

## 12ビット、250Msps ADC

### 特長

- サンプル・レート:250Msps
- SNR:65.4dB
- SFDR:78dB
- 1.2GHzのフルパワー帯域幅 S/H
- 単一2.5V電源
- 低消費電力:740mW
- LVDS、CMOSまたはデマルチプレクス CMOS 出力
- 選択可能な入力範囲:±0.5Vまたは±1V
- ミッシング・コードなし
- オプションのクロック・デューティ・サイクル・スタビライザ
- シャットダウン・モードとナップ・モード
- データ・レディ出力クロック
- ピン互換ファミリ

250Msps:LTC2242-12(12ビット)、LTC2242-10(10ビット) 210Msps:LTC2241-12(12ビット)、LTC2241-10(10ビット)

170Msps:LTC2240-12(12ビット)、LTC2240-10(10ビット)

185Msps:LTC2220-1(12ビット)<sup>\*</sup>

170Msps:LTC2220(12ビット)、LTC2230(10ビット)\*

135Msps:LTC2221(12ビット)、LTC2231(10ビット)\*

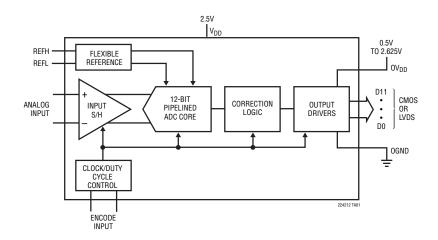
■ 64ピン9mm×9mm QFNパッケージ

## アプリケーション

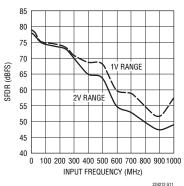
- 無線および有線の広帯域通信
- ケーブル・ヘッドエンド・システム
- パワーアンプの直線化
- 通信テスト機器

### 概要

LTC®2242-12は、高周波の広いダイナミック・レンジの信号をデジタル化する250Msps サンプリング12ビットA/Dコンバータです。SNRが65.4dB、SFDRが78dBという優れたAC特性を備えているため、要求の厳しい通信アプリケーションに最適です。また、95fs<sub>RMS</sub>という極めて低いジッタにより、優れたノイズ性能を維持しながらIF周波数をアンダーサンプリングできます。


DC仕様では、±1.0LSB (標準)のINLと±0.4LSB (標準)のDNL、全温度範囲でミッシング・コードがないことが規定されています。

デジタル出力は、差動LVDSまたはシングルエンドCMOSのいずれかに設定可能です。CMOS出力フォーマットは、1本のバスがフル・データレートで動作する形式、2本のデマルチプレクス・バスが半分のデータレートで動作し、インターリーブ間隔で更新を行う形式、2本のデマルチプレクス・バスが半分のデータレートで動作し、同時更新を行う形式の3つから選択できます。個別の出力電源により、0.5V~2.625VのCMOS出力振幅が可能です。

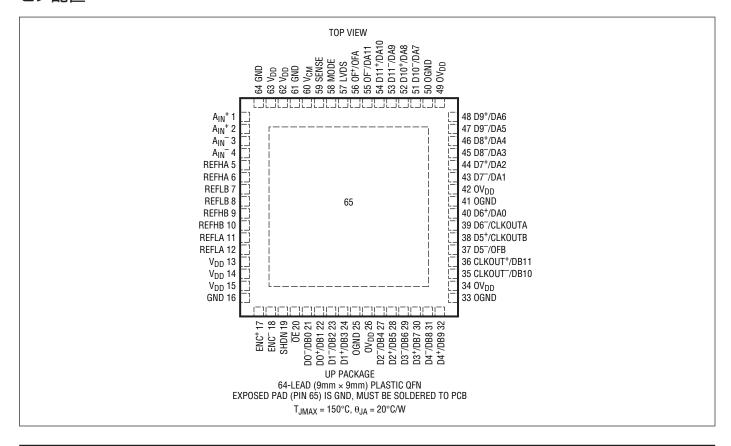

ENC+およびENC-入力は、正弦波、PECL、LVDS、TTLまたはCMOSで差動またはシングルエンド・ドライブ可能です。また、オプションのクロック・デューティ・サイクル・スタビライザにより、広範なクロック・デューティ・サイクルで高性能を達成できます。

∠T、LT、LTC、LTM、Linear TechnologyおよびLinearのロゴはリニアテクノロジー社の登録商標です。その他すべての商標の所有権は、それぞれの所有者に帰属します。\*LTC2220-1、LTC2220、LTC2221、LTC2230、LTC2231は3.3V用の製品です。

## 標準的応用例



# SFDRと入力周波数






# 絶対最大定格 OVDD = VDD (Note 1、2)

| 電源電圧(V <sub>DD</sub> )2.8V                    | 電力損失1500mW           |
|-----------------------------------------------|----------------------|
| デジタル出力のグランド電圧(OGND)0.3V~1V                    | 動作温度範囲               |
| アナログ入力電圧(Note 3)0.3V~(V <sub>DD</sub> + 0.3V) | LTC2242C-120°C~70°C  |
| デジタル入力電圧0.3V ~ (V <sub>DD</sub> + 0.3V)       | LTC2242I-1240°C~85°C |
| デジタル出力電圧0.3V~(OV <sub>DD</sub> + 0.3V)        | 保存温度範囲65°C~150°C     |

## ピン配置



## 発注情報

| 無鉛仕上げ             | テープアンドリール           | 製品マーキング*     | パッケージ                         | 温度範囲          |
|-------------------|---------------------|--------------|-------------------------------|---------------|
| LTC2242CUP-12#PBF | LTC2242CUP-12#TRPBF | LTC2242UP-12 | 64-Lead (9mm×9mm) Plastic QFN | 0°C to 70°C   |
| LTC2242IUP-12#PBF | LTC2242IUP-12#TRPBF | LTC2242UP-12 | 64-Lead (9mm×9mm) Plastic QFN | –40°C to 85°C |
| 鉛仕上げ              | テープアンドリール           | 製品マーキング*     | パッケージ                         | 温度範囲          |
| LTC2242CUP-12     | LTC2242CUP-12#TR    | LTC2242UP-12 | 64-Lead (9mm×9mm) Plastic QFN | 0°C to 70°C   |
| LTC2242IUP-12     | LTC2242IUP-12#TR    | LTC2242UP-12 | 64-Lead (9mm×9mm) Plastic QFN | –40°C to 85°C |

さらに広い動作温度範囲で規定されるデバイスについては、弊社または弊社代理店にお問い合わせください。\*温度グレードは出荷時のコンテナのラベルで識別されます。

無鉛仕上げの製品マーキングの詳細については、http://www.linear-tech.co.jp/leadfree/ をご覧ください。 テープアンドリールの仕様の詳細については、http://www.linear-tech.co.jp/tapeandreel/ をご覧ください。



# コンバータ特性 ・は全動作温度範囲での規格値を意味する。それ以外はTA = 25°Cでの値(Note 4)

| PARAMETER                     | CONDITIONS                               |   | MIN  | TYP        | MAX | UNITS              |
|-------------------------------|------------------------------------------|---|------|------------|-----|--------------------|
| Resolution (No Missing Codes) |                                          | • | 12   |            |     | Bits               |
| Integral Linearity Error      | Differential Analog Input (Note 5)       | • | -2.7 | ±1         | 2.7 | LSB                |
| Differential Linearity Error  | Differential Analog Input                | • | -1   | ±0.4       | 1   | LSB                |
| Offset Error                  | (Note 6)                                 | • | -17  | ±5         | 17  | mV                 |
| Gain Error                    | External Reference                       | • | -3.2 | ±0.7       | 3.2 | %FS                |
| Offset Drift                  |                                          |   |      | ±10        |     | μV/C               |
| Full-Scale Drift              | Internal Reference<br>External Reference |   |      | ±60<br>±45 |     | ppm/C<br>ppm/C     |
| Transition Noise              | SENSE = 1V                               |   |      | 0.74       |     | LSB <sub>RMS</sub> |

# アナログ入力 ●は全動作温度範囲での規格値を意味する。それ以外はTA = 25°Cでの値(Note 4)。

| SYMBOL              | PARAMETER                                                                                 | CONDITIONS                                 |   | MIN | TYP        | MAX | UNITS             |
|---------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|---|-----|------------|-----|-------------------|
| V <sub>IN</sub>     | Analog Input Range (A <sub>IN</sub> <sup>+</sup> – A <sub>IN</sub> <sup>-</sup> )         | 2.375V < V <sub>DD</sub> < 2.625V (Note 7) | • |     | ±0.5 to ±1 |     | V                 |
| V <sub>IN, CM</sub> | Analog Input Common Mode (A <sub>IN</sub> <sup>+</sup> + A <sub>IN</sub> <sup>-</sup> )/2 | Differential Input (Note 7)                | • | 1.2 | 1.25       | 1.3 | V                 |
| I <sub>IN</sub>     | Analog Input Leakage Current                                                              | $0 < A_{IN}^+, A_{IN}^- < V_{DD}$          | • | -1  |            | 1   | μА                |
| I <sub>SENSE</sub>  | SENSE Input Leakage                                                                       | 0V < SENSE < 1V                            | • | -1  |            | 1   | μА                |
| I <sub>MODE</sub>   | MODE Pin Pull-Down Current to GND                                                         |                                            |   |     | 7          |     | μА                |
| I <sub>LVDS</sub>   | LVDS Pin Pull-Down Current to GND                                                         |                                            |   |     | 7          |     | μА                |
| t <sub>AP</sub>     | Sample and Hold Acquisition Delay Time                                                    |                                            |   |     | 0.4        |     | ns                |
| tJITTER             | Sample and Hold Acquisition Delay Time Jitter                                             |                                            |   |     | 95         |     | fs <sub>RMS</sub> |
|                     | Full Power Bandwidth                                                                      | Figure 8 Test Circuit                      |   |     | 1200       |     | MHz               |

# ダイナミック精度 ● は全動作温度範囲での規格値を意味する。それ以外はT<sub>A</sub> = 25°Cでの値。A<sub>IN</sub> = -1dBFS。(Note 4)

| SYMBOL  | PARAMETER                       | CONDITIONS                           |   | MIN  | TYP  | MAX | UNITS |
|---------|---------------------------------|--------------------------------------|---|------|------|-----|-------|
| SNR     | Signal-to-Noise Ratio (Note 10) | 10MHz Input                          |   |      | 65.4 |     | dB    |
|         |                                 | 70MHz Input                          | • | 63.4 | 65.3 |     | dB    |
|         |                                 | 140MHz Input                         |   |      | 65.3 |     | dB    |
|         |                                 | 240MHz Input                         |   |      | 65.1 |     | dB    |
| SFDR    | Spurious Free Dynamic Range     | 10MHz Input                          |   |      | 78   |     | dB    |
|         | 2nd or 3rd Harmonic             | 70MHz Input                          | • | 65   | 75   |     | dB    |
|         | (Note 11)                       | 140MHz Input                         |   |      | 74   |     | dB    |
|         |                                 | 240MHz Input                         |   |      | 73   |     | dB    |
|         | Spurious Free Dynamic Range     | 10MHz Input                          |   |      | 87   |     | dB    |
|         | 4th Harmonic or Higher          | 70MHz Input                          | • | 73   | 87   |     | dB    |
|         | (Note 11)                       | 140MHz Input                         |   |      | 87   |     | dB    |
|         |                                 | 240MHz Input                         |   |      | 87   |     | dB    |
| S/(N+D) | Signal-to-Noise Plus            | 10MHz Input                          |   |      | 65.3 |     | dB    |
|         | Distortion Ratio                | 70MHz Input                          | • | 61.8 | 65.1 |     | dB    |
|         | (Note 12)                       | 140MHz Input                         |   |      | 64.8 |     | dB    |
|         |                                 | 240MHz Input                         |   |      | 64.5 |     | dB    |
| IMD     | Intermodulation Distortion      | $f_{IN1} = 135MHz, f_{IN2} = 140MHz$ |   |      | 81   | ·   | dBc   |



# 内部リファレンスの特性 (Note 4)

| PARAMETER                         | CONDITIONS                        | MIN   | TYP  | MAX   | UNITS  |
|-----------------------------------|-----------------------------------|-------|------|-------|--------|
| V <sub>CM</sub> Output Voltage    | I <sub>OUT</sub> = 0              | 1.225 | 1.25 | 1.275 | V      |
| V <sub>CM</sub> Output Tempco     |                                   |       | ±35  |       | ppm/°C |
| V <sub>CM</sub> Line Regulation   | 2.375V < V <sub>DD</sub> < 2.625V |       | 3    |       | mV/V   |
| V <sub>CM</sub> Output Resistance | -1mA < I <sub>OUT</sub> < 1mA     |       | 2    |       | Ω      |

# デジタル入力とデジタル出力 ●は全動作温度範囲での規格値を意味する。それ以外は T<sub>A</sub> = 25°C での値(Note 4)。

| SYMBOL                  | PARAMETER                   | CONDITIONS                                      |   | MIN           | TYP           | MAX   | UNITS |
|-------------------------|-----------------------------|-------------------------------------------------|---|---------------|---------------|-------|-------|
| エンコード入力                 | b (enc+, enc-)              |                                                 |   |               |               |       |       |
| V <sub>ID</sub>         | Differential Input Voltage  | (Note 7)                                        | • | 0.2           |               |       | V     |
| VICM                    | Common Mode Input Voltage   | Internally Set<br>Externally Set (Note 7)       | • | 1.2           | 1.5<br>1.5    | 2.0   | V     |
| R <sub>IN</sub>         | Input Resistance            |                                                 |   |               | 4.8           |       | kΩ    |
| CIN                     | Input Capacitance           | (Note 7)                                        |   |               | 2             |       | pF    |
| ロジック入力(                 | ŌE, SHDN)                   |                                                 |   |               |               |       |       |
| V <sub>IH</sub>         | High Level Input Voltage    | V <sub>DD</sub> = 2.5V                          | • | 1.7           |               |       | V     |
| V <sub>IL</sub>         | Low Level Input Voltage     | V <sub>DD</sub> = 2.5V                          | • |               |               | 0.7   | V     |
| I <sub>IN</sub>         | Input Current               | $V_{IN} = 0V \text{ to } V_{DD}$                | • | -10           |               | 10    | μΑ    |
| C <sub>IN</sub>         | Input Capacitance           | (Note 7)                                        |   |               | 3             |       | pF    |
| ロジック出力(                 | CMOSモード)                    |                                                 |   |               |               |       |       |
| $OV_{DD} = 2.5V$        |                             |                                                 |   |               |               |       |       |
| C <sub>OZ</sub>         | Hi-Z Output Capacitance     | OE = High (Note 7)                              |   |               | 3             |       | pF    |
| ISOURCE                 | Output Source Current       | $V_{OUT} = 0V$                                  |   |               | 37            |       | mA    |
| I <sub>SINK</sub>       | Output Sink Current         | V <sub>OUT</sub> = 2.5V                         |   | 23            |               | mA    |       |
| V <sub>OH</sub>         | High Level Output Voltage   | $I_0 = -10\mu A$<br>$I_0 = -500\mu A$           |   | 2.495<br>2.45 |               | V     |       |
| V <sub>0L</sub>         | Low Level Output Voltage    | I <sub>0</sub> = 10μA<br>I <sub>0</sub> = 500μA |   |               | 0.005<br>0.07 |       | V     |
| OV <sub>DD</sub> = 1.8V | ·                           | ·                                               |   |               |               |       | ·     |
| V <sub>OH</sub>         | High Level Output Voltage   | $I_0 = -500 \mu A$                              |   |               | 1.75          |       | V     |
| V <sub>0L</sub>         | Low Level Output Voltage    | Ι <sub>0</sub> = 500μΑ                          |   |               | 0.07          |       | V     |
| ロジック出力(                 | LVDSモード)                    | ·                                               |   |               |               |       |       |
| $V_{OD}$                | Differential Output Voltage | 100Ω Differential Load                          | • | 247           | 350           | 454   | mV    |
| Vos                     | Output Common Mode Voltage  | 100Ω Differential Load                          | • | 1.125         | 1.250         | 1.375 | V     |

## 電源条件 ●は全動作温度範囲での規格値を意味する。それ以外はTA = 25°Cでの値(Note 9)。

| SYMBOL              | PARAMETER             | CONDITIONS                                  |   | MIN   | TYP | MAX   | UNITS |
|---------------------|-----------------------|---------------------------------------------|---|-------|-----|-------|-------|
| $\overline{V_{DD}}$ | Analog Supply Voltage | (Note 8)                                    | • | 2.375 | 2.5 | 2.625 | V     |
| PSLEEP              | Sleep Mode Power      | SHDN = High, $\overline{OE}$ = High, No CLK |   |       | 1   |       | mW    |
| P <sub>NAP</sub>    | Nap Mode Power        | SHDN = High, $\overline{OE}$ = Low, No CLK  |   |       | 28  |       | mW    |
| LVDS出力刊             | E-K                   |                                             |   |       |     |       |       |
| OV <sub>DD</sub>    | Output Supply Voltage | (Note 8)                                    | • | 2.375 | 2.5 | 2.625 | V     |
| I <sub>VDD</sub>    | Analog Supply Current |                                             | • |       | 285 | 320   | mA    |
| lovdd               | Output Supply Current |                                             | • |       | 58  | 70    | mA    |
| P <sub>DISS</sub>   | Power Dissipation     |                                             | • |       | 858 | 975   | mW    |
| CMOS 出力:            | モード                   |                                             | · |       |     |       |       |
| OV <sub>DD</sub>    | Output Supply Voltage | (Note 8)                                    | • | 0.5   | 2.5 | 2.625 | V     |
| I <sub>VDD</sub>    | Analog Supply Current | (Note 7)                                    | • |       | 285 | 320   | mA    |
| P <sub>DISS</sub>   | Power Dissipation     |                                             |   |       | 740 |       | mW    |

# タイミング特性 ●は全動作温度範囲での規格値を意味する。それ以外はT<sub>A</sub> = 25°Cでの値(Note 4)。

| SYMBOL              | PARAMETER                      | CONDITIONS                                            |   | MIN        | TYP     | MAX        | UNITS    |
|---------------------|--------------------------------|-------------------------------------------------------|---|------------|---------|------------|----------|
| fs                  | Sampling Frequency             | (Note 8)                                              | • | 1          |         | 250        | MHz      |
| t <sub>L</sub>      | ENC Low Time (Note 7)          | Duty Cycle Stabilizer Off<br>Duty Cycle Stabilizer On | • | 1.9<br>1.5 | 2 2     | 500<br>500 | ns<br>ns |
| t <sub>H</sub>      | ENC High Time (Note 7)         | Duty Cycle Stabilizer Off<br>Duty Cycle Stabilizer On | • | 1.9<br>1.5 | 2 2     | 500<br>500 | ns<br>ns |
| t <sub>AP</sub>     | Sample-and-Hold Aperture Delay |                                                       |   |            | 0.4     |            | ns       |
| toe                 | Output Enable Delay            | (Note 7)                                              | • |            | 5       | 10         | ns       |
| LVDS出力              | モード                            | ·                                                     | • |            |         |            |          |
| t <sub>D</sub>      | ENC to DATA Delay              | (Note 7)                                              | • | 1          | 1.7     | 2.8        | ns       |
| tc                  | ENC to CLKOUT Delay            | (Note 7)                                              | • | 1          | 1.7     | 2.8        | ns       |
|                     | DATA to CLKOUT Skew            | $(t_C - t_D)$ (Note 7)                                | • | -0.6       | 0       | 0.6        | ns       |
|                     | Rise Time                      |                                                       |   |            | 0.5     |            | ns       |
|                     | Fall Time                      |                                                       |   |            | 0.5     |            | ns       |
|                     | Pipeline Latency               |                                                       |   |            | 5       |            | Cycles   |
| CMOS出力              | モード                            |                                                       | · |            |         |            |          |
| t <sub>D</sub>      | ENC to DATA Delay              | (Note 7)                                              | • | 1          | 1.7     | 2.8        | ns       |
| tc                  | ENC to CLKOUT Delay            | (Note 7)                                              | • | 1          | 1.7     | 2.8        | ns       |
|                     | DATA to CLKOUT Skew            | (t <sub>C</sub> - t <sub>D</sub> ) (Note 7)           | • | -0.6       | 0       | 0.6        | ns       |
| Pipeline<br>Latency | Full Rate CMOS                 |                                                       |   |            | 5       |            | Cycles   |
|                     | Demuxed Interleaved            |                                                       |   |            | 5       |            | Cycles   |
|                     | Demuxed Simultaneous           |                                                       |   |            | 5 and 6 |            | Cycles   |

### 電気的特性

**Note 1:** 絶対最大定格に記載された値を超えるストレスはデバイスに永続的損傷を与える可能性がある。また、長期にわたって絶対最大定格条件に曝すと、デバイスの信頼性と寿命に悪影響を与える可能性がある。

Note 2: 全ての電圧値は(注記がない限り)GNDとOGNDを結線したグランドを基準にしている。

**Note 3:** これらのピンの電圧を GND より低くするか、 $V_{DD}$  より高くすると、内部のダイオードによってクランプされる。この製品は、GND より低いか、または $V_{DD}$  より高い電圧でラッチアップを生じることなく100mA を超える入力電流を処理することができる。

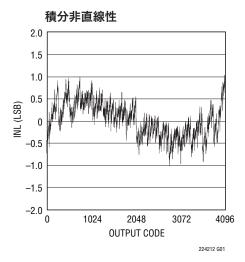
**Note 4:**注記がない限り、V<sub>DD</sub> = 2.5V、f<sub>SAMPLE</sub> = 250MHz、LVDS出力、差動 ENC<sup>+</sup>/ENC<sup>-</sup> = 2V<sub>P-P</sub> の正弦波、入力レンジ = 差動ドライブで 2V<sub>P-P</sub>。

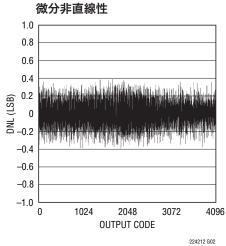
Note 5: 積分非直線性は、伝達曲線に合致する「最善の直線」からのコードの偏差として定義されている。偏差は量子化幅の中心から測定する。

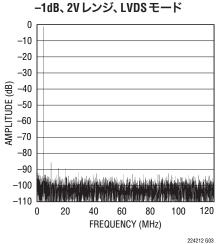
Note 6: オフセット誤差は、2の補数の出力モードで出力コードが 0000 0000 0000 と 1111 1111 1111 の間を行ったり来たりするとき、-0.5 LSBから測定したオフセット電圧である。

Note 7: 設計によって保証されているが、テストされない。

Note 8: 推奨動作条件。


**Note 9:** V<sub>DD</sub> = 2.5V、f<sub>SAMPLE</sub> = 250MHz、差動 ENC<sup>+</sup>/ENC<sup>-</sup>= 2V<sub>P-P</sub> の正弦波、入力レンジ = 差動ドライブで1V<sub>P-P</sub>、出力のC<sub>LOAD</sub> = 5pF。

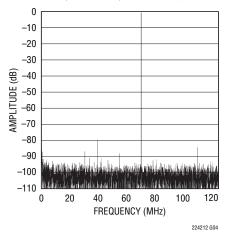

**Note 10:** SNRの最小値と標準値はLVDSモードの場合。CMOSモードの場合の標準値はさらに標準で0.3dBほど低い。


Note 11: SFDRの最小値はLVDSモードの場合。標準値はLVDSとCMOSの両方のモードの場合。

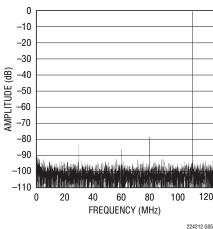
Note 12: SINADの最小値と標準値はLVDSモードの場合。CMOSモードの場合の標準値はさらに標準で0.3dBほど低い。

# 標準的性能特性 (注記がない限り TA = 25°C、Note 4)

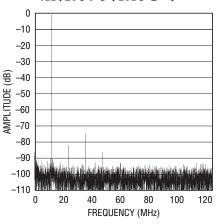








8192 ポイントの FFT、f<sub>IN</sub> = 5MHz、

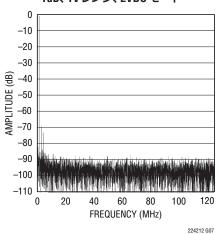
## 標準的性能特性 (注記がない限り TA = 25°C、Note 4)






8192 ポイントの FFT、f<sub>IN</sub> = 140MHz、 -1dB、2V レンジ、LVDS モード




8192 ポイントの FFT、f<sub>IN</sub> = 240MHz、 -1dB、2V レンジ、LVDS モード



224212 G06

8192ポイントの2トーンFFT、 f<sub>IN</sub> = 135MHzおよび140MHz、 -1dB、2Vレンジ、LVDSモード

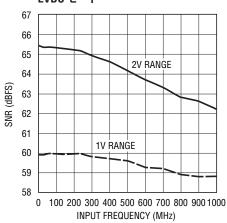
8192ポイントのFFT、f<sub>IN</sub> = 500MHz、 -1dB、1V レンジ、LVDS モード



-1dB、1Vレンジ、LVDSモード -10 -20 -30 AMPLITUDE (dB) -40 -50 -60 -70-80 -90 -100 -110 120 FREQUENCY (MHz) 224212 G08

8192ポイントの FFT、 f<sub>IN</sub> = 1GHz、

0 -10 -20 -30 (9) 30 -50 100 -100 -110 0 20 40 60 80 FREQUENCY (MHz)


SFDR(HD4+)と入力周波数、-1dB、LVDSモード

100

120

224212 G09

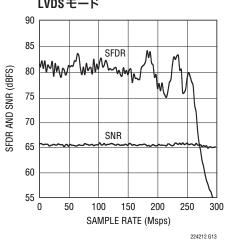
SNRと入力周波数、-1dB、 LVDSモード



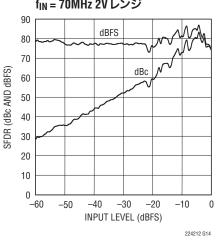
224212 G10

224212 G11

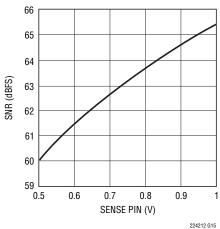
SFDR(HD2およびHD3)と


95 90 85 10 RANGE 20 RANGE 70 65 60 0 100 200 300 400 500 600 700 800 9001000 INPUT FREQUENCY (MHz)

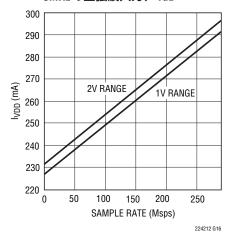
224212 G12



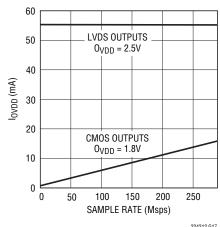

# 標準的性能特性 (注記がない限りTA = 25°C、Note 4)







SFDRと入力レベル、 f<sub>IN</sub> = 70MHz 2V レンジ




SNR & SENSE, fin = 5MHz, -1dB



IVDD とサンプル・レート、 5MHzの正弦波入力、-1dB



IOVDD とサンプル・レート、 5MHzの正弦波入力、-1dB



224212 G17

## ピン機能

(CMOSモード)

A<sub>IN</sub><sup>+</sup>(ピン1、2): 正の差動アナログ入力。

A<sub>IN</sub>-(ピン3、4): 負の差動アナログ入力。

**REFHA(ピン5、6)**: ADCの"H"リファレンス。0.1μFのセラミック・チップ・コンデンサでピン7とピン8に、2.2μFのセラミック・コンデンサでピン11とピン12に、1μFのセラミック・コンデンサでグランドに、それぞれバイパスします。

**REFLB(ピン7、8)**: ADCの"L"リファレンス。0.1μFのセラミック・チップ・コンデンサを使ってピン5とピン6にバイパスします。 ピン11とピン12には接続しないでください。

**REFHB(ピン9、10)**: ADCの"H"リファレンス。0.1μFのセラミック・チップ・コンデンサを使ってピン11とピン12にバイパスします。ピン5とピン6には接続しないでください。

**REFLA(ピン11、12)**: ADCの"L"リファレンス。0.1μFのセラミック・チップ・コンデンサでピン9とピン10に、2.2μFのセラミック・コンデンサでピン5とピン6に、1μFのセラミック・コンデンサでグランドに、それぞれバイパスします。

**V<sub>DD</sub>(ピン13、14、15、62、63)**: 2.5V電源。0.1µFのセラミック・チップ・コンデンサを使用してGNDにバイパスします。

GND(ピン16、61、64): ADCの電源グランド。

**ENC+ (ピン17)**: エンコード入力。立ち上がりエッジで変換が開始されます。

ENC<sup>-</sup>(ピン18): エンコード相補入力。立ち下がりエッジで変換が開始されます。シングルエンドのエンコード信号の場合、0.1µFのセラミック・コンデンサを使用してグランドにバイパスします。

SHDN (ピン19): シャットダウン・モードの選択ピン。SHDN と  $\overline{OE}$  を  $\overline{OE}$  と  $\overline{OE}$  を  $\overline{OE}$  を  $\overline{OE}$  と  $\overline{OE}$ 

**OE(ピン20)**: 出力イネーブル・ピン。SHDNピンの機能を参照してください。

**DB0~DB11(ピン21、22、23、24、27、28、29、30、31、32、35、36)**: デジタル出力、Bバス。DB11がMSBです。フルレートCMOSモードではハイインピーダンスになります。

**OGND(ピン25、33、41、50)**:出力ドライバのグランド。

**OV**<sub>DD</sub>(ピン26、34、42、49):出力ドライバの正電源。0.1μFのセラミック・チップ・コンデンサを使用してグランドにバイパスします。

**OFB(ピン37)**: Bバスのオーバーフロー/アンダーフロー出力。 オーバーフローやアンダーフローが生じると"H"になります。フルレートCMOSモードではハイインピーダンスになります。

**CLKOUTB**(ピン38): Bバスのデータ有効出力。交互更新のデマルチプレクス・モードでは、CLKOUTBの立ち下がりエッジでBバスのデータをラッチします。同時更新のデマルチプレクス・モードでは、CLKOUTBの立ち上がりエッジでBバスのデータをラッチします。このピンはフルレートCMOSモードではハイインピーダンスになりません。

**CLKOUTA(ピン39)**: Aバスのデータ有効出力。CLKOUTAの立ち下がりエッジでAバスのデータをラッチします。

DAO~DA11 (ピン40、43、44、45、46、47、48、51、52、53、54、55): デジタル出力、Aバス。DA11がMSBです。

**OFA(ピン56)**: Aバスのオーバーフロー/アンダーフロー出力。 オーバーフローやアンダーフローが生じると"H"になります。

LVDA (ピン57): 出力モードの選択ピン。LVDSを0Vに接続すると、フルレートCMOSモードが選択されます。LVDSを1/3V<sub>DD</sub>に接続すると、同時更新のデマルチプレクスCMOSモードが選択されます。LVDSを2/3V<sub>DD</sub>に接続すると、交互更新のデマルチプレクスCMOSモードが選択されます。LVDSを2/3V<sub>DD</sub>に接続すると、LVDSモードが選択されます。

MODE(ピン58): 出力形式とクロック・デューティ・サイクル・スタビライザの選択ピン。MODEを0Vに接続すると、オフセット・バイナリの出力形式が選択され、クロックのデューティ・サイクル・スタビライザがオフします。MODEを1/3VDDに接続すると、オフセット・バイナリの出力形式が選択され、クロックのデューティ・サイクル・スタビライザがオンします。2/3VDDに接続すると、2の補数の出力形式が選択され、クロック・デューティ・サイクル・スタビライザがオンします。VDDに接続すると、2の補数の出力形式が選択され、クロック・デューティ・サイクル・スタビライザがオフします。

**SENSE(ピン59)**: リファレンス・プログラミング・ピン。SENSEを $V_{CM}$ に接続すると、内部リファレンスと $\pm 0.5V$ の入力レンジが選択されます。SENSEを $V_{DD}$ に接続すると、内部リファレンスと $\pm 1V$ の入力レンジが選択されます。0.5Vより大きく1Vより小さい外部リファレンスを SENSE に印加すると、 $\pm V_{SENSE}$ の入力レンジが選択されます。 $\pm 1V$ が最大有効入力レンジです。

**V<sub>CM</sub>(ピン60):** 出力と入力の1.25V同相バイアス。2.2μFのセラミック・チップ・コンデンサを使用してグランドにバイパスします。

**GND (背面パッド) (ピン65)**: ADC の電源グランド。パッケージの底面の背面パッドはグランドに半田付けする必要があります。



## ピン機能

(LVDSモード)

AIN<sup>+</sup>(ピン1、2): 正の差動アナログ入力。

AIN<sup>-</sup>(ピン3、4): 負の差動アナログ入力。

**REFHA(ピン5、6)**: ADCの"H"リファレンス。0.1μFのセラミック・チップ・コンデンサでピン7とピン8に、2.2μFのセラミック・コンデンサでピン11とピン12に、1μFのセラミック・コンデンサでグランドに、それぞれバイパスします。

**REFLB(ピン7、8)**: ADCの"L"リファレンス。0.1μFのセラミック・チップ・コンデンサを使ってピン5とピン6にバイパスします。 ピン11とピン12には接続しないでください。

**REFHB(ピン9、10)**: ADCの"H"リファレンス。0.1μFのセラミック・チップ・コンデンサを使ってピン11とピン12にバイパスします。ピン5とピン6には接続しないでください。

**REFLA(ピン11、12)**: ADCの"L"リファレンス。0.1μFのセラミック・チップ・コンデンサでピン9とピン10に、2.2μFのセラミック・コンデンサでピン5とピン6に、1μFのセラミック・コンデンサでグランドに、それぞれバイパスします。

**V<sub>DD</sub>(ピン13、14、15、62、63)**: 2.5V電源。0.1μFのセラミック・チップ・コンデンサを使用してGNDにバイパスします。

GND (ピン16、61、64):ADCの電源グランド。

**ENC<sup>+</sup> (ピン17)**: エンコード入力。立ち上がりエッジで変換が 開始されます。

**ENC** (ピン18): エンコード相補入力。立ち下がりエッジで変換が開始されます。シングルエンドのエンコード信号の場合、0.1μFのセラミック・コンデンサを使用してグランドにバイパスします。

SHDN (ピン19): シャットダウン・モードの選択ピン。SHDN と  $\overline{OE}$  を  $\overline{OE}$  を  $\overline{OE}$  の に接続すると通常動作になり、出力がイネーブルされます。 SHDN を  $\overline{OE}$  の に接続し、  $\overline{OE}$  を  $\overline{V}_{DD}$  に接続すると通常動作になり、出力がハイインピーダンスになります。 SHDN を  $\overline{V}_{DD}$  に接続し、  $\overline{OE}$  を  $\overline{OE}$  を  $\overline{OE}$  の に接続するとナップ・モードになり、出力がハイインピーダンスになります。 SHDN と  $\overline{OE}$  を  $\overline{V}_{DD}$  に接続するとスリープ・モードになり、出力がハイインピーダンスになります。

**OE(ピン20)**: 出力イネーブル・ピン。SHDNピンの機能を参照してください。

 $D0^-/D0^+ \sim D11^-/D11^+$  (ピン21、22、23、24、27、28、29、30、31、32、37、38、39、40、43、44、45、46、47、48、51、52、53、54):LVDS デジタル出力。すべてのLVDS 出力には、LVDS レシーバに $100\Omega$ の差動終端抵抗が必要です。 $D11^-/D11^+$ がMSBです。

**OGND(ピン25、33、41、50)**: 出力ドライバのグランド。

**OV**<sub>DD</sub>(ピン26、34、42、49):出力ドライバの正電源。0.1μFのセラミック・チップ・コンデンサを使用してグランドにバイパスします。

**CLKOUT**-/**CLKOUT**+ (ピン35/36): LVDS データが有効であることを示す出力。CLKOUT-の立ち上がりエッジ(CLKOUT+の立ち下がりエッジ)でデータをラッチします。

**OF** / **OF** (ピン55/56): LVDS のオーバーフロー/アンダーフロー出力。オーバーフローやアンダーフローが生じると"H"になります。

LVDS (ピン57): 出力モードの選択ピン。LVDSを0Vに接続すると、フルレートCMOSモードが選択されます。LVDSを1/3V<sub>DD</sub>に接続すると、同時更新のデマルチプレクスCMOSモードが選択されます。LVDSを2/3V<sub>DD</sub>に接続すると、交互更新のデマルチプレクスCMOSモードが選択されます。LVDSを2/3V<sub>DD</sub>に接続すると、LVDSを2/3V<sub>DD</sub>に接続すると、LVDSモードが選択されます。

MODE(ピン58):出力形式とクロック・デューティ・サイクル・スタビライザの選択ピン。MODEを0Vに接続すると、オフセット・バイナリの出力形式が選択され、クロックのデューティ・サイクル・スタビライザがオフします。MODEを1/3VDDに接続すると、オフセット・バイナリの出力形式が選択され、クロックのデューティ・サイクル・スタビライザがオンします。2/3VDDに接続すると、2の補数の出力形式が選択され、クロック・デューティ・サイクル・スタビライザがオンします。VDDに接続すると、2の補数の出力形式が選択され、クロック・デューティ・サイクル・スタビライザがオフします。

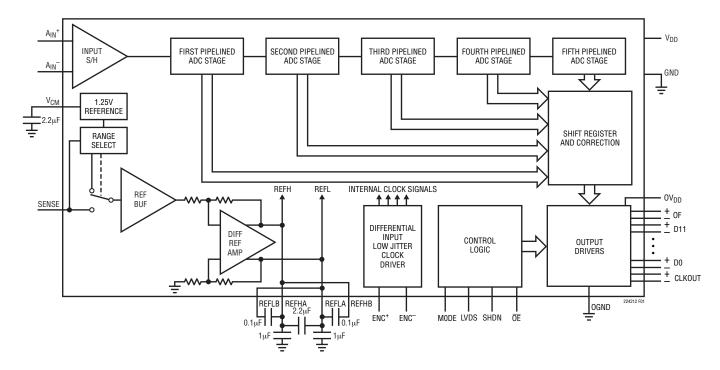
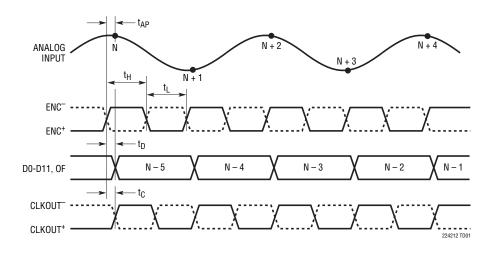
**SENSE (ピン59)**: リファレンス・プログラミング・ピン。SENSE を $V_{CM}$ に接続すると、内部リファレンスと $\pm 0.5V$ の入力レンジが選択されます。SENSEを $V_{DD}$ に接続すると、内部リファレンスと $\pm 1V$ の入力レンジが選択されます。0.5Vより大きく1Vより小さい外部リファレンスをSENSEに印加すると、 $\pm V_{SENSE}$ の入力レンジが選択されます。 $\pm 1V$ が最大有効入力レンジです。

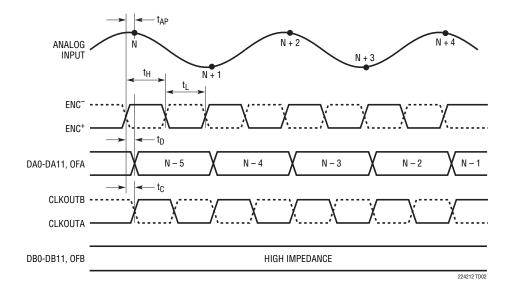
V<sub>CM</sub>(ピン60): 出力と入力の1.25V同相バイアス。2.2μFのセラミック・チップ・コンデンサを使用してグランドにバイパスします。

**GND (背面パッド) (ピン65)**: ADC の電源グランド。パッケージの底面の背面パッドはグランドに半田付けする必要があります。

LINEAR

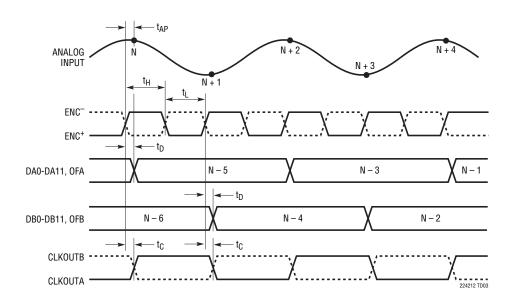
## 機能ブロック図

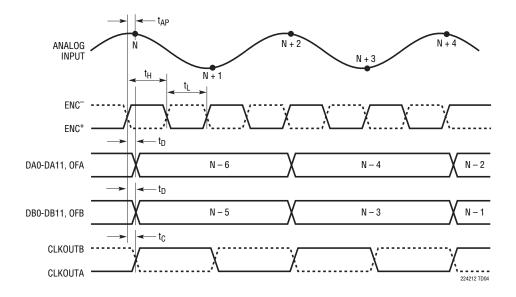


図1. 機能ブロック図

## タイミング図

#### LVDS 出力モードのタイミング すべての出力は差動でLVDS レベル




#### フルレート CMOS 出力モードのタイミング すべての出力はシングルエンドで CMOS レベル




## タイミング図

#### 交互更新デマルチプレクス CMOS 出力 すべての出力はシングルエンドで CMOS レベル



#### 同時更新デマルチプレクス CMOS 出力 すべての出力はシングルエンドで CMOS レベル



### ダイナミック性能

### 信号対ノイズ+歪みの比

信号対ノイズ+歪みの比S/(N+D)は、ADC出力での基本入力周波数のRMS振幅と他のすべての周波数成分のRMS振幅の比です。出力の帯域はDCからサンプリング周波数の半分より低い周波数に制限されています。

#### 信号対ノイズ比

信号対ノイズ比(SNR)は基本入力周波数のRMS振幅と、最初の5つの高調波およびDCを除く他のすべての周波数成分のRMS振幅の比です。

#### 全高調波歪み

全高調波歪みは入力信号の全高調波の実効値の和の基本 周波数に対する比です。帯域外高調波はDCとサンプリング 周波数の半分の間の周波数帯域でエイリアスを生じます。 THD は次のように表されます。

THD = 
$$20 \text{Log} \left( \sqrt{\left( \text{V2}^2 + \text{V3}^2 + \text{V4}^2 + ... \text{Vn}^2 \right)} / \text{V1} \right)$$

ここで、V1 は基本周波数の RMS 振幅で、 $V2 \sim Vn$  は  $2 \% \sim n$  次の高調波の振幅です。このデータシートで計算されている THD には、5 次までの高調波がすべて使われています。

#### 混変調歪み

ADCの入力信号に複数のスペクトル成分が含まれていると、ADCの伝達関数の非直線性により、THDに加えて混変調歪み(IMD)が生じることがあります。IMDは周波数の異なる別の正弦波入力が存在するためにある正弦波入力に生じる変化です。

周波数がfaとfbの2つの純粋な正弦波がADCの入力に与えられると、ADCの伝達関数の非直線性によりmfa  $\pm$  nfbの和と差の周波数で歪み積を生じることがあります。ここで、mとnはn0、n1、n2、n3 などです。n3 次の混変調歪み積はn3 などn4 をn5 はn5 をn6 をn7 をn7 をn8 が n8 をn9 をn

#### スプリアスフリー・ダイナミックレンジ(SFDR)

スプリアスフリー・ダイナミックレンジは、入力信号とDCを除いた最大のスペクトル成分であるピーク高調波またはスプリアス・ノイズです。この値は、フルスケール入力信号の実効値を基準にしたデシベル値で表されます。

#### フルパワー帯域幅

フルパワー帯域幅は、フルスケールの入力信号から再構成された基本波の振幅が3dBだけ減少する入力周波数です。

#### アパーチャ遅延時間

立ち上がりつつあるENC<sup>+</sup>の電圧がENC<sup>-</sup>の電圧に等しくなったときから、入力信号がサンプル・ホールド回路によってホールドされる瞬間までの時間。

#### アパーチャ遅延ジッタ

変換から変換までのアパーチャ遅延時間の変動。このランダムな変動により、AC入力のサンプリング時にノイズが生じます。ジッタだけによるSNR は次のようになります。

SNR<sub>JITTER</sub> =  $-20\log (2\pi \cdot f_{IN} \cdot t_{JITTER})$ 

#### コンバータの動作

図1に示すように、LTC2242-12はCMOSのパイプライン構成の多段コンバータです。パイプライン構成の5個のADC段を備えており、サンプリングされたアナログ入力は5サイクル後にデジタル値になります(「タイミング図」を参照)。最適な特性を得るには、アナログ入力を差動でドライブします。同相ノイズ除去性能を高めるため、エンコード入力は差動です。LTC2242-12は差動のENC+/ENC-入力ピンの状態で定まる2つのフェーズで動作します。簡単にするため、ここの説明では、ENC+がENC-より大きいときはENCは"H"であると表現し、ENC+がENC-より小さいときはENCは"L"であると表現します。

LINEAR TECHNOLOGY

図1に示すパイプライン構成の各段は、1個のADC、再構成DAC、および段間残差アンプを備えています。動作時、ADCは各段の入力を量子化し、量子化された値はDACによって入力から差し引かれ、残差を生じます。残差は残差アンプによって増幅されて出力されます。奇数段がその残差を出力しているとき偶数段がその残差を取得するように、またその逆になるように、後続段は先行段から位相がずれて動作します。

ENCが"L"のとき、アナログ入力はブロック図に示す「入力S/H」内部の入力サンプル・ホールド・コンデンサに差動で直接サンプリングされます。ENCが"L"から"H"に遷移する瞬間、サンプリングされた入力がホールドされます。ENCが"H"の間、ホールドされた入力電圧はS/Hアンプによってバッファされます。このS/Hアンプはパイプライン構成の最初のADC段をドライブします。最初の段はENCのこの"H"フェーズの間にS/Hの出力を取得します。ENCが"L"に戻ると最初の段はその残差を出力し、この残差が2番目の段によって取得されます。同時に、入力のS/Hは再度アナログ入力を取得します。ENCが"H"に戻ると2番目の段はその残差を出力し、この残差が3番目の段によって取得されます。同様の過程が3番目と4番目の段で繰り返され、4番目の段の残差は最終評価のために5番目の段のADCに送られます。

初段に続く各ADC段にはフラッシュ誤差とアンプのオフセット 誤差を調節するための追加範囲があります。ADCの全段から の結果は、出力バッファに送る前に、それらの結果を補正ロジックで適切に結合できるようにデジタル動作で同期させます。

#### サンプル/ホールド動作と入力ドライブ

#### サンプル/ホールド動作

LTC2242-12のCMOS 差動サンプル・ホールドの等価回路を図2に示します。アナログ入力はNMOSトランジスタを介してサンプリング・コンデンサ(C<sub>SAMPLE</sub>)に接続されています。各入力に付加されているコンデンサ(C<sub>PARASITIC</sub>)は各入力に関連した他のすべての容量の和です。

ENCが"L"のとき、サンプリング・フェーズの間トランジスタはアナログ入力をサンプリング・コンデンサに接続するので、これらのコンデンサは差動入力電圧まで充電され、さらにこの電圧を追尾します。ENCが"L"から"H"に移行する際には、サンプリングされた入力電圧がサンプリング・コンデンサに保持されます。ENCが"H"のとき、ホールド・フェーズの間サンプリング・コンデンサは入力から切り離され、ホールドされた電圧

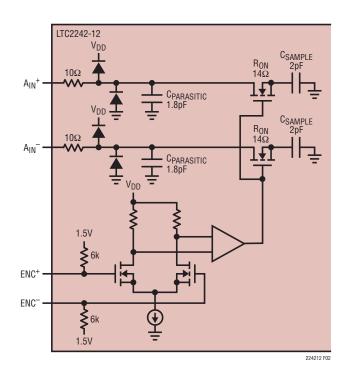



図2. 等価入力回路

はADCコアに渡されて処理されます。ENCが"H"から"L"に 遷移すると、入力はサンプリング・コンデンサに再度接続され、新しいサンプルを収集します。サンプリング・コンデンサには直前のサンプルがまだホールドされているので、隣接するサンプル間の電圧変化に比例した充電グリッチがこのとき見られます。直前のサンプルと新しいサンプル間の変化が小さいと、入力に見られる充電グリッチは小さくなります。ナイキスト周波数の近くの入力周波数で見られる変化のように、入力の変化が大きければ、さらに大きな充電グリッチが見られます。

#### 同相バイアス

最適な特性を得るには、アナログ入力を差動でドライブします。各入力は1.25Vの同相電圧を中心として、2Vレンジでは±0.5V、1Vレンジでは±0.25Vの振幅が必要です。V<sub>CM</sub>出力ピン(ピン60)を使って同相バイアス・レベルを供給することができます。V<sub>CM</sub>はトランスのセンタータップに直接接続してDC入力レベルを設定するか、またはオペアンプの差動ドライバ回路のリファレンス・レベルとして接続することができます。V<sub>CM</sub>ピンは2.2μF以上のコンデンサを使ってADCの近くのグランドにバイパスする必要があります。



#### 入力ドライブのインピーダンス

すべての高性能高速 ADC の場合と同様、LTC2242-12のダイナミック特性は入力ドライブ回路、とくに2次と3次の高調波の影響を受けることがあります。ソース・インピーダンスと入力リアクタンスはSFDRに影響を与えることがあります。サンプル・ホールド回路はENCの立ち下がりエッジで2pFのサンプリング・コンデンサを入力ピンに接続してサンプリング期間を開始します。サンプリング期間はENCが立ち上がると終了し、サンプリングされた入力をサンプリング・コンデンサにホールドします。入力回路は理想的にはサンプリング期間1/(2fs)のあいだにサンプリング・コンデンサを完全に充電するのに十分なだけ高速である必要があります。ただし、これが常に可能だとはかぎらず、不完全なセトリングのためにSFDRが低下することがあります。不十分なセトリングの影響を小さくするため、サンプリング・グリッチができるだけリニアになるように設計されています。

最高の性能を得るため、ソース・インピーダンスを各入力について100Ω以下とすることを推奨します。差動入力のソース・インピーダンスは整合させる必要があります。よく整合していないと、偶数次高調波、特に2次高調波が大きくなります。

#### 入力ドライブ回路

2次側にセンタータップを備えたRFトランスによってドライブされるLTC2242-12を図3に示します。2次側センタータップはV<sub>CM</sub>でDCバイアスされており、ADCの入力信号を最適なDCレベルに設定します。トランスの2次側を終端するのは望ましいことです。これによりサンプル・ホールドによって生じる充電グリッチの同相経路が確保されるからです。図3には巻数比が1:1のトランスが示されています。ADCから見たソース・インピーダンスが各ADC入力で100Ωを超えなければ、他の巻線比を使うこともできます。トランスを使う場合の不利な点は、低周波応答の低下です。ほとんどの小型RFトランスは1MHzより低い周波数での性能が良くありません。

差動アンプを使ってシングルエンド入力信号を差動入力信号に変換する例を図4に示します。この方法の利点は、低い入力周波数に対する応答が良いことです。ただし、ほとんどのオペアン

プでは、利得帯域幅の制限により、高い入力周波数でのSFDRが制限されます。

容量性結合の入力回路を図5に示します。アナログ入力から 見たインピーダンスを整合させる必要があります。

アナログ入力に接続されている25Ωの抵抗と12pFのコンデンサは2つの役目を果たします。サンプル・ホールドの充電グリッ

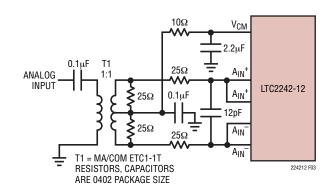



図3. トランスを使った シングルエンドから差動への変換

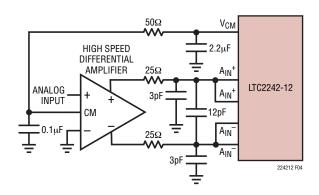



図4. アンプを使った差動ドライブ

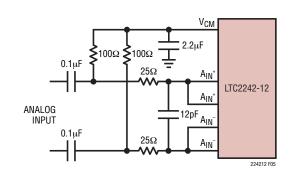



図5. 容量性結合のドライブ

LINEAR

チからドライブ回路を分離し、コンバータの入力の広帯域ノイズを制限します。100MHzを超える入力周波数では、過度の信号損失を防ぐためコンデンサの容量を減らす必要があるかもしれません。

 $A_{IN}$ <sup>+</sup>と $A_{IN}$ <sup>-</sup>の入力はパッケージのインダクタンスを減らすためそれぞれ2本のピンを備えています。2本の $A_{IN}$ <sup>+</sup>ピンと2本の $A_{IN}$ <sup>-</sup>ピンはそれぞれ短絡します。

100MHzを超える入力周波数では、図6、図7および図8の入力回路を推奨します。センタータップ付き磁束結合型トランスに比べて、バラン・トランスは高周波応答が優れています。カップリング・コンデンサにより、アナログ入力を1.25VにDCバイアスすることができます。図8の直列インダクタはインピーダンス整合用素子で、ADCの帯域幅を最大にします。

#### リファレンスの動作

1.25Vのバンドギャップ・リファレンス、差動アンプ、およびスイッチングと制御の回路で構成されるLTC2242-12のリファレンス回路を図9に示します。内部電圧リファレンスはピンで選択可能な2V(差動 $\pm$ 1V)または1V(差動 $\pm$ 0.5V)の2つの入力レンジに設定することができます。SENSEピンを $V_{CM}$ に接続すると2Vレンジが選択され、SENSEピンを $V_{CM}$ に接続すると1Vレンジが選択されます。

1.25Vのバンドギャップ・リファレンスは2つの機能を果たします。このリファレンスの出力は任意の外部入力回路の同相電圧を設定するためのDCバイアス点を与えます。さらに、差動アンプと一緒に使われて、内部のADC回路が必要とする差動リファレンス・レベルを生成します。1.25Vリファレンスの出力(V<sub>CM</sub>)には外付けのバイパス・コンデンサが必要です。このコンデンサは、内部回路と外部回路のための、高周波で低インピーダンスのグランド経路を確保します。

差動アンプはADCの"H"リファレンスと"L"リファレンスを発生します。高速スイッチング回路がこれらの出力に接続されているので、これらの出力は外部でバイパスする必要があります。各出力には4本のピンが備わっています。"H"リファレンス用にそれぞれ2本のREFHAとREFHB、および"L"リファレンス用にそれぞれ2本のREFLAとREFLBです。複数の出力ピンは、パッケージのインダクタンスを減らすために必要です。バイパス・コンデンサは図9に示されているように接続する必要があります。

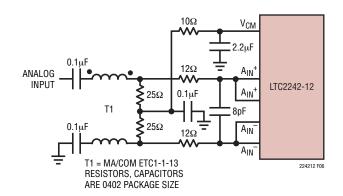



図 6. 100MHz~250MHzの入力周波数用の 推奨フロントエンド回路

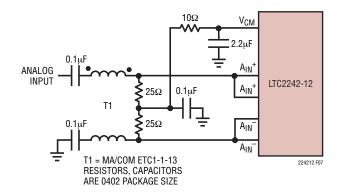



図7. 250MHz~500MHzの入力周波数用の 推奨フロントエンド回路

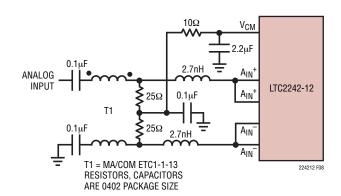



図8.500MHzを超す入力周波数用の 推奨フロントエンド回路



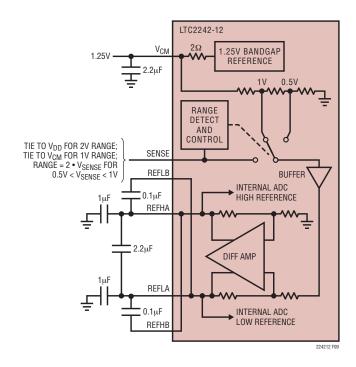



図9. 等価入力回路




図10. 1.5V レンジの ADC

ピンで選択可能なレンジの間にくる他の電圧レンジは、図10に示すように、2つの外付け抵抗を使ってプログラムすることができます。外部リファレンスを使って、その出力を直接に、または抵抗分割器を介してSENSEに与えることができます。ロジック・デバイスを使ってSENSEピンをドライブすることは推

奨しません。SENSEピンはできるだけコンバータの近くで適切なレベルに接続します。SENSEピンを外部からドライブする場合、1μFのセラミック・コンデンサを使ってデバイスのできるだけ近くでグランドにバイパスします。

#### 入力レンジ

入力レンジはアプリケーションに基づいて設定することができます。2V入力レンジでは優れたSFDRを保ったまま最良のSNRが得られます。1V入力レンジのSFDR性能はさらに優れていますが、SNRは5dBだけ低下します。「標準的性能特性」を参照してください。

#### エンコード入力のドライブ

LTC2242-12のノイズ特性は、アナログ入力に依存するのと同程度にエンコード信号の品質に依存することがあります。ENC<sup>†</sup>/ENC<sup>†</sup>入力は、主に同相ノイズ源に対して耐性をもたせるため、差動でドライブするように意図されています。各入力は4.8kの抵抗を介して1.5Vにバイアスされています。これらのバイアス抵抗はトランス結合のドライブ回路のDC動作点を設定し、シングルエンドのドライブ回路のロジックしきい値を設定することができます。

エンコード信号に含まれるどんなノイズも新たなアパーチャ・ジッタを生じ、このジッタは本来のADCアパーチャ・ジッタに RMSとして加算されます。

ジッタが重要な問題となる(高入力周波数)アプリケーションでは、以下の配慮が必要です。

- 1. 差動ドライブを使います。
- 2.できるだけ大きな振幅を使います。トランス結合の場合、高い巻線比を使って振幅を大きくします。
- 3.正弦波信号でADCをクロック駆動する場合、エンコード信号にフィルタをかけて広帯域ノイズを減らします。
- 4. 両方のエンコード入力で容量と直列抵抗値をバランスさせ、どの結合ノイズも同相ノイズとして両方の入力に現われるようにします。エンコード入力の同相範囲は1.2V~2.0Vです。シングルエンドのドライブの場合、各入力はグランド~VDDの範囲でドライブすることができます。

LINEAR

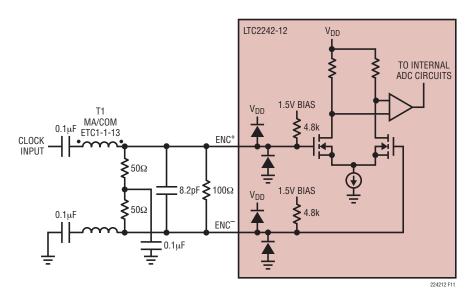



図11. トランスでドライブされる ENC+/ENC-

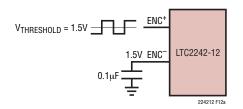



図12a. シングルエンドのENCドライブで、 低ジッタ用には推奨できない

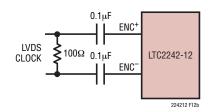



図 12b. LVDSを使った ENCドライブ

#### 最大エンコード・レートと最小エンコード・レート

LTC2242-12の最大エンコード・レートは250Mspsです。ADCを正しく差動させるには、エンコード信号のデューティ・サイクルが50% (±5%)でなければなりません。各半周期は、十分なセトリング時間をADCの内部回路に確保して正常動作させるため、少なくとも1.9ns必要です。正確に50%のデューティ・サイクルを容易に実現するには、トランスを使った、あるいはPECLやLVDSなどの対称型差動ロジックを使った差動正弦波ドライブを使います。

入力クロックのデューティ・サイクルが50%でない場合、オプションのクロック・デューティ・サイクル・スタビライザ回路を使うことができます。この回路はENC+ピンの立ち上がりエッジを使って、アナログ入力をサンプルします。ENC+の立ち下がりエッジは無視され、フェーズロック・ループにより内部で立ち下がりエッジが作られます。入力クロックのデューティ・サイクルは40%~60%の範囲で変化することができ、クロック・

デューティ・サイクル・スタビライザは内部デューティ・サイクルを50%に保ちます。クロックが長時間オフする場合、デューティ・サイクル・スタビライザ回路のPLLが入力クロックにロックするのに100クロック・サイクルを必要とします。クロック・デューティ・サイクル・スタビライザを使うには、外付け抵抗を使ってMODEピンを1/3VDDまたは2/3VDDに接続します。

LTC2242-12のサンプル・レートの下限は、サンプル・ホールド回路の垂下によって決まります。このADCのパイプライン・アーキテクチャでは、アナログ信号を小容量のコンデンサに保存します。接合部のリーク電流によりコンデンサが放電します。LTC2242-12の規定最小動作周波数は1Mspsです。

#### デジタル出力

アナログ入力電圧、デジタル・データ・ビット、およびオーバーフロー・ビットの相互関係を表1に示します。



表1. 出力コードと入力電圧

| A <sub>IN</sub> +- A <sub>IN</sub> -<br>(2V範囲) | 0F | D11~D0<br>(オフセット・バイナリ) | D11~D0<br>(2の補数) |
|------------------------------------------------|----|------------------------|------------------|
| >+1.000000V                                    | 1  | 1111 1111 1111         | 0111 1111 1111   |
| +0.999512V                                     | 0  | 1111 1111 1111         | 0111 1111 1111   |
| +0.999024V                                     | 0  | 1111 1111 1110         | 0111 1111 1110   |
| +0.000488V                                     | 0  | 1000 0000 0001         | 0000 0000 0001   |
| 0.000000V                                      | 0  | 1000 0000 0000         | 0000 0000 0000   |
| -0.000488V                                     | 0  | 0111 1111 1111         | 1111 1111 1111   |
| -0.000976V                                     | 0  | 0111 1111 1110         | 1111 1111 1110   |
| -0.999512V                                     | 0  | 0000 0000 0001         | 1000 0000 0001   |
| -1.00000V                                      | 0  | 0000 0000 0000         | 1000 0000 0000   |
| <-1.000000V                                    | 1  | 0000 0000 0000         | 1000 0000 0000   |

#### デジタル出力モード

LTC2242-12はいくつかのデジタル出力モードで動作可能です。これらは、LVDS、フルスピードで動作するCMOS、および(それぞれ半分の速度で動作する)2つのバスにデマルチプレクスされたCMOSです。デマルチプレクスCMOSモードでは、2本のバス(バスAおよびバスBと呼ばれる)は1つおきのクロック・サイクルで(交互モード)、または同時に(同時モード)更新することができます。クロックのタイミングの詳細については、タイミング図を参照してください。

LVDS ピンにより、どのデジタル出力モードをデバイスが使用するかが選択されます。このピンには4レベルのロジック入力があり、GND、1/3V<sub>DD</sub>、2/3V<sub>DD</sub>またはV<sub>DD</sub>に接続します。外付け抵抗分割器を使って1/3V<sub>DD</sub>または2/3V<sub>DD</sub>のロジック値を設定することができます。LVDS ピンのロジック状態を表2に示します。

表 2. LVDS ピンの機能

| LVDS               | デジタル出力モード         |
|--------------------|-------------------|
| GND                | フルレートCMOS         |
| 1/3V <sub>DD</sub> | 同時更新デマルチプレクスCMOS  |
| 2/3V <sub>DD</sub> | 交互更新デマルチプレクス CMOS |
| $V_{DD}$           | LVDS              |

#### デジタル出力バッファ(CMOSモード)

CMOS出力モードの1個の出力バッファの等価回路を図13aに示します。各バッファはOVDDとOGNDから電力を供給され、ADCの電源とグランドからは絶縁されています。出力ドライバにNチャネル・トランジスタが追加されているので、0.5Vの低電圧まで動作可能です。出力に直列接続された内部抵抗により、外部回路から見ると出力は $50\Omega$ に見えるので、外部の減衰抵抗が不要になることがあります。

すべての高速/高分解能コンバータの場合と同様、デジタル出力負荷が性能に影響を与えることがあります。デジタル出力と敏感な入力回路の間に生じるおそれのある相互反応を抑えるため、LTC2242-12のデジタル出力はできるだけ小さな容量性負荷をドライブするようにします。出力は74VCX245 CMOSラッチのようなデバイスを使ってバッファします。フルスピード動作では負荷の容量は10pF以下に抑えます。

OV<sub>DD</sub>電圧を低くすることも、デジタル出力からの干渉を減ら すのに役立ちます。

#### デジタル出力バッファ(LVDSモード)

LVDS出力モードの差動出力ペアの等価回路を図13bに示します。3.5mAの電流がOUT+からOUT-に、またはその逆方向に流れるので、LVDSレシーバの100 $\Omega$ 終端抵抗両端に $\pm 350$ mVの差動電圧が生じます。帰還ループが同相出力電圧を1.25Vに安定化します。正しく動作するには、(OF+/OFまたはCLKOUT+/CLKOUT-などの)信号を使用しなくても、各LVDS出力ペアには $100\Omega$ の外付け終端抵抗が必要です。ノイズを最小限に抑えるには、PCボード上の各LVDS出力ペアのトレースは互いに近接させて配線します。クロックのスキューを最小限に抑えるため、すべてのLVDSのPCボード・トレースをほぼ同じ長さにします。

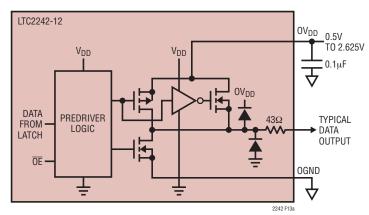



図13a, CMOSモードのデジタル出力バッファ



図13b.LVDSモードのデジタル出力

#### データ形式

LTC2242-12のパラレル・デジタル出力は、オフセット・バイナリ形式または2の補数形式に設定できます。形式はMODEピンを使って選択します。MODEをGNDまたは $1/3V_{DD}$ に接続すると、オフセット・バイナリの出力形式が選択されます。MODEを $2/3V_{DD}$ または $V_{DD}$ に接続すると、2の補数の出力形式が選択されます。外付け抵抗分割器を使って $1/3V_{DD}$ または $2/3V_{DD}$ のロジック値を設定することができます。MODEピンのロジック状態を表3に示します。

表3. MODEピンの機能

| MODEピン              | 出力形式       | クロック・デューティ・<br>サイクル・スタビライザ |
|---------------------|------------|----------------------------|
| 0                   | オフセット・バイナリ | オフ                         |
| 1/3V <sub>DD</sub>  | オフセット・バイナリ | オン                         |
| 2/3V <sub>DD</sub>  | 2の補数       | オン                         |
| $\overline{V_{DD}}$ | 2の補数       | オフ                         |

#### オーバーフロー・ビット

オーバーフロー出力ビットはコンバータにオーバーレンジまたはアンダーレンジの信号が入力されていることを示します。 CMOSモードでは、OFAピンのロジック"H"はAデータバスのオーバーフローまたはアンダーフローを示し、OFBピンのロジック"H"はBデータバスのオーバーフローまたはアンダーフローを示します。LVDSモードでは、OF\*ピン/OF~ピンの差動ロジック"H"がオーバーフローまたはアンダーフローを示します。

#### 出力クロック

ADCにはENC<sup>+</sup>入力を遅延させた信号がデジタル出力 (CLKOUT)として備わっています。このCLKOUTピンを使っ

て、コンバータのデータをデジタル・システムに同期させることができます。これは正弦波のエンコードを使用する場合に必要です。すべてのCMOSモードで、AバスのデータはCLKOUTAが立ち上がった直後に更新され、CLKOUTAの立ち下がりエッジでラッチすることができます。交互更新のデマルチプレクスCMOSモードでは、BバスのデータはCLKOUTBが立ち上がった直後に更新され、CLKOUTBの立ち下がりエッジでラッチすることができます。同時更新のデマルチプレクスCMOSモードでは、BバスのデータはCLKOUTBが立ち下がった直後に更新され、CLKOUTBの立ち上がりエッジでラッチすることができます。LVDSモードでは、データはCLKOUT<sup>+</sup>/CLKOUTが立ち上がった直後に更新され、CLKOUT<sup>+</sup>/CLKOUT

#### 出力ドライバの電源

出力専用の電源ピンとグランド・ピンが備わっているので、出力ドライバをアナログ回路から分離することができます。デジタル出力バッファの電源(OV<sub>DD</sub>)は、ドライブされるロジックと同じ電源に接続します。たとえば、1.8V電源から電力を供給されているDSPをコンバータがドライブする場合、OV<sub>DD</sub>は同じ1.8V電源に接続します。

CMOS 出力モードでは、 $OV_{DD}$ は2.625Vまでの任意の電圧で電力供給を受けることができます。OGNDは $GND \sim 1V$ の任意の電圧で電力供給を受けることができ、 $OV_{DD}$ より低くなければなりません。ロジック出力はOGNDと $OV_{DD}$ の間で振幅します。

LVDS出力モードでは、OV<sub>DD</sub>は2.5V電源に接続し、OGNDはGNDに接続します。



#### 出力イネーブル

出力イネーブル・ピン(OE)を使って出力をディスエーブルすることができます。CMOS出力モードまたはLVDS出力モードでは、OEを"H"にすると、OFやCLKOUTを含むすべてのデータ出力がディスエーブルされます。データのアクセス時間やバスの解放時間は、フルスピード動作時に出力のイネーブルやディスエーブルをするには長すぎます。出力のハイインピーダンス状態は長期の休止時に使うことを意図しています。

このハイインピーダンス状態は真のオープン状態ではありません。LVDS出力ペアを形成する出力ピンの間には20kの抵抗があります。したがって、CMOS出力モードでは、ハイインピーダンス状態であっても隣接するデータ・ビットのあいだには20kの抵抗があります。

#### スリープ・モードとナップ・モード

節電のため、コンバータをシャットダウン・モードまたはナップ・モードにすることができます。SHDNをGNDに接続すると正常動作になります。SHDNをVDDに接続してOEをVDDに接続するとスリープ・モードになり、リファレンスを含むすべての回路をパワーダウンし、電力損失は標準で1mWになります。スリープ・モードから回復するときは、リファレンスのコンデンサを再充電して安定させる必要があるので、出力データが有効になるまで数ミリ秒かかります。SHDNをVDDに接続してOEをGNDに接続するとナップ・モードになり、電力損失は標準で28mWになります。ナップ・モードでは内蔵リファレンス回路はオンしたままなので、ナップ・モードからの回復はスリープ・モードからの回復よりも速く、標準で100クロック・サイクルしかかかりません。スリープとナップの両方のモードですべてのデジタル出力はディスエーブルされ、ハイインピーダンス状態になります。

#### 接地とバイパス

LTC2242-12には切れ目の無いクリーンなグランド・プレーンを備えたプリント回路基板が必要です。内部グランド・プレーンを備えた多層基板を推奨します。プリント基板のレイアウトは、デジタル信号線とアナログ信号線をできるだけ離すようにしなければなりません。特に、どのデジタル信号もアナログ信号に沿って配線しないように、またADCの下に配線しないように注意します。

高品質のセラミック・バイパス・コンデンサを、V<sub>DD</sub>、OV<sub>DD</sub>、 V<sub>CM</sub>、REFHA、REFHB、REFLA および REFLB の各ピンに使 います。バイパス・コンデンサは、できるだけピンの近くに配置する必要があります。特に重要なのは、REFHAとREFLBの間、およびREFHBとREFLAの間のコンデンサです。これらのコンデンサはできるだけデバイスに近づけて(1.5mm以内)配置してください。サイズが0402のセラミック・コンデンサを推奨します。REFHAとREFLAの間に接続する2.2μFのコンデンサは、ある程度離して配置できます。ピンとバイパス・コンデンサを接続するトレースは短くし、できるだけ幅を広くする必要があります。

LTC2242-12の差動入力は互いに並行にし、近づけて配線します。容量とノイズの混入を最小限に抑えるために、入力トレースはできるだけ短くします。

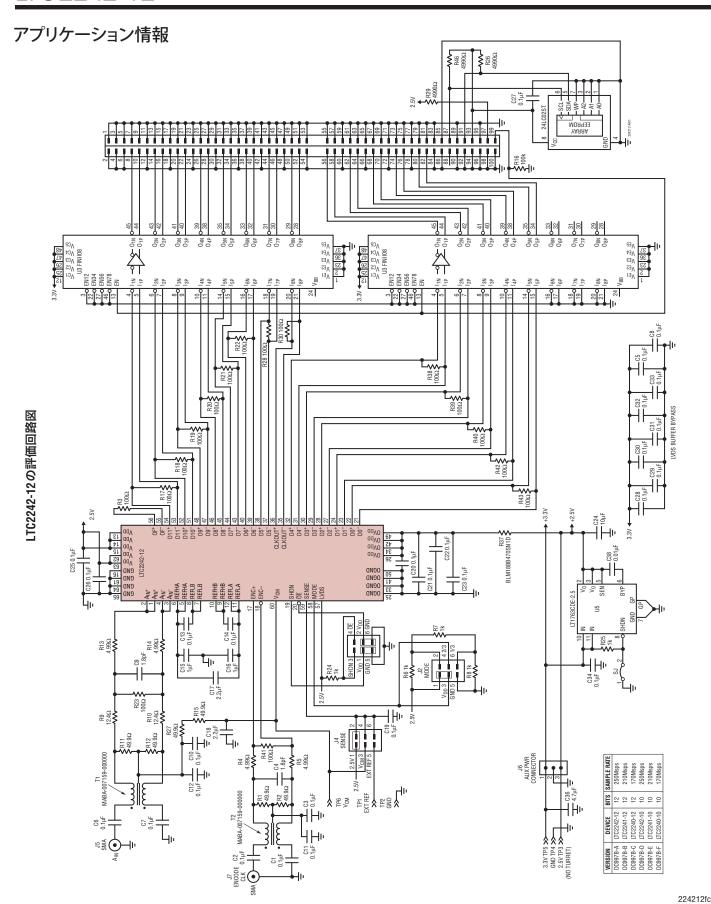
#### 熱伝導

LTC2242-12が発生する熱の大部分は、ダイから底面の背面パッドとパッケージのピンを通ってプリント回路基板に伝わります。すぐれた電気的性能と熱性能を得るには、背面パッドをPC基板の大きな接地されたパッドに半田付けします。すべてのグランド・ピンを面積が十分大きなグランド・プレーンに接続することが重要です。

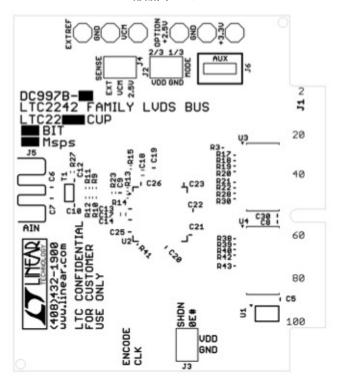
#### アンダーサンプリングのクロック・ソース

アンダーサンプリングでは、クロック・ソースに対して特に要求が厳しく、入力周波数が高いほどクロックのジッタや位相ノイズに対して敏感になります。フルスケール信号のSNRを70MHzで1dBだけ低下させるクロック・ソースは、SNRを140MHzでは3dB、190MHzでは4.5dBだけ低下させます。

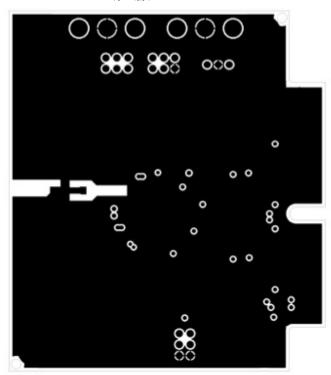
絶対クロック周波数の精度が比較的重要ではなく、1つの ADCだけが必要とされる場合、SaronixやVectronのような 製造販売元のメタルキャン発振器をADCの近くに配置して ADCに直接接続することができます。ADCまでいくらかでも 距離がある場合、何らかのソース終端を行って、たとえ数分の 1インチでも生じる可能性のあるリンギングを抑えます。クロックが電源の値をオーバーシュートしないようにする必要があ ります。オーバーシュートすると性能が低下します。正弦波の クロック・ソースでない限り、クロック信号は狭帯域のバンド・フィルタを通さないでください。フィルタを通すと、標準的なデジタル・クロック信号に含まれる立ち上がり時間と立ち下がり 時間のアーチファクトが位相ノイズに変換されるからです。


TECHNOLOGY TECHNOLOGY

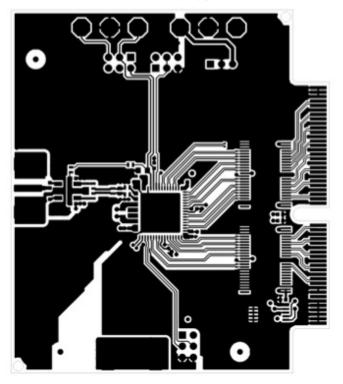
位相ノイズが最も小さい発振器は出力がシングルエンドの正弦波であり、これらのデバイスの場合は、ADCの近くにフィルタを使用すると効果的な場合があります。このフィルタはADCに近づけて配置して、往復の反射時間を短くするとともに、フィルタとADCの間のトレースが外部の影響を受けにくくします。回路が近接位相ノイズの影響を受けやすい場合、発振器の電源とすべてのバッファは非常に安定したものでなければなりません。電源が安定していないと、電源による伝播遅延の変動によって位相ノイズが生じます。これらのクロック・ソースはデジタル・デバイスと見なされるかもしれませんが、それらをデジタル電源で動作させないでください。そのクロックがFPGAなどのデジタル・デバイスをドライブするのにも使用される場合、発振器とすべてのクロックのファンアウト・デバイスをADCの近くに配置し、ADCへの配線を優先させます。FPGAへのクロック信号はドライバで直列終端を行い、FPGAからの高周波ノイズがクロックのファン


アウト・デバイスのサブストレートの状態を乱さないようにします。FPGAをプログラム可能な分割器として使用する場合、元の発振器を使って信号の時間合せを行う必要があり、タイミング調整用フリップ・フロップと発振器をADCに近づけて配置し、十分に安定した電源から電力を供給します。

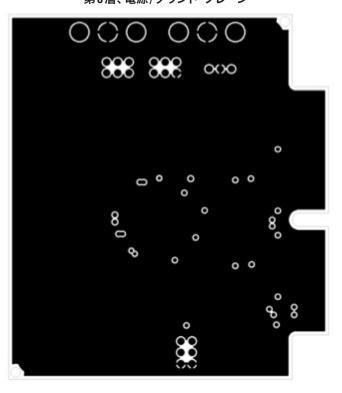
複数のADCが存在する場合、またはクロック・ソースがいくらか離れている場合、クロックを差動で分配することを推奨します。これは、EMIの観点からだけでなく、デジタル・ソースからの放射ノイズや多層PCBの層間に存在する導波路内を伝播するノイズを防ぐ観点からも推奨します。この差動ペアは互いに近接させ、他の信号から離す必要があります。この差動ペアは(トレース間の距離の少なくとも3倍距離をとって)両側に銅でガードを設け、1/4インチ以下の間隔でビアを使って接地します。



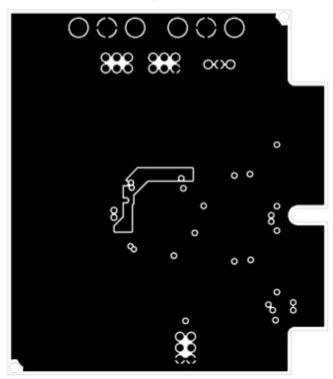




部品面シルク




第2層、GNDプレーン

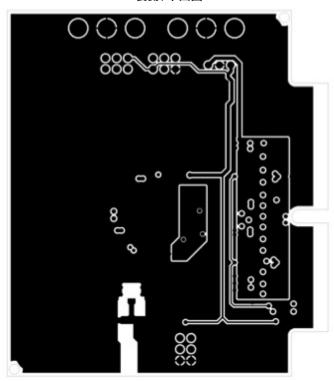



第1層、部品面

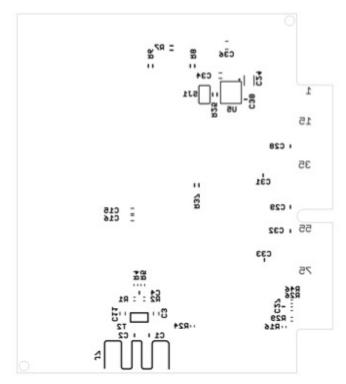



第3層、電源/グランド・プレーン




第4層、電源/グランド・プレーン



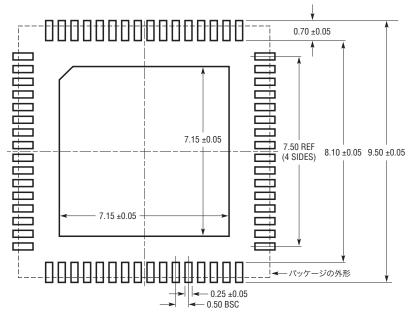

第5層、電源/グランド・プレーン



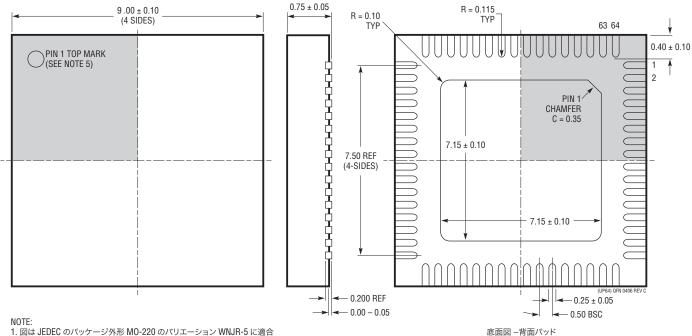
裏側、半田面



シルクスクリーンの裏側、半田面




### パッケージ


最新のパッケージ図面については、http://www.linear-tech.co.jp/designtools/packaging/ をご覧ください。

#### UPパッケージ 64ピン・プラスチックQFN(9mm×9mm)

(Reference LTC DWG # 05-08-1705 Rev C)



推奨する半田パッドのピッチと寸法 半田付けされない領域には半田マスクを使用する



- 1. 図は JEDEC のパッケージ外形 MO-220 のパリエーション WNJR-5 に適合
- 2. すべての寸法はミリメートル
- 3. パッケージ底面の背面パッドの寸法にはモールドのバリを含まない モールドのバリは(もしあれば)各サイドで 0.20mm を超えないこと
- 4. 露出パッドは半田メッキとする
- 5. 網掛けの部分はパッケージの上面と底面のピン1の位置の参考に過ぎない 6. 図は実寸とは異なる

## 改訂履歴 (改訂履歴はRev Cから開始)

| REV | 日付け   | 概要                     | ページ番号 |
|-----|-------|------------------------|-------|
| С   | 10/11 | 「標準的性能特性」のG14の軸ラベルを修正。 | 8     |
|     |       | 回路図のピン名を変更。            | 24    |

## 関連製品

| 製品番号       | 説明                                | 注釈                                                                        |
|------------|-----------------------------------|---------------------------------------------------------------------------|
| LTC1748    | 14ビット、80Msps、5V ADC               | SNR:76.3dB、SFDR:90dB、48ピンTSSOP                                            |
| LTC1750    | 14ビット、80Msps、5V 広帯域 ADC           | 最大500MHzのIFアンダーサンプリング、SFDR:90dB                                           |
| LT®1993-2  | 高速差動オペアンプ                         | BW:800MHz、歪み:70dBc(70MHz)、利得:6dB                                          |
| LT1994     | 低ノイズ、低歪みの完全差動入出力アンプ/ドライバ          | 低歪み:1MHzで-94dBc                                                           |
| LTC2202    | 16ビット、10Msps、3.3V ADC、最低ノイズ       | 140mW、SNR:81.6dB、SFDR:100dB、48ピンQFN                                       |
| LTC2208    | 16ビット、130Msps、3.3V ADC、LVDS出力     | 1250mW、SNR:77.7dB、SFDR:100dB、48ピンQFN                                      |
| LTC2220    | 12ビット、170Msps、3.3V ADC、LVDS出力     | 890mW、SNR:67.7dB、SFDR:84dB、64ピンQFN                                        |
| LTC2220-1  | 12ビット、185Msps、3.3V ADC、LVDS出力     | 910mW、SNR:67.7dB、SFDR:80dB、64ピンQFN                                        |
| LTC2221    | 12ビット、135Msps、3.3V ADC、LVDS出力     | 660mW、SNR:67.8dB、SFDR:84dB、64ピンQFN                                        |
| LTC2224    | 12ビット、135Msps、3.3V ADC、高IFサンプリング  | 630mW、SNR:67.6dB、SFDR:84dB、48ピンQFN                                        |
| LTC2230    | 10ビット、170Msps、3.3V ADC、LVDS出力     | 890mW、SNR:61.2dB、SFDR:78dB、64ピンQFN                                        |
| LTC2231    | 10ビット、135Msps、3.3V ADC、LVDS出力     | 660mW、SNR:61.2dB、SFDR:78dB、64ピンQFN                                        |
| LTC2240-10 | 10ビット、170Msps、2.5V ADC、LVDS出力     | 460mW、SNR:60.6dB、SFDR:78dB、64ピンQFN                                        |
| LTC2240-12 | 12ビット、170Msps、2.5V ADC、LVDS出力     | 445mW、SNR:65.5dB、SFDR:80dB、64ピンQFN                                        |
| LTC2241-10 | 10ビット、210Msps、2.5V ADC、LVDS出力     | 620mW、SNR:60.6dB、SFDR:78dB、64ピンQFN                                        |
| LTC2242-12 | 12ビット、210Msps、2.5V ADC、LVDS出力     | 585mW、SNR:65.5dB、SFDR:78dB、64ピンQFN                                        |
| LTC2242-10 | 10ビット、250Msps、2.5V ADC、LVDS出力     | 775mW、SNR:60.5dB、SFDR:78dB、64ピンQFN                                        |
| LTC2255    | 14ビット、125Msps、3V ADC、低消費電力        | 395mW、SNR:72.5dB、SFDR:88dB、32ピンQFN                                        |
| LTC2284    | 14ビット、デュアル、105Msps、3V ADC、低クロストーク | 540mW、SNR:72.4dB、SFDR:88dB、64ピンQFN                                        |
| LT5512     | DC~3GHz高信号レベル・ダウンコンバーティング・ミキサ     | DC~3GHz、IIP3:21dBm、LOバッファ内蔵                                               |
| LT5514     | デジタル利得制御付き超低歪みIFアンプ/ADCドライバ       | 1dB BW:450MHz、OIP3:47dB、<br>デジタル利得制御:1.5dB/ステップで10.5dB~33dB               |
| LT5515     | 1.5GHz~2.5GHz直接変換直交復調器            | 高いIIP3:1.9GHzで20dBm、LO直交ジェネレータ内蔵                                          |
| LT5516     | 800MHz~1.5GHz直接変換直交復調器            | 高いIIP3:900MHzで21.5dBm、LO直交ジェネレータ内蔵                                        |
| LT5517     | 40MHz~900MHz直接変換直交復調器             | 高いIIP3:800MHzで21dBm、LO直交ジェネレータ内蔵                                          |
| LT5522     | 600MHz~2.7GHz高直線性ダウンコンバーティング・ミキサ  | 4.5V ~ 5.25V 電源、IIP3:900MHz で 25dBm、NF = 12.5dB、50Ωシングルエンドの RF ポートとLO ポート |