概要

特長

MAX3983 SMA コネクタの評価キット(EV キット)は、クワッド 銅ケーブルシグナルコンディショナの MAX3983 を電気的に 評価する実装済みの検証用基板です。すべてのデータ入力 及び出力は、SMA コネクタを通してアクセスすることができます。また、この EV キットは、高精度測定用のキャリブレーションストリップを内蔵しています。

- ◆ 完全実装及び試験済み
- ◆ 動作モードの容易な選択
- ◆ すべてのデータ入力及び出力に SMA コネクタを装備

部品リスト

DESIGNATION	QTY	DESCRIPTION
C1-C32, C35- C44	42	0.01μF ±5% ceramic capacitors (0402)
C33	1	33μF tantalum capacitor
C34, C45, C46, C49	4	0.1μF ±5% ceramic capacitors (0402)
C47, C48, C50, C51	4	Not Installed
J1-J34	34	SMA connectors, edge mount
JP1, JP2, JP8 - JP10 JP12	6	2-pin headers, 0.1in centers
JP3	1	3-pin header, 0.1in centers
JP5	1	3-pin + 1-pin header, 0.1in centers
JP11	1	Not Installed
L1	1	4.7μH Inductor Coilcraft DS1608C-472
R1-R8	8	4.7kΩ ±5% resistors (0402)
R10 - R18	9	Not Installed
TP1-TP11	11	Test points Digi-Key 5000K-ND
U1	1	MAX3983UGK 68-QFN*
U2	1	OR Gate Fairchild NC7S32P5X SC70
None		MAX3983 SMA connector evaluation circuit board, rev B
None		MAX3983 data sheet

注:U1 はエクスポーズドパッドを備えており、デバイスの適正な機能を保証するためにこれを回路基板に半田付けする必要があります。

PART	TEMP. RANGE	IC PACKAGE
MAX3983SMA	68 QFN	

部品メーカ

型番

SUPPLIER	PHONE	FAX
AVX	843-448-9411	843-448-1943
Coilcraft	847-639-6400	847-639-1469
Digi-Key	218-681-6674	218-681-3380
Murata	770-436-1300	770-436-3030

注:上記の部品メーカにお問合せの際は、MAX3983 を使用していることをお伝えください。

クイックスタート

- +3.3V 電源を 3.3V 端子に接続し、グランドを GND 端子に接続してください。
- 2) シャントをジャンパ JP10 に接続してください。
- 3) LOOPBACK シャントをジャンパ JP9 に接続することに よってシステムループバックをディセーブルしてください。
- 4) ジャンパ JP3 と JP5 のシャントを取り外して、TX と RX を イネーブルしてください。
- 5) ジャンパ JP2 のシャントを VCC[\$]に接続して、+3.3V を SD プルアップ抵抗器に供給してください。
- 6) 2.5Gbit/s ~ 3.2Gbit/s のデータを TX_IN[1:4](J9 ~ J16)に 印加してください。
- 7) 2.5Gbit/s ~ 3.2Gbit/s のデータを RX_IN[1:4](J19 ~ J26) に印加してください。
- 8) データ出力 RX_OUT[1:4](J1~J8)を 50 終端オシロスコープに接続して RX_IN[1:4]データを監視するか、または TX_OUT[1:4](J27~J34)を 50 終端オシロスコープに接続して TX_IN[1:4]データを監視するか、またはこれら両方のデータを監視してください。
- 9) ジャンパ JP1 と JP12 で TX プリエンファシスを調整し、JP8 で RX プリエンファシスを調整してください(「ジャンパの説明」参照)。

MIXIM

Maxim Integrated Products

1

本データシートに記載された内容はMaxim Integrated Productsの公式な英語版データシートを翻訳したものです。翻訳により生じる相違及び 誤りについては責任を負いかねます。正確な内容の把握には英語版データシートをご参照⟨ださい。

ジャンパの説明

名称	タイプ	シャントの位置	説明
TX_PE1 (JP1) 2-pin header	2 nin hooder	OPEN	TX プリエンファシス制御の最上位ビットをイネーブルします。
	SHUNT (GND)	TX プリエンファシス制御の最上位ビットをディセーブルします。	
TX_PE0 (JP12) 2-pin I	2-pin header	OPEN	TX プリエンファシス制御の最下位ビットをイネーブルします。
	2-pin neader	SHUNT (GND)	TX プリエンファシス制御の最下位ビットをディセーブルします。
DV DE (IDO)	2 nin hooder	OPEN	RX プリエンファシスを 6dB に設定します。
RX_PE (JP8)	2-pin header	SHUNT (GND)	RX プリエンファシスを 3dB に設定します。
LOOPBACK	2 nin hooder	OPEN	TX_IN[1:4]から RX_OUT[1:4]へのループバックをイネーブルします。
(JP9)	2-pin header	SHUNT (GND)	ループバックをディセーブルします。
VCCTX (JP10)	2-pin header	SHUNT	MAX3983 を正しく動作させるためにジャンパ JP10 にシャントを取り付ける必要があります。
PULLUP (JP2) 2-pin header	2-pin header	OPEN	V _{PULLUP} 端子に印加された外部電圧(3.0V ~ 5.5V)が SD 抵抗器のプルアップ電圧となります。
		SHUNT (V _{CC})	V _{CC} が SD 抵抗器のプルアップ電圧として設定されます。
		OPEN	MAX3983 の TX セクションをイネーブルします。
TX_ENABLE (JP3) 3-pin heade	3-pin header	TX_AUTO_EN	EV 基板が自動検出構成に設定されているとき、TX セクションの自動検出をイネーブルします。「詳細」の「自動検出の設定」の項を参照して〈ださい。
		TX_DISABLE	MAX3983 の TX セクションをディセーブルします。
RX_ENABLE 3-pin + 1-pin heade		OPEN	MAX3983 の RX セクションをイネーブルします。
	3-pin + 1-pin header	RX_AUTO_EN	EV 基板が自動検出構成に設定されているとき、RX セクションの自動検出をイネーブルします。「詳細」の「自動検出の設定」の項を参照して〈ださい。
		RX_DISABLE	MAX3983 の RX セクションをディセーブルします。
		000	EV 基板が自動検出構成に設定されているとき、LOOPBACK または RX_SD[1:4]のすべてがハイであれば RX_ENABLE が必ずハイに設 定されます。「詳細」の「自動検出の設定」の項を参照してください。

詳細

自動検出の設定

MAX3983 SMA コネクタの評価キットは、各信号検出(SD) が分離された状態で出荷されます。MAX3983 が受信信号を自動検出して対応する出力をイネーブルするためには、これらの SD 出力を相互に接続する必要があります。

RX 側で基板の自動検出を設定するためには、4 個の 0 0402 抵抗器を R14~R17 に半田付けし、R6、R7、及び R8 を取り外してください。これによって、ジャンパ JP5 が RX 自動検出をイネーブルします(「ジャンパの説明」の項 参照)。

TX 側で基板の自動検出を設定するためには、4 個の 0 0402 抵抗器を R10~R13 に半田付けし、R2、R3、及び R4 を取り外してください。これによって、ジャンパ JP3 が TX 自動検出をイネーブルします(「ジャンパの説明」の項 参照)。

出力遷移時間

緩やかな遷移時間を必要とする場合、MAX3983 SMA コネクタの評価キットの TX 出力に 0402 コンデンサを接続することができます。約 100ps(20%~80%)のエッジを実現するためには、C47、C48、C50、及び C51 に 1.5pF のコンデンサを半田付けしてください。

2_____*NIXIM*

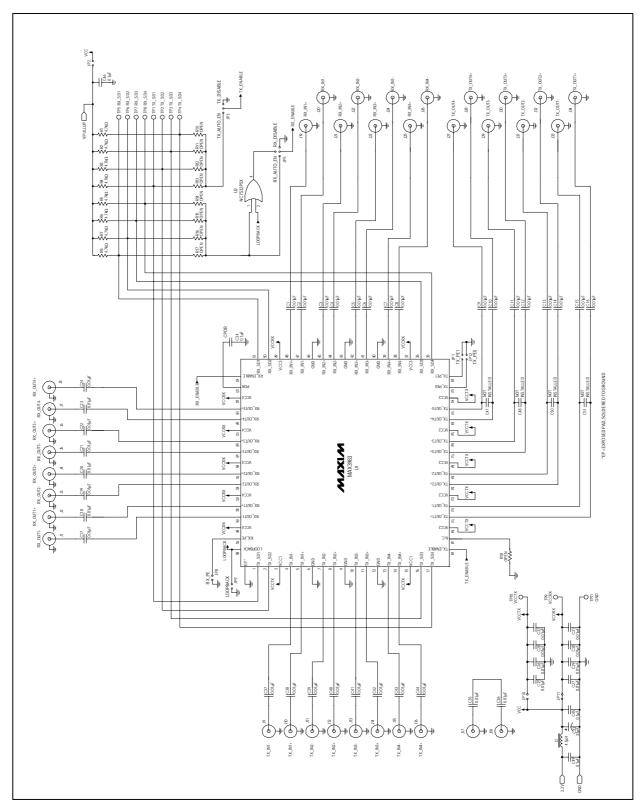


図 1. MAX3983 SMA コネクタの EV キットの回路図

MAXIM_______3

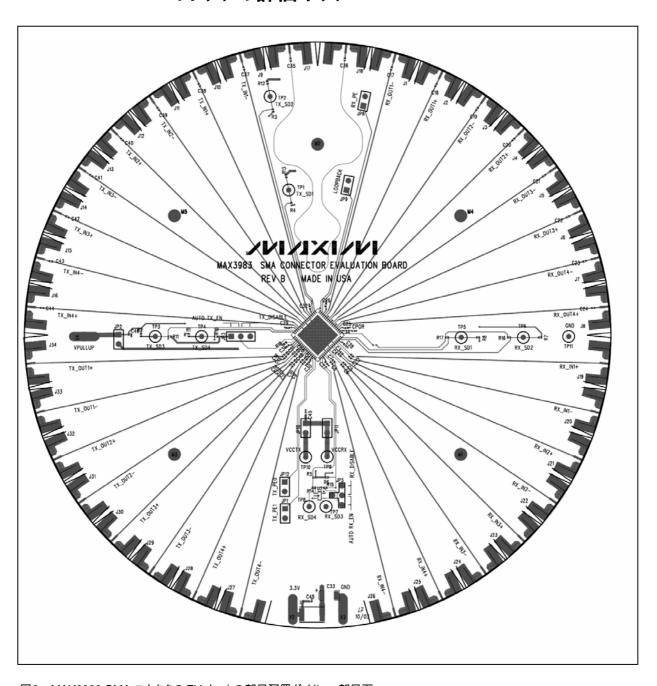


図 2. MAX3983 SMA コネクタの EV キットの部品配置ガイド — 部品面

4 /U/XI/U

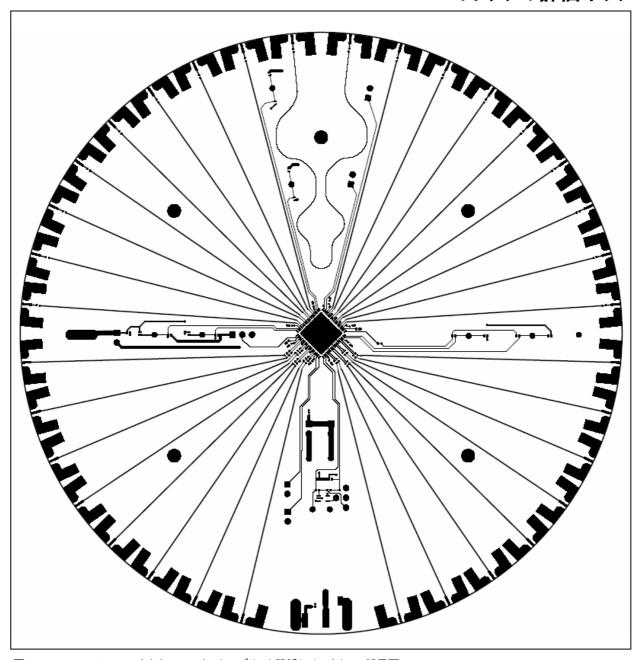


図3. MAX3983 SMA コネクタの EV キットのプリント基板レイアウト — 部品面



図 4. MAX3983 SMA コネクタの EV キットのプリント基板レイアウト — グランドプレーン

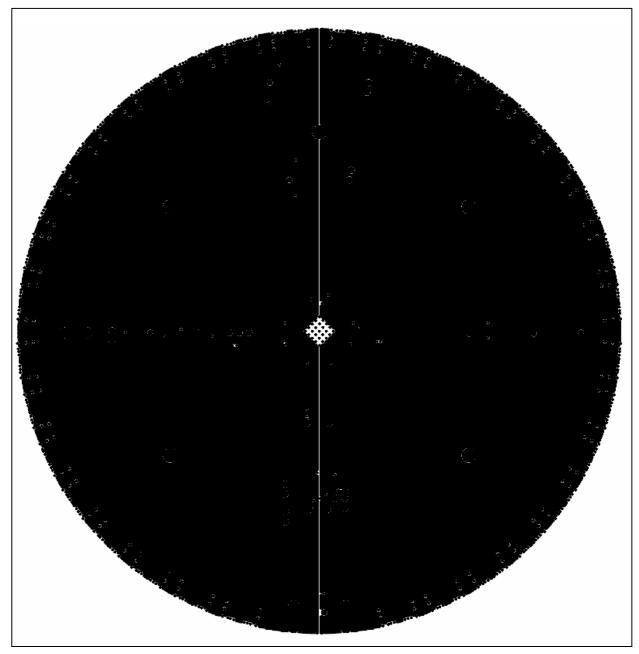


図 5. MAX3983 SMA コネクタの EV キットのプリント基板レイアウト — 電源プレーン

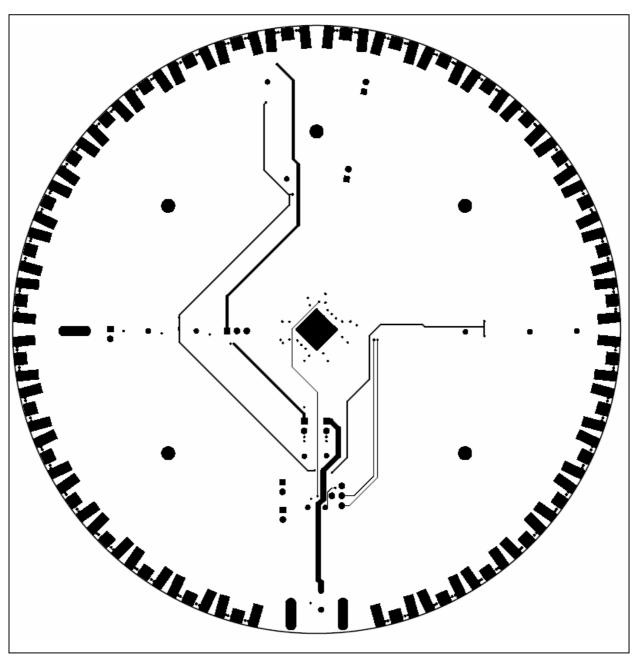


図 6. MAX3983 SMA コネクタの EV キットのプリント基板レイアウト — 半田(下)面

マキシム・ジャパン株式会社

〒169-0051東京都新宿区西早稲田3-30-16(ホリゾン1ビル) TEL. (03)3232-6141 FAX. (03)3232-6149

マキシムは完全にマキシム製品に組込まれた回路以外の回路の使用について一切責任を負いかねます。回路特許ライセンスは明言されていません。マキシムは随時予告なく回路及び仕様を変更する権利を留保します。