

24 ビット、62.5kSPS、マルチチャンネル、 低ノイズ高精度シグマデルタ型 ADC

特長

- ▶ 入力換算ノイズ: 10nV (3.8SPS、ゲイン = 128)
- ▶ クロスポイント・マルチプレクサ・アナログ入力
- ▶ 4個の差動入力/8個の疑似差動入力
- ▶ 超低ノイズの内蔵 PGA (ゲイン: 0.5~128)
- ▶ 出力データレート: 3.8SPS~62.5kSPS
- ▶ 柔軟なデジタル・フィルタ
 - ▶ 低遅延 sinc フィルタ
 - ▶ 50Hz/60Hz を同時に除去
- ▶ ドリフト 5ppm/°C (代表値)のバンド・ギャップ・ リファレンス
- ▶ 内部発振器
- ▶ アナログ電源: 4.75V~5.25V、または±2.5V
- ▶ デジタル電源: 1.7V~5.25V
- ▶ マッチングがとれたプログラマブルな励起電流源
- ▶ ローサイド・パワー・スイッチ
- ▶ オン・チップ・バイアス電圧発生器
- ▶ 内部温度センサー
- ▶ 4つの汎用入出力
- ▶ 内部およびシステム・キャリブレーション

- ▶ センサー・バーンアウト検出
- ▶ 診断機能
- ▶ チャンネルごとに設定
- ▶ 柔軟な自動チャンネル・シーケンサ
- ▶ 3線式または4線式のシリアル・インターフェース (シュミット・トリガ付き SCLK)▶ SPI、QSPI、MICROWIRE、DSP 互換
 - データ・ストリーミング用の TDM 互換インターフェース
- ▶ 性能温度範囲: -40°C~+105°C
- ▶ 動作温度範囲: -40°C~125°C
- ▶ 32 ピン、4mm×6mm LFCSP パッケージを採用

アプリケーション

- ▶ 工業用プロセス制御: PLC/DCS モジュール
- ▶ 温度計測
- ▶ 圧力計測
- ▶ 医療および科学計測器
- ▶ クロマトグラフィ
- ▶ 環境モニタリング
- ▶ 電子テストおよび計測
- ▶ 計測器
- ▶ 秤量計

機能ブロック図

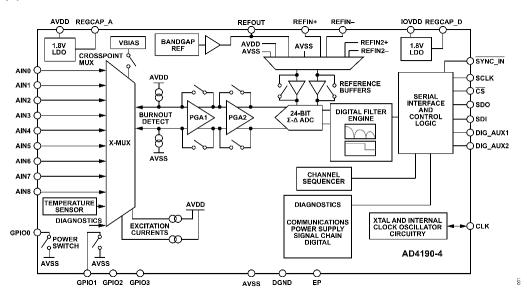


図 1. AD4190-4 の機能ブロック図

目次

特長	
アプリケーション	1
機能ブロック図	1
概要	4
仕様	5
タイミング特性	10
タイミング図	11
絶対最大定格	
熱抵抗	
静電放電(ESD)定格	
ESD に関する注意	
ピン配置およびピン機能の説明	
代表的な性能特性	
実効値およびノイズ性能	
sinc ⁵ + 平均化	
sinc ³	
ポスト・フィルタ	
動作原理	
概要	
電源	
デジタル・コミュニケーション	
設定の概要	
ADC 回路情報	39
アナログ入力チャンネル	
外部マルチプレクサの制御	39
外部マルチプレクサの制御 プログラマブル・ゲイン・アンプ(PGA)	39
外部マルチプレクサの制御	39
外部マルチプレクサの制御 プログラマブル・ゲイン・アンプ(PGA) リファレンス バイポーラ/ユニポーラ設定	39 39 39
外部マルチプレクサの制御 プログラマブル・ゲイン・アンプ(PGA) リファレンス	39 39 39
外部マルチプレクサの制御 プログラマブル・ゲイン・アンプ(PGA) リファレンス バイポーラ/ユニポーラ設定	39 39 40 40
外部マルチプレクサの制御	39 39 40 40
外部マルチプレクサの制御	39 39 40 40 41
外部マルチプレクサの制御	39 39 40 41 41 41
外部マルチプレクサの制御	39 39 40 41 41 41
外部マルチプレクサの制御	39 39 40 41 41 41 42
外部マルチプレクサの制御	39 39 40 41 41 42 42
外部マルチプレクサの制御	39 39 40 41 41 42 42
外部マルチプレクサの制御	39 39 40 41 41 42 42 42 42
外部マルチプレクサの制御	39 39 40 41 41 42 42 42 42 43
外部マルチプレクサの制御	39 39 40 41 41 42 42 42 43 43
外部マルチプレクサの制御	39394041414242424343
外部マルチプレクサの制御	39394041414242424545
外部マルチプレクサの制御	393940414142424243434545
外部マルチプレクサの制御	393940414142424243454545
外部マルチプレクサの制御	393940414142424243454545
外部マルチプレクサの制御	39394041414242424345454545

	連続読出し	.52
	連続送信	.53
	SPI フレーム同期	.53
	デバイスの識別	.55
	デバイスのリセット	.55
	IO の駆動強度	.55
	SDO_RDYB_DLY	.55
A	DC の同期	.56
	標準同期	.56
	代替同期	.56
	複数の AD4190-4 デバイスの同期	.57
診	断機能	.58
	デバイス・エラー	.58
	リファレンス検出	.58
	リファレンス過電圧/低電圧の検出	.58
	変換エラー	.58
	アナログ入力過電圧/低電圧検出	.58
	励起電流コンプライアンス	.58
	電源モニタ	.58
	LDO モニタリング	.58
	SPI SCLK カウンタ	.59
	SPI 読出し/書込みエラー	.59
	ノット・レディ・エラー	.59
	チェックサム保護	.59
	メモリ・マップ・チェックサム保護	.61
	バーンアウト電流	.61
	プルアップ電流	.62
	温度センサー	.62
グ	゚ヲウンディングとレイアウト	.63
ア	プリケーション情報	.64
	重量計	.64
	RTD を使用した温度計測	
内	蔵レジスタ・マップ	.67
	INTERFACE_CONFIG_A レジスタ	.70
	INTERFACE_CONFIG_B レジスタ	.70
	DEVICE_CONFIG レジスタ	.70
	CHIP_TYPE レジスタ	
	PRODUCT_ID_L レジスタ	.71
	PRODUCT_ID_H レジスタ	.71
	CHIP_GRADE レジスタ	
	SCRATCH_PAD レジスタ	
	SPI_REVISION レジスタ	
	VENDOR_L レジスタ	
	VENDOR_H レジスタ	
	INTERFACE_CONFIG_C レジスタ	
	INTERFACE_STATUS_A レジスタ	.73
	CTATUC LONG A	7/

DATA_16B レジスタ	74
DATA_16B_STATUS レジスタ	75
DATA_24B レジスタ	75
DATA_24B_STATUS レジスタ	75
DATA_PER_CHANNEL レジスタ	76
PIN_MUXING レジスタ	76
CLOCK_CTRL レジスタ	77
STANDBY_CTRL レジスタ	78
POWER_DOWN_SW レジスタ	78
ADC_CTRL レジスタ	79
ERROR_EN レジスタ	81
ERROR レジスタ	82
CHANNEL_EN レジスタ	83
CHANNEL_SETUP レジスタ	83
CHANNEL_MAP レジスタ	84
MISC (各種設定) レジスタ	86

AFE レジスタ	87
FILTER レジスタ	88
FILTER_FS レジスタ	88
オフセット・レジスタ	89
ゲイン・レジスタ	89
REF_CONTROL レジスタ	89
V_BIAS レジスタ	90
I_PULLUP レジスタ	90
CURRENT_SOURCE レジスタ	91
GPIO_MODE レジスタ	92
GPIO_OUTPUT_DATA レジスタ	93
GPIO_INPUT_DATA レジスタ	93
外形寸法	94
オーダー・ガイド	94
評価用ボード	94

改訂履歴

1/2025—Revision 0: Initial Version

概要

AD4190-4 は、高精度計測アプリケーション向けの低ノイズ、完全統合型アナログ・フロント・エンドです。このデバイスには、低ノイズ、24 ビット Σ - Δ アナログ・デジタル・コンバータ (ADC) が搭載されており、4個の差動入力、または8個のシングルエンド入力または疑似差動入力を持つように構成できます。 オン・チップの低ノイズ・ゲイン段により、小振幅の信号をこの ADC に直接入力できます。

AD4190-4 により、最高レベルのシグナル・チェーン集積化を実現できます。このデバイスは内部リファレンスを備えています。また、2 つの外部差動リファレンスにも対応し、これらは内部でバッファ処理が可能です。その他の主要な内蔵機能は次のとおりです。

- ▶ プログラマブル・ゲイン・アンプ (PGA)。ゲインがプログラマブル (0.5~128) であることから、この PGA は、抵抗ブリッジ、熱電対、測温抵抗体 (RTD) など低出力振幅のトランスジューサに直接インターフェースできます。
- ▶ PGA は広いコモンモード入力範囲を備えているため、広い 範囲で変化する入力コモンモードに対しマージンを大きくと ることができます。
- ▶ 低ドリフトで十分にマッチングがとれた高精度電流源。励起電流源を使用して、2線式、3線式、4線式のRTDまたはブリッジ型センサーを励起できます。励起電流出力オプションには、10μA、50μA、100μA、250μA、500μA、1mA、1.5mAがあります。より大きな電流が必要な場合は、電流を追加することもできます。
- ▶ ローサイド・パワー・スイッチ (PDSW) を使用して、変換と変換の間にブリッジ・センサーをパワーダウンします。

- ▶ 熱電対用電圧バイアス (VBIAS ソースがチャンネルのコモンモード電圧を(AVDD + AVSS)/2 に設定)。
- ▶ スマート・シーケンサにより、イネーブルされた各事前設定 チャンネルを予め定めた順序で変換できるため、トランス ジューサ、システム・チェック、診断計測を混在させて順次 実施できます。このシーケンサにより、設定を変更するため にデバイスとのシリアル・インターフェース通信を繰り返し 行う必要がなくなります。このシーケンスでは 16 チャンネルを設定できます。これらのチャンネルはそれぞれ、ゲイン、 フィルタ・タイプ、出力データレート、バッファリング、およびリファレンス源を選択できる 8 つのユーザ定義の ADC セットアップから選択します。

AD4190-4 には、充実した機能セットの一部として広範な診断機能も備えています。診断機能には、巡回冗長性チェック (CRC)、シグナル・チェーン・チェック、シリアル・インターフェース・チェックなどがあり、より信頼性の高いソリューションになっています。

また、このデバイスは、複数のフィルタ・オプションを備えているので、柔軟性が非常に高くなっています。より高速のセトリングを可能にする sinc フィルタを内蔵する他、50Hz と 60Hz を同時に除去できる複数のオプションも備えています。

このデバイスは、4.75V~5.25V のアナログ単電源または 2.5V のバイポーラ電源で動作します。デジタル電源の範囲は 1.7V~5.25V です。このデバイスは、-40°C~+105°C の温度範囲で仕様規定されています。AD4190-4 は 32 ピン LFCSP パッケージに収められています。

analog.com.jp Rev. 0 | 4 of 94

仕様

特に指定のない限り、AVDD = 4.75V~5.25V、IOVDD = 1.7V~5.25V、AVSS = DGND = 0V、REFIN+ = 2.5V(外部リファレンス)、REFIN- = AVSS、MCLK = 16MHz、 $T_A = T_{MIN} \sim T_{MAX}$ ($-40^{\circ}C \sim +105^{\circ}C$)。

表 1. 仕様

Parameter ¹	Test Conditions/Comments	Min	Min Typ Max		Unit
ADC SPEED CODING AND PERFORMANCE					
Output Data Rate (ODR)					
Sinc ⁵		976.5		62,500	SPS
Sinc ⁵ + Avg		3.8		62,500	SPS
Sinc ³		3.8		62,500	SPS
50Hz/60Hz Post Filters		16.67	20	25	SPS
No Missing Codes ²		24			Bits
Data output coding	Bipolar mode	2s complement			
3	Unipolar mode	Straight binary			
Resolution			nd Noise Perform	ance section	
Noise			nd Noise Perform		
ACCURACY					
Gains			0.5, 1, 2, 4, 8,		
Cams			16, 32, 64, 128		
Integral Nonlinearity (INL)	Gain = 1, Gain = 1 precharge		±1		ppm of FSR
g	All other gains		±3		ppm of FSR
Precalibration Offset Error ³	Gain = 1 precharge		±30		μV
1 Todalistation Chook End	Gain < 16		±(15 + (40/		μV
	Juli 10		gain))		P V
	Gain ≥ 16		±6		μV
Offset Error Drift vs. Temperature ²	Gain = 1 precharge		±20		nV/°C
Chook End. Sink to Tomporatare	Gain < 8	±50/gain			nV/°C
	Gain = 8, 16, 32		±20		nV/°C
	Gain = 64, 128		±20		nV/°C
Gain Error ³	Gain = 1 precharge, T _A = 25°C		±10		ppm of FSR
Call Life	All other gains, $T_A = 25^{\circ}C$			ppm of FSR	
Gain Error Drift vs. Temperature ²	All gains		±0.5		ppm/°C
REJECTION	All gallis		10.0		ррпії С
DC Power Supply Rejection	V = 1V/gain All aupplies				
DC Power Supply Rejection	V _{IN} = 1V/gain, All supplies Gain = 0.5		98		dB
	Gain = 1 precharge and Gains of 1 to 8		104		dB
	Gain of 16 to 128		116		dB
Common-Mode Rejection ⁴			110		ub
At DC	V _{IN} = 1V/gain Gain = 0.5		106		dB
ALDC		106 108		dB	
	Gain = 1 precharge and Gains of 1 to 8		100		UD UD
	Gains of 16 to 128		125		dB
At 50Hz, 60Hz	50ms settling post filter, 50Hz ±		120		dB
At 30112, 00112	1Hz and 60Hz ± 1Hz		120		ub
Normal Mode Rejection ²	50Hz ± 1Hz and 60Hz ± 1Hz				
Tomai mode regioner	Internal clock, 50ms settling post		89		dB
	filter				
	External clock, 50ms settling		90		dB
	post filter		- •		
ANALOG INPUTS					

analog.com.jp Rev. 0 | 5 of 94

仕様

表 1. 仕様(続き)

Parameter ¹	Test Conditions/Comments	Min	Тур	Max	Unit
Differential Input Voltage Range ⁵	internal reference			+V _{REF} /gain	V
Single-Ended Input Voltage Range		0		V _{REF} /Gain	V
Absolute AIN Voltage Limits ²		AVSS		AVDD	V
Input Capacitance			8		pF
Analog Input Current	Absolute input current measured with AIN between AVSS + 0.1V and AVDD - 0.1V Differential input current measured with full-scale input, V _{CM} = (AVDD+AVSS)/2				
Gain = 1 precharge					
Absolute Input Current			±140		nA
Differential Input Current			±28		nA
Absolute Input Current Drift ²			280		pA/°C
Gain = 1					i.
Absolute Input Current			±2		nA
Differential Input Current			±2		nA
Absolute Input Current Drift ²			12		pA/°C
Gain = 0.5					p
Absolute Input Current			±2		nA
Differential Input Current			±4		nA
Absolute Input Current Drift ²			30		pA/°C
Gain = 128			00		pr v O
Absolute Input Current			±2		nA
Differential Input Current			±2		nA
Absolute Input Current Drift ²			40		pA/°C
All other gains			-10		pr v O
Absolute Input Current			±2		nA
Differential Input Current			±2		nA
Absolute Input Current Drift ²			70		pA/°C
ITERNAL REFERENCE	100nF external capacitor to				pri o
TENIAL NEI ENEMOL	AVSS				
Initial Accuracy ⁶	REFOUT with respect to AVSS, T _A = 25°C		2.5		V
Temperature Coefficient			±5		ppm/°C
Reference Load Current, I _{LOAD}			10		mA
Thermal Hysteresis	Cycle of 25°C, +75°C, -25°C, +25°C		44		ppm
Power Supply Rejection	AVDD (line regulation)		100		dB
Load Regulation	$\Delta V_{OUT}/\Delta I_{LOAD}$		12		ppm/mA
Voltage Noise	e _N , 0.1Hz to 10Hz, 2.5V reference		4.5		μV rms
Voltage Noise Density	e _N , 1kHz, 2.5V reference		215		nV/√Hz
Turn-On Settling Time	100nF REFOUT capacitor		200		μs
Short-Circuit Current, I _{SC}	·		28		mA
XTERNAL REFERENCE INPUTS					
Differential Input Range ²	V _{REF} = REF+ - REF-	1	2.5	AVDD - AVSS	V
Absolute Voltage Limits ²	, ser				
Reference Buffers Disabled		AVSS - 0.05		AVDD + 0.05	V

analog.com.jp Rev. 0 | 6 of 94

仕様

表 1. 仕様(続き)

Parameter ¹	Test Conditions/Comments	Min	Тур	Max	Unit
Reference Buffers Enabled	Full buffer or precharge buffer	AVSS		AVDD	V
REFIN Input Current (Reference Buffers Disabled)					
Reference Input Current			±22		μ Α /V
Reference Input Current Drift	External clock		±1.2		nA/V/°C
110000000 mpat 0anon 2m	Internal clock		±6		nA/V/°C
Reference Buffers Enabled	internal olook		20		117 0 77 3
Reference Input Current	Precharge buffer		±6		μA
Neierence input Gurrent	Full buffer		±55		nA
Defended land Comment Drift					
Reference Input Current Drift	Precharge buffer		40		nA/°C
	Full Buffer		1.25		nA/°C
Normal Mode Rejection	See the Rejection parameter				
BIAS					
Output voltage setting			(AVDD +		V
			AVSS)/2		
Output Impedance			1		kΩ
Start-up time	Dependent on the capacitance		9		μs/nF
	connected to AINn				
XCITATION CURRENTS					
Current Settings			10, 50, 100,		μΑ
			250, 500, 1000),	
•			1500		
Output Compliance ²	10μΑ, 50μΑ, 100μΑ, 1%			AVDD - 1.25	V
	accuracy				
	250μA/500μA/1mA/1.5mA, 1%			AVDD – 1.45	V
	accuracy				
Initial Accuracy	$T_A = 25^{\circ}C, 10\mu A$		±3		%
	$T_A = 25^{\circ}C, 50\mu A, 100\mu A$		±0.1		%
	$T_A = 25^{\circ}C, >100\mu A$		±0.2		%
Drift ²	10μΑ		±20		ppm/°C
	50μΑ, 100μΑ		±5		ppm/°C
	>100µA		±25		ppm/°C
Current Mismatch					
Same Current Matching ²	10µA		±1.3		%
Č	All other currents		±0.1		%
Different Current Matching			±1		%
Drift Matching ²	Current sources at the same				"
Diff. Matoring	value				
	10μΑ		±3		ppm/°C
	50μΑ, 100μΑ, 250μΑ		±2		ppm/°C
	All other currents		±1		ppm/°C
Line Population (AVDD)	AVDD = 5V ± 5%		±1 150		1
Line Regulation (AVDD)					ppm/V
Load Regulation	>10µA		40		ppm/V
Start-up time	$R_{LOAD} = 1k\Omega$, $C_{LOAD} =$		7		μs
	0pF Dependent on the load connected to AINn				
EMPERATURE SENSOR	CONNECTED TO VIIAN				
	A4		.0		
Accuracy	After user calibration at 25°C		±2		°C
Sensitivity			477		μV/K
OW-SIDE POWER SWITCH					
Ron			10		Ω

analog.com.jp Rev. 0 | 7 of 94

仕様

表 1. 仕様(続き)

Parameter ¹	Test Conditions/Comments	Min	Тур	Max	Unit
Current Through Switch ²			25		mA
PULL-UP CURRENTS					
Source Current			100		nA
BURNOUT CURRENTS					
Source/Sink Current			±0.1, 2, 10		μA
Accuracy	Sinking/Sourcing				F
	±0.1µA		25		%
	±2μA, ±10μA		10		%
GENERAL-PURPOSE I/O (GPIO0 to GPIO3) ²	With respect to AVSS				,,,
Input Mode Leakage Current	Than toopoot to 7 th oo	-1		+1	μA
Floating State Output Capacitance		'	5	.,	pF
Output High Voltage, V _{OH}	I _{SOURCE} = 200µA	AVSS + 4	V		V
Output Low Voltage, V _{OL}	I _{SINK} = 800μA	7,000 . 4		AVSS + 0.4	V
Input High Voltage, V _{IH}	ISINK - OOOPA	AVSS + 3		AV00 1 0.4	V
Input Low Voltage, V _{IL}		AV33 1 3		AVSS + 0.7	V
DIAGNOSTIC TRIP POINTS				AV33 + 0.1	V
		0.6		0.05	V
Reference Detect Level		0.6		0.85	V
Reference/AIN OV/UV Trip Level		AV/DD + 0.005			N/
Overvoltage		AVDD + 0.065		AV / O.O O.O	V
Undervoltage				AVSS - 0.065	V
Reference/AIN OV/UV Clear Level		AV/DD : 0.045			l v
Overvoltage		AVDD + 0.015		AV /00 0.04	V
Undervoltage	40. 44. 400. 4	N/DD 4.0		AVSS - 0.01	V
Excitation Current Source Compliance	10μA to 100μA	AVDD - 1.3		AVDD - 0.8	V
W2071 2 1 1	>100µA	AVDD - 1.6		AVDD - 1	V
ALDO Trip Point			1.5		V
DLDO Trip Point			1.6		V
CLOCK					
Internal Clock					
Frequency			16		MHz
Duty Cycle			50:50		%
External Clock (CLK)		1	16	17	MHz
Minimum Low Time		27.6			ns
Minimum High Time		27.6			ns
LOGIC INPUTS ²					
Input High Voltage, V _{INH}		0.8 × IOVDD			V
Input Low Voltage, V _{INL}				0.2 × IOVDD	V
Hysteresis			0.04		V
Leakage Currents	SYNC_IN Pin			+15	uA
	All other pins	-1		+1	uA
Input Capacitance	All digital inputs		10		pF
LOGIC OUTPUT ² (CLK, DIG_AUX1, DIG_AUX2, SDO)					
Output High Voltage, V _{OH} ²	I _{SOURCE} = 1mA	0.8 × IOVDD			V
Output Low Voltage, V _{OL} ²	I _{SINK} = 2mA			0.4	V
Leakage Current	Floating state	-1		+1	μA
Output Capacitance	Floating state		10		pF
SYSTEM CALIBRATION ²					
Full-Scale (FS) Calibration Limit				1.05 × FS	V

analog.com.jp Rev. 0 | 8 of 94

仕様

表 1. 仕様(続き)

Parameter ¹	Test Conditions/Comments	Min	Тур	Max	Unit
Zero-Scale Calibration Limit		−1.05 × FS			V
Input Span		0.8 × FS		2.1 × FS	V
POWER REQUIREMENTS					
Power Supply Voltage					
AVDD to AVSS		4.75		5.25	V
AVSS to DGND		-2.625		0	V
IOVDD to DGND		1.7		5.25	V
IOVDD to AVSS	For AVSS < DGND			6.35	V
POWER SUPPLY CURRENTS ⁷					
AVDD Current, External Reference					
Gain = 1 precharge			5		mA
Gain < 16 except Gain = 1 precharge			7		mA
Gain ≥ 16			10		mA
I _{AVDD} Increase Due To					
Both Reference Buffers					
Precharge			0.7		mA
Full Buffer			1.7		mA
Internal Reference			0.5		mA
Diagnostics			0.1		mA
Excitation Currents			0.06		mA
VBIAS			0.05		mA
IOVDD Current	External clock		1		mA
	Internal clock		1.3		mA
AVDD Standby Mode	LDOs on only		70		μA
AVDD Power-Down Mode			0.2		μA
IOVDD Standby Mode	LDOs on only		15		μA
IOVDD Power-Down Mode			8.0		μA
POWER DISSIPATION ⁷	IOVDD = 5.25V, AVDD = 5.25V				
Full Operating Mode	Gain = 1, reference buffers disabled, external clock and reference		32		mW
	Gain > 16, reference buffers enabled, internal clock and reference		71		mW
Standby Mode	LDOs on only		447		μW
Power-Down Mode			5.25		μW

¹ 温度範囲は-40°C~+105°Cです。

analog.com.jp Rev. 0 | 9 of 94

² これらの仕様は、製品テストを受けたものではありませんが、製品の初期リリース時に特性評価データで裏付けられています。

³ オフセット誤差は、システム・キャリブレーションまたは内部ゼロスケール・キャリブレーションに従って選択されたプログラム済み ODR のノイズの程度です。システム・フルスケール・キャリブレーションにより、プログラム済み ODR のノイズと同等レベルにまでゲイン誤差が減少します。

 $^{^4}$ AINP と AINM の最小電圧と最大電圧は、AVSS + 0.1V および AVDD - 0.1V です。

⁵ 差動アナログ入力の最大許容範囲は±(AVDD − 0.65V)/ゲイン、シングルエンド・アナログ入力の最大許容範囲は 0V~(AVDD − 0.65V)/ゲインで、高いリファレンス電圧を用いた場合に該当します。

⁶この仕様には、湿度感度レベル (MSL) プリコンディショニングの影響が含まれています。

⁷これは、REFOUT、励起電流、デジタル出力のピンに負荷が接続されていないときの仕様です。 デジタル入力は IOVDD または DGND に接続します。

仕様

タイミング特性

特に指定のない限り、IOVDD = 1.7V~5.25V(IOVDD < 3V の場合は DIG_OUT_STR ビットをセット)、DGND = 0V、入力ロジック 0 = 0V、入力ロジック 1 = IOVDD、 C_{LOAD} = 20pF。

表 2. タイミング特性

Parameter	Limit at T _{MIN} , T _{MAX}	Unit	Test Conditions/Comments ^{1, 2}
SCLK			
t_3	25	ns min	SCLK high pulse width
t_4	25	ns min	SCLK low pulse width
t ₁₂	8.25/f _{MOD}	ns min	\overline{RDY} high time if \overline{RDY} is low and the next conversion is available($f_{MOD} = MCLK/8$)
t ₁₃	2/MCLK	ns min	SYNC_IN low pulse width
READ OPERATION			
t ₁	0	ns min	CS falling edge to SDO active time
	12.5	ns max	4.75V < IOVDD ≤ 5.25V
	17.5	ns max	3V ≤ IOVDD ≤ 4.75V
	25	ns max	1.7V ≤ IOVDD < 3V
t_2^3	5	ns min	SCLK active edge to data valid delay ⁴
	12.5	ns max	4.75V < IOVDD ≤ 5.25V
	17.5	ns max	3V ≤ IOVDD ≤ 4.75V
	25	ns max	1.7V ≤ IOVDD < 3V
t ₅ ⁵	2.5	ns min	Bus relinquish time after $\overline{\text{CS}}$ inactive edge
	20	ns max	
t_6	5	ns min	SCLK inactive edge to CS inactive edge
t ₇	9	ns min	SCLK inactive edge to \overline{RDY} high. SDO and \overline{RDY} use separate pins or SDO and \overline{RDY} share a pin with Bit SDO_RDYB_DLY cleared. Shared pin returns to functioning as \overline{RDY} after the SCLk inactive edge
t _{7A}	t ₅	ns min	Data valid after $\overline{\text{CS}}$ inactive edge (when SDO and $\overline{\text{RDY}}$ share a pin). Bit SDO_RDYB_DLY is set. Shared pin continues to function as SDO until $\overline{\text{CS}}$ is taken high
WRITE OPERATION			
t ₈	0	ns min	CS falling edge to SCLK active edge setup time ⁴
t ₉	8	ns min	Data valid to SCLK edge setup time
t ₁₀	8	ns min	Data valid to SCLK edge hold time
t ₁₁	5	ns min	CS rising edge to SCLK edge hold time
CONTINUOUS TRANSMIT OPERATION			
t ₁₄	2	ns max	DCLK active edge to RDY falling edge setup time
t ₁₅			Difference between (data valid to DCLK edge setup time) and DCLK low time
	t _{DCLK_LOW} - 1	ns max	4.75V < IOVDD ≤ 5.25V
	t _{DCLK_LOW} - 3.5	ns max	3V ≤ IOVDD ≤ 4.75V
	t _{DCLK_LOW} - 2.5	ns max	1.7V ≤ IOVDD < 3V
t ₁₆	t _{DCLK_HIGH} - 3.5	ns max	Difference between (data valid to DCLK edge hold time) and DCLK high time
t ₁₇	3.5	ns min	DCLK rising edge to RDY high time
t ₁₈			Difference between DCLK high pulse width and applied external MCLK high time. Valid for divide by 1 option
	-2	ns max	4.75V < IOVDD ≤ 5.25V
	-6.5	ns max	3V ≤ IOVDD ≤ 4.75V
	-4	ns max	1.7V ≤ IOVDD < 3V
t ₁₉			Difference between DCLK low pulse width and applied external MCLK low time. Valid for divide by 1 option
	1.5	ns max	4.75V < IOVDD ≤ 5.25V
	3.5	ns max	3V ≤ IOVDD ≤ 4.75V

analog.com.jp Rev. 0 | 10 of 94

仕様

表 2. タイミング特性(続き)

Parameter	Limit at T _{MIN} , T _{MAX}	Unit	Test Conditions/Comments ^{1, 2}
	2	ns max	1.7V ≤ IOVDD < 3V

¹初回リリース時のサンプル・テストにより、適合性が確保されています。

タイミング図

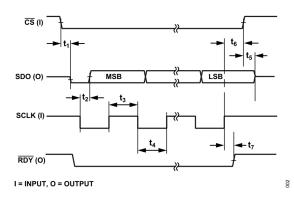


図 2. 読出しサイクルのタイミング図(SDO と \overline{RDY} が別々のピンを使用)

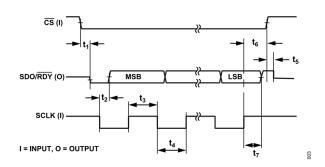


図 3. 読出しサイクルのタイミング図(SDO_RDYB_DLY ビットがクリアされた状態で SDO と $\overline{\text{RDY}}$ が同じピンを共用)

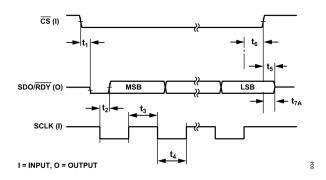


図 4. 読出しサイクルのタイミング図 (SDO RDYB DLY ビットがセットされた状態で SDO とRDYが同じピンを共用)

analog.com.jp Rev. 0 | 11 of 94

² 図 4 と図 5 を参照してください。

 $^{^3}$ このパラメータは、出力が V_{OL} リミットまたは V_{OH} リミットを超えるために要する時間で定義されています。

⁴ SCLK のアクティブ・エッジとは、SCLK の立下がりエッジを意味します。

⁵RDYはデータ・レジスタの読出し後にハイに戻ります。シングル変換モードおよび連続変換モードでは、RDYがハイ・レベルの間に、必要ならば同一データを再度読み出すことができますが、2回目以降の読出しは、次の出力更新が近いところで行わないように注意してください。連続読出し機能を有効化すると、デジタル・ワードは1回しか読み出すことができません。

仕様

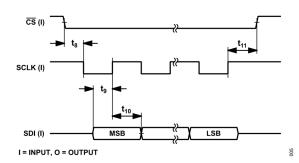


図 5. 書込みサイクルのタイミング図

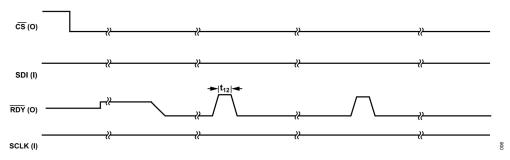
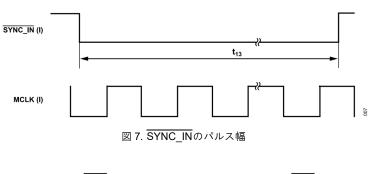



図 6. 最初にRDYがローで、次の変換が可能な場合に、DOUT/RDYがハイになる時間

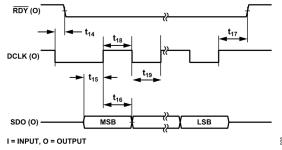


図 8. 連続送信

analog.com.jp Rev. 0 | 12 of 94

絶対最大定格

特に指定のない限り、 $T_A = 25$ °C。

表 3. 絶対最大定格

Parameter	Rating
AVDD to AVSS	-0.3V to +6.5V
AVDD to DGND	-0.3V to +6.5V
IOVDD to DGND	-0.3V to +6.5V
IOVDD to AVSS	-0.3V to +7.5V
AVSS to DGND	-3.25V to +0.3V
Analog Input Voltage to AVSS	-0.3V to AVDD + 0.3V
Reference Input Voltage to AVSS	-0.3V to AVDD + 0.3V
GPIO Input Voltage to AVSS	-0.3V to AVDD + 0.3V
GPIO Output Voltage to AVSS	-0.3V to AVDD + 0.3V
REFOUT to AVSS	-0.3V to AVDD + 0.3V
Digital Input Voltage to DGND	-0.3V to IOVDD + 0.3V
Digital Output Voltage to DGND	-0.3V to IOVDD + 0.3V
Analog Input/Digital Input Current	10mA
Temperature	
Operating Range	-40°C to +105°C
Storage Range	-65°C to +150°C
Maximum Junction	150°C
Lead Soldering, Reflow	260°C

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この規定はストレス定 格のみを指定するものであり、この仕様の動作のセクションに 記載する規定値以上でのデバイス動作を定めたものではありま せん。デバイスを長時間にわたり絶対最大定格状態に置くと、 デバイスの信頼性に影響を与えることがあります。

熱抵抗

熱性能は、プリント回路基板(PCB)の設計と動作環境に直接関連しています。PCB の熱設計には細心の注意を払う必要があります。 θ_{IA} は、1 立方フィートの密封容器内で測定された、自然対流下でのジャンクションから周囲への熱抵抗です。 θ_{IB} は、ジャンクションから基板への熱抵抗です。 θ_{IC} は、ジャンクションからケースへの熱抵抗です。表 4 に規定されている熱抵抗値は、JEDEC 仕様に基づいて計算されたものであり、JESD51-12に従って使用してください。最も厳しい条件でのジャンクション温度が記載されています。表 4 の値は、自然対流の試験環境での標準的な JEDEC 2S2P 熱試験ボードに基づいて計算したものです。詳細については、JEDEC JESD51 シリーズを参照してください。

表 4. 熱抵抗

Package Type	θ_{JA}	θ_{JB}	θ _{JC_TOP}	Unit
CP-32-34	39.49	9.93	14.86	°C/W

静電放電(ESD)定格

以下の ESD 情報は、ESD に敏感なデバイスを取り扱うために示したものですが、対象は ESD 保護区域内だけに限られます。

ANSI/ESDA/JEDEC JS-001 準拠の人体モデル (HBM)。

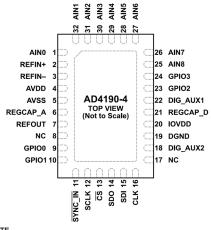
ANSI/ESDA/JEDEC JS-002 準拠の電界誘起チャージ・デバイス・モデル(FICDM)。

AD4190-4 の ESD 定格

表 5. AD4190-4、32 ピン LFCSP

ESD Model	Withstand Threshold (kV)	Class
HBM	4	3A
FICDM	1.25	C3

ESDに関する注意



ESD(静電放電)の影響を受けやすいデバイスです。

電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術であるESD保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。

analog.com.jp Rev. 0 | 13 of 94

ピン配置およびピン機能の説明

NOTE
1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO AVSS.

図 9. ピン配置

表 6.ピン機能の説明

ピン番号	記号	説明
1	AIN0	アナログ入力 0/励起電流/バイアス電圧。この入力ピンは、差動入力または疑似差動入力の正端子または負端子になるよう CHANNEL_MAPn レジスタで設定されます。あるいは、いずれかの内部プログラマブル励起電流源からこのピンに出力できます。アナログ電源レールの中間のバイアス電圧をこのピンで出力できます。
2	REFIN+	正のリファレンス入力。外部リファレンスを、REFIN+と REFIN-の間に印加します。REFIN+の範囲は AVDD〜AVSS + 1V です。公称リファレンス電圧(REFIN+ - REFIN-)は 2.5V ですが、デバイスは 1V〜AVDD の範囲のリファレンスで動作します。
3	REFIN-	負のリファレンス入力。このリファレンス入力の範囲は AVSS~AVDD - 1V です。
4	AVDD	アナログ電源電圧。これは AVSS を基準としています。
5	AVSS	アナログ電源電圧。AVDD の電圧は、AVSS を基準としています。AVDD と AVSS の差は 4.75V~5.25V の範囲であることが必要です。AVSS を 0V よりも低くして、AD4190-4 にバイポーラ電源を供給することもできます。例えば、AVSS を-2.5V に、AVDDを+2.5V にそれぞれ接続すると、ADC に±2.5V を供給できます。
6	REGCAP_A	アナログ低ドロップアウト (LDO) レギュレータの出力。このピンは、1μF のコンデンサと 0.1μF のコンデンサを並列に接続して、AVSS とデカップリングします。
7	REFOUT	内部リファレンス出力。これは AVSS を基準としています。内部 2.5V 電圧リファレンスのバッファ付き出力をこのピンに出力できます。このピンは、0.1µF のコンデンサを用いて AVSS とデカップリングします。
8	NC	接続なし。
9	GPIO0	汎用入出力/正のリファレンス入力/パワー・スイッチ/励起電流。このピンは、AVSS~AVDDの範囲を基準にした汎用入出力 ビットとして設定できます。このピンは、REFIN2±の正のリファレンス入力としても機能します。REFIN2+の範囲は AVDD~ AVSS + 1Vです。公称リファレンス電圧(REFIN2+ - REFIN2-)は 2.5Vですが、デバイスは 1V~AVDD の範囲のリファレンスで動作します。このピンは、AVSS に対するローサイド・パワー・スイッチとしても機能できます。いずれかの内部プログラマブル励起電流源からこのピンに出力することも可能です。
10	GPIO1	汎用入出力/負のリファレンス入力/パワー・スイッチ/励起電流。このピンは、AVSS〜AVDD の範囲を基準にした汎用入出力 ビットとして設定できます。このピンは、REFIN2±の負のリファレンス入力としても機能します。REFIN2-の範囲は AVSS〜 AVDD - 1V です。このピンは、AVSS に対するローサイド・パワー・スイッチとしても機能できます。いずれかの内部プログラ マブル励起電流源からこのピンに出力することも可能です。
11	SYNC_IN	同期入力。このピンは、複数の AD4190-4 デバイスを使用する場合にデジタル・フィルタとアナログ変調器の同期を可能にするロジック入力です。デフォルト・モードの場合、SYNC_INをローにすると、デジタル・フィルタ、フィルタ制御ロジック、キャリブレーション制御ロジックの各ノードがリセットされ、アナログ変調器がリセット状態に保たれます。SYNC_INは、デジタル・インターフェースには影響を与えませんが、RDYがローの場合はこれをハイ状態にリセットします。複数のチャンネルがイネーブルの場合、SYNC_IN機能を用いるとシーケンスは強制的にリセットされます。そのため、SYNC_INがハイになると、変換シーケンスは最初にイネーブルされたチャンネルから開始します。この入力は ALT_SYNC モードでも使用します。ALT_SYNC モードで複数のチャンネルがイネーブルされている場合、シーケンサはリセットされず、SYNC_INピンは、シーケンスにおいて新たに選択されたチャンネルのサンプリングをADCが開始するタイミングの制御に用いられます。そのため、チャンネルの変更後、ADC はSYNC_INがハイになるまで待ってからサンブリングを開始します。このピンの使用に関する詳細については、ADC の同期のセクションを参照してください。
12	SCLK	シリアル・クロック入力。このシリアル・クロック入力は、ADCとのデータ転送に使用します。SCLKにはシュミット・トリガ入力が内蔵されているため、光アイソレーション・アプリケーションのインターフェースにも適しています。転送される全データが連続したパルス列である場合、シリアル・クロックも連続にすることができます。あるいは、ADCとの間で小さいデータ群として情報が送受信される場合は、不連続クロックにすることもできます。
13	<u>CS</u>	チップ・セレクト入力。これは ADC を選択するアクティブ・ローのロジック入力です。 CSは、シリアル・バスに複数のデバイスが接続されたシステムで ADC を選択するために使用するか、デバイスと通信する際にフレーム同期信号として使用します。 SCLK、DIN、SDO 信号のみでインターフェースする場合は、 CSをローにハードワイヤー接続することができます。 CSがローに ハードワイヤー接続されている場合、SDO ピンは常にイネーブルされています。そのため、SDO ピンにはマイクロプロセッサに 専用ピンが必要です。

analog.com.jp Rev. 0 | 14 of 94

ピン配置およびピン機能の説明

表 6.ピン機能の説明(続き)

ピン番号	記号	説明
14	SDO	シリアル・データ出力/データ・レディ出力。SDO は、ADC の出力シフト・レジスタにアクセスするためのシリアル・データ出力ピンとして機能します。出力シフト・レジスタには、内蔵するどのデータ・レジスタまたは制御レジスタからのデータでも格納できます。更に、SDO はデータ・レディ・ピン(RDY)として機能し、ローに移行することで変換の完了を示します。変換後にデータが読み出されないと、次の更新が行われる前にこのピンはハイになります。SDO の立下がりエッジは、プロセッサに対する割込みとして使用され、有効なデータが存在することを示します。外部シリアル・クロックを使用する場合は、SDO ピンを使用してデータを読み出すことができます。 で Sがローの場合、データ/制御ワードの情報が SCLKの立下がりエッジで SDO ピンに出力され、SCLKの立上がりエッジで有効になります。なお、DIG_AUX1 ピンでデータ・レディ機能を使用することもできます。これは、シリアル・データ出力とデータ・レディ機能を独立させたい場合に便利です。また、AD4190-4 には、変換の読出しを簡単に行える連続送信モードもあります。 AD4190-4 は DCLK およびフレーム同期信号を供給します。そのため、変換結果は使用可能になると自動的に SDO に置かれます。連続送信モードが有効化されている場合、このモードが無効化されるまで、SDO ピンは変換結果の出力専用となります。
15	501	ADCの入力シフト・レジスタへのシリアル・データ入力。入力シフト・レジスタ内のデータは、命令フェーズで選択されたレジスタ・アドレスと共に、ADC内の制御レジスタに転送されます。
16	CLK	クロック入出力。どちらの機能として動作させるかは、CLOCK_CTRL レジスタ内の CLOCKSEL ビットで設定します。MCLK源の選択には、以下の3つのオプションがあります。内部発振器:出力なし、内部発振器:CLK ピンに出力、外部クロック:CLKピンに入力(入力は IOVDD ロジック・レベルであることが必要です)。
17	NC	接続なし。
18	DIG_AUX2	連続送信モードでのクロック DCLK/START 入力。連続送信モードでは、このピンはデータ・クロック DCLK を供給します。またこのピンは、DIG_AUX1 ピンと併用して、共通のメイン・クロックを共用する複数のデバイスでの同期を行うために使用することもできます。このモードでは、印加された START 信号から同期信号 SYNC_OUT を内部で生成し、SYNC_OUT が内部メイン・クロックと同期します。SYNC_OUT は、マルチ AD4190-4 システム内の全ての AD4190-4 ADC に印加され、全ての ADC の変換動作が同期します。
19	DGND	デジタル・グラウンド基準ポイント。
20	IOVDD	シリアル・インターフェース電源電圧、1.7V〜5.25V。IOVDD は AVDD とは無関係です。例えば、AVDD が 5.25V の場合でも、 シリアル・インターフェースは 1.7V で動作できます。
21	REGCAP_D	デジタル LDO レギュレータ出力。このピンは、1μF のコンデンサと 0.1μF のコンデンサを並列に接続して、DGND とデカップリングします。
22	DIG_AUX1	SPI インターフェース用データ・レディ/連続送信モードでのデータ・レディ/同期出力。シリアル・インターフェースを使用している場合、データ・レディ機能をこのピンで出力し、SDO ピンをシリアル・データ出力専用にすることができます。連続送信モードを用いる場合、このピンは同様に、データ・レディ・ピンとして機能し、DIG_AUX2 がデータ送信用にクロック DCLK を供給します。またこのピンは、DIG_AUX2 ピンと併用して、共通のメイン・クロックを共用する複数のデバイスでの同期を行うために使用することもできます。このモードでは、印加された START 信号から同期信号 SYNC_OUT を内部で生成し、SYNC_OUT が内部メイン・クロックと同期します。SYNC_OUT は、マルチ AD4190-4 システム内の全ての AD4190-4 ADC に印加され、全ての ADC の変換動作が同期します。
23	GPIO2	汎用入出力/励起電流。このピンは、AVSS~AVDDの範囲を基準にした汎用入出力ビットとして設定できます。いずれかの内部プログラマブル励起電流源からこのピンに出力することも可能です。
24	GPIO3	汎用入出力/励起電流。このピンは、AVSS~AVDDの範囲を基準にした汎用入出力ビットとして設定できます。いずれかの内部プログラマブル励起電流源からこのピンに出力することも可能です。
25	AIN8	アナログ入力 8/励起電流/バイアス電圧。この入力ピンは、差動入力または疑似差動入力の正端子または負端子になるよう CHANNEL_MAPn レジスタで設定されます。あるいは、いずれかの内部プログラマブル励起電流源からこのピンに出力できます。アナログ電源レールの中間のバイアス電圧をこのピンで出力できます。
26	AIN7	アナログ入力 7/励起電流/バイアス電圧。この入力ピンは、差動入力または疑似差動入力の正端子または負端子になるよう CHANNEL_MAPn レジスタで設定されます。あるいは、いずれかの内部プログラマブル励起電流源からこのピンに出力できます。アナログ電源レールの中間のバイアス電圧をこのピンで出力できます。
27	AIN6	アナログ入力 6/励起電流/パイアス電圧。この入力ピンは、差動入力または疑似差動入力の正端子または負端子になるよう CHANNEL_MAPn レジスタで設定されます。あるいは、いずれかの内部プログラマブル励起電流源からこのピンに出力できま す。アナログ電源レールの中間のパイアス電圧をこのピンで出力できます。
28	AIN5	アナログ入力 5 / 励起電流 / バイアス電圧。この入力ピンは、差動入力または疑似差動入力の正端子または負端子になるよう CHANNEL_MAPn レジスタで設定されます。あるいは、いずれかの内部プログラマブル励起電流源からこのピンに出力できます。アナログ電源レールの中間のバイアス電圧をこのピンで出力できます。
29	AIN4	アナログ入力 4/励起電流/パイアス電圧。この入力ピンは、差動入力または疑似差動入力の正端子または負端子になるよう CHANNEL_MAPn レジスタで設定されます。あるいは、いずれかの内部プログラマブル励起電流源からこのピンに出力できます。アナログ電源レールの中間のパイアス電圧をこのピンで出力できます。
30	AIN3	アナログ入力 3/励起電流/バイアス電圧。この入力ピンは、差動入力または疑似差動入力の正端子または負端子になるよう CHANNEL_MAPn レジスタで設定されます。あるいは、いずれかの内部プログラマブル励起電流源からこのピンに出力できます。アナログ電源レールの中間のバイアス電圧をこのピンで出力できます。

analog.com.jp Rev. 0 | 15 of 94

ピン配置およびピン機能の説明

表 6.ピン機能の説明(続き)

ピン番号	記号	説明
31	AIN2	アナログ入力 2/励起電流/バイアス電圧。この入力ピンは、差動入力または疑似差動入力の正端子または負端子になるよう CHANNEL_MAPn レジスタで設定されます。あるいは、いずれかの内部プログラマブル励起電流源からこのピンに出力できます。アナログ電源レールの中間のバイアス電圧をこのピンで出力できます。
32	AIN1	アナログ入力 1/励起電流/バイアス電圧。この入力ピンは、差動入力または疑似差動入力の正端子または負端子になるよう CHANNEL_MAPn レジスタで設定されます。あるいは、いずれかの内部プログラマブル励起電流源からこのピンに出力できます。アナログ電源レールの中間のバイアス電圧をこのピンで出力できます。
	EP	露出パッド。露出パッドは AVSS に接続します。

analog.com.jp Rev. 0 | 16 of 94

代表的な性能特性

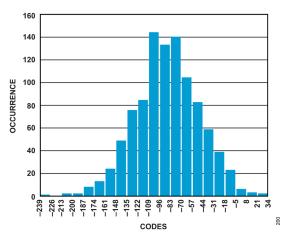


図 10. ノイズ・ヒストグラム (sinc⁵ + 平均化フィルタ、62.5kSPS、PGA_Gain = 1)

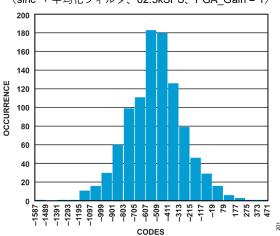


図 11. ノイズ・ヒストグラム (sinc⁵ + 平均化フィルタ、62.5kSPS、PGA_Gain = 16)

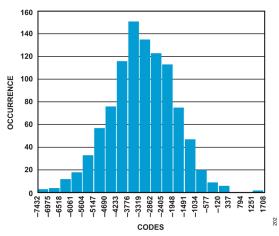


図 12. ノイズ・ヒストグラム (sinc⁵ + 平均化フィルタ、62.5kSPS、PGA_Gain = 128)

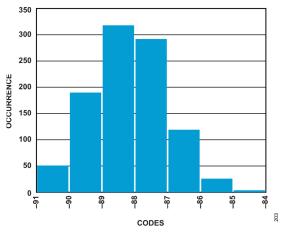


図 13. ノイズ・ヒストグラム (sinc 5 + 平均化フィルタ、50SPS、PGA_Gain = 1)

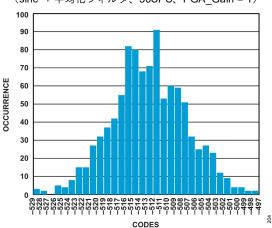


図 14. ノイズ・ヒストグラム (sinc⁵ + 平均化フィルタ、50SPS、PGA_Gain = 16)

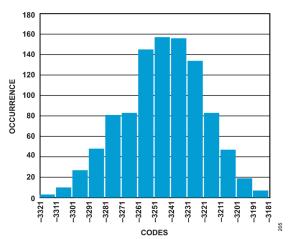


図 15. ノイズ・ヒストグラム (sinc⁵ + 平均化フィルタ、50SPS、PGA_Gain = 128)

analog.com.jp Rev. 0 | 17 of 94

代表的な性能特性



図 16. AVDD 電流と温度の関係(内部リファレンス)

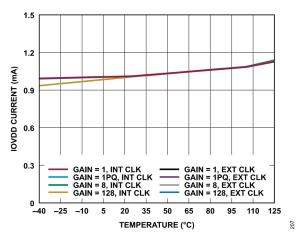


図 17. IOVDD 電流と温度の関係(内部リファレンス)

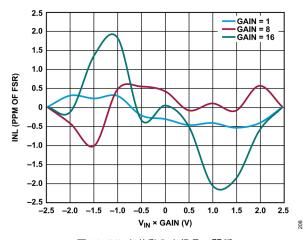


図 18. INL と差動入力信号の関係 (アナログ入力×ゲイン)、25°C 時

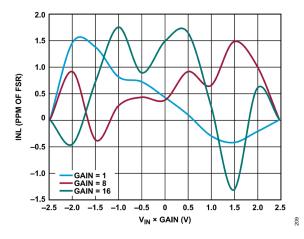


図 19. INL と差動入力信号の関係 (アナログ入力×ゲイン)、-40℃時

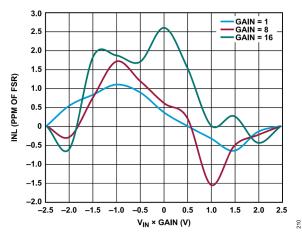


図 20. INL と差動入力信号の関係 (アナログ入力×ゲイン)、125°C 時

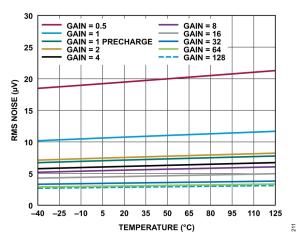


図 21. 入力換算実効値ノイズと温度の関係 (内部リファレンス、sinc⁵ + 平均化フィルタ、62.5kSPS)

analog.com.jp Rev. 0 | 18 of 94

代表的な性能特性

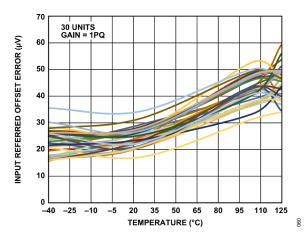


図 22. 入力換算オフセットと温度の関係 (ゲイン = 1 プリチャージ)

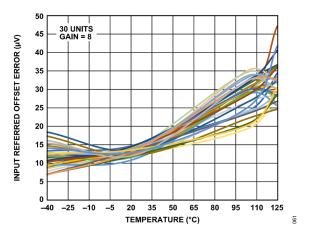


図 23. 入力換算オフセットと温度の関係 (ゲイン = 8)

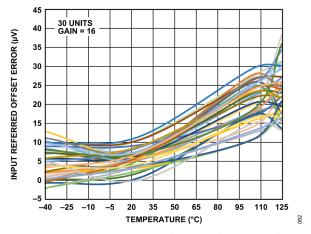


図 24. 入力換算オフセットと温度の関係(ゲイン = 16)

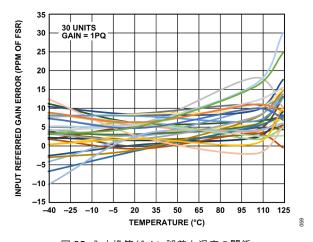


図 25. 入力換算ゲイン誤差と温度の関係 (ゲイン = 1 プリチャージ)

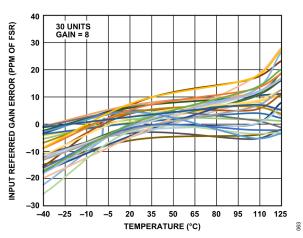


図 26. 入力換算ゲイン誤差と温度の関係 (ゲイン = 8)

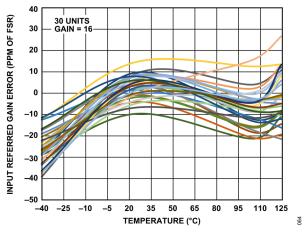


図 27. 入力換算ゲイン誤差と温度の関係(ゲイン = 16)

analog.com.jp Rev. 0 | 19 of 94

代表的な性能特性

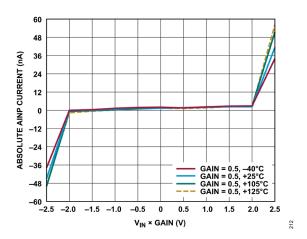


図 28. 絶対 AINP 電流と V_{IN} の関係 $(V_{CM}$ = (AVDD + AVSS)/2、ゲイン = 0.5)

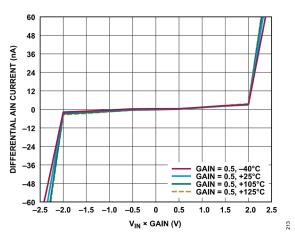


図 29. 差動 AIN 電流と V_{IN} の関係 $(V_{CM}$ = (AVDD + AVSS)/2、ゲイン = 0.5)

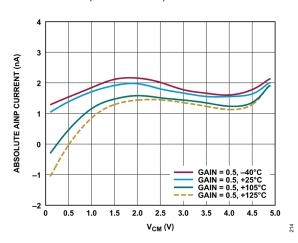


図 30. 絶対 AINP 電流と V_{CM} の関係(V_{IN} = 0、ゲイン = 0.5)

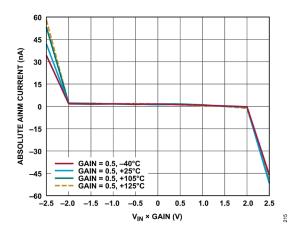


図 31. 絶対 AINM 電流と V_{IN} の関係 $(V_{CM}$ = (AVDD + AVSS)/2、ゲイン = 0.5)

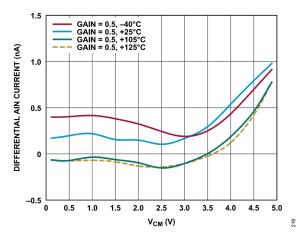


図 32. 差動 AIN 電流と V_{CM} の関係 (V_{IN} = 0、ゲイン = 0.5)

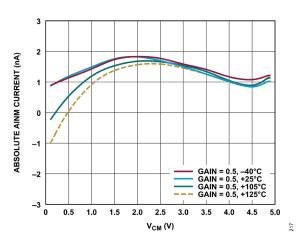


図 33. 絶対 AINM 電流と V_{CM} の関係(V_{IN} = 0、ゲイン = 0.5)

analog.com.jp Rev. 0 | 20 of 94

代表的な性能特性

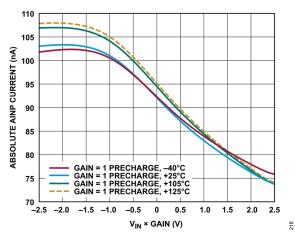


図 34. 絶対 AINP 電流と V_{IN} の関係 (V_{CM} = (AVDD + AVSS)/2、ゲイン = 1 プリチャージ)

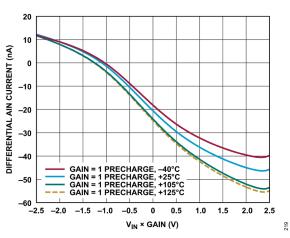


図 35. 差動 AIN 電流と V_{IN} の関係 (V_{CM} = (AVDD + AVSS)/2、ゲイン = 1 プリチャージ)

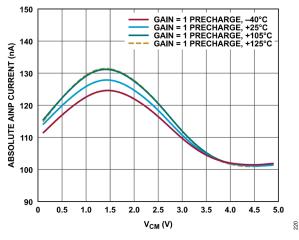


図 36. 絶対 AINP 電流と V_{CM} の関係 $(V_{IN} = 0$ 、ゲイン = 1 プリチャージ)

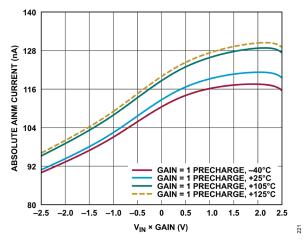


図 37. 絶対 AINM 電流と V_{IN} の関係 (V_{CM} = (AVDD + AVSS)/2、ゲイン = 1 プリチャージ)

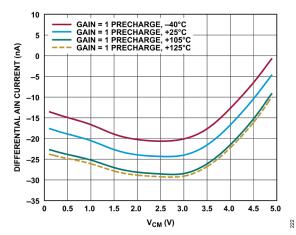


図 38. 差動 AIN 電流と V_{CM} の関係 $(V_{IN} = 0$ 、ゲイン = 1 プリチャージ)

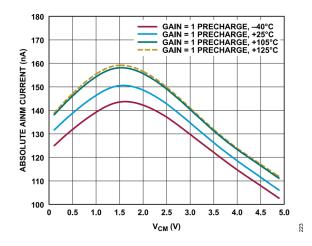


図 39. 絶対 AINM 電流と V_{CM} の関係 $(V_{IN} = 0$ 、 ゲイン = 1 プリチャージ)

analog.com.jp Rev. 0 | 21 of 94

代表的な性能特性

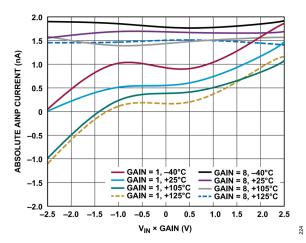


図 40. 絶対 AINP 電流と V_{IN}の関係 (V_{CM} = (AVDD + AVSS)/2、ゲイン 1~ゲイン 8)

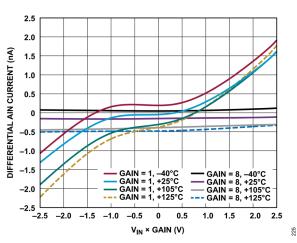


図 41. 差動 AIN 電流と V_{IN}の関係 (V_{CM} = (AVDD + AVSS)/2、ゲイン 1~ゲイン 8)

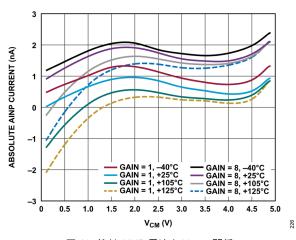


図 42. 絶対 AINP 電流と V_{CM} の関係 (V_{IN} = 0、ゲイン 1~ゲイン 8)

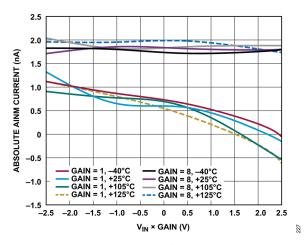


図 43. 絶対 AINM 電流と V_{IN} の関係 $(V_{CM}$ = (AVDD + AVSS)/2、ゲイン 1~ゲイン 8)

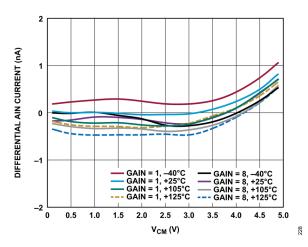


図 44. 差動 AIN 電流と V_{CM} の関係 (V_{IN} = 0、ゲイン 1~ゲイン 8)

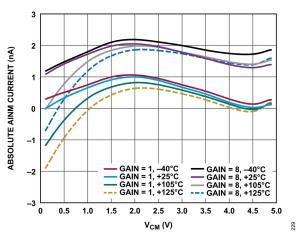


図 45. 絶対 AINM 電流と V_{CM} の関係 (V_{IN} = 0、ゲイン 1~ゲイン 8)

analog.com.jp Rev. 0 | 22 of 94

代表的な性能特性

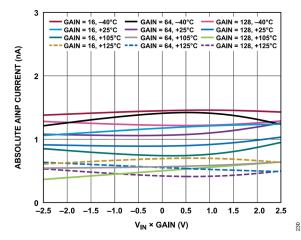


図 46. 絶対 AINP 電流と V_{IN} の関係 (V_{CM} = (AVDD + AVSS)/2、ゲイン 16~ゲイン 128)

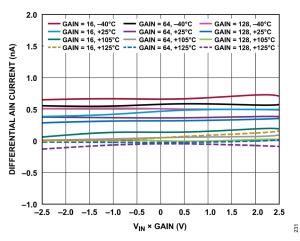


図 47. 差動 AIN 電流と V_{IN} の関係 $(V_{\text{CM}}$ = (AVDD + AVSS)/2、ゲイン 16~ゲイン 128)

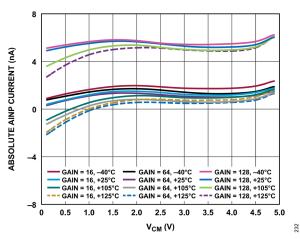


図 48. 絶対 AINP 電流と V_{CM} の関係 $(V_{IN}=0$ 、ゲイン 16~ゲイン 128)

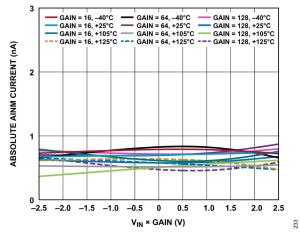


図 49. 絶対 AINM 電流と V_{IN} の関係 $(V_{CM}$ = (AVDD + AVSS)/2、ゲイン 16~ゲイン 128)

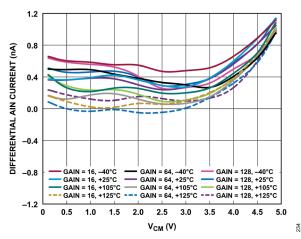


図 50. 差動 AIN 電流と V_{CM} の関係 (V_{IN} = 0、ゲイン 16~ゲイン 128)

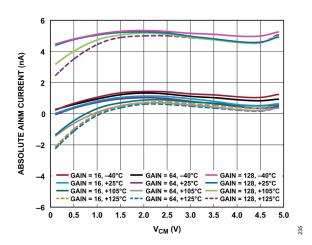


図 51. 絶対 AINM 電流と V_{CM} の関係 $(V_{IN}=0$ 、ゲイン 16~ゲイン 128)

analog.com.jp Rev. 0 | 23 of 94

代表的な性能特性

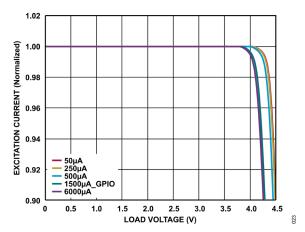


図 52. 励起電流出力コンプライアンス

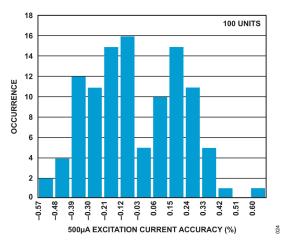


図 53. IOUTn の励起電流の初期精度(500µA)

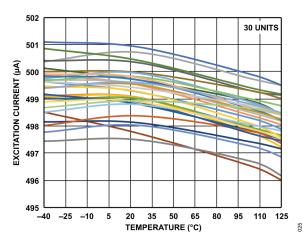


図 54. IOUTn の励起電流と温度の関係(500µA)

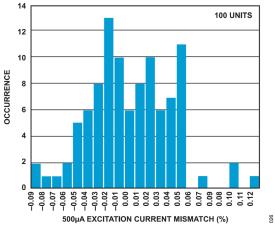


図 55. IOUTn の励起電流の初期マッチング(500µA)

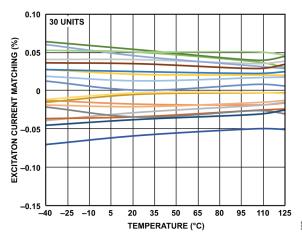


図 56. IOUTn の励起電流のマッチングと温度の関係(500µA)

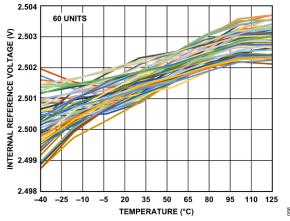
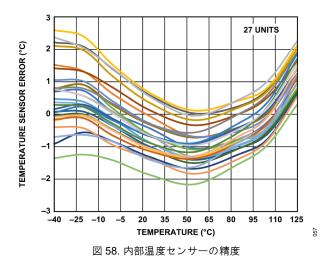



図 57. 内蔵リファレンス電圧と温度の関係 (ハンダ付けしたデバイス)

analog.com.jp Rev. 0 | 24 of 94

代表的な性能特性

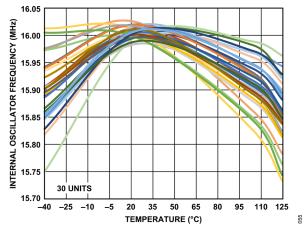


図 59. 内蔵発振器と温度の関係

Rev. 0 | 25 of 94 analog.com.jp

実効値およびノイズ性能

表 $7 \sim$ 表 16 には、様々な出力データレート、ゲイン設定、フィルタに対する AD4190-4 の実効値ノイズ、ピーク to ピーク・ノイズ、有効分解能、ノイズフリー(ピーク to ピーク)分解能が示されています。ここに示した値は、2.5V の外部リファレンスを使用したバイポーラ入力範囲の場合です。これらの値は代表値であり、0V の差動入力電圧を使用し、ADC が単一チャンネルで連続変換することによって得られた 1000 サンプルの値を集めたものです。有効分解能は実効値ノイズを基に計算された値で

あり、ピーク to ピーク分解能(括弧内の値)はピーク to ピーク・ノイズを基に計算された値であることに注意してください。このピーク to ピーク分解能は、コード・フリッカが生じない分解能を表します。

Effective Resolution = Log₂ (Input Range/RMS Noise)

Peak-to-Peak Resolution = Log₂ (Input Range/Peak-to-Peak Noise)

sinc⁵ + 平均化

表 7. ゲインと出力データレートに対する実効値ノイズ(ピーク to ピーク・ノイズ)(µV)

Filter	Output						·				
Word (Dec.)	Data Rate (SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
65,532	3.81	0.21 (1.2)	0.12 (0.60)	0.09 (0.60)	0.07 (0.30)	0.04 (0.22)	0.03 (0.19)	0.03 (0.19)	0.02 (0.12)	0.01 (0.09)	0.01 (0.09)
25,000	10	0.33 (1.8)	0.16 (0.89)	0.17 (0.89)	0.10 (0.60)	0.07 (0.37)	0.05 (0.30)	0.04 (0.26)	0.03 (0.20)	0.02 (0.15)	0.02 (0.13)
20,000	12.5	0.34 (1.8)	0.16 (0.89)	0.19 (0.89)	0.10 (0.60)	0.07 (0.45)	0.06 (0.30)	0.05 (0.28)	0.03 (0.20)	0.03 (0.17)	0.02 (0.17)
10,000	25	0.45 (3)	0.21 (1.5)	0.25 (1.5)	0.14 (1)	0.09 (0.60)	0.08 (0.52)	0.06 (0.37)	0.05 (0.35)	0.04 (0.23)	0.03 (0.19)
5,000	50	0.64 (4.2)	0.28 (1.5)	0.33 (2.1)	0.20 (1.3)	0.13 (0.82)	0.11 (0.71)	0.09 (0.58)	0.07 (0.44)	0.05 (0.31)	0.04 (0.28)
4,160	60.1	0.71 (4.8)	0.31 (1.8)	0.35 (2.1)	0.22 (1.5)	0.15 (0.89)	0.12 (0.75)	0.10 (0.65)	0.07 (0.48)	0.06 (0.36)	0.04 (0.27)
2,000	125	1 (6.6)	0.45 (2.7)	0.52 (3.6)	0.30 (1.8)	0.21 (1.3)	0.17 (1)	0.15 (0.99)	0.10 (0.70)	0.08 (0.51)	0.07 (0.47)
500	500	1.9 (13.1)	0.86 (5.7)	1 (6.3)	0.59 (3.7)	0.41 (2.7)	0.35 (2.3)	0.29 (1.9)	0.21 (1.5)	0.17 (1)	0.14 (0.95)
320	781.25	2.5 (16.7)	1.1 (7.5)	1.3 (7.8)	0.78 (5.5)	0.53 (3.2)	0.45 (2.8)	0.36 (2.4)	0.27 (1.8)	0.20 (1.4)	0.17 (1.1)
160	1,562.5	3.4 (22.6)	1.5 (10.3)	1.8 (11.7)	1.1 (7.3)	0.76 (5.7)	0.63 (4.2)	0.52 (3.2)	0.37 (2.5)	0.30 (1.9)	0.25 (1.7)
100	2,500	4.3 (28.2)	1.9 (12.6)	2.3 (15.6)	1.4 (9.4)	0.98 (6.9)	0.81 (5.2)	0.67 (4.8)	0.49 (3.3)	0.39 (2.6)	0.33 (2.2)
40	6,250	6.8 (42.5)	3 (18.9)	3.6 (23.2)	2.2 (14.6)	1.6 (11)	1.4 (9.3)	1.1 (7.5)	0.82 (5.4)	0.67 (4.4)	0.59 (3.5)
20	12,500	9.7 (63.3)	4.1 (25.2)	5.1 (34.7)	3.3 (22.2)	2.4 (16)	2.1 (13.7)	1.7 (10.5)	1.3 (8.6)	1.1 (7.4)	0.94 (6.2)
16	15,625	10.9 (75.2)	4.5 (24.6)	5.8 (38.3)	3.7 (24.5)	2.8 (18.1)	2.5 (16.5)	2 (13.5)	1.5 (10.4)	1.3 (8.7)	1.1 (7.6)
12	20833.3	12.6 (88.5)	5.1 (34.4)	6.8 (44.1)	4.4 (29.5)	3.4 (22.9)	3 (16.5)	2.4 (15.9)	1.8 (11.3)	1.6 (11)	1.4 (9.3)
8	31,250	15.4 (103.9)	6 (40.4)	8.4 (52.4)	5.6 (33.4)	4.5 (30.9)	3.9 (25.2)	3.2 (21.2)	2.5 (16.9)	2.1 (13.8)	2 (13.3)
4	62,500	19.4 (121.7)	7.1 (47.9)	10.8 (72.3)	7.6 (50)	6.1 (43.4)	5.6 (34.9)	4.5 (30.6)	3.5 (23.1)	3.1 (20.8)	2.9 (20.4)

表 8. ゲインと出力データレートに対する有効分解能(ピーク to ピーク分解能)(ビット)

Filter Word	Output Data Rate										
(Dec.)	(SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
65,532	3.81	24.0 (23.0)	24.0 (23.0)	24.0 (23.0)	24.0 (23.0)	24.0 (22.4)	24.0 (21.7)	23.5 (20.7)	23.0 (20.3)	22.4 (19.8)	21.7 (18.8)
25,000	10	24.0 (22.4)	24.0 (22.4)	24.0 (22.4)	24.0 (22.0)	24.0 (21.7)	23.5 (21.0)	22.8 (20.2)	22.4 (19.6)	21.7 (19.0)	20.9 (18.2)
20,000	12.5	24.0 (22.4)	24.0 (22.4)	24.0 (22.4)	24.0 (22.0)	24.0 (21.4)	23.4 (21.0)	22.7 (20.1)	22.2 (19.6)	21.5 (18.8)	20.8 (17.8)
10,000	25	24.0 (21.7)	24.0 (21.7)	24.0 (21.7)	24.0 (21.2)	23.7 (21.0)	23.0 (20.2)	22.2 (19.7)	21.6 (18.8)	21.0 (18.4)	20.3 (17.6)
5,000	50	23.9 (21.2)	24.0 (21.7)	23.8 (21.2)	23.6 (20.8)	23.2 (20.5)	22.4 (19.8)	21.7 (19.0)	21.1 (18.4)	20.5 (18.0)	19.8 (17.1)
4,160	60.1	23.7 (21.0)	23.9 (21.4)	23.7 (21.2)	23.4 (20.7)	23.0 (20.4)	22.3 (19.7)	21.5 (18.9)	21.1 (18.3)	20.4 (17.7)	19.7 (17.1)
2,000	125	23.3 (20.5)	23.4 (20.8)	23.2 (20.4)	23.0 (20.4)	22.5 (19.8)	21.8 (19.2)	21.0 (18.3)	20.5 (17.8)	19.9 (17.2)	19.1 (16.3)
500	500	22.3 (19.5)	22.5 (19.8)	22.2 (19.6)	22.0 (19.4)	21.5 (18.8)	20.8 (18.0)	20.1 (17.3)	19.5 (16.7)	18.8 (16.2)	18.1 (15.3)
320	781.25	21.9 (19.2)	22.2 (19.4)	21.9 (19.3)	21.6 (18.8)	21.2 (18.6)	20.4 (17.8)	19.7 (17.0)	19.2 (16.4)	18.6 (15.8)	17.8 (15.1)
160	1,562.5	21.5 (18.8)	21.7 (18.9)	21.4 (18.7)	21.1 (18.4)	20.6 (17.7)	19.9 (17.2)	19.2 (16.6)	18.7 (15.9)	18.0 (15.3)	17.2 (14.5)
100	2,500	21.1 (18.4)	21.3 (18.6)	21.1 (18.3)	20.8 (18)	20.3 (17.5)	19.6 (16.9)	18.8 (16.0)	18.3 (15.5)	17.6 (14.9)	16.9 (14.1)
40	6,250	20.5 (17.8)	20.7 (18)	20.4 (17.7)	20.1 (17.4)	19.6 (16.8)	18.8 (16)	18.1 (15.3)	17.5 (14.8)	16.8 (14.1)	16.0 (13.4)
20	12,500	20.0 (17.3)	20.2 (17.6)	19.9 (17.1)	19.5 (16.8)	19.0 (16.3)	18.2 (15.5)	17.5 (14.9)	16.9 (14.1)	16.2 (13.4)	15.3 (12.6)
16	15,625	19.8 (17)	20.1 (17.6)	19.7 (17)	19.4 (16.6)	18.8 (16.1)	18.0 (15.2)	17.3 (14.5)	16.7 (13.9)	15.9 (13.1)	15.1 (12.3)
12	20,833.3	19.6 (16.8)	19.9 (17.1)	19.5 (16.9)	19.1 (16.4)	18.5 (15.7)	17.7 (15.2)	17.0 (14.3)	16.4 (13.8)	15.6 (12.8)	14.8 (12)

analog.com.jp Rev. 0 | 26 of 94

実効値およびノイズ性能

表 8.ゲインと出力データレートに対する有効分解能(ピーク to ピーク分解能)(ビット)(続き)

Filter Word (Dec.)	Output Data Rate (SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
8	31,250	19.3 (16.6)	19.7 (16.9)	19.2 (16.5)	18.8 (16.2)	18.1 (15.3)	17.3 (14.6)	16.6 (13.8)	16.0 (13.2)	15.2 (12.5)	14.3 (11.5)
4	62,500	19.0 (16.3)	19.4 (16.7)	18.8 (16.1)	18.3 (15.6)	17.6 (14.8)	16.8 (14.1)	16.1 (13.3)	15.4 (12.7)	14.6 (11.9)	13.7 (10.9)

sinc⁵

表 9. ゲインと出力データレートに対する実効値ノイズ(ピーク to ピーク・ノイズ)(μV)

Filter Word	Output Data Rate										
(Dec.)	(SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
256	976	1.8 (12.5)	0.76 (5.1)	0.93 (6.2)	0.57 (3.7)	0.39 (2.6)	0.32 (2.2)	0.25 (1.7)	0.20 (1.2)	0.15 (0.99)	0.12 (0.80)
192	1,302	2 (13.5)	0.91 (6.5)	1.1 (7.1)	0.65 (4.1)	0.46 (3.5)	0.38 (2.5)	0.31 (2.1)	0.22 (1.5)	0.17 (1.2)	0.14 (0.91)
128	1,953	2.5 (16.5)	1.1 (7.2)	1.3 (8.5)	0.81 (5.5)	0.55 (3.6)	0.46 (3.2)	0.38 (2.5)	0.27 (1.9)	0.21 (1.4)	0.18 (1.2)
64	3,906	3.6 (23.4)	1.6 (10.7)	1.9 (12.5)	1.1 (7.1)	0.79 (5.5)	0.65 (4.3)	0.53 (3.6)	0.38 (2.5)	0.30 (2.1)	0.25 (1.7)
32	7,812.5	5.1 (33.9)	2.2 (14.4)	2.7 (18.2)	1.6 (11.1)	1.1 (7.2)	0.93 (6.3)	0.77 (5.1)	0.55 (3.7)	0.43 (2.6)	0.37 (2.5)
16	15,625	7.4 (49.0)	3.2 (21.6)	3.9 (25.9)	2.4 (15.4)	1.7 (11.2)	1.4 (9.8)	1.2 (7.1)	0.84 (5.5)	0.69 (4.6)	0.59 (4.1)
8	31,250	11.2 (73.2)	4.6 (30.1)	6.0 (40)	3.8 (25.9)	2.8 (20.2)	2.5 (17.3)	2 (13.7)	1.5 (10.6)	1.3 (8.6)	1.2 (8)
4	62,500	19.4 (127)	7.1 (45.8)	10.9 (70.8)	7.6 (51)	6.2 (40.7)	5.6 (33.2)	4.5 (30)	3.5 (24)	3 (20.7)	2.9 (20.4)

表 10. ゲインと出力データレートに対する有効分解能(ピーク to ピーク分解能)(ビット)

Filter Word (Dec.)	Output Data Rate (SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
256	976	22.4 (19.6)	22.6 (19.9)	22.4 (19.6)	22.1 (19.4)	21.6 (18.9)	20.9 (18.1)	20.2 (17.5)	19.6 (17.0)	19.0 (16.3)	18.3 (15.6)
192	1,302	22.2 (19.5)	22.4 (19.6)	22.1 (19.4)	21.9 (19.2)	21.4 (18.4)	20.7 (17.9)	20.0 (17.2)	19.4 (16.7)	18.8 (16)	18.1 (15.4)
128	1,953	21.9 (19.2)	22.1 (19.4)	21.8 (19.2)	21.6 (18.8)	21.1 (18.4)	20.4 (17.6)	19.7 (16.9)	19.1 (16.3)	18.5 (15.8)	17.8 (15)
64	3,906	21.4 (18.7)	21.6 (18.8)	21.3 (18.6)	21.1 (18.4)	20.6 (17.8)	19.9 (17.1)	19.2 (16.4)	18.7 (15.9)	18.0 (15.2)	17.3 (14.5)
32	7,812.5	20.9 (18.2)	21.1 (18.4)	20.8 (18.1)	20.6 (17.8)	20.1 (17.4)	19.4 (16.6)	18.6 (15.9)	18.1 (15.4)	17.5 (14.9)	16.7 (13.9)
16	15,625	20.4 (17.6)	20.6 (17.8)	20.3 (17.6)	20.0 (17.3)	19.5 (16.8)	18.8 (16)	18.0 (15.4)	17.5 (14.8)	16.8 (14.1)	16.0 (13.2)
8	31,250	19.8 (17.1)	20.0 (17.3)	19.7 (16.9)	19.3 (16.6)	18.7 (15.9)	17.9 (15.1)	17.2 (14.5)	16.6 (13.8)	15.9 (13.1)	15.0 (12.3)
4	62,500	19.0 (16.3)	19.4 (16.7)	18.8 (16.1)	18.3 (15.6)	17.6 (14.9)	16.8 (14.2)	16.1 (13.3)	15.4 (12.7)	14.7 (11.9)	13.7 (10.9)

sinc³

表 11. ゲインと出力データレートに対する実効値ノイズ(ピーク to ピーク・ノイズ)(μV)

Filter Word	Output Data Rate										
(Dec.)	(SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
65,532	3.81	0.21 (1.2)	0.12 (1.2)	0.12 (1.2)	0.07 (0.60)	0.03 (0.30)	0.03 (0.20)	0.02 (0.15)	0.01 (0.09)	0.01 (0.07)	0.01 (0.05)
25,000	10	0.28 (1.2)	0.15 (1.2)	0.14 (1.2)	0.07 (0.60)	0.05 (0.3)	0.04 (0.20)	0.03 (0.19)	0.02 (0.13)	0.02 (0.13)	0.01 (0.12)
20,000	12.5	0.29 (1.2)	0.11 (1.2)	0.14 (1.2)	0.09 (0.60)	0.05 (0.37)	0.04 (0.27)	0.03 (0.24)	0.02 (0.15)	0.02 (0.12)	0.02 (0.10)
10,000	25	0.37 (1.8)	0.17 (1.2)	0.19 (1.2)	0.11 (0.89)	0.07 (0.45)	0.06 (0.40)	0.05 (0.28)	0.03 (0.23)	0.03 (0.19)	0.02 (0.15)
5,000	50	0.49 (3)	0.22 (1.2)	0.25 (1.2)	0.15 (0.89)	0.10 (0.60)	0.08 (0.48)	0.07 (0.45)	0.05 (0.30)	0.04 (0.26)	0.03 (0.20)
4,160	60.1	0.55 (3.6)	0.25 (1.2)	0.28 (1.8)	0.16 (1.1)	0.11 (0.75)	0.09 (0.60)	0.07 (0.47)	0.05 (0.36)	0.04 (0.27)	0.03 (0.23)
2,000	125	0.72 (4.8)	0.32 (2.1)	0.39 (2.6)	0.24 (1.3)	0.16 (0.89)	0.13 (0.89)	0.11 (0.61)	0.08 (0.48)	0.06 (0.39)	0.05 (0.33)
500	500	1.4 (9.3)	0.64 (4.2)	0.78 (5.1)	0.47 (2.7)	0.31 (2)	0.27 (1.8)	0.22 (1.3)	0.15 (1.1)	0.13 (0.70)	0.10 (0.60)
320	781.25	1.8 (11.1)	0.78 (5.1)	0.93 (6)	0.56 (3.4)	0.40 (2.8)	0.32 (2.1)	0.28 (1.8)	0.19 (1.1)	0.15 (1.1)	0.13 (0.85)
160	1,562.5	2.6 (17.7)	1.1 (7.6)	1.3 (8.4)	0.80 (5.5)	0.56 (3.7)	0.46 (3.1)	0.39 (2.6)	0.27 (1.8)	0.22 (1.5)	0.18 (1.2)
100	2,500	3.2 (21.4)	1.4 (9.3)	1.7 (11.7)	1 (6.2)	0.71 (4.7)	0.59 (3.9)	0.48 (3.2)	0.34 (2.3)	0.27 (1.8)	0.23 (1.6)
40	6,250	5.2 (34.3)	2.3 (15.2)	2.7 (17.9)	1.6 (10.5)	1.2 (8)	0.94 (6.7)	0.78 (5.2)	0.56 (3.4)	0.44 (2.9)	0.37 (2.5)

analog.com.jp Rev. 0 | 27 of 94

実効値およびノイズ性能

表 11. ゲインと出力データレートに対する RMS ノイズ(ピーク to ピーク・ノイズ)(μV)(続き)

Filter Word (Dec.)	Output Data Rate (SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
20	12,500	7.5 (51.4)	3.3 (21.1)	3.9 (25.6)	2.4 (15.8)	1.7 (11.2)	1.4 (9.9)	1.2 (7.9)	0.86 (5.7)	0.70 (4.8)	0.60 (4.1)
16	15,625	8.4 (56.8)	3.6 (23.2)	4.5 (29.9)	2.8 (18.9)	2 (13.3)	1.7 (11.2)	1.4 (9.3)	1 (6.1)	0.84 (5.4)	0.72 (4.8)
12	20,833.3	10.2 (68.1)	4.2 (27.2)	5.4 (35.9)	3.4 (22.1)	2.5 (16.7)	2.2 (14.5)	1.8 (11.3)	1.3 (8.8)	1.1 (7.1)	0.98 (6.6)
8	31,250	13.7 (91)	5.5 (36.7)	7.5 (51.7)	4.8 (30.5)	3.7 (24.9)	3.3 (21.8)	2.7 (17.8)	2 (13.1)	1.7 (11)	1.6 (10.5)
4	62,500	39.5 (258)	17.6 (120)	20.7 (138)	12.9 (85.2)	9.5 (62.3)	8.1 (52.3)	6.5 (45.3)	5 (31.3)	4.4 (30.7)	4.1 (27.7)

表 12. ゲインと出力データレートに対する有効分解能(ピーク to ピーク分解能)(ビット)

Filter Word	Output Data Rate										
(Dec.)	(SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
65,532	3.81	24.0 (23.0)	24.0 (22.0)	24.0 (22.0)	24.0 (22.0)	24.0 (22.0)	24.0 (21.6)	24.0 (21.0)	23.5 (20.7)	22.8 (20.1)	22.0 (19.5)
25,000	10	24.0 (23.0)	24.0 (22.0)	24.0 (22.0)	24.0 (22.0)	24.0 (22.0)	23.9 (21.6)	23.3 (20.7)	22.7 (20.2)	22.1 (19.2)	21.3 (18.3)
20,000	12.5	24.0 (23.0)	24.0 (22.0)	24.0 (22.0)	24.0 (22.0)	24.0 (21.7)	23.8 (21.1)	23.1 (20.3)	22.6 (20.0)	21.9 (19.4)	21.2 (18.5)
10,000	25	24.0 (22.4)	24.0 (22)	24.0 (22.0)	24.0 (21.4)	24.0 (21.4)	23.3 (20.6)	22.7 (20.1)	22.2 (19.4)	21.5 (18.7)	20.8 (18)
5,000	50	24.0 (21.7)	24.0 (22.0)	24.0 (22.0)	24.0 (21.4)	23.6 (21.0)	22.9 (20.3)	22.1 (19.4)	21.6 (19)	21.0 (18.2)	20.3 (17.6)
4,160	60.1	24.0 (21.4)	24.0 (22.0)	24.0 (21.4)	23.9 (21.1)	23.5 (20.7)	22.7 (20.0)	22.0 (19.4)	21.5 (18.7)	20.8 (18.1)	20.1 (17.4)
2,000	125	23.7 (21.0)	23.9 (21.2)	23.6 (20.9)	23.3 (20.8)	22.9 (20.4)	22.2 (19.4)	21.5 (19.0)	20.9 (18.3)	20.3 (17.6)	19.6 (16.9)
500	500	22.8 (20)	22.9 (20.2)	22.6 (19.9)	22.3 (19.8)	21.9 (19.2)	21.1 (18.4)	20.5 (17.9)	20.0 (17.2)	19.3 (16.8)	18.6 (16.0)
320	781.25	22.4 (19.8)	22.6 (19.9)	22.4 (19.7)	22.1 (19.5)	21.6 (18.8)	20.9 (18.2)	20.1 (17.4)	19.6 (17.1)	19.0 (16.2)	18.3 (15.5)
160	1562.5	21.9 (19.1)	22.1 (19.3)	21.8 (19.2)	21.6 (18.8)	21.1 (18.4)	20.4 (17.6)	19.6 (16.9)	19.1 (16.4)	18.5 (15.7)	17.7 (15)
100	2,500	21.6 (18.8)	21.7 (19)	21.5 (18.7)	21.2 (18.6)	20.8 (18)	20.0 (17.3)	19.3 (16.6)	18.8 (16.1)	18.1 (15.4)	17.4 (14.6)
40	6,250	20.9 (18.2)	21.1 (18.3)	20.8 (18.1)	20.5 (17.9)	20.1 (17.3)	19.3 (16.5)	18.6 (15.9)	18.1 (15.5)	17.4 (14.7)	16.7 (13.9)
20	12,500	20.3 (17.6)	20.5 (17.6)	20.3 (17.6)	20.0 (17.3)	19.5 (16.8)	18.7 (15.9)	18.0 (15.3)	17.5 (14.7)	16.8 (14)	16.0 (13.2)
16	15,625	20.2 (17.4)	20.4 (17.7)	20.1 (17.4)	19.8 (17)	19.2 (16.5)	18.5 (15.8)	17.8 (15)	17.2 (14.6)	16.5 (13.8)	15.7 (13)
12	20,833.3	19.9 (17.2)	20.2 (17.5)	19.8 (17.1)	19.5 (16.8)	18.9 (16.2)	18.1 (15.4)	17.4 (14.8)	16.9 (14.1)	16.1 (13.4)	15.3 (12.5)
8	31,250	19.5 (16.7)	19.8 (17.1)	19.4 (16.6)	19.0 (16.3)	18.4 (15.6)	17.5 (14.8)	16.8 (14.1)	16.2 (13.5)	15.5 (12.8)	14.6 (11.9)
4	62,500	18.0 (15.2)	18.1 (15.3)	17.9 (15.1)	17.6 (14.8)	17.0 (14.3)	16.2 (13.5)	15.6 (12.8)	14.9 (12.3)	14.1 (11.3)	13.2 (10.5)

ポスト・フィルタ

表 13. ゲインと出力データレートに対する実効値ノイズ(ピーク to ピーク・ノイズ)(μV)、 $sinc^5$ + 平均化フィルタ、 $FILTER_FS$ = 208

Settling Time (ms)	Output Data Rate (SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
40	25	0.51 (3)	0.23 (1.5)	0.29 (1.8)	0.16 (0.89)	0.12 (0.67)	0.09 (0.52)	0.07 (0.54)	0.05 (0.33)	0.04 (0.25)	0.03 (0.21)
50	20	0.49 (3)	0.22 (1.5)	0.24 (1.5)	0.16 (0.89)	0.10 (0.67)	0.08 (0.52)	0.07 (0.47)	0.05 (0.30)	0.04 (0.24)	0.03 (0.21)
60	16.7	0.49 (28.9)	0.21 (1.5)	0.24 (1.5)	0.15 (0.89)	0.10 (0.67)	0.08 (0.52)	0.07 (0.43)	0.05 (0.32)	0.04 (0.22)	0.03 (0.22)

表 14. ゲインと出力データレートに対する有効分解能(ピーク to ピーク分解能)(ビット)、 $sinc^5$ + 平均化フィルタ、 $FILTER_FS$ = 208

Settling Time (ms)	Output Data Rate (SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
40	25	24.0 (21.7)	24.0 (21.7)	24.0 (21.4)	23.9 (21.4)	23.4 (20.8)	22.8 (20.2)	22.0 (19.1)	21.6 (18.9)	20.9 (18.2)	20.2 (17.5)
50	20	24.0 (21.7)	24.0 (21.7)	24.0 (21.7)	23.9 (21.4)	23.5 (20.8)	22.9 (20.2)	22.1 (19.4)	21.6 (19.0)	20.9 (18.3)	20.1 (17.5)
60	16.7	24.0 (21.7)	24.0 (21.7)	24.0 (21.7)	24.0 (21.4)	23.6 (20.8)	22.9 (20.2)	22.2 (19.5)	21.6 (18.9)	21.0 (18.4)	20.3 (17.4)

analog.com.jp Rev. 0 | 28 of 94

実効値およびノイズ性能

16 平均ポスト・フィルタによる平均化

表 15. ゲインと出力データレートに対する RMS ノイズ(ピーク to ピーク・ノイズ)(μV)、 $sinc^5$ + 平均化フィルタ

Filter Word	Output Data Rate										
(Dec.)	(SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
2000	7.81	0.33 (1.8)	0.22 (0.89)	0.21 (1.2)	0.18 (1.1)	0.18 (0.9)	0.18 (0.8)	0.11 (0.7)	0.12 (0.55)	0.12 (0.42)	0.10 (0.36)
500	31.25	0.53 (3)	0.28 (1.5)	0.31 (2.1)	0.23 (1.2)	0.19 (1)	0.19 (0.97)	0.13 (0.8)	0.13 (0.56)	0.12 (0.56)	0.11 (0.44)
320	48.83	0.63 (3.6)	0.32 (1.8)	0.35 (2.1)	0.25 (1.3)	0.21 (1)	0.20 (1)	0.14 (0.8)	0.13 (0.62)	0.13 (0.59)	0.11 (0.54)
160	97.66	0.87 (5.8)	0.42 (2.8)	0.48 (3.2)	0.31 (2.1)	0.25 (1.7)	0.23 (1.4)	0.16 (1.1)	0.15 (0.96)	0.14 (0.85)	0.12 (0.70)
100	156.25	1.1 (7.3)	0.51 (3.4)	0.59 (3.5)	0.37 (2.5)	0.29 (2.1)	0.26 (1.9)	0.19 (1.3)	0.16 (1.1)	0.15 (0.95)	0.13 (0.79)
40	390.63	1.7 (11.7)	0.77 (5)	0.91 (6.1)	0.56 (3.8)	0.41 (2.7)	0.35 (2.4)	0.28 (1.9)	0.21 (1.5)	0.19 (1.3)	0.16 (1.1)
20	781.25	2.4 (15.9)	1.1 (7.3)	1.3 (9.1)	0.77 (5.1)	0.55 (3.2)	0.46 (3.1)	0.38 (2.5)	0.28 (1.9)	0.23 (1.6)	0.20 (1.3)
16	976.56	2.7 (17.9)	1.2 (7.9)	1.4 (10)	0.86 (5.9)	0.61 (4.1)	0.51 (3.5)	0.41 (2.7)	0.31 (2.1)	0.25 (1.7)	0.22 (1.5)
12	1302.08	3.1 (20.3)	1.4 (9.2)	1.6 (10.7)	1.00 (6.5)	0.71 (4.7)	0.59 (4)	0.48 (3.3)	0.35 (2.3)	0.29 (2)	0.24 (1.6)
8	1953.13	3.8 (25.6)	1.7 (11)	2 (13.1)	1.22 (8.3)	0.86 (5.7)	0.72 (4.7)	0.59 (4)	0.43 (2.8)	0.35 (2.3)	0.30 (1.9)
4	3906.25	5.7 (34.7)	2.5 (16.5)	3 (20.3)	1.84 (12.6)	1.3 (8.5)	1.11 (7.7)	0.90 (5.9)	0.66 (4.4)	0.54 (3.6)	0.47 (3.1)

表 16. ゲインと出力データレートに対する有効分解能(ピーク to ピーク分解能)(ビット)、sinc⁵ + 平均化フィルタ

Filter Word	Output Data Rate										
(Dec.)	(SPS)	Gain = 0.5	Gain = 1PQ	Gain = 1	Gain = 2	Gain = 4	Gain = 8	Gain = 16	Gain = 32	Gain = 64	Gain = 128
2000	7.81	24.0 (22.4)	24.0 (22.4)	24.0 (22.0)	23.7 (21.1)	22.8 (20.4)	21.8 (19.6)	21.4 (18.8)	20.4 (18.1)	19.3 (17.5)	18.5 (16.7)
500	31.25	24.0 (21.7)	24.0 (21.7)	23.9 (21.2)	23.4 (21.0)	22.6 (20.2)	21.6 (19.3)	21.2 (18.6)	20.2 (18.1)	19.3 (17.1)	18.5 (16.4)
320	48.83	23.9 (21.4)	23.9 (21.4)	23.8 (21.2)	23.3 (20.8)	22.5 (20.2)	21.6 (19.2)	21.1 (18.6)	20.2 (17.9)	19.2 (17.0)	18.4 (16.1)
160	97.66	23.4 (20.7)	23.5 (20.8)	23.3 (20.6)	22.9 (20.2)	22.3 (19.5)	21.4 (18.8)	20.9 (18.1)	20.0 (17.3)	19.1 (16.5)	18.3 (15.8)
100	156.25	23.1 (20.4)	23.2 (20.5)	23.0 (20.4)	22.7 (19.9)	22.0 (19.2)	21.2 (18.4)	20.6 (17.9)	19.9 (17.1)	19.0 (16.3)	18.2 (15.6)
40	390.63	22.5 (19.7)	22.6 (19.9)	22.4 (19.6)	22.1 (19.3)	21.5 (18.8)	20.8 (18)	20.1 (17.3)	19.5 (16.7)	18.7 (15.9)	17.9 (15.2)
20	781.25	22.0 (19.3)	22.2 (19.4)	21.9 (19.1)	21.6 (18.9)	21.1 (18.6)	20.4 (17.6)	19.7 (16.9)	19.1 (16.3)	18.3 (15.6)	17.6 (15)
16	976.56	21.8 (19.1)	22.0 (19.3)	21.7 (18.9)	21.5 (18.7)	21.0 (18.2)	20.2 (17.4)	19.5 (16.8)	18.9 (16.2)	18.2 (15.5)	17.5 (14.7)
12	1302.08	21.6 (18.9)	21.8 (19.1)	21.6 (18.8)	21.3 (18.6)	20.8 (18)	20.0 (17.3)	19.3 (16.5)	18.8 (16.1)	18.1 (15.3)	17.3 (14.6)
8	1953.13	21.3 (18.6)	21.5 (18.8)	21.2 (18.5)	21.0 (18.2)	20.5 (17.7)	19.7 (17)	19.0 (16.3)	18.5 (15.4)	17.8 (15.1)	17.0 (14.3)
4	3906.25	20.7 (18.1)	20.9 (18.2)	20.7 (17.9)	20.4 (17.6)	19.9 (17.2)	19.1 (16.3)	18.4 (15.7)	17.8 (15.1)	17.1 (14.4)	16.3 (13.6)

analog.com.jp Rev. 0 | 29 of 94

動作原理

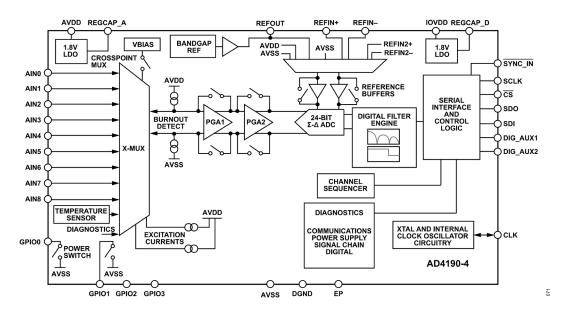


図 60. AD4190-4 の基本接続図

概要

AD4190-4 は、 Σ - Δ 変調器、バッファ、リファレンス、ゲイン段、およびオン・チップ・デジタル・フィルタ処理機能を備えた高精度 ADC で、DC 信号の測定を目的としています。圧力計測、温度計測、秤量計のアプリケーションなど、複数のエンド・システムで使用できるプラットフォーム・ソリューションです。

アナログ入力

このデバイスは、4個の差動アナログ入力、8個の疑似差動アナログ入力、または差動と疑似差動のアナログ入力の組み合わせに対応できます。AD4190-4は、柔軟性の高いマルチプレクサを採用しています。したがって、任意のアナログ入力ピンを正入力(AINP)または負入力(AINM)として選択できます。

マルチプレクサ

内蔵のクロスポイント・マルチプレクサは、アナログ入力ペア に関して柔軟に対応できます。アナログ電源電圧やデジタル電 源電圧を測定するというような診断機能では、マルチプレクサ を用いて選択します。

リファレンス

このデバイスには、ドリフトが+5ppm/℃ (代表値) の 2.5V リファレンスが内蔵されています。

リファレンス・バッファも内蔵されていて、内部リファレンス と外部から印加されたリファレンスのどちらにも使用できます。

プログラマブル・ゲイン・アンプ(PGA)

PGA を使用して、アナログ入力信号を増幅または減衰できます。PGA には、0.5、1、2、4、8、16、32、64、128 のゲインを設定できます。ゲイン = 1 プリチャージの設定では PGA をバイパスしますが、プリチャージ・バッファは引き続き使用します。ゲイン=1 プリチャージの設定を用いると、アナログ電源電流を低減できます。しかし、絶対入力電流および差動入力電流は増加します。

パーンアウト電流

外部センサーの存在を検出するため、 ± 100 nA、 $\pm 2\mu$ A、 $\pm 10\mu$ Aのいずれかに設定可能な 2 つのバーンアウト電流を備えています。

Σ-Δ ADC およびフィルタ

AD4190-4 は、デジタル・フィルタを使用した Σ -Δ 変調器を備えています。デバイスのフィルタ・オプションは次のとおりです。

- sinc⁵
- \triangleright sinc³
- ▶ sinc⁵ + 平均化
- ▶ ポスト・フィルタ

チャンネル・シーケンサ

AD4190-4 では、最大 16 チャンネルが可能です。これらのチャンネルに対するマルチプレクサは、アナログ入力、リファレンス入力、または電源から選択でき、電源モニタリングなどの診断機能を変換とインターリーブすることができます。

このシーケンサは、イネーブルされた全てのチャンネルを自動的に変換します。AD4190-4 は、選択されているチャンネルで複数の変換を行うことができます。また、AD4190-4 は、フロント・エンド回路が一定のセトリング時間を必要とする場合、選択されたチャンネルの変換を始める前に遅延を加えることもできます。

チャンネルごとの設定

AD4190-4 では、最大 8 通りのセットアップが可能です。それぞれのセットアップは、PGA のゲイン、ODR、フィルタ・タイプ、リファレンス源、ADC/励起電流チョッピング、オフセット・レジスタ、ゲイン・レジスタで構成されます。そして、各チャンネルをいずれかのセットアップにリンクします。

analog.com.jp Rev. 0 | 30 of 94

動作原理

シリアル・インターフェース

AD4190-4 は 4 線式 SPI($\overline{\text{CS}}$ 、SDI、SDO、SCLK)を備えています。 $\overline{\text{CS}}$ はローに接続できます。この場合、ADC とマイクロプロセッサ 間の通信に必要なのは 3 つのピンだけです。内蔵レジスタには、シリアル・インターフェース経由でアクセスします。

メイン・クロック

このデバイスは16MHzの内部クロックを備えています。このクロックは内部で2分周されます。この内部クロックまたは外部クロックをデバイスのクロック源として使用します。外部回路でクロック源が必要な場合は、内部クロックをCLKピンから出力することもできます。

温度センサー

内蔵の温度センサーがダイ温度をモニタします。

汎用入出力

AD4190-4 は、4 つの汎用入出力を備えています。これらは、外部回路の駆動に使用できます。例えば、これらの出力で外部マルチプレクサを制御できます。

キャリブレーション

内部オフセット・キャリブレーション機能とシステム・オフセット およびフルスケール・キャリブレーション機能の両方が搭載されて います。そのため、デバイス内部のオフセット誤差のみを除去する ことも、エンド・システム全体のオフセット誤差またはゲイン誤差 を除去することもできます。全ゲインに対するフルスケール誤差は、出荷時にキャリブレーションされています。したがって、それ以上の内部フルスケール・キャリブレーションは必要ありません。

励起電流

このデバイスは 2 つの励起電流を備えており、 $10\mu A$ 、 $50\mu A$ 、 $100\mu A$ 、 $250\mu A$ 、 $500\mu A$ 、1mA、1.5mA のいずれかに個別に設定できます。励起電流は、同じピンに出力することで合算できます。

バイアス電圧

このデバイスには、バイアス電圧発生器が内蔵されています。そのため、熱電対からの信号を適切にバイアスできます。バイアス電圧は(AVDD + AVSS)/2に設定され、どのアナログ入力ピンでも出力できます。

ブリッジ・パワーダウン・スイッチ (PDSW)

ローサイド・パワー・スイッチにより、ADC にインターフェースされたブリッジをパワーダウンできます。

診断機能

AD4190-4は、以下に示すような数多くの診断機能を備えています。

- ▶ リファレンス検出
- ▶ 過電圧/低電圧の検出
- ▶ SPI 通信に対する CRC
- ▶ メモリ・マップに対する CRC
- ▶ SPI 読出し/書込みチェック

これらの診断機能により、アプリケーションでの高いフォルト検出 率を実現できます。

電源

AD4190-4 は、4.75V \sim 5.25V のアナログ電源電圧で動作します。このデバイスは 1.7V \sim 5.25V のデジタル電源に対応します。

このデバイスには、AVDD と IOVDD の 2 つの独立した電源ピンがあります。

- ▶ AVDD は AVSS を基準とします。 AVDD は、ADC に電力を供給 する内部アナログ・レギュレータを駆動します。
- ▶ IOVDD は DGND を基準とします。この電源は、SPI インターフェースのインターフェース・ロジック・レベルを設定し、デジタル処理動作用の内部レギュレータに給電します。

ユニポーラ・アナログ電源動作(AVSS = DGND)

ユニポーラ・アナログ電源から AD4190-4 に電力を供給する場合、AVSS と DGND を 1 つのグランド・プレーン上で互いに短絡することができます。このセットアップでは、真のバイポーラ入力を使用してコモンモード電圧をシフトする場合、外部レベル・シフト回路が必要になります。LT1962EMS8-5 などの静止電流が低いレギュレータが推奨されます。

バイポーラ・アナログ電源動作(AVSS ≠ DGND)

AD4190-4 は、AVSS を負電圧に設定した状態で動作できるので、真のバイポーラ入力を印加できます。これにより、外部のレベル・シフト回路なしで 0V を中心とした完全差動入力の信号を AD4190-4 に供給できます。例えば、5V の分離電源を使用する場合、AVDD = +2.5V、AVSS = -2.5V になります。このユースケースでは、AD4190-4 は内部で信号をレベル・シフトし、デジタル出力はDGND(公称0V)と IOVDD の間で機能します。

AVSS と IOVDD の間で許容される最大電圧差は 6.35V です。したがって、AVSS = -2.5V であれば、IOVDD は+3.85V 以下になります。

analog.com.jp Rev. 0 | 31 of 94

動作原理

デジタル・コミュニケーション

AD4190-4 には、QSPI、MICROWIRE、DSP に対応できる 4 線式 SPI インターフェース($\overline{\text{CS}}$ 、SDI、SDO、SCLK)があります。 $\overline{\text{CS}}$ はローにハードワイヤー接続することができ、このときはADCとマイクロプロセッサ間の SPI 接続は 3 本に減少します。インターフェースは SPI モード 3 で動作します。SPI モード 3 の場合、SCLK はアイドル・ハイになり、SCLK の立下がりエッジが駆動エッジ、立上がりエッジがサンプル・エッジです。すなわち、データは立下がりの駆動エッジに同期して出力され、立上がりのサンプル・エッジに同期して入力されます。

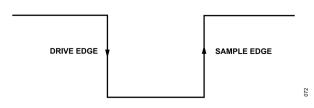


図 61. SPI モード 3、SCLK のエッジ

詳細については、デジタル・インターフェースのセクションを 参照してください。

設定の概要

パワーオンまたはリセット後の AD4190-4のデフォルト設定は、 次のとおりです。

- ▶ チャンネル: チャンネル0がイネーブルされ、AIN0は正入力として選択されており、AIN1は負入力として選択されています。セットアップ0が選択されます。
- ▶ セットアップ:リファレンス・プリチャージ・バッファがイネーブルされ、ゲインは1に設定され、内部リファレンスがイネーブルされリファレンス源として選択されています。
- ▶ ADC制御: AD4190-4 は連続変換モードになっており、内部 発振器がイネーブルされ、メイン・クロック源として選択されています。

このリストにはレジスタ設定オプションの中の一部のみが示されており、一例にすぎない点に注意してください。全レジスタの詳細については、内蔵レジスタ・マップのセクションを参照してください。

ADC の設定を変更するための推奨手順は、次のとおりです。

▶ チャンネル設定:チャンネルごとに AINPと AINM を選択します。各チャンネルについて選択可能な8通りのセットアップのうち1つを選択します。

- ▶ セットアップ:使用する各セットアップについて、フィルタ・タイプ、ODR、ゲイン、リファレンス源、極性を選択します。
- ▶ 診断機能:SPI CRC、AINPと AINM の過電圧/低電圧 チェック、リファレンス検出をそれぞれイネーブルします。
- ▶ ADC 制御: ADC の動作モードとメインのクロック源を選択します。

チャンネル/シーケンサのスロット設定

AD4190-4 は 16 のチャンネル選択またはシーケンサ・スロットと、8 つの独立したセットアップを備えています。どのチャンネルでも任意のアナログ入力ペアを選択でき、どのチャンネル/シーケンサ・スロットでも8 つのセットアップのうち任意のものを選択できるため、チャンネル設定に高い柔軟性があります。また、各チャンネルに固有の専用セットアップを適用できるため、4つの差動入力または8つの疑似差動入力を使用する場合にチャンネルごとの設定を行うことも可能です。

アナログ入力に加え、電源やリファレンスなどの信号もマルチ プレクサ入力として使用できます。これらの信号を選択した場 合、内部でマルチプレクサにルーティングされます。これによ り、診断機能と変換とをインターリーブすることができます。

チャンネル・レジスタ

CHANNEL_MAPn レジスタは、そのチャンネルの正のアナログ入力または負のアナログ入力を選択するために使用します。 CHANNEL_SETUPn レジスタを用いることで、8 通りのセットアップの 1 つをチャンネルに割り当て、チャンネルを選択するごとにそのチャンネルで実行する変換の数を設定し、また、チャンネルを選択した場合にそのチャンネルで変換を実行する前に必要な遅延を設定できます。

チャンネルは、CHANNEL_EN レジスタでイネーブルされます。

複数のチャンネルがイネーブルされている状態で AD4190-4 が動作している場合、チャンネル・シーケンサはチャンネル 0 からチャンネル 15 まで、イネーブルされているチャンネルを順番に処理します。あるチャンネルがディスエーブルされている場合、シーケンサはそのチャンネルをスキップします。複数のチャンネルをイネーブルする場合、チャンネル 0 は必ず使用する必要があります。チャンネル 0 のチャンネル・レジスタの詳細を表 17と表 18 に示します。CHANNEL_EN レジスタを表 19 に示します。

表 17. CHANNEL SETUP0 レジスタ

	** *** *** *** *** * * * * * * * * * *													
Reg.	Name	Bits	Bit 7	Bit 6	Bit 5 Bit 4	l E	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access		
0x81	CHANNEL_SETUP0	[15:8]		0x0000	R/W									
0x80		[7:0]	RESERVED DELAY_N RESERVED SETUP_N											

表 18. CHANNEL MAP0 レジスタ

_, _		<u> </u>										
Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0x83	CHANNEL_MAP0	[15:8]		RESERVED				AINP_N	١		0x0001	R/W
0x82			RESERVE	D			AINM_N	١				

analog.com.jp Rev. 0 | 32 of 94

動作原理

表 19. CHANNEL_EN レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x79	CHANNEL_EN	[15:8]	CH_15	CH_14	CH_13	CH_12	CH_11	CH_10	CH_9	CH_8
0x78		[7:0]	CH_7	CH_6	CH_5	CH_4	CH_3	CH_2	CH_1	CH_0

ADC セットアップ

AD4190-4 には 8 つの独立したセットアップがあります。各セットアップは以下の 6 つのレジスタから構成されています。

- ▶ 各種設定 (MISC) レジスタ
- ▶ アナログ・フロント・エンド (AFE) レジスタ
- ▶ フィルタ (FILTER) レジスタ
- ▶ FILTER FS レジスタ
- ▶ オフセット・レジスタ (OFFSET)
- ▶ ゲイン・レジスタ (GAIN)

例えば、セットアップ 0 は、MISCO、AFEO、FILTERO、FILTER_FSO、OFFSETO、GAINO の各レジスタで構成されます。図 62 には、これらのレジスタのグループ分けが示されています。セットアップは、チャンネル/シーケンサのスロット設定のセクションで詳細を説明した、CHANNEL_SETUPn レジスタから選択できます。これにより、各チャンネルを 8 個の個別のセットアップのいずれかに割り当てることができます。表 20~表 25 にセットアップ 0 に関連するレジスタを示します。セットアップ 1~セットアップ 7 も、これと同じ構成です。

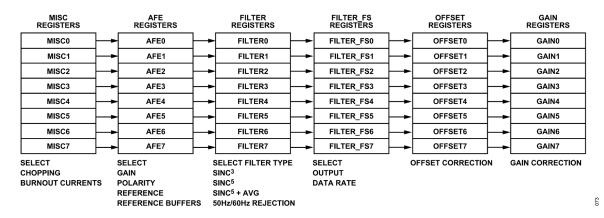


図 62. セットアップ構造

analog.com.jp Rev. 0 | 33 of 94

動作原理

各種設定 (MISC) レジスタ

各種設定レジスタでは、マルチプレクサ・チョッピング、励起電流チョッピング、バーンアウト電流のイネーブル/ディスエーブルを選択できます。マルチプレクサ・チョッピングでは、アナログ入力ペアが連続的にスワップされ、各フェーズで変換が行われます。その後、2つの変換が平均化され、それによってオフセットとオフセット・ドリフトが低減されます。励起電流のチョッピング/スワッピングは、励起電流のミスマッチをなくします。これは、リード線の抵抗による誤差を最小限に抑えるために十分に整合のとれた励起電流が必要となる3線式RTDにおいて有用です。

アナログ・フロント・エンド(AFE)レジスタ

AFE レジスタでは、リファレンス・バッファの設定、リファレンス源の選択、ゲインと極性の設定が可能です。

表 20. MISC0 レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0xC1	MISC0	[15:8]	CHOF	_IEXC		RESE	RVED		CHC	P_ADC	0x0000	R/W
0xC0		[7:0]			RESE	RVED			BUF	RNOUT		

表 21. AFE0 レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0xC3	AFE0	[15:8]		RESEF	RVED		REF_	BUF_M	REF_	_BUF_P	0x0050	R/W
0xC2		[7:0]	RESERVED	REF_S	ELECT	BIPOLAR		PGA_	GAIN			

表 22. FILTER0 レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0xC5	FILTER0	[15:8]			0x0000	R/W						
0xC4		[7:0]	POST_FILTER_SEL FILTER_TYPE									

表 23. FILTER_FS0 レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0xC7	FILTER_FS0	[15:8]				0x0004	R/W					
0xC6		[7:0]	FS[7:0]									

表 24. OFFSET0 レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access		
0xCA	OFFSET0	[23:16]		OFFSET[23:16]										
0xC9		[15:8]		OFFSET[15:8]										
0xC8		[7:0]		OFFSET[7:0]										

表 25. GAINO レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access		
0xCD	GAIN0	[23:16]		0x555555	R/W									
0xCC		[15:8]		GAIN[15:8]										
0xCB		[7:0]		1										

analog.com.jp Rev. 0 | 34 of 94

動作原理

フィルタ・レジスタ

フィルタ・レジスタは、ADC変調器の出力で使用する sinc デジタル・フィルタを選択します。フィルタ・タイプは、このレジスタのビットを設定して選択します。詳細については、デジタル・フィルタのセクションを参照してください。

FILTER_FS レジスタ

FILTER_FS レジスタは ODR の選択を行います。詳細については、 デジタル・フィルタのセクションを参照してください。

オフセット・レジスタ

オフセット・レジスタは、ADC のオフセット・キャリブレーション係数を保持します。オフセット・レジスタのパワーオン・リセット値は0x000000です。オフセット・レジスタは24ビットのリード/ライト・レジスタです。ユーザが内部またはシステム・ゼロスケール・キャリブレーションを開始するか、オフセット・レジスタに書き込むと、パワーオン・リセット値は自動的に上書きされます。

ゲイン・レジスタ

ゲイン・レジスタは、ADC のゲイン・キャリブレーション係数を保持する 24 ビット・レジスタです。ゲイン・レジスタはリード/ライト・レジスタです。ユーザがシステム・フルスケール・キャリブレーションを開始した場合、デフォルト値は自動的に上書きされます。詳細については、キャリブレーションのセクションを参照してください。

診断機能

ERROR_EN レジスタと INTERFACE_CONFIG_C レジスタを使用して、AD4190-4 の様々な診断機能の有効化または無効化ができます。診断機能には次のものがあります。

- ▶ SPI 読出し/書込みチェック。これにより、有効なレジスタ にのみアクセスできるようになります。
- ▶ SCLK カウンタ。正しい数の SCLK パルスを使用できるよう にします。

- ▶ SPI CRC_o
- ▶ メモリ・マップ CRC。
- ▶ LDO チェック。
- ▶ アナログ入力およびリファレンス入力での過電圧/低電圧検出。
- ▶ リファレンス検出。

SPI の CRC は、INTERFACE CONFIG C を用いて有効化します が、その他の診断機能は、ERROR EN レジスタを用いて有効化 します。診断機能が有効化されている場合、対応するフラグが ERROR レジスタに含まれます。INTERFACE STATUS Aレジス タは SPI で発生するエラーを示します。ERROR EN レジスタの SPI ERR EN ビットをセットすることで、SPI エラーが発生する と ERROR レジスタの SPI ERR ビットがセットされます。 INTERFACE STATUS A レジスタを読み出して、エラーに関す るより詳細な情報を得ることができます。ERROR レジスタの全 てのイネーブル・フラグをOR接続して、STATUS レジスタ内の MAIN ERR S フラグが制御されます。そのため、エラーが発生 した場合(例えば、SPI CRC チェックでエラーが検出された場 合)、ERROR レジスタ内の関連するフラグ (SPI ERR フラグな ど)がセットされます。ステータス・レジスタ内の MAIN ERR S フラグもセットされます。これは、変換にステー タス・ビットを追加する場合に便利です。MAIN ERR S ビット は、エラーが発生したかどうかを示します。エラー源の詳細に ついては、INTERFACE STATUS AレジスタとERRORレジスタ を読み出します。診断レジスタの詳細については、表 26~表 29を 参照してください。使用可能な診断機能の詳細については、診断 機能のセクションを参照してください。

ADC 制御レジスタ

ADC_CTRL レジスタは、デジタル・インターフェースのモードを設定します。また、連続変換やシングル変換などの動作モードの選択も行います。スタンバイ・モードやパワーダウン・モード、またキャリブレーション・モードのいずれかも選択できます。

このレジスタの詳細を表30に示します。

表 26. INTERFACE_CONFIG_C レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0x10	INTERFACE_C ONFIG_C	[7:0]	CRC_I	ENABLE	STRICT_R EGISTER_ ACCESS	SEND_ST ATUS	_	NTERFACE_ ODE	CRC_E	NABLEB	0x27	R/W

表 27. INTERFACE STATUS A レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0x11	INTERFACE_ST ATUS_A	[7:0]	NOT_REA DY_ERR	RES	SERVED	CLOCK_C OUNT_ER R	CRC_ERR	WR_TO_R D_ONLY_ REG_ERR	REGISTE R_PARTIA L_ACCES S_ERR	ADDRESS _INVALID _ERR	0x00	R/W

analog.com.jp Rev. 0 | 35 of 94

動作原理

表 28. ERROR_EN レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0x73	ERROR_EN	[15:8]	RESE	RESERVED		ALDO_PS	IOUT3_C	IOUT2_C	IOUT1_C	IOUT0_C	0x0000	R/W
						M_ERR_E	OMP_ER	OMP_ER	OMP_ER	OMP_ER		
						N	R_EN	R_EN	R_EN	R_EN		
0x72		[7:0]	REF_DIFF	REF_OV_	AINM_OV	AINP_OV	ADC_CO	SPI_ERR_	MM_CRC	ROM_CR		
			_MIN_ER	UV_ERR_	_UV_ERR	_UV_ERR	NV_ERR_	EN	_ERR_EN	C_ERR_E		
			R_EN	EN	_EN	_EN	EN			N _		

表 29. ERROR レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0x75	ERROR	[15:8]	DEVICE_E RROR	RESERVED	DLDO_PSM _ERR	ALDO_PSM _ERR	IOUT3_CO MP_ERR	IOUT2_CO MP_ERR	IOUT1_CO MP_ERR	IOUT0_CO MP_ERR	0x0000	R/W
0x74		[7:0]	REF_DIFF_ MIN_ERR	REF_OV_U V_ERR	AINM_OV_ UV_ERR	AINP_OV_U V_ERR	ADC_CONV _ERR	SPI_ERR	MM_CRC_E RR	ROM_CRC_ ERR		

表 30. ADC 制御レジスタ

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0x71	ADC_CTRL	[15:8]		RESERVED								
0x70		[7:0]	MULTI_DA TA_REG_ SEL	TA_REG_ AD_STAT								

analog.com.jp Rev. 0 | 36 of 94

動作原理

設定の柔軟性およびシーケンサについて

図63、図64、図65で黒色のフォントで示しているレジスタは、 各設定でプログラムするものです。灰色のフォントで示してい るレジスタは、その設定ではプログラムする必要はありません。

AD4190-4 を実装する場合、最も簡単な方法は、隣接するアナログ入力による差動入力を使用して、それら全てを同じセットアップで実行することです。例えば、4 つの差動入力が必要であるとします。この場合、ユーザは、AIN1/AIN2、AIN3/AIN4、AIN5/AIN6、AIN7/AIN8の差動入力を選択します。

どのユースケースでも、ゲイン・レジスタとオフセット・レジスタのプログラミングはオプションです。内部またはシステムのオフセット、またはシステムのフルスケール・キャリブレーションを実行すると、選択したチャンネルに関連するセットアップのゲイン・レジスタとオフセット・レジスタが自動的に更新されます。

これら 4 個の完全差動入力を実装する別の方法は、使用可能な 8 個のセットアップを利用することです。4 個の差動入力の一部 と他の入力の間で速度、ノイズ、またはゲインの条件が異なる 場合、または特定のチャンネルで特定のオフセットまたはゲイン補正を行う必要がある場合は、この方法を使用できます。各 差動入力に個別のセットアップを使用し、各チャンネルを最大 限柔軟に設定できる方法を、図 64 に示します。

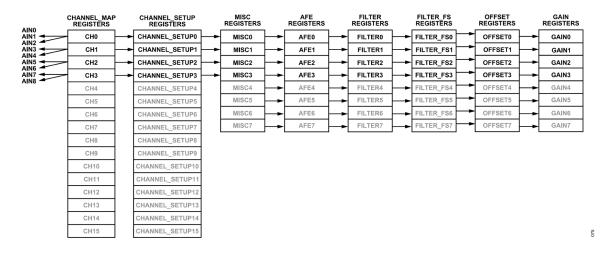


図 63.4 個の完全差動入力。全てが 1 つのセットアップ(MISCO、AFEO、FILTERO、FILTER_FSO、GAINO、OFFSETO)を使用

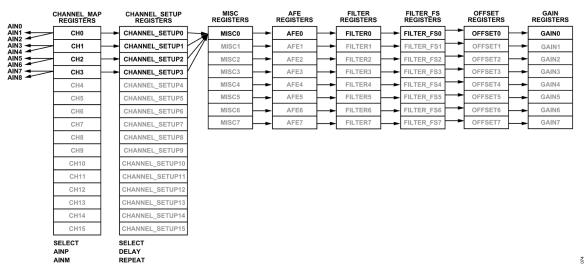


図 64.4 個の完全差動入力がチャンネルごとに個別のセットアップを使用

チャンネル・レジスタがアナログ入力ピンと後段のセットアップ設定をどのように連結するかの一例を図 65 に示します。この仮に設定した例では、2個の差動入力と2個のシングルエンド入力が必要としています。シングルエンド入力は、AIN2/AIN7 と AIN8/AIN7 の組み合わせです。最初の差動入力ペア

(AINI/AIN2) はセットアップ 0 を使用します。2 つのシングルエンド入力ペア (AIN2/AIN7 と AIN8/AIN7) は診断用として設定されているので、別のセットアップ (セットアップ 1) を使用します。最後の差動入力 (AIN3/AIN4) も個別のセットアップであるセットアップ 2 を使用します。セットアップを 3 つ使

analog.com.jp Rev. 0 | 37 of 94

動作原理

用するように選択されているので、各セットアップに関連する MISC、AFE、FILTER、FILTER_FS の各レジスタが必要に応じ てプログラムされます。オプションのゲインとオフセット補正 も、各セットアップに関連する OFFSET レジスタと GAIN レジスタをプログラムすることで、セットアップごとに行うことができます。

図 65 に示す例では、CH0~CH3 のチャンネルが使われています。 これらのチャンネルは CHANNEL_EN レジスタを介してイネーブルされます。 複数のチャンネルをイネーブルする場合、チャンネル 0 は必ず用いる必要があります。 AD4190-4 が変換を行う際、シーケンサは、イネーブルされている最小番号のチャンネルからイネーブルされている最大番号のチャンネルまで昇順に移行します。イネーブルされていないチャンネルはバイパスされます。あるチャンネルが選択されると、そのチャンネルに対しプログラムされた DELAY が計時されます。この遅延により、ADC がアナログ入力のサンプリングを始める前に外部アナログ回路がセトリングできます。0~16384/MOD CLK の範囲でプロ

グラム可能な 8 通りの設定を、CHANNEL_SETUPn レジスタの DELAY ビットで 設定できます。 AD4190-4 は、 CHANNEL_SETUPn レジスタの REPEAT 機能で定められた変換数だけ、変換を実行します。REPEAT には、1~255 の値を指定できます。連続変換モードが選択されている場合、シーケンスが終了すると、AD4190-4 はシーケンサの先頭にループ・バックします。シングル変換モードでは、変換が終了すると AD4190-4 はスタンバイ・モードになります。

全てのチャンネルがデータ・レジスタを共用している (ADC_CTRLレジスタのMULTI_DATA_REG_SELビットが1に 設定されている)場合にのみ、REPEAT 機能を使用できる点に注意してください。 ADC_CTRL レジスタの MULTI_DATA_REG_SELビットが0に設定されている場合、イネーブルされているチャンネルにそれぞれ固有の DATA レジスタがあります。この場合、イネーブルされたチャンネル全ての変換が完了した場合にのみ、 \overline{RDY} がローになります。

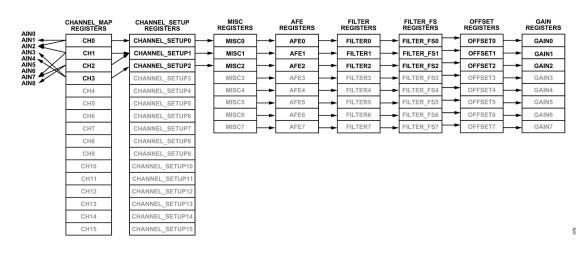


図 65. 複数の共有セットアップを使用して、差動とシングルエンドを混在させる設定

analog.com.jp Rev. 0 | 38 of 94

ADC 回路情報

アナログ入力チャンネル

AD4190-4 には、柔軟性の高いマルチプレクサが採用されているため、任意のアナログ入力ピン(AIN0~AIN8)を正入力または負入力として選択できます。この機能により、ピンの接続チェックなどの診断を実行できます。また、プリント基板(PCB)の設計も簡略化されます。例えば、同じ PCB に 2 線式、3 線式、4 線式の測温抵抗体(RTD)を実装できます。

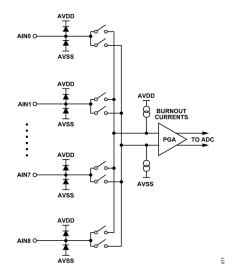


図 66. アナログ入力マルチプレクサ回路

これらのチャンネルは、CHANNEL_MAP レジスタの AINP[5:0] ビットと AINM[5:0]ビットを使用して設定します。デバイスは、4 個の差動入力、8 個の疑似差動入力、またはその両方の組み合わせを使用できるよう設定できます。差動入力を使用する場合は、隣接するアナログ入力ピンを使用して入力ペアを構成します。隣接するピンを使用することで、PCB 上におけるチャンネル間のミスマッチを最小限に抑えることができます。

ゲイン = 1 プリチャージの場合、PGA はバイパスされますが、プリチャージ・バッファを使用して、ADC でのサンプリングまでにアナログ入力がセトリングするようにします。他のすべてのゲイン設定では、プリチャージ・バッファと共に PGA が用いられます。PGA を用いると入力電流が低下します。このため、入力は大きなソース・インピーダンスに耐えることができ、ストレイン・ゲージや RTD などの外付け抵抗型センサーに直接接続できるようになっています。

デバイスがゲイン=1プリチャージで動作する場合は、アナログ 入力電流が大きくなります。このため、ADC 入力の駆動源の出 カインピーダンスによっては、入力ピンの抵抗/コンデンサ (RC) の組み合わせにより、ゲイン誤差が発生する場合があり ます。

絶対入力電圧範囲は、 $AVSS \sim AVDD$ の範囲に制限されています。 入力電流を最小限に抑えるには、AVSS = 0.1V と AVDD + 0.1V の間の絶対入力範囲を用います。コモンモード電圧はこれらの 限界値を超えてはいけません。これらの限界値を超えると、直 線性とノイズ性能が低下します。

外部マルチプレクサの制御

チャンネル数を増やすために外部マルチプレクサを使用する場合、AD4190-4 の GPIOn ピンを介してマルチプレクサのロジック・ピンを 制御できます。 PIN_MUXING レジスタの CHAN_TO_GPIO ビットを1にセットすると、GPIOn ピンはアクティブなチャンネル番号を外部マルチプレクサに出力します。 そのタイミングは AD4190-4によって制御されます。このため、チャンネルの変更は ADC と同期され、外部同期の必要はありません。

プログラマブル・ゲイン・アンプ (PGA)

ゲイン段をイネーブルにすると(ゲイン=1プリチャージを除く全てのゲイン)、マルチプレクサからの出力が PGA の入力に供給されます。PGA が内蔵されているので、AD4190-4 内で小さい振幅の信号を増幅しながらも、優れたノイズ性能を維持することが可能です。PGA には 0.5 のゲインもあります。これによれば、入力された信号を増幅するのではなく、1/2 に減衰することができます。

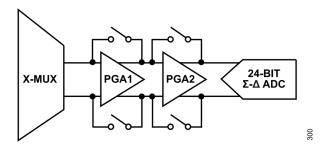


図 67. PGA

AD4190-4 は、AFEn レジスタの PGA ビットを使用して、ゲインを 0.5、1、2、4、8、16、32、64、128 のいずれかにプログラムすることができます(表 103 を参照)。PGA は 2 段で構成されています。ゲインが 8以下の場合(ゲイン=1プリチャージを除く)は、1 つの段が使用され、ゲインが 16 以上場合は両方の段が使用されます。

アナログ入力範囲は $\pm V_{REF}$ /ゲインです。このため、2.5V 外部リファレンスでは、ユニポーラ範囲は $0mV \sim 19.53mV$ から $0V \sim 5V$ になり、バイポーラ範囲は $\pm 19.53mV \sim \pm 5V$ になります。リファレンス値が高い場合、例えば $V_{REF} = AVDD$ のときは、アナログ入力範囲を制限する必要があります。許容可能な最大差動アナログ入力範囲は $\pm (AVDD - 0.65V)$ /ゲインで、許容可能な最大シングルエンド・アナログ入力範囲は $0 \sim (AVDD - 0.65V)$ /ゲインです。

リファレンス

AD4190-4 は、温度係数が 5ppm/℃ (代表値) の 2.5V リファレン スを内蔵しています。 AD4190-4 にリファレンスを組み込むことで、熱電対などのアプリケーションで必要となる外付け部品の数を削減できるので、PCB の小型化が可能になります。

内部リファレンスはデフォルトでイネーブルされていますが、 REF_CONTROL レジスタの REF_EN ビットによってディスエーブルできます(表 113 を参照)。内部リファレンスがイネーブルされている場合、REFOUT ピンに出力されます。内部リファレンスがアクティブな場合は、REFOUT に 0.1μ F のデカップリング・コンデンサが必要です。

analog.com.jp Rev. 0 | 39 of 94

ADC 回路情報

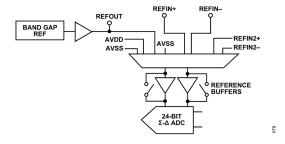


図 68. リファレンス接続

このリファレンスは ADC への電力供給に使用できます(AFEn レジスタの REF_SELECT ビットを 10(2 進数)に設定)。また、外部リファレンスを印加することもできます。外部リファレンスの場合、ADC はチャンネルに対して完全差動入力の機能を備えています。更に、2 つの外部リファレンス・オプション(REFIN または REFIN2)のいずれかを選択できます。GPIOO(REFIN2+)とGPIO1(REFIN2-)を用いてREFIN2を使用できます。AD4190-4 のリファレンス源は、AFEn レジスタのREF SELECT ビットを使用して選択します(表 103 を参照)。

リファレンス・バッファがディスエーブルになっている場合、REFINn+ピンと REFINn-ピンで許容可能な絶対電圧の範囲は $AVSS-50mV\sim AVDD+50mV$ です。リファレンス・バッファのイネーブル時、または、プリチャージ・モード時、バッファはレール to レールです。そのため、各リファレンス・ピンの絶対電圧は、 $AVSS\sim AVDD$ です。REFINn のリファレンス電圧 (REFINn+-REFINn-) の公称値は 2.5V ですが、AD4190-4 は $1V\sim AVDD$ のリファレンス電圧で動作します。

アナログ入力に接続されたトランスジューサの励起電圧(または励起電流)がデバイスのリファレンス電圧も駆動するようなアプリケーションはレシオメトリックであるため、励起源の低周波ノイズの影響は除去されます。AD4190-4 を非レシオメトリック・アプリケーションで使用する場合は、低ノイズ・リファレンスを使用します。

AD4190-4 用に推奨される 2.5V リファレンス電圧源には、低ノイズ・リファレンスである ADR4525 やLTC6655LN-2.5 などがあります。バッファなしの場合、リファレンス入力は、高インピーダンスの動的負荷となることに注意してください。各リファレンス入力の入力インピーダンスは動的であるため、リファレンス入力がバッファなしの場合、リファレンス入力の駆動源の出力インピーダンスによっては、これらの入力のRCの組み合わせにより、DC ゲイン誤差が生じる可能性があります。

リファレンス電圧源は通常低出力インピーダンスです。そのため、システム内でゲイン誤差を発生させることなく、REFINn+にデカップリング・コンデンサを接続できます。外部抵抗の両端からリファレンス入力電圧を出力すると、リファレンス入力の外部ソース・インピーダンスが大きくなります。この場合、リファレンス・バッファを使用する必要があります。図 69 にADR4525 や LTC6655LN-2.5 と AD4190-4 の接続関係を示します。LTC6655LN-4.096 と AD4190-4 の接続も同様です。

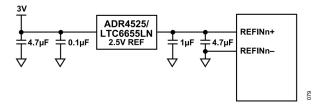


図 69. ADR4525/LTC6655LN-2.5 と AD4190-4 の接続

バイポーラ/ユニポーラ設定

AD4190-4 のアナログ入力は、ユニポーラまたはバイポーラの入力電圧範囲に対応します。これにより、ADC の入力範囲をセンサー出力範囲に対して微調整することができます。バイポーラ電源を使用する場合、デバイスは真のバイポーラ入力に対応します。ユニポーラ電源を使用する場合、バイポーラ入力範囲に収まっていても、システムの AVSS を基準とする負電圧をデバイスに入力できるとは限りません。

AINP 入力のユニポーラ信号とバイポーラ信号は、AINM 入力の電圧を基準としています。例えば、AINM が 2.5V、ADC がゲイン1でユニポーラ・モード用に設定されている場合、 $V_{REF}=2.5$ V、AVDD = 5V のときに、AINP 入力の入力電圧範囲は 2.5V~5V になります。ADC がバイポーラ・モード用に設定されている場合、AINP 入力のアナログ入力範囲は 0V~AVDD になります。バイポーラ/ユニポーラ・オプションは、AFEn レジスタでバイポーラ・ビットをプログラムすることで選択します。

データ出力コーディング

ADC がユニポーラ動作用に設定されている場合、出力コードは自然 (ストレート) バイナリになり、ゼロ差動入力の電圧がコード 00…00、ミッドスケール電圧がコード 100…000、フルスケール入力電圧がコード 111…111 になります。アナログ入力電圧の出力コードは次のように表されます。

Code = $(2^N \times A_{IN} \times Gain)/V_{RFF}$

ADC がバイポーラ動作用に設定されている場合、出力コードは2の補数になり、負のフルスケール電圧がコード100…000、ゼロ差動入力電圧がコード000…000、正のフルスケール入力電圧がコード011…111になります。

表 31. 出力コードと理想的な入力電圧(FS = フルスケール)

Description	Analog Input	Code (Hex)
FS – 1LSB	+V _{REF} /gain x (1 – 2 ^{-N + 1})	0x7FFFFF
+1LSB	(V _{REF} /gain)/2 ^{N - 1}	0x000001
Midscale	0	0x000000
-1LSB	-(V _{REF} /gain)/2 ^{N - 1}	0xFFFFFF
-FS + 1LSB	-V _{REF} /gain x (1 – 2 ^{- N + 1})	0x800001
-FS	-V _{REF} /gain	0x800000

analog.com.jp Rev. 0 | 40 of 94

ADC 回路情報

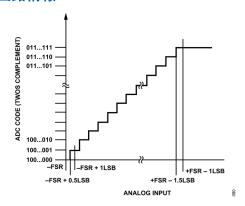


図 70. ADC の理想的な伝達関数 (FS = フルスケール)

励起電流

AD4190-4 には、ソフトウェアで設定可能な定電流源も 2 個内蔵されており、 $10\mu A$ 、 $50\mu A$ 、 $100\mu A$ 、 $250\mu A$ 、 $500\mu A$ 、1mA、1.5mA のいずれかに等しくなるようにプログラムできます。これらの電流源は、外部抵抗ブリッジまたは RTD センサーの励起に使用できます。電流源は AVDD から電流をソースし、任意のアナログ入力ピンまたは GPIO ピンに出力できます(図 71 を参照)。

電流を出力するピンは、CURRENT_SOURCEn レジスタの I_OUT_PIN ビットを使用してプログラムします (表 119 を参照)。各電流源の大きさは、CURRENT_SOURCEn レジスタの I_OUT_VAL ビットを使用して個別にプログラムできます。更に、全ての電流を同じアナログ入力ピンまたはGPIO ピンに出力する ことができます。

励起電流を使用する場合、内蔵リファレンスをイネーブルする 必要がある点に注意してください。

3 線式 RTD センサーなどのアプリケーションでは、両方の励起電流を使用してリード線の抵抗を補償できます。励起電流のミスマッチおよびミスマッチ・ドリフトを最適化し、励起電流のミスマッチによる誤差が最小限になるようにします。励起電流ミスマッチによる誤差を更に低減するために、電流をスワップまたはチョップすることができます。MISCn レジスタのCHOP_IEXC ビットが適切に設定されている場合、2 つの電流が変換ごとにスワップされ、その後に続く変換が AD4190-4によって平均化されます。このスワッピングまたはチョッピングにより、励起電流のミスマッチによる誤差が打ち消されます。

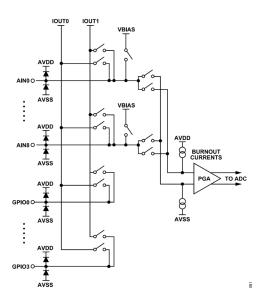


図71. 励起電流とバイアス電圧の接続

ブリッジ・パワーダウン・スイッチ

ストレイン・ゲージやロード・セルなどのブリッジ・アプリ ケーションでは、ブリッジ自体が多大な電流を消費します。例 えば、5V の電源で励起する場合、 350Ω のロード・セルは 14.3mA の電流を必要とします。システムの消費電流を低減する ために、ブリッジ・パワーダウン・スイッチを使用してブリッ ジを (使用していないときに) 切り離すことができます。 AD4190-4 は 2 つのブリッジ・パワーダウン・スイッチを内蔵し ています。GPIO0 と GPIO1 の GPIO ピンを、それぞれパワーダ ウン・スイッチ 0 (PDSW0) およびパワーダウン・スイッチ 1 (PDSW1) として設定できます。スイッチ自体は POWER DOWN SW レジスタの PDSW ビット (表 87 を参照) を通じて制御されます。各スイッチは 25mA (代表値) の連続 電流に耐え、オン抵抗は 10Ω (代表値) です。AD4190-4 をスタ ンバイ・モードにすると、パワーダウン・スイッチはデフォル トでオープンになります。スイッチの制御を維持するには、 STANDBY CTRL レジスタの STB PDSWn ビットをセットしま す。

汎用入出力(GPIO0~GPIO3)

AD4190-4 には、4 つの汎用入出力 GPIO0~GPIO3 があります。これらは GPIO_MODE レジスタの GPIO_MODE ビット (表 121 を参照) を使用して汎用入出力として設定されます。出力として設定された場合、これらのピンは、GPIO_OUTPUT_DATA レジスタの GPIO_OUTPUT_DATA ビット (表 123 を参照) を使用してハイにプルアップまたはローにプルダウンできます。つまり、ピンの値は GPIO_DATn ビットの設定によって決まります。これらのピンのロジック・レベルは、IOVDD ではなく、AVDDによって決まります。GPIO_OUTPUT_DATA レジスタを読み出すと、ピンの実際の値が GPIO_OUTPUT_DATA ビットに反映されます。この機能は短絡を検出するときに有用です。

GPIO ピンは多機能ピンです。つまり、パワーダウン・スイッチや励起電流などの他の機能をこのピンで有効化することもできます。複数の機能を同時に有効化する場合、機能の優先順位は次のとおりです。

analog.com.jp Rev. 0 | 41 of 94

ADC 回路情報

- パワーダウン・スイッチ (GPIO0 と GPIO1 でイネーブルできます)。
- 2. GPIO_OUTPUT_DATA。GPIO は、パワーダウン・スイッチ として使用しない場合、汎用出力ピンとして機能できます。
- 3. CHANNEL_TO_GPIO。上記の優先度 1、2 に記載の機能で使用されていないピンには、シーケンサの電流チャンネルに関連するビットが出力されます。

これらのピンには、励起電流または REFIN2 (GPIO0/GPIO1) をイネーブルすることもできる点に注意してください。このため、アプリケーションにおいてピンが確実に正しく機能するよう、全ての設定を確認する必要があります。

バイアス電圧発生器

AD4190-4 にはバイアス電圧発生器が内蔵されています(図 71を参照)。これがアナログ入力でイネーブルされている場合、ピンを(AVDD + AVSS)/2 にバイアスします。この機能は、非バイアスの熱電対アプリケーションで役に立ちます。ADC がユニポーラ電源で動作する場合、熱電対によって生成された電圧にDC電圧でバイアスをかける必要があるためです。バイアス電圧発生器は、V_BIAS レジスタの VBIAS ビット(表 115を参照)を使用して制御します。バイアス電圧発生器のパワーアップ時間は、負荷容量によって決まります。詳細については、仕様のセクションを参照してください。

マルチプレクサ・チョッピング

AD4190-4 にはマルチプレクサ・チョッピング機能が内蔵されて います (表 101 の CHOP ADC ビットを用いてイネーブル) チョップをイネーブルすると(2ビットを01(2進数)に設定) ADC のオフセットとオフセット・ドリフトを最小限に抑えるこ とができます。チョップをイネーブルすると、アナログ入力ピ ンは連続的にスワッピングされます。そのため、これらのアナ ログ入力ピンがある方向に接続された場合、フィルタのセトリ ング時間が経過した後に有効な変換が利用できるようになりま す。その後アナログ入力ピンが反転し、別の有効な変換が得ら れます。これに続いてその後の変換が平均化され、オフセット を最小限に抑えることができます。このアナログ入力ピンの連 続スワッピングとその後の変換の平均化処理を行うことで、オ フセット・ドリフトも最小限に抑えることができます。2つの 変換が平均化されるので、実効値ノイズは√2 倍だけ改善します。 したがって、ピーク to ピーク分解能は約 0.5 ビット分だけ向上 します。

チョッピングは、出力データレートおよびセトリング時間に影響する可能性があります。例えば、sinc³フィルタでは、チョッピングをイネーブルした場合は、ディスエーブルした場合に比べ出力データレートが約3分の1に低下し、セトリング時間は約2倍に増加します。ポスト・フィルタなどその他のフィルタでは、チョッピングが出力データレートやセトリング時間に与える影響はわずかです。デジタル・フィルタのセクションでは、様々なフィルタ・タイプについて、チョッピングをディスエーブルした場合のセトリング時間を示しています。チョッピングをイネーブルした場合、最初の変換ではこのセトリング時間の2倍の時間が必要ですが、その後の変換は、そのフィルタに規定されたセトリング時間で行われます。また、チョッピングにより、nf_{ADC}/2の奇数倍の位置に1次のノッチが加わります。例えば、sinc³フィルタを用い出力データレートが50SPSの場合、25Hz、75Hz、125Hzの位置にノッチが生じます。

クロック

AD4190-4 は、16MHz のクロックを内蔵しています。AD4190-4 のクロック源として、内部クロックまたは外部クロックを使用できます。 クロック源は、CLOCK_CTRL レジスタのCLOCKSELビット(表83を参照)で選択します。

内部クロックは、CLK ピンから出力することもできます。この機能は、アプリケーションで複数の ADC を使用し、デバイスを同期する必要がある場合に便利です。1 つのデバイスの内部クロックをシステム内の全ての ADC のクロック源として使用できます。詳細については、ADC の同期のセクションを参照してください。

AD4190-4は、CLKピンに接続された外部から供給されるクロックを使うこともできます。このクロック入力のロジック・レベルは、IOVDDピンに印加される電圧によって決まります。

AD4190-4 には、2、4、8 分周の内部分周器があり、CLOCK_CTRL レジスタの CLOCKDIV ビットで選択できます。これらの分周器は、ADC 用に選択された内部クロック源または外部クロック源を分周します。デフォルト設定は内部 2 分周です。

スタンバイ・モードとパワーダウン・モード

スタンバイ・モードでは、ほとんどのブロックがパワーダウンします。レジスタの内容を保持するため LDO は動作状態を維持します。デフォルトでは、スタンバイ・モードではその他の機能はすべて無効化されます。しかし、STANDBY_CTRL レジスタにより、スタンバイ・モードでもアクティブ状態を維持する機能を選択できます。励起電流、内部リファレンス、パワーダウン・スイッチ、プルアップ電流、バイアス電圧、内部クロックは、システムでイネーブルされている場合、STANDBY_CTRL レジスタのビットを適宜セットすることで、スタンバイ・モードでもアクティブ状態を維持できます。診断機能は、スタンバイ・モードでは無効化されます。

スタンバイ・モードを終了する際に、AD4190-4 はパワーアップ およびセトリングに約 160 MCLK サイクルを必要とします。 MCLK は、印加されるクロック周波数(内部発振器または外部 クロックの周波数)ではなく、ADC が使用するメイン・クロックです。そのため、印加クロックが 4 分周あるいは 8 分周されている場合は、スタンバイ・モードを終了するまでの時間が長くなります。外部のメイン・クロックを用いている場合は、スタンバイ・モードを終了するコマンドを発する前にそのクロックがアクティブであることを確認してください。ADC がパワーアップしセトリングするまで、ADC_CTRL レジスタには再度の 書込みはしないでください。

パワーダウン・モードでは、LDO を含む全てのブロックがパワーダウンします。すべてのレジスタの内容が失われ、デジタル出力 $GPIO0 \sim GPIO3$ がトライステートになります。偶発的にパワーダウン・モードにならないよう、まず ADC をスタンバイ・モードにする必要があります。外部メイン・クロックを使用している場合は、デバイスがパワーダウン・モードになるまでアクティブ状態を維持してください。パワーダウン・モードを終了するには、 \overline{CS} をローにして SDI で 63 個の 1 と 1 個の 0 からなるパターンを 3 回繰り返す必要があります。AD4190-4 は、パワーアップとセトリングに約 1.4ms の時間を必要とします。この時間が経過した後に、内蔵レジスタにアクセスできるようになります。

analog.com.jp Rev. 0 | 42 of 94

ADC 回路情報

キャリブレーション

AD4190-4 には、次に示す 3 つのキャリブレーション・モードが あり、セットアップごとにオフセット誤差とゲイン誤差を排除 するために使用できます。

- 内部ゼロスケール・キャリブレーション・モード
- ▶ システム・ゼロスケール・キャリブレーション・モード
- ▶ システム・フルスケール・キャリブレーション・モード

内部ゲイン誤差は、出荷時にキャリブレーションされています。このため、AD4190-4 では、内部フルスケール・キャリブレーションはサポートされていません。キャリブレーション時は、1 チャンネルのみをアクティブにできます。アナログ入力を変換する場合、内部の ADC 変換結果は、DATA レジスタに書き込まれる前に ADC キャリブレーション・レジスタを使ってスケーリングされます。

OFFSET レジスタのデフォルト値は、0x000000、GAIN レジスタの公称値は0x555555です。ADC ゲインのキャリブレーション範囲は、 $0.4 \times V_{REF}$ /ゲイン~ $1.05 \times V_{REF}$ /ゲインです。詳細については、スパンとオフセットの限界値のセクションを参照してください。

次の式は、OFFSET レジスタおよび GAIN レジスタの値が AD4190-4 内でどのように用いられるかを示します。OFFSET レジスタでは 2 の補数が用いられている点に注意してください。 ユニポーラ・モードの場合、ADC のゲイン誤差とオフセット誤差を考慮しない理想的な関係式は次のようになります。

$$\begin{aligned} Data &= \left(\frac{0.75 \times V_{IN}}{V_{REF}} \times 2^{23} - Offset\right) \\ &\times \frac{Gain}{0 \times 400000} \times 2 \end{aligned} \tag{1}$$

バイポーラ・モードの場合、ADC のゲイン誤差とオフセット誤差を考慮しない理想的な関係式は次のようになります。

$$Data = \left(\frac{0.75 \times V_{IN}}{V_{REF}} \times 2^{23} - Offset\right) \times \frac{Gain}{0 \times 400000}$$
 (2)

キャリブレーションを開始するには、ADC_CTRL レジスタのモード・ビット (表 89 参照) に対応する値を書き込みます。キャリブレーションが開始されると、 $\overline{\text{RDY}}$ ピン(デフォルトではSDOと共用されますがDIG_AUX1に出力できます)とステータス・レジスタの RDYB ビットがハイに遷移します。キャリブレーションが完了すると、対応する OFFSET レジスタまたはGAIN レジスタの内容が更新され、ステータス・レジスタのRDYB ビットがリセットされ、 $\overline{\text{RDY}}$ ピンがローに戻り、AD4190-4 がアイドル・モードに復帰します。 $\overline{\text{RDY}}$ ピンが SDOと共用されている場合、このピンは $\overline{\text{CS}}$ がハイのときはトライステートになる点に注意してください。

内部オフセット・キャリブレーションの間、選択した正のアナログ入力ピンは切断され、選択した負のアナログ入力ピンに内部で接続されます。このため、選択された負のアナログ入力ピンの電圧が許容限界値を超えず、過度なノイズや干渉が生じないようにする必要があります。

システム・キャリブレーションでは、システム・ゼロスケール(オフセット)電圧またはシステム・フルスケール(ゲイン)電圧が選択された正および負のピンに印加されてから、キャリブレーション・モードが開始されると想定されています。この結果、ADCの外部誤差が除去されます。システム・ゼロスケール・キャリブレーションは、システム・フルスケール・キャリブレーションの前に実行する必要があります。

動作の観点からは、キャリブレーションは別の ADC 変換のよう に扱う必要があります。ステータス・レジスタの RDYB ビット またはRDY ピンをモニタするようにシステム・ソフトウェアを 設定して、ポーリング・シーケンスまたは割込みによるルーチンによってキャリブレーションが終了したことを判断します。

内部/システム・オフセット・キャリブレーションおよびシステム・フルスケール・キャリブレーションには、選択したフィルタのセトリング時間が終了するのと同じ時間が必要です。

どのような出力データレートでも、キャリブレーションの実行は可能です。低い出力データレートを使うほど、精度の高いキャリブレーション結果を得ることができ、全ての出力データレートに対して高精度になります。内部ゲイン誤差は全てのゲインについて出荷時にキャリブレーションされています。そのため、GAIN レジスタのデフォルト値がシステム・フルスケール・キャリブレーションまたは GAIN レジスタへの直接書込みによって上書きされなければ、AD4190-4 は、PGA ゲインが変更されたときに適切なゲイン係数を内部で自動的に適用します。システム・フルスケール・キャリブレーションが実行された場合や、GAIN レジスタに書込みが行われた場合、所定のチャンネルのリファレンス源または PGA ゲインが変更されていれば、そのチャンネルに対して新たなキャリブレーションが必要です。

AD4190-4 では、ユーザが内蔵キャリブレーション・レジスタにアクセスできるので、マイクロプロセッサがデバイスからキャリブレーション結果を読み出し、EEPROM(電気的に消去およびプログラムが可能な読出し専用メモリ)に予め保存されている値から取った固有のキャリブレーション係数を書き込むことができます。内部キャリブレーション時またはセルフ・キャリブレーション時以外はいつでも、OFFSET レジスタと GAIN レジスタの読出しや書込みを行えます。キャリブレーション・レジスタの値は 24 ビット幅です。また、レジスタを使用してデバイスのスパンとオフセットを操作することもできます。

スパンとオフセットの限界値

システム・キャリブレーションを使用すると、外部回路のオフセット誤差やゲイン誤差を補償でき、また、デバイスの入力スパンとオフセットを調整できます。システム・キャリブレーションを実行する場合は、入力オフセットとスパンの実現可能な調整量は制限されます。入力スパンは、正のフルスケール・コードに対応する入力電圧と負のフルスケール・コードに対応する入力電圧の差です。システム・キャリブレーションで達成可能な入力スパンの範囲は、最小値が $0.8 \times V_{REF}$ /ゲインとなり、最大値が $2.1 \times V_{REF}$ /ゲインとなります。

入力スパンとオフセットの調整では、正のフルスケール・コード電圧($1.05 \times V_{REF}$ /ゲイン)と負のフルスケール・コード電圧($-1.05 \times V_{REF}$ /ゲイン)に関する限界値も考慮する必要があります。このため、システム・オフセット(ゼロスケール)キャリブレーションとゲイン(フルスケール)キャリブレーションの限界値を決定する際には、調整後のオフセットと調整後の正の最大スパン範囲の合計が $1.05 \times V_{REF}$ /ゲインを超えないようにする必要があります。

実現可能なオフセットとスパンの調整量は、設定がユニポーラ かバイポーラかによっても異なります。いくつかの例を挙げて、 わかりやすく説明します。

analog.com.jp Rev. 0 | 43 of 94

ADC 回路情報

デバイスをユニポーラ・モード(必要なスパンは $0.8 \times V_{REF}$ /ゲイン)で使用した場合、システム・キャリブレーションが処理できるオフセット範囲は $-1.05 \times V_{REF}$ /ゲイン~ $+0.25 \times V_{REF}$ /ゲインです。デバイスをユニポーラ・モード(必要なスパンは V_{REF} /ゲイン)で使用した場合、システム・キャリブレーションが処理できるオフセット範囲は $-1.05 \times V_{REF}$ /ゲイン~ $+0.05 \times V_{REF}$ /ゲインです。同様に、デバイスをユニポーラ・モードで使用し、オフセット $0.2 \times V_{REF}$ /ゲインを取り除く必要がある場合、システム・キャリブレーションが処理できるスパン範囲は $0.85 \times V_{REF}$ /ゲインです。

デバイスをバイポーラ・モード(必要なスパンは $\pm 0.4 \times V_{REF}$ /ゲイン)で使用した場合、システム・キャリブレーションが処理できるオフセット範囲は $-0.65 \times V_{REF}$ /ゲイン~ $+0.65 \times V_{REF}$ /ゲインです。デバイスをバイポーラ・モード(必要なスパンは $\pm V_{REF}$ /ゲイン)で使用した場合、システム・キャリブレーションが処理できるオフセット範囲は $-0.05 \times V_{REF}$ /ゲイン~ $+0.05 \times V_{REF}$ /ゲインです。同様に、デバイスをバイポーラ・モードで使用し、 $\pm 0.2 \times V_{REF}$ /ゲインのオフセットを取り除く必要がある場合、システム・キャリブレーションが処理できるスパン範囲は $\pm 0.85 \times V_{REF}$ /ゲインです。

analog.com.jp Rev. 0 | 44 of 94

デジタル・フィルタ

AD4190-4 は、デジタル・フィルタに関して優れた柔軟性を発揮します。本デバイスには、いくつかのフィルタ・オプションがあります。選択したオプションは、出力データレート、セトリング時間、50Hz と 60Hz の除去に影響を与えます。以降のセクションでは、各フィルタ・タイプについて説明します。具体的には、各フィルタ・オプションで使用可能な出力データレート、フィルタ応答とセトリング時間、および 50Hz と 60Hz の除去について説明します。

FILTER レジスタの FILTER_TYPE ビット (表 105 を参照) は、様々なフィルタのタイプを選択し、FILTER_FS レジスタの値で出力データレートを設定します。

sinc⁵ + 平均化フィルタ

AD4190-4の起動時には、sinc⁵ 平均化フィルタがデフォルトで選択されます。セトリング時間は、出力データレートが低い場合は、その逆数にほぼ等しくなりますが、高い出力データレートでは出力データレートの逆数の 5 倍まで増加します。そのため、1 つのチャンネルで変換を行う場合、または低出力データレートでいくつかのチャンネルでの変換を行う場合、変換時間はほぼ一定です。このフィルタは、出力データレートの全範囲にわたって優れたノイズ性能を発揮します。図 72 において、灰色で示しているブロックは使用しません。

図 72. sinc⁵ + 平均化フィルタ

FILTER レジスタの FILTER_TYPE ビット (表 105 を参照) を使用して、 $sinc^5$ + 平均化を有効にします。このフィルタを用いる場合、平均化フィルタは $sinc^5$ フィルタの後に置かれます。 $sinc^5$ フィルタは、62.5kSPS の一定出力データレートで動作します。FILTER_FS レジスタに書込まれた値は、(平均化ブロックで)実行する平均処理の量を示します平均化は(FILTER_FS[15:0]/4)です。FILTER_FS は、 $4\sim65532$ の範囲で 4 刻みの値をとることができます(16 ビット・ワードの 2LSB を 0 に設定する必要があります)。そのため、FILTER_FS に許される値は、4、8、12、16、20、...、65532 となります。FILTER_FS = 4 では、平均化は 1 となり、 $sinc^5$ フィルタのみが用いられ、出力データレートは 62.5kSPS となります。FILTER_FS の値を増加させると、平均化ブロックが用いられます。

出力データレートとセトリング時間、sinc⁵ + 平均化 フィルタ

1 つのチャンネルでの連続変換時の出力データレートは、次のようになります。

$$f_{ADC} = f_{CLK} / (128 \times Avg) \tag{3}$$

ここで、

fADCは出力データレート。

 f_{CLK} は、メイン・クロック周波数/クロック分周で、クロック分周は CLOCK_CTRL レジスタの CLOCKDIV ビットの値です(表 83 を 参照)。

Avg = FILTER_FS[15:0]/4。 $FILTER_FS[15:0]$ は、FILTER_FS レジスタの FILTER_FS[15:0]ビットの 10 進表示値です(表 107 を参照)。

チャンネルをユーザが手動で選択した場合、最初の変換に追加 遅延が発生します。必要な時間(セトリング時間)は、次のよ うになります。

$$t_{SETTLE} = ((4 + Avg) \times 128 + PT) / f_{CLK}$$
(4)

ここで、PT = 20 理時間は、 $FILTER_FS = 4$ のときには 96、その他全ての $FILTER_FS$ 値では 98 になります。

表 32 に、FILTER_FS[15:0]の設定例および対応する出力データレートとセトリング時間を示します。

表 32. 出力データレートと対応するセトリング時間の例 ($sinc^5 +$ 平均化フィルタ、16MHz クロック、クロック分周 = 2)

		Output Data Rate	
FILTER_FS[15:0]	First Notch (Hz)	(SPS)	Settling Time (ms)
4,160	60.04	60.04	16.7
5,000	50	50	20.076
4	62,500	62,500	0.092

チャンネルが変更されると、変調器とフィルタがリセットされます。チャンネル変更後は、セトリング時間を置いてから最初の変換結果が生成されます。このチャンネルでの後続の変換は1/fapcで発生します。低出力データレート時には、セトリング時間と1/fapcの値は非常に近いものになります。

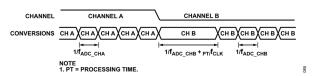


図 73. sinc⁵ + 平均化フィルタ(FS > 16)

デバイスが 1 つのチャンネルで変換を実行していて、アナログ 入力でステップ変化が発生した場合、ADC は変化を検出せず、変換結果の出力を継続します。ステップ変化が変換と同期している場合は、FILTER_FS > 16 であれば、中間の変換結果が 1 つ ADC から出力されます(図 74 を参照)。FILTER_FS = 4 の場合は、フィルタは $\sin c^5$ フィルタとして機能します。そのため、4 つの中間変換が存在します。ステップ変化が変換プロセスと非同期の場合、FILTER_FS > 16 であれば最大 2 つの中間変換が存在します。、FILTER FS = 4 であれば 5 つの中間変換が存在します。

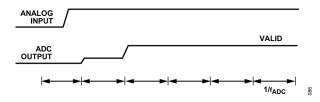


図 74. アナログ入力での同期ステップ変化、sinc⁵ + 平均化フィルタ (FILTER FS > 16)

analog.com.jp Rev. 0 | 45 of 94

デジタル・フィルタ

FILTER FS=8、12、16の場合の中間変換の数を表 33 に示します。

表 33. アナログ入力でのステップ変化

FILTER_FS[15:0]	Intermediate Conversions Synchronous	Intermediate Conversions Asynchronous
16	1 to 2	2
12	2	2 to 3
8	2 to 3	3

シーケンサ

出力データレートとセトリング時間、sinc⁵ + 平均化フィルタのセクションの説明は、チャンネルを手動で切り替える場合や動作モードを変更する場合に有効です。複数のチャンネルがイネーブルされている場合、内蔵シーケンサが自動的に使用されます。デバイスは、イネーブルにされた全てのチャンネルを自動的にシーケンスします。この場合、シーケンスの最初のチャンネルで最初の変換が行われるときには、表 32 に示した完全なセトリング時間を要します。

後続の全ての変換では、チャンネルの最初の変換に必要な時間はフィルタのセトリング時間です(PT=0)。複数の変換結果が 1つのチャンネルから読み出される場合(REPEAT>1)、選択されたチャンネルの 2 番目以降の変換に要する時間は、 $1/f_{ADC}$ です。

50Hz と 60Hz の除去、sinc5 + 平均化フィルタ

図 75 は、FILTER_FS[15:0]を 5,000 に設定した場合の周波数応答を示しています。

表 32 に、対応する出力データレートを示します。sinc⁵フィルタは、最初のノッチを次の周波数に配置します。

$$f_{NOTCH} = f_{CLK}/128 \tag{5}$$

平均化ブロックは、ノッチを f_{NOTCH}/Avg ($Avg = FILTER_FS/4$)に配置します。また、ノッチはこの周波数の整数倍の位置にも配置されます。そのため、 $FILTER_FS[15:0]$ が 5,000 に設定されている場合、1 つのノッチが $sinc^5$ フィルタにより 62,500Hz に配置され、平均化により 50Hz と 50Hz の整数倍の位置にも配置されます。

50Hz のノッチは 1 次ノッチです。そのため、ノッチの幅は広くありません。これは、安定したメイン・クロックであれば、ちょうど 50Hz での除去が良好になることを意味します。ただし、50Hz \pm 0.5Hz の帯域では、除去比が大幅に低下します。50Hz \pm 0.5Hz での除去比は、クロックが安定していると仮定して、40dB (最小値)です。そのため、最大限の50Hz除去が必要であれば、 $\sin c^5 +$ 平均化フィルタを用いる場合、良質なメイン・クロック源を使用することを推奨します。

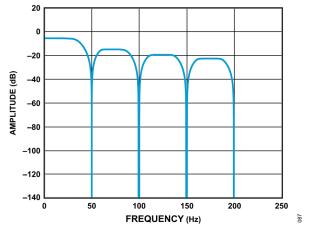


図 75.50Hz の除去

図 76 は、FILTER_FS[15:0]を 4160 に設定した場合のフィルタ応答を示しています。この場合、ノッチは 60Hz と 60Hz の整数倍の位置に配置されます。60Hz ± 0.5Hz での除去比は 40dB (最小値)です。

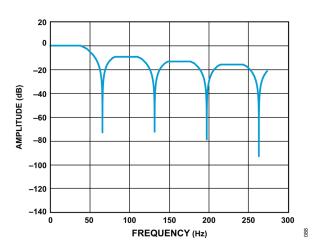


図 76.60Hz の除去

50Hz/60Hz 同時除去は、FILTER_FS[15:0]を 25,000 に設定することで実現できます。ノッチは 10Hz と 10Hz の倍数に配置されるため、50Hz と 60Hz の同時除去が可能になります(図 77 を参照)。50Hz \pm 0.5Hz および 60Hz \pm 0.5Hz での除去比は 40dB(代表値)です。

analog.com.jp Rev. 0 | 46 of 94

デジタル・フィルタ

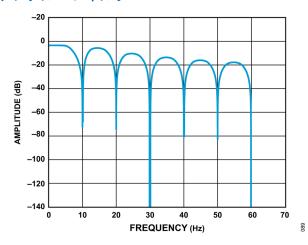


図 77. 50Hz と 60Hz の同時除去

sinc⁵フィルタ

フィルタは、FILTER レジスタの FILTER_TYPE ビット(表 105 を参照)を使用して選択します。このフィルタは、976.5SPS~62,500SPS という高い出力データレートをサポートしています。このフィルタは高い出力データレートの場合に有用です。高次の sinc フィルタは sinc³ フィルタに比べて高周波数ノイズの抑制に優れ、ピーク to ピーク分解能が改善するためです。このフィルタは、優れたノイズ性能と適度なセトリング時間を備えています。このフィルタ・オプションは 50Hz と 60Hz の除去には対応していない点に注意してください。図 78 において、灰色で示しているブロックは使用しません。

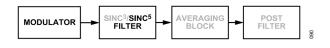


図 78. sinc⁵ フィルタ

sinc⁵の出力データレートとセトリング時間

出力データレート (ADC で連続変換を実行しているときに 1 つのチャンネルで可能な変換レート) は次のようになります。

$$f_{ADC} = f_{CLK}/(32 \times FILTER_FS[8:0]) \tag{6}$$

ここで、

fADC は出力データレート。

 f_{CLK} はメイン・クロック周波数/クロック分周で、クロック分周は CLOCK_CTRL レジスタの CLOCKDIV ビットの値です(表 83を参照)。

FILTER_FS[8:0]は、FILTER_FS レジスタの FILTER_FS[8:0]ビットの10進表示値です(表 107を参照)。FILTER_FS[8:0]は、4、8、12、16、20、24…256 の値に設定できます。FILTER_FS[8:0]の2LSBは0に設定する必要があります。

チャンネルをユーザが手動で選択した場合、または、動作モードの変更があった場合、最初の変換に追加遅延が発生します。 $\sin c^5$ フィルタを用いる場合に必要な時間(セトリング時間)は次のようになります。

$$t_{SETTLE} = (5 \times 32 \times FILTER_FS[8:0] + PT) / f_{CLK}$$
(7)

ここで PT = *処理時間* = 96。

表 34 に、FILTER_FS[8:0]の設定および対応する出力データレートとセトリング時間の例を示します。

表 34. 出力データレートと対応するセトリング時間の例 (sinc⁵フィルタ、16MHz クロック、クロック分周 = 2)

FILTER_FS[8:0]	Output Data Rate (SPS)	Settling Time (ms)
256	976.5	5.132
4	62,500	0.092

チャンネルが変更されると、変調器とフィルタがリセットされます。チャンネル変更後は、完全なセトリング時間の経過後に最初の変換結果を生成できます(図 79 を参照)。このチャンネルでの後続の変換は 1/f_{ADC} で発生します。

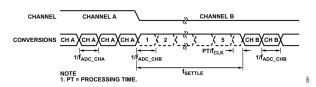


図 79. sinc⁵ のチャンネル変更

1 つのチャンネルで変換が実行されていて、ステップ変化が発生した場合、ADC はアナログ入力の変化を検出しません。このため、プログラムされた出力データレートで変換結果の出力を継続します。ただし、出力データにアナログ入力が正確に反映されるのは、ステップ変化後少なくとも 5 回の変換を行った後です。ADC が変換を処理しているときにステップ変化が発生した場合、ADC がステップ変化後に完全にセトリングされた結果を生成するまでには、6 回の変換が必要です(図 80 を参照)。

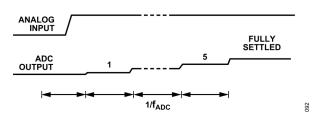


図80.アナログ入力での非同期ステップ変化

シーケンサ

sinc⁵の出力データレートとセトリング時間のセクションの説明は、チャンネルを手動で切り替える場合やモードを変更する場合に有効です。複数のチャンネルがイネーブルされている場合、内蔵シーケンサが自動的に使用されます。デバイスは、イネーブルにされた全てのチャンネルを自動的にシーケンスします。この場合、シーケンスの最初のチャンネルの最初の変換には、表34に示した完全なセトリング時間を要します。

後続の全ての変換では、チャンネルの最初の変換に必要な時間はフィルタのセトリング時間です (PT=0)。

analog.com.jp Rev. 0 | 47 of 94

デジタル・フィルタ

シーケンサを使用していて REPEAT が 1 より大きい場合は、選択されたチャンネルの 2 番目以降の変換に要する時間は、 $1/f_{ADC}$ です。

sinc⁵での 50Hz と 60Hz の除去

 $sinc^5$ フィルタは 50Hz と 60Hz の除去をサポートしていません。 この ADC においては、このフィルタは、高い出力データレート でのみ用いることができるためです。

sinc³フィルタ

AD4190-4 では $sinc^3$ フィルタも使用できます。フィルタは、FILTER レジスタの FILTER_TYPE ビット(表 105 を参照)を使用して選択します。このフィルタは、優れたノイズ性能、適度なセトリング時間、優れた 50Hz/60Hz ($\pm 1\text{Hz}$) 除去比を備えています。図 81 において、灰色で示しているブロックは使用しません。

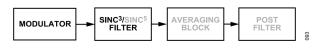


図 81. sinc³ フィルタ

sinc3の出力データレートとセトリング時間

出力データレート (ADC で連続変換を実行しているときに 1 つのチャンネルで可能な変換レート) は次のようになります。

$$f_{ADC} = f_{CLK} / (32 \times FILTER_FS[15:0])$$

$$\approx 2.2\%$$
(8)

fADCは出力データレート。

 f_{CLK} は、メイン・クロック周波数/クロック分周で、クロック分周は CLOCK_CTRL レジスタの CLOCKDIV ビットの値です(表 83 を参照)。

 $FILTER_FS[15:0]$ は、FILTER_FS レジスタの FILTER_FS[15:0] ビットの 10 進表示値です(表 107 を参照)。

FILTER_FS[15:0]の値は 4、8、12、16、20、…、65532 のいずれ かとすることができます(16 ビット・ワードの 2LSB を 0 に設定する必要があります)。出力データレートは $3.8SPS \sim 62,500SPS$ にプログラムできます。

sinc³フィルタを用いる場合のセトリング時間は次のようになります。

$$t_{SETTLE} = (3 \times 32 \times FILTER_FS[15:0] + PT)$$

$$/f_{CLK}$$
(9)

ここで、PT = 処理時間 = 92。

表 35 に、FILTER_FS[15:0]の設定および対応する出力データ レートとセトリング時間の例を示します。

表 35. 出力データレートと対応するセトリング時間の例 (sinc³ フィルタ、16MHz クロック、クロック分周 = 2)

FS[15:0]	Output Data Rate (SPS)	Settling Time (ms)
4160	60.04	49.93
5,000	50	60.01

表 35. 出力データレートと対応するセトリング時間の例 $(\sin c^3 \, \text{J}_{7} \, \text{L}_{7} \, \text{L}_{7})$ ($\sin c^3 \, \text{J}_{7} \, \text{L}_{7} \, \text{L}_{7}$) (続き)

FS[15:0]	Output Data Rate (SPS)	Settling Time (ms)
4	62,500	0.0595

チャンネルが変更されると、変調器とフィルタがリセットされます。チャンネル変更後は、完全なセトリング時間の経過後に最初の変換結果を生成できます(図 82 を参照)。このチャンネルでの後続の変換は 1/fapc で発生します。

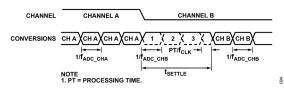


図 82. sinc³ のチャンネル変更

1 つのチャンネルで変換が実行されていて、ステップ変化が発生した場合、ADC はアナログ入力の変化を検出しません。このため、プログラムされた出力データレートで変換結果の出力を継続します。ただし、出力データにアナログ入力が正確に反映されるのは、ステップ変化後少なくとも 3 回の変換を行った後です。ADC が変換を処理しているときにステップ変化が発生した場合、ADC がステップ変化後に完全にセトリングされた結果を生成するまでには、4回の変換が必要です(図 83 を参照)。

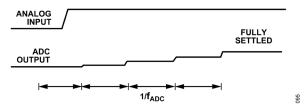


図83. アナログ入力での非同期ステップ変化

シーケンサ

sinc³の出力データレートとセトリング時間のセクションの説明は、チャンネルを手動で切り替える場合やモードを変更する場合に有効です。複数のチャンネルがイネーブルされている場合、内蔵シーケンサが自動的に使用されます。デバイスは、イネーブルにされた全てのチャンネルを自動的にシーケンスします。この場合、シーケンスの最初のチャンネルの最初の変換には、表35に示した完全なセトリング時間を要します。

後続の全ての変換では、チャンネルの最初の変換に必要な時間はフィルタのセトリング時間です (PT=0)。

シーケンサを使用していて REPEAT が 1 より大きい場合は、選択されたチャンネルの 2 番目以降の変換に要する時間は、 $1/f_{ADC}$ です。

analog.com.jp Rev. 0 | 48 of 94

デジタル・フィルタ

sinc³での 50Hz と 60Hz の除去

図 84 に、出力データレートを 50SPS に設定した場合の $\sin c^3$ フィルタの周波数応答を示します。安定したメイン・クロックの場合、 $\sin c^3$ フィルタは 50Hz \pm 1Hz で 95dB(最小値)の除去を実現します。

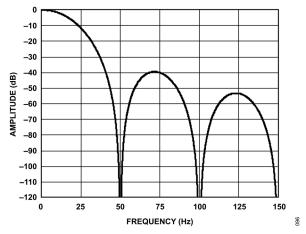


図 84. sinc³ フィルタの応答(50SPS 出力データレート)

図 85 に、出力データレートを 60SPS に設定した場合の $sinc^3$ フィルタの周波数応答を示します。安定したメイン・クロックの場合、 $sinc^3$ フィルタの 60Hz $\pm 1Hz$ での除去比は 95dB(最小値)です。

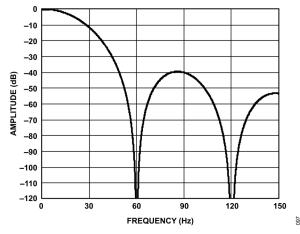


図 85. sinc³ フィルタの応答(60SPS 出力データレート)

出力データレートが 10SPS の場合、50Hz と 60Hz の同時除去ができます。 $sinc^3$ フィルタの 50Hz \pm 1Hz および 60Hz \pm 1Hz での除去比は 100dB(最小値)です(図 86 を参照)。

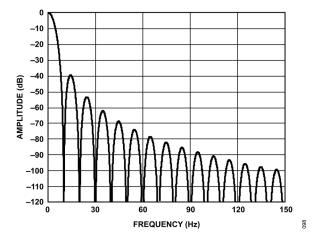


図 86. sinc³ フィルタの応答(10SPS 出力データレート)

ポスト・フィルタ

40ms、50ms、60msのポスト・フィルタは50Hzと60Hzを同時に除去するので、セトリング時間と除去比のトレード・オフが可能です。これらのフィルタは、25SPSまで動作可能で、50Hz \pm 1Hz および60Hz \pm 1Hz における干渉信号を最大89dB 除去できます。これらのフィルタは、 $sinc^5 +$ 平均化フィルタの出力をポスト・フィルタ処理することで動作します。

sinc³または sinc⁵ + 平均化フィルタをポスト・フィルタの前段に 使用できる点に注意してください。

ただし、どちらのオプションもノイズ性能は同様ですが、 $sinc^5$ + 平均化フィルタの方がセトリング時間が短いため、 $sinc^5$ + 平均化フィルタを推奨します。50Hz と 60Hz の除去を行うには、sinc フィルタの出力データレートは 1200SPS に近い値であることが必要です(デフォルトのメイン・クロックを使用する場合、FILTER_FS = 208)。その他の FILTER_FS 値でもフィルタを使用できますが、ノッチは 50Hz や 60Hz ではなくなります。16 平均のポスト・フィルタ・オプションを用いた場合、セトリング時間は最初のフィルタ・ノッチの逆数に近い値となります。そのため、このフィルタは、1/50Hz および 1/60Hz に近いセトリング時間で 50Hz および 60Hz を除去できます。 $FILTER_FS$ ビットを使用して、ノッチの位置を変えることができます。16 平均オプションの前に $sinc^5$ + 平均化フィルタを用いることを推奨します。 $sinc^3$ フィルタよりセトリング時間が短く、性能はどちらのオプションでも同様であるためです。

セトリング時間が 1/50Hz または 1/60Hz の場合、 $sinc^5 +$ 平均化 フィルタ自体も 50Hz および 60Hz 除去をサポートする点に注意してください。

使用するポスト・フィルタのオプションは、FILTER レジスタの POST_FILTER_SEL ビット (表 105 を参照) を使用して選択しま す。図 87 において、灰色で示しているブロックは使用しません。

図 87. ポスト・フィルタ

表 36 に、出力データレートおよび対応するセトリング時間と除去比を示します。

analog.com.jp Rev. 0 | 49 of 94

デジタル・フィルタ

1 つのチャンネルで連続変換を行っている場合、最初の変換には t_{SETTLE} の時間が必要です。後続の変換は $1/f_{ADC}$ で発生します。(手動またはシーケンサを使用して)複数のチャンネルがイネーブルされている場合、イネーブルされた各チャンネルで最初の有効な変換結果を生成するには、セトリング時間が必要です。チャンネルがイネーブルされているときに複数の変換が行われている場合は、2 番目以降の変換は $1/f_{ADC}$ で発生します。FILTER_FS に許される値は4、8、12、...、1024 です(2LSB は0 に設定する必要があります)。

表 36. AD4190-4 のポスト・フィルタ:出力データレート、セトリング時間、(t_{SETTLE})、除去比(FILTER_FS = 208、16MHz メイン・クロック、クロック分周 = 2、 $sinc^5$ + 平均化フィルタ)

Conversion Time (ms)	Output Data Rate (SPS)	f _{3dB} (Hz)	t _{SETTLE} (ms)	Simultaneous Rejection of 50Hz ± 1Hz and 60Hz ± 1Hz (dB) ¹
40	25.04	15.14	39.98	62
50	20.03	13.4	49.96	85
60	16.69	12.82	59.94	89

[「]安定したメイン・クロックを使用。

表 37. 16 平均ポスト・フィルタによる平均化:出力データレート、セトリング時間、(t_{SETTLE})、除去比、 $sinc^5$ + 平均化フィルタ、16MHz クロック、クロック分周 = 2

FILTER_FS	Output Data Rate (SPS)	f _{3dB} (Hz)	t _{SETTLE} (ms)	Simultaneous Rejection of 50Hz ± 1Hz and 60Hz ± 1Hz (dB) ¹
260	60.1	26.57	16.68	40 (60Hz only)
312	50.1	22.14	20.01	38 (50Hz only)

[「]安定したメイン・クロックを使用。

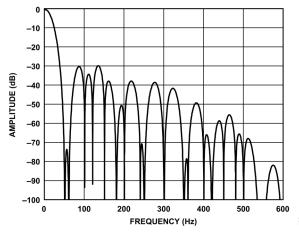


図 88. DC~600Hz、セトリング時間 50ms のポスト・フィルタ

図 89. 40Hz~70Hz の拡大図、セトリング時間 50ms の ポスト・フィルタ

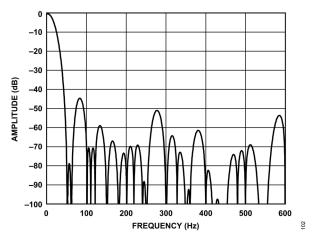


図 90. DC~600Hz、セトリング時間 60ms のポスト・フィルタ

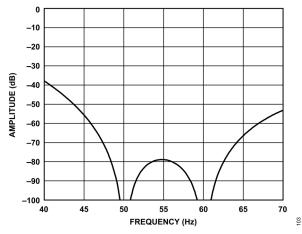


図 91. DC~600Hz、セトリング時間 60ms のポスト・フィルタ

analog.com.jp Rev. 0 | 50 of 94

デジタル・フィルタ

アンチエイリアシング・フィルタ

AD4190-4 の変調器は、 f_{MOD} の立上がりエッジと立下がりエッジでサンプリングを行い、 f_{MOD} のレートでデジタル・フィルタにデータを出力します。変調器の周波数応答プロファイルの中には、 f_{MOD} の奇数倍の位置を中心とするゼロが存在しますが、これは f_{MOD} レートとこのレートの奇数倍の周波数からのフォールドバックがないことを意味します。 f_{MOD} レートの位置にある周波数からのフォールドバックがないという事実により、AD4190-4 の最初の非保護領域は $2 \times f_{MOD}$ へ移動します。しかし変調器は、 f_{MOD} の倍数においてもノイズの影響を受けやすくなります。これらの領域では減衰がないからです。

更に、AD4190-4 は、変調器でチョップ・アンプと同様のチョッピング技術を使用してオフセット、オフセット・ドリフト、および 1/f ノイズを除去します。チョッピングのレートによっては、目的の帯域幅内に帯域外トーンがエイリアスとして出現することがあります。図 92 に、AD4190-4 で用いられるチョップ周波数 $f_{CHOP} = f_{MOD}/8$ における帯域外トーンの除去を示します。

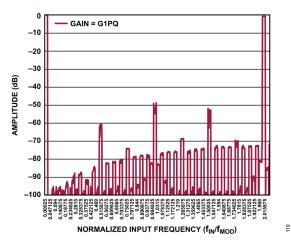


図 92. 帯域外トーンの除去(ADC のみ)

PGA でもチョッピングを使用し、そのチョッピング周波数は fmop/16 です。帯域外トーンが目的の帯域幅内にエイリアスとして出現するのを防止するため、アンチエイリアシング・フィルタを使用する必要があります。パッシブな(抵抗とコンデンサによる)フィルタで十分です。フィルタのプロファイルは動作環境に依存します。

analog.com.jp Rev. 0 | 51 of 94

デジタル・インターフェース

AD4190-4 のデジタル・インターフェースを使用することで、ユーザ設定レジスタへのアクセス、ADC 変換の開始、診断テストの実行、変換結果のリード・バックが可能になります。インターフェースは 4 線式($\overline{\text{CS}}$ 、SCLK、SDI、SDO)です。また、 $\overline{\text{CS}}$ をローにハードワイヤー接続しても動作できます。このインターフェースは、QSPITMや MICROWIRE インターフェース規格に加え、ほとんどのデジタル信号プロセッサ(DSP)とも互換性があります。読出しと書込みのどちらの SPI トランザクションに対しても、データは SCLK の立上がりエッジでサンプリングされます。全ての SPI トランザクションについて、各バイトの最上位ビット(MSB)が最初にシフトされます。SDO ラインは、デフォルトでデータ・レディ信号($\overline{\text{RDY}}$)としても機能します。AD4190-4 デバイスからデータを読み出せる場合、SDOラインはローになります。あるいは、DIG_AUX1 に専用のデータ・レディ信号を出力することもできます。

AD4190-4 への全ての通信は、その動作が読出しなのか書込みなのか、およびどのレジスタにアクセスするのかを示す命令フェーズで始まります。その後、データ・フェーズが続き、データが(SDI を用いて)ADC に書き込まれるか、あるいは、SDO を用いて ADC から読み出されます。

AD4190-4 のデジタル・インターフェースのロジック・レベルは、 IOVDD の電圧によって設定され、その範囲は $1.7V\sim5.25V$ です。

AD4190-4 のユーザ設定レジスタそれぞれのアドレスと機能の詳細な説明については、内蔵レジスタ・マップのセクションを参照してください。

ADC の変換モードと変換結果へのアクセス方法

デフォルトでは、ADCは sinc⁵+平均化フィルタを用いて(表89 の MODE ビットを 000b に設定) 連続的に変換します。イネーブ ルされている各チャンネルには、専用のデータ・レジスタがあ ります(表89のMULTI DATA REG SELビットを0に設定)。 DATA PER CHANNELn レジスタは、CHANNELn の変換結果を 保持します。表 69の RDYB ビットは、イネーブルされた全ての チャンネルの変換が完了するたびに、ローになります。 CSが ローの場合、デフォルトではRDY信号がSDOに出力されるため、 イネーブルされた全てのチャンネルの変換が完了すると SDO ラ インもローになります。あるいは、RDYを DIG AUX1 に出力す ることもできます。チャンネルごとにデータ・レジスタが使用 される場合、STATUS ビットは変換結果に自動的には付加され ません。各データ・レジスタを読み出すには、次の動作がデー タ・レジスタからの読出しであることを示す命令フェーズが必 要です。RDYは、イネーブルされたチャンネルからの変換結果 が読み出されると、ハイに戻ります。

イネーブルされたチャンネルは、データ・レジスタを共用することもできます(表 89 の MULTI_DATA_REG_SEL ビットを 1 に設定)。表 69 の RDYB ビットは、変換が完了するたびにローになります。 $\overline{\text{CS}}$ がローになるか、 $\overline{\text{RDY}}$ が DIG_AUXI に出力されると、 $\overline{\text{RDY}}$ 信号もローになります。変換の読出し時には、DATA_24B レジスタを通じて 24 ビットの変換結果にアクセスできます。変換結果と共に STATUS レジスタの内容を読み出すには、DATA_24B_STATUS レジスタを読み出します。また、AD4190-4 は、変換結果の 16MSB のみを読み出せる 16 ビット変換読出し機能もサポートしています。16 ビットの変換結果と読み出すのに関連するレジスタは DATA_16B で、変換結果と共にステータス・ビットも読み出す場合のレジスタは DATA_16B_STATUS です。データ・レジスタから変換結果を読み出すと、 $\overline{\text{RDY}}$ がハイに移行します。

データ・レジスタが共用されている場合、または、必要に応じてチャンネルごとのデータ・レジスタが用いられている場合、ユーザはデータ・レジスタを読み出す回数を追加できます。ただし、レジスタが更新されることになっている場合は、次の変換の完了時に、データ・レジスタへのアクセスが行われていないようにする必要があります。そうしないと、新しい変換ワードが失われます。

複数のチャンネルがイネーブルされると、ADC はイネーブルされたチャンネルを自動的にシーケンス処理します。チャンネルごとのデータ・レジスタを使用している場合は、イネーブルされたチャンネルのそれぞれで 1 回の変換を行うようデバイスを設定する必要があります(表 97 の該当チャンネルの REPEAT ビットを 0 に設定)。イネーブルされたチャンネルが 1 つのデータ・レジスタを共用している場合は、シーケンスにおいて 1 つのチャンネルが選択されるごとに、そのチャンネルで複数の変換を実行できます(同じく表 97 で該当のチャンネルの REPEAT ビットを使用)。全チャンネルの変換が完了すると、最初のチャンネルからシーケンスが再開します。チャンネルは、イネーブルされた最も番号の小さいチャンネルから、最も番号の大きいチャンネルへ順に変換されます。該当のデータ・レジスタは、変換結果が読出し可能になると、直ちに更新されます。

表 89 の MODE ビットが 100b に設定されている場合、シーケンスが 1 回実行され、その後 ADC はスタンバイ・モードになります。1 つのチャンネルのみがイネーブルされている場合は、シングル変換が実行されます。

変換結果をリード・バックする場合に命令フェーズとデータ・フェーズを用いる代わりに、連続読出しと連続送信という 2 つのオプションがあり、変換のリード・バックを簡単に行うことができます。詳細については、連続読出しと連続送信のセクションを参照してください。

連続読出し

連続読出しは、ADC からのスループットを最大化できるように設計されています。シフト・レジスタが ADC の変換データに簡単にアクセスできるようにするため、レジスタ・マップへのアクセスはできません。

連続読出しをイネーブルするには、表89のCONT_READビットを用い(01bに設定すると連続読出しがイネーブル)、SPIインターフェースを単純な(二重)シフト・レジスタに切り替えます。このレジスタでは、ADCの変換結果をシフト・アウトしながら、同時に終了コマンドやソフトウェア・リセットのチェックを行います。ADCデータの読出し時に命令フェーズは不要です。連続読出しを使用できるのは、イネーブルされた全てのチャンネルが1つのデータ・レジスタを共用している場合のみです。

このインターフェース・オプションは、ADC データ・レジスタからの読出しアクセスに加え、オプションで付加されたステータス・レジスタや CRC のみをサポートします。このモードでは、変換データは 24 ビット幅です。 $\overline{\text{CS}}$ は読出しの最後にトグルするか、恒久的にローに保持することができます。 $\overline{\text{CS}}$ をハイにすると SDO がトライステートになり、SPI の状態がリセットされます。ADC の読出し後に $\overline{\text{CS}}$ がハイに設定されない場合、データのLSB が SDO を駆動し続けます(あるいは、DIG_AUXI の設定によっては $\overline{\text{RDY}}$ に戻ります)。

連続読出しを使用しなくてはならないのは、ADCが連続変換モードでイネーブルされている場合に限ります。ソフトウェア・リセットをトリガしないようにするために、連続読出しモード時には、SDIをローまたはハイに保持することが必要です。また、

analog.com.jp Rev. 0 | 52 of 94

デジタル・インターフェース

転送のアボートを避けるため、ホストは必要なスループット・レートでデータを読み出せることが必要です。進行中のデータ・リード・バックは、次の ADC 結果の用意ができるまでに完了しないと、アボートされます。

このモードでは SCLK をゲートするために \overline{RDY} が用いられます。新しい ADC データ結果がデータ・レジスタに書き込まれると \overline{RDY} は 0 に設定され、ADC のデータ読出しが完了すると 1 に設定されます。AD4190-4 は、最初の 24SCLK(およびオプションのステータス・ビットとオプションの CRC)にのみ従います。そのため、ADC の各変換結果を読み出すことができるのは 1 回のみです。 \overline{RDY} が次にローになるまでは、それ以外の SCLK は無視されます。

連続読出しを終了するには、ADC のデータ読出しにおける最初の 8SCLK の間に、ADC に 0xA5 を書き込みます。終了するコマンドを送信した後、変換結果の残りのビットを読み出すことができます。また、リセットを使用して連続読出しを終了することもできます。63 個の 1 と 1 個の 0 からなるパターンを 3 回書き込むとデバイスをリセットできます。ただし、レジスタはデフォルト値に設定されます。

連続読出しをイネーブルする前に CRC がイネーブルされている 場合 (表 89 の CONT_READ_STATUS_EN ビットを使用)、 0xA5 のシード値が用いられます。

連続送信

連続送信オプションの場合は、データが使用可能になると、適切な数のデータ・クロック(DCLK)を伴って自動的に送信されます。ホストは、ADC データを取得するために $\overline{\text{RDY}}$ による割込みに応答する必要がないため、ホストのタイミングの負荷が軽減されます。データ・クロックは、選択されたデバイスのメイン・クロックから生成されます(表 83 の DCLK_DIVIDE ビットによって 2、4、8 分周のオプションがあります)。連続送信モードを有効にするには、表 89 の CONT_READ ビットを 10bに設定します。連続送信を使用できるのは、イネーブルされた全てのチャンネルが 1 つのデータ・レジスタを共用している場合のみです。

連続読出しと同様、連続送信を終了するために CONT_READ ビットに書き込めることを除き、レジスタ・マップへのアクセスはできません。連続送信を使用できるのは、ADC が連続変換モードでイネーブルされている場合に限ります。ソフトウェア・リセットをトリガしないようにするために、このモードの使用時には、SDI をローに保持することが必要です。SDO ラインは専用の ADC データ出力になります。DIG_AUX1 を使用して $\overline{\text{RDY}}$ 信号を出力し、DIG_AUX2 はデータ・クロック(DCLK)を出力するよう設定します。

このモードでは、CRC を含むか含まないかに応じて、32 ビットまたは 64 ビットのデータ・フレームを用います(表 89 の CONT_READ_STATUS_EN ビットを用いてイネーブル)。データ・フレームには、0x00 のパディング・バイトが含まれる場合があります(表 38 と表 39 を参照)。そのため、CRC がディスエーブルの場合、32 ビットのデータ・フレームのみが転送されます。

その他の動作モードに従い、新しい ADC 結果が出力されると \overline{RDY} (DIG_AUX1 に出力) はローになり、ADC のデータ (+ス テータス/CRC) 転送の最後のビットでハイに戻ります。これにより連続送信フレームが終了します。選択した出力フォーマットに応じて、32 個または 64 個の DCLK が、 \overline{RDY} がローになった後に出力されます。各 ADC の結果は 1 回のみ送信されます。データ送信とデータ通信の間は、DCLK がハイのアイドル

状態になります。データ送信後に $\overline{\text{CS}}$ がハイにならない場合、最後のスロットの LSB が SDO を駆動し続けます。送信中に $\overline{\text{CS}}$ をハイにすると送信がアボートされる点に注意してください。 $\overline{\text{RDY}}$ がローになるときに $\overline{\text{CS}}$ がハイであると、送信は行われません。

表 38. データ送信フォーマット(CRC をディスエーブルした場合の 32 ビット・データ・フレーム、または 64 ビット・データ・フレームの前半の 32 ビット)

Byte 1	Byte 2	Byte 3	Byte 4
STATUS or 0x00	ADC_DATA[23:16]	ADC_DATA[15:8]	ADC_DATA[7:0]

表 39. データ送信フォーマット(CRC をイネーブルした場合の64 ビット・データ・フレームの後半の32 ビット)

Byte 5	Byte 6	Byte 7	Byte 8
STATUS	0x00	0x00	CRC

SPI フレーム同期

SPI トランザクション時、 \overline{CS} ピンを使用してデータをフレーム 化できます。 \overline{CS} の立下がりエッジによってデジタル・インター フェースがイネーブルされ、SPIトランザクションが開始します。 AD4190-4 への書込み時、SDI のデータは、SCLK の立上がり エッジでラッチされます。読出しトランザクションが始まると、 SCLK の立下がりエッジで SDO のデータがシフト・アウトされ ます。各 SPI トランザクションには、少なくとも 1 つの命令 フェーズとデータ・フェーズがあり、これについては命令 フェーズのセクションとデータ・フェーズのセクションで詳細 を説明します。全ての SPI トランザクションに対し、データは、 レジスタ・バイト・レベルで、MSB ファーストで配置されます。 SPI トランザクション中に \overline{CS} をハイにすると、データ転送が終 了し、デジタル・インターフェースがディスエーブルされます。 AD4190-4 の基本的な SPI 書込みフレームのステージを図 93 に、 SPI 読出しフレームのステージを図 94 に示します。 $\overline{\text{CS}}$ は恒久的 にローに接続できます。プロセッサと AD4190-4 の間での SPI の 同期を可能にするために、命令フェーズの MSB は常に 0 です。 そのため、2つのデータ転送の間にSDIがアイドル・ハイになっ ている場合、AD4190-4 は SCLK パルスを全て無視します。SDI の0は、命令フェーズの開始を示します。

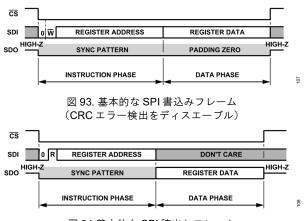


図 94.基本的な SPI 読出しフレーム (CRC エラー検出をディスエーブル)

図2と図3に、SPIインターフェースを介したレジスタ読出し動作と書込み動作の詳細なタイミング図を示します(タイミング仕様の詳細については、タイミング特性のセクションを参照してください)。

analog.com.jp Rev. 0 | 53 of 94

デジタル・インターフェース

命令フェーズ

各レジスタ・アクセスは命令フェーズから始まります。図 93 と 図 94 に、 $\overline{\text{CS}}$ がマイクロプロセッサにより制御される場合の基本的な読出し動作と書込み動作を示します。 $\overline{\text{CS}}$ はローにハードワイヤー接続することもできます。

命令フェーズは、0 とそれに続く読出し/書込みビット (R/\overline{W}) 、 およびそれに続く 14 ビットのレジスタ・アドレスで構成されて います。 R/\overline{W} をローに設定すると書込み命令が始まり(図 93 を 参照)、 R/\overline{W} をハイに設定すると読出し命令が始まります(図 94 を参照)。レジスタ・アドレスはアクセスするレジスタのアド レスを指定します。レジスタ・アドレスはデフォルトで 14 ビッ ト長(14 ビット・アドレス指定)です。14 ビットのアドレス指 定で、メモリ・マップ全体へのアクセスが可能です。アドレス 指定メモリの位置がアドレス 0x40 より低い場合、 INTERFACE CONFIG B レジスタの SHORT INSTRUCTION ビットを用いてアドレス指定を6ビットに変更できます(6ビッ ト・アドレス指定)。6ビット・アドレス指定により、アドレ ス 0x3F(10 進数で 63) までのメモリ場所にアクセスする場合に 命令フェーズを短縮できます。これより上では14ビット・アド レス指定を選択する必要があります。同期が失われたかどうか をプロセッサが判定できるように、命令フェーズの間、同期パ ターンが SDO に出力されます。16 ビット命令を使用する場合、 このパターンは 0x2645 です。命令フェーズが 8 ビットであれば、 同期パターンは、0x26 です。パターンの MSB をマイクロプロ セッサが確実にキャプチャされるとは限らないという理由から、 マイクロプロセッサは、ビット[14:0] (16 ビット命令) または ビット[6:0] (8 ビット命令) をチェックする必要があります。こ の機能は、SEND STATUS ビットを用いて無効化できる点に注 意してください。その場合、SDOには0が出力されます。

データ・フェーズ

図 93 と図 94 に示すように、データ・フェーズは命令フェーズ の直後に置かれます。データ・フェーズには、選択したレジス タに応じて、1 個のシングルバイト・レジスタ、または1 個のマルチバイト・レジスタのデータが含まれます。

アドレス指定されたレジスタの内容は、レジスタ・データの最後のビットをシフト・インする SCLK の立上がりエッジの直後に更新されます。シングルバイト・レジスタでは、この最後のビットは、データ・フェーズの8番目の SCLK 立上がりエッジです。マルチバイト・レジスタのデータが更新されるタイミングの詳細については、マルチバイト・レジスタのセクションを参照してください。

確実に更新が行われるよう、データはAD4190-4の設定レジスタにフル・バイトで書き込む必要があります。SPI書込みトランザクションのデータ・フェーズに、更新対象レジスタのデータ・バイトの一部しか含まれない場合、レジスタの内容は更新されず、表 67 の CLOCK COUNT ERR ビットがセットされます。

CRC がイネーブルされている場合、AD4190-4のレジスタは、有効な CRC をデバイスが受信した場合にのみ更新されます。CRC が無効または供給されない場合、データ・レジスタは更新されません。CRC 機能の詳細については、チェックサム保護のセクションを参照してください。

マルチバイト・レジスタ

AD4190-4 の設定レジスタの一部は、連続するアドレスに格納された複数バイトのデータで構成されています。これをマルチバイト・レジスタと呼びます。AD4190-4 のマルチバイト・レジスタのリストの詳細については、内蔵レジスタ・マップのセクションを参照してください。

AD4190-4 のマルチバイト・レジスタに書込みを行う場合、全てのバイトを1回のSPIトランザクションで転送する必要があります。マルチバイト・レジスタへの SPI 書込みトランザクションをバイトごとに行おうとした場合、デバイスのレジスタの内容は更新されず、表 67 の REGISTER_PARTIAL_ACCESS_ERRビットがセットされます。AD4190-4 のマルチバイト・レジスタへの書込みトランザクションが有効になるのは、レジスタ・データの最後のビットをシフト・インする、データ・フェーズの最終 SCLK 立上がりエッジの後です。

マルチバイト・レジスタのアドレスは、常に表 43 の ADDR_ASCENSION ビットに依存します。降順アドレス指定の場合は、データ・フェーズで最初にアクセスするバイトはマルチバイト・レジスタの最上位バイトであることが必要で、後続のバイトは次の下位アドレスのデータに対応します。昇順アドレス指定の場合は、データ・フェーズで最初にアクセスするバイトはマルチバイト・レジスタの最下位バイトであることが必要で、後続のバイトは次の上位アドレスのデータに対応します。例えば、16 ビットの ADC_DATA レジスタは 2 バイト長で、その最下位バイトのアドレスは 0x17です。

マルチバイト・レジスタは1回のSPIトランザクションで読み出すことができる他、バイトごとに個別にアドレス指定することも可能です。マルチバイト・レジスタへのSPI読出しトランザクションをバイトごとに行おうとした場合、表67のREGISTER PARTIAL ACCESS ERR ビットがセットされます。

マルチバイト・レジスタ(2 バイト)への書込み/読出しトランザクションを図 95(昇順アドレス指定)と図 96(降順アドレス指定)に示します。表 43の ADDR_ASCENSION ビットを 0に設定すると、バイトにアクセスするごとにアドレスがデクリメントします。ADDR_ASCENSION を 1 に設定すると、バイトにアクセスするごとにアドレスがインクリメントします。

マルチバイト・レジスタにアクセスする場合、降順アドレス指 定を用いると、最初に最上位バイトをシフト・インします。

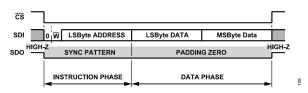


図 95. 昇順アドレス指定でのマルチバイト・レジスタの 書込みアクセス

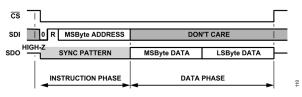


図 96. 降順アドレス指定でのマルチバイト・レジスタの 読出しアクセス

analog.com.jp Rev. 0 | 54 of 94

デジタル・インターフェース

デバイスの識別

以下のアドレスに、AD4190-4 に関する識別情報が格納されています:デバイスのベンダとしてアナログ・デバイセズを特定する VENDOR_ID レジスタ、デバイスが属するアナログ・デバイセズの製品カテゴリを特定する CHIP_TYPE レジスタ、CHIP_TYPE と合わせてデバイスを特定するために用いられる PRODUCT_ID レジスタ、デバイスのリビジョンおよび性能グレードを記録する CHIP_GRADE レジスタ。SPI_REVISION レジスタは、SPI インターフェースのリビジョンに関する情報を提供します。

AD4190-4 は次のように指定されています。

- ▶ VENDOR ID = 0x0456
- ► CHIP TYPE = 0x07
- ▶ PRODUCT ID = 0x0048
- ► CHIP GRADE = 0x04
- ▶ SPI REVISION = 0x83

デバイスのリセット

AD4190-4 には、デバイスをリセットするためのオプションとして、ハードウェア・リセット、ソフトウェア・リセット、特定のシーケンスを SDI ピンに書き込むことによるリセットの 3 つがあります。リセットは、内蔵レジスタ・マップにリストされている全てのユーザ設定レジスタの状態をデフォルト値に設定します(詳細については、内蔵レジスタ・マップのセクションを参照してください)。リセットが発生すると、表 69 の POR_FLAG_S ビットがセットされます。

POR ハードウェア・リセットは IOVDD/REGCAP_D 電源をスレッショルド電圧未満に設定することで開始され、AD4190-4 は電圧がこのスレッショルド電圧を超える値に復帰するまでリセット状態を維持します。電圧が十分に回復してから POR が終了するよう、スレッショルド電圧にはヒステリシスがあります。

ソフトウェア・リセットを行うには、表 43 の SW_RESET ビットと $RESET_SW$ ビットの両方を 1 に設定する必要があります。 リセットが生じると、これらのビットは自動的に 0 にリセットされます。

もう 1 つのリセット・オプションは、AD4190-4 に特定のパターンを書き込むことです。これが必要となるのは、 \overline{CS} をローにハードウェア接続した状態で SPI が動作する場合です。リセットを始めるには、 \overline{CS} がローに保持されている間に 63 個の 1 とそれに続く 1 個の 0 からなるパターンを 3 回 AD4190-4 に書き込みます。

連続読出しまたは連続送信ではソフトウェア・リセットはできない点に注意してください。1と0の特定のシーケンスを書き込むことによるリセットは、全ての動作モードで機能します。

AD4190-4 では、リセットするために短い時間が必要です。デバイスの準備が整う前にデジタル・ホストが SPI トランザクションを実行しようとした場合、トランザクションは正常に行われず、表 67 の NOT_READY_ERR ビットがセットされる場合があります。このビットは、その場所に 1 を書き込むことでクリアできます。 初期 化の完了を確認するには、表 67 の NOT_READY_ERR ビットと表 93 の DEVICE_ERROR ビットを確認します。エラー・ビットのフラグがセットされた場合は、デバイス・リセットを実行してください。

IO の駆動強度

シリアル・インターフェースは、1.7V という低い電圧で動作可能です。ただし、ある程度の寄生容量が基板に存在する場合、または SCLK の周波数が高い場合、この低電圧ではデジタル出力の駆動強度が十分ではないことがあります。表 81 のDIG_OUT_STR ビットは全てのデジタル出力ピンの駆動強度を高めます。

SDO_RDYB_DLY

シリアル・インターフェースはデフォルトで SDO と \overline{RDY} の共用ピンを使用します。データ読出し時には、このピンは読出し対象のレジスタのデータを出力します。読出し完了後、一定の短い時間(タイミング特性のセクションの t7 パラメータを参照)が経過すると、このピンは \overline{RDY} 信号の出力に戻ります。ただし、マイクロコントローラによってはこの時間は最後のデータ・ビットを確実にサンプリングするには短すぎることがあり、PIN_MUXING レジスタの SDO_RDYB_DLY ビット(表 81 を参照)を 1 に設定することで、 \overline{CS} ピンがハイになるまで延長することができます。つまり、 \overline{CS} を使って各読出し動作をフレーム化し、シリアル・インターフェースのトランザクションを完了する必要があります。

SDO ピンと \overline{RDY} ピンを別々にする必要がある場合、 \overline{RDY} は DIG_AUX1 ピンにも出力できる点に注意してください。この場合、SDO はデータ・レジスタの LSB の出力を継続します。

analog.com.jp Rev. 0 | 55 of 94

ADC の同期

AD4190-4 にはいくつかの同期オプションがあり、1 つのデバイスでの変換の開始を制御したり、マルチ AD4190-4 設計において複数デバイスを確実に同期したりできます。

標準同期

PIN_MUXING レジスタの SYNC_CTRL ビット (表 81 を参照) を 01b に設定すると、 $\overline{SYNC_IN}$ ピンが同期入力として機能します。 $\overline{SYNC_IN}$ 入力を使うと、デバイスのどのセットアップ状態にも影響を与えずに変調器とデジタル・フィルタをリセットできます。シーケンサもリセットされます。この機能により、サンプリングの開始を制御できます。確実に同期させるには、 $\overline{SYNC_IN}$ を少なくとも 2 メイン・クロック・サイクルの間ローに維持する必要があります。

複数の AD4190-4 デバイスを共通のメイン・クロックで動作させると、アナログ入力が同時にサンプリングされるようにこれらのデバイスを同期させることができます。通常、各 AD4190-4 デバイスがキャリブレーションを実行した後、またはキャリブレーション係数をキャリブレーション・レジスタへロードした後に、この同期は行われます。 $\overline{SYNC_IN}$ 入力の立下がりエッジで、デジタル・フィルタとアナログ変調器がリセットされ、AD4190-4 は一定の既知の状態になります。 $\overline{SYNC_IN}$ がローの間、AD4190-4 はこの既知の状態に保たれます。このデバイスは、 $\overline{SYNC_IN}$ 入力がローからハイに遷移した後のメイン・クロックの立上がりエッジでリセット状態から抜け出します。このため、複数のデバイスを同期する場合、メイン・クロックの立下がりエッジで $\overline{SYNC_IN}$ 入力をハイにして、メイン・クロックの立上がりエッジで全てのデバイスが確実に $\overline{SYNC_IN}$ をハイとしてサンプリングできるようにします。

メイン・クロックのエッジの前に $\overline{SYNC_IN}$ 入力を十分な時間ハイにしないと、デバイス間で 1 メイン・クロック・サイクルの差が生じることがあります。つまり、変換結果が得られるタイミングが、デバイスによって最大で 1 メイン・クロック・サイクル異なることがあります。 $\overline{SYNC_IN}$ は、標準同期モードでは、1 つのチャンネルの変換開始コマンドとして使用することもできます。 $\overline{SYNC_IN}$ をハイにすることで変換が開始され、 \overline{RDY} 出力の立下がりエッジで変換完了が通知されます。セトリング時間は、各データ・レジスタの更新ごとに必要です。変換完了後、 $\overline{SYNC_IN}$ をローにして次の変換開始信号の準備をします。

代替同期

代替同期モード(表 81 の SYNC_CTRL ビットを 10b に設定)では、AD4190-4 の複数のチャンネルがイネーブルされている場合に、SYNC_IN入力が変換開始コマンドとして機能します。
SYNC_IN入力がローになると、ADC は現在のチャンネルでの変換を完了し、シーケンス内の次のチャンネルを選択し、SYNC_IN入力がハイになって変換が開始されるまで待機します。現在のチャンネルでの変換が完了するとRDY出力がローになり、対応する変換結果でデータ・レジスタが更新されます。このため、SYNC_IN入力は、現在選択されているチャンネルのサンプリングには干渉しませんが、シーケンス内の次のチャンネルで変換が開始されるタイミングを制御できます。代替同期モードは、複数のチャンネルをイネーブルしている場合にのみ使用できます。1つのチャンネルのみをイネーブルする場合は、このモードの使用は推奨しません。

analog.com.jp Rev. 0 | 56 of 94

ADC の同期

複数の AD4190-4 デバイスの同期

AD4190-4 は、1 つのシステム内で複数の AD4190-4 デバイスを同期できます。DIG_AUX1 と DIG_AUX2 を用いることでデバイスを同期できます。デバイスは共通のメイン・クロックを共用する必要があります。メイン ADC となる ADC では、PIN_MUXINGレジスタのDIG_AUX2_CTRLビット(表81を参照)を用いて、DIG_AUX2 を START ピンとして設定します。表 81 のDIG_AUX1_CTRLビットを用いて、DIG_AUX1をSYNC_OUTピンとして設定します。メイン ADC に印加された START 信号から同期信号 SYNC_OUT が生成され、SYNC_OUT が内部メイン・クロックと同期します。この SYNC_OUT が全 ADC の SYNC_INピンに印加され、全ADCが同期して変換動作を行うようになります。

analog.com.jp Rev. 0 | 57 of 94

診断機能

AD4190-4 には、数多くの診断機能が内蔵されています。以下に示す機能を使用して、次の点を確認してください。

- ▶ 外部リファレンス/アナログ入力が過電圧または低電圧になっていない
- ▶ 外部リファレンスが存在する (使用する場合)
- ▶ 励起電流が仕様の範囲内に収まっている(使用する場合)
- ▶ 有効なデータのみが内蔵レジスタに書き込まれている
- ▶ 電源レール/内部 LDO が想定レベルになっている

デバイス・エラー

AD4190-4 のパワーアップ時および初期化時にエラーが発生した場合、ERROR レジスタの DEVICE_ERROR フラグ (表 93 を参照) がセットされます。デバイスのリセットを推奨します。デバイスがパワーアップ時またはデバイス・リセット後に正しく初期化されると、DEVICE_ERROR ビットはクリアされます。このビットは読出し動作ではクリアできません。

リファレンス検出

AD4190-4 は、外部リファレンスをリファレンス源として選択した場合に、変換またはキャリブレーション用の有効なリファレンスが存在するかどうかを検出する内蔵回路を備えています。これは、リファレンスを外部から得る RTD やストレイン・ゲージなどのアプリケーションに有用な機能です。

この機能は、ERROR_EN レジスタの REF_DIFF_MIN_ERR_EN ビット (表 91 を参照) を 1 にセットすると有効になります。選択した REFINn+ピンと REFINn-ピンの間の電圧が 0.6V を下回ると、AD4190-4 は有効なリファレンスが存在しないことを検出します。この場合、表 93 の REF_DIFF_MIN_ERR ビットが 1 にセットされます。STATUS レジスタの MAIN_ERR_S ビット (表 69 を参照) もセットされます。REF_DIFF_MIN_ERR ビットをクリアするには、このビットに 1 を書き込みます。

リファレンス過電圧/低電圧の検出

REFINn+入力ピンの絶対電圧もモニタできます。ERROR_EN レジスタのREF_OV_UV_ERR_EN ビット(表 91 を参照)でリファレンスの過電圧/低電圧の診断ができます。REFINn+の電圧が AVDD を少なくとも 65mV 上回った場合に過電圧のフラグがセットされ、REFINn+の電圧が AVSSを少なくとも65mV 下回った場合に低電圧のフラグがセットされます。過電圧または低電圧が検出された場合、ERROR レジスタの REF_OV_UV_ERR ビット(表 93 を参照)が 1 にセットされます。REF_OV_UV_ERR ビット(表 93 を参照)が 1 にセットされます。REF_OV_UV_ERR ビットをクリアするには、このビットに 1 を書き込みます。過電圧状態を示すビットをリセットするには、問題が生じているピンの絶対電圧が AVDD + 0.015V 以下に低下する必要があります。一方、低電圧状態を示すビットをリセットするにはピンの電圧が AVSS - 0.01V 以上に立ち上がる必要があります。

変換エラー

AD4190-4 では、変換プロセスをモニタすることもできます。この機能は、ERROR_EN レジスタの ADC_CONV_ERR_EN ビット (表 91 を参照) を使用してイネーブルできます。この機能がイネーブル されている場合、エラーが発生すると ADC_CONV_ERR ビットがセットされます。ADC の結果が飽和 (オーバーフローまたはアンダーフロー) している場合は、ADC_CONV_ERR フラグがセットされます。このフラグは、データ・レジスタの更新に併せて更新され、このビットに 1 を書き込むことでクリアできます。

アナログ入力過電圧/低電圧検出

過電圧/低電圧モニタは、内部マルチプレクサ出力ピンである MUX+および MUX-の絶対電圧をチェックします。MUX+と MUX-の過電圧および低電圧は個別にチェックできます。 AINP OV UV ERR EN は MUX+の低電圧および過電圧の チェックをイネーブルします。MUX+の電圧が AVDD を少なく とも 65mV 上回った場合に過電圧が発生し、MUX+の電圧が AVSSを少なくとも65mV下回った場合に低電圧が発生します。 同様に、MUX-の過電圧/低電圧チェックは、ERROR EN レジ スタの AINM OV UV ERR EN ビット (表 91 を参照) を使用し てイネーブルします。エラー・ビットは、ERROR レジスタの AINP OV UV ERR および AINM OV UV ERR (表 93 を参照) で、これらは過電圧/低電圧が検出されると 1 にセットされま す。どちらのビットをクリアする場合も、そのビットに 1を書 き込みます。過電圧状態の場合、ビットがクリアされるために は、問題が生じているピンの絶対電圧が AVDD + 0.015V 以下に 低下する必要があります。一方、低電圧状態の場合は、ビット がクリアされるためには、ピンの電圧が AVSS - 0.01V 以上に立 ち上がる必要があります。

励起電流コンプライアンス

指定された励起電流値を供給するには、内部励起電流にヘッドルームが必要です。ヘッドルームが不十分なために励起電流の大きさが必要な量より小さい場合、ERROR レジスタのIOUTn_COMP_ERR フラグ (表 93 を参照) が 1 にセットされます。 これらのフラグは、ERROR_EN レジスタのIOUTn_COMP_ERR_EN ビット (表 91 を参照) を使用してイネーブルできます。エラー・フラグをクリアするには、該当のビットに1を書き込みます。

電源モニタ

ADC は、外部電圧の変換の他に、アナログ電源とデジタル電源の電圧をモニタできます。(AVDD から AVSS)または(IOVDD から DGND)の入力を選択すると、電圧(AVDD から AVSS または IOVDD から DGND)は内部で 1/5 に減衰され、その電圧が Σ - Δ 変調器に入力されます。この機能は、電源電圧の変動をモニタできるため便利です。

LDO モニタリング

AD4190-4 には、いくつかの LDO チェック機能が内蔵されています。外部電源のように、アナログおよびデジタル LDO によって生成された電圧は ADC への入力として選択可能です。ALDO やDLDO によって生成された電圧も、それぞれ ERROR_EN レジスタの ALDO_PSM_ERR_EN ビットと DLDO_PSM_ERR_EN ビット (表 91 を参照) をイネーブルしてモニタできます。イネーブルにすると、LDO の出力電圧が連続的にモニタされます。 ALDO 電圧が 1.5V (代表値) を下回ると、ALDO_PSM_ERR フラグがアサートされます。DLDO 電圧が 1.6V (代表値) を下回ると、DLDO_PSM_ERR フラグがアサートされます。フラグをクリアするには、該当のビットに 1 を書き込みます。

analog.com.jp Rev. 0 | 58 of 94

診断機能

SPI SCLK カウンタ

SCLK カウンタは、各読出し/書込み動作で使用される SCLK パルスの数をカウントします。この機能を使用する場合、 \overline{CS} は全ての読出しおよび書込み動作をフレームする必要があります。全ての読出しおよび書込み動作は、8の倍数個の SCLK パルスです(16、32、40、48)。SCLK カウンタが SCLK パルスをカウントして、結果が 8 の整数倍でない場合は、エラーが発生し、INTERFACE_STATUS_A レジスタの CLOCK_COUNT_ERR ビット(表 67 を参照)がセットされます。

SCLK カウンタは常にイネーブルされています。 CLOCK_COUNT_ERR ビットをクリアするには表 67 の該当の位置に 1 を書き込みます。

SPI 読出し/書込みエラー

SCLK カウンタに加えて、AD4190-4 では、読出しおよび書込み動作をチェックして、有効なレジスタが確実にアドレス指定されるようにすることもできます。ユーザが無効なアドレスに書込みまたは読出しを試みた場合、エラーが発生し、INTERFACE_STATUS_A レジスタの ADDRESS_INVALID_ERR ビット(表 67 を参照)がセットされます。

ユーザが読出し専用レジスタに書込みを試みた場合、表 67 の WR_TO_RD_ONLY_REG_ERR ビットがセットされます。読出し一書込み動作においてバイトの全数の転送が済んでいなければ、REGISTER_PARTIAL_ACCESS_ERR ビットがセットされます。 WR_TO_RD_ONLY_REG_ERR ビット また はREGISTER_PARTIAL_ACCESS_ERR ビットをリセットするには、表 67 の該当の位置に 1 を書き込む必要があります。これらの診断機能の全てが常に有効化されているわけではない点に注意してください。

ノット・レディ・エラー

特定の期間、内蔵レジスタにアクセスできなくなる場合があります。例えば、パワーアップ時には内蔵レジスタがデフォルト値に設定されます。ユーザはこの動作が完了するまで待ってから、レジスタに書き込む必要があります。こうしたビジー期間にレジスタに書込みを行うと、NOT_READY_ERR フラグがセットされ、ADC がビジーであり書込み操作が無視されることが通知されます。NOT_READY_ERR フラグは、INTERFACE_STATUS_A レジスタの該当のビット(表 67を参照)に 1 を書き込むことでクリアされます。この診断機能は無効にできません。 $\overline{\text{CS}}$ をローにハードワイヤー接続している場合は、 $\overline{\text{RDY}}$ をモニタしてADCがレディになったときに検出することもできます。

チェックサム保護

CRC エラー検出

AD4190-4 には巡回冗長性チェック (CRC) オプションがあるため、デジタル・ホストと AD4190-4 の間の SPI トランザクションでエラー検出が可能です。 CRC エラー検出は、連続読出し動作および連続送信動作でもサポートされています。 CRC はデフォルトではディスエーブルされています。

CRC エラー検出を用いることで、プロセッサと AD4190-4 は、ビット転送エラーを高い信頼度で検出できます。CRC アルゴリズムでは、シード値と多項式除算を使用して CRC コードを生成します。プロセッサと AD4190-4 の双方で個別に CRC コードを計算し、転送されたデータの有効性を判定します。

AD4190-4 は次の多項式からなる CRC-8 の手法を用います。

$$x^8 + x^2 + x + 1$$
 (3)

CRC エ ラ ー 検 出 を イ ネ ー ブ ル す る に は 、 INTERFACE_CONFIG_C レジスタの CRC_ENABLE ビットと CRC_ENABLE ビット (表 65 を参照)を用います。 CRC_ENABLEの値が更新されるのは、同じレジスタ書込み命令で CRC_ENABLE が CRC_ENABLE の反転値に設定された場合のみです。 CRC をイネーブルするには、CRC_ENABLE を 01bに設定すると共に、同じ書込みトランザクションで CRC_ENABLE を 10bに設定する必要があります。

また、CRC をディスエーブルするには、 CRC_ENABLE を 00b に 設定すると共に、同じ書込みトランザクションで CRC_EN_B を 11b に設定する必要があります。2 つの別々のフィールドに反転した値を書き込むことで、CRC が誤ってイネーブルされる可能性を低減できます。

図 97 と図 98 は、デジタル・ホストまたは AD4190-4 がデータを検証するために、それぞれ書込み時または読出し時に CRC コードがどのように付加されるかを示しています。レジスタ書込みの場合は、デジタル・ホストが CRC バイトを生成する必要があります。レジスタ読出しの場合も、AD4190-4 によってチェックできるよう、ホストが正しい CRC バイトを送信する必要があります。これにより、AD4190-4 はホスト・プロセッサから正しい命令を受信したことを確認できます。同じ読出しトランザクションで、AD4190-4 はデジタル・ホストが検証するための CRCコードを提供します。

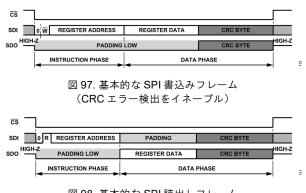


図 98. 基本的な SPI 読出しフレーム (CRC エラー検出をイネーブル)

CRC エラー検出をイネーブルしてマルチバイト・レジスタにアクセスする場合、CRC コードはレジスタ・データの全バイトの後に配置されます。

CRC エラー検出がイネーブルされている場合、AD4190-4 は、SDI のレジスタ・データの最後で有効な CRC コードを受け取るまで、レジスタ書込みトランザクションに応答してレジスタ内容を更新することはありません。CRC コードが無効である場合や、デジタル・ホストが CRC コードを送信しない場合、AD4190-4 は そ の レ ジ ス タ の 内 容 を 更 新 せ ず、INTERFACE_STATUS_A レジスタの CRC_ERR フラグ(表 67を参照)をセットします。CRC_ERR フラグはこのビットに 1 が書き込まれるとクリアされます(W1C)。また、クリアする書込みを有効にするためには正しい CRC が必要です。

表 40 に、CRC コード計算で用いられるシード値を示します。

analog.com.jp Rev. 0 | 59 of 94

診断機能

表 40. CRC シード値

SPI Transaction Type	Pin	Phase
Read	SDI	0xA5, instruction phase, padding
	SDO	0xA5, instruction phase, read data
Write	SDI	0xA5, instruction phase, write data
	SDO	0xA5, instruction phase, write data

SPIフレームのどの CRC コードも、シード値として 10100101 を 使用します。そうすることで、0x000000 のレジスタ値が 0x00 の CRC コードを生成することのないようにできます。 SDO と DGND が短絡されると、CRC が 0x00 になります。そのため、フォルト状態を容易に検出できます。

図 99 に、最初の SPI トランザクションで CRC がイネーブルされ、読出しトランザクション時はAD4190-4によって、書込みトランザクション時はホストによって、CRC コードが供給されている例を示します。この例では、AD4190-4 は降順アドレス指定に設定されています(設定の書込みは図 99 には示されていません)。この例は以下のシーケンスを示しています。

- INTERFACE_CONFIG_C レジスタに 0x66 のレジスタ書込みを行い、CRCをイネーブルします。
- 2. CSがハイのパルスを出力します。
- 3. 16 ビット ADC データ+ステータス・レジスタ (アドレス 0x1A が最上位バイトであるマルチバイト・レジスタ) のレジスタ読出しを行います。
- 4. INTERFACE_CONFIG_C レジスタに 0x27 のレジスタ書込み を行い CRC をディスエーブルしますが、CRC コードはまだ 供給されています。
- 5. CSをハイにします。

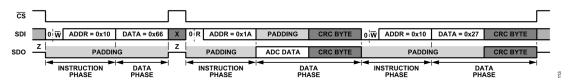


図 99. CRC コードの SPI トランザクション例 (降順アドレス指定)

CRC の計算

8 ビット幅のチェックサムは、次の多項式を使用して生成されます。

$x^8 + x^2 + x + 1$

チェックサムを生成するには、データを 8 ビット左にシフトし、8 個のロジック 0 で終わる値を作成します。多項式の MSB が データの最も左にあるロジック 1 と隣り合うように、多項式の 位置を合わせます。排他的論理和 (XOR) 関数をデータに適用して、より短い新規の数値を作ります。再度、多項式の MSB が、新しい結果の最も左にあるロジック 1 と隣り合うように、多項 式の値の位置決めをし、この手順を繰り返します。このプロセスを、元のデータが多項式の値よりも小さくなるまで繰り返します。これが 8 ビットのチェックサムになります。

analog.com.jp Rev. 0 | 60 of 94

診断機能

多項式 CRC 計算の例(24 ビット・ワード: 0x654321(8 ビット命令と 16 ビット・データ))

多項式ベースのチェックサムを使用した 8 ビット・チェックサムの生成例を以下に示します。

初期値 011001010100001100100001

011001010100001100100001000000008 ビット左にシフト

 $x^8 + x^2 + x + 1 = 100000111$ 多項式

100100100000110010000100000000 XOR 結果

100000111 多項式

100011000110010000100000000 XOR 結果

100000111 多項式

111111110010000100000000 XOR 結果

100000111 多項式の値

1111101110000100000000 XOR 結果

100000111 多項式の値

111100000000100000000 XOR 結果

100000111 多項式の値

11100111000100000000 XOR 結果

100000111 多項式の値

11001001001000000000 XOR 結果

100000111 多項式の値

100101010100000000 XOR 結果

100000111 多項式の値

1011011000000000 XOR 結果

100000111 多項式の値

1101011000000 XOR 結果

100000111 多項式の値

101010110000 XOR 結果

100000111 多項式の値

1010001000 XOR 結果

100000111 多項式の値

10000110 チェックサム = 0x86

メモリ・マップ・チェックサム保護

このビットがセットされている場合、メモリ・マップで CRC 計算が実行されます。この後、内蔵レジスタで定期的な CRC チェックが実行されます。レジスタの破損や更なるレジスタ書込みによりレジスタの内容が変更された場合は、MM CRC ERR ビットがセットされます。

メモリ・マップ CRC 機能は、ERROR_EN レジスタの MM_CRC_ERR_EN ビット (表 91 を参照) を 1 にセットしてイネーブルにします。エラーが発生した場合、ERROR レジスタの MM_CRC_ERR ビット (表 93 を参照) が 1 にセットされます。フラグをクリアするには、ERROR レジスタのこの位置に 1 を書き込みます。

バーンアウト電流

AD4190-4には、 0.1μ A、 2μ A、または 10μ A にプログラム可能な 2 つの定電流ジェネレータが内蔵されています。一方のジェネレータは、AVDD から MUXP に電流をソースし、もう一方は MUXM から AVSS に電流をシンクします。これらの電流により、断線を検出できます。

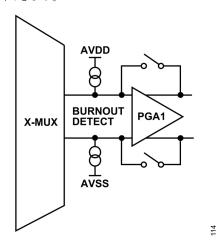


図 100. バーンアウト電流

両方の電流がオンまたはオフになります。MISCn レジスタの BURNOUT ビット(表 101 を参照)により、バーンアウト電流 のイネーブル/ディスエーブルが振幅と共に設定されます。そ のため、バーンアウト電流は、チャンネルごとにイネーブル/ ディスエーブルできます。ただし、あるチャンネルについてイ ネーブルされている場合、電流はそのチャンネルが選択されて いるときにのみアクティブになります。これらの電流を用いる ことで、外部トランスジューサが依然として動作可能であるこ とを確認します。バーンアウト電流がオンになると、外部トラ ンスジューサ回路にバーンアウト電流が流れ、アナログ入力 チャンネルの入力電圧を計測できるようになります。計測した 電圧がほぼフルスケールの場合は、その理由を確認する必要が あります。計測値がほぼフルスケールに近い場合、フロント・ エンド・センサーがオープン・サーキットになっている可能性 があります。また、フロント・エンド・センサーに過負荷がか かりフルスケールで出力されている状態や、リファレンスが存 在しない状態を示している可能性もあります。

変換値がフルスケールに近い場合は、判断を下す前にこれら 3 つ の場合をチェックする必要があります。測定された電圧が 0V の場合は、トランスジューサの短絡が考えられます。通常の動作では、BURNOUT ビットを 0 に設定してこれらのバーンアウト電流をオフにします。

analog.com.jp Rev. 0 | 61 of 94

診断機能

プルアップ電流

バーンアウト電流がアクティブになるのはチャンネルが変換されている場合のみですが、AD4190-4 には、100nA のプルアップ電流もあります。これらの電流がイネーブルされている場合、AIN ピンで連続的にアクティブのままとなります。これらの電流のイネーブル/ディスエーブルは、I_PULL_UP レジスタを通じてピンごとに行うことができます。AIN ピンがフロート状態の場合、プルアップ電流がイネーブルされていると AIN ピンはAVDD にプルアップされます。そのため、このピンが開放状態になっているとそれを検出できます。どちらの AIN ピンもフロート状態でプルアップ電流がイネーブルされている場合、どちらのピンも AVDD にプルアップされます。そのため、開放状態を直接検出できるわけではありません。しかし、AVSS を基準とする各 AIN ピンの変換結果を用いると開放状態を検出できます。

温度センサー

AD4190-4 には、ダイ温度をモニタするのに便利な温度センサーが内蔵されています。これは、CHANNEL_MAPn レジスタの AINP[4:0]ビットと AINM[4:0]ビットを使用して選択します。感度は約 477 μ V/K です。温度計測のセンサー結果から 5°C を差し引いてください。

温度センサーの精度は±2℃ (代表値)です。

analog.com.jp Rev. 0 | 62 of 94

グラウンディングとレイアウト

アナログ入力とリファレンス入力は差動です。そのため、アナログ変調器内の電圧の大半はコモンモード電圧です。このデバイスの優れた同相ノイズ除去能力により、これらの入力の同相ノイズは除去されます。AD4190-4 に供給されるアナログ電源とデジタル電源は独立しており、デバイスのアナログ部とデジタル部の間のカップリングを最小限に抑えるために、別々のピンに割り当てられています。デジタル・フィルタは、 $2 \times f_{MOD}$ の整数倍の周波数を除き、広帯域の電源ノイズを除去します(メイン・クロックが 16MHz、クロック分周が 2 の場合、 f_{MOD} は 2MHz)。

また、アナログ入力とリファレンス入力のノイズ源がアナログ変調器を飽和させない限り、デジタル・フィルタはこれらの入力のノイズも除去します。そのため、従来の高分解能コンバータに比べて AD4190-4のノイズ干渉耐性は向上しています。ただし、AD4190-4の分解能は高く、コンバータのノイズ・レベルは非常に低いため、グラウンディングとレイアウトについて注意が必要です。

ADC を実装する PCB は、アナログ部とデジタル部を分け、基板の特定の領域に限定するように設計する必要があります。一般に、エッチング部分を最小限に抑えると、最良のシールド効果が得られるので、この方法はグランド・プレーンに最適です。

どのようなレイアウトを使用する場合も、システム内における 電流の流れには十分注意を払い、全てのリターン電流用の経路 と目的の場所まで電流を流す経路をできるだけ近づけて配置す るよう心がけてください。

チップにノイズが混入するため、デバイスの下にはデジタル・ラインを配置しないでください。AD4190-4 の下にアナログ・グランド・プレーンを配置してノイズの混入を防止してください。AD4190-4 への電源ラインには可能な限り幅広のパターンを使用して低インピーダンス経路を確保し、電源ラインのグリッチを軽減します。クロックのような高速スイッチング信号は、デジタル・グラウンドでシールドして、ノイズが基板の他の部分へ放射されるのを防ぎます。また、クロック信号をアナログ信号は交差させないでください。デジタル信号とアナログ信号は交差させないでください。基板の反対側のパターンは、互いに直角になるように配置します。これにより、基板上でフィードスルーの効果を削減できます。マイクロストリップ技術の使用が最善ですが、両面基板では常に使用できるとは限りません。この技法を使用する場合、基板の部品面はグランド・プレーン専用にして、信号はハンダ面に配線します。

高分解能 ADC を使用する場合は、デカップリングが重要です。 AD4190-4には、AVDDと IOVDDの2本の電源ピンがあります。 AVDDピンは AVSS を基準とし、IOVDDピンは DGND を基準としています。AVDDは、 $1\mu F$ のタンタル・コンデンサと $0.1\mu F$ のコンデンサを並列に接続して AVSS とデカップリングします。 $0.1\mu F$ のコンデンサはデバイスのできるだけ近くに配置します。 理想的にはデバイスに隣接させます。 IOVDD は、 $1\mu F$ のタンタル・コンデンサと $0.1\mu F$ のコンデンサを並列に接続して DGNDとデカップリングします。全てのアナログ入力と AVSS をデカップリングする必要があります。外部リファレンスを使用する場合は、REFINn+ピンおよび REFINn+ピンと AVSS をデカップリングします。

AD4190-4 は 2 つの LDO レギュレータも内蔵しており、それぞれ AVDD 電源と IOVDD 電源を安定化します。REGCAPA ピンは、 $1\mu F$ と並列に $0.1\mu F$ のコンデンサを使用して AVSS に接続することを推奨します。同様に、REGCAPD ピンは、 $1\mu F$ と並列に $0.1\mu F$ のコンデンサを使用して DGND に接続することを推奨します。

AD4190-4 をバイポーラ電源動作で使用する場合は、AVSS に別のプレーンを使用する必要があります。

analog.com.jp Rev. 0 | 63 of 94

アプリケーション情報

AD4190-4 は、高分解能の A/D 変換機能を提供します。 Σ - Δ アーキテクチャの A/D 変換機能を備えているため、ノイズの多い環境に強く、センサー計測や産業およびプロセス制御のアプリケーションでの使用に最適です。

重量計

図 101 に、AD4190-4 の秤量計アプリケーションでの使用例を示します。ロード・セルはブリッジ回路に配置され、OUT+端子と OUT-端子の間で差動出力電圧を生成します。励起電圧が 5Vで感度が 2mV/V の場合、トランスジューサのフルスケール出力範囲は 10mV になります。リファレンス入力範囲に電源電圧が含まれるため、ブリッジの励起電圧を使用して ADC のリファレンス電圧を直接供給できます。

トランスジューサをベースにしたアプリケーションにおいて AD4190-4 を使用するもう 1 つの利点は、システムの消費電力を 最小限に抑えるためにブリッジ・パワーダウン・スイッチをフ ルに利用できることです。ブリッジ・パワーダウン・スイッチ は、ブリッジの冷接点側に直列接続します。通常の動作では、 スイッチが閉じて計測が行われます。消費電流を最小限に抑え るアプリケーションでは、AD4190-4 をスタンバイ・モードにす ると、アプリケーションの消費電力を大幅に削減できます。更 に、スタンバイ・モードの間にブリッジ・パワーダウン・ス イッチを開放して、フロント・エンド・トランスジューサでの 不要な電力消費を防止できます。スタンバイ・モードの間に、 ブリッジ・パワーダウン・スイッチを開いたり閉じたりするこ とができる点に注意してください (表 85 の STB PDSWn ビット を 1 にセットするとスイッチはスタンバイ・モードでもアク ティブなままになります)。そのため、スタンバイ・モードの 間にスイッチを閉じることでブリッジをパワーアップしてセト リングすることができます。これを行うのは、ADC コアがパ ワーアップされ変換が行われる前にフロント・エンド回路にセ トリングするための一定の時間が必要となる可能性があるため です。

ロード・セルを読み出すための標準的な手順は次のとおりです。

- 1. ADC をリセットします。
- 2. CHANNEL_MAPO レジスタのアナログ入力を AIN5/AIN6 に 設定します。CHANNEL_SETUPO レジスタを使用してこの チャンネルにセットアップ 0 を割り当てます。ゲインが 128 になるようにセットアップ 0 を構成し、AFEO レジスタを通じてリファレンス源 REFIN を選択します。FILTERO レジスタを通じてフィルタ・タイプを選択し、FILTER_FSO レジスタを通じて出力データレートを設定します。
- 3. \overline{RDY} がローに移行するまで待ちます。変換値を読み出します。
- 4. ステップ3を繰り返します。

AD4190-4 の内蔵診断機能により、回路の接続チェック、電源、リファレンス、および LDO 電圧のモニタリング、全ての変換のエラーのチェック、あらゆる読出し/書込み動作のモニタリングを実行できます。秤量計アプリケーションでは、回路の接続をリファレンス検出とバーンアウト電流を使用して検証します。外部リファレンス REFIN が存在しない場合は、REF_DIFF_MIN_ERRフラグがセットされます。バーンアウト電流 (MISCO レジスタで利用可能) は断線を検出します。

アナログ入力の過電圧/低電圧モニタは、変換プロセスの一部として AINP および AINM の過電圧を検出するのに便利です。電源電圧とリファレンス電圧は、ADC への入力として選択可能です。このため、これらの電圧を定期的にチェックして、システムの仕様範囲内にあるか確認できます。また、ユーザは LDO電圧をチェックできます。

最後に、CRCチェック、SCLKカウンタ、およびSPI読出し/書込みチェックにより、無効な読出し/書込み動作を検出できるため、インターフェースの信頼性が更に向上します。CRCチェックでは、プロセッサとADCの間でビットが転送されるときに、ビットが破損していないかを確認します。

analog.com.jp Rev. 0 | 64 of 94

アプリケーション情報

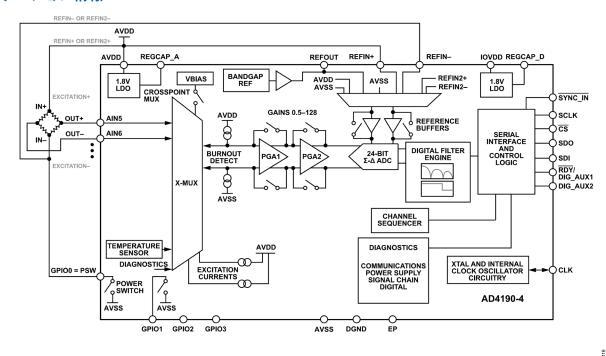


図 101. 重量計アプリケーション

RTD を使用した温度計測

3線式RTD構成を最適化するには、2個の整合された電流源が必 要です。2個の整合された電流源を内蔵している AD4190-4 は、 これらのアプリケーションに最適です。3線式構成の一例を図102 に示します。この3線式構成において、電流源を1つしか使用 しない場合(GPIO3の出力)、RL1に励起電流が流れてAIN0と AIN1 の間に電圧誤差が発生するため、リード抵抗に誤差が発生 します。示されている方式では、2 つ目の RTD 電流源 (GPIO2 から出力可能)が、RL1を流れる励起電流により発生する誤差 を補償します。2つ目の RTD 電流は RL2 を通過します。RL1 と RL2 が等しく(通常、リードの材質と長さが同じ)、励起電流 が一致する場合、RL2の両端の誤差電圧とRL1の両端の誤差電 圧が等しくなり、AIN0 と AIN1 の間に誤差電圧は発生しなくな ります。RL3 の両端に 2 倍の電圧が発生します。ただし、これ はコモンモード電圧であるため、誤差は発生しません。 AD4190-4 のリファレンス電圧も、整合した電流源を使用して生 成されます。これは高精度の抵抗を使用して生成され、ADC の 差動リファレンス・ピンに入力されます。この方式では、アナ ログ入力電圧スパンがリファレンス電圧に比例する状態が確保 されます。励起電流の温度ドリフトに起因するアナログ入力電 圧に含まれる全ての誤差が、リファレンス電圧の変動によって 補償されます。

例えば、PT100 では-200°C \sim +600°C の温度を計測できます。抵抗は0°Cで100Ω (代表値)、600°Cで313.71Ω (代表値)です。 500μ A の励起電流を使用した場合、RTD の全温度範囲を使用したときに RTD の両端にかかる最大電圧は、次のようになります(励起電流の初期精度と励起電流の温度係数は無視)。

$500\mu A \times 313.71\Omega = 156.86 mV$

ゲインが 16 にプログラムされている場合、この電圧は AD4190-4 内で 2.51V に増幅されます。

リファレンス抵抗両端に発生する電圧は、少なくとも 2.51V であることが必要です。このため、リファレンス抵抗には、少なくとも次の値が必要です。

$2.51V/500\mu A = 5020\Omega$

このため、5.11kΩの抵抗を使用して、次のようにします。

$5.11k\Omega \times Excitation Current = 5.11k\Omega \times 500\mu A = 2.555V$

もう 1 つの考慮事項として、出力のコンプライアンスがあります。励起電流が $500\mu A$ の場合、出力のコンプライアンスは、AVDD -1.45V に等しくなります。5V アナログ電源を使用する場合、AIN0 の電圧は(5V-1.45V)=3.55V より低いことが必要です。AIN ピンの絶対電圧が 100mV より高ければ、入力リーク電流が最小化されます。このため、ヘッドルーム抵抗を図 102 に示すようにします。 100Ω のヘッドルーム抵抗を仮定すると、AIN1 の電圧は、 $100\Omega \times 2 \times$ *励起電流* $= 100\Omega \times 2 \times 500\mu A = 0.1V$ となります。AIN0 の最大電圧は、リファレンス抵抗の端子間電圧に RTD の端子間電圧を加え、更にヘッドルーム抵抗の端子間電圧を加えたものであり、以下のようになるため、出力コンプライアンス仕様は満たされています。

2.555V + 156.86mV + 0.1V = 2.812V

analog.com.jp Rev. 0 | 65 of 94

アプリケーション情報

RTDを読み出すための標準的な手順は、次のとおりです。

- 1. ADC をリセットします。
- 2. CHANNEL_MAPO レジスタのアナログ入力を AINO/AIN1 に 設定します。CHANNEL_SETUPO レジスタを使用してこの チャンネルにセットアップ 0 を割り当てます。ゲインが 16に なるようにセットアップ 0 を構成し、AFEO レジスタを通じ てリファレンス源 REFIN を選択します。FILTERO レジスタを通じてフィルタ・タイプを選択し、FILTER_FSO レジスタを通じて出力データレートを設定します。
- CURRENT_SOURCE0 レジスタおよび CURRENT_SOURCE1 レジスタを通じて、励起電流を 500µA にプログラムし、 GPIO2 ピンと GPIO3 ピンに電流を出力します。
- 4. \overline{RDY} がローに移行するまで待ちます。変換値を読み出します。
- 5. ステップ 4 を繰り返します。

プロセッサで、PT100の直線化ルーチンを実装します。

わかりやすいように、外部アンチエイリアス・フィルタは省略 しています。干渉がある場合にはそれを除去するためにそのよ うなフィルタが必要です。 AD4190-4 の内蔵診断機能により、回路の接続チェック、電源、リファレンス、および LDO 電圧のモニタリング、全ての変換のエラーのチェック、あらゆる読出し/書込み動作のモニタリングを実行できます。RTD アプリケーションでは、回路の接続はリファレンス検出およびバーンアウト電流を使用して検証されます。外部リファレンス REFIN が存在しない場合は、REF_DIFF_MIN_ERR フラグがセットされます。バーンアウト電流を定期的にイネーブルすることで(MISCO レジスタで可能)、断線を検出できます。最大限のシステム性能を実現するため、変換結果を AINO/AIN1 から読み出す場合は、バーンアウト電流をオフにする必要があります。

アナログ入力の過電圧/低電圧モニタは、変換プロセスの一部として AINP および AINM の過電圧を検出するのに便利です。電源電圧とリファレンス電圧は、ADC への入力として選択可能です。このため、これらの電圧を定期的にチェックして、システムの仕様範囲内にあるか確認できます。また、ユーザは LDO電圧をチェックできます。

最後に、CRCチェック、SCLKカウンタ、およびSPI読出し/書込みチェックにより、無効な読出し/書込み動作を検出できるため、インターフェースの信頼性が更に向上します。CRCチェックでは、プロセッサとADCの間でビットが転送されるときに、ビットが破損していないかを確認します。

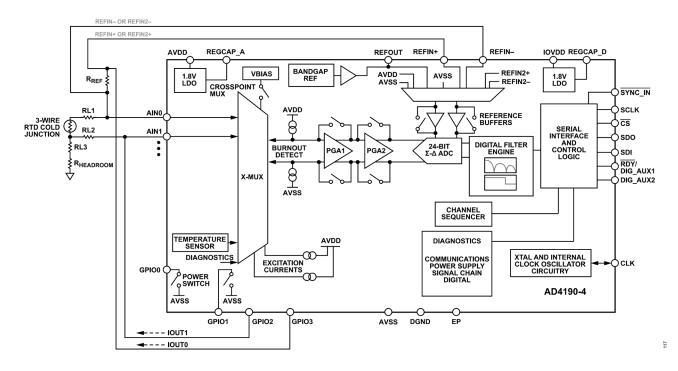


図 102. 3 線式 RTD アプリケーション

analog.com.jp Rev. 0 | 66 of 94

内蔵レジスタ・マップ

このセクションには、各ビット・フィールドの機能の詳細が記載されています。レジスタの表のアクセス欄では、ビット・フィールドが読出し専用ビット (R)、読出し/書込みビット (R/W)、1 を書き込んでクリアするビット (R/W1C) のいずれであるかを示しています。

表 41. AD4190-4 のレジスター覧

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0x00	INTERFACE _CONFIG_A	[7:0]	SW_RESE T	RESERVE D	ADDR_A SCENSI ON	SDO_ENABL E		RESERVED)	RESET_SW	0x10	R/W
0x01	INTERFACE _CONFIG_B	[7:0]	SINGLE_IN ST	RESERVED SHORT_IN RESERVED (STRUCTIO N				0x80	R/W			
0x02	DEVICE_C ONFIG	[7:0]		RESERVED 0						0x00	R/W	
0x03	CHIP_TYPE	[7:0]		RESE	RVED			CH	IP_TYPE		0x07	R
0x04	PRODUCT_ ID_L	[7:0]				PROD	UCT_ID[7:0]				0x48	R
0x05	PRODUCT_ ID_H	[7:0]				PRODU	JCT_ID[15:8]				0x00	R
0x06	CHIP_GRA DE	[7:0]		GR	ADE			DEVICE	E_REVISION		0x04	R
0x0A	SCRATCH_ PAD	[7:0]				SCRAT	CH_VALUE				0x00	R/W
0x0B	SPI_REVISI ON	[7:0]	SPI_TYPE			VERSION					0x83	R
0x0C	VENDOR L	[7:0]			l	V	VID[7:0]				0x56	R
0x0D	VENDOR_H						ID[15:8]				0x04	R
0x10	INTERFACE _CONFIG_ C	[7:0]	CRC_E	NABLE	STRICT_ REGIST ER_ACC ESS	SEND_STAT US	ACTIVE_INTERFACE_M CRC_ENABLEB ODE		0x27	R/W		
0x11	INTERFACE _STATUS_A	[7:0]	NOT_REA DY_ERR	RESEF	RVED	CLOCK_COU NT_ERR	CRC_ERR	WR_TO_R D_ONLY_R EG_ERR	REGISTER_P ARTIAL_ACC ESS_ERR	ADDRESS_I NVALID_ERR	0x00	R/W
0x15	STATUS	[15:8]				RE	SERVED				0x0060	
0x14		[7:0]	MAIN_ERR _S	POR_FLAG _S	RDYB	RESERVED		CH	_ACTIVE			
0x17	DATA_16B	[15:8]				ADC_	DATA[15:8]				0x0000	
0x16		[7:0]				ADC	_DATA[7:0]					
0x1A	DATA_16B_ STATUS	[23:16]				ADC_	DATA[15:8]				0x00006 0	
0x19		[15:8]				ADC	_DATA[7:0]					
0x18		[7:0]	MAIN_ERR _S	POR_FLAG _S	RDYB	RESERVED		CH	_ACTIVE			
0x1E	DATA_24B	[23:16]		ADC_DATA[23:16] 0x			DATA[23:16]				0x00000 0	
0x1D		[15:8]				ADC_	_DATA[15:8]				1	
0x1C		[7:0]				ADC	:_DATA[7:0]				1	
0x23	DATA_24B_ STATUS	[31:24]		ADC_DATA[23:16]						0x00000 060		
0x22		[23:16]				ADC_	DATA[15:8]				1	
0x21		[15:8]				ADC	_DATA[7:0]				1	
0x20		[7:0]	MAIN_ERR _S	POR_FLAG _S	RDYB	RESERVED		CH	_ACTIVE			

analog.com.jp Rev. 0 | 67 of 94

内蔵レジスタ・マップ

表 41. AD4190-4 のレジスタ一覧(続き)

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5 E	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	Access
0x28 to 0x64 by 4	DATA_PER_ CHANNELn	[23:16]				ADC_CH	_DATA[23:16]				0x00000 0	
		[15:8]				ADC_CH	_DATA[15:8]					
		[7:0]				ADC_C	1_DATA[7:0]				1	
0x69	PIN_MUXIN G	[15:8]	RESERVE D	CHAN_TO_ GPIO			RES	ERVED			0x0004	R/W
0x68		[7:0]	DIG_AU	X2_CTRL	DIG_AU	X1_CTRL	SYNC_	CTRL	DIG_OUT_ST R	SDO_RDYB_ DLY		
0x6B	CLOCK_CT RL	[15:8]				RES	ERVED				0x0000	R/W
0x6A	-	[7:0]	DCLK_	DIVIDE	CLO	CKDIV	RESE	RVED	CLOC	KSEL	1	
0x6D	STANDBY_ CTRL	[15:8]		,		RESERVED				STB_EN_CL OCK	0x0000	R/W
0x6C		[7:0]	STB_EN_I PULLUP	RESER	VED	STB_PDSW1	STB_PDS W0	STB_EN_V BIAS	STB_EN_IEX C	STB_EN_RE FERENCE		
0x6F	POWER_D OWN_SW	[15:8]		1		RES	ERVED		,		0x0000	R/W
0x6E		[7:0]			RESE	RVED			PDSW_1	PDSW_0		
0x71	ADC_CTRL	[15:8]				RES	ERVED				0x0000	R/W
0x70		[7:0]	MULTI_DA TA_REG_S EL	CONT_REA D_STATUS_ EN	CON	T_READ			MODE			
0x73	ERROR_EN	[15:8]	RESE	ERVED	DLDO_PSN _ERR_EN		RESERVE	RESERV	ED IOUTB_CO MP_ERR_E N		0x0000	R/W
0x72		[7:0]	REF_DIFF _MIN_ERR _EN	REF_OV_U V_ERR_EN	AINM_OV_ UV_ERR_E N		ADC_CON		_E MM_CRC_ ERR_EN	RESERVED		
0x75	ERROR	[15:8]	DEVICE_E RROR	RESERVED	DLDO_PSN _ERR	ALDO_PSN _ERR	RESERVE	RESERV	ED IOUTB_CO MP_ERR	IOUTA_CO MP_ERR	0x0000	R/W
0x74		[7:0]	REF_DIFF _MIN_ERR	REF_OV_U V_ERR	AINM_OV_ UV_ERR	AINP_OV_ UV_ERR	ADC_CON	V SPI_ER	R MM_CRC_ ERR	RESERVED		
0x79	CHANNEL_ EN	[15:8]	CH_15	CH_14	CH_13	CH_12	CH_11	CH_10	CH_9	CH_8	0x0001	R/W
0x78		[7:0]	CH_7	CH_6	CH_5	CH_4	CH_3	CH_2	CH_1	CH_0		
0x80 to 0xBC by 4	CHANNEL_ SETUPn	[15:8]				RE	PEAT				0x0000	R/W
		[7:0]	RESERVE D		DELAY		RESERVE	D	SETUP			
0x82 to 0xBE by 4	CHANNEL_ MAPn	[15:8]		RESERVED AINP_N				0x0001	R/W			
,		[7:0]		RESERVED				AINM_N	l		1	
0xC0 to 0x122 by 14	MISCn	[15:8]	CHOP	P_IEXC		RES	ERVED		CHC	P_ADC	0x0000	R/W
•		[7:0]			RES	SERVED			BUF	RNOUT	1	
0xC2 to 0x124 by 14	AFEn	[15:8]		RESI	ERVED		REF	_BUF_M	REF	_BUF_P	0x0050	R/W

analog.com.jp Rev. 0 | 68 of 94

内蔵レジスタ・マップ

表 41. AD4190-4 のレジスタ一覧(続き)

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	В	it 2 Bi	it 1	Bit 0	Reset	Access
		[7:0]	RESERVED	REF_S	SELECT	BIPOLA	\R		PGA	_GAIN			
0xC4 to 0x126 by 14	FILTERn	[15:8]				R	ESERVED		-	_		0x0000	R/W
		[7:0]		POST_FII	LTER_SEL				FILTER	R_TYPE			
0xC6 to 0x128 by 14	FILTER_FS n	[15:8]					FS[15:8]					0x0004	R/W
		[7:0]					FS[7:0]						
0xC8 to 0x12A by 14	OFFSETn	[23:16]				OF	FSET[23:16	5]				0x00000 0	R/W
		[15:8]				OF	FSET[15:8]]	
		[7:0]				0	FFSET[7:0]						
0xCB to 0x12D by 14	GAINn	[23:16]				G	AIN[23:16]					0x55555 5	R/W
		[15:8]				(GAIN[15:8]						R/W
		[7:0]					GAIN[7:0]						
0x131	REF_CONT ROL	[15:8]					ESERVED					0x0001	
0x130		[7:0]				RESERV	'ED				REF_EN		
0x135	V_BIAS	[15:8]				RESERV	ΈD				VBIAS_IN8 _EN		R/W
0x134		[7:0]	VBIAS_IN7 _EN	VBIAS_IN6 _EN	VBIAS_IN _EN	VBIAS_I _EN		S_IN3 EN	VBIAS_IN2 _EN	VBIAS_IN1 _EN	VBIAS_IN0 _EN		
0x137	I_PULLUP	[15:8]				RESERV	'ED				I_PULLUP_I N8_EN	0x0000	R/W
0x136		[7:0]	I_PULLUP_I N7_EN	I_PULLUP_I N6_EN	I_PULLUF N5_EN	P_I I_PULLU N4_EN		LUP_I _EN	I_PULLUP_I N2_EN	I_PULLUP_I N1_EN	I_PULLUP_I N0_EN		
0x138 to 0x13E by 2	CURRENT_ SOURCEn	[15:8]		RESERVED							0x0000	R/W	
		[7:0]			RESERVE	ED				I_OUT_VAL			
0x191	GPIO_MOD E	[15:8]	RESERVED							0x0000	R/W		
0x190		[7:0]	CH3_	MODE	CH	12_MODE		CH1_	MODE	CH0_	MODE		
0x193	GPIO_OUT PUT_DATA	[15:8]	RESERVED						0x0000	R/W			
0x192		[7:0]		RESE	RVED			OUTP	CH2_OUTP UT	CH1_OUTP UT	CH0_OUTP UT		
0x195	INPUT_DAT A	[15:8]				R	ESERVED					0x0000	R
		[7:0]		RESE				INPUT	CH2_INPUT	CH1 INPUT	CH0 INPUT	7	1

analog.com.jp Rev. 0 | 69 of 94

内蔵レジスタ・マップ

INTERFACE_CONFIG_A レジスタ

アドレス:0x00、リセット:0x10

シリアル・インターフェースの動作はこのレジスタで設定されます。

表 42. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SW_RESET	RESERVED	ADDR_ASCENSION	SDO_ENABLE		RESERVED		RESET_SW

表 43. INTERFACE_CONFIG_A レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
7	SW_RESET		2個のソフトウェア・リセット・ビットの1個目。このビットはこのレジスタの2か所にあります。デバイスのソフトウェア・リセットをトリガするには両方の場所に同時に1を書き込む必要があります。このレジスタを除く全てのレジスタがデフォルト値にリセットされます。このリセット動作により、SW_RESET ビットおよび RESET_SW ビットは0にリセットされます。	0x0	R/W
6	RESERVED		予約済み。	0x0	R
5	ADDR_ASCENSION	0	シーケンシャルなアドレス指定動作を決定。 マルチバイト・レジスタへのアクセス時、アクセスするアドレスはデータ・バイトご とに 1 ずつデクリメントします。 マルチバイト・レジスタへのアクセス時、アクセスするアドレスはデータ・バイトご とに 1 ずつインクリメントします。	0x0	R/W
4	SDO_ENABLE		SDO ピン・イネーブル。	0x1	R
[3:1]	RESERVED		予約済み。	0x0	R
0	RESET_SW		2個のソフトウェア・リセット・ビットの2個目。このビットはこのレジスタの2か所にあります。デバイスのソフトウェア・リセットをトリガするには両方の場所に同時に1を書き込む必要があります。このレジスタを除く全てのレジスタがデフォルト値にリセットされます。このリセット動作により、SW_RESET ビットおよび RESET_SW ビットは0にリセットされます。	0x0	R/W

INTERFACE_CONFIG_B レジスタ

アドレス:0x01、リセット:0x80

シリアル・インターフェースの動作はこのレジスタで設定されます。

表 44. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SINGLE_INST		RESERVED		SHORT_INSTRUC TION		RESERVED	

表 45. INTERFACE_CONFIG_B レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
7	SINGLE_INST		単一命令モード。	0x1	R
		1	単一命令モードがイネーブルになります。		
[6:4]	RESERVED		予約済み。	0x0	R
3	SHORT_INSTRUCTION		命令フェーズのアドレスを 6 ビットまたは 14 ビットに設定。	0x0	R/W
		0	14 ビットのアドレス指定。		
		1	6 ビットのアドレス指定。		
[2:0]	RESERVED		予約済み。	0x0	R

DEVICE_CONFIG レジスタ

アドレス: 0x02、リセット: 0x00このレジスタは読出し専用です。

analog.com.jp Rev. 0 | 70 of 94

データシート

内蔵レジスタ・マップ

表 46. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			RES	ERVED			

表 47. DEVICE_CONFIG レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[7:0]	RESERVED		予約済み。	0x0	R

CHIP_TYPE レジスタ

アドレス:0x03、リセット:0x07

チップ・タイプは、対象のデバイスが属するアナログ・デバイセズ製品ファミリを特定するために用います。目的の製品を一意に特定するためには、製品 ID と併用する必要があります。

表 48. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		RESERVED				CHIP_TYPE	

表 49. CHIP_TYPE レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[7:4]	RESERVED		予約済み。	0x0	R
[3:0]	CHIP_TYPE		高精度 ADC。	0x7	R

PRODUCT_ID_L レジスタ

アドレス:0x04、リセット:0x48

このレジスタには、製品 ID の下位バイトが格納されます。

表 50. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PRODUCT_ID[7:0]										

表 51. PRODUCT ID L レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[7:0]	PRODUCT_ID[7:0]		これはデバイスのチップ・タイプ/ファミリです。製品を特定するためには、製品 ID を CHIP_TYPE レジスタと併用する必要があります。	0x48	R

PRODUCT_ID_H レジスタ

アドレス:0x05、リセット:0x00

このレジスタには、製品 ID の上位バイトが格納されます。

表 52. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
			Pl	RODUCT_ID[15:8]				

表 53. PRODUCT_ID_H レジスタのビットの説明

ピット	ビット名	設定	説明	リセット	アクセス
[7:0]	PRODUCT_ID[15:8]		これはデバイスのチップ・タイプ/ファミリです。製品を特定するためには、製品 ID を CHIP_TYPE レジスタと併用する必要があります。	0x0	R

analog.com.jp Rev. 0 | 71 of 94

内蔵レジスタ・マップ

CHIP_GRADE レジスタ

アドレス:0x06、リセット:0x04

このレジスタは、製品のバリエーションとデバイスのリビジョンを特定します。

表 54. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
GRADE					DEVICE_REVISION				

表 55. CHIP_GRADE レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[7:4]	GRADE		デバイス性能のグレードです。	0x0	R
[3:0]	DEVICE_REVISION		デバイスのハードウェア・リビジョンです。	0x4	R

SCRATCH_PAD レジスタ

アドレス:0x0A、リセット:0x00

このレジスタを使用して、プロセッサと AD4190-4 の間での書込み動作や読出し動作をテストできます。

表 56. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			S	CRATCH_VALUE			

表 57. SCRATCH_PAD レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[7:0]	SCRATCH_VALUE		ソフトウェア・スクラッチパッド。ソフトウェアは、デバイスに副次的な作用を及ぼ すことなく、この場所で読み書きができます。	0x0	R/W

SPI_REVISION レジスタ

アドレス:0x0B、リセット:0x83

SPIインターフェースのリビジョンを示します。

表 58. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SPI_TYPE			VERSION						

表 59. SPI_REVISION レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[7:6]	SPI_TYPE		アナログ・デバイセズの SPI タイプ。	0x2	R
[5:0]	VERSION		アナログ・デバイセズの SPI バージョン。	0x3	R

VENDOR_L レジスタ

アドレス:0x0C、リセット:0x56

このレジスタには、Vendor ID の下位バイトが格納されます。

表 60. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				VID[7:0]			

analog.com.jp Rev. 0 | 72 of 94

内蔵レジスタ・マップ

表 61. VENDOR_L レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[7:0]	VID[7:0]		アナログ・デバイセズのベンダ ID。	0x56	R

VENDOR_H レジスタ

アドレス:0x0D、リセット:0x04

このレジスタには、Vendor ID の上位バイトが格納されます。

表 62. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				VID[15:8]			

表 63. VENDOR_H レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[7:0]	VID[15:8]		アナログ・デバイセズのベンダ ID。	0x4	R

INTERFACE_CONFIG_C レジスタ

アドレス: 0x10、リセット: 0x27

シリアル・インターフェースはこのレジスタで設定されます。

表 64. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	CRC_ENABLE	STRICT_REGI STER_ACCES S	SEND_STATUS	ACTIVE_INTE	RFACE_MODE		CRC_ENABLEB

表 65. INTERFACE_CONFIG_C レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[7:6]	CRC_ENABLE		CRC イネーブル。これらのビットにより、シリアル・インターフェースで CRC をイネーブル/ディスエーブルできます。CRC をイネーブル/ディスエーブルするには、 CRC_ENABLEB ビットにも CRC_ENABLE ビットの反転値を書き込む必要があります。リストにない設定は予約済みです。	0x0	R/W
		00	CRC を無効化。		
		01	CRC を有効化。		
5	STRICT_REGISTER_ ACCESS	1	マルチバイト・レジスタは全て読出し/書込みをする必要があります。このモードが 有効になっている場合、マルチバイト・レジスタの全てのバイトについて完全に読出 し/書込みをする必要があります。 厳格モード。マルチバイト・レジスタは全バイトの読出し/書込みが必要です。	0x1	R
4	SEND_STATUS		すべての命令フェーズにおける SDO への同期パターンの送信をイネーブル。クリアされると、16 ビット命令を用いている場合は 0x2645 という固定同期パターンが送信され、8 ビット命令の場合は 0x26 というパターンが送信されます。セットされると、命令フェーズ中に同期パターンは送信されません。	0x0	R/W
[3:2]	ACTIVE_INTERFACE_ MODE	1	これは、SPI インターフェースが動作しているアクティブ・モードです。 0		R
[1:0]	CRC_ENABLEB		CRC イネーブルの反転値。ここには、CRC_ENABLE 設定値の反転値を書き込む必要があります。	0x3	R/W

INTERFACE_STATUS_A レジスタ

アドレス:0x11、リセット:0x00

このレジスタは、全ての読出し動作および書込み動作の状態を示します。エラーが発生すると該当のビットが 1 にセットされます。セットされたビットは、対応するビット位置に1を書き込むことによってクリアされます。

analog.com.jp Rev. 0 | 73 of 94

内蔵レジスタ・マップ

表 66. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NOT_READY_ERR	RE	ESERVED	CLOCK_COUNT_ ERR	CRC_ERR	WR_TO_RD_ONL Y_REG_ERR	REGISTER_PARTI AL_ACCESS_ERR	ADDRESS_INVALID _ERR

表 67. INTERFACE_STATUS_A レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
7	NOT_READY_ERR		デバイスのトランザクションに対する準備が未了。このエラー・ビットは、ユーザがデジタル初期化の完了前に SPI トランザクションを実行しようとした場合にセットされます。	0x0	R/W1C
[6:5]	RESERVED		予約済み。	0x0	R
4	CLOCK_COUNT_ERR		トランザクションで誤った数のクロック・パルスが検出されるとセットされます。 このエラー・チェックのためのトランザクションをフレーム化するにはCSを用いる 必要があります。	0x0	R/W1C
3	CRC_ERR		受信 CRC が無効または受信 CRC がない。これがセットされるのは、プロセッサが CRC を送信できなかった場合、または AD4190-4 が CRC を計算してチェックしその 値が正しくなかった場合です。	0x0	R/W1C
2	WR_TO_RD_ONLY_ REG_ERR		読出し専用レジスタへの書込みを試行。これがセットされるのは、読出し専用レジスタへの書込みが試行された場合です。	0x0	R/W1C
1	REGISTER_PARTIAL_ ACCESS_ERR		読出し/書込みが行われるバイト数が必要な数より少ない場合にセットされます。 このビットは、厳格なレジスタ・アクセスがイネーブルされている場合にのみ有効 です。	0x0	R/W1C
0	ADDRESS_INVALID_ ERR		存在しないレジスタ・アドレスへの読出し/書込みを試行。	0x0	R/W1C

STATUS レジスタ

アドレス: 0x14/0x15 (下位/上位バイト)、リセット: 0x0060

STATUS レジスタには、ADC とシリアル・インターフェースのステータス情報が格納されています。

表 68. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RESERVED								
MAIN_ERR_S POR_FLAG_S RDYB RESERVED CH_ACTIVE								

表 69. STATUS レジスタのビット説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:8]	RESERVED		予約済み。	0x0	R
7	MAIN_ERR_S		これがセットされるのは、ERROR レジスタのイネーブルされたエラー・フラグのうち いずれかがセットされた場合です。	0x0	R
6	POR_FLAG_S		パワーオン・リセット、あるいは、レジスタまたはリセット・シーケンスによるリセットが発生した場合にセットされます。	0x1	R/W1C
5	RDYB		ADC 変換レディ・インジケータ。	0x1	R
4	RESERVED		予約済み。	0x0	R
[3:0]	CH_ACTIVE		直前の変換でアクティブなチャンネルを示します。	0x0	R

DATA_16B レジスタ

アドレス: 0x16/0x17 (下位/上位バイト)、リセット: 0x0000

イネーブルされている全てのチャンネルが 1 つのデータ・レジスタを用いている場合に、16 ビットの変換結果はこのレジスタに格納されます。

表 70. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ADC_DATA[15:8]									
	ADC_DATA[7:0]								

analog.com.jp Rev. 0 | 74 of 94

内蔵レジスタ・マップ

表 71. DATA_16B レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[15:0]	ADC_DATA[15:0]		16 ビット ADC 変換結果。	0x0	R

DATA_16B_STATUS レジスタ

アドレス: 0x18/0x19/0x1A(下位/中位/上位バイト)、リセット: 0x000060

このレジスタは、16 ビット変換結果と共にステータス・ビットを格納します。変換結果およびステータス・ビットは、イネーブルされた全てのチャンネルが1つのデータ・レジスタを共用している場合に、このレジスタから読み出せます。

表 72. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	ADC_DATA[15:8]								
ADC_DATA[7:0]									
MAIN_ERR_S	POR_FLAG_S	RDYB	RESERVED			CH_ACTIVE			

表 73. DATA 16B STATUS レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[23:8]	ADC_DATA[15:0]		16 ビット ADC 変換結果(24 ビット変換結果の 16MSB)。	0x0	R
7	MAIN_ERR_S		これがセットされるのは、ERROR レジスタのイネーブルされたエラー・フラグのうち いずれかがセットされた場合です。	0x0	R
6	POR_FLAG_S		パワーオン・リセット、あるいは、レジスタまたはリセット・シーケンスによるリセットが発生した場合にセットされます。	0x1	R/W1C
5	RDYB		ADC 変換レディ・インジケータ。	0x1	R
4	RESERVED		予約済み。	0x0	R
[3:0]	CH_ACTIVE		直前の変換でアクティブなチャンネルを示します。	0x0	R

DATA_24B レジスタ

アドレス: 0x1C/0x1D/0x1E(下位/中位/上位バイト)、リセット: 0x0000000

イネーブルされている全てのチャンネルが 1 つのデータ・レジスタを用いている場合に、24 ビットの変換結果はこのレジスタに格納されます。

表 74. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	ADC_DATA[23:16]								
	ADC_DATA[15:8]								
			,	ADC_DATA[7:0]					

表 75. DATA_24B レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[23:0]	ADC_DATA[23:0]		24 ビット ADC 変換結果。	0x0	R

DATA_24B_STATUS レジスタ

アドレス: 0x20 (下位バイト) ~0x23 (上位バイト) 、リセット: 0x00000060

このレジスタは、24 ビット変換結果と共にステータス・ビットを格納します。変換結果およびステータス・ビットは、イネーブルされた全てのチャンネルが1つのデータ・レジスタを共用している場合に、このレジスタから読み出せます。

表 76. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	ADC_DATA[23:16]								
	ADC_DATA[15:8]								
				ADC_DATA[7:0]]					

analog.com.jp Rev. 0 | 75 of 94

内蔵レジスタ・マップ

表 76. ビット名(続き)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MAIN_ERR_S	POR_FLAG_S	RDYB	RESERVED		CH_	ACTIVE	

表 77. DATA_24B_STATUS レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[31:8]	ADC_DATA[23:0]		24 ビット ADC 結果。	0x0	R
7	MAIN_ERR_S		これがセットされるのは、ERROR レジスタのイネーブルされたエラー・フラグのうち いずれかがセットされた場合です。	0x0	R
6	POR_FLAG_S		パワーオン・リセット、あるいは、レジスタまたはリセット・シーケンスによるリセットが発生した場合にセットされます。	0x1	R/W1C
5	RDYB		ADC 変換レディ・インジケータ。	0x1	R
4	RESERVED		予約済み。	0x0	R
[3:0]	CH_ACTIVE		直前の変換でアクティブなチャンネルを示します。	0x0	R

DATA_PER_CHANNEL レジスタ

アドレス: 0x28 (チャンネル 0 の下位バイト) ~0x64 (チャンネル 15 の上位バイト) (4 ずつインクリメント)、リセット: 0x000000 チャンネルごとにデータ処理する機能が有効化されている場合、イネーブルされたチャンネルからの変換結果は DATA_PER_CHANNELn レジスタで取得できます。 DATA_PER_CHANNEL0 にはチャンネル 0 の変換結果が格納され、DATA_PER_CHANNEL15 にはチャンネル 15 の変換結果が格納されます。

表 78. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	ADC_CH_DATA[23:16]								
	ADC_CH_DATA[15:8]								
			AΓ	DC_CH_DATA[7:0]					

表 79. DATA PER CHANNELn レジスタのビット説明

ビット	ビット名	設定	説明	リセット	アクセス
[23:0]	ADC_CH_DATA		対応するチャンネルからの変換結果。	0x0	R

PIN_MUXING レジスタ

アドレス:0x68/0x69 (下位/上位バイト)、リセット:0x0004

このレジスタには同期オプションが格納されます。また、SDO ピンの動作を設定できます。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 80. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESERVED	CHAN_TO_GPIO				RESERVED		
DIG_AUX	K2_CTRL		DIG_AUX1_CTRL	S	YNC_CTRL	DIG_OUT_STR	SDO_RDYB_DLY

表 81. PIN MUXING レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
15	RESERVED		予約済み。	0x0	R
14	CHAN_TO_GPIO	0	現在のチャンネル番号の GPIO ピンへの出力。このビットにより、現在の ADC チャンネル番号を GPIO ピンに出力できます。これにより、ADC が複数チャンネルを通じてシーケンス動作を行っている間に、外部マルチプレクサを制御できます。GPIO3 が MSB として動作し、GPIO0 が LSB として動作することで、最大 16 通りのチャンネルをサポートします。GPIO ピンの他の共用機能は、この機能のはたらきに影響する可能性があります。アクティブ・チャンネル番号が GPIO ピンに出力されません。アクティブ・チャンネル番号が GPIO ピンに出力されます。	0x0	R/W
[13:8]	RESERVED		予約済み。	0x0	R

analog.com.jp Rev. 0 | 76 of 94

内蔵レジスタ・マップ

表 81.PIN_MUXING レジスタのビットの説明(続き)

DIG_AUX2_CTRL	00 01 10	DIG_AUX2 ピンの機能設定。連続送信がイネーブルされている場合、DIG_AUX2 は DCLK として機能します。 DIG_AUX2 ピンをディスエーブル。高インピーダンス。 予約済み。	0x0	R/W
	01			
	-	予約済み。		
	10			
	1	DIG_AUX2 ピンを START 入力として設定。これは、DIG_AUX1 の SYNC_OUT 機能と 併用する必要があります。SYNC_OUT は、同期された START 信号を出力します。		
		SYNC_OUT は、複数の AD4190-4 デバイスのSYNC_INピンを駆動し、全部のデバイス を同期させます。メイン・クロックを 2 分周する場合は、この信号は 3~4 個の MCLK の立上がりエッジ後に SYNC_OUT に出力されます。MCLK を 4 分周する場合は、この 遅延は 5~8 個の MCLK の立上がりエッジになります。MCLK を 8 分周する場合は、この 遅延は 9~16 個の MCL K の立上がりエッジになります。		
	11			
DIG AUX1 CTRL		- 1511 - 5	0x0	R/W
	00	=		
	01	DIG_AUX1 ピンを ADC データ・レディ出力(RDY)として設定。これにより、DIG_AUX1 はアクティブ・ローの ADC データ・レディ・インジケータとして設定され		
	10	DIG_AUX1 ピンを SYNC_OUT 出力として設定。これは、DIG_AUX2 の START 機能と		
	11	予約済み。		
SYNC_CTRL		SYNC INピンを ADC 同期用に設定します。	0x1	R/W
	00	_		
	01			
		す。SYNC_INをローにすると、変調器、デジタル・フィルタ、制御ロジックがリセット状態に保持されます。これには、チャンネル・シーケンサの状態のリセットも含ま		
	10	SYNC_INが代替の同期機能を持ちます。代替同期機能が意味を持つのは、シーケンサにおいて複数のチャンネルがイネーブルされている場合のみです。 SYNC_INをローにすると、シーケンサをシーケンス内の次のチャンネルに進ませないようにできます。シーケンサがシーケンスの次のチャンネルに進むのは、SYNC_INがハイになった場合のみです。これにより、シーケンサの状態をリセットせずにチャンネルの ADC サンブリングの開始を外部制御できます。		
	11	予約済み。		
DIG_OUT_STR		デジタル出力ドライバ強度。このビットを用いることで、デジタル出力の駆動強度を増加できます。これにより、IOVDDの値が低い場合に SPI タイミングを改善できます。	0x0	R/W
	0			
	1	増強された駆動強度。		
SDO_RDYB_DLY	0	CSまたは SCLK 立上がりエッジでインターエースをリセット。このビットは、共用の SDO/RDY ピンが、レジスタ読出しの最後の SCLK 後またはCSの立上がりエッジのどちらでRDY ピンとしての機能に戻るかを決定します。RDYが DIG_AUX1 ピンに出力される場合は、無関係です。 最後の SCLK 立上がりエッジでリセット。	0x0	R/W
		10	の立上がリエッジ後に SYNC_OUT に出力されます。MCLK を 4 分周する場合は、この 選種は 5~8 個の MCLK の立上がリエッジになります。MCLK を 6 分周する場合は、この 選種は 5~8 個の MCLK の立上がリエッジになります。MCLK を 6 分周する場合は、この 変種は 5~16 個の MCLK の立上がリエッジになります。 MCLK を 6 分周する場合は、この 予約済み。 DIG_AUX1 ピンを ADC データ・レディ出力 (RDY) として設定。これにより、 DIG_AUX1 ピンを ADC データ・レディ・インジケータとして設定されます。 SO の共用RDY機能は無効化されます。 DIG_AUX1 はアクティブ・ローの ADC データ・レディ・インジケータとして設定されます。 SO の共用RDY機能は無効化されます。 10	の立上がリエッジ後にSYNC_OUTに出力されます。MCLK を 4 分周する場合は、この 週基は 5~8 個の MCLK の立上がリエッジになります。MCLK を 8 分周する場合は、この 週基は 9~16 個の MCLK の立上がリエッジになります。 MCLK を 8 分周する場合は、この の理量は 9~16 個の MCLK の立上がリエッジになります。

CLOCK_CTRL レジスタ

アドレス:0x6A/0x6B(下位/上位バイト)、リセット:0x0000

メイン・クロック源および内部分周係数はこのレジスタで選択します。連続送信モードでの DCLK の周波数もこのレジスタで設定されます。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 82. ビット名

Bit 7	Bit 6	Bit 5 Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
RESERVED									
DCLK_DIVIDE CLOCKDIV RESERVED CLOCKSEL									

analog.com.jp Rev. 0 | 77 of 94

内蔵レジスタ・マップ

表 83. CLOCK CTRL レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:8]	RESERVED		予約済み。	0x0	R
[7:6]	DCLK_DIVIDE		連続送信データ・クロック分周器。これらのビットにより、連続送信モードで使用さ	0x0	R/W
			れるデータ・クロックの調整が可能です。データ・クロックは、選択したメイン・ク		
			ロックとオプションの分周比に基づきます。		
		00	DCLK はメイン・クロックを 1 分周したものに等しくなります。		
		01	DCLK はメイン・クロックを 2 分周したものに等しくなります。		
		10	DCLKはメイン・クロックを4分周したものに等しくなります。		
		11	DCLKはメイン・クロックを8分周したものに等しくなります。		
[5:4]	CLOCKDIV		メイン・クロック分周器。これらのビットにより、外部または内部のクロック周波数	0x0	R/W
			のプラグラマブル分周器が可能になります。		
		00	2分周。		
		01	2分周。		
		10	4分周。		
		11	8分周。		
[3:2]	RESERVED		予約済み。	0x0	R
[1:0]	CLOCKSEL		ADC クロックの選択。これらのビットは ADC のクロック源の選択に使用します。内部	0x0	R/W
			発振器を選択すると、発振器がパワーアップします。		
		00	内部発振器。		
		01	内部発振器。CLK ピンに出力。		
		10	CLK ピンの外部クロック入力。		
		11	予約済み。		

STANDBY_CTRL レジスタ

アドレス: 0x6C/0x6D(下位/上位バイト)、リセット: 0x0000

メイン・クロック、内部プルアップ、パワーダウン・スイッチ、VBIAS、励起電流、内部リファレンスなどの機能は、スタンバイ時も有効化したままにできます。スタンバイ時に有効化したままにする機能は、このレジスタを用いて選択できます。このレジスタのビットが何らかの効果を持つためには、機能を各制御レジスタで個別に有効化する必要があります。

表 84. ビット名

Bit 7	Bit 6 Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		RESERVED				STB_EN_CLOCK
STB_EN_IPULLUP	RESERVED	STB_PDSW1	STB_PDSW0	STB_EN_VBIAS	STB_EN_IEXC	STB_EN_REFERENCE

表 85. STANDBY CTRL レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:9]	RESERVED		予約済み。	0x0	R
8	STB_EN_CLOCK		セットされた場合、メイン・クロックはスタンバイ・モード時にアクティブなままとなります。	0x0	R/W
7	STB_EN_IPULLUP		セットされた場合、プルアップ電流はスタンバイ・モード時にアクティブなままとなります。	0x0	R/W
[6:5]	RESERVED		予約済み。	0x0	R
4	STB_PDSW1		セットされた場合、PSW1はスタンバイ・モード時にアクティブなままとなります。	0x0	R/W
3	STB_PDSW0		セットされた場合、PSW0 はスタンバイ・モード時にアクティブなままとなります。	0x0	R/W
2	STB_EN_VBIAS		セットされた場合、VBIASはスタンバイ・モード時にアクティブなままとなります。	0x0	R/W
1	STB_EN_IEXC		セットされた場合、内部励起電流はスタンバイ・モード時にアクティブなままとなります。	0x0	R/W
0	STB_EN_REFERENCE		セットされた場合、内部リファレンスはスタンバイ・モード時にアクティブなままとなります。励起電流がスタンバイ・モード時にアクティブなままである場合、内部リファレンスを有効化したままにする必要があります。	0x0	R/W

POWER_DOWN_SW レジスタ

アドレス: 0x6E/0x6F (下位/上位バイト)、リセット: 0x0000

このレジスタを用いて、ローサイド・パワー・スイッチがイネーブル/ディスエーブルされます。GPIO0 (PDSW0) と GPIO1 (PDSW1) の 2 つのパワー・スイッチを使用できます。

analog.com.jp Rev. 0 | 78 of 94

内蔵レジスタ・マップ

表 86. ビット名

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2					Bit 1	Bit 0		
				RESERVED				
RESERVED PDSW_1 PDSW_0								

表 87. POWER_DOWN_SW レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:2]	RESERVED		予約済み。	0x0	R
1	PDSW_1		PDSW1 ピンをイネーブル。	0x0	R/W
		0	GPIO1 と AVSS の間の PDSW1 スイッチをディスエーブル。		
		1	GPIO1 と AVSS の間の PDSW1 スイッチをイネーブル。		
0	PDSW_0		PDSW0 ピンをイネーブル。	0x0	R/W
		0	GPIOO と AVSS の間の PDSW0 スイッチをディスエーブル。		
		1	GPIO0 と AVSS の間の PDSW0 スイッチをイネーブル。		

ADC_CTRL レジスタ

アドレス: 0x70/0x71 (下位/上位バイト)、リセット: 0x0000

動作モードはこのレジスタを用いて設定します。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 88. ビット名

Bit 7	Bit 6	Bit 5 Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			RESERVED			
MULTI_DATA_REG _SEL	CONT_READ_STA TUS_EN	CONT_READ			MODE	

表 89. ADC_CTRL レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[15:8]	RESERVED		予約済み。	0x0	R
7	MULTI_DATA_REG_S EL		データ・レジスタが1つか複数かを選択します。チャンネルは、共通のデータ・レジスタ(およびオプションのステータス・バイト)を共用するように設定することも、別々のデータ・レジスタをSPIを介して個別にアドレス指定するように設定することもできます。複数チャンネルの場合のRDYの動作は、選択したオプションによって異なります。	0x0	R/W
		0	各チャンネルは固有のデータ・レジスタを備えています。イネーブルされた各チャンネルは、その結果を専用のデータ・レジスタに書き込みます。これらのレジスタは、シリアル・インターフェースを介して個別にアドレス指定できます。この設定では、RDYがアサートされるのは、シーケンスでイネーブルされている全てのチャンネルがADC 変換を完了した後です。それによって、ホストへの1回の割込みの後に、全てのデータ・レジスタからの結果を読み出すことができます。この機能が有効化されている場合は、REPEAT機能は使用できません。		
		1	チャンネルはデータ・レジスタを共用します。RDYは各チャンネルの後にアサートされます。イネーブルされた全てのADCチャンネルは、共通のADCデータ・レジスタを共用します。関連レジスタをアドレス指定することで変換結果と共にステータス・バイトを取得するオプションも可能です。この設定では、シーケンス中のいずれかのチャンネルがADC変換を完了すると、RDYがアサートされます。変換結果の読出しは、次の変換結果が読出し可能となる前に行う必要があります。新しい変換結果が読出し可能になると、データ・レジスタはその新しい結果に更新されるためです。		
6	CONT_READ_STATU S_EN	0	連続読出し/送信でのステータス出力をイネーブル。このビットは、連続読出しまたは連続送信がイネーブルされている場合に変換結果と共にステータス・バイトを出力するかどうかを定めます。連続読出しでは、ステータス・バイトは変換結果の直後に続きます。連続送信では、ステータス・バイトは送信される最初のバイトです。CRCがイネーブルされている場合は、これは2番目のスロットで繰り返されます。ステータス・バイトの出力なし。ステータス・バイトを出力。CSはデータ + ステータスの読出し全体でローに維持する必要があります。	0x0	R/W

analog.com.jp Rev. 0 | 79 of 94

内蔵レジスタ・マップ

表 89. ADC_CTRL レジスタのビットの説明(続き)

ビット	ビット名	設定	説明	リセット	アクセス
[5:4]	CONT_READ		連続データ・レジスタ読出し/送信イネーブル。ADC データ・レジスタの連続読出しまたは連続送信をイネーブルします。ADC は連続変換モードになっている必要があります。	0x0	R/W
		00	連続読出し/送信をディスエーブル。		
		01	連続読出しをイネーブル。これは、ADC データ・レジスタの連続読出しをイネーブルします。ADCは連続変換モードになっている必要があります。連続読出しでは、SPIインターフェースを介して ADC の DATA レジスタの読出しのみを実行でき、データ・レジスタのアドレスを指定するための命令バイトは不要です。データ・レジスタの読出しに時間がかかりすぎる場合、その読出しは、次の ADC 変換結果がデータ・レジスタに書き込まれることになる直前にアボートされます。連続読出しを終了するには、RDYがローになった後の最初のデータ・バイトとして、SPIインターフェースにコマンドのXA5を書き込みます。あるいは、63個の1と1個の0からなるパターンを3回 ADCに書き込むことで、いつでもシリアル・インターフェース・リセットを実行できます。INTERFACE_CONFIG_A レジスタに書き込むことによるリセットは、連続読出しを終了するオプションではありません。		
		10	連続送信をイネーブル。これは、ADC データ・レジスタの連続送信をイネーブルします。ADC は連続変換モードになっている必要があります。このモードでは、DIG_AUX2 ピンをデータ・クロック DCLK として用い、新しい変換結果が出力できるようになるとADCのデータが自動的に SDOに送信されます。DIG_AUX1 ピンはフレーム同期として自動的に使用されます。DIG_AUX1 と DIG_AUX2 のその他の機能は自動的に無効になります。 データ・フレームは 1 つまたは 2 つの 32 ビット・スロットで構成されます。 イネーブルされている場合、ADC ステータス・レジスタと CRC バイトが含まれます。 CRC は 2 番目のスロットを使用する必要があります。 データ・クリック DCLK は、オプションの追加分周比と共にメイン・クロックから引き出されます。 分周比は、次の ADC 結果の前に送信が終了するのに十分な DCLK を確保できるものであることが必要です。 SPI シリアル・クロック SCLK は、このモードでの ADC データ送信には使用しません。 SDO ピンが ADC データの送信専用になるため、レジスタ読出しはできません。連続送信を終了するには、このレジスタに書込みを行い、 CONT_READビットを 0 に設定します。あるいは、シリアル・インターフェース・リセット(63 個の1と1個の0を3回 ADC に書き込む)をいつでも実行できます。		
[3:0]	MODE	11	予約済み。 ADC の動作モード。これらのビットは ADC の動作モードを制御します。リストにない 設定は予約済みです。	0x0	R/W
		0000	連続変換モード(デフォルト)。連続変換モードでは、ADC は連続して変換を行い、変換結果がデータ・レジスタに格納されます。RDYは変換が完了すると、ローになります。ユーザは該当のレジスタを読み出すか、連続読出しあるいは連続送信のオプションを有効化することで、これらの変換結果を読み出すことができます。		
		0100	シングル変換モード。ADC は、イネーブルされたチャンネルごとにシングル変換を (場合によっては繰り返して)行います。変換が終了すると ADC はスタンバイになり ます。		
		0101	スタンバイ・モード。デフォルトでは、LDO とシリアル・インターフェースを除く AD4190-4 の全てのセクションは、パワーダウンされます。スタンバイ・モードでは、内蔵レジスタの内容は保持されます。スタンバイ・モードでは、内部リファレンス、バイアス電圧発生器、励起電流、内蔵発振器などの機能は有効化したままにできます。スタンバイ・モードでのこれらの機能の状態は、STANDBY_CTRL レジスタを用いて制御します。		
		0110	パワーダウン・モード。パワーダウン・モードでは、全ての回路がパワーダウンします。LDO への電力供給も停止します。内蔵レジスタの内容は保持されません。このため、パワーダウン・モードの終了後には、全てのレジスタを再プログラムする必要があります。パワーダウン・モードに移行するには、デバイスは最初にスタンパイ・モードになることが必要です。パワーダウン・モードを終了するには、63 個の 1 と 1 個の 0 を 3 回 ADC に書き込むことでシリアル・インターフェースをリセットすることが必要です。		
		0111	アイドル・モード。アイドル・モードでは、変調器のクロックは引き続き機能しますが、ADC フィルタと変調器はリセット状態に保持されます。		

内蔵レジスタ・マップ

表 89. ADC_CTRL レジスタのビットの説明(続き)

ビット	ビット名	設定	説明	リセット	アクセス
		1000	システム・ゼロスケール(オフセット)キャリブレーション。選択したチャンネルの		
			入力ピンにシステム・ゼロスケール入力を接続します。RDYは、キャリブレーション		
			が開始されるとハイになり、キャリブレーションが完了するとローに戻ります。キャ		
			リブレーション後、ADC はアイドル・モードになります。計測したオフセット係数		
			が、選択したチャンネルのオフセット・レジスタに格納されます。フルスケール・		
			キャリブレーションを実行する場合は、1つのチャンネルのみを選択します。		
		1001	システム・フルスケール(ゲイン)キャリブレーション。選択したチャンネルの入力		
			ピンにシステム・フルスケール入力を接続します。RDYは、キャリブレーションが開		
			始されるとハイになり、キャリブレーションが完了するとローに戻ります。キャリブ		
			レーション後、ADC はアイドル・モードになります。計測したフルスケール係数が、		
			選択したチャンネルのゲイン・レジスタに格納されます。フルスケール・キャリブ		
			レーションを実行する場合は、1 つのチャンネルのみを選択します。		
		1010	内部ゼロスケール(オフセット)キャリブレーション。内部短絡が自動的に入力へ接		
			続されます。RDYは、キャリブレーションが開始されるとハイになり、キャリブレー		
			ションが完了するとローに戻ります。キャリブレーション後、ADC はアイドル・モー		
			ドになります。計測したオフセット係数が、選択したチャンネルのオフセット・レジ		
			スタに格納されます。		

ERROR_EN レジスタ

アドレス: 0x72/0x73 (下位/上位バイト)、リセット: 0x0000

このレジスタの適切なビットを設定することで、全ての診断機能を有効化または無効化できます。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 90. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESI	ERVED	DLDO_PSM_ERR_ EN	ALDO_PSM_ERR_ EN	RESE	RVED	IOUT1_COMP_ER R_EN	IOUT0_COMP_ERR _EN
REF_DIFF_MIN_ER R_EN	REF_OV_UV_ERR _EN	AINM_OV_UV_ER R_EN	AINP_OV_UV_ER R_EN	ADC_CONV_ERR _EN	SPI_ERR_EN	MM_CRC_ERR_E N	RESERVED

表 91. ERROR_EN レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[15:14]	RESERVED		予約済み。	0x0	R
13	DLDO_PSM_ERR_EN		このビットがセットされている場合、デジタル LDO 電圧が連続的にモニタされます。デジタル LDO から出力されている電圧が 1.6V (代表値) 未満の場合は、ERROR レジスタの DLDO_PSM_ERR ビットがセットされます。	0x0	R/W
12	ALDO_PSM_ERR_EN		このビットがセットされている場合、アナログ LDO 電圧が連続的にモニタされます。アナログ LDO から出力されている電圧が 1.5V (代表値) 未満の場合は、ERROR レジスタの ALDO_PSM_ERR ビットがセットされます。	0x0	R/W
[11:10]	RESERVED		予約済み	0x0	R
9	IOUT1_COMP_ERR_EN		このビットがセットされている場合、励起電流 IOUT1 が連続的にモニタされます。電流の大きさが減少した場合、ERROR レジスタのIOUT1_COMP_ERRビットがセットされます。	0x0	R/W
8	IOUT0_COMP_ERR_EN		このビットがセットされている場合、励起電流 IOUTO が連続的にモニタされます。電流の大きさが減少した場合、ERROR レジスタのIOUTO_COMP_ERRビットがセットされます。	0x0	R/W
7	REF_DIFF_MIN_ERR_EN		このビットがセットされている場合、選択されているリファレンス源の差動 電圧がモニタされます。電圧が仕様規定された値未満になると、ERROR レジスタの REF_DIFF_MIN_ERR ビットがセットされます。	0x0	R/W
6	REF_OV_UV_ERR_EN		このビットがセットされている場合、変換されているチャンネルの REFINn+ ピンの過電圧/低電圧モニタがイネーブルされます。	0x0	R/W

analog.com.jp Rev. 0 | 81 of 94

内蔵レジスタ・マップ

表 91. ERROR_EN レジスタのビット説明(続き)

ビット	ビット名	設定	説明	リセット	アクセス
5	AINM_OV_UV_ERR_EN		このビットがセットされている場合、変換されているチャンネルの AINM ピンの過電圧/低電圧モニタがイネーブルされます。	0x0	R/W
4	AINP_OV_UV_ERR_EN		このビットがセットされている場合、変換されているチャンネルの AINP ピン の過電圧/低電圧モニタがイネーブルされます。	0x0	R/W
3	ADC_CONV_ERR_EN		このビットがセットされている場合、変換がモニタされ、アナログ入力が オーバーレンジまたはアンダーレンジになると ADC_CONV_ERR ビットが セットされます。	0x0	R/W
2	SPI_ERR_EN		SPI エラーをイネーブル。このビットは、SPI インターフェース・エラー (INTERFACE_STATUS_A レジスタ)も ERROR レジスタの SPI_ERR ビットをアサートするかどうかを制御します。	0x0	R/W
1	MM_CRC_ERR_EN		このビットがセットされている場合、メモリ・マップで CRC 計算が実行されます。この後、内蔵レジスタで定期的な CRC チェックが実行されます。レジスタの破損や更なるレジスタ書込みによりレジスタの内容が変更された場合は、MM_CRC_ERR ビットがセットされます。	0x0	R/W
0	RESERVED		予約済み。	0x0	R

ERROR レジスタ

アドレス:0x74/0x75 (下位/上位バイト)、リセット:0x0000

AD4190-4 は、過電圧、低電圧、SPI インターフェースのチェックなどの診断機能を備えています。ERROR レジスタには、様々な診断機能のフラグが含まれています。これらの機能は、ERROR_EN レジスタを使用して有効化や無効化が行われます。エラーが検出されるとエラー・ステータス・フラグが 1 にセットされます。エラー状態がそれ以上存在しなくなると、このレジスタの関連ビットに 1 を書き込むことでエラー・ステータス・フラグをクリアできます。

表 92. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DEVICE_ERROR	RESERVED	DLDO_PSM_ERR	ALDO_PSM_ERR	RESE	RVED	IOUT1_COMP_ER R	IOUT0_COMP_ERR
REF_DIFF_MIN_ERR	REF_OV_UV_ER R	AINM_OV_UV_ERR	AINP_OV_UV_ER R	ADC_CONV_ER R	SPI_ERR	MM_CRC_ERR	RESERVED

表 93. ERROR レジスタのビット説明

ビット	ビット名	設定	説明	リセット	アクセス
15	DEVICE_ERROR		デバイス初期化ステータス・ビット。このビットがセットされた場合、デバイス・リセットを推奨します。このビットはクリアできません。	0x0	R
14	RESERVED		予約済み。	0x0	R
13	DLDO_PSM_ERR		デジタル LDO ステータス・ビット。	0x0	R/W1C
12	ALDO_PSM_ERR		アナログ LDO ステータス・ビット。	0x0	R/W1C
[11:10]	RESERVED		予約済み。	0x0	R
9	IOUT1_COMP_ERR		IOUT1 用コンプライアンス電圧エラー・ステータス・ビット。	0x0	R/W1C
8	IOUT0_COMP_ERR		IOUT0 用コンプライアンス電圧エラー・ステータス・ビット。	0x0	R/W1C
7	REF_DIFF_MIN_ERR		リファレンス差動電圧過小ステータス・ビット。	0x0	R/W1C
6	REF_OV_UV_ERR		REFIN 過電圧/低電圧ステータス・ビット。	0x0	R/W1C
5	AINM_OV_UV_ERR		AINM 過電圧/低電圧ステータス・ビット。	0x0	R/W1C
4	AINP_OV_UV_ERR		AINP 過電圧/低電圧ステータス・ビット。	0x0	R/W1C
3	ADC_CONV_ERR		アナログ入力オーバーレンジ/アンダーレンジ・ステータス・ビット。	0x0	R/W1C
2	SPI_ERR		SPI インターフェース・エラー・ステータス・ビット。	0x0	R/W1C
1	MM_CRC_ERR		メモリ・マップ CRC エラー・ステータス・ビット。	0x0	R/W1C
0	RESERVED		予約済み。	0x0	R

analog.com.jp Rev. 0 | 82 of 94

内蔵レジスタ・マップ

CHANNEL_EN レジスタ

アドレス:0x78/0x79 (下位/上位バイト)、リセット:0x0001

チャンネルは、CHANNEL_EN レジスタでイネーブルされます。1つのチャンネルのみがイネーブルされている場合、チャンネルを通じたシーケンス処理はありません。複数のチャンネルがイネーブルされている場合、AD4190-4 は、イネーブルされている全てのチャンネルを(イネーブルされたチャンネルのうちで最小番号のものから最大番号のものに向かって)自動的にシーケンス処理し、チャンネルに関連するセットアップ条件を自動的に適用し、イネーブルされた各チャンネルから変換結果を生成します(変換数は CHANNEL_SETUPn レジスタで設定)。シーケンサを用いる場合、チャンネル 0 はイネーブルされるチャンネルの 1 つに必ずなっていなくてはなりません。特定の ADC モード(キャリブレーション)は、単一のチャンネルでのみ実行されます。どのチャンネルもイネーブルされていない場合、AD4190-4 はチャンネル 0 を内部で選択します。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 94. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CH_15	CH_14	CH_13	CH_12	CH_11	CH_10	CH_9	CH_8
CH_7	CH_6	CH_5	CH_4	CH_3	CH_2	CH_1	CH_0

表 95. CHANNEL EN レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
15	CH_15		シーケンサのチャンネル 15 をイネーブル。	0x0	R/W
14	CH_14		シーケンサのチャンネル 14 をイネーブル。	0x0	R/W
13	CH_13		シーケンサのチャンネル 13 をイネーブル。	0x0	R/W
12	CH_12		シーケンサのチャンネル 12 をイネーブル。	0x0	R/W
11	CH_11		シーケンサのチャンネル 11 をイネーブル。	0x0	R/W
10	CH_10		シーケンサのチャンネル 10 をイネーブル。	0x0	R/W
9	CH_9		シーケンサのチャンネル9をイネーブル。	0x0	R/W
8	CH_8		シーケンサのチャンネル 8 をイネーブル。	0x0	R/W
7	CH_7		シーケンサのチャンネル7をイネーブル。	0x0	R/W
6	CH_6		シーケンサのチャンネル 6 をイネーブル。	0x0	R/W
5	CH_5		シーケンサのチャンネル 5 をイネーブル。	0x0	R/W
4	CH_4		シーケンサのチャンネル 4 をイネーブル。	0x0	R/W
3	CH_3		シーケンサのチャンネル 3 をイネーブル。	0x0	R/W
2	CH_2		シーケンサのチャンネル 2 をイネーブル。	0x0	R/W
1	CH_1		シーケンサのチャンネル 1 をイネーブル。	0x0	R/W
0	CH_0		シーケンサのチャンネル 0 をイネーブル。複数のチャンネルをイネーブルする場合、チャンネル 0 は常に用いなくてはならない点に注意してください。	0x1	R/W

CHANNEL_SETUP レジスタ

アドレス: 0x80 (CHANNEL_SETUP0 の下位バイト) ~0xBC (CHANNEL_SETUP15 の上位バイト) (4 ずつインクリメント)、リセット: 0x0000

AD4190-4 は、CHANNEL_SETUP0~CHANNEL_SETUP15 の 16 個のチャンネル・セットアップ・レジスタを備えています。ユーザは各レジスタを介してセットアップを選択できます。セットアップは、ユーザが定義した 8 個の異なるオプションから選択できます。ADC は、変換時にイネーブルされた全てのチャンネルを自動的に循環します。REPEAT 機能は、チャンネルが選択されるごとにそのチャンネルで実行される変換の数を示します。これにより、必要に応じて、シーケンス内で複数のチャンネルを複数回サンプリングできます。チャンネルが選択されるたびに遅延が追加されるため、フロント・エンド回路はADCが変換を始める前にセトリングできます。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 96. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
REPEAT								
RESERVED	DELAY RESERVED SETUP)	

analog.com.jp Rev. 0 | 83 of 94

内蔵レジスタ・マップ

表 97. CHANNEL_SETUP レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:8]	REPEAT		このチャンネルを反復する回数。この設定により、シーケンスの次のチャンネルに移行する前に、所定のチャンネルで複数の変換を行うことができます。REPEATが 0 に設定されている場合は、そのチャンネルで実行される変換は 1 回のみです。この機能は、チャンネルごとのデータ・レジスタを用いる場合には使用できない点に注意してください(全チャンネルが 1 個のデータ・レジスタを共用する必要があります)。	0x0	R/W
7	RESERVED		予約済み。	0x0	R
[6:4]	DELAY	000 001 010 011 100 101 110 111	チャンネル・スイッチ後に追加する遅延。これらのビットで、ADC がチャンネルを選択した後にプログラマブルな遅延を追加できます。この遅延は、ADC がそのチャンネルでサンプリングを始める前に生じます。これは、外部フロント・エンド回路に一定のセトリング時間が必要な場合に役に立ちます。指定する遅延は、変調器のクロック周波数 fmod (MCLK/4)を基準にします。ここで、MCLK は(メイン・クロック/クロック分周比)で、CLOCK_CTRL レジスタを用いて設定されます。遅延なし。 16×fmod の遅延。 256×fmod の遅延。 1024×fmod の遅延。 4096×fmod の遅延。 8192×fmod の遅延。 8192×fmod の遅延。 16384×fmod の遅延。	0x0	R/W
3	RESERVED		予約済み。	0x0	R
[2:0]	SETUP		セットアップの選択。これらのビットは、このチャンネル用の ADC の設定に使用するセットアップ (8 個のセットアップのいずれか) を特定します。セットアップは、AFE、FILTER、FILTER_FS、MISC、オフセット・レジスタ、ゲイン・レジスタで構成されます。全てのチャンネルで同じセットアップを使用できます。この場合、全てのアクティブ・チャンネルのこれらのビットに同じ3ビット値を書き込む必要があります。あるいは、最大8つのチャンネルを異なる構成にすることもできます。	0x0	R/W

CHANNEL_MAP レジスタ

アドレス: 0x82 (CHANNEL_MAP0 の下位バイト) ~0xBE (CHANNEL_MAP15 の上位バイト) (4 ずつインクリメント)、リセット: 0x0001

AD4190-4 は、CHANNEL_MAP0~CHANNEL_MAP15 の 16 個のチャンネル・レジスタを備えています。各レジスタを介してチャンネルを設定できます(AINP 入力および AINM 入力)。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 98. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RESERVED				AINP_N				
RESERVED				AINM N				

表 99. CHANNEL_MAP レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:13]	RESERVED		予約済み。	0x0	R
[12:8]	AINP_N		このチャンネルのマルチプレクサの正入力。	0x0	R/W
		00000	AIN0。		
		00001	AIN1。		
		00010	AIN2。		
		00011	AIN3。		
		00100	AIN4。		
		00101	AIN5。		
		00110	AIN6。		
		00111	AIN7。		
		01000	AIN8。		
		01001	予約済み。		
-		01010	予約済み。		

analog.com.jp Rev. 0 | 84 of 94

内蔵レジスタ・マップ

表 99. CHANNEL_MAP レジスタのビットの説明(続き)

ビット	ビット名	設定	説明	リセット	アクセス
		01011	予約済み。		
		01100	予約済み。		
		01101	予約済み。		
		01110	予約済み。		
		01111	予約済み。		
		10000	予約済み。		
		10001	TEMP SENSOR+。		
		10010	(AVDD - AVSS)/5+。		
		10011	(IOVDD - DGND)/5+。		
		10100	予約済み。		
		10101	ALDO		
		10110	DLDO.		
		10111	AVSS。		
		11000	DGND.		
		11001	REFIN+。		
		11010	REFIN-。		
		11011	REFIN2+。		
		11100	REFIN2-。		
		11101			
		11110	REFOUT.		
		11111	予約済み。		
[7.6]	DECED/ED	11111	予約済み。	0x0	R
[7:5]	RESERVED		予約済み。		
[4:0]	AINM_N	00000	このチャンネルのマルチプレクサの負入力。	0x1	R/W
		00000	AINO.		
		00001	AIN1。		
		00010	AIN2°		
		00011	AIN3。		
		00100	AIN4。		
		00101	AIN5 _o		
		00110	AIN6 _°		
		00111	AIN7。		
		01000	AIN8。		
		01001	予約済み。		
		01010	予約済み。		
		01011	予約済み。		
		01100	予約済み。		
		01101	予約済み。		
		01110	予約済み。		
		01111	予約済み。		
		10000	予約済み。		
		10001	TEMP_SENSOR-。		
		10010	(AVDD - AVSS)/5-。		
		10011	(IOVDD - DGND)/5-。		
		10100	予約済み。		
		10101	ALDO。		
		10110	DLDO。		
		10111	AVSS。		
		11000	DGND。		

analog.com.jp Rev. 0 | 85 of 94

内蔵レジスタ・マップ

表 99. CHANNEL_MAP レジスタのビットの説明(続き)

ビット	ビット名	設定	説明	リセット	アクセス
		11001	REFIN+。		
		11010	REFIN-。		
		11011	REFIN2+。		
		11100	REFIN2-。		
		11101	RFEOUT。		
		11110	予約済み。		
		11111	予約済み。		

MISC(各種設定)レジスタ

アドレス: 0xC0 (MISC0 の下位バイト) ~0x122 (MISC7 の上位バイト) (14 ずつインクリメント)、リセット: 0x0000

AD4190-4 には、MISC0~MISC7 の 8 個の各種設定レジスタがあります。各種設定レジスタはそれぞれ 1 つのセットアップに関連付けられており、MISCn はセットアップ n に関連付けられています。励起電流のチョッピング、マルチプレクサのチョッピングは、これらのレジスタで設定します。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 100. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	CHOP_IEXC RESERVED					CHOP_ADC		
	RESERVED						BURNOUT	

表 101. MISCn レジスタのビットの説明

ピット	ビット名	設定	説明	リセット	アクセス
[15:14]	CHOP_IEXC		励起電流のチョッピング制御。これにより、3線式 RTD など、励起電流の良好なマッチングが必要なアプリケーションのための、励起電流のチョッピングができます。電流を同じ値にすることが必要です。	0x0	R/W
		00	励起電流のチョッピングなし。励起電流にはスワップやチョッピングが行われません。		
		01	IOUT0 と IOUT1の励起電流のチョッピング。IOUT0 と IOUT1の励起電流の出カピン の選択は定期的にスワップされ、変換はフェーズごとに行われて 2 つの変換が平均化 されます。		
		10	予約済み。		
		11	予約済み。		
[13:10]	RESERVED		予約済み。	0x0	R
[9:8]	CHOP_ADC	00 01	ADC/マルチプレクサのチョッピング。これによりチョッピング機能が有効になり、オフセット誤差を減らせます。チョッピングが有効になると一般にチャンネル・セトリング時間が増加します。これは、内部変換をチョッピングの両極性に対し行う必要があるためです。 チョッピングなし。チッピングは行われません。 内部マルチプレクサをチョッピング。内部マルチプレクサは正と負のアナログ入力を定期的にスワップし、ADC はこれらの選択ごとに内部変換を実行して 2 つの変換	0x0	R/W
			を平均化します。これによりオフセットおよびオフセット・ドリフトが最小限に抑えられます。		
		10	予約済み。		
		11	予約済み。		
[7:2]	RESERVED		予約済み。	0x0	R
[1:0]	BURNOUT		バーンアウト電流値。これらの電流は、MUXP および MUXM で出力されます。そのため、電流が1つのチャンネルでイネーブルされている場合でも、電流がアクティブになるのは、そのチャンネルが選択されている場合のみです。	0x0	R/W
		00	オフ。		
		01	+100nA。		
		10	+2μA _o		
-		11	+10μA _o		

analog.com.jp Rev. 0 | 86 of 94

内蔵レジスタ・マップ

AFE レジスタ

アドレス: 0xC2 (AFEO の下位バイト) ~0x124 (AFE7 の上位バイト) (14 ずつインクリメント)、リセット: 0x0050

AD4190-4 には、AFE0~AFE7 の 8 個の AFE レジスタがあります。AFE レジスタはそれぞれ 1 つのセットアップに関連付けられており、AFEn はセットアップ n に関連付けられています。AFE レジスタでは、PGA ゲイン、リファレンス源、極性、リファレンス・バッファが設定されます。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 102. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		RESERVED			REF_BUF_M		REF_BUF_P
RESERVED	RE	F_SELECT	BIPOLAR	PGA_GAIN			

表 103. AFE レジスタのビット説明

ビット	ピット名	設定	説明	リセット	アクセス
[15:12]	RESERVED		予約済み。	0x0	R
[11:10]	REF_BUF_M		REFINn Buffer-をイネーブル。	0x0	R/W
		00	プリチャージ・バッファ。		
		01	フル・バッファ。		
		10	バイパス。		
		11	予約済み。		
[9:8]	REF_BUF_P		REFINn Buffer+をイネーブル。	0x0	R/W
		00	プリチャージ・バッファ。		
		01	フル・バッファ。		
		10	バイパス。		
		11	予約済み。		
7	RESERVED		予約済み。	0x0	R
[6:5]	REF_SELECT		ADC リファレンスの選択。	0x2	R/W
		00	REFIN+、REFIN-。		
		01	REFIN2+、REFIN2−。		
		10	REFOUT、AVSS。2.5V の REFOUT は REF_CONTROL レジスタで別にイネーブルする必要		
			があります。		
		11	AVDD、AVSS。		
4	BIPOLAR		バイポーラまたはユニポーラの ADC スパンの選択。	0x1	R/W
		0	ユニポーラ。公称スパンは OV~VREF/PGA_GAIN です。ADC データのエンコーディングはス		
			トレート・バイナリで、OV の差動は 0x000000 になり、+のフルスケールは 0xFFFFFF になり		
			ます。		
		1	バイポーラ。公称スパンは-V _{REF} /PGA_GAIN~+V _{REF} /PGA_GAIN です。ADC データのエン		
			コーディングは 2 の補数で、0V の差動は 0x000000、+のフルスケールは 0x7FFFFF、-のフルスケールは 0x800000 になります。		
[3:0]	PGA GAIN		PGA ゲインの選択。リストにない設定は予約済みです。	0x0	R/W
[0.0]	I OA_OAIN	0000	PGA ゲイン = 1。	UNU	10,00
		0000	PGA ゲイン = 2。		
		0010	PGA ゲイン = 4。		
		0010	PGA ゲイン = 8。		
		0100	PGA ゲイン = 16。		
		0101	PGA ゲイン = 32。		
		0110	PGA ゲイン = 64。		
		0111	PGA ゲイン = 128。		
		1000	PGA ゲイン = 0.5。		
		1001	PGA ゲイン = 1 プリチャージ・バッファ。		

analog.com.jp Rev. 0 | 87 of 94

内蔵レジスタ・マップ

FILTER レジスタ

アドレス: 0xC4 (FILTER0 の下位バイト) ~0x126 (FILTER7 の上位バイト) (14 ずつインクリメント) 、リセット: 0x0000

AD4190-4 には、FILTER0~FILTER7 の 8 個のフィルタ・レジスタがあります。フィルタ・レジスタはそれぞれ 1 つのセットアップに関連付けられており、FILTERn はセットアップ n に関連付けられています。FILTER レジスタでは、フィルタのタイプが選択されます。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 104. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	RESERVED								
POST_FILTER_SEL						FILTER_TYPE			

表 105. FILTER レジスタのビット説明

ビット	ピット名	設定	説明	リセット	アクセス
[15:8]	RESERVED		予約済み。	0x0	R
[7:4]	POST_FILTER_SEL	0000	ポスト・フィルタポスト・フィルタにより、良好な除去比を実現しながらも妥当なセトリング時間を持つ、50Hz および 60Hz の同時除去が可能です。リストにない設定は予約済みです。 ポスト・フィルタなし。	0x0	R/W
		0001	ホスト・フィルダなし。 セトリング時間が 40ms の $50\text{Hz}/60\text{Hz}$ 同時除去を行うポスト・フィルタ。このポスト・フィルタは、前段の $\sin c^5 + $ 平均化フィルタの出力データレートが $1,200\text{Hz}$ (16MHz クロックで $FILTER_FS = 208、クロック分周比を 2 に設定、ADC チョッピングをディスエーブル)に設定されている場合に、約 40\text{ms} のセトリングで 50\text{Hz} と 60\text{Hz} の除去を行います。$		
		0010	セトリング時間が 50ms の 50Hz/60Hz 同時除去を行うポスト・フィルタ。このポスト・フィルタは、前段の sinc ⁵ + 平均化フィルタの出力データレートが 1,200Hz(16MHz クロックで FILTER_FS = 208、クロック分周比を 2 に設定、ADC チョッピングをディスエーブル)に設定されている場合に、約 50ms のセトリングで 50Hz と 60Hz の除去を行います。		
		0011	セトリング時間が 60ms の 50Hz/60Hz 同時除去を行うポスト・フィルタ。このポスト・フィルタは、前段の sinc ⁵ + 平均化フィルタの出力レートが 1,200Hz(16MHz クロックで FILTER_FS = 208、クロック分周比を 2 に設定、ADC チョッピングをディスエーブル)に設定されている場合に、約 60ms のセトリングで 50Hz と 60Hz の除去を行います。		
		0101	16 回の平均化を行うポスト・フィルタ。sinc フィルタ(sinc ⁵ + 平均化)の後に平均化 ブロックが配置されます。sinc フィルタには FILTER_FS 値として、4、8、12、、 1024 を使用できます(2LSB を 0 に設定する必要があります)。		
[3:0]	FILTER_TYPE		フィルタ・モード。これは、使用するデジタル・フィルタのタイプを決定します。許容される FILTER_FS 値には、フィルタ・タイプとポスト・フィルタ処理を行うかどうかに応じた制限があります。リストにない設定は予約済みです。	0x0	R/W
		0000	sinc ⁵ + 平均化 このデジタル・フィルタ・オプションは、固定の sinc ⁵ フィルタとその後 段にプログラマブルな量の平均化フィルタを用います。許容される FILTER_FS 値は、 4、8、12~65532 の範囲の 4 の倍数です。		
		0100	sinc ⁵ 。このデジタル・フィルタ・オプションはプログラマブルな sinc ⁵ フィルタを用います。許容される FILTER_FS 値は、4、8、12~256 の範囲の 4 の倍数です。		
		0110	sinc ³ 。このデジタル・フィルタ・オプションはプログラマブルな sinc ³ フィルタを用います。許容される FILTER_FS 値は、4、8~65532 の範囲の 4 の倍数です。		

FILTER_FS レジスタ

アドレス: 0xC6 (FILTER_FS0 の下位バイト) ~0x128 (FILTER_FS7 の上位バイト) (14 ずつインクリメント) 、リセット: 0x0004

AD4190-4 には、FILTER_FS0~FILTER_FS7 の 8 個の FILTER_FS レジスタがあります。FILTER_FS レジスタはそれぞれ 1 つのセットアップに関連付けられており、FILTER_FSn はセットアップ n に関連付けられています。出力データレートはこのレジスタを用いて設定されます。このレジスタに書込みを行うと、デジタル・フィルタ/制御ロジック/シーケンサのリセットがトリガされます。

表 106. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
FS[15:8]									
				FS[7:0]					

analog.com.jp Rev. 0 | 88 of 94

内蔵レジスタ・マップ

表 107. FILTER_FS レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:0]	FS		デジタル・フィルタ用のフィルタ選択ワード。これにより、ADC の変換速度とノイズ性能を決定するデジタル・フィルタが設定されます。 $sinc^5$ フィルタの場合に許容される $FILTER_FS$ 値は、 4 、 $8\sim256$ の範囲の 4 の倍数です。 $sinc^3$ および $sinc^5$ + 平均化フィルタの場合は、許容される FS 値は 4 、 8 、 $12\sim65532$ の範囲の 4 の倍数です。	0x4	R/W

オフセット・レジスタ

アドレス: 0xC8 (OFFSET0 の下位バイト) ~0x12A (OFFSET7 の上位バイト) (14 ずつインクリメント)、リセット: 0x000000

AD4190-4 には、OFFSET7 の 8 個のオフセット・レジスタがあります。オフセット・レジスタはそれぞれ 1 つのセットアップ に関連付けられており、OFFSETn はセットアップ n に関連付けられます。OFFSET レジスタは 24 ビット・レジスタで、ADC のオフセット・キャリブレーション係数を保持し、パワーオン・リセット値は 0x000000 です。これらのレジスタは、リード/ライト・レジスタで す。これらのレジスタは、関連する GAIN レジスタと組み合わせて使用し、レジスタ・ペアを形成します。ユーザによって内部またはシステム・ゼロスケール・キャリブレーションが開始された場合、パワーオン・リセット値は自動的に上書きされます。OFFSET レジスタ に書き込む場合は、ADC をスタンバイ・モードまたはアイドル・モードにすることを推奨します。

表 108. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
				OFFSET[23:16]						
	OFFSET[15:8]									
				OFFSET[7:0]						

表 109. オフセット・レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[23:0]	OFFSET		ADC のオフセット係数。	0x0	R/W

ゲイン・レジスタ

アドレス: 0xCB (GAIN0の下位バイト) ~0x12D (GAIN7の上位バイト) (14 ずつインクリメント)、リセット: 0x555555

AD4190-4には、GAIN0~GAIN7の8個のゲイン・レジスタがあります。ゲイン・レジスタはそれぞれ1つのセットアップに関連付けられており、GAINn はセットアップ n に関連付けられます。GAIN レジスタは 24 ビット・レジスタで、ADC のフルスケール・キャリブレーション係数を保持します。ゲイン誤差は全てのゲインについて製造時にキャリブレーションされていますが、GAIN レジスタには 0x555555のデフォルト値があります。パワーオン時およびリセット後には、GAIN レジスタにはこの値が格納されます。GAIN レジスタは リード/ライト・レジスタです。ただし、レジスタに書き込む場合、ADC をスタンバイ・モードまたはアイドル・モードにすることを推 奨します。ユーザによってシステム・フルスケール・キャリブレーションが開始された場合、またはレジスタに書込みが行われた場合は、デフォルト値が自動的に上書きされます。

表 110. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
				GAIN[23:16]					
	GAIN[15:8]								
				GAIN[7:0]					

表 111. GAINn レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[23:0]	GAIN		ADC のゲイン係数。	0x555555	R/W

REF_CONTROL レジスタ

アドレス: 0x130/0x131 (下位/上位バイト)、リセット: 0x0001

2.5V の内部リファレンスはこのレジスタでイネーブル/ディスエーブルされます。内部温度センサーまたは励起電流を用いる場合には、内部リファレンスをイネーブルする必要がある点に注意してください。チャンネルが変換を行うために REF_SELECT ビットを用いて内部 リファレンスを選択した場合にも、これをイネーブルする必要があります。

analog.com.jp Rev. 0 | 89 of 94

内蔵レジスタ・マップ

表 112. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				RESERVED			
RESERVED							

表 113. REF_CONTROL レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:1]	RESERVED		予約済み。	0x0	R
0	REF_EN		内部リファレンスのイネーブル。	0x1	R/W
		0	内部リファレンスをディスエーブル。		
		1	内部リファレンスをイネーブルし REFOUT ピンに出力。		

V_BIAS レジスタ

アドレス: 0x134/0x135 (下位/上位バイト)、リセット: 0x0000

(AVDD + AVSS)/2 に等しい内部バイアス電圧が、このレジスタを用いてイネーブル/ディスエーブルされます。

表 114. ビット名

Bit 7	7 Bit 6 Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESERVED							
VBIAS_IN7_EN	VBIAS_IN6_EN	VBIAS_IN5_EN	VBIAS_IN4_EN	VBIAS_IN3_EN	VBIAS_IN2_EN	VBIAS_IN1_EN	VBIAS_IN0_EN

表 115. V_BIAS レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[15:9]	RESERVED		予約済み。	0x0	R
8	VBIAS_IN8_EN		AIN8 の電圧バイアスをイネーブル。	0x0	R/W
7	VBIAS_IN7_EN		AIN7 の電圧バイアスをイネーブル。	0x0	R/W
6	VBIAS_IN6_EN		AIN6 の電圧バイアスをイネーブル。	0x0	R/W
5	VBIAS_IN5_EN		AIN5 の電圧バイアスをイネーブル。	0x0	R/W
4	VBIAS_IN4_EN		AIN4 の電圧バイアスをイネーブル。	0x0	R/W
3	VBIAS_IN3_EN		AIN3 の電圧バイアスをイネーブル。	0x0	R/W
2	VBIAS_IN2_EN		AIN2 の電圧バイアスをイネーブル。	0x0	R/W
1	VBIAS_IN1_EN		AIN1 の電圧バイアスをイネーブル。	0x0	R/W
0	VBIAS_IN0_EN		AIN0 の電圧バイアスをイネーブル。	0x0	R/W

I_PULLUP レジスタ

アドレス: 0x136/0x137 (下位/上位バイト)、リセット: 0x0000

このレジスタを用いて約 100nA のプルアップ電流をアナログ入力ピンでイネーブル/ディスエーブルできます。

表 116. ビット名

Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
[15:8]				RESERVED				I_PULLUP_IN8_E N
[7:0]	I_PULLUP_IN7_E N	I_PULLUP_IN6_E N	I_PULLUP_IN5_E N	I_PULLUP_IN4_E N	I_PULLUP_IN3_E N	I_PULLUP_IN2_E N	I_PULLUP_IN1_E N	I_PULLUP_IN0_E N

表 117. I_PULLUP レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[15:9]	RESERVED		予約済み。	0x0	R

analog.com.jp Rev. 0 | 90 of 94

内蔵レジスタ・マップ

表 117. I_PULLUP レジスタのビット説明(続き)

ビット	ビット名	設定	説明	リセット	アクセス
8	I_PULLUP_IN8_EN		AIN8 のプルアップ電流をイネーブル。	0x0	R/W
7	I_PULLUP_IN7_EN		AIN7 のプルアップ電流をイネーブル。	0x0	R/W
6	I_PULLUP_IN6_EN		AIN6 のプルアップ電流をイネーブル。	0x0	R/W
5	I_PULLUP_IN5_EN		AIN5 のプルアップ電流をイネーブル。	0x0	R/W
4	I_PULLUP_IN4_EN		AIN4 のプルアップ電流をイネーブル。	0x0	R/W
3	I_PULLUP_IN3_EN		AIN3 のプルアップ電流をイネーブル。	0x0	R/W
2	I_PULLUP_IN2_EN		AIN2 のプルアップ電流をイネーブル。	0x0	R/W
1	I_PULLUP_IN1_EN		AIN1 のプルアップ電流をイネーブル。	0x0	R/W
0	I_PULLUP_IN0_EN		AINO のプルアップ電流をイネーブル。	0x0	R/W

CURRENT_SOURCE レジスタ

アドレス: 0x138 (CURRENT_SOURCE0の下位バイト) ~0x13E (CURRENT_SOURCE3の上位バイト) (2 ずつインクリメント) 、 リセット: 0x0000

AD4190-4 には、個別にプログラムできる 2 つの励起電流(IOUT0、IOUT1)があります。このレジスタを用いて、電流源がイネーブルされ電流を出力するピンが選択されます。

表 118. ビット名

Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
[15:8]		RESERVE	D	I_OUT_PIN					
[7:0]			RESERVED	I_OUT_VAL					

表 119. CURRENT SOURCE レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:13]	RESERVED		予約済み。	0x0	R
[12:8]	I_OUT_PIN		励起電流を出力するピンを選択します。リストにない設定は予約済みです。	0x0	R/W
		00000	IOUT は AIN0 に出力。		
		00001	IOUT は AIN1 に出力。		
		00010	IOUT は AIN2 に出力。		
		00011	IOUT は AIN3 に出力。		
		00100	IOUT は AIN4 に出力。		
		00101	IOUT は AIN5 に出力。		
		00110	IOUT は AIN6 に出力。		
		00111	IOUT は AIN7 に出力。		
		01000	IOUT は AIN8 に出力。		
		01001	予約済み。		
		01010	予約済み。		
		01011	予約済み。		
		01100	予約済み。		
		01101	予約済み。		
		01110	予約済み。		
		01111	予約済み。		
		10000	予約済み。		
		10001	IOUT は GPIO0 に出力。		
		10010	IOUT は GPIO1 に出力。		
		10011	IOUT は GPIO2 に出力。		
		10100	IOUT は GPIO3 に出力。		
[7:3]	RESERVED		予約済み。	0x0	R
[2:0]	I_OUT_VAL		電流源の値。励起電流を使用している場合は、内部リファレンスをイネーブルする必要があります。内部リファレンスは、REF_CONTROL レジスタを介してイネーブルできます。	0x0	R/W

analog.com.jp Rev. 0 | 91 of 94

内蔵レジスタ・マップ

表 119. CURRENT_SOURCE レジスタのビットの説明(続き)

ビット	ビット名	設定	説明	リセット	アクセス
		000	0μΑ。		
		001	10μA。		
		010	50μA。		
		011	100μA。		
		100	250μΑ。		
		101	500μA。		
		110	1000μA。		
		111	1500μA。		

GPIO_MODE レジスタ

アドレス: 0x190/0x191 (下位/上位バイト)、リセット: 0x0000

GPIO ピンは、このレジスタを用いて入力または出力に設定します。これらのピンには、GPIO、パワー・スイッチ、リファレンス、励起電流、CHANNEL_TO_GPIO 機能といった、複数の機能がある点に注意してください。機能には優先度があります。詳細については、汎用入出力(GPIO0~GPIO3)のセクションを参照してください。

表 120. ビット名

Bit 7	Bit 6	Bit 5 Bit 4	Bit 3	Bit 2	Bit 1 Bit 0				
RESERVED									
	CH3_MODE	CH2_MODE		CH1_MODE	CH0_MODE				

表 121. GPIO MODE レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:8]	RESERVED		予約済み。	0x0	R
[7:6]	CH3_MODE		GPIO3のモード。	0x0	R/W
		00	ディスエーブル。		
		01	入力として設定。		
		10	出力として設定。		
		11	予約済み。		
[5:4]	CH2_MODE		GPIO2のモード。	0x0	R/W
		00	ディスエーブル。		
		01	入力として設定。		
		10	出力として設定。		
		11	予約済み。		
[3:2]	CH1_MODE		GPIO1のモード。	0x0	R/W
		00	ディスエーブル。		
		01	入力として設定。		
		10	出力として設定。		
		11	予約済み。		
[1:0]	CH0_MODE		GPI00のモード。	0x0	R/W
		00	ディスエーブル。		
		01	入力として設定。		
		10	出力として設定。		
		11	予約済み。		

analog.com.jp Rev. 0 | 92 of 94

内蔵レジスタ・マップ

GPIO_OUTPUT_DATA レジスタ

アドレス: 0x192/0x193 (下位/上位バイト)、リセット: 0x0000

GPIO ピンが出力に設定されている場合、ピンの値はこのレジスタに設定されます。

表 122. ビット名

Bit 7	Bit 6 Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0			
RESERVED									
RESERVED CH3_OUTPUT CH2_OUTPUT CH1_OUTPUT CH0_OUTPU									

表 123. GPIO_OUTPUT_DATA レジスタのビットの説明

ビット	ピット名	設定	説明	リセット	アクセス
[15:4]	RESERVED		予約済み。	0x0	R
3	CH3_OUTPUT		GPIO3 ピンの出力状態。	0x0	R/W
2	CH2_OUTPUT		GPIO2 ピンの出力状態。	0x0	R/W
1	CH1_OUTPUT		GPIO1 ピンの出力状態。	0x0	R/W
0	CH0_OUTPUT		GPIO0 ピンの出力状態。	0x0	R/W

GPIO_INPUT_DATA レジスタ

アドレス: 0x194/0x195 (下位/上位バイト)、リセット: 0x0000

GPIO ピンが入力に設定されている場合、ピンの値はこのレジスタに提示されます。

表 124. ビット名

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESERVED							
RESERVED			CH3_INPUT	CH2_INPUT	CH1_INPUT	CH0_INPUT	

表 125. GPIO_INPUT_DATA レジスタのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:4]	RESERVED		予約済み。	0x0	R
3	CH3_INPUT		GPIO3の入力状態。	0x0	R
2	CH2_INPUT		GPIO2 の入力状態。	0x0	R
1	CH1_INPUT		GPIO1 の入力状態。	0x0	R
0	CH0_INPUT		GPIO0の入力状態。	0x0	R

analog.com.jp Rev. 0 | 93 of 94

外形寸法

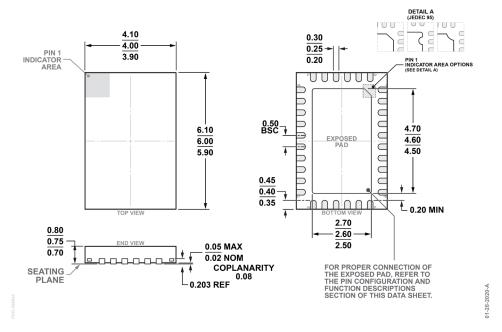


図 103. 32 ピン・リード・フレーム・チップ・スケール・パッケージ [LFCSP] 4mm × 6mm ボディ、0.75mm パッケージ高 (CP-32-34) 寸法:mm

更新: 2025年1月31日

オーダー・ガイド

表 126. オーダー・ガイド

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
AD4190-4BCPZ	-40°C to +105°C	32-Lead LFCSP	Tray, 490	CP-32-34
AD4190-4BCPZ-RL7	-40°C to +105°C	32-Lead LFCSP	Reel, 1,500	CP-32-34

¹ Z = RoHS 準拠製品。

評価用ボード

表 127. 評価用ボード

Model ¹	Description
EVAL-AD4190-4ARDZ	Evaluation Board
EVAL-SDP-CK1Z	Evaluation Controller Board

¹ Z = RoHS 準拠製品。

この製品のデータシートに間違いがありましたので、お詫びして訂正いたします。 この正誤表は、2025年5月29日現在、アナログ・デバイセズ株式会社で確認した誤りを 記したものです。

なお、英語のデータシート改版時に、これらの誤りが訂正される場合があります。

正誤表作成年月日: 2025年5月29日

製品名: AD4190-4

対象となるデータシートのリビジョン(Rev): Rev.0

訂正箇所: 14頁、表6の一番下、ピン13、CSの説明欄

【誤】

「SCLK、DIN、SDO 信号のみでインターフェースする場合は、 $\overline{\text{CS}}$ をローにハードワイヤ 接続をすることができます。」

【正】

「SCLK、SDI、SDO 信号のみでインターフェースする場合は、 $\overline{\text{CS}}$ をローにハードワイヤ 接続をすることができます。」

大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 10F 名古屋営業所/〒451-6038 愛知県名古屋市西区牛島 6-1 名古屋ルーセントタワー 40F

この製品のデータシートに間違いがありましたので、お詫びして訂正いたします。 この正誤表は、2025年5月29日現在、アナログ・デバイセズ株式会社で確認した誤りを 記したものです。

なお、英語のデータシート改版時に、これらの誤りが訂正される場合があります。

正誤表作成年月日: 2025年5月29日

製品名: AD4190-4

対象となるデータシートのリビジョン(Rev): Rev.0

訂正箇所: 39頁、左の段、下から4行目

【誤】

「入力電流を最小限に抑えるには、AVSS - 0.1V と AVDD + 0.1V の間の絶対入力範囲を 用います。」

【正】

「入力電流を最小限に抑えるには、AVSS + 0.1V と AVDD - 0.1V の間の絶対入力範囲を 用います。」

名古屋営業所/〒451-6038 愛知県名古屋市西区牛島 6-1 名古屋ルーセントタワー 40F

この製品のデータシートに間違いがありましたので、お詫びして訂正いたします。 この正誤表は、2025 年 5 月 29 日現在、アナログ・デバイセズ株式会社で確認した誤りを 記したものです。

なお、英語のデータシート改版時に、これらの誤りが訂正される場合があります。

正誤表作成年月日: 2025年5月29日

製品名: AD4190-4

対象となるデータシートのリビジョン(Rev): Rev.0

訂正箇所: 50頁、右の段、図91の説明

【誤】

「図 91. DC~600Hz、セトリング時間 60ms のポスト・フィルタ」

【正】

「図 91.40Hz~70Hz の拡大図、セトリング時間 60ms のポスト・フィルタ」

この製品のデータシートに間違いがありましたので、お詫びして訂正いたします。 この正誤表は、2025 年 5 月 29 日現在、アナログ・デバイセズ株式会社で確認した誤りを 記したものです。

なお、英語のデータシート改版時に、これらの誤りが訂正される場合があります。

正誤表作成年月日: 2025年5月29日

製品名: AD4190-4

対象となるデータシートのリビジョン(Rev): Rev.0

訂正箇所: 53 頁、右の段、一番下の文

【誤】

「<u>図 2 と図 3 に</u>、SPI インターフェースを介したレジスタ読出し動作と書込み動作の詳細なタイミング図を示します」

【正】

「<u>図 2 から図 5 に</u>、SPI インターフェースを介したレジスタ読出し動作と書込み動作の詳細なタイミング図を示します」