Alternate
even or odd samples may be skipped based on the EPPI_CTL.SKIPEN and EPPI_CTL.SKIPEO bits. The
EPPI_CTL.SWAPEN bit has no effect.

Table 31-20: 16-Bit Receive Mode with Packing Enabled

Pin Data (16 bits)

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=0

SIGNEXT=X

DMA DATA
SKIPEN=0
SKIPEO=X
SWAPEN=1

SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=0
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=0
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=1
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=1
SIGNEXT=X

0x1111
0x2222 0x2222 1111 0x1111 2222
0x3333 0x3333 1111 0x1111 3333
0x4444 0x4444 3333 0x3333 4444 0x4444 2222 0x2222 4444
0x5555
0x6666 0x6666 5555 0x5555 6666
0x7777 0x7777 5555 0x5555 7777
0x8888 0x8888 7777 0x7777 8888 0x8888 6666 0x6666 8888

Table 31-21: 16-bit Receive Mode with Packing Disabled

Pin Data (16 bits)

DMA DATA
SKIPEN=0
SKIPEO=X

SWAPEN=X
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=X
SIGNEXT=X

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=X
SIGNEXT=X

0x1111 0x1111 0x1111
0x2222 0x2222 0x2222
0x3333 0x3333 0x3333
0x4444 0x4444 0x4444
0x5555 0x5555 0x5555
0x6666 0x6666 0x6666
0x7777 0x7777 0x7777
0x8888 0x8888 0x8888

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–47

Configuring 24-Bit Receive Mode

For 24-bit non-split receive mode, if EPPI_CTL.PACKEN=0, the EPPI zero-fills or sign-extends the
incoming data into a 32-bit word. If EPPI_CTL.PACKEN=1, the EPPI packs four incoming 24-bit data words
into three 32-bit words. Alternate even or odd samples may be skipped based on the EPPI_CTL.SKIPEN
and EPPI_CTL.SKIPEO bits. The EPPI_CTL.SWAPEN bit has no effect.

Table 31-22: 18-bit Receive Mode with Packing Disabled

Pin Data (18 bits)

DMA DATA
SKIPEN=0
SKIPEO=X

SWAPEN=X
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=X
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=X
SIGNEXT=0

0x0 6666 0x0000 6666 0x0000 6666
0x1 7777 0x0001 7777 0x0001 7777
0x2 8888 0x0002 8888 0x0002 8888
0x3 9999 0x0003 9999 0x0003 9999

Table 31-23: 18-bit Receive Mode with Packing Enabled

Pin Data (18 bits)

DMA DATA
SKIPEN=0
SKIPEO=X

SWAPEN=X
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=X
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=X
SIGNEXT=0

0x0 1122
0x1 3344 0x4400 1122
0x2 5566 0x5566 0133 0x6600 1122
0x3 7788 0x0377 8802 0x8801 3344
0x0 99AA 0x99AA 0255
0x1 BBCC 0xCC00 99AA 0xBBCC 0377
0x2 DDEE 0xDDEE 01BB 0x02DD EE00
0x3 FF12 0x03FF 122D 0x03FF 1201

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuring 8-Bit Split Receive Mode

For 8-bit split receive mode, the EPPI_CTL.PACKEN and EPPI_CTL.SIGNEXT bits are not valid. The EPPI
always packs four bytes of data into one 32-bit word.

Table 31-24: 24-bit Receive Mode with Packing Disabled

Pin Data(24 bits)

DMA DATA
SKIPEN=0
SKIPEO=X

SWAPEN=X
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=X
SIGNEXT=0

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=X
SIGNEXT=0

0x6 6666 0x0066 6666 0x0066 6666
0x7 7777 0x0077 7777 0x0077 7777
0x8 8888 0x0088 8888 0x0088 8888
0x9 9999 0x0099 9999 0x0099 9999

Table 31-25: 24-bit Receive Mode with Packing Enabled

Pin Data (24 bits)

DMA DATA
SKIPEN=0
SKIPEO=X

SWAPEN=X

DMA DATA
SKIPEN=1
SKIPEO=1

SWAPEN=X

DMA DATA
SKIPEN=1
SKIPEO=0

SWAPEN=X

0x11 2233
0x44 5566 0x6611 2233
0x77 8899 0x8899 4455 0x9911 2233
0x00 AABB 0x00AA BB77 0xBB44 5566
0xCC DDEE 0xDDEE 7788
0xFF 1234 0x34CC DDEE 0x1234 00AA
0x56 7890 0x7890 FF12 0x5678 90CC
0xAB CDEF 0xABCD EF56 0xABCD EFFF

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–49

Table 31-26: 8-bit Split Receive Mode with SKIPEN = 0 and SWAPEN = 0

Pin
Data

(8 bits)

SPLTEO=1
SUBSPLTODD= 0

SWAPEN=0
SKIPEN=0
SKIPEO=X

SPLTEO=1
SUBSPLTODD= 1

SWAPEN=0
SKIPEN=0
SKIPEO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

Primary
DMA

Channel

Secondary
DMA

Channel

Primary
DMA

Channel

Primary
DMA

Channel

Secondary
DMA

Channel

Primary
DMA

Channel

V0

Y0

U0

Y1

V1

Y2

U1 U1V1U0V0 U1V1U0V0

Y3 Y3Y2Y1Y0 Y3Y2Y1Y0 Y3Y2Y1Y0 Y3Y2Y1Y0

V2

Y4

U2

Y5

V3 V3V2V1V0 V3V2V1V0

Y6

U3 U3V3U2V2 U3V3U2V2 U3U2U1U0

Y7 Y7Y6Y5Y4 Y7Y6Y5Y4 Y7Y6Y5Y4 Y7Y6Y5Y4

V4 U3U2U1U0

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When the bits settings are EPPI_CTL.SPLTEO=1, EPPI_CTL.SUBSPLTODD=1 and EPPI_CTL.DMACFG=0,
note that although the second Chroma component (U0U1U2U3 in the tables above) sent over the DMA
bus is completely packed before the Luma component (Y4Y5Y6Y7 in the tables above), it is intentionally
held until that previous word is moved out. This allows the separation of Luma and Chroma values into
individual buffers when using 2D-DMA.

Table 31-27: 8-bit Split Receive Mode with SKIPEN = 0 and SWAPEN = 1

Pin Data
(8 bits)

SPLTEO=1
SUBSPLTODD=0

SWAPEN=1
SKIPEN=0
SKIPEO=X

SPLTEO=1
SUBSPLTODD=1

SWAPEN=1
SKIPEN=0
SKIPEO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

PRIMARY
DMA

CHANNEL

SECONDARY
DMA

CHANNEL

PRIMARY
DMA

CHANNEL

PRIMARY
DMA

CHANNEL

SECONDARY
DMA

CHANNEL

PRIMARY
DMA

CHANNEL

V0

Y0

U0

Y1

V1

Y2

U1 V0U0V1U1 V0U0V1U1

Y3 Y0Y1Y2Y3 Y0Y1Y2Y3 Y0Y1Y2Y3 Y0Y1Y2Y3

V2

Y4

U2

Y5

V3 V0V1V2V3 V0V1V2V3

Y6

U3 V2U2V3U3 V2U2V3U3 U0U1U2U3

Y7 Y4Y5Y6Y7 Y4Y5Y6Y7 Y4Y5Y6Y7 Y4Y5Y6Y7

V4 U0U1U2U3

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–51

Configuring 10/12/14/16-Bit Split Receive Mode with SPLTWRD=0

For 16-bit split receive mode, the EPPI_CTL.PACKEN bit is not valid. The EPPI always packs two 16-bit
words into one 32-bit word. For 10, 12, or 14-bit split receive modes, the EPPI first either sign-extends or
zero-fills the incoming data into a 16-bit word, and then packs two of these words into one 32-bit word to
send to the DMA.

Table 31-28: 16-bit Split Receive Mode with SPLTWRD = 0, SKIPEN = 0 and SWAPEN = 0

Pin Data
(16 bits)

SPLTEO=1
SUBSPLTODD=0

SWAPEN=0
SKIPEN=0
SKIPEO=X

SPLTEO=1
SUBSPLTODD=1

SWAPEN=0
SKIPEN=0
SKIPEO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

Primary
DMA

Channel

Secondary
DMA

Channel

Primary
DMA

Channel

Primary
DMA

Channel

Secondary
DMA

Channel

Primary
DMA

Channel

V0

Y0

U0 U0V0 U0V0

Y1 Y1Y0 Y1Y0 Y1Y0 Y1Y0

V1 V1V0 V1V0

Y2

U1 U1V1 U1V1 U1U0

Y3 Y3Y2 Y3Y2 Y3Y2 Y3Y2

V2 U1U0

Table 31-29: 16-bit Split Receive Mode with SPLTWRD = 0, SKIPEN = 0 and SWAPEN = 1

Pin Data
(16 bits)

SPLTEO=1
SUBSPLTODD=0

SWAPEN=1
SKIPEN=0
SKIPEO=X

SPLTEO=1
SUBSPLTODD=1

SWAPEN=1
SKIPEN=0
SKIPEO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

PRIMARY
DMA

CHANNEL

SECONDARY
DMA

CHANNEL

PRIMARY
DMA

CHANNEL

PRIMARY
DMA

CHANNEL

SECONDARY
DMA

CHANNEL

PRIMARY
DMA

CHANNEL

V0

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuring 16-Bit Split Receive Mode with SPLTWRD=1

For 16-bit split receive mode, the EPPI_CTL.PACKEN bit is not valid. The EPPI always packs two 16-bit
words into one 32-bit word. The EPPI_CTL.SPLTWRD bit is only valid when the EPPI_CTL.DLENbit=16 bits.

Y0

U0 V0U0 V0U0

Y1 Y0Y1 Y0Y1 Y0Y1 Y0Y1

V1 V0V1 V0V1

Y2

U1 V1U1 V1U1 U0U1

Y3 Y2Y3 Y2Y3 Y2Y3 Y2Y3

V2 U0U1

Table 31-30: 16-bit Split Receive Mode with SPLTWRD = 1, SKIPEN = 0 and SWAPEN = 0

Pin Data
(16 bits)

SPLTEO=1
SUBSPLTODD=0

SWAPEN=0
SKIPEN=0
SKIPEO=X

SPLT_EVEN_ODD=1
SUBSPLTODD=1

SWAPEN=0
SKIPEN=0
SKIPEO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

Primary
DMA

Channel

Secondary
DMA

Channel

Primary
DMA

Channel

Primary
DMA

Channel

Secondary
DMA

Channel

Primary
DMA

Channel

V0Y0

U0Y1

V1Y2

U1Y3 Y3Y2Y1Y0 U1V1U0V0 Y3Y2Y1Y0 Y3Y2Y1Y0 Y3Y2Y1Y0

Table 31-29: 16-bit Split Receive Mode with SPLTWRD = 0, SKIPEN = 0 and SWAPEN = 1 (Continued)

Pin Data
(16 bits)

SPLTEO=1
SUBSPLTODD=0

SWAPEN=1
SKIPEN=0
SKIPEO=X

SPLTEO=1
SUBSPLTODD=1

SWAPEN=1
SKIPEN=0
SKIPEO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

PRIMARY
DMA

CHANNEL

SECONDARY
DMA

CHANNEL

PRIMARY
DMA

CHANNEL

PRIMARY
DMA

CHANNEL

SECONDARY
DMA

CHANNEL

PRIMARY
DMA

CHANNEL

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–53

Configuring 8-Bit Transmit Mode

For 8-bit non-split transmit mode, if the EPPI_CTL.PACKEN bit=1, the DMA is a 32-bit DMA and the EPPI
unpacks the 32-bit word from memory into four bytes to transmit. The EPPI transmits either the MSBs or
the LSBs as the first data, depending on the EPPI_CTL.SWAPEN bit setting. If EPPI_CTL.PACKEN=0, the
DMA is a 16-bit DMA and the EPPI transmits the lower 8 bits. The EPPI_CTL.SWAPEN bit has no effect
when EPPI_CTL.PACKEN=0.

V2Y4 U1V1U0V0

U2Y5

V3Y6 V3V2V1V0 V3V2V1V0

U3Y7 Y7Y6Y5Y4 U3V3U2V2 Y7Y6Y5Y4 Y7Y6Y5Y4 U3U2U1U0 Y7Y6Y5Y4

V4Y8 U3V3U2V2 U3U2U1U0

Table 31-31: 8-bit Transmit Mode with Packing Enabled

DMA Data (32 bits) Pin Data when SWAPEN=0 Pin Data when SWAPEN=1

0x11223344 0x44 0x11
0x55667788 0x33 0x22

0x22 0x33
0x11 0x44
0x88 0x55
0x77 0x66
0x66 0x77
0x55 0x88

Table 31-30: 16-bit Split Receive Mode with SPLTWRD = 1, SKIPEN = 0 and SWAPEN = 0 (Continued)

Pin Data
(16 bits)

SPLTEO=1
SUBSPLTODD=0

SWAPEN=0
SKIPEN=0
SKIPEO=X

SPLT_EVEN_ODD=1
SUBSPLTODD=1

SWAPEN=0
SKIPEN=0
SKIPEO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

Primary
DMA

Channel

Secondary
DMA

Channel

Primary
DMA

Channel

Primary
DMA

Channel

Secondary
DMA

Channel

Primary
DMA

Channel

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuring 10/12/14-Bit Transmit Modes

For 10, 12, or 14-bit non-split transmit modes, if the EPPI_CTL.PACKEN bit=1, the DMA is a 32-bit DMA
and the EPPI unpacks the 32-bit word from memory into two 16-bit data words, then transmits the
required LSBs from each. The EPPI transmits either the most significant word or the least significant word
as the first data, depending on the EPPI_CTL.SWAPEN bit setting. If EPPI_CTL.PACKEN=0, the DMA is a 16-
bit DMA and the EPPI transmits the required LSBs. The EPPI_CTL.SWAPEN bit has no effect when the
EPPI_CTL.PACKEN bit=0.

Configuring 16-Bit Transmit Mode

For 16-bit non-split transmit mode, if the EPPI_CTL.PACKEN bit=1, the DMA is a 32-bit DMA and the
EPPI unpacks the 32-bit word from memory into two 16-bit data words to transmit. The EPPI transmits
either the MSBs or the LSBs as the first data, depending on the EPPI_CTL.SWAPEN bit setting. If the EPPI_
CTL.PACKEN bit=0, the DMA is a 16-bit DMA and the EPPI transmits the data as is. The EPPI_CTL.SWAPEN
has no effect when EPPI_CTL.PACKEN bit=0.

Table 31-32: Data Sent in 8-bit Transmit Mode with Packing Disabled

DMA Data (16 bits) Pin Data SWAPEN=X

0x1234 0x34
0x2345 0x45
0x3456 0x56

Table 31-33: 10-bit Transmit Mode with Packing Enabled

DMA Data (32 bits) Pin Data when SWAPEN=0 Pin Data when SWAPEN=1

0x1111 2222 0x222 0x111
0x3333 4444 0x111 0x222

0x044 0x333
0x333 0x044

Table 31-34: 10-bit Transmit Mode with Packing Disabled

DMA Data (16 bits) Pin Data SWAPEN=X

0x1234 0x234
0x2345 0x345
0x3456 0x056
0x4567 0x167

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–55

Configuring 18-Bit Transmit Mode

For 18-bit transmit mode, if the EPPI_CTL.PACKEN bit=1, the DMA is a 32-bit DMA and the EPPI unpacks
the 32-bit word from memory. In this mode, when EPPI_CTL.RGBFMTEN is set, the least significant two bits
of R, G, and B are dropped.

Table 31-35: 16-bit Transmit Mode with Packing Enabled

DMA Data (32 bits) Pin Data when SWAPEN=0 Pin Data when SWAPEN=1

0x1111 2222 0x2222 0x1111
0x3333 4444 0x1111 0x2222

0x4444 0x3333
0x3333 0x4444

Table 31-36: 16-bit Transmit Mode with Packing Disabled

DMA Data (16 bits) Pin Data SWAPEN=X

0x1234 0x1234
0x2345 0x2345
0x3456 0x3456

Table 31-37: 18-bit Transmit Mode with Packing Enabled

DMA Data Pin Data (18-bits)

RGBFMTEN=0 RGBFMTEN=1
0x0123 4567 0x3 4567 0x0 8459
0x89AB CDEF 0x1 EF01 0x3 3EC0
0x0123 4567 0x3 89AB 0x1 98AA

0x1 2345 0x0 0211

Table 31-38: 18-bit Transmit Mode with Packing Disabled

DMA Data Pin Data (18-bits)

RGBFMTEN=0 RGBFMTEN=1
0x0123 4567 0x3 4567 0x0 8459
0x89AB CDEF 0x3 CDEF 0x2 ACFB
0x0123 4567 0x3 4567 0x0 8459

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Configuring 24-Bit Transmit Mode

For 24-bit transmit mode, if the EPPI_CTL.PACKEN bit=1, the DMA is a 32-bit DMA and the EPPI unpacks
three 32-bit words from memory into four 24-bit words to transmit. The effect of the EPPI_CTL.SWAPEN
bit setting is shown in the table below.

Configuring 8-Bit Split Transmit Mode

For 8-bit split transmit mode, the EPPI_CTL.PACKEN bit is not valid. The EPPI always unpacks the 32-bit
DMA data into four bytes to transmit.

Table 31-39: 24-bit Transmit Mode

DMA Data (32 Bits) Pin Data when SWAPEN=0 Pin Data when SWAPEN=1

R1B0G0R0 B0G0R0 R0G0B0

G2R2B1G1 B1G1R1 R1G1B1

B3G3R3B2 B2G2R2 R2G2B2

B3G3R3 R3G3B3

Table 31-40: 8-bit Split Transmit Mode with SPLTEO=1, SUBSPLTODD=0 and SWAPEN=0

DMACFG=1 DMACFG=0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (8 bits) DMA0 DATA (32 bits) Pin Data (8 bits)

Y3Y2Y1Y0 U1V1U0V0 V0 U1V1U0V0 V0

Y7Y6Y5Y4 U3V3U2V2 Y0 Y3Y2Y1Y0 Y0

U0 U3V3U2V2 U0

Y1 Y7Y6Y5Y4 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

V2 V2

Y4 Y4

U2 U2

Y5 Y5

V3 V3

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–57

Y6 Y6

U3 U3

Y7 Y7

Table 31-41: 8-bit Split Transmit Mode with SPLTEO=1, SUBSPLTODD=1 and SWAPEN=0

DMACFG=1 DMACFG=0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (8 bits) DMA0 DATA (32 bits) Pin Data (8 bits)

Y3Y2Y1Y0 V3V2V1V0 V0 V3V2V1V0 V0

Y7Y6Y5Y4 U3U2U1U0 Y0 Y3Y2Y1Y0 Y0

V7V6V5V4 U0 U3U2U1U0 U0

U7U6U5U4 Y1 Y7Y6Y5Y4 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

V2 V2

Y4 Y4

U2 U2

Y5 Y5

V3 V3

Y6 Y6

U3 U3

Y7 Y7

Table 31-42: 8-bit Split Transmit Mode with SPLTEO=1, SUBSPLTODD=0 and SWAPEN=1

DMACFG=1 DMACFG=0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (8 bits) DMA0 DATA (32 bits) Pin Data (8 bits)

Y3Y2Y1Y0 U1V1U0V0 U1 U1V1U0V0 U1

Table 31-40: 8-bit Split Transmit Mode with SPLTEO=1, SUBSPLTODD=0 and SWAPEN=0 (Continued)

DMACFG=1 DMACFG=0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (8 bits) DMA0 DATA (32 bits) Pin Data (8 bits)

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Y7Y6Y5Y4 U3V3U2V2 Y3 Y3Y2Y1Y0 Y3

V1 U3V3U2V2 V1

Y2 Y7Y6Y5Y4 Y2

U0 U0

Y1 Y1

V0 V0

Y0 Y0

U3 U3

Y7 Y7

V3 V3

Y6 Y6

U2 U2

Y5 Y5

V2 V3

Y4 Y4

Table 31-43: 8-bit Split Transmit Mode with SPLTEO=1, SUBSPLTODD=1, and SWAPEN=1

DMACFG=1 DMACFG=0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (8 bits) DMA0 DATA (32 bits) Pin Data (8 bits)

Y3Y2Y1Y0 V3V2V1V0 V3 V3V2V1V0 V3

Y7Y6Y5Y4 U3U2U1U0 Y3 Y3Y2Y1Y0 Y3

V7V6V5V4 U3 U3V3U2V2 U3

U7U6U5U4 Y2 Y7Y6Y5Y4 Y2

V2 V2

Y1 Y1

U2 U2

Y0 Y0

V1 V1

Table 31-42: 8-bit Split Transmit Mode with SPLTEO=1, SUBSPLTODD=0 and SWAPEN=1 (Continued)

DMACFG=1 DMACFG=0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (8 bits) DMA0 DATA (32 bits) Pin Data (8 bits)

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–59

Configuring 10/12/14/16-Bit Transmit Mode with SPLTWRD=0

For 16-bit split transmit mode, the EPPI_CTL.PACKEN bit is not valid. The EPPI always unpacks the 32-bit
DMA data into two 16-bit words to transmit. For 10, 12, or 14-bit split transmit modes, the EPPI first
unpacks the data in the same way as for 16-bit transmit mode, but transmits only the required number of
LSBs.

Y7 Y7

U1 U1

Y6 Y6

V0 V0

Y5 Y5

U0 U0

Y4 Y4

Table 31-44: 16-bit Split Transmit Mode with SPLTEO = 1, SUBSPLTODD = 0, and SWAPEN = 0

DMACFG = 1 DMACFG = 0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (16 bits) DMA0 DATA (32 bits) Pin Data (16 bits)

Y1Y0 U0V0 V0 U0V0 V0

Y3Y2 U1V1 Y0 Y1Y0 Y0

U0 U1V1 U0

Y1 Y3Y2 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

Table 31-45: 16-bit Split Transmit Mode with SPLTEO = 1, SUBSPLTODD = 1, and SWAPEN = 0

DMACFG = 1 DMACFG = 0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (16 bits) DMA0 DATA (32 bits) Pin Data (16 bits)

Y1Y0 V1V0 V0 V1V0 V0

Table 31-43: 8-bit Split Transmit Mode with SPLTEO=1, SUBSPLTODD=1, and SWAPEN=1 (Continued)

DMACFG=1 DMACFG=0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (8 bits) DMA0 DATA (32 bits) Pin Data (8 bits)

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Y3Y2 U1U0 Y0 Y1Y0 Y0

V3V2 U0 U1U0 U0

U3U2 Y1 Y3Y2 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

Table 31-46: 16-bit Split Transmit Mode with SPLTEO = 1, SUBSPLTODD = 0, and SWAPEN = 1

DMACFG = 1 DMACFG = 0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (16 bits) DMA0 DATA (32 bits) Pin Data (16 bits)

Y1Y0 V0U0 V0 V0U0 V0

Y3Y2 V1U1 Y1 Y1Y0 Y1

U0 V1U1 U0

Y0 Y3Y2 Y0

V1 V1

Y3 Y3

U1 U1

Y2 Y2

Table 31-47: 16-bit Split Transmit Mode with SPLTEO = 1, SUBSPLTODD = 1, and SWAPEN = 1

DMACFG = 1 DMACFG = 0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (16 bits) DMA0 DATA (32 bits) Pin Data (16 bits)

Y1Y0 V1V0 V1 V1V0 V1

Y3Y2 U1U0 Y1 Y1Y0 Y1

V3V2 U1 U1U0 U1

U3U2 Y0 Y0

V0 V0

Table 31-45: 16-bit Split Transmit Mode with SPLTEO = 1, SUBSPLTODD = 1, and SWAPEN = 0 (Continued)

DMACFG = 1 DMACFG = 0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (16 bits) DMA0 DATA (32 bits) Pin Data (16 bits)

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–61

Configuring 16-Bit Split Transmit Mode with SPLTWRD=1

For 16-bit split transmit mode, the EPPI_CTL.PACKEN bit is not valid. The EPPI always unpacks the 32-bit
DMA data into two 16-bit words to transmit. The EPPI_CTL.SPLTWRD bit is only valid when the EPPI_
CTL.DLENbit=16 bits.

Y3 Y1

U0 U0

Y2 Y2

Table 31-48: 16-bit Split Transmit Mode with SPLTWRD = 1, SUBSPLTODD = 0, and SWAPEN = 0

DMACFG = 1 DMACFG = 0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (16 bits) DMA0 DATA (32 bits) Pin Data (16 bits)

Y3Y2Y1Y0 U1V1U0V0 V0Y0 U1V1U0V0 V0Y0

Y7Y6Y5Y4 U3V3U2V2 U0Y1 Y3Y2Y1Y0 U0Y1

V1Y2 U3V3U2V2 V1Y2

U1Y3 Y7Y6Y5Y4 U1Y3

V2Y4 V2Y4

U2Y5 U2Y5

V3Y6 V3Y6

U3Y7 U3Y7

Table 31-49: 16-bit Split Transmit Mode with SPLTWRD = 1, SUBSPLTODD = 1, and SWAPEN = 0

DMACFG = 1 DMACFG = 0

PRIMARY DMA
DATA (32 bits)

SECONDARY DMA
DATA (32 bits) Pin Data (16 bits) DMA0 DATA (32 bits) Pin Data (16 bits)

Y3Y2Y1Y0 V3V2V1V0 V0Y0 V3V2V1V0 V0Y0

Y7Y6Y5Y4 U3U2U1U0 U0Y1 Y3Y2Y1Y0 U0Y1

V7V6V5V4 V1Y2 U3U2U1U0 V1Y2

U7U6U5U4 U1Y3 Y7Y6Y5Y4 U1Y3

V2Y4 V2Y4

Table 31-47: 16-bit Split Transmit Mode with SPLTEO = 1, SUBSPLTODD = 1, and SWAPEN = 1 (Continued)

DMACFG = 1 DMACFG = 0

DMA0 DATA (32 bits) DMA1 DATA (32 bits) Pin Data (16 bits) DMA0 DATA (32 bits) Pin Data (16 bits)

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
EPPI PROGRAMMING MODEL

31–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

EPPI Programming Concepts

The following section provides information on SMPTE programming.

SMPTE Modes Programming

The programming model of SMPTE modes is similar to ITU Modes. All programming modes pertaining
to ITU modes like XFRTYPE, FSCFG, FLDSEL and BLANKGEN hold true for SMPTE modes as well. The
only difference is that since ITU modes use Y-Cr/Cb interleaved data and SMPTE use parallel Y-Cr/Cb
data, SPLTWRD should be set while operating in SMPTE modes. The following table describes the
programming modes for different SMPTE formats.

U2Y5 U2Y5

V3Y6 V3Y6

U3Y7 U3Y7

Table 31-50: Programming Modes for SMPTE Formats

SMPTE Format
SMPTE Channel

Width EPPI Input Bit Width EPPI Mode Remarks

8 16
Cr/Cb - [15:8]
Y - [7:0]

DLEN = 16bits
SPLTWRD = 1

SIGNEXT not
supported

274M 10 20
Cr/Cb - [19:10]
Y - [9:0]

DLEN = 20bits
SPLTWRD = 1

SIGNEXT extends each
channel data to the 16b
boundary

12 24
Cr/Cb - [23:12]
Y - [11:0]

DLEN = 24bits
SPLTWRD = 1

SIGNEXT extends each
channel data to the 16b
boundary

296M 8 16
Cr/Cb - [15:8]
Y - [7:0]

DLEN = 16bits
SPLTWRD = 1

SIGNEXT not
supported

10 20
Cr/Cb - [19:10]
Y - [9:0]

DLEN = 20bits
SPLTWRD = 1

SIGNEXT extends each
channel data to the 16b
boundary

Table 31-49: 16-bit Split Transmit Mode with SPLTWRD = 1, SUBSPLTODD = 1, and SWAPEN = 0 (Continued)

DMACFG = 1 DMACFG = 0

PRIMARY DMA
DATA (32 bits)

SECONDARY DMA
DATA (32 bits) Pin Data (16 bits) DMA0 DATA (32 bits) Pin Data (16 bits)

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–63

ADSP-BF60x EPPI Register Descriptions
EPPI (EPPI) contains the following registers.

Table 31-51: ADSP-BF60x EPPI Register List

Name Description

EPPI_STAT Status Register

EPPI_HCNT Horizontal Transfer Count Register

EPPI_HDLY Horizontal Delay Count Register

EPPI_VCNT Vertical Transfer Count Register

EPPI_VDLY Vertical Delay Count Register

EPPI_FRAME Lines Per Frame Register

EPPI_LINE Samples Per Line Register

EPPI_CLKDIV Clock Divide Register

EPPI_CTL Control Register

EPPI_FS1_WLHB FS1 Width Register / EPPI Horizontal Blanking Samples Per
Line Register

EPPI_FS1_PASPL FS1 Period Register / EPPI Active Samples Per Line Register

EPPI_FS2_WLVB FS2 Width Register / EPPI Lines Of Vertical Blanking Register

EPPI_FS2_PALPF FS2 Period Register / EPPI Active Lines Per Field Register

EPPI_IMSK Interrupt Mask Register

EPPI_ODDCLIP Clipping Register for ODD (Chroma) Data

EPPI_EVENCLIP Clipping Register for EVEN (Luma) Data

EPPI_FS1_DLY Frame Sync 1 Delay Value

EPPI_FS2_DLY Frame Sync 2 Delay Value

EPPI_CTL2 Control Register 2

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Status Register

The EPPI_STAT register contains bits that provide information about the current operating state of the
EPPI.

Figure 31-15: EPPI_STAT Register Diagram

Table 31-52: EPPI_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/NW)

FLD Current Field Received by EPPI.
The EPPI_STAT.FLD bit indicates whether the current field being
received by the PPI is Field 1 (if clear) or Field 2 (if set).
0 Field 1
1 Field 2

14
(R/W1C)

ERRDET Preamble Error Detected.
The EPPI_STAT.ERRDET bit is useful only in ITU receive modes and
indicates if an error has been detected in the status word of EAV or
SAV sequences (if set) or not (if clear).
0 No preamble error detected
1 Preamble error detected

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–65

7
(R/W1C)

PXPERR PxP Ready Error.
The EPPI_STAT.PXPERR bit is valid only in the RX mode. This bit
indicates whether the incoming PPI data overflows the PxP interface
(if set) or not (if clear). This bit is sticky and must be cleared by
software by writing 1 to it.

6
(R/W1C)

ERRNCOR Preamble Error Not Corrected.
The EPPI_STAT.ERRNCOR bit is useful only in the ITU receive modes
and indicates if an error in the status word of EAV or SAV sequences
can not be cleared (if set) or not (if clear). This bit is sticky and must
be cleared by software by writing 1 to it.
0 No uncorrected preamble error has

occurred
1 Preamble error detected but not corrected

5
(R/W1C)

FTERRUNDR Frame Track Underflow.
The EPPI_STAT.FTERRUNDR bit indicates whether a frame track
underflow error has occurred (if set) or not (if clear). This bit is sticky
and must be cleared by software by writing 1 to it.
0 No Error Detected
1 Error Occurred

4
(R/W1C)

FTERROVR Frame Track Overflow.
The EPPI_STAT.FTERROVR bit indicates whether a frame track
overflow error has occurred (if set) or not (if clear). This bit is sticky
and must be cleared by software by writing 1 to it.
0 No Error Detected
1 Error Occurred

3
(R/W1C)

LTERRUNDR Line Track Underflow.
The EPPI_STAT.LTERRUNDR bit indicates whether a line track
underflow error has occurred (if set) or not (if clear). This bit is sticky
and must be cleared by software by writing 1 to it.
0 No Error Detected
1 Error Occurred

Table 31-52: EPPI_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Horizontal Transfer Count Register

The EPPI_HCNT register holds the number of samples to read in or write out per line, after EPPI_HDLY
number of cycles have expired since the assertion of PPI_FS1. Any write to the EPPI_LINE register modi-
fies the EPPI_HCNT register, but any write to EPPI_HCNT does not affect the EPPI_LINE register value. So,
the EPPI_HCNT register should be programmed after the EPPI_LINE register.

2
(R/W1C)

LTERROVR Line Track Overflow.
The EPPI_STAT.LTERROVR bit indicates whether a line track
overflow error has occurred (if set) or not (if clear). This bit is sticky
and must be cleared by software by writing 1 to it.
0 No Error Detected
1 Error Occurred

1
(R/W1C)

YFIFOERR Luma FIFO Error.
For RX modes, the EPPI_STAT.YFIFOERR bit indicates whether the
Luma FIFO has overflowed (if set) or not (if clear). For TX modes,
this bit indicates whether the Luma FIFO has underflowed (if set) or
not (if clear). This bit is sticky and must be cleared by software by
writing 1 to it.
0 No Error Detected
1 Error Occurred

0
(R/W1C)

CFIFOERR Chroma FIFO Error.
For RX modes, the EPPI_STAT.CFIFOERR bit indicates whether the
Chroma FIFO has overflowed (if set) or not (if clear). For TX modes,
this bit indicates whether the Chroma FIFO has underflowed (if set)
or not (if clear). This bit is sticky and must be cleared by software by
writing 1 to it.
0 No Error Detected
1 Error Occurred

Table 31-52: EPPI_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–67

Figure 31-16: EPPI_HCNT Register Diagram

Horizontal Delay Count Register

The EPPI_HDLY register contains the number of clock cycles to delay after the assertion of PPI_FS1 is
detected before starting to read or write data.

Figure 31-17: EPPI_HDLY Register Diagram

Table 31-53: EPPI_HCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Horizontal Transfer Count.
The EPPI_HCNT.VALUE holds the number of samples to read in or
write out per line, after EPPI_HDLY number of cycles have expired
since the last assertion of PPI_FS1.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Vertical Transfer Count Register

The EPPI_VCNT register holds the number of lines to read in or write out, after EPPI_VDLY number of lines
from the start of frame. Any write to the EPPI_FRAME register modifies the EPPI_VCNT register, but any
write to EPPI_VCNT does not affect the EPPI_FRAME register value. So, the EPPI_VCNT register should be
programmed after the EPPI_FRAME register.

Figure 31-18: EPPI_VCNT Register Diagram

Vertical Delay Count Register

The EPPI_VDLY register contains the number of lines to wait after the start of a new frame before starting
to read/transmit data.

Table 31-54: EPPI_HDLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Horizontal Delay Count.
The EPPI_HDLY.VALUE holds the number of PPI_CLK cycles to delay
after assertion of PPI_FS1 before starting to read or write data.

Table 31-55: EPPI_VCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Vertical Transfer Count.
The EPPI_VCNT.VALUE holds the number of lines to read in or write
out, after EPPI_VDLY number of lines from the start of frame.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–69

Figure 31-19: EPPI_VDLY Register Diagram

Lines Per Frame Register

The EPPI_FRAME register tracks the frame track overflow and underflow errors. This register should be
programmed with the number of lines expected per frame. Any write to the EPPI_FRAME register will also
write the same value to the EPPI_VCNT register, but any write to EPPI_VCNT does not affect the EPPI_FRAME
register value. So, the EPPI_FRAME register should be programmed before the EPPI_VCNT register.

Figure 31-20: EPPI_FRAME Register Diagram

Table 31-56: EPPI_VDLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Vertical Delay Count.
The EPPI_VDLY.VALUE holds the number of lines to wait after the
start of a new frame before starting to read/transmit data.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–70 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Samples Per Line Register

The EPPI_LINE register tracks the line track overflow and underflow Errors. This register should be
programmed with the number of samples expected per line. Any write to the EPPI_LINE register will also
write the same value to the EPPI_HCNT register, but any write to EPPI_HCNT does not affect the EPPI_LINE
register value. So, the EPPI_LINE register should be programmed before the EPPI_HCNT register.

Figure 31-21: EPPI_LINE Register Diagram

Clock Divide Register

The EPPI_CLKDIV register provides the divisor for EPPI internal clock generation. The generated clock
frequency is given by following formula:

PPI_CLK = (SCLK) / (2 * (EPPI_CLKDIV + 1))

Note that a value of 0xFFFF is invalid for the EPPI_CLKDIV register.

Table 31-57: EPPI_FRAME Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Lines Per Frame.
The EPPI_FRAME.VALUE holds the number of lines expected per
frame of data.

Table 31-58: EPPI_LINE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Samples Per Line.
The EPPI_LINE.VALUE holds the number of samples expected per
line.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–71

Figure 31-22: EPPI_CLKDIV Register Diagram

Control Register

The EPPI_CTL register configures the EPPI for operating mode, control signal polarities, and data width
of the port.

Table 31-59: EPPI_CLKDIV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Internal Clock Divider.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–72 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 31-23: EPPI_CTL Register Diagram

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–73

Table 31-60: EPPI_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

CLKGATEN Clock Gating Enable.
The EPPI_CTL.CLKGATEN bit enables using the PPI_FS3 pin as a
clock gating pin. When EPPI_CTL.CLKGATEN is set, the PPI_FS3 pin
acts as a clock gating signal, and both the internal and external clock
are gated. Note that the PPI_FS3 pin gating signal is active low, and
the EPPI_CTL.CLKGATEN selection is ignored if EPPI_CTL.MUXSEL is
set or EPPI_CTL.FSCFG equals 0x3.
0 Disable
1 Enable

30
(R/W)

MUXSEL MUX Select.
The EPPI_CTL.MUXSEL bit enables multiplexing of a primary and
alternate camera using the EPPI main data and clock lines. For more
information on this feature, see the EPPI functional description.
0 Normal Operation
1 Multiplexed Operation

29
(R/W)

DMAFINEN DMA Finish Enable.
The EPPI_CTL.DMAFINEN bit selects whether or not the EPPI sends a
finish command (010) through the DDE COMMAND line soon after
a frame/line is received completely.
0 No Finish Command
1 Enable Send Finish Command

28
(R/W)

DMACFG One or Two DMA Channels Mode.
The EPPI_CTL.DMACFG bit is valid only if EPPI_CTL.SPLTEO is set. If
EPPI_CTL.DMACFG is set, the EPPI uses two DMA channels. And, if
EPPI_CTL.DMACFG is cleared, the EPPI uses only one DMA channel.
0 PPI uses one DMA Channel
1 PPI uses two DMA Channels

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–74 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

27
(R/W)

RGBFMTEN RGB Formatting Enable.
For 16- or 18-bit transmit modes only, the EPPI_CTL.RGBFMTEN bit
enables conversion of RGB888 from memory into RGB666 output
data (18-bit transmit) or enables conversion of RGB888 from
memory into RGB565 output data (16-bit transmit). Note that EPPI_
CTL.SPLTEO and EPPI_CTL.RGBFMTEN should never be set
simultaneously.
0 Disable RGB Formatted Output
1 Enable RGB Formatted Output

26
(R/W)

SPLTWRD Split Word.
The EPPI_CTL.SPLTWRD bit selects split word data placement when
the data length (EPPI_CTL.DLEN) selects 16-, 20-, or 24-bit data
words. For all other EPPI_CTL.SPLTWRD values, the set or clear
selections for EPPI_CTL.SPLTWRD produce the same result (act as
though EPPI_CTL.SPLTWRD is cleared). For EPPI_CTL.SPLTWRD set,
the EPPI_CTL.DLEN values below result in the following
combinations of split words:

DLEN Cr/Cb data Y data
 16 PPI_DATA[15:8] PPI_DATA[7:0]
 20 PPI_DATA[19:10] PPI_DATA[9:0]
 24 PPI_DATA[23:12] PPI_DATA[11:0]

0 PPI_DATA has (DLEN-1) bits of Y or Cr or
Cb

1 PPI_DATA contains 2 elements per word
25
(R/W)

SUBSPLTODD Sub-Split Odd Samples.
The EPPI_CTL.SUBSPLTODD bit is valid only if EPPI_CTL.SPLTEO is
set. If EPPI_CTL.SUBSPLTODD is set, the EPPI sub-splits the odd sub-
stream, and packs them separately.
0 Disable
1 Enable

24
(R/W)

SPLTEO Split Even and Odd Data Samples.
If EPPI_CTL.SPLTEO is set, the EPPI splits the incoming data stream
into two sub-streams, an even stream and an odd stream, and packs
them separately.
0 Do Not Split Samples
1 Split Even/Odd Samples

Table 31-60: EPPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–75

23
(R/W)

SWAPEN Swap Enable.
The EPPI_CTL.SWAPEN selects whether or not to swap the order of
the first data (most-significant bits versus least-significant bits) of the
DMA word.
 For receive modes, the EPPI puts the first data in the most significant
bits (if set) or puts the first data in the least significant bits (if cleared)
of the DMA word.
For transmit modes, the EPPI transmits the most significant bits in
the DMA word as the first data (if set) or transmits the least
significant bits in the DMA word as the first data (if cleared).
0 Disable
1 Enable

22
(R/W)

PACKEN Pack/Unpack Enable.
The EPPI_CTL.PACKEN select whether or not packing is enabled (for
receive modes) and unpacking is enabled (for transmit modes).
When this bit is set, EPPI transfer DMA is 32-bits wide. When this
bit is cleared and the EPPI_CTL.DLEN is less than or equal to 16 bits,
EPPI transfer DMA is 16-bits wide.
For receive modes, if this bit is set, then the EPPI packs the incoming
data into 32-bit words. If this bit is cleared, then the EPPI does not do
any packing.
For transmit modes, if this bit is set, then the EPPI always unpacks
the 32-bit data from DMA. If this bit is not set, the EPPI does not do
any unpacking.
0 Disable
1 Enable

21
(R/W)

SKIPEO Skip Even or Odd.
The EPPI_CTL.SKIPEO bit selects whether even (if set) or odd (if
cleared) samples are skipped if sample skipping is enabled EPPI_
CTL.SKIPEN is set). This feature only is useful for receive modes.
0 Skip Odd Samples
1 Skip Even Samples

20
(R/W)

SKIPEN Skip Enable.
The EPPI_CTL.SKIPEN bit enables skipping alternate samples. This
feature only is useful for receive modes.
0 No Samples Skipping
1 Skip Alternate Samples

Table 31-60: EPPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–76 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

19
(R/W)

DMIRR Data Mirroring.
The EPPI_CTL.DMIRR field enables mirroring (bit reversing) the data
coming in or going out on the EPPI data pins.

Pin PPI Data PPI Data
Data (DAT_MRR=0) (DAT_MRR=1)

 15 15 0
 14 14 1
....
 1 1 14
 0 0 15

0 No Data Mirroring
1 Data Mirroring

18:16
(R/W)

DLEN Data Length.
The EPPI_CTL.DLEN bits select the data length for the EPPI. Note
that the 20 bits data length selection is valid only for SMPTE modes
(EPPI_CTL.SPLTWRD set).
0 8 bits
1 10 bits
2 12 bits
3 14 bits
4 16 bits
5 18 bits
6 20 bits
7 24 bits

15:14
(R/W)

POLS Frame Sync Polarity.
The EPPI_CTL.POLS selects whether the frame syncs' polarity is
active low versus active high.
0 FS1 and FS2 are active high
1 FS1 is active low. FS2 is active high
2 FS1 is active high. FS2 is active low
3 FS1 and FS2 are active low

Table 31-60: EPPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–77

13:12
(R/W)

POLC Clock Polarity.
The EPPI_CTL.POLC selects the rising versus falling edge for
sampling data and sampling/driving syncs.
0 Clock/Sync polarity mode 0

For Receive mode: Sample data on falling
edge and sample/drive syncs on falling edge
For Transmit mode: Drive data on rising
edge and sample/drive syncs on rising edge

1 Clock/Sync polarity mode 1
For Receive mode: Sample data on falling
edge and sample/drive syncs on rising edge
For Transmit mode: Drive data on rising
edge and sample/drive syncs on falling edge

2 Clock/Sync polarity mode 2
For Receive mode: Sample data on rising
edge and sample/drive syncs on falling edge
For Transmit mode: Drive data on falling
edge and sample/drive syncs on rising edge

3 Clock/Sync polarity mode 3
For Receive mode: Sample data on rising
edge and sample/drive syncs on rising edge
For Transmit mode: Drive data on falling
edge and sample/drive syncs on falling edge

11
(R/W)

SIGNEXT Sign Extension.
The EPPI_CTL.SIGNEXT select whether (for receive modes when
EPPI_CTL.DLEN selecting 16 bit data length) the data is sign
extended or zero filled. Not that EPPI_CTL.SPLTWRD is removed
from this shared bit.
0 Zero Filled
1 Sign Extended

10
(R/W)

IFSGEN Internal Frame Sync Generation.
The EPPI_CTL.IFSGEN bit selects whether the frame syncs are
generated internally or are supplied by an external device.
0 External Frame Sync
1 Internal Frame Sync

Table 31-60: EPPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–78 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

9
(R/W)

ICLKGEN Internal Clock Generation.
The EPPI_CTL.ICLKGEN bit selects whether the PPI_CLK is generated
internally or is supplied by an external device.
0 External Clock
1 Internal Clock

8
(R/W)

BLANKGEN king Generation (ITU Output Mode).
The EPPI_CTL.BLANKGEN enables ITU output with internal blanking.
In GP 8, 10 transmit bit modes (when EPPI_CTL.SPLTWRD is cleared)
and 16-, 20-, and 24-bit transmit modes (when EPPI_CTL.SPLTWRD is
set), EPPI_CTL.BLANKGEN selects whether or not the EPPI generates
blanking and generates preamble and insertion with active data from
memory.
0 Disable
1 Enable

7
(R/W)

ITUTYPE ITU Interlace or Progressive.
The EPPI_CTL.ITUTYPE selects interlaced or progressive operation
for ITU656 mode. This selection is valid for both TX and RX modes.
0 Interlaced
1 Progressive

6
(R/W)

FLDSEL Field Select/Trigger.
The EPPI_CTL.FLDSEL bits configure the EPPI field and trigger
selection. These are valid for GP modes (EPPI_CTL.XFRTYPE =0x3)
and ITU656 active video mode (EPPI_CTL.XFRTYPE cleared).
0 Field Mode 0

Read Field 1 (for ITU656 active video
mode). Set internal trigger (for GP RX
mode). FS3 is toggled on FS2 assertion
followed by FS1 assertion (when EPPI_CTL.
FSCFG selects sync mode 3 and EPPI_CTL.
IFSGEN selects internal frame sync).

1 Field Mode 1
Read Field 1 and Field 2 (ITU656 active
video mode). Set external trigger (GP RX
mode). FS3 is toggled on FS2 assertion
(when EPPI_CTL.FSCFG selects sync mode 3
and EPPI_CTL.IFSGEN selects internal
frame sync).

Table 31-60: EPPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–79

5:4
(R/W)

FSCFG Frame Sync Configuration.
The EPPI_CTL.FSCFG bits configure the EPPI frame syncs. These are
valid only for GP modes (EPPI_CTL.XFRTYPE =0x3). The output of
the frames syncs also depends on whether the EPPI transfer direction
is transmit and the EPPI is in ITU output mode (EPPI_CTL.
BLANKGEN is set}.
0 Sync Mode 0

FS0 driven in GP mode. FS0 not driven in
ITU output mode.

1 Sync Mode 1
FS1 driven in GP mode. HSYNC driven on
FS1 in ITU output mode.

2 Sync Mode 2
FS2 driven in GP mode. HSYNC driven on
FS1 and VSYNC driven on FS1 in ITU
output mode.

3 Sync Mode 3
FS3 driven in GP mode. HSYNC driven on
FS1, VSYNC driven on FS2, and FIELD
driven on FS3 in ITU output mode.

3:2
(R/W)

XFRTYPE Transfer Type (Operating Mode).
The EPPI_CTL.XFRTYPE bits select the EPPI operating mode. In
receive mode (EPPI_CTL.DIR cleared), the EPPI modes include
ITU656 active video only mode, ITU656 entire field mode, ITU656
vertical blanking only mode, and non-ITU656 mode (GP mode). For
transmit mode (EPPI_CTL.DIR set), the EPPI_CTL.XFRTYPE bits
have no effect, and the EPPI (in transmit mode) is always in GP
mode.
0 ITU656 Active Video Only Mode
1 ITU656 Entire Field Mode
2 ITU656 Vertical Blanking Only Mode
3 Non-ITU656 Mode (GP Mode)

1
(R/W)

DIR PPI Direction.
The EPPI_CTL.DIR bit selects whether the EPPI is in receive mode (if
cleared) or in transmit mode (if set).
0 Receive Mode
1 Transmit Mode

Table 31-60: EPPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–80 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

FS1 Width Register / EPPI Horizontal Blanking Samples Per Line Register

The EPPI_FS1_WLHB register's content varies depending on whether the EPPI is in GP1/2/3 FS modes or
in GP transmit mode.

In GP 1, 2 or 3 FS modes, EPPI_FS1_WLHB is used for the generation of Frame Sync 1. The register contains
the width required for PPI_FS1 based on the PPI_CLK clock.

In GP transmit mode with EPPI_CTL.BLANKGEN set, this register contains the number of samples of hori-
zontal blanking per line. When used for blanking generation, only the lower 16 bits are valid.

Note that a value of 0 for the EPPI_FS1_WLHB register is illegal. If programmed as 0, the EPPI regards the
EPPI_FS1_WLHB as containing 1.

Figure 31-24: EPPI_FS1_WLHB Register Diagram

0
(R/W)

EN PPI Enable.
The EPPI_CTL.EN bit enables or disables the EPPI.
0 Disable
1 Enable

Table 31-61: EPPI_FS1_WLHB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Frame Sync Width or Blanking Samples Number.

Table 31-60: EPPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–81

FS1 Period Register / EPPI Active Samples Per Line Register

The EPPI_FS1_PASPL register content varies depending on whether the EPPI is in GP1/2/3 FS modes or
in GP transmit mode.

In GP 1, 2, or 3 FS modes, EPPI_FS1_PASPL is used for the generation of Frame Sync 1. The register
contains the period required for PPI_FS1 based on the PPI_CLK clock.

In GP transmit mode with EPPI_CTL.BLANKGEN set, this register contains the number of samples of active
video or vertical blanking samples per line. When used for blanking generation, only the lower 16 bits are
valid.

Note that a value of 0 for this register is illegal. If programmed as 0, the EPPI regards the EPPI_FS1_PASPL
as containing 1.

Figure 31-25: EPPI_FS1_PASPL Register Diagram

FS2 Width Register / EPPI Lines Of Vertical Blanking Register

The EPPI_FS2_WLVB register content varies depending on whether the EPPI is in GP2/3 FS modes or in
GP transmit mode.

In GP 2 or 3 FS modes, EPPI_FS2_WLVB is used for the generation of Frame Sync 2. The register contains
the width required for PPI_FS2 based on the PPI_CLK clock.

In GP transmit mode with EPPI_CTL.BLANKGEN set, this register contains the number or lines of vertical
blanking.

Table 31-62: EPPI_FS1_PASPL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Frame Sync Period or Samples Number.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–82 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Note that for progressive video, EPPI_FS2_WLVB.F2VBBD and EPPI_FS2_WLVB.F2VBAD are ignored.

Figure 31-26: EPPI_FS2_WLVB Register Diagram

FS2 Period Register / EPPI Active Lines Per Field Register

The EPPI_FS2_PALPF register content varies depending on whether the EPPI is in GP2/3 FS modes or in
GP transmit mode.

In GP 2 or 3 FS modes, EPPI_FS2_PALPF is used for the generation of Frame Sync 2. This register contains
the period required for PPI_FS2 based on the PPI_CLK clock.

In GP transmit mode with EPPI_CTL.BLANKGEN set, this register contains the number of lines of active
video per field.

Note that a value of 0 for EPPI_FS2_PALPF.F1ACT or EPPI_FS2_PALPF.F2ACT is illegal. If either is
programmed as 0, the EPPI regard the 0 value fields as containing 1.

Also note that for progressive video, EPPI_FS2_PALPF.F2ACT is ignored.

Table 31-63: EPPI_FS2_WLVB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

F2VBAD Field 2 Vertical Blanking After Data.
The number of lines of vertical blanking after field 2.

23:16
(R/W)

F2VBBD Field 2 Vertical Blanking Before Data.
The number of lines of vertical blanking before field 2.

15:8
(R/W)

F1VBAD Field 1 Vertical Blanking After Data.
The number of lines of vertical blanking after field 1.

7:0
(R/W)

F1VBBD Field 1 Vertical Blanking Before Data.
The number of lines of Vertical blanking before field 1.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–83

Figure 31-27: EPPI_FS2_PALPF Register Diagram

Interrupt Mask Register

The EPPI_IMSK permits masking (if associated bit is set) of EPPI error interrupts for YFIFO underflow or
overflow, CFIFO underflow or overflow, line track overflow error, line track underflow error, frame track
overflow error, frame track underflow error, and ERR_NCOR (ITU preamble error not corrected. These
conditions are flagged in the EPPI_STAT register and cleared by write-1-to-clear.

Table 31-64: EPPI_FS2_PALPF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

F2ACT Field 2 Active.
The number of lines of Active Data in Field 2.

15:0
(R/W)

F1ACT Field 1 Active.
The number of lines of Active Data in Field 1.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–84 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 31-28: EPPI_IMSK Register Diagram

Table 31-65: EPPI_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

PXPERR PxP Ready Error Interrupt Mask.
0 Unmask Interrupt
1 Mask Interrupt

6
(R/W)

ERRNCOR ITU Preamble Error Not Corrected Interrupt Mask.
0 Unmask Interrupt
1 Mask Interrupt

5
(R/W)

FTERRUNDR Frame Track Underflow Error Interrupt Mask.
0 Unmask Interrupt
1 Mask Interrupt

4
(R/W)

FTERROVR Frame Track Overflow Error Interrupt Mask.
0 Unmask Interrupt
1 Mask Interrupt

3
(R/W)

LTERRUNDR Line Track Underflow Error Interrupt Mask.
0 Unmask Interrupt
1 Mask Interrupt

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–85

Clipping Register for ODD (Chroma) Data

The EPPI_ODDCLIP register selects the clipping threshold for chroma data, which provides clipping of
individual video components.

The high odd and low odd spaces in EPPI_ODDCLIP are 16-bits wide and (depending on the EPPI_CTL.
DLEN selection) only the corresponding video component bits are considered for clipping.

For example, if the EPPI is programmed in 10-bit mode, bits [9:0] and bits 25:16 constitute the clipping
thresholds. The higher bits are (in this case) ignored.

Using the this method, 8-, 10-, 12- and 16-bit clipping thresholds can be set.

Note that when the EPPI is programmed in 16-, 20-, or 24-bit mode with EPPI_CTL.SPLTWRD set, the luma
data gets the clipping threshold levels of EPPI_EVENCLIP, and the chroma data gets the clipping threshold
levels of EPPI_ODDCLIP.

Also note that the EPPI_EVENCLIP and EPPI_ODDCLIP registers are ignored when EPPI_CTL.RGBFMTEN is
set.

2
(R/W)

LTERROVR Line Track Overflow Error Interrupt Mask.
0 Unmask Interrupt
1 Mask Interrupt

1
(R/W)

YFIFOERR YFIFO Underflow or Overflow Error Interrupt Mask.
0 Unmask Interrupt
1 Mask Interrupt

0
(R/W)

CFIFOERR CFIFO Underflow or Overflow Error Interrupt Mask.
0 Unmask Interrupt
1 Mask Interrupt

Table 31-65: EPPI_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–86 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 31-29: EPPI_ODDCLIP Register Diagram

Clipping Register for EVEN (Luma) Data

The EPPI_EVENCLIP register selects the clipping threshold for luma data, which provides clipping of indi-
vidual video components.

The high even and low even spaces in EPPI_EVENCLIP are 16-bits wide and (depending on the EPPI_CTL.
DLEN selection) only the corresponding video component bits are considered for clipping.

For example, if the EPPI is programmed in 10-bit mode, bits [9:0] and bits 25:16 constitute the clipping
thresholds. The higher bits are (in this case) ignored.

Using the this method, 8-, 10-, 12- and 16-bit clipping thresholds can be set.

Note that when the EPPI is programmed in 16-, 20-, or 24-bit mode with EPPI_CTL.SPLTWRD set, the luma
data gets the clipping threshold levels of EPPI_EVENCLIP, and the chroma data gets the clipping threshold
levels of EPPI_ODDCLIP.

Also note that the EPPI_EVENCLIP and EPPI_ODDCLIP registers are ignored when EPPI_CTL.RGBFMTEN is
set.

Table 31-66: EPPI_ODDCLIP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

HIGHODD High Odd Clipping Threshold (Chroma Data).

15:0
(R/W)

LOWODD Low Odd Clipping Threshold (Chroma Data).

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–87

Figure 31-30: EPPI_EVENCLIP Register Diagram

Frame Sync 1 Delay Value

The EPPI_FS1_DLY selects the delay count (based on the period of the PPI_CLK clock) between the first
rising edge of PPI_CLK after EPPI enabled and the first active edge of the associated Frame Sync when the
internal Frame Sync is used.

Note that if EPPI_FS1_DLY or EPPI_FS2_DLY are programmed with value 0, the EPPI operates as though
0 value is 1, and the first frame sync transition occurs after the completion of one period value of the
respective counters.

Table 31-67: EPPI_EVENCLIP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

HIGHEVEN High Even Clipping Threshold (Luma Data).

15:0
(R/W)

LOWEVEN Low Even Clipping Threshold (Luma Data).

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–88 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 31-31: EPPI_FS1_DLY Register Diagram

Frame Sync 2 Delay Value

The EPPI_FS2_DLY selects the delay count (based on the period of the PPI_CLK clock) between the first
rising edge of PPI_CLK after EPPI enabled and the first active edge of the associated Frame Sync when the
internal Frame Sync is used.

Note that if EPPI_FS1_DLY or EPPI_FS2_DLY are programmed with value 0, the EPPI operates as though
0 value is 1, and the first frame sync transition occurs after the completion of one period value of the
respective counters.

Figure 31-32: EPPI_FS2_DLY Register Diagram

Table 31-68: EPPI_FS1_DLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

FS1_DLY Frame Sync 1 Delay Count.

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 31–89

Control Register 2

The EPPI_CTL2 register HSYNC finish signal generation.

Figure 31-33: EPPI_CTL2 Register Diagram

Table 31-69: EPPI_FS2_DLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

FS2_DLY Frame Sync 2 Delay Count.

Table 31-70: EPPI_CTL2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W)

FS1FINEN HSYNC Finish Enable.
The EPPI_CTL2.FS1FINEN bit selects whether (if set) the EPPI sends
a finish command (010) through the DDE COMMAND line soon
after a LINE is received completely or (if cleared) the EPPI sends a
finish command (010) through the DDE COMMAND line soon after
a FRAME is received completely.
Note that the EPPI_CTL.DMAFINEN bit must be set for the EPPI to
generate either of the finish commands.
0 Finish sent after frame RX done

PPI sends a finish command (010) through
the DDE COMMAND line soon after a
FRAME is received completely

1 Finish sent after frame/line RX done
PPI sends a finish command (010) through
the DDE COMMAND line soon after a
frame/line is received completely

ENHANCED PARALLEL PERIPHERAL INTERFACE (EPPI)
ADSP-BF60X EPPI REGISTER DESCRIPTIONS

31–90 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–1

32 Pixel Compositor (PIXC)

The pixel compositor (PIXC) provides data overlay, transparent color, and color space conversion support
for different video outputs including active (TFT) flat-panel digital color/monochrome LCD displays and
analog NTSC/PAL. The color space conversion and text/graphic overlay capabilities, along with visual
effect controls, such as transparency control, shortens the processing time on an image data stream,
reduces power consumption and saves system board space by removing the need for external glue logic.

The PIXC is used to combine and format the data streams required by a wide variety of digital LCD panels
and NTSC/PAL analog encoders. It provides all the control needed to allow two data streams from two
separate data buffers to be combined and converted into appropriate formats for both LCD panels and
video output displays. The main image buffer provides the basic background image presented in the data
stream. The overlay image buffer allows programs to add foreground text and graphics on top of the main
image data stream. This feature is useful for printing additional graphical or textual information on the
screen, such as symbols or a menu, while showing the main image in the background.

Overlay is an option and can be enabled or disabled. If it is disabled, the blender/compositor is bypassed
and the data stream from the main image buffer goes directly to memory with optional color space conver-
sion.

Transparent color is just a special case of blending, masking off the blend operation on a pixel-by-pixel
basis. In other words, the overlay region consists of sub-regions in any particular color convenient to the
programmer and then, if the color data for a given overlay pixel matches the specified transparent color,
the overlay function is masked for that pixel and its data is taken solely from the main image buffer, which
is stored in memory in either YUV 4:2:2 interleaved format or RGB888 format .

Regardless of the data format or buffer structure, each color element is 8 bits wide. If overlay is enabled, a
graphics/text overlay data buffer is defined in memory. The color space converter can switch positions
among any of the three locations; it can be in the image data path, the overlay data path, or after the
blender. The exact position of the color space converter depends on the input and output data formats.

Since the end display may be a TV (NTSC/PAL) or an LCD panel, and since the image/overlay input
buffers may be in either RGB888 or YUV4:2:2 format, a color space conversion may be needed. The color
space conversion is selected according to the input data stream format of the PIXC. A YUV-to-RGB format
conversion is necessary if the end display is an LCD and if either of the PIXC input data streams is in YUV
4:2:2 format. Similarly, an RGB-to-YUV format conversion is necessary if the end display is a TV and if
either of the PIXC input data streams is in RGB888 format.

If the final display device is an LCD, the output RGB data stream is always packed in RGB 8-bit serial
format when transferring back to memory. Similarly, if the final display device is a TV, the YUV data
stream is always packed in YUV 4:2:2 interleaved format when transferring back to memory.

PIXEL COMPOSITOR (PIXC)
PIXC FEATURES

32–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PIXC Features
PIXC features include:

• Hardware-based graphics and text overlays

• YUV 4:2:2, RGB888, RGB666 or RGB565 input data formats

• Programmable color space conversion on the main image or the overlay image data path

• Overlay content transparency ratio control

• Transparent color, specified in the desired color space (RGB or YUV)

• Two DMA input channels and one DMA output channel

• Interface to the pixel pipe

PIXC Functional Description
The PIXC implements the following primary functions.

• Graphics/text overlay (including video overlay for small frame sizes)

• Transparency control (alpha blending) of the overlay pixel data

• Transparent color (chroma keying) of the overlay stream

• Color space conversion for LCD panels or NTSC/PAL displays

ADSP-BF60x PIXC Register List

The pixel compositor (PIXC) provides data overlay, transparent color, and color space conversion support
for active (TFT) flat-panel digital color/monochrome LCD displays or analog NTSC/PAL video output. A
set of registers govern PIXC operations. For more information on PIXC functionality, see the PIXC
register descriptions. Programmers should avoid writing to any of the PIXC registers when the module is
enabled. Writing to the PIXC registers during the module enabled state can lead to unpredictable behavior
of the PIXC. All registers can be read when the PIXC is in the enabled state, and this does not cause any
change of status in the PIXC, but register writes should happen only when the PIXC is disabled, or stalled
by an interrupt condition.

Table 32-1: ADSP-BF60x PIXC Register List

Name Description

PIXC_CTL Control Register

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–3

ADSP-BF60x PIXC Interrupt List

PIXC_PPL Pixels Per Line Register

PIXC_LPF Line Per Frame Register

PIXC_HSTART_A Overlay A Horizontal Start Register

PIXC_HEND_A Overlay A Horizontal End Register

PIXC_VSTART_A Overlay A Vertical Start Register

PIXC_VEND_A Overlay A Vertical End Register

PIXC_TRANSP_A Overlay A Transparency Ratio Register

PIXC_HSTART_B Overlay B Horizontal Start Register

PIXC_HEND_B Overlay B Horizontal End Register

PIXC_VSTART_B Overlay B Vertical Start Register

PIXC_VEND_B Overlay B Vertical End Register

PIXC_TRANSP_B Overlay B Transparency Ratio Register

PIXC_IRQSTAT Interrupt Status Register

PIXC_CONRY RY Conversion Component Register

PIXC_CONGU GU Conversion Component Register

PIXC_CONBV BV Conversion Component Register

PIXC_CCBIAS Conversion Bias Register

PIXC_TC Transparency Color Register

Table 32-2: ADSP-BF60x PIXC Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

PIXC0 Channel 0 DMA 107 35 LEVEL

Table 32-1: ADSP-BF60x PIXC Register List (Continued)

Name Description

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

32–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x PIXC Trigger List

ADSP-BF60x PIXC DMA List

PIXC Definitions

To make the best use of the PIXC, it is useful to understand the following terms.

PIXC0 Channel 1 DMA 108 36 LEVEL
PIXC0 Channel 2 DMA 109 37 LEVEL
PIXC0 Status 110 LEVEL

Table 32-3: ADSP-BF60x PIXC Trigger List Trigger Masters

Description Trigger ID Sensitivity

PIXC0 Channel 0 DMA 57 PULSE/EDGE
PIXC0 Channel 1 DMA 58 PULSE/EDGE
PIXC0 Channel 2 DMA 59 PULSE/EDGE

Table 32-4: ADSP-BF60x PIXC Trigger List Trigger Slaves

Description Trigger ID Sensitivity

PIXC0 Channel 0 DMA 57
PIXC0 Channel 1 DMA 58
PIXC0 Channel 2 DMA 59

Table 32-5: ADSP-BF60x PIXC DMA List DMA Channel List

Description DMA Channel

PIXC0 Channel 0 DMA DMA35
PIXC0 Channel 1 DMA DMA36
PIXC0 Channel 2 DMA DMA37

Table 32-2: ADSP-BF60x PIXC Interrupt List Interrupt List (Continued)

Description Interrupt ID DMA Channel Sensitivity

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–5

NTSC/PAL

The two most common video standards used. NTSC is the video system or standard used in North
America and most of South America. In NTSC, 30 frames are transmitted each second. Each frame is made
up of 525 individual scan lines. PAL is the predominant video system or standard mostly used overseas. In
PAL, 25 frames are transmitted each second. Each frame is made up of 625 individual scan lines.

RGB888 format

RGB is a color space where pixels are defined by three color values; one red (R), one green (G) and one
blue (B). The suffix signifies the bit widths for these color components. In this case, RGB888 means that
each red, green and blue value is 8-bits each.

YUV 4:2:2 interleaved format

YUV is a color space where pixels are defined by a luminance (Y) component and chrominance (UV)
components. The suffix signifies how the chrominance components have been decimated as well as
formatting. In this case, the YUV422 format has the chrominance decimated by two, meaning only half of
each chrominance component are available. Typical YUV422 formatting interleaves the luminance and
chrominance such as U1Y1V1Y2U2Y3V2Y4.

Data Overlay

Process of blending or replacing a pixel from an image with another pixel.

PIXC Block Diagram

A top-level micro architecture diagram of the PIXC appears in the following figure. As shown in the figure,
the PIXC uses three DMA channels: one for the image data, one for the overlay data and one for storing
the results back to memory. Frame C (output frame) can also be fed back to the PIXC for multiple stages
of processing, taking the place of frame A (main input image) when this happens. The main input image
and output frame can alternatively be piped from or to another peripheral via the video subsystem, respec-
tively.

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

32–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 32-1: Pixel Compositor Top-Level Diagram

Figure 32-2: PIXC Functional Block Diagram

PIXC Architectural Concepts

The PIXC data interface can be configured to obtain the input main image from memory via DMA or
piped from a different peripheral configured by the video subsystem. The output result image can also be
sent back to memory via DMA or piped to a peripheral. Also, the output can be fed back into the PIXC for
multiple stages of processing. The overlay image data must be brought in from memory via DMA. The
following topics provide additional information.

• Pixel Pipe (PxP) Interface

• Start Synchronization in PxP Input Mode

• DMA Interface

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–7

Pixel Pipe (PxP) Interface

The PIXC supports a pixel pipe (PxP) interface with inputs and outputs. The input side is multiplexed with
the DMA channel carrying the input image data from memory. The video subsystem connectivity deter-
mines whether the PIXC image data source is connected to the IFIFO or the pixel pipe. The output
composite image/color converted image can be either transferred to memory via DMA or to the PVP/EPPI
via the PxP. This is also determined by the video subsystem connectivity.

If the PIXC image input is programmed to connect to the PxP bus:

1. The PIXC expects only complete frames from the PxP. Each line should contain the exact number of
pixels as programmed in the PIXC_PPL register and each frame should contain as many lines as
programmed in the PIXC_LPF register. The EPPI is the only source of data when the PIXC input
connects to the PxP. The EPPI ensures that once a frame starts, no further frame sync is passed on the
PxP bus until the frame is complete.

2. Internal signaling is used to start the pixel processing in the PIXC. The PIXC_PPL counter increments
at pixel valid. The PIXC_LPF counter is incremented only when the PIXC_PPL counter rolls over and
resets to 1 when the maximum PIXC_LPF count is reached (as programmed in the PIXC_LPF register).

Start Synchronization in PxP Input Mode

When the PIXC is configured to take image data from the PxP bus, the PIXC internal logic synchronizes
itself to the incoming PxP frame sync after it is enabled. The PIXC ignores all incoming data until it
receives this PxP frame sync from the input PxP bus. After the internal frame sync is recognized by the
PIXC, its engine starts processing the incoming data. This removes any restriction of the relative enable
times of the PIXC and the EPPI. Either could be enabled first. If the EPPI is enabled first and the PIXC is
enabled later, the PIXC starts its frame processing only at the start of the next frame after the PIXC is
enabled.

DMA Interface

The PIXC has a native DMA controller with two input channels and one output channel. One input
channel is used to transfer the input image to the PIXC from memory and the other is used to transfer the
overlay image to the PIXC from memory. The output channel transfers the blended data to memory. Each
channel is a DDE instance.

The two input DMA channels with 32-bit bus widths take the image data and overlay graphics/text data
from their buffers into two separate FIFO’s where the data is then unpacked. Each of these FIFO buffers is
32 bits wide and contains 8 entries.

In the blender, (8-bit) pixel elements from the two buffers are mixed together. One dedicated DMA
channel transfers the combined pixel data back to memory. A local arbiter arbitrates between the three
channels. This arbitrated request is forwarded to the system crossbar. The PIXC only has one connection
to the system crossbar.

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

32–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When using the DMA to interface to the PIXC, at least two DMA channels should be enabled and config-
ured appropriately—the image DMA channel and the output DMA channel. Furthermore, when the
overlay function is used, the overlay DMA channel should also be configured and enabled.

PIXC Data Overlay

Overlay is an optional function. If it is disabled, all overlay functionality is bypassed, and a single data
stream from the main image data buffer goes directly to the image output buffer, after an optional format
conversion. If it is enabled, the blender combines the pixel data from the two image input buffers.

The overlay image is located in a user-defined rectangle within the main image and, in most cases, the
overlay image is smaller than the main image. The figure below illustrates an example of the main and
overlay image regions on a screen, where a foreground triangle overlay sits on top of the main image in the
background. Although the figure does not show this explicitly, H-Start and V-Start can equal (0,0).

Figure 32-3: Main Image and Overlay Image Region

In certain situations, it may be beneficial to use DMA only on the region of the main image that is affected
by the overlay instead of bringing in the entire main image. For example, in a situation where the intent is
to overlay an image over the main image and to store the result back over the main image, a program can
set up a 2D-DMA to only bring in the area of the main image that is affected by the overlay. This may
reduce the amount of DMA activity and potentially improve system performance.

There is a set of an additional registers that can be used to specify a second overlay region, so that two sepa-
rate overlay blocks can be defined simultaneously. Furthermore, either or both of these overlay coordinate
register sets can be enabled or disabled at one time because separate enable bits (PIXC_CTL.OVENA and
PIXC_CTL.OVENB) exist in the PIXC control register for each of the overlay register sets.

If more than two overlay blocks are needed, the two sets of overlay registers must be managed by the
program to perform the additional overlays. This can be done using an interrupt service routine, where the
interrupt from the PIXC is used to re-program the overlay coordinate registers.

The PIXC can generate an interrupt under two conditions, at the end of the last valid overlay and at the
end of a frame.

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–9

Either of these interrupts can be enabled or disabled. However, the PIXC only has one interrupt line
output, so it raises an interrupt (under the appropriate condition) when either of these two interrupts is
triggered. If both interrupts are enabled, the interrupt status register of the PIXC indicates which of the
two conditions caused the interrupt to occur. Once the PIXC generates an interrupt, it stalls the pixel
processing until a software ISR clears the interrupt. However, the FIFOs do not stall and keep filling up
even when the PIXC is in a stalled state. Both interrupts can be cleared by writing a 1 to the respective inter-
rupt status bits.

After each interrupt (whether it is a last-valid-overlay interrupt or an end-of-frame interrupt), the PIXC
restarts processing with coordinate register set A. In other words, at the time of clearing the interrupt:

• If coordinate set A is enabled (PIXC_CTL.OVENA = 1), the PIXC assumes that the first incoming data
over the bus is to be overlaid on the area specified in coordinate set A.

• If coordinate set A is disabled (PIXC_CTL.OVENA = 0), and coordinate set B is enabled (PIXC_CTL.
OVENB = 1), the PIXC assumes that the first incoming data over the data bus is to be overlaid on the area
specified in coordinate set B.

• If both coordinate sets are disabled, the PIXC flushes the overlay FIFO and make no more data requests
on the overlay DMA channel.

NOTE: The overlay enable bits PIXC_CTL.OVENA and PIXC_CTL.OVENB should only be changed inside the
interrupt service routines of the PIXC interrupts, or when the overlay block is disabled.

Note that the module enable bit (PIXC_CTL.EN) is the root enable for the PIXC. Both the PIXC_CTL.OVENA
and PIXC_CTL.OVENB bits are gated with PIXC_CTL.EN bit, so if PIXC_CTL.EN = 0, the individual overlay
enable bits have no effect, and the module remains disabled. When PIXC_CTL.EN = 1, both the image and
overlay FIFOs are flushed and no more DMA requests are made on either of the DMA channels.

Once the DMAs are enabled, the PIXC keeps track of the current pixel being displayed from the main
image data by reading from the PIXC_PPL and PIXC_LPF programmable registers.

When the pixel count reaches the top left corner (H-Start, V-Start) of overlay data, the PIXC starts the
overlay. When the pixel count reaches the top right corner (H-End, V-Start) of overlay data, the PIXC
stops the overlay. It starts again at the next line at (H-Start, V-Start + 1) and stop at (H-End, V-Start + 1),
and so on until the entire overlay frame is processed.

NOTE: Internally, the start of the overlay DMA is preempted by the PIXC before the actual processing of
the first overlay pixel, and DMA data is requested until the overlay FIFO is full. Similarly, the
overlay DMA does not stop at the end of a line. The overlay FIFO continues to be filled with DMA
data, even when the current pixel is not an overlay pixel, but the supply of overlay pixels from the
overlay FIFO is simply halted.

The PIXC decides whether or not to perform overlay mixing for the current pixel by using the various
PIXC register values as follows.

• The PIXC_PPL and PIXC_LPF registers must be programmed correctly (and cannot be 0).

• The PIXC_HSTART_A and PIXC_HEND_A must be less than or equal to PIXC_PPL.

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

32–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• The PIXC_VSTART_A and PIXC_VEND_A must be less than or equal to PIXC_LPF.

Programs can define multiple rectangular regions covering several separate overlays, using the same
number of DMA descriptors, where each DMA descriptor corresponds to an overlay region.

Multiple overlay regions are split into the two following cases.

• Overlay regions with no horizontal overlap – Software can maintain separate areas in memory for both
overlay regions, with separate H-Start, V-Start, H-End, and V-End coordinates for each region. After
the first overlay is completed, the DMA chain pointer can load the next overlay parameters (index,
count, and modifier) to the DMA registers of the corresponding DMA channel.

Figure 32-4: Overlay Regions With No Horizontal Overlap

• Overlay regions with horizontal overlap –Software has to maintain a combined overlay region in
memory. This includes some in-between area where there is no overlay. This region of memory has to
be filled with the transparent color value (explained below). The H-Start, V-Start, H-End and V-End
coordinates contain the values of the combined overlay region.

Figure 32-5: Overlay Regions With Horizontal Overlap

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–11

PIXC Transparency Control

When the overlay function is enabled, each overlay pixel is combined with each main image pixel to
generate the displayed output pixel. Each pixel combination is controlled by a transparency ratio value
alpha (α), a 4-bit value that determines the proportion of overlay and main image that contribute to the
output pixel. The pixel combination algorithm can be expressed as:

The table lists the multiplying factors for various α values.

• A = 8-bit pixel data in main frame buffer (background)

• B = 8-bit pixel data in overlay buffer (foreground)

• C = 8-bit combined pixel data

• α = Transparency ratio code, which is a 4-bit value present in a memory-mapped register

NOTE: Passing the image alone can be achieved by disabling the overlay function.

Rounding is performed at the output of the blender, which rounds the combined pixel data to the nearest
integer value.

Table 32-6: Multiplying Factors for Various a Values

α Overlay Multiplying Factor Image Multiplying Factor

0 1/16 15/16
1 2/16 14/16
2 3/16 13/16
3 4/16 12/16
4 5/16 11/16
5 6/16 10/16
6 7/16 9/16
7 8/16 8/16
8 9/16 7/16
9 10/16 6/16
10 11/16 5/16
11 12/16 4/16
12 13/16 3/16
13 14/16 2/16

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

32–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PIXC Transparency Color

A transparent color is a specific color that is removed from one image to reveal another behind it. This
technique is also referred to as chroma keying. The principal subject is photographed or filmed against a
background having a single color, usually in the blue or green spectrum. When the phase of the chroma
signal corresponds to the pre-programmed state associated with the background color(s) behind the prin-
cipal subject, the signal from the alternate background (which in this case comes from the main image
channel) is inserted in the composite signal and presented at the output.

When the phase of the chroma signal deviates from that associated with the background color(s) behind
the principal subject, the picture data associated with the principal subject (in this case, the overlay image)
is presented at the output. The figure below illustrates this concept.

Figure 32-6: Transparent Color (Chroma Keying)

In order to display the main image in the two triangle areas ΔABE and ΔCDE in overlay block ABCD, the
data in the overlay buffer corresponding to the pixels in the triangle areas ΔABE and ΔCDE must hold a
specific value, called the transparent color.

The PIXC provides a 24-bit MMR (storing three 8-bit color components) for each of the two overlay blocks
to designate a particular RGB or YUV value as the transparent color. The transparent color must be in the
same format (YUV 4:2:2 or RGB888) as the overlay data, regardless of whether or not a color space conver-
sion is present in the overlay data path. The PIXC then compares each input pixel value on the overlay
channel with this transparent color. If there is a match, the overlay pixel at this location is ignored by the
blender, and the main image pixel at that location is assigned 100% weight.

NOTE: If YUV 4:2:2 is the overlay channel input data format, artifacts may occur at the edge of the trans-
parent color region. In this case, it is preferable to set the PIXC_CTL.UDSMOD bit to 0 (duplicating-
dropping mode), in order to get better control of the U and V components at the edge of the trans-
parent color region.

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–13

Color Space Conversion

Depending on the input data format and display device used, there may be a color space conversion
performed on the data stream of the PIXC. If the input data is in YUV format, a YUV-to-RGB conversion
can be performed for output to an LCD panel. If the input data is in RGB format, a RGB-to-YUV conver-
sion can be performed for output to NTSC/PAL displays. The color space conversion may happen on any
of the three paths (for example, the main image data path, the overlay image data path, or the combined
data path). Registers are used to specify the input, overlay and output formats. The color space converter
block controls a number of cases of operation.

• Both the image and the overlay data are in the same format.

• The image and the overlay data are in different formats.

• Color space conversion only

Each case is described below, along with several special usage cases. Note that various scenarios may be
shown in the same figure based on the output device chosen, though only a single output destination is
supported at one time.

Case 1 - Image and Overlay in the Same Format

Both input data streams (main image and overlay) are in the same format, either YUV 4:2:2 or RGB888,
so a color space conversion may be performed after alpha blending, depending on the output type.

Figure 32-7: Image and Overlay in the Same Format

Case 2 - Image and Overlay in Different Formats

PIXEL COMPOSITOR (PIXC)
PIXC FUNCTIONAL DESCRIPTION

32–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

In this case, the two input data streams are not in the same format. The PIXC has to perform a color space
conversion on either the main input stream or the overlay input stream (depending on the required output
format) before alpha blending can take place.

Figure 32-8: Image and Overlay in Different Formats

Case 3- Color Space Conversion Only

In this case, there is no overlay blending. The main image is brought into the PIXC, the color space
converted, and then sent back to memory.

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–15

Figure 32-9: Color Space Conversion Only

NOTE: For this mode, the register settings are: PIXC_CTL.EN=1, PIXC_CTL.OVENA=0 and PIXC_CTL.
OVENB=0.

PIXC Operating Modes
The color space converter block provides conversion operations in the following situations.

• PIXC Mode Case 1 - Image/Overlay in the Same Format

• PIXC Mode Case 2 - Image/Overlay in Different Formats

• PIXC Mode Case 3 - Color Space Conversion Only

Note that in this section various conversion operations may be shown in the same figure based on the
output device chosen, though only a single output destination is supported at one time.

PIXC Mode Case 1 - Image/Overlay in the Same Format

Both input data streams (main image and overlay) are in the same format, either YUV 4:2:2 or RGB888,
so a color space conversion may be performed after alpha blending, depending on the output type. See
figures below.

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

32–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 32-10: Image and Overlay in the Same Format

PIXC Mode Case 2 - Image/Overlay in Different Formats

In this case, the two input data streams are not in the same format. The PIXC has to perform a color space
conversion on either the main input stream or the overlay input stream (depending on the required output
format) before alpha blending can take place. See figures below.

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–17

Figure 32-11: Image and Overlay in Different Formats

PIXC Mode Case 3 - Color Space Conversion Only

In this case, there is no overlay blending. The main image is brought into the PIXC, the color space
converted, and then sent back to memory. See figures below.

Figure 32-12: Color Space Conversion Only

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

32–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

For this mode, the register settings are: PIXC_CTL.EN = 1, PIXC_CTL.OVAEN = 0 and PIXC_CTL.OVBEN = 0.

Image/Overlay/Format Actions

The table below lists the PIXC actions that take place based on any possible combination of image, overlay,
and output data formats. The definitions used in the table are as follows.

• CSC=Color Space Conversion

• US=Up sampling

• DS=Down Sampling

• YUV=YUV 4:2:2 format

• RGB=RGB888 format

Image/Overlay/Format Recommendations

For best results, the overlay should start on an odd-numbered pixel so that the U and V components of the
image and the overlay are aligned. Otherwise artifacts may occur in the combined image.

When both the image and the overlay are in YUV 4:2:2 format and the output is also in YUV 4:2:2 format,
the duplicating-dropping mode (PIXC_CTL.UDSMOD bit) is used to prevent a low-pass filtering effect on the
images.

Table 32-7: PIXC Actions

Image Data
Format Overlay Data Format Output Data Format PIXC Actions

YUV No Overlay RGB US followed by CSC
RGB No Overlay YUV CSC followed by DS
YUV YUV YUV US in both paths followed by DS before output
YUV RGB RGB US in image path, CSC in image path
YUV YUV RGB US in both paths, followed by CSC
YUV RGB YUV CSC in overlay path, US in image path, DS

before output
RGB YUV YUV CSC in image path, US in overlay path, DS

before output
RGB YUV RGB US in overlay path, CSC in overlay path
RGB RGB YUV CSC followed by DS
RGB RGB RGB No CSC, No US, No DS

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–19

PIXC Image/Overlay/Format Special Use Cases

There are ways by which the PIXC can be made to operate on certain data formats that it does not support
in any standard modes. For example, YUV 4:4:4 is similar to RGB 888 with respect to the number of pixels
per 32-bit DMA word. So the PIXC can be configured to work with the YUV 4:4:4 data format by intelli-
gently programming the IFRMT, OVFRMT, and OUTFRMT bit fields in the PIXC_CTL register and the color
space conversion coefficients.

These special usage cases are shown in the sections that follow.

Example 1 - YUV 4:2:2 to YUV 4:4:4 or LCD/RGB

See the figures for special use of this mode:

• IFRMT = YUV

• OVFRMT = YUV

• OUTFRMT = RGB

Figure 32-13: YUV 4:2:2/YUV 4:2:2 to YUV 4:2:2 or LCD/RGB

Figure 32-14: YUV 4:2:2/YUV 4:2:2 to YUV 4:2:2 or YUV 4:4:4

Example 2 - YUV 4:4:4 to YUV 4:4:4 or YUV 4:2:2

See the figures for special use of this mode.

In the special usage of this mode, YUV 4:4:4 input produces a blended YUV 4:2:2 or YUV 4:4:4 data
stream. A CSC matrix with coefficients of 1 is needed.

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

32–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 32-15: RGB/RGB to LCD/RGB or YUV 4:2:2

Figure 32-16: YUV 4:4:4/YUV 4:4:4 to YUV 4:4:4 or YUV 4:2:2

Example 3 - YUV 4:2:2/4:4:4 to YUV 4:4:4 or YUV 4:2:2

See the figures for special use of this mode.

In the special usage of this mode, a YUV 4:4:4 input stream and a YUV 4:2:2 input stream can be blended
to produce either a YUV 4:4:4 or a YUV 4:2:2 output stream.

Figure 32-17: YUV 4:2:2/RGB to LCD/RGB or YUV 4:2:2

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–21

Figure 32-18: YUV 4:2:2 / YUV 4:4:4 to YUV 4:4:4 or YUV 4:2:2

Example 4 - YUV 4:4:4 to YUV 4:2:2

See the figures for special use of this mode:

• PIXC_EN = 1

• OVR_A_EN = 0

• OVR_B_EN = 0

• IMG_FORM = RGB

• OUT_FORM = YUV

• All CSC coefficients = 1

Figure 32-19: RGB to YUV 4:2:2

Figure 32-20: YUV 4:4:4 to YUV 4:2:2

Color Space Conversion Matrix Equations

The PIXC color space conversion block implements the following matrix equation.

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

32–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The Axx coefficients are 10-bit signed values represented in two's complement format. A11…A33 are coef-
ficient multipliers (for most cases, it is sufficient to specify these as integers between –512 and 511), and
A14, A24, A34 are simply offsets added to the result for each row. B1, B2, B3 represent the input pixel compo-
nent values (for example, YUV or RGB) and C1, C2, C3 are the output pixel component values. Output
pixel values are rounded to the nearest integer

The constant K equals 1/512. For example, to set A11’s effective value to 0.299, this coefficient's MMR
should be programmed to ROUND(.299*512), or 153. If a coefficient needs to be programmed with a value
greater than 1, an extra bit exists in each coefficient's MMR to specify if an extra multiply by 4 must be
performed after multiplying the input value by its coefficient. However, this setting can only be specified
for an entire row, so if this bit is set, all the coefficients for that row (Ax1–Ax3) should be calculated as
ROUND (coeff × 512/4). In other words, the constant K effectively becomes 1/128 for that row.

For reference, the matrix equations representing conversion between YUV and RGB formats are:

NOTE: For YUV-to-RGB conversion, the PIXC expects the input data to be arranged in the following
order: VYUY, VYUY, and so on. As a result, if the input data is instead arranged as UYVY, UYVY,
and so on, then, the columns Ax2 and Ax3 of the coefficient matrix are swapped.

For RGB-to-YUV conversion, the PIXC arranges the output data by default in the following order:
VYUY, VYUY, and so on. If the output data is desired to instead be arranged as UYVY, UYVY,
and so on, then, rows A2x and A3x of the coefficient and bias matrices are swapped.

Color Space Converter Output Thresholds

Each PIXC output sample is 8 bits wide, whether it is an R, G, B, Y, U or V component value. Therefore,
any output sample must be in the 0 to 255 range. Since all the coefficients are programmable, some of the
inputs, when operated upon by the coefficients, may produce an output outside the 0 to 255 range. In such
cases, the PIXC clips the output component’s value to 0 or 255.

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–23

YUV Re-Sampling

When the color space converter operates between two color spaces, it requires all components of each pixel
to be present in the data stream.

Therefore, the PIXC internally up samples the YUV 4:2:2 data stream before a YUV-to-RGB conversion
and similarly down samples the YUV 4:4:4 data stream after a RGB-to-YUV conversion. The re-sampling
always takes place between YUV 4:2:2 and YUV 4:4:4 formats, but a certain flexibility is provided with
regard to how the re-sampling is done by the PIXC in each case.

Up sampling – A YUV 4:2:2-to-YUV 4:4:4 conversion can be performed either by averaging or by dupli-
cating the pixel components. The PIXC_CTL.UDSMOD bit specifies the up sampling mode. The default
setting of this bit is 0, which duplicates the chroma components (Us and Vs) from the odd pixels to the
even pixels as shown below.

Setting the PIXC_CTL.UDSMOD bit to 1 enables the averaging of the chroma components of the preceding
and succeeding pixels to obtain the intermediate chroma value. In other words, two consecutive odd-
numbered pixel’s chroma components are averaged to obtain the intermediate even-numbered pixel’s
chroma components as shown below.

If the sum of the preceding and succeeding pixel’s U/V components is an odd number, the average is
rounded down (truncated to an integer value).

Since the last pixel on a line is always an even-numbered pixel, the last odd pixel value on that line is used
as the last even pixel value during up sampling.

Down Sampling – A YUV 4:4:4-to-YUV 4:2:2 conversion can be performed either by averaging or by
dropping the pixel components. The PIXC_CTL.UDSMOD bit also governs the down sampling mode. Setting
the PIXC_CTL.UDSMOD bit to 0 (default) enables the dropping of the chroma components of the even
numbered pixels as shown below.

YUV 4:2:2 input: V1Y1, U1Y2, V3Y3, U3Y4, ...
YUV 4:4:4 conversion: Y1U1V1, Y2U1V1, Y3U3V3, Y4U3V3, ...

YUV 4:2:2 input: V1Y1, U1Y2, V3Y3, U3Y4, ...
YUV 4:4:4 conversion: Y1U1V1, Y2U2V2 [U2=(U1+U3)/2, V2=(V1+V3)/

2], Y3U3V3, Y4U4V4 [U4=(U3+U5)/2,
V4=(V3+V5)/2], ...

YUV 4:4:4 input: Y1U1V1, Y2U2V2, Y3U3V3, Y4U4V4, ...
YUV 4:2:2 conversion: V1Y1, U1Y2, V3Y3, U3Y4, ...

YUV 4:4:4 input: Y1U1V1, Y2U2V2, Y3U3V3, Y4U4V4, ...

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

32–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Supported Data Formats

For the implementation of overlay, the PIXC needs two input data streams from two separate data
buffers— a main image buffer and an overlay buffer. The data in the main image buffer can be formatted
as YUV 4:2:2, RGB888, RGB666 or RGB565 while the overlay data must be in YUV 4:2:2 or RGB888
format. The main image data and the overlay data can be in different formats. The output data can also be
formatted as YUV 4:2:2, RGB888, RGB666 or RGB565. The formats are described in detail in the following
sections.

• Operation in YUV 4:2:2 Format

• Operation in RGB888 Format

• Operation in RGB565 Format

• Operation in RGB666 Format

• Operation with RGB656 and RGB666 Formats

Operation in YUV 4:2:2 Format

Each Y/U/V component is stored in 8 bits of data. The PIXC only accepts a YUV 4:2:2 interleaved format,
in the following sequence:

V1, Y1, U1, Y2, V3, Y3, U3, Y4 ...

(Two components with the same suffix number (for example, V1 and U1) implies that they are extracted
from the same pixel.)

It is the user's responsibility to ensure that the YUV source data to the PIXC is in the correct interleaved
format. Therefore, data processing may be necessary in order to meet this requirement.

The figures below illustrate correct PIXC input buffer structure and data stream format.

YUV 4:2:2 conversion: V12Y1, U12Y2, V34Y3, U34Y4, ...
[U12=(U1+U2)/2, U34=(U3+U4)/2]
[V12=(V1+V2)/2, V34=(V3+V4)/2]

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–25

Figure 32-21: YUV 4:2:2 Expected Buffer Structure and Data Stream Format

The number of pixels per line in YUV mode must be an even number (for both input buffers), and the first
chroma component in each line must be a V component.

Operation in RGB888 Format

Each R/G/B component is stored in 8 bits of data. The figures below illustrate correct PIXC input buffer
structure and data stream format.

PIXEL COMPOSITOR (PIXC)
PIXC OPERATING MODES

32–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 32-22: RGB888 Expected Buffer Structure and Data Stream Format

For operation in RGB format, the total number of pixels in both input buffers must be a multiple of 4, so
that the image boundary aligns with a 32-bit DMA word boundary.

Operation in RGB565 Format

Two pixels are packed into one 32 bit word. Each pixel occupies 16 bits. The figures below illustrates how
the pixel data is arranged in memory.

Figure 32-23: Memory Arrangement – RGB565 Format

Operation in RGB666 Format

Four pixels are packed into three 32 bit words. Each pixel occupies 24 bits. Of these 24 bits, the lowest 18
bits are the pixel data and the highest 6 bits are discarded for inputs and zeroed for outputs. The figure

PIXEL COMPOSITOR (PIXC)
PIXC EVENT CONTROL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–27

below illustrates how the pixel data is arranged in memory. Note that 1 = pixel 1, 2 = pixel 2, 3 = pixel 3,
and 4 = pixel 4.

Figure 32-24: Memory Arrangement – RGB666 Format

Operation with RGB656 and RGB666 Formats

For RGB656 and RGB666 formats, the PIXC internal engine reads the relevant bits from the input and zero
pads to 8 bits. The internal PIXC data path is always 8 bits. If the output requires the pixels in either
RGB565 or RGB666 after the data path operations (mixer, color space conversion), the individual color
components are truncated (the lower bits dropped) and converted to the required formats.

PIXC Event Control
Event control for the PIXC consists of working with interrupts, triggers, and DMA channels. For more
information, see the PIXC Functional Description.

PIXEL COMPOSITOR (PIXC)
PIXC PROGRAMMING MODEL

32–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

PIXC Programming Model
The PIXC is able to take data in from either memory or the video subsystem. The output is able to go back
to memory or piped back to the video subsystem. Therefore, the video subsystem needs to be configured
correctly before enabling and using of the PIXC.

Mode Configuration

This section describes typical mode configuration tasks for using the PIXC.

Performing Data Overlay

Data overlay allows a separate image to be over laid or blended with the main input image.

1. Define rectangular region in the input image to be covered by an overlay.

2. Define single DMA descriptor for the overlay transfer.

3. Configure overlay coordinate registers in PIXC (PIXC_HSTART_A, PIXC_HEND_A, PIXC_VSTART_A, and
PIXC_VEND_A).

4. Configure transparency ratio register (PIXC_TRANSP_A).

5. Optionally define a second overlay region and configure PIXC_HSTART_B, PIXC_HEND_B, PIXC_
VSTART_B, and PIXC_VEND_B and PIXC_TRANS_B accordingly.

6. Enable PIXC and overlay functionality by setting PIXC_CTL.EN = 1, PIXC_CTL.OVAEN = 1 and PIXC_
CTL.OVBEN = 1(if a 2nd overlay region is defined).

RESULT:

The output image is blended with the overlay images at the specified overlay region.

Performing Color Space Conversion Only

The PIXC can be used to color convert an image or frame from RGB to YUV or from YUV to RGB

1. Configure and set up input connection of the PIXC in the video sub-system to obtain the main input
image.

2. Configure and set up output connection of the PIXC in the video sub-system to output the resulting
output image.

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–29

3. Program the conversion component registers (PIXC_CONRY, PIXC_CONGU and PIXC_CONBV) and
conversion bias register (PIXC_CCBIAS).

4. Enable the PIXC by setting PIXC_CTL.EN=1. Ensure overlay is disabled (PIXC_CTL.OVENB=0 and
PIXC_CTL.OVENB=0).

RESULT:

Converts an input image from RGB to YUV or an image from YUV to RGB

ADSP-BF60x PIXC Register Descriptions
Pixel Compositor (PIXC) contains the following registers.

Table 32-8: ADSP-BF60x PIXC Register List

Name Description

PIXC_CTL Control Register

PIXC_PPL Pixels Per Line Register

PIXC_LPF Line Per Frame Register

PIXC_HSTART_A Overlay A Horizontal Start Register

PIXC_HEND_A Overlay A Horizontal End Register

PIXC_VSTART_A Overlay A Vertical Start Register

PIXC_VEND_A Overlay A Vertical End Register

PIXC_TRANSP_A Overlay A Transparency Ratio Register

PIXC_HSTART_B Overlay B Horizontal Start Register

PIXC_HEND_B Overlay B Horizontal End Register

PIXC_VSTART_B Overlay B Vertical Start Register

PIXC_VEND_B Overlay B Vertical End Register

PIXC_TRANSP_B Overlay B Transparency Ratio Register

PIXC_IRQSTAT Interrupt Status Register

PIXC_CONRY RY Conversion Component Register

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

32–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Control Register

The PIXC_CTL register provides module enable, overlay enable, re-sampling mode selection, input/
overlay/output data format selection, transparent color enable, and input/output RGB data format.

Figure 32-25: PIXC_CTL Register Diagram

PIXC_CONGU GU Conversion Component Register

PIXC_CONBV BV Conversion Component Register

PIXC_CCBIAS Conversion Bias Register

PIXC_TC Transparency Color Register

Table 32-8: ADSP-BF60x PIXC Register List (Continued)

Name Description

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–31

Table 32-9: PIXC_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:10
(R/W)

ORGBFRMT Output RGB Data Format.
The PIXC_CTL.ORGBFRMT bits select the output RGB data format.
This selection only is relevant when PIXC_CTL.OUTFRMT is set.
0 RGB 888
1 Reserved
2 RGB 565
3 RGB 666

9:8
(R/W)

IRGBFRMT Input Image Channel RGB Data Format.
The PIXC_CTL.IRGBFRMT bits select the input image channel RGB
data format. This selection only is relevant when PIXC_CTL.IFRMT is
set.
0 RGB 888
1 Reserved
2 RGB 565
3 RGB 666

7
(R/W)

ENTC Enable Transparent Color.
0 Disable Transparent Color
1 Enable Transparent Color

6
(R/W)

UDSMOD Up/Down Sampling Mode.
The PIXC_CTL.UDSMOD selects whether the PIXC either uses
averaging for up/down sampling or uses duplicating for up sampling
and dropping for down sampling.
0 Duplicating for up sampling and dropping

for down sampling
1 Averaging for both up sampling and down

sampling
5
(R/W)

OUTFRMT Output Data Format.
The PIXC_CTL.OUTFRMT selects YUV or RGB for the output format.
0 YUV Data Format
1 RGB Data Format

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

32–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Pixels Per Line Register

The PIXC_PPL register provides the number of pixels per line of the display.

Figure 32-26: PIXC_PPL Register Diagram

4
(R/W)

OVFRMT Overlay Data Format.
The PIXC_CTL.OVFRMT selects YUV or RGB for the overlay format.
0 YUV Data Format
1 RGB Data Format

3
(R/W)

IFRMT Image Data Format.
The PIXC_CTL.IFRMT selects YUV or RGB for the input format.
0 YUV Data Format
1 RGB Data Format

2
(R/W)

OVENB Overlay Block B Enable.
If both PIXC_CTL.OVENA and PIXC_CTL.OVENB are cleared, only
color space conversion is enabled.
0 Disable
1 Enable

1
(R/W)

OVENA Overlay Block A Enable.
If both PIXC_CTL.OVENA and PIXC_CTL.OVENB are cleared, only
color space conversion is enabled.
0 Disable
1 Enable

0
(R/W)

EN Overlay Manager enable (module enable).
The PIXC_CTL.EN bit enables the PIXC.
0 Disable
1 Enable

Table 32-9: PIXC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–33

Line Per Frame Register

The PIXC_LPF register provides the number of lines per frame of the display.

Figure 32-27: PIXC_LPF Register Diagram

Overlay A Horizontal Start Register

The PIXC_HSTART_A register provides the horizontal start pixel coordinates of overlay A data.

Figure 32-28: PIXC_HSTART_A Register Diagram

Table 32-10: PIXC_PPL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Pixels Per Line of the Display.

Table 32-11: PIXC_LPF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Lines Per Frame of the Display.

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

32–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Overlay A Horizontal End Register

The PIXC_HEND_A registers provides the horizontal end pixel coordinates of overlay A data.

Figure 32-29: PIXC_HEND_A Register Diagram

Overlay A Vertical Start Register

The PIXC_VSTART_A registers provides the vertical start pixel coordinates of overlay A data.

Figure 32-30: PIXC_VSTART_A Register Diagram

Table 32-12: PIXC_HSTART_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Horizontal Start Pixel Coordinates of the Overlay Data.

Table 32-13: PIXC_HEND_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Horizontal End Pixel Coordinates of the Overlay Data.

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–35

Overlay A Vertical End Register

The PIXC_VEND_A register provides the vertical end pixel coordinates of overlay A data.

Figure 32-31: PIXC_VEND_A Register Diagram

Overlay A Transparency Ratio Register

The PIXC_TRANSP_A register provides overlay A transparency ratio values.

Figure 32-32: PIXC_TRANSP_A Register Diagram

Table 32-14: PIXC_VSTART_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Vertical Start Pixel Coordinates of the Overlay Data.

Table 32-15: PIXC_VEND_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Vertical End Pixel Coordinates of the Overlay Data.

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

32–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Overlay B Horizontal Start Register

The PIXC_HSTART_B register provides the horizontal start pixel coordinates of overlay B data.

Figure 32-33: PIXC_HSTART_B Register Diagram

Overlay B Horizontal End Register

The PIXC_HEND_B registers provides the horizontal end pixel coordinates of overlay B data.

Figure 32-34: PIXC_HEND_B Register Diagram

Table 32-16: PIXC_TRANSP_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Overlay Transparency Ratio Values.

Table 32-17: PIXC_HSTART_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Horizontal Start Pixel Coordinates of the Overlay Data.

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–37

Overlay B Vertical Start Register

The PIXC_VSTART_B registers provides the vertical start pixel coordinates of overlay B data.

Figure 32-35: PIXC_VSTART_B Register Diagram

Overlay B Vertical End Register

The PIXC_VEND_B register provides the vertical end pixel coordinates of overlay B data.

Figure 32-36: PIXC_VEND_B Register Diagram

Table 32-18: PIXC_HEND_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Horizontal End Pixel Coordinates of the Overlay Data.

Table 32-19: PIXC_VSTART_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Vertical Start Pixel Coordinates of the Overlay Data.

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

32–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Overlay B Transparency Ratio Register

The PIXC_TRANSP_B register provides overlay B transparency ratio values.

Figure 32-37: PIXC_TRANSP_B Register Diagram

Interrupt Status Register

The PIXC_IRQSTAT register provides overlay interrupt configuration and status information.

Figure 32-38: PIXC_IRQSTAT Register Diagram

Table 32-20: PIXC_VEND_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Vertical End Pixel Coordinates of the Overlay Data.

Table 32-21: PIXC_TRANSP_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Overlay Transparency Ratio Values.

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–39

RY Conversion Component Register

The PIXC_CONRY register provides the R/Y conversion coefficients in the color space conversion matrix.

Figure 32-39: PIXC_CONRY Register Diagram

Table 32-22: PIXC_IRQSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W1C)

FRMSTAT Frame Interrupt Status.
The PIXC_IRQSTAT.FRMSTAT indicates an end of frame condition for
the PIXC. This status bit is write-1-to-clear.

2
(R/W1C)

OVSTAT Overlay Interrupt Status.
The PIXC_IRQSTAT.OVSTAT indicates an end of last valid overlay
condition for the PIXC. This status bit is write-1-to-clear.

1
(R/W)

FRMEN Frame Interrupt Enable.
The PIXC_IRQSTAT.FRMEN enables the PIXC end of frame interrupt.
0 Disable
1 Enable

0
(R/W)

OVEN Overlay Interrupt Enable.
The PIXC_IRQSTAT.OVEN enables the PIXC end of last valid overlay
interrupt.
0 Disable
1 Enable

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

32–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

GU Conversion Component Register

The PIXC_CONGU register provides the G/U conversion coefficients in the color space conversion matrix.

Figure 32-40: PIXC_CONGU Register Diagram

Table 32-23: PIXC_CONRY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

RYMULT4 Multiply the Row by 4.
0 Disable
1 Enable

29:20
(R/W)

A13 A13 element in the coefficient matrix.

19:10
(R/W)

A12 A12 element in the coefficient matrix.

9:0
(R/W)

A11 A11 element in the coefficient matrix.

Table 32-24: PIXC_CONGU Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

GUMULT4 Multiply The Row By 4.
0 Disable
1 Enable

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–41

BV Conversion Component Register

Figure 32-41: PIXC_CONBV Register Diagram

29:20
(R/W)

A23 A23 element in the coefficient matrix.

19:10
(R/W)

A22 A22 element in the coefficient matrix.

9:0
(R/W)

A21 A21 element in the coefficient matrix.
The PIXC_CONGU register provides the B/V conversion coefficients in
the color space conversion matrix.

Table 32-25: PIXC_CONBV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

BVMULT4 Multiply The Row By 4.
0 Disable
1 Enable

29:20
(R/W)

A33 A33 element in the coefficient matrix.

19:10
(R/W)

A32 A32 element in the coefficient matrix.

Table 32-24: PIXC_CONGU Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

32–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Conversion Bias Register

The PIXC_CCBIAS register provides the bias values in the color space conversion matrix.

Figure 32-42: PIXC_CCBIAS Register Diagram

Transparency Color Register

The PIXC_TC register provides the transparent color value.

9:0
(R/W)

A31 A31 element in the coefficient matrix.

Table 32-26: PIXC_CCBIAS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:20
(R/W)

A34 A34 in bias vector.

19:10
(R/W)

A24 A24 in bias vector.

9:0
(R/W)

A14 A14 in bias vector.

Table 32-25: PIXC_CONBV Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 32–43

Figure 32-43: PIXC_TC Register Diagram

Table 32-27: PIXC_TC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:16
(R/W)

BVT Trans. color B/V component.

15:8
(R/W)

GUT Trans. color G/U component.

7:0
(R/W)

RYT Trans. color R/Y component.

PIXEL COMPOSITOR (PIXC)
ADSP-BF60X PIXC REGISTER DESCRIPTIONS

32–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 33–1

33 Reset Control Unit (RCU)

Reset is the initial state of the whole processor (or one of the cores) and is the result of a hardware or soft-
ware triggered event. In this state, all control registers are set to their default values and functional units
are idle. Exiting a full system reset starts with Core-0 only being ready to boot. Exiting a Core n only reset
starts with this Core n being ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in func-
tional requirements and clocking constraints define how reset signals are generated. Programs must guar-
antee that none of the reset functions puts the system into an undefined state or causes resources to stall.
This is particularly important when only one of the cores is reset (programs must ensure that there is no
pending system activity involving the core that is being reset).

RCU Features
RCU module supports the following features:

• Hardware reset through the SYS_HWRST pin

• Software system reset through RCU registers

• Hardware system reset through:

– TRU module

– SEC module

– SDU module

• Core reset through RCU registers

RCU Functional Description
The RCU provides reset operation control and status features. Use the following sections to provide func-
tional descriptions of the RCU:

• ADSP-BF60x RCU Register List

• ADSP-BF60x RCU Trigger List

• RCU Definitions

• RCU Architectural Concepts

RESET CONTROL UNIT (RCU)
RCU FUNCTIONAL DESCRIPTION

33–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x RCU Register List

The reset control unit (RCU) controls how all the functional units in the processor enter and exit Reset.
Differences in functional requirements and clocking constraints (units in different clock domains have to
enter reset asynchronously, but units exit reset in a deterministic way) define how reset signals are gener-
ated. Reset signals propagate through all the functional units asynchronously. For more information on
RCU functionality, see the RCU register descriptions.

ADSP-BF60x RCU Trigger List

Table 33-1: ADSP-BF60x RCU Register List

Name Description

RCU_CTL Control Register

RCU_STAT Status Register

RCU_CRCTL Core Reset Control Register

RCU_CRSTAT Core Reset Status Register

RCU_SIDIS System Interface Disable Register

RCU_SISTAT System Interface Status Register

RCU_SVECT_LCK SVECT Lock Register

RCU_BCODE Boot Code Register

RCU_SVECT0 Software Vector Register 0

RCU_SVECT1 Software Vector Register 1

Table 33-2: ADSP-BF60x RCU Trigger List Trigger Masters

Description Trigger ID Sensitivity

None

Table 33-3: ADSP-BF60x RCU Trigger List Trigger Slaves

Description Trigger ID Sensitivity

RCU0 System Reset 0 0

RESET CONTROL UNIT (RCU)
RCU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 33–3

RCU Definitions

To make the best use of the RCU, it is useful to understand the terms in this section.

The following are types of resets that are defined by their target or source.

Hardware Reset (by target)

All functional units are set to their default states, no exception. History is lost.

System Reset (by target)

All functional units except the RCU are set to their default states.

Core n Only Reset (by target)

Affects Core n only. The system software should guarantee that the core in reset state is not accessed by
any bus master.

Hardware Reset (by source)

The RESET input signal is asserted active (pulled low).

System Reset (by source)

May be triggered by software (writing to the RCU_CONTROL) register or by anotherfunctional unit such as
the TRU or any of the generic reset inputs.

For processors supporting hibernated mode, writing to the DPM to exit hibernate provides another reset
source.

Core n Only Reset (by source)

Triggered by software.

RCU Architectural Concepts

To understand the architecture of the RCU, one must consider the reset sources and how differing resets
affect the functional units of the processor.

The RCU provides the hardware that controls how all the functional units enter and exit reset. Differences
in functional requirements and clocking constraints define how reset signals are generated. For example,
units in different clock domains have to enter reset asynchronously but exit reset in a deterministic way.

RCU0 System Reset 1 1

Table 33-3: ADSP-BF60x RCU Trigger List Trigger Slaves (Continued)

Description Trigger ID Sensitivity

RESET CONTROL UNIT (RCU)
RCU FUNCTIONAL DESCRIPTION

33–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

It is the program's responsibility to guarantee that none of the reset functions put the system in an unde-
fined state or cause resources to stall. This is particularly important when only one of the cores is reset
because the program needs to guarantee that there is no pending system activity involving Core n before
it is reset. For example, there should be no pending transactions to core n when the core is reset.

The following table defines how reset sources affect the different functional units.

Reset Source Reset Type Affected Functional Units

SYS_HWRST pin assertion Hardware Reset All functional units, except RTC (if present)
Hibernate wakeup event
(wakeup triggered reset)

System Reset All functional units, except:
• RTC (if present),
• RCU_STAT, and
• the units on the VDDEXT power domain

SYSCLK clock domain
reset

System Reset All functional units, except:
• RTC (if present),
• RCU_CRCTL.CRn,
• RCU_STAT,
• RCU_BCODE, and
• the units on the VDDEXT power domain

SCLK (or SCLK0 for
multi-core processors)
clock domain reset

System Reset All functional units, except:
• RTC (if present),
• RCU_CRCTL.CRn,
• RCU_STAT,
• RCU_BCODE, and
• the units on the VDDEXT power domain

SCLK1 clock domain
reset

System Reset All functional units, except:
• RTC (if present),
• RCU_CRCTL.CRn,
• RCU_STAT,
• RCU_BCODE, and
• the units on the VDDEXT power domain

RESET CONTROL UNIT (RCU)
RCU STATUS AND ERROR SIGNALS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 33–5

RCU Status and Error Signals
The RCU_STAT register reflects status and error information. There are three kinds of errors that can occur
in the RCU. The Reset Out error is triggered if RSTOUT is both asserted and deasserted at the same time.
The Lock Write error occurs if an attempt is made to write a lock RCU register. The Address Error occurs
if a read only register is written to or if an attempt is made to a reserved address within the RCU MMR
address range.

Resetting a Core
The RCU allows reset of a given core n using another core.

Core n can be individually reset by software, either setting any of CRn (15 ≥ n ≥ 0) bits in RCU_CRCTL
register. Cores that reset themselves will not be able to guarantee that all the system transactions to or from
it have completed. Although a core n reset can be triggered by core n itself it is recommended that it is trig-
gered by another core. Core n may be reset to restore its functionality when it cannot execute software. The
suggested sequence to reset core n only is shown below.

1. Clear the RCU_CRSTAT.CRn bit.

2. Disable interrupts to core n

3. Set the RCU_SIDIS.SIn bit to disable core n's interfaces in order to stop DMA accesses to its L1, stop
core n's accesses to memory, and stop accesses to MMRs.

4. Test the RCU_SISTAT.SIn bit to detect when accesses to core n have been disabled and all the pending
transactions have completed.

5. Set the RCU_CRCTL.Rn bit to reset core n.

6. Poll the RCU_CRSTAT.CRn bit until core n is in reset.

7. Once the core is in reset, clear the RCU_SIDIS.SIn bit to re-enable the core interfaces.

RCU_CTL.SYSRST bit set
(software triggered reset)

System Reset All functional units, except:
• RTC (if present),
• RCU_CRCTL.CRn,
• RCU_STAT,
• RCU_BCODE, and
• the units on the VDDEXT power domain

RCU_CRCTL.CRn bit set
(software triggered reset)

Core Only Reset Core n only, for (15 ≥ n ≥ 0)

Reset Source Reset Type Affected Functional Units

RESET CONTROL UNIT (RCU)
ADSP-BF60X SPECIFIC INFORMATION

33–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

8. Clear the RCU_CRCTL.Rn bit to take core n out of reset.

9. Poll the RCU_CRSTAT.CRn bit until core n is out of reset.

ADSP-BF60x Specific Information
The following information specific to ADSP-BF60x processors should be kept in mind when reading this
chapter:

• There are two cores, core 0 and core 1

• There is no RTC (real-time clock)

• The only SCLK0 domain source of system reset is the SDU

• There is no SCLK1 source of system reset

• The SYSCLK sources of system reset are TRU and SEC

ADSP-BF60x RCU Register Descriptions
Reset Control Unit (RCU) contains the following registers.

Table 33-4: ADSP-BF60x RCU Register List

Name Description

RCU_CTL Control Register

RCU_STAT Status Register

RCU_CRCTL Core Reset Control Register

RCU_CRSTAT Core Reset Status Register

RCU_SIDIS System Interface Disable Register

RCU_SISTAT System Interface Status Register

RCU_SVECT_LCK SVECT Lock Register

RCU_BCODE Boot Code Register

RCU_SVECT0 Software Vector Register 0

RCU_SVECT1 Software Vector Register 1

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 33–7

Control Register

The RCU control register (RCU_CTL) provides a register lock, controls for the system reset pin, and a
control for system reset.

Figure 33-1: RCU_CTL Register Diagram

Table 33-5: RCU_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_CTL.
LOCK bit is set, the RCU_CTL register is read only (locked).
0 Unlock
1 Lock

2
(R0/W1A)

RSTOUTDSRT Reset Out Deassert.
The RCU_CTL.RSTOUTDSRT bit controls deassertion of the system
reset pin.
0 No Action
1 Deassert RSTOUT

1
(R0/W1A)

RSTOUTASRT Reset Out Assert.
The RCU_CTL.RSTOUTASRT bit controls assertion of the system reset
pin.
0 No Action
1 Assert RSTOUT

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

33–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Status Register

The RCU status register (RCU_STAT) contains status bits for all RCU reset sources, reset status, and boot
mode inputs. Status bits for reset sources are sticky and can cleared by software. Error status bits are
cleared by any reset event.

Figure 33-2: RCU_STAT Register Diagram

0
(R0/W1A)

SYSRST System Reset.
The RCU_CTL.SYSRST bit provides reset for all system units.
0 No Action
1 System Reset

Table 33-5: RCU_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 33–9

Table 33-6: RCU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18
(R/W1C)

RSTOUTERR Reset Out Error.
The RCU_STAT.RSTOUTERR bit indicates (if set) that a write attempted
to set the RCU_CTL.RSTOUTASRT and RCU_CTL.RSTOUTDSRT
simultaneously. This condition triggers a bus error.
0 No Error
1 Error Occurred

17
(R/W1C)

LWERR Lock Write Error.
The RCU_STAT.LWERR bit indicates (when set) there was an attempted
write to an RCU register while the RCU_CTL.LOCK bit was set and the
global lock bit is enabled (SPU_CTL_GLCK bit =1). This status bit is
sticky; write-1-to-clear
0 No Error
1 Error Occurred

16
(R/W1C)

ADDRERR Address Error.
The RCU_STAT.ADDRERR bit indicates that the RCU generated an
address error. This status bit is sticky; write-1-to-clear it.
0 No Error
1 Error Occurred

11:8
(R/NW)

BMODE Boot Mode.
The RCU_STAT.BMODE bits indicate the input on the boot mode pins.

5
(R/NW)

RSTOUT Reset Out Status.
The RCU_STAT.RSTOUT bit indicates the assertion status of the system
reset pin.
0 RSTOUT Deasserted
1 RSTOUT Asserted

3
(R/W1C)

SWRST Software Reset.
The RCU_STAT.SWRST bit indicates that a system reset (which was
triggered by software) has occurred since the last time a hardware
reset occurred or since the RCU_STAT.SWRST bit was cleared by
software.
0 Inactive
1 Reset Occurred

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

33–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Core Reset Control Register

The RCU core reset control n registers (RCU_CRCTL) include a lock bit (RCU_CRCTL.LOCK) and a core reset
bit (RCU_CRCTL.CRn) for each processor core on the product.

Figure 33-3: RCU_CRCTL Register Diagram

2
(R/W1C)

SSRST System Source Reset.
The RCU_STAT.SSRST bit indicates that a system reset triggered by
hardware in the system clock domain, clock A domain, or clock B
domain has occurred since the last time a hardware reset occurred or
since the RCU_STAT.SSRST bit was cleared by software.
0 Inactive
1 Reset Occurred

1
(R/W1C)

HBRST Hibernate Reset.
The RCU_STAT.HBRST bit indicates that a hibernate reset has
occurred since the last time a hardware reset occurred or since the
RCU_STAT.HWRST bit was cleared by software.
0 Inactive
1 Reset Occurred

0
(R/W1C)

HWRST Hardware Reset.
The RCU_STAT.HWRST bit indicates that a hardware reset has
occurred.
0 Inactive
1 Reset Occurred

Table 33-6: RCU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 33–11

Core Reset Status Register

The RCU core reset status register (RCU_CRSTAT) contains status bits, indicating which core or cores have
been reset.

Figure 33-4: RCU_CRSTAT Register Diagram

Table 33-7: RCU_CRCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_
CRCTL.LOCK bit is set, the RCU_CRCTL register is read only (locked).
0 Unlock
1 Lock

1:0
(R/W)

CRn Core Reset n.
The RCU_CRCTL.CRn bit resets processor core n.
0 Inactive
1 Reset Processor Core n

Table 33-8: RCU_CRSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1:0
(R/W1C)

CRn Core Reset n.
The RCU_CRSTAT.CRn bits indicate which cores have been reset since
the last time the bit was cleared.
0 Inactive
1 Reset of Core n Occurred

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

33–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

System Interface Disable Register

The RCU system interface disable register (RCU_SIDIS lets the RCU selectively disable the functional units
in the processor. For information on mapping between RCU_SIDIS bits and functional units, see the RCU
functional description.

Figure 33-5: RCU_SIDIS Register Diagram

System Interface Status Register

The RCU system interface status register (RCU_SISTAT) indicates whether a functional unit has or has not
acknowledged an RCU unit disable request.

Table 33-9: RCU_SIDIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_
SIDIS.LOCK bit is set, the RCU_SIDIS register is read only (locked).
0 Unlock
1 Lock

1:0
(R/W)

SIn System Interface n.
The RCU_SIDIS.SIn bits select functional units in the processor to
be disabled.
0 Enable
1 Disable Functional Unit n

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 33–13

Figure 33-6: RCU_SISTAT Register Diagram

SVECT Lock Register

The RCU software vector lock register (RCU_SVECT_LCK) provides a register lock and software vector n
enable bits for each processor core on the product.

Figure 33-7: RCU_SVECT_LCK Register Diagram

Table 33-10: RCU_SISTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1:0
(R/NW)

SIn System Interface n.
0 No Acknowledge
1 Disable Request Acknowledged

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

33–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Boot Code Register

The RCU software vector lock register (RCU_BCODE) provides a register lock and software vector n enable
bits for each processor core on the product. For a processor-specific definition of the RCU_BCODE register,
see the Booting Register Reference in the Boot ROM chapter.

Figure 33-8: RCU_BCODE Register Diagram

Table 33-11: RCU_SVECT_LCK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_
SVECT_LCK.LOCK bit is set, the RCU_SVECT_LCK register is read only
(locked).
0 Unlock
1 Lock

1:0
(R/W)

SVECTn Software Vector Register n.
The RCU_SVECT_LCK.SVECTn bits enable a software vector (reset
vector) for each core n.
0 Disable
1 Enable Software Vector for Core n

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 33–15

Software Vector Register 0

Figure 33-9: RCU_SVECT0 Register Diagram

Software Vector Register 1

Table 33-12: RCU_BCODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_
BCODE.LOCK bit is set, the RCU_BCODE register is read only (locked).
0 Unlock
1 Lock

30:0
(R/W)

VALUE Boot Code.
The RCU_BCODE.VALUE bits contain a boot code for the processor. For
more information, see the RCU functional description.

Table 33-13: RCU_SVECT0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Reset Vector.

RESET CONTROL UNIT (RCU)
ADSP-BF60X RCU REGISTER DESCRIPTIONS

33–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 33-10: RCU_SVECT1 Register Diagram

Table 33-14: RCU_SVECT1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Reset Vector.

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–1

34 Boot ROM and Booting the Processor

This section provides an overview of all the functions of the boot ROM.

NOTE: Notice of Changes: This documentation contains material that is subject to change without
notice. The content of the boot ROM as well as hardware behavior may change across silicon revi-
sions. See the anomaly list for differences between silicon revisions.

When the RESET input signal releases, the processor starts fetching and executing from the on-chip boot
ROM.

The internal boot ROM includes software for initial processor configuration, memory initialization for
parity protected and ECC protected memories in addition to a boot kernel that is responsible for
processing the boot loader stream received from the boot source and loading the user application code and
data.

NOTE: All available peripherals are not supported by the boot kernel, for more information, see specific
boot modes.

Boot Loader Stream
A loader stream is a set of formatted blocks containing instructions for the boot kernel, as well as the appli-
cation and data to be loaded to the chip. This section describes in detail different aspects of the stream, its
blocks, and some common use cases.

Each block begins with a block header which contains attributes of the block as well as flags to control its
processing by the boot ROM. On power-up or reset the processor begins executing the on-chip boot ROM
and the boot stream is either read from memory or received from a peripheral, depending on the boot
mode specified. Each block in the boot stream instructs the boot kernel to perform some action, most
commonly to simply load data to a specified location. Other actions include running code that initializes
a peripheral, forwarding data to a peripheral, or processing data then loading it to a location.

A loader stream must always begin with a First block, and end with a Final block. The loader file contains
the boot stream and is made available to hardware by programming or burning it into non-volatile external
memory, or sending it through a peripheral during boot time.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

34–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 34-1: Project Flow

The Booting Process figure shows the parallel or serial boot stream contained in a flash memory device. In
host boot scenarios, the non-volatile memory usually connects to the host processor rather than directly
to the processor. After reset the headers are read and parsed by the on-chip boot kernel and the loader
stream is processed block by block. Finally, payload data is copied to destination addresses, either in on-
chip L1 and L2 memory, or off-chip to SDRAM or SRAM.

Figure 34-2: Booting Process

In some cases (for example when the BLFAG_INDIRECT flag for any block is set), the boot kernel uses
another memory block in L1 data bank B for intermediate data storage. To avoid conflicts, the elfloader
utility ensures this region is booted last.

The entire source code of the boot ROM is shipped with the tools. The source code can be reviewed for
information not covered in this manual. Note that minor maintenance work may be required to the boot
ROM code if silicon is updated.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–3

Block Structure

Figure 34-3: Boot Header

A boot stream consists of multiple boot blocks as shown in the figure. Every block is headed by a 16-byte
block header. The 16 bytes are functionally grouped into four 32-bit words: the block code, target address,
byte count, and the argument field. This section describes the fields in general. The uses may vary
depending on the particular block type and boot mode, refer to the block type descriptions and boot modes
for further information.

Block Code

Table 34-1: Block Header flags

Bit Name Description

0-3 BCODE Specific to boot modes (see Boot Modes)
4 BFLAG_SAVE Saves the memory of this block to off-chip memory in case of power

failure or a hibernate request. This flag is not used by the on-chip boot
kernel.

5 BFLAG_AUX Nests special block types as required by special-purpose second-stage
loaders. This flag is not used by the on-chip boot kernel.

6 reserved
7 BFLAG_FORWARD Forward payload to a device. Must be used in conjunction with the

BFLAG_INDIRECT flag.
8 BFLAG_FILL Fill the target location with a specified value.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

34–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

TARGET_ADDRESS

The TARGET_ADDRESS holds the address that the block applies to, (where the code or data should be
loaded). However, the field is interpreted differently depending on what specific flags are set in the block
code. Refer to each Block Type's documentation for details.

The following attributes must be true:

• The target address must be divisible by 4, as the boot kernel uses 32-bit DMA for certain operations.

• The target address must point to valid on-chip or off-chip memory locations.

• TheBFLAG_INDIRECT flag must be set if the target address points to L1 instruction memory. For perfor-
mance reasons, this is also recommended when booting to off-chip memory.

NOTE: Booting into scratchpad memory is not supported. If booting to scratchpad memory is attempted,
the processor hangs within the on-chip boot ROM. Similarly, booting into the upper 16 bytes of L1
data bank A is not supported. These memory locations are used by the kernel for intermediate
storage of block header information. These memory regions cannot be initialized at boot time.
After booting, they can be used by the application during runtime.

BYTE_COUNT

The byte count must be divisible by 4, and also may be zero. This 32-bit field generally holds the size of the
block. In some cases it can be used differently (such as when BFLAG_FILL is set). See the block types section
for information on specific variations.

9 BFLAG_QUICKBOOT Does not process block for a quick boot (warm boot).
10 BFLAG_CALLBACK Calls function at the address provided.
11 BFLAG_INIT Calls function at target address after loading payload to the same

address.
12 BFLAG_IGNORE Block is ignored.
13 BFLAG_INDIRECT Boots to an intermediate storage place.
14 BFLAG_FIRST Indicates the block to be the first block of a new .dxe
15 BFLAG_FINAL Indicates the last block of a loader stream. Booting will complete after

processing the block.
16-23 HDRCHK A simple XOR checksum of the other 31 bytes in the boot block header.
24-31 HDRSIGN 0xAD; value is dependent on processor family.

Table 34-1: Block Header flags (Continued)

Bit Name Description

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–5

ARGUMENT

The 32-bit field is a user variable for most block types. The value is accessible by the initcode or the callback
routine and can therefore be used for optional instructions to these routines.

The ARGUMENTfield is used in different ways by different block types. See the block type descriptions for
further information.

Block Types

Describes how to use different types of loader blocks.

A loader stream is a set of linked blocks and each block is responsible for performing a certain function
dependent on the block's type. A block type is defined by its flags in the block header. Operations include
functions such as loading data, filling a memory region with data, forwarding data to a peripheral, and
instructing the kernel to stop processing. This section describes each block type and how it is used within
a boot loader stream.

Normal Block

A block's primary function is to load some data into a specified location of memory. A normal block
instructs the boot kernel to load the data contained in its payload to the location specified in the TARGET_
ADDRESS field. The BYTE_COUNT defines the size of the payload, once the correct amount of data has
been loaded, the kernel moves on to process the next block in the stream.

First Block

A first block indicates the start of a DXE and is always required at the beginning of a loader stream. In the
case of a loader stream that contains Multi-DXE Boot Streams, a first block occurring within the loader
indicates the beginning of a new DXE.

When the kernel processes the first block in a loader stream, the TARGET_ADDRESS also updates the
EVT1 register. This register contains the start address of the application.

NOTE: Note that a First Block cannot be combined with a Fill Block

Table 34-2: Flags

Flag
Required

Value

TARGET_ADDRESS Y Address where payload is loaded (must be valid)
BYTE_COUNT Y Size of block in bytes

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

34–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Final Block

The final block marks the last block in a boot stream (not a DXE). After processing a final block the boot
kernel jumps to the application's start address. By default this is performed by jumping to the vector stored
in the EVT1 register. The boot kernel provides options to execute an RTSinstruction or a RAISE
1instruction. The default behavior can be changed by an initcode routine, or by the kernel's boot routine
API. The EVT1register is updated by the boot kernel when processing the first block in the loader stream.

Before the boot kernel passes program control to the application it does some housekeeping. Most of the
registers that were used are put in their default state. However, some register values may differ depending
on the boot mode. See Boot Modes for more information. The following DMA configuration registers and
primary register control registers UART_CTL, SPI_CTL, HOST_CONTROL for example) are restored, while
others are purposely not restored. For example SPI_CLK.BAUD and UART_CLKremain unchanged so that
the settings obtained during the boot process are not lost.

Indirect Block

An intermediate block is first loaded to a storage location before being copied to the destination. This func-
tionality is motivated by the following situations:

• Some boot modes may not use DMA. The core cannot access some memory locations directly (L1
instruction SRAM), and some it cannot access efficiently. An intermediate load to a different location
improves overall efficiency.

• In some booting scenarios the data in the payload needs to be operated on or analyzed before it is fully
loaded (such as decryption or checksum calculation). By using an intermediate location such scenarios
are simplified and can be more efficient when loading to off-chip memories (see Callback Block).

Table 34-3: Flags

Flag
Required

Value

BFLAG_FIRST Y 1
ARGUMENT Y Offset to the next DXE, or first address following loader stream
TARGET_ADDRESS Y When the block is the first block in a loader stream, also defines the start

address for the application. If the block is not the first in a loader stream
the target address is used as in normal operation.

Table 34-4: Flags

Flag
Required

Value

BFLAG_FINAL Y 1

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–7

In some cases a boot block may not fit into temporary storage memory so having a larger buffer may
improve boot performance. If an entire block cannot fit into the buffer it is processed in pieces. Initializa-
tion code or callback functions can alter the temporary buffer region, including its location and size, by
modifying the pTempBufferand dTempByteCount variables in the STRUCT_ROM_BOOT_CONFIG structure.
The default region is at the upper end of a physical memory block. When the size is changed from the
default, keep in mind that it is already at the end of a memory block, so the beginning address pTempBuffer
must also be modified.

Ignore Block

An ignore block is a block that is (in most cases) ignored by the loader stream. Ignore blocks are useful
when it's not possible to pass information in another block header. For example, if the first block contains
data rather than application code, then inserting a first block with the correct application start address
ensures the correct start address is used. Since this block has no other function it should be marked as an
ignore block so that the kernel will not attempt to process any payload.

Init Block

An init (initialization) block instructs the boot kernel to issue a CALL instruction to the target address after
the entire block has been loaded. The function called is referred to as the initcode routine. If the initcode
routine has been previously loaded, the block may declare a zero-size and have no payload.

Initcode routines can be used to speed up and customize booting mechanisms exposed by the boot kernel.
Traditionally, an initcode routine is used to setup system PLL, bit rates, wait states, and the SDRAM
controller. If executed early in the boot process, the boot time can be significantly reduced.

Initcode routines are required to follow the C language calling conventions. The expected C prototype is:

void initcode(STRUCT_ROM_BOOT_CONFIG* pBootStruct)

Table 34-5: Flags

Flag
Required

Value

BFLAG_INDIRECT Y 1
BFLAG_CALLBACK N Defines a callback function to operate on intermediate data.

These 2 flags are often used together.

Table 34-6: Flags

Flag
Required

Value

BFLAG_IGNORE Y 1
BYTE_COUNT Y Size of block to ignore, may be zero

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

34–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 When programming in assembly, be certain to return using an RTS instruction. See the C/C++ Compiler
and Library Manual for more information.

The struct provided to the initcode routine by the boot kernel contains a variety of information about the
block being processed. This includes header information, locations of temporary block data (for indirect
blocks), target address, and byte count. See Booting Data Structuresfor a full list and details on the provided
data.

In the simplest case, an initcode routine consists of only a single block in which the BFLAG_INIT flag is
set. For larger routines, a sequence of blocks can incrementally load the routine, and only the last block
should set the BFLAG_INIT flag. In the latter case, the last block should be of size zero, and simply instruct
the boot kernel to issue the CALL instruction.

An initcode routine can be overwritten by a successive block if it is no longer needed, otherwise the routine
can be called at multiple points during the boot process, and even remain in memory after booting is
completed for use by the application.

NOTE: The following list provides requirements for initcode that is written in C or C++.

• Ensure the initcode routine does not contain calls to the run-time libraries

• Do not assume that parts of the run-time environment, such as the heap, are fully functional

• Ensure that all run-time components are loaded and initialized before the routine executes

The loaderutility and tool set provide mechanisms to aid in implementing init codes and organizing them
properly within the boot loader stream. A special project type is provided to allow the creation of initcode
routines as separate projects. Options are available to assign particular pieces of the application to be init-
code routines. For details and more information on the utility, see to the Loader Utility Manual.

Initcode routine examples, including SDRAM controller initialization, are described in the Boot Program-
ming Model.

Callback Block

A callback block instructs the boot kernel to call a pre-registered function upon completion of loading the
block's payload. The purpose of a callback routine is to apply standard processing to the block payload. The

Table 34-7: Flags

Flag
Required

Value

BFLAG_INIT Y 1
TARGET_ADDRESS Y Location to load payload data. CALL instruction issued to

the same location.
ARGUMENT N Can be used to supply block specific arguments
BYTE_COUNT Y Size of payload, may be zero

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–9

callback routine is registered through an initcode routine prior to loading a block using the routine. Typi-
cally, callback routines contain checksum, decryption, decompression or hash algorithms.

To register a callback an init block must be created whose initcode modifies the pCallBackFunction
pointer in the STRUCT_ROM_BOOT_CONFIG structure. A callback routine must be registered before a call-
back block can be processed.

Since callback routines require access to the payload data of the boot blocks, the block data must be loaded
before it can be processed. Often an INDIRECT block is used in combination with a callback block.

Callback routines are expected to meet the C language calling conventions. For more information see the
C/C++ Compiler and Library Manual. The prototype is as follows:

 int32_t CallBackFunction(struct STRUCT_ROM_BOOT_CONFIG* pBootStruct,

 ADI_BOOT_BUFFER* pCallbackStruct, int32_t dCbFlags)

The pBootStructargument contains the STRUCT_ROM_BOOT_CONFIG information, and the
pCallbackStruct contains the target address and size of the block (may vary when using indirect). The
dCbFlags parameter is specifically used when indirect is also used. The CBFLAG_DIRECTflag indicates that
the BFLAG_INDIRECT bit is not active and so that the callback routine is only called once per block. When
the CBFLAG_DIRECT is set, the CBFLAG_FIRST and CBFLAG_FINAL are also set.

See Booting Data Structuresfor more detailed information on these data.

Callback Block Used in Conjunction with Indirect Block

When a block using a callback routine is also loaded indirectly there are slight behavior differences. The
procedure for loading is:

1. Data is loaded into the temporary buffer defined by the pTempBuffer.

2. The CALLto the pCallBackFunction is issued.

3. After the callback routine returns, if the return value is zero, the memory DMA copies data to the desti-
nation

If a block does not fit entirely into the temporary buffer, loading is performed similar to indirect blocks,
and the callback function is called after each chunk is loaded into the temporary storage. The dCbFlags
parameter gives information on the specific iteration.

When a block does not fit entirely into the temporary storage area, the dCbFlags tells the callback routine
whether it is invoked for the first time (CBFLAG_FIRST) or whether it is called the last time (CBFLAG_FINAL)
for a specific block.

When DMA is invoked to copy the data, it relies on the pCallbackStruct structure, not the global
pTempBuffer and dTempByteCount variables. The callback routine can control the source of the memory

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

34–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA by altering the content of the pCallbackStruct structure, as may be required if the callback routine
performs data manipulation such as decompression.

When an indirect block is used, the return value of the callback routine determines whether the DMA
transfer occurs. If the value is non-zero, then the transfer does not occur.

Quick Boot Block

Quick Blocks are only processed for a full boot. In some booting scenarios, not all memories need to be re-
initialized. For example, in a wake-up from hibernate state, off-chip SRAM may not be impacted if it is
powered while the processor is in a hibernate state. Dynamic RAM may also not be impacted if it was put
into a self-refresh mode before the processor powered down.

The boot kernel uses the following parameters to determine whether or not a quick block should be
processed. See the "Global Boot Flow" figure also.

• The SYSCRregister is read to determine what kind of boot is expected from the boot kernel. The
WURESET bit is compared against other reset bits to distinguish between cold boot and warm boot situ-
ations and to identify wake-up from hibernate situations.

• The BCODEbit field in the SYSCRregister can overrule the native decision of the boot kernel for a software
boot.

• The BFLAG_WAKEUP bit in the dFlag word of the STRUCT_ROM_BOOT_CONFIG structure indicates that the
final decision was to perform a quick boot. If the boot kernel is called from the application, then the
application can control the boot kernel behavior by setting the BFLAG_WAKEUP flag accordingly.

• The BFLAG_QUICKBOOT flag in the block code word of the block header controls whether the current
block is ignored for quick boot.

Save Block

A save block saves the payload of the block to off-chip memory. This flag is not used by the on-chip boot
kernel

Table 34-8: Flags

Flag
Required

Value

BFLAG_CALLBACK Y 1

Table 34-9: Flags

Flag
Required

Value

BFLAG_QUICKBOOT Y 1

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–11

Forward Block

A forward block is similar to a normal block except that the payload is written to a specified peripheral
rather than loaded to memory. Rather than specifying a target address, a forward port is defined and the
data is forwarded accordingly. This feature can enable multiple processors in a system to be booted from
the same source. This can be done in any hierarchical way using daisy chaining via supported peripherals.
An entire boot stream can be contained in the payload of a block, and that entire stream can be forwarded
to a peripheral.

The processor supports forwarding to the SPI and link ports. Any peripheral must first be initialized before
any forward block that is using that peripheral is processed. This is accomplished by using the boot kernel's
Forward Config (FUNC_ROM_FWDCFG) function. See the ROM API for more information on this function.
The forward configuration function takes as arguments the specific peripheral to be initialized and
performs all the required initialization for that peripheral to enable forwarding.

As mentioned earlier, the target address for forward blocks is a forward port rather than target address.
The details of this parameter are peripheral specific. For purposes of forwarding, the TARGET_ADDRESS
field in the block header is referred to as dForwardPort.

Table 34-10: Flags

Flag
Required

Value

BFLAG_SAVE Y 1

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

34–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Forwarding to SPI

Figure 34-4: SPI dForward Port

The SPI dForward Port figure describes the various options available in the dForwardPort field for SPI
block forwarding.

• For forwarding a boot stream to the SPI port, the BFWD_DEVICE field in the dForwardPort argument
needs to be set to BFWD_DEVICE_SPI. The device source can be SPI0 or SPI1, depending on the BFWD_
DEVENUM field.

• When using both device sources, the Forward Config API routine needs to be called twice.

• A source device can serve multiple SPI slave devices and is selectable using the SPI SSELx signal (set in
BFWD_CHANNEL). If multiple slave devices are connected to the FCS signal (SPI_RDY), a pull-down
resistor is absolutely required as the SPI slave devices have the SPI_CTL.ODM bit set to avoid conflicts
on the SPI bus. The BFWD_SPI_FCPL register must be (set/cleared).

The BFWD_SPI_MCODE field is used to choose the I/O mode; 0, 1, or 2 choose single-bit, dual-bit, or quad-
bit mode. Setting BFWD_SPI_MCODE to 0, 1, or 2 also enables the automode detection command in front of
the boot stream. See SPI Slave Boot specification for further details.

The BFWD_SPI_MCODE register selects the legacy single-bit mode without sending any automode detection
command. The BFWD_SPI_CLOCK register is required to set the lower 8 bits of the BAUD field in the SPI_

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–13

CLOCK divider register. The upper 8 bits of the BAUD field are set to 0. The other fields are used to directly
manipulate specific SPI Control register settings.

Forwarding to the Link Ports

Figure 34-5: Link Port dForward Port

The link port dForward port describes the various options available in the dForwardPort field for link port
block forwarding. For forwarding data to any of the link ports, the BFWD_DEVICE field in the dForwardPort
argument needs to be set to BFWD_DEVICE_LPT. The BFWD_DEVENUM field selects whether data is forwarded
to LPT0, LPT1, LPT2 or LPT3. Data can be forwarded to multiple link ports. However, the Forward Config
routine needs to be called for each link port separately. The only programming option for Forwarding
through link ports is the BFWD_SPI_CLOCK field in the dForwardPort argument. The Forward Config
routines copies the value into the respective LPx_DIV register. The Forward Callback routine does not eval-
uate this bit field. The Forward Config routine automatically sets the pin muxing as required and initializes
the link port peripheral.

Table 34-11: Flags

Flag
Required

Value

BFLAG_FORWARD Y 1
BFLAG_INDIRECT Y 1
TARGET_ADDRESS Y Contents of the peripheral specific

dForwardPortparameter

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

34–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Multi-DXE Boot Streams

This section describes Multi-DXE boot loader streams.

As seen by the elfloader, a boot stream is always generated from a DXE file. It is therefore common to refer
to multi-DXE or multi-application booting. When the elfloader utility accepts multiple DXE files on its
command line, it generates a contiguous boot image by default. The second boot stream is appended
immediately to the first one. Since the utility updates the ARGUMENT field of all BFLAG_FIRST blocks,
the ARGUMENT field of a BFLAG_FIRST block is called the next-DXE pointer.

The next-DXE pointer of the first DXE boot stream points relatively to the start address of the second DXE
boot stream. A multi-DXE boot image can be seen as a linked list of boot streams. The next-DXE pointer
of the last DXE boot stream points relatively to the next free address. This is illustrated by an example
shown in the Multi-DXE Boot Stream Examplefigure.

Figure 34-6: Multi-DXE Boot Stream Example

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–15

The Multi-DXE Direct Code Execution Examplefigure shows a linked list of initial block headers that
instruct the boot kernel to terminate immediately and to start code execution at the address provided by
the target address field of the individual blocks. There is nothing in the boot ROM that prevents multi-
DXE applications from mixing regular boot streams and direct code execution blocks.

Figure 34-7: Multi-DXE Direct Code Execution Example

Single-Block Boot Streams

This section describes how to bypass booting and execute code directly from SDRAM.

The simplest boot stream consists of a single block header and one contiguous block of instructions. When
the appropriate flags are set in the block header, the kernel loads the block to the target address, terminates,
and begins executing from the target address of the block.

The Initial Header for Single-Block Streamtable shows an example of a single-block boot stream header
settings that can be loaded using any boot mode. The BFLAG_FIRST and BFLAG_FINAL flags are both set
at the same time and the target address and byte count are determined by the desired location of the appli-
cation.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

34–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Direct Code Execution

Applications may want to avoid long booting times and start code execution directly from flash or SDRAM
memory. This feature is called direct code execution.

An initial boot block header is required for the processor to fetch and execute program code from the boot
device as early as possible. The safety mechanisms of the block, such as the header signature and the XOR
checksum, are used to avoid unpredictable processor behavior when boot memory is not yet being
programmed with valid data. Rather than blindly executing code, the boot kernel first executes the preboot
routine for system customization, then loads the first block header and checks it for consistency. If the
block header is corrupted, the boot kernel goes into a safe idle state and does not start code execution.

 If the initial block header check is good, the boot kernel interrogates the block flags. If the block has the
BFLAG_FINAL flag set, the boot kernel immediately terminates and jumps directly to the address stored
in the RCU_SVECT0 register. To cause the boot kernel to customize the RCU_SVECT0 register in advance,
the first block must also have the BFLAG_FIRST flag set. The target address field is then copied to the RCU_
SVECT0register. In this way the target address field of the initial block defines the start address of the appli-
cation.

 For example, if BMODE = 1, when the block header described in the Initial Header table is placed at
address 0x20000000, the boot kernel is instructed to issue a JUMP command to address 0x20000020.

 The development tools must be instructed to link the above block to address 0x20000000 and the applica-
tion code to address 0x20000020. An example shown in "Direct Code Execution" illustrates how this is
accomplished using the tools suite.

Table 34-12: Initial Header for Single-Block Stream

Field Description of Value

BLOCK_CODE 0xAD000000|XORSUM|BFLAG_FINAL|BFLAG_FIRST
TARGET_ADDRESS Start address of block and application code
BYTE_COUNT number of bytes in the block
ARGUMENT Functions as next-DXE pointer in multi-DXE boot streams.

Table 34-13: Initial Header

Field Value Comments

BLOCK_CODE 0xAD7BD006 0xAD000000|XORSUM|BFLAG_FINAL|BFLAG_
FIRST|BFLAG_IGNORE|(MDMACODE & 0x6)

TARGET_ADDRESS 0x20000020 Start address of application code
BYTE_COUNT 0x00000010 Ignores 16 bytes to provide space for control data such as

version code and build data. This is optional and can be zero.
ARGUMENT 0x00000010 Functions as next-DXE pointer in multi-DXE boot streams.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–17

Boot Modes

No-Boot Mode

When the BMODE pins are all tied low (BMODE=0000), the processor does not boot. Instead it throws an
emulation interrupt followed by an idle instruction. The purpose of this mode is to bring the processor up
to a clean state from any unwanted state that may have been caused by incorrect programming of the boot
source memory.

When connecting to an emulator and starting a debug session, the processor uses the emulation interrupt
to wake up the processor and it can be debugged in the normal manner.

Memory Boot Mode

The memory booting modes are intended for booting from flash, EEPROM, or any memory-mapped
devices. Although this is a single BMODE setting, there are various configurations described in the MDMA
Codes table.

By default the boot kernel does not alter any static memory controller (SMC) registers. Therefore, tradi-
tional asynchronous memory is assumed and maximum wait states are applied. Once the processor boots,
the boot kernel loads an initial burst of 160-bit words, and interrogates the loaded MDMACODE. MDMA-
CODE is the specialized version of the BCODE field defined in a generic block header.

The MDMACODE is filled by the elfloader utility based on boot mode, -width and -dmawidth settings. See the
Loader and Utility Manual for more details.

NOTE: If the NOR flash device has been put into burst or page mode, it must be programmed back to the
standard mode before the processor is reset. If the processor can reset itself without software
control (via watchdog or double-fault error) a mechanism must be installed that also resets the
flash device back to its default mode along with the processor.

Hardware configurations for the individual modes are shown in the 8/16-bit Flash Interconnection figure.
The chip select is always controlled by the AMS0 strobe. Some flash devices provide write protection mech-
anisms, which can be activated during the power-up and reset cycles on the processor. In the absence of

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

34–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

such mechanisms, a pull-up resistor on the AMS0 pin prevents the chip select from floating when the state
of the processor is unknown.

To illustrate how the MDMACODE effects reading memory, consider eight contiguous bytes A through H in
the following scenarios. In the first, a 16-bit device is used on the 16-bit SMC, stored as BA, DC, FE, HG.

Figure 34-8: 8-bit Flash Interconnection

Figure 34-9: 16-bit Flash Interconnection

Table 34-14: MDMA Codes

MDMACODE Word Width Source Modify Purpose

0x0 reserved, protects against legacy 10-
byte boot streams

0x1 8 bits 1 8-bit flash on 8-bit SMC
0x2 8 bits 2 8-bit flash on 16-bit SMC
0x3 8 bits 4 8-bit flash on 32-bit SMC
0x4 8 bits 8 reserved - not supported
0x5 8 bits 16 reserved - not supported
0x6 16 bits 2 16-bit flash on 16-bit SMC
0x7 16 bits 4 16-bit flash on 32-bit SMC
0x8 16 bits 8 reserved - not supported
0x9 16 bits 16 reserved - not supported
0xA 32 bits 4 32-bit flash on 32-bit SMC
0xB 32 bits 8 reserved - not supported
0xC 32 bits 16 reserved - not supported
0xD 64 bits 8 reserved - not supported
0xE 64 bits 16 reserved - not supported
0xF 128 bits 16 reserved - not supported

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–19

Padding Memory

To ensure data is read properly for the specific configuration, it may be necessary to pad data when storing
it in the device. A few examples follow.

If an 8-bit flash device is connected to the 16-bit SMC only the lower byte is populated and the upper byte
needs to be ignored by the kernel. This is ensured by setting MDMACODE = 0x2. To use a 16-bit flash to simu-
late this, the upper byte is usually zero padded. The 16-bit flash device is programmed with the content of
0A, 0B, 0C, 0D, 0E, 0F, 0G, 0H.

Similarly, setting MDMACODE = 0x3 supports 8-bit flash on 32-bit SMC. This case can be simulated by
connecting a 32-bit flash to a 32-bit SMC, or by connecting a 16-bit flash to a 16-bit SMC. In either case,
the flash is programmed with three padding bytes per data byte: 000A, 000B, 000C, 000D, 000E, 000F,
000G, 000H.

Finally, setting MDMACODE=0x7 supports 16-bit flash on a 32-bit SMC. This case can also be simulated by
connecting a 32-bit flash to a 32-bit SMC, or by connecting a 16-bit flash to a 16-bit SMC. This time 16-
bit padding is required per 16-bit data byte: 00BA, 00DC, 00FE, 00HG.

Auto Detection

An automatic configuration detection is provided that uses the first nibble of the boot stream (MDMACODE
field). The boot code requests the initial eight bytes by 32-bit MDMA, inspects the MDMACODE and then adjusts
to 8-bit or 16-bit MDMA operation as needed. During this detection sequence, external memory addresses
are fetched sequentially; alternatively a sequential device (such as a FIFO) can be connected.

When the Boot Routine API function is called at run time, the same auto-detection is performed. If auto-
detection is not wanted, it can be suppressed by the BCMD_NOAUTO switch. See the Run-time API section for
details. It is important to understand the BCMD_NOAUTO enables the MDMACODE to be changed at runtime. If
data is arranged on the same flash device in different ways, its perfectly valid to rotate though MDMA-
CODE settings 0x01, 0x6 and 0xA, because all three MDMACODEs can operate on the same physical arrange-
ment and the same flash image. However, setting MDMACODE to 0x2, 0x3 and 0x7 requires a very specific
format and are therefore not interchangeable.

Table 34-15: MDMACODE effect on memory read

MDMACODE Read by kernel as

0x1 A, B, C, D, E, F, G, H
0x6 BA, DC, FE, HG
0xA DCBA, HGFE

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

34–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Default Static Memory Controller (SMC) settings

In Memory Boot mode, the boot kernel attempts to boot from the ASYNC Bank 0 Memory Space. Bank 1,
Bank 2 and Bank 3 are not initialized. If required, they can be initialized by initcode. The SMC registers
are set by default as described in the Default SMC Settings table.

Run-time API

A Memory Boot can be initiated through the Boot Routine API function at run time. Any start address
which is divisible by 4 can be specified. The API allows customizations such as booting from a different
SMC bank, and disabling auto-detection.

Memory Boot is selected by specifying the BCMD_DEVICE_MEMORY | BCMD_MEMORY in the boot command
argument. If BCMD_DEVENUM_0 is specified, the routine extracts from the start address which SMC bank to

Table 34-16: Default SMC Settings

Register Bit Value Note

SMC_B0CTL_EN 1 enable bank AMS0
SMC_B0CTL_MODE 0 normal asynchronous mode
SMC_B0CTL_RDYEN 1 enable ARDY
SMC_B0CTL_RDYPOL 1 ARDY is active high
SMC_B0CTL_RDYABTEN 0 disable ARDY abort counter
SMC_B0CTL_PGSZ 0 4-byte page size
SMC_B0CTL_BLK 1 NOR clock = SCLKA/2
SMC_B0CTL_BYTPE 0 wrap bursts
SMC_B0CTL_SELCTRL 0 normal AMS0 strobe
SMC_B0TIM_WST 7 7*8ns = 56ns
SMC_B0TIM_WHT 7 7*8ns = 56ns
SMC_B0TIM_WAT 9 9*8ns = 72ns
SMC_B0TIM_RST 7 7*8ns = 72ns
SMC_B0TIM_RHT 1 1*8ns = 8ns
SMC_B0TIM_RAT 8 8*8ns = 64ns
SMC_B0ETIM_PREST 1 1*8ns = 8ns
SMC_B0ETIM_PREAT 3 3*8ns = 24ns
SMC_B0ETIM_TT 2 2*8ns = 16ns
SMC_B0ETIM_IT 2 2*8ns = 16ns
SMC_B0ETIM_PGWS 9 9*8ns = 72ns

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–21

configure. If, however, BCMD_DEVENUM_1 is specified, the BCMD_MEM_SMCBANK field selects the SMC
bank which is configured.

In either case the routine also initializes pin muxing as required unless the BCMD_NOCFG flag is speci-
fied, which overrules BCMD_DEVENUM and BCMD_MEM_SMCBANK. If the BCMD_NOCFG flag is
specified, it is the programs responsibility to configure SMC and pin muxing as required. This is the only
way to boot in burst, page or (the so-called) flash mode. The BCMD_NOCFG option is useful if a different
application (dxe) has been booted earlier and the SMC and pin muxing have already been set up.

The MDMACODE configuration detection can be suppressed by the BCMD_NOAUTO switch. In this case,
the desired configuration can be passed through the BCMD_MODE bit field. It follows MDMACODE
through table convention.

RSI Master Boot Mode

The RSI master boot mode loads a loader stream through the Removable Storage Interface (RSI). After
reset or power on, the boot kernel performs auto-detection of the device to determine its type. Device types
supported by auto-detection are:

• Secure Digital (SD), low/high capacity, 1/4-bit

• Multi Media Card (MMC), low/high capacity, 1/4-bit

• MMC plus, low/high capacity, 1/4/8-bit

• Embedded MMC (eMMC) low/high capacity, 1/4/8-bit as aaaaa

The boot kernel optimizes clock settings based on an RSICODE provided in the first nibble of the first
block (defined as BCODE code in the block header definition). When booting from RSI, pagemode is used
to load data. This provides better support for block based devices (most RSI devices are block based).

Every block loaded in RSI boot mode is loaded implicitly as an indirect, callback block. A callback routine
is not required, but may be useful. An indirect callback block causes the boot kernel to first load pages to
a temporary buffer where a callback routing may be used to load the data to a file system or perform other
modifications. If no callback routine is specified the block is simply loaded. The Boot Routine API allows
more advanced customization for booting from RSI. Using this API, auto-detection can be disabled and
the device can be specified and configured manually.

PageMode Customization

 Devices attached to the RSI peripheral are typically block based devices. The boot kernel has built-in
support for booting from this type of block based device called pagemode. In pagemode data is loaded by
fixed block sizes. The default page size used is 512 bytes. This value can be changed using the initcode
routine to modify the dTempByteCount parameter in the struct STRUCT_ROM_BOOT_CONFIG structure.
Refer to pagemode and Init Block for details on making these changes.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

34–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Callback Customization

 Frequently, devices connected to the RSI have filesystem implemented on them. The motivation for
implicitly enabling a callback for every block is to ease implementation on such systems. By default the call-
back routine is empty and simply returns a value of zero. The standard procedure for loading and regis-
tering a callback function should be used early in the stream. See the callback block section for more
detailed information on performing this customization.

RSI Code

When performing auto-detection, the first block of data is loaded using the bus width defined by the
RSICODE. The RSI code is defined by the first block in the boot stream and is located in the block header
where BCODE is defined in a generic block code, (see Block Code). The boot kernel then reconfigures the
RSI peripheral according to the value detected in the RSICODE.

Run-Time API

The RSI Boot mode can also be initiated through the Boot Routine API. The boot routine allows for further
customization by modifying values in the dBootCommand parameter. This can be useful when it is neces-
sary to bypass auto-detection of the device.

Table 34-17: RSI Code

RSICODE uwFlag ubBusWidth ubRsiClk ubRsiClk High Speed Description

0 0x0000 0x00 0x3 N/A 1 bit, regular speed
protocol

1 0x0020 0x00 0x3 0x1 1 bit, high speed
protocol(1)

2 0x0000 0x01 0x3 N/A 4 bit, regular speed
protocol

3 0x0020 0x01 0x3 0x1 4 bit, high speed
protocol(1)

4 0x0000 0x02 0x3 N/A 8 bit, regular speed
protocol(2)

5 0x0020 0x02 0x3 0x1 8 bit, high speed
protocol(1)(2

6-15 reserved

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–23

Figure 34-10: dBootCommand for RSI Boot

When BMC_NOAUTO is set, the RSI clock divider is taken from the BCM_RSI_CLK field. The device type of the
attached device is taken from the BCMD_CHANEL field and the access type is taken from the ACCESS field.
The RSICODE field is still applicable and processed in order to set the bus width and speed protocol to use.

NOTE: The device identification phase is not executed. Therefore the attached device must be in the
transfer state before executing the API call.

In order to communicate with an attached device that is in the transfer state, the RCA of the device is
required. For example, CMD13 reads the card's status in the event the switch command was executed to
change the bus width or timings of the device. The card's RCA is therefore required to be written to the
uwRca field of the RSI structure via the use of the hook function that can be passed to the boot kernel via
the API. Failure to do so may lead to a boot failure

For MMC devices that support boot blocks, the contents of byte 179 of the Extended CSD register should
be written to the ubBootPartByte of the RSI structure. This should be preformed via the hook function.
In particular bits [7:3] should be set accordingly. Bits [2:0] may be modified by the boot code depending
on the device passed via the BCMD_RSI_TYPE field of dBootCommand.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

34–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The boot kernel uses a byte write operation to write byte 179 of the Extended CSD register which impacts
the non-volatile bits of the byte. When BCMD_NOAUTO is set, the Extended CSD register is not read which
speeds up the process. Set the non-volatile bits accordingly. Programs may do this by reading the Extended
CSD register at some point in the application and passing in byte 179 accordingly.

Notes on eMMC

 The boot kernel includes support to handle boot partitions on eMMC devices. The extended CSD register
is a register on the eMMC device with a byte containing boot partition information. The boot kernel uses
this byte to activate the required partition accordingly to then get the boot stream. While the boot partition
may be small, it may be sufficient to store something like UBOOT in loader stream format. UBOOT can
be loaded from this special boot partition and then it can continue to boot having knowledge of the main
file system are of the eMMC.

SPI Master Boot Mode

Describes booting from the Serial Peripheral Interface (SPI).

This SPI Master Boot mode boots from SPI memory connected to the SPI0 interface. 8-bit, 16-bit, 24-bit
and 32-bit address words are supported. Standard SPI memory is read using either the standard 0x03 SPI
read command or the 0x0B SPI fast read command.

For booting, the SPI memory is connected as shown in SPI Memory Connections

Figure 34-11: SPI Memory Connections

The pull-up resistor on the MISO line is required for automatic device detection. The pull-up resistor on
the SEL1 line ensures that the memory is in a known state when the GPIO is in a high-impedance mode
such as during reset. A pull-down resistor on the SCK line displays cleaner oscilloscope plots during debug-
ging

For SPI master boot the SPE, MSTR and SZ bits are set in the SPI0_CTL register. The TIMOD=2 bits enable
the receive DMA mode. Clearing both the CPOL and CPHA bits results in SPI mode 0. The boot kernel does
not allow SPI0 hardware to control the SEL1 pin. Instead, this pin is toggled in GPIO mode by software.
Initcodes are allowed to manipulate the uwSsel variable in the STRUCT_ROM_BOOT_CONFIG structure to

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–25

extend the boot mechanism to a second SPI memory connected to another GPIO pin.

SPI Device Detection Routine

Since BMODE = 011 supports booting from various SPI memories, the boot kernel automatically detects
what type of memory is connected. To determine whether the SPI memory device requires an 8, 16, 24 or
32-bit addressing scheme, the boot kernel performs a device detection sequence prior to booting. The
MISO signal requires a pull-up resistor, since the routine relies on the fact that memories do not drive their
data outputs unless the right number of address bytes are received.

Initially, the boot kernel transmits a read command (either 0x03 or 0x0B) on the MOSI line, which is
immediately followed by two zero bytes. Once the transmission is finished, the boot kernel interrogates the
data received on the MISO line. If it does not equal 0xFF, the valid byte (0x1-0xE in the lower nibble) tells
the boot code whether the memory device requires 8, 16, 24, 32 address bits. This is referred to as the
SPIMCODE. The boot kernel has the following settings according the SPIMCODE Descriptions table.

If the received value equals 0xFF, it is assumed that the memory device has not driven its data output and
that the 0xFF value is due to the pull-up resistor. Thus, another zero byte is transmitted and the received
data is tested again.

If the value still equals 0xFF, device detection continues. Device detection aborts immediately if a byte
different than 0xFF is received. The boot kernel continues with normal boot operation and it reissues a
read command to re read from address 0. The first block header is loaded by two read sequences, further
block headers and block payload fields are loaded by separate read sequences.

Figure SPI Device Detection Principle illustrates how individual devices behave.

Figure 34-12: SPI Device Detection Principle

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

34–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Table 34-18: SPIMCODE Descriptions

SPIMCODE Mode
Comm

and
Dummy

Bytes
Data
Lines

Address
Lines SPI Clock Purpose

0x0 unused
0x1 STANDARD 0x03 0 1 1 SCLK/32 legacy single-bit SPI

mode
0x2 STANDARD 0x03 0 1 1 SCLK/5 legacy single-bit SPI

mode
0x3 STANDARD 0x0B 1 1 1 SCLK/2 single bit with

dummy address
byte

0x4 FAST_MODE 0x0B 1 1 1 SCLK/2 single bit with
dummy address
bytes

0x5 FAST_MODE 0x03 0 1 1 SCLK/3 Atmel mode
0x6 FAST_MODE 0x0B 1 1 1 SCLK/1 Atmel mode with

dummy address
byte

0x7 FAST_
MODE(RAPI
DS)

0x1B 2 1 1 SCLK/1 Atmel mode with 2
dummy address
bytes

0x8 DOR FAST_
MODE

0x3B 1 2 1 SCLK/2 dual bit data, single
bit address

0x9 DIOR FAST_
MODE

0xBB 1 2 2 SCLK/2 dual bit data, dual
bit address

0xA QOR FAST_
MODE
(Atmel)

0x6B 1 4 1 SCLK/2 quad bit data,
single-bit address

0xB QIOR FAST_
MODE
(Atmel)

0xEB 3 4 4 SCLK/2 quad bit data, quad-
bit address
(AT25DQ)

0xC QOR FAST_
MODE

0x6B 1 4 1 SCLK/2 quad bit data,
single-bit address

0xD QIOR FAST_
MODE

0xEB 3 4 4 SCLK/2 quad bit data, quad
bit address

0xE reserved
0xF unused

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–27

Run-time API

The Boot Routine API function can be used to initiate a boot through the SPI device. Using the API, further
customizations can be made such as selecting a device other than SPI0, or disabling automated device
initialization and pin muxing. Refer to the specific flags in the dBootCommand for RSI Boot parameter.

Figure 34-13: dBootCommand for RSI Boot

SPI Slave Boot Mode

Describes booting from the Serial Peripheral Interface (SPI) with the processor as a slave.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

34–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

When using SPI slave mode boot, the processor consumes boot data from an external SPI host device. This
mode supports single, dual, and quad-bit modes. The boot kernel always starts in single bit mode and can
be changed using the appropriate command. The hardware configuration for the modes is shown in the
following figures. As in all slave boot modes, the host device controls the Blackfin processor's RESET input.

Figure 34-14: Connection Between Host (SPI Master) and Processor (SPI Slave)

Figure 34-15: Connection Between Host (SPI Master) and Processor (SPI Slave) DIOM

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–29

Figure 34-16: Connection Between Host (SPI Master) and Processor (SPI Slave) QSPI

The host drives the SPI clock and is responsible for timing. The host must provide an active-low chip select
signal that connects to the SPI0 SS input of the Blackfin processor. It can toggle with each byte transferred
or remain low during the entire procedure. 8-bit data is expected and 16-bit mode is not supported.

In SPI slave boot mode, the boot kernel sets the CPHA bit and clears the CPOL bit in the SPI_CTL register.
Therefore the MISO pin is latched on the falling edge of the MOSI pin. For details see "SPI Compatible
Port Controllers" in the Processor Hardware Reference.

The SPI slave processor detects the correct bit mode from the host SPI device by reading the first byte sent,
defined as the SPICMD. The following table describes the available codes. If the host starts in dual or quad-
bit mode, additional bytes need to be sent to transmit the correct code.

In SPI slave boot mode, SPI_RDY functionality is critical. The SPI_RDY output is used for back pressure
and requires a pull-up resistor. When high, the resistor shown in Figure programs SPI_RDY to hold off
the host. SPI_RDY holds the host off while the Blackfin processor is in reset or executing the preboot. Once
SPI_RDY turns inactive, the host can send boot data. The SPI module does not provide very large receive
FIFOs, so the host must test the HWAIT signal for every byte. Figure SPI Slave Boot Mode illustrates the

Table 34-19: SPICMD Descriptions

SPICMD Description

Starting in Single bit Mode
0x3 keep single-bit mode
0x7 switch to dual-bit mode
0xB switch to quad-bit mode
If host device starts in DIOM or QSPI
0xAA,0xBF switch to dual-bit mode
0xEE,0xEE,0xFE,0xFF switch to quad-bit mode

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

34–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

required program flow on the host side.

Figure 34-17: SPI Program Flow on the Host Side

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–31

Run-Time API

The SPI Slave Boot mode can be called through the Boot Routine API function at run time. Initiating a
boot through the run-time API allows for additional customization such as disabling automatic device
configuration or specifying a different SPI device other than SPI0.

When ROM_BCMD_NOCFG flag is specified, it is necessary to program pin muxing and other SPI
configuration as required, while keeping the SPI_CTL.EN bit cleared.

The automode detection can be suppressed by the ROM_BCMD_NOAUTO switch. In that case, the
desired configuration must be passed through the ROM_BCMD_SPI_CODE bit field, even if the ROM_
BCMD_NOCFG flag is set.

Figure SPI Slave Boot Mode describes the fields possible for customization through the dBootCmd param-
eter.

Figure 34-18: dBootCommand

Link Port Slave Boot Mode

Describes booting from the Link Port with the processor as a slave

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

34–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Link port boot is a slave boot mode in which the processor receives boot data from an external link port
master through link port 0. The link port is configured for receive mode and all transfers from the link port
to memory are performed under the control of DMA. The maximum supported operating frequency of
the Link Port is 66MHz for which the master boot source is responsible for deriving the clock frequency.
The link port receiver operates at an asynchronous frequency up to the maximum supported operating
frequency.

The link port protocol supports a means of generating link port transmit and receive service requests. The
transmit service request is generated on the processor to transmit the data by the receiver driving the
LACKx signal high when the transmitter is disabled. The receive service request is generated on a receiver
when it is disabled. This is initiated by the transmitter driving the LCLKx signal high.

As transmitter and receivers may be enabled at different times external pull-down resistors are required
on both the LCLKx and LACKx signals in order to eliminate any false service request assertions.

The link port slave boot mode initialization phase waits for the receive service request before passing
control back to the main kernel. Once this initial receive service request has been detected the receiving
link port is enabled and the boot process completes. At no point prior to boot completion is the receiving
link port disabled again. Once the link port is enabled all transfers are controlled by the receive DMA
channel. The Load function for the link port Receive Boot mode may therefore simply point to the periph-
eral DMA routine of the main kernel in a similar way to the SPI slave boot mode.

Run-time API

The Boot Routine API function can be used to load a boot stream through the link port peripheral. Using
this API the specific LP device may also be chosen, otherwise only link port0 is assumed. See the kernel
API section for specifics on how to use this function.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–33

Figure 34-19: dBootCommand for Link Port Boot

UART Slave Boot Mode

When using UART slave mode boot, the processor receives boot data from a UART host device connected
to the UART interface. The device connected to UART0 is initially detected using an autobaud detection
sequence. After finishing the UART slave boot process, all control and status registers of the used resources
are restored.

Further customization, such as disabling autobaud detection, and changing the device, can be done using
the Boot Routine API.

During the boot operation, the host device usually relies on the RTS output of the UART device. At boot
time the processor does not evaluate RTS signals driven by host. Since the RTS is in a high impedance state
when the processor is in reset, or while executing a preboot, an external pull-up resistor to VDDEXT is
recommended. The Connection Between Host and Processor figure shows the interconnection required
for booting. The figure does not show physical line drivers and level shifters that are typically required to
meet the individual UART-compatible standards.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

34–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 34-20: Connection Between Host and Processor

When the UART is enabled, the RTS goes immediately low, encouraging the host to send the first boot
stream data as shown in the figure. In the case of half-duplex UART connections, this must be avoided.
The host should wait until it has received the four bytes from the slave processor, before sending any data.

Figure 34-21: Host relying on RTS

When the boot kernel is processing fill or initcode blocks, it might require additional processing time and
needs to hold the host off from sending more data. This is signaled using the RTS output.

The figure above shows RTS timing in case an extended initcode routine executes. Since code execution is
distracting from the data loading, the host device has to be prevented from sending more data. The timing
of the RTS depends on the state of the RFRT bit in the UART Control register (UART_CTL). This bit is
cleared in case of the UART Slave Boot mode and RTS is deasserted when the UART receive FIFO contains
4 or more data words and another start bit is detected.

Autobaud Detection

The kernel supports autobaud detection using the '@' character as data. The host is expected to have it's
clock set to rate supported in the UART

To determine the bit rate when performing the autobaud:

1. the boot kernel expects an '@' character (0x40, eight bits data, one start bit, one stop bit, no parity bit)
on the UART RXD input.

2. The EDBO and UART_CLK register is cleared.

3. The boot kernel acknowledges, and the host then downloads the boot stream. The acknowledgment
consists of four bytes: 0xBF, UART_CLK[15:8], UART_CLK[7:0], 0x00.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–35

4. The host is requested to not send further bytes until it has received the complete acknowledge string.

5. Once the 0x00 byte has been received, the host can send the entire boot stream.

The host should know the total byte count of the boot stream, but it is not required to have any knowledge
about the content of the boot stream.

Figure 34-22: UART Autobaud Detection Waveform

The UART Autobaud Detection Waveform figure provides timing information for UART booting. After
the bit rate is known, the UART is enabled and the kernel transmits four bytes.

Run-time API

The UART Slave Boot mode can be called through the Boot Routine API function at run time. The run-
time API allows for additional customization. both autobaud detection and device configuration can be
disabled, and a device other than the default, UART0, may be specified.

If BFROM_BCMD_NOCFG flag is specified, it is the programs responsibility to configure pin muxing as
required.

Autobaud detection can be suppressed using the BFROM_BCMD_NOAUTO switch. In this case, the desired
configuration can be passed through the BFROM_BCMD_UART_CLK bit field. If the BFROM_BCMD_UART_CLK
bit field is zero, UART_CLK finally is evaluated. If the reset value is detected, the default error routine of the
boot kernel is called and the booting process is aborted. Otherwise the value in UART_CLK remains
untouched.

The dBootCommand figure shows each of the available fields in the dBootCommand parameter in the
Boot Routine API function.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 34-23: dBootCommand

Boot Programming Model
This section describes the programming model for booting the processor. The programming model
includes booting functions, API calls, and data structures.

Each boot modefollows implements the same interface to the kernel. This consists of an Init function, a
config function, load function, register function and a cleanup function. For an accurate description of the
details of each boot mode's implementation, it is recommded to look at each function in the boot source
that is provided.

Load Functions

 All boot modes are processed by a common boot kernel algorithm. The load function point is exposed by
the kernel to allow more complete customization of the booting process. The major customization is done
by a subroutine that must be registered to the pLoadFunction pointer in the STRUCT_ROM_BOOT_CONFIG

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–37

structure. Its simple prototype is as follows.

void LoadFunction (STRUCT_ROM_BOOT_CONFIG* pBootStruct);

 For some scenarios some of the flags in the dFlags word of the STRUCT_ROM_BOOT_CONFIG structure, such
as BFLAG_PERIPHERAL and BFLAG_SLAVE, slightly modify the boot kernel algorithm.

The boot ROM contains several load functions. One performs a memory DMA for memory boot, another
performs a peripheral DMA. The first is reused for fill operations and indirect booting as well.

 In second-stage boot schemes, programs can create customized load functions or reuse the originals and
modify the pDmaControlRegister , pControlRegister and nControlValue values in the STRUCT_
ROM_BOOT_CONFIG structure. The pDmaControlRegister points to the DMAx_CONFIG or MDMA_Dx_CONFIG
registers. When BFLAG_SLAVE flag is not set, the pControlRegister and dControlValue variables
instruct the peripheral DMA routine to write the control value to the control register every time the DMA
is started.

Custom load functions must meet the following requirements.

• Protect against dByteCount values of zero

• Multiple DMA work units are required if the dByteCount value is greater than 65536

• The pSource and pDestination pointers must be properly updated

In slave boot modes, the boot kernel uses the address of the dArgument field in the pHeader block as the
destination for the required dummy DMAs when payload data is consumed from BFLAG_IGNORE blocks.
If the load function requires access to the block's ARGUMENT word, it should be read early in the function.

 Page Mode

 For the benefit of page oriented boot source devices , the boot kernel provides support for page operations.
Page mode optimizes memory reads for block organized devices by always reading a page, rather than
reading data on demand. The same temporary buffer used by the indirect blocks is used in page mode. The
size of the buffer is defined by the dTempByteCount variable in the STRUCT_ROM_BOOT_CONFIG structure.
The page size of the physical source device is defined by the dPageByteCount variable.

 The pTempSourcevariable points to the source address of the data that is currently in the temp buffer. This
variable is an internal variable of the boot kernel. However, at any time programs can set this variable to -
1 to force the kernel to re fetch source data into the temp buffer. The following items also pertain to Page-
mode.

• dPageByteCount must be a power-of-2 value (default is 4)

• dTempByteCount must be the same as or a multiple of dPageByteCount (default is 512)

• pTempBuffer does not have special alignment requirements. However, alignment of 32 may speed up
DMA operations.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• In page mode, both block payload data and block headers are loaded through the same mechanism.

 Changing Settings at Run Time

Programs can change the pTempBuffer , dTempByteCount , and dPageByteCount variables at any time,
even within initcodes or callbacks. Whenever the settings change the kernel continues to operate on the
old settings until the content of the former temporary buffer has been entirely processed. The new settings
only become active for the next load operation. The kernel can be forced to immediately switch to the new
settings by setting pTempSource to a value of -1. Note that doing so requires the kernel to re fetch data that
had been loaded earlier. Under normal conditions pTempSourceshould not be altered.

The following initcode routine pseudo-code example illustrates on how page mode can be activated in any
boot mode. Think of SPI master mode that has significant overhead when fetching data in little chunks,
and for block headers or small boot blocks.

procedure initcode (BOOT_CONFIG config)
The config input is the boot config datastructure
change PLL and initialize DDR controller first */
initPLL()
enable page mode operation
set config.dFlags.BITM_ROM_BFLAG_PAGEMODE to true;

set to any unused DDR address,
make sure it is not overwritten by the boot stream
ideally pointing to an unitialized section, such as the stack or heap

 set config.pTempBuffer to 0xABCDABCD;
#update the temp byte count
pSource points to the current source address
pNextDxe points to the first address after the DXE
set config.dTempByteCount to config.pNextDxe - config.pSource

CRC32 Protection

This section describes the CRC32 Protection provisions

The boot kernel provides mechanisms to allow each block to be verified using a 32-bit CRC. To enable this
feature, use the kernel initcode routine, rom_Crc32Initcode . An init block that provides this function
can be created as the target address, and the ARGUMENT field containing the CRC32 checksum polyno-
mial. Once this function is called, CRC verification is enabled for all blocks except forward, ignore, and
first blocks. See the Boot Kernel API documentation for the specifics of this Initcode function.

Error Handler

This section describes how to customize the error handler

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–39

While the default handler puts the processor into idle mode, an initcode routine can register a customized
error function by overwriting the error function pointer to create a customized error handler. The
expected prototype is:

void ErrorFunction(STRUCT_ROM_BOOT_CONFIG *
pBootStruct, void *pFailingAddress);

Use an Initcode Routine (see Block Types) to write the entry address of the error routine to the
pErrorFunction pointer in the STRUCT_ROM_BOOT_CONFIG structure. The error handler has
access to the entire boot structure and receives the instruction address that triggered the error.

The default Error Routine performs the following actions in the following order:

1. Issues EMUEXCPT instruction

2. Issues INTR_SOFT3 software interrupt to SEC

3. Toggles FAULT pin

4. Issues an IDLE instruction

5. While (CC) loop;

6. Returns (RTS)

Fault Management

Unless the RCU_BCODE_NOFAULTS or RCU_BCODE_HALT registers are set, the main routine enables the SEC
and configures the following interrupts as faults early in the process:

CGU0_ERR, SEC0_ERR, WDOG0_EXP, DMAC_ERR, CRC0_ERR, SOFT3, C0_DBL_FAULT, C0_HW_
ERR:= SCTL_SEN | SCTL_FEN;

 For dual-core devices like the ADSP-BF60x family the Core 1 faults are also activated:

 WDOG1_EXP, C0_BDL_FAULT, C0_HW_ERR= SCTL_SEN | SCTL_FEN;

After memory initialization, the memory protection channels are enabled as faults:

L2CTL0_ECC_ERR, INTR_C0_L1_PARITY_ERR and in the dual-core case INTR_C1_L1_PARITY_
ERR

Events on any of these signals during the boot process will assert the FAULT and FAULTb output pins
after a delay. A delay of 256 cycles is used to give the boot code opportunity to self detect the error situation
and to execute an emuexcpt instruction to alert the emulator if connected.

SEC0_FDLY and SEC_FSRDLY are set to 0x100 value. SEC0_FCTL= FIEN | FOEN | EN;

Note that no interrupt is forwarded to either core.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–40 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

If the boot code detects an error by software, its default error handler sets the INTR_SOFT3 software inter-
rupt after having executed an EMUEXCPT and before executing an IDLE.

The boot code does not disable the SEC and fault settings on exit so that a safety hole is not introduced
when transitioning to user application.

Callable API Overview

Describes the kernel API available at run-time

 The boot code stored in ROM exposes several functions that can be used during run-time or within init-
code or callback routines. This section describes the available functions and how they can be used. All
functions meet the C runtime calling conventions described in the C/C++ Compiler and Libraries Manual.
C prototypes are provided through cdef_rom.h header file, and addresses are provided by the def_rom.
h header file.

System Control

The Systcontrol API provides a consistent reliable method to modify the PLL settings of the processor. It
is recommended that this is the only method used to modify the PLL settings.

 uint32_t rom_SysControl(uint32_t dActionFlags, STRUCT_ROM_SYSCTRL
*pSysCtrlSettings, void *reserved);

Functional Description

The Syscontrol API provide a normalized method to control setting in the CGU and DDR. The following
three types of operations are provided:

• CGU Configuration

• DDR initialization from wakeup event

• CGU and DDR context save and restore operations from the DPM_RESTOREn registers in order to
support entry to hibernate and wakeup from hibernate functionality

PP Define FUNC_ROM_SYSCONTROL
Prototype uint8_trom_SysControl(uint32_tdActionFlags,

ADI_SYSCTRL_VALUES *pSysCtrlSettings, void
*reserved);

Arguments R0: Pointer to Syscontrol flags
R1: Pointer to Syscontrol structure
R2: reserved word

Return Value R0: Syscontrol error flags
Stack Requirements valid stack (SP, FP dividable by 4) required.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–41

Syscontrol does not provide support for:

• Initial configuration of the DDR controller after a power up or reset sequence. The sequence of opera-
tions performed for the DDR. Configuration functionality is only compliant with the procedure
required in order to restore the DDR configuration in the event of a hibernate/wakeup sequence while
the DDR is in the self refresh state.

• Setting the DDR into self refresh mode. The DDR must be set to self refresh mode prior to calling
syscontrol in order to save the DDR configuration in preparation of entering hibernate.

Syscontrol has not been designed in such a way that it performs all required operations in a single call. The
syscontrol functionality can be broken down into two main categories:

• CGU configuration and limited DDR configuration

• CGU and DDR context save and restore from the DPM_RESTOREn registers

Syscontrol provides a means of configuring the CGU per user requirements. The CGU_CTL and CGU_
DIVregisters are used to manipulate the various clock frequencies of the system. The CGU Configuration
Capacity table defines the order of the sequences when writing to these two registers.

When the CGU_STATregister indicates that the PLL is disabled then CGU_DIV_ALGN is never set.

CGU and DDR context save and restore operations from the DPM_RESTOREn registers are enabled with the
setting of ROM_SYSCTRL_WUA_EN in the dActionFlagsparameter. When set any CGU or DDR configuration
operations are ignored. Therefore any attempt to reconfigure the PLL while this bit is set will not be
performed.

The ROM code calls syscontrol itself only when the device is waking up from hibernate. Nevertheless,
syscontrol is an important primitive of the boot concept as programs are expected to call syscontrol from
within their initcode to speed-up the boot process.

Table 34-20: CGU Configuration Capacity

CGU_CTL Frequency
change

CGU_DIV Frequency
change CGU_DIV_UPDT CGU_DIV_ALGN Register Written

No No NA NA None
No Yes 1 1 CGU_DIV

Yes No NA NA CGU_CTL

Yes Yes 0 0 CGU_DIV then CGU_
CTL

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–42 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 34-24: dActionFlags

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–43

Boot Kernel

The boot kernel API can be used to implement custom boot modes.

void * rom_BootKernel(STRUCT_ROM_BOOT_CONFIG *pBootStruct);

Boot Kernel

Boot Routine

The boot routine provides access to boot an application at run-time through a supported peripheral. The
boot routine often also provides the ability for further customization over the equivalent boot mode.

 rom_Boot(...)

The Boot Routine can be used for any kind of second-stage boot for supported boot modes. It provides
options to boot from any device and any channel, whereas booting directly limits the choice to the default
devices and channels. Often any auto-configuration or detection of the device can also be disabled. Each
boot mode defines its down dBootCommand, (see individual boot modes for a description of this param-
eter). The *pCallHook argument is only needed when BFLAG_HOOK is set and should otherwise be NULL.
The *pTargetAddress argument is only needed when BFLAG_DATAREAD is set and should otherwise be
NULL.

PP Define FUNC_ROM_BOOTKERNEL
Prototype void * rom_BootKernel(STRUCT_ROM_BOOT_CONFIG *pBootStruct);
Arguments R0: Pointer to pBootStruct
Return Value R0: pSource Pointer to next free source locations Pointer to DXE when

invoked by ROM_BFLAG_NEXTDXE switch
Stack Requirements valid stack (SP, FP dividable by 4) required

PP Define FUNC_ROM_BOOT
Prototype void * rom_Boot(void *pBootStream, dFlags, int32_t dBlockCount, ROM_

BOOT_HOOK_FUNC *pCallHook, uint32_t dBootCommand, void
*pTargetAddress);

Arguments R0: Pointer to Boot Stream (memboot) or Start Address of
Boot Stream (SPI boot)
R1: dFlags R2: dBlockCount
[fp+ 0x14] ROM_BOOT_HOOK_FUNC *pCallHook
[fp + 0x18] dBootCommand
[fp + 0x1C] pTargetAddress

Return Value R0: pSource Pointer to next free source locations Pointer to DXE when invoked
by ROM_BFLAG_NEXTDXE switch

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–44 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CRC 32 Polynomial

Generates a CRC look-up table using CRC0.

bool rom_Crc32Poly(uint32_t ulPolynomial);

CRC Initcode

The CRC Initcode is called by the bootstream. A respective init block is inserted by the loader utility when
invoked by the -crc switch. The CRC Initcode extracts the polynomial from the dArgument field of each
block header and calls then the CRC LUT function.

 void rom_Crc32Initcode(STRUCT_ROM_BOOT_CONFIG *pBootStruct);

ECC Protection

Protects 64-bit values by 8-bit ECC checksum using Hamming 7264 method. If return values equals
ROM_ECC_ERROR_1BIT source data is corrected in place. Cycle count is independent of data and
whether correction takes place or not.

 uint8_t rom_Ecc(u64 *pData, uint8_t bChksum, bool bDecode);

Stack Requirements valid stack (SP, FP dividable by 4) required. 0x400 bytes of free stack suggested

PP Define FUNC_ROM_CRC32POLY
Prototype bool rom_Crc32Poly(uint32_tulPolynomial);
Arguments R0: Polynomial
Return Value 0: on success -1 on failure
Stack Requirements none

PP Define FUNC_ROM_CRC32INITCODE
Prototype void rom_Crc32Initcode(STRUCT_ROM_BOOT_CONFIG *pBootStruct);

Arguments R0: Pointer to pBootStruct
Return Value none
Stack Requirements valid stack (SP, FP dividable by 4) required

PP Define FUNC_ROM_ECC
Prototype uint8_t rom_Ecc(u64 *pData, uint8_t bChksum, bool bDecode);

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–45

Execute

Resets the core as specified by dCoreId, stores dStartAddress into respective SVECTx registers and the
releases the core.

Arguments R0: Pointer to 64-bit data

R1: 8-bit checksum

R2: 0=encode, 1=decode

Return Value R0: 8-bit checksum when bDecode=false error code when dDecode=true
Stack Requirements valid stack (SP, FP dividable by 4) required

Table 34-21: bDecode Values

PP Define Description

ROM_ECC_ENCODE encode mode
ROM_ECC_DECODE decode mode

ROM_ECC_ERROR_INVS invalid syndrome/checksum
ROM_ECC_ERROR_2BIT uncorrectable 2-bit error
ROM_ECC_ERROR_1BIT 1-bt error, has been corrected
ROM_ECC_ERROR_NONE no error

Name Execute -

PP Define FUNC_ROM_EXEC -

Prototype void rom_Exec(uint32_t
dCoreId, void*
dStartAddress, void
*reserved);

 -

Argument R0 0=Core0, 1=Core1

Argument R1 Pointer to Routine

Argument R2 reserved, must be zero

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–46 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

rom_Exec(dCoreID,dStartAddress,0);

If dCoreId equals the current core,

• the routine simply issues a call to dStartAddress and returns.

• and the dStartAddress is 0x00000000 or 0xFFFFFFFF, the cycle counter is halted and an idle instruction
is executed.

If dCoreId does not equal the current core,

• and the dStartAddress is 0x00000000, the target core is reset and kept in reset.

• and the dStartAddress is 0xFFFFFFFF, the target core vectors to ROM address where the cycle counter
is halted and an idle instruction is executed.

• and the dStartAddress is 0xFFFFFFFE, the target core's SVECTx is used without modification

For safety reasons, the rom_Exec function does not unlock write access to the RCU0_SVECT registers.
Unlocking and re locking is expected to be managed by the calling function.

Return Value none -

Stack Requirements valid stack (SP, FP dividable by 4)
required

 -

PP Define FUNC_ROM_EXEC
Prototype void rom_Exec(uint32_t dCoreId, void* dStartAddress, void *reserved);
Arguments

 R0: 0=Core0, 1=Core1, ...

 R1: Pointer to Routine

 R2: reserved, must be zero

Return Value none
Stack Requirements valid stack (SP, FP dividable by 4) required

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–47

Forward Config

The Forward Config routine is provided initialize the link port and SPI peripherals for using the boot
forward feature.

 uint32_t* rom_ForwardConfig(STRUCT_ROM_BOOT_CONFIG *pBootStruct,
uint32_t ulForwardPort);

The Forward Config routine initializes the link port and SPI peripherals for using the boot forward feature.
This routine must be called from an initcode routine before any forward block can be processed. Refer to
documentation on forward block (see Block Types) documentation for details on pBootStruct as the defi-
nition varies for each peripheral.

When called with the BFWD_CLEANUP flag, the Forward Config routine clears the LPx_CTL and DMAy_
CONFIG registers.

Get Address

The Get Address routine can be used to access various look-up tables stored in the ROM. The function
returns the address of the lookup table specified by the enum provided. Use this function rather than
directly addressing tables to improve compatibility with future parts and silicon revisions.

Functional Description

PP Define FUNC_ROM_FWDCFG
Prototype uint32_t* rom_ForwardConfig(STRUCT_ROM_BOOT_CONFIG

*pBootStruct, uint32_t ulForwardPort);

Arguments
 R0: Pointer to
pBootStruct

 R1: Forward Port details

Return Value R0: pointer to Forward Callback Function on success0 on error
Stack Requirements valid stack (SP, FP dividable by 4) required

PP Define FUNC_ROM_GETADDR
Prototype void * rom_GetAddr(enum ETABLES eTable);
Arguments R0: eTable enumerator
Return Value R0: -1 in case of eTable was undefined enum start address of table otherwise
Stack Requirements none

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–48 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Mem Compare

Mem Compare compares a specified region of memory against a provide 32-bit reference value. The byte
count can be any 32-bit value that is divisible by four, including zero. The DMA channel is disabled after
completion, but the DMA status is not cleared so that in the event of an error the DMA can be debugged.

bool rom_MemCmp(void *pSrc, uint32_t ulChkVal, uint32_t ulByteCnt);

Memory Copy

The Mem Copy function provides a convenient facility to copy memory using MDMA0 from one location
to another. The byte count can be any 32-bit value including zero. The DMA channel is disabled after
completion, but the DMA status is not cleared so that in the event of an error the DMA can be debugged.

bool rom_MemCpy(void *pDst, void *pSrc, uint32_t ulByteCnt);

Table 34-22: eTable enumerators Values

Index Returned Address

0 Global constants
1 boot mode definition table
2 ecc syndrome table
3 MDMACODE look-up table
4 SPIMCODE look-up table
5 RSICODE look-up table

PP Define FUNC_ROM_MEMCMP
Prototype bool rom_MemCmp(void *pSrc, uint32_t ulChkVal, uint32_t

ulByteCnt);

Arguments R0: pSrc Source Address
R1: Compare Value
R2: Byte Count

Return Value 0: on success -1 on failure
Stack Requirements none

PP Define FUNC_ROM_MEMCPY
Prototype bool rom_MemCpy(void *pDst, void *pSrc, uint32_t ulByteCnt);
Arguments R0: pDst Destination Address

R1: pSrc Source Address
R2: Byte Count

Return Value 0: on success -1 on failure

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–49

Memory CRC

MemCRC scrubs memory using MDMA0 and CRC0 and builds a CRC checksum based on look-up table
as generated by CRC32POLY beforehand. The byte count can be any 32-bit value that is divisible by four,
including zero. The DMA channel is disabled after completion, but the DMA status is not cleared so that
in the event of an error the DMA can be debugged.

bool rom_MemCrc(void *pSrc, uint32_t ulCrcChk, uint32_t ulByteCnt);

Memory Fill

Mem Fill fills a specified region of memory with a 32-bit value provided. The byte count can be any 32-bit
value that is divisible by four, including zero. The DMA channel is disabled after completion, but the DMA
status is not cleared so that in the event of an error the DMA can be debugged.

bool rom_MemFill(void *pDst, uint32_t ulFillVal, uint32_t ulByteCnt);

Software Built-in Self Test

Provides entry to multiple Software-Based Functional Self-Testing routines.

ADI_SBST_RESULT rom_SBST(TEST_FUNC_ID, argument1, argument2, argument3);

Stack Requirements none

PP Define FUNC_ROM_MEMCRC
Prototype bool rom_MemCrc(void *pSrc, uint32_t ulCrcChk, uint32_t

ulByteCnt);
Arguments R0: pSrc Source Address

R1: Reference Checksum
R2: Byte Count

Return Value 0: on success -1 on failure
Stack Requirements none

PP Define FUNC_ROM_MEMFILL
Prototype bool rom_MemFill(void *pDst, uint32_t ulFillVal, uint32_t ulByteCnt);
Arguments R0: pDst DestinationAddress

R1: Fill Value
R2: Byte Count

Return Value 0: on success, -1 on failure
Stack Requirements none

PP Define FUNC_ROM_SBST

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–50 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Booting Data Structures

The programming model for booting the processor uses the data structures defined in this section.

The programming model for booting the processor uses the data structures defined in this section.

Address 0xC8000084
Prototype ADI_SBST_RESULT rom_SBST(TEST_FUNC_ID, argument1, argument2,

argument3);
Arguments R0: ID of function to be executed

R1: Argument 1 to be passed to function
R2: Argument 2 to be passed to function
[fp+ 0x14]: argument 3 to be passed to function

Return Value struct ADI_SBST_RESULTR0: ADI_SBST_RESULT.dResultR1: ADI_SBST_
RESULT.dErrorAddrress

Stack Requirements valid stack (SP, FP dividable by 4) required

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–51

STRUCT_ROM_SYSCTRL

Syscontrol configuration parameter

struct STRUCT_ROM_SYSCTRL;

STRUCT_ROM_BOOT_BUFFER

struct STRUCT_ROM_BOOT_BUFFER

uint32_t ulCGU_CTL Content of Clock Control Register

uint32_t ulCGU_DIV Content of Clock Divide Register

uint32_t ulWUA_Flags Flags used during wakeup

uint32_t ulWUA_BootAddr Memory boot address

uint32_t ulWUA_User User variable

uint32_t ulDMC_CTL Content of the DMC Control Register

uint32_t ulDMC_CFG Content of the DMC Config Register

uint32_t ulDMC_TR0 Content of the DMC Timing Register 0

uint32_t ulDMC_TR1 Content of the DMC Timing Register 1

uint32_t ulDMC_TR2 Content of the DMC Timing Register 2

uint32_t ulDMC_MR Content of the DMC MR Shadow Register

uint32_t ulDMC_EMR1 Content of the DMC EMR1 Shadow Register

uint32_t ulDMC_EMR2 Content of the DMC EMR2 Shadow Register

uint32_t ulDMC_PADCTL Content of the DMC PADCTL register

uint32_t ulDMC_DLLCTL Content of the DMC DLLCTL register

uint32_t ulReserved Reserved entry

void *pBuffer

int32_t dByteCount

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–52 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

STRUCT_ROM_BOOT_CONFIG

struct STRUCT_ROM_BOOT_CONFIG

void *pSource

void *pDestination

uint32_t *pControlRegister

uint32_t *pAuxControlRegister

uint32_t *pDmaControlRegister

uint32_t *pSecControlRegister

int32_t dControlValue

int32_t dByteCount

int32_t dFlags

uint16_t uwDataWidth

uint16_t uwSrcModifyMult

uint16_t uwDstModifyMult

uint16_t uwUserShort

int32_t dUserLong

int32_t dReserved

void *pModeData

int32_t dBootCommand

void *pNextDxe

ROM_BOOT_ERROR_FUNC *pErrorFunction

ROM_BOOT_LOAD_FUNC *pLoadFunction

ROM_BOOT_CALLBACK_FUNC *pCallBackFunction

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–53

ROM_BOOT_CALLBACK_FUNC *pCrcFunction

ROM_BOOT_CALLBACK_FUNC *pForwardFunction

STRUCT_ROM_BOOT_HEADER *pHeader

void *pTempBuffer

int32_t dTempByteCount

void *pTempSource

int32_t dPageByteCount

uint32_t ulBlockCount

uint32_t ulBlockCurrent

int32_t dClock

void *pLogBuffer

void *pLogCurrent

int32_t dLogByteCount

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–54 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

STRUCT_ROM_BOOT_HEADER

typedef struct STRUCT_ROM_BOOT_HEADER

STRUCT_ROM_BOOT_SPI

struct STRUCT_ROM_BOOT_SPI

Wakeup From Hibernate

When the boot code detects that the chip is waking up from hibernate it can take some special actions.
These include:

• Configuration of PLL (CGU_DIV and CGU_CTL registers)

• Initialization of DDR controller

int32_t dBlockCode

void *pTargetAddress

int32_t dByteCount

int32_t dArgument

uint8_t ubReadCommand

uint8_t ubDummyBytes

uint8_t ubAddressBytes

uint8_t ubDataBits

uint16_t uwClkLower

uint16_t uwTxCtlUpper

uint16_t uwRxCtlUpper

uint16_t uReserved

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–55

• Memboot from any memory address

The special sequence executes when the RCU_HBTRES hibernate reset identification bit is set. In case of
a warm boot the RCU_HBTRES bit can be overruled by the BCODE_HBTOVW bit. When either of these
bits is detected as a one, the boot code inspects the DPM_RESTORE0 register for further instructions. At
least two bits must be set in DPM_RESTORE0 for the special action to take place.

Note the importance of this feature in case of slave boot modes. The Blackfin enters hibernate on its own
decision. There is no direct path for this action to be directly controlled by the host (it might indirect
thought). Therefore, do not assume that the host was aware of the processor being in the hibernate state.

On wakeup, the host may not know that the processor is expecting boot data. To prevent the processor
from starving at wakeup, this special functionality enables the processor to boot from a LDR stream stored
in off-chip memory (DDR or SMC SRAM). The stream may consist of one single 16-byte boot block
header, which efficiently terminates the boot process and enables Core 0 to execute the code directly
without further involvement of the boot code. Since even this one boot header is protected by XOR
checksum the processor is prevented from booting illegal opcodes when the memory content was not in
integer form.

When the WUA_MEMBOOT and WUA_ENA bits are set, after optional PLL and DDR initialization, the
boot code does not continue with boot mode processing as per the BMODE pin configuration. Instead, the
boot code performs a memory boot from the address specified by the WUA_BOOT_ADDR field. In case
the address points to SMC space the memory boot mode automatically enables the respective SMC bank
and required pin muxing.

CGU Initialization after Wakeup

When the processor enters the hibernate state, the CGU current configuration is lost and at a wakeup event
the default reset values become applicable. In order to provide more optimal processor configuration at
wakeup, programs may save the required CGU configuration to the DPM0_RESTORE registers. Upon
detecting a wakeup event the boot code can optionally re-configure the CGU based on the contents of the
DPM0_RESTORE registers.

The WUA_CLOCK bit of the DPM0_RESTORE0 register defines whether the boot code should recon-
figure the CGU or not. If the CGU is to be reconfigured then the CGU0_DIV and the CGU0_CTL registers
are programmed based upon the contents of two of the DPM0_RESTORE registers. See the registers
section below for details of which registers are used during the configuration.

DDR Controller Initialization after Wakeup

Before entering the hibernate state, the external SDRAM is placed in self-refresh mode in order to preserve
the contents of memory. During hibernate the power to the DDR is cut-off, to lower power consumption.
When the device exits the hibernate state the DDR is required to be re-initialized. In order for the DDR to
be re-initialized, programs are required to save the current DDR configuration to the DPM_RESTORE
registers prior to the processor entering the hibernate state. The Syscontrol routine provides a means for
programs to restore the context prior to entering hibernate in a manner that is compatible with the
required context restoration.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–56 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

BFLAG_WAKEUP and BFLAG_QUICKBOOT

Whenever either the RCU_BCODE_HBTOVW flag or the RCU_STAT_HBRST status bit is set, the main
routine passes the BFLAG_WAKEUP flag when calling the Boot routine. When called that way the under-
lying boot kernel watches for block headers for the BFLAG_QUICKBOOT flag set. In the event of both
flags being set, the boot kernel takes special action in the scope of the current block by:

• Toggling the BFLAG_IGNORE flag

• Clearing the BFLAG_INIT, BFLAG_CALLBACK, BFLAG_FORWARD, BFLAG_AUX and BFLAG_
FINAL flags (as with any ignore block)

• Prevents fill blocks from processing (as with any ignore block)

Blocks that have BFLAG_IGNORE=0 and BFLAG_QUICKBOOT=1 are normally processed for a regular
(non-wakeup) boot and are not processed for a wakeup boot. This way unnecessary rebooting of non-vola-
tile memory cells can be avoided (speak external SRAM or SDRAM in self-refresh mode).

Blocks that have BFLAG_IGNORE=1 and BFLAG_QUICKBOOT=1 are ignored during regular boot and
become active in case of wakeup. This supports complete arbitrate boot processing. Note that for FIRST
blocks the IGNORE flag only controls the data load. The handling of the start vector and the next dxe
pointer is not conditional. To make the initcode processing conditional, keep the BFLAG_QUICKBOOT
flag clear for the init block and interrogate the BFLAG_WAKEUP flag in the initcode itself.

The BFLAG_SAVE flag is the BFLAG_QUICKBOOT's counterpart and enables programs to implement
special context savings strategies before entering hibernate. However, the boot code does not directly
support this functionality.

The wakeup/quickboot mechanism can be re-purposed by controlling the BFLAG_WAKEUP bit in the
rom_Boot() routine's dFlags argument, or by altering the flag from within hook or initcode routines.

ADSP-BF60x DPM Register List

The dynamic power management (DPM) unit includes the phase locked loop (PLL) enable/disable
features, deep sleep and hibernate mode controls, and clock domain enable/disable features. The combi-
nation of these features and controls provide selective and flexible power management. A set of registers
govern DPM operations. For more information on DPM functionality, see the DPM register descriptions.

Table 34-23: ADSP-BF60x DPM Register List

Name Description

DPM_CTL Control Register

DPM_STAT Status Register

DPM_CCBF_DIS Core Clock Buffer Disable Register

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–57

DPM Restore

Figure 34-25: DPM Restore 0 Registers

DPM_CCBF_EN Core Clock Buffer Enable Register

DPM_CCBF_STAT Core Clock Buffer Status Register

DPM_CCBF_STAT_STKY Core Clock Buffer Status Sticky Register

DPM_SCBF_DIS System Clock Buffer Disable Register

DPM_WAKE_EN Wakeup Enable Register

DPM_WAKE_POL Wakeup Polarity Register

DPM_WAKE_STAT Wakeup Status Register

DPM_HIB_DIS Hibernate Disable Register

DPM_PGCNTR Power Good Counter Register

DPM_RESTOREn Restore Registers

Table 34-23: ADSP-BF60x DPM Register List (Continued)

Name Description

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–58 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The following table describes the function of each of the restore registers. RESTORE0 and RESTORE1 are only
registers that do not directly restore other registers. RESTORE0 serves as the control register, enabling the
function of the rest, and RESTORE1 stores a boot address rather than data to restore a particular register.

Reset and Power-up

The processor implements several different power-up and reset scenarios ranging from a full power-on to
software triggered resets. The Boot Kernel plays a specific role depending on the scenario.

Reset Vector

When reset releases, the processor starts fetching and executing instructions at the on-chip boot ROM.

On a hardware reset the boot kernel initializes the RCU_SVECTregister to 0xFFA00000. When the booting
process completes, the boot kernel jumps the location provided by the RCU_SVECTvector register. With the

Table 34-24: DPM Restore Values

 DPM Register Restored Register Enable Bit

RESTORE1 Address booted from WUA_MEMBOOT

RESTORE2 CGU_DIV WUA_CLOCK

RESTORE3 CGU_CTL WUA_CLOCK

RESTORE4 RCU_BCODE WUA_BCODE

RESTORE5[31:16] DMC_CFG[15:0] WUA_DDR

RESTORE5[15:0] DMC_CTL[15:0] WUA_DDR

RESTORE6[31:16] DMC_MR[15:0] WUA_DDR

RESTORE6[15:0] DMC_EMR1[15:0] WUA_DDR

RESTORE7 DMC_TR0 WUA_DDR

RESTORE8 DMC_TR1 WUA_DDR

RESTORE9 DMC_TR2 WUA_DDR

RESTORE10[31:16] DMC_EMR2[15:0] WUA_DDR

RESTORE10[15:0] DMC_DLLCTL[15:0] WUA_DDR

RESTORE11 DMC_PADCTL WUA_DDR

RESTORE12 DMC_PHYCTL1 WUA_DDR

RESTORE13 DMC_PHYCTL3 WUA_DDR

RESTORE14 DMC_PHYCTL0 WUA_DDR

RESTORE15 DMC_PHYCTL2 WUA_DDR

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–59

exception of the host DMA boot modes, the content of the RCU_SVECTregister is overwritten by the target
address field of the first block of the loaded boot stream. If the BCODE field of the RCU_STATregister is set to
No-boot, the RCU_SVECTregister is not modified by the boot kernel on software resets. Therefore,
programs can control the reset vector for software resets through the RCU_SVECT register. The content of
the register may be RCU_SVECT undefined in emulator sessions. For more information, see Software Vector
Register 0 and Software Vector Register 1 .

Servicing Reset Interrupts

The reset interrupt has top priority and the processor services a reset event like other interrupts. Only
emulation events have higher priority. When it comes out of reset, the processor is in supervisor mode and
has full access to all system resources. The boot kernel can be seen as part of the reset service routine as it
runs at top interrupt priority level.

Even when the boot process has finished and the boot kernel passes control to the user application, the
processor is still in the reset interrupt. To enter the user mode, the reset service routine must initialize the
RETI register and terminate by an RTI instruction.

Systems that do not work in an OS environment may not enter user mode. Typically, the interrupt level
needs to be degraded down to IVG15.

NOTE: As the boot kernel is running at the reset interrupt priority, NMI events, hardware errors, and excep-
tions are not served at boot time. As soon as the reset service routine returns, the processor may
service the events that occurred during the boot sequence. It is recommended that programs install
NMI, hardware error and exception handlers before leaving the reset service routine. This includes
proper initialization of the respective event vector registers, RCU_SVECT

NMI and RESOUT

The NMI and RESOUT signals share the same pin. When the part is in reset, the pin is in RESOUT mode, and
RESOUT is asserted. The NMI signal is disabled for the duration of this reset event. After the RESOUT goes low
the pin is automatically placed into NMI mode and the NMI signal is enabled.

This pin should be connected to an external pull-up. The state of the RESOUT can be controlled by the RCU_
CTL.RSTOUTDSRT and RCU_CTL.RSTOUTASRTcontrol bits.

Program Flow - Main Routine

On startup or reset the ROM's main routine is executed, the ROM is responsible for inspecting the state of
the processor and taking appropriate action. This invovles inspecting the BMODE, BCODE, DPM_RESTORE
resigisters, as well as what specifically caused the initiation of the booting process.

Core 0 begins the boot process, Core 1 is released during the early stages of the boot process and executes
a default application as described. Core 1 can begin execution anytime during the application boot using
an initcode (see Block Types). For more information, see Execute. If Core 1 will be used, it may be useful to
set the ROM_BFLAG_NORESET flag.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

34–60 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

The following sections give an overview of the procedures followed by both cores during a boot.

Core 0

1. Enable Cycle Counter and latch BMODE/ BCODE from RCU.

2. Set Lx, Bx, LCx registers to zero, setup stack registers, and initialize SVECT registers (including Core1
registers).

3. Release Core 1.

4. Install Fault Management, Initialize Memory and Release

5. Wakeup Management - potentially a direct memory boot depending on DPM wakeup registers.

6. Branch to address in SVECT0 if NoKernel option is set

7. Boot according to selected boot mode

Core 1

1. Enable Cycle Counter and latch BMODE/BCODE from RCU

2. Branch to address in SVECT1 register (normally set by Core 0)

Core 1 Default Application

After Core1 is released by Core0 during the initial stages of boot,Core1 executes a default application
unless BCODE_NOVECTINIT flag is set. The entry address for the routine is written by Core0.

The default application sets SVECT1 to FF600000 (unless NOVECTINIT is set), Initializes its core's
memory and become idle.

 Memory Initialization

 The first stage of booting initializes and validates all memory. This is performed before the actual boot
process begins.

Memory Initialization occurs early in the boot process, before any stream information is read, and before
the boot code has any influence. The boot kernel initializes all memory and cache tags and ensures all
parity and ECC checksum bits are consistent with data. All memory is filled using a fill value.

Both cores are initialized. This infers that both cores will be woken up during this initial boot process.
When booting from Core 0, upon completion of memory initialization, core 1 is left in the idle state. Core
1 can be used during the boot process using the API function.

The fill value for the processor is 0x00A700A7 or except 7

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–61

 Boot Debug

This section describes some common techniques that can be applied for debugging the boot procedure.

If the boot process fails, very little information can be gained by watching the chip from outside. In master
boot modes, the interface signals can be observed. In slave boot modes, only the RESOUT and RTS signals
tell about the progress of the boot process.

The RESOUT signal is cleared after memory initializations are completed. The RESOUT and NMI signals
share the same pin. During the boot process the NMI signal is disabled, once the RESOUT signal is asserted
high upon completion of the boot process, the NMI signal is enable. Note that the RESOUT and NMI signals
are active low and therefore require a pull-up resistor to be connected.

Using the emulator, however, there are many possibilities to debug the boot process. The entire source
code of the boot kernel is provided with the tools installation. This includes the DSP executable (DXE) file.
The load symbols feature of the tools environment helps to navigate the program. Note that the content of
the ROM might differ between silicon revisions. Hardware breakpoints and single-stepping capabilities
are also available. Since the content of the L1 instruction ROM cannot be read out by the emulator, as this
ROM is not supported by the ITEST feature, these instructions are not displayed in the disassembly
window.

The boot kernel also generates a circular log file in scratch pad memory. While the pLogBuffer and the
dLogByteCount variables describe the location and dimension of the log buffer, the pLogCurrent points
to the next free location in the buffer. The log file is updated whenever the kernel passes the _bootrom.
bootkernel.breakpointlabel.

At each pass, nine 32-bit words are written to the log file, as follows.

• the block code word (dBlockCode) of the block header

• the target address (dTargetAddress) of the block header

• the byte count (dByteCount) of the block header

• the argument word (dArgument) of the block header

• the source pointer (dSource) of the boot stream

• the block count (dBlockCount)

• an internal copy of the dBlockCode word OR'ed with dFlags

• the content of the SEQSTAT register

• a 0xFFFFFFFA constant

 The ninth word is overwritten by the next entry set, so that 0xFFFFFFFA always marks the last entry in
the log file. Most of the data structures used by the boot kernel reside of the stack in scratch pad memory.

BOOT ROM AND BOOTING THE PROCESSOR
BOOTING REGISTER REFERENCE

34–62 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

While executing the boot kernel routine (excluding subroutines) the P5 point to the STRUCT_ROM_BOOT_
CONFIG structure. Type (STRUCT_ROM_BOOT_CONFIG*) $P5 in the IDDE expression window to see the
structure content.

The Error Handlercan also give indications of errors. See the API documentation for more information.

Boot ROM Revision Control

Describes the provisions for reading ROM version on the processor

Boot ROM Revision Control

 The boot ROM reserves the 32-bit location at REG_ROM_REVISION for a version code consisting of four
bytes as shown in the ROM Revision Control .

Figure 34-26: ROM Revision Control

Booting Register Reference
This section provides reference information regarding the registers used during the booting process.

BOOT ROM AND BOOTING THE PROCESSOR
BOOTING REGISTER REFERENCE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–63

Status Register

The RCU status register (RCU_STAT) contains status bits for all RCU reset sources, reset status, and boot
mode inputs. Status bits for reset sources are sticky and can cleared by software. Error status bits are
cleared by any reset event.

Figure 34-27: RCU_STAT Register Diagram

Table 34-25: RCU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18
(R/W1C)

RSTOUTERR Reset Out Error.
The RCU_STAT.RSTOUTERR bit indicates (if set) that a write attempted
to set the RCU_CTL.RSTOUTASRT and RCU_CTL.RSTOUTDSRT
simultaneously. This condition triggers a bus error.
0 No Error
1 Error Occurred

17
(R/W1C)

LWERR Lock Write Error.
The RCU_STAT.LWERR bit indicates (when set) there was an attempted
write to an RCU register while the RCU_CTL.LOCK bit was set and the
global lock bit is enabled (SPU_CTL_GLCK bit =1). This status bit is
sticky; write-1-to-clear
0 No Error
1 Error Occurred

BOOT ROM AND BOOTING THE PROCESSOR
BOOTING REGISTER REFERENCE

34–64 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

16
(R/W1C)

ADDRERR Address Error.
The RCU_STAT.ADDRERR bit indicates that the RCU generated an
address error. This status bit is sticky; write-1-to-clear it.
0 No Error
1 Error Occurred

11:8
(R/NW)

BMODE Boot Mode.
The RCU_STAT.BMODE bits indicate the input on the boot mode pins.

5
(R/NW)

RSTOUT Reset Out Status.
The RCU_STAT.RSTOUT bit indicates the assertion status of the system
reset pin.
0 RSTOUT Deasserted
1 RSTOUT Asserted

3
(R/W1C)

SWRST Software Reset.
The RCU_STAT.SWRST bit indicates that a system reset (which was
triggered by software) has occurred since the last time a hardware
reset occurred or since the RCU_STAT.SWRST bit was cleared by
software.
0 Inactive
1 Reset Occurred

2
(R/W1C)

SSRST System Source Reset.
The RCU_STAT.SSRST bit indicates that a system reset triggered by
hardware in the system clock domain, clock A domain, or clock B
domain has occurred since the last time a hardware reset occurred or
since the RCU_STAT.SSRST bit was cleared by software.
0 Inactive
1 Reset Occurred

1
(R/W1C)

HBRST Hibernate Reset.
The RCU_STAT.HBRST bit indicates that a hibernate reset has
occurred since the last time a hardware reset occurred or since the
RCU_STAT.HWRST bit was cleared by software.
0 Inactive
1 Reset Occurred

Table 34-25: RCU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

BOOT ROM AND BOOTING THE PROCESSOR
BOOTING REGISTER REFERENCE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–65

Software Vector Register 0

Figure 34-28: RCU_SVECT0 Register Diagram

Software Vector Register 1

0
(R/W1C)

HWRST Hardware Reset.
The RCU_STAT.HWRST bit indicates that a hardware reset has
occurred.
0 Inactive
1 Reset Occurred

Table 34-26: RCU_SVECT0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Reset Vector.

Table 34-25: RCU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

BOOT ROM AND BOOTING THE PROCESSOR
BOOTING REGISTER REFERENCE

34–66 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 34-29: RCU_SVECT1 Register Diagram

Boot Code Register

The RCU software vector lock register (RCU_BCODE) provides a register lock and software vector n enable
bits for each processor core on the product. For a processor-specific definition of the RCU_BCODE register,
see the Booting Register Reference in the Boot ROM chapter.

Figure 34-30: RCU_BCODE Register Diagram

Table 34-27: RCU_SVECT1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Reset Vector.

BOOT ROM AND BOOTING THE PROCESSOR
BOOTING REGISTER REFERENCE

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 34–67

RCU BCODE Register Definition

The RCU BCODE register control a variety of options provided by the internal ROM.

Figure 34-31: RCU BCODE Register Diagram

Table 34-28: RCU_BCODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_
BCODE.LOCK bit is set, the RCU_BCODE register is read only (locked).
0 Unlock
1 Lock

30:0
(R/W)

VALUE Boot Code.
The RCU_BCODE.VALUE bits contain a boot code for the processor. For
more information, see the RCU functional description.

Table 34-29: RCU BCODE Register Fields

Bit No. Bit Name Description/Enumeration

31 LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_
BCODE.LOCK bit is set, the RCU_BCODE register is read only (locked).
0 Unlock
1 Lock

17 NOCORE1 No Core 1 present

BOOT ROM AND BOOTING THE PROCESSOR
BOOTING REGISTER REFERENCE

34–68 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

10 NOHOOK Do not execute hook routine
9 NOPREBOOT Always 0
8 NOFAULTS Do not perform fault initialization
5 NOCACHE Do not perform cache initialization
4 NOMEMINIT Do not perform memory initialization
3 RCU_BCODE_

HBTOVW
 Execute wakeup functionality

2 RCU_BCODE_
HALT

Execute no boot routine

1 NOVECTINIT Do not vector to the application
0 NOKERNEL Do not execute the boot kernel

Table 34-29: RCU BCODE Register Fields (Continued)

Bit No. Bit Name Description/Enumeration

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–1

35 System Debug Unit (SDU)

The System Debug Unit (SDU) provides debug access to the connected system. It provides debug host
interface support through a JTAG (IEEE-1149.1) interface. In addition to traditional JTAG features, the
SDU provides direct access to the processor’s system resources to allow highly flexible and non intrusive
debug support.

The SDU can control and communicate with processor cores through the JTAG or (if supported by the
core) through system transactions. The SDU can perform system transactions as a system master through
the memory access controller interface (MAC) and its memory-mapped registers can be accessed by
system masters through the slave port.

SDU Features
• System JTAG TAP controller for system debug features, boundary scan, and public JTAG features

• Provides debug interface to core(s), and other system resources

• Provides direct and runtime access to memory system and system MMRs

• Provides DMA and non-DMA access to memory spaces

• SDU registers accessible to debug host and system (system MMRs)

• Support for system watchpoint and other event signaling

• Direct control over system reset

• Provides support for debug immediately after reset (boot debug)

• Supports group halt (debug event immediately halts all specified endpoints)

SDU Functional Description
The following sections provide a functional description of the SDU.

• ADSP-BF60x SDU Register List

• ADSP-BF60x SDU Interrupt List

• ADSP-BF60x SDU Trigger List

• ADSP-BF60x SDU DMA List

SYSTEM DEBUG UNIT (SDU)
SDU FUNCTIONAL DESCRIPTION

35–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

• Block Diagram

• JTAG TAP Controller (JTC) Block Diagram

• Memory Access Controller (MAC)

• Group Halt

ADSP-BF60x SDU Register List

The system debug unit (SDU) provides IEEE-1149.1 support through its JTAG interface. The registers
listed in the SDU register summary table govern SDU operations. For more information on SDU function-
ality, see the SDU register descriptions.

Table 35-1: ADSP-BF60x SDU Register List

Name Description

SDU_IDCODE ID Code Register

SDU_CTL Control Register

SDU_STAT Status Register

SDU_MACCTL Memory Access Control Register

SDU_MACADDR Memory Access Address Register

SDU_MACDATA Memory Access Data Register

SDU_DMARD DMA Read Data Register

SDU_DMAWD DMA Write Data Register

SDU_MSG Message Register

SDU_MSG_SET Message Set Register

SDU_MSG_CLR Message Clear Register

SDU_GHLT Group Halt Register

SYSTEM DEBUG UNIT (SDU)
SDU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–3

ADSP-BF60x SDU Interrupt List

ADSP-BF60x SDU Trigger List

ADSP-BF60x SDU DMA List

Definitions

To make the best use of the SEC, it is useful to understand the following terms.

Table 35-2: ADSP-BF60x SDU Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

SDU0 DMA 64 11 LEVEL

Table 35-3: ADSP-BF60x SDU Trigger List Trigger Masters

Description Trigger ID Sensitivity

SDU0 DMA 31 PULSE/EDGE

Table 35-4: ADSP-BF60x SDU Trigger List Trigger Slaves

Description Trigger ID Sensitivity

SDU0 DMA 31
SDU0 Slave Trigger 69

Table 35-5: ADSP-BF60x SDU DMA List DMA Channel List

Description DMA Channel

SDU0 DMA DMA11

SYSTEM DEBUG UNIT (SDU)
SDU FUNCTIONAL DESCRIPTION

35–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

JTAG 1149.1

 IEEE Standard Test Access Port and Boundary-Scan Architecture.

Group Halt

Synchronous halt of distributed bus masters and various peripherals.

MAC

Memory Access Controller, system master interface controlled by the SDU

System Bus

 In the context of the SDU definition this refers to the system interconnect fabric of the given product.

Block Diagram

The SDU architectural model is illustrated in the following figure. The figure is a block diagram of the SDU
and the associated debug connections of the system.

Figure 35-1: SDU Block Diagram

JTAG TAP Controller (JTC) Block Diagram

The SDU includes a JTAG test access port controller to support the IEEE-1149.1 standard. The JTAG TAP
controller implements the traditional state machine for the TAP controller and the necessary support for
the implemented scan chains. The following figure shows the JTAG (IEEE1149.1) TAP controller state
machine.

SYSTEM DEBUG UNIT (SDU)
SDU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–5

Figure 35-2: JTAG TAP Controller

JTC Core Emulation

Each core has its own JTAG TAP controller in addition to the JTC. The core JTAG TAP controllers are
bypassed (not in the scan path) after reset. They can be added to the scan path under control of the SDU_

SYSTEM DEBUG UNIT (SDU)
SDU FUNCTIONAL DESCRIPTION

35–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

CTLregister. Each core JTAG controller provides support for the core only feature set (step, core register
access and others). The following figure illustrates the connection model.

Figure 35-3: JTAG Signal Connections

JTC Instruction Register (IR)

The instruction register of the JTC is five bits wide. Decoding the instruction register selects which of the
SDU scan registers is connected between the JTG_TDI and JTG_TDO pins during scan operations. The SDU
scan registers provide support for JTAG public instructions and private (SDU) registers for debug control
and status.

The following tables list the JTAG scan registers with their corresponding instruction decode. Instruction
decode values not listed are reserved and must not be accessed.

Table 35-6: JTAG Public Scan Registers

Instruction Decode (TDI-
>TDO) Instruction Names Register Name Width

00000 Extest Boundary Scan Product Specific
10000 Sample/Preload Boundary Scan Product Specific
00010 IDCODE CHIPID - Constant

(Product Specific) value
32

11111 Bypass Bypass 1

Table 35-7: SDU Scan Registers

Instruction Decode (TDI-
>TDO) Instruction Names Register Name Width

00101 SDU_CTL SDU Control Register 16

SYSTEM DEBUG UNIT (SDU)
SDU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–7

Memory Access Controller (MAC)

The MAC implements control functions to provide support for access to system memory space (for
example L1, L2, L3 and System MMRs). These functions support debug host features like Background
Telemetry Channel (BTC) and code and data download. The MAC supports direct and DMA accesses
which are described in the following sections.

MAC Direct Access

The MAC provides direct access to system memory and system MMRs. This function provides access to
individual addresses through address (SDU_MACADDR), data (SDU_MACDATA), and control (SDU_MACCTL)
registers. When the debug host needs to perform a memory access, it loads these three registers with
address, data, and control values. The act of writing to the control register triggers the MAC state machine
to initiate a transfer request on the MAC system interface.

The SDU_STAT.MACRDYbit indicates when the MAC is ready for a new transfer. In the case of the previous
operation being a read transfer, The SDU_STAT.MACRDYbit also indicates that read data has been returned
in the SDU_MACDATAregister.

MAC DMA Access

The MAC provides DMA access to system memory to improve the efficiency of debug host communica-
tion. The MAC DMA interface has the following elements.

• DMA FIFO

• DMA data registers

10101 SDU_STAT SDU Status Register 32
01101 SDU_MACCTL Memory Access Control

Register
5

11101 SDU_MACADDR Memory Access Address
Register

32

00011 SDU_MACDATA Memory Access Data
Register

32

10011 SDU_DMARD DMA Read Data
Register

32

01011 SDU_DMAWD DMA Write Data
Register

32

Table 35-7: SDU Scan Registers (Continued)

Instruction Decode (TDI-
>TDO) Instruction Names Register Name Width

SYSTEM DEBUG UNIT (SDU)
SDU FUNCTIONAL DESCRIPTION

35–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

– DMA write data register (SDU_DMAWD)

– DMA read data register (SDU_DMARD)

The DMA FIFO is 4-bytes wide and connected to a system DMA channel on one side and to the SDU_
DMARD and SDU_DMAWDregisters on the other.

The DMA interface registers act as the interface points to the DMA FIFO. Depending on the direction of
a DMA transfer, the SDU_DMAWDregister is used to fill the DMA FIFO, or the SDU_DMARDregister is used to
empty the DMA FIFO.

Group Halt

The SDU provides support for a user defined group halt model. The model allows for the masters and
slaves of the group halt assertion to be selectable.

• Each master provides support for event signaling to the SDU for group halt assertion

• Each slave provides support for responding to a group halt assertion

The programming model consists primarily of a system MMR in the SDU group halt register (SDU_GHLT)
to configure the masters and slaves of group halt. An overview of the signaling involved for group halt is
shown in the following figure (example signal names are shown for illustration only).

Figure 35-4: Group Halt Overview

Group Halt Status

Group halt status and group halt cause (master) are captured in the SDU_STAT register. The cause is
captured when the status bit is set. This information is used to indicate to the debug host that the group
halt was asserted and which master generated the group halt.

SYSTEM DEBUG UNIT (SDU)
SDU PROGRAMMING CONCEPTS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–9

NOTE: The first cause of the halt is the only one that is captured.

The system halt signal (from the Group Halt Overview figure) is the indication for non-core system
masters to halt if configured to do so. The SDU_STAT.GHLT bit is the source of the system halt if the system
is selected as a slave. For the system to resume (deassertion of system halt), SDU_STAT.GHLT bit must be
cleared by a W1C operation.

Group Halt Masters

If core n generates a debug event (for example software breakpoint) it asserts its debug mode indication
signal (for example EMUSPACE) to the SDU. If core n is enabled as a master of group halt, the SDU sets the
SDU_STAT.GHLTbit and capture the cause in the SDU_STAT.GHLTCbit.

If the system generates a debug event (for example SDU trigger input, system watchpoint event) it asserts
the corresponding signal to the SDU. If the system is enabled as a master of group halt, the SDU sets SDU_
STAT.GHLTbit and capture the cause in the SDU_STAT.GHLTCbit.

System debug events may be disabled at the source as necessary (for example a system watchpoint event
indication to the SDU may be disabled in the System Watchpoint Unit).

Group Halt Slaves

When the SDU_STAT.GHLT bit is set, the SDU asserts the debug request signal (for example EMUINT) to
selected cores according to the settings in the SDU_GHLT register. The debug request to a core is asserted
based on the transition of SDU_STAT.GHLT from 0 to 1).

When the SDU_STAT.GHLT bit is set, the SDU asserts the system halt signal if system is selected as a slave
in the SDU_GHLT register.

Each system master has a dedicated control bit to specify its response to a system halt signal assertion.
Typically this response is to halt the system which may have the following local implications.

1. Stop issuing system transactions

2. Pause the entire block

3. Both

SDU Programming Concepts
The following sections provide information on debug programming concepts.

SYSTEM DEBUG UNIT (SDU)
SDU PROGRAMMING CONCEPTS

35–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Core Control

Cores are directly controlled through emulation space. Core emulation space is entered by generating the
core emulation interrupt. To do this, emulation and the emulation interrupt must be enabled in the appro-
priate core control register.

The SDU generates an emulator interrupt with the rising edge of the JTG_TMS pin when the JTAG TAP
controller in the SDU is in the Run-Test-Idle state. The processor core(s) enter emulation space in
response to the emulation interrupt from SDU. The SDU generates an emulation interrupt to a core if the
specific core is selected using the SDU_CTL.EHLTbit field.

Once in emulation space, the core executes operations as directed by the debug host. Processor instruc-
tions are scanned in and executed using the core emulation instruction register (for example EMUIR) and
the core emulation data register (for example EMUDAT). The JTAG TAP controller is used to perform the
scan operations.

Memory and Register Access

Memory and register access is performed using one of the following two methods.

• Direct.Memory and registers that are mapped into the system address space may be accessed directly
by the SDU system interfaces (for example the MAC).

• Indirect.Memory and registers that are not mapped into the system address space may only be accessed
indirectly through core instruction execution while in emulation space (see Core Control).

Statistical Profiling

Cores may support runtime statistical profiling by providing a register that samples the core PC in a
pseudo-random fashion. The debug host accesses the core register (for example EMUPC) through JTAG
scan operations.

Power Management Support

A processor may support various power saving modes which can limit the ability of a debug host to
communicate with the processor resources because the debug host may not be able to detect when the
processor enters or exits such modes. The SDU provides the following support for the debug host to deter-
mine the power mode.

• Core Clock(s) Stopped. Power management may support a mode (for example sleep) which stops the
core clock or clocks. In this mode the SDU is unable to communicate with some system resources (for
example core registers or core memory). The power management resource (for example Dynamic

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–11

Power Management or DPM) typically remains accessible. The debug host, through the SDU MAC,
may access the status registers in the DPM to determine the state of the processor.

• System Clock(s) Stopped. Power management may support a mode (for example deep sleep) which
stops the system clock or clocks. In this mode the SDU is unable to communicate with all system
resources including the power management resource (for example dynamic power management). The
SDU provides an input and associated status bit for the DPM to provide an indication of this power
mode. The debug host may scan the SDU status register (SDU_STAT) through the JTAG.

Security Support

A processor may support various security modes which can limit debug host communications with
processor resources in that the debug host may not detect when the processor enters or exits such security
modes.

When security is enabled, the SDU provides an input and an associated status bit to provide indication of
a secure mode. The debug host may scan the SDU status register (SDU_STAT) through the JTAG.

System Reset Support

The SDU may indirectly generate a system reset. When set, the system reset bit (SDU_CTL.SYSRST) signals
a system reset request to the Reset Control Unit (RCU). In response, the RCU asserts the system reset
signal. Other events in the system can also cause the RCU to issue a system reset. In response to the system
reset signal from RCU, all registers in the SDU are reset, except for the SDU_CTLregister. See the Register
Descriptions section for more detail.

ADSP-BF60x SDU Register Descriptions
System Debug Unit (SDU) contains the following registers.

Table 35-8: ADSP-BF60x SDU Register List

Name Description

SDU_IDCODE ID Code Register

SDU_CTL Control Register

SDU_STAT Status Register

SDU_MACCTL Memory Access Control Register

SDU_MACADDR Memory Access Address Register

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

35–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ID Code Register

The SDU ID code register (SDU_IDCODE) contains bit fields describing the processor silicon revision,
product identification, and manufacturer identification.

Figure 35-5: SDU_IDCODE Register Diagram

SDU_MACDATA Memory Access Data Register

SDU_DMARD DMA Read Data Register

SDU_DMAWD DMA Write Data Register

SDU_MSG Message Register

SDU_MSG_SET Message Set Register

SDU_MSG_CLR Message Clear Register

SDU_GHLT Group Halt Register

Table 35-9: SDU_IDCODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:28
(R/NW)

REVID Revision ID.

Table 35-8: ADSP-BF60x SDU Register List (Continued)

Name Description

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–13

Control Register

The SDU control register (SDU_CTL) contains bit fields enabling or disabling emulator features. This
register may be reset only by asserting the JTG_TRST pin.

Figure 35-6: SDU_CTL Register Diagram

27:12
(R/NW)

PRID Product ID.

11:1
(R/NW)

MFID Manufacturer ID.

0
(R/NW)

NA Reserved.

Table 35-10: SDU_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

EHLT Emulator Halt Select.
The SDU_CTL.EHLT selects system components to halt on assertion of
the SDU_STAT.EME bit.

Table 35-9: SDU_IDCODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

35–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Status Register

The SDU status register (SDU_STAT) contains bit fields describing debug-related processor status.

4
(R/W)

EMEEN Emulation Event Enable.
The SDU_CTL.EMEEN enables the assertion of the SDU_STAT.EME bit
on the rising edge of the JTG_TMS pin input.
0 Disable
1 Enable

2
(R/W)

DMAEN DMA Enable.
The SDU_CTL.DMAEN enables the operation of the SDU_DMARD and
SDU_DMAWD registers. When the SDU_CTL.DMAEN bit is cleared, the
SDU_DMARD and SDU_DMAWD registers are disabled, and the SDU_STAT.
DMARDRDY and SDU_STAT.DMAWDRDY bit (associated status bits) are
cleared.
0 Disable
1 Enable

1
(R/W)

CSPEN Core Scan Path Enable.
The SDU_CTL.CSPEN enables the JTAG TAP controllers, adding them
to the JTAG scan path.
0 Disable

Signals the (RCU) module to assert system
reset, resetting all resources in the SDU
SCLK domain except for the SDU_CTL
register.

1 Enable
0
(R/W)

SYSRST System Reset.
The SDU_CTL.SYSRST forces a hardware reset when set.
0 Inactive
1 Active

Table 35-10: SDU_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–15

Figure 35-7: SDU_STAT Register Diagram

Table 35-11: SDU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

22
(R/W1C)

CRST Core Reset.
The SDU_STAT.CRST indicates the core reset has been asserted to one
or more of the cores in the system. The core debug status register
indicates which core or cores have been reset.
0 Inactive
1 Active

21
(R/NW)

CHLT Core Halt.
The SDU_STAT.CHLT indicates one or more of the cores in the system
are halted. The core debug status register indicates which core or
cores have halted.
0 Inactive
1 Active

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

35–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

20
(R/W1C)

EME Emulation Event.
The SDU_STAT.EME indicates an emulation event is active and is set
when the JTG_TMS pin transitions from 0-to-1 while the SDU_CTL.
EMEEN bit is set. The SDU_STAT.EME bit transition to 1 serves as the
source for core halt assertion as part of SDU_CTL.EMEEN selection.
The emulator clears SDU_STAT.EME with a W1C operation, clearing
SDU_STAT.EME for the next core halt by emulation. SDU_STAT.EME is
the source for system halt assertion as part of SDU_CTL.EHLT
selection. So, event response software must clear SDU_STAT.EME to
resume system operation.
0 Inactive
1 Active

19:17
(R/NW)

GHLTC Group Halt Cause.
The SDU_STAT.GHLTC identifies the group halt master. The SDU
updates the SDU_STAT.GHLTC bits on SDU_STAT.GHLT assertion.
0 System
... Reserved
1 Core 0
2 Core 1
3 Reserved
7 Reserved

16
(R/W1C)

GHLT Group Halt.
The SDU_STAT.GHLT indicates that group halt has been asserted by
one of the group halt masters. On SDU_STAT.GHLT assertion, the
SDU updates SDU_STAT.GHLTC with the value identifying the group
halt cause. SDU_STAT.GHLT is the source for system halt assertion as
part of group halt slave selection with the SDU_GHLT.SS0-SDU_GHLT.
SS2 bits. So, halt response software must clear SDU_STAT.GHLT to
resume system operation.
0 Inactive
1 Active

Table 35-11: SDU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–17

14:12
(R/NW)

DMAFIFO DMA FIFO.
The SDU_STAT.DMAFIFO indicates DMA FIFO full/empty status.
0 Empty
1 Empty < FIFO <= 1/4 Full
2 1/4 Full < FIFO <= 1/2 Full
3 1/2 Full < FIFO <= 3/4 Full
4 3/4 Full < FIFO < Full
5 Reserved
6 Reserved
7 Full

11
(R/W1C)

ADDRERR Address Error.
The SDU_STAT.ADDRERR indicates an attempted write to a read-only
register or an access an invalid address.
0 Inactive
1 Active

10
(R/NW)

DMAWDRDY DMAWD Ready.
The SDU_STAT.DMAWDRDY indicates whether the SDU_DMAWD register
is ready for the next transfer. When new data is written to the SDU_
DMAWD register, the SDU_STAT.DMAWDRDY bit is cleared. When the
write data is pushed into the DMA FIFO from the SDU_DMAWD
register, the SDU_STAT.DMAWDRDY bit is set, indicating that it is safe to
bring in next piece of write data for the DMA transfer. If SDU_DMAWD
is written while SDU_STAT.DMAWDRDY is not set, the SDU_STAT
register's SDU_STAT.ERR bit in is set (indicating an overflow
condition) and the SDU_STAT.ERRC field is updated (indicating the
overflow).
0 Not Ready
1 Ready

Table 35-11: SDU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

35–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

9
(R/NW)

DMARDRDY DMARD Ready.
The SDU_STAT.DMARDRDY indicates whether the SDU_DMARD register
is ready for the next transfer. When data is read from the SDU_DMARD
register, the SDU_STAT.DMARDRDY bit is cleared. When the new read
data is loaded into the SDU_DMARD register from the DMA FIFO, the
SDU_STAT.DMARDRDY bit is set, indicating that it is safe read (scan
out) the next piece of read data for the DMA transfer. If SDU_DMARD is
read (scanned out) while SDU_STAT.DMARDRDY is not set, the SDU_
STAT register's SDU_STAT.ERR bit in is set (indicating an underflow
condition) and the SDU_STAT.ERRC field is updated (indicating the
underflow). The SDU_STAT.DMARDRDY bit is cleared when the read
data is placed on the scan chain during JTAG scan operation.
0 Not Ready
1 Ready

8
(R/NW)

MACRDY MAC Ready.
The SDU_STAT.MACRDY indicates whether the SDU_MACADDR and
SDU_MACDATA registers are ready for the next transfer.
0 Not Ready
1 Ready

7:4
(R/NW)

ERRC Error Cause.
The SDU_STAT.ERRC identifies the error type. The SDU updates SDU_
STAT.ERRC on assertion of the SDU_STAT.ERR bit.
... Reserved
0 MAC over/underflow
1 DMARD underflow
2 DMAWD overflow
3 DMA Error
4 MAC Bus Error
5 Reserved
15 Reserved

3
(R/W1C)

SECURE Secure Mode.
The SDU_STAT.SECURE indicates whether the processor is operating
in secure mode.
0 Inactive
1 Active

Table 35-11: SDU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–19

Memory Access Control Register

The SDU memory access control register (SDU_MACCTL) contains bit fields configuring memory access
features.

Figure 35-8: SDU_MACCTL Register Diagram

2
(R/W1C)

DEEPSLEEP Deep Sleep Mode.
The SDU_STAT.DEEPSLEEP indicates whether the processor is
operating in DEEPSLEEP power mode. The processor's transition to
DEEPSLEEP mode sets SDU_STAT.DEEPSLEEP.
0 Inactive
1 Active

1
(R/W1C)

ERR Error.
The SDU_STAT.ERR indicates an SDU related error. The SDU updates
SDU_STAT.ERRC on assertion SDU_STAT.ERR with the value
identifying the error cause. SDU_STAT.ERRC only captures the first
error on SDU_STAT.ERR assertion.
0 Inactive
1 Active

0
(R/W1C)

SYSRST System Reset.
The SDU_STAT.SYSRST indicates that system reset has been asserted.
The assertion of system reset sets SDU_STAT.SYSRST.
0 Inactive
1 Active

Table 35-11: SDU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

35–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Memory Access Address Register

The SDU memory access address register (SDU_MACADDR) contains the address of the MAC transfer.

Table 35-12: SDU_MACCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

AUTOINC Auto (Post) Increment MACADDR (by SIZE).
The SDU_MACCTL.AUTOINC enables auto (post) increment of the SDU_
MACADDR register value by the SDU_MACCTL.SIZE selection.
0 Inactive
1 Active

3
(R/W)

RNW Read Not Write.
The SDU_MACCTL.RNW selects read or write operation for the MAC
transfer.
0 Write
1 Read

2:0
(R/W)

SIZE Transfer Data Size.
The SDU_MACCTL.SIZE selects the size of the data in the SDU_
MACDATA register for the MAC transfer.
0 8b
... Reserved
1 16b
2 32b
3 Reserved
7 Reserved

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–21

Figure 35-9: SDU_MACADDR Register Diagram

Memory Access Data Register

The SDU memory access data register (SDU_MACDATA) contains the data for the MAC transfer.

Figure 35-10: SDU_MACDATA Register Diagram

Table 35-13: SDU_MACADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

ADDR Transfer Address.
The SDU_MACADDR.ADDR holds the address for the MAC transfer.

Table 35-14: SDU_MACDATA Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

DATA Transfer Data.
The SDU_MACDATA.DATA holds the data for the MAC transfer.

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

35–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

DMA Read Data Register

The SDU DMA read data register (SDU_DMARD) contains the data for the DMA read transfer.

Figure 35-11: SDU_DMARD Register Diagram

DMA Write Data Register

The SDU DMA write data register (SDU_DMAWD) contains the data for the DMA write transfer.

Figure 35-12: SDU_DMAWD Register Diagram

Table 35-15: SDU_DMARD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Read Transfer Data.
The SDU_DMARD.VALUE holds the data for the DMA read transfer.

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–23

Message Register

The SDU message register (SDU_MSG) holds user defined messages to pass to or to get from the debugger.

Figure 35-13: SDU_MSG Register Diagram

Table 35-16: SDU_DMAWD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Write Transfer Data.
The SDU_DMAWD.VALUE holds the data for the DMA write transfer.

Table 35-17: SDU_MSG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

CALLERR Flag Set by the Boot Code Prior to an Error Call.

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

35–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Message Set Register

The SDU message set register (SDU_MSG_SET) is a write-1-set alias for the SDU_MSG register.

30
(R/W)

CALLBACK Flag Set by the Boot Code Prior to a Callback Call.

29
(R/W)

CALLINIT Flag Set by the Boot Code Prior to an Initcode Call.

28
(R/W)

CALLAPP Flag Set by the Boot Code Prior to an Application Call.

27
(R/W)

HALTONERR Generate an Emulation Exception Prior to an Error Call.

26
(R/W)

HALTONCALL Generate an Emulation Exception Prior to a Callback Call.

25
(R/W)

HALTONINIT Generate an Emulation Exception Prior to an Initcode Call.

24
(R/W)

HALTONAPP Generate an Emulation Exception Prior to an Application Call.

23
(R/W)

L3INIT Indicates that the L3 Resource is Initialized.

22
(R/W)

L2INIT Indicates that the L2 Resource is Initialized.

17
(R/W)

C1L1INIT Indicates that the Core 1 L1 Resource is Initialized.

16
(R/W)

C0L1INIT Indicates that the Core 0 L1 Resource is Initialized.

Table 35-17: SDU_MSG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–25

Figure 35-14: SDU_MSG_SET Register Diagram

Message Clear Register

The SDU message clear register (SDU_MSG_CLR) is a write-1-clear alias for the SDU_MSG register.

Figure 35-15: SDU_MSG_CLR Register Diagram

Table 35-18: SDU_MSG_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R0/W1A)

VALUE Message Set Value.
The SDU_MSG_SET.VALUE acts as a write-1-set alias for the SDU_MSG
register. Writing a 1 to any bit in SDU_MSG_SET sets the
corresponding bit in SDU_MSG.

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

35–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Group Halt Register

The SDU group halt register (SDU_GHLT) configures the master and slave selections for group halt.

Figure 35-16: SDU_GHLT Register Diagram

Table 35-19: SDU_MSG_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R0/W1A)

VALUE Message Clear Value.
The SDU_MSG_CLR.VALUE acts as a write-1-clear alias for the SDU_MSG
register. Writing a 1 to any bit in SDU_MSG_CLR clears the
corresponding bit in SDU_MSG.

Table 35-20: SDU_GHLT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18
(R/W)

SS2 Slave Select 2.
The SDU_GHLT.SS2 selects core 1 slave for group halt. On SDU_STAT.
GHLT assertion, a halt command is issued to the slave.
0 Not Selected
1 Selected

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 35–27

17
(R/W)

SS1 Slave Select 1.
The SDU_GHLT.SS1 selects core 0 slave for group halt. On SDU_STAT.
GHLT assertion, a halt command is issued to the slave.
0 Not Selected
1 Selected

16
(R/W)

SS0 Slave Select 0.
The SDU_GHLT.SS0 selects system slave for group halt. On SDU_
STAT.GHLT assertion, a halt command is issued to the slave.
0 Not Selected
1 Selected

2
(R/W)

MS2 Master Select 2.
The SDU_GHLT.MS2 selects core 1 master as a source for group halt
(SDU_STAT.GHLT) assertion.
0 Not Selected
1 Selected

1
(R/W)

MS1 Master Select 1.
The SDU_GHLT.MS1 selects core 0 master as a source for group halt
(SDU_STAT.GHLT) assertion.
0 Not Selected
1 Selected

0
(R/W)

MS0 Master Select 0.
The SDU_GHLT.MS0 selects system debug events master as a source
for group halt (SDU_STAT.GHLT) assertion.
0 Not Selected
1 Selected

Table 35-20: SDU_GHLT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM DEBUG UNIT (SDU)
ADSP-BF60X SDU REGISTER DESCRIPTIONS

35–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–1

36 System Watchpoint Unit (SWU)

The system watchpoint unit (SWU) is a single module used for transaction monitoring. The SWU is
attached to each system slave through the system crossbar interface and provides ports for all system
crossbar address channel signals. The SWU does not have ports for the read/write data channel signals or
the low-power interface signals.

Each SWU contains four match groups of registers with associated hardware. These four SWU match
groups operate independently, but share common event (interrupt and trigger) outputs. Each match group
can monitor either the write or read address channel and can operate in either watchpoint mode or band-
width mode.

SWU Features
The system watchpoint unit has the following features.

• Four independent match groups for each SWU

• Each match group can operate in either bandwidth mode or watchpoint mode

SWU Functional Description
This section describes the function of the SWU match block, interface block and MMR block.

ADSP-BF60x SWU Register List

The system watchpoint unit (SWU) provides debug and development support through flexible transaction
level and bandwidth monitoring and associated event triggering. The SWU generates an events based on
monitoring transactions at the system slaves using four watchpoint match groups. The transaction moni-
toring within each match group may be filtered by address, ID, direction, and other watchpoint attributes.
An event may be a trace message, trigger, or interrupt. The desired event behavior is programmed into the
appropriate system watchpoint controls and attributes. The SWU also provides watchpoint event status
reporting, a global lock, and processor reset. A set of registers govern SWU operations. For more informa-
tion on SWU functionality, see the SWU register descriptions.

SYSTEM WATCHPOINT UNIT (SWU)
SWU FUNCTIONAL DESCRIPTION

36–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

ADSP-BF60x SWU Interrupt List

Table 36-1: ADSP-BF60x SWU Register List

Name Description

SWU_GCTL Global Control Register

SWU_GSTAT Global Status Register

SWU_CTLn Control Register n

SWU_LAn Lower Address Register n

SWU_UAn Upper Address Register n

SWU_IDn ID Register n

SWU_CNTn Count Register n

SWU_TARGn Target Register n

SWU_HISTn Bandwidth History Register n

SWU_CURn Current Register n

Table 36-2: ADSP-BF60x SWU Interrupt List Interrupt List

Description Interrupt ID DMA Channel Sensitivity

SWU0 Event 133 LEVEL
SWU1 Event 134 LEVEL
SWU2 Event 135 LEVEL
SWU3 Event 136 LEVEL
SWU4 Event 137 LEVEL
SWU5 Event 138 LEVEL
SWU6 Event 139 LEVEL

SYSTEM WATCHPOINT UNIT (SWU)
SWU FUNCTIONAL DESCRIPTION

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–3

ADSP-BF60x SWU Trigger List

SWU Definitions

Watchpoint Mode

Mode in which transactions are recognized on an exact match. Actions can be configured to be taken after
a specified number of matches have occurred.

Bandwidth Mode

Mode in which transactions are recognized and counted inside sampling window.

SWU Architectural Concepts

The information in this section provides basic module design concepts.

Table 36-3: ADSP-BF60x SWU Trigger List Trigger Masters

Description Trigger ID Sensitivity

SWU0 Event 80 PULSE/EDGE
SWU1 Event 81 PULSE/EDGE
SWU2 Event 82 PULSE/EDGE
SWU3 Event 83 PULSE/EDGE
SWU4 Event 84 PULSE/EDGE
SWU5 Event 85 PULSE/EDGE
SWU6 Event 86 PULSE/EDGE

Table 36-4: ADSP-BF60x SWU Trigger List Trigger Slaves

Description Trigger ID Sensitivity

SWU0 Event 80
SWU1 Event 81
SWU2 Event 82
SWU3 Event 83
SWU4 Event 84
SWU5 Event 85
SWU6 Event 86

SYSTEM WATCHPOINT UNIT (SWU)
SWU FUNCTIONAL DESCRIPTION

36–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

SWU Flow Diagram

The following diagram shows the logical program flow of the SWU.

Figure 36-1: SWU Logical Flow

SCB Interface

The SWU system crossbar interface block latches all transactions on the system crossbar read and write
address channels when the SWU_GCTL.EN register enable bit is set.

SYSTEM WATCHPOINT UNIT (SWU)
SWU OPERATING MODES

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–5

SWU Block Diagram

The following figure shows the SWU block diagram.

Figure 36-2: System Watchpoint Unit Top Level Block Diagram

System Crossbar Block

The SWU system crossbar (SCB) latches all transactions on the SCB read and write address channels when
the SWU_GCTL.EN bit is set.

MMR Block

The SWU MMR block contains the peripheral bus interface and the SWU MMR registers. It also merges
all interrupts and events from each match block into common outputs.

SWU Operating Modes
There are two operating modes supported by the SWU: bandwidth mode and watchpoint mode.

Bandwidth Mode

In bandwidth mode, transactions which match the properties specified in the SWU_CTLn register are
counted during a sampling window determined by the respective SWU_CNTn register. At the end of the
sampling window, results are stored in the SWU_HISTn register. If the sampled bandwidth falls outside a
programmed range, then the programmed action is taken.

SYSTEM WATCHPOINT UNIT (SWU)
SWU EVENT CONTROL

36–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Watchpoint Mode

In watchpoint mode, if the SWU_CTLn.CNTENbit is set, the SWU_CURnregister is decremented for each
match, until it equals zero, at which point any programmed actions are taken. The SWU_CURnregister is
then reloaded from the SWU_CNTnregister (if the SWU_CTLn.CNTRPTEN bit is set), and the cycle repeats. If
the SWU_CTLn.CNTRPTEN bit is not set, any programmed actions are taken on every match.

Match Block

There are four match blocks for each SWU. Each SWU match block can monitor either the read or write
address channel, selected by the SWU_CTLn.DIR bit, and can operate in either watchpoint or bandwidth
mode, selected by the SWU_CTLn.BWEN bit.

In either mode, the SWU match block can be programmed to match based on address (exact, inclusive/
exclusive range), ID (with masking), security, and lock type. All enabled matches are AND’ed together to
determine a match.

SWU Event Control
The SWU can generate the following events when a match occurs and when the event is enabled by config-
uring the proper bits in the control register.

1. Trace Message

2. Trigger

3. Interrupt

4. Debug

SWU Interrupts

All interrupts and events from each match block are merged into common outputs.

SWU Status and Errors

SWU status and errors are reported in the SWU_GSTAT register. The only error that the SWU records is an
address error when a write or read attempt is made to the SWU’s MMR address space and the register does
not exist. The register contains bits that perform the following functions.

• Indicate whether a particular match group sampled a transaction that is below a minimum target or
above a maximum target in bandwidth mode.

• Indicate whether or not a watchpoint match occurred for each match group.

SYSTEM WATCHPOINT UNIT (SWU)
SWU PROGRAMMING MODEL

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–7

• Indicate whether or not an interrupt was triggered due to a match event from one of the match groups.

Triggers

The SWU can be either a trigger master or a trigger slave depending on how the trigger routing unit (TRU)
is configured. As a trigger master, programs must set the SWU_CTLn.TRGEN bit so that when a match condi-
tion is met, a trigger event is generated. Each SWU in the system can also be a trigger slave if mapped as
one in the TRU.

When the SWU is a slave, a trigger event activates the SWU by automatically setting the SWU_GCTL.EN bit.
Since the SWU can be automatically enabled through a trigger event, programs must pre-configure the
SWU before enabling the TRU. Furthermore, even though the SWU can be enabled by a trigger event as a
slave, to disable the SWU, programs must manually clear the SWU_GCTL.EN bit.

SWU Programming Model
The SWU is used by programming the appropriate registers. Each control register is used to configure
various aspects such as the direction of monitoring (reads or writes), whether Bandwidth Mode or Watch-
point Mode is used, setting up which events are triggered when a condition is met while monitoring using
the SWU, and other parameters. Supplemental registers such as the lower and upper address boundaries
are also configured before enabling.

Once the SWU has been enabled and monitoring conditions are met, events are generated if the SWU was
configured to do so.

The global status register can be read to observe the current status of the units.

SWU Mode Configuration

The following sections show the steps for configuring the SWU into bandwidth mode and watchpoint
mode.

Configuring the SWU for Bandwidth Mode

In bandwidth mode, transactions which match are counted during a sampling window. At the end of the
sampling window, results are stored and an action can be taken if the sampled bandwidth goes above and/
or falls below a programmed range.

1. Configure the SWU_CTLn.DIR bit to test the match on writes or reads.

2. Configure the SWU_CTLn.ACMPM bits to address whether comparisons are made, exact match, matches
inside a range or matches outside a range.

3. If ID If comparison ID is desired, set the SWU_CTLn.IDCMPEN bit.

SYSTEM WATCHPOINT UNIT (SWU)
SWU PROGRAMMING MODEL

36–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

4. Set the SWU_CTLn.BLENINC bit to increment by burst length or clear it to increment by 1.

5. Configure the SWU_CTLn.MAXACT and SWU_CTLn.MINACT bits to enable actions taken when the band-
width goes above the maximum, or falls below the minimum, respectively.

6. Set the SWU_CTLn.BWEN=1 to enable bandwidth mode.

7. Program the lower address register, SWU_LAn, and upper address register, SWU_UAn, to define the
memory range for comparison.

8. If ID comparison is enabled, program the ID register, SWU_IDn.

9. Program the count register, SWU_CNTn, with the number of clock cycles for which the SWU will be
counting the number of matches.

10. If the SWU is set to take action when the bandwidth measurement underflows or overflows, the min
and max values should be programmed into the SWU_TARGn register.

11. Enable the SWU

RESULT:

The SWU counts the number of matches in a pre-defined amount of clock cycles programmed by the user.
Lower and upper limits can optionally be defined. If the matches fall outside the limits, an action can be
taken.

Configuring the SWU for Watchpoint Mode

In watchpoint mode, the SWU can trigger a programmed action after every match or after a number of
matches. This sequence can be automatically reset.

1. Set the SWU_CTLn.DIR bit to test the match on writes or reads.

2. Configure the SWU_CTLn.ACMPM bits for address comparisons, exact match, matches inside a range or
matches outside a range are desired.

3. Optionally set the SWU_CTLn.IDCMPEN if ID comparison is desired.

4. Set the SWU_CTLn.CNTEN bit to enable the events to be triggered when the count decrements to zero.

5. Optionally set the SWU_CTLn.CNTRPTEN bit to automatically reload the counter after it has decremented
to zero to start another match sequence.

6. Clear the SWU_CTLn.BWEN = 0 to configure watchpoint mode.

7. Configure the lower address register, SWU_LAn, and upper address register, SWU_UAn, to define the
memory range for comparison.

8. If ID comparison is enabled, configure the ID register, SWU_IDn.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–9

9. Configure the count register, SWU_CNTn, to determine how many matches occur before the watchpoint
group takes action.

10. Enable the SWU.

RESULT:

The SWU detects and counts down the number of match occurrences. When the counter expires, an action
is taken.

ADSP-BF60x SWU Register Descriptions
System Watchpoint Unit (SWU) contains the following registers.

Global Control Register

The SWU global control register (SWU_GCTL) provides SWU reset and enable.

Table 36-5: ADSP-BF60x SWU Register List

Name Description

SWU_GCTL Global Control Register

SWU_GSTAT Global Status Register

SWU_CTLn Control Register n

SWU_LAn Lower Address Register n

SWU_UAn Upper Address Register n

SWU_IDn ID Register n

SWU_CNTn Count Register n

SWU_TARGn Target Register n

SWU_HISTn Bandwidth History Register n

SWU_CURn Current Register n

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

36–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Figure 36-3: SWU_GCTL Register Diagram

Global Status Register

The SWU global status register (SWU_GSTAT) contains status bits for all four watchpoint groups.

Table 36-6: SWU_GCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R0/W1A)

RST Global Reset.
The SWU_GCTL.RST) is write-1-action/read zero and controls the
SWU operational state. Setting SWU_GCTL.RST resets all SWU
registers to their default values and halts all SWU operations.
0 No Action
1 Reset

0
(R/W)

EN Global Enable.
The SWU_GCTL.EN controls the SWU operational state. Clearing SWU_
GCTL.EN halts the execution of all watchpoint and bandwidth
tracking operations without resetting status registers or associated
signals. Setting SWU_GCTL.EN enables the SWU to begin/resume
operation with the current configuration and status.
0 Disable
1 Enable

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–11

Figure 36-4: SWU_GSTAT Register Diagram

Table 36-7: SWU_GSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W1C)

ADDRERR Address Error Status.
The SWU_GSTAT.ADDRERR indicates that the SWU generated an
address error. This status bit is sticky; write-1-to-clear it.
0 Inactive
1 Active

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

36–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

15
(R/W1C)

OVRBW3 Group 3 Bandwidth Above Maximum Target.
See SWU_GSTAT.OVRBW0 description.
1 Group 3 was above maximum bandwidth

14
(R/W1C)

UNDRBW3 Group 3 Bandwidth Below Minimum Target.
See SWU_GSTAT.UNDRBW0 description.
1 Group 3 was below minimum bandwitdth

13
(R/W1C)

OVRBW2 Group 2 Bandwidth Above Maximum Target.
See SWU_GSTAT.OVRBW0 description.
1 Group 2 was above maximum bandwidth

12
(R/W1C)

UNDRBW2 Group 2 Bandwidth Below Minimum Target.
See SWU_GSTAT.UNDRBW0 description.
1 Group 2 was below minimum bandwidth

11
(R/W1C)

OVRBW1 Group 1 Bandwidth Above Maximum Target.
See SWU_GSTAT.OVRBW0 description.
1 Group 1 was above maximum bandwidth

10
(R/W1C)

UNDRBW1 Group 1 Bandwidth Below Minimum Target.
See SWU_GSTAT.UNDRBW0 description.
1 Group 1 was below minimum bandwidth

9
(R/W1C)

OVRBW0 Group 0 Bandwidth Above Maximum Target.
The SWU_GSTAT.OVRBW0 - SWU_GSTAT.OVRBW3 -- Group 0 through 3
watchpoint bandwidth over maximum target bits. Each maximum
bandwidth bit indicate (for each group)s that the measured
bandwidth over the period defined by the SWU_CNTn register was over
the maximum target. This status bit is sticky; write-1-to-clear it.
1 Group 0 was above maximum bandwidth

8
(R/W1C)

UNDRBW0 Group 0 Bandwidth Below Minimum Target.
The SWU_GSTAT.UNDRBW0 - SWU_GSTAT.UNDRBW3 -- Group 0 through
3 watchpoint bandwidth below minimum target bits. Each minimum
bandwidth bit indicates (for each group) that the measured
bandwidth over the period defined by the SWU_CNTn register was
below the minimum target. This status bit is sticky; write-1-to-clear
it.
1 Group 0 was below minimum bandwidth

Table 36-7: SWU_GSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–13

7
(R/W1C)

INT3 Group 3 Interrupt Status.
See SWU_GSTAT.INT0 description.
0 No Interrupt
1 Interrupt Occurred

6
(R/W1C)

INT2 Group 2 Interrupt Status.
See SWU_GSTAT.INT0 description.
0 No Interrupt
1 Interrupt Occurred

5
(R/W1C)

INT1 Group 1 Interrupt Status.
See SWU_GSTAT.INT0 description.
0 No Interrupt
1 Interrupt Occurred

4
(R/W1C)

INT0 Group 0 Interrupt Status.
The SWU_GSTAT.INT0 - SWU_GSTAT.INT3 -- Group 0 through 3
interrupt bits. Each interrupt bit indicates (for each group) whether a
watchpoint group is contributing to the SWU's interrupt output. This
status bit is sticky; write-1-to-clear it.
0 No interrupt
1 Interrupt Occurred

3
(R/W1C)

MTCH3 Group 3 Match.
See SWU_GSTAT.MTCH0 description.
0 No Match
1 Group 3 Watchpoint Match

2
(R/W1C)

MTCH2 Group 2 Match.
See SWU_GSTAT.MTCH0 description.
0 No match
1 Group 2 Watchpoint Match

1
(R/W1C)

MTCH1 Group 1 Match.
See SWU_GSTAT.MTCH0 description.
0 No match
1 Group 1 Watchpoint Match

Table 36-7: SWU_GSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

36–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Control Register n

The SWU control registers (SWU_CTLn) contain watchpoint attribute controls for all four watchpoint
groups. These controls include enabling watchpoints, selecting the transaction direction for match,
selecting address comparison mode, enabling ID comparison, enabling security comparison, enabling
locked comparison, enabling cycle count, enabling count repeat, enabling debug events, enabling inter-
rupts, enabling triggers, enabling trace messages, enabling bandwidth mode, selecting the burst length
increment, and enabling bandwidth underflow and overflow detection.

0
(R/W1C)

MTCH0 Group 0 Match.
The SWU_GSTAT.MTCH0 - SWU_GSTAT.MTCH3 -- Group 0 through 3
match bits. Each match bit indicates (for each group) whether a
watchpoint match has occured in a SWU watchpoint group, as
controlled by the group's related watchpoint control register (SWU_
CTLn). This status bit is sticky; write-1-to-clear it.
0 No match
1 Group 0 Watchpoint Match

Table 36-7: SWU_GSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–15

Figure 36-5: SWU_CTLn Register Diagram

Table 36-8: SWU_CTLn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19
(R/W)

MAXACT Action for Bandwidth Above Maximum.
Each SWU_CTLn.MAXACT bit determines whether a watchpoint group
takes action on bandwidth overflow. This feature is only valid in
bandwidth mode.
0 No Action
1 Take Action

18
(R/W)

MINACT Action for Bandwidth Below Minimum.
Each SWU_CTLn.MINACT bit determines whether a watchpoint group
takes action on bandwidth underflow. This feature is only valid in
bandwidth mode.
0 No Action
1 Take Action

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

36–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

17
(R/W)

BLENINC Increment Bandwidth Count by Burst Length.
Each SWU_CTLn.BLENINC bit controls how a watchpoint group's
bandwidth count is incremented in the SWU_CURn register's SWU_
CURn.CURBW field. If the SWU_CTLn.BLENINC bit is cleared (= 0), the
SWU increments the bandwidth count by 1 for each matching
transaction. If the SWU_CTLn.BLENINC bit is set (=1), the SWU
increments the bandwidth count by the burst length of the
transaction for each matching transaction. This feature is only valid
for bandwidth mode (SWU_CTLn.BWEN bit == 1).
Note that if the address range match is enabled (SWU_CTLn.ACMPM
bits) and if any address of a burst falls within the address range, the
SWU_CURn.CURBW field is incremented by the burst length even if
some of the burst address fall outside of the range.
Also, note that the burst size of the transaction is not included in the
increment, only the burst length of the transaction. This increment
operation provides an approximate (not exact) number of bus cycles
consumed during the bandwidth.
0 Increment by 1
1 Burst Length Increment for Bandwidth

Count
16
(R/W)

BWEN Bandwidth Mode Enable.
Each SWU_CTLn.BWEN bit controls whether a watchpoint group
operates in watchpoint mode or bandwidth mode. In watchpoint
mode, the SWU_CTLn.CNTEN and (optionally) SWU_CTLn.CNTRPTEN
registers control usage of the cycle count for watchpoint group
operations. In bandwidth mode, the SWU_CTLn.BLENINC, SWU_
TARGn, and SWU_HISTn registers control usage of watchpoint matches
for watchpoint group operations.
0 Watchpoint Mode
1 Bandwidth Mode

15
(R/W)

TMEN Trace Message Enable.
Each SWU_CTLn.TMEN bit controls whether a match for a watchpoint
group generates a trace message event. This feature is valid in both
bandwidth and watchpoint modes.
0 Disable
1 Enable

Table 36-8: SWU_CTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–17

14
(R/W)

TRGEN Trigger Enable.
Each SWU_CTLn.TRGEN bit controls whether a match for a watchpoint
group generates a trigger event. This feature is valid in both
bandwidth and watchpoint modes.
0 Disable
1 Enable

13
(R/W)

INTEN Interrupt Enable.
Each SWU_CTLn.INTEN bit controls whether a match for a watchpoint
group generates an interrupt. This feature is valid in both bandwidth
and watchpoint modes.
0 Disable
1 Enable

12
(R/W)

DBGEN Debug Event Enable.
Each SWU_CTLn.DBGEN bit controls debug event comparison for a
watchpoint group, permitting matches based on debug status.
0 Disable
1 Enable

9
(R/W)

CNTRPTEN Count Repeat Enable.
Each SWU_CTLn.CNTRPTEN bit controls whether the watchpoint
group's cycle count is reloaded and repeated after cycle countdown. If
the SWU_CTLn register's SWU_CTLn.CNTRPTEN bit is set, the SWU_CURn
register's SWU_CURn.CURCNT field is reloaded from SWU_CNTn
register's SWU_CNTn.COUNT field, and the countdown starts again. If
SWU_CTLn.CNTRPTEN bit is cleared, the expired count remains zero,
and no further events are signalled. (See the SWU_CTLn.CNTEN bit
description for information regarding the countdown setup.)
0 Disable
1 Enable

Table 36-8: SWU_CTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

36–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

8
(R/W)

CNTEN Count Enable.
Each SWU_CTLn.CNTEN bit controls whether the cycle count in the
watchpoint group's SWU_CNTn register is decremented each cycle until
it reaches zero. This feature is only valid in watchpoint mode (SWU_
CTLn.BWEN bit == 0).When the count reaches zero, any enabled
watchpoint events are triggered. (See the SWU_CTLn.CNTRPTEN bit
description for optional actions at that may occur at the end of the
countdown.)
0 Disable
1 Enable

6
(R/W)

LCMPEN Locked Comparison Enable.
Each SWU_CTLn.LCMPEN bit controls locked comparison operation of
an SWU watchpoint group, permitting matches based on lock status.
0 Match on all transaction
1 Match only locked transactions

5
(R/W)

SCMPEN Secure Comparison Enable.
Each SWU_CTLn.SCMPEN bit controls secure transaction comparison
operation of an SWU watchpoint group, permitting matches based
on transaction security.
0 Match on all transaction
1 Match only secure transactions

4
(R/W)

IDCMPEN ID Comparison Enable.
Each SWU_CTLn.IDCMPEN bit controls the ID comparison operation
of an SWU watchpoint group. The ID match is based on comparison
with the value in the SWU_IDn register.

3:2
(R/W)

ACMPM Address Comparison Mode.
Each set of SWU_CTLn.ACMPM bits control the address comparison
operation of an SWU watchpoint group. The address within range for
comparison is defined as (SWU_LAn register <= address < SWU_UAn
register). The address outside range for comparison is defined as
(address < SWU_LAn) or (SWU_UAn<= address).
0 No address comparison
1 Exact match on LAn
2 Match on address within range
3 Match on address outside range

Table 36-8: SWU_CTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–19

Lower Address Register n

The SWU lower address registers (SWU_LAn) contain each watchpoint group's lower address for address
match comparison. In exact match on SWU_LAn address mode (SWU_CTLn.ACMPM bits =01), the watchpoint
group uses only this address for match comparison.

Figure 36-6: SWU_LAn Register Diagram

1
(R/W)

DIR Transaction Direction for Match.
Each SWU_CTLn.DIR bit determines whether the SWU check reads or
writes for watchpoint matches.
0 Match on reads only
1 Match on writes only

0
(R/W)

EN Enable Watchpoint.
Each SWU_CTLn.EN bit controls the operation of one SWU
watchpoint group. Clearing the SWU_CTLn.EN bit halts the execution
of watchpoint or bandwidth tracking operations in the watchpoint
group without resetting status or configuration registers. Setting the
SWU_CTLn.EN bit enables the SWU watchpoint group to begin or
resume operation with the current configuration and status.
0 Disable
1 Enable

Table 36-8: SWU_CTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

36–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Upper Address Register n

The SWU upper address registers (SWU_UAn) contain each watchpoint group's upper address for address
match comparison. In exact match on SWU_LAn address mode (SWU_CTLn.ACMPM bits =01), the SWU_UAn is
not used for match comparison.

Figure 36-7: SWU_UAn Register Diagram

ID Register n

The SWU ID registers (SWU_IDn) contain a 16-bit ID field (SWU_IDn.ID) and a 16-bit ID mask field (SWU_
IDn.IDMASK) that watchpoint groups use for ID comparison. The ID on the bus is AND'ed with the SWU_
IDn.IDMASK field, then the watchpoint group compares the result against the SWU_IDn.ID field.

Table 36-9: SWU_LAn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

ADDR Lower Address.

Table 36-10: SWU_UAn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

ADDR Upper Address.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–21

Figure 36-8: SWU_IDn Register Diagram

Count Register n

The SWU count registers (SWU_CNTn) contain a 16-bit count field (SWU_CNTn.COUNT) whose usage differs
depending on the mode of the watchpoint group. In bandwidth mode, the SWU_CNTn.COUNT field value
defines the number of clock cycles in a bandwidth period. In watchpoint mode, when the cycle count is
enabled, the SWU_CNTn.COUNT field value determines how many matches occur before the watchpoint
group takes action.

Figure 36-9: SWU_CNTn Register Diagram

Table 36-11: SWU_IDn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

IDMASK Identity Mask (for Or with ID).

15:0
(R/W)

ID Identity.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

36–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

Target Register n

The SWU target registers (SWU_TARGn) contain a minimum value field (SWU_TARGn.BWMIN) and maximum
value field (SWU_TARGn.BWMAX) of bandwidth targets used by watchpoint groups in bandwidth mode.
When the bandwidth period expires, if the current bandwidth value (SWU_CURn register, SWU_CURn.CURBW
bits) is below the minimum target or above the maximum target, the watchpoint group takes action as
enabled by the SWU_CTLn register's SWU_CTLn.MINACT or SWU_CTLn.MAXACT bits.

In bandwidth mode, note that the watchpoint group increments its count of either data bus transactions
or address bus transactions (bursts) as selected by the SWU_CTLn.BLENINC bit. Keep this mode selection in
mind when programming the bandwidth target values.

Figure 36-10: SWU_TARGn Register Diagram

Table 36-12: SWU_CNTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

COUNT Count.

Table 36-13: SWU_TARGn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

BWMAX Maximum Bandwidth Target.

15:0
(R/W)

BWMIN Minimum Bandwidth Target.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE 36–23

Bandwidth History Register n

The SWU bandwidth history registers (SWU_HISTn) contain data copied from a watchpoint group's current
bandwidth value (SWU_CURn register, SWU_CURn.CURBW bits) at the end of the last two watchpoint periods.
At the end of each watchpoint period, the SWU copies the previous bandwidth value from the SWU_HISTn.
BWHIST0 field to the SWU_HISTn.BWHIST1 field and copies the new bandwidth value from the SWU_CURn.
CURBW field to the SWU_HISTn.BWHIST0 field.

Figure 36-11: SWU_HISTn Register Diagram

Current Register n

The SWU current register (SWU_CURn) operation varies depending whether the watchpoint group is in
bandwidth mode or watchpoint mode. In both modes, the watchpoint count begins when the SWU loads
the register's SWU_CURn.CURCNT field from the SWU_CNTn register's SWU_CNTn.COUNT field when the watch-
point count is enabled (SWU_CTLn register, SWU_CTLn.CNTEN bit =1).

In bandwidth mode, the current count field (SWU_CURn.CURCNT) contains the cycle count remaining
within the current watchpoint period. The SWU decrements this value every cycle until the count reaches
zero. At that point, the SWU reloads the SWU_CURn.CURCNT field from SWU_CNTn register's SWU_CNTn.
COUNT field. In bandwidth mode, the current bandwidth field (SWU_CURn.CURBW) contains the count of
watchpoint matches (bandwidth) accummulated in the current watchpoint period.

Table 36-14: SWU_HISTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/NW)

BWHIST1 Bandwidth from Window Before Last.

15:0
(R/NW)

BWHIST0 Bandwidth from Last Window.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-BF60X SWU REGISTER DESCRIPTIONS

36–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

In watchpoint mode, the current count field (SWU_CURn.CURCNT) contains the watchpoint match count
remaining within the current watchpoint period. The SWU decrements this value with every watchpoint
match until the count reaches zero. At that point, the SWU reloads the SWU_CURn.CURCNT field from SWU_
CNTn register's SWU_CNTn.COUNT field if the SWU_CTLn register's SWU_CTLn.CNTRPTEN bit is set (=1). In
watchpoint mode, the current bandwidth field (SWU_CURn.CURBW) is undefined.

Figure 36-12: SWU_CURn Register Diagram

Table 36-15: SWU_CURn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/NW)

CURBW Current Bandwidth.

15:0
(R/NW)

CURCNT Current Count.

 ADSP-BF6

I
 Index

ACM_TC1 (Timing Configuration 1 Register, ACM),
A
Abort Acknowledge 1 Register, CAN (CAN_AA1),
21-37
Abort Acknowledge 2 Register, CAN (CAN_AA2),
21-50
Acceptance Mask (H) Register, CAN (CAN_AMnnH),
21-83
Acceptance Mask (L) Register, CAN (CAN_AMnnL),
21-83
Access Control Core 0 Register, L2CTL (L2CT-
L_ACTL_C0), 10-15
Access Control Core 1 Register, L2CTL (L2CT-
L_ACTL_C1), 10-17
Access Control System Register, L2CTL (L2CT-
L_ACTL_SYS), 10-19
ACM0 Event Complete (Masters), 8-3, 27-6
ACM0 Event Complete interrupt, 7-4, 27-6
ACM0 Event Miss interrupt, 7-4, 27-6
ACM0 Trigger Input 2 (Slaves), 8-7, 27-6
ACM0 Trigger Input 3 (Slaves), 8-7, 27-6
ACM_CTL (Control Register, ACM), 27-25
ACM_EVCTLn (Event N Control Register, ACM),
27-46
ACM_EVMSK (Event Complete Interrupt Mask Reg-
ister, ACM), 27-37
ACM_EVORDn (Event N Order Register, ACM),
27-48
ACM_EVSTAT (Event Complete Status Register,
ACM), 27-32
ACM_EVTIMEn (Event N Time Register, ACM),
27-48
ACM_MEVMSK (Missed Event Interrupt Mask Reg-
ister, ACM), 27-44
ACM_MEVSTAT (Missed Event Status Register,
ACM), 27-40
ACM_STAT (Status Register, ACM), 27-30
ACM_TC0 (Timing Configuration 0 Register, ACM),
27-28

27-29
ACM_TMR0 (Timer 0 Register, ACM), 27-49
ACM_TMR1 (Timer 1 Register, ACM), 27-50
active mode, 5-3
ACU Configuration, PVP (PVP_ACU_CFG), 30-159
ACU Control, PVP (PVP_ACU_CTL), 30-161
ACU Lower Sat Threshold Min, PVP
(PVP_ACU_MIN), 30-166
ACU PROD Constant, PVP (PVP_ACU_FACTOR),
30-164
ACU Shift Constant, PVP (PVP_ACU_SHIFT),
30-165
ACU SUM Constant, PVP (PVP_ACU_OFFSET),
30-164
ACU Upper Sat Threshold Max, PVP (PVP_ACU_-
MAX), 30-166
Arbitration Read Channel Master Interface n Register,
SCB (SCB_ARBRn), 2-22
Arbitration Write Channel Master Interface n Register,
SCB (SCB_ARBWn), 2-23
arbitration, read/write, 2-21
arbitration, round robin, 2-9
arbitration, SCB, 2-9
architectural model, SCB, 2-2
Argument Register, RSI (RSI_ARG), 24-48

B
Bandwidth History Register n, SWU (SWU_HISTn),
36-23
Bandwidth Limit Count Current, DMA (DMA_B-
WLCNT_CUR), 13-71
Bandwidth Limit Count, DMA (DMA_BWLCNT),
13-70
Bandwidth Monitor Count Current, DMA (DMA_B-
WMCNT_CUR), 13-72
Bandwidth Monitor Count, DMA (DMA_BWMCNT),
13-71
0X BLACKFIN PROCESSOR HARDWARE REFERENCE I–1

INDEX
Bank 0 Control Register, SMC (SMC_B0CTL), 9-26
Bank 0 Extended Timing Register, SMC
(SMC_B0ETIM), 9-31
Bank 0 Timing Register, SMC (SMC_B0TIM), 9-29
Bank 1 Control Register, SMC (SMC_B1CTL), 9-33
Bank 1 Extended Timing Register, SMC
(SMC_B1ETIM), 9-38
Bank 1 Timing Register, SMC (SMC_B1TIM), 9-36
Bank 2 Control Register, SMC (SMC_B2CTL), 9-40
Bank 2 Extended Timing Register, SMC
(SMC_B2ETIM), 9-45
Bank 2 Timing Register, SMC (SMC_B2TIM), 9-43
Bank 3 Control Register, SMC (SMC_B3CTL), 9-47
Bank 3 Extended Timing Register, SMC
(SMC_B3ETIM), 9-52
Bank 3 Timing Register, SMC (SMC_B3TIM), 9-50
Battery Charging Control Register, USB (US-
B_BAT_CHG), 22-169
blender/compositor, 32-1
Block Size Register, RSI (RSI_BLKSZ), 24-73
Boot Acknowledge Timeout Register, RSI
(RSI_BACK_TOUT), 24-72
Boot Code Register, RCU (RCU_BCODE), 33-14,
34-67
Boot Timing Counter Register, RSI (RSI_-
BOOT_TCNTR), 24-70
Broadcast Delay Register, TIMER (TIMER_B-
CAST_DLY), 15-42
Broadcast Period Register, TIMER (TIMER_B-
CAST_PER), 15-41
Broadcast Width Register, TIMER (TIMER_B-
CAST_WID), 15-41
bus error, CGU, 3-6
bus error, DPM, 5-7
BV Conversion Component Register, PIXC (PIX-
C_CONBV), 32-41
bypass, PLL, 3-4

C
camera pipe control (CPC), PVP, 2-6
camera pipe data (CPD), PVP, 2-6
CAN Master Control Register, CAN (CAN_CTL),
21-73
CAN0 Receive interrupt, 7-4, 21-4
CAN0 Status interrupt, 7-4, 21-4

CAN0 Transmit interrupt, 7-4, 21-4
CAN_AA1 (Abort Acknowledge 1 Register, CAN),
21-37
CAN_AA2 (Abort Acknowledge 2 Register, CAN),
21-50
CAN_AMnnH (Acceptance Mask (H) Register, CAN),
21-83
CAN_AMnnL (Acceptance Mask (L) Register, CAN),
21-83
CAN_CEC (Error Counter Register, CAN), 21-64
CAN_CLK (Clock Register, CAN), 21-58
CAN_CTL (CAN Master Control Register, CAN),
21-73
CAN_DBG (Debug Register, CAN), 21-60
CAN_ESR (Error Status Register, CAN), 21-78
CAN_EWR (Error Counter Warning Level Register,
CAN), 21-77
CAN_GIF (Global CAN Interrupt Flag Register,
CAN), 21-70
CAN_GIM (Global CAN Interrupt Mask Register,
CAN), 21-68
CAN_GIS (Global CAN Interrupt Status Register,
CAN), 21-65
CAN_INT (Interrupt Pending Register, CAN), 21-75
CAN_MBIM1 (Mailbox Interrupt Mask 1 Register,
CAN), 21-42
CAN_MBIM2 (Mailbox Interrupt Mask 2 Register,
CAN), 21-55
CAN_MBnn_DATA0 (Mailbox Word 0 Register,
CAN), 21-84
CAN_MBnn_DATA1 (Mailbox Word 1 Register,
CAN), 21-85
CAN_MBnn_DATA2 (Mailbox Word 2 Register,
CAN), 21-86
CAN_MBnn_DATA3 (Mailbox Word 3 Register,
CAN), 21-86
CAN_MBnn_ID0 (Mailbox ID 0 Register, CAN),
21-88
CAN_MBnn_ID1 (Mailbox ID 1 Register, CAN),
21-89
CAN_MBnn_LENGTH (Mailbox Length Register,
CAN), 21-87
CAN_MBnn_TIMESTAMP (Mailbox Timestamp
Register, CAN), 21-87
CAN_MBRIF1 (Mailbox Receive Interrupt Flag 1
I–2 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
Register, CAN), 21-41
CAN_MBRIF2 (Mailbox Receive Interrupt Flag 2
Register, CAN), 21-54
CAN_MBTD (Temporary Mailbox Disable Register,
CAN), 21-76
CAN_MBTIF1 (Mailbox Transmit Interrupt Flag 1
Register, CAN), 21-40
CAN_MBTIF2 (Mailbox Transmit Interrupt Flag 2
Register, CAN), 21-53
CAN_MC1 (Mailbox Configuration 1 Register, CAN),
21-32
CAN_MC2 (Mailbox Configuration 2 Register, CAN),
21-45
CAN_MD1 (Mailbox Direction 1 Register, CAN),
21-33
CAN_MD2 (Mailbox Direction 2 Register, CAN),
21-46
CAN_OPSS1 (Overwrite Protection/Single Shot
Transmission 1 Register, CAN), 21-44
CAN_OPSS2 (Overwrite Protection/Single Shot
Transmission 2 Register, CAN), 21-57
CAN_RFH1 (Remote Frame Handling 1 Register,
CAN), 21-43
CAN_RFH2 (Remote Frame Handling 2 Register,
CAN), 21-56
CAN_RML1 (Receive Message Lost 1 Register,
CAN), 21-39
CAN_RML2 (Receive Message Lost 2 Register,
CAN), 21-51
CAN_RMP1 (Receive Message Pending 1 Register,
CAN), 21-38
CAN_RMP2 (Receive Message Pending 2 Register,
CAN), 21-51
CAN_STAT (Status Register, CAN), 21-62
CAN_TA1 (Transmission Acknowledge 1 Register,
CAN), 21-36
CAN_TA2 (Transmission Acknowledge 2 Register,
CAN), 21-49
CAN_TIMING (Timing Register, CAN), 21-58
CAN_TRR1 (Transmission Request Reset 1 Register,
CAN), 21-35
CAN_TRR2 (Transmission Request Reset 2 Register,
CAN), 21-48
CAN_TRS1 (Transmission Request Set 1 Register,
CAN), 21-34

CAN_TRS2 (Transmission Request Set 2 Register,
CAN), 21-47
CAN_UCCNF (Universal Counter Configuration
Mode Register, CAN), 21-81
CAN_UCCNT (Universal Counter Register, CAN),
21-80
CAN_UCRC (Universal Counter Reload/Capture Reg-
ister, CAN), 21-80
CCLKn clock domains, 2-5
CGU bus error, 3-6
CGU error, 3-6
CGU event, 3-6
CGU0 Error interrupt, 3-2, 7-8
CGU0 Event (Masters), 3-3, 8-2
CGU0 Event interrupt, 3-2, 7-3
CGU_CLKOUTSEL (CLKOUT Select Register,
CGU), 3-19
CGU_CTL (Control Register, CGU), 3-11
CGU_DIV (Clocks Divisor Register, CGU), 3-17
CGU_STAT (Status Register, CGU), 3-13
Channel A Control Register, PWM (PWM_ACTL),
18-71
Channel A Delay Register, PWM (PWM_DLYA),
18-68
Channel A-High Duty-0 Register, PWM (PW-
M_AH0), 18-74
Channel A-High Duty-1 Register, PWM (PW-
M_AH1), 18-74
Channel A-Low Duty-0 Register, PWM (PWM_AL0),
18-76
Channel A-Low Duty-1 Register, PWM (PWM_AL1),
18-76
Channel B Control Register, PWM (PWM_BCTL),
18-77
Channel B Delay Register, PWM (PWM_DLYB),
18-69
Channel B-High Duty-0 Register, PWM (PWM_BH0),
18-80
Channel B-High Duty-1 Register, PWM (PWM_BH1),
18-80
Channel B-Low Duty-0 Register, PWM (PWM_BL0),
18-82
Channel B-Low Duty-1 Register, PWM (PWM_BL1),
18-82
Channel C Control Register, PWM (PWM_CCTL),
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–3

INDEX
18-83
Channel C Delay Register, PWM (PWM_DLYC),
18-70
Channel C-High Pulse Duty Register 0, PWM (PW-
M_CH0), 18-86
Channel C-High Pulse Duty Register 1, PWM (PW-
M_CH1), 18-86
Channel C-Low Duty-1 Register, PWM (PWM_CL1),
18-88
Channel C-Low Pulse Duty Register 0, PWM (PWM_-
CL0), 18-88
Channel Config Register, PWM (PWM_CHANCFG),
18-43
Channel D Control Register, PWM (PWM_DCTL),
18-89
Channel D Delay Register, PWM (PWM_DLYD),
18-71
Channel D-High Duty-0 Register, PWM (PW-
M_DH0), 18-91
Channel D-High Pulse Duty Register 1, PWM (PW-
M_DH1), 18-92
Channel D-Low Pulse Duty Register 0, PWM (PW-
M_DL0), 18-93
Channel D-Low Pulse Duty Register 1, PWM (PW-
M_DL1), 18-94
Chirp Timeout Register, USB (USB_CT_UCH),
22-159
Chop Configuration Register, PWM (PWM_CHOP-
CFG), 18-62
Clipping Register for EVEN (Luma) Data, EPPI (EP-
PI_EVENCLIP), 31-87
Clipping Register for ODD (Chroma) Data, EPPI (EP-
PI_ODDCLIP), 31-86
CLKOUT Select Register, CGU (CGU_CLKOUT-
SEL), 3-19
clock buffer, disable, 5-12
Clock Divide Register, EPPI (EPPI_CLKDIV), 31-71
Clock Divider Value, LP (LP_DIV), 28-23
clock domain, SCB, 2-5
clock generation unit (CGU), 3-3
clock multiplier/divisor, 3-4
Clock Rate Register, SPI (SPI_CLK), 25-36
Clock Rate Register, UART (UART_CLK), 19-39
Clock Register, CAN (CAN_CLK), 21-58
Clocks Divisor Register, CGU (CGU_DIV), 3-17

CNT0 Status (Masters), 8-3, 17-3
CNT0 Status interrupt, 7-4, 17-3
CNT_CFG (Configuration Register, CNT), 17-16
CNT_CMD (Command Register, CNT), 17-22
CNT_CNTR (Counter Register, CNT), 17-25
CNT_DEBNCE (Debounce Register, CNT), 17-23
CNT_IMSK (Interrupt Mask Register, CNT), 17-18
CNT_MAX (Maximum Count Register, CNT), 17-25
CNT_MIN (Minimum Count Register, CNT), 17-26
CNT_STAT (Status Register, CNT), 17-20
CNVn Coefficient 0,4, PVP (PVP_CNVn_C04),
30-188
CNVn Coefficient 1,4, PVP (PVP_CNVn_C14),
30-190
CNVn Coefficient 2,4, PVP (PVP_CNVn_C24),
30-192
CNVn Coefficient 3,4, PVP (PVP_CNVn_C34),
30-194
CNVn Coefficient 4,4, PVP (PVP_CNVn_C44),
30-196
CNVn Coefficients 0,0 and 0,1, PVP (PVP_CN-
Vn_C00C01), 30-187
CNVn Coefficients 0,2 and 0,3, PVP (PVP_CN-
Vn_C02C03), 30-187
CNVn Coefficients 1,0 and 1,1, PVP (PVP_CN-
Vn_C10C11), 30-189
CNVn Coefficients 1,2 and 1,3, PVP (PVP_CN-
Vn_C12C13), 30-189
CNVn Coefficients 2,0 and 2,1, PVP (PVP_CN-
Vn_C20C21), 30-191
CNVn Coefficients 2,2 and 2,3, PVP (PVP_CN-
Vn_C22C23), 30-191
CNVn Coefficients 3,0 and 3,1, PVP (PVP_CN-
Vn_C30C31), 30-193
CNVn Coefficients 3,2 and 3,3, PVP (PVP_CN-
Vn_C32C33), 30-193
CNVn Coefficients 4,0 and 4,1, PVP (PVP_CN-
Vn_C40C41), 30-195
CNVn Coefficients 4,2 and 4,3, PVP (PVP_CN-
Vn_C42C43), 30-195
CNVn Configuration, PVP (PVP_CNVn_CFG),
30-183
CNVn Control, PVP (PVP_CNVn_CTL), 30-185
CNVn Scaling Factor, PVP (PVP_CNVn_SCALE),
30-197
I–4 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
Command Register, CNT (CNT_CMD), 17-22
Command Register, RSI (RSI_CMD), 24-49
Common Interrupts Enable Register, USB (US-
B_IEN), 22-101
Common Interrupts Register, USB (USB_IRQ), 22-99
Configuration Register, CNT (CNT_CFG), 17-16
Configuration Register, DMA (DMA_CFG), 13-50
Configuration Register, DMC (DMC_CFG), 11-25
Configuration Register, RSI (RSI_CFG), 24-80
Control Register 2, EPPI (EPPI_CTL2), 31-89
Control Register n, SWU (SWU_CTLn), 36-15
Control Register, ACM (ACM_CTL), 27-25
Control Register, CGU (CGU_CTL), 3-11
Control Register, CRC (CRC_CTL), 12-28
Control Register, DMC (DMC_CTL), 11-15
Control Register, DPM (DPM_CTL), 5-14
Control Register, EPPI (EPPI_CTL), 31-72
Control Register, L2CTL (L2CTL_CTL), 10-11
Control Register, LP (LP_CTL), 28-19
Control Register, PIXC (PIXC_CTL), 32-30
Control Register, PWM (PWM_CTL), 18-40
Control Register, RCU (RCU_CTL), 33-7
Control Register, RSI (RSI_CTL), 24-47
Control Register, SDU (SDU_CTL), 35-13
Control Register, SPI (SPI_CTL), 25-25
Control Register, SPU (SPU_CTL), 4-8
Control Register, TWI (TWI_CTL), 20-20
Control Register, UART (UART_CTL), 19-27
Control Register, WDOG (WDOG_CTL), 16-4
Control, PVP (PVP_CTL), 30-124
Conversion Bias Register, PIXC (PIXC_CCBIAS),
32-42
Core 0 Double Fault interrupt, 7-3
Core 0 Hardware Error interrupt, 7-3
Core 0 Unhandled NMI or L1 Memory Parity Error in-
terrupt, 7-3
Core 0 Wakeup Input 0 (Slaves), 8-8
Core 0 Wakeup Input 1 (Slaves), 8-8
Core 0 Wakeup Input 2 (Slaves), 8-8
Core 0 Wakeup Input 3 (Slaves), 8-8
Core 1 Double Fault interrupt, 7-3
Core 1 Hardware Error interrupt, 7-3
Core 1 Unhandled NMI or L1 Memory Parity Error in-
terrupt, 7-3
Core 1 Wakeup Input 0 (Slaves), 8-8

Core 1 Wakeup Input 1 (Slaves), 8-8
Core 1 Wakeup Input 2 (Slaves), 8-8
Core 1 Wakeup Input 3 (Slaves), 8-8
Core Clock Buffer Disable Register, DPM (DPM_C-
CBF_DIS), 5-18
Core Clock Buffer Enable Register, DPM (DPM_C-
CBF_EN), 5-19
Core Clock Buffer Status Register, DPM (DPM_CCB-
F_STAT), 5-20
Core Clock Buffer Status Sticky Register, DPM (DP-
M_CCBF_STAT_STKY), 5-20
core clock n (CCLKn), 3-3, 3-4
Core Pending Register n, SEC (SEC_CPNDn), 7-20
Core Reset Control Register, RCU (RCU_CRCTL),
33-10
Core Reset Status Register, RCU (RCU_CRSTAT),
33-11
Count Register n, SWU (SWU_CNTn), 36-21
Count Register, WDOG (WDOG_CNT), 16-5
Counter Register, CNT (CNT_CNTR), 17-25
CRC Current Result Register, CRC (CRC_RE-
SULT_CUR), 12-42
CRC Final Result Register, CRC (CRC_RESULT_-
FIN), 12-41
CRC0 Datacount expiration interrupt, 7-6, 12-4
CRC0 Error interrupt, 7-6, 12-4
CRC1 Datacount expiration interrupt, 7-6, 12-4
CRC1 Error interrupt, 7-6, 12-4
CRC_COMP (Data Compare Register, CRC), 12-33
CRC_CTL (Control Register, CRC), 12-28
CRC_DCNT (Data Word Count Register, CRC), 12-31
CRC_DCNTCAP (Data Count Capture Register,
CRC), 12-41
CRC_DCNTRLD (Data Word Count Reload Register,
CRC), 12-32
CRC_DFIFO (Data FIFO Register, CRC), 12-34
CRC_FILLVAL (Fill Value Register, CRC), 12-33
CRC_INEN (Interrupt Enable Register, CRC), 12-35
CRC_INEN_CLR (Interrupt Enable Clear Register,
CRC), 12-37
CRC_INEN_SET (Interrupt Enable Set Register,
CRC), 12-36
CRC_POLY (Polynomial Register, CRC), 12-38
CRC_RESULT_CUR (CRC Current Result Register,
CRC), 12-42
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–5

INDEX
CRC_RESULT_FIN (CRC Final Result Register,
CRC), 12-41
CRC_STAT (Status Register, CRC), 12-38
Current Address, DMA (DMA_ADDR_CUR), 13-64
Current Count(1D) or intra-row XCNT (2D), DMA
(DMA_XCNT_CUR), 13-69
Current Descriptor Pointer, DMA (DMA_D-
SCPTR_CUR), 13-63
Current Register n, SWU (SWU_CURn), 36-24
Current Row Count (2D only), DMA
(DMA_YCNT_CUR), 13-69
cyclic redundancy check (CRC), 2-6

D
Data Compare Register, CRC (CRC_COMP), 12-33
Data Control Register, RSI (RSI_DATA_CTL), 24-56
Data Count Capture Register, CRC (CRC_DCNT-
CAP), 12-41
Data Count Register, RSI (RSI_DATA_CNT), 24-57
Data FIFO Register, CRC (CRC_DFIFO), 12-34
Data FIFO Register, RSI (RSI_FIFO), 24-74
Data Interrupt Latch Register, TIMER (TIMER_-
DATA_ILAT), 15-37
Data Interrupt Mask Register, TIMER (TIMER_-
DATA_IMSK), 15-34
Data Length Register, RSI (RSI_DATA_LEN), 24-56
Data Timer Register, RSI (RSI_DATA_TMR), 24-55
Data Word Count Register, CRC (CRC_DCNT), 12-31
Data Word Count Reload Register, CRC (CRC_DCN-
TRLD), 12-32
DCLK clock domain, 2-5
Dead Time Register, PWM (PWM_DT), 18-63
Debounce Register, CNT (CNT_DEBNCE), 17-23
Debug Register, CAN (CAN_DBG), 21-60
Debug Register, EMAC (EMAC_DBG), 23-117
deep sleep mode, 5-3, 5-5
deep sleep mode, configuring, 5-10
Delay Register, SPI (SPI_DLY), 25-37
Device Control Register, USB (USB_DEV_CTL),
22-107
DLL Control Register, DMC (DMC_DLLCTL), 11-39
DMA Bus Mode Register, EMAC (EMAC_D-
MA_BUSMODE), 23-217
DMA Channel n Address Register, USB (USB_D-
MAn_ADDR), 22-157

DMA Channel n Control Register, USB (USB_D-
MAn_CTL), 22-155
DMA Channel n Count Register, USB (USB_D-
MAn_CNT), 22-158
DMA channels, SCB, 2-5
DMA Controller Error interrupt, 7-8
DMA Interrupt Enable Register, EMAC (EMAC_D-
MA_IEN), 23-232
DMA Interrupt Register, USB (USB_DMA_IRQ),
22-154
DMA Missed Frame Register, EMAC (EMAC_D-
MA_MISS_FRM), 23-234
DMA Operation Mode Register, EMAC (EMAC_D-
MA_OPMODE), 23-228
DMA Read Data Register, SDU (SDU_DMARD),
35-22
DMA Rx Buffer Current Register, EMAC (EMAC_D-
MA_RXBUF_CUR), 23-240
DMA Rx Descriptor Current Register, EMAC
(EMAC_DMA_RXDSC_CUR), 23-239
DMA Rx Descriptor List Address Register, EMAC
(EMAC_DMA_RXDSC_ADDR), 23-221
DMA Rx Interrupt Watch Dog Register, EMAC
(EMAC_DMA_RXIWDOG), 23-235
DMA Rx Poll Demand register, EMAC (EMAC_D-
MA_RXPOLL), 23-220
DMA SCB Bus Mode Register, EMAC (EMAC_D-
MA_BMMODE), 23-236
DMA SCB Status Register, EMAC (EMAC_D-
MA_BMSTAT), 23-238
DMA Status Register, EMAC (EMAC_DMA_STAT),
23-223
DMA Tx Buffer Current Register, EMAC (EMAC_D-
MA_TXBUF_CUR), 23-240
DMA Tx Descriptor Current Register, EMAC
(EMAC_DMA_TXDSC_CUR), 23-238
DMA Tx Descriptor List Address Register, EMAC
(EMAC_DMA_TXDSC_ADDR), 23-222
DMA Tx Poll Demand Register, EMAC (EMAC_D-
MA_TXPOLL), 23-220
DMA Write Data Register, SDU (SDU_DMAWD),
35-22
DMA_ADDR_CUR (Current Address, DMA), 13-64
DMA_ADDRSTART (Start Address of Current Buf-
fer, DMA), 13-49
I–6 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
DMA_BWLCNT (Bandwidth Limit Count, DMA),
13-70
DMA_BWLCNT_CUR (Bandwidth Limit Count Cur-
rent, DMA), 13-71
DMA_BWMCNT (Bandwidth Monitor Count, DMA),
13-71
DMA_BWMCNT_CUR (Bandwidth Monitor Count
Current, DMA), 13-72
DMA_CFG (Configuration Register, DMA), 13-50
DMA_DSCPTR_CUR (Current Descriptor Pointer,
DMA), 13-63
DMA_DSCPTR_NXT (Pointer to Next Initial De-
scriptor, DMA), 13-48
DMA_DSCPTR_PRV (Previous Initial Descriptor
Pointer, DMA), 13-64
DMA_STAT (Status Register, DMA), 13-65
DMA_XCNT (Inner Loop Count Start Value, DMA),
13-59
DMA_XCNT_CUR (Current Count(1D) or intra-row
XCNT (2D), DMA), 13-69
DMA_XMOD (Inner Loop Address Increment,
DMA), 13-60
DMA_YCNT (Outer Loop Count Start Value (2D on-
ly), DMA), 13-61
DMA_YCNT_CUR (Current Row Count (2D only),
DMA), 13-69
DMA_YMOD (Outer Loop Address Increment (2D
only), DMA), 13-62
DMC_CFG (Configuration Register, DMC), 11-25
DMC_CTL (Control Register, DMC), 11-15
DMC_DLLCTL (DLL Control Register, DMC), 11-39
DMC_EFFCTL (Efficiency Control Register, DMC),
11-20
DMC_EMR1 (Shadow EMR1 Register, DMC), 11-34
DMC_EMR2 (Shadow EMR2 Register, DMC), 11-37
DMC_EMR3 (Shadow EMR3 Register, DMC), 11-39
DMC_MR (Shadow MR Register, DMC), 11-32
DMC_MSK (Mask (Mode Register Shadow) Register,
DMC), 11-30
DMC_PADCTL (PAD Control Register, DMC), 11-43
DMC_PHY_CTL1 (PHY Control 1 Register, DMC),
11-41
DMC_PHY_CTL3 (PHY Control 3 Register, DMC),
11-42
DMC_PRIO (Priority ID Register, DMC), 11-24

DMC_PRIOMSK (Priority ID Mask Register, DMC),
11-24
DMC_STAT (Status Register, DMC), 11-18
DMC_TR0 (Timing 0 Register, DMC), 11-27
DMC_TR1 (Timing 1 Register, DMC), 11-28
DMC_TR2 (Timing 2 Register, DMC), 11-29
DPM bus error, 5-7
DPM event, 5-7
DPM0 Event interrupt, 5-2, 7-8
DPM_CCBF_DIS (Core Clock Buffer Disable Regis-
ter, DPM), 5-18
DPM_CCBF_EN (Core Clock Buffer Enable Register,
DPM), 5-19
DPM_CCBF_STAT (Core Clock Buffer Status Regis-
ter, DPM), 5-20
DPM_CCBF_STAT_STKY (Core Clock Buffer Sta-
tus Sticky Register, DPM), 5-20
DPM_CTL (Control Register, DPM), 5-14
DPM_HIB_DIS (Hibernate Disable Register, DPM),
5-25
DPM_PGCNTR (Power Good Counter Register,
DPM), 5-26
DPM_RESTOREn (Restore Registers, DPM), 5-28
DPM_SCBF_DIS (System Clock Buffer Disable Reg-
ister, DPM), 5-21
DPM_STAT (Status Register, DPM), 5-16
DPM_WAKE_EN (Wakeup Enable Register, DPM),
5-22
DPM_WAKE_POL (Wakeup Polarity Register,
DPM), 5-23
DPM_WAKE_STAT (Wakeup Status Register,
DPM), 5-24
dynamic memory clock (DCLK), 3-4
dynamic memory controller (DMC), 2-5
dynamic power management (DPM), 3-3

E
ECC Error Address 0 Register, L2CTL (L2CTL_ER-
RADDR0), 10-26
ECC Error Address 1 Register, L2CTL (L2CTL_ER-
RADDR1), 10-27
ECC Error Address 2 Register, L2CTL (L2CTL_ER-
RADDR2), 10-28
ECC Error Address 3 Register, L2CTL (L2CTL_ER-
RADDR3), 10-28
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–7

INDEX
ECC Error Address 4 Register, L2CTL (L2CTL_ER-
RADDR4), 10-29
ECC Error Address 5 Register, L2CTL (L2CTL_ER-
RADDR5), 10-30
ECC Error Address 6 Register, L2CTL (L2CTL_ER-
RADDR6), 10-30
ECC Error Address 7 Register, L2CTL (L2CTL_ER-
RADDR7), 10-31
Efficiency Control Register, DMC (DMC_EFFCTL),
11-20
EMAC and PTP Clock Select Register, PADS
(PADS_EMAC_PTP_CLKSEL), 14-107
EMAC0 Status (Masters), 8-3, 23-9
EMAC0 Status interrupt, 7-5, 23-9
EMAC1 Status (Masters), 8-3, 23-9
EMAC1 Status interrupt, 7-5, 23-9
EMAC_ADDR0_HI (MAC Address 0 High Register,
EMAC), 23-122
EMAC_ADDR0_LO (MAC Address 0 Low Register,
EMAC), 23-122
EMAC_DBG (Debug Register, EMAC), 23-117
EMAC_DMA_BMMODE (DMA SCB Bus Mode
Register, EMAC), 23-236
EMAC_DMA_BMSTAT (DMA SCB Status Register,
EMAC), 23-238
EMAC_DMA_BUSMODE (DMA Bus Mode Regis-
ter, EMAC), 23-217
EMAC_DMA_IEN (DMA Interrupt Enable Register,
EMAC), 23-232
EMAC_DMA_MISS_FRM (DMA Missed Frame
Register, EMAC), 23-234
EMAC_DMA_OPMODE (DMA Operation Mode
Register, EMAC), 23-228
EMAC_DMA_RXBUF_CUR (DMA Rx Buffer Cur-
rent Register, EMAC), 23-240
EMAC_DMA_RXDSC_ADDR (DMA Rx Descriptor
List Address Register, EMAC), 23-221
EMAC_DMA_RXDSC_CUR (DMA Rx Descriptor
Current Register, EMAC), 23-239
EMAC_DMA_RXIWDOG (DMA Rx Interrupt Watch
Dog Register, EMAC), 23-235
EMAC_DMA_RXPOLL (DMA Rx Poll Demand reg-
ister, EMAC), 23-220
EMAC_DMA_STAT (DMA Status Register, EMAC),
23-223

EMAC_DMA_TXBUF_CUR (DMA Tx Buffer Cur-
rent Register, EMAC), 23-240
EMAC_DMA_TXDSC_ADDR (DMA Tx Descriptor
List Address Register, EMAC), 23-222
EMAC_DMA_TXDSC_CUR (DMA Tx Descriptor
Current Register, EMAC), 23-238
EMAC_DMA_TXPOLL (DMA Tx Poll Demand Reg-
ister, EMAC), 23-220
EMAC_FLOWCTL (FLow Control Register, EMAC),
23-114
EMAC_HASHTBL_HI (Hash Table High Register,
EMAC), 23-110
EMAC_HASHTBL_LO (Hash Table Low Register,
EMAC), 23-110
EMAC_IMSK (Interrupt Mask Register, EMAC),
23-121
EMAC_IPC_RXIMSK (MMC IPC Rx Interrupt Mask
Register, EMAC), 23-170
EMAC_IPC_RXINT (MMC IPC Rx Interrupt Regis-
ter, EMAC), 23-175
EMAC_ISTAT (Interrupt Status Register, EMAC),
23-120
EMAC_MACCFG (MAC Configuration Register,
EMAC), 23-103
EMAC_MACFRMFILT (MAC Rx Frame Filter Reg-
ister, EMAC), 23-107
EMAC_MMC_CTL (MMC Control Register,
EMAC), 23-123
EMAC_MMC_RXIMSK (MMC Rx Interrupt Mask
Register, EMAC), 23-132
EMAC_MMC_RXINT (MMC Rx Interrupt Register,
EMAC), 23-125
EMAC_MMC_TXIMSK (MMC TX Interrupt Mask
Register, EMAC), 23-135
EMAC_MMC_TXINT (MMC Tx Interrupt Register,
EMAC), 23-128
EMAC_RX1024TOMAX_GB (Rx 1024- to Max-Byte
Frames (Good/Bad) Register, EMAC), 23-164
EMAC_RX128TO255_GB (Rx 128- to 255-Byte
Frames (Good/Bad) Register, EMAC), 23-162
EMAC_RX256TO511_GB (Rx 256- to 511-Byte
Frames (Good/Bad) Register, EMAC), 23-163
EMAC_RX512TO1023_GB (Rx 512- to 1023-Byte
Frames (Good/Bad) Register, EMAC), 23-164
EMAC_RX64_GB (Rx 64-Byte Frames (Good/Bad)
I–8 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
Register, EMAC), 23-161
EMAC_RX65TO127_GB (Rx 65- to 127-Byte Frames
(Good/Bad) Register, EMAC), 23-162
EMAC_RXALIGN_ERR (Rx alignment Error Regis-
ter, EMAC), 23-158
EMAC_RXBCASTFRM_G (Rx Broadcast Frames
(Good) Register, EMAC), 23-156
EMAC_RXCRC_ERR (Rx CRC Error Register,
EMAC), 23-157
EMAC_RXFIFO_OVF (Rx FIFO Overflow Register,
EMAC), 23-168
EMAC_RXFRMCNT_GB (Rx Frame Count
(Good/Bad) Register, EMAC), 23-154
EMAC_RXICMP_ERR_FRM (Rx ICMP Error
Frames Register, EMAC), 23-188
EMAC_RXICMP_ERR_OCT (Rx ICMP Error Octets
Register, EMAC), 23-197
EMAC_RXICMP_GD_FRM (Rx ICMP Good Frames
Register, EMAC), 23-187
EMAC_RXICMP_GD_OCT (Rx ICMP Good Octets
Register, EMAC), 23-196
EMAC_RXIPV4_FRAG_FRM (Rx IPv4 Datagrams
Fragmented Frames Register, EMAC), 23-181
EMAC_RXIPV4_FRAG_OCT (Rx IPv4 Datagrams
Fragmented Octets Register, EMAC), 23-190
EMAC_RXIPV4_GD_FRM (Rx IPv4 Datagrams
(Good) Register, EMAC), 23-179
EMAC_RXIPV4_GD_OCT (Rx IPv4 Datagrams
Good Octets Register, EMAC), 23-188
EMAC_RXIPV4_HDR_ERR_FRM (Rx IPv4 Data-
grams Header Errors Register, EMAC), 23-180
EMAC_RXIPV4_HDR_ERR_OCT (Rx IPv4 Data-
grams Header Errors Register, EMAC), 23-189
EMAC_RXIPV4_NOPAY_FRM (Rx IPv4 Datagrams
No Payload Frame Register, EMAC), 23-180
EMAC_RXIPV4_NOPAY_OCT (Rx IPv4 Datagrams
No Payload Octets Register, EMAC), 23-190
EMAC_RXIPV4_UDSBL_FRM (Rx IPv4 UDP Dis-
abled Frames Register, EMAC), 23-182
EMAC_RXIPV4_UDSBL_OCT (Rx IPv4 UDP Dis-
abled Octets Register, EMAC), 23-191
EMAC_RXIPV6_GD_FRM (Rx IPv6 Datagrams
Good Frames Register, EMAC), 23-182
EMAC_RXIPV6_GD_OCT (Rx IPv6 Good Octets
Register, EMAC), 23-192

EMAC_RXIPV6_HDR_ERR_FRM (Rx IPv6 Data-
grams Header Error Frames Register, EMAC), 23-183
EMAC_RXIPV6_HDR_ERR_OCT (Rx IPv6 Header
Errors Register, EMAC), 23-192
EMAC_RXIPV6_NOPAY_FRM (Rx IPv6 Datagrams
No Payload Frames Register, EMAC), 23-184
EMAC_RXIPV6_NOPAY_OCT (Rx IPv6 No Pay-
load Octets Register, EMAC), 23-193
EMAC_RXJAB_ERR (Rx Jab Error Register,
EMAC), 23-159
EMAC_RXLEN_ERR (Rx Length Error Register,
EMAC), 23-166
EMAC_RXMCASTFRM_G (Rx Multicast Frames
(Good) Register, EMAC), 23-157
EMAC_RXOCTCNT_G (Rx Octet Count (Good)
Register, EMAC), 23-155
EMAC_RXOCTCNT_GB (Rx Octet Count
(Good/Bad) Register, EMAC), 23-155
EMAC_RXOORTYPE (Rx Out Of Range Type Reg-
ister, EMAC), 23-166
EMAC_RXOSIZE_G (Rx Oversize (Good) Register,
EMAC), 23-160
EMAC_RXPAUSEFRM (Rx Pause Frames Register,
EMAC), 23-167
EMAC_RXRUNT_ERR (Rx Runt Error Register,
EMAC), 23-158
EMAC_RXTCP_ERR_FRM (Rx TCP Error Frames
Register, EMAC), 23-186
EMAC_RXTCP_ERR_OCT (Rx TCP Error Octets
Register, EMAC), 23-196
EMAC_RXTCP_GD_FRM (Rx TCP Good Frames
Register, EMAC), 23-186
EMAC_RXTCP_GD_OCT (Rx TCP Good Octets
Register, EMAC), 23-195
EMAC_RXUCASTFRM_G (Rx Unicast Frames
(Good) Register, EMAC), 23-165
EMAC_RXUDP_ERR_FRM (Rx UDP Error Frames
Register, EMAC), 23-185
EMAC_RXUDP_ERR_OCT (Rx UDP Error Octets
Register, EMAC), 23-194
EMAC_RXUDP_GD_FRM (Rx UDP Good Frames
Register, EMAC), 23-184
EMAC_RXUDP_GD_OCT (Rx UDP Good Octets
Register, EMAC), 23-194
EMAC_RXUSIZE_G (Rx Undersize (Good) Register,
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–9

INDEX
EMAC), 23-160
EMAC_RXVLANFRM_GB (Rx VLAN Frames
(Good/Bad) Register, EMAC), 23-168
EMAC_RXWDOG_ERR (Rx Watch Dog Error Reg-
ister, EMAC), 23-169
EMAC_SMI_ADDR (SMI Address Register, EMAC),
23-111
EMAC_SMI_DATA (SMI Data Register, EMAC),
23-113
EMAC_TM_ADDEND (Time Stamp Addend Regis-
ter, EMAC), 23-206
EMAC_TM_AUXSTMP_NSEC (Time Stamp Auxil-
iary TS Nano Seconds Register, EMAC), 23-214
EMAC_TM_AUXSTMP_SEC (Time Stamp Auxilia-
ry TM Seconds Register, EMAC), 23-214
EMAC_TM_CTL (Time Stamp Control Register,
EMAC), 23-198
EMAC_TM_HISEC (Time Stamp High Second Reg-
ister, EMAC), 23-209
EMAC_TM_NSEC (Time Stamp Nanoseconds Regis-
ter, EMAC), 23-204
EMAC_TM_NSECUPDT (Time Stamp Nanoseconds
Update Register, EMAC), 23-205
EMAC_TM_NTGTM (Time Stamp Target Time
Nanoseconds Register, EMAC), 23-208
EMAC_TM_PPSCTL (PPS Control Register,
EMAC), 23-212
EMAC_TM_PPSINTVL (Time Stamp PPS Interval
Register, EMAC), 23-215
EMAC_TM_PPSWIDTH (PPS Width Register,
EMAC), 23-216
EMAC_TM_SEC (Time Stamp Low Seconds Regis-
ter, EMAC), 23-203
EMAC_TM_SECUPDT (Time Stamp Seconds Up-
date Register, EMAC), 23-205
EMAC_TM_STMPSTAT (Time Stamp Status Regis-
ter, EMAC), 23-209
EMAC_TM_SUBSEC (Time Stamp Sub Second In-
crement Register, EMAC), 23-203
EMAC_TM_TGTM (Time Stamp Target Time Sec-
onds Register, EMAC), 23-207
EMAC_TX1024TOMAX_GB (Tx 1024- to Max-Byte
Frames (Good/Bad) Register, EMAC), 23-144
EMAC_TX128TO255_GB (Tx 128- to 255-Byte
Frames (Good/Bad) Register, EMAC), 23-142

EMAC_TX256TO511_GB (Tx 256- to 511-Byte
Frames (Good/Bad) Register, EMAC), 23-142
EMAC_TX512TO1023_GB (Tx 512- to 1023-Byte
Frames (Good/Bad) Register, EMAC), 23-143
EMAC_TX64_GB (Tx 64-Byte Frames (Good/Bad)
Register, EMAC), 23-140
EMAC_TX65TO127_GB (Tx 65- to 127-Byte Frames
(Good/Bad) Register, EMAC), 23-141
EMAC_TXBCASTFRM_G (Tx Broadcast Frames
(Good) Register, EMAC), 23-139
EMAC_TXBCASTFRM_GB (Tx Broadcast Frames
(Good/Bad) Register, EMAC), 23-146
EMAC_TXCARR_ERR (Tx Carrier Error Register,
EMAC), 23-150
EMAC_TXDEFERRED (Tx Deferred Register,
EMAC), 23-148
EMAC_TXEXCESSCOL (Tx Excess Collision Regis-
ter, EMAC), 23-150
EMAC_TXEXCESSDEF (Tx Excess Deferral Regis-
ter, EMAC), 23-152
EMAC_TXFRMCNT_G (Tx Frame Count (Good)
Register, EMAC), 23-152
EMAC_TXFRMCNT_GB (Tx Frame Count
(Good/Bad) Register, EMAC), 23-139
EMAC_TXLATECOL (Tx Late Collision Register,
EMAC), 23-149
EMAC_TXMCASTFRM_G (Tx Multicast Frames
(Good) Register, EMAC), 23-140
EMAC_TXMCASTFRM_GB (Tx Multicast Frames
(Good/Bad) Register, EMAC), 23-145
EMAC_TXMULTCOL_G (Tx Multiple Collision
(Good) Register, EMAC), 23-148
EMAC_TXOCTCNT_G (Tx Octet Count (Good)
Register, EMAC), 23-151
EMAC_TXOCTCNT_GB (Tx OCT Count
(Good/Bad) Register, EMAC), 23-138
EMAC_TXPAUSEFRM (Tx Pause Frame Register,
EMAC), 23-153
EMAC_TXSNGCOL_G (Tx Single Collis ion (Good)
Register, EMAC), 23-147
EMAC_TXUCASTFRM_GB (Tx Unicast Frames
(Good/Bad) Register, EMAC), 23-144
EMAC_TXUNDR_ERR (Tx Underflow Error Regis-
ter, EMAC), 23-146
EMAC_TXVLANFRM_G (Tx VLAN Frames (Good)
I–10 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
Register, EMAC), 23-154
EMAC_VLANTAG (VLAN Tag Register, EMAC),
23-115
Endpoint Information Register, USB (USB_EPINFO),
22-113
EP0 Configuration and Status (Host) Register, USB
(USB_EP0_CSRn_H), 22-123
EP0 Configuration and Status (Peripheral) Register,
USB (USB_EP0_CSRn_P), 22-126
EP0 Configuration Information Register, USB (US-
B_EP0_CFGDATAn), 22-152
EP0 Connection Type Register, USB (USB_EP0_-
TYPEn), 22-146
EP0 NAK Limit Register, USB (USB_EP0_NAK-
LIMITn), 22-147
EP0 Number of Received Bytes Register, USB (US-
B_EP0_CNTn), 22-144
EPn Number of Bytes Received Register, USB (US-
B_EPn_RXCNT), 22-144
EPn Receive Configuration and Status (Host) Register,
USB (USB_EPn_RXCSR_H), 22-136
EPn Receive Configuration and Status (Peripheral)
Register, USB (USB_EPn_R XCSR_P), 22-140
EPn Receive Maximum Packet Length Register, USB
(USB_EPn_RXMAXP), 22-135
EPn Receive Polling Interval Register, USB (US-
B_EPn_RXINTERVAL), 22-151
EPn Receive Type Register, USB (USB_EPn_RX-
TYPE), 22-149
EPn Request Packet Count Register, USB (USB_RQP-
KTCNTn), 22-159
EPn Transmit Configuration and Status (Host) Regis-
ter, USB (USB_EPn_TXCSR_H), 22-128
EPn Transmit Configuration and Status (Peripheral)
Register, USB (USB_EPn_TXCSR_P), 22-132
EPn Transmit Maximum Packet Length Register, USB
(USB_EPn_TXMAXP), 22-122
EPn Transmit Polling Interval Register, USB (US-
B_EPn_TXINTERVAL), 22-148
EPn Transmit Type Register, USB (USB_EPn_TX-
TYPE), 22-145
EPPI0 Channel 0 DMA (Masters), 8-4, 31-4
EPPI0 Channel 0 DMA (Slaves), 8-7, 31-4
EPPI0 Channel 0 DMA interrupt, 7-6, 31-3
EPPI0 Channel 1 DMA (Masters), 8-4, 31-4

EPPI0 Channel 1 DMA (Slaves), 8-7, 31-4
EPPI0 Channel 1 DMA interrupt, 7-6, 31-3
EPPI0 Status interrupt, 7-6, 31-3
EPPI1 Channel 0 DMA (Masters), 8-4, 31-4
EPPI1 Channel 0 DMA (Slaves), 8-8, 31-4
EPPI1 Channel 0 DMA interrupt, 7-7, 31-4
EPPI1 Channel 1 DMA (Masters), 8-4, 31-4
EPPI1 Channel 1 DMA (Slaves), 8-8, 31-4
EPPI1 Channel 1 DMA interrupt, 7-7, 31-4
EPPI1 Status interrupt, 7-7, 31-4
EPPI2 Channel 0 DMA (Masters), 8-4, 31-4
EPPI2 Channel 0 DMA (Slaves), 8-7, 31-4
EPPI2 Channel 0 DMA interrupt, 7-6, 31-3
EPPI2 Channel 1 DMA (Masters), 8-4, 31-4
EPPI2 Channel 1 DMA (Slaves), 8-8, 31-4
EPPI2 Channel 1 DMA interrupt, 7-6, 31-3
EPPI2 Status interrupt, 7-7, 31-3
EPPI_CLKDIV (Clock Divide Register, EPPI), 31-71
EPPI_CTL (Control Register, EPPI), 31-72
EPPI_CTL2 (Control Register 2, EPPI), 31-89
EPPI_EVENCLIP (Clipping Register for EVEN (Lu-
ma) Data, EPPI), 31-87
EPPI_FRAME (Lines Per Frame Register, EPPI),
31-69
EPPI_FS1_DLY (Frame Sync 1 Delay Value, EPPI),
31-88
EPPI_FS1_PASPL (FS1 Period Register / EPPI Active
Samples Per Line Register, EPPI), 31-81
EPPI_FS1_WLHB (FS1 Width Register / EPPI Hori-
zontal Blanking Samples Per Line Register, EPPI),
31-80
EPPI_FS2_DLY (Frame Sync 2 Delay Value, EPPI),
31-88
EPPI_FS2_PALPF (FS2 Period Register / EPPI Active
Lines Per Field Register, EPPI), 31-83
EPPI_FS2_WLVB (FS2 Width Register / EPPI Lines
Of Vertical Blanking Register, EPPI), 31-82
EPPI_HCNT (Horizontal Transfer Count Register, EP-
PI), 31-67
EPPI_HDLY (Horizontal Delay Count Register, EP-
PI), 31-67
EPPI_IMSK (Interrupt Mask Register, EPPI), 31-84
EPPI_LINE (Samples Per Line Register, EPPI), 31-70
EPPI_ODDCLIP (Clipping Register for ODD (Chro-
ma) Data, EPPI), 31-86
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–11

INDEX
EPPI_STAT (Status Register, EPPI), 31-64
EPPI_VCNT (Vertical Transfer Count Register, EP-
PI), 31-68
EPPI_VDLY (Vertical Delay Count Register, EPPI),
31-69
Error Address Register, TRU (TRU_ERRADDR),
8-14
Error Counter Register, CAN (CAN_CEC), 21-64
Error Counter Warning Level Register, CAN
(CAN_EWR), 21-77
Error Status Register, CAN (CAN_ESR), 21-78
Error Type 0 Address Register, L2CTL (L2CT-
L_EADDR0), 10-33
Error Type 0 Register, L2CTL (L2CTL_ET0), 10-32
Error Type 1 Address Register, L2CTL (L2CT-
L_EADDR1), 10-35
Error Type 1 Register, L2CTL (L2CTL_ET1), 10-34
Error Type Status Register, TIMER (TIMER_ERR_-
TYPE), 15-39
error, CGU, 3-6
Event Complete Interrupt Mask Register, ACM (AC-
M_EVMSK), 27-37
Event Complete Status Register, ACM (AC-
M_EVSTAT), 27-32
Event N Control Register, ACM (ACM_EVCTLn),
27-46
Event N Order Register, ACM (ACM_EVORDn),
27-48
Event N Time Register, ACM (ACM_EVTIMEn),
27-48
event, CGU, 3-6
event, DPM, 5-7
Exception Mask Register, RSI (RSI_IMSK0), 24-78
Exception Status Register, RSI (RSI_STAT0), 24-75

F
Fault Control Register, SEC (SEC_FCTL), 7-25
Fault COP Period Current Register, SEC (SEC_FCOP-
P_CUR), 7-35
Fault COP Period Register, SEC (SEC_FCOPP), 7-34
Fault Delay Current Register, SEC (SEC_FD-
LY_CUR), 7-32
Fault Delay Register, SEC (SEC_FDLY), 7-32
Fault End Register, SEC (SEC_FEND), 7-31
Fault Source ID Register, SEC (SEC_FSID), 7-30

Fault Status Register, SEC (SEC_FSTAT), 7-28
Fault System Reset Delay Current Register, SEC
(SEC_FSRDLY_CUR), 7-34
Fault System Reset Delay Register, SEC (SEC_FSRD-
LY), 7-33
FIFO Byte (8-Bit) Register, USB (USB_FIFOBn),
22-105
FIFO Control Register, TWI (TWI_FIFOCTL), 20-36
FIFO Counter Register, RSI (RSI_FIFO_CNT), 24-70
FIFO Half-Word (16-Bit) Register, USB (USB_FI-
FOHn), 22-106
FIFO Status Register, TWI (TWI_FIFOSTAT), 20-38
FIFO Word (32-Bit) Register, USB (USB_FIFOn),
22-107
Fill Value Register, CRC (CRC_FILLVAL), 12-33
FLow Control Register, EMAC (EMAC_FLOWCTL),
23-114
Frame Number Register, USB (USB_FRAME),
22-102
Frame Sync 1 Delay Value, EPPI (EPPI_FS1_DLY),
31-88
Frame Sync 2 Delay Value, EPPI (EPPI_FS2_DLY),
31-88
FS1 Period Register / EPPI Active Samples Per Line
Register, EPPI (EPPI_FS1_PASPL), 31-81
FS1 Width Register / EPPI Horizontal Blanking Sam-
ples Per Line Register, EPPI (EPPI_FS1_WLHB),
31-80
FS2 Period Register / EPPI Active Lines Per Field
Register, EPPI (EPPI_FS2_PALPF), 31-83
FS2 Width Register / EPPI Lines Of Vertical Blanking
Register, EPPI (EPPI_FS2_WLVB), 31-82
full-on mode, 5-3, 5-5
Full-Speed EOF 1 Register, USB (USB_FS_EOF1),
22-116
Function Address Register, USB (USB_FADDR),
22-88

G
Global CAN Interrupt Flag Register, CAN (CAN_-
GIF), 21-70
Global CAN Interrupt Mask Register, CAN
(CAN_GIM), 21-68
Global CAN Interrupt Status Register, CAN (
CAN_GIS), 21-65
I–12 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
Global Control Register, SEC (SEC_GCTL), 7-36
Global Control Register, SWU (SWU_GCTL), 36-10
Global Control Register, TRU (TRU_GCTL), 8-15
Global End Register, SEC (SEC_END), 7-39
Global Raise Register, SEC (SEC_RAISE), 7-38
Global Status Register, SEC (SEC_GSTAT), 7-37
Global Status Register, SWU (SWU_GSTAT), 36-11
GPIO Pin Hysteresis Enable Register, PADS
(PADS_PORTS_HYST), 14-110
Grant Control Register, SMC (SMC_GCTL), 9-24
Grant Status Register, SMC (SMC_GSTAT), 9-25
Group Halt Register, SDU (SDU_GHLT), 35-26
GU Conversion Component Register, PIXC (PIXC_-
CONGU), 32-40

H
Half SPORT 'A' Control 2 Register, SPORT
(SPORT_CTL2_A), 26-66
Half SPORT 'A' Control Register, SPORT
(SPORT_CTL_A), 26-49
Half SPORT 'A' Divisor Register, SPORT
(SPORT_DIV_A), 26-57
Half SPORT 'A' Error Register, SPORT (SPORT_ER-
R_A), 26-63
Half SPORT 'A' Multi-channel 0-31 Select Register,
SPORT (SPORT_CS0_A), 26-61
Half SPORT 'A' Multi-channel 32-63 Select Register,
SPORT (SPORT_CS1_A), 26-61
Half SPORT 'A' Multi-channel 64-95 Select Register,
SPORT (SPORT_CS2_A), 26-62
Half SPORT 'A' Multi-channel 96-127 Select Register,
SPORT (SPORT_CS3_A), 26-63
Half SPORT 'A' Multi-channel Control Register,
SPORT (SPORT_MCTL_A), 26-59
Half SPORT 'A' Multi-channel Status Register,
SPORT (SPORT_MSTAT_A), 26-65
Half SPORT 'A' Rx Buffer (Primary) Register, SPORT
(SPORT_RXPRI_A), 26-68
Half SPORT 'A' Rx Buffer (Secondary) Register,
SPORT (SPORT_RXSEC_A), 26-70
Half SPORT 'A' Tx Buffer (Primary) Register, SPORT
(SPORT_TXPRI_A), 26-67
Half SPORT 'A' Tx Buffer (Secondary) Register,
SPORT (SPORT_TXSEC_A), 26-69
Half SPORT 'B' Control 2 Register, SPORT

(SPORT_CTL2_B), 26-90
Half SPORT 'B' Control Register, SPORT
(SPORT_CTL_B), 26-72
Half SPORT 'B' Divisor Register, SPORT
(SPORT_DIV_B), 26-81
Half SPORT 'B' Error Register, SPORT (SPORT_ER-
R_B), 26-87
Half SPORT 'B' Multi-channel 0-31 Select Register,
SPORT (SPORT_CS0_B), 26-85
Half SPORT 'B' Multi-channel 32-63 Select Register,
SPORT (SPORT_CS1_B), 26-85
Half SPORT 'B' Multichannel 64-95 Select Register,
SPORT (SPORT_CS2_B), 26-86
Half SPORT 'B' Multichannel 96-127 Select Register,
SPORT (SPORT_CS3_B), 26-87
Half SPORT 'B' Multi-channel Control Register,
SPORT (SPORT_MCTL_B), 26-83
Half SPORT 'B' Multi-channel Status Register,
SPORT (SPORT_MSTAT_B), 26-89
Half SPORT 'B' Rx Buffer (Primary) Register, SPORT
(SPORT_RXPRI_B), 26-92
Half SPORT 'B' Rx Buffer (Secondary) Register,
SPORT (SPORT_RXSEC_B), 26-94
Half SPORT 'B' Tx Buffer (Primary) Register, SPORT
(SPORT_TXPRI_B), 26-91
Half SPORT 'B' Tx Buffer (Secondary) Register,
SPORT (SPORT_TXSEC_B), 26-93
Hash Table High Register, EMAC (EMAC_HASHT-
BL_HI), 23-110
Hash Table Low Register, EMAC (EMAC_HASHT-
BL_LO), 23-110
Hibernate Disable Register, DPM (DPM_HIB_DIS),
5-25
hibernate mode, 5-3, 5-6
hibernate mode, configuring, 5-10
hibernate mode, disable, 5-12
hibernate mode, return from, 5-8
hierarchical model, SCB, 2-3
High Speed Timeout Register, USB (US-
B_CT_HSBT), 22-160
High-Speed EOF 1 Register, USB (USB_HS_EOF1),
22-116
Horizontal Delay Count Register, EPPI (EPPI_HD-
LY), 31-67
Horizontal Transfer Count Register, EPPI (EP-
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–13

INDEX
PI_HCNT), 31-67
Host High Speed Return to Normal Register, USB
(USB_CT_HHSRTN), 22-160

I
ID Code Register, SDU (SDU_IDCODE), 35-12
ID Register n, SWU (SWU_IDn), 36-21
IIMn Configuration, PVP (PVP_IIMn_CFG), 30-154
IIMn Control, PVP (PVP_IIMn_CTL), 30-156
IIMn Scaling Values, PVP (PVP_IIMn_SCALE),
30-157
IIMn Signed Overflow Status, PVP
(PVP_IIMn_SOVF_STAT), 30-158
IIMn Unsigned Overflow Status, PVP
(PVP_IIMn_UOVF_STAT), 30-158
Index Register, USB (USB_INDEX), 22-103
Inner Loop Address Increment, DMA (DMA_X-
MOD), 13-60
Inner Loop Count Start Value, DMA (DMA_XCNT),
13-59
interfaces, SCB, 2-5
Interrupt Enable Clear Register, CRC (CRC_INEN_-
CLR), 12-37
Interrupt Enable Register, CRC (CRC_INEN), 12-35
Interrupt Enable Set Register, CRC
(CRC_INEN_SET), 12-36
Interrupt Latch Register, PWM (PWM_ILAT), 18-60
Interrupt Latch Status n, PVP (PVP_ILAT), 30-136
Interrupt Mask Clear Register, SPI (SPI_IMSK_CLR),
25-46
Interrupt Mask Clear Register, UART
(UART_IMSK_CLR), 19-46
Interrupt Mask n, PVP (PVP_IMSKn), 30-126
Interrupt Mask Register, CNT (CNT_IMSK), 17-18
Interrupt Mask Register, EMAC (EMAC_IMSK),
23-121
Interrupt Mask Register, EPPI (EPPI_IMSK), 31-84
Interrupt Mask Register, PWM (PWM_IMSK), 18-58
Interrupt Mask Register, SPI (SPI_IMSK), 25-44
Interrupt Mask Register, TWI (TWI_IMSK), 20-35
Interrupt Mask Register, UART (UART_IMSK),
19-40
Interrupt Mask Set Register, SPI (SPI_IMSK_SET),
25-47
Interrupt Mask Set Register, UART

(UART_IMSK_SET), 19-44
Interrupt Pending Register, CAN (CAN_INT), 21-75
Interrupt Request n, PVP (PVP_IREQn), 30-140
Interrupt Status Register, EMAC (EMAC_ISTAT),
23-120
Interrupt Status Register, PIXC (PIXC_IRQSTAT),
32-38
Interrupt Status Register, TWI (TWI_ISTAT), 20-31
IPF0 (Camera Pipe) Configuration, PVP
(PVP_IPF0_CFG), 30-171
IPF0 (Camera Pipe) Horizontal Position, PVP
(PVP_IPF0_HPOS), 30-181
IPF0 (Camera Pipe) Vertical Position, PVP
(PVP_IPF0_VPOS), 30-181
IPF1 (Memory Pipe) Configuration, PVP
(PVP_IPF1_CFG), 30-182
IPFn (Camera/Memory Pipe) Control, PVP (PVP_IP-
Fn_CTL), 30-173
IPFn (Camera/Memory Pipe) Frame Count, PVP
(PVP_IPFn_FCNT), 30-179
IPFn (Camera/Memory Pipe) Horizontal Count, PVP
(PVP_IPFn_HCNT), 30-179
IPFn (Camera/Memory Pipe) Pipe Control, PVP
(PVP_IPFn_PIPECTL), 30-172
IPFn (Camera/Memory Pipe) TAG Status, PVP
(PVP_IPFn_TAG_STAT), 30-182
IPFn (Camera/Memory Pipe) TAG Value, PVP
(PVP_IPFn_TAG), 30-178
IPFn (Camera/Memory Pipe) Vertical Count, PVP
(PVP_IPFn_VCNT), 30-180

L
L2 memory controller (L2CTL), 2-5
L2CTL0 ECC Error interrupt, 7-3, 10-3
L2CTL_ACTL_C0 (Access Control Core 0 Register,
L2CTL), 10-15
L2CTL_ACTL_C1 (Access Control Core 1 Register,
L2CTL), 10-17
L2CTL_ACTL_SYS (Access Control System Regis-
ter, L2CTL), 10-19
L2CTL_CTL (Control Register, L2CTL), 10-11
L2CTL_EADDR0 (Error Type 0 Address Reg ister,
L2CTL), 10-33
L2CTL_EADDR1 (Error Type 1 Address Register,
L2CTL), 10-35
I–14 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
L2CTL_ERRADDR0 (ECC Error Address 0 Register,
L2CTL), 10-26
L2CTL_ERRADDR1 (ECC Error Address 1 Register,
L2CTL), 10-27
L2CTL_ERRADDR2 (ECC Error Address 2 Register,
L2CTL), 10-28
L2CTL_ERRADDR3 (ECC Error Address 3 Register,
L2CTL), 10-28
L2CTL_ERRADDR4 (ECC Err or Address 4 Register,
L2CTL), 10-29
L2CTL_ERRADDR5 (ECC Error Address 5 Register,
L2CTL), 10-30
L2CTL_ERRADDR6 (ECC Error Address 6 Register,
L2CTL), 10-30
L2CTL_ERRADDR7 (ECC Error Address 7 Register,
L2CTL), 10-31
L2CTL_ET0 (Error Type 0 Register, L2CTL), 10-32
L2CTL_ET1 (Error Type 1 Register, L2CTL), 10-34
L2CTL_RFA (Refresh Address Register, L2CTL),
10-25
L2CTL_RPCR (Read Priority Count Register,
L2CTL), 10-24
L2CTL_STAT (Status Register, L2CTL), 10-21
L2CTL_WPCR (Write Priority Count Register,
L2CTL), 10-25
latency, peripheral SCB, 2-5
Line Per Frame Register, PIXC (PIXC_LPF), 32-33
Lines Per Frame Register, EPPI (EPPI_FRAME),
31-69
Link Information Register, USB (USB_LINKINFO),
22-114
Lower Address Register n, SWU (SWU_LAn), 36-19
Low-Speed EOF 1 Register, USB (USB_LS_EOF1),
22-117
LP0 DMA Channel (Masters), 8-3, 28-2
LP0 DMA Channel (Slaves), 8-7, 28-3
LP0 DMA Channel interrupt, 7-5, 28-2
LP0 Status interrupt, 7-5, 28-2
LP1 DMA Channel (Masters), 8-3, 28-3
LP1 DMA Channel (Slaves), 8-7, 28-3
LP1 DMA Channel interrupt, 7-5, 28-2
LP1 Status interrupt, 7-5, 28-2
LP2 DMA Channel (Masters), 8-3, 28-3
LP2 DMA Channel (Slaves), 8-7, 28-3
LP2 DMA Channel interrupt, 7-5, 28-2

LP2 Status interrupt, 7-5, 28-2
LP3 DMA Channel (Masters), 8-3, 28-3
LP3 DMA Channel (Slaves), 8-7, 28-3
LP3 DMA Channel interrupt, 7-5, 28-2
LP3 Status interrupt, 7-5, 28-2
LP_CTL (Control Register, LP), 28-19
LP_DIV (Clock Divider Value, LP), 28-23
LPM Attribute Register, USB (USB_LPM_ATTR),
22-161
LPM Control Register, USB (USB_LPM_CTL),
22-162
LPM Function Address Register, USB (USB_LPM_-
FADDR), 22-167
LPM Interrupt Enable Register, USB (USB_LP-
M_IEN), 22-164
LPM Interrupt Status Register, USB (USB_LP-
M_IRQ), 22-165
LP_RX (Receive Buffer, LP), 28-24
LP_STAT (Status Register, LP), 28-20
LP_TX (Transmit Buffer, LP), 28-24
LP_TXIN_SHDW (Shadow Input Transmit Buffer,
LP), 28-25
LP_TXOUT_SHDW (Shadow Output Transmit Buf-
fer, LP), 28-26

M
MAC Address 0 High Register, EMAC (EMAC_AD-
DR0_HI), 23-122
MAC Address 0 Low Register, EMAC (EMAC_AD-
DR0_LO), 23-122
MAC Configuration Register, EMAC (EMAC_MAC-
CFG), 23-103
MAC Rx Frame Filter Register, EMAC
(EMAC_MACFRMFILT), 23-107
Mailbox Configuration 1 Register, CAN (CAN_MC1),
21-32
Mailbox Configuration 2 Register, CAN (CAN_MC2),
21-45
Mailbox Direction 1 Register, CAN (CAN_MD1),
21-33
Mailbox Direction 2 Register, CAN (CAN_MD2),
21-46
Mailbox ID 0 Register, CAN (CAN_MBnn_ID0),
21-88
Mailbox ID 1 Register, CAN (CAN_MBnn_ID1),
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–15

INDEX
21-89
Mailbox Interrupt Mask 1 Register, CAN (CAN_M-
BIM1), 21-42
Mailbox Interrupt Mask 2 Register, CAN (CAN_M-
BIM2), 21-55
Mailbox Length Register, CAN (CAN_MBn-
n_LENGTH), 21-87
Mailbox Receive Interrupt Flag 1 Register, CAN
(CAN_MBRIF1), 21-41
Mailbox Receive Interrupt Flag 2 Register, CAN
(CAN_MBRIF2), 21-54
Mailbox Timestamp Register, CAN (CAN_MBnn_-
TIMESTAMP), 21-87
Mailbox Transmit Interrupt Flag 1 Register, CAN
(CAN_MBTIF1), 21-40
Mailbox Transmit Interrupt Flag 2 Register, CAN
(CAN_MBTIF2), 21-53
Mailbox Word 0 Register, CAN (CAN_MBnn_DA-
TA0), 21-84
Mailbox Word 1 Register, CAN (CAN_MBnn_DA-
TA1), 21-85
Mailbox Word 2 Register, CAN (CAN_MBnn_DA-
TA2), 21-86
Mailbox Word 3 Register, CAN (CAN_MBnn_DA-
TA3), 21-86
Mask (Mode Register Shadow) Register, DMC
(DMC_MSK), 11-30
Masked Interrupt Clear Register, SPI (SPI_ILAT_-
CLR), 25-55
Masked Interrupt Condition Register, SPI (SPI_ILAT),
25-53
Master Interface (MI), 2-2
Master Interfaces Number Register, SCB (SCB_MAS-
TERS), 2-24
Master Mode Address Register, TWI (TWI_M-
STRADDR), 20-31
Master Mode Control Registers, TWI (TWI_M-
STRCTL), 20-25
Master Mode Status Register, TWI (TWI_M-
STRSTAT), 20-28
Master Trigger Register, TRU (TRU_MTR), 8-13
Maximum Count Register, CNT (CNT_MAX), 17-25
maximum individual packet size (MaxPktSize); Max-
PktSize (maximum individual packet size), 22-28,
22-29, 22-30, 22-31, 22-32

Memory Access Address Register, SDU
(SDU_MACADDR), 35-21
Memory Access Control Register, SDU
(SDU_MACCTL), 35-19
Memory Access Data Register, SDU (SDU_MACDA-
TA), 35-21
memory DMA (MDMA), 2-6
Memory DMA Stream 0 Destination / CRC0 Output
Channel (Masters), 8-4
Memory DMA Stream 0 Destination / CRC0 Output
Channel (Slaves), 8-7
Memory DMA Stream 0 Destination / CRC0 Output
Channel interrupt, 7-6
Memory DMA Stream 0 Source / CRC0 Input Channel
(Masters), 8-4
Memory DMA Stream 0 Source / CRC0 Input Channel
(Slaves), 8-7
Memory DMA Stream 0 Source / CRC0 Input Channel
interrupt, 7-6
Memory DMA Stream 1 Destination / CRC1 Output
Channel (Masters), 8-4
Memory DMA Stream 1 Destination / CRC1 Output
Channel (Slaves), 8-7
Memory DMA Stream 1 Destination / CRC1 Output
Channel interrupt, 7-6
Memory DMA Stream 1 Source / CRC1 Input Channel
(Masters), 8-4
Memory DMA Stream 1 Source / CRC1 Input Channel
(Slaves), 8-7
Memory DMA Stream 1 Source / CRC1 Input Channel
interrupt, 7-6
Memory DMA Stream 2 Destination Channel (Mas-
ters), 8-4
Memory DMA Stream 2 Destination Channel (Slaves),
8-7
Memory DMA Stream 2 Destination Channel inter-
rupt, 7-6
Memory DMA Stream 2 Source Channel (Masters),
8-4
Memory DMA Stream 2 Source Channel (Slaves), 8-7
Memory DMA Stream 2 Source Channel interrupt, 7-6
Memory DMA Stream 3 Destination Channel (Mas-
ters), 8-4
Memory DMA Stream 3 Destination Channel (Slaves),
8-7
I–16 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
Memory DMA Stream 3 Destination Channel inter-
rupt, 7-6
Memory DMA Stream 3 Source Channel (Masters),
8-4
Memory DMA Stream 3 Source Channel (Slaves), 8-7
Memory DMA Stream 3 Source Channel interrupt, 7-6
memory mapped register (MMR), 2-6
memory pipe control (MPC), PVP, 2-6
memory pipe data (MPD), PVP, 2-6
Message Clear Register, SDU (SDU_MSG_CLR),
35-25
Message Register, SDU (SDU_MSG), 35-23
Message Set Register, SDU (SDU_MSG_SET), 35-25
MI (Master Interface), 2-2
Minimum Count Register, CNT (CNT_MIN), 17-26
Missed Event Interrupt Mask Register, ACM (AC-
M_MEVMSK), 27-44
Missed Event Status Register, ACM (AC-
M_MEVSTAT), 27-40
MMC Control Register, EMAC (EMAC_M-
MC_CTL), 23-123
MMC IPC Rx Interrupt Mask Register, EMAC
(EMAC_IPC_RXIMSK), 23-170
MMC IPC Rx Interrupt Register, EMAC (EMAC_IP-
C_RXINT), 23-175
MMC Rx Interrupt Mask Register, EMAC
(EMAC_MMC_RXIMSK), 23-132
MMC Rx Interrupt Register, EMAC (EMAC_M-
MC_RXINT), 23-125
MMC TX Interrupt Mask Register, EMAC
(EMAC_MMC_TXIMSK), 23-135
MMC Tx Interrupt Register, EMAC (EMAC_M-
MC_TXINT), 23-128
modes, operating, 5-3
MPn Receive Function Address Register, USB (US-
B_MPn_RXFUNCADDR), 22-120
MPn Receive Hub Address Register, USB (USB_MP-
n_RXHUBADDR), 22-121
MPn Receive Hub Port Register, USB (USB_MP-
n_RXHUBPORT), 22-121
MPn Transmit Function Address Register, USB (US-
B_MPn_TXFUNCADDR), 22-118
MPn Transmit Hub Address Register, USB (US-
B_MPn_TXHUBADDR), 22-119
MPn Transmit Hub Port Register, USB (USB_MP-

n_TXHUBPORT), 22-120

N
NMI (Core 0) Slave 0 (Slaves), 8-6
NMI (Core 0) Slave 1 (Slaves), 8-6
NMI (Core 1) Slave 0 (Slaves), 8-6
NMI (Core 1) Slave 1 (Slaves), 8-6

O
OCLK clock domain, 2-5
operating modes, 5-3
OPF3 (Memory Pipe) Configuration, PVP
(PVP_OPF3_CFG), 30-146
OPF3 (Memory Pipe) Control, PVP
(PVP_OPF3_CTL), 30-148
OPFn (Camera Pipe) Configuration, PVP (PVP_OPF-
n_CFG), 30-143
OPFn (Camera Pipe) Control, PVP (PVP_OPF-
n_CTL), 30-144
Outer Loop Address Increment (2D only), DMA
(DMA_YMOD), 13-62
Outer Loop Count Start Value (2D only), DMA
(DMA_YCNT), 13-61
output clock (OCLK), 3-4
Overlay A Horizontal End Register, PIXC (PIX-
C_HEND_A), 32-34
Overlay A Horizontal Start Register, PIXC (PIXC_H-
START_A), 32-33
Overlay A Transparency Ratio Register, PIXC (PIX-
C_TRANSP_A), 32-35
Overlay A Vertical End Register, PIXC (PIX-
C_VEND_A), 32-35
Overlay A Vertical Start Register, PIXC (PIX-
C_VSTART_A), 32-34
Overlay B Horizontal End Register, PIXC (PIX-
C_HEND_B), 32-36
Overlay B Horizontal Start Register, PIXC (PIXC_H-
START_B), 32-36
Overlay B Transparency Ratio Register, PIXC (PIX-
C_TRANSP_B), 32-38
Overlay B Vertical End Register, PIXC (PIX-
C_VEND_B), 32-37
Overlay B Vertical Start Register, PIXC (PIX-
C_VSTART_B), 32-37
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–17

INDEX
Overwrite Protection/Single Shot Transmission 1 Reg-
ister, CAN (CAN_OPSS1), 21-44
Overwrite Protection/Single Shot Transmission 2 Reg-
ister, CAN (CAN_OPSS2), 21-57

P
PAD Control Register, DMC (DMC_PADCTL), 11-43
PADS_EMAC_PTP_CLKSEL (EMAC and PTP
Clock Select Register, PADS), 14-107
PADS_PORTS_HYST (GPIO Pin Hysteresis Enable
Register, PADS), 14-110
PADS_TWI_VSEL (TWI Voltage Selection, PADS),
14-108
parallel peripheral interface (PPI), 2-5
PEC Configuration, PVP (PVP_PEC_CFG), 30-149
PEC Control, PVP (PVP_PEC_CTL), 30-151
PEC Lower Hysteresis Threshold, PVP
(PVP_PEC_D1TH0), 30-152
PEC Strong Zero Crossing Threshold, PVP
(PVP_PEC_D2TH1), 30-154
PEC Upper Hysteresis Threshold, PVP
(PVP_PEC_D1TH1), 30-153
PEC Weak Zero Crossing Threshold, PVP
(PVP_PEC_D2TH0), 30-153
Peripheral ID 0 Register, RSI (RSI_PID0), 24-83
Peripheral ID 1 Register, RSI (RSI_PID1), 24-84
Peripheral ID 2 Register, RSI (RSI_PID2), 24-85
Peripheral ID 3 Register, RSI (RSI_PID3), 24-85
peripheral latency, 2-5
phase-locked loop (PLL), 3-3
phase-locked loop clock (PLLCLK), 3-3, 3-7
PHY Control 1 Register, DMC (DMC_PHY_CTL1),
11-41
PHY Control 3 Register, DMC (DMC_PHY_CTL3),
11-42
PHY Control Register, USB (USB_PHY_CTL),
22-170
Pint Assign Register, PINT (PINT_ASSIGN), 14-85
Pint Edge Clear Register, PINT (PINT_EDGE_CLR),
14-90
Pint Edge Set Register, PINT (PINT_EDGE_SET),
14-87
Pint Invert Clear Register, PINT (PINT_INV_CLR),
14-96
Pint Invert Set Register, PINT (PINT_INV_SET),

14-93
Pint Latch Register, PINT (PINT_LATCH), 14-104
Pint Mask Clear Register, PINT (PINT_MSK_CLR),
14-78
Pint Mask Set Register, PINT (PINT_MSK_SET),
14-75
Pint Pinstate Register, PINT (PINT_PINSTATE),
14-100
Pint Request Register, PINT (PINT_REQ), 14-82
PINT0 Pin Interrupt Block (Masters), 8-3, 14-5
PINT0 Pin Interrupt Block interrupt, 7-3, 14-4
PINT1 Pin Interrupt Block (Masters), 8-3, 14-5
PINT1 Pin Interrupt Block interrupt, 7-3, 14-4
PINT2 Pin Interrupt Block (Masters), 8-3, 14-5
PINT2 Pin Interrupt Block interrupt, 7-4, 14-4
PINT3 Pin Interrupt Block (Masters), 8-3, 14-5
PINT3 Pin Interrupt Block interrupt, 7-4, 14-4
PINT4 Pin Interrupt Block (Masters), 8-3, 14-5
PINT4 Pin Interrupt Block interrupt, 7-4, 14-4
PINT5 Pin Interrupt Block (Masters), 8-3, 14-5
PINT5 Pin Interrupt Block interrupt, 7-4, 14-4
PINT_ASSIGN (Pint Assign Register, PINT), 14-85
PINT_EDGE_CLR (Pint Edge Clear Register, PINT),
14-90
PINT_EDGE_SET (Pint Edge Set Register, PINT),
14-87
PINT_INV_CLR (Pint Inve rt Clear Register, PINT),
14-96
PINT_INV_SET (Pint Invert Set Register, PINT),
14-93
PINT_LATCH (Pint Latch Register, PINT), 14-104
PINT_MSK_CLR (Pint Mask Clear Register, PINT),
14-78
PINT_MSK_SET (Pint Mask Set Register, PINT),
14-75
PINT_PINSTATE (Pint Pinstate Register, PINT),
14-100
PINT_REQ (Pint Request Register, PINT), 14-82
pipelined vision processor (PVP), 2-6
PIXC0 Channel 0 DMA (Masters), 8-4, 32-4
PIXC0 Channel 0 DMA (Slaves), 8-8, 32-4
PIXC0 Channel 0 DMA interrupt, 7-7, 32-3
PIXC0 Channel 1 DMA (Masters), 8-4, 32-4
PIXC0 Channel 1 DMA (Slaves), 8-8, 32-4
PIXC0 Channel 1 DMA interrupt, 7-7, 32-4
I–18 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
PIXC0 Channel 2 DMA (Masters), 8-4, 32-4
PIXC0 Channel 2 DMA (Slaves), 8-8, 32-4
PIXC0 Channel 2 DMA interrupt, 7-7, 32-4
PIXC0 Status interrupt, 7-7, 32-4
PIXC_CCBIAS (Conversion Bias Register, PIXC),
32-42
PIXC_CONBV (BV Conversion Component Register,
PIXC), 32-41
PIXC_CONGU (GU Conversion Component Register,
PIXC), 32-40
PIXC_CONRY (RY Conversion Component Register,
PIXC), 32-39
PIXC_CTL (Control Register, PIXC), 32-30
PIXC_HEND_A (Overlay A Horizontal End Register,
PIXC), 32-34
PIXC_HEND_B (Overlay B Horizontal End Register,
PIXC), 32-36
PIXC_HSTART_A (Overlay A Horizontal Start Reg-
ister, PIXC), 32-33
PIXC_HSTART_B (Overlay B Horizontal Start Reg-
ister, PIXC), 32-36
PIXC_IRQSTAT (Interrupt Status Register, PIXC),
32-38
PIXC_LPF (Line Per Frame Register, PIXC), 32-33
PIXC_PPL (Pixels Per Line Register, PIXC), 32-32
PIXC_TC (Transparency Color Register, PIXC),
32-43
PIXC_TRANSP_A (Overlay A Transparency Ratio
Register, PIXC), 32-35
PIXC_TRANSP_B (Overlay B Transparency Ratio
Register, PIXC), 32-38
PIXC_VEND_A (Overlay A Vertical End Register,
PIXC), 32-35
PIXC_VEND_B (Overlay B Vertical End Register,
PIXC), 32-37
PIXC_VSTART_A (Overlay A Vertical Start Regis-
ter, PIXC), 32-34
PIXC_VSTART_B (Overlay B Vertical Start Register,
PIXC), 32-37
pixel compositor (PIXC), 2-6
Pixels Per Line Register, PIXC (PIXC_PPL), 32-32
PLL and Oscillator Control Register, USB (US-
B_PLL_OSC), 22-171
PLL bypass, 3-4
PLL control unit (PCU), 3-3

PMA Configuration, PVP (PVP_PMA_CFG), 30-234
Pointer to Next Initial Descriptor, DMA (DMA_D-
SCPTR_NXT), 13-48
Polynomial Register, CRC (CRC_POLY), 12-38
Port x Function Enable Clear Register, PORT
(PORT_FER_CLR), 14-24
Port x Function Enable Register, PORT (PORT_FER),
14-18
Port x Function Enable Set Register, PORT
(PORT_FER_SET), 14-21
Port x GPIO Data Clear Register, PORT (PORT_-
DATA_CLR), 14-34
Port x GPIO Data Register, PORT (PORT_DATA),
14-27
Port x GPIO Data Set Register, PORT (PORT_-
DATA_SET), 14-30
Port x GPIO Direction Clear Register, PORT
(PORT_DIR_CLR), 14-45
Port x GPIO Direction Register, PORT (PORT_DIR),
14-38
Port x GPIO Direction Set Register, PORT
(PORT_DIR_SET), 14-42
Port x GPIO Input Enable Clear Register, PORT
(PORT_INEN_CLR), 14-54
Port x GPIO Input Enable Register, PORT (PORT_IN-
EN), 14-48
Port x GPIO Input Enable Set Register, PORT
(PORT_INEN_SET), 14-51
Port x GPIO Input Enable Toggle Register, PORT
(PORT_DATA_TGL), 14-59
Port x GPIO Lock Register, PORT (PORT_LOCK),
14-72
Port x GPIO Polarity Invert Clear Register, PORT
(PORT_POL_CLR), 14-69
Port x GPIO Polarity Invert Register, PORT
(PORT_POL), 14-62
Port x GPIO Polarity Invert Set Register, PORT
(PORT_POL_SET), 14-66
Port x Multiplexer Control Register, PORT
(PORT_MUX), 14-57
PORT_DATA (Port x GPIO Data Register, PORT),
14-27
PORT_DATA_CLR (Port x GPIO Data Clear Regis-
ter, PORT), 14-34
PORT_DATA_SET (Port x GPIO Data Set Register,
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–19

INDEX
PORT), 14-30
PORT_DATA_TGL (Port x GPIO Input Enable Tog-
gle Register, PORT), 14-59
PORT_DIR (Port x GPIO Direction Register, PORT),
14-38
PORT_DIR_CLR (Port x GPIO Direction Clear Reg-
ister, PORT), 14-45
PORT_DIR_SET (Port x GPIO Direction Set Register,
PORT), 14-42
PORT_FER (Port x Function Enable Register, PORT),
14-18
PORT_FER_CLR (Port x Function Enable Clear Reg-
ister, PORT), 14-24
PORT_FER_SET (Port x Function Enable Set Regis-
ter, PORT), 14-21
PORT_INEN (Port x GPIO Input Enable Register,
PORT), 14-48
PORT_INEN_CLR (Port x GPIO Input Enable Clear
Register, PORT), 14-54
PORT_INEN_SET (Port x GPIO Input Enable Set
Register, PORT), 14-51
PORT_LOCK (Port x GPIO Lock Register, PORT),
14-72
PORT_MUX (Port x Multiplexer Control Register,
PORT), 14-57
PORT_POL (Port x GPIO Polarity Invert Register,
PORT), 14-62
PORT_POL_CLR (Port x GPIO Polarity Invert Clear
Register, PORT), 14-69
PORT_POL_SET (Port x GPIO Polarity Invert Set
Regi ster, PORT), 14-66
Power and Device Control Register, USB (US-
B_POWER), 22-88
Power Good Counter Register, DPM (DPM_PGCN-
TR), 5-26
power good counter, using, 5-8
power good signal, using, 5-8
power modes, 5-3
PPS Control Register, EMAC (EMAC_T-
M_PPSCTL), 23-212
PPS Width Register, EMAC (EMAC_T-
M_PPSWIDTH), 23-216
Previous Initial Descriptor Pointer, DMA (DMA_D-
SCPTR_PRV), 13-64
Priority ID Mask Register, DMC (DMC_PRIOMSK),

11-24
Priority ID Register, DMC (DMC_PRIO), 11-24
PVP0 Camera Pipe Control In DMA Channel (Mas-
ters), 8-5, 30-9
PVP0 Camera Pipe Control In DMA Channel (Slaves),
8-8, 30-10
PVP0 Camera Pipe Control In DMA Channel interrupt,
7-7, 30-8
PVP0 Camera Pipe Data Out A DMA Channel (Mas-
ters), 8-5, 30-9
PVP0 Camera Pipe Data Out A DMA Channel
(Slaves), 8-8, 30-10
PVP0 Camera Pipe Data Out A DMA Channel inter-
rupt, 7-7, 30-9
PVP0 Camera Pipe Data Out B DMA Channel (Mas-
ters), 8-4, 30-9
PVP0 Camera Pipe Data Out B DMA Channel
(Slaves), 8-8, 30-10
PVP0 Camera Pipe Data Out B DMA Channel inter-
rupt, 7-7, 30-8
PVP0 Camera Pipe Data Out C DMA Channel (Mas-
ters), 8-4, 30-9
PVP0 Camera Pipe Data Out C DMA Channel
(Slaves), 8-8, 30-10
PVP0 Camera Pipe Data Out C DMA Channel inter-
rupt, 7-7, 30-8
PVP0 Camera Pipe Status Out DMA Channel (Mas-
ters), 8-5, 30-9
PVP0 Camera Pipe Status Out DMA Channel (Slaves),
8-8, 30-10
PVP0 Camera Pipe Status Out DMA Channel inter-
rupt, 7-7, 30-8
PVP0 Memory Pipe Control In DMA Channel (Mas-
ters), 8-5, 30-9
PVP0 Memory Pipe Control In DMA Channel
(Slaves), 8-8, 30-10
PVP0 Memory Pipe Control In DMA Channel inter-
rupt, 7-7, 30-9
PVP0 Memory Pipe Data In DMA Channel (Masters),
8-5, 30-9
PVP0 Memory Pipe Data In DMA Channel (Slaves),
8-8, 30-10
PVP0 Memory Pipe Data In DMA Channel interrupt,
7-7, 30-9
PVP0 Memory Pipe Data Out DMA Channel (Mas-
I–20 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
ters), 8-5, 30-9
PVP0 Memory Pipe Data Out DMA Channel (Slaves),
8-8, 30-10
PVP0 Memory Pipe Data Out DMA Channel interrupt,
7-7, 30-8
PVP0 Memory Pipe Status Out DMA Channel (Mas-
ters), 8-5, 30-9
PVP0 Memory Pipe Status Out DMA Channel
(Slaves), 8-8, 30-10
PVP0 Memory Pipe Status Out DMA Channel inter-
rupt, 7-7, 30-9
PVP0 Status 0 (Masters), 8-5, 30-9
PVP0 Status 0 interrupt, 7-7, 30-8
PVP0 Status 1 (Masters), 8-5, 30-9
PVP0 Status 1 interrupt, 7-7, 30-9
PVP_ACU_CFG (ACU Configuration, PVP), 30-159
PVP_ACU_CTL (ACU Control, PVP), 30-161
PVP_ACU_FACTOR (ACU PROD Constant, PVP),
30-164
PVP_ACU_MAX (ACU Upper Sat Threshold Max,
PVP), 30-166
PVP_ACU_MIN (ACU Lower Sat Threshold Min,
PVP), 30-166
PVP_ACU_OFFSET (ACU SUM Constant, PVP),
30-164
PVP_ACU_SHIFT (ACU Shift Constant, PVP),
30-165
PVP_CNVn_C00C01 (CNVn Coefficients 0,0 and 0,1,
PVP), 30-187
PVP_CNVn_C02C03 (CNVn Coefficients 0,2 and 0,3,
PVP), 30-187
PVP_CNVn_C04 (CNVn Coefficient 0,4, PVP),
30-188
PVP_CNVn_C10C11 (CNVn Coefficients 1,0 and 1,1,
PVP), 30-189
PVP_CNVn_C12C13 (CNVn Coefficients 1,2 and 1,3,
PVP), 30-189
PVP_CNVn_C14 (CNVn Coefficient 1,4, PVP),
30-190
PVP_CNVn_C20C21 (CNVn Coefficients 2,0 and 2,1,
PVP), 30-191
PVP_CNVn_C22C23 (CNVn Coefficients 2,2 and 2,3,
PVP), 30-191
PVP_CNVn_C24 (CNVn Coefficient 2,4, PVP),
30-192

PVP_CNVn_C30C31 (CNVn Coefficients 3,0 and 3,1,
PVP), 30-193
PVP_CNVn_C32C33 (CNVn Coefficients 3,2 and 3,3,
PVP), 30-193
PVP_CNVn_C34 (CNVn Coefficient 3,4, PVP),
30-194
PVP_CNVn_C40C41 (CNVn Coefficients 4,0 and 4,1,
PVP), 30-195
PVP_CNVn_C42C43 (CNVn Coefficients 4,2 and 4,3,
PVP), 30-195
PVP_CNVn_C44 (CNVn Coefficient 4,4, PVP),
30-196
PVP_CNVn_CFG (CNVn Configuration, PVP),
30-183
PVP_CNVn_CTL (CNVn Control, PVP), 30-185
PVP_CNVn_SCALE (CNVn Scaling Factor, PVP),
30-197
PVP_CTL (Control, PVP), 30-124
PVP_IIMn_CFG (IIMn Configuration, PVP), 30-154
PVP_IIMn_CTL (IIMn Control, PVP), 30-156
PVP_IIMn_SCALE (IIMn Scaling Values, PVP),
30-157
PVP_IIMn_SOVF_STAT (IIMn Signed Overflow
Status, PVP), 30-158
PVP_IIMn_UOVF_STAT (IIMn Unsigned Overflow
Status, PVP), 30-158
PVP_ILAT (Interrupt Latch Status n, PVP), 30-136
PVP_IMSKn (Interrupt Mask n, PVP), 30-126
PVP_IPF0_CFG (IPF0 (Camera Pipe) Configuration,
PVP), 30-171
PVP_IPF0_HPOS (IPF0 (Camera Pipe) Horizontal
Position, PVP), 30-181
PVP_IPF0_VPOS (IPF0 (Camera Pipe) Vertical Posi-
tion, PVP), 30-181
PVP_IPF1_CFG (IPF1 (Memory Pipe) Configuration,
PVP), 30-182
PVP_IPFn_CTL (IPFn (Camera/Memory Pipe) Con-
trol, PVP), 30-173
PVP_IPFn_FCNT (IPFn (Camera/Memory Pipe)
Frame Count, PVP), 30-179
PVP_IPFn_HCNT (IPFn (Camera/Memory Pipe) Hor-
izontal Count, PVP), 30-179
PVP_IPFn_PIPECTL (IPFn (Camera/Memory Pipe)
Pipe Control, PVP), 30-172
PVP_IPFn_TAG (IPFn (Camera/Memory Pipe) TAG
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–21

INDEX
Value, PVP), 30-178
PVP_IPFn_TAG_STAT (IPFn (Camera/Memory
Pipe) TAG Status, PVP), 30-182
PVP_IPFn_VCNT (IPFn (Camera/Memory Pipe) Ver-
tical Count, PVP), 30-180
PVP_IREQn (Interrupt Request n, PVP), 30-140
PVP_OPF3_CFG (OPF3 (Memory Pipe) Configura-
tion, PVP), 30-146
PVP_OPF3_CTL (OPF3 (Memory Pipe) Control,
PVP), 30-148
PVP_OPFn_CFG (OPFn (Camera Pipe) Configura-
tion, PVP), 30-143
PVP_OPFn_CTL (OPFn (Camera Pipe) Control,
PVP), 30-144
PVP_PEC_CFG (PEC Configuration, PVP), 30-149
PVP_PEC_CTL (PEC Control, PVP), 30-151
PVP_PEC_D1TH0 (PEC Lower Hysteresis Thresho
ld, PVP), 30-152
PVP_PEC_D1TH1 (PEC Upper Hysteresis Threshold,
PVP), 30-153
PVP_PEC_D2TH0 (PEC Weak Zero Crossing Thresh-
old, PVP), 30-153
PVP_PEC_D2TH1 (PEC Strong Zero Crossing
Threshold, PVP), 30-154
PVP_PMA_CFG (PMA Configuration, PVP), 30-234
PVP_STAT (Status, PVP), 30-129
PVP_THCn_CFG (THCn Configuration, PVP),
30-197
PVP_THCn_CMAXTH (THCn Clip Max Threshold,
PVP), 30-205
PVP_THCn_CMAXVAL (THCn Max Clip Value,
PVP), 30-205
PVP_THCn_CMINTH (THCn Clip Min Threshold,
PVP), 30-204
PVP_THCn_CMINVAL (THCn Min Clip Value,
PVP), 30-203
PVP_THCn_CTL (THCn Control, PVP), 30-199
PVP_THCn_HCNT0_STAT (THCn Histogram
Counter Value 0, PVP), 30-223
PVP_THCn_HCNT10_STAT (THCn Histogram
Counter Value 10, PVP), 30-229
PVP_THCn_HCNT11_STAT (THCn Histogram
Counter Value 11, PVP), 30-230
PVP_THCn_HCNT12_STAT (THCn Histogram
Counter Value 12, PVP), 30-231

PVP_THCn_HCNT13_STAT (THCn Histogram
Counter Value 13, PVP), 30-231
PVP_THCn_HCNT14_STAT (THCn Histogram
Counter Value 14, PVP), 30-232
PVP_THCn_HCNT15_STAT (THCn Histogram
Counter Value 15, PVP), 30-233
PVP_THCn_HCNT1_STAT (THCn Histogram
Counter Value 1, PVP), 30-223
PVP_THCn_HCNT2_STAT (THCn Histogram
Counter Value 2, PVP), 30-224
PVP_THCn_HCNT3_STAT (THCn Histogram
Counter Value 3, PVP), 30-225
PVP_THCn_HCNT4_STAT (THCn Histogram
Counter Value 4, PVP), 30-225
PVP_THCn_HCNT5_STAT (THCn Histogram
Counter Value 5, PVP), 30-226
PVP_THCn_HCNT6_STAT (THCn Histogram
Counter Value 6, PVP), 30-227
PVP_THCn_HCNT7_STAT (THCn Histogram
Counter Value 7, PVP), 30-227
PVP_THCn_HCNT8_STAT (THCn Histogram
Counter Value 8, PVP), 30-228
PVP_THCn_HCNT9_STAT (THCn Histogram
Counter Value 9, PVP), 30-229
PVP_THCn_HFCNT (THCn Histogram Frame Count,
PVP), 30-202
PVP_THCn_HFCNT_STAT (THCn Histogram
Frame Count Status, PVP), 30-222
PVP_THCn_HHCNT (THCn Histogram Horizontal
Count, PVP), 30-218
PVP_THCn_HHPOS (THCn Histogram Horizontal
Position, PVP), 30-217
PVP_THCn_HVCNT (THCn Histogram Vertical
Count, PVP), 30-219
PVP_THCn_HVPOS (THCn Histogram Vertical Posi-
tion, PVP), 30-217
PVP_THCn_RHCNT (THCn RLE Horizontal Count,
PVP), 30-221
PVP_THCn_RHPOS (THCn RLE Horizontal Posi-
tion, PVP), 30-219
PVP_THCn_RMAXREP (THCn Max RLE Reports,
PVP), 30-203
PVP_THCn_RREP_STAT (THCn Number of RLE
Reports, PVP), 30-233
PVP_THCn_RVCNT (THCn RLE Vertical Count,
I–22 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
PVP), 30-221
PVP_THCn_RVPOS (THCn RLE Vertical Position,
PVP), 30-220
PVP_THCn_TH0 (THCn Threshold Value 0, PVP),
30-206
PVP_THCn_TH1 (THCn Threshold Value 1, PVP),
30-207
PVP_THCn_TH10 (THCn Threshold Value 10, PVP),
30-213
PVP_THCn_TH11 (THCn Threshold Value 11, PVP),
30-213
PVP_THCn_TH12 (THCn Threshold Value 12, PVP),
30-214
PVP_THCn_TH13 (THCn Threshold Value 13, PVP),
30-215
PVP_THCn_TH14 (THCn Threshold Value 14, PVP),
30-215
PVP_THCn_TH15 (THCn Threshold Value 15, PVP),
30-216
PVP_THCn_TH2 (THCn Threshold Value 2, PVP),
30-207
PVP_THCn_TH3 (THCn Threshold Value 3, PVP),
30-208
PVP_THCn_TH4 (THCn Threshold Value 4, PVP),
30-209
PVP_THCn_TH5 (THCn Threshold Value 5, PVP),
30-209
PVP_THCn_TH6 (THCn Threshold Value 6, PVP),
30-210
PVP_THCn_TH7 (THCn Threshold Value 7, PVP),
30-211
PVP_THCn_TH8 (THCn Threshold Value 8, PVP),
30-211
PVP_THCn_TH9 (THCn Threshold Value 9, PVP),
30-212
PVP_UDS_CFG (UDS Configuration, PVP), 30-167
PVP_UDS_CTL (UDS Control, PVP), 30-168
PVP_UDS_HAVG (UDS HAVG, PVP), 30-170
PVP_UDS_OHCNT (UDS Output HCNT, PVP),
30-168
PVP_UDS_OVCNT (UDS Output VCNT, PVP),
30-169
PVP_UDS_VAVG (UDS VAVG, PVP), 30-170
PWM0 PWMTMR Group (Masters), 8-3, 18-5
PWM0 PWMTMR Group interrupt, 7-4, 18-4

PWM0 Trip interrupt, 7-4, 18-4
PWM1 PWMTMR Group (Masters), 8-3, 18-5
PWM1 PWMTMR Group interrupt, 7-4, 18-4
PWM1 Trip interrupt, 7-4, 18-4
PWM_ACTL (Channel A Control Register, PWM),
18-71
PWM_AH0 (Channel A-High Duty-0 Register,
PWM), 18-74
PWM_AH1 (Channel A-High Duty-1 Register,
PWM), 18-74
PWM_AL0 (Channel A-Low Duty-0 Register, PWM),
18-76
PWM_AL1 (Channel A-Low Duty-1 Register, PWM),
18-76
PWM_BCTL (Channel B Control Register, PWM),
18-77
PWM_BH0 (Channel B-High Duty-0 Register, PWM),
18-80
PWM_BH1 (Channel B-High Duty-1 Register, PWM),
18-80
PWM_BL0 (Channel B-Low Duty-0 Register, PWM),
18-82
PWM_BL1 (Channel B-Low Duty-1 Register, PWM),
18-82
PWM_CCTL (Channel C Control Register, PWM),
18-83
PWM_CH0 (Channel C-High Pulse Duty Register 0,
PWM), 18-86
PWM_CH1 (Channel C-High Pulse Duty Register 1,
PWM), 18-86
PWM_CHANCFG (Channel Config Register, PWM),
18-43
PWM_CHOPCFG (Chop Configuration Register,
PWM), 18-62
PWM_CL0 (Channel C-Low Pulse Duty Register 0,
PWM), 18-88
PWM_CL1 (Channel C-Low Duty-1 Register, PWM),
18-88
PWM_CTL (Control Register, PWM), 18-40
PWM_DCTL (Channel D Control Register, PWM),
18-89
PWM_DH0 (Channel D-High Duty-0 Register,
PWM), 18-91
PWM_DH1 (Channel D-High Pulse Duty Register 1,
PWM), 18-92
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–23

INDEX
PWM_DL0 (Channel D-Low Pulse Duty Register 0,
PWM), 18-93
PWM_DL1 (Channel D-Low Pulse Duty Register 1,
PWM), 18-94
PWM_DLYA (Channel A Delay Register, PWM),
18-68
PWM_DLYB (Channel B Delay Register, PWM),
18-69
PWM_DLYC (Channel C Delay Register, PWM),
18-70
PWM_DLYD (Channel D Delay Register, PWM),
18-71
PWM_DT (Dead Time Register, PWM), 18-63
PWM_ILAT (Interrupt Latch Register, PWM), 18-60
PWM_IMSK (Interrupt Mask Register, PWM), 18-58
PWM_STAT (Status Register, PWM), 18-53
PWM_SYNC_WID (Sync Pulse Width Register,
PWM), 18-63
PWM_TM0 (Timer 0 Period Register, PWM), 18-64
PWM_TM1 (Timer 1 Period Register, PWM), 18-65
PWM_TM2 (Timer 2 Period Register, PWM), 18-66
PWM_TM3 (Timer 3 Period Register, PWM), 18-67
PWM_TM4 (Timer 4 Period Register, PWM), 18-68
PWM_TRIPCFG (Trip Config Register, PWM), 18-49

R
RAM Information Register, USB (USB_RAMINFO),
22-114
RCU0 System Reset 0 (Slaves), 8-6, 33-2
RCU0 System Reset 1 (Slaves), 8-6, 33-3
RCU_BCODE (Boot Code Register, RCU), 33-14,
34-67
RCU_CRCTL (Core Reset Control Register, RCU),
33-10
RCU_CRSTAT (Core Reset Status Register, RCU),
33-11
RCU_CTL (Control Register, RCU), 33-7
RCU_SIDIS (System Interface Disable Register,
RCU), 33-12
RCU_SISTAT (System Interface Status Register,
RCU), 33-13
RCU_STAT (Status Register, RCU), 33-8, 34-64
RCU_SVECT0 (Software Vector Register 0, RCU),
33-15, 34-66
RCU_SVECT1 (Software Vector Register 1, RCU),

33-16, 34-67
RCU_SVECT_LCK (SVECT Lock Register, RCU),
33-13
Read Priority Count Register, L2CTL (L2CTL_RP-
CR), 10-24
Read Wait Enable Register, RSI (RSI_RD_WAIT),
24-82
Receive Buffer Register, UART (UART_RBR), 19-47
Receive Buffer, LP (LP_RX), 28-24
Receive Control Register, SPI (SPI_RXCTL), 25-31
Receive Counter Register, UART (UART_RXCNT),
19-51
Receive FIFO Address Register, USB (USB_RXFI-
FOADDR), 22-112
Receive FIFO Data Register, SPI (SPI_RFIFO), 25-56
Receive FIFO Size Register, USB (USB_RXFIFOSZ),
22-111
Receive Interrupt Enable Register, USB (USB_INTR-
RXE), 22-97
Receive Interrupt Register, USB (USB_INTRRX),
22-93
Receive Message Lost 1 Register, CAN
(CAN_RML1), 21-39
Receive Message Lost 2 Register, CAN
(CAN_RML2), 21-51
Receive Message Pending 1 Register, CAN
(CAN_RMP1), 21-38
Receive Message Pending 2 Register, CAN
(CAN_RMP2), 21-51
Receive Shift Register, UART (UART_RSR), 19-50
Received Word Count Register, SPI (SPI_RWC),
25-41
Received Word Count Reload Register, SPI (SPI_RW-
CR), 25-42
Refresh Address Register, L2CTL (L2CTL_RFA),
10-25
registers

diagram conventions, -lxxxiii
Remote Frame Handling 1 Register, CAN
(CAN_RFH1), 21-43
Remote Frame Handling 2 Register, CAN
(CAN_RFH2), 21-56
removable storage interface (RSI), 2-5
Reserved (Masters), 8-2, 8-3, 8-5
Reserved (Slaves), 8-6, 8-7, 8-8, 8-9
I–24 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
Reserved interrupt, 7-5, 7-8
reset, 5-4
reset control unit (RCU), 3-3
Response 0 Register, RSI (RSI_RESP0), 24-52
Response 1 Register, RSI (RSI_RESP1), 24-53
Response 2 Register, RSI (RSI_RESP2), 24-54
Response 3 Register, RSI (RSI_RESP3), 24-54
Response Command Register, RSI (RSI_RESP_C-
MD), 24-51
Restore Registers, DPM (DPM_RESTOREn), 5-28
RGB888 format, 32-1
round robinarbitration, 2-9
RSI0 DMA Channel (Masters), 8-3, 24-4
RSI0 DMA Channel (Slaves), 8-7, 24-4
RSI0 DMA Channel interrupt, 7-5, 24-4
RSI0 Interrupt 0 interrupt, 7-5, 24-4
RSI0 Interrupt 1 interrupt, 7-5, 24-4
RSI_ARG (Argument Register, RSI), 24-48
RSI_BACK_TOUT (Boot Acknowledge Timeout
Register, RSI), 24-72
RSI_BLKSZ (Block Size Register, RSI), 24-73
RSI_BOOT_TCNTR (Boot Timing Counter Register,
RSI), 24-70
RSI_CFG (Configuration Register, RSI), 24-80
RSI_CMD (Command Register, RSI), 24-49
RSI_CTL (Control Register, RSI), 24-47
RSI_DATA_CNT (Data Count Register, RSI), 24-57
RSI_DATA_CTL (Data Control Register, RSI), 24-56
RSI_DATA_LEN (Data Length Register, RSI), 24-56
RSI_DATA_TMR (Data Timer Register, RSI), 24-55
RSI_FIFO (Data FIFO Register, RSI), 24-74
RSI_FIFO_CNT (FIFO Counter Register, RSI), 24-70
RSI_IMSK0 (Exception Mask Register, RSI), 24-78
RSI_PID0 (Peripheral ID 0 Register, RSI), 24-83
RSI_PID1 (Peripheral ID 1 Register, RSI), 24-84
RSI_PID2 (Peripheral ID 2 Register, RSI), 24-85
RSI_PID3 (Peripheral ID 3 Register, RSI), 24-85
RSI_RD_WAIT (Read Wait Enable Register, RSI),
24-82
RSI_RESP0 (Response 0 Register, RSI), 24-52
RSI_RESP1 (Response 1 Register, RSI), 24-53
RSI_RESP2 (Response 2 Register, RSI), 24-54
RSI_RESP3 (Response 3 Register, RSI), 24-54
RSI_RESP_CMD (Response Command Register,
RSI), 24-51

RSI_SLP_WKUP_TOUT (Sleep Wakeup Timeout
Register, RSI), 24-73
RSI_STAT0 (Exception Status Register, RSI), 24-75
RSI_XFR_IMSK0 (Transfer Interrupt 0 Mask Regis-
ter, RSI), 24-63
RSI_XFR_IMSK1 (Transfer Interrupt 1 Mask Regis-
ter, RSI), 24-67
RSI_XFRSTAT (Transfer Status Register, RSI), 24-58
RSI_XFRSTAT_CLR (Transfer Status Clear Register,
RSI), 24-61
Run Clear Register, TIMER (TIMER_RUN_CLR),
15-30
Run Register, TIMER (TIMER_RUN), 15-28
Run Set Register, TIMER (TIMER_RUN_SET),
15-29
Rx 1024- to Max-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX1024TOMAX_GB), 23-164
Rx 128- to 255-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX128TO255_GB), 23-162
Rx 256- to 511-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX256TO511_GB), 23-163
Rx 512- to 1023-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX512TO1023_GB), 23-164
Rx 64-Byte Frames (Good/Bad) Register, EMAC
(EMAC_RX64_GB), 23-161
Rx 65- to 127-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX65TO127_GB), 23-162
Rx alignment Error Register, EMAC (EMAC_RXAL-
IGN_ERR), 23-158
Rx Broadcast Frames (Good) Register, EMAC
(EMAC_RXBCASTFRM_G), 23-156
Rx CRC Error Register, EMAC (EMAC_RX-
CRC_ERR), 23-157
Rx Data Double-Byte Register, TWI (TWI_RXDA-
TA16), 20-41
Rx Data Single-Byte Register, TWI (TWI_RXDA-
TA8), 20-40
Rx FIFO Overflow Register, EMAC (EMAC_RXFI-
FO_OVF), 23-168
Rx Frame Count (Good/Bad) Register, EMAC
(EMAC_RXFRMCNT_GB), 23-154
Rx ICMP Error Frames Register, EMAC (EMAC_RX-
ICMP_ERR_FRM), 23-188
Rx ICMP Error Octets Register, EMAC (EMAC_RX-
ICMP_ERR_OCT), 23-197
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–25

INDEX
Rx ICMP Good Frames Register, EMAC
(EMAC_RXICMP_GD_FRM), 23-187
Rx ICMP Good Octets Register, EMAC (EMAC_RX-
ICMP_GD_OCT), 23-196
Rx IPv4 Datagrams (Good) Register, EMAC
(EMAC_RXIPV4_GD_FRM), 23-179
Rx IPv4 Datagrams Fragmented Frames Register,
EMAC (EMAC_RXIPV4_FRAG_FRM), 23-181
Rx IPv4 Datagrams Fragmented Octets Register,
EMAC (EMAC_RXIPV4_FRAG_OCT), 23-190
Rx IPv4 Datagrams Good Octets Register, EMAC
(EMAC_RXIPV4_GD_OCT), 23-188
Rx IPv4 Datagrams Header Errors Register, EMAC
(EMAC_RXIPV4_HDR_ERR_FRM), 23-180
Rx IPv4 Datagrams Header Errors Register, EMAC
(EMAC_RXIPV4_HDR_ERR_OCT), 23-189
Rx IPv4 Datagrams No Payload Frame Register,
EMAC (EMAC_RXIPV4_NOPAY_FRM), 23-180
Rx IPv4 Datagrams No Payload Octets Register,
EMAC (EMAC_RXIPV4_NOPAY_OCT), 23-190
Rx IPv4 UDP Disabled Frames Register, EMAC
(EMAC_RXIPV4_UDSBL_FRM), 23-182
Rx IPv4 UDP Disabled Octets Register, EMAC
(EMAC_RXIPV4_UDSBL_OCT), 23-191
Rx IPv6 Datagrams Good Frames Register, EMAC
(EMAC_RXIPV6_GD_FRM), 23-182
Rx IPv6 Datagrams Header Error Frames Register,
EMAC (EMAC_RXIPV6_HDR_ERR_FRM), 23-183
Rx IPv6 Datagrams No Payload Frames Register,
EMAC (EMAC_RXIPV6_NOPAY_FRM), 23-184
Rx IPv6 Good Octets Register, EMAC (EMAC_RX-
IPV6_GD_OCT), 23-192
Rx IPv6 Header Errors Register, EMAC (EMAC_RX-
IPV6_HDR_ERR_OCT), 23-192
Rx IPv6 No Payload Octets Register, EMAC
(EMAC_RXIPV6_NOPAY_OCT), 23-193
Rx Jab Error Register, EMAC (EMAC_RX-
JAB_ERR), 23-159
Rx Length Error Register, EMAC (EMAC_RX-
LEN_ERR), 23-166
Rx Multicast Frames (Good) Register, EMAC
(EMAC_RXMCASTFRM_G), 23-157
Rx Octet Count (Good) Register, EMAC
(EMAC_RXOCTCNT_G), 23-155
Rx Octet Count (Good/Bad) Register, EMAC

(EMAC_RXOCTCNT_GB), 23-155
Rx Out Of Range Type Register, EMAC (EMAC_RX-
OORTYPE), 23-166
Rx Oversize (Good) Register, EMAC (EMAC_RXO-
SIZE_G), 23-160
Rx Pause Frames Register, EMAC (EMAC_RX-
PAUSEFRM), 23-167
Rx Runt Error Register, EMAC (EMAC_RX-
RUNT_ERR), 23-158
Rx TCP Error Frames Register, EMAC (EMAC_RX-
TCP_ERR_FRM), 23-186
Rx TCP Error Octets Register, EMAC (EMAC_RX-
TCP_ERR_OCT), 23-196
Rx TCP Good Frames Register, EMAC (EMAC_RX-
TCP_GD_FRM), 23-186
Rx TCP Good Octets Register, EMAC (EMAC_RX-
TCP_GD_OCT), 23-195
Rx UDP Error Frames Register, EMAC (EMAC_RX-
UDP_ERR_FRM), 23-185
Rx UDP Error Octets Register, EMAC (EMAC_RX-
UDP_ERR_OCT), 23-194
Rx UDP Good Frames Register, EMAC (EMAC_RX-
UDP_GD_FRM), 23-184
Rx UDP Good Octets Register, EMAC (EMAC_RX-
UDP_GD_OCT), 23-194
Rx Undersize (Good) Register, EMAC (EMAC_RXU-
SIZE_G), 23-160
Rx Unicast Frames (Good) Register, EMAC
(EMAC_RXUCASTFRM_G), 23-165
Rx VLAN Frames (Good/Bad) Register, EMAC
(EMAC_RXVLANFRM_GB), 23-168
Rx Watch Dog Error Register, EMAC (EMAC_RXW-
DOG_ERR), 23-169
RY Conversion Component Register, PIXC (PIX-
C_CONRY), 32-39

S
Samples Per Line Register, EPPI (EPPI_LINE), 31-70
SCB architectural model, 2-2
SCB hierarchical model, 2-3
SCB interfaces, 2-5
SCB latency, 2-5
SCB_ARBRn (Arbitration Read Channel Master Inter-
face n Register, SCB), 2-22
SCB_ARBWn (Arbitration Write Channel Master In-
I–26 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
terface n Register, SCB), 2-23
SCB_MASTERS (Master Interfaces Number Register,
SCB), 2-24
SCB_SLAVES (Slave Interfaces Number Register,
SCB), 2-24
SCI Active Register n, SEC (SEC_CACTn), 7-21
SCI Control Register n, SEC (SEC_CCTLn), 7-17
SCI Group Mask Register n, SEC (SEC_CGMSKn),
7-23
SCI Priority Level Register n, SEC (SEC_CPLVLn),
7-24
SCI Priority Mask Register n, SEC (SEC_CPMSKn),
7-22
SCI Source ID Register n, SEC (SEC_CSIDn), 7-25
SCI Status Register n, SEC (SEC_CSTATn), 7-18
SCL Clock Divider Register, TWI (TWI_CLKDIV),
20-20
SCLK clock domain, 2-5
Scratch Register, UART (UART_SCR), 19-38
SDU0 DMA (Masters), 8-3, 35-3
SDU0 DMA (Slaves), 8-7, 35-3
SDU0 DMA interrupt, 7-5, 35-3
SDU0 Slave Trigger (Slaves), 8-8, 35-3
SDU_CTL (Control Register, SDU), 35-13
SDU_DMARD (DMA Read Data Register, SDU),
35-22
SDU_DMAWD (DMA Write Data Register, SDU),
35-22
SDU_GHLT (Group Halt Register, SDU), 35-26
SDU_IDCODE (ID Code Register, SDU), 35-12
SDU_MACADDR (Memory Access Address Regis-
ter, SDU), 35-21
SDU_MACCTL (Memory Access Control Register,
SDU), 35-19
SDU_MACDATA (Memory Access Data Register,
SDU), 35-21
SDU_MSG (Message Register, SDU), 35-23
SDU_MSG_CLR (Message Clear Register, SDU),
35-25
SDU_MSG_SET (Message Set Register, SDU), 35-25
SDU_STAT (Status Register, SDU), 35-15
SEC0 Error interrupt, 7-3
SEC0 Fault (Masters), 7-8, 8-5
SEC_CACTn (SCI Active Register n, SEC), 7-21
SEC_CCTLn (SCI Control Register n, SEC), 7-17

SEC_CGMSKn (SCI Group Mask Register n, SEC),
7-23
SEC_CPLVLn (SCI Priority Level Register n, SEC),
7-24
SEC_CPMSKn (SCI Priority Mask Register n, SEC),
7-22
SEC_CPNDn (Core Pending Register n, SEC), 7-20
SEC_CSIDn (SCI Source ID Register n, SEC), 7-25
SEC_CSTATn (SCI Status Register n, SEC), 7-18
SEC_END (Global End Register, SEC), 7-39
SEC_FCOPP (Fault COP Period Register, SEC), 7-34
SEC_FCOPP_CUR (Fault COP Period Current Regis-
ter, SEC), 7-35
SEC_FCTL (Fault Control Register, SEC), 7-25
SEC_FDLY (Fault Delay Register, SEC), 7-32
SEC_FDLY_CUR (Fault Delay Current Register,
SEC), 7-32
SEC_FEND (Fault End Register, SEC), 7-31
SEC_FSID (Fault Source ID Register, SEC), 7-30
SEC_FSRDLY (Fault System Reset Delay Register,
SEC), 7-33
SEC_FSRDLY_CUR (Fault System Reset Delay Cur-
rent Register, SEC), 7-34
SEC_FSTAT (Fault Status Register, SEC), 7-28
SEC_GCTL (Global Control Register, SEC), 7-36
SEC_GSTAT (Global Status Register, SEC), 7-37
SEC_RAISE (Global Raise Register, SEC), 7-38
SEC_SCTLn (Source Control Register n, SEC), 7-40
SEC_SSTATn (Source Status Register n, SEC), 7-42
serial peripheral interface (SPI), 2-5
serial port (SPORT), 2-5
Shadow EMR1 Register, DMC (DMC_EMR1), 11-34
Shadow EMR2 Register, DMC (DMC_EMR2), 11-37
Shadow EMR3 Register, DMC (DMC_EMR3), 11-39
Shadow Input Transmit Buffer, LP (LP_TXIN_SH-
DW), 28-25
Shadow MR Register, DMC (DMC_MR), 11-32
Shadow Output Transmit Buffer, LP (LP_TX-
OUT_SHDW), 28-26
SI (Slave Interface), 2-2
Slave Interface (SI), 2-2
Slave Interfaces Number Register, SCB (SC-
B_SLAVES), 2-24
Slave Mode Address Register, TWI (TWI_SLVAD-
DR), 20-24
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–27

INDEX
Slave Mode Control Register, TWI (TWI_SLVCTL),
20-22
Slave Mode Status Register, TWI (TWI_SLVSTAT),
20-23
Slave Select Register, SPI (SPI_SLVSEL), 25-38
Slave Select Register, TRU (TRU_SSRn), 8-12
Sleep Wakeup Timeout Register, RSI (RSI_SLP_WK-
UP_TOUT), 24-73
SMC_B0CTL (Bank 0 Control Register, SMC), 9-26
SMC_B0ETIM (Bank 0 Extended Timing Register,
SMC), 9-31
SMC_B0TIM (Bank 0 Timing Register, SMC), 9-29
SMC_B1CTL (Bank 1 Control Register, SMC), 9-33
SMC_B1ETIM (Bank 1 Extended Timing Register,
SMC), 9-38
SMC_B1TIM (Bank 1 Timing Register, SMC), 9-36
SMC_B2CTL (Bank 2 Control Register, SMC), 9-40
SMC_B2ETIM (Bank 2 Extended Timing Register,
SMC), 9-45
SMC_B2TIM (Bank 2 Timing Register, SMC), 9-43
SMC_B3CTL (Bank 3 Control Register, SMC), 9-47
SMC_B3ETIM (Bank 3 Extended Timing Register,
SMC), 9-52
SMC_B3TIM (Bank 3 Timing Register, SMC), 9-50
SMC_GCTL (Grant Control Register, SMC), 9-24
SMC_GSTAT (Grant Status Register, SMC), 9-25
SMI Address Register, EMAC (EMAC_SMI_ADDR),
23-111
SMI Data Register, EMAC (EMAC_SMI_DATA),
23-113
Software Reset Register, USB (USB_SOFT_RST),
22-117
Software Vector Register 0, RCU (RCU_SVECT0),
33-15, 34-66
Software Vector Register 1, RCU (RCU_SVECT1),
33-16, 34-67
Software-driven Interrupt 0 interrupt, 7-4
Software-driven Interrupt 1 interrupt, 7-4
Software-driven Interrupt 2 interrupt, 7-4
Software-driven Interrupt 3 interrupt, 7-4
Software-driven Trigger 0 (Masters), 8-5
Software-driven Trigger 1 (Masters), 8-5
Software-driven Trigger 2 (Masters), 8-5
Software-driven Trigger 3 (Masters), 8-5
Software-driven Trigger 4 (Masters), 8-5

Software-driven Trigger 5 (Masters), 8-5
Source Control Register n, SEC (SEC_SCTLn), 7-40
Source Status Register n, SEC (SEC_SSTATn), 7-42
SPI0 RX DMA Channel (Masters), 8-3, 25-4
SPI0 RX DMA Channel (Slaves), 8-6, 25-4
SPI0 RX DMA Channel interrupt, 7-5, 25-3
SPI0 Status interrupt, 7-5, 25-3
SPI0 TX DMA Channel (Masters), 8-3, 25-4
SPI0 TX DMA Channel (Slaves), 8-6, 25-4
SPI0 TX DMA Channel interrupt, 7-5, 25-3
SPI1 RX DMA Channel (Masters), 8-3, 25-4
SPI1 RX DMA Channel (Slaves), 8-6, 25-4
SPI1 RX DMA Channel interrupt, 7-5, 25-3
SPI1 Status interrupt, 7-5, 25-4
SPI1 TX DMA Channel (Masters), 8-3, 25-4
SPI1 TX DMA Channel (Slaves), 8-6, 25-4
SPI1 TX DMA Channel interrupt, 7-5, 25-3
SPI_CLK (Clock Rate Register, SPI), 25-36
SPI_CTL (Control Register, SPI), 25-25
SPI_DLY (Delay Register, SPI), 25-37
SPI_ILAT (Masked Interrupt Condition Register, SPI),
25-53
SPI_ILAT_CLR (Masked Interrupt Clear Register,
SPI), 25-55
SPI_IMSK (Interrupt Mask Register, SPI), 25-44
SPI_IMSK_CLR (Interrupt Mask Clear Register, SPI),
25-46
SPI_IMSK_SET (Interrupt Mask Set Register, SPI),
25-47
SPI_RFIFO (Receive FIFO Data Register, SPI), 25-56
SPI_RWC (Received Word Count Register, SPI),
25-41
SPI_RWCR (Received Word Count Reload Register,
SPI), 25-42
SPI_RXCTL (Receive Control Register, SPI), 25-31
SPI_SLVSEL (Slave Select Register, SPI), 25-38
SPI_STAT (Status Register, SPI), 25-49
SPI_TFIFO (Transmit FIFO Data Register, SPI), 25-57
SPI_TWC (Transmitted Word Count Register, SPI),
25-43
SPI_TWCR (Transmitted Word Count Reload Regis-
ter, SPI), 25-43
SPI_TXCTL (Transmit Control Register, SPI), 25-34
SPO RT_CTL2_B (Half SPORT 'B' Control 2 Regis-
ter, SPORT), 26-90
I–28 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
SPORT0 Channel A DMA (Masters), 8-3, 26-9
SPORT0 Channel A DMA (Slaves), 8-6, 26-9
SPORT0 Channel A DMA interrupt, 7-4, 26-9
SPORT0 Channel A Status interrupt, 7-4, 26-9
SPORT0 Channel B DMA (Masters), 8-3, 26-9
SPORT0 Channel B DMA (Slaves), 8-6, 26-9
SPORT0 Channel B DMA interrupt, 7-4, 26-9
SPORT0 Channel B Status interrupt, 7-4, 26-9
SPORT1 Channel A DMA (Masters), 8-3, 26-9
SPORT1 Channel A DMA (Slaves), 8-6, 26-10
SPORT1 Channel A DMA interrupt, 7-4, 26-9
SPORT1 Channel A Status interrupt, 7-4, 26-9
SPORT1 Channel B DMA (Masters), 8-3, 26-9
SPORT1 Channel B DMA (Slaves), 8-6, 26-10
SPORT1 Channel B DMA interrupt, 7-4, 26-9
SPORT1 Channel B Status interrupt, 7-4, 26-9
SPORT2 Channel A DMA (Masters), 8-3, 26-9
SPORT2 Channel A DMA (Slaves), 8-6, 26-10
SPORT2 Channel A DMA interrupt, 7-5, 26-9
SPORT2 Channel A Status interrupt, 7-5, 26-9
SPORT2 Channel B DMA (Masters), 8-3, 26-9
SPORT2 Channel B DMA (Slaves), 8-6, 26-10
SPORT2 Channel B DMA interrupt, 7-5, 26-9
SPORT2 Channel B Status interrupt, 7-5, 26-9
SPORT_CS0_A (Half SPORT 'A' Multi-channel 0-31
Select Register, SPORT), 26-61
SPORT_CS0_B (Half SPORT 'B' Multi-channel 0-31
Select Register, SPORT), 26-85
SPORT_CS1_A (Half SPORT 'A' Multi-channel
32-63 Select Register, SPORT), 26-61
SPORT_CS1_B (Half SPORT 'B' Multi-channel 32-63
Select Register, SPORT), 26-85
SPORT_CS2_A (Half SPORT 'A' Multi-channel
64-95 Select Register, SPORT), 26-62
SPORT_CS2_B (Half SPORT 'B' Multichannel 64-95
Select Register, SPORT), 26-86
SPORT_CS3_A (Half SPORT 'A' Multi-channel
96-127 Select Register, SPORT), 26-63
SPORT_CS3_B (Half SPORT 'B' Multichannel
96-127 Select Register, SPORT), 26-87
SPORT_CTL2_A (Half SPORT 'A' Control 2 Regis-
ter, SPORT), 26-66
SPORT_CTL_A (Half SPORT 'A' Control Register,
SPORT), 26-49
SPORT_CTL_B (Half SPORT 'B' Control Register,

SPORT), 26-72
SPORT_DIV_A (Half SPORT 'A' Divisor Register,
SPORT), 26-57
SPORT_DIV_B (Half SPORT 'B' Divisor Register,
SPORT), 26-81
SPORT_ERR_A (Half SPORT 'A' Error Register,
SPORT), 26-63
SPORT_ERR_B (Half SPORT 'B' Error Register,
SPORT), 26-87
SPORT_MCTL_A (Half SPORT 'A' Multi-channel
Control Register, SPORT), 26-59
SPORT_MCTL_B (Half SPORT 'B' Multi-channel
Control Register, SPORT), 26-83
SPORT_MSTAT_A (Half SPORT 'A' Multi-channel
Status Register, SPORT), 26-65
SPORT_MSTAT_B (Half SPORT 'B' Multi-channel
Status Register, SPORT), 26-89
SPORT_RXPRI_A (Half SPORT 'A' Rx Buffer (Pri-
mary) Register, SPORT), 26-68
SPORT_RXPRI_B (Half SPORT 'B' Rx Buffer (Pri-
mary) Register, SPORT), 26-92
SPORT_RXSEC_A (Half SPORT 'A' Rx Buffer (Sec-
ondary) Register, SPORT), 26-70
SPORT_RXSEC_B (Half SPORT 'B' Rx Buffer (Sec-
ondary) Register, SPORT), 26-94
SPORT_TXPRI_A (Half SPORT 'A' Tx Buffer (Pri-
mary) Register, SPORT), 26-67
SPORT_TXPRI_B (Half SPORT 'B' Tx Buffer (Pri-
mary) Register, SPORT), 26-91
SPORT_TXSEC_A (Half SPORT 'A' Tx Buffer (Sec-
ondary) Register, SPORT), 26-69
SPORT_TXSEC_B (Half SPORT 'B' Tx Buffer (Sec-
ondary) Register, SPORT), 26-93
SPU_CTL (Control Register, SPU), 4-8
SPU_STAT (Status Register, SPU), 4-9
SPU_WPn (Write Protect Register n, SPU), 4-10
Start Address of Current Buffer, DMA (DMA_AD-
DRSTART), 13-49
static memory controller (SMC), 2-5
Status Information Register, TRU (TRU_STAT), 8-15
Status Interrupt Latch Register, TIMER (TIM-
ER_STAT_ILAT), 15-38
Status Interrupt Mask Register, TIMER (TIM-
ER_STAT_IMSK), 15-35
Status Register, ACM (ACM_STAT), 27-30
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–29

INDEX
Status Register, CAN (CAN_STAT), 21-62
Status Register, CGU (CGU_STAT), 3-13
Status Register, CNT (CNT_STAT), 17-20
Status Register, CRC (CRC_STAT), 12-38
Status Register, DMA (DMA_STAT), 13-65
Status Register, DMC (DMC_STAT), 11-18
Status Register, DPM (DPM_STAT), 5-16
Status Register, EPPI (EPPI_STAT), 31-64
Status Register, L2CTL (L2CTL_STAT), 10-21
Status Register, LP (LP_STAT), 28-20
Status Register, PWM (PWM_STAT), 18-53
Status Register, RCU (RCU_STAT), 33-8, 34-64
Status Register, SDU (SDU_STAT), 35-15
Status Register, SPI (SPI_STAT), 25-49
Status Register, SPU (SPU_STAT), 4-9
Status Register, UART (UART_STAT), 19-33
Status, PVP (PVP_STAT), 30-129
Stop Configuration Clear Register, TIMER (TIM-
ER_STOP_CFG_CLR), 15-33
Stop Configuration Register, TIMER (TIM-
ER_STOP_CFG), 15-31
Stop Configuration Set Register, TIMER (TIM-
ER_STOP_CFG_SET), 15-32
SVECT Lock Register, RCU (RCU_SVECT_LCK),
33-13
SWU

block diagram, 36-5
SWU0 Event (Masters), 8-5, 36-3
SWU0 Event (Slaves), 8-9, 36-3
SWU0 Event interrupt, 7-8, 36-2
SWU1 Event (Masters), 8-5, 36-3
SWU1 Event (Slaves), 8-9, 36-3
SWU1 Event interrupt, 7-8, 36-2
SWU2 Event (Masters), 8-5, 36-3
SWU2 Event (Slaves), 8-9, 36-3
SWU2 Event interrupt, 7-8, 36-2
SWU3 Event (Masters), 8-5, 36-3
SWU3 Event (Slaves), 8-9, 36-3
SWU3 Event interrupt, 7-8, 36-2
SWU4 Event (Masters), 8-5, 36-3
SWU4 Event (Slaves), 8-9, 36-3
SWU4 Event interrupt, 7-8, 36-2
SWU5 Event (Masters), 8-5, 36-3
SWU5 Event (Slaves), 8-9, 36-3
SWU5 Event interrupt, 7-8, 36-2

SWU6 Event (Masters), 8-5, 36-3
SWU6 Event (Slaves), 8-9, 36-3
SWU6 Event interrupt, 7-8, 36-2
SWU_CNTn (Count Register n, SWU), 36-21
SWU_CTLn (Control Register n, SWU), 36-15
SWU_CURn (Current Register n, SWU), 36-24
SWU_GCTL (Global Control Register, SWU), 36-10
SWU_GSTAT (Global Status Register, SWU), 36-11
SWU_HISTn (Bandwidth History Register n, SWU),
36-23
SWU_IDn (ID Register n, SWU), 36-21
SWU_LAn (Lower Address Register n, SWU), 36-19
SWU_TARGn (Target Register n, SWU), 36-22
SWU_UAn (Upper Address Register n, SWU), 36-20
Sync Pulse Width Register, PWM (PWM_SYN-
C_WID), 18-63
SYSCLK clock domain, 2-5
system clock (SYSCLK), 3-4
System Clock Buffer Disable Register, DPM (DP-
M_SCBF_DIS), 5-21
system clock input (SYS_CLKIN), 3-4
system clock output (SYS_CLKOUT), 3-4
system debug unit (SDU), 2-5
System Interface Disable Register, RCU (RCU_SI-
DIS), 33-12
System Interface Status Register, RCU (RCU_SI-
STAT), 33-13
system peripherals clock (SCLKn), 3-4
system protection unit (SPU), 2-5

T
Target Register n, SWU (SWU_TARGn), 36-22
TCNTL (Timer Control Register, TMR), 6-4
TCOUNT (Timer Count Register, TMR), 6-7
Temporary Mailbox Disable Register, CAN
(CAN_MBTD), 21-76
Testmode Register, USB (USB_TESTMODE), 22-104
THCn Clip Max Threshold, PVP (PVP_THCn_C-
MAXTH), 30-205
THCn Clip Min Threshold, PVP (PVP_THCn_C-
MINTH), 30-204
THCn Configuration, PVP (PVP_THCn_CFG),
30-197
THCn Control, PVP (PVP_THCn_CTL), 30-199
THCn Histogram Counter Value 0, PVP
I–30 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
(PVP_THCn_HCNT0_STAT), 30-223
THCn Histogram Counter Value 1, PVP
(PVP_THCn_HCNT1_STAT), 30-223
THCn Histogram Counter Value 10, PVP
(PVP_THCn_HCNT10_STAT), 30-229
THCn Histogram Counter Value 11, PVP
(PVP_THCn_HCNT11_STAT), 30-230
THCn Histogram Counter Value 12, PVP
(PVP_THCn_HCNT12_STAT), 30-231
THCn Histogram Counter Value 13, PVP
(PVP_THCn_HCNT13_STAT), 30-231
THCn Histogram Counter Value 14, PVP
(PVP_THCn_HCNT14_STAT), 30-232
THCn Histogram Counter Value 15, PVP
(PVP_THCn_HCNT15_STAT), 30-233
THCn Histogram Counter Value 2, PVP
(PVP_THCn_HCNT2_STAT), 30-224
THCn Histogram Counter Value 3, PVP
(PVP_THCn_HCNT3_STAT), 30-225
THCn Histogram Counter Value 4, PVP
(PVP_THCn_HCNT4_STAT), 30-225
THCn Histogram Counter Value 5, PVP
(PVP_THCn_HCNT5_STAT), 30-226
THCn Histogram Counter Value 6, PVP
(PVP_THCn_HCNT6_STAT), 30-227
THCn Histogram Counter Value 7, PVP
(PVP_THCn_HCNT7_STAT), 30-227
THCn Histogram Counter Value 8, PVP
(PVP_THCn_HCNT8_STAT), 30-228
THCn Histogram Counter Value 9, PVP
(PVP_THCn_HCNT9_STAT), 30-229
THCn Histogram Frame Count Status, PVP
(PVP_THCn_HFCNT_STAT), 30-222
THCn Histogram Frame Count, PVP (PVP_THCn_H-
FCNT), 30-202
THCn Histogram Horizontal Count, PVP
(PVP_THCn_HHCNT), 30-218
THCn Histogram Horizontal Position, PVP
(PVP_THCn_HHPOS), 30-217
THCn Histogram Vertical Count, PVP
(PVP_THCn_HVCNT), 30-219
THCn Histogram Vertical Position, PVP
(PVP_THCn_HVPOS), 30-217
THCn Max Clip Value, PVP (PVP_THCn_CMAX-
VAL), 30-205

THCn Max RLE Reports, PVP (PVP_THCn_RMAX-
REP), 30-203
THCn Min Clip Value, PVP (PVP_THCn_CMIN-
VAL), 30-203
THCn Number of RLE Reports, PVP (PVP_THCn_R-
REP_STAT), 30-233
THCn RLE Horizontal Count, PVP
(PVP_THCn_RHCNT), 30-221
THCn RLE Horizontal Position, PVP
(PVP_THCn_RHPOS), 30-219
THCn RLE Vertical Count, PVP
(PVP_THCn_RVCNT), 30-221
THCn RLE Vertical Position, PVP (PVP_THCn_RV-
POS), 30-220
THCn Threshold Value 0, PVP (PVP_THCn_TH0),
30-206
THCn Threshold Value 1, PVP (PVP_THCn_TH1),
30-207
THCn Threshold Value 10, PVP (PVP_THCn_TH10),
30-213
THCn Threshold Value 11, PVP (PVP_THCn_TH11),
30-213
THCn Threshold Value 12, PVP (PVP_THCn_TH12),
30-214
THCn Threshold Value 13, PVP (PVP_THCn_TH13),
30-215
THCn Threshold Value 14, PVP (PVP_THCn_TH14),
30-215
THCn Threshold Value 15, PVP (PVP_THCn_TH15),
30-216
THCn Threshold Value 2, PVP (PVP_THCn_TH2),
30-207
THCn Threshold Value 3, PVP (PVP_THCn_TH3),
30-208
THCn Threshold Value 4, PVP (PVP_THCn_TH4),
30-209
THCn Threshold Value 5, PVP (PVP_THCn_TH5),
30-209
THCn Threshold Value 6, PVP (PVP_THCn_TH6),
30-210
THCn Threshold Value 7, PVP (PVP_THCn_TH7),
30-211
THCn Threshold Value 8, PVP (PVP_THCn_TH8),
30-211
THCn Threshold Value 9, PVP (PVP_THCn_TH9),
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–31

INDEX
30-212
Time Stamp Addend Register, EMAC (EMAC_T-
M_ADDEND), 23-206
Time Stamp Auxiliary TM Seconds Register, EMAC
(EMAC_TM_AUXSTMP_SEC), 23-214
Time Stamp Auxiliary TS Nano Seconds Register,
EMAC (EMAC_TM_AUXSTMP_NSEC), 23-214
Time Stamp Control Register, EMAC (EMAC_T-
M_CTL), 23-198
Time Stamp High Second Register, EMAC
(EMAC_TM_HISEC), 23-209
Time Stamp Low Seconds Register, EMAC
(EMAC_TM_SEC), 23-203
Time Stamp Nanoseconds Register, EMAC
(EMAC_TM_NSEC), 23-204
Time Stamp Nanoseconds Update Register, EMAC
(EMAC_TM_NSECUPDT), 23-205
Time Stamp PPS Interval Register, EMAC (EMAC_T-
M_PPSINTVL), 23-215
Time Stamp Seconds Update Register, EMAC
(EMAC_TM_SECUPDT), 23-205
Time Stamp Status Register, EMAC (EMAC_TM_ST-
MPSTAT), 23-209
Time Stamp Sub Second Increment Register, EMAC
(EMAC_TM_SUBSEC), 23-203
Time Stamp Target Time Nanoseconds Register,
EMAC (EMAC_TM_NTGTM), 23-208
Time Stamp Target Time Seconds Register, EMAC
(EMAC_TM_TGTM), 23-207
Timer 0 Period Register, PWM (PWM_TM0), 18-64
Timer 0 Register, ACM (ACM_TMR0), 27-49
Timer 1 Period Register, PWM (PWM_TM1), 18-65
Timer 1 Register, ACM (ACM_TMR1), 27-50
Timer 2 Period Register, PWM (PWM_TM2), 18-66
Timer 3 Period Register, PWM (PWM_TM3), 18-67
Timer 4 Period Register, PWM (PWM_TM4), 18-68
Timer Control Register, TMR (TCNTL), 6-4
Timer Count Register, TMR (TCOUNT), 6-7
Timer n Configuration Register, TIMER (TIMER_T-
MRn_CFG), 15-43
Timer n Counter Register, TIMER (TIMER_TM-
Rn_CNT), 15-46
Timer n Delay Register, TIMER (TIMER_TMRn_D-
LY), 15-48
Timer n Period Register, TIMER (TIMER_TM-

Rn_PER), 15-47
Timer n Width Register, TIMER (TIMER_TM-
Rn_WID), 15-48
Timer Period Register, TMR (TPERIOD), 6-5
Timer Scale Register, TMR (TSCALE), 6-6
TIMER0 Status interrupt, 7-3, 15-3
TIMER0 Timer 0 (Masters), 8-2, 15-3
TIMER0 Timer 0 (Slaves), 8-6, 15-4
TIMER0 Timer 0 interrupt, 7-3, 15-3
TIMER0 Timer 1 (Masters), 8-2, 15-3
TIMER0 Timer 1 (Slaves), 8-6, 15-4
TIMER0 Timer 1 interrupt, 7-3, 15-3
TIMER0 Timer 2 (Masters), 8-2, 15-3
TIMER0 Timer 2 (Slaves), 8-6, 15-4
TIMER0 Timer 2 interrupt, 7-3, 15-3
TIMER0 Timer 3 (Masters), 8-2, 15-3
TIMER0 Timer 3 (Slaves), 8-6, 15-4
TIMER0 Timer 3 interrupt, 7-3, 15-3
TIMER0 Timer 4 (Masters), 8-2, 15-3
TIMER0 Timer 4 (Slaves), 8-6, 15-4
TIMER0 Timer 4 interrupt, 7-3, 15-3
TIMER0 Timer 5 (Masters), 8-2, 15-3
TIMER0 Timer 5 (Slaves), 8-6, 15-4
TIMER0 Timer 5 interrupt, 7-3, 15-3
TIMER0 Timer 6 (Masters), 8-2, 15-4
TIMER0 Timer 6 (Slaves), 8-6, 15-4
TIMER0 Timer 6 interrupt, 7-3, 15-3
TIMER0 Timer 7 (Masters), 8-3, 15-4
TIMER0 Timer 7 (Slaves), 8-6, 15-4
TIMER0 Timer 7 interrupt, 7-3, 15-3
TIMER_BCAST_DLY (Broadcast Delay Register,
TIMER), 15-42
TIMER_BCAST_PER (Broadcast Period Register,
TIMER), 15-41
TIMER_BCAST_WID (Broadcast Width Register,
TIMER), 15-41
TIMER_DATA_ILAT (Data Interrupt Latch Register,
TIMER), 15-37
TIMER_DATA_IMSK (Data Interrupt Mask Register,
TIMER), 15-34
TIMER_ERR_TYPE (Error Type Status Register,
TIMER), 15-39
TIMER_RUN (Run Register, TIMER), 15-28
TIMER_RUN_CLR (Run Clear Register, TIMER),
15-30
I–32 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
TIMER_RUN_SET (Run Set Register, TIMER),
15-29
TIMER_STAT_ILAT (Status Interrupt Latch Regis-
ter, TIMER), 15-38
TIMER_STAT_IMSK (Status Interrupt Mask Regis-
ter, TIMER), 15-35
TIMER_STOP_CFG (Stop Configuration Register,
TIMER), 15-31
TIMER_STOP_CFG_CLR (Stop Configuration Clear
Register, TIMER), 15-33
TIMER_STOP_CFG_SET (Stop Configuration Set
Register, TIMER), 15-32
TIMER_TMRn_CFG (Timer n Configuration Regis-
ter, TIMER), 15-43
TIMER_TMRn_CNT (Timer n Counter Register,
TIMER), 15-46
TIMER_TMRn_DLY (Timer n Delay Register, TIM-
ER), 15-48
TIMER_TMRn_PER (Timer n Period Register, TIM-
ER), 15-47
TIMER_TMRn_WID (Timer n Width Register, TIM-
ER), 15-48
TIMER_TRG_IE (Trigger Slave Enable Register,
TIMER), 15-36
TIMER_TRG_MSK (Trigger Master Mask Register,
TIMER), 15-35
Timing 0 Register, DMC (DMC_TR0), 11-27
Timing 1 Register, DMC (DMC_TR1), 11-28
Timing 2 Register, DMC (DMC_TR2), 11-29
Timing Configuration 0 Register, ACM (ACM_TC0),
27-28
Timing Configuration 1 Register, ACM (ACM_TC1),
27-29
Timing Register, CAN (CAN_TIMING), 21-58
TPERIOD (Timer Period Register, TMR), 6-5
Transfer Interrupt 0 Mask Register, RSI (RSI_X-
FR_IMSK0), 24-63
Transfer Interrupt 1 Mask Register, RSI (RSI_X-
FR_IMSK1), 24-67
transfer size (TxferSize);TxferSize (transfer size),
22-28, 22-30
Transfer Status Clear Register, RSI (RSI_XFRSTAT_-
CLR), 24-61
Transfer Status Register, RSI (RSI_XFRSTAT), 24-58
Transmission Acknowledge 1 Register, CAN (CAN_-

TA1), 21-36
Transmission Acknowledge 2 Register, CAN (CAN_-
TA2), 21-49
Transmission Request Reset 1 Register, CAN
(CAN_TRR1), 21-35
Transmission Request Reset 2 Register, CAN
(CAN_TRR2), 21-48
Transmission Request Set 1 Register, CAN
(CAN_TRS1), 21-34
Transmission Request Set 2 Register, CAN
(CAN_TRS2), 21-47
Transmit Address/Insert Pulse Register, UART
(UART_TAIP), 19-49
Transmit Buffer, LP (LP_TX), 28-24
Transmit Control Register, SPI (SPI_TXCTL), 25-34
Transmit Counter Register, UART (UART_TXCNT),
19-51
Transmit FIFO Address Register, USB (USB_TXFI-
FOADDR), 22-112
Transmit FIFO Data Register, SPI (SPI_TFIFO), 25-57
Transmit FIFO Size Register, USB (USB_TXFIFO-
SZ), 22-109
Transmit Hold Register, UART (UART_THR), 19-48
Transmit Interrupt Enable Register, USB (USB_IN-
TRTXE), 22-95
Transmit Interrupt Register, USB (USB_INTRTX),
22-91
Transmit Shift Register, UART (UART_TSR), 19-49
Transmitted Word Count Register, SPI (SPI_TWC),
25-43
Transmitted Word Count Reload Register, SPI
(SPI_TWCR), 25-43
Transparency Color Register, PIXC (PIXC_TC),
32-43
Trigger Master Mask Register, TIMER (TIM-
ER_TRG_MSK), 15-35
Trigger Slave Enable Register, TIMER (TIM-
ER_TRG_IE), 15-36
Trip Config Register, PWM (PWM_TRIPCFG), 18-49
TRU0 Interrupt 0 interrupt, 7-7, 8-2
TRU0 Interrupt 1 interrupt, 7-7, 8-2
TRU0 Interrupt 2 interrupt, 7-8, 8-2
TRU0 Interrupt 3 interrupt, 7-8, 8-2
TRU0 Interrupt Request 0 (Slaves), 8-6
TRU0 Interrupt Request 1 (Slaves), 8-6
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–33

INDEX
TRU0 Interrupt Request 2 (Slaves), 8-6
TRU0 Interrupt Request 3 (Slaves), 8-6
TRU_ERRADDR (Error Address Register, TRU),
8-14
TRU_GCTL (Global Control Register, TRU), 8-15
TRU_MTR (Master Trigger Register, TRU), 8-13
TRU_SSRn (Slave Select Register, TRU), 8-12
TRU_STAT (Status Information Register, TRU), 8-15
TSCALE (Timer Scale Register, TMR), 6-6
TWI Voltage Selection, PADS (PADS_TWI_VSEL),
14-108
TWI0 Data Interrupt interrupt, 7-4, 20-3
TWI1 Data Interrupt interrupt, 7-4, 20-3
TWI_CLKDIV (SCL Clock Divider Register, TWI),
20-20
TWI_CTL (Control Register, TWI), 20-20
TWI_FIFOCTL (FIFO Control Register, TWI), 20-36
TWI_FIFOSTAT (FIFO Status Register, TWI), 20-38
TWI_IMSK (Interrupt Mask Register, TWI), 20-35
TWI_ISTAT (Interrupt Status Register, TWI), 20-31
TWI_MSTRADDR (Master Mode Address Register,
TWI), 20-31
TWI_MSTRCTL (Master Mode Control Registers,
TWI), 20-25
TWI_MSTRSTAT (Master Mode Status Register,
TWI), 20-28
TWI_RXDATA16 (Rx Data Double-Byte Register,
TWI), 20-41
TWI_RXDATA8 (Rx Data Single-Byte Register,
TWI), 20-40
TWI_SLVADDR (Slave Mode Address Register,
TWI), 20-24
TWI_SLVCTL (Slave Mode Control Register, TWI),
20-22
TWI_SLVSTAT (Slave Mode Status Register, TWI),
20-23
TWI_TXDATA16 (Tx Data Double-Byte Register,
TWI), 20-40
TWI_TXDATA8 (Tx Data Single-Byte Register,
TWI), 20-39
Tx 1024- to Max-Byte Frames (Good/Bad) Register,
EMAC (EMAC_TX1024TOMAX_GB), 23-144
Tx 128- to 255-Byte Frames (Good/Bad) Register,
EMAC (EMAC_TX128TO255_GB), 23-142
Tx 256- to 511-Byte Frames (Good/Bad) Register,

EMAC (EMAC_TX256TO511_GB), 23-142
Tx 512- to 1023-Byte Frames (Good/Bad) Register,
EMAC (EMAC_TX512TO1023_GB), 23-143
Tx 64-Byte Frames (Good/Bad) Register, EMAC
(EMAC_TX64_GB), 23-140
Tx 65- to 127-Byte Frames (Good/Bad) Register,
EMAC (EMAC_TX65TO127_GB), 23-141
Tx Broadcast Frames (Good) Register, EMAC
(EMAC_TXBCASTFRM_G), 23-139
Tx Broadcast Frames (Good/Bad) Register, EMAC
(EMAC_TXBCASTFRM_GB), 23-146
Tx Carrier Error Register, EMAC (EMAC_TXCAR-
R_ERR), 23-150
Tx Data Double-Byte Register, TWI (TWI_TXDA-
TA16), 20-40
Tx Data Single-Byte Register, TWI (TWI_TXDA-
TA8), 20-39
Tx Deferred Register, EMAC (EMAC_TXDE-
FERRED), 23-148
Tx Excess Collision Register, EMAC (EMAC_TXEX-
CESSCOL), 23-150
Tx Excess Deferral Register, EMAC (EMAC_TXEX-
CESSDEF), 23-152
Tx Frame Count (Good) Register, EMAC
(EMAC_TXFRMCNT_G), 23-152
Tx Frame Count (Good/Bad) Register, EMAC
(EMAC_TXFRMCNT_GB), 23-139
Tx Late Collision Register, EMAC (EMAC_TX-
LATECOL), 23-149
Tx Multicast Frames (Good) Register, EMAC
(EMAC_TXMCASTFRM_G), 23-140
Tx Multicast Frames (Good/Bad) Register, EMAC
(EMAC_TXMCASTFRM_GB), 23-145
Tx Multiple Collision (Good) Register, EMAC
(EMAC_TXMULTCOL_G), 23-148
Tx OCT Count (Good/Bad) Register, EMAC
(EMAC_TXOCTCNT_GB), 23-138
Tx Octet Count (Good) Register, EMAC
(EMAC_TXOCTCNT_G), 23-151
Tx Pause Frame Register, EMAC (EMAC_TX-
PAUSEFRM), 23-153
Tx Single Collision (Good) Register, EMAC
(EMAC_TXSNGCOL_G), 23-147
Tx Underflow Error Register, EMAC (EMAC_TX-
UNDR_ERR), 23-146
I–34 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
Tx Unicast Frames (Good/Bad) Register, EMAC
(EMAC_TXUCASTFRM_GB), 23-144
Tx VLAN Frames (Good) Register, EMAC
(EMAC_TXVLANFRM_G), 23-154

U
UART0 Receive DMA (Masters), 8-4, 19-4
UART0 Receive DMA (Slaves), 8-7, 19-4
UART0 Receive DMA interrupt, 7-5, 19-3
UART0 Status interrupt, 7-6, 19-3
UART0 Transmit DMA (Masters), 8-3, 19-4
UART0 Transmit DMA (Slaves), 8-7, 19-4
UART0 Transmit DMA interrupt, 7-5, 19-3
UART1 Receive DMA (Masters), 8-4, 19-4
UART1 Receive DMA (Slaves), 8-7, 19-4
UART1 Receive DMA interrupt, 7-6, 19-4
UART1 Status interrupt, 7-6, 19-4
UART1 Transmit DMA (Masters), 8-4, 19-4
UART1 Transmit DMA (Slaves), 8-7, 19-4
UART1 Transmit DMA interrupt, 7-6, 19-3
UART_CLK (Clock Rate Register, UART), 19-39
UART_CTL (Control Register, UART), 19-27
UART_IMSK (Interrupt Mask Register, UART),
19-40
UART_IMSK_CLR (Interrupt Mask Clear Register,
UART), 19-46
UART_IMSK_SET (Interrupt Mask Set Register,
UART), 19-44
UART_RBR (Receive Buffer Register, UART), 19-47
UART_RSR (Receive Shift Register, UART), 19-50
UART_RXCNT (Receive Counter Register, UART),
19-51
UART_SCR (Scratch Register, UART), 19-38
UART_STAT (Status Register, UART), 19-33
UART_TAIP (Transmit Address/Insert Pulse Register,
UART), 19-49
UART_THR (Transmit Hold Register, UART), 19-48
UART_TSR (Transmit Shift Register, UART), 19-49
UART_TXCNT (Transmit Counter Register, UART),
19-51
UDS Configuration, PVP (PVP_UDS_CFG), 30-167
UDS Control, PVP (PVP_UDS_CTL), 30-168
UDS HAVG, PVP (PVP_UDS_HAVG), 30-170
UDS Output HCNT, PVP (PVP_UDS_OHCNT),
30-168

UDS Output VCNT, PVP (PVP_UDS_OVCNT),
30-169
UDS VAVG, PVP (PVP_UDS_VAVG), 30-170
Universal Counter Configuration Mode Register, CAN
(CAN_UCCNF), 21-81
Universal Counter Register, CAN (CAN_UCCNT),
21-80
Universal Counter Reload/Capture Register, CAN
(CAN_UCRC), 21-80
universal serial bus (USB), 2-6
Upper Address Register n, SWU (SWU_UAn), 36-20
USB0 DMA Status/Transfer Complete (Masters), 8-5,
22-9
USB0 DMA Status/Transfer Complete interrupt, 7-7,
22-8
USB0 Status/FIFO Data Ready interrupt, 7-7, 22-8
USB_BAT_CHG (Battery Charging Control Register,
USB), 22-169
USB_CT_HHSRTN (Host High Speed Return to Nor-
mal Register, USB), 22-160
USB_CT_HSBT (High Speed Timeout Register,
USB), 22-160
USB_CT_UCH (Chirp Timeout Register, USB),
22-159
USB_DEV_CTL (Device Control Register, USB),
22-107
USB_DMA_IRQ (DMA Interrupt Register, USB),
22-154
USB_DMAn_ADDR (DMA Channel n Address Reg-
ister, USB), 22-157
USB_DMAn_CNT (DMA Channel n Count Register,
USB), 22-158
USB_DMAn_CTL (DMA Channel n Control Register,
USB), 22-155
USB_EP0_CFGDATAn (EP0 Configuration Informa-
tion Register, USB), 22-152
USB_EP0_CNTn (EP0 Number of Received Bytes
Register, USB), 22-144
USB_EP0_CSRn_H (EP0 Configuration and Status
(Host) Register, USB), 22-123
USB_EP0_CSRn_P (EP0 Configuration and Status
(Peripheral) Register, USB), 22-126
USB_EP0_NAKLIMITn (EP0 NAK Limit Register,
USB), 22-147
USB_EP0_TYPEn (EP0 Connection Type Register,
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–35

INDEX
USB), 22-146
USB_EPINFO (Endpoint Information Register, USB),
22-113
USB_EPn_RXCNT (EPn Number of Bytes Received
Register, USB), 22-144
USB_EPn_RXCSR_H (EPn Receive Configuration
and Status (Host) Register, USB), 22-136
USB_EPn_RXCSR_P (EPn Receive Configuration
and Status (Peripheral) Register, USB), 22-140
USB_EPn_RXINTERVAL (EPn Receive Polling In-
terval Register, USB), 22-151
USB_EPn_RXMAXP (EPn Receive Maximum Packet
Length Register, USB), 22-135
USB_EPn_RXTYPE (EPn Receive Type Register,
USB), 22-149
USB_EPn_TXCSR_H (EPn Transmit Configuration
and Status (Host) Register, USB), 22-128
USB_EPn_TXCSR_P (EPn Transmit Configuration
and Status (Peripheral) Register, USB), 22-132
USB_EPn_TXINTERVAL (EPn Transmit Polling In-
terval Register, USB), 22-148
USB_EPn_TXMAXP (EPn Transmit Maximum Pack-
et Length Register, USB), 22-122
USB_EPn_TXTYPE (EPn Transmit Type Register,
USB), 22-145
USB_FADDR (Function Address Register, USB),
22-88
USB_FIFOBn (FIFO Byte (8-Bit) Register, USB),
22-105
USB_FIFOHn (FIFO Half-Word (16-Bit) Register,
USB), 22-106
USB_FIFOn (FIFO Word (32-Bit) Register, USB),
22-107
USB_FRAME (Frame Number Register, USB),
22-102
USB_FS_EOF1 (Full-Speed EOF 1 Register, USB),
22-116
USB_HS_EOF1 (High-Speed EOF 1 Register, USB),
22-116
USB_IEN (Common Interrupts Enable Register,
USB), 22-101
USB_INDEX (Index Register, USB), 22-103
USB_INTRRX (Receive Interrupt Register, USB),
22-93
USB_INTRRXE (Receive Interrupt Enable Register,

USB), 22-97
USB_INTRTX (Transmit Interrupt Register, USB),
22-91
USB_INTRTXE (Transmit Interrupt Enable Register,
USB), 22-95
USB_IRQ (Common Interrupts Register, USB), 22-99
USB_LINKINFO (Link Information Register, USB),
22-114
USB_LPM_ATTR (LPM Attribute Register, USB),
22-161
USB_LPM_CTL (LPM Control Register, USB),
22-162
USB_LPM_FADDR (LPM Function Address Regis-
ter, USB), 22-167
USB_LPM_IEN (LPM Interrupt Enable Register,
USB), 22-164
USB_LPM_IRQ (LPM Interrupt Status Register,
USB), 22-165
USB_LS_EOF1 (Low-Speed EOF 1 Register, USB),
22-117
USB_MPn_RXFUNCADDR (MPn Receive Function
Address Register, USB), 22-120
USB_MPn_RXHUBADDR (MPn Receive Hub Ad-
dress Register, USB), 22-121
USB_MPn_RXHUBPORT (MPn Receive Hub Port
Register, USB), 22-121
USB_MPn_TXFUNCADDR (MPn Transmit Function
Address Register, USB), 22-118
USB_MPn_TXHUBADDR (MPn Transmit Hub Ad-
dress Register, USB), 22-119
USB_MPn_TXHUBPORT (MPn Transmit Hub Port
Register, USB), 22-120
USB_PHY_CTL (PHY Control Register, USB),
22-170
USB_PLL_OSC (PLL and Oscillator Control Register,
USB), 22-171
USB_POWER (Power and Device Control Register,
USB), 22-88
USB_RAMINFO (RAM Information Register, USB),
22-114
USB_RQPKTCNTn (EPn Request Packet Count Reg-
ister, USB), 22-159
USB_RXFIFOADDR (Receive FIFO Address Regis-
ter, USB), 22-112
USB_RXFIFOSZ (Receive FIFO Size Register, USB),
I–36 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

INDEX
22-111
USB_SOFT_RST (Software Reset Register, USB),
22-117
USB_TESTMODE (Testmode Register, USB), 22-104
USB_TXFIFOADDR (Transmit FIFO Address Regis-
ter, USB), 22-112
USB_TXFIFOSZ (Transmit FIFO Size Register,
USB), 22-109
USB_VBUS_CTL (VBUS Control Register, USB),
22-168
USB_VPLEN (VBUS Pulse Length Register, USB),
22-115

V
VBUS Control Register, USB (USB_VBUS_CTL),
22-168
VBUS Pulse Length Register, USB (USB_VPLEN),
22-115
Vertical Delay Count Register, EPPI (EPPI_VDLY),
31-69
Vertical Transfer Count Register, EPPI (EP-
PI_VCNT), 31-68
VID_CONN (Video Subsystem Connect Register,
VID), 29-5
Video Subsystem Connect Register, VID (VID_-
CONN), 29-5
VLAN Tag Register, EMAC (EMAC_VLANTAG),
23-115

W
Wakeup Enable Register, DPM (DPM_WAKE_EN),
5-22
Wakeup Polarity Register, DPM (DP-
M_WAKE_POL), 5-23
wake-up signals/sources, 5-6, 5-11
Wakeup Status Register, DPM (DP-
M_WAKE_STAT), 5-24
Watchdog Timer Status Register, WDOG
(WDOG_STAT), 16-6
WDOG0 Expiration interrupt, 7-3, 16-2
WDOG1 Expiration interrupt, 7-3, 16-2
WDOG_CNT (Count Register, WDOG), 16-5
WDOG_CTL (Control Register, WDOG), 16-4
WDOG_STAT (Watchdog Timer Status Register,

WDOG), 16-6
Write Priority Count Register, L2CTL (L2CTL_WP-
CR), 10-25
Write Protect Register n, SPU (SPU_WPn), 4-10

Y
YUV 4:2:2 interleaved format, 32-1
ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE I–37

INDEX
I–38 ADSP-BF60X BLACKFIN PROCESSOR HARDWARE REFERENCE

	ADSP-BF60x Blackfin Processor Hardware Reference
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What's New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Documentation Conventions

	Introduction
	Blackfin Processor Core
	Instruction Set Description
	Processor Safety Features
	Dual Core Supervision
	Fault Management
	System Protection
	Bandwidth Monitor
	Private (to each Core) Memory
	Shared (by both Cores) Memory
	I/O Memory Space
	Memory Protection
	Multi-Parity-Bit-Protected L1 Memories
	ECC-Protected L2 Memory
	CRC-Protected Memories
	Watchpoint Protection
	Pin Multiplexing

	Processor Infrastructure
	System Crossbar (SCB)
	Clock Generation
	Crystal Oscillator (SYS_XTAL)
	Clock Out/External Clock

	System Protection Unit (SPU)
	Dynamic Power Management (DPM)
	Core Timers

	Event Handling
	Core Event Controller (CEC)
	System Event Controller (SEC)
	Trigger Routing Unit (TRU)
	Pin Interrupts

	Memory Architecture
	Static Memory Controller (SMC)
	L2 Memory Controller
	Dynamic Memory Controller (DMC)
	Cyclic Redundancy Check (CRC)
	Direct Memory Access (DMA)

	On Chip Peripherals
	General-Purpose I/O (GPIO)
	General-Purpose Timers
	Watchdog Timers
	General-Purpose Counters
	Pulsewidth Modulator (PWM)
	Universal Asynchronous Receiver/Transmitter (UART)
	2-Wire Interface (TWI)
	Controller Area Network (CAN)
	Universal Serial Bus (USB)
	Ethernet Media Access Controller (MAC)
	Removable Storage Interface (RSI)
	Serial Peripheral Interface (SPI)
	Serial Port (SPORT)
	ADC Control Module (ACM)
	Link Port (LP)
	Video Sub-System and Pixel Pipeline (PxP)
	Pipelined Vision Processor (PVP)
	Parallel Peripheral Interface (PPI)
	Pixel Compositor (PIXC)
	Reset Control Unit (RCU)

	Booting
	System Debug Unit
	System Watchpoint Unit

	System Crossbars (SCB)
	SCB Features
	SCB Functional Description
	ADSP-BF60x SCB Register List
	SCB Definitions
	SCB Block Diagram
	SCB Hierarchy Block Diagram
	ADSP-BF60x SCB Block Diagram

	ADSP-BF60x SCB Bus Master IDs
	ADSP-BF60x SCB Arbitration Tables
	SCB Units, Master Interfaces, and Arbitration Types
	SCB0 Slots and Masters
	SCB1 Slots and Masters
	SCB2 Slots and Masters
	SCB3 Slots and Masters
	SCB4 Slots and Masters
	SCB5 Slots and Masters
	SCB6 Slots and Masters
	SCB7 Slots and Masters
	SCB8 Slots and Masters
	SCB9 Slots and Masters

	SCB Programming Model
	Reading Arbitration Settings
	Writing Arbitration Settings
	SCB Programming Concepts

	ADSP-BF60x SCB Register Descriptions
	Arbitration Read Channel Master Interface n Register
	Arbitration Write Channel Master Interface n Register
	Slave Interfaces Number Register
	Master Interfaces Number Register

	Clock Generation Unit (CGU)
	CGU Features
	CGU Functional Description
	ADSP-BF60x CGU Register List
	ADSP-BF60x CGU Interrupt List
	ADSP-BF60x CGU Trigger List
	CGU Definitions
	CGU PLL Block Diagram

	CGU Operating Modes
	CGU Event Control
	CGU Event
	CGU Error
	CGU Generated Bus Errors

	CGU Programming Model
	CGU Mode Configuration
	Changing the PLL Clock Frequency
	Changing the CCLKn, SYSCLK, or SCLKn frequency Without Modifying the PLLCLK Frequency
	Changing the DCLK Clock Frequency
	Changing the OUTCLK Frequency
	Aligning All Clocks
	ADSP-BF60x Valid Clock Multiplier Settings

	ADSP-BF60x CGU Register Descriptions
	Control Register
	Status Register
	Clocks Divisor Register
	CLKOUT Select Register

	System Protection Unit (SPU)
	SPU Features
	SPU Functional Description
	ADSP-BF60x SPU Register List
	SPU Definitions
	SPU Block Diagram
	SPU Architectural Concepts

	SPU Event Control
	SPU Programming Model
	SPU Mode Configuration
	Locking Write-Protect Registers
	Protecting a Peripheral

	ADSP-BF60x SPU Register Descriptions
	Control Register
	Status Register
	Write Protect Register n

	ADSP-BF60x SPU_WPn Additional Information

	Dynamic Power Management (DPM)
	DPM Features
	DPM Functional Description
	ADSP-BF60x DPM Register List
	ADSP-BF60x DPM Interrupt List
	DPM Definitions

	DPM Operating Modes
	Reset State
	Full-on Mode
	Active Mode
	ACTIVE with PLL Disabled
	Deep Sleep Mode
	Hibernate Mode

	DPM Event Control
	DPM Events
	DPM Errors

	DPM Programming Model
	Ensuring Internal Logic Supply is Restored Before Booting
	Using the PG Counter to Check Internal Logic Supply is Restored
	Using the PG Input to Check Internal Logic Supply is Restored

	Configuring Deep Sleep Mode
	Configuring Hibernate Mode
	ADSP-BF60x Wake-Up Sources
	ADSP-BF60x Clock Buffer Disable Bit Assignments
	ADSP-BF60x Hibernate Disable Bit Assignments

	ADSP-BF60x DPM Register Descriptions
	Control Register
	Status Register
	Core Clock Buffer Disable Register
	Core Clock Buffer Enable Register
	Core Clock Buffer Status Register
	Core Clock Buffer Status Sticky Register
	System Clock Buffer Disable Register
	Wakeup Enable Register
	Wakeup Polarity Register
	Wakeup Status Register
	Hibernate Disable Register
	Power Good Counter Register
	Restore Registers

	Core Timer (TMR)
	TMR Features
	TMR Functional Description
	ADSP-BF60x TMR Register List
	TMR Block Diagram
	External Interfaces
	Internal Interfaces

	TMR Operation
	Interrupt Processing

	ADSP-BF60x TMR Register Descriptions
	Timer Control Register
	Timer Period Register
	Timer Scale Register
	Timer Count Register

	System Event Controller (SEC)
	SEC Features
	SEC Functional Description
	ADSP-BF60x SEC Register List
	ADSP-BF60x Interrupt List
	ADSP-BF60x SEC Trigger List
	SEC Definitions
	SEC Block Diagram
	SFI Block Diagram
	SCI Block Diagram
	SSI Block Diagram

	SEC Architectural Concepts
	System Interrupt Acknowledge
	System Interrupt Groups
	System Interrupt Flow
	System Interrupt Priorities
	SEC Error

	SEC Programming Model
	Programming Concepts
	Programming Examples
	Configuring a System Source to Interrupt a Core
	Configuring a System Source as a Fault

	ADSP-BF60x SEC Register Descriptions
	SCI Control Register n
	SCI Status Register n
	Core Pending Register n
	SCI Active Register n
	SCI Priority Mask Register n
	SCI Group Mask Register n
	SCI Priority Level Register n
	SCI Source ID Register n
	Fault Control Register
	Fault Status Register
	Fault Source ID Register
	Fault End Register
	Fault Delay Register
	Fault Delay Current Register
	Fault System Reset Delay Register
	Fault System Reset Delay Current Register
	Fault COP Period Register
	Fault COP Period Current Register
	Global Control Register
	Global Status Register
	Global Raise Register
	Global End Register
	Source Control Register n
	Source Status Register n

	Trigger Routing Unit (TRU)
	TRU Features
	TRU Functional Description
	ADSP-BF60x TRU Register List
	ADSP-BF60x TRU Interrupt List
	ADSP-BF60x Trigger List
	TRU Definitions
	TRU Block Diagram
	TRU Architectural Concepts

	TRU Programming Model
	Programming Concepts
	Programming Example

	TRU Event Control
	TRU Status and Error Signals

	ADSP-BF60x TRU Register Descriptions
	Slave Select Register
	Master Trigger Register
	Error Address Register
	Status Information Register
	Global Control Register

	Static Memory Controller (SMC)
	SMC Features
	SMC Functional Description
	ADSP-BF60x SMC Register List
	SMC Definitions
	SMC Architectural Concepts
	Avoiding Bus Contention
	ARDY Input Control
	Bus Request and Bus Grant
	Bank-Off Bus Grant
	Bus Request and Bus Grant Protocol Timing
	Disabling Bus Grant to External Memory Controllers

	SMC Operating Modes
	Asynchronous Flash Mode
	Synchronous Burst Mode
	Asynchronous Page Mode

	SMC Event Control
	SMC Programmable Timing Characteristics
	Asynchronous SRAM Reads and Writes
	Asynchronous SRAM Reads with IDLE Transition Cycles Inserted
	High Speed Asynchronous SRAM Read Burst
	High Speed Asynchronous SRAM Writes
	Asynchronous SRAM Reads with ARDY
	Asynchronous Flash Reads
	Asynchronous Flash Writes
	Asynchronous Flash Page Mode Reads
	Synchronous Burst Mode Reads
	Asynchronous FIFO Reads and Writes

	SMC Programming Model
	ADSP-BF60x SMC Register Descriptions
	Grant Control Register
	Grant Status Register
	Bank 0 Control Register
	Bank 0 Timing Register
	Bank 0 Extended Timing Register
	Bank 1 Control Register
	Bank 1 Timing Register
	Bank 1 Extended Timing Register
	Bank 2 Control Register
	Bank 2 Timing Register
	Bank 2 Extended Timing Register
	Bank 3 Control Register
	Bank 3 Timing Register
	Bank 3 Extended Timing Register

	L2 Memory Controller (L2CTL)
	L2 Memory Controller Features
	L2 Memory Controller Functional Description
	ADSP-BF60x L2CTL Register List
	ADSP-BF60x L2CTL Interrupt List
	L2 Memory Controller Block Diagram
	L2 Memory Controller Architectural Concepts
	Access Characteristics
	Read/Write Latency and Throughput
	Arbitration and Priority
	Data Integrity
	ECC Hardware Control
	ECC Error Management
	Memory Refresh

	Access Control

	L2 Memory Controller Event Control
	ADSP-BF60x L2CTL Register Descriptions
	Control Register
	Access Control Core 0 Register
	Access Control Core 1 Register
	Access Control System Register
	Status Register
	Read Priority Count Register
	Write Priority Count Register
	Refresh Address Register
	ECC Error Address 0 Register
	ECC Error Address 1 Register
	ECC Error Address 2 Register
	ECC Error Address 3 Register
	ECC Error Address 4 Register
	ECC Error Address 5 Register
	ECC Error Address 6 Register
	ECC Error Address 7 Register
	Error Type 0 Register
	Error Type 0 Address Register
	Error Type 1 Register
	Error Type 1 Address Register

	ADSP-BF60x Processor-Specific Information
	ADSP-BF60x L2 Memory Controller Throughput

	Dynamic Memory Controller (DMC)
	DMC Features
	Feature Exclusions

	Functional Description
	ADSP-BF60x DMC Register List
	DMC Protocol Controller
	DMC Efficiency Controller
	Read/Write Turnaround
	Closed Page Per Bank
	SCB ID Based Priority
	Delaying up to Eight Auto-Refresh Commands
	Page Interleaving and Bank Interleaving

	System Crossbar Slave Interface
	Read/Write Command and Data Buffers

	Peripheral Bus Slave Interface
	Architectural Concepts
	DMC Clocking
	DMC DMA

	DMC Event Control
	DMC Programming Model
	Configuring the DMC
	Saving Power with the DMC

	ADSP-BF60x DMC Register Descriptions
	Control Register
	Status Register
	Efficiency Control Register
	Priority ID Register
	Priority ID Mask Register
	Configuration Register
	Timing 0 Register
	Timing 1 Register
	Timing 2 Register
	Mask (Mode Register Shadow) Register
	Shadow MR Register
	Shadow EMR1 Register
	Shadow EMR2 Register
	Shadow EMR3 Register
	DLL Control Register
	PHY Control 1 Register
	PHY Control 3 Register
	PAD Control Register

	ADSP-BF60x Specific Register/Bit Settings

	Cyclic Redundancy Check (CRC)
	CRC Features
	CRC Functional Description
	ADSP-BF60x CRC Register List
	ADSP-BF60x CRC Interrupt List
	CRC Definitions
	CRC Block Diagram
	Peripheral DMA Bus
	MMR Access Bus
	Mirror Block
	Data FIFO
	DMA Request Generator
	CRC Engine
	Compare Logic

	CRC Architectural Concepts
	Lookup Table
	Data Mirroring
	FIFO Status and Data Requests

	CRC Operating Modes
	Data Transfer Modes
	Memory Scan Compute and Compare
	Memory Scan Data Verify
	Memory Transfer Compute and Compare
	Memory Transfer Data Fill Mode

	CRC Event Control
	Interrupt Signals

	CRC Programming Model
	CRC Mode Configuration
	Look-Up Table Generation
	Core Driven Memory Scan Compute Compare Mode
	DMA Driven Memory Scan Compute Compare Mode
	Core Driven Memory Scan Data Verify Mode
	DMA Driven Memory Scan Data Verify Mode
	Core Driven Memory Transfer Compute Compare Mode
	DMA Driven Memory Transfer Compute Compare Mode
	DMA Driven Memory Transfer Data Fill Mode

	CRC Peripheral and DMA Channel List
	ADSP-BF60x CRC Register Descriptions
	Control Register
	Data Word Count Register
	Data Word Count Reload Register
	Data Compare Register
	Fill Value Register
	Data FIFO Register
	Interrupt Enable Register
	Interrupt Enable Set Register
	Interrupt Enable Clear Register
	Polynomial Register
	Status Register
	Data Count Capture Register
	CRC Final Result Register
	CRC Current Result Register

	Direct Memory Access (DMA)
	DMA Channel Features
	DMA Channel Functional Description
	ADSP-BF60x DMA Register List
	DMA Definitions
	Block Diagram
	SCB Interface Signals
	DMA Channel Peripheral DMA Bus
	DMA Channel MMR Access Bus
	Event Signals

	Architectural Concepts
	DMA Channel SCB Interface
	SCB Interface Signals
	SCB Burst Transfers
	Data Address Alignment
	Descriptor Set Address Alignment

	DMA Channel Peripheral DMA Bus
	Peripheral Control Commands
	Idle Command
	Restart Command
	Finish Command
	Interrupt Command
	Request Data Command
	Request Data Urgent Command

	Peripheral Control Command Restrictions
	Transmit Restart or Finish
	Receive Restart or Finish
	Finish Only

	Memory DMA and Triggering
	DMA Channel MMR Access Bus
	DMA Channel Operation Flow
	Startup
	Minimum Enable Requirements
	Startup Operation

	Refresh
	Work Unit Transitions
	Transmit and MDMA Source Transitions
	Work Unit Receive and MDMA Destination Transitions

	Transfer Termination and Shutdown
	Stop Flow Mode
	Autobuffer Flow Mode

	DMA Channel Errors
	Status and Debug
	DMA Configuration Register Errors
	Illegal Register Write During Run
	Address Alignment Error
	Memory Access Error
	Trigger Overrun Error
	Bandwidth Monitor Error
	Control Interface Error

	DMA Operating Modes
	Register Based Flow Modes
	Stop Mode
	Autobuffer Mode

	Descriptor Based Flow Modes
	Descriptor Array Mode
	Descriptor List Mode
	Descriptor Sets
	Minimum Startup Requirements

	Descriptor On-Demand Modes

	Data Transfer Modes
	Two-Dimensional DMA

	DMA Channel Event Control
	Event Signals
	Work Unit State Events
	Peripheral Interrupt Request Events
	Peripheral Data Request Events
	DMA Channel Triggers
	Issuing Triggers
	Waiting For Triggers

	DMA Channel Programming Model
	Mode Configuration
	Register Based Linear Buffer Stop Flow Mode
	Register Based Autobuffer Flow Mode
	Descriptor Array Flow Mode
	Descriptor List Flow Mode
	Register Based Memory-to-Memory Transfer in Stop Flow Mode

	Programming Concepts
	Synchronization of Software and DMA
	Interrupt and Trigger Event Based Synchronization
	Register Polling Based Synchronization

	Descriptor Queues
	Queues Using Event Generation for Every Descriptor Set
	Queues Using Minimal Events

	ADSP-BF60x DMA Register Descriptions
	Pointer to Next Initial Descriptor
	Start Address of Current Buffer
	Configuration Register
	Inner Loop Count Start Value
	Inner Loop Address Increment
	Outer Loop Count Start Value (2D only)
	Outer Loop Address Increment (2D only)
	Current Descriptor Pointer
	Previous Initial Descriptor Pointer
	Current Address
	Status Register
	Current Count(1D) or intra-row XCNT (2D)
	Current Row Count (2D only)
	Bandwidth Limit Count
	Bandwidth Limit Count Current
	Bandwidth Monitor Count
	Bandwidth Monitor Count Current

	DMA Channel List for ADSP-BF60x

	General-Purpose Ports (PORT)
	PORT Features
	PORT Functional Description
	ADSP-BF60x PORT Register List
	ADSP-BF60x PINT Register List
	ADSP-BF60x PINT Interrupt List
	ADSP-BF60x PINT Trigger List
	ADSP-BF60x PADS Register List
	PORT Definitions
	PORT Architectural Concepts
	Internal Interfaces
	External Interfaces
	GPIO Functionality
	Input Mode
	Output Mode
	Open-Drain Mode

	Port Multiplexing Control
	ADSP-BF60x Multiplexing Scheme

	PORT Event Control
	PORT Interrupt Signals

	PORT Programming Model
	ADSP-BF60x PORT Register Descriptions
	Port x Function Enable Register
	Port x Function Enable Set Register
	Port x Function Enable Clear Register
	Port x GPIO Data Register
	Port x GPIO Data Set Register
	Port x GPIO Data Clear Register
	Port x GPIO Direction Register
	Port x GPIO Direction Set Register
	Port x GPIO Direction Clear Register
	Port x GPIO Input Enable Register
	Port x GPIO Input Enable Set Register
	Port x GPIO Input Enable Clear Register
	Port x Multiplexer Control Register
	Port x GPIO Input Enable Toggle Register
	Port x GPIO Polarity Invert Register
	Port x GPIO Polarity Invert Set Register
	Port x GPIO Polarity Invert Clear Register
	Port x GPIO Lock Register

	ADSP-BF60x PINT Register Descriptions
	Pint Mask Set Register
	Pint Mask Clear Register
	Pint Request Register
	Pint Assign Register
	Pint Edge Set Register
	Pint Edge Clear Register
	Pint Invert Set Register
	Pint Invert Clear Register
	Pint Pinstate Register
	Pint Latch Register

	ADSP-BF60x PADS Register Descriptions
	EMAC and PTP Clock Select Register
	TWI Voltage Selection
	GPIO Pin Hysteresis Enable Register

	General-Purpose Timer (TIMER)
	GP Timer Features
	ADSP-BF60x TIMER Register List
	ADSP-BF60x TIMER Interrupt List
	ADSP-BF60x TIMER Trigger List
	GP Timer Internal Interface
	GP Timer External Interface
	GP Timer General Operation
	Period, Width and Delay Register Interaction

	GP Timer Programming Concepts
	Setting Up Constantly Changing Timer Conditions
	Configuring, Enabling and Disabling One or More Timers
	Configuring Timer Data and Status Interrupts
	Using the Timer Broadcast Feature
	Single-Pulse PWMOUT Mode
	Timer Continuous PWMOUT Mode

	TIMER Width Capture (WIDCAP) Mode
	GP Timer Width Capture Mode Overflow

	Windowed Watchdog (WATCHDOG) Modes
	Timer Windowed Watchdog Width Mode
	Timer Windowed Watchdog Period Mode

	Pin Interrupt (PININT) Mode
	TIMER External Clock (EXTCLK) Mode
	Timer Illegal States
	Continuous PWMOUT Mode
	Single Pulse PWMOUT Mode
	WID CAP Mode
	EXTCLK Mode
	WATCHDOG Events

	ADSP-BF60x TIMER Register Descriptions
	Run Register
	Run Set Register
	Run Clear Register
	Stop Configuration Register
	Stop Configuration Set Register
	Stop Configuration Clear Register
	Data Interrupt Mask Register
	Status Interrupt Mask Register
	Trigger Master Mask Register
	Trigger Slave Enable Register
	Data Interrupt Latch Register
	Status Interrupt Latch Register
	Error Type Status Register
	Broadcast Period Register
	Broadcast Width Register
	Broadcast Delay Register
	Timer n Configuration Register
	Timer n Counter Register
	Timer n Period Register
	Timer n Width Register
	Timer n Delay Register

	Watchdog Timer (WDOG)
	WDOG Features
	Watchdog Timer Functional Description
	ADSP-BF60x WDOG Register List
	ADSP-BF60x WDOG Interrupt List
	WDOG Block Diagram
	Internal Interface
	External Interface

	WDOG Configuration
	ADSP-BF60x WDOG Register Descriptions
	Control Register
	Count Register
	Watchdog Timer Status Register

	General-Purpose Counter (CNT)
	GP Counter Features
	CNT Functional Description
	ADSP-BF60x CNT Register List
	ADSP-BF60x CNT Interrupt List
	ADSP-BF60x CNT Trigger List

	GP Counter Operating Modes
	Quadrature Encoder Mode
	Binary Encoder Mode
	Up/Down Counter Mode
	Direction Counter Mode
	Timed Direction Mode

	CNT Event Control
	Illegal Gray/Binary Code Events
	Up/Down Count Events
	Zero-Count Events
	Overflow Events
	Boundary Match Events
	Zero Marker Events

	GP Counter Programming Model
	CNT General Programming Flow
	CNT Mode Configuration
	Configuring GP Counter Push-Button Operation
	Configuring Zero-Marker-Zeros-Counter Mode
	Configuring Zero-Marker-Error Mode
	Configuring Zero-Once Mode
	Configuring Boundary Auto-Extend Mode
	Configuring Boundary Capture Mode
	Configuring Boundary Compare and Boundary Zero Modes
	Configuring GP Counter Push-Button Operation

	GP Counter Programming Concepts
	CNT Input Noise Filtering
	Capturing Counter Interval and CNT_CNTR Read Timing
	Capturing Time Interval Between Successive Counter Events

	ADSP-BF60x CNT Register Descriptions
	Configuration Register
	Interrupt Mask Register
	Status Register
	Command Register
	Debounce Register
	Counter Register
	Maximum Count Register
	Minimum Count Register

	Pulse-Width Modulator (PWM)
	PWM Features
	Functional Description
	ADSP-BF60x PWM Register List
	ADSP-BF60x PWM Interrupt List
	ADSP-BF60x PWM Trigger List
	Architectural Concepts
	Block Diagram

	Timer Units
	PWM Switching Frequency (PWM_TM) Register
	Timer Unit Operation
	Phase Offset Control

	Channel Timing Control Unit
	Channel Control
	Pulse Positioning and Duty Cycle Registers
	Duty Cycle and Pulse Positioning Control
	Channel Low Side Output Dependent Operation Mode and Dead-Time
	Channel High Side and Low Side Outputs, Independent Operation Mode
	Switched Reluctance Motors Application
	Switching Dead Time (PWM_DT) Register
	Duty Cycle with Dead-Time Control: Calculations for PULSEMODE 00
	Special Consideration for PWM Operation in Over-Modulation

	Output Disable and Cross-Over Functions
	Brushless DC Motor (Electronically Commutated Motor) Control

	Gate Drive Unit
	Output Control Feature Precedence
	Sync Operation
	Internal PWM SYNC Generation
	External PWM SYNC Generation

	Event Control
	Trip Control Unit

	Programming Model
	Programming Model for 3-Phase AC Motor Control
	System Parameters
	System State Sequencing
	PWM Initialization for Motor Control
	PWM Enable for Motor Control
	PWM Response to Sync Interrupt for Motor Control
	PWM Disable (and Stop the Motor) for Motor Control

	ADSP-BF60x PWM Register Descriptions
	Control Register
	Channel Config Register
	Trip Config Register
	Status Register
	Interrupt Mask Register
	Interrupt Latch Register
	Chop Configuration Register
	Dead Time Register
	Sync Pulse Width Register
	Timer 0 Period Register
	Timer 1 Period Register
	Timer 2 Period Register
	Timer 3 Period Register
	Timer 4 Period Register
	Channel A Delay Register
	Channel B Delay Register
	Channel C Delay Register
	Channel D Delay Register
	Channel A Control Register
	Channel A-High Duty-0 Register
	Channel A-High Duty-1 Register
	Channel A-Low Duty-0 Register
	Channel A-Low Duty-1 Register
	Channel B Control Register
	Channel B-High Duty-0 Register
	Channel B-High Duty-1 Register
	Channel B-Low Duty-0 Register
	Channel B-Low Duty-1 Register
	Channel C Control Register
	Channel C-High Pulse Duty Register 0
	Channel C-High Pulse Duty Register 1
	Channel C-Low Pulse Duty Register 0
	Channel C-Low Duty-1 Register
	Channel D Control Register
	Channel D-High Duty-0 Register
	Channel D-High Pulse Duty Register 1
	Channel D-Low Pulse Duty Register 0
	Channel D-Low Pulse Duty Register 1

	Universal Asynchronous Receiver/Transmitter (UART)
	UART Features
	UART Functional Description
	ADSP-BF60x UART Register List
	ADSP-BF60x UART Interrupt List
	ADSP-BF60x UART Trigger List
	ADSP-BF60x UART DMA List
	UART Block Diagram
	UART Architectural Concepts
	Internal Interface
	External Interface
	Hardware Flow Control
	UART Bit Rate Generation
	Autobaud Detection
	UART Debug Features

	UART Operating Modes
	UART Mode
	IrDA SIR Mode
	Multi-Drop Bus Mode
	UART Data Transfer Modes
	UART Mode Transmit Operation (Core)
	UART Mode LIN Break Command
	UART Mode Receive Operation (Core)
	IrDA Transmit Operation
	IrDA Receive Operation
	MDB Transmit Operation
	MDB Receive Operation
	DMA Mode
	Mixing DMA and Core Modes
	Setting Up Hardware Flow Control

	UART Event Control
	Interrupt Masks
	Interrupt Servicing
	Transmit Interrupts
	Receive Interrupts
	Status Interrupts
	Multi-Drop Bus Events

	UART Programming Model
	Detecting Autobaud
	Using Common Initialization Steps
	Using Core Transfers
	Using DMA Transfers
	Using Interrupts
	Setting Up Hardware Flow Control

	ADSP-BF60x UART Register Descriptions
	Control Register
	Status Register
	Scratch Register
	Clock Rate Register
	Interrupt Mask Register
	Interrupt Mask Set Register
	Interrupt Mask Clear Register
	Receive Buffer Register
	Transmit Hold Register
	Transmit Address/Insert Pulse Register
	Transmit Shift Register
	Receive Shift Register
	Transmit Counter Register
	Receive Counter Register

	2-Wire Interface (TWI)
	TWI Features
	TWI Functional Description
	ADSP-BF60x TWI Register List
	ADSP-BF60x TWI Interrupt List
	TWI Block Diagram
	External Interface
	Serial Clock Signal (SCL)
	Serial Data Signal (SDA)

	Internal Interface
	TWI Architectural Concepts
	TWI Protocol
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	TWI Operating Modes
	Repeated Start
	Transmit Receive Repeated Start
	Receive Transmit Repeated Start
	Clock Stretching
	Clock Stretching During FIFO Underflow
	Clock Stretching During FIFO Overflow
	Clock Stretching During Repeated Start

	TWI Programming Model
	General Setup
	Slave Mode
	Master Mode Program Flow
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive

	ADSP-BF60x TWI Register Descriptions
	SCL Clock Divider Register
	Control Register
	Slave Mode Control Register
	Slave Mode Status Register
	Slave Mode Address Register
	Master Mode Control Registers
	Master Mode Status Register
	Master Mode Address Register
	Interrupt Status Register
	Interrupt Mask Register
	FIFO Control Register
	FIFO Status Register
	Tx Data Single-Byte Register
	Tx Data Double-Byte Register
	Rx Data Single-Byte Register
	Rx Data Double-Byte Register

	Controller Area Network (CAN)
	CAN Features
	CAN Functional Description
	ADSP-BF60x CAN Register List
	ADSP-BF60x CAN Interrupt List
	External Interface
	ADSP-BF60x Specific External Interface

	Architectural Concepts
	Block Diagram
	Mailbox Control
	Protocol Fundamentals

	Data Transfer Modes
	Transmit Operations
	Retransmission
	Single-Shot Transmission
	Auto-Transmission

	Receive Operation
	Data Acceptance Filtering

	Watchdog Mode
	Time Stamps
	Remote Frame Handling
	Temporarily Disabling CAN Mailbox

	CAN Operating Modes
	Bit Timing
	CAN Low Power Features
	Built-In Suspend Mode
	Built-In Sleep Mode
	Wake-Up From Hibernate State
	Soft Reset

	CAN Event Control
	CAN Interrupt Signals
	Mailbox Interrupts
	Global Interrupt

	Event Counter
	CAN Warnings and Errors
	Programmable Warning Limits
	Error Handling
	Error Frames
	Error Levels

	CAN Debug and Test Modes

	ADSP-BF60x CAN Register Descriptions
	Mailbox Configuration 1 Register
	Mailbox Direction 1 Register
	Transmission Request Set 1 Register
	Transmission Request Reset 1 Register
	Transmission Acknowledge 1 Register
	Abort Acknowledge 1 Register
	Receive Message Pending 1 Register
	Receive Message Lost 1 Register
	Mailbox Transmit Interrupt Flag 1 Register
	Mailbox Receive Interrupt Flag 1 Register
	Mailbox Interrupt Mask 1 Register
	Remote Frame Handling 1 Register
	Overwrite Protection/Single Shot Transmission 1 Register
	Mailbox Configuration 2 Register
	Mailbox Direction 2 Register
	Transmission Request Set 2 Register
	Transmission Request Reset 2 Register
	Transmission Acknowledge 2 Register
	Abort Acknowledge 2 Register
	Receive Message Pending 2 Register
	Receive Message Lost 2 Register
	Mailbox Transmit Interrupt Flag 2 Register
	Mailbox Receive Interrupt Flag 2 Register
	Mailbox Interrupt Mask 2 Register
	Remote Frame Handling 2 Register
	Overwrite Protection/Single Shot Transmission 2 Register
	Clock Register
	Timing Register
	Debug Register
	Status Register
	Error Counter Register
	Global CAN Interrupt Status Register
	Global CAN Interrupt Mask Register
	Global CAN Interrupt Flag Register
	CAN Master Control Register
	Interrupt Pending Register
	Temporary Mailbox Disable Register
	Error Counter Warning Level Register
	Error Status Register
	Universal Counter Register
	Universal Counter Reload/Capture Register
	Universal Counter Configuration Mode Register
	Acceptance Mask (L) Register
	Acceptance Mask (H) Register
	Mailbox Word 0 Register
	Mailbox Word 1 Register
	Mailbox Word 2 Register
	Mailbox Word 3 Register
	Mailbox Length Register
	Mailbox Timestamp Register
	Mailbox ID 0 Register
	Mailbox ID 1 Register

	Universal Serial Bus (USB)
	USB Features
	USB Functional Description
	USB Architectural Concepts
	Multi-Point Support
	On-Chip Bus Interfaces
	FIFO Configuration
	Clocking
	UTMI Interface

	ADSP-BF60x USB Register List
	ADSP-BF60x USB Interrupt List
	ADSP-BF60x USB Trigger List
	USB Block Diagram
	USB Definitions
	USB References

	USB Operating Modes
	Peripheral Mode
	Endpoint Setup
	IN Transactions as a Peripheral
	OUT Transactions as a Peripheral
	High-Bandwidth Isochronous/Interrupt Transactions
	High Bandwidth Isochronous/Interrupt IN Endpoints
	High Bandwidth Isochronous/Interrupt OUT Endpoints
	Peripheral Transfer Work Flows
	Control Transactions as a Peripheral
	Write Requests
	Read Requests
	Zero Data Requests
	ENDPOINT 0 States
	Endpoint 0 Service Routine as Peripheral
	Idle Mode
	TX Mode
	RX Mode

	Peripheral Mode, Bulk IN, Transfer Size Known
	Peripheral Mode, Bulk IN, Transfer Size Unknown
	Peripheral Mode, ISO IN, Small MaxPktSize
	Peripheral Mode, ISO IN, Large MaxPktSize
	Peripheral Mode, Bulk OUT, Transfer Size Known
	Peripheral Mode, Bulk OUT, Transfer Size Unknown
	Peripheral Mode, ISO OUT, Small MaxPktSize
	Peripheral Mode, ISO OUT, Large MaxPktSize

	Peripheral Mode Suspend
	Start-of-frame (SOF) Packets
	Soft Connect/Soft Disconnect
	Error Handling As a Peripheral
	Stalls Issued to Control Transfers
	Zero Length OUT Data Packets in Control Transfers

	Host Mode
	Transaction Scheduling
	Endpoint Setup and Data Transfer
	Control Transaction as a Host
	Setup Phase as a Host
	IN Data Phase as a Host
	OUT Data as a Host (Control)
	IN Status Phase as a Host (Following SETUP Phase or OUT Data Phase)
	OUT Status Phase as a Host (Following IN Data Phase)
	Host IN Transactions
	Host OUT Transactions
	Multi-Point Support
	Allocating Devices to Endpoints
	Multi-Point Operation
	Multi-Point Bandwidth Considerations

	Babble Interrupt
	VBUS Events
	Actions as an “A” Device
	Actions as a “B” Device

	Host Mode Reset
	Host Mode Suspend
	Suspending and Resuming the Controller
	Suspend/Resume by Inactivity on the USB Bus (L0 to L2 State) in Peripheral Mode
	Suspend/Resume By Inactivity On The USB Bus (L0 To L2 State) In Host Mode
	Suspend/Resume By an LPM Transaction (L0 To L1 State) In Peripheral Mode
	Suspend/Resume by an LPM Transaction (L0 to L1 State) in Host Mode

	USB Event Control
	Interrupt Signals
	Interrupt Handling
	Reset Signals
	Reset in Peripheral Mode
	USB Reset in Host Mode

	USB Programming Model
	Peripheral Mode Flow Charts
	Host Mode Flow Charts
	DMA Mode Flow Charts
	OTG Session Request
	Starting a Session
	Detecting Activity

	Host Negotiation Protocol
	Wakeup from Hibernate State
	Data Transfer
	Loading/Unloading Packets from Endpoints
	DMA Master Channels
	DMA Bus Cycles
	Transferring Packets Using DMA
	Individual RX Endpoint Packet
	Individual TX Endpoint Packet
	Multiple RX Endpoint Packets
	Multiple TX Endpoint Packets

	ADSP-BF60x USB Register Descriptions
	Function Address Register
	Power and Device Control Register
	Transmit Interrupt Register
	Receive Interrupt Register
	Transmit Interrupt Enable Register
	Receive Interrupt Enable Register
	Common Interrupts Register
	Common Interrupts Enable Register
	Frame Number Register
	Index Register
	Testmode Register
	FIFO Byte (8-Bit) Register
	FIFO Half-Word (16-Bit) Register
	FIFO Word (32-Bit) Register
	Device Control Register
	Transmit FIFO Size Register
	Receive FIFO Size Register
	Transmit FIFO Address Register
	Receive FIFO Address Register
	Endpoint Information Register
	RAM Information Register
	Link Information Register
	VBUS Pulse Length Register
	High-Speed EOF 1 Register
	Full-Speed EOF 1 Register
	Low-Speed EOF 1 Register
	Software Reset Register
	MPn Transmit Function Address Register
	MPn Transmit Hub Address Register
	MPn Transmit Hub Port Register
	MPn Receive Function Address Register
	MPn Receive Hub Address Register
	MPn Receive Hub Port Register
	EPn Transmit Maximum Packet Length Register
	EP0 Configuration and Status (Host) Register
	EP0 Configuration and Status (Peripheral) Register
	EPn Transmit Configuration and Status (Host) Register
	EPn Transmit Configuration and Status (Peripheral) Register
	EPn Receive Maximum Packet Length Register
	EPn Receive Configuration and Status (Host) Register
	EPn Receive Configuration and Status (Peripheral) Register
	EP0 Number of Received Bytes Register
	EPn Number of Bytes Received Register
	EPn Transmit Type Register
	EP0 Connection Type Register
	EP0 NAK Limit Register
	EPn Transmit Polling Interval Register
	EPn Receive Type Register
	EPn Receive Polling Interval Register
	EP0 Configuration Information Register
	DMA Interrupt Register
	DMA Channel n Control Register
	DMA Channel n Address Register
	DMA Channel n Count Register
	EPn Request Packet Count Register
	Chirp Timeout Register
	Host High Speed Return to Normal Register
	High Speed Timeout Register
	LPM Attribute Register
	LPM Control Register
	LPM Interrupt Enable Register
	LPM Interrupt Status Register
	LPM Function Address Register
	VBUS Control Register
	Battery Charging Control Register
	PHY Control Register
	PLL and Oscillator Control Register

	Ethernet Media Access Controller (EMAC)
	EMAC Features
	EMAC Functional Description
	ADSP-BF60x EMAC Register List
	ADSP-BF60x EMAC Interrupt List
	ADSP-BF60x EMAC Trigger List
	EMAC Definitions
	EMAC Block Diagram and Interfaces
	EMAC CORE Sub-Blocks
	EMAC PHY Interface
	Clock Sources

	EMAC Architectural Concepts
	EMAC System Crossbar Interface (EMAC SCB)
	Priority of SCB Requests
	SCB Interface Programming Options
	DMA Bursts Using the SCB Interface
	SCB Bus Transaction Status
	Fatal Bus Error

	DMA Controller (EMAC DMA)
	DMA Related Registers
	DMA Descriptors
	Transmit Descriptor
	DMA Transmit Process
	Default (Non-OSF) Mode
	OSF Mode Enabled
	Transmit Frame Processing
	Transmit Polling Suspended

	Receive Descriptor
	EMAC DMA Receive Process
	Receive Frame Processing
	Receive Descriptor Acquisition
	Receive Process Suspended

	OWN Bit (Ownership) Semaphore
	Application Data Buffer Alignment
	Buffer Size Calculations

	EMAC FIFO Layer (EMAC MFL)
	FIFO Size
	FIFO Layer Transmit Path
	Transmit FIFO and Half-Duplex Retransmissions
	Transmit FIFO Flush Operation

	FIFO Layer Receive Path
	Receive FIFO Multi-Frame Handling
	Receive FIFO Error Handling

	EMAC CORE
	EMAC CORE Transmission Engine
	Transmit Bus Interface Module (TBU)
	Transmit Frame Controller Module (TFC)
	Transmit Checksum Offload Engine (TCOE)
	IP Header Checksum
	TCP/UDP/ICMP Checksum
	Transmit Protocol Engine Module (TPE)
	Transmit Scheduler Module (STX)
	Transmit CRC Generator Module (CTX)
	Transmit Flow Control Module (FTX)

	EMAC CORE Reception Engine
	Receive Protocol Engine Module (RPE)
	Receive CRC Module (CRX)
	Receive Frame Controller Module (RFC)
	Receive Flow Control Module (FRX)
	Receive Checksum Offload Engine (RCOE)
	Receive Bus Interface Unit Module (RBU)
	Address Filtering Module (AFM)
	Destination Address Filtering

	EMAC Station Management Interface (SMI)
	MDC Clock Frequency
	SMI Write Operation
	SMI Read Operation

	EMAC Management Counters (MMC)
	MMC Receive Interrupt Register
	MMC Transmit Interrupt Register
	MMC Receive Checksum Offload Interrupt Register

	EMAC Precision Time Protocol (PTP) Engine
	IEEE1588 and the PTP Engine
	PTP Engine
	IEEE1588 Standard
	IEEE 1588-2002
	IEEE 1588-2008 Advanced Timestamps
	Peer-to-Peer (P2P) PTP Message Support

	Block Diagram
	PTP Module Clock
	Clock Source Selection
	Clock Frequency Range

	Timestamp Module
	Frame Detection and Timestamping
	Transmit Path Timestamping
	Auxiliary Timestamp Snapshot

	Receive Path Timestamping
	PTP Processing and Control
	PTP Frame Over IPv4
	PTP Frame Over IPv6
	PTP Frame Over Ethernet

	System Time
	System Time Adjustment
	System Time Initialization
	Coarse Correction Method
	Fine Correction Method
	Calculating Addend Value

	Target Time Trigger (Alarm)
	Pulse-Per-Second (PPS)
	Fixed Pulse-Per-Second Output
	Flexible Pulse-Per-Second Output
	PPS Start or Stop Time
	PPS Width and Interval
	PPS Command

	PTP Interrupts
	Auxiliary Snapshot Trigger
	Target Time Reached
	System Time Seconds Register Overflow

	EMAC Event Control
	EMAC Interrupt Signals
	PHYINT Interrupt Signal

	EMAC Programming Model
	EMAC Programming Steps
	DMA Initialization
	EMAC CORE Initialization
	Performing Normal Transmit and Receive Operations
	Stopping and Starting Transfers
	Interrupts and Interrupt Service Routines
	Enabling Checksum for Transmit and Receive
	Programming the System Time Module
	Programming The PTP for Frame Detection and Timestamping
	Programming for Auxiliary Timestamps
	Programming Fixed Pulse-Per-Second Output
	Programming Flexible Pulse-Per-Second Output

	EMAC Programming Concepts
	IEEE 802.3 Ethernet Packet Structure
	Frame Size Statistics for Application Software
	Software Visualization of Programmable Packet Size
	Ethernet Packet Structure in C
	DMA Descriptor Implementation in C
	PTP Header Structure in C

	ADSP-BF60x EMAC Register Descriptions
	MAC Configuration Register
	MAC Rx Frame Filter Register
	Hash Table High Register
	Hash Table Low Register
	SMI Address Register
	SMI Data Register
	FLow Control Register
	VLAN Tag Register
	Debug Register
	Interrupt Status Register
	Interrupt Mask Register
	MAC Address 0 High Register
	MAC Address 0 Low Register
	MMC Control Register
	MMC Rx Interrupt Register
	MMC Tx Interrupt Register
	MMC Rx Interrupt Mask Register
	MMC TX Interrupt Mask Register
	Tx OCT Count (Good/Bad) Register
	Tx Frame Count (Good/Bad) Register
	Tx Broadcast Frames (Good) Register
	Tx Multicast Frames (Good) Register
	Tx 64-Byte Frames (Good/Bad) Register
	Tx 65- to 127-Byte Frames (Good/Bad) Register
	Tx 128- to 255-Byte Frames (Good/Bad) Register
	Tx 256- to 511-Byte Frames (Good/Bad) Register
	Tx 512- to 1023-Byte Frames (Good/Bad) Register
	Tx 1024- to Max-Byte Frames (Good/Bad) Register
	Tx Unicast Frames (Good/Bad) Register
	Tx Multicast Frames (Good/Bad) Register
	Tx Broadcast Frames (Good/Bad) Register
	Tx Underflow Error Register
	Tx Single Collision (Good) Register
	Tx Multiple Collision (Good) Register
	Tx Deferred Register
	Tx Late Collision Register
	Tx Excess Collision Register
	Tx Carrier Error Register
	Tx Octet Count (Good) Register
	Tx Frame Count (Good) Register
	Tx Excess Deferral Register
	Tx Pause Frame Register
	Tx VLAN Frames (Good) Register
	Rx Frame Count (Good/Bad) Register
	Rx Octet Count (Good/Bad) Register
	Rx Octet Count (Good) Register
	Rx Broadcast Frames (Good) Register
	Rx Multicast Frames (Good) Register
	Rx CRC Error Register
	Rx alignment Error Register
	Rx Runt Error Register
	Rx Jab Error Register
	Rx Undersize (Good) Register
	Rx Oversize (Good) Register
	Rx 64-Byte Frames (Good/Bad) Register
	Rx 65- to 127-Byte Frames (Good/Bad) Register
	Rx 128- to 255-Byte Frames (Good/Bad) Register
	Rx 256- to 511-Byte Frames (Good/Bad) Register
	Rx 512- to 1023-Byte Frames (Good/Bad) Register
	Rx 1024- to Max-Byte Frames (Good/Bad) Register
	Rx Unicast Frames (Good) Register
	Rx Length Error Register
	Rx Out Of Range Type Register
	Rx Pause Frames Register
	Rx FIFO Overflow Register
	Rx VLAN Frames (Good/Bad) Register
	Rx Watch Dog Error Register
	MMC IPC Rx Interrupt Mask Register
	MMC IPC Rx Interrupt Register
	Rx IPv4 Datagrams (Good) Register
	Rx IPv4 Datagrams Header Errors Register
	Rx IPv4 Datagrams No Payload Frame Register
	Rx IPv4 Datagrams Fragmented Frames Register
	Rx IPv4 UDP Disabled Frames Register
	Rx IPv6 Datagrams Good Frames Register
	Rx IPv6 Datagrams Header Error Frames Register
	Rx IPv6 Datagrams No Payload Frames Register
	Rx UDP Good Frames Register
	Rx UDP Error Frames Register
	Rx TCP Good Frames Register
	Rx TCP Error Frames Register
	Rx ICMP Good Frames Register
	Rx ICMP Error Frames Register
	Rx IPv4 Datagrams Good Octets Register
	Rx IPv4 Datagrams Header Errors Register
	Rx IPv4 Datagrams No Payload Octets Register
	Rx IPv4 Datagrams Fragmented Octets Register
	Rx IPv4 UDP Disabled Octets Register
	Rx IPv6 Good Octets Register
	Rx IPv6 Header Errors Register
	Rx IPv6 No Payload Octets Register
	Rx UDP Good Octets Register
	Rx UDP Error Octets Register
	Rx TCP Good Octets Register
	Rx TCP Error Octets Register
	Rx ICMP Good Octets Register
	Rx ICMP Error Octets Register
	Time Stamp Control Register
	Time Stamp Sub Second Increment Register
	Time Stamp Low Seconds Register
	Time Stamp Nanoseconds Register
	Time Stamp Seconds Update Register
	Time Stamp Nanoseconds Update Register
	Time Stamp Addend Register
	Time Stamp Target Time Seconds Register
	Time Stamp Target Time Nanoseconds Register
	Time Stamp High Second Register
	Time Stamp Status Register
	PPS Control Register
	Time Stamp Auxiliary TS Nano Seconds Register
	Time Stamp Auxiliary TM Seconds Register
	Time Stamp PPS Interval Register
	PPS Width Register
	DMA Bus Mode Register
	DMA Tx Poll Demand Register
	DMA Rx Poll Demand register
	DMA Rx Descriptor List Address Register
	DMA Tx Descriptor List Address Register
	DMA Status Register
	DMA Operation Mode Register
	DMA Interrupt Enable Register
	DMA Missed Frame Register
	DMA Rx Interrupt Watch Dog Register
	DMA SCB Bus Mode Register
	DMA SCB Status Register
	DMA Tx Descriptor Current Register
	DMA Rx Descriptor Current Register
	DMA Tx Buffer Current Register
	DMA Rx Buffer Current Register

	Removable Storage Interface (RSI)
	RSI Features
	RSI Functional Description
	ADSP-BF60x RSI Register List
	ADSP-BF60x RSI Interrupt List
	ADSP-BF60x RSI Trigger List
	RSI Block Diagram
	RSI Architectural Concepts
	Signal Descriptions
	Clock Configuration
	Interface Configuration
	Card Detection
	Power Saving Configuration

	RSI Command-Response Interface
	IDLE State
	PEND State
	SEND State
	WAIT State
	RECEIVE State
	Command Path CRC

	RSI Data Interface
	RSI Data Transmit Path
	RSI Data Receive Path
	Data Path CRC
	RSI Data FIFO

	Card Busy/Ready Detection
	SDIO Support

	RSI Operating Modes
	Card Identification Mode
	Data Transfer Mode
	DMA Data Transfers
	Core Data Transfers

	Boot Mode
	Normal Boot Mode
	Alternate Boot Mode

	Sleep Mode

	RSI Event Control
	RSI Interrupt Signals
	RSI Status and Error Signals

	RSI Programming Model
	Card Identification
	SD Card Identification
	MMC Card Identification Procedure

	Data Transfer
	Single Block Writes
	Single Block Core Write
	Single Block DMA Writes

	Single Block Reads
	Single Block Core Reads
	Single Block DMA Reads

	Multiple Block Writes
	Multiple Block Core Write
	Multiple Block DMA Writes

	Multiple Block Read
	Multiple Block Core Reads
	Multiple Block DMA Reads

	RSI Programming Concepts
	Disabling CRC check
	Data End Interrupt
	Miscellaneous Programming Guidelines

	ADSP-BF60x RSI Register Descriptions
	Control Register
	Argument Register
	Command Register
	Response Command Register
	Response 0 Register
	Response 1 Register
	Response 2 Register
	Response 3 Register
	Data Timer Register
	Data Length Register
	Data Control Register
	Data Count Register
	Transfer Status Register
	Transfer Status Clear Register
	Transfer Interrupt 0 Mask Register
	Transfer Interrupt 1 Mask Register
	FIFO Counter Register
	Boot Timing Counter Register
	Boot Acknowledge Timeout Register
	Sleep Wakeup Timeout Register
	Block Size Register
	Data FIFO Register
	Exception Status Register
	Exception Mask Register
	Configuration Register
	Read Wait Enable Register
	Peripheral ID 0 Register
	Peripheral ID 1 Register
	Peripheral ID 2 Register
	Peripheral ID 3 Register

	Serial Peripheral Interface (SPI)
	SPI Features
	SPI Functional Description
	ADSP-BF60x SPI Register List
	ADSP-BF60x SPI Interrupt List
	ADSP-BF60x SPI Trigger List
	SPI Block Diagram
	Transfer Protocol
	SPI Clock Considerations
	Controlling Delay Between Frames
	SPI Flow Control
	Slave Select Operation
	Beginning and Ending a Non-DMA SPI Transfer
	Transmit Operation in Non-DMA Mode
	Receive Operation in Non-DMA Mode
	Dual I/O Mode
	Quad I/O Mode
	Fast Mode

	SPI Interrupt Signals
	Data Interrupts
	Status Interrupts
	Error Conditions

	SPI Programming Concepts
	Programming Guidelines
	Master Operation in Non-DMA Modes
	Slave Operation in Non-DMA Modes
	Configuring DMA Master Mode
	Configuring DMA Slave Mode Operation

	ADSP-BF60x SPI Register Descriptions
	Control Register
	Receive Control Register
	Transmit Control Register
	Clock Rate Register
	Delay Register
	Slave Select Register
	Received Word Count Register
	Received Word Count Reload Register
	Transmitted Word Count Register
	Transmitted Word Count Reload Register
	Interrupt Mask Register
	Interrupt Mask Clear Register
	Interrupt Mask Set Register
	Status Register
	Masked Interrupt Condition Register
	Masked Interrupt Clear Register
	Receive FIFO Data Register
	Transmit FIFO Data Register

	Serial Port (SPORT)
	Features
	Signal Descriptions
	Serial Clock
	Frame Sync
	Data Signals
	Transmit Data Valid Signal

	Functional Description
	ADSP-BF60x SPORT Register List
	ADSP-BF60x SPORT Interrupt List
	ADSP-BF60x SPORT Trigger List
	ADSP-BF60x SPORT DMA List
	Block Diagram
	Architectural Concepts
	Multiplexer Logic

	Data Types and Companding
	Companding as a Function

	Transmit Path
	Receive Path
	Sampling Edge
	Premature Frame Sync Error Detection
	Support for Edge-Detected and Level-Sensitive Frame Syncs
	Serial Word Length

	Operating Modes
	Mode Selection
	Standard Serial Mode
	Timing Control Bits
	Clocking Options
	Frame Sync Options
	Data-Dependent Versus Data-Independent Frame Sync
	Early Versus Late Frame Syncs
	Framed Versus Unframed Frame Syncs
	Logic Level

	Stereo Modes
	Channel Order First
	I2S Mode
	Protocol Configuration Options
	Serial Clock and Frame Sync Rates

	Left-Justified Mode
	Protocol Configuration Options
	Serial Clock and Frame Sync Rates

	Right-Justified Mode
	Timing Control Bits
	Serial Clock and Frame Sync Rates

	Multichannel Mode
	Protocol Configuration Options
	Clocking Options
	Frame Sync Options
	Transmit Data Valid (TDV)
	Active Channel Selection Registers (SPORT_CS0_A)
	Multichannel Frame Delay (MFD)
	Number of Multichannel Slots (WSIZE)
	Window Offset (WOFFSET)
	Companding Selection
	Multichannel DMA Data Packing (MCPDE)
	Multichannel Frame

	Packed I2S Mode
	Protocol Configuration Options
	Clocking Options
	Frame Sync Options

	Gated Clock Mode
	Data Transfers
	Data Buffers
	Transmit Data Buffers (SPORT_TXPRI_A and SPORT_TXSEC_A)
	Receive Data Buffers (SPORT_RXPRI_A and SPORT_RXSEC_A)
	Data Buffer Status
	Data Buffer Packing

	Single Word (Core) Transfers
	DMA Transfers
	Error Detection
	Interrupts
	Internal Transfer Completion
	Transfer Finish Interrupt (TFI)

	ADSP-BF60x SPORT Register Descriptions
	Half SPORT 'A' Control Register
	Half SPORT 'A' Divisor Register
	Half SPORT 'A' Multi-channel Control Register
	Half SPORT 'A' Multi-channel 0-31 Select Register
	Half SPORT 'A' Multi-channel 32-63 Select Register
	Half SPORT 'A' Multi-channel 64-95 Select Register
	Half SPORT 'A' Multi-channel 96-127 Select Register
	Half SPORT 'A' Error Register
	Half SPORT 'A' Multi-channel Status Register
	Half SPORT 'A' Control 2 Register
	Half SPORT 'A' Tx Buffer (Primary) Register
	Half SPORT 'A' Rx Buffer (Primary) Register
	Half SPORT 'A' Tx Buffer (Secondary) Register
	Half SPORT 'A' Rx Buffer (Secondary) Register
	Half SPORT 'B' Control Register
	Half SPORT 'B' Divisor Register
	Half SPORT 'B' Multi-channel Control Register
	Half SPORT 'B' Multi-channel 0-31 Select Register
	Half SPORT 'B' Multi-channel 32-63 Select Register
	Half SPORT 'B' Multichannel 64-95 Select Register
	Half SPORT 'B' Multichannel 96-127 Select Register
	Half SPORT 'B' Error Register
	Half SPORT 'B' Multi-channel Status Register
	Half SPORT 'B' Control 2 Register
	Half SPORT 'B' Tx Buffer (Primary) Register
	Half SPORT 'B' Rx Buffer (Primary) Register
	Half SPORT 'B' Tx Buffer (Secondary) Register
	Half SPORT 'B' Rx Buffer (Secondary) Register

	ADC Control Module (ACM)
	ACM Features
	ACM Functional Description
	ADSP-BF60x ACM Register List
	ADSP-BF60x ACM Interrupt List
	ADSP-BF60x ACM Trigger List
	ACM Event Handling Latency
	ACM Timing Specifications
	ACM External Pin Timing
	Case 1—Chip Select Asserted During the High Phase of ACLK (CLKPOL=0)
	Case 2—Chip Select Asserted During the Low Phase of ACLK (CLKPOL=0)
	Case 3—Chip Select Asserted Right Before the Falling Edge of ACLK (CLKPOL=1)
	Case 4—Chip Select Asserted Right Before the Rising Edge of ACLK (CLKPOL=0)
	Case 5—ACLK Polarity Set to 1 (CLKPOL=1)

	ACM Architectural Concepts
	ACM Block Diagram
	ACM Trigger Inputs
	ACM Timers
	Event Register Pairs
	Event Comparators Unit
	Timing Generation Unit
	Status Flags and Interrupts
	Event Order Registers

	ACM Programming Concepts
	Emulation Mode Use Case
	Single-Shot Sequencing Mode Emulation
	Continuous Sequencing Mode Emulation

	ADSP-BF60x ACM Register Descriptions
	Control Register
	Timing Configuration 0 Register
	Timing Configuration 1 Register
	Status Register
	Event Complete Status Register
	Event Complete Interrupt Mask Register
	Missed Event Status Register
	Missed Event Interrupt Mask Register
	Event N Control Register
	Event N Time Register
	Event N Order Register
	Timer 0 Register
	Timer 1 Register

	Link Port (LP)
	LP Features
	LP Functional Description
	ADSP-BF60x LP Register List
	ADSP-BF60x LP Interrupt List
	ADSP-BF60x LP Trigger List
	ADSP-BF60x LP DMA List
	Block Diagram
	External Connections
	Internal Blocks

	Architectural Concepts
	Link Port Protocol
	FIFO Buffers
	Handshake for Link Port Enable Process
	Clocking
	Multi-Processor Connectivity

	LP Operating Modes
	LP Data Transfer Modes
	Core Data Transfers
	DMA Data Transfers

	LP Event Control
	Interrupt Signals
	Enabling Link Port Interrupts

	Status and Error Signals

	LP Programming Model
	Setting Up a DMA Transmit Operation
	Setting Up a DMA Receive Operation
	Setting Up a Core Transmit Operation
	Setting Up a Core Receive Operation

	ADSP-BF60x LP Register Descriptions
	Control Register
	Status Register
	Clock Divider Value
	Transmit Buffer
	Receive Buffer
	Shadow Input Transmit Buffer
	Shadow Output Transmit Buffer

	Video Subsystem (VID)
	VID Features
	VID Functional Description
	ADSP-BF60x VID Register List
	VID Block Diagram
	VID Architectural Concepts

	VID Status and Error Signals
	VID Programming Model
	VID Performance
	ADSP-BF60x VID Register Descriptions
	Video Subsystem Connect Register

	Pipelined Vision Processor (PVP)
	PVP Features
	PVP Functional Description
	ADSP-BF60x PVP Register List
	ADSP-BF60x PVP Interrupt List
	ADSP-BF60x PVP Trigger List
	ADSP-BF60x PVP DMA List
	PVP Block Diagram
	PVP Definitions
	Input Formatters (IPFn)
	Input Formatters with Odd/Even Outputs
	Input Formatters with Windowing
	Input Formatters Receiving Packed Data
	Input Formatters Receiving Unsigned Data
	Input Formatters with Color Extraction
	Input Formatters with Color Separation
	Input Formatters Using PPI and PVP
	Input Formatters and Pipe Mastering

	Output Formatters (OPFn)
	OPFn Data Packing
	OPFn Output FIFOs

	Threshold-Histogram-Compression (THCn)
	THCn Threshold Unit
	THCn Histogram Unit
	THCn Compression Unit
	THCn Windowing

	Convolution (CNVn)
	Red Pixel Substitution

	Polar Magnitude and Angle Block (PMA)
	Arithmetic Control Unit (ACU)
	Pixel Edge Classifier (PEC)
	PEC 1st Derivative Mode (PEC-1)
	PEC 2nd Derivative Mode (PEC-2)

	Integral Image Block (IIMn)
	IIMn Data Types
	IIMn Bandwidth Usage
	IIMn Integral Row (IR) Mode
	IIMn Summed Area Table (SAT) Mode
	IIMn Rotated Summed Area Table (RSAT) Mode
	IIMn SAT/RSAT Map Usage

	Up Down Scaler (UDS)
	PVP Architectural Concepts

	Operating Modes
	Thresholds and Histograms
	Sobel with 3x3 or 5x5 Matrix Operation
	Sobel Output Formats
	Canny with PEC in 1st-Derivative Mode
	LoG with PEC in 2nd-Derivative Mode
	DoG with PEC in 2nd-Derivative Mode
	Integral of Input Pixels
	Integral of Binary Edge Map
	Integral of Variance
	Histogram of Gradients (HoG)

	Event Control
	Interrupt Signals
	Status and Error Signals
	Finish Commands

	Programming Model
	Configuring Pipe Structure
	Configuring with Register-Based Method (Camera Pipe)
	Configuring with DMA-Based Method
	Fetching the Initial Configuration
	Configuring with Descriptor-Based Method (Memory Pipe)
	Configuring with Dynamic (on-the-fly) Method
	Working with Pipe Latency (Data Buffering)
	Configuring with Daisy Chain Method
	Working with DMA Job Lists
	Static DMA Job List Operation
	Dynamic DMA Job List Operation

	Working with Status (Histogram) Reports
	Status Word Counters
	Block Status Structure

	ADSP-BF60x PVP Register Descriptions
	Control
	Interrupt Mask n
	Status
	Interrupt Latch Status n
	Interrupt Request n
	OPFn (Camera Pipe) Configuration
	OPFn (Camera Pipe) Control
	OPF3 (Memory Pipe) Configuration
	OPF3 (Memory Pipe) Control
	PEC Configuration
	PEC Control
	PEC Lower Hysteresis Threshold
	PEC Upper Hysteresis Threshold
	PEC Weak Zero Crossing Threshold
	PEC Strong Zero Crossing Threshold
	IIMn Configuration
	IIMn Control
	IIMn Scaling Values
	IIMn Signed Overflow Status
	IIMn Unsigned Overflow Status
	ACU Configuration
	ACU Control
	ACU SUM Constant
	ACU PROD Constant
	ACU Shift Constant
	ACU Lower Sat Threshold Min
	ACU Upper Sat Threshold Max
	UDS Configuration
	UDS Control
	UDS Output HCNT
	UDS Output VCNT
	UDS HAVG
	UDS VAVG
	IPF0 (Camera Pipe) Configuration
	IPFn (Camera/Memory Pipe) Pipe Control
	IPFn (Camera/Memory Pipe) Control
	IPFn (Camera/Memory Pipe) TAG Value
	IPFn (Camera/Memory Pipe) Frame Count
	IPFn (Camera/Memory Pipe) Horizontal Count
	IPFn (Camera/Memory Pipe) Vertical Count
	IPF0 (Camera Pipe) Horizontal Position
	IPF0 (Camera Pipe) Vertical Position
	IPFn (Camera/Memory Pipe) TAG Status
	IPF1 (Memory Pipe) Configuration
	CNVn Configuration
	CNVn Control
	CNVn Coefficients 0,0 and 0,1
	CNVn Coefficients 0,2 and 0,3
	CNVn Coefficient 0,4
	CNVn Coefficients 1,0 and 1,1
	CNVn Coefficients 1,2 and 1,3
	CNVn Coefficient 1,4
	CNVn Coefficients 2,0 and 2,1
	CNVn Coefficients 2,2 and 2,3
	CNVn Coefficient 2,4
	CNVn Coefficients 3,0 and 3,1
	CNVn Coefficients 3,2 and 3,3
	CNVn Coefficient 3,4
	CNVn Coefficients 4,0 and 4,1
	CNVn Coefficients 4,2 and 4,3
	CNVn Coefficient 4,4
	CNVn Scaling Factor
	THCn Configuration
	THCn Control
	THCn Histogram Frame Count
	THCn Max RLE Reports
	THCn Min Clip Value
	THCn Clip Min Threshold
	THCn Clip Max Threshold
	THCn Max Clip Value
	THCn Threshold Value 0
	THCn Threshold Value 1
	THCn Threshold Value 2
	THCn Threshold Value 3
	THCn Threshold Value 4
	THCn Threshold Value 5
	THCn Threshold Value 6
	THCn Threshold Value 7
	THCn Threshold Value 8
	THCn Threshold Value 9
	THCn Threshold Value 10
	THCn Threshold Value 11
	THCn Threshold Value 12
	THCn Threshold Value 13
	THCn Threshold Value 14
	THCn Threshold Value 15
	THCn Histogram Horizontal Position
	THCn Histogram Vertical Position
	THCn Histogram Horizontal Count
	THCn Histogram Vertical Count
	THCn RLE Horizontal Position
	THCn RLE Vertical Position
	THCn RLE Horizontal Count
	THCn RLE Vertical Count
	THCn Histogram Frame Count Status
	THCn Histogram Counter Value 0
	THCn Histogram Counter Value 1
	THCn Histogram Counter Value 2
	THCn Histogram Counter Value 3
	THCn Histogram Counter Value 4
	THCn Histogram Counter Value 5
	THCn Histogram Counter Value 6
	THCn Histogram Counter Value 7
	THCn Histogram Counter Value 8
	THCn Histogram Counter Value 9
	THCn Histogram Counter Value 10
	THCn Histogram Counter Value 11
	THCn Histogram Counter Value 12
	THCn Histogram Counter Value 13
	THCn Histogram Counter Value 14
	THCn Histogram Counter Value 15
	THCn Number of RLE Reports
	PMA Configuration

	Enhanced Parallel Peripheral Interface (EPPI)
	EPPI Features
	EPPI Functional Description
	ADSP-BF60x EPPI Register List
	ADSP-BF60x EPPI Interrupt List
	ADSP-BF60x EPPI Trigger List
	ADSP-BF60x EPPI DMA List
	RGB Data Formats
	Data Clipping
	Data Mirroring
	Windowing
	Preamble, Blanking and Stripping Support
	EPPI Definitions
	EPPI Block Diagram
	EPPI Architectural Concepts
	EPPI Interface
	Reset Operation
	Frame Sync Polarity and Sampling Edge
	Direct Memory Access (DMA)
	Pixel Pipe Interface (PxP)
	EPPI Clock

	EPPI Operating Modes
	ITU-R 656 Modes
	ITU-R 656 Background
	ITU-R 656 Input Modes
	Entire Field
	Active Video
	Vertical Blanking Interval (VBI)

	ITU-R 656 Output in General-Purpose Transmit Modes

	Frame Synchronization in ITU-R 656 Modes
	General-Purpose EPPI Modes
	General-Purpose 0 Frame Sync Mode
	General-Purpose 1 Frame Sync Mode
	General-Purpose 2 Frame Sync Mode
	Data Enable in General-Purpose 2 Frame Sync Transmit Mode
	General-Purpose 3 Frame Sync Mode

	Supported Data Formats
	Receive Data Formats
	Transmit Data Formats

	Data Transfer Modes
	Data Packing for Receive Modes
	Data Packing for Transmit Modes
	Sign-Extension and Zero-Filling
	Split Receive Modes
	Split Transmit Modes
	Clock Gating
	Support for Delayed Start of EPPI Frame Syncs
	Ignoring Premature External Frame Syncs for Data Consistency

	EPPI Event Control
	EPPI Status, Error and Interrupt Signals
	PxP Errors
	Frame and Line Track Errors
	Line Track Errors
	Frame Track Errors

	Preamble Error Not Corrected Error

	EPPI Programming Model
	Receiving ITU-R 656 Frames
	Transmitting ITU-R 656 Frames in GP Transmit Modes
	Configuring Transfers in GP 0 FS Mode
	Configuring Transfers in GP 1 FS Mode
	Configuring Transfers in GP 2 FS Mode
	Configuring Transfers in GP 3 FS Mode
	Configuring the EPPI to Use the Windowing Feature
	EPPI Mode Configuration
	Configuring 8-Bit Receive Mode
	Configuring 10/12/14-Bit Receive Modes
	Configuring 16-Bit Receive Mode
	Configuring 18-Bit Receive Mode
	Configuring 24-Bit Receive Mode
	Configuring 8-Bit Split Receive Mode
	Configuring 10/12/14/16-Bit Split Receive Mode with SPLTWRD=0
	Configuring 16-Bit Split Receive Mode with SPLTWRD=1
	Configuring 8-Bit Transmit Mode
	Configuring 10/12/14-Bit Transmit Modes
	Configuring 16-Bit Transmit Mode
	Configuring 18-Bit Transmit Mode
	Configuring 24-Bit Transmit Mode
	Configuring 8-Bit Split Transmit Mode
	Configuring 10/12/14/16-Bit Transmit Mode with SPLTWRD=0
	Configuring 16-Bit Split Transmit Mode with SPLTWRD=1

	EPPI Programming Concepts
	SMPTE Modes Programming

	ADSP-BF60x EPPI Register Descriptions
	Status Register
	Horizontal Transfer Count Register
	Horizontal Delay Count Register
	Vertical Transfer Count Register
	Vertical Delay Count Register
	Lines Per Frame Register
	Samples Per Line Register
	Clock Divide Register
	Control Register
	FS1 Width Register / EPPI Horizontal Blanking Samples Per Line Register
	FS1 Period Register / EPPI Active Samples Per Line Register
	FS2 Width Register / EPPI Lines Of Vertical Blanking Register
	FS2 Period Register / EPPI Active Lines Per Field Register
	Interrupt Mask Register
	Clipping Register for ODD (Chroma) Data
	Clipping Register for EVEN (Luma) Data
	Frame Sync 1 Delay Value
	Frame Sync 2 Delay Value
	Control Register 2

	Pixel Compositor (PIXC)
	PIXC Features
	PIXC Functional Description
	ADSP-BF60x PIXC Register List
	ADSP-BF60x PIXC Interrupt List
	ADSP-BF60x PIXC Trigger List
	ADSP-BF60x PIXC DMA List
	PIXC Definitions
	PIXC Block Diagram
	PIXC Architectural Concepts
	Pixel Pipe (PxP) Interface
	Start Synchronization in PxP Input Mode

	DMA Interface

	PIXC Data Overlay
	PIXC Transparency Control
	PIXC Transparency Color
	Color Space Conversion

	PIXC Operating Modes
	PIXC Mode Case 1 - Image/Overlay in the Same Format
	PIXC Mode Case 2 - Image/Overlay in Different Formats
	PIXC Mode Case 3 - Color Space Conversion Only
	Image/Overlay/Format Actions
	Image/Overlay/Format Recommendations
	PIXC Image/Overlay/Format Special Use Cases
	Example 1 - YUV 4:2:2 to YUV 4:4:4 or LCD/RGB
	Example 2 - YUV 4:4:4 to YUV 4:4:4 or YUV 4:2:2
	Example 3 - YUV 4:2:2/4:4:4 to YUV 4:4:4 or YUV 4:2:2
	Example 4 - YUV 4:4:4 to YUV 4:2:2

	Color Space Conversion Matrix Equations
	Color Space Converter Output Thresholds
	YUV Re-Sampling

	Supported Data Formats
	Operation in YUV 4:2:2 Format
	Operation in RGB888 Format
	Operation in RGB565 Format
	Operation in RGB666 Format
	Operation with RGB656 and RGB666 Formats

	PIXC Event Control
	PIXC Programming Model
	Mode Configuration
	Performing Data Overlay
	Performing Color Space Conversion Only

	ADSP-BF60x PIXC Register Descriptions
	Control Register
	Pixels Per Line Register
	Line Per Frame Register
	Overlay A Horizontal Start Register
	Overlay A Horizontal End Register
	Overlay A Vertical Start Register
	Overlay A Vertical End Register
	Overlay A Transparency Ratio Register
	Overlay B Horizontal Start Register
	Overlay B Horizontal End Register
	Overlay B Vertical Start Register
	Overlay B Vertical End Register
	Overlay B Transparency Ratio Register
	Interrupt Status Register
	RY Conversion Component Register
	GU Conversion Component Register
	BV Conversion Component Register
	Conversion Bias Register
	Transparency Color Register

	Reset Control Unit (RCU)
	RCU Features
	RCU Functional Description
	ADSP-BF60x RCU Register List
	ADSP-BF60x RCU Trigger List
	RCU Definitions
	RCU Architectural Concepts

	RCU Status and Error Signals
	Resetting a Core
	ADSP-BF60x Specific Information
	ADSP-BF60x RCU Register Descriptions
	Control Register
	Status Register
	Core Reset Control Register
	Core Reset Status Register
	System Interface Disable Register
	System Interface Status Register
	SVECT Lock Register
	Boot Code Register
	Software Vector Register 0
	Software Vector Register 1

	Boot ROM and Booting the Processor
	Boot Loader Stream
	Block Structure
	Block Code
	TARGET_ADDRESS
	BYTE_COUNT
	ARGUMENT
	Block Types
	Normal Block
	First Block
	Final Block
	Indirect Block
	Ignore Block
	Init Block
	Callback Block
	Callback Block Used in Conjunction with Indirect Block
	Quick Boot Block
	Save Block
	Forward Block
	Forwarding to SPI
	Forwarding to the Link Ports

	Multi-DXE Boot Streams
	Single-Block Boot Streams
	Direct Code Execution

	Boot Modes
	No-Boot Mode
	Memory Boot Mode
	Padding Memory
	Auto Detection
	Default Static Memory Controller (SMC) settings
	Run-time API

	RSI Master Boot Mode
	PageMode Customization
	Callback Customization
	RSI Code
	Run-Time API
	Notes on eMMC

	SPI Master Boot Mode
	SPI Device Detection Routine
	Run-time API

	SPI Slave Boot Mode
	Run-Time API

	Link Port Slave Boot Mode
	Run-time API

	UART Slave Boot Mode
	Autobaud Detection
	Run-time API

	Boot Programming Model
	Load Functions
	Page Mode
	Changing Settings at Run Time

	CRC32 Protection
	Error Handler
	Fault Management

	Callable API Overview
	System Control
	Functional Description

	Boot Kernel
	Boot Kernel

	Boot Routine
	CRC 32 Polynomial
	CRC Initcode
	ECC Protection
	Execute
	Forward Config
	Get Address
	Functional Description

	Mem Compare
	Memory Copy
	Memory CRC
	Memory Fill
	Software Built-in Self Test

	Booting Data Structures
	STRUCT_ROM_SYSCTRL
	STRUCT_ROM_BOOT_BUFFER
	STRUCT_ROM_BOOT_CONFIG
	STRUCT_ROM_BOOT_HEADER
	STRUCT_ROM_BOOT_SPI

	Wakeup From Hibernate
	CGU Initialization after Wakeup
	DDR Controller Initialization after Wakeup
	BFLAG_WAKEUP and BFLAG_QUICKBOOT
	ADSP-BF60x DPM Register List
	DPM Restore

	Reset and Power-up
	Reset Vector
	Servicing Reset Interrupts
	NMI and RESOUT
	Program Flow - Main Routine
	Core 0
	Core 1
	Core 1 Default Application

	Memory Initialization
	Boot Debug
	Boot ROM Revision Control
	Boot ROM Revision Control

	Booting Register Reference
	Status Register
	Software Vector Register 0
	Software Vector Register 1
	Boot Code Register
	RCU BCODE Register Definition

	System Debug Unit (SDU)
	SDU Features
	SDU Functional Description
	ADSP-BF60x SDU Register List
	ADSP-BF60x SDU Interrupt List
	ADSP-BF60x SDU Trigger List
	ADSP-BF60x SDU DMA List
	Definitions
	Block Diagram
	JTAG TAP Controller (JTC) Block Diagram
	JTC Core Emulation
	JTC Instruction Register (IR)

	Memory Access Controller (MAC)
	MAC Direct Access
	MAC DMA Access

	Group Halt
	Group Halt Status
	Group Halt Masters
	Group Halt Slaves

	SDU Programming Concepts
	Core Control
	Memory and Register Access
	Statistical Profiling
	Power Management Support
	Security Support
	System Reset Support

	ADSP-BF60x SDU Register Descriptions
	ID Code Register
	Control Register
	Status Register
	Memory Access Control Register
	Memory Access Address Register
	Memory Access Data Register
	DMA Read Data Register
	DMA Write Data Register
	Message Register
	Message Set Register
	Message Clear Register
	Group Halt Register

	System Watchpoint Unit (SWU)
	SWU Features
	SWU Functional Description
	ADSP-BF60x SWU Register List
	ADSP-BF60x SWU Interrupt List
	ADSP-BF60x SWU Trigger List
	SWU Definitions
	SWU Architectural Concepts
	SWU Flow Diagram
	SCB Interface

	SWU Block Diagram
	System Crossbar Block
	MMR Block

	SWU Operating Modes
	Bandwidth Mode
	Watchpoint Mode
	Match Block

	SWU Event Control
	SWU Interrupts
	SWU Status and Errors
	Triggers

	SWU Programming Model
	SWU Mode Configuration
	Configuring the SWU for Bandwidth Mode
	Configuring the SWU for Watchpoint Mode

	ADSP-BF60x SWU Register Descriptions
	Global Control Register
	Global Status Register
	Control Register n
	Lower Address Register n
	Upper Address Register n
	ID Register n
	Count Register n
	Target Register n
	Bandwidth History Register n
	Current Register n

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

