アクティブ・クランプおよび\(i\)Couplerを搭載した絶縁型同期フォワード・コントローラ

データシート

ADP1074

特長

アクティブ・クランプ・フォワード・トポロジー向け電流モード・コントローラ
アナログ・デバイセズの特許取得済み\(i\)Coupler技術で集積された5 kV定格の誘電体絶縁電圧
広い電源電圧範囲
1次側V\(_{\text{IN}}\): 最大60 V
2次側V\(_{\text{DD2}}\): 最大36 V

1次側にパワー・スイッチとアクティブ・クランプ・リセット用の1 A MOSFETドライバを集積
2次側に同期整流用1 A MOSFETドライバを集積

誤差アンプと1\%未満の高精度なリファレンス電圧を集積
プログラマブルなスロープ補償
プログラマブルなスイッチング周波数範囲: 50 kHz ～ 600 kHz

短絡、出力過電圧、過熱保護などの保護機能
サイクルごとの入力過電流保護
ヒステリシス付き高精度イネーブルUVLOおよびPGOODシステム・フラグ用ピン

1次側のピンには、スイッチング周波数、最大デューティ・サイクル、外部周波数同期、スロープ補償を設定するための機能が備えています。
2次側のピンには、差動での出力電圧検出、過電圧、パワーグッド、トラッキング、プログラマブルな軽負荷モードを設定するための機能が備わっています。

フィードバック信号と同期整流式パルス幅変調（PWM）のタイミングは、独自の伝送方式による\(i\)Couplerを介して1次側から2次側、または2次側から1次側に送信されます。

この他、ADP1074は、入力電流保護、低電圧ロックアウト（UVLO）、ヒステリシスを調整可能な高精度インペルス、過熱保護（OTP）、省電力軽負荷モード（LLM）などの機能も備えています。

概要

ADP1074は、絶縁型DC/DC電源向けに設計された、電流モード固定周波数アクティブ・クランプ同期フォワード・コントローラです。アナログ・デバイセズ独自の\(i\)Couplersが集積されており、絶縁境界を超えて信号を伝送する、大きな信号トランスやフォトカプラを必要としないものとしています。\(i\)Couplerを集積したことで、システム設計の複雑さ、コスト、部品点数が縮減するとともに、システム全体の信頼性が向上しています。ADP1074では、1次側および2次側の双方にアイソレータと金属酸化物半導体電界効果トランジスタ（MOSFET）ドライバを集積しているため、システムレベルでのコンパクトな設計が可能となり、高負荷時に非同期フォワード・コンバータより高い効率性を発揮します。

アプリケーション

絶縁型DC/DC電力変換
中間バス電圧の生成、通信、産業用途
基地局およびアンテナRF電力
モバイル・セル
PoE給電デバイス
エンタープライズ・スイッチ/ルーター
コア/エッジ/メトロ/光ルーティング
電源モジュール

ファイル

日本語参考資料
最新版英語データシートはこちら
目次
特長..1
アプリケーション ..1
簡略化したブロック図 ..1
概要..1
改訂履歴 ..2
仕様..3
絶縁および安全性関連の仕様 ..6
適用規格..7
絶対最大定格 ...8
熱抵抗 ...8
ESD に関する注意 ..8
ピン配置およびピン機能説明 ...9
代表的な性能特性 ..11
動作原理..13
詳細なブロック図 ..14
一次側電源、入力電圧、LDO ..15
二次側の電源と LDO ..15
高精度イネーブル ..15
ソフト・スタート手順 ..16
出力電圧の検出とフィードバック ...17
ループ補償と定常状態動作 ...17
スロープ補償 ..17
入出力電流制限保護 ..17
温度計測 ...17
周波数設定（RT ピン） ...18
最大デューティ・サイクル ..18
周波数同期 ..18
同期整流（SR）ドライバ ...18
出力過電圧保護（OVP） ...18
アクティブ・クランプ（PGATE） ...19
立ち上がりエッジのランキング ..19
ゲート遅延と SR デッド・タイム ..19
軽負荷モード（LLM）と SR のフェーズ・イン ..19
外部スタートアップ回路 ..20
ソフト・ストップ ..20
パワー・グッド ..20
OCP／フィードバック・リカバリ ...21
出力電圧トラッキング ...21
リモート・システム・リセット ..21
OCP カウンタ ...22
絶縁寿命 ..23
レイアウトのガイドライン ..23
代表的なアプリケーション回路 ...24
外形寸法 ..27
オーダー・ガイド ..27

改訂履歴
10/2017—Revision 0: Initial Version
仕様
特に指定のない限り、VIN = 24 V、VDD2 = 12 V、Tj = −40 °C 〜 +125 °C。

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY (PRIMARY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V_in</td>
<td>4.7 µF capacitor from VIN to PGND1, 1 µF capacitor from VREG1 to PGND1</td>
<td>4.7</td>
<td>24</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_vin</td>
<td>VIN > VIN UVLO, NGATE and PGATE unloaded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 100 kHz</td>
<td>5.3</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 300 kHz</td>
<td>5.8</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 600 kHz</td>
<td>6.8</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIN > VIN UVLO, NGATE and PGATE loaded with 2.2 nF and 410 pF, respectively</td>
<td>At 100 kHz</td>
<td>7.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 300 kHz</td>
<td>12</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 600 kHz</td>
<td>19.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIN Shutdown Current</td>
<td>I_en</td>
<td>EN pin voltage (V_en) < 1.2 V, VREG1 = 0 V, VIN = 60 V</td>
<td>55</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIN (V + VREG1) Start-Up Current</td>
<td>I_vin_start</td>
<td>VIN < 1.2 V, VREG1 = 12 V, VIN = 12 V</td>
<td>160</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD2 UVLO</td>
<td>V_en</td>
<td>VIN rising</td>
<td>4.7</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIN falling</td>
<td>4.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVLO Hysteresis</td>
<td></td>
<td></td>
<td>0.19</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from EN High to PGATE Output Switching</td>
<td></td>
<td></td>
<td>1</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from EN Low to SR1/SR2 Output Stops Switching</td>
<td></td>
<td></td>
<td>1</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPPLY (SECONDARY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V_d2</td>
<td>4.7 µF capacitor from VDD2 to PGND2, 1 µF capacitor from VREG2 to PGND2</td>
<td>4.5</td>
<td>12</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_d2</td>
<td>SR1 and SR2 unloaded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 100 kHz</td>
<td>6.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 300 kHz</td>
<td>6.7</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 600 kHz</td>
<td>7</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR1 and SR2 loaded with 2.2 nF</td>
<td>At 100 kHz</td>
<td>8.3</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 300 kHz</td>
<td>12</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 600 kHz</td>
<td>18</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD2 UVLO Threshold</td>
<td>V_d2</td>
<td>T_h</td>
<td>3.55</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVLO Hysteresis</td>
<td></td>
<td></td>
<td>0.145</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary UVLO Hiccup Time</td>
<td></td>
<td></td>
<td>200</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSCILLATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Frequency (f_s)</td>
<td></td>
<td>RT resistance (R_s) = 480 kΩ (±1%)</td>
<td>50 − 10%</td>
<td>50</td>
<td>50 + 10%</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_s = 240 kΩ (±1%)</td>
<td>100 − 10%</td>
<td>100</td>
<td>100 + 10%</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_s = 120 kΩ (±1%)</td>
<td>200 − 10%</td>
<td>200</td>
<td>200 + 10%</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_s = 80 kΩ (±1%)</td>
<td>300 − 10%</td>
<td>300</td>
<td>300 + 10%</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_s = 60 kΩ (±1%)</td>
<td>400 − 10%</td>
<td>400</td>
<td>400 + 10%</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_s = 40 kΩ (±1%)</td>
<td>600 − 10%</td>
<td>600</td>
<td>600 + 10%</td>
<td>kHz</td>
</tr>
<tr>
<td>VREG1 PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VREG1 Voltage Clamp</td>
<td>Vreg1</td>
<td>VREG1 current (I_vreg1) = 3 mA, V_en < 1.2 V</td>
<td>13.5</td>
<td>14.3</td>
<td>15.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VREG1 forced current of 5 mA and 15 mA</td>
<td></td>
<td>16</td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

Rev. 0

− 3/27 −
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATE DRIVERS (PRIMARY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGATE and PGATE High Voltage</td>
<td></td>
<td>$I_{\text{VREG1}} = 20 , \text{mA}, , \text{VIN} > 9 , \text{V}$</td>
<td>7.8</td>
<td>8</td>
<td>8.2</td>
<td>V</td>
</tr>
<tr>
<td>Gate Short-Circuit Peak Current1</td>
<td></td>
<td>$8 , \text{V on VREG1}$</td>
<td>1.0</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Rise Time</td>
<td></td>
<td>$10% , \text{to} , 90%$</td>
<td>18</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>NGATE</td>
<td></td>
<td>$C_{\text{NGATE}} = 2.2 , \text{nF}$</td>
<td>8</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>PGATE</td>
<td></td>
<td>$C_{\text{PGATE}} = 410 , \text{pF}$</td>
<td>7</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td></td>
<td>$90% , \text{to} , 10%$</td>
<td>16</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>NGATE</td>
<td></td>
<td>$C_{\text{NGATE}} = 2.2 , \text{nF}$</td>
<td>7</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>PGATE</td>
<td></td>
<td>$C_{\text{PGATE}} = 410 , \text{pF}$</td>
<td>5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Source Resistance</td>
<td>$R_{\text{gs,source}}$</td>
<td>Source 100 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGATE</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>PGATE</td>
<td></td>
<td></td>
<td>6.5</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Sink Resistance</td>
<td>$R_{\text{gs,sink}}$</td>
<td>Sink 100 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGATE</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>PGATE</td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>NGATE Maximum Duty Cycle</td>
<td>D_{MAX}</td>
<td>Divider bottom resistor (R_{BOT}) = 0 Ω</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>$%$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Divider top resistor (R_{TOP}) = R_{BOT}, 1% resistors</td>
<td>75</td>
<td></td>
<td></td>
<td>$%$</td>
</tr>
<tr>
<td>NGATE Minimum On Time</td>
<td></td>
<td>Includes propagation delay and CS comparator blanking time</td>
<td>170</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>PGATE Source Resistance</td>
<td>$R_{\text{gs,source}}$</td>
<td>Source 100 mA</td>
<td>6.5</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>PGATE Sink Resistance</td>
<td>$R_{\text{gs,sink}}$</td>
<td>Sink 100 mA</td>
<td>3.5</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>SRx DRIVERS (SECONDARY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR1 and SR2 High Voltage</td>
<td></td>
<td>$I_{\text{VREG2}} = 15 , \text{mA}, , \text{VDD2} > 5.5 , \text{V}$</td>
<td>4.9</td>
<td>5</td>
<td>5.1</td>
<td>V</td>
</tr>
<tr>
<td>Gate Short-Circuit Peak Current1</td>
<td></td>
<td>$5 , \text{V on VREG2}$</td>
<td>1.0</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>SRx Rise Time</td>
<td></td>
<td>$C_{\text{SRx}} = 2.2 , \text{nF}$</td>
<td>14</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SRx Fall Time</td>
<td></td>
<td>$90% , \text{to} , 10%$</td>
<td>11</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Minimum On Time</td>
<td></td>
<td>Includes blanking time</td>
<td>230</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SRx Source Resistance</td>
<td>$R_{\text{gs,source}}$</td>
<td>Source 100 mA</td>
<td>3.5</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>SRx Sink Resistance</td>
<td>$R_{\text{gs,sink}}$</td>
<td>Sink 100 mA</td>
<td>2</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>DELAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Delay (SR1 Rising to NGATE Rising)</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Delay Between NGATE Falling Edge and SR1 Falling Edge</td>
<td>t_{coupler}</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SR DEAD TIME (PGATE RISING TO SR2 FALLING)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistor ($\pm5%$) at NGATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead time resistor (R_{DT}) = 10 $k\Omega$</td>
<td></td>
<td></td>
<td>154</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$R_{\text{DT}} = 22 , k\Omega$</td>
<td></td>
<td></td>
<td>109</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$R_{\text{DT}} = 47 , k\Omega$</td>
<td></td>
<td></td>
<td>72</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>R_{DT} is open</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Dead time between SR1 and SR2</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>CURRENT-LIMIT SENSE (PRIMARY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS Limit Threshold</td>
<td>$V_{\text{CS,LIM}}$</td>
<td>Over current sense limit threshold</td>
<td>120</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>CS Leading Edge Blanking Time</td>
<td></td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Current Source di/dt for Slope Compensation</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>$\mu\text{A per} , t_{\text{s}}$</td>
</tr>
</tbody>
</table>
ADP1074

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent Protection (OCP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time in OCP Before Entering Hiccup Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCP Hiccup Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB PIN AND ERROR AMPLIFIER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Accuracy Voltage</td>
<td>V_{FB}</td>
<td>T_{J} = −40° C to +85° C</td>
<td>1.2 − 0.85%</td>
<td>+1.2</td>
<td>1.2 + 0.85%</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_{J} = −40° C to +125° C</td>
<td>1.2 − 1.25%</td>
<td>+1.2</td>
<td>1.2 + 1.25%</td>
<td>V</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td></td>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td>ppm/° C</td>
</tr>
<tr>
<td>FB Input Bias Current</td>
<td></td>
<td></td>
<td>−100</td>
<td>+1</td>
<td>+100</td>
<td>nA</td>
</tr>
<tr>
<td>Transconductance</td>
<td>gm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>μA/V</td>
</tr>
<tr>
<td>Output Current Clamp</td>
<td></td>
<td></td>
<td>230</td>
<td>250</td>
<td>270</td>
<td>μA</td>
</tr>
<tr>
<td>COMP Clamp Voltage</td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.52</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Open-Loop Gain</td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Shunt Resistance</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>GΩ</td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>PRECISION ENABLE THRESHOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Threshold</td>
<td>V_{EN}</td>
<td>EN rising</td>
<td>1.14</td>
<td>1.2</td>
<td>1.26</td>
<td>V</td>
</tr>
<tr>
<td>EN Hysteresis</td>
<td></td>
<td>V_{EN} < 1.2 V</td>
<td>4</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{EN} > 1.2 V</td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>EN Hysteresis Current</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>MODE PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Load Mode Current Source Hysteres</td>
<td></td>
<td>Connect a resistor from MODE to AGND2</td>
<td>6</td>
<td>6.5</td>
<td>7</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>40</td>
<td>60</td>
<td>mV</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td></td>
<td></td>
<td>155</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Hysteresial</td>
<td></td>
<td></td>
<td>−15</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>SOFT START SS1 AND SS2 PINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Side SS1 Current Source</td>
<td></td>
<td>During soft start only</td>
<td>9.1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Secondary Side SS2 Current Source</td>
<td></td>
<td>During soft start only, post handover</td>
<td>20</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>SS2 Discharging Current</td>
<td></td>
<td>During a fault condition or soft stop</td>
<td>30</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>SYNC PIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronization Range</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Input Pulse Width</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Number of Cycles Before Synchronization</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>Cycles</td>
</tr>
<tr>
<td>Input Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Leakage Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>iCOUPLER DELAY</td>
<td></td>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
FB, OVP, AND PGOOD THRESHOLDS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvoltage (OV) threshold for PGOOD to</td>
<td>FB, OVP, AND PGOOD</td>
<td>toggle for FB and OVP pin</td>
<td>1.3</td>
<td>1.36</td>
<td>1.42</td>
<td>V</td>
</tr>
<tr>
<td>Undervoltage (UV) threshold for PGOOD to</td>
<td>FB, OVP, AND PGOOD</td>
<td>toggle</td>
<td>1.04</td>
<td>1.11</td>
<td>1.16</td>
<td>V</td>
</tr>
<tr>
<td>FB Pin OV Hysteresis</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>OVP Pin Hysteresis</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>FB Pin UV Threshold</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>FB Pin UV Hysteresis</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>OVP Comparator Delay (Includes iCoupler</td>
<td></td>
<td></td>
<td>320</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Time from Fault Condition to PGOOD Toggling</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>OVP Pin Leakage Current</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>PGOOD Pin Leakage Current</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>OVP Hiccup</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Time in OVP before entering OVP hiccup</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

Insulation and Safety Related Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Dielectric Insulation Voltage</td>
<td>iCOUPLER</td>
<td>1 minute duration</td>
<td>5</td>
<td></td>
<td></td>
<td>kV</td>
</tr>
<tr>
<td>Minimum External Air Gap (Clearance)</td>
<td>iCOUPLER</td>
<td>Measured from input terminals to output terminals, shortest distance through air</td>
<td>7.6</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Minimum External Air Gap (Creepage)</td>
<td>iCOUPLER</td>
<td>Measured from input terminals to output terminals, shortest distance path along body</td>
<td>7.6</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Minimum Internal Gap (Internal Clearance)</td>
<td>iCOUPLER</td>
<td>Insulation distance through insulation</td>
<td>0.030</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Tracking Resistance (Comparative Tracking</td>
<td>CTI</td>
<td></td>
<td>>400</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Isolation Group</td>
<td>iCOUPLER</td>
<td>Material Group (DIN VDE 0110, 1/89, Table 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
適用規格
特定のクロス・アイソレーション波形と絶縁レベルに対する推奨最大動作電圧については、表3および絶縁寿命のセクションを参照してください。

表3.

<table>
<thead>
<tr>
<th>UL (Pending)</th>
<th>CSA (Pending)</th>
<th>VDE (Pending)</th>
<th>CQC (Pending)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognized Under UL 1577 Component Recognition Program</td>
<td>Approved under CSA Component Acceptance Notice 5A</td>
<td>Certified according to DIN V VDE V 0884-10 (VDE V 0884-10:2006-12)</td>
<td>Certified by CQC11-471543-2012, GB4943.1-2011:</td>
</tr>
<tr>
<td>Single Protection, 5000 V rms Isolation Voltage</td>
<td>CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition, +A1+A2:</td>
<td>Reinforced insulation, (V_{1000} = 849 \text{ peak}, V_{1000} = 8000 \text{ V peak})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic insulation at 780 V rms (1103 V peak)</td>
<td></td>
<td>Reinforced insulation at 389 V rms (552 V peak), tropical climate, altitude (\leq 5000 \text{ meters})</td>
</tr>
<tr>
<td></td>
<td>Reinforced insulation at 390 V rms (552 V peak)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60601-1 Edition 3.1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic insulation (1 means of patient protection (1 MOPP)), 490 V rms (686 V peak)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reinforced insulation (2 MOPP), 238 V rms (325 V peak)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSA 61010-1-12 and IEC 61010-1 third edition:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic insulation at 300 V rms mains, 780 V secondary (1103 V peak)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. UL 1577 に従い、各製品は、6000 V rms 以上の絶縁試験電圧を 1 秒間かける試験でテストされています。
2. DIN V VDE V 0884-10 に従い、各製品は、1592 V peak 以上の絶縁試験電圧を 1 秒間かける試験でテストされています（部分放電検出の規定値 = 5 pC）。コンポーネント表面の*マークは、DIN V VDE V 0884-10 認定製品であることを表します。
絶対最大定格

表 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN, EN</td>
<td>-0.3 V to +66 V</td>
</tr>
<tr>
<td>VDD2</td>
<td>-0.3 V to +42 V</td>
</tr>
<tr>
<td>VREG1</td>
<td>-0.3 V to +16 V</td>
</tr>
<tr>
<td>VREG2</td>
<td>-0.3 V to +6 V</td>
</tr>
<tr>
<td>NGATE, PGATE</td>
<td>-0.3 V to +16 V</td>
</tr>
<tr>
<td>RT, CS, SYNC, SS1, SS2, PGOOD, FB, COMP, OVP, MODE, DMAX, SR1, SR2 AGND1, PGND1, AGND2, PGND2</td>
<td>-0.3 V to +6 V</td>
</tr>
<tr>
<td>Common-Mode Transients1</td>
<td>±0.3 V</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>±25 kV/μs</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40 °C to +125 °C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150 °C</td>
</tr>
<tr>
<td>Peak Solder Reflow Temperature SnPb Assemblies (10 sec to 30 sec)</td>
<td>240 °C</td>
</tr>
<tr>
<td>RoHS Compliant Assemblies (20 sec to 40 sec)</td>
<td>260 °C</td>
</tr>
<tr>
<td>Electrostatic Discharge (ESD) Charged Device Model (CDM)</td>
<td>±1250 V</td>
</tr>
<tr>
<td>Human Body Model (HBM)</td>
<td>±2 kV</td>
</tr>
</tbody>
</table>

1 絶縁バリアをまたぐコモンモード過渡電圧を表します。絶対最大定格を超えるコモンモード過渡電圧は、ラッチアップまたは恒久的な故障の原因になります。

上記の絶対最大定格を超えるストレスを加えると、デバイスに恒久的な損害を与えることがあります。この仕様規定はストレス定格のみを指定するものであり、この仕様の動作のセクションに記載される規定値以上でのデバイス動作を定めたものではありません。デバイスを長時間にわたり絶対最大定格状態に置くと、デバイスの信頼性に影響を与えることがあります。

熱抵抗

熱性能は、プリント回路基板（PCB）の設計と動作環境に直接関連しています。PCBの熱設計には、細心の注意を払う必要があります。

表 5. 熱抵抗

<table>
<thead>
<tr>
<th>Package Type</th>
<th>θJA</th>
<th>θJC</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW-241</td>
<td>65.4</td>
<td>43.8</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

1 テスト条件: シミュレーション値は、JEDEC 2S2P サーマル・テスト・ボードに基づいています。JEDEC JESD-51 参照

表 6. 最大連続動作電圧

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max</th>
<th>Unit</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAVEFORM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar</td>
<td>560</td>
<td>V peak</td>
<td>50 year minimum lifetime</td>
</tr>
<tr>
<td>Unipolar</td>
<td>1131</td>
<td>V peak</td>
<td>50 year minimum lifetime</td>
</tr>
<tr>
<td>DC Voltage</td>
<td>1131</td>
<td>V peak</td>
<td>50 year minimum lifetime</td>
</tr>
</tbody>
</table>

1 絶縁・バリアに加わる連続電圧の大きさを意味します。詳細については、絶縁寿命のセクションを参照してください。

ESDに関する注意

ESD（静電放電）の影響を受けやすいデバイスです。電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術であるESD保護回路を内蔵していますが、デバイスが高エネルギーの静電放電を受ける場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。
ピン配置およびピン機能説明

表 7. ピン機能の説明

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NGATE</td>
<td>1次側のメイン・パワー MOSFET のドライバ出力。多機能ピン。NGATE から PGND1 に抵抗を接続して、PGATE と SR2 の間の既定のディッド・タイムを設定します。</td>
</tr>
<tr>
<td>2</td>
<td>PGATE</td>
<td>フォワード回路のアクティブ・クラップ MOSFET 用ドライバ。このピンは PGND1 を基準とします。</td>
</tr>
<tr>
<td>3</td>
<td>PGND1</td>
<td>1次側の電源グラウンド。このピンは AGND1 にスターアクティブします。</td>
</tr>
<tr>
<td>4</td>
<td>AGND1</td>
<td>1次側のアナログ・グラウンド。このピンは PGND1 にスターアクティブします。このピンを用いて、CS と AGND1 ピンの間の検出抵抗で 1 次電流を差動検出します。</td>
</tr>
<tr>
<td>5</td>
<td>VREG1</td>
<td>MOSFET ドライブ用の 8V 出力。このピンに 1 µF 以上を接続します。このピンには外乱負荷をかけないでください。</td>
</tr>
<tr>
<td>6</td>
<td>VIN</td>
<td>入力電圧。このピンに 4.7 µF のコンデンサを接続します。このピンへの入力電圧の安定性を確保できる場合は、CS および AGND1 ピンを基準とします。</td>
</tr>
<tr>
<td>7</td>
<td>EN</td>
<td>高精度イネーブル・ピン。EN が EN のスレッショールド電圧を下回ると、ソフト・ストップが有効になります。このピンでは EN のヒステリシスも設定できます。</td>
</tr>
<tr>
<td>8</td>
<td>CS</td>
<td>入力電流検出。このピンは入力のパルス幅変調電流を検出します。パワー MOSFET のソース端子と PGND1 の間の電流検出抵抗を接続します。</td>
</tr>
<tr>
<td>9</td>
<td>RT</td>
<td>スイッチング周期抵抗。スイッチング周波数を設定するには、RT から AGND1 までに 2 本の抵抗を直列に接続し、その合計を適切な抵抗値にします。詳細については、DMAX ピンを参照してください。関連する式については、DMAX ビンを参照してください。</td>
</tr>
<tr>
<td>10</td>
<td>SYNC</td>
<td>周波数同期。SYNC ピンに外部クロックを接続して、内部発振器とこの外部クロック周波数に同期させます。この機能を使用しない場合は、SYNC を AGND1 に接続します。SYNC 周波数は、RT ピンで設定される周波数の 10% 以内にすることを推奨します。</td>
</tr>
<tr>
<td>11</td>
<td>SS1</td>
<td>ソフト・スタート 1。オープンループのソフト・スタート時を設定するには、このピンとコンデンサを接続します。このピンは AGND1 を基準とします。</td>
</tr>
<tr>
<td>12</td>
<td>DMAX</td>
<td>最大デューティ・サイクルの制御。最大デューティ・サイクルを設定するには、DMAX ピンを RT ピンの抵抗分圧器の中央タップに接続します。関連する式については、DMAX ビンを参照してください。</td>
</tr>
<tr>
<td>13</td>
<td>MODE</td>
<td>軽負荷モードの設定。MODE を AGND2 に接続して不連続導通モード（DCM）動作を無効にするか、またはハイ・ロジック（VREG2 ピンなどの 2.5 V 以上）に対して LLM 効果を有するか、または 1 個の抵抗を接続して固定された LLM ストレージールド電圧を設定します。</td>
</tr>
<tr>
<td>14</td>
<td>PGOOD</td>
<td>パワーグッド・ピン。オープンドライバ出力。PGOOD から VREG2 にプルアップ抵抗を接続します。</td>
</tr>
<tr>
<td>15</td>
<td>SS2</td>
<td>2次側のソフト・スタート。SS2 と AGND2 の間にコンデンサを接続して、2次側のソフト・スタート時間を設定します。</td>
</tr>
<tr>
<td>16</td>
<td>COMP</td>
<td>2次側の補償ノード。このピンはトランスコンダクタンス gm の出力です。このピンは AGND2 を基準とします。</td>
</tr>
<tr>
<td>17</td>
<td>FB</td>
<td>2次側のフィードバック・ノード。電源電圧がレギュレーション状態のときの公称電圧が 1.2 V になるように、出力電圧の抵抗分圧器を設定します。このピンは AGND2 を基準とします。</td>
</tr>
<tr>
<td>18</td>
<td>OVP</td>
<td>出力過電圧保護（OVP）。OVP の閾値は 1.36V に設定されています。抵抗分圧器を OVP から出力および AGND2 に接続します。</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>19</td>
<td>VDD2</td>
<td>2次側の入力電源。セルフ駆動構成の場合、VDD2は電源の出力電圧に接続します。VDD2からAGND2に4.7μFのコンデンサを接続します。このピンへの入力電圧の安定性を確保できる場合は、このコンデンサの容量を小さくできます。</td>
</tr>
<tr>
<td>20</td>
<td>VREG2</td>
<td>同期整流器のドライバの内部バイアスおよび電力供給用の5V安定化低ドロップアウト(LDO)出力。VREG2はリフレンスまたは負荷として使用しないでください。VREG2からAGND2に1μFのコンデンサを接続します。</td>
</tr>
<tr>
<td>21</td>
<td>AGND2</td>
<td>2次側のアナログ・グラウンド。AGND2をPGND2にスター接続します。AGND2を用いて、FBピンとAGND2の間の出力電圧を差動検出します。</td>
</tr>
<tr>
<td>22</td>
<td>PGND2</td>
<td>2次側の電源グラウンド。PGND2をAGND2にスター接続します。</td>
</tr>
<tr>
<td>23</td>
<td>SR2</td>
<td>同期整流MOSFET用のMOSFETドライバ出力2。このPWMによりフリーホイーリング・スイッチが制御されます。</td>
</tr>
<tr>
<td>24</td>
<td>SR1</td>
<td>同期整流MOSFET用のMOSFETドライバ出力1。このPWMはNGATEと同相です。</td>
</tr>
</tbody>
</table>
代表的な性能特性

図 3. EN ピンの立上がり閾値の温度特性
図 4. EN ピンの立下がり閾値の温度特性
図 5. FB ピンのリファレンス閾値の温度特性
図 6. MODE ピンの電流の温度特性
図7. SR デッド・タイム
（SR1 の立下がりから SR2 の立上がりまで）の温度特性

図8. SR デッド・タイム
（SR2 の立下がりから SR1 の立上がりまで）の温度特性

図9. NGATE 遅延
（SR1 の立上がりから NGATE の立上がりまで）の温度特性
動作原理

ADP1074 は、絶縁型 DC/DC 電源向けに設計された、電流モード固定周波数アクティブ・クランプ同期フォワード・コントローラです。アナログ・デバイセズ独自の iCouplers® が集積されており、絶縁境界を超えて信号を送信する、大きな信号トランスやフォトカプラを不要なものとしています。iCoupler を集積したことでは、システム設計の複雑さ、コスト、部品点数が削減するとともに、システム全体の信頼性が向上しています。

ADP1074 では、1 次側および 2 次側の間にアイソレータと MOSFET ドライバを集積化しているため、システム・レベルでのコンパクトな設計が可能となり、高負荷時に非同期フォワード・コンバータより高い効率性を発揮します。

従来型のフォワードまたはフライバック・コンバータでは、2 次側から 1 次側に信号を伝送するためのフォワード経路にディスクリートのフォトカプラが使用され、1 次側から 2 次側に同期整流用の PWM 信号を伝送するためには外部トランスが使用されています。しかし、フォトカプラの電流伝達率（CTR）は経時変化や温度によって低下するため、初期の CTR を決める製造品質とフォトカプラのグレードに応じて、5 年から 10 年ごとにフォトカプラを交換する必要があります。ADP1074 ではフォトカプラと信号トランスが不要なため、システム・コスト、PCB 面積、複雑さが低減される一方、システムの伝達性が向上し、フォトカプラの CTR 劣化の問題もありません。

ADP1074 コントローラは、5V アイソレータと 1 次および 2 次の制御回路を 1 個のパッケージに統合することにより、すべてが収まった絶縁型 DC/DC 電源ソリューションを提供しています。

PWM 制御は 1 次側で実行され、メインのスイッチング MOSFET のソースに置かれた検出抵抗で入力ピーク電流をサイクルごとに検出します。コンバータの出力は 2 次側の回路で検出され、この回路が 5 kV の内部アイソレータを介して 1 次側にフィードバック信号と PWM 信号を伝送することにより、完全な制御ループ・ソリューションとなっています。

ADP1074 の 1 次回路には、8 V LDO、入力電流検出、バイアス回路、MOSFET ドライバが搭載されている他、アクティブ・クランプ・リセット・ドライバ、スロープ補償、外部周波数同期、PWM 発振器、プログラマブルな最大デューティ・サイクル設定も備えています。また、1 次側には、電流検出信号を差動検出するためのピンがあります。

2 次側の回路には、フィードバック補償、5 V LDO レギュレータ、内部リファレンス、同期整流用の 2 個の MOSFET ドライバ、過電圧保護用の専用ピンが含まれます。また、2 次側は差動出力電流検出機能とパワー・グッド・ピン、プログラマブルな軽負荷モード設定を備えています。

集積化された iCoupler は、フィードバック信号と PWM を絶縁障壁を越えて伝送することにより、1 次側と 2 次側の間で通信します。

フィードバック信号と同期整流 PWM のタイミングは、独自の伝送方式を用いた iCoupler を介して 1 次側から 2 次側に、または 2 次側から 1 次側に伝送されます。

さらに、ADP1074 は、入力電流保護、UVLO、ヒステリシスを調整可能な高精度イネーブル、OTP、LLM、トラッキングなどの機能も備えています。
詳細なブロック図
ADP1074の詳細なブロック図を図10に示します。
1次側電源、入力電圧、LDO

1次側のVINとVREG1の2つのピンは電源ピンです。VINに接続される高電圧LDOレギュレータは、VREG1ピンから8Vの安定化電圧を出力します。このLDOレギュレータは、内部バイアス回路や1次側のCouplerとハウスキーピング回路、およびNGATEピンとPGATEピンに接続される1次側のMOSFETドライバに電力を供給します。

LDOの損失を避けるために高入力電圧を印加する場合は、LDOレギュレータの内部に14Vツェナー・ダイオードが接続されているため、推奨される補助電圧は8.5V以上13V以下です。

2次側の電源とLDO

2次側のVDD2とVREG2の2つのピンは電源ピンです。2次側は通常、コンバータの出力レールをVDD2ピンに接続することにより給電されます。VDD2ピンのUVLO(代表値3.5V)で、この電圧で2次側が起動します。出力電圧が2次側のUVLO電圧より低い場合、2次側の回路に電力を供給する補助電圧を生成するために3次巻線が必要です。VREG2ピン内部の5VLDOレギュレータは、MOSFETドライバ、2次側のCoupler、ハウスキーピング回路に給電します。VDD2が5V未満の場合、LDOレギュレータはドロップアウトモードで動作します。

24Vを超える出力電圧の場合、出力電圧を直接VDD2に接続すると、LDOでの電力損失が大きくなる可能性があります。例えば、24Vで全ドライバ電流が10mAの場合、LDOで消費される電力は0.19W(10mA×19V)です。VDD2には8V~12Vの補助電圧を供給することを推奨します。

高精度イネーブル

ENピンのイネーブル閾値は1.2Vを基準とする高精度電圧です。VINがUVLO電圧(代表値4.5V)よりも大きいときに、ENの電圧が1.2Vを超えたときにADP1074がイネーブルされます。すなわち、VDD1>1.2Vのときにこの電圧を超えると、VREG1ピン内部の8VLDOレギュレータがイネーブルされ、内部バイアスが設定された後、ソフト・スタート手順が始まります。

ノイズを防止するためには、ENピンからAGNDにコンデンサを接続して低インピーダンスの経路を設け、第1627-011ページの図11に示すようにUVLO電圧が設定しない電圧に設定します。こうすることでエンジニアリングを行なうことができます。
ソフト・スタート手順
以下の手順では、VDD2 ピンが電源の出力電圧から直接給電されることが前提とされています。
起動時にスムーズな出力電圧ランプを確保するために、ソフト・スタート・シーケンスは 1 次側 (SS1 ピンを用いたオープンループのソフト・スタート) と 2 次側 (SS2 ピンを用いたクローズドループのソフト・スタート) 用の 2 つつのソフト・スタート制御回路で制御します。2 次側が制御を開始する前に、1 次側と 2 次側の間の適切なハードシェイクが必要です。
オープンループのソフト・スタート時間は、SS1 ピンのコンデンサによって決まります。SS1 ピン 9.1 μA の定電流を供給し、このピンの電圧を上昇させます。SS1 ピンの電圧はビック 1 次電流制限に比類し、0 V と 1.5 V のピック電流 0 A と 120 mV/RSense にそれぞれ対応します。このレートはオープンループのソフト・スタートの場合です。この間に ADP1074 は PWM バルスの発生を開始し、平均インダクタ電流制限が負荷電流を超えると、出力電圧は徐々に上昇します。ADP1074 は電流モード・コントローラなので、1 次電流制限が負荷電流条件を超えた場合にのみ出力コンデンサは充電を開始します。SS1 ピンの電圧が最大電流制限まで上昇するレートは、次式で与えられます。
\[dt = C_{SS1} \times 1.5/(9.1 \mu A) \]
ハードシェイクのプロセスは以下のとおりです。
VDD2 が約 3.5 V のUVLOに達すると、2 次側の内部回路がアクティブになり、ADP1074 は次のプロセスを開始します。
1. ADP1074 は、SS2 ピンの電圧を FB ピンの値と等しく、SS2 ピン電流を、SS2 ピンの公称電流源である 20 μA の 10 倍にします。
2. 同時に、1 次の電流制限値 (SS1 の電圧) が 2 次側に伝送され、COMP ピンの電圧がその瞬間の SS1 電圧 ±100 mV に等しくなります。このプロセスにはタイムアウトがあり、VDD2 のUVLO閾値を超えてから 1.5 ms です。
このプロセスが完了すると、COMP 信号が 2 次側から 1 次側に伝送されます。ADP1074 は COMP ピンでアラーム信号を連続的にサンプリングすることにより、COMP 信号を伝送します。サムプリングされた値は独自方式で 2 次側で伝送され、そこで CS ピンの瞬時値が COMP レベルと比較され、NGATE バルスの低下がエッジが完結します。したがって、COMP 信号は 1 次電流制限を表します。
COMP の伝送が開始されると、1 次側は信号を受信し、1 次側の COMP の受信レベルが ±100 mV 以内になるか、または最大 128 のスイッチング周期 (信頼性は 8) が経過すると、制御は次側に完全に引き継がれ、最初のバルスを 1 次側に伝送し始めます。
このように、制御が 2 次側に引き渡され、クローズドループのソフト・スタートが開始します。ここで、SS2 コントローラは公称 20 μA の充電レートで充電されます。さらに、出力電圧が SS2 ピンの電圧に基づいてレギュレーション電圧まで上昇します。SS2 ピンの電圧は 1.2 V まで上昇し続け、これが FB ピンの定常電圧となります。この段階で電源は安定し、出力電圧が目標値になります。
ソフト・スタート・プロセスが終了すると、SS2 ピンの電圧は約 1.4 V まで上昇し続けます。制御が引き渡された瞬間に SS1 は 0 V で放電されます。定常状態では、FB ピン（つまり、リファレンス電圧）は 1.2 V です。
SR1 と SR2 の同期ドライバは、VDD2 がUVLO閾値を超えた後にはパルスを開始します。
プリチャージ出力からのソフト・スタートなどで VDD2 ピンの電圧がUVLO電圧よりも大きい場合、または VDD2 ピンが外部電源によって給電される場合、EN ピンがオンされると SS2 ピンが制御を受け継ぐため、ソフト・スタート手順には SS2 のみが使用されます。
プリチャージ出力からのソフト・スタート開始の場合、SS2 ピンは FB ピンをトラッキングしてソフト・スタートを開始します。このプロセスにより、出力電圧のグリッチが除去されます。
プリチャージ出力からのソフト・スタートすると、SS2 電圧が FB ピンのプリチャージ電圧に達するまで SRx ゲートがオンになりません。このソフト・スタート方式では、出力の放電が防止され、逆電流も防止されます。
ソフト・スタートのプロセス中の負荷短路または負荷過渡状態などの異常な状況では、FB が SS2 を正確にトラッキングできないうちに、これが VDD2 のUVLO閾値を超える前に発生した場合は、SS1 が制御します。VDD2 のUVLO閾値を超えた後に発生した場合は、SS2 が FB ピンをトラッキングし、レギュレーション電圧に達するまでソフト・スタート・プロセスを継続します。いわゆる状態でも、FB が 1.2 V の場合、制御は 2 次側に引き渡されます。
2 次側の VDD2 がコンバータの出力から直接給電される場合、必要な最小の出力電圧は 2 次側のUVLO電圧よりも高くなります。2 次側のUVLO 電圧より出力電圧が低い場合、2 次側の回路に電力を供給する補助電圧を生成する 3 次巻線が必要です。あるいは、ほとんどの場合、スイッチ・ノードからダイオード、抵抗、コンデンサの組み合わせを通じることによって、電圧を VDD2 に供給することができます。
出力電圧の検出とフィードバック
コンバータの出力電圧は、FB ピンへの抵抗分圧器によって設定されます。抵抗分圧器は、定常状態で FB ピンの電圧が 1.2 V になるように設定する必要があります。出力電圧は、FB ピンと AGND2 ピンを用いて差動で検出することが必要です。

ループ補償と定常状態動作
FB ピンは約 250 μA/V のゲインを持つトランスコンダクタンス・アンプ（gm アンプ）の負端に給電します。gm アンプの正の入力端子は SS2 に接続します。gm アンプの出力は COMP ピンに並列に接続します。COMP ピンの電圧は、フィードバックの定常状態で設定され、FB や AGND2 ピンを用いて差動で検出することが必要です。

ループ補償と定常状態動作
FB ピンは約 250 μA/V のゲインを持つトランスコンダクタンス・アンプ（gm アンプ）の負端に給電します。gm アンプの正の入力端子は SS2 に接続します。gm アンプの出力は COMP ピンに並列に接続します。COMP ピンの電圧は、フィードバックの定常状態で設定され、FB や AGND2 ピンを用いて差動で検出することが必要です。

ループ補償と定常状態動作
FB ピンは約 250 μA/V のゲインを持つトランスコンダクタンス・アンプ（gm アンプ）の負端に給電します。gm アンプの正の入力端子は SS2 に接続します。gm アンプの出力は COMP ピンに並列に接続します。COMP ピンの電圧は、フィードバックの定常状態で設定され、FB や AGND2 ピンを用いて差動で検出することが必要です。

ループ補償と定常状態動作
FB ピンは約 250 μA/V のゲインを持つトランスコンダクタンス・アンプ（gm アンプ）の負端に給電します。gm アンプの正の入力端子は SS2 に接続します。gm アンプの出力は COMP ピンに並列に接続します。COMP ピンの電圧は、フィードバックの定常状態で設定され、FB や AGND2 ピンを用いて差動で検出することが必要です。

ループ補償と定常状態動作
FB ピンは約 250 μA/V のゲインを持つトランスコンダクタンス・アンプ（gm アンプ）の負端に給電します。gm アンプの正の入力端子は SS2 に接続します。gm アンプの出力は COMP ピンに並列に接続します。COMP ピンの電圧は、フィードバックの定常状態で設定され、FB や AGND2 ピンを用いて差動で検出することが必要です。

ループ補償と定常状態動作
FB ピンは約 250 μA/V のゲインを持つトランスコンダクタンス・アンプ（gm アンプ）の負端に給電します。gm アンプの正の入力端子は SS2 に接続します。gm アンプの出力は COMP ピンに並列に接続します。COMP ピンの電圧は、フィードバックの定常状態で設定され、FB や AGND2 ピンを用いて差動で検出することが必要です。

ループ補償と定常状態動作
FB ピンは約 250 μA/V のゲインを持つトランスコンダクタンス・アンプ（gm アンプ）の負端に給電します。gm アンプの正の入力端子は SS2 に接続します。gm アンプの出力は COMP ピンに並列に接続します。COMP ピンの電圧は、フィードバックの定常状態で設定され、FB や AGND2 ピンを用いて差動で検出することが必要です。

ループ補償と定常状態動作
FB ピンは約 250 μA/V のゲインを持つトランスコンダクタンス・アンプ（gm アンプ）の負端に給電します。gm アンプの正の入力端子は SS2 に接続します。gm アンプの出力は COMP ピンに並列に接続します。COMP ピンの電圧は、フィードバックの定常状態で設定され、FB や AGND2 ピンを用いて差動で検出することが必要です。

ループ補償と定常状態動作
FB ピンは約 250 μA/V のゲインを持つトランスコンダクタンス・アンプ（gm アンプ）の負端に給電します。gm アンプの正の入力端子は SS2 に接続します。gm アンプの出力は COMP ピンに並列に接続します。COMP ピンの電圧は、フィードバックの定常状態で設定され、FB や AGND2 ピンを用いて差動で検出することが必要です。
周波数設定（RT ピン）

RT から AGND1 に抵抗を接続することにより、スイッチング周波数を 50 kHz 〜 600 kHz の範囲で設定することができます。RT ピンから小電流が流れ、その電圧により内部発振器の周波数が設定されます。このピンの値は定常状態で約 1.224 V です。

特定のスイッチング周波数（kHz）に対する抵抗（Ω）を求めるには、次式を使用します。

\[f_s (kHz) = \frac{1}{41.67 \times 10^{-12} \times (R_{TOP} + R_{BOT}) \times \frac{1}{1000}} \]

ここで

- \(f_s \) はスイッチング周波数。
- \(R_{TOP} \) は分圧器の上側の抵抗。
- \(R_{BOT} \) は分圧器の下側の抵抗。

最大デューティ・サイクル

高電流または大きな負荷過渡応答の場合にトランスのコアが飽和するのを防ぎ、MOSFET への電圧ストレスを低減するために、RT から AGND1 に接続されている抵抗分圧器の中央タップに DMAX ピンを接続することによって、最大デューティ・サイクルのクランプを設定します（図 12 参照）。

出力過電圧保護（OVP）

出力電圧が 1.36 V の OVP 閾値を超えると、コントローラは 1 次と 2 次の両方のドライバ（NGATE, PGATE, SR1, SR2）を即座に遮断します。OVP の電圧が 0 V の閾値を下回ると、コントローラは次のスイッチング周期で 1 次ドライバのスイッチングを再開し、続いて SR1 と SR2 の PIM をフェーズ・インさせます。OVP ピンの電圧が 200 μs 継続して 1.36 V を超えると、OVP 機能によりシステムは 200 ms のヒップアップに入ります。

出力過電圧保護（OVP）
アクティブ・クランプ (PGATE)
フォールド・コンバータでは、オン・サイクル中にトランスのコアに蓄えられた磁化エネルギーは、オフ・サイクル中に消磁またはリセットする必要があります。さらない、トランスのコアは後のスイッチング・サイクルで飽和してしまいます。トランス・コアをリセットするには、オフ・サイクル中にアクティブ・クランプ・スイッチをオンにします。これで、トランスをリセットできます。このプロセスにより消費電力が削減され、全体的な効率が向上します。アクティブ・クランプ・スイッチは、PGATE ピンのドライバを用いてハイサイドまたはローサイドのスイッチにすることができます。

立上がりエッジのブランキング
スイッチング周期の開始時には CS ピンでの不要なノイズやレンギングを防ぐために、NGATE 信号の立上がりエッジ後に立上がりエッジのブランキング時間を追加されます。

ゲート遅延と SR デッド・タイム
入力電圧が高い場合、1 次側のメイン MOSFET の立ち上がり時間と立下がり時間は、入力電圧が低い場合よりも長くなります。異なる入力電圧やトランスの漏れインダクタンス、および MOSFET の出力容量を考慮して、PGATE の立ち上がりと NGATE の立ち上がりの間にプログラマブルな遅延時間を設定することが重要です。また、PGATE と NGATE の間に十分なゲート遅延があれば、ゼロ電圧スイッチング (ZVS) が確保されます。これにより、メイン MOSFET のスイッチング損失を低減するのに重要です。

PGATE と NGATE の立ち上がりエッジ間の合計遅延は、NGATE ピンに接続する抵抗で設定することができます。PGATE と NGATE の間に 30 ns、60 ns、100 ns、150 ns の 4 つの離散的な代表値を設定することができます。詳細については、図 13 を参照してください。

![図 13. ゲート遅延と SR デッド・タイムの設定](image)

効率を最大にし、1 次 NGATE と SR2 (フリーホイーリング・スイッチ) 間の相互導通を避けるためには、SR2 と NGATE の間に遅延時間を設ける必要があります。

図 13 に示すように、NGATE の立ち上がりエッジと SR1 の立ち上がりエッジは同時にオフになりますが、SR1 には jCoupler の遅延が加わります。

また、SR1 と SR2 間のデッド・タイムは内部で 25 ns (代表値) に固定されており、2 次側トランスの短絡を防ぐことができま

軽負荷モード (LLM) と SR のフェーズ・イン
ADP1074 の省電力 LLM 機能を有効にすると、MODE ピンに抵抗を接続します。電流源からの 6.5 μA の電流が MODE ピンからこの抵抗に流れることで、LLM スレッショルド電圧が設定されます。この電圧が COMP 電圧と比較されます。COMP 電圧が LLM 閾値 (つまり MODE ピン電圧) を上回ると、SRx のフェーズ・イン・レートで、SRx PWM は軽負荷時のデューティ・サイクルから定常状態のデューティ・サイクルまで徐々に増加 (フェーズ・イン) します。SRx のフェーズ・イン・レートにより、1 μs あたり 1.5 ns の割合で SRx エッジが移動します。フェーズ・イン・シーケンスなしで、SRx PWM がゼロからフ禄・デューティ・サイクルに瞬時に遷移すると、出力電圧が低下する可能性があります。

負荷ダンプ状態、例えば、負荷が全負荷から軽負荷に切り替わったとき、すなわち連続導通モード (CCM) から不連続導通モード (DCM) 動作に移行するとき、SRx PWM のデューティ・サイクルは SRx のフェーズ・アウト・レートで徐々にフェーズ・アウトします。このレートは SRx のフェーズ・アウト・レートと同数値です。SRx PWM のフェーズ・アウト・シーケンスにより、2 次側の逆電流が防止されるために、出力応答の動的性能が最適化されます。COMP のレベルは、この時点ではまだ最小の COMP グラフ・レベルを上回っているため、ADP1074 は最小のデューティ・サイクルを出力することに注意してください。

負荷がさらに減少し、COMP ピンの電圧が最小の COMP グラフ・レベルに等しくなると、ADP1074 はパルス・スキップモードになります。

図 13 に示す NGATE 遅延時間の設定は、LLM 機能動作中でも変わりません。軽負荷モードの閾値を設定するには、次式を使用します。

\[R_{MODE} = \frac{I_{PEAK,LLM} \times CS_{GAIN}}{I_{MODE}} + 0.8 \]

ここで

\[I_{PEAK,LLM} \] は、軽負荷状態での 1 次ピーク電流。

\[CS_{GAIN} = 12.5 \]。

\[I_{MODE} \] は、MODE ピンから流れ出す電流。

強制 CCM 動作の場合、MODE を AGND2 に接続します。この場合、パルス・スキップは無効になります。

システムが軽負荷モードになった後、同期式整流は SR1 の下がりエッジで終了することにも注意してください。この終了によって、電圧スパイクが発生して同期 FET に損傷を与えるおそれのある負電流での PWM が防止されます。
外部スタートアップ回路

36 Vより高い入力電圧では、内部の8 V LDOの電力損失が大きくなる可能性があるため、外部スタートアップ回路の使用を推奨します（例えば図14を参照）。この場合、VINピンとVREG1ピン同士を短絡し、スタートアップ回路の出力を接続します。入力プリイネーブル・バイアス電流をすなわちVIN+VREG1のスタートアップ電流は約160 μAなので、ソフト・スタートのためにはスタートアップ電流を供給できなければなりません。その後、補助巻線がバイアス電圧を供給し、ソフト・スタート完了後にスタートアップ回路をシャットオフします。

ソフト・ストップ

ADP1074は、SS2ピンをリファレンスとして出力電圧を徐々にゼロに低下させる、ソフト・ストップ機能を採用しています。ソフト・ストップ処理の実行中、SS2ピンは、クローズドループ・ソフト・スタート中の値の約1.5倍の電流シンクによってゼロまで放電されます。ENの電圧がEN閾値を下回ると、SR1とSR2の2次側ドライバがすぐにシャットオフされ、1次側のNGATEパルスのデューティサイクルが最後の既知の状態から最小パルス幅まで徐々に減少してゼロになり、出力電圧が低下していきます。ソフト・ストップ機能により、コントローラのシャットダウン時の逆電流が防止されます。

出力電圧がVDD2のUVLO閾値を下回ると、COMP信号は1次側に伝送されません。したがって、出力電圧は、負荷電流が出力コンデンサを放電するレートで減少し続けます。負荷が最小または無負荷の場合、デューティサイクルまたは電流制限値が減少しても出力電圧がこれに比例して放電されるわけではないため、出力電圧は放電されません。

パワー・グッド

PGOODピンはオープンドレインのNチャンネル金属酸化膜半導体（nMOS）であり、フォルト状態ではオフになります。PGOODとVREG2の間、または5.5 V未満の外部電源との間にプルアップ抵抗を接続します。PGOODがトグルするには、FBピンとOVPピンのフォルト電圧が1.36 Vの過電圧閾値を超えることが必要です。また、FBピンの電圧が1.2 Vの公称値より100 mV下がった場合、つまり1.1 Vになった場合もPGOODはトグルします。PGOOD出力電圧がPGOODのヒステリシス電圧である36 mVを超えると、再度トグルします。FBピンがフォルトの場合は5 μsの遅延後、OVPピンがフォルトの場合は90 nsの遅延後に、PGOODがアクティブになります。
OCP／フィードバック回復

定常状態では、FB ピンは 1.2 V です。このとき、SS2 ピンの電圧は 1.4 V です。過負荷状態などの異常な状況では、出力電圧が著しく低下することがあります。このような場合、電流制限は最大レベルになり、COMP ピンの電圧がクランプレベルになります。COMP ピンの電圧がクランプ状態、および Vmin < (1.2 V - 100 mV) の 2 つの条件が重なると、コントローラは SS2 ピンを高速電流シンク (200 μA) で放電して SS2 ピンを FB ピンと等しくします。次に、コントローラは、このプリチャージされた状態、すなわち出力電圧の最後の既知の値からソフト・スタートを実行しようとします。OCP／フィードバック回復機能はこのようなプロセスで動作します。

ただし、COMP ピンの電圧が 1.5 ms 以上の間最大クランプ電圧を上回ると、システムはヒッパ・モードに入ります。

プリチャージからのソフト・スタートの間、出力電圧は SS2 ピンのコンデンサで決まるレートと同じレートで上昇します。ただし、電力段に出力電圧の上昇を妨げるような有害な障害がある場合、Vmin は SS2 をトラッキングせず、SS2 > (Vmin + 100 mV) のとき、COMP ピンの電圧はクランプレートまで上昇し、システムは再び OCP／フィードバック回復モードに入ります。

出力電圧トラッキング

ADP1074 はトラッキング機能を備えています。定常状態では、FB ピンは 1.2 V です。このとき、SS2 ピンの電圧は 1.4 V です。外部の DAC を使用すると、SS2 ピンの電圧によって出力電圧を変調することができます。SS2 の電圧は VDD2 の UVLO ポイントを超えて制御が 2 次側に引き渡される場合にのみ変更することを推奨します。それ以外の場合、引き渡しプロセスが円滑に行われず、出力電圧にグリッチが発生します。理想的には、PGOOD ピンは、トラッキングを開始させるための、レギュレーションが達成されたことを示す信号として使用できます。

SS2 の電圧は 1.4 V から 1.2 V に低下させる必要があります。また、出力電圧を変化させるためには、さらに下げる必要があります。出力が SS2 ピンをトラッキングするレートは、システム全体の帯域幅に依存します。出力電圧の変調時、FB ピンの電圧が (1.2 V - 100 mV = 1.1 V) を下回ると、PGOOD ピンがトグルすることに注意してください。

リモート・システム・リセット

リモート（2 次側）のシステム・シャットダウンでは、外付けマイクロコントローラのオープンドレイン出力（GPIO) を用いて SS2 ピンを強制的に 0 V にすることができます。このプルダウンにより、ADP1074 は 0 V になりますが、GPIO 抵抗が有限であることから SSP ピンがオフセットするため、ADP1074 はパルス・スキップ・モードになるか、または最小のデューティ・サイクルを出力します。

出力電圧を VDD2 が充電される場合、このセットアップはシステムのシャットダウンの場合と同等です。それは、VDD2 < VDD2 UVLO のとき、ADP1074 は（標準の 40 ms のヒッパでなく 200 ms の特殊なヒッパ・モードに入ります。補助レールを用いて VDD2 に電力を供給する場合、システムは SS2 ピンの電圧に比例した電圧に調整され、補助レールが VDD2 の UVLO と共有される場合に、最終的に前述の特殊なヒッパ・モードに入ります。

したがって、SS2 ピンにより、出力トラッキングと 2 次側シャットダウン（リモート・システム・リセットとも呼ばれる）を実現できます（図 16 参照）。
図16. 200 msのヒッカップでのリモート・ソフトウェア・リセット

図17. SS2ピンによるトラッキング

OCP カウンタ

過負荷状態で、ピーク検出電流がCSピンでの120 mVのOCPスレッショルド電圧を超えると、ADP1074はPWMパルスの残りの部分を直ちに終了します。ピーク検出電流がスイッチング周期ごとに1.5 msの間隔を超え続けると、システムはヒッカップ・モードに入り、約40 msの間シャットダウンしてからソフト・スタートします。デッド・ショートなどの過電流状態では、設定されたスロープ補償では十分でないことがあるため、システムは低調波発振を生じます。このような場合、スイッチング周期が切り替わるごとにOCP閾値を交差するため、システムがヒッカップ・モードに入ることができず、1.5 msのヒッカップ・カウンタがリセットされます。
こうした状況を回避するため、ADP1074 は最後の既知の状態をラッチします。これにより、OCP 状態があるスイッチング周期の第 0 として登録され、次のスイッチング周期第 0 として登録された場合でも第 0 としてカウントされます。このため、システムは低電圧波形の状態でもヒッパ・モードに入る可能性が開きます。

OCP が第 0 として超えなかった場合は、ヒッパ・カウンタがリセットされます。

絶縁寿命
すべての絶縁構造は、電圧ストレスを数年間受けると、最終的に破壊されます。絶縁性能の低下率は、絶縁に加えられる電圧波形の特性に依存します。アナログ・デバイセズでは、規制当局によって定められたテストの他に、広範囲な評価を実施して ADP1074 の絶縁寿命を決定しています。

絶縁バリア全体に課される電圧波形のタイプに依存します。iCoupler 絶縁構造の性能は、波形がバイポーラ AC、ユニポーラ AC、DC のいずれであるかに応じて、異なるレートで低下します。これらの様々な絶縁電圧波形を図 18、図 19、図 20 に示します。

1 次側のレイアウトのガイドライン
1. すべてのコンデンサをそれぞれのグラウンドに接地します。例えば、SS1 コンデンサを AGND1 に接地します。
2. CS ピンに AGND1 ピンと、検出抵抗を介して 1 次側電圧を検出します。スイッチ・ノード間の電流検出の際は、CS と AGND1 のパターンを交差させないでください。
3. AGND1 に接続される CS ピンの近くにコンデンサ(33 pF 〜 470 pF、代表値)を配置します。
4. 1 次側のグランドプランを PGND1 に接続します。
5. 0 Ωの抵抗を用いて AGND1 を PGND1 に接続します。
6. NGATE およびメインのパワー MOSFET と、直列に抵抗(1 Ω 〜 5 Ω、代表値)を接続します。これらの抵抗は、駆動電圧のリジングを除去するのに役立ちます。

2 次側のレイアウトのガイドラインは次のとおりです。
1. すべてのコンデンサをそれぞれのグラウンドに接地します。例えば、SS2 コンデンサを AGND2 に接地します。
2. SRx および同期 MOSFET と、直列に抵抗(1 Ω 〜 5 Ω)を接続します。これらの抵抗は、駆動電圧のリジングを除去するのに役立ちます。
3. 2 次側のグランドプランを PGND2 に接続します。出力電圧の負荷を PGN2 プレーンに接続します。
4. AGND2 を、0 Ω抵抗を介して出力電圧の負荷に接続するものにより、FBND ピンと AGND2 ピンを使用して、出力電圧を遠隔から差動で検出します。
5. ノイズの多い環境で軽負荷モードを使用する場合は、MODE ピンに 100 nF のコンデンサを使用します。
代表的なアプリケーション回路

図 21. アクティブ・クランプ・フォワード・トポロジーの代表的なアプリケーション回路
図 22. 簡素なスタートアップ回路とバイアス巻線を備えたアクティブ・クランプ・フォワード・トポロジーの代表的なアプリケーション回路
図23. アクティブ・クランプ・フライバック・トポロジーの代表的なアプリケーション回路
外形寸法

![外形寸法図](image)

COMPLIANT TO JEDEC STANDARDS MS-013-AD
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

図 24. 24 ピン標準スモール・アウトライン・パッケージ [SOIC_W]
ワイド・ボディ
（RW-24）
寸法単位: mm (インチ)

オーダー・ガイド

<table>
<thead>
<tr>
<th>Model</th>
<th>Temperature Range</th>
<th>Package Description</th>
<th>Package Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP1074-EVALZ</td>
<td>-40 °C to +125 °C</td>
<td>ADP1074 Evaluation Board</td>
<td>RW-24</td>
</tr>
</tbody>
</table>

\[Z = \text{RoHS 準拠製品} \]