

低ノイズ、高感度光センサー

データシート ADPD2214

特長

超高感度の光検出器

超低ノイズ・フロア: 90 fA/•Hz (typ)

ショットノイズの限界に近い S/N 比 (SNR)

アクティブ時の電源電流: 137 μ A(typ)($E_E = 0 \mu$ W/cm²)

スタンバイ時の電源電流: 1 µA (typ)

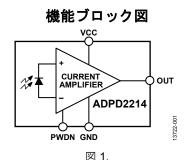
高速、ディープ・ジャンクション・フォトダイオード

公称リニア出力電流: 240 µA (typ)

柔軟な出力構成

優れたパルス応答

優れた周辺光除去


省スペースの 4 mm×4 mm LFCSP パッケージ

アプリケーション

心拍計、パルス酸素モニタ(フォトプレチスモグラフィ) バッテリ駆動の医療センサー 化学解析

概要

ADPD2214 は生物医学アプリケーション向けに最適化された光センサーです。ゼロ・バイアスの光伝導モードで動作する超低容量のディープ・ジャンクション・シリコンのフォトダイオードと低ノイズ電流アンプをともにパッケージに収納することにより、超低消費電力で理想に近い S/N 比 (SNR) を実現しています。ADPD2214 の帯域幅性能は 75 kHz (typ) で、パルス励起との使用に最適です。ADPD2214 の動作中の電力は非常に小さく、パワーダウン・ピンが組み込まれています。このため、パワーサイクル

が可能で、携帯用アプリケーションにおいてバッテリ寿命が最適化されます。ADPD2214はショットノイズを最小限に抑えた性能を発揮するので、低光量の条件下で可能な限り最高の忠実度で信号を測定するには最適の選択肢となります。低消費電力、非常に高い S/N 比、EMI 耐性との組み合わせにより、従来のフォトダイオード (PD) +トランスインピーダンス・アンプ (TIA) では不可能な低消費電力システム・ソリューションが実現します。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって 生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示 的または贈売的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、それぞれの所有 者の財産です。※日本語版資料は REVISION が古い場合があります。最新の内容については、英語版をご参照ください。

©2016 Analog Devices, Inc. All rights reserved

アナログ・デバイセズ株式会社

目次

符長	1
アプリケーション	1
機能ブロック図	1
概要	1
改訂履歴	2
仕様	3
絶対最大定格	4
熱抵抗	4
ハンダ付けプロファイル	4
ピン配置およびピン機能の説明	5
代表的な性能特性	6
用語の定義	8
動作原理	9
概要	9
ショット・ノイズが制限された性能	9

感度と S/N 比	9
直線性	9
パッケージに関する考慮事項	9
EPAD 接続	9
アプリケーション情報	10
デバイスの電源	10
パワーダウン	10
パルス・モード動作	10
出力構成	10
3 線式電圧構成	10
3線式電流モード構成	10
評価用ボードの回路図とレイアウト	12
外形寸法	13
オーダー・ガイド	13

改訂履歴

4/16—Revision 0: Initial Version

特に指定のない限り、VCC = 3.3 V、TA = 25 °C、λ = 528 nm。IPD はフォトダイオード電流、IMOD は変調電流、EE は放射照度、IOUT は 出力電流、VBIAS はバイアス電圧、RFEEDBACK は TIA 帰還抵抗、RLOAD は負荷抵抗。

表 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
GAIN						
Gain (Current Amplifier)	β_{TLA}			24		
DYNAMIC PERFORMANCE						
Frequency Response Peaking				<6		dB
Rise Time	t_R	10% to 90% full scale (FS) ($I_{OUT} = 24 \mu A$)		6		μs
Fall Time	t_{F}	90% to 10% FS (I _{OUT} =24 μA)		6		μs
Bandwidth	BW	$I_{PD} = 10 \text{ nA}, I_{MOD} = 1 \text{ nA}$		75		kHz
OPTICAL PERFORMANCE						
Diode Active Area				4.5		mm^2
Saturation Irradiance				890		μW/cm ²
NOISE PERFORMANCE						
Current Noise, Output Referred ¹		$E_E = 0 \mu W/cm^2$		1920		fA/√Hz
		$I_{PD} = 10 \text{ nA to } 300 \text{ nA}$		$1.4 \times N_{SHOT}$		fA/√Hz
		$I_{PD} > 300 \text{ nA}$		$1.15 \times N_{SHOT}$		fA/√Hz
Current Noise Floor, Input Referred		$E_E = 0 \mu W/cm^2$, at 1 kHz		90	150	fA/√Hz
Noise Equivalent Power	NEP	At 1 kHz		100		fW/√Hz
E_E Required for SNR = 10000:1		At 1 kHz		80		nW/cm ²
POWER AND SUPPLY						
Supply Voltage	V_{CC}		1.8	3.3	5.0	V
Power Supply Rejection Ratio	PSRR	$V_{CC} = 1.8 \text{ V to } 5.0 \text{ V}, E_E = 890 \mu\text{W/cm}^2$		120	ı	nA/V
Current		,		ĺ		
Standby	I _{STANDBY}	$PWDN > V_{IH}$		1		μA
Supply at $E_E = 0 \mu W/cm^2$	I_{FLOOR}			137		μA
Supply ²	I _{SUPPLY}	$I_{OUT} = 10 \mu A$		166		μA
11 7	501121	$I_{OUT} = 240 \mu A$		950		μA
OUTPUT CHARACTERISTICS						
Amplifier Static Bias Current						
Input Referred		$E_E = 0 \mu W/cm^2$		10		nA
Output Referred		$E_E = 0 \mu W/cm^2$		240		nA
Maximum Output Voltage	V_{OUT_MAX}			$V_{CC} - 0.75$		V
Nominal Linear Output Current	I _{OUT FS}	V		240		μA
Linearity into TIA		$V_{BIAS} = 1.3 \text{ V}, R_{FEEDBACK} = 25 \text{ k}\Omega$		60		dB
Linearity into Resistive Load		$I_{OUT} < 100 \ \mu A$, $R_{LOAD} = 5 \ k\Omega$		60		dB
Peak Output Current ³		7 7 20.13		300	1	μA
Output Capacitance	C_{OUT}	From OUT to GND		5		pF
Output Resistance	R _{OUT}	From OUT to GND		1000		MΩ
POWER-DOWN LOGIC						
Input Voltage						
High Level	V_{IH}		$V_{CC} - 0.2$			V
Low Level	V _{IL}				0.2	v
Leakage Current	· IL					
High	I_{IH}	PWDN = 3.3 V		0.2		nA
Low	I _{IL}	PWDN = 0 V		-8.5		μA
OPERATING AMBIENT TEMPERATURE	-11.		-40	3.0	+85	°C
RANGE						

¹ N_{SHOT} は光子ショット・ノイズを表します。光子ショット・ノイズは、光伝導モードにおけるすべての光検出器の基本ノイズ・フロアです。

 $^{^2}$ $I_{SUPPLY} = I_{FLOOR} + (3.3 \times I_{OUT})$ 3 I_{OUT_FS} よりも大きい出力では性能が低下する可能性があります。

絶対最大定格

表 2.

Parameter	Rating
Supply Voltage (VCC)	6.0 V
Storage Temperature Range	−40°C to +105°C
Junction Temperature	110°C
Solder Reflow Temperature (<10 sec)	260°C

上記の絶対最大定格を超えるストレスを加えると、デバイスに恒 久的な損傷を与えることがあります。この仕様規定はストレス定 格のみを指定するものであり、この仕様の動作のセクションに記 載する規定値以上でのデバイス動作を定めたものではありません。 製品を長時間にわたり絶対最大定格状態に置くと、製品の信頼性 に影響を与えることがあります。

熱抵抗

θ JA は最も厳しい条件、すなわち、回路基板に表面実装パッケージをハンダ付けした状態で仕様規定されています。

表 3. 熱抵抗

Package Type	θ_{JA}	θ _{JC}	Unit
4 mm × 4 mm LFCSP	52.45	11.55	°C/W

ハンダ付けプロファイル

図2と表4に、推奨されるハンダ付けプロファイルに関する情報を示します。

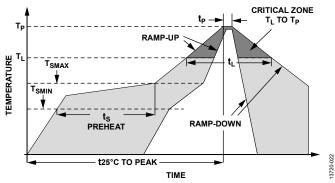


図 2. 推奨されるハンダ付けプロファイル

表 4. 推奨されるハンダ付けプロファイル値 1

Profile Feature	Condition (Pb Free)
Average Ramp Rate (T _L to T _P)	2°C/sec maximum
Preheat	
Minimum Temperature (T _{SMIN})	150°C
Maximum Temperature (T _{SMAX})	200°C
Time from T_{SMIN} to T_{SMAX} (t _S)	60 sec to 120 sec
Ramp-Up Rate (T_{SMAX} to T_L)	2°C/sec maximum
Liquidus Temperature (T _L)	217°C
Time Maintained Above T _L (t _L)	60 sec to 150 sec
Peak Temperature (T _P)	$260^{\circ}\text{C} + (0^{\circ}\text{C}/-5^{\circ}\text{C})$
Time Within 5°C of Actual T _P (t _P)	20 sec to 30 sec
Ramp-Down Rate	3°C/sec maximum
Time from 25°C (t25°C) to Peak Temperature	8 minutes maximum

¹ JEDEC 規格 J-STD-020D.1 に基づく値。

ESD に関する注意

ESD (静電放電)の影響を受けやすいデバイスです。 電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術である ESD 保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESD に対する適切な予防措置を講じることをお勧めします。

ピン配置およびピン機能の説明

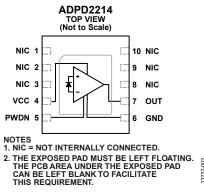


図 3. ピン配置

表 5. ピン機能の説明

ピン番号	記号	説明
1	NIC	内部では未接続。このピンは接地します。
2	NIC	内部では未接続。このピンは接地します。
3	NIC	内部では未接続。このピンは接地します。
4	VCC	電源電圧。
5	PWDN	パワーダウン入力。接続する必要があります。デバイスをディスエーブルにするには、このピンをハイ・レベルにプルアッ
		プします。
6	GND	グラウンド。
7	OUT	出力端子。
8	NIC	内部では未接続。このピンは接地します。
9	NIC	内部では未接続。このピンは接地します。
10	NIC	内部では未接続。このピンは接地します。
11	EPAD	エクスポーズド・パッド。エクスポーズド・パッドはフロート状態のままにしておく必要があります。エクスポーズド・
		パッドの下のプリント基板 (PCB) 領域を空のままにして、この要件を満たすことができます。

代表的な性能特性

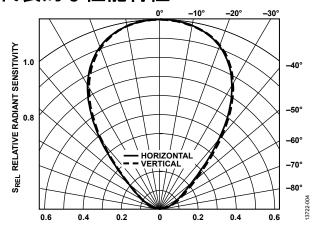


図 4. 相対放射感度と角度変位の関係

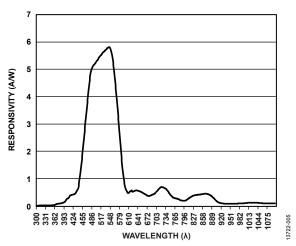


図 5. 感度と波長の関係

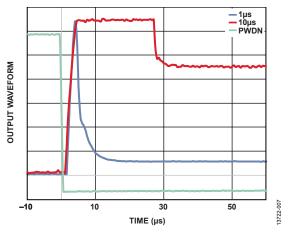


図 6. パワーダウン回復時間、1%

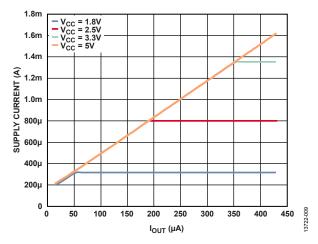


図 7. 各種電源電圧(VCC)での電源電流と 出力電流(IOUT)の関係

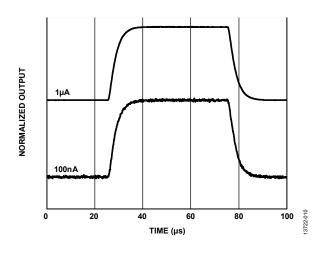


図 8. 小信号パルス応答

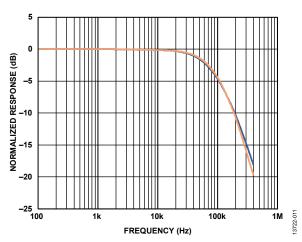


図 9. 帯域幅/ピーク形成

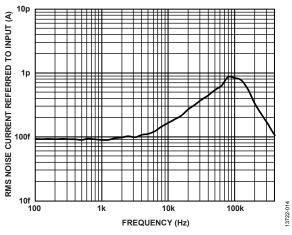


図 10. ノイズ帯域幅/ピーク形成

用語の定義

光パワー

光パワーは、放射束 (Φ) または放射パワーとして測定され、単位時間当たりの光子エネルギーとして定義される、単位時間あたりの放射エネルギー (Q) です。

感度

フォトダイオード感度 ρ は、入射光パワー (P_{OPT}) をフォトダイオード電流 (I_{PD}) と相関させる係数で、通常はアンペア/ワット (A/W) の単位で表されます。感度は、本質的にセンサーが光を電子/正孔対に変換する能力を表す量子効率で、入射光の波長とセンサーの材質および温度に大きく依存します。

フォトダイオード領域

フォトダイオード領域は、ダイオードの感光領域を表します。PIN ダイオードでは、正と負のドープ拡散領域間にある真性シリコンの感光領域に相当します。一般的に、出力信号は感光領域に比例して増加するため、大きいフォトダイオードのほうが高い感度を示します。一方、ノイズは感光領域の二乗和で増加します。フォトダイオード領域が大きいほど容量が大きく、搬送波拡散経路が長いほど帯域幅に悪影響を与えます。

光伝導モード

フォトダイオードの光伝導動作は、シリコンに入射する光子が電子/正孔対を生成し、電界によって反対側のピンに掃引されるときに発生します。光束に比例する電流がフォトダイオードの接合部に入射されると、これらのキャリアがフォトダイオードのピンに現れます。

ショット・ノイズ

ショット・ノイズは、光に含まれる光子や電流に含まれる電子など、あらゆる量子化信号における統計変動です。ショット・ノイズの大きさは、二乗平均平方根 (rms) ノイズ電流として表され

ます。ショット・ノイズは光検出器の本質的な制限事項で、次式 で表されます。

ショット・ノイズ= $\sqrt{(2qI_{PD})}$

ここで

q は、電子の電荷(1.602×10^{-19} クーロン)。 I_{PD} はフォトダイオード電流。

フォトプレチスモグラフィ(PPG)

フォトプレチスモグラフィでは、光を使用してヘモグロビンの容 積と組成の変化によって生じる軟組織の吸収スペクトルの変化を 検出することで、生物学的作用を測定します。

直線性

直線性は、センサーに当たる光パワーの変化に対する出力電流の理想的な変化からの偏差です。規定された光パワー範囲にわたるセンサー出力電流のベスト・ストレート・ライン近似からの偏差として直線性の仕様が規定されます。大きなDCオフセットに印加される小さなAC信号を検出する要件により、直線性はPPGの測定で重要な仕様です。

スタティック・バイアス

ADPD2214 には、低入力レベルで入力電流ミラーを直線化し、アンプの入力段の過渡逆バイアスを防止する 10 nA のバイアスが内蔵されています。このバイアスは固定されていて、出力に 240 nA (typ) のオフセットとして現れます。

ノイズ等価電力 (NEP)

ノイズ等価電力は、センサーの合計ノイズ電流に等しい光電流を 生成する、光検出器の入射光パワーの量です。ノイズ・レベルは 周波数帯域幅の平方根に比例します。このため、NEP は1 Hz 帯 域幅で仕様規定されています。NEP は、センサーの検出感度の 基準です。

動作原理

概要

ADPD2214は、ディープ・ジャンクション・シリコン・フォトダイオードと低ノイズ電流アンプが光透過性のあるチップ・スケール・パッケージに組み込まれた、低消費電力の集積型光センサーです。ADPD2214は、低い消費電力と高い S/N 比を必要とする、バッテリ駆動、ウェアラブル、医療、および産業用の光検出アプリケーション向けに最適化されています。

ショット・ノイズが制限された性能

ADPD2214のオンボード・フォトダイオードは、ゼロ・バイアス電圧の光伝導モードで動作します。この動作モードでダイオードは、空乏領域での漏れによって発生する DC 暗電流なしで動作できます。また、ショット・ノイズを最小限に抑えた性能を発揮します。ノイズ・レベルは、周波数帯域幅の平方根に比例します。

感度と S/N 比

S/N比とは、デバイスの周辺環境(周辺光など)、非直線性、およびデバイス自体のノイズから発生するスプリアス信号から、対象となる信号を分離するセンサーの能力を表します。

ADPD2214 は、ゼロ・バイアスの光伝導モードで内蔵フォトダイオードを動作させ、ほぼゼロの暗電流を供給するため、フォトダイオードからのダーク・ショット・ノイズ成分の混入はありません。内蔵電流アンプは、低照度時に帯域幅を改善して応答を直線化するため、 $10~\mathrm{nA}$ の内部バイアス電流を必要とします。このバイアスは、電流アンプの出力で $90~\mathrm{fA}/\mathrm{\Gamma}Hz$ のショット・ノイズ成分を生成し、ADPD2214のノイズ・フロアを確立します。

ADPD2214の感度を最適化するには、光信号を内蔵フォトダイオードの光活性領域に集中させる必要があります。オンボードの高精度電流アンプはシールドされているので、表面に当たる光による影響をあまり受けません。ただし、デバイスの感度は、光検出器に入射される光パワーによってのみ決まります。

直線性

非拍動性の組織吸収と周辺光によって発生し、大きな DC 成分に変調される、振幅の小さな拍動性 AC 信号を正確に抽出する必要があるため、直線性は PPG にとって重要です。パルス光アプリケーションにおいて、帯域幅は直線性の重要な成分です。これは、暗条件やパワーダウン条件からデバイスを迅速に回復することは、センサーが対象となる信号を抽出する能力に大きく影響するためです。ADPD2214 は、 $3.3\,\mathrm{V}$ の電源電圧で、EE=890 $\mu\mathrm{W/cm}2$ 、 $\lambda=528\,\mathrm{nm}$ の放射照度で 60 dB の直線性を確保できるように出荷時にトリミングされています。

パッケージに関する考慮事項

ADPD2214は、透明なエポキシ樹脂成分で成形されたパッケージに収められています。最高の感度を維持するためにも、フォトダイオード上部の表面に傷がついたり、表面仕上げに影響を与える可能性のある化学薬品が付着しないように、十分注意してデバイスを取り扱ってください。半透明の成形用コンパウンドで使用される安定化充填剤(通常、最大70%のシリカ)が含まれていないため、ADPD2214の最大保存温度は105°Cです。ハンダ処理の温度プロファイルを図2に示します。

EPAD 接続

ADPD2214のEPADは、フォトダイオードとアンプに共通の電気的、熱的、および機械的プラットフォームとして機能します。外部接続してはいけません。ADPD2214の消費電力は極めて低いので、外部冷却は必要ありません。アナログ・デバイセズでは、ADPD2214の敏感な内部ノードに外部信号が結合されないように、デバイスの下のパターンを取りはずすことをお勧めします。

アプリケーション情報

ADPD2214 の電流出力は、外部回路とのインターフェースを提供する柔軟性を備えています。

デバイスの電源

ADPD2214 は、 $1.8 \text{ V} \sim 5.0 \text{ V}$ の正の単電源で駆動できます。 ADPD2214 は PSRR の高いデバイスですが、最高の感度を提供するには、適切な回路レイアウトおよびバイパスの使用をお勧めします。特に、パルス・モード・アプリケーションで ADPD2214 がトランスミッタとリファレンス・ノードを共有する場合はこの構成が推奨されます。内蔵電流アンプの静止電流よりも高い電流では、電流アンプがフォトダイオードの出力を 24 倍に増幅するのに伴い入射光が直線的に増加します。一般的なバッテリ駆動の場合は、消費電力を節約できるように、受信した光センサーの信号強度に基づいてソース LED の出力が動的に低下します。 ADPD2214 のノイズ・フロアは非常に低く、S/N 比が非常に高くなるので、最小限のソース電源と低い入射光パワーで正確に信号を抽出することができます。

パワーダウン

ADPD2214には、超低消費電力のスタンバイ・モードがあり、バッテリ駆動の動作向けに最適化されています。周辺光の除去性能を高め、トランスミッタの消費電力を低減できるように光源が点灯/消灯するパルス・モードまたはモード・ロック・アプリケーションの暗い期間にすばやくスタンバイ・モードに切り替わって超低消費電力を実現します。パワーダウン・ピンは内部でプルアップ/プルダウンされません。ADPD2214を正しく動作させるには、外部ロジック・レベルに接続する必要があります。

パルス・モード動作

ADPD2214 はパワー・ダウン・ピン (PWDN) を備え、バッテリ 駆動の動作向けに最適化されています。検出が非アクティブの場合、ADPD2214 はすばやくスタンバイ・モードに切り替わり、電源電流が 1 μ A に低減されます。周辺光の除去性能を高め、トランスミッタの消費電力を低減できるように、光源が点灯/消灯するパルス・モードまたはモード・ロック・アプリケーションの暗い期間にこの状態に移行します。

複数波長システムでは、光エミッタに順次パルスを入力することで複数の狭帯域幅のセンサーが不要になります。複数波長(SpO2)システムと単波長(心拍計)システムでは、パルス動作によりバッテリ駆動システムの消費電力を大幅に削減できます。パルス・モード動作では、組織全体に拡散した周辺光を補償するのに必要な較正信号が提供されます。これは、システムのエミッタがオフのときに、センサー出力を測定することで抽出できます。その後、高度なアルゴリズムを使用して、DCオフセット、ノイズ、モーション・アーチファクトなどの干渉信号から関心対象の信号を抽出できます。

出力構成

ADPD2214の出力は、アプリケーションに応じてさまざまな構成に設定できます。ADPD2214の電流ゲインは、周囲の干渉源による影響を軽減しますが、最高の性能を実現するには、注意深く設計およびレイアウトを実施する必要があります。システムの帯域幅と応答時間は寄生容量の充電と放電に必要な時間によって制限されるため、構成にかかわらず、出力の容量による影響を十分に考慮する必要があります。

ADPD2214は事実上の電流源であるため、高インピーダンスを示すインターフェースに接続した場合、ADPD2214の出力電圧はコンプライアンス電圧(VCCよりも約1.2 V低い値)までドリフトします。このドリフトの速度は、ADPD2214の出力電流、寄生容量、負荷のインピーダンスによって決まります。このドリフトにより、ADPD2214の後続回路が ADPD2214の出力を積極的にマルチプレクサしている場合、または電源オン/オフにより高インピーダンスを示している場合は、追加のセトリング時間が必要になります。マルチプレクサされたシステムの場合、ブレークビフォアメーク・スイッチ・マトリクスよりも電流ステアリング・アーキテクチャのほうが優れた性能を発揮します。

3 線式電圧構成

ADPD2214を最小限の3線式電圧構成で使用すれば、部品数の非常に少ないコンパクトなソリューションを実現できます(図11を参照)。シャント抵抗(RS)によってA/Dコンバータ(ADC)の前段にトランスインピーダンス・ゲインが設定されます。この構成により、ADPD2214のフルスケール出力にADCのフルスケール入力をマッチングできるようになります。インターフェースのダイナミック・レンジは、ADPD2214のコンプライアンス電圧に制限されています。

ADC の前段にアンプを追加する必要はありません。範囲の下限での応答時間は、ADPD2214の出力に現れる出力電流が寄生容量を充電する能力によって制限されます。

3線式電流モード構成

フォトダイオードとともに3線式電流モード構成で使用した場合 (図12を参照)、ADPD2214は負荷抵抗の影響を受けず、センサー から離れた場所で信号処理を行う場合に使用できます。EMI ノイズとシールドの要件は最小限です。ケーブルの容量は帯域幅に直接影響を与えるため、非シールド・インターフェースには3線式電流モード構成が適しています。ADPD2214の安定性の低下および帯域幅の減少を回避できるように、帰還容量(CF)値は注意して選択する必要があります。TIAの帰還ループ周囲の大きな容量は、システムの帯域幅に直接影響を与えます。

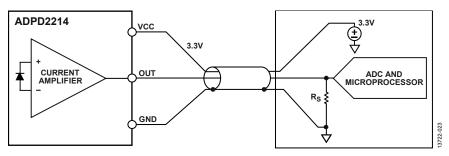


図 11.3 線式電圧構成で使用した ADPD2214

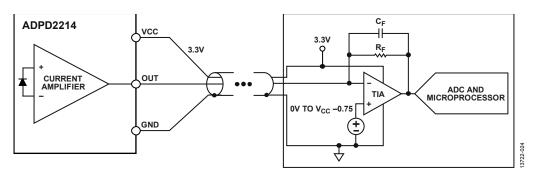


図 12.3 線式電流モード構成で使用した ADPD2214

評価用ボードの回路図とレイアウト

図 15 に評価用ボードの回路図を示します。図 13 と図 14 に、表面層と裏面層向け評価用ボードのレイアウトを示します。

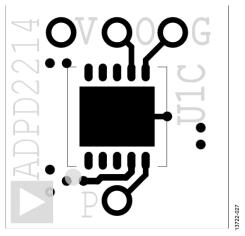


図 13. ADPD2214 評価用ボード、表面層

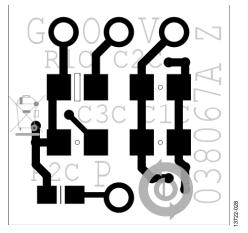


図 14. ADPD2214 評価用ボード、裏面層

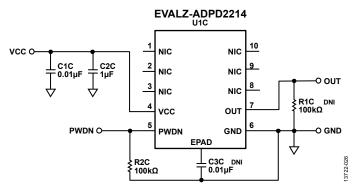


図 15. ADPD2214 評価用ボードの回路図 (C3C を取り付けないこと)

外形寸法

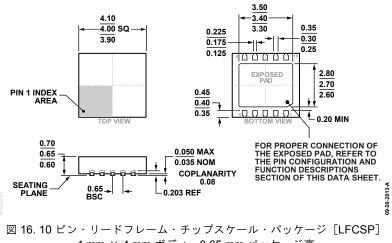


図 16. 10 ピン・サードフレーム・デップスケール・バッケーシ [LFCSP] 4 mm × 4 mm ボディ、0.65 mm パッケージ高 (CP-10-14)

寸法: mm

オーダー・ガイド

Model ¹	Temperature Range	Package Description	Package Option	Ordering Quantity
ADPD2214ACPZ-R7	-40°C to +85°C	10-Lead Lead Frame Chip Scale Package [LFCSP]	CP-10-14	1500
ADPD2214ACPZ-RL	−40°C to +85°C	10-Lead Lead Frame Chip Scale Package [LFCSP]	CP-10-14	5000
EVALZ-ADPD2214		Evaluation Board		

¹ Z = RoHS 準拠製品。