
a

SHARC® Processor
 Programming Reference

Includes ADSP-2136x, ADSP-2137x,
and ADSP-214xx SHARC Processors

Revision 2.4, April 2013

Part Number
82-000500-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, SHARC, TigerSHARC, CrossCore,
VisualDSP++, and EZ-KIT Lite are registered trademarks of Analog
Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

SHARC Processor Programming Reference iii

 CONTENTS

PREFACE

Purpose of This Manual .. xxxiii

Intended Audience .. xxxiii

Manual Contents .. xxxiv

What’s New in This Manual .. xxxvi

Technical Support ... xxxvi

Supported Processors .. xxxvii

Product Information .. xxxvii

Analog Devices Web Site ... xxxviii

EngineerZone .. xxxviii

Notation Conventions ... xxxix

Register Diagram Conventions ... xl

INTRODUCTION

SHARC Design Advantages ... 1-1

Architectural Overview ... 1-3

Processor Core ... 1-3

Dual Processing Elements .. 1-3

Program Sequence Control .. 1-6

Contents

iv SHARC Processor Programming Reference

JTAG Port .. 1-8

Core Buses ... 1-8

I/O Buses ... 1-9

Differences From Previous SHARC Processors 1-10

Development Tools ... 1-12

REGISTER FILES

Features .. 2-1

Functional Description ... 2-1

Core Register Classification ... 2-2

Register Types Overview ... 2-2

Data Registers ... 2-5

Data Register Neighbor Pairing ... 2-5

Complementary Data Register Pairs ... 2-5

Data and Complementary Data Register Access Priorities 2-6

Data and Complementary Data Register Transfers 2-7

Data and Complementary Data Register Swaps 2-7

System Register Bit Manipulation .. 2-8

Combined Data Bus Exchange Register 2-9

PX to DREG Transfers ... 2-10

Immediate 40-bit Data Register Load 2-11

PX to Memory Transfers ... 2-11

PX to Memory LW Transfers ... 2-12

Uncomplimentary UREG to Memory LW Transfers 2-13

SHARC Processor Programming Reference v

Contents

Operating Modes .. 2-14

Alternate (Secondary) Data Registers 2-14

Alternate (Secondary) Data Registers SIMD Mode 2-14

UREG/SREG SIMD Mode Transfers 2-16

Interrupt Mode Mask .. 2-17

PROCESSING ELEMENTS

Features .. 3-1

Functional Description ... 3-2

Single Cycle Processing .. 3-3

Data Forwarding in Processing Units 3-3

Data Format for Computation Units .. 3-4

Arithmetic Status ... 3-4

Computation Status Update Priority 3-5

SIMD Computation and Status Flags 3-5

Arithmetic Logic Unit (ALU) ... 3-5

Functional Description ... 3-6

ALU Instruction Types .. 3-7

Compare Accumulation Instruction 3-7

Fixed-to-Float Conversion Instructions 3-7

Fixed-to-Float Conversion Instructions with Scaling 3-8

Reciprocal/Square Root Instructions 3-8

Divide Instruction ... 3-8

Clip Instruction .. 3-8

Multiprecision Instructions ... 3-8

Contents

vi SHARC Processor Programming Reference

Arithmetic Status .. 3-9

ALU Instruction Summary .. 3-10

Multiplier ... 3-13

Functional Description ... 3-13

Asymmetric Multiplier Inputs 3-14

Multiplier Result Register ... 3-14

Multiply Register Instruction Types 3-16

Clear MRx Instruction .. 3-16

Round MRx Instruction ... 3-16

Multi Precision Instructions .. 3-17

Saturate MRx Instruction ... 3-17

Arithmetic Status .. 3-18

Multiplier Instruction Summary 3-18

Barrel Shifter .. 3-21

Functional Description ... 3-22

Shifter Instruction Types ... 3-22

Shift Compute Category ... 3-22

Shift Immediate Category ... 3-22

Bit Manipulation Instructions 3-23

Bit Field Manipulation Instructions 3-23

Bit Stream Manipulation Instructions (ADSP-214xx) 3-27

Converting Floating-Point Instructions (16 to 32-Bit) 3-29

Arithmetic Status .. 3-30

SHARC Processor Programming Reference vii

Contents

Bit FIFO Status .. 3-30

Shifter Instruction Summary ... 3-31

Multifunction Computations ... 3-33

Software Pipelining for Multifunction Instructions 3-33

Multifunction and Data Move ... 3-34

Multifunction Input Operand Constraints 3-35

Multifunction Input Modifier Constraints 3-36

Multifunction Instruction Summary 3-36

Operating Modes .. 3-36

ALU Saturation ... 3-37

Short Word Sign Extension .. 3-37

Floating-Point Boundary Rounding Mode 3-37

Rounding Mode .. 3-38

Multiplier Result Register Swap ... 3-39

SIMD Mode ... 3-40

Conditional Computations in SIMD Mode 3-42

Interrupt Mode Mask .. 3-42

Arithmetic Interrupts .. 3-42

SIMD Computation Interrupts .. 3-43

ALU Interrupts ... 3-43

Multiplier Interrupts ... 3-44

Interrupt Acknowledge .. 3-44

Contents

viii SHARC Processor Programming Reference

PROGRAM SEQUENCER

Features .. 4-1

Functional Description ... 4-4

Instruction Pipeline .. 4-5

VISA Instruction Alignment Buffer (IAB) 4-7

Linear Program Flow .. 4-8

Direct Addressing ... 4-9

Variation In Program Flow .. 4-10

Functional Description ... 4-10

Hardware Stacks ... 4-10

PC Stack Access .. 4-12

PC Stack Status .. 4-12

PC Stack Manipulation ... 4-13

PC Stack Access Priorities ... 4-13

Status Stack Access .. 4-14

Status Stack Status .. 4-15

Instruction Driven Branches ... 4-15

Direct Versus Indirect Branches ... 4-17

Restrictions for VISA Operation 4-18

Delayed Branches (DB) ... 4-19

Branch Listings ... 4-19

SHARC Processor Programming Reference ix

Contents

Operating Mode .. 4-26

Interrupt Branch Mode ... 4-26

Interrupt Processing Stages .. 4-28

Interrupt Categories .. 4-29

Interrupt Processing .. 4-33

Latching Interrupts ... 4-35

Interrupt Acknowledge .. 4-35

Interrupt Self-Nesting ... 4-36

Release From IDLE ... 4-37

Causes of Delayed Interrupt Processing 4-39

Interrupt Mask Mode .. 4-40

Interrupt Nesting Mode .. 4-41

Loop Sequencer .. 4-44

Restrictions ... 4-45

Functional Description .. 4-45

Entering Loop Execution .. 4-45

Terminating Loop Execution ... 4-46

Loop Stack .. 4-48

Loop Address Stack Access .. 4-48

Loop Address Stack Status ... 4-48

Loop Address Stack Manipulation 4-49

Loop Counter Stack Access ... 4-49

Loop Counter Stack Status .. 4-49

Loop Counter Stack Manipulation 4-50

Contents

x SHARC Processor Programming Reference

Counter Based Loops .. 4-51

Reading LCNTR in Counter Based Loops 4-52

IF NOT LCE Condition in Counter Based Loops 4-52

Arithmetic Loops .. 4-53

Indefinite Loops ... 4-54

VISA-Related Restrictions on Hardware Loops 4-54

Restrictions on Ending Loops ... 4-55

Short Counter Based Loops .. 4-56

Short Arithmetic Based Loops ... 4-58

Restrictions on Short Loops .. 4-59

Short Loops Listings ... 4-60

Nested Loops ... 4-67

Example For Six Nested Loops 4-69

Restrictions on Ending Nested Loops 4-70

Loop Abort .. 4-71

Instruction Driven Loop Abort 4-71

Interrupt Driven Loop Abort .. 4-73

Loop Abort Restrictions .. 4-74

Loop Resource Manipulation .. 4-75

Popping and Pushing Loop and PC Stack Inside an Active Loop
4-76

Stack Manipulation Restrictions on ADSP-2136x Processors 4-78

SHARC Processor Programming Reference xi

Contents

Cache Control .. 4-79

Functional Description .. 4-79

Conflict Cache for Internal Instruction Fetch 4-79

Instruction Data Bus Conflicts .. 4-80

Cache Miss ... 4-80

Instruction Cache for External Instruction Fetch 4-82

Block Conflicts ... 4-83

Caching Instructions ... 4-83

Cache Invalidate Instruction .. 4-86

Cache Efficiency .. 4-87

Operating Modes ... 4-88

Cache Restrictions .. 4-89

Cache Disable ... 4-89

Cache External Memory Disable (ADSP-214xx) 4-89

Cache Freeze ... 4-90

I/O Flags .. 4-90

Conditional Instruction Execution .. 4-91

IF Conditions with Complements .. 4-92

DO/UNTIL Terminations Without Complements 4-94

Operating Modes ... 4-94

Conditional Instruction Execution in SIMD Mode 4-94

Bit Test Flag in SIMD Mode ... 4-96

Conditional Compute ... 4-96

Conditional Data Move ... 4-97

Contents

xii SHARC Processor Programming Reference

Listings for Conditional Register-to-Register Moves 4-97

Listing 2 – UREG/CUREG to UREG/CUREG Register Moves
4-99

Listing 3 – CUREG/UREG to UREG/CUREG Registers Moves
4-100

Listing 4 – UREG to UREG/CUREG Register Moves . 4-101

Listing 5 – UREG/CUREG to UREG Register Moves . 4-102

Listings for Conditional Register-to-Memory Moves 4-103

Conditional Branches ... 4-106

IF Conditional Branch Instructions 4-106

IF Then ELSE Conditional Indirect Branch Instructions 4-107

IF Conditional Branch Limitations in VISA 4-108

Instruction Pipeline Hazards ... 4-109

Structural Hazard Stalls ... 4-110

Simultaneous Access Over the DMD and PMD Buses 4-110

DMA Block Conflict with PM or DM Access 4-110

Core Memory-Mapped Registers 4-110

Data Hazard Stalls .. 4-110

Multiplier Operand Load Stalls 4-111

DAG Register Load Stalls ... 4-111

Branch Stalls .. 4-114

Conditional Branch Stalls ... 4-115

Control Hazard Stalls ... 4-117

Loop Stalls ... 4-119

SHARC Processor Programming Reference xiii

Contents

Compiler Related Stalls ... 4-119

CJUMP Instruction .. 4-119

RFRAME Instruction .. 4-120

Sequencer Interrupts ... 4-121

External Interrupts .. 4-121

Software Interrupts .. 4-122

Hardware Stack Interrupts ... 4-123

Summary .. 4-124

TIMER

Features .. 5-1

Functional Description ... 5-1

Timer Interrupts ... 5-4

DATA ADDRESS GENERATORS

Features .. 6-1

Functional Description ... 6-2

DAG Address Output .. 6-4

Address Versus Word Size .. 6-4

DAG Register-to-Bus Alignment ... 6-5

32-Bit Alignment .. 6-5

40-Bit Alignment .. 6-5

64-Bit Alignment .. 6-6

DAG1 Versus DAG2 ... 6-6

Contents

xiv SHARC Processor Programming Reference

DAG Instruction Types .. 6-7

Long Word Memory Access Restrictions 6-7

Forced Long Word (LW) Memory Access Instructions 6-8

Pre-Modify Instruction .. 6-10

Post-Modify Instruction .. 6-11

Modify Instruction .. 6-11

Enhanced Modify Instruction (ADSP-214xx) 6-12

Immediate Modify Instruction .. 6-13

Bit-Reverse Instruction .. 6-13

Enhanced Bit-Reverse Instruction (ADSP-214xx) 6-14

Dual Data Move Instructions .. 6-14

Conditional DAG Transfers ... 6-15

DAG Breakpoint Units ... 6-15

DAG Instruction Restrictions .. 6-15

Instruction Summary .. 6-15

Operating Modes .. 6-18

Normal Word (40-Bit) Accesses ... 6-18

Circular Buffering Mode ... 6-19

Circular Buffer Programming Model 6-21

Wraparound Addressing .. 6-22

Broadcast Load Mode .. 6-24

Bit-Reverse Mode .. 6-25

SHARC Processor Programming Reference xv

Contents

SIMD Mode ... 6-26

DAG Transfers in SIMD Mode ... 6-26

Conditional DAG Transfers in SIMD Mode 6-28

Alternate (Secondary) DAG Registers 6-28

Interrupt Mode Mask ... 6-30

DAG Interrupts .. 6-30

DAG Status ... 6-32

Access Modes Summary .. 6-32

SISD Mode ... 6-32

SIMD Mode Normal Word ... 6-32

SIMD Mode Short Word ... 6-32

MEMORY

Features .. 7-1

Von Neumann Versus Harvard Architectures 7-2

Super Harvard Architecture ... 7-2

Functional Description ... 7-4

Address Decoding of Memory Space .. 7-4

I/O Processor Space ... 7-5

IOP Peripheral Registers .. 7-6

IOP Core Registers ... 7-7

Writes to IOP Peripheral Registers 7-7

Back to Back Writes to IOP Peripheral Registers 7-8

Alternate Writes to IOP Peripheral Registers 7-8

Contents

xvi SHARC Processor Programming Reference

Reads from IOP Peripheral Registers 7-8

IOP Register Core Access .. 7-8

Out of Order Execution .. 7-9

IOP Register Access Arbitration .. 7-10

Internal Memory Space ... 7-11

Internal Memory Interface .. 7-11

On-Chip Buses ... 7-11

Internal Memory Block Architecture 7-12

Normal Word Space 48/40-Bit Word Rotations 7-13

Rules for Wrapping Memory Layout 7-14

Mixing Words in Normal Word Space 7-14

Mixing 32-Bit Words and 48-Bit Words 7-16

32-Bit Word Allocation .. 7-17

Example: Calculating a Starting Address for 32-Bit Addresses 7-18

48-Bit Word Allocation .. 7-18

Memory Address Aliasing .. 7-19

Memory Block Arbitration .. 7-20

VISA Instruction Arbitration .. 7-22

Using Single Ported Memory Blocks Efficiently 7-22

Shadow Write FIFO .. 7-23

External Memory Space ... 7-24

SHARC Processor Programming Reference xvii

Contents

Interrupts ... 7-24

Internal Interrupt Vector Table .. 7-24

Illegal I/O Processor Register Access 7-25

Unaligned Forced Long Word Access 7-25

Internal Memory Access Listings ... 7-27

Short Word Addressing of Single-Data in SISD Mode 7-28

Short Word Addressing of Dual-Data in SISD Mode 7-29

Short Word Addressing of Single-Data in SIMD Mode 7-32

Short Word Addressing of Dual-Data in SIMD Mode 7-34

32-Bit Normal Word Addressing of Single-Data in SISD Mode 7-36

32-Bit Normal Word Addressing of Dual-Data in SISD Mode 7-38

32-Bit Normal Word Addressing of Single-Data in SIMD Mode 7-40

32-Bit Normal Word Addressing of Dual-Data in SIMD Mode 7-42

Extended-Precision Normal Word Addressing of Single-Data .. 7-44

Extended-Precision Normal Word Addressing of Dual-Data ... 7-46

Long Word Addressing of Single-Data 7-48

Long Word Addressing of Dual-Data 7-50

Broadcast Load Access ... 7-52

Mixed-Word Width Addressing of Long Word with Short Word 7-61

Mixed-Word Width Addressing of Long Word with Extended Word
7-63

Contents

xviii SHARC Processor Programming Reference

JTAG TEST EMULATION PORT

Features .. 8-1

Functional Description ... 8-1

JTAG Test Access Port ... 8-2

TAP Controller ... 8-3

Instruction Registers ... 8-4

Emulation Instruction Registers (Private) 8-5

Breakpoints ... 8-5

Software Breakpoints .. 8-6

Automatic Breakpoints ... 8-6

Hardware Breakpoints .. 8-6

General Restrictions on Software Breakpoints 8-7

Operating Modes .. 8-7

Boundary Scan Mode .. 8-7

Boundary Scan Register Instructions .. 8-8

Emulation Space Mode ... 8-9

Emulation Control .. 8-10

Instruction and Data Breakpoints .. 8-10

Address Breakpoint Registers .. 8-11

Conditional Breakpoints ... 8-12

Event Count Register .. 8-13

Emulation Cycle Counting ... 8-14

SHARC Processor Programming Reference xix

Contents

Enhanced Emulation Mode ... 8-14

Statistical Profiling .. 8-14

Background Telemetry Channel (BTC) 8-15

User Space Mode ... 8-15

User Breakpoint Control ... 8-15

User Breakpoint Status .. 8-16

User Breakpoint System Exception Handling 8-16

User to Emulation Space Breakpoint Comparison 8-16

Programming Model User Breakpoints 8-17

Programming Examples ... 8-17

Single Step Mode .. 8-19

Instruction Pipeline Fetch Inputs 8-19

Differences Between Emulation and
User Space Modes ... 8-19

JTAG Interrupts .. 8-20

Interrupt Types ... 8-20

Entering Into Emulation Space .. 8-21

JTAG Register Effect Latency .. 8-21

JTAG BTC Performance ... 8-22

References ... 8-22

INSTRUCTION SET TYPES

Instruction Groups .. 9-2

Instruction Set Notation Summary .. 9-2

Contents

xx SHARC Processor Programming Reference

Group I – Conditional Compute and Move or Modify Instructions 9-4

Type 1a ISA/VISA (compute + mem dual data move)
Type 1b VISA (mem dual data move) ... 9-7

Type 2a ISA/VISA (cond + compute)
Type 2b VISA (compute)
Type 2c VISA (short compute) ... 9-10

Type 3a ISA/VISA (cond + comp + mem data move)
Type 3b VISA (cond + mem data move)
Type 3c VISA (mem data move) ... 9-12

Type 4a ISA/VISA (cond + comp + mem data move
with 6-bit immediate modifier)
Type 4b VISA (cond + mem data move
with 6-bit immediate modifier) .. 9-17

Type 5a ISA/VISA (cond + comp + reg data move)
Type 5b VISA (cond + reg data move) 9-22

Type 6a ISA/VISA (cond + shift imm + mem data move) 9-25

Type 7a ISA/VISA (cond + comp + index modify)
Type 7b VISA (cond + index modify) 9-28

Group II – Conditional Program Flow Control Instructions 9-30

Type 8a ISA/VISA (cond + branch) .. 9-32

Type 9a ISA/VISA (cond + Branch + comp/else comp) 9-35

Type 10a ISA (cond + branch + else comp + mem data move) 9-40

Type 11a ISA/VISA (cond + branch return + comp/else comp)
Type 11c VISA (cond + branch return) 9-44

Type 12a ISA/VISA (do until loop counter expired) 9-48

Type 13a ISA/VISA (do until termination) 9-49

SHARC Processor Programming Reference xxi

Contents

Group III – Immediate Data Move
Instructions .. 9-51

Type 14a ISA/VISA (mem data move) 9-53

Type 15a ISA/VISA (<data32> move)
Type 15b VISA (<data7> move) .. 9-56

Type 16a ISA/VISA (<data32> move)
Type 16b VISA (<data16> move) .. 9-60

Type 17a ISA/VISA (<data32> move)
Type 17b VISA (<data16> move) .. 9-62

Group IV – Miscellaneous Instructions .. 9-64

Type 18a ISA/VISA (register bit manipulation) 9-66

Type 19a ISA/VISA (index modify/bitrev) 9-69

Type 20a ISA/VISA (push/pop stack) 9-70

Type 21a ISA/VISA (nop)
Type 21c VISA (nop) ... 9-71

Type 22a ISA/VISA (idle/emuidle) ... 9-72

Type 25a ISA/VISA (cjump/rframe)
Type 25c VISA (RFRAME) .. 9-73

INSTRUCTION SET OPCODES

Instruction Set Opcodes .. 10-1

Group I – Conditional Compute and Move or Modify Instructions 10-5

Type 1a .. 10-5

Type 1b .. 10-5

Type 2a .. 10-6

Type 2b .. 10-6

Type 2c .. 10-6

Contents

xxii SHARC Processor Programming Reference

Type 3a .. 10-7

Type 3b ... 10-7

Type 3c .. 10-7

Type 4a .. 10-8

 Type 4b .. 10-8

Type 5a .. 10-9

Type 5b ... 10-10

Type 6a ... 10-11

Type 7a .. 10-12

Type 7b ... 10-12

Group II – Conditional Program Flow Control Instructions 10-13

Type 8a ... 10-13

Type 9a .. 10-14

Type 9b .. 10-15

Type 10a .. 10-16

Type 11a .. 10-17

Type 11c .. 10-18

Type 12a .. 10-18

Type 13a .. 10-19

Group III – Immediate Data Move Instructions 10-20

Type 14a .. 10-20

Type 15a .. 10-21

Type 15b ... 10-21

Type 16a .. 10-22

SHARC Processor Programming Reference xxiii

Contents

Type 16b .. 10-22

Type 17a ... 10-23

Type 17b ... 10-23

Group IV – Miscellaneous Instructions 10-24

Type 18a ... 10-24

Type 19a .. 10-25

Type 20a ... 10-26

Type 21a .. 10-26

Type 21c ... 10-26

Type 22a .. 10-27

Type 22c ... 10-27

Type 25a .. 10-28

RFRAME ... 10-29

Type 25c ... 10-29

Register Opcodes .. 10-30

Non Universal Registers ... 10-30

Universal Register Opcodes .. 10-31

Condition and Termination Opcodes .. 10-33

COMPUTATION TYPES

ALU Fixed-Point Computations .. 11-1

Rn = Rx + Ry .. 11-2

Rn = Rx – Ry .. 11-3

Rn = Rx + Ry + CI .. 11-4

Rn = Rx – Ry + CI – 1 ... 11-5

Contents

xxiv SHARC Processor Programming Reference

Rn = (Rx + Ry)/2 .. 11-6

COMP(Rx, Ry) .. 11-7

COMPU(Rx, Ry) .. 11-8

Rn = Rx + CI .. 11-9

Rn = Rx + CI – 1 .. 11-10

Rn = Rx + 1 .. 11-11

Rn = Rx – 1 .. 11-12

Rn = –Rx .. 11-13

Rn = ABS Rx ... 11-14

Rn = PASS Rx ... 11-15

Rn = Rx AND Ry .. 11-16

Rn = Rx OR Ry .. 11-17

Rn = Rx XOR Ry .. 11-18

Rn = NOT Rx ... 11-19

Rn = MIN(Rx, Ry) .. 11-20

Rn = MAX(Rx, Ry) ... 11-21

Rn = CLIP Rx BY Ry .. 11-22

ALU Floating-Point Computations ... 11-23

Fn = Fx + Fy ... 11-24

Fn = Fx – Fy ... 11-25

Fn = ABS (Fx + Fy) ... 11-26

Fn = ABS (Fx – Fy) ... 11-27

Fn = (Fx + Fy)/2 ... 11-28

COMP(Fx, Fy) ... 11-29

SHARC Processor Programming Reference xxv

Contents

Fn = –Fx .. 11-30

Fn = ABS Fx ... 11-31

Fn = PASS Fx ... 11-32

Fn = RND Fx ... 11-33

Fn = SCALB Fx BY Ry .. 11-34

Rn = MANT Fx ... 11-35

Rn = LOGB Fx ... 11-36

Rn = FIX Fx
Rn = TRUNC Fx
Rn = FIX Fx BY Ry
Rn = TRUNC Fx BY Ry ... 11-37

Fn = FLOAT Rx BY Ry
Fn = FLOAT Rx ... 11-39

Fn = RECIPS Fx ... 11-41

Fn = RSQRTS Fx .. 11-43

Fn = Fx COPYSIGN Fy .. 11-45

Fn = MIN(Fx, Fy) ... 11-46

Fn = MAX(Fx, Fy) ... 11-47

Fn = CLIP Fx BY Fy .. 11-48

Multiplier Fixed-Point Computations .. 11-49

Modifiers .. 11-49

Rn = Rx * Ry (mod1)
MRF = Rx * Ry (mod1)
MRB = Rx * Ry (mod1) ... 11-50

Contents

xxvi SHARC Processor Programming Reference

Rn = MRF + Rx * Ry (mod1)
Rn = MRB + Rx * Ry (mod1)
MRF = MRF + Rx * Ry (mod1)
MRB = MRB + Rx * Ry (mod1) ... 11-51

Rn = MRF – Rx * Ry (mod1)
Rn = MRB – Rx * Ry (mod1)
MRF = MRF – Rx * Ry (mod1)
MRB = MRB – Rx * Ry (mod1) ... 11-52

Rn = SAT MRF (mod2)
Rn = SAT MRB (mod2)
MRF = SAT MRF (mod2)
MRB = SAT MRB (mod2) ... 11-53

Rn = RND MRF (mod3)
Rn = RND MRB (mod3)
MRF = RND MRF (mod3)
MRB = RND MRB (mod3) ... 11-54

MRF = 0
MRB = 0 ... 11-55

MRxF/B = Rn
Rn = MRxF/B .. 11-56

Multiplier Floating-Point Computations 11-57

Fn = Fx * Fy ... 11-57

Shifter/Shift Immediate Computations 11-58

Modifiers .. 11-58

Rn = LSHIFT Rx BY Ry
Rn = LSHIFT Rx BY <data8> .. 11-59

Rn = Rn OR LSHIFT Rx BY Ry
Rn = Rn OR LSHIFT Rx BY <data8> 11-60

SHARC Processor Programming Reference xxvii

Contents

Rn = ASHIFT Rx BY Ry
Rn = ASHIFT Rx BY <data8> .. 11-61

Rn = Rn OR ASHIFT Rx BY Ry
Rn = Rn OR ASHIFT Rx BY <data8> 11-62

Rn = ROT Rx BY Ry
Rn = ROT Rx BY <data8> .. 11-63

Rn = BCLR Rx BY Ry
Rn = BCLR Rx BY <data8> .. 11-64

Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8> ... 11-65

Rn = BTGL Rx BY Ry
Rn = BTGL Rx BY <data8> .. 11-66

BTST Rx BY Ry
BTST Rx BY <data8> ... 11-67

Rn = FDEP Rx BY Ry
Rn = FDEP Rx BY <bit6>:<len6> ... 11-68

Rn = Rn OR FDEP Rx BY Ry
Rn = Rn OR FDEP Rx BY <bit6>:<len6> 11-70

Rn = FDEP Rx BY Ry (SE)
Rn = FDEP Rx BY <bit6>:<len6> (SE) 11-72

Rn = Rn OR FDEP Rx BY Ry (SE)
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE) 11-74

Rn = FEXT Rx BY Ry
Rn = FEXT Rx BY <bit6>:<len6> ... 11-76

Rn = FEXT Rx BY Ry (SE)
Rn = FEXT Rx BY <bit6>:<len6> (SE) 11-78

Rn = EXP Rx ... 11-80

Rn = EXP Rx (EX) .. 11-81

Contents

xxviii SHARC Processor Programming Reference

Rn = LEFTZ Rx ... 11-82

Rn = LEFTO Rx ... 11-83

Rn = FPACK Fx .. 11-84

Fn = FUNPACK Rx .. 11-85

BITDEP Rx by Ry|<bitlen12> ... 11-86

Rn = BFFWRP ... 11-88

BFFWRP = Rn|<data7> .. 11-89

Rn = BITEXT Rx|<bitlen12>(NU) 11-90

Multifunction Computations .. 11-92

Fixed-Point ALU (dual Add and Subtract) 11-92

Floating-Point ALU (dual Add and Subtract) 11-92

Fixed-Point Multiplier and ALU ... 11-92

Floating-Point Multiplier and ALU 11-93

Fixed-Point Multiplier and ALU (dual Add and Subtract) 11-93

Floating Point Multiplier and ALU (dual Add and Subtract) 11-93

Short Compute ... 11-94

COMPUTATION TYPE OPCODES

Single-Function Opcodes .. 12-2

ALU Opcodes ... 12-3

Multiplier Opcodes ... 12-5

Mod1 Modifiers ... 12-7

Mod2 Modifiers ... 12-8

Mod3 Modifiers ... 12-8

SHARC Processor Programming Reference xxix

Contents

MR Data Move Opcodes ... 12-9

Shifter/Shift Immediate Opcodes ... 12-9

Short Compute Opcodes ... 12-12

Multifunction Opcodes ... 12-13

Dual ALU (Parallel Add and Subtract) 12-13

Multiplier and Dual ALU (Parallel Add and Subtract) 12-14

Multiplier and ALU ... 12-15

REGISTERS

Notes on Reading Register Drawings .. A-2

Mode Control 1 Register (MODE1) ... A-3

Mode Control 2 Register (MODE2) ... A-7

Program Sequencer Registers .. A-8

Fetch Address Register (FADDR) .. A-9

Decode Address Register (DADDR) .. A-9

Program Counter Register (PC) .. A-10

Program Counter Stack Register (PCSTK) A-10

Program Counter Stack Pointer Register (PCSTKP) A-11

Loop Registers ... A-11

Loop Address Stack Register (LADDR) A-11

Loop Counter Register (LCNTR) ... A-12

Current Loop Counter Register (CURLCNTR) A-12

Contents

xxx SHARC Processor Programming Reference

Timer Registers .. A-12

Timer Period Register (TPERIOD) A-12

Timer Count Register (TCOUNT) A-12

Flag I/O Register (FLAGS) .. A-13

Processing Element Registers ... A-14

PEx Data Registers (Rx) .. A-14

PEy Data Registers (Sx) ... A-14

Alternate Data Registers (Rx', Sx') ... A-15

PEx Multiplier Results Registers (MRFx, MRBx) A-15

PEy Multiplier Results Registers (MSFx, MSBx) A-15

Processing Status Registers .. A-16

Arithmetic Status Registers (ASTATx and ASTATy) A-16

Sticky Status Registers (STKYx and STKYy) A-21

Data Address Generator Registers .. A-25

Index Registers (Ix) ... A-25

Modify Registers (Mx) .. A-25

Length and Base Registers (Lx, Bx) .. A-26

Alternate DAG Registers (Ix',Mx',Lx',Bx') A-26

Miscellaneous Registers ... A-26

Bus Exchange Register (PX) ... A-26

User-Defined Status Registers (USTATx) A-27

Emulation Control Register (EMUCTL) A-27

Emulation Status Register (EMUSTAT) A-30

Emulation Counter Registers (EMUCLKx) A-31

SHARC Processor Programming Reference xxxi

Contents

Universal Register Effect Latency .. A-31

Interrupt Registers ... A-36

Interrupt Latch Register (IRPTL) ... A-36

Interrupt Mask Register (IMASK) ... A-36

Interrupt Mask Pointer Register (IMASKP) A-37

Interrupt Register (LIRPTL) ... A-41

Mode Mask Register (MMASK) .. A-44

Memory-Mapped Registers ... A-44

System Control Register (SYSCTL) A-45

Revision ID Register (REVPID) .. A-47

Breakpoint Control Register (BRKCTL) A-47

Enhanced Emulation Status Register (EEMUSTAT) A-51

Register Listing .. A-54

CORE INTERRUPT CONTROL

Interrupt Acknowledge ... B-1

Interrupt Priority ... B-2

Interrupt Vector Tables .. B-2

NUMERIC FORMATS

IEEE Single-Precision Floating-Point Data Format C-1

Extended-Precision Floating-Point Format C-3

Short Word Floating-Point Format ... C-4

Packing for Floating-Point Data ... C-4

Fixed-Point Formats ... C-6

Contents

xxxii SHARC Processor Programming Reference

GLOSSARY

INDEX

SHARC Processor Programming Reference xxxiii

 PREFACE

Thank you for purchasing and developing systems using SHARC® pro-
cessors from Analog Devices, Inc.

Purpose of This Manual
SHARC Processor Programming Reference provides architectural and pro-
gramming information about the SHARC SIMD 5-stage pipeline
processors. The architectural descriptions cover functional blocks and
buses, including features and processes that they support. The manual also
provides information on the I/O capabilities (flag pins, JTAG) supported
by the core. The programming information covers the instruction set and
compute operations.

For information about the peripherals associated with these products, see
the product family hardware reference. For timing, electrical, and package
specifications, see the processor-specific data sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware and programming reference manuals that describe their target
architecture.

Manual Contents

xxxiv SHARC Processor Programming Reference

Manual Contents
This manual provides detailed information about the SHARC processor
family in the following chapters. Please note that there are differences in
this section from previous manual revisions.

• Chapter 1, “Introduction”
Provides an architectural overview of the SHARC processors.

• Chapter 2, “Register Files”
Describes the core register files including the data exchange register
(PX).

• Chapter 3, “Processing Elements”
Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units, and shifter. The chapter also discusses data formats, data
types, and register files.

• Chapter 4, “Program Sequencer”
Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, exceptions, and the IDLE instruction.

• Chapter 5, “Timer”
Describes the operation of the processor’s core timer.

• Chapter 6, “Data Address Generators”
Describes the Data Address Generators (DAGs), addressing modes,
how to modify DAG and pointer registers, memory address align-
ment, and DAG instructions.

• Chapter 7, “Memory”
Describes aspects of processor memory including internal memory,
address and data bus structure, and memory accesses.

SHARC Processor Programming Reference xxxv

Preface

• Chapter 8, “JTAG Test Emulation Port”
Discusses the JTAG standard and how to use the SHARC proces-
sors in a test environment. Includes boundary-scan architecture,
instruction and boundary registers, and breakpoint control
registers.

• Chapter 9, “Instruction Set Types”
Provides reference information for the ISA and VISA instruction
types.

• Chapter 10, “Instruction Set Opcodes”
This chapter lists the various instruction type opcodes and their
ISA or VISA operation.

• Chapter 11, “Computation Types”
Describes each compute operation in detail. Compute operations
execute in the multiplier, the ALU, and the shifter

• Chapter 12, “Computation Type Opcodes”
Describes the Opcodes associated with the computation types.

• Appendix A, “Registers”
Provides register and bit descriptions for all of the registers that are
used to control the operation of the SHARC processor core.

• Appendix B, “Core Interrupt Control”
Provides interrupt vector tables.

• Appendix C, “Numeric Formats”
Provides descriptions of the supported data formats.

What’s New in This Manual

xxxvi SHARC Processor Programming Reference

What’s New in This Manual
This manual is Revision 2.4 of SHARC Processor Programming Reference.
This revision corrects minor typographical errors and the following issues:

• Overbar for the AZ signal of the ALU’s LT and GE conditions in
Chapter 4, “Program Sequencer”.

• Enhanced MODIFY instruction in Chapter 6, “Data Address
Generators”.

• Description of the AV status flag of the Rn = MANT Fx instruction in
Chapter 11, “Computation Types”.

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com

SHARC Processor Programming Reference xxxvii

Preface

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “SHARC” refers to a family of high-performance, floating-point
embedded processors. Refer to the CCES or VisualDSP++ online help for
a complete list of supported processors.

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES or VisualDSP++ online help.

mailto:processor.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales

Product Information

xxxviii SHARC Processor Programming Reference

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com

SHARC Processor Programming Reference xxxix

Preface

Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

File > Close Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.







Register Diagram Conventions

xl SHARC Processor Programming Reference

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

SHARC Processor Programming Reference xli

Preface

The following figure shows an example of these conventions.

Figure 1. Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI
is the programmed state.
1 - The effective state of PULSE_HI
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin or
PF1 pin.
1 - Sample UART RX pin
or PPI_CLK pin.

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)

Register Diagram Conventions

xlii SHARC Processor Programming Reference

SHARC Processor Programming Reference 1-1

1 INTRODUCTION

The SHARC processors are high performance 32-/40-bit processors used
for medical imaging, communications, military, audio, test equipment,
3D graphics, speech recognition, motor control, imaging, automotive, and
other applications. By adding on-chip SRAM, integrated I/O peripherals,
and an additional processing element for single-instruction, multiple-data
(SIMD) support, this processor builds on the ADSP-21000 family proces-
sor core to form a complete system-on-a-chip.

The SHARC processors are comprised of several distinct groups, the
ADSP-21362/3/4/5/6 processors, the ADSP-21367/8/9 and
ADSP-21371/5 processors, and the ADSP-214xx processors. The groups
are differentiated by on-chip memories, peripheral choices, packaging, and
operating speeds. However, the core processor operates in the same way in
all groups so this manual applies to all groups. Where differences exist
(such as external memory interfacing) they will be noted.

SHARC Design Advantages
A digital signal processor’s data format determines its ability to handle sig-
nals of differing precision, dynamic range, and signal-to-noise ratios.
Because floating-point math reduces the need for scaling and probability
of overflow, using a floating-point processor can ease algorithm and soft-
ware development. The extent to which this is true depends on the
floating-point processor’s architecture. Consistency with IEEE
workstation simulations and the elimination of scaling are clearly two
ease-of-use advantages. High level language programmability, large
address spaces, and wide dynamic range allow system development time to

SHARC Design Advantages

1-2 SHARC Processor Programming Reference

be spent on algorithms and signal processing concerns, rather than assem-
bly language coding, code paging, and error handling. The processors are
highly integrated, 32-/40-bit floating-point processors that provide many
of these design advantages.

The SHARC processor architecture balances a high performance processor
core with four high performance memory blocks and two input/output
(I/O) buses. In the core, every instruction can execute in a single cycle.
The buses and instruction cache provide rapid, unimpeded data flow to
the core to maintain the execution rate.

The processors address the five central requirements for signal processing:

1. Fast, flexible arithmetic. The ADSP-21000 family processors exe-
cute all instructions in a single cycle. They provide fast cycle times
and a complete set of arithmetic operations. The processors are
IEEE floating-point compatible and allow either interrupt on
arithmetic exception or latched status exception handling.

2. Unconstrained data flow. The processors have a Super Harvard
Architecture combined with a ten-port data register file. For more
information, see “Register Files” on page 2-1. In every cycle, the
processor can write or read two operands to or from the register
file, supply two operands to the ALU, supply two operands to the
multiplier, and receive three results from the ALU and multiplier.
The processor’s 48-bit orthogonal instruction word supports paral-
lel data transfers and arithmetic operations in the same instruction.

3. 40-Bit extended precision. The processor handles 32/40-bit IEEE
floating-point format, 32-bit integer and fractional formats
(twos-complement and unsigned). The processors carry extended
precision throughout their computation units, limiting intermedi-
ate data truncation errors. For fixed point operations up to 80 bits
of precision are maintained during multiply-accumulate
operations.

SHARC Processor Programming Reference 1-3

Introduction

4. Dual address generators. The processor has two data address gen-
erators (DAGs) that provide immediate or indirect (pre- and
post-modify) addressing. Modulus, bit-reverse, and broadcast oper-
ations are supported with no constraints on data buffer placement.

5. Efficient program sequencing. In addition to zero-overhead loops,
the processor supports single-cycle setup and exit for loops. Loops
are both nestable (six levels in hardware) and interruptable. The
processors support both delayed and non-delayed branches.

Architectural Overview
The SHARC processors form a complete system-on-a-chip, integrating a
large, high speed SRAM and I/O peripherals supported by I/O buses. The
following sections summarize the features of each functional block.

Processor Core
The processor core consists of two processing elements (each with three
computation units and data register file), a program sequencer, two
DAGs, a timer, and an instruction cache. All processing occurs in the pro-
cessor core. The following list and Figure 1-1 describes some of the
features of the SHARC core processor.

Dual Processing Elements

The processor core contains two processing elements: PEx and PEy. Each
element contains a data register file and three independent computation
units: an arithmetic logic unit (ALU), a multiplier with an 80-bit
fixed-point accumulator, and a shifter. For meeting a wide variety of pro-
cessing needs, the computation units process data in three formats: 32-bit
fixed-point, 32-bit floating-point, and 40-bit floating-point. The float-
ing-point operations are single-precision IEEE-compatible. The 32-bit
floating-point format is the standard IEEE format, whereas the 40-bit

Architectural Overview

1-4 SHARC Processor Programming Reference

extended-precision format has eight additional least significant bits (LSBs)
of mantissa for greater accuracy.

The ALU performs a set of arithmetic and logic operations on both
fixed-point and floating-point formats. The multiplier performs

Figure 1-1. SHARC SIMD Core Block Diagram

S

SIMD Core
CACHEINTERRUPT

5 STAGE
PROGRAM SEQUENCER

PM ADDRESS 32

DM ADDRESS 32

DM DATA 64

PM DATA 64

DAG1
16x32

MRF
80-BIT

ALUMULTIPLIER SHIFTER

RF
Rx/Fx
PEx

16x40-BIT

JTAG

DMD/PMD 64

PM DATA 48

ASTATx

STYKx

ASTATy

STYKy

TIMER

RF
Sx/SFx

PEy
16x40-BIT

MRB
80-BIT

MSB
80-BIT

MSF
80-BIT

FLAG

SYSTEM
I/F

USTAT
4x32-BIT

PX
64-BIT

DAG2
16x32

ALU MULTIPLIERSHIFTER

DATA
SWAP

PM ADDRESS 24

SHARC Processor Programming Reference 1-5

Introduction

floating-point or fixed-point multiplication and fixed-point multi-
ply/accumulate or multiply/cumulative-subtract operations. The shifter
performs logical and arithmetic shifts, bit manipulation, bit-wise field
deposit and extraction, and exponent derivation operations on 32-bit
operands. These computation units complete all operations in a single
cycle; there is no computation pipeline. The output of any unit may serve
as the input of any unit on the next cycle. All units are connected in paral-
lel, rather than serially. In a multifunction computation, the ALU and
multiplier perform independent, simultaneous operations.

Each processing element has a general-purpose data register file that trans-
fers data between the computation units and the data buses and stores
intermediate results. A register file has two sets (primary and secondary) of
16 general-purpose registers each for fast context switching. All of the reg-
isters are 40 bits wide. The register file, combined with the core
processor’s Super Harvard Architecture, allows unconstrained data flow
between computation units and internal memory.

Processing element (PEx). PEx processes all computational instructions
whether the processors are in single-instruction, single-data (SISD) or sin-
gle-instruction, multiple-data (SIMD) mode. This element corresponds to
the computational units and register file in previous ADSP-2106x family
processors.

Complimentary processing element (PEy). PEy processes each computa-
tional instruction in lock-step with PEx, but only processes these
instructions when the processors are in SIMD mode. Because many opera-
tions are influenced by this mode, more information on SIMD is available
in multiple locations:

• For information on PEy operations, see “Processing Elements” on
page 3-1.

• For information on data accesses in SIMD mode, and data address-
ing in SIMD mode, see “Internal Memory Access Listings” on
page 7-27.

Architectural Overview

1-6 SHARC Processor Programming Reference

• For information on SIMD programming, see Chapter 9, Instruc-
tion Set Types, and Chapter 11, Computation Types.

Program Sequence Control

Internal controls for program execution come from four functional blocks:
program sequencer, data address generators, core timer, and instruction
cache. Two dedicated address generators and a program sequencer supply
addresses for memory accesses. Together the sequencer and data address
generators allow computational operations to execute with maximum
efficiency since the computation units can be devoted exclusively to pro-
cessing data. With its instruction cache, the SHARC processors can
simultaneously fetch an instruction from the cache and access two data
operands from memory. The DAGs also provide built-in support for
zero-overhead circular buffering.

Program sequencer. The program sequencer supplies instruction addresses
to program memory. It controls loop iterations and evaluates conditional
instructions. With an internal loop counter and loop stack, the processors
execute looped code with zero overhead. No explicit jump instructions are
required to loop or to decrement and test the counter. To achieve a high
execution rate while maintaining a simple programming model, the pro-
cessor employs a five stage pipeline to process instructions — fetch1,
fetch2, decode, address and execute. For more information, see “Instruc-
tion Pipeline” on page 4-5.

Data address generators. The DAGs provide memory addresses when data
is transferred between memory and registers. Dual data address generators
enable the processor to output simultaneous addresses for two operand
reads or writes. DAG1 supplies 32-bit addresses for accesses using the DM
bus. DAG2 supplies 32-bit addresses for memory accesses over the PM
bus.

Each DAG keeps track of up to eight address pointers, eight address mod-
ifiers, and for circular buffering eight base-address registers and eight
buffer-length registers. A pointer used for indirect addressing can be

SHARC Processor Programming Reference 1-7

Introduction

modified by a value in a specified register, either before (pre-modify) or
after (post-modify) the access. A length value may be associated with each
pointer to perform automatic modulo addressing for circular data buffers.
The circular buffers can be located at arbitrary boundaries in memory.
Each DAG register has a secondary register that can be activated for fast
context switching.

Circular buffers allow efficient implementation of delay lines and other
data structures required in digital signal processing They are also com-
monly used in digital filters and Fourier transforms. The DAGs
automatically handle address pointer wraparound, reducing overhead,
increasing performance, and simplifying implementation.

Interrupts. The processors have three external hardware interrupts and a
special interrupt for reset. The processor has internally-generated inter-
rupts for the timer, circular buffer overflow, stack overflows, arithmetic
exceptions, and user-defined software interrupts and different levels for
emulation support.

For the external hardware and the internal timer interrupt, the processor
automatically stacks the arithmetic status (ASTATx, and ASTATy) registers
and mode (MODE1) registers in parallel with the interrupt servicing, allow-
ing 15 nesting levels of very fast service for these interrupts. Moreover, up
to 19 programmable interrupts allow programs to change the interrupt
priorities among the different peripheral DMA channels.

Context switch. Many of the processor’s registers have secondary registers
that can be activated during interrupt servicing for a fast context switch.
The data registers in the register file, the DAG registers, and the multiplier
result register all have secondary registers. The primary registers are active
at reset, while the secondary registers are activated by control bits in a
mode control register.

Timer. The core’s programmable interval timer provides periodic inter-
rupt generation. When enabled, the timer decrements a 32-bit count
register every cycle. When this count register reaches zero, the processors

Architectural Overview

1-8 SHARC Processor Programming Reference

generate an interrupt and asserts their timer expired output. The count
register is automatically reloaded from a 32-bit period register and the
countdown resumes immediately.

Instruction cache. The program sequencer includes a 32-word instruction
cache that effectively provides three-bus operation for fetching an
instruction and two data values. The cache is selective; only instructions
whose fetches conflict with data accesses using the PM bus are cached.
This caching allows full speed execution of core, looped operations such as
digital filter multiply-accumulates, and FFT butterfly processing. For
more information on the cache, refer to “Operating Modes” on page 4-88.

Data bus exchange. The data bus exchange (PX) register permits data to be
passed between the 64-bit PM data bus and the 64-bit DM data bus, or
between the 40-bit register file and the PM/DM data bus. These registers
contain hardware to handle the data width difference. For more informa-
tion, see “Register Files” on page 2-1.

JTAG Port

The JTAG port supports the IEEE standard 1149.1 Joint Test Action
Group (JTAG) standard for system test. This standard defines a method
for serially scanning the I/O status of each component in a system. Emula-
tors use the JTAG port to monitor and control the processor during
emulation. Emulators using this port provide full speed emulation with
access to inspect and modify memory, registers, and processor stacks.
JTAG-based emulation is non-intrusive and does not effect target system
loading or timing.

Core Buses

The processor core has two buses—PM data and DM data. The PM bus is
used to fetch instructions from memory, but may also be used to fetch
data. The DM bus can only be used to fetch data from memory. In con-
junction with the cache, this Super Harvard Architecture allows the core
to fetch an instruction and two pieces of data in the same cycle that a data

SHARC Processor Programming Reference 1-9

Introduction

word is moved between memory and a peripheral. This architecture allows
dual data fetches, when the instruction is supplied by the cache.

I/O Buses

The I/O buses are used solely by the IOP to facilitate DMA transfers.
These buses give the I/O processor access to internal memory for DMA
without delaying the processor core (in the absence of memory block con-
flicts). One of the I/O buses is used for all peripherals (SPORT, SPI, IDP,
UART, TWI etc.) while the second I/O bus is only used for the external
port. The address bus is 19 bits wide, and both I/O data buses are 32 bits
wide.

Bus capacities. The PM and DM address buses are both 32 bits wide,
while the PM and DM data buses are both 64 bits wide.

These two buses provide a path for the contents of any register in the pro-
cessor to be transferred to any other register or to any data memory
location in a single cycle. When fetching data over the PM or DM bus, the
address comes from one of two sources: an absolute value specified in the
instruction (direct addressing) or the output of a data address generator
(indirect addressing). These two buses share the same port of the memory.
Each of the four memory blocks can be accessed by any of the two dedi-
cated core and I/O buses assuming the accesses are conflict free.

Data transfers. Nearly every register in the processor core is classified as a
universal register (Ureg). Instructions allow the transfer of data between
any two universal registers or between a universal register and memory.
This support includes transfers between control registers, status registers,
and data registers in the register file. The bus connect (PX) registers permit
data to be passed between the 64-bit PM data bus and the 64-bit DM data
bus, or between the 40-bit register file and the PM/DM data bus. These
registers contain hardware to handle the data width difference. For more
information, see “Processing Element Registers” on page A-14.

Differences From Previous SHARC Processors

1-10 SHARC Processor Programming Reference

Differences From Previous SHARC
Processors

This section identifies differences between the current generation proces-
sors and previous SHARC processors: ADSP-2126x/2116x and
ADSP-2106x. Like the ADSP-2116x family, the current generation is
based on the original ADSP-2106x SHARC family. The current products
preserve much of the ADSP-2106x architecture and is code compatible to
the ADSP-2116x, while extending performance and functionality. For
background information on SHARC and the ADSP-2106x Family proces-
sors, see ADSP-2106x SHARC User’s Manual.

Table 1-1 shows the high level differences between the SHARC families.

Table 1-1. Differences Between SHARC Core Generations

Feature ADSP-2106x ADSP-2116x/
ADSP-2126x

ADSP-2136x/
ADSP-2137x

ADSP-214xx

SIMD Mode No Yes Yes Yes

ISA/VISA Yes/No Yes/No Yes/No Yes/Yes

Broadcast Mode No Yes Yes Yes

DAG1
(Addr/Data-bits)

32/40 32/64 32/64 32/64

DAG2
(Addr/Data-bits)

24/48 32/64 32/64 32/64

PX Register
(PX1/PX2)

48-bit
16/32

64-bit
32/32

64-bit
32/32

64-bit
32/32

GPIO Flags 4 11 15 15

Programmable Inter-
rupt Priorities

No No Yes Yes

Instruction Pipeline 3 Stages 3 Stages 5 Stages 5 Stages

Interrupt Mode Mask No Yes Yes Yes

SHARC Processor Programming Reference 1-11

Introduction

Memory Ports Per
Block

2 2 4 4

Internal Memory Ports 2 2 1 1

Internal ROM No 2116x: No
2126x: Yes

Yes Yes

Data Sizes
64-bit (LW)
48-bit (NW)
40-bit (NW)
32-bit (NW)
16-bit (SW)

No
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Conflict Cache
(Internal Memory)

Yes Yes Yes Yes

Instruction Cache
(External Memory)

No 2116x: Conflict
only
2126x: No

2136x: Conflict
only
2137x: Yes

Yes

I/O Buses
(Addr/Data-bits)

18/48 2116x: 18/64
2126x: 19/32

21362–6: 1x19/32
21367–9: 2x19/32
2137x: 2x19/32

2x19/32

Emulation Back-
ground telemetry
channel

No 2116x: No
2126x: Yes

Yes Yes

Emulation User Break-
point

No 2116x: No
2126x: Yes

Yes Yes

Table 1-1. Differences Between SHARC Core Generations (Cont’d)

Feature ADSP-2106x ADSP-2116x/
ADSP-2126x

ADSP-2136x/
ADSP-2137x

ADSP-214xx

Development Tools

1-12 SHARC Processor Programming Reference

Table 1-2 shows the differences between SHARC family compute
instructions.

Development Tools
The processor is supported by a complete set of software and hardware
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

The development environments support advanced application code devel-
opment and debug with features such as:

• Create, compile, assemble, and link application programs written
in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

Table 1-2. Differences Between SHARC Compute Instructions

Feature ADSP-2106x ADSP-2116x/
ADSP-2126x

ADSP-2136x/
ADSP-2137x

ADSP-214xx

Unsigned Compare No Yes Yes Yes

DREG<->CDREG No Yes Yes Yes

Enhanced Modify No No No Yes

Enhanced Bitrev No No No Yes

Bit FIFO No No No Yes

SHARC Processor Programming Reference 1-13

Introduction

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.

Development Tools

1-14 SHARC Processor Programming Reference

ADSP-2136x SHARC Processor Programming Reference 2-1

2 REGISTER FILES

The SHARC core is controlled by non memory-mapped registers which
are used for computation, data move or bit manipulation techniques and
temporary data storage.

Features
The register files have the following features.

• The non memory-mapped registers are called universal registers
and can be used by almost all instructions

• Data registers are used for computation units

• Complementary data registers are used for the complementary
computation units

• System registers are used for bit manipulation

Functional Description
The following sections provide a functional description of the register
files.

Functional Description

2-2 ADSP-2136x SHARC Processor Programming Reference

Core Register Classification
The core architecture has three register categories:

• Data registers (PEx unit) and complementary data register (PEy
unit)

• System registers (bit manipulation units)

• Universal registers (almost all core registers)

Most registers are universal registers; the data and system registers are sub-
groups of universal registers. This chapter describes access handling for
these registers. For register coding details, see Chapter 9, Instruction Set
Types.

Register Types Overview
Table 2-1 and Table 2-2 list the SHARC core registers. The registers in
Table 2-1 are in the core processor.

Table 2-1. Universal Registers (Ureg)

Register Type Register(s) Function

Dreg R0 – R15 Processing element X register file locations, fixed-point

F0 – F15 Processing element X register file locations, floating-point

cdreg S0 – S15 Processing element Y register file locations, fixed-point

SF0 – SF15 Processing element Y register file locations, floating-point

ADSP-2136x SHARC Processor Programming Reference 2-3

Register Files

Program
Sequencer

PC Program counter (read-only)

PCSTK Top of PC stack

PCSTKP PC stack pointer

FADDR Fetch address (read-only)

DADDR Decode address (read-only)

LADDR Loop termination address, code; top of loop address stack

CURLCNTR Current loop counter; top of loop count stack

LCNTR Loop count for next nested counter-controlled loop

Data Address
Generators

I0 – I7 DAG1 index registers

M0 – M7 DAG1 modify registers

L0 – L7 DAG1 length registers

B0 – B7 DAG1 base registers

I8 – I15 DAG2 index registers

M8 – M15 DAG2 modify registers

L8 – L15 DAG2 length registers

B8 – B15 DAG2 base registers

Bus Exchange

 cureg

PX 64-bit combination of PX1 and PX2

PX1 PMD-DMD bus exchange 1 (32 bits)

PX2 PMD-DMD bus exchange 2 (32 bits)

Timer TPERIOD Timer period

TCOUNT Timer counter

Table 2-1. Universal Registers (Ureg) (Cont’d)

Register Type Register(s) Function

Functional Description

2-4 ADSP-2136x SHARC Processor Programming Reference

sreg MODE1 Mode control and status

MODE2 Mode control and status

IRPTL Interrupt latch

IMASK Interrupt mask

IMASKP Interrupt mask pointer (for nesting)

MMASK Mode mask

FLAGS Flag pins input/output state

LIRPTL Link Port interrupt latch, mask, and pointer

ASTATx Element x arithmetic status flags, bit test flag, and so on.

STKYx Element x sticky arithmetic status flags, stack status flags,
and so on.

USTAT1 User status register 1

USTAT3 User status register 3

csreg ASTATy Element y arithmetic status flags, bit test flag, and so on.

STKYy Element y sticky arithmetic status flags, stack status flags,
and so on.

USTAT2 User status register 2

USTAT4 User status register 4

Table 2-2. Multiplier Registers

Register Type Register(s) Function

Multiplier Registers
(no ureg registers)

MRF, MR0F, MR1F, MR2F Multiplier results,
foreground

MRB, MR0B, MR1B, MR2B Multiplier results,
background

Table 2-1. Universal Registers (Ureg) (Cont’d)

Register Type Register(s) Function

ADSP-2136x SHARC Processor Programming Reference 2-5

Register Files

Data Registers
Each of the processor’s processing elements has a data register file, which
is a set of data registers that transfers data between the data buses and the
computational units. These registers also provide local storage for oper-
ands and results.

The two register files consist of 16 primary registers and 16 alternate (sec-
ondary) registers. The data registers are 40 bits wide. Within these
registers, 32-bit data is left-justified. If an operation specifies a 32-bit data
transfer to these 40-bit registers, the eight LSBs are ignored on register
reads, and the LSBs are cleared to zeros on writes.

Program memory data accesses and data memory accesses to and from the
register file(s) occur on the PM data (PMD) bus and DM data (DMD)
bus, respectively. One PMD bus access for each processing element and/or
one DMD bus access for each processing element can occur in one cycle.
Transfers between the register files and the DMD or PMD buses can
move up to 64 bits of valid data on each bus.

Note that 16 data registers are sufficient to store the intermediate result of
a FFT radix-4 butterfly stage.

Data Register Neighbor Pairing
In the long word address space the sequencer or DAGs allow the loading
and or storing of data to/from a data register pair as shown in Table 2-3.
Every even data register has an associated odd register representing a regis-
ter pair. For more information, see “DAG Instruction Types” on page 6-7.

Complementary Data Register Pairs
The computational units (ALU, multiplier, and shifter) in PEx and PEy
processing elements are identical. The data bus connections for the dual
computational units permit asymmetric data moves to, from, and between

Functional Description

2-6 ADSP-2136x SHARC Processor Programming Reference

the two processing elements. Identical instructions execute on the PEx and
PEy units; the difference is the data. The data registers for PEy operations
are identified (implicitly) from the PEx registers in the instruction. This
implicit relationship between PEx and PEy data registers corresponds to
the complementary register pairs in Table 2-3.

 Data moves to the complementary data registers also occur in SISD
mode. For PEy computations SIMD mode is required.

Data and Complementary Data Register Access
Priorities

If writes to the same location take place in the same cycle, only the write
with higher precedence actually occurs. The processor determines prece-
dence for the write operation from the source of the data; from highest to
lowest, the precedence is:

Table 2-3. Data Register Pairs for SIMD and LW Access1

1 For fixed-point operations, the prefixes are Rx (PEx) or Sx (PEy). For floating-point operations,
the prefixes are Fx (PEx) or SFx (PEy)

PEx Pairs PEy Pairs

R0 R1 S0 S1

R2 R3 S2 S3

R4 R5 S4 S5

R6 R7 S6 S7

R8 R9 S8 S9

R10 R11 S10 S11

R12 R13 S12 S13

R14 R15 S14 S15

ADSP-2136x SHARC Processor Programming Reference 2-7

Register Files

1. DAG1 or universal register (UREG)

2. DAG2

3. PEx ALU

4. PEy ALU

5. PEx Multiplier

6. PEy Multiplier

7. PEx Shifter

8. PEy Shifter

Example:
r0=r1+r2, r0=dm(i0,m0), r0=pm(i8,m8); /* r0 is loaded from i0*/

r0=r1+r2, r0=pm(i8,m8); /* r0 is loaded from i8 */

Data and Complementary Data Register Transfers
These 10-port, 16-register register files, combined with the enhanced Har-
vard architecture, allow unconstrained data flow between computation
units and internal memory.

To support SIMD operation, the elements support a variety of dual data
move features. The dual processing elements execute the same instruction,
but operate on different data.

Data and Complementary Data Register Swaps
Registers swaps use the special swap operator, <->. A register-to-register
swap occurs when registers in different processing elements exchange val-
ues; for example R0 <-> S1. Only single, 40-bit register-to-register swaps
are supported. Double register operations are not supported as shown in
the example below.

Functional Description

2-8 ADSP-2136x SHARC Processor Programming Reference

R7 <-> S7;

R2 <-> S0;

 Regardless of SIMD/SISD mode, the processor supports bidirec-
tional register-to-register swaps. The swap occurs between one
register in each processing element’s data register file.

Note that the processor supports unidirectional and bidirectional regis-
ter-to-register transfers with the Conditional Compute and Move
instruction. For more information, see Chapter 4, Program Sequencer.

System Register Bit Manipulation
The system registers (SREG) support fast bit manipulation. The next exam-
ple uses the shifter for bit manipulations:

R1 = MODE1;

R1 = BSET R1 by 21; /* sets PEYEN bit */

R1 = BSET R1 by 24; /* sets CBUFEN bit */

MODE1 = R1;

However the following example is more efficient.

BIT SET MODE1 PEYEN|CBUFEN; /* change both modes */

Nop; /* effect latency */

To set or test individual bits in a control register using the shifter:

R1 = dm(SYSCTL);

R1 = BSET R1 by 11; /* sets IMDW2 bit 11 */

R1 = BSET R1 by 12; /* sets IMDW3 bit 12 */

dm(SYSCTL) = R1;

BTST R1 by 11; /* clears SZ bit */
IF SZ jump func;
BTST R1 by 12; /* clears SZ bit */
IF SZ jump func;

ADSP-2136x SHARC Processor Programming Reference 2-9

Register Files

The core has four user status registers (USTAT4–1) also classified as system
registers but for general-purpose use. These registers allow flexible manip-
ulation/testing of single or multiple individual bits in a register without
affecting neighbor bits as shown in the following example.

USTAT1= dm(SYSCTL);
BIT SET USTAT1 IMDW2|IMDW3; /* sets bits 12-11 */
dm(SYSCTL)=USTAT1;
USTAT1= dm(SYSCTL);
BIT TST USTAT1 IMDW2|IMDW3; /* test bits 12-11 */

IF TF r15=r15+1; /* BTF = 1 PEx OR PEy */

Combined Data Bus Exchange Register
The two 64-bit data DMD and PMD buses allow programs to transfer the
contents of any register in the processor to any other register or to any
internal memory location in a single cycle. As shown in Figure 2-1, the
bus exchange (PX) register permits data to flow between the PMD and
DMD buses.

The PX register can work as one combined 64-bit register or as two 32-bit
registers (PX1 and PX2).

Figure 2-1. Bus Exchange (PX, PX1, and PX2) Registers

03263 31

0031 31

0x98001

PX = DM(0x98000)(LW); /* read from DMD bus */

PM(0x4C000) = PX; /* write to PMD bus */

PX1PX2

03263 31

0x4C000

0031 31

PX

0x98000

Functional Description

2-10 ADSP-2136x SHARC Processor Programming Reference

The USTAT4-1 and PX2-1 registers allow load and store operations from
memory. However, direct computations using universal registers is not
supported and therefore a data move to the data register is required.

The alignment of PX1 and PX2 within PX appears in Figure 2-2. The com-
bined PX register is an universal register (UREG) that is accessible for
register-to-register or memory-to-register transfers.

PX to DREG Transfers

The PX register to data register transfers are either 40-bit transfers for the
combined PX or 32-bit transfers for PX1 or PX2. Figure 2-2 shows the bit
alignment and gives an example of instructions for register-to-register
transfers. shows that during a transfer between PX1 or PX2 and a data regis-
ter (Dreg), the bus transfers the upper 32 bits of the register file and
zero-fills the eight least significant bits (LSBs). During a transfer between
the combined PX register and a register file, the bus transfers the upper 40
bits of PX and zero-fills the lower 24 bits.

All transfers between the PX register (or any other internal register or
memory) and any I/O processor register are 32-bit transfers (least

Figure 2-2. PX to DREG Transfers

Register File Transfer

PX1 or PX2

39 7 0

0x0

Register File Transfer

39 0

0x0

02363

8

32 bits

31 024

40 bits

Combined PX

PX1PX2

R3 = PX; R3 = PX1; or R3 = PX2;

40 bits

R3 R3

PX 32 bits

ADSP-2136x SHARC Processor Programming Reference 2-11

Register Files

significant 32 bits of PX). All transfers between the PX register and
DREG/CDREG (R0–R15 or S0–S15) are 40-bit transfers. The most significant
40 bits are transferred as shown in Figure 2-2.

Immediate 40-bit Data Register Load

Extended precision data can’t be load immediately by using the following
code.

R0 = 0x123456789A; /* asm error data field max 32-bits*/

The next example is an alternative which requires a combined PX1/PX2 reg-
ister alignment for immediate load in SISD mode:

Bit CLR MODE1 PEYEN;

NOP;

PX2 = 0x55555555; /* load data 39-8*/

PX1 = 0x9A000000; /* load data 7-0*/

R1 = PX; /* R1 load with 40-bit*/

PX to Memory Transfers

The PX register-to-internal memory transfers over the DMD or PMD bus
are either 48-bit transfers for the combined PX or 32-bit transfers (on bits
31-0 of the bus) for PX1 or PX2. Figure 2-3 shows these transfers.

Figure 2-3 also shows that during a transfer between PX1 or PX2 and inter-
nal memory, the bus transfers the lower 32 bits of the register. During a
transfer between the combined PX register and internal memory, the bus
transfers the upper 48 bits of PX and zero-fills the lower 16 bits.

Functional Description

2-12 ADSP-2136x SHARC Processor Programming Reference

PX to Memory LW Transfers

Figure 2-4 shows the transfer size between PX and internal memory over
the PMD or DMD bus when using the long word (LW) option.

The LW notation in Figure 2-4 shows an important feature of PX regis-
ter-to-internal memory transfers over the PM or DM data bus for the
combined PX register. The PX register transfers to memory are 48-bit
(three column) transfers on bits 63-16 of the PM or DM data bus, unless a
long word transfer is used, or the transfer is forced to be 64-bit (four col-
umn) with the LW (long word) mnemonic.

The LW mnemonic affects data accesses that use the NW (normal word)
addresses irrespective of the settings of the PEYEN (processor element Y
enable) and IMDWx (internal memory data width) bits.

Figure 2-3. PX, PX1, PX2 Register-to-Memory Transfers on DM or PM
Data Bus

PX = DM (0xB0000); PM(I7,M7) = PX1;

31

PX1 or PX2

32 bits

063

0x0

DM or PM Data Bus Transfer

31

15

 PX2

DM and PM Data Bus Transfer (not LW)

063

48 bits

16

15 03163 16

48 bits 0x0

0x0

 PX1

Combined PX

31

0

32 bits

ADSP-2136x SHARC Processor Programming Reference 2-13

Register Files

Uncomplimentary UREG to Memory LW Transfers

If a register without a complimentary register (such as the PC or LCNTR reg-
isters), or if immediate data is a source for a transfer to a long word
memory location, the 32 bit source data is replicated within the long
word. This is shown in the example below where the long word location
0x4F800 is written with the 64-bit data abbaabba_abbaabba. This is the
case for all registers without peers.

I0 = 0X4F800;

M0 = 0X1;

L0 = 0x0;

DM(I0,M0) = 0xabbaabba;

Long word accesses using the USTATx registers is shown below.

USTAT1 = DM (LW address); /* Loads only USTAT1 in SISD

 mode */

DM (LW address) = USTAT1; /* Stores both USTAT1 and

 USTAT2 */

Figure 2-4. PX Register-to-Memory Transfers on PM Data Bus (LW)

Combined PX

DM (LW) or PM (LW)

03163

64 bits

03163

64 bits

Data Bus Transfer

PX = PM (0xB8000)(LW);

Operating Modes

2-14 ADSP-2136x SHARC Processor Programming Reference

Operating Modes
The following sections detail the operation of the register files.

Alternate (Secondary) Data Registers
Each data register file has an alternate data register set. To facilitate fast
context switching, the processor includes alternate register sets for data,
results, and data address generator registers. Bits in the MODE1 register con-
trol when alternate registers become accessible. While inaccessible, the
contents of alternate registers are not affected by processor operations.

 Note that there is a one cycle latency from the time when writes are
made to the MODE1 register until an alternate register set can be
accessed.

The alternate register sets for data and results are shown in Figure 2-5. For
more information on alternate data address generator registers, see “Alter-
nate (Secondary) DAG Registers” on page 6-28. Bits in the MODE1 register
can activate independent alternate data register sets: the lower half (R0–
R7) and the upper half (R8–R15). To share data between contexts, a pro-
gram places the data to be shared in one half of either the current
processing element’s register file or the opposite processing element’s reg-
ister file and activates the alternate register set of the other half. For
information on how to activate alternate data registers, see the description
of the MODE1 register below. The register files consist of a primary set of 16
x 40-bit registers and an alternate set of 16 x 40-bit registers.

Alternate (Secondary) Data Registers SIMD Mode
Context switching between the two sets of data registers (SIMD mode)
occurs in parallel between the two processing elements. Figure 2-5 shows
the lower half (S0–S7) and the upper half (S8–S15) of the data register
file.

ADSP-2136x SHARC Processor Programming Reference 2-15

Register Files

Figure 2-5. Alternate (Secondary) Data Register File

SRRFL

R0

R3

R2

R1

R4

R7

R6

R5

R8

R11

R10

R9

R12

R15

R14

R13

S0

S3

S2

S1

S4

S7

S6

S5

AVAILABLE REGISTERS-SISD MODE PEx UNIT AVAILABLE REGISTERS-SIMD MODE PEy UNIT

S8

 S11

S10

S9

S12

S15

S14

S13

SRRFH SRRFL SRRFH

RF
Rx/Fx
PEx

16x40-BIT

RF
Sx/SFx

PEy
16x40-BIT

DATA
SWAP

Operating Modes

2-16 ADSP-2136x SHARC Processor Programming Reference

UREG/SREG SIMD Mode Transfers
Table 2-4 shows the user status and PX registers and their complementary
registers.

There is no implicit move when the combined PX register is used in SIMD
mode. For example, in SIMD mode, the following moves occur:

PX1 = R0; /* R0 32-bit explicit move to PX1,

 and S0 32-bit implicit move to PX2 */

PX = R0; /* R0 40-bit explicit move to PX,

 but no implicit move for S0 */

However, the following exceptions should be noted:

• Transfers between USTATx and PX registers as in the following exam-
ple and Figure 2-6. Note that all user status registers behave in this
manner.

PX = USTAT1; /* loads PX1 with USTAT1 and PX2 with

 USTAT2 */

USTAT1 = PX; /* loads only PX1 to USTAT1 */

• Transfers between DAG and other system registers and the PX reg-
ister as shown in the following example:

I0 = PX; /* Moves PX1 to I0 */

PX = I0; /* Loads both PX1 and PX2 with I0 */

LCNTR = PX; /* Loads LCNTR with PX1 */

PX = PC; /* Loads both PX1 and PX2 with PC */

Table 2-4. Complementary Register Pairs

USTAT1 USTAT2

USTAT3 USTAT4

PX1 PX2

ADSP-2136x SHARC Processor Programming Reference 2-17

Register Files

Interrupt Mode Mask
On the SHARC processors, programs can mask automated individual
operating modes bits of the MODE1 register by entering into an ISR. This
reduces latency cycles.

For the data registers the alternate registers (SRRFH/L) are optional masks
in use. For more information, see Chapter 4, Program Sequencer.

Figure 2-6. Transfers Between USTATx and PX Registers

USTAT1

031
32 bits

031

PX1
PX = USTAT1;

USTAT2

031

031

PX2

32 bits

32 bits 32 bits

Operating Modes

2-18 ADSP-2136x SHARC Processor Programming Reference

SHARC Processor Programming Reference 3-1

3 PROCESSING ELEMENTS

The PEx and PEy processing elements perform numeric processing for
processor algorithms. Each element contains a data register file and three
computation units—an arithmetic/logic unit (ALU), a multiplier, and a
barrel shifter. Computational instructions for these elements include both
fixed-point and floating-point operations, and each computational
instruction executes in a single cycle.

Features
The processing elements have the following features.

• Data Formats. The units support 32-bit fixed and floating point
single precision IEEE 32-bit and extended precision IEEE 40-bit.

• Arithmetic/logic unit. The ALU performs arithmetic and logic
operations on fixed-point and floating-point data.

• Multiplier. The multiplier performs floating-point and fixed-point
multiplication and executes fixed-point multiply/add and multi-
ply/subtract operations.

• Barrel Shifter. The barrel shifter performs bit shifts, bit, bit field,
and bit stream manipulation on 32-bit operands. The shifter can
also derive exponents.

• Multifunction. The ALU and Multiplier support simultaneous
operations for fixed- and floating-point data formats. The
fixed-point multiplier can return results as 32 or 80 bits.

Functional Description

3-2 SHARC Processor Programming Reference

• One Cycle Arithmetic Pipeline. All computation instructions exe-
cute in one cycle.

• Multi Precision Arithmetic. The ALU and multiplier support
instructions/options for 64-bit precision.

Functional Description
The computational units in a processing element handle different types of
operations.

Data flow paths through the computation units are arranged in parallel, as
shown in Figure 3-1. The output of any computation unit may serve as
the input of any computation unit on the next instruction cycle. Data
moving in and out of the computation units goes through a 10-port regis-
ter file, consisting of 16 primary and 16 alternate registers. Two ports on
the register file connect to the PM and DM data buses, allowing data
transfers between the computation units and memory (and anything else)
connected to these buses.

Figure 3-1. Computational Block

MRF
Register
80-BIT

ALUMULTIPLIER SHIFTER

RF
Rx/Fx
PEx

16x40-BIT

ASTATx

STYKx

MRB
Register
80-BIT

SHARC Processor Programming Reference 3-3

Processing Elements

Single Cycle Processing
Based on the 5-stage pipeline in the SHARC processor core, the operands
are fetched during the second half of the address phase of pipeline before
the results are written back in the first half of the execution phase of pipe-
line. Therefore, the ALU, multiplier and shifter can read and write the
same register file location in an instruction cycle. For more information,
see Chapter 4, Program Sequencer.

Data Forwarding in Processing Units
Almost all processing operations require data streams from the internal
memory or from the data register file. However since memory data load
takes 2 cycles to complete (data stored in the data register) data forward-
ing is used to improve throughput. The data path already forwarded to the
data register is directly fed into the computation unit to be processed in
the next stage. The data register is updated afterwards.

Data forwarding is used for compute-to-compute and internal mem-
ory-to-compute operations. The example below illustrates an operand of a
compute fetched by an internal memory access with data forwarding.

R5=dm(i2,m2); /* DAG memory load */

R5=R5+1; /* data directly forwarded into ALU */

Instruction; /* r5 updated */

The next example shows the same operation without data forwarding.

R5=dm(i2,m2); /* DAG memory load */

Nop;

R5=R5+1; /* r5 used for ALU */

Functional Description

3-4 SHARC Processor Programming Reference

Data Format for Computation Units
The processor’s assembly language provides access to the data register files
in both processing elements. The syntax allows programs to move data to
and from these registers, specify a computation’s data format and provide
naming conventions for the registers, all at the same time. For information
on the data register names, see Chapter 2, Register Files.

Note the register name(s) within the instruction specify input data
type(s)—Fx for floating-point and Rx for fixed-point.

 The computation input format is not an operating mode, it is
based on the instruction prefix.

Arithmetic Status
The multiplier and ALU each provide exception information when exe-
cuting floating-point or fixed-point operations (see Table 3-10 on
page 3-43 and Table 3-11 on page 3-44). Each unit updates overflow,
underflow, and invalid operation flags in the processing element’s arith-
metic status (ASTATx and ASTATy) registers and sticky status (STKYx and
STKYy) registers. An underflow, overflow, or invalid operation from any
unit also generates a maskable interrupt. There are three ways to use float-
ing-point or fixed-point exceptions from computations in program
sequencing.

• Enable interrupts and use an interrupt service routine (ISR) to han-
dle the exception condition immediately. This method is
appropriate if it is important to correct all exceptions as they occur.

• Use conditional instructions to test the exception flags in the
ASTATx or ASTATy registers after the instruction executes. This
method permits monitoring each instruction’s outcome.

SHARC Processor Programming Reference 3-5

Processing Elements

• Use the bit test (BTST) instruction to examine exception flags in the
STKY register after a series of operations. If any flags are set, some of
the results are incorrect. Use this method when exception handling
is not critical.

Computation Status Update Priority

Flag updates occur at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register or sticky status register explicitly in the same cycle that the unit is
performing an operation, the explicit write to the status register supersedes
any flag update from the unit operation as shown in the following
example.

R0=R1+R2, ASTATx=R6; /* R6 overrides ALU status */

F0=F1*F2, STKYx=F6; /* F6 overrides MUL status */

For information on conditional instruction execution based on arithmetic
status, see “Conditional Instruction Execution” on page 4-91.

SIMD Computation and Status Flags

When the processors are in SIMD mode, computations on both process-
ing elements generate status flags, producing a logical ORing of the
exception status test on each processing element.

Arithmetic Logic Unit (ALU)
The ALU performs arithmetic operations on fixed-point or floating-point
data and logical operations on fixed-point data. ALU fixed-point

Table 3-1. Computation Status Register Pairs

ASTATx ASTATy

STKYx STKYy

Functional Description

3-6 SHARC Processor Programming Reference

instructions operate on 32-bit fixed-point operands and output 32-bit
fixed-point results, and ALU floating-point instructions operate on 32-bit
or 40-bit floating-point operands and output 32-bit or 40-bit float-
ing-point results. ALU instructions include:

• Floating-point addition, subtraction, add/subtract, average

• Fixed-point addition, subtraction, add/subtract, average

• Floating-point manipulation – binary log, scale, mantissa

• Fixed-point multi precision arithmetic (add with carry, subtract
with borrow)

• Logical AND, OR, XOR, NOT

• Functions – ABS, PASS, MIN, MAX, CLIP, COMPARE

• Format conversion

• Floating-point iterative reciprocal and reciprocal square root
functions

Functional Description

ALU instructions take one or two inputs: X input and Y input. These
inputs (known as operands) can be any data registers in the register file.
Most ALU operations return one result. However, in add/subtract opera-
tions, the ALU operation returns two results and in compare operations
the ALU returns no result (only flags are updated). ALU results can be
returned to any location in the register file.

If the ALU operation is fixed-point, the inputs are treated as 32-bit
fixed-point operands. The ALU transfers the upper 32 bits from the
source location in the register file. For fixed-point operations, the result(s)
are 32-bit fixed-point values. Some floating-point operations (LOGB, MANT
and FIX) can also yield fixed-point results.

SHARC Processor Programming Reference 3-7

Processing Elements

The processor transfers fixed-point results to the upper 32 bits of the data
register and clears the lower eight bits of the register. The format of
fixed-point operands and results depends on the operation. In most arith-
metic operations, there is no need to distinguish between integer and
fractional formats. Fixed-point inputs to operations such as scaling a float-
ing-point value are treated as integers. For purposes of determining status
such as overflow, fixed-point arithmetic operands and results are treated as
two’s-complement numbers.

ALU Instruction Types

The following sections provide details about the instruction types sup-
ported by the ALU.

Compare Accumulation Instruction

Bits 31–24 in the ASTATx/y registers store the flag results of up to eight
ALU compare operations. These bits form a right-shift register. When the
processor executes an ALU compare operation, it shifts the eight bits
toward the LSB (bit 24 is lost). Then it writes the MSB, bit 31, with the
result of the compare operation. If the X operand is greater than the Y
operand in the compare instruction, the processor sets bit 31. Otherwise,
it clears bit 31.

Applications can use the accumulated compare flags to implement two-
and three-dimensional clipping operations.

Fixed-to-Float Conversion Instructions

The ALU supports conversion between floating and fixed point as shown
in the following example.

Fn = FLOAT Rx; /* floating-point */

Rn = FIX Fx; /* fixed-point */

Functional Description

3-8 SHARC Processor Programming Reference

Fixed-to-Float Conversion Instructions with Scaling

The ALU supports conversion between floating- and fixed-point by using
a scaling factor as shown in the following example.

Fn = FLOAT Rx by 31; /* floating-point [-1.0 to 1.0] */

Rn = FIX Fx by 31 /* fixed-point 1.31 format */

Reciprocal/Square Root Instructions

The reciprocal/square root floating-point instruction types do not execute
in a single cycle. Iterative algorithms are used to compute both reciprocals
and square roots. The RECIPS and RSQRTS operations are used to start these
iterative algorithms as shown below.

Fn = RECIPS Fx; /* creates seed for reciprocal */

Fn = RSQRTS Fx; /* creates seed for reciprocal square root */

Divide Instruction

The SHARC processor does not support a single-cycle floating-point
divide instruction. The RECIPS instruction is used to simplify the divide
implementation instruction by using an iterative convergence algorithm.
For more information, see Chapter 11, Computation Types.

Clip Instruction

The clip instruction (CLIP) is very similar to the multiplier saturate (SAT)
instruction, however the clipping (saturation) level is an operand within
the instruction.

Rn = CLIP Rx by Ry; /* clip level stored in Ry register */

Multiprecision Instructions

The add with carry and the subtract with borrow allows the implementa-
tion of 64-bit operations.

SHARC Processor Programming Reference 3-9

Processing Elements

Rn = Rx + Ry + CI; /* adds with carry from status

 register */

Rn = Rx - Ry + CI -1; /* subtracts with borrow from status

 register */

Arithmetic Status
ALU operations update seven status flags in the processing element’s arith-
metic status (ASTATx and ASTATy) registers. The following bits in ASTATx or
ASTATy registers flag the ALU status (a 1 indicates the condition) of the
most recent ALU operation.

• ALU result zero or floating-point underflow, (AZ)

• ALU overflow, (AV)

• ALU result negative, (AN)

• ALU fixed-point carry, (AC)

• ALU input sign for ABS, MANT operations, (AS)

• ALU floating-point invalid operation, (AI)

• Last ALU operation was a floating-point operation, (AF)

• Compare accumulation register results of last eight compare opera-
tions, (CACC)

ALU operations also update four sticky status flags in the processing ele-
ment’s sticky status (STKYx and STKYy) registers. The following bits in
STKYx or STKYy flag the ALU status (a 1 indicates the condition). Once set,
a sticky flag remains high until explicitly cleared.

• ALU floating-point underflow, (AUS)

• ALU floating-point overflow, (AVS)

Functional Description

3-10 SHARC Processor Programming Reference

• ALU fixed-point overflow, (AOS)

• ALU floating-point invalid operation, (AIS)

ALU Instruction Summary
Table 3-2 and Table 3-3 list the ALU instructions and show how they
relate to the ASTATx/ASTATy and STKYx/STKYy flags. For more information
on assembly language syntax, see Chapter 9, Instruction Set Types, and
Chapter 11, Computation Types. In these tables, note the meaning of the
following symbols.

• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as
floating-point

• * indicates that the flag may be set or cleared, depending on the
results of instruction

• ** indicates that the flag may be set (but not cleared), depending
on the results of the instruction

• – indicates no effect

• In SIMD mode all instructions in this table use the complement
data registers

SHARC Processor Programming Reference 3-11

Processing Elements

Table 3-2. Fixed-Point ALU Instruction Summary (AF Flag = 0)

Instruction ASTATx, ASTATy Status Flags STKYx, STKYy Status Flags

Fixed-Point: AZ AV AN AC AS AI CACC AUS AVS AOS AIS

Rn = Rx + Ry * * * * 0 0 – – – ** –

Rn = Rx – Ry * * * * 0 0 – – – ** –

Rn = Rx + Ry + CI * * * * 0 0 – – – ** –

Rn = Rx – Ry + CI – 1 * * * * 0 0 – – – ** –

Rn = (Rx + Ry)/2 * 0 * * 0 0 – – – – –

COMP(Rx, Ry) * 0 * 0 0 0 * – – – –

COMPU(Rx, Ry) * 0 * 0 0 0 * – – – –

Rn = Rx + CI * * * * 0 0 – – – ** –

Rn = Rx + CI – 1 * * * * 0 0 – – – ** –

Rn = Rx + 1 * * * * 0 0 – – – ** –

Rn = Rx – 1 * * * * 0 0 – – – ** –

Rn = –Rx * * * * 0 0 – – – ** –

Rn = ABS Rx * * 0 0 * 0 – – – ** –

Rn = PASS Rx * 0 * 0 0 0 – – – – –

Rn = Rx AND Ry * 0 * 0 0 0 – – – – –

Rn = Rx OR Ry * 0 * 0 0 0 – – – – –

Rn = Rx XOR Ry * 0 * 0 0 0 – – – – –

Rn = NOT Rx * 0 * 0 0 0 – – – – –

Rn = MIN(Rx, Ry) * 0 * 0 0 0 – – – – –

Rn = MAX(Rx, Ry) * 0 * 0 0 0 – – – – –

Rn = CLIP Rx by Ry * 0 * 0 0 0 – – – – –

Functional Description

3-12 SHARC Processor Programming Reference

Table 3-3. Floating-Point ALU Instruction Summary (AF Flag = 1)

Instruction ASTATx, ASTATy Status Flags STKYx, STKYy Status
Flags

Floating-Point: AZ AV AN AC AS AI CACC AUS AVS AOS AIS

Fn = Fx + Fy * * * 0 0 * – ** ** – **

Fn = Fx – Fy * * * 0 0 * – ** ** – **

Fn = ABS (Fx + Fy) * * 0 0 0 * – ** ** – **

Fn = ABS (Fx – Fy) * * 0 0 0 * – ** ** – **

Fn = (Fx + Fy)/2 * 0 * 0 0 * – ** – – **

COMP(Fx, Fy) * 0 * 0 0 * * – – – **

Fn = –Fx * 0 * 0 0 * – – – – **

Fn = ABS Fx * 0 0 0 * * – – – – **

Fn = PASS Fx * 0 * 0 0 * – – – – **

Fn = RND Fx * * * 0 0 * – – ** – **

Fn = SCALB Fx by Ry * * * 0 0 * – ** ** – **

Rn = MANT Fx * * 0 0 * * – – ** – **

Rn = LOGB Fx * * * 0 0 * – – ** – **

Rn = FIX Fx by Ry * * * 0 0 * – ** ** – **

Rn = FIX Fx * * * 0 0 * – ** ** – **

Rn = TRUNC Fx * 0 * 0 0 * – ** – – **

Rn = TRUNC Fx by Ry * 0 * 0 0 * – ** – – **

Fn = FLOAT Rx by Ry * * * 0 0 0 – ** ** – –

Fn = FLOAT Rx * 0 * 0 0 0 – – – – –

Fn = RECIPS Fx * * * 0 0 * – ** ** – **

Fn = RSQRTS Fx * * * 0 0 * – – ** – **

Fn = Fx COPYSIGN Fy * 0 * 0 0 * – – – – **

Fn = MIN(Fx, Fy) * 0 * 0 0 * – – – – **

Fn = MAX(Fx, Fy) * 0 * 0 0 * – – – – **

Fn = CLIP Fx by Fy * 0 * 0 0 * – – – – **

SHARC Processor Programming Reference 3-13

Processing Elements

Multiplier
The multiplier performs fixed-point or floating-point multiplication and
fixed-point multiply/accumulate operations. Fixed-point multiply/accu-
mulates are available with cumulative addition or cumulative subtraction.
Multiplier floating-point instructions operate on 32-bit or 40-bit float-
ing-point operands and output 32-bit or 40-bit floating-point results.
Multiplier fixed-point instructions operate on 32-bit fixed-point data and
produce 80-bit results. Inputs are treated as fractional or integer, unsigned
or two’s-complement. Multiplier instructions include:

• Floating-point multiplication

• Fixed-point multiplication

• Fixed-point multiply/accumulate with addition, rounding optional

• Fixed-point multiply/accumulate with subtraction, rounding
optional

• Rounding multiplier result register

• Saturating multiplier result register

• Fixed point multi-precision arithmetic (signed/signed, unsigned/
unsigned or unsigned/signed options)

Functional Description

The multiplier takes two inputs, X and Y. These inputs (also known as
operands) can be any data registers in the register file. The multiplier can
accumulate fixed-point results in the local multiplier result (MRF) registers
or write results back to the register file. The results in MRF can also be
rounded or saturated in separate operations. Floating-point multiplies
yield floating-point results, which the multiplier writes directly to the reg-
ister file.

Functional Description

3-14 SHARC Processor Programming Reference

For fixed-point multiplies, the multiplier reads the inputs from the upper
32 bits of the data registers. Fixed-point operands may be either both in
integer format, or both in fractional format. The format of the result
matches the format of the inputs. Each fixed-point operand may be either
an unsigned number or a two’s-complement number. If both inputs are
fractional and signed, the multiplier automatically shifts the result left one
bit to remove the redundant sign bit.

Asymmetric Multiplier Inputs

In cases of dual operand forwarding from a compute instruction in the
previous cycle, wherein both the X and Y inputs are required for multipli-
cation, there is a one cycle stall. However, this is not a very common case
in DSP processing, and therefore high architectural efficiency is still
achieved using an asymmetrical multiplier. For more information, see
Chapter 4, Program Sequencer.

Multiplier Result Register

Fixed-point operations place 80-bit results in the multiplier’s foreground
register (MRF) or background register (MRB), depending on which is active.
For more information on selecting the result register, see “Alternate (Sec-
ondary) Data Registers” on page 2-14.

The location of a result in the MRF register’s 80-bit field depends on
whether the result is in fractional or integer format, as shown in
Figure 3-2. If the result is sent directly to a data register, the 32-bit result
with the same format as the input data is transferred, using bits 63–32 for
a fractional result or bits 31–0 for an integer result. The eight LSBs of the
40-bit register file location are zero-filled.

Fractional results can be rounded-to-nearest before being sent to the regis-
ter file. If rounding is not specified, discarding bits 31–0 effectively
truncates a fractional result (rounds to zero). For more information on
rounding, see “Rounding Mode” on page 3-38.

SHARC Processor Programming Reference 3-15

Processing Elements

The MRF register (Figure 3-3) is comprised of the MR2F, MR1F, and MR0F reg-
isters, which individually can be read from or written to the register file.
Each of these registers has the same format. When data is read from MR2F
(guard bits), it is sign-extended to 32 bits. The processor zero-fills the
eight LSBs of the 40-bit register file location when data is written from
MR2F, MR1F, or MR0F to a register file location. When the processor writes
data into MR2F, MR1F, or MR0F from the 32 MSBs of a register file location,
the eight LSBs are ignored. Data written to MR1F register is sign-extended
to MR2F, repeating the MSB of MR1F in the 16 bits of the MR2F register.
Data written to the MR0F register is not sign-extended.

Note that the multiply result register (MRF, MRB) is not an orthogonal regis-
ter in the instruction set. Only specific instructions decode it as an
operand or as a result register (no universal register). “Multiplier
Fixed-Point Computations” on page 11-49.

Figure 3-2. Multiplier Fixed-Point Result Placement

MR2F MR0F

OVERFLOW UNDERFLOWFRACTIONAL RESULT

OVERFLOW INTEGER RESULTOVERFLOW

MR1F

79 63 31 0

Functional Description

3-16 SHARC Processor Programming Reference

Multiply Register Instruction Types

In addition to multiply, fixed-point operations include accumulate,
round, and saturate fixed-point data. The three MRx register instructions
are described in the following sections.

Clear MRx Instruction

The clear operation (MRF = 0) resets the specified MRF register to zero.
Often, it is best to perform this operation at the start of a multiply/accu-
mulate operation to remove the results of the previous operation.

Round MRx Instruction

The RND operation (MRF = RND MRF) applies only to fractional results, inte-
ger results are not effected. This operation performs a round to nearest of
the 80-bit MRF value at bit 32, for example, the MR1F– MR0F boundary.
Rounding a fixed-point result occurs as part of a multiply or multiply/
accumulate operation or as an explicit operation on the MRF register. The
rounded result in MR1F can be sent to the register file or back to the same
MRF register. To round a fractional result to zero (truncation) instead of to
nearest, a program transfers the unrounded result from MR1F, discarding
the lower 32 bits in MR0F.

Figure 3-3. MR to Data Register Transfers Formats

ZEROSSIGN-EXTEND MRF2

MRF0

MRF1

ZEROS

ZEROS

8 BITS

8 BITS

32 BITS

32 BITS

16 BITS 16 BITS 16 BITS

SHARC Processor Programming Reference 3-17

Processing Elements

Multi Precision Instructions

The multiplier supports the following data operations for 64-bit data.

MRF = Rx * Ry (SSF); /* signed x signed/fractional */

MRF = Rx * Ry (SUF); /* signed x unsigned/fractional */

MRF = Rx * Ry (USF); /* unsigned x signed/fractional */

MRF = Rx * Ry (UUF); /* unsigned x unsigned/fractional */

Saturate MRx Instruction

The SAT operation (MRF = SAT MRF) sets MRF to a maximum value if the MRF
value has overflowed. Overflow occurs when the MRF value is greater than
the maximum value for the data format—unsigned or two’s-complement
and integer or fractional—as specified in the saturate instruction. The six
possible maximum values appear in Table 3-4. The result from MRF satura-
tion can be sent to the register file or back to the same MRF register.

Table 3-4. Fixed-Point Format Maximum Values (Saturation)

Maximum Number
(Hexadecimal)

MR2F MR1F MR0F

Two’s-complement fractional (positive) 0000 7FFF FFFF FFFF FFFF

Two’s-complement fractional (negative) FFFF 8000 0000 0000 0000

Two’s-complement integer (positive) 0000 0000 0000 7FFF FFFF

Two’s-complement integer (negative) FFFF FFFF FFFF 8000 0000

Unsigned fractional number 0000 FFFF FFFF FFFF FFFF

Unsigned integer number 0000 0000 0000 FFFF FFFF

Functional Description

3-18 SHARC Processor Programming Reference

Arithmetic Status

Multiplier operations update four status flags in the processing element’s
arithmetic status registers (ASTATx and ASTATy). A 1 indicates the condi-
tion of the most recent multiplier operation and are as follows.

• Multiplier result negative (MN)

• Multiplier overflow, (MV)

• Multiplier underflow, (MU)

• Multiplier floating-point invalid operation, (MI)

Multiplier operations also update four “sticky” status flags in the process-
ing element’s sticky status (STKYx and STKYy) registers. Once set (a 1
indicates the condition), a sticky flag remains set until explicitly cleared.
The bits in the STKYx or STKYy registers are as follows.

• Multiplier fixed-point overflow, (MOS)

• Multiplier floating-point overflow, (MVS)

• Multiplier underflow, (MUS)

• Multiplier floating-point invalid operation, (MIS)

Multiplier Instruction Summary

Table 3-5 and Table 3-7 list the multiplier instructions and describe how
they relate to the ASTATx/ASTATy and STKYx/STKYy flags. For more infor-
mation on assembly language syntax, see Chapter 9, Instruction Set
Types, and Chapter 11, Computation Types. In these tables, note the
meaning of the following symbols:

• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as
floating-point

SHARC Processor Programming Reference 3-19

Processing Elements

• * indicates that the flag may be set or cleared, depending on results
of instruction

• ** indicates that the flag may be set (but not cleared), depending
on results of instruction

• – indicates no effect

• The Input Mods column indicates the types of optional modifiers
that can be applied to the instruction inputs. For a list of modifiers,
see Table 3-6.

• In SIMD mode all instruction uses the complement data/multiply
result registers.

Table 3-5. Fixed-Point Multiplier Instruction Summary

Instruction Input
Mods

ASTATx, ASTATy Flags STKYx, STKYy Flags

Fixed-Point MU MN MV MI MUS MOS MVS MIS

Rn = Rx × Ry 1 * * * 0 – ** – –

MRF = Rx × Ry 1 * * * 0 – ** – –

MRB = Rx × Ry 1 * * * 0 – ** – –

Rn = MRF + Rx × Ry 1 * * * 0 – ** – –

Rn = MRB + Rx × Ry 1 * * * 0 – ** – –

MRF = MRF + Rx × Ry 1 * * * 0 – ** – –

MRB = MRB + Rx × Ry 1 * * * 0 – ** – –

Rn = MRF – Rx × Ry 1 * * * 0 – ** – –

Rn = MRB – Rx × Ry 1 * * * 0 – ** – –

MRF = MRF – Rx × Ry 1 * * * 0 – ** – –

MRB = MRB – Rx × Ry 1 * * * 0 – ** – –

Rn = SAT MRF 2 * * 0 0 – – – –

Rn = SAT MRB 2 * * 0 0 – – – –

MRF = SAT MRF 2 * * 0 0 – – – –

MRB = SAT MRB 2 * * 0 0 – – – –

Functional Description

3-20 SHARC Processor Programming Reference

Rn = RND MRF 3 * * * 0 – ** – –

Rn = RND MRB 3 * * * 0 – ** – –

MRF = RND MRF 3 * * * 0 – ** – –

MRB = RND MRB 3 * * * 0 – ** – –

MRF = 0 – 0 0 0 0 – – – –

MRB = 0 – 0 0 0 0 – – – –

MRxF = Rn – 0 0 0 0 – – – –

MRxB = Rn – 0 0 0 0 – – – –

Rn = MRxF – 0 0 0 0 – – – –

Rn = MRxB – 0 0 0 0 – – – –

Table 3-6. Input Modifiers for Fixed-Point Multiplier Instruction

Input
Mods from
Table 3-5

Input Mods—Options For Fixed-Point Multiplier Instructions

1 (SSF), (SSI), (SSFR), (SUF), (SUI), (SUFR), (USF), (USI), (USFR), (UUF), (UUI), or
(UUFR)

2 (SF), (SI), (UF), or (UI) saturation only

3 (SF) or (UF) rounding only

Note the meaning of the following symbols in this table:
Signed input — S
Unsigned input — U
Integer input — I
Fractional input — F
Fractional inputs, Rounded output — FR

Note that (SF) is the default format for one-input operations, and (SSF) is the default format for
two-input operations.

Table 3-5. Fixed-Point Multiplier Instruction Summary (Cont’d)

Instruction Input
Mods

ASTATx, ASTATy Flags STKYx, STKYy Flags

Fixed-Point MU MN MV MI MUS MOS MVS MIS

SHARC Processor Programming Reference 3-21

Processing Elements

Barrel Shifter
The barrel shifter is a combination of logic with X inputs and Y outputs
and control logic that specifies how to shift data between input and out-
put within one cycle.

The shifter performs bit-wise operations on 32-bit fixed-point operands.
Shifter operations include the following.

• Bit wise operations such as shifts and rotates from off-scale left to
off-scale right

• Bit wise manipulation operations, including bit set, clear, toggle,
and test

• Bit field manipulation operations, including extract and deposit

• Bit stream manipulation operations using a bit FIFO

• Bit field conversion operations including exponent extract, number
of leading 1s or 0s

• Pack and unpack conversion between 16-bit and 32-bit
floating-point

• Optional immediate data for one input within the instruction

Table 3-7. Floating-Point Multiplier Instruction Summary

Instruction ASTATx, ASTATy Flags STKYx, STKYy Flags

Floating-Point MU MN MV MI MUS MOS MVS MIS

Fn = Fx × Fy * * * * ** – ** **

Functional Description

3-22 SHARC Processor Programming Reference

Functional Description

The shifter takes one to three inputs: X, Y, and Z. The inputs (known as
operands) can be any register in the register file. Within a shifter instruc-
tion, the inputs serve as follows.

• The X input provides data that is operated on.

• The Y input specifies shift magnitudes, bit field lengths, or bit
positions.

• The Z input provides data that is operated on and updated.

The shifter does not make use of the ALU carry bit, it uses its own status
bits.

Shifter Instruction Types

There are two shifter instruction categories: shift compute or shift imme-
diate instructions. Both instruction types operate identically. Only the Y
input is either in an instruction or in a data register.

Shift Compute Category

The shift compute instruction uses a data register for the Y input. The
data register operates based on the instruction’s 12-bit field for the bit
position start (bit6) and the bit field length (len6). Other instructions
may use only the 8-bit field.

Shift Immediate Category

The shift immediate instruction uses immediate data for the Y input. This
input comes from the instruction’s 12-bit field for the bit position start
(bit6) and the bit field length (len6). Other instructions may use only the
8-bit field.

SHARC Processor Programming Reference 3-23

Processing Elements

Bit Manipulation Instructions

In the following example, Rx is the X input, Ry is the Y input, and Rn is the
Z input. The shifter returns one output (Rn) to the register file.

Rn = Rn OR LSHIFT Rx BY Ry;

As shown in Figure 3-4, the shifter fetches input operands from the upper
32 bits of a register file location (bits 39–8) or from an immediate value in
the instruction.

The X input and Z input are always 32-bit fixed-point values. The Y input
is a 32-bit fixed-point value or an 8-bit field (SHF8), positioned in the reg-
ister file. These inputs appear in Figure 3-4.

Some shifter operations produce 8 or 6-bit results. As shown in
Figure 3-4, the shifter places these results in the SHF8 field or the bit6
field and sign-extends the results to 32 bits. The shifter always returns a
32-bit result.

Bit Field Manipulation Instructions

The shifter supports bit field deposit and bit field extract instructions for
manipulating groups of bits within an input. The Y input for bit field
instructions specifies two 6-bit values, bit6 and len6, which are posi-
tioned in the Ry register as shown in Figure 3-5. The shifter interprets

Figure 3-4. Register File Fields for Shifter Instructions

39 7 0

39 15 7 0

SHF8

8-BIT Y INPUT OR RESULT

32-BIT Y INPUT OR RESULT

Functional Description

3-24 SHARC Processor Programming Reference

bit6 and len6 as positive integers. The bit6 value is the starting bit posi-
tion for the deposit or extract, and the len6 value is the bit field length,
which specifies how many bits are deposited or extracted.

Field deposit (FDEP) instructions take a group of bits from the input regis-
ter (starting at the LSB of the 32-bit integer field) and deposit the bits as
directed anywhere within the result register. The bit6 value specifies the
starting bit position for the deposit. Figure 3-6 shows how the inputs,
bit6 and len6, work in the following field deposit instruction.

Rn = FDEP Rx By Ry

Figure 3-7 shows bit placement for the following field deposit instruction.

R0 = FDEP R1 By R2;

Field extract (FEXT) instructions extract a group of bits as directed from
anywhere within the input register and place them in the result register,
aligned with the LSB of the 32-bit integer field. The bit6 value specifies
the starting bit position for the extract.

Figure 3-5. Register File Fields for FDEP, FEXT Instructions

12-BIT Y INPUT

39 19 13 7 0

len6 bit6

SHARC Processor Programming Reference 3-25

Processing Elements

Figure 3-6. Bit Field Deposit Instruction

Figure 3-7. Bit Field Deposit Example

39 19 13 7 0

len6RY

RN

RX

39 7 0

39 7 0

DEPOSIT FIELD

REFERENCE POINT

= NUMBER OF BITS TO TAKE FROM RX, STARTING FROM LSB OF 32-BIT FIELD

RY DETERMINES LENGTH OF BIT FIELD TO TAKE FROM RX AND STARTING POSITION
FOR DEPOSIT IN RN

BIT6 = STARTING BIT POSITION FOR DEPOSIT, REFERENCED FROM LSB OF 32-BIT FIELD

bit6

bit6

len6

16 8 0

0x0000 00FF 00R1

len6 bit6 len6 = 8
bit6 = 16

0x0000 0210 00R2

16 8 0

Starting bit position for deposit Reference point

0x00FF 0000 00R0

00000000

39 32 24 16 8 0

00000000 00000010 00010000 00000000

00000000

39 32 24 16 8 0

00000000 00000000 11111111 00000000

00000000

39 32 24 16 8 0

11111111 00000000 00000000 00000000

Functional Description

3-26 SHARC Processor Programming Reference

Figure 3-8 shows bit placement for the following field extract instruction.

R3 = FEXT R4 By R5;

 The FEXT instruction bits to the left of the extracted field are
cleared in the destination register. The FDEP instruction bits to the
left and to the right of the deposited field are cleared in the destina-
tion register. Therefore programs can use the (SE) option, which
sign extends the left bits, or programs can use a logical OR instruc-
tion with the source register which does not clear the bits across the
shifted field.

Figure 3-8. Bit Field Extract Instruction

16 8 0

0x8780 0000 00R4

len6 bit6 len6 = 8
bit6 = 23

0x0000 0217 00R5

16 8 0

Starting bit position
for extraction Reference point

0x0000 000F 00R3

00000000

39 32 24 16 8 0

00000000 00000010 00010111 00000000

10000111

39 32 24 16 8 0

10000000 00000000 0000000 00000000

00000000

39 32 24 16 8 0

00000000 00001111 0000000000000000

SHARC Processor Programming Reference 3-27

Processing Elements

Bit Stream Manipulation Instructions (ADSP-214xx)

The bit stream manipulation operations, in conjunction with the bit
FIFO write pointer (BFFWRP) instruction, implement a bit FIFO used for
modifying the bits in a contiguous bit stream. The shifter supports bit
stream manipulation to access the bit FIFO as described below.

• The BITDEP instruction deposits bit field from an input stream into
the bit FIFO

• The BITEXT instruction extracts bit field from the bit FIFO into an
output stream

The bit FIFO consists of a 64-bit register internal to the shifter and an
associated write pointer register which keeps track of the number of valid
bits in the FIFO. When the bit FIFO is empty, the write pointer is 0,
when the FIFO is full, the write pointer is 64. The bit FIFO register and
write pointer can be accessed only through the BITDEP and BITEXT instruc-
tions. For more information, see “Shifter/Shift Immediate Computations”
on page 11-58.

Listing 3-1 and Listing 3-2 demonstrate the BITDEP instruction where
32-bit words are appended to the bit FIFO whenever the total number of
bits falls below 32. A variable number of bits are read.

Listing 3-1. Example of Header Extraction

I13 = buffer_base;

M13 = 1;

BFFWRP = 0x0; /* initialize Bit Fifo */

R10 = pm(I13,M13);

If NOT SF BITDEP R10 by 32,

 R10 = PM(I13,M13); /* appends R10 to BFF */

R6 = BITEXT (6); /* extracts 6 bits from head of BFF
 and left-shifts BFF by that amount */

Functional Description

3-28 SHARC Processor Programming Reference

DM(Var_1) = R6;
If NOT SF BITDEP R10 by 32, R10 = PM(I13,M13);
R6 = BITEXT(3); /* extracts 3 bits */
DM(Var_2) = R6;

The bit extracts are in variable quantities, but the deposit is always in
32-bits whenever the total number of bits in the bit FIFO increases
beyond 32.

Listing 3-2. Header Creation

I13 = buffer_base;
M13 = 1;
BFFWRP=0x0;
R10 = dm(_var1); /* get the variable */
BITDEP R10 by 6; /* append it to BFF */
If SF R10 = BITEXT(32),
 pm(I13,M13) = R10; /* if the balance > 32,
 transfer a word */
R10 = dm(Var_1);
BITDEP R10 by 3;
If NOT SF R10 = BITEXT(32), pm(I13,M13) = R10;

Interrupts Using Bit FIFO Instructions

If the program vectors to an ISR during bit FIFO operations, and the ISR
uses the bit FIFO for different other purposes, then the state of the bit
FIFO has to be preserved if the program needs to restart the previous bit
FIFO operations after returning from the ISR. This is shown in
Listing 3-3.

Listing 3-3. Storing and Restoring Bit FIFO State

/* Storing Bit FIFO State */

R0 = BFFWRP;

BFFWRP = 64;

R1 = BITEXT 32;

SHARC Processor Programming Reference 3-29

Processing Elements

R2 = BITEXT 32;

/* Restoring the Bit FIFO State */
BFFWRP = 0;
BITDEP R2 BY 32;
BITDEP R1 BY 32;

In the same fashion the bit FIFO can be used to extract and create differ-
ent headers in a kind of time-division multiplex fashion by storing and
restoring the bit FIFO between two different sequences of bit FIFO
operations.

 If a bit FIFO related instruction is interrupted and the ISR uses the
bit FIFO, the state of the bit FIFO must be preserved and restored
by the ISR.

Converting Floating-Point Instructions (16 to 32-Bit)

The processor supports a 16-bit floating-point storage format and pro-
vides instructions that convert the data for 40-bit computations. The
16-bit floating-point format uses an 11-bit mantissa with a 4-bit exponent
plus a sign bit. The 16-bit data goes into bits 23 through 8 of a data regis-
ter. Two shifter instructions, FPACK and FUNPACK, perform the packing and
unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The FPACK instruction converts a 32-bit IEEE float-
ing-point number in a data register into a 16-bit floating-point number.
FUNPACK converts a 16-bit floating-point number in a data register to a
32-bit IEEE floating-point number. Each instruction executes in a single
cycle.

When 16-bit data is written to bits 23 through 8 of a data register, the
processor automatically extends the data into a 32-bit integer (bits 39
through 8).

The 16-bit floating-point format supports gradual underflow. This
method sacrifices precision for dynamic range. When packing a number

Functional Description

3-30 SHARC Processor Programming Reference

that would have underflowed, the exponent clears to zero and the mantissa
(including a “hidden” 1) right-shifts the appropriate amount. The packed
result is a denormal, which can be unpacked into a normal IEEE float-
ing-point number.

The shifter instructions may help to perform data compression, convert-
ing 32-bit into 16-bit floating point, storing the data into short word
space, and, if required, fetching and converting them back for further
processing.

Arithmetic Status

Shifter operations update four status flags in the processing element’s
arithmetic status registers (ASTATx and ASTATy) where a 1 indicates the
condition. The bits that indicate shifter status for the most recent ALU
operation are as follows.

• Shifter overflow of bits to left of MSB, (SV)

• Shifter result zero, (SZ)

• Shifter input sign for exponent extract only, (SS)

• Shifter bit FIFO status (SF)

Note that the shifter does not generate an exception handle.

Bit FIFO Status

The bit FIFO contains a status flag (shifter FIFO, SF) which reflects the
current value of the write pointer – SF is set when the write pointer is
greater than or equal to 32, it is cleared otherwise. Another status flag SV,
indicates the exception condition such as overflow or underflow.

The SF flag has two related conditions – SF and NOT SF, which are for
exclusive use in instructions involving the bit FIFO.

SHARC Processor Programming Reference 3-31

Processing Elements

 The shifter FIFO bit (SF in ASTATx/y registers) reflects the status
flag. Note this bit is a read-only bit unlike other flags in the
ASTATx/y registers. The value is pushed into the stack during a PUSH
operation but a POP operation does not restore this ASTAT bit.

Shifter Instruction Summary

Table 3-8 and Table 3-9 lists the shifter instructions and shows how they
relate to ASTATx/ASTATy flags. For more information on assembly language
syntax, see Chapter 9, Instruction Set Types, and Chapter 11, Computa-
tion Types. In these tables, note the meaning of the following symbols:

• The Rn, Rx, Ry operands indicate any register file location; bit fields
used depend on instruction

• The Fn, Fx operands indicate any register file location; float-
ing-point word

• The * symbol indicates that the flag may be set or cleared, depend-
ing on data

• In SIMD mode all instruction uses the complement data registers,
immediate data are valid for both units

Table 3-8. Shifter Instruction Summary

Instruction ASTATx, ASTATy Flags

SZ SV SS

Rn = LSHIFT Rx by Ry | <data8> * * 0

Rn = Rn OR LSHIFT Rx by Ry | <data8> * * 0

Rn = ASHIFT Rx by Ry | <data8> * * 0

Rn = Rn OR ASHIFT Rx by Ry | <data8> * * 0

Rn = ROT Rx by Ry | <data8> * 0 0

Rn = BCLR Rx by Ry | <data8> * * 0

Rn = BSET Rx by Ry | <data8> * * 0

Functional Description

3-32 SHARC Processor Programming Reference

The ADSP-214xx processors support the instructions in Table 3-8. Addi-
tionally these processors support the shifter bit FIFO instructions shown
in Table 3-9.

Rn = BTGL Rx by Ry | <data8> * * 0

BTST Rx by Ry | <data8> * * 0

Rn = FDEP Rx by Ry | <bit6>:<len6> * * 0

Rn = FDEP Rx by Ry | <bit6>:<len6> (SE) * * 0

Rn = Rn OR FDEP Rx by Ry | <bit6>:<len6> * * 0

Rn = Rn OR FDEP Rx by Ry <bit6>:<len6> (SE) * * 0

Rn = FEXT Rx by Ry | <bit6>:<len6> * * 0

Rn = FEXT Rx by Ry | <bit6>:<len6> (SE) * * 0

Rn = EXP Rx (EX) * 0 *

Rn = EXP Rx * 0 *

Rn = LEFTZ Rx * * 0

Rn = LEFTO Rx * * 0

Rn = FPACK Fx 0 * 0

Fn = FUNPACK Rx 0 0 0

Table 3-9. Shifter Bit FIFO Instruction Summary (ADSP-214xx Only)

Instruction ASTATx, ASTATy Flags

SZ SV SS SF

Rn = BFFWRP 0 0 0 *

BFFWRP = Rn | <data7> 0 * 0 *

Rn = BITEXT Rx | <bitlen12>
Rn = BITEXT Rx | <bitlen12> (NU)

* * 0 *

BITDEP Rx by Ry | <bitlen12> 0 * 0 *

Table 3-8. Shifter Instruction Summary (Cont’d)

Instruction ASTATx, ASTATy Flags

SZ SV SS

SHARC Processor Programming Reference 3-33

Processing Elements

Multifunction Computations
The processor supports multiple parallel (multifunction) computations by
using the parallel data paths within its computational units. These instruc-
tions complete in a single cycle, and they combine parallel operation of
the multiplier and the ALU or they perform dual ALU functions. The
multiple operations work as if they were in corresponding single function
computations. Multifunction computations also handle flags in the same
way as the single function computations, except that in the dual
add/subtract computation, the ALU flags from the two operations are
ORed together.

To work with the available data paths, the computational units constrain
which data registers hold the four input operands for multifunction com-
putations. These constraints limit which registers may hold the X input
and Y input for the ALU and multiplier.

Software Pipelining for Multifunction Instructions

As previously mentioned, multifunction instructions are parallel opera-
tions of both the ALU and multiplier units where each unit has new data
available after one cycle. However, for floating-point MAC operations, the
processor needs to emulate the MAC instruction with a multifunction
instruction. Results from the multiplier unit are available in the next cycle
for the ALU unit. Coding these instructions requires software pipelining
to ensure correct data as shown below.

F8=0; /* clear MAC result */

F12=F3*F7; /* first MUL */

lcntr=N-1, do (pc,1) until lce;

F12=F3*F7, F8=F8+F12; /* first ALU, loop body */

 F8=F8+F12; /* last ALU */

Since a single floating-point MAC operation takes at least 2 cycles (for a
typical DSP application compute multiple data) the same example

Functional Description

3-34 SHARC Processor Programming Reference

exercised with a hardware loop body results in a throughput of 1 cycle per
word assuming a high word count.

Multifunction and Data Move

Another type of multifunction operation available on the processor com-
bines transfers between the results and data registers and transfers between
memory and data registers. These parallel operations complete in a single
cycle. For example, the processor can perform the following MAC and
parallel read of data memory. However if data dependency exists, software
pipeline coding is required as shown in Listing 3-4.

Listing 3-4. MAC and Parallel Read With Software Pipeline Coding

MRF=0, R5 = DM(I1,M2), R6 = PM(I9,M9); /* first data */

Lcntr=N-1, do (pc,1) unti lce;

MRF = MRF-R5*R6, R5 = DM(I1,M2), R6 = PM(I9,M9); /* loop body */

MRF = MRF-R5*R6; /* last MAC*/

Another example is illustrated for an IIR biquad stage in Listing 3-5:

Listing 3-5. IIR Biquad Stage

 B1=B0;

F12=F12-F12, F2 = DM(I0,M1), F4 = PM(I8,M8); /* first data */

Lcntr=N, do (pc,4) until lce; /* loop body */

F12=F2*F4, F8=F8+F12, F3 = DM(I0,M1), F4 = PM(I8,M8);

F12=F3*F4, F8=F8+F12, DM(I1,M1)=F3, F4 = PM(I8,M8);

F12=F2*F4, F8=F8+F12, F2 = DM(I0,M1), F4 = PM(I8,M8);

F12=F3*F4, F8=F8+F12, DM(I1,M1)=F8, F4 = PM(I8,M8);

RTS(db), F8=F8+F12, /* last MAC */

Nop;

Nop;

SHARC Processor Programming Reference 3-35

Processing Elements

Multifunction Input Operand Constraints

Each of the four input operands for multifunction computations are con-
strained to a different set of four register file locations, as shown in
Figure 3-9. For example, the X input to the ALU must be R8, R9, R10, or
R11. In all other compute operations, the input operands can be any regis-
ter file location.

The multiport data register file can normally be read from and written to
without restriction. However, in multifunction instructions, the ALU and
multiplier input are restricted to particular sets of registers while the out-
puts are unrestricted.

Figure 3-9. Permitted Input Registers for Multifunction Computations

R0 - F0

R1 - F1

R2 - F2

R3 - F3

R4 - F4

R5 - F5

R6 - F6

R7 - F7

R9 - F9

R10 - F10

R11 - F11

R12 - F12

R13 - F13

R14 - F14

R15 - F15

MULTIPLIER

Any Register

ALU

REGISTER FILE

Any Register

R8 - F8

Operating Modes

3-36 SHARC Processor Programming Reference

Multifunction Input Modifier Constraints

The multifunction fixed-point computation does support the instruction
input modifier signed signed fractional (SSF) and signed signed fractional
rounding (SSFR) only.

Multifunction Instruction Summary

The processors support the following multifunction instructions.

• Fixed-Point ALU (dual Add and Subtract)

• Floating-Point ALU (dual Add and Subtract)

• Fixed-Point Multiplier and ALU

• Floating Point Multiplier and ALU (dual Add and Subtract)

• Floating-Point Multiplier and ALU

• Fixed-Point Multiplier and ALU (dual Add and Subtract)

For more information see Chapter 11, Computation Types. Note that
these computations can be combined with dual data move (type 1 instruc-
tion) or single data move with conditions (Group I instruction set types).
For more detail refer to Chapter 9, Instruction Set Types.

Operating Modes
The MODE1 register controls the operating mode of the processing ele-
ments. Table A-1 on page A-4 lists the bits in the MODE1 register. The bits
are described in the following sections.

SHARC Processor Programming Reference 3-37

Processing Elements

ALU Saturation
When the ALUSAT bit in the MODE1 register is set (= 1), the ALU is in satu-
ration mode. In this mode, positive fixed-point overflows return the
maximum positive fixed-point number (0x7FFF FFFF), and negative
overflows return the maximum negative number (0x8000 0000).

When the ALUSAT bit is cleared (= 0), fixed-point results that overflow are
not saturated, the upper 32 bits of the result are returned unaltered.

Short Word Sign Extension
In short word space, the upper 16-bit word is not accessed. If the SSE bit
in MODE1 is set (1), the processor sign-extends the upper 16 bits. If the SSE
bit is cleared (0), the processor zeros the upper 16 bits.

Floating-Point Boundary Rounding Mode
In the default mode, (RND32 bit = 1), the processor supports a 40-bit
extended-precision floating-point mode, which has eight additional LSBs
of the mantissa and is compliant with the 754/854 standards. However,
results in this format are more precise than the IEEE single-precision stan-
dard specifies. Extended-precision floating-point data uses a 31-bit
mantissa with a 8-bit exponent plus sign a bit.

For rounding mode the multiplier and ALU support a single-precision
floating-point format, which is specified in the IEEE 754/854 standard.

IEEE single-precision floating-point data uses a 23-bit mantissa with an
8-bit exponent plus sign bit. In this case, the computation unit sets the
eight LSBs of floating-point inputs to zeros before performing the opera-
tion. The mantissa of a result rounds to 23 bits (not including the hidden
bit), and the 8 LSBs of the 40-bit result clear to zeros to form a 32-bit
number, which is equivalent to the IEEE standard result.

Operating Modes

3-38 SHARC Processor Programming Reference

 In fixed-point to floating-point conversion, the rounding boundary
is always 40 bits, even if the RND32 bit is set.

For more information on this standard, see Appendix C, Numeric For-
mats. This format is IEEE 754/854 compatible for single-precision
floating-point operations in all respects except for the following.

• The processor does not provide inexact flags. An inexact flag is an
exception flag whose bit position is inexact. The inexact exception
occurs if the rounded result of an operation is not identical to the
exact (infinitely precise) result. Thus, an inexact exception always
occurs when an overflow or an underflow occurs.

• NAN (Not-A-Number) inputs generate an invalid exception and
return a quiet NAN (all 1s).

• Denormal operands, using denormalized (or tiny) numbers, flush
to zero when input to a computational unit and do not generate an
underflow exception. A denormal operand is one of the float-
ing-point operands with an absolute value too small to represent
with full precision in the significant. The denormal exception
occurs if one or more of the operands is a denormal number. This
exception is never regarded as an error.

• The processor supports round-to-nearest and round-toward-zero
modes, but does not support round to +infinity and
round-to-infinity.

Rounding Mode
The TRUNC bit in the MODE1 register determines the rounding mode for all
ALU operations, all floating-point multiplies, and fixed-point multiplies
of fractional data. The processor supports two rounding modes—
round-toward-zero and round-toward-nearest. The rounding modes com-
ply with the IEEE 754 standard and have the following definitions.

SHARC Processor Programming Reference 3-39

Processing Elements

• Round-toward-zero (TRUNC bit = 1). If the result before rounding is
not exactly representable in the destination format, the rounded
result is the number that is nearer to zero. This is equivalent to
truncation.

• Round-toward-nearest (TRUNC bit = 0). If the result before round-
ing is not exactly representable in the destination format, the
rounded result is the number that is nearer to the result before
rounding. If the result before rounding is exactly halfway between
two numbers in the destination format (differing by an LSB), the
rounded result is the number that has an LSB equal to zero.

Statistically, rounding up occurs as often as rounding down, so there is no
large sample bias. Because the maximum floating-point value is one LSB
less than the value that represents infinity, a result that is halfway between
the maximum floating-point value and infinity rounds to infinity in this
mode.

Though these rounding modes comply with standards set for float-
ing-point data, they also apply for fixed-point multiplier operations on
fractional data. The same two rounding modes are supported, but only the
round-to-nearest operation is actually performed by the multiplier. Using
its local result register for fixed-point operations, the multiplier
rounds-to-zero by reading only the upper bits of the result and discarding
the lower bits.

Multiplier Result Register Swap
Each multiplier has a primary or foreground (MRF) register and alternate or
background (MRB) results register. The (SRCU) bit in the MODE1 register
selects which result register receives the result from the multiplier opera-
tion, swapping which register is the current MRF or MRB. This swapping
facilitates context switching.

Operating Modes

3-40 SHARC Processor Programming Reference

Unlike other registers that have alternates, both the MRF and MRB registers
are coded into instructions, without regard to the state of the MODE1 regis-
ter as shown in the following example.

MRB = MRB - R3 * R2 (SSFR);

MRF = MRF + R4 * R12 (UUI);

With this arrangement, programs can use the result registers as primary
and alternate accumulators, or programs can use these registers as two par-
allel accumulators. This feature facilitates complex math. The MODE1
register controls the access to alternate registers. In SIMD mode, swapping
also occurs with the PEY unit based registers (MSF and MSB).

SIMD Mode
The SHARC core contains two sets of computational units and associated
register files. As shown in Figure 1-1 on page 1-4, these two processing
elements (PEx and PEy) support SIMD operation.

The MODE1 register controls the operating mode of the processing ele-
ments. The PEYEN bit (bit 21) in the MODE1 register enables or disables the
PEy processing element. When PEYEN is cleared (0), the processor operates
in SISD mode, using only PEx. When the PEYEN bit is set (1), the proces-
sor operates in SIMD mode, using both the PEx and PEy processing
elements. There is a one cycle delay after PEYEN is set or cleared, before the
mode change takes effect.

For shift immediate instructions the Y input is driven by immediate data
from the instructions (and has no complement data as a register does). If
using SIMD mode, the immediate data are valid for both PEx and PEy
units as shown in Listing 3-6.

SHARC Processor Programming Reference 3-41

Processing Elements

Listing 3-6. Compute Instructions in SIMD Mode

bit set MODE1 PEYEN; /* enable SIMD */

nop; /* effect latency */

R0 = R1 + R2; /* explicit ALU instruction */

S0 = S1 + S2; /* implicit ALU instruction */

F0 = F1 * F2; /* explicit MUL instruction */

SF0 = SF1 * SF2; /* implicit MUL instruction */

MRB = MRB – R3 * R2 (SSFR); /* explicit MUL instruction */

MSB = MSB - S3 * S2 (SSFR); /* implicit MUL instruction */

R5 = LSHIFT R6 by <data8>; /* explicit shift imm instruction */

S5 = LSHIFT S6 by <data8>; /* implicit shift imm instruction */

To support SIMD, the processor performs these parallel operations:

• Dispatches a single instruction to both processing element’s com-
putational units.

• Loads two sets of data from memory, one for each processing
element.

• Executes the same instruction simultaneously in both processing
elements.

• Stores data results from the dual executions to memory.

 Using the information here and in Chapter 9, Instruction Set
Types, and Chapter 11, Computation Types, it is possible, using
SIMD mode’s parallelism, to double performance over similar
algorithms running in SISD (ADSP-2106x processor compatible)
mode.

Arithmetic Interrupts

3-42 SHARC Processor Programming Reference

The two processing elements are symmetrical; each contains these func-
tional blocks:

• ALU

• Multiplier primary and alternate result registers

• Shifter

• Data register file and alternate register file

Conditional Computations in SIMD Mode
Conditional computations allows the computation units to make compu-
tations conditional in SIMD mode. For more information, see
“Conditional Instruction Execution” on page 4-91.

Interrupt Mode Mask
On the SHARC processors, programs can mask automated individual
operating mode bits in the MODE1 register by entering into an ISR. This
reduces latency cycles.

For the processing units, the short word sign extension (SSE) the trunca-
tion (TRUNC) the ALU saturation (ALUSAT) the floating-point boundary
rounding (RND32) and the multiply register swap (SRCU) bits can be
masked. For more information, see Chapter 4, Program Sequencer.

Arithmetic Interrupts
The following sections describe how the processor core handles arithmetic
interrupts. Note that the shifter does not generate interrupts for exception
handling.

SHARC Processor Programming Reference 3-43

Processing Elements

 Interrupt processing starts two cycles after an arithmetic exception
occurs because of the one cycle delay between an arithmetic excep-
tion and the STKYx, STKYy register update.

SIMD Computation Interrupts
If one of the four fixed-point or floating-point exceptions is enabled, an
exception condition on one or both processing elements generates an
exception interrupt. Interrupt service routines (ISRs) must determine
which of the processing elements encountered the exception. Returning
from a floating-point interrupt does not automatically clear the STKY state.
Program code must clear the STKY bits in both processing element’s sticky
status (STKYx and STKYy) registers as part of the exception service routine.
For more information, see “Interrupt Branch Mode” on page 4-26.

ALU Interrupts
 Table 3-10 provides an overview of the ALU interrupts.

Table 3-10. ALU Interrupt Overview

Interrupt
Source

Interrupt Condition Interrupt
Priorities

Interrupt
Acknowledge

IVT

ALU ALU fixed-point overflow
ALU floating -point over-
flow
ALU floating -point
underflow
ALU invalid floating
-point

33–36 Clear
STKYx/y +
RTI instruction

FIXI
FLTOI
FLTUI
FLTII

Arithmetic Interrupts

3-44 SHARC Processor Programming Reference

Multiplier Interrupts
 Table 3-11 provides an overview of the multiplier interrupts.

Interrupt Acknowledge
After an exception has been detected the ISR routine needs to clear the
flag bit as shown in Listing 3-7.

Listing 3-7. Clearing a Sticky Bit Using A6n ISR

ISR_ALU_Exception:

 bit tst STKYx AVS; /* check condition */

IF TF jump ALU_Float_Overflow;

 bit tst STKYx AOS; /* check condition */

 IF TF jump ALU_Fixed_Overflow;

ALU_Fixed_Overflow:
 bit clr STKYx AOS; /* clear sticky bit */
 rti;

ALU_Float_Overflow:

 bit clr STKYx AVS; /* clear sticky bit */

 rti;

Table 3-11. Multiplier Interrupt Overview

Interrupt
Source

Interrupt Condition Interrupt
Priorities

Interrupt
Acknowledge

IVT

Multiplier MUL fixed-point over-
flow
MUL floating -point
overflow MUL floating
-point underflow
MUL invalid float-
ing-point

33–36 Clear
STKYx/y +
RTI instruction

FIXI
FLTOI
FLTUI
FLTII

SHARC Processor Programming Reference 4-1

4 PROGRAM SEQUENCER

The program sequencer is responsible for the control flow of programs
and data within the processor. It is closely connected to the system inter-
face, DAGs and cache. It controls non sequential program flows such as
jumps, calls and loop instructions.

The program sequencer controls program flow (see Figure 4-1) by con-
stantly providing the address of the next instruction to be fetched for
execution. Program flow in the processors is mostly linear, with the pro-
cessor executing instructions sequentially. This linear flow varies
occasionally when the program branches due to nonsequential program
structures, such as those described below. Nonsequential structures direct
the processor to execute an instruction that is not at the next sequential
address following the current instruction.

Features
The sequencer controls the following operations.

• Loops. One sequence of instructions executes several times with
zero overhead.

• Subroutines. The processor temporarily breaks sequential flow to
execute instructions from another part of program memory.

• Jumps. Program flow is permanently transferred to another part of
program memory.

Features

4-2 SHARC Processor Programming Reference

• Interrupts. Subroutines in which a runtime event (not an instruc-
tion) triggers the execution of the routine.

• Idle. An instruction that causes the processor to cease operations
and hold its current state until an interrupt occurs. Then, the pro-
cessor services the interrupt and continues normal execution.

Figure 4-1. Program Flow

N

N+1

N+2

N+3

N+4

N+5

ADDRESS

INSTRUCTION

LINEAR FLOW

DO UNTIL

LOOP

N TIMES

JUMP

JUMP

…

CALL

SUBROUTINE

…

RTI

INTERRUPT

IRQ

VECTOR

IDLE

IDLE

WAITING
FOR IRQ

RTS

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

SHARC Processor Programming Reference 4-3

Program Sequencer

• ISA or VISA instruction fetches. The fetch address is interpreted as
an ISA (NW address, traditional) or VISA instruction (SW
address) this allows fast switching between both instruction types.

• Direct Addressing. Provides data address specified as absolute
value in instruction.

The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute. As part of its process, the
sequencer handles the following tasks:

• Increments the fetch address

• Maintains stacks

• Evaluates conditions

• Decrements the loop counter

• Calculates new addresses

• Maintains an instruction cache

• Interrupt control

To accomplish these tasks, the sequencer uses the blocks shown in
Figure 4-2. The sequencer’s address multiplexer selects the value of the
next fetch address from several possible sources. The fetched address
enters the instruction pipeline, made up of the fetch1, fetch2, decode,
address, and execute registers. These contain the 24-bit addresses of the
instructions currently being fetched, decoded, and executed. The program
counter, coupled with the program counter stack, which stores return
addresses and top-of-loop addresses. All addresses generated by the
sequencer are 24-bit program memory instruction addresses.

Functional Description

4-4 SHARC Processor Programming Reference

Functional Description
The sequencer uses the blocks shown in Figure 4-2 to execute instruc-
tions. The sequencer’s address multiplexer selects the value of the next
fetch address from several possible sources. These registers contain the
24-bit addresses of the instructions currently being fetched, decoded, and
executed.

Figure 4-2. Sequencer Control Diagram

LADDR

INSTRUCTION BUS
PMD[63:16]

INSTRUCTION
CACHE

INSTRUCTION
LATCH

LCNTR

DADDR (A)

PC (E)

FADDR (F1)

ASTATx

MODE1

ASTATy

PCSTK

PCSTKP

+/-

VISA
+3

ISA
+1

DAG2

INTERRUPT CONTROL
LATCH
MASK

MASK POINTER

ADDRESS STACK
6 x 32

COUNT STACK
6 x 32

LOOP STACK

LOOP
SEQUENCER

CONDITIONAL
LOGIC

STATUS STACK
15 x 3 x 32

INPUT

INTERRUPTS

NEXT ADDRESS

Direct
Branch

PC Relative
Branch

IDLE RTS, RTI
TOP of loop

IVT
Branch

Indirect
Branch

PROGRAM
SEQUENCER

Next
Fetch

Next
Fetch

PC STACK
30 x 26

SHARC Processor Programming Reference 4-5

Program Sequencer

Instruction Pipeline
The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor fetches
and executes instructions from memory in sequential order.

To achieve a high execution rate while maintaining a simple programming
mode, the processor employs a five stage interlocked pipeline, shown in
Table 4-1, to process instructions and simplify programming models. All
possible hazards are controlled by hardware.

The legacy Instruction Set Architecture (ISA) instructions are addressed
using normal word (NW) address space, whereas Variable Instruction Set
Architecture (VISA) instructions are addressed using short word (SW)
address space. Switching between traditional ISA and VISA instruction
spaces happens not via any bit settings in any registers. Instead, the transi-
tion occurs automatically when branches (JUMP/CALL or interrupts) take
the execution from ISA address space to VISA address space or vice versa.

 Note that the processor always emerges from reset in ISA mode, so
the interrupt vector table must always reside in ISA address space.

The processor controls the fetch address, decode address, and program
counter (FADDR, DADDR, and PC) registers which store the Fetch1, decode,
and execution phase addresses of the pipeline.

Table 4-1. Instruction Pipeline Processing Stages

Stage ISA VISA Extension

Fetch1 In this stage, the appropriate instruction address is
chosen from various sources and driven out to mem-
ory. The instruction address is matched with the cache
to generate a condition for cache miss/hit. The next
NW address is auto incremented by one.

Next SW address is auto
incremented by three for
every 48-bit fetch

Functional Description

4-6 SHARC Processor Programming Reference

Fetch2 This stage is the data phase of the instruction fetch
memory access wherein the data address generator
(DAG) performs some amount of pre-decode. Based
on a cache condition, the instruction is read from
cache/driven from the memory instruction data bus.

Stores 3 x 16-bit instruc-
tion data into the IAB
buffer and presents 1
instruction/cycle to the
decoder

Decode The instruction is decoded and various conditions that
control instruction execution are generated. The main
active units in this stage are the DAGs, which generate
the addresses for various types of functions like data
accesses (load/store) and indirect branches. DAG pre-
modify (M+I) operation is performed. For a cache
miss, instruction data read from memory are loaded
into the cache.

Decode VISA
instruction; store its
length information in
short words.

Address The addresses generated by the DAGs in the previous
stage are driven to the memory through memory inter-
face logic. The addresses for the branch operation are
made available to the fetch unit. For instruction
branches (Call/Jump) the address is forward to the
Fetch1 stage. For a do until instruction the next
address is fetched.

Execute The operations specified in the instruction are exe-
cuted and the results written back to memory or the
universal registers. For interrupt branch the IVT
address is forward to the Fetch1 stage. ISA instructions
always increment PC value by 1 each cycle.

Executing VISA
instructions the PC value
is incremented by 1, 2 or
3 depending on length
information from the
Instruction decode.

Table 4-1. Instruction Pipeline Processing Stages (Cont’d)

Stage ISA VISA Extension

SHARC Processor Programming Reference 4-7

Program Sequencer

VISA Instruction Alignment Buffer (IAB)

The IAB, shown in Figure 4-3, is a 5 short-word (5 x 16-bit words) capac-
ity FIFO that is part of the program sequencer. The IAB is responsible for
buffering 48 bits of code at a time from memory per cycle and presenting
one instruction per core clock cycle (CCLK) to the execution unit. When
the instruction is shorter than 48 bits, the IAB keeps the unused bits for
the next cycle. When the IAB determines that it has no room to accom-
modate 48 more bits from memory, it stalls the fetch engine.
Consequently, the average fetch bandwidth for executing VISA instruc-
tions is less than 48 bits per cycle.

A decode of the instruction indicates the length of the instruction in unit
of short words. At the end of the current decode cycle, the short words
that are part of the current instruction are discarded and the remaining
bits are shifted left to align at the MSB of IAB. The three fetched short
words in the following cycle are concatenated to the existing bits of IAB.

Figure 4-3. Instruction Alignment Buffer

FROM
MEMORY

16

48

16 16 16

TO
DECODER

DELAY
REGISTER

LSBMSBIAB

16
“concatenate”

Functional Description

4-8 SHARC Processor Programming Reference

The next instruction, therefore, is always available in MSB aligned
fashion.

Linear Program Flow

In the sequential program flow, when one instruction is being executed,
the next four instructions that follow are being processed in the Address,
Decode, Fetch2 and Fetch1 stages of the instruction pipeline. Sequential
program flow usually has a throughput of one instruction per cycle.

Table 4-2 illustrates how the instructions starting at address n are pro-
cessed by the pipeline. While the instruction at address n is being
executed, the instruction n+1 is being processed in the address phase, n+2
in the Decode phase, n+3 in the Fetch2 phase and n+4 in the Fetch1
phase.

In VISA mode, the situation is different since the instruction fetch rate is
always 48 bits but the consumption rate can vary. In Table 4-3, the
instruction fetch (48-bit) stalls because the IAB FIFO is filling up. After
decoding the next instructions, the IAB indicates space for new instruc-
tions which tells the sequencer to continue fetching by increasing the
program counter.

 On block space boundaries, the instruction fetch does not halt and
continues to fetch next address.

Table 4-2. ISA/VISA Linear Flow 48-bit Instructions Only

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 n+2 n+3 n+4

Address n n+1 n+2 n+3 n+4 n+5

Decode n n+1 n+2 n+3 n+4 n+5 n+6

Fetch2 n n+1 n+2 n+3 n+4 n+5 n+6 n+7

Fetch1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

SHARC Processor Programming Reference 4-9

Program Sequencer

The sequencer continues to fetch 48 bits from memory until cycle 3
because it knows the instruction width of n only when it is decoded. In
cycle 4 (Table 4-3), the decoder tells the sequencer that n+1 is now 16 bits
wide. Note on block space boundaries the instruction fetch does not halt
and continues to fetch next address. By now, the sequencer has fetched 9
short words (n to n+8). The IAB can buffer up to 5 short words and since
the sequencer has already fetched 2 short words (n, n+1), the sequencer
now stalls the fetch and holds the fetched short words in intermediate
buffers and the IAB. As instructions are executed, the IAB frees up and the
fetch starts again.

Direct Addressing

Similar to the DAGs, the sequencer also provides the data address for
direct addressing types as shown in the following example.

R0 = DM(0x90500); /* sequencer generated data address */

PM(0x90600) = R7: /* sequencer generated data address */

as compared to the DAG

R0 = DM(I0,M0); /* DAG1 generated data address */

PM(I8,M8) = R7: /* DAG2 generated data address */

Table 4-3. VISA Linear Flow 16-bit Instructions Only

Cycles 12 3 4 5 6 7 8 9 10 11 12 13 14

Execute n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

Address n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10

Decode n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11

Fetch2 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+12

Fetch1 nn+3 n+6 n+9 n+12 n+15

Instr Fetch n: 16-bit instr n to (n+2)
Instr Fetch n+3: 16-bit instr (n+3) to (n+5)

Variation In Program Flow

4-10 SHARC Processor Programming Reference

For more information, see Chapter 6, Data Address Generators.

Variation In Program Flow
While sequential execution takes one core clock cycle per instruction,
nonsequential program flow can potentially reduce the instruction
throughput. Non-sequential program operations include:

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Functional Description
In order to manage these variations, the processor uses several mecha-
nisms, primarily hardware stacks, which are described in the following
sections.

Hardware Stacks

If the programmed flow varies (non-sequential and interrupted), the pro-
cessor requires hardware or software mechanisms (stacks, Table 4-4) to
support changes of the regular program flow. The SHARC core supports
three hardware stack types which are implemented outside of the memory
space and are used and accessed for any non-sequential process. The stack
types are:

• Program count stack – Used to store the return address (call, IVT
branch, do until).

• Status stack – Used to store some context of status registers.

SHARC Processor Programming Reference 4-11

Program Sequencer

• “Loop Stack” on page 4-48 for address and count – Used for hard-
ware looping (unnested and nested). This stack is described in
“Loop Sequencer” section later in this chapter.

The SHARC processor does not have a general-purpose hardware stack.
However, the DAG architecture allows a software stack implementation
by using post (push) and pre-modify (pop) DAG instruction types.

 The stacks are fully controlled by hardware. Manipulation of these
stacks by using explicit PUSH/POP instructions and explicit writes to
PCSTK, LADDR and CURLCNTR registers may affect the correct func-
tioning of the loop.

Table 4-4. Core Stack Overview

Attribute PC Stack Loop Address
Stack

Loop Count
Stack

Status Stack

Stack Size 30 x 26 bits 6 x 32 bits 6 x 32 bits 15 x 3 x 32 bits

Top Entry Return Address Loop End
Address

Loop iteration
count

MODE1
ASTATx/ASTATy

Empty Flag PCEM LSEM SSEM

Full Flag PCFL LSOV SSOV

Stack Pointer PCSTKP No No

Exception IRQ SOVFI SOVFI SOVFI

Automated Access

Push Condition CALL,
IVT branch
DO UNTIL

DO UNTIL IVT Branch
(Timer, IRQ2–0
only)

Pop Condition RTS, RTI CURLCNTR = 1 or COND = true RTI (Timer,
IRQ2–0 only)

Variation In Program Flow

4-12 SHARC Processor Programming Reference

PC Stack Access

The sequencer includes a program counter (PC) stack pointer, which
appears in Figure 4-2 on page 4-4. At the start of a subroutine or loop, the
sequencer pushes return addresses for subroutines (CALL instructions with
RTI/RTS) and top-of-loop addresses for loops (DO/UNTIL instructions) onto
the PC stack. The sequencer pops the PC stack during a return from inter-
rupt (RTI), return from subroutine (RTS), and a loop termination.

The program counter (PC) register is the last stage in the instruction pipe-
line. It contains the 24-bit address of the instruction the processor
executes on the next cycle. This register, combined with the PC stack
(PCSTK) register, stores return addresses and top-of-loop addresses.

 For the ADSP-2137x processors and later, the PC register size has
been enlarged to 26-bits. This allows read/write to the former hid-
den bits allowing full software control of the stack registers.

PC Stack Status

The PC stack is 30 locations deep. The stack is full when all entries are
occupied, is empty when no entries are occupied, and is overflowed if a
push occurs when the stack is full. The following bits in the STKYx register
indicate the PC stack full and empty states.

• PC stack full. Bit 21 (PCFL) indicates that the PC stack is full (if 1)
or not full (if 0)—not a sticky bit, cleared by a pop.

Manual Access

Register Access PCSTK LADDR CURLCNTR No

Explicit Push Push PCSTK Push Loop Push STS

Explicit Pop Pop PCSTK Pop Loop Pop STS

Table 4-4. Core Stack Overview (Cont’d)

Attribute PC Stack Loop Address
Stack

Loop Count
Stack

Status Stack

SHARC Processor Programming Reference 4-13

Program Sequencer

• PC stack empty. Bit 22 (PCEM) indicates that the PC stack is empty
(if 1) or not empty (if 0)—not sticky, cleared by a push.

To prevent a PC stack overflow, the PC stack full condition generates the
(maskable) stack overflow interrupt (SOVFI). This interrupt occurs when
the PC stack has 29 of 30 locations filled (the almost full state). The PC
stack full interrupt occurs at this point because the PC stack full interrupt
service routine needs that last location for its return address.

PC Stack Manipulation

The PCSTK register contains the top entry on the PC stack. This register is
readable and writable by the core. Reading from and writing to PCSTK does
not move the PC stack pointer. Only a stack push or pop performed with
explicit instructions moves the stack pointer. The PCSTK register contains
the value 0x3FF FFFF when the PC stack is empty. A write to PCSTK has
no effect when the PC stack is empty. “Program Counter Stack Register
(PCSTK)” on page A-10 lists the bits in the PCSTK register.

The address of the top of the PC stack is available in the PC stack pointer
(PCSTKP) register. The value of PCSTKP is zero when the PC stack is empty,
is 1 through 30 when the stack contains data, and is 31 when the stack
overflows. A write to PCSTKP takes effect after one cycle of delay. If the PC
stack is overflowed, a write to PCSTKP has no effect. For example a write to
PCSTKP = 3 deletes all entries except the three oldest.

PC Stack Access Priorities

Since the architecture allows manipulation of the stack, simultaneous
stack accesses may occur (writes to the PCSTK register during a branch). In
such a case the PCSTK access has higher priority over the push operation
from the sequencer.

Variation In Program Flow

4-14 SHARC Processor Programming Reference

Status Stack Access

The sequencer’s status stack eases the return from branches by eliminating
some service overhead like register saves and restores as shown in the fol-
lowing example.

CALL fft1024; /* Where fft1024 is an address label */
fft1024:push sts; /* save MODE1/ASTATx/y registers */
instruction;
instruction;
pop sts; /* re-store MODE1/ASTATx/y registers */
rts;

For some interrupts, (IRQ2–0 and timer expired), the sequencer automati-
cally pushes the ASTATx, ASTATy, and MODE1 registers onto the status stack.
When the sequencer pushes an entry onto the status stack, the processor
uses the MMASK register to clear the corresponding bits in the MODE1 register.
All other bit settings remain the same. See the example in “Interrupt Mask
Mode” on page 4-40.

The sequencer automatically pops the ASTATx, ASTATY, and MODE1 registers
from the status stack during the return from interrupt instruction (RTI).
In one other case, JUMP (CI), the sequencer pops the stack. For more infor-
mation, see “Interrupt Self-Nesting” on page 4-36. Only the IRQ2–0 and
timer expired interrupts cause the sequencer to push an entry onto the
status stack. All other interrupts require either explicit saves and restores
of effected registers or an explicit push or pop of the stack (PUSH/POP STS).

Pushing the ASTATx, ASTATy, and MODE1 registers preserves the status and
control bit settings. This allows a service routine to alter these bits with
the knowledge that the original settings are automatically restored upon
return from the interrupt.

The top of the status stack contains the current values of ASTATx, ASTATy,
and MODE1. Explicit PUSH or POP instructions (not reading and writing these
registers) are used move the status stack pointer.

SHARC Processor Programming Reference 4-15

Program Sequencer

 As shown in the following example, do not use (DB) modifier in
instructions exiting from IRQx or timer ISRs (RTI; and JUMP
(CI);).

JUMP ISR_IRQ2; /* Where ISR_IRQ2 is an address label */
ISR_IRQ2: /* save MODE1/ASTATx/y registers */
instruction;
instruction;
rti;
 /* re-store MODE1/ASTATx/y registers */

Status Stack Status

The status stack is fifteen locations deep. The stack is full when all entries
are occupied, is empty when no entries are occupied, and is overflowed if a
push occurs when the stack is already full. Bits in the STKYx register indi-
cate the status stack full and empty states as describe below.

• Status stack overflow. Bit 23 (SSOV) indicates that the status stack
is overflowed (if 1) or not overflowed (if 0)—a sticky bit.

• Status stack empty. Bit 24 (SSEM) indicates that the status stack is
empty (if 1) or not empty (if 0)—not sticky, cleared by a push.

Both ASTATx and ASTATy register values are pushed/popped regardless of
SISD/SIMD mode.

Instruction Driven Branches

One type of non-sequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL instruction moves execu-
tion to a location other than the next sequential address. For descriptions
on how to use JUMP and CALL instructions, see Chapter 9, Instruction Set
Types, and Chapter 11, Computation Types. Briefly, these instructions
operate as follows.

Variation In Program Flow

4-16 SHARC Processor Programming Reference

 In processors with 5-stage pipelines, the instruction driven branch
(CALL, JUMP, DO UNTIL) occurs in the address phase on the
sequencer while the interrupt (IVT) branch occurs in the Execute
phase. This is different from 3-stage pipelines were all branches
occur in the Execute stage of the pipeline.

• A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically pushes the return address (the next sequential
address after the CALL instruction) onto the PC stack. This push
makes the address available for the CALL instruction’s matching
return instruction, (RTS) in the subroutine, allowing an easy return
from the subroutine.

• A RTS instruction causes the sequencer to fetch the instruction at
the return address, which is stored at the top of the PC stack. The
two types of return instructions are return from subroutine (RTS)
and return from interrupt (RTI). While the RTS instruction only
pops the return address off the PC stack, the RTI pops the return
address and:

1. Clears the interrupt’s bit in the interrupt latch register (IRPTL)
and the interrupt mask pointer register (IMASKP). This allows
another interrupt to be latched in the IRPTL register and the inter-
rupt mask pointer (IMASKP) register.

2. Pops the status stack if the ASTATx/y and MODE1 status registers
have been pushed for the interrupts for the IRQ2-0 signals or for
the core timer.

The following are parameters that can be specified for branching
instructions.

SHARC Processor Programming Reference 4-17

Program Sequencer

• JUMP and CALL instructions can be conditional. The program
sequencer can evaluate the status conditions to decide whether or
not to execute a branch. If no condition is specified, the branch is
always taken. For more information on these conditions, see
“Interrupt Branch Mode” on page 4-26.

• JUMP and CALL instructions can be immediate or delayed. Because
of the instruction pipeline, an immediate branch incurs three lost
(overhead) cycles. As shown in Table 4-5 and Table 4-6, the pro-
cessor aborts the three instructions after the branch, which are in
the Fetch1, Fetch2, and Decode stages, while instructions are
fetched from the branched address. A delayed branch reduces the
overhead to one cycle by allowing the two instructions following
the branch to propagate through the instruction pipeline and exe-
cute. For more information, see “Delayed Branches (DB)” on
page 4-19.

• JUMP instructions that appear within a loop or within an interrupt
service routine have additional options. For information on the
loop abort (LA) option, see “Functional Description” on page 4-45.
For information on the loop reentry (LR) option, see “Restrictions
on Ending Loops” on page 4-55. For information on the clear
interrupt (CI) option, see “Interrupt Self-Nesting” on page 4-36.

Direct Versus Indirect Branches

Branches can be direct or indirect. With direct branches the sequencer
generates the address while for indirect branches, the PM data address
generator (DAG2) produces the address.

Variation In Program Flow

4-18 SHARC Processor Programming Reference

Direct branches are JUMP or CALL instructions that use an absolute—not
changing at run time—address (such as a program label) or use a PC-rela-
tive address. Some instruction examples that cause a direct branch are:

CALL fft1024; /* Where fft1024 is an address label */

JUMP (pc,10); /* Where (pc,10) is 1O-relative addresses after

 this instruction */

Indirect branches are JUMP or CALL instructions that use a dynamic address
that comes from the DAG2. Note that this is useful for reconfigurable
routines and jump tables.

For more information refer to the instruction set types (9a/b and 10a).
Two instruction examples that cause an indirect branch are:

JUMP (M8, I12); /* where (M8, I12) are DAG2 registers */

CALL (M9, I13); /* where (M9, I13) are DAG2 registers */

Restrictions for VISA Operation

The following should be noted for VISA operation:

• The program counter (PC) now points to short word address space.
The PC increments by one, two or three in each cycle depending
on the actual size of an instruction (16-bit, 32-bit, or 48-bit).

• Any source files that use hard-coded numbers (as opposed to labels)
for branch offsets in the relative offset field will not assemble cor-
rectly. What used to be N 48-bit instructions could be a different
number of VISA instructions.

The use of absolute addressing in programs is discouraged and these pro-
grams should be re-written. For example, the following code sequence that
uses absolute addressing will work in traditional ISA operations, but has
unexpected behavior if it is not re-written for VISA operation:

SHARC Processor Programming Reference 4-19

Program Sequencer

I9 = my_jump_table;
M9 = 2;
JUMP (M9, I9);

my_jump_table:
JUMP function0;
JUMP function1;
JUMP function2;
. . .

The value of 2 in the modify register represents a jump of two 48-bit
instructions for ISA SHARC processors. In VISA however, this represents
two 16-bit locations.

While the instructions themselves may take up more than two 16-bit
units, the jump could go to an invalid memory location (not to the start of
a valid VISA instruction). Regardless, good programming rules require
that such “absolute addressing” be discouraged.

Delayed Branches (DB)

The instruction pipeline influences how the sequencer handles delayed
branches (Table 4-5 through Table 4-8). For immediate branches in
which JUMP and CALL instructions are not specified as delayed branches
(DB), three instruction cycles are lost (NOP) as the instruction pipeline
empties and refills with instructions from the new branch.

Branch Listings

As shown in Table 4-5 and Table 4-6, the processor aborts the three
instructions after the branch, which are in the Fetch1, Fetch2 and Decode
stages. For a CALL instruction, the address of the instruction after the CALL
is the return address. During the three lost (no-operation) cycles, the first
instruction at the branch address passes through the Fetch2, Decode and
address phases of the instruction pipeline

Variation In Program Flow

4-20 SHARC Processor Programming Reference

In the tables that follow, shading indicates aborted instructions, which are
followed by NOP instructions.

Table 4-5. Pipelined Execution Cycles for Immediate Branch (Jump or
Call)

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 n nop nop nop j

Address n–1 n nop nop nop j j+1

Decode n n+1nop n+2nop n+3nop j j+1 j+2

Fetch2 n+1 n+2 n+3 j j+1 j+2 j+3

Fetch1 n+2 n+3 j j+1 j+2 j+3 j+4

n is the branching instruction and j is the instruction branch address
1. Cycle2: n+1 instruction suppressed
2. Cycle3: n+2 instruction suppressed and for call, n+1 address pushed on, to PC stack
3. Cycle4: n+3 instruction suppressed

Table 4-6. Pipelined Execution Cycles for Immediate Branch (RTI)

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 n nop nop nop r

Address n–1 n nop nop nop r r+1

Decode n n+1nop n+2nop n+3nop r r+1 r+2

Fetch2 n+1 n+2 n+3 r r+1 r+2 r+3

Fetch1 n+2 n+3 r r+1 r+2 r+3 r+4

n is the branching instruction and r is the instruction at the return address
1. Cycle2: n+1 instruction suppressed
2. Cycle3: n+2 instruction suppressed and r address popped from PC stack
3. Cycle4: n+3 instruction suppressed

SHARC Processor Programming Reference 4-21

Program Sequencer

In JUMP and CALL instructions that use the delayed branch (DB) modifier,
one instruction cycle is lost in the instruction pipeline. This is because the
processor executes the two instructions after the branch and the third is
aborted while the instruction pipeline fills with instructions from the new
location. This is shown in the sample code below.
jump (pc, 3) (db):

instruction 1;

instruction 2;

Table 4-7. Pipelined Execution Cycles for Delayed Branch (JUMP or Call)

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 n n+1 n+2 nop j

Address n–1 n n+1 n+2 nop j j+1

Decode n n+1 n+2 n+3nop j j+1 j+2

Fetch2 n+1 n+2 n+3 j j+1 j+2 j+3

Fetch1 n+2 n+3 j j+1 j+2 j+3 j+4

n is the branching instruction and j is the instruction branch address
1. Cycle3: For call n+3 address pushed on the PC stack
2. Cycle4: n+3 instruction suppressed

Table 4-8. Pipelined Execution Cycles for Delayed Branch (RTS(db))

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 n n+1 n+2 nop r

Address n–1 n n+1 n+2 nop r r+1

Decode n n+1 n+2 n+3nop r r+1 r+2

Fetch2 n+1 n+2 n+3 r r+1 r+2 r+3

Fetch1 n+2 n+3 r r+1 r+2 r+3 r+4

n is the branching instruction and r is the instruction at the return address
1. Cycle3: r address popped from PC stack
2. Cycle4: n+3 instruction suppressed

Variation In Program Flow

4-22 SHARC Processor Programming Reference

As shown in Table 4-7 and Table 4-8, the processor executes the two
instructions after the branch and the third is aborted, while the instruc-
tion at the branch address is being processed at the Fetch2, Decode and
Address stages of the instruction pipeline. In the case of a CALL instruc-
tion, the return address is the third address after the branch instruction.
While delayed branches use the instruction pipeline more efficiently than
immediate branches, delayed branch code can be harder to implement
because of the instructions between the branch instruction and the actual
branch. This is described in more detail in “Restrictions when Using
Delayed Branches” on page 4-23.

Atomic Execution of Delayed Branches

Delayed branches and the instruction pipeline also influence interrupt
processing. Because the delayed branch instruction and the two instruc-
tions that follow it are atomic, the processor does not immediately process
an interrupt that occurs between a delayed branch instruction and either
of the two instructions that follow. Any interrupt that occurs during these
instructions is latched and is not processed until the branch is complete.

This may be useful when two instructions must execute atomically (with-
out interruption), such as when working with semaphores. In the
following example, instruction 2 immediately follows instruction 1 in all
situations:
jump (pc, 3) (db):

instruction 1;

instruction 2;

Note that during a delayed branch, a program can read the PC stack regis-
ter or PC stack pointer register. This read shows the return address on the
PC stack has already been pushed or popped, even though the branch has
not yet occurred.

SHARC Processor Programming Reference 4-23

Program Sequencer

IDLE Instruction in Delayed Branch

An interrupt is needed to come out of the IDLE instruction. If a program
places an IDLE instruction inside the delayed branch the processor remains
in the idled state because interrupts are latched but not serviced until the
program exits a delayed branch.

Restrictions when Using Delayed Branches

Besides being more challenging to code, delayed branches impose some
limitations that stem from the instruction pipeline architecture. Because
the delayed branch instruction and the two instructions that follow it
must execute sequentially, the instructions in the two locations that follow
a delayed branch instruction cannot be any of those described below.

 Development software for the processor should always flag the
operations described below as code errors in the two locations after
a delayed branch instruction.

Two Subsequent Delayed Branch Instructions

Normally it is not valid to use two conditional instructions using the (DB)
option following each other. But the execution is allowed when these
instructions are mutually exclusive:

If gt jump (PC, 7) (db);

If le jump (pc, 11) (db);

Other Jumps or Branches

These instructions cannot be used when they follow a delayed branch
instruction. This is shown in the following code that uses the JUMP
instruction.

jump foo(db);
jump my(db);
r0 = r0+r1;
r1 = r1+r2;

Variation In Program Flow

4-24 SHARC Processor Programming Reference

In this case, the delayed branch instruction r1 = r1+r2, is not executed.
Further, the control jumps to my instead of foo, where the delayed branch
instruction is the execution of foo.

The exception is for the JUMP instruction, which applies for the mutually
exclusive conditions EQ (equal), and NE (not equal). If the first EQ
condition evaluates true, then the NE conditional jump has no meaning
and is the same as a NOP instruction as shown below.

if eq jump label1 (db);
if ne jump label1 (db);
nop;
nop;

Explicit Pushes or Pops of the PC Stack

In this case a push of the PC stack in a delayed branch is followed by a
pop. If a value is pushed in the delayed branch of a call, it is first popped
in the called subroutine. This is followed by an RTS instruction.

call foo (db);
push PCSTK;
nop; /* second push due to PCSTK */
foo; /* first push because of call */

This example shows that when a program pushes the PCSTK during a
delayed slot, the PC stack pointer is pushed onto the PCSTK.

The following instructions are executed prior to executing the RTS.

pop PCSTK;
RTS (db);
nop;
nop;

SHARC Processor Programming Reference 4-25

Program Sequencer

If pushing the PC stack, a stack pop must be performed first, followed by
an RTS instruction. If a value is popped inside a delayed branch, whatever
subroutine return address is pushed is popped back, which is not allowed.

 Manipulation of these stacks by using PUSH/POP instructions and
explicit writes to these stacks may affect the correct loop function.

Writes to the PCSTK or PCSTKP Registers

The following two situations may arise when programs attempt to write to
the PC stack inside a delayed branch.

1. If programs write into the PCSTK inside a jump, one of the follow-
ing situations can occur.

a. The PC stack cannot hold a value that has already been
pushed onto the PC stack.

When the PC stack contains a value and a program writes
that same value onto the stack (via PCSTK), the original value
is overwritten by the new value of the PCSTK register.

b. The PC stack is empty.

Programs cannot write to the PC stack when they are inside
a jump. In this case the PC stack remains empty.

2. Write to the PCSTK inside a call.

If a program writes to the PC stack inside of a call, the value that is
pushed onto the PC stack because of that call is overwritten by the
value written onto the PC stack. Therefore, when a program
performs an RTS, the program returns to the address pushed onto
the PC stack and not to the address pushed while branching to the
subroutine as shown below.

Variation In Program Flow

4-26 SHARC Processor Programming Reference

[0x90100] call foo3 (db);

[0x90101] PCSTK = 0x90200;

[0x90102] nop;

[0x90103] nop;

The value 0x90103 is pushed onto the PC stack, while the value
0x90200 is written to the PCSTK register. Accordingly, the value
0x90103 is overwritten by the value 0x90200 in the PC stack
because values that are pushed onto the stack have lower priority
over values written to PCSTK register. Therefore, when the program
executes an RTS, the return address is 0x90200 and not 0x90103.

Operating Mode
This section provides information on the operating mode that controls
variations in program flow.

Interrupt Branch Mode

Interrupts are a special case of subroutines triggered by an event at run-
time and are also another type of nonsequential program flow that the
sequencer supports. Interrupts may stem from a variety of conditions,
both internal and external to the processor. In response to an interrupt,
the sequencer processes a subroutine call to a predefined address, called
the interrupt vector. The processor assigns a unique vector to each type of
interrupt and assigns a priority to each interrupt based on the Interrupt
Vector Table (IVT) addressing scheme. For more information, see
Appendix B, Core Interrupt Control.

The interrupt controller is enabled by setting the global IRPTEN bit in the
MODE1 register. The processor supports three prioritized, individually- mas-
kable external interrupts, each of which can be programmed to be either
level- or edge-triggered. External interrupts occur when an external device
asserts one of the processor’s interrupt inputs (IRQ2–0). The processor also
supports internally generated interrupts. An internal interrupt can occur

SHARC Processor Programming Reference 4-27

Program Sequencer

due to arithmetic exceptions, stack overflows, DMA completion and/or
peripheral data buffer status, or circular data buffer overflows. Several fac-
tors control the processor’s response to an interrupt. When an interrupt
occurs, the interrupt is synchronized and latched in the interrupt latch
register (IRPTL). The processor responds to an interrupt request if:

• The processor is executing instructions or is in an idle state

• The interrupt is not masked

• Interrupts are globally enabled

• A higher priority request is not pending

When the processor responds to an interrupt, the sequencer branches the
program execution with a call to the corresponding interrupt vector
address. Within the processor’s program memory, the interrupt vectors are
grouped in an area called the interrupt vector table (IVT). The interrupt
vectors in this table are spaced at 4-instruction intervals. Longer service
routines can be accommodated by branching to another region of mem-
ory. Program execution returns to normal sequencing when the return
from interrupt (RTI) instruction is executed. Each interrupt vector has
associated latch and mask bits.

The following example uses delayed branches to reduce latency.

ISR_IRQ2: rti;
 rti;
 rti;
 rti;
ISR_IRQ1: instruction; /* IVT branch address */
 jump ISR (db);
 instruction;
 instruction;
ISR_IRQ0: rti;
 rti;
 rti;
 rti;

Variation In Program Flow

4-28 SHARC Processor Programming Reference

Interrupt Processing Stages

The processor also has extensive programmable interrupt support. These
interrupts are described in the processor-specific hardware references.

To process an interrupt, the program sequencer:

1. Outputs the appropriate interrupt vector address.

2. Pushes the current PC value (the return address) onto the PC stack.

3. Automatically pushes the current value of the ASTATx/y and MODE1
registers onto the status stack (only if the interrupt is from IRQ2–0
or the timer).

4. Resets the appropriate bit in the interrupt latch register (IRPTL and
LIRPTL registers).

5. Alters the interrupt mask pointer bits (IMASKP register) to reflect
the current interrupt nesting state, depending on the nesting mode.
The NESTM bit in the MODE1 register determines whether all the
interrupts or only the lower priority interrupts are masked during
the service routine.

At the end of the interrupt service routine, the sequencer processes the RTI
instruction and performs the following sequence.

1. Returns to the address stored at the top of the PC stack.

2. Pops this value off the PC stack.

3. Automatically pops the status stack (only if the ASTATx,y and MODE1
status registers were pushed for the IRQ2–0, or timer interrupt).

4. Clears the appropriate bit in the interrupt mask pointer register
(IMASKP).

SHARC Processor Programming Reference 4-29

Program Sequencer

Interrupt Categories

The three categories of interrupts are listed below and shown in
Figure 4-4.

• Non maskable interrupts (RESET/emulator/boot peripheral)

• Maskable interrupts (core/IO)

• Software interrupts (core)

Except for reset and emulator, all interrupt service routines should end
with a RTI instruction. After reset, the PC stack is empty, so there is no
return address. The last instruction of the reset service routine should be a
JUMP to the start of the main program.

Figure 4-4. Interrupt Process Flow

Programmable Interrupt
Control for Priority

PICR3-0

I/O Peripherals
(max 19 inputs)

LIRPTL Register

Core Interrupt
Sources

P13-6I,
P18-P17I

LIRPTL Register IMASK Register

Latch Level

Mask Level

LIRPTL Register IMASKP RegisterNesting Level

Branch Level

Core
Sources

Reset,
Emulation

P5-0I,
P16-P14I

IRPTL Register

Interrupt Branch

IRQ2-0

Interrupt Vector
Table

Variation In Program Flow

4-30 SHARC Processor Programming Reference

The sequencer supports interrupt masking—latching an interrupt, but not
responding to it. Except for the RESET and EMU interrupts, all interrupts are
maskable. If a masked interrupt is latched, the processor responds to the
latched interrupt if it is later unmasked. Interrupts can be masked globally
or selectively. Bits in the MODE1, IMASK, and LIRPTL registers control
interrupt masking.

All interrupts are masked at reset except for the non-maskable reset and
emulator and boot source. For booting, the processor automatically
unmasks and uses the interrupt after reset based on the boot configuration
pins (BOOT_CFGx).

Sequencer Interrupt Response

The processor responds to interrupts in three stages:

1. Synchronization (1 cycle)

2. Latching and recognition (1 cycle)

3. Branching to the interrupt vector table (4 instruction cycles)

If the branch is taken from internal memory, the four instruction cycles
corresponds to four core clock cycles. If the branch is taken from external
memory (ADSP-2137x and ADSP-214xx products) the four instruction
cycles depend on instruction packing and timing related parameters for
the external port (SRAM, SDRAM, DDR2).

SHARC Processor Programming Reference 4-31

Program Sequencer

Table 4-9, Table 4-10, and Table 4-11 show the pipelined execution
cycles for interrupt processing.

Table 4-9. Pipelined Execution Cycles for Interrupt Based During Single
Cycle Instruction

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 nop nop nop nop v

Address n–1 nnop nop nop nop v v+1

Decode n n+1nop n+2nop n+3nop v v+1 v+2

Fetch2 n+1 n+2 n+3 v v+1 v+2 v+3

Fetch1 n+2 n+3 v v+1 v+2 v+3 v+4

1. Cycle1: Interrupt occurs.
2. Cycle2: Interrupt is latched and recognized, but not processed.
3. Cycle3: n is pushed onto PC stack, fetch of vector address starts.

Table 4-10. Pipelined Execution Cycles for Interrupt During Delayed Branch
Instruction

Cycles 1 2 3 4 5 6 7 8 9 10

Execute n–1 n n+1 n+2 nop nop nop nop nop v

Address n n+1 n+2 nop jnop nop nop nop v v+1

Decode n+1 n+2 n+3
nop

j j+1
nop

j+2
nop

j+3
nop

v v+1 v+2

n is the delayed branch instruction, j is the jump address, and v is the interrupt vector.
1. Cycle1: Interrupt occurs.
2. Cycle2: Interrupt is latched and recognized, but not processed.
3. Cycle3: n+3 beyond delay slot, interrupt processing delayed.
4. Cycle4: Interrupt processing delayed.
5. Cycle5: Interrupt processed.
6. Cycle6: j pushed onto PC stack, fetch of vector address starts.

Variation In Program Flow

4-32 SHARC Processor Programming Reference

For most interrupts, both internal and external, only one instruction is
executed after the interrupt occurs (and four instructions are aborted),
before the processor fetches and decodes the first instruction of the service
routine. There is also a five cycle latency associated with the IRQ2–0
interrupts.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed until the first instruction of the lower priority inter-
rupt’s service routine is executed. For more information, see “Interrupt
Nesting Mode” on page 4-41.

Fetch2 n+2 n+3 j j+1 j+2 j+3 v v+1 v+2 v+3

Fetch1 n+3 j j+1 j+2 j+3 v v+1 v+2 v+3 v+4

Table 4-10. Pipelined Execution Cycles for Interrupt During Delayed Branch
Instruction

Cycles 1 2 3 4 5 6 7 8 9 10

n is the delayed branch instruction, j is the jump address, and v is the interrupt vector.
1. Cycle1: Interrupt occurs.
2. Cycle2: Interrupt is latched and recognized, but not processed.
3. Cycle3: n+3 beyond delay slot, interrupt processing delayed.
4. Cycle4: Interrupt processing delayed.
5. Cycle5: Interrupt processed.
6. Cycle6: j pushed onto PC stack, fetch of vector address starts.

SHARC Processor Programming Reference 4-33

Program Sequencer

Interrupt Processing

The next several sections discuss the ways in which the SHARC core pro-
cesses interrupts.

Core Interrupt Sources

According the IVT table the core supports different groups of interrupts
such as:

• Reset – hardware/software

• emulator – debugger, breakpoints, BTC

• core timer – high, low priority

• illegal memory access – forced long word, illegal IOP space

• stack exceptions – PC, Loop, Status

Table 4-11. Pipelined Execution Cycles for Interrupt During Instruction
With Conflicting PM Data Access (Instruction not Cached)

Cycles 1 2 3 4 5 6 7 8 9

Execute n–2 n–1 n nop nop nop nop nop v

Address n–1 n nop n+1
nop

nop nop nop v v+1

Decode n n+1
nop

n+1 n+2
nop

n+3
nop

n+4
nop

v v+1 v+2

Fetch2 n+1 n+2 n+2 n+3 n+4 v v+1 v+2 v+3

Fetch1 n+2 – n+3 n+4 v v+1 v+2 v+3 v+4

n is the conflicting instruction, v is the interrupt vector instruction.
1. Cycle1: Interrupt occurs.
2. Cycle2: Interrupt is latched and recognized, but not processed.
3. Cycle3: PM data access stall cycle, n+3 cached interrupt not processed.
4. Cycle4: Interrupt processed.
5. Cycle5: n+1 pushed onto PC stack, fetch of vector address starts.

Variation In Program Flow

4-34 SHARC Processor Programming Reference

• IRQ2-0 – hardware inputs

• DAGs – Circular buffer wrap around

• Arithmetic exceptions – fixed-point, floating-point

• Software interrupts – programmed exceptions

Note that the interrupt priorities of the core are fixed and cannot be
changed.

The interrupt latch bits in the IRPTL register correspond to interrupt mask
bits in the IMASK register. (In the LIRPTL register both mask and latch bits
are present). In both registers, the interrupt bits are arranged in order of
priority. The interrupt priority is from 0 (highest) up to 41 (lowest).
Interrupt priority determines which interrupt must be serviced first, when
more than one interrupt occurs in the same cycle. Priority also determines
which interrupts are nested when the processor has interrupt nesting
enabled. For more information, see “Interrupt Nesting Mode” on
page 4-41 and Appendix B, Core Interrupt Control.

Programmable Interrupt Priorities for Peripherals

Peripheral interrupts can be routed to a set of programmable interrupts
(18–0). This increases the flexibility across different I/O DMA channels
and priorities. For more details see the processor-specific hardware refer-
ence manual.

Delays in Interrupt Service Routines for Peripherals

Between servicing and returning, the sequencer clears the latch bit of the
in-progress ISR every cycle until the RTI (return from interrupt) instruc-
tion is executed. When using an ISR, writes into an IOP control register
or a buffer to clear the interrupt causes some latency. During this delay,
the interrupt may be generated a second time. For more information, see
the processor-specific hardware reference manual.

SHARC Processor Programming Reference 4-35

Program Sequencer

Latching Interrupts

When the processor recognizes an interrupt, the processor’s interrupt latch
(IRPTL and LIRPTL) registers set a bit (latch) to record that the interrupt
occurred. The bits set in these registers indicate interrupts that are cur-
rently being latched and are pending for execution. Because these registers
are readable and writable, any interrupt except reset (RSTI) and emulator
(EMUI) can be set or cleared in software.

Throughout the execution of the interrupt’s service routine, the processor
clears the latch bit during every cycle. This prevents the same interrupt
from being latched while its service routine is executing. After the RTI
instruction, the sequencer stops clearing the latch bit.

If necessary, an interrupt can be reused while it is being serviced. (This is a
matter of disabling this automatic clearing of the latch bit.) For more
information, see “Interrupt Self-Nesting” on page 4-36.

Interrupt Acknowledge

Every software routine that services core/peripheral interrupts must clear
the signalling interrupt request in the respective interrupt channel. The
individual channels provide customized mechanisms for clearing interrupt
requests. Receive interrupts, for example, are cleared when received data is
read from the respective buffer. Transmit requests typically clear when
software (or DMA) writes new data into the transmit buffer. These
implicit acknowledge mechanisms avoid the need for cycle-consuming
software handshakes in streaming interfaces. Sources such as error requests
require explicit acknowledge instructions, which are typically performed
by clear operations.

For detailed information on core interrupts, see the element-specific chap-
ter (for example DAGs). For peripheral interrupts, refer to the
processor-specific hardware reference manual.

Variation In Program Flow

4-36 SHARC Processor Programming Reference

Interrupt Self-Nesting

When an interrupt occurs, the sequencer sets the corresponding bit in the
IRPTL register. During execution of the service routine, the sequencer
keeps this bit cleared which prevents the same interrupt from being
latched while its service routine is executing. If necessary, programs may
reuse an interrupt while it is being serviced. Using a jump clear interrupt
instruction, (JUMP (CI)) in the interrupt service routine clears the inter-
rupt, allowing its reuse while the service routine is executing.

The JUMP (CI) instruction reduces an interrupt service routine to a nor-
mal subroutine, clearing the appropriate bit in the interrupt latch and
interrupt mask pointer registers and popping the status stack. After the
JUMP (CI) instruction, the processor stops automatically clearing the
interrupt’s latch bit, allowing the interrupt to latch again (Figure 4-5).

When returning from a subroutine that was entered with a JUMP (CI)
instruction, a program must use a return loop reentry instruction, RTS
(LR), instead of an RTI instruction. For more information, see “Restric-
tions on Ending Loops” on page 4-55. The following example shows an
interrupt service routine that is reduced to a subroutine with the (CI)
modifier.

INSTR1; /* Interrupt entry from main program*/

JUMP(PC,4) (DB,CI); /* Clear interrupt status*/

INSTR3;

INSTR4;

INSTR5;

INSTR6;

RTS (LR); /*Use LR modifier with return from subroutine*/

The JUMP (PC,4)(DB,CI) instruction only continues linear execution flow
by jumping to the location PC + 4 (INSTR6). The two intervening instruc-
tions (INSTR3, INSTR4) are executed and INSTR5 is aborted because of the
delayed branch (DB). This JUMP instruction is only an example—a JUMP
(CI) can perform a JUMP to any location.

SHARC Processor Programming Reference 4-37

Program Sequencer

This implementation is useful if two subsequent interrupt events are closer
to each other than the execution time of the ISR itself. If self-nesting is
not used, the second interrupt event is lost. If used, the ISR itself should
be coded atomically, otherwise the second event forces the sequencer to
immediately jump to the IVT location.

Release From IDLE

The sequencer supports placing the processor in a low power halted state
called idle. The processor is in this state until an interrupt occurs. The
execution of the ISR releases the processor from the idle state. When

Figure 4-5. Interrupt Self-Nesting

No Interrupt Self-Nesting

Latch
ISRx
event

Latch
ISRx event

ignored

ISRx

Main

ISRx

Latch
ISRx
event

Latch
ISRx
event

ISR
PRIORITY

ISRx

Main

ISRx (atomic)

JUMP(CI) RTS(LR)

Latch
ISRx
event

ISRx (atomic)

RTS(LR)JUMP(CI)

Latch
ISRx
event

Latch
ISRx event

ignored

ISRx

JUMP RTI JUMP RTI

Interrupt Self-Nesting

ISR
PRIORITY

Variation In Program Flow

4-38 SHARC Processor Programming Reference

executing an IDLE instruction (Figure 4-2 on page 4-4, Table 4-12), the
sequencer fetches one more instruction at the current fetch address and
then suspends operation. The processor’s internal clock and core timer (if
enabled) continue to run while in the idle state. When an interrupt
occurs, the processor responds normally after a five cycle latency to fetch
the first instruction of the interrupt service routine.

The processor’s I/O processor is not affected by the IDLE instruction.
DMA transfers to or from internal memory continue uninterrupted.

 The debugger allows you to single step over the IDLE instruction in
single step mode. This feature is enabled by the emulator interrupt
which is also a valid interrupt to release the processor from the
IDLE instruction.

Table 4-12. Pipelined Execution Cycles for IDLE Instruction

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

Execute n–4 n–3 n–2 n–1 idle n
nop

n+1


nop

n+2


nop

n+3


nop

v

Address n–3 n–2 n–1 idle n
nop

n+1


nop

n+2


nop

n+3


nop

v v+1

Decode n–2 n–1 idle n+1 n+1


nop

n+2


nop

n+3


nop

v v+1 v+2

Fetch2 n–1 idle n+1 n+2 n+3 v v+1 v+2 v+3

Fetch1 n(idle) n+1 n+2 n+3 v v+1 v+2 v+3 v+4

Cycle 1: IDLE instruction is fetched at n
Cycle 8: interrupt is latched and recognized
Cycle 9: interrupt branch v and (n+1) pushed onto PC stack

SHARC Processor Programming Reference 4-39

Program Sequencer

Causes of Delayed Interrupt Processing

Certain processor operations that span more than one cycle or which
occur at a certain state of the instruction pipeline that involves a change of
program flow can delay interrupt processing. If an interrupt occurs during
one of these operations, the processor synchronizes and latches the inter-
rupt, but delays its processing. The operations that have delayed interrupt
processing are:

• The first of the two cycles used to perform a program memory data
access and an instruction fetch (a bus conflict) when the instruc-
tion is not cached.

• Any cycle in which the core access of internal memory is delayed
due to a conflict with the DMA, or the access to the mem-
ory-mapped registers is delayed due to wait states.

• A branch (JUMP or CALL) instruction and the following two cycles,
whether they are instructions (in a delayed branch) or a NOP (in a
non-delayed branch).

• In addition to the above, the cycle in which a branch is in the
Address stage of the pipeline along with the last instruction of a
counter based loop in the Fetch1 stage.

• The first four of the five cycles used to fetch and execute the first
instruction of an interrupt service routine.

• In the case of arithmetic loops, the cycle in which the loop aborts
and the following three cycles.

• In the case of counter based loops:

• The cycle in which the counter-expired condition tests true
and the following three cycles in the case of loops having
less than four instructions in the body.

Variation In Program Flow

4-40 SHARC Processor Programming Reference

• The cycle in which the DO UNTIL LCE instruction executes
and the following cycle for a loop that is composed of one,
two or four instructions.

Interrupt Mask Mode

Because the SHARC core supports many different operating modes
(SIMD, bit reversal, circular buffer, rounding) it is essential to provide a
mechanism whereby the core can change the operating mode without per-
forming an explicit instruction in the ISR such as:

BIT SET MODE1 PEYEN|CBUFEN|ALUSAT;

NOP;

because this requires instructions and causes longer responses times. To
accomplish this, a copy of the MODE1 register is used to mask specific oper-
ating modes across interrupts.

Bits that are set in the MMASK register are used to clear bits in the MODE1 reg-
ister when the processor’s status stack is pushed. This effectively disables
different modes when servicing an interrupt, or when executing a PUSH STS
instruction. The processor’s status stack is pushed in two cases:

1. When executing a PUSH STS instruction explicitly in code.

2. When an IRQ2–0 or timer expired interrupt occurs.

For example:

Before the PUSH STS instruction, the MODE1 register enabled the following
bit configurations:

• Bit-reversing for register I8

• Secondary registers for DAG2 (high)

• Interrupt nesting

SHARC Processor Programming Reference 4-41

Program Sequencer

• ALU saturation

• SIMD

• Circular buffering

The system needs to disable ALU saturation, SIMD, and bit-reversing for
I8 after pushing the status stack then pushing the MMASK register (these bit
locations should = 1).

The value in the MODE1 register after PUSH STS instruction is:

• Secondary registers for DAG2 (high)

• Interrupt nesting enabled

• Circular buffering enabled

The other settings that were previously set in the MODE1 register remain the
same. The only bits that are affected are those that are set both in the
MMASK and in MODE1 registers. These bits are cleared after the status stack is
pushed.

 If the program does not make any changes to the MMASK register, the
default setting automatically disables SIMD when servicing any of
the hardware interrupts mentioned above, or during any push of
the status stack.

Interrupt Nesting Mode

The sequencer supports interrupt nesting—responding to another inter-
rupt while a previous interrupt is being serviced. Bits in the MODE1, IMASKP,
and LIRPTL registers control interrupt nesting as described below.

The NESTM bit in the MODE1 register directs the processor to enable (if 1) or
disable (if 0) interrupt nesting.

When interrupt nesting is enabled, a higher priority interrupt can inter-
rupt a lower priority interrupt’s service routine (Figure 4-6). Lower

Variation In Program Flow

4-42 SHARC Processor Programming Reference

priority interrupts are latched as they occur, but the processor processes
them according to their priority after the nested routines finish.

The IMASKP bits in the IMASKP register and the MSKP bits in the LIRPTL reg-
ister list the interrupts in priority order and provide a temporary interrupt
mask for each nesting level.

When interrupt nesting is disabled, a higher priority interrupt cannot
interrupt a lower priority interrupt’s service routine. Interrupts are latched

Figure 4-6. Interrupt Nesting

No Interrupt Nesting (NESTM bit = 0)

ISR
priority

ISR2

ISR1

Main

ISR2

Latch ISR1
Event

ISR
priority

ISR2

ISR1

Main

ISR1

ISR2

ISR1

ISR
priority

ISR2

ISR1

Main

ISR1

ISR2

Interrupt Nesting (NESTM bit = 1)

Latch ISR2
Event

Latch ISR1
Event

Latch ISR2
Event

SHARC Processor Programming Reference 4-43

Program Sequencer

as they occur and the processor processes them in the order of their prior-
ity, after the active routine finishes.

Programs should change the interrupt nesting enable (NESTM) bit only
while outside of an interrupt service routine or during the reset service
routine.

 If nesting is enabled and a higher priority interrupt occurs immedi-
ately after a lower priority interrupt, the service routine of the
higher priority interrupt is delayed. This delay allows the first
instruction of the lower priority interrupt routine to be executed,
before it is interrupted (Figure 4-6).

When servicing nested interrupts, the processor uses the interrupt mask
pointer (IMASKP) to create a temporary interrupt mask for each level of
interrupt nesting but the IMASK value is not effected. The processor
changes IMASKP each time a higher priority interrupt interrupts a lower
priority service routine.

The bits in IMASKP correspond to the interrupts in their order of priority.
When an interrupt occurs, the processor sets its bit in IMASKP. If nesting is
enabled, the processor uses IMASKP to generate a new temporary interrupt
mask, masking all interrupts of equal or lower priority to the highest pri-
ority bit set in IMASKP and keeping higher priority interrupts the same as
in IMASK. When a return from an interrupt service routine (RTI) is exe-
cuted, the processor clears the highest priority bit set in IMASKP and
generates a new temporary interrupt mask.

The processor masks all interrupts of equal or lower priority to the highest
priority bit set in IMASKP. The bit set in IMASKP that has the highest prior-
ity always corresponds to the priority of the interrupt being serviced.

 The MSKP bits in the LIRPTL register and the entire set of IMASKP
registers are for interrupt controller use only. Modifying these bits
interferes with the proper operation of the interrupt controller.

Loop Sequencer

4-44 SHARC Processor Programming Reference

Furthermore, explicit bit manipulation of any of the bits in the
LIRPTL register, while IRPTEN (bit 12 in the MODE1 register) is set,
causes an interrupt to be serviced twice.

Loop Sequencer
The main role of the sequencer is to generate the address for the next
instruction fetch. In normal program flow, the next fetch address is the
previous fetch address plus one (plus three in VISA). When the program
deviates from this standard course, (for example with calls, returns, jumps,
loops) the program sequencer uses a special logic. In cases of program
loops, the sequencer logic:

• Updates the PC stack with the top of loop address.

• Updates the loop stack with the address of the last instruction of
the loop.

• Initializes the LCNTR/CURLCNTR registers and update the loop
counter stack, if the loop is counter based (do until lce).

• Generates the loop-back (go to the beginning of loop) and loop
abort (come out of loop, fetch next instruction from “last instruc-
tion of loop plus one” address) signals, according to defined
termination condition.

• Generates the abort signals to suppress some of the extra fetched
instructions (in case of special loops, some unwanted instructions
may get fetched).

• Provides correct instructions (via loop buffer) to the instruction
bus (in case of one and two instruction loops).

• Handles interrupts without distorting the intended loop-sequenc-
ing (until or unless interrupt service routine deliberately
manipulates the status of loop-sequencer resources).

SHARC Processor Programming Reference 4-45

Program Sequencer

• Handles the branches from within the loop to outside the loop or
to some other instruction, within the loop. Updates the loop
resources if a branch is paired with an abort option.

• Handles the different types of returns from a subroutine and to
manage loop-sequencer resources accordingly.

• Provides access to non-loop related instructions (like write, read,
push, pop).

Restrictions
There are some restrictions that apply to loop instructions. These restric-
tions can be classified as general (for example applicable to counter,
arithmetic and short loops), or specific (for example arithmetic only, or
short loops only).

Functional Description
A loop occurs when a DO/UNTIL instruction causes the processor to repeat a
sequence of instructions until a condition tests true or indefinite by using
FOREVER as termination condition. Unlike other processors, the SHARC
processors automatically evaluate the loop termination condition and
modify the program counter (PC) register appropriately. This allows zero
overhead looping.

 A DO UNTIL instruction may be broadly classified as counter based
and arithmetic or indefinite.

Entering Loop Execution

Even though DO/UNTIL loops are executed in the Execute stage of the
instruction pipeline, the next instruction to be fetched is determined when
the DO/UNTIL instruction is in the Address stage. This helps to reduce over-
head when executing short loops as shown in the following example.

Loop Sequencer

4-46 SHARC Processor Programming Reference

DO/UNTIL Termination; => pushes loop count onto loop count stack
 instruction 1; => pushes top loop address onto PC stack
 instruction 2;
...
...
Instruction n; => pushes end loop address onto loop address
 stack

When executing a DO/UNTIL instruction, the program sequencer pushes the
address of the loop’s last instruction and its termination condition onto
the loop address stack. The sequencer also pushes the top-of-loop address,
(the address of the instruction following the DO/UNTIL instruction), onto
the PC stack.

Because of the pipeline, the processor tests the termination condition
(and, if the loop is counter-based, decrements the counter) before the
end-of-loop is executed so that the next fetch either exits the loop or
returns to the top, based on the test condition. If the termination condi-
tion is not satisfied, the processor re-fetches the instruction from the
top-of-loop address stored on the top of PC stack.

Terminating Loop Execution

If the termination condition is true, the sequencer fetches the next
instruction after the end of the loop and pops the loop stack and PC stack.

The sequencer’s instruction pipeline architecture influences loop termina-
tion. Because instructions are pipelined, the sequencer must test the
termination condition and, if the loop is counter based, decrement the
counter before the end of the loop. Based on the test’s outcome, the next
fetch either exits the loop or returns to the top-of-loop.

The termination condition test occurs when the processor executes the
instruction that is four locations before the last instruction in the loop (at
location e – 4, where e is the end-of-loop address). If the condition tests
false, the sequencer repeats the loop and fetches the instruction from the
top-of-loop address, which is stored on the top of the PC stack. If the

SHARC Processor Programming Reference 4-47

Program Sequencer

condition tests true, the sequencer terminates the loop and fetches the
next instruction after the end of the loop, popping the loop and PC stacks.

Table 4-13 and Table 4-14 show the instruction pipeline states for loop
iteration and termination.

Table 4-13. Pipelined Execution Cycles for Loop Back (Iteration)

Cycles 1 2 3 4 5 6

Execute e–4 e–3 e–2 e–1 e b

Address e–3 e–2 e–1 e b b+1

Decode e–2 e–1 e b b+1 b+2

Fetch2 e–1 e b b+1 b+2 b+3

Fetch1 e b b+1 b+2 b+3 b+4

e is the loop end instruction and b is the loop start instruction
1. Cycle1: Termination condition tests false
2. Cycle2: Top-of-loop address from PC stack

Table 4-14. Pipelined Execution Cycles for Loop Termination

Cycles 1 2 3 4 5 6

Execute e–4 e–3 e–2 e–1 e e+1

Address e–3 e–2 e–1 e e+1 e+2

Decode e–2 e–1 e e+1 e+2 e+3

Fetch2 e–1 e e+1 e+2 e+3 e+4

Fetch1 e e+1 e+2 e+3 e+4 e+5

e is the loop end instruction
1. Cycle1: Termination condition tests true
2. Cycle2: Loop aborts, PC and loop stacks popped

Loop Sequencer

4-48 SHARC Processor Programming Reference

Loop Stack

The loop controller supports a stack that controls saving various loop
address and loop counts automatically. This is required for nesting opera-
tions including loop abort calls or jumps.

 The loop controller uses the loop and program stack for its opera-
tion. Manipulation of these stacks by using PUSH/POP instructions
and explicit writes to these stacks may affect the correct function-
ing of the loop.

Loop Address Stack Access

The sequencer’s loop support, shown in Figure 4-2 on page 4-4, includes
a loop address stack. The sequencer pushes the termination address, termi-
nation code and the loop type information onto the loop address stack
when executing a DO/UNTIL instruction. Because the sequencer tests the
termination condition four instructions before the end of the loop, the
loop stack pops before the end of the loop’s final iteration. If a program
reads the LADDR register in these last four instructions, the value is already
the termination address for the next loop stack entry.

Loop Address Stack Status

The loop address stack is six levels deep by 32 bits wide. A stack overflow
occurs if a seventh entry (one more than full) is pushed onto the loop
stack. The stack is empty when no entries are occupied. Because the
sequencer keeps the loop stack and loop counter stack synchronized, the
same overflow and empty status flags apply to both stacks. These flags are
in the sticky status register (STKYx). For more information on STKYx, see
Table A-7 on page A-23. For more information on how these flags work
with the loop stacks, see “Loop Counter Stack Access” on page 4-49. Note
that a loop stack overflow causes a maskable interrupt.

SHARC Processor Programming Reference 4-49

Program Sequencer

Loop Address Stack Manipulation

The LADDR register contains the top entry on the loop address stack. This
register is readable and writable over the DM data bus. Reading from and
writing to LADDR does not move the loop address stack pointer. Only a
stack push or pop performed with explicit instructions moves the stack
pointer. The LADDR register contains the value 0xFFFF FFFF when the
loop address stack is empty. A write to LADDR has no effect when the loop
address stack is empty, “Loop Address Stack Register (LADDR)” on
page A-11 lists the bits in the LADDR register.

The PUSH LOOP instruction pushes the stack by changing the pointer only.
It does not alter the contents of the loop address stack. Therefore, the
PUSH LOOP instruction should be usually followed by a write to the LADDR
register. The stack entry pops off the stack four instructions before the end
of its loop’s last iteration or on a POP LOOP instruction.

Loop Counter Stack Access

The sequencer’s loop support, shown in Figure 4-2 on page 4-4, also
includes a loop counter stack. The loop counter stack is six locations deep
by 32 bits wide. The stack is full when all entries are occupied, is empty
when no entries are occupied, and is overflowed if a push occurs when the
stack is already full. Bits in the STKYx register indicate the loop counter
stack full and empty states.

 A value of zero in LCNTR causes a loop to execute 232 times.

Loop Counter Stack Status

The loop counter stack is six locations deep by 32 bits wide. The stack is
full when all entries are occupied, is empty when no entries are occupied,
and is overflowed if a push occurs when the stack is already full. Bits in the
STKYx register indicate the loop counter stack full and empty states. The
following bits in the STKYx register indicate the loop counter stack full and
empty states.

Loop Sequencer

4-50 SHARC Processor Programming Reference

 The sequencer keeps the loop counter stack synchronized with the
loop address stack. Both stacks always have the same number of
locations occupied. Because these stacks are synchronized, the same
empty and overflow status flags from the STKYx register apply to
both stacks.

• Loop stacks overflowed. Bit 25 (LSOV) indicates that the loop
counter stack and loop stack are overflowed (if set to 1) or not
overflowed (if set to 0)— LSOV is a sticky bit.

• Loop stacks empty. Bit 26 (LSEM) indicates that the loop counter
stack and loop stack are empty (if set to 1) or not empty (if set to
0)—not sticky, cleared by a PUSH.

Table A-7 on page A-23 lists the bits in the STKYx register.

Loop Counter Stack Manipulation

The top entry in the loop counter stack always contains the current loop
count. This entry is the CURLCNTR register which is readable and writable
by the core. Reading CURLCNTR when the loop counter stack is empty
returns the value 0xFFFF FFFF. A write to CURLCNTR has no effect when
the loop counter stack is empty.

Writing to the CURLCNTR register does not cause a stack push. If a program
writes a new value to CURLCNTR, the count value of the loop currently exe-
cuting is affected. When a DO/UNTIL LCE loop is not executing, writing to
CURLCNTR has no effect. Because the processor must use CURLCNTR to per-
form counter based loops, there are some restrictions as to when a
program can write to CURLCNTR. See “Restrictions on Ending Loops” on
page 4-55 for more information.

SHARC Processor Programming Reference 4-51

Program Sequencer

Counter Based Loops

Counter based loops are comprised of instructions that are set to run a
specified number of iterations. These iterations are controlled by the loop
counter register (LCNTR). The LCNTR register is a non memory-mapped uni-
versal register that is initialized to the count value and the loop counter
expired (LCE) instruction is used to check the termination condition.
Expiration of LCE signals that the loop has completed the number of itera-
tions as per the count value in LCNTR. Loops that terminate with
conditions other than LCE have some additional restrictions. For more
information, see “Restrictions on Ending Loops” on page 4-55 and
“Restrictions on Short Loops” on page 4-59. For more information on
condition types in DO/UNTIL instructions, see “Interrupt Branch Mode” on
page 4-26.

Note that the processor’s SIMD mode influences the execution of loops.

The DO/UNTIL instruction uses the sequencer’s loop and condition features,
as shown in Figure 4-2 on page 4-4. These features provide efficient soft-
ware loops without the overhead of additional instructions to branch, test
a condition, or decrement a counter. The following code example shows a
DO/UNTIL loop that contains four instructions and iterates N times.

LCNTR = N, DO the_end UNTIL LCE; /* => push loop count stack,

 iterates N times */

R0 = DM(I0,M0), R2 = PM(I8,M8); /* => push return address

 on PCSTK */

F15 = FLOAT R0;

F1 = F0 - F15;

the_end: F4 = F2 + F3; /* => push Loop address stack */

Loop Sequencer

4-52 SHARC Processor Programming Reference

Reading LCNTR in Counter Based Loops

Unlike previous SHARC processors with a 3-stage pipeline, the LCNTR reg-
ister in 5-stage processors no longer changes value unless explicitly loaded
as shown in the following example.

R12=0x8;
LCNTR = R12, do (PC,7) until lce;
nop;
nop;
nop;
nop;
nop;
dm(I0,M0) = LCNTR;
dm(I0,M0) = LCNTR;
/* 3-stage products: LCNTR is 8 in first 7 iterations, in the
last iteration it is 1.
For 5-stage products: LCNTR is always 8. */

IF NOT LCE Condition in Counter Based Loops

During the normal execution of the counter based loop, CURLCNTR is dec-
remented in every iteration of the loop, when the end-of-loop instruction
is fetched. Therefore, the NOT LCE condition changes accordingly. Since
there are two cycles of latency for the NOT LCE condition to change after
CURLCNTR value has changed, an instruction with a branch on the NOT LCE
condition also has two cycles of latency. For all other instructions, the
latency is one cycle. The following is an example.

LCNTR = <COUNT>, DO End UNTIL LCE;
...
Instr(e-4); /* In last iteration CURLCNTR = 1 */
IF NOT LCE CALL (sub1); /* In all iterations branch is taken */
IF NOT LCE CALL (sub2); /* In all iterations branch is taken.
 However, a non-branch instruction
 aborts only in the last iteration */
IF NOT LCE <any type>; /* Branch aborts only in the last
 iteration */
End: Instr(e)

SHARC Processor Programming Reference 4-53

Program Sequencer

Note that the latency is counted in terms of machine cycles and not in
terms of instruction cycles. Therefore, if the pipeline is stalled for some
reason (for example for a DMA) the behavior is different from that shown
in the example.

Arithmetic Loops

Arithmetic loops are loops where the termination condition in the
DO/UNTIL loop is any thing other than LCE. In this type of loop, where the
body has more than one instruction, the termination condition is checked
when the second instruction of the loop body is fetched. In loops that
contain a single instruction, the termination condition is checked in every
cycle after the DO/UNTIL instruction is executed. An example of arithmetic
loop is given below.

R7 = 14;
R6 = 10;
R5 = 6;

DO label UNTIL EQ;
R6 = R6 - 1;
R7 = R7 - 1; /* if fetched EQ condition is tested */
R5 = R5 - 1;
nop;
nop;
Label: nop; /* after loop termination R5 = 0; R6 = 4; R7 = 8;*/

If the termination condition tests false, then the next instruction is
fetched. If the termination condition tests true, then the instruction fol-
lowing the end-of-loop instruction is fetched in the next cycle and the two
instructions currently in the Fetch1 and Fetch2 stages of the instruction
pipeline are flushed.

Table 4-15 shows the execution cycles for an arithmetic loop with six
instructions.

Loop Sequencer

4-54 SHARC Processor Programming Reference

Indefinite Loops

A DO FOREVER instruction executes a loop indefinitely, until an interrupt
or reset intervenes as shown below.

DO label UNTIL FOREVER; /* pushed LCNTR onto Loop count stack */
R6 = DM(I0,M0); /* pushed to PC stack */
R6 = R6 - 1;
IF EQ CALL SUB;
nop;
label: nop; /* pushed to loop address stack */

VISA-Related Restrictions on Hardware Loops

 The last four instructions of a hardware loop are required to be
encoded as traditional 48-bit instructions. Analog Devices
CrossCore or VisualDSP++ code-generation tools automatically do
this. The contents of this section are provided for information pur-
poses only.

In other words, even if there exists a more efficient VISA equivalent for
the same instruction, the traditional opcode still needs to be used for

Table 4-15. Pipelined Execution Cycles for Six Instruction Non-Counter
Based Loop

Cycles 1 2 3 4 5 6 7 8 9

Execute b b+1 b+2 b+3 b+4 b+5 nop nop b+6

Address b+1 b+2 b+3 b+4 b+5 nop nop b+6 b+7

Decode b+2 b+3 b+4 b+5 bnop b+1nop b+6 b+7 b+8

Fetch2 b+3 b+4 b+5 b b+1 b+6 b+7 b+8 b+9

Fetch1 b+4 b+5 b b+1 b+6 b+7 b+8 b+9 b+10

b is the first instruction of the body of the loop and b+6 is the instruction after the loop
1. Cycle2: Loop back, next fetch instruction is b.
2. Cycle4: Termination condition tests true, loop-back aborts, PC and loop stacks popped.

SHARC Processor Programming Reference 4-55

Program Sequencer

instructions in the last four instructions of a loop. This is required for two
reasons:

• To handle interrupts when the sequencer is fetching and executing
the last few instructions.

• To reliably detect the fetch of the last instruction.

The assembler automatically identifies the last four instructions of a hard-
ware loop and treats them appropriately.

In cases of short loops (loops with a body shorter than four instructions),
the above rule extends to state that all the instructions in the loop are left
uncompressed as shown in the following example.

[130000] LCNTR = N, DO the_end UNTIL LCE;
[130001] R0 = R0 + 1; /* short compute */
[130002] R0 = R0 + 1; /* short compute */
[130003] R0 = R0 + 1; /* compute */
[130006] R0 = R0 + 1; /* compute */
[130009] R0 = R0 + 1; /* compute */
[13000C] the_end:R0 = R0 + 1; /* compute */

Restrictions on Ending Loops

The sequencer’s loop features (which optimize performance in many ways)
limit the types of instructions that may appear at or near the end of the
loop. These restrictions include:

• Branch (JUMP or CALL) instructions may not be used as any of the
last three instructions of a loop. This no end-of-loop branches rule
also applies to single, two, and three instruction loops.

• There is a one cycle latency between a multiplier status change and
arithmetic loop abort (LA). This extra cycle is a machine cycle, not
an instruction cycle. Therefore, if there is a pipeline stall (due to
external memory access for example), then the latency is not
applicable.

Loop Sequencer

4-56 SHARC Processor Programming Reference

• For counter based loops, an instruction that writes to the current
loop counter (CURLCNTR) from memory cannot be used as the
fifth-to-last instruction of a counter-based loop (at e–4, where e is
the end-of-loop address).

• An IF NOT LCE conditional instruction cannot be used as the
instruction that follows a write to CURLCNTR.

• The loop controller uses the loop, and program control stack for its
operation. Manipulation of these stacks by using PUSH/POP instruc-
tions and explicit writes to these stacks may affect the correct
functioning of the loop.

• The IDLE and EMUIDLE instructions should not be used in:

• Counter based loops of one, two or three instructions

• The fourth instruction of a counter based loop with four
instructions

• The fifth from last (e–4) instruction of a loop with more
than four instructions

• The last three instructions of any arithmetic loop

Note that any modification of the loop resources, such as the PC stack,
loop stack and the CURLCNTR register within the loop may adversely affect
the proper functioning of the looping operation and should be avoided.
This is applicable even when the program execution branches to an inter-
rupt service routine or a subroutine from within a loop.

Short Counter Based Loops

Short loops are loops that have one, two or three instructions in the body
of the loop. Since the body of the loop is less than the depth of the
instruction pipeline, short loops tend to have more overhead or lost cycles.
Some of the overhead is eliminated by handling these short loops in a

SHARC Processor Programming Reference 4-57

Program Sequencer

special way. The following describes how to minimize or eliminate over-
head in short loops.

1. Determine the next fetch address at the start of the loop.

When the DO/UNTIL instruction is in the address phase of the
instruction pipeline, the next fetch address is determined based on
the following rule.

Assuming DO/UNTIL is the nth instruction:

a. Fetch n+1 in the next cycle in the case of one and three
instruction loops.

b. Fetch n+2 in the next cycle in the case of a two-instruction
loop.

c. Fetch the next instruction in all other cases.

2. Special handling

When a DO/UNTIL instruction (n) is in the Address stage of the
instruction pipeline, the three instructions following it (n+1, n+2,
n+3) are also in the pipeline. In the case of a one-instruction loop,
the instructions at the Fetch2 and Fetch1 stages (n+2 and n+3) are
not part of the loop body. For two-instruction loops, the instruc-
tion at the Fetch1 stage (n+3) is not part of the loop body. The
unwanted instructions are eliminated by the following.

a. In the case of one-instruction loop, the instruction (n+1) is
held in the Decode stage for two additional cycles to allow
the instruction pipeline to complete the first fetch from
memory.

b. In the case of two-instruction loop, the processor makes use
of a loop buffer. Whenever a DO/UNTIL instruction is
detected, the loop buffer is updated with the instruction

Loop Sequencer

4-58 SHARC Processor Programming Reference

following it. The instruction from the loop buffer (n+1) is
substituted for the instruction (n+3), when it moves to the
Decode stage of the instruction pipeline.

Short Arithmetic Based Loops

Short arithmetic based loops terminate differently from short counter
based loops. These differences stem from the architecture of the pipeline
and the conditional logic as described below.

• In a three instruction loop, the termination condition is checked
during the cycle where the second instruction is in the Fetch1 stage
of the pipeline (when the top of the loop is executed). If the condi-
tion becomes true, the sequencer completes one full pass (after the
current pass) of the loop before exiting.

• In a two instruction loop, the termination condition is checked
during the cycle where the last (second from top-of-loop) instruc-
tion is in the Fetch1 stage of the pipeline. If the condition becomes
true when the first instruction is being executed, it tests true during
the second instruction as well and one more full pass completes
before exiting the loop. If the condition becomes true during the
second instruction, two more full passes complete before exiting
the loop.

• In a one instruction loop, the sequencer tests the termination con-
dition every cycle. After the cycle when the condition becomes
true, the sequencer completes three more iterations of the loop
before exiting.

 The pipeline is never flushed in cases of arithmetic loops for
3-stage processors. Two instructions are always flushed for 5-stage
processors to provide backward compatibility.

SHARC Processor Programming Reference 4-59

Program Sequencer

Restrictions on Short Loops

The sequencer’s instruction pipeline features (which can optimize perfor-
mance in many ways) restrict how short loops iterate and terminate. Short
loops (one, two, or three instruction loops) terminate in a special way
because they are shorter than the instruction pipeline. Counter based
loops (DO/UNTIL LCE) of one, two, or three instructions are not long
enough for the sequencer to check the termination condition four instruc-
tions before the end of the loop. In these short loops, the sequencer has
already looped back when the termination condition is tested. The
sequencer provides special handling to prevent overhead (NOP) cycles if the
loop is iterated a minimum number of times. This is described below.

• A loop that contains one instruction must iterate at least four times
(only initial stall).

• A loop that contains two instructions must iterate at least two
times (only initial stall).

• A loop that contains three instructions must iterate at least two
times.

 Short loops that iterate less than minimum number of times, incur
up to three cycles of overhead, because there can be up to three
aborted instructions after the last iteration to clear the instruction
pipeline.

Loop Sequencer

4-60 SHARC Processor Programming Reference

Short Loops Listings

Table 4-16 summarizes all the cases of the loops and the way the termina-
tion condition is checked.

The following sections provide more detail for these types of loops.

Loop Body – One Instruction

Table 4-17 through Table 4-21 show the instruction pipeline execution
for counter based single instruction loops. Table 4-22 through Table 4-24
show the pipeline execution for counter based two instruction loops.
Table 4-25 and Table 4-26 show the pipeline execution for counter based
three instruction loops.

Table 4-16. Loop Termination Condition Checks

Loop Body Iteration Condition Check1

1 The termination condition is always checked when the last instruction of the loop is fetched,
(when the instruction that is four instructions before the end-of-loop is executed).

Stall Cycles Comment

1 1, 2, 3 CURLCNTR==1 3

1 4 and more CURLCNTR==4 None Special case

2 1 CURLCNTR==1 2

2 2 and more CURLCNTR==2 None Special case

3 1 CURLCNTR==1 3

3 2 and more CURLCNTR==2 None Special case

4 and more Any CURLCNTR==1 None

SHARC Processor Programming Reference 4-61

Program Sequencer

Table 4-17. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With Five Iterations

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+1 n+1 n+1 n+1

Address n n+1 nop n+1 n+1 n+1 n+1 n+2

Decode n+1 n+1nop n+1 n+1 n+1 n+1 n+2 n+3

Fetch2 n+2 n+3 n+3 n+1 n+1 n+2 n+3 n+4

Fetch1 n+3 n+1 n+1 n+1 n+2 n+3 n+4 n+5

n is the loop start instruction and n+2 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+1. n+1 locked in decode stage.
2. Cycle2: Loop count (LCNTR) equals 5, Decode stalls.
3. Cycle3: n+1 stays in decode, n+1 put into fetch stage.
4. Cycle4: Last instruction fetched, counter expired tests true, n+1 stays in decode.
5. Cycle5: Loop back aborts, PC and Loop stacks popped, the instruction after the loop (n+2) is
 put in fetch2.
6. Cycle6: Decode stage updates from fetch2.

Table 4-18. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With Four Iterations

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+1 n+1 n+1 n+2

Address n n+1 nop n+1 n+1 n+1 n+2 n+3

Decode n+1 n+1nop n+1 n+1 n+1 n+2 n+3 n+4

Fetch2 n+2 n+3 n+3 n+1 n+2 n+3 n+4 n+5

Fetch1 n+3 n+1 n+1 n+2 n+3 n+4 n+5 n+6

n is the loop start instruction and n+2 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+1. n+1 locked in decode stage.
2. Cycle2: Loop count (LCNTR) equals 4, decode stalls.
3. Cycle3: LCNTR equals 4, n+1 stays in decode, last instruction fetched, counter expired tests true.
4. Cycle4: n+1 stays in decode, loop back aborts, PC and Loop stacks popped, the next instruction
 after the loop (n+2) is put into fetch.
5. Cycle5: Decode stage updates from fetch2.

Loop Sequencer

4-62 SHARC Processor Programming Reference

Table 4-19. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With Three Iterations

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 nop n+1 n+1 nop nop nop

Address n n+1 nop n+1 n+1 nop nop nop n+2

Decode n+1 n+1
nop

n+1 n+1 nop nop nop n+2 n+3

Fetch2 n+2 n+3 n+3 n+1 n+1 n+1 n+2 n+3 n+4

Fetch1 n+3 n+1 n+1 n+1 n+1 n+2 n+3 n+4 n+5

n is the loop start instruction and n+2 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+1. n+1 locked in decode stage.
2. Cycle2: Loop count (LCNTR) equals 3, decode stalls.
3. Cycle3: n+1 stays in decode, n+1 put in fetch1 stage.
4. Cycle4: n+1 stays in decode, n+1 put in fetch1 stage.
5. Cycle5: Last instruction fetched, counter expired tests true.
6. Cycle6: Loop-back aborts, PC and loop stacks popped, n+2 put in fetch1.

Table 4-20. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With Two Iterations

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 nop n+1 nop nop nop n+2

Address n n+1 nop n+1 nop nop nop n+2 n+3

Decode n+1 nop n+1 nop nop nop n+2 n+3 n+4

Fetch2 n+2 n+3 n+3 n+1 n+1 n+2 n+3 n+4 n+5

Fetch1 n+3 n+1 n+1 n+1 n+2 n+3 n+4 n+5 n+6

n is the loop start instruction and n+2 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+1. n+1 locked in decode stage 2.
2. Cycle2: Loop count (LCNTR) equals 2, decode stalls.
3. Cycle3: n+1 stays in decode, n+1 put in fetch1 stage.
4. Cycle4: Last instruction fetched, counter expired tests true.
5. Cycle5: Loop-back aborts, PC and loop stacks popped.

SHARC Processor Programming Reference 4-63

Program Sequencer

Table 4-21. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With One Iteration

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop nop nop nop n+2

Address n n+1 nop nop nop nop n+2 n+3

Decode n+1 n+1nop n+1nop n+1nop n+1nop n+2 n+3 n+4

Fetch2 n+2 n+3 n+3 n+1 n+2 n+3 n+4 n+5

Fetch1 n+3 n+1 n+1 n+2 n+3 n+4 n+5 n+6

n is the loop start instruction and n+2 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+1.
2. Cycle2: Loop count (LCNTR) equals 1, decode stalls.
3. Cycle3: Last instruction fetched, counter expired tests true.
4. Cycle5: Loop-back aborts, PC and loop stacks popped, n+2 put in fetch1 stage.

Loop Sequencer

4-64 SHARC Processor Programming Reference

Loop Body – Two Instructions

Table 4-22. Pipelined Execution Cycles for Two Instruction Counter
Based Loop With Three Iterations

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 nop n+2 n+1 n+2 n+1 n+2

Address n n+1 nop n+2 n+1 n+2 n+1 n+2 n+3

Decode n+1 n+2nop n+2 n+1 n+2 n+1 n+2 n+3 n+4

Fetch2 n+2 n+3 n+3 n+2 n+1 n+2 n+3 n+4 n+5

Fetch1 n+3 n+2 n+2 n+1 n+2 n+3 n+4 n+5 n+6

Note: n is the loop start instruction and n+3 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+2.
2. Cycle2: Loop count (LCNTR) equals 3, decode stalls.
3. Cycle3: Next fetch address determined as n+1, n+3 and n+2 held in Fetch2 and Fetch1
 respectively.
4. Cycle4: n+1 supplied from loop buffer into decode, PC stack supplies top of loop address.
5. Cycle5: Last instruction fetched, counter expired tests true.
6. Cycle6: Loop-back aborts, PC and loop stacks popped.

SHARC Processor Programming Reference 4-65

Program Sequencer

Table 4-23. Pipelined Execution Cycles for Two Instruction Counter
Based Loop With Two Iterations

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+2 n+1 n+2 n+3

Address n n+1 nop n+2 n+1 n+2 n+3 n+4

Decode n+1 n+2nop n+2 n+1 n+2 n+3 n+4 n+5

Fetch2 n+2 n+3 n+3 n+2 n+3 n+4 n+5 n+6

Fetch1 n+3 n+2 n+2 n+3 n+4 n+5 n+6 n+7

n is the loop start instruction and n+3 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+2.
2. Cycle2: Loop count (LCNTR) equals 2, decode stalls.
3. Cycle3: n+3, and n+2 held in fetch2 and fetch1 respectively counter expired tests true.
4. Cycle4: n+1 supplied from loop buffer into decode, loop-back aborts, PC and loop stacks
 popped.

Table 4-24. Pipelined Execution Cycles for Two Instruction Counter
Based Loop With One Iteration

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+2 nop nop n+3

Address n n+1 nop n+2 nop nop n+3 n+4

Decode n+1 n+2nop n+2 n+3nop n+2nop n+3 n+4 n+5

Fetch2 n+2 n+3 n+3 n+2 n+3 n+4 n+5 n+6

Fetch1 n+3 n+2 n+2 n+3 n+4 n+5 n+6 n+7

n is the loop start instruction and n+3 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+2.
2. Cycle2: Loop count (LCNTR) equals 1, decode stalls.
3. Cycle3: Last instruction fetched, counter expired tests true.
4. Cycle4: loop-back aborts, PC and loop stacks popped.

Loop Sequencer

4-66 SHARC Processor Programming Reference

Loop Body – Three Instructions

Table 4-25. Pipelined Execution Cycles for Three Instruction Counter
Based Loop With Two Iterations

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 n+2 n+3 n+1 n+2 n+3

Address n n+1 n+2 n+3 n+1 n+2 n+3 n+4

Decode n+1 n+2 n+3 n+1 n+2 n+3 n+4 n+5

Fetch2 n+2 n+3 n+1 n+2 n+3 n+4 n+5 n+6

Fetch1 n+3 n+1 n+2 n+3 n+4 n+5 n+6 n+7

n is the loop start instruction and n+4 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+1.
2. Cycle2: Loop count (LCNTR) equals 2, fetch address determined by the given rule.
3. Cycle3: Last instruction fetched, counter expired tests true.
4. Cycle4: loop-back aborts, PC and loop stacks popped.

Table 4-26. Pipelined Execution Cycles for Three Instruction Counter
Based Loop With One Iteration

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 n+2 n+3 nop nop nop n+4

Address n n+1 n+2 n+3 nop nop nop n+4 n+5

Decode n+1 n+2 n+3 nop nop nop n+4 n+5 n+6

Fetch2 n+2 n+3 n+1 n+2 n+3 n+4 n+5 n+6 n+7

Fetch1 n+3 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

n is the loop start instruction and n+4 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+1.
2. Cycle2: Loop count (LCNTR) equals 1, fetch address determined by the given rule.
3. Cycle4: Last instruction fetched, counter expired tests true.
4. Cycle5: loop-back aborts, PC and loop stacks popped.

SHARC Processor Programming Reference 4-67

Program Sequencer

Loop Body – Four Instructions

Nested Loops

Signal processing algorithms like FFTs and matrix multiplications require
nested loops. Nested loop constructs are built using multiple DO/UNTIL
instructions. If using counter based instructions the following occurs:

Within the loop sequencer, two separate loop counters operate:

• loop counter (LCNTR) register has top level entry to loop counter
stack

• current loop counter (CURLCNTR) iterates in the current loop

The CURLCNTR register tracks iterations for a loop being executed, and the
LCNTR register holds the count value before the loop is executed. The two
counters let the processor maintain the count for an outer loop, while a
program is setting up the count for an inner loop.

Table 4-27. Pipelined Execution Cycles for Four Instruction Counter
Based Loop With One Iteration

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+2 n+3 n+4 n+5

Address n n+1 nop n+2 n+3 n+4 n+5 n+6

Decode n+1 n+2nop n+2 n+3 n+4 n+5 n+6 n+7

Fetch2 n+2 n+3 n+3 n+4 n+5 n+6 n+7 n+8

Fetch1 n+3 n+4 n+4 n+5 n+6 n+7 n+8 n+9

n is the loop start instruction and n+5 is the instruction after the loop
1. Cycle2: Loop count (LCNTR) equals 1, decode stalls
2. Cycle3: Last instruction fetched, Counter expired tests true
3. Cycle4: Loop-back aborts, PC and loop stacks popped

Loop Sequencer

4-68 SHARC Processor Programming Reference

The loop logic decrements the value of CURLCNTR for each loop iteration.
Because the sequencer tests the termination condition four instruction
cycles before the end of the loop, the loop counter also is decremented
before the end of the loop. If a program reads CURLCNTR during these last
four loop instructions, the value is already the count for the next iteration.

The loop counter stack is popped four instructions before the end of the
last loop iteration. When the loop counter stack is popped, the new top
entry of the stack becomes the CURLCNTR value—the count in effect for the
executing loop. Two examples of nested loops are shown in Listing 4-1
andListing 4-2.

Listing 4-1. Nested Counter-Based Loop

LCNTR = S, DO the_end UNTIL LCE; /*outer Loop*/

Instruction;

Instruction;

LCNTR = N, DO the_end1 UNTIL LCE; /*inner Loop */

 instruction;

the_end1:instruction; /*inner loop end address */

the_end: instruction; /*outer loop end address*/

Listing 4-2. Nested Mixed-Based Loop

DO the_end UNTIL EQ; /*outer Loop*/

Instruction;

Instruction;

LCNTR = N, DO the_end1 UNTIL LCE; /*inner Loop */

 instruction;

the_end1:instruction; /*inner loop end address */

Instruction;

the_end: instruction; /*outer loop end address*/

SHARC Processor Programming Reference 4-69

Program Sequencer

Example For Six Nested Loops

A DO/UNTIL instruction pushes the value of LCNTR onto the loop counter
stack, making that value the new CURLCNTR value. The following procedure
and Figure 4-7 demonstrate this process for a set of nested loops. The pre-
vious CURLCNTR value is preserved one location down in the stack.

1. The processor is not executing a loop, and the loop counter stack is
empty (LSEM bit =1). The program sequencer loads LCNTR with
AAAA AAAA.

2. The processor is executing a single loop. The program sequencer
loads LCNTR with the value BBBB BBBB (LSEM bit =0).

3. The processor is executing two nested loops. The program
sequencer loads LCNTR with the value CCCC CCCC.

4. The processor is executing three nested loops. The program
sequencer loads LCNTR with the value DDDD DDDD.

5. The processor is executing four nested loops. The program
sequencer loads LCNTR with the value EEEE EEEE.

6. The processor is executing five nested loops. The program
sequencer loads LCNTR with the value FFFF FFFF.

7. The processor is executing six nested loops. The loop counter stack
(LCNTR) is full (LSOV bit =1).

A read of LCNTR when the loop counter stack is full results in invalid data.
When the loop counter stack is full, the processor discards any data writ-
ten to LCNTR.

Loop Sequencer

4-70 SHARC Processor Programming Reference

Restrictions on Ending Nested Loops

The sequencer’s loop features (which optimize performance in many ways)
limit the types of instructions that may appear at or near the end of the
loop. These restrictions include:

• Nested loops cannot use the same end-of-loop instruction address.
The sequencer resolves whether to loop back or not, based on the
termination condition. If multiple nested loops end on the same
instruction, the sequencer exits all the loops when the termination
condition for the current loop tests true. There may be other
sequencing errors.

Figure 4-7. Pushing the Loop Counter Stack for Nested Loops

1

AAAA AAAALCNTR

4

AAAA AAAA

DDDD DDDD

CCCC CCCC

BBBB BBBB

AAAA AAAA

0XFFFF FFFF

LCNTR

CURLCNTR

3

AAAA AAAA

CCCC CCCC

BBBB BBBB

6

BBBB BBBB

AAAA AAAA

DDDD DDDD

CCCC CCCC

FFFF FFFF

EEEE EEEE

7

BBBB BBBB

DDDD DDDD

FFFF FFFF

CCCC CCCC

EEEE EEEE

AAAA AAAA

CURLCNTR

LCNTR

2

AAAA AAAA

BBBB BBBB

5

AAAA AAAA

BBBB BBBB

CCCC CCCC

DDDD DDDD

EEEE EEEE

CURLCNTR

LCNTR CURLCNTR

LCNTR

CURLCNTR

LCNTR CURLCNTR

LCNTR CURLCNTR

SHARC Processor Programming Reference 4-71

Program Sequencer

• Nested loops with an arithmetic loop as the outer loop must place
the end address of the outer loop at least two addresses after the
end address of the inner loop.

• Nested loops with an arithmetic based loop as the outer loop that
use the loop abort instruction, JUMP (LA), to abort the inner loop,
may not use JUMP (LA) to the last instruction of the outer loop.

Loop Abort

The following sections describe different scenarios of how a hardware loop
is aborted or interrupted. As previously discussed, instruction and inter-
rupt driven branch mechanisms execute differently, causing different
effects for aborting loops.

The hardware for counter-based loops uses the current counter register,
CURLCNTR, such that it is decremented when the last instruction of the loop
is in the Fetch1 stage of the pipeline. This is done so that branching to the
beginning of the loop for the next iteration can occur without wasting any
cycles. In the case of a CALL or interrupt, this poses a problem since some
instructions are replaced with NOPs before branching to a subroutine or an
ISR, and these instructions are fetched again when the control returns. If
one of the instructions happens to be the end-of-loop instruction, the
CURLCNTR may be decremented twice. To avoid this, after the control
returns, the hardware freezes that counter for the number of fetches equal
to the number of instructions replaced with NOPs.

Instruction Driven Loop Abort

A special case of loop termination is the loop abort instruction, JUMP (LA).
This instruction causes an automatic loop abort when it occurs inside a
loop. When the loop aborts, the sequencer pops the PC and loop address
stacks once. If the aborted loop was nested, the single pop of the stacks
leaves the correct values in place for the outer loop. However, because
only one pop is performed, the loop abort cannot be used to jump more
than one level of loop nesting as shown in Listing 4-3.

Loop Sequencer

4-72 SHARC Processor Programming Reference

Listing 4-3. Loop Abort Instruction, JUMP (LA)

LCNTR = N, DO the_end UNTIL LCE; /*Loop iteration*/

instruction;

instruction;

instruction;

instruction;

IF EQ JUMP LABEL(LA); /* jump outside of loop */

instruction;

the_end: instruction; /*Last instruction in loop*/

For a branch (call), three instructions in the various stages of the pipeline
(Decode through Fetch1) are replaced with NOP instructions. Accordingly,
the hardware loop logic freezes the CURLCNTR for three fetch cycles on
return from a subroutine. The hardware determines this based on the
sequencer executing a RTS instruction. The immediate CALL may be one of
the last three instructions of a loop except for one instruction loops, or
two instruction one iteration loops as shown in Listing 4-4.

Listing 4-4. Loop Re-entry RTS (LR)

LCNTR = N, DO the_end UNTIL LCE; /*Loop iteration*/

instruction;

instruction;

instruction;

instruction;

CALL SUB;/* call outside of loop */

instruction;

the_end: instruction; /*Last instruction in loop*/

SUB: instruction;
instruction;
instruction;
RTS (LR);/* ensures proper re-entry in loop */

SHARC Processor Programming Reference 4-73

Program Sequencer

Table 4-28 shows a pipeline where a CALL is in the last but one instruction
of a loop. E = end-of-loop instruction, B = top-of-loop instruction.

Interrupt Driven Loop Abort

For servicing the interrupt, four instructions in the various stages of the
pipeline (Address through Fetch1) are replaced with NOP instructions.
Accordingly, the hardware loop logic freezes the CURLCNTR for four fetch
cycles on return from an ISR. The hardware determines this based on the
sequencer executing a RTI instruction.

Table 4-29 shows a pipeline where an interrupt is being serviced in a loop.
E = end-of-loop instruction, B = top-of-loop instruction. E–1 is the return
address.

Table 4-28. CALL in a Loop

Execute E–2

Address CALL
SUB

RTS (LR)

Decode CALL E

Fetch2 CALL E B

Fetch1 CALL E B B+1 SUB E B B+1


CCNTR
decrement

3 instrs
replaced
with
NOP


subroutine
returns
here

CCNTR frozen for all 3
fetch cycles

Loop Sequencer

4-74 SHARC Processor Programming Reference

Note that there is one situation where an ISR returns into the loop body
using the RTS instruction, when JUMP (CI) is used to convert an ISR to a
normal subroutine. Therefore RTS cannot be used to determine that the
sequencer branched off to a subroutine or ISR. For this reason, the hard-
ware sets an additional (hidden) bit in PCSTK register, before branching off
to an ISR so that on return, either with a RTI or JUMP (CI) + RTS –
CURLCNTR instruction can be frozen for four fetch cycles.

Loop Abort Restrictions

The last three instructions of a loop may contain an immediate CALL
(without a DB modifier) which is paired with a loop re-entry return, (RTS)
with the loop reentry modifier (LR). The RTS(LR) instruction ensures that
the loop counter is not decremented twice. The immediate CALL may be
one of the last three instructions of a loop except for one instruction
loops, or two instruction one iteration loops as shown in Listing 4-5.

Table 4-29. Pipeline Interrupt in a Loop

CCNTR
decrement



Execute E–2

Address E–1 RTI

Decode E–1 E

Fetch2 E–1 E B

Fetch1 E–1 E B B+1 ISR E–1 E B B+1


CCNTR
decrement

4 instrs
replaced
with NOP


ISR
returns
here

CCNTR frozen for all 4
fetch cycles

SHARC Processor Programming Reference 4-75

Program Sequencer

Listing 4-5. Loop Re-entry RTS (LR)

LCNTR = N, DO the_end UNTIL LCE; /*Loop iteration*/

instruction;

instruction;

instruction;

instruction;

CALL SUB; /* call outside of loop */

instruction;

the_end: instruction; /*Last instruction in loop*/

SUB: instruction;
instruction;
instruction;
RTS (LR); /* ensures proper re-entry in loop */

Loop Resource Manipulation

 In RTOS based systems a fundamental requirement for context
switching enforces a save all core registers on the software stack,
including the core stack registers.

The SHARC processor prohibits any modification of loop resources, such
as the PCSTK, LADDR, and CURLCNTR registers within the loop (including
subroutines and ISRs starting from a loop) as doing this may adversely
affect the proper function of the looping operation for reasons described
below.

Short loops— those with 1, 2, or 3 instructions in the loop body with a
small iteration count—are handled differently in hardware from other
loops. The exact characterization of the loop, short or otherwise, is deter-
mined when the loop startup instruction (DO … UNTIL termination) is
executed and retained during execution of the loop. This start information
is not stored in a state register that is popped and pushed along with
LADDR/CURLCNTR and PCSTK registers. During normal nesting of the loops
within a short loop, hardware recreates this information based on the stack

Loop Sequencer

4-76 SHARC Processor Programming Reference

values. In summary, popping and pushing LADDR/CURLCNTR and PCSTK with
new values generally interferes with proper loop function.

However, popping and pushing the loop and PC stack to temporarily
vacate the stacks can still be performed such that this information is recre-
ated automatically by following the procedure described in the next
section.

Popping and Pushing Loop and PC Stack Inside an Active Loop

Use the following sequence to pop and push LADDR/CURLCNTR and PCSTK
inside an active loop to temporarily vacate the stacks. A code example is
shown in Listing 4-6.

1. Pop LOOP and PCSTK after storing the value of the CURLCNTR, LADDR,
and PC registers.

2. Use the empty entry/entries of stacks.

3. Recreate the loops by performing the following steps in the pro-
scribed sequence.

a. Push LOOP stack.

b. Load the value of CURLCNTR.

c. Load the LADDR.

d. Push the PCSTK.

e. Load the PC with the stored value.

Sequence a–b–c is critical and therefore must be followed strictly. Any
number of unrelated instructions may be executed between the a–b–c
sequence.

SHARC Processor Programming Reference 4-77

Program Sequencer

Listing 4-6. Sequence for Pop and Push of Two-deep Nested Loops

/*----------Pop and Store--------------*/

R1 = LADDR;

R2 = CURLCNTR;

R3 = PCSTK;

POP LOOP;

POP PCSTK;

NOP;

R4 = LADDR;

R5 = CURLCNTR;

R6 = PCSTK;

POP LOOP;

POP PCSTK;

NOP;

<Store the registers to memory here>

<Miscellaneous instruction/s related/unrelated to hardware loops>

<Load the registers from memory here>

/*----------Push and Load-------------*/

PUSH LOOP;

CURLCNTR = R5;

LADDR = R4;

PUSH PCSTK;

PCSTK = R6;

PUSH LOOP;

CURLCNTR = R2;

LADDR = R1;

PUSH PCSTK;

PCSTK = R3;

In Listing 4-6, LADDR is restored after CURLCNTR. This ensures that when
LADDR is restored, the correct value of loop count is available. At the time
of LADDR restoration, the hardware recreates the information about the
exact characterization of the loop.

Loop Sequencer

4-78 SHARC Processor Programming Reference

Stack Manipulation Restrictions on ADSP-2136x Processors

The loop and PC stack registers on the ADSP-2136x processors store
some hidden bits in addition to the address. These hidden bits are not
readable or writable under software control. The processor sets these hid-
den bits to indicate the nature of the operation that loaded the PCSTK (in
the case of a branch or loop). These bits are automatically set to 0 when a
write to the PCSTK is performed. Because of this, the hidden bits are not
restored properly when the PCSTK is saved and later restored, even though
the address is restored properly.

Therefore, the following functionality is affected when an application
saves and restores the PC or loop stack registers.

 The restrictions detailed in this section do not apply to the
ADSP-2137x and later (ADSP-214xx) processors since these hid-
den bits (bits 25–24, PCSTK) are accessible to the programmer in
newer SHARC models. Therefore, a push and pop also apply to
these additional bits.

• A single-instruction arithmetic loop may not work properly after
LADDR/CURLCNTR restoration.

• An arithmetic loop that contains a branch-related instruction
(CALL/JUMP) immediately preceding the last instruction of the loop
may not work after PCSTK restoration.

• After LADDR/CURLCNTR restoration, arithmetic loops having CALL for
the first instruction may not work if the CALL is not paired with a
RTS (LR).

• Use of the JUMP (CI) + RTS (LR) instruction for returning from an
ISR to a counter-based loop may not work if the ISR involves sav-
ing and restoring the PCSTK.

Therefore, in application code that requires that the LADDR/CURLCNTR and
PCSTK be saved and restored, in addition to following the sequence

SHARC Processor Programming Reference 4-79

Program Sequencer

described in “Popping and Pushing Loop and PC Stack Inside an Active
Loop” on page 4-76, observe the following additional precautions.

• Single-instruction arithmetic loops are prohibited.

• The instruction immediately preceding the last instruction of an
arithmetic loop may not contain any branches (CALL/JUMP).

• If the application code contains a CALL for its first instruction of an
arithmetic loop, it should be paired with the RTS (LR) instruction.

• Re-entry (return) into a counter-based loop after interrupt servic-
ing should be through a RTI instruction. This applies to when the
interrupt is cleared inside the ISR.

Cache Control
In this section cache control, which is used for internal and external
instruction fetch, is described.

Functional Description
Cache performance (hits) improves if code is executed periodically/repeti-
tively (for example as function calls, PC relative negative jumps or loops).
For linear program flow the cache entries are only filled (misses) and based
on the code size cache entries overridden.

Conflict Cache for Internal Instruction Fetch

A sequencer bus conflict occurs when an instruction fetch and a data access
are made on the same bus. A block conflict occurs when multiple accesses
are made to the same block in internal memory. The following sections
describe these memory conflicts in detail. For additional information, see
“Memory and Internal Buses Block Diagram (ADSP-21362/3/4/5/6
Only)” on page 7-6.

Cache Control

4-80 SHARC Processor Programming Reference

Instruction Data Bus Conflicts

A bus is comprised of two parts, the address bus and the data bus. Because
the bus can be accessed simultaneously by different sources (illustrated in
Figure 4-2 on page 4-4), there is a potential risk of bus conflicts.

A bus conflict occurs when the PM data bus, normally used to fetch an
instruction in each cycle, is used to fetch an instruction and to access data
in the same cycle. Because of the five stage instruction pipeline, if an
instruction at the Address stage uses the PM bus to access data it creates a
conflict with the instruction fetch at the Fetch1 stage, assuming sequential
executions.

Cache Miss

In the instruction PM(Ip,Mq) = UREG, the data access over the PMD bus
conflicts with the fetch of instruction n+2 (shown in Table 4-30). In this
case the data access completes first. This is true of any program memory
data access type instruction. This stall occurs only when the instruction to
be fetched is not cached.

Note that the cache stores the fetched instruction (n+2), not the instruc-
tion requiring the program memory data access.

Table 4-30. PM Access Conflict

Cycles 1 2 3

Execute pm(Ip, Mq) = ureg

Address pm(Ip, Mq) = ureg n

Decode n n+1

Fetch2 n+1 n+2

Fetch1 n+2 n+2 n+3

1. Cycle1: n+2 Instruction fetch postponed
2. Cycle2: Stall Cycle

SHARC Processor Programming Reference 4-81

Program Sequencer

When the processor first encounters a bus conflict, it must stall for one
cycle while the data is transferred, and then fetch the instruction in the
following cycle. To prevent the same delay from happening again, the pro-
cessor automatically writes the fetched instruction to the cache. The
sequencer checks the instruction cache on every data access using the PM
bus. If the instruction needed is in the cache, a cache hit occurs. The
instruction fetch from the cache happens in parallel with the program
memory data access, without incurring a delay.

If the instruction needed is not in the cache, a cache miss occurs, and the
instruction fetch (from memory) takes place in the cycle following the
program memory data access, incurring one cycle of overhead. The
fetched instruction is loaded into the cache (if the cache is enabled and
not frozen), so that it is available the next time the same instruction (that
requires program memory data) is executed.

Figure 4-8 shows a block diagram of the 2-way set associative instruction
cache. The cache holds 32 instruction-address pairs. These pairs (or cache
entries) are arranged into 16 (15–0) cache sets according to the four least
significant bits (3–0) of their address. The two entries in each set (entry 0
and entry 1) have a valid bit, indicating whether the entry contains a valid
instruction. The least recently used (LRU) bit for each set indicates which
entry was not placed in the cache last (0 = entry 0 and 1 = entry 1).

The cache places instructions in entries according to the four LSBs of the
instruction’s address. When the sequencer checks for an instruction to
fetch from the cache, it uses the four address LSBs as an index to a cache
set. Within that set, the sequencer checks the addresses of the two entries
as it looks for the needed instruction. If the cache contains the instruction,
the sequencer uses the entry and updates the LRU bit (if necessary) to indi-
cate the entry did not contain the needed instruction.

Cache Control

4-82 SHARC Processor Programming Reference

When the cache does not contain a needed instruction, it loads a new
instruction and address and places them in the least recently used entry of
the appropriate cache set. The cache then toggles the LRU bit, if necessary.

Instruction Cache for External Instruction Fetch

As previously discussed, the cache only generates misses during conflicts
on the internal PMD instruction data bus (conflict cache in previous gen-
eration SHARCs).

However, in the newer SHARC processors (from the introduction of the
ADSP-2137x processors) the cache operation is enhanced to operate as a
true instruction cache. For every external instruction fetch (regardless of
conflict with the DMD or PMD bus) the cache checks for a hit condition.
This ensures better performance since all instructions are loaded into the

Figure 4-8. Instruction Cache Architecture

INSTRUCTIONS

SET
0

SET
1

SET
2

SET
13

SET
14

SET
15

ADDRESSES
BITS (23-4)

LRU
BIT

VALID
BIT

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ADDRESSES
BITS (3-0)

0000

0001

0010

1101

1110

1111

SHARC Processor Programming Reference 4-83

Program Sequencer

cache for a miss and executed internally for the next hit. For more infor-
mation, see the processor-specific hardware reference manual.

Block Conflicts

A block conflict occurs when multiple data accesses are made to the same
block in memory from which the instructions are executed. For more
information, see Chapter 7, Memory.

 Block conflicts are not cached.

Caching Instructions

The caching of instructions happens in the Fetch and Decode stages of the
instruction pipeline.

• Fetch1 Stage – The core launches the instruction fetch address in
the Fetch1 stage. In this stage, the PM address is matched with the
existing addresses in the cache. If the address is found in the cache,
then a cache hit occurs, else a cache miss occurs. In case of a cache
miss, the PM address is loaded into the cache in this stage.

For execution from internal memory, the PM address matching
happens only when the instruction fetch conflicts with a PM data
access (PMD).

For execution from external memory, the address is matched for all
instructions that are fetched.

• Fetch2 Stage – In case of a cache miss, the instruction data is
driven by the memory PMD in this stage. In the case of a cache hit,
the instruction PMD is read out from the cache in this stage.

• Decode Stage – In case of a cache miss, the instruction read from
the 48-bit PMD memory in the Fetch2 stage is loaded into the
cache in this stage.

Cache Control

4-84 SHARC Processor Programming Reference

Table 4-31, Table 4-32 and Table 4-33 illustrate the pipeline versus cache
operation.

If the cache hit immediately follows a cache miss of the same address
(Table 4-33), then the instruction would not have been loaded into the
cache by then. In this case, the instruction is driven directly from the
input instruction load bus of the cache instead of the cache itself.

Table 4-31. Cache Miss – Internal Memory Execution

Cycles 1 2 3 4 5

Execute n (PMDA) n+1

Address n (PMDA) n+1 n+2

Decode n (PMDA) n+1 n+1 n+2 n+3

Fetch2 n+1 n+2 n+2 n+3 n+4

Fetch1 n+2 n+3 n+3 n+4 n+5

Add Match Add Load
(n+3)

Instr Load
I(n+3)

Table 4-32. Cache Hit – Internal Memory Execution

Cycles 1 2 3 4 5

Execute n(PMDA) n+1 n+2

Address n(PMDA) n+1 n+2 n+3

Decode n(PMDA) n+1 n+2 n+3 n+4

Fetch2 n+1 n+2 n+3 n+4 n+5

Fetch1 n+2 n+3 n+4 n+5 n+6

Add Match Instr Read
from Cache
I(n+3)

SHARC Processor Programming Reference 4-85

Program Sequencer

Table 4-34 and Table 4-35 illustrate the pipeline versus cache operation
in external memory.

Table 4-33. Cache Miss Followed by Cache Hit to Same Address

Cycles 1 2 3 4 5

Execute n(PMDA) n+1

Address n(PMDA) n+1 n+2

Decode n(PMDA) n+1 n+1 n+2 n+3*

Fetch2 n+1 n+2 n+2 n+3 n+3*

Fetch1 n+2 n+3 n+3 n+3 n+3*

Add Match
(n+3)
(Miss)

Add Load
(n+3)
(Hit)

Add Match
(n+3)

Instr Load
(n+3)
Instr Read**
(n+3)

* Same address as previous instruction
** Here the instruction has not yet been loaded into the cache, so the instruction is read from
the instruction load bus of the cache instead of the cache itself.

Table 4-34. Cache Miss – External Memory Execution

Cycles 1 2 3 4 5 6

Execute n–2 n–2 n–1 n–1 n–1 n

Address n–1 n–1 n n n n+1

Decode n n n+1 n+1 n+1 n+2

Fetch2 n+1 n+1 n+2 n+2 n+2 n+3

Fetch1 n+2 n+2 n+3 n+3 n+3 n+4

Add
Match
(n+2)

Add
Load
(n+2)

Add
Match
(n+3)

Add
Load
(n+3)

Add (n+4)
Match
Instr (n+2)
Load

Cache Control

4-86 SHARC Processor Programming Reference

Cache Invalidate Instruction

The FLUSH CACHE instruction allows programs to explicitly invalidate the
cache content by clearing all valid bits. The execution of the FLUSH CACHE
instruction is independent of the cache enable bit in the MODE2 register.

The FLUSH CACHE instruction has a latency of one cycle. Using an instruc-
tion that contains a PM data access immediately following a FLUSH CACHE
instruction is prohibited.

This instruction is required in systems using software overlay program-
ming techniques. With these overlays, software functions are loaded via
DMA during runtime into the internal RAM. Since the cache entries are
still valid from any previous function, it is essential to flush all the valid
cache entries to prevent system crashes. Note that the FLUSH CACHE instruc-
tion has a 1 cycle instruction latency while executing from internal
memory and a 2 cycle instruction latency while executing from external
memory.

Table 4-35. Cache Hit – External Memory Execution

Cycles 1 2 3 4 5

Execute n n+1 n+2

Address n n+1 n+2 n+3

Decode n n+1 n+2 n+3 n+4

Fetch2 n+1 n+2 n+3 n+4 n+5

Fetch1 n+2 n+3 n+4 n+5 n+6

Add Match
(n+2)
Instr Read
I(n+1)

Add Match
(n+3)
Instr Read
I(n+2)

SHARC Processor Programming Reference 4-87

Program Sequencer

Cache Efficiency
Cache operation is usually efficient and requires no intervention. How-
ever, certain ordering in the sequence of instructions can work against the
cache’s architecture, reducing its efficiency. When the order of PM data
accesses and instruction fetches continuously displaces cache entries and
loads new entries, the cache does not operate efficiently. Rearranging the
order of these instructions remedies this inefficiency. Optionally, a
dummy PM read can be inserted to trigger the cache.

When a cache miss occurs, the needed instruction is loaded into the cache
so that if the same instruction is needed again, it will be available (that is,
a cache hit will occur). However, if another instruction whose address is
mapped to the same set displaces this instruction and loads a new
instruction, a cache miss occurs. The LRU bits help to reduce the occur-
rence of a cache miss since at least two other instructions, mapped to the
same set, are needed before an instruction is displaced. If three instruc-
tions mapped to the same set are all needed repeatedly, cache efficiency
(that is, the cache hit rate) can go to zero. To keep this from happening,
move one or more instructions to a new address that is mapped to a differ-
ent cache set.

An example of inefficient cache code appears in Table 4-36. The PM bus
data access at address 0x101 in the loop, OUTER, causes a bus conflict and
also causes the cache to load the instruction being fetched at 0x104 (into
set 4). Each time the program calls the subroutine, INNER, the program
memory data accesses at 0x201 and 0x211 displace the instruction at
0x104 by loading the instructions at 0x204 and 0x214 (also into set 4).

If the program rarely calls the INNER subroutine during the OUTER loop exe-
cution, the repeated cache loads do not greatly influence performance. If
the program frequently calls the subroutine while in the loop, cache ineffi-
ciency has a noticeable effect on performance. To improve cache efficiency
on this code (if for instance, execution of the OUTER instruction of the loop
is time critical), rearrange the order of some instructions. Moving the
subroutine call up one location (starting at 0x201) also works. By using

Cache Control

4-88 SHARC Processor Programming Reference

that order, the two cached instructions end up in cache set 5, instead of set
4.

Operating Modes
The following sections describe the cache operating modes.

 After power-up and or reset, the cache content is not predicable in
that it may contain valid/invalid instructions, be unfrozen and
enabled. However, all LRU and valid bits are cleared. So after a
processor power-up or reset, the cache performs only cache
miss/cache entry until the same entry causes later hits.

Table 4-36. Cache Inefficient Code

Address Instruction

0x0100 lcntr = 1024, do Outer until LCE;

0x0101 r0 = dm(i0,m0), pm(i8,m8) = f3;

0x0102 f2 = float r1;

0x0103 f3 = f2 * f2;

0x0104 if eq call (Inner);

0x0105 r1 = r0-r15;

0x0106 Outer: f3 = f3 + f4;

0x0107 pm(i8,m8) = f3;

...

0x0200 Inner: r1 = R13;

0x0201 r14 = pm(i9,m9);

...

0x0211 pm(i9,m9) = r12;

...

0x021F rts;

SHARC Processor Programming Reference 4-89

Program Sequencer

Cache Restrictions

The following restrictions on cache use should be noted.

• If the cache freeze bit of the MODE2 register is set by instruction n,
then this feature is effective from the n+2 instruction onwards.
This results from the effect latency of the MODE2 register.

• When a program changes the cache mode, an instruction contain-
ing a program memory data access must not be placed directly after
a cache enable or cache disable instruction. This is because the pro-
cessor must wait at least one cycle before executing the PM data
access. A program should have a NOP (no operation) or other
non-conflicting instruction inserted after the cache enable or cache
disable instruction.

Cache Disable

The cache disable bit (bit 4, CADIS) directs the sequencer to disable the
cache (if 1) or enable the cache (if 0).

Note that the FLUSH CACHE instruction has a 1 cycle instruction latency
while executing next Instruction/data from internal memory and a 2 cycle
instruction latency while executing next instruction/data from external
memory.

Cache External Memory Disable (ADSP-214xx)

The cache disable external memory bit (bit 6, EXTCADIS) directs the
sequencer to disable the cache for external memory (if 1) or enable the
cache (if 0).

If this bit is set, only external instruction fetches are not cached, the inter-
nal cache operates independent from this bit setting.

I/O Flags

4-90 SHARC Processor Programming Reference

Cache Freeze

The cache freeze bit (bit 19, CAFRZ) directs the sequencer to freeze the con-
tents of the cache (if 1) or let new entries displace the entries in the cache
(if 0).

Freezing the cache prevents any changes to its contents-a cache miss does
not result in a new instruction being stored in the cache. Disabling the
cache stops its operation completely-all instruction fetches conflicting
with program memory data accesses are delayed. These functions are
selected by the CADIS (cache enable/disable) and CAFRZ (cache freeze) bits
in the MODE2 register.

I/O Flags
There are 16 general-purpose I/O flags in SHARC processors. Each FLAG
pin (3–0) has four dedicated signals. All flag pins can be multiplexed with
parallel/external port pins. The FLAG4-15 pins are also accessible to the sig-
nal routing unit (SRU). A flag pin can be routed to a DAI/DPI pin and
therefore operate in parallel to the parallel/external port. Refer to the
product-specific hardware reference manual for more information.

 Programs cannot change the output selects of the FLAGS register
and provide a new value in the same instruction. Instead, programs
must use two write instructions—the first to change the output
select of a particular FLAG pin, and the second to provide the new
value as shown below.

bit set flags FLG2O; /* set flag2 as output */

bit clr flags FLG2; /* set flag2 output low */

The FLAGS register is used to control all FLAG15-0 pins. Based on FLAG reg-
ister effect latency and internal timings there must be at least 4 wait states
in order to toggle the same flag correctly as shown in the following exam-
ple. For more information refer to the specific product data sheet.

SHARC Processor Programming Reference 4-91

Program Sequencer

bit tgl flags FLG2;
nop; nop; nop; nop; /* wait 4 cycles */
bit tgl flags FLG2;
nop; nop; nop; nop; /* wait 4 cycles */
bit tgl flags FLG2;

Conditional Instruction Execution
Conditional instructions provide many options for program execution
which are discussed in this section. There are three types of conditional
instructions:

• Conditional compute (ALU/Multiplier/Shifter)

• Conditional data move (reg-to-reg, reg-to-memory)

• Conditional branch (direct branch, indirect branch)

If the condition is evaluated as true, the operation is performed, if it is
false, it gets aborted as shown in the example below.

R10 = R12-R13;

If LT R0=R1+R2; /* if ALU less than zero, do computation */

If an if-then-else construct is used, the else evaluates the inverse of the if
condition:

R10 = R12-R13;
If LT CALL SUB, ELSE R0=R1+R2; /* do computation if condition
 is false */

The processor records status for the PEx element in the ASTATx and STKYx
registers and the PEy element in the ASTATy and STKYy registers.

Conditional Instruction Execution

4-92 SHARC Processor Programming Reference

IF Conditions with Complements
Each condition that the processor evaluates has an assembler mnemonic.
The condition mnemonics for conditional instructions appear in
Table 4-37. For most conditions, the sequencer can test both true and
false (complement) states. For example, the sequencer can evaluate ALU
equal-to-zero (EQ) and its complement ALU not-equal-to-zero (NE).

Note that since the IF condition is optional and if it is not placed in the
instruction the condition is always true.

Table 4-37. IF Condition Mnemonics

Condition From Description True If… Mnemonic

ALU ALU = 0 AZ = 1 EQ

ALU  0 AZ = 0 NE

ALU > 0 footnote1 GT

ALU < zero footnote2 LT

ALU  0 footnote3 GE

ALU  0 footnote4 LE

ALU carry AC = 1 AC

ALU not carry AC = 0 NOT AC

ALU overflow AV = 1 AV

ALU not overflow AV = 0 NOT AV

Multiplier Multiplier overflow MV = 1 MV

Multiplier not overflow MV= 0 NOT MV

Multiplier sign MN = 1 MS

Multiplier not sign MN = 0 NOT MS

SHARC Processor Programming Reference 4-93

Program Sequencer

Shifter Shifter overflow SV = 1 SV

Shifter not overflow SV = 0 NOT SV

Shifter zero SZ = 1 SZ

Shifter not zero SZ = 0 NOT SZ

Shifter bit FIFO overflow5 SF = 1 SF

Shifter bit FIFO not overflow SF = 0 NOT SF

System Register Bit test flag true BTF = 1 TF

Bit test flag false BTF = 0 NOT TF

Flag 3–0 Input Flag0 asserted Flag0 = 1 FLAG0_IN

Flag0 not asserted Flag0 = 0 NOT FLAG0_IN

Flag1 asserted Flag1 = 1 FLAG1_IN

Flag1 not asserted Flag1 = 0 NOT FLAG1_IN

Flag2 asserted Flag2 = 1 FLAG2_IN

Flag2 not asserted Flag2 = 0 NOT FLAG2_IN

Flag3 asserted Flag3 = 1 FLAG3_IN

Flag3 not asserted Flag3 = 0 NOT FLAG3_IN

Loop Sequencer Loop counter not expired CURLCNTR  1 NOT LCE6

External Port Bus
(ADSP-21368,
ADSP-2146x)

Bus master true The CSEL bits 18–17 in
the MODE1 register
must =0, otherwise the
condition is always eval-
uated as false

BM

Bus master false NOT BM

1 ALU greater than (GT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 0
2 ALU less than (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 1
3 ALU greater equal (GE) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 0
4 ALU lesser or equal (LE) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 1
5 For ADSP-214xx processors and later.
6 Does not have a complement.

Table 4-37. IF Condition Mnemonics (Cont’d)

Condition From Description True If… Mnemonic

Conditional Instruction Execution

4-94 SHARC Processor Programming Reference

DO/UNTIL Terminations Without Complements
Programs should use FOREVER and LCE to specify loop (DO/UNTIL) termina-
tion. A DO FOREVER instruction executes a loop indefinitely, until an
interrupt or reset intervenes. There are some restrictions on how programs
may use conditions in DO/UNTIL loops. For more information, see “Restric-
tions on Ending Loops” on page 4-55 and “Restrictions on Short Loops”
on page 4-59.

Operating Modes
The following sections describe the operating modes for conditional
instruction execution.

Conditional Instruction Execution in SIMD Mode

Because the two processing elements can generate different outcomes, the
sequencer must evaluate conditions from both elements (in SIMD mode)
for conditional (IF) instructions and loop (DO/UNTIL) terminations. The
processor records status for the PEx element in the ASTATx and STKYx reg-
isters and the PEy element in the ASTATy and STKYy registers.

 Even though the processor has dual processing elements PEx and
PEy, the sequencer does not have dual sets of stacks.

The sequencer has one PC stack, one loop address stack, and one loop
counter stack. The status bits for stacks are in the STKYx register and are
not duplicated in the STKYy register.

Table 4-38. DO/UNTIL Termination Mnemonics

Condition From Description True If… Mnemonic

Loop Sequencer Loop counter expired CURLCNTR = 1 LCE

Always false (Do) Always FOREVER

SHARC Processor Programming Reference 4-95

Program Sequencer

The processor handles conditional execution differently in SISD versus
SIMD mode. There are three ways that conditionals differ in SIMD
mode. These are described below and in Table 4-39.

• In conditional computation and data move (IF ... compute/move)
instructions, each processing element executes the computa-
tion/move based on evaluating the condition in that processing
element. See Chapter 9, Instruction Set Types for coding
information.

• In conditional branch (if ... jump/call) instructions, the program
sequencer executes the jump/call based on a logical AND of the
conditions in both processing elements.

• In conditional indirect branch (if ... pc, reladdr/Md, Ic) instruc-
tions with an ELSE clause, each processing element executes the
ELSE computation/data move based on evaluating the inverse of
the condition (NOT IF) in that processing element.

Table 4-39. Conditional SIMD Execution Summary

Conditional Operation Conditional Outcome Depends On …

Compute Operations Executes in each PE independently depending
on condition test in each PE

Register-
to-register
Move

UREG/CUREG to
UREG/CUREG (from comple-

mentary pair1 to complemen-
tary pair)

Executes move in each PE (and/or memory)
independently depending on condition test in
each PE

UREG to UREG/CUREG
(from uncomplementary register
to complementary pair)

Executes move in each PE (and/or memory)
independently depending on condition test in
each PE; Ureg is source for each move

UREG/CUREG to UREG
(from complementary pair to

uncomplementary register)2)

Executes explicit move to uncomplementary
universal register depending on the condition
test in PEx only; no implicit move occurs

Conditional Instruction Execution

4-96 SHARC Processor Programming Reference

Bit Test Flag in SIMD Mode

In SIMD mode, two independent bit tests can occur from individual reg-
isters as shown in the following example.

bit set mode1 PEYEN;
nop;
r2=0x80000000;
ustat1=r2;
bit TST ustat1 BIT_31; /* test bit 31 in ustat1/ustat2 */
if TF call SUB; /* branch if both cond are true */
if TF r10=r10+1; /* compute on any cond */

Conditional Compute

While in SIMD mode, a conditional compute operation can execute on
both processing elements, either element, or neither element, depending
on the outcome of the status flag test. Flag testing is independently per-
formed on each processing element.

Register-
to-memory
Move

DAG post-modify Executes memory move depending on ORing
condition test on both PE’s

DAG pre-modify Pre-modify operations always occur indepen-
dent of the conditions

Branches and Loops Executes in sequencer depending on ANDing
condition test on both PEs

1 Complementary pairs are registers with SIMD complements, include PEx/y data registers and
USTAT1/2, USTAT3/4, ASTATx/y, STKYx/y, and PX1/2 Uregs.

2 Uncomplementary registers are Uregs that do not have SIMD complements.

Table 4-39. Conditional SIMD Execution Summary (Cont’d)

Conditional Operation Conditional Outcome Depends On …

SHARC Processor Programming Reference 4-97

Program Sequencer

Conditional Data Move

The execution of a conditional (IF) data move (register-to-register and
register-to/from-memory) instruction depends on three factors:

• The explicit data move depends on the evaluation of the condi-
tional test in the PEx processing element.

• The implicit data move depends on the evaluation of the condi-
tional test in the PEy processing element.

• Both moves depend on the types of registers used in the move.

Listings for Conditional Register-to-Register Moves

In this section the various register files move types are listed and illus-
trated with examples.

Listing 1 – DREG/CDREG to DREG/CDREG Register Moves/Swaps

When register-to-register swaps are unconditional, they operate the same
in SISD mode and SIMD mode. If a condition is added to the instruction
in SISD mode, the condition tests only in the PEx element and controls
the entire operation. If a condition is added in SIMD mode, the condition
tests in both the PEx and PEy elements separately and the halves of the
operation are controlled as detailed in Table 4-40.

Conditional Instruction Execution

4-98 SHARC Processor Programming Reference

Table 4-40. DREG/CDREG Register Moves Summary (SISD Versus
SIMD)

Mode Instruction Explicit Transfer
Executed According to
PEx

Implicit Transfer
Executed According
to PEy

SISD1 IF condition Rx = Ry; Rx loaded from Ry None

IF condition Rx = Sy; Rx loaded from Sy None

IF condition Sx = Ry; Sx loaded from Ry None

IF condition Sx = Sy; Sx loaded from Sy None

IF condition Rx <-> Sy; Rx loaded from Sy Sy loaded from Rx

SIMD2 IF condition Rx = Ry; Rx loaded from Ry Sx loaded from Sy

IF condition Rx = Sy; Rx loaded from Sy Sx loaded from Ry

IF condition Sx = Ry; Sx loaded from Ry Rx loaded from Sy

IF condition Sx = Sy; Sx loaded from Sy Rx loaded from Ry

IF condition Rx <-> Sy; Rx loaded from Sy Sy loaded from Rx

1 In SISD mode, the conditional applies only to the entire operation and is only tested against
PEx’s flags. When the condition tests true, the entire operation occurs.

2 In SIMD mode, the conditional applies separately to the explicit and implicit transfers. Where
the condition tests true (PEx for the explicit and PEy for the implicit), the operation occurs in
that processing element.

SHARC Processor Programming Reference 4-99

Program Sequencer

Listing 2 – UREG/CUREG to UREG/CUREG Register Moves

For the following instructions, the processors are operating in SIMD
mode and registers in the PEx data register file are used as the explicit reg-
isters. The data movement resulting from the evaluation of the
conditional test in the PEx and PEy processing elements is shown in
Table 4-41.
IF EQ R9 = R2;

IF EQ PX1 = R2;

IF EQ USTAT1 = R2;

Table 4-41. Register-to-Register Moves – Complementary Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occur

0 1 No data move to registers r9,
px1, and ustat1 occurs

s2 transfers to registers s9,
px2 and ustat2

1 0 r2 transfers to registers r9,
px1, and ustat1

No data move to s9, px2, and
ustat2 occurs

1 1 r2 transfers to registers r9,
px1, and ustat1

s2 transfers to registers s9,
px2, and ustat2

Conditional Instruction Execution

4-100 SHARC Processor Programming Reference

Listing 3 – CUREG/UREG to UREG/CUREG Registers Moves

For the following instructions, the processors are operating in SIMD
mode and registers in the PEy data register file are used as explicit regis-
ters. The data movement resulting from the evaluation of the conditional
test in the PEx and PEy processing elements is shown in Table 4-42.
IF EQ R9 = S2;

IF EQ PX1 = S2;

IF EQ USTAT1 = S2;

Table 4-42. Register-to-Register Moves – Complementary Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occur

0 1 No data move to registers r9,
px1, and ustat1 occurs

r2 transfers to registers s9,
px2 and ustat2

1 0 s2 transfers to registers r9,
px1, and ustat1

No data move to s9, px2, or
ustat2 occurs

1 1 s2 transfers to registers r9,
px1, and ustat1

r2 transfers to registers s9,
px2, and ustat2

SHARC Processor Programming Reference 4-101

Program Sequencer

Listing 4 – UREG to UREG/CUREG Register Moves

In this case, data moves from an uncomplementary register (Ureg without
a SIMD complement) to a complementary register pair. The processor
executes the explicit move depending on the evaluation of the conditional
test in the PEx processing element. The processor executes the implicit
move depending on the evaluation of the conditional test in the PEy pro-
cessing element. In each processing element where the move occurs, the
content of the source register is duplicated in the destination register.

Note that while PX1 and PX2 are complementary registers, the combined
PX register has no complementary register. For more information, see
Chapter 2, Register Files.

For the following instruction the processors are operating in SIMD mode.
The data movement resulting from the evaluation of the conditional test
in the PEx and PEy processing elements is shown in Table 4-43.
IF EQ R1 = PX;

Table 4-43. Uncomplimentary-to-Complementary Register Move

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 r1 remains unchanged s1 remains unchanged

0 1 r1 remains unchanged s1 gets px value

1 0 r1 gets px value s1 remains unchanged

1 1 r1 gets px value s1 gets px value

Conditional Instruction Execution

4-102 SHARC Processor Programming Reference

Listing 5 – UREG/CUREG to UREG Register Moves

In this case data moves from a complementary register pair to an uncom-
plementary register. The processor executes the explicit move to the
uncomplemented universal register, depending on the condition test in
the PEx processing element only. The processor does not perform an
implicit move.

For all of the following instructions, the processors are operating in SIMD
mode. The data movement resulting from the evaluation of the condi-
tional test in the PEx and PEy processing elements for all of the example
code samples are shown in Table 4-44.
IF EQ R1 = PX;

Uncomplementary register to DAG move:
if EQ m1 = PX;

DAG to uncomplementary register move:
if EQ PX = m1;

For more information, see Chapter 2, Register Files.

Note that the PX1 and PX2 registers have compliments, but PX as a register
is uncomplementary.

DAG to DAG move:
if EQ m1 = i15;

Complimentary register to DAG move:
if EQ i6 = r9;

In all the cases described above, the behavior is the same. If the condition
in PEx is true, then only the transfer occurs.

SHARC Processor Programming Reference 4-103

Program Sequencer

Listings for Conditional Register-to-Memory Moves

Conditional post-modify DAG operations update the DAG register based
on ORing of the condition tests on both processing elements. Actual data
movement involved in a conditional DAG operation is based on indepen-
dent evaluation of condition tests in PEx and PEy. Only the post-modify
update is based on the ORing of these conditional tests.

 Conditional pre-modify DAG operations behave differently. The
DAGs always pre-modify an index, independent of the outcome of
the condition tests on each processing element.

Table 4-44. Complementary-to-Uncomplimentary Register Move

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 px remains unchanged No implicit move

0 1 px remains unchanged No implicit move

1 0 r1 40-bit explicit move to px No implicit move

1 1 r1 40-bit explicit move to px No implicit move

Conditional Instruction Execution

4-104 SHARC Processor Programming Reference

Listing 1 – DREG to Memory

For this instruction, the processors are operating in SIMD mode, a regis-
ter in the PEx data register file is the explicit register, and I0 is pointing to
an even address in internal memory (ADSP-214xx products external mem-
ory is also allowed). Indirect addressing is shown in the instructions in the
example. However, the same results occur using direct addressing. The
data movement resulting from the evaluation of the conditional test in the
PEx and PEy processing elements is shown in Table 4-45.

IF EQ DM(I0,M0) = R2;

Table 4-45. Register-to-Memory Moves—Complementary Pairs (PEx
Explicit Register)

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move occurs from r2 to
location I0

s2 transfers to location (I0+n1)

1 In NW space n = 1, in SW space n = 2

1 0 r2 transfers to location I0 No data move occurs from s2

to location (I0+n1)

1 1 r2 transfers to location I0 s2 transfers to location

(I0+n1)

SHARC Processor Programming Reference 4-105

Program Sequencer

Listing 2 – CDREG to Memory

For the following instruction, the processors are operating in SIMD
mode, a register in the PEy data register file is the explicit register and I0
is pointing to an even address in internal memory. The data movement
resulting from the evaluation of the conditional test in the PEx and PEy
processing elements is shown in Table 4-46.
IF EQ DM(I0,M0) = S2;

Listing 3 – DREG/CDREG to IOP Memory Space

For the following instructions the processors are operating in SIMD mode
and the explicit register is either a PEx register or PEy register. I0 points
to IOP memory space. This example shows indirect addressing. However,
the same results occur using direct addressing.
IF EQ DM(I0,M0) = R2;

IF EQ DM(I0,M0) = S2;

Table 4-46. Register-to-Memory Moves – Complementary Pairs
(PEy Explicit Register)

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit1

1 In NW space n = 1, in SW space n = 2

0 0 No data move occurs No data move occurs

0 1 No data move occurs from s2 to
location I0

r2 transfers to location I0+n

1 0 s2 transfers to location I0 No data move occurs from r2 to
location I0 + n

1 1 s2 transfers to location I0 r2 transfers to location I0 + n

Conditional Instruction Execution

4-106 SHARC Processor Programming Reference

Listing 4 – UREG to IOP Memory Space

In the case of memory-to-DAG register moves, the transfer does not occur
when both PEx and PEy are false. Otherwise, if either PEx or PEy is true,
transfers to the DAG register occur. For example:
if EQ m13 = dm(i0,m1);

 Conditional data moves from a complementary register pair to an
uncomplementary register with an access to IOP memory space
results in unexpected behavior and should not be used.

Conditional Branches

The processor executes a conditional branch (JUMP or CALL with RTI/RTS)
or loop (DO/UNTIL) based on the result of ANDing the condition tests on
both PEx and PEy. A conditional branch or loop in SIMD mode occurs
only when the condition is true in PEx and PEy.

Using complementary conditions (for example EQ and NE), programs can
produce an ORing of the condition tests for branches and loops in SIMD
mode. A conditional branch or loop that uses this technique must consist
of a series of conditional compute operations. These conditional computes
generate NOPs on the processing element where a branch or loop does not
execute. For more information on programming in SIMD mode, see
Chapter 9, Instruction Set Types, and Chapter 11, Computation Types.

IF Conditional Branch Instructions

The IF conditional direct branch instruction is available in Type 8
instruction. The IF conditional indirect branch instruction is available in
the Type 9, 10, and 11 instructions. The instructions are shown in
Table 4-47 and Table 4-48.

SHARC Processor Programming Reference 4-107

Program Sequencer

IF Then ELSE Conditional Indirect Branch Instructions

The conditional IF then ELSE construct for indirect branch instructions is
available in the Type 9, 10, and 11 instructions. The instructions are
shown in Table 4-49 and Table 4-50

Table 4-47. IF Conditional Branch Execution (SISD mode)

Conditional Test Execution for Instruction Types
8–11

0 (false) IF not exe

1 (true) IF exe

Table 4-48. If Conditional Branch Instruction (SIMD Mode)

Conditional Test
Execution for Instruction Types 8–11

PEx PEy

0 (false) 0 (false) IF not exe

0 (false) 1 (true) IF not exe

1 (true) 0 (false) IF not exe

1 (true) 1 (true) IF exe

Table 4-49. IF then ELSE Conditional Branch Execution (SISD mode)

Conditional Test Execution for Instruction Types 9–11

0 (false) IF not exe ELSE exe

1 (true) IF exe ELSE not exe

Conditional Instruction Execution

4-108 SHARC Processor Programming Reference

For more information and examples, see the following instruction refer-
ence pages.

• “Type 8a ISA/VISA (cond + branch)” on page 9-32

• “Type 9a ISA/VISA (cond + Branch + comp/else comp)” on
page 9-35

• “Type 10a ISA (cond + branch + else comp + mem data move)” on
page 9-40

• “Type 11a ISA/VISA (cond + branch return + comp/else comp)
Type 11c VISA (cond + branch return)” on page 9-44

IF Conditional Branch Limitations in VISA

Type 10 instructions are the most infrequently used instructions in the
Instruction Set Architecture:

/* Template: */

IF COND JUMP (Md, Ic), ELSE compute, DM(Ia, Mb) = dreg ;

To make maximum use of available opcode combinations, the
ADSP-214xx processor’s use the Type 10 instruction opcode to encode a
simpler and more commonly used compute instructions such as:
Rm = Rn + Rm;

Table 4-50. IF Then ELSE Conditional Branch Instruction (SIMD Mode)

Conditional Test Execution for Instruction Types 9–11

PEx PEy

0 (false) 0 (false) IF not exe ELSE PEx exe – PEY exe

0 (false) 1 (true) IF not exe ELSE PEx exe – PEY not exe

1 (true) 0 (false) IF not exe ELSE PEx not exe – PEY exe

1 (true) 1 (true) IF exe ELSE PEx not exe – PEY not exe

SHARC Processor Programming Reference 4-109

Program Sequencer

 Code generated by the CrossCore or VisualDSP++ C compiler does
not use the Type 10 instruction.

If assembly code containing Type 10 instructions are run through the
code generation tools, the assembler issues an error message stating that a
Type 10 instruction is not supported while in VISA short word space.

Instruction Pipeline Hazards
The processors use instruction pipeline stalls to ensure correct and effi-
cient program execution. Since the instruction pipeline is fully
interlocked, programmers need to be aware the different control and data
hazards. Stalls are used in the following situations.

• “Structural Hazard Stalls” on page 4-110 are incurred when differ-
ent instructions at various stages of the instruction pipeline
attempt to use the same processor resources simultaneously.

• “Data Hazard Stalls” on page 4-110 are incurred when an instruc-
tion attempts to read a value from a register or from a condition
flag, that has been updated by an earlier instruction, before the
value becomes available.

• Stalls are incurred to achieve high performance, when the processor
executes a certain sequence of instructions.

• Stalls are incurred to retain effect latency compatible with earlier
SHARC processors when the processor executes a certain sequence
of instructions.

The following sections describe the various kinds of stalls in detail.

Instruction Pipeline Hazards

4-110 SHARC Processor Programming Reference

Structural Hazard Stalls
In general, structural stalls occur when different instructions at various
stages of the instruction pipeline attempt to use the same resource at the
same time during the same cycle. The following sections describe varia-
tions of structural stalls and provide examples.

Simultaneous Access Over the DMD and PMD Buses

Data access over the DM bus to a particular block of memory and a data
access over the PM bus to the same block. These two operations conflict
over the single read or write port of the given block. In this example, the
data access instruction over the DM bus completes first.

DMA Block Conflict with PM or DM Access

A direct memory access (DMA) by a peripheral such as the external port to
a particular block of memory and a data/instruction access by the
sequencer over the DM or PM bus to the same block of memory. The
DMA transfer completes first to ensure that no data overflow or under-
flow takes place in the processor’s peripherals.

Core Memory-Mapped Registers

The SYSCTL and BRKCTL are two memory-mapped registers, which, unlike
many other memory-mapped registers in the processor core, serve as con-
trol registers. The effect latency for these registers is one cycle following a
write to these registers.

Data Hazard Stalls
In general, data and control hazard stalls occur when a register or a condi-
tion flag is being updated by an instruction and a subsequent instruction
attempts to read the value before the update has actually taken place.

SHARC Processor Programming Reference 4-111

Program Sequencer

When this occurs, the instruction that is to update the value and the fol-
lowing instruction, (if not dependent on the new value), are allowed to
execute. If the following instruction needs the updated value, then that
instruction and the instructions that follow it in the earlier stages of the
instruction pipeline are stalled.

The conditions under which data/control hazard stalls occur are described
in the following sections.

Multiplier Operand Load Stalls

When both of the operands of the multiplier (fixed or floating point) are
produced as a result of either a multiplier or an ALU operation in the
immediate preceding instruction, the pipeline is stalled for one cycle as
shown in the following example.

F0 = F0+F4, F1 = F0-F4;
F0 = F0*F1;

/* stalls a cycle since both the operands are produced by ALU in
the immediately preceding instruction */

DAG Register Load Stalls

Stalls occur when a register in a DAG is loaded and either of the two fol-
lowing instructions (shown in the code examples below) attempts to
generate an address based on that register. This is because address genera-
tion requires that the value of the related DAG register is read in the
Decode stage, while any other register load completes in the Execution
stage of the pipeline. Note that registers can be loaded either by explicit or
implicit references (such as in a long word load).

In Listing 4-7, the data memory instruction is stalled if the preceding
instruction is a load of the I2, B2, or L2 registers, regardless of whether cir-
cular buffering is enabled or not. Note that the M register is an exception.
A stall only occurs if the same register is reused.

Instruction Pipeline Hazards

4-112 SHARC Processor Programming Reference

Listing 4-7. DAG Register Load Stalls

M0 = 1;
DM(I2, M0) = R1; /* stalls for 2 cycles */
L2 = 1;
DM(I2, M0) = R1; /* stalls for 2 cycles */
M3 = 1;
DM(I3, M0) = R1; /* no stalls */

In the example shown in Table 4-51, M0 is written back at the end of the
execution stage, while the DM access instruction reads M0 in the Decode
stage to generate the address. The first instruction is allowed to execute
normally, while the remaining instructions are delayed by two cycles.

In the code example below and Table 4-52, an unrelated instruction is
introduced after a write instruction to the DAG. In this case the processor
stalls for one cycle only.

M0 = 1;
R0 = 0x8 /* any unrelated instruction */
Dm(I2,M0) = R1 /* Stalls for one cycle */

Table 4-51. Indirect Access One Cycle After DAG Register Load

Cycles 1 2 3 4 5

Execute M0 = 1

Address M0 = 1 DM (I2, M0) = R1;

Decode M0 = 1 DM (I2, M0) = R1; n

Fetch2 DM (I2, M0) = R1; n n+1

Fetch1 n n+1 n+2

1. Cycle2: Stall cycle
2. Cycle3: Stall cycle

SHARC Processor Programming Reference 4-113

Program Sequencer

Table 4-52. Indirect Access Two Cycles After DAG Register Load

Cycles 1 2 3 4 5

Execute M0 = 1 R0 = 0x8; DM (I2, M0)
= R1;

Address M0 = 1 R0 = 0x8; DM (I2, M0)
= R1;

n

Decode R0 = 0x8; DM (I2, M0)
= R1;

n n+1

Fetch2 DM (I2, M0)
= R1;

n n+1 n+2

Fetch1 n n+1 n+2 n+3

1. Cycle2: Stall cycle

Table 4-53. DAG Register Loading for SHARC Product Families

Model DAG Stall Condition Stall Examples Stall
Cycles

ADSP-2106x1 Any DAG registers in same DAG i0=>i5, b3=>b3;
m12=>l15

1

ADSP-2116x1 Any same DAG register number
in same DAG

i0=>b0, b3=>b3;
m12=>l12

1

ADSP-2126x1 Any same DAG register number
in same DAG (except M regs,
stall only if same register is
reused)

i0=>b0, b3=>b3;
i10=>l10,
(m2=>l2 no stall)

1

ADSP-2136x2

ADSP-2137x2

ADSP-214xx2

2

1 Three stage pipeline. These products are not included in this manual.
2 Five stage pipeline. These products are all included in this manual.

Instruction Pipeline Hazards

4-114 SHARC Processor Programming Reference

Branch Stalls

A data stall can also occur when a register in a DAG is loaded and either of
the following two instructions shown in the code examples below attempts
to generate an indirect target address based on that DAG register for a
branch such as a JUMP or CALL. This happens because the address genera-
tion requires the values of the related DAG register to be read in the
Decode stage, while the load of any register completes in the Execute stage
of the pipeline. The JUMP or CALL itself has three cycles of overhead as
described in “Instruction Driven Branches” on page 4-15.

M8 = 1;

JUMP (M8,I9); /* stalls for two cycles */

In the example shown in Table 4-54, M8 is written back at the end of the
Execute stage of the pipeline, while the following JUMP (or CALL) instruc-
tion has to read M8 in the Decode stage to generate the target address. The
first instruction is allowed to complete normally, while all following
instructions are stalled for two cycles.

In the following code example, an unrelated instruction is inserted
between the write instruction to the DAG register and the jump instruc-
tion requiring address generation. In this instance, the pipeline stalls for
only one cycle.

M8 = 1;
R0 = 0x8; /* any unrelated instruction */
JUMP (M8,I9); /* stalls for one cycle */

SHARC Processor Programming Reference 4-115

Program Sequencer

Conditional Branch Stalls

There are three cases related to conditional branches, where the pipeline is
stalled for one or more cycles.

1. A control hazard stall occurs when a conditional branch follows a
compute or a bit manipulation instruction as shown in the code
example and Table 4-55. This occurs because the branch instruc-
tion needs the condition flags information in the Address stage of
the pipeline, while the compute and bit manipulation instructions
update condition flags at the end of Execute phase. (An RTS has
three additional overhead cycles. See “Instruction Driven
Branches” on page 4-15.)

R0 = R0-1;

If ne RTS; /* stalls pipe for a cycle */

Table 4-54. Indirect Branch One Cycle After DAG Register Load

Cycles 1 2 3 4 5 6 7 8 9

Execute M8 = 1 jump
(M8, I9)

nop nop nop

Address M8 = 1 jump
(M8, I9)

nop nop nop j

Decode M8 = 1 jump
(M8, I9)

n
nop

n+1
nop

n+2
nop

j j+1

Fetch2 jump
(M8, I9)

n n+1 n+2 j j+1 j+2

Fetch1 n n+1 n+2 j j+1 j+2 j+3

j = Branch address
1. Cycle2: Stall cycle
2. Cycle3: Stall cycle
3. Cycle4: I9 + M8 computed

Instruction Pipeline Hazards

4-116 SHARC Processor Programming Reference

2. If the compute involves the multiplier unit and the condition is
based on a multiplier flag (as shown in the code sample below), and
the conditional branch is in Decode stage of the pipeline, the pipe-
line is stalled for an additional cycle.

R0 = R0*R1(ssi);

IF MV CALL (_MultOverFlow); /* stalls for two cycles in

 decode */

3. The pipeline stalls for two cycles when a branch instruction, condi-
tional on NOT LCE (loop counter not expired), is in the Decode
stage and is immediately followed by any instruction involving a
change in an LCE (loop counter expired) condition, due to the exe-
cution of a DO/UNTIL, POP/PUSH, JUMP(LA) or load of the CURLCNTR
register. A one cycle stall occurs when the instruction is an opera-
tion other than a branch.

Table 4-55. Conditional Branch Stall

Cycles 1 2 3 4 5 6 7 8

Execute R0 = R0
– 1

if ne
RTS

nop nop nop r

Address R0 = R0
– 1

if ne
RTS

nop nop nop r r+1

Decode if ne
RTS

n
nop

n+1
nop

n+2
nop

r r+1 r+2

Fetch2 n n+1 n+2 r r+1 r+2 r+3

Fetch1 n+1 n+2 r r+1 r+2 r+3 r+4

r is the instruction branch address
1. Cycle2: Stall cycle
2. Cycle4: r popped from PC stack

SHARC Processor Programming Reference 4-117

Program Sequencer

Note that if the CURLCNTR register changes due to the normal
loop-back operation within a counter based loop, the pipeline is
not stalled for any branch instruction conditional on the NOT LCE
condition.

Control Hazard Stalls

A control hazard stall occurs when the sequence of three instructions
shown below is executed. The first may be a compute instruction, which
directly modifies the ASTATx, ASTATy or FLAGS registers, either through an
explicit write to the register or through bit manipulation instruction. The
second instruction contains a conditional post-modify address generation.
The third instruction is either an address generation operation using the
same index register or a read of that index register.

The example code and Table 4-56 below shows that when this sequence of
instructions is executed, and the third instruction is in the Decode stage of
the pipeline, the pipeline is stalled for two cycles.

R2 = R3 – R4; /* ALU instruction, setting a condition
 flag */
IF EQ DM(I1,M0) = R15 /* conditional post-modify addressing */

DM(I1,M2) = R14; /* address generation using the same I
 register stalls for two cycles */

When the conditional post-modify instruction is either preceded or fol-
lowed by instructions other than those involving address generation using
the same I register, the last instruction stalls the pipeline for one cycle.
When the conditional post-modify instruction is either preceded or
followed by two or more such unrelated instructions, the pipeline is not
stalled.

Note that a conditional instruction based on an ALU generated flag has a
dependency on an ALU operation only. This also holds true in the case of
multiplier flags and multiplier operations or a BTF flag and a BIT TST
instruction. This is valid for any such kind of dependency.

Instruction Pipeline Hazards

4-118 SHARC Processor Programming Reference

Also note that when this kind of instruction sequence has other reasons to
stall the pipeline, all the stalls arising out of different kinds of dependen-
cies may not merge and some stalls appear as redundant stall cycles.

The pipeline is stalled when the processor executes certain sequence of
instructions to maximize the frequency of operation. The case arises when
a compute operation involving any fixed-point operand register follows a
floating-point multiply operation, and the instruction involving the
fixed-point register is in the Decode stage of the pipeline, the pipeline
stalls for one cycle as shown in the following example. Note that the actual
register used for the operation is not relevant.

F0 = F0*F4;
F5 = FLOAT R1; /* stalls the pipe when in decode */
F0 = F0*F4;

R5 = LSHIFT R10 by 2; /* stalls the pipe when in decode */

F0 = F0*F4;
R5 = R5-1; /* stalls the pipe when in decode */

Table 4-56. Indirect Branch Two Cycles After DAG Register Load

Cycles 1 2 3 4 5 6

Execute n n+1 n+2

Address n n+1 n+2 n+3

Decode n+1 n+2 n+3 n+4

Fetch2 n+2 n+3 n+4 n+5

Fetch1 n+3 n+4 n+5 n+6

1. Cycle2: Stall cycle
2. Cycle3: Stall cycle

SHARC Processor Programming Reference 4-119

Program Sequencer

Loop Stalls

1. A JUMP(LA) stalls the instruction pipeline for one cycle when it is in
the Address stage of the instruction pipeline.

2. When the length of the counter based loop is one, two or four
instructions, the pipeline is stalled by one cycle after the DO/UNTIL
instruction.

3. A one cycle stall is incurred when a RTS (return from subroutine) or
RTI (return from interrupt) instruction causes the sequencer to
return to the last instruction of a loop instruction, and the RTI/RTS
is in the Address stage of the instruction pipeline. This is to avoid
the coincidence of two implicit operations of the PCSTK—one due
to the RTI/RTS instruction and the other due to the possible termi-
nation of the loop. The pipeline stalls so that the pop operation
from the RTI/RTS is executed first.

Compiler Related Stalls
The following sections discuss stalls introduced by the compiler.

CJUMP Instruction

The following code examples show a two cycle data hazard stall that
occurs when DAG1 attempts to generate addresses based on the I6 register
or when either or both of the I6 or I7 registers are used as a source of some
data transfer operation immediately after a CJUMP instruction. This occurs
because the CJUMP instruction modifies the I6 register.

Example 1

CJUMP(_SUB1)(DB); /* executes R2 = I6,I6 = I7,
 jump(_sub1) (db) */
DM(I6,M0) = R2; /*stalls for two cycles */

Instruction Pipeline Hazards

4-120 SHARC Processor Programming Reference

Example 2

CJUMP(_SUB1)(DB); /* executes R2 = I6,I6 = I6,
 jump(_sub1) (db) */
R2 = I7; /* stalls for two cycles */

If there is an unrelated instruction before the second instruction, the pipe-
line stalls for one cycle only. Note that an address generation operation
using register I7 immediately after a CJUMP instruction does not stall the
pipeline.

 The CJUMP instruction is intended to be used by the compiler only.
Normally the compiler uses the following sequence of instructions
when calling a subroutine, which does not stall the pipeline.

CJUMP (_SUB1) (DB); /* executes R2 = I6, I6 = I7 */
jump(_sub1)(db)
DM(I7,M0) = R2; /* stores previous I6 */
DM(I7,M0) = PC; /* stores return_address–1 */

RFRAME Instruction

A data hazard stall occurs when DAG1 attempts to generate addresses
based on the I6 or I7 registers or when any or both of the I6 or I7 registers
are used as a source of some data transfer operation immediately after a
RFRAME instruction. This occurs because RFRAME modifies the I6 and I7
registers. In this situation, the pipeline is stalled for two cycles.

RFRAME; /* executes I7 = I6, I6 = dm(0,I6); */

DM(I6,M0) = R2 /* stalls for two cycles */

In a program where there is an unrelated instruction before the DM instruc-
tion, then the pipeline stalls for one cycle only.

 The RFRAME instruction is only used by the compiler.

SHARC Processor Programming Reference 4-121

Program Sequencer

Sequencer Interrupts
This section describes the interrupts that are triggered by the sequencer
itself.

External Interrupts
For external interrupts (IRQ2–0, DAI, DPI) the processor supports two
types of interrupt sensitivity—edge-sensitive and level-sensitive. The
interrupt overview is shown in Table 4-57.

 The DAI/DPI modules also incorporate interrupt controllers for
external events. For more information refer to the processor-spe-
cific hardware reference manual “Masking Interrupts”.

The processor detects a level-sensitive interrupt if the signal input is low
(active) when sampled on the rising edge of PCLK/2. A level-sensitive inter-
rupt must go high (inactive) before the processor returns from the
interrupt service routine. If a level-sensitive interrupt is still active when
the processor samples it after returning from its service routine, the pro-
cessor treats the signal as a new request. The processor repeats the same
interrupt routine without returning to the main program, assuming no
higher priority interrupts are active.

The processor detects an edge-sensitive interrupt if the input signal is high
(inactive) on one cycle and low (active) on the next cycle when sampled on
the rising edge of PCLK/2. An edge-sensitive interrupt signal can stay active

Table 4-57. External Interrupt Overview

Interrupt
Source

Interrupt Condition Interrupt
Priorities

Interrupt
Acknowledge

IVT

IRQ2–0 –level triggered
–falling edge triggered

8–10 RTI instruction IRQ2–0I

Sequencer Interrupts

4-122 SHARC Processor Programming Reference

indefinitely without triggering additional interrupts. To request another
interrupt, the signal must go high, then low again.

Edge-sensitive interrupts require less external hardware compared to
level-sensitive requests, because negating the request is unnecessary. An
advantage of level-sensitive interrupts is that multiple interrupting devices
may share a single level-sensitive request line on a wired OR basis, allow-
ing easy system expansion.

The MODE2 register controls external interrupt sensitivity as described
below.

• Interrupt 0 Sensitivity. Bit 0 (IRQ0E) directs the processor to detect
IRQ0 as edge-sensitive (if 1) or level-sensitive (if 0).

• Interrupt 1 Sensitivity. Bit 1 (IRQ1E) directs the processor to detect
IRQ1 as edge-sensitive (if 1) or level-sensitive (if 0).

• Interrupt 2 Sensitivity. Bit 2 (IRQ2E) directs the processor to detect
IRQ2 as edge-sensitive (if 1) or level-sensitive (if 0).

The processor accepts external interrupts that are asynchronous to the
processor’s clocks, allowing external interrupt signals to change at any
time.

 External interrupts must meet the minimum pulse width require-
ment. For information on interrupt signal timing requirements, see
the appropriate SHARC processor data sheet.

Software Interrupts
Software interrupts (or programmed exceptions) are instructions which
explicitly generate an exception. The interrupt overview is shown in
Table 4-58.

SHARC Processor Programming Reference 4-123

Program Sequencer

The IRPTL register provides four software interrupts. When a program sets
the latch bit for one of these interrupts (SFT0I, SFT1I, SFT2I, or SFT3I),
the sequencer services the interrupt, and the processor branches to the cor-
responding interrupt routine. Software interrupts have the same behavior
as all other maskable interrupts. For more information, see Appendix B,
Core Interrupt Control.

If programs force an interrupt by writing to a bit in the IRPTL register, the
processor recognizes the interrupt in the following cycle, and four cycles
of branching to the interrupt vector follow the recognition cycle.

Hardware Stack Interrupts
The hardware stack (status stack, loop stack and PC stack) conditions trig-
ger a maskable interrupt shown in Table 4-59. The overflow and full flags
provide diagnostic aid only. Programs should not use these flags for run-
time recovery from overflow. The empty flags can ease stack saves to
memory. Programs can monitor the empty flag when saving a stack to
memory to determine when the processor has transferred all the values.

Table 4-58. Software Interrupt Overview

Interrupt
Source

Interrupt Condition Interrupt
Priorities

Interrupt
Acknowledge

IVT

Core Bit set IRPTL instruc-
tion

38–41 RTI instruction SFT0–3I

Table 4-59. Hardware Stack Interrupt Overview

Interrupt
Source

Interrupt Condition Interrupt
Priorities

Interrupt
Acknowledge

IVT

HW Stack –PC stack overflow
–Loop stack overflow
–Status stack overflow

3 RTI instruction SOVFI

Summary

4-124 SHARC Processor Programming Reference

Summary
To manage events, the sequencer’s interrupt controller handles interrupt
processing, determines whether an interrupt is masked, and generates the
appropriate interrupt vector address. With selective caching, the instruc-
tion cache lets the processor access data in program memory and fetch an
instruction (from the cache) in the same cycle. The DAG2 data address
generator outputs program memory data addresses.

Figure 4-2 on page 4-4 identifies all the functional blocks and their rela-
tionship to one another in detail.

The sequencer evaluates conditional instructions and loop termination
conditions by using information from the status registers. The loop
address stack and loop counter stack support nested loops. The status
stack stores status registers for implementing nested interrupt routines.

“Program Sequencer Registers” on page A-8 lists the registers within and
related to the program sequencer. All registers in the program sequencer
are universal registers (Uregs), so they are accessible to other universal reg-
isters and to data memory. All of the sequencer’s registers and the top of
stacks are readable and writable, except for the Fetch1, decode, and PC
registers. Pushing or popping the PC stack is done with a write to the PC
stack pointer, which is readable and writable. Pushing or popping the loop
address stack requires explicit instructions.

A set of system control registers configures or provides input to the
sequencer. A bit manipulation instruction permits setting, clearing, tog-
gling, or testing specific bits in the system registers. For information on
this instruction (bit) and the instruction set, see Chapter 9, Instruction
Set Types, and Chapter 11, Computation Types. Writes to some of these
registers do not take effect on the next cycle. For example, after a write to
the MODE1 register enables ALU saturation mode, the change takes effect
two cycles after the write. Also, some of these registers do not update on
the cycle immediately following a write. An extra cycle is required before a
register read returns the new value.

SHARC Processor Programming Reference 5-1

5 TIMER

The core includes a programmable interval timer, which appears in
Figure 5-1. Bits in the MODE2, TCOUNT, and TPERIOD registers control timer
operations. Table A-2 on page A-7 lists the bits in the MODE2 register.

Features
The timer has the following features.

• Simple programming model of three registers for interval timer

• Provides high or low priority interrupt

• If counter expired timer expired pin is asserted

• If core is in emulation space timer halts

Functional Description
The bits that control the timer are given as follows:

• Timer enable. MODE2 Bit 5 (TIMEN). This bit directs the processor to
enable (if 1) or disable (if 0) the timer.

• Timer count. (TCOUNT) This register contains the decrementing
timer count value, counting down the cycles between timer
interrupts.

Functional Description

5-2 SHARC Processor Programming Reference

• Timer period. (TPERIOD) This register contains the timer period,
indicating the number of cycles between timer interrupts. The
TCOUNT register contains the timer counter.

To start and stop the timer, programs use the MODE2 register’s TIMEN bit.
With the timer disabled (TIMEN = 0), the program loads TCOUNT with an
initial count value and loads TPERIOD with the number of cycles for the
desired interval. Then, the program enables the timer (TIMEN=1) to begin
the count.

On the core clock cycle after TCOUNT reaches zero, the timer automatically
reloads TCOUNT from the TPERIOD register. The TPERIOD value specifies the
frequency of timer interrupts. The number of cycles between interrupts is

TPERIOD + 1. The maximum value of TPERIOD is 232 – 1.

The timer decrements the TCOUNT register during each clock cycle. When
the TCOUNT value reaches zero, the timer generates an interrupt and asserts
the TMREXP output pin high for several cycles (when the timer is enabled),
as shown in Figure 5-1. For more information about TMREXP pin muxing
refer to system design chapter in the processor-specific hardware reference.

Programs can read and write the TPERIOD and TCOUNT registers by using
universal register transfers. Reading the registers does not effect the timer.
Note that an explicit write to TCOUNT takes priority over the sequencer’s
loading TCOUNT from TPERIOD and the timer’s decrementing of TCOUNT.
Also note that TCOUNT and TPERIOD are not initialized at reset. Programs
should initialize these registers before enabling the timer.

SHARC Processor Programming Reference 5-3

Timer

To start and stop the timer, the TIMEN bit in MODE2 register has to be set or
cleared respectively. The latency of this bit is two core clock cycles at the
start of the counter and one core clock cycle at the stop of the counter
shown in Figure 5-2.

Figure 5-1. Core Timer Block Diagram

TPERIOD

YES

32

32

32

32

32

32

NO

TCOUNT

MULTIPLEXER

DECREMENT

TCOUNT=0
INTERRUPT,
ASSERT TMREXP PIN

DMA DATA BUS

Timer Interrupts

5-4 SHARC Processor Programming Reference

Timer Interrupts
The timer expired event (TCOUNT decrements to zero) generates two inter-
rupts, TMZHI and TMZLI. For information on latching and masking
these interrupts to select timer expired priority, see “Latching Interrupts”
on page 4-35

The Timer interrupt overview is shown in Table 5-1.

Figure 5-2. Timer Enable and Disable

Table 5-1. DAG Interrupt Overview

Interrupt
Source

Interrupt Condition Interrupt
Priorities

Interrupt
Acknowledge

IVT

Core Timer –Timer high expired
–Timer low expired

4, 32 RTI instruction TMZHI
TMZLI

CCLK

Set TIMEN

Timer Active

TIMER

TCOUNT=N TCOUNT=N+1 TCOUNT=N+2

CCLK

Clear TIMEN

Timer Inactive

TIMER

TCOUNT=M–1 TCOUNT=M–2 TCOUNT=M–3

in MODE2

ENABLE

in MODE2

DISABLE

SHARC Processor Programming Reference 5-5

Timer

One event can cause multiple interrupts. The timer decrementing to zero
causes two timer expired interrupts to be latched, TMZHI (high priority)
and TMZLI (low priority). This feature allows selection of the priority for
the timer interrupt. Programs should unmask the timer interrupt with the
desired priority and leave the other one masked. If both interrupts are
unmasked, the processor services the higher priority interrupt first and
then services the lower priority interrupt.

Timer Interrupts

5-6 SHARC Processor Programming Reference

SHARC Processor Programming Reference 6-1

6 DATA ADDRESS
GENERATORS

The processor’s data address generators (DAGs) generate addresses for
data moves to and from data memory (DM) and program memory (PM).
By generating addresses, the DAGs let programs refer to addresses indi-
rectly, using a DAG register instead of an absolute address. The DAG’s
architecture, which appears in Figure 6-1, supports several functions that
minimize overhead in data access routines.

Features
The data address generators have the following features.

• Supply address and post-modify. Provides an address during a data
move and auto-increments the stored address for the next move.

• Supply pre-modified (indexed) address. Provides a modified
address during a data move without incrementing the stored
address.

• Modify address. Increments the stored address without performing
a data move.

• Bit-reverse address. Provides a bit-reversed address during a data
move without reversing the stored address, as well as an instruction
to explicitly bit-reverse the supplied address.

• Broadcast data loads. Performs dual data moves to complementary
registers in each processing element to support single-instruction
multiple-data (SIMD) mode.

Functional Description

6-2 SHARC Processor Programming Reference

• Circular Buffering. Supports addressing a data buffer at any
address with predefined boundaries, wrapping around to cycle
through this buffer repeatedly in a circular pattern.

• Indirect Branch Addressing. DAG2 supports indirect branch
addressing which provides index and modify address registers used
for dynamic instruction driven branch jumps (Md,Ic) or calls
(Md,Ic). For more information, see “Direct Versus Indirect
Branches” on page 4-17.

Functional Description
As shown in Figure 6-1, each DAG has four types of registers. These regis-
ters hold the values that the DAG uses for generating addresses. The four
types of registers are:

• Index registers (I0–I7 for DAG1 and I8–I15 for DAG2). An index
register holds an address and acts as a pointer to memory. For
example, the DAG interprets DM(I0,0) and PM(I8,0) syntax in an
instruction as addresses.

• Modify registers (M0–M7 for DAG1 and M8–M15 for DAG2). A
modify register provides the increment or step size by which an
index register is pre- or post-modified (indexed) during a register
move. For example, the DM(I0,M1) instruction directs the DAG to
output the address in register I0 then modify the contents of I0
using the M1 register.

• Length and base registers (L0–L7 and B0–B7 for DAG1 and L8–
L15 and B8–B15 for DAG2). Length and base registers set the
range of addresses and the starting address for a circular buffer. For
more information on circular buffers, see “Circular Buffer Pro-
gramming Model” on page 6-21.

SHARC Processor Programming Reference 6-3

Data Address Generators

Figure 6-1. Data Address Generator (DAG) Block Diagram

STKYX

MODE1

ADD

L REGISTER
NEIGHBOR PAIRS

(4x2)

32

32

6464

DM ADDRESS BUS (DAG1)

PM ADDRESS BUS (DAG2)

32 32

DM/PM DATA BUS

MODULAR
LOGIC

6464 FROM
INSTRUCTION

MUX

FOR INTERRUPTS

32

32

32

BITREV MODE
I0/I8 UPDATE

MUX

MUX

BITREV INSTRUCTION
(OPTIONAL)

FOR ALL I REGISTERS
USING BITREV INSTRUCTIONS

B REGISTER
NEIGHBOR PAIRS

(4x2)

I REGISTER
NEIGHBOR PAIRS

(4x2)

M REGISTER
NEIGHBOR PAIRS

(4x2)

Functional Description

6-4 SHARC Processor Programming Reference

DAG Address Output
The following sections describe how the DAGs output addresses.

Address Versus Word Size

The processor’s internal memory accommodates the following word sizes:

• 64-bit long word data (LW)

• 40-bit extended-precision normal word data (NW, 48-bit)

• 32-bit normal word data (NW, 32-bit)

• 16-bit short word data (SW, 16-bit)

 Only the address space determines which memory word size is
accessed. An important item to note is that the DAG automatically
adjusts the output address per the word size of the address location
(short word, normal word, or long word). This address adjustment
allows internal memory to use the address directly as shown in the
following example.

I15=LW_addr;
pm(i15,0)=r0; /* 64-bit transfer */

I7=NW_addr;
dm(i7,0)=r8; /* 32-bit transfer */

I7=SW_addr;
dm(i7,0)=r14; /* 16-bit transfer */

SHARC Processor Programming Reference 6-5

Data Address Generators

DAG Register-to-Bus Alignment

There are three word alignment types for DAG registers and PM or DM
data buses:

• Normal word (32-bit)

• extended-precision normal word (40-bit)

• long word (64-bit)

32-Bit Alignment

The DAGs align normal word (32-bit) addressed transfers to the low order
bits of the buses. These transfers between memory and 32-bit DAG1 or
DAG2 registers use the 64-bit DM and PM data buses. Figure 6-2 illus-
trates these transfers.

40-Bit Alignment

The DAGs align register-to-register transfers to bits 39–8 of the buses.
These transfers between a 40-bit data register and 32-bit DAG1 or DAG2
registers use the 64-bit DM and PM data buses. Figure 6-3 illustrates
these transfers.

Figure 6-2. Normal Word (32-Bit) DAG Register Memory Transfers

DAG1 OR DAG2 REGISTERS

03163
0X0000 0000

DM OR PM DATA BUS

031

Functional Description

6-6 SHARC Processor Programming Reference

64-Bit Alignment

Long word (64-bit) addressed transfers between memory and 32-bit
DAG1 or DAG2 registers target double DAG registers and use the 64-bit
DM and PM data buses. Figure 6-4 illustrates how the bus works in these
transfers.

DAG1 Versus DAG2

DAG registers are part of the universal register (Ureg) set. Programs may
load the DAG registers from memory, from another universal register, or
with an immediate value. Programs may store the DAG registers’ contents
to memory or to another universal register.

Figure 6-3. DAG Register-to-Data Register Transfers

Figure 6-4. Long Word DAG Register-to-Data Register Transfers

DAG1 OR DAG2 REGISTERS

031

04063

0X00 00 00

DM OR PM DATA BUS

0X00
839 7

EXPLICIT (NAMED)
DAG1 OR DAG2 REGISTERS

031

31 063

DM OR PM DATA BUS

IMPLICIT (NAMED + OR - 1)
DAG1 OR DAG2 REGISTERS

031

SHARC Processor Programming Reference 6-7

Data Address Generators

Both DAGs are identical in their operation modes and can access the
entire memory-mapped space. However, the following differences should
be noted.

• Only DAG1 is capable of supporting compiler specific instructions
like RFRAME and CJUMP.

• Only DAG2 is capable of supporting flow control instruction for
indirect branches. Additionally DAG2 access can cause cache
miss/hits for internal memory execution.

DAG Instruction Types
The processor’s DAGs perform several types of operations to generate data
addresses. As shown in Figure 6-1 on page 6-3, the DAG registers and the
MODE1 and MODE2 registers contribute to DAG operations. The STKYx regis-
ters may be affected by the DAG operations and are used to check the
status of a DAG operation.

An important item to note from Figure 6-1 is that the DAG automatically
adjusts the output address per the word size of the address location (short
word, normal word, or long word). This address adjustment lets internal
memory use the address directly.

 SISD/SIMD mode, access word size, and data location (internal)
all influence data access operations.

Long Word Memory Access Restrictions
If the long word transfer specifies an even numbered DAG register (I0 or
I2), then the even numbered register value transfers on the lower half of
the 64-bit bus, and the even numbered register + 1 value transfers on the
upper half (bits 63–32) of the bus as shown below.

DAG Instruction Types

6-8 SHARC Processor Programming Reference

I8 = DM(I2,M2); /* I2 loads to I8/9 pair */

PM(I14,M14) = M5; /* stores M5/4 pair to I14*/

If the long word transfer specifies an odd numbered DAG register (I1 or
B3), the odd numbered register value transfers on the lower half of the
64-bit bus, and the odd numbered register – 1 value (I0 or B2 in this
example) transfers on the upper half (bits 63–32) of the bus.

In both the even and odd numbered cases, the explicitly specified DAG
register sources or sinks bits 31–0 of the long word addressed memory.

Forced Long Word (LW) Memory Access Instructions

When data is accessed using long word addressing, the data is always long
word aligned on 64-bit boundaries in internal memory space. When data
is accessed using normal word addressing and the LW mnemonic, the pro-
gram should maintain this alignment by using an even normal word
address (least significant bit of address = 0). This register selection aligns
the normal word address with a 64-bit boundary (long word address). For
more information, see “Unaligned Forced Long Word Access” on
page 7-25.

 The forced long word (LW) mnemonic only effects normal word
address accesses and overrides all other factors (PEYEN, IMDWx).

Table 6-1. Neighbor DAG Register for Long
Word Accesses (x = B, I, L, M)

DAG Neighbor Registers

x0 and x1 x8 and x9

x2 and x3 x10 and x11

x4 and x5 x12 and x13

x6 and x7 x14 and x15

SHARC Processor Programming Reference 6-9

Data Address Generators

All long word accesses load or store two consecutive 32-bit data values.
The register file source or destination of a long word access is a set of two
neighboring data registers (Table 6-1) in a processing element. In a forced
long word access (using the LW mnemonic), the even (normal word
address) location moves to or from the explicit register in the neigh-
bor-pair, and the odd (normal word address) location moves to or from
the implicit register in the neighbor-pair. In Listing 6-1 the following long
word moves could occur.

Listing 6-1. Long Word Move Options

DM(0x98000) = R0 (LW);

/* The data in R0 moves to location DM(0x98000), and the data in
R1 moves to location DM(0x98001) */

R15 = DM(0x98003)(LW);

/* The data at location DM(0x98003) moves to R14, and the data at
location DM(0x98002) moves to R15 */

The forced long word (LW) mnemonic can be used for context switch
between tasks in system applications. It only effects normal word address
accesses and overrides all other factors (PEYEN, IMDWx bit settings) as shown
in Listing 6-2.

Listing 6-2. Push the DAG Registers onto SW Stack

pm(i15,m15)=i0(lw);

 /*until*/

pm(i15,m15)=i6(lw);

dm(i7,m7)=i8(lw);

 /*until*/

dm(i7,m7)=i14(lw);

DAG Instruction Types

6-10 SHARC Processor Programming Reference

Listing 6-3. Pop the DAG Registers from SW Stack:

i0=pm(i15,m15)(lw);

 /*until*/

i6=pm(i15,m15)(lw);

i8=dm(i7,m7)(lw);

 /*until*/

i14=dm(i7,m7)(lw);

Pre-Modify Instruction
As shown in Figure 6-5, the DAGs support two types of modified address-
ing, pre- and post-modify. Modified addressing is used to generate an
address that is incremented by a value or a register.

In pre-modify (indexed) addressing, the DAG adds an offset (modifier),
which is either an M register or an immediate value, to an I register and
outputs the resulting address. Pre-modify addressing does not change or
update the I register.

Figure 6-5. Pre-Modify and Post-Modify Operations

I

M

+

OUTPUT I+M

PRE-MODIFY
NO I REGISTER UPDATE

SYNTAX: PM(MX, IX)
DM(MX, IX)

1. OUTPUT I

M

I+M

+

2. UPDATE

POST-MODIFY
I REGISTER UPDATE

SYNTAX: PM(IX, MX)
DM(IX, MX)

SHARC Processor Programming Reference 6-11

Data Address Generators

The DAG pre-modify addressing type can be used to emulate the pop
(restore of registers) from a SW stack.

 Pre-modify addressing operations must not change the memory
space of the address.

Post-Modify Instruction
The DAGs support post-modify addressing. Modified addressing is used
to generate an address that is incremented by a value or a register. In
post-modify addressing, the DAG outputs the I register value unchanged,
then adds an M register or immediate value, updating the I register value.

The DAG post-modify addressing type can be used to emulate the push
(save of registers) to a SW stack.

Listing 6-4. Post-Modify Addressing

BIT CLR MODE1 CBUFEN; /* clear circular buffer*/
nop;
I1 = buffer; /* Index Pointer */
M1 = 1; /* Modify */
instruction; /* stall, any non-DAG instruction */
instruction; /* stall, any non-DAG instruction */
R3 = dm(I1,M1); /* 1st access */
R3 = dm(I1,M1); /* 2nd access */

Modify Instruction
The DAGs support two operations that modify an address value in an
index register without outputting an address. These two operations,
address bit-reversal and address modify, are useful for bit-reverse address-
ing and maintaining pointers.

The MODIFY instruction modifies addresses in any DAG index register
(I0-I15) without accessing memory.

DAG Instruction Types

6-12 SHARC Processor Programming Reference

The syntax for the MODIFY instruction is similar to post-modify addressing
(index, then modifier). The MODIFY instruction accepts either a 32-bit
immediate value or an M register as the modifier. The following example
adds 4 to I1 and updates I1 with the new value.

MODIFY(I1,4);

 If the I register’s corresponding B and L registers are set up for cir-
cular buffering, a MODIFY instruction performs the specified buffer
wraparound (if needed).

The MODIFY instruction executes independent of the state of the CBUFEN
bit. The MODIFY instruction always performs circular buffer modify of the
index registers if the corresponding B and L registers are configured, inde-
pendent of the state of the CBUFEN bit.

Enhanced Modify Instruction (ADSP-214xx)
Ib = MODIFY(Ia,Mc); is an enhanced version of the MODIFY instruction.
This instruction loads the modified index pointer into another index reg-
ister. If the source and destination registers are different, then:

• The source register (Ia) is not updated.

• The destination register (Ib) receives the result of the modify.

If the B and L registers corresponding to the source I register (Ia) are set
up for circular buffering, the MODIFY instruction performs specified buffer
wraparound if it is needed.

The following example assumes that the La and Ba registers that corre-
spond to the source Ia register are set up for circular buffering, the modify
operation executes circular buffer wraparound if it is needed, and the Ib
register is updated with the value after wraparound.

SHARC Processor Programming Reference 6-13

Data Address Generators

B0 = 0x40000;

L0 = 0x10000;

I0 = 0x4ffff;

I1 = modify(I0, 2); // I1 == 0x40001

Immediate Modify Instruction
Instructions can also use a number (immediate value), instead of an M reg-
ister, as the modifier. The size of an immediate value that can modify an I
register depends on the instruction type. For all single data access opera-
tions, modify immediate values can be up to 32 bits wide. Instructions
that combine DAG addressing with computations limit the size of the
modify immediate value. In these instructions (multifunction
computations), the modify immediate values can be up to 6 bits wide. The
following example instruction accepts up to 32-bit modifiers:

R1 = DM(0x40000000,I1); /* DM address = I1 + 0x4000 0000 */

The following example instruction accepts up to 6-bit modifiers:

PM(I8,0x0B)= ASTATx; /* PM address = I8, I8 = I8 + 0x0B */

Bit-Reverse Instruction
The BITREV instruction modifies and bit-reverses addresses in any DAG
index register (I0–I15) without accessing memory. This instruction is
independent of the bit-reverse mode. The BITREV instruction adds a 32-bit
immediate value to a DAG index register, bit-reverses the result, and
writes the result back to the same index register. The following example
adds 4 to I1, bit-reverses the result, and updates I1 with the new value:

BITREV(I1,4);

The processor does support bit-reverse mode. For more information, see
“Operating Modes” on page 6-18.

DAG Instruction Types

6-14 SHARC Processor Programming Reference

Enhanced Bit-Reverse Instruction (ADSP-214xx)
An enhanced version of the BITREV instruction, that loads the bit reversed
index pointer into another index register is shown below

I6 = BITREV(I1,0);

Dual Data Move Instructions
The number of transfers that occur in a clock cycle influences the data
access operation. As described in “Internal Memory Space” on page 7-11,
the processor supports single cycle, dual-data accesses to and from internal
memory for register-to-memory and memory-to-register transfers.
Dual-data accesses occur over the PM and DM bus and act independent
of SIMD/SISD mode setting. Though only available for transfers between
memory and data registers, dual-data transfers are extremely useful
because they double the data throughput over single-data transfers.

Note that the explicit use of complementary registers (CDREG) is not sup-
ported for dual data access.

 On the ADSP-21367, ADSP-21368, and ADSP-21369 processors,
it is illegal to use the DAGs in Type 1 instructions with the DM
and PM buses both accessing external memory space.

R8 = DM(I4,M3), PM(I12,M13) = R0; /* Dual access */

R0 = DM(I5,M5); / * Single access */

For examples of data flow paths for single and dual-data transfers, see
Chapter 2, Register Files.

The processor can use its complementary registers explicitly in SIMD
mode. They support single data access as shown in the example below.

S8 = DM(I4,M3);
PM (I12,M13) = S12;

SHARC Processor Programming Reference 6-15

Data Address Generators

COMP, S8 = DM(I5,M5);
COMP, DM(I5,M5) = S14;

Conditional DAG Transfers
Conditions with DAG transfers allows programs to make memory accesses
conditional. For more information see Chapter 4, Program Sequencer.

DAG Breakpoint Units
Both DAGs are connected to the breakpoint units used for hardware
breakpoints. They are used if user breakpoints are enabled. For more
information, Chapter 8, JTAG Test Emulation Port.

DAG Instruction Restrictions
Modify (M) registers can work with any index (I) register in the same
DAG (DAG1 or DAG2).

The DAGs does allow transfers between the two DAG registers as in the
following example.
DM(M2,I1) = I12;

L7 = PM(M12,I12);

However, transfers to the same DAG registers are not allowed and the
assembler returns an error message.
DM(M2,I1) = I0; /* generates asm error */

Instruction Summary
Table 6-2 lists the instruction types associated with DAG transfer instruc-
tions. Note that instruction set types may have more options (conditions
or compute). For more information see Chapter 9, Instruction Set Types.
In these tables, note the meaning of the following symbols:

Instruction Summary

6-16 SHARC Processor Programming Reference

• Ia indicates a DAG1 index register (I7–0)

• Ic indicates a DAG2 index register (I15–8)

• Ib indicates a DAG1 modify register (M7–0)

• Id indicates a DAG2 modify register (M15–8)

• UREG indicates any universal register

• DREG indicates any data register

• LW indicates a forced long word access

Table 6-2. DAG Instruction Types Summary

Instruction Type DAG Instruction Syntax Description

1a/b DM(Ia,Mb)=DREG, PM(Ic,Md)=DREG;
DREG=DM(Ia,Mb), DREG=PM(Ic,Md);
DREG=DM(Ia,Mb), PM(Ic,Md)=DREG;
DM(Ia,Mb)=DREG, DREG=PM(Ic,Md);

DAG1/2, post-modify, DREG, Dual
data move

3a/b DM(Ia,Mb)=UREG(LW);
PM(Ic,Md)=UREG(LW);
UREG=DM(Ia,Mb)(LW);
UREG=PM(Ic,Md)(LW);

DM(Mb,Ia)=UREG(LW);
PM(Md,Ic)=UREG(LW);
UREG=DM(Mb,Ia)(LW);
UREG=PM(Mc,Id)(LW);

DAG1/2, post/pre modify, UREG,
LW option

3c DM(Ia,Mb)=DREG;
DREG=DM(Ia,Mb);

DAG1, Post modify, DREG

4a/b DM(Ia,<data6>)=DREG;
PM(Ic,<data6>)=DREG;

DREG=DM(Ia,<data6>);
DREG=PM(Ic,<data6>);

DAG1/2, post modify, DREG,
immediate modify

SHARC Processor Programming Reference 6-17

Data Address Generators

7a/b MODIFY(Ia,Mb);
MODIFY(Ic,Md);

Ia=MODIFY(Ia,Mb); //ADSP-214xx
Ic=MODIFY(Ic,Md); //ADSP-214xx

DAG1/2, Index Modify

10a DM(Ia,Mb)=DREG;
DREG=DM(Ia,Mb);

DAG1, post modify, DREG

15a DM(<data32>,Ia)=UREG(LW);
PM(<data32>,Ic)=UREG(LW);

UREG=DM(<data32>,Ia)(LW);
UREG=PM(<data32>,Ic)(LW);

DAG1/2, pre modify, UREG, LW
option, immediate modify

15b DM(<data7>,Ia)=UREG(LW);
PM(<data7>,Ic)=UREG(LW);

UREG=DM(<data7>,Ia)(LW);
UREG=PM(<data7>,Ic)(LW);

DAG1/2, pre modify, UREG, LW
option, immediate modify

16a DM(Ia,Mb)=<data32>;
PM(Ic,Md)=<data32>;

DAG1/2, post modify, immediate
data

16b DM(Ia,Mb)=<data16>;
PM(Ic,Md)=<data16>;

DAG1/2, post modify, immediate
data

19a MODIFY(Ia,<data32>);
MODIFY(Ic,<data32>);
BITREV(Ia,<data32>);
BITREV(Ic,<data32>);

Ia=MODIFY(Ia,<data32>);
//ADSP-214xx
Ic=MODIFY(Ic,<data32>);
//ADSP-214xx
Ia=BITREV(Ia,<data32>);
//ADSP-214xx
Ic=BITREV(Ic,<data32>);
//ADSP-214xx

DAG1/2, Index Modify/ Bit reverse,
immediate modify

Table 6-2. DAG Instruction Types Summary

Instruction Type DAG Instruction Syntax Description

Operating Modes

6-18 SHARC Processor Programming Reference

Operating Modes
This section describes all modes related to the DAG which are enabled by
a control bit in the MODE1, MODE2 and SYSCTL registers.

Normal Word (40-Bit) Accesses
A program makes an extended-precision normal word (40-bit) access to
internal memory using an access to a normal word address when that
internal memory block’s IMDWx bit is set (=1) for 40-bit words. The
address ranges for internal memory accesses appear in the product-specific
data sheet. For more information on configuring memory for
extended-precision normal word accesses, see “Extended-Precision Nor-
mal Word Addressing of Single-Data” on page 7-44.

The processor transfers the 40-bit data to internal memory as a 48-bit
value, zero-filling the least significant 8 bits on stores and truncating these
8 bits on loads. The register file source or destination of such an access is a
single 40-bit data register as shown in Listing 6-5.

Listing 6-5. Normal Word (40-Bit) Accesses

bit clr MODE1 CBUFEN;
nop;
I9=0x90500; /* start of 40-bit block 0 */
M9=1;
I5=0xB8000; /* start of 32-bit block 1 */

M5=1;
USTAT1 = dm(SYSCTL);
bit set USTAT1 IMDW0; /* Blk0 access 40-bit precision */
dm(SYSCTL) = USTAT1;
NOP; /* effect latency */
DM(I5,M5)=R0, PM(I9,M9)=R4; /* DAG1 32-bit, DAG2 40-bit */

SHARC Processor Programming Reference 6-19

Data Address Generators

Note that the sequencer uses 48-bit memory accesses for instruction
fetches. Programs can make 48-bit accesses with PX register moves, which
default to 48 bits. For more information, see Chapter 2, Register Files.

Listing 6-6. Input Sections Definition for 32/40-bit Data Access in
LDF File

/* block 0 */

seg_pmco /* TYPE(PM RAM) START(0x00090200) END(0x000904FF)
 WIDTH(48) */

seg_pmda_40 /* TYPE(PM RAM) START(0x00090500) END(0x00090FFF)
 WIDTH(48) */

/* block 1 */

seg_dmda_32 /* TYPE(DM RAM) START(0x000B8000) END(0x000B87FF)
 WIDTH(32)*/

Circular Buffering Mode
The CBUFEN bit in the MODE1 register enables circular buffering—a mode
where the DAG supplies addresses that range within a constrained buffer
length (set with an L register). Circular buffers start at a base address (set
with a B register), and increment addresses on each access by a modify
value (set with an M register).

The circular buffer enable bit (CBUFEN) in the MODE1 register is cleared (= 0)
at processor reset.

 On previous SHARC processors (ADSP-2116x), circular buffering
is always enabled. For code compatibility, programs ported to the
ADSP-2136x processors should include the instruction:
Bit Set Mode1 CBUFEN;

Operating Modes

6-20 SHARC Processor Programming Reference

When using circular buffers, the DAGs can generate an interrupt on buf-
fer overflow (wraparound). For more information, see “DAG Status” on
page 6-31.

The DAGs support addressing circular buffers. This is defined as address-
ing a range of addresses which contain data that the DAG steps through
repeatedly, wrapping around to repeat stepping through the range of
addresses in a circular pattern. To address a circular buffer, the DAG steps
the index pointer (I register) through the buffer, post-modifying and
updating the index on each access with a positive or negative modify value
(M register or immediate value). If the index pointer falls outside the buf-
fer, the DAG subtracts or adds the buffer length to the index value,
wrapping the index pointer back within the start and end boundaries of
the buffer. The DAG’s support for circular buffer addressing appears in
Figure 6-1 on page 6-3, and an example of circular buffer addressing
appears in Figure 6-6 and Figure 6-7.

The starting address that the DAG wraps around is called the buffer’s base
address (B register). There are no restrictions on the value of the base
address for a circular buffer.

 Circular buffering starting at any address may only use post-modify
addressing.

It is important to note that the DAGs do not detect memory map over-
flow or underflow. If the address post-modify produces I – M < 0 or
I + M > 0xFFFFFFFF, circular buffering may not function correctly. Also,
the length of a circular buffer should not let the buffer straddle the top of
the memory map. For more information on the processor’s memory map,
see “Internal Memory Space” on page 7-11 and the product-specific data
sheet.

SHARC Processor Programming Reference 6-21

Data Address Generators

Circular Buffer Programming Model

As shown in Figure 6-6, programs use the following steps to set up a circu-
lar buffer:

1. Enable circular buffering (BIT SET MODE1 CBUFEN;). This operation
is only needed once in a program.

2. Load the buffer’s base address into the B register. This operation
automatically loads the corresponding I register. If an offset is
required the I register can be changed accordingly.

3. Load the buffer’s length into the corresponding L register. For
example, L0 corresponds to B0.

4. Load the modify value (step size) into an M register in the corre-
sponding DAG. For example, M0 through M7 correspond to B0.
Alternatively, the program can use an immediate value for the
modifier.

Figure 6-6. Circular Data Buffers With Positive Modifier

0

1

2

3

4

5

6

7

8

9

10

1

2

3

0

1

2

3

4

5

6

7

8

9

10

4

5

6

0

1

2

3

4

5

6

7

8

9

10

7

8

9

0

1

2

3

4

5

6

7

8

9

10

10

11

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS
NOTE THAT “0” ABOVE IS BASE ADDRESS. THE SEQUENCE REPEATS ON SUBSEQUENT PASSES

Operating Modes

6-22 SHARC Processor Programming Reference

Figure 6-7 shows a circular buffer with the same syntax as in Figure 6-6,
but with a negative modifier (M1=–4).

After circular buffering is set up, the DAGs use the modulus logic in
Figure 6-1 on page 6-3 to process circular buffer addressing.

 Using circular buffering with odd length in SIMD mode allows the
implicit move to exceed the circular buffer limits.

Wraparound Addressing

When circular buffering is enabled, on the first post-modify access to the
buffer, the DAG outputs the I register value on the address bus then mod-
ifies the address by adding the modify value. If the updated index value is
within limits of the buffer, the DAG writes the value to the I register. If
the updated value is outside the buffer limits, the DAG subtracts (for pos-
itive M) or adds (for negative M) the L register value before writing the
updated index value to the I register. In equation form, these post-modify
and wraparound operations work as follows.

Figure 6-7. Circular Data Buffers With Negative Modifier

0

1

2

3

4

5

6

7

8

9

1

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

3

2

6

5

4

9

8

7

0

1

2

3

4

5

6

7

8

9

10

11

10

SHARC Processor Programming Reference 6-23

Data Address Generators

• If M is positive:

• Inew = Iold + M if Iold + M < Buffer base + length (end of buffer)

• Inew = Iold + M – L if Iold + M  buffer base + length

• If M is negative:

• Inew = Iold + M if Iold + M  buffer base (start of buffer)

• Inew = Iold + M + L if Iold + M < buffer base (start of buffer)

The DAGs use all four types of DAG registers for addressing circular buf-
fers. These registers operate as follows for circular buffering.

• The index (I) register contains the value that the DAG outputs on
the address bus.

• The modify (M) register contains the post-modify value (positive or
negative) that the DAG adds to the I register at the end of each
memory access. The M register can be any M register in the same
DAG as the I register and does not have to have the same number.
The modify value can also be an immediate value instead of an M
register. The size of the modify value, whether from an M register or
immediate, must be less than the length (L register) of the circular
buffer.

• The length (L) register sets the size of the circular buffer and the
address range that the DAG circulates the I register through.
The L register must be positive and cannot have a value greater
than 231 – 1. If an L register’s value is zero, its circular buffer oper-
ation is disabled.

• The DAG compares the base (B) register, or the B register plus the L
register, to the modified I value after each access. When the B regis-
ter is loaded, the corresponding I register is simultaneously loaded
with the same value. When I is loaded, B is not changed. Programs
can read the B and I registers independently.

Operating Modes

6-24 SHARC Processor Programming Reference

Clearing the CBUFEN bit disables circular buffering for all data load and
store operations. The DAGs perform normal post-modify load and store
accesses, ignoring the B and L register values. Note that a write to a B regis-
ter modifies the corresponding I register, independent of the state of the
CBUFEN bit.

Broadcast Load Mode
The processor’s BDCST1 and BDCST9 bits in the MODE1 register control
broadcast register loading. When broadcast loading is enabled, the proces-
sor writes to complementary registers or complementary register pairs in
each processing element on writes that are indexed with DAG1 register I1
(if BDCST1 =1) or DAG2 register I9 (if BDCST9 =1). Broadcast load accesses
are similar to SIMD mode accesses in that the processor transfers both an
explicit (named) location and an implicit (unnamed, complementary)
location. However, broadcast loading only influences writes to registers
and writes identical data to these registers.

Broadcast mode is independent of SIMD mode. Broadcast load mode is a
hybrid between SISD and SIMD modes that transfers dual-data under
special conditions.

 Broadcast Load Mode performs memory reads only. Broadcast
mode only operates with data registers (DREG) or complement data
registers (CDREG). Enabling either DAG register to perform a broad-
cast load has no effect on register stores or loads to universal
registers (Ureg). For example:

R0=DM(I1,M1); /* I1 load to R0 and S0 */

S10=PM(I9,M9); /* I9 load to S10 and R10 */

SHARC Processor Programming Reference 6-25

Data Address Generators

Table 6-3 shows examples of Broadcast load instructions.

 The PEYEN bit (SISD/SIMD mode select) does not influence broad-
cast operations. Broadcast loading is particularly useful in SIMD
applications where the algorithm needs identical data loaded into
each processing element. For more information on SIMD mode (in
particular, a list of complementary data registers), see “Data Regis-
ter Neighbor Pairing” on page 2-5.

Bit-Reverse Mode
The bit reserve mode is useful for FFT calculations, if using a DIT (deci-
mation in time) FFT, all inputs must be scrambled before running the
FFT, thus the output samples are directly interpretable. For DIF (decima-
tion in frequency) FFT the process is reversed. This mode automates bit
reversal, no specific instruction is required.

The BR0 and BR8 bits in the MODE1 register enable the bit-reverse addressing
mode where addresses are output in reverse bit order. When BR0 is set
(= 1), DAG1 bit-reverses 32-bit addresses output from I0. When BR8 is set
(= 1), DAG2 bit-reverses 32-bit addresses output from I8. The DAGs
bit-reverse only the address output from I0 or I8; the contents of these
registers are not reversed. Bit-reverse addressing mode effects post-modify
operations.

Listing 6-7 demonstrates how bit-reverse mode effects address output.

Table 6-3. Table 5-2. Instruction Summary Broadcast Load

Explicit, PEx Operation Implicit, PEy operation

Rx = dm(i1,ma);
Rx = pm(i9,mb);
Rx = dm(i1,ma), Ry = pm(i9,mb);

Sx = dm(i1,ma);
Sx = pm(i9,mb);
Sx = dm(i1,ma), Sy = pm(i9,mb);

Operating Modes

6-26 SHARC Processor Programming Reference

Listing 6-7. Bit Reverse Addressing

BIT SET MODE1 BR0; /* Enables bit-rev. addressing for DAG1 */

IO = 0x83000 /* Loads I0 with the bit reverse of the

 buffer’s base address DM(0xC1000) */

M0 = 0x4000000; /* Loads M0 with value for post-modify, which

 is the bit reverse value of the modifier

 value M0 = 32 */

R1 = DM(I0,M0); /* Loads R1 with contents of DM address

 DM(0xC1000), which is the bit-reverse of
 0x83000, then post–modifies I0 for the next

 access with (0x83000 + 0x4000000) =

 0x4083000, which is the bit-reverse of

 DM(0xC1020) */

SIMD Mode
When the PEYEN bit in the MODE1 register is set (=1), the processors are in
single-instruction, multiple-data (SIMD) mode. In SIMD mode, many
data access operations differ from the processor’s default single-instruc-
tion, single-data (SISD) mode. These differences relate to doubling the
amount of data transferred for each data access.

For example, processing two channels in parallel requires a more complex
data layout since all inputs and outputs for the two channels have to be
interleaved—that is all even array elements represent one channel while all
odd elements represent the other.

DAG Transfers in SIMD Mode

Accesses in SIMD mode transfer both an explicit (named) location and an
implicit (unnamed, complementary) location (Table 6-4). The explicit
transfer is a data transfer between the explicit register and the explicit

SHARC Processor Programming Reference 6-27

Data Address Generators

address, and the implicit transfer is between the implicit register and the
implicit address.

 In SIMD mode, both aligned (explicit even address) and unaligned
(explicit odd address) transfers are supported.

R0=DM(I1,M1); /* I1 points to NW space */
S0=DM(I1+1,M1); /* implicit instruction */
R10=PM(I10,M11); /* I1 points to SW space */
S10=PM(I10+2,M11); /* implicit instruction */

 DAGs support SIMD mode in Normal word (32-bit) and short
word (16-bit) only.

The DAG registers support the bidirectional register-to-register transfers
that are described in “SIMD Mode” on page 3-40. When the DAG regis-
ter is a source of the transfer, the destination can be a register file data
register. This transfer results in the contents of the single source register
being duplicated in complementary data registers in each processing ele-
ment as shown below.

BIT SET MODE1 PEYEN; /* SIMD */
NOP; / * effect latency */
R5 = I8; /* Loads R5 and S5 with I8 */

Table 6-4. DAG Address vs. Access Modes

DAG Instruction Post-Modify Pre-Modify (M+I, no I update)

Explicit Access Implicit Access Explicit Access Implicit Access

SISD

DM(Ia, Mb)
PM(Ic, Md)

—

DM(Mb, Ia)
PM(Md, Ic)

—

SIMD NW 32-bit DM(Ia+1, Mb)
PM(Ic+1, Md)

DM(Mb+1, Ia)
PM(Md+1, Ic)

SIMD SW 16-bit DM(Ia+2, Mb)
PM(Ic+2, Md)

DM(Mb+2, Ia)
PM(Md+2, Ic)

Broadcast DM(Ia, Mb)
PM(Ic, Md)

DM(Mb, Ia)
PM(Md, Ic)

Operating Modes

6-28 SHARC Processor Programming Reference

When the processors are in SIMD mode, if the DAG register is a destina-
tion of a transfer from a register file data register source, the processor
executes the explicit move only on the condition in PEx becoming true,
whereas the implicit move is not performed. This is also true when both
the source and the destination is a DAG register.

BIT SET MODE1 PEYEN; /* SIMD */
NOP; / * effect latency */
I8 = R5; /* Loads I8 with R5 */

Conditional DAG Transfers in SIMD Mode

Conditions in SIMD allows programs to make memory accesses condi-
tional. For more information see Chapter 4, Program Sequencer.

IF EQ S8 = DM(I4,M3); /* S8 load with I4,
 R8 load with I4+1*/
IF NOT AV PM(I12,M13) = S12; /* I12 load with S12,
 I12+1 load with R12*/

Alternate (Secondary) DAG Registers
To facilitate fast context switching, the processor includes alternate regis-
ter sets for all DAG registers. Bits in the MODE1 register control when
alternate registers become accessible. While inaccessible, the contents of
alternate registers are not affected by processor operations. Note that there
is a one cycle latency between writing to MODE1 and being able to access an
alternate register set. The alternate register sets for the DAGs are described
in this section. For more information on alternate data and results regis-
ters, see “Alternate (Secondary) Data Registers” on page 2-14.

Bits in the MODE1 register can activate alternate register sets within the
DAGs: the lower half of DAG1 (I, M, L, B0–3), the upper half of DAG1
(I, M, L, B4–7), the lower half of DAG2 (I, M, L, B8–11), and the upper half
of DAG2 (I, M, L, B12–15). Figure 6-8 shows the primary and alternate
register sets of the DAGs.

SHARC Processor Programming Reference 6-29

Data Address Generators

To share data between contexts, a program places the data to be shared in
one half of either the current data address generator’s registers or the other
DAG’s registers and activates the alternate register set of the other half.
The following examples demonstrate how the code handles the one cycle
latency from the instruction that sets the bit in MODE1 to when the
alternate registers may be accessed. Note that programs can use a NOP
instruction or any other instruction not related to the DAG to take care of
this latency.

Figure 6-8. DAG Primary and Alternate Registers

I0

I1

I2

I3

M0

M1

M2

M3

L0

L1

L2

L3

B0

B1

B2

B3

SRD1L

I4

I5

I6

I7

M4

M5

M6

M7

L4

L5

L6

L7

B4

B5

B6

B7

SRD1H

I8

I9

I10

I11

M8

M9

M10

M11

L8

L9

L10

L11

B8

B9

B10

B11

SRD2L

I12

I13

I14

I15

M12

M13

M14

M15

L12

L13

L14

L15

B12

B13

B14

B15

SRD2H

MODE1 SELECT BIT DAG1 REGISTERS

DAG2 REGISTERS

DAG Interrupts

6-30 SHARC Processor Programming Reference

Example 1

BIT SET MODE1 SRD1L; /* Activate alternate dag1 lo regs */

NOP; /* Wait for access to alternates */

R0 = DM(i0,m1);

Example 2

BIT SET MODE1 SRD1L; /*activate alternate dag1 lo registers */
R13 = R12 + R11; /* Any unrelated instruction */
R0 = DM(I0,M1);

Interrupt Mode Mask
On the SHARC processors, programs can mask automated individual
operating mode bits in the MODE1 register by entering into an ISR. This
reduces latency cycles.

For the DAGs, the alternate registers (SRD1L/H and SRD2L/H), circular buf-
fer (CBUFEN), bit-reverse (BR0/8) and broadcast (BDCST1/9) are optional
masks in use. For more information, see Chapter 4, Program Sequencer.

DAG Interrupts
The DAG interrupt overview is shown in Table 6-5.

Table 6-5. DAG Interrupt Overview

Interrupt
Source

Interrupt Condition Interrupt
Priorities

Interrupt
Acknowledge

IVT

DAG1
DAG2

–Index 7 overflow
–Index 15 overflow

30–31 RTI instruction CB7I
CB15I

SHARC Processor Programming Reference 6-31

Data Address Generators

There is one set of registers (I7 and I15) in each DAG that can generate an
interrupt on circular buffer overflow (address wraparound). For more
information, see “DAG Status” on page 6-31.

When a program needs to use I7 or I15 without circular buffering and the
processor has the circular buffer overflow interrupts unmasked, the pro-
gram should disable the generation of these interrupts by setting the
B7/B15 and L7/L15 registers to values that prevent the interrupts from
occurring. If, for example, I7 were accessing the address range 0x1000 –
0x2000, the program could set B7 = 0x0000 and L7 = 0xFFFF. Because the
processor generates the circular buffer interrupt based on the wraparound
equations on page 6-23, setting the L register to zero does not necessarily
achieve the desired results. If the program is using either of the circular
buffer overflow interrupts, it should avoid using the corresponding I regis-
ter(s) (I7 or I15) where interrupt branching is not needed.

There are two special situations to be aware of when using circular buffers:

1. In the case of circular buffer overflow interrupts, if CBUFEN = 1 and
register L7 = 0 (or L15 = 0), then the CB7I (or CB15I) interrupt
occurs at every change of I7 (or I15), after the index register (I7 or
I15) crosses the base register (B7 or B15) value. This behavior is
independent of the context of both primary and alternate DAG
registers.

2. When a LW access, SIMD access, or normal word access with the
LW option crosses the end of the circular buffer, the processor com-
pletes the access before responding to the end of buffer condition.

Enable interrupts and use an interrupt service routine (ISR) to handle the
overflow condition immediately. This method is appropriate if it is
important to handle all overflows as they occur; for example in a
“ping-pong” or swap I/O buffer pointers routine.

Access Modes Summary

6-32 SHARC Processor Programming Reference

DAG Status
The DAGs can provide buffer overflow information when executing circu-
lar buffer addressing for the I7 or I15 registers. When a buffer overflow
occurs (a circular buffering operation increments the I register past the
end of the buffer or decrements below the start of the buffer), the appro-
priate DAG updates a buffer overflow flag in a sticky status (STKYx)
register. Use the BIT TST instruction to examine overflow flags in the STKY
register after a series of operations. If an overflow flag is set, the buffer has
overflowed or wrapped around at least once. This method is useful when
overflow handling is not time sensitive.

Access Modes Summary
The following sections summarize the access modes supported by the
DAGs.

SISD Mode
Programs can use odd or even modify values (1, 2, 3, …) to step through a
buffer in single- or dual-data, SISD or broadcast load mode regardless of
the data word size (long word, extended-precision normal word, normal
word, or short word).

SIMD Mode Normal Word
Programs should use a multiple of 2 modify values (2, 4, 6, …) to step
through a buffer of normal word data in single- or dual-data SIMD mode.

SIMD Mode Short Word
Programs should use a multiple of 4 modify values (4, 8, 12, …) to step
through a buffer of short word data in single- or dual-data.

SHARC Processor Programming Reference 6-33

Data Address Generators

Note that programs must step through a buffer twice, once for addressing
even short word addresses and once for addressing odd short word
addresses.

Access Modes Summary

6-34 SHARC Processor Programming Reference

SHARC Processor Programming Reference 7-1

7 MEMORY

The SHARC processors contain up to 5M bits of internal RAM and up to
4M bits of internal ROM. This memory is organized into four indepen-
dent single ported memory blocks. This organization allows greater system
flexibility in regards to code, data and stack or heap allocation. For infor-
mation about the maximum number of data or instruction words that can
fit into internal memory, see the processor-specific data sheet.

Features
The following are the memory interface features.

• Four independent internal memory blocks comprised of RAM and
ROM.

• Each block can be configured for different combinations of code
and data storage.

• Each block consists of four columns and each column is 16 bits
wide.

• Each block maps to separate regions in memory address space and
can be accessed as 16-bit, 32-bit, 48-bit, or 64-bit words.

• Each block also has its own two-deep self clearing shadow write
buffers with automatic hit detection and data forwarding logic for
read access.

• Memory aliasing allows inter access of same space from different
word sizes

Von Neumann Versus Harvard Architectures

7-2 SHARC Processor Programming Reference

• Block 0 has 256 addresses reserved for internal interrupt vector
table (IVT), controller jump after interrupt latch to a specific IVT
address.

• Unified memory space (both DAGs can support the same address)

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data using the DM bus,
for transfers, the second block stores instructions and data using the PM
bus and a third and fourth block stores data using the I/O bus. Using the
DM and PM buses in this way assures single-cycle execution with two data
transfers. In this case, the instruction must be available in the cache.

Von Neumann Versus Harvard
Architectures

Most microprocessors use a single address and a single-data bus for mem-
ory accesses. This type of memory architecture is referred to as the Von
Neumann architecture. Because processors require greater data through-
put than the Von Neumann architecture provides, many processors use
memory architectures that have separate data and address buses for pro-
gram and data storage. These two sets of buses let the processor retrieve a
data word and an instruction simultaneously. This type of memory archi-
tecture is called Harvard architecture.

Super Harvard Architecture
SHARC processors go a step further by using a Super Harvard architec-
ture. This four bus architecture has two address buses and two data buses,
but provides a single, unified address space for program and data storage.
While the data memory (DM) bus only carries data, the program memory
(PM) bus handles instructions and data, allowing dual-data accesses.

SHARC Processor Programming Reference 7-3

Memory

The following code examples and Table 7-1 illustrate the differences
between Harvard and Super Harvard capabilities.

Standard Harvard Architecture

Compute, r0=dm(i0,m0); /* instruction performs 2 accesses */

/* cycle4: IF (PM) at n+3 (Fetch1) and DF (DM) at n (Address)*/

Super Harvard Architecture

Compute, r0=dm(i0,m0), r1=pm(i8,m8); /* instruction performs 3
 accesses */
/* cycle4: IF (PM) at n+3 (Fetch1) and DF (DM AND PM) at n
(Address)*/

Table 7-1 illustrates multiple accesses in the instruction pipeline.

When instructions and data passing over the PM bus cause a conflict, the
conflict cache resolves them using hardware that act as a third bus feeding
the sequencer’s pipeline with instructions.

Processor core and I/O processor accesses to internal memory are com-
pletely independent and transparent to one another. Each block of
memory can be accessed by the processor core and I/O processor in every
cycle provided the access is to different block of the memory.

Table 7-1. Pipelined Execution Cycles

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 n+2 n+3 n+4

Address n n+1 n+2 n+3 n+4 n+5

Decode n n+1 n+2 n+3 n+4 n+5 n+6

Fetch2 n n+1 n+2 n+3 n+4 n+5 n+6 n+7

Fetch1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

Functional Description

7-4 SHARC Processor Programming Reference

Functional Description
The following sections provide detail about the processor’s memory
function.

Address Decoding of Memory Space
The SHARC processor’s memory maps appears in the processor-specific
data sheet and shows three memory spaces: internal memory space, exter-
nal memory space, and I/O processor space. These spaces have the
following definitions:

• I/O processor Space. The I/O processor’s memory-mapped regis-
ters control the system configuration of the processor and I/O
operations. For information about the I/O processor, see the prod-
uct-specific hardware reference. These registers occupy consecutive
32-bit locations in this region. For information on IOP memory
space, please refer to the processor-specific hardware reference and
data sheet.

• Internal memory space. Internal memory space refers to the pro-
cessor’s on-chip RAM, on-chip ROM, memory-mapped registers
and reserved memory space.

• External memory space. External memory space refers to the exter-
nal memories (SRAM, SDRAM, DDR2, FLASH or FIFO). For
information on external memory space please refer to the proces-
sor-specific hardware reference and data sheet.

• Shared memory bank space. The ADSP-21368 and ADSP-2146x
processors support shared memory space which allows sharing of
external memory space among multiple processors using hardware
arbitration. For more information refer to the processor-specific
hardware reference and the data sheet.

SHARC Processor Programming Reference 7-5

Memory

Figure 7-1 shows how the memory map addresses the different memory
regions.

I/O Processor Space
The IOP register space is the address space where the core or peripheral’s
control, status or address memory-mapped registers are located. This
region (0x0000 0000 to 0x0003 FFFF) is divided into 2 clock domains:

• IOP core registers (core clock domain, CCLK).

• IOP peripheral registers (peripheral clock domain, PCLK = CCLK/2).

Figure 7-1. PM and DM Bus Addresses Versus Sequencing Addresses

PM and DM Address Buses and DAGs Can Handle 32-Bit Addresses

Program Sequencer Handles

Bits 20–18, Internal Memory

31 23 21 20 18 17 0

Values in this field have
the following meaning:

000- Address of an IOP register
001- Address in Long Word space
01x- Address in Normal Word space
1xx- Address in Short Word space

24-Bit Addresses

If bit 17-16 = 00 IOP peripheral
if bit 17-16 = 11 IOP core

Bits 31–24, select
external memory bank

Functional Description

7-6 SHARC Processor Programming Reference

IOP Peripheral Registers

All writes to IOP peripheral register space pass through a bridge (CCLK to
PCLK) as shown in Figure 7-2 and Figure 7-3. The bridge contains a write
buffer to hold the write address and data. After the core has written to the
bridge, it is the bridge’s responsibility to complete a write access (which
allows pipelined accesses). The write access takes one core clock cycle
(CCLK). Since the CCLK to PCLK ratio is 1:2, the core IOP register access can
occur during rising or falling edge of PCLK. The rising edge takes four (best
case) and falling edge takes five (worst case) CCLK cycles to complete the
write. The newly written value to the IOP register can be read back on the
next instruction.

Figure 7-2. Memory and Internal Buses Block Diagram
(ADSP-21362/3/4/5/6 Only)

Internal Memory I/F

IOD
32-BIT

CMD
32-BIT

Peripheral
Core Bus

Peripheral
DMA Bus

SIMD Core

DMD
64-BIT

PMD
64-BIT

Instruction

Cache

5 stage

Sequencer

PEx PEy

BD3
(64-BIT)

BD0
(64-BIT)

Block 0

ROM/RAM

BD1
(64-BIT)

Block 1

ROM/RAM

BD2
(64-BIT)

Block 2

RAM

Bus Cross
Bar Switch

Block 3

RAM

DMD
64-BIT

PMD
64-BIT

Internal Memory

SHARC Processor Programming Reference 7-7

Memory

IOP Core Registers

Writes take effect without any stalls, whereas a read needs two core clock
cycles. The bridge (CCLK to PCLK) decodes the address from the core and
generates the read/write strobes for the respective registers. The core itself
handles the data.

Writes to IOP Peripheral Registers

Writes to IOP peripheral registers can occur on the positive or negative
PCLK edge.

 IOP peripheral registers have a write latency of minimum of 4 and
a maximum of 5 CCLK cycles to complete.

Figure 7-3. Memory and Internal Buses Block Diagram (All Other
SHARC Products)

Internal Memory I/F

IOD0
32-BIT

CMD
32-BIT

Peripheral
Core Bus

Peripheral
DMA Bus

SIMD Core

DMD
64-BIT

PMD
64-BIT

Instruction

Cache

5 stage

Sequencer

PEx PEy

BD3
(64-BIT)

BD0
(64-BIT)

Block 0

ROM/RAM

BD1
(64-BIT)

Block 1

ROM/RAM

BD2
(64-BIT)

Block 2

RAM

Bus Cross
Bar Switch

Block 3

RAM

DMD
64-BIT

PMD
64-BIT

IOD1
32-BIT

External Port
DMA Bus

EPD*

External Port
Core Bus *ADSP-21367/8/9 32-BIT BUS

 ADSP-21371/5 48-BIT BUS
 ADSP-214xx 64-BIT BUS

Internal Memory

Functional Description

7-8 SHARC Processor Programming Reference

Back to Back Writes to IOP Peripheral Registers

If the core requests continuously the bridge, it stalls for one core cycle for
each write starting with the second. Therefore, each write takes two cycles
except for the first, which takes just one.

Alternate Writes to IOP Peripheral Registers

When the core requests a write once in every cycle of PCLK clock, (every
alternate CCLK cycle) then writes occur without stalls.

Reads from IOP Peripheral Registers

Single reads take 7 or 8 core cycles, depending on whether the request
starts in the positive or negative half of the PCLK cycle. Reads are not pipe-
lined and so back to back reads behave in the same way as isolated reads.
However irrespective of whether the first read begins in positive or nega-
tive PCLK, the rest of the reads align themselves to the negative edge of
PCLK.

IOP Register Core Access

Table 7-2 illustrates the different access times for the core to any IOP
register.

 Accesses to IOP registers (from the processor core) should not use
Type 1 (dual access) or LW or forced LW instructions.

Table 7-2. I/O Processor Access Conditions

Access Type Core domain (core
cycles)

Peripheral domain
(core cycles)

IOP register write/read 1/2 1/8

IOP register back-to-back write/read 1/2 2/8

SHARC Processor Programming Reference 7-9

Memory

Note that an atomic write and read from the same IOP peripheral register
takes 11 (best case) or 13 (worst case) CCLK cycles. The following addi-
tional information about access to peripheral data buffers should be noted.

• Attempting to write to a full (or read from empty) peripheral data
buffer causes the core to hang indefinitely, unless the BHD (buffer
hang disable) bit for that peripheral is set.

• In case of a full transmit buffer, the held-off I/O processor register
read or write access incurs one extra core-clock cycle.

• Interrupted IOP register reads and writes, if preceded by another
write creates one additional core stall cycle.

Out of Order Execution

In the next examples different effect latencies are shown. Because the SPI
control write (N+1) requires 4–5 CCLK cycles to have an effect but the next
access to a system register (SREG) (N+2) does not pass the bridge (non
memory-mapped) and therefore pipelining may affect the next instruction
executed before the previous one. The following example would cause
pipeline execution problems.

N:r0=SPIEN;
N+1:dm(SPICTL)=r0;
N+2:bit CLR FLAGS FLG0;

To prevent out of order instruction execution the above code can be mod-
ified to:

Conditional IOP register write/read 1/2 3/10

Aborted IOP register write/read 2/3 4/4

Table 7-2. I/O Processor Access Conditions

Access Type Core domain (core
cycles)

Peripheral domain
(core cycles)

Functional Description

7-10 SHARC Processor Programming Reference

N:r0=SPIEN;
N+1:dm(SPICTL)=r0;
N+2:nop; nop; nop; nop; nop;
N+7:bit CLR FLAGS FLG0;

or:

N:r0=SPIEN;
N+1:dm(SPICTL)=r0;
N+2:r10=dm(SPICTL); /* dummy read forces previous write
 to complete */
N+3:bit CLR FLAGS FLG0;

IOP Register Access Arbitration

All of the peripherals supporting DMA have two ports—one for core
accesses and one for DMA accesses. While these registers act as mem-
ory-mapped locations, they are separate from the processor’s internal
memory and have different bus accesses. One bus can access one I/O pro-
cessor register at a time. (A typical situation occurs if the core reads or
writes to the same register set used by the active chained DMA channel).

When there is contention among the buses for access to the same I/O pro-
cessor register, the peripheral performs the following arbitration:

1. DMD bus accesses (highest priority)

2. PMD bus accesses

3. IOD0 or IOD1 bus accesses (lowest priority)

Internal memory block access arbitration is different–the highest priority
favors IOD0 followed by IOD1, DMD and finally the PMD bus.

SHARC Processor Programming Reference 7-11

Memory

Internal Memory Space
The SHARC processors’s internal memory block space is divided into four
blocks—block 0 through block 3. RAM and ROM memory space and
addressing varies by processor model and is available in the product-spe-
cific data sheet.

Internal Memory Interface

The internal memory interface is responsible for all address and strobe
generation for internal memory accesses. It also performs the necessary
48-bit address rotation, pin multiplexing and other interface tasks for
instruction fetch or 40-bit data access. All data writes to the internal mem-
ory blocks pass a shadow write FIFO logic. Apart from performing
memory accesses, the interface also performs bus-switching for the various
buses. The crossbar switches between all buses; DMD, PMD, IOD0 and
IOD1 to the single ported memory blocks.

On-Chip Buses

The processor has up to four sets of internal buses connected to its sin-
gle-ported memory, the program memory (PM), data memory (DM), and
I/O processor (IOP) buses. The IOP bus is designed to run only at half
the core clock frequency. The three buses share the single port on each of
the four memory blocks. Memory accesses from the processor’s core (com-
putational units, data address generators, or program sequencer) use the
PM or DM buses, while the I/O processor uses the IOP bus for memory
accesses. The I/O processor can access external memory devices. For more
information about the external memory and I/O capabilities of the proces-
sor, see the product-specific hardware reference. Figure 7-2 on page 7-6
and Figure 7-3 on page 7-7 show the bus structures of the
ADSP-21362/3/4/5/6 processors and the ADSP-21367/8/9 and later
products respectively.

Functional Description

7-12 SHARC Processor Programming Reference

Internal Memory Block Architecture

Because the processor’s internal memory is organized as four 16-bit wide
by 64K high columns, memory is addressable in widths that are multiples
of columns up to 64 bits:

• 1 column = 16-bit words

• 2 columns = 32-bit words

• 3 columns = 48- or 40-bit words

• 4 columns = 64-bit words

Each block is physically comprised of four 16-bit columns. Wrapping, as
shown in Figure 7-10 on page 7-30, is a method where memory can effi-
ciently store different combinations of 16-bit, 32-bit, 48-bit or 64-bit
wide words.

 The width of the data word fetched from memory is dependent
upon the address range used. The same physical location in mem-
ory can be accessed using four different addresses.

These columns of memory are addressable as a variety of word sizes:

• 64-bit long word (LW) data (four columns)

• 48-bit instruction words or 40-bit extended-precision normal word
(NW) data (3 columns)

• 32-bit normal word data (2 columns)

• 16-bit short word (SW) data (1 column)

Extended-precision normal word (40-bit) data is only accessible if the
IMDWx bit is set in the SYSCTL register. It is left-justified within a three col-
umn location, using bits 47–8 of the location.

SHARC Processor Programming Reference 7-13

Memory

 After power-up the content of the SRAM memory is not
predictable.

Normal Word Space 48/40-Bit Word Rotations

When the processor core addresses memory, the word width of the access
determines which columns within the memory are accessed. For instruc-
tion word (48 bits) or extended-precision normal word data (40 bits), the
word width is 48 bits, and the processor accesses the memory’s 16-bit col-
umns in groups of three. Because these sets of three column accesses are
packed into a 4 column matrix, there are four rotations of the columns for
storing 40- or 48-bit data. The three column word rotations within the
four column matrix appear in Figure 7-4.

Extended precision floating-point (40-bit) data and instruction fetches
(48-bit) need a different type of manipulation of their addresses to derive
the corresponding row addresses. Since each row contains 4 columns while
48-bit words span across 3 columns, the address is multiplied by ¾ (add
address to its left-shifted version, right-shift the result by two bit-posi-
tions) to derive the first row address. The next address is the incremented
version of the first one. Note that this assumes that the beginning
addresses of 48-bit/32-bit/64-bit addresses align.

Figure 7-4. 48-Bit Word Rotations

Column 0Column 1Column 2Column 3

150150150150A
d

d
re

ss
es

Rotation 1 Rotation 0

Rotation 1Rotation 2

Rotation 3 Rotation 2

Functional Description

7-14 SHARC Processor Programming Reference

For long word (64 bits), normal word (32 bits), and short word (16 bits)
memory accesses, the processor selects from fixed columns in memory. No
rotations of words within columns occur for these data types.

 Word rotation across subsequent row addresses is only required in
the NW space for 48-bit instruction fetch or extended precision
floating point mode.

Figure 7-5 shows the memory ranges for each data size in the processor’s
internal memory.

Rules for Wrapping Memory Layout
The following sections describe memory wrapping, a method where pro-
grams can efficiently store different combinations of 16-bit, 32-bit, 48-bit
or 64-bit wide words.

Mixing Words in Normal Word Space

The processor’s memory organization lets programs freely place memory
words of all sizes (see “Internal Memory Block Architecture” on
page 7-12) with few restrictions (see “Mixing 32-Bit Words and 48-Bit
Words” on page 7-16). This memory organization also lets programs mix
(place in adjacent addresses) words of all sizes. This section discusses how
to mix odd (three column) and even (four column) data words in the pro-
cessor’s memory.

Transition boundaries between 48-bit (three column) data and any other
data size can occur only at any 64-bit address boundary within either
internal memory block. Depending on the ending address of the 48-bit
words, there are zero, one, or two empty locations at the transition
between the 48-bit (three column) words and the 64-bit (four column)
words. These empty locations result from the column rotation for storing
48-bit words. The three possible transition arrangements appear in
Figure 7-5, Figure 7-6, and Figure 7-7.

SHARC Processor Programming Reference 7-15

Memory

Figure 7-5. Mixed Instructions and Data with No Unused Locations

Figure 7-6. Mixed Instructions and Data With One Unused Location

Column 0Column 1Column 2Column 3
150150150150A

d
d

re
ss

es

32-bit word 2

Transitioning from 48-bit to 32-bit
data with zero empty locations:

(48-bit word top address)

32-bit word 3

32-bit word 1 32-bit word 0

48-bit word top

48-bit word top-3

48-bit word top-248-bit word top-1

48-bit word top-2

48-bit word top-1

Column 0Column 1Column 2Column 3
150150150150

Empty

A
d

d
re

ss
es

Transitioning from 48-bit to 32-bit
data with one empty locations:

(48-bit word top address)

32-bit word 3

32-bit word 1

32-bit word 2

32-bit word 0

48-bit word top

48-bit word top-1

48-bit word top-2

48-bit word top-2

48-bit word top-3

Functional Description

7-16 SHARC Processor Programming Reference

Mixing 32-Bit Words and 48-Bit Words

There are some restrictions that stem from the memory column rotations
for three column data (48 or 40-bit words) and they relate to the way that
three column data can mix with two column data (32-bit words) in mem-
ory. These restrictions apply to mixing 48 and 32-bit words, because the
processor uses a normal word address to access both of these types of data
even though 48-bit data maps onto three columns of memory and 32-bit
data maps onto two columns of memory.

When a system has a range of three column (48-bit) words followed by a
range of two column (32-bit) words, there is often a gap of empty 16-bit
locations between the two address ranges. The size of the address gap var-
ies with the ending address of the range of 48-bit words. Because the
addresses within the gap alias to both 48 and 32-bit words, a 48-bit write
into the gap corrupts 32-bit locations, and a 32-bit write into the gap cor-
rupts 48-bit locations. The locations within the gap are only accessible
with short word (16-bit) accesses.

Figure 7-7. Mixed Instructions and Data With Two Unused Locations

Column 0Column 1Column 2Column 3
150150150150

Empty

A
d

d
re

ss
es

Transitioning from 48-bit to 32-bit
data with two empty locations:

(48-bit word top address)

Empty

32-bit word 3

32-bit word 1

32-bit word 2

32-bit word 0

48-bit word top

48-bit word 48-bit word top-1

48-bit word top-2 48-bit word top-3

SHARC Processor Programming Reference 7-17

Memory

32-Bit Word Allocation

Calculating the starting address for two column data that minimizes the
gap after three column data is useful for programs that are mixing three
and two column data. Given the last address of the three column (48-bit)
data, the starting address of the 32-bit range that most efficiently uses
memory can be determined by the equation:

m = B + (3/2 (n – B)) + 1)

where:

• n is the first unused address after the end of 48-bit words

• B is the base normal word 48-bit address of the internal memory
block

• m is the first 32-bit normal word address to use after the end of
48-bit words. For the ADSP-21367 memory layout:

• block 0 = 0x80000 <= n <= 0x93FFF

• block 1 = 0xA0000 <= n <= 0xB3FFF

• block 2 = 0xC0000 <= n <= 0xC1554

• block 3 = 0xE0000 <= n <= 0xE1554

 Note that the linker verifies the wrapping rules of different output
sections and returns an overlap error message during project build
if the rules are violated.

Functional Description

7-18 SHARC Processor Programming Reference

Example: Calculating a Starting Address for 32-Bit Addresses

Given a block of words in the range 0x90000 to 0x92694 (block 0), the
next valid address is 0x92695. The number of 48-bit words (n) is:
n = 0x92695 - 0x80000 = 0x12695.

When 0x12695 is converted to decimal representation, the result is
75413.

The base (B) normal word address of the internal memory block is
0x80000. The first 32-bit normal word address to use after the end of the
48-bit words is given by:

m = 0x80000 + (3/2 (75413)) + 1
m = 0x80000 + 0x1B9E0
m = 0x80000 + 0x1B9E0 = 0x9B9E0

The first valid starting 32-bit address is 0x9B9E0.

48-Bit Word Allocation

Another useful calculation for programs that are mixing two and three col-
umn data is to calculate the amount of three column data that minimizes
the gap before starting four column data. Given the starting address of the
two column (32-bit) data, the number of 48-bit words that most effi-
ciently uses memory can be determined by the equation:

n = B + (2/3 (m – B)) – 1 where:

• m is the first 32-bit normal word address after the end of 32-bit
words (1 m values falls in the valid normal word address space)

• B is the base normal word 48-bit address of the internal memory
block

• n is the address of the first 48-bit word to use after the end of
32-bit words

SHARC Processor Programming Reference 7-19

Memory

Memory Address Aliasing

For example, the long word address 0x4C000 corresponds to the same
locations as normal word address 0x98000 and 0x98001. This also corre-
sponds to the same locations as short word addresses 0x0013 0000,
0x0013 0001, 0x0013 0002 and 0x0013 0003. There are gaps in the
memory map when using normal word addressing for 48-bit or 40-bit
accesses. These gaps of missing addresses stem from the arrangement of
this 3-column data in the memory.

As shown in Listing 7-1, accessing a short word memory address gets one
16-bit word. Consecutive 16-bit short-words are accessed from columns
#1, #2, #3, #4, #1 and so on. Accessing a normal word memory address
transfers 32 bits (from columns 1 and 2 or 3 and 4). Consecutive 32-bit
words are accessed from columns 1 and 2, 3 and 4, 1 and 2 etc. Accessing
a long word address transfers 64 bits (from all four columns). For exam-
ple, the same 16 bits of Block-0 are overwritten in each of the following
four write instructions (some, but not all of the short word accesses over-
write more than 16 bits).

Listing 7-1. Overwriting Bits

DM(0x0004C000) = R0; /* long word transfer

 (64 bits/four columns) */

DM(0x00098000) = R0; /* normal word transfer

 (32 bits/two columns) */

DM(0x00130000) = R0; /* short word transfer

 (16 bits/1-column) */

USTAT1 = dm(SYSCTL);

bit set USTAT1 IMDW0; /* set Blk0 access as ext. precision */

dm(SYSCTL) = USTAT1;

NOP; /* effect latency */

DM(0x00090000) = R0; /* normal word transfer

 (40 bits/three columns) */

Functional Description

7-20 SHARC Processor Programming Reference

 This mechanism is called address aliasing in that the same physical
memory can be accessed using multiple addresses. This concept is
essential to understand the memory operation.

Examples of memory address aliasing are:

• Boot instructions via DMA (32-bit NW) into memory block, fetch
the instructions in 48-bit NW.

• Boot instructions via DMA (32-bit NW) into memory block, fetch
the instructions in 16-bit SW.

• Shifter reads 32-bit NW floating-point data and stores 16-bit SW
floating-point data.

Normal word address space is also used by the program sequencer to fetch
48-bit instructions. Note that a 48-bit fetch spans three columns that can
lead to a different address range between instruction fetches and data
fetches (Figure 7-1 on page 7-5).

Normal word address space can also optionally be used to fetch 40-bit
data (from three columns) if the IMDWx (internal memory data width) bit
in the SYSCTL register is set. There are four bits in the SYSCTL register,
IMDW0–3 that determine whether access to each block is 32 or 40 bits. For
more information, see “SIMD Mode” on page 6-26.

Memory Block Arbitration

A memory access conflict can occur when the processor attempts two
accesses to the same internal memory block in the same cycle. When this
conflict, known as a block conflict occurs, the memory interface logic
resolves it according the following rules. The instruction that causes this
conflict may take two or three core clock cycles to complete execution.

1. Between DM and PM accesses, conflict is always resolved in favor
of DM, with the PM access occurring in the second cycle.

SHARC Processor Programming Reference 7-21

Memory

2. Between IO0 and IO1 accesses, conflict is always resolved in favor
to IO0, with the IO1 access occurring in the second cycle (for the
ADSP-21367/8/9 and later SHARC processors.)

3. Between the core (DM/PM) and I/O (IO0/IO1) accesses, the con-
flict is resolved in favor of I/O. Note that since the I/O buses run
at half the core clock frequency (PCLK), I/O accesses are requested
at a maximum rate of once in two core clock cycles. This provides a
fair sharing of memory access to the core and I/O buses.

During a single-cycle, dual-data access, the processor core uses the inde-
pendent PM and DM buses to simultaneously access data from two
memory blocks. Though dual-data accesses provide greater data through-
put, it is important to note some limitations on how programs may use
them. The limitations on single cycle, dual-data accesses are:

• The two pieces of data must come from different memory blocks.

• If the core accesses two words from the same memory block in a
single instruction, an extra cycle is needed.

• The data access execution may not conflict with an instruction
fetch operation. The PM data bus tries to fetch an instruction in
every cycle. If a data fetch is also attempted over the PM bus, an
extra cycle may be required depending on the cache.

• If the cache contains the conflicting instruction, the data access
completes in a single cycle and the sequencer uses the cached
instruction. If the conflicting instruction is not in the cache, an
extra cycle is needed to complete the data access and cache the con-
flicting instruction. For more information, see “Instruction Cache
for External Instruction Fetch” on page 4-82.

For more information on how the buses access memory blocks, see
“On-Chip Buses” on page 7-11.

Functional Description

7-22 SHARC Processor Programming Reference

Note that on previous SIMD SHARC processors (ADSP-2116x and
ADSP-2126x) block conflicts between core and DMA do not occur
because the memory blocks are dual-ported.

VISA Instruction Arbitration

With standard arbitration processes, 48-bits of data are fetched at a time.
In VISA operation, this data may either be 1, 2, or 3 instructions. This is
an advantage of VISA operation—during the execution of a typical VISA
application there are fewer accesses to internal memory from the core,
causing less conflict on the internal buses with other peripheral DMAs or
dedicated hardware accelerators using the same bus.

Using Single Ported Memory Blocks Efficiently

Since the newer SHARC processor’s are designed with four single-ported
memory blocks, software needs to be designed so that data is continuously
being processed and there are no memory block conflicts.

Typically data is pushed into memory using the DMA infrastructure. The
core loads the data from memory, performs a computation, and stores the
data back into memory. Then the DMA drives this data off-chip.

To ensure continuous data streams, mechanisms like ping-pong buffers,
together with chained DMA transfers, can be implemented as shown in
Figure 7-8. Designs should ensure that while the DMA moves data to the
primary memory block, the core processes the secondary block’s data.
Then, after the DMA interrupt is generated, the memory block processing
between core and DMA is flipped which prevents memory block conflicts
between the core and DMA.

For complete information on using DMA, see the product-specific hard-
ware reference, “I/O Processor” chapter.

SHARC Processor Programming Reference 7-23

Memory

Shadow Write FIFO
Because the processor’s internal memory operates at high speeds, writes to
the memory block do not go directly into the memory array, but rather to
a two-deep FIFO called the shadow write FIFO. The four shadow FIFOs
are located inside the internal memory interface block (Figure 7-2 and
Figure 7-3) which is responsible for access control to the individual
blocks.

This FIFO uses a non-read cycle (either a write cycle, or a cycle in which
there is no access of internal memory) to load data from the FIFO into
internal memory. When an internal memory write cycle occurs, the FIFO
loads any data from a previous write into memory and accepts new data.

When writing into a memory block, the writes pass through the shadow
write buffer. Note the shadow FIFO is self-clearing, the last two writes are
moved at any point into the block array.

Figure 7-8. DMA Flow

CORE

DMA

BLOCK 1BLOCK 0

Interrupts

7-24 SHARC Processor Programming Reference

Data can be read from internal memory in either of the following ways.

1. From the shadow write FIFO (caused by immediately read of the
same data after a write)

2. From the memory block

 The operation of the shadow write FIFO is completely transparent
to the user. The logic takes automatic control of SIMD, 32-bit
NW to 40-bit NW, LW or unaligned access types.

External Memory Space
External memory space is product-specific and only applies to products
that have an external port. For more information refer to the product-spe-
cific hardware reference manual and the product-specific data sheet.

Interrupts
Table 7-3 provides an overview of interrupts associated with the SHARC
memory.

Internal Interrupt Vector Table
The default location of the SHARCs processor’s interrupt vector table
(IVT) depends basically on the processor's booting mode. When any
external boot source is selected (FLASH, SPI, Link Port), the vector table

Table 7-3. Memory Interrupts

Source Condition Priorities (0–41) Interrupt
Acknowledge

IVT

Memory –Illegal IOP access
–Unaligned 64-bit forced long
word access

2 RTI instruction IICDI

SHARC Processor Programming Reference 7-25

Memory

starts at the first internal RAM normal word address. If the boot mode is
selected to reserved boot mode on ROM based versions, the vector table
starts in ROM normal word address.

The internal interrupt vector table (IIVT) bit in the SYSCTL register over-
rides the default placement of the vector table. If IIVT is set (=1), the
interrupt vector table starts at internal RAM regardless of the booting
mode. If IIVT is cleared (=0), the IIVT starts in the internal ROM.

For information about processor booting, see the processor-specific hard-
ware manual.

Illegal I/O Processor Register Access
The processor monitors I/O processor register access when the illegal I/O
processor register access (IIRAE) bit in the MODE2 register is set (=1). If
access to the IOP registers is detected, an illegal input condition detected
(IICDI) interrupt occurs. The interrupt is latched in the IRPTL register (see
“Interrupt Latch Register (IRPTL)” on page A-36) when a core access to
an IOP register occurs.

 The I/O processor’s DMA controller cannot generate the IICDI
interrupt. For more information, see “Mode Control 2 Register
(MODE2)” on page A-7.

Unaligned Forced Long Word Access
The processor monitors for unaligned 64-bit memory accesses (access
from two successive rows) if the unaligned 64-bit memory accesses (U64-
MAE) bit in the MODE2 register (bit 21) is set (=1). An unaligned access is an
odd numbered address normal word access that is forced to 64 bits with
the LW mnemonic. When detected, this condition is an input that can
cause an illegal input condition detected (IICDI) interrupt if the interrupt
is enabled in the IMASK register. For more information, see “Mode Control
2 Register (MODE2)” on page A-7.

Interrupts

7-26 SHARC Processor Programming Reference

The following code example shows the access for even and odd addresses.
When accessing an odd address, the sticky bit is set to indicate the
unaligned access.
bit set mode2 U64MAE; /* set bit for aligned or

 unaligned 64-bit access*/

r0 = 0x11111111;

r1 = 0x22222222;

pm(0x98200) = r0(lw); /* even address in 32-bit, access

 is aligned */

pm(0x98201) = r0(lw); /* odd address in 32-bit, sticky

 bit is set */

Figure 7-9. Unaligned Long Word Accesses

LONG WORD ACCESS

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

LONG WORD ACCESS

WORD Y1

WORD Y2

WORD Y0 WORD X0

WORD X1

WORD X2

SHARC Processor Programming Reference 7-27

Memory

Internal Memory Access Listings
The processor’s DM and PM buses support many combinations of regis-
ter-to-memory data access options. The following factors influence the
data access type:

• Size of words—short word, normal word, extended-precision nor-
mal word, or long word

• Number of words—single or dual-data move

• Processor mode—SISD, SIMD, or broadcast load

The following list shows the processor’s possible memory transfer modes
and provides a cross-reference to examples of each memory access option
that stems from the processor’s data access options.

These modes include the transfer options that stem from the following
data access options:

• The mode of the processor: SISD, SIMD, or Broadcast Load

• The size of access words: long, extended-precision normal word,
normal word, or short word

• The number of transferred words

To take advantage of the processor’s data accesses to three and four col-
umn locations, programs must adjust the interleaving of data into memory
locations to accommodate the memory access mode. The following guide-
lines provide overviews of how programs should interleave data in
memory locations. For more information and examples, see “Instruction

Internal Memory Access Listings

7-28 SHARC Processor Programming Reference

Set Types” in Chapter 9, Instruction Set Types, and “Computation
Types” in Chapter 11, Computation Types.

• Programs can use odd or even modify values (1, 2, 3, …) to step
through a buffer in single- or dual-data, SISD or broadcast load
mode regardless of the data word size (long word, extended-preci-
sion normal word, normal word, or short word).

• Programs should use a multiple of 4 modify values (4, 8, 12, …) to
step through a buffer of short word data in single- or dual-data,
SIMD mode. Programs must step through a buffer twice, once for
addressing even short word addresses and once for addressing odd
short word addresses.

• Programs should use a multiple of 2 modify values (2, 4, 6, …) to
step through a buffer of normal word data in single- or dual-data
SIMD mode.

• Programs can use odd or even modify values (1, 2, 3, …) to step
through a buffer of long word or extended-precision normal word
data in single- or dual-data SIMD modes.

 Where a cross (†) appears in the PEx registers in any of the follow-
ing figures, it indicates that the processor zero-fills or sign-extends
the most significant 16 bits of the data register while loading the
short word value into a 40-bit data register. Zero-filling or
sign-extending depends on the state of the SSE bit in the MODE1 sys-
tem register. For short word transfers, the least significant 8 bits of
the data register are always zero.

Short Word Addressing of Single-Data in SISD Mode
Figure 7-10 shows the SISD single-data, short word addressed access
mode. For short word addressing, the processor treats the data buses as
four 16-bit short word lanes. The 16-bit value for the short word access is
transferred using the least significant short word lane of the PM or DM

SHARC Processor Programming Reference 7-29

Memory

data bus. The processor drives the other short word lanes of the data buses
with zeros.

In SISD mode, the instruction accesses the PEx registers to transfer data
from memory. This instruction accesses WORD X0, whose short word
address has “00” for its least significant two bits of address. Other loca-
tions within this row have addresses with least significant two bits of “01”,
“10”, or “11” and select WORD X1, WORD X2, or WORD X3 from memory
respectively. The syntax targets register RX in PEx.

Short Word Addressing of Dual-Data in SISD Mode
Figure 7-11 shows the SISD, dual-data, short word addressed access
mode. For short word addressing, the processor treats the data buses as
four 16-bit short word lanes. The 16-bit values for short word accesses are
transferred using the least significant short word lanes of the PM and DM
data buses. The processor drives the other short word lanes of the data
buses with zeros.

In SISD mode, the instruction explicitly accesses PEx registers. This
instruction accesses WORD X0 in any block and WORD Y0 in any other block.
Each of these words has a short word address with “00” for its least signif-
icant two bits of address. Other accesses within these four column
locations have addresses with their least significant two bits as “01”, “10”,
or “11” and select WORD X1/Y1, WORD X2/Y2, or WORD X3/Y3 from memory
respectively. The syntax explicitly accesses registers RX and RA in PEx.

Internal Memory Access Listings

7-30 SHARC Processor Programming Reference

Figure 7-10. Short Word Addressing of Single-Data in SISD Mode

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

ANY OTHER BLOCKANY BLOCK

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

A
D

D
R

E
S

S

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

A
D

D
R

E
S

S

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

0X0000 0X0000

SHARC Processor Programming Reference 7-31

Memory

Figure 7-11. Short Word Addressing of Dual-Data in SISD Mode

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

WORD X00X0000† 0X00

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

PM DATA
BUS

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

WORD Y0 0X0000

WORD Y00X0000† 0X00

0X00000X0000 0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-32 SHARC Processor Programming Reference

Short Word Addressing of Single-Data in SIMD
Mode

Figure 7-12 shows the SIMD, single-data, short word addressed access
mode. For short word addressing, the processor treats the data buses as
four 16-bit short word lanes. The explicitly addressed (named in the
instruction) 16-bit value is transferred using the least significant short
word lane of the PM or DM data bus. The implicitly addressed (not
named in the instruction, but inferred from the address in SIMD mode)
short word value is transferred using the 47–32 bit short word lane of the
PM or DM data bus. The processor drives the other short word lanes of
the PM or DM data buses with zeros (31–16 bit lane and 63–48 bit lane).

The instruction explicitly accesses the register RX and implicitly accesses
that register’s complementary register, SX. This instruction uses a PEx reg-
ister with an RX mnemonic. If the syntax named the PEy register SX as the
explicit target, the processor uses that register’s complement RX as the
implicit target. For more information on complementary registers, see
“SIMD Mode” on page 3-40.

Figure 7-12 shows the data path for one transfer. The processor accesses
short words sequentially in memory. For more information on arranging
data in memory to take advantage of this access pattern, see Figure 7-28
on page 7-59.

SHARC Processor Programming Reference 7-33

Memory

Figure 7-12. Short Word Addressing of Single-Data in SIMD Mode

WORD Y10WORD Y11 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

A
D

D
R

E
S

S

…

…

…

…

…

…

…

…

…

…

…

…

A
D

D
R

E
S

S

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X2 0X00000X0000

WORD X00X0000† 0X00

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

WORD X20X0000† 0X00

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-34 SHARC Processor Programming Reference

Short Word Addressing of Dual-Data in SIMD Mode
Figure 7-13 shows the SIMD, dual-data, short word addressed access. For
short word addressing, the processor treats the data buses as four 16-bit
short word lanes. The explicitly addressed 16-bit values are transferred
using the least significant short word lanes of the PM and DM data bus.
The implicitly addressed short word values are transferred using the 47-32
bit short word lanes of the PM and DM data buses. The processor drives
the other short word lanes of the PM and DM data buses with zeros.

The instruction explicitly accesses registers RX and RA, and implicitly
accesses the complementary registers, SX and SA. This instruction uses PEx
registers with the RX and RA mnemonics.

The second word from any other block is shown as x2 on the data bus and
in the Sx register. It is shown as Y2 and Y0 respectively in the left side of
the block. The Sx and SA registers are transparent and look similar to Rx
and RA. All bits should be shown as in Rx and RA. For more information on
arranging data in memory to take advantage of short word addressing of
dual-data in SIMD mode, see Figure 7-29 on page 7-60.

SHARC Processor Programming Reference 7-35

Memory

Figure 7-13. Short Word Addressing of Dual-Data in SIMD Mode

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

WORD X00X0000† 0X00

7-023-839-24

RX

7-023-839-24

RA

SXSA

PM DATA
BUS

WORD X0DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM (SHORT WORD X0 ADDRESS), RA = PM (SHORT WORD Y0 ADDRESS);

WORD Y0 0X0000

WORD Y00X0000† 0X00

0X00000X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ANY OTHER BLOCKANY BLOCK

WORD Y2 WORD X2

WORD X20X0000† 0X00

7-023-839-247-023-839-24

WORD Y20X0000† 0X00

Internal Memory Access Listings

7-36 SHARC Processor Programming Reference

32-Bit Normal Word Addressing of Single-Data in
SISD Mode

Figure 7-14 shows the SISD, single-data, 32-bit normal word addressed
access mode. For normal word addressing, the processor treats the data
buses as two 32-bit normal word lanes. The 32-bit value for the normal
word access completes a transfer using the least significant normal word
lane of the PM or DM data bus. The processor drives the other normal
word lanes of the data buses with zeros.

In SISD mode, the instruction accesses a PEx register. This instruction
accesses WORD X0 whose normal word address has “0” for its least signifi-
cant address bit. The other access within this four column location has an
address with a least significant bit of “1” and selects WORD X1 from mem-
ory. The syntax targets register RX in PEx.

 For normal word accesses, the processor zero-fills the least signifi-
cant 8 bits of the data register on loads and truncates these bits on
stores to memory.

SHARC Processor Programming Reference 7-37

Memory

Figure 7-14. Normal Word Addressing of Single-Data in SISD Mode

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

DM DATA
BUS

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X0

7-023-839-24

RXRY

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

0X0000

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-38 SHARC Processor Programming Reference

32-Bit Normal Word Addressing of Dual-Data in
SISD Mode

Figure 7-15 shows the SISD dual-data, 32-bit normal word addressed
access mode. For normal word addressing, the processor treats the data
buses as two 32-bit normal word lanes. The 32-bit values for normal word
accesses transfer using the least significant normal word lanes of the PM
and DM data buses. The processor drives the other normal word lanes of
the data buses with zeros.

In Figure 7-15, the access targets the PEx registers in a SISD mode opera-
tion. This instruction accesses WORD X0 in any other block and WORD Y0 in
any block. Each of these words has a normal word address with 0 for its
least significant address bit. Other accesses within these four column loca-
tions have addresses with the least significant bit of 1 and select WORD
X1/Y1 from memory. The syntax targets registers RX and RA in PEx.

SHARC Processor Programming Reference 7-39

Memory

Figure 7-15. Normal Word Addressing of Dual-Data in SISD Mode

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RA = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y00X0000

WORD X0

7-023-839-24

RXRA

7-023-839-24

SX

7-023-839-24

SA

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

0X0000 0X0000

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

WORD Y0

7-023-839-24

0X00

Internal Memory Access Listings

7-40 SHARC Processor Programming Reference

32-Bit Normal Word Addressing of Single-Data in
SIMD Mode

Figure 7-16 shows the SIMD, single-data, normal word addressed access
mode. For normal word addressing, the processor treats the data buses as
two 32-bit normal word lanes. The explicitly addressed (named in the
instruction) 32-bit value completes a transfer using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed
(not named in the instruction, but inferred from the address in SIMD
mode) normal word value completes a transfer using the most significant
normal word lane of the PM or DM data bus.

In Figure 7-16, the explicit access targets the named register RX, and the
implicit access targets that register’s complementary register, SX. This
instruction uses a PEx register with an RX mnemonic. If the syntax named
the PEy register SX as the explicit target, the processor would use that regis-
ter’s complement, RX, as the implicit target. For more information on
complementary registers, see “SIMD Mode” on page 3-40.

Figure 7-16 shows the data path for one transfer. The processor accesses
normal words sequentially in memory. For more information on arranging
data in memory to take advantage of this access pattern, see Figure 7-29
on page 7-60.

SHARC Processor Programming Reference 7-41

Memory

Figure 7-16. Normal Word Addressing of Single-Data in SIMD Mode

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X1

WORD X0 0X00

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

WORD X1 0X00

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-42 SHARC Processor Programming Reference

32-Bit Normal Word Addressing of Dual-Data in
SIMD Mode

Figure 7-17 shows the SIMD, dual-data, 32-bit normal word addressed
access mode. For normal word addressing, the processor treats the data
buses as two 32-bit normal word lanes. The explicitly addressed (named in
the instruction) 32-bit values are transferred using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed
(not named in the instruction, but inferred from the address in SIMD
mode) normal word values are transferred using the most significant nor-
mal word lanes of the PM and DM data bus.

In Figure 7-17, the explicit access targets the named registers RX and RA,
and the implicit access targets those register’s complementary registers SX
and SA. This instruction uses the PEx registers with the RX and RA
mnemonics.

Figure 7-15 shows the data path for one transfer. The processor accesses
normal words sequentially in memory. For more information on arranging
data in memory to take advantage of this access pattern, see Figure 7-29
on page 7-60.

SHARC Processor Programming Reference 7-43

Memory

Figure 7-17. Normal Word Addressing of Dual-Data in SIMD Mode

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

WORD X0

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

PM DATA
BUS

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RA = PM(NORMAL WORD Y0 ADDRESS);

WORD Y0 WORD X1

WORD Y0 0X00

WORD X1WORD Y1

WORD Y1

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

0X00

0X00

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-44 SHARC Processor Programming Reference

Extended-Precision Normal Word Addressing of
Single-Data

Figure 7-18 on page 7-45 displays a possible single-data, 40-bit
extended-precision normal word addressed access. For extended-precision
normal word addressing, the processor treats each data bus as a 40-bit
extended-precision normal word lane. The 40-bit value for the
extended-precision normal word access is transferred using the most sig-
nificant 40 bits of the PM or DM data bus. The processor drives the lower
24 bits of the data buses with zeros.

In Figure 7-18, the access targets a PEx register in a SISD or SIMD mode
operation; extended-precision normal word single-data access operate the
same in SISD or SIMD mode. This instruction accesses WORD X0 with syn-
tax that targets register RX in PEx. The example targets a PEy register when
using the syntax SX.

 Extended precision can’t be supported in SIMD mode since the
both PM and DM data busses are limited to 64-bits but would
require 80-bits.

SHARC Processor Programming Reference 7-45

Memory

Figure 7-18. Extended-Precision Normal Word Addressing of Single-Data

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, EXT. PREC. NORMAL WORD, SINGLE-DATA
TRANSFERS ARE:

UREG = PM(EXTENDED PRECISION NORMAL WORD ADDRESS);
UREG = DM(EXTENDED PRECISION NORMAL WORD ADDRESS);
PM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;
DM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED PRECISION NORMAL WORD X0 ADDRESS);

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-46 SHARC Processor Programming Reference

Extended-Precision Normal Word Addressing of
Dual-Data

Figure 7-19 shows the SISD, dual-data, 40-bit extended-precision normal
word addressed access mode. For extended-precision normal word
addressing, the processor treats each data bus as a 40-bit extended-preci-
sion normal word lane. The 40-bit values for the extended-precision
normal word accesses are transferred using the most significant 40 bits of
the PM and DM data bus. The processor drives the lower 24 bits of the
data buses with zeros.

In Figure 7-19, the access targets the PEx registers in a SISD mode opera-
tion. This instruction accesses WORD X0 in block 1 and WORD Y0 in block 0
with syntax that targets registers RX and RY in PEx. The example targets a
PEy register when using the syntax SX or SY.

SHARC Processor Programming Reference 7-47

Memory

Figure 7-19. Extended-Precision Normal Word Addressing of Dual-Data
in SISD Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, EXTENDED PRECISION NORMAL WORD, DUAL-DATA
TRANSFERS ARE:

DREG = PM(EXT. PREC. NORMAL WORD ADDRESS), DREG = DM(EXT. PREC. NORMAL WORD ADDRESS);
PM(EXT. PREC. NORMAL WORD ADDRESS) = DREG, DM(EXT. PREC. NORMAL WORD ADDRESS) = DREG;

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RA = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

7-023-839-24

RX

WORD Y0

7-023-839-24

RA

7-023-839-24

SXSY

7-023-839-24

SA

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00000X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S
MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-48 SHARC Processor Programming Reference

Long Word Addressing of Single-Data
Figure 7-20 displays one possible single-data, long word addressed access.
For long word addressing, the processor treats each data bus as a 64-bit
long word lane. The 64-bit value for the long word access completes a
transfer using the full width of the PM or DM data bus.

In Figure 7-20, the access targets a PEx register in a SISD or SIMD mode
operation. Long word single-data access operate the same in SISD or
SIMD mode. This instruction accesses WORD X0 with syntax that explicitly
targets register RX and implicitly targets its neighbor register, RY, in PEx.
The processor zero-fills the least significant 8 bits of both the registers.
The example targets PEy registers when using the syntax SX. For more
information on how neighbor registers work, see “Data Register Neighbor
Pairing” on page 2-5.

SHARC Processor Programming Reference 7-49

Memory

Figure 7-20. Long Word Addressing of Single-Data

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, LONG WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32

LONG WORD ACCESS

0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-50 SHARC Processor Programming Reference

Long Word Addressing of Dual-Data
Figure 7-21 shows the SISD, dual-data, long word addressed access mode.
For long word addressing, the processor treats each data bus as a 64-bit
long word lane. The 64-bit values for the long word accesses completes a
transfer using the full width of the PM or DM data bus.

In Figure 7-21, the access targets PEx registers in SISD mode operation.
This instruction accesses WORD X0 and WORD Y0 with syntax that explicitly
targets registers RX and RA and implicitly targets their neighbor registers RY
and RB in PEx. The processor zero-fills the least significant 8 bits of all the
registers. For more information on how neighbor registers work, see
Table 6-1 on page 6-8.

Programs must be careful not to explicitly target neighbor registers in this
instruction. While the syntax lets programs target these registers, one of
the explicit accesses targets the implicit target of the other access. The pro-
cessor resolves this conflict by performing only the access with higher
priority. For more information on the priority order of data register file
accesses, see “Register Files” in Chapter 2, Register Files.

 SIMD mode operation is only supported in NW and SW space.

SHARC Processor Programming Reference 7-51

Memory

Figure 7-21. Long Word Addressing of Dual-Data in SISD Mode

0X00

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, LONG WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(LONG WORD ADDRESS), DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DREG, DM(LONG WORD ADDRESS) = DREG;

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-320X00WORD Y0, 31-0WORD Y0, 63-32 0X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-52 SHARC Processor Programming Reference

Broadcast Load Access
Figure 7-22 through Figure 7-29 provide examples of broadcast load
accesses for single and dual-data transfers. These read examples show that
the broadcast load’s to register access from memory is a hybrid of the cor-
responding non-broadcast SISD and SIMD mode accesses. The
exceptions to this relation are broadcast load dual-data, extended-preci-
sion normal word and long word accesses. These broadcast accesses differ
from their corresponding non-broadcast mode accesses.

SHARC Processor Programming Reference 7-53

Memory

Figure 7-22. Short Word Addressing of Single-Data in Broadcast Load

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS);
DREG = DM(SHORT WORD ADDRESS);

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

WORD X00X0000† 0X00

0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S
ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-54 SHARC Processor Programming Reference

Figure 7-23. Short Word Addressing of Dual-Data in Broadcast Load

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST,
SHORT WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RY = PM(SHORT WORD Y0 ADDRESS);

WORD Y00X0000

WORD X00X0000† 0X00

7-023-839-24

RX

WORD Y00X0000† 0X00

7-023-839-24

RA

7-023-839-24

SXSY

7-023-839-24

WORD X00X0000†WORD Y00X0000†

0X0000 0X0000 0X0000 0X0000

0X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ANY OTHER BLOCKANY BLOCK

SHARC Processor Programming Reference 7-55

Memory

Figure 7-24. Normal Word Addressing of Single-Data in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS);
DREG = DM(NORMAL WORD ADDRESS);

DM DATA
BUS

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X0 0X00

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

WORD X0 0X00

0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-56 SHARC Processor Programming Reference

Figure 7-25. Normal Word Addressing of Dual-Data in Broadcast Load

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RA = PM(NORMAL WORD Y0 ADDRESS);

WORD Y00X0000

WORD X0 0X00

7-023-839-24

RX

WORD Y0 0X00

7-023-839-24

SY

7-023-839-24

WORD Y0 0X00

RA

7-023-839-24

SX

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

WORD X0 0X00

0X0000 0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

SHARC Processor Programming Reference 7-57

Memory

Figure 7-26. Extended-Precision Normal Word Addressing of Single-Data
in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
DREG = PM(EP NORMAL WORD ADDRESS);
DREG = DM(EP NORMAL WORD ADDRESS);

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED PRECISION NORMAL WORD X0 ADDRESS);

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00

WORD X0

A
D

D
R

E
S

S

A
D

D
R

E
S

S
MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-58 SHARC Processor Programming Reference

Figure 7-27. Extended-Precision Normal Word Addressing of Dual-Data
in Broadcast Load

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(EP NORMAL WORD ADDRESS), DREG = DM(EPNORMAL WORD ADDRESS);

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RA = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

7-023-839-24

RXRA

WORD Y0

7-023-839-24

SY

7-023-839-24

WORD Y0

7-023-839-24

SX

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00000X00 0X00

WORD X0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

SHARC Processor Programming Reference 7-59

Memory

Figure 7-28. Long Word Addressing of Single-Data in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, SINGLE-DATA TRANSFERS ARE:

DREG = PM(LONG WORD ADDRESS);
DREG = DM(LONG WORD ADDRESS);

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32

LONG WORD ACCESS

0X000X00

WORD X0, 31-0WORD X0, 63-32 0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

Internal Memory Access Listings

7-60 SHARC Processor Programming Reference

Figure 7-29. Long Word Addressing of Dual-Data in Broadcast Load

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(LONG WORD ADDRESS), DREG = DM(LONG WORD ADDRESS);

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32WORD Y0, 31-0WORD Y0, 63-32 0X00

WORD X0, 31-0WORD X0, 63-32WORD Y0, 31-0WORD Y0, 63-32 0X00

0X00

0X00 0X00

0X00

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0X00

MEMORY ANY OTHER BLOCKANY BLOCK

SHARC Processor Programming Reference 7-61

Memory

Mixed-Word Width Addressing of Long Word with
Short Word

The mixed mode requires a dual data access in all cases. Modes like SISD,
SIMD and Broadcast in conjunction with the address types LW, NW-40,
NW-32 and SW will result in many different mixed word width access
types to use in parallel between the two memory blocks.

Figure 7-30 shows an example of a mixed-word width, dual-data, SISD
mode access. This example shows how the processor transfers a long word
access on the DM bus and transfers a short word access on the PM bus.

 In case of conflicting dual access to the data register file, the pro-
cessor only performs the access with higher priority. For more
information on how the processor prioritizes accesses, see “Register
Files” in Chapter 2, Register Files.

Internal Memory Access Listings

7-62 SHARC Processor Programming Reference

Figure 7-30. Mixed-Word Width Addressing of Dual-Data in SISD Mode

SHORT WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, MIXED WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT, NORMAL, EP NORMAL, LONG ADD), DREG = DM(SHORT, NORMAL, EP NORMAL, LONG ADD);
PM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG, DM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG;

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

0X00

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0WORD X0, 63-32 0X00

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1 WORD Y0

WORD Y00X0000

WORD Y00X0000† 0X00

0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

SHARC Processor Programming Reference 7-63

Memory

Mixed-Word Width Addressing of Long Word with
Extended Word

Figure 7-31 shows an example of a mixed-word width, dual-data, SISD
mode access. This example shows how the processor transfers a long word
access on the DM bus and transfers an extended-precision normal word
access on the PM bus.

Internal Memory Access Listings

7-64 SHARC Processor Programming Reference

Figure 7-31. Mixed-Word Width Addressing of Dual-Data in SIMD
Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

WORD Y0

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, MIXED WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(ADDRESS), DREG = DM(ADDRESS);
PM(ADDRESS) = DREG, DM(ADDRESS) = DREG;

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(EP NORMAL WORD Y0 ADDRESS);

LONG WORD ACCESS

0X00

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0WORD X0, 63-32 0X00

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

WORD Y0 0X00000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

SHARC Processor Programming Reference 8-1

8 JTAG TEST EMULATION PORT

The Analog Devices Tools JTAG emulator is a development tool for
debugging programs running in real time on target system hardware.

Because the JTAG emulator controls the target system’s processor through
the processor’s IEEE 1149.1 JTAG Test Access Port (TAP), non-intrusive
in-circuit emulation is assured. Furthermore, boundary scan test can be
performed for specific layout/board tests.

Features
The JTAG port has the following features.

• Support Boundary scan—PCB interconnect test

• Support standard emulation—start stop and single step

• Enhanced standard emulation with instruction and data break-
points, event count, valid and invalid address range detection

• Support enhanced emulation—statistical profiling for benchmark-
ing, and background telemetry channel (BTC) for memory
on-the-fly debug

• Support for user breakpoint—user instruction for breakpoint

Functional Description
The following sections provide descriptions about JTAG functionality.

Functional Description

8-2 SHARC Processor Programming Reference

JTAG Test Access Port
A device operating in IEEE 1149.1 BST (boundary scan test) mode uses
four required pins TCK, TMS, TDI, TDO and one optional pin TRST. Table 8-1
summarizes the function of each of these pins.

An ADI specific pin (EMU) is used in the JTAG emulators from Analog
Devices. This pin is not defined in the IEEE-1149.1 specification. Refer
to the IEEE 1149.1 JTAG specification for detailed information on the
JTAG interface.

Target systems must have a 14-pin connector in order to accept the Ana-
log Devices Tools product line of JTAG emulator in-circuit probe, a
14-pin plug. For more information refer to Engineer-to-Engineer note
EE-68.

Table 8-1. JTAG Test Access Port (TAP) Pins

Pin I/O Function

TCK I Test Clock: pin used to clock the TAP state machine
(Asynchronous with CLKIN)

TMS I Test Mode Select: pin used to control the TAP state machine sequence

TDI I Test Data In: serial shift data input pin

TDO O Test Data Out: serial shift data output pin

TRST I Test Logic Reset: resets the TAP state machine (STD optional)

EMU O Emulation Status pin (no STD, Analog Devices Inc., specific)

SHARC Processor Programming Reference 8-3

JTAG Test Emulation Port

TAP Controller
The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the
diagram occur on the rising edge of TCK and are defined by the state of the
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of

Figure 8-1. Serial Scan Path

0

1

2N-2

TDO

3 1

04

2

TDI 1

BOUNDARY REGISTER

BYPASS REGISTER

INSTRUCTION REGISTER

N-1

N

Functional Description

8-4 SHARC Processor Programming Reference

the operation, see the JTAG standard. Figure 8-2 shows the state diagram
for the TAP controller.

Instruction Registers
Information in this section describes the control (JTAG) registers. The
instruction register is used to determine the action to be performed and
the data register to be accessed. There are two types of instructions, one
for boundary scan mode and the other for emulation mode. This register
selects the performed test and/or the access of the test data register. The
instruction register is 5 bits long with no parity bit.

Figure 8-2. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0

SHARC Processor Programming Reference 8-5

JTAG Test Emulation Port

Emulation Instruction Registers (Private)

The emulator can access the internal emulation register by shifting in the
JTAG instruction code for the particular emulation register.

The new JTAG instruction set, shown in Table 8-2, lists the binary code
for each instruction. Bit 0 is nearest TDO and bit 4 is nearest TDI. No data
registers are placed into test modes by any of the public instructions. The
instructions affect the processor as defined in the 1149.1 specification.

No special values need to be written into any register prior to the selection
of any instruction. Other registers, reserved for use by Analog Devices,
exist. However, this group of registers should not be accessed as they can
cause damage to the part.

Breakpoints
This section explains the different types of breakpoint and conditions to
hit breakpoints.

Table 8-2. JTAG Instruction Register

Mode Instruction Comment Type

Boundary Scan BYPASS Supported Public

EXTEST Supported

SAMPLE Supported

INTEST Supported

IDCODE Supported in ADSP-2137x and
ADSP-214xx processors

RUNBIST Not supported

USERCODE Not supported

Emulation ADI Only Private

Functional Description

8-6 SHARC Processor Programming Reference

Software Breakpoints

Software breakpoints are implemented by the processor as a special type of
instruction. The instruction, EMUIDLE is not a public instruction, and is
only decoded by the processor when specific bits are set in emulation con-
trol. If the processor encounters the EMUIDLE instruction and the specific
bits are not set in emulation control, then the processor executes a NOP
instruction. The EMUIDLE instruction triggers a high emulator interrupt.
When EMUIDLE is executed, the emulation clock counter halts
immediately.

Automatic Breakpoints

The IDDE (tools environment) places the labels (_main) and
(___lib_prog_term) automatically at software breakpoints (EMUIDLE). If
you place the (_main) label at the beginning of user code it will simplify
start execution code after reset (initialization like DDR2/SDRAM or run-
time environment) until the breakpoint (_main) is hit before the programs
enters user code.

For more information, refer to the tools documentation.

Hardware Breakpoints

Hardware breakpoints allow much greater flexibility than software break-
points provided by the EMUIDLE instruction. As such, they require much
more design thought and resources within the processor. At the simplest
level, hardware breakpoints are helpful when debugging ROM code where
the emulation software can not replace instructions with the EMUIDLE
instruction. As hardware breakpoint units capabilities are increased, so are
the benefits to the developer. At a minimum, an effective hardware break-
point unit will have the capability to trigger a break on load, store, and
fetch activities.

Additionally, address ranges, both inclusive (bounded) and exclusive
(unbounded) should be included.

SHARC Processor Programming Reference 8-7

JTAG Test Emulation Port

General Restrictions on Software Breakpoints

Based on the 5 stage instruction pipeline, the following restrictions apply
when setting software breakpoints.

• If a breakpoint interrupt comes at a point when a program is com-
ing out of an interrupt service routine of a prior breakpoint, then
in some cases the breakpoint status does not reflect that the second
breakpoint interrupt has occurred.

• If an instruction address breakpoint is placed just after a short loop,
a spurious breakpoint is generated.

• Delay slots of delayed branch instructions.

• Within the last instruction of zero overhead loops.

• Counter based loops of length one two and three

• Fourth instruction of a counter based loop of length four

• Last but fourth (e–4) instruction of a loop of length more than four

• Last three instructions of any arithmetic loop

Operating Modes
The following sections detail the operation of the JTAG port.

Boundary Scan Mode
A boundary scan allows a system designer to test interconnections on a
printed circuit board with minimal test-specific hardware. The scan is
made possible by the ability to control and monitor each input and output
pin on each chip through a set of serially scannable latches. Each input
and output is connected to a latch, and the latches are connected as a long

Operating Modes

8-8 SHARC Processor Programming Reference

shift register so that data can be read from or written to them through a
serial test access port (TAP).

The SHARC processors contain a test access port compatible with the
industry-standard IEEE 1149.1 (JTAG) specification. Only the IEEE
1149.1 features specific to the processors are described here. For more
information, see the IEEE 1149.1 specification and the other documents
listed in “References” on page 8-22.

The boundary scan allows a variety of functions to be performed on each
input and output signal of the SHARC processors. Each input has a latch
that monitors the value of the incoming signal and can also drive data into
the chip in place of the incoming value. Similarly, each output has a latch
that monitors the outgoing signal and can also drive the output in place of
the outgoing value. For bidirectional pins, the combination of input and
output functions is available.

Boundary Scan Register Instructions
The boundary-scan register is selected by the EXTEST, INTEST, SAMPLE and
IDCODE instructions. These instructions allow the pins of the processor to
be controlled and sampled for board-level testing. For the most recent
BSDL files, please visit the Analog Devices web site.

Note that the optional public instructions RUNBIST, and USERCODE are not
supported by the SHARC processors.

Also note that the optional public instructions IDCODE is supported in the
ADSP-2137x and ADSP-214xx SHARC processors.

Every latch associated with a pin is part of a single serial shift register path.
Each latch is a master/slave type latch with the controlling clock provided
externally. This clock (TCK) is asynchronous to the core input clock
(CLKIN).

SHARC Processor Programming Reference 8-9

JTAG Test Emulation Port

 To protect the internal logic when the boundary outputs are over
driven or signals are received on the boundary inputs, make sure
that nothing else drives data on the processor’s output pins.

Boundary Scan Description Language (BSDL) is a subset of VHDL that is
used to describe how JTAG (IEEE 1149.1) is implemented in a particular
device. For a device to be JTAG compliant, it must have an associated
BSDL file. For the SHARC processors, BSDL files are available on the
Analog Devices Inc., web site.

Emulation Space Mode
The processor emulation features halt the processor at a predefined point
to examine the state of the processor, execute arbitrary code, restore the
original state, and continue execution. If the processor hits a valid break-
point it triggers an emulator interrupt which puts the processor into
emulation space (core halt). In this state, the processor waits until the emu-
lator continues to scan new instructions into the processor over the TAP.
If the emulator scans an RTI instruction into the processor, it is released
back into user space (core run).

 DMA can be used as an optional halt for a breakpoint hit.

The emulator uses the TAP to access the internal space of the processor,
allowing the developer to:

• Load code

• Set SW/HW breakpoints

• Set user breakpoints

• Observe variables

• Observe memory

Operating Modes

8-10 SHARC Processor Programming Reference

• Examine registers

• Perform cycle counting

The processor must be halted to send data and commands, but once an
operation is completed by the emulator, the system is set running at full
speed with no impact on system timing. The emulator does not impact
target loading or timing. The emulator’s in-circuit probe connects to a
variety of host computers (USB or PCI) with plug-in boards.

Emulation Control
The processor is free running. In order to observe the state of the core, the
emulator must first halt instruction execution and enter emulation mode.
In this mode, the emulation software sets up a halt condition by selecting
the EMUCTL register and enabling bits 1–0 and 5.

The emulator then returns to run-test-idle. At this point, the processor is
not halted. In the next scan, the emulator selects the EMUIR register, and
shifts in the NOP instruction. At the very beginning of the scan, the TMS sig-
nal rises, and at this point, before the scan has ended, the processor halts.
When the emulator finishes the scan by returning to run-test-idle, the
processor executes a NOP instruction. Not that the EMUCTL register is only
accessible via the TAP.

Instruction and Data Breakpoints
The SHARC processors contain sets of emulation breakpoint registers.
Each set consists of a start and an end register which describe an address
range, with the start register setting the lower end of the address range.
Each breakpoint set monitors a particular address bus. When a valid
address is in the address range, then a breakpoint signal is generated. The
address range includes start and end addresses.

SHARC Processor Programming Reference 8-11

JTAG Test Emulation Port

Instruction breakpoints monitor the program memory address bus while
data breakpoints monitor the data or program memory address bus. The
IO breakpoints monitor the I/O (DMA) address bus.

Address Breakpoint Registers

The address breakpoint registers shown in Table 8-3 are used by the emu-
lator and the user breakpoint control to specify address ranges to verify if
specific conditions become true. The reset values are not defined.

Table 8-3. Core Domain IOP Registers

Register Function Width

PSA1S Instruction Address Start # 1 24 bits

PSA1E Instruction Address End # 1 24 bits

PSA2S Instruction Address Start # 2 24 bits

PSA2E Instruction Address End # 2 24 bits

PSA3S Instruction Address Start # 3 24 bits

PSA3E Instruction Address End # 3 24 bits

PSA4S Instruction Address Start # 4 24 bits

PSA4E Instruction Address End # 4 24 bits

IOAS I/O Address Start 32 bits

IOAE I/O Address End 32 bits

DMA1S Data Address Start # 1 32 bits

DMA1E Data Address End # 1 32 bits

DMA2S Data Address Start # 2 32 bits

DMA2E Data Address End # 2 32 bits

PMDAS Program Data Address Start 32 bits

PMDAE Program Data Address End 32 bits

Operating Modes

8-12 SHARC Processor Programming Reference

Conditional Breakpoints
The breakpoint sets are grouped into four types:

• 4x instruction breakpoints (IA)

• 2x data breakpoints for DM bus (DA)

• 1x data breakpoints for PM bus (PA)

• 1x data breakpoints for DMA (I/O)

The individual breakpoint signals in each group are logically ORed
together to create a composite breakpoint signal per group.

Each breakpoint group has an enable bit in the EMUCTL/BRKCTL register.
When set, these bits add the specified breakpoint group into the genera-
tion of the effective breakpoint signal. If cleared, the specified breakpoint
group is not used in the generation of the effective breakpoint signal. This
allows the user to trigger the effective breakpoint from a subset of the
breakpoint groups.

These composite signals can be optionally ANDed or ORed together to
create the effective breakpoint event signal used to generate an emulator
interrupt. The ANDBKP bit in the BRKCTL register selects the function used.

 The ANDBKP bit has no impact within the same group of break-
points (DA group, IA group). It has significance when the program
uses different groups of breakpoints (IA, DM, PM, IO) and the
resultant breakpoint is logically ANDed of all those breakpoints
which are enabled.

To provide further flexibility, each individual breakpoint can be pro-
grammed to trigger if the address is in range AND one of these conditions
is met: READ access, WRITE access, or ANY access. The control bits for
this feature are also located in BRKCTL register.

SHARC Processor Programming Reference 8-13

JTAG Test Emulation Port

 Note the following restrictions on breakpoints.

1. At least two breakpoints must be enabled prior to enabling ANDBKP
bit.

2. Enabling of breakpoints and ANDBKP bit should not be done in the
same instruction.

For index range violations in user code, the address ranges of the emula-
tion breakpoint registers are negated (twos complement) by setting the
appropriate negation bits in the BRKCTL register.

Each breakpoint can be disabled by setting the start address larger than the
end address.

 The instruction address breakpoints monitor the address of the
instruction being executed, not the address of the instruction being
fetched.

If the current execution is aborted, the breakpoint signal does not occur
even if the address is in range. Data address breakpoints (DA and PA only)
are also ignored during aborted instructions.

The breakpoint sets can be found in “Programming Model User Break-
points” on page 8-17.

Event Count Register

The EMUN register is a 32-bit memory-mapped I/O register and can be
accessed in user space. Core can write to it in user space. This register is
used to detect the Nth breakpoint. This EMUN register allows the break-
point to occur at Nth count. If the register is loaded with N, the processor
is interrupted only after the detection of N breakpoint conditions. At
every breakpoint occurrence the processor decrements the EMUN register
and it generates an interrupt when content of EMUN is zero and a break-
point event occurs.

Operating Modes

8-14 SHARC Processor Programming Reference

Note that programs must load this register with a value greater or equal to
zero for proper breakpoint generation under the condition that bit 25
(UMODE bit) in the BRKCTL register is set.

Emulation Cycle Counting

The emulation clock counter consists of a 32-bit count register, EMUCLK
and a 32 bit scaling register, EMUCLK2. The EMUCLK register counts clock
cycles while the user has control of the chip and stops counting when the
emulator gains control. This allows a user to gauge the amount of time
spent executing a particular section of code. The EMUCLK2 register is used
to extend the time EMUCLK can count by incrementing itself each time the
EMUCLK value rolls over to Zero. Both EMUCLK and EMUCLK2 are emulation
registers, which can only be written in emulation space. Reads of EMUCLK
and EMUCLK2 can be performed in user space. This allows simple bench-
marking of code.

Enhanced Emulation Mode
This section describes the enhanced emulation features, which are used for
the Background Telemetry Channel (BTC) and statistical profiling. In
enhanced emulation space, there is a continuous data stream to the target
system over the TAP. Notice that single step mode is not allowed using
the enhanced emulation features.

Statistical Profiling

Statistical profiling allows the emulation software to sample the processors
PC value while the processor is running. By sampling at random intervals,
a profile can be created which can aid the developer in tuning
performance critical code sections. As a second use, statistical profiling can
also aid in finding dead code as well as being used to make code partition
decisions. Fundamentally, statistical profiling is supported by one addi-
tional JTAG shift register called EMUPC and a register which latches the
sampled PC. The EMPUC register is a 24-bit serial shift register which

SHARC Processor Programming Reference 8-15

JTAG Test Emulation Port

samples the program counter whenever the JTAG TAP controller is in
RUNTEST state. So, whenever TAP controller is in RUNTEST state the EMUPC is
overridden every CCLK (core clock) cycle. The EMUPC register is not a mem-
ory-mapped register and is accessed over the TAP. This instruction is used
for statistical profiling.

Background Telemetry Channel (BTC)

The background telemetry channel allows users to debug memory
on-the-fly (core is running) via the TAP. For more information, refer to
the CrossCore or VisualDSP++ tools documentation.

User Space Mode
The following sections describe user space mode operation.

User Breakpoint Control

By default, the emulator has control over the breakpoint unit. However, if
there is a need for faster system debug without the delay incurred when
the core halts and enters emulations space, then the core can gain control
by setting the UMODE bit in the BRKCTL register.

Conversely, if the UMODE (bit 25) is cleared, only the emulator has break-
point control over the TAP.

 If the UMODE bit in the BRKCTL register is set, all address breakpoint
registers can be written in user space.

For more information, see “Breakpoint Control Register (BRKCTL)” on
page A-47.

Operating Modes

8-16 SHARC Processor Programming Reference

User Breakpoint Status

The EEMUSTAT register acts as the breakpoint status register for the SHARC
processors. This register is a memory-mapped IOP register. The processor
core can access this register if the UMODE bit (bit 25) is set.

The enhanced emulation status register, EEMUSTAT, indicates which break-
point hit occurred, all the breakpoint status bits are cleared when the
program exits the ISR with an RTI instruction. Such interrupts may con-
tain error handling if the processor accesses any of the addresses in the
address range defined in the breakpoint registers.

 Status update of the EEMUSTAT register does not work in single step
mode for user break points.

For more information, see “Enhanced Emulation Status Register
(EEMUSTAT)” on page A-51.

User Breakpoint System Exception Handling

Through the proper configuration of the BRKCTL and EEMUSTAT registers,
and by using different logical combined address breakpoint regions in
conjunction with event count registers for core or DMA operations, pro-
grams can take advantage of system specific exception handling based on
specified conditions which trigger the low priority emulator interrupt
(BKPI).

User to Emulation Space Breakpoint Comparison

The primary difference between user and emulation space breakpoints are
that user breakpoints are user instruction driven while emulation space
breakpoints happen only via the TAP (debugger test access port).

SHARC Processor Programming Reference 8-17

JTAG Test Emulation Port

Programming Model User Breakpoints

To set up the user controlled breakpoint functionality use the following
steps.

1. Unmask the BKPI interrupt (low priority interrupt).

2. Set the UMODE bit in the BRKCTL register.

3. Set the breakpoint count in EMUN register to the required value.

4. Initialize the breakpoint address registers with required address
ranges.

5. Enable the breakpoint conditions as required in the BRKCTL
register.

6. Enable the logical ANDing of breakpoints if required in the BRKCTL
register.

Programming Examples

Listing 8-1 is an example that shows how to trigger an exception for a
valid address.

Listing 8-1. Trigger an Exception for a Valid Address

bit set IMASK BKPI; /* unmask BKPI */

bit set MODE1 IRPTEN; /* enable global int */

r5 = ADDR_S; /* valid start addr for the break */

r6 = ADDR_E; /* valid end addr for the break */

r3 = UMODE | DA1MODE; /* set the user mode and dm access

 functionality for r/w access */

dm(BRKCTL) = r3;

dm(DMA1S) = r5; /* start addr for break */

dm(DMA1E) = r6; /* end addr for break */

Operating Modes

8-18 SHARC Processor Programming Reference

r5 = 0x15;

dm(EMUN) = r5; /* set event count */

USTAT1 = dm(BRKCTL);

BIT SET USTAT1 ENBDA; /* enable the dm access break points */

dm(BRKCTL) = USTAT1;

ISR_BKPI:

r4 = dm(EEMUSTAT); /* read status bits */

rti; /* status register cleared */

Listing 8-2 is an example that shows how to trigger an exception for an
invalid address range.

Listing 8-2. Trigger an Exception for an Invalid Address Range

bit set IMASK BKPI; /* unmask BKPI */

bit set MODE1 IRPTEN; /* enable global int */

r4 = ADDR_S; /* valid start address for the break */

r5 = ADDR_E; /* valid end address for the break */

USTAT1 = UMODE | DA2MODE | NEGDA2; /* set the user mode and

negate dm access functionality for r/w access */

dm(BRKCTL) = USTAT1;

dm(DMA2S) = r4;

dm(DMA2E) = r5;

r5 = 0x0; /* no event count */

dm(EMUN) = r5;

USTAT1 = dm(BRKCTL);

BIT SET USTAT1 ENBDA; /* enable the dm access break points */

dm(BRKCTL) = USTAT1;

ISR_BKPI:

r4 = dm(EEMUSTAT); /* read status bits */

rti; /* status register cleared */

SHARC Processor Programming Reference 8-19

JTAG Test Emulation Port

Single Step Mode
When the single step bit in the emulation control register is set, single step
mode is enabled. In single step mode, the processor executes a single
instruction, and then automatically generates an internal emulator
interrupt to return to emulation space. While in emulation space the emu-
lator can execute a RTI instruction to do a single step again. Each user
instruction execution in single step mode clears the instruction pipeline
when the part reenters user space.

Instruction Pipeline Fetch Inputs

The instruction pipeline is feed by four inputs:

1. Instruction fetch from memory, this is the user mode (also known
as user space) and described in the sequencer chapter

2. Instruction fetch from boot channel, during boot operation (256
instruction words) the pipeline is fed with the IDLE instruction
until the peripheral’s interrupt is generated

3. Instruction fetch from an emulator register, by using tools (debug-
ger) in single step mode (also known as emulation space) the
instruction pipeline is deactivated. In this mode, each instruction is
fetched from an emulation register over the JTAG interface (rather
from memory) and executed in isolation. The process is repetitive
for all the next instructions in single step mode.

4. Instruction fetched from cache during an cache hit. If a hit occurs,
the instruction is loaded from cache and not from memory.

Differences Between Emulation and
User Space Modes

The primary difference between user space and emulation space operation
is that in emulation space, the processor holds while the instruction is

JTAG Interrupts

8-20 SHARC Processor Programming Reference

scanned in, while in user space, the instruction is taken from an emulation
instruction register, rather that from the PMD bus. In user space, the pro-
gram counter also stops incrementing. All other aspects of instruction
execution are the same in both modes.

Control for breakpoints is also available in emulation space. The emula-
tion control register has equivalent control bits to the BRKCTL register to
control breakpoints. The control of breakpoints can be flipped back and
forth between emulation space and the core by flipping the (UMODE) bit 25
in the BRKCTL register.

Note that the EMUCTL and BRKCTL register bit settings are almost identical.
The EMUCTL register is accessed by the debugger over the TAP while the
BRKCTL register access is user code specific.

JTAG Interrupts
Table 8-4 provides an overview of the interrupts associated with the JTAG
port.

Interrupt Types
Four different types of interrupts/breakpoints are generated.

Table 8-4. JTAG Interrupt Overview

Source Condition Priorities
(0–41)

Interrupt
Acknowledge

IVT

JTAG - TMS pin
- EMUIDLE instruction
- Hardware breakpoint (emu space, user
space)
- BTC channel (Input FIFO full, output
FIFO empty)

0, 6, 37 RTI instruction EMUI
BKPI
EMULI

SHARC Processor Programming Reference 8-21

JTAG Test Emulation Port

1. External Emulator generates EMUI interrupt via TMS (highest
priority)

2. Breakpoint generates an internal EMUI interrupt (highest priority)

3. User space breakpoint generates an internal BKPI interrupt (lower
priority)

4. BTC generates an internal EMULI interrupt (lowest priority)

Entering Into Emulation Space
When the core receives emulator interrupt, the following sequence occurs:

1. The PC stack is pushed and the PC vectors to reset location

2. The core is idle, waiting for an emulator instruction

3. The core timer and emulation counter stop counting

4. The cache is disabled

5. DMA operation is may be optionally stalled

6. The core notifies emulation space via the EMU pin

JTAG Register Effect Latency
The I/O processor breakpoint address registers have a one-cycle effect
latency (changes take effect on the second cycle after the change). Instruc-
tion address and program memory breakpoint negates have an effect
latency of four core clock cycles.

JTAG BTC Performance

8-22 SHARC Processor Programming Reference

JTAG BTC Performance
If using the background telemetry channel feature (allowing data transfers
and debug via the JTAG interface during while the core is running) the
following throughputs are available.

Throughput for the INDATA buffer = 1000/(37 × tCK) Mwords/sec or
(1000 × 32)/(37 × tCK) Mbits/sec.

Throughput for OUTDATA buffer = 1000/(41 × tCK) Mwords/sec or
(1000 × 32)/(41 × tCK) Mbits/sec.

tCK is specified in ns and 5 extra tCK cycles are required for taking the
TAP from the capture DR to the select DR scan state. For example, if tCK
is running at 50 MHz, then the throughput for INDATA and OUT-
DATA are ~ 43 Mbits/sec and 39 Mbits/sec respectively. See Figure 8-2
on page 8-4 for other read/write data.

References
• IEEE Standard 1149.1-1990. Standard Test Access Port and

Boundary-Scan Architecture. To order a copy, contact the IEEE
society.

• Maunder, C.M. and R. Tulloss. Test Access Ports and Boundary
Scan Architectures. IEEE Computer Society Press, 1991.

• Parker, Kenneth. The Boundary Scan Handbook. Kluwer Aca-
demic Press, 1992.

• Bleeker, Harry P. van den Eijnden, and F. de Jong. Boundary-Scan
Test—A Practical Approach. Kluwer Academic Press, 1993.

• Hewlett-Packard Co. HP Boundary-Scan Tutorial and BSDL Ref-
erence Guide. (HP part# E1017-90001) 1992.

SHARC Processor Programming Reference 9-1

9 INSTRUCTION SET TYPES

In the SHARC processor family two different instruction types are
supported.

• Instruction Set Architecture (ISA) is the traditional instruction set
and is supported by all the SHARC processors.

• Variable Instruction Set Architecture (VISA) is supported by the
newer ADSP-214xx processors.

The instruction types linked into normal word space are valid ISA instruc-
tions (48-bit). When linked into short word space they become valid
VISA instructions (48/32/16 bits).

Many ISA instruction types have conditions and compute/data move
options. However, as programmer there may be situations where options
in an instruction are not required. Moreover, many instructions have
spare bits which are unused. For ISA instructions the opcode always con-
sumes 48 bits, which results in wasted memory space. For VISA
instruction types, all possible options have been extracted to generate new
sub instructions resulting in 32-bit or 16-bit instructions.

This chapter provides information on the instructions associated with the
SHARC core. Each instruction group has an overview table of its instruc-
tion types. The opcodes relating to the instruction types are shown in
Chapter 10, Instruction Set Opcodes. For information on computation
types and their associated opcodes (ALU, multiplier, shifter, multifunc-
tion) see Chapter 11, Computation Types and Chapter 12, Computation
Type Opcodes.

9-2 SHARC Processor Programming Reference

Instruction Groups
The instruction groups are:

• “Group I – Conditional Compute and Move or Modify Instruc-
tions” on page 9-4

• “Group II – Conditional Program Flow Control Instructions” on
page 9-30

• “Group III – Immediate Data Move Instructions” on page 9-51

• “Group IV – Miscellaneous Instructions” on page 9-64

Instruction Set Notation Summary
The conventions for instruction syntax descriptions appear in Table 9-1.
Other parts of the instruction syntax and opcode information also appear
in this section.

Table 9-1. Instruction Set Notation

Notation Meaning

UPPERCASE Explicit syntax—assembler keyword (notation only; assembler is
case-insensitive and lowercase is the preferred programming con-
vention)

; Semicolon (instruction terminator)

, Comma (separates parallel operations in an instruction)

italics Optional part of instruction

| option1 |
| option2 |

List of options between vertical bars (choose one)

compute ALU, multiplier, shifter or multifunction operation (see “Compu-
tation Types” on page 11-1)

SHARC Processor Programming Reference 9-3

Instruction Set Types

shiftimm Shifter immediate operation (see “Computation Types” on
page 11-1)

cond Status condition (see condition codes in Table 4-37 on page 4-92)

termination Loop termination condition (see condition codes in Table 4-37 on
page 4-92)

ureg Universal register

cureg Complementary universal register (see Table 2-1 on page 2-2)

sreg System register

csreg Complementary system register (see Table 2-1 on page 2-2)

dreg Data register (register file): R15–R0 or F15–F0

cdreg Complementary data register (register file): S15–S0 or SF15–SF0
(see Table 2-1 on page 2-2)

Ia I7–I0 (DAG1 index register)

Mb M7–M0 (DAG1 modify register)

Ic I15–I8 (DAG2 index register)

Md M15–M8 (DAG2 modify register)

<datan> n-bit immediate data value

<addrn> n-bit immediate address value

<reladdrn> n-bit immediate PC-relative address value

+k the implicit incremental address depending on SISD, SIMD or
Broadcast mode

(DB) Delayed branch

(LA) Loop abort (pop loop and PC stacks on branch)

(CI) Clear interrupt

(LR) Loop reentry

(LW) Long Word (forces long word access in normal word range)

Table 9-1. Instruction Set Notation (Cont’d)

Notation Meaning

Group I – Conditional Compute and Move or Modify
Instructions

9-4 SHARC Processor Programming Reference

The list of UREGs (universal registers) can be found in Table 2-1 on
page 2-2.

Group I – Conditional Compute and
Move or Modify Instructions

The group I instructions contain a condition, a computation, and a data
move operation.

The COND field selects whether the operation specified in the COMPUTE field
and a data move is executed. If the COND is true, the compute and data
move are executed. If no condition is specified, COND is true condition, and
the compute and data move are executed.

The COMPUTE field specifies a compute operation using the ALU, multi-
plier, or shifter. Because there are a large number of options available for
computations, these operations are described separately in Chapter 11,
Computation Types.

• “Type 1a ISA/VISA (compute + mem dual data move) Type 1b
VISA (mem dual data move)” on page 9-7

• “Type 2a ISA/VISA (cond + compute) Type 2b VISA (compute)
Type 2c VISA (short compute)” on page 9-10

• “Type 3a ISA/VISA (cond + comp + mem data move) Type 3b
VISA (cond + mem data move) Type 3c VISA (mem data move)”
on page 9-12

• “Type 4a ISA/VISA (cond + comp + mem data move with 6-bit
immediate modifier) Type 4b VISA (cond + mem data move with
6-bit immediate modifier)” on page 9-17

• “Type 5a ISA/VISA (cond + comp + reg data move) Type 5b VISA
(cond + reg data move)” on page 9-22

SHARC Processor Programming Reference 9-5

Instruction Set Types

• “Type 6a ISA/VISA (cond + shift imm + mem data move)” on
page 9-25

• “Type 7a ISA/VISA (cond + comp + index modify) Type 7b VISA
(cond + index modify)” on page 9-28

The following table provides an overview of the Group I instructions. The
letter after the instruction type denotes the instruction size as follows:
a = 48-bit, b = 32-bit, c = 16-bit. Note that items in italics are optional.

Type Addr Option1 Option2 Operation

1a ISA
VISA

compute, DM(Ia,Mb) = DREG, PM(Ic,Md) = DREG;
DREG = DM(Ia,Mb), DREG = PM(Ic,Md);
DREG = DM(Ia,Mb), PM(Ic,Md) = DREG;
DM(Ia,Mb) = DREG, DREG = PM(Ic,Md);1b VISA

2a ISA
VISA

IF condition compute;

2b VISA

2c VISA short compute;

3a ISA
VISA

IF condition compute, DM(Ia,Mb) = UREG(LW);
DM(Mb,Ia)
PM(Ic,Md)
PM(Md,Ic)
UREG = DM(Ia,Mb)(LW);
 DM(Mb,Ia);
 PM(Ic,Md);
 PM(Md,Ic);

3b VISA

3c VISA DREG = DM(Ia,Mb);
DM(Ia,Mb) = DREG;

4a ISA
VISA

IF condition compute, DM(Ia, <data6>) = DREG;
DM(<data6>,Ia)
PM(Ic, <data6>)
PM(<data6>,Ic)
DREG = DM(Ia, <data6>);
 DM(<data6>,Ia);
 PM(Ic, <data6>);
 PM(<data6>,Ic);

4b VISA

Group I – Conditional Compute and Move or Modify
Instructions

9-6 SHARC Processor Programming Reference

5a ISA
VISA

IF condition compute, UREG = UREG;
DREG <-> CDREG;

5b VISA

6a ISA
VISA

IF condition shiftimm, DM(Ia,Mb) = DREG;
PM(Ic,Md)
DREG = DM(Ia,Mb);
 PM(Ic,Md);

7a ISA
VISA

IF condition compute, MODIFY(Ia,Mb);
MODIFY(Ic,Md);
Ia = MODIFY(Ia,Mb); /* for
ADSP-214xx */
Ic = MODIFY(Ic,Md);

7b VISA

Type Addr Option1 Option2 Operation

SHARC Processor Programming Reference 9-7

Instruction Set Types

Type 1a ISA/VISA (compute + mem dual data move)
Type 1b VISA (mem dual data move)

Type 1a Syntax

Compute + parallel memory (data and program) transfer.

Type 1b Syntax

Parallel data memory and program memory transfers with register file,
without the Type 1 compute operation.

SISD Mode

In SISD mode, the Type 1 instruction provides parallel accesses to data
and program memory from the register file. The specified I registers
address data and program memory. The I values are post-modified and
updated by the specified M registers. Pre-modify offset addressing is not
supported. For more information on register restrictions, see Chapter 6,
Data Address Generators.

SIMD Mode

In SIMD mode, the Type 1 instruction provides the same parallel accesses
to data and program memory from the register file as are available in SISD
mode, but provides these operations simultaneously for the X and Y pro-
cessing elements.

compute, DM(Ia, Mb) = dreg PM(Ic, Md) = dreg ;

dreg = DM(Ia, Mb) dreg = PM(Ic, Md)

DM(Ia, Mb) = dreg , PM(Ic, Md) = dreg ;

dreg = DM(Ia, Mb) , dreg = PM(Ic, Md)

Group I – Conditional Compute and Move or Modify
Instructions

9-8 SHARC Processor Programming Reference

The X element uses the specified I registers to address data and program
memory, and the Y element adds one to the specified I registers to address
data and program memory.

The I values are post-modified and updated by the specified M registers.
Pre-modify offset addressing is not supported. For more information on
register restrictions, see Chapter 6, Data Address Generators.

The X element uses the specified Dreg registers, and the Y element uses the
complementary registers (Cdreg) that correspond to the Dreg registers. For
a list of complementary registers, see Table 2-3 on page 2-6.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the
Y element uses the specified I register without adding one.

The following code compares the Type 1 instruction’s explicit and
implicit operations in SIMD and Broadcast modes.

Examples

R7=BSET R6 BY R0, DM(I0,M3)=R5, PM(I11,M15)=R4;

R8=DM(I4,M1), PM(I12 M12)=R0;

When the processors are in SISD mode, the first instruction in this exam-
ple performs a computation along with two memory writes. DAG1 is used

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

compute , DM(Ia, Mb) = dreg , PM(Ic, Md) = dreg ;

, dreg = DM(Ia, Mb) , dreg = PM(Ic, Md)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

compute , DM(Ia+k, 0) = cdreg , PM(Ic+k, 0) = cdreg ;

, cdreg = DM(Ia+k, 0) , cdreg = PM(Ic+k, 0)

If broadcast mode memory read k=0.
If SIMD mode NW access k=1, SW access k=2.

SHARC Processor Programming Reference 9-9

Instruction Set Types

to write to DM and DAG2 is used to write to PM. In the second instruc-
tion, a read from data memory to register R8 and a write to program
memory from register R0 are performed.

When the processors are in SIMD mode, the first instruction in this exam-
ple performs the same computation and performs two writes in parallel on
both PEx and PEy. The R7 register on PEx and S7 on PEy both store the
results of the Bset computations. Also, simultaneous dual memory writes
occur with DM and PM, writing in values from R5, S5 (DM) and R4, S4
(PM) respectively. In the second instruction, values are simultaneously
read from data memory to registers R8 and S8 and written to program
memory from registers R0 and S0.
R0=DM(I1,M1);

When the processors are in broadcast mode (the BDCST1 bit is set in the
MODE1 system register), the R0 (PEx) data register in this example is loaded
with the value from data memory utilizing the I1 register from DAG1,
and S0 (PEy) is loaded with the same value.

Group I – Conditional Compute and Move or Modify
Instructions

9-10 SHARC Processor Programming Reference

Type 2a ISA/VISA (cond + compute)
Type 2b VISA (compute)
Type 2c VISA (short compute)

Type 2a Syntax

Compute operation, condition

Type 2b Syntax

Compute operation, without the Type 2 condition

Type 2c Syntax

Short (16-bit) compute operation, without the Type 2 condition

SISD Mode

In SISD mode, the Type 2 instruction provides a conditional compute
instruction. The instruction is executed if the specified condition tests
true.

SIMD Mode

In SIMD mode, the Type 2 instruction provides the same conditional
compute instruction as is available in SISD mode, but provides the opera-
tion simultaneously for the X and Y processing elements. The instruction
is executed in a processing element if the specified condition tests true in
that element independent of the condition result for the other element.

IF COND compute ;

compute ;

short compute ;

SHARC Processor Programming Reference 9-11

Instruction Set Types

The following pseudo code compares the Type 2 instruction’s explicit and
implicit operations in SIMD mode.

Examples
IF MV R6=SAT MRF (UI);

When the processors are in SISD mode, the condition is evaluated in the
PEx processing element. If the condition is true, the computation is per-
formed and the result is stored in register R6.

When the processors are in SIMD mode, the condition is evaluated on
each processing element, PEx and PEy, independently. The computation
executes on both PEs, either one PE, or neither PE dependent on the out-
come of the condition. If the condition is true in PEx, the computation is
performed and the result is stored in register R6. If the condition is true in
PEy, the computation is performed and the result is stored in register S6.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute ;

Group I – Conditional Compute and Move or Modify
Instructions

9-12 SHARC Processor Programming Reference

Type 3a ISA/VISA (cond + comp + mem data move)
Type 3b VISA (cond + mem data move)
Type 3c VISA (mem data move)

Type 3a Syntax

Transfer operation between data or program memory and universal regis-
ter, condition, compute operation

Type 3b Syntax

Transfer operation between data or program memory and universal regis-
ter, optional condition, without the Type 3 optional compute operation

IF COND compute , DM(Ia, Mb) = ureg (LW);

, PM(Ic, Md)

, DM(Mb, Ia) = ureg (LW);

, PM(Md, Ic)

, ureg = DM(Ia, Mb) (LW);

PM(Ic, Md) (LW);

, ureg = DM(Mb, Ia) (LW);

PM(Md, Ic) (LW);

IF COND DM(Ia, Mb) = ureg (LW);

PM(Ic, Md)

DM(Mb, Ia) = ureg (LW);

SHARC Processor Programming Reference 9-13

Instruction Set Types

Type 3c Syntax

Transfer operation between data memory and data register, without the
Type 3 optional condition, without the Type 3 optional compute
operation

SISD Mode

In SISD mode, the Type 3a and 3b instruction provides access between
data or program memory and a universal register. The specified I register
addresses data or program memory. The I value is either pre-modified (M,
I order) or post-modified (I, M order) by the specified M register. If it is
post-modified, the I register is updated with the modified value. If a com-
pute operation is specified, it is performed in parallel with the data access.
The optional (LW) in this syntax lets programs specify long word address-
ing, overriding default addressing from the memory map. If a condition is
specified, it affects the entire instruction. Note that the Ureg may not be
from the same DAG (that is, DAG1 or DAG2) as Ia/Mb or Ic/Md. For
more information on register restrictions, see Chapter 6, Data Address
Generators.

PM(Md, Ic)

ureg = DM(Ia, Mb) (LW);

PM(Ic, Md) (LW);

ureg = DM(Mb, Ia) (LW);

PM(Md, Ic) (LW);

DM(Ia, Mb) = dreg

dreg = DM(Ia,Mb);

Group I – Conditional Compute and Move or Modify
Instructions

9-14 SHARC Processor Programming Reference

SIMD Mode

In SIMD mode, the Type 3a and 3b instruction provides the same access
between data or program memory and a universal register as is available in
SISD mode, but provides this operation simultaneously for the X and Y
processing elements.

The X element uses the specified I register to address data or program
memory. The I value is either pre-modified (M, I order) or post-modified
(I, M order) by the specified M register. The Y element adds one/two (for
normal/short word access) to the specified I register (before pre-modify or
post-modify) to address data or program memory. If the I value post-mod-
ified, the I register is updated with the modified value from the specified
M register. The optional (LW) in this syntax lets programs specify long
word addressing, overriding default addressing from the memory map.

For the universal register, the X element uses the specified Ureg register,
and the Y element uses the corresponding complementary register (Cureg).
For a list of complementary registers, see Table 2-3 on page 2-6. Note that
the Ureg may not be from the same DAG (DAG1 or DAG2) as Ia/Mb or
Ic/Md.

The compute operation is performed simultaneously on the X and Y pro-
cessing elements in parallel with the data access. If a condition is
specified, it affects the entire instruction. The instruction is executed in a
processing element if the specified condition tests true in that element
independent of the condition result for the other element.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the
Y element uses the specified I and M registers without implicit address
addition.

The following code compares the Type 3 instruction’s explicit and
implicit operations in SIMD mode.

SHARC Processor Programming Reference 9-15

Instruction Set Types

Examples

R6=R3-R11, DM(I0,M1)=ASTATx;

IF NOT SV F8=CLIP F2 BY F14, F7=PM(I12,M12);

When the processors are in SISD mode, the computation and a data mem-
ory write in the first instruction are performed in PEx. The second
instruction stores the result of the computation in F8, and the result of the
program memory read into F7 if the condition’s outcome is true.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute , DM(Ia, Mb) = ureg (LW);

, PM(Ic, Md)

, DM(Mb, Ia) = ureg (LW);

, PM(Md, Ic)

, ureg = DM(Ia, Mb) (LW);

PM(Ic, Md) (LW);

, ureg = DM(Mb, Ia) (LW);

PM(Md, Ic) (LW);

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute , DM(Ia+k, 0) = cureg (LW);

, PM(Ic+k, 0)

, DM(Mb+k, Ia) = cureg (LW);

, PM(Md+k, Ic)

, cureg = DM(Ia+k, 0) (LW);

PM(Ic+k, 0) (LW);

, cureg = DM(Mb+k, Ia) (LW);

PM(Md+k, Ic) (LW);

If broadcast mode memory read k=0.
If SIMD mode NW access k=1, SW access k=2.

Group I – Conditional Compute and Move or Modify
Instructions

9-16 SHARC Processor Programming Reference

When the processors are in SIMD mode, the result of the computation in
PEx in the first instruction is stored in R6, and the result of the parallel
computation in PEy is stored in S6. In addition, there is a simultaneous
data memory write of the values stored in ASTATx and ASTATy. The condi-
tion is evaluated on each processing element, PEx and PEy,
independently. The computation executes on both PEs, either one PE, or
neither PE, dependent on the outcome of the condition. If the condition
is true in PEx, the computation is performed, the result is stored in regis-
ter F8 and the result of the program memory read is stored in F7. If the
condition is true in PEy, the computation is performed, the result is stored
in register SF8, and the result of the program memory read is stored in
SF7.
IF NOT SV F8=CLIP F2 BY F14, F7=PM(I9,M12);

When the processors are in broadcast mode (the BDCST9 bit is set in the
MODE1 system register) and the condition tests true, the computation is
performed and the result is stored in register F8. Also, the result of the
program memory read via the I9 register from DAG2 is stored in F7. The
SF7 register is loaded with the same value from program memory as F7.

SHARC Processor Programming Reference 9-17

Instruction Set Types

Type 4a ISA/VISA (cond + comp + mem data move
with 6-bit immediate modifier)
Type 4b VISA (cond + mem data move
with 6-bit immediate modifier)

Type 4a Syntax

Index-relative transfer between data or program memory and register file,
optional condition, optional compute operation

IF COND compute , DM(Ia, <data6>) = dreg ;

, PM(Ic, <data6>)

, DM(<data6>, Ia) = dreg ;

, PM(<data6>, Ic)

, dreg = DM(Ia, <data6>) ;

PM(Ic, <data6>) ;

, dreg = DM(<data6>, Ia) ;

PM(<data6>, Ic) ;

Group I – Conditional Compute and Move or Modify
Instructions

9-18 SHARC Processor Programming Reference

Type 4b Syntax

Index-relative transfer between data or program memory and register file,
optional condition, without the Type 4 optional compute operation

SISD Mode

In SISD mode, the Type 4 instruction provides access between data or
program memory and the register file. The specified I register addresses
data or program memory. The I value is either pre-modified (data order, I)
or post-modified (I, data order) by the specified immediate data. If it is
post-modified, the I register is updated with the modified value. If a com-
pute operation is specified, it is performed in parallel with the data access.
If a condition is specified, it affects the entire instruction. For more infor-
mation on register restrictions, see Chapter 6, Data Address Generators.

SIMD Mode

In SIMD mode, the Type 4 instruction provides the same access between
data or program memory and the register file as is available in SISD mode,

IF COND DM(Ia, <data6>) = dreg ;

PM(Ic, <data6>)

DM(<data6>, Ia) = dreg ;

PM(<data6>, Ic)

dreg = DM(Ia, <data6>) ;

PM(Ic, <data6>) ;

dreg = DM(<data6>, Ia) ;

PM(<data6>, Ic) ;

SHARC Processor Programming Reference 9-19

Instruction Set Types

but provides the operation simultaneously for the X and Y processing
elements.

The X element uses the specified I register to address data or program
memory. The I value is either pre-modified (data, I order) or post-modi-
fied (I, data order) by the specified immediate data. The Y element adds
one/two (for normal/short word access) to the specified I register (before
pre-modify or post-modify) to address data or program memory. If the I
value post-modified, the I register is updated with the modified value
from the specified M register. The optional (LW) in this syntax lets pro-
grams specify long word addressing, overriding default addressing from
the memory map.

For the data register, the X element uses the specified Dreg register, and
the Y element uses the corresponding complementary register (Cdreg). For
a list of complementary registers, see Table 2-3 on page 2-6.

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the data access. If a condi-
tion is specified, it affects the entire instruction, not just the
computation. The instruction is executed in a processing element if the
specified condition tests true in that element independent of the condi-
tion result for the other element.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the
Y element uses the specified I and M registers without adding one.

The following pseudo code compares the Type 4 instruction’s explicit and
implicit operations in SIMD mode.

Group I – Conditional Compute and Move or Modify
Instructions

9-20 SHARC Processor Programming Reference

Examples

IF FLAG0_IN F1=F5*F12, F11=PM(I10,6);

R12=R3 AND R1, DM(6,I1)=R6;

When the processors are in SISD mode, the computation and program
memory read in the first instruction are performed in PEx if the condi-
tion’s outcome is true. The second instruction stores the result of the
logical AND in R12 and writes the value within R6 into data memory.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute , DM(Ia, <data6>) = dreg ;

, PM(Ic, <data6>)

, DM(<data6>, Ia) = dreg ;

, PM(<data6>, Ic)

, dreg = DM(Ia, <data6>) ;

PM(Ic, <data6>) ;

, dreg = DM(<data6>, Ia) ;

PM(<data6>, Ic) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute , DM(Ia+k, 0) = cdreg ;

, PM(Ic+k, 0)

, DM(<data6>+k, Ia) = cdreg ;

, PM(<data6>+k, Ic)

, cdreg = DM(Ia+k, 0) ;

PM(Ic+k, 0) ;

, cdreg = DM(<data6>+k, Ia) ;

PM(<data6>+k, Ic) ;

If broadcast mode memory read k=0.
If SIMD mode NW access k=1, SW access k=2.

SHARC Processor Programming Reference 9-21

Instruction Set Types

When the processors are in SIMD mode, the condition is evaluated on
each processing element, PEx and PEy, independently. The computation
and program memory read execute on both PEs, either one PE, or neither
PE dependent on the outcome of the condition. If the condition is true in
PEx, the computation is performed, and the result is stored in register F1,
and the program memory value is read into register F11. If the condition is
true in PEy, the computation is performed, the result is stored in register
SF1, and the program memory value is read into register SF11.
If FLAG0_IN F1=F5*F12, F11=PM(I9,3);

When the processors are in broadcast mode (the BDCST9 bit is set in the
MODE1 system register) and the condition tests true, the computation is
performed, the result is stored in register F1, and the program memory
value is read into register F11 via the I9 register from DAG2. The SF11
register is also loaded with the same value from program memory as F11.

Group I – Conditional Compute and Move or Modify
Instructions

9-22 SHARC Processor Programming Reference

Type 5a ISA/VISA (cond + comp + reg data move)
Type 5b VISA (cond + reg data move)

Transfer between two universal registers or swap between a data register in
each processing element, optional condition, optional compute operation

Type 5a Syntax

Type 5b Syntax

Transfer between two universal registers or swap between a data register in
each processing element, optional condition, without the Type 5 optional
compute operation

SISD Mode

In SISD mode, the Type 5 instruction provides transfer (=) from one uni-
versal register to another or provides a swap (<->) between a data register
in the X processing element and a data register in the Y processing ele-
ment. If a compute operation is specified, it is performed in parallel with
the data access. If a condition is specified, it affects the entire instruction.

SIMD Mode

In SIMD mode, the Type 5 instruction provides the same transfer (=)
from one register to another as is available in SISD mode, but provides

IF COND compute, ureg1 = ureg2 ;

dreg <-> cdreg

IF COND ureg1 = ureg2 ;

dreg <-> cdreg

SHARC Processor Programming Reference 9-23

Instruction Set Types

this operation simultaneously for the X and Y processing elements. The
swap (<->) operation does the same operation in SISD and SIMD modes;
no extra swap operation occurs in SIMD mode.

In the transfer (=), the X element transfers between the universal registers
Ureg1 and Ureg2, and the Y element transfers between the complementary
universal registers Cureg1 and Cureg2. For a list of complementary regis-
ters, see Table 2-3 on page 2-6.

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the transfer. If a condition is
specified, it affects the entire instruction. The instruction is executed in a
processing element if the specified condition tests true in that element
independent of the condition result for the other element.

The following pseudo code compares the Type 5 instruction’s explicit and
implicit operations in SIMD mode.

Examples

IF TF MRF=R2*R6(SSFR), M4=R0;

LCNTR=L7;

R0 <-> S1;

When the processors are in SISD mode, the condition in the first instruc-
tion is evaluated in the PEx processing element. If the condition is true,
MRF is loaded with the result of the computation and a register transfer
occurs between R0 and M4. The second instruction initializes the loop

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute, ureg1 = ureg2 ;

dreg <-> cdreg

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute, cureg1 = cureg2 ;

/* no implicit operation */

Group I – Conditional Compute and Move or Modify
Instructions

9-24 SHARC Processor Programming Reference

counter independent of the outcome of the first instruction’s condition.
The third instruction swaps the register contents between R0 and S1.

When the processors are in SIMD mode, the condition is evaluated on
each processing element, PEx and PEy, independently. The computation
executes on both PEs, either one PE, or neither PE dependent on the
outcome of the condition. For the register transfer to complete, the condi-
tion must be satisfied in both PEx and PEy. The second instruction
initializes the loop counter independent of the outcome of the first
instruction’s condition. The third instruction swaps the register contents
between R0 and S1—the SISD and SIMD swap operation is the same.

SHARC Processor Programming Reference 9-25

Instruction Set Types

Type 6a ISA/VISA (cond + shift imm + mem data move)

Immediate shift operation, optional condition, optional transfer between
data or program memory and register file

Syntax

SISD Mode

In SISD mode, the Type 6 instruction provides an immediate shift, which
is a shifter operation that takes immediate data as its Y-operand. The
immediate data is one 8-bit value or two 6-bit values, depending on the
operation. The X-operand and the result are register file locations.

For more information on shifter operations, see “Shifter/Shift Immediate
Computations” on page 11-58. For more information on register restric-
tions, see Chapter 6, Data Address Generators.

If an access to data or program memory from the register file is specified,
it is performed in parallel with the shifter operation. The I register
addresses data or program memory. The I value is post-modified by the
specified M register and updated with the modified value. If a condition
is specified, it affects the entire instruction.

SIMD Mode

In SIMD mode, the Type 6 instruction provides the same immediate shift
operation as is available in SISD mode, but provides this operation simul-
taneously for the X and Y processing elements.

IF COND shiftimm , DM(Ia, Mb) = dreg ;

, PM(Ic, Md)

, dreg = DM(Ia, Mb) ;

PM(Ic, Md) ;

Group I – Conditional Compute and Move or Modify
Instructions

9-26 SHARC Processor Programming Reference

If an access to data or program memory from the register file is specified,
it is performed simultaneously on the X and Y processing elements in par-
allel with the shifter operation.

The X element uses the specified I register to address data or program
memory. The I value is post-modified by the specified M register and
updated with the modified value.The Y element adds one/two (for nor-
mal/short word access) to the specified I register to address data or
program memory.

If a condition is specified, it affects the entire instruction. The instruction
is executed in a processing element if the specified condition tests true in
that element independent of the condition result for the other element.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the
Y element uses the specified I and M registers without adding one.

The following code compares the Type 6 instruction’s explicit and
implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND shiftimm , DM(Ia, Mb) = dreg ;

, PM(Ic, Md)

, dreg = DM(Ia, Mb) ;

PM(Ic, Md) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND shiftimm , DM(Ia+k, 0) = cdreg ;

, PM(Ic+k, 0)

, cdreg = DM(Ia+k, 0) ;

PM(Ic+k, 0) ;

If broadcast mode memory read k=0.
If SIMD mode NW access k=1, SW access k=2.

SHARC Processor Programming Reference 9-27

Instruction Set Types

Examples

IF GT R2 = LSHIFT R6 BY 0x4, DM(I4,M4)=R0;

IF NOT SZ R3 = FEXT R1 BY 8:4;

When the processors are in SISD mode, the computation and data mem-
ory write in the first instruction are performed in PEx if the condition’s
outcome is true. In the second instruction, register R3 is loaded with the
result of the computation if the outcome of the condition is true.

When the processors are in SIMD mode, the condition is evaluated on
each processing element, PEx and PEy, independently. The computation
and data memory write executes on both PEs, either one PE, or neither PE
dependent on the outcome of the condition. If the condition is true in
PEx, the computation is performed, the result is stored in register R2, and
the data memory value is written from register R0. If the condition is true
in PEy, the computation is performed, the result is stored in register S2,
and the value within S0 is written into data memory. The second instruc-
tion’s condition is also evaluated on each processing element, PEx and
PEy, independently. If the outcome of the condition is true, register R3 is
loaded with the result of the computation on PEx, and register S3 is
loaded with the result of the computation on PEy.
R2 = LSHIFT R6 BY 0x4, F3=DM(I1,M3);

When the processors are in broadcast mode (the BDCST1 bit is set in the
MODE1 system register), the computation is performed, the result is stored
in R2, and the data memory value is read into register F3 via the I1 register
from DAG1. The SF3 register is also loaded with the same value from data
memory as F3.

Group I – Conditional Compute and Move or Modify
Instructions

9-28 SHARC Processor Programming Reference

Type 7a ISA/VISA (cond + comp + index modify)
Type 7b VISA (cond + index modify)

Index register modify, optional condition, optional compute operation.
See also“Type 19a ISA/VISA (index modify/bitrev)” on page 9-69.

Type 7a Syntax

Type 7b Syntax

Index register modify, optional condition, without the Type 7 optional
compute operation

SISD Mode

In SISD mode, the Type 7 instruction provides an update of the specified
Ia/Ic register by the specified Mb/Md register. If the destination register is
not specified, Ia/Ic is used as destination register. Unless destination I reg-
ister is specified or implied to be the same as the source I register, the
source I register is left unchanged. M register is always left unchanged. If a
compute operation is specified, it is performed in parallel with the data
access. If a condition is specified, it affects the entire instruction. For
more information on register restrictions, see Chapter 6, Data Address
Generators.

IF COND compute , Ia1 =

1 Applies to ADSP-214xx models only.

, MODIFY (Ia, Mb) ;

Ic1 = (Ic, Md) ;

IF COND , Ia1 =

1 Applies to ADSP-214xx models only.

, MODIFY (Ia, Mb) ;

Ic1 = (Ic, Md) ;

SHARC Processor Programming Reference 9-29

Instruction Set Types

 If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set
up for circular bufferring, the modify operation always executes cir-
cular buffer wraparound, independent of the state of the
CBUFEN bit.

SIMD Mode

In SIMD mode, the Type 7 instruction provides the same update of the
specified I register by the specified M register as is available in SISD
mode, but provides additional features for the optional compute operation.

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the transfer. If a condition is
specified, it affects the entire instruction. The instruction is executed in a
processing element if the specified condition tests true in that element
independent of the condition result for the other element.

The index register modify operation, in SIMD mode, occurs based on the
logical ORing of the outcome of the conditions tested on both PEs. In the
second instruction, the index register modify also occurs based on the log-
ical ORing of the outcomes of the conditions tested on both PEs. Because
both threads of a SIMD sequence may be dependent on a single DAG
index value, either thread needs to be able to cause a modify of the index.

Examples

IF NOT FLAG2_IN R4=R6*R12(SUF), MODIFY(I10,M8);

IF FLAG2_IN R4=R6*R12(SUF), I9 = MODIFY(I10,M8);

IF NOT LCE MODIFY(I3,M1);

IF NOT LCE I0 = MODIFY(I3,M1);

MODIFY(I10,M9);

I15 = MODIFY(I11,M12);

I0 = MODIFY(I2,M2);

I3 = MODIFY(I3,M5); /* Semantically same as MODIFY(I3,M5) */;

Group II – Conditional Program Flow Control Instructions

9-30 SHARC Processor Programming Reference

Group II – Conditional Program Flow
Control Instructions

The group II instructions contain data move operation and COMPUTE/ELSE
COMPUTE operation.

The COND field selects whether the operation specified in the COMPUTE field
and branch are executed. If the COND is true, the compute and branch are
executed. If no condition is specified, COND is true condition, and the com-
pute and branch are executed.

The ELSE field selects whether the condition is not true, in this case the
computation is performed. The ELSE condition always requires an
condition.

The COMPUTE field specifies a compute operation using the ALU, multi-
plier, or shifter. Because there are a large number of options available for
computations, these operations are described separately in Chapter 11,
Computation Types.

• “Type 8a ISA/VISA (cond + branch)” on page 9-32

• “Type 9a ISA/VISA (cond + Branch + comp/else comp)” on
page 9-35

• “Type 10a ISA (cond + branch + else comp + mem data move)” on
page 9-40

• “Type 11a ISA/VISA (cond + branch return + comp/else comp)
Type 11c VISA (cond + branch return)” on page 9-44

• “Type 12a ISA/VISA (do until loop counter expired)” on
page 9-48

• “Type 13a ISA/VISA (do until termination)” on page 9-49

SHARC Processor Programming Reference 9-31

Instruction Set Types

The following table provides an overview of the Group II instructions.
The letter after the instruction type denotes the instruction size as follows:
a = 48-bit, b = 32-bit, c = 16-bit. Note that items in italics are optional.

Type Addr Option1 Operation Option2

8a ISA/VISA IF condition CALL <addr24>
 (PC,<reladdr24>)
JUMP <addr24>
 (PC,<reladdr24>)
(DB)(LA)(CI)(DB,LA)(DB,CI
);

9a ISA
VISA

IF condition CALL (Md, Ic)
 (PC,<reladdr6>)
JUMP (Md, IC)
 (PC, <reladdr6>)
(DB)(LA)(CI)(DB,LA)(DB,CI
),

ELSE compute;
compute;

9b VISA

10a ISA IF condition JUMP (Md,Ic),
(PC,<reladdr6>)

ELSE compute,
DM(Ia,Mb) = DREG;
DREG = DM(Ia,Mb);

11a ISA
VISA

IF condition RTS (DB)(LR)(DB,LR),
RTI (DB),

ELSE compute,
compute,

11c VISA

12a ISA
VISA

LCNTR = <data16>, DO <addr24> UNTIL
LCE;
LCNTR = <data16>, DO (PC,<reladdr24>)
UNTIL LCE;
LCNTR = UREG, DO <addr24> UNTIL LCE;
LCNTR = UREG, DO(PC,<reladdr24>) UNTIL
LCE;

13a ISA
VISA

DO <addr24> UNTIL termination;
DO (PC,<reladdr24>) UNTIL termination;

Group II – Conditional Program Flow Control Instructions

9-32 SHARC Processor Programming Reference

Type 8a ISA/VISA (cond + branch)

Direct (or PC-relative) jump/call, optional condition

Syntax

SISD Mode

In SISD mode, the Type 8 instruction provides a jump or call to the spec-
ified address or PC-relative address. The PC-relative address is a 24-bit,
twos-complement value. The Type 8 instruction supports the following
modifiers.

• (DB)—delayed branch—starts a delayed branch

• (LA)—loop abort—causes the loop stacks and PC stack to be
popped when the jump is executed. Use the (LA) modifier if the
jump transfers program execution outside of a loop. Do not use
(LA) if there is no loop or if the jump address is within the loop.

• (CI)—clear interrupt—lets programs reuse an interrupt while it is
being serviced

Normally, the processors ignore and do not latch an interrupt that reoc-
curs while its service routine is already executing. Jump (CI) clears the

IF COND JUMP <addr24> (DB) ;

(PC, <reladdr24>) (LA)

(CI)

(DB, LA)

(DB, CI)

IF COND CALL <addr24> (DB) ;

(PC, <reladdr24>)

SHARC Processor Programming Reference 9-33

Instruction Set Types

status of the current interrupt without leaving the interrupt service rou-
tine, This feature reduces the interrupt routine to a normal subroutine
and allows the interrupt to occur again, as a result of a different event or
task in the SHARC processor system. The jump (CI) instruction should
be located within the interrupt service routine. For more information on
interrupts, see Chapter 4, Program Sequencer.

To reduce the interrupt service routine to a normal subroutine, the jump
(CI) instruction clears the appropriate bit in the interrupt latch register
(IRPTL) and interrupt mask pointer (IMASKP). The processor then allows
the interrupt to occur again.

When returning from a reduced subroutine, programs must use the (LR)
modifier of the RTS if the interrupt occurs during the last two instruc-
tions of a loop. For related information, see “Type 11a ISA/VISA (cond +
branch return + comp/else comp) Type 11c VISA (cond + branch return)”
on page 9-44.

SIMD Mode

In SIMD mode, the Type 8 instruction provides the same jump or call
operation as in SISD mode, but provides additional features for handling
the optional condition.

If a condition is specified, the jump or call is executed if the specified
condition tests true in both the X and Y processing elements.

Group II – Conditional Program Flow Control Instructions

9-34 SHARC Processor Programming Reference

The following code compares the Type 8 instruction’s explicit and
implicit operations in SIMD mode.

Examples

IF AV JUMP(PC,0x00A4) (LA);

CALL init (DB); /* init is a program label */

JUMP (PC,2) (DB,CI); /* clear current int. for reuse */

When the processors are in SISD mode, the first instruction performs a
jump to the PC-relative address depending on the outcome of the condi-
tion tested in PEx. In the second instruction, a jump to the program label
init occurs. A PC-relative jump takes place in the third instruction.

When the processors are in SIMD mode, the first instruction performs a
jump to the PC-relative address depending on the logical ANDing of the
outcomes of the conditions tested in both PEs. In SIMD mode, the sec-
ond and third instructions operate the same as in SISD mode. In the
second instruction, a jump to the program label init occurs. A PC-rela-
tive jump takes place in the third instruction.

SIMD Explicit Operation (Program Sequencer Operation Stated in the Instruction Syntax)

IF (PEx AND PEy
COND) JUMP

<addr24> (DB) ;

(PC, <reladdr24>) (LA)

(CI)

(DB, LA)

(DB, CI)

IF (PEx AND PEy
COND) CALL

<addr24> (DB) ;

(PC, <reladdr24>)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

/* No implicit PEy operation */

SHARC Processor Programming Reference 9-35

Instruction Set Types

Type 9a ISA/VISA (cond + Branch + comp/else comp)

Indirect (or PC-relative) jump/call, optional condition, optional compute
operation

Type 9a Syntax

Type 9b Syntax

Indirect (or PC-relative) jump/call, optional condition, without the
Type 9 optional compute operation

IF COND JUMP (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) (LA) , ELSE compute

(CI)

(DB, LA)

(DB, CI)

IF COND CALL (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) , ELSE compute

Group II – Conditional Program Flow Control Instructions

9-36 SHARC Processor Programming Reference

SISD Mode

In SISD mode, the Type 9 instruction provides a jump or call to the spec-
ified PC-relative address or pre-modified I register value. The PC-relative
address is a 6-bit, two’s-complement value. If an I register is specified, it is
modified by the specified M register to generate the branch address. The I
register is not affected by the modify operation. The Type 9 instruction
supports the following modifiers:

• (DB)—delayed branch—starts a delayed branch

• (LA)—loop abort—causes the loop stacks and PC stack to be
popped when the jump is executed. Use the (LA) modifier if the
jump transfers program execution outside of a loop. Do not use
(LA) if there is no loop or if the jump address is within the loop.

• (CI)—clear interrupt—lets programs reuse an interrupt while it is
being serviced

Normally, the processor ignores and does not latch an interrupt that reoc-
curs while its service routine is already executing. Jump (CI) clears the
status of the current interrupt without leaving the interrupt service rou-
tine. This feature reduces the interrupt routine to a normal subroutine

IF COND JUMP (Md, Ic) (DB) ;

(PC, <reladdr6>) (LA)

(CI)

(DB, LA)

(DB, CI)

IF COND CALL (Md, Ic) (DB) ;

(PC, <reladdr6>)

SHARC Processor Programming Reference 9-37

Instruction Set Types

and allows the interrupt to occur again, as a result of a different event or
task in the system. The jump (CI) instruction should be located within the
interrupt service routine. For more information on interrupts, see
Chapter 4, Program Sequencer.

To reduce an interrupt service routine to a normal subroutine, the jump
(CI) instruction clears the appropriate bit in the interrupt latch register
(IRPTL) and interrupt mask pointer (IMASKP). The processor then allows
the interrupt to occur again.

When returning from a reduced subroutine, programs must use the (LR)
modifier of the RTS instruction if the interrupt occurs during the last two
instructions of a loop. For related information, see “Type 11a ISA/VISA
(cond + branch return + comp/else comp) Type 11c VISA (cond + branch
return)” on page 9-44.

The jump or call is executed if the optional specified condition is true or
if no condition is specified. If a compute operation is specified without the
ELSE, it is performed in parallel with the jump or call. If a compute opera-
tion is specified with the ELSE, it is performed only if the condition
specified is false. Note that a condition must be specified if an ELSE com-
pute clause is specified.

SIMD Mode

In SIMD mode, the Type 9 instruction provides the same jump or call
operation as is available in SISD mode, but provides additional features
for the optional condition.

If a condition is specified, the jump or call is executed if the specified
condition tests true in both the X and Y processing elements.

If a compute operation is specified without the ELSE, it is performed by the
processing element(s) in which the condition test true in parallel with the
jump or call. If a compute operation is specified with the ELSE, it is per-
formed in an element when the condition tests false in that element. Note
that a condition must be specified if an ELSE compute clause is specified.

Group II – Conditional Program Flow Control Instructions

9-38 SHARC Processor Programming Reference

Note that for the compute, the X element uses the specified registers and
the Y element uses the complementary registers. For a list of complemen-
tary registers, see Table 2-3 on page 2-6.

The following code compares the Type 9 instruction’s explicit and
implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy
COND) JUMP

(Md, Ic) (DB) , (if PEx COND)
compute

;

(PC, <reladdr6>) (LA) , ELSE (if NOT PEx)
compute

(CI)

(DB, LA)

(DB, CI)

IF (PEx AND PEy
COND) CALL

(Md, Ic) (DB) , (if PEx COND)
compute

;

(PC, <reladdr6>) , ELSE (if NOT PEx)
compute

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy
COND) JUMP

(Md, Ic) (DB) , (if PEy COND)
compute

;

(PC, <reladdr6>) (LA) , ELSE (if NOT PEy)
compute

(CI)

(DB, LA)

(DB, CI)

IF (PEx AND PEy
COND) CALL

(Md, Ic) (DB) , (if PEy COND)
compute

;

(PC, <reladdr6>) , ELSE (if NOT PEy)
compute

SHARC Processor Programming Reference 9-39

Instruction Set Types

Examples

JUMP(M8,I12), R6=R6-1;

IF EQ CALL(PC,17)(DB), ELSE R6=R6-1;

When the processors are in SISD mode, the indirect jump and compute in
the first instruction are performed in parallel. In the second instruction, a
call occurs if the condition is true, otherwise the computation is
performed.

When the processors are in SIMD mode, the indirect jump in the first
instruction occurs in parallel with both processing elements executing
computations. In PEx, R6 stores the result, and S6 stores the result in PEy.
In the second instruction, the condition is evaluated independently on
each processing element, PEx and PEy. The call executes based on the log-
ical ANDing of the PEx and PEy conditional tests. So, the call executes if
the condition tests true in both PEx and PEy. Because the ELSE inverts the
conditional test, the computation is performed independently on either
PEx or PEy based on the negative evaluation of the condition code seen by
that processing element. If the computation is executed, R6 stores the
result of the computation in PEx, and S6 stores the result of the computa-
tion in PEy.

Group II – Conditional Program Flow Control Instructions

9-40 SHARC Processor Programming Reference

Type 10a ISA (cond + branch + else comp + mem data move)

Indirect (or PC-relative) jump or optional compute operation with trans-
fer between data memory and register file. This instruction is not
supported for VISA instructions.

Syntax

SISD Mode

In SISD mode, the Type 10a instruction provides a conditional jump to
either specified PC-relative address or pre-modified I register value. In
parallel with the jump, this instruction also provides a transfer between
data memory and a data register with optional parallel compute operation.
For this instruction, the If condition and ELSE keywords are not optional
and must be used. If the specified condition is true, the jump is executed.
If the specified condition is false, the data memory transfer and optional
compute operation are performed in parallel. Only the compute operation
is optional in this instruction.

The PC-relative address for the jump is a 6-bit, twos-complement value. If
an I register is specified (Ic), it is modified by the specified M register (Md)
to generate the branch address. The I register is not affected by the modify
operation. For this jump, programs may not use the delay branch (DB),
loop abort (LA), or clear interrupt (CI) modifiers.

For the data memory access, the I register (Ia) provides the address. The I
register value is post-modified by the specified M register (Mb) and is
updated with the modified value. Pre-modify addressing is not available
for this data memory access.

IF COND Jump (Md, Ic) , Else compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

SHARC Processor Programming Reference 9-41

Instruction Set Types

SIMD Mode

In SIMD mode, the Type 10a instruction provides the same conditional
jump as is available in SISD mode, but the jump is executed if the speci-
fied condition tests true in both the X or Y processing elements.

In parallel with the jump, this instruction also provides a transfer between
data memory and a data register in the X and Y processing elements. An
optional parallel compute operation for the X and Y processing elements is
also available.

For this instruction, the If condition and ELSE keywords are not optional
and must be used. If the specified condition is true in both processing ele-
ments, the jump is executed. The the data memory transfer and optional
compute operation specified with the ELSE are performed in an element
when the condition tests false in that element.

Note that for the compute, the X element uses the specified Dreg register
and the Y element uses the complementary Cdreg register. For a list of
complementary registers, see Table 2-3 on page 2-6. Only the compute
operation is optional in this instruction.

The addressing for the jump is the same in SISD and SIMD modes, but
addressing for the data memory access differs slightly. For the data mem-
ory access in SIMD mode, X processing element uses the specified I
register (Ia) to address memory. The I register value is post-modified by
the specified M register (Mb) and is updated with the modified value. The
Y element adds one to the specified I register to address memory.
Pre-modify addressing is not available for this data memory access.

The following pseudo code compares the Type 10a instruction’s explicit
and implicit operations in SIMD mode.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the
Y element uses the specified I register without adding one.

Group II – Conditional Program Flow Control Instructions

9-42 SHARC Processor Programming Reference

Examples

IF TF JUMP(M8, I8), ELSE R6=DM(I6, M1);

IF NE JUMP(PC, 0x20), ELSE F12=FLOAT R10 BY R3, R6=DM(I5, M0);

When the processors are in SISD mode, the indirect jump in the first
instruction is performed if the condition tests true. Otherwise, R6 stores
the value of a data memory read. The second instruction is much like the
first, however, it also includes an optional compute, which is performed in
parallel with the data memory read.

When the processors are in SIMD mode, the indirect jump in the first
instruction executes depending on the outcome of the conditional in both
processing element. The condition is evaluated independently on each
processing element, PEx and PEy. The indirect jump executes based on
the logical ANDing of the PEx and PEy conditional tests. So, the indirect
jump executes if the condition tests true in both PEx and PEy. The data
memory read is performed independently on either PEx or PEy based on
the negative evaluation of the condition code seen by that PE.

The second instruction is much like the first instruction. The second
instruction, however, includes an optional compute also performed in par-
allel with the data memory read independently on either PEx or PEy and

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy
COND) Jump

(Md, Ic) , Else
(if NOT PEx)

compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy
COND) Jump

(Md, Ic) , Else
(if NOT PEy)

compute, DM(Ia + k, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia + k, Mb) ;

If broadcast mode k=0.
If SIMD mode NW access k=1, SW access k=2.

SHARC Processor Programming Reference 9-43

Instruction Set Types

based on the negative evaluation of the condition code seen by that pro-
cessing element.
IF TF JUMP(M8,I8), ELSE R6=DM(I1,M1);

When the processors are in broadcast mode (the BDCST1 bit is set in the
MODE1 system register), the instruction performs an indirect jump if the
condition tests true. Otherwise, R6 stores the value of a data memory read
via the I1 register from DAG1. The S6 register is also loaded with the
same value from data memory as R6.

Group II – Conditional Program Flow Control Instructions

9-44 SHARC Processor Programming Reference

Type 11a ISA/VISA (cond + branch return + comp/else comp)
Type 11c VISA (cond + branch return)

Indirect (or PC-relative) jump or optional compute operation with trans-
fer between data memory and register file

Type 11a Syntax

Type 11c Syntax

Indirect (or PC-relative) jump with transfer between data memory and
register file; without Type 11 optional compute operation

SISD Mode

In SISD mode, the Type 11 instruction provides a return from a subrou-
tine (RTS) or return from an interrupt service routine (RTI). A return
causes the processor to branch to the address stored at the top of the PC

IF COND RTS (DB) , compute ;

(LR) , ELSE compute

(DB, LR)

IF COND RTI (DB) , compute ;

, ELSE compute

IF COND RTS (DB) ;

(LR)

(DB, LR)

IF COND RTI (DB) ;

SHARC Processor Programming Reference 9-45

Instruction Set Types

stack. The difference between RTS and RTI is that the RTS instruction
only pops the return address off the PC stack, while the RTI does that
plus:

• Pops status stack if the ASTAT and MODE1 status registers have been
pushed—if the interrupt was IRQ2-0 or the timer interrupt

• Clears the appropriate bit in the interrupt latch register (IRPTL)
and the interrupt mask pointer (IMASKP)

The return executes when the optional If condition is true (or if no con-
dition is specified). If a compute operation is specified without the ELSE, it
is performed in parallel with the return. If a compute operation is specified
with the ELSE, it is performed only when the If condition is false. Note
that a condition must be specified if an ELSE compute clause is specified.

RTS supports two modifiers (DB) and (LR); RTI supports one modifier,
(DB). If the delayed branch (DB) modifier is specified, the return is
delayed; otherwise, it is non-delayed.

If the return is not a delayed branch and occurs as one of the last three
instructions of a loop, programs must use the loop reentry (LR) modifier
with the subroutine’s RTS instruction. The (LR) modifier assures proper
reentry into the loop. For example, the processor checks the termination
condition in counter-based loops by decrementing the current loop
counter (CURLCNTR) during execution of the instruction two locations
before the end of the loop. In this case, the RTS (LR) instruction prevents
the loop counter from being decremented again, avoiding the error of dec-
rementing twice for the same loop iteration.

Programs must also use the (LR) modifier for RTS when returning from a
subroutine that has been reduced from an interrupt service routine with a
jump (CI) instruction. This case occurs when the interrupt occurs during
the last two instructions of a loop. For a description of the jump (CI)
instruction, see “Type 8a ISA/VISA (cond + branch)” on page 9-32 or
“Type 9a ISA/VISA (cond + Branch + comp/else comp)” on page 9-35.

Group II – Conditional Program Flow Control Instructions

9-46 SHARC Processor Programming Reference

SIMD Mode

In SIMD mode, the Type 11 instruction provides the same return opera-
tions as are available in SISD mode, except that the return is executed if
the specified condition tests true in both the X and Y processing
elements.

In parallel with the return, this instruction also provides a parallel compute
or ELSE compute operation for the X and Y processing elements. If a con-
dition is specified, the optional compute is executed in a processing
element if the specified condition tests true in that processing element. If
a compute operation is specified with the ELSE, it is performed in an ele-
ment when the condition tests false in that element.

Note that for the compute, the X element uses the specified registers, and
the Y element uses the complementary registers. For a list of complemen-
tary registers, see Table 2-3 on page 2-6.

The following pseudo code compares the Type 11 instruction’s explicit
and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy COND) RTS (DB) , (if PEx COND) compute ;

(LR) , ELSE (if NOT PEx) compute

(DB, LR)

IF (PEx AND PEy COND) RTI (DB) , (if PEx COND) compute ;

, ELSE (if NOT PEx) compute

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy COND) RTS (DB) , (if PEy COND) compute ;

(LR) , ELSE (if NOT PEy) compute

(DB, LR)

IF (PEx AND PEy COND) RTI (DB) , (if PEy COND) compute ;

, ELSE (if NOT PEy) compute

SHARC Processor Programming Reference 9-47

Instruction Set Types

Examples

RTI, R6=R5 XOR R1;

IF le RTS(DB);

IF sz RTS, ELSE R0=LSHIFT R1 BY R15;

When the processors are in SISD mode, the first instruction performs a
return from interrupt and a computation in parallel. The second instruc-
tion performs a return from subroutine only if the condition is true. In the
third instruction, a return from subroutine is executed if the condition is
true. Otherwise, the computation executes.

When the processors are in SIMD mode, the first instruction performs a
return from interrupt and both processing elements execute the computa-
tion in parallel. The result from PEx is placed in R6, and the result from
PEy is placed in S6. The second instruction performs a return from sub-
routine (RTS) if the condition tests true in both PEx or PEy. In the third
instruction, the condition is evaluated independently on each processing
element, PEx and PEy. The RTS executes based on the logical ANDing of
the PEx and PEy conditional tests. So, the RTS executes if the condition
tests true in both PEx and PEy. Because the ELSE inverts the conditional
test, the computation is performed independently on either PEx or PEy
based on the negative evaluation of the condition code seen by that pro-
cessing element. The R0 register stores the result in PEx, and S0 stores the
result in PEy if the computations are executed.

Group II – Conditional Program Flow Control Instructions

9-48 SHARC Processor Programming Reference

Type 12a ISA/VISA (do until loop counter expired)

Load loop counter, do loop until loop counter expired

Syntax

SISD and SIMD Modes

In SISD or SIMD modes, the Type 12 instruction sets up a counter-based
program loop. The loop counter LCNTR is loaded with 16-bit immediate
data or from a universal register. The loop start address is pushed on the
PC stack. The loop end address and the LCE termination condition are
pushed on the loop address stack. The end address can be either a label for
an absolute 24-bit program memory address, or a PC-relative 24-bit
two’s-complement address. The LCNTR is pushed on the loop counter stack
and becomes the CURLCNTR value. The loop executes until the CURLCNTR
reaches zero.

Examples

LCNTR=100, DO fmax UNTIL LCE; /* fmax is a program label */

LCNTR=R12, DO (PC,16) UNTIL LCE;

The processor (in SISD or SIMD) executes the action at the indicated
address for the duration of the loop.

LCNTR = <data16> , DO <addr24> UNTIL LCE;

ureg (PC, <reladdr24>)

SHARC Processor Programming Reference 9-49

Instruction Set Types

Type 13a ISA/VISA (do until termination)

Do until termination

Syntax

SISD Mode

In SISD mode, the Type 13 instruction sets up a conditional program
loop. The loop start address is pushed on the PC stack. The loop end
address and the termination condition are pushed on the loop stack. The
end address can be either a label for an absolute 24-bit program memory
address or a PC-relative, 24-bit twos-complement address. The loop exe-
cutes until the termination condition tests true.

SIMD Mode

In SIMD mode, the Type 13 instruction provides the same conditional
program loop as is available in SISD mode, except that in SIMD mode the
loop executes until the termination condition tests true in both the X and
Y processing elements.

The following code compares the Type 13 instruction’s explicit and
implicit operations in SIMD mode.

DO <addr24> UNTIL termination ;

(PC, <reladdr24>)

SIMD Explicit Operation (Program Sequencer Operation Stated in the Instruction Syntax

DO <addr24> UNTIL (PEx AND PEy) termination ;

(PC, <reladdr24>)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

/* No implicit PEy operation */

Group II – Conditional Program Flow Control Instructions

9-50 SHARC Processor Programming Reference

Examples

DO end UNTIL FLAG1_IN; /* end is a program label */

DO (PC,7) UNTIL AC;

When the processors are in SISD mode, the end program label in the first
instruction specifies the start address for the loop, and the loop is executed
until the instruction’s condition tests true. In the second instruction, the
start address is given in the form of a PC-relative address. The loop exe-
cutes until the instruction’s condition tests true.

When the processors are in SIMD mode, the end program label in the first
instruction specifies the start address for the loop, and the loop is executed
until the instruction’s condition tests true in both PEx or PEy. In the sec-
ond instruction, the start address is given in the form of a PC-relative
address. The loop executes until the instruction’s condition tests true in
both PEx or PEy.

SHARC Processor Programming Reference 9-51

Instruction Set Types

Group III – Immediate Data Move
Instructions

The group III instructions contain data move operation with immediate
data or indirect addressing.

• “Type 14a ISA/VISA (mem data move)” on page 9-53

• “Type 15a ISA/VISA (<data32> move) Type 15b VISA (<data7>
move)” on page 9-56

• “Type 16a ISA/VISA (<data32> move) Type 16b VISA (<data16>
move)” on page 9-60

• “Type 17a ISA/VISA (<data32> move) Type 17b VISA (<data16>
move)” on page 9-62

The following table provides an overview of the Group III instructions.
The letter after the instruction type denotes the instruction size as follows:
a = 48-bit, b = 32-bit, c = 16-bit.

Type Addr Operation

14a ISA
VISA

DM(<addr32>) = UREG(LW);
PM(<addr32>)
UREG = DM(<addr32>)(LW);
 PM(<addr32>)

15a ISA
VISA

DM(<data32>,Ia) = UREG(LW);
PM(<data32>,Ic)
UREG = DM(<data32>,Ia)(LW);
 PM(<data32>,Ic)

15b VISA DM(<data7>,Ia) = UREG(LW);
PM(<data7>,Ic)
UREG = DM(<data7>,Ia)(LW);
 PM(<data7>,Ic)

16a ISA
VISA

DM(Ia,Mb) = <data32>;
PM(Ic,Md)

Group III – Immediate Data Move Instructions

9-52 SHARC Processor Programming Reference

16b VISA DM(Ia,Mb) = <data16>;
PM(Ic,Md)

17a ISA
VISA

UREG = <data32>;

17b VISA UREG = <data16>;

Type Addr Operation

SHARC Processor Programming Reference 9-53

Instruction Set Types

Type 14a ISA/VISA (mem data move)

Type 14a Syntax

Transfer between data or program memory and universal register, direct
addressing, immediate address

SISD Mode

In SISD mode, the Type 14 instruction sets up an access between data or
program memory and a universal register, with direct addressing. The
entire data or program memory address is specified in the instruction.

Addresses are 32 bits wide (0 to 232–1). The optional (LW) in this syntax
lets programs specify long word addressing, overriding default addressing
from the memory map.

SIMD Mode

In SIMD mode, the Type 14 instruction provides the same access between
data or program memory and a universal register, with direct addressing,
as is available in SISD mode, except that addressing differs slightly, and
the transfer occurs in parallel for the X and Y processing elements.

For the memory access in SIMD mode, the X processing element uses the
specified 32-bit address to address memory. The Y element adds k to the
specified 32-bit address to address memory.

DM(<addr32>) = ureg (LW);

PM(<addr32>)

ureg = DM(<addr32>) (LW);

PM(<addr32>) (LW);

Group III – Immediate Data Move Instructions

9-54 SHARC Processor Programming Reference

For the universal register, the X element uses the specified Ureg, and the Y
element uses the complementary register (Cureg) that corresponds to the
Ureg register specified in the instruction. For a list of complementary reg-
isters, see Table 2-3 on page 2-6. Note that only the Cureg subset registers
which have complementary registers are effected by SIMD mode.

The following code compares the Type 14 instruction’s explicit and
implicit operations in SIMD mode.

Examples

DM(temp)=MODE1; /* temp is a program label */

LCNTR=PM(0x90500);

When the processors are in SISD mode, the first instruction performs a
direct memory write of the value in the MODE1 register into data memory
with the data memory destination address specified by the program label,
temp. The second instruction initializes the LCNTR register with the value
found in the specified address in program memory.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<addr32>) = ureg (LW);

PM(<addr32>)

ureg = DM(<addr32>) (LW);

PM(<addr32>) (LW);

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(<addr32>+k) = cureg (LW);

PM(<addr32>+k)

cureg = DM(<addr32>+k) (LW);

PM(<addr32>+k) (LW);

If broadcast mode k=0.
If SIMD mode NW access k=1, SW access k=2.

SHARC Processor Programming Reference 9-55

Instruction Set Types

Because of the register selections in this example, these two instructions
operate the same in SIMD and SISD mode. The MODE1 (SREG) and LCNTR
(UREG) registers have no complements, so they do not operate differently
in SIMD mode.

Group III – Immediate Data Move Instructions

9-56 SHARC Processor Programming Reference

Type 15a ISA/VISA (<data32> move)
Type 15b VISA (<data7> move)

Type 15a Syntax

Transfer between data or program memory and universal register, indirect
addressing, immediate modifier

Type 15b Syntax

Transfer (7-bit data) between data or program memory and universal reg-
ister, indirect addressing, immediate modifier

SISD Mode

In SISD mode, the Type 15 instruction sets up an access between data or
program memory and a universal register, with indirect addressing using I
registers. The I register is pre-modified with an immediate value specified
in the instruction. The I register is not updated. Address modifiers are 32

bits wide (0 to 232–1). The Ureg may not be from the same DAG (that is,

DM(<data32>, Ia) = ureg (LW);

PM(<data32>, Ic)

ureg = DM(<data32>, Ia) (LW);

PM(<data32>, Ic)

DM(<data7>, Ia) = ureg (LW);

PM(<data7>, Ic)

ureg = DM(<data7>, Ia) (LW);

PM(<data7>, Ic)

SHARC Processor Programming Reference 9-57

Instruction Set Types

DAG1 or DAG2) as Ia/Mb or Ic/Md. For more information on register
restrictions, see Chapter 6, Data Address Generators. The optional (LW)
in this syntax lets programs specify long word addressing, overriding
default addressing from the memory map.

SIMD Mode

In SIMD mode, the Type 15 instruction provides the same access between
data or program memory and a universal register, with indirect addressing
using I registers, as is available in SISD mode, except that addressing dif-
fers slightly, and the transfer occurs in parallel for the X and Y processing
elements.

The X processing element uses the specified I register—pre-modified with
an immediate value—to address memory. The Y processing element adds
k to the pre-modified I value to address memory. The I register is not
updated.

The Ureg specified in the instruction is used for the X processing element
transfer and may not be from the same DAG (that is, DAG1 or DAG2) as
Ia/Mb or Ic/Md. The Y element uses the complementary register (Cureg)
that correspond to the Ureg register specified in the instruction. For a list
of complementary registers, see Table 2-3 on page 2-6. Note that only the
Cureg subset registers which have complimentary registers are effected by
SIMD mode. For more information on register restrictions, see
Chapter 6, Data Address Generators.

The following code compares the Type 15 instruction’s explicit and
implicit operations in SIMD mode.

Type 15a ISA/VISA (<data32> move) Type 15b VISA (<data7>
move)

9-58 SHARC Processor Programming Reference

Examples

DM(24,I5)=TCOUNT;

USTAT1=PM(offs,I13); /* “offs” is a user-defined constant */

When the processors are in SISD mode, the first instruction performs a
data memory write, using indirect addressing and the Ureg timer register,
TCOUNT. The DAG1 register I5 is pre-modified with the immediate value
of 24. The I5 register is not updated after the memory access occurs. The
second instruction performs a program memory read, using indirect
addressing and the system register, USTAT1. The DAG2 register I13 is
pre-modified with the immediate value of the defined constant, offs. The
I13 register is not updated after the memory access occurs.

Because of the register selections in this example, the first instruction in
this example operates the same in SIMD and SISD mode. The TCOUNT
(timer) register is not included in the Cureg subset, and therefore the first
instruction operates the same in SIMD and SISD mode.

The second instruction operates differently in SIMD. The USTAT1 (sys-
tem) register is included in the Cureg subset. Therefore, a program

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<data32>, Ia) = ureg (LW);

PM(<data32>, Ic)

ureg = DM(<data32>, Ia) (LW);

PM(<data32>, Ic)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(<data32>+k, Ia) = cureg (LW);

PM(<data32>+k, Ic)

cureg = DM(<data32>+k, Ia) (LW);

PM(<data32>+k, Ic)

If broadcast mode k=0.
If SIMD mode NW access k=1, SW access k=2.

SHARC Processor Programming Reference 9-59

Instruction Set Types

memory read—using indirect addressing and the system register, USTAT1
and its complimentary register USTAT2—is performed in parallel on PEx
and PEy respectively. The DAG2 register I13 is pre-modified with the
immediate value of the defined constant, offs, to address memory on
PEx. This same pre-modified value in I13 is skewed by k to address mem-
ory on PEy. The I13 register is not updated after the memory access
occurs in SIMD mode.

Group III – Immediate Data Move Instructions

9-60 SHARC Processor Programming Reference

Type 16a ISA/VISA (<data32> move)
Type 16b VISA (<data16> move)

Type 16a Syntax

Immediate data write to data or program memory

Type 16b Syntax

Immediate 16-bit data write to data or program memory

SISD Mode

In SISD mode, the Type 16 instruction sets up a write of 32-bit immedi-
ate data to data or program memory, with indirect addressing. The data is
placed in the most significant 32 bits of the 40-bit memory word. The
least significant 8 bits are loaded with 0s. The I register is post-modified
and updated by the specified M register.

SIMD Mode

In SIMD mode, the Type 16 instruction provides the same write of 32-bit
immediate data to data or program memory, with indirect addressing, as is
available in SISD mode, except that addressing differs slightly, and the
transfer occurs in parallel for the X and Y processing elements.

The X processing element uses the specified I register to address memory.
The Y processing element adds k to the I register to address memory. The
I register is post-modified and updated by the specified M register.

DM(Ia, Mb) = <data32> ;

PM(Ic, Md)

DM(Ia, Mb) = <data16> ;

PM(Ic, Md)

SHARC Processor Programming Reference 9-61

Instruction Set Types

The following code compares the Type 16 instruction’s explicit and
implicit operations in SIMD mode.

Examples

DM(I4,M0)=19304;

PM(I14,M11)=count; /* count is user-defined constant */

When the processors are in SISD mode, the two immediate memory
writes are performed on PEx. The first instruction writes to data memory
and the second instruction writes to program memory. DAG1 and DAG2
are used to indirectly address the locations in memory to which values are
written. The I4 and I14 registers are post-modified and updated by M0 and
M11 respectively.

When the processors are in SIMD mode, the two immediate memory
writes are performed in parallel on PEx and PEy. The first instruction
writes to data memory and the second instruction writes to program mem-
ory. DAG1 and DAG2 are used to indirectly address the locations in
memory to which values are written. The I4 and I14 registers are
post-modified and updated by M0 and M11 respectively.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(Ia, Mb) = <data32> ;

PM(Ic, Md)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(Ia+k, 0) = <data32> ;

PM(Ic+k, 0)

If broadcast mode k=0.
If SIMD mode NW access k=1, SW access k=2.

Group III – Immediate Data Move Instructions

9-62 SHARC Processor Programming Reference

Type 17a ISA/VISA (<data32> move)
Type 17b VISA (<data16> move)

Type 17a Syntax

Immediate 32-bit data write to universal register

Type 17b Syntax

Immediate 16-bit data write to universal register

SISD Mode

In SISD mode, the Type 17 instruction writes 16-bit/32-bit immediate
data to a universal register. If the register is 40 bits wide, the data is placed
in the most significant 32 bits, and the least significant 8 bits are loaded
with 0s.

SIMD Mode

In SIMD mode, the Type 17 instruction provides the same write of 32-bit
immediate data to universal register as is available in SISD mode, but pro-
vides parallel writes for the X and Y processing elements.

The X element uses the specified Ureg, and the Y element uses the comple-
mentary Cureg. Note that only the Cureg subset registers which have
complimentary registers are effected by SIMD mode. For a list of comple-
mentary registers, see Table 2-3 on page 2-6.

ureg = <data32> ;

ureg = <data16> ;

SHARC Processor Programming Reference 9-63

Instruction Set Types

The following code compares the Type 17 instruction’s explicit and
implicit operations in SIMD mode.

Examples

ASTATx=0x0;

M15=mod1; /* mod1 is user-defined constant */

When the processors are in SISD mode, the two instructions load imme-
diate values into the specified registers.

Because of the register selections in this example, the second instruction in
this example operates the same in SIMD and SISD mode. The ASTATx
(system) register is included in the Cureg subset. In the first instruction,
the immediate data write to the system register ASTATx and its compli-
mentary register ASTATy are performed in parallel on PEx and PEy
respectively. In the second instruction, the M15 register is not included in
the Cureg subset. So, the second instruction operates the same in SIMD
and SISD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

ureg = <data32> ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

cureg = <data32> ;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

ureg = <data16> ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

cureg = <data16> ;

Group IV – Miscellaneous Instructions

9-64 SHARC Processor Programming Reference

Group IV – Miscellaneous Instructions
The group IV instructions contains miscellaneous operations.

• “Type 18a ISA/VISA (register bit manipulation)” on page 9-66

• “Type 19a ISA/VISA (index modify/bitrev)” on page 9-69

• “Type 20a ISA/VISA (push/pop stack)” on page 9-70

• “Type 21a ISA/VISA (nop) Type 21c VISA (nop)” on page 9-71

• “Type 22a ISA/VISA (idle/emuidle)” on page 9-72

• “Type 25a ISA/VISA (cjump/rframe) Type 25c VISA (RFRAME)”
on page 9-73

The following table provides an overview of the Group II instructions.
The letter after the instruction type denotes the instruction size as follows:
a = 48-bit, b = 32-bit, c = 16-bit.

Type Addr Operation

18a ISA
VISA

BIT SET SREG <data32>;
CLR
TGL
TST
XOR

19a ISA
VISA

BITREV (Ia, <data32>);
 (Ic, <data32>);
MODIFY (Ia,<data32>);
 (Ic,<data32>);
Ia = MODIFY (Ia,<data32>); // for ADSP-214xx
Ic = MODIFY (Ic,<data32>); // for ADSP-214xx
Ia = BITREV (Ia,<data32>); // for ADSP-214xx
Ic = BITREV (Ic,<data32>); // for ADSP-214xx

20a ISA
VISA

PUSH LOOP, PUSH STS, PUSH PCSTK,
POP LOOP, POP STS, POP PCSTK,
FLUSH CACHE;

SHARC Processor Programming Reference 9-65

Instruction Set Types

21a ISA
VISA

NOP;

21c VISA

22a ISA
VISA

IDLE;
EMUIDLE;

22c VISA

23–24 Reserved

25a ISA
VISA

CJUMP <addr24> (db);
CJUMP (PC, <reladdr24>) (db);
RFRAME;

25c VISA RFRAME;

Type Addr Operation

Group IV – Miscellaneous Instructions

9-66 SHARC Processor Programming Reference

Type 18a ISA/VISA (register bit manipulation)

System register bit manipulation

Syntax

SISD Mode

In SISD mode, the Type 18 instruction provides a bit manipulation oper-
ation on a system register. This instruction can set, clear, toggle or test
specified bits, or compare (XOR) the system register with a specified data
value. In the first four operations, the immediate data value is a mask.

The set operation sets all the bits in the specified system register that are
also set in the specified data value. The clear operation clears all the bits
that are set in the data value. The toggle operation toggles all the bits that
are set in the data value. The test operation sets the bit test flag (BTF in
ASTATx/y) if all the bits that are set in the data value are also set in the sys-
tem register. The XOR operation sets the bit test flag (BTF in ASTATx/y) if
the system register value is the same as the data value.

For more information on shifter operations, see Chapter 11, Computa-
tion Types. For more information on system registers, see Appendix A,
Registers.

BIT SET sreg <data32> ;

CLR

TGL

TST

XOR

SHARC Processor Programming Reference 9-67

Instruction Set Types

SIMD Mode

In SIMD mode, the Type 18 instruction provides the same bit manipula-
tion operations as are available in SISD mode, but provides them in
parallel for the X and Y processing elements.

The X element operation uses the specified Sreg, and the Y element opera-
tions uses the complementary Csreg. For a list of complementary registers,
see Table 2-3 on page 2-6.

The following code compares the Type 18 instruction’s explicit and
implicit operations in SIMD mode.

Examples

BIT SET MODE2 0x00000070;

BIT TST ASTATx 0x00002000;

When the processors are in SISD mode, the first instruction sets all of the
bits in the MODE2 register that are also set in the data value, bits 4, 5, and 6
in this case. The second instruction sets the bit test flag (BTF in ASTATx) if
all the bits set in the data value, just bit 13 in this case, are also set in the
system register.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

BIT SET sreg <data32> ;

CLR

TGL

TST

XOR

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

BIT SET csreg <data32> ;

CLR

TGL

TST

XOR

Group IV – Miscellaneous Instructions

9-68 SHARC Processor Programming Reference

Because of the register selections in this example, the first instruction
operates the same in SISD and SIMD, but the second instruction operates
differently in SIMD. Only the Cureg subset registers which have
complimentary registers are affected in SIMD mode. The ASTATx (system)
register is included in the Cureg subset, so the bit test operations are per-
formed independently on each processing element in parallel using these
complimentary registers. The BTF is set on both PEs (ASTATx and ASTATy),
either one PE (ASTATx or ASTATy), or neither PE dependent on the out-
come of the bit test operation.

SHARC Processor Programming Reference 9-69

Instruction Set Types

Type 19a ISA/VISA (index modify/bitrev)

Immediate I register modify or bit-reverse

Syntax

SISD and SIMD Modes

In SISD and SIMD modes, the Type 19 instruction modifies and adds the
specified source Ia/Ic register with an immediate 32-bit data value and
stores the result to the specified destination Ia/Ic register (ADSP-214xx
processors only). If no destination register is specified then the source I
register is updated. If the address is to be bit-reversed (as specified by mne-
monic), the modified value is bit-reversed before being written back to the
destination I register. No address is output in either case. For more infor-
mation on register restrictions, see Chapter 6, Data Address Generators.

 If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set
up for circular bufferring, the modify operation always executes cir-
cular buffer wraparound, independent of the CBUFEN bit.

Examples

MODIFY (I4, 304);

/* operation is the same as I4=MODIFY(I4,304) */

BITREV (I7, space);

/* “space” is a user-defined constant,

operation is the same as I7=BITREV(I7,space) */

I3 = MODIFY (I2,0x123);

I9 = MODIFY (I9,0x1);

I2 = BITREV (I1,122);

I15 =BITREV(I12,0x10);

Ia = MODIFY (Ia, <data32>) ;

Ic = BITREV (Ic, <data32>) ;

Group IV – Miscellaneous Instructions

9-70 SHARC Processor Programming Reference

Type 20a ISA/VISA (push/pop stack)

Push or Pop of loop and/or status stacks

Syntax

SISD and SIMD Modes

In SISD and SIMD modes, the Type 20 instruction pushes or pops the
loop address and loop counter stacks, the status stack, and/or the PC
stack, and/or clear the instruction cache. Any of set of pushes (push loop,
push sts, push pcstk) or pops (pop loop, pop sts, pop pcstk) may be com-
bined in a single instruction, but a push may not be combined with a pop.

Flushing the instruction cache invalidates all entries in the cache, and has
an effect latency of one instruction when executing from internal memory,
and two instructions when executing from external memory.

Examples

PUSH LOOP, PUSH STS;

POP PCSTK, FLUSH CACHE;

In SISD and SIMD, the first instruction pushes the loop stack and status
stack. The second instruction pops the PC stack and flushes the cache.

PUSH LOOP , PUSH STS , PUSH PCSTK , FLUSH CACHE ;

POP POP POP

SHARC Processor Programming Reference 9-71

Instruction Set Types

Type 21a ISA/VISA (nop)
Type 21c VISA (nop)

Type 21a Syntax

No Operation (NOP)

Type 21c Syntax

No operation (NOP)

SISD and SIMD Modes

In SISD and SIMD modes, the Type 21 instruction provides a null opera-
tion; it increments only the fetch address.

NOP ;

NOP

Group IV – Miscellaneous Instructions

9-72 SHARC Processor Programming Reference

Type 22a ISA/VISA (idle/emuidle)

Low power/emulation halt instruction

Type 22a Syntax

SISD and SIMD Modes

In SISD and SIMD modes, the Type 22 idle instruction puts the proces-
sor in a low power state. The processor remains in the low power state
until an interrupt occurs. On return from the interrupt, execution contin-
ues at the instruction following the Idle instruction. The emuidle
instruction halts the core caused by a software breakpoint hit and places
the core in emulation space. An RTI instruction releases the core back to
user space.

IDLE ;
EMUIDLE ;

SHARC Processor Programming Reference 9-73

Instruction Set Types

Type 25a ISA/VISA (cjump/rframe)
Type 25c VISA (RFRAME)

Type 25a Syntax

Cjump/Rframe (Compiler-generated instruction)

Type 25c Syntax

Rframe (Compiler-generated instruction); without Type 25 Cjump option

Function (SISD and SIMD)

In SISD mode, the Type 25 instruction (cjump) combines a direct or
PC-relative jump with register transfer operations that save the frame and
stack pointers. The instruction (rframe) also reverses the register transfers
to restore the frame and stack pointers.

The Type 25 instruction is only intended for use by a C (or other
high-level-language) compiler. Do not use cjump or rframe in assembly
programs. The cjump instruction should always use the DB modifier.

CJUMP function (DB) ;

(PC, <reladdr24>)

RFRAME ;

RFRAME ;

Group IV – Miscellaneous Instructions

9-74 SHARC Processor Programming Reference

The different forms of this instruction perform the operations listed in
Table 9-2 where raddr indicates a relative 24-bit address.

Table 9-2. Operations Done by Forms of the Type 25 Instruction

Compiler-Generated
Instruction

Operations Performed in
SISD Mode

Operations Performed in
SIMD Mode

CJUMP label (DB); JUMP label (DB),
 R2=I6, I6=I7;

JUMP label (DB),
 R2=I6, S2=I6, I6=I7;

CJUMP (PC,raddr)
(DB);

JUMP (PC,raddr) (DB),
 R2=I6, I6=I7;

JUMP (PC,raddr) (DB),
 R2=I6, S2=I6, I6=I7;

RFRAME; I7=I6, I6=DM(0,I6); I7=I6, I6=DM(0,I6);

SHARC Processor Programming Reference 10-1

10 INSTRUCTION SET OPCODES

This chapter lists the various instruction type opcodes and their ISA or
VISA operation. The instruction types linked into normal word space are
valid ISA opcodes and if linked into short word space they become valid
VISA opcodes (valid for the ADSP-214xx processors). Note that all VISA
instructions are first MSB aligned, then decoded, then executed (therefore
starting with bit 47).

Instruction Set Opcodes
Table 10-1 shows acronyms for instruction type opcodes

Table 10-1. Opcode Acronyms (ISA/VISA)

Bit/Field Type Description States

A Loop abort code 0 = Do not pop loop, PC stacks on
branch
1 = Pop loop, PC stacks on branch

B Branch type 0 = jump
1 = Call

BOP 18a Bit operation select codes 000 = Set
001 = Clear
010 = Toggle
100 = Test
101 = XOR

CDREG 5a Complementary data Register file locations 0–15

COMPUTE Compute operation field (see Table 12-1 on page 12-1)

Instruction Set Opcodes

10-2 SHARC Processor Programming Reference

COND IF condition codes 0–31 (see Table 10-4 on page 10-33)

CI Clear interrupt code 0 = Do not clear current interrupt
1 = Clear current interrupt

D Data direction 0 = Memory read
1 = Memory write

DATAEX 6a For two 6-bit immediate Y input data or the 12-bit immediate for bit
FIFO, the DATAEX field adds 4 MSBs to the DATA field, creating a
12-bit immediate value. The six LSBs are the shift value (bit6) and the
six MSBs are the length value (len6)

DEST UREG 5a Destination Universal register

DMD DAG1 access direction 0 = Read
1 = Write

DMI Index (I) register numbers,
DAG1

0–7

DMM Modify (M) register numbers,
DAG1

0–7

DREG Data Register file locations 0–15

EMU 22a Emulator IDLE Instruction 0 = EMU
1 = IDL

E ELSE clause code 0 = No ELSE clause
1 = ELSE Clause

FC 20a Flush cache code 0 = No cache flush
1 = Cache flush

G DAG select 0 = DAG1
1 = DAG2

I DAG Index Register 0–15

IDL 22a IDLE Instruction 0 = IDL
1 = EMU

Table 10-1. Opcode Acronyms (ISA/VISA) (Cont’d)

Bit/Field Type Description States

SHARC Processor Programming Reference 10-3

Instruction Set Opcodes

Id + Is 19a Specifies destination I register
indirectly. Destination I regis-
ter is derived by performing
bitwise exclusive OR between
Is and these bits.

I0–I15

Is 19a DAG Index Source register I0–I15

J Jump type 0 = Non delayed
1 = Delayed

L Long word memory address 0 = Access size based on memory map
1 = Long word (64-bit) access size

LPO 20a Loop stack pop code 0 = No stack pop
1 = Stack pop

LPU 20a Loop stack push code 0 = No stack push
1 = Stack push

LR Loop reentry code 0 = No loop reentry
1 = Loop reentry

M DAG Modify register 0–15

PMD DAG2 access direction 0 = Read
1 = Write

PMI Index (I) register numbers,
DAG2

8–15

PMM Modify (M) register numbers,
DAG2

8–15

PPO 20a PC stack pop code 0 = No stack pop
1 = Stack pop

PPU 20a PC stack push code 0 = No stack push
1 = Stack push

SHIFT
IMMEDIATE

6a Compute operation field (see “Shifter/Shift Immediate Opcodes” on
page 12-9)

SHORT
COMPUTE

2c Compute operation field (see “Short Compute” on page 11-94)

Table 10-1. Opcode Acronyms (ISA/VISA) (Cont’d)

Bit/Field Type Description States

10-4 SHARC Processor Programming Reference

The letter after the instruction in the next sections denotes the instruction
size as follows: a = 48-bit, b = 32-bit, c = 16-bit.

For ISA/VISA instructions bits 47–40 are used to decode the instruction
set types and for VISA instructions bits 36–34 are optionally decoded.

SPO 20a Status stack pop code 0 = No stack pop
1 = Stack pop

SPU 20a Status stack push code 0 = No stack push
1 = Stack push

SREG 18a System register code 0–15 (see “Register Opcodes” on
page 10-30)

SRC UREG
HIGH

5a Source Universal Register
(highest 5 bits of code

SRC UREG
LOW

5a Source Universal Register
(lowest 2 bits of register code)

TERM 13a Termination condition codes 0–31 (see Table 10-4 on page 10-33)

U Update, index (I) register 0 = Pre-modify, no update
1 = Post-modify with update

UREG Universal register code 0–127 (see “Register Opcodes” on
page 10-30)

Table 10-1. Opcode Acronyms (ISA/VISA) (Cont’d)

Bit/Field Type Description States

SHARC Processor Programming Reference 10-5

Instruction Set Opcodes

Group I – Conditional Compute and
Move or Modify Instructions

Conditional compute and move or modify instructions include the
following.

Type 1a

Type 1b

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

001
D
M
D

DMI DMM
P
M
D

DM DREG PMI PMM PM DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

001
D
M
D

DMI DMM
P
M
D

DM DREG

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PMI PMM PM DREG 0111111

10-6 SHARC Processor Programming Reference

Type 2a

Type 2b

Type 2c

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00001 COND

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39

000 00001 1

38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1100 SHORT COMPUTE

SHARC Processor Programming Reference 10-7

Instruction Set Opcodes

Type 3a

Type 3b

Type 3c

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

010 U I M COND G D L UREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

010 U I M COND

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

G D L UREG 0111111

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1001 DMI DMM D 1 DREG

10-8 SHARC Processor Programming Reference

Type 4a

 Type 4b

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 0 I G D U COND DATA DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

011 0 I G D U COND

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA DREG 0111111

SHARC Processor Programming Reference 10-9

Instruction Set Opcodes

Type 5a

Ureg = Ureg transfer

Dreg <-> CDreg swap

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 1 0 SRC UREG HIGH COND
SRC

UREG
LOW

DEST UREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 1 1 CDREG COND DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

10-10 SHARC Processor Programming Reference

Type 5b

Ureg = Ureg move

Dreg <-> CDreg swap

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

011 1 0 SRC UREG HIGH COND

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC
UREG
LOW

DEST UREG 0111111

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

011 1 1 CDREG COND

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DREG 0111111

SHARC Processor Programming Reference 10-11

Instruction Set Opcodes

Type 6a

with mem data move

without mem data move

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

100 0 I M COND G D DATAEX DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFTIM

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

100 0 I M COND G D DATAEX DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFTIM

10-12 SHARC Processor Programming Reference

Type 7a

Type 7b

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00100 G COND Is M IdIs

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

000 00100 G COND

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Is M IdIs 0111111

SHARC Processor Programming Reference 10-13

Instruction Set Opcodes

Group II – Conditional Program Flow
Control Instructions

Conditional program flow control instructions include the following.

Type 8a

direct branch

PC-relative branch

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00110 B A COND J CI

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00111 B A COND J CI

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

10-14 SHARC Processor Programming Reference

Type 9a

with indirect branch

with PC-relative branch

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01000 B A COND PMI PMM J E CI

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01001 B A COND RELADDR J E CI

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

SHARC Processor Programming Reference 10-15

Instruction Set Opcodes

Type 9b

with indirect branch

with PC-relative branch

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

000 01000 B A COND

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PMI PMM J CI 0111111

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

000 01001 B A COND

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RELADDR J CI 0111111

10-16 SHARC Processor Programming Reference

Type 10a

with indirect jump

with PC-relative jump

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

110 D DMI DMM COND PMI PMM DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

111 D DMI DMM COND RELADDR DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

SHARC Processor Programming Reference 10-17

Instruction Set Opcodes

Type 11a

branch return from subroutine

branch return from interrupt

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01010 COND J E LR

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01011 COND J E

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

10-18 SHARC Processor Programming Reference

Type 11c

branch return from subroutine

branch return from interrupt

Type 12a

with immediate loop counter load

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 01010 1 J COND LR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 01011 1 J COND LR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01100 DATA

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

SHARC Processor Programming Reference 10-19

Instruction Set Opcodes

with Ureg load

Type 13a

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01101 0 UREG

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01110 TERM

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

10-20 SHARC Processor Programming Reference

Group III – Immediate Data Move
Instructions

Immediate data move instructions include the following.

Type 14a

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 100 G D L UREG ADDR
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR
(lower 24 bits)

SHARC Processor Programming Reference 10-21

Instruction Set Opcodes

Type 15a

Type 15b

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

101 G I D L UREG DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

47 46 45 44 43 42 41 40 39 38 37 36 35 34

1001 I D L G 010

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UREG DATA

10-22 SHARC Processor Programming Reference

Type 16a

Type 16b

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

100 1 I M G DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1001 I M G 001

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA

SHARC Processor Programming Reference 10-23

Instruction Set Opcodes

Type 17a

Type 17b

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01111 0 UREG DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 01111 1 UREG

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA

10-24 SHARC Processor Programming Reference

Group IV – Miscellaneous Instructions
Miscellaneous instructions include the following.

Type 18a

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10100 BOP SREG DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

SHARC Processor Programming Reference 10-25

Instruction Set Opcodes

Type 19a

with modify

with bit-reverse

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10110 0 G IdIs Is DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10110 1 G IdIs Is DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

10-26 SHARC Processor Programming Reference

Type 20a

Type 21a

Type 21c

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10111
L
P
U

L
P
O

S
P
U

S
P
O

P
P
U

P
P
O

F
C

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00000 0

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 00000 0 0 1

SHARC Processor Programming Reference 10-27

Instruction Set Opcodes

Type 22a

Type 22c

47 46 45 44 43 42 41 40 39 38 3
7

36 35 34 33 32 31 30 29 28 27 26 25 24

000 00000 IDL EMU

23 22 21 20 19 18 17 16 15 14 1
3

12 11 10 9 8 7 6 5 4 3 2 1 0

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 00000 IDL EMU 1

10-28 SHARC Processor Programming Reference

Type 25a

cjump/rframe with direct branch

with PC-relative branch

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

0001 1000 0000 0100 0000 0000

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

0001 1000 0100 0100 0000 0000

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

SHARC Processor Programming Reference 10-29

Instruction Set Opcodes

RFRAME

Type 25c

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

0001 1001 0000 0000 0000 0000

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000 0000 0000 0000 0000 0000

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0001 1001 0000 0001

Register Opcodes

10-30 SHARC Processor Programming Reference

Register Opcodes
The SHARC core classifies the following register types.

• universal register (UREG)

• data register (DREG) subgroup of UREG

• system register (SREG) subgroup of UREG

• non universal register

When operating in SIMD mode, most of the register types use comple-
mentary registers (CDREG, CSREG, UUREG). One exception is for the
combined PX register (PX1 and PX2) which are classified as complementary
universal registers (CUREG). This classification is required to understand
the instruction coding for universal registers in the tables in the following
sections.

Non Universal Registers
Note the multiplier result registers (MRF/MRB/MSF/MSB) are not
included into the universal registers and therefore do not support full
orthogonal instruction coding. For these registers only specific multiplier
instructions are coded.

SHARC Processor Programming Reference 10-31

Instruction Set Opcodes

Universal Register Opcodes

Table 10-2 shows how the Ureg register codes appear to PEx.

Table 10-2. Processing Element X Universal Register Codes
(SISD/SIMD)

Bits:
3210



DREG UUREG CDRE
G

UUREG SREG

Bits:
654
000 001 010 011 100 101 110 111

0000 R0 I0 M0 L0 B0 S0 FADDR USTAT1

0001 R1 I1 M1 L1 B1 S1 DADDR USTAT2

0010 R2 I2 M2 L2 B2 S2 MODE1

0011 R3 I3 M3 L3 B3 S3 PC MMASK

0100 R4 I4 M4 L4 B4 S4 PCSTK MODE2

0101 R5 I5 M5 L5 B5 S5 PCSTKP FLAGS

0110 R6 I6 M6 L6 B6 S6 LADDR ASTATx

0111 R7 I7 M7 L7 B7 S7 CURLCNTR ASTATy

1000 R8 I8 M8 L8 B8 S8 LCNTR STKYx

1001 R9 I9 M9 L9 B9 S9 EMUCLK STKYy

1010 R10 I10 M10 L10 B10 S10 EMUCLK2 IRPTL

1011 R11 I11 M11 L11 B11 S11 PX IMASK

1100 R12 I12 M12 L12 B12 S12 PX1 IMASKP

1101 R13 I13 M13 L13 B13 S13 PX2 LRPTL

1110 R14 I14 M14 L14 B14 S14 TPERIOD USTAT3

1111 R15 I15 M15 L15 B15 S15 TCOUNT USTAT4

10-32 SHARC Processor Programming Reference

Table 10-3 shows how the Ureg register codes appear to PEy.

Table 10-3. Processing Element Y Universal Register Codes (SIMD)

Bits:
3210



Bits:
654
000 001 010 011 100 101 110 111

0000 S0 I0 M0 L0 B0 R0 FADDR USTAT2

0001 S1 I1 M1 L1 B1 R1 DADDR USTAT1

0010 S2 I2 M2 L2 B2 R2 MODE1

0011 S3 I3 M3 L3 B3 R3 PC MMASK

0100 S4 I4 M4 L4 B4 R4 PCSTK MODE2

0101 S5 I5 M5 L5 B5 R5 PCSTKP FLAGS

0110 S6 I6 M6 L6 B6 R6 LADDR ASTATy

0111 S7 I7 M7 L7 B7 R7 CURLCNT
R

ASTATx

1000 S8 I8 M8 L8 B8 R8 LCNTR STKYy

1001 S9 I9 M9 L9 B9 R9 EMUCLK STKYx

1010 S10 I10 M10 L10 B10 R10 EMUCLK2 IRPTL

1011 S11 I11 M11 L11 B11 R11 PX IMASK

1100 S12 I12 M12 L12 B12 R12 PX2 IMASKP

1101 S13 I13 M13 L13 B13 R13 PX1 LRPTL

1110 S14 I14 M14 L14 B14 R14 TPERIOD USTAT4

1111 S15 I15 M15 L15 B15 R15 TCOUNT USTAT3

SHARC Processor Programming Reference 10-33

Instruction Set Opcodes

Condition and Termination Opcodes
The SHARC instruction set supports IF conditions and DO UNTIL ter-
minations, these are coded in the 5-bit COND or TERM field (0–31),

Table 10-4. IF Conditions and Termination Codes

COND/TERM Opcode COND/TERM Opcode

EQ 00000 NE 10000

LT 00001 GE 10001

LE 00010 GT 10010

AC 00011 NOT AC 10011

AV 00100 NOT AV 10100

MV 00101 NOT MV 10101

MS 00110 NOT MS 10110

SV 00111 NOT SV 10111

SZ 01000 NOT SZ 11000

FLAG0 01001 NOT FLAG0 11001

FLAG1 01010 NOT FLAG1 11010

FLAG2 01011 NOT FLAG2 11011

FLAG3 01100 NOT FLAG3 11100

TF 01101 NOT TF 11101

BM/SF1

1 For ADSP-21368/ADSP-2146x valid bus master condition, for ADSP-214xx valid bit shifter
FIFO.

01110 NOT BM/SF1 11110

LCE/NOT LCE 01111 TRUE2/FOREVER

2 COND selects whether the operation specified in the COMPUTE field is executed. If the
COND is true, the compute is executed. If no condition is specified, COND is TRUE condition,
and the compute is executed.

11111

Condition and Termination Opcodes

10-34 SHARC Processor Programming Reference

SHARC Processor Programming Reference 11-1

11 COMPUTATION TYPES

This chapter describes the fields from the instruction set types (COM-
PUTE, SHORT COMPUTE and SHIFT IMMEDIATE). The 23-bit
compute field is a mini instruction within the ADSP-21xxx instruction.
You can specify a value in this field for a variety of compute operations,
which include the following.

• Single-function operations involve a single computation unit.

• Shift immediate functions (type 6a only)

• Short compute functions (type 2c only)

• Multifunction operations specify parallel operation of the multi-
plier and the ALU or two operations in the ALU.

• The MR register transfer is a special type of compute operation used
to access the fixed-point accumulator in the multiplier.

For each instruction, the assembly language syntax, including options, and
its related functionality is described. All related status flags are listed.

ALU Fixed-Point Computations
This section describes the ALU Fixed-point operations. For all of the
instructions in this section, the status flag AF bit is cleared (=0) indicating
fixed-point operation. Note that the CACC flag bits are only set for the
compare instructions, otherwise they have no effect. For information on
syntax and opcodes, see Chapter 12, Computation Type Opcodes.

ALU Fixed-Point Computations

11-2 SHARC Processor Programming Reference

Rn = Rx + Ry

Function

Adds the fixed-point fields in registers Rx and Ry. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in
Rn is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

SHARC Processor Programming Reference 11-3

Computation Types

Rn = Rx – Ry

Function

Subtracts the fixed-point field in register Ry from the fixed-point field in
register Rx. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. In saturation mode (the
ALU saturation mode bit in MODE1 set) positive overflows return the maxi-
mum positive number (0x7FFF FFFF), and negative overflows return the
minimum negative number (0x8000 0000).

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

ALU Fixed-Point Computations

11-4 SHARC Processor Programming Reference

Rn = Rx + Ry + CI

Function

Adds with carry (AC from ASTAT) the fixed-point fields in registers Rx and
Ry. The result is placed in the fixed-point field in register Rn. The float-
ing-point extension field in Rn is set to all 0s. In saturation mode (the
ALU saturation mode bit in MODE1 set) positive overflows return the maxi-
mum positive number (0x7FFF FFFF), and negative overflows return the
minimum negative number (0x8000 0000).

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

SHARC Processor Programming Reference 11-5

Computation Types

Rn = Rx – Ry + CI – 1

Function

Subtracts with borrow (AC – 1 from ASTAT) the fixed-point field in register
Ry from the fixed-point field in register Rx. The result is placed in the
fixed-point field in register Rn. The floating-point extension field in Rn is
set to all 0s. In saturation mode (the ALU saturation mode bit in MODE1
set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

ALU Fixed-Point Computations

11-6 SHARC Processor Programming Reference

Rn = (Rx + Ry)/2

Function

Adds the fixed-point fields in registers Rx and Ry and divides the result by
2. The result is placed in the fixed-point field in register Rn. The float-
ing-point extension field in Rn is set to all 0s. Rounding is to nearest
(IEEE) or by truncation, as defined by the rounding mode bit in the MODE1
register.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

SHARC Processor Programming Reference 11-7

Computation Types

COMP(Rx, Ry)

Function

Compares the signed fixed-point field in register Rx with the fixed-point
field in register Ry. Sets the AZ flag if the two operands are equal, and the
AN flag if the operand in register Rx is smaller than the operand in register
Ry.

The ASTAT register stores the results of the previous eight ALU compare
operations in CACC bits 31–24. These bits are shifted right (bit 24 is
overwritten) whenever a fixed-point or floating-point compare instruction
is executed.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the signed operands in registers Rx and Ry are equal, otherwise cleared

AN Set if the signed operand in the Rx register is smaller than the operand in the
Ry register, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

CACC The MSB bit of CACC is set if the X operand is greater than the Y operand
(its value is the AND of AZ and AN); otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

ALU Fixed-Point Computations

11-8 SHARC Processor Programming Reference

COMPU(Rx, Ry)

Function

Compares the unsigned fixed-point field in register Rx with the
fixed-point field in register Ry, Sets the AZ flag if the two operands are
equal, and the AN flag if the operand in register Rx is smaller than the
operand in register Ry. This operation performs a magnitude comparison
of the fixed-point contents of Rx and Ry.

The ASTAT register stores the results of the previous eight ALU compare
operations in CACC bits 31–24. These bits are shifted right (bit 24 is
overwritten) whenever a fixed-point or floating-point compare instruction
is executed.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the unsigned operands in registers Rx and Ry are equal, otherwise
cleared

AN Set if the unsigned operand in the Rx register is smaller than the operand in
the Ry register, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

CACC The MSB bit of CACC is set if the X operand is greater than the Y operand
(its value is the AND of AZ and AN); otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

SHARC Processor Programming Reference 11-9

Computation Types

Rn = Rx + CI

Function

Adds the fixed-point field in register Rx with the carry flag from the ASTAT
register (AC). The result is placed in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all 0s. In saturation mode
(the ALU saturation mode bit in MODE1 set) positive overflows return the
maximum positive number (0x7FFF FFFF).

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

ALU Fixed-Point Computations

11-10 SHARC Processor Programming Reference

Rn = Rx + CI – 1

Function

Adds the fixed-point field in register Rx with the borrow from the ASTAT
register (AC – 1). The result is placed in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all 0s. In saturation mode
(the ALU saturation mode bit in MODE1 set) positive overflows return the
maximum positive number (0x7FFF FFFF).

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

SHARC Processor Programming Reference 11-11

Computation Types

Rn = Rx + 1

Function

Increments the fixed-point operand in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in
Rn is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set), overflow causes the maximum positive number (0x7FFF FFFF)
to be returned.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder, stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

ALU Fixed-Point Computations

11-12 SHARC Processor Programming Reference

Rn = Rx – 1

Function

Decrements the fixed-point operand in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in
Rn is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set), underflow causes the minimum negative number
(0x8000 0000) to be returned.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

SHARC Processor Programming Reference 11-13

Computation Types

Rn = –Rx

Function

Negates the fixed-point operand in Rx by two’s-complement. The result is
placed in the fixed-point field in register Rn. The floating-point extension
field in Rn is set to all 0s. Negation of the minimum negative number
(0x8000 0000) causes an overflow. In saturation mode (the ALU satura-
tion mode bit in MODE1 set), overflow causes the maximum positive
number (0x7FFF FFFF) to be returned.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s

AN Set if the most significant output bit is 1

AV Set if the XOR of the carries of the two most significant adder stages is 1

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

ALU Fixed-Point Computations

11-14 SHARC Processor Programming Reference

Rn = ABS Rx

Function

Determines the absolute value of the fixed-point operand in Rx. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s. The ABS of the minimum negative
number (0x8000 0000) causes an overflow. In saturation mode (the ALU
saturation mode bit in MODE1 set), overflow causes the maximum positive
number (0x7FFF FFFF) to be returned.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Set if the fixed-point operand in Rx is negative, otherwise cleared

AI Cleared

AUS No effect

AVS No effect

AOS Sticky indicator for AV bit set

AIS No effect

SHARC Processor Programming Reference 11-15

Computation Types

Rn = PASS Rx

Function

Passes the fixed-point operand in Rx through the ALU to the fixed-point
field in register Rn. The floating-point extension field in Rn is set to all 0s.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

ALU Fixed-Point Computations

11-16 SHARC Processor Programming Reference

Rn = Rx AND Ry

Function

Logically ANDs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all 0s.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

SHARC Processor Programming Reference 11-17

Computation Types

Rn = Rx OR Ry

Function

Logically ORs the fixed-point operands in Rx and Ry. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is
set to all 0s.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

ALU Fixed-Point Computations

11-18 SHARC Processor Programming Reference

Rn = Rx XOR Ry

Function

Logically XORs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all 0s.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

SHARC Processor Programming Reference 11-19

Computation Types

Rn = NOT Rx

Function

Logically complements the fixed-point operand in Rx. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is
set to all 0s.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

ALU Fixed-Point Computations

11-20 SHARC Processor Programming Reference

Rn = MIN(Rx, Ry)

Function

Returns the smaller of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

SHARC Processor Programming Reference 11-21

Computation Types

Rn = MAX(Rx, Ry)

Function

Returns the larger of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

ALU Fixed-Point Computations

11-22 SHARC Processor Programming Reference

Rn = CLIP Rx BY Ry

Function

Returns the fixed-point operand in Rx if the absolute value of the operand
in Rx is less than the absolute value of the fixed-point operand in Ry. Oth-
erwise, returns |Ry| if Rx is positive, and –|Ry| if Rx is negative. The result
is placed in the fixed-point field in register Rn. The floating-point exten-
sion field in Rn is set to all 0s.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

AUS No effect

AVS No effect

AOS No effect

AIS No effect

SHARC Processor Programming Reference 11-23

Computation Types

ALU Floating-Point Computations
This section describes the ALU floating-point operations. For all of the
instructions is this section, the status flag AF bit is set (=1) indicating
floating-point operation. Note that the CACC flag bits are only set for the
compare instructions, otherwise they have no effect. For information on
syntax and opcodes, see Chapter 12, Computation Type Opcodes.

ALU Floating-Point Computations

11-24 SHARC Processor Programming Reference

Fn = Fx + Fy

Function

Adds the floating-point operands in registers Fx and Fy. The normalized
result is placed in register Fn. Rounding is to nearest (IEEE) or by trunca-
tion, to a 32-bit or to a 40-bit boundary, as defined by the rounding mode
and rounding boundary bits in MODE1. Post-rounded overflow returns
±infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).
Post-rounded denormal returns ±zero. Denormal inputs are flushed to
±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed
infinities, otherwise cleared

AUS Sticky indicator for AZ bit set

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-25

Computation Types

Fn = Fx – Fy

Function

Subtracts the floating-point operand in register Fy from the floating-point
operand in register Fx. The normalized result is placed in register Fn.
Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit
boundary, as defined by the rounding mode and rounding boundary bits
in MODE1. Post-rounded overflow returns ±infinity (round-to-nearest) or
±NORM.MAX (round-to-zero). Post-rounded denormal returns ±zero.
Denormal inputs are flushed to ±zero. A NAN input returns an all 1s
result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are like-signed infini-
ties, otherwise cleared

AUS Sticky indicator for AZ bit set

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

ALU Floating-Point Computations

11-26 SHARC Processor Programming Reference

Fn = ABS (Fx + Fy)

Function

Adds the floating-point operands in registers Fx and Fy, and places the
absolute value of the normalized result in register Fn. Rounding is to near-
est (IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined
by the rounding mode and rounding boundary bits in MODE1.

Post-rounded overflow returns +infinity (round-to-nearest) or
+NORM.MAX (round-to-zero). Post-rounded denormal returns +zero.
Denormal inputs are flushed to ±zero. A NAN input returns an all 1s
result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AN Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed
infinities, otherwise cleared

AUS Sticky indicator for AZ bit set

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-27

Computation Types

Fn = ABS (Fx – Fy)

Function

Subtracts the floating-point operand in Fy from the floating-point oper-
and in Fx and places the absolute value of the normalized result in register
Fn. Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a
40-bit boundary, as defined by the rounding mode and rounding bound-
ary bits in MODE1. Post-rounded overflow returns +infinity
(round-to-nearest) or +NORM.MAX (round-to-zero). Post-rounded
denormal returns +zero. Denormal inputs are flushed to ±zero. A NAN
input returns an all 1s result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AN Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are like-signed infini-
ties, otherwise cleared

AUS Sticky indicator for AZ bit set

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

ALU Floating-Point Computations

11-28 SHARC Processor Programming Reference

Fn = (Fx + Fy)/2

Function

Adds the floating-point operands in registers Fx and Fy and divides the
result by 2, by decrementing the exponent of the sum before rounding.
The normalized result is placed in register Fn. Rounding is to nearest
(IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined by
the rounding mode and rounding boundary bits in MODE1. Post-rounded
overflow returns ±infinity (round-to-nearest) or ±NORM.MAX
(round-to-zero). Post-rounded denormal results return ±zero. A denormal
input is flushed to ±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed
infinities, otherwise cleared

AUS Sticky indicator for AZ bit set

AVS No effect

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-29

Computation Types

COMP(Fx, Fy)

Function

Compares the floating-point operand in register Fx with the float-
ing-point operand in register Fy. Sets the AZ flag if the two operands are
equal, and the AN flag if the operand in register Fx is smaller than the oper-
and in register Fy.

The ASTAT register stores the results of the previous eight ALU compare
operations in CACC bits 31–24. These bits are shifted right (bit 24 is
overwritten) whenever a fixed-point or floating-point compare instruction
is executed.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the operands in registers Fx and Fy are equal, otherwise cleared

AN Set if the operand in the Fx register is smaller than the operand in the Fy reg-
ister, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

CACC The MSB of CACC is set if the X operand is greater than the Y operand (its
value is the AND of AZ and AN); otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS Sticky indicator for AI bit set

ALU Floating-Point Computations

11-30 SHARC Processor Programming Reference

Fn = –Fx

Function

Complements the sign bit of the floating-point operand in Fx. The com-
plemented result is placed in register Fn. A denormal input is flushed to
±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the result operand is a ±zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-31

Computation Types

Fn = ABS Fx

Function

Returns the absolute value of the floating-point operand in register Fx by
setting the sign bit of the operand to 0. Denormal inputs are flushed to
+zero. A NAN input returns an all 1s result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the result operand is +zero, otherwise cleared

AN Cleared

AV Cleared

AC Cleared

AS Set if the input operand is negative, otherwise cleared

AI Set if the input operand is a NAN, otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS Sticky indicator for AI bit set

ALU Floating-Point Computations

11-32 SHARC Processor Programming Reference

Fn = PASS Fx

Function

Passes the floating-point operand in Fx through the ALU to the float-
ing-point field in register Fn. Denormal inputs are flushed to ±zero. A
NAN input returns an all 1s result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the result operand is a ±zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-33

Computation Types

Fn = RND Fx

Function

Rounds the floating-point operand in register Fx to a 32 bit boundary.
Rounding is to nearest (IEEE) or by truncation, as defined by the round-
ing mode bit in MODE1. Post-rounded overflow returns ±infinity
(round-to-nearest) or ±NORM.MAX (round-to-zero). A denormal input
is flushed to ±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the result operand is a ±zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

AUS No effect

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

ALU Floating-Point Computations

11-34 SHARC Processor Programming Reference

Fn = SCALB Fx BY Ry

Function

Scales the exponent of the floating-point operand in Fx by adding to it the
fixed-point two’s-complement integer in Ry. The scaled floating-point
result is placed in register Fn. Overflow returns ±infinity (round-to-near-
est) or ±NORM.MAX (round-to-zero). Denormal returns ±zero.
Denormal inputs are flushed to ±zero. A NAN input returns an all 1s
result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the result is a denormal (unbiased exponent < –126) or zero, otherwise
cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the result overflows (unbiased exponent > +127), otherwise cleared

AC Cleared

AS Cleared

AI Set if the input is a NAN, an otherwise cleared

AUS Sticky indicator for AZ bit set

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-35

Computation Types

Rn = MANT Fx

Function

Extracts the mantissa (fraction bits with explicit hidden bit, excluding the
sign bit) from the floating-point operand in Fx. The unsigned-magnitude
result is left-justified (1.31 format) in the fixed-point field in Rn. Round-
ing modes are ignored and no rounding is performed because all results
are inherently exact. Denormal inputs are flushed to ±zero. A NAN or an
infinity input returns an all 1s result (–1 in signed fixed-point format).

ASTATx/y Flags

STKYx/y Flags

AZ Set if the result is zero, otherwise cleared

AN Cleared

AV Set if the input operand is an infinity, otherwise cleared

AC Cleared

AS Set if the input is negative, otherwise cleared

AI Set if the input operand is a NAN, otherwise cleared

AUS No effect

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

ALU Floating-Point Computations

11-36 SHARC Processor Programming Reference

Rn = LOGB Fx

Function

Converts the exponent of the floating-point operand in register Fx to an
unbiased two’s-complement fixed-point integer. The result is placed in the
fixed-point field in register Rn. Unbiasing is done by subtracting 127
from the floating-point exponent in Fx. If saturation mode is not set, a
±infinity input returns a floating-point +infinity and a ±zero input returns
a floating-point –infinity. If saturation mode is set, a ±infinity input
returns the maximum positive value (0x7FFF FFFF), and a ±zero input
returns the maximum negative value (0x8000 0000). Denormal inputs are
flushed to ±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point result is zero, otherwise cleared

AN Set if the result is negative, otherwise cleared

AV Set if the input operand is an infinity or a zero, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input is a NAN, otherwise cleared

AUS No effect

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-37

Computation Types

Rn = FIX Fx
Rn = TRUNC Fx
Rn = FIX Fx BY Ry
Rn = TRUNC Fx BY Ry

Function

Converts the floating-point operand in Fx to a two’s-complement 32-bit
fixed-point integer result.

If the MODE1 register TRUNC bit=1, the Fix operation truncates the mantissa
towards –infinity. If the TRUNC bit=0, the Fix operation rounds the man-
tissa towards the nearest integer.

The trunc operation always truncates toward 0. The TRUNC bit does not
influence operation of the trunc instruction.

If a scaling factor (Ry) is specified, the fixed-point two’s-complement inte-
ger in Ry is added to the exponent of the floating-point operand in Fx
before the conversion.

The result of the conversion is right-justified (32.0 format) in the
fixed-point field in register Rn. The floating-point extension field in Rn is
set to all 0s.

In saturation mode (the ALU saturation mode bit in MODE1 set) positive
overflows and +infinity return the maximum positive number
(0x7FFF FFFF), and negative overflows and –infinity return the mini-
mum negative number (0x8000 0000).

For the Fix operation, rounding is to nearest (IEEE) or by truncation, as
defined by the rounding mode bit in MODE1. A NAN input returns a float-
ing-point all 1s result. If saturation mode is not set, an infinity input or a
result that overflows returns a floating-point result of all 1s.

ALU Floating-Point Computations

11-38 SHARC Processor Programming Reference

All positive underflows return zero. Negative underflows that are
rounded-to-nearest return zero, and negative underflows that are rounded
by truncation return –1 (0xFF FFFF FF00).

ASTATx/y Flags

STKYx/y Flags

AZ Set if the fixed-point result is zero, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AV Set if the conversion causes the floating-point mantissa to be shifted left,
that is, if the floating-point exponent + scale bias is >157 (127 + 31 – 1) or if
the input is ±infinity, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN or, when saturation mode is not set, either
input is an infinity or the result overflows, otherwise cleared

AUS Sticky indicator Set if the pre-rounded result is between -1.0 and 1.0 (except
-1, 1, 0), otherwise not effected

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-39

Computation Types

Fn = FLOAT Rx BY Ry
Fn = FLOAT Rx

Function

Converts the fixed-point operand in Rx to a floating-point result. If a scal-
ing factor (Ry) is specified, the fixed-point two’s-complement integer in
Ry is added to the exponent of the floating-point result. The final result is
placed in register Fn. Rounding is to nearest (IEEE) or by truncation, as
defined by the rounding mode, to a 40-bit boundary, regardless of the val-
ues of the rounding boundary bits in MODE1. The exponent scale bias may
cause a floating-point overflow or a floating-point underflow. Overflow
generates a return of ±infinity (round-to-nearest) or ±NORM.MAX
(round-to-zero); underflow generates a return of ±zero.

ASTATx/y Flags (with scaling factor)

ASTATx/y Flags (without scaling factor)

AZ Set if the result is an unbiased exponent < –126, or zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the result overflows (unbiased exponent > 127), otherwise cleared

AC Cleared

AS Cleared

AI Cleared

AZ Set if the result is an unbiased exponent < –126, or zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Floating-Point Computations

11-40 SHARC Processor Programming Reference

STKYx/y Flags (with scaling factor)

STKYx/y Flags (without scaling factor)

AUS Sticky indicator for AZ bit set

AVS Sticky indicator for AV bit set

AOS No effect

AIS No effect

AUS No effect

AVS No effect

AOS No effect

AIS No effect

SHARC Processor Programming Reference 11-41

Computation Types

Fn = RECIPS Fx

Function

Creates an 8-bit accurate seed for 1/Fx, the reciprocal of Fx. The mantissa
of the seed is determined from a ROM table using the 7 MSBs (excluding
the hidden bit) of the Fx mantissa as an index. The unbiased exponent of
the seed is calculated as the two’s-complement of the unbiased Fx expo-
nent, decremented by one; that is, if e is the unbiased exponent of Fx,
then the unbiased exponent of Fn = –e – 1. The sign of the seed is the sign
of the input. A ±zero returns ±infinity and sets the overflow flag. If the
unbiased exponent of Fx is greater than +125, the result is ±zero. A NAN
input returns an all 1s result.

The following code performs floating-point division using an iterative

convergence algorithm.1 The result is accurate to one LSB in whichever
format mode, 32-bit or 40-bit, is set. The following inputs are required:
F0=numerator, F12=denominator, F11=2.0. The quotient is returned in
F0. (The two indented instructions can be removed if only a ±1 LSB accu-
rate single-precision result is necessary.) Note that, in the algorithm
example’s comments, references to R0, R1, R2, and R3 do not refer to
data registers. Rather, they refer to variables in the algorithm.

F0=RECIPS F12, F7=F0; /* Get 8-bit seed R0=1/D */

F12=F0*F12; /* D' = D*R0 */

F7=F0*F7, F0=F11-F12; /* F0=R1=2-D', F7=N*R0 */

F12=F0*F12; /* F12=D'-D'*R1 */

F7=F0*F7, F0=F11-F12; /* F7=N*R0*R1, F0=R2=2-D' */

F12=F0*F12; /* F12=D'=D'*R2 */

F7=F0*F7, F0=F11-F12; /* F7=N*R0*R1*R2, F0=R3=2-D' */

F0=F0*F7; /* F7=N*R0*R1*R2*R3 */

To make this code segment a subroutine, add an RTS(DB) clause to the
third-to-last instruction.

1 Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 284.

ALU Floating-Point Computations

11-42 SHARC Processor Programming Reference

ASTATx/y Flags

STKYx/y Flags

AZ Set if the floating-point result is ±zero (unbiased exponent of Fx is greater
than +125), otherwise cleared

AN Set if the input operand is negative, otherwise cleared

AV Set if the input operand is ±zero, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

AUS Sticky indicator for AZ bit set

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-43

Computation Types

Fn = RSQRTS Fx

Function

Creates a 4-bit accurate seed for 1/(Fx)½, the reciprocal square root of Fx.

The mantissa of the seed is determined from a ROM table, using the LSB
of the biased exponent of Fx concatenated with the six MSBs (excluding
the hidden bit of the mantissa) of Fx’s index.

The unbiased exponent of the seed is calculated as the two’s-complement
of the unbiased Fx exponent, shifted right by one bit and decremented by
one; that is, if e is the unbiased exponent of Fx, then the unbiased expo-
nent of Fn = –INT[e/2] – 1.

The sign of the seed is the sign of the input. The input ±zero returns
±infinity and sets the overflow flag. The input +infinity returns +zero. A
NAN input or a negative nonzero input returns a result of all 1s.

The following code calculates a floating-point reciprocal square root

(1/(x)½) using a Newton-Raphson iteration algorithm.1 The result is accu-
rate to one LSB in whichever format mode, 32-bit or 40-bit, is set.

To calculate the square root, simply multiply the result by the original
input. The following inputs are required: F0=input, F8=3.0, F1=0.5. The
result is returned in F4. (The four indented instructions can be removed if
only a ±1 LSB accurate single-precision result is necessary.)

F4=RSQRTS F0; /* Fetch 4-bit seed */

F12=F4*F4; /* F12=X0^2 */

F12=F12*F0; /* F12=C*X0^2 */

F4=F1*F4, F12=F8-F12; /* F4=.5*X0, F12=3-C*X0^2 */

F4=F4*F12; /* F4=X1=.5*X0(3-C*X0^2) */

F12=F4*F4; /* F12=X1^2 */

1 Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 278.

ALU Floating-Point Computations

11-44 SHARC Processor Programming Reference

F12=F12*F0; /* F12=C*X1^2 */

F4=F1*F4, F12=F8-F12; /* F4=.5*X1, F12=3-C*X1^2 */

F4=F4*F12; /* F4=X2=.5*X1(3-C*X1^2) */

F12=F4*F4; /* F12=X2^2 */

F12=F12*F0; /* F12=C*X2^2 */

F4=F1*F4, F12=F8-F12; /* F4=.5*X2, F12=3-C*X2^2 */

F4=F4*F12; /* F4=X3=.5*X2(3-C*X2^2) */

Note that this code segment can be made into a subroutine by adding an
RTS(DB) clause to the third-to-last instruction.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the floating-point result is +zero (Fx = +infinity), otherwise cleared

AN Set if the input operand is –zero, otherwise cleared

AV Set if the input operand is ±zero, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input operand is negative and nonzero, or a NAN, otherwise
cleared

AUS No effect

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-45

Computation Types

Fn = Fx COPYSIGN Fy

Function

Copies the sign of the floating-point operand in register Fy to the float-
ing-point operand from register Fx without changing the exponent or the
mantissa. The result is placed in register Fn. A denormal input is flushed
to ±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the floating-point result is ±zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS Sticky indicator for AI bit set

ALU Floating-Point Computations

11-46 SHARC Processor Programming Reference

Fn = MIN(Fx, Fy)

Function

Returns the smaller of the floating-point operands in register Fx and Fy. A
NAN input returns an all 1s result. The MIN of +zero and –zero returns
 –zero. Denormal inputs are flushed to ±zero.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the floating-point result is ±zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-47

Computation Types

Fn = MAX(Fx, Fy)

Function

Returns the larger of the floating-point operands in registers Fx and Fy. A
NAN input returns an all 1s result. The MAX of +zero and –zero returns
+zero. Denormal inputs are flushed to ±zero.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the floating-point result is ±zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS Sticky indicator for AI bit set

ALU Floating-Point Computations

11-48 SHARC Processor Programming Reference

Fn = CLIP Fx BY Fy

Function

Returns the floating-point operand in Fx if the absolute value of the oper-
and in Fx is less than the absolute value of the floating-point operand in
Fy. Else, returns | Fy | if Fx is positive, and –| Fy | if Fx is negative. A
NAN input returns an all 1s result. Denormal inputs are flushed to ±zero.

ASTATx/y Flags

STKYx/y Flags

AZ Set if the floating-point result is ±zero, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

AUS No effect

AVS No effect

AOS No effect

AIS Sticky indicator for AI bit set

SHARC Processor Programming Reference 11-49

Computation Types

Multiplier Fixed-Point Computations
This section describes the multiplier operations. Note that data moves
between the MR registers and the data registers are considered multiplier
operations and are also covered in this chapter.

Modifiers
Some of the instructions accept the following Mod1, Mod2, and Mod3
modifiers enclosed in parentheses and that consist of three or four letters
that indicate whether:

• The x-input is signed (S) or unsigned (U).

• The y-input is signed or unsigned.

• The inputs are in integer (I) or fractional (F) format.

• The result written to the register file is rounded-to-nearest (R).

“Multiplier Instruction Summary” on page 3-18 provides information on
multiplier instructions. Table 3-6 on page 3-20 lists the options for the
mod1 – mod3 options and the corresponding opcode values.

Multiplier Fixed-Point Computations

11-50 SHARC Processor Programming Reference

Rn = Rx * Ry (mod1)
MRF = Rx * Ry (mod1)
MRB = Rx * Ry (mod1)

Function

Multiplies the fixed-point fields in registers Rx and Ry.

If rounding is specified (fractional data only), the result is rounded. The
result is placed either in the fixed-point field in register Rn or one of the
MR accumulation registers.

If Rn is specified, only the portion of the result that has the same format
as the inputs is transferred (bits 31–0 for integers, bits 63–32 for frac-
tional). The floating-point extension field in Rn is set to all 0s. If MRF or
MRB is specified, the entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

STKYx/y Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); number of upper bits depends on format; for a signed result,
fractional=33, integer=49; for an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer
results do not underflow

MI Cleared

MUS No effect

MVS No effect

MOS Sticky indicator for MV bit set

MIS No effect

SHARC Processor Programming Reference 11-51

Computation Types

Rn = MRF + Rx * Ry (mod1)
Rn = MRB + Rx * Ry (mod1)
MRF = MRF + Rx * Ry (mod1)
MRB = MRB + Rx * Ry (mod1)

Function

Multiplies the fixed-point fields in registers Rx and Ry, and adds the prod-
uct to the specified MR register value. If rounding is specified (fractional
data only), the result is rounded. The result is placed either in the
fixed-point field in register Rn or one of the MR accumulation registers,
which must be the same MR register that provided the input. If Rn is speci-
fied, only the portion of the result that has the same format as the inputs is
transferred (bits 31–0 for integers, bits 63–32 for fractional). The float-
ing-point extension field in Rn is set to all 0s. If MRF or MRB is specified, the
entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

STKYx/y Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); number of upper bits depends on format; for a signed result,
fractional=33, integer=49; for an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer
results do not underflow

MI Cleared

MUS No effect

MVS No effect

MOS Sticky indicator for MV bit set

MIS No effect

Multiplier Fixed-Point Computations

11-52 SHARC Processor Programming Reference

Rn = MRF – Rx * Ry (mod1)
Rn = MRB – Rx * Ry (mod1)
MRF = MRF – Rx * Ry (mod1)
MRB = MRB – Rx * Ry (mod1)

Function

Multiplies the fixed-point fields in registers Rx and Ry, and subtracts the
product from the specified MR register value. If rounding is specified (frac-
tional data only), the result is rounded. The result is placed either in the
fixed-point field in register Rn or in one of the MR accumulation registers,
which must be the same MR register that provided the input. If Rn is speci-
fied, only the portion of the result that has the same format as the inputs is
transferred (bits 31–0 for integers, bits 63–32 for fractional). The float-
ing-point extension field in Rn is set to all 0s. If MRF or MRB is specified, the
entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

STKYx/y Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); number of upper bits depends on format; for a signed result,
fractional=33, integer=49; for an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer
results do not underflow

MI Cleared

MUS No effect

MVS No effect

MOS Sticky indicator for MV bit set

MIS No effect

SHARC Processor Programming Reference 11-53

Computation Types

Rn = SAT MRF (mod2)
Rn = SAT MRB (mod2)
MRF = SAT MRF (mod2)
MRB = SAT MRB (mod2)

Function

If the value of the specified MR register is greater than the maximum value
for the specified data format, the multiplier sets the result to the maxi-
mum value. Otherwise, the MR value is unaffected. The result is placed
either in the fixed-point field in register Rn or one of the MR accumulation
registers, which must be the same MR register that provided the input. If
Rn is specified, only the portion of the result that has the same format as
the inputs is transferred (bits 31–0 for integers, bits 63–32 for fractional).
The floating-point extension field in Rn is set to all 0s. If MRF or MRB is
specified, the entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

STKYx/y Flags

MN Set if the result is negative, otherwise cleared

MV Cleared

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer
results do not underflow

MI Cleared

MUS No effect

MVS No effect

MOS No effect

MIS No effect

Multiplier Fixed-Point Computations

11-54 SHARC Processor Programming Reference

Rn = RND MRF (mod3)
Rn = RND MRB (mod3)
MRF = RND MRF (mod3)
MRB = RND MRB (mod3)

Function

Rounds the specified MR value to nearest at bit 32 (the MR1–MR0 bound-
ary). The result is placed either in the fixed-point field in register Rn or
one of the MR accumulation registers, which must be the same MR register
that provided the input. If Rn is specified, only the portion of the result
that has the same format as the inputs is transferred (bits 31–0 for inte-
gers, bits 63–32 for fractional). The floating-point extension field in Rn is
set to all 0s. If MRF or MRB is specified, the entire 80-bit result is placed in
MRF or MRB.

ASTATx/y Flags

STKYx/y Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); number of upper bits depends on format; for a signed result,
fractional=33, integer=49; for an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer
results do not underflow

MI Cleared

MUS No effect

MVS No effect

MOS Sticky indicator for MV bit set

MIS No effect

SHARC Processor Programming Reference 11-55

Computation Types

MRF = 0
MRB = 0

Function

Sets the value of the specified MR register to zero. All 80 bits (MR2, MR1, MR0)
are cleared.

ASTATx/y Flags

STKYx/y Flags

MN Cleared

MV Cleared

MU Cleared

MI Cleared

MUS No effect

MVS No effect

MOS No effect

MIS No effect

Multiplier Fixed-Point Computations

11-56 SHARC Processor Programming Reference

MRxF/B = Rn
Rn = MRxF/B

Function

A transfer to an MR register places the fixed-point field of register Rn in the
specified MR register. The floating-point extension field in Rn is ignored. A
transfer from an MR register places the specified MR register in the
fixed-point field in register Rn. The floating-point extension field in Rn is
set to all 0s.

ASTATx/y Flags

STKYx/y Flags

MN Cleared

MV Cleared

MU Cleared

MI Cleared

MUS No effect

MVS No effect

MOS No effect

MIS No effect

SHARC Processor Programming Reference 11-57

Computation Types

Multiplier Floating-Point Computations
Multiplier floating-point operations are described in this section.

Fn = Fx * Fy

Function

Multiplies the floating-point operands in registers Fx and Fy and places
the result in the register Fn.

ASTATx/y Flags

STKYx/y Flags

MN Set if the result is negative, otherwise cleared

MV Set if the unbiased exponent of the result is greater than 127, otherwise cleared

MU Set if the unbiased exponent of the result is less than –126, otherwise cleared

MI Set if either input is a NAN or if the inputs are ±infinity and ±zero, otherwise
cleared

MUS Sticky indicator for MU bit set

MVS Sticky indicator for MV bit set

MOS No effect

MIS Sticky indicator for MI bit set

Shifter/Shift Immediate Computations

11-58 SHARC Processor Programming Reference

Shifter/Shift Immediate Computations
Shifter and shift immediate operations are described in this section. The
succeeding pages provide detailed descriptions of each operation. Some of
the instructions accept the following modifiers.

Modifiers
Some of the instructions in this group accept the following modifiers
enclosed in parentheses.

• (SE) = Sign extension of deposited or extracted field

• (EX) = Extended exponent extract

• (NU) = No update (bit FIFO)

 “Shifter Instruction Summary” on page 3-31 provides information on
shifter instructions. Table 3-8 on page 3-31 lists the options.

SHARC Processor Programming Reference 11-59

Computation Types

Rn = LSHIFT Rx BY Ry
Rn = LSHIFT Rx BY <data8>

Function

Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is placed in the fixed-point field of register Rn. The float-
ing-point extension field of Rn is set to all 0s. The shift values are
two’s-complement numbers. Positive values select a left shift, negative val-
ues select a right shift. The 8-bit immediate data can take values between
–128 and 127 inclusive, allowing for a shift of a 32-bit field from off-scale
right to off-scale left.

ASTATx/y Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted to the left by more than 0, otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-60 SHARC Processor Programming Reference

Rn = Rn OR LSHIFT Rx BY Ry
Rn = Rn OR LSHIFT Rx BY <data8>

Function

Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is logically ORed with the fixed-point field of register Rn
and then written back to register Rn. The floating-point extension field of
Rn is set to all 0s. The shift values are two’s-complement numbers. Posi-
tive values select a left shift, negative values select a right shift. The 8-bit
immediate data can take values between –128 and 127 inclusive, allowing
for a shift of a 32-bit field from off-scale right to off-scale left.

ASTATx/y Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

SS Cleared

SHARC Processor Programming Reference 11-61

Computation Types

Rn = ASHIFT Rx BY Ry
Rn = ASHIFT Rx BY <data8>

Function

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction.
The shifted result is placed in the fixed-point field of register Rn. The
floating-point extension field of Rn is set to all 0s. The shift values are
two’s-complement numbers. Positive values select a left shift, negative val-
ues select a right shift. The 8-bit immediate data can take values between
–128 and 127 inclusive, allowing for a shift of a 32-bit field from off-scale
right to off-scale left.

ASTATx/y Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-62 SHARC Processor Programming Reference

Rn = Rn OR ASHIFT Rx BY Ry
Rn = Rn OR ASHIFT Rx BY <data8>

Function

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction.
The shifted result is logically ORed with the fixed-point field of register
Rn and then written back to register Rn. The floating-point extension
field of Rn is set to all 0s. The shift values are two’s-complement numbers.
Positive values select a left shift, negative values select a right shift. The
8-bit immediate data can take values between –128 and 127 inclusive,
allowing for a shift of a 32-bit field from off-scale right to off-scale left.

ASTATx/y Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

SS Cleared

SHARC Processor Programming Reference 11-63

Computation Types

Rn = ROT Rx BY Ry
Rn = ROT Rx BY <data8>

Function

Rotates the fixed-point operand in register Rx by the 32-bit value in regis-
ter Ry or by the 8-bit immediate value in the instruction. The rotated
result is placed in the fixed-point field of register Rn. The floating-point
extension field of Rn is set to all 0s. The shift values are two’s-complement
numbers. Positive values select a rotate left; negative values select a rotate
right. The 8-bit immediate data can take values between –128 and 127
inclusive, allowing for a rotate of a 32-bit field from full right wrap
around to full left wrap around.

ASTATx/y Flags

SZ Set if the rotated result is zero, otherwise cleared

SV Cleared

SS Cleared

Shifter/Shift Immediate Computations

11-64 SHARC Processor Programming Reference

Rn = BCLR Rx BY Ry
Rn = BCLR Rx BY <data8>

Function

Clears a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field
of Rn is set to all 0s. The position of the bit is the 32-bit value in register
Ry or the 8-bit immediate value in the instruction. The 8-bit immediate
data can take values between 31 and 0 inclusive, allowing for any bit
within a 32-bit field to be cleared. If the bit position value is greater than
31 or less than 0, no bits are cleared.

ASTATx/y Flags

 There is also a bit manipulation instruction (type 18 a) that affects
one or more bits in a system register. The BIT CLR SREG instruction
should not be confused with the BCLR DREG instruction. This shifter
operation affects only one bit in a data register file location. For
more information, see “System Register Bit Manipulation” on
page 2-8.

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

SHARC Processor Programming Reference 11-65

Computation Types

Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8>

Function

Sets a bit in the fixed-point operand in register Rx. The result is placed in
the fixed-point field of register Rn. The floating-point extension field of
Rn is set to all 0s. The position of the bit is the 32-bit value in register Ry
or the 8-bit immediate value in the instruction. The 8-bit immediate data
can take values between 31 and 0 inclusive, allowing for any bit within a
32-bit field to be set. If the bit position value is greater than 31 or less
than 0, no bits are set.

ASTATx/y Flags

 There is also a bit manipulation instruction (type 18 a) that affects
one or more bits in a system register. The BIT SET SREG instruction
should not be confused with the BSET DREG instruction. This shifter
operation affects only one bit in a data register file location. For
more information, see “System Register Bit Manipulation” on
page 2-8.

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-66 SHARC Processor Programming Reference

Rn = BTGL Rx BY Ry
Rn = BTGL Rx BY <data8>

Function

Toggles a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field
of Rn is set to all 0s. The position of the bit is the 32-bit value in register
Ry or the 8-bit immediate value in the instruction. The 8-bit immediate
data can take values between 31 and 0 inclusive, allowing for any bit
within a 32-bit field to be toggled. If the bit position value is greater than
31 or less than 0, no bits are toggled.

ASTATx/y Flags

 There is also a bit manipulation instruction (type 18 a) that affects
one or more bits in a system register. The BIT TGL SREG instruction
should not be confused with the BTGL DREG instruction. This shifter
operation affects only one bit in a data register file location. For
more information, see “System Register Bit Manipulation” on
page 2-8.

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

SHARC Processor Programming Reference 11-67

Computation Types

BTST Rx BY Ry
BTST Rx BY <data8>

Function

Tests a bit in the fixed-point operand in register Rx. The SZ flag is set if
the bit is a 0 and cleared if the bit is a 1. The position of the bit is the
32-bit value in register Ry or the 8-bit immediate value in the instruction.
The 8-bit immediate data can take values between 31 and 0 inclusive,
allowing for any bit within a 32-bit field to be tested. If the bit position
value is greater than 31 or less than 0, no bits are tested.

ASTATx/y Flags

 There is also a bit manipulation instruction (type 18 a) that affects
one or more bits in a system register. The BIT TST SREG instruction
should not be confused with the BTST DREG instruction. This shifter
operation affects only one bit in a data register file location. For
more information, see “System Register Bit Manipulation” on
page 2-8.

SZ Cleared if the tested bit is a 1, is set if the tested bit is a 0 or if the bit posi-
tion is greater than 31

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-68 SHARC Processor Programming Reference

Rn = FDEP Rx BY Ry
Rn = FDEP Rx BY <bit6>:<len6>

Function

Deposits a field from register Rx to register Rn. (See Figure 11-1.) The
input field is right-aligned within the fixed-point field of Rx. Its length is
determined by the len6 field in register Ry or by the immediate len6 field
in the instruction. The field is deposited in the fixed-point field of Rn,
starting from a bit position determined by the bit6 field in register Ry or
by the immediate bit6 field in the instruction. Bits to the left and to the
right of the deposited field are set to 0. The floating-point extension field
of Rn (bits 7–0 of the 40-bit word) is set to all 0s. Bit6 and len6 can take
values between 0 and 63 inclusive, allowing for deposit of fields ranging in
length from 0 to 32 bits, and to bit positions ranging from 0 to off-scale
left.

Figure 11-1. Field Alignment

39 19 13 7 0

39 0

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

bit6 = starting bit position for deposit,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

deposit field

bit6 reference point

len6 bit6

SHARC Processor Programming Reference 11-69

Computation Types

Example

If len6=14 and bit6=13, then the 14 bits of Rx are deposited in Rn bits
34–21 (of the 40-bit word).

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \-------------/

 14 bits

39 31 23 15 7 0

|00000abc|defghijk|lmn00000|00000000|00000000| Rn

 \--------------/

 |

 bit position 13 (from reference point)

ASTATx/y Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-70 SHARC Processor Programming Reference

Rn = Rn OR FDEP Rx BY Ry
Rn = Rn OR FDEP Rx BY <bit6>:<len6>

Function

Deposits a field from register Rx to register Rn. The field value is logically
ORed bitwise with the specified field of register Rn and the new value is
written back to register Rn. The input field is right-aligned within the
fixed-point field of Rx. Its length is determined by the len6 field in regis-
ter Ry or by the immediate len6 field in the instruction.

The field is deposited in the fixed-point field of Rn, starting from a bit
position determined by the bit6 field in register Ry or by the immediate
bit6 field in the instruction. Bit6 and len6 can take values between 0 and
63 inclusive, allowing for deposit of fields ranging in length from 0 to 32
bits, and to bit positions ranging from 0 to off-scale left.

Example

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \--------------/

 len6 bits

39 31 23 15 7 0

|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn| Rn old

 \--------------/

 |

 bit position bit6 (from reference point)

39 31 23 15 7 0

|abcdeopq|rstuvwxy|zabtuvwx|yzabcdef|ghijklmn| Rn new

 OR result

SHARC Processor Programming Reference 11-71

Computation Types

ASTATx/y Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-72 SHARC Processor Programming Reference

Rn = FDEP Rx BY Ry (SE)
Rn = FDEP Rx BY <bit6>:<len6> (SE)

Function

Deposits and sign-extends a field from register Rx to register Rn. (See
Figure 11-2.) The input field is right-aligned within the fixed-point field
of Rx. Its length is determined by the len6 field in register Ry or by the
immediate len6 field in the instruction. The field is deposited in the
fixed-point field of Rn, starting from a bit position determined by the bit6
field in register Ry or by the immediate bit6 field in the instruction. The
MSBs of Rn are sign-extended by the MSB of the deposited field, unless
the MSB of the deposited field is off-scale left. Bits to the right of the
deposited field are set to 0. The floating-point extension field of Rn (bits
7–0 of the 40-bit word) is set to all 0s. Bit6 and len6 can take values
between 0 and 63 inclusive, allowing for deposit of fields ranging in
length from 0 to 32 bits into bit positions ranging from 0 to off-scale left.

Figure 11-2. Field Alignment

39 19 13 7 0

len6 bit6

39 0

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

bit6 = starting bit position for deposit,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

sign bit extension deposit field

bit6 reference point

SHARC Processor Programming Reference 11-73

Computation Types

Example

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \---------------/

 len6 bits

39 31 23 15 7 0

|aaaaaabc|defghijk|lmn00000|00000000|00000000| Rn

\----/\--------------/

 sign |

 extension bit position bit6

 (from reference point)

ASTATx/y Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-74 SHARC Processor Programming Reference

Rn = Rn OR FDEP Rx BY Ry (SE)
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)

Function

Deposits and sign-extends a field from register Rx to register Rn. The
sign-extended field value is logically ORed bitwise with the value of regis-
ter Rn and the new value is written back to register Rn. The input field is
right-aligned within the fixed-point field of Rx. Its length is determined
by the len6 field in register Ry or by the immediate len6 field in the
instruction. The field is deposited in the fixed-point field of Rn, starting
from a bit position determined by the bit6 field in register Ry.

The bit position can also be determined by the immediate bit6 field in the
instruction. Bit6 and len6 can take values between 0 and 63 inclusive to
allow the deposit of fields ranging in length from 0 to 32 bits into bit posi-
tions ranging from 0 to off-scale left.

Example

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \-------------/

 len6 bits

39 31 23 15 7 0

|aaaaaabc|defghijk|lmn00000|00000000|00000000|

\----/\--------------/

 sign |

extension bit position bit6

 (from reference point)

39 31 23 15 7 0

|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn| Rn old

SHARC Processor Programming Reference 11-75

Computation Types

39 31 23 15 7 0

|vwxyzabc|defghijk|lmntuvwx|yzabcdef|ghijklmn| Rn new

 OR result

ASTATx/y Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-76 SHARC Processor Programming Reference

Rn = FEXT Rx BY Ry
Rn = FEXT Rx BY <bit6>:<len6>

Function

Extracts a field from register Rx to register Rn. (See Figure 11-3.) The
output field is placed right-aligned in the fixed-point field of Rn. Its
length is determined by the len6 field in register Ry or by the immediate
len6 field in the instruction. The field is extracted from the fixed-point
field of Rx starting from a bit position determined by the bit6 field in reg-
ister Ry or by the immediate bit6 field in the instruction. Bits to the left of
the extracted field are set to 0 in register Rn. The floating-point extension
field of Rn (bits 7–0 of the 40-bit word) is set to all 0s. Bit6 and len6 can
take values between 0 and 63 inclusive, allowing for extraction of fields
ranging in length from 0 to 32 bits, and from bit positions ranging from 0
to off-scale left.

Figure 11-3. Field Alignment

39 19 13 7 0

39 0

extracted bits placed in Rn, starting at LSB of 32-bit field

bit6 = starting bit position for extract,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

bit6 reference point

extract field

bit6len6

SHARC Processor Programming Reference 11-77

Computation Types

Example

39 31 23 15 7 0

|-----abc|defghijk|lmn-----|--------|--------| Rx

 \--------------/

 len6 bits |

 bit position bit6

 (from reference point)

39 31 23 15 7 0

|00000000|00000000|00abcdef|ghijklmn|00000000| Rn

ASTATx/y Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are extracted from the left of the 32-bit fixed-point, input field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-78 SHARC Processor Programming Reference

Rn = FEXT Rx BY Ry (SE)
Rn = FEXT Rx BY <bit6>:<len6> (SE)

Function

Extracts and sign-extends a field from register Rx to register Rn. The out-
put field is placed right-aligned in the fixed-point field of Rn. Its length is
determined by the len6 field in register Ry or by the immediate len6 field
in the instruction. The field is extracted from the fixed-point field of Rx
starting from a bit position determined by the bit6 field in register Ry or
by the immediate bit6 field in the instruction. The MSBs of Rn are
sign-extended by the MSB of the extracted field, unless the MSB is
extracted from off-scale left.

The floating-point extension field of Rn (bits 7–0 of the 40-bit word) is
set to all 0s. Bit6 and len6 can take values between 0 and 63 inclusive,
allowing for extraction of fields ranging in length from 0 to 32 bits and
from bit positions ranging from 0 to off-scale left.

Example

39 31 23 15 7 0

|-----abc|defghijk|lmn-----|--------|--------| Rx

 \--------------/

 len6 bits |

 bit position bit6

 (from reference point)

39 31 23 15 7 0

|aaaaaaaa|aaaaaaaa|aaabcdef|ghijklmn|00000000| Rn

\-------------------/

 sign extension

SHARC Processor Programming Reference 11-79

Computation Types

ASTATx/y Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are extracted from the left of the 32-bit fixed-point input field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-80 SHARC Processor Programming Reference

Rn = EXP Rx

Function

Extracts the exponent of the fixed-point operand in Rx. The exponent is
placed in the shf8 field in register Rn. The exponent is calculated as the
two’s-complement of:
 # leading sign bits in Rx – 1

ASTATx/y Flags

SZ Set if the extracted exponent is 0, otherwise cleared

SV Cleared

SS Set if the fixed-point operand in Rx is negative (bit 31 is a 1), otherwise
cleared

SHARC Processor Programming Reference 11-81

Computation Types

Rn = EXP Rx (EX)

Function

Extracts the exponent of the fixed-point operand in Rx, assuming that the
operand is the result of an ALU operation. The exponent is placed in the
shf8 field in register Rn. If the AV status bit is set, a value of +1 is placed in
the shf8 field to indicate an extra bit (the ALU overflow bit). If the AV sta-
tus bit is not set, the exponent is calculated as the two’s-complement of:
 # leading sign bits in Rx – 1

ASTATx/y Flags

SZ Set if the extracted exponent is 0, otherwise cleared

SV Cleared

SS Set if the exclusive OR of the AV status bit and the sign bit (bit 31) of the
fixed-point operand in Rx is equal to 1, otherwise cleared

Shifter/Shift Immediate Computations

11-82 SHARC Processor Programming Reference

Rn = LEFTZ Rx

Function

Extracts the number of leading 0s from the fixed-point operand in Rx.
The extracted number is placed in the bit6 field in Rn.

ASTATx/y Flags

SZ Set if the MSB of Rx is 1, otherwise cleared

SV Set if the result is 32, otherwise cleared

SS Cleared

SHARC Processor Programming Reference 11-83

Computation Types

Rn = LEFTO Rx

Function

Extracts the number of leading 1s from the fixed-point operand in Rx.
The extracted number is placed in the bit6 field in Rn.

ASTATx/y Flags

SZ Set if the MSB of Rx is 0, otherwise cleared

SV Set if the result is 32, otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-84 SHARC Processor Programming Reference

Rn = FPACK Fx

Function

Converts the IEEE 32-bit floating-point value in Fx to a 16-bit float-
ing-point value stored in Rn. The short float data format has an 11-bit
mantissa with a four-bit exponent plus sign bit. The 16-bit floating-point
numbers reside in the lower 16 bits of the 32-bit floating-point field.

The result of the FPACK operation is:

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number which would have
underflowed, the exponent is set to zero and the mantissa (including “hid-
den” 1) is right-shifted the appropriate amount. The packed result is a
denormal which can be unpacked into a normal IEEE floating-point
number.

ASTATx/y Flags

135 < exp1

1 exp = source exponent sign bit remains the same in all cases

Largest magnitude representation

120 < exp  135 Exponent is MSB of source exponent concatenated with the three LSBs
of source exponent; the packed fraction is the rounded upper 11 bits of
the source fraction

109 < exp  120 Exponent=0; packed fraction is the upper bits (source exponent – 110)
of the source fraction prefixed by zeros and the “hidden” 1; the packed
fraction is rounded

exp < 110 Packed word is all zeros

SZ Cleared

SV Set if overflow occurs, cleared otherwise

SS Cleared

SHARC Processor Programming Reference 11-85

Computation Types

Fn = FUNPACK Rx

Function

Converts the 16-bit floating-point value in Rx to an IEEE 32-bit float-
ing-point value stored in Fx.

Result

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number that would have
underflowed, the exponent is set to 0 and the mantissa (including “hid-
den” 1) is right-shifted the appropriate amount. The packed result is a
denormal, which can be unpacked into a normal IEEE floating-point
number.

ASTATx/y Flags

0 < exp1  15

1 exp = source exponent sign bit remains the same in all cases

Exponent is the three LSBs of the source exponent prefixed by the MSB
of the source exponent and four copies of the complement of the MSB;
the unpacked fraction is the source fraction with 12 zeros appended

exp = 0 Exponent is (120 – N) where N is the number of leading zeros in the
source fraction; the unpacked fraction is the remainder of the source
fraction with zeros appended to pad it and the “hidden” 1 stripped away

SZ Cleared

SV Cleared

SS Cleared

Shifter/Shift Immediate Computations

11-86 SHARC Processor Programming Reference

BITDEP Rx by Ry|<bitlen12>

Function

Deposits the bitlen number of bits (specified by Ry or bitlen) in the bit
FIFO from Rx. The bits read from Rx are right justified. Write pointer
incremented by the number of bit appended. To understand the BITDEP
instruction, it is easiest to observe how the data register and bit FIFO
behave during instruction execution. If the data register, Rx (40 Bits),
contains:

39 32

|--------|

31 23 15 7 0

|--------|----abcd|efghijkl|--------|

\-----------/

bitlen bits

And, the bit FIFO (64 Bits), before instruction execution contains:

63 55 47 39 32

|qwertyui|opasdfgh|lmn-----|--------|

 ^- BFFWRP – Write Pointer

31 23 15 7 0

|--------|--------|--------|--------|

Then, after instruction execution, the bit FIFO (64 Bits) contains:

63 55 47 39 32

|qwertyui|opasdfgh|lmnabcde|fghijkl-|

 ^- BFFWRP – Write Pointer

31 23 15 7 0

|--------|--------|--------|--------|

SHARC Processor Programming Reference 11-87

Computation Types

This operation on the bit FIFO is equivalent to:

1. BFF = BFF OR FDEP Rx BY <64-(BFFWRP+bitlen)> : <bitlen>

2. BFFWRP = BFFWRP + <bitlen>

Note: Do not use the pseudo code above as instruction syntax.

The first operation is similar to the FDEP instruction, but the right and
left shifters are modified to be 64-bit shifters. The second operation pro-
vides write pointer update and flag update, which differs from the FDEP
instruction.

SF is set or reset according to the value of write pointer. A data of more
than 32 in the lower 6 bits of Ry or immediate field (bitlen12) is prohib-
ited, and use of such data sets SV. Attempts to append more bits than the
bit FIFO has room for results in an undefined bit FIFO and write pointer.
SV is set in that case, otherwise SV is cleared. SZ and SS are cleared.

ASTATx/y Flags

SF Set if updated BFFWRP>= 32, otherwise cleared

SZ Cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if Ry or bitlen12 > 32), otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-88 SHARC Processor Programming Reference

Rn = BFFWRP

Function

Transfers write pointer value to Rn.

Examples

For bit FIFO examples, see the BITDEP instruction “BITDEP Rx by
Ry|<bitlen12>” on page 11-86.

ASTATx/y Flags

SZ Cleared

SV Cleared

SS Cleared

SF Not affected

SHARC Processor Programming Reference 11-89

Computation Types

BFFWRP = Rn|<data7>

Function

Updates write pointer from Rn or the immediate 7 bit data specified.
Only 7 least significant bits of Rn are written.

The maximum permissible data to be written into BFFWRP is 64.

Examples

For bit FIFO examples, see the BITDEP instruction “BITDEP Rx by
Ry|<bitlen12>” on page 11-86.

ASTATx/y Flags

SF is set if updated BFFWRP is greater than or equal to 32, cleared other-
wise. SV is set if the written value is greater than 64 else SV is cleared.
Flags SZ, SS are cleared.

SZ Cleared

SF Set if updated BFFWRP  32, otherwise cleared

SV Set if written <data7> is  64, otherwise cleared

SS Cleared

Shifter/Shift Immediate Computations

11-90 SHARC Processor Programming Reference

Rn = BITEXT Rx|<bitlen12>(NU)

Function

Extracts bitlen number of bits (specified by Rx or bitlen) from the bit
FIFO and places the data in Rn. The bits in Rn are right justified. Decre-
ments write pointer by same number as read bits. Remaining content of
the bit FIFO is left-shifted so that it is MSB aligned. The optional modi-
fier NU (no update) or query only, returns the requested number of bits as
usual but does not modify the bit FIFO or Write pointer. To understand
the BITEXT instruction, it is easiest to observe how the data register and
bit FIFO behave during instruction execution. If the bit FIFO (64 bits)
contains:

63 55 47 39

|abcdefgh|ijklmn--|--------

 \-----------/ ^ - BFFWRP Pointer

bitlen bits

31 23 15 7 0

|--------|--------|--------|--------|--------|

After instruction execution, the Rn register (40 bits) contains:

39 32

|00000000|

31 23 15 7 0

|00000000|0000abcd|efghijkl|00000000|

And the bit FIFO (64 Bits) contains:

63 55 47 39 32

|mn-----|--------|--------|--------|

 ^- BFFWRP Pointer

31 23 15 7 0

|--------|--------|--------|--------|

SHARC Processor Programming Reference 11-91

Computation Types

This operation on the Bit FIFO is equivalent to:

1. Rn = FEXT BFF[63:32] BY <(32-bitlen)>:<bitlen>

2. BFF = BFF << bitlen

3. BFFWRP = BFFWRP – bitlen

Note: Do not use the pseudo code above as instruction syntax.

The first operation is the same as an FEXT instruction operation.

The second operation (bit FIFO 64-bit register with a left shift) and third
operation (write pointer update and flag update) are unique to the bit
FIFO operation.

ASTATx/y Flags

A value of more than 32 in the lower 6 bits of Rx or the bitlen immediate
field is prohibited and use of such a value sets SV. Attempts to get more
bits than those in the bit FIFO results in undefined pointer and bit FIFO.
SV is set in that case. SF is set if write pointer is greater than or equal to
32. SZ is set if output is zero, otherwise cleared. SS is cleared. Usage of the
NU modifier affects SV, SZ, and SS as described above and the SF flag is
not updated.

SZ Set if output is zero, otherwise cleared

SF Set if updated BFFWRP  32, otherwise cleared. If NU modifier is used SF
reflects the un-updated Write pointer status

SV Set if an attempt is made to extract more bits than those in bit FIFO, other-
wise cleared

SS Cleared

Multifunction Computations

11-92 SHARC Processor Programming Reference

Multifunction Computations
Multifunction instructions are parallelized single ALU and Multiplier
instructions. For functional description and status flags and for parallel
Multiplier and ALU instructions input operand constraints see “ALU
Fixed-Point Computations” on page 11-1 and “Multiplier Fixed-Point
Computations” on page 11-49. This section lists all possible instruction
syntax options.

Note that the MRB register is not supported in multifunction
instructions.

Fixed-Point ALU (dual Add and Subtract)

Ra = Rx + Ry , Rs = Rx – Ry

Floating-Point ALU (dual Add and Subtract)

Fa = Fx + Fy , Fs = Fx – Fy

Fixed-Point Multiplier and ALU

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12
Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12
Rm = R3-0 * R7-4 (SSFR), Ra = (R11-8 + R15-12)/2
MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12
MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12
MRF = MRF + R3-0 * R7-4 (SSF), Ra = (R11-8 + R15-12)/2
Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12
Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12
Rm = MRF + R3-0 * R7-4 (SSFR), Ra =(R11-8 + R15-12)/2
MRF = MRF – R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12
MRF = MRF – R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12
MRF = MRF – R3-0 * R7-4 (SSF), Ra = (R11-8 + R15-12)/2
Rm = MRF – R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12
Rm = MRF – R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12
Rm = MRF – R3-0 * R7-4 (SSFR), Ra =(R11-8 + R15-12)/2

SHARC Processor Programming Reference 11-93

Computation Types

Floating-Point Multiplier and ALU

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12
Fm = F3-0 * F7-4, Fa = F11-8 – F15-12
Fm = F3-0 * F7-4, Fa = FLOAT R11-8 by R15-12
Fm = F3-0 * F7-4, Ra = FIX F11-8 by R15-12

Fm = F3-0 * F7-4, Fa = (F11-8 + F15-12)/2
Fm = F3-0 * F7-4, Fa = ABS F11-8
Fm = F3-0 * F7-4, Fa = MAX (F11-8, F15-12)
Fm = F3-0 * F7-4, Fa = MIN (F11-8, F15-12)

Fixed-Point Multiplier and ALU (dual Add and Subtract)

Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12, Rs=R11-8 – R15-12

Floating Point Multiplier and ALU (dual Add and Subtract)

Fm=F3-0 * F7-4, Fa=F11-8 + F15-12, Fs=F11-8 – F15-12

Note that both instructions above are typically used for fixed- or float-
ing-point FFT butterfly calculations.

Short Compute

11-94 SHARC Processor Programming Reference

Short Compute
The following compute instructions are supported as type 2c instructions
in VISA space under the condition that one source and one destination
register must be identical.

Rn = Rn + Rx
Rn = Rn – Rx
Rn = PASS Rx
COMP (Rn, Rx)
Rn = NOT Rx
Rn = Rn AND Rx
Rn = Rx + 1
Rn = Rn OR Rx
Rn = Rx – 1
Rn = Rn XOR Rx
Rn = Rn * Rx (SSI)

Fn = Fn + Fx
Fn = Fn – Fx
Fn = Fn * Fx
COMP (Fn, Fx)
Fn = FLOAT Rx

SHARC Processor Programming Reference 12-1

12 COMPUTATION TYPE
OPCODES

This chapter lists the opcodes associated with the computation types
described in Chapter 11, Computation Types. Table 12-1 provides a sum-
mary of computation type bits and Table 12-2 provides a summary of the
shift immediate computation type.

Table 12-1. Compute Field Selection Table

Bits 22–20 Bits 19–12 Computation Type Data Format

Single Computation

000 0xxxxxxx ALU Fixed

000 1xxxxxxx ALU Float

001 xxxxxxxx Multiply Fixed

001 00110000 Multiply Float

010 xxxxxxxx Shifter Fixed

Multiple Computation

000 0111 Dual ALU (+/–) Fixed

000 1111 Dual ALU (+/–) Float

10x xxxx MUL/ALU Fixed

101 1xxx MUL/ALU Float

110 MUL/dual ALU (+/–) Fixed

111 MUL/dual ALU (+/–) Float

Data Move

100 000 MRx data move Fixed

Single-Function Opcodes

12-2 SHARC Processor Programming Reference

Single-Function Opcodes
In single computation operations the compute field of a single-function
operation is made up of the following bit fields.

Table 12-2. Shift Immediate Compute Field Selection Table (Type 6)

Bit 22 Bits 21–16 Data Format

0 xxxxxx Fixed

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CU OPCODE Rn Rx Ry

Bits Description

CU Specifies the computation unit for the compute operation, where: 00=ALU,
01=Multiplier, and 10=Shifter

Opcode Specifies the compute operation

Rn Specifies register for the compute result

Rx Specifies register for the compute’s x operand

Ry Specifies register for the compute’s y operand

SHARC Processor Programming Reference 12-3

Computation Type Opcodes

ALU Opcodes
Table 12-3 and Table 12-4 summarize the syntax and opcodes for the
fixed-point and floating-point ALU operations, respectively.

Table 12-3. Fixed-Point ALU Operations

Syntax Opcode

Rn = Rx + Ry 0000 0001

Rn = Rx – Ry 0000 0010

Rn = Rx + Ry + CI 0000 0101

Rn = Rx – Ry + CI – 1 0000 0110

Rn = (Rx + Ry)/2 0000 1001

COMP(Rx, Ry) 0000 1010

COMPU(Rx, Ry) 0000 1011

Rn = Rx + CI 0010 0101

Rn = Rx + CI – 1 0010 0110

Rn = Rx + 1 0010 1001

Rn = Rx – 1 0010 1010

Rn = – Rx 0010 0010

Rn = ABS Rx 0011 0000

Rn = PASS Rx 0010 0001

Rn = Rx AND Ry 0100 0000

Rn = Rx OR Ry 0100 0001

Rn = Rx XOR Ry 0100 0010

Rn = NOT Rx 0100 0011

Rn = MIN(Rx, Ry) 0110 0001

Rn = MAX(Rx, Ry) 0110 0010

Rn = CLIP Rx by Ry 0110 0011

12-4 SHARC Processor Programming Reference

Table 12-4. Floating-Point ALU Operations

Syntax Opcode

Fn = Fx + Fy 1000 0001

Fn = Fx – Fy 1000 0010

Fn = ABS (Fx + Fy) 1001 0001

Fn = ABS (Fx – Fy) 1001 0010

Fn = (Fx + Fy)/2 1000 1001

COMP(Fx, Fy) 1000 1010

Fn = –Fx 1010 0010

Fn = ABS Fx 1011 0000

Fn = PASS Fx 1010 0001

Fn = RND Fx 1010 0101

Fn = SCALB Fx by Ry 1011 1101

Rn = MANT Fx 1010 1101

Rn = LOGB Fx 1100 0001

Rn = FIX Fx by Ry 1101 1001

Rn = FIX Fx 1100 1001

Rn = TRUNC Fx by Ry 1101 1101

Rn = TRUNC Fx 1100 1101

Fn = FLOAT Rx by Ry 1101 1010

Fn = FLOAT Rx 1100 1010

Fn = RECIPS Fx 1100 0100

Fn = RSQRTS Fx 1100 0101

Fn = Fx COPYSIGN Fy 1110 0000

Fn = MIN(Fx, Fy) 1110 0001

SHARC Processor Programming Reference 12-5

Computation Type Opcodes

Multiplier Opcodes
This section describes the multiplier operations. These tables use the fol-
lowing symbols to indicate location of operands and other features:

• y = y-input (1 = signed, 0 = unsigned)

• x = x-input (1 = signed, 0 = unsigned)

• f = format (1 = fractional, 0 = integer)

• r = rounding (1 = yes, 0 = no)

Table 12-5 and Table 12-6 summarize the syntax and opcodes for the
fixed-point and floating-point multiplier operations.

Fn = MAX(Fx, Fy) 1110 0010

Fn = CLIP Fx by Fy 1110 0011

Table 12-5. Multiplier Fixed-Point Operations

Syntax Opcode

Rn = Rx * Ry mod1 01yx f00r

MRF = Rx * Ry mod1 01yx f10r

MRB = Rx * Ry mod1 01yx f11r

Rn = MRF + Rx * Ry mod1 10yx f00r

Rn = MRB + Rx * Ry mod1 10yx f01r

MRF = MRF + Rx * Ry mod1 10yx f10r

MRB = MRB + Rx * Ry mod1 10yx f11r

Rn = MRF – Rx * Ry mod1 11yx f00r

Table 12-4. Floating-Point ALU Operations (Cont’d)

Syntax Opcode

12-6 SHARC Processor Programming Reference

Rn = MRB – Rx * Ry mod1 11yx f01r

MRF = MRF – Rx * Ry mod1 11yx f10r

MRB = MRB – Rx * Ry mod1 11yx f11r

Rn = SAT MRF mod2 0000 f00x

Rn = SAT MRB mod2 0000 f01x

MRF = SAT MRF mod2 0000 f10x

MRB = SAT MRB mod2 0000 f11x

Rn = RND MRF mod3 0001 100x

Rn = RND MRB mod3 0001 101x

MRF = RND MRF mod3 0001 110x

MRB = RND MRB mod3 0001 111x

MRF = 0 0001 0100

MRB = 0 0001 0110

MRxF/B = Rn 0000 0000

Rn = MRxF/B 0000 0000

Table 12-6. Multiplier Floating-Point Operations

Syntax Opcode

Fn = Fx*Fy 0011 0000

Table 12-5. Multiplier Fixed-Point Operations (Cont’d)

Syntax Opcode

SHARC Processor Programming Reference 12-7

Computation Type Opcodes

Mod1 Modifiers

The Mod1 modifiers in Table 12-7 are optional modifiers. It is enclosed
in parentheses and consists of three or four letters that indicate whether:

• The x-input is signed (S) or unsigned (U).

• The y-input is signed or unsigned.

• The inputs are in integer (I) or fractional (F) format.

• The result written to the register file will be rounded-to-nearest
(R).

Table 12-7. Mod1 Options and Opcodes

Option Opcode

(SSI) _ _11 0_ _0

(SUI) _ _01 0_ _0

(USI) _ _10 0_ _0

(UUI) _ _00 0_ _0

(SSF) _ _11 1_ _0

(SUF) _ _01 1_ _0

(USF) _ _10 1_ _0

(UUF) _ _00 1_ _0

(SSFR) _ _11 1_ _1

(SUFR) _ _01 1_ _1

(USFR) _ _10 1_ _1

(UUFR) _ _00 1_ _1

12-8 SHARC Processor Programming Reference

Mod2 Modifiers

The Mod2 modifiers in Table 12-8 are optional modifiers, enclosed in
parentheses, consisting of two letters that indicate whether the input is
signed (S) or unsigned (U) and whether the input is in integer (I) or frac-
tional (F) format.

Mod3 Modifiers

Table 12-8. Mod2 Options and Opcodes

Option Opcode

(SI) _ _ _ _ 0 _ _ 1

(UI) _ _ _ _ 0 _ _ 0

(SF) _ _ _ _ 1 _ _ 1

(UF) _ _ _ _ 1 _ _ 0

Table 12-9. Mod3 Options and Opcodes

Option Opcode

(SF) _ _ _ _ 1 _ _ 1

(UF) _ _ _ _ 1 _ _ 0

SHARC Processor Programming Reference 12-9

Computation Type Opcodes

MR Data Move Opcodes

Table 12-10 indicates how the opcode specifies the MR register, and Dreg
specifies the data register. D determines the direction of the transfer (0 =
to register file, 1 = to MR register).

Shifter/Shift Immediate Opcodes
The shifter operates on the register file’s 32-bit fixed-point fields
(bits 38–9). Two-input shifter operations can take their y input from the
register file or from immediate data provided in the instruction. Either
form uses the same opcode. However, the latter case, called an immediate
shift or shifter immediate operation, is allowed only with instruction
type 6, which has an immediate data field in its opcode for this purpose.

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

100000 D OPCODE DREG

Table 12-10. Opcodes for MR Register Transfers

OPCODE MR Register

0000 MR0F

0001 MR1F

0010 MR2F

0100 MR0B

0101 MR1B

0110 MR2B

12-10 SHARC Processor Programming Reference

All other instruction types must obtain the y input from the register file
when the compute operation is a two-input shifter operation.

 Table 12-11 shows opcodes which are merged for shifter computa-
tions and shifter immediate operations. For shifter computations,
the entire 8-bit opcode is valid, for shift immediate (type 6 instruc-
tions) the upper 6 MSBs represent valid bits.

In shift immediate operations the compute field is made up of the
following bit fields.

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OPCODE DATA Rn Rx

Bits Description

Rx Specifies input register

Rn Specifies result register

Data Immediate <data7> <data8>, <bit6>:<len6>, <bitlen12>
For immediate data > 8bits (<bit6>:<len6>, <bitlen12>) refer to DATAEX field
Table 10-1 on page 10-1.

OPCODE Specifies the immediate operation

Table 12-11. Shifter Operations/Shift Immediate

Syntax Opcode

Rn = LSHIFT Rx by Ry|<data8> 0000 0000

Rn = Rn OR LSHIFT Rx by Ry|<data8> 0010 0000

Rn = ASHIFT Rx by Ry|<data8> 0000 0100

Rn = Rn OR ASHIFT Rx by Ry|<data8> 0010 0100

Rn = ROT Rx by Ry|<data8> 0000 1000

Rn = BCLR Rx by Ry|<data8> 1100 0100

SHARC Processor Programming Reference 12-11

Computation Type Opcodes

Rn = BSET Rx by Ry|<data8> 1100 0000

Rn = BTGL Rx by Ry|<data8> 1100 1000

BTST Rx by Ry|<data8> 1100 1100

Rn = FDEP Rx by Ry|<bit6>:<len6> 0100 0100

Rn = FDEP Rx by Ry|<bit6>:<len6> (SE) 0100 1100

Rn = Rn OR FDEP Rx by Ry|<bit6>:<len6> 0110 0100

Rn = Rn OR FDEP Rx by Ry|<bit6>:<len6>(SE) 0110 1100

Rn = FEXT Rx by Ry|<bit6>:<len6> 0100 0000

Rn = FEXT Rx by Ry|<bit6>:<len6> (SE) 0100 1000

Rn = EXP Rx 1000 0000

Rn = EXP Rx (EX) 1000 0100

Rn = LEFTZ Rx 1000 1000

Rn = LEFTO Rx 1000 1100

Rn = FPACK Fx 1001 0000

Fn = FUNPACK Rx 1001 0100

BITDEP Rx by Ry|<bitlen12>1 0111 0100

Rn = BITEXT Rx|<bitlen12> 0101 0000

Rn = BITEXT Rx|<bitlen12>(NU)1 0101 1000

BFFWRP = Rn|<data7>1 0111 1100

Rn = BFFWRP1 0111 0000

1 This instruction works on ADSP-214xx processors only.

Table 12-11. Shifter Operations/Shift Immediate (Cont’d)

Syntax Opcode

12-12 SHARC Processor Programming Reference

Short Compute Opcodes

The type 2c instruction supports specific operations in VISA space.

11 10 9 8 7 6 5 4 3 2 1 0

OP Rn Rx

OP Operation OP Operation

0000 Rn = Rn + Rx 1000 Fn = Fn + Fx

0001 Rn = Rn – Rx 1001 Fn = Fn – Fx

0010 Rn = PASS Rx 1010 Fn = FLOAT Rx

0011 COMP (Rn, Rx) 1011 COMP (Fn, Fx)

0100 Rn = NOT Rx 1100 Rn = Rn AND Rx

0101 Rn = Rx + 1 1101 Rn = Rn OR Rx

0110 Rn = Rx – 1 1110 Rn = Rn XOR Rx

0111 Rn = Rn * Rx (SSI) 1111 Fn = Fn * Fx

SHARC Processor Programming Reference 12-13

Computation Type Opcodes

Multifunction Opcodes
Multifunction opcodes are described in the following sections.

Dual ALU (Parallel Add and Subtract)

Compute Field (Fixed-Point)

Compute Field (Floating-Point)

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 00 0111 Rs Ra Rx Ry

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 00 1111 Fs Fa Fx Fy

Bits Description

Rx Specifies fixed-point X input ALU register

Ry Specifies fixed-point Y input ALU register

Rs Specifies fixed-point ALU subtraction result

Ra Specifies fixed-point ALU addition result

Fx Specifies floating-point X input ALU register

Fy Specifies floating-point Y input ALU register

Fs Specifies floating-point ALU subtraction result

Fa Specifies floating-point ALU addition result

Multifunction Opcodes

12-14 SHARC Processor Programming Reference

Multiplier and Dual ALU (Parallel Add and
Subtract)

Compute Field (Fixed-Point)

Compute Field (Floating-Point)

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 10 Rs Rm Ra Rxm Rym Rxa Rya

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 11 Fs Fm Fa Fxm Fym Fxa Fya

Bits Description

Rxa Specifies fixed-point X input ALU register (R11–8)

Rya Specifies fixed-point Y input ALU register (R15–12)

Rs Specifies fixed-point ALU subtraction result

Ra Specifies fixed-point ALU addition result

Fxa Specifies floating-point X input ALU register (F11–8)

Fya Specifies floating-point Y input ALU register (F15–12)

Fs Specifies floating-point ALU subtraction result

Fa Specifies floating-point ALU addition result

Rxm Specifies fixed-point X input multiply register (R3–0)

Rym Specifies fixed-point Y input multiply register (R7–4)

Rm Specifies fixed-point multiply result register

SHARC Processor Programming Reference 12-15

Computation Type Opcodes

Multiplier and ALU

Compute Field (Fixed-Point)

Compute Field (Floating-Point)

Fxm Specifies floating-point X input multiply register (F3–0)

Fym Specifies floating-point Y input multiply register (F7–4)

Fm Specifies floating-point multiply result register

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 Opcode (Table 12-12) Rm Ra Rxm Rym Rxa Rya

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 Opcode (Table 12-12) Fm Fa Fxm Fym Fxa Fya

Bits Description

Rxa Specifies fixed-point X input ALU register (R11–8)

Rya Specifies fixed-point Y input ALU register (R15–12)

Ra Specifies fixed-point ALU result

Fxa Specifies floating-point X input ALU register (F11–8)

Fya Specifies floating-point Y input ALU register (F15–12)

Fa Specifies floating-point ALU result

Rxm Specifies fixed-point X input multiply register (R3–0)

Rym Specifies fixed-point Y input multiply register (R7–4)

Bits Description

Multifunction Opcodes

12-16 SHARC Processor Programming Reference

Rm Specifies fixed-point multiply result register

Fxm Specifies floating-point X input multiply register (F3–0)

Fym Specifies floating-point Y input multiply register (F7–4)

Fm Specifies floating-point multiply result register

Bits Description

SHARC Processor Programming Reference 12-17

Computation Type Opcodes

Table 12-12 provides the syntax and opcode for each of the parallel multi-
plier and ALU instructions for both fixed-point and floating-point
versions.

Table 12-12. Multifunction, Multiplier and ALU

Syntax Opcode
(Bits 21–16)

Rm = R3–0 * R7–4 (SSFR), Ra = R11–8 + R15–12 000100

Rm = R3–0 * R7–4 (SSFR), Ra = R11–8 – R15–12 000101

Rm = R3–0 * R7–4 (SSFR), Ra = (R11–8 + R15–12)/2 000110

MRF = MRF + R3–0 * R7–4 (SSF), Ra = R11–8 + R15–12 001000

MRF = MRF + R3–0 * R7–4 (SSF), Ra = R11–8 – R15–12 001001

MRF = MRF + R3–0 * R7–4 (SSF), Ra = (R11–8 + R15–12)/2 001010

Rm = MRF + R3–0 * R7–4 (SSFR), Ra = R11–8 + R15–12 001100

Rm = MRF + R3–0 * R7–4 (SSFR), Ra = R11–8 – R15–12 001101

Rm = MRF + R3–0 * R7–4 (SSFR), Ra =(R11–8 + R15–12)/2 001110

MRF = MRF – R3–0 * R7–4 (SSF), Ra = R11–8 + R15–12 010000

MRF = MRF – R3–0 * R7–4 (SSF), Ra = R11–8 – R15–12 010001

MRF = MRF – R3–0 * R7–4 (SSF), Ra = (R11–8 + R15–12)/2 010010

Rm = MRF – R3–0 * R7–4 (SSFR), Ra = R11–8 + R15–12 010100

Rm = MRF – R3–0 * R7–4 (SSFR), Ra = R11–8 – R15–12 010101

Rm = MRF – R3–0 * R7–4 (SSFR), Ra =(R11–8 + R15–12)/2 010110

Fm = F3–0 * F7–4, Fa = F11–8 + F15–12 011000

Fm = F3–0 * F7–4, Fa = F11–8 – F15–12 011001

Fm = F3–0 * F7–4, Fa = FLOAT R11–8 by R15–12 011010

Fm = F3–0 * F7–4, Ra = FIX F11–8 by R15–12 011011

Fm = F3–0 * F7–4, Fa = (F11–8 + F15–12)/2 011100

Fm = F3–0 * F7–4, Fa = ABS F11–8 011101

Multifunction Opcodes

12-18 SHARC Processor Programming Reference

Fm = F3–0 * F7–4, Fa = MAX (F11–8, F15–12) 011110

Fm = F3–0 * F7–4, Fa = MIN (F11–8, F15–12) 011111

Table 12-12. Multifunction, Multiplier and ALU (Cont’d)

Syntax Opcode
(Bits 21–16)

SHARC Processor Programming Reference A-1

A REGISTERS

The SHARC processors have two types of registers, non memory-mapped
and memory-mapped. Non memory-mapped registers are not accessed by
an address (like memory-mapped registers), instead they are accessed by an
instruction.

Memory-mapped registers are sub-classified as IOP (I/O processor) core
registers and IOP peripheral registers. For information IOP peripheral
registers, refer to the product-specific hardware reference manual.

• “Program Sequencer Registers” on page A-8

• “Processing Element Registers” on page A-14

• “Data Address Generator Registers” on page A-25

• “Miscellaneous Registers” on page A-26

• “Memory-Mapped Registers” on page A-44

• “Interrupt Registers” on page A-36

• “Register Listing” on page A-54

When writing processor programs, it is often necessary to set, clear, or test
bits in the processor’s registers. While these bit operations can all be done
by referring to the bit’s location within a register it is much easier to use
symbols that correspond to the bit’s or register’s name. For convenience
and consistency, Analog Devices provides a header file that contains these
bit and registers definitions. CrossCore Embedded Studio provides pro-
cessor-specific header files in the SHARC/include directory. An #include

Notes on Reading Register Drawings

A-2 SHARC Processor Programming Reference

file is provided with the VisualDSP tools and can be found in the
VisualDSP/processortype/include directory.

 Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) the register’s reserved bits.

Notes on Reading Register Drawings
The register drawings in this appendix provide “at-a-glance” information
about specific registers. They are designed to give experienced users basic
information about a register and its bit settings. When using these regis-
ters, the following should be noted.

1. The figures provide the bit mnemonic and its definition. Where
necessary, detailed descriptions can be found in the tables that fol-
low the register drawings and in the chapters that describe the
particular module.

2. The CrossCore or VisualDSP++ tools suite contains the complete
listing of registers in a header file.

3. “Register Listing” on page A-54 provides a complete list of user
accessible registers, their addresses, and their state at reset.

4. In most cases, control registers are read/write (RW) and status reg-
isters are read only (RO). Some status registers provide sticky error
bits (STKY) which can be written to clear (WC). Where individual
bits within a register differ, they are noted in the register drawing.

SHARC Processor Programming Reference A-3

Registers

Mode Control 1 Register (MODE1)
Figure A-1 and Table A-2 provide bit information for the MODE1 register.

Figure A-1. Mode Control 1 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CSEL

PEYEN

BDCST9

RND32

BDCST1

CBUFEN

Circular Buffer Addressing Enable

Broadcast Register Loads Indexed With I1 Enable

Broadcast Register Loads Indexed With I9 Enable

Processor Element Y Enable

Bus Master Code Selection
(ADSP-21368/2146x only)

Rounding for 32-Bit Float-
ing-Point Data Select

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BR0

SRCU

IRPTEN

BR8

ALUSAT

SSE

TRUNC

Truncation Rounding Mode
Select

Fixed-point Sign Extension
Select

ALU Saturation Select

Global Interrupt Enable

Secondary MR Registers Enable

Bit-Reverse Addressing for I0

Bit-Reverse Addressing for I8

NESTM

Nesting Multiple Interrupts Enable

SRD1H

SRD1L

Secondary Registers DAG1
Low Enable

Secondary Registers DAG1
High Enable

SRRFL

Secondary Registers Register File
Low Enable

SRD2H

Secondary Registers DAG2
High Enable

SRD2L

Secondary Registers DAG2
Low Enable

SRRFH

Secondary Registers Register File High Enable

Mode Control 1 Register (MODE1)

A-4 SHARC Processor Programming Reference

Table A-1. MODE1 Register Bit Descriptions (RW)

Bit Name Description

0 BR8 Bit-Reverse Addressing For Index I8 Enable. Enables (bit reversed if
set, = 1) or disables (normal if cleared, = 0) bit-reversed addressing for
accesses that are indexed with DAG2 register I8.

1 BR0 Bit-Reverse Addressing For Index I0 Enable. Enables (bit reversed if
set, = 1) or disables (normal if cleared, = 0) bit-reversed addressing for
accesses that are indexed with DAG1 register I0.

2 SRCU MRx Result Registers Swap Enable. Enables the swapping of the
MRF and MRB registers contents if set (= 1). This can be used as
foreground and background registers. In SIMD Mode the swapping
also performed between MSF and MSB registers.
This works similar to the data register swapping instructions
Rx<->Sx.

3 SRD1H Secondary Registers For DAG1 High Enable. Enables (use secondary
if set, = 1) or disables (use primary if cleared, = 0) secondary DAG1
registers for the upper half (I, M, L, B7–4) of the address generator.

4 SRD1L Secondary Registers For DAG1 Low Enable. Enables (use secondary
if set, = 1) or disables (use primary if cleared, = 0) secondary DAG1
registers for the lower half (I, M, L, B3–0) of the address generator.

5 SRD2H Secondary Registers For DAG2 High Enable. Enables (use secondary
if set, = 1) or disables (use primary if cleared, = 0) secondary DAG2
registers for the upper half (I, M, L, B15–12) of the address generator.

6 SRD2L Secondary Registers For DAG2 Low Enable. Enables (use secondary
if set, = 1) or disables (use primary if cleared, = 0) secondary DAG2
registers for the lower half (I, M, L, B11–8) of the address generator.

7 SRRFH Secondary Registers For Register File High Enable. Enables (use sec-
ondary if set, = 1) or disables (use primary if cleared, = 0) secondary
data registers for the upper half (R15-R8/S15-S8) of the computa-
tional units.

9–8 Reserved

10 SRRFL Secondary Registers For Register File Low Enable. Enables (use sec-
ondary if set, = 1) or disables (use primary if cleared, = 0) secondary
data registers for the lower half (R7-R0/S7-S0) of the computational
units.

SHARC Processor Programming Reference A-5

Registers

11 NESTM Nesting Multiple Interrupts Enable. Enables (nest if set, = 1) or dis-
ables (no nesting if cleared, = 0) interrupt nesting in the interrupt
controller. When interrupt nesting is disabled, a higher priority inter-
rupt can not interrupt a lower priority interrupt’s service routine.
Other interrupts are latched as they occur, but the processor processes
them after the active routine finishes. When interrupt nesting is
enabled, a higher priority interrupt can interrupt a lower priority
interrupt’s service routine. Lower interrupts are latched as they occur,
but the processor processes them after the nested routines finish.

12 IRPTEN Global Interrupt Enable. Enables (if set, = 1) or disables (if cleared,
= 0) all maskable interrupts.

13 ALUSAT ALU Saturation Select. Selects whether the computational units satu-
rate results on positive or negative fixed-point overflows (if 1) or
return unsaturated results (if 0).

14 SSE Fixed-point Sign Extension Select. Selects whether the core unit
sign-extend short-word, 16-bit data (if 1) or zero-fill the upper 16
bits (if 0).

15 TRUNC Truncation Rounding Mode Select. Selects whether the ALU or mul-
tiplier units round results with round-to-zero (if 1) or round-to-near-
est (if 0).

16 RND32 Boundary Rounding For 32-Bit Floating-Point Data Select. Selects
whether the computational units round floating-point data to 32 bits
(if 1) or round to 40 bits (if 0).

18–17 CSEL Bus Master Selection. These bits indicate whether the processor has
control of the external bus as follows:
00 = processor is bus master
01, 10, 11 = processor is not bus master.
The bus master condition (BM) indicates whether the SHARC pro-
cessor is the current bus master in EP shared systems (for example
ADSP-21368/2146x with shared SDRAM/DDR2 memory). To
enable the use of this condition, bits 17 and 18 of MODE1 must
both be zeros; otherwise the condition is always evaluated as false.

20–19 Reserved

Table A-1. MODE1 Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

Mode Control 1 Register (MODE1)

A-6 SHARC Processor Programming Reference

21 PEYEN Processor Element Y Enable. Enables computations in PEy—SIMD
mode—(if 1) or disables PEy—SISD mode—(if 0).
When set, processing element Y (computation units and register files)
accepts instruction dispatches. When cleared, processing element Y
goes into a low power mode.
Note if SIMD Mode is disabled, programs can load data to the sec-
ondary registers—for example s0=dm(i0,m0); only computation does
not work.

22 BDCST9 Broadcast Register Loads Indexed With I9 Enable. Enables (broad-
cast I9 if set, = 1) or disables (no I9 broadcast if cleared, = 0) broad-
cast register loads for loads that use the data address generator I9
index.
When the BDCST9 bit is set, data register loads from the PM data
bus that use the I9 DAG2 Index register are “broadcast” to a register
or register pair in each PE.

23 BDCST1 Broadcast Register Loads Indexed With I1 Enable. Enables (broad-
cast I1 if set, = 1) or disables (no I1 broadcast if cleared, = 0) broad-
cast register loads for loads that use the data address generator I1
index.
When the BDCST1 bit is set, data register loads from the DM data
bus that use the I1 DAG1 Index register are “broadcast” to a register
or register pair in each PE.

24 CBUFEN Circular Buffer Addressing Enable. Enables (circular if set, = 1) or
disables (linear if cleared, = 0) circular buffer addressing for buffers
with loaded I, M, B, and L DAG registers.

31–25 Reserved

Table A-1. MODE1 Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

SHARC Processor Programming Reference A-7

Registers

Mode Control 2 Register (MODE2)
Figure A-2 and Table A-2 provide bit information for the MODE2 register.

Figure A-2. MODE2 Control Register

Table A-2. MODE2 Register Bit Descriptions (RW)

Bit Name Description

0 IRQ0E Sensitivity Select. Selects sensitivity for the flag configured as IRQ0
as edge-sensitive (if set, = 1) or level-sensitive (if cleared, = 0).

1 IRQ1E Sensitivity Select. Selects sensitivity for the flag configured as IRQ1
as edge-sensitive (if set, = 1) or level-sensitive (if cleared, = 0).

2 IRQ2E Sensitivity Select. Selects sensitivity for the flag configured as IRQ2
as edge-sensitive (if set, = 1) or level-sensitive (if cleared, = 0).

3 Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IRQ0E

CADIS

TIMEN

Timer Enable

Cache Disable

Interrupt Request
Sensitivity Select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 0 0 0 0 1 0 0 0 0 0 0 0 0

CAFRZ

IIRAE

U64MAE

Unaligned 64-Bit Memory
Access Enable

Illegal IOP Register
Access Enable

Cache Freeze

IRQ1E

Interrupt Request
Sensitivity Select

IRQ2E

Interrupt Request Sensi-
tivity Select

EXTCADIS

External Cache
Only Disable

Program Sequencer Registers

A-8 SHARC Processor Programming Reference

Program Sequencer Registers
The processor’s program sequencer registers direct the execution of
instructions. These registers include support for the:

• Instruction pipeline

• Program and loop stacks

4 CADIS Cache Disable. This bit disables the instruction cache (if set, = 1)
or enables the cache (if cleared, = 0). If this bit is set, then the cach-
ing of instructions from internal memory and external memory
both are disabled (see bit 6).

5 TIMEN Timer Enable. Enables the core timer (starts, if set, = 1) or disables
the core timer (stops, if cleared, = 0).

6 EXTCADIS External Cache Only Disable. Disables the caching of the instruc-
tions coming from external memory (if set, =1) or enables caching
of the instructions coming from external memory (if cleared, = 0
and CADIS bit 4 = 0). This bit can only be used with the
ADSP-214xx products.

18–7 Reserved

19 CAFRZ Cache Freeze. Freezes the instruction cache (retain contents if set,
= 1) or thaws the cache (allow new input if cleared, = 0).

20 IIRAE Illegal I/O Processor Register Access Enable. Enables (if set, = 1)
or disables (if cleared, = 0) detection of I/O processor register
accesses. If IIRAE is set, the processor flags an illegal access by set-
ting the IIRA bit in the STKYx register.

21 U64MAE Unaligned 64-Bit Memory Access Enable. Enables (if set, = 1) or
disables (if cleared, = 0) detection of unaligned long word accesses.
If U64MAE is set, the processor flags an unaligned long word access
by setting the U64MA bit in the STKYx register.

31–22 Reserved

Table A-2. MODE2 Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

SHARC Processor Programming Reference A-9

Registers

• Timer

• Interrupt mask and latch (for more information, see “Core Inter-
rupt Control” in Appendix B, Core Interrupt Control.

Fetch Address Register (FADDR)
The fetch address register (RO) reads the F1 stage in the F1–F2–D–A–E
pipeline stages instruction pipeline and contains the 24-bit address of the
instruction that the processor fetches from memory on the next cycle as
shown below.

n:R0=FADDR;

n+1:instruction1;

n+2:instruction2;

n+3:instruction3;

n+4:instruction4; /* Fetch1 address in FADDR */

n+5:instruction5;

Decode Address Register (DADDR)
The decode address register (RO) reads the third stage in the
F1-F2-D-A-E pipeline stages and contains the 24-bit address of the
instruction that the processor decodes on the next cycle as shown below.

n:R0=DADDR;

n+1:instruction1;

n+2:instruction2; /* Decode address in DADDR */

n+3:instruction3;

n+4:instruction4;

n+5:instruction5;

Program Sequencer Registers

A-10 SHARC Processor Programming Reference

Program Counter Register (PC)
The program count register (RO) reads the last stage in the F1–F2–D–A–
E pipeline and contains the 24-bit address of the instruction that the pro-
cessor executes on the next cycle. The PC register works with the program
counter stack, PCSTK register which stores return addresses and top-of-loop
addresses. All PC relative branch instruction require access to the register.

n:R0=PC; /* Execution address in PC */

n+1:instruction1;

n+2:instruction2;

n+3:instruction3;

n+4:instruction4;

n+5:instruction5;

Program Counter Stack Register (PCSTK)
This is a 26-bit register. The program counter stack register contains the
address of the top of the PC stack.

Table A-3. PCSTK Register Bit Descriptions (RW)

Bits Value

23–0 Return Address

241

1 This bit is available on the ADSP-2137x and later models (ADSP-214xx).

Set to 1 when the entry is pushed by a CALL

251 Set to 1 when a CALL pushes the return address under the situation when the
loop termination condition tests true in the cycle CALL is in the Address stage of
the pipeline OR when the push is result of servicing an interrupt.

SHARC Processor Programming Reference A-11

Registers

Program Counter Stack Pointer Register (PCSTKP)
The program counter stack pointer register contains the value of PCSTKP.
This value is given as follows: 0 when the PC stack is empty, 1...30 when
the stack contains data, and 31 when the stack overflows. This register is
readable and writable. A write to PCSTKP takes effect after a one-cycle
delay. If the PC stack is overflowed, a write to PCSTKP has no effect.

Loop Registers
The loop registers are used set up and track loops in programs. These reg-
isters are described below.

Loop Address Stack Register (LADDR)
The loop address stack described in Table A-4, is six levels deep by 32 bits
wide. The 32-bit word of each level consists of a 24-bit loop termination
address, a 5-bit termination code, and a 3-bit loop type code.

Table A-4. LADDR Register Bit Descriptions (RW)

Bits Value

23–0 Loop Termination Address

28–24 Termination Code

31–29 Loop Type Code
000 arithmetic condition-based loop (not LCE)
001 arithmetic condition-based, of length 1
010 counter-based loop, length 1
100 counter-based loop, length 2
110 counter-based loop, length 3
111 counter-based loop, length > 3

Timer Registers

A-12 SHARC Processor Programming Reference

Loop Counter Register (LCNTR)
The loop counter register provides access to the loop counter stack and
holds the count value before the DO UNTIL termination loop is executed.
For more information on how to use the LCNTR register, see “Loop
Counter Stack Access” on page 4-49.

Current Loop Counter Register (CURLCNTR)
The current loop counter register provides access to the loop counter stack
and tracks iterations for the DO UNTIL LCE loop being executed. For more
information on how to use the CURLCNTR register, see “Loop Counter Stack
Access” on page 4-49.

Timer Registers
The SHARC processors contain a timer used to generate interrupts from
the core. These registers are described below.

Timer Period Register (TPERIOD)
The timer period register contains the timer period, indicating the num-
ber of cycles between timer interrupts. For more information on how to
use the TPERIOD register, see Chapter 5, Timer.

Timer Count Register (TCOUNT)
The timer count register contains the decrementing timer count value,
counting down the cycles between timer interrupts. For more information
on how to use the TCOUNT register, see Chapter 5, Timer.

SHARC Processor Programming Reference A-13

Registers

Flag I/O Register (FLAGS)
The FLAGS register indicates the state of the FLAGx pins. When a FLAGx pin
is an output, the processor outputs a high in response to a program setting
the bit in the FLAGS register. The I/O direction (input or output) selection
of each bit is controlled by its FLGxO bit in the FLAGS register.

There are 16 I/O flags in SHARC processors. The core FLAG0-3 pins have
four dedicated pins. All flag pins can be multiplexed with the parallel port
(ADSP-2136x processors) or external port pins (ADSP-2137x/
ADSP-214xx processors). Moreover the flag pins can be routed in parallel
to the DAI/DPI units. Because the multiplexing scheme is different
between different SHARC families, refer to the product-specific hardware
reference for more information.

 Programs cannot change the output selects of the FLAGS register
and provide a new value in the same instruction. Instead, programs
must use two write instructions—the first to change the output
select of a particular FLAG pin, and the second to provide the new
value as shown in the example below.

bit set FLAGS FLG1O; /* set Flag1 IO output */

bit set FLAGS FLG1; /* set Flag1 level 1 */

For the FLAGS register bit definitions in Table A-5:

• For all FLGx bits, FLAGx values are as follows: 0 = low, 1 = high.

• For all FLGxO bits, FLAGx output selects are as follows: 0 = FLAGx
Input, 1 = FLAGx Output.

• FLG3–0 can be immediately used for conditional instruction.

Processing Element Registers

A-14 SHARC Processor Programming Reference

Processing Element Registers
Except for the PX register, the processor’s processing element registers
store data for each element’s ALU, multiplier, and shifter. The inputs and
outputs for processing element operations go through these registers. All
processing element registers are read-write (RW).

PEx Data Registers (Rx)
Each of the processor’s processing elements has a data register file-a set of
40-bit data registers that transfer data between the data buses and the
computation units. These registers also provide local storage for operands
and results.

The R, F prefixes on register names do not effect the 32-bit or 40-bit data
transfer; the naming convention determines how the ALU, multiplier, and
shifter treat the data and determines which processing element's data reg-
isters are being used. For more information on how to use these registers,
see Chapter 2, Register Files.

PEy Data Registers (Sx)
Each of the processor’s processing elements has a data register file-a set of
40-bit data registers that transfer data between the data buses and the

Table A-5. FLAGS Register Bit Descriptions (RW)

Bit Name Description

30–0 (Even bits) FLGx FLAGx Value. Indicates the state of the FLAGx pin—high (if
set, = 1) or low (if cleared, = 0).

31–1 (Odd bits) FLGxO FLAGx Output Select. Selects the I/O direction for the
FLAGx pin, the flag is programmed as an output (if set, = 1)
or input (if cleared, = 0).

SHARC Processor Programming Reference A-15

Registers

computation units. These registers also provide local storage for operands
and results in SIMD mode.

The S prefix on register names do not effect the 32-bit or 40-bit data
transfer; the naming convention determines how the ALU, multiplier, and
shifter treat the data and determines which processing element’s data reg-
isters are being used.

Alternate Data Registers (Rx', Sx')
The processor includes alternate register sets for all data registers to facili-
tate fast context switching. Bits in the MODE1 register control when
alternate registers become accessible. While inaccessible, the contents of
alternate registers are not affected by processor operations. Note that there
is an one cycle latency between writing to MODE1 and being able to access
an alternate register set.

For more information, see “Data Register Neighbor Pairing” on page 2-5.

PEx Multiplier Results Registers (MRFx, MRBx)
Each of the processor’s multiply result has a primary or foreground (MRF)
register and alternate or background (MRB) result register. Fixed-point
operations place 80-bit results in the MAC’s foreground MRF register or
background MRB register, depending on which is active.

PEy Multiplier Results Registers (MSFx, MSBx)
Each of the processor’s multiply result unit has a primary or foreground
(MSF) register and alternate or background (MSB) result register.
Fixed-point operations place 80-bit results in the MAC’s foreground MSF
register or background MSB register, depending on which is active. Note
that the PEy multiply result registers can’t be used in an explicit
instruction.

Processing Status Registers

A-16 SHARC Processor Programming Reference

Processing Status Registers
The following registers return status information for the processing ele-
ments. This information includes computation results and errors.

Arithmetic Status Registers (ASTATx and ASTATy)
Each processing element has its own ASTAT register. The ASTATx register
indicates status for PEx operations, the ASTATy register indicates status for
PEy operations. Figure A-3 and Table A-6 provide bit information for the
ASTAT registers.

Figure A-3. ASTAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AF

SV

SZ

SS
Shifter Input Sign

Shifter Zero

Shifter Overflow

ALU Floating-Point Operation

MI
Multiplier Floating-Point Invalid Operation

MU
Multiplier Floating-Point Underflow

MV
Multiplier Overflow

AC

AN

AV

AZ
ALU Zero/Float-
ing-Point Underflow

ALU Overflow

ALU Negative

ALU Fixed-Point Carry

AS
ALU Sign Input
(for ABS and MANT)

AI
ALU Floating-Point
Invalid Operation

MN
Multiplier Negative

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BTFCACC (31–24)

Compare Accumulation Shift Bits
Bit Test Flag for System
Registers

SF
Shifter Bit FIFO

SHARC Processor Programming Reference A-17

Registers

 If these registers are loaded manually, there is a one cycle effect
latency before the new value in the ASTATx register can be used in a
conditional instruction.

Table A-6. ASTATx and ASTATy Register Bit Descriptions (RW)

Bit Name Description

0 AZ ALU Fixed-Point Zero/Floating-Point Underflow. Indicates if the last
ALU operation’s result was zero (if set, = 1) or non-zero (if cleared, = 0).
The ALU updates AZ for all fixed-point and floating-point ALU opera-
tions. AZ can also indicate a floating-point underflow. During an ALU
underflow (indicated by a set (= 1) AUS bit in the STKYx/y register), the
processor sets AZ if the floating-point result is smaller than can be repre-
sented in the output format.

1 AV ALU Overflow. Indicates if the last ALU operation’s result overflowed (if
set, = 1) or did not overflow (if cleared, = 0). The ALU updates AV for all
fixed-point and floating-point ALU operations. For fixed-point results,
the processor sets AV and the AOS bit in the STKYx/y register when the
XOR of the two most significant bits (MSBs) is a 1. For floating-point
results, the processor sets AV and the AVS bit in the STKYx/y register
when the rounded result overflows (unbiased exponent > 127).

2 AN ALU Negative. Indicates if the last ALU operation’s result was negative (if
set, = 1) or positive (if cleared, = 0). The ALU updates AN for all
fixed-point and floating-point ALU operations.

3 AC ALU Fixed-Point Carry. Indicates if the last ALU operation had a carry
out of the MSB of the result (if set, = 1) or had no carry (if cleared, = 0).
The ALU updates AC for all fixed-point operations. The processor clears
AC during the fixed-point logic operations: PASS, MIN, MAX, COMP,
ABS, and CLIP. The ALU reads the AC flag for the fixed-point accumu-
late operations: Addition with Carry and Fixed-point Subtraction with
Carry.

4 AS ALU Sign Input (for ABS and MANT). Indicates if the last ALU ABS or
MANT operation’s input was negative (if set, = 1) or positive (if cleared,
= 0). The ALU updates AS only for fixed- and floating-point ABS and
MANT operations. The ALU clears AS for all operations other than ABS
and MANT.

Processing Status Registers

A-18 SHARC Processor Programming Reference

5 AI ALU Floating-Point Invalid Operation. Indicates if the last ALU opera-
tion’s input was invalid (if set, = 1) or valid (if cleared, = 0). The ALU
updates AI for all fixed- and floating-point ALU operations. The proces-
sor sets AI and AIS in the STKYx/y register if the ALU operation:
• Receives a NAN input operand
• Adds opposite-signed infinities
• Subtracts like-signed infinities
• Overflows during a floating-point to fixed-point conversion when satu-

ration mode is not set
• Operates on an infinity during a floating-point to fixed-point opera-

tion when the saturation mode is not set

6 MN Multiplier Negative. Indicates if the last multiplier operation’s result was
negative (if set, = 1) or positive (if cleared, = 0). The multiplier updates
MN for all fixed- and floating-point multiplier operations.

7 MV Multiplier Overflow. Indicates if the last multiplier operation’s result
overflowed (if set, = 1) or did not overflow (if cleared, = 0). The multi-
plier updates MV for all fixed-point and floating-point multiplier opera-
tions. For floating-point results, the processor sets MV and MVS in the
STKYx/y register if the rounded result overflows (unbiased exponent >
127). For fixed-point results, the processor sets MV and the MOS bit in
the STKYx/y register if the result of the multiplier operation is:
• Twos-complement, fractional with the upper 17 bits of MR not all

zeros or all ones
• Twos-complement, integer with the upper 49 bits of MR not all zeros

or all ones
• Unsigned, fractional with the upper 16 bits of MR not all zeros
• Unsigned, integer with the upper 48 bits of MR not all zeros
If the multiplier operation directs a fixed-point result to an MR register,
the processor places the overflowed portion of the result in MR1 and
MR2 for an integer result or places it in MR2 only for a fractional result.

Table A-6. ASTATx and ASTATy Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

SHARC Processor Programming Reference A-19

Registers

8 MU Multiplier Floating-Point Underflow. Indicates if the last multiplier
operation’s result underflowed (if set, = 1) or did not underflow
(if cleared, = 0). The multiplier updates MU for all fixed- and float-
ing-point multiplier operations. For floating-point results, the processor
sets MU and the MUS bit in the STKYx/y register if the floating-point
result underflows (unbiased exponent < –126). Denormal operands are
treated as zeros, therefore they never cause underflows. For fixed-point
results, the processor sets MU and the MUS bit in the STKYx/y register if
the result of the multiplier operation is:
• Twos-complement, fractional: with upper 48 bits all zeros or all ones,

lower 32 bits not all zeros
• Unsigned, fractional: with upper 48 bits all zeros, lower 32 bits not all

zeros
If the multiplier operation directs a fixed-point, fractional result to an
MR register, the processor places the underflowed portion of the result in
MR0.

9 MI Multiplier Floating-Point Invalid Operation. Indicates if the last multi-
plier operation’s input was invalid (if set, = 1) or valid (if cleared, = 0).
The multiplier updates MI for floating-point multiplier operations. The
processor sets MI and the MIS bit in the STKYx/y register if the ALU
operation:
• Receives a NAN input operand
• Receives an Infinity and zero as input operands

10 AF ALU Floating-Point Operation. Indicates if the last ALU operation was
floating-point (if set, = 1) or fixed-point (if cleared, = 0). The ALU
updates AF for all fixed-point and floating-point ALU operations.

11 SV Shifter Overflow. Indicates if the last shifter operation’s result overflowed
(if set, = 1) or did not overflow (if cleared, = 0). The shifter updates SV
for all shifter operations. The processor sets SV if the shifter operation:
• Shifts the significant bits to the left of the 32-bit fixed-point field
• Tests, sets, or clears a bit outside of the 32-bit fixed-point field
• Extracts a field that is past or crosses the left edge of the 32-bit

fixed-point field
• Performs a LEFTZ or LEFTO operation that returns a result of 32

Table A-6. ASTATx and ASTATy Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

Processing Status Registers

A-20 SHARC Processor Programming Reference

12 SZ Shifter Zero. Indicates if the last shifter operation’s result was zero
(if set, = 1) or non-zero (if cleared, = 0). The shifter updates SZ for all
shifter operations. The processor also sets SZ if the shifter operation per-
forms a bit test on a bit outside of the 32-bit fixed-point field.

13 SS Shifter Input Sign. Indicates if the last shifter operation’s input was nega-
tive (if set, = 1) or positive (if cleared, = 0). The shifter updates SS for all
shifter operations.

14 (RO) SF Shifter Bit FIFO. Indicates the current value of Bit FIFO Write Pointer.
SF is set when write pointer is greater than or equal to 32, otherwise it is
cleared.
(for all ADSP-214xx processors only)

17–15 Reserved

18 BTF Bit Test Flag for System Registers. Indicates if the system register bit is
true (if set, = 1) or false (if cleared, = 0). The processor sets BTF when the
bit(s) in a system register and value in the Bit Tst instruction match. The
processor also sets BTF when the bit(s) in a system register and value in
the Bit Xor instruction match.

23–19 Reserved

31–24 CACC Compare Accumulation Shift Register. Bit 31 of CACC indicates which
operand was greater during the last ALU compare operation: X input (if
set, = 1) or Y input (if cleared, = 0). The other seven bits in CACC form a
right-shift register, each storing a previous compare accumulation result.
With each new compare, the processor right shifts the values of CACC,
storing the newest value in bit 31 and the oldest value in bit 24.

Table A-6. ASTATx and ASTATy Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

SHARC Processor Programming Reference A-21

Registers

Sticky Status Registers (STKYx and STKYy)
Each processing element has its own STKY register. The STKYx register indi-
cates status for PEx operations and some program sequencer stacks. The
STKYy register only indicates status for PEy operations.

 Sticky bits do not clear themselves after the condition is no longer
true. They remain “sticky” until cleared by the program.

The processor sets a sticky bit in response to a condition. For example, the
processor sets the AIS bit in the STKYx/y register when an invalid ALU
floating-point operation sets the AI bit in the ASTAT register. The processor
clears AI if the next ALU operation is valid. However the AIS bit remains
set until a program clears it. Interrupt service routines (ISRs) must clear
their interrupt’s corresponding sticky bit so the processor can detect a
reoccurrence of the condition. For example, an ISR for a floating-point
underflow exception interrupt (FLTUI) clears the AUS bit in the STKYx/y
register near the beginning of the routine. Figure A-4, Figure A-5, and
Table A-7 provide bit information for both the STKYx and STKYy registers.

Processing Status Registers

A-22 SHARC Processor Programming Reference

Figure A-4. STKYx Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCEM

SSOV

LSOV
Loop Stack Overflow

Status Stack Overflow

PC Stack Empty

Multiplier Floating-Point Invalid Operation
MIS

Multiplier Floating-Point Underflow
MUS

U64MA

IIRA

CB15S

CB7s
DAG1 Circular Buffer 7
Overflow

DAG2 Circular Buffer 15
Overflow

Illegal Access Occurred

Unaligned 64-Bit Memory
Access

AOS

ALU Floating-Point
Overflow

AUS

AVS

ALU Floating-Point
Underflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 1 0 1 0 1 0 0 0 0 0

LSEM
Loop Stack Empty

PCFL

PC Stack Full

SSEM
Status Stack Empty

ALU Fixed-Point
Overflow

AIS
ALU Floating-Point Invalid Operation

Multiplier Floating-Point Overflow
MVS

Multiplier Fixed-Point Overflow
MOS

SHARC Processor Programming Reference A-23

Registers

Figure A-5. STKYy Register

Table A-7. STKYx and STKYy Register Bit Descriptions (RW)

Bit Name Description

0 (WC) AUS ALU Floating-Point Underflow. A sticky indicator for the ALU AZ bit.
For more information, see “AZ” on page A-17.

1 (WC) AVS ALU Floating-Point Overflow. A sticky indicator for the ALU AV bit.
For more information, see “AV” on page A-17.

2 (WC) AOS ALU Fixed-Point Overflow. A sticky indicator for the ALU AV bit. For
more information, see “AV” on page A-17.

4–3 Reserved

5 (WC) AIS ALU Floating-Point Invalid Operation. A sticky indicator for the ALU
AI bit. For more information, see “AI” on page A-18.

6 (WC) MOS Multiplier Fixed-Point Overflow. A sticky indicator for the multiplier
MV bit. For more information, see “MV” on page A-18.

7 (WC) MVS Multiplier Floating-Point Overflow. A sticky indicator for the multi-
plier MV bit. For more information, see “MV” on page A-18.

8 (WC) MUS Multiplier Floating-Point Underflow. A sticky indicator for the multi-
plier MU bit. For more information, see “MU” on page A-19.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Multiplier Floating-Point
Invalid Operation

MIS

Multiplier Floating-Point Underflow
MUS

AOS

ALU Floating-Point Overflow

AUS

AVS

ALU Fixed-Point Overflow

AIS
ALU Floating-Point
Invalid Operation

Multiplier Floating-Point Overflow
MVS

Multiplier Fixed-Point Overflow
MOS

ALU Floating-Point Underflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 1 0 1 0 1 0 0 0 0 0

Processing Status Registers

A-24 SHARC Processor Programming Reference

9 (WC) MIS Multiplier Floating-Point Invalid Operation. A sticky indicator for the
multiplier MI bit. For more information, see “MI” on page A-19.

16–10 Reserved

The following bits apply to STKYx only

17 CB7S DAG1 Circular Buffer 7 Overflow. Indicates if a circular buffer being
addressed with DAG1 register I7 has overflowed (if set, = 1) or has not
overflowed (if cleared, = 0). A circular buffer overflow occurs when
DAG circular buffering operation increments the I register past the end
of buffer.

18 CB15S DAG2 Circular Buffer 15 Overflow. Indicates if a circular buffer being
addressed with DAG2 register I15 has overflowed (if set,
= 1) or has not overflowed (if cleared, = 0). A circular buffer overflow
occurs when DAG circular buffering operation increments the I register
past the end of buffer.

19 IIRA Illegal IOP Register Access. Indicates if set (= 1) the core had accessed
the IOP register space or not.

20 U64MA Unaligned 64-Bit Memory Access.Indicates if set (= 1) if a forced Nor-
mal word access (LW mnemonic) addressing an uneven
memory address has occurred or has not occurred (if 0).

21 (RO) PCFL PC Stack Full. Indicates if the PC stack is full (if 1) or not full (if 0)—
Not a sticky bit, cleared by a Pop.

22 (RO) PCEM PC Stack Empty. Indicates if the PC stack is empty (if 1) or not empty
(if 0)—Not sticky, cleared by a push.Set by default.

23 (RO) SSOV Status Stack Overflow. Indicates if the status stack is overflowed (if 1)
or not overflowed (if 0)—sticky bit.

24 (RO) SSEM Status Stack Empty. Indicates if the status stack is empty (if 1) or not
empty (if 0)—not sticky, cleared by a push. Set by default.

25 (RO) LSOV Loop Stack Overflow. Indicates if the loop counter stack and loop stack
are overflowed (if 1) or not overflowed (if 0)—sticky bit.

Table A-7. STKYx and STKYy Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

SHARC Processor Programming Reference A-25

Registers

Data Address Generator Registers
The processor’s data address generator (DAG) registers (RW) hold data
addresses, modify values, and circular buffer configurations. Using these
registers, the DAGs can automatically increment addressing for ranges of
data locations (a buffer). Each set of DAG registers has a set of back-
ground registers. These registers are selected using bits 6–3 in the MODE1
register. For more information, see “Alternate (Secondary) DAG Regis-
ters” on page 6-28.

Index Registers (Ix)
The DAGs store addresses in index registers (I0–I7 for DAG1 and I8–I15
for DAG2). An index register holds an address and acts as a pointer to a
memory location.

Modify Registers (Mx)
The DAGs update stored addresses using modify registers (M0–M7 for
DAG1 and M8–M15 for DAG2). A modify register provides the increment
or step size by which an index register is pre- or post-modified during a
register move.

26 (RO) LSEM Loop Stack Empty. Indicates if the loop counter stack and loop stack
are empty (if 1) or not empty (if 0)—not sticky, cleared by a push. Set
by default.

31–27 Reserved

Table A-7. STKYx and STKYy Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

Miscellaneous Registers

A-26 SHARC Processor Programming Reference

Length and Base Registers (Lx, Bx)
The DAGs control circular buffering operations with length and base reg-
isters (L0–L7 and B0–B7 for DAG1 and L8–L15 and B8–B15 for DAG2).
Length and base registers set up the range of addresses and the starting
address for a circular buffer.

Alternate DAG Registers (Ix',Mx',Lx',Bx')
The processor includes alternate register sets for all DAG registers to facil-
itate fast context switching. Bits in the MODE1 register (“Mode Control 1
Register (MODE1)” on page A-3) control when alternate registers become
accessible. While inaccessible, the contents of alternate registers are not
affected by processor operations. Note that there is a one cycle latency
between writing to MODE1 and being able to access an alternate register set.

For more information, see “Alternate (Secondary) DAG Registers” on
page 6-28.

Miscellaneous Registers
The following sections provide descriptions of the misc ella no us
registers.

Bus Exchange Register (PX)
The PM bus exchange (PX) register (RW) permits data to flow between the
PM and DM data buses. The PX register can work as one 64-bit register or
as two 32-bit registers (PX1 and PX2). The PX1 register is the lower 32 bits
of the PX register and PX2 is the upper 32 bits of PX.

The PX register lets programs transfer data between the data buses, but
cannot be an input or output in a calculation.

SHARC Processor Programming Reference A-27

Registers

For more information, see “Combined Data Bus Exchange Register” on
page 2-9.

User-Defined Status Registers (USTATx)
The USTATx registers (RW) are user-defined, general-purpose status regis-
ters. Programs can use these 32-bit registers with bit-wise instructions
(SET, CLEAR, TEST, and others). Often, programs use these registers for low
overhead, general-purpose flags or for temporary 32-bit storage of data.

Emulation Control Register (EMUCTL)
 The 40-bit EMUCTL serial shift register shown in Table A-8, is located in
the system unit and controls all processor emulation function. It is
accessed by the emulator through the TAP only.

Table A-8. EMUCTL Bit Descriptions

Bit Name Description

0 EMUENA Emulator Function Enable. Enables processor emulation functions.
0 = Emulator interface disabled
1 = Emulator interface enabled

1 EIRQENA Emulator Interrupt Enable. Enables the emulation logic to recognize
external breakpoints (interrupt from HW emulator) to move part into
emulation space
0 = Ignore external breakpoints
1 = Enable external breakpoints

2 BKSTOP Halt on Internal Breakpoint. Enables the processor to generate an
external emulator interrupt when any breakpoint event occurs.
0 = Ignore internal breakpoints
1 = Respond to internal breakpoints

3 SS Enable Single Step Mode. Enables single-step instruction fetch. If this
bit set, the instruction pipeline and cache is bypassed. Every step
requires at least 5 cycles to execute.
0 = Disable single step
1 = Enable single step

Miscellaneous Registers

A-28 SHARC Processor Programming Reference

4 SYSRST Software Reset. Resets the processor in the same manner as the soft-
ware reset bit in the SYSCTL register. The SYSRST bit must be
cleared by the emulator.
0 = Normal operation
1 = Reset

5 ENBRK-
OUT

Enable the Emulation Status Pin. Enables the EMU pin operation
Whenever core enters emulation space it is notified by assertion of the
EMU pin to the emulator.
0 = EMU pin at high impedance state
1 = EMU pin enabled

6 IOSTOP Stop IOP DMAs in EMU Space. Disables all DMA requests when the
processors are in emulation space. Data that is currently in the external
port, link port, or SPORT DMA buffers is held there unless the inter-
nal DMA request was already granted. IOSTOP causes incoming data
to be held off and outgoing data to cease. Because SPORT receive data
cannot be held off, it is lost and the overrun bit is set.
0 = I/O continues
1 = I/O stops

7 Reserved

8 NEGPA11 Negate program memory data address breakpoint. Enable breakpoint
events if the address is greater than the end register value OR less than
the start register value. This function is useful to detect index range
violations in user code.
0 = Disable breakpoint
1 = Enable breakpoint

9 NEGDA1 Negate data memory address breakpoint #1 See NEGPA1 bit descrip-
tion.

10 NEGDA2 Negate data memory address breakpoint #2. See NEGPA1 bit
description.

11 NEGIA1 Negate instruction address breakpoint #1. See NEGPA1 bit descrip-
tion.

12 NEGIA2 Negate instruction address breakpoint #2. See NEGPA1 bit descrip-
tion.

Table A-8. EMUCTL Bit Descriptions (Cont’d)

Bit Name Description

SHARC Processor Programming Reference A-29

Registers

13 NEGIA3 Negate instruction address breakpoint #3. See NEGPA1 bit descrip-
tion.

14 NEGIA4 Negate instruction address breakpoint #4. See NEGPA1 bit descrip-
tion.

15 NEGIO1 Negate I/O address breakpoint. See NEGPA1 bit description.

16 Reserved

17 ENBPA Enable program memory data address breakpoints. Enable each
breakpoint group. Note that when the ANDBKP bit is set, breakpoint
types not involved in the generation of the effective breakpoint must
be disabled.
0 = Disable breakpoints
1 = Enable breakpoints

18 ENBDA Enable data memory address breakpoints. See ENBPA bit descrip-
tion.

19 ENBIA Enable instruction address breakpoints. See ENBPA bit description.

20–21 Reserved

23–22 PA1MODE PA1 breakpoint triggering mode. Trigger on the following conditions:
00 = Breakpoint is disabled
01 = WRITE accesses only
10 = READ accesses only
11 = Any access

25–24 DA1MODE DA1 breakpoint triggering mode. See PA1MODE bit description.

27–26 DA2MODE DA2 breakpoint triggering mode. See PA1MODE bit description.

29–28 IO1MODE IO1 breakpoint triggering mode. See PA1MODE bit description.

31–30 Reserved

32 ANDBKP AND composite breakpoints. Enables ANDing of each breakpoint
type to generate an effective breakpoint from the composite break-
point signals. (0=OR breakpoint types, 1=AND breakpoint types)

33 Reserved

Table A-8. EMUCTL Bit Descriptions (Cont’d)

Bit Name Description

Miscellaneous Registers

A-30 SHARC Processor Programming Reference

Emulation Status Register (EMUSTAT)
The EMUSTAT register, described in Table A-9, is 8-bits wide and is
accessed by the emulator through the TAP. This register is updated by the
SHARC processor when the TAP is in the CAPTURE state. The emulator
reads EMUSTAT to determine the state of the SHARC processor. None of
the bits in this register can be written by the emulator.

34 NOBOOT No boot on reset. Forces the processor to not boot from any external
DMA source, instead halt the core at the internal reset vector location.
If this bit is set the emulator has control over the DSP and the external
boot is aborted during debug sessions.
0 = Disable
1 = Force no boot mode

35 Reserved

36 BHO Buffer Hang Override. The global BHO control bit overrides all buf-
fer hang disable bits in the peripheral’s control register.
0 = No effect
1 = Override peripheral BHD operation

37 Reserved

38 ENBIO0 Enable address breakpoint for Peripheral DMA

39 ENBIO1 Enable address breakpoint for External Port DMA

1 Instruction address and program memory breakpoint negates have an effect latency of 4 core
clock cycles.

Table A-9. EMUSTAT Register Bit Descriptions

Bit Name Description

0 EMUSPACE Indicates that the next instruction is to be fetched from the
emulator

1 EMUREADY Indicates that core has finished executing the previous emu-
lator instructions

Table A-8. EMUCTL Bit Descriptions (Cont’d)

Bit Name Description

SHARC Processor Programming Reference A-31

Registers

Emulation Counter Registers (EMUCLKx)
These registers are read-only from user-space and can be written only
when the processor is in emulation space.

The emulation clock counter consists of a 32-bit count register (EMUCLK)
and a 32-bit scaling register (EMUCLK2). The EMUCLK counts core clock
cycles while the user has control of the processor and stops counting when
the emulator gains control. These registers let you gauge the amount of
time spent executing a particular section of code. The EMUCLK2 register
extends the time EMUCLK can count by incrementing each time the EMUCLK
value rolls over to zero. The combined emulation clock counter can count
accurately for thousands of hours. Note that the counters increment
during an idle instruction.

Universal Register Effect Latency
Writes to some of the universal registers (UREG) do not take effect immedi-
ately. For example, if a program writes to the MODE1 register in order to set
ALU saturation mode, any ALU operation in the instruction immediately
following is not effected. The saturation mode takes effect in the second
instruction following the instruction performing the write to MODE1. This
is referred to as an effect latency of one cycle. Also, some registers are not
updated on the cycle immediately following a write. It takes an extra cycle

2 INIDLE Indicates that core was in IDLE prior to the latest emulator
interrupt

3 PB_HUNG Core access to buffer hung

7–4 Reserved

Table A-9. EMUSTAT Register Bit Descriptions

Bit Name Description

Universal Register Effect Latency

A-32 SHARC Processor Programming Reference

before a read of the register returns the updated value. This is referred to
as a read latency of one cycle.

Note that the effect latency and read latency are counted in a number of
processor cycles rather than instruction cycles. Therefore, there may be sit-
uations when the effect latency may not be observed, such as when the
pipeline stalls or when an interrupt breaks the normal sequence of
instructions. Here, the effect latency and the read latency are interpreted
as the maximum number of instructions, which is unaffected by the new
settings after a write to one register.

In the SHARC 5-stage pipeline products, effect latencies were intention-
ally added in direct core writes to various registers for backward
compatibility to the 3-stage pipeline products (though these latencies are
not necessitated by the architecture as such). In some cases it is done by
adding stall(s) to the pipeline, whereas in other cases, the execution (actual
write-back to concerned registers) is delayed.

Table A-10 and Table A-11 summarize the number of extra cycles
(latency) for a write to take effect (effect latency) and for a new value to
appear in the register (read latency). A 0 (zero) indicates that the write
takes effect or appears in the register on the next cycle after the write
instruction is executed, and a 1 indicates one extra cycle.

Table A-10. UREG Read and Effect Latencies

Register Contents Bits Read Latency Effect Latency

FADDR Fetch address 24 -- --

DADDR Decode address 24 -- --

PC Execute address 24 -- --

PCSTK Top of PC stack 24 0 0

PCSTKP PC stack pointer 5 1 1

LADDR Top of loop address stack 32 0 0

SHARC Processor Programming Reference A-33

Registers

CURLCNTR Top of loop count stack
(current loop count)

32 0 0

LCNTR Loop count for next DO
UNTIL loop

32 0 0

Table A-11. SREG Read and Effect Latencies

Register Contents Bits Read Latency Effect Latency

MODE1 Mode control bits 32 0 1 for internal data access
2 for external data access

MODE21 Mode control bits 32 0 1 for internal data access
2 for external data access

IRPTL Interrupt latch 32 0 1

IMASK Interrupt mask 32 0 1

IMASKP Interrupt mask pointer
(for nesting)

32 1 1

MMASK Mode mask 32 0 1 for internal data access
2 for external data access

FLAGS Flag inputs 32 0 1

LIRPTL2 Interrupt latch/mask 32 0 1

ASTATx Arithmetic status flags 32 0 1 for internal data access
2 for external data access

ASTATy Arithmetic status flags 32 0 1 for internal data access
2 for external data access

STKYx Sticky status flags 32 0 1 for internal data access
2 for external data access

STKYy Sticky status flags 32 0 1 for internal data access
2 for external data access

USTAT1 User-defined status flags 32 0 0

Table A-10. UREG Read and Effect Latencies (Cont’d)

Register Contents Bits Read Latency Effect Latency

Universal Register Effect Latency

A-34 SHARC Processor Programming Reference

The following examples provide more detail on latency.

• The contents of the MODE1 and MODE2 registers are used in the
decode stage of the instruction pipeline. To maintain the same
effect latency of one cycle, a stall cycle is always added after a write
to the MODE1 or MODE2 registers. A stall is also introduced when the
contents of the MODE1 and MODE2 registers are modified through a
bit manipulation instruction. The MODE1 register value also changes
when the PUSH STS or POP STS instructions are executed or when
the sequencer branches to, or returns from an ISR (interrupt ser-
vice routine) which involves a PUSH/POP of the stack. This results in
a one cycle stall.

MODE1 = 0x1; /* enable bit reverse addressing for I8 */

PM(I8,M8) = R14; /* stalls for a cycle, but unaffected by

 mode setting */

PM(I8,M8) = R14; /* performs bit reversed mode of

 addressing */

• When the contents of the ASTAT registers are updated by any opera-
tion other than a compute operation, the following instruction
stalls for a cycle, if it performs a conditional branch and the condi-
tion is anything other than NOT LCE. An example is when ASTAT is
explicitly loaded or when the sequencer branches to, or returns
from an ISR involving a PUSH/POP of the status stack.

USTAT2 User-defined status flags 32 0 0

USTAT3 User-defined status flags 32 0 0

USTAT4 User-defined status flags 32 0 0

1 All bits except CAFRZ, U64MAE, IIRAE have one cycle of effect latency.
2 Bits 29–20 are the various mask pointer bits. These bits have one cycle of read latency. Other bits

do not have read latency.

Table A-11. SREG Read and Effect Latencies (Cont’d)

Register Contents Bits Read Latency Effect Latency

SHARC Processor Programming Reference A-35

Registers

• The effect latency in the case of a FLAGS register is felt when a con-
ditional instruction dependent on the FLAGS register values is
executed after modifications to the FLAGS register.

BIT SET FLAGS 0x1; /* set FLAG0 */

IF FLAG0_IN R0 = R0+1; /* conditional compute – aborts */

IF FLAG0_IN R0 = R0+1; /* conditional compute – executes */

A stall cycle is introduced after a write to the FLAGS register, only if
a conditional branch dependent on the FLAGS register settings fol-
lows it as the second instruction.

BIT SET FLAGS 0x1; /* set FLAG0 */

IF FLAG0_IN R0 = R0+1; /* unaffected by prior

 instruction-aborts */

IF FLAG0_IN RTS; /* stalls a cycle and executes RTS */

• A stall cycle results after a write to the ASTATx or ASTATy registers,
only if a conditional branch follows it as the second instruction.

ASTATX = 0x1; /* set AZ flag */

IF NE JUMP(SOMEWHERE); /* unaffected by prior

 instruction–aborts */

IF NE RTS; /* stalls a cycle and executes RTS */

• The following registers that normally have an effect latency of 1
cycle will have an effect latency of 2 cycles if any of their bits
impact an instruction containing an external data access: MODE1,
MODE2, MMASK, ASTATx, ASTATy, STKYx, and STKYy.

In the following sequence of instructions, effect latency is independent of
whether the instruction itself resides in internal or external memory. The
latency is determined by the presence of external data accesses after the
register is updated.

bit set MODE1 BR8;
nop; /* sufficient in absence of external memory
 access in following instruction */

Interrupt Registers

A-36 SHARC Processor Programming Reference

nop; /* extra NOP is needed if following instruction
 accesses external memory */
pm(i8,m12)=f9; /* i8 is pointing to external memory address */

Interrupt Registers
This section provides information on the registers that are used to config-
ure and control interrupts.

Interrupt Latch Register (IRPTL)
The IRPTL register indicates latch status for interrupts. Figure A-6 and
Table A-12 provide bit definitions for the IRPTL register.

The programmable interrupt latch bits (P0I–P5I, P14I–P16I) are con-
trolled through the priority interrupt control registers (PICR). The
descriptions provided are their default source. For information on their
optional use, see “Programmable Interrupt Control Registers (PICRx)” in
the processor-specific hardware reference.

Interrupt Mask Register (IMASK)
Each bit in the IMASK register corresponds to a bit with the same name in
the IRPTL registers. The bits in the IMASK register unmask (enable if set, =
1), or mask (disable if cleared, = 0) the interrupts that are latched in the
IRPTL register. Except for the RSTI and EMUI bits, all interrupts are
maskable.

When the IMASK register masks an interrupt, the masking disables the pro-
cessor’s response to the interrupt. The IRPTL register still latches an
interrupt even when masked, and the processor responds to that latched
interrupt if it is later unmasked. Figure A-6 and Table A-12 provide bit
definitions for the IMASK register.

SHARC Processor Programming Reference A-37

Registers

Interrupt Mask Pointer Register (IMASKP)
Each bit in the IMASKP register corresponds to a bit with the same name in
the IRPTL registers. The IMASKP register field descriptions are shown in
Figure A-6 and Figure A-7, and described in Table A-12. Shaded cells
indicate user programmable interrupts.

This register supports an interrupt nesting scheme that lets higher priority
events interrupt an ISR and keeps lower priority events from interrupting.

When interrupt nesting is enabled, the bits in the IMASKP register mask
interrupts that have a lower priority than the interrupt that is currently
being serviced. Other bits in this register unmask interrupts having higher
priority than the interrupt that is currently being serviced. Interrupt nest-
ing is enabled using NESTM in the MODE1 register. The IRPTL register latches
a lower priority interrupt even when masked, and the processor responds
to that latched interrupt if it is later unmasked.

When interrupt nesting is disabled (NESTM = 0 in the MODE1 register), the
bits in the IMASKP register mask all interrupts while an interrupt is cur-
rently being serviced. The IRPTL register still latches these interrupts even
when masked, and the processor responds to the highest priority latched
interrupt after servicing the current interrupt.

Interrupt Registers

A-38 SHARC Processor Programming Reference

Figure A-6. IRPTL, IMASK, and IMASKP Registers (Bits 31–16)

Figure A-7. IRPTL, IMASK, and IMASKP Registers (Bits 15–0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TMZLI

P5ISFT3I
User Software Interrupt 3

Timer Expired Low Priority

CB15I

Programmable Interrupt 5
SFT2I
User Software Interrupt 2
SFT1I
User Software Interrupt 1

SFT0I
User Software Interrupt 0

EMULI
Emulator Interrupt

FLTII
Floating-point Invalid Operation

Floating-point Underflow
FLTUI

CB7I

DAG1 Circular Buffer 15
Overflow

FIXI
Fixed-point Overflow

FLTOI
Floating-point Overflow

DAG1 Circular Buffer 7I
Overflow

P15I
Programmable Interrupt 15

P14I

P16I

Programmable Interrupt 14

Programmable Interrupt 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SOVFI

EMUIP4I
Programmable Interrupt 4

Stack Full/Overflow

Reset

IICDI

Emulator Interrupt
P3I
Programmable Interrupt 3
P2I
Programmable Interrupt 2

P1I
Programmable Interrupt 1

P0I
Programmable Interrupt 0

IRQ0I
IRQ0_I Hardware Interrupt

IRQ1_I Hardware Interrupt
IRQ1I

RSTI

Illegal Input Condition Detected

TMZHI
Timer Expired High Priority

Hardware Breakpoint Interrupt

IRQ2_I Hardware Interrupt
IRQ2I

BKPI

SPERRI
SPORT Error Interrupt

SHARC Processor Programming Reference A-39

Registers

Table A-12. IRPTL, IMASK, IMASKP Register Bit
Descriptions (RW)

Bit Name Definition

0 (RO) EMUI Emulator Interrupt. An EMUI occurs when the external emulator trig-
gers an interrupt or the core hits a emulator breakpoint.
Note this interrupt has highest priority, it is read-only and non-mas-
kable

1 (RO) RSTI Reset Interrupt. An RSTI occurs as an external device asserts the
RESET pin or after a software reset (SYSCTL register). Note this inter-
rupt is read-only and non-maskable.

2 IICDI Illegal Input Condition Detected Interrupt. An IICDI occurs when a
TRUE results from the logical OR’ing of the illegal I/O processor regis-
ter access (IIRA) and unaligned 64-bit memory access bits in the
STKYx register.

3 SOVFI Stack Overflow/Full Interrupt. A SOVFI occurs when a stack in the
program sequencer overflows or is full.

4 TMZHI Core Timer Expired High Priority. A TMZHI occurs when the timer
decrements to zero. Note that this event also triggers a TMZLI. Since
the timer expired event (TCOUNT decrements to zero) generates two
interrupts, TMZHI and TMZLI, programs should unmask the timer
interrupt with the desired priority and leave the other one masked.

5 SPERRI1 Sport Error Interrupt. A SPERRI occurs on a FIFO underflow/over-
flow or a frame sync error.

6 BKPI Hardware Breakpoint Interrupt. When the processor is servicing
another interrupt, indicates if the BKPI interrupt is unmasked (if set, =
1), or masked (if cleared, = 0).

7 Reserved

8 IRQ2I Hardware Interrupt. An IRQ2I occurs when an external device asserts
the FLAG2 pin configured as IRQ2. The IRQ2E bit (MODE2) defines
if interrupt latched on edge or level.

9 IRQ1I Hardware Interrupt. An IRQ1I occurs when an external device asserts
the FLAG1 pin configured as IRQ1. The IRQ1E bit (MODE2) defines
if interrupt latched on edge or level.

Interrupt Registers

A-40 SHARC Processor Programming Reference

10 IRQ0I Hardware Interrupt. An IRQ0I occurs when an external device asserts
the FLAG0 pin configured as IRQ0. The IRQ0E bit (MODE2) defines
if interrupt latched on edge or level.

11 P0I Programmable Interrupt 0. A P0I interrupt occurs when the
default/programmed peripheral sets (= 1) this bit.

12 P1I Programmable Interrupt 1. See P0I

13 P2I Programmable Interrupt 2. See P0I

14 P3I Programmable Interrupt 3. See P0I

15 P4I Programmable Interrupt 4. See P0I

16 P5I Programmable Interrupt 5. See P0I

17 P14I Programmable Interrupt 14. See P0I

18 P15I Programmable Interrupt 15. See P0I

19 P16I Programmable Interrupt 16. See P0I

20 CB7I DAG1 Circular Buffer 7 Overflow Interrupt. A circular buffer over-
flow occurs when the DAG circular buffering operation increments the
I7 register past the end of the buffer.

21 CB15I DAG2 Circular Buffer 15 Overflow Interrupt. A circular buffer over-
flow occurs when the DAG circular buffering operation increments the
I15 register past the end of the buffer.

22 TMZLI Core Timer Expired (Low Priority) Interrupt. A TMZLI occurs when
the timer decrements to zero. (Refer to TMZHI)

23 FIXI Fixed-Point Overflow Interrupt. Refer to the status registers for the
execution units (ASTATx/y, STKYx/y).

24 FLTOI Floating-Point Overflow Interrupt. Refer to the status registers for the
execution units (ASTATx/y, STKYx/y).

25 FLTUI Floating-Point Underflow Interrupt. Refer to the status registers for
the execution units (ASTATx/y, STKYx/y).

Table A-12. IRPTL, IMASK, IMASKP Register Bit
Descriptions (RW) (Cont’d)

Bit Name Definition

SHARC Processor Programming Reference A-41

Registers

Interrupt Register (LIRPTL)
The LIRPTL register indicates latch status, select masking, and displays
mask pointers for interrupts. The registers are shown in Figure A-8 and
Figure A-9 and the bits are described in Table A-13.

 The MSKP bits in the LIRPTL register, and the entire IMASKP register
are for interrupt controller use only. Modifying these bits interferes
with the proper operation of the interrupt controller.

The programmable interrupt latch bits (P6I–P13I, P17I, P18I) are con-
trolled through the programmable interrupt controller registers (PICRx).
The descriptions provided are their default source. For information on
their optional use, see “Programmable Interrupt Priority Control Regis-
ters” in the product related hardware reference.

26 FLTII Floating-Point Invalid Operation Interrupt. Refer to the status regis-
ters for the execution units (ASTATx/y, STKYx/y).

27 EMULI Emulator Low Priority Interrupt. An EMULI occurs during Back-
ground telemetry channels (BTC). This interrupt has a lower priority
than EMUI, but higher priority than software interrupts.

28 SFT0I User Software Interrupt 0. An SFT0I occurs when a program sets
(= 1) this bit.

29 SFT1I User Software Interrupt 1. See SFT01.

30 SFT2I User Software Interrupt 2. See SFT01.

31 SFT3I User Software Interrupt 3. See SFT01. Lowest priority.

1 The SPERRI interrupt (bit 5) is reserved for ADSP-21362/3/4/5/6 SHARC processors.

Table A-12. IRPTL, IMASK, IMASKP Register Bit
Descriptions (RW) (Cont’d)

Bit Name Definition

Interrupt Registers

A-42 SHARC Processor Programming Reference

Figure A-8. LIRPTL Register (Bits 31–16)

Figure A-9. LIRPTL Register (Bits 15–0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P13IMSK

P12IMSK
Programmable Interrupt 12
Mask P18IMSKP

Programmable Interrupt 18 Mask
Pointer
P17IMSKP
Programmable Interrupt 17 Mask Pointer
P13MASKP

Programmable Interrupt 12 Mask Pointer
P12IMSKP

Programmable Interrupt 9 Mask Pointer

P10IMSKP
Programmable Interrupt 10 Mask Pointer

P9IMSKP

P17IMSK
Programmable Interrupt 17
Mask
P18IMSK
Programmable Interrupt 18
Mask
P6IMSKP
Programmable Interrupt 6
Mask Pointer
P7IMSKP
Programmable Interrupt 7
Mask Pointer

P8IMSKP
Programmable Interrupt 8 Mask Pointer

Programmable Interrupt 13
Mask

Programmable Interrupt 13 Mask Pointer

P11IMSKP
Programmable Interrupt 11 Mask Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P13I

P9IMSK

P10I
Programmable Interrupt 10

Programmable Interrupt 12
P12I

P10IMASK
Programmable Interrupt 10 Mask

P8IMSK
Programmable Interrupt 8 Mask

Programmable Interrupt 9 Mask

P7IMSK
Programmable Interrupt 7 Mask
P6IMSK
Programmable Interrupt 6 Mask
P18I
Programmable Interrupt 18

P6I
Programmable Interrupt 6

P7I
Programmable Interrupt 7
P8I
Programmable Interrupt 8
P9I
Programmable Interrupt 9

P17I
Programmable Interrupt 17

Programmable Interrupt 13

Programmable Interrupt 11
P11I

P11IMASK
Programmable Interrupt 11 Mask

SHARC Processor Programming Reference A-43

Registers

Table A-13. LIRPTL Register Bit Descriptions (RW)

Bit Name Definition

0 P6I Programmable Interrupt 6.

1 P7I Programmable Interrupt 7

2 P8I Programmable Interrupt 8

3 P9I Programmable Interrupt 9

4 P10I Programmable Interrupt 10

5 P11I Programmable Interrupt 11

6 P12I Programmable Interrupt 12

7 P13I Programmable Interrupt 13

8 P17I Programmable Interrupt 17

9 P18I Programmable Interrupt 18

10 P6IMSK Programmable Interrupt Mask 6.
Unmasks the P6I interrupt (if set, = 1),
or masks the P6I interrupt (if cleared, = 0).

11 P7IMSK Programmable Interrupt Mask 7. See P6IMSK.

12 P8IMSK Programmable Interrupt Mask 8. See P6IMSK.

13 P9IMSK Programmable Interrupt Mask 9. See P6IMSK.

14 P10IMSK Programmable Interrupt Mask 10. See P6IMSK.

15 P11IMSK Programmable Interrupt Mask 11. See P6IMSK.

16 P12IMSK Programmable Interrupt Mask 12. See P6IMSK.

17 P13IMSK Programmable Interrupt Mask 13. See P6IMSK.

18 P17IMSK Programmable Interrupt Mask 17. See P6IMSK.

19 P18IMSK Programmable Interrupt Mask 18. See P6IMSK.

20 P6IMSKP Programmable Interrupt Mask Pointer 6. When the proces-
sor is servicing another interrupt, indicates if the P6I inter-
rupt is unmasked (if set, = 1), or the P6I interrupt is masked
(if cleared, = 0).

Memory-Mapped Registers

A-44 SHARC Processor Programming Reference

Mode Mask Register (MMASK)
Each bit in the MMASK register corresponds to a bit in the MODE1 register.
Bits that are set in the MMASK register are used to clear bits in the MODE1 reg-
ister when the processor’s status stack is pushed. This effectively disables
different modes upon servicing an interrupt, or when executing a PUSH
STS instruction. See “Mode Control 1 Register (MODE1)” on page A-3
for bit information. Note that the PEYEN bit is set by default.

Memory-Mapped Registers
This section describes all IOP core registers which are memory mapped in
the core clock domain.

21 P7IMSKP Programmable Interrupt Mask Pointer 7. See P6IMSKP.

22 P8IMSKP Programmable Interrupt Mask Pointer 8. See P6IMSKP.

23 P9IMSKP Programmable Interrupt Mask Pointer 9. See P6IMSKP.

24 P10IMSKP Programmable Interrupt Mask Pointer 10. See P6IMSKP.

25 P11IMSKP Programmable Interrupt Mask Pointer 11. See P6IMSKP.

26 P12IMSKP Programmable Interrupt Mask Pointer 12. See P6IMSKP.

27 P13IMSKP Programmable Interrupt Mask Pointer 13. See P6IMSKP.

28 P17IMSKP Programmable Interrupt Mask Pointer 17. See P6IMSKP.

29 P18MSKP Programmable Interrupt Mask Pointer 18. See P6IMSKP.

31–30 Reserved

Table A-13. LIRPTL Register Bit Descriptions (RW) (Cont’d)

Bit Name Definition

SHARC Processor Programming Reference A-45

Registers

System Control Register (SYSCTL)
The SYSCTL register as it relates to the processor core configures memory
use and interrupts. For SYSCTL use as it applies to pin multiplexing, see the
product-specific hardware reference. Bit descriptions for this register are
shown in Figure A-10 and described in Table A-14.

 The SYSCTL register has an effect latency of 1 cycle. If a program
writes to the SYSCTL or BRKCTL register before it access external
memory it must perform at least two non external access before the
external access.

Figure A-10. SYSCTL Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRST

IMDW2

IMDW3

Internal Memory Block 3 Data Width
Software Reset

Internal Memory Block 2 Data Width

DCPR

DMA Channel Priority
RotatingIMDW0

IMDW1

Internal Memory Block 1 Data Width

Internal Memory Block 0 Data Width

IIVT

Internal Interrupt Vector
Table

Bits 29–16
Processor-specific bit set-
tings. See product-specific
hardware reference.

Memory-Mapped Registers

A-46 SHARC Processor Programming Reference

Table A-14. SYSCTL Register Bit Descriptions (RW)

Bit Name Description

0 SRST Software Reset. When set, this bit resets the processor and the processor
responds to the non-maskable RSTI interrupt and clears (=0)
SRST. Unlike the HW reset, the PLL and Power Management
(PMCTL register) are not reset. The part does also boot after SW
reset. After one core clock cycle, the registers are put in the default set-
tings (effect latency). The RESETOUT pin is asserted for 2 PCLK cycles.
0 = No software reset
1 = Software reset

1 Reserved

2 IIVT Internal Interrupt Vector Table. If bit set (=1), IVT starts at internal
RAM address, if cleared (=0) at internal ROM address. The default
IIVT bit setting is enabled (=1) with any valid boot mode
(BOOT_CFGx pins).
If the reserved boot mode is selected, IIVT bit is cleared (= 0).

6–3 Reserved

7 DCPR DMA Channel Priority Rotating. This bit enables or disables priority
rotation among DMA channels on the DMA peripheral bus (IOD or
IOD0). Permits core writes.
0 = Arbiter uses fixed priority
1 = Arbiter uses rotating priority

8 Reserved

9 IMDW0 Internal Memory Data Width 0. Selects the data access size for internal
memory block0 as 48- or 32-bit data. Permits core writes.
0 = Data bus width is 32 bits
1 = Data bus width is 48 bits

10 IMDW1 Internal Memory Data Width 1. Selects the data access size for internal
memory block1 as 48- or 32-bit data. Permits core writes.
0 = Data bus width is 32 bits
1 = Data bus width is 48 bits

11 IMDW2 Internal Memory Data Width 2. Selects the data access size for internal
memory block2 as 48- or 32-bit data. Permits core writes.
0 = Data bus width is 32 bits
1 = Data bus width is 48 bits

SHARC Processor Programming Reference A-47

Registers

Revision ID Register (REVPID)
The REVPID register described in Table A-15 is a top layer metal program-
mable 8-bit register. Because these bits are the processor ID and silicon
revision, the reset value varies with the system setting and silicon revision.
That is, the value in top-level metal layer changes. This register is useful
for conditional code execution based on the processor’s ID and silicon
revision numbers.

 The RIVPID coding is available on the SHARC product pages on
the Analog Devices web site.

Breakpoint Control Register (BRKCTL)
The BRKCTL register is a 32-bit memory-mapped I/O register. To enabled
user breakpoints UMODE bit (bit 25) is set. On occurrence of a valid break-
point hit, a low prioritization interrupt (BKPI) vectors to the ISR. The

12 IMDW3 Internal Memory Data Width 3. Selects the data access size for internal
memory block3 as 48- or 32-bit data. Permits core writes.
0 = Data bus width is 32 bits
1 = Data bus width is 48 bits

15–13 Reserved

29–16 Processor-specific bit settings. See product-specific hardware reference.

31–30 Reserved

Table A-15. REVPID Register Bit Descriptions

Bits Name Description

3–0 PROCID Processor identification (read-only)

7–4 SIREV Silicon Revision (read-only)

Table A-14. SYSCTL Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

Memory-Mapped Registers

A-48 SHARC Processor Programming Reference

enhanced emulation status register EEMUSTAT indicates which breakpoint
hit occurred, all the breakpoint status bits are cleared when the program
exits the ISR with an RTI instruction. Such interrupts may contain error
handling if the processor accesses any of the addresses in the address range
defined in the breakpoint registers. The bit settings for these registers are
shown in Figure A-11 and described in Table A-16.

Figure A-11. BRKCTL Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEGIA4

UMODE

IOD1 (EP DMA Bus) Breakpoint
Enable

Enable User Mode Breakpoint

Negate Instruction Address
Breakpoint #4

ANDBKP

AND composite breakpoints

Enable Instruction Address Breakpoints

ENBIA

NEGIO1

Negate I/O Address
Breakpoint #1

ENBPA

Enable Program Memory
Address Breakpoints

ENBDA

Enable Data Memory
Breakpoints

ENBIO0

ENBIO1

IOD0 (Peripheral DMA Bus)
Breakpoint Enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEGIA3

Negate Instruction Address
Breakpoint #3

PA1MODE (1–0)

PA1 Triggering Mode

NEGIA2

Negate Instruction Address
Breakpoint #2
NEGIA1

Negate Instruction Address
Breakpoint #1

NEGDA2

Negate DM Address Breakpoint #2

NEGDA1

Negate DM Address Breakpoint #1

DA1MODE (3–2)

DA1 Triggering Mode

DA2MODE (5–4)

DA2 Triggering Mode

IO1MODE (7–6)

IO1 Triggering Mode
NEGPA1

Negate PM Address
Breakpoint #1

SHARC Processor Programming Reference A-49

Registers

Table A-16. BRKCTL Register Bit Descriptions (RW)

Bit Name Description

1–0 PA1MODE PA1Triggering Mode.
00 = Breakpoint disabled
01 = WRITE access
10 = READ access
11 = Any access

3–2 DA1MODE DA1 Triggering Mode.
00 = Breakpoint disabled
01 = WRITE access
10 = READ access
11 = Any access

5–4 DA2MODE DA2 Triggering Mode.
00 = Breakpoint disabled
01 = WRITE access
10 = READ access
11 = Any access

7–6 IO1MODE I/O DMA Triggering Mode.
00 = Breakpoint is disabled
01 = WRITE accesses only
10 = READ accesses only
11 = Any access

9–8 Reserved

10 NEGPA1 Negate Program Memory Data Address Breakpoint.
Enable breakpoint events if the address is greater than the end
register value OR less than the start register value. This func-
tion is useful to detect index range violations in user code.
0 = Do not negate breakpoint
1 = Negate breakpoint

11 NEGDA1 Negate Data Memory Address Breakpoint #1.
For more information, see NEGPA1 bit description.

12 NEGDA2 Negate Data Memory Address Breakpoint #2.
For more information, see NEGPA1 bit description.

13 NEGIA1 Negate Instruction Address Breakpoint #1.
0 = Do not negate breakpoint
1 = Negate breakpoint

Memory-Mapped Registers

A-50 SHARC Processor Programming Reference

14 NEGIA2 Negate Instruction Address Breakpoint #2.
For more information, see NEGPA1 bit description.

15 NEGIA3 Negate Instruction Address Breakpoint #3.
For more information, see NEGPA1 bit description.

16 NEGIA4 Negate Instruction Address Breakpoint #4.
For more information, see NEGPA1 bit description.

17 NEGIO1 Negate I/O Address Breakpoint.
For more information, see NEGPA1 bit description.

18 Reserved

19 ENBPA Enable Program Memory Data Address Breakpoints.
The ENB bits enable each breakpoint group. Note that when
the ANDBKP bit is set, breakpoint types not involved in the
generation of the effective breakpoint must be disabled.
0 = Disable breakpoints
1 = Enable breakpoints

20 ENBDA Enable Data Memory Address Breakpoints.
For more information, see ENBPA bit description.

21 ENBIA Enable Instruction Address Breakpoints.
For more information, see ENBPA bit description.

23–22 Reserved

24 ANDBKP AND Composite Breakpoints. Enables logical AND of each
breakpoint type to generate an effective breakpoint from the
composite breakpoint signals.
0 = OR Breakpoint types
1 = AND Breakpoint types

25 UMODE User Mode Breakpoint Functionality Enable. Address Break-
point 3.
0 = Disable user controlled breakpoint
1 = Enable user controlled breakpoint

26 ENBIO1 IOD1 (EP DMA Bus) Breakpoint Enable.
0 = Disable IOD1 breakpoint
1 = Enable IOD1 breakpoint
(reserved for ADSP-21362/3/4/5/6 processors)

Table A-16. BRKCTL Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

SHARC Processor Programming Reference A-51

Registers

Enhanced Emulation Status Register (EEMUSTAT)
The EEMUSTAT register reports the breakpoint status of the programs that
run on the SHARC processors. This register is a memory-mapped IOP
register that can be accessed by the core. The bit settings for these registers
are shown in Figure A-12.

27 ENBIO0 IOD0 (Peripheral DMA Bus) Breakpoint Enable.
0 = Disable IOD0 breakpoint
1 = Enable IOD0 breakpoint

31–28 Reserved

Figure A-12. EEMUSTAT Register

Table A-16. BRKCTL Register Bit Descriptions (RW) (Cont’d)

Bit Name Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EEMUIN Interrupt Enable
EEMUINENS

EEMUENS
Enhanced Emulation Feature Enable
Status

EEMUINFULL

EEMUOUTFULL

EEMUIN FIFO Full Status

EEMUOUTRDY
EEMUOUT FIFO Full Status

EEMUOUT Valid Data Status

EEMUOUTIRQEN
EEMUOUT Interrupt Enable

STATPA
Program Memory Break-
point Status

STATDA0
DM Breakpoint #0 Status
STATDA1
DM Breakpoint #1 Status
STATIA0
Instruction Breakpoint #0 Status
STATIA1
Instruction Breakpoint #1 Status
STATIA2
Instruction Breakpoint #2 Status
STATIA3
Instruction Breakpoint #3 Status

STATIO0
DMA Peripheral Address Break-
point Status

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STATIO1
DMA EP Address Breakpoint
Status

Memory-Mapped Registers

A-52 SHARC Processor Programming Reference

Table A-17. EEMUSTAT Register Bit Descriptions (RO)

Bit Name Description

0 STATPA Program Memory Data Breakpoint Hit.1

0 = No program memory breakpoint occurs
1 = Program memory breakpoint occurs

1 STATDA0 Data Memory Breakpoint Hit.1

0 = No data memory #0 breakpoint occurs
1 = Data memory #0 breakpoint occurs

2 STATDA1 Data Memory Breakpoint Hit.1

0 = No data memory #1 breakpoint occurs
1 = Data memory #1 breakpoint occurs

3 STATIA0 Instruction Address Breakpoint Hit.1

0 = No instruction address #0 breakpoint occurs
1 = Instruction address #0 breakpoint occurs

4 STATIA1 Instruction Address Breakpoint Hit.1

0 = No instruction address #1 breakpoint occurs
1 = Instruction address #1 breakpoint occurs

5 STATIA2 Instruction Address Breakpoint Hit.1

0 = No instruction address #2 breakpoint occurs
1 = Instruction address #2 breakpoint occurs

6 STATIA3 Instruction Address Breakpoint Hit.1

0 = No instruction address #3 breakpoint occurs
1 = Instruction address #3 breakpoint occurs

7 STATIO0 DMA Peripheral Address Breakpoint Status.1 Set bit if
breakpoint hit detected on the IOD/IOD0 bus
0 = No DMA peripheral address breakpoint occurs
1 = DMA peripheral address breakpoint occurs

8 Reserved

9 EEMUOUTIRQEN Enhanced Emulation EEMUOUT Interrupt Enable.2

0 = EEMUOUT interrupt disable
1 = EEMUOUT interrupt enable
Note: Interrupts are of the low priority variety

10 EEMUOUTRDY Enhanced Emulation EEMUOUT Ready.3

1 = EEMUOUT FIFO contains valid data
0 = EEMUOUT FIFO is empty

SHARC Processor Programming Reference A-53

Registers

11 EEMUOUTFULL Enhanced Emulation EEMUOUT FIFO Status.3

0 = EEMUOUT FIFO is not full
1 = EEMUOUT FIFO full

12 EEMUINFULL Enhanced Emulation EEMUIN Register Status.4

0 = EEMUIN register is empty
1 = EEMUIN register full

13 EEMUENS Enhanced Emulation Feature Enable.4

0 = Enhanced emulation feature enable
1 = Enhanced emulation feature disable

14 Reserved

15 EEMUINENS EEMUIN Interrupt Enable.4

0 = EEMUIN interrupt disable
1 = EEMUIN interrupt enable

16 STATIO1 DMA External Port Address Breakpoint Status. Set bit if
breakpoint hit detected on the IOD1 bus (between external
port and internal memory)
0 = No external port DMA breakpoint occurs
1 = External port DMA breakpoint occurs
(reserved for ADSP-21362/3/4/5/6 processors)

31–17 Reserved

1 Internal hardware sets this bit.
2 This bit is set and reset by the core.
3 The FIFO controller sets and resets this bit.
4 Internal hardware sets and resets this bit.

Table A-17. EEMUSTAT Register Bit Descriptions (RO) (Cont’d)

Bit Name Description

Register Listing

A-54 SHARC Processor Programming Reference

Register Listing
Table A-17 lists all available core non memory-mapped registers and their
reset values. Table A-19 on page A-56 lists all memory-mapped I/O regis-
ters, their reset values and their addresses.

Table A-18. Core Non Memory-Mapped Register Listing

Register Mnemonic Description Reset

Mode

MODE1 Mode control 1 0x0

MODE2 Mode control 2 0x4200 0000

Sequencer

FADDR Fetch1 address stage Undefined

DADDR Decode address stage Undefined

PC Execute address stage Undefined

PCSTK PC stack 0xFF FFFF
0x3FF FFFF for ADSP-2137x and
later

PCSTKP PC stack pointer 0x0

Interrupt

IRPTL Interrupt latch 0x0

IMASK Interrupt mask 0x0000 0003

IMASKP Interrupt mask pointer 0x0

LIRPTL Interrupt latch/mask 0x0

MMASK Interrupt mode mask 0x0020 0000

Loop

LADDR Loop address 0xFFFF FFFF

LCNTR Loop counter Undefined

CURLCNTR Current counter 0xFFFF FFFF

SHARC Processor Programming Reference A-55

Registers

Timer

TPERIOD Timer period 0x0

TCOUNT Timer count 0x0

GPIO

FLAGS GPIO flags I/O direction (even bits) are all
cleared.
Level (odd bits) are all undefined.

Processing Foreground

R15–0 PEx data file (Fixed/Float) Undefined

S15–0 PEy data file (Fixed/Float) Undefined

MRF2–0 PEx Multiply Result (Fixed) Undefined

MSF2–0 PEy Multiply Result (Fixed) Undefined

Processing Background

R'15–0 PEx data file (Fixed/Float) Undefined

S'15–0 PEy data file (Fixed/Float) Undefined

MRB2–0 PEx Multiply Result (Fixed) Undefined

MSB2–0 PEy Multiply Result (Fixed) Undefined

Processing Status

ASTATx PEx current status 0x0

ASTATy PEy current status 0x0

STKYx PEx sticky status 0x0540 0000

STKYy PEy sticky status 0x0540 0000

DAG Registers Foreground

I15–0 Index Undefined

M15–0 Modify Undefined

L15–0 Length Undefined

B15–0 Base Undefined

Table A-18. Core Non Memory-Mapped Register Listing (Cont’d)

Register Mnemonic Description Reset

Register Listing

A-56 SHARC Processor Programming Reference

DAG Registers Background

I'15–0 Index Undefined

M'15–0 Modify Undefined

L'15–0 Length Undefined

B'15–0 Base Undefined

Miscellaneous Registers

PX Bus exchange 64-bit undefined

PX2–1 Bus exchange 32-bit undefined

USTAT4–1 Universal Status 0x0

Emulation Count

EMUCLK Emulation Count undefined

EMUCLK2 Emulation Count 2 undefined

Table A-19. Core Memory-Mapped Registers

Register
Mnemonic

Description Address Reset

EEMUIN Emulator Input FIFO 0x30020 Undefined

EEMUSTAT Enhanced Emulation Status Register 0x30021 0x0

EEMUOUT Emulator Output FIFO 0x30022 Undefined

SYSCTL System Control Register 0x30024 0x0

BRKCTL Hardware Breakpoint Control Register 0x30025 0x0

REVPID Revision ID Register 0x30026 Mask Dependant

PSA1S1 Instruction Breakpoint Address Start #1 0x300A0 Undefined

PSA1E Instruction Breakpoint Address End #1 0x300A1 Undefined

PSA2S Instruction Breakpoint Address Start #2 0x300A2 Undefined

PSA2E Instruction Breakpoint Address End #2 0x300A3 Undefined

Table A-18. Core Non Memory-Mapped Register Listing (Cont’d)

Register Mnemonic Description Reset

SHARC Processor Programming Reference A-57

Registers

PSA3S Instruction Breakpoint Address Start #3 0x300A4 Undefined

PSA3E Instruction Breakpoint Address End #3 0x300A5 Undefined

PSA4S Instruction Breakpoint Address Start #4 0x300A6 Undefined

PSA4E Instruction Breakpoint Address End #4 0x300A7 Undefined

EMUN Number of Breakpoint Hits Before EMU
Interrupt

0x300AE Undefined

IOAS I/O Breakpoint Address Start 0x300B0 Undefined

IOAE I/O Breakpoint Address End 0x300B1 Undefined

DMA1S Data Memory Breakpoint Address Start #1 0x300B2 Undefined

DMA1E Data Memory Breakpoint Address End #1 0x300B3 Undefined

DMA2S Data Memory Breakpoint Address Start #2 0x300B4 Undefined

DMA2E Data Memory Breakpoint Address End #2 0x300B5 Undefined

PMDAS Program Memory Breakpoint Address Start 0x300B8 Undefined

PMDAE Program Memory Breakpoint Address End 0x300B9 Undefined

1 All PSAx registers are cleared for the ADSP-2137x products only.

Table A-19. Core Memory-Mapped Registers (Cont’d)

Register
Mnemonic

Description Address Reset

Register Listing

A-58 SHARC Processor Programming Reference

SHARC Processor Programming Reference B-1

B CORE INTERRUPT CONTROL

This appendix provides information about controlling core based inter-
rupts. For information about the IRPTL, LIRPTL, and IMASK registers see
Appendix A, Registers.

Interrupt Acknowledge
When an interrupt is triggered, the sequencer typically finishes the current
instruction and jumps to the IVT (interrupt vector table). From IVT the
address then typically vectors to the ISR routine. The sequencer jumps
into this routine, performs program execution and then exits the routine
by executing the RTI (return from interrupt) instruction. However this
rule does not apply for all cases. There are two interrupt acknowledge
mechanisms used in an ISR Routine for the core are shown below and in
Table B-1:

• RTI instruction

• Clear status bit + RTI instruction

The Arithmetic exception unit (computation units) is designed such that
in order to terminate correctly, the status register must be read to identify
the source of the interrupt. Afterwards, programs must write into that sta-
tus bit (clear mechanism) in order to terminate the interrupt properly.

 If the acknowledge mechanism rules are not followed correctly,
unwanted and sporadic interrupts will occur.

Interrupt Priority

B-2 SHARC Processor Programming Reference

Interrupt Priority
The core related interrupts have a fixed priority and cannot be changed (as
the programmable interrupts for peripherals can).

Interrupt Vector Tables
The 48-bit addresses in the vector table represent offsets from a base IVT
address. For an interrupt vector table in internal RAM or ROM consult
the processor’s datasheet for the absolute address.

The interrupt name column in Table B-2 lists a mnemonic name for each
interrupt as they are defined by the header file that comes with the soft-
ware development tools. The shaded interrupts are programmable. For
more information on using these interrupts, see the product-specific hard-
ware reference.

Table B-1. Interrupt Acknowledge Mechanisms

Interrupt Source Interrupt Acknowledge

Arithmetic Exception (Fixed/Floating
Point)

ISR requires clear and RTI

All other core interrupts ISR requires RTI only

Table B-2. SHARC Interrupt Vector Routing

Interrupt
Number

Register Vector
Address

Interrupt
Name

Function

0 IRPTL 0x00 EMUI Emulator (HIGHEST PRIORITY)

1 0x04 RSTI HW/SW Reset

2 0x08 IICDI Illegal IOP access condition OR unaligned
long word access detected

SHARC Processor Programming Reference B-3

Core Interrupt Control

3 IRPTL 0x0C SOVFI Status loop or mode stack overflow; or PC
stack full

4 0x10 TMZHI Core Timer (high priority option)

5 0x14 SPERRI SPORT Error Interrupt1

6 0x18 BKPI User Hardware Breakpoint

7 0x1C Reserved

8 0x20 IRQ2I IRQ2I asserted

9 0x24 IRQ1I IRQ1I asserted

10 0x28 IRQ0I IRQ0I asserted

11 0x2C P0I Programmable Interrupt 0

12 0x30 P1I Programmable Interrupt 1

13 0x34 P2I Programmable Interrupt 2

14 0x38 P3I Programmable Interrupt 3

15 0x3C P4I Programmable Interrupt 4

16 0x40 P5I Programmable Interrupt 5

17 LIRPTL 0x44 P6I Programmable Interrupt 6

18 0x48 P7I Programmable Interrupt 7

19 0x4C P8I Programmable Interrupt 8

20 0x50 P9I Programmable Interrupt 9

21 0x54 P10I Programmable Interrupt 10

22 0x58 P11I Programmable Interrupt 11

23 0x5C P12I Programmable Interrupt 12

24 0x60 P13I Programmable Interrupt 13

Table B-2. SHARC Interrupt Vector Routing (Cont’d)

Interrupt
Number

Register Vector
Address

Interrupt
Name

Function

Interrupt Vector Tables

B-4 SHARC Processor Programming Reference

25 IRPTL 0x64 P14I Programmable Interrupt 14

26 0x68 P15I Programmable Interrupt 15

27 0x6C P16I Programmable interrupt 16

28 LIRPTL 0x70 P17I Programmable Interrupt 17

29 0x74 P18I Programmable Interrupt 18

30 IRPTL 0x78 CB7I Circular Buffer 7 Overflow

31 0x7C CB15I Circular Buffer 15 Overflow

32 0x80 TMZLI Core Timer (Low Priority Option)

33 0x84 FIXI Fixed-point overflow

34 0x88 FLTOI Floating-point overflow exception

35 0x8C FLTUI Floating-point underflow exception

36 0x90 FLTII Floating-point invalid exception

37 0x94 EMULI Emulator low priority interrupt

38 0x98 SFT0I User software interrupt 0

39 0x9C SFT1I User software interrupt 1

40 0xA0 SFT2I User software interrupt 2

41 0xA4 SFT3I User software interrupt 3, LOWEST
PRIORITY

1 The SPERRI interrupt (bit 5) is reserved for ADSP-21362/3/4/5/6 SHARC processors.

Table B-2. SHARC Interrupt Vector Routing (Cont’d)

Interrupt
Number

Register Vector
Address

Interrupt
Name

Function

SHARC Processor Programming Reference C-1

C NUMERIC FORMATS

The processor supports the 32-bit single-precision floating-point data for-
mat defined in the IEEE Standard 754/854. In addition, the processor
supports an extended-precision version of the same format with eight
additional bits in the mantissa (40 bits total). The processor also supports
32-bit fixed-point formats—fractional and integer—which can be signed
(two’s-complement) or unsigned.

IEEE Single-Precision Floating-Point Data
Format

The IEEE Standard 754/854 specifies a 32-bit single-precision float-
ing-point format, shown in Figure C-1. A number in this format consists
of a sign bit(s), a 24-bit significand, and an 8-bit unsigned-magnitude
exponent (e).

For normalized numbers, the significand consists of a 23-bit fraction, f
and a “hidden” bit of 1 that is implicitly presumed to precede f22 in the
significand. The binary point is presumed to lie between this hidden bit
and f22. The least significant bit (LSB) of the fraction is f0; the LSB of the
exponent is e0.

The hidden bit effectively increases the precision of the floating-point sig-
nificand to 24 bits from the 23 bits actually stored in the data format. It
also ensures that the significand of any number in the IEEE normalized
number format is always greater than or equal to one and less than two.

IEEE Single-Precision Floating-Point Data Format

C-2 SHARC Processor Programming Reference

The unsigned exponent, e, can range between 1  e  254 for normal
numbers in single-precision format. This exponent is biased by +127. To
calculate the true unbiased exponent, subtract 127 from e.

The IEEE Standard also provides several special data types in the sin-
gle-precision floating-point format:

• An exponent value of 255 (all ones) with a non-zero fraction is a
not-a-number (NAN). NANs are usually used as flags for data flow
control, for the values of uninitialized variables, and for the results
of invalid operations such as 0 * .

• Infinity is represented as an exponent of 255 and a zero fraction.
Note that because the fraction is signed, both positive and negative
infinity can be represented.

• Zero is represented by a zero exponent and a zero fraction. As with
infinity, both positive zero and negative zero can be represented.

The IEEE single-precision floating-point data types supported by the pro-
cessor and their interpretations are summarized in Table C-1.

Figure C-1. IEEE 32-Bit Single-Precision Floating-Point Format

s e0

31 30 23 22 0

1 . f22 f0e7

HIDDEN BIT BINARY POINT

SHARC Processor Programming Reference C-3

Numeric Formats

Extended-Precision Floating-Point
Format

The extended-precision floating-point format is 40 bits wide, with the
same 8-bit exponent as in the IEEE standard format but with a 32-bit sig-
nificand. This format is shown in Figure C-2. In all other respects, the
extended-precision floating-point format is the same as the IEEE standard
format.

Table C-1. IEEE Single-Precision Floating-Point Data Types

Type Exponent Fraction Value

NAN 255 Non-zero Undefined

Infinity 255 0 (–1)s Infinity

Normal 1  e  254 Any (–1)s (1.f22-0) 2e–127

Zero 0 0 0 (–1)s Zero

Figure C-2. 40-Bit Extended-Precision Floating-Point Format

s e0

39 38 31 30 0

1 . f30 f0e7

HIDDEN BIT BINARY POINT

Short Word Floating-Point Format

C-4 SHARC Processor Programming Reference

Short Word Floating-Point Format
The processor supports a 16-bit floating-point data type and provides con-
version instructions for it. The short float data format has an 11-bit
mantissa with a 4-bit exponent plus sign bit, as shown in Figure C-3. The
16-bit floating-point numbers reside in the lower 16 bits of the 32-bit
floating-point field.

Packing for Floating-Point Data
Two shifter instructions, FPACK and FUNPACK, perform the packing and
unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The FPACK instruction converts a 32-bit IEEE float-
ing-point number to a 16-bit floating-point number. The FUNPACK
instruction converts 16-bit floating-point numbers back to 32-bit IEEE
floating-point. Each instruction executes in a single cycle. The results of
the FPACK and FUNPACK operations appear in Table C-2 and Table C-3.

Figure C-3. 16-Bit Floating-Point Format

s e0

15 14 11 10 0

1 . f10 f0e3

HIDDEN BIT BINARY POINT

SHARC Processor Programming Reference C-5

Numeric Formats

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number which would have
underflowed, the exponent is set to zero and the mantissa (including
hidden 1) is right-shifted the appropriate amount. The packed result is a
denormal, which can be unpacked into a normal IEEE floating-point
number.

Table C-2. FPACK Operations

Condition Result

135 < exp Largest magnitude representation.

120 < exp  135 Exponent is most significant bit (MSB) of source exponent concatenated
with the three least significant bits (LSBs) of source exponent. The
packed fraction is the rounded upper 11 bits of the source fraction.

109 < exp  120 Exponent = 0. Packed fraction is the upper bits (source exponent – 110)
of the source fraction prefixed by zeros and the “hidden” one. The
packed fraction is rounded.

exp < 110 Packed word is all zeros.

exp = source exponent
sign bit remains the same in all cases

Table C-3. FUNPACK Operations

Condition Result

0 < exp  15 Exponent is the 3 LSBs of the source exponent prefixed by the MSB of the
source exponent and four copies of the complement of the MSB. The
unpacked fraction is the source fraction with 12 zeros appended.

exp = 0 Exponent is (120 – N) where N is the number of leading zeros in the source
fraction. The unpacked fraction is the remainder of the source fraction with
zeros appended to pad it and the “hidden” one stripped away.

exp = source exponent
sign bit remains the same in all cases

Fixed-Point Formats

C-6 SHARC Processor Programming Reference

During the FPACK operation, an overflow sets the SV condition and
non-overflow clears it. During the FUNPACK operation, the SV condition is
cleared. The SZ and SS conditions are cleared by both instructions.

Fixed-Point Formats
The processor supports two 32-bit fixed-point formats—fractional and
integer. In both formats, numbers can be signed (two’s-complement) or
unsigned. The four possible combinations are shown in Figure C-4. In the
fractional format, there is an implied binary point to the left of the most
significant magnitude bit. In integer format, the binary point is under-
stood to be to the right of the LSB. Note that the sign bit is negatively
weighted in a two’s-complement format.

If one operand is signed and the other unsigned, the result is signed. If
both inputs are signed, the result is signed and automatically shifted left
one bit. The LSB becomes zero and bit 62 moves into the sign bit posi-
tion. Normally bit 63 and bit 62 are identical when both operands are
signed. (The only exception is full-scale negative multiplied by itself.)
Thus, the left-shift normally removes a redundant sign bit, increasing the
precision of the most significant product. Also, if the data format is frac-
tional, a single bit left-shift renormalizes the MSP to a fractional format.
The signed formats with and without left-shifting are shown in
Figure C-5.

ALU outputs have the same width and data format as the inputs. The
multiplier, however, produces a 64-bit product from two 32-bit inputs. If
both operands are unsigned integers, the result is a 64-bit unsigned
integer. If both operands are unsigned fractions, the result is a 64-bit
unsigned fraction. These formats are shown in Figure C-5.

The multiplier has an 80-bit accumulator to allow the accumulation of
64-bit products. For more information on the multiplier and accumula-
tor, see “Multiplier” on page 3-13.

SHARC Processor Programming Reference C-7

Numeric Formats

Figure C-4. 32-Bit Fixed-Point Formats

31 30 29 2 1

-231 230 229 22 21 20

SIGN
BIT

WEIGHT

BIT

BINARY
POINT

0

31 30 29 2 1

2-29WEIGHT

BIT

BINARY
POINT

0

2-30 2-31-2-0 2-1 2-2
SIGNED

FRACTIONAL

SIGNED
INTEGER

2-30 2-31 2-32.2-1 2-2 2-3

UNSIGNED
INTEGER

UNSIGNED
FRACTIONAL

BINARY
POINT

31 30 29 2 1

231 230 229 22 21 20
WEIGHT

BIT 0

31 30 29 2 1

WEIGHT

BIT

BINARY POINT

0

SIGN
BIT

Fixed-Point Formats

C-8 SHARC Processor Programming Reference

Figure C-5. 64-Bit Unsigned and Signed Fixed-Point Product

UNSIGNED
INTEGER

UNSIGNED
FRACTIONAL

63 62 61 2 1

263 262 261 22 21 20WEIGHT

BIT 0

2-62WEIGHT

BIT

2-63 2-642-1 2-2 2-3

BINARY
POINT

BINARY
POINT

63 62 61 2 1 0

63 62 61 2 1

SIGN
BIT

WEIGHT

BIT 0

SIGNED INTEGER,
NO LEFT SHIFT -263 262 261 22 21 20

BINARY
POINT

SIGNED FRACTIONAL,
WITH LEFT SHIFT

63 62 61 2 1

2-61WEIGHT

BIT 0

2-62 2-63-20 2-1 2-2

BINARY
POINT

SIGN
BIT

64-Bit Unsigned Fixed-Point Product

64-Bit Signed Fixed-Point Product

SHARC Processor Programming Reference G-1

G GLOSSARY

Alternate Registers.

See index registers on page G-7.

Arithmetic Logic Unit (ALU).

This part of a processing element performs arithmetic and logic operations
on fixed-point and floating-point data.

Asynchronous Transfers.

Communications in which data can be transmitted intermittently rather
than in a steady stream.

Barrel Shifter.

This part of a processing element completes logical shifts, arithmetic
shifts, bit manipulation, field deposit, and field extraction operations on
32-bit operands. Also, the shifter can derive exponents.

Base Address.

The starting address of a circular buffer to which the DAG wraps around.
This address is stored in a DAG Bx register.

Base Register.

A base (Bx) register is a data address generator (DAG) register that sets up
the starting address for a circular buffer.

Glossary

G-2 SHARC Processor Programming Reference

Bit-Reverse Addressing.

The data address generator (DAG) provides a bit-reversed address during
a data move without reversing the stored address.

Boot Modes.

The boot mode determines how the processor starts up (loads its initial
code). The ADSP-2136x processors can boot from its SPI port or through
its parallel port via an EPROM.

Broadcast Data Moves.

The data address generator (DAG) performs dual data moves to comple-
mentary registers in each processing element to support SIMD mode.

Bus Slave or Slave Mode.

The ADSP-21368/ADSP-2146x processors can be a bus slave to another
processor. The current processor becomes a bus slave when the BR signal of
the requester is asserted.

Cache Entry.

The smallest unit of memory that is transferred to/from the next level of
memory from/to a cache as a result of a cache miss.

Cache Hit.

A memory access that is satisfied by a valid, present entry in the cache.

Cache Miss.

A memory access that does not match any valid entry in the cache.

SHARC Processor Programming Reference G-3

Glossary

Circular Buffer Addressing.

The DAG uses the Ix, Mx and Lx register settings to constrain addressing
to a range of addresses. This range contains data that the DAG steps
through repeatedly, “wrapping around” to repeat stepping through the
range of addresses in a circular pattern.

Companding (Compressing/Expanding).

This is the process of logarithmically encoding and decoding data to min-
imize the number of bits that must be sent by the SPORTs.

Conditional Branches.

These are JUMP or CALL/return instructions whose execution is based on
testing an IF condition.

Core.

The core consists of these functional blocks: Processing units, memory,
DAGs, sequencer, interrupt controller, loop controller, core timer, and
emulation interface.

Complementary Data Registers (CDreg).

These are registers in the PEy processing element. These registers are hold
operands for multiplier, ALU, or shifter operations and are denoted as Sx
when used for fixed point operations or SFx when used for floating-point
operations.

Complementary Universal Registers (CUreg).

These are any core registers (data registers), any data address generator
(DAG) registers, used in SIMD mode.

Data Address Generator (DAG).

The data address generators (DAGs) provide memory addresses when data
is transferred between memory and registers.

Glossary

G-4 SHARC Processor Programming Reference

Data Registers (Dreg).

These are registers in the PEx processing element. These registers are hold
operands for multiplier, ALU, or shifter operations and are denoted as Rx
when used for fixed point operations or Fx when used for floating-point
operations.

Delayed Branches.

In JUMP and CALL instructions that use the delayed branch (DB) modifier,
one instruction cycle is lost in the instruction pipeline. This is because the
processor executes the two instructions after the branch and the third is
aborted while the instruction pipeline fills with instructions from the new
location.

Denormal Operands.

When the biased exponent is zero, smaller floating-point numbers can
only be represented by making the integer bit (and perhaps other leading
bits) of the significant zero. The numbers in this range are called denor-
malized (or tiny) numbers. The use of leading zeros with denormalized
numbers allows smaller numbers to be represented.

Direct Branches.

These are JUMP or CALL instructions that use an absolute—not changing at
runtime—address (such as a program label) or use a PC-relative address.

DMA (Direct Memory Accessing).

The processor’s I/O processor supports DMA of data between processor
memory and external memory, or peripherals. Each DMA operation trans-
fers an entire block of data.

SHARC Processor Programming Reference G-5

Glossary

DMA Chaining.

The processor supports chaining together multiple DMA sequences. In
chained DMA, the I/O processor loads the next transfer control block
(DMA parameters) into the DMA parameter registers when the current
DMA finishes and auto-initializes the next DMA sequence.

DMA Parameter Registers.

These registers function similarly to data address generator registers, set-
ting up a memory access process. These registers include internal index
registers, internal modify registers, count registers, chain pointer registers,
external index registers, external modify registers, and external count
registers.

DMA TCB Chain Loading.

This is the process that the I/O processor uses for loading the TCB of the
next DMA sequence into the parameter registers during chained DMA.

Edge-Sensitive Interrupt.

The processor detects this type of interrupt if the input signal is high
(inactive) on one cycle and low (active) on the next cycle when sampled on
the rising edge of clock.

Endian Format, Little Versus Big.

The processor uses big-endian format—moves data starting with most-sig-
nificant-bit and finishing with least-significant-bit—in almost all
instances. There are some exceptions (such as serial port operations) which
provide both little-endian and big-endian format support to ensure their
compatibility with different devices.

Glossary

G-6 SHARC Processor Programming Reference

Explicit Versus Implicit Operations.

In SIMD mode, identical instructions execute on the PEx and PEy com-
putational units; the difference is the data. The data registers for PEy
operations are identified (implicitly) from the PEx registers in the instruc-
tion. This implicit relation between PEx and PEy data registers
corresponds to complementary register pairs.

Field Deposit (Fdep) Instructions.

These shifter instructions take a group of bits from the input register
(starting at the LSB of the 32-bit integer field) and deposit the bits as
directed anywhere within the result register.

Field Extract (Fext) Instructions.

These shifter extract a group of bits as directed from anywhere within the
input register and place them in the result register (aligned with the LSB
of the 32-bit integer field).

FIFO (First In, First Out).

A hardware buffer or data structure from which items are taken out in the
same order they were put in.

Flag Pins (Programmable).

These pins (FLGx) can be programmed as input or output pins using bit
settings in the FLAGS register. The status of the flag pins is also given in the
FLAGS register.

Flag Update.

The processor’s update to status flags occurs at the end of the cycle in
which the status is generated and is available on the next cycle.

General-Purpose Input/Output Pins.

See programmable flag pins.

SHARC Processor Programming Reference G-7

Glossary

Harvard Architecture.

Processor’s use memory architectures that have separate buses for program
and data storage. The two buses let the processor get a data word and an
instruction simultaneously.

I/O Processor Register.

One of the control, status, or data buffer registers of the processor's
on-chip I/O processor.

IDLE.

An instruction that causes the processor to cease operations, holding its
current state until an interrupt occurs. Then, the processor services the
interrupt and continues normal execution.

Index Registers.

An index register is a data address generator (DAG) register that holds an
address and acts as a pointer to memory.

Indirect Branches.

These are JUMP or CALL instructions that use a dynamic—changes at run-
time—address that comes from the PM data address generator.

Inexact Flags.

An exception flag whose bit position is inexact.

Input Clock.

Device that generates a steady stream of timing signals to provide the fre-
quency, duty cycle, and stability to allow accurate internal clock
multiplication via the phase locked loop (PLL) module.

Glossary

G-8 SHARC Processor Programming Reference

Interleaved Data.

SIMD mode requires a special memory layout since the implicit modifier
is 1 or 2 based on NW or SW addresses. This then requires data to be in
an interleaved organization in the memory layout.

Internal Memory Space.

Internal memory space refers to the processor’s on-chip SRAM and mem-
ory-mapped registers.

Interrupts.

Subroutines in which a runtime event (not an instruction) triggers the exe-
cution of the routine.

JTAG Port.

This port supports the IEEE standard 1149.1 Joint Test Action Group
(JTAG) standard for system test. This standard defines a method for seri-
ally scanning the I/O status of each component in a system. This interface
is also used for processor debug.

Jumps.

Program flow transfers permanently to another part of program memory.

Latency.

Latency of memory access is the time between when an address is posted
on the address bus and the core receives data on the corresponding data
bus.

Length Registers.

A length register is a data address generator (DAG) register that sets up the
range of addresses a circular buffer.

SHARC Processor Programming Reference G-9

Glossary

Level-Sensitive Interrupts.

The processor detects this type of interrupt if the signal input is low
(active) when sampled on the rising edge of clock.

Loops.

One sequence of instructions executes several times with zero overhead.

Memory Blocks and Banks.

The processor’s internal memory is divided into blocks that are each asso-
ciated with different data address generators. The processor’s external
memory spaces is divided into banks, which may be addressed by either
data address generator.

Modified Addressing.

The DAG generates an address that is incremented by a value or a register.

Modify Instruction.

The data address generator (DAG) increments the stored address without
performing a data move.

Modify Registers.

A modify register is a data address generator (DAG) register that provides
the increment or step size by which an index register is pre- or post-modi-
fied during a register move.

Multifunction Computations.

Using the many parallel data paths within its computational units, the
processor supports parallel execution of multiple computational instruc-
tions. These instructions complete in a single cycle, and they combine
parallel operation of the multiplier and the ALU or dual ALU functions.
The multiple operations perform the same as if they were in correspond-
ing single-function computations.

Glossary

G-10 SHARC Processor Programming Reference

Multiplier.

This part of a processing element does floating-point and fixed-point mul-
tiplication and executes fixed-point multiply/add and multiply/subtract
operations.

Nonzero numbers.

Nonzero, finite numbers are divided into two classes: normalized and
denormalized.

Neighbor Data Registers.

In long word addressed accesses, the processor moves data to or from two
neighboring data registers. The least-significant-32 bits moves to or from
the explicit (named) register in the neighbor register pair. In forced long
word accesses (normal word address with LW mnemonic), the processor
converts the normal word address to long word, placing the even normal
word location in the explicit register and the odd normal word location in
the other register in the neighbor pair.

Peripherals.

This refers to everything outside the processor core. The SHARC proces-
sors’ peripherals include internal memory, parallel port, I/O processor,
JTAG port, and any external devices that connect to the processor.
Detailed information about the peripherals is found in the product-spe-
cific hardware reference.

Peripheral Clock.

The peripheral clock controls the processor’s peripherals and is defined as
(Peripheral) Clock Period = 2 × tCCLK.

Phase Locked Loop (PLL).

An on-chip frequency synthesizer that produces a full speed master clock
from a lower frequency input clock signal.

SHARC Processor Programming Reference G-11

Glossary

Post-Modify Addressing.

The data address generator (DAG) provides an address during a data move
and auto-increments the stored address for the next move.

Precision.

The precision of a floating-point number depends on the number of bits
after the binary point in the storage format for the number. The processor
supports two high precision floating-point formats: 32-bit IEEE sin-
gle-precision floating-point (which uses 8 bits for the exponent and 24
bits for the mantissa) and a 40-bit extended precision version of the IEEE
format.

Pre-Modify Addressing.

The data address generator (DAG) provides a modified address during a
data move without incrementing the stored address.

Register File.

This is the set of registers that transfer data between the data buses and the
computation units and DAGs. These registers also provide local storage
for operands and results.

Register Swaps.

This special type of register-to-register move instruction uses the special
swap operator, <->. A register-to-register swap occurs when registers in
different processing elements exchange values.

ROM (Read-Only Memory).

A data storage device manufactured with fixed contents. This term is most
often used to refer to non-volatile semiconductor memory.

Glossary

G-12 SHARC Processor Programming Reference

Saturation (ALU Saturation Mode).

In this mode, all positive fixed-point overflows return the maximum posi-
tive fixed-point number (0x7FFF FFFF), and all negative overflows return
the maximum negative number (0x8000 0000).

SHARC.

This is an acronym for Super Harvard Architecture. This processor archi-
tecture balances a high performance processor core with high performance
buses (PM, DM, I/O, I/O1, I/O2).

SIMD (Single-Instruction, Multiple-Data).

A parallel computer architecture in which multiple data operands are pro-
cessed simultaneously using one instruction.

Stack, hardware.

A data structure for storing items that are to be accessed in last in, first out
(LIFO) order. When a data item is added to the stack, it is “pushed”;
when a data item is removed from the stack, it is “popped.”

Subroutines.

The processor temporarily interrupts sequential flow to execute instruc-
tions from another part of program memory.

Stalls.

The time spent waiting for an operation to take place. It may refer to a
variable length of time a program has to wait before it can be processed, or
to a fixed duration of time, such as a machine cycle. When memory is too
slow to respond to the CPU’s request for it, wait states are introduced
until the memory can catch up.

SHARC Processor Programming Reference G-13

Glossary

Three-State Versus Tristate.

Analog Devices documentation uses the term “three-state” instead of “tri-
state” because Tristate™ is a trademarked term, which is owned by
National Semiconductor.

Universal Registers (Ureg).

These are any processing element registers (data registers), any data
address generator (DAG) registers, any program sequencer registers.

Von Neumann Architecture.

This is the architecture used by most (non-processor) microprocessors.
This architecture uses a single address and data bus for memory access.

Wait States.

See Stalls

Glossary

G-14 SHARC Processor Programming Reference

SHARC Processor Programming Reference I-1

I INDEX

Numerics
16-bit

floating-point data, 11-84, 11-85
floating-point format, 3-29, C-4
memory block, 7-14
memory organization, 7-12
packing, floating point, C-4

32-bit
fixed-point format, C-6
single-precision floating-point format,

C-2
40-bit

addressable memory, 7-19
extended-precision floating-point

format, C-3
floating-point operands, 3-13
register-to-register transfers, 2-10

48-bit
access, 7-1
data transfers (PX register), 2-11
instructions, 7-20

64-bit
ALU product (multiplier), C-6
data passing, 1-9
PX register, 2-10
signed fixed-point product, C-6
unsigned fixed-point product, 3-36
unsigned integer, C-6

A
ABS (absolute value) computation, 11-14,

11-26, 11-27, 11-31
absolute address, G-4
AC (ALU fixed-point carry) bit, 3-9, A-17
access between DM or PM and a universal

register, 9-13, 9-53, 9-56
access between DM or PM and the register

file, 9-18
accessing memory, 7-19
addition

computation, 11-2
with borrow computation, 11-10
with carry computation, 11-4, 11-9
with division computation, 11-6

address
calculating, 7-18

addressing
and address ranges, 7-19
even short words, 7-28
gaps in, 7-19
odd short words, 7-28
short versus long word, 7-19
short word, 7-19
storing top-of-loop addresses, A-10

AF (ALU floating point operation) bit, 3-9,
A-19

AI (ALU floating-point invalid operation)
bit, 3-9, A-18

AIS (ALU floating-point invalid) bit, 3-10,
A-23

aligning data, 7-12

Index

I-2 SHARC Processor Programming Reference

alternate registers, 1-7
See also secondary registers

ALU, 1-4, 3-1, 3-6
ALUSAT (ALU saturation) bit, 3-37
carry (AC) bit, 3-9, A-17
fixed-point overflow (AOS) bit, 3-10,

A-23
floating-point operation (AF) bit, 3-9,

A-19
floating-point underflow (AUS) bit, 3-9
instructions, 3-6, 3-10
operations, 3-6, 11-1, 12-3
overflow (AV) bit, 3-9
result negative (AN) bit, 3-9
result zero (AZ) bit, 3-9, A-17
saturation, 3-37, 11-2 to 11-5, 11-9 to

11-14, 11-37
saturation (ALUSAT) bit, A-5
status, 3-4, 3-9, 3-10, 3-37
x-input sign (AS) bit, 3-9, A-17

AN (ALU result negative) bit, 3-9, A-17
AN (ALU result negative) flag, 11-7, 11-29
AND, logical, 3-11, 9-20, 9-34, 9-38, 9-46
AND breakpoints (ANDBKP) bit, A-29,

A-50
AND (logical) computation, 11-16
AOS (ALU fixed-point overflow) bit, 3-10,

A-23
arithmetic

operations, 3-6, 3-7
shift, 11-61, 11-62
shifts, G-1
status flags, A-33

AS (ALU x-input sign) bit, 3-9, A-17
ASHIFT computation, 11-61, 11-62
ASTATx/y (arithmetic status) registers,

3-4, 3-9, 3-18, 11-4, A-34, A-35
asynchronous

clock (external TCK), 8-8
transfers, G-1

AUS (ALU floating-point underflow) bit,
3-9, A-23

automatic breakpoints, 8-17
AV (ALU overflow) bit, 3-9, A-17
AVS (ALU floating-point overflow) bit,

3-9, A-23
AZ (ALU result zero or floating-point

underflow) bit, 3-9, A-17
AZ flag, 11-7, 11-29

B
background registers, 1-7

See also secondary registers
background telemetry channel (BTC), 8-15
base (Bx) registers, A-26, G-1
BCLR computation, 11-64
BFFWRP (load bit FIFO writer pointer)

computation, 11-89
BFFWRP (move bit FIFO write pointer)

computation, 11-88
BHO (buffer hang override) bit, A-30
BITDEP (bit FIFO deposit) computation,

11-86
BITEXT (bit FIFO extract) computation,

11-90
bit FIFO, 3-27

interrupts, 3-28
status flag and bit (SF), 3-30
write pointer instruction (BFFWRP),

3-27
bit manipulation, 3-21, 9-66, G-1
bit-reverse addressing, G-2
bits

ALU carry (AC), 3-9
ALU fixed-point overflow (AOS), 3-10
ALU floating-point overflow (AVS), 3-9
ALU floating-point underflow (AUS),

3-9
ALU result negative (AN), 3-9
ALU result zero (AZ), 3-9

SHARC Processor Programming Reference I-3

Index

bits (continued)
ALU x-input sign (AS), 3-9
AV (ALU overflow), 3-9
BHO (buffer hang override), A-30
bit-reverse address enable (BRx), A-4
cache disable (CADIS), A-8
cache freeze (CAFRZ), A-8
circular buffer x overflow (CBxS), A-24
compare accumulation (CCAC), 3-9
illegal input condition detected (IICD),

7-25
illegal I/O processor register access enable

(IIRAE), 7-25
internal memory data width (IMDWx),

7-20
nesting multiple interrupt enable

(NESTM), A-5
overwriting, 7-19
PC stack full (PCFL), A-24
shifter input sign (SS), C-6
shifter overflow (SV), C-6
shifter zero (SZ), C-6
unaligned 64-bit memory access

(U64MA), 7-25, A-8, A-24
bit stream manipulation instructions, 3-27
bit test (BTST) instruction, 3-5
bit test flag (BTF) bit, 9-66, A-20
block conflicts, memory, 4-83
boolean operator

AND, 3-11, 9-20, 9-34, 9-38, 9-46
OR, 9-29, 11-17, 11-62, 11-70, 11-81,

12-3, 12-10, A-48, A-49
boundary scan, 8-7, 8-22
boundary-scan register, 8-8
branch, direct, G-4
breakpoint

automatic, 8-6
hardware, 8-6
latency, 8-21
output (BRKOUT) pin, A-28

breakpoint (continued)
restrictions, 8-6
software, 8-6
stop (BKSTOP) bit, A-27
triggering mode (xMODE) bit, A-29
types, 8-20

break point control register (BRKCTL),
8-17

broadcast load, A-6, G-2
enable (BDCSTx) bits, A-6

broadcast loading, 7-52
BSET (bit set) computation, 11-65
BTC (background telemetry channel), 8-15
BTF (bit test flag) bit, A-20
BTGL (bit toggle) computation, 11-66
BTST (bit test) computation, 11-67
BTST (bit test) instruction, 3-5
buses

bus exchange register, 2-10
bus master select (CSEL) bits, A-5
bus slave defined, G-2
data access types, 7-27
master, A-5
structure, 7-11

bus exchange, 2-3
Bx (base) registers, A-26, G-1
BYPASS instruction, 8-5

C
CACCx (compare accumulation) bits, 3-9,

A-20
cache, 4-5, 4-79 to 4-88

cache disable (CADIS) bit, A-8
cache freeze (CAFRZ) bit, A-8
conflict in memory, 7-3
controlling, 4-79
disable (external memory), 4-89
external instruction fetch, 4-82
flush, 9-70
flushing, 4-86

Index

I-4 SHARC Processor Programming Reference

cache (continued)
freezing, 4-90
hit, 4-81, 4-82, 4-84
inefficient use of, 4-88
instruction, defined, 1-8
instruction fetch and, 4-79
instructions, 4-83
invalidate instruction, 4-86
miss, 4-80
restrictions, 4-89

CADIS (cache disable) bit, A-8
CAFRZ (cache freeze) bit, A-8
calculating starting address (32-bit

addresses), 7-18
CBxI (circular buffer x overflow interrupt)

bit, A-40
CBxS (circular buffer x overflow) bit, A-24
circular buffer addressing, 1-7, A-6, G-3

See also mode control (MODEx)
registers

enable (CBUFEN) bit, A-6
circular buffering, length and base registers,

A-26
circular buffering enable (CBUFEN) bit,

9-29, 9-69
circular buffer x overflow interrupt (CBxI),

A-40
Cjump/Rframe (Type 25) instruction, 9-73
CLIP computation, 11-22, 11-48
clip instruction, 3-8
clock input (CLKIN) pin, 8-8
clocks and system clocking

CLKIN pin, 8-8
external clock (TCK), 8-8

companding (compressing/expanding),
G-3

compare accumulation (CACC) bits, 3-9
COMP computation, 11-7, 11-29
complementary registers, G-6

complement (Fn = –Fx) computation,
11-30

complement (Rn = –Rx) computation,
11-13

COMPU computation, 11-8
computation

ABS, 11-14, 11-26, 11-27, 11-31
addition, 11-2, 11-24
addition/division ((Rx + Ry)/2), 11-6
addition with borrow, 11-10
addition with carry, 11-4, 11-9
AND (logical), 11-16
ASHIFT, 11-61, 11-62
BCLR, 11-64
BFFWRP, 11-88, 11-89
BITDEP, 11-86
BITEXT, 11-90
BSET, 11-65
BTGL, 11-66
BTST, 11-67
CLIP, 11-22, 11-48
COMP, 11-7, 11-29
complement (Fn = –Fx), 11-30
complement (Rn = –Rx), 11-13
COMPU, 11-8
COPYSIGN, 11-45
decrement (Rn = Rx – 1), 11-12
division (Fx + Fy)/2, 11-28
dual add/subtract, 3-33
EXP, 11-80, 11-81
FDEP, 11-68, 11-70, 11-72, 11-74
FEXT, 11-76, 11-78
FIX, 11-37
FLOAT, 11-39
FPACK, 11-84
FUNPACK, 11-85
increment, 11-11
LEFTO, 11-83
LEFTZ, 11-82
LOGB, 11-36

SHARC Processor Programming Reference I-5

Index

computation (continued)
LSHIFT, 11-59, 11-60
MANT, 11-35
MAX, 11-21, 11-47
MIN, 11-20, 11-46
multiplication, 11-50, 11-57
multiplication/addition (Rn = MRF + Rx

* Ry mod2), 11-51
multiplication/subtraction (Rn = MRF –

Rx * Ry mod2), 11-52
NOT, 11-19
OR (logical), 11-17
PASS, 11-15, 11-32
RECIPS, 11-41
RND, 11-33, 11-54
ROT, 11-63
RSQRTS, 11-43
SAT, 11-53
SCALB, 11-34
subtraction, 11-3
subtraction (Fn = Fx – Fy), 11-25
subtraction with borrow, 11-5
transfer (MR = RN/Rn = MR), 11-56
TRUNC, 11-37
XOR (logical), 11-18
zero (MRF = 0), 11-55

computational mode
setting, 3-36
status, using, 3-4

compute/dreg«···»DM|PM, immediate
modify (Type 4), 9-17

compute/dreg«···»DM/dreg«···»PM (Type
1), 9-7

compute/modify (Type 7), 9-28, 9-29
compute (Type 2), 9-10
compute (Type 2c), 9-10
compute/ureg«···»DM|PM, register modify

(Type 3), 9-12
compute/ureg«···»ureg (Type 5), 9-22

conditional
branches, G-3
call, 9-32, 9-36
instructions, 9-10
jump, 9-32, 9-36, 9-40
loop (DO), 9-49

context switch, 1-7
converting numbers, 3-29
COPYSIGN computation, 11-45
counter-based loops See also non

counter-based loops
CROSSCORE software, 1-12
CURLCNTR (current loop counter)

register, A-12
current loop counter (CURLCNTR)

register, 3-1, 9-48, A-12

D
DADDR (decode address) register, A-9
DAGs, 2-3

32-bit
modifier, 6-13

64-bit
DM and PM bus transfers, 6-5

addressing
post-modify, pre-modify, modify,

bit-reverse, or circular buffer, 6-1
with DAGs, 6-11

addressing with, 6-11
alternate DAG registers, 6-28
base (Bx) registers, 6-2, 6-23
broadcast load, 6-1
buffer, circular, 6-21
buffer overflow, circular, 6-20, 6-22
Bx (base) registers, 6-2, 6-23
CBUFEN (circular buffer enable) bit,

6-19, 6-24
circular buffer addressing, 6-19, 6-20
circular buffer addressing enable

(CBUFEN) bit, 6-19, 6-24

Index

I-6 SHARC Processor Programming Reference

DAGs (continued)
circular buffer addressing registers, 6-23
circular buffer addressing setup, 6-21
circular buffer enable (CBUFEN), 6-19,

6-24
circular buffer wrap, 6-22
data alignment, normal word, 6-8
data type, 6-4
defined, G-3
enable, circular buffer, 6-21
examples, long word moves, 6-9
index (Ix) registers, 6-2, 6-23
instructions, 6-15

dual data load, 6-24
interpreting, 6-2
modify, 6-12

Ix (index) registers, 6-2, 6-23
long word, 6-8
long word, data moves, 6-9
Lx (length) registers, 6-2, 6-23
memory, access types, 6-27
memory, access word size, 6-4
memory, data types, 6-4
modified addressing, 6-11
modify, immediate value, 6-13
modify, instruction, 6-12
modify address, 6-1
modify (Mx) registers, 6-2, 6-23
Mx (modify) registers, 6-2, 6-23
operations, 6-7
overview, 1-6
PEYEN (processing element Y enable)

bit, SIMD mode, 6-25, 6-26
post-modify addressing, 6-1
pre-modify addressing, 6-1
processing element Y enable (PEYEN)

bit, SIMD mode, 6-25, 6-26
register descriptions, A-25
registers, 6-1, A-25
registers, base, 6-2, 6-23

DAGs (continued)
registers, neighbor, 6-9
registers, secondary registers, 6-28
SIMD and long word accesses, 6-31
wrap around, buffer, 6-20, 6-22
wrap around circular buffer addressing,

6-22
data

access options, 7-27
alignment, 7-12
alignment in memory, 7-14
bus alignment, 2-10
(Dreg) registers, G-4
fixed- and floating-point, G-1
flow paths, 3-2
format in computation units, 3-4
numeric formats, C-1
packing and unpacking, 3-29, C-4

data address generator, See DAGs
data memory breakpoint hit (STATDx)

bit, A-52
data move, 1-9, 3-34

to/from PX, 2-11
data move conditional, 4-97
data register file, 2-2
data registers, 1-4, G-11
debug

JTAG, 8-1
decode address (DADDR) register, A-9
decrement (Rn = Rx – 1) computation,

11-12
delayed branch

(DB) instruction, 9-32, 9-36, 9-45
(DB) jump or call instruction, G-4

denormal operands, 3-38, G-4
development tools, 1-12
direct addressing, 9-53
direct jump|call (type 8), 9-32
division (Fx + Fy)/2 computation, 11-28

SHARC Processor Programming Reference I-7

Index

DMA
bus priority, A-46
defined, G-4
parameter registers, defined, G-5
sequences, TCB loading, G-5

DO UNTIL
counter expired (type 12), 9-48
(type 13), 9-49

dreg«···»DM|PM, immediate modify
(Type 4c), 9-17

dreg«···»DM (16-bit), register modify
(Type 3d), 9-13

dreg«···»DM/dreg«···»PM (Type 1c), 9-7
dual add/subtract, 3-33
dual processing element moves (broadcast

load mode), 7-52

E
edge-sensitive interrupts, A-7, G-5
EEMUINENS bit, A-53
EEMUINFULLS bit, A-53
EEMUOUIRQENS bit, A-52
EEMUOUTRDY bit, A-52
effect latency, A-32
EMUIDLE (Type 21d), 9-71
EMUI (emulator lower priority interrupt)

bit, A-39, A-41
emulator

boundary scan system, 8-8
enable (EMUENA) bit, A-27
interrupt (EMUI) bit, A-39, A-41
interrupt enable (EIRQENA) bit, A-27
TAP pins, 8-2
TAP reset state, 8-4

emulator lower priority interrupt (EMUI),
A-39, A-41

emulator registers
control shift (EMUCTL), A-27
EEMUSTAT (emulator status), 8-16
event count (EMUN), 8-13

emulator registers (continued)
event counter (EMUN), 8-13
instruction, 8-5
Nth event counter (EMUN), 8-13

enable
alternate registers, 3-40
breakpoint (ENBx) bit, A-29, A-50
(BRKOUT) pin, A-28
broadcast loading, 6-24, 6-25
circular buffering, 6-19
DAGs, 6-18
interrupts, 3-4
timer, 1-7, 5-1
timer (timing diagram), 5-4

endian format, G-5
enhanced emulation

feature enable (EEMUENS) bit, A-53
FIFO status (EEMUOUTFULLS) bit,

A-53
INDATA FIFO status

(EEMUINFULLS) bit, A-53
OUTDATA FIFO status

(EEMUOUTFULLS) bit, A-53
OUTDATA interrupt enable

(EEMUOUIRQENS) bit, A-52
OUTDATA ready (EEMUOUTRDY)

bit, A-52
examples

BITDEP instruction (bit deposit), 3-27
bit FIFO header creation, 3-28
bit FIFO header extraction, 3-27
bit FIFO store/restore, 3-28
clearing FLAG bit (exception detected),

3-44
IIR biquad, 3-34
MAC and parallel read with data

depedency, 3-34
multifunction data move, 3-34
programming memory-to-memory

DMA, 8-11

Index

I-8 SHARC Processor Programming Reference

examples (continued)
shift immediate instruction, SIMD

mode, 3-41
EXP (exponent) computation, 11-80,

11-81
explicit versus implicit operations, G-6
exponent

derivation, G-1
unsigned, C-2

extended precision normal word, 7-12
data access, 7-44, 7-45
SISD mode access, 7-47

external port stop (EPSTOP) bit, A-28
EXTEST instruction, 8-5

F
FADDR (fetch address) register, A-9, A-10
FDEP (field deposit) computation, 11-68,

11-70, 11-72, 11-74
fetch address (FADDR) register, A-9, A-10
FEXT computation, 11-76, 11-78
field alignment, 11-68, 11-72, 11-76
field deposition/extraction, G-1
FIFO, shifter, 3-27
FIX computation, 11-37
fixed-point

ALU instructions, 3-11
ALU operations, 12-3
data, G-1
formats, C-6
multiplier instructions, 3-19
multiplier operations, 12-5
operands, 3-7, A-17
operations, ALU, 11-1, 12-3
overflow interrupt (FIXI) bit, A-40
product, 64-bit, C-6
product, 64-bit unsigned, 3-36
saturation values, 3-17

fixed-point overflow error, B-4
flag

input/output (FLAGx) pins, A-14
input/output value (FLAGS) register,

A-13
update, 3-5, 3-30, G-6
use with NAN, C-2

FLAGS
FLAGx pins, A-14
register, A-13
register, stalls in, A-34

FLOAT computation, 11-39
floating-point

ALU instructions, 3-12
ALU operations, 12-3
data, 3-39, G-1
invalid operation interrupt (FLTII) bit,

A-41
multiplier instructions, 3-21
multiplier operations, 3-33, 12-5
overflow error, B-4
overflow interrupt (FLTOI) bit, A-40
underflow interrupt (FLTUI) bit, A-17,

A-40
FLTII (floating-point invalid operation

interrupt) bit, A-41
flush cache command, 4-86
formats

See also data format
16-bit floating-point, C-4
40-bit floating-point, C-3
64-bit fixed-point, C-6
fixed-point, 3-17, C-6
integer, fractional, 3-7, 3-14
numeric, C-1
packing (Fpack/Funpack) instructions,

3-29
short word, C-4

SHARC Processor Programming Reference I-9

Index

FACK (floating-point pack) computation,
11-84

FPACK/FUNPACK (floating-point
pack/unpack) instructions, C-4

fractional
input(s), 3-20
results, 3-14, C-6

freezing the cache, 4-90
FUNPACK (floating-point unpack)

computation, 3-29, 11-85

G
general-purpose IOP Timer 2 interrupt

mask (GPTMR2IMSK) bit, A-43
global interrupt enable, A-5
GPTMR2IMSK bit, A-43

H
hardware breakpoints, 8-17
Harvard architecture, 7-2, G-7

I
IDLE instruction, defined, G-7
IDLE (Type 21d), 9-71
idle (type 22), 9-72
IEEE 1149.1 JTAG standard, G-8
IEEE 754/854 standard, 3-37
IEEE floating-point number conversion,

3-29
IEEE standard 754/854, C-1
IICD (illegal input condition interrupt) bit,

7-25, A-39
IIRAE (illegal IOP register access enable)

bit, 7-25, A-8
IIRAE (illegal IOP register access

enable) bit, A-8
IIRA (illegal IOP register access) bit, A-24

illegal input condition detected (IICD) bit,
7-25, A-39

illegal IOP register access (IIRA) bit, A-24
illegal I/O processor register access enable

(IIRAE) bit, 7-25, A-8
IMASK (interrupt mask) register, A-36
IMASKP (interrupt mask pointer) register,

9-45, A-37
IMDWx (internal memory data width)

bits, 2-10, 7-20
immediate data···»DM|PM (Type 16),

9-60
immediate data···»ureg (Type 17)

instruction, 9-62
immediate data (16-bit)···»DM|PM

(Type 16c), 9-60
immediate data (16-bit)···»ureg (Type 17c)

instruction, 9-62
immediate shift/dreg«···»DM|PM (Type 6)

instruction, 9-25
immediate shift instruction, 12-9
implicit operations

complementary registers, 2-6
increment (Rn = Rx + 1) computation,

11-11
INDATA interrupt enable

(EEMUINENS) bit, A-53
index (Ix) registers, A-25, G-7
indirect addressing, 1-6, 9-60
indirect branch, G-7
indirect jump Call|Compute (Type 9)

instruction, 9-35
indirect jump Call (Type 9c) instruction,

9-36
indirect jump or compute/dreg«···»DM

(Type 10), 9-40
inexact flags, G-7
infinity, round-to, 3-38

Index

I-10 SHARC Processor Programming Reference

instruction
BYPASS, 8-5
clip, 3-8
conditional, 3-4
delayed branch (DB) JUMP or CALL,

G-4
FDEP (field deposit), 3-24
FPACK (floating-point pack), C-4
FUNPACK (floating-point unpack),

C-4
Group I (Compute and Move), 9-1, 10-4
Group III (Immediate Move), 9-51
Group IV (Miscellaneous), 9-64, 9-74
multiplier, 3-13, 3-18
multiprecision, 3-8
(Type 10) indirect jump or

compute/dreg«···»DM, 9-40
(Type 11d) return from

subroutine|interrupt, 9-44
(Type 11) return from

subroutine|interrupt/compute, 9-44
(Type 12) do until counter expired, 9-48
(Type 13) do until, 9-49
(Type 14) ureg«···»DM|PM (direct

addressing), 9-53
(Type 15c) ureg«···»DM|PM 7-bit data

(indirect addressing), 9-56
(Type 15) ureg«···»DM|PM (indirect

addressing), 9-56
(Type 16c) immediate data

(16-bit)···»DM|PM, 9-60
(Type 16) immediate data···»DM|PM,

9-60
(Type 17c) immediate data (16-bit)

···»ureg, 9-62
(Type 17) immediate data ···»ureg, 9-62
(Type 18) system register bit

manipulation, 9-66
(Type 19) I register modify/bit-reverse,

9-69

instruction (continued)
(Type 1c) dreg«···»DM/dreg«···»PM, 9-7
(Type 1)

compute/dreg«···»DM/dreg«···»PM,
9-7

(Type 20) Push|Pop Stacks/Flush Cache,
9-70

(Type 21d) Nop | Idle | EMU Idle, 9-71
(Type 21) Nop, 9-71
(Type 22) Idle, 9-72
(Type 25) Cjump/Rframe, 9-73
(Type 25d) Rframe, 9-74
(Type 2c) compute, 9-10
(Type 2) compute, 9-10
(Type 3) compute/ureg«···»DM|PM,

register modify, 9-12
(Type 3c) ureg«···»DM|PM, register

modify, 9-12
(Type 3d) dreg«···»DM (16-bit), register

modify, 9-13
(Type 4)c dreg«···»DM|PM, immediate

modify, 9-17
(Type 4) compute/dreg«···»DM|PM,

immediate modify, 9-17
(Type 5) compute/ureg«···»ureg, 9-22
(Type 5c) ureg«···»ureg, 9-24
(Type 6) immediate

shift/dreg«···»DM|PM, 9-25
(Type 7) compute/modify, 9-28, 9-29
(Type 8) direct jump|call, 9-32
(Type 9c) indirect jump|call, 9-36
(Type 9) indirect jump|call / compute,

9-35
instruction address breakpoint hit

(STATIx) bit, A-52
instruction alignment buffer (IAB), 4-7
instruction cache, 1-6, 1-8, 9-70
instruction register, emulator, 8-5
instruction set

notation, 9-4

SHARC Processor Programming Reference I-11

Index

integer
input(s), 3-20
results, 3-14, C-6

interleaved data, G-8
interleaving data, 7-27
internal buses, 1-9
internal memory, 7-4, 7-23, G-8

data width (IMDWx) bits, 7-20
interrupt input x interrupt (IRQxI) bit,

A-39
interrupt latch (IRPTL) register, A-36
interrupt latch/mask (LIRPTL) registers,

A-41
interrupt mask (IMASK) control register,

A-36
interrupts, 1-7, 7-25, G-8

and floating-point exceptions, 3-4
enable, global (IRPTEN) bit, A-5
input x interrupt (IRQxI) bit, A-40
interrupt sensitivity, A-7, G-9
interrupt service routine (ISR), A-34
interrupt x edge/level sensitivity (IRQxE)

bits, A-7
JTAG, 8-20
latch (IRPTL) register, A-36
latch/mask (LIRPTL) register, A-41
latch status for, A-36
mask (IMASK) register, A-36
mask pointer (IMASKP) register, A-37
nesting, 4-41, A-5
response in sequencer, 4-30
sensitivity, interrupts, A-7

INTEST instruction, 8-5
I/O

and multiplier registers, 2-2
stop (IOSTOP) bit, A-28

I/O address breakpoint hit (STATI0) bit,
A-52

I/O processor
bus priority, A-46
registers, G-7

I register modify/bit-reverse (Type 19),
9-69

IRPTL (interrupt latch) register, A-36
IRQxE (interrupt sensitivity) bits, A-7
IRQxI (hardware interrupt) bits, A-40
ISR

programming issues, 9-37, 9-45
IVT (interrupt vector table) bit, 7-25
Ix (index) registers, A-25, G-7

J
JTAG

interrupts, 8-20
latency, 8-21
performance, 8-21
port, G-8
specification, IEEE 1149.1, 8-8, 8-22

JUMP instructions, G-8

L
LADDR (loop address) register, A-11
latch

characteristics, 8-8
status for interrupts, A-36

latency
effect, A-32
in FLAGS register, A-34
read, A-32

LCNTR (loop counter) register, 9-48, A-12
LEFTO computation, 11-83
LEFTO operation, A-19
LEFTZ computation, 11-82
LEFTZ (shifter) operation, A-19
level sensitive interrupts, A-7, G-9
LIRPTL (interrupt) registers, A-41

Index

I-12 SHARC Processor Programming Reference

LOGB (floating-point ALU) computation,
11-36

logical operations, 3-6
logical shifts, G-1
long word

data, 7-12
data access, G-10
single data, 7-48
SISD mode, 7-50

loop, G-9
address stack (LADDR) register, A-11
counter setup, 9-48
counter stack, 9-48
counter stack, access to, A-12
count (LCNTR) register, A-12
current counter (CURLCNTR) register,

2-3
loop abort (LA) instruction, 9-32, 9-36
reentry (LR) modifier, 9-45
stack, 9-32, 9-36, 9-49
stack empty (LSEM) bit, A-25
stack overflow (LSOV) bit, A-24
termination, A-10, A-11

LSEM (loop stack empty) bit, A-25
LSHIFT (logical shift) computation,

11-59, 11-60
LSOV (loop stack overflow) bit, A-24
Lx (length) registers, A-26, G-8

M
mantissa, 11-35
MANT (mantissa) computation, 11-35
map 1 and 2 registers, 10-31
master, bus, A-5
MAX computation, 11-21, 11-47
memory, G-8

access priority, 7-61
architecture, 7-2
banks of, G-9
blocks, G-9

memory (continued)
broadcast loading, 7-52
buses, 7-2
bus structure, 7-11
data bus alignment, 2-10
data width (IMDWx) bits, 2-10
internal memory data width bit

(IMDWx), 7-20
mixing 32-bit & 48-bit words, 7-14
mixing 32-bit and 48-bit words, 7-14
mixing 32-bit data and 48-bit

instructions, 7-13
mixing 40/48-bit and 16/32/64-bit data,

7-18
mixing instructions and data

two unused locations, 7-17, 7-18
mixing word width in SIMD mode, 7-63
mixing word width in SISD mode, 7-61
program memory bus exchange (PX)

register, 2-10
regions, 7-12 to 7-18
register-to-register moves, 2-10
transition from 32-bit/48-bit data, 7-17
writes, 7-23

memory transfers, 2-10
16-bit (short word), 7-28
32-bit (normal word), 7-36
40-bit (extended precision normal word),

7-44
64-bit (long word), 7-48
bus exchange (PX) registers, 2-10

MI (multiplier floating-point invalid) bit,
3-18, A-19

MIN (minimum) computation, 11-20,
11-46

MIS (multiplier floating-point invalid) bit,
3-18, A-24

MMASK (mode mask) register, A-44
MN (multiplier negative) bit, 3-18, A-18

SHARC Processor Programming Reference I-13

Index

mode 1 and 2 options and opcodes, 11-49,
12-7, 12-8

MODE1 register, 3-36, 3-38, A-4
mode mask (MMASK) register, A-44
modified addressing, G-9
modify

address, G-9
modify (Mx) registers, A-25, G-9
modify/update an I register with a DAG,

9-28, 9-29
modulo addressing, 1-7
MOS (multiplier fixed-point overflow) bit,

3-18, A-23
move data, 3-34
MRF (multiplier foreground) registers,

3-34, 9-11
MR (multiplier result) register transfers,

11-1
multifunction, multiplier and ALU, 12-17
multifunction, multiplier and dual add and

subtract, 12-17
multifunction, parallel add and subtract,

12-13
multifunction computations, 3-33, 3-35,

G-9
multifunction instructions, 11-1, 11-92,

12-13
registers, 12-13

multiplication/addition (Rn = MRF + Rx *
Ry mod2) computation, 11-51

multiplication computation, 11-50
multiplication (Fn = Fx * Fy) computation,

11-57
multiplication/subtraction (Rn = MRF –

Rx * Ry mod2) computation, 11-52
multiplier, 1-4, G-10

64-bit product, C-6
clear operation, 3-16
fixed-point overflow status (MOS) bit,

3-18, A-23

multiplier (continued)
floating-point invalid (MI) bit, 3-18,

A-19
floating-point invalid status (MIS) bit,

3-18, A-24
floating-point overflow status (MVS) bit,

3-18, A-23
floating-point underflow (MU) bit, 3-18,

A-19
floating-point underflow status (MUS)

bit, 3-18, A-23
input modifiers, 3-20
instructions, 3-13, 3-18
MRF/B (multiplier result

foreground/background) registers,
3-13, 3-14

operations, 3-13, 3-18, 11-49, 12-5
overflow (MV) bit, 3-18, A-18
registers, 2-4
rounding, 3-16
saturation, 3-17
status, 3-4, 3-18

multiply accumulator, 3-13
multiply accumulator, See also multiplier
multiprecision instruction, 3-8
MU (multiplier floating-point underflow)

bit, 3-18, A-19
MUS (multiplier floating-point underflow)

bit, 3-18, A-23
MV (multiplier not overflow) bit, 3-18,

A-18
MVS (multiplier floating-point overflow)

bit, 3-18, A-23
Mx (modify) registers, A-25, G-9

N
nearest, round-to, 3-38
negate breakpoint (NEGx) bit, A-28, A-49
nesting interrupts, 4-41

Index

I-14 SHARC Processor Programming Reference

nesting multiple interrupts enable
(NESTM) bit, A-5

no boot mode (NOBOOT) bit, A-30
NOP (Type 21), 9-71, 9-72
NOP (Type 21d), 9-71
normal word, 7-12

accesses with LW, G-10
mixing 32-bit data and 48-bit

instructions, 7-13
SIMD mode, 7-40, 7-42
SISD mode, 7-36, 7-38

not-a-number (NAN), 3-38
notation summary, instruction set, 9-2
NOT computation, 11-19
numbers, infinity, C-2

O
opcode acronyms, 10-1 to 10-4
operands, 3-13, 3-22, G-11

in ALU, 3-6
operands for multifunction computations,

3-35
OR, logical, 9-29, 11-17, 11-62, 11-70,

11-81, 12-3, 12-10, A-48, A-49
OR (logical) computation, 11-17
OSPIDENS (operating system process ID)

register enable bit, A-53
OSPID (operating system process ID),

A-53
overflow, ALU (AV) bit, 3-9
overflow and underflow, 3-30, C-5
overwriting bits, 7-19

P
packing (16-to-32 data), C-4
parallel

add and subtract, 11-92, 11-93, 12-13
multiplier and ALU, 12-13
multiplier with add and subtract, 12-17

parallel accesses to data and program
memory, 9-7

parallel operations, 3-33, G-9
PASS computation, 11-15, 11-32
PCEM (PC stack empty bit, A-24
PCEM (PC stack empty) bit, A-24
PCFL (PC stack full) bit, A-24
PC (program counter) register, G-4
PC (program counter) stack, 9-32, 9-36,

9-49
PCSTKP (PC stack pointer) register, A-11
peripheral clock (PCLK), 7-21
peripherals, described, G-10
PEYEN (processing element Y enable) bit,

SIMD mode, 3-40
pin

boundary scan (JTAG), 8-8
CLKIN (clock input), 8-8
flag, 2-4, A-13
timer expired (TMREXP), 5-2
TRST (test reset) pin, 8-2

pipeline use in, 4-5
porting from previous SHARCs

performance, 3-41
post-modify addressing, 1-7, G-11
precision

16-bit, 3-29
defined, G-11

pre-modify addressing, 1-7, G-11
primary registers, 1-7
processing elements, 1-3, 1-4, 3-1

data flow, 3-2
features, 3-2
shifter, 3-1

processing element Y enable (PEYEN) bit,
SIMD mode, 3-40

processor
buses, 1-9
core, 1-3
design advantages, 1-1

SHARC Processor Programming Reference I-15

Index

processor core, 1-3
access times for the core to any IOP

register, 7-8
block diagram, 1-4
buses, 1-8
IOP core registers, 7-7
memory block conflicts, preventing,

7-22
register types in, 2-2
stalls, 7-9
user status registers (USTAT), 2-9

program counter
relative address (PC) register, G-4
stack empty (PCEM) bit, A-24
stack full (PCFL) bit, A-24
stack pointer (PCSTKP) register, A-11

programmable interrupt bits, A-41 to A-43
program memory

breakpoint hit (STATPA) bit, A-52
bus exchange (PX) register, A-26

program memory bus exchange (PX)
register, 1-9, 2-10

program sequencer, 2-3
absolute address, 4-17
AC (ALU fixed-point carry) bit, 4-92
addressing

storing top-of-loop addresses, 4-12
ALU

carry (AC) bit, 4-92
AND, logical, 4-106
arithmetic

exception and interrupts, 4-27
loops, 4-53

ASTATx/y (arithmetic status) registers,
4-117

AV (ALU overflow) bit, 4-92
bit manipulation, 4-124
bit test flag (BTF), 4-92
bit XOR instruction, 4-92
block conflicts, 4-83

program sequencer (continued)
boolean operator AND, 4-106
branch conditional, 4-106
branch delayed, 4-19, 4-22
branch direct, 4-17
branch indirect, 4-17
branching execution, 4-15
branching execution direct and indirect

branches, 4-17
branch stalls in, 4-114
BTF (bit test flag) bit, 4-92
buffer instruction, 4-7
buses bus and block conflicts, 4-80
buses conflicts, 4-39
cache code examples, 4-88
cache disable (CADIS) bit, 4-89
cache efficient use of, 4-87
cache freeze (CAFRZ) bit, 4-90
cache hit, 4-81, 4-87
cache miss, 4-81, 4-87
cache restrictions on use, 4-89
CADIS (cache disable) bit, 4-89
CAFRZ (cache freeze) bit, 4-90
CALL instructions, 4-16
clock cycles and program flow, 4-5
complementary conditions, 4-106
conditional branches, 4-106
conditional complementary conditions,

4-106
conditional compute operations, 4-96
conditional conditions list, 4-92, 4-94
conditional execution summary, 4-95
conditional instructions, 4-124
conditional instruction stalls, 4-117
conditional SIMD mode and

conditionals, 4-94
condition codes, 4-92
conflicts block, 4-80
conflicts bus, 4-39, 4-80
control, 1-6

Index

I-16 SHARC Processor Programming Reference

program sequencer (continued)
core stalls, 4-109 to 4-117
counter-based loops, 4-60
DADDR (decode address) register, 4-4
decode address (DADDR) register, 4-3
delayed branch (DB) instruction, 4-19,

4-22, 4-23
delayed branch (DB) jump or call

instruction, 4-22
delayed branch limitations, 4-23
delayed interrupt processing, causes,

4-39
DO UNTIL instruction, 4-47
DO UNTIL loops, 4-47
edge-sensitive interrupts, 4-121
enable cache, 4-89
enable nesting, interrupt, 4-32
equals (EQ) condition, 4-92, 4-94
examples cache inefficient code, 4-87
examples direct branch, 4-17
examples DO UNTIL loop, 4-51
examples interrupt service routine, 4-36
fetch address (FADDR) register, 4-3
fetched address, 4-3
flag input (FLAGx_IN) conditions, 4-93
greater or equals (GE) condition, 4-92
greater than (GT) condition, 4-92
IDLE instruction, 4-2
indirect branch, 4-18
instruction (bit), 4-124
instruction bit XOR, 4-92
instruction CALL, 4-16
instruction delayed branch (DB), 4-19,

4-22, 4-23
instruction delayed branch (DB) JUMP

or CALL, 4-22
instruction DO UNTIL, 4-47
instruction INNER, 4-87
instruction loop counter expired (LCE),

4-51

program sequencer (continued)
instruction OUTER, 4-87
instruction pipeline, 4-3
instruction pipeline counter-based four

instruction loops, 4-67
instruction pipeline counter-based single

instruction loops, 4-60 to 4-63
instruction pipeline counter-based three

instruction loops, 4-66
instruction pipeline counter-based two

instruction loops, 4-64 to 4-65
instruction pipeline stalls, data and

control, 4-110
instruction pipeline stalls, structural,

4-110
instruction pipeline stalls in, 4-109
interrupt response, 4-30
interrupt sources, 4-33
interrupts single-cycle instruction

latency, 4-32
JUMP instructions, 4-1, 4-16
JUMP instructions, stalls caused by,

4-118
JUMP instructions clear interrupt (CI)

register, 4-17
JUMP instructions loop abort (LA)

register, 4-17
JUMP instructions pops status stack with

(CI), 4-14
LA (loop abort instruction), 4-17
latching interrupts, 4-35
latency, 4-30, 4-90, 4-124
latency effect in MODE2 register, 4-89
latency system registers, 4-124
LCE (loop counter expired condition),

4-116
loop abort (LA) modifier in a jump

instruction, 4-17, 4-47, 4-55, 4-118
loop address stack, 4-48, 4-124
loop conditional loops, 4-51

SHARC Processor Programming Reference I-17

Index

program sequencer (continued)
loop counter expired (LCE) instruction,

4-51
loop counter register, defined, 4-51
loop defined, 4-1
loop do/until instruction, 4-51
loop restrictions, 4-55, 4-59
masking interrupts, 4-30
mnemonics evaluation of, 4-92
nested interrupt routines, 4-124
nesting multiple interrupts enable

(NESTM) bit, 4-12, 4-13
not equal (NE), 4-92, 4-94
pop program counter (PC) stack, 4-16
pop status stack, 4-14
processor core stalls, 4-109 to 4-119
program flow branches, 4-15 to 4-26
program flow hardware stacks and, 4-10
program flow nonsequential, 4-10
program flow operating mode, 4-26
program flow stack access and, 4-12
push loop counter stack, 4-50
push program counter (PC) stack, 4-16
push status stack, 4-14
restrictions delayed branch, 4-23
restrictions on ending loops, 4-55
restrictions on short loops, 4-59
return (RTI/RTS) instructions, 4-16
RTI/RTS (return from/to interrupt)

instructions, 4-16
sensing interrupts, 4-121
stack overview, 4-11
stacks status, 4-28
stacks status, current values in, 4-14
stalls data and control, 4-111
stalls in branches, 4-114
stalls in conditional branches, 4-115
stalls instruction pipeline, 4-109 to

4-120
stalls structural, 4-110

program sequencer (continued)
stalls to optimize performance, 4-118
stalls with JUMP(LA) modifier, 4-118
status stack, 4-15
subroutines, 4-1
SV (shifter overflow) bit, 4-93
termination codes, condition codes and

loop termination, 4-92
test flag (TF) condition, 4-93
top-of-loop address, 4-46
top-of-PC stack, 4-13
uncomplemented register, 4-96
underflow, multiplier, 4-92
VISA instruction alignment buffer, 4-7

program sequencer bits
cache disable (CADIS), 4-89
cache freeze (CAFRZ), 4-90
least recently used (LRU), 4-87
nesting multiple interrupt enable

(NESTM), 4-12, 4-13
program sequencer interrupts, 4-2

and sequencing, 4-26
delayed, 4-39
hold off, 4-39
inputs (IRQ2-0), 4-26
interrupt service routine (ISR), 4-28
interrupt vector table, 4-27
interrupt vector table (IVT), 4-26
interrupt x edge/level sensitivity (IRQxE)

bits, 4-122
latching, 4-35
latch (IRPTL) register, 4-16
latch/mask (LIRPTL) register, 4-30
latency, 4-30
masking and latching, 4-30, 4-35
nested interrupts, 4-14
nesting enable (NESTM) bit, 4-12, 4-13
PC stack full, 4-13
processing, 4-28
response, 4-27

Index

I-18 SHARC Processor Programming Reference

program sequencer interrupts (continued)
re-using, 4-36

push|pop stacks/flush cache (Type 20),
9-70

PX (program memory bus exchange)
register, 1-9, 2-10, A-26

R
read latency, A-32
RECIPS (reciprocal) computation, 11-41
Reference Notation Summary, 9-2
register codes , 10-31
register drawings, reading, A-2
register files, G-11
registers

See also timer registers
ASTATxy, 3-4, 3-9
base, A-26, G-1
boundary, 8-8
BRKCTL (breakpoint control), 8-17
complementary, G-6
DAG, A-25
data, 1-4, G-11
decode address (DADDR), A-9
for multifunction computations, 12-13
MODE1, 3-36, 3-38
neighbor, 7-48, 7-50
program memory bus exchange (PX),

2-10
restrictions on data registers, 3-33
STKYxy (sticky), 3-5
universal (Ureg), 1-9, G-13
user-defined status (USTATx), A-27

register-to-register
swaps, G-11

register-to-register data transfers, 2-10
register types summary, 2-2

reset interrupt (RSTI) bit, A-39
restrictions

breakpoints, setting, 8-7
mixing 32- and 48-bit words, 7-16
register, 9-7

return from an interrupt service routine
(RTI), 9-44

return from a subroutine (RTS), 9-33,
9-37, 9-44, 9-45

return from subroutine | interrupt,
compute (Type 11), 9-44

return from subroutine | interrupt
(Type 11d), 9-44

Rframe/Cjump (Type 25) instruction,
9-73

Rframe (Type 25d) instruction, 9-74
RND (round) computation, 11-33, 11-54
ROT (rotate) computation, 11-63
rounded output, 3-20
rounding, 3-38
rounding 32-bit data (RND32) bit, A-5
rounding mode, 3-38, A-5
round instruction, 3-17
RSQRTS (reciprocal square root)

computation, 11-43
RSTI (reset interrupt) bit, A-39

S
SAMPLE (emulator) instruction, 8-5
SAT computation, 11-53
saturate instruction, 3-17
saturation (ALU saturation mode), G-12
saturation maximum values, 3-17
saturation mode, 11-2, 11-3, 11-4, 11-5,

11-9, 11-10, 11-11, 11-12, 11-13,
11-14, 11-36, 11-37

SCALB (scale) computation, 11-34

SHARC Processor Programming Reference I-19

Index

secondary registers, 1-7, A-4
for computational units (SRCU) bit, A-4
for DAGs (SRDxH/L) bits, A-4
for register file (SRRFH/L) bit, A-4

secondary registers for DAGs (SRDxH/L)
bits, A-4

secondary registers for register file
(SRRFH/L) bit, A-4

serial test access port (TAP), 8-8
setting breakpoints, 8-17
SFTx (user software interrupt) bits, A-41
shadow write FIFO, 7-23
SHARC architecture, G-12

background information, 1-10
porting from previous SHARCs, 1-10

shifter, 1-4, 1-5, 3-21, G-1
bit manipulation operations, 3-21
bit stream manipulation instructions,

3-27
FIFO, 3-27
fixed-point/floating-point conversion,

3-21
immediate operation, 12-9
instructions, 3-29, 3-31, 3-32
operations, 3-22, 3-30, 11-58, 12-9,

12-10, A-19
results, 3-23
status flags, 3-30

shifter input sign (SS) bit, A-20, C-6
shifter overflow (SV) bit, C-6
shifter zero (SZ) bit, C-6
short (16-bit data) sign extend (SSE) bit,

A-5
short float data format, 11-84, 11-85
short word, 7-12

16-bit format, C-4
SIMD mode, 7-32, 7-34, 7-40
SISD mode, 7-28, 7-29

short word sign extension bit (SSE), 3-37

signals
clock, G-7
core clock (CCLK), 7-11
test clock (TCK), 8-2, 8-8

signed
fixed-point product, C-6
input, 3-20

sign extension, A-5
SIMD (single-instruction, multiple-data)

mode, 1-5, A-6
broadcast load mode, 6-24
complementary registers, 2-6
complimentary register pairs, 2-6
complimentary registers, 10-30
DAG operations and, 6-26
defined, 3-40
memory access and, 7-28
processing elements, 3-40
register transfers (UREG/SREG), 2-16
shift immediate instruction, 3-40
status flags, 3-5
Type 10 instruction, 9-41
Type 11 instruction, 9-46
Type 12 instruction, 9-48
Type 13 instruction, 9-49
Type 14 instruction, 9-53
Type 15 instruction, 9-57
Type 16 instruction, 9-60
Type 17 instruction, 9-62
Type 18 instruction, 9-67
Type 19 instruction, 9-69
Type 1 instruction, 9-7, 9-9
Type 20 instruction, 9-70
Type 2 instruction, 9-10
Type 3 instruction, 9-14
Type 4 instruction, 9-18
Type 5 instruction, 9-22
Type 6 instruction, 9-25
Type 7 instruction, 9-29
Type 8 instruction, 9-33

Index

I-20 SHARC Processor Programming Reference

SIMD (single-instruction, multiple-data)
mode (continued)

Type 9 instruction, 9-37
single-precision format, 3-37
single serial shift register path, 8-8
single-step (SS) bit, A-27
SISD (single-instruction, single-data) mode

defined, 1-5
software breakpoints, 8-17
software interrupt (SFT0x) bit, A-41
software interrupt x, user (SFTxI) bit, A-41
software pipelining, 3-33
software reset (SRST) bit, A-46
software reset (SYSRST) bit, A-28
SOVFI (stack overflow/full) bit, A-39
SP0I (serial port interrupt) bit, A-43
SP2I (serial port interrupt) bit, A-43
SP4I (serial port interrupt) bit, A-43
SPI receive DMA interrupt mask

(SPILIMSKP) bit, A-44
SPORT transmit channel 4 (SP4I), A-43
SSEM (status stack empty) bit, A-24
SS (shifter input sign) bit, A-20, C-6
stack overflow/full interrupt (SOVFI) bit,

A-39
stacks

PC (program counter) latency in, A-32
SSOV (status stack overflow) bit, A-24

stalls
for backward compatibility, A-32

STATDAx (data memory breakpoint hit)
bit, A-52

STATI0 (I/O address breakpoint hit) bit,
A-52

STATIx (instruction address breakpoint
hit) bit, A-52

STATPA (program memory data
breakpoint hit) bit, A-52

status stack, 9-45, 9-70
status stack empty (SSEM) bit, A-24

status stack overflow (SSOV) bit, A-24
sticky status (STKYx/y) register, 3-5, A-19,

A-21
STKYx/y register, 3-5, A-19, A-21
subroutines, G-12
subtraction computation, 11-3
subtraction (Fn = Fx – Fy) computation,

11-25
subtraction with borrow computation,

11-5
subtract/multiply, G-10
SV (shifter overflow) bit, A-19, C-6
swap between universal registers, 9-22
swap register operator, G-11
SYSCTL register

internal memory data width (IMDWx)
bits, A-46

rotating priority bus arbitration (RBPR)
bit, A-46

SRST (software reset) bit, A-46
SYSCTL (system control) register, A-45
system control register. See SYSCTL

register
system control register (SYSCTL), 7-12,

7-19, 7-20, A-28
system register bit manipulation (Type 18),

9-66
system registers (SREG), 2-4
SZ (shifter zero) bit, A-20, C-6

T
TAP registers

boundary-scan, 8-8
TCK pin, 8-2
TDI (test data in) pin, 8-2
technical support, xxxvi
termination condition, 9-48, 9-49
test access port, See TAP, emulator
test clock (TCK) pin, 8-2
test data input (TDI) pin, 8-2

SHARC Processor Programming Reference I-21

Index

test mode
JTAG, 8-1

TIMEN (timer enable) bit, A-8
timer, 1-7, 2-3
timer expired high priority (TMZHI),

A-39
timer expired low priority (TMZLI), A-40
TMS (test mode select) pin, 8-2
TMZHI (timer expired high priority) bit,

A-39
TMZLI (timer expired low priority) bit,

A-40
tools, development, 1-12
transfer between universal registers, 9-22
transfer (MR = RN/Rn = MR)

computation, 11-56
tri-state vs. three-state, G-13
TRST (test reset) pin, 8-2
truncate, rounding (TRUNC) bit, A-5
TRUNC computation, 11-37
two’s-complement data, 3-7

U
U64MA bit, 7-25, A-8, A-24
UMODE (user mode breakpoint function

enable) bit, 8-17
unaligned 64-bit memory access (U64MA)

bit, A-8
underflow, 11-84, 11-85
underflow exception, 3-38
universal registers (Ureg), 1-9, 2-2, 2-10,

9-53, 9-56, 10-31, G-13
unpacking (32-to-16-bit data), C-4
unsigned

fixed-point product, 3-36
input, 3-20

update an I register with an M register, 9-28
ureg«···»DM|PM, register modify

(Type 3c), 9-12

Ureg«···»DM|PM 7-bit data (indirect
addressing) (Type 15c), 9-56

Ureg«···»DM|PM (direct addressing)
(Type 14), 9-53

Ureg«···»DM|PM (indirect addressing)
(Type 15), 9-56

ureg«···»ureg (Type 5c), 9-24
user-defined status registers (USTATx)

registers, A-27
user-defined status (USTATx) register,

A-27
USTATx registers, A-27

V
valid data registers for input operands,

12-14
values, saturation maximum, 3-17
VISA instructions, 9-7, 9-10, 9-12, 9-13,

9-17, 9-24, 9-36, 9-44, 9-60, 9-62,
9-71, 9-74

Von Neumann architecture, 7-2, G-13

W
wait states, defined, G-13
word rotations, 7-14
write 32-bit immediate data to DM or PM,

9-60
write 32-bit immediate data to register,

9-62
writing memory, 7-23

X
XOR (logical) computation, 11-18

Z
zero, round-to, 3-38
zero (MRF = 0) computation, 11-55

Index

I-22 SHARC Processor Programming Reference

	SHARC
 Processor Programming Reference
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Diagram Conventions

	1 Introduction
	SHARC Design Advantages
	Architectural Overview
	Processor Core
	Dual Processing Elements
	Program Sequence Control
	JTAG Port
	Core Buses
	I/O Buses

	Differences From Previous SHARC Processors
	Development Tools

	2 Register Files
	Features
	Functional Description
	Core Register Classification
	Register Types Overview
	Data Registers
	Data Register Neighbor Pairing
	Complementary Data Register Pairs
	Data and Complementary Data Register Access Priorities
	Data and Complementary Data Register Transfers
	Data and Complementary Data Register Swaps
	System Register Bit Manipulation
	Combined Data Bus Exchange Register
	PX to DREG Transfers
	Immediate 40-bit Data Register Load
	PX to Memory Transfers
	PX to Memory LW Transfers
	Uncomplimentary UREG to Memory LW Transfers

	Operating Modes
	Alternate (Secondary) Data Registers
	Alternate (Secondary) Data Registers SIMD Mode
	UREG/SREG SIMD Mode Transfers
	Interrupt Mode Mask

	3 Processing Elements
	Features
	Functional Description
	Single Cycle Processing
	Data Forwarding in Processing Units
	Data Format for Computation Units
	Arithmetic Status
	Computation Status Update Priority
	SIMD Computation and Status Flags

	Arithmetic Logic Unit (ALU)
	Functional Description
	ALU Instruction Types
	Compare Accumulation Instruction
	Fixed-to-Float Conversion Instructions
	Fixed-to-Float Conversion Instructions with Scaling
	Reciprocal/Square Root Instructions
	Divide Instruction
	Clip Instruction
	Multiprecision Instructions

	Arithmetic Status
	ALU Instruction Summary
	Multiplier
	Functional Description
	Asymmetric Multiplier Inputs

	Multiplier Result Register
	Multiply Register Instruction Types
	Clear MRx Instruction
	Round MRx Instruction
	Multi Precision Instructions
	Saturate MRx Instruction

	Arithmetic Status
	Multiplier Instruction Summary

	Barrel Shifter
	Functional Description
	Shifter Instruction Types
	Shift Compute Category
	Shift Immediate Category
	Bit Manipulation Instructions
	Bit Field Manipulation Instructions
	Bit Stream Manipulation Instructions (ADSP-214xx)

	Converting Floating-Point Instructions (16 to 32-Bit)
	Arithmetic Status
	Bit FIFO Status
	Shifter Instruction Summary

	Multifunction Computations
	Software Pipelining for Multifunction Instructions
	Multifunction and Data Move
	Multifunction Input Operand Constraints
	Multifunction Input Modifier Constraints
	Multifunction Instruction Summary

	Operating Modes
	ALU Saturation
	Short Word Sign Extension
	Floating-Point Boundary Rounding Mode
	Rounding Mode
	Multiplier Result Register Swap
	SIMD Mode
	Conditional Computations in SIMD Mode
	Interrupt Mode Mask

	Arithmetic Interrupts
	SIMD Computation Interrupts
	ALU Interrupts
	Multiplier Interrupts
	Interrupt Acknowledge

	4 Program Sequencer
	Features
	Functional Description
	Instruction Pipeline
	VISA Instruction Alignment Buffer (IAB)
	Linear Program Flow
	Direct Addressing

	Variation In Program Flow
	Functional Description
	Hardware Stacks
	PC Stack Access
	PC Stack Status
	PC Stack Manipulation
	PC Stack Access Priorities
	Status Stack Access
	Status Stack Status

	Instruction Driven Branches
	Direct Versus Indirect Branches
	Restrictions for VISA Operation
	Delayed Branches (DB)
	Branch Listings

	Operating Mode
	Interrupt Branch Mode
	Interrupt Processing Stages
	Interrupt Categories
	Interrupt Processing
	Latching Interrupts
	Interrupt Acknowledge
	Interrupt Self-Nesting
	Release From IDLE
	Causes of Delayed Interrupt Processing

	Interrupt Mask Mode
	Interrupt Nesting Mode

	Loop Sequencer
	Restrictions
	Functional Description
	Entering Loop Execution
	Terminating Loop Execution
	Loop Stack
	Loop Address Stack Access
	Loop Address Stack Status
	Loop Address Stack Manipulation
	Loop Counter Stack Access
	Loop Counter Stack Status
	Loop Counter Stack Manipulation
	Counter Based Loops
	Reading LCNTR in Counter Based Loops
	IF NOT LCE Condition in Counter Based Loops

	Arithmetic Loops
	Indefinite Loops
	VISA-Related Restrictions on Hardware Loops
	Restrictions on Ending Loops
	Short Counter Based Loops
	Short Arithmetic Based Loops
	Restrictions on Short Loops
	Short Loops Listings

	Nested Loops
	Example For Six Nested Loops
	Restrictions on Ending Nested Loops

	Loop Abort
	Instruction Driven Loop Abort
	Interrupt Driven Loop Abort

	Loop Abort Restrictions
	Loop Resource Manipulation
	Popping and Pushing Loop and PC Stack Inside an Active Loop
	Stack Manipulation Restrictions on ADSP-2136x Processors

	Cache Control
	Functional Description
	Conflict Cache for Internal Instruction Fetch
	Instruction Data Bus Conflicts
	Cache Miss

	Instruction Cache for External Instruction Fetch
	Block Conflicts
	Caching Instructions

	Cache Invalidate Instruction

	Cache Efficiency
	Operating Modes
	Cache Restrictions
	Cache Disable
	Cache External Memory Disable (ADSP-214xx)
	Cache Freeze

	I/O Flags
	Conditional Instruction Execution
	IF Conditions with Complements
	DO/UNTIL Terminations Without Complements
	Operating Modes
	Conditional Instruction Execution in SIMD Mode
	Bit Test Flag in SIMD Mode
	Conditional Compute
	Conditional Data Move
	Listings for Conditional Register-to-Register Moves
	Listing 2 – UREG/CUREG to UREG/CUREG Register Moves
	Listing 3 – CUREG/UREG to UREG/CUREG Registers Moves
	Listing 4 – UREG to UREG/CUREG Register Moves
	Listing 5 – UREG/CUREG to UREG Register Moves
	Listings for Conditional Register-to-Memory Moves
	Conditional Branches
	IF Conditional Branch Instructions
	IF Then ELSE Conditional Indirect Branch Instructions
	IF Conditional Branch Limitations in VISA

	Instruction Pipeline Hazards
	Structural Hazard Stalls
	Simultaneous Access Over the DMD and PMD Buses
	DMA Block Conflict with PM or DM Access
	Core Memory-Mapped Registers

	Data Hazard Stalls
	Multiplier Operand Load Stalls
	DAG Register Load Stalls
	Branch Stalls
	Conditional Branch Stalls
	Control Hazard Stalls
	Loop Stalls

	Compiler Related Stalls
	CJUMP Instruction
	RFRAME Instruction

	Sequencer Interrupts
	External Interrupts
	Software Interrupts
	Hardware Stack Interrupts

	Summary

	5 Timer
	Features
	Functional Description
	Timer Interrupts

	6 Data Address Generators
	Features
	Functional Description
	DAG Address Output
	Address Versus Word Size
	DAG Register-to-Bus Alignment
	32-Bit Alignment
	40-Bit Alignment
	64-Bit Alignment

	DAG1 Versus DAG2

	DAG Instruction Types
	Long Word Memory Access Restrictions
	Forced Long Word (LW) Memory Access Instructions

	Pre-Modify Instruction
	Post-Modify Instruction
	Modify Instruction
	Enhanced Modify Instruction (ADSP-214xx)
	Immediate Modify Instruction
	Bit-Reverse Instruction
	Enhanced Bit-Reverse Instruction (ADSP-214xx)
	Dual Data Move Instructions
	Conditional DAG Transfers
	DAG Breakpoint Units
	DAG Instruction Restrictions

	Instruction Summary
	Operating Modes
	Normal Word (40-Bit) Accesses
	Circular Buffering Mode
	Circular Buffer Programming Model
	Wraparound Addressing

	Broadcast Load Mode
	Bit-Reverse Mode
	SIMD Mode
	DAG Transfers in SIMD Mode
	Conditional DAG Transfers in SIMD Mode

	Alternate (Secondary) DAG Registers
	Interrupt Mode Mask

	DAG Interrupts
	DAG Status

	Access Modes Summary
	SISD Mode
	SIMD Mode Normal Word
	SIMD Mode Short Word

	7 Memory
	Features
	Von Neumann Versus Harvard Architectures
	Super Harvard Architecture

	Functional Description
	Address Decoding of Memory Space
	I/O Processor Space
	IOP Peripheral Registers
	IOP Core Registers
	Writes to IOP Peripheral Registers
	Back to Back Writes to IOP Peripheral Registers
	Alternate Writes to IOP Peripheral Registers

	Reads from IOP Peripheral Registers
	IOP Register Core Access
	Out of Order Execution
	IOP Register Access Arbitration

	Internal Memory Space
	Internal Memory Interface
	On-Chip Buses
	Internal Memory Block Architecture
	Normal Word Space 48/40-Bit Word Rotations

	Rules for Wrapping Memory Layout
	Mixing Words in Normal Word Space
	Mixing 32-Bit Words and 48-Bit Words
	32-Bit Word Allocation
	Example: Calculating a Starting Address for 32-Bit Addresses
	48-Bit Word Allocation
	Memory Address Aliasing
	Memory Block Arbitration
	VISA Instruction Arbitration

	Using Single Ported Memory Blocks Efficiently

	Shadow Write FIFO
	External Memory Space

	Interrupts
	Internal Interrupt Vector Table
	Illegal I/O Processor Register Access
	Unaligned Forced Long Word Access

	Internal Memory Access Listings
	Short Word Addressing of Single-Data in SISD Mode
	Short Word Addressing of Dual-Data in SISD Mode
	Short Word Addressing of Single-Data in SIMD Mode
	Short Word Addressing of Dual-Data in SIMD Mode
	32-Bit Normal Word Addressing of Single-Data in SISD Mode
	32-Bit Normal Word Addressing of Dual-Data in SISD Mode
	32-Bit Normal Word Addressing of Single-Data in SIMD Mode
	32-Bit Normal Word Addressing of Dual-Data in SIMD Mode
	Extended-Precision Normal Word Addressing of Single-Data
	Extended-Precision Normal Word Addressing of Dual-Data
	Long Word Addressing of Single-Data
	Long Word Addressing of Dual-Data
	Broadcast Load Access
	Mixed-Word Width Addressing of Long Word with Short Word
	Mixed-Word Width Addressing of Long Word with Extended Word

	8 JTAG Test Emulation Port
	Features
	Functional Description
	JTAG Test Access Port
	TAP Controller
	Instruction Registers
	Emulation Instruction Registers (Private)

	Breakpoints
	Software Breakpoints
	Automatic Breakpoints
	Hardware Breakpoints
	General Restrictions on Software Breakpoints

	Operating Modes
	Boundary Scan Mode
	Boundary Scan Register Instructions
	Emulation Space Mode
	Emulation Control
	Instruction and Data Breakpoints
	Address Breakpoint Registers

	Conditional Breakpoints
	Event Count Register
	Emulation Cycle Counting

	Enhanced Emulation Mode
	Statistical Profiling
	Background Telemetry Channel (BTC)

	User Space Mode
	User Breakpoint Control
	User Breakpoint Status
	User Breakpoint System Exception Handling
	User to Emulation Space Breakpoint Comparison
	Programming Model User Breakpoints
	Programming Examples

	Single Step Mode
	Instruction Pipeline Fetch Inputs

	Differences Between Emulation and User Space Modes

	JTAG Interrupts
	Interrupt Types
	Entering Into Emulation Space

	JTAG Register Effect Latency
	JTAG BTC Performance
	References

	9 Instruction Set Types
	Instruction Groups
	Instruction Set Notation Summary
	Group I – Conditional Compute and Move or Modify Instructions
	Type 1a ISA/VISA (compute + mem dual data move) Type 1b VISA (mem dual data move)
	Type 2a ISA/VISA (cond + compute) Type 2b VISA (compute) Type 2c VISA (short compute)
	Type 3a ISA/VISA (cond + comp + mem data move) Type 3b VISA (cond + mem data move) Type 3c VISA (mem data move)
	Type 4a ISA/VISA (cond + comp + mem data move with 6-bit immediate modifier) Type 4b VISA (cond + mem data move with 6-bit immediate modifier)
	Type 5a ISA/VISA (cond + comp + reg data move) Type 5b VISA (cond + reg data move)
	Type 6a ISA/VISA (cond + shift imm + mem data move)
	Type 7a ISA/VISA (cond + comp + index modify) Type 7b VISA (cond + index modify)

	Group II – Conditional Program Flow Control Instructions
	Type 8a ISA/VISA (cond + branch)
	Type 9a ISA/VISA (cond + Branch + comp/else comp)
	Type 10a ISA (cond + branch + else comp + mem data move)
	Type 11a ISA/VISA (cond + branch return + comp/else comp) Type 11c VISA (cond + branch return)
	Type 12a ISA/VISA (do until loop counter expired)
	Type 13a ISA/VISA (do until termination)

	Group III – Immediate Data Move Instructions
	Type 14a ISA/VISA (mem data move)
	Type 15a ISA/VISA (<data32> move) Type 15b VISA (<data7> move)
	Type 16a ISA/VISA (<data32> move) Type 16b VISA (<data16> move)
	Type 17a ISA/VISA (<data32> move) Type 17b VISA (<data16> move)

	Group IV – Miscellaneous Instructions
	Type 18a ISA/VISA (register bit manipulation)
	Type 19a ISA/VISA (index modify/bitrev)
	Type 20a ISA/VISA (push/pop stack)
	Type 21a ISA/VISA (nop) Type 21c VISA (nop)
	Type 22a ISA/VISA (idle/emuidle)
	Type 25a ISA/VISA (cjump/rframe) Type 25c VISA (RFRAME)

	10 Instruction Set Opcodes
	Instruction Set Opcodes
	Group I – Conditional Compute and Move or Modify Instructions
	Type 1a
	Type 1b
	Type 2a
	Type 2b
	Type 2c
	Type 3a
	Type 3b
	Type 3c
	Type 4a
	Type 4b
	Type 5a
	Type 5b
	Type 6a
	Type 7a
	Type 7b

	Group II – Conditional Program Flow Control Instructions
	Type 8a
	Type 9a
	Type 9b
	Type 10a
	Type 11a
	Type 11c
	Type 12a
	Type 13a

	Group III – Immediate Data Move Instructions
	Type 14a
	Type 15a
	Type 15b
	Type 16a
	Type 16b
	Type 17a
	Type 17b

	Group IV – Miscellaneous Instructions
	Type 18a
	Type 19a
	Type 20a
	Type 21a
	Type 21c
	Type 22a
	Type 22c
	Type 25a
	RFRAME
	Type 25c

	Register Opcodes
	Non Universal Registers
	Universal Register Opcodes

	Condition and Termination Opcodes

	11 Computation Types
	ALU Fixed-Point Computations
	Rn = Rx + Ry
	Rn = Rx – Ry
	Rn = Rx + Ry + CI
	Rn = Rx – Ry + CI – 1
	Rn = (Rx + Ry)/2
	COMP(Rx, Ry)
	COMPU(Rx, Ry)
	Rn = Rx + CI
	Rn = Rx + CI – 1
	Rn = Rx + 1
	Rn = Rx – 1
	Rn = –Rx
	Rn = ABS Rx
	Rn = PASS Rx
	Rn = Rx AND Ry
	Rn = Rx OR Ry
	Rn = Rx XOR Ry
	Rn = NOT Rx
	Rn = MIN(Rx, Ry)
	Rn = MAX(Rx, Ry)
	Rn = CLIP Rx BY Ry

	ALU Floating-Point Computations
	Fn = Fx + Fy
	Fn = Fx – Fy
	Fn = ABS (Fx + Fy)
	Fn = ABS (Fx – Fy)
	Fn = (Fx + Fy)/2
	COMP(Fx, Fy)
	Fn = –Fx
	Fn = ABS Fx
	Fn = PASS Fx
	Fn = RND Fx
	Fn = SCALB Fx BY Ry
	Rn = MANT Fx
	Rn = LOGB Fx
	Rn = FIX Fx Rn = TRUNC Fx Rn = FIX Fx BY Ry Rn = TRUNC Fx BY Ry
	Fn = FLOAT Rx BY Ry Fn = FLOAT Rx
	Fn = RECIPS Fx
	Fn = RSQRTS Fx
	Fn = Fx COPYSIGN Fy
	Fn = MIN(Fx, Fy)
	Fn = MAX(Fx, Fy)
	Fn = CLIP Fx BY Fy

	Multiplier Fixed-Point Computations
	Modifiers
	Rn = Rx * Ry (mod1) MRF = Rx * Ry (mod1) MRB = Rx * Ry (mod1)
	Rn = MRF + Rx * Ry (mod1) Rn = MRB + Rx * Ry (mod1) MRF = MRF + Rx * Ry (mod1) MRB = MRB + Rx * Ry (mod1)
	Rn = MRF – Rx * Ry (mod1) Rn = MRB – Rx * Ry (mod1) MRF = MRF – Rx * Ry (mod1) MRB = MRB – Rx * Ry (mod1)
	Rn = SAT MRF (mod2) Rn = SAT MRB (mod2) MRF = SAT MRF (mod2) MRB = SAT MRB (mod2)
	Rn = RND MRF (mod3) Rn = RND MRB (mod3) MRF = RND MRF (mod3) MRB = RND MRB (mod3)
	MRF = 0 MRB = 0
	MRxF/B = Rn Rn = MRxF/B

	Multiplier Floating-Point Computations
	Fn = Fx * Fy

	Shifter/Shift Immediate Computations
	Modifiers
	Rn = LSHIFT Rx BY Ry Rn = LSHIFT Rx BY <data8>
	Rn = Rn OR LSHIFT Rx BY Ry Rn = Rn OR LSHIFT Rx BY <data8>
	Rn = ASHIFT Rx BY Ry Rn = ASHIFT Rx BY <data8>
	Rn = Rn OR ASHIFT Rx BY Ry Rn = Rn OR ASHIFT Rx BY <data8>
	Rn = ROT Rx BY Ry Rn = ROT Rx BY <data8>
	Rn = BCLR Rx BY Ry Rn = BCLR Rx BY <data8>
	Rn = BSET Rx BY Ry Rn = BSET Rx BY <data8>
	Rn = BTGL Rx BY Ry Rn = BTGL Rx BY <data8>
	BTST Rx BY Ry BTST Rx BY <data8>
	Rn = FDEP Rx BY Ry Rn = FDEP Rx BY <bit6>:<len6>
	Rn = Rn OR FDEP Rx BY Ry Rn = Rn OR FDEP Rx BY <bit6>:<len6>
	Rn = FDEP Rx BY Ry (SE) Rn = FDEP Rx BY <bit6>:<len6> (SE)
	Rn = Rn OR FDEP Rx BY Ry (SE) Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)
	Rn = FEXT Rx BY Ry Rn = FEXT Rx BY <bit6>:<len6>
	Rn = FEXT Rx BY Ry (SE) Rn = FEXT Rx BY <bit6>:<len6> (SE)
	Rn = EXP Rx
	Rn = EXP Rx (EX)
	Rn = LEFTZ Rx
	Rn = LEFTO Rx
	Rn = FPACK Fx
	Fn = FUNPACK Rx
	BITDEP Rx by Ry|<bitlen12>
	Rn = BFFWRP
	BFFWRP = Rn|<data7>
	Rn = BITEXT Rx|<bitlen12>(NU)

	Multifunction Computations
	Fixed-Point ALU (dual Add and Subtract)
	Floating-Point ALU (dual Add and Subtract)
	Fixed-Point Multiplier and ALU
	Floating-Point Multiplier and ALU
	Fixed-Point Multiplier and ALU (dual Add and Subtract)
	Floating Point Multiplier and ALU (dual Add and Subtract)

	Short Compute

	12 Computation Type Opcodes
	Single-Function Opcodes
	ALU Opcodes
	Multiplier Opcodes
	Mod1 Modifiers
	Mod2 Modifiers
	Mod3 Modifiers

	MR Data Move Opcodes
	Shifter/Shift Immediate Opcodes
	Short Compute Opcodes

	Multifunction Opcodes
	Dual ALU (Parallel Add and Subtract)
	Multiplier and Dual ALU (Parallel Add and Subtract)
	Multiplier and ALU

	A Registers
	Notes on Reading Register Drawings
	Mode Control 1 Register (MODE1)
	Mode Control 2 Register (MODE2)
	Program Sequencer Registers
	Fetch Address Register (FADDR)
	Decode Address Register (DADDR)
	Program Counter Register (PC)
	Program Counter Stack Register (PCSTK)
	Program Counter Stack Pointer Register (PCSTKP)

	Loop Registers
	Loop Address Stack Register (LADDR)
	Loop Counter Register (LCNTR)
	Current Loop Counter Register (CURLCNTR)

	Timer Registers
	Timer Period Register (TPERIOD)
	Timer Count Register (TCOUNT)
	Flag I/O Register (FLAGS)

	Processing Element Registers
	PEx Data Registers (Rx)
	PEy Data Registers (Sx)
	Alternate Data Registers (Rx', Sx')
	PEx Multiplier Results Registers (MRFx, MRBx)
	PEy Multiplier Results Registers (MSFx, MSBx)

	Processing Status Registers
	Arithmetic Status Registers (ASTATx and ASTATy)
	Sticky Status Registers (STKYx and STKYy)

	Data Address Generator Registers
	Index Registers (Ix)
	Modify Registers (Mx)
	Length and Base Registers (Lx, Bx)
	Alternate DAG Registers (Ix',Mx',Lx',Bx')

	Miscellaneous Registers
	Bus Exchange Register (PX)
	User-Defined Status Registers (USTATx)
	Emulation Control Register (EMUCTL)
	Emulation Status Register (EMUSTAT)
	Emulation Counter Registers (EMUCLKx)

	Universal Register Effect Latency
	Interrupt Registers
	Interrupt Latch Register (IRPTL)
	Interrupt Mask Register (IMASK)
	Interrupt Mask Pointer Register (IMASKP)
	Interrupt Register (LIRPTL)
	Mode Mask Register (MMASK)

	Memory-Mapped Registers
	System Control Register (SYSCTL)
	Revision ID Register (REVPID)
	Breakpoint Control Register (BRKCTL)
	Enhanced Emulation Status Register (EEMUSTAT)

	Register Listing

	B Core Interrupt Control
	Interrupt Acknowledge
	Interrupt Priority
	Interrupt Vector Tables

	C Numeric Formats
	IEEE Single-Precision Floating-Point Data Format
	Extended-Precision Floating-Point Format
	Short Word Floating-Point Format
	Packing for Floating-Point Data
	Fixed-Point Formats

	G Glossary
	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

