小型、低消費電力、3軸、±16 g
加速度センサー

ADXL326

特長
3軸センシング
小型、低背型パッケージ
4 mm × 4 mm × 1.45 mm LFCSP
低消費電力:
Vs = 3.0 V 動作時に 350 µA (typ)
単電源動作:
1.8～3.6 V
10,000 g の衝撃耐性
優れた温度安定性
1 軸当たり 1 個のコンデンサで帯域幅の調整が可能
RoHS/WECE 準拠の鉛フリー製品

概要
ADXL326 は、シグナル・コンディショニング済みの電圧出力を備えた、小型・低背・低消費電力の完全 3 軸加速度センサーです。±16 g の最小フルスケール・レンジで加速度を測定します。傾きセンシング・アプリケーションにおける重力の静的加速度のほか、動き、衝撃、振動による動的加速度も測定できます。

機能ブロック図

アプリケーション
コスト重視の低消費電力モーション検出／傾き検出アプリケーション
モバイル機器
ゲーム機
ディスプレイ動画装置保護
スポーツ・健康機器
手ぶれ補正

図 1. ブロック図
目次

<table>
<thead>
<tr>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>特長</td>
<td>1</td>
</tr>
<tr>
<td>アプリケーション</td>
<td>1</td>
</tr>
<tr>
<td>概要</td>
<td>1</td>
</tr>
<tr>
<td>機能ブロック図</td>
<td>1</td>
</tr>
<tr>
<td>改訂履歴</td>
<td>2</td>
</tr>
<tr>
<td>仕様</td>
<td>3</td>
</tr>
<tr>
<td>絶対最大定格</td>
<td>4</td>
</tr>
<tr>
<td>ESDに関する注意</td>
<td>4</td>
</tr>
<tr>
<td>ピン配置と機能の説明</td>
<td>5</td>
</tr>
<tr>
<td>代表的な性能特性</td>
<td>6</td>
</tr>
<tr>
<td>動作原理</td>
<td>10</td>
</tr>
<tr>
<td>機械式センサー</td>
<td>10</td>
</tr>
<tr>
<td>性能</td>
<td>10</td>
</tr>
<tr>
<td>アプリケーション情報</td>
<td>11</td>
</tr>
<tr>
<td>電源のデカップリング</td>
<td>11</td>
</tr>
<tr>
<td>Cx、Cy、Czによる帯域幅の設定</td>
<td>11</td>
</tr>
<tr>
<td>セルフ・テスト</td>
<td>11</td>
</tr>
<tr>
<td>フィルタ特性を選択するときの設計上のトレードオフ：</td>
<td>11</td>
</tr>
<tr>
<td>ノイズ／帯域幅のトレードオフ</td>
<td>11</td>
</tr>
<tr>
<td>3V以外の動作電圧で使用する方法</td>
<td>11</td>
</tr>
<tr>
<td>加速度検出軸方向</td>
<td>12</td>
</tr>
<tr>
<td>レイアウトと設計についての推奨事項</td>
<td>13</td>
</tr>
<tr>
<td>外形寸法</td>
<td>14</td>
</tr>
<tr>
<td>オーダー・ガイド</td>
<td>14</td>
</tr>
</tbody>
</table>

改訂履歴

8/09—Revision 0: Initial Version
仕様
特に指定のない限り、TA = 25°C、V_s = 3 V、C_X = C_Y = C_Z = 0.1 µF、加速度= 0 g。仕様の最小値と最大値は保証されています。代表値は保証されていません。

表 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSOR INPUT</td>
<td>Each axis</td>
<td>±16</td>
<td>±19</td>
<td></td>
<td>g</td>
</tr>
<tr>
<td>Measurement Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>Percent of full scale</td>
<td>±0.3</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Package Alignment Error</td>
<td></td>
<td>±1</td>
<td></td>
<td>Degrees</td>
<td></td>
</tr>
<tr>
<td>Interaxis Alignment Error</td>
<td></td>
<td>±0.1</td>
<td></td>
<td>Degrees</td>
<td></td>
</tr>
<tr>
<td>Cross Axis Sensitivity1</td>
<td></td>
<td>±1</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>SENSITIVITY (RATIOOMETRIC)2</td>
<td>Each axis</td>
<td>V_s = 3 V</td>
<td>51</td>
<td>57</td>
<td>63</td>
</tr>
<tr>
<td>Sensitivity at X_OUT, Y_OUT, Z_OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity Change Due to Temperature3</td>
<td>V_s = 3 V</td>
<td>±0.01</td>
<td></td>
<td>%/°C</td>
<td></td>
</tr>
<tr>
<td>ZERO g BIAS LEVEL (RATIOOMETRIC)</td>
<td>V_s = 3 V</td>
<td>1.35</td>
<td>1.5</td>
<td>1.65</td>
<td>V</td>
</tr>
<tr>
<td>0 g Voltage at X_OUT, Y_OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 g Voltage at Z_OUT</td>
<td></td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>0 g Offset vs. Temperature</td>
<td>±1</td>
<td></td>
<td></td>
<td>mg/°C</td>
<td></td>
</tr>
<tr>
<td>NOISE PERFORMANCE</td>
<td>Noise Density X_OUT, Y_OUT, Z_OUT</td>
<td>300</td>
<td></td>
<td></td>
<td>µg/√Hz rms</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE4</td>
<td>No external filter</td>
<td>1600</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>Bandwidth X_OUT, Y_OUT 5</td>
<td>No external filter</td>
<td>550</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>Bandwidth Z_OUT 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R налогов Tolerance</td>
<td>32 ± 15%</td>
<td></td>
<td></td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Sensor Resonant Frequency</td>
<td></td>
<td>5.5</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>SELF TEST6</td>
<td>Logic Input Low</td>
<td>+0.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic Input High</td>
<td>+2.4</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ST Actuation Current</td>
<td>+60</td>
<td></td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Output Change at X_OUT</td>
<td>Self test 0 to 1</td>
<td>−29</td>
<td>−62</td>
<td>−114</td>
<td>mV</td>
</tr>
<tr>
<td>Output Change at Y_OUT</td>
<td>Self test 0 to 1</td>
<td>+29</td>
<td>+62</td>
<td>+114</td>
<td>mV</td>
</tr>
<tr>
<td>Output Change at Z_OUT</td>
<td>Self test 0 to 1</td>
<td>+29</td>
<td>+105</td>
<td>+190</td>
<td>mV</td>
</tr>
<tr>
<td>OUTPUT AMPLIFIER</td>
<td>No load</td>
<td>0.1</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Swing Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Swing High</td>
<td>No load</td>
<td>2.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td>V_s = 3 V</td>
<td>1.8</td>
<td>3.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating Voltage Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>No external filter</td>
<td>350</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Turn-On Time7</td>
<td>1</td>
<td></td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>Operating Temperature Range</td>
<td>−40</td>
<td>85</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

1 任意の 2 軸間のカップリングとして定義。
2 感度は基本的に Vs に対してレシオメトリックです。
3 常温から最大温度または常温から最小温度までの出力変動として定義。
4 実際の周波数応答は、ユーザ支給の外付けフィルタ・コンデンサ（CX、CY、CZ）で制御。
5 外付けコンデンサによる帯域幅=1/(2 × π × 32 kΩ × CX、C_Y、C_Z)で制御。
6 セルフ・テストの応答性は、V_s の変化の 3 乗に比例。
7 ターンオン時間は V_s の変化の 3 乗に比例。
絶対最大定格

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration (Any Axis, Unpowered)</td>
<td>10,000 g</td>
</tr>
<tr>
<td>Acceleration (Any Axis, Powered)</td>
<td>10,000 g</td>
</tr>
<tr>
<td>V_s</td>
<td>-0.3 V to +3.6 V</td>
</tr>
<tr>
<td>All Other Pins</td>
<td>$(\text{COM } - 0.3 \text{ V}) \text{ to } (V_s + 0.3 \text{ V})$</td>
</tr>
<tr>
<td>Output Short-Circuit Duration (Any Pin to Common)</td>
<td>Indefinite</td>
</tr>
<tr>
<td>Temperature Range (Powered)</td>
<td>$-55°C \text{ to } +125°C$</td>
</tr>
<tr>
<td>Temperature Range (Storage)</td>
<td>$-65°C \text{ to } +150°C$</td>
</tr>
</tbody>
</table>

ESDに関する注意

ESD（静電放電）の影響を受けやすいデバイスです。電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術である ESD 保護回路を内蔵していますが、デバイスが高エネルギーの静電放電を受けた場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防ぐため、ESDに対する適切な予防措置を講じることをお勧めします。
ピン配置と機能の説明

図 2. ピン配置

表 3. ピン機能の説明

<table>
<thead>
<tr>
<th>ピン番号</th>
<th>記号</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>無接続もしくはコモン</td>
</tr>
<tr>
<td>2</td>
<td>ST</td>
<td>セルフ・テスト</td>
</tr>
<tr>
<td>3</td>
<td>COM</td>
<td>コモン</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>無接続</td>
</tr>
<tr>
<td>5</td>
<td>COM</td>
<td>コモン</td>
</tr>
<tr>
<td>6</td>
<td>COM</td>
<td>コモン</td>
</tr>
<tr>
<td>7</td>
<td>COM</td>
<td>コモン</td>
</tr>
<tr>
<td>8</td>
<td>Z OUT</td>
<td>Z チャンネル出力</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>無接続もしくはコモン</td>
</tr>
<tr>
<td>10</td>
<td>Y OUT</td>
<td>Y チャンネル出力</td>
</tr>
<tr>
<td>11</td>
<td>NC</td>
<td>無接続</td>
</tr>
<tr>
<td>12</td>
<td>X OUT</td>
<td>X チャンネル出力</td>
</tr>
<tr>
<td>13</td>
<td>NC</td>
<td>無接続</td>
</tr>
<tr>
<td>14</td>
<td>VS</td>
<td>電源電圧（1.8～3.6 V）</td>
</tr>
<tr>
<td>15</td>
<td>VS</td>
<td>電源電圧（1.8～3.6 V）</td>
</tr>
<tr>
<td>16</td>
<td>NC</td>
<td>無接続</td>
</tr>
<tr>
<td>EP</td>
<td>Exposed pad</td>
<td>内部的に無接続。機械的強度のためにハンダ付け。</td>
</tr>
</tbody>
</table>
代表的な性能特性
特に指定のない限り、すべての代表的な性能グラフはN > 1000 とします。

図3. X軸のゼロgバイアス（25°C、V_S = 3 V）
図4. Y軸のゼロgバイアス（25°C、V_S = 3 V）
図5. Z軸のゼロgバイアス（25°C、V_S = 3 V）
図6. X軸のセルフ・テスト応答性（25°C、V_S = 3 V）
図7. Y軸のセルフ・テスト応答性（25°C、V_S = 3 V）
図8. Z軸のセルフ・テスト応答性（25°C、V_S = 3 V）
図 9. X軸のゼロgバイアス温度係数（V_s = 3 V）

図 10. Y軸のゼロgバイアス温度係数（V_s = 3 V）

図 11. Z軸のゼロgバイアス温度係数（V_s = 3 V）

図 12. X軸のゼロgバイアスの温度特性（8個のデバイスをPCBにハンダ付け）

図 13. Y軸のゼロgバイアスの温度特性（8個のデバイスをPCBにハンダ付け）

図 14. Z軸のゼロgバイアスの温度特性（8個のデバイスをPCBにハンダ付け）
図 15. X 軸の感度（25°C、V_S = 3 V）

図 16. Y 軸の感度（25°C、V_S = 3 V）

図 17. Z 軸の感度（25°C、V_S = 3 V）

図 18. X 軸の感度の温度特性（8 個のデバイスを PCB にハンダ付け、V_S = 3 V）

図 19. Y 軸の感度の温度特性（8 個のデバイスを PCB にハンダ付け、V_S = 3 V）

図 20. Z 軸の感度の温度特性（8 個のデバイスを PCB にハンダ付け、V_S = 3 V）
図 21. 代表的な消費電流と電源電圧の関係

図 22. 代表的なターンオン時間（$V_s = 3 \text{ V}$、$C_x, C_y, C_z = 0.0047 \mu\text{F}$）
動作原理
ADXL326 は、加速度計測に必要な機能をすべて備えた完全 3 軸加速度計測システムで、計測範囲は最小±16g です。ポリシリコン表面マイクロマシン・センサーとシグナル・コンディショニング回路を内蔵することにより、オープンループ加速度計測アーキテクチャを実現しております。出力信号は、加速度に比例するアナログ電圧です。この加速度センサーは、動き、衝撃、振動による動的加速度だけでなく、傾き検出アプリケーションでの重力による静的加速度も測定できます。

センサーは、シリコン・ウェーハの上面に構成されるポリシリコン表面マイクロマシン構造となっています。ポリシリコンのスプリングがこの構造をウェーハ表面上に支え、加速力に対する抵抗を与えます。構造の偏位は、独立した固定プレートと可動部に取られたプレートで構成される、差動コンデンサによって測定します。固定プレートは、180°位相のずれた矩形波が印加されます。加速度は可動部を偏向させ、差動コンデンサを不平衡にするため、センサー出力の振幅は加速度に比例します。次いで、位相検波方式の復調技法を用いて、加速度の大きさと方向を決定します。

復調器の出力は増幅され、32 kΩ の抵抗を経由してチップの外部に送られます。ここでコンデンサを追加することで、デバイスの信号帯域幅を設定できます。このフィルタ処理によって計測分解能が向上し、エイリアシングの防止に役立ちます。

機械式センサー
ADXL326 は、X 軸、Y 軸、Z 軸の検出に 1 つの構造を使用します。その結果、3 軸の検出方向は、直交性が高く交差軸感度が小さくなります。主な交差軸感度源は、パッケージに対するセンサー・チップの機械的なずれです。もちろん、機械的なずれはシステム・レベルで調整できます。

性能
ADXL326 は、革新的な設計技術を採用することによって、温度補償用の回路を追加することなく高い性能を実現しています。その結果、本質的に量子化誤差や非単調増加性が生じることなく、温度ヒステリシスも非常に低くなります（−25〜+70°C の温度範囲で一般に 3 mg を下回る値）。
アプリケーション情報

電源のデカップリング

ほとんどのアプリケーションでは、1個の 0.1 µF コンデンサを ADXL326 の電源ビンの近くに外付けするだけで、電源ノイズから加速度センサーを十分にデカップリングできます。ただし、内部クロックの周波数である 50 kHz 付近（または、その高調波）のノイズが発生するアプリケーションでは、このノイズが加速度計測の誤差の原因になるため、電源のバイパスにさらに注意が必要です。デカップリングを追加する必要がある場合は、100 Ω（またはそれ以下の）の抵抗もしくはフェライト・ピーズを電源ラインに挿入してください。さらに、容量の大きいバック・バイパス・コンデンサ（1 µF 以上）を CDC に並列に接続することもできます。グラウンドを通じて伝送されるノイズは VS を通じて伝送されるノイズと同様の効果があるため、ADXL326 のグラウンドから電源グラウンドへの接続は必ず低インピーダンスになるようにしてください。

計測分解能 (検出可能な最小加速度) は、選択した加速度センサーの帯域幅によって最終的に決まります。フィルタ処理によって、ノイズ・フロアを低減し、加速度センサーの分解能を上げることができます。分解能は、XOUT、YOUT、ZOUT に接続されるアナログ・フィルタの帯域幅に応じて変化します。ADXL326 の出力の帯域幅（typ）は、500 Hz 以上です。エイリアシング誤差を制限するために、この帯域幅で信号をフィルタ処理する必要があります。エイリアシングを最小にするには、アナログ帯域幅が A/D サンプリング周波数の 1/2 を超えないようにする必要があります。さらに、帯域幅をさらに低くすれば、ノイズが低減され、分解能が向上します。

ADXL326 のノイズには、すべての周波数に等しく影響するホワイト・ガウス・ノイズの特性があり、これは µg/√Hz の単位で表すことができます (すなわち、ノイズは加速度センサーの帯域幅の 2 乗平方根に比例します)。加速度センサーの分解能とダイナミック・レンジを最大化するには、アプリケーションで必要な最低周波数に帯域幅を制限する必要があります。

| セルフ・テスト | ST ピン | セルフ・テスト機能を制御します。このピンを VCC に設定すると、静電引力が加速度センサーのビームに加えられます。その後結果ビームが移動することから、加速度センサーが正しく機能するかどうかをテストできます。出力変化の代表値は、X 軸で -1.08 g (-62 mV に対応)、Y 軸で +1.08 g (+62 mV)、Z 軸で +1.83 g (+105 mV) です。通常の使用時には、この ST ピンを開放しておくか、コモン (COM) に接続してください。

| バイアス出力 | ゼロ g 出力もレシオメトリックであるため、ゼロ g 出力の公称値はすべての電源電圧で VCC/2 に等しくなります。

3V以外の動作電圧で使用する方法

ADXL326 は、VCC = 3 V の条件でテストが行われ、仕様が規定されていますが、電源に最低 1.8 V または最高 3.6 V の VCC を使用できま

フィルタ特性を選択するときの設計上のトレードオフ:

ノイズ/帯域幅のトレードオフ:

計測分解能 (検出可能な最小加速度) は、選択した加速度センサーの帯域幅によって最終的に決まります。フィルタ処理によって、ノイズ・フロアを低減し、加速度センサーの分解能を上げることができます。分解能は、XOUT、YOUT、ZOUT に接続されるアナログ・フィルタの帯域幅に応じて変化します。ADXL326 の出力の帯域幅（typ）は、500 Hz 以上です。エイリアシング誤差を制限するために、この帯域幅で信号をフィルタ処理する必要があります。エイリアシングを最小にするには、アナログ帯域幅が A/D サンプリング周波数の 1/2 を超えないようにする必要があります。アナログ帯域幅をさらに低くすれば、ノイズが低減され、分解能が向上します。ADXL326 のノイズは、すべての周波数に等しく影響するホワイト・ガウス・ノイズの特性があり、これは µg/√Hz の単位で表すことができます (すなわち、ノイズは加速度センサーの帯域幅の 2 乗平方根に比例します)。加速度センサーの分解能とダイナミック・レンジを最大化するには、アプリケーションで必要な最低周波数に帯域幅を制限する必要があります。

単極ロールオフ特性における ADXL326 のノイズ（typ）は、次の式で求めることができます。

\[f_{-3 \text{dB}} = \frac{1}{2\pi RFILT \times C(X, Y, Z)} \]

さらに簡略化すると、次の式になります。

\[f_{-3 \text{dB}} = \frac{5 \mu F}{C(X, Y, Z)} \]

内部抵抗（RFILT）の許容誤差は、公称値（32 kΩ）の ±15% となっています。帯域幅もこれに応じて変動します。いずれの場合も、CX、CY、CZ には最低 0.0047 µF の容量が必要です。
換算でのセルフ・テスト応答は、電源電圧の 2 乗にほぼ比例します。ただし、感度のレシオメトリック性をともに考慮する場合、電圧換算のセルフ・テスト応答は、電源電圧の 3 乗にほぼ比例します。

たとえば、$V_S = 3.6$ V 時の ADXL326 のセルフ・テスト応答は、X 軸では約 -107 mV、Y 軸では約 $+107$ mV、Z 軸では約 $+181$ mV になります。$V_S = 2$ V 時のセルフ・テスト応答は、X 軸では約 -18 mV、Y 軸では約 $+18$ mV、Z 軸では約 -31 mV になります。

電源電流は、電源電圧の減少に伴って低下します。消費電流 (typ) は、$V_S = 3.6$ V 時に 375 µA、$V_S = 2$ V 時に 200 µA です。

図 23. 加速度検出軸方向（検出軸に沿って加速度が印加されると、対応する出力電圧が増加）

図 24. 出力応答と重力方向の関係
レイアウトと設計についての推奨事項
推奨するハンダ付けプロファイルを図 25 に、主要な特性を表 6 に示します。推奨する基板レイアウトとして、図 26 に PCB のレイアウト図を示します。

図 25. 推奨するハンダ付けプロファイル

表 6. 推奨するハンダ付けプロファイル

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Sn63/Pb37</th>
<th>Pb-Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Ramp Rate (T_L to T_P)</td>
<td>3°C/sec maximum</td>
<td>3°C/sec maximum</td>
</tr>
<tr>
<td>Preheat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Temperature (T_MIN)</td>
<td>100°C</td>
<td>150°C</td>
</tr>
<tr>
<td>Maximum Temperature (T_MAX)</td>
<td>183°C</td>
<td>217°C</td>
</tr>
<tr>
<td>Time (t_MIN to T_MAX), t_S</td>
<td>60 sec to 120 sec</td>
<td>60 sec to 180 sec</td>
</tr>
<tr>
<td>T_MAX to T_L</td>
<td>3°C/sec maximum</td>
<td>3°C/sec maximum</td>
</tr>
<tr>
<td>Ramp-Up Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Maintained Above Liquidous (T_L)</td>
<td>10 sec to 150 sec</td>
<td>20 sec to 40 sec</td>
</tr>
<tr>
<td>Liquidous Temperature (T_L)</td>
<td>240°C + 0°C/~5°C</td>
<td>260°C + 0°C/~5°C</td>
</tr>
<tr>
<td>Time (t_L)</td>
<td>6 min to 30 sec</td>
<td>6 min to 30 sec</td>
</tr>
<tr>
<td>Peak Temperature (T_P)</td>
<td>240°C + 0°C/~5°C</td>
<td>260°C + 0°C/~5°C</td>
</tr>
<tr>
<td>Time Within 5°C of Actual Peak Temperature (t_P)</td>
<td>10 sec to 30 sec</td>
<td>20 sec to 40 sec</td>
</tr>
<tr>
<td>Ramp-Down Rate</td>
<td>6°C/sec maximum</td>
<td>6°C/sec maximum</td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
<td>6 minutes maximum</td>
<td>8 minutes maximum</td>
</tr>
</tbody>
</table>

図 26. 推奨する PCB のレイアウト
外形寸法

ADXL326

图 27. 16 ピン・リード・フレーム・チップ・スケール・パッケージ [LFCSP_LQ]
4 mm × 4 mm ボディ、厚さ 1.45 mm、クワッド (CP-16-5a*)
寸法単位: mm

オーダー・ガイド

<table>
<thead>
<tr>
<th>Model</th>
<th>Measurement Range</th>
<th>Specified Voltage</th>
<th>Temperature Range</th>
<th>Package Description</th>
<th>Package Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADXL326BCPZ</td>
<td>±16 g</td>
<td>3 V</td>
<td>−40°C to +85°C</td>
<td>16-Lead LFCSP_LQ</td>
<td>CP-16-5a</td>
</tr>
<tr>
<td>ADXL326BCPZ-RL</td>
<td>±16 g</td>
<td>3 V</td>
<td>−40°C to +85°C</td>
<td>16-Lead LFCSP_LQ</td>
<td>CP-16-5a</td>
</tr>
<tr>
<td>ADXL326BCPZ-RL71</td>
<td>±16 g</td>
<td>3 V</td>
<td>−40°C to +85°C</td>
<td>16-Lead LFCSP_LQ</td>
<td>CP-16-5a</td>
</tr>
<tr>
<td>EVAL-ADXL326Z1</td>
<td>±16 g</td>
<td>3 V</td>
<td>−40°C to +85°C</td>
<td>Evaluation Board</td>
<td>CP-16-5a</td>
</tr>
</tbody>
</table>

1 Z = RoHS 準拠製品