

安定化出力電圧を供給する 高効率バッテリチャージャ/ USBパワーマネージャ

特長

- スイッチング・レギュレータにより、バッテリの充電やアプリケーション機器への給電ができるようにUSBポートから得られる制限された電力を最適化
- 内蔵の180mΩ理想ダイオードと外付け理想ダイオード・ コントローラにより、入力電源が制限されている場合や使 用できない場合に低損失パワーパスをシームレスに実現
- 充電電流が自動的に低減されることにより、最小3.6Vの V_{OUT}を維持
- 多機能リチウムイオン/ポリマー・バッテリチャージャ
- V_{BUS}動作範囲:4.25V~5.5V(絶対最大定格7V:過渡)
- 入力電流制限:1.2A(最大)
- 熱制限付きの充電電流:1.5A(最大)
- Bat-Track™アダプティブ出力制御
- スルーレート制御により、スイッチング EMI を低減
- 高さの低い(0.75mm)4mm×3mm 14ピンDFNパッケージ

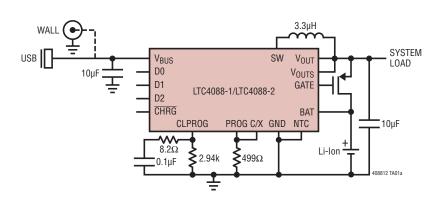
概要

- メディア・プレーヤ
- デジタル・カメラ
- GPS
- PDA
- スマート電話

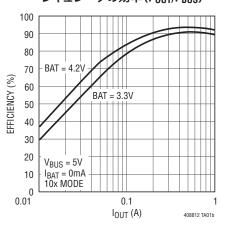
△ブ、LT、LTC、LTM、Linear Technology およびLinearのロゴはリニアテクノロジー社の登録商標です。PowerPath、Bat-Trackはリニアテクノロジー社の商標です。その他すべての商標の所有権は、それぞれの所有者に帰属します。6522118を含む米国特許によって保護されています。

概要

LTC®4088-1/LTC4088-2は、高効率 USB PowerPath™コントローラおよびリチウムイオン/ポリマー・バッテリチャージャです。このデバイスは同期整流式スイッチング入力レギュレータ、多機能バッテリ・チャージャ、理想ダイオードを内蔵しています。LTC4088-1/LTC4088-2は特にUSBアプリケーション向けに設計されており、内蔵のスイッチング・レギュレータは、ロジック制御によって、入力電流を100mA、500mAまたは1Aに自動的に制限します。LTC4088-1はチャージャがオフの状態で起動、LTC4088-2はチャージャがオンの状態で起動します。


スイッチング入力段はVouTに電力を供給します。VouTでは、アプリケーション回路とバッテリチャージャ間の電力分担が管理されています。充電電流は自動的に低減されるので、低バッテリ状態時に安定化された3.6VのVouTを維持することができます。バッテリ充電時、VouTはVBATをトラッキングするので、高効率な充電が可能です。この機能より、LTC4088-1/LTC4088-2はより大きな電力をアプリケーションに供給でき、制限されたアプリケーションにおける熱の問題を緩和します。

理想ダイオードにより、入力電流が制限値に達した場合や USBまたはACアダプタ電源が取り外されている場合、バッテ リからシステム電源を得ることができます。


LTC4088-1/LTC4088-2 は 高 さ の 低 い 4mm×3mm×0.75mm の 14 ピン表面実装 DFN パッケージで供給されます。

標準的応用例

高効率バッテリチャージャ/USBパワーマネージャ

システム負荷に対するスイッチング・ レギュレータの効率(Pout/Paus)

絶対最大定格

(Note 1)

ピン配置

発注情報

無鉛仕上げ	テープアンドリール	製品マーキング	パッケージ	温度範囲
LTC4088EDE-1#PBF	LTC4088EDE-1#TRPBF	40881	14-Lead (4mm x 3mm x 0.75mm) Plastic DFN	-40°C to 85°C
LTC4088EDE-2#PBF	LTC4088EDE-2#TRPBF	40882	14-Lead (4mm x 3mm x 0.75mm) Plastic DFN	-40°C to 85°C

さらに広い動作温度範囲で規定されるデバイスについては、弊社または弊社代理店にお問い合わせください。 非標準の鉛仕上げの製品の詳細については、弊社または弊社代理店にお問い合わせください。

無鉛仕上げの製品マーキングの詳細については、http://www.linear-tech.co.jp/leadfree/ をご覧ください。 テープアンドリールの仕様の詳細については、http://www.linear-tech.co.jp/tapeandreel/ をご覧ください。

電気的特性

●は全動作温度範囲の規格値を意味する。それ以外はTA = 25°Cでの値。注記がない限り、VBUS = 5V、BAT = 3.8V、RCLPROG = 2.94k。

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
Input Power Supply								
V _{BUS}	Input Supply Voltage		•	4.35		5.5	V	
I _{BUS(LIM)}	Total Input Current	1x Mode 5x Mode 10x Mode Low Power Suspend Mode High Power Suspend Mode	•	92 445 815 0.32 1.6	97 470 877 0.39 2.05	100 500 1000 0.5 2.5	mA mA mA mA	
I _{BUSQ} (Note 4)	Input Quiescent Current	1x Mode 5x Mode 10x Mode Low Power Suspend Mode High Power Suspend Mode			6 14 14 0.038 0.038		mA mA mA mA	
h _{CLPROG} (Note 4)	Ratio of Measured V _{BUS} Current to CLPROG Program Current	1x Mode 5x Mode 10x Mode Low Power Suspend Mode High Power Suspend Mode			224 1133 2140 11.3 59.4		mA/mA mA/mA mA/mA mA/mA	

電気的特性

●は全動作温度範囲の規格値を意味する。それ以外はTA = 25°Cでの値。注記がない限り、VBUS = 5V、BAT = 3.8V、R_{CLPROG} = 2.94k。

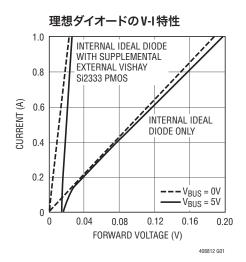
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Гоит	V _{OUT} Current Available Before Discharging Battery	1x Mode, BAT = 3.3V 5x Mode, BAT = 3.3V 10x Mode, BAT = 3.3V Low Power Suspend Mode High Power Suspend Mode	0.26 1.6	135 672 1251 0.32 2.04	0.41 2.46	mA mA mA mA
V _{CLPROG}	CLPROG Servo Voltage in Current Limit	1x, 5x, 10x Modes Suspend Modes		1.188 100		V mV
V _{UVLO}	V _{BUS} Undervoltage Lockout	Rising Threshold Falling Threshold	3.95	4.30 4.00	4.35	V
V _{DUVLO}	V _{BUS} to BAT Differential Undervoltage Lockout	Rising Threshold Falling Threshold		200 50		mV mV
V _{OUT}	V _{OUT} Voltage	$ \begin{array}{l} 1x,5x,10x\;\text{Modes},0V<\text{BAT}\leq4.2V,\\ I_{OUT}=\text{OmA},\text{Battery}\;\text{Charger}\;\text{Off} \end{array} $	3.5	BAT + 0.3	4.7	V
		USB Suspend Modes, I _{OUT} = 250μA	4.5	4.6	4.7	V
fosc	Switching Frequency		1.8	2.25	2.7	MHz
R _{PMOS}	PMOS On Resistance			0.18		Ω
R _{NMOS}	NMOS On Resistance			0.30		Ω
ГРЕАК	Peak Inductor Current Clamp	1x, 5x Modes 10x Mode		2 3		A A
R _{SUSP}	Suspend LDO Output Resistance			15		Ω
Battery Charge	r					
V _{FLOAT}	BAT Regulated Output Voltage	0°C ≤ T _A ≤ 85°C	4.179 4.165	4.200 4.200	4.221 4.235	V V
I _{CHG}	Constant-Current Mode Charge Current	R _{PROG} = 1k R _{PROG} = 5k	980 196	1030 206	1080 220	mA mA
I _{BAT}	Battery Drain Current	$V_{BUS} > V_{UVLO}$, PowerPath Switching Regulator On, Battery Charger Off, $I_{OUT} = 0\mu A$		3.5	5	μА
		V _{BUS} = 0V, I _{OUT} = 0μA (Ideal Diode Mode)		23	35	μΑ
V _{PROG}	PROG Pin Servo Voltage			1.000		V
V _{PROG,TRKL}	PROG Pin Servo Voltage in Trickle Charge	BAT < V _{TRKL}		0.100		V
hprog	Ratio of IBAT to PROG Pin Current			1031		mA/mA
V_{TRKL}	Trickle Charge Threshold Voltage	BAT Rising	2.7	2.85	3.0	V
ΔV_{TRKL}	Trickle Charge Hysteresis Voltage			135		mV
V _{RECHRG}	Recharge Battery Threshold Voltage	Threshold Voltage Relative to V _{FLOAT}	-80	-100	-120	mV
t _{TERM}	Safety Timer Termination Period	Timer Starts When V _{BAT} = V _{FLOAT}	3.2	4.0	4.8	Hour
t _{BADBAT}	Bad Battery Termination Time	BAT < V _{TRKL}	0.4	0.5	0.6	Hour
I _{C/X}	Battery Charge Current at Programmed End of Charge Indication	R _{C/X} = 1k R _{C/X} = 5k	85	100 20	115	mA mA
V _{C/X}	C/X Threshold Voltage			100		mV
h _{C/X}	Battery Charge Current Ratio to C/X			1031		mA/mA
V _{CHRG}	CHRG Pin Output Low Voltage	I _{CHRG} = 5mA		65	100	mV
ICHRG	CHRG Pin Input Current	BAT = 4.5V, V _{CHRG} = 5V		0	1	μА

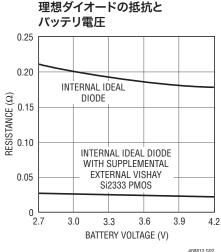
LTC4088-1/LTC4088-2

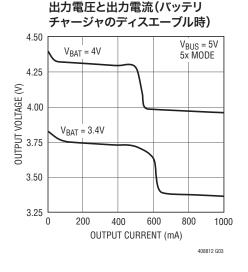
電気的特性

●は全動作温度範囲の規格値を意味する。それ以外はT_A = 25°Cでの値。注記がない限り、V_{BUS} = 5V、BAT = 3.8V、R_{CLPROG} = 2.94k。

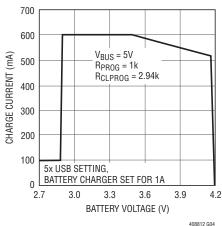
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
R _{ON_CHG}	Battery Charger Power FET On-Resistance (Between V _{OUT} and BAT)	I _{BAT} = 200mA		0.18		Ω
T _{LIM}	Junction Temperature in Constant Temperature Mode			110		°C
NTC						
V _{COLD}	Cold Temperature Fault Threshold Voltage	Rising Threshold Hysteresis	75.0	76.5 1.5	78.0	%V _{BUS}
V _{HOT}	Hot Temperature Fault Threshold Voltage	Falling Threshold Hysteresis	33.4	34.9 1.5	36.4	%V _{BUS} %V _{BUS}
V _{DIS}	NTC Disable Threshold Voltage	Falling Threshold Hysteresis	0.7	1.7 50	2.7	%V _{BUS} mV
I _{NTC}	NTC Leakage Current	V _{NTC} = V _{BUS} = 5V	-50		50	nA
Ideal Diode						
V _{FWD}	Forward Voltage Detection	I _{OUT} = 10mA V _{BUS} = 0V, I _{OUT} = 10mA		15 2		mV mV
R _{DROPOUT}	Internal Diode On-Resistance, Dropout	I _{OUT} = 200mA		0.18		Ω
I _{MAX}	Diode Current Limit		2			А
Logic (DO, D1	, D2)					
V _{IL}	Input Low Voltage				0.4	V
V _{IH}	Input High Voltage		1.2			V
I _{PD}	Static Pull-Down Current	V _{PIN} = 1V		2		μА

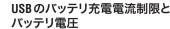

Note 1: 絶対最大定格に記載された値を超えるストレスはデバイスに永続的損傷を与える可能性がある。長期にわたって絶対最大定格条件に曝すと、デバイスの信頼性と寿命に悪影響を与える可能性がある。

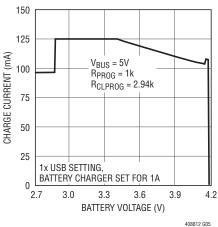

Note 2: LTC4088E-1/LTC4088E-2 は0°C~85°Cの温度範囲で性能仕様に適合することが保証されている。-40°C~85°Cの動作温度範囲での仕様は、設計、特性評価および統計学的なプロセス・コントロールとの相関で確認されている。

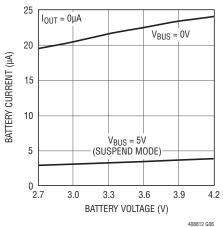

Note 3: LTC4088E-1/LTC4088E-2には、短時間の過負荷状態の間デバイスを保護するための熱保護機能が備わっている。熱保護機能がアクティブなとき、接合部温度は125°Cを超える。規定された最高動作接合部温度を超えた動作が継続すると、デバイスの信頼性を損なうおそれがある。

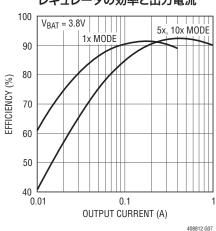
Note 4: 総入力電流は、消費電流(I_{BUSO})とV_{CLPROG}/R_{CLPROG} • (h_{CLPROG} + 1)から得られる測定電流を合計したもの。

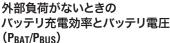

標準的性能特性 注記がない限り、TA = 25°C。

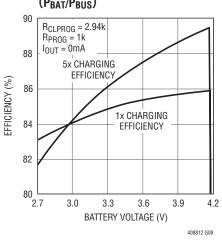


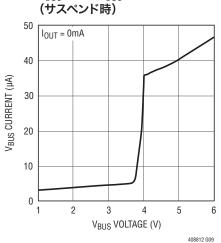


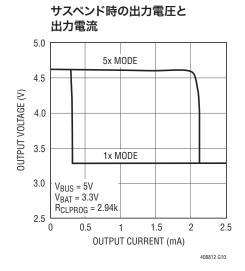

USBのバッテリ充電電流制限と バッテリ電圧

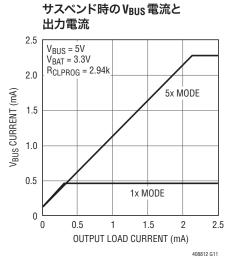


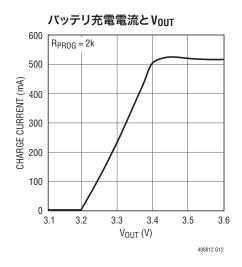


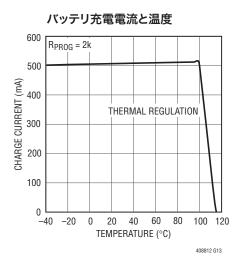

バッテリ流出電流とバッテリ電圧

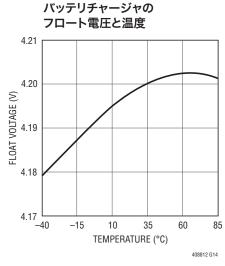

PowerPath スイッチング・ レギュレータの効率と出力電流

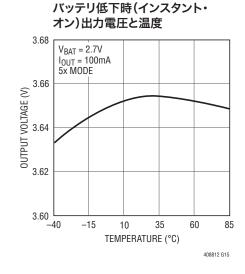


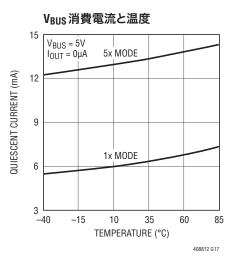



V_{BUS} 電流とV_{BUS} 電圧 (サスペンド時)

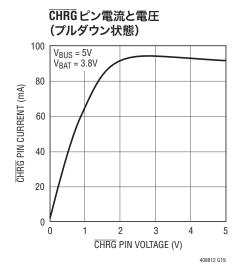



標準的性能特性 注記がない限り、TA = 25°C。









標準的性能特性 注記がない限り、T₄ = 25°C。

ピン機能

NTC(ピン1): NTCサーミスタ・モニタ回路への入力。NTCピンは負の温度係数をもつサーミスタに接続します。このサーミスタは通常、バッテリ・パックと一緒に実装され、バッテリの温度が充電するには高すぎるか低すぎるかを判断します。バッテリの温度が有効範囲を外れると、バッテリの温度が有効範囲に戻るまで充電が停止されます。VBUSからNTCに低ドリフト・バイアス抵抗を接続し、NTCからグランドにサーミスタを接続する必要があります。NTC機能が不要な場合、NTCピンをグランドに接続します。

CLPROG (ピン2): USB電流制限設定およびモニタ用ピン。CLPROGからグランドに接続された1%抵抗によって、V_{BUS}ピンから流出する電流の上限が決定されます。ハイサイド・スイッチがオンのとき、入力電流に対する正確な比率 (h_{CLPROG})がCLPROGピンに出力されます。CLPROGピンが1.188Vになるまでスイッチング・レギュレータが電力を供給します。したがって、V_{BUS}から流出する電流はh_{CLPROG}とR_{CLPROG}から得られる値に制限されます。h_{CLPROG}では複数の比率が使用でき、そのうちの2つが500mAと100mAのUSB仕様に対応します。CLPROGをフィルタリングするには、積層セラミック平均化コンデンサも必要になります。

Vouts (ピン3):出力電圧センス。PowerPath スイッチング・レギュレータの動作中に、Voutsピンを使用してVoutの電圧をセンスします。Vouts は必ず Vout に直接接続してください。

D2(ピン4): モード選択入力ピン。D2はD0ピンおよびD1ピンと組み合わせて、LTC4088-1/LTC4088-2の電流制限機能とバッテリチャージャ機能を制御します。LTC4088-1とLTC4088-2の違いは、D2ピンのデフォルト(0,0,0)状態での機能のみです(表1を参照)。このピンは微小な電流シンクによって"L"にされます。

C/X (ピン5): 充電終了の通知設定ピン。このピンを使用して、 CHRG ピンによって充電サイクルの終了が通知される電流レベルを設定します。

PROG (ピン6): 充電電流の設定および充電電流のモニタ用ピン。PROGからグランドに1%抵抗を接続することによって充電電流が設定されます。定電流モードで十分な入力電力が使用できると、このピンは1Vにサーボ制御されます。このピンの電圧は、次式を使用することによって常に実際の充電電流を表します。

$$I_{BAT} = \frac{V_{PROG}}{R_{PROG}} \bullet 1031$$

ピン機能

CHRG(ピン7):オープンドレインの充電状態出力。CHRGピンはバッテリチャージャの状態を示します。CHRGによって4つの状態を示すことができます。充電、非充電(つまり、フロート充電電流が設定された充電終了通知電流より小さい)、バッテリ無応答、およびバッテリ温度範囲外の状態です。CHRGは人またはマイクロプロセッサによって容易に認識できるように、35kHzで変調され、低デューティ・サイクルと高デューティ・サイクルの間で切り替わります。CHRGにはプルアップ抵抗や表示用のLEDが必要です。

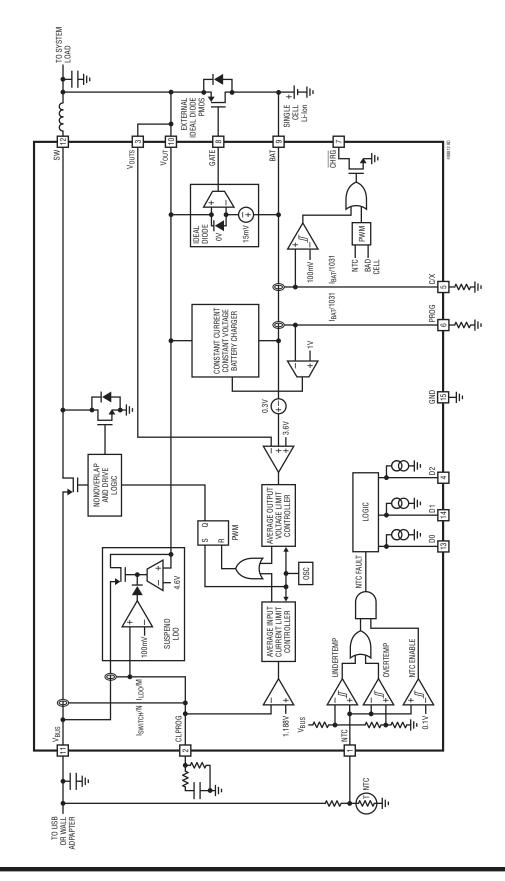
GATE(ピン8): 理想ダイオード・アンプの出力。このピンによって、内部理想ダイオードの補完に使用される外付けPチャネル MOSFETトランジスタのゲートが制御されます。Pチャネル MOSFETのソースを V_{OUT} に接続し、ドレインをBATに接続します。

BAT(ピン9):1セル・リチウムイオン・バッテリ・ピン。使用できる電力と負荷に応じて、BATに接続されたリチウムイオン・バッテリは理想ダイオードを介してVOUTにシステム電源を供給するか、またはバッテリチャージャから充電されます。

Vour (ピン10): スイッチング PowerPath コントローラの出力電圧 およびバッテリチャージャの入力電圧。携帯製品の大部分には Vourから電力を供給します。LTC4088-1/LTC4088-2は、Vourの外部負荷と内部バッテリチャージャの間で使用できる電力を分割します。外部負荷が優先されているので、任意の追加電力を使用してバッテリを充電できます。BATから Vourに接続された理想ダイオードによって、負荷が VBUS か

らの割り当てられた電力を超えても、 V_{BUS} 電源が取り外されても、 V_{OUT} に電力が供給されます。 V_{OUT} は、低インピーダンスの積層セラミック・コンデンサを使用してバイパスする必要があります。

 V_{BUS} (ピン11): スイッチング PowerPath コントローラの入力電圧。 V_{BUS} は通常、コンピュータの USB ポートまたは DC 出力の AC アダプタに接続されます。 V_{BUS} は、低インピーダンスの積層セラミック・コンデンサを使用してバイパスする必要があります。


SW (ピン12): SWピンは、降圧スイッチング・レギュレータを 介してV_{BUS}からV_{OUT}に電力を供給します。SWからV_{OUT}に インダクタを接続します。インダクタンス値と電流定格について は「アプリケーション情報」のセクションを参照してください。

D0(ピン13): モード選択入力ピン。 D0はD1ピンおよびD2ピンと組み合わせて、LTC4088-1/LTC4088-2の電流制限機能とバッテリチャージャ機能を制御します(表1を参照)。 このピンは微小な電流シンクによって"L"になっています。

D1(ピン14): モード選択入力ピン。 D1はD0ピンおよびD2ピンと組み合わせて、LTC4088-1/LTC4088-2の電流制限機能とバッテリチャージャ機能を制御します(表1を参照)。 このピンは微小な電流シンクによって"L"になっています。

露出パッド(ピン15): GND。PCBに半田付けし、グランドに電気的かつ熱的に低インピーダンスの接続をする必要があります。

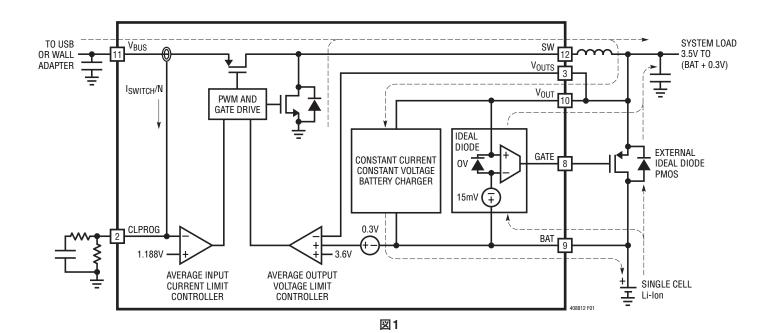
ブロック図

はじめに

LTC4088-1/LTC4088-2には、PowerPathコントローラ、バッテリチャージャ、内部理想ダイオード、外付け理想ダイオードのコントローラ、サスペンドLDOなどが搭載されています。特にUSBアプリケーション向けに設計されているので、PowerPathコントローラには高精度平均入力電流が制限される降圧スイッチング・レギュレータが搭載され、許容できるUSB電力を最大限に利用できます。電力が節約されるので、LTC4088-1/LTC4088-2ではVOUTの負荷電流はUSBの負荷仕様を超えることなく、USBポートから供給される電流を超えることが可能です。

スイッチング・レギュレータとバッテリチャージャは情報をやり取りし、平均入力電流が決してUSB仕様を超えないようにします。

BATから V_{OUT} に接続された理想ダイオードによって、 V_{BUS} の電力が不十分または電力がない場合でも、 V_{OUT} に常に十分な電力を供給できます。


最終的に、デバイスがサスペンド時のUSBポートに接続されたときのバッテリからの流出を防ぐため、VBUSからVOUTに接続されたLDOによって低電力または高電力のサスペンド電流をアプリケーションに供給します。

入力電流が制限される降圧スイッチング・レギュレータ

V_{BUS}からV_{OUT}に供給される電力は、2.25MHzの固定周波数降圧スイッチング・レギュレータによって制御されます。 USBの最大負荷仕様を満たすため、スイッチング・レギュレータには計測システムと制御システムが搭載されており、平均入力電流がCLPROGで設定されたレベル以下を維持するようにします。V_{OUT}は外部負荷とバッテリチャージャを結合したものをドライブします。

負荷によってスイッチング電源が設定された入力電流制限まで達しない場合、Voutはバッテリ電圧より約0.3V高い電圧をトラッキングします。バッテリチャージャの電圧をこの低レベルに保つことによって、バッテリチャージャの電力損失を最小限に抑えます。図1にパワーパスの構成要素を示します。

外部負荷とバッテリ充電電流が十分に大きいことによってスイッチング電源が設定された入力電流制限に達すると、バッテリチャージャは外部負荷に十分な電力を供給するのに必要な分だけ正確に充電電流を低減します。バッテリ充電電流が許容できるUSB電流を超える値に設定されても、平均入力電流のUSB仕様に違反することはありません。それはバッテリチャージャが必要に応じて電流を低減するからです。さらに、Voutの負荷電流がVBUSから供給される設定された電力を超えると、バッテリチャージャがイネーブルされていても、理想ダイオードを介してバッテリから負荷電流が供給されます。

CLPROGの電流は V_{BUS} 電流を正確に分割した分です。 CLPROGからGNDに設定抵抗と平均化コンデンサを接続すると、CLPROGの電圧はスイッチング・レギュレータの平均入力電流を示します。入力電流が設定制限値に近づくと、CLPROGは1.188Vに達し、スイッチング・レギュレータによって供給される電力は一定に保たれます。複数の電流比率を使用することが可能で、1本の設定抵抗によってUSBの低電力モードと高電力モードに対応するように設定できます。

表1に示すように、D0ピン、D1ピン、D2ピンの様々な組み合わせによって入力電流制限が設定されます。スイッチング入力レギュレータを停止させることもできます(USBサスペンド)。

平均入力電流はCLPROGの設定抵抗により次式に従って制限されます。

$$I_{VBUS} = I_{BUSQ} + \frac{V_{CLPROG}}{R_{CLPROG}} \bullet (h_{CLPROG} + 1)$$

ここで、I_{BUSQ}はLTC4088-1/LTC4088-2の消費電流、V_{CLPROG}は電流制限時のCLPROGサーボ電圧、R_{CLPROG}は設定抵抗の値、そしてh_{CLPROG}はV_{BUS}で測定される電流とCLPROGに供給されるサンプル電流との比率です。h_{CLPROG}、V_{CLPROG}、およびI_{BUSQ}の値については「電気的特性」の表を参照してください。R_{CLPROG}が2.94k以上であれば、回路の許容誤差がワーストケースであっても、1xモードまたは5xモードの平均入力電流のUSB仕様に違反することはありません。

表1にD0ピン、D1ピン、D2ピンでの可能な設定を示します。

表1. 入力電流制限の制御

DO	D1	4088-1 D2	4088-2 D2	CHARGER STATUS	I _{BUS(LIM)}
0	0	0	1	Off	100mA (1x)
0	0	1	0	On	100mA (1x)
0	1	0	1	Off	500mA (5x)
0	1	1	0	On	500mA (5x)
1	0	0	1	Off	1A (10x)
1	0	1	0	On	1A (10x)
1	1	0	1	Off	2.5mA (Susp High)
1	1	1	0	Off	500μA (Susp Low)

D0が"H"でD1が"L"の場合、V_{OUT}での充電と電力効率を向上させるために、スイッチング・レギュレータの電流制限が高く設定されることに注目してください。これらのモードは、通常、ACアダプタから入力電力が得られる場合に使用されます。

電流制限されていない間、スイッチング・レギュレータのBat-Track機能によってVouTがBATの電圧より約300mV高い電圧に設定されます。ただし、BATの電圧が3.3V以下で、かつ負荷要件によってスイッチング・レギュレータが電流制限を超えることがない場合、図2に示すようにVouTは3.6Vに固定されます。このため、携帯製品に電源を印加したときにバッテリの充電を待つことなく直ちに起動することができます。

負荷がV_{BUS}の電流制限を超えてしまうと、図2の網掛けの部分で示すように、V_{OUT}の範囲は無負荷電圧とバッテリ電圧をわずかに下回る電圧の間になります。

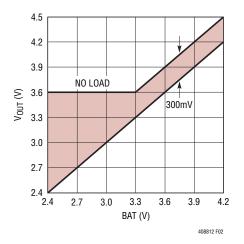


図2. VouTとBAT

バッテリ電圧が非常に低い場合、バッテリチャージャは負荷のような動作をしますが、入力電力が限られているのでその電流によってVouTが3.6Vの「インスタント・オン」電圧を下回る傾向があります。VouTがこのレベルを下回らないように、低電圧回路がVouTの低下を自動的に検出してバッテリ充電電流を必要に応じて低減します。この低減によって負荷の電流と電圧が常に優先されますが、バッテリ充電電流をできる限り供給します。(「アプリケーション情報」のセクションの「バッテリチャージャの過大設定」を参照。)

電圧安定化ループ補償はVOUTのコンデンサによって制御されます。ループを安定化させるためには10μFのMLCCコンデンサが必要です。この値より大きなコンデンサを追加すると過渡応答が改善されます。

BAT から V_{OUT} への理想ダイオード

LTC4088-1/LTC4088-2は、外付け理想ダイオードのコントローラだけでなく、内部理想ダイオードも備えています。内部理想ダイオードおよび外付け理想ダイオードはどちらも常時オンで、V_{OUT}がBATを下回るときはいつでも即座に応答します。

負荷電流がスイッチング・レギュレータからの許容電力を超 えて増加すると、追加の電力が理想ダイオードを介してバッ テリから供給されます。さらに、VRUSへの電源(USBまたは ACアダプタ)が取り外されると、アプリケーションの電源はす べて理想ダイオードを介してバッテリから供給されます。理想 ダイオードは十分に高速なので、スイッチング・レギュレータ に必要な蓄積容量だけでVourの垂下が防止されます。内 部理想ダイオードは、VOUTの電圧がBATの電圧より約15mV (V_{FWD}) 低いときは常に大型の内蔵MOSFETトランジス タを作動させる高精度アンプで構成されています。アンプの リニア範囲内では、理想ダイオードの小信号抵抗は非常に 小さいので、順方向電圧降下を15mV近くに保ちます。電流 レベルが大きいとMOSFETは十分に導通します。BATから V_{OUT}に外付けPチャネルMOSFETトランジスタを接続しま す。LTC4088-1/LTC4088-2のGATEピンは外付けPチャネル MOSFETトランジスタのゲートをドライブして、理想ダイオード を自動的に制御します。外付けPチャネルMOSFETのソース

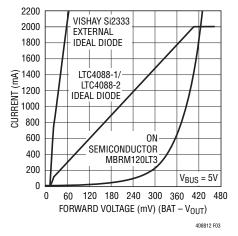


図3. 理想ダイオードのV-I特性

を V_{OUT} に接続し、ドレインをBATに接続します。GATEピンは 1nFの負荷をドライブできるので、オン抵抗が $30m\Omega$ 以下の外付けPチャネルMOSFETトランジスタを制御することができます。 V_{BUS} が使用できない場合、理想ダイオード・アンプの順方向電圧は 15mV からゼロ近くまで低下します。

サスペンドLDO

LTC4088-1/LTC4088-2は V_{BUS} から V_{OUT} の間にLDOを備えることによって、サスペンド・モード時に V_{OUT} に少量の電力を供給します。このLDOは、サスペンド時のUSBポートに携帯製品が接続されたときのバッテリ切れを防止します。このLDOは4.6Vに安定化されており、スイッチング・コンバータがディスエーブルされたときのみ動作します。USB 仕様に準拠させておくため、LDOへの入力は電流制限されているので、低電力または高電力のサスペンド仕様を超えることはありません。 V_{OUT} の負荷がサスペンド電流制限を超えると、理想ダイオードを介してバッテリから電流が追加供給されます。サスペンドLDOは V_{BUS} 電流をスケーリングした電流をCLPROGピンに供給するので、このモードでは約100mVにサーボ制御されます。このように、高電力および低電力のサスペンド設定値は、 I_{X} モード用と I_{Y} を記述されるレベルと相関をもちます。

V_{BUS}の低電圧ロックアウト(UVLO)

内部低電圧ロックアウト回路は V_{BUS} をモニタし、 V_{BUS} が UVLOの立ち上がりスレッショルド(4.3V)を上回るまでスイッチング・レギュレータをオフに保ちます。 V_{BUS} がUVLOの立ち下がりスレッショルド(4V)を下回ると、 V_{OUT} のシステム電源は理想ダイオードを介してバッテリから供給されます。スイッチング・レギュレータを動作させるには、 V_{BUS} の電圧がBATの電圧より約170mV高いことも必要です。

バッテリチャージャ

LTC4088-1/LTC4088-2には、自動再充電機能付き定電流/ 定電圧バッテリチャージャ、安全タイマによる自動終了、低電 圧トリクル充電、不良セル検出、温度範囲外で充電を停止す るサーミスタ・センサ入力などが搭載されています。

LINEAD

バッテリ充電サイクルが開始されると、バッテリチャージャは最初にバッテリが深く放電されているかを確認します。バッテリ電圧がVTRKL(標準2.85V)を下回っていると、自動トリクル充電機能によってバッテリ充電電流が設定値の10%に設定されます。低電圧が0.5時間以上持続すると、バッテリチャージャは自動的に停止し、CHRGピンによってバッテリが応答しないことを示します。

バッテリ電圧がVTRKLを上回ると、チャージャはフルパワー定電流モードで充電を開始します。バッテリに供給される電流は1031V/RPROGに達しようとします。使用できる入力電力および外部負荷の状態によっては、バッテリチャージャが設定されたフルレートで充電できることもあればできないこともあります。外部負荷がバッテリ充電電流よりも常に優先されます。USB電流制限の設定は常に実行され、追加電力のみがバッテリの充電に使用されます。システム負荷が軽い場合、バッテリ充電電流は最大になります。

充電終了

バッテリチャージャは安全タイマを内蔵しています。バッテリの電圧があらかじめ設定された4.200Vのフロート電圧に達すると、チャージャはそこでバッテリ電圧を安定化するので、充電電流が自然に減少します。チャージャは、バッテリが4.200Vに達したことを検出すると、4時間の安全タイマを起動します。安全タイマが終了すると、バッテリの充電が中止されるので、電流はそれ以上供給されません。

自動再充電

バッテリチャージャは充電を終了するとオフ状態を保つので、バッテリからはわずか数マイクロアンペアの電流が流れます。携帯製品を長期間この状態にしておくと、バッテリは最終的に自己放電します。バッテリが常に満充電になるように、バッテリ電圧がVRECHRG(標準4.1V)を下回ったときに充電サイクルが自動的に開始されます。安全タイマが動作中の場合にバッテリ電圧がVRECHRGを下回ると、タイマはゼロにリセットされます。VRECHRGを下回る短時間の偏位によって安全タイマがリセットしないように、バッテリ電圧を1.5ms以上VRECHRGより低くする必要があります。VBUSのUVLOを"L"に戻してから"H"にするか(たとえば、VBUSを取り外してから付け直す)またはD2ピンを使用してチャージャを一時的にディスエーブルすると、充電サイクルと安全タイマもリスタートします。

充電電流

充電電流は、PROGからグランドに1本の抵抗を接続することによって設定されます。バッテリ充電電流の1/1031がPROGに供給され、これによって1.000Vへのサーボが試みられます。このように、バッテリ充電電流はPROGピンの電流の1031倍に達しようとします。設定抵抗と充電電流は次式を使用することによって算出されます。

$$R_{PROG} = \frac{1031V}{I_{CHG}}, I_{CHG} = \frac{1031V}{R_{PROG}}$$

定電流または定電圧のいずれの充電モードも、PROGピンの 電圧はバッテリに供給される実際の充電電流に比例します。 充電電流はPROGピンの電圧をモニタし、次式を使用するこ とによっていつでも決定できます。

$$I_{BAT} = \frac{V_{PROG}}{R_{PROG}} \bullet 1031$$

多くの場合、実際のバッテリ充電電流(I_{BAT})は、使用できる 入力電力が限られていることとV_{OUT}からシステム負荷に優先 して供給されることにより、設定電流(I_{CHG})より減少します。

充電状態表示

CHRGピンはバッテリチャージャの状態を示します。CHRGによって4つの可能な状態が示されます。それらは、充電、非充電(つまり、フロート充電電流が設定された充電終了通知電流より小さい)、バッテリ無応答、およびバッテリ温度範囲外の状態です。

CHRGピンの信号は、人またはマイクロプロセッサによって、上述の4つの状態の1つとして容易に認識できます。オープンドレイン出力のCHRGピンは、電流制限抵抗によって表示LEDをドライブして人とのインターフェイスを行うか、または単にプルアップ抵抗によってマイクロプロセッサとのインターフェイスを行うことができます。

人とマイクロプロセッサの両方にCHRGピンが容易に認識されるように、このピンは充電時にオン、非充電時にオフのDC信号を出力するか、または高周波数(35kHz)でスイッチングさせて可能な2つのフォールト状態を示します。35kHzでスイッチングしている間、デューティ・サイクルは人が認識できる遅い速度で変調されます。

充電が開始されると、CHRGは"L"になり通常の充電サイクルの間"L"に保たれます。C/Xピンにより設定される基準によって決定される充電終了時には、CHRGピンが開放(ハイ・インピーダンス)状態になります。LTC4088-1/LTC4088-2がVBUSの電流制限時には、CHRGピンはC/Xスレッショルドに応答しません。これにより、バッテリチャージャに使用できる電力が不足していることによる充電終了の誤表示が防止されます。充電中にフォールトが発生すると、このピンは35kHzでスイッチングされます。スイッチングの間、デューティ・サイクルは非常に低い周波数で高い値と低い値の間で変調されます。低いデューティ・サイクルと高いデューティ・サイクルは十分に区別が付き、LEDがオンやオフをしているように見えることによって、「ブリンキング」表示が実現されます。2つのフォールトにはそれぞれ、人の認識用に独自の「ブリンク」時間があり、マシンの認識用に2つの独自のデューティ・サイクルがあります。

バッテリチャージャが動作しているときのCHRGピンの4つの可能な状態を表2に示します。

表 2. CHRG 信号

STATUS	FREQUENCY	MODULATION (BLINK) FREQUENCY	DUTY CYCLES
Charging	0Hz	0Hz (Low Z)	100%
I _{BAT} < C/X	0Hz	0Hz (Hi-Z)	0%
NTC Fault	35kHz	1.5Hz at 50%	6.25% or 93.75%
Bad Battery	35kHz	6.1Hz at 50%	12.5% or 87.5%

NTCフォールトはデューティ・サイクルが6.25%と93.75%の間を1.5Hzの速度で切り替わる35kHzのパルス列で表されることに注意してください。人は1.5Hzの速度がバッテリ温度の範囲外を示す「遅い」ブリンキングであることを容易に認識し、マイクロプロセッサは6.25%または93.75%のデューティ・サイクルをNTCフォールトと解読することができます。

バッテリが充電に無応答(つまり、バッテリ電圧が0.5時間2.85Vを下回ったまま)であることが検出されると、CHRGピンはバッテリのフォールトを示します。このフォールトの場合、人はLEDの6.1Hzの非常に「速い」ブリンキングを容易に認識し、マイクロプロセッサは12.5%または87.5%のデューティ・サイクルを不良セル・フォールトと解読することができます。

LTC4088-1/LTC4088-2は3端子PowerPathデバイスなので、バッテリの充電よりもシステム負荷が常に優先されます。システム負荷が過大なことにより、不良セル・タイムアウト時間以内にバッテリを不良セル・スレッショルド電圧以上に充電するだけの十分な電力が得られないことがあります。この状況では、バッテリチャージャは誤って不良セルを示します。この場合、システム・ソフトウェアによって負荷を減らしてからバッテリチャージャをリセットして再試行できます。

ほとんどありえませんが、デューティ・サイクルの測定が(低デューティ・サイクルから高デューティ・サイクルへの)明暗転換時に行われる可能性もあります。これが行われると、デューティ・サイクルの測定値は正確に50%になります。デューティ・サイクルの測定値が50%の場合、システム・ソフトウェアはそれを無効として新たなデューティ・サイクルの測定を行います。

C/Xの設定

C/Xピンから流出する電流はバッテリ充電電流の1/1031に相当します。PROGピンの抵抗のX/10倍の値の抵抗をC/Xからグランドに接続すると、バッテリ電流がC/Xまで低下した場合に \overline{CHRG} ピンが開放されます。たとえば、C/10の検出を行いたい場合、 $R_{C/X}$ を R_{PROG} と等しくします。C/20では、 $R_{C/X}$ を R_{PROG} の2倍にします。 \overline{CHRG} が状態を変える電流スレッショルドは次式で求められます。

$$I_{BAT} = \frac{V_{C/X}}{R_{C/X}} \bullet 1031$$

この設計では、C/10の検出はC/XピンとPROGピンの両方に抵抗を接続するのではなく、1本の抵抗のみによって行うことができます。これらのピンには両方ともバッテリ充電電流の1/1031が流れるので、両方の抵抗値が同じであるときこれらの電圧は等しくなります。したがって、2本の抵抗を使用する代わりに、C/XピンとPROGピンを一緒に接続し、抵抗を並列にして設定抵抗の値の1/2の1本の抵抗にすることができます。

TECHNOLOGY TECHNOLOGY

NTC サーミスタ

バッテリの温度は負温度係数(NTC)サーミスタをバッテリ・パックの近くに配置して測定します。NTC回路は「ブロック図」に示されています。

この機能を利用するには、NTCピンとグランドの間にNTCサーミスタ(R_{NTC})を接続し、 V_{BUS} からNTCにバイアス抵抗 (R_{NOM})を接続します。 R_{NOM} は、選択したNTCサーミスタの25°Cでの値(R_{25})に等しい値の1%抵抗にします。サーミスタ電流はLTC4088-1/LTC4088-2によって測定されることがなく、またUSB準拠を考慮する必要があるので、100kのサーミスタを推奨します。

NTCサーミスタの抵抗がR25の値の0.54倍、つまり約54k (Vishayの「曲線1」のサーミスタの場合、この値は約40°Cに相当)に低下すると、LTC4088-1/LTC4088-2は充電を停止します。バッテリチャージャが定電圧(フロート)モードの場合、サーミスタが有効温度に戻ったことを示すまで安全タイマも停止します。温度が低下するに従って、NTCサーミスタの抵抗が増加します。LTC4088-1/LTC4088-2は、NTCサーミスタの値がR25の値の3.25倍まで増加すると充電を停止するようにも設計されています。Vishayの「曲線1」のサーミスタの場合、この抵抗(325k)は約0°Cに相当します。高温コンパレータと低温コンパレータにはそれぞれ3°Cのヒステリシスがあり、トリップ・ポイントの近くでの発振が防止されます。NTCピンを接地するとNTC機能がすべてディスエーブルされます。

サーマル・レギュレーション

デバイスや周辺部品の熱的損傷を防止するため、ダイ温度が約110°Cに上昇すると、内部サーマル・フィードバック・ループが設定充電電流を自動的に低減します。サーマル・レギュレーションによって、LTC4088-1/LTC4088-2 は高電力動作や高周囲温度環境に起因する過度の温度上昇から保護されるので、ユーザーはLTC4088-1/LTC4088-2 や外付け部品に損傷を与えることなく、所定の回路基板設計での電力処理能力の限界を押し上げることができます。LTC4088-1/LTC4088-2のサーマル・レギュレーション・ループの利点として、ワーストケースの条件ではチャージャは自動的に電流を減らすという保証があるので、特定のアプリケーションに対してワーストケースの条件ではなく実際の条件に従って充電電流を設定することができます。

シャットダウン・モード

入力スイッチング・レギュレータは V_{BUS} がUVLO電圧を上回ると常にイネーブルされるので、LTC4088-1/LTC4088-2が2つのUSB サスペンド・モード(500 μ Aまたは2.5 μ A)のいずれかになることはありません。

理想ダイオードは常にイネーブルされていて、ディスエーブルすることはできません。

CLPROG 抵抗とコンデンサ

「降圧入力レギュレータ」のセクションで説明したように、CLPROGピンの抵抗によって6つの電流制限モードの各平均入力電流制限が決定されます。入力電流は、Voutのドライブに使用される電流とスイッチング・レギュレータの消費電流の2つの成分から構成されます。USB仕様に確実に準拠させるため、入力電流の両方の成分を考慮する必要があります。「電気的特性」の表で、すべての設定の消費電流の標準値と電流制限の設定精度が規定されています。500mAや100mAの規格値にできるだけ近い値を得るには、高精度抵抗を使用する必要があります。

スイッチング・レギュレータが平均入力電流を決定できるように、抵抗と並列に平均化コンデンサを接続する必要があります。また、電流制限に達したときに、このコンデンサによって帰還ループの支配的ポールが得られます。安定性を確保するため、CLPROGのコンデンサは 0.47μ F以上でなければなりません。一方、速い過渡応答は 8.2Ω の抵抗と直列に接続した 0.1μ Fのコンデンサによって得られます。

インダクタの選択

平均入力電流回路は逆電流(つまり、VouTからVBUSへの電流)を測定しないので、軽負荷時にインダクタの電流が反転するとVBUSの電流測定に誤差が生じます。電流が反転するとCLPROGの電圧は実際に流れる平均入力電流を表す値よりも高くなるので、この誤差は小さめになります。充電に使用できる電流とシステム負荷はこのように低減されます。USB仕様に違反することはありません。

ピーク-ピーク間インダクタ・リップルが平均電流制限の設定値の2倍より大きいと、使用できるVBUS電流がこのように低減されます。たとえば、平均電流制限が100mAに設定された場合、ピーク-ピーク間リップルは200mAを超えてはなりません。入力電流が100mAより小さいと測定精度が低下することがありますが、安定化されることはないので平均電流ループに影響を与えることはありません。

LTC4088-1/LTC4088-2は、インダクタ電流をモニタして電流 がゼロに近づいたときに同期整流器をディスエーブルする 電流反転コンパレータを搭載しています。このコンパレータ は、平均入力電流測定時の電流反転の影響を最小限に抑えます。ただし、いくつかの低インダクタンス値では、インダクタ電流がわずかに反転することがあります。この値は、コンパレータのスピードと V_L/L から求められる電流波形の傾斜との関係に依存します。ここで、 V_L はインダクタ両端の電圧(約 $-V_{OUT}$)、Lはインダクタンスの値です。

3.3µHのインダクタンス値は出発点として最適な値です。 100mAの平均VRIIS電流で連続導通状態を保つと、レギュ レータに対してリップルは十分に小さくなります。軽負荷時に 電流が0mAをわずかに上回ると、電流反転コンパレータは 同期整流器をディスエーブルします。インダクタンスがこの値 から減少するに従って、デバイスは次第により大きな負荷で、 不連続導通モードになります。VOUTのリップルはインダクタ・ リップルの大きさに比例して増加します。ただし、過渡応答は 改善されます。電流モード・コントローラは、インダクタ電流を 負荷が必要とする大きさに正確に制御し、VOUTを安定化さ れた状態に保ちます。過渡負荷ステップでは、インダクタ電流 を新たなレベルに変化させる必要があります。インダクタ電流 を瞬時に変化させることはできないので、インダクタ電流が変 化して新たな負荷要件を満たすことができるまでVOUTのコン デンサが電流の差を供給または吸収します。一定電圧では小 さなインダクタは大きなインダクタより電流が急速に変化する ので、過渡応答が速くなります。インダクタを大きくすると出力 リップルと電流リップルが減少しますが、その代わりに過渡性 能が低下し(つまり、大きなCVOUTが必要となり)、インダクタ のパッケージ・サイズが物理的に大きくなります。

入力レギュレータは瞬時ピーク電流クランプ機能を備えていて、過渡負荷時や起動時にインダクタが飽和するのを防止します。このクランプは、高負荷での通常動作に影響を与えず、適度なインダクタ・リップルになるように設計されています。これによって、出力が短絡された場合のインダクタ電流の暴走が防止されます。

インダクタのDC巻線抵抗とACコア損失は効率に影響を及ぼすので、使用できる出力電力に影響します。これらの影響は特徴付けが難しく、アプリケーションによって異なります。このアプリケーションに適すると思われるいくつかのインダクタを表3に示します。

TECHNOLOGY TECHNOLOGY

INDUCTOR TYPE	L (µH)	MAX I _{DC} (A)	MAX DCR (Ω)	SIZE IN mm (L × W × H)	MANUFACTURER
LPS4018	3.3	2.2	0.08	$3.9 \times 3.9 \times 1.7$	Coilcraft www.coilcraft.com
D53LC DB318C	3.3 3.3	2.26 1.55	0.034 0.070	5 × 5 × 3 3.8 × 3.8 × 1.8	Toko www.toko.com
WE-TPC Type M1	3.3	1.95	0.065	4.8 × 4.8 × 1.8	Würth Elektronik www.we-online.com
CDRH6D12 CDRH6D38	3.3 3.3	2.2 3.5	0.0625 0.020	$6.7 \times 6.7 \times 1.5$ $7 \times 7 \times 4$	Sumida www.sumida.com

表3. LTC4088-1/LTC4088-2のチャージャ・ヘッドユニット向けに推奨するインダクタ

V_{BUS}とV_{OUT}のバイパス・コンデンサ

LTC4088-1/LTC4088-2と一緒に使用されるコンデンサの種類と 容量によって、レギュレータ制御ループの安定性、入力電圧リッ プルなど、いくつかの重要なパラメータが決まります。LTC4088-1/ LTC4088-2では、V_{BUS}からV_{OUT}の間に降圧スイッチング電源 を使用しているので、入力電流の波形には高周波成分が含まれ ています。VBUSのバイパスには、等価直列抵抗(ESR)が小さい 積層セラミック・コンデンサを使用することを強く推奨します。タ ンタル・コンデンサやアルミ・コンデンサはESRが大きいので推 奨できません。V_{BUS}のコンデンサの値によって、与えられた負 荷電流に対する入力リップルの大きさが直接制御されます。この コンデンサのサイズを大きくすると、入力リップルが小さくなりま す。USB仕様では、USB電源バスの両端に最大10µFを直接接 続することができます。ノイズ性能を改善するためにコンデンサ を追加する必要がある場合、突入電流の制限およびバス上での 過度の過渡電圧降下の防止のため、ソフト接続回路が必要にな ることがあります(図5を参照)。

過渡負荷時に大きなV_{OUT}電圧ステップが発生しないように、セラミック・コンデンサを使用してV_{OUT}をバイパスすることも推奨します。出力コンデンサはスイッチング・レギュレータの補償に使用されます。V_{OUT}にはESRが小さい10μF以上のコンデンサが必要です。さらに容量を増やすと負荷過渡性能と安定性が改善されます。

積層セラミック・チップ・コンデンサは、一般に非常に優れたESR 特性をもっています。MLCCは密なボード・レイアウトと切れ目の ないグランド・プレーンと組み合わせることによって、非常に良好 な性能と低EMI放射を実現します。

セラミック・コンデンサは数種類が入手可能で、それぞれかなり 異なった特性をもっています。たとえば、X7Rセラミック・コンデ ンサは電圧と温度の安定性が最良です。X5Rセラミック・コンデンサはあきらかに高密度にパッキングされていますが、定格電圧および定格温度の全範囲にわたって性能が劣っています。Y5Vセラミック・コンデンサはパッキング密度が最高ですが、容量対電圧の特性が極端に非直線的なので、注意して使用する必要があります。セラミック・コンデンサの実際の回路内の容量は、回路内で予測される小さなAC信号とDCバイアスを使用して測定する必要があります。販売元の多くは1V_{RMS}のACテスト信号を使用して容量対電圧を規定しているので、アプリケーションで示されるコンデンサの容量が過大になります。アプリケーションと同じ動作条件を使用するには、選択したコンデンサがアプリケーションで必要な最小容量を満たしているかどうかを確認するため、ユーザーは容量を測定するか販売元に実際の容量を問い合わせる必要があります。

バッテリチャージャの過大設定

USBの高電力仕様では、USBポートから最大2.5Wを供給することができます。スイッチング・レギュレータは、VBUSをBATの電圧を少し上回る電圧に高効率に変換するとともに、電力をCLPROGで設定される値以下に制限します。チャージャはUSB仕様にかかわらず、最大安全充電電流を供給するように、PROGピンを使用して設定する必要があります。設定されたレートでバッテリを充電するのに使用できる電流が不足していると、VOUTのシステム負荷およびVBUS電流制限の条件を満たすまで充電電流を低減します。チャージャの電流を使用可能な大きさ以上に設定しても、平均入力電流制限に違反することはありません。これによって、バッテリチャージャがすべての利用可能な電力を使用してできるだけ即座にバッテリを充電することが可能になるだけで、チャージャ内での電力消費は最小限に抑えられます。

NTC サーミスタの代替とバイアス

LTC4088-1/LTC4088-2は、片側が接地されたサーミスタおよびバイアス抵抗をNTCに接続すると、温度規定充電を行います。サーミスタ(R25)の室温の抵抗値に等しいバイアス抵抗を使用することによって、上側と下側の温度がそれぞれ約40°Cと0°Cにあらかじめ設定されます(Vishayの「曲線1」のサーミスタを想定)。

上側と下側の温度スレッショルドはバイアス抵抗の値を変えるか、または2つ目の調整抵抗を回路に追加することによって調整できます。バイアス抵抗だけを調整すると、上側か下側のいずれかのスレッショルドを変更できますが、両方を変更することはできません。他方のトリップ・ポイントはサーミスタの特性によって決定されます。調整抵抗に加えてバイアス抵抗を使用すると、上側と下側の温度スレッショルドの差を縮めることはできないという制約はありますが、上側と下側の温度のトリップ・ポイントを個別に設定できます。それぞれの技法の例を以下に示します。

NTCサーミスタには、抵抗-温度変換表で示される温度特性があります。次の例で使用されるVishay-DaleのサーミスタNTHS0603N01N1003は、公称値が100kで、Vishayの「曲線1」の抵抗-温度特性に従います。

以下の説明では次の表記を使用します。

R25 = 25°Cでのサーミスタの値

R_{NTC|COLD} = 低温トリップ・ポイントでのサーミスタの値

R_{NTC|HOT} = 高温トリップ・ポイントでのサーミスタの値

r_{COLD} = R_{NTC|COLD} と R25 の比率

rhot = RNTC|COLD と R25 の比率

R_{NOM} = サーミスタの初期バイアス抵抗(図4aを参照)

R1=オプションの温度範囲調整抵抗(図4bを参照)

LTC4088-1/LTC4088-2の温度条件のトリップ・ポイントは、高温スレッショルドでは $0.349 \cdot V_{BUS}$ に、低温スレッショルドでは $0.765 \cdot V_{BUS}$ に内部設定されます。

したがって、高温トリップ・ポイントは次の場合に設定されます。

$$\frac{R_{NTC|HOT}}{R_{NOM} + R_{NTC|HOT}} \bullet V_{BUS} = 0.349 \bullet V_{BUS}$$

また低温トリップ・ポイントは次の場合に設定されます。

$$\frac{R_{\text{NTC|COLD}}}{R_{\text{NOM}} + R_{\text{NTC|COLD}}} \bullet V_{\text{BUS}} = 0.765 \bullet V_{\text{BUS}}$$

これらの式を解いてR_{NTC|COLD}とR_{NTC|HOT}を求めると次のようになります。

 $R_{NTC|HOT} = 0.536 \bullet R_{NOM}$

717

R_{NTC|COLD} = 3.25 • R_{NOM}

 R_{NOM} をR25に等しい値に設定すると、上の式から r_{HOT} = 0.536および r_{COLD} = 3.25になります。これらの比率を Vishay の抵抗-温度曲線1のグラフに当てはめると、約40°Cの高温トリップ・ポイントおよび約0°Cの低温トリップ・ポイントが得られます。高温トリップ・ポイントと低温トリップ・ポイントの差は約40°Cです。

R25と値の異なるバイアス抵抗(R_{NOM})を使用することによって、高温トリップ・ポイントおよび低温トリップ・ポイントはいずれかの方向に移動させることができます。温度スパンはサーミスタの非直線的な動作によってある程度変化します。次の式を使用してバイアス抵抗の新たな値を容易に算出できます。

$$R_{NOM} = \frac{r_{HOT}}{0.536} \cdot R25$$
$$R_{NOM} = \frac{r_{COLD}}{3.25} \cdot R25$$

ここで、「THOT および TCOLD は**所期の**高温トリップ・ポイントおよび低温トリップ・ポイントでの抵抗の比率です。これらの式には相関がある点に注目してください。したがって、2つのトリップ・ポイントの一方だけを選択することが可能で、他方はデバイスで設計されたデフォルトの比率によって決定されます。60℃の高温トリップ・ポイントが必要な場合の例について検討します。

LINEAR TECHNOLOGY

Vishayの曲線1のR-T特性から、 60° Cでの r_{HOT} は0.2488になります。前述の式を使用するときは、 R_{NOM} を46.4kに設定します。この R_{NOM} の値では、低温トリップ・ポイントは約16°Cです。スパンは前述の40°Cではなく44°Cになることに注目してください。これは、絶対温度が上昇するに従ってサーミスタの「温度利得」が低下するからです。

図4bに示すように、バイアス抵抗を追加することによって、上側と下側の温度トリップ・ポイントを個別に設定できます。次の式を使用してR_{NOM}およびR1の値を算出することができます。

$$R_{NOM} = \frac{r_{COLD} - r_{HOT}}{2.714} \cdot R25$$

$$R1 = 0.536 \cdot R_{NOM} - r_{HOT} \cdot R25$$

たとえば、トリップ・ポイントを0°Cと45°Cに設定するには、 Vishayの曲線1のサーミスタを次のように決定します。

$$R_{NOM} = \frac{3.266 - 0.4368}{2.714} \cdot 100k = 104.2k$$

最も近い1%値は105kです。

$$R1 = 0.536 \cdot 105k - 0.4368 \cdot 100k = 12.6k$$

最も近い1%値は12.7kです。最終的な解は図4bに示されており、上側のトリップ・ポイントは45°C、また下側のトリップ・ポイントは0°Cになります。

USBの突入制限

USB 仕様では、USB ハブに最大 10μ Fのダウンストリーム容量を活線挿入することができます。LTC4088-1/LTC4088-2のアプリケーションのほとんどは、 10μ Fで V_{BUS} の適切なフィルタリングを十分に行うことができます。もっと大きな容量が必要な場合、以下の回路を使用して追加容量をソフト接続することができます。

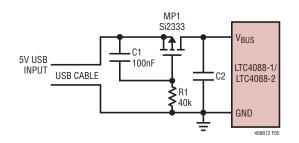
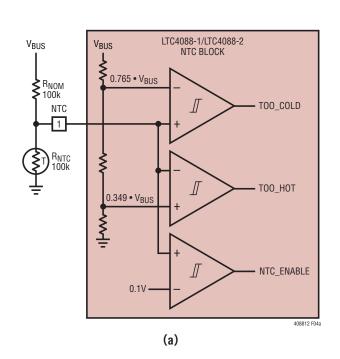



図5. USBソフト接続回路

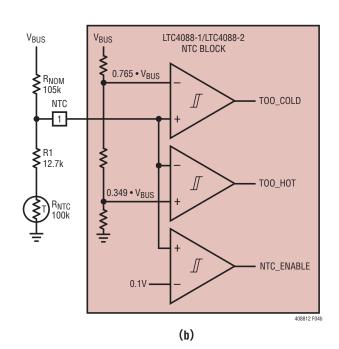


図4.NTC回路

この回路では、ケーブルが最初に接続されたときにコンデンサC1がMP1をオフに保ちます。C1のボトム・プレートは最終的にGNDに放電し、MP1に上昇するゲート電圧を印加します。R1とC1の大きな時定数によってケーブル中での急速な電流の生成が防止されるので、共振オーバーシュートがすべて抑えられます。

LTC4088-1/LTC4088-2を実験用電源に接続するとき、 V_{BUS} の電圧オーバーシュートが観測されることがあります。このオーバーシュートは電源から V_{BUS} までの長いリードによるものです。電源から V_{BUS} までのワイヤを寄り合わせると、これらの長いリードの寄生インダクタンスを大きく低減できるので、 V_{BUS} の電圧が安全なレベルに保たれます。USBケーブルは一般に電源リードと近接するように製造されているので、寄生インダクタンスがかなり小さくなります。

基板レイアウトの検討事項

LTC4088-1/LTC4088-2のパッケージ裏面の露出パッドは、PC ボードのグランドにしっかりと半田付けする必要があります。これはパッケージで唯一のグランド・ピンで、制御回路と同期整流器の両方のリターン・パスの役割を果たします。

さらに、高周波のスイッチング回路を搭載しているので、入力 コンデンサ、インダクタ、および出力コンデンサをLTC4088-1/ LTC4088-2にできるだけ近づけて配置し、LTC4088-1/ LTC4088-2およびすべての外付け高周波部品の下を切れ目のないグランド・プレーンにしなければなりません。 LTC4088-1/LTC4088-2の入力電流のような高周波電流は、基板上面の入力経路の直下のミラー・パスに沿ってグランド・プレーン上を流れる傾向があります。グランド・プレーンにその層の別のトレースによるスリットつまり切れ込みがあると、電流はスリットの周囲に沿って流れるように強制されます。高周波電流を自然な最小面積の経路を通して還流させることができないと、過度の電圧が生じて電磁放射が起きます(図6を参照)。グランド・ピン(露出パッド)の裏面の真下に一群のビアを配置し、内部のグランド・プレーンに直接接続する必要があります。寄生インダクタンスを最小限に抑えるため、グランド・プレーンはPCボードのトップ・プレーンにできるだけ近づける必要があります(第2層)。

外付け理想ダイオード・コントローラのGATEピンは、ドライブ電流が非常に制限されています。隣接するPCボードのトレースへのリークを最小限に抑える配慮が必要です。このピンから100nAがリークすると、理想ダイオードに約10mVのオフセットが追加されます。リークを最小限に抑えるために、このトレースはPCボード上でVoutに接続されたメタルで囲むことによってガードすることができ、一般にGATE電圧より1ボルト以上高くならないようにする必要があります。

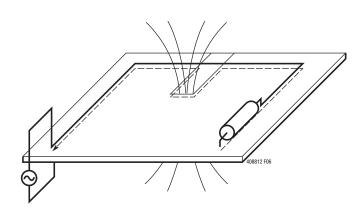


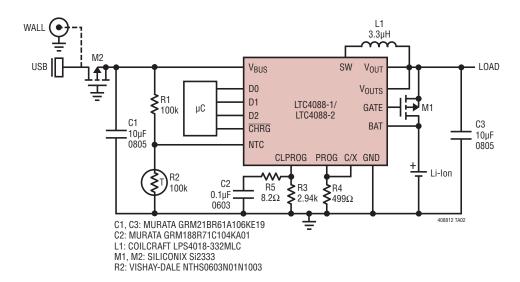
図 6. グランド電流はその入力経路に沿って高速で流れる。 グランド・プレーンの切れ込みによって高電圧が生じ、 電磁放射が増加する。

LINEAR TECHNOLOGY

バッテリチャージャの安定性に関する検討事項

LTC4088-1/LTC4088-2のバッテリチャージャは、定電圧および定電流の制御ループを備えています。定電圧のループは、バッテリが低インピーダンスのリードで接続されているときは補償がなくても安定しています。ただし、リードが長すぎると、十分大きな直列インダクタンスが加わり、BATからGNDに少なくとも1μFのバイパス・コンデンサが必要になることがあります。

大容量の低ESR 積層セラミック・チップ・コンデンサでは定電圧のループの位相マージンが低減されるので、不安定になる可能性があります。最大 22μ Fのセラミック・コンデンサをバッテリと並列に接続できますが、コンデンサの容量が大きい場合には $0.2\Omega \sim 1\Omega$ の直列抵抗を使用してデカップルする必要があります。

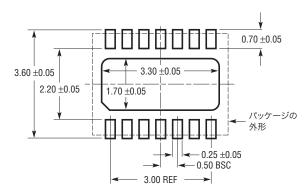

さらに、BATからGNDに4.7 μ Fのコンデンサを $0.2\Omega \sim 1\Omega$ の 抵抗と直列に接続し、バッテリが取り外されたときの発振を 防止する必要があります。

定電流モードでは、バッテリ電圧ではなくPROGピンが帰還ループを構成します。PROGピンが容量をもつことによって追加のポールが生じるので、このピンの容量は最小限に抑える必要があります。PROGピンに容量が追加されなければ、チャージャは設定抵抗値が25kまで安定します。ただし、このノードの容量が増えると最大許容設定抵抗が小さくなります。PROGピンのポール周波数は100kHz以上に保つ必要があります。したがって、PROGピンに寄生容量(C_{PROG})がある場合、次式を使用してR_{PROG}の最大抵抗値を算出します。

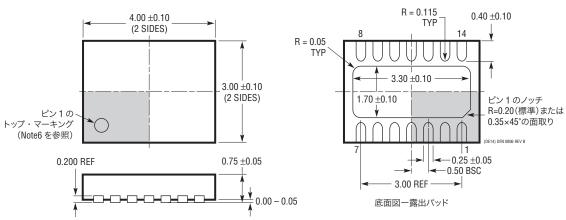
$$R_{PROG} \le \frac{1}{2\pi \cdot 100 \text{kHz} \cdot C_{PROG}}$$

標準的応用例

NTC 規定充電および逆入力保護機能付き、 高効率バッテリチャージャ/USBパワーマネージャ



パッケージ


最新のパッケージ図面については、http://www.linear-tech.co.jp/designtools/packaging/ をご覧ください。

DEパッケージ 14ピン・プラスチックDFN(4mm×3mm)

(Reference LTC DWG # 05-08-1708 Rev B)

推奨する半田パッドのピッチと寸法 半田付けしない部分には半田マスクが必要

- NOTE
- 1. 図は JEDEC パッケージ・アウトライン MO-229 のバージョンのバリエーション(WGED-3)
- として提案
- 2. 図は実寸とは異なる
- 3. すべての寸法はミリメートル
- 4. バッケージ底面の露出パットの寸法にはモールドのパリを含まない。モールドのパリは(もしあれば)各サイドで 0.15mm を超えないこと
- 5. 露出パッドは半田メッキとする
- 6. 網掛けの部分はパッケージの上面と底面のピン1の位置の参考に過ぎない

LINEAR

改訂履歴 (改訂履歴はRev Cから開始)

REV	日付	概要	ページ番号
С	05/12	USBのバッテリ充電電流制限とバッテリ電圧のグラフを明確化	5
		サーミスタの製品番号を明確化	

関連製品

製品番号	説明	注釈
バッテリチャージャ		
LTC4057	リチウムイオン・リニア・バッテリチャー ジャ	充電電流:最大800mA、サーマル・レギュレーション、ThinSOT™パッケージ
LTC4058	DFN パッケージのスタンドアロン 950mA	C/10 充電終了機能、バッテリのケルビン検出、充電精度: ±7% リチウム イオン・チャージャ
LTC4065/LTC4065A	750mA リニア・リチウムイオン・バッテリ・ チャージャ	2mm×2mm DFN パッケージ、サーマル・レギュレーション、スタンドアロン動作
LTC4411/LTC4412	ThinSOT パッケージの低損失シングル PowerPath コントローラ	DCソース間の自動切り替え、負荷分担、OR接続ダイオードの代替デバイス
LTC4413	デュアル理想ダイオード	3mm×3mm DFN パッケージ、OR 接続ダイオードの低損失代替デバイス
パワーマネージメント	•	
LTC3406/LTC3406A	600mA (I _{OUT})、1.5MHz 同期整流式降圧 DC/DC コンバータ	95%の効率、 V_{IN} = 2.5 V \sim 5.5 V 、 V_{OUT} = 0.6 V 、 IQ = 20 μ A、 I_{SD} < 1 μ A、ThinSOTパッケージ
LTC3411	1.25A (I _{OUT})、4MHz 同期整流式降圧 DC/DC コンバータ	95%の効率、V _{IN} = 2.5V ~ 5.5V、V _{OUT} = 0.8V、IQ = 60µA、ISD < 1µA、MS10パッケージ
LTC3455	USBパワー・マネージャとリチウムイオン・ バッテリチャージャを装備したデュアル DC/DC コンバータ	電源間のシームレスな移行:USB、ACアダプタおよびバッテリ、95%の 効率のDC/DC変換
LTC3557/LTC3557-1	リチウムイオン/ポリマー・チャージャ、トリプル同期整流式降圧レギュレータ+LDOを搭載したUSBパワーマネージャ	多機能 PMIC: リニア・パワーマネージャおよび 3 個の降圧レギュレータ、AC アダプタ入力から最大 1.5A のプログラム可能な充電電流、サーマル・レギュレーション、同期整流式降圧コンバータの効率: >95%、調整可能な出力: 400 mA/ 400 mA/ 600 mA で 0.8 V ~ 3.6 V、Bat-Track アダプティブ出力制御、 200 m Ω の理想ダイオード、 4 mm× 4 mm 28 ピン QFN パッケージ
LTC4055	USBパワー・コントローラおよびバッテリ チャージャ	1 セル・リチウムイオン・バッテリをUSBポートから直接充電、サーマル・レギュレーション、 200 m Ω の理想ダイオード、 4 mm $\times 4$ mm QFN 16 パッケージ
LTC4066	USBパワー・コントローラおよびバッテリ チャージャ	1セル・リチウムイオン・バッテリをUSBポートから直接充電、サーマル・レ ギュレーション、50mΩの理想ダイオード、4mm×4mm QFN24パッケージ
LTC4085	理想ダイオード・コントローラとリチウムイ オン・チャージャを備えたUSBパワーマ ネージャ	1 セル・リチウムイオン・バッテリをUSBポートから直接充電、サーマル・レギュレーション、< 50 m Ω オプション付きの 200 m Ω 理想ダイオード、 4 mm× 3 mm DFN 14 パッケージ
LTC4088	高効率 USB パワーマネージャおよびバッ テリチャージャ	USBポートから得られる電力を最大化、Bat-Track、「インスタント・オン」 動作、最大 1.5 A の充電電流、 <50 m Ω オプション付きの 180 m Ω 理想ダイオード、 3.3 V/ 25 mA 常時オンLDO、 4 mm $\times 3$ mm DFN14パッケージ
LTC4089/LTC4089-5	理想ダイオード・コントローラと高効率リ チウムイオン・バッテリチャージャを搭載 したUSBパワーマネージャ	6 V \sim 36V (最大40V) 入力からの高効率 1.2A チャージャ、1 セル・リチウムイオン/ポリマー・バッテリを USB ポートから直接充電、サーマル・レギュレーション、<50mΩオプション付きの 200mΩ 理想ダイオード、4mm ×3mm DFN14 パッケージ、Bat-Track 適応出力制御 (LTC4089)、固定5V出力 (LTC4089-5)