LTM2987は、16チャネルのμModule®（マイクロモジュール）パワーシステム・マネージャで、シーケンス制御、調整（サポート制御）、監視、フォルトの管理、遠隔測定の実行、およびフォルト・ログの作成を行うために使用します。PMBusコマンドは、電源シーケンシング、高精度のポイントオブロード電圧調整およびマージニングをサポートしています。DIコンペータは、独自のソフト接続アルゴリズムを使用して、電源の障害を最小限に抑えます。監視機能には、16の出力出力チャネルと2つの電源入力チャネルの過電圧および低電圧制限を設定、ならびに温度の上限値と下限値が含まれています。プログラム可能なフォルト応答により電源をディスエープルできますが、フォルトが検出された後に再試行を任意で選択可能です。電源をディスエープルするフォルト発生すると、フォルト状態と関連の遠隔測定データをプラック・ボックスEEPROMに保存する機能を自動的に起動できます。内蔵の16ビットADコンバータは、16の出力電圧、2つの入力電圧、入力温度をモニタします。さらに、電流検出抵抗両端の電圧を測定するように奇数チャネルを設定できます。プログラム可能なウォッチドッグ・タイマは、マイクロプロセッサの動作が停止したかをモニタし、必要に応じてマイクロプロセッサをリセットします。1線式バスは、リニアテクノロジーの複数のパワーシステム・マネージメント（PSM）デバイスにわたって電源に同期します。環境設定EEPROMにより、ソフトウェアを追加せずに自律動作がサポートされます。

16チャネルのμModule®PMBusパワーシステム・マネージャ

標準的応用例

<table>
<thead>
<tr>
<th>電源精度</th>
<th>46 PARTS SOLDERED DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAV BE POWERED FROM EITHER AN EXTERNAL 3.3V SUPPLY OR THE INTERMEDIATE BUS</td>
<td></td>
</tr>
</tbody>
</table>

詳細：www.linear-tech.co.jp/LTM2987
LTM2987

絶対最大定格
(Note 1, 2, 3)

電源電圧:
- V_PWR - GND 間: -0.3V 〜 15V
- V_IN_SNS - GND 間: -0.3V 〜 15V
- V_DD33 - GND 間: -0.3V 〜 3.6V
- V_DD25 - GND 間: -0.3V 〜 2.75V

デジタル入力/出力電圧:
- ALERTB, SDA, SCL, CONTROL0, CONTROL1: -0.3V 〜 5.5V
- PWRGD, SHARE_CLK, WDI/RESETB, WP: –0.3V 〜 VDD33 + 0.3V
- FAULTB00, FAULTB01, FAULTB10, FAULTB11: –0.3V 〜 VDD33 + 0.3V
- ASELO, ASEL1: –0.3V 〜 VDD33 + 0.3V

アナログ電圧:
- REFP - GND 間: -0.3V 〜 1.35V
- REFN - GND 間: -0.3V 〜 0.3V
- VSENSEP[7:0] - GND 間: -0.3V 〜 6V
- VSENSEM[7:0] - GND 間: -0.3V 〜 6V
- VOUT_EN[3:0], VIN_EN - GND 間: -0.3V 〜 15V
- VOUT_EN[7:4] - GND 間: -0.3V 〜 6V
- VDACP[7:0] - GND 間: -0.3V 〜 6V
- VDACM[7:0] - GND 間: -0.3V 〜 6V

プルアップ抵抗:
- VPU: -0.3V 〜 5.5V
- RPU1, RPU2, RPU3, RPU4: -0.3V 〜 5.5V

動作接合部温度範囲:
- LTM2987C: 0ºC 〜 70ºC
- LTM2987I: -40ºC 〜 105ºC*

保存温度範囲: -55ºC 〜 125ºC*

最大接合部温度: 125ºC*

最大半田付け温度: 245ºC

* 105℃を超える温度でのEEPROMの接合部温度に対する詳細なディレーティングについてはLTC2977のデータシートの「動作」のセクションを参照してください。

発注情報

LTM2987CY#PBF SAC305 (RoHS) LTM2987Y e1 BGA
0ºC to 70ºC

LTM2987IY#PBF SAC305 (RoHS) LTM2987Y e1 BGA
-40ºC to 105ºC

さらに広い動作温度範囲で規定されるデバイスについては、弊社または弊社代理店にお問い合わせください。

温度グレードは出荷時のコンテナのラベルで識別されます。パッケージまたはボール仕上げコードは、IPC/JEDEC J-STD-609に準拠します。

終端仕上げ部品マーキング:
www.linear-tech.co.jp/leadfree

www.linear-tech.co.jp/LTM2987
電気的特性

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_PWR</td>
<td>V_PWR Supply Input Operating Range</td>
<td>●</td>
<td>4.5</td>
<td>15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_PWR</td>
<td>V_PWR Supply Current</td>
<td>4.5V ≤ V_PWR ≤ 15V, V_DD33 Floating</td>
<td>●</td>
<td>10</td>
<td>13</td>
<td>mA</td>
</tr>
<tr>
<td>V_DD33</td>
<td>V_DD33 Supply Current</td>
<td>3.13V ≤ V_DD33 ≤ 3.47V, V_PWR = V_DD33</td>
<td>●</td>
<td>10</td>
<td>13</td>
<td>mA</td>
</tr>
<tr>
<td>V_UVLO_VDD33</td>
<td>V_DD33 Undervoltage Lockout</td>
<td>V_DD33 Ramping Up, V_PWR = V_DD33</td>
<td>●</td>
<td>2.35</td>
<td>2.55</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>V_DD33 Undervoltage Lockout Hysteresis</td>
<td></td>
<td></td>
<td>120</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_DD33</td>
<td>Supply Input Operating Range</td>
<td>V_PWR = V_DD33</td>
<td>●</td>
<td>3.13</td>
<td>3.47</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Regulator Output Voltage</td>
<td>4.5V ≤ V_PWR ≤ 15V</td>
<td>●</td>
<td>3.13</td>
<td>3.26</td>
<td>3.47</td>
</tr>
<tr>
<td></td>
<td>Regulator Output Short-Circuit Current</td>
<td>V_PWR = 4.5V, V_DD33 = 0V</td>
<td>●</td>
<td>75</td>
<td>90</td>
<td>140</td>
</tr>
<tr>
<td>V_DD25</td>
<td>Regulator Output Voltage</td>
<td>3.13V ≤ V_DD33 ≤ 3.47V</td>
<td>●</td>
<td>2.35</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Regulator Output Short-Circuit Current</td>
<td>V_PWR = V_DD33 = 3.47V, V_DD25 = 0V</td>
<td>●</td>
<td>30</td>
<td>55</td>
<td>80</td>
</tr>
<tr>
<td>t_INIT</td>
<td>Initialization Time</td>
<td>Time from V_IN Applied Until the TON_DELAY Timer Starts</td>
<td></td>
<td>30</td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

電圧リファレンス特性

V_REF	Output Voltage	1.232	V
	Temperature Coefficient	3	ppm/°C
Hysteresis	(Note 4)	100	ppm

ADCの特性

V_IN_ADC	Voltage Sense Input Range	Differential Voltage: V_IN_ADC = (VSENSEPn − VSENSEMn)	●	0	6	V	
	Single-Ended Voltage	VSENSEMn	●	−0.1	0.1	V	
Current Sense Input Range (Odd Numbered Channels Only)	Single-Ended Voltage:VSENSEPn, VSENSEMn	●	−0.1	6	V		
	Differential Voltage:V_IN_ADC	●	−170	170	mV		
N_ADC	Voltage Sense Resolution (Uses L16 Format)	0V ≤ V_IN_ADC ≤ 6V Mfr_config_adc_hires = 0		122		μV/LSB	
Current Sense Resolution (Odd Numbered Channels Only)	0mV ≤	V_IN_ADC	< 16mV (Note 5)		15.625	31.25	μV/LSB
	16mV ≤	V_IN_ADC	< 32mV		62.5		μV/LSB
	32mV ≤	V_IN_ADC	< 63.9mV		125		μV/LSB
	63.9mV ≤	V_IN_ADC	< 127.9mV		250		μV/LSB
	Mfr_config_adc_hires = 1						
TUE_ADC_VOLT_SNS	Total Unadjusted Error	Voltage Sense Mode V_IN_ADC ≥ 1V	●	±0.25		% of Reading	
	Voltage Sense Mode 0 ≤ V_IN_ADC ≤ 1V	●	±2.5		mV		
TUE_ADC_CURR_SNS	Total Unadjusted Error	Current Sense Mode, Odd Numbered Channels Only, 20mV ≤ V_IN_ADC ≤ 170mV	●	±0.7		% of Reading	
	Current Sense Mode, Odd Numbered Channels Only, V_IN_ADC ≤ 20mV	●	140		μV		
V_OS_ADC	Offset Error	Current Sense Mode, Odd Numbered Channels Only	●	±35		μV	
t_CONV_ADC	Conversion Time	Voltage Sense Mode (Note 6)		6.15		ms	
	Current Sense Mode (Note 6)		24.6		ms		
	Temperature Input (Note 6)		24.6		ms		
LTM2987

電気的特性 は全動作温度範囲での規格値を意味する。それ以外は TJ = 25°C での値。注記がない限り、VPWR = VIN_SNS = 12V、VDD33、REFP、REFM ピンはフロート状態。（Note 3）

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>tUPDATE_ADC</td>
<td>Maximum Update Time</td>
<td>Odd Numbered Channels in Current Sense Mode (Note 6)</td>
<td>160</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN_ADC</td>
<td>Input Sampling Capacitance</td>
<td></td>
<td>1</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fin_ADC</td>
<td>Input Sampling Frequency</td>
<td></td>
<td>62.5</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iIN_ADC</td>
<td>Input Leakage Current</td>
<td>VIN_ADC = 0V, 0V ≤ VCOMMONMODE ≤ 6V, Current Sense Mode</td>
<td></td>
<td></td>
<td>±0.5</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>Differential Input Current</td>
<td>VIN_ADC = 0.17V, Current Sense Mode</td>
<td>80</td>
<td>250</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIN_ADC = 6V, Voltage Sense Mode</td>
<td>10</td>
<td>15</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

DAC の出力特性

<table>
<thead>
<tr>
<th>N_VDACP</th>
<th>Resolution</th>
<th>10</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFS_VDACP</td>
<td>Full-Scale Output Voltage (Programmable)</td>
<td>DAC Code = 0x3FF Buffer Gain Setting_0</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAC Polarity = 1 Buffer Gain Setting_1</td>
<td>2.5</td>
</tr>
<tr>
<td>INL_VDACP</td>
<td>Integral Nonlinearity (Note 7)</td>
<td></td>
<td>±2</td>
</tr>
<tr>
<td>DNL_VDACP</td>
<td>Differential Nonlinearity (Note 7)</td>
<td></td>
<td>±2.4</td>
</tr>
<tr>
<td>VOS_VDACP</td>
<td>Offset Voltage (Note 7)</td>
<td></td>
<td>±10</td>
</tr>
<tr>
<td>VDACP</td>
<td>Load Regulation (VDACPn – VDACMn)</td>
<td>VDACPn = 2.65V, lVDACPn Sourcing = 2mA</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDACPn = 0.1V, lVDACPn Sinking = 2mA</td>
<td>100</td>
</tr>
<tr>
<td>PSRR (VDACPn – VDACMn)</td>
<td>DC:3.13V ≤ VDD33 ≤ 3.47V, VPWR = VDD33</td>
<td>60</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>100mV Step in 20ns with 50pF Load</td>
<td>40</td>
<td>dB</td>
</tr>
<tr>
<td>DC CMRR (VDACPn – VDACMn)</td>
<td>–0.1V ≤ VDACMn ≤ 0.1V</td>
<td>60</td>
<td>dB</td>
</tr>
<tr>
<td>Leakage Current</td>
<td>VDACPn Hi-Z, 0V ≤ VDACPn ≤ 6V</td>
<td></td>
<td>±100</td>
</tr>
<tr>
<td>Short-Circuit Current Low</td>
<td>VDACPn Shorted to GND</td>
<td></td>
<td>–10</td>
</tr>
<tr>
<td>Short-Circuit Current High</td>
<td>VDACPn Shorted to VDD33</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>COUT</td>
<td>Output Capacitance</td>
<td>VDACPn Hi-Z</td>
<td>10</td>
</tr>
<tr>
<td>TS_VDACP</td>
<td>DAC Output Update Rate</td>
<td>Fast Servo Mode</td>
<td>250</td>
</tr>
</tbody>
</table>

DAC ソフト接続コンパレータ特性

VOS_CMP	Offset Voltage	VDACPn = 0.2V	±1	±18	mV
		VDACPn = 1.3V	±2	±26	mV
		VDACPn = 2.65V	±3	±52	mV

電圧スーパーバイザ特性

VIN_VS	Input Voltage Range (Programmable)	VSENSEPn = VSENSEMn	Low Resolution Mode	High Resolution Mode	0	6	V
	Single-Ended Voltage:VSENSEMn	0	3.8	V			
N_VS	Voltage Sensing Resolution	0V to 3.8V Range:High Resolution Mode	4	mV/LSB			
	0V to 6V Range:Low Resolution Mode	8	mV/LSB				
TUE_VS	Total Unadjusted Error	2V ≤ VIN_VS ≤ 6V, Low Resolution Mode		±1.25	% of Reading		
	1.5V < VIN_VS ≤ 3.8V, High Resolution Mode		±1.0	% of Reading			
	0.8V ≤ VIN_VS ≤ 1.5V, High Resolution Mode		±1.5	% of Reading			
tS_VS	Update Rate		12.21	µs			
電気的特性

● は全動作温度範囲での規格値を意味する。それ以外は T_J = 25°C での値。注記がない限り、V_PWR = V_IN_SNS = 12V、V_DD33、REFP、REFM ピンはフロート状態。（Note 3）

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_IN_SNS</td>
<td>Vin_SNS Input Voltage Range</td>
<td>-</td>
<td>0</td>
<td>15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>R Vin_SNS</td>
<td>Vin_SNS Input Resistance</td>
<td>-</td>
<td>70</td>
<td>90</td>
<td>110</td>
<td>kΩ</td>
</tr>
<tr>
<td>TUE_VIN_SNS</td>
<td>VIN_ON, VIN_OFF Threshold Total Unadjusted Error</td>
<td>VIN_SNS > 8V</td>
<td>±2.0</td>
<td>% of Reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIN_SNS > 8V</td>
<td>±1.0</td>
<td>% of Reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ_VIN Total Unadjusted Error</td>
<td>3V ≤ VIN_SNS ≤ 8V</td>
<td>±1.5</td>
<td>% of Reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIN_SNS > 8V</td>
<td>±1.0</td>
<td>% of Reading</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

温度センサ特性

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUE_TS</td>
<td>Total Unadjusted Error</td>
<td>-</td>
<td>±1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VOUT イネーブル出力（VOUT_EN [3:0]）特性

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUT_EN</td>
<td>Output High Voltage (Note 8)</td>
<td>VOUT_EN = –5μA, V_DD33 = 3.3V</td>
<td>10</td>
<td>12.5</td>
<td>14.7</td>
<td>V</td>
</tr>
<tr>
<td>I VOUT_EN</td>
<td>Output Sourcing Current</td>
<td>VOUT_EN Enabled, VOUT_EN = 1V</td>
<td>–5</td>
<td>–6</td>
<td>–8</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>Output Sinking Current</td>
<td>Strong Pull-Down Enabled, VOUT_EN = 0.4V</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weak Pull-Down Enabled, VOUT_EN = 0.4V</td>
<td>33</td>
<td>50</td>
<td>60</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>Output Leakage Current</td>
<td>Internal Pull-Up Disabled, 0V ≤ VOUT_EN ≤ 15V</td>
<td>±1</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VOUT イネーブル出力（VOUT_EN [7:4]）特性

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I VOUT_EN</td>
<td>Output Sinking Current</td>
<td>Strong Pull-Down Enabled, VOUT_EN = 0.1V</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Output Leakage Current</td>
<td>0V ≤ VOUT_EN ≤ 6V</td>
<td>±1</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V_IN イネーブル出力（V_IN_EN）特性

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_IN_EN</td>
<td>Output High Voltage</td>
<td>V_IN_EN = –5μA, V_DD33 = 3.3V</td>
<td>10</td>
<td>12.5</td>
<td>14.7</td>
<td>V</td>
</tr>
<tr>
<td>I V_IN_EN</td>
<td>Output Sourcing Current</td>
<td>V_IN_EN Enabled, V_IN_EN = 1V</td>
<td>–5</td>
<td>–6</td>
<td>–8</td>
<td>μA</td>
</tr>
<tr>
<td>Output Sinking Current</td>
<td>V_IN_EN = 0.4V</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leakage Current</td>
<td>Internal Pull-Up Disabled, 0V ≤ V_IN_EN ≤ 15V</td>
<td>±1</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EEPROM特性

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endurance</td>
<td>(Notes 9, 10)</td>
<td>0°C < T_J < 85°C During EEPROM Write Operations</td>
<td>10,000</td>
<td>Cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention</td>
<td>(Notes 9, 10)</td>
<td>T_J < 105°C</td>
<td>20</td>
<td>Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass_Write</td>
<td>Mass Write Operation Time (Note 11)</td>
<td>STORE_USER_ALL, 0°C < T_J < 85°C During EEPROM Write Operations</td>
<td>440</td>
<td>4100</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

汎用 Pull-Up 抵抗

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPU</td>
<td>Pull-Up Resistance</td>
<td>-</td>
<td>10</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

デジタル入力 SCL, SDA, CONTROL0, CONTROL1, WDI/RESETB, FAULTB00, FAULTB01, FAULTB10, FAULTB11, WP

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_H</td>
<td>High Level Input Voltage</td>
<td>-</td>
<td>2.1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_L</td>
<td>Low Level Input Voltage</td>
<td>-</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_HYST</td>
<td>Input Hysteresis</td>
<td>-</td>
<td>20</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LTM2987

電気的特性

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I\textsubscript{LEAK}</td>
<td>Input Leakage Current</td>
<td>0V ≤ VPIN ≤ 5.5V, SDA, SCL, CONTROL\textsubscript{n} Pins Only</td>
<td>±2</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0V ≤ VPIN ≤ VDD33 + 0.3V, FAULTB\textsubscript{zn}, WDI/RESETB, WP Pins Only</td>
<td>±2</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{SP}</td>
<td>Pulse Width of Spike Suppressed</td>
<td>FAULTB\textsubscript{zn}, CONTROL\textsubscript{n} Pins Only</td>
<td>10</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDA, SCL Pins Only</td>
<td>98</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{FAULT_MIN}</td>
<td>Minimum Low Pulse Width for Externally Generated Faults</td>
<td></td>
<td>110</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{RESETB}</td>
<td>Pulse Width to Assert Reset</td>
<td>V\textsubscript{WDI/RESETB} ≤ 1.5V</td>
<td>300</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{WDI}</td>
<td>Pulse Width to Reset Watchdog Timer</td>
<td>V\textsubscript{WDI/RESETB} ≤ 1.5V</td>
<td>0.3</td>
<td>μs</td>
<td>200</td>
<td>μs</td>
</tr>
<tr>
<td>f\textsubscript{WDI}</td>
<td>Watchdog Interrupt Input Frequency</td>
<td></td>
<td></td>
<td>1</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>C\textsubscript{IN}</td>
<td>Digital Input Capacitance</td>
<td></td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

デジタル入力SHARE_CLK

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{IH}</td>
<td>High Level Input Voltage</td>
<td></td>
<td>1.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{IL}</td>
<td>Low Level Input Voltage</td>
<td></td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f\textsubscript{SHARE_CLK_IN}</td>
<td>Input Frequency Operating Range</td>
<td></td>
<td>90</td>
<td>kHz</td>
<td>110</td>
<td>kHz</td>
</tr>
<tr>
<td>t\textsubscript{LOW}</td>
<td>Assertion Low Time</td>
<td>V\textsubscript{SHARE_CLK} < 0.8V</td>
<td>0.825</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{RISE}</td>
<td>Rise Time</td>
<td>V\textsubscript{SHARE_CLK} < 0.8V to V\textsubscript{SHARE_CLK} > 1.6V</td>
<td>450</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{LEAK}</td>
<td>Input Leakage Current</td>
<td>0V ≤ V\textsubscript{SHARE_CLK} ≤ VDD33 + 0.3V</td>
<td>±1</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C\textsubscript{IN}</td>
<td>Input Capacitance</td>
<td></td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

デジタル出力SDA, ALERTB, PWRGD, SHARE_CLK, FAULTB00, FAULTB01, FAULTB10, FAULTB11

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{OL}</td>
<td>Digital Output Low Voltage</td>
<td>IS\textsubscript{INK} = 3mA</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f\textsubscript{SHARE_CLK_\textsubscript{OUT}}</td>
<td>Output Frequency Operating Range</td>
<td>5.49kΩ Pull-Up to VDD33</td>
<td>90</td>
<td>kHz</td>
<td>100</td>
<td>kHz</td>
</tr>
</tbody>
</table>

デジタル入力ASEL0, ASEL1

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{IH}</td>
<td>Input High Threshold Voltage</td>
<td></td>
<td>VDD33 - 0.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{IL}</td>
<td>Input Low Threshold Voltage</td>
<td></td>
<td>0.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{H\textsubscript{L}, I\textsubscript{IL}}</td>
<td>High, Low Input Current</td>
<td>ASEL[1:0] = 0, VDD33</td>
<td>±95</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{HZ}</td>
<td>Hi-Z Input Current</td>
<td></td>
<td>±24</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C\textsubscript{IN}</td>
<td>Input Capacitance</td>
<td></td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

シリアル・バスのタイミング特性

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>f\textsubscript{SCL}</td>
<td>Serial Clock Frequency (Note 12)</td>
<td></td>
<td>10</td>
<td>kHz</td>
<td>400</td>
<td>kHz</td>
</tr>
<tr>
<td>f\textsubscript{LOW}</td>
<td>Serial Clock Low Period (Note 12)</td>
<td></td>
<td>1.3</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f\textsubscript{HIGH}</td>
<td>Serial Clock High Period (Note 12)</td>
<td></td>
<td>0.6</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f\textsubscript{BUF}</td>
<td>Bus Free Time Between Stop and Start (Note 12)</td>
<td></td>
<td>1.3</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{HD, STA}</td>
<td>Start Condition Hold Time (Note 12)</td>
<td></td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{SU, STA}</td>
<td>Start Condition Setup Time (Note 12)</td>
<td></td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{SU, STO}</td>
<td>Stop Condition Setup Time (Note 12)</td>
<td></td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{HD, DAT}</td>
<td>Data Hold Time (LTM2987 Receiving Data) (Note 12)</td>
<td></td>
<td>0</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Hold Time (LTM2987 Transmitting Data) (Note 12)</td>
<td></td>
<td>300</td>
<td>ns</td>
<td>900</td>
<td>ns</td>
</tr>
</tbody>
</table>

詳細：www.linear-tech.co.jp/LTM2987
電気的特性

は全動作温度範囲での規格値を意味する。それ以外は\(T_J = 25°C\)での値。注記がない限り、\(V_{PWR} = V_{IN_SNS} = 12V\)、\(V_{DD33}\)、\(REFP\)、\(REFM\)ピンはフロート状態。 （Note 3）

### SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
\(t_{SU,DAT}\)	Data Setup Time (Note 12)		100			ns
\(t_{SPF}\)	Pulse Width of Spike Suppressed (Note 12)		98			ns
\(t_{TIMEOUT_BUS}\)	Time Allowed to Complete any PMBus Command After Which Time SDA Will Be Released and Command Terminated	Longer Timeout = 0		25	200	35
		Longer Timeout = 1		280		ms

その他のデジタル・タイミング特性

### SYMBOL	Minimum Off Time for Any Channel	100	ms
\(t_{OFF_MIN}\) | | | | | | |

注意事項

Note 1: 絶対最大定格に記載された値を超えるストレッスはデバイスに永久的損傷を与える可能性がある。長期間にわたって絶対最大定格に曝すと、デバイスの信頼性と寿命に悪影響を与える恐れがある。

Note 2: デバイスのピンに流れ込む電流は全て正。デバイスのピンから流れ出す電流は全て負。注記がない限り、すべての電圧はグランドを基準にしている。

Note 3: 注記がない限り、LTM2987の電気的特性はデバイスの各1/2部分に適用される。仕様と機能は、デバイスAおよびデバイスB両方のピンで同一である。

Note 4: 出力電圧のヒステリシスは、モジュールがそれまでに置かれていた温度が高温か低温かによってパッケージ・ストレスが異なるために生じる。出力電圧は常に25℃で測定されるが、モジュールは次の測定前に105℃または-40℃の温度環境に置かれる。ヒステリシスは、ほぼ温度変化の二乗に比例する。

Note 5: 電流の検出分解能はL11フォーマットと返される値のmV単位で決定される。たとえば、170mVのフルスケール値は0x24Aを60 • 2^2 = 170のL11値が返される。これがL11の仮数部をオーバーフローすることなくこの値を表現できる最小の範囲で、この範囲での1LSBは2^2 mV = 250μVとなる。これより順次低くなる範囲は、LSBの大きさを1段階ごとに半分にして分解能を向上する。

Note 6: ADC変換の各回間の時間間隔（ADCのレイテンシ）は、いずれのチャネルでも次の式で求められる。36.9ms + (6.15ns • 高分解析モードで設定されたADCチャネル数) + (24.6ms • 高分解析モードで設定されたADCチャネル数)

Note 7: 非直線性は、最大オフセット仕様以上の最初のコードからフルスケールのコードである1023までで定義される。

Note 8: 出力イネーブル・ピンはVDD33からチャージポンプされる。

Note 9: EEPROMの耐久性とデータ保持能力は、設計、特性評価および統計学的なプロセス・コントロールとの相関で保証されている。最小保持時間仕様は、内部EEPROMの書き込みサイクル数が最小耐久性仕様より少ないデバイスに適用される。

Note 10: EEPROMの耐久性とデータ保持能力は\(T_J > 105°C\)になると低下する。

Note 11: 大量書き込み動作の実行中は、LTM2987はどのPMBusコマンドにもアクノリッジを返さない。このようなコマンドには、STORE_USER_ALLおよびMFR_FAULT_LOG_STOREコマンドの他に、チャネルのフォルト・オフによって起動されるフォルト・ログ保存のコマンドが含まれる。

Note 12: SCLとSDAの最大容量性負荷、\(C_L=400pF\)，データとクロックの立ち上がり時間（\(t_L\)）と立ち下がり時間（\(t_H\)）は次のとおり：

\(20 \times 0.1 \cdot C_L\) (ns) < \(t_L\) < 300ns および \(20 \times 0.1 \cdot C_L\) (ns) < \(t_H\) < 300ns,

\(C_L=1\)本のパースラインの容量（pF）。

詳細：www.linear-tech.co.jp/LTM2987
PMBusのタイミング図
標準的性能特性

リファレンス電圧と温度

温度センサの誤差と温度

ADCの全未調整誤差と温度

ADCのゼロ・コード中心オフセット電圧と温度

ADCのINL

ADCのDNL

ADCのノイズ・ヒストグラム

電圧スバイバイザの全未調整誤差と温度

入力サンプリング電流と差動入力電圧

詳細：www.linear-tech.co.jp/LTM2987
標準的性能特性

ADCの高分解能モードでの差動入力電流

DACのフルスケール出力電圧と温度

DACのオフセット電圧と温度

DACの短絡電流と温度

DACの出力インピーダンスと周波数

クローズド・ループ・サーボ精度

DACのコードの1LSBの変化に対するDACのトランジェント応答

高インピーダンス状態からオン状態への遷移時のDACのソフト接続トランジェント応答

オン状態から高インピーダンス状態への遷移時のDACのソフト接続トランジェント応答

詳細: www.linear-tech.co.jp/LTM2987
標準的性能特性

VDD3 レギュレータの
出力電圧と温度

VDD3 レギュレータの
負荷レギュレーション

電源電流と電源電圧
(1/2 LTM2987)

電源電流と温度 (1/2 LTM2987)

VOUT_EN[3:0] および VIN_EN の
出力 "H" の電圧と電流

VOUT_EN[7:4] の VQL と電流
ピン機能

<table>
<thead>
<tr>
<th>ピン名称</th>
<th>デバイスA</th>
<th>デバイスB</th>
<th>ピンのタイプ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSENSEP0</td>
<td>F7*</td>
<td>M7*</td>
<td>In</td>
<td>DC/DC Converter Differential (+) Output Voltage-0 Sensing Pin</td>
</tr>
<tr>
<td>VSENSEM0</td>
<td>F6*</td>
<td>M6*</td>
<td>In</td>
<td>DC/DC Converter Differential (-) Output Voltage-0 Sensing Pin</td>
</tr>
<tr>
<td>VSENSEP1</td>
<td>F12*</td>
<td>M12*</td>
<td>In</td>
<td>DC/DC Converter Differential (+) Output Voltage or Current-1 Sensing Pins.</td>
</tr>
<tr>
<td>VSENSEM1</td>
<td>F11*</td>
<td>M11*</td>
<td>In</td>
<td>DC/DC Converter Differential (-) Output Voltage or Current-1 Sensing Pins.</td>
</tr>
<tr>
<td>VSENSEP2</td>
<td>E12*</td>
<td>L12*</td>
<td>In</td>
<td>DC/DC Converter Differential (+) Output Voltage-2 Sensing Pin</td>
</tr>
<tr>
<td>VSENSEM2</td>
<td>E11*</td>
<td>L11*</td>
<td>In</td>
<td>DC/DC Converter Differential (-) Output Voltage-2 Sensing Pin</td>
</tr>
<tr>
<td>VSENSEP3</td>
<td>D12*</td>
<td>K12*</td>
<td>In</td>
<td>DC/DC Converter Differential (+) Output Voltage or Current-3 Sensing Pins.</td>
</tr>
<tr>
<td>VSENSEM3</td>
<td>D11*</td>
<td>K11*</td>
<td>In</td>
<td>DC/DC Converter Differential (-) Output Voltage or Current-3 Sensing Pins.</td>
</tr>
<tr>
<td>VSENSEP4</td>
<td>C12*</td>
<td>J12*</td>
<td>In</td>
<td>DC/DC Converter Differential (+) Output Voltage-4 Sensing Pin</td>
</tr>
<tr>
<td>VSENSEM4</td>
<td>C11*</td>
<td>J11*</td>
<td>In</td>
<td>DC/DC Converter Differential (-) Output Voltage-4 Sensing Pin</td>
</tr>
<tr>
<td>VSENSEP5</td>
<td>B12*</td>
<td>H12*</td>
<td>In</td>
<td>DC/DC Converter Differential (+) Output Voltage or Current-5 Sensing Pins.</td>
</tr>
<tr>
<td>VSENSEM5</td>
<td>B11*</td>
<td>H11*</td>
<td>In</td>
<td>DC/DC Converter Differential (-) Output Voltage or Current-5 Sensing Pins.</td>
</tr>
<tr>
<td>VSENSEP6</td>
<td>A12*</td>
<td>G12*</td>
<td>In</td>
<td>DC/DC Converter Differential (+) Output Voltage-6 Sensing Pin</td>
</tr>
<tr>
<td>VSENSEM6</td>
<td>A11*</td>
<td>G11*</td>
<td>In</td>
<td>DC/DC Converter Differential (-) Output Voltage-6 Sensing Pin</td>
</tr>
<tr>
<td>VSENSEP7</td>
<td>A7*</td>
<td>G7*</td>
<td>In</td>
<td>DC/DC Converter Differential (+) Output Voltage or Current-7 Sensing Pin</td>
</tr>
<tr>
<td>VSENSEM7</td>
<td>A6*</td>
<td>G6*</td>
<td>In</td>
<td>DC/DC Converter Differential (-) Output Voltage or Current-7 Sensing Pin</td>
</tr>
<tr>
<td>VOUT_EN0</td>
<td>D7</td>
<td>K7</td>
<td>Out</td>
<td>DC/DC Converter Enable-0 Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA</td>
</tr>
<tr>
<td>VOUT_EN1</td>
<td>F8</td>
<td>M8</td>
<td>Out</td>
<td>DC/DC Converter Enable-1 Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA</td>
</tr>
<tr>
<td>VOUT_EN2</td>
<td>E8</td>
<td>L8</td>
<td>Out</td>
<td>DC/DC Converter Enable-2 Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA</td>
</tr>
<tr>
<td>VOUT_EN3</td>
<td>D8</td>
<td>K8</td>
<td>Out</td>
<td>DC/DC Converter Enable-3 Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA</td>
</tr>
<tr>
<td>VOUT_EN4</td>
<td>C8</td>
<td>J8</td>
<td>Out</td>
<td>DC/DC Converter Enable-4 Pin.Open-Drain Pull-Down Output.</td>
</tr>
<tr>
<td>VOUT_EN5</td>
<td>B8</td>
<td>H8</td>
<td>Out</td>
<td>DC/DC Converter Enable-5 Pin.Open-Drain Pull-Down Output.</td>
</tr>
<tr>
<td>VOUT_EN6</td>
<td>A8</td>
<td>G8</td>
<td>Out</td>
<td>DC/DC Converter Enable-6 Pin.Open-Drain Pull-Down Output.</td>
</tr>
<tr>
<td>VOUT_EN7</td>
<td>C7</td>
<td>J7</td>
<td>Out</td>
<td>DC/DC Converter Enable-7 Pin.Open-Drain Pull-Down Output.</td>
</tr>
<tr>
<td>VIN_EN</td>
<td>E5</td>
<td>L5</td>
<td>Out</td>
<td>DC/DC Converter V_IN ENABLE Pin.Output High Voltage Optionally Pulled Up to 12V by 5µA</td>
</tr>
<tr>
<td>VIN_SNS</td>
<td>A5</td>
<td>G5</td>
<td>In</td>
<td>VSENSE Input.This Voltage is Compared Against the V_IN On and Off Voltage Thresholds in Order to Determine When to Enable and Disable, Respectively, the Downstream DC/DC Converters</td>
</tr>
<tr>
<td>VPWR</td>
<td>B5</td>
<td>H5</td>
<td>In</td>
<td>V_PWR Serves as the Unregulated Power Supply Input to the Chip (4.5V to 15V).If a 4.5V to 15V Supply Voltage is Unavailable, Short VPWR to VDD33 and Power the Chip Directly from a 3.3V Supply</td>
</tr>
<tr>
<td>VDD33</td>
<td>A4</td>
<td>G4</td>
<td>In/Out</td>
<td>If Shorted to V_PWR, it Serves as 3.13V to 3.47V Supply Input Pin.Otherwise it is a 3.3V Internally Regulated Voltage Output.</td>
</tr>
<tr>
<td>VDD33</td>
<td>A3</td>
<td>G3</td>
<td>In</td>
<td>Input for Internal 2.5V Sub-Regulator.Short Pin A3 to Pin A4 and Pin G3 to Pin G4</td>
</tr>
<tr>
<td>VDD25</td>
<td>A2</td>
<td>G2</td>
<td>In/Out</td>
<td>2.5V Internally Regulated Voltage Output</td>
</tr>
<tr>
<td>WP</td>
<td>A1</td>
<td>G1</td>
<td>In</td>
<td>Digital Input.Write-Protect Input Pin, Active High</td>
</tr>
<tr>
<td>PWRGD</td>
<td>B1</td>
<td>H1</td>
<td>Out</td>
<td>Power Good Open-Drain Output.Indicates When Outputs are Power Good.Can be Used as System Power-On Reset.The Latency of This Signal May Be as Long as the ADC Latency. See Note 6</td>
</tr>
<tr>
<td>SHARE_CLK</td>
<td>B2</td>
<td>H2</td>
<td>In/Out</td>
<td>Bidirectional Clock Sharing Pin.Connect a 5.49k Pull-Up Resistor to VDD33</td>
</tr>
<tr>
<td>WD/RESETB</td>
<td>B4</td>
<td>H4</td>
<td>In</td>
<td>Watchdog Timer Interrupt and Chip Reset Input.Connect a 10k Pull-Up Resistor to VDD33.Rising Edge Resets Watchdog Counter.Holding This Pin Low for More Than 1µs Resets the Chip</td>
</tr>
<tr>
<td>FAULTB00</td>
<td>C3</td>
<td>J3</td>
<td>In/Out</td>
<td>Open-Drain Output and Digital Input.Active Low Bidirectional Fault Indicator-00.Connect a 10k Pull-Up Resistor to VDD33</td>
</tr>
<tr>
<td>FAULTB01</td>
<td>D3</td>
<td>K3</td>
<td>In/Out</td>
<td>Open-Drain Output and Digital Input.Active Low Bidirectional Fault Indicator-01.Connect a 10k Pull-Up Resistor to VDD33</td>
</tr>
<tr>
<td>FAULTB10</td>
<td>C4</td>
<td>J4</td>
<td>In/Out</td>
<td>Open-Drain Output and Digital Input.Active Low Bidirectional Fault Indicator-10.Connect a 10k Pull-Up Resistor to VDD33</td>
</tr>
</tbody>
</table>

詳細: www.linear-tech.co.jp/LTM2987
ピン機能

<table>
<thead>
<tr>
<th>ピン名</th>
<th>デバイスA</th>
<th>デバイスB</th>
<th>ピンのタイプ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDA</td>
<td>C1</td>
<td>J1</td>
<td>In/Out</td>
<td>PMBus Bidirectional Serial Data Pin</td>
</tr>
<tr>
<td>SCL</td>
<td>D1</td>
<td>K1</td>
<td>In</td>
<td>PMBus Serial Clock Input Pin (400kHz Maximum)</td>
</tr>
<tr>
<td>ALERTB</td>
<td>E2</td>
<td>L2</td>
<td>Out</td>
<td>Open-Drain Output.Generates an Interrupt Request in a Fault/Warning Situation</td>
</tr>
<tr>
<td>CONTROL0</td>
<td>E1</td>
<td>L1</td>
<td>In</td>
<td>Control Pin 0 Input</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>F1</td>
<td>M1</td>
<td>In</td>
<td>Control Pin 1 Input</td>
</tr>
<tr>
<td>ASELO</td>
<td>F3</td>
<td>M3</td>
<td>In</td>
<td>Ternary Address Select Pin 0 Input.Connect to VDD33, GND or Float to Encode 1 of 3 Logic States</td>
</tr>
<tr>
<td>ASEL1</td>
<td>F2</td>
<td>M2</td>
<td>In</td>
<td>Ternary Address Select Pin 1 Input.Connect to VDD33, GND or Float to Encode 1 of 3 Logic States</td>
</tr>
<tr>
<td>REFP</td>
<td>F5</td>
<td>M5</td>
<td>Out</td>
<td>Reference Voltage Output</td>
</tr>
<tr>
<td>REFN</td>
<td>F4</td>
<td>M4</td>
<td>Out</td>
<td>Reference Return Pin</td>
</tr>
<tr>
<td>VDAC0</td>
<td>E7</td>
<td>L7</td>
<td>Out</td>
<td>DAC0 Output</td>
</tr>
<tr>
<td>VDAC1</td>
<td>E6*</td>
<td>L6*</td>
<td>Out</td>
<td>DAC0 Return.Connect to Channel 0 DC/DC Converter’s GND Sense or Return to GND</td>
</tr>
<tr>
<td>VDAC2</td>
<td>E10</td>
<td>L10</td>
<td>Out</td>
<td>DAC2 Output</td>
</tr>
<tr>
<td>VDAC3</td>
<td>E9*</td>
<td>L9*</td>
<td>Out</td>
<td>DAC2 Return.Connect to Channel 2 DC/DC Converter’s GND Sense or Return to GND</td>
</tr>
<tr>
<td>VDAC4</td>
<td>E10</td>
<td>L10</td>
<td>Out</td>
<td>DAC3 Output</td>
</tr>
<tr>
<td>VDAC5</td>
<td>E9*</td>
<td>L9*</td>
<td>Out</td>
<td>DAC3 Return.Connect to Channel 3 DC/DC Converter’s GND Sense or Return to GND</td>
</tr>
<tr>
<td>VDAC6</td>
<td>E10</td>
<td>L10</td>
<td>Out</td>
<td>DAC4 Output</td>
</tr>
<tr>
<td>VDAC7</td>
<td>E9*</td>
<td>L9*</td>
<td>Out</td>
<td>DAC4 Return.Connect to Channel 4 DC/DC Converter’s GND Sense or Return to GND</td>
</tr>
<tr>
<td>VDAC8</td>
<td>E10</td>
<td>L10</td>
<td>Out</td>
<td>DAC5 Output</td>
</tr>
<tr>
<td>VDAC9</td>
<td>E9*</td>
<td>L9*</td>
<td>Out</td>
<td>DAC5 Return.Connect to Channel 5 DC/DC Converter’s GND Sense or Return to GND</td>
</tr>
<tr>
<td>VDAC10</td>
<td>E10</td>
<td>L10</td>
<td>Out</td>
<td>DAC6 Output</td>
</tr>
<tr>
<td>VDAC11</td>
<td>E9*</td>
<td>L9*</td>
<td>Out</td>
<td>DAC6 Return.Connect to Channel 6 DC/DC Converter’s GND Sense or Return to GND</td>
</tr>
<tr>
<td>VDAC12</td>
<td>E10</td>
<td>L10</td>
<td>Out</td>
<td>DAC7 Output</td>
</tr>
<tr>
<td>VDAC13</td>
<td>E9*</td>
<td>L9*</td>
<td>Out</td>
<td>DAC7 Return.Connect to Channel 7 DC/DC Converter’s GND Sense or Return to GND</td>
</tr>
<tr>
<td>VPU</td>
<td>B3</td>
<td>H3</td>
<td>In</td>
<td>Common Connection for Internal Pull-Up Resistors</td>
</tr>
<tr>
<td>RPU1</td>
<td>E3</td>
<td>L3</td>
<td>Out</td>
<td>General Purpose 10k Pull-Up Resistor 1</td>
</tr>
<tr>
<td>RPU2</td>
<td>D2</td>
<td>K2</td>
<td>Out</td>
<td>General Purpose 10k Pull-Up Resistor 2</td>
</tr>
<tr>
<td>RPU3</td>
<td>C2</td>
<td>J2</td>
<td>Out</td>
<td>General Purpose 10k Pull-Up Resistor 3</td>
</tr>
<tr>
<td>RPU4</td>
<td>E4</td>
<td>L4</td>
<td>Out</td>
<td>General Purpose 10k Pull-Up Resistor 4</td>
</tr>
<tr>
<td>GND</td>
<td>C6, D5, D6 J6, K5, K6</td>
<td>Ground</td>
<td>Device A Ground Pins are Isolated from the Device B Ground Pins</td>
<td></td>
</tr>
<tr>
<td>DNC</td>
<td>C5</td>
<td>J5</td>
<td>Do Not Connect</td>
<td>Do Not Connect to This Pin</td>
</tr>
</tbody>
</table>

*未使用のVSENSEPnピン, VSENSEMnピン、またはVDACMnピンはいずれも、GNDに接続する必要があります。
動作
概要
LTM2987は、独立した2つのLTC2977デバイスと、16チャネル電源システム・マネージャを完成させるのに必要なほとんどの受動部品を備えています。LTM2987は、必要な受動部品を内蔵することで電源システム設計を簡素化し、BOMコストを削減し、プリント回路基板の配線効率を向上します。

LTM2987の各1/2部分は、独立した電源とグランド・ピンを備え、スタンドアロンのLTC2977と同様に動作します。この機能は、ソリューションの全体サイズを小さく保ちながらシステムの冗長性を向上するために使用できます。

デバイス動作、PMBusコマンド・セット、アプリケーション情報の詳細については、LTC2977のデータシートを参照してください。

デバイス・アドレス
LTM2987は独立した2つのLTC2977デバイスで構成されているため、LTM2987の各1/2部分に独自のアドレスを構成する必要があります。LTM2987のI2C/SMBusアドレスは、独立したLTC2977デバイスと同じ方法で構成します。また、LTM2987はASELピンとMFR_I2C_BASE_ADDRESSのステートに関係なく、LTC2977のグローバルアドレスとSMBus Alert Responseアドレスに応答します。詳細については、LTC2977のデータシートの「デバイスのアドレス」セクションを参照してください。

MFR_SPECIAL_ID
LTM2987は、独自のMFR_SPECIAL_ID値によってLTC2977と区別されます。LTM2987のMFR_SPECIAL_IDの値を表1に示します。

表1. LTM2987のMFR_SPECIAL_IDの値

<table>
<thead>
<tr>
<th>LTM2987デバイス</th>
<th>MFR_SPECIAL_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>デバイスA</td>
<td>0x8010</td>
</tr>
<tr>
<td>デバイスB</td>
<td>0x8020</td>
</tr>
</tbody>
</table>
LTM2987

アプリケーション情報

概要
LTM2987は、16個のDC/DCコンバータについて、シークエンス、マージニング、トリミング、出力電圧の過電圧/低電圧状態の監視、フォルト管理、および電圧の読み出し可能なパワーセンサシステムをマネージャです。入力電圧およびLTM2987の接合部温度の読み出しも可能です。奇数番号のチャネルは、電流検出抵抗電圧の読み出しのために構成できます。SHARE_CLK、FAULTB、CONTROLビンを使用すると、複数のLTM2987を同期動作できます。LTM2987では、PMBus準拠のインタフェースとコマンド・セットが使用されます。

LTM2987への電力供給
LTM2987への電力供給は2つの方法があります。第1の方法は4.5V〜15VをV_PWRビンに印加することです。図1を参照してください。内部のリニア・レギュレータがV_PWRを3.3Vに変換し、これで各デバイスの内部回路すべてをドライプします。LTM2987の各1/2部分は独立した電圧レギュレータを備えていて、VDD33(A)ビンとVDD33(B)ビンは相互に接続しないでください。

アプリケーション回路
非専用のプルアップ抵抗
LTM2987モジュールの各1/2部分は、4つの非専用の10kプルアップ抵抗を備えています（図3参照）。VPUビンに共通のプルアップ電圧が印加され、個別のプルアップ抵抗がRP1、RP2、RP3、RP4上にあります。これらのプルアップ抵抗はSDA、SCL、ALERTB、またはFAULTBをのオープンドレイン・ビンに使用できます。その場合、共通のプルアップ電圧V_PUを3.3V電源に接続する必要があります。リレーを簡単ににするため、VPUビンはVDD33の近くにあります。

アンチエイリアシング・フィルタに関する検討事項
動作に必要なほとんどの受動部品はLTM2987に内蔵されているため、外付けのフィルタ部品は必要ありません。
アプリケーション情報

V_INの検出
V_IN以外の電圧は、V_IN_SNSピンを使用して監視できます。各V_IN_SNSピンは、校正された内部分割器を備えており、最高15Vの電圧を直接検出できます。

未使用のADC検出入力
未使用のADC検出入力（V_SENSEPnまたはV_SENSEMn）はすべてGNDに接続してください。図4に示すように、これらの入力が取り外し可能なカードに接続されているか、かつ、ある状況でフローティング状態のままになる可能性があるシステムでは、これらの入力は100k抵抗を使ってGNDに接続する必要があります。

図4.未使用の入力をGNDに接続

PCBのアセンブリとレイアウトに関する推奨事項

バイパス・コンデンサの配置
必要なバイパス・コンデンサはすべてLTM2987に内蔵されています。バイパス・コンデンサを追加する必要はありません。PCBレイアウトは、優れたレイアウトのガイドラインに従う必要があります。電力およびグランド専用の層を備えた多層PCBを推奨します。電源ノイズを最小限に抑え、デバイスが正常に動作できるようにするには、電力とグランドの接続が低抵抗かつ低インダクタンスであることが重要です。

設計のチェックリスト

I2C
- LTM2987の各I2C部分は1/2のアドレスになるように構成する必要があります。システム・プログラミングを簡単にするには、1/2のハードウェアASELn値を推奨します。
- アドレス選択ピン(ASELn)は3レベルのピンです。LTC2977のデータシートの表1を参照してください。
- アドレスを調べて、バス上の他のデバイスおよびグローバル・アドレスと衝突しないかどうか確認してください。

出力カーネル
- すべてのVOUT_ENaピンに適切なプルアップ抵抗を使用してください。
- VOUT_ENaピンの絶対最大定格を超えていないことを確認してください。

V_INの検出
- V_INを検出するのに抵抗分割器を外付けする必要はありません。V_IN_SNSには較正済みの抵抗分割器が既に内蔵されています。

ロジック信号
- デジタル・ピン（SCL、SDA、ALERTB、FAULTBzn、CONTROLn、SHARE_CLK、WDI、ASELn、PWRGD）の絶対最大定格を超えていないことを確認してください。
- システム内のすべてのSHARE_CLKピンを互いに接続し、5.49kの抵抗で3.3Vにプルアップしてください。
- CONTROLnピンはフロート状態のままにしないでください。10kの抵抗で3.3Vにプルアップしてください。10kの抵抗を使用して、WDI/RESETBをVDD33に接続します。コンデンサをWDI/RESETBピンに接続してはなりません。
- WPをVDD33またはGNDのいずれかに接続します。このピンはフロート状態のままにしないでください。

不使用の入力
- V_SENSEPnピン、V_SENSEMnピン、およびDACMnピンの未使用ピンはすべてGNDに接続してください。不使用のピンをフロート状態にしないでください。

DACの出力
- 必要なマージン範囲を達成するために適切な抵抗を選択してください。LTpowerPlayの抵抗選択ツールが役立ちます。

電源
- VPWRから電力を供給している場合、VDD33(A)ピンとVDD33(B)ピンを相互に接続してはなりません。各VDD33ピンは、独立した内部レギュレータを備えています。
- より詳細な設計上の検討事項と回路図のチェックリストについては、LTpowerPlayのヘルプ・メニューを参照してください。
LTM2987

パッケージ

LTM2987の部品BGAピン配置（上面図）

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WP</td>
<td>VDD25</td>
<td>VDD33</td>
<td>VDD33</td>
<td>VIN_SNS</td>
<td>VSENSEM7</td>
<td>VSENSEP7</td>
<td>VOUT_EN6</td>
<td>VDACM6</td>
<td>VDACP6</td>
<td>VSENSEM6</td>
<td>VSENSEP6</td>
</tr>
<tr>
<td>B</td>
<td>PWRGD</td>
<td>SHARE_CLK</td>
<td>VP1</td>
<td>WDI</td>
<td>VPWR</td>
<td>VDACM7</td>
<td>VDACP7</td>
<td>VOUT_EN5</td>
<td>VDACM5</td>
<td>VDACP5</td>
<td>VSENSEM5</td>
<td>VSENSEP5</td>
</tr>
<tr>
<td>C</td>
<td>SDA</td>
<td>RPU4</td>
<td>FAULTB00</td>
<td>FAULTB10</td>
<td>DINC</td>
<td>GND</td>
<td>VOUT_EN7</td>
<td>VOUT_EN4</td>
<td>VDACM4</td>
<td>VDACP4</td>
<td>VSENSEM4</td>
<td>VSENSEP4</td>
</tr>
<tr>
<td>D</td>
<td>SCL</td>
<td>RPU2</td>
<td>FAULTB01</td>
<td>FAULTB11</td>
<td>GND</td>
<td>GND</td>
<td>VOUT_EN0</td>
<td>VOUT_EN3</td>
<td>VDACM3</td>
<td>VDACP3</td>
<td>VSENSEM3</td>
<td>VSENSEP3</td>
</tr>
<tr>
<td>E</td>
<td>CONTROL0</td>
<td>ALERTB</td>
<td>RPU1</td>
<td>RPU4</td>
<td>VIN_EN</td>
<td>VDACM0</td>
<td>VDACP0</td>
<td>VOUT_EN2</td>
<td>VDACM2</td>
<td>VDACP2</td>
<td>VSENSEM2</td>
<td>VSENSEP2</td>
</tr>
<tr>
<td>F</td>
<td>CONTROL1</td>
<td>ASEL1</td>
<td>ASEL0</td>
<td>REFMR</td>
<td>REFP</td>
<td>VSENSEM0</td>
<td>VSENSEP0</td>
<td>VOUT_EN1</td>
<td>VDACM1</td>
<td>VDACP1</td>
<td>VSENSEM1</td>
<td>VSENSEP1</td>
</tr>
<tr>
<td>G</td>
<td>WP</td>
<td>VDD25</td>
<td>VDD33</td>
<td>VDD33</td>
<td>VIN_SNS</td>
<td>VSENSEM7</td>
<td>VSENSEP7</td>
<td>VOUT_EN6</td>
<td>VDACM6</td>
<td>VDACP6</td>
<td>VSENSEM6</td>
<td>VSENSEP6</td>
</tr>
<tr>
<td>H</td>
<td>PWRGD</td>
<td>SHARE_CLK</td>
<td>VP1</td>
<td>WDI</td>
<td>VPWR</td>
<td>VDACM7</td>
<td>VDACP7</td>
<td>VOUT_EN5</td>
<td>VDACM5</td>
<td>VDACP5</td>
<td>VSENSEM5</td>
<td>VSENSEP5</td>
</tr>
<tr>
<td>J</td>
<td>SDA</td>
<td>RPU3</td>
<td>FAULTB00</td>
<td>FAULTB10</td>
<td>DINC</td>
<td>GND</td>
<td>VOUT_EN7</td>
<td>VOUT_EN4</td>
<td>VDACM4</td>
<td>VDACP4</td>
<td>VSENSEM4</td>
<td>VSENSEP4</td>
</tr>
<tr>
<td>K</td>
<td>SCL</td>
<td>RPU2</td>
<td>FAULTB01</td>
<td>FAULTB11</td>
<td>GND</td>
<td>GND</td>
<td>VOUT_EN0</td>
<td>VOUT_EN3</td>
<td>VDACM3</td>
<td>VDACP3</td>
<td>VSENSEM3</td>
<td>VSENSEP3</td>
</tr>
<tr>
<td>L</td>
<td>CONTROL0</td>
<td>ALERTB</td>
<td>RPU1</td>
<td>RPU4</td>
<td>VIN_EN</td>
<td>VDACM0</td>
<td>VDACP0</td>
<td>VOUT_EN2</td>
<td>VDACM2</td>
<td>VDACP2</td>
<td>VSENSEM2</td>
<td>VSENSEP2</td>
</tr>
<tr>
<td>M</td>
<td>CONTROL1</td>
<td>ASEL1</td>
<td>ASEL0</td>
<td>REFMR</td>
<td>REFP</td>
<td>VSENSEM0</td>
<td>VSENSEP0</td>
<td>VOUT_EN1</td>
<td>VDACM1</td>
<td>VDACP1</td>
<td>VSENSEM1</td>
<td>VSENSEP1</td>
</tr>
</tbody>
</table>

詳細：www.linear-tech.co.jp/LTM2987

29871
パッケージ

最新のパッケージ図面については、http://www.linear-tech.co.jp/designtools/packaging/を参照してください。
標準的応用例

関連製品

<table>
<thead>
<tr>
<th>製品番号</th>
<th>説明</th>
<th>注釈</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC2970</td>
<td>デュアルFC電源モニタおよびマージニング・コントローラ</td>
<td>5V〜15V、全未調整誤差が0.5%の14ビットADC、8ビットDAC、温度センサー</td>
</tr>
<tr>
<td>LTC2974</td>
<td>4チャネルPMBusパワーシステム・マネージャ</td>
<td>全未調整誤差が0.25%の16ビットADC、電圧/電流/温度の監視および管理</td>
</tr>
<tr>
<td>LTC2977</td>
<td>8チャネルPMBusパワーシステム・マネージャ</td>
<td>全未調整誤差が0.25% TUE 16ビットADC、電圧/温度の監視および管理</td>
</tr>
<tr>
<td>LTC3880</td>
<td>デュアル出力PolyPhase降圧DC/DCコントローラ</td>
<td>全未調整誤差が0.5%の16ビットADC、電圧/電流/温度の監視および管理</td>
</tr>
<tr>
<td>LTC3883</td>
<td>シングル出力PolyPhase降圧DC/DCコントローラ</td>
<td>全未調整誤差が0.5%の16ビットADC、電圧/電流/温度の監視および管理</td>
</tr>
</tbody>
</table>

図5. 外付け3.3Vデバイス電源を持つLTM2987 16チャネル・アプリケーション回路