LTC®2862/LTC2863/LTC2864/LTC2865 は 3V 〜 5.5V 電源で動作する 20Mbps または 250kbps の低消費電力 RS485/RS422 トランシーバです。パワードウン・モードを含む全動作モードにおいて、データ伝送ラインでの±60V の過電圧フォルトに対する保護機能を備えています。LTC2865 のロジックで選択可能な 250kbps モードと LTC2862 〜 LTC2864 の 250kbps バージョンでは、低 EMI でスルーレートが制限されたデータ伝送が可能です。強化された ESD 保護機能により、ラッチアップや損傷が発生することなく、トランシーバ・インタフェース・ピンで±15kV（人体モデル）の ESD に対耐えることができます。

±25V の拡張された入力同相範囲と完全なフェイルセーフ動作により、電気的ノイズの多い環境や大きなハードループ電圧がある状況でデータ通信の信頼性を高めます。
LTC2862/LTC2863/LTC2864/LTC2865

絶対最大定格
(Note 1)
電源電圧
VCC...–0.3～6V
VL...–0.3～6V
ロジック入力電圧(RE、DE、DI、SLO)........–0.3～6V
インタフェースI/O:A、B、Y、Z............–60V～+60V
レシーパ出力(RO)
(LTC2862～LTC2864)................–0.3V～(VCC + 0.3V)

ビン配置

詳細：www.linear-tech.co.jp/LTC2862
ピン配置

LTC2865

TOP VIEW

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>RE</td>
<td>DE</td>
<td>DI</td>
<td>VL</td>
<td>GND</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MRR PACKAGE

12-LEAD PLASTIC MSOP
EXPOSED PAD (PIN 13) CONNECT TO PCB GND
$T_{JMax} = 150°C$, $\theta_JA = 40°C/W$, $\theta_HC = 10°C/W$

LTC2865

TOP VIEW

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>RE</td>
<td>DE</td>
<td>DI</td>
<td>VL</td>
<td>GND</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DE PACKAGE

12-LEAD (4mm × 3mm) PLASTIC DFN
EXPOSED PAD (PIN 13) CONNECT TO PCB GND
$T_{JMax} = 150°C$, $\theta_JA = 43°C/W$, $\theta_HC = 4.3°C/W$

発注情報

<table>
<thead>
<tr>
<th>無鉛仕上げ</th>
<th>テープアンドリール</th>
<th>製品マーキング*</th>
<th>パッケージ</th>
<th>温度範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC2862CS8-1#PBF</td>
<td>LTC2862CS8-1#TRPBF</td>
<td>29621</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2862IS8-1#PBF</td>
<td>LTC2862IS8-1#TRPBF</td>
<td>29621</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>−40°C to 85°C</td>
</tr>
<tr>
<td>LTC2862HS8-1#PBF</td>
<td>LTC2862HS8-1#TRPBF</td>
<td>29621</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>−40°C to 125°C</td>
</tr>
<tr>
<td>LTC2862CS8-2#PBF</td>
<td>LTC2862CS8-2#TRPBF</td>
<td>29622</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2862IS8-2#PBF</td>
<td>LTC2862IS8-2#TRPBF</td>
<td>29622</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>−40°C to 125°C</td>
</tr>
<tr>
<td>LTC2862HS8-2#PBF</td>
<td>LTC2862HS8-2#TRPBF</td>
<td>29622</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>−40°C to 125°C</td>
</tr>
<tr>
<td>LTC2862CDD-1#PBF</td>
<td>LTC2862CDD-1#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2862IDD-1#PBF</td>
<td>LTC2862IDD-1#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>−40°C to 85°C</td>
</tr>
<tr>
<td>LTC2862HDD-1#PBF</td>
<td>LTC2862HDD-1#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>−40°C to 125°C</td>
</tr>
<tr>
<td>LTC2862CDD-2#PBF</td>
<td>LTC2862CDD-2#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2862IDD-2#PBF</td>
<td>LTC2862IDD-2#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>−40°C to 85°C</td>
</tr>
<tr>
<td>LTC2862HDD-2#PBF</td>
<td>LTC2862HDD-2#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>−40°C to 125°C</td>
</tr>
<tr>
<td>LTC2863CS8-1#PBF</td>
<td>LTC2863CS8-1#TRPBF</td>
<td>29631</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2863IS8-1#PBF</td>
<td>LTC2863IS8-1#TRPBF</td>
<td>29631</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>−40°C to 85°C</td>
</tr>
<tr>
<td>LTC2863HS8-1#PBF</td>
<td>LTC2863HS8-1#TRPBF</td>
<td>29631</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>−40°C to 125°C</td>
</tr>
<tr>
<td>LTC2863CS8-2#PBF</td>
<td>LTC2863CS8-2#TRPBF</td>
<td>29632</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2863IS8-2#PBF</td>
<td>LTC2863IS8-2#TRPBF</td>
<td>29632</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>−40°C to 85°C</td>
</tr>
<tr>
<td>LTC2863HS8-2#PBF</td>
<td>LTC2863HS8-2#TRPBF</td>
<td>29632</td>
<td>8-Lead (150mil) Plastic SO</td>
<td>−40°C to 125°C</td>
</tr>
<tr>
<td>LTC2863CDD-1#PBF</td>
<td>LTC2863CDD-1#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2863IDD-1#PBF</td>
<td>LTC2863IDD-1#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>−40°C to 85°C</td>
</tr>
<tr>
<td>LTC2863HDD-1#PBF</td>
<td>LTC2863HDD-1#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>−40°C to 125°C</td>
</tr>
<tr>
<td>LTC2863CDD-2#PBF</td>
<td>LTC2863CDD-2#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2863IDD-2#PBF</td>
<td>LTC2863IDD-2#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>−40°C to 85°C</td>
</tr>
<tr>
<td>LTC2863HDD-2#PBF</td>
<td>LTC2863HDD-2#TRPBF</td>
<td>LFXX</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>−40°C to 125°C</td>
</tr>
</tbody>
</table>
発注情報

<table>
<thead>
<tr>
<th>無鉛仕上げ</th>
<th>テープアンドリール</th>
<th>製品マーキング*</th>
<th>パッケージ</th>
<th>温度範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC2864CS-1#PBF</td>
<td>LTC2864CS-1#TRPBF</td>
<td>LTC2864S-1</td>
<td>14-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2864CS-2#PBF</td>
<td>LTC2864CS-2#TRPBF</td>
<td>LTC2864S-2</td>
<td>14-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2864CS-3#PBF</td>
<td>LTC2864CS-3#TRPBF</td>
<td>LTC2864S-3</td>
<td>14-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2864CS-4#PBF</td>
<td>LTC2864CS-4#TRPBF</td>
<td>LTC2864S-4</td>
<td>14-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2864CS-1#PBF</td>
<td>LTC2864CS-1#TRPBF</td>
<td>LTC2864S-1</td>
<td>14-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2864CS-2#PBF</td>
<td>LTC2864CS-2#TRPBF</td>
<td>LTC2864S-2</td>
<td>14-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2864CS-3#PBF</td>
<td>LTC2864CS-3#TRPBF</td>
<td>LTC2864S-3</td>
<td>14-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>LTC2864CS-4#PBF</td>
<td>LTC2864CS-4#TRPBF</td>
<td>LTC2864S-4</td>
<td>14-Lead (150mil) Plastic SO</td>
<td>0°C to 70°C</td>
</tr>
</tbody>
</table>

さらに広い動作温度範囲で規定されるデバイスについては、弊社または弊社代理店にお問い合わせください。
温度グレードは出荷時のコンテナのラベルで識別されます。
非標準の鉛仕上げの製品の詳細については、弊社または弊社代理店にお問い合わせください。
無鉛仕上げの製品マーキングの詳細については、http://www.linear-tech.co.jp/leadfree/をご覧ください。
テープアンドリールの仕様の詳細については、http://www.linear-tech.co.jp/tapeandreel/をご覧ください。

電気的特性

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Primary Power Supply</td>
<td></td>
<td>3</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vl</td>
<td>Logic Interface Power Supply</td>
<td>LTC2865 Only</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ICCS</td>
<td>Supply Current in Shutdown Mode (C-, I-Grade) (N/A LTC2863)</td>
<td>DE = 0V, RE = VCC = VL</td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>Supply Current in Shutdown Mode (H-, MP-Grade) (N/A LTC2863)</td>
<td>DE = 0V, RE = VCC = VL</td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>ICCTR</td>
<td>Supply Current with Both Driver and Receiver Enabled (LTC2862-1, LTC2863-1, LTC2864-1, LTC2865 with SLO High)</td>
<td>No Load, DE = VCC = VL, RE = 0V</td>
<td>900</td>
<td>1300</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

詳細：www.linear-tech.co.jp/LTC2862
電気的特性
● は全動作温度範囲の規格値を意味する。それ以外は TA = 25°C での値。注記がない限り、V CC = V L = 3.3V。（Note 2）

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICTRLS</td>
<td>Supply Current with Both Driver and Receiver Enabled (LTC2862-2, LTC2863-2, LTC2864-2, LTC2865 with SLO Low)</td>
<td>No Load, DE = V CC = V L, RE = 0V</td>
<td>3.3</td>
<td>8</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

ドライバー

VOD	Differential Driver Output Voltage	R = ∞ (Figure 1)	1.5	V CC	V
ΔVOD	Change in Magnitude of Driver Differential Output Voltage	R = 27Ω or 50Ω (Figure 1)	0.2	V	
VOC	Driver Common-Mode Output Voltage	R = 27Ω or 50Ω (Figure 1)	3	V	
ΔVOC	Change in Magnitude of Driver Common-Mode Output Voltage	R = 27Ω or 50Ω (Figure 1)	0.2	V	
IOSD	Maximum Driver Short-Circuit Current	–60V ≤ (Y or Z) ≤ 60V (Figure 2)	±150	±250	mA
IODD	Driver Three-State (High Impedance) Output Current on Y and Z	DE = 0V, V CC = 0V or 3.3V, V O = –25V, 25V	±30	μA	

レシーバー

IIN	Receiver Input Current (A,B)	V CC = 0V or 3.3V, V IN = 12V (Figure 3)	125	μA
RIN	Receiver Input Resistance	0 ≤ V CC ≤ 5.5V, V IN = –25V or 25V (Figure 3)	112	kΩ
VCM	Receiver Common Mode Input Voltage	(A + B)/2	–25	V
VTH	Differential Input Signal Threshold Voltage (A – B)	–25V ≤ V CM ≤ 25V	±200	mV
ΔVTH	Differential Input Signal Hysteresis	V CM = 0V	150	mV
VOL	Receiver Output Low Voltage	I(RO) = 3mA (Sinking)	0	V
Vs	Receiver Output High Voltage	I(RO) = –3mA (Sourcing)	V CC –0.4V	V

ロジック（LTC2862, LTC2863, LTC2864）

| VTH | Input Threshold Voltage (DE, DI, RE) | 3.0 ≤ V CC ≤ 5.5V | 0.33 • V CC | 0.67 • V CC | V |
| INL | Logic Input Current (DE, DI, RE) | 0 ≤ V IN ≤ V CC | 0 | ±5 | μA |

ロジック（LTC2865）

| VTH | Input Threshold Voltage (DE, DI, RE, SLO) | 1.65V ≤ V L ≤ 5.5V | 0.33 • V L | 0.67 • V L | V |
| INL | Logic Input Current (DE, DI, RE, SLO) | 0 ≤ V IN ≤ V L | 0 | ±5 | μA |
LTC2862/LTC2863/LTC2864/LTC2865

Switching Characteristics
- Note 1: 绝对最大定格に記載された値を超えるストレスはデバイスに永続的損傷を与える可能性がある。また、長期にわたって絶対最大定格条件に曝すると、デバイスの信頼性と寿命に悪影響を与える可能性がある。
- Note 2: デバイスのピンに流れ込む電流は全て正。デバイスのピンから流れ出る電流は全て負。注記がない限り、すべての電圧はデバイスのグランドを基準にしている。
- Note 3: 最大データレートは他の測定されたパラメータによって保証されており、直接にはテストされていない。
- Note 4: このデバイスには短時間の過負荷状態の間デバイスを保護するための過熱保護機能が備わっている。過熱保護機能がアクティブなときに接合部温度は150ºCを超える。規定された最高動作温度を超えた動作が継続すると、デバイスの劣化または故障が生じる恐れがある。

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

LTC2862/LTC2863-1, LTC2864-1, LTC2865-1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>MAX</sub></td>
<td>Maximum Data Rate</td>
<td>(Note 3)</td>
<td>●</td>
<td>20</td>
<td>0</td>
<td>Mbps</td>
</tr>
<tr>
<td>f<sub>PLHD, PHLD</sub></td>
<td>Driver Input to Output</td>
<td>R<sub>DIFF</sub> = 54Ω, C<sub>L</sub> = 100pF (Figure 4)</td>
<td>●</td>
<td>25</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>Δt<sub>PD</sub></td>
<td>Driver Input to Output Difference</td>
<td>R<sub>DIFF</sub> = 54Ω, C<sub>L</sub> = 100pF (Figure 4)</td>
<td>●</td>
<td>2</td>
<td>9</td>
<td>ns</td>
</tr>
<tr>
<td>Is<sub>KEWD</sub></td>
<td>Driver Output Y to Output Z</td>
<td>R<sub>DIFF</sub> = 54Ω, C<sub>L</sub> = 100pF (Figure 4)</td>
<td>●</td>
<td>±10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>RD, FD</sub></td>
<td>Driver Rise or Fall Time</td>
<td>R<sub>DIFF</sub> = 54Ω, C<sub>L</sub> = 100pF (Figure 4)</td>
<td>●</td>
<td>4</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>LZD, LZHD, LZR, LZHR</sub></td>
<td>Driver Enable or Disable Time</td>
<td>R<sub>L</sub> = 500Ω, C<sub>L</sub> = 50pF, RE = 0V (Figure 5)</td>
<td>●</td>
<td>180</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>LZSD, LZLSD</sub></td>
<td>Driver Enable from Shutdown</td>
<td>R<sub>L</sub> = 500Ω, C<sub>L</sub> = 50pF, RE = High (Figure 5)</td>
<td>●</td>
<td>9</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t<sub>SHOND</sub></td>
<td>Time to Shutdown</td>
<td>R<sub>L</sub> = 500Ω, C<sub>L</sub> = 50pF, RE = High (Figure 5)</td>
<td>●</td>
<td>180</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

LTC2862-2, LTC2863-2, LTC2864-2, LTC2865-2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>MAX</sub></td>
<td>Maximum Data Rate</td>
<td>(Note 3)</td>
<td>●</td>
<td>250</td>
<td>500</td>
<td>kbps</td>
</tr>
<tr>
<td>f<sub>PLHD, PHLD</sub></td>
<td>Driver Input to Output</td>
<td>R<sub>DIFF</sub> = 54Ω, C<sub>L</sub> = 100pF (Figure 4)</td>
<td>●</td>
<td>850</td>
<td>1500</td>
<td>ns</td>
</tr>
<tr>
<td>Δt<sub>PD</sub></td>
<td>Driver Input to Output Difference</td>
<td>R<sub>DIFF</sub> = 54Ω, C<sub>L</sub> = 100pF (Figure 4)</td>
<td>●</td>
<td>50</td>
<td>500</td>
<td>ns</td>
</tr>
<tr>
<td>Is<sub>KEWD</sub></td>
<td>Driver Output Y to Output Z</td>
<td>R<sub>DIFF</sub> = 54Ω, C<sub>L</sub> = 100pF (Figure 4)</td>
<td>●</td>
<td>±500</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>RD, FD</sub></td>
<td>Driver Rise or Fall Time</td>
<td>R<sub>DIFF</sub> = 54Ω, C<sub>L</sub> =100pF (Figure 4)</td>
<td>●</td>
<td>500</td>
<td>800</td>
<td>1200</td>
</tr>
<tr>
<td>t<sub>LZD, LZHD</sub></td>
<td>Driver Enable Time</td>
<td>R<sub>L</sub> = 500Ω, C<sub>L</sub> = 50pF, RE = 0V (Figure 5)</td>
<td>●</td>
<td>1200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>LZD, LZHD</sub></td>
<td>Driver Disable Time</td>
<td>R<sub>L</sub> = 500Ω, C<sub>L</sub> = 50pF, RE = 0V (Figure 5)</td>
<td>●</td>
<td>180</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>LZSD, LZLSD</sub></td>
<td>Driver Enable from Shutdown</td>
<td>R<sub>L</sub> = 500Ω, C<sub>L</sub> = 50pF, RE = High (Figure 5)</td>
<td>●</td>
<td>10</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t<sub>SHOND</sub></td>
<td>Time to Shutdown</td>
<td>R<sub>L</sub> = 500Ω, C<sub>L</sub> = 50pF, RE = High (Figure 5)</td>
<td>●</td>
<td>180</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Receiver

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f<sub>PLHR, PHLR</sub></td>
<td>Receiver Input to Output</td>
<td>C<sub>L</sub> = 15pF, V<sub>CM</sub> = 1.5V,</td>
<td>50</td>
<td>65</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Is<sub>KEWR</sub></td>
<td>Differential Receiver Skew</td>
<td>C<sub>L</sub> = 15pF (Figure 6)</td>
<td>2</td>
<td>9</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>RR, FR</sub></td>
<td>Receiver Output Rise or Fall Time</td>
<td>C<sub>L</sub> = 15pF (Figure 6)</td>
<td>3</td>
<td>12.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>LZR, LZHR, LZR, LZR</sub></td>
<td>Receiver Enable/Disable Time</td>
<td>R<sub>L</sub> = 1k, C<sub>L</sub> = 50pF, DE = High (Figure 7)</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>LZSR, LZLZR</sub></td>
<td>Receiver Enable from Shutdown</td>
<td>R<sub>L</sub> = 1k, C<sub>L</sub> = 15pF, DE = 0V, (Figure 7)</td>
<td>9</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t<sub>SHDRND</sub></td>
<td>Time to Shutdown</td>
<td>R<sub>L</sub> = 1k, C<sub>L</sub> = 15pF, DE = 0V, (Figure 7)</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note 2: デバイスのピンに流れ込む電流は全て正。デバイスのピンから流れ出る電流は全て負。注記がない限り、すべての電圧はデバイスのグランドを基準にしている。
標準的性能特性

注記がない限り、$T_A = 25^\circ C$、$V_{CC} = V_L = 3.3V$。

電源電流とV_{CC}

![電源電流とV_{CC}グラフ]

電源電流と温度

![電源電流と温度グラフ]

電源電流とデータ・レート

![電源電流とデータ・レートグラフ]

ドライバのスキーと温度

![ドライバのスキーと温度グラフ]

ドライバの伝播遅延と温度

![ドライバの伝播遅延と温度グラフ]

ドライバの出力短絡電流と電圧

![ドライバの出力短絡電流と電圧グラフ]

ドライバの出力の“L”と“H”的電圧と出力電流

![ドライバの出力の“L”と“H”的電圧と出力電流グラフ]

ドライバの差動出力電圧と温度

![ドライバの差動出力電圧と温度グラフ]

V_L電源電流とデータ・レート

![V_L電源電流とデータ・レートグラフ]
標準的性能特性
注記がない限り、$T_A=25\,^\circ\text{C}$、$V_{CC}=V_L=3.3\,\text{V}$。

ビン機能

<table>
<thead>
<tr>
<th>ビン名</th>
<th>LTC2862</th>
<th>LTC2863</th>
<th>LTC2864 (DFN)</th>
<th>LTC2864 (SO)</th>
<th>LTC2865</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>レシーパの出力。レシーパの出力がイネーブルされ（REが“L”）、A~Bが200mVより大きいとき、ROは“H”になります。レシーパの入力が開放、短絡、または信号なしで終端された状態だと、ROは“L”になります。</td>
</tr>
<tr>
<td>RE</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>レシーパのイネーブル。入力を“L”になると、レシーパをイネーブルします。入力を“H”にすると、レシーパの出力を強制的に高インピーダンス状態にします。DEが“L”でREが“H”にすると、デバイスは低消費電力のシャットダウン状態になります。</td>
</tr>
<tr>
<td>DE</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>ドライバのイネーブル。DEの入力を“H”にすると、ドライバをイネーブルします。入力を“L”にすると、ドライバの出力を強制的に高インピーダンス状態にします。REが“L”でDEが“H”にすると、デバイスは低消費電力のシャットダウン状態になります。</td>
</tr>
<tr>
<td>DI</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>ドライバの入力。ドライバの出力がイネーブルされている状態で（DEが“H”）、DIを“L”にすると、ドライバの非反転出力Yが“L”に、反転出力Zが“H”に強制されます。ドライバの出力がイネーブルされている状態でDIを“H”にすると、ドライバの非反転出力Yが“H”に、反転出力Zが“L”に強制されます。</td>
</tr>
<tr>
<td>V_L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ロジック電源。1.65V ≤ V_L ≤ V_{CC}のセラミック・コンデンサでバイパスしてください。LTC2865のRO、RE、DE、DI、SLOの各インタフェースのみに電力を供給します。</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>露出パッド</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>-</td>
<td>13</td>
<td>DFNおよびMSOPパッケージの露出パッドはGNDに接続します。</td>
</tr>
<tr>
<td>SLO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>低速モードのイネーブル。入力を“L”にすると、スルーレートが制限された最大250kbpsのデータレートのモードに切り替えます。入力を“H”にすると200Mbpsをサポートします。</td>
</tr>
<tr>
<td>Y</td>
<td>-</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>LTC2862、LTC2864、LTC2865の非反転ドライバ出力。ドライバがデスエーブルされているか、または給電されていないと、高インピーダンス。</td>
</tr>
<tr>
<td>Z</td>
<td>-</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>LTC2862、LTC2864、LTC2865の反転ドライバ出力。ドライバがデスエーブルされているか、または給電されていないと、高インピーダンス。</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>反転しレシーパ入力（およびLTC2862の反転ドライバ出力）。受信モードまたは給電されていないときのインピーダンスは>96kΩ。</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>反転しレシーパ入力（およびLTC2862の反転ドライバ出力）。受信モードまたは給電されていないときのインピーダンスは>96kΩ。</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>電源。3V < V_{CC} < 5.5V、0.1µFのセラミック・コンデンサでGNDにバイパスします。</td>
</tr>
<tr>
<td>NC</td>
<td>1、8、13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>未接続ピン。フロート状態にするか、またはGNDに接続します。</td>
</tr>
</tbody>
</table>

詳細：www.linear-tech.co.jp/LTC2862
機能表

LTC2862

<table>
<thead>
<tr>
<th>ロジック入力</th>
<th>モード</th>
<th>A, B</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>RE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>受信</td>
<td>R_IN</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>シャットダウン</td>
<td>R_IN</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>送受信</td>
<td>アクティブ</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>送信</td>
<td>アクティブ</td>
</tr>
</tbody>
</table>

LTC2864, LTC2865

<table>
<thead>
<tr>
<th>ロジック入力</th>
<th>モード</th>
<th>A, B</th>
<th>Y, Z</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>受信</td>
<td>R_IN</td>
<td>高インピーダンス</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>シャットダウン</td>
<td>R_IN</td>
<td>高インピーダンス</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>送受信</td>
<td>R_IN</td>
<td>アクティブ</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>送信</td>
<td>R_IN</td>
<td>アクティブ</td>
</tr>
</tbody>
</table>

ブロック図

LTC2862

LTC2864

LTC2865
テスト回路

図1.ドライバのDC特性

図2.ドライバの出力短絡電流

図3.レシーバの入力電流と入力抵抗

図4.ドライバのタイミング測定
テスト回路

図5. ドライバのインピーダンスとディスアブルのタイミング測定

図6. レシーバの伝播遅延測定

図7. レシーバのインピーダンス/ディスアブルのタイミング測定
アプリケーション情報

±60Vのフォルト保護

LTC2862/LTC2863/LTC2864/LTC2865のデバイスは、3V〜5.5Vの電源で動作し、過電圧フォルト時に耐えるRS485/RS422トランジスタに必要なアプリケーションの要件を満たします。産業用機器では、RS485標準規格で規定された−7V〜12Vの範囲内に該当するものがあり、標準的なRS485トランシーバは、標準で−8V〜12.5Vの段階定格を超える電圧によって損傷する可能性があります。標準的なRS485トランシーバの過電圧に対する耐性には限度があるため、RS485動作の−7V〜12Vの範囲内で、適正なデータ・ネットワーク性能に影響を与えることなく、効果的な外付け保護ネットワークを実現するには困難です。標準的なRS485トランシーバを堅牢なLTC2862〜LTC2865のデバイスに置き換えることで、高電圧保护デバイスを使用することなく、過電圧フォルトによる市場環境をなくすことができます。

LTC2862シリーズの±60Vのフォルト保護は、高電圧BiCMOS集積回路デモボードを使用することによって行われます。このチップの保護高は、LTC2862〜LTC2865のデバイスに置き換えることにより、電源安定および高インピーダンス状態における保護が可能になります。ドライバ出力には先進的なフォルダック電流制限設計を採用し、高電流出力ドライバを可能にしたままで過電圧フォルトに対する保護を実現しています。

LTC2862シリーズは、GND電源を開放されても、VCC電源は開放され、ドライバ出力電圧が印加されている場合、GND電源が開放状態のままに、さらに予防措置を講じても必要があります。LTC2862シリーズのデバイスは、損傷を防ぐための保護機能を実現します。ロジックI/OビンのESDダイオードを通じてデバイスのグランド電流が流れ出し、I/Oビンに接続された回路に流れ込む可能性があります。システム設計者は、VCC電源が印加されているときに、GND電源のフォルト状態が想定される場合、接続された回路に損傷を受ける度合いを調べる必要があります。

LTC2862シリーズは電圧定格が高いので、外付け保護構成を変更することで、過電圧保護を高いレベルまで簡易に拡張できます。同様電圧に達した場合にデータ送信が妨害しないように、低電圧のRS485トランシーバと比較して高いブレーキダウン電圧の外付け保護デバイスを使用することができます。信号ラインの電圧を25Vとすると適切な範囲を維持しながら、±30V電圧までのライン電圧のフォルトに対する保護を行うネットワークが、標準的な応用例のセクションに示されています。

±25Vの拡張された同相範囲

電気的ノイズによって同相電圧が高い環境、またはグランド・ループによってローカル・グランドに電位差がある環境で、動作の信頼性を高めて機能の拡張を図るため、LTC2862〜LTC2865のデバイスは、−25V〜25Vの拡張された同相動作範囲を備えています。この拡張された同相範囲により、LTC2862〜LTC2865のデバイスは、應用製品ではデータエラーを生じたりデバイスを損傷する可能性がある状況で送受信を行うことができます。

±15kVのESD保護

LTC2862シリーズのデバイスは、極めて堅牢なESD保護機能を備えています。トランシーバのインタフェース・ビン（A、B、Y、Z）は、GNDを基準にした±15kV（人体モデル）に対する保護機能を備えており、全ての動作モード時または非給電時にラチアアップや損傷を生じることはありません。他の全てのビンは±8kV（人体モデル）に対して保護されているので、厳しい環境条件で信頼性の高い動作を行うことができます。

ドライバ

このドライバは完全にRS485/RS422互換です。イネーブルされた状態でDIが“H”のとき、全ての重合デバイス（LTC2863〜LTC2865）ではY−Zが正、半二重デバイス（LTC2862）ではA−Bが正になります。

ドライバがディスアプルされていると、両方の出力とも高インピーダンスになります。全ての二重デバイスの場合、ドライバの出力ビンのレギュレーションは−25V〜25Vの全相対範囲にわたって30μA以下であることが保証されています。半二重のLTC2862では、インピーダンスはレジスタの入力抵抗RINによって左右されます。

ドライバの過電圧保護と過電流保護

ドライバの出力は、−60V〜60Vの幅大範囲内でのどの電圧への短絡からも保護されています。フォルト状態の最大電流は±250mAです。ドライバには先進的なフォルドバック電流制御回路が備えられており、出力フォルト電圧が上昇するに従ってドライバの電流制限を継続的に減らします。±40Vを超えるフォルト電圧に対して、フォルト電流は±15mAを下回ります。

すべてのデバイスはサーキット・シャットダウン保護機能も備えており、過度の電力損失が発生した場合にドライバとレシーバをディスアプルします（Note 4を参照）。
アプリケーション情報

完全なフルフェイルセーフ動作

レーシーバがイネープルされた状態で、AピンとBピンの間の差動電圧の絶対値が200mVより大きい場合、ROの状態に(A-B)の極性が反映されます。

これらのデバイスはフェイルセーフ機能を備えており、入力が短絡、開放、または終端されていても3μs以上ドライプされない状態になると、レーシーバの出力がロジック1の状態(アイドル状態)になることが保証されています。遅延により、通常のデータ信号が、フェイルセーフ状態と誤って認識されることなく、正しい値領域を通過して移動することができます。このフェイルセーフ機能は、25V〜25Vの全同相範囲にわたる入力で動作することが保証されています。

ほとんどの競合デバイスでは、単に入力しきい値電圧に負のオフセットを付加することによってフェイルセーフ機能を実現しています。このため、レーシーバはゼロの差動電圧をロジック1状態と解釈します。この方法の欠点は、レーシーバの出力にデューティサイクルの非対称性を生じる可能性があることで、入力信号レベルが低くなり、入力エッジレートが遅くなるに従って次第に悪化します。

内部バイアス抵抗を使って、外部信号がないときにレーシーバの入力に正のバイアスを生成する競合デバイスもあります。ネットワークのラインが短絡するか、またはネットワークが終端されている場合でもアクティブ・トランジスタによってドライプされていない場合、このタイプのフェイルセーフバイアスは効果がありません。

図8. 入力信号が±200mV、10Mbpのバランス・レーシーバのデューティサイクル

LTC2862ゴールドは、通常の対称の負と負のしきい値を下回ったときに対応する。ウィンドウ・コンプレッサーやもみ行われます。この状態が約3μs以上続くと、フェイルセーフ条件が成立され、ROピンがロジック1状態に強制されます。この回路により、図8に示すように、レーシーバのデューティサイクルの対称性に悪影響を与えることなく、完全なフェイルセーフ動作を行うことができます。図8の入力信号は、10MbpのRS485信号を1000フィートのケーブルを通じてドライプして得られたものであり、立ち上がり時間と立ち下がり時間が長い±200mVの信号に変換されています。入力信号は劣化していますが、ROで良好なデューティサイクルの対称性が見られます。

レーシーバのノイズ耐性の改善

レーシーバの完全対称のしきい値の2つ目の利点は、レーシーバのノイズ耐性が改善されることです。差動入力信号が、レジスタをロジック1に設定するには正のしきい値を上回る必要があり、ロジック0に設定するには負のしきい値を上回る必要があります。したがって、全てのデータ信号を効果にすることに、レーシーバの入力に150mV (標準)のヒステリシスを与えられています。レーシーバ入力のDC掃引などの無効なデータ状態では、フェイルセーフ回路が起動することにより、異なるヒステリシスが発生します。入力しきい値電圧の負のオフセットを利用している競合デバイスは、一般にヒステリシスが大きくないので、レーシーバのノイズ耐性が小さくなります。

RS485ネットワークのバイアス

一般に、RS485ネットワークはデータラインの200mV以上の差動電圧を生成する抵抗分割器でバイアスされており、ネットワーク上のすべてのトランジスタがディスアープルされること、ロジック1の状態(アイドル状態)になります。バイアス抵抗の値は一定ではありませんが、ライン上のトランジスタの数とタイプ、ならびに終端抵抗の数と値によって決まります。したがって、バイアス抵抗の値は、それぞれ特定のネットワークの設定に対してカスタマイズする必要があり、ノードがネットワークに追加されるか、または取り外されるときに変化することがあります。

LTC2862～LTC2865はフェイルセーフ機能を搭載しているので、これらのデバイスは同様の内部フェイルセーフ機能を備えたトランジスタのネットワークで使用されている限り、外付けのネットワーク・バイアス抵抗は不要です。LTC2862～LTC2865のトランジスタは、ネットワークがバイアスされていてもいなくても、あるいはアンダーバイアスされているにもかかわらず動作します。

詳細：www.linear-tech.co.jp/LTC2862
アプリケーション情報

高インピーダンス状態
レシーバの出力は内部で“H”(VCCまたはV_L)または“L”(GND)にドライプされ、外部のプルアップは不要です。レシーバがディスエーブルされると、ROピンが高インピーダンスになり、電源電圧範囲内の電圧に対する漏れ電流が±5μA以下になります。

レシーバの高入力抵抗
LTC2862、LTC2863、およびLTC2865のレシーバのAまたはBからGNDへの入力負荷はユニット負荷の1/8より小さいので、RS485レシーバの負荷仕様を超えることなく、1システム当たり合計256個までのレシーバを許容できます。LTC2862の全てのグレードとLTC2863、LTC2864およびLTC2865のHグレードおよびMPグレードのデバイスの入力負荷は、+40℃～+125℃の全温度範囲でユニット負荷の1/7以下です。これらのデバイスの入力負荷仕様は大きいので、高湿時の接合部の漏れ電流が大きいこと、LTC2862のトランスミッタ出力がAピンとBピンを共有しているからです。レシーバの入力負荷は、レシーバをイネーブル/ディスエーブルすることによっても、デバイスを給電/給電停止することによっても影響を受けません。

電源電流
これらのデバイスの無負荷時の静止電源電流は、標準的な値は、スルーレートが制限されていないデバイスで900μA、スルーレートが制限されたデバイスで3.3mAです。抵抗で終端されたケーブルを使ったアプリケーションでは、電源電流はドライバの負荷によって左右されます。たとえば、ドライバの差動出力電圧が2Vのとき、120Ωの終端器を2個使用すると、DC負荷電流は33mAで、これは正電圧の電源によって供給されます。電源電流は、容量性負荷によりデータをタグルするに従って増加し、この点はデータレートが高くなると大幅に増加する可能性があります。電源電圧とデータレートをブロックしたもののが、このデータシートの「標準的性能特性」に示されています。

電源電圧より高い正電圧がトランスミッタのピンに印加されるフォルト状態の間、またはトランスミッタが高い正の同相電圧で動作している間、トランスミッタのピンからVCCに最大80mAの正電流が逆流する可能性があります。システム電源または負荷がこの余分な電流をシングできない場合、VCCとGNDの間に5.6V 1W定格の1N4734フューザー/ダイオードを接続して、VCCの過電圧状態を防止できます。

LTC2865のパスアップ・シーケンスには制約がありません。ただし、V_LがVCCより高くと、正しい動作は保証されません。

シャットダウン・モード遅延
LTC2862、LTC2864、およびLTC2865は、ドライバとレシーバの両方が同時にディスエーブルされる(ピンDEが"L"になり、ピンREが"H"になる)と移行する低消費電力のシャットダウン・モードを備えています。約250nsのシャットダウン・モード遅延(製造時にテストされない)は、デバイスがシャットダウン状態になる前にこの状態が認識されてから絶対制御されます。この遅延の間にDEが"H"になるか、またはREが"L"になると、遅延タイムがリセットされ、デバイスはシャットダウン状態に移行します。これにより、DEとREが緩やかに変化する信号によって常に駆動されるか、またはREが信号間にタイミング・スキュをとつ2つの個別の信号によって駆動されるときに偶然的にシャットダウン状態になる可能性が低減されます。

このシャットダウン・モード遅延がトランスミッタとレシーバの出力に影響を与える事はありません。これらの出力は、バラメータISHDNおよびISHDRで規定されたそれぞれのディスエーブル信号の受信時に高インピーダンス状態への遷移を開始します。シャットダウン・モード遅延が影響を与えるのは、VccからDC電源が供給されるすべての内部回路がオフする時間だけです。

高速動作に関する検討事項
ブランド・プレーンを使ったレイアウトと、Vccピンから7mm以内に配置した0.1μFのバイパス・コンデンサーを推奨します。信号A/BおよびZ/Yに接続したPC基板のトレースは対称にし、できるだけ短くて、差動信号の品質を良好に保ちます。容量の影響を最小限に抑えるため、差動信号はトレースの幅より広く配し、それらが異なる信号ブレーン上に置かれる場合は上下に重ならないように配線します。

電流の敏感な入力から出力を離して配線し、ノイズ、ジッタ、場合によっては発振を生じる可能性のある供給の影響を減らすように注意を払います。たとえば、全二重のデバイスでは、DIとA/Bはドライバまたはレシーバの出力の近くには配線しないようにします。

ロジック入力には標準で100mVのヒステリシスがあり、ノイズに耐性を与えます。出力の高速エッジにより、グランドと電源にギリッチが生じることがあり、容量性負荷によって悪化します。
アプリケーション情報

ロジック入力がそのしきい値（標準でVCC/2またはVIL）の近くに保たれていると、ドライバの遷移によるノイズ・グリッチがロジック入力ピンとデータ入力ピンのヒステリシス・レベルを超えて、意図せぬ状態変化を起こす可能性があります。これは、ピンを通常のロジック・レベルに保ち、入力をV/2より速く通過させることによって防止できます。電源を十分にデカプリングすることやドライバを正しく端末することによっても、ドライバの遷移によって生じるグリッチが減少します。

RS485のケーブル長とデータレート

多くの要因がRS485やRS422の通信に使用可能なケーブルの最大長に影響を与えます。これらの要因には、ドライバの遷移時間、レシーバのしきい値、デューティサイクル歪み、ケーブル特性、データレートなどが含まれます。ケーブル長と最大データレートの標準的な曲線を図9に示します。この曲線の異なる領域は、データ伝送の性能を制限する異なった要因を反映しています。

100kbpsを下回る周波数では、最大ケーブル長はケーブルのDC抵抗によって決まります。この例では、ケーブルが4000フィートより長く、端末での信号はレシーバで確実に検出可能な値より小さくなります。

100kbpsを超えるデータレートでは、ケーブルの容量性および誘導性によってこの関係が左右され始めます。ケーブルでの減衰は周波数と長さに依存するので、ケーブルの末端での立ち上がり時間と立ち下がり時間が長くなります。データレートが高いかまたはケーブルが長い場合、これらの遷移時間が信号のピット時間を決める大きな要因になります。ジッタと符号間干渉があるとこれが悪化するので、レシーバで有効データを捕捉するための時間ウィンドウが非常に小さくなります。

図9の20Mbpsの境界は、LTC2862シリーズの最大保証動作レートを表しています。10Mbpsの垂直の点線はRS485標準規格で規定されている最大データレートを表しています。この境界は限界ではありませんが、仕様に記載される最大データレートを反映しています。

図9のプロットが最大データレートとケーブル長の間の標準的な関係を示していることを重要視する必要があります。LTC2862シリーズを使った場合のデータレートは、導電体の口径、特性インピーダンス、絶縁材料、導電体が単線かより線かなどのケーブルの特性によって異なります。

低EMIの250kbpsのデータレート

LTC2862-2、LTC2863-2、およびLTC2864-2は、敏感なアプリケーションの電磁干渉（EMI）を小さくするために、スルーレートが制限されたトランスミッタを搭載しています。さらに、LTC2865はロジックで選択可能な250kbpsの送信レートを備えています。スルーレート制限回路が電圧と温度の全範囲でトランスミッタのスルーレートの安定した制御を維持し、全ての動作条件で低EMIを確保します。20Mbpsモードと比較した250kbpsモードによる高周波成分の低減を図10に示します。
アプリケーション情報

250kbps モードには、終端されていないネットワークでの信号の反射を減らすという別の利点もあるので、終端なしで使用できるネットワーク長が長くなります。トランスミッタの立ち上がり時間が信号の片方向の遅延の4倍より大きくなるという経験則を使用すると、終端なしで最大140フィートのネットワークをドライブできます。

PROFIBUS 互換インタフェース

PROFIBUS は RS485 ベースのフィールド・バスです。PROFIBUS 仕様には、TIA/EIA-485-A の規定の他に、ケーブル、相互接続、ライン終端、および信号レベルの要件が追加されています。PROFIBUS のタイプ A のケーブルと関連するコネクタと終端について以下に説明します。タイプ A のインピーダンスは 135Ω～165Ωで、ループ抵抗は 110Ω/km 未満です。

以下を配慮すれば、PROFIBUS 互換の装置に RS485 トランシーバーの LTC2865 ファミリを使用することができます。（「標準的応用例」のセクションの PROFIBUS 互換インタフェースの回路図を参照してください。）

1. PROFIBUS 信号の極性は、このデータシートで使われている極性表記とは逆です。PROFIBUS の B ワイヤは非反転信号で駆動され、A ワイヤは反転信号で駆動されます。したがって、トランシーバーの出力接続を入れ替える必要があります。ビン A を PROFIBUS の B ワイヤに接続し、ビン B を PROFIBUS の A ワイヤに接続します。

2. PROFIBUS ラインのそれぞれの端末は、B と A の間を 220Ωの抵抗で、B と Vcc の間を 390Ωのプルアップ抵抗で、A と GND の間を 390Ωのプルダウン抵抗でそれぞれ端端します。これにより、150Ωのより対称伝送ケーブルに対して適切な終端を行うことができます。

3. 前記のケーブルと終端を使用した 100mのケーブルの末尾で受信するピーク・トゥ・ピーク差動電圧 VOD は、4V～7V の範囲にすることがあります。LTC2865 ファミリは、このネットワークを直接駆動する場合には 7Vを超える信号レベルを生成します。トランシーバーの A ビンと PROFIBUS ケーブルの B 側の間、およびトランシーバーの B ビンと PROFIBUS ケーブルの A 側の間にそれぞれ 8.2Ωの抵抗を接続することにより、PROFIBUS の 7V の上限を満たすように伝送信号を減衰させながら、4V の下限を満たすのに十分な駆動能力を確保することができます。

4. LTC2865 ファミリのトランシーバには許容誤差 5% の 5V 電源（4.75V ～ 5.25V）から給電し、PROFIBUS の VOD の許容誤差を満たすようにします。

IEC サージ、EFT および ESD の補助的な保護

インダストリアル環境で使用されるインタフェース・トランシーバは、照明によるサージ、大電流の誘導性負荷のスイッチングによる電気的高速トランジェント (EFT)、帯電した人体または機器が放電することによる静電放電 (ESD) などの現象に起因する極めて高いレベルの電気的オーバーストレスに曝される可能性があります。これらの現象に対する電子機器の耐性を評価するテスト方法は、IEC 規格 61000-4-2、61000-4-4、61000-4-5 で規定されており、それぞれ ESD、EFT、サージに対応します。EFT、とりわけサージ・テストによって生じるトランジェントには、ESD によるトランジェントよりもはるかに大きなエネルギーが含まれます。LTC2865 ファミリは ESD に対する堅牢性が高くなるように設計されていますが、内蔵の保護回路では 61000-4-5 のサージ・トランジェントに伴うエネルギーを吸収することができません。したがって、高レベルのサージ保護を行うために、適切に設計された外付け保護回路が必要で、これにより、LTC2865 ファミリの ESD 性能を極限まで高いレベルに拡大することもできます。

サージ、EFT および ESD の保護を提供することに加えて、外付け回路網は、LTC2865 ファミリが過電圧フィルタに耐え、広い帯域で動作し、高い周波数で通信する能力を維持または増強する必要があります。最初の 2 つの要件を満たすため、導通電圧が相応に高い保護部品を選択する必要があります。

LTC2865 ファミリの第 2 の保護素子や ESD セルが作動して保護した場合の損傷を防止するため、電流を制限する手段を備える必要があります。複数ノードを備えたネットワークで高周波数通信を可能にするため、これらの部品の容量を小さく抑える必要があります。非常に大きなエネルギーの電気的トランジェントを伝達しながら、高いホルダーオン電圧と低容量を維持するための要件を満たすのはかなり困難です。

詳細：www.linear-tech.co.jp/LTC2862
アプリケーション情報

「標準的応用例」のセクションに示されている保護回路網（サージ、EFT および ESDに対する IEC レベル 4 の回路網）がこの課題に対応します。この回路網は以下の保護を行います。

・ IEC 61000-4-2 ESD レベル4：±30kV 接触放電、±30kV 空 中放電（ライン-GND 間）、この規格の図4に準拠した、グラ ンド基準のテスト・カードに実装されたトランシーバと保護 回路のバス・ビンへの直接放電）

・ IEC 61000-4-4 EFT レベル4：±5kV（ライン-GND 間、5kHz の継返しレート、15ms のパースト継続時間、60秒のテスト 時間、この規格のパラグラフ7.3.2に準拠した、100pFのコ ンデンサを介したバス・ビンへの放電）

・ IEC 61000-4-5 サージ・レベル4：±5kV（ライン-GND 間、ラ イン間、8/20μsの波形、この規格の図14に準拠した、各ラ インの80Ωの抵抗を介したジェネレータへの結合）

この保護回路によって付加されるライン当たり（ライン-GND 間）の容量はわずか8pF程度なので、LTC2865ファミリのトラ ンシーバの高データレートでの性能に大きな影響を与えるこ となく、極めて高レベルの保護を実現します。

ガス放電管（GDT）により、電気的サージに対する第1の保護 が行われます。GDTは、作動したときのインピーダンスが非常 に低く、電流搬送能力が高いので、サージ電流をGNDに安 全に放電します。トランジェント・プロッキング・ユニット（TBU） は、規定電流レベルに達したときに、低インピーダンスの通 過状態から高インピーダンスの電流制限状態に切り替えるソ リッドステート・デバイスです。TBUは、第2の保護要素まで 通過する可能性がある電流と電力を制限します。第2の保護 は、35Vを上回ると作動して、LTC2865ファミリのトランシーバのバス・ビンを保護する双方向サイリスタで行われます。第 2の保護装置の高いトリガ電圧により、レシーバの±25Vの同 相範囲が維持されます。回路網の最後の部品は金属酸化物 バリスタ（MOV）です。MOVは、TBU両端の電圧をクランプし、 GDTのターンオフ時間を超える高速のESDおよびEFTトラン ジェントに対してTBUを保護するのに使用されます。

この回路網が高性能なのは、GDTとサイリスタによる第1と 第2の保護部品の容量が小さいことに起因します。大容量の MOVがラインをフロートさせてもTBUがシャントするので、 信号の容量性負荷になることはありではありません。

標準的応用例

PROFIBUS互換ライン・インタフェース

* THE POLARITY OF A AND B IN THIS DATA SHEET IS OPPOSITE THE POLARITY DEFINED BY PROFIBUS.
標準的応用例

±60V、20Mbpsの双方向レベルシフタ/アイソレータ

R1 = 100kΩ、1%。抵抗 R1 をピン A、ピン B の近くに配置する。
R2 = 10kΩ
C = 47pF、5%、50 WVDC、100kbps以下のデータレートでは省略可能。

フェイルセーフ・ゼロのアプリケーション（アイドル状態 = ロジック0）
パッケージ

<table>
<thead>
<tr>
<th>インチ</th>
<th>ミリメートル</th>
</tr>
</thead>
<tbody>
<tr>
<td>.010 – .020 (0.254 – 0.508)</td>
<td>0.254 – 0.508</td>
</tr>
<tr>
<td>.016 – .060 (0.406 – 1.270)</td>
<td>0.406 – 1.270</td>
</tr>
<tr>
<td>.050 BSC</td>
<td>1.270</td>
</tr>
</tbody>
</table>

NOTE:
1. 寸法は（ミリメートル）
2. 図は実寸とは異なる
3. これらの寸法にはモールドのバリまたは突出部を含まない
 モールドのバリまたは突出部は 0.006”（0.15mm）を超えないこと
4. ピン1は斜めのエッジかへこみのいずれか

詳細：www.linear-tech.co.jp/LTC2862
パッケージ

最新のパッケージ図面については、http://www.linear-tech.co.jp/designtools/packaging/を参照してください。

DD Package
8-Lead Plastic DFN (3mm × 3mm)
(Reference LTC DWG # 05-08-1698 Rev C)

NOTE:
1. 図はJEDECのパッケージ外形MO-229のバリエーション（WEED-1）になる予定
2. 図は実寸とは異なる
3. 全ての寸法はミリメートル
4. パッケージの底面の露出パッドの寸法にはモールドのバリを含まない
 モールドのバリは（もしあれば）各サイドで0.15mmを超えないこと
5. 露出パッドは半田メッキとする
6. 巾掛けの部分はパッケージの上部と底面のピン1の位置の参考に過ぎない
パッケージ

最新のパッケージ図面については、http://www.linear-tech.co.jp/designtools/packaging/を参照してください。

S Package
14-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610 Rev G)

推奨する半田パッド・レイアウト

NOTE:
1. 寸法はインチ（ミリメートル）
2. 図は実寸とは異なる
3. これらの寸法にはモールドのバリまたは突出部を含まない
 モールドのバリまたは突出部は0.006”（0.15mm）を超えないこと
4. ピン1は斜めのエッジかへこみのいずれか

詳細：www.linear-tech.co.jp/LTC2862
パッケージ
最新のパッケージ図面については、http://www.linear-tech.co.jp/designtools/packaging/ を参照してください。

DD Package
10-Lead Plastic DFN (3mm × 3mm)
(Reference LTC DWG # 05-08-1699 Rev C)

NOTE:
1. 図はJEDECのパッケージ外形MO-229のバリエーション(WEED-2)になる予定
バリエーションの指定の現状についてはLTCのWebサイトのデータシートを参照
2. 図は実寸とは異なる
3. 全ての寸法はミリメートル
4. パッケージの底面の露出パッドの寸法にはモールドのバリを含まない
 モールドのバリは(もしあれば)各サイドで0.15mmを超えないこと
5. 露出パッドは半田メキシとする
6. 網掛けの部分はパッケージの上面と底面のピン1の位置の参考に過ぎない

推奨する半田パッドのピッチと寸法

詳細：www.linear-tech.co.jp/LTC2862

LTC2862/LTC2863/
LTC2864/LTC2865
パッケージ

最新のパッケージ図面については、http://www.linear-tech.co.jp/designtools/packaging/を参照してください。

DE/UE Package
12-Lead Plastic DFN (4mm × 3mm)
(Reference LTC DWG # 05-08-1695 Rev D)

NOTE:
1. 図はJEDECのパッケージ外形MO-229のバリエーション(WGED)として提案
2. 図は実寸とは異なる
3. 全ての寸法はミリメートル
4. パッケージの底面の露出パッドの寸法にはモールドのバリを含まない
 モールドのバリは(もしあれば)各サイドで0.15mmを超えないこと
5. 露出パッドは半田マッキとする
6. 網掛けの部分はパッケージの上面と底面のピン1の位置の参考に過ぎない
パッケージ

最新のパッケージ図面については、http://www.linear-tech.co.jp/designtools/packaging/ を参照してください。

MSE Package
12-Lead Plastic MSOP, Exposed Die Pad
(Reference LTC DWG # 05-08-1666 Rev G)

NOTE:
1. 寸法はミリメートル（インチ）
2. 図は実寸とは異なる
3. 寸法にはモールドの孔、突出部、またはゲートの孔を含まない
 モールドの孔、突出部、またはゲートの孔は、各サイズで 0.152mm (0.006") を超えないこと
4. 寸法には、リード間の孔または突出部の孔を含まない
 リード間の孔または突出部の孔は、各サイズで 0.152mm (0.006") を超えないこと
5. リードの円度（成形後のリードの表面）は最大 0.102mm (0.004") であること
6. 露出パッドの寸法にはモールドの孔を含まない
 露出パッドのモールドの孔は各サイズで 0.254mm (0.010") を超えないこと

詳細：www.linear-tech.co.jp/LTC2862
<table>
<thead>
<tr>
<th>Rev</th>
<th>日付</th>
<th>概要</th>
<th>ページ番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3/13</td>
<td>データシートにMPグレードを追加。 S8パッケージとSパッケージ更新。</td>
<td>2, 4</td>
</tr>
<tr>
<td>B</td>
<td>1/14</td>
<td>Hグレード/MPグレードのためにIcQsを変更。 Vr電源電流とデータ・レートのグラフ追加。 「シャットダウン・モード遅延」セクション追加。 「PROFIBUS互換インタフェース」セクションと、「IECサージ、EFTおよびESDの補助的な保護セクション」と、「PROFIBUS互換ライン・インタフェース」の図を追加。 「120VのACライン・フォルト保護付きRS485ネットワーク」の図をサージ、EFTおよびESDに対するIECレベル4の保護回路網、および360Vの過電圧保護」のグラフに差し替え。</td>
<td>4, 7, 14, 16, 17, 26</td>
</tr>
</tbody>
</table>
標準的応用例

サージ、EFTおよびESDに対するIECレベル4の保護回路網、および360Vの過電圧保護

関連製品

<table>
<thead>
<tr>
<th>製品番号</th>
<th>説明</th>
<th>注釈</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT1785、LT1791</td>
<td>±60Vフォルト保護付きRS485/RS422トランシーバ</td>
<td>±60V耐性、±15kV ESD、250kbps</td>
</tr>
<tr>
<td>LTC2850-53</td>
<td>3.3V、20Mbps、±15kV RS485トランシーバ</td>
<td>バス1本当たり256個までのトランシーバを接続可能</td>
</tr>
<tr>
<td>LTC2854、LTC2855</td>
<td>切替え可能な終端を内蔵した3.3V、20Mbps RS485トランシーバ</td>
<td>±25kV ESD (LTC2854)、±15kV ESD (LTC2855)</td>
</tr>
<tr>
<td>LTC2856-1</td>
<td>5V、20Mbps、およびスルーレートが制限されたRS485トランシーバ</td>
<td>±15kV ESD</td>
</tr>
<tr>
<td>LTC2859、LTC2861</td>
<td>切替え可能な終端を内蔵した5V、20Mbps RS485トランシーバ</td>
<td>±15kV ESD</td>
</tr>
<tr>
<td>LTC1535</td>
<td>絶縁型RS485トランシーバ</td>
<td>2500VRMSの絶縁性能、外付けトランシーバが必要</td>
</tr>
<tr>
<td>LTM2881</td>
<td>3.3V絶縁型RS485/RS422 μModule®トランシーバ+電源</td>
<td>内蔵絶縁DC/DCコンバータによる2500VRMSの絶縁性能、1Wの電力、低EMI、ESD：±15kV、同相トランジェント耐性：30kV/jus</td>
</tr>
</tbody>
</table>