Передача звука
Шина Automotive Audio Bus (A2B) позволяет значительно улучшить архитектуры информационно-развлекательных систем следующего поколения благодаря предоставлению простого, характеризующегося малой задержкой решения для сложных задач передачи аудиосигналов по проводам. Эта шина все чаще по сравнению с другими существующими технологиями используется в различных областях применения, включая активное шумоподавление, ВЧ-связь, связь внутри автомобилей, системы экстренного вызова и телематику.
A2B является принципиально инновационной технологией, которая снижает стоимость, вес и сложность разработки системы благодаря передаче по одной неэкранированной витой паре аудиосигналов, данных, а также тактовых сигналов и питания. Ассортимент продукции состоит из полнофункциональных приемопередатчиков, имеющих функциональность как ведущих, так и ведомых устройств, а также способных работать только в качестве оптимизированных по стоимости ведомых устройств.
Рекомендуемые продукты
Сигнальные цепочки
(4)
Интерактивные сигнальные цепочки

Типовые проекты
CN0197

Lithium ion (Li-Ion) battery stacks contain a large number of individual cells that must be monitored correctly in order to enhance the battery efficiency and prolong the battery life. The 6-channel AD7280A devices in the circuit shown in Figure 1 act as the primary monitor providing accurate measurement data to the Battery Management Controller (BMC).
The AD7280A contains an internal ±3 ppm reference that allows a cell voltage measurement accuracy of ±1.6 mV. The ADC resolution is 12 bits and allows conversion of up to 48 cells within 7 μs.
The AD7280A, which resides on the high voltage side of the Battery Management System (BMS) has a daisy-chain interface, which allows up to eight AD7280A’s to be stacked together and allows for 48 Li-Ion cell voltages to be monitored. Adjacent AD7280A's in the stack can communicate directly, passing data up and down the stack without the need for isolation. The AD7280A master device on the bottom of the stack uses the SPI interface to communicate with the BMC, and it is only at this point that high voltage galvanic isolation is required in order to protect the low-voltage side of the BMS. The ADuM1201 digital isolator and the ADuM5401 isolator with integrated dc-to-dc converter combine to provide the required six channels of isolation in a compact and cost effective solution.

Применяемые компоненты
Области применения
CN0232

The circuit shown in Figure 1 uses the ADF4350 synthesizer with an integrated VCO and an external PLL to minimize spurious outputs by isolating the PLL synthesizer circuitry from the VCO circuit.
Devices with integrated PLLs and VCOs may have feed through from the digital PLL circuitry to the VCO, leading to higher spurious levels due to the close proximity of the PLL circuitry to the VCO.
The circuit shown in Figure 1 uses the ADF4350, a fully integrated fractional-N PLL and VCO that can generate frequencies from 137.5 MHz to 4400 MHz, together with the ADF4153 PLL.
In addition to improvements in spurious performance, another possible advantage of using an external PLL is the possibility of increased frequency resolution. For example, if the ADF4157 PLL is selected in place of the ADF4153, the frequency resolution of the PLL can be as fine as 0.7 Hz.

Применяемые компоненты
Области применения
CN0302

The PLL circuit shown in Figure 1 uses a 13 GHz Fractional-N synthesizer, wideband active loop filter and VCO, and has a phase settling time of less than 5 μs to within 5° for a 200 MHz frequency jump.
The performance is achieved using an active loop filter with 2.4 MHz bandwidth. This wide bandwidth loop filter is achievable because of the ADF4159 phase-frequency detector (PFD) maximum frequency of 110 MHz; and the AD8065 op amp high gain-bandwidth product of 145 MHz.
The AD8065 op amp used in the active filter can operate on a 24 V supply voltage that allows control of most wideband VCOs having tuning voltages from 0 V to 18 V.

Применяемые компоненты
Области применения
CN0217

The AD5933 and AD5934 are high precision impedance converter system solutions that combine an on-chipprogrammable frequency generator with a 12-bit, 1 MSPS (AD5933) or 250 kSPS (AD5934) analog-to-digital converter (ADC). The tunable frequency generator allows an external complex impedance to be excited with a known frequency.
The circuit shown in Figure 1 yields accurate impedance measurements extending from the low ohm range to several hundred kΩ and also optimizes the overall accuracy of the AD5933/AD5934.

Применяемые компоненты
Области применения
CN0281

This circuit uses the ADuC7060 or the ADuC7061 precision analog microcontroller in an accurate thermocouple temperature monitoring application. The ADuC7060/ ADuC7061 integrate dual 24-bit sigma-delta (Σ-Δ) analog-to-digital converters (ADCs), dual programmable current sources, a 14-bit digital-to-analog converter (DAC), and a 1.2 V internal reference, as well as an ARM7 core, 32 kB flash, 4 kB SRAM, and various digital peripherals such as UART, timers, serial peripheral interface (SPI), and I2C interfaces.
In the circuit, the ADuC7060/ ADuC7061 are connected to a thermocouple and a 100 Ω platinum resistance temperature detector (RTD). The RTD is used for cold junction compensation. As an extra option, the ADT7311 digital temperature sensor can be used to measure the cold junction temperature instead of the RTD.
In the source code, an ADC sampling rate of 4 Hz was chosen. When the ADC input programmable gain amplifier (PGA) is configured for a gain of 32, the noise-free code resolution of the ADuC7060/ ADuC7061 is greater than 18 bits.
The single edge nibble transmission (SENT) interface to the host is implemented by using a timer to control a digital output pin. This digital output pin is then level shifted externally to 5 V using an external NPN transistor. An EMC filter is provided on the SENT output circuit as recommended in Section 6.3.1 of the SENT protocol (SAE J2716 Standard). The data is measured as falling edge to falling edge, and the duration of each pulse is related to the number of system clock ticks. The system clock rate is determined by measuring the SYNC pulse. The SYNC pulse is transmitted at the start of every packet. More details are provided in the SENT Interface section.

Применяемые компоненты
AD8628
Zero-Drift, Single-Supply, RRIO Op Amp
ADUC7060
Low-Power, Precision Analog Microcontroller, Dual Σ-Δ ADCs, Flash/EE, ARM7TDMI
ADUC7061
Low-Power, Precision Analog Microcontroller, Dual Σ-Δ ADCs, Flash/EE, ARM7TDMI
ADT7311
16-разрядный цифровой датчик температуры с интерфейсом SPI для автомобильной промышленности, погрешность ±0.5°C
ADP7102
КМОП LDO-стабилизатор с низким шумом, 20 В/300 мА
Области применения
CN0328

The circuit shown in Figure 1 combines the AD5755-1 (quad channel voltage and current output DAC with dynamic power control) and the AD5700-1 HART modem, to give a completely isolated multiplexed HART®1 analog output solution. Power can be provided either from the transformer isolated power circuit provided on the board (±13 V and +5.2 V outputs, dependent on the load current) or from external power supplies connected to terminal blocks. This circuit is suitable for use in programmable logic controllers (PLCs) and distributed control system (DCS) modules that require multiple HART-compatible 4 mA to 20 mA current outputs, along with unipolar or bipolar voltage outputs. External transient protection circuitry is also included, which is important for applications located in harsh industrial environments.
The AD5755-1 DAC is software configurable and allows the user to easily program the required output ranges and dc-to-dc converter settings used for dynamic power control. It allows access to all of the internal control registers, including the slew rate control register, which is important for applications using HART communication.
The AD5700-1 is the lowest power and smallest footprint HART-compliant IC modem in the industry. It operates as a HART frequency shift keying (FSK) half-duplex modem and integrates all of the necessary signal detection, modulating, demodulating, and signal generation functions. It contains a 0.5% precision internal oscillator, thus reducing board space requirements and cost. The AD5700-1 uses a standard UART interface.
Digital isolation is provided using the quad and dual channel ADuM3481/ADuM3210 digital isolator components based on Analog Devices, Inc., iCoupler® technology. The use of iCoupler technology reduces the need for the additional external compo-nents often required in solutions based on optoisolators. An external transformer is used to transfer power across the isolation barrier.
The ADG759 provides multiplexing capability, enabling HART communication, across the four analog output channels. The ADG759 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. When disabled, all channels are switched off. Bypass links are included to provide the flexibility to bypass the multiplexer.
1 HART is a registered trademark of the HART Communication Foundation.


Применяемые компоненты
AD5755-1
Четырехканальный, 16-разрядный ЦАП с выходом тока 4-20 мА и напряжения, последовательным входом, динамическим управлением энергопотреблением и поддержкой связи по протоколу HART
AD5700-1
Малопотребляющий HART модем с прецизионным внутренним генератором
ADCMP356
Компаратор с двухтактным активным высоким выходом и источник опорного напряжения 0.6 В в корпусе 4-SC70
ADG759
CMOS Low Voltage, 3 ohms 4-Channel Multiplexer
ADP1621
Constant-Frequency, Current-Mode Step-Up DC-to-DC Controller
ADR02
Ultracompact, Precision 5.0 V Voltage Reference
Области применения
CN0235

Lithium ion (Li-Ion) battery stacks contain a large number of individual cells that must be monitored correctly in order to enhance the battery efficiency, prolong the battery life, and ensure safety. The 6-channel AD7280A devices in the circuit shown in Figure 1 act as the primary monitor providing accurate voltage measurement data to the System Demonstration Platform (SDP-B) evaluation board, and the 6-channel AD8280 devices act as the secondary monitor and protection system. Both devices can operate from a single wide supply range of 8 V to 30 V and operate over the industrial temperature range of −40°C to +105°C.
The AD7280A contains an internal ±3 ppm reference that allows a cell voltage measurement accuracy of ±1.6 mV. The ADC resolution is 12 bits and allows conversion of up to 48 cells within 7 μs.
The AD7280A has cell balancing interface outputs designed to control external FET transistors to allow discharging of individual cells and forcing all the cells in the stack to have identical voltages.
The AD8280 functions independently of the primary monitor and provides alarm functions indicating out of tolerance conditions. It contains its own reference and LDO, both of which are powered completely from the battery cell stack. The reference, in conjunction with external resistor dividers, is used to establish trip points for the over/undervoltages. Each cell channel contains programmable deglitching (D/G) circuitry to avoid alarming from transient input levels.
The AD7280A and AD8280, which reside on the high voltage side of the battery management system (BMS) have a daisychain interface, which allows up to eight AD7280A’s and eight AD8280’s to be stacked together and allows for 48 Li-Ion cell voltages to be monitored. Adjacent AD7280A's and AD8280’s in the stack can communicate directly, passing data up and down the stack without the need for isolation.
The master devices on the bottom of the stack use the SPI interface and GPIOs to communicate with the SDP-B evaluation board, and it is only at this point that high voltage galvanic isolation is required to protect the low voltage side of the SDP-B board. The ADuM1400, ADuM1401 digital isolator, and the ADuM5404 isolator with integrated dc-to-dc converter combine to provide the required eleven channels of isolation in a compact and cost effective solution. The ADuM5404 also provides isolated 5 V to the VDRIVE input of the lower AD7280A and the VDD2 supply voltage for the ADuM1400 and ADuM1401 isolators.

Применяемые компоненты
Области применения
CN0295

The circuit shown in Figure 1 is a flexible current transmitter that converts the differential voltage output from a pressure sensor to a 4 mA-to-20 mA current output.
The circuit is optimized for a wide variety of bridge-based voltage or current driven pressure sensors, utilizes only five active devices, and has a total unadjusted error of less than 1%. The power supply voltage can range from 7 V to 36 V depending on the component and sensor driver configuration.
The input of the circuit is protected for ESD and voltages beyond the supply rail, making it ideal for industrial applications.

Применяемые компоненты
Области применения
CN0314

The circuit shown in Figure 1 is a configurable 4 mA-to-20 mA loop-powered transmitter based on an industry-leading micropower instrumentation amplifier. Total unadjusted error is less than 1%. It can be configured with a single switch as either a transmitter (Figure 1) that converts a differential input voltage into a current output, or as a receiver (Figure 5) that converts a 4 mA-to-20 mA current input to a voltage output.

The design is optimized for precision, low noise and low power industrial process control applications. The circuit can accept 0 V to 5V or 0 V to 10 V input range as a transmitter. As a receiver it can provide 0.2 V to 2.3 V or 0.2 V to 4.8 V output range compatible with ADCs using 2.5 V or 5 V references. The supply voltage can range from 12 V to 36 V as a transmitter and 7 V to 36 V as a receiver.
Since the circuit is configurable, a single hardware design can be used as a backup for both transmitter and receiver at the same time, minimizing customer inventory requirements.
Применяемые компоненты
ADR02
Ultracompact, Precision 5.0 V Voltage Reference
AD8420
Микропотребляющий Rail-to-Rail инструментальный усилитель с широким диапазоном напряжений питания
ADR4550
Ultra-Low-Noise, High-Accuracy 5.0V Voltage Reference
AD8237
Микропотребляющий Rail-to-Rail инструментальный усилитель с нулевым дрейфом
Области применения
CN0234

Схема, показанная на рисунке 1, представляет собой малопотребляющий портативный детектор газа на основе электрохимического датчика, работающий с однополярным питанием. В данном примере используется датчик угарного газа Alphasense CO-AX.
Электрохимические датчики обладают рядом преимуществ, благодаря которым могут успешно применяться в составе приборов, предназначенных для обнаружения или измерения концентрации многих токсичных газов. Большинство датчиков рассчитаны на обнаружение конкретного газа и имеют допустимое разрешение концентрации газа менее одной части на миллион (ppm). Такие устройства потребляют очень малое количество тока, благодаря чему они оптимально подходят для применения в составе портативных измерительных приборов с батарейным питанием.
В схеме, представленной на рисунке 1, используется двухканальный малопотребляющий усилитель ADA4505-2, который имеет максимальный входной ток смещения 2 пА при комнатной температуре и потребляет всего 10 мкА на усилитель. Помимо этого, также используемый в данной схеме прецизионный, малошумящий, малопотребляющий источник опорного напряжения ADR291 потребляет всего 12 мкА и обеспечивает синфазное опорное напряжение виртуального нуля 2,5 В.

Характеризующийся высоким КПД понижающе-повышающий стабилизатор ADP2503 позволяет работать схеме с одной шиной питания, напряжение на которой обеспечивается с помощью двух батареек типа AAA, при этом он потребляет всего 38 мкА при работе в режиме энергосбережения.
Общая потребляемая мощность всех элементов схемы, представленной на рисунке 1 (кроме АЦП AD7798), составляет примерно 110 мкА в нормальных условиях (газ не обнаружен) и 460 мкА в наихудших условиях (обнаружено 2000 ppm угарного газа). AD7798 потребляет примерно 180 мкА в рабочем режиме (G = 1, режим буферизации) и всего 1 мкА в режиме энергосбережения.
Благодаря тому, что схема потребляет очень мало энергии, две батарейки типа AAA могут быть подходящим источником питания. При подключении данной схемы к АЦП и микроконтроллеру или микроконтроллеру со встроенным АЦП устройство сможет проработать от шести месяцев до одного года на одном заряде батарей.
Применяемые компоненты
ADR291
Low Noise Micropower Precision Voltage Reference (2.5 V)
ADA4505-2
10 µA, RRIO, Zero Input Crossover Distortion Dual Op Amp
ADP2503
Повышающе-понижающий преобразователь постоянного напряжения, 2.5 МГц/600 мА
AD7798
Трехканальный, малопотребляющий 16-разрядный Σ-Δ АЦП с низким шумом и внутренним ИУ
Области применения
CN0289

The circuit shown in Figure 1 is a robust and flexible loop-powered current transmitter that converts the differential voltage output from a pressure sensor to a 4 mA-to-20 mA current output.
The design is optimized for a wide variety of bridge based voltage or current driven pressure sensors, utilizes only four active devices, and has a total unadjusted error of less than 1%. The loop supply voltage can range from 12 V to 36 V.
The input of the circuit is protected for ESD and voltages beyond the supply rail, making it ideal for industrial applications.

Применяемые компоненты
Области применения
CN0264

The circuit in Figure 1 shows a digital-to-analog video converter paired with a low cost, low power, fully integrated reconstruction video filter with output short-to-battery (STB) protection, ideal for CVBS video transmission in harsh infotainment environments such as automotive applications. Although many video encoders (video DACs), such as the ADV7391, can drive a video load directly, it is often beneficial to use a video driver at the output of a video encoder for power savings, filtering, line driving, and overvoltage circuit protection. The main purpose of a video driver, typically configured as an active filter (also known as a reconstruction filter), is twofold: it blocks the higher frequency components (above the Nyquist frequency) that were introduced into the video signal as part of the sampling process, and it provides gain to drive the external 75 Ω cable to the video display.
Designers of infotainment and other video systems, such as rearview cameras and rear-seat entertainment systems, are likely to use this circuit to transmit video for the reasons previously stated. However, a third pressing design issue centers on the robustness. The ADA4432-1 and ADA4433-1 provide analog video designers with integrated ICs that offer crucial overvoltage protection, hardened ESD tolerance, along with excellent video specification, low power consumption, and wire diagnostic features.
The ADA4432-1 and ADA4433-1 are fully integrated, single-ended and differential video reconstruction filters, respectively. They combine overvoltage protection (STB protection) up to 18 V on the outputs, with low power consumption and a wire diagnostic capability. Wire diagnostics are provided by way of a logic output that is activated when a fault condition is present. The ADA4432-1 and ADA4433-1 feature a high-order filter with a −3 dB cutoff frequency of 10 MHz and 45 dB of rejection at 27 MHz.The combination of STB protection and robust ESD tolerance allows the ADA4432-1 and ADA4433-1 to provide superior protection in the hostile environments.
The ADV7391, and ADA4432-1 are fully automotive qualified, which makes both products ideal for infotainment and visionbased safety systems for automotive applications. The ADV7391, ADA4432-1, and the ADA4433-1 are available in a very small LFCSP package ideal for small footprint applications.

Применяемые компоненты
Области применения
Актуальные ресурсы по теме
-
Технические статьи
How A2B Technology and Digital Microphones Enable Superior Performance in Emerging Automotive Applications
Analog Dialogue