

クワッド12ビット・ レール・トゥ・レール・ マイクロパワーDAC

特長

■ 12ビット分解能

■ バッファされた真のレール・トゥ・レール電圧出力

■ 5V動作時のI_{CC}: 1.1mA標準(LTC1458) ■ 3V動作時のI_{CC}: 800µA標準(LTC1458L) ■ 内蔵リファレンス: 2.048V(LTC1458) 1.220V(LTC1458L)

■ CLRピン

■ パワーオン・リセット

■ SSOP-28パッケージ

■ 3線式カスケード可能なシリアル・インタフェース

■ 最大DNL誤差: 0.5LSB

■ 低コスト

アプリケーション

■ デジタル較正

■ 産業用プロセス・コントロール

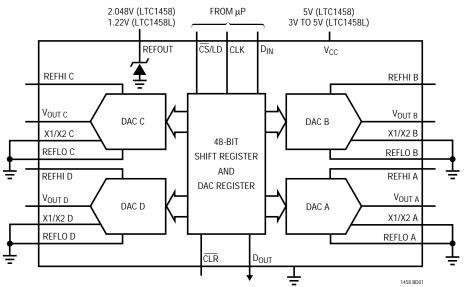
■ 自動試験装置

■ 低消費電力システム

概要

LTC[®]1458/LTC1458Lは、SO-28およびSSOP-28パッケージに収納された完全な単一電源、クワッド・レール・トゥ・レール電圧出力、12ビット・デジタル/アナログ・コンバータ(DAC)です。可変利得(×1または×2)の出力バッファ・アンプと使いやすい3線式カスケード可能なシリアル・インタフェースを内蔵しています。

LTC1458は、2.048V内部リファレンスと $_{\times}$ 2利得構成の4.095Vフルスケール出力を備え、4.5V~5.5Vの単一電源で動作し、消費電力はわずか5.5mW($_{LCC}$ =1.1mA標準)です。

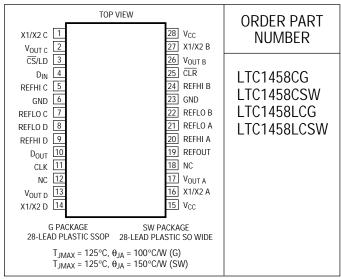

LTC1458Lは、1.22V内部リファレンスと×2利得構成の2.5Vフルスケール出力を備え、2.7V~5.5Vの単一電源で動作し、消費電力は2.4mWです。

卓越したDNL、低電源電流、および広範な組込み機能により、柔軟性、パワー、および単一電源動作が重要な多数のアプリケーションで使用することができます。

∠プ、LTC、LTはリニアテクノロジー社の登録商標です。 RAIL-TO-RAILは日本モトローラ(株)の登録商標です。

標準的応用例

機能ブロック図: クワッド12ビット・レール・トゥ・レールDAC



微分非直線性と入力コード 0.5 0.4 0.3 0.2 0.1 -0.2 -0.3 -0.4 -0.5 0 512 1024 1536 2048 2560 3072 3584 4095 CODE

絶対最大定格

GNDに対するV _{CC} 0.5V ~ 7.5V
GNDに対するロジック入力 0.5V~7.5V
VOUT AV VOUT BY VOUT CV VOUT DY
X1/X2 A、X1/X2 B、X1/X2 C、
$X1/X2$ D 0.5V ~ V_{CC} + 0.5V
REFHI A, REFHI B, REFHI C, REFHI D,
REFLO A, REFLO B, REFLO C,
REFLO D 0.5V ~ V _{CC} + 0.5V
11 LO D 0.0 V
最大接合部温度
最大接合部温度
最大接合部温度
最大接合部温度
最大接合部温度

パッケージ/発注情報

ミリタリ・グレードに関してはお問い合わせください。

電気的特性

注記がない限り、 V_{CC} = 4.5V ~ 5.5V(LTC1458)、2.7V ~ 5.5V(LTC1458L)、X1/X2 = REFLO = GND、REFHI = REFOUT、 V_{OUT} 無負荷、 $T_A = T_{MIN} \sim T_{MAX}$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DAC	•						
	Resolution		•	12			Bits
DNL	Differential Nonlinearity	Guaranteed Monotonic (Note 1)	•			±0.5	LSB
INL	Integral Nonlinearity	T _A = 25°C (Note 1)	•		±1.75 ±2.25	±4.0 ±4.5	LSB LSB
V _{OS}	Offset Error	T _A = 25°C	•		±3.0 ±6.0	±12 ±18	mV mV
V _{OS} TC	Offset Error Temperature Coefficient				±15		μV/°C
V_{FS}	Full-Scale Voltage	When Using Internal Reference, LTC1458, T _A = 25°C LTC1458	•	4.065 4.045	4.095 4.095	4.125 4.145	V
		When Using Internal Reference, LTC1458L, T _A = 25°C LTC1458L	•	2.470 2.460	2.500 2.500	2.530 2.540	V
V _{FS} TC	Full-Scale Voltage Temperature Coefficient	When Using Internal Reference			± 24		ppm/°C
Referei							
	Reference Output Voltage	LTC1458 LTC1458L	•	2.008 1.195	2.048 1.220	2.088 1.245	V
	Reference Output Temperature Coefficient				±20		ppm/°C
	Reference Line Regulation		•		0.7	±2.0	LSB/V
	Reference Load Regulation	0 ≤ I _{OUT} ≤ 100μA, LTC1458 LTC1458L	•		0.2 0.6	1.5 3.0	LSB LSB
	Reference Input Range	$V_{REFHI} \le V_{CC} - 1.5V$			V _{CC} /2		V
	Reference Input Resistance		•	15	24	40	kΩ

電気的特性

注記がない限り、 V_{CC} = 4.5V ~ 5.5V (LTC1458)、2.7V ~ 5.5V (LTC1458L)、X1/X2 = REFLO = GND、REFHI = REFOUT、 V_{OUT} 無負荷、 T_A = T_{MIN} ~ T_{MAX}

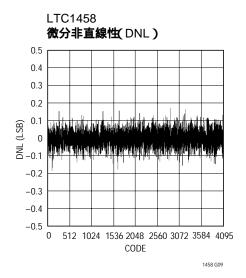
SYMBOL	PARAMETER CONDITIONS			MIN	TYP	MAX	UNITS
	Reference Input Capacitance				15		pF
	Short-Circuit Current	REFOUT Shorted to GND	•		45	120	mA
Power Su	pply						
V _{CC}	Positive Supply Voltage	For Specified Performance, LTC1458 LTC1458L	•	4.5 2.7		5.5 5.5	V
I _{CC}	Supply Current	$4.5V \le V_{CC} \le 5.5V$ (Note 4) , LTC1458 $2.7V \le V_{CC} \le 5.5V$ (Note 4), LTC1458L	•		1100 800	2400 2000	μA μA
Op Amp D	OC Performance						
	Short-Circuit Current Low	V _{OUT} Shorted to GND	•		60	120	mA
	Short-Circuit Current High	V _{OUT} Shorted to V _{CC}	•		70	120	mA
	Output Impedance to GND	Input Code = 0	•		40	120	Ω
AC Perfori	mance						
	Voltage Output Slew Rate	(Note 2)	•	0.5	1.0		V/µs
	Voltage Output Settling Time	(Notes 2, 3) to ±0.5LSB			14		μs
	Digital Feedthrough				0.3		nV•s
	AC Feedthrough	REFHI = 1kHz, 2V _{P-P} , (Code: All 0s)			- 95		dB
SINAD	Signal-to-Noise + Distortion	REFHI = 1kHz, 2V _{P-P} , (Code: All 1s)			85		dB

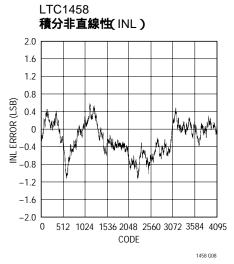
$V_{CC} = 5V(LTC1458)$ 3V(LTC1458L) $T_A = T_{MIN} \sim T_{MAX}$

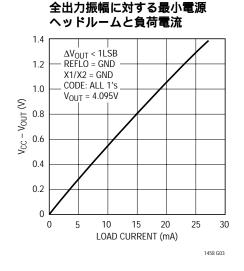
					LTC1458		LTC1458L			
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Digital I/O)									
V _{IH}	Digital Input High Voltage		•	2.4			2.0			V
V _{IL}	Digital Input Low Voltage		•			0.8			0.6	V
V_{OH}	Digital Output High Voltage	I _{OUT} = -1mA	•	V _{CC} – 1.0			V _{CC} - 0.7			V
V_{OL}	Digital Output Low Voltage	I _{OUT} = 1mA	•			0.4			0.4	V
I _{LEAK}	Digital Input Leakage	V_{IN} = GND to V_{CC}	•			±10			±10	μΑ
C _{IN}	Digital Input Capacitance	Guaranteed by Design, Not Subject to Test	•			10			10	pF
Switching			•							
t ₁	D _{IN} Valid to CLK Setup		•	40			60			ns
t ₂	D _{IN} Valid to CLK Hold		•	0			0			ns
t ₃	CLK High Time		•	40			60			ns
t ₄	CLK Low Time		•	40			60			ns
t ₅	CS/LD Pulse Width		•	50			80			ns
t ₆	LSB CLK to CS/LD		•	40			60			ns
t ₇	CS/LD Low to CLK		•	20			30			ns
t ₈	D _{OUT} Output Delay	C _{LOAD} = 15pF	•			150			220	ns
t ₉	CLK Low to CS/LD Low		•	20			30			ns

電気的特性

は全動作温度範囲の規格値を意味する。

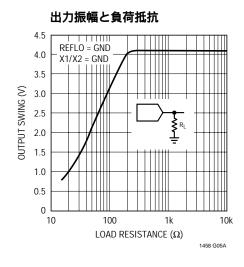

Note 1: 非直線性は、最大限オフセット仕様より大きい最初のコードからコード4095(フルスケール)までの範囲で定義される。

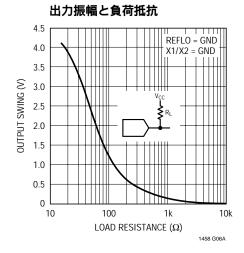

Note 2:負荷は5k と100pFを並列に接続したものである。


Note 3: DACは、オール1とICのVOSに対応するコードの間で切り替わる。

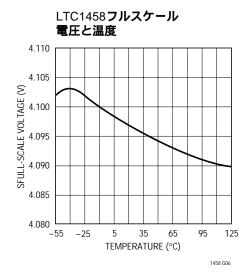
Note 4: デジタル入力は0VまたはV_{CC}。

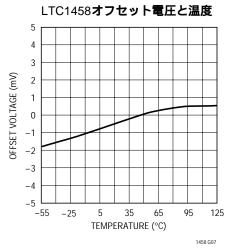
標準的性能特性

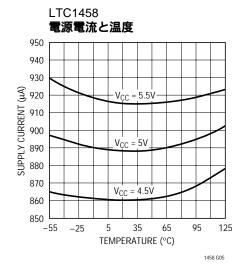




1000 REFLO = GND OUTPUT PULL-DOWN VOLTAGE (mV) X1/X2 = GND800 25°C 700 125°C 600 -55°C 500 400 300 200 100 0.1 0 10 20 25 30 15 OUTPUT SINK CURRENT (mA)


最小出力電圧と出力シンク電流





6

標準的性能特性

ピン機能

X1/X2 C、X1/X2 D、X1/X2 A、X1/X2 B(ピン1、14、16、27): DAC C/D/A/Bの利得を設定する入力ピン。接地すると利得は2になります。つまり、出力フルスケールは2・REFHIとなります。V_{OUT}に接続すると利得は1になります。つまり、出力フルスケールはREFHIに等しくなります。

V_{OUT C}、V_{OUT D}、V_{OUT A}、V_{OUT B}、ピン2、13、17、26): バッファされたDAC出力。

CS/LD(ピン3): シリアル・インタフェース・イネーブル およびロード・コントロール入力。

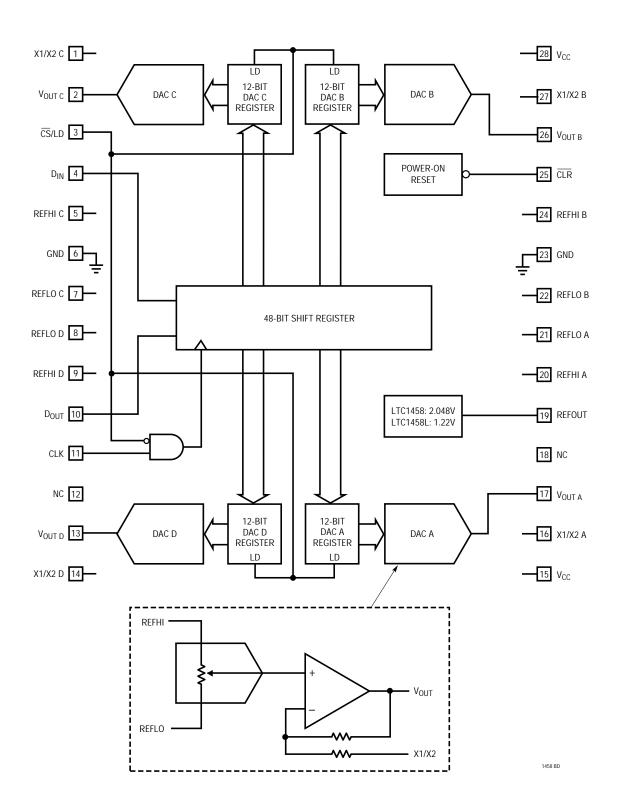
D_{IN}(ピン4): シリアル・データ入力。

REFHI C、REFHI D、REFHI A、REFHI B、(ピン5、9、20、24): DAC C/D/A/B用DAC抵抗ラダーへの入力。

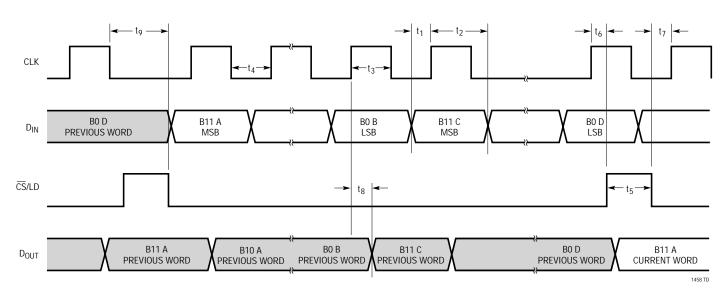
GND(ピン6、23): グランド。

REFLO C、REFLO D、REFLO A、REFLO B、(ピン7、8、21、22): DAC用DAC抵抗ラダーのボトム。これらはゼロスケールをグランドより高くオフセットするのに使用できます。REFLOはオフセットが不要なときは、グランドに接続しなければなりません。

D_{OUT}(ピン10): シリアル・クロックの立上りエッジで有効になるシフト・レジスタの出力。


CLK(ピン11): シリアル・インタフェース・クロック入力。

 V_{CC} (ピン15、28): 正の電源入力。 $4.5V \le V_{CC} \le 5.5V$ (LTC1458)、 $2.7V \le V_{CC} \le 5.5V$ (LTC1458L)です。グランドへバイパス・コンデンサを接続する必要があります。


REFOUT(ピン19):内部リファレンスの出力。

 $\overline{\text{CLR}}$ (CLP(CLP(CLP): DIP(CLP(CLP): CLP(CLP(CLP(CLP): CLP(CLP(CLP(CLP): CLP(CLP

ブロック図

タイミング図

定義

分解能(n):分解能はデジタル入力ビット数(n)と定義されます。フルスケール・レンジを分割するDAC出力状態の数(2ⁿ)を定義します。分解能は直線性を意味するものではありません。

フルスケール電圧(V_{FS}): これはすべてのビットが1にセットされたときのDACの出力です。

電圧オフセット誤差(Vos): DACにオール・ゼロをロードしたときの出力の理論電圧です。出力アンプは真の負オフセットを持つことができますが、デバイスは単一電源で動作するため、出力はゼロ以下に低下することはできません。オフセットが負の場合、出力はほぼ0Vを保持し、図1に示すような伝達曲線となります。

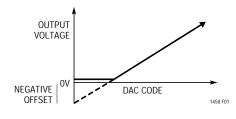


図1. 負オフセットの影響

デバイスのオフセットは、次のとおり最大オフセット仕様に対応するコードで測定されます。

$$V_{OS} = V_{OUT} - [(\Box - F)(V_{FS})/(2^n - 1)]$$

最下位ビット(LSB): 1LSBは2つの連続するコード間の 理想電圧差です。

LSB =
$$(V_{FS} - V_{OS})(2^n - 1) = (V_{FS} - V_{OS})/4095$$

標準LSB:

LTC1458 LSB = 4.095V/4095 = 1mV LTC1458L LSB = 2.5V/4095 = 0.610mV

積分非直線性(INL): エンドポイントINLは、DAC伝達曲線の両端を通る直線からの最大偏差です。デバイスは単一電源で動作し出力はゼロ以下にできないため、直線性はフルスケールと最大オフセット仕様に対応するコードの間で測定されます。ある入力コードに対するINL誤差は、次式で計算されます。

INL = [V_{OUT} - V_{OS} - (V_{FS} - V_{OS}) コード/4095)] /LSB V_{OUT} = 与えられた入力コードで測定したDACの 出力電圧

定義

微分非直線性(DNL): DNLは、任意の2つの隣接するコード間で測定した変化と理想的な1LSB変化との差です。2つのコード間のDNL誤差は、次式で計算されます。

DNL =(V_{OUT} - LSB)LSB V_{OUT} = 2つの隣接するコード間で測定した電圧の差 デジタル・フィードスルー:デジタル入力が状態を変えたときに、その入力からのAC結合によって生じるアナログ出力に現れるグリッチです。グリッチの面積は(nV)(sec)で規定されます。

動作

シリアル・インタフェース

 D_{IN} 入力のデータは、クロックの立上りエッジでシフト・レジスタにロードされます。データは1つの48ビット・ワードとしてロードされ、最初にDAC A、次にDAC B、DAC C、そしてDAC Dに送られます。各DACには、MSBが最初にロードされます。 \overline{CS}/LD が H "になると、DAC レジスタはシフトレジスタからデータをロードします。 \overline{CS}/LD が H "のとき、CLKは内部でディスエーブルされます。注:余分な内部クロック・パルスを避けるために、 \overline{CS}/LD が L "になる前に、CLKが"L "にならなければなりません。

48ビット・シフトレジスタのバッファ出力は、グランドから V_{CC} まで振幅する D_{OLIT} ピンに現れます。

あるチップのD_{OUT}ピンを次のチップのD_{IN}ピンを接続し、クロックとCS/LD信号をすべてのチップに共通にすることにより、複数のLTC1458/LTC1458Lをまとめてディジー・チェイン接続することができます。シリアル・データがすべてのチップにクロック・インされると、CS/LD信号が"H"になり、すべてのチップが同時に更新されます。

リファレンス

LTC1458Lは、フルスケールが2.5V(利得2の構成)の1.22V内部リファレンスを内蔵しています。LTC1458は内部2.048Vリファレンスを内蔵し、1LSBが1mV(利得2の構成)となっています。バッファ利得が2のとき、外部リファレンスは V_{CC} /2以下であり、かつ15kの最小DAC抵抗ラダーをドライブできなければなりません。外部リファレンスは常に V_{CC} -1.5V以下でなければなりません。

電圧出力

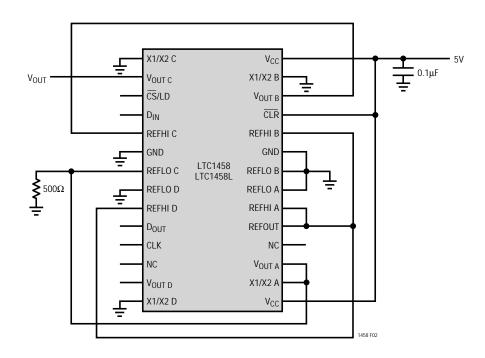
LTC1458ファミリのレール・トゥ・レール・バッファ出力は、5V電源動作時には5mAをソースまたはシンクできると同時に、正電源電圧またはグランドの300mV以内に振幅することができます。無負荷時には出力はいずれかの電源レールの数mV以内に振幅し、負荷をレールにドライブする場合には等価出力抵抗は40 になります。出力は発振することなく1000pFをドライブ可能です。

アプリケーション情報

2つのDACを使用して、デジタル的に3番目のフルス ケールおよびオフセットをプログラム

図2に1個のLTC1458を使用して、デジタル的にプログラム可能なフルスケールとオフセットを備えた12ビットDACを構築する方法を示します。DAC AおよびDAC Bは、DAC Cのオフセットとフルスケールをコントロールするのに使用されます。DAC Aは、 \mathbf{x} 1構成に接続され、REFLO Cをグランドより高く移動させることによって、DAC Cのオフセットをコントロールします。プログラムできるこのオフセットの最小値は10mVです。DAC Bは \mathbf{x} 2構成で接続され、REFHI Cをドライブすることによって、DAC Cのフルスケールをコントロールします。REFHI Cの電圧は \mathbf{V}_{CC} /2以下でなければなりません。DAC Cは \mathbf{x} 2モードでは完全なレール・トゥ・レール出力

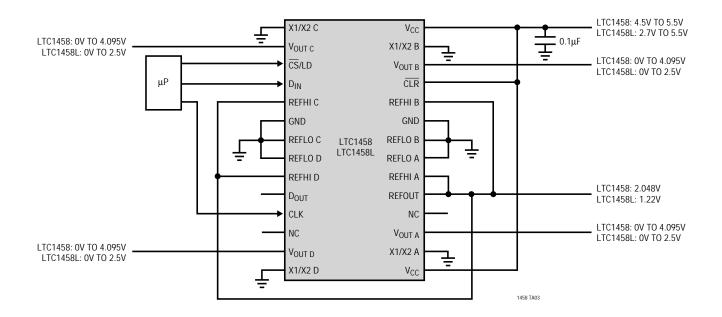
振幅動作を行うため、この電圧は V_{CC} = 5Vの場合は、DAC Bのコード \leq 2,500に対応します。


伝達特性は以下のとおりです:

 V_{OUTC} = 2 • [D_C • (2 • D_B - D_A) + D_A] • REFOUT ここで、REFOUT = リファレンス出力

D_A = (DACデジタル・コード)4096 これはオフセットを設定します。

 $D_B = (DAC Bデジタル・コード) 4096$ これはフルスケールを設定します。


D_C = (DAC Cデジタル・コード)4096

义2

標準的応用例

関連製品

PART NUMBER	DESCRIPTION	COMMENTS
LTC1257	Single 12-Bit V _{OUT} DAC, Full Scale: 2.048V, V _{CC} : 4.75V to 15.75V, Reference Can Be Overdriven up to 12V, i.e., FS _{MAX} = 12V	5V to 15V Single Supply, Complete V _{OUT} DAC in SO-8 Package
LTC1446/LTC1446L	Dual 12-Bit Rail-to-Rail Output DACs in SO-8 Package	LTC1446: V _{CC} = 4.5V to 5.5V, V _{OUT} = 0V to 4.095V LTC1446L: V _{CC} = 2.7V to 5.5V, V _{OUT} = 0V to 2.5V
LTC1450/LTC1450L	Single 12-Bit Rail-to-Rail Output DACs with Parallel Interface	LTC1450: V _{CC} = 4.5V to 5.5V, V _{OUT} = 0V to 4.095V LTC1450L: V _{CC} = 2.7V to 5.5V, V _{OUT} = 0V to 2.5V
LTC1451	Single Rail-to-Rail 12-Bit DAC, Full Scale: 4.095V, V _{CC} : 4.5V to 5.5V	Low Power, Complete V _{OUT} DAC in SO-8 Package
LTC1452	Single Rail-to-Rail 12-Bit V _{OUT} Multiplying DAC, V _{CC} : 2.7V to 5.5V	Low Power, Multiplying V _{OUT} DAC with Rail-to-Rail Buffer Amplifier in SO-8 Package
LTC1453	Single Rail-to-Rail 12-Bit V _{OUT} DAC, Full Scale: 2.5V, V _{CC} : 2.7V to 5.5V	3V, Low Power, Complete V _{OUT} DAC in SO-8 Package
LTC1454/LTC1454L	Dual 12-Bit V _{OUT} DACs in SO-16 Package with Added Functionality	LTC1454: V _{CC} = 4.5V to 5.5V, V _{OUT} = 0V to 4.095V LTC1454L: V _{CC} = 2.7V to 5.5V, V _{OUT} = 0V to 2.5V
LTC1456	Single Rail-to-Rail Output 12-Bit DAC with Clear Pin, Full Scale: 4.095V, V _{CC} : 4.5V to 5.5V	Low Power, Complete V _{OUT} DAC in SO-8 Package with Clear Pin